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Preface to the First Edition

In recent years, mathematics has made a considerable impact as a tool with
which to model and understand biological phenomena. In return biology has
confronted the mathematician with a variety of challenging problems which
have stimulated developments in the theory of nonlinear differential equations.
This book is the outcome of the need to introduce undergraduates of math-
ematics, the physical and biological sciences to some of these developments.
It is primarily directed to university students who are interested in modelling
and the application of mathematics to biological and physical situations.

Chapter 1 is introductory, showing how the study of first-order ordinary
differential equations may be used to model the growth of a population, mon-
itoring the administration of drugs and the mechanism by which living cells
divide. In Chapter 2, a fairly comprehensive account of a linear ordinary dif-
ferential equation with constant coefficients is given while Chapter 3 extends
the theory to systems of equations. Such equations arise frequently in the
discussion of the biological models encountered throughout the text. Chap-
ter 4 is devoted to modelling biological phenomena and in particular includes
(i) physiology of the heartbeat cycle, (ii) blood flow, (iii) the transmission of
electrochemical pulses in the nerve, (iv) the Belousov–Zhabotinskii chemical
reaction and (v) predator–prey models.

Nearly all the biological models described in Chapter 4 have special solu-
tions which arise as solutions to first-order autonomous systems of nonlinear
differential equations. Chapter 5 gives an account of such systems through the
use of the Poincaré phase plane.

With the knowledge of differential equations developed thus far, we are in
a position to begin an analysis of the heartbeat, nerve impulse transmission,
chemical reactions and predator–prey problems. These are the subjects of
Chapters 6–9.

In order to gain a deeper insight into biological models, it is necessary
to have knowledge of partial differential equations. These are the subject
of Chapters 10 and 11. In particular, a number of the models discussed in
Chapter 4 involve processes of diffusion (Chapter 12), and the evolutionary
equations considered in Chapter 11 are basic for an understanding of these
processes. A special feature of Chapter 12 is a treatment of pattern formation
in developmental biology based on Turing’s famous idea of diffusion driven
instabilities. The theory of bifurcation and chaotic behaviour is playing an in-
creasing role in fundamental problems of biological modelling. An introduction
to these topics is contained in Chapter 13. Chapter 14 models and studies

xiii



xiv Preface to the First Edition

problems of growth of solid avascular tumours. Again differential equations
play a fundamental part. However, a new feature here is that we encounter
moving boundary problems. The book concludes in Chapter 15 with a discus-
sion of epidemics and the spread of infectious diseases, modelled via various
differential equations.

As an encouragement to further study, some of the chapters have notes
indicating sources of material as well as references to additional literature.
Each chapter has a set of exercises which either illustrate some of the ideas
discussed or require readers to develop and test models of their own.

In writing the book, the authors have endeavoured to give it a multipur-
pose role. For example, it can be used (i) as a course in differential equations
based on Chapters 1, 2, 3, 5, 10 and 11; (ii) as a course in biological modelling
for students of mathematics and the physical sciences or (iii) as a course
in differential equation models of biology for life science students based on
Chapters 1, 2, 3, 5, 10, 11, 12 and 13, together with a selection of the remain-
ing chapters depending on the students’ interests. Throughout the stages of
writing this book, the authors have benefited from discussions and advice
from colleagues in the Department of Mathematics, University of Dundee and
the School of Mathematics, University of Leeds. To them all, we express our
appreciation.

Finally, it is a pleasure to thank Nick Hill, Mel Holmes, Michael Plank,
Doreen Ross and David Sleeman for all their efforts in connection with the
preparation of this book.

D. S. JONES and B. D. SLEEMAN
Dundee and Leeds



Preface to the Second Edition

Since the first appearance of Differential Equations and Mathematical Biol-
ogy, published by Allen and Unwin in 1983, mathematical biology has become
a mainstream branch of applied mathematics and many student programs
in colleges and universities across the world now offer mathematical biology
and systems biology courses. Over this past quarter of a century, theoreti-
cal research in biology has intensified leading to significant advances in many
fields. The book grew out of the need to introduce students in the physi-
cal, mathematical and biological sciences to some of fundamental modelling
and analytical techniques with which to deepen understanding of biological
phenomena.

In the first edition published by CRC Press in 2003, and in light of bio-
logical developments, some reassessment of the material was undertaken. For
example the chapter on catastrophes was replaced by a discussion of bifurca-
tion and chaos. The chapter on problems of diffusion was expanded to include
an introductory account of diffusion driven instability and Turing patterns.
A further important addition was an introduction to the symbolic algebra
package Mathematicar.

The current edition represents a continuation of this evolutionary process.
Many of the chapters have been expanded to include new and topical material.
For instance Chapter 8 now includes a section on spiral waves and Chapter
9 has been expanded to include some recent developments in tumour biol-
ogy. The most significant part of the evolutionary process has been to include
much more on the numerical solution of differential equations and numerical
bifurcation analysis. An ideal tool for such computational approaches is the
programming package MATLABr, which is now widely used in the mathe-
matical and systems biology communities.

Many more examples and exercises have been added which we hope will be
useful to students.

In the course of writing this edition the authors have benefitted from dis-
cussions and cogent criticisms from colleagues and students both in the School
of Mathematics, University of Leeds and the Department of Mathematics and
Statistics, University of Canterbury. Thanks to them all.
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xvi Preface to the Second Edition

All MATLABr files found in the book are available for download from
the publisher’s Web site. MATLABr is a registered trademark of The Math-
Works, Inc. For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508 647 7001
E-mail: info@mathworks.com
Web: www.mathworks.com

D. S. JONES, M. J. PLANK and B. D. SLEEMAN
Dundee, Canterbury and Leeds

July 2009
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Chapter 1

Introduction

1.1 Population growth

To indicate why the study of differential equations can be useful some simple
examples will be considered.

The way that the size of a population varies in time is a matter of interest
in several contexts. Let the number of individuals in a given area at time t be
p(t). At time t+T the number of individuals is p(t+T ) so that p(t+T )−p(t)
must be the number of individuals that have been added to the population
during the time interval T . The longer the interval the more individuals can
be expected to arrive and the shorter the time the fewer additions can be
expected. So write the change in the time interval T as NT and then

p(t+ T ) − p(t) = NT

or
p(t+ T ) − p(t)

T
= N.

Letting T → 0 we see that the left-hand side becomes the derivative of p with
respect to t. Consequently, we have

dp(t)

dt
= N.

To gain an idea of the properties of N suppose that the change in size of
the population is due entirely to individuals being born. As time progresses
the fertility of parents may alter so that more or less offspring are born. Then
the number born in the interval T may vary as time proceeds. In other words
N may alter as t does. Another effect is introduced by the simple hypothesis
that the more individuals there are at time t the more births are likely to
occur. Then N will depend on p(t) also. Both possibilities can be allowed for
by rewriting our equation as

dp(t)

dt
= N{t, p(t)} (1.1.1)

to show explicitly quantities on which N depends.

1



2 Differential Equations and Mathematical Biology

Sometimes
1

p

dp

dt

is known as the specific growth rate or per capita growth rate. So
another way of describing (1.1.1) is to say that the specific growth rate is
N(t, p)/p.

It is plausible to assume that, in a short time interval, there will be about
twice as many births as in a time interval of half its length. Thus, one could
expect that the number of births would be proportional to p(t)T when T is
small. If the fertility of the parents does not change, the actual number of
births in the time interval T can be expressed as N0p(t)T with N0 a suitable
constant. Then (1.1.1) becomes

dp(t)

dt
= N0p(t) (1.1.2)

which states that the specific growth rate is N0, the same for all times and all
sizes of population.

The solution of (1.1.2) is
p(t) = p0e

N0t (1.1.3)

where p0 is any constant. This may be confirmed by taking a derivative of
(1.1.3) with respect to t. The value of p0 can be fixed by putting t = 0 in
(1.1.3); evidently p0 is the size of the population at t = 0. By rearranging
(1.1.3), it can be seen that

t =
1

N0
ln
p(t)

p0
.

When p(t) = ep0, we get t = 1/N0, and hence 1/N0 is the time taken for the
population to increase by a factor of e.

Another way of verifying the result in (1.1.3) is to integrate (1.1.2) with
respect to t. Thus

N0

∫ t

0

dt =

∫ t

0

1

p

dp

dt
dt

=

∫ p(t)

p(0)

dp

p

on changing the variable of integration from t to p. Hence

N0t = ln{p(t)/p(0)} (1.1.4)

which agrees with (1.1.3).
The behaviour of the population as time increases according to (1.1.3) is

displayed in Figure 1.1.1. The size grows steadily, and the increase becomes
dramatic as time goes on. Of course, in any real situation, there will be a limit
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FIGURE 1.1.1: Graph of exponential growth.

to the growth because of a shortage of essential supplies, insufficient food and
self-pollution of the environment. Nevertheless, many organisms exhibit ex-
ponential growth in their initial stages. It is always easy to check whether a
population is growing exponentially by plotting ln p against time; a straight
line should be obtained. The slope of the line is the specific growth rate N0

as is clear from (1.1.4).
Equation (1.1.2) has been derived on the assumption that only births occur.

In the event that there are deaths but no births the same equation can be
reached. However,N0 is now a negative number since the population decreases
in the time interval T . It follows from (1.1.3) that the population decays
exponentially with time from its size at t = 0.

More facets of the population problem can be incorporated. For instance,
we may postulate that the number of deaths in the short time interval T is
D0p(t)T . Similarly, individuals may enter the given area from outside, say
I(t)T immigrants in the interval T . Likewise, some may depart from the area
giving rise to E(t)T emigrants. Then

p(t+ T )− p(t) = N0p(t)T −D0p(t)T + I(t)T − E(t)T

leading to
dp(t)

dt
= (N0 −D0)p(t) + I(t) − E(t) (1.1.5)

when T → 0.
More generally, I and E could be made to depend on p so that (1.1.5),

which is often called Verhulst’s differential equation, can be difficult to
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solve. In fact, (1.1.5) could be regarded as a particular case of (1.1.1) with
an appropriate definition of N but that does not make it any easier to solve.
Notwithstanding this, it is transparent that, if we hope to predict the size of a
population at a given time, finding the solution of a differential equation will
be an essential requirement.

1.2 Administration of drugs

When a drug is administered, it forms a concentration in the body fluids.
This concentration diminishes in time through elimination, destruction or
inactivation. The rate of reduction of the concentration is found, in most cases,
to be proportional to the concentration. Therefore, if c(t) is the concentration
at time t, and there is no external input of the drug, we have

d

dt
c(t) = −c(t)

τ
, (1.2.1)

where τ is a constant which measures the rapidity with which the concentra-
tion falls. This simple model describes drug concentration in a single com-
partment (such as the blood plasma), which is assumed to be well mixed (i.e.,
the concentration throughout the compartment is assumed to be the same at
any given point in time).

Exactly the same differential equation can be derived from (1.1.5) for a
population which changes only by deaths which happen at a constant specific
rate. So conclusions about drugs can be transferred easily to populations which
alter by death alone.

Analogous to (1.1.3) the solution of (1.2.1) is

c(t) = c0e
−t/τ , (1.2.2)

where c0 is the concentration at time t = 0. Notice that when t = τ the
concentration has dropped to c0/e, so that in time τ the concentration has
been reduced to 1/e of its initial value. This explains the significance of the
time τ ; the larger it is, the more slowly the drug disperses.

According to (1.2.2) the drug never disappears completely from the body
except after infinite time. However, the residual concentration will usually be
negligible when t≫ τ . Notwithstanding this, the fact that some of the drug is
always left is relevant when repeated doses are made, as is common practice.
The level to which the drug accumulates is then of particular importance.

Suppose that a dose is administered regularly at the times t = 0, t0, 2t0,
3t0, . . . . It is assumed that each dose raises the drug concentration by a fixed
amount c0, and that this change in concentration happens instantaneously
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(i.e., all of the drug administered is instantly absorbed into the fluid com-
partment). At time t0 the residual concentration r1 just before the second
dose is

r1 = c0e
−t0/τ ,

and then the second dose is given so that the total concentration c1 is given
by

c1 = c0 + c0e
−t0/τ .

From t = t0 to t = 2t0 the concentration will fall exponentially so that the
residual concentration r2 just before the third dose at t = 2t0 is

r2 = c1e
−t0/τ = c0e

−t0/τ (1 + e−t0/τ ).

After the third dose the concentration c2 is

c2 = c0 + r2 = c0(1 + e−t0/τ + e−2t0/τ ).

Clearly, if we keep doing this, we shall discover that at t = (n− 1)t0, with n
a positive integer,

cn−1 = c0(1 + e−t0/τ + e−2t0/τ + . . .+ e−(n−1)t0/τ )

= c0
1 − e−nt0/τ

1 − e−t0/τ
(1.2.3)

on summing the geometric series. The residual concentration rn at t = nt0
will be

rn = cn−1e
−t0/τ = c0e

−t0/τ 1 − e−nt0/τ

1 − e−t0/τ
(1.2.4)

from (1.2.3).
The manner in which the drug builds up as the number of doses increases is

illustrated in Figure 1.2.1. The level of concentration grows in an oscillatory
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fashion. At first sight it looks as though there is no limit to the concentration.
To check whether this is true examine (1.2.3). The only term involving n is
e−nt0/τ in the numerator. Since this term decreases as n increases, cn does
increase with n. However, the growth is not unlimited because the exponential
decays to zero. Thus the concentration never exceeds cM where

cM =
c0

1 − e−t0/τ
. (1.2.5)

The concentration becomes cM only in the limit as n → ∞, yet cM is a
good estimate of the concentration immediately after a dose when nt0/τ ≫ 1.
Indeed, if nt0 > 5τ, cn−1 differs from cM by less than 1% so that, unless t0/τ
is small, the level of concentration will not be far from cM after a few doses.
To put it another way, if you want to reach the maximum concentration in
about 5 doses, you should make the interval between doses larger than τ .
Naturally, the larger t0/τ is made the closer the maximum becomes to c0, the
concentration of a single dose.

Similarly, just before a dose the residue approaches r as n increases, where
r is given by

r = cMe−t0/τ =
c0

et0/τ − 1
. (1.2.6)

Observe that cM = c0 + r. Notice also that (1.2.6) implies that r becomes
small when t0/τ is large. The larger t0/τ the more the level of concentration
varies between doses. Thus, there is a trade-off between keeping the residue
above a certain level and reaching cM in a few doses.

When sufficient doses have been administered for (1.2.5) and (1.2.6) to be
good approximations the concentration behaves as in Figure 1.2.2. It swings
between cM and r, never exceeding cM nor falling below r.

The oscillatory build-up of Figure 1.2.1 may be undesirable. Several an-
tibiotics can have harmful effects until their concentration has surpassed a
certain threshold, since sub-optimal concentrations may induce resistance to
the drug by the micro-organisms. The oscillatory growth can be avoided by
taking advantage of the behaviour in Figure 1.2.2. An initial large dose of
c0 + r or cM is given and thereafter doses of c0 are supplied at intervals of
t0. The first dose takes the concentration to cM and from then on the level
follows the curve of Figure 1.2.2. So long as r is above any threshold imposed
the difficulty referred to has been surmounted.

Example 1.2.1

A drug is available in doses of M mg, which raise the blood plasma con-
centration of an average adult by 10 mg l−1. Once in the blood plasma, the
drug concentration decays according to equation (1.2.1) with τ = 4 h. Health
regulations require that the concentration never exceed 15 mg l−1. What is
shortest safe time interval at which doses can be given regularly? What is the
minimum concentration if doses are given at this time interval? In general,
what will be the minimum concentration of a drug that decays according to
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(1.2.1), and is given in doses that raise plasma concentration by c0 at regular
intervals to ensure that its concentration never exceeds cM?

Rearranging equation (1.2.5) to find t0, the time interval between doses in
terms of maximum safe concentration cM , the dose concentration c0 and the
time constant τ gives

t0 = τ ln

(

cM
cM − c0

)

.

Substituting in the values cM = 15 mg l−1, c0 = 10 mg l−1 and τ = 4 h
gives t0 = 4.4 h. If the drug is given regularly at this time interval, the lowest
concentration will occur immediately before the second dose at t = t0. The
concentration at this time will be

c(t0) = c0e
−t0/τ = 3.3 mg l−1.

In the general case, the minimum concentration always occurs just before the
second dose at t = t0. Using the expression above for t0 gives

c(t0) = c0e
−t0/τ = c0

(

1 − c0
cM

)

.

In other words, the drug concentration will fall to a minimum of 1− c0/cM of
its administered concentration.

Example 1.2.2

Suppose a virus enters the blood stream and develops at a rate proportional
to its concentration. An antidote to the virus is administered at a time h
and decays according to the law (1.2.1). Write down a simple model of virus-
antidote interaction and estimate the dosage of antidote needed to eradicate
the viral infection as quickly as possible.
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Let the virus concentration be denoted by c(t) and the antidote concentra-
tion by a(t). A basic model is represented by:

dc

dt
= kc− pa,

da

dt
= −a

τ
, (1.2.7)

where k > 0 is the rate of proportionality and p is the rate at which the
antidote kills virus cells.

At t = 0 suppose c(0) = c0. For 0 ≤ t < h we assume a(t) = 0 (which
means that c(h) = c0e

kh) and at t = h, a(h) = a0.
¿From (1.2.2) we find that a(t) is given by;

a(t) = 0, 0 ≤ t < h,

= a0e
h−t

τ , t ≥ h.

Substituting this result into the equation for c we have

dc

dt
− kc = −pa0e

h−t
τ , t ≥ h.

This equation can be rearranged as

d(cekt)

dt
= −pa0e

h−t
τ −kt

(a general method for doing this will be explained in Section 1.6), which on
integrating both sides with reset to t gives

c(t)e−kt − c0 = −pa0e
h
τ

∫ t

h

e−(k+ 1
τ )xdx,

or

c(t) =

(

c0 −
pa0e

−kh

(k + 1/τ)

)

ekt +
pa0

(k + 1/τ)
e

(h−t)
τ . (1.2.8)

For c(t) to decrease it is clear that the antidote administered at t = h should
satisfy the condition

a0 >
c0
p

(k + 1/τ)ekh.

This shows that the virus will be eradicated at a time T > h satisfying the
equation

e(k+1/τ)(T−h) =
(pa0 − c0(k + 1/τ)ekh)

pa0
,

= 1 − c0
pa0

(k + 1/τ)ekh. (1.2.9)

Clearly the larger the dose a0, the quicker the virus c(t) is cleared from the
blood stream.
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1.3 Cell division

When cells divide, their numbers grow by a process akin to that of Sec-
tion 1.1. A new feature is that the multiplication in numbers is restricted by
crowding effects. Biochemically, these may be due to lack of nutrient, shortage
of oxygen, change in pH or the production of inhibitors, for example. What-
ever the cause, the cells are interacting with one another. Since each cell can
interact with p others there are p2 possibilities. This suggests that, in (1.1.1),
we should put

N{t, p(t)} = N0p(t) − ap(t)2 (1.3.1)

where N0 and a are positive constants. The term involving N0 is the same as
before and accounts for the increase due to division. The term containing a
represents the inhibition on growth caused by crowding. With the substitution
(1.3.1), (1.1.1) gives

dp

dt
= N0p− ap2 (1.3.2)

which is called the logistic equation.

If we integrate (1.3.2) from 0 to t, as in Section 1.1, we obtain

∫ t

0

dt =

∫ t

0

1

N0p− ap2

dp

dt
dt

=

∫ p(t)

p(0)

dp

N0p− ap2
,

when p is employed as the variable of integration. Now,

∫

dp

N0p− ap2
=

1

N0

∫ (

1

p
− a

ap−N0

)

dp =
1

N0
ln

(

p

ap−N0

)

.

Hence we have

t =
1

N0
ln

(

p(t){ap(0) −N0}
{ap(t) −N0}p(0)

)

whence

p(t){ap(0) −N0} = {ap(t) −N0}p(0)eN0t.

Consequently,

p(t) =
N0p(0)

ap(0) + {N0 − ap(0)}e−N0t
(1.3.3)

which is known as the logistic law of growth.

The curve of logistic growth is shown in Figure 1.3.1, assuming that N0 >
ap(0). The curve rises steadily from the value p(0) at t = 0 to an eventual
value of N0/a, there being no maxima or minima in between. There may,
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FIGURE 1.3.1: The curve of logistic growth.

however, be a point of inflexion where the curve crosses its tangent at t = t0
where

t0 =
1

N0
ln

(

N0

ap(0)
− 1

)

and p(t0) = N0/2a.
Observe that the final value N0/a of p does not involve p(0), so that, no

matter what the initial size of the population, its final size is always the same
and does not depend on the starting size of the population. This final value
imposes a limit on growing populations and is referred to as the carrying
capacity of the environment.

Example 1.3.1

Suppose a population of cells grows logistically according to equation (1.3.1),
with a per capita growth rate of N0 = 0.1 h−1 (i.e., a small population that
is not approaching carrying capacity will take approximately 10 h to increase
by a factor of e). If the initial size of the population is 10% of the carrying
capacity, how long will it take for the population to reach 95% of the carrying
capacity?

The solution (1.3.3) to the logistic equation can be rewritten, by multiplying
the numerator and denominator by 1/a as:

p(t) =
Kp(0)

p(0) + (K − p(0)) e−N0t
,

where K = N0/a is the carrying capacity. Rearranging to find t in terms of
p(t) gives

t =
1

N0
ln
p(t) (K − p(0))

p(0) (K − p(t))
.
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Substituting in N0 = 0.1 h−1 and the conditions p(0) = 0.1K and p(t) =
0.95K, we find t = 51.4 h.

The logistic law assumes that all the cells divide at the same rate. This is
not always true. There are types in which some cells divide faster than others.
Whether the logistic law can be applied still depends upon the differences
between the various rates of division present. If the rates are not too far apart
it is probably feasible to take N0 as their average. For greater deviations it
may be necessary to adopt a model in which the statistics of the number of
cells of a given age and type at a given time play a part.

1.4 Differential equations with separable variables

Having seen from the preceding sections that models lead naturally to dif-
ferential equations, we shall devote the rest of this chapter to investigating
some of the methods of solution for differential equations. In general, a dif-
ferential equation picked out of a hat will be insoluble, at least in terms of
elementary functions. However, progress can be made with particular types
and attention will be concentrated on those which yield to analytical attack.

The first type to be considered is that which can be written

f(y)
dy

dt
= g(t). (1.4.1)

It is called a differential equation of the first order with separable
variables. The phrase “of the first order” signifies that the only derivative
which is present, namely dy/dt, is of the first order. Integrate both sides of
(1.4.1) to obtain

∫ t

t0

f(y)
dy

dt
dt =

∫ t

t0

g(t)dt

where t0 is some constant. If t1 is another constant
∫ t

t0

g(t)dt =

∫ t

t1

g(t)dt+

∫ t1

t0

g(t)dt

and the second term on the right-hand side is just a constant. Therefore we
can write

∫ t

f(y)
dy

dt
dt =

∫ t

g(t)dt+ C (1.4.2)

without indicating the lower limit of integration (other than that it is a con-
stant) providing that the constant C is left at our disposal. On the left-hand
side of (1.4.2) change the variable of integration to y and then

∫ y

f(y)dy =

∫ t

g(t)dt+ C. (1.4.3)
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If (1.4.1) were expressed formally as

f(y)dy = g(t)dt,

(1.4.3) could be obtained by placing an integral sign on each term and adding
the constant C.

A value cannot be assigned to C unless y is prescribed for some value of
t. Thus a general solution such as (1.4.3) is bound to involve an arbitrary
constant.

Example 1.4.1

Find the general solution of

(T 2 − t2)
dy

dt
+ ty = 0,

T being a constant.
Using the formal approach described above, we rewrite the differential equa-

tion as
dy

y
+

tdt

T 2 − t2
= 0,

so that the general solution is

∫ y dy

y
+

∫ t tdt

T 2 − t2
= C.

By carrying out the integrations, we obtain

ln y − 1
2 ln |T 2 − t2| = C

whence
y = eC |T 2 − t2|1/2.

Put eC = K and then the general solution is

y = K|T 2 − t2|1/2, (1.4.4)

where now K is the arbitrary constant.
If it is known that y = 1 when t = T/2, substitution in (1.4.4) gives

1 = KT
√

3/2

from which is deduced that K = 2/T
√

3. Thus

y =
2|T 2 − t2|1/2

T
√

3
(1.4.5)

is the solution of the differential equation which takes the value 1 when t =
T/2.
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Example 1.4.2

Find the general solution of

dy

dt
=

ky

y +M
,

where k and M are constants.
Rearranging the equation to separate the variables y and t gives

y +M

y
dy = kdt

and integrating both side of this equation gives

y +M ln y = kt+ C,

where C is an arbitrary constant. This can be easily solved to give t in terms
of y, but there is no explicit solution for y in terms of t. The value of C is
again determined by some given initial condition. For example, if y = y0 when
t = 0 then

y0 +M ln y0 = C,

which leads to
y − y0 +M ln (y/y0) = kt.

Example 1.4.3

Find the general solution of the differential equation

dy

dt
= y2.

Rearrange the equation as in the previous example to get

1

y2
dy = dt

and integrate both sides to obtain

y = − 1

t+ c

where c is an arbitrary constant.
This example has the important feature that the solution may not exist for

all time. For instance if at t = 0, y = y0 > 0 then

y(t) =
y0

(1 − y0t)

and so y(t) cannot exist beyond the time t = 1/y0.

All the solutions derived in the first three sections were based on separable
equations but the existence of Verhulst’s equation (1.1.5) indicates that other
types need to be discussed.
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1.5 Equations of homogeneous type

A differential equation that has the form

dy

dt
= f

(

y

t

)

, (1.5.1)

where f(y/t) is a function of the single variable y/t, is said to be of homo-
geneous type.

To solve (1.5.1), make the substitution

y = tz. (1.5.2)

Then, by the product rule for taking a derivative,

dy

dt
= z + t

dz

dt

and so (1.5.1) becomes

z + t
dz

dt
= f(z)

or

t
dz

dt
= f(z) − z. (1.5.3)

In (1.5.3) the variables are separable, and so it may be solved as in Section
1.4. All that the reader needs to remember, therefore, is to make the change
of variable (1.5.2) when an equation of homogeneous type is met.

Example 1.5.1

Find the general solution of

dy

dt
=
(y

t

)2

.

Making the substitution (1.5.2) gives

z + t
dz

dt
= z2.

We rearrange this equation to separate the variables z and t:

1

z(z − 1)
dz =

1

t
dt.

Using partial fractions to expand the left-hand side of this equation, and
integrating, gives

∫
(

1

z − 1
− 1

z

)

dz =

∫

1

t
dt.
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Carrying out the integration gives

ln

∣

∣

∣

∣

z − 1

z

∣

∣

∣

∣

= ln t+ C,

which leads to

z =
1

1 ±Kt
,

where K = eC . Finally, substituting for z according to (1.5.2) gives the solu-
tion in the original variables y and t:

y =
t

1 ±Kt
.

Note that, if we allow the constant K to be positive or negative, the ± may
be replaced by a +.

Example 1.5.2

Find the general solution of

(3t− y)
dy

dt
+ t = 3y. (1.5.4)

Since the differential equation can be written as

dy

dt
=

3y − t

3t− y
=

3(y/t)− 1

3 − (y/t)
,

it is of homogeneous type. With the substitution (1.5.2), we have

z + t
dz

dt
=

3z − 1

3 − z
,

which implies that

t
dz

dt
=
z2 − 1

3 − z
.

Hence the general solution is

∫

3 − z

z2 − 1
dz =

∫

dt

t
+ C.

Since
3

z2 − 1
=

3

2

(

1

z − 1
− 1

z + 1

)

,

we obtain
3

2
ln

∣

∣

∣

∣

z − 1

z + 1

∣

∣

∣

∣

− 1

2
ln |z2 − 1| = ln t+ C.
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Consequently
|z − 1|

(z + 1)2
= Kt

where K = eC . Substituting for z from (1.5.2), we obtain

y − t = K(y + t)2 (1.5.5)

as the general solution in the original variables.

1.6 Linear differential equations of the first order

A differential equation that can be expressed as

dy

dt
+ f(t)y = g(t), (1.6.1)

where y does not occur in either f(t) or g(t), is called a linear differential
equation of the first order.

Why the nomenclature “linear” is employed can be understood from consid-
eration of (1.6.1) when g is replaced by zero so that the differential equation
becomes

dy

dt
+ f(t)y = 0.

Suppose that y1 and y2 are solutions of this differential equation, i.e.,

dy1
dt

+ f(t)y1 = 0 (1.6.2)

dy2
dt

+ f(t)y2 = 0. (1.6.3)

The addition of (1.6.2) and (1.6.3) shows that y1 + y2 is also a solution.
Actually, if A and B are constants, Ay1 +By2 is a solution. This construction
of solutions by adding together constant multiples of solutions is the property
of linearity. In nonlinear differential equations, the sum of two solutions cannot
be asserted to be a solution without independent verification. Another linear
property is that, if y1 = 1 when t = t0 and y2 = C when t = t0, then y2(t) =
Cy1(t). Thus, if the initial value of a solution is increased, all subsequent
values are increased in the same proportion. The problem of cell division in
Section 1.3 led to a solution which after a long time was the same for all initial
populations and so the logistic growth equation is nonlinear, as is also evident
from the structure of (1.3.2).
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The technique for solving (1.6.1) is to multiply by h(t) to form

h(t)
dy

dt
+ h(t)f(t)y = h(t)g(t).

The function h is to be chosen so that the left-hand side is the same as
d(hy)/dt; it is then known as an integrating factor.

Now
d

dt
(hy) = h

dy

dt
+
dh

dt
y

which is the same as the left-hand side provided that

dh

dt
= hf.

In this differential equation for h the variables are separable and so

lnh(t) =

∫ t

f(u)du+ C1

where C1 is a constant, the lower limit of integration being omitted for the
reasons given in deriving (1.4.2). Hence

h(t) = exp

(

C1 +

∫ t

f(u)du

)

.

However, if h(t) is an integrating factor so is C2h(t) when C2 is any constant.
Therefore we can take for our integrating factor

h(t) = exp

(∫ t

f(u)du

)

. (1.6.4)

The differential equation, after multiplication by the integrating factor, can
be written as

d

dt
(hy) = hg

with the general solution

h(t)y(t) =

∫ t

h(v)g(v)dv + C.

Substitution from (1.6.4) gives

y(t) =

[ ∫ t

g(v) exp

(∫ v

f(u)du

)

dv + C

]

exp

(

−
∫ t

f(u)du

)

. (1.6.5)

The rule for the reader to remember for a linear equation of the first order
is to multiply by the integrating factor defined by (1.6.4), making sure first
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that the differential equation is in the form (1.6.1). It is not worth committing
(1.6.5) to memory.

Example 1.6.1

Find the general solution of

(t2 + 1)
dy

dt
+ ty =

1

2
. (1.6.6)

The differential equation is linear and can be rearranged into the form of
(1.6.1) with

f(t) =
t

t2 + 1
, g(t) =

1

2

1

t2 + 1
.

Therefore
∫

f(t)dt =

∫

t

t2 + 1
dt = 1

2 ln(t2 + 1)

and, according to (1.6.4), the integrating factor is

h(t) = exp
{

1
2 ln(t2 + 1)

}

= (t2 + 1)1/2.

Hence, multiply
dy

dt
+

t

t2 + 1
y =

1

2

1

t2 + 1

by (t2 + 1)1/2 with the result

(t2 + 1)1/2 dy

dt
+

t

(t2 + 1)1/2
y =

1

2

1

(t2 + 1)1/2
.

Consequently
d

dt
{(t2 + 1)1/2y} =

1

2

1

(t2 + 1)1/2
,

which gives on integration

(t2 + 1)1/2y = 1
2 ln{t+ (t2 + 1)1/2} + C (1.6.7)

where C is an arbitrary constant. Equation (1.6.7) provides the general solu-
tion of (1.6.6).

Example 1.6.2

Find the general solution of

dy

dt
= 3 + t− 2y

t
. (1.6.8)

The differential equation is linear with

f(t) =
2

t
, g(t) = 3 + t.
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According to (1.6.4), the integrating factor is

h(t) = exp(2 ln t) = t2.

Multiplying both sides of the differential equation (1.6.8) by h(t):

d

dt

(

t2y
)

= t2(3 + t).

Integrating and rearranging to find y in terms of t gives the general solution
of (1.6.6):

y = t+
t2

4
+
C

t2
,

where C is an arbitrary constant.

Observe that, if f(t) has the constant value f0, the integrating factor is ef0t

so that the general solution of (1.6.1) is then

y(t) = e−f0t

∫ t

g(x)ef0xdx+ Ce−f0t, (1.6.9)

C being an arbitrary constant.

1.7 Numerical solution of first-order equations

Many differential equations, particular nonlinear equations, are difficult or
impossible to solve analytically. In such cases, it is necessary to turn to nu-
merical techniques to find an approximation to the true solution. A typical
differential equation of the first order can be expressed as

dy

dt
= f(t, y). (1.7.1)

Precise attributes of the function f that will guarantee that the differential
equation does possess a solution are not of concern here. It will be sufficient
to suppose that, corresponding to each pair of values (t, y), there is a definite
value of f and that small changes of t, y will be accompanied by only a small
variation in f . Then, if a point (t, y) in the (t, y)-plane is chosen, (1.7.1) asserts
that at (t, y) the derivative dy/dt has the value f(t, y). In other words, (1.7.1)
assigns a direction to a point of the (t, y)-plane. If a curve can be drawn so
that, at each of its points, its gradient satisfies (1.7.1), then this curve will
have an equation which is a solution of the differential equation. Any such
curve may be called a solution curve of the differential equation.
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FIGURE 1.7.1: Polygonal approximation to solution curve.

An approximate solution curve can be constructed graphically. Suppose it
is required that y = y0 when t = t0 (this is the initial condition for the dif-
ferential equation). Take the point (t0, y0) in the (t, y)-plane as P0 (Figure
1.7.1). Draw the straight line through P0 with slope f(t0, y0) and let it inter-
sect t = t0 +h at P1. Let P1 be the point (t0 +h, y1). At P1 draw the straight
line of slope f(t0+h, y1) and let it intersect t = t0+2h at P2, with ordinate y2.
Draw the straight line P2P3 with slope f(t0 + 2h, y2). Continuing in this way,
we construct a polygonal curve P0P1P2P3 . . . which has the slope prescribed
by the differential equation at the points t = t0, t0 + h, t0 + 2h, . . .. If h is
kept small, the slope of the polygonal curve will never deviate by much from
that demanded by the differential equation. It would therefore seem that, as
h → 0, the polygonal curve would tend to the solution curve of the differen-
tial equation which passes through (t0, y0), i.e., provide the solution of (1.7.1)
such that y(t0) = y0. Since only one slope can be drawn at each point, there
is only one solution curve.

The procedure can be defined iteratively as follows

tn+1 = tn + h, yn+1 = yn + hf(tn, yn).

We anticipate that y1, y2 . . . will be reasonable approximations to the values
of the solution curve at t1, t2, . . ., though it must be stressed that we have not
proved that this is so.

This approximate technique is known as Euler’s method and is straight-
forward to implement in MATLABr (or any other computer programming
language). The following is an example of a MATLAB function called euler

that uses Euler’s method to solve a differential equation of the form (1.7.1).
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function [t, y] = euler(dydt, tspan, y0, Nsteps)

% Function to solve a single first-order DE by Euler’s method

%INPUTS: dydt - handle to a function f(t, y) that calculates

dy/dt

% tspan - 1x2 row vector containing the starting and

% finishing values of t

% y0 - initial value of y

% Nsteps - number of steps of Euler’s method to use

% OUTPUTS: t - vector of equally spaced t values

% y - vector of corresponding y values

dt = (tspan(2)-tspan(1))/Nsteps;

t = (tspan(1):dt:tspan(2))’; % vector of equally spaced t values

y = zeros(Nsteps+1, 1); % set up vector to store y values

y(1) = y0; % store initial condition in y(1)

% Loop through t values calculating new y value each time:

for I = 1:Nsteps

y(I+1) = y(I) + dt*dydt(t(I), y(I));

end

This program should be saved in a file called euler.m.
Although Euler’s method is simple to use, it is not particularly efficient (it

is often necessary to use a very small step size to obtain an accurate solution).
However, it is the prototype for a suite of more advanced numerical methods
of solving a differential equation by a step-by-step process that are capable
of providing solutions to any required degree of accuracy. Indeed, there are
methods that automatically adjust themselves so as to achieve the level of
accuracy prescribed by the user at the outset. MATLAB has several built-in
functions that make use of these more sophisticated methods. One of the most
commonly used of these is ode45 (see below for an example of usage), which
uses adaptive step size to ensure an accurate solution, so there is no need for
the user to specify the number of steps to take (or equivalently the step size
h).

The above MATLAB function, euler, can be thought of as a black box.
Specify the starting and finishing t values, and the number of steps to take,
and supply some means of calculating f(t, y) on the right-hand side of (1.7.1),
and euler will calculate the solution. It remains to write a short function file
that calculates f(t, y) for any given values of t and y (sometimes it is first
necessary to rearrange the equation so that it is in the form (1.7.1)). This is
illustrated in the following example.

Example 1.7.1
dy

dt
= − Qyp

K + yp
(1.7.2)

is called a Hill equation, and arises in enzymatic reactions (see Section 4.4).
This equation is difficult to solve in general for y as an explicit function of t.
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For parameter values of say Q = 1, K = 5 and p = 3.3, calculate and plot an
approximate solution from t = 0 to t = 10, with an initial condition y(0) = 5.

The function euler needs to know how to calculate dy/dt for any given
values of t and y. We must therefore provide it with a MATLAB function
that does this. The input arguments to this function are t and y, and the
output is dy/dt, calculated according to equation (1.7.2). We must also give
this MATLAB function a name, say hill_fn (which means that the file name
should be hill_fn.m). The function should read as follows.

function f = hill_fn(t, y)

Q = 1; K = 5; p = 3.3;

f = -Q*y^p/(K+y^p);

To solve the differential equation using Euler’s method with say 10 steps,
the following commands may be entered at the MATLAB command prompt:

>> t0 = 0; t1 = 10; y0 = 5;

>> [t, y] = euler(@hill_fn, [t0, t1], y0, 10);

Note the four arguments (listed in the round brackets) to euler in the above
command correspond to the four inputs in the euler program listed above.
The first argument @hill_fn is called a function handle, and tells euler the
name of the function to use to evaluate the right-hand side of the differential
equation (this doesn’t always have to be @hill_fn – it can be any appropriate
function f(t, y)). The second argument [t0, t1] tells euler to solve from
t=t0 to t=t1. The third and fourth arguments respectively specify the initial
value of y, and the number of steps to use.

Alternatively, to use the built-in MATLAB function ode45, the command
calling euler can be replaced by

>> [t2, y2] = ode45(@myrhs, [t0, t1], y0);

Note that the arguments to ode45 are the same as to euler, except that there
is no fourth argument to ode45 since there is no need to specify the number
of steps to take. This time, the outputs from the function are stored in t2 and
y2, so the results from euler are not overwritten.

Now we would like to plot the results.

>> plot(t, y, ’o-’, t2, y2, ’x-’)

>> axis([t0 t1 0 y0])

>> legend(’euler’, ’ode45’)

>> xlabel(’t’)

>> ylabel(’y(t)’)

The plot command draws two curves on the same graph: one of y against
t, and one of y2 against t2 (you can include as many pairs of vectors in the
graph as you like). The ’o-’ and ’x-’ arguments tell MATLAB to mark
the positions of the points with symbols (o for the first curve and x for the
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FIGURE 1.7.2: Numerical solution to equation (1.7.2) with Q = 1, K = 5,
p = 3.3 and y(0) = 5 calculated using Euler’s method (euler) and MATLAB’s
built-in function (ode45).

second), and connect them with solid lines (-). The axis, legend and label

commands customize the plot, by adjusting the limits of the axes, and adding
a legend and axis labels. Running the above commands gives the graph shown
in Figure 1.7.2. The solution calculated by ode45 is more accurate than the
one calculated by euler.

Sometimes we are less interested in the solution y as a function of the
independent variable t than in the time at which the solution reaches a certain
value. For instance, in the example above, we might want to know the time at
which y first drops below 1. The following MATLAB function can be used to
find all the times at which y is equal to a predefined value ycrit (y is assumed
to be a continuous function of t).

function th = hitting_times(t, y, y_crit)

% Function to find the times at which y = y_crit

% INPUTS: t - vector of increasing t values

% y - vector of corresponding y values

% y_crit - critical y value

% OUTPUTS: th - vector of times at which y = y_crit

N = length(t);

th = zeros(N,1);

hits = 0;

% Loop through the vector of t and y values

for I = 1:N-1

% Test if y crosses y_crit between t(I) and t(I+1)

if (y(I)-y_crit)*(y(I+1)-y_crit) <= 0
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hits = hits+1;

% Interpolate between t(I) and t(I+1) to find the

% approximate hitting time

th(hits) = t(I)+(t(I+1)-t(I))*(y_crit-y(I))/(y(I+1)-y(I));

end

end

th = th(1:hits); % truncate th to the number of hits found

Example 1.7.2

Find the time at which the solution from ode45 shown in Figure 1.7.2 falls
below y = 1.

This can be calculated by the following command.

>> th = hitting_times(t2, y2, 1)

th = 6.1240

1.8 Symbolic computation in MATLABr

Although primarily designed for numerical calculations, MATLAB can also
be implemented to perform computations using symbolic algebra. This feature
can be used to obtain analytical solutions to some differential equations. A full
exposition of MATLAB’s symbolic computation power is beyond the scope of
this book (for further details, see the MATLAB help files). Here, we take a
brief look at the basic commands and syntax, and a few examples of how
they are used to solve differential equations (see also Section 5.9 for solving
higher-order equations and systems of equations).

MATLAB’s symbolic representation of the derivative dy/dt is simply Dy.
Similarly d2y/dt2 is represented by D2y, etc. The command for solving a dif-
ferential equation is dsolve. The basic syntax is

y_sol = dsolve(’ode’, ’ic1’, ’ic2’, ... , ’var’)

where ode is the equation to be solved, ic1, ic2 ... are the initial conditions,
and var is the independent variable. The initial conditions may be omitted,
in which case MATLAB will attempt to find the general solution. If the inde-
pendent variable is omitted, it will be assumed that the independent variable
is t.
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Example 1.8.1

To solve the separable equation

dy

dt
=

2t

(1 + t2)y
, (1.8.1)

the appropriate MATLAB command is

>> y_sol = dsolve(’Dy = 2*t/((1+t^2)*y)’)

This produces the following output

y_sol =

(2*log(1+t^2)+C1)^(1/2)

-(2*log(1+t^2)+C1)^(1/2)

Here, y_sol is a vector containing the two branches of the solution. The
symbol C1 is an arbitrary constant. This tells us that the general solution to
(1.8.1) is

y(t) = ±
(

2 ln(1 + t2) + C1

)
1
2 . (1.8.2)

If we have a specific initial condition, say y(0) = −1, we can provide this
information to MATLAB in the dsolve command:

>> y_sol = dsolve(’Dy = 2*t/((1+t^2)*y)’, ’y(0) = -1’)

y_sol = -(2*log(1+t^2)+1)^(1/2)

Note that this corresponds to the negative branch of the general solution
(1.8.2) with C1 = 1.

In order to plot the solution, we need to generate vectors containing actual
t and y values. In order to do this, we first declare t as a symbolic variable.

>> syms t

Now we define a vector of t values to plot (let’s try 0 ≤ t ≤ 10, at intervals of
0.1, and call it t_plot). Then we get MATLAB to calculate the corresponding
y values, by substituting the values in t_plot into the symbolic variable t:

>> t_plot = [0:0.1:10];

>> y_plot = subs(y_sol, t, t_plot);

>> plot(t_plot, y_plot)

The resulting plot is shown in Figure 1.8.1.

Example 1.8.2

To solve equation (1.5.4), the appropriate MATLAB input and output is
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FIGURE 1.8.1: Plot of the solution (1.8.2) to equation (1.8.1) with initial
condition y(0) = −1.

>> y_sol = dsolve(’(3*t-y)*Dy+t=3*y’)

y_sol =

-1/2*(2*C1*t-1-(-8*C1*t+1)^(1/2))/C1

-1/2*(2*C1*t-1+(-8*C1*t+1)^(1/2))/C1

Hence, the general solution is

y = − 1

2C1

(

2C1t− 1 ± (1 − 8C1t)
1
2

)

,

which you may recognise as the roots of the quadratic equation (1.5.5), which
was found as the general solution in Example 1.5.2.

Example 1.8.3

If we try to solve the Hill equation (1.7.2) symbolically, this is what happens:

>> y_sol = dsolve(’Dy=-Q*y^p/(K+y^p)’)

Warning: Explicit solution could not be found; implicit solution

returned.

> In dsolve at 315

y_sol =

y = 0

t+1/Q*y-1/Q/(p-1)*y^(1-p)*K+C1 = 0

MATLAB cannot find y as an explicit function of t (excluding the trivial
solution y = 0). Instead, it returns an implicit solution

t+
y

Q
− Ky1−p

Q(p− 1)
+ C1 = 0. (1.8.3)
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Numerical techniques are needed to obtain explicit y values. This may be done
either by solving equation (1.8.3) by a root finding method, such as Newton’s
method, for each value of t required, or by solving the original equation (1.7.2)
numerically, as described in Section 1.7.

1.9 Notes

For a specialist text on numerical techniques, the reader is referred to J.
D. Lambert, Computational Methods in Ordinary Differential Equations, John
Wiley & Sons, New York, 1973 and Numerical Methods for Ordinary Differen-
tial Systems, John Wiley & Sons, New York, 1991. For a text on implementing
numerical methods in MATLAB, see S. C. Chapra, Applied Numerical Meth-
ods with MATLAB, McGraw-Hill, New York, 2005. For a guide to the MAT-
LAB programming language, see D. J. Higham and N. J. Higham, MATLAB
Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA,
2005.

Exercises

1.1 A spherical water drop loses volume by evaporation at a rate propor-
tional to its surface area. Express its radius at time t in terms of the
constant of proportionality and its radius r0 at t = 0.

1.2 The rate of increase of bacteria in a culture is proportional to the num-
ber present. The population multiplies by the factor n in the time inter-
val T . Find the number of bacteria at time t when the initial population
is p0.

1.3 In Exercise 1.2 the population is found to increase by 2455 bacteria
from t = 2 to t = 3 and by 4314 bacteria from t = 4 to t = 5. Show
that p0 = 4291 approximately and that, when T = 3, n is about 2.33.

1.4 What changes take place in the curve of logistic growth in Figure 1.3.1
if N0 < ap(0)?

1.5 Observations on animal tumours indicate that their sizes obey the
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Gompertz growth law

ds

dt
= ks ln

(

S

s

)

rather than the logistic law. Here k and S are positive constants. By
putting y = ln s prove that

s(t) = S exp(−Ae−kt)

where A = ln(S/s0), s0 being the size at t = 0. Deduce that, in Gom-
pertz growth, the size moves steadily from its initial value to an eventual
value of S without passing through maxima or minima, though there is
a point of inflection if s0 < Se−1.

1.6 Find the general solutions of the following equations and check your
answer using MATLAB’s symbolic computation.

(a) t
dy

dt
= (1 + t)y,

(b) t(2y + 3)
dy

dt
= y(3 + y),

(c) 2ty(1 + t)
dy

dt
= 1 + y2.

1.7 Find the general solutions of the following equations and check your
answer using MATLAB’s symbolic computation.

(a)
dy

dt
=
t

y
+
y

t
,

(b)
dy

dt
=

(

t

y

)

e−y/t +
y

t
,

(c) t2
dy

dt
= ty − y2.

1.8 (a) By means of the substitution w − 1 = y, u+ 2 = t show that

dw

du
=
u+ w + 1

u− w + 3

can be solved.

(b) Generalise this result to

dw

du
=

au+ bw + c

a′u+ b′w + c′

when ab′ 6= a′b by substituting w = y + h, u = t+ k where

ak + bh+ c = 0,

a′k + b′h+ c′ = 0.
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1.9 Find the general solutions of

(a) (1 − t2)
dy

dt
− ty = (1 − t2)1/2,

(b)
dy

dt
= (t− 4)e4t + ty,

(c) tw
dw

dt
= t4 + w2 by putting w2 = y.

In each case, write a MATLAB program to verify your solution by
solving the differential equation numerically with an initial condition
y(0) = 1, and plotting the numerical and the analytical solutions on
the same graph.

1.10 Bernoulli’s differential equation has the form

dy

dt
+ f(t)y = g(t)yν .

Show that it can be made linear by the substitution w = y1−ν . Hence
find the general solution of

dy

dt
+ ty = ty2.

1.11 Use Exercise 1.10 to solve

(a) (t+ 1)

(

y
dy

dt
− 1

)

= y2,

(b) (t2 − 2y + 1)
dy

dt
= t.

1.12 The function y1(t) is known to be a solution of the Riccati equation

dy

dt
+ a(t)y + b(t)y2 = c(t).

Show that the general solution can be found by putting y = y1 +w and
using Exercise 1.10. Hence solve

dy

dt
+ 2y2 =

6

t2

given that y = 2/t is a solution.

1.13 Use Exercise 1.12 to find the general solutions of

(a) t2
dy

dt
+ ty + t2y2 = 4 given that y = 2/t is a solution,

(b) t
dy

dt
− (2t+ 1)y + y2 = −t2 given that y = t is a solution.
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1.14 Find the general solutions of

(a) (t2 − 1)
dy

dt
+ y = 1

2 (t2 − 1)1/2,

(b) t
dy

dt
= y +

(

1
4 t

2 + y2
)1/2

,

(c) 2
dy

dt
= et+2y,

(d) (2t+ 2y + 5)
dy

dt
= 2y − 2t+ 1,

(e)
dy

dt
= 2(2t− y)2,

(f) (t+ a)
dy

dt
− 3y = 2(t+ a)5,

(g) t
dy

dt
= y − 1

2 t cos2(2y/t),

(h) (2y − 2t+ 5)
dy

dt
= 2y − 2t+ 1,

(i)
dy

dt
+ (1 − 4y2) tan 2t = 0,

(j) (1 − t2)
dy

dt
− 1

2 (1 + t)y = (1 − t2)1/2,

(k) (t+ y)2
dy

dt
= (t+ y + 1)2,

(l) 1 + t
dy

dt
= e−y dy

dt
sec2 y.

1.15 According to Newton’s law of cooling, the rate of decrease of tempera-
ture of a body is proportional to the difference between its temperature
and that of its environment. If the temperature of the environment is
20◦C and the body cools from 80◦C to 60◦C in 1 h, show that it will
take somewhat over 4 h to cool to 30◦C. Verify your answer by solv-
ing the differential equation numerically in MATLAB and plotting the
temperature against time.

1.16 A body cools in 10 min from 100◦C to 60◦C when the environment is
at 20◦C. How long does it take to cool to 25◦C?

1.17 After administration of a dose, the concentration of a drug decreases
by 50% in 30 h. How long does it take to fall to 1% of its initial value?

1.18 The amount of light absorbed by a layer of material is proportional to
the incident light and to the thickness of the layer. If a layer 35 cm
thick absorbs half the light incident on its surface, what percentage of
the incident light will be absorbed by a layer 200 cm thick?
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1.19 When the drug theophylline is administered for asthma, a concentration
below 5 mg l−1 has little effect and undesirable side-effects appear if
the concentration exceeds 20 mg l−1. For a body that weighs W kg, the
concentration when M mg is present is 2M/W mg l−1. If the constant
that measures the rapidity at which the concentration falls is τ = 6 h,
find the concentration at time t h after an initial dose of D mg.
If D = 500 and W = 70, show that a second dose is necessary after
about 6 h to prevent the concentration from becoming ineffective. What
further time can elapse before a third dose is necessary?
What is the shortest safe time interval t0 at which doses of 500 mg can
be given regularly?
Verify your results by solving the problem numerically.

1.20 If the drug in Exercise 1.19 is fed into the blood stream continuously by
infusion at a rate ofD1 mg h−1, instead of being given by separate doses,
show that the concentration approaches a steady level of 12D1/W mg
l−1. What permissible range of D1 does this imply for a 60-kg patient?

1.21 In the reservoir model of the heart, it is imagined as a balloon. The
balloon or heart is blown up by the influx of blood during the systole
and, when the heart valve closes, the reservoir forces blood out during
the diastole. At time t, the volume is v(t), the inflow per unit time is
I(t) and the outflow per unit time is F (t). Interpret

dv/dt = I(t) − F (t).

If the pressure p(t) is such that

p(t) = K{v(t) − v0}, F (t) = p(t)/R,

where K, v0 and R are constants, find the differential equation satisfied
by p.
In the diastole which lasts from t = t0 to t = T, I(t) = 0. Find p(t) in
terms of p0, the value of p(t0), during the time interval. In the systole,
from t = 0 to t = t0, I(t) = I0 (a constant). Find p.
Since the heart is cyclic, p(0) = p(T ). Deduce that

R =
p0

I0

1 − exp(−KT/R)

1 − exp(−Kt0/R)
.





Chapter 2

Linear Ordinary Differential
Equations with Constant Coefficients

2.1 Introduction

In Chapter 1, the solution of a first-order differential equation was consid-
ered. Higher derivatives can occur in some problems, and so we are led to the
general ordinary differential equation

F

(

t, y,
dy

dt
,
d2y

dt2
, . . . ,

dny

dtn

)

= 0, (2.1.1)

where F is some function with n + 2 arguments. It is called ordinary because
it involves only the ordinary derivatives of y with respect to the single variable
t. Later on we will study cases in which y is a function of more than one vari-
able. In that case, partial derivatives of y can arise and a partial differential
equation has to be solved.

The order of an ordinary differential equation is the order of the highest
derivative appearing. Thus

d4y

dt4
=
dy

dt

(

d3y

dt3

)4

+ y2

is of order 4, whereas
(

dy

dt

)2

= t2 + y2

is of order 1.
The two main categories into which ordinary differential equations are clas-

sified are linear and nonlinear. The form of the general linear ordinary
differential equation of order n is

an(t)
dny

dtn
+ an−1(t)

dn−1y

dtn−1
+ · · · + a1(t)

dy

dt
+ a0(t)y = f(t), (2.1.2)

where a0(t), . . . , an(t) are known functions of t. If all of a0(t), . . . , an(t) are
constants, (2.1.2) is known as a linear ordinary differential equation with

33
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constant coefficients. Any ordinary differential equation which does not
have the structure of (2.1.2) is called nonlinear; it will contain products such
as

y2,
dy

dt

d2y

dt2

or functions such as ey. For example,

t
d2y

dt2
+ et dy

dt
+ y cos t = t3 tan t

is linear and of order 2,

5
d2y

dt2
+ 4

dy

dt
+ 3y = ln2 t

is linear with constant coefficients and of order 2, while

y2 dy

dt
= t

is nonlinear.
The solution of an ordinary differential equation is always sought on an

interval (a, b) (a < b) of t. It is a relation between y and t which satisfies the
ordinary differential equation when t is any point of the interval and does not
contain any derivatives or integrals of y. Integrals of functions of t may be
involved but these should be evaluated when it is reasonable to do so.

The general solution (sometimes called the complete primitive) of an
ordinary differential equation of order n must contain n arbitrary constants.
Any solution that does not have n arbitrary constants is not the general
solution. For instance, you can check that

y = et − 1/t (2.1.3)

satisfies the ordinary differential equation

t3
(

d2y

dt2
− y

)

= t2 − 2, (2.1.4)

but it is not the general solution because the general solution must contain
two arbitrary constants whereas (2.1.3) has none. Similarly

y = Ce−t − 1/t, (2.1.5)

with C an arbitrary constant, is a solution of (2.1.4) but is not the general
solution. On the other hand,

y = C1e
t + C2e

−t − 1/t, (2.1.6)

with C1 and C2 arbitrary constants, is the general solution of (2.1.4).
When additional information is available, it may be possible to assign par-

ticular values to the arbitrary constants in the general solution. For example,
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suppose that a solution of (2.1.4) is desired such that y = 1 and dy/dt = 1
when t = 1. From the general solution (2.1.6)

dy/dt = C1e
t − C2e

−t + 1/t2,

and so the conditions at t = 1 can be satisfied if

C1e+ C2e
−1 − 1 = 1,

C1e− C2e
−1 + 1 = 1.

These require that C1 = e−1 and C2 = e; hence

y = et−1 + e1−t − 1/t

is the solution of (2.1.4) which takes the correct values at t = 1.
An ordinary differential equation may not possess a solution. There are

theorems, called existence theorems, which tell you that certain types of
differential equations have a solution. If a solution exists and you can prove
that it is the only one that satisfied any conditions imposed, then you have
demonstrated a uniqueness theorem. Existence and uniqueness are beyond
the scope of this chapter (for some information, see Section 5.11).

Even when existence and uniqueness theory is available, the actual finding of
a solution may be a difficult task. For instance, there is an existence theorem
for linear ordinary differential equations with variable coefficients, but the
solution cannot always be written down easily. Again, the solution of

dy

dt
= t2 + y2

cannot be expressed in terms of elementary functions although the solution is
known to exist. Therefore, one must turn to numerical techniques, as discussed
for example in Section 1.7, to find an approximation to the solution.

This chapter will be confined to discussing linear ordinary differential equa-
tions with constant coefficients. For these, not only is existence theory avail-
able but also the general solution can be determined explicitly.

2.2 First-order linear differential equations

The linear ordinary differential equation with constant coefficients of the
first order is

a1
dy

dt
+ a0y = f(t)

where a1 and a0 are constants. However, a1 6= 0 otherwise there would not be
a differential equation to solve. Therefore we can divide by a1 or, equivalently,
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put a1 = 1 and take as the standard form

dy

dt
+ a0y = f(t). (2.2.1)

This has been solved already in Section 1.6 and we may quote the general
solution

y = e−a0t

∫ t

ea0uf(u)du+ Ce−a0t, (2.2.2)

where C is an arbitrary constant.
The term Ce−a0t satisfies

(

d

dt
+ a0

)

Ce−a0t = 0.

Since Ce−a0t is the general solution of (2.2.1) with zero right-hand side (i.e.,
with f(t) = 0) it is called the complementary function. The integral term
in (2.2.2) satisfies (2.2.1) and any solution of (2.2.1) is called a particular
integral. Consequently,

the general solution of (2.2.1)

= particular integral + complementary function.

It does not matter which particular integral is chosen as we shall show now.
Suppose h(t) is any function such that

dh

dt
+ a0h = f(t).

Put y = h+ z; then

dy

dt
+ a0y =

dh

dt
+
dz

dt
+ a0h+ a0z = f(t) +

dz

dt
+ a0z

so that, if y satisfies (2.2.1), we must have

dz

dt
+ a0z = 0,

i.e., z is the complementary function.

2.3 Linear equations of the second order

The linear ordinary differential equation of the second order with constant
coefficients can be expressed as

d2y

dt2
+ a1

dy

dt
+ a0y = f(t), (2.3.1)
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after division by the coefficient of the second derivative (which must be non-
zero if the differential equation is to be of the second order). With zero right-
hand side, (2.3.1) is

d2y

dt2
+ a1

dy

dt
+ a0y = 0 (2.3.2)

and is known as the associated homogeneous differential equation. Let
the general solution of (2.3.2) be denoted by yc and called the complemen-
tary function. Let yp be any solution of (2.3.1) and designate it as a par-
ticular integral. Put y = yp + z. Then

d2y

dt2
+ a1

dy

dt
+ a0y =

d2yp

dt2
+ a1

dyp

dt
+ a0yp +

d2z

dt2
+ a1

dz

dt
+ a0z

= f(t) +
d2z

dt2
+ a1

dz

dt
+ a0z.

Therefore y satisfies (2.3.1) provided that

d2z

dt2
+ a1

dz

dt
+ a0z = 0,

i.e., z = yc. Hence y = yp + yc and

general solution = particular integral + complementary function

as before.
Thus the general solution of both first- and second-order equations has the

same structure, and we shall find that this is true for the linear ordinary
differential equation with constant coefficients of order n.

2.4 Finding the complementary function

The determination of the complementary function requires the general so-
lution of (2.3.2), i.e., of

ÿ + a1ẏ + a0y = 0 (2.4.1)

if we use the notation ẏ ≡ dy/dt, ÿ ≡ d2y/dt2.
Consider the equation for λ

λ2 + a1λ+ a0 = 0, (2.4.2)

which will be called the characteristic equation. It has two roots λ1 and
λ2 such that

λ1 + λ2 = −a1
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and

λ1λ2 = a0.

Now
d

dt

(

dy

dt
− λ1y

)

=
d2y

dt2
− λ1

dy

dt
,

so that

(

d

dt
− λ2

)(

dy

dt
− λ1y

)

=
d2y

dt2
− (λ1 + λ2)

dy

dt
+ λ1λ2y

= ÿ + a1ẏ + a0y

because of the properties of λ1 and λ2. Consequently (2.4.1) can be written
as

(

d

dt
− λ2

)(

dy

dt
− λ1y

)

= 0.

Write

w =
dy

dt
− λ1y.

Then
dw

dt
− λ2w = 0.

This is of the first order and has general solution

w = Ceλ2t.

Therefore
dy

dt
− λ1y = Ceλ2t.

Since this is linear and of the first order, it can be solved by multiplying by
the integrating factor e−λ1t, which gives

d

dt
(ye−λ1t) = Ce(λ2−λ1)t

whence

ye−λ1t = C

∫ t

e(λ2−λ1)udu+D.

If λ1 6= λ2,
∫ t

e(λ2−λ1)udu =
e(λ2−λ1)t

λ2 − λ1

and

ye−λ1t =
Ce(λ2−λ1)t

λ2 − λ1
+D
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or
y = C2e

λ2t + C1e
λ1t,

where C1 and C2 are arbitrary constants.
If λ1 = λ2,

∫ t

e(λ2−λ1)udu =

∫ t

du = t

and
ye−λ1t = Ct+D

or
y = (C1 + C2t)e

λ1t.

The rule for finding the complementary function can be stated now as: solve
the characteristic equation (2.4.2):

(a) if the roots are different

yc = C1e
λ1t + C2e

λ2t;

(b) if the roots are the same

yc = (C1 + C2t)e
λ1t.

The characteristic equation may be arrived at in the following way. Try
y = eλt so that ẏ = λeλt, ÿ = λ2eλt. Then (2.4.1) is satisfied if

(λ2 + a1λ+ a0)e
λt = 0

or
λ2 + a1λ+ a0 = 0,

which is the characteristic equation.

Example 2.4.1

Find the general solution of

16ÿ − 8ẏ + y = 0.

The characteristic equation is

16λ2 − 8λ+ 1 = 0

so that λ1 = 1
4 = λ2. The rule now gives

y = (C1 + C2t)e
t/4

as the general solution.
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It may happen that λ1 or λ2 is complex. No problem occurs because, if
λ1 = a + ib where a and b are real, it is known that (compare with De
Moivre’s theorem)

eλ1t = eateibt = eat(cos bt+ i sin bt),

so that the solution can be expressed in terms of trigonometric functions if
desired.

If a0 and a1 are real, we may be seeking a real solution of (2.4.1). In this
case when λ1 = a+ ib the characteristic equation forces λ2 to be the complex
conjugate, i.e., λ2 = a − ib. Since b 6= 0, because we are assuming a complex
root of (2.4.2), the rule gives

yc = C1e
(a+ib)t + C2e

(a−ib)t

where C1 and C2 are arbitrary (complex) constants. To make yc real, we must
make y∗c = yc, the asterisk indicating a complex conjugate. But, when a0 and
a1 are real, y∗c also satisfies (2.4.1) and so

y∗c = C∗
1e

(a−ib)t + C∗
2e

(a+ib)t.

Thus y∗c = yc demands that C∗
2 = C1. This means that, if C1 = A + iB with

A and B real, C2 = A− iB. It follows that

yc = (A+ iB)e(a+ib)t + (A− iB)e(a−ib)t

= 2eat(A cos bt−B sin bt),

which gives a real complementary function with real arbitrary constants A
and B.

Example 2.4.2

Find the solution of
ÿ − 2ẏ + 2y = 0

satisfying the initial conditions, y(0) = 0, ˙y(0) = 1.
The characteristic equation is

λ2 − 2λ+ 2 = 0,

so that λ1 = 1+i and λ2 = 1−i. From the above reasoning we can immediately
write down the general solution in the form

y = et(A cos t+B sin t).

By imposing the initial conditions we find that A = 0 and B = 1, which shows
that the solution is

y = et sin t.
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2.5 Determining a particular integral

There are various devices for finding a particular integral, each of which has
advantages and disadvantages. Three methods will be described here.

2.5.1 Undetermined coefficients

The method consists essentially of guessing an appropriate form for the
answer and substituting it in the differential equation. It is suitable if the
right-hand side is a polynomial, exponential, sine, cosine or a product of these.
The technique will be illustrated by means of examples.

Example 2.5.1

Find a particular integral of

ÿ − 2ẏ − 3y = 3t2.

The idea is to try to find a polynomial solution, and we show how this can be
done by starting from the simplest and gradually making it more complicated.

Try y = C. Then ÿ − 2ẏ − 3y = −3C. Since this can never agree with 3t2,
it must be rejected.

Try y = Bt. Then ÿ − 2ẏ − 3y = −2B − 3Bt, and again the attempt is
unsatisfactory.

Try y = At2. Then ÿ − 2ẏ − 3y = 2A − 4At − 3At2, which again is not
suitable but does at least contain a term involving t2.

This suggests that we should try y = At2 + Bt+ C. Then

ÿ − 2ẏ − 3y = 2A− 2B − 3C − (4A+ 3B)t− 3At2.

We can make this the same as 3t2 if

−3A = 3,

4A+ 3B = 0,

2A− 2B − 3C = 0.

These equations are satisfied if A = −1, B = 4
3 and C = − 14

9 . Therefore

yp = −t2 + 4
3 t− 14

9

supplies a particular integral.

In general this suggests, since the derivative of a polynomial of degree n is
a polynomial of degree n − 1, that when the right-hand side of (2.3.1) is a
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polynomial of degree n and a0 6= 0 try a polynomial of degree n with arbitrary
coefficients. If a0 = 0 but a1 6= 0 try a polynomial of degree n+ 1.

Example 2.5.2

Find a particular integral of

ÿ − 2ẏ − 3y = e2t.

In this case we try y = Ae2t. Then the left-hand side is

4Ae2t − 4Ae2t − 3Ae2t = −3Ae2t

which is the same as e2t if A = − 1
3 . Therefore

yp = − 1
3e

2t.

Example 2.5.3

Find a particular integral of

ÿ − 2ẏ − 3y = e−t.

Again we try y = Ae−t. The left-hand side becomes

Ae−t + 2Ae−t − 3Ae−t = 0

so that A cannot be found. The try fails in this case because e−t satisfies the
associated homogeneous differential equation and so is part of the comple-
mentary function.

The lesson to be learned is that the complementary function should always
be found first. The characteristic equation is

λ2 − 2λ− 3 = 0

so that λ1 = 3, λ2 = −1 and

yc = C1e
3t + C2e

−t.

If the right-hand side is part of the complementary function, it cannot be a
suitable particular integral.

Try instead y = Ate−t so that ẏ = A(1 − t)e−t, ÿ = A(t− 2)e−t. Then

ÿ − 2ẏ − 3y = {t− 2 − 2(1 − t) − 3t}Ae−t

= −4Ae−t

which agrees with e−t if A = − 1
4 . Therefore

yp = − 1
4 te

−t.
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Example 2.5.4

Find a particular integral of

ÿ − 4ẏ + 4y = e2t.

To determine the complementary function, solve the characteristic equation

λ2 − 4λ+ 4 = 0,

which gives λ1 = 2 = λ2. Therefore

yc = (C1 + C2t)e
2t.

In this case, both e2t and te2t will fail as particular integrals. So try At2e2t,
which will be found to work.

Example 2.5.5

Find a particular integral of

ÿ − 2ẏ − 3y = −9te2t.

The right-hand side is not part of the complementary function and is a
product of a polynomial and an exponential. This suggests that we try (At+
B)e2t. The left-hand side becomes then

(2A− 3B − 3At)e2t,

which agrees with the right-hand side if A = 3 and B = 2. Therefore

yp = (3t+ 2)e2t.

If e2t had been part of the complementary function but not te2t, we would
have tried (At+B)te2t; if te2t had been part of the complementary function
also, the trial function would have been (At+B)t2e2t.

¿From these examples we can construct the following prescription for a
particular integral. If

ÿ + a1ẏ + a0y = tmeat (2.5.1)

where a0 6= 0 and m is a nonnegative integer,

(I) when a is not a root of the characteristic equation λ2 +a1λ+a0 = 0, try

y = eat(Amt
m +Am−1t

m−1 + · · · +A0);

(II) when a is a single root of the characteristic equation, multiply the ex-
pansion in (I) by t;
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(III) when a is a double root of the characteristic equation, multiply the ex-
pansion in (I) by t2.

Substitution of the proposed expansion in the differential equation will con-
firm that the right-hand side can be obtained by an appropriate choice of
A0, . . . , Am.

A right-hand side that is composed of a sum of the type in (2.5.1) can be
handled because, if

ÿ + a1ẏ + a0y = f1(t) + f2(t) + · · · + fn(t) (2.5.2)

and yi is a particular integral of

ÿ + a1ẏ + a0y = fi(t),

then

yp = y1 + y2 + · · · + yn

is a particular integral of (2.5.2) as may be confirmed by substitution in the
differential equation.

Trigonometric functions are also covered by the rule given because we can
write

cos t = 1
2 (eit + e−it), sin t = 1

2i (e
it − e−it) (2.5.3)

and use the fact that a can be complex in (2.5.1).

Example 2.5.6

Find a particular integral of

ÿ − 2ẏ − 3y = 2 sin t.

First consider the right-hand side of eit. This is not part of the complemen-
tary function as can be seen from Example 2.5.3. Therefore try y = Aeit. The
left-hand side is (−4− 2i)Aeit, which agrees with eit if A = −1/(4+2i). Sim-
ilarly, the particular integral corresponding to e−it is −e−it/(4 − 2i). Hence,
from (2.5.3),

yp =
1

i

(

− eit

4 + 2i
+

e−it

4 − 2i

)

= 1
5 (cos t− 2 sin t).

Example 2.5.7

Find a particular integral of

ÿ + 4y = 32t cos 2t− 8 sin 2t.
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The characteristic equation is λ2 + 4 = 0, which implies that λ1 = 2i, λ2 =
−2i. The complementary function may be expressed in terms of e2it and e−2it

or, in real form, by

yc = C1 cos 2t+ C2 sin 2t.

For the right-hand side we consider first e2it. Since 2i is a single root of the
characteristic equation, case (II) above applies and we try Ate2it. Similarly for
te2it we would try (Bt + C)te2it. However, it is more economical to combine
the two and make (Bt+C)te2it reproduce the term (16t+ 4i)e2it required on
the right-hand side. We find B = −2i and C = 2, so that

yp = (−2it+ 2)te2it + (2it+ 2)te−2it

= 4t cos 2t+ 4t2 sin 2t.

The general solution is

y = C1 cos 2t+ C2 sin 2t+ 4t(cos 2t+ t sin 2t).

Example 2.5.8

Find a particular integral of

ÿ − ẏ − 2y = cosh t.

The characteristic equation is λ2 − λ− 2 = 0, so that λ1 = 2, λ2 = −1 and
the complementary function is

yc = C1e
2t + C2e

−t.

The right-hand side can be converted to standard form by using cosh t =
1
2 (et + e−t). For et case (I) applies because 1 is not a root of the characteristic
equation, but for e−t case (II) is relevant because −1 is a single root of the
characteristic equation. Therefore, try Aet +Bte−t; it is found that A=− 1

4 ,
B = − 1

6 and

yp = − 1
4e

t − 1
6 te

−t

is a particular integral.

The differential equation

ÿ + 2ẏ + y = te−t

provides an illustration of case (III). A particular integral is

yp = 1
6 t

3e−t.
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2.5.2 Factorisation of the operator

In this method the differential equation is split into two first-order differ-
ential equations in the same way as was employed for discovering the comple-
mentary function in Section 2.4. An example will demonstrate the technique.

Example 2.5.9

Reconsider

ÿ − ẏ − 2y = cosh t

which was discussed in Example 2.5.8.
The differential equation can be expressed as

(

d

dt
+ 1

)(

dy

dt
− 2y

)

= cosh t.

Put u = ẏ − 2y. Then

du

dt
+ u = cosh t = 1

2 (et + e−t).

The integrating factor is et and

d

dt
(uet) = 1

2 (e2t + 1)

so that

uet = 1
4e

2t + 1
2 t+ C.

Therefore

ẏ − 2y = 1
4e

t + 1
2 te

−t + Ce−t.

The integrating factor is e−2t and

d

dt
(ye−2t) = 1

4e
−t + 1

2 te
−3t + Ce−3t.

Since

∫ t

xe−3xdx = − 1
3 te

−3t + 1
3

∫ t

e−3xdx = − 1
3 te

−3t − 1
9e

−3t,

ye−2t = − 1
4e

−t − 1
6 te

−3t − 1
18e

−3t − 1
3Ce

−3t +D

whence

y = − 1
4e

t − 1
6 te

−t − 1
18e

−t − 1
3Ce

−t +De2t.

Actually, this analysis has given the general solution, but we could have
obtained a particular integral by leaving C and D out when they arose. The
resulting particular integral differs from that of Example 2.5.8 by − 1

18e
−t
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but, since this is part of the complementary function, there is no change to
the general solution.

The advantages of this method are that it can give the general solution
directly and always works even when the right-hand side is not a polynomial,
exponential, sine or cosine. On the other hand, it often involves more labour
than undetermined coefficients when the right-hand side is such that either
method is applicable. It can also be awkward to implement when the roots of
the characteristic equation are complex.

2.5.3 Variation of parameters

Another method that can be adopted for any right-hand side is variation
of parameters.

Suppose that the complementary function of

ÿ + a1ẏ + a0y = f(t) (2.5.4)

is
yc = C1y1(t) + C2y2(t).

We seek a solution of (2.5.4) in the form

y = u(t)y1(t) + v(t)y2(t), (2.5.5)

i.e., we allow the parameters C1 and C2 to vary—which explains the nomen-
clature. There are two unknown functions u and v so that two conditions are
needed to determine them. One condition is obtained by substituting (2.5.5)
in (2.5.4). The other we can pick for ourselves and we want to do it so as to
avoid second derivatives of u and v if possible; otherwise we are no better off.
Now, from (2.5.5),

ẏ = uẏ1 + vẏ2 + u̇y1 + v̇y2

and, if second derivatives of u and v are not to occur in ÿ, we must insist that

u̇y1 + v̇y2 = 0. (2.5.6)

Then
ẏ = uẏ1 + vẏ2

and
ÿ = uÿ1 + vÿ2 + u̇ẏ1 + v̇ẏ2.

Now (2.5.4) can be satisfied if

uÿ1 + vÿ2 + u̇ẏ1 + v̇ẏ2 + a1(uẏ1 + vẏ2) + a0(uy1 + vy2) = f(t)

or
(ÿ1 + a1ẏ1 + a0y1)u+ (ÿ2 + a1ẏ2 + a0y2)v + u̇ẏ1 + v̇ẏ2 = f(t).
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But y1 and y2 both satisfy the associated homogeneous differential equation,
and so the terms in the two sets of parentheses vanish. Consequently

u̇ẏ1 + v̇ẏ2 = f(t). (2.5.7)

The equations (2.5.6) and (2.5.7) are now solved for u̇ and v̇. Integration
then supplies u, v and hence a particular integral.

It should be remarked that it is possible to solve (2.5.6) and (2.5.7) provided
that y1ẏ2 − ẏ1y2 6= 0. Suppose that this is not true and that y1ẏ2 − ẏ1y2 = 0.
Then ẏ2/y2 = ẏ1/y1 which implies that ln y2 = ln y1 + C or y2 = Ay1. Thus
C1y1 +C2y2 = (C1 +AC2)y1 and this cannot be the complementary function
since it contains only one arbitrary constant. Therefore, so long as the genuine
complementary function has been found, the solution of (2.5.6) and (2.5.7) can
always be carried out.

Example 2.5.10

Solve
ÿ − ẏ − 2y = cosh t

by means of variation of parameters.
The complementary function is

yc = C1e
2t + C2e

−t.

Therefore y1 = e2t, y2 = e−t and (2.5.6) gives

u̇e2t + v̇e−t = 0

whereas (2.5.7) becomes

2u̇e2t − v̇e−t = cosh t.

Hence
3u̇e2t = cosh t, v̇e−t = − 1

3 cosh t

or
u̇ = 1

6 (e−t + e−3t), v̇ = − 1
6 (1 + e2t).

Consequently

u = − 1
6e

−t − 1
18e

−3t + C, v = − 1
6 t− 1

12e
2t +D

and

y =
(

− 1
6e

−t − 1
18e

−3t + C
)

e2t +
(

− 1
6 t− 1

12e
2t +D

)

e−t

= Ce2t +
(

D − 1
18

)

e−t − 1
4e

t − 1
6 te

−t.

This is the same general solution as derived in Examples 2.5.8 and 2.5.9. If we
had placed C = 0, D = 0 earlier we would have obtained a particular integral
but not the general solution.
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Example 2.5.11

Solve Example 2.5.7 by the variation of parameters method. In this example it
is more convenient to replace the trigonometric functions by their exponential
representation. That is we consider the differential equation

ÿ + 4y = 16t(e2it + e−2it) + 4i(e2it − e−2it).

The complementary function is

yc = C1e
2it + C2e

−2it.

Consequently (2.5.6) and (2.5.7) become

u̇e2it + v̇e−2it = 0

and
u̇e2it − v̇e−2it = −8it(e2it + e−2it) + 2(e2it − e−2it).

This pair of equations is easily solved to give

u̇ = −4it(1 + e−4it) + (1 − e−4it),

v̇ = 4it(1 + e4it) + (1 − e4it),

which on integration by parts and ignoring the arbitrary constants of integra-
tion gives the results

u = t(1 − 2it) + e−4it(t− 3i

8
),

v = t(1 + 2it) + e+4it(t+
3i

8
).

Substituting these expressions for u and v into (2.5.5) and writing the ex-
ponential forms back into trigonometric functions we obtain the particular
integral

yp = 4t cos 2t+ 4t2 sin 2t− 3

4
sin 2t,

which when combined with the complementary function gives the solution as
found before.

The method of variation of parameters is applicable for any right-hand side
and works even if the characteristic equation has complex roots. It can also
be generalised to other types of differential equations. Its disadvantage is that
it often requires a lot of effort to carry through.

In summary, the strategy suggested is that the method of undetermined
coefficients should be employed whenever the right-hand side has the right
form. If it does not, try either factorisation of the operator or variation of
parameters with preference for variation of parameters when the roots of the
characteristic equation are complex.
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2.6 Forced oscillations

A differential equation that arises frequently in practice is

ÿ + 2bΩẏ + Ω2y = F cos(ωt+ β), (2.6.1)

where b,Ω, F, ω and β are real constants with Ω > 0. It represents an os-
cillatory system subject to damping, when b > 0 as we shall assume, being
vibrated by external means. In one application y represents the displacement
of a particle subject to a restoring force Ω2y per unit mass and viscous damp-
ing 2bΩẏ per unit mass acted on by a force of magnitude F per unit mass and
circular frequency ω.

If b 6= 1, the complementary function is

yc = C1e
δ1t + C2e

δ2t, (2.6.2)

where δ1 = −bΩ + Ω(b2 − 1)1/2 and δ2 = −bΩ − Ω(b2 − 1)1/2. The quantities
δ1 and δ2 are real if b > 1 and complex if b < 1. In either case, the real parts
of δ1 and δ2 are negative.

If b = 1, the characteristic equation has the double root −Ω and

yc = (A+Bt)e−Ωt. (2.6.3)

To find a particular integral, we consider the right-hand side Fei(ωt+β).
Since iω is not a root of the characteristic equation, we try Cei(ωt+β) which
leads to

(−ω2 + 2ibΩω + Ω2)C = F.

Therefore

2yp =
Fei(ωt+β)

Ω2 − ω2 + 2ibΩω
+

Fe−i(ωt+β)

Ω2 − ω2 − 2ibΩω

=
2F{(Ω2 − ω2) cos(ωt+ β) + 2bΩω sin(ωt+ β)}

(Ω2 − ω2)2 + 4b2Ω2ω2
.

Consequently, the general solution of (2.6.1) is

y = yc +
F cos(ωt+ β − φ)

{(Ω2 − ω2)2 + 4b2Ω2ω2}1/2
, (2.6.4)

where yc is given by (2.6.2) or (2.6.3) depending on the value of b, and

cosφ =
Ω2 − ω2

{(Ω2 − ω2)2 + 4b2Ω2ω2}1/2
,

sinφ =
2bΩω

{(Ω2 − ω2)2 + 4b2Ω2ω2}1/2
. (2.6.5)
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The first term on the right-hand side of (2.6.4) is always present whether
F = 0 or not. Its value depends upon what conditions are set at t = 0, but
wherever it starts it will diminish to zero as t becomes large enough because
of the form of (2.6.2) and (2.6.3). For this reason, the first term of (2.6.4) is
often known as a transient.

The second term of (2.6.4) only occurs when F 6= 0 and varies at the same
rate as the forcing device. Its amplitude is independent of the conditions at
t = 0 and there is no decay as t→ ∞. It is known as the forced oscillation.

When one is concerned only with what happens for large t, the forced
oscillation alone survives. Its amplitude Y can be expressed as

Y =
F/Ω2

[{1 − (ω2/Ω2)}2 + 4b2ω2/Ω2]1/2
.

As ω varies, changes in Y occur only in the denominator and are dictated by
the behaviour of

(1 − z2)2 + 4b2z2

with z2 = ω2/Ω2. The derivative of this is

−4(1 − z2)z + 8b2z

which vanishes when z = 0 or z2 = 1 − 2b2. The second derivative has the
value 4(2b2−1) when z = 0 and the value 8(1−2b2) when z2 = 1−2b2. Since
z2 cannot be negative, the denominator of Y has a minimum at z = 0 and no
other stationary point if 2b2 > 1, but a maximum at z = 0 and a minimum at
z2 = 1 − 2b2 if 2b2 < 1. Hence (i) if 2b2 > 1, Y has a maximum at ω = 0 and
(ii) if 2b2 < 1, Y has a minimum at ω = 0 and a maximum at ω2/Ω2 = 1−2b2.
The value of Y at ω2/Ω2 = 1 − 2b2 is F/2Ω2b(1 − b2)1/2. So the maximum
of the forced oscillation is larger the smaller b is, i.e., with low damping it is
possible to excite large vibrations provided that ω is chosen appropriately.

It can be seen from (2.6.5) that φ = 1
2π when ω = Ω, that φ ≈ 0 when

ω/Ω ≪ 1 and that φ→ π as ω/Ω → ∞.

Example 2.6.1

Solve the differential equation

ẍ+ ǫkẋ+ x = ǫF cos t,

governing simple harmonic motion with weak forcing and weak damping. The
characteristic equation is

λ2 + ǫkλ+ 1 = 0

so that λ1, λ2 = − ǫk
2 ± i

√

1 − ǫ2k2/4. For ǫ sufficiently small we can approx-
imate the complementary function yc by

yc ≃ e−ǫkt/2(A cos t+B sin t)
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for arbitrary constants A, B.
To determine the particular solution we try

yp = C cos t+D sin t

from which it is found that C = 0 and D = F/k. Consequently we have the
approximate solution

yc ≃ e−ǫkt/2(A cos t+B sin t) +
F

k
sin t.

We conclude that as t → ∞ the solution becomes one of simple harmonic
motion with amplitude F/k.

2.7 Differential equations of order n

Much of the discussion for the equation of second order carries over to the
linear differential equation with constant coefficients of order n, namely

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a0y = f(t). (2.7.1)

Exactly as in Section 2.3, one may show that the general solution can be
written

y = yc + yp

where yp is a particular integral of (2.7.1) and yc is the complementary func-
tion, i.e., the general solution of the associated homogeneous differential equa-
tion.

The complementary function is determined by solving the characteristic
equation. Recalling from Section 2.4 that the characteristic equation could be
reached by trying y = eλt, we do the same here and obtain

λn + an−1λ
n−1 + · · · + a0 = 0. (2.7.2)

Equation (2.7.2) has n roots λ1, λ2, . . . , λn. For any λi which is different from
all the rest, there is a contribution to the complementary function of Cie

λit.
If, however, λj occurs m times, the complementary function acquires a term

(D1 +D2t+ · · · +Dmt
m−1)eλjt.

Example 2.7.1

Find the general solution of

d5y

dt5
+ 6

d4y

dt4
+ 15

d3y

dt3
+ 26

d2y

dt2
+ 36

dy

dt
+ 24y = 0.
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The characteristic equation is

λ5 + 6λ4 + 15λ3 + 26λ2 + 36λ+ 24 = 0.

Now

λ5 + 6λ4 + 15λ3 + 26λ2 + 36λ+ 24

= (λ+ 2)(λ4 + 4λ3 + 7λ2 + 12λ+ 12)

= (λ+ 2)2(λ3 + 2λ2 + 3λ+ 6)

= (λ+ 2)3(λ2 + 3).

Thus the roots of the characteristic equation are −2 (three times) and ±i
√

3,
once each. Therefore the general solution is

y = (C1 + C2t+ C3t
2)e−2t + C4e

it
√

3 + C5e
−it

√
3

= (C1 + C2t+ C3t
2)e−2t +A cos

√
3t+B sin

√
3t

for a real solution.

Any of the three methods described for deriving a particular integral for
the second-order differential equation may be employed for the general order
in the right circumstances. For undetermined coefficients, the rules (I), (II)
and (III) of Section 2.5(a) need to be supplemented because a root of the
characteristic equation can be repeated more than twice. It is, however, clear
from (I), (II) and (III) that the pertinent change is that if a appears m times
as a root of the characteristic equation, multiply by tm the expansion that
would have been tried for a solitary root. For instance, if the right-hand side
in Example 2.7.1 were te−2t, the trial function would be t3(A + Bt)e−2t,
leading to A = 1/168, B = 2/147.

There is nothing new to add to the method of factorisation of the operator,
but now n equations of the first order have to be solved and the method
becomes increasingly cumbersome as the size of n grows.

The principle of variation of parameters is unaltered but further detail is
necessary. Let

yc = C1y1(t) + C2y2(t) + · · · + Cnyn(t)

be the complementary function. Then a solution of (2.7.1) is sought in the
form

y = u1(t)y1(t) + u2(t)y2(t) + · · · + un(t)yn(t) (2.7.3)

with u1, . . . , un subject to the n− 1 conditions

du1

dt
y1 +

du2

dt
y2 + · · · + dun

dt
yn = 0,

du1

dt

dy1
dt

+
du2

dt

dy2
dt

+ · · · + dun

dt

dyn

dt
= 0, (2.7.4)
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· · · · · · · · · · · ·
· · · · · · · · · · · ·

du1

dt

dn−2y1
dtn−2

+
du2

dt

dn−2y2
dtn−2

+ · · · + dun

dt

dn−2yn

dtn−2
= 0.

If (2.7.3) is inserted in (2.7.1) and the conditions (2.7.4) imposed, the addi-
tional equation

du1

dt

dn−1y1
dtn−1

+
du2

dt

dn−1y2
dtn−1

+ · · · + dun

dt

dn−1yn

dtn−1
= f(t) (2.7.5)

is obtained. The equations (2.7.4) and (2.7.5) constitute n linear equations for
the unknowns u̇1, . . . , u̇n. Solving this system for u̇1, . . . , u̇n, integrating and
substituting in (2.7.3) then leads to the desired solution.

Example 2.7.2

Solve, by variation of parameters,

d3y

dt3
+ 5

d2y

dt2
− 6

dy

dt
= 9e3t.

The characteristic equation is

λ3 + 5λ2 − 6λ = 0

with roots 0, 1, −6, so that

yc = C1 + C2e
t + C3e

−6t.

Now try

y = u1(t) + u2(t)e
t + u3(t)e

−6t.

Equations (2.7.4) become

u̇1 + u̇2e
t + u̇3e

−6t = 0,

u̇2e
t − 6u̇3e

−6t = 0,

while (2.7.5) is

u̇2e
t + 36u̇3e

−6t = 9e3t.

Therefore u̇1 = − 3
2e

3t, u̇2 = 9
7e

2t, u̇3 = 3
14e

9t and

u1 = − 1
2e

3t +D1, u2 = 9
14e

2t +D2, u3 = 1
42e

9t +D3.

Consequently

y = 1
6e

3t +D1 +D2e
t +D3e

−6t

is the required general solution.
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2.8 Uniqueness

The general solutions that have been constructed contain arbitrary con-
stants and are therefore capable of assuming different values by assigning
the constants in different ways. What we shall show now is that, if certain
conditions are imposed, the values of the constants are fixed once and for all.

The general solution of

ẏ + a0y = 0 (2.8.1)

is y(t) = Ce−a0t. Suppose now that the extra condition y(0) = 0 is imposed.
Then, there is no alternative to taking C = 0 and y(t) ≡ 0 throughout the
interval where the differential equation holds.

The second order differential equation

ÿ + a1ẏ + a0y = 0 (2.8.2)

can be rewritten, according to Section 2.4, as

ẇ − λ2w = 0 (2.8.3)

where

w = ẏ − λ1y. (2.8.4)

Now require that y = 0 and ẏ = 0 at t = 0. It follows from (2.8.4) that w = 0
at t = 0. But (2.8.3) is of the same form as (2.8.1) and we conclude from
the preceding paragraph that w ≡ 0. That makes (2.8.4) of the same type as
(2.8.1) and since y = 0 at t = 0, y ≡ 0 is the only possibility. In other words,
the solution of (2.8.2) such that y = 0 and ẏ = 0 at t = 0 vanishes throughout
the interval.

Evidently, by factorising the operator in

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a0y = 0 (2.8.5)

and proceeding step by step as above we may deduce that the solution of
(2.8.5) such that

y = 0,
dy

dt
= 0, . . . ,

dn−1y

dtn−1
= 0 (2.8.6)

at t = 0 vanishes identically.
There is an important consequence for the differential equation (2.7.1). Let

it be desired to find a solution such that

y = D0,
dy

dt
= D1, . . . ,

dn−1y

dtn−1
= Dn−1 (2.8.7)
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at t = 0 with D0, . . . , Dn−1 some given constants. There could be two or more
solutions which satisfy these conditions. Let y1 and y2 be two of them. Since
y1 and y2 both comply with (2.8.7) their difference y1 − y2 satisfies (2.8.6) at
t = 0. Also, since both are solutions of (2.7.1), their difference y1 − y2 is a
solution of (2.8.5). By what has been established in the preceding paragraph
y1 − y2 vanishes identically, i.e., there is no difference between y1 and y2.

This result may be stated as: there is one, and only one, solution of

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a0y = f(t) (2.8.8)

which meets the conditions (2.8.7) at t = 0.
To put it another way, the solution of (2.8.8) subject to (2.8.7) at t = 0 is

unique.
Of course, it is not necessary to specify the conditions at the origin—that

was chosen to fix ideas. If (2.8.7) held at t = a the same argument would carry
through and uniqueness would be valid still. However, it is essential that all
the conditions are imposed at the same value of t. If some are enforced at one
value of t and others at another, the situation is changed totally as will be
seen in the next chapter.

Exercises

2.1 Find the general solutions of

(a) ÿ − 8ẏ + 15y = 0,

(b) ÿ − 8ẏ + 16y = 0,

(c) ÿ + 2ẏ + 5y = 5t2 + 5t,

(d) ÿ − ẏ − 2y = 30e2t,

(e) ÿ + ω2y = cosΩt (Ω2 6= ω2),

(f) ÿ + ω2y = cosωt,

(g) ÿ + ẏ + y = 3 sin2 t.

2.2 Find the general solutions of

(a) ÿ + 3ẏ + 2y = 4t2 − 2t,

(b) ÿ + 2ẏ − 2y = 3
5 t

5,

(c) ÿ + 3ẏ = 6t3 + 3t+ 3,

(d) ÿ + ẏ + y = 26et sin t,

(e) ÿ + 3ẏ = 15 sin t+ 5,

(f) ÿ − 2ẏ + y = 6et + 2 sin t,

(g) ÿ + 9y = 3 sin 3t+ 6 cos 3t.
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2.3 Give a suitable real form, but do not evaluate the coefficients, for a
particular integral of

(a) ÿ + y = 2t+ t sin t,

(b) ÿ − 4ẏ + 4y = t2 + 3te2t + 4t sin 2t,

(c) ÿ + 3ẏ + 2y = 2(1 + t2)et sin 2t− et cos t+ 3et,

(d) ÿ + 4y = 2tet + 3t sin 2t.

Do you think it would be simpler to employ exponentials with complex
exponents in any of these cases?

2.4 Show that
t2ÿ + b1tẏ + b0y = f(t),

where b0 and b1 are constants, can be converted to a linear ordinary
differential equation with constant coefficients by the substitution t =
ex. Hence find the general solution of

t2ÿ − tẏ + y = 2t.

2.5 Use factorisation of the operator to find the general solution of

ÿ − ẏ − 2y = 15e2t.

2.6 Find the general solution of ÿ+ y = 3t by (a) undetermined coefficients
and (b) factorisation of the operator.

2.7 By means of (a) undetermined coefficients and (b) variation of parame-
ters find a particular integral of

ÿ + 4y = et + sin 2t

explaining any difference between the answers.

2.8 (a) Find a particular integral of

ÿ + 2ẏ + y = 5e−t(1 + t)1/2

by (i) factorisation of the operator and (ii) variation of parameters.

(b) Find the general solution of

ÿ + y = 1/ sin t

by variation of parameters.

Would the method of undetermined coefficients be suitable for (a) or
(b)? Would it be feasible to use factorisation of the operator for (b)?
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2.9 The general solution of

ÿ + p1(t)ẏ + p0(t)y = 0

is y = C1y1(t) + C2y2(t). Show, by variation of parameters, that the
general solution of

ÿ + p1(t)ẏ + p0(t)y = f(t)

can be expressed as

y = −y1(t)
∫ t y2(u)f(u)

W (u)
du+ y2(t)

∫ t y1(u)f(u)

W (u)
du

where W (t) = y1(t)ẏ2(t) − ẏ1(t)y2(t).

2.10 Find the general solutions of

(a)
d4y

dt4
+ 5

d2y

dt2
+ 4y = 0,

(b)
d3y

dt3
+ 7

d2y

dt2
+ 16

dy

dt
+ 12y = 0,

(c)
d4y

dt4
+ 2

d3y

dt3
+ 10

d2y

dt2
= 0,

(d)
d4y

dt4
− 4

d3y

dt3
+ 6

d2y

dt2
− 4

dy

dt
+ y = 0.

2.11 Prove that, if p and q are nonnegative integers,

[

d

dt
− a

]p

tqeat =

{

0 (p > q),
q(q − 1) · · · (q − p+ 1)tq−peat (p ≤ q).

2.12 Use the method of variation of parameters to solve

(a)
d3y

dt3
− dy

dt
= sin t,

(b)
d4y

dt4
− y = 1 + t2,

(c)
d4y

dt4
− d2y

dt2
= 4tet.

2.13 (a) Show that, if y0(t) is a solution of the associated homogeneous
differential equation of

dny

dtn
+ pn−1(t)

dn−1y

dtn−1
+ · · · + p0(t)y = f(t),

the substitution y = u(t)y0(t) leads to a differential equation of order
n− 1 for du/dt.
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(b) Given that e−t2 is a solution of

ÿ + 4tẏ + (4t2 + 2)y = 0,

find the general solution.

(c) Given that 1/t satisfies the associated homogeneous differential
equation of

t2ÿ + 4tẏ + 2y = t sin t,

find y so that y = 1, ẏ = 0 at t = 1.





Chapter 3

Systems of Linear Ordinary
Differential Equations

3.1 First-order systems of equations with constant
coefficients

In studying natural phenomena, we are often interested in more than one
quantity and the several quantities may well be connected by differential equa-
tions. We are therefore led to consider what happens when more than one
differential equation has to be solved at a time. Suppose

a1ẋ+ b1ẏ + c1x+ d1y = f1(t), (3.1.1)

a2ẋ+ b2ẏ + c2x+ d2y = f2(t) (3.1.2)

where a1, b1, c1, d1, a2, b2, c2, d2 are constants and x, y are to be found. In
other words, two simultaneous differential equations of the first order have to
be solved.

Multiply (3.1.1) by b2 and (3.1.2) by b1. Then subtraction gives

(a1b2 − a2b1)ẋ+ αx+ βy = F (t) (3.1.3)

where α = c1b2 − c2b1, β = d1b2 − d2b1 and F (t) = b2f1(t) − b1f2(t).
There are two distinct cases to discuss according as a1b2 − a2b1 is or is not

zero. We call a1b2 − a2b1 the test determinant.

3.1.1 Test determinant is nonzero

If β 6= 0, (3.1.3) can be solved to give y in terms of x and ẋ. If this expression
is substituted in (3.1.1) or (3.1.2) a linear differential equation with constant
coefficients of order 2 is obtained for x. This differential equation can be
solved by techniques already described and its general solution will involve
two arbitrary constants. Having found x we can determine y from (3.1.3). No
further arbitrary constants are introduced and so the whole solution contains
two arbitrary constants.

If β = 0, (3.1.3) is a differential equation of the first order for x which can
be resolved by means of an integrating factor. Its general solution will possess

61
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one arbitrary constant. Once x is known, it can be substituted in (3.1.1) or
(3.1.2) resulting in a differential equation of the first order for y. Its general
solution will bring in another arbitrary constant so again the whole solution
contains two arbitrary constants.

3.1.2 Test determinant is zero

When a1b2 = a2b1, (3.1.3) reduces to

αx+ βy = F (t). (3.1.4)

If β 6= 0, solve (3.1.4) for y and substitute in (3.1.1) or (3.1.2). The conse-
quent differential equation for x is of the first order and so its general solution
has one arbitrary constant. With x known, y is given by (3.1.4). Since no addi-
tional arbitrary constant is entailed, the whole solution possesses one arbitrary
constant.

If β = 0, (3.1.4) immediately furnishes x provided that α 6= 0. Then (3.1.1)
or (3.1.2) supplies y with one arbitrary constant. Again the whole solution
contains one arbitrary constant.

If β = 0 and α = 0, (3.1.4) becomes 0 = F (t). There are now two
possibilities. Either F (t) is not zero over the interval of t under consider-
ation when (3.1.4) cannot be satisfied and the original differential equations
are inconsistent, or F (t) is zero over the interval and then (3.1.2) is a constant
multiple of (3.1.1).

To sum up, when the test determinant is nonzero, the whole solution can
be found and contains two arbitrary constants. When the test determinant
vanishes, either there is a solution and it includes one arbitrary constant, or
there is no solution, or the two differential equations are not different.

Although ẏ was eliminated to arrive at (3.1.3), a similar equation could
be obtained by eliminating ẋ. The general conclusion concerning the role of
the test determinant would remain unaltered. In practice, it is a matter of
convenience whether ẋ or ẏ is eliminated.

Example 3.1.1

Solve

ẋ+ 2ẏ + x− y = t, (3.1.5)

ẋ− ẏ − x− 2y = 1. (3.1.6)

The test determinant is −1−2, which is nonzero; so the whole solution
should possess two arbitrary constants.

Eliminating ẏ from (3.1.5) and (3.1.6) we obtain

3ẋ− x− 5y = t+ 2
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whence
y = 1

5 (3ẋ− x− t− 2). (3.1.7)

Insertion of (3.1.7) in (3.1.6) gives

− 3
5 ẍ− 3

5x = − 2
5 t

or
ẍ+ x = 2

3 t.

It follows that
x = C1 cos t+ C2 sin t+ 2

3 t. (3.1.8)

From (3.1.7)

y = 1
5 (3C2 − C1) cos t− 1

5 (3C1 + C2) sin t− 1
3 t.

Only two arbitrary constants C1 and C2 appear in the solution in accordance
with earlier observations.

Having found x in (3.1.8), one might have tried to find y from (3.1.6) instead
of (3.1.7). Not only would this require more effort but also it would display
another feature. Substitution of (3.1.8) in (3.1.6) gives

ẏ + 2y = (C2 − C1) cos t− (C1 + C2) sin t− 2
3 t− 1

3

from which can be deduced

y = C3e
−2t + 1

5 (3C2 − C1) cos t− 1
5 (3C1 + C2) sin t− 1

3 t. (3.1.9)

An extra arbitrary constant C3 has made its presence known. However, be-
cause we did not find y from (3.1.7), there is no guarantee that (3.1.5) is
satisfied. If (3.1.8) and (3.1.9) are put in (3.1.5) it will be discovered that x
and y do not satisfy (3.1.5) unless C3 = 0. It is therefore essential to minimise
labour, to work through (3.1.7) or (3.1.3) in the general case.

There is another technique which suggests itself and which should be avoided,
namely to try to treat (3.1.5) and (3.1.6) like algebraic equations and remove
both ẋ and x (or ẏ and y) at the same time. Apply (d/dt) − 2 to (3.1.5) and
(d/dt) − 1 to (3.1.6). There results

ẍ+ 3ẋ+ 2x+ 2ÿ + 3ẏ − 2y = 1 + 2t,

2ẍ− 3ẋ+ x− 2ÿ − 3ẏ + 2y = −1.

By addition
3(ẍ+ x) = 2t,

which supplies the same x as in (3.1.8). But, unless we re-derive (3.1.7), we
have to determine y by substituting for x in one of the original differential
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equations. This will run into the same trouble as in the preceding paragraph
and recover (3.1.9).

Example 3.1.2

Find the solution of

ẋ− 2ẏ − x = et, (3.1.10)

−2ẋ+ 4ẏ + y = 1. (3.1.11)

Here the test determinant vanishes and one of three possibilities may occur.
Elimination of ẏ provides

2x+ y = 2et + 1. (3.1.12)

Thus the equations are consistent and different; consequently, there will be a
general solution with one arbitrary constant only.

Substitute for y from (3.1.12) in (3.1.10). Then

5ẋ+ x = 5et

whence

x = Ce−t/5 + 5
6e

t.

From (3.1.12)

y = 1
3e

t + 1 − 2Ce−t/5

and the whole solution contains the single arbitrary constant C.

Finally, note that, when the test determinant does not vanish, (3.1.3) can
be divided by a1b2 − a2b1 with the result

ẋ = α1x+ β1y + F1(t). (3.1.13)

Similarly, by getting rid of ẋ from (3.1.1) and (3.1.2), we obtain

ẏ = α2x+ β2y + F2(t). (3.1.14)

Thus (3.1.1) and (3.1.2) could be replaced by (3.1.13) and (3.1.14), if desired,
so long as the test determinant is nonzero.

3.2 Replacement of one differential equation by a system

The second-order differential equation

ÿ + a1ẏ + a0y = f(t) (3.2.1)
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can be represented as a system of first-order equations. Put

y(t) = x1(t), ẏ(t) = x2(t). (3.2.2)

From the first of (3.2.2), ẏ = ẋ1 and so, from the second of (3.2.2),

ẋ1 = x2. (3.2.3)

Furthermore, (3.2.1) can be written as

ẋ2 = f(t) − a1x2 − a0x1. (3.2.4)

Thus (3.2.1) gives rise to the system of first-order equations (3.2.3) and
(3.2.4). Any solution y of (3.2.1) provides a solution of the system via the
identification (3.2.2). Conversely, given a solution of (3.2.3) and (3.2.4), we
can substitute from (3.2.3) in (3.2.4) to obtain

ẍ1 + a1ẋ1 + a0x1 = f(t)

so that a solution of (3.2.1) is obtained by putting y = x1. Therefore the
differential equation (3.2.1) and the system (3.2.3)−(3.2.4) are equivalent. It
is thereby possible to deduce properties of a second-order differential equation
from those of a first-order system or vice versa.

These notions can be extended to the differential equation of order n

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a0y = f(t) (3.2.5)

by placing

y(t) = x1(t), ẏ = x2(t), . . . ,
dn−1

dtn−1
y(t) = xn(t).

It is evident from these last relations that

ẋ1 = x2,

ẋ2 = x3,

...

ẋn−1 = xn.

Moreover, (3.2.5) can be expressed as

ẋn = f(t) − a0x1 − · · · − an−1xn.

Again a system (of n first-order equations) has been produced. The equiva-
lence of the system and (3.2.5) can be demonstrated in the same manner as
for the second-order differential equation.

The systems derived here have the same structure as (3.1.13) and (3.1.14)
but the latter are more general than the former. From now on it will be
assumed that the test determinant of our system is nonzero so that (3.1.13)
and (3.1.14) are valid. Their generalisation will be investigated in the next
section.
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3.3 The general system

A system of differential equations,

ẋi =

n
∑

j=1

aijxj + fi(t) (i = 1, . . . , n), (3.3.1)

where every aij is a constant, is known as a system of linear differential
equations of the first order with constant coefficients. The system

ẋi =

n
∑

j=1

aijxj (i = 1, . . . , n) (3.3.2)

is called the associated homogeneous system. A general solution of (3.3.1)
or of (3.3.2) must determine the n quantities x1, x2, . . . , xn. It is convenient
to use the abbreviated notation x for the n quantities x1, x2, . . . , xn and say
that x is a solution of (3.3.2) when the x1, x2, . . . , xn satisfy (3.3.2).

Suppose now that x(k) is a solution of (3.3.2) for k = 1, . . . , n. Consider

xi =

n
∑

k=1

Ckx
(k)
i (i = 1, . . . , n) (3.3.3)

where the Ck are constants. Then

ẋi =
n
∑

k=1

Ckẋ
(k)
i =

n
∑

k=1

Ck

n
∑

j=1

aijx
(k)
j

=

n
∑

j=1

aij

n
∑

k=1

Ckx
(k)
j

=

n
∑

j=1

aijxj

so that (3.3.3) also furnishes a solution of the associated homogeneous system.
This explains why the system is called linear.

The formula (3.3.3) is a candidate for the general solution. It will be satis-
factory if we can choose C1, . . . , Cn so that xi(t0) = xi0 (i = 1, . . . , n) for any
t0 in the interval under consideration and for any selection of the constants
xi0 that we care to make. The choice is possible if

n
∑

k=1

Ckx
(k)
i (t0) = xi0 (i = 1, . . . , n).
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These constitute n linear algebraic equations for the unknowns C1, . . . , Cn.
They can be solved for arbitrary right-hand sides if, and only if, the determi-
nant of the coefficients is nonzero, i.e.,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x
(1)
1 x

(2)
1 . . . x

(n)
1

x
(1)
2 x

(2)
2 . . . x

(n)
2

...
...

...

x
(1)
n x

(2)
n . . . x

(n)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

The determinant is known as the Wronskian and written W (x(1), . . . ,x(n))
for brevity. If the Wronskian is nonzero throughout the interval, the solutions
x(1), . . . ,x(n) are said to form a fundamental system. We conclude that if
x(1), . . . ,x(n) form a fundamental system, the general solution of (3.3.2) can
be expressed as

xi =
n
∑

k=1

Ckx
(k)
i (i = 1, . . . , n)

where C1, . . . , Cn are arbitrary constants.
Given the general solution of the associated homogeneous system, the gen-

eral solution of (3.3.1) is

xi =

n
∑

k=1

Ckx
(k)
i +Xi (i = 1, . . . , n) (3.3.4)

where X1, . . . , Xn is some particular solution of (3.3.1). The proof is the same
as for the second-order differential equation, the first term on the right of
(3.3.4) corresponding to the complementary function and the second to the
particular integral.

The most reliable way of finding X for general values of n is the method
of variation of parameters. With the solutions x(1), . . . ,x(n) forming a funda-
mental system, we look for a solution of (3.3.1) of the type

xi(t) =

n
∑

k=1

uk(t)x
(k)
i (t) (i = 1, . . . , n). (3.3.5)

Then

ẋi =

n
∑

k=1

(

u̇kx
(k)
i + ukẋ

(k)
i

)

=

n
∑

k=1

u̇kx
(k)
i +

n
∑

k=1

uk

n
∑

j=1

aijx
(k)
j

because x(k) satisfies (3.3.2). Thus (3.3.5) implies that

ẋi −
n
∑

j=1

aijxj =

n
∑

k=1

u̇kx
(k)
i ,
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and (3.3.1) is satisfied if

n
∑

k=1

u̇kx
(k)
i = fi (i = 1, . . . , n). (3.3.6)

There are n equations in (3.3.6) for the n unknowns u̇1, . . . , u̇n. They can
always be solved because the determinant of the coefficients is the same as
the Wronskian, which is nonzero because x(1), . . . ,x(n) make a fundamen-
tal system. Integration supplies u1, . . . , un and a particular integral has been
found.

The reader should verify that, for a single differential equation of order n,
the equations (3.3.6) do go over to (2.7.4) and (2.7.5) when the substitutions
of Section 3.2 are made.

3.4 The fundamental system

It is evident from the preceding section that the general solution of a system
can be elicited if a fundamental system can be unearthed. For the single
differential equation, searching for solutions proportional to eλt was profitable
and so the same device may be effective for a system. Therefore try xi = cie

λt

for i = 1, . . . , n. The system (3.3.2) will be satisfied if

λcie
λt =

n
∑

j=1

aijcje
λt

or
n
∑

j=1

aijcj = λci (i = 1, . . . , n). (3.4.1)

The linear equations (3.4.1) will force every ci to be zero unless the deter-
minant of the coefficients vanishes. To obtain a nonzero solution, at least one
ci must be different from zero. Hence the determinant of the coefficients must
be made to vanish, i.e.,

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n

...
...

...
an1 an2 . . . ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (3.4.2)

When expanded, the determinant becomes a polynomial of degree n in λ,
which may be expressed as

λn + pn−1λ
n−1 + · · · + p0 = 0. (3.4.3)
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This polynomial has a special property (needed later) which is usually desig-
nated as the Cayley-Hamilton Theorem. Denote the n× n-matrix (aij), with
entries as in (3.4.2) when λ = 0, by A. Then, if I is the unit n× n-matrix,

An + pn−1A
n−1 + · · · + p0I = 0. (3.4.4)

There are n values of λ which satisfy (3.4.2). Let these roots be denoted by
λ1, . . . , λn; they are called the eigenvalues of the matrix (aij). Put λ = λk

in (3.4.1) and solve for ci to obtain c
(k)
i , say. Then xi = c

(k)
i eλkt is a solution

of the associated homogeneous system.

We must now investigate whether the identification x
(k)
i = c

(k)
i eλkt for k =

1, . . . , n will construct a fundamental system. Suppose that λ1, . . . , λn are all
different. Let there be n constants B1, . . . , Bn such that

n
∑

k=1

Bkc
(k)
i = 0 (i = 1, . . . , n). (3.4.5)

Then
n
∑

j=1

aij

n
∑

k=1

Bkc
(k)
j = 0 (i = 1, . . . , n)

or, from (3.4.1),
n
∑

k=1

λkBkc
(k)
i = 0 (i = 1, . . . , n). (3.4.6)

Multiply (3.4.5) by λn and subtract from (3.4.6). Then

n−1
∑

k=1

(λk − λn)Bkc
(k)
i = 0. (3.4.7)

Since λk 6= λn for k 6= n, we have equations of the same form as (3.4.6) except

that c
(n)
i has been removed. Starting from (3.4.7) we can repeat the process

and strike off c
(n−1)
i . Continuing in this way we arrive at

B′
1c

(1)
i = 0 (i = 1, . . . , n) (3.4.8)

where B′
1 is a nonzero multiple of B1. At least one of c

(1)
1 , . . . , c

(1)
n is not zero

so that B′
1 = 0, which implies that B1 = 0. But now the stage before (3.4.8)

will enforce B′
2c

(2)
i = 0, which entails B2 = 0. Repetition of the procedure

leads to the conclusion that, if (3.4.5) holds, Bk = 0 (k = 1, . . . , n). However,
that is possible only if the determinant of the coefficients is nonzero, i.e.,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c
(1)
1 c

(2)
1 . . . c

(n)
1

c
(1)
2 c

(2)
2 . . . c

(n)
2

...
...

...

c
(1)
n c

(2)
n . . . c

(n)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.
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Remembering that the Wronskian is e(λ1+···+λn)t times this determinant, we
see that the Wronskian does not vanish. Thus, in this case, a fundamental
system has been obtained.

What has been shown is that, if all the eigenvalues are distinct, the general
solution of the associated homogeneous system is

xi =

n
∑

k=1

c
(k)
i eλkt (i = 1, . . . , n). (3.4.9)

Example 3.4.1

Find the general solution of

ẋ = 4x+ y,

ẏ = 3x+ 2y.

The determinantal equation (3.4.2) is

∣

∣

∣

∣

4 − λ 1
3 2 − λ

∣

∣

∣

∣

= 0

or
λ2 − 6λ+ 5 = 0.

Thus we can take λ1 = 1 and λ2 = 5.
For λ = 1, (3.4.1) becomes

3c
(1)
1 + c

(1)
2 = 0

twice. Consequently c
(1)
1 = C1, c

(1)
2 = −3C1 where C1 is an arbitrary constant.

For λ = 5, (3.4.1) goes over to

−c(2)1 + c
(2)
2 = 0

so that c
(2)
1 = C2, c

(2)
2 = C2 where C2 is an arbitrary constant.

The desired general solution is

x = C1e
t + C2e

5t,

y = −3C1e
t + C2e

5t.

When some of the eigenvalues are repeated, the situation is much more
complicated. Assume that λ1 occurs p times. When λ is placed equal to λ1 in

(3.4.1) there may be p solutions c
(1)
i , . . . , c

(p)
i such that

p
∑

k=1

Bkc
(k)
i = 0 (i = 1, . . . , n)
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enforces Bk = 0 (k = 1, . . . , p). In that case our earlier analysis ensures that
the contribution of this eigenvalue has the same form as in (3.4.9).

It may happen that p solutions cannot be found. Additional solutions must
now be generated. Drawing on our experience with the single differential equa-
tion we try

xi = (di + cit)e
λt.

This will satisfy (3.3.2) if

(λdi + ci + λcit)e
λt =

n
∑

j=1

aij(dj + cjt)e
λt (i = 1, . . . , n).

These can be true for an interval of t only if

n
∑

j=1

aijcj = λci, (3.4.10)

n
∑

j=1

aijdj = λdi + ci (3.4.11)

for i = 1, . . . , n. Equation (3.4.10) is the same as (3.4.1) and may be solved
in the same way as before. Once ci has been determined, we solve (3.4.11) for
di. In this manner, extra solutions of the differential system may be created.

There may still not be enough to fill the p slots available. If so, quadratic
and possibly higher powers of t can be added into the expression for xi. In
fact, it can be asserted that the trial solution

xi = (ri + · · · + dit
p−2 + cit

p−1)eλt

is bound to produce enough solutions corresponding to the eigenvalue λ1.
An alternative method for manufacturing solutions is discussed in the next

section.

Example 3.4.2

Find the general solution of

ẋ = 5x+ 3y,

ẏ = −3x− y.

In this case (3.4.2) is

∣

∣

∣

∣

5 − λ 3
−3 −1 − λ

∣

∣

∣

∣

= 0

or
λ2 − 4λ+ 4 = 0.
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The eigenvalue 2 occurs twice. With λ = 2 in (3.4.1)

3c
(1)
1 + 3c

(1)
2 = 0,

−3c
(1)
1 − 3c

(1)
2 = 0.

Now c
(1)
1 = C1, c

(1)
2 = −C1 is the only possible solution and so is insufficient

for our purposes. Invoking (3.4.11) we have

3d1 + 3d2 = c1,

−3d1 − 3d2 = −c1

since c2 = −c1. A solution is d1 = C2, d2 = 0, c1 = 3C2. No other solution
is necessary since it will differ from this only by a solution of (3.4.10). Two
solutions are known now and

x = C1e
2t + C2(1 + 3t)e2t,

y = −C1e
2t − 3C2te

2t.

The reader should confirm that the Wronskian is nonzero, consistent with the
derivation of a fundamental system.

3.5 Matrix notation

The system (3.3.1) can be expressed in terms of matrices by introducing
the column vector x with components x1, . . . , xn, the column vector f with
components f1, . . . , fn and the matrix A = (aij). Then

ẋ = Ax + f (3.5.1)

and the associated homogeneous system is

ẋ = Ax. (3.5.2)

The similarity of (3.5.2) to the single first-order differential equation sug-
gests that it ought to be possible to write the general solution as

x = etAC (3.5.3)

where C is an arbitrary column vector. However, (3.5.3) has no significance
until a meaning is attributed to the matrix etA. A suitable definition is

etA = I + tA+
1

2!
t2A2 +

1

3!
t3A3 + · · · (3.5.4)
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where I is the unit n × n-matrix. The presence of an infinite series in the
definition means that (3.5.3) has a deceptive air of simplicity. It conceals the
fact that it may be quite difficult to calculate etA.

By putting t = 0 in (3.5.4) we see at once that

e0 = I. (3.5.5)

Furthermore, by taking derivatives of (3.5.4) with respect to t term-by-term,
without worrying about the legitimacy, we obtain

d

dt
etA = AetA = etAA. (3.5.6)

Next, notice that the polynomial (3.4.3) would occur when considering
solutions of the differential equation

dnw

dtn
+ pn−1

dn−1w

dtn−1
+ · · · + p0w = 0. (3.5.7)

This suggests that the solutions of (3.5.2) are related in some way to those of
(3.5.7). In fact, a derivative of (3.5.2) gives

ẍ = Aẋ = A2x

by virtue of (3.5.2). Clearly

dmx

dtm
= Amx (3.5.8)

in general. Observe that this is consistent with (3.5.3) as can be seen by
invoking (3.5.6). From (3.5.8)

dnx

dtn
+ pn−1

dn−1x

dtn−1
+ · · · + p0x = (An + pn−1A

n−1 + · · · + p0I)x = 0 (3.5.9)

on account of (3.4.4). Comparison of (3.5.9) with (3.5.7) reveals that each
element of x is a solution of the differential equation (3.5.7).

Suppose now that x = 0 at t = 0. Then (3.5.8) implies that the derivatives of
x are also zero at t = 0. Hence each element of x is a solution of (3.5.7) which,
together with its derivatives, vanishes at t = 0. The theory of Section 2.8 tells
us that such a solution must be identically zero. Hence, if x = 0 at t = 0,
the solution of (3.5.2) is zero throughout the interval under consideration. It
follows, as in Section 2.8, that the solution of (3.5.1) such that x = C at t = 0
is unique. Naturally, the point t = 0 can be replaced by some other if desired.

Now consider some special solutions w1, w2, . . . , wn of (3.5.7). We choose
w1 so that

w1 = 1, dw1/dt = 0, d2w1/dt
2 = 0, . . . , dn−1w1/dt

n−1 = 0
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at t = 0. For w2 we take

w2 = 0, dw2/dt = 1, d2w2/dt
2 = 0, . . . , dn−1w2/dt

n−1 = 0

at t = 0 and generally we select dmwi/dt
m to vanish at t = 0 except for

m = i − 1 when the value is to be unity. The functions w1, w2, . . . , wn are
uniquely defined (Section 2.8) and any solution of (3.5.7) can be expressed in
terms of them by adding appropriate multiples to reproduce values specified
for the solution and its derivatives at t = 0. Accordingly, there are constant
vectors c1, . . . , cn such that

x = w1c1 + w2c2 + · · · + wncn. (3.5.10)

Let x = C at t = 0. Putting t = 0 in (3.5.10) we have c1 = C. Take a
derivative of (3.5.10) and put t = 0. Then ẋ = c2 = AC by virtue of (3.5.8).
Repeating the process we obtain c3 = A2C and generally cm = Am−1C.
Consequently, the solution of (3.5.2) such that x = C at t = 0 is

x = (w1I + w2A+ · · · + wnA
n−1)C.

On the other hand, (3.5.5) indicates that (3.5.3) is the solution that is C at
t = 0. By the uniqueness property, which has been demonstrated already, the
two solutions must be the same, i.e.,

etAC = (w1I + w2A+ · · · + wnA
n−1)C.

But C is arbitrary since no particular values have been assigned to it and so

etA = w1I + w2A+ · · · + wnA
n−1. (3.5.11)

The formula (3.5.11) has the advantage over (3.5.4) of being a finite series
rather than an infinite one. However, it does entail the determination of n
solutions of (3.5.7). Whether it is more effective in practice than the method
described in earlier sections is more difficult to assess. Probably, the earlier
method is best when all the eigenvalues of A are distinct. With repeated
eigenvalues the scales will tend to tilt towards (3.5.11). To aid the reader in
forming an assessment some of the preceding examples will be tackled by the
method of this section.

Example 3.5.1

Find the general solution of

ẋ = 4x+ y,

ẏ = 3x+ 2y.

The analogue of (3.5.7) is, from Example 3.4.1,

ẅ − 6ẇ + 5 = 0.
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Consequently, w1 = (5et−e5t)/4 and w2 = (e5t −et)/4. Substitute in (3.5.11)
with n = 2. Then

4etA = (5et − e5t)

(

1

0

0

1

)

+ (e5t − et)

(

4

3

1

2

)

=

(

3e5t + et

3e5t − 3et

e5t − et

e5t + 3et

)

.

Consequently, if C has elements C1, C2

x = (3C1 + C2)e
5t/4 + (C1 − C2)e

t/4,

y = (3C1 + C2)e
5t/4 − 3(C1 − C2)e

t/4.

This has the same structure as in Example 3.4.1 although here C1 and C2 are
the values of x and y at t = 0.

Example 3.5.2

Find the general solution of

ẋ = 5x+ 3y,

ẏ = −3x− y.

The differential equation to be solved is, by Example 3.4.2,

ẅ − 4ẇ + 4w = 0.

Therefore w1 = (1 − 2t)e2t and w2 = te2t. Hence

etA = e2t

(

1 + 3t 3t
−3t 1 − 3t

)

resulting in

x = {C1 + 3(C1 + C2)t}e2t,

y = {C2 − 3(C1 + C2)t}e2t.

Again there is consistency with Example 3.4.2 on adjusting the constants.

Example 3.5.3

Find the general solution of

ẋ = 3x+ y,

ẏ = 3y + z,

ż = 3z.
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In this case A =





3 1 0
0 3 1
0 0 3



 and A2 =





9 6 1
0 9 6
0 0 0



. The relevant differ-

ential equation is
d3w

dt3
− 9

d2w

dt2
+ 27

dw

dt
− 27w = 0.

Hence w1 = (1 − 3t+ 9t2/2)e3t, w2 = (t− 3t2)e3t, w3 = t2e3t/2 leading to

etA = e3t





1 t t2/2
0 1 t
0 0 1





and

x = (C1 + C2t+ C3t
2/2)e3t,

y = (C2 + C3t)e
3t,

z = C3e
3t.

Matrix notation offers a neat way of representing a particular integral of
the system

ẋ = Ax + f(t). (3.5.12)

When f is absent we know that a solution of (3.5.12) can be expressed as
x = etAx0. Therefore, as in the method of variation of parameters, try

x = etAy(t) (3.5.13)

as a solution of (3.5.12). Since, from (3.5.6),

ẋ = AetAy(t) + etAẏ(t) = Ax + etAẏ(t)

(3.5.12) is satisfied provided that

etAẏ(t) = f(t).

Hence ẏ(t) = e−tAf(t) and

y(t) =

∫ t

e−uAf(u)du.

It follows from (3.5.13) that a particular integral of (3.5.12) is

x(t) = etA

∫ t

e−uAf(u)du. (3.5.14)

The meaning of
∫

g(u)du is specified by

∫

g(u)du =













∫

g1(u)du
∫

g2(u)du
...

∫

gn(u)du












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when gT = (g1, g2, . . . , gn) where gT is the transpose of g.
Observe that e−tA differs from etA only in the sign of t. Consequently, e−tA

can be written down as soon as etA has been calculated.

Example 3.5.4

Find a particular integral for

ẋ = 5x+ 3y + 2te2t,

ẏ = −3x− y + 4.

We know from Example 3.5.2 that

etA = e2t

(

1 + 3t 3t
−3t 1 − 3t

)

and so

e−tA = e−2t

(

1 − 3t −3t
3t 1 + 3t

)

.

Hence, with fT = (2te2t, 4),

∫ t

e−uAf(u)du =

(

t2 − 2t3 + 3(2t+ 1)e−2t

2t3 − (6t+ 5)e−2t

)

.

We do not need to include arbitrary constants since they add only multiples
of the complementary function.

After insertion in (3.5.14) we obtain the particular integral

x = (t2 + t3)e2t + 3,

y = −t3e2t − 5.

3.6 Initial and boundary value problems

It has been mentioned from time to time that solutions of differential equa-
tions are often subject to extra conditions. This section will be devoted to
a discussion of two types of conditions that are of frequent occurrence in
practice.

Suppose a solution of

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a0y = f(t) (3.6.1)
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is required such that

y = y(0),
dy

dt
= y(1), . . . ,

dn−1y

dtn−1
= y(n−1)

at t = t0, with y(0), . . . , y(n−1) prescribed constants. This is termed an initial
value problem.

The general solution of (3.6.1) is

y = C1y1 + · · ·Cnyn + yp

where yp is a particular integral and the remaining terms represent the com-
plementary function. Then the imposed conditions can be complied with if

C1
dmy1
dtm

+ · · ·Cn
dmyn

dtm
= y(m) − dmyp

dtm
(m = 0, 1, . . . , n− 1)

when t = t0. These n equations for C1, . . . , Cn can always be solved if

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 y2 · · · yn

dy1
dt

dy2
dt

· · · dyn

dt
...

...
...

dn−1y1
dtn−1

dn−1y2
dtn−1

· · · dn−1yn

dtn−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

This determinant is the same as that derived from the Wronskian of Section
3.3 when the differential equation is converted to a first-order system and,
accordingly, is also known as a Wronskian. The nonvanishing of the Wronskian
warrants the statement that

B1y1(t) + · · · +Bnyn(t) = 0 (3.6.2)

for an interval of t, which necessitates the constants B1, . . . , Bn all being zero.
For n − 1 derivatives of (3.6.2) give a set of equations for B1, . . . , Bn with
nonzero determinant and zero right-hand side. Expressed in other words, the
nonvanishing of the Wronskian makes y1, . . . , yn linearly independent over
the interval. To put it another way, it makes certain that the complementary
function has been determined correctly.

Since there is only one set of C1, . . . , Cn that satisfies the equations for
nonzero Wronskian, it has been demonstrated that the initial value problem
always possesses a solution and there is only one which satisfies the imposed
conditions. This constitutes another verification of the uniqueness property.

The initial value problem is characterised by all the restrictions being ap-
plied at a single value of t. In some instances the conditions refer to more
than one value of t—we then have a boundary value problem. In contrast
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to the initial value problem, it is by no means certain that a boundary value
problem has a solution. Consider

ÿ + y = 0

of which the general solution is

y = C1 cos t+ C2 sin t.

Let the conditions be y(0) = 0, y(1) = 0. The first requires C1 = 0 and the
second C2 sin 1 = 0. Since sin 1 6= 0 we must have C2 = 0 and the only solution
is the trivial one which vanishes everywhere. Now change the conditions to
y(0) = 0, y(π) = 0. In this event, y = C2 sin t is a solution with C2 arbitrary.
Thus, boundary value problems may have many solutions or none (if the trivial
one is discounted). It is also obvious that the interval of t has a critical role
to play.

Instead of varying the interval, it is usual to fix it and incorporate a pa-
rameter in the differential equation. A typical problem might be to solve

d

dt

(

p(t)
dy

dt

)

+ {q(t) + λ}y = 0 (3.6.3)

subject to y(a) = 0, y(b) = 0. This is an example of a Sturm–Liouville
problem. The values of λ, which is independent of t, are crucial. For some
there will be only the trivial solution and for others there will be many so-
lutions. Those λ for which nontrivial solutions exist are called eigenvalues
and the corresponding solutions eigenfunctions.

Example 3.6.1

Consider
ÿ + λy = 0

under the conditions y(0) = 0, y(π) = 0.
If λ = 0, the general solution is y = A + Bt, which satisfies the boundary

conditions only if A = 0 and B = 0. Therefore λ = 0 is not an eigenvalue.
If λ 6= 0, the general solution is

y = C1 cos
√
λt+ C2 sin

√
λt.

To comply with the boundary conditions we must have C1 = 0 and C2 sin
√
λπ

= 0. For a nontrivial solution C2 6= 0 and λ = m2 where m is a positive
integer. The eigenvalues are real and infinite in number. They may be desig-
nated λ1, λ2, . . . where λm = m2. The eigenfunction corresponding to λm is
Cm sinmt where Cm is arbitrary.

The discussion of (3.6.3) will assume that p(t) is a continuously differen-
tiable real function that does not change sign for any t in (a, b). No loss of
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generality is incurred in taking it to be positive. The function q will be as-
sumed to be real and continuous in (a, b). We shall also suppose that there is an
infinite set of eigenvalues λ1, λ2, . . . with associated eigenfunctions Y1, Y2, . . ..

With these assumptions the first thing to be shown is that the eigenvalues
are real. Ym satisfies

d

dt

(

p(t)
dYm

dt

)

+ {q(t) + λm}Ym = 0 (3.6.4)

and Ym(a) = 0, Ym(b) = 0. By taking a complex conjugate

d

dt

(

p(t)
dY ∗

m

dt

)

+ {q(t) + λ∗m}Y ∗
m = 0 (3.6.5)

and Y ∗
m(a) = 0, Y ∗

m(b) = 0. Multiply (3.6.4) by Y ∗
m, (3.6.5) by Ym and subtract.

There results

Y ∗
m

d

dt

(

p(t)
dYm

dt

)

− Ym
d

dt

(

p(t)
dY ∗

m

dt

)

+ (λm − λ∗m)|Ym|2 = 0.

Hence

(λ∗m − λm)

∫ b

a

|Ym|2dt =

∫ b

a

{

Y ∗
m

d

dt

(

p(t)
dYm

dt

)

− Ym
d

dt

(

p(t)
dY ∗

m

dt

)}

dt

=

[

Y ∗
mp(t)

dYm

dt
− Ymp(t)

dY ∗
m

dt

]b

a

(3.6.6)

by integration by parts. The right-hand side of (3.6.6) is zero because of the
conditions on Y , Y ∗ at t = a, t = b. The integral on the left is positive because
Ym is a nontrivial solution. Consequently, λm = λ∗m and λm is real.

The reality of the eigenvalues means that there is no loss of generality in
taking the eigenfunctions to be real. With this understood, note that

d

dt

(

p(t)
dYn

dt

)

+ {q(t) + λn}Yn = 0 (3.6.7)

and Yn(a) = 0, Yn(b) = 0. Multiply (3.6.4) by Yn, (3.6.7) by Ym, subtract and
proceed as above. Then

(λn − λm)

∫ b

a

YmYndt =

[

p(t)

(

Yn
dYm

dt
− Ym

dYn

dt

)]b

a

. (3.6.8)

The right-hand side is zero on account of the values of Ym, Yn at the endpoints.
Therefore, if λm 6= λn,

∫ b

a

YmYndt = 0. (3.6.9)
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Functions that satisfy (3.6.9) are said to be orthogonal, i.e., the eigenfunctions
of distinct eigenvalues are orthogonal. If, in addition, the eigenfunctions are

normalised so that
∫ b

a
Y 2

mdt = 1, the eigenfunctions are called orthonormal.
It will not have escaped the reader’s notice that the right-hand sides of

(3.6.6) and (3.6.8) can vanish for conditions other than those delineated. For
example, if y(a) = 0 is replaced by

α1y(a) + α2ẏ(a) = 0, (3.6.10)

where at least one of the real α1, α2 is nonzero, the right-hand sides are still
zero. A similar remark is true if y(b) = 0 is changed to

β1y(b) + β2ẏ(b) = 0 (3.6.11)

where β1, β2 are real with at least one nonzero. Equations (3.6.10) and (3.6.11)
can be deemed standard boundary conditions (they include the previous
ones by putting α2 = 0, β2 = 0). What has been shown is that the eigenvalues
are real and the eigenfunctions orthogonal for standard boundary conditions.

Example 3.6.2

Find the eigenfunctions of ÿ + λy = 0 subject to ẏ(0) = 0, ẏ(π) = 0.
For λ = 0, the solution y = A+Bt meets the boundary conditions if B = 0.

The eigenfunction is y = A.
For λ 6= 0, proceed as in Example 3.6.1 to show that there is an eigenvalue

n2 with eigenfunction Cn cosnt.
The first eigenfunction can be subsumed in the second group by allowing

n = 0. Thus the eigenfunctions are Cn cosnt for n = 0, 1, 2, . . ..

Eigenvalues can also occur for periodic boundary conditions where
p(a) = p(b), y(a) = y(b), ẏ(a) = ẏ(b). Again the eigenvalues are real and
the eigenfunctions orthogonal.

Example 3.6.3

Find the eigenfunctions of ÿ+λy = 0 subject to y(0) = y(π) and ẏ(0) = ẏ(π).
If λ = 0, the general solution is y = A + Bt which satisfies the boundary
conditions if B = 0 and so λ = 0 is an eigenvalue with a corresponding
constant eigenfunction.

If λ 6= 0 then the general solution is

y = A sin
√
λt+B cos

√
λt.

On applying the boundary conditions we find that the following set of homo-
geneous equations must be satisfied:

A sin
√
λπ +B(cos

√
λπ − 1) = 0

A(cos
√
λπ − 1) −B sin

√
λπ = 0.
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This set of equations has a nontrivial solution only if cos
√
λπ = 1, that is

λ = 4n2, n = 1, 2, . . . . is an eigenvalue with corresponding eigenfunction
yn = An sin 2nt+Bn cos 2nt, where An and Bn are arbitrary constants. These
constants can be chosen so that the eigenfunctions are normalised to give
yn =

√

2/π sin(2nt+ αn) with arbitrary constant αn.

3.7 Solving the inhomogeneous differential equation

This section is concerned with the boundary value problem in which

d

dt

(

p(t)
dy

dt

)

+ q(t)y = f(t). (3.7.1)

For simplicity, the conditions y(a) = 0, y(b) = 0 will be imposed, although
it will be clear that the technique is equally valid for the standard boundary
conditions.

Let λ1, λ2, . . . and Y1, Y2, . . . be the eigenvalues and eigenfunctions deter-
mined in the section before. Assume that we can write

f(t) =

∞
∑

m=1

bmYm(t).

Multiply by Yn and integrate from a to b. Then, by virtue of the orthogonality
of the eigenfunctions,

bn

∫ b

a

Y 2
n dt =

∫ b

a

f(t)Yn(t)dt

which specifies the coefficient bn. Putting

y =

∞
∑

m=1

amYm(t) (3.7.2)

in (3.7.1) we obtain, provided that derivatives can be taken term-by-term,

−
∞
∑

m=1

amλmYm(t) =

∞
∑

m=1

bmYm(t),

which suggests that (3.7.2) is the desired solution of the boundary value prob-
lem when am = −bm/λm.

Example 3.7.1

Find the solution of
ÿ = t
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such that y(0) = 0, y(π) = 0.

It should first be pointed out that this problem can be solved easily without
eigenfunctions but for many problems there is no option to finding the solution
as a series of eigenfunctions.

The eigenfunctions are sinnt and so

bn =

∫ π

0

t sinnt dt

/∫ π

0

sin2 nt dt = (−1)n+12/n.

Since λn = n2 our solution is

y = 2
∞
∑

m=1

(−1)m

m3
sinmt.

The derivation of the series solution rested on a number of assumptions,
namely

(a) f can be expanded in a series of eigenfunctions,

(b) am = −bm/λm for m = 1, 2, . . . ,

(c)
∑∞

m=1 bmYm/λm is a continuous function that possesses two derivatives
which can be calculated by taking derivatives of the series term-by-term.

There is no difficulty about (b) when λm 6= 0 for m = 1, 2, . . . and a unique
solution is obtained. If, however, one of the eigenvalues, say λ1, is zero, the
boundary value problem has no solution when b1 6= 0 and an infinite number
of solutions when b1 = 0.

Both (a) and (c) raise delicate matters because they require knowledge of
the properties of expansions of functions in terms of eigenfunctions. It would
take us too far afield to derive these properties; so we content ourselves with
a few observations without proof. Generally speaking, the smoother f is, i.e.,
the more derivatives it has, the more likely is the process to be legitimate. In
fact, for the standard boundary conditions, the series for a piecewise smooth
function converges uniformly and absolutely to the function on any closed
interval in which the function is continuous. Nevertheless, even in the absence
of a specific theorem, there is nothing to prevent one from carrying out the
process formally and then attempting to confirm that the resulting series has
the desired properties.
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3.8 Numerical solution of linear boundary value prob-
lems

The solution of boundary value problems by numerical methods is quite
different from the solution of initial value problems (see Section 1.7). The
reason is that, for initial value problems, the solution is completely known at
some initial time, and can be systematically stepped forward to obtain an ap-
proximation to the solution at any future time. In contrast, a boundary value
problem has partial information specified at two (or more) different values of
the independent variable (t or x), so simple marching methods, such as Euler’s
method, are not applicable. Instead, a system of equations for the solution at
each value of x must be set up and solved simultaneously. This is done by
dividing the domain up into a set of grid points and replacing derivatives in
the differential equation by corresponding finite difference approximations.

As an example, consider the second-order linear differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = g(x), (3.8.1)

subject to the boundary conditions

y(a) = α, y(b) = β. (3.8.2)

Note that the coefficients p and q, and the right-hand side g, are permitted to
be functions of the independent variable x. The basic idea is to approximate
derivatives of y in (3.8.1) using central difference approximations. The
approximations for the first two derivatives are

dy

dx
=
y(x+ h) − y(x− h)

2h
,

d2y

dx2
=
y(x+ h) + y(x− h) − 2y(x)

h2
.

These may be derived from the Taylor expansion of y(x ± h) about x. We
now define a grid of equally spaced x values x0, . . . , xn (where xi = a + ih
and the step size is h = (b− a)/n), with corresponding approximate y values
y0, . . . , yn. Equation (3.8.1) now reads

yi+1 + yi−1 − 2yi

h2
+ p(xi)

yi+1 − yi−1

2h
+ q(xi)yi = g(xi). (3.8.3)

By setting i = 1, . . . , n−1, this gives an equation for each of the n−1 interior
lattice points. The boundary conditions y0 = α and yn = β provide two
further equations, giving a system of n+ 1 equations in the n+ 1 unknowns
y0, . . . , yn. Since the differential equation (3.8.1) is linear, the resulting system
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of finite difference equations is also linear. It may, therefore, be written in the
form of a matrix–vector equation Ay = b, where

A =















1
1
h2 − p(x1)

2h − 2
h2 + q(x1)

1
h2 + p(x1)

2h
. . .

. . .
. . .

1
h2 − p(x1)

2h − 2
h2 + q(x1)

1
h2 + p(x1)

2h
1















b =















α
g(x1)

...
g(xn)
β















.

This system can be readily solved by standard methods. Indeed, MATLAB
has a built-in command for solving linear systems: the solution of the matrix
equation Ay = b may be found via the command y = A\b. Note that, be-
cause each of the equations (3.8.3) only contains three of the unknowns (yi−1,
yi and yi+1), the matrix A has a tridiagonal structure (i.e., all entries that
are not on the main diagonal or the first subdiagonal or superdiagonal are
zero). Moreover, there is a clear pattern followed by the entries on these three
diagonals. These properties can be used to define the matrix A efficiently. The
following MATLAB function file calculates the approximate solution to the
boundary value problem (3.8.1) and (3.8.2) using a specified number of lattice
points N.

function [x, y] = bvp(coeffs, xspan, BCs, N);

% Function to solve a linear second-order BVP

% INPUTS: coeffs - handle to a function that returns the three

% coefficients p(x), q(x) and g(x)

% xspan - 1x2 vector containing the min and max values

% of x

% BCs - 1x2 vector containing the corresponding values

% of y

% N - number of lattice points to use

% OUTPUTS: x - vector of equally spaced x values

% y - vector of corresponding y values

dx = (xspan(2)-xspan(1))/N; % spacing between lattice points

x = (xspan(1):dx:xspan(2))’; % vector of equally spaced values

A = zeros(N+1, N+1); % initialise A as a matrix of zeros

b = zeros(N+1, 1); % initialise b as a vector of zeros

A(1, 1) = 1; % row 1 of matrix A

b(1) = BCs(1); % row 1 of vector b

for I = 2:N % loop through rows 2 to N of A and b
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FIGURE 3.8.1: Numerical solution of the boundary value problem (3.8.1)
and (3.8.2) with p(x) = 0, q(x) = 6, g(x) = 2x, a = 0, b = 1, α = 1, β = 5,
using n = 50 lattice points.

% get values of coefficients at x(I):

[p, q, g] = coeffs(x(I));

A(I, I-1) = 1/dx^2-p/(2*dx);

A(I, I) = -2/dx^2+q;

A(I, I+1) = 1/dx^2+p/(2*dx);

b(I) = g;

end

A(N+1, N+1) = 1; % row N+1 of A

b(N+1) = BCs(2); % row N+1 of b

y = A\b; % solution to matrix equation Ay=b

The coefficients p(x), q(x) and g(x) are calculated by a simple user-supplied
function. For example, if p(x) = 0, q(x) = 6 and g(x) = 2x, we would write

function [p, q, g] = mycoeffs(x)

p = 0; q = 6; g = 2*x;

The boundary value problem with boundary conditions of, for example,
y(0) = 1 and y(1) = 5 may be solved, using 50 lattice points, and plotted (see
Figure 3.8) with the following commands:

>> a = 0; b = 1; alpha = 1; beta = 5;

>> [x, y] = bvp(@mycoeffs, [a, b], [alpha, beta], 50);

>> plot(x, y)

In the above example, both boundary conditions are in the form y(xb) =
yb, i.e., they specify the value of the dependent variable y at the boundary
values of x. This is known as a Dirichlet boundary condition. Another
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common form of boundary condition is a Neumann boundary condition,
which specifies the value of the derivative dy/dx (also written y′(x)) at the
boundary value of x. For example, the Neumann boundary conditions

y′(a) = α, y′(b) = β

are equally valid conditions for the differential equations such as (3.8.1). Fur-
thermore, any boundary condition can contain a mixture of Dirichlet and
Neumann terms, e.g., (3.6.10).

Boundary conditions containing derivatives are slightly more complicated
than Dirichlet conditions to implement numerically, but the basic approach is
the same: replace derivatives of y with finite difference approximations. The
difficulty is, in order to use a central difference at the left-hand boundary
point x = x0, we need x0 + h and x0 − h. The first of these is fine as x0 +h =
x1, but for x0 − h, we must introduce an additional lattice point x−1 (with
corresponding y value y−1) that is outside the domain. Then, we can use the
central difference approximation:

y′(a) ≈ y1 − y−1

2h
.

In doing this, we have introduced an additional unknown y−1, so we need an
additional equation. This is achieved simply by taking the difference equation
(3.8.3) with i = 0, as well as i = 1, . . . , n. If the right-hand boundary condition
also contains a derivative term, the same procedure can be carried out at
x = xn. Here, an additional lattice point is introduced at xn+1, and we get
an additional equation (3.8.3) with i = n.

Exercises

3.1 Find the general solution of

(a) ẋ+ 2x+ 3y = 0,
ẏ + 3x+ 2y = 2e2t;

(b) ẋ+ ẏ − 5x+ 3y = 15t1/2et,
ẋ− 2ẏ + x = −30t1/2et.

3.2 Find the general solution of

x− ẋ+ ẏ + y = 1,

2ẋ+ x− 2ẏ − y = 2

by eliminating (a) y, (b) ẏ.

3.3 Find the general solution of
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(a) ẋ = 9x− 8y,
ẏ = 24x− 19y;

(b) ẋ = 2y − x,
ẏ = −2x− y;

(c) ẋ = x+ y,
ẏ = y;

(d) ẋ = x− 2y − z,
ẏ = −x+ y + z,
ż = x− z;

(e) ẋ = x− y + z,
ẏ = x+ y − z,
ż = 2z − y.

3.4 Show that x = et, y = 2et and x = tet, y = (2t − 1)et form a funda-
mental system for

ẋ = 3x− y + 1, ẏ = 4x− y + t

and hence find the solution of the system such that x = 1, y = 0 at
t = 0.

3.5 Find the solutions of the initial value problems

(a) ẋ+ 2x+ 3y = 0, ẏ + 3x+ 2y = 2e2t with x = 0, y = 0 at t = 0;

(b) ẋ + 3x+ 2y = 3t− 1, ẏ + 3x− 2y = 3t− 10 with x = 1, y = 0 at
t = 0.

3.6 Find a particular integral by matrix methods of

ẋ = 3x+ y + 3t2e3t,

ẏ = 3y + z + 9t,

ż = 3z + 18.

3.7 The function f(t) is defined by

f(t) =

{

t (0 ≤ t ≤ π),
πeπ−t (t ≥ π).

Find the solution of the initial value problem

ÿ + y = f(t)

which is continuous, with a continuous derivative, for all t ≥ 0 and such
that y = 0, ẏ = 1 at t = 0.



Systems of Linear Ordinary Differential Equations 89

3.8 If f(t) is defined as in Exercise 3.7, show that the boundary value prob-
lem with y(0) = 0, y(2π) = a has no continuous solution with contin-
uous derivative on 0 ≤ t ≤ 2π if a 6= 1

2π(e−π − 1), but has infinitely
many such solutions if a = 1

2π(e−π − 1).

3.9 Find the eigenvalues and eigenfunctions of ÿ + λy = 0 subject to the
boundary conditions

(a) ẏ(−π) = 0, ẏ(π) = 0;

(b) y(0) = 0, ay(b) + ẏ(b) = 0 (a > 0, b > 0).

3.10 Show that
d4y

dt4
− µ4y = 0

has nontrivial solutions satisfying the boundary conditions y(0) = 0, ẏ(0) =
0, y(1) = 0, ẏ(1) = 0 if, and only if, cosµ coshµ = 1 (µ 6= 0).

3.11 The steady-state temperature T of a one-dimensional object in a medium
of ambient temperature Ta satisfies the steady-state equation

d2T

dx2
+ c(Ta − T ) = 0,

where c > 0 is a heat transfer coefficient. The endpoints of the object
are held at a constant temperature of T = α at x = 0 and T = β at
x = 1. Find the solution to this boundary value problem analytically.
Confirm your answer by solving the problem numerically when c = 4,
Ta = 0, α = 20 and β = 40, and plotting the analytical and numerical
solution on the same graph.

If the left-hand endpoint is insulated so that there is no heat flow in or
out of the object, the boundary condition becomes a Neumann condition
T ′(0) = 0. How does this change the solution to the problem?

3.12 Find series solutions in terms of eigenfunctions of

(a) ÿ = t(t− 2π) subject to y(0) = 0, ẏ(π) = 0;

(b) ÿ = sin(πt/b) subject to y(0) = 0, ẏ(b) = 0;

(c) t
d

dt

(

t
dy

dt

)

+ 5y = 3 sin(5 ln t) subject to y(1) = 0, y(eπ) = 0.

3.13 Show that, for

d

dt

(

p(t)
dy

dt

)

+ {q(t) + λr(t)}y = 0
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subject to the standard boundary conditions and r positive, the eigen-
values are real and the eigenfunctions are orthogonal with respect to
the weight function r, i.e.,

∫ b

a

rYmYndt = 0

when Ym and Yn correspond to distinct eigenvalues.

3.14 The eigenfunctions Y1(t), Y2(t), . . .satisfy

t2
d2Ym

dt2
− t

dYm

dt
+
(

3
4 + λmt

2
)

Ym = 0

on π < t < 2π under the boundary conditions Ym(π) = 0, Ym(2π) = 0.
Show that the eigenfunctions are orthogonal with respect to a suitable
weight function.
By means of the substitution y(t) = t1/2u(t), obtain as a series of eigen-
functions the solution of

t2ÿ − tẏ +
(

3
4 − t2

)

y = t5/2

such that y(π) = 0, y(2π) = 0.



Chapter 4

Modelling Biological Phenomena

4.1 Introduction

Mathematical modelling of physical phenomena, such as the dynamics of
a rigid body, the deformation of an elastic material or the propagation of
electromagnetic waves in the atmosphere, is based, to the best of our present
scientific knowledge, on sound physical laws. Thus to describe the dynamical
behaviour of a rigid body undergoing the influence of external forces we have
the fundamental Newtonian laws of motion at our disposal. The behaviour
of deforming elastic materials is governed by the constitutive equations of
continuum mechanics; Maxwell’s equations are the fundamental postulates
that govern electromagnetic waves.

These basic laws have been the result of centuries of experiment, observation
and inspiration of mathematicians and scientists including Sir Isaac Newton,
Leonard Euler and James Clerk Maxwell.

In biology and the life sciences in general, this interplay between the ob-
served phenomenon and its mathematical description is still in the early stages
of development and, apart from the Hardy–Weinberg law associated with
the Mendelian theory of genetics, there are few sound postulates to guide us.
Instead the philosophy is to develop mathematical models that in the first
instance describe in only a qualitative way the observed biological process. As
in all scientific endeavours, the real test of the model is that it not only agrees
qualitatively with the biological process but has the ability to suggest new
experiments and bring deeper insight to the biological situation. If enough
experience is gained by this philosophy then hopefully, together with a better
understanding of the life sciences, sound postulates will emerge upon which a
mathematical theory can be developed.

This philosophy of qualitative description will be exploited in the topics
treated in this chapter and throughout a major portion of this book.

4.2 Heartbeat

The heart is a complex but robust pump (see the simplified illustration in
Figure 4.2.1). It consists of four chambers and four valves. There are essentially

91
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FIGURE 4.2.1: Schematic description of the heart as viewed from the front
of the body.

two circuits for the blood, one which spreads through the lungs to pick up oxy-
gen and the other which spreads through the body to deliver the oxygenated
blood. The first circuit is a low-pressure circuit so as not to damage the deli-
cate membrane in the lungs, whereas the second is a high-pressure circuit in
order for the blood to get down to the feet and up again. From Figure 4.2.1,
it is apparent that the right side of the heart is the low-pressure pump to the
lungs while the left side is the high-pressure pump to the body.

Each pump has a main pumping chamber called the ventricle with an inlet
and an outlet valve. The purpose of the inlet valve is to prevent flow back up
the veins while pumping, and the outlet valve is to prevent flow back from
the arteries while filling. Since the heart is made of nonrigid tissue it only has
the power to push out and no power to suck in. Thus to get a good pump of
blood it is necessary to fill the ventricle completely, and to aid this there is
a small chamber called the atrium whose job is to pump gently beforehand,
just enough to fill the ventricle but not enough to cause any flow back.

During the heartbeat cycle there are two extreme equilibrium states, namely
diastole which is the relaxed state and systole which is the contracted state.
What makes the heart beat is the presence of a pacemaker which is located on
the top of the atrium. The pacemaker causes the heart to contract into systole.
That is, it triggers off an electrochemical wave which spreads slowly over the
atria causing the muscle fibres to contract and push blood into the ventricles
and then spreads rapidly over the ventricles causing the whole ventricle to
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contract into systole and deliver a big pump of blood down the arteries. The
muscle fibres then rapidly relax and return the heart to diastole; the process
is then repeated.

In order to develop a mathematical model that reflects the behaviour of the
heartbeat action described above, we choose to single out the following fea-
tures. First of all, the model should exhibit an equilibrium state corresponding
to diastole. Secondly, there must be a threshold for triggering the electrochem-
ical wave emanating from the pacemaker causing the heart to contract into
systole. Thirdly, the model must reflect the rapid return to the equilibrium
state.

We begin by doing a little mathematical experimentation. Suppose we let
x denote muscle fibre length referred to some convenient origin, say x = 0,
which corresponds to the equilibrium state. Let b be an electrical control
variable which governs the electrochemical wave. As far as the muscle fibres
are concerned, we look for a differential equation which has x = 0 as an
equilibrium state and at least for small times has a rapidly decreasing solution.
An appropriate equation exhibiting these features is

ǫ
dx

dt
= −x, (4.2.1)

where ǫ is a small positive parameter. When dx
dt , the velocity of the fibre, is

zero we have the equilibrium state x = 0. Furthermore we know (Chapter 1)
that (4.2.1) has the general solution

x = A exp(−t/ǫ) (4.2.2)

which is rapidly decreasing in time. Thus (4.2.1) seems to be a good candidate
to represent the behaviour initially of the muscle fibres causing contraction
into systole.

Turning now to the electrochemical wave, we need the control b to represent
initially the relatively slow spread of this wave over the atria. A simple model
which does this is

db

dt
= −b. (4.2.3)

Here b = 0 is an equilibrium state and (4.2.3) has the solution

b = B exp(−t), (4.2.4)

which, in comparison with (4.2.2), represents a relatively slow decay time.

The features that are not covered by this simple model obtained from (4.2.1)
and (4.2.3) are (i) the threshold or trigger and (ii) the rapid return to equi-
librium. At this stage, our knowledge of differential equations is insufficient
to include these features and the discussion must be deferred until Chapter 6.
The model that incorporates the desired features is the coupled nonlinear
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first-order system

ǫ
dx

dt
= −(x3 + ax+ b),

db

dt
= x− xa. (4.2.5)

Here x represents the length of the muscle fibre, −a represents tension, b
represents the chemical control and xa represents a typical fibre length when
the heart is in diastole. The model (4.2.5) is due to E.C. Zeeman.

That Zeeman chose to single out the above three qualities of the heartbeat
cycle and to attempt to model them through the system of equations (4.2.5)
should not lead the reader to assume that such a description is the only one.
Indeed, the model can only be considered a reasonable one if it reflects the
basic features of the heartbeat cycle well.

It is appropriate to remark, however, that the model (4.2.5) has been
quite successful in distinguishing between some extreme forms of heartbeat
behaviour, for example, the effects of high blood pressure or an excess of
adrenalin in the bloodstream due to rage or vigorous exercise. Likewise there
is the situation when the heart beats in a feeble manner and does not contract
into systole.

4.3 Nerve impulse transmission

The axon portion of a nerve cell (see Figure 4.3.1) is made up of a conducting
material called axoplasm which is contained in a roughly cylindrical membrane
between 50 and 70 Å thick. The membrane is permeable to potassium ions,
K+, concentrated in the interior, and to sodium ions, Na+, concentrated in
the exterior. Also present, but to a much lesser extent, are other ions such as
chlorine Cl−. In nature, the high concentration of sodium ions is maintained
by the organism in the fluid medium exterior to the nerve cell. In its resting
state there is a potential difference across the axon membrane of between −50
and −70 millivolts (mV).

Suppose we place a segment of axon in a bath containing a sodium con-
centration similar to the one usually present in the exterior fluid medium
and apply a potential difference across the membrane. In the laboratory, this
is usually done by inserting a fine micropipette into the axon and injecting
sodium ions. The induced sodium gives rise to an applied current. It is ob-
served that if a small potential difference, which is positive relative to the
resting potential, is applied across the membrane, the sodium and potassium
ionic currents are briefly disturbed but quickly return to their zero resting
state and the membrane settles back to the resting potential. If a much larger
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FIGURE 4.3.1: Schematic description of the nerve axon.

positive membrane potential is applied (between 7 and 10 mV) the equilibrium
state is exceeded and the sodium currents become active. What happens now
is that the axon membrane becomes permeable to positive sodium ions which
flow inwards, making the membrane potential increase and this causes the
membrane to become even more permeable to sodium ions. If circumstances
are just right in that the inflow of sodium ions keeps the membrane potential
increasing, there is a critical level in membrane permeability which we call the
threshold, which results in a rapid impulsive rise in potential difference across
the membrane to about 100 mV relative to the negative resting potential.

Following this “firing” of the axon two things happen. First the sodium ion
permeability begins to decrease slowly and secondly the potassium ion perme-
ability rapidly rises. Potassium ions thus flow outwards and eventually restore
the membrane potential once again to its resting state after an overshoot of
about 5 mV. The impulse lasts about 3 to 5 ms (see Figure 4.3.2).

The question to ask now is how an impulse is transmitted along the axon
during this process. Near the point of stimulation, an impulse is created, which
is shot off down the axon along the membrane, being renewed at each point,
to approximately 100 mV as the membrane potential at each point achieves
a value that initiates the active phase of sodium. As we mentioned above, a
threshold is involved, that is, either this voltage is not achieved and no impulse
is propagated or it is achieved and at least one impulse is propagated.

Except at a discrete set of points called nodes of Ranvier, which are
about 1 mm apart, every vertebrate nerve axon is covered with a sheath
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FIGURE 4.3.2: Membrane potential.

that electrically insulates the axoplasm and surrounding membrane from the
exterior medium. A vertebrate nerve fibre is said to be myelinated and,
although current in a vertebrate nerve fibre can easily pass freely along the
axoplasm or the exterior fluid as happens in an invertebrate unmyelinated
nerve, it can pass through the membrane only at certain points. Currents
circulate on paths around the boundary of a section of arbitrary location for
the membrane of an unmyelinated axon, but only on paths that pass through
the nodes of Ranvier for a myelinated axon.

Our understanding of the mechanism governing the action potential is due
chiefly to the inspired and carefully executed experiments of the physiologists
A.L. Hodgkin and A.F. Huxley in 1952. This work, which led to the award
of a Nobel prize, was largely performed on the large axon to be found in the
squid Loligo, and culminated in the development of a mathematical model.
This model not only agrees in a qualitative way with the experimental results
but gives remarkably accurate quantitative results. Since the development of
this model, others have been subsequently formulated which reflect current
experimental findings with good agreement. However the so-called Hodgkin–
Huxley model is still regarded as the fundamental model governing nerve
impulse transmissions. The experiments performed by Hodgkin and Huxley
were set up in the same way as described above, except that the induced
current was achieved not by injection of sodium ions but by inserting a fine
current-carrying wire into the axon. This induced current, which we denote
by I, is found to give rise to a membrane potential E which is the same at
each point of the segment of axon and depends only on the time t. That is, E
is independent of x, the position of a point along the axon relative to some
convenient origin. This configuration is known as space clamp.

The basic assumption of the Hodgkin–Huxley theory is that there are sep-
arate channels for the sodium, potassium and other ions like chlorine. We can
envisage these channels in terms of the electrical circuit shown in Figure 4.3.3.
Thus, each channel is described in terms of a voltaic cell E in series with a
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conductance g together with a capacitance Cm across the whole ensemble.
The transmembrane current is then given by

I = Cm
dE

dt
+ gNa(E − ENa) + gK(E − EK) + gl(E − El), (4.3.1)

where I is the current density, E is the membrane potential, Cm is the mem-
brane capacity, gNa is the sodium conductance, gK is the potassium conduc-
tance, gl is the leakage conductance, ENa is the sodium equilibrium potential,
EK is the potassium equilibrium potential and El is the leakage equilibrium
potential. The conductances gNa and gK are assumed to vary with time and
the potential E, while gl is assumed constant. To describe the variation in gNa

and gK Hodgkin and Huxley assumed that gK is described by

gK = ḡKn
4, (4.3.2)

and that gNa is determined by

gNa = ¯gNam
3h. (4.3.3)

In these expressions, ḡK is the maximum potassium conductance and ¯gNa is
the maximum sodium conductance. The quantities n, m and h are dimension-
less quantities that vary between 0 and 1 and are functions of E and t. Their
precise forms are determined as solutions of the system of ordinary differential
equations:

dm

dt
= αm(E)(1 −m) + βm(E)m, (4.3.4)

dh

dt
= αh(E)(1 − h) + βh(E)h, (4.3.5)

dn

dt
= αn(E)(1 − h) + βn(E)n. (4.3.6)
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In these equations the coefficient functions αj , βj , j = m,h, n, are functions of
the membrane potential E, and were found by careful empirical fitting with
the experimental results. The exact forms of these coefficient functions are
complicated formulae involving expE. The mathematical model developed
from the Hodgkin–Huxley theory is the formidable system of linked differen-
tial equations given by (4.3.1)–(4.3.6). That Hodgkin and Huxley were able to
solve these equations at all is quite remarkable, especially if one appreciates
the limited computational facilities available in 1952. It should be remarked,
however, that although this system admits to numerical solution, the under-
lying analytical structure is by no means fully understood.

If the space clamp is removed in the sense that the membrane potential
is allowed to vary with position x along the axon, then Hodgkin and Huxley
assumed Kelvin’s cable theory to assert that the current I is given by

I =
a

2R

∂2E

∂x2
(4.3.7)

where a is the radius of the axon and R is the specific resistivity of the
axoplasm. Since E now depends on both x and t all derivatives must be
replaced by partial derivatives, and so by incorporating (4.3.7) in (4.3.1) we
are led to consider the partial differential equation

a

2R

∂2E

∂x2
= Cm

∂E

∂t
+ gNa(E − ENa) + gK(E − EK) + gl(E − El), (4.3.8)

together with the system (4.3.2)–(4.3.6).

As we have mentioned before, several alternative mathematical models of
nerve impulse transmission have been developed since 1952. Some of these
are of the same complexity as the Hodgkin–Huxley model while others, by
making certain additional assumptions about the behaviour of the various
ionic conductances, are considerably simpler. These simplified models never-
theless retain the main features characteristic of the Hodgkin–Huxley theory.
One such model that has attracted much interest is the FitzHugh–Nagumo
model, originally proposed by R. FitzHugh in 1961 and subsequently devel-
oped by J. Nagumo and his co-workers in 1962. This model is developed in
analogy with the van der Pol oscillator, well known to electrical engineers
and physicists, and takes the form

∂2u

∂x2
=
∂u

∂t
− u(1 − u)(u − a) + w, (4.3.9)

∂w

∂t
= bu− γw, (4.3.10)

where a, b and γ are positive constants and 0 < a < 1. In this simplified
model, u represents the membrane potential E and, as before, x measures
distance along the axon and t is time. The cubic term u(1 − u)(u − a) in
(4.3.9) is analogous to an instantaneous turning on of sodium permeability
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and can be thought of as playing the role of the variable m in the Hodgkin–
Huxley equations. w is a recovery variable and is analogous to the turning on
of potassium permeability and so behaves like the variable n in the Hodgkin–
Huxley model. There is no counterpart to inactivation of sodium permeability.

There is a further simplification which can be adopted and which comes
about from the following observation. The simplified model cannot be ex-
pected to give quantitative comparisons with experiment, as the Hodgkin–
Huxley model does. Thus we can only expect a qualitative comparison and,
consequently, if we could simplify the nonlinearity in (4.3.9), (4.3.10) without
destroying the desired behaviour of solutions, then the methods of solution
could be greatly simplified. To this end H.P. McKean in 1970 proposed that
the term u(1 − u)(u − a) in (4.3.9) could be replaced, for example, by the
piecewise linear term illustrated in Figure 4.3.4, where the angle θ can take
any value in the semi-open interval 0 < θ ≤ π/2. The benefit of incorporating
this simplification is that, along each line segment, the system of equations
(4.3.9) and (4.3.10) is linear and in general linear equations are much easier
to solve than nonlinear ones.

The mathematical models of nerve impulse transmission are incomplete
without some notion of the solutions to expect or the appropriate initial and
boundary conditions. If we consider the Hodgkin–Huxley model as applied
to the giant axon of the squid, we know that the length of the axon is large
compared with its radius a. Thus if we put

X = x/
√
a (4.3.11)

in (4.3.7) and (4.3.8) we can approximate the range of X to be infinitely large.
In this way we take the range of x in the system (4.3.9), (4.3.10) also to be
0 ≤ x <∞.

Both of the models we have discussed have solutions that depend only
on x+ ct and are called travelling waves. That is, there are membrane
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potentials E(x, t)=E(x+ct) that move along the axon with no loss of strength
and in a direction determined by the sign of c. The rate of propagation is |c|
and the problem of finding this value is very important.

Suppose the axon is stimulated from one end defined, for example, by x = 0.
Then the appropriate conditions are:

E(0, t) = P (t), t > 0,

E(x, 0) = 0, x ≥ 0.

Here P (t) is a function of t which defines the stimulus emanating at x = 0.
An important and largely unresolved problem is to classify those stimuli P (t)
so that E(x, t) approaches a travelling wave E(x + ct) as t → ∞. The study
of travelling waves will be taken up in Chapter 7, while some idea of the
behaviour of stimulated membrane potentials will be considered in Chapter 12.

4.4 Chemical reactions

Chemical notation and the law of mass action

As is standard in Chemistry, we write

A+B
k−→ C (4.4.1)

to indicate that a molecule of substance A and a molecule of substance B
combine to form a molecule of substance C. If the reaction is reversible (i.e.,
a molecule of C can also decompose into a molecules each of A and B), we
write

A+B
k
⇋
k′

C.

The quantities k and k′ are rate constants.
The law of mass action states that the rate of the reaction is proportional to

the product of the concentrations of the reactants. Thus, for reaction (4.4.1)
(and denoting the concentration of substance A by [A], etc.), the law of mass
action gives

d[C]

dt
= k[A][B] = −d[A]

dt
= −d[B]

dt
.

The Belousov–Zhabotinskii reaction

The chemical reaction described here is not part of any living system and is
certainly not biological. However, its interest and importance lies in its ability
to “oscillate”, forming patterns such as parallel bands, concentric rings and



Modelling Biological Phenomena 101

cell-like structures. Such phenomena are well known in biology: for example,
in morphogenesis (discussed later in Chapter 12), the regulating processes
involved in living cells and organisms, and in information transmission. A fur-
ther reason for studying pattern formation in nonliving systems is that the
constituent forces are more limited than those of even the simplest biological
systems where electrical forces, surface tensions, colloid properties and crys-
tallising forces, and complex chemical reactions may play a significant role.

The reaction we shall consider is the usually dramatic oscillatory reaction
discovered by Belousov in 1958 and Zhabotinskii in 1964. The Belousov–
Zhabotinskii reaction, as it is now called, is essentially the oxidation of
malonic acid by bromate in a sulphuric acid medium, in the presence of a
cerium catalyst. In the reaction, two overall processes I and II can be identi-
fied, and the chemistry involved can be described as follows. In the reaction
when the bromide ion (Br−) is above some critical concentration, process I
occurs. Here the bromate ion (BrO−

3 ) is reduced to bromine (Br2), with bro-
mous acid (HBrO2) as an intermediary, and the malonic acid, CH2(COOH)2,
is brominated. During this process there is little oxidation of the cerium ion
Ce(III). Process I thus uses up the bromide. When the concentration of bro-
mide becomes sufficiently low, process II takes over. In this the bromous acid
and the bromate ion produce a radical bromate species (BrO2), which oxi-
dises the cerium ion Ce(III) to the Ce(IV) form with bromous acid generated
autocatalytically. When all of the Ce(III) has been oxidised to Ce(IV) and
the bromide ion concentration is low, the Ce(IV) then reacts with the bro-
momalonic acid to produce the cerium ion Ce(III) and bromide again. When
the bromide passes a critical concentration, process I takes over again and the
cycle is repeated. During the process, one sees the reagent oscillate in colour,
turning alternatively bright blue and reddish purple if ferroin is used as an
indicator.

On the bases of the mechanism described above, Field and Noyes have sug-
gested the following mathematical model which involves three intermediaries
which oscillate and which are associated with the bromide ion (Br−), bromous
acid (HBrO2) and the cerium ion Ce(IV).

If X = HBrO2, Y = Br− and Z = Ce(IV), the Field–Noyes system is

A+ Y
k1−→ X, (4.4.2)

X + Y
k2−→ P, (4.4.3)

A+X
k3−→ 2X + Z, (4.4.4)

2X
k4−→ Q, (4.4.5)

Z
k5−→ fY. (4.4.6)

In this system, A is the reactant BrO−
3 , which is maintained at a constant

concentration, P and Q are products and f is a constant stoichiometric factor.
To arrive at the mathematical model, we invoke the law of mass action. For
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the reaction (4.4.2), the law of mass action says that X is produced at the rate
k1[A][Y ]. However, at the same time, X is being used up in reaction (4.4.3)
to produce P at rate k2[X ][Y ], and by reaction (4.4.5) to produce Q at rate
k4[X ]2. Finally, reaction (4.4.4) produces X at the rate k3[A][X ]. Thus the
total rate of change of X is

d[X ]

dt
= k1[A][Y ] − k2[X ][Y ] + k3[A][X ] − k4[X ]2. (4.4.7)

If we analyse the rates of change of Y and Z in the same way, the law of mass
action gives

d[Y ]

dt
= −k1[A][Y ] − k2[X ][Y ] + fk5[Z], (4.4.8)

and
d[Z]

dt
= k3[A][X ] − k5[Z]. (4.4.9)

The system of coupled first-order differential equations (4.4.7)–(4.4.9) is the
mathematical model of Field, Körös and Noyes representing the Belousov–
Zhabotinskii (B-Z) reaction.

Before we proceed further with the mathematical models of the B-Z reac-
tion, let us describe one or two of the experiments performed on this reaction
and the patterns that arise.

Under certain conditions, the reagent is capable of organising itself into
spatially inhomogeneous structures that are seen as coloured patterns. The
physical reasons for the pattern formations as well as the patterns themselves
are different according to the experimental setup. If the reagent is placed
in a thin layer and allowed to convect, say, by heating the fluid from below
or cooking it from above by evaporation, then a reaction–diffusion process
resembling the Bénard phenomenon of cellular convection occurs. Here the
fluid, when viewed from above, organises itself into hexagonal or rectangular
cells, which are outlined in reddish purple. It seems that the boundaries of the
convection cells appear to contain most of their cerium in the reduced state,
while the rest of each cell contains more cerium in an oxidised state. However,
the precise behaviour of this hydrodynamic and chemical phenomenon is not
fully understood.

An interesting pattern formation is observed when the reagent is placed in a
vertical container and a gradient of temperature or of one of the concentrations
is imposed on the fluid. In the latter case, sulphuric acid is carefully added after
the other ingredients have been mixed. Under these circumstances, horizontal
bands form and propagate vertically through the container. In this case there
is no fluid motion at all; it is only the lines of constant phase of the oscillation
that are moving through the fluid. The explanation of this phenomenon is
as follows: the concentration gradient or temperature gradient produces a
vertical gradient in the frequency of the oscillation. This frequency gradient
can account in detail for the space-time behaviour of the patterns that emerge.
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Diffusion plays a negligible role unless the pattern has a very small spatial
scale.

Perhaps the most striking pattern formations that can be observed are
those found in the experiments of Zaikin and Zhabotinskii using ferroin for
the catalyst and malonic acid in the Belousov reaction. Here the reagent is
spread thinly, about 2 mm thick on a petri dish. Circular chemical waves are
observed propagating outwards. These waves, essentially oxidation bands, are
blue and they propagate through the reddish background fluid. When two
waves collide both disappear. When a faster one catches up with a slower one
the latter is entrained. These waves have been designated “trigger” waves since
diffusion combines with the chemical reaction to trigger the waves. To include
diffusion effects in our model (4.4.7)–(4.4.9) we suppose the intermediaries
X,Y and Z can diffuse with diffusion coefficients DX , DY , DZ and hence are
functions of the space variables x, y, z and time t. The system (4.4.7)–(4.4.9)
is modified to read

∂[X ]

∂t
= k1[A][Y ] − k2[X ][Y ] + k3[A][X ] − k4[X ]2 +DX∇2[X ],(4.4.10)

∂[Y ]

∂t
= −k1[A][Y ] − k2[X ][Y ] + fk5[Z] +DY ∇2[Y ], (4.4.11)

∂[Z]

∂t
= k3[A][X ] − k5[Z] +DZ∇2[Z]. (4.4.12)

This model is a reaction–diffusion system of coupled partial differential
equations and, under certain circumstances, admits travelling wave solutions.
For instance, if we take [Z] = 0 and assume [X ] = ξ(x+ct) and [Y ] = η(x+ct),
then the reduced system (4.4.10), (4.4.11) can be studied in the same way as
the travelling wave solutions of nerve axon equations are considered. Of course
boundary and initial conditions are somewhat different. These considerations
will be taken up in Chapters 8 and 12.

Enzymatic catalysis

A reaction that is extremely common in biological systems is enzymatic
catalysis. This covers the broad class of reactions where a substrate (S)
reversibly reacts with an enzyme (or catalyst) (E) to form a compound sub-
stance (or complex) (SE). This compound then decomposes into a product
(P ), and the original enzyme (E):

S + E ⇋k1

k−1
SE,

SE
k2−→ P + E.

Typically, the enzyme is present at very low concentration, which limits the
rate at which the substrate can be converted to the product. Hence, this type
of reaction is often referred to as a rate-limited reaction.
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Applying the law of mass action to this reaction gives the following differ-
ential equations for the four reactants:

d[S]

dt
= −k1[S][E] + k−1[SE],

d[E]

dt
= −k1[S][E] + k−1[SE] + k2[SE],

d[SE]

dt
= k1[S][E] − k−1[SE] − k2[SE],

d[P ]

dt
= k2[SE].

The appropriate initial conditions are

[S](0) = S0, [E](0) = E0, [SE](0) = 0, [P ](0) = 0,

where S0 and E0 represent the initial concentrations of substrate and en-
zyme respectively. This system of four differential equations can be simpli-
fied by noting that the first three equations do not depend on [P ] and that
d/dt ([E](t) + [SE](t)) = 0, so [E](t) + [SE](t) = E0. We hence consider the
reduced system

d[S]

dt
= −k1E0[S] + (k1[S] + k−1) [SE], (4.4.13)

d[SE]

dt
= k1E0[S] − (k1[S] + k−1 + k2) [SE]. (4.4.14)

It is useful to nondimensionalise all variables by making the following trans-
formations:

T = k1E0t, u(T ) = [S](t)/S0, v(T ) = [SE](t)/E0

λ = k2

k1S0
, K = k−1+k2

k1S0
, ǫ = E0

S0
.

Then, the system (4.4.13), (4.4.14) reads

du

dT
= −u+ (u +K − λ)v, (4.4.15)

ǫ
dv

dT
= u− (u+K)v, (4.4.16)

with initial conditions u(0) = 1 and v(0) = 0. Methods for dealing with non-
linear systems of this type are dealt with in Chapter 5 and, in general, finding
an explicit solution is not trivial. However, the fact that the initial concen-
tration of enzyme E0 is typically much smaller than that of the substrate S0

means that ǫ is a small parameter (ǫ ≪ 1). This can be exploited by seeking
a solution as a power series in ǫ:

u(T ) = u0(T ) + ǫu1(T ) + ǫ2u2(T ) + . . . ,

v(T ) = v0(T ) + ǫv1(T ) + ǫ2v2(T ) + . . . .
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We now substitute these forms into (4.4.15) and (4.4.16) and equate coeffi-
cients of powers of ǫ. At O(ǫ0), we have

du0

dT
= −u0 + (u0 +K − λ)v0, (4.4.17)

0 = u0 − (u0 +K)v0, (4.4.18)

with initial conditions u0(0) = 1 and v0(0) = 0. Equation (4.4.18) implies that

v0(T ) =
u0(T )

u0(T ) +K
. (4.4.19)

Substituting this into (4.4.17), solving by separation of variables (see Section
1.4), and using the initial condition on u0 gives

u0(T ) +K lnu0(T ) = 1 − λT. (4.4.20)

The problem now is that the solution for v0(T ) does not satisfy the initial
condition v0(0) = 0. This problem arises because we have essentially assumed
that ǫdv/dT ≪ 1. However, at T = 0, the initial conditions state that u = 1
and v = 0, and hence from equation (4.4.16) dv/dT is of the order ǫ−1, so
our assumption is incorrect there. This problem may be elegantly solved by
introducing a fast time variable, S = T/ǫ, transforming equations (4.4.15)
and (4.4.16) to this variable and again seeking solutions as a power series in
ǫ. This gives a solution (called the inner solution) that is valid for very small
times (i.e., values of S of the order 1). By matching with the solution found
above (called the outer solution), which is valid for T ≫ ǫ, it is possible to
obtain a matched solution that is valid for all times.

The fact that dv/dT is very large near T = 0 indicates that the v reaction
is so fast that it is close to equilibrium at all times. Hence, in practice, v may
be assumed to be in the pseudo-steady state defined by (4.4.19). This was
the hypothesis made by Michaelis and Menten in their 1913 work on chemical
kinetics. Typically, it is the reaction rate du/dT that is of primary interest,
rather than the concentration u(T ). Implicit differentiation of (4.4.20) gives

du0

dT
= − λu0

K + u0
.

Neglecting terms of order ǫ and higher, and returning to the original dimen-
sional variables, we have

d[S]

dt
= − k2E0[S]

Km + S
, (4.4.21)

where Km = (k−1 + k2)/k1 is called the Michaelis constant. We hence see
that the rate of uptake of the substrate S is proportional to the enzyme
concentration E0, but is nonlinearly related to the concentration of substrate
[S]. When [S] ≪ Km, the increase in reaction rate is approximately linear in
[S], but as [S] approaches Km, the reaction rate levels off (saturates), and has
a maximum value of k2E0. The reaction rate defined as (4.4.21) is sometimes
referred to as Michaelis–Menten kinetics.
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4.5 Predator–prey models

The problems we shall consider here are of fundamental importance in ecol-
ogy, i.e., the study of the interactions between living organisms and their envi-
ronment. Let us consider two organisms or species characterised, for example,
by their respective population densities, say X and Y . Thus X may be the
population density of a carnivore occupying a certain habitat and Y may be
the population density of a herbivore occupying the same habitat as X and
considered as a food source for X . Alternatively, X and Y may be used to
represent parasite and host, or herbivore and plant.

It is convenient to classify the direct interaction between a pair of species
into the following categories:

(a) Competition: each species has an inhibiting effect on the growth of
the other.

(b) Commensalism: each species has an accelerating effect on the growth
of the other.

(c) Predation: one species, the “predator”, has an inhibiting effect on the
growth of the other; the “prey” has an accelerating effect on the growth
of the predator.

Throughout this section, we consider the interaction between X and Y to
be that of predation. Furthermore, we shall make the following simplifying
assumptions.

(a) The density of a species – that is, the number of individuals per unit
area – can be represented as a function of a single variable, time. Thus
we ignore possible age differences and differences of sex or genotype.

(b) Changes in density are deterministic; that is, we assume there are no
random effects in the environment influencing the interaction betweenX
and Y . Obviously this is a severe limiting assumption in many realisable
situations.

(c) The effects of interactions within and between species are instantaneous.
In the predator–prey interaction, this means that the delay between the
moment a predator eats a prey, and the moment when the ingested
material is converted into part of a new predator is ignored.

We begin by considering some simple models of predator–prey interaction.
Let X be the predator density and Y the prey density. In the absence of
predators, we expect no inhibition in the growth of the prey. A simple growth
relation Y could be

dY

dt
= kY, (4.5.1)
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where t is time and k is a positive rate constant. We know that the ordinary
differential equation (4.5.1) has the solution

Y = Y0e
kt, (4.5.2)

where Y0 is the initial population density. Thus if (4.5.1) is used to describe
the population growth of Y , then Y will increase exponentially in time. Such a
growth behaviour is reasonable for a limited time, but ultimately an increasing
population will exhaust its resources. Consequently we expect in practice that
Y will either settle down to some steady state value, fluctuate between various
levels or decline. If the first possibility arises then we could replace (4.5.1) by
the logistic equation

dY

dt
= aY − bY 2, (4.5.3)

which has the general solution

Y =
aY0

bY0 + (a− bY0)e−at
. (4.5.4)

The justification for this type of growth is that

(a) when Y is small, (4.5.3) formally reduces to (4.5.1) and the growth is
exponential;

(b) as t increases Y approaches the value a/b steadily and without oscilla-
tion.

In (4.5.3), it is standard to call a the intrinsic rate of increase and k = a/b
the carrying capacity.

Before we introduce into either (4.5.1) or (4.5.3) the effects of predation by
X , let us consider the behaviour of the predator species X in the absence of
prey. Without prey, the predators X are expected to decrease and so their
decline could be represented in terms of the exponentially decaying solution
X0 exp(−et) of the differential equation

dX

dt
= −eX, (4.5.5)

where e is a positive constant. Again, like (4.5.1), the exponentially declining
population of predators X is only reasonable for a limited period of time,
since one would expect X to become extinct in a finite rather than an infinite
amount of time when starved of prey Y .

If we assume, as Volterra and Lotka did, that in the absence of predation,
Y follows a logistic growth curve and that the rate at which prey are eaten
is proportional to the product of the densities of predator and prey, then we
arrive at the model

dX

dt
= −eX + fXY, (4.5.6)

dY

dt
= aY − bY 2 − cXY . (4.5.7)
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The assumptions of Volterra and Lotka are valid under the following condi-
tions:

(a) one or both species move at random;

(b) when they meet, there is a constant probability that the predator will
kill the prey;

(c) the time taken by the predator in consuming the prey is negligible.

There are a number of variants of the Volterra–Lotka model that have
been proposed and that attempt to take into account other effects that may
influence the predator–prey interaction. For example, when a constant number
Ȳ of the prey can find some cover or refuge, which makes them inaccessible
to the predator, then the system (4.5.6), (4.5.7) is modified to the form

dX

dt
= −eX + fX(Y − Ȳ ), (4.5.8)

dY

dt
= aY − bY 2 − cX(Y − Ȳ ). (4.5.9)

In a much more general way, we can follow the model of Rosenzweig and
MacArthur (1963) and assume a general growth rate f(Y ) for the prey in the
absence of predators and assume that prey are eaten at a rate proportional
to some function h(X,Y ) (referred to as the functional response) by the
predators. In this case we obtain the general model:

dX

dt
= −eX + kh(X,Y ), (4.5.10)

dY

dt
= f(Y ) − h(X,Y ). (4.5.11)

If h(X,Y ) = cXY (often called a type-I functional response) then (4.5.10)
and (4.5.11) reduce to the basic Volterra–Lotka model (4.5.6), (4.5.7) with
general prey growth rate f(Y ) instead of logistic growth. A more realistic
choice for h(X,Y ) is a function that increases linearly with predator density
X , but saturates with respect to prey density Y . This reflects the fact that
there is typically a maximum amount of food than one predator can consume
and, if there is sufficient prey available for predators to obtain their maxi-
mum intake, further increasing the prey density will not significantly alter the
overall rate of prey consumption. A common choice is the function

h(X,Y ) =
cXY

K + Y
.

This type of function was first used in a predator–prey model by Holling in
1959 and is often referred to as a type-II response. Note that this function
is strikingly similar to the Michaelis–Menten reaction rate (see Section 4.4),
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and shares the same characteristic of saturating at some maximum level as
prey density (or, in the case of Michaelis–Menten, substrate concentration)
becomes very large. A type-III functional response is of the form

h(X,Y ) =
cXY 2

K + Y 2
.

Like the type-II response, the type-III response saturates for large Y ; unlike
type-II, it is not linear in Y for small Y but increases as a sigmoidal (S-
shaped) curve. This models the situation where the predators cannot find
prey as effectively when the prey are very rare.

The Rosenzweig–MacArthur model (4.5.10), (4.5.11) will be examined in
some depth in Chapter 9, under certain simplifying but nevertheless realistic
assumptions regarding the functions f(Y ) and h(X,Y ).

To conclude this section, we introduce a somewhat different but also inter-
esting ecological interacting two-species model. Suppose we have two species
X and Y competing to exist in the same habitat. We assume that, in the
absence of Y , X grows according to a logistic law and, similarly in the ab-
sence of X , that Y does the same. However, when X and Y are both present,
it is natural to assume that each has an inhibiting effect on the growth of
the other. Suppose the inhibition is the same as that in the Volterra–Lotka
model. Then we have the system

dX

dt
= X(e− fY − gX), (4.5.12)

dY

dt
= Y (a− bY − cX). (4.5.13)

This is called a competition model.

4.6 Notes

Heartbeat

Much of the material here is based on the work of E.C. Zeeman and can
be found in his article “Differential equations for the heart beat and nerve
impulse”, which appeared in Towards a Theoretical Biology, vol. 4, C.H.
Waddington, Ed., Edinburgh University Press, Edinburgh, 1972.

Nerve impulse transmission

It is highly recommended that the reader consult the fundamental papers of
A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve, J. Physiol.,
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117, 500–544. There are several sources of good background material re-
lating to nerve modelling. See, for example, B. Katz, Nerve, Muscle and
Synapse, McGraw-Hill, New York, 1966; D. Junge, Nerve and Muscle Excita-
tion, Sinauer Associates, Sunderlund, MA, 1976; H.C. Tuckwell, Introduction
to Theoretical Neurobiology, vols. 1, 2, Cambridge University Press, London,
1988; and J. Cronin, Mathematical Aspects of Hodgkin-Huxley Neural Theory,
Cambridge University Press, London, 1987.

Chemical reactions

A comprehensive treatment of the Belousov–Zhabotinskii reaction and en-
zymatic catalysis is to be found in J.D. Murray, Mathematical Biology,
Springer-Verlag, Heidelberg, 1993. For a dedicated text on methods for solving
problems involving a small parameter, see E.J. Hinch, Perturbation Methods,
Cambridge University Press, 1991.

Predator-prey models

The books by J. Maynard Smith, Models in Ecology, Cambridge University
Press, London, 1974 and J.D. Murray, Mathematical Biology, Springer-Verlag,
Heidelberg, 1993 are good sources of information relating to predator–prey
models as well as some general models of species interaction.
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Exercises

4.1 Show that Zeeman’s heartbeat equations have a unique resting state
x = xa, b = −(x3

a+axa) and derive a single differential equation satisfied
by the muscle fibre length x.

4.2 In the differential equation satisfied by the muscle fibre length x of
Exercise 4.1, let x = xa +y and assume that y is small and that y dy

dt and

y2 dy
dt can be neglected. Show that, if xa <

√

−a/3, y grows exponentially

with time but decays exponentially with time if xa >
√

−a/3. What

happens when xa =
√

−a/3? Give possible interpretations of these three
cases.

4.3 In the Hodgkin–Huxley model of nerve impulse transmission, assume
the potential E(x, t) has the form of a travelling wave as well as the
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conductancesm,h and n and show that such solutions satisfy the system

a

2R

d2E

dξ2
= cCm

dE

dξ
+ gNa(E − ENa) + gK(E − EK) + gl(E − El),

c
dm

dξ
= αm(E)(1 −m) + βm(E)m,

c
dh

dξ
= αh(E)(1 − h) + βh(E)h,

c
dn

dξ
= αn(E)(1 − h) + βn(E)n,

where ξ = x+ ct and c is the wave number.

4.4 Assume the FitzHugh–Nagumo equations (4.3.9) and (4.3.10) admit
travelling wave solutions u(x, t) = φ(x+ ct), v(x, t) = ψ(x+ ct). De-
duce the equations to be satisfied by φ and ψ.

4.5 Verify that if b = 0 = γ and (4.3.9) and (4.3.10) have travelling wave
solutions then

φ(x + ct) ≡ φ(ξ) =
1

1 + e−ξ/
√

2

is a solution provided c =
√

2(1
2 − a), 0 < a < 1

2 .

4.6 For what values of the wave speed c is

φ(x+ ct) = 3

(
√

[

(2 − a)

(

1

2
− a

)]

cosh
√
ax+ (1 + 1/a)

)−1

,

0 < a <
1

2

a solution of (4.3.9) and (4.3.10) when b = γ = 0?

4.7 If the FitzHugh–Nagumo equations have travelling wave solutions, show
that the system governing these solutions has a unique rest state if and
only if

(1 − a)2 < 4b/γ.

4.8 In the simplified McKean model of nerve impulse transmission (see Fig-
ure 4.3.4), let b = 0 = γ and determine the forms of travelling waves as
functions of ξ = x + ct,−∞ < ξ < ∞ and which satisfy the conditions
φ(ξ) → 0 as ξ → −∞, φ(ξ) → 1 as ξ → ∞.
Determine the wave speed c in each of the cases θ = π

2 and tan θ = 1
8 .

4.9 Determine the rest states in the Belousov–Zhabotinskii reaction gov-
erned by the model (4.4.7)–(4.4.9).
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4.10 Using the law of mass action, derive a system of equations modelling
the chemical reaction

A+ 2B
k1−→ C,

C +D ⇋k2

k−2
E,

E
k3−→ nB + F,

where n > 0 is a constant.

4.11 Consider the following chemical reaction.

A+X
k−→ 2Y.

If the reactant A is held at a constant concentration a, use the law of
mass action to derive a system of equations for the concentrations of
X and Y . Suppose the initial concentrations of X and Y are X0 and
Y0 respectively. Solve the system of equations to obtain X(t) and Y (t)
(find X(t) first, then substitute into the equation for Ẏ to find Y (t)).

4.12 Using the law of mass action, derive a mathematical model governed by
the intermediaries X and Y in the trimolecular reaction:

A −→ X,

B +X −→ Y +D,

2X + Y −→ 3X,

X −→ E,

where A,B,D and E are initial and final products, and all rate constants
are equal to 1.

4.13 Consider an enzymatic reaction in which the concentration of the en-
zyme E is not constant, as in equation (4.4.21), but decays according to
law E(t) = E0e

−ct. Suppose the initial concentration of the substrate S
is S(0) = S0. Solve the differential equation

dS

dt
= − kES

Km + S

to obtain an equation for S(t). Show that S(t) tends to some positive
value as t→ ∞.

4.14 Determine the rest states in the Volterra–Lotka model of predator–prey
interaction (4.5.6), (4.5.7). If predator and prey are present in the steady
state, show that the coefficients a, b, c, e and f must satisfy the con-
straints

a

b
>
e

f
, c 6= 0.

4.15 Discuss the same problem as in Exercise 4.16 in relation to the models
(4.5.8), (4.5.9) and (4.5.12), (4.5.13).





Chapter 5

First-Order Systems of Ordinary
Differential Equations

5.1 Existence and uniqueness

In Chapters 2 and 3 certain types of differential equations have been dis-
cussed and methods for deriving their solutions have been described. When
more general differential equations are considered it is not by any means ob-
vious that they possess solutions. Spending a lot of time trying to solve a
differential equation, which does not have a solution, can be very frustrating
to say the least. Therefore, we shall give one theorem, which guarantees that
a differential equation that satisfies its conditions possesses a solution, and
say something about its ramifications. The proof of the theorem is given in
the Appendix to this chapter as well as a method for finding the solution.

EXISTENCE THEOREM I

Let f(t, y) be a single-valued continuous function of t and y in t0 ≤ t ≤ t0 +h,
|y − y0| ≤ k that satisfies:

(a) |f(t, y)| < M,

(b) |f(t, y) − f(t, y′)| < K|y − y′|

for any (t, y) and (t, y′) that comply with the above inequalities. Then, for
h < k/M , the differential equation

ẏ = f(t, y) (5.1.1)

possesses one, and only one, continuous solution y(t) in t0 ≤ t ≤ t0 + h such
that y(t0) = y0.

The constant h determines the range of t for which the solution is valid while
the constant k sets a limit on how far y(t) deviates from its initial value. It
would be ideal if h could be made as large as desired. However, the restriction
h < k/M means that h cannot be increased beyond a certain point without a
corresponding increase in k. But, larger h and k may entail an increase in the
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bound M to meet condition (a) and this increase may be sufficient to prevent
any improvement in k/M .

Nevertheless, it may be possible to extend the solution to larger t by taking
y(t0 + h) as the initial value at t = t0 + h provided that suitable new h, k,M
can be found with this starting point.

Suppose that f satisfies the conditions of the theorem and, by some means,
two continuous solutions y1(t), y2(t) of (5.1.1) have been found such that
y1(t0) = y0 and y2(t0) = y0. Suppose, further, it is known that y1(t) is valid
for t0 ≤ t ≤ t0 +h1 whereas y2(t) holds for t0 ≤ t ≤ t0 +h2 with h2 > h1. The
uniqueness part of the theorem then says that y1(t) = y2(t) for t0 ≤ t ≤ t0+h1.
The same assertion cannot be made for larger values of t unless it can be
demonstrated that y1(t) can be continued beyond t = t0 + h1. For example,
y1(t) = 1 − t + t2 − · · · and y2(t) = 1/(1 + t) are solutions of (1 + t)ẏ = −y,
which are unity at t = 0 so long as h1 < 1, but the series in y1 is not valid in
t > 1.

Generally, it is not difficult to recognise when f is continuous and to assess
M . Checking (b) can require more effort but there is one case when (b) holds
for sure and that is when
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for t0 ≤ t ≤ y0 + h, |y − y0| ≤ k and N finite.
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Example 5.1.1

The differential equation

ẏ = g(t)y2

in which g is continuous clearly has f(t, y) continuous and, because

∂

∂y
g(t)y2 = 2g(t)y,

satisfies the condition (5.1.2) so long as t and y are bounded. Therefore
the differential equation has one and only one continuous solution such that
y(t0) = y0. It remains valid as t increases as long as t and y remain finite.
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Consider, in particular, ẏ = y2. The solution of this such that y(t0) = 0
is y(t) = 0 for all t. On the other hand, if y(t0) = y0 with y0 6= 0, y(t) =
y0/{1 + (t0 − t)y0}. If y0 < 0 this solution holds for all t ≥ t0. In contrast, if
y0 is positive, y(t) becomes unbounded as t approaches t0 + 1/y0; in this case
the region of validity is confined to t0 ≤ t < t0 + 1/y0.

The conditions of Existence Theorem I are sufficient but not necessary.
There are differential equations that do not satisfy the conditions but which
possess a unique continuous solution. For example,

ẏ =

{

(1 − 2t)y (t > 0)
(2t− 1)y (t < 0)

(5.1.3)

subject to y = y0 (6= 0) at t = 0. In this case, f is discontinuous at t = 0 when
y0 6= 0 so the conditions of Existence Theorem I are not met. Nevertheless
there is a unique continuous solution, namely

y(t) =

{

y0e
t−t2 (t ≥ 0)

y0e
t2−t (t ≤ 0).

There may, however, be values of t0 or y0 for which the initial value problem

(i) has no solution;

(ii) has a discontinuous solution;

(iii) has more than one continuous solution.

For instance, the differential equation

yẏ = −t (5.1.4)

has solution y2 + t2 = C where C is a constant. An example when there is no
solution is to take y = 0 at t = 0. Then C = 0 and y2 + t2 = 0. This forces
t = 0 and there is no solution for t > 0.

An illustration of more than one solution is provided by y = 0 at t = t0 6= 0.
Then C = t20 and y = ±(t20 − t2)1/2 giving two solutions while t2 ≤ t20.

Thus the initial value y = 0 originates difficulties for (5.1.4). For it, f(t, y)
in (5.1.1) is −t/y, which is infinite at y = 0 for any nonzero t, and so the
conditions of Existence Theorem I cannot be met. Thus there is no warranty
of a unique continuous solution. Yet, there is no problem if y(t0) = y0 with
y0 6= 0. Now Existence Theorem I applies and there is the unique continuous
solution y = (t20 + y2

0 − t2)1/2 so long as t2 ≤ t20 + y2
0 .

Any point (t0, y0) at which (i), (ii) or (iii) is true is known as a singular
point. For example, any point (t0, 0) is a singular point of (5.1.4). At a singular
point Existence Theorem I must fail, but the converse is false as (5.1.3) shows.
Thus, while places where f does not abide by the conditions of Existence



118 Differential Equations and Mathematical Biology

Theorem I are candidates for singular points, a special investigation has to be
undertaken to check whether or not they are actually singular points.

The same nomenclature of singular points is used in connection with sys-
tems and with the differential equation of order n when (i), (ii) or (iii) occurs.
Existence Theorems II and III (given in the Appendix) are invalid at singular
points but the points where their conditions are unsatisfied are not necessarily
singular points.

The linear system

ẏi =
n
∑

j=1

aij(t)yj + fi(t) (i = 1, . . . , n) (5.1.5)

conforms to Existence Theorem II except at those values of t where aij or
fi are discontinuous. Apart from these values, the initial value problem has
a unique continuous solution. In particular, the linear system with constant
coefficients possesses a unique continuous solution except, perhaps, for those
t where fi is not continuous.

5.2 Epidemics

The simplest model of the spread of an epidemic in a population stipulates
that at time t there are x susceptible individuals and y infected who may
transmit the disease. It is assumed that the mixing of these two groups passes
on the illness and that, in the short time δt, µxyδt new infections occur. Also
some of those infected will die, or stop mixing, or recover and become immune;
suppose that νyδt disappear in this way. Then, if ρδt new susceptibles arrive
in the interval δt,

ẋ = −µxy + ρ, ẏ = µxy − νy. (5.2.1)

Normally µ, ν and ρ are taken as nonnegative constants and it is convenient
to assume that they are positive. The right-hand sides of (5.2.1) vanish for
x = x0, y = y0 where

−µx0y0 + ρ = 0, µx0y0 − νy0 = 0 (5.2.2)

or x0 = ν/µ, y0 = ρ/ν. If x(t) = x0, y(t) = y0 then ẋ = 0, ẏ = 0 and the differ-
ential equations (5.2.1) are satisfied. In other words, (x0, y0) is an equilibrium
state in which the numbers of susceptibles and infected do not vary.

Let us now address the question of whether equilibrium is approached from
a nearby state and, if so, in what manner. Put

x = x0(1 + ξ), y = y0(1 + η)
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where ξ and η are so small that their products may be neglected. Then (5.2.1)
becomes

ξ̇ = −σ(ξ + η), η̇ = νξ

where σ = µρ/ν. Substituting for ξ from the second equation we obtain

˙̇η + ση̇ + σνη = 0

of which the solution such that η = η0, η̇ = νξ0 at t = 0 is

η = e−σt/2

{

η0 cosωt+
1

ω

(

νξ0 + 1
2ση0

)

sinωt

}

where ω2 = σν − σ2/4. Hence

ξ = e−σt/2
{

ξ0 cosωt− σ

2ω
(ξ0 + 2η0) sinωt

}

.

When ω2 > 0, i.e., 4ν > σ or 4ν2 > µρ, the population, after a small
departure from equilibrium, returns to equilibrium in an oscillatory fashion
with exponential decay. If ω2 < 0 or 4ν2 < µρ the fact that |ω| < σ/2 ensures
exponential decay again but there is no accompanying oscillation. In either
case the population returns to equilibrium, the approach being more rapid
when oscillations are present.

5.3 The phase plane and the Jacobian matrix

If less specific assumptions are made about the mechanism of propagation
of epidemics, the most that can be said is that a system of the type

ẋ = f(x, y), ẏ = g(x, y) (5.3.1)

will need to be solved. Any point (x0, y0) such that

f(x0, y0) = 0, g(x0, y0) = 0 (5.3.2)

is called a critical point or fixed point or equilibrium point. A solution that
starts at an equilibrium point never leaves it because ẋ and ẏ both vanish
there provided that f and g satisfy the conditions of Existence Theorem II.

When the solution of (5.3.1) has been found, say x = h1(t), y = h2(t), the
point (x, y) can be plotted in the (x, y)-plane at time t. As t varies, (x, y)
will trace a curve in the (x, y)-plane. This curve is known as a trajectory and
the (x, y)-plane is called the phase plane. By attaching an arrow to each
trajectory the direction in which (x, y) moves as t increases can be indicated.
The phase plane then contains all the information in (5.3.1) except the rate
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at which the trajectory is traversed. The slope of a trajectory is given from
(5.3.1) by

dy

dx
=
ẏ

ẋ
=
g(x, y)

f(x, y)
. (5.3.3)

A trajectory is vertical at any (x, y) where g(x, y) 6= 0, f(x, y) = 0 and hor-
izontal where g(x, y) = 0, f(x, y) 6= 0. The trajectory corresponding to an
equilibrium point reduces to a single point.

When f and g satisfy the conditions of Existence Theorem II, the initial
value problem has a single continuous solution in the neighbourhood of t =
t0. Therefore, in this case, only one trajectory passes through a given point
of the phase plane, i.e., under the conditions of Existence Theorem II, two
trajectories do not intersect in general.

All these notions can be generalised to a system of n equations. A solution
still describes a trajectory, which is now a curve in a space of n dimensions,
and we talk of a phase space rather than a phase plane. Diagrams are,
however, much more difficult to draw.

The same question about behaviour near equilibrium that was asked for
epidemics can be raised here. Put

x = x0 + ξ, y = y0 + η

where (x0, y0) is in conformity with (5.3.2). Because of the smallness of ξ and
η, it will be assumed that f(x, y) can be approximated by the first terms in
its Taylor expansion, namely

ξ

(

∂f

∂x

)

0

+ η

(

∂f

∂y

)

0

where ()0 means calculate the value at x = x0, y = y0. The approximation to
(5.3.1) is then

ξ̇ = ξ

(

∂f

∂x

)

0

+ η

(

∂f

∂y

)

0

, (5.3.4)

η̇ = ξ

(

∂g

∂x

)

0

+ η

(

∂g

∂y

)

0

, (5.3.5)

a linear system with constant coefficients. The behaviour of such systems in
the phase plane will be examined in succeeding sections. It is worth noting
that this linear system can be written in matrix–vector notation (see Section
3.5):

u̇ = (J)0u,

where u = (ξ, η) and J is a matrix called the Jacobian matrix. The entries
of J are the four partial derivatives of f and g with respect to x and y:

J(x, y) =

[

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

.
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The behaviour near equilibrium is a matter of local stability and, as we
shall see in the next section, can be determined by the eigenvalues of the
Jacobian matrix. The larger question of what happens when the initial state
is not near equilibrium is one of global stability. This will be tackled in
Section 5.5 and, in the meantime, we merely remark that for systems of three
or more equations global behaviour is very varied and imperfectly understood.

5.4 Local stability

It has been discovered in the preceding section that local stability reduces
to a discussion of

ẋ = ax+ by, ẏ = cx+ dy (5.4.1)

where a, b, c and d are real constants (corresponding to the entries of the
Jacobian matrix, evaluated at the fixed point). The goal of this section is to
determine the trajectories of this system and, in doing so, the stability of the
fixed point at (x, y) = (0, 0).

Let us first remark that, if α is a real constant, x(t+ α), y(t+ α) occupies
the same points in the phase plane as t varies as x(t), y(t) though at a time
α earlier. So both points describe the same trajectory despite being different
solutions. More than one solution can lie on one trajectory.

In finding the trajectories we shall ignore the degenerate case in which ad =
bc; should it arise, the equations can be integrated directly without trouble.
It would, in any case, be necessary to reconsider the validity of (5.3.4) and
(5.3.5) as an adequate prescription for local stability in these circumstances.
Therefore, from now on, it will be assumed that

ad 6= bc (5.4.2)

so that there is a single fixed point at the origin.

According to Section 3.4, the first attempt at a solution is x = αeλt, y =
βeλt. For the satisfaction of (5.4.1) we require

(a− λ)α + bβ = 0, (5.4.3)

cα+ (d− λ)β = 0. (5.4.4)

These give nonzero α, β only if

(a− λ)(d − λ) − bc = 0

or

λ2 − (a+ d)λ+ ad− bc = 0.
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The roots are λ1 λ2 where

2λ1 = a+ d+ {(a− d)2 + 4bc}1/2,

2λ2 = a+ d− {(a− d)2 + 4bc}1/2.

Note that λ1 and λ2 are the eigenvalues of the Jacobian matrix

J =

[

a b
c d

]

.

Several cases have to be studied.

(a) (a − d)2 + 4bc > 0.

In this case the values of λ1 and λ2 are real and distinct; the special proce-
dure for multiple roots does not have to be called on.

Assume first that b 6= 0. Then, from (5.4.3), we can choose α = b, β = λ1−a
corresponding to λ1 and α = b, β = λ2−a corresponding to λ2. Consequently

x = b(C1e
λ1t + C2e

λ2t), (5.4.5)

y = (λ1 − a)C1e
λ1t + (λ2 − a)C2e

λ2t (5.4.6)

where C1 and C2 are arbitrary constants. These equations may be rearranged
to give

(λ2 − a)x− by = b(λ2 − λ1)C1e
λ1t, (5.4.7)

(λ1 − a)x− by = b(λ1 − λ2)C2e
λ2t. (5.4.8)

From (5.4.7), (λ2 − a)x − by cannot change sign as t varies. Therefore the
trajectory cannot go over the line (λ2 − a)x = by. Similarly, from (5.4.8), the
trajectory cannot trespass across (λ1 − a)x = by. These lines are displayed
in Figure 5.4.1 as well as the regions to which the trajectory is confined for
various choices of C1, C2 when b > 0 and both λ1, λ2 are negative.

Suppose now that both λ1 and λ2 are negative. It is evident that x → 0,
y → 0 as t → ∞. Also λ1 > λ2 so that (λ1 − a)x ∼ by as t → ∞, so long as
C1 6= 0. Moreover, as t → −∞, |x| and |y| become large and (λ2 − a)x ∼ by
provided C2 6= 0, x approaching −∞ when b > 0, C2 < 0. The trajectories,
therefore, have the shape depicted in Figure 5.4.2 for b > 0. The exclusion so
far of C1 = 0 or C2 = 0 can be remedied immediately because their trajectories
are the dividing straight lines on account of (5.4.7) and (5.4.8). The arrows
on the curves indicate the direction in which (x, y) moves as t increases. A
fixed point of this type is known as a stable node.

When λ1 and λ2 are both positive, the curves are similar in character to
those in Figure 5.4.2 but the directions of the arrows are reversed because
(x, y) moves away from the origin as t increases. We have an unstable node.

The remaining possibility is that λ1 and λ2 have opposite signs so that
λ1 > 0 and λ2 < 0. From (5.4.7), the magnitude of (λ2 − a)x − by increases
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y

x

C1 > 0, C2 < 0

C1 < 0, C2 > 0

C1, C2 > 0

C1, C2 < 0

C1 = 0 C2 = 0

by = (λ1 − a)x by = (λ2 − a)x

FIGURE 5.4.1: Lines that cannot be crossed by trajectories.

with time whereas that of (λ1 − a)x− by diminishes. The origin can never be
reached unless C1 = 0 when the trajectory is a straight line. The trajectory
is also a straight line when C2 = 0, but now the origin is departed from. The
behaviour of the trajectories is displayed in Figure 5.4.3. The fixed point is
called a saddle-point. Clearly a point (x, y) started near the origin cannot
stay near it in general and there is no stability.

So far we have assumed that b 6= 0. If b = 0 we see at once from (5.4.1) that
x = C1e

at and then

y = C2e
dt + cC1e

at/(a− d).

We remark that a 6= d because (a− d)2 must be positive when b = 0. In this
case, the dividing lines are x = 0 and (a− d)y = cx. Apart from this change
the pictures are practically unaltered. There is a node if a and d have the
same sign (stable if a < 0, unstable if a > 0) and a saddle-point if a and d
have opposite signs.

(b) (a − d)2 + 4bc < 0

This possibility can occur only when bc < 0; so neither b nor c vanishes and
they have opposite signs. The roots λ1 and λ2 are still distinct but they are
now complex conjugates. Write λ1 = 1

2 (a+ d) + iω, λ2 = 1
2 (a+ d)− iω where

ω2 = − 1
4 (a− d)2 − bc.

Then

x = Ae
1
2 (a+d)t cos(ωt− α) (5.4.9)
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y

x

by = (λ1 − a)x

by = (λ2 − a)x

FIGURE 5.4.2: The stable node.

where A and α are arbitrary constants. From (5.4.1)

y = (A/b)e
1
2 (a+d)t

{

1
2 (d− a) cos(ωt− α) − ω sin(ωt− α)

}

. (5.4.10)

The formulae (5.4.9) and (5.4.10) can be combined to give

cx2 + (d− a)xy − by2 = −(ω2A2/b)e(a+d)t. (5.4.11)

Suppose that a+d = 0 so that λ1 and λ2 are purely imaginary. The equation
of a trajectory is given by (5.4.11) as

cx2 + (d− a)xy − by2 = −ω2A2/b.

Rotate the axes by means of the transformation

x = X cos θ − Y sin θ, y = X sin θ + Y cos θ

where

tan 2θ =
d− a

b+ c
.

The equation of the curve goes over to

A′X2 + C′Y 2 = −ω2A2/b
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y

x

by = (λ1 − a)x

by = (λ2 − a)x

FIGURE 5.4.3: The saddle-point.

where

A′ = 1
2 (c− b) + 1

2{(b+ c)2 + (d− a)2}1/2,

C′ = 1
2 (c− b) − 1

2{(b+ c)2 + (d− a)2}1/2.

Since A′C′ = ω2, A′ and C′ have the same sign. Also A′ + C′ = c − b so
that if b < 0, which implies c > 0, A′ and C′ are positive, whereas if b > 0,
which makes c < 0, A′ and C′ are negative. Thus A′ and C′ have the opposite
sign to b and the trajectory is an ellipse with semi-axes ω|A|/(−bA′)1/2 and
ω|A|/(−bC′)1/2. Typical trajectories are drawn in Figure 5.4.4; the fixed point
is known as a centre. With regard to the direction of motion on a trajectory,
we see from (5.4.1) that when x = 0, ẋ = by. Hence, when b > 0, x must
be increasing at positive y and so the direction is as shown in Figure 5.4.4; if
b < 0 the arrows have to be reversed.

The equations (5.4.9) and (5.4.10) make it evident that x and y vary har-
monically when a+ d = 0. The point (x, y) therefore makes continual circuits
round the origin and is forever retracing its path. A trajectory started from
near the origin never leaves the neighbourhood but never swings into the ori-
gin. Therefore, there is stability in the sense that (x, y) remains in the vicinity
of the fixed point, if it is initially near there, but it never attains the fixed
point.

It should be observed that any closed trajectory implies periodic motion be-
cause it entails there being a fixed T such that x(t+T ) = x(t), y(t+T ) = y(t)
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FIGURE 5.4.4: The centre.

for all t. The motion need not, however, have the simple harmonic character
mentioned above when the system is more general than (5.4.1).

Turning now to the case when a+ d 6= 0, we note that the only difference is
the exponential factor in (5.4.11). The trajectory may be thought of instan-
taneously as an ellipse whose axes are changing exponentially. The trajectory
therefore spirals about the origin as shown in Figure 5.4.5. If a + d < 0, the
point (x, y) must approach the origin as t→ ∞. The direction of motion along
a trajectory is then that of Figure 5.4.5 and the fixed point is called a stable
focus. When a+d > 0, (x, y) departs from the origin, the arrows are reversed
and we have an unstable focus.

(c) (a − d)2 + 4bc = 0

In this case λ1 = λ2 = 1
2 (a+ d). However,

(a+ d)2 = (a− d)2 + 4ad = −4bc+ 4ad 6= 0

by (5.4.2) so λ1 and λ2 are nonzero.
If b 6= 0, (5.4.3) and (5.4.4) supply only the single solution α = b, β =

1
2 (d − a). To find a second solution we try, according to Section 3.4, x =

(γ + αt)e
1
2 (a+d)t, y = (δ + βt)e

1
2 (a+d)t with the result that γ = 0, δ = 1. The

technique of Section 3.5 leads to the same answer. Consequently

x = b(C1 + C2t)e
1
2 (a+d)t,

y =
{

C2 + 1
2 (d− a)(C1 + C2t)

}

e
1
2 (a+d)t.
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y

x

(a) (b)

FIGURE 5.4.5: The focus when a+ d < 0; (a) b > 0, (b) b < 0.

The line by = 1
2 (d−a)x cannot be crossed and the structure of the trajectories

is similar to that of Figure 5.4.2 when the dividing lines coalesce. This fixed
point is therefore also termed a node; it is stable if a+ d < 0 and unstable if
a+ d > 0.

If b = 0, then a = d and x = C1e
at, y = (C2 + cC1t)e

at and the trajectories
are not much changed in shape if c 6= 0. If, in addition, c = 0 the trajectories
are the straight lines y/x = constant (see Figure 5.4.6). The fixed point is still
designated a node, stable if a < 0 and unstable if a > 0.

These results can be summarised as follows. If ad 6= bc, the fixed point of
(5.4.1) is:

1. Stable if Re(λ1) < 0 and Re(λ2) < 0 (Re(λ) denotes the real part of
λ).

(a) If λ1 and λ2 are real, the trajectories form a stable node.

(b) If λ1 and λ2 are a complex conjugate pair, the trajectories form a
stable focus.

2. A saddle point if λ1 and λ2 are real and have opposite signs.

3. A centre if λ1 and λ2 are purely imaginary.

4. Unstable if Re(λ1) > 0 and Re(λ2) > 0.

(a) If λ1 and λ2 are real, the trajectories form an unstable node.



128 Differential Equations and Mathematical Biology
y

x

FIGURE 5.4.6: The case b = c = 0, a < 0.

(b) If λ1 and λ2 are a complex conjugate pair, the trajectories form an
unstable focus.

The reader will note that the stability of the fixed point is determined solely
by the sign of the real part of the eigenvalues λ1 and λ2. The fixed point is
stable if and only if both λ1 and λ2 have negative real part. In addition, there
can be no oscillation if λ1 and λ2 are real; in particular, the system will not
be oscillatory if bc > 0.

5.5 Stability

We now want to investigate what general conclusions can be drawn about
the behaviour of solutions to (5.3.1) on the basis of the model of (5.3.4), (5.3.5)
and the trajectories determined in Section 5.4. To fix ideas, we consider a
somewhat generalised model of epidemics in which the number of susceptibles
x and of infected y satisfy

ẋ = h(x, y)x, ẏ = k(x, y)y.
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The behaviour near an equilibrium point in which neither x nor y is zero is
of interest. So x0 and y0 are taken to satisfy

h(x0, y0) = 0, k(x0, y0) = 0.

It then follows that, in the notation of Section 5.3,

(∂f/∂x)0 = h1x0, (∂f/∂y)0 = h2x0,

(∂g/∂x)0 = k1y0, (∂g/∂y)0 = k2y0

where h1, h2, k1 and k2 are the values of ∂h/∂x, ∂h/∂y, ∂k/∂x and ∂k/∂y,
respectively, at (x0, y0). Thus, in the theory of Section 5.4, a = h1x0, b = h2x0,
c = k1y0, d = k2y0.

Since the presence of the infected tends to reduce the number of susceptibles
by infection, we expect h2 < 0. As the number of infected increases there will
be less opportunity to affect the susceptibles and so k2 < 0, k1 > 0. If there is
a birth rate of susceptibles, we can suppose h1 > 0, though h1 will be rather
small in comparison with other partial derivatives in most epidemics, because
they tend to spread much faster than susceptibles are created.

Since ad − bc = (h1k2 − h2k1)x0y0 we can be sure that ad 6= bc when h1

is small, as suggested above, and the theory of Section 5.4 can be applied.
In order that there can be any kind of oscillation, we must have case (b) of
Section 5.4, i.e.,

(h1x0 − k2y0)
2 + 4h2k1x0y0 < 0.

The second term on the right-hand side is negative; so the inequality is feasible
if the first term is not too large. Since h1 is small, this will be true if k2 is
not too large. The oscillations are likely to remain near equilibrium because
a+ d = h1x0 + k2y0 is negative on account of the smallness of h1. The fixed
point will be a stable focus or, possibly, a centre.

In the absence of oscillations, λ1 and λ2 will both be negative because
ad− bc is positive and the equilibrium will be a stable node.

Quite a lot of qualitative information about the behaviour of the solution
has been obtained without too specific assumptions about h and k. Of course,
further conclusions could be drawn if more was known about h and k. In
other problems, the signs of the partial derivatives might be different and
the behaviour near equilibrium changed thereby. Some of the unstable fixed
points might occur. However, such instability merely means departure from
equilibrium and, once this exceeds a certain amount, the model of (5.3.4) and
(5.3.5) loses its validity because it assumed motion near equilibrium. We then
enter the arena of global stability, with the possibility of some kind of stable
behaviour away from equilibrium, a matter to be discussed in the next section.

In the foregoing the presence of an equilibrium point has been assumed and
it will not be amiss to say a word or two about how the existence of an equi-
librium point is verified. Often it will be done most simply by graphical means
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but sometimes an analytical argument is helpful. With ∂k/∂x > 0, k(x, y) = 0
can be solved for x to give a unique function x(y) of y. Because

dx

dy
= −∂k/∂y

∂k/∂x

we have dx/dy > 0 when ∂k/∂y < 0. There can be no infected if there is
no population, and so x(y) > 0 but less than some bound. Thus h(x(y), y) is
such that

dh

dy
=
∂h

∂x

dx

dy
+
∂h

∂y
,

which will be negative when both ∂h/∂x and ∂h/∂y are. Then h(x(y), y)
decreases as y increases so that if h(x(y), y) is positive for small y and negative
for large y there will be one and only one equilibrium point.

As a final illustration we consider a case in which the trajectories can be
traced completely, namely

ẋ = y, ẏ = 1
2 (1 − x2)

or, equivalently,
ẍ+ 1

2 (x2 − 1) = 0.

We have

y
dy

dx
= 1

2 (1 − x2)

which gives, on integration,

y2 = x− 1
3x

3 + C.

These trajectories are displayed graphically in Figure 5.5.1. The fixed point
x = 1, y = 0 is a centre and x = −1, y = 0 is a saddle-point. If − 2

3 < C < 2
3

the closed curves surrounding x = 1, y = 0 show that periodic motion is
possible with proper initial conditions. If C = 2

3 no oscillations are allowed
but x = −1, y = 0 can be tended to if the initial conditions are appropriate.
If C > 2

3 , x and y always approach negative infinity as t→ ∞.
A quick idea of the shapes of the trajectories can be obtained as follows.

Put
y2 = C − v(x).

Since y2 cannot be negative the only values of x that can occur are those
that satisfy v(x) ≤ C. Such values can be seen easily from a graph of v(x).
In Figure 5.5.2 a graph is displayed together with various possibilities for C.
The line on which C = 2.2 intersects the curve at x = 2.4 approximately and
is above the curve for x < 2.4. Hence v(x) is below 2.2 for x < 2.4. Thus
the trajectory starts at x = −∞ with y positive (because ẋ must be positive
at the start) and moves to the right until it crosses the x-axis at x = 2.4
approximately. Thereafter it returns to x = −∞ with y negative. Likewise,



First-Order Systems of Ordinary Differential Equations 131

y

x
1 2−1

−2/3 < C < 2/3

C > 2/3

FIGURE 5.5.1: Nonlinear conservative system.
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FIGURE 5.5.2: Qualitative determination of trajectories.



132 Differential Equations and Mathematical Biology
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x

C = −3

C = −4

−1 1

FIGURE 5.5.3: Graph of x4 − 2x2 − 3.

when C = −2.2, x is restricted to x < −2.4; the trajectory goes from −∞
and back again, crossing the x-axis at x = −2.4 approximately. On the other
hand, when C = 1

2 , there are three intersections with the curve at x1, x2 and
x3. Two trajectories are possible now. On one x ≤ x1 and it is similar to the
one when C = −2.2. On the other trajectory x is confined to the interval
x2 ≤ x ≤ x3 so that the trajectory is a closed curve. It is clear from Figure
5.5.2 that trajectories that are closed curves are possible only for − 2

3 < C < 2
3 .

This is an example of a nonlinear conservative system. A more general
version is

ẋ = y, ẏ = − d

dx
V (x)

or

ẍ+
dV (x)

dx
= 0.

The trajectories can be determined as above and are

1
2y

2 + V (x) = C.

The graphical method will give an indication of the shapes of the trajecto-
ries. As an illustration take

V (x) = x4 − 2x2 − 3.

Its graph is drawn in Figure 5.5.3. Evidently, when C > −3 the trajectory
consists of a single closed curve. When −3 > C > −4, however, the trajectory
has two parts. One is a closed curve surrounding x = −1 while the other is a
closed curve around x = 1. There is no trajectory for C below −4. Since the
equilibrium points are x = 0, ±1 the trajectories are as shown in Figure 5.5.4.
The points x = 1 and x = −1 are centres whereas x = 0 is a saddle-point.
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−1 1

FIGURE 5.5.4: The trajectories corresponding to Figure 5.5.3.

5.6 Limit cycles

As a beginning to the discussion of global stability, let us examine the
system

ẋ = y, ẏ = ǫ(1 − x2)y − x

where ǫ is a nonnegative constant. Eliminating y we obtain

ẍ− ǫ(1 − x2)ẋ+ x = 0 (5.6.1)

which is known as van der Pol’s equation.
Assume that ǫ is small. As a first approximation one would ignore the term

involving ǫ. The general solution is then

x = C cos(t− α)

where C and α are arbitrary. Let us study how the presence of the term in ǫ
affects the solution x = C cos t. Since this is expected to be a reasonable first
approximation, we try x = A cosωt where ω is a constant that is nearly 1.
Substitution in (5.6.1) leads to

A(1 − ω2) cosωt = −ǫ(1 −A2 cos2 ωt)ωA sinωt

= ǫωA

{

A2

4
sin 3ωt−

(

1 − 1

4
A2

)

sinωt

}

.

This equation can be satisfied for all t only if the coefficients of different
sinusoidal terms vanish. The term in cosωt disappears if ω = 1, and the term
in sinωt is removed by taking A = 2. Thus we choose

ω = 1, A = 2.
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That still leaves the term containing sin 3ωt unaccounted for because we have
now fixed ω and A. To get rid of the extra term we need to try a higher
approximation such as

x = A cosωt+B1 cos 2ωt+ C1 sin 2ωt

and repeat the process. We shall expect ω to be nearly 1, A to be nearly 2
and B1, C1 small. Even then, there will still be extra terms in the equation
which we cannot dispose of. To tackle these we could contemplate adding
further terms to the expression for x by introducing sinusoidal functions of
3ωt, 4ωt, . . .. However, we shall not go into this complication but stay with our
first approximation in the belief that the extra terms will represent a small
correction. According to our first approximation, there is a periodic motion

x = 2 cos t

in which the amplitude 2 is in error by order ǫ and the error in the argument
of the cosine is of order ǫ2.

The influence of a small nonlinearity has been radical. Instead of a simple
harmonic motion in which the amplitude C can take any value the periodic
motion has been restricted to the single amplitude 2.

Of course, we do not know whether this periodic state can ever be reached
and the theory of local stability is no aid because the motion is nowhere near
the fixed point at x = 0, y = 0. Nevertheless, some progress can be made.
Multiply (5.6.1) by ẋ and integrate with respect to t from t = τ to t = τ +2π.
Then

1
2

[

x2 + y2
]τ+2π

τ
=

∫ τ+2π

τ

ǫ(1 − x2)ẋ2dt.

Although x is not known precisely, it can be expected to be substantially of
the form B cos t for a time interval of 2π. The error in calculating the integral
by this formula should not be more than order ǫ2. Now

∫ τ+2π

τ

ǫ(1 − x2)ẋ2dt =

∫ τ+2π

τ

ǫ(1 −B2 cos2 t)B2 sin2 t dt

= 1
4πǫB

2(4 −B2).

Thus, if B > 2, x2 + y2 is reduced after one period. Repeating the argument
for each consecutive period we conclude that if the motion starts with B > 2
it must eventually arrive at the position where B = 2. Similarly, for a motion
that begins with B < 2, x2 + y2 increases after each period and continues to
do so until B = 2. Consequently, the system ends up in the specified periodic
motion whatever the initial point.

A typical trajectory can be seen in Figure 5.6.1. Any closed trajectory that
is eventually reached by a system is called a limit cycle. For van der Pol’s
equation x2 + y2 = 4 is a limit cycle, according to our first approximation.
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FIGURE 5.6.1: The limit cycle.

The theory can be arranged to cover the more general

ẍ+ x = −ǫg(x, ẋ) (5.6.2)

and the corresponding system. Put x = A cosωt and let

g(A cosωt,−Aω sinωt) = a1 cosωt+ b1 sinωt+ a2 cos 2ωt+ b2 sin 2ωt+ · · · .

Taking advantage of the orthogonality of the trigonometric functions and
Section 3.7 we have

∫ 2π/ω

0

g(A cosωt,−Aω sinωt) cosωt dt = πa1/ω,

∫ 2π/ω

0

g(A cosωt,−Aω sinωt) sinωt dt = πb1/ω.

Since the left-hand side of (5.6.2) is A(1 − ω2) cosωt the coefficients of cosωt
and sinωt can be made to agree by requiring that

1 − ω2 = −ǫa1/A = − ǫω

πA

∫ 2π/ω

0

g(A cosωt,−Aω sinωt) cosωt dt, (5.6.3)

0 = b1π/ω =

∫ 2π/ω

0

g(A cosωt,−Aω sinωt) sinωt dt. (5.6.4)
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Equation (5.6.3) tells us that ω = 1 + O(ǫ) and, taking advantage of this in
(5.6.4), we obtain

∫ 2π

0

g(A cos t,−A sin t) sin t dt = 0 (5.6.5)

to determine A. Substitution back into (5.6.3) then leads to a more accurate
determination of ω. Knowing ω and A enables us to locate the positions of
any limit cycles.

To establish whether the system tends to a limit cycle we note that when
x = B cos t

1
2

[

x2 + y2
]2π

0
= ǫB

∫ 2π

0

g(B cos t,−B sin t) sin t dt. (5.6.6)

It is too much to expect to be able to estimate the sign of the right-hand side
of (5.6.6) in general, but it is possible to form an opinion of what happens
near a limit cycle, i.e., when B ≈ A where A satisfies (5.6.5). We want the
left-hand side of (5.6.6) to decrease if B > A and to increase when B < A if
the trajectory is to approach the limit cycle from either side, i.e., we need the
right-hand side of (5.6.6) to go from positive to negative values as B increases
through A. This demands that the derivative of the right-hand side of (5.6.6)
with respect to B shall be negative when B = A, i.e.,

ǫ

∫ 2π

0

{g + [gx]A cos t− [gy]A sin t} sin t dt < 0

where

[gx] =

[

∂

∂x
g(x, y)

]

, [gy] =

[

∂

∂y
g(x, y)

]

and the substitution x = A cos t, y = −A sin t is made after the derivatives
have been performed. The first integrand gives a zero contribution by virtue
of (5.6.5) but is retained because, by integration by parts,

∫ 2π

0

g sin t dt =

∫ 2π

0

∂g

∂t
cos t dt

= −
∫ 2π

0

A cos t{[gx] sin t+ [gy] cos t}dt.

Hence the inequality becomes

∫ 2π

0

[gy]dt > 0 (5.6.7)

since ǫ and A are both positive. The inequality (5.6.7) is the condition under
which the system tends to go into the periodic motion of the limit cycle, i.e.,
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the limit cycle is stable. If the inequality in (5.6.7) is reversed, i.e., the left-
hand side is negative, the system would tend to depart from the limit cycle,
which would then be unstable.

The number of possible limit cycles is fixed by the number of distinct posi-
tive values of A which satisfy (5.6.5). Their stability can be assessed by means
of (5.6.7). One can thereby obtain an idea of which limit cycle (if any) will be
attained under given initial conditions.

The theory expounded above has been based on ǫ being small and is plausi-
ble rather than rigorous. Notwithstanding this, it indicates what can happen.
To deal with cases when ǫ is not small, much more elaborate analysis is nec-
essary and we shall confine ourselves to quoting two theorems.

LIMIT CYCLE CRITERION

In (5.6.2) let g(x, ẋ) = ẋG(x) where G(x) is an even function of x such that
G(x) < 0 for |x| < 1 and G(x) > 0 for |x| > 1. Suppose further that for some
finite x0 there is G0 > 0 such that G(x) ≥ G0 for |x| ≥ x0. Then, for any
ǫ > 0, (5.6.2) has just one limit cycle and this limit cycle is stable.

POINCARÉ–BENDIXSON THEOREM

If there is a bounded region D in the (x, y)-plane such that any solution of the
system

ẋ = f(x, y), ẏ = g(x, y)

that starts in D remains in D, then D contains either a stable fixed point or
a limit cycle.

Note that D is often referred to a trapping region, or an invariant set,
due to the property that it “traps” trajectories: once a trajectory has entered
D, it can never escape.

The Poincaré–Bendixson theorem deals with a more general situation than
the limit cycle criterion but provides less specific information. The reader
should not, however, attempt to apply the Poincaré–Bendixson theorem to a
system of more than two differential equations.

Limit cycles make their presence felt only with nonlinear differential equa-
tions; they do not occur when the governing equations are linear. Caution
should therefore be exercised in introducing a linear model for a natural phe-
nomenon where the behaviour is essentially nonlinear. At best it will describe
local stability characteristics but it may give no clue as to what takes place
globally or, worse, may suggest misleading conclusions.

The Poincaré–Bendixson theorem does not distinguish between the cases
of a fixed point and a limit cycle. It is sometimes helpful in deciding between
them to observe that a limit cycle must contain a fixed point. For example,
take the limit cycle as the boundary of D in the Poincaré–Bendixson theorem.
Then there must be a limit cycle or fixed point inside. If there is no limit cycle
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the assertion is proved and if there is one we repeat the argument for that
one.

Example 5.6.1

Use the Poincaré–Bendixson theorem to show that the system

ẋ = x− y − x3, (5.6.8)

ẏ = x+ y − y3, (5.6.9)

has a stable periodic orbit.
In examples like this one, it is often useful to convert to polar coordinates

r and φ, where
x = r cosφ, y = r sinφ. (5.6.10)

It can easily be seen geometrically from Figure 5.6.2 that r and φ satisfy

r2 = x2 + y2, tanφ =
y

x
. (5.6.11)

Note that, in this transformation, r can never be negative: it represents the
length of the radius vector from the origin to the point (x, y). Differentiating
equations (5.6.11) with respect to t shows that

rṙ = xẋ+ yẏ, r2φ̇ = xẏ − yẋ. (5.6.12)

These formulae are very useful for transforming systems of two differential
equations to polar coordinates. Substituting equations (5.6.8) and (5.6.9) into
(5.6.12) gives

ṙ = r − r3
(

cos4 φ+ sin4 φ
)

, (5.6.13)

φ̇ = 1. (5.6.14)

We immediately see that there is a constant angular velocity (φ̇) of 1, so
the radius vector in Figure 5.6.2 sweeps steadily counterclockwise, and there
is no possibility of a fixed point other than possibly at the origin. If r = 0
then ṙ = 0, so the system has a unique fixed point at the origin. To check
its stability, we look at the Jacobian matrix for original system of differential
equations in (x, y):

J =

[

1 − 3x2 −1
1 1 − 3y2

]

.

At the fixed point (x, y) = (0, 0),

J =

[

1 −1
1 1

]

.

The eigenvalues λ of this matrix satisfy the equation

(1 − λ)(1 − λ) + 1 = 0,
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FIGURE 5.6.2: Polar coordinates.

which has roots λ = 2 ± 2i. These eigenvalues are a complex conjugate pair
with positive real part. Hence we are in case 4(b) of Section 5.4 and the
fixed point is an unstable focus. We now observe that cos4 φ + sin4 φ always
lies between 1/2 and 1. The largest possible value for ṙ in equation (5.6.13)
therefore occurs when cos4 φ + sin4 φ = 1/2, and this gives an upper bound
on ṙ:

ṙ ≤ r − r3

2
= r

(

1 − r2

2

)

.

Hence we can guarantee that ṙ < 0, regardless of the value of φ, provided r >√
2. Therefore, the circle D of radius

√
2 is a trapping region, meaning that

any trajectory that starts within D will always remain within D (see Figure
5.6.3). Thus D satisfies the conditions of the Poincaré–Bendixson theorem
and, since we have shown that D does not contain a stable fixed point (the
only fixed point is the one at the origin, which is unstable), D must contain
a limit cycle.

5.7 Forced oscillations

The investigation of the effect of an external oscillatory disturbance on a
nonlinear system is very difficult. If the nonlinearity is small some insight can
be gained by the method of Section 5.6. To illustrate the technique and to
display the new features that can be present we shall consider van der Pol’s
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FIGURE 5.6.3: A trapping region D for the system (5.6.8), (5.6.9), to-
gether with the vector field (arrows indicating the direction of movement in
the phase plane) and two sample trajectories (dashed lines). Note that the
direction arrows all point into the trapping region. Poincaré–Bendixson the-
orem predicts the existence of a stable limit cycle in D and both trajectories
can be seen tending towards this limit cycle. See Section 5.8 for details of how
to produce plots of this type in MATLAB.

equation with a forcing term, namely

ẍ− ǫ(1 − x2)ẋ+ x = E sin Ωt (5.7.1)

where E and Ω are constants, and ǫ is small.

When E = 0, previous theory indicates a stable limit cycle x = 2 cos t and
the system can be expected to go into a self-excited oscillation. If ǫ = 0 but
E 6= 0, there is a forced oscillation with harmonic time variation of argument
Ωt (Section 2.6). When neither ǫ nor E is zero, both types of oscillation have
to be allowed for.

Therefore, try

x = A cos(ωt+ γ) + C sin(Ωt+ θ) (5.7.2)

where the constants γ and θ have been incorporated to cover the influence of
the self-excited and forced oscillations on each other. It is to be expected that
ω is near 1 and, if Ω2 is not near 1, that C is not far from E/(1−Ω2) with θ
small. No estimate of A and γ can be made at this stage.
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The substitution of (5.7.2) in (5.7.1) leads to

A(1 − ω2) cos(ωt+ γ) + C(1 − Ω2) sin(Ωt+ θ) − E sin Ωt

= ǫ
[

ΩC
(

1 − 1
2A

2 − 1
4C

2
)

cos(Ωt+ θ)

+
(

1
4A

2 + 1
2C

2 − 1
)

ωA sin(ωt+ γ)

− 1
4A

2C(Ω + 2ω) cos{(Ω + 2ω)t+ 2γ + θ} + 1
4A

3ω sin 3(ωt+ γ)

+ 1
4A

2C(2ω − Ω) cos{(Ω − 2ω)t− 2γ + θ} + 1
4ΩC3 cos 3(Ωt+ θ)

− 1
4AC

2(ω + 2Ω) sin{(ω + 2Ω)t+ γ + 2θ}
+ 1

4AC
2(2Ω − ω) sin{(ω − 2Ω)t+ γ − 2θ}

]

. (5.7.3)

All the sinusoidal terms on the right-hand side of (5.7.3) have different time
variations unless Ω = 0, 1

3ω, ω or 3ω. The case Ω = 0 has already been
disposed of (being the same as E = 0) and, for the moment, the exceptional
cases in which Ω = 1

3ω, ω or 3ω will be ignored. On the two sides of (5.7.3)
equate the coefficients of cos(ωt+ γ), sin(ωt+ γ), cosΩt and sin Ωt to obtain

A(1 − ω2) = 0, (5.7.4)
(

1
4A

2 + 1
2C

2 − 1
)

ωA = 0, (5.7.5)

C(1 − Ω2) sin θ − ǫΩC
(

1 − 1
2A

2 − 1
4C

2
)

cos θ = 0, (5.7.6)

C(1 − Ω2) cos θ + ǫΩC
(

1 − 1
2A

2 − 1
4C

2
)

sin θ = E. (5.7.7)

It is evident from (5.7.6) and (5.7.7) that

C = E cos θ/(1 − Ω2), tan θ = ǫΩ
(

1 − 1
2A

2 − 1
4C

2
)

/(1 − Ω2).

Thus, so long as Ω2 is not near 1, θ is small and cos θ may be replaced by unity.
In other words, the nonlinearity has very little effect on the forced oscillation.
On the other hand, (5.7.4) and (5.7.5) imply that

ω = 1, A = (4 − 2C2)1/2.

As C2 increases from 0, A decreases from 2 to 0 and finally becomes imaginary
for C2 > 2. Imaginary values of A are not permitted and so, when C2 >
2, the only possible solution to (5.7.4) and (5.7.5) is A = 0. The influence
of the forcing term, therefore, is to reduce the amplitude of the self-excited
oscillation when C2 < 2 and to extinguish it completely when C2 ≥ 2, i.e.,
E2 ≥ 2(1 − Ω2)2.

Thus, even in the unexceptional case, a strong enough external vibration
can obliterate totally the self-excited oscillation.

Turn now to the exceptional case in which Ω = 3ω. Since ω is near 1 this
can occur only when Ω = 3 + δ and ω = 1 + 1

3δ with |δ| ≪ 1. The terms
involving sin 3(ωt + γ) and cos{(Ω − 2ω)t − 2γ + θ} in (5.7.3) cannot now
be neglected. Equate the coefficients of cos(ωt + γ), sin(ωt + γ), sin 3ωt and
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cos 3ωt on the two sides of (5.7.3); then

A(1 − ω2) + 1
4ǫA

2Cω cos(3γ − θ) = 0, (5.7.8)
(

1
4A

2 + 1
2C

2 − 1
)

ωA− 1
4A

2Cω sin(3γ − θ) = 0, (5.7.9)

C(1 − 9ω2) cos θ − E + 3ǫωC
(

1 − 1
2A

2 − 1
4C

2
)

sin θ = 1
4ǫA

3ω cos 3γ, (5.7.10)

C(1 − 9ω2) sin θ − 3ǫωC
(

1 − 1
2A

2 − 1
4C

2
)

cos θ = 1
4ǫA

3ω sin 3γ. (5.7.11)

From (5.7.10) and (5.7.11), C = −E/8 to the first order and tan θ is small
so that the forced oscillation is virtually the same as in the absence of the
nonlinearity. In (5.7.8) and (5.7.9) put ω = 1 + 1

3δ, put A cos(3γ − θ) = ξ and
put A sin(3γ − θ) = η. Then, if only dominant terms are retained,

− 2
3δ + 1

4ǫCξ = 0,

ξ2 +
(

η − 1
2C
)2

= 4 − 7C2/4.

Consequently, ξ and η (and thereby A and γ) are determined by the intersec-
tion of a straight line and a circle. The circle is imaginary if C2 > 16/7 and
the line does not intersect the circle if 4 − 7C2/4 < (8δ/3ǫC)2. Therefore A
is nonzero only if 4 − 7C2/4 > (8δ/3ǫC)2; this inequality cannot be satisfied
unless (δ/ǫ)2 < 9/28. Hence, if (δ/ǫ)2 < 9/28 and 4 − 7C2/4 > (8δ/3ǫC)2,

A2 = 4 − 3
2C

2 ±
{

4C2 − 7
4C

4 − (8δ/3ǫ)2
}1/2

. (5.7.12)

Having found A, we can proceed to determine γ. However, γ occurs only in
the form 3γ so that if γ0 is a possible value so are γ0 + 2π/3 and γ0 + 4π/3.
Thus, to a given amplitude of the self-excited oscillation there correspond
three possible distinct phases.

According to this approximation when the magnitude of the forcing term
is small, C2 is not large enough for A to exist. Thus application of a small
forcing term of three times the natural frequency extinguishes the self-excited
oscillation. As the magnitude of the forcing term and C2 grow there comes
a point where A is nonzero and self-excited oscillations can occur. Further
increase of C2 will eventually reach a point when A disappears again so that
the self-excited oscillation is absent when the magnitude of the forcing term
is large enough. For the upper sign in (5.7.12), A will increase with C2 to a
maximum before dropping back to zero. The possibility of A increasing and
of surpassing the value 2 are new aspects. For instance, A ≥ 2 if 0 ≤ C2 ≤ 1
when δ = 0. In general, A ≥ 2 if (8δ/3ǫ)2 < 1 and

−{1 − (8δ/3ǫ)2}1/2 ≤ 2C2 − 1 ≤ {1 − (8δ/3ǫ)2}1/2.

This magnification of the self-excited oscillation by the application of a vibra-
tion, which is an integer multiple of the self-excited, is known as subharmonic
resonance.

Our investigation does not permit us to say which of the many oscillations
that have been uncovered can be reached by the system starting from given
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initial conditions. A more refined analysis reveals that the negative square root
in (5.7.12) corresponds to an unstable state, whereas the upper sign provides
a stable state. Therefore, under conditions in which A is nonzero, the system
tends to adopt the larger value of A; the phase will depend on the initial
conditions.

The exceptional case Ω = 1
3ω may be discussed in a similar manner. As

regards the special case Ω = ω, there is no necessity to have both terms in
(5.7.2) and C can be placed equal to zero.

5.8 Numerical solution of systems of equations

The numerical methods for solving initial value problems consisting of sys-
tems of differential equations of the form

ẏi = fi(y1, . . . , yn), i = 1, . . . , n (5.8.1)

are essentially the same as those for solving initial value problems with a
single first-order equation (see Section 1.7). The only difference is that the
dependent variable y = (y1, . . . , yn) is a vector rather than a scalar and, to
MATLAB, this makes very little difference. If using the built-in solver ode45,
the only change from the usage described in Section 1.7 is that the user-defined
function myrhs now takes a vector y as its second input and returns a vector
of values for ẏ as output, and that the initial condition is also a vector.

For example, suppose we wish to solve the general Volterra–Lotka compe-
tition model (4.5.12) and (4.5.13). First note that this system may be written
in vector form ẏ = f(t,y) (see Section 3.5 for vector–matrix notation), where
f is defined by

f(t,y) =

[

y1(a0 − a1y1 − a2y2)
y2(b0 − b1y1 − b2y2)

]

, (5.8.2)

and the ai and bi are constants. Picking some example values for the constants,
we can write a MATLAB function to evaluate the vector function f as follows:

function f = volterra_lotka(t, y)

a0 = 1.2; a1 = 0; a2 = 0.6; b0 = -0.8; b1 = -0.3; b2 = 0;

f = zeros(2, 1); % define f as a 2x1 matrix

f(1) = y(1)*(a0-a1*y(1)-a2*y(2));

f(2) = y(2)*(b0-b1*y(1)-b2*y(2));

Note the syntax for defining the column vector f: first f is defined as a 2 × 1
matrix (i.e., a column vector of length 2); then each component is calculated
in turn.

The initial value problem with initial conditions of, for example, y(0) =
[2, 1] may then be solved and plotted, up to say t = 20, with the following
commands:
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FIGURE 5.8.1: Numerical solution to the Volterra–Lotka system (5.8.2)
with a0 = 1.2, a1 = 0, a2 = 0.6, b0 = −0.8, b1 = −0.3, b2 = 0, calculated
using ode45. (a) Time-series of both species (y1 and y2 against t). (b) Phase
diagram (y2 against y1).

>> t0 = 0; t1 = 20; y0 = [2; 1];

>> [t, Y] = ode45(@volterra_lotka, [t0, t1], y0);

>> plot(t, Y)

Note that, since the solution y(t) consists of a vector of 2 values, Y is a matrix
with 2 columns. The kth row of Y contains the solution vector corresponding
to the kth value of t. The above plot command graphs each component of
the solution (i.e., the total population of each species) against t as a separate
curve, and is equivalent (for the two-variable case) to the command

>> plot(t, Y(:, 1), t, Y(:, 2))

The resulting plot is shown in Figure 5.8.1(a), which reveals the cyclical nature
of the solution.

It is often useful to plot the solution to a system of differential equations
in the phase plane, i.e., plot y2 against y1, instead of plotting each dependent
variable against t. This can be done with the command

>> plot(Y(:, 1), Y(:, 2))

which produces the graph shown in Figure 5.8.1(b). The key observation here
is that the trajectory in the phase plane is a closed curve, which implies that,
after some amount of time, the system returns to its previous state. This
demonstrates that the solution is periodic.

Often, it is desirable to plot not just a single trajectory corresponding to
a particular initial condition in the phase plane, but to produce a plot that
is representative of the entire phase portrait. One way to achieve this is to
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plot the vector field that defines the system of differential equations. The
MATLAB command for plotting vector fields is quiver. Before using this
command, we must define the grid we are working on. This can be done with
the following commands:

>> y1 = y1_min:h:y1_max; y2 = y2_min:h:y2_max;

>> [Y1, Y2] = meshgrid(y1, y2);

Here the meshgrid command takes the vectors y1 and y2 and creates matrices
Y1 and Y2 corresponding the y1 and y2 coordinates throughout the rectangular
region. The minimum and maximum values of y1 and y2, and the plotting
resolution h can be adjusted as required. Now we can define and plot the
vector field. For the example given in equation (5.8.2), the following commands
produce the graph shown in Figure 5.8.2 (compare this graph to the particular
solution shown in Figure 5.8.1(b)):

>> F1 = Y1.*(a0-a1*Y1-a2*Y2);

>> F2 = Y2.*(b0-b1*Y1-b2*Y2);

>> quiver(Y1, Y2, F1, F2)

Note the use of the array multiplication operator .*. This takes two arrays
of the same size and multiplies them component-by-component, as opposed
to *, which will attempt to calculate the matrix product of two arrays. For
example,

[a, b] .* [c, d] = [a*c, b*d]

[a, b] * [c; d] = a*c+b*d

Similar operations can be achieved with ./ for component-by-component di-
vision, and .^ for raising components to a power.

It is also useful to add the nullclines of the system to the graph in Figure
5.8.2. These are the curves on which one of the variables is stationary. Hence
the y1-nullcline is defined by the equation ẏ1 = 0 and likewise for the y2-
nullcline. For this example, the nullclines are simply given by

y2 = (a0 − a1y1)/a2 and y1 = (b0 − b2y2)/b1.

These may be added to the graph with the following commands:

>> hold on

>> nullcline1 = (a0-a1*y1)/a2; nullcline2 = (b0-b2*y2)/b1;

>> plot(y1, nullcline1, nullcline2, y2)

(The command hold on causes the following plot command to be superim-
posed on the existing Figure.) Notice that the vector field has no y1 (hori-
zontal) component on the y1-nullcline, and no y2 (vertical) component on the
y2-nullcline. In this particular example, the nullclines are straight lines, ei-
ther vertical or horizontal. However, in general the nullclines will be a pair of
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FIGURE 5.8.2: Vector field plot for the Volterra–Lotka system (5.8.2) with
a0 = 1.2, a1 = 0, a2 = 0.6, b0 = −0.8, b1 = −0.3, b2 = 0. The solid lines are
the nullclines for the system.

curves and are very useful for building a picture of the phase portrait. Points
where the nullclines intersect are fixed points (equilibria) of the system.

Example 5.8.1

Plot solutions to van der Pol’s equation (5.6.1) (with ǫ = 0.25) in the phase
plane for two initial conditions: (i) x(0) = 3, ẋ(0) = 0; (ii) x(0) = 1, ẋ(0) =
0. Draw the corresponding vector field plot, including the nullclines of the
system.

First we write (5.6.1) in the form of a first-order system:

ẏ1 = y2, ẏ2 = ǫ(1 − y2
1)y2 − y1.

From this, we can write a MATLAB function that calculates the right-hand
sides of the differential equations:

function f = van_der_pol(t, y)

epsilon = 0.25;

f = [ y(2) ; epsilon*(1-y(1)^2)*y(2)-y(1) ];

We can calculate the solution for say 0 ≤ t ≤ 25 and initial condition (i), and
plot in the phase plane with the commands:

>> [t, Y] = ode45(@van_der_pol, [0, 10], [3; 0]);

>> plot(Y(:, 1), Y(:, 2))

Including the other initial condition gives the two trajectories shown in Figure
5.8.3(a). This graph clearly shows the existence of a limit cycle, which both
trajectories tend towards. The limit cycle itself can be calculated and added
to the graph by plotting the solution after a long period of time has elapsed
(say 500 ≤ t ≤ 510).
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FIGURE 5.8.3: van der Pol’s equation (5.6.1) with ǫ = 0.25: (a) numerical
solutions in the phase plane for two different initial conditions (indicated by
open circles); (b) vector field plot (solid lines are nullclines).

To plot the vector field, we define a grid [Y1, Y2] as described above, and
then draw the graph:

>> F1 = Y2; F2 = epsilon*(1-Y1.^2).*Y2-Y1;

>> quiver(Y1, Y2, F1, F2)

The nullclines for the system are given by

y2 = 0 and y2 = y1/
(

ǫ(1 − y2
1)
)

,

which can be added to the vector field plot (Figure 5.8.3(b)) as follows:

>> hold on

>> nullcline1 = 0*y1; nullcline2 = y1./(epsilon*(1-y1.^2);

>> plot(y1, nullcline1, y1, nullcline2)

Notice that the y2-nullcline has vertical asymptotes at y1 = ±1.

5.9 Symbolic computation on first-order systems of equa-
tions and higher-order equations

MATLAB’s dsolve command, introduced in Section 1.8, can handle sys-
tems of equations and higher-order equations. This is best illustrated by ex-
ample. It is worth remembering that exact analytical solutions to nonlinear
systems are rarely available, and the following examples are therefore linear.
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Example 5.9.1

Consider the linear system

ẏ1 = −y1 − 10y2, (5.9.1)

ẏ2 = 10y1 − y2. (5.9.2)

The appropriate MATLAB input/output is

>> y_sol = dsolve(’Dy1=-y1-10*y2’, ’Dy2=10*y1-y2’)

y_sol =

y1: [1x1 sym]

y2: [1x1 sym]

Here, because there is more than one dependent variable, the output from
dsolve (y_sol) is what is called a structure. In this case, there are two
dependent variables, so the structure y_sol has two fields y1 and y2. The
syntax for accessing the fields of a structure is structure.field. Hence to
extract the contents of the two fields to two new variables y1_sol and y2_sol,
the appropriate commands are

>> y1_sol = y_sol.y1

y1_sol =

exp(-t)*(C1*cos(10*t)-C2*sin(10*t))

>> y2_sol = y_sol.y2

y2_sol =

exp(-t)*(C1*sin(10*t)+C2*cos(10*t))

We can now plot these solutions, with initial conditions of say y1(0) = 1
and y2(0) = 0, following the same procedure as in Example 1.8.1. The time
series and phase plane plot are shown in Figure 5.9.1.

Example 5.9.2

Bessel’s equation is an equation that frequently arises when solving steady-
state temperature distribution problems in cylindrical coordinates (t here rep-
resents location rather than time):

t2
d2y

dt2
+ t

dy

dt
+ (t2 − v2)y = 0. (5.9.3)

We could write this as a system of first-order equations (see Section 3.2).
Alternatively, we can try to solve it directly. The command we need for this
is

>> y_sol = dsolve(’t^2*D2y+t*Dy+(t^2-v^2)*y=0’)

which returns the solution as
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FIGURE 5.9.1: Solution to the linear system (5.9.1) and (5.9.2), with
initial conditions y1(0) = 1 and y2(0) = 0, calculated using symbolic com-
putation. (a) Time-series of both variables (y1 and y2 against t). (b) Phase
diagram (y2 against y1).

y_sol = C1*besselj(v,t)+C2*bessely(v,t)

Here besselj and bessely are special functions called Bessel functions.
Note that, because equation (5.9.3) is a second-order differential equation,
there are two linearly independent solutions (with arbitrary constants C1 and
C2) in the general solution. MATLAB will happily plot these functions (see
Section 1.8), if given a value of v and suitable initial conditions. For a second-
order differential equation, we need two initial conditions. For example, the
solution with v = 1 and initial conditions y(0) = 0, y′(0) = 1 may be found
by

>> y_sol = dsolve(’t^2*D2y+t*Dy+(t^2-1)*y=0’, ’y(0)=0’,

’Dy(0)=1’)

y_sol = 2*besselj(1,t)

5.10 Numerical solution of nonlinear boundary value
problems

Although linear boundary value problems were dealt with in Chapter 3,
nonlinear boundary value problems are more difficult to solve as they entail
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solving a system of n + 1 nonlinear equations. In general, this is a nontriv-
ial task, and root-finding methods for nonlinear systems, such as Newton’s
method, usually require a reasonable approximation of the solution to use as
a starting point.

Newton’s method for a system of equations

f1(x1, . . . , xn) = 0,

...

fn(x1, . . . , xn) = 0,

is based on the multivariable Taylor expansion of the vector function f(x) =
(f1, . . . , fn):

f(x) = f(x0) + J(x0)(x − x0) +O
(

(x − x0)
2
)

, (5.10.1)

where J is the Jacobian matrix of the vector function f (see Section 5.3), i.e.,
the (i, j) entry of J is the partial derivative of fi with respect to xj :

Jij =
∂fi

∂xj
.

Setting x in (5.10.1) to be the root of the vector equation (i.e., f(x) = 0) and

neglecting terms of order (x − x0)
2 and higher gives

J(x0)(x − x0) = −f(x0).

Given an initial approximation x0 to the root, this equation enables an im-
proved estimate for the root x to be calculated. Applying this procedure
iteratively gives:

xn+1 = xn + ∆x, where J(xn)∆x = −f(xn).

The following code is a MATLAB function that attempts to solve a vector
equation f(x) = 0 by Newton’s method.

function x = newton(func, x, tol, maxits)

% Function to solve a system of equations f(x)=0 by Newton’s

% method

% INPUTS: x - initial approximation to the solution

% tol - relative tolerance for testing convergence

% func - handle to a function that calculates f(x)

% maxits - maximum number of iterations to carry out

% OUTPUTS: x - solution vector

delta_x = 10*tol*x;

count = 0;

while ~(norm(delta_x, inf)/norm(x, inf) < tol) && count < maxits
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[f, J] = jacobian(func, x);

delta_x = -J\f;

x = x+delta_x;

count = count+1;

end

This function takes an initial approximation to the solution, and attempts to
improve the accuracy of this approximation by Newton’s method, terminating
if the relative change in the approximations between successive iterations falls
below some specified tolerance tol. The function jacobian calculates the
Jacobian matrix for the user-supplied vector function f(x):

function [f0, J] = jacobian(func, x)

% Function to evaluate a vector function and find its Jacobian

% INPUTS: func - handle to the vector function

% x - argument to vector function

% OUTPUTS: f0 - value of the vector function at x

% J - Jacobian matrix at x

N = length(x); % length of the vector x

dx = 1e-10; % value of dx to use to calculate the Jacobian

f0 = func(x); % evaluate func at x

J = zeros(N); % initialise J as an NxN matrix

for I = 1:N % loop through columns of J

x0 = x(I);

x(I) = x(I)+dx; % perturb x(I) by dx

f = func(x); % evaluate func at perturbed x

J(:, I) = (f-f0)./dx; % calculate column I of Jacobian

x(I) = x0; % restore x(I) to unperturbed value

end

The user-supplied function that calculates f(x), which is passed to newton

in the argument func, depends on the specific boundary value problem. This
is best illustrated by example.

Example 5.10.1

Write MATLAB code to solve the nonlinear boundary value problem

d2y

dx2
+ py2 + q = 0, y(0) = α, y(1) = β. (5.10.2)

As with a linear problem, the first thing we need to do is to replace derivatives
of y with appropriate finite difference approximations:

yi+1 + yi−1 − 2yi

h2
+ py2

i + q = 0.

By setting i = 1, . . . , n − 1, this gives n − 1 equations. The two boundary
conditions make a system of n+1 equations in the n+1 unknowns y0, . . . , yn.
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FIGURE 5.10.1: Numerical solution of the boundary value problem
(5.10.2) with α = 2, β = 1, p = 1 and q = 0.

This system can be written in vector form

f(y) = 0, (5.10.3)

where y = (y0, . . . , yn) and f is a vector function of y. All we need now is
a MATLAB function that calculates f(y) for a given vector y, and then we
can use the Newton’s method function to find the solution to the system of
equations (5.10.3). At this point, we need to specify values of the boundary
conditions α and β and the coefficients p and q. Let’s choose α = 2, β = 1,
p = 1 and q = 0. We’ll call the function my_bvp.

function f = my_bvp(y)

global x

% GLOBALS: x - a vector of N+1 equally spaced x values

% INPUTS: y - a vector of N+1 corresponding y values

% OUTPUTS: f - a vector containing the right-hand sides of the

% system of N+1 equations in N+1 unknowns

alpha = 2; beta = 1; p = 1; q = 0; % define the constants

N = length(x)-1; % number of lattice points

dx = (x(N+1)-x(1))/N; % spacing between lattice points

f = zeros(N+1, 1); % initialise f as a column vector of size N+1

f(1) = y(1)-alpha; % first boundary condition

f(N+1) = y(N+1)-beta; % second boundary condition

% loop through the N-1 equations derived from the DE:

for I = 2:N

f(I) = (y(I+1)+y(I-1)-2*y(I))/dx^2 + p*y(I)^2 + q;

end
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Note that the vector of x values, rather than being passed to this function
as an argument, has to be defined as a global variable. This means that it is
accessible to all MATLAB functions (rather than being local to the function
in which it is declared). Hence, we need to define x as a global variable in the
command window, and set it up as the vector of x values we are interested
in, with a step size of 0.02 :

>> global x

>> x = (0:0.02:1)’;

(The ’ transposes x to give a column vector rather than a row vector.) Re-
member, we need an initial approximation to the solution for y. Let’s just try
a linear function to see if that works. The linear function that satisfies the
boundary conditions y(0) = 2 and y(1) = 1 is y = 2 − x, which we can ap-
ply with the command >> y = 2-x;. Now we can call the Newton’s method
function newton to obtain the solution (with a tolerance of 10−4), and plot y
against x:

>> y = newton(@my_bvp, y, 1e-4, 100);

>> plot(x, y)

This produces the graph shown in Figure 5.10.1.

The above example is relatively straightforward because the nonlinearity is
confined to the dependent variable. If there are nonlinearities in the derivatives
of the dependent variables, the problem become more difficult. Nevertheless,
the code in the function my_bvp is easily adaptable to more complicated equa-
tions, although a better initial approximation to the solution may be required.

5.11 Appendix: existence theory

5.11.1 Single first-order equation

The aim of existence theory is to specify conditions under which one can
be sure that there is a solution to a differential equation such as

ẏ = f(t, y). (5.11.1)

There is no point in wasting analytical and computational effort on trying
to find a solution when there is not one. Basically, there are two ways of
demonstrating existence, nonconstructive in which no attempt is made to
show how one might arrive at a solution, and constructive in which a method
for building up the solution is described. We shall consider only a constructive
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FIGURE 5.11.1: The domain of existence.

approach, one that lays the foundation for a numerical attack when that is
desired.

The initial value problem for (5.11.1) seeks a solution such that y = y0 at
t = t0 and this is the problem that we shall discuss in some detail when y0 is
a prescribed constant.

The purpose of the analysis is to show that, under specified conditions,
when t does not stray too far from t0 there is a solution y which does not
differ from y0 by more than a certain amount. So we consider what happens
as t ranges from t0 to t0 + h where h is positive (similar considerations apply
when h is negative). In this range we are prepared to consider deviations of
y from y0 of magnitude k, i.e., we expect y to lie between y0 − k and y0 + k.
The points that originate values of f(t, y) are then in the domain D of Figure
5.11.1. Suppose that f is bounded in D, say |f | < M ; then we shall impose the
restriction h < k/M. This can always be arranged by reducing h if necessary.
The constraint is an expression of our expectation that the more t departs
from t0 the more y will deviate from y0. Further conditions are placed on f
in the following theorem.

EXISTENCE THEOREM I

Let f(t, y) be a single-valued continuous function of t and y in D such that

(a) |f(t, y)| < M in D,

(b) (Lipschitz condition)

|f(t, y) − f(t, y′)| < K|y − y′|,

K being a finite constant, for any pair of points (t, y) and (t, y′) in D. Then,
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for h < k/M , the differential equation (5.11.1) possesses one and only one
continuous solution y(t) in t0 ≤ t ≤ t0 + h such that y(t0) = y0.

PROOF The proof starts by observing that the problem is equivalent to
showing that

y(t) = y0 +

∫ t

t0

f(u, y(u))du (5.11.2)

has a solution. For, since f is bounded, the integral exists and tends to zero as
t → t0 with the consequence that y(t0) = y0. Also, a derivative with respect
to t of (5.11.2) returns, because of the assumed continuity of f , to (5.11.1).
So it is sufficient to discuss (5.11.2).

Now solve (5.11.2) by iteration by making a series of approximations. First
put y(u) = y0 in the integral to generate y1(t) given by

y1(t) = y0 +

∫ t

t0

f(u, y0)du. (5.11.3)

Now produce the sequence yn(t) defined by

yn(t) = y0 +

∫ t

t0

f(u, yn−1(u))du. (5.11.4)

In each approximation the right-hand side can be calculated and a practical
mechanism of solution has been erected, provided that the iteration converges
to a solution.

Note firstly that (5.11.3) implies that y1(t) is a continuous function of t
and, since (u, y0) is in D for t < t0 + h,

|y1(t) − y0| < M(t− t0) < Mh < k;

thus (t, y1(t)) is in D for t < t0 + h. The reasoning can now be repeated to
show that y2(t) is a continuous function of t such that (t, y2(t)) is in D for
t < t0 + h. It is then clear from (5.11.4) that yn(t) is a continuous function of
t such that (t, yn(t)) is in D for every n while t < t0 + h.

Suppose now that

|yn(t) − yn−1(t)| < MKn−1(t− t0)
n/n! (5.11.5)

for t0 ≤ t ≤ t0 + h, a result already proved for n = 1. Then, from (5.11.4),

|yn+1(t) − yn(t)| ≤
∫ t

t0

|f(u, yn(u)) − f(u, yn−1(u))|du

<

∫ t

t0

K|yn(u) − yn−1(u)|du
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by the Lipschitz condition. Invoking our hypothesis, we have

|yn+1(t) − yn(t)| < MKn

∫ t

t0

(u − t0)
ndu/n!

< MKn(t− t0)
n+1/(n+ 1)!

which is the same as (5.11.5) except that n is replaced by n + 1. Since it is
true for n = 1 it follows by induction that (5.11.5) holds for every n.

Accordingly

∣

∣

∣

∣

∣

y0 +

n
∑

r=1

{yr(t) − yr−1(t)}
∣

∣

∣

∣

∣

≤ |y0| +
∞
∑

r=1

MKr−1(t− t0)
r/r!

≤ |y0| +MeK(t−t0)/K

≤ |y0| +MeKh/K

which reveals that the series on the left is absolutely and uniformly convergent
(by the Weierstrass M -test) in t0 ≤ t ≤ t0 + h. But the sum of a uniformly
convergent series of continuous functions is itself continuous and, since

y0 +
∞
∑

r=1

{yr(t) − yr−1(t)} = yn(t),

it follows that limn→∞ yn(t) exists and is a continuous function ŷ(t) in t0 ≤
t ≤ t0 + h.

It remains to identify ŷ as a solution of (5.11.2). Now

ŷ(t) = lim
n→∞

yn(t) = y0 + lim
n→∞

∫ t

t0

f(u, yn−1(u))du

= y0 +

∫ t

t0

f(u, ŷ(u))du + lim
n→∞

∫ t

t0

{f(u, yn−1(u)) − f(u, ŷ(u))}du.

By the Lipschitz condition, the magnitude of the last integral does not exceed

K

∫ t

t0

|yn−1(u) − ŷ(u)|du < K(t− t0)max
u

|yn−1(u) − ŷ(u)|

which tends to zero as n→ ∞. Equation (5.11.2) has been recovered.
The existence of a continuous solution has now been verified and to complete

the theorem it is necessary to show there is no other. Suppose, in fact, there
were another solution Y (t) such that Y (t0) = y0, which is continuous in
t0 ≤ t ≤ t0 +H with H ≤ h and |Y (t) − y0| < k. Then

Y (t) = y0 +

∫ t

t0

f(u, Y (u))du.



First-Order Systems of Ordinary Differential Equations 157

Hence, if
|Y (t) − yn−1(t)| < Kn−1k(t− t0)

n−1/(n− 1)!,

|Y (t) − yn(t)| ≤
∫ t

t0

|f(u, Y (u)) − f(u, yn−1(u))|du

≤ kKn(t− t0)
n/n!.

This inequality is valid by induction if it is true for n = 1. But

|Y (t) − y1(t)| ≤ K

∫ t

t0

|Y (u) − y0|du ≤ Kk(t− t0)

and so the result for n = 1 holds. Letting n → ∞ in the inequality we have
Y (t) = limn→∞ yn(t) = ŷ(t) and uniqueness has been established.

5.11.2 System of first-order equations

The theory of the preceding section generalises to the system

ẏm = fm(t, y1, y2, . . . , yn) (m = 1, . . . , n) (5.11.6)

under the initial conditions ym = ym0 at t = t0. The region D is not so simple
to depict since it is a rectangular parallelepiped in space of n+ 1 dimensions,
because each ym may change by a different amount from its initial value as
t moves from t0. So D is defined by t0 ≤ t ≤ t0 + h, |ym − ym0| ≤ km (m =
1, . . . , n). Analogous to the conditions for a single equation the restrictions
|fm| < M and h < km/M for m = 1, 2, . . . are imposed.

EXISTENCE THEOREM II

Let fm(t, y1, . . . , yn) be single-valued continuous functions of t, y1, . . . , yn

in D such that for m = 1, . . . , n

(a) |fm(t, y1, . . . , yn)| < M inD,

(b) (Lipschitz condition)

|f(t, y1, . . . , yn) − f(t, y′1, . . . , y
′
n)| < K1|y1 − y′1| + · · · +Kn|yn − y′n|,

K1, . . . ,Kn being finite constants, for any (t, y1, . . . , yn) and (t, y′1, . . . , y
′
n) in

D. Then, for h < km/M (m = 1, . . . , n) the system (5.11.6) possesses one
and only one set of continuous solutions y1(t), . . . , yn(t) in t0 ≤ t ≤ t0 + h
such that ym(t0) = ym0(m = 1, . . . , n).

PROOF The method of proof runs parallel to that for a single equation.
It begins with

ym(t) = ym0 +

∫ t

t0

fm(u, y1(u), . . . , yn(u))du (m = 1, . . . , n)
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and an iteration is performed according to

ymr(t) = ym0 +

∫ t

t0

fm(u, y1,r−1(u), . . . , yn,r−1(u))du.

In view of the similarity to the single equation, details will be omitted.

5.11.3 Differential equation of order n

The above theory can be applied to the order n differential equation

dny

dtn
= f

(

t, y,
dy

dt
, . . . ,

dn−1y

dtn−1

)

(5.11.7)

with the initial conditions

y = y10, dy/dt = y20, . . . , dn−1y/dtn−1 = yn0

at t = t0. Make the substitutions

y(t) = y1(t),
dy

dt
= y2(t), . . . ,

dn−1y

dtn−1
= yn(t).

The system

ẏ1 = y2, ẏ2 = y3, . . . , ẏn−1 = yn,

ẏn = f(t, y1, y2, . . . , yn)

is obtained. When this is compared with (5.11.6) we see that

fm(t, y1, . . . , yn) =

{

ym+1 (m = 1, . . . , n− 1)
f(t, y1, . . . , yn) (m = n).

The fm form = 1, . . . , n−1 obviously satisfy the conditions stated in Existence
Theorem II. Therefore, if we make fn comply with these conditions, that
theorem is available for (5.11.7). Accordingly, we have the next theorem.

EXISTENCE THEOREM III

If f(t, y1, . . . , yn) is continuous and

|f(t, y1, . . . , yn) − f(t, y′1, . . . , y
′
n)| < K1|y1 − y′1| + · · · +Kn|yn − y′n|

the differential equation (5.11.7) has one and only one continuous solution
y(t) such that dy/dt, . . . , dn−1y/dtn−1 are continuous for t0 ≤ t ≤ t0 + h and
such that y, dy/dt, . . . , dn−1y/dtn−1 take given values at t = t0.

It may be remarked that, if (5.11.7) is linear,

f(t, y1, . . . , yn) = g(t) − a0(t)y1 − a1(t)y2 − · · · − an−1(t)yn.
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Since this is a polynomial in y1, . . . , yn the conditions of Existence Theorem
III are met except at those values of t where one or more of g, a0, . . . , an−1 are
not continuous. Hence, a linear differential equation has a unique continuous
solution to the initial value problem, provided that t0 is not a point where
there is lack of continuity on the part of g, a0, . . . , an−1.

Exercises

5.1 At what points are the conditions of Existence Theorem I not satisfied
for

(a) ẏ = y,

(b) ẏ = |y|1/2,

(c) t3ẏ = y,

(d) tẏ = y,

(e) 1
2 tẏ = t2 + y?

Are the points where failure occurs singular points?

5.2 Sketch the trajectories in the phase plane of

(a) ẋ = 5x+ 2y,
y = 2x+ 2y,

(b) ẋ = 6x+ 12y,
y = 3x+ y,

(c) ẋ = 4x+ 5y,
y = −5x− 4y.

(d) ẋ = y − 2x,
ẏ = 4x− 5y,

(e) ẋ = 5x− 5y,
ẏ = 5x− 3y,

(f) ẋ = 5x+ 4y,
ẏ = 9x,

(g) ẋ = 4x+ 13y,
ẏ = −13x− 6y,

(h) ẋ = 5x− 13y,
ẏ = 13x− 5y.
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In each case, use MATLAB to solve the system numerically for initial
condition x(0) = 1, y(0) = 1, and plot the solution as a time series
(i.e., x(t) against t and y(t) against t) and in the phase plane (i.e., y(t)
against x(t)).

5.3 Draw the trajectories in the phase plane of

d2x

dt2
+ 3

dx

dt
+ 2x = 0.

Use MATLAB to solve the system numerically for an initial condition
of x(0) = 0, ẋ(0) = 1.

5.4 Examine what fixed points arise in the phase plane for

d2x

dt2
+ 2b

dx

dt
+ ax = 0

where a and b are constants (a 6= 0).

5.5 Discuss the trajectories of

ẍ− 4ẋ+ 40x = 0

in the phase plane by making the substitution x = ρ cosφ, y = ρ sinφ.

5.6 Examine the possibility of periodic solutions of

cẍ+ (2 + 3ax+ 4bx2)x = 0

where a, b and c are constants, c being positive.

5.7 Sketch the trajectories in the phase plane of

ẍ+ sinx = 0.

5.8 In the differential equation

(1 + a2x2)ẍ+ (b + a2ẋ2)x = 0

a and b are constants. Discuss the behaviour of the solution.

5.9 Discuss the trajectories of

θ̈ = (cos θ − µ) sin θ

for −π ≤ θ ≤ π, the constant µ (6= 1) being positive.
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5.10 In the differential equation

ẍ+ λẋ2 + x = 0

the constant λ is positive. Obtain dy/dx where y = ẋ and hence derive
the differential equation satisfied by w = y2. Find the trajectories and
determine when they are closed curves.

5.11 Prove that
ẍ− ǫ(1 − x4)ẋ+ x = 0

has a stable limit cycle and that its amplitude is 23/4 (≈1.68) when
0 < ǫ≪ 1.

5.12 Show that
z̈ + f(ż) + z = 0

becomes
ẍ+ f ′(x)ẋ + x = 0

on putting ż = x. Hence obtain information about the limit cycle of
Rayleigh’s equation

z̈ + ǫ(1
3 ż

2 − ż) + z = 0

when 0 < ǫ≪ 1.

5.13 In Duffing’s equation

ẍ+Dẋ+ x+ βx3 = E sin Ωt

Ω = 1+δ and D, β, E and δ are all small. Show that, if an approximate
solution is x = A sin{(1 + δ)t+ θ}, A satisfies

(

3
4βA

3 − 2δA
)2

+D2A2 = E2.

5.14 After transformation to polar coordinates x = r cosφ, y = r sinφ, the
differential equations of a system are

ṙ = r − r3 + µr cosφ, φ̇ = 1.

(a) In the case µ = 0, show that the system has a stable limit cycle.
Solve the differential equations directly to verify this result and
write down an explicit equation for the limit cycle.

(b) In the case 0 < µ < 1, show that the system has a stable limit
cycle.

5.15 Show that the polar coordinate system

ṙ = (r − 1)(a+ sin2 φ), φ̇ = 1

has stable limit cycles when a < − 1
2 . What happens when a > − 1

2?
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5.16 Solve the following nonlinear boundary value problem numerically.

y
d2y

dx2
= 10 cos(x), y(0) = 1, y(1) − 2y′(1) = 0.



Chapter 6

Mathematics of Heart Physiology

6.1 The local model

We begin by recalling the three basic features of the heartbeat cycle upon
which a mathematical model is to be developed. These are:

(a) the model must exhibit an equilibrium state corresponding to diastole;

(b) it should also contain a threshold for triggering the electrochemical wave
emanating from the pacemaker causing the heart to contract into systole;

(c) it should reflect the rapid return to the equilibrium state.

As in Section 4.2, we suppose the important quantities that model these
features to be x, a typical muscle fibre length, which will necessarily depend
on the time t, and b, an electrical control variable which governs the electro-
chemical wave, and which also depends on t.

In order to make any reasonable progress in modelling the heartbeat cycle,
we must assume that the mathematical equations must be drawn from a
particular class of equations which have in them the ability to describe at
least the main features of heart physiology. The class we choose here is taken
from the class of autonomous dynamical systems in two degrees of freedom.
In other words we seek a mathematical model of the form

dx

dt
= f(x, b),

db

dt
= g(x, b). (6.1.1)

For this model to satisfy the first important quality (a) above, we ask that
it has a unique stable rest state. Suppose this occurs at the critical point
(b0, x0) of (6.1.1). That is, (b0, x0) satisfy the equations

f(x0, b0) = g(x0, b0) = 0. (6.1.2)

163
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If the system (6.1.1) is linearised, as in Chapter 5, about the rest state (b0, x0)
we have

dx

dt
= f(x0, b0) + (x− x0)

∂f(x0, b0)

∂x
+ (b− b0)

∂f(x0, b0)

∂b
+ higher order terms,

db

dt
= g(x0, b0) + (x− x0)

∂g(x0, b0)

∂x
+ (b− b0)

∂g(x0, b0)

∂b
+ higher order terms.

That is,

dx

dt
= a11(x− x0) + a12(b − b0) + higher order terms,

db

dt
= a21(x− x0) + a22(b − b0) + higher order terms, (6.1.3)

where

a11 =
∂f

∂x
, a12 =

∂f

∂b
, a21 =

∂g

∂x
, a22 =

∂g

∂b
,

each evaluated at x = x0, b = b0.
From Chapter 5 we know that the local stability of the system (6.1.3) in

the neighbourhood of (b0, x0) is governed by the roots λ1, λ2 of the quadratic
equation

λ2 − λ(a11 + a22) + a11a22 − a12a21 = 0. (6.1.4)

Furthermore we know that our system is stable near (b0, x0) if the real parts of
λ1, λ2 are negative. We shall in fact assume a little more and suppose λ1, λ2 to
be real and negative, thus eliminating any undesirable oscillatory behaviour
in our mathematical model. This requires that

a11 + a22 < 0,

a11a22 − a12a21 > 0. (6.1.5)

The inequalities (6.1.5) provide an infinite number of ways in which to choose
the constants aij , i, j = 1, 2. Thus, to make further progress towards a possi-
ble model, we make some hypotheses, which, of course, ask for experimental
confirmation. The hypotheses we make are the following:

H1: The rate of change of muscle fibre contraction depends, at any particular
instant, on the tension of the fibre and on the chemical control.

H2: The chemical control changes at a rate directly proportional to muscle
fibre extension.

For the moment we shall not specify under hypothesis H1 precisely how
tension should enter into our model but focus on the implication of hypothe-
sis H2. Mathematically, H2 is simply stated through the equation

db

dt
= x− x0. (6.1.6)
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(b0,x0)

b0 b 

x

(x − x0) + 1
a

(b − b0) = 0

FIGURE 6.1.1: Phase plane for the local model (6.1.9).

In other words the function g(x, b) in (6.1.5) is linear and independent of b and
furthermore a21 = 1, a22 = 0. Consequently the inequalities (6.1.5) simplify to

a11 < 0, a12 < 0. (6.1.7)

The third of the features required by our mathematical model is that it should
reflect the rapid return to the equilibrium state. This quality suggests that
a11 be large and negative and since db

dt , by hypothesis H2, is proportional to
x− x0 we expect a12 to be large and negative as well.

With this information we try

a11 = −a
ǫ
, a12 = −1

ǫ
, (6.1.8)

where a and ǫ are positive constants with ǫ small.
Putting these remarks and conclusions together, we arrive at the “local

linearised model”

ǫ
dx

dt
= −a(x− x0) − (b− b0),

db

dt
= x− x0. (6.1.9)

This model is depicted in the phase plane (Figure 6.1.1) and is constructed
as follows. Take b0 < 0, x0 > 0, then along the line

(x− x0) +
1

a
(b − b0) = 0,

dx

dt
= 0.

For

(x− x0) +
1

a
(b − b0) > 0,

dx

dt
< 0,

that is, x is decreasing and for x > x0,
db
dt > 0 and so b is increasing.
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Furthermore, away from the line

(x − x0) +
1

a
(b− b0) = 0,

|dx
dt | is large because of the presence of the small factor ǫ and consequently the
trajectories are largely vertical. Notice also that as the line

(x− x0) +
1

a
(b − b0) = 0

is approached from below along a trajectory with b < b0, the trajectory crosses
the line and is horizontal at the point of crossing. A similar phenomenon occurs
when b > b0 and we approach the line from above. In fact (b0, x0) is a stable
node. Figure 6.1.1 summarises these remarks.

6.2 The threshold effect

In this section we seek to modify the local mathematical model (6.1.9) so
as to incorporate the feature (b) of Section 6.1, namely that the model should
contain a threshold for triggering the electrochemical wave. Of course we must
specify what is meant by the term threshold.

To help define these terms and so improve on the model (6.1.9), we recall
from Chapter 4 the following facts.

During the heartbeat cycle there are two equilibrium states, namely diastole
and systole. The diastolic state is included in our model (6.1.9) whereas the
systolic state is not, and so some modifications to include this are required.
Furthermore, we observe that the pacemaker triggers off an electrochemical
wave, which spreads slowly over the atria causing the muscle fibres to contract
fairly slowly. The wave then spreads rapidly causing the whole ventricle to
contract into systole.

This discussion suggests that, during the first part of the heartbeat cycle,
the muscle fibre x contracts slowly at first and then at a certain point rapidly
contracts further until the systolic equilibrium state is achieved. We shall call
the point at which the rapid contraction occurs the threshold. While this
contraction is going on, the chemical control variable b will be rising to a
value b1 corresponding to systole.

The remarks we have made so far are summarised in Figure 6.2.1.
Following contraction into systole, the muscle fibres rapidly relax and return

the heart to diastole and thus complete the cycle. The return is depicted
schematically by the dotted line in Figure 6.2.1.

The problem then is to seek to modify the equations (6.1.9) so as to in-
corporate the general features shown in Figure 6.2.1. Such a modification is
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x

bb1b0

threshold

systole

diastole

(b0,x0)

(b1,x1)

FIGURE 6.2.1: The heartbeat cycle.

largely developed by trial. We propose that the model (6.1.9) is modified to
the nonlinear form

ǫ
dx

dt
= −a(x− x0) − (b− b0) − (x− x0)

3 − 3x0(x− x0)
2,

db

dt
= x− x0. (6.2.1)

In order to assist with the development, we wish to write (6.2.1) in the form

ǫ
dx

dt
= −(x3 − Tx+ b), T > 0,

db

dt
= x− x0. (6.2.2)

If we use Taylor’s theorem to expand the right-hand side of the first equation
appearing in (6.2.2) about the point (b0, x0), we can compare the system
(6.2.2) with the system (6.2.1). Thus from (6.2.2)

ǫ
dx

dt
= −

[

x3
0 − Tx0 + b0 +

(

3x2
0 − T

)

(x− x0) + 3x0(x − x0)
2

+ (x− x0)
3 + (b − b0)

]

,

and so we deduce that
x3

0 − Tx0 + b0 = 0

and
3x2

0 − T = a,

from which
T = 3x2

0 − a
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and the control b0 is expressed in terms of x0 and a via the relation

b0 = 2x3
0 − ax0.

When tension has been appropriately identified, we shall see in the following
section that the system (6.2.2) can be considered as contributing to a “local”
model for the heartbeat cycle in that hypotheses H1 and H2 are included in
the system and the qualities depicted in Figure 6.2.1 are almost accounted for.

6.3 The phase plane analysis and the heartbeat model

In order to develop the final form of our model of the heartbeat cycle,
we begin by describing the phase plane portrait associated with the system
(6.2.2).

To begin with consider the curve

x3 − Tx+ b = 0 (6.3.1)

shown by the solid line ABCD in Figure 6.3.1.
On this curve dx/dt = 0 and the flow is parallel to the b axis. Near the

equilibrium (b0, x0) the configuration has that which is depicted in Figure
6.1.1. Furthermore, the direction of flow is determined by the second member
of the system (6.2.2).

If we are above the cubic curve (6.3.1), i.e., where

x3 − Tx+ b > 0,

then we see from (6.2.2) that dx/dt is large and negative and so the flow is
largely vertically downwards, whereas if we are below the curve (6.3.1) the
flow is vertically upwards. Thus, in general, the phase portrait consists of
vertical trajectories except in the neighbourhood of the cubic curve.

We notice also that the trajectories always flow towards the portions AB
and CD of (6.3.1) but always away from the portionBC. It is natural therefore
to refer to the segments AB,CD as attractors for the flow and the segment
BC as a repeller for the flow. The points B,C are important in that they
can be associated with the threshold phenomenon discussed in the previous
section.

If we now compare Figures 6.3.1 and 6.2.1, we see that the lower attractor
CD gives rise to trajectories which follow a path back to (b0, x0) similar to the
dotted line of Figure 6.2.1. Therefore the systolic state could be represented
by a point (b1, x1) on the attractor CD.

However, the flow on the upper attractor AB is not in accordance with
the general feature depicted by the solid line in Figure 6.2.1 in that there is
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FIGURE 6.3.1: Phase portrait for the system (6.2.2).

no mechanism for providing a trajectory corresponding to a smooth change
of the chemical control from b0 to b1. The mechanism for doing this could
be thought of as due to the pacemaker and thus is not present in the model
(6.2.2). If we switch the equilibrium state from (b0, x0) to (b1, x1), then the
flow on the upper attractor AB would provide trajectories similar to the solid
line in Figure 6.2.1. This is achieved for the alternative model

ǫ
dx

dt
= −(x3 − Tx+ b),

db

dt
= x− x1, (6.3.2)

the phase portrait of which is shown in Figure 6.3.2.
In this figure we see that the flow along the upper attractor AB does con-

form to the general behaviour of the solid line in Figure 6.2.1 and the point
B can be identified with the threshold. However, the flow along the lower at-
tractor CD cannot now be identified with the systolic state of the heartbeat
cycle.

What is required is a modification of either (6.2.2) or (6.3.2), which incor-
porates both the desirable features of Figures 6.3.1 and 6.3.2, but excludes
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FIGURE 6.3.2: Phase portrait for the system (6.3.2).

those features that do not conform to the known physiological behaviour of the
heartbeat cycle. A model that does satisfy the above criteria is the following:

ǫ
dx

dt
= −(x3 − Tx+ b),

db

dt
= (x− x0) + (x0 − x1)u, (6.3.3)

where u is a control variable associated with the pacemaker and is defined as
follows:

u = 1 for (a) b0 ≤ b ≤ b1 and for those values of x for which x3−Tx+b > 0
and for (b) b > b1 and all values of x.

u = 0 otherwise.

The system (6.3.3) will be called the heartbeat equations and the cor-
responding phase portrait is shown in Figure 6.3.3, where the dashed line
indicates the heartbeat cycle.

We should not leave the discussion leading up to the model (6.3.3) without
drawing the reader’s attention to the mathematical problem of proving that
there is a closed trajectory, shown dotted in Figure 6.3.3, corresponding to a
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FIGURE 6.3.3: Phase portrait for the heartbeat equations.

complete heartbeat cycle. This is a difficult problem and will not be pursued
here.

Finally we have to identify the contribution of tension to our model. To
help us here, imagine that the muscle fibres are not under tension so that
contraction into systole is slow and rather sluggish. In other words, we would
not expect the sharp downward trajectories shown in Figure 6.3.3 but rather
the slow behaviour shown in Figure 6.3.4.

Referring back to our model (6.3.3) we see that a portrait corresponding to
Figure 6.3.4 is obtained if we set T = 0. We therefore identify T as tension.
In the following section we shall consider this further when we discuss the
predictions of the model (6.3.3) compared with known physiological facts.

6.4 Physiological considerations of the heartbeat cycle

In this section we expand upon some of the physiological aspects of the
heartbeat outlined in Chapter 4 and see how they may be interpreted in the
context of the heartbeat equations (6.3.3).

Rybak in 1957 originated the following experiment. If the heart of a frog is
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diastole

systole

b0 b1

FIGURE 6.3.4: Low-tension heartbeat.

diastole

systole

b0 b1

FIGURE 6.4.1: The overstretched heart leading to cardiac failure.

taken out, then, not surprisingly, it ceases to beat. However, if it is then cut
open into a flat membrane and subject to slight tension, it begins to beat once
more and continues to do so for some hours. Alternatively, if the pacemaker
is removed, then again beating stops. Rybak’s experiment is analogous to set-
ting T = 0 in (6.3.3), leading to the sluggish cycle shown in Figure 6.3.4. As T
increases slightly we again obtain a figure similar to Figure 6.3.3, but this time
most of the work is done by the pacemaker wave in moving the control b from
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b0 to b1 and providing the large amount of squeezing necessary to contract
the heart into systole. In fact, this low-tension heartbeat corresponds to the
small atrial beat described in Chapter 4. Another relevant feature is known
as Starling’s law. This says that the more the muscle fibres are stretched
before beating the more forcible is the beat. Therefore suppose excitement of
one form or another causes adrenalin to be injected into the blood stream;
the adrenalin then causes the arteries to contract and the pulse rate increases,
which in turn causes the blood pressure to rise and the atria to push more
blood into the ventricles. Starling’s law describes how the stretched ventricles
give a larger beat, overcoming the increased arterial back-pressure and circu-
lating the blood faster. Starling’s law is present in the model (6.3.3) if T is
large, but not too large.

Finally, if the ventricles are overstretched beyond a certain point, as can
happen, for example, when someone with high blood pressure receives a sud-
den shock, then the heart may fail to beat, or only beat feebly and cardiac
failure may result. This particular aspect can be realised in our mathematical
model if we increase the tension so much that the threshold extends beyond
the systolic equilibrium point b1, that is, when

T >
(

27b21
/

4
)1/2

. (6.4.1)

This condition is such as to prevent the trigger from reaching threshold and
so the muscle fibres remain in diastole (see Figure 6.4.1). In other words the
heart does not beat and cardiac failure has occurred.

6.5 A model of the cardiac pacemaker

The heartbeat originates in the sino-atrial node, a region of cells which have
the capability of depolarising spontaneously towards the threshold, firing and
then recovering. However, the mechanism underlying the pacemaker wave is
not fully understood, even though it is the basis of the field of electrocardio-
graphy.

In this section we propose a tentative mathematical model of the pacemaker
firing mechanism that incorporates the control variable u introduced in the
previous section.

Let us suppose that the pacemaker is characterised by a state y, 0 ≤ y ≤ 1,
which satisfies the ordinary differential equation

dy

dt
= −γy + u, (6.5.1)

and that, when y = 1, the pacemaker fires and jumps back to y = 0. We regard
γ as a small positive number less than 1/4 and intrinsic to the pacemaker.
Furthermore, it is natural to suppose that the motion of y is periodic, of
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period T say. Thus if {tn} denotes the set of firing times we suppose u = 1
for tn < t ≤ tn + T/2 and u = 0 for tn +T/2 < t ≤ tn+1 where tn+1− tn = T .
In other words, the times {tn} correspond to the heart being in diastole while
the times {tn + T/2} correspond to the heart being in systole.

Equation (6.5.1) is a simple differential equation of integrating factor type
and is readily solved to give the solution

y(t) =

∫ t

tn

e−γ(t−t′)u(t′)dt′, (6.5.2)

where y(tn) = 0 and tn ≤ t ≤ tn+1. The equation for the firing times is
therefore

1 =

∫ tn+1

tn

e−γ(tn+1−t′)u(t′)dt′,

which because of the properties of u(t) can be written in the form

1 =

∫ tn+T/2

tn

e−γ(tn+1−t′)dt′,

i.e.,
γ = e−γ(tn+1−tn−T/2) − e−γ(tn+1−tn)

or
γ = e−γT/2 − e−γT . (6.5.3)

From (6.5.3) we can compute the period T as follows: setting z = e−γT/2 we
can write (6.5.3) as the quadratic equation

z2 − z + γ = 0,

the solutions of which are

z =
1

2
(1 ±

√

(1 − 4γ)),

i.e.,
2e−γT/2 = (1 ±

√

(1 − 4γ)). (6.5.4)

Since we expect γT to be small, we choose the positive root in (6.5.4), and if
we neglect terms of order higher than γ2 we have

2e−γT/2 ≈ 2 − 2γ − 2γ2,

which further approximates to

2(1 − γT/2) ≈ 2 − 2γ − 2γ2

or
T ≈ 2 + 2γ.

Thus if T is known, this equation can be used to estimate the parameter γ,
or conversely if γ is known from experiment then T can be estimated.
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6.6 Notes

This chapter has been largely motivated by the work of E.C. Zeeman.
Section 6.5 was inspired by the paper of B.W. Knight, Dynamics of encoding
in a population of neurons, J.Gen. Physiol., 59, 734–766, 1972.

Exercises

6.1 Verify the phase portrait (Figure 6.1.1) for the “local model” (6.1.9) by
solving the system for x and b as functions of t.

6.2 Provide a full phase plane analysis for the model (6.2.2).

6.3 Provide a full phase plane analysis for the heartbeat equations (6.3.3).

6.4 Verify the statements in Section 6.4 regarding Rybak’s experiment and
Starling’s law by analysing the behaviour of the phase plane trajectories
for the heartbeat equations as the tension T varies between T = 0 and
T = (27b21/4)1/2.

6.5 If the “cubic” term in the first of the heartbeat equations (6.3.3) is
replaced by a piecewise linear expression similar to that depicted in
Figure 4.3.4, a simplified model is obtained. Specifically, consider the
system

ǫ
dx

dt
= −F (x, b),

db

dt
= (x− x0) + (x0 − x1)u,

where

F (x, b) = x+ b+
√
T , x < −1

2

√
T ,

= x− b, −1

2

√
T ≤ x ≤ 1

2

√
T ,

= x+ b−
√
T , x >

1

2

√
T .

Provide a complete analysis of this model and compare the results with
those of the system (6.3.3).





Chapter 7

Mathematics of Nerve Impulse
Transmission

7.1 Excitability and repetitive firing

In this chapter we make a study of some of the principal properties of the
simplified model of nerve impulse transmission (4.4.7) due to FitzHugh and
Nagumo.

For the space clamped case the model is

du

dt
= u(1 − u)(u− a) − w + I(t),

dw

dt
= bu− γw, (7.1.1)

where 0 < a < 1, b > 0, γ ≥ 0 and I(t) is the total membrane current, which
may be an arbitrary function of time. If the space clamp is removed then the
model becomes

∂u

∂t
=
∂2u

∂x2
+ u(1 − u)(u− a) − w,

∂w

∂t
= bu− γw. (7.1.2)

To begin with we wish to determine whether the model (7.1.1) exhibits the im-
portant threshold property mentioned in Section 4.3. In mathematical terms
this property is the same as asking whether the system (7.1.1) is excitable.

Consider the ordinary differential equation,

dy

dt
= y(1 − y)(y − a), (7.1.3)

where y = 0, a, 1 are rest states. This equation has stable rest states at y = 0, 1
and an unstable rest state at y = a. These statements are easily checked by
observing that if initially y(0) < a then dy

dt < 0 and so y(t) → 0, whereas

if y(0) > a then dy
dt > 0 and y(t) → 1. The implication of this is that for

“small” (i.e., y(0) < a) initial data the solution is attracted to the rest state

177
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y = 0, whereas if the initial data is “large” (i.e., y(0) > a) then the solution
is attracted to y = 1. We call the parameter a the threshold and call the
equation (7.1.3) excitable.

Let us now see if a similar property is present in the system (7.1.1). For
simplicity we only consider the case where I(t) = 0. The case I(t) 6= 0 will
be discussed later. With I(t) = 0 the system (7.1.1) can be studied using the
techniques developed in Chapter 5. First of all it is an important requirement
that (7.1.1) has a unique rest state. That is, on setting

du

dt
=
dw

dt
= 0,

we require the pair (i.e., the nullclines)

w = u(1 − u)(u− a),

bu = γw (7.1.4)

to have the unique solution (u,w) = (0, 0). That is, the equation

u(1 − u)(u− a) =
b

γ
u

must have the single solution u = 0. For this to be the case the quadratic
equation,

u2 − (1 + a)u+ a+
b

γ
= 0,

can only have complex roots. That is, the parameters a, b, γ must be restricted
so that

(1 − a)2 < 4
b

γ
, γ > 0. (7.1.5)

Notice that if γ = 0 then (7.1.1) has the unique rest state (0, 0) without
restriction on the parameters a and b.

Linearising (7.1.1) about (0, 0) results in the system

du

dt
= −au− w,

dw

dt
= bu− γw. (7.1.6)

As in Chapter 5 we look for solutions of the form u = α expλt, w = β expλt.
Substituting these into equations (7.1.6) leads to the requirement that

(a+ λ)α+ β = 0,

(γ + λ)β − bα = 0,

which has nontrivial solutions α and β only if

λ2 + (a+ γ)λ+ b+ aγ = 0. (7.1.7)
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FIGURE 7.1.1: Global phase portrait for the system (7.1.8).

Since (b + aγ) and (a + γ) are positive, it follows that the roots of (7.1.7)
have negative real parts and so we conclude that the rest state (0, 0) is locally
stable. Such an analysis does not help to determine global properties of the
trajectories. Nevertheless let us try to use the ideas followed in treating the
simple problem (7.1.3). We consider the system

du

dt
= u(1 − u)(u− a) − w,

dw

dt
= bu− γw, (7.1.8)

subject to super threshold initial data

u(0) = u0, a < u0 < 1, w(0) = 0.

It follows from this that initially du
dt > 0, dw

dt > 0 and so (u,w) moves upwards
in the positive quadrant of the phase plane and further away from (0, 0).
Notice that as u and w increase, du

dt will decrease until it reaches the nullcline

w = u(1 − u)(u− a) where du
dt = 0 but dw

dt is still positive. Beyond this point
du
dt < 0 but w increases until the trajectory meets the nullcline γw = bu, where
dw
dt = 0 and du

dt < 0. Continuing this argument we see that the trajectory
returns to again meet the nullcline w = u(1 − u)(u − a) in the upper-left
quadrant where again du

dt = 0 and this time dw
dt < 0. From here, either the

trajectory progresses directly to (0, 0), if the solutions of (7.1.7) are real and
negative, or spirals towards (0, 0), if the solutions of (7.1.7) are complex with
negative real parts as shown in Figure 7.1.1.

The same sequence of arguments is used if the initial data are chosen so
that

u(0) = u0 > 1, w(0) = 0.

Although this is not a conclusive proof, it is enough to convince one that the
system (7.1.1) is excitable and that a is the threshold parameter.

Let us now consider the system in which the current I(t) is not zero but set
at some nonzero value I, which may be positive or negative. Whether I < 0
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FIGURE 7.1.2(a): Nullclines for I > 0.

or I > 0, the resulting system is still excitable. The only difference being that
the unique rest state is a solution to

u(1 − u)(u− a) − w + I = 0,

bu = γw, (7.1.9)

and is no longer at (0, 0). That is, for I > 0 the nullclines are as shown in
Figure 7.1.2(a) whereas for I < 0 the nullclines are as shown in Figure 7.1.2(b).

Of particular interest here is the case when I > 0. In their prize-winning
work, Hodgkin and Huxley observed that on applying a constant current to
the axon, repetitive firing of the action potential was observed. It is therefore
of interest to see whether a similar phenomena is present in the FitzHugh–
Nagumo system. Mathematically we ask whether the system (7.1.1) has pe-
riodic orbits or limit cycles. A natural tool for exploring this is to use the
Poincaré-Bendixson theorem discussed in Chapter 5, Section 5.6. To illustrate
the ideas involved we consider the system

du

dt
= u(1 − u2) − w,

dw

dt
= u. (7.1.10)

This system has the unique rest state (u,w) = (0, 0) and the nullclines are
shown in Figure 7.1.3.
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FIGURE 7.1.2(b): Nullclines for I < 0.
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FIGURE 7.1.3: Nullclines of the system (7.1.10).

Linearising (7.1.10) about (0, 0) we have the system

du

dt
= u− w,

dw

dt
= u (7.1.11)

from which the characteristic determinant is
∣

∣

∣

∣

1 − λ −1
1 −λ

∣

∣

∣

∣

= 0,

or

λ2 − λ+ 1 = 0,
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FIGURE 7.1.4: Region Ω for the system 7.1.10.

from which we conclude that (0, 0) is an unstable focus. This means that
trajectories starting in a neighbourhood of (0, 0) move away from (0, 0). To
be able to make use of the Poincaré-Bendixson theorem we need to show
that there is a larger region Ω surrounding (0, 0) within which all trajectories
starting in Ω remain in Ω for all time. Choosing such a region is often an art.
A suitable choice for the problem at hand is that shown in Figure 7.1.4.

Notice that since on replacing (u,w) by (−u,−w) leaves (7.1.10) unchanged,
it is sufficient to consider Figure 7.1.4 with u ≥ 0. On the face AB, w =
R, u ≤ 0 and dw

dt = u ≤ 0, with zero only occurring at u = 0. That is, for
any R, trajectories always enter Ω along AB. Similarly on the face AD, u =
−R, 0 ≤ w ≤ R and du

dt = −R(1 −R2) − w > 0 for R sufficiently large. Thus
we conclude that trajectories cross AD in the positive u direction for R large
enough.

On the face w = R− u,

du

dt
= u(1 − u2) −R + u,

dw

dt
= u

and so
dw

du
=

u

u(1 − u2) + u−R
.

If dw
du > −1 for 0 ≤ u ≤ R, for R sufficiently large, then trajectories will cross

in Ω along BC. Hence we need

dw

du
=

u

u(1 − u2) + u−R
> −1,
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for all 0 ≤ u ≤ R. This means that u < −u(1 − u2) − u+R, or

H(u) ≡ 3u− u3 −R < 0,

for 0 ≤ u ≤ R.

Now H(u) can be rewritten in the form

H(u) = −(u+ 2)(u − 1)2 + 2 −R < 0,

if R ≥ 2. So we conclude that if R is sufficiently large then all trajectories
of (7.1.10) remain in Ω. It now follows from the Poincaré-Bendixson theorem
that all trajectories converge to a limit cycle contained in Ω.

An alternative way of considering the flow along the segment BC is to argue
as follows:

Since n = 1√
2
(1, 1) is the outward unit normal vector to BC and (du

dt ,
dw
dt )

is tangential to all trajectories, then where a trajectory crosses the boundary
BC, the flow will be inwards if

n ·
(

du

dt
,
dw

dt

)

< 0, w = R − u. (7.1.12)

That is, we require

(1, 1) · (u(1 − u2) −R+ u, u) = 3u− u3 −R,

= H(u) < 0,

for 0 ≤ u ≤ R as above.

We now return to the system (7.1.1) with I(t) = I > 0 and constant. The
system has the unique rest point (uc, wc) given by the solution to (7.1.8). For
excitability we again wish to find an annular region Ω in the (u,w)-plane that
does not contain the rest point (uc, wc) and for which the Poincaré-Bendixson
theorem can be applied. Suppose we construct a large circle of radius R in the
(u,w)-plane. We want to show that for R sufficiently large the flow is always
directed inwards. To do this set

u = r cos θ, w = r sin θ. (7.1.13)

Then

du

dt
=
dr

dt
cos θ − r

dθ

dt
sin θ,

= u(1 − u)(u− a) − w + I,

dw

dt
=
dr

dt
sin θ + r

dθ

dt
cos θ,

= bu− γw,
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and so

dr

dt
= u(1 − u)(u − a) cos θ − w cos θ + I cos θ + bu sin θ − γw sin θ,

= r cos2 θ(1 − r cos θ)(r cos θ − a) − r sin θ cos θ + I cos θ

+ br sin θ cos θ − γr sin2 θ. (7.1.14)

Now let r → ∞. Due to the presence of the cubic term in u on the right-
hand side of (7.1.14) we have dr

dt ≤ 0, for all θ. ¿From the Poincaré-Bendixson
theorem we claim that there will be a limit cycle in the phase plane if the rest
point (uc, wc) is an unstable node or focus. To investigate this we linearise
(7.1.1) about (uc, wc).

Set

u = uc + ξ,

w = wc + η, (7.1.15)

and expand f(u) ≡ u(1 − u)(u− a) as a Taylor series about (uc, wc) giving

f(u) = f(uc) + f ′(uc)ξ +O(ξ2). (7.1.16)

The linearised system is









dξ

dt

dη

dt









=

(

f ′(uc) −1

b −γ

)

(

ξ
η

)

. (7.1.17)

The characteristic determinant is therefore
∣

∣

∣

∣

∣

f ′(uc) − λ −1

b −γ − λ

∣

∣

∣

∣

∣

= 0,

or

λ2 + (γ − f ′(uc))λ+ b− f ′(uc)γ = 0. (7.1.18)

For (uc, wc) to be unstable we need

γ − f ′(uc) < 0 b− f ′(uc)γ > 0,

γ < f ′(uc) < b/γ. (7.1.19)

An interpretation of the inequality (7.1.19) is that the slope of the u nullcline
at (uc, wc) must be less than the slope of the w nullcline at that point. Finally
we conclude from (7.1.19) and the Poincaré-Bendixson theorem that there is
a limit cycle. That is, the FitzHugh–Nagumo system exhibits repetitive firing
as originally observed by Hodgkin and Huxley.
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7.2 Travelling waves

We now investigate travelling wave solutions to the system (7.1.2). Such
solutions are of the form

u = φ(x + ct), w = ψ(x+ ct), (7.2.1)

subject to the requirement that, with ξ = x+ ct,

lim
|ξ|→∞

φ(ξ) = lim
|ξ|→∞

φ′′(ξ) = lim
|ξ|→∞

ψ(ξ) = 0. (7.2.2)

Among the many problems to be investigated in relation to travelling waves
are the following:

(a) provide analytic evidence to support the conjecture that the potential
φ(x+ ct) has a form similar to that depicted in Figure 4.3.2;

(b) obtain estimates for the wave speed c.

In the course of investigating these problems, we shall see that the parame-
ters a, b and γ entering in the system (7.1.2) cannot be chosen arbitrarily but
must satisfy some simple constraints.

As a first step to analysing the above problems we substitute the supposed
solutions (7.2.1) into (7.1.2) to obtain the coupled system of ordinary differ-
ential equations

φ′′ = cφ′ − φ(1 − φ)(φ− a) + ψ,

cψ′ = bφ− γψ, (7.2.3)

where the primes denote differentiation with respect to ξ. If we set θ = φ′

then (7.2.3) can be written as the system

θ′ = cθ − φ(1 − φ)(φ − a) + ψ,

φ′ = θ,

ψ′ =
b

c
φ− γ

c
ψ. (7.2.4)

The critical points of this system corresponding to “rest states” of the system
(7.2.4) are given by

(

0, φi,
b

γ
φi

)

, i = 1, 2, 3, (7.2.5)

provided γ > 0 and φi is a root of the equation

x

[

(x − a)(1 − x) − b

γ

]

= 0. (7.2.6)
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An important requirement of the system (7.2.4) is that it has a unique “rest
state” and this can only be achieved if the cubic equation (7.2.6) has only the
real root x = 0. In other words the quadratic equation

x2 − (1 + a)x+ a+
b

γ
= 0

must have complex roots. As argued in Section 7.1 we know that this leads
to the restriction

(1 − a)2 < 4
b

γ
, γ > 0. (7.2.7)

Again if γ = 0 then (7.2.4) has the unique rest state (0, 0) without any re-
strictions on the parameters a, b.

A complete “phase plane” analysis of the system (7.2.4) is quite difficult
due to the fact that it is a third order system rather than a second order one.
The methods we employ in this situation will, as shown in the next section,
be somewhat different from those discussed in Chapter 5. As a prelude to this
consider the special case in which b = 0. Here the system (7.2.4) partially
decouples in that ψ now satisfies the equation

ψ′ = −γ
c
ψ,

from which it follows that

ψ = A exp

(

γξ

c

)

.

For such a solution to satisfy the conditions (7.2.2) it is clear that A = 0.
In other words ψ ≡ 0 and the system (7.2.4) simplifies to the second order
system

θ′ = cθ − φ(1 − φ)(φ − a),

φ′ = θ. (7.2.8)

In the (φ, θ) phase plane there are three finite singular points, namely

(0, 0), (a, 0), (1, 0). (7.2.9)

Following the treatment of Chapter 5, we see that (0, 0) and (1, 0) are saddle-
points whereas (a, 0) is a centre if c = 0, a repulsive spiral for 0 < c <
2
√

[a(1 − a)] or a repulsive node if c ≥ 2
√

[a(1 − a)] (see Figure 7.2.1).

To provide a complete, that is global, analysis of the (φ, θ) phase plane is
quite a formidable task and will not be pursued here. However, a glance at
Figure 7.2.1 leads one to ask whether there is a trajectory which leaves (0, 0)
and enters (1, 0). The answer to this is certainly “yes” and one such trajectory
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FIGURE 7.2.1: Local behaviour of the phase plane.

is provided by the answer to Exercise 4.8. That is, if c =
√

2(1
2−a), 0 < a < 1

2 ,
we have the solution

φ(ξ) =
1

1 + exp −ξ/
√

2
, θ(ξ) =

exp −ξ/
√

2√
2(1 + exp −ξ/

√
2)2

. (7.2.10)

In fact this is the only trajectory that connects the points (0, 0), (1, 0).

7.3 Qualitative behaviour of travelling waves

If we look at Figure 4.3.2 we observe that the graph of the membrane
potential crosses the ξ axis at one point. Evidence that supports the same
type of behaviour for φ can be demonstrated as follows. Integrate (7.2.3) over
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the range −∞ < ξ <∞ and use the conditions (7.2.2) to obtain
∫ ∞

−∞
φ(1 − φ)(φ − a)dξ =

∫ ∞

−∞
ψ dξ

and
∫ ∞

−∞
ψ dξ =

b

γ

∫ ∞

−∞
φdξ

provided γ 6= 0. Eliminating ψ between these identities shows that
∫ ∞

−∞

(

φ(1 − φ)(φ − a) − b

γ
φ

)

dξ = 0.

This means that the function φ(1 − φ)(φ − a) − b
γφ must change sign and,

since we require the inequality (7.2.7) to hold, it follows that the equation

φ(1 − φ)(φ − a) − b

γ
φ = 0

has only the root φ = 0. In other words φ = 0 for at least one value of ξ. This
argument of course does not preclude the possibility that φ = 0 for more than
one value of ξ and so does not completely confirm Figure 4.3.2.

In what follows we assume that φ and ψ are sufficiently well behaved for
all integrals that occur to converge.

Multiply the first of equations (7.2.3) by φ and the second by ψ, and then
integrate the resulting expressions with respect to ξ from −∞ to ∞. This
together with the conditions (7.2.2) gives

∫ ∞

−∞
φ2(1 − φ)(φ − a)dξ =

∫ ∞

−∞
(φ′)2dξ +

∫ ∞

−∞
φψ dξ,

γ

∫ ∞

−∞
ψ2dξ = b

∫ ∞

−∞
φψ dξ. (7.3.1)

Next we repeat the process but this time we multiply by φ′ and ψ′, respec-
tively. The result is

c

∫ ∞

−∞
(φ)′

2
dξ = −

∫ ∞

−∞
φ′ψ dξ,

c

∫ ∞

−∞
(ψ)′

2
dξ = b

∫ ∞

−∞
φψ′ dξ. (7.3.2)

But
∫ ∞

−∞
φ′ψ dξ = −

∫ ∞

−∞
φψ′dξ

and so from (7.3.2) we find that

b

∫ ∞

−∞
(φ)′

2
dξ =

∫ ∞

−∞
(ψ)′

2
dξ. (7.3.3)
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Finally, multiply the second of equations (7.2.3) by φ and integrate, using
(7.3.1), to get

b2
∫ ∞

−∞
(φ)

2
dξ = bc

∫ ∞

−∞
φψ′dξ + γ2

∫ ∞

−∞
(ψ)

2
dξ. (7.3.4)

If we now eliminate
∫∞
−∞ (φ)′2dξ,

∫∞
−∞ (ψ)2dξ,

∫∞
−∞ φψ′dξ and

∫∞
−∞ φψ dξ be-

tween equations (7.3.1)–(7.3.4) we obtain

b

∫ ∞

−∞

(

b

γ
φ2 − φ2(1 − φ)(φ − a)

)

dξ =
(c2 − γ)

γ
.

∫ ∞

−∞
(ψ)′

2
dξ. (7.3.5)

If, instead of eliminating
∫∞
−∞ ψ2dξ, we eliminate

∫∞
−∞ (ψ′)2dξ then we obtain

the identity

b

∫ ∞

−∞

(

b

c2
φ2 − φ2(1 − φ)(φ − a)

)

dξ =
γ

c2
(γ − c2)

∫ ∞

−∞
ψ2 dξ. (7.3.6)

Now consider the integrand on the left-hand side of (7.3.5). We have

φ2

(

b

γ
+ (a− φ)(1 − φ)

)

= φ2

[

(

φ− (1 + a)

2

)2

+
b

γ
− (1 − a)2

4

]

≥ 0,

on noting the inequality (7.2.7). Thus since the left-hand side of (7.3.5) is
positive, the same must be true of the right-hand side and this means that

c2 > γ, (7.3.7)

which provides a lower bound on the wave speed c. A better lower bound can
be achieved as follows. Using the inequality (7.3.7) we deduce from (7.3.6)
that

∫ ∞

−∞

(

b

c2
φ2 − φ2(1 − φ)(φ − a)

)

dξ < 0

and so the expression b
c2 − (1 − φ)(φ − a) must take negative values. This is

possible if and only if

(1 + a)2 > 4

(

b

c2
+ a

)

,

i.e.,

(1 − a)2 > 4
b

c2

and so
c2 > 4b(1 − a)2 > γ. (7.3.8)

In establishing this lower bound on c we can obtain further insight into the
role of a as a threshold parameter. Since the expression b

c2 − (1 − φ)(φ − a)
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must take negative values, it follows that the maximum value φmax of φ must
exceed the smallest root of the equation

b

c2
− (1 − φ)(φ − a) = 0.

That is,

φmax >
1 + a

2
− 1

2

(

(1 − a)2 − 4b

c2

)1/2

.

But more than this, it is easy to see that

a <
1 + a

2
− 1

2

(

(1 − a)2 − 4b

c2

)1/2

,

and so
φmax > a.

¿From this fact we again see that a plays the role of a threshold parameter.
To conclude our discussion of the qualitative behaviour of the travelling

wave φ(ξ) we remark that there are a number of problems remaining:

(a) Obtain an upper bound for the wave speed c.

(b) Is the travelling wave φ stable with respect to small perturbations?

(c) Are there other wave-like solutions?

These and other problems have been discussed in the literature but we shall
not pursue them further here.

7.4 Piecewise linear model

In Chapter 4 it was mentioned that further insight into the behaviour of
travelling waves can be gained by studying the more tractable of the system
(7.1.2) in which the cubic term is replaced by the piecewise linear form shown
in Figure 4.3.4. Here we consider the case where θ = π

2 and study travelling
wave solutions of the system

∂u

∂t
=
∂2u

∂x2
− u+H(u− a) − w,

∂w

∂t
= bu− γw, (7.4.1)

where H is the Heaviside step function defined as H(x) = 1 for x > 0,
H(x) = 0 for x < 0.
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We seek a travelling wave solution u = U(z), w = W (z) where u is of the
form shown in Figure 4.3.2 and z = x + ct. ¿From (7.4.1) it follows the U(z)
and W (z) must satisfy the system

Ü − cU̇ − U +H(U − a) −W = 0,

bU − cẆ − γW = 0. (7.4.2)

Since this system is autonomous we can specify U(0) = a and that for some
z1 > 0 we assume U(z1) = a. Furthermore at z = 0, U increases through the
threshold U = a and the nonlinear term jumps by 1 and so there must be
corresponding jump of −1 in Ü at z = 0,

[

Ü
]0+

0−

= −1. (7.4.3)

Similarly at z = z1, U is assumed to decrease through a and so there is a
further jump discontinuity in Ü at z = z1:

[

Ü
]z+

1

z−

1

= 1. (7.4.4)

If we differentiate the first of equations (7.4.2) and eliminate W then U is
seen to satisfy

...
U − (c− γ

c
)Ü − (1 + γ)U̇ − (b+ γ)

c
U = 0, (7.4.5)

for z ∈ (−∞,∞)\{0, z1}.
The characteristic polynomial associated with (7.4.5) is

p(λ) = λ3 − (c− γ

c
)λ2 − (1 + γ)λ− (b+ γ)

c
. (7.4.6)

By using the same arguments that led to the inequality (7.3.7) we find that
the c satisfies the same lower bound c2 > γ in the piecewise linear model. As
a consequence we conclude that the characteristic polynomial (7.4.6) has one
positive root α1 say and either two negative real roots α3 < α2 < 0 or two
complex roots with negative real part. Now U(z) is given by

U = aeα1z, z < 0,

= Aeα1z +Beα2z + Ceα3z, z ∈ (0, z1),

= Deα2z + Eeα3z, z > z1, (7.4.7)

where B, C, D, E and F are constants to be determined by demanding
that U and U̇ are continuous at z = 0 and z = z1 together with the jump
discontinuities (7.4.3) and (7.4.4). Thus at z = 0 we deduce that

A+B + C = a,

α1A+ α2B + α3C = aα1,

α2
1A+ α2

2B + α2
3C = aα2

1 − 1. (7.4.8)
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It is convenient to write this system of equations in matrix form:




1 1 1
α1 α2 α3

α2
1 α

2
2 α

2
3









A− a
B
C



 =





0
0
−1



 .

Now if we define

ρi =
dp

dλ
|λ=αi ,

then we find that

A− a = − 1

ρ1
, B = − 1

ρ2
, C = − 1

ρ3
. (7.4.9)

Similarly for the conditions to be satisfied at z = z1 we have the system:




1 1 1
α1 α2 α3

α2
1 α

2
2 α

2
3









Aeα1z1

(B −D)eα2z1

(C − E)eα3z1



 =





0
0
−1



 ,

from which we deduce that

D =
e−α2z1 − 1

ρ2
, E =

e−α3z1 − 1

ρ3
, (7.4.10)

together with
e−α1z1 = (1 − aρ1). (7.4.11)

Finally, continuity at z = 0 and z = z1 give the conditions

A+B + C = a,

Aeα1z1 +Beα2z1 + Ceα3z1 = a,

Deα2z1 + Eeα3z1 = a. (7.4.12)

Using equations (7.4.11) and (7.4.12) we obtain the relation

a = − 1

ρ1
− (1 − aρ1)

ρ2
e−α2/α1 − (1 − aρ1)

ρ3
e−α3/α1 . (7.4.13)

For a, b and γ fixed the roots αi as well as the derivatives ρi are all functions
of the wave speed c. This means that (7.4.13) is a transcendental equation
to be solved for c, then the above equations can be solved for the unknowns
A, B, C, D and E.

It turns out that it is better to consider c as fixed and think of (7.4.13) as
an equation for a. To this end define

s = (1 − aρ1) = e−α1z1 ,

then (7.4.13) can be written as

F (s) = 0,
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where

F (s) = 2 − s+
ρ1

ρ2
e−α2/α1 +

ρ1

ρ3
e−α3/α1 . (7.4.14)

Since s = e−α1z1 < 1 it is clear that we seek a solution of F (s) = 0 in (0, 1).
Using the relations between αi and ρi it is easy to show that

F (0) − 2 = 0 = F (1) =
dF (1)

ds
,

and
d2F

ds2
(1) =

ρ1

α2
1

− 2 = 1 − 2

α1
(c− γ

c
) − (1 + γ)

α2
1

.

If F has a maximum at s = 1 then it must have a root in (0, 1) and this can
only happen if

α3
1 − 2α2

1(c−
γ

c
) − α1(1 + γ) < 0.

Combining this with (7.4.6), i.e., p(α1) = 0 we obtain the estimate

α1 >

(

b+ γ

c2 − γ

)1/2

. (7.4.15)

Since c2 − γ > 0 this estimate implies that p

(

(

b+γ
c2−γ

)1/2
)

< 0, which gives

the inequality

(

b+ γ

c2 − γ

)3/2

−
(

b+ γ

c2 − γ

)1/2

(1 + γ) − 2
(b+ γ)

c
< 0.

It is tedious to extract an estimate of the wave speed c from this inequality
in general; however in the case where γ = 0 the inequality simplifies to

(

b

c2

)3/2

−
(

b

c2

)1/2

− 2
b

c
< 0,

leading to

c2 >
b

(1 + 2b1/2)
. (7.4.16)

If with b fixed, in this case, we allow c to range over a set of values greater
than this and solve F = 0 for s ∈ (0, 1), and so for a, we can make a plot of c
against a for which a travelling wave exists. It turns out that for each value of
a there are two possible values of c. The higher speed corresponds to a stable
wave, while the slower wave is unstable.
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7.5 Notes

A detailed discussion of the phase plane depicted in Figure 7.2.1 together
with the global behaviour of the system (7.2.8) is contained in the paper by
H.P. McKean, Nagumo’s equation, Adv. Math., 4 209–223, 1970. A detailed
account of the piecewise linear model considered in Section 7.4 is to be found
in the paper by J. Rinzel and J. B. Keller, Travelling wave solutions of a nerve
conduction equation, Biophysical Journal, 13 1313-1337, 1973.

Exercises

7.1 Consider the space clamp model (7.1.1) where the induced current I
is assumed constant. Determine the critical points of this system when
the current takes the values I = b

γ , I = ab
γ .

7.2 Prove that the system (7.1.1) has a single unstable critical point only
when it lies on that part of the u-nullcline which has a positive gradient.

7.3 Verify the local behaviour of the phase plane depicted in Figure 7.2.1
for the system (7.2.8).

7.4 Consider the general system:

∂u

∂t
=
∂2u

∂x2
+ f(u) − w,

∂w

∂t
= bu− γw,

where f(0) = 0.
Derive the equations to be satisfied by a travelling wave u(x, t) = φ(x+
ct), w(x, t) = ψ(x + ct), and determine conditions on f(φ) so that the
resulting system has a unique rest state.

7.5 Derive the identities (7.3.5) and (7.3.6).

7.6 Suppose the function f(u) in Exercise 7.4 is specialised to

f(u) = −u, u ≤ a/2,

= u− a, a/2 ≤ u ≤ (1 + a)/2,

= 1 − u, (1 + a)/2 ≤ u.

Does this system exhibit the same types of behaviour as found in the
original FitzHugh–Nagumo system?
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7.7 Suppose the function f(u) in Exercise 7.4 is specialised to

f(u) = −u+H(u− a).

Determine travelling periodic wave trains. In the notation of Section 7.4
construct solutions U(z) of period T satisfying the periodic, continuity
and jump conditions

U(0+) = U(T−) = a,

Uz(0
+) = Uz(T

−),

Uzz(0
+) = Uzz(T

−) − 1,

U(z+
1 ) = U(z−1 ) = a,

Uz(z
+
1 ) = Uz(z

−
1 ),

Uzz(z
+
1 ) = Uzz(z

−
1 ) + 1.

For fixed a, b and γ these conditions yield eight conditions for nine
unknowns. Show that as T is varied one may solve, in principle, for the
wave speed c and z1. Compute the dispersion curve of c versus T .

7.8 Suppose the function f(u) is as given in Exercise 7.6. Show that in this
case the FitzHugh–Nagumo system has three rest states provided

b

γ
<

1 − a

a+ 1
.

In this case construct travelling wave solutions connecting the rest states
(0, 0) and ( γ

γ+b ,
b

γ+b).

7.9 Under the conditions of Exercise 7.8 construct periodic wave solutions
of period T to the FitzHugh–Nagumo system of the form

u(x, t) = U(kx+ ωt), w(x, t) = W (kx+ ωt),

where the parameters k and ω satisfy the conditions

k2 =
1 − γ

4π2
T 2, ω2 =

b− γ2

4π2
T 2.

7.10 Use the Poincaré Bendixson theorem to establish the existence of closed
orbits to the FitzHugh–Nagumo system of Exercise 7.9.

7.11 Write MATLAB programs to compute travelling waves and periodic
travelling waves to the FitzHugh–Nagumo system.





Chapter 8

Chemical Reactions

8.1 Wavefronts for the Belousov–Zhabotinskii reaction

In this chapter we discuss a simplification of the Belousov–Zhabotinskii
reaction model described in Section 4.4. In particular, we give a qualitative
analysis of the front of certain travelling concentration waves which have been
observed frequently in experiments.

To begin with, we assume that the wave front depends primarily on the con-
centrations of bromous acid (HBrO2), which we have denoted by X , and the
bromide ion (Br−) denoted by Y and to a lesser extent on the concentration
of the oxidised state Ce(IV ) denoted by Z. We also assume that the diffusion
coefficients DX , DY are constant and that DX = DY = D. Furthermore, for
simplicity, we consider only one space dimension x.

Therefore, if we neglect the concentration Z and take note of the above
assumptions, the reaction–diffusion system (4.5.9)–(4.5.11) reduces to

∂X

∂t
= k1AY − k2XY + k3AX − 2k4X

2 +D
∂2X

∂x2
,

∂Y

∂t
= −k1AY − k2XY +D

∂2Y

∂x2
. (8.1.1)

For later purposes it is convenient to nondimensionalise (8.1.1) by setting

u =
2k4X

k3A
, v =

k2Y

k3Ar
,

x′ =

(

k3A

D

)1/2

x, t′ = k3At,

L =
2k4k1

k2k3
, M =

k1

k3
, b =

k2

2k4
, (8.1.2)

where r is a suitable parameter. The reason for making these transformations
is that the solutions u and v, which are of interest, lie in the interval 0≤u, v≤ 1.

With the transformations (8.1.2), the system (8.1.1) takes the form

∂u

∂t′
= Lrv + u(1 − u− rv) +

∂2u

∂x′2
,

∂v

∂t′
= Mv − buv +

∂2v

∂x′2
.

197
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From experimental measurements it is found that r varies from between 10
to about 50 while

L ∼ 8.4 × 10−6, M ∼ 2.1 × 10−4 and b ∼ 2.5 × 10.

Since u and v are of order 1, the values of L and M allow us to neglect the
first terms on the right of the above system. With this further simplification
and removing the primes from x′, t′, we arrive at the travelling front model:

∂u

∂t
= u(1 − u− rv) +

∂2u

∂x2
,

∂v

∂t
= −buv +

∂2v

∂x2
, (8.1.3)

where x ∈ (−∞,∞) and 0 ≤ u, v ≤ 1.
The solutions we are interested in are those that satisfy the conditions

lim
x→−∞

u(x, t) = 0 = lim
x→∞

v(x, t),

lim
x→∞

u(x, t) = 1 = lim
x→−∞

v(x, t). (8.1.4)

One class of solutions that satisfy these conditions precisely are the desired
travelling fronts. However, before discussing these further we observe that if
u = 1 − v and b = 1− r, r ≤ 1, the system (8.1.3) reduces to the single
equation

∂u

∂t
= bu(1 − u) +

∂2u

∂x2
, (8.1.5)

where b = 1− r. This equation is called Fisher’s equation and arises in the
study of population genetics. It also occurs in many other problems and we
shall come across it again in a different context in Chapter 11. It is there-
fore sufficiently important to warrant some attention before going on to the
general case.

8.2 Phase plane analysis of Fisher’s equation

We seek a solution u of (8.1.5) in the form of a travelling wave, viz.

u(x, t) = φ(x+ ct), (8.2.1)

where 0 ≤ φ ≤ 1 and c (>0) is the wave speed.
Bearing in mind the conditions (8.1.4) we see that, as a function of ξ =

x + ct, φ must satisfy

lim
ξ→−∞

φ(ξ) = 0, lim
ξ→∞

φ(ξ) = 1. (8.2.2)
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On substituting (8.2.1) into (8.1.5) we see that φ satisfies the nonlinear ordi-
nary differential equation

φ′′ − cφ′ + bφ(1 − φ) = 0, (8.2.3)

where the primes denote differentiation with respect to ξ.
By writing φ′ = ψ, (8.2.3) can be rewritten as the system

ψ′ = cψ − bφ(1 − φ),

φ′ = ψ. (8.2.4)

The singular points of this system in the (φ, ψ) plane are (0, 0) and (1, 0),
respectively.

If we analyse the character of these singular points we find that (0, 0) is an
unstable node if c ≥ 2

√
b, a stable focus if 0 < c < 2

√
b and a centre if c = 0.

The point (1, 0) is a saddle-point for all c ≥ 0.
Observe that since we are looking for the particular solution of (8.2.4) sat-

isfying the condition 0 ≤ φ ≤ 1 and (8.2.2), the range 0 ≤ c < 2
√
b is inadmis-

sible, since in this situation φ would become negative near the singular point
(0, 0). Thus for the required solution we must have c ≥ 2

√
b.

In fact it can be shown that there exists a unique trajectory leaving (0, 0)
and entering (1, 0), which remains inside the strip (0 ≤ φ ≤ 1, ψ ≥ 0), but we
shall not prove this here.

8.3 Qualitative behaviour in the general case

Let us now look for wavefront solutions

u(x, t) = φ(x + ct), v(x, t) = ψ(x+ ct), (8.3.1)

to the system (8.1.3), (8.1.4). As before if we set ξ = x+ ct, then φ, ψ satisfy
the equations

φ′′ − cφ′ + φ(1 − φ− rψ) = 0,

ψ′′ − cψ′ − bφψ = 0, (8.3.2)

where

lim
ξ→∞

φ(ξ) = 1 = lim
ξ→−∞

ψ(ξ),

lim
ξ→−∞

φ(ξ) = 0 = lim
ξ→∞

ψ(ξ). (8.3.3)

It is possible to write (8.3.2) as an equivalent system of first-order equations.
However, the resulting system is of fourth order and a phase plane analysis
would be extremely difficult to perform. Instead, we shall treat (8.3.2) by
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methods similar to those used to discuss the FitzHugh–Nagumo equations of
Chapter 7.

Recall that we are looking for wavefronts φ, ψ such that 0 ≤ φ, ψ ≤ 1. If we
suppose φ ≥ 0 then we shall show that φ and ψ have the following properties:

(i) ψ ≥ 0, (ii) ψ′ ≤ 0, (iii) φ′ ≥ 0. (8.3.4)

In other words, we shall show that φ is monotonic increasing from 0 to 1 while
ψ is monotonic decreasing from 1 to 0 as ξ varies from −∞ to +∞.

To prove (i) suppose ψ < 0 for some range of ξ. Then since ψ(−∞) = 1 and
ψ(∞) = 0 there must be a negative minimum for which ψ′ = 0 and ψ′′ > 0.
But from (8.3.2) ψ′′ = bφψ < 0 at such a point and this contradicts the above
inequalities. Thus we must have ψ ≥ 0 for all values of ξ.

To show that ψ′ ≤ 0 we argue as follows. Since φ ≥ 0 by assumption and
we have just proved that ψ ≥ 0, then from (8.3.2) we have

ψ′′ − cψ′ = bφψ ≥ 0.

Now ψ cannot have a positive maximum since this would mean that for some
point ξ0, ψ

′(ξ0) = 0, ψ′′ < 0, which is impossible. Thus either ψ′ ≥ 0 or ψ′ ≤ 0
for all ξ. Since ψ ≥ 0, ψ(−∞) = 1, ψ(∞) = 0, we have ψ′ ≤ 0.

The statement (iii) that φ′ ≥ 0 is a little more involved and has to be proved
in steps depending on whether 0 < r < 1, r = 1 or r > 1. To begin with we
note that 1 − φ− rψ 6= 0, since if it were not so (8.3.2) would yield

φ′′ − cφ′ = 0

giving φ = A + B exp cξ, which cannot satisfy the conditions (8.3.3) for any
choice of A and B. Set

F = 1 − φ− rψ (8.3.5)

and combine equations (8.3.2) to give

F ′′ − cF ′ − φF = −brφψ ≤ 0, (8.3.6)

from which it follows that F cannot have a negative minimum. From the
boundary conditions (8.3.3) we have

lim
ξ→−∞

F (ξ) = 1 − r, lim
ξ→∞

F (ξ) = 0. (8.3.7)

There are now three cases, 0 < r < 1, r = 1, r > 1, to consider.
Take the case 0 < r < 1; then since F (−∞) > 0 and the fact that F cannot

have a negative minimum we must have F ≥ 0 for all ξ. Furthermore, F
cannot have a positive minimum followed by a positive maximum. Suppose
this could happen; then there would be points ξmin, ξmax where ξmin < ξmax

such that
F ′ = 0, F ′′ > 0
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at ξ = ξmin, i.e.,
F ′′ = φF − brφψ > 0

or
F > brψ

at ξ = ξmin. Similarly, at ξ = ξmax we have

F < brψ

at ξ = ξmax.
Since we have supposed that F (ξmax) > F (ξmin), the above inequalities

could only hold if ψ(ξmax) > ψ(ξmin), which is impossible because we have
already proved that ψ′ ≤ 0. This contradiction proves the statement. It is
possible, however, for F to have a positive maximum. In any case, we have
proved that F ≥ 0 for all ξ and so from (8.3.2)

φ′′ − cφ′ = −φF ≤ 0.

Suppose φ has a positive maximum, then in order to satisfy the condition
φ→ 1 as ξ → ∞, φ would have to approach 1 from above, which would mean
that F = 1 − φ − rψ < 0 for some range of ξ. This is a contradiction and so
φ′ ≥ 0 for all ξ and 0 < r < 1. The possibility φ′ ≤ 0 is excluded by virtue of
the boundary conditions (8.3.3).

Similar but more straightforward arguments are used to show that φ′ ≥ 0
for all ξ when r ≥ 1.

Let us now turn to the problem of estimating the wavefront speed c. Through-
out remember that 0 ≤ φ, ψ ≤ 1. Integrating the equations (8.3.2) from −∞
to ∞ gives

c =

∫ ∞

−∞
φ(1 − φ− rψ)dξ, (8.3.8)

and

c = b

∫ ∞

−∞
φψ dξ. (8.3.9)

Substituting for
∫ ∞

−∞
φψ dξ

then gives

c =
b

b + r

∫ ∞

−∞
φ(1 − φ)dξ. (8.3.10)

Now as ξ → −∞, the boundary conditions (8.3.3) require φ → 0 and ψ → 1
and so (8.3.2) behave near ξ = −∞ as the linearised equations

φ′′ − cφ′ + φ(1 − r) = 0,

ψ′′ − cψ′ − bφ = 0,
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the solutions of which are oscillatory unless

c2 > 4(1 − r), r ≤ 1. (8.3.11)

Oscillatory solutions are not possible asymptotically when r > 1. Thus (8.3.11)
gives a lower bound on the wave speed.

In order to obtain more useful information about the wave speed c and in
particular on its variation with b, we proceed as follows. Multiply the first
equation in (8.3.2) by φ and integrate to get

I ≡
∫ ∞

−∞
φ′2dξ = − c

2
+

∫ ∞

−∞
φ2(1 − φ− rψ)dξ. (8.3.12)

Similarly, repeating the process but multiplying first by φ′ gives

cI =

∫ ∞

−∞
φ′φdξ −

∫ ∞

−∞
φ′φ2dξ − r

∫ ∞

−∞
φ′φψ dξ

=
1

2
− 1

3
− r

∫ ∞

−∞
φ′φψ dξ,

i.e.,

I =
1

6c
− r

c

∫ ∞

−∞
φ′φψ dξ. (8.3.13)

We now estimate the integral appearing on the right-hand side of equation
(8.3.13) via Schwarz’s inequality which states that if F andG are integrable
then

∫ b

a

FGdξ ≤
(∫ b

a

F 2dξ

)1/2(∫ b

a

G2dξ

)1/2

.

In our case we take a = −∞, b = ∞, F = φ′, G = φψ to obtain

∫ ∞

−∞
φ′φψ dξ ≤

(
∫ ∞

−∞
φ′2dξ

)1/2(∫ ∞

−∞
(φψ)2dξ

)1/2

= I1/2

(∫ ∞

−∞
(φψ)2dξ

)1/2

≤ I1/2

(∫ ∞

−∞
(φψ)dξ

)1/2

= I1/2
(c

b

)

. (8.3.14)

Substituting this into (8.3.13) results in the inequality

I >
1

6c
− r

c

(c

b

)

I1/2

or

I +
r

(cb)1/2
I1/2 − 1

6c
> 0,
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i.e.,

(

I1/2 +
r

2(cb)1/2

)2

>
1

6c
+

r2

4cb

=
1

2c

(

1

3
+
r2

2b

)

and so

I1/2 > − r

2(cb)1/2
+

1

(2c)1/2

(

1

3
+
r2

2b

)1/2

,

i.e.,

I >
1

4bc

[

(

r2 +
2

3
b

)1/2

− r

]2

. (8.3.15)

Next, since 0 ≤ φ, ψ ≤ 1 we have from (8.3.12)

I = − c

2
+

∫ ∞

−∞
φ2(1 − φ)dξ − r

∫ ∞

−∞
φ2ψ dξ,

≤ − c

2
+

∫ ∞

−∞
φ(1 − φ)dξ,

= − c

2
+ c

(

b+ r

b

)

,

i.e.,

I <
c

2b
(b + 2r). (8.3.16)

Combining (8.3.16) and (8.3.15) to eliminate I we find that

1

4bc

[

(

r2 +
2

3
b

)1/2

− r

]2

≤ c

2b
(b+ 2r)

from which it follows that

c2 ≥
[(

r2 + 2
3b
)1/2 − r

]2

2(b+ 2r)
.

Numerical results show that c2 ≤ 4 and so we have the final result

[(

r2 + 2
3b
)1/2 − r

]2

2(b+ 2r)
≤ c2 ≤ 4. (8.3.17)

Again from numerical results (8.3.11) is a sharper lower bound for c2 when
0 < r < 1.
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8.4 Spiral waves and λ− ω systems

Spiral waves occur in a wide variety of biological, physiological and chem-
ical contexts. In the case of the latter the Belousov–Zhabotinskii mechanism
has been shown both experimentally and mathematically to exhibit many fas-
cinating spiral type waves in two dimensions, as well as in three dimensions
where they appear as scroll waves. The form of spiral wave observed depends
very much on the chemical concentrations used as well as the experimental
set up. Numerous examples of spiral waves arising in physiology can be found
in the book by Keener and Sneyd (see the notes at the end of this chap-
ter). For example, brain tissue can exhibit electrochemical waves of spreading
depression which spread through the cortex. These waves are typified by de-
polarisation of the neuronal membrane and decreased neural activity. Indeed
spiral waves have been seen to rotate about a lesion in brain tissue from the
cortex of a rat. In another context it has been suggested that sudden cardiac
death could involve three-dimensional spiral type waves of electrical activity,
which suddenly become unstable when the heart thickness exceeds some crit-
ical value. In biology spiral waves have also been observed in the signalling
patterns of the slime mould Dictyostelium discoideum.

In mathematical terms a spiral wave is a rotating time periodic solution
of an appropriate system of reaction–diffusion equations. At a given time the
solution appears as a typical spiral pattern and, as time varies, the whole
spiral moves like a rotating bicycle wheel with curved spokes. Suppose the
concentration of a reactant is described by its phase, φ. Then on using polar
coordinates r and θ we can write down a simple spiral wave as a periodic
function of φ given by

φ = Ωt±mθ + ψ(r), (8.4.1)

where Ω is the frequency, m is the number of arms of the spiral, ψ(r) is a
function of r which describes the type of spiral and ± in the mθ term specifies
the sense of rotation. Suppose we set φ = 0 and consider the steady state
then we can get a description of spiral forms by specifying the function ψ(r)
in (8.4.1). For example if we choose ψ(r) = ar and m = 1 with the constant
a > 0 we obtain the one-armed Archimedian spiral shown in Figure 8.4.1(a).
Similarly if ψ(r) = a ln r and m = 3 we obtain the three-armed logarithmic
spiral shown in Figure 8.4.1(b). A three-dimensional spiral of scroll type is
also shown in Figure 8.4.1(c).

The study of spiral wave solutions to general systems of reaction diffusion
equations has been widely pursued and often involves quite complex mathe-
matical analysis. A particular system which exhibits the main features of spiral
wave solutions and is more accessible to analytic treatment is the model λ−ω
system.
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(a) (b) (c)

FIGURE 8.4.1: Spiral wave formations: (a) one-armed Archimedean spi-
ral; (b) three-armed logarithmic spiral; (c) three-dimensional scroll-type spi-
ral.

This system for two reactants takes the form:

∂

∂t

(

u
v

)

=

(

λ(a) −ω(a)
ω(a) λ(a)

)(

u
v

)

+D∇2

(

u
v

)

, (8.4.2)

where u and v are the concentrations of two reactants, a2 = u2 + v2, ω(a)
and λ(a) are real functions of a, and ∇2 denotes the Laplacian operator,
defined in two dimensions by

∇2 =
∂2

∂x2
+

∂2

∂y2
. (8.4.3)

The first and crucial step in finding spiral wave solutions is to ensure that
when we set D = 0 in (8.4.2) the resulting system of ordinary differential
equations has a stable limit cycle. This requirement means that λ(a) must
have an isolated zero at a = a0 > 0, dλ/da < 0 at a = 0 and ω(a0) 6= 0. The
limit cycle is given by u2 + v2 = a0 with cycle frequency ω(a0).

If we introduce the complex variable w = u + iv then we can write (8.4.2)
as the single complex equation

∂w

∂t
= (λ+ iω)w +D∇2w. (8.4.4)

We now look for a solution of the form

w = A exp(iφ), (8.4.5)

where A is the amplitude of w and φ its phase. Substituting this into (8.4.4)
and equating real and imaginary parts we obtain the following pair of equa-
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tions for A and φ:

∂A

∂t
= Aλ(a) −DA | ∇φ |2 +D∇2A,

∂φ

∂t
= ω(a) + 2A−1D(∇A · ∇φ) +D∇2φ. (8.4.6)

Since polar coordinates are appropriate for the study of spiral waves we look
for solutions to (8.4.6) of the form

A = A(r), φ = Ωt+mθ + ψ(r), (8.4.7)

where Ω is the unknown frequency and m is the number of arms of the spiral.
On substituting these forms into equation (8.4.6) we obtain the system of
ordinary differential equations:

D
d2A

dr2
+
D

r

dA

dr
+

(

λ(a) −D

(

dψ

dr

)2

− Dm2

r2

)

A = 0

D
d2ψ

dr2
+D

(

1

r
+

2

A

dA

dr

)

dψ

dr
= Ω − ω(a). (8.4.8)

Multiplying the second of these equations by rA2 and integrating gives

dψ

dr
(r) =

1

DrA2(r)

∫ r

0

sA2(s) [Ω − ω(A(s))] ds. (8.4.9)

The next step before trying to solve the system (8.4.8) is to decide on appro-
priate boundary conditions. Clearly we need solutions to be regular at r = 0
and to remain bounded as r → ∞. So from the form of equations (8.4.8) and
(8.4.9) we conclude that

A(0) = 0,
dψ

dr
(0) = 0. (8.4.10)

Now suppose A → A∞ as r → ∞, then from (8.4.9) we have the asymptotic
approximation

dψ

dr
∼ 1

DrA2
∞

∫ r

0

sA2
∞[Ω − ω(A∞)]ds

=
(Ω − ω(A∞))r

2D
. (8.4.11)

¿From this we see that dψ/dr is bounded only if

Ω = ω(A∞). (8.4.12)

If we let r → ∞ in the first of equations (8.4.8) we find that

dψ

dr
(∞) =

(

λ(A∞)

D

)1/2

. (8.4.13)
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The above pair of equations is the dispersion relation and shows how the
amplitude of the spiral at infinity determines the frequency.

To get some idea of the structure of the spiral near r = 0 we look for a
solution of the form

A(r) = rc
∞
∑

n=0

anr
n, a0 6= 0. (8.4.14)

Substituting (8.4.14) into the first of equations (8.4.8) and equating powers
of r we see that the lowest-order term requires

c(c− 1) + c−m2 = 0 (8.4.15)

and so for A to be regular at r = 0 we must choose the positive root c = m.
Finally from equations (8.4.5) and (8.4.7) the structure of u and v near r = 0
is found to be

(

u
v

)

≈
(

rm cos(Ωt+mθ + ψ(0))
rm sin(Ωt+mθ + ψ(0))

)

(8.4.16)

Analytic solutions to the system (8.4.8) are difficult to obtain and so insight
into the structure of spiral waves is gained by numerical analysis or by inves-
tigating their behaviour by carrying out an approximate analysis as indicated
above near r = 0 or as r → ∞ (see Exercise 8.8 ).

8.5 Notes

For further information about the Belousov–Zhabotinskii reaction and many
related topics see J. D. Murray, Mathematical Biology, Springer-Verlag, Hei-
delberg, 2003.. Many examples of spiral waves arising in physiology are dis-
cussed in J. Keener and J. Sneyd, Mathematical Physiology, Springer-Verlag,
Heidelberg, 1998. A general geometrical theory approach to the study of spi-
ral waves is given in P. Grindrod, The Theory and Applications of Reaction-
Diffusion Equations, Patterns and Waves, Oxford University Press, Oxford,
1996. See also A. T. Winfrey, When Time Breaks Down: The Three-Dimensional
Dynamics of Electrochemical Waves and Cardiac Arrhythmias, Princeton Uni-
versity Press, Princeton, NJ, 1987.

Exercises

8.1 Show that the transformations (8.1.2) reduce equations (8.1.1) to the
equations (8.1.3).
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8.2 Analyse the behaviour of trajectories for the system (8.2.4) in the neigh-
bourhood of the singular points (0, 0), (1, 0) for all positive values of
the wavefront speed c.

8.3 Consider the system (8.3.2), (8.3.3). Use the arguments of Section 8.3
to show that φ′ ≥ 0 for ξ ∈ (−∞,∞) when r ≥ 1.

8.4 In the inequality (8.3.17) show that as b → 0 or r → ∞ it reduces to
c2 ≥ 0 and that if b→ ∞ or r → 0 the inequality reduces to c2 ≥ 1/3. In
the latter case, compare the result with that predicted by the inequality
(8.3.11).

8.5 Travelling bands of microorganisms, chemotactically directed, move into
a food source, consuming it as they go. A mathematical model for this
is given by

∂a

∂t
= −kb, ∂b

∂t
=

∂

∂x

[

D
∂b

∂x
− bχ

a

∂a

∂x

]

,

where b(x, t) and a(x, t) are the concentrations of bacteria and nutrient,
respectively, and D, χ and k are positive constants. Look for travelling
wave solutions , as functions of z = x−ct, where c is the wave speed, with
boundary conditions b → 0 as | z |→ ∞, a → 0 as z → −∞, a → 1 as
z → ∞. Hence show that b(z) and a(z) satisfy the ordinary differential
equations

db

dz
=

b

cD

[

kbχ

a
− c2

]

,
da

dz
=
kb

c
.

Find a differential relationship between b(z) and a(z).

In the case where χ = 2D show that

a(z) =
[

1 +Ke−cz/D
]−1

, b(z) =
c2

kD
e−cz/D

[

1 +Ke−cz/D
]−2

,

where K is an arbitrary constant which is equivalent to a linear trans-
lation and may be set to 1. Sketch the wave solutions and explain what
is happening biologically.

8.6 In the absence of diffusion show that equation (8.4.2) has a limit cycle
provided λ(a) has an isolated zero at some value a = a0 > 0, λ

′

(a0) < 0
and ω(a0) 6= 0.

8.7 Determine the dispersion relations for (a) λ(A) = 1 − A2, ω(A) =
−βA2, β > 0, (b) λ(A) = 1 −A, ω(A) = 1 + α(A− 1), α > 0.

8.8 To investigate the structure of spiral waves as r → ∞ assume that A
and ψ

′

are approximated by

A(r) = A0 +
A1

r2
, ψ

′

(r) =
B0

r
.
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By substituting these expressions into equation (8.4.8), in the case
where λ(A) = 1 − A2, ω(A) = −βA2, show that the unknown coef-
ficients are given by

A0 = 1, A1 = −Dm
2 + c2

2
, B0 = c,

where

c =
1

D

∫ ∞

0

sA2(s)[Ω + βA2(s)]ds.

8.9 The 1-dimensional analogue of a spiral wave is a pulse emitted from the
core. For the choices λ(a) = 1−A2, ω(a) = γA2 and D = 1 the system
(8.4.8) takes the form

d2A

dx2
+A

(

1 −A2 − (
dψ

dx
)2
)

= 0,

d2ψ

dx2
+

2

A

dA

dx

dψ

dx
= Ω − γA2.

By imposing the boundary conditions

A(x) ∼ A0x as x→ ∞,
dψ

dx
(0) = 0,

A(x),
dψ

dx
bounded as x→ ∞,

show that a solution is

A(x) =

(

Ω

γ

)1/2

tanh(x
√

2),

dψ

dx
(x) =

(

1 − Ω

γ

)1/2

tanh(x
√

2), Ω2 +
9Ω

2γ
− 9

2
= 0.





Chapter 9

Predator and Prey

9.1 Catching fish

Often one species uses another as food. For example, man uses fish, lions
consume gazelles and some wasps eat the caterpillars of moths. The presence
of one species can therefore have effects (sometimes irreversible) on another.
The study of such dynamic interactions is the topic of this chapter. For sim-
plicity, consideration will be limited to two species, though it must be under-
stood that in nature the situation is frequently much more complicated, with
several species involved and interacting in a complex manner. Nevertheless,
useful conclusions can be drawn from even relatively simple models and the
influence of various actions on the level of available resources ascertained.

Usually, the species regarded as food is called the prey and the consum-
ing species the predator. The aim is to construct predator–prey models that
are relevant, whether it is man killing deer, wasps eating caterpillars or man
harvesting timber, though humans often behave differently from other organ-
isms; some general aspects have already been treated in Section 4.5. To fix on
a specific illustration for the simplest model, we shall discuss how fishing can
affect the population of fish.

Let N(t) be the number of fish in a designated zone at time t. It will be
assumed that N varies continuously with t; in fact, N changes only by integers
but the error introduced by our approximation should not be appreciable
except possibly when N is small. In the absence of fishing, new fish can be
expected to be born at a rate proportional to existing numbers, say bN(t)
where b is a constant. Similarly, the rate at which fish die will be taken as
dN(t) with d constant. Then

dN

dt
= (b − d)N. (9.1.1)

The solution of this differential equation has been found in Section 1.1 and is

N(t) = N(0)e(b−d)t (9.1.2)

where N(0) is the population at time t = 0.
The solution (9.1.2) reveals that the fish population eventually disappears

if the birth rate is less than the death rate, i.e., b < d, is in equilibrium if b = d

211
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and increases exponentially if b > d, i.e., the reproductive rate is greater than
the mortality rate. Exponential growth in which the population doubles in
every interval 0.69/(b− d) of time is indeed exhibited by many species under
ideal conditions when they have boundless space, food and the resources they
need available. However, such growth cannot continue indefinitely in a finite
world and there must come a time when shortages of supplies inhibit the
exponential growth.

The preparation of models that allow for environmental constraints has
followed a variety of routes. One of the most popular is to replace (9.1.1) by

dN

dt
= a

(

1 − N

N0

)

N (9.1.3)

where a and N0 are positive constants. According to Section 1.3, this leads
to logistic growth and the population always ends up at N0 no matter what
level it started at. Thus N0 can be regarded as the maximum population that
can be sustained under (9.1.3). Equation (9.1.3) often appears in ecology in
the form

dN

dt
= r

(

1 − N

K

)

N.

Whether (9.1.3) is applicable to any particular population depends upon
either producing a convincing argument for the presence of each term or com-
paring its predictions with actual observations of the numbers in a population.
For instance, yeast grown in laboratory cultures follows the logistic curve ad-
mirably. On the other hand, the human population of the United States, while
fitting the logistic curve well from 1790 to 1910, grew much more strongly than
predicted from 1920 onwards and departed widely from the curve. In general,
it seems that the more complex the life history of an organism the less likely
its population is to sit on the logistic curve. This notwithstanding, there are
often sufficient periods of time for which the logistic curve can be applied to
justify retaining it as a model.

Another view is that environmental factors do not instantaneously change
the population but take some time to permeate through it. In that case the
rate of change depends upon the size of the population at an earlier time and
a possible model is

dN(t)

dt
= a

(

1 − N(t− T )

N0

)

N(t) (9.1.4)

where T is a constant representing the delay that transpires before effects are
felt. Equation (9.1.4) is commonly solved on the computer but its solution
bears little resemblance to the logistic curve in many circumstances and can
display oscillatory behaviour.

Although (9.1.3) can be solved analytically it is desirable to see what can be
deduced by employment of the phase plane since that method may be available
when analytical solution is precluded. Note first that there is equilibrium
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FIGURE 9.1.1: The trajectory for logistic growth.

when dN/dt = 0, i.e., when N = 0 or N = N0. Secondly, if dN/dt is plotted
against N in the phase plane the trajectory obtained is the parabola shown in
Figure 9.1.1. The parabola has a maximum of 1

4aN0 at N = 1
2N0. Also dN/dt

is positive when N is slightly less than N0 and negative when N is a bit larger
than N0. Consequently the directions on the trajectory are those indicated by
the arrows on the diagram. From these it is clear thatN always approaches the
equilibrium value N0 whereas a slight disturbance will cause it to depart from
the equilibrium atN = 0. Thus N = N0 corresponds to stable equilibrium and
N = 0 to unstable equilibrium. Evidently, the main features of the behaviour
can be extracted from the phase plane as well as from the explicit solution.

9.2 The effect of fishing

A stable environment allows the fish population to adopt a pattern as set
out in the previous section, but the disturbance caused by removing some
of the fish for food may be profound. Some idea of how the population is
affected and whether equilibrium still occurs can be achieved by supposing
the fish are caught at the constant rate c but the population is otherwise
governed by (9.1.3). Then
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FIGURE 9.2.1: The trajectory for constant fishing rate: (a) c < 1
4aN0; (b)

c > 1
4aN0.

dN

dt
= a

(

1 − N

N0

)

N − c. (9.2.1)

The differential equation (9.2.1) can be solved explicitly but, instead of
finding the analytical solution, we shall consider it in the phase plane. The
corresponding parabolic trajectory is displayed in Figure 9.2.1. If c < 1

4aN0

there are two points of equilibrium of which the lower is unstable and the
higher stable. Therefore, if

N(0) >
1

2
N0{1 − (1 − 4c/aN0)

1/2},

the population will eventually arrive at the value of 1
2N0{1+(1−4c/aN0)

1/2}.
In contrast, if

N(0) <
1

2
N0{1 − (1 − 4c/aN0)

1/2},

the fish will steadily decrease in number until they disappear altogether.
When c > 1

4aN0 it is transparent from Figure 9.2.1(b) that there are no
points of equilibrium so that the fish population steadily decays and dies out.

For c = 1
4aN0 the picture is similar to Figure 9.2.1(b) but the parabola just

touches the N -axis at N = 1
2N0. So there is equilibrium at N = 1

2N0 but any
perturbation which tends to reduce N will result in the fish becoming extinct.

We conclude that, if the fish population is not to be decimated, the catching
rate must not exceed 1

4aN0 and the initial population must not be too small.
If the catching rate is near the maximum the population will be reduced to
about half the natural level of N0 and will be subject to extinction if any other
adverse factor enters the scene. It is therefore advisable to have the catching
rate significantly below the maximum permitted.
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The above simple model has led to a useful recommendation on the catching
rate to be adopted if the fish population is to survive, but it must be recognised
that the model becomes increasingly unrealistic as the population falls. The
scarcer the fish become the more effort has to be expended in catching the
same number of fish per unit time. Since there is a limit on the resources for
fishing, the catch is likely to become proportional to the fish population when
it drops below a certain value. Moreover, at low levels the population is likely
to be in a state where exponential growth is pertinent if fishing were to cease.
Therefore, when considering survival prospects, the appropriate model is

dN

dt
= (b− d− f)N (9.2.2)

where f is the factor which accounts for the loss due to fishing. There is
equilibrium if f = b − d so that the population will not vary if the catch
is restricted to (b − d)N . Fishing at a greater rate will lead to extinction.
By putting f = 0 in (9.2.2) we can determine how long it will take for the
population to attain an acceptable level when there is no fishing.

Before any model can be applied in a practical context, it is necessary to be
able to measure the parameters that occur. This is a far from trivial task. For
example, an estimate of b may require a consideration of the breeding cycle,
the sex ratio at birth and environmental factors. Again, the mortality rate
may be different for infants, adults and different sexes. Furthermore, there is
a distinct possibility that b and d vary with N . We shall say no more than
that adequate estimates are feasible for some species because we now want to
examine the complicated matter of interaction between species.

9.3 The Volterra–Lotka model

Imagine that there is an island occupied by humans whose sole source of
food consists of fish. This is an example of a predator–prey problem and, to
illustrate the ideas, we shall consider a very much simplified model in which
humans do not evolve new methods of fishing as the fish population changes.
Let x(t) be the population of fish at time t and y(t) that of humans. Assume
that the fish, when undisturbed, grow exponentially and that, in the absence
of fish, the starvation rate of the human population is greater than the birth
rate so that it decays exponentially. The number of fish consumed will depend
upon the frequency of encounter with humans. If we assume that, when they
meet, there is a constant probability that the human will catch a fish and the
time taken to eat it is negligible we obtain

ẋ = ax− bxy, (9.3.1)

ẏ = −cy + dxy, (9.3.2)
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y

x

(c/d,a /b)

FIGURE 9.3.1: Phase plane for a predator–prey problem.

where a, b, c and d are all positive constants. Notice that only solutions in
which x ≥ 0 and y ≥ 0 are of interest.

The system of (9.3.1) and (9.3.2) has critical points where

ax− bxy = 0, −cy + dxy = 0,

i.e., x = 0 and y = 0 or x = c/d and y = a/b. By linearisation about x = 0
and y = 0 as in Section 5.3, we obtain the system

ξ̇ = aξ, η̇ = −cη,

which shows that the origin is a saddle-point (Section 5.4). Linearisation near
(c/d, a/b) leads to

ξ̇ = −bcη/d, η̇ = daξ/b

showing that this critical point is a centre. Also when x = c/d, (9.3.1) reveals
that ẋ is positive and x increasing when y < a/b. Therefore the trajectories
have the structure of Figure 9.3.1.

The precise equations of the trajectories can be derived by observing that

dy

dx
=

(dx − c)y

(a− by)x

which is a separable first-order differential equation. Its solution is

a ln y − by + c lnx− dx = K (9.3.3)

where K is an arbitrary constant. The left-hand side has a minimum at
(c/d, a/b) and so the contours (9.3.3) must form closed curves in the neigh-
bourhood of this point, in agreement with its being a centre and with Fig-
ure 9.3.1.

Since a typical trajectory is a closed curve, the variation of x and y with
time must be periodic unless either x or y is initially zero, a possibility that
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will be excluded from further consideration. It is clear from Figure 9.3.1 that
a maximum (minimum) in y occurs about a quarter period after a maximum
(minimum) in x. An interpretation is that when the human population is
at a maximum the fish population is declining and that decline induces a
drop in the number of humans. The reduction in predators allows the fish to
thrive followed by an increase in the humans and the cycle repeats itself. The
actual levels attained depend upon which trajectory is traced. A change in
the environment may switch the system from one trajectory to another but
the periodic fluctuation continues with no tendency to an equilibrium state.

In place of exponential growth for the fish when there are no predators, it
can be supposed that the growth is logistic so that

ẋ = ax− gx2 − bxy, (9.3.4)

ẏ = −cy + dxy, (9.3.5)

which includes (9.3.1) as a special case when g = 0. The system (9.3.4) and
(9.3.5) is said to constitute a Volterra–Lotka model for the predator–prey
problem. It can be discussed in the phase plane in a similar fashion to that
when g = 0.

Variants to the Volterra–Lotka model have been proposed in order to in-
corporate other facets of the interaction. In one version it is supposed that x0

of the fish can find a refuge that makes it impossible for them to be caught.
The modification to (9.3.4) and (9.3.5) is then

ẋ = ax− gx2 − by(x− x0), (9.3.6)

ẏ = −cy + dy(x− x0). (9.3.7)

On the other hand, more general assumptions have been discussed. For ex-
ample, the Rosenzweig–MacArthur model has

ẋ = f(x) − h(x, y), (9.3.8)

ẏ = −cy + kh(x, y), (9.3.9)

where f and h are appropriate functions. Again logistic growth might be
preferred for y and (9.3.5) replaced by

ẏ = c′y − g′y2 + dxy,

c′ and g′ being constants.
An indication of how information can be extracted from the phase plane

can be given by examining

ẋ = (λ(x) − µ(x, y)) x, (9.3.10)

ẏ = (v(y) + ρ(x, y)) y. (9.3.11)

Since predators consume prey we expect that ∂µ/∂y > 0. Likewise, if the
number of prey increases there will be more prey per predator, so ∂ρ/∂x > 0.
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As the predators increase there will be less prey per predator and so

∂

∂y
(ν + ρ) < 0.

We shall also assume that
∂

∂x
(λ− µ) ≤ 0,

consistent with (9.3.1) and (9.3.4).
If there is a point of equilibrium (x0, y0) where neither species is extinct,

linearisation gives
ξ̇ = αξ + βη, η̇ = γξ + δη

where
α = x0

∂
∂x (λ− µ), β = −x0

∂µ
∂y ,

γ = y0
∂ρ
∂x , δ = y0

∂
∂y (ν + ρ),

the partial derivatives being evaluated at (x0, y0). Thus α ≤ 0, β < 0, γ > 0
and δ < 0. Consequently, the equilibrium is stable, being either a node or a
focus (see Section 5.4). It is a focus (i.e., there are oscillations) if and only if

(

x0
∂

∂x
(λ− µ) − y0

∂

∂y
(ν + ρ)

)2

− 4x0y0
∂µ

∂y

∂ρ

∂x
< 0. (9.3.12)

This can be met if the first term is not too large. If α = δ = 0 were also an
allowable case (as for example in (9.3.1), (9.3.2)), the equilibrium point would
be a centre and periodic fluctuations would be likely. Another possible case is
if

∂

∂x
(λ− µ) > 0.

This opens up the possibility of the equilibrium being unstable. In particular,
if

x0
∂

∂x
(λ− µ) + y0

∂

∂y
(ν + ρ) > 0,

and condition (9.3.12) holds, then the equilibrium is an unstable centre and
it is possible that there is a stable limit cycle. Whether any of these states
could be reached from specified initial conditions would depend on global
considerations, which have been mentioned in Section 5.6.

The discussion of this section has centred on the phase plane but the reader
should be aware that a change of variable can sometimes lead to a simpler sit-
uation. For instance, the obvious choice to reduce the second-order differential
equation

ẍ− 12xẋ+ 16x3 = 0

to a system of first order is

ẋ = y, ẏ = 12xy − 16x3,
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but one might be better off with the choice

ẋ = 2(x2 − y2), ẏ = 4xy.

Moreover, the phase plane can be helpful in other ways. The differential
equation

dy

dx
=
x+ y

x− y

is of homogeneous type and can be solved as in Section 1.5. The solution is

y = x tan{ln[K ′(x2 + y2)1/2]},

K ′ =
(

x2
0 + y2

0

)−1/2
exp{tan−1(y0/x0)},

when y = y0 at x = x0. However, in the phase plane we have

ẋ = x− y, ẏ = x+ y

with solution

x = et(x0 cos t− y0 sin t), y = et(y0 cos t+ x0 sin t)

which is much easier to handle than the previous form.

Example 9.3.1

Show that the predator–prey system

ẋ =

(

1 − x− ay

x+ b

)

x, (9.3.13)

ẏ = c
(

1 − y

x

)

y, (9.3.14)

with a = 1 and b = 1
10 has a stable equilibrium if c > c∗ and a stable limit

cycle if 0 < c < c∗, where c∗ is some threshold value.
This system corresponds to (9.3.10), (9.3.11) with

λ(x) = 1 − x, µ(x, y) =
ay

x+ b
, ν(y) = 0, ρ(x, y) = c

(

1 − y

x

)

.

Any equilibrium points (x0, y0) in which both x and y are both positive must
satisfy

y0 = x0, (9.3.15)

0 = 1 − x0 −
ax0

x0 + b
. (9.3.16)

The only positive solution of (9.3.16) is

x0 =
1

2

(

1 − a− b+
√

(1 − a− b)2 + 4b
)

,
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so there is a unique equilibrium for x > 0, y > 0. Linearisation gives

α = x0

(

−1 + ax0

(x0+b)2

)

, β = − ax0

x0+b ,

γ = c, δ = −c.

Note that these are the coefficients in the Jacobian matrix (see Section 5.3)
for the system (9.3.13), (9.3.14) at the equilibrium point (x0, y0). Recall that
the equilibrium is stable if and only if the eigenvalues λ of this matrix both
have negative real part. The eigenvalues are given by

λ =
1

2

(

α+ δ ±
√

(α + δ)2 − 4(αδ − βγ)
)

.

We can see that

αδ − βγ = cx0

(

1 − ax0

(x0 + b)2

)

+
acx0

x0 + b

= cx0

(

1 +
ab

(x0 + b)2

)

> 0.

Hence the real parts of both eigenvalues have the same sign, and the equi-
librium is stable if and only if α + δ < 0. For the values given for a and b,

x0 = −1+
√

41
20 , and α+ δ ≈ 0.2625− c. Therefore, c∗ ≈ 0.2625 and the equilib-

rium is stable if c > c∗ and unstable if c < c∗. In the latter case, we can use
Poincaré–Bendixson theorem (see Section 5.6) to show that there is a stable
limit cycle if we can construct a trapping region in x > 0, y > 0. We can see
directly from (9.3.13), (9.3.14) that if x = 0 then ẋ = 0 and if y = 0 then
ẏ = 0. Hence no trajectory can ever cross the x-axis or y-axis. Furthermore,
if x = 1 then ẋ ≤ 0 and if y = 1 and x ≤ 1, then ẏ ≤ 0. Hence no trajectory
can ever depart the square region 0 < x < 1, 0 < y < 1, i.e., it is a trapping
region. Since this region does not contain a stable equilibrium, it must contain
a stable limit cycle.

Exercises

9.1 For whales, evidence suggests that b and d in (9.2.2) are given by b =
0.14 and d = 0.09 when t is measured in years. How long would the
population take to increase from 800 to 8500 in the absence of fishing?
If there were 4000 whales, what catch per year would you recommend?
If f = 0.75, show that the population will take about 14 years to recover
from a year’s fishing.
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9.2 For buffaloes b = 0.081 and d = 0.05 in (9.2.2) when time is calculated
in years. If there were 40 million, what is the maximum number to be
shot if the herd is to be sustained?

9.3 Discuss the Volterra–Lotka model of (9.3.4) and (9.3.5) in the phase
plane when none of the constants is zero.

9.4 Discuss the system

ẋ = ax− gx2 − bxy,

ẏ = c′y − g′y2 + dxy

in the phase plane, all the constants being positive. Will the predators
die out if there is no prey?

9.5 Show that the system

ẋ = −ax+ b(1 − e−ky)x,

ẏ = −ay + c(1 − e−ky)x,

where a, b, c and k are positive constants with b > a, has equilibrium
points at (0, 0) and ({−b/ck} ln{(b − a)/b},−{1/k} ln{(b − a)/b}) of
which the second is a saddle-point. Examine the trajectories in the phase
plane.

9.6 Compare in the phase plane the systems

ẋ = ax− bxy,

ẏ = c′y − d′y2/x

and

ẋ = ax2 − bx2y,

ẏ = c′xy − d′y2.

9.7 Discuss the behaviour of the system

ẋ = −ax+ gx2 − bxy,

ẏ = −cy + dxy

where a, b, c, d and g are all positive constants.

9.8 Draw the trajectories of (9.3.1) and (9.3.2) when a = 10, b = 0.2, c =
10−4 and d = 0.2.
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9.9 A model in which the prey x and predator y are removed by an external
mechanism as well as interacting is

ẋ = xf(x, y) −A,

ẏ = yg(x, y) −B

where A and B are negative constants (if they are negative, restocking
is occurring). Assume that ∂f/∂x < 0, ∂g/∂x > 0, ∂g/∂y ≤ 0 for all
x > 0 and y > 0. Show that, when A = B = 0, the prey can grow
from a small initial population when f(0, 0) ≥ 0 provided that f(0, y) is
positive for y > 0; if f(0, y) is positive for 0 < y < y0 and f(0, y0) = 0
show that the prey can still establish itself so long as the initial predator
population is less than y0.

9.10 As a specific model for Exercise 9.9 take

f(x, y) = 2 − x

30
− y

x+ 10
,

g(x, y) =
x− 20

3(x+ 10)
.

Show that in the phase plane there can be two critical points, of which
one is a saddle-point and the other, P , is not.
If A = 13 and B = 2, P is stable and there is a trajectory from the
saddle-point to P ; both species can coexist. The same is true when
A = 3 and B = 3.
If A = 3 and B = 1

2 , P is unstable and there is a trajectory from P to
the saddle-point; one of the species becomes extinct.
If A = 3 and B = 2 or 3

2 , P is unstable but is surrounded by a stable
limit cycle; the populations can exhibit oscillatory behaviour.

9.11 Use MATLAB to solve the system (9.3.13), (9.3.14) numerically for two
different values of c, one less than c∗ and one greater than c∗, and for an
appropriate initial condition. Check that your numerical results agree
with the analytical results. In the c < c∗ case, plot the vector field (see
Section 5.8) to verify that the region 0 < x < 1, 0 < y < 1 is a trapping
region.



Chapter 10

Partial Differential Equations

10.1 Characteristics for equations of the first order

In this section we set out a method of finding solutions of linear partial
differential equations of the first order. We start by considering a particular
example, namely

2
∂u

∂x
+ 3

∂u

∂y
= 0. (10.1.1)

Associated with this are certain curves in the (x, y)-plane specified by obliging
them to have the slope which satisfies

dy

dx
=

3

2
, (10.1.2)

the right-hand side being the ratio of the coefficients of the two partial deriva-
tives in (10.1.1). The general solution of (10.1.2) is y = 3

2x + C where C is
a constant and the curves are, in fact, straight lines. They are drawn for
various values of C in Figure 10.1.1. These special curves are known as the
characteristics of the partial differential equation (10.1.1).

The idea in solving (10.1.1) is to introduce a new set of coordinates, called ξ
and η, in which the characteristics can be expressed as ξ = constant. The other
coordinate η must be selected so that to a given point (ξ, η) there corresponds
only one point in the x- and y-coordinates. In other words, we want the curve
η= constant to intersect the curve ξ=constant in the (x, y)-plane in one, and
only one, point. Now, in Figure 10.1.1, a line parallel to the y-axis meets
a characteristic in one, and only one, point. Therefore make the change of
coordinates

ξ = y − 3
2x, η = x. (10.1.3)

Notice that (10.1.3) does supply just one (x, y) for a given (ξ, η); in fact x = η
and y = ξ + 3

2η. Other choices of η are acceptable providing that they meet
the criterion that the curve η=constant intersects ξ= constant once and once
only; for example, η= y and η = 3y + 2x are other possibilities.

223
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y

x

C > 0 C = 0 C < 0

FIGURE 10.1.1: The characteristics of (10.1.1).

From (10.1.3), by the chain rule for partial derivatives,

∂u

∂x
=
∂u

∂ξ

∂ξ

∂x
+
∂u

∂η

∂η

∂x
= −3

2

∂u

∂ξ
+
∂u

∂η
,

∂u

∂y
=
∂u

∂ξ

∂ξ

∂y
+
∂u

∂η

∂η

∂y
=
∂u

∂ξ

since ∂ξ/∂x = −3/2, ∂ξ/∂y = 1, ∂η/∂x = 1, ∂η/∂y = 0. Substitution in
(10.1.1) gives

2
∂u

∂η
= 0. (10.1.4)

Thus the change of coordinates (10.1.3) has simplified the partial differential
equation and, in fact, one partial derivative ∂u/∂ξ has been removed alto-
gether. It was with the object of causing this partial derivative to disappear
that the special choice of ξ was made.

Equation (10.1.4) tells us that u is independent of η and so it must be a
function of ξ only, i.e.,

u = F (ξ) = F (y − 3
2x) (10.1.5)

on employing (10.1.3).
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The formula (10.1.5) shows that u is a constant on a characteristic since
y − 3

2x is constant on a characteristic. Hence, if u is known at one point of
a characteristic it is known at every point of the characteristic. The constant
can be different on different characteristics, but we cannot say how it will
change without additional information.

Suppose, indeed, that it is required that u = 3y on x = 0 for y ≥ 0. Then,
putting x = 0 in (10.1.5), we are obliged to have

F (y) = 3y

for y ≥ 0. Using this expression for F we have F (y− 3
2x) = 3(y− 3

2x) and so,
from (10.1.5),

u = 3y − 9x/2

for y ≥ 3x/2. Thus u has been found at every point on and above the line
y = 3x/2. Nothing can be said about the behaviour of u below this line, other
than that it is a function of y−3x/2, because there is insufficient information.
In other words, the solution is restricted to that part of the (x, y)-plane that is
covered by the characteristics that intersect the arc on which the initial data
are given.

We might have been asked to find u so that u = 3y on the line y = 3x/2
for y ≥ 0. Then (10.1.5) would require F (0) = 3y for y ≥ 0, which no F
will satisfy because the left-hand side is constant whereas the right-hand side
is not. Indeed, the only problem which can be solved when u is given on
y = 3x/2 is for u to be specified as a constant there. A similar situation
arises for the characteristic y− 3x/2 = constant. Thus the initial data can be
specified arbitrarily for u only when given on an arc that does not coincide
with a characteristic. When initial data are prescribed on a characteristic they
must take a special form if inconsistency is to be avoided.

Let us turn now to the more general linear partial differential equation

a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
= c(x, y)u + d(x, y). (10.1.6)

We succeeded in solving (10.1.1) because we were able to discover a substitu-
tion which eliminated one partial derivative and led to (10.1.4). So we want
to try to find a similar substitution for (10.1.6). Now, if a ≡ 0 or b ≡ 0 in
the region under consideration, only one partial derivative occurs anyway so
it is only when neither a nor b vanishes identically that further discussion is
necessary. We then consider the curves whose slope satisfies

dy

dx
=
b(x, y)

a(x, y)
. (10.1.7)

They are known as characteristics and have no multiple points provided
that a and b do not vanish at the same point, a possibility which will be
excluded here. The characteristics need not be straight lines as they were for
(10.1.1).
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Let the equation for the characteristics be written in the form

φ(x, y) = C (10.1.8)

where C is a constant which gives different characteristics for different values.
A derivative of (10.1.8) with respect to x supplies

∂φ

∂x
+
∂φ

∂y

dy

dx
= 0.

But, since the slope is forced to be the same as that of (10.1.7), we must have

a(x, y)
∂φ

∂x
+ b(x, y)

∂φ

∂y
= 0. (10.1.9)

Suppose now that there is a set of curves with equation

ψ(x, y) = C1,

C1 being constant, with the property that each curve meets each characteristic
in one and only one point in the region of interest while ψ varies continuously
along a characteristic. There are usually many possible ψ which are open to
the solver and the one most convenient to the problem in hand should be
chosen.

Make the substitution

ξ = φ(x, y), η = ψ(x, y). (10.1.10)

The conditions placed on φ and ψ ensure that a point may be fixed by either
(x, y) or (ξ, η). Since

∂u

∂x
=
∂u

∂ξ

∂φ

∂x
+
∂u

∂η

∂ψ

∂x
,

∂u

∂y
=
∂u

∂ξ

∂φ

∂y
+
∂u

∂η

∂ψ

∂y

(10.1.6) transforms to

(

a
∂ψ

∂x
+ b

∂ψ

∂y

)

∂u

∂η
= cu+ d (10.1.11)

on account of (10.1.9). Equation (10.1.11) is often called the characteristic
form of the partial differential equation.

If values for x, y in terms of ξ, η are inserted in (10.1.11) from (10.1.10),
the coefficients in (10.1.11) become known functions of ξ and η. For fixed ξ
(10.1.11) is an ordinary differential equation of the first order for u in terms of
η. Therefore u can be determined but contains an arbitrary constant (which
may be different for different values of ξ). Thus, if u is specified at a point
of ξ=constant it is known at all points of that curve. In other words, if u
is given at one point of a characteristic it can be found at all points of the
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characteristic. In particular, when u is designated to have certain values on an
arc that is met at most once by a characteristic it is determined in the region
covered by the characteristics intersecting the arc. Again, as for (10.1.1), data
cannot be prescribed arbitrarily all along a characteristic; they must comply
with (10.1.11) if there is to be a solution.

The existence theorems of Chapter 5 can be employed to check the existence
and uniqueness of solutions to (10.1.11).

Example 10.1.1

Find the solution of

2x
∂u

∂x
+ (x+ 1)

∂u

∂y
= y

in x > 0 such that u = 2y when x = 1.
The differential equation for the characteristics is, from (10.1.7),

dy

dx
=
x+ 1

2x
=

1

2

(

1 +
1

x

)

.

Therefore the characteristics are

y = 1
2 (x+ lnx) + C. (10.1.12)

The slope of the characteristics is positive in x > 0. Also y → −∞ as x → 0
and y → ∞ as x→ ∞. The shape of the characteristics is, consequently, that
shown in Figure 10.1.2, the larger C the closer the characteristic is to the
y-axis.

A set of curves that intersects characteristics once and once only is furnished
by lines parallel to the x-axis; another set is provided by lines parallel to the
y-axis. Choose those parallel to the y-axis since the initial values are intimated
on x = 1. Then, according to (10.1.10),

ξ = y − 1
2 (x + lnx), η = x. (10.1.13)

Note that it is always worthwhile considering parallel straight lines first for
the ψ curves since they lead to the simplest form for η. Now

∂u

∂x
=
∂u

∂ξ

(

−1

2
− 1

2x

)

+
∂u

∂η
,

∂u

∂y
=
∂u

∂ξ

and the given partial differential equation is converted to

2x
∂u

∂η
= y.

From (10.1.13), x = η and y = ξ + 1
2 (η + ln η) so that

2η
∂u

∂η
= ξ + 1

2 (η + ln η)
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y

x

FIGURE 10.1.2: The characteristics of (10.1.12).

has to be solved. From

∂u

∂η
=

ξ

2η
+

1

4

(

1 +
1

η
ln η

)

(10.1.14)

is deduced
u = 1

2ξ ln η + 1
4η + 1

8 (ln η)2 + F (ξ).

The arbitrary function F (ξ) of ξ is used rather than a constant because of the
partial derivative in (10.1.14).

It is required that u = 2y when x = 1, i.e., u = 2ξ + η+ ln η when η = 1 or
u = 2ξ + 1 when η = 1, and this is to hold for all ξ. Therefore

2ξ + 1 = 1
4 + F (ξ)

whence
u = 1

2ξ ln η + 1
4η + 1

8 (ln η)2 + 2ξ + 3
4 .

Replacing ξ, η by x, y via (10.1.13) we obtain

u =
(

y − 1
2x− 1

2 lnx
)(

2 + 1
2 lnx

)

+ 1
4x+ 3

4 + 1
8 (ln x)2. (10.1.15)

This solution is valid everywhere in x > 0, because all the characteristics
intersect x = 1 and every point in x > 0 lies on some characteristic.

Example 10.1.2

Find the solution of

−x∂u
∂x

+ y
∂u

∂y
= 1
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in 0 < x < y such that u = 2x on y = 3x.
The characteristics satisfy

dy

dx
= − y

x

whence their equation is ln y = − lnx+ constant, which may be simplified to

xy = constant.

Each characteristic in the first quadrant is therefore the branch of a hyper-
bola (Figure 10.1.3). The intersecting curves may again be chosen as straight
lines and to illustrate the fact that they need not be parallel to the coordinate
axes we select them to be parallel to y = x. (What would be the objection to
making them parallel to y = −x?) Thus the substitution

ξ = xy, η = y − x (10.1.16)

is made.
With this change of variable

∂u

∂x
=
∂u

∂ξ
y − ∂u

∂η
,

∂u

∂y
=
∂u

∂ξ
x+

∂u

∂η

and the partial differential equation is transformed to

(x+ y)
∂u

∂η
= 1.

Now, if y is eliminated from (10.1.16),

x3 + ηx− ξ = 0

so that x = 1
2{−η± (η2 + 4ξ)1/2}. However, x and ξ must both be positive in

the first quadrant so that the upper sign must be selected, i.e.,

x = 1
2{−η + (η2 + 4ξ)1/2},

y = 1
2{η + (η2 + 4ξ)1/2}.

y

x

FIGURE 10.1.3: The characteristic hyperbolae.
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Hence we are led to

(η2 + 4ξ)1/2 ∂u

∂η
= 1.

It follows that

u = ln{η + (η2 + 4ξ)1/2} + F (ξ)

= ln 2y + F (xy)

on inserting (10.1.16) and the formulae for x and y just found.
Since u = 2x when y = 3x,

2x = ln 6x+ F (3x2)

which implies that

F (z) =
2√
3
z1/2 − ln(6z1/2/

√
3)

when z is positive. Consequently

u = ln 2y + 2(xy)1/2/
√

3 − ln{6(xy)1/2/
√

3}
= ln(y/3x)1/2 + 2(xy)1/2/

√
3. (10.1.17)

Since each characteristic intersects y = 3x this solution is valid throughout
the first quadrant. Nothing can be said about what happens outside the first
quadrant because the initial data are given only on characteristics that are
confined to the first quadrant.

10.2 Another view of characteristics

Suppose that u satisfies

a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
= c(x, y)u+ d(x, y) (10.2.1)

and we are given that u= f(y) on x=0. It is plausible to try to find a solution
near x = 0 by making a series expansion in powers of x, i.e.,

u(x, y) = u(0, y) + x

[

∂

∂x
u(x, y)

]

x=0

+ 1
2x

2

[

∂2

∂x2
u(x, y)

]

x=0

+ · · · .

The first term is known from the information given, namely u(0, y) = f(y).
Can we find ∂u/∂x at x = 0 from the governing partial differential equation?
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Clearly, ∂u(0, y)/∂y = f ′(y) and so putting x = 0 in (10.2.1) furnishes

a(0, y)

[

∂

∂x
u(x, y)

]

x=0

= c(0, y)f(y) + d(0, y) − b(0, y)f ′(y). (10.2.2)

So long as a(0, y) 6= 0, this determines ∂u/∂x at x = 0 as a known function
of y.

Now take a partial derivative with respect to x of (10.2.1). Then

a(x, y)
∂2u

∂x2
= terms in u,

∂u

∂x
,
∂u

∂y
,
∂2u

∂x∂y
.

All the terms on the right-hand side are available at x = 0 because

∂

∂y

[

∂

∂x
u(x, y)

]

x=0

can be deduced from (10.2.2). Therefore ∂2u/∂x2 can be found at x = 0 when
a(0, y) 6= 0. Further partial derivatives with respect to x will supply higher
terms in the expansion provided that a, b, c and d are sufficiently differentiable.
Thus we can hope to find u off x = 0 when a(0, y) 6= 0.

If, however, a(0, y)=0 the process fails immediately because the term in-
volving ∂u/∂x disappears from (10.2.2). In this case u cannot be determined
away from x=0. In fact, f cannot be selected arbitrarily because (10.2.2)
forces

c(0, y)f(y) + d(0, y) = b(0, y)f ′(y) (10.2.3)

so that f is indeterminate only to the extent of a constant. To put it another
way, the value of f can be prescribed at a single point of x = 0; at all other
points its value is obtained from (10.2.3).

These properties coincide with those of a characteristic as discovered in the
preceding section. Hence a(0, y) = 0 makes x= 0 a characteristic.

Let us now invoke this result after making a transformation of coordinates.
Then we can say that if, after the change of variables ξ=φ(x, y), η=ψ(x, y),
the coefficient of ∂u/∂ξ vanishes when ξ=0 then ξ=0 is a characteristic.
It follows that, if the coefficient vanishes whatever ξ, then ξ=constant is a
characteristic.

This way of looking at characteristics will be useful in discussing partial
differential equations of the second order.
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10.3 Linear partial differential equations of the second
order

The linear partial differential equation of the second order that will be
discussed in this section is

a(x, y)
∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2

+ e(x, y)
∂u

∂x
+ f(x, y)

∂u

∂y
+ g(x, y)u = 0 (10.3.1)

where a, . . . , g are real. As a first step, let us examine the possibility of finding
a solution by means of a power series, as in the preceding section, given
initial data on x=0. Two pieces of data will now be appropriate because
the differential equation is of the second order. Suppose, indeed, that

u(0, y) = F (y),

[

∂

∂x
u(x, y)

]

x=0

= G(y).

Then

∂

∂y
u(0, y) = F ′(y),

∂2

∂y2
u(0, y) = F ′′(y),

∂

∂y

[

∂

∂x
u(x, y)

]

x=0

= G′(y)

so that, when x = 0, (10.3.1) becomes

a(0, y)

[

∂2u

∂x2

]

x=0

= − 2b(0, y)G′(y) − c(0, y)F ′′(y) − e(0, y)G(y)

− f(0, y)F ′(y) − g(0, y)F (y). (10.3.2)

Therefore, if a(0, y) 6= 0, we can find the second partial derivative of u with
respect to x and higher derivatives can be determined from derivatives of
(10.3.1) with x = 0. In this case u can be continued off x = 0.

If, however, a(0, y) = 0 the process fails; moreover, F and G cannot both
be prescribed arbitrarily because (10.3.2) insists that

2b(0, y)G′(y) + c(0, y)F ′′(y) + e(0, y)G(y) + f(0, y)F ′(y) + g(0, y)F (y) = 0.

By analogy with the first-order equation, we say that x = 0 is a characteristic.
It is now desirable to generalise the approach so that other curves may play

the role of characteristics. Change variables by means of the transformation

ξ = φ(x, y), η = ψ(x, y).
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Then

∂u

∂x
=
∂u

∂ξ

∂φ

∂x
+
∂u

∂η

∂ψ

∂x
,

∂u

∂y
=
∂u

∂ξ

∂φ

∂y
+
∂u

∂η

∂ψ

∂y
,

∂2u

∂x2
=
∂2u

∂ξ2

(

∂φ

∂x

)2

+ 2
∂2u

∂ξ∂η

∂φ

∂x

∂ψ

∂x
+
∂2u

∂η2

(

∂ψ

∂x

)2

+
∂u

∂ξ

∂2φ

∂x2
+
∂u

∂η

∂2ψ

∂x2
,

∂2u

∂y2
=
∂2u

∂ξ2

(

∂φ

∂y

)2

+ 2
∂2u

∂ξ∂η

∂φ

∂y

∂ψ

∂y
+
∂2u

∂η2

(

∂ψ

∂y

)2

+
∂u

∂ξ

∂2φ

∂y2
+
∂u

∂η

∂2ψ

∂y2
,

∂2u

∂x∂y
=
∂2u

∂ξ2
∂φ

∂x

∂φ

∂y
+

∂2u

∂ξ∂η

(

∂φ

∂x

∂ψ

∂y
+
∂φ

∂y

∂ψ

∂x

)

+
∂2u

∂η2

∂ψ

∂x

∂ψ

∂y

+
∂u

∂ξ

∂2φ

∂x∂y
+
∂u

∂η

∂2ψ

∂x∂y
.

Substitution of these formulae into (10.3.1) leads to

a1
∂2u

∂ξ2
+ 2b1

∂2u

∂ξ∂η
+ c1

∂2u

∂η2
+ e1

∂u

∂ξ
+ f1

∂u

∂η
+ g1u = 0 (10.3.3)

where

a1 = a

(

∂φ

∂x

)2

+ 2b
∂φ

∂x

∂φ

∂y
+ c

(

∂φ

∂y

)2

, (10.3.4)

b1 = a
∂φ

∂x

∂ψ

∂x
+ b

(

∂φ

∂x

∂ψ

∂y
+
∂φ

∂y

∂ψ

∂x

)

+ c
∂φ

∂y

∂ψ

∂y
, (10.3.5)

c1 = a

(

∂ψ

∂x

)2

+ 2b
∂ψ

∂x

∂ψ

∂y
+ c

(

∂ψ

∂y

)2

, (10.3.6)

e1 = a
∂2φ

∂x2
+ 2b

∂2φ

∂x∂y
+ c

∂2φ

∂y2
+ e

∂φ

∂x
+ f

∂φ

∂y
, (10.3.7)

f1 = a
∂2ψ

∂x2
+ 2b

∂2ψ

∂x∂y
+ c

∂2ψ

∂y2
+ e

∂ψ

∂x
+ f

∂ψ

∂y
, (10.3.8)

g1 = g. (10.3.9)

From our earlier discussion, ξ = constant will be a characteristic if the coef-
ficient of ∂2u/∂ξ2 vanishes for this value of ξ. This requires a1 = 0 and so,
from (10.3.4), φ(x, y) = constant is a characteristic when

a

(

∂φ

∂x

)2

+ 2b
∂φ

∂x

∂φ

∂y
+ c

(

∂φ

∂y

)2

= 0. (10.3.10)

We may also seek to make ψ = constant a characteristic. Then c1 = 0 and

a

(

∂ψ

∂x

)2

+ 2b
∂ψ

∂x

∂ψ

∂y
+ c

(

∂ψ

∂y

)2

= 0. (10.3.11)
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The slope of the curve φ = constant is given by

dy

dx
= −∂φ/∂x

∂φ/∂y

and consequently, from (10.3.10), it satisfies

a

(

dy

dx

)2

− 2b
dy

dx
+ c = 0. (10.3.12)

Comparison of the structures of (10.3.10) and (10.3.11) reveals that the slope
of the characteristic ψ= constant also complies with (10.3.12). Thus the slopes
of both sets of characteristics are provided by the solution of (10.3.12), namely

dy

dx
=

1

a
{b± (b2 − ac)1/2}. (10.3.13)

There are three possible cases to consider.

(I) If ac > b2 in some region D there are two families of complex character-
istics. The partial differential equation is then said to be elliptic in D. A
typical example of an elliptic differential equation is Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0

in which a = 1, b = 0 and c = 1.

(II) If ac < b2 in some region D there are two families of real characteristics.
The partial differential equation is called hyperbolic in D. A standard
illustration of a hyperbolic differential equation is the equation of one-
dimensional wave propagation

∂2u

∂x2
− 1

α2

∂2u

∂y2
= 0

in which a = 1, b = 0 and c = −1/α2.

(III) If ac = b2 throughout some region D the two slopes coincide and there
is one family of real characteristics. The partial differential equation is
now parabolic in D. The equation of heat conduction

∂2u

∂x2
=
∂u

∂y

in which a = 1, b = 0 and c = 0 is parabolic.

The behaviour of the solutions of the three types of partial differential
equations is quite different and the initial or boundary conditions that they
have to obey are usually distinctive. In applications, they normally originate
from attempts to model totally different phenomena. One may expect the
problems in which the partial differential equation is elliptic in some parts
of the (x, y)-plane and hyperbolic in others are particularly troublesome. We
shall now undertake a more detailed study of the various types.
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10.4 Elliptic partial differential equations

In the elliptic case we shall take the slope of φ = constant as

dy

dx
=

1

a
{b+ (b2 − ac)1/2} (10.4.1)

and that of ψ = constant as

dy

dx
=

1

a
{b− (b2 − ac)1/2}. (10.4.2)

Since the square root is purely imaginary, the two slopes are complex conju-
gates. It follows that φ and ψ are complex conjugates, i.e., ψ = φ∗ and η = ξ∗,
the asterisk denoting a complex conjugate.

In terms of φ and ψ, (10.4.1) and (10.4.2) can be expressed as

∂φ

∂x
= −1

a
{b+ (b2 − ac)1/2}∂φ

∂y
, (10.4.3)

∂ψ

∂x
= −1

a
{b+ (b2 − ac)1/2}∂ψ

∂y
. (10.4.4)

The characteristics have been chosen so that a1 = 0 and c1 = 0, but notice
that neither a nor c can be zero because of the condition for ellipticity. For b1
substitute from (10.4.3) and (10.4.4) into (10.3.5) to obtain

b1 =
1

a

∂φ

∂y

∂ψ

∂y
{b2 − (b2 − ac)} − b

a

∂φ

∂y

∂ψ

∂y
2b+ c

∂φ

∂y

∂ψ

∂y

=
2

a

∂φ

∂y

∂ψ

∂y
(ac− b2). (10.4.5)

Since φ and ψ are complex conjugates (10.4.5) may be rewritten as

b1 =
2

a

∣

∣

∣

∣

∂φ

∂y

∣

∣

∣

∣

2

(ac− b2)

showing that b1 is real and has the same sign as a.
Furthermore, (10.3.7) and (10.3.8) indicate that f1 = e∗1 so that the partial

differential equation has been transformed to

2b1
∂2u

∂ξ∂η
+ e1

∂u

∂ξ
+ e∗1

∂u

∂η
+ g1u = 0. (10.4.6)

In this form, sometimes called the characteristic form of an elliptic equa-
tion, the partial differential equation involves complex coordinates. To avoid
these a further transformation is made. Let

λ = 1
2 (ξ + η), µ = 1

2i (ξ − η).
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Then λ is the real part of ξ and µ is the imaginary part of ξ so that both λ
and µ are real. Moreover

∂u

∂ξ
=

1

2

∂u

∂λ
+

1

2i

∂u

∂µ
,

∂u

∂η
=

1

2

∂u

∂λ
− 1

2i

∂u

∂µ
,

∂2u

∂ξ∂η
=

1

4

∂2u

∂λ2
+

1

4

∂2u

∂µ2

so that (10.4.6) becomes

1

2
b1

(

∂2u

∂λ2
+
∂2u

∂µ2

)

+
1

2

∂u

∂λ
(e1 + e∗1) +

1

2i

∂u

∂µ
(e1 − e∗1) + g1u = 0.

By division by 1
2b1 we derive

∂2u

∂λ2
+
∂2u

∂µ2
+ e2

∂u

∂λ
+ f2

∂u

∂µ
+ g2u = 0 (10.4.7)

where e2, f2 and g2 are all real; in particular,

g2 = 2g1/b1 = ga

/

(ac− b2)

∣

∣

∣

∣

∂φ

∂y

∣

∣

∣

∣

2

(10.4.8)

from (10.3.9) and (10.4.5).
Equation (10.4.7) is known as the normal form of an elliptic partial dif-

ferential equation. The normal form appears in its simplest guise as

∂2u

∂x2
+
∂2u

∂y2
+ k2u = 0 (10.4.9)

where k2 is a real constant. If k2 = 0 it reduces to Laplace’s equation and
occurs in problems in potential theory. If k2 is positive it arises in the study
of two-dimensional harmonic waves such as those produced by a vibrating
membrane. The case when k2 is negative typically results from trying to solve
the two-dimensional wave equation by certain methods.

Usually, solutions of elliptic partial differential equations are sought that
satisfy prescribed boundary conditions. There are four of common occurrence.

(1) Dirichlet problem. (a) In the interior problem u is given at every point
of a closed curve C and has to be found inside C. (b) For the exterior
problem u is given on a closed curve C and has to be determined out-
side C. A supplementary condition specifying the behaviour at infinity
is normally imposed. For example, there might be a requirement that
∂u/∂r→ 0 as r = (x2 + y2)1/2 → ∞ in potential theory.

(2) Neumann problem. (a) In the interior problem the derivative of u along
the normal to a closed curve C, i.e., ∂u/∂n, is prescribed and u is re-
quired inside C. Often ∂u/∂n cannot be specified arbitrarily on C; for
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instance, if k2 = 0 in (10.4.9),
∫

C
(∂u/∂n)ds = 0 by the divergence the-

orem so that any values ascribed to ∂u/∂n on C must be compatible
with this relation. (b) ∂u/∂n is given on the closed curve C and u is to
be found outside, usually subject to a condition at infinity as in (1b).

(3) Mixed problem. Here the closed curve C is split into two portions C1

and C2. On C1, u is given and on C2, ∂u/∂n is specified. Again, both
the interior and exterior cases may arise.

(4) Impedance or Robin problem. In this case hu + ∂u/∂n is prescribed on
the closed curve C, h being a known function. It can be regarded as
including the three preceding cases.

Before leaving the subject we give a theorem which guarantees that the
solution to the boundary value problem is unique in suitable circumstances.

THEOREM 10.4.1

Let the partial differential equation (10.3.1) be elliptic (ac > b2) in a simply
connected domain D with g ≤ 0 and a, c positive. Then, if u = 0 on a simple
closed curve C in D,u = 0 at all points inside C.

Remark that a and c must have the same sign in order to meet the condition
for an elliptic equation.

PROOF Change the variables so that the equation goes over to its normal
form (10.4.7). The transformation maps D into a domain D1 and C into a
simple closed curve C1. Note that the mapping is one-to-one because the
Jacobian

∂φ

∂x

∂ψ

∂y
− ∂ψ

∂x

∂φ

∂y
= −2i

a
(ac− b2)1/2

∣

∣

∣

∣

∂φ

∂y

∣

∣

∣

∣

2

.

If ∂φ/∂y vanishes so does ∂φ/∂x on account of (10.4.3), contrary to a char-
acteristic having a definite slope. Therefore the Jacobian is nonzero and the
mapping is one-to-one.

Also, from (10.4.8) and the hypotheses of the theorem, g2 ≤ 0.
Suppose that u is continuous and bounded inside C. It will have the same

properties inside C1. As a continuous function u attains both its upper bound
M (which cannot be negative since u = 0 on C1) and its lower bound m. Let
M be achieved at λ = λ0, µ = µ0. It follows that

(

∂u

∂λ

)

0

= 0,

(

∂u

∂µ

)

0

= 0

where (f)0 means the value of f at λ = λ0, µ = µ0. Putting λ = λ0, µ = µ0

in (10.4.7) we obtain
(

∂2u

∂λ2

)

0

+

(

∂2u

∂µ2

)

0

+ g2M = 0. (10.4.10)
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But, for a maximum

(

∂2u

∂λ2

)

0

≤ 0,

(

∂2u

∂µ2

)

0

≤ 0, (10.4.11)

(

∂2u

∂λ2

)

0

(

∂2u

∂µ2

)

0

>

(

∂2u

∂λ∂µ

)2

0

. (10.4.12)

If g= 0 then g2 = 0 and we could satisfy (10.4.10) and (10.4.11) but not
(10.4.12); the same is true if M = 0. On the other hand, if M > 0 and g < 0,
then g2M < 0 and to satisfy (10.4.10) one at least of (∂2u/∂λ2)0, (∂

2u/∂µ2)0
must be positive, contradicting (10.4.11). Thus the conditions for a maximum
cannot be met inside C1 and so u must not be greater than zero inside C1.

A similar argument based on the lower bound m reveals that u cannot be
less than zero inside C1.

Hence u is zero inside C1 and therefore zero inside C. The theorem is proved.

COROLLARY 10.4.1 (Uniqueness Property)

Under the conditions of Theorem 10.4.1 there is only one u which solves
(10.3.1) and takes given values on C.

Another way of describing this corollary is to say that the solution of the
interior Dirichlet problem is unique for an elliptic partial differential equation
in which a and g have opposite signs.

PROOF Suppose there were two possible solutions u1 and u2. Then u1−u2

is zero on C and also satisfies (10.3.1). Consequently, Theorem 10.4.1 implies
that u1 − u2 vanishes inside C and the corollary has been demonstrated.

It is important to observe that when a and g have the same signs Theorem
10.4.1 fails, in general. A counter-example is furnished by

∂2u

∂x2
+
∂2u

∂y2
+ (m2 + n2)u = 0

where m and n are integers. The solution

u = A sinmx sinny

vanishes on the perimeter of the square 0 ≤ x ≤ π, 0 ≤ y ≤ π but is clearly
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not zero at all interior points.

10.5 Parabolic partial differential equations

In the parabolic case ac = b2, there is only one family of real characteristics
whose slope, according to (10.3.13), is given by

dy

dx
=
b

a
.

One variable is fixed by ξ = φ(x, y) where

−∂φ
∂x

=
b

a

∂φ

∂y
(10.5.1)

and the other variable η = ψ(x, y) is selected in the same way as for first-order
equations where only one set of characteristics is available. Thus a1 = 0 and,
assuming a 6≡ 0, c = b2/a so that

b1 =
∂ψ

∂x

(

a
∂φ

∂x
+ b

∂φ

∂y

)

+
∂ψ

∂y

(

b
∂φ

∂x
+
b2

a

∂φ

∂y

)

= 0

from (10.5.1). Hence (10.3.3) reduces to

c1
∂2u

∂η2
+ e1

∂u

∂ξ
+ f1

∂u

∂η
+ g1u = 0. (10.5.2)

If a ≡ 0 then b ≡ 0 and the original equation (10.3.1) is already in the form
(10.5.2) without introducing new variables. Thus (10.5.2) is the characteristic
or normal form for a parabolic partial differential equation; here, in contrast to
the elliptic case, there is no distinction between the characteristic and normal
forms.

It may happen that ψ can be chosen so that f1 = 0 and then (10.5.2) has
the simpler structure of

∂2u

∂η2
+ e2

∂u

∂ξ
+ g2u = 0. (10.5.3)

10.6 Hyperbolic partial differential equations

In the hyperbolic case there are two families of real characteristics, since
b2 > ac. We may take φ and ψ to be defined as in (10.4.1) and (10.4.2) when
a 6≡ 0 but they are now real. Thus a1 = 0, c1 = 0 and b1 is given by (10.4.5),



240 Differential Equations and Mathematical Biology

i.e.,

b1 = 2
∂φ

∂y

∂ψ

∂y

ac− b2

a
.

Consequently, b1 is nonzero. If a ≡ 0, put φ = x and specify the slope of ψ =
constant by dy/dx = c/2b. Then b1 = b∂ψ/∂y which is nonzero by virtue of
b not being permitted to be zero in order to retain the hyperbolic character.
Hence the characteristic or normal form of a hyperbolic partial differential
equation is

∂2u

∂ξ∂η
+ e2

∂u

∂ξ
+ f2

∂u

∂η
+ g2u = 0. (10.6.1)

It is now convenient to collect together the normal forms of the three types:

Elliptic:
∂2u

∂λ2
+
∂2u

∂µ2
+ e2

∂u

∂λ
+ f2

∂u

∂µ
+ g2u = 0.

Parabolic:
∂2u

∂η2
+ e2

∂i

∂ξ
+ f2

∂u

∂η
+ g2u = 0.

Hyperbolic:
∂2u

∂ξ∂η
+ e2

∂u

∂ξ
+ f2

∂u

∂η
+ g2u = 0.

Note that, in all cases, the variables are real and the type fixed by the structure
of the partial derivatives of the second order solely; the remaining terms in
the partial differential equation play no role in determining the type, although
their presence or absence will influence the solution.

10.7 The wave equation

The one-dimensional wave equation

∂2u

∂x2
− 1

a2
0

∂2u

∂t2
= 0 (10.7.1)

in which a0 is a positive constant is hyperbolic. For the characteristics we
have

(

dt

dx

)2

=
1

a2
0

so that
dt

dx
= ± 1

a0
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with solutions x± a0t = constant. Hence the characteristic variables are ξ =
x− a0t, η = x+ a0t. In terms of them (10.7.1) becomes

∂2u

∂ξ∂η
= 0. (10.7.2)

This tells us that ∂u/∂η is a function of η only and hence that

u = f(ξ) + g(η) (10.7.3)

where f and g are arbitrary functions of ξ and η, respectively. The formula
(10.7.3) constitutes the general solution of (10.7.2). Correspondingly,

u = f(x− a0t) + g(x+ a0t) (10.7.4)

provides the general solution of (10.7.1).
An initial value problem for the wave equation can be solved by means of

the general solution. Suppose the initial conditions are

u(x, 0) = h(x),

[

∂

∂t
u(x, t)

]

t=0

= k(x)

for A ≤ x ≤ B. Then, from (10.7.4),

f(x) + g(x) = h(x), (10.7.5)

a0{−f ′(x) + g′(x)} = k(x), (10.7.6)

for A ≤ x ≤ B. Integration of (10.7.6) gives

−f(x) + g(x) =
1

a0

∫ x

A

k(v)dv + C (10.7.7)

where C is a constant. Combining (10.7.5) and (10.7.7) we obtain

g(x) =
1

2

(

h(x) +
1

a0

∫ x

A

k(v)dv + C

)

,

f(x) =
1

2

(

h(x) − 1

a0

∫ x

A

k(v)dv − C

)

for A ≤ x ≤ B. Hence, if A ≤ x− a0t ≤ B and A ≤ x+ a0t ≤ B,

u =
1

2

(

h(x− a0t) +
1

a0

∫ x−a0t

A

k(v)dv + C

)

+
1

2

(

h(x+ a0t) −
1

a0

∫ x+a0t

A

k(v)dv − C

)

from which we deduce that

u = 1
2{h(x− a0t) + h(x+ a0t)} +

1

2a0

∫ x+a0t

x−a0t

k(v)dv. (10.7.8)
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FIGURE 10.7.1: Region where solution of the initial value problem is
available.

This constitutes the solution to the initial value problem subject to the re-
strictions imposed on x − a0t and x + a0t. It is known as d’Alembert’s
solution.

The restrictions on x± a0t confine the solution to the triangular region
APB of Figure 10.7.1, which is the part of the (x, y) = plane in t > 0 common
to the characteristics which intersect AB. Nothing can be said about the
solution outside this triangle without additional information. It may occur
that these initial data are given on the whole x-axis; in these circumstances
A is −∞ and B is +∞ so that d’Alembert’s solution is valid in the entire
half-plane t > 0.

Quite often, the initial value problem will be mixed up with a boundary
value problem. Suppose that the initial data are prescribed as before but in
the interval (0,1) of the x-axis and that there are also boundary conditions
u(0, t) = 0, u(1, t) = 0 for all t. To be consistent with these conditions it is
necessary that h(0) = 0, h(1) = 0. The form (10.7.4) may still be used and,
from the initial conditions,

f(x) =
1

2

(

h(x) − 1

a0

∫ x

0

k(v)dv − C

)

,

g(x) =
1

2

(

h(x) +
1

a0

∫ x

0

k(v)dv + C

)

for x in (0, 1). Thus (10.7.8) continues to be the solution in the triangle APB
of Figure 10.7.2. We know f in PRB but not g because x+ a0t− 1 is positive
there. Similarly, f is needed in APQ. The boundary conditions are used to
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FIGURE 10.7.2: Reflection of characteristics by a boundary.

supply the missing links; they imply that

f(−a0t) + g(a0t) = 0, f(1 − a0t) + g(1 + a0t) = 0

for t ≥ 0 and therefore that

f(−y) + g(y) = 0, (10.7.9)

f(1 − y) + g(1 + y) = 0 (10.7.10)

for y ≥ 0. From (10.7.9), it follows that

f(y) = −g(−y) = −1

2

(

h(−y) +
1

a0

∫ −y

0

k(v)dv + C

)

(10.7.11)

when −1 ≤ y ≤ 0. This gives f(x − a0t) in the parallelogram ARSQ where
−1 ≤ x − a0t ≤ 0. In particular, for APQ where −1 ≤ x − a0t ≤ 0 and
0 ≤ x+ a0t ≤ 1,

u = 1
2{h(x+ a0t) − h(a0t− x)} +

1

2a0

∫ a0t+x

a0t−x

k(v)dv.

In a similar way, (10.7.10) supplies

g(y) = −f(2 − y) = −1

2

(

h(2 − y) − 1

a0

∫ 2−y

0

k(v)dv − C

)

(10.7.12)
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for 1 ≤ y ≤ 2; g(y) for 2 ≤ y ≤ 3 may also be obtained by means of the formula
for f(y) in (10.7.11). Via (10.7.12) we have g(x + a0t) in the parallelogram
BQUR. Thus, in BPR where 0 ≤ x− a0t ≤ 1 and 1 ≤ x+ a0t ≤ 2,

u = 1
2{h(x− a0t) − h(2 − x− a0t)} +

1

2a0

∫ 2−x−a0t

x−a0t

k(v)dv

and in PQTR where both (10.7.11) and (10.7.12) are applicable:

u = − 1
2{h(a0t− x) + h(2 − a0t− x)} +

1

2a0

∫ 2−x−a0t

a0t−x

k(v)dv.

To find u in QTU it is necessary to employ (10.7.9) again but it is clear
that we can determine u(x, t) for 0 ≤ x ≤ 1 and any t. The diagram makes
it evident that the characteristics are being reflected at the boundaries and
that, at each reflection, a new form of the solution has to be constructed.

A more general form of the wave equation is

∂2u

∂x2
=

1

{a(x)}2

∂2u

∂t2
(10.7.13)

where a is a function of x only. The characteristic coordinates are now given
by

ξ = t−
∫ x dv

a(v)
, η = t+

∫ x dv

a(v)
.

Hence

∂u

∂x
= −1

a

∂u

∂ξ
+

1

a

∂u

∂η
,

∂u

∂t
=
∂u

∂ξ
+
∂u

∂η
,

∂2u

∂x2
=

(

∂2u

∂ξ2
− 2

∂2u

∂ξ∂η
+
∂2u

∂η2

)

1

a2
−
(

∂u

∂η
− ∂u

∂ξ

)

a′

a2
.

∂2u

∂t2
=
∂2u

∂ξ2
+ 2

∂2u

∂ξ∂η
+
∂2u

∂η2
.

Accordingly (10.7.13) transforms to

4
∂2u

∂ξ∂η
+ a′

(

∂u

∂η
− ∂u

∂ξ

)

= 0. (10.7.14)

To express a′ in terms of ξ and η, notice that

η − ξ = 2

∫ x dv

a(v)

so that x is a function of η − ξ. Thus a′ will also be some function of η − ξ.
In the particular case when a=Ax, a′ =A and the substitution ξ = X/A,

η = Y/A converts (10.7.14) to

4
∂2u

∂X∂Y
+
∂u

∂Y
− ∂u

∂X
= 0.
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More generally, if a = Axν , a′ = νAxν−1 and, when ν 6= 1,

η − ξ = −2/A(ν − 1)xν−1

with the consequence that

a′ =
−2ν

ν − 1

1

η − ξ
.

In this case (10.7.14) becomes

∂2u

∂ξ∂η
=

ν

2(ν − 1)

1

ξ − η

(

∂u

∂ξ
− ∂u

∂η

)

. (10.7.15)

This is related to the Euler–Darboux equation to be discussed in Section 10.9,
where explicit solutions are found for certain values of ν.

10.8 Typical problems for the hyperbolic equation

In order to see what problems could be solved by tracing characteristics it
is plausible to assume, in view of the importance of the second derivative in
the classification, that, when the conditions are such that

∂2u

∂ξ∂η
= 0 (10.8.1)

can be resolved, a similar problem will be reasonably posed for (10.6.1) and
thereby for the general hyperbolic partial differential equation. Some examples
will now be given where resolution is possible, together with the corresponding
interpretation for the general equation.

10.8.1 The two-characteristic problem

Suppose that u is given on the portion of the characteristic 0 ≤ ξ ≤ a, η = 0,
say u = h(ξ), and on the piece of characteristic ξ = 0, 0 ≤ η ≤ b by u = k(η)
(Figure 10.8.1). From (10.7.3)

u = f(ξ) + g(η).

By putting η = 0 we obtain

f(ξ) + g(0) = h(ξ) (10.8.2)

for 0 ≤ ξ ≤ a and by placing ξ = 0

f(0) + g(η) = k(η) (10.8.3)
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FIGURE 10.8.1: The two-characteristic problem.

for 0 ≤ η ≤ b. Hence

u = h(ξ) + k(η) − f(0) − g(0)

= h(ξ) + k(η) − h(0)

on making ξ = 0 in (10.8.2). The same result is obtained from (10.8.3) since
h(0) = k(0) for the data on u to be consistent at the origin.

This solution will hold everywhere in the rectangle Oacb, which is the region
common to the characteristics that intersect the data lines.

Translating this back to the (x, y)-plane and general partial differential
equation, we see that giving u on the two characteristics O′A,O′B (Figure
10.8.2) determines u in the shaded region O′ACB where AC and BC are the
other characteristics through A and B, respectively.

10.8.2 The mixed problem

In the mixed problem, u = h(ξ) on 0 ≤ ξ ≤ a, η = 0 as before but either u
or a linear combination of its first partial derivatives is given on an arc Oc in
the first quadrant, the arc being met at most once by any characteristic.

Suppose that the equation of Oc is η = θ(ξ). Take a new variable χ = θ(ξ).
Then Oc becomes the straight line η = χ and the form of (10.8.1) is unaltered
so that the characteristics remain parallel to the coordinate axes. There is
therefore no loss of generality in selecting Oc as the straight line η = ξ in the
first place.

Suppose that u = k(ξ) on Oc with k(0) = h(0). Then we have

f(ξ) + g(0) = h(ξ), (10.8.4)

f(ξ) + g(ξ) = k(ξ) (10.8.5)
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FIGURE 10.8.2: The two-characteristic problem in the general case.

for 0 ≤ ξ ≤ a. Therefore

u = h(ξ) + k(η) − h(η)

for 0 ≤ ξ ≤ a, 0 ≤ η ≤ a. Consequently, u has been determined everywhere
within the square with side Oa (Figure 10.8.3).

Instead of u being specified on Oc, the linear combination

α(ξ)
∂u

∂ξ
+ β(ξ)

∂u

∂η
= k(ξ)

might be given on Oc. In that case (10.8.5) will be replaced by

α(ξ)f ′(ξ) + β(ξ)g′(ξ) = k(ξ).

Since f is known from (10.8.4), g can be calculated by integration and again
u has been discovered in the square.

Going back to the (x, y)-plane we can say that when u is given on the
characteristic arc O′A (Figure 10.8.4) and either u or a linear combination
of its first partial derivatives is specified on the arc O′C, which lies between
the characteristics O′A,O′B and is met at most once by any characteristic,
then u is determined in the shaded region O′ACB where AC and BC are
characteristics.

10.8.3 Cauchy’s problem

Cauchy’s problem is to determine u when u, ∂u/∂ξ and ∂u/∂η are given on
Oc, where Oc has the same properties as in the previous section, i.e., it is not
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FIGURE 10.8.3: The mixed problem.
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FIGURE 10.8.4: The general mixed problem.
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a characteristic and is met at most once by a characteristic. As before, there
is no loss of generality in taking Oc to be η = ξ.

Suppose that on Oc

u = h(ξ),
∂u

∂ξ
= k(ξ),

∂u

∂η
= l(ξ).

There is a connection between h, k and l because

h′(ξ) =
du

dξ
=
∂u

∂ξ

dξ

dξ
+
∂u

∂η

dη

dξ
= k(ξ) + l(ξ) (10.8.6)

since the equation of Oc is η = ξ.
The imposition of the given conditions supplies

f(ξ) + g(ξ) = h(ξ),

f ′(ξ) = k(ξ), g′(ξ) = l(ξ).

The three are consistent on account of (10.8.6). With f found from the second
equation and g from the first, u is obtained in the same square as in the mixed
problem.

For the general equation, data on u and its first partial derivative on O′C
in Figure 10.8.4 will fix u in the characteristic domain O′ACB.

A return to the reflection problem for the wave equation in Section 10.7 is
pertinent here, to examine it from the point of view of this section. AB of
Figure 10.7.2 is not a characteristic and u, ∂u/∂t are given on it. Therefore
there is a Cauchy problem and, from the above, a solution is available in APB.
From this solution u is known on AP , which is a characteristic arc, and u=0
on AQ, which is not a characteristic but lies between the two characteristics
through A. Hence there is a mixed problem and u can be found in APQ. Simi-
larly, a mixed problem gives u in BPR. Now u is known on PQ and PR, which
are both characteristic arcs, and so by solving a two-characteristic problem
we determine u in PRTQ. In this way, a solution to a reflection problem for
a general hyperbolic equation can be built up by means of characteristics.

It is possible to find u when u is given on two arcs Oc,Od in the first
quadrant when they are not characteristics. If Oc is in the first quadrant and
Od is in the fourth there is insufficient information for a unique solution. For
if we give u any values on the ξ-axis we have a mixed problem in the first
quadrant and another one in the fourth, so that a solution can be found.

When elliptic partial differential equations were discussed it was pointed
out that Dirichlet’s problem was an appropriate one. It will now be shown
why it is not suitable for hyperbolic equations in general.

Let u be prescribed on the boundary ABCD of Figure 10.8.5. The aim is
to find u inside; so assume some values for u on OB. Then the form of u
in OAB is known by solving a mixed problem and similarly in OBC. From
the discovered values of u on OC, u is determined in OCD via a mixed
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FIGURE 10.8.5: The Dirichlet problem for the hyperbolic equation.

problem. Similarly, values in OAD can be found. In order that the solution
be correct, the values of u on OD from OCD and OAD must agree. This
places a condition on the assumed values on OB. There is no guarantee that
this condition can be fulfilled. If it cannot be met there is no solution to the
Dirichlet problem. If the condition on OB can be satisfied there will be at
least one solution and there may be several since there may be more than one
way of complying with the condition.

We conclude that the Dirichlet problem for the hyperbolic differential equa-
tion must be treated with great caution.

10.9 The Euler–Darboux equation

This section is devoted to the hyperbolic partial differential equation

∂2u

∂x∂y
=

m

x− y

(

∂u

∂x
− ∂u

∂y

)

(10.9.1)

where m is a positive integer. This form has already occurred in Section 10.7
and it is called the Euler–Darboux equation.
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Now

∂2

∂x∂y
{(x− y)v} =

∂

∂x

(

(x− y)
∂v

∂y
− v

)

= (x− y)
∂2v

∂x∂y
+
∂v

∂y
− ∂v

∂x
.

(10.9.2)

Consequently, when m=1, (10.9.1) after multiplication by x−y may be writ-
ten, on account of (10.9.2), as

∂2

∂x∂y
{(x− y)u} = 0.

It follows that

u =
f(x) + g(y)

x− y
,

with f and g arbitrary, provides the general solution of the Euler–Darboux
equation when m = 1.

Multiply (10.9.1) by x − y and apply the derivative ∂2/∂x∂y. Then, by
virtue of (10.9.2),

(x − y)
∂2

∂x∂y

∂2u

∂x∂y
+

(

∂

∂y
− ∂

∂x

)

∂2u

∂x∂y
= m

(

∂

∂x
− ∂

∂y

)

∂2u

∂x∂y
.

Thus, if u satisfies (10.9.1), ∂2u/∂x∂y is a solution of (10.9.1) with m replaced
by m+ 1. The solution already derived for m = 1 now permits the statement
that

u =
∂2m−2

∂xm−1∂ym−1

(

f(x) + g(y)

x− y

)

,

with f and g arbitrary, solves (10.9.1).

10.10 Visualisation of solutions

MATLAB provides an effective means of visualising solutions to partial
differential equations. Typically, this takes the form of a surface or contour
plot for functions of two variables. Alternatively, if one of the variables is
time, animations can be used. Below are template MATLAB programs for
doing this, followed by some examples for specific problems.

Surface plotting

This M-file produces a surface plot of a function u(x, y) against x and y. If
the command surf is replaced by contour, a contour plot will be produced
instead of a surface. Using surfc will produce a combination surface/contour
plot.
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x = x_min:h:x_max; y = y_min:h:y_max;

[X, Y] = meshgrid(x, y);

% Define U here

surf(X, Y, U);

xlabel(’x’); ylabel(’y’); zlabel(’u’);

In addition to defining the function to be plotted (U), the values of the min-
imum and maximum x and y values (x_min, x_max, y_min, y_max) and the
grid size (h) need to be specified. Note that the meshgrid command takes
the vectors x and y and forms matrices X and Y corresponding to the x and y
coordinates in a rectangular grid.

Animations in one dimension

This M-file produces graphs of a function u(x, t) against x for a series of
values of t.

x = x_min:h:x_max; t = t_min:dt:t_max;

N_frames = length(t);

wait_time = 0.01;

for I = 1:N_frames

% Define U here

plot(x, U)

xlabel(’x’); ylabel(’t’);

axis([x_min x_max u_min u_max])

title(sprintf(’t=%4.2e\n’,t(I)))

pause(wait_time);

end

Animations in two dimensions

This M-file produces surface plots of a function u(x, y, t) against x and y
for a series of values of t.

x = x_min:h:x_max; y = y_min:h:y_max; t = t_min:dt:t_max;

[X, Y] = meshgrid(x, y);

N_frames = length(t);

wait_time = 0.01;

for I = 1:N_frames

% Define U here

surf(X, Y, U)

xlabel(’x’); ylabel(’t’); zlabel(’u’);

axis([x_min x_max y_min y_max u_min u_max])

title(sprintf(’t=%4.2e\n’,t(I)))

pause(wait_time);

end
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FIGURE 10.10.1: Surface plot of the solution (10.1.15) for u(x, y).

Sometime, as for example in the spiral wave solution (8.4.16) of Chapter 8, a
solution to a partial differential equation may be defined in polar coordinates.
This situation can be dealt with by computing the solution u(r, θ, t) over a
polar grid, instead of a rectangular grid. Simply change the commands defining
x and y in the above by equivalent commands defining appropriate ranges for
r and theta:

r = 0:dr:r_max; theta = 0:dtheta:2*pi;

[R, Theta] = meshgrid(r, theta);

Then define the solution U in terms of the polar coordinates R and Theta, and
replace the surf command by

surf(R.*cos(Theta), R.*sin(Theta), U)

Example 10.10.1

Plot the solution found in Example 10.1.1.

The solution defined by equation (10.1.15) can be calculated with the follow-
ing MATLAB command (which should be inserted in place of % Define U here

in the surface plotting program above).

U = (Y-X/2-log(X)/2).*(2+log(X)/2)+X/4+3/4+(log(X)).^2/2;
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FIGURE 10.10.2: Snapshots of d’Alembert’s solution (10.7.8) to the wave
equation with a0 = 1, k(x) ≡ 0 and f(x) = exp

(

−x2
)

.

Note the use of the component-by-component operators .* and .^ (see Section
5.8). Running the program produces the graph shown in Figure 10.10.1.

Example 10.10.2

Plot d’Alembert’s solution (10.7.8) to the wave equation with a0 = 1, k(x) = 0
and h(x) = exp

(

−x2
)

.

According to equation (10.7.8), the solution is

u(x, t) =
1

2

(

exp
(

− (x− t)
2
)

+ exp
(

− (x+ t)
2
))

.

This can be defined in MATLAB by the command:

U = (exp(-(x-t(I)).^2)+exp(-(x+t(I)).^2))/2;

Figure 10.10.2 shows some snapshots from the animation produced by the
program above.
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Exercises

10.1 If the characteristics of

a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
= 0

are φ(x, y) = constant, show that the general solution is u = G{φ(x, y)}
where G is an arbitrary function.

10.2 Solve
∂u

∂x
+
∂u

∂y
= 2

given that u = 2x2 when y = 0. Use MATLAB to produce a surface
plot of the solution u(x, y).

10.3 Solve

x
∂u

∂x
+ y

∂u

∂y
= u

given that u = 3x on x+ y = 1.

10.4 Make the substitution x = ρ cos θ, y = ρ sin θ in

(x− y)
∂u

∂x
+ (x+ y)

∂u

∂y
= 4.

Hence find the solution in 0 ≤ θ < 2π such that u = 2r when θ = 0.

10.5 If u = 3y2 when x = 0 solve

∂u

∂x
− (x− y − 1)

∂u

∂y
= 3x(y − x).

10.6 Given that u = y2 on x = 0, find u in y > x > 0 such that

y2 ∂u

∂x
+ xy

∂u

∂y
= x.

Use MATLAB to produce a surface plot of the solution u(x, y).

10.7 Find the solution in x > 0, y > 0 of

x
∂u

∂x
− 2y

∂u

∂y
= x2 + y2

such that u = x2 on y = 1.
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10.8 Find the solution in x > 0 of

x
∂u

∂x
+ y

∂u

∂y
= u− 2xy

given that u = 2y2 + 2 on x = 2. Use MATLAB to produce a surface
plot of the solution u(x, y).

10.9 If

x
∂u

∂x
+ y

∂u

∂y
= xy

and u = 1
2x

2 on y = x determine u.

10.10 In what regions are the following partial differential equations elliptic,
hyperbolic or parabolic?

(a)
∂2u

∂x2
+ 4

∂2u

∂y2
= 0,

(b) 7
∂2u

∂x∂y
− 3

∂u

∂y
= 0,

(c) x2 ∂
2u

∂x2
+ 4y

∂2u

∂x∂y
+
∂2u

∂y2
+ 2

∂u

∂x
= 0,

(d) 3y
∂2u

∂x2
− x

∂2u

∂y2
= 0,

(e)
∂2u

∂x2
+ 4

∂u

∂x
= 0,

(f) x2y2 ∂
2u

∂x2
+ 2xy

∂2u

∂x∂y
+
∂2u

∂y2
= 0.

10.11 Make the change of variables x = ρ cos θ, y = ρ sin θ in

(x2 cos2 α− y2 sin2 α)
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ (y2 cos2 α− x2 sin2 α)

∂2u

∂y2
= 0

and show that ln ρ± θ cotα are characteristic coordinates. Express the
equation in characteristic form.

10.12 Express the partial differential equation

∂2u

∂x2
− e−x ∂

2u

∂y2
= 0

in characteristic form.

10.13 Find the two families of characteristics of

2x2 ∂
2u

∂x2
− 5xy

∂2u

∂x∂y
+ 2y2 ∂

2u

∂y2
+ 2x

∂u

∂x
+ 2y

∂u

∂y
= 0.

Convert the equation to characteristic form and hence find u given that
u = 2x2 − 6 and ∂u/∂y = 3 − x2 on y = 1.
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10.14 The characteristic form of

{a(x)}2 ∂
2u

∂x2
=
∂2u

∂y2

is
∂2u

∂ξ∂η
=

1

2(ξ − η)

(

∂u

∂ξ
− ∂u

∂η

)

.

Show that a(x) = AeBx where A and B are constants.
If the characteristic form is

∂2u

∂ξ∂η
=

ν

ξ − η

(

∂u

∂ξ
− ∂u

∂η

)

and ν 6= 1
2 , find a formula for a.

10.15 The solution of
∂2u

∂x2
+ 3

∂2u

∂y2
+ 2x = 0

is required in the square 0 < x < a, 0 < y < a. You are asked to advise
which of the following sets of boundary conditions on the perimeter of
the square are suitable:

(a) u given on all four sides;

(b) u given on two adjacent sides only;

(c) u given on three sides and its normal derivative given on the middle
side of the three.

Decide for (a), (b) and (c) whether there is a solution and, if so, whether
there is more than one.

10.16 Repeat Exercise 10.15 for

∂2u

∂x2
+ 3

∂2u

∂y2
+ u = 0.

10.17 Repeat Exercise 10.15 for

∂2u

∂x2
− ∂2u

∂y2
− 2u = 0.

10.18 Repeat Exercise 10.15 for

∂2u

∂x∂y
+ 3u = 0.

10.19 Use MATLAB to produce a surface plot of the solution (10.1.17) over
a suitable range of x and y.
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10.20 Use MATLAB to produce plots or animations of d’Alembert’s solution
(10.7.8) to the wave equation with a0 = 1, k(x) = 0 and h(x) = cosx.
What happens if you increase or decrease the value of a0?

10.21 Use MATLAB to produce animations for 0 < r < 4 of the spiral wave
solution to the λ− ω system (see Section 8.4):

u(r, θ, t) = cos (Ωt+mθ + ψ(r)) ,

where Ω = 1, m = 1 and the function ψ(r) is:

(a) an Archimedean spiral ψ(r) = r;

(b) a logarithmic spiral ψ(r) = ln r.

Note that the spiral wave is best visualised by plotting an animated
filled contour plot, rather than an animated surface plot. This may be
achieved by replacing the command surf in the program in Section
10.10 by the command contourf.



Chapter 11

Evolutionary Equations

11.1 The heat equation

The equation
∂u

∂t
= D∇2u, (11.1.1)

where D is a positive constant and ∇2 is the Laplacian (see equation (8.4.3)),
arises in the study of problems of heat conduction and for this reason is
referred to as the heat equation. However, (11.1.1) arises in many other
areas in which diffusion processes occur (the subject of Chapter 12) and in
this context is referred to as the classic diffusion equation.

In this section we shall study (11.1.1) in one space dimension and where
D = 1, that is, we consider the equation

∂u

∂t
=
∂2u

∂x2
. (11.1.2)

In addition to the techniques described in Chapter 10, the method of separa-
tion of variables is a powerful tool with which to solve linear partial differential
equations. To begin with, we seek solutions of (11.1.2) in the form

u(x, t) = X(x)T (t). (11.1.3)

Substitution of this into (11.1.2) leads to the identity

X
dT

dt
= T

d2X

dx2

or
1

T

dT

dt
=

1

X

d2X

dx2
. (11.1.4)

Now 1
T

dT
dt is a function of t only, while 1

X
d2X
dx2 is a function of x only. Con-

sequently, both sides of (11.1.4) must be equal to a constant, say λ. Thus X
and T must satisfy the ordinary differential equations

dT

dt
− λT = 0,

d2X

dx2
− λX = 0. (11.1.5)

259
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These have the general solutions

X(x) = exp ±
√
λx, T (t) = expλt.

Hence (11.1.2) has a particular solution of the form

u(x, t) = A exp(±
√
λx+ λt). (11.1.6)

Now suppose we are given initial data of the form

u(x, 0) = A exp iαx; (11.1.7)

then a solution of (11.1.2) that satisfies (11.1.7) is

u(x, t) = A exp(iαx − α2t).

It is of interest to see how solutions of this form can be utilised in order to
provide a solution to the more general initial value problem

∂u

∂t
=
∂2u

∂x2
, −∞ < x <∞,

u(x, 0) = f(x). (11.1.8)

To carry out this program we shall need the Fourier Integral Theorem.

THEOREM 11.1.1

Let f(x) and df
dx be continuous and

∫∞
−∞ |f(x)|dx <∞.

Then

f(x) =
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f(ξ)e−iαξdξ

)

eiαxdα. (11.1.9)

The quantity

f̂(α) =
1√
2π

∫ ∞

−∞
f(ξ)e−iαξdξ (11.1.10)

is called the Fourier transform of f and (11.1.9) provides the reciprocal
relation

f(x) =
1√
2π

∫ ∞

−∞
f̂(α)eiαxdα. (11.1.11)

Fourier transforms are another of an important class of techniques available
for the solution of partial differential equations. To see this in the present
situation, consider a special solution of the heat equation in the form

u(x, t;α) = A(α)eiαx−α2t, (11.1.12)

where A(α) is an arbitrary function of α. Since (11.1.2) is a linear partial
differential equation, we know that a linear combination of solutions of the
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form (11.2.12) is also a solution. This, of course, is the essence of the separation
of variables method. With this in mind, we take the reasonable step that the
integral with respect to α of (11.2.12) may also be a solution.

Consider the function

u(x, t) =

∫ ∞

−∞
u(x, t;α)dα =

∫ ∞

−∞
A(α)eiαx−α2tdα. (11.1.13)

What we must do now is first to find a specific form for A(α) so that u(x, t)
defined by (11.1.13) satisfies the initial condition in (11.1.8) and then to show
that (11.1.13) is in fact the (unique) solution to the problem (11.1.8).

Setting t = 0 in (11.1.13) we see that we must have

f(x) =

∫ ∞

−∞
A(α)eiαxdα

or
f(x)√

2π
=

1√
2π

∫ ∞

−∞
A(α)eiαxdα.

In other words, A(α) must be taken as the Fourier transform of f(x)/
√

2π.
That is,

A(α) =
1

2π

∫ ∞

−∞
f(ξ)e−iαξdξ

and so from (11.1.13) we have

u(x, t) =
1

2π

∫ ∞

−∞
f(ξ)dξ

∫ ∞

−∞
eiα(x−ξ)−α2tdα. (11.1.14)

The result (11.1.14) can be simplified.
Consider

I =

∫ ∞

−∞
eiα(x−ξ)−α2tdα

=

∫ ∞

−∞
exp

[

−t
(

α− i(x− ξ)

2t

)2

− (x− ξ)2

4t

]

dα.

Now set

α− i(x− ξ)

2t
=

β√
t

to obtain

I =
1√
t
exp

(

− (x− ξ)2

4t

)∫ ∞

−∞
e−β2

dβ.

The integral
∫∞
−∞ e−β2

dβ is known as the error integral and takes the value√
π. Thus

I =
√

(π/t) exp

(

− (x− ξ)2

4t

)
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and so on using this in (11.1.14) we obtain the expression

u(x, t) =

∫ ∞

−∞

exp[−(x− ξ)2/4t]√
4πt

f(ξ)dξ. (11.1.15)

The function

K(x− ξ, t) =
exp[−(x− ξ)2/4t]√

4πt

is of special significance in the study of diffusion problems and is called the
fundamental solution of the heat equation. It has a number of interesting
properties that are important if we wish to study the regularity of solutions to
heat conduction problems. For example, it is easy to see that K → 0 as t→ 0
except at the point ξ = x, where K → ∞ like the function 1/

√
t. Furthermore,

∫ ∞

−∞
K(x− ξ, t)dξ = 1

for all t ≥ 0
To show that (11.1.15) does indeed solve the problem (11.1.8) can be done

by formal substitution. However, it is important to realise that such a proce-
dure requires careful consideration of questions of convergence and the oper-
ation of differentiation under the integral. Furthermore, there must be some
restriction on the initial data. That this is so is due to the fact that (11.1.15)
has been arrived at through the use of the Fourier integral theorem wherein
we have assumed that

∫ ∞

−∞
|u(x, 0)|dx =

∫ ∞

−∞
|f(x)|dx < 0.

This restriction can be relaxed; in fact (11.1.15) holds if

|f(x)| ≤MeNx2

.

Rigorous proofs of the existence and uniqueness of the solution (11.1.15) to
the initial value problem (11.1.8) are to be found in most books devoted
to the study of partial differential equations of which John (1975) is to be
recommended.

11.2 Separation of variables

The class of problems treated here are those in which we wish to solve the
heat equation in the presence of boundary as well as initial conditions. Such
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problems may be attacked by the use of “finite” Fourier transforms or, what
is essentially the same thing, by the separation of variables method. Thus,
instead of seeking solutions in integral form, as was done in the previous
section, we derive solutions expressed in the form of infinite Fourier series.

The following is typical of such problems.

Example 11.2.1

∂u

∂t
=
∂2u

∂x2
, 0 < x < l, t > 0,

u(x, 0) = f(x),

u(0, t) = u(l, t) = 0. (11.2.1)

As before, we seek solutions in the form

u(x, t) = X(x)T (t)

in which the functions X(x) and T (t) must satisfy the ordinary differential
equations

dT

dt
+ λT = 0,

d2X

dx2
+ λX = 0. (11.2.2)

Notice that these equations differ from those in (11.1.5) by the change from
+λ to −λ. This is done purely for convenience and, for the present problem,
makes the analysis a little easier to handle.

We seek solutions of the second equation in (11.2.2) that satisfy the bound-
ary conditions

u(0, t) = u(l, t) = 0. (11.2.3)

In other words, we have a typical eigenvalue problem (see Chapter 3, Section
3.6) giving rise to eigenvalues λn = n2π2/l2, n = 1, 2, . . ., and corresponding
eigenfunctions Xn(x) = sin(nπx/l). Thus for each n the functions

un(x, t) = exp

(

−n
2π2t

l2

)

sin
(nπx

l

)

are solutions of the heat equation that satisfy the boundary conditions (11.2.3).
Since the heat equation is linear, a superposition of solutions of the form
un(x, t) is also a solution. Thus we look for a solution of the initial boundary
value problem in the form of the infinite series

u(x, t) =
∞
∑

n=1

An exp

(

−n
2π2t

l2

)

sin
(nπx

l

)

. (11.2.4)
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If we set t = 0 in (11.2.4), then the initial condition is satisfied if we can
choose the unknown coefficients An, n = 1, 2, . . ., so that

f(x) =

∞
∑

n=1

An sin
(nπx

l

)

. (11.2.5)

In other words we seek a Fourier sine series expansion of f(x).
From Chapter 3 we know that the set of functions sin(nπx/l), n = 1, 2, . . .,

form an orthogonal set on the interval 0 ≤ x ≤ l, that is,

∫ l

0

sin
(mπx

l

)

sin
(nπx

l

)

dx =

{

0, m 6= n.
l/2, m = n.

Thus if we formally multiply (11.2.5) by sin
(

mπx
l

)

for some m and integrate
over 0 ≤ x ≤ l we find that

∫ l

0

f(x) sin
(mπx

l

)

dx =
1

2
Am

or

Am =
2

l

∫ l

0

f(x) sin
(mπx

l

)

dx.

This gives the result

u(x, t) =
2

l

∞
∑

n=1

exp

(

−n
2π2t

l2

)

sin
(nπx

l

)

∫ l

0

f(y) sin
(nπx

l

)

dy. (11.2.6)

By construction it is clear that the series (11.2.6) satisfies the boundary and
initial conditions of our problem. That it also satisfies the heat equation follows
from the fact that the series is convergent for all x, 0 ≤ x ≤ l, and t ≥ 0 and
can be differentiated term by term.

The method of separation of variables is applicable not only to the heat
equation but also to problems involving Laplace’s equation and the wave
equation treated under a variety of initial and boundary conditions. To help
to appreciate this we consider the following problem.

Example 11.2.2
∂u

∂t
=
∂2u

∂x2
− au, 0 < x < π, t > 0, (11.2.7)

where a is a positive constant and u(x, t) is required to satisfy the conditions

u(0, t) =
∂u(π, t)

∂x
= 0,

u(x, 0) = x(π − x). (11.2.8)
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Proceeding as before we set

u(x, t) = X(x)T (t)

to find
1

T

dT

dt
=

1

X

d2X

dx2
− a

or
dT

dt
+ aT = −λ =

d2X

dx2
.

In other words, the functions X(x), T (t) must satisfy the ordinary differential
equations

d2X

dx2
+ λX = 0, (11.2.9)

dT

dt
+ (a+ λ)T = 0. (11.2.10)

We seek solutions of (11.2.9) that satisfy the boundary conditions

X(0) =
dX(π)

dx
= 0. (11.2.11)

First of all suppose λ= 0; then (11.2.9) has the general solutionX(x)=A+Bx.
On using the boundary conditions (11.2.11), it follows that A = B = 0 and
so X ≡ 0 in this case. When λ 6= 0 the general solution of (11.2.9) is

X(x) = A sin
√
λx+B cos

√
λx

and
dX

dx
= A

√
λ cos

√
λx−B

√
λ sin

√
λx.

Consequently, the boundary conditions (11.2.11) demand that A,B,
√
λ be

chosen so that

B = 0,

Aλ cos
√
λπ −Bλ sin

√
λπ = 0.

Thus for A 6= 0 we must have cos
√
λπ = 0, and so

√
λπ = (2n− 1)π/2, n = 1, 2, . . . .

That is the eigenvalues are

λn =
1

4
(2n− 1)2,

and the corresponding eigenfunctions are

Xn(x) = sin

(

(2n− 1)x

2

)

.
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Therefore we have a solution un(x, t) of (11.2.7) satisfying the boundary con-
ditions in (11.2.8) in the form

un(x, t) = exp{−[(2n− 1)2 + 4a]t/4} sin[(2n− 1)x/2].

The complete solution to the problem is then sought in the form

u(x, t) =
∞
∑

n=1

An exp{−[(2n− 1)2 + 4a]t/4} sin[(2n− 1)x/2]. (11.2.12)

By imposing the initial condition in (11.2.8) we determine the unknown coef-
ficients An from the Fourier series

x(π − x) =

∞
∑

n=1

An sin

(

(2n− 1)x

2

)

. (11.2.13)

From the previous example we see that

An =
2

π

∫ π

0

x(π − x) sin

(

(2n− 1)x

2

)

dx.

The integral appearing on the right-hand side is best evaluated by “integration
by parts.” Consider

In =

∫ π

0

x(π − x) sin

(

(2n− 1)x

2

)

dx

=

[

−x(π − x)
2

2n− 1
cos

(

(2n− 1)

2
x

)]π

0

+
2

2n− 1

∫ π

0

(π − 2x) cos

(

(2n− 1)

2
x

)

dx

=

[

(π − 2x)
4

(2n− 1)2
sin

(

(2n− 1)

2
x

)]π

0

+
8

(2n− 1)2

∫ π

0

sin

(

(2n− 1)

2
x

)

dx

=
4π

(2n− 1)2
cos (nπ) − 16

(2n− 1)3

[

cos

(

(2n− 1)

2
x

)]π

0

=
4π

(2n− 1)2
cos (nπ) +

16

(2n− 1)3
.

Thus
An = 8[(4/π)(2n− 1)−3 + (−1)n(2n− 1)−2],

and we have the solution to the problem in the form

u(x, t) = 8

∞
∑

n=1

[(4/π)(2n− 1)−3 + (−1)n(2n− 1)−2]

× exp{−[(2n− 1)2 + 4a]t/4} sin[(2n− 1)x/2].
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Consider the problem in two dimensions.

Example 11.2.3

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, 0 < x < a, 0 < y < b, t > 0,

u(x, y, t) = 0 on the boundary of the rectangle defined by 0 ≤ x ≤ a, 0 ≤ y ≤ b
and

u(x, y, 0) = f(x, y). (11.2.14)

The procedure here is precisely the same as in the previous examples except
that we begin by seeking a solution in the form

u(x, y, t) = T (t)S(x, y)

to find that T and S must satisfy the equations

dT

dt
+ λT = 0, (11.2.15)

∂2S

∂x2
+
∂2S

∂y2
+ λS = 0. (11.2.16)

Now (11.2.16) is an elliptic equation of the type considered in Chapter 10 and
here we seek a solution S(x, y) which satisfies the boundary conditions

S(0, y) = S(a, y) = 0, 0 ≤ y ≤ b,

S(x, 0) = S(x, b) = 0, 0 ≤ x ≤ a. (11.2.17)

This problem is solved by applying the separation of variables technique once
more. That is, we set

S(x, y) = X(x)Y (y)

and find that X(x), Y (y) must satisfy

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+ λ = 0,

i.e.,
1

X

d2X

dx2
= −µ = −

(

1

Y

d2Y

dy2
+ λ

)

,

or

d2X

dx2
+ µX = 0, (11.2.18)

d2Y

dy2
+ (λ− µ)Y = 0. (11.2.19)
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In addition we require

X(0) = X(a) = 0, (11.2.20)

Y (0) = Y (b) = 0. (11.2.21)

The problem (11.2.18), (11.2.20) is of the same form as the problem (11.2.2),
(11.2.3) and so we have the eigenvalues

µm =
m2π2

a2
, m = 1, 2 . . .

and corresponding eigenfunctions

Xm(x) = sin
(mπx

a

)

.

For a typical eigenvalue µm, the problem (11.2.19), (11.2.21) becomes

d2Y

dy2
+ (λ− µm)Y = 0,

Y (0) = Y (b) = 0.

This is another typical eigenvalue problem of the type already considered and
leads to the eigenvalues

λn − µm =
n2π2

b2
, n = 1, 2 . . .

and corresponding eigenfunctions

Yn(y) = sin
(nπy

b

)

.

In other words, a solution of (11.2.16), (11.2.17) is of the form

Smn(x, y) = sin
(mπx

a

)

sin
(nπy

b

)

,

together with the eigenvalue

λmn =

(

m2

a2
+
n2

b2

)

π2.

It is important to notice here that since Smn depends on both m and n, the
general solution of the problem (11.2.14) must be sought as a “double” series
where the summation extends over both m and n. Thus we write

u(x, y, t) =
∞
∑

m=1

∞
∑

n=1

Amn sin
(mπx

a

)

sin
(nπy

b

)

× exp

[

−
(

m2

a2
+
n2

b2

)

π2t

]

. (11.2.22)
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By imposing the initial condition we determine Amn from the “double” Fourier
series

f(x, y) =

∞
∑

m=1

∞
∑

n=1

Amn sin
(mπx

a

)

sin
(nπy

b

)

. (11.2.23)

In order to determine the coefficients Amn we apply the “one-dimensional”
arguments used above twice.

Thus if we consider y as fixed then

a

2

∞
∑

n=1

Amn sin
(nπy

b

)

=

∫ a

0

f(x, y) sin
(mπx

a

)

dx. (11.2.24)

Now the right-hand side of (11.2.24) is a function of y and so (11.2.24) can be
considered as a Fourier series in the single variable y. Thus if we set

∫ a

0

f(x, y) sin
(mπx

a

)

dx = g(y),

then the coefficients Amn (m fixed) in (11.2.24) are given by

ab

4
Amn =

∫ b

0

g(y) sin
(nπy

b

)

dy

i.e.,

Amn =
4

ab

∫ a

0

∫ b

0

f(x, y) sin
(mπx

a

)

sin
(nπy

b

)

dxdy. (11.2.25)

In conclusion then we have the possible series solution to problem (11.2.14)
in the form (11.2.22) where the coefficients Amn are given by (11.2.25). Again
we must verify that (11.2.22) does indeed solve the problem (11.2.14). By
construction, the initial and boundary conditions are satisfied and the uniform
convergence of the series (11.2.22) justifies differentiation of the series and this
in turn allows for verification of the solution by direct substitution into the
two-dimensional heat equation.

11.3 Simple evolutionary equations

An evolutionary equation is one of the form

∂u

∂t
= D∇2u+ f(x, t, u), (11.3.1)

where the function f may be quite a complicated function of its arguments
and could even depend on the spatial derivatives of u. Equations of the form
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(11.3.1) have already arisen many times in the context of biological modelling
(see Chapter 4) and will be taken up again in Chapter 12.

The expression “simple evolutionary equations” used for this section is
somewhat illusory. It does not mean that the problems we shall consider are
particularly simple or easy, but refers to equations in which the function f
depends only on the dependent variable u and is of a simple form such as a
polynomial. Thus the equations we shall consider will be of the type

∂u

∂t
= D∇2u+ f(u). (11.3.2)

Depending on the context, this type of equation is sometimes also referred to
as a reaction–diffusion equation. If f(u) is linear, say

f(u) = Au +B,

where A and B are constants, then in many instances the equation (11.3.2)
can be solved by the separation of variables method. However if, as in many
of the applications considered in this book, f(u) is nonlinear, say

f(u) = u(1 − u)(u − a), 0 < u < 1, (11.3.3)

then the problem is much more intractable. Indeed, it is not usually possi-
ble to obtain “general” analytic solutions and one must solve such problems
numerically (see Mitchell and Griffiths, 1980). Despite this, however, many
evolutionary equations have “special” or “particular” solutions, which are of
fundamental importance to our understanding of biological phenomena mod-
elled by evolutionary equations. In this section we shall explore some of these
particular solutions and demonstrate their use in the section to follow.

Suppose that f(u) is a polynomial in u and that f(u) has real roots at
u = α, β, γ, . . . . Then it is obvious that in this case u = α, u = β, u = γ, etc.,
are all constant solutions of (11.3.2). Such solutions are of importance in the
treatment of the pure initial value problem

∂u

∂t
= D

∂2u

∂x2
+ f(u), −∞ < x <∞,

u(x, 0) = φ(x). (11.3.4)

Here, for example, it often happens that the solution u(x, t) evolves as t→ ∞
into one of the asymptotic states u = α, β, γ, . . . . Which state is reached
depends crucially on the form of the initial data φ and that of f . Indeed some
of these constant asymptotic states are stable to small perturbations of φ
while others are not.

As an example of this, consider the problem (11.3.4) with f(u) given by
(11.3.3). Then it can be shown (see Section 11.4) that if

supx∈(−∞,∞)φ(x) < a,
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then u(x, t) < a for all x ∈ (−∞,∞), t > 0. From this it may be proved that
u(x, t) → 0 (exponentially) as t → ∞. By a similar argument it can also be
shown that if

infx∈(−∞,∞)φ(x) > a,

then u(x, t) > a for all x ∈ (−∞,∞), t > 0 and u(x, t) → 1 as t → ∞. In
other words, the problem (11.3.4) has u = 0 or u = 1 as asymptotic states
depending on the magnitude of the initial data. The number a is called a
“threshold” parameter.

Another fundamentally important set of solutions to equation (11.3.4) is
the class of “travelling wave” solutions. Here we look for solutions of the form

u(x, t) = V (x+ ct),

where c is a constant, positive or negative, called the “wave speed.” If we
make the transformation ξ = x+ ct in (11.3.4) then we see that V (ξ) satisfies
the nonlinear ordinary differential equation

V ′′ + cV ′ + f(V ) = 0, (11.3.5)

where the primes represent differentiation with respect to ξ.
We have encountered travelling waves several times already (Chapters 4, 7

and 8) and have analysed them using the phase plane methods of Chapter 5.
They are also of fundamental importance in the study of asymptotic states of
the problem (11.3.4). Indeed we may ask the question: When does the solution
u(x, t) “evolve” into the travelling wave V (x + ct)? Mathematically we can
state the problem as: determine conditions on the initial data φ(x) so that

lim
t→∞

|u(x, t) − V (x+ ct)| = 0.

In practice, there may be several such travelling waves, some stable and some
unstable, and the determination of the appropriate stable travelling wave is
often a challenging task.

Travelling waves can be classified as follows:

(a) wave trains — V (ξ) periodic;

(b) wave fronts — V (−∞) and V (∞) exist and are unequal;

(c) pulses — V (−∞) and V (∞) exist and are equal and V (ξ) is not constant.

Apart from the use of phase plane methods the problem of finding travelling
wave solutions is usually solved by numerical methods. However, in some cases,
if we are fortunate, travelling waves can be determined analytically.

Example 11.3.1

f(u) = u(1 − u)(u − a).
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Here
V (x + ct) = V (ξ) =

(

1 + e−ξ/
√

2
)−1

, (11.3.6)

where

c =
√

2

(

1

2
− a

)

.

In this example V (−∞) = 0, V (∞) = 1 and so in this case V (ξ) is a wave
front travelling from right to left with speed c =

√
2(1

2 − a).

Example 11.3.2

f(u) =

{

u, 0 ≤ u < 1
2 ,

1 − u, 1
2 ≤ u.

(11.3.7)

If we make the substitution ξ = x+ct then we obtain equation (11.3.5) with f
defined by (11.3.7). Again we look for a nondecreasing (i.e., monotone increas-
ing) solution satisfying the conditions 0 ≤ V (ξ) ≤ 1, V (−∞) = 0, V (∞) = 1.

As long as V < 1
2 we have to solve

V ′′ − cV ′ + V = 0,

which has the solution
V = Aeα1ξ +Beα2ξ, (11.3.8)

where A and B are constants to be determined and

α1 =
c+

√

(c2 − 4)

2
, α2 =

c−
√

(c2 − 4)

2
,

provided c2 6= 4. In order to satisfy the condition V (−∞) = 0, it is clear that
we must have c > 0. If c < 2 then (11.3.9) is oscillatory and so we would
not have a monotone solution. Consequently we must have c ≥ 2. Suppose
c > 2. Then we have a solution monotone increasing with ξ. If without loss of
generality V = 1/2 when ξ = 0 then we require

A+B =
1

2
. (11.3.9)

For V ≥ 1
2 we must solve the equation

V ′′ − cV ′ + 1 − V = 0,

which has the general solution

V = Deβ1ξ + Eeβ2ξ + 1, (11.3.10)

where D,E are constants to be determined and

β1 =
c+

√

(c2 + 4)

2
, β2 =

c−
√

(c2 + 4)

2
.
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The requirement V (∞) = 1 demands that D = 0. In addition, the condition
V (0) = 1

2 gives

E + 1 =
1

2
,

i.e.,

E = −1

2
.

Furthermore, if we require V to be continuous at ξ = 0 then a differentiation
of (11.3.9) and (11.3.11) provides the extra condition

α1A+ α2B = β2E = −1

2
β2. (11.3.11)

Equations (11.3.9), (11.3.10) can now be solved to give

A =

√

(c2 + 4) − 2c+
√

(c2 − 4)

4
√

(c2 − 4)
,

B =

√

(c2 − 4) + 2c−
√

(c2 + 4)

4
√

(c2 − 4)
.

Thus with A,B and E determined, (11.3.8), (11.3.10) give the complete solu-
tion to the problem for any c > 2. That is,

V (ξ) =

√

(c2 + 4) − 2c+
√

(c2 − 4)

4
√

(c2 − 4)
exp

[(

c+
√

(c2 − 4)

2

)

ξ

]

+

√

(c2 − 4) + 2c−
√

(c2 + 4)

4
√

(c2 − 4)
exp

[(

c−
√

(c2 − 4)

2

)

ξ

]

, −∞ < ξ < 0

= −1

2
exp

[(

c−
√

(c2 + 4)

2

)

ξ

]

+ 1, 0 ≤ ξ <∞.

Now suppose c = 2; then the general solution (11.3.8) must be replaced by
one of the form

V = Aeξ +Bξeξ (11.3.12)

and (11.3.10) becomes

V = De(1+
√

2)ξ + Ee(1−
√

2)ξ + 1. (11.3.13)

By imposing the boundary and continuity conditions we have

A =
1

2
= −E, D = 0

and

A+B = −1

2
(1 −

√
2),
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i.e.,

B = −1

2
(2 −

√
2).

Then, in this case

V =

{

1
2e

ξ − 1
2 (2 −

√
2)ξeξ, −∞ < ξ ≤ 0,

1 − 1
2e

(1−
√

2)ξ, 0 ≤ ξ <∞.
(11.3.14)

In conclusion then, (11.3.4) with f given by (11.3.7) has a one parameter
family of wavefront solutions for any wave speed c ≥ 2.

Another class of solutions to (11.3.4), which is often useful, are those inde-
pendent of x. In this case we have to solve the ordinary differential equation

du

dt
= f(u). (11.3.15)

Suppose we have the initial condition

u(0) = u0 = constant;

then (11.3.15) can be solved implicitly as

t =

∫ u

u0

dη

f(η)
, (11.3.16)

provided u0 and u are such that the integral exists.

Example 11.3.3

Suppose f(u) = u(1 − u). Then (11.3.16) has the solution (u0 6= 0)

t =

∫ u

u0

dη

η(1 − η)
=

∫ u

u0

(

1

η
+

1

1 − η

)

dη,

= log

∣

∣

∣

∣

u(1 − u0)

u0(1 − u)

∣

∣

∣

∣

.

We therefore obtain the explicit solution

u =
u0e

t

1 − u0 + u0et
.

This solution shows that if 0 < u0 < 1 then u(t) < 1 and u → 1 as t → ∞.
Similarly if u0 > 1 then u(t) > 1 and again u → 1 as t → ∞. Note that if
u0 = 0 then u(t) ≡ 0 and if u0 = 1 then u(t) ≡ 1.

Finally consider those solutions of (11.3.4) that are independent of t. In this
case we have to solve the ordinary differential equation

d2u

dx2
+ f(u) = 0. (11.3.17)
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In many situations it is possible to solve this equation in the following manner:
if du

dx 6= 0 then (11.3.17) can be expressed as

1

2

d

dx

(

du

dx

)2

+ f(u)
du

dx
= 0,

i.e.,
(

du

dx

)2

+ 2

∫ u

f(η)dη = A,

for some arbitrary constant A. Thus if we set

∫ u

f(η)dη = F (u)

then
du

dx
= ±

√

[A− 2F (u)], (11.3.18)

and this first-order differential equation can be solved, at least in principle, in
the same way as equation (11.3.15).

Example 11.3.4

Consider the positive solutions to the boundary value problem

d2u

dx2
+ u(1 − u) = 0, (11.3.19)

u(−l/2) = u(l/2) = 0. (11.3.20)

If u is a solution to this problem with u > 0 for −l/2 < x < l/2 and since
u = 0 at the end points it follows that u must take on its maximum value
m at some intermediate point x = a where −l/2 < a < l/2. In other words,
0 < u(x) ≤ u(a) = m for −l/2 < x < l/2 and u′(a) = 0, u′′(a) ≤ 0. From this
observation, equation (11.3.19) shows that

u′′(a) = −m(1 −m) ≤ 0

and so 0 < m ≤ 1. In fact 0 < m < 1 for if m = 1 then u(x) = 1 is the unique
solution to (11.3.19) with u(a) = 1, u′(a) = 0. However, such a solution does
not satisfy the boundary conditions (11.3.20). With 0 < m < 1 we see that
u′′(x) < 0 for all x in the interval −l/2 < x < l/2 and so u(x) < m except at
x = a.

Let us now attempt to construct the solution to the boundary value problem
via the method outlined above. Here we can write

F (u) =

∫ u

0

V (1 − V )dV =
u2

2
− u3

3
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and so (11.3.18) can be written as
(

du

dx

)2

+ 2F (u) = A.

When x = a, du
dx = 0 and so A = 2F (m). Thus

(

du

dx

)2

+ 2F (u) = 2F (m). (11.3.21)

Notice also that F is a strictly increasing function of u for 0 < u < 1. Thus if
x 6= a we have from (11.3.21)

du

dx
=

{√
2
√

[F (m) − F (u)], − 1
2 l ≤ x < a,

−
√

2
√

[F (m) − F (u)], a < x ≤ 1
2 l.

In the first case
∫ m

u

dη
√

[F (m) − F (η)]
=

√
2(a− x), − 1

2
l ≤ x < a, (11.3.22)

and in the second
∫ m

u

dη
√

[F (m) − F (η)]
=

√
2(x− a), a < x ≤ 1

2
l. (11.3.23)

The implicit solution defined by (11.3.23), (11.3.23) is not yet in a desirable
form since it involves the two unknown constants a and m. On using the
boundary conditions we have

∫ m

0

dη
√

[F (m) − F (η)]
=

√
2(a+ l/2),

∫ m

0

dη
√

[F (m) − F (η)]
=

√
2(l/2 − a),

and these identities are only compatible if a = 0. That is, u(x) takes its
maximum value at the midpoint of the interval −l/2 ≤ x ≤ l/2. With a = 0
we see that l and m are related through

l =
√

2

∫ m

0

dη
√

[F (m) − F (η)]
. (11.3.24)

In summary then, the solution to the boundary value problem is given implic-
itly by the formula

∫ m

0

dη
√

[F (m) − F (η)]
=

√
2|x|, (11.3.25)

where m, as a function of l, is given by (11.3.24).
Further important information can be obtained about the problem if we

analyse the relationship between m and l defined by (11.3.24). In particular
it can be shown that
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(a) l is an increasing function of m for 0 ≤ m < 1;

(b) l → ∞ as m→ 1 from below;

(c) l → π as m→ 0 from above.

These facts imply that there is no positive value of m satisfying (11.3.24) if
l < π while for l ≥ π,m increases from 0 to 1 as l increases from π to ∞. Thus,
for l ≤ π, (11.3.19) and (11.3.20) have only the trivial solution u = 0, but for
l > π the solution (11.3.25) appears. This type of behaviour is fundamental
to the subject of bifurcation theory and l = π is called the bifurcation
point.

11.4 Comparison theorems

Consider the ordinary differential equation

d2u

dx2
= F (x), (11.4.1)

defined on the interval −∞ ≤ a ≤ x ≤ b ≤ ∞, where F (x) ≥ 0 and u is a

continuous function of x. If F (x) > 0 then we conclude that d2u
dx2 > 0 for all

x in the interval a ≤ x ≤ b. This means that u(x) is concave and therefore
takes its maximum value M at either x = a or x = b or both. Now suppose
that F (x) ≥ 0 and that u ≤ N at the end points x = a, b. Then for any ǫ > 0
the function V = u+ ǫx2 satisfies the equation

d2V

dx2
= F (x) + 2ǫ > 0

and so, from the above observation, V must attain its maximum at least at
one of the endpoints x = a, b. Thus

V (x) ≤ max[u+ ǫx2] ≤ N + ǫmax(|a|2, |b|2).

Since u ≤ V we have u ≤ N+ǫmax(|a|2, |b|2) for all x in the interval a ≤ x ≤ b
and for any ǫ > 0. Letting ǫ→ 0, we conclude that

u(x) ≤ N, a ≤ x ≤ b.

That is, if u is a solution to (11.4.1) with F ≥ 0, the value of u in the interval
a ≤ x ≤ b cannot exceed its maximum value at the end points x = a, b.

This relatively simple observation is an example of the maximum prin-
ciple. We shall see that a result of this type also holds for partial differential
equations, but, more than this, maximum principles have far-reaching conse-
quences when applied to the study of qualitative properties of the solutions to
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evolutionary equations. In this context, we prefer to use the term compar-
ison principle or theorem for reasons that will become apparent. Before
describing these results it is useful to note that the conclusions reached above
do not violate the arguments used in Example 11.3.4 where the maximum u
was attained at the midpoint of the interval − 1

2 l ≤ x ≤ 1
2 l. In that example

it was shown that 0 < u < 1 and so F (x) = −u(x)[1 − u(x)] < 0.
Let us now turn to the elliptic partial differential equation

∂2u

∂x2
+
∂2u

∂y2
= F (x, y) (11.4.2)

defined on a bounded domain Ω with boundary ∂Ω. The arguments we employ
as well as the results obtained extend without too much difficulty to higher
dimensions, as well as to more general elliptic partial differential operators.

Suppose that F > 0 in Ω and that u(x, y) is continuous on Ω∪ ∂Ω. Then u
attains its maximum value M somewhere on Ω∪ ∂Ω. If u = M at some point
(x0, y0) of Ω then we know that

∂u

∂x
=
∂u

∂y
= 0

and
∂2u

∂x2
≤ 0,

∂2u

∂y2
≤ 0

at (x0, y0). That is,
∂2u

∂x2
+
∂2u

∂y2
≤ 0

at (x0, y0), which contradicts the assumption that F > 0. Thus the maximum
of u must occur on the boundary ∂Ω. If F ≥ 0 and u ≤ N on ∂Ω then we can
apply our previous argument to the function

V = u+ ǫ(x2 + y2)

where ǫ > 0 is arbitrary. Clearly, V satisfies the partial differential equation

∂2V

∂x2
+
∂2V

∂y2
= F + 4ǫ > 0

in Ω.
Our above conclusions apply and lead to the fact that

V ≤ max∂Ω[u+ ǫ(x2 + y2)]

≤ N + ǫR2

where R is the radius of a circle enclosing Ω. Furthermore, since u ≤ V we
have

u ≤ N + ǫR2
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and on letting ǫ→ 0 we obtain the result u(x, y) ≤ N in Ω. Thus we have the
following maximum principle.

THEOREM 11.4.1

Let u be a continuous solution of (11.4.2) with F ≥ 0. Then the value of u in
Ω cannot exceed its maximum on ∂Ω.

As an application of the maximum principle, consider the following uniqueness
problem for the boundary value problem

∂2u

∂x2
+
∂2u

∂y2
= F (x, y)

in Ω and u = f on ∂Ω.
Suppose the solution to this problem is not unique and that there exist dis-

tinct solutions u1 and u2 where w = u1−u2 6= 0. Since the partial differential
equation is linear, it follows that w is a solution to the problem

∂2w

∂x2
+
∂2w

∂y2
= 0

in Ω and w = 0 on ∂Ω. It follows immediately from the maximum principle
that w ≡ 0 and so u1 = u2.

Let us now turn to the heat equation (11.1.2) and consider the function
u(x, t) satisfying the inequality

L[u] ≡ ∂2u

∂x2
− ∂u

∂t
≥ 0

defined on the rectangular R = {0 < x < a, 0 < t ≤ T }. Suppose that M is
the maximum of the values of u that occur on the sides S = {x = 0, 0 ≤ t ≤
T } ∪ {0 ≤ x ≤ a, t = 0} ∪ {x = a, 0 ≤ t ≤ T }. In addition, suppose that u
takes its overall maximum value M1 > M at an interior point (x0, t0) of the
rectangle. We shall show that this is impossible.

Define the auxiliary function

w(x) =
M1 −M

2a2
(x − x0)

2.

Now since u ≤M on the three sides S of the rectangle listed above we have

V (x, t) ≡ u(x, t) + w(x) ≤M +
M1 −M

2
< M, (11.4.3)

on S. Furthermore
V (x0, t0) = u(x0, t0) = M1 (11.4.4)

and

L[V ] = L[u] + L[w] = L[u] +
M1 −M

a2
> 0 (11.4.5)
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throughout R. Conditions (11.4.3) and (11.4.4) show that V must assume its
maximum either at an interior point of R or along the open interval

{0 < x < a, t = T }. (11.4.6)

If the maximum occurs at an interior point then

∂2V

∂x2
≤ 0,

∂V

∂t
= 0,

and so at such a point L[V ] ≤ 0, which contradicts (11.4.5). If the maximum

occurs at some point of the interval (11.4.6), then ∂2V
∂x2 ≤ 0 and (11.4.5)

requires ∂V
∂t to be strictly negative. In other words, V must be larger at an

earlier time so that the maximum cannot occur on the interval (11.4.6). Thus
the assumption that u(x0, t0) = M1 > M cannot hold and so the maximum
value of u must be attained somewhere on the sides S.

This conclusion is an example of the maximum principle for the heat equa-
tion. There is a corresponding minimum principle associated with solutions of
L[u] = 0; we simply replace u by −u in the above discussion and repeat the
arguments.

A weakness of this type of maximum principle is that it permits the maxi-
mum of u to occur at interior points of a region as well as on the boundary.
Thus it is desirable to establish a “strong” form of the maximum principle. In
fact, we shall establish a strong maximum principle for a more general differ-
ential inequality, which will prove to be of basic importance to the comparison
principle, which is our goal.

THEOREM 11.4.2 (Strong Maximum Principle)
Let u(x, t) satisfy the differential inequality

(L+ h)[u] ≥ 0 (11.4.7)

in the rectangular region R and where the given function h(x, t) ≤ 0 in R. If
the maximum M of u is attained at an interior point (x1, t1) and if M ≥ 0,
then u ≡ M on all line segments t = constant, which lie directly below the
horizontal segment of R containing (x1, t1).

The proof of this result follows from the following lemmas:

Lemma 11.4.3 Let u(x, t) satisfy the differential inequality (11.4.7) in the
rectangular region R. Let D be a circular disc such that it and its boundary ∂D
are contained in R. Suppose the maximum of u in R is M ≥ 0, that u < M
in the interior of D and that u = M at some point P (x1, t1) on the boundary
∂D. Then the tangent to D at P is parallel to the x-axis. That means P is
either at the top or the bottom of the disc D.
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PROOF Let the disc have centre (x̄, t̄ ) and let A be the radius of D (see
Figure 11.4.1). The idea is to assume that P is not at the top or the bottom
of the disc and reach a contraction.

We can safely assume that P is the only boundary point where u = M . For,
if otherwise, we can choose a smaller disc interior to D and tangent to D at
P . This smaller disc has exactly one point on its boundary where u = M .

Construct a disc D′ with centre (x1, t1) and of radius A′ where

A′ < |x1 − x̄| (11.4.8)

and D′ also lies inside R. Note that since P is not at the top or the bottom of
D, x1 6= x̄. Now the boundary of D′ consists of two arcs ∂D′ (which includes
its points of intersection with ∂D) and ∂D′′ (as shown in Figure 11.4.1). Since
u < M on ∂D′ we can find a positive number η so that

u ≤M − η

on ∂D′.

t

x

∂D′


∂D′′


∂D

D

A

R

T

a

(x
_
, t

_
)

(x1, t1)

A′


P

D′


FIGURE 11.4.1: The domain of Lemma 11.4.3.

Furthermore, since u ≤M throughout the rectangle R,

u ≤M

on ∂D′′. Define the function

V (x, t) = exp{−α[(x− x̄)2 + (t− t̄ )2]} − e−αA2
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where α is a positive number to be suitably chosen. V (x, t) has the following
properties: (i) V (x, t) = 0 on ∂D, (ii) V (x, t) > 0 inside D and (iii) V (x, t) < 0
outside D. If we substitute V (x, t) into the differential expression (11.4.7) then

(L + h)[V ] = 2α exp{−[(x− x̄)2 + (t− t̄ )2]}[2α(x− x̄)2 − 1 + (t− t̄ )]

+ h(x, t)V (x, t).

In the disc D′ and on its boundary we have

|x− x̄| > |x1 − x̄| −A′ > 0

and so we can choose α large enough so that

(L+ h)[V ] > 0

for all points (x, t) in D′ ∪ ∂D′. Next form the function

W (x, t) = u(x, t) + ǫV (x, t),

where ǫ is a positive number to be suitably chosen. Then

(L+ h)[W ] = (L+ h)[u] + ǫ(L+ h)[V ] > 0 (11.4.9)

inside D′. Since u ≤M − η on ∂D′ we can select ǫ so small so that

W = u+ ǫV < M

on ∂D′, and since V < 0 on ∂D′′ and u ≤M we have

W = u+ ǫV < M

on ∂D′′. Thus W <M on the entire boundary of D′.
In addition, we observe that since V = 0 on ∂D we have

W (x1, t1) = u(x1, t1) + ǫV (x1, t1)

= u(x1, t1) = M.

Hence the maximum of W on D′ must occur at an interior point. This means
that at such a point

∂W

∂t
= 0,

∂2W

∂x2
≤ 0

and W = M ≥ 0, and so since h ≤ 0 we have

(L+ h)[W ] ≤ 0

at the maximum and this contradicts (11.4.9).
Thus the assumption that P is not at the top or the bottom of D cannot

hold. That is, we have reached a contradiction and the lemma is proved. Note
that for P at the top or the bottom of D our arguments break down be-
cause x1 = x̄ and so we cannot construct the disc D′ satisfying the condition
(11.4.8).
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T
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t

(x1, t0) (x0, t0)

FIGURE 11.4.2: The domain of Lemma 11.4.4.

Lemma 11.4.4 Suppose that u(x, t) satisfies (11.4.7) in the rectangular re-
gion R, u < M at some interior point (x0, t0) of R and that u ≤M throughout
R. If l is the horizontal line through (x0, t0) (see Figure 11.4.2) then u < M
on l.

PROOF Suppose that u = M at some interior point (x1, t0) on l and
that u < M at (x0, t0). As in the proof of Lemma 11.4.4, we endeavour to
reach a contradiction. For convenience we assume that x1 < x0 and move x1

to the right if necessary so that u < M for x1 < x ≤ x0. Let d0 be either
the length x0 − x1 or the minimum of the distances from any point of the
segment x1 ≤ x ≤ x0, t = t0 to the boundary of the rectangle R, whichever is
the smaller.

For x1 < x < x0 + d0, we define d(x) to be the distance from (x, t0) to
the nearest point in R where u = M . Since u(x1, t0) = M,d(x) ≤ x− x1.
According to Lemma 11.4.3 this nearest point is directly above or below (x, t0).
That is, either u(x, t0 + d(x)) = M or u(x, t0 − d(x)) = M.

Since the distance from a point (x+ δ, t0) to (x, t0 ± d(x)) is
√

[d(x)2 + δ2]
we see that

d(x+ δ) ≤
√

[d(x)2 + δ2] < d(x) +
δ2

2d(x)
. (11.4.10)

Similarly by replacing x by x+ δ and δ by −δ we have

d(x+ δ) >
√

[d(x)2 − δ2]. (11.4.11)

Suppose then that d(x) > 0 and choose 0 < δ < d(x). Now subdivide the
interval (x, x + δ) into n equal parts and apply the inequalities (11.4.11) to
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get

d

(

x+
j + 1

n
δ

)

− d

(

x+
j

n
δ

)

≤ δ2

2n2d(x+ jδ/n)

≤ δ2

2n2
√

[d(x)2 − δ2]
,

j = 0, 1, . . . , n− 1.
Summing from j = 0 to n− 1 gives

d(x + δ) − d(x) ≤ δ2

2n2
√

[d(x)2 − δ2]

for any integer n. Now if we let n→ ∞ then it follows that

d(x+ δ) ≤ d(x), δ > 0.

In other words d(x) is a nonincreasing function of x. Since d(x) ≤ x− x1,
which is arbitrarily small for x sufficiently close to x1, we see that d(x) ≡ 0
for x1 < x < x1 + d0. In other words u(x, t0) ≡ M on this interval, which
contradicts our assumption that u < M for x1 < x ≤ x0. This establishes the
lemma.

Lemma 11.4.5 Suppose that u(x, t) satisfies (11.4.7) in the rectangular re-
gion R and that u < M where M ≥ 0 in the horizontal strip contained in R
and defined by {0 ≤ x ≤ l, t0 < t < t1} for some numbers t0 and t1. Then
u < M on the line t = t1 contained in R.

PROOF Again the proof is by contradiction. Suppose P (x1, t1) is a point
on the line t = t1 where u = M . Construct a disc D with centre P and radius
so small that the lower half of D is entirely in the portion of R where t > t0.
(See Figure 11.4.3.)

Introduce the auxiliary function

V (x, t) = exp{−[(x− x1)
2 + α(t− t1)]} − 1.

Substituting this into the differential expression in (11.4.7), we have

(L+h)[V ] = exp{−[(x− x1)
2 +α(t− t1)]}[4(x−x1)

2 −2 +α] + h(x, t)V (x, t).

Now choose α positive and sufficiently large so that

(L+ h)[V ] > 0

in D for t ≤ t1.
The parabola

(x− x1)
2 + α(t− t1) = 0
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(x − x1)2 + α(t − t1) = 0
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P(x1, t1)
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FIGURE 11.4.3: The domain of Lemma 11.4.5.

is tangent to the line t = t1 at P . We denote by C′ the portion of ∂D that
is below the parabola (including the endpoints) and C′′ the portion of the
parabola lying inside the disc D.

By hypothesis, u < M on C′ and so we can find a number η > 0 such that

u ≤M − η

on C′.
Now construct the function

W (x, t) = u(x, t) + ǫV (x, t)

where ǫ is a positive number yet to be chosen. Observe that V = 0 on C′′

and so if ǫ is chosen sufficiently small we see that W enjoys the following
properties:

(a) (L+h)[W ] = (L+h)[u]+ǫ(L+ h)[V ] > 0 in the shaded region E shown
in Figure 11.4.3.

(b) W = u+ ǫV < M on C′.

(c) W = u+ ǫV ≤M on C′′.

Condition (a) shows that W cannot attain its maximum in E, and so the
maximum of W is M and it occurs at P . We conclude that

∂W

∂t
≥ 0 (11.4.12)

at P .
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Also it is easy to verify that

∂V

∂t
= −α < 0 (11.4.13)

at P .

Thus
∂u

∂t
=
∂W

∂t
− ǫ

∂V

∂t
> 0 (11.4.14)

at P . However since the maximum of u on t = t1 occurs at P we have

∂u

∂x
= 0,

∂2u

∂x2
≤ 0,

and u = M ≥ 0, and these inequalities violate the differential inequality
(11.4.7). Thus we have again arrived at a contradiction and the lemma is
proved.

Armed with Lemmas 11.4.3 and 11.4.5 we can now give the proof of Theo-
rem 11.4.2.

PROOF OF THEOREM 11.4.2 Suppose there is a value of t, say
t0 < t1, such that u(x1, t1) < M . Let τ be the least upper bound of values of
t < t1 for which u(x1, t) < M. By continuity u(x1, τ) = M while u(x1, t) < M
for some interval τ1 < t < τ. Then from Lemma 11.4.3 it follows that u < M in
the strip {0 ≤ x ≤ l, τ1 < t < τ}, and Lemma 11.4.5 shows that u(x1, t) < M
on t = τ, which is a contradiction and so u(x1, t0) ≡ M. This proves the
theorem.

Having established the strong maximum principle, we now use it to prove
a comparison theorem, which is an invaluable tool with which to study qual-
itative properties of evolutionary equations of the type (11.3.2).

THEOREM 11.4.6 (The Comparison Principle)

Let u(x, t), v(x, t), A ≤ u(x, t), v(x, t) ≤ B be bounded and continuous func-
tions satisfying the inequalities

ut − uxx − f(u) ≥ vt − vxx − f(v), in (a, b) × [0, T ],

A ≤ v(x, 0) ≤ u(x, 0) ≤ B, in (a, b)

where −∞ ≤ a < b ≤ ∞ and 0 < T ≤ ∞ and f(u) is a continuously
differential function of u.

Furthermore if a > −∞ assume that

A ≤ v(a, t) ≤ u(a, t) ≤ B on [0, T ]
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and if b <∞ assume that

A ≤ v(a, t) ≤ u(a, t) ≤ B on [0, T ].

Then either u ≡ v in [a, b] × [0, T ] or u > v in (a, b) × [0, T ].

PROOF From the mean value theorem we can write

(u− v)t − (u− v)xx ≥ f(u) − f(v) = f ′(v + θ(u − v))(u − v)

for some θ where 0 < θ < 1. Now take

α = max[A,B]f
′(u)

and define the function

W (x, t) = (u − v)e−αt.

It then follows that W (x, t) satisfies the inequality

(W )t − (W )xx ≥ {f ′(v + θ(u− v)) − α}W.

Since the coefficient of W is nonpositive, the conclusions of the theorem follow
from an application of the strong maximum principle theorem.

Example 11.4.1

Let u(x, t) satisfy the following problem:

ut = uxx + u(1 − u),

u = 0 for |x| =
1

2
l,

u(x, 0) = u0(x) > 0.

For this problem, several applications of the comparison theorem with f(u) =
u(1 − u) can be used to show that u(x, t) ≥ 0 and that if l > π then

lim
t→∞

u(x, t) = V (x) (11.4.15)

where V (x) is the unique positive solution to Example 11.3.4. The proof of
these results proceeds in several steps, some of which will be given here and
the remaining given as problems at the end of this chapter.

To show that u(x, t) ≥ 0 take v(x, t) = 0 in the comparison theorem. In
order to establish the result (11.4.15) we proceed to construct appropriate
upper and lower functions ū(x, t) and u(x, t), respectively, so that

u(x, t) ≤ u(x, t) ≤ ū(x, t)
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and such that
lim

t→∞
u(x, t) = lim

t→∞
ū(x, t) = V (x). (11.4.16)

In order to construct ū(x, t) we proceed as follows: let M = max(1,M∗) where
M∗ = max u0(x) and ū(x, t) denotes the solution to

ūt = ūxx + ū(1 − ū), |x| < l/2, t > 0,

ū(x.0) = M, if |x| < l/2,

ū = 0, for |x| = l/2, t > 0.

On setting u = ū and v = u(x, t) in the comparison theorem it is easy to see
that

u(x, t) ≤ ū for |x| ≤ l/2, t > 0.

It is easy to see that ū ≥ 0. Next we show that ū(x, t) ≤ M. This is done by
taking u = M and v = ū in the comparison theorem. If, for arbitrary h > 0,
we set u = ū and v = ū(x, t + h), then the comparison theorem shows that
ū(x, t) ≥ ū(x, t+ h). In other words, ū(x, t) is a nonincreasing function of t
for each x. Furthermore, ū(x, t) is bounded below and so

lim
t→∞

ū(x, t) = W (x)

exists and 0 ≤W (x) ≤M for |x| ≤ l/2.
It can now be shown that W (x) is a nonnegative solution of Example 11.3.4

(see Exercise 11.16).
Now set u = ū(x, t) and v = V (x). Then the comparison theorem shows

that W (x) ≥ V (x). However, V (x) is the unique positive solution to Example
11.3.4 and so it must be the case that W (x) = V (x). These arguments estab-
lish one part of the limit relation (11.4.16). The other is proved in a similar
manner (see Exercises 11.15 and 17).

Example 11.4.2

Let u(x, t) satisfy the problem

ut = uxx + u(1 − u)(u− a), −∞<x <∞, t > 0,

u(x, 0) = φ(x).

Suppose
sup

−∞<x<∞
φ(x) < a

and let v(x, t) = a. Then the comparison principle applied to the functions
u(x, t), v(x, t) shows that u(x, t) < a for all x and t.

Similarly, if
inf

−∞<x<∞
φ(x) > a

then again the comparison principle says that u(x, t) > a for all x and t.
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11.5 Notes

For further reading on partial differential equations see F. John, Partial
Differential Equations, Springer-Verlag, Berlin, 1975; and H.F. Weinberger,
Partial Differential Equations, Blaisdell, New York, 1965.

A comprehensive treatment of maximum and comparison principles is to be
found in M.H. Protter and H.F. Weinberger, Maximum Principles in Differen-
tial Equations, Springer-Verlag, Berlin, 1984 or A. Friedman, Partial Differ-
ential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964.

For an introduction to the numerical solution of partial differential equa-
tions see A.R. Mitchell and D.F. Griffiths, The Finite Difference Method in
Partial Differential Equations, John Wiley & Sons, New York, 1980.

Exercises

11.1 Show that the bounded solution of ut = uxx with initial data

u(x, 0) =

{

1, x > 0,
0, x < 0

is given by

u(x, t) =
1

2
[1 + φ(x/2

√
t)]

where φ(x) is the error function defined by

φ(x) =
2√
π

∫ x

0

e−t2dt.

Use MATLAB to produce plots or animations of u(x, t). The error func-
tion φ(x) can be computed in MATLAB with the command errf(x).

11.2 Find the solution u(x, t) of the heat equation

ut = uxx, x > 0, t > 0

with boundary, initial data

u(x, 0) = 0 for x > 0,

u(0, t) = 1 for t > 0.

11.3 Find the solution of the initial value problem

ut = uxx, 0 < x < 1, t > 0,

u(x, 0) = f(x), 0 < x < 1,

u(0, t) = u(1, t) = 0, t > 0.
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11.4 Solve

ut = uxx, 0 < x < π, t > 0,

u(x, 0) = x(π − x), 0 < x < π,

u(0, t) = u(π, t) = 0, t > 0.

11.5 Solve

ut = uxx, 0 < x < π, t > 0,

u(x, 0) = sinx, 0 < x < π,

∂u

∂x
(0, t) =

∂u

∂x
(π, t) = 0, t > 0.

11.6 Solve

ut = uxx + uyy, x, y ∈ (0, 1) × (0, 1), t > 0,

u(x, 0, t) = u(x, 1, t) = 0,

u(0, y, t) = u(1, y, t) = 0,

u(x, y, 0) = xy.

11.7 For the n-dimensional evolutionary equation

ut = ∇2u+ f(u),

show that the wavefront u(x · ν − ct), where

x · ν =

n
∑

i=1

xiνi

and ν is an arbitrary unit vector, is a solution provided u(ξ) satisfies
the ordinary differential equation

u′′ + cu′ + f(u) = 0.

11.8 By following the method illustrated in Example 11.3.2, find a wavefront
solution to the equation

u′′ − cu′ + f(u) = 0,

satisfying the conditions c > 0, 0 ≤ u ≤ 1, u(−∞) = 0, u(∞) = 1
where

f(u) =







0, 0 ≤ u < 1/2,
u− 1/2, 1/2 ≤ u ≤ 3/4,
1 − u, u > 3/4.
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11.9 Establish the results (a), (b), (c) following (11.3.25).

11.10 Show that if
d2u

dx2
+A(x)

du

dx
= 0, 0 < x < 1,

where A is continuous, then u attains its maximum in the interval 0 ≤
x ≤ 1 either at x = 0 or at x = 1.

11.11 Show that if u is a solution of

∇2u+D(x, y)
∂u

∂x
+ E(x, y)

∂u

∂x
= −F (x, y)

in some bounded two-dimensional region Ω with F < 0, then u cannot
attain its maximum at any point of Ω.

11.12 Show that if u is continuous in a bounded two-dimensional region Ω
with boundary ∂Ω and

∂2u

∂x2
+ ex ∂

2u

∂y2
− ex+yu = 0 in Ω,

u ≤ 0 on ∂Ω,

then u ≤ 0 in Ω.

11.13 Show that if

∂u

∂t
=
∂2u

∂x2
, 0 < x < 1,

∂u

∂x
(0, t) = 0,

the maximum of u for 0 ≤ x ≤ 1, 0 ≤ t ≤ T must occur at t = 0 or at
x = 1.

11.14 The function u(x, t) = −(x2 + 2xt) is a solution of the equation

x
∂2u

∂x2
− ∂u

∂t
= 0.

Is the maximum principle value in the region −1 < x < 1, 0 ≤ t ≤ 1/2?

11.15 In Example 11.4.1, let vλ(x) denote the positive solution of the problem

v′′ + v(1 − v) = 0, |x| < λ/2, π < λ < l,

v = 0, |x| = λ/2,
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and let u(x, t) denote the solution of the problem

∂u

∂t
=
∂2u

∂x2
+ u(1 − u), |x| < l/2

u =

{

vλ(x), |x| ≤ λ/2,
0, |x| > λ/2,

u(x, t) = 0 |x| = l/2, t ≥ 0.

Use the comparison theorem to show that

u ≤ u(x, t),

for |x| ≤ l/2, t ≥ 0.

11.16 Use the comparison theorem to show that the “upper” solution ū(x, t)
constructed in Example 11.4.1 satisfies

ū(x, t) ≥ v(x),

where v(x) is the unique positive solution to Example 11.3.4. Hence
prove that v(x) = w(x), where w(x) is the limiting function in Example
11.4.1.

11.17 By using the comparison theorem, show that u(x, t) and vλ(x) defined
in Exercise 11.15 satisfy the inequality

u(x, t) ≥ vλ(x) = u(x, 0), |x| ≤ λ/2.

Hence show that u(x, t) increases to v(x) as t→ ∞.

11.18 Use MATLAB to produce plots or animations of the travelling wave
solution (11.3.6) with a = 1

4 and with a = 3
4 . What do you think will

happen as a→ 1
2?

11.19 Use MATLAB to produce plots or animations of the travelling wave
solution (11.3.14) with a wavespeed of c = 1.



Chapter 12

Problems of Diffusion

12.1 Diffusion through membranes

The equations we shall study in this chapter are all particular cases of the
general system























∂u1

∂t

∂u2

∂t
...

∂um

∂t























=

















D1 0 0 · · · 0 0

0 D2 0 · · · 0 0

...
...

... · · · 0 0

0 0 0 · · · Dm−1 0

0 0 0 · · · 0 Dm



























∇2u1

∇2u2
...

∇2um











+













f1(u1, u2, . . . , um)

f2(u1, u2, . . . , um)

...
fm(u1, u2, . . . , um)













.

This system can be conveniently expressed in the matrix form

∂u

∂t
= D∇2u + f(u), (12.1.1)

where u = u(t, x1, . . . , xn) is a vector-valued function of time t and the n vari-
ables xi, i = 1, . . . , n, and has m components ui(t, x1, . . . , xn), i = 1, . . . ,m.
D is an m×m diagonal matrix and f is an m × 1 column vector. ∇2 is the
n-dimensional Laplacian

∇2 =
∂2

∂x2
1

+ . . .+
∂2

∂x2
n

.

Equations such as (12.1.1) are called nonlinear diffusion equations and
the matrix D is called the diffusion matrix. Our treatment will be confined
to n = 1 (one space dimension) and m = 1 or 2.

Most of the biological models we have described so far are formulated as
nonlinear diffusion equations and the reader may care to verify this by refer-
ring back to Chapter 4. Although we have used the term “diffusion” before,
we have done so without motivation. Thus, before describing some of the
salient features of diffusion equations, we shall consider the precise meaning
of diffusion and the diffusion process.

293
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Consider a fluid called the solvent in which some matter has been dissolved.
This matter is called a solute and the combined fluid is called a solution.
The solution may be conveniently characterised by its mass concentration,
which we denote by C. Thus C is the mass of dissolved matter per unit
volume of liquid.

One of the basic methods by which the solute molecules disperse and are
transported through the solvent is by diffusion. This mechanism is usually a
consequence of thermal motion of the individual solute molecules.

Let us now look at a solution in which simple molecular diffusion is taking
place, the fluid being otherwise at rest. The chief mechanism of transport
of the solute is governed by concentration differences. Thus we ask, what is
the flux of solute molecules going through a unit area in a unit of time? The
material flux per unit area j is according to Fick’s law related to the rate of
change ∂C

∂x of C by

j = −D∂C
∂x

, (12.1.2)

where we assume that C depends only on t and the space variable x. The
relation (12.1.2) is referred to as Fick’s first law of diffusion and D is
called the diffusion coefficient and is a characteristic of the solute in the
fluid. The minus sign in (12.1.2) is important in that it reflects the fact that
the molecular flow is from a high concentration to a low concentration region.

Suppose now we consider the solution to occupy some region of three-
dimensional space and so the concentration C = C(t, x, y, z) will be a function
of the time t and the spatial coordinates x, y and z. Clearly the flux will be a
vector j with components jx, jy, jz and, according to Fick’s first law of diffu-
sion,

jx = −D∂C
∂x

, jy = −D∂C
∂y

, jz = −D∂C
∂z

. (12.1.3)

Here of course we are assuming the solvent to be homogeneous and isotropic
so that D is independent of position and is the same in all directions. In other
words D is assumed constant.

Suppose we have a fixed but arbitrary volume of fluid V with surface S
(see Figure 12.1.1) and we consider the flow of solute through this volume.
By the law of conservation of mass we know that the rate at which solute
accumulates (or disappears) within V must be balanced by the net influx (or
efflux) across the bounding surface S. The total amount of solute at time
t in V is

∫

V C(t, x, y, z)dV, where dV is a typical volume element, and the
total flux across the boundary S is

∫

S
j · n dS. Consequently, by the law of

conservation of mass,

∂

∂t

∫

V

C(t, x, y, z)dV = −
∫

S

j · n dS,
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i.e.,
∫

V

∂

∂t
C(t, x, y, z)dV +

∫

S

j · n dS = 0.

By making use of Gauss’ divergence theorem we can write this last result as

∫

V

(

∂

∂t
C(t, x, y, z) + ∇.j

)

dV = 0,

where ∇.j is the divergence of the vector j. Written in terms of Cartesian
coordinates it is defined as

∇.j =
∂jx
∂x

+
∂jy
∂y

+
∂jz
∂z

.

But V is arbitrary and so this equation must hold for all volumes, and this
leads to

∂

∂t
C + ∇.j = 0. (12.1.4)

Finally, substituting for j from (12.1.3) we have

∂

∂t
C −D∇2C = 0. (12.1.5)

This is the classic diffusion equation. In our context it is an expression of
Fick’s second law and in physics it is the basic equation of heat conduction
(cf. Chapter 11). In this case C is interpreted as temperature and D heat
conductivity.

Let us now consider the application of Fick’s laws to the problem of diffusion
of a solute into a cell. The diffusion here depends critically on the transport
of solution through the membrane surrounding the protoplasm of the cell,
namely the plasma membrane. This membrane consists of a double layer
of lipid molecules called the bilipid layer. This layer contains a structure
of globular proteins on both its surfaces, some of which penetrate across the
entire width of the bilipid layer. However, the process by which these proteins
control the diffusion of the solute is not fully understood.

The simplest theory of transport into or out of a cell by diffusion is derived
on the assumption that the intracellular diffusion is so rapid that the solute
concentration there is uniform in space. In most experiments of diffusion into
cells, the volume of extracellular space is made so large that the solute concen-
tration there is not affected to any significant extent by any loss in cells and
may be assumed constant. Consider then an idealised cell membrane model
to consist of a homogeneous lipid layer separating two aqueous phases, the
cell interior and the cell exterior (see Figure 12.1.2a). At each of the two lipid
interfaces, a discontinuity in solute concentration exists at equilibrium. This
discontinuity is a consequence of the molecular barrier that exists for a solute
molecule entering the lipid from the aqueous phase. Suppose Co represents
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V

n

j

ds

S

FIGURE 12.1.1: The conservation of mass.

the concentration on the outside of the cell and C̄o the concentration inside
the lipid layer and adjacent to the outer interface. The discontinuity between
Co and C̄o is expressed in terms of the partition coefficient Γ, i.e.,

C̄o = ΓCo,

where Γ < 1 unless the solute is more readily soluble in lipid than in water,
in which case Γ > 1.

In a similar manner we have

C̄i = ΓCi

where Ci represents the concentration in the cell interior and C̄i the concen-
tration inside the lipid layer and adjacent to the inner surface.

Assume the thickness δ of the cell membrane to be small so that, to first
order, the concentration gradient in the lipid layer can be expressed as

dC

dx
=

(C̄o − C̄i)

δ
.

On using Fick’s first law of diffusion we obtain

j =
D

δ
(C̄i − C̄o), (12.1.6)

where D is the diffusion constant of the solute in the lipid layer. In experi-
ments, measurements are made of Ci and Co and C̄i, C̄o are in general inac-
cessible to observation and so we prefer to write

j =
ΓD

δ
(Ci − Co). (12.1.7)
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FIGURE 12.1.2: Idealised cell membrane model.

This is a good approximation to the flux j provided that Ci, Co vary slowly.
Let m be the mass of solute contained in the cell; then at time t the law of

conservation of mass gives
dm

dt
= −jA, (12.1.8)

the minus sign indicating that when j is positive, solute flowing outwards,
m decreases. In (12.1.8) A denotes the surface area of the cell. Since Ci is
assumed uniform and varies only with time, the mass of solute contained in
the cell at time t is

m = CiV (12.1.9)

where V is the volume of the cell. Using this result in (12.1.8) we find

V
dCi

dt
= −jA,

i.e.,
dCi

dt
= k(Co − Ci) (12.1.10)

where

k =
ΓDA

δV
.

Suppose at time t = 0, Ci = Cio; then (12.1.10) is readily solved to give

Ci(t) = Co + (Cio − Co)e
−kt.

Thus as t → ∞, Ci(t) → Co and the cell contains solute of concentration Co

entirely.
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This simple result is derived on the assumption that the thickness δ of
the lipid layer is small. If this is not the case then a more precise study
must be made. To this end we consider diffusion through a lipid layer in the
form of a slab as shown in Figure 12.1.2(b). For simplicity we shall assume
that there is no solute in the membrane initially. Thus we have to solve the
diffusion equation (12.1.5) in one spatial dimension x subject to the boundary
conditions

C(0, t) = C1,

C(δ, t) = C2, (12.1.11)

and the initial condition

C(x, 0) = 0, 0 < x < δ. (12.1.12)

The concentrationsC1, C2 at the two outer walls of the membrane are assumed
to be constant.

The problem defined by (12.1.5), (12.1.11) and (12.1.12) is typical of the
heat conduction problems that we have considered in Chapter 11. Thus, if
we apply the method of separation of variables, the most general solution of
(12.1.5) satisfying the boundary conditions (12.1.11) can be written in the
form

C(x, t) = C1 + (C2 − C1)
x

δ
+

∞
∑

n=1

An sin
(nπx

δ

)

exp

(

−n
2π2Dt

δ

)

, (12.1.13)

where the constants An, n = 1, 2, . . . , are to be determined from the initial
condition (12.1.12).

On setting t = 0 in (12.1.12) a simple Fourier analysis (see Chapter 11)
shows that

An =
2

nπ
(C2 cosnπ − C1), n = 1, 2, . . . ,

and so the complete solution to the problem is given by

C(x, t) = C1 + (C2 − C1)
x

δ

+
2

π

∞
∑

n=1

(C2 cosnπ − C1)

n
sin
(nπx

δ

)

exp

(

−n
2π2Dt

δ

)

. (12.1.14)

From this expression we can calculate the rate j at which the diffusing sub-
stance emerges at the interface x = 0 per unit area per unit time. That is,

j = −D
(

∂C

∂x

)

x=0

,

i.e.,

j = −(C2 − C1)
D

δ
− 2

δ

∞
∑

n=1

(C2 cosnπ − C1) exp

(

−n
2π2Dt

δ

)

.
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The first term on the right represents the steady-state flux, while the remain-
ing terms represent a transient flux that is significant only for short times.

12.2 Energy and energy estimates

In most processes that are governed by diffusion equations of the type in-
troduced in equation (12.1.1) one is interested in how the concentration u
behaves for large times. It is well known that for the linear case wherein
f(u) ≡ 0 any initial concentration u0 is smoothed out and, in fact, u(x, t)
often tends exponentially to zero as t tends to infinity. In our case f(u) 6= 0
and the behaviour of u(x, t) depends crucially on the form of f(u). Further-
more, in many cases, rather specially designed methods have to be developed
to examine asymptotic behaviour.

A method that is widely applicable in many cases is the so-called “energy
method.” Here we shall illustrate its use in a few fairly simple examples, and
examine the method in more detail in the next few sections when we take up
the subjects of nerve impulse transmissions and chemical reactions once more.

Consider the reaction–diffusion problem defined by

∂u

∂t
= D

∂2u

∂x2
+ f(u), (12.2.1)

u(x, 0) = u0(x),

∂

∂x
u(0, t) =

∂

∂x
u(1, t) = 0, (12.2.2)

and f(u) is assumed to be such that this problem has solutions that are
bounded for all time t ≥ 0.

Define an “energy function” E(t) by

E(t) =
1

2

∫ 1

0

(

∂u

∂x

)2

dx. (12.2.3)

Differentiating this with respect to t gives

dE

dt
=

∫ 1

0

∂u

∂x

∂2u

∂x∂t
dx, (12.2.4)

which, on using the differential equation, can be written in the form

dE

dt
=

∫ 1

0

∂u

∂x

∂

∂x

(

D
∂2u

∂x2
+ f(u)

)

dx,

=

∫ 1

0

D
∂u

∂x

∂3u

∂x3
dx+

∫ 1

0

(

∂u

∂x

)2
∂f

∂u
dx. (12.2.5)
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Integrating the first integral appearing in (12.2.5) by parts we find

dE

dt
=

[

D
∂u

∂x

∂2u

∂x2

]1

0

−D

∫ 1

0

(

∂2u

∂x2

)2

dx+

∫ 1

0

(

∂u

∂x

)2
∂f

∂u
dx

= −D
∫ 1

0

(

∂2u

∂x2

)2

dx +

∫ 1

0

(

∂u

∂x

)2
∂f

∂u
dx. (12.2.6)

Let m = max|∂f/∂u| over all solution values (assumed bounded) of u; then
(12.2.6) can be replaced by the inequality

dE

dt
≤ −D

∫ 1

0

(

∂2u

∂x2

)2

dx+m

∫ 1

0

(

∂u

∂x

)2

dx,

i.e.,

dE

dt
≤ −D

∫ 1

0

(

∂2u

∂x2

)2

dx+ 2mE(t). (12.2.7)

In order to proceed further, we would like to express the first integral appear-
ing in (12.2.7) in a more recognisable form. For example, suppose we could
prove that for some constant λ,

∫ 1

0

(

∂2u

∂x2

)2

dx ≥ λ

∫ 1

0

(

∂u

∂x

)2

dx. (12.2.8)

Then we could replace (12.2.7) by the inequality

dE

dt
≤ 2(m− λD)E(t), (12.2.9)

from which we conclude that, since E(t) ≥ 0,

d

dt

(

e−2(m−λD)tE(t)
)

≤ 0.

An integration then reveals that

E(t) ≤ E(0)e2(m−λD)t,

where E(0) ≥ 0. From this we conclude that if the diffusion coefficient D is
sufficiently large, i.e., D > m/λ, then E(t) decays exponentially to zero as
t→ ∞ and hence ∂u/∂x tends to zero for all x ∈ [0, 1] as t→ ∞. This implies
that u becomes spatially homogeneous regardless of the initial concentration
u0(x).

To arrive at the above result we have relied on the assumption that an in-
equality of the form (12.2.8) holds. Such an inequality is called the Poincaré
inequality; it occurs widely in problems where estimation depends on estab-
lishing certain inequalities and is proved as follows.
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Consider the ordinary differential equation

d2y

dx2
+ λy = 0 (12.2.10)

subject to the boundary conditions

dy(0)

dx
=
dy(1)

dx
= 0. (12.2.11)

This constitutes a typical “eigenvalue problem” and has eigensolutions

φn(x) = cosnπx, n = 0, 1, 2, . . . ,

provided λ = λn = n2π2. Such eigenfunctions and eigenvalues have already
been encountered in Chapter 11 and in Section 12.1 above. Indeed we know
that for any function w(x) that satisfies the conditions (12.2.11) and is twice

differentiable, d2w
dx2 can be expanded as

d2w

dx2
=

∞
∑

n=0

an cosnπx (12.2.12)

where

a0 =

∫ 1

0

d2w

dx2
dx =

[

dw

dx

]1

0

= 0

and

an = 2

∫ 1

0

d2w

dx2
cosnπxdx, n ≥ 1.

If we integrate (12.2.12) twice and use the boundary conditions (12.2.11) we
find

w(x) =

∞
∑

n=0

− an

n2π2
cosnπx+ C. (12.2.13)

Thus
∫ 1

0

(

dw

dx

)2

dx =

[

w
dw

dx

]1

0

−
∫ 1

0

w
d2w

dx2
dx

=

∫ 1

0

( ∞
∑

n=0

an

n2π2
cosnπx

)( ∞
∑

n=0

an cosnπx

)

dx

−C
∫ 1

0

( ∞
∑

n=0

an cosnπx

)

dx

=
1

2

∞
∑

n=0

a2
n

n2π2

≤ 1

2π2

∞
∑

n=0

a2
n. (12.2.14)



302 Differential Equations and Mathematical Biology

Now if we multiply (12.2.12) by d2w/dx2 and integrate we find

∫ 1

0

(

d2w

dx2

)2

dx =

∞
∑

n=0

an

∫ 1

0

d2w

dx2
cosnπx dx =

1

2

∞
∑

n=0

a2
n. (12.2.15)

This is another useful result in the application of Fourier series and is called
the Parseval equality. Using (12.2.15) in the estimate (12.2.14) leads us to
the final result,

∫ 1

0

(

dw

dx

)2

dx ≤ 1

π2

∫ 1

0

(

d2w

dx2

)2

dx. (12.2.16)

Comparing this result with the estimate (12.2.8) we see that λ = π2 and so
if the diffusion coefficient D > m/π2 then E(t) decays at least as fast as
exp 2(m− π2D)t.

One should remark that this decay estimate depends on how good the bound
m on |∂f/∂u| is; indeed m may be only a crude estimate and so D may have
a lower bound smaller than m/π2. Throughout we have only considered a
problem defined in one space dimension; this is no real restriction because the
Poincaré inequality (12.2.16) holds in any space dimension with, of course, a
different constant λ.

Suppose now that instead of the boundary conditions (12.2.2) we impose
the conditions

u(0, t) = u(1, t) = 0; (12.2.17)

then the energy function (12.2.3) is not really appropriate and is replaced by

E(t) =
1

2

∫ 1

0

u2dx. (12.2.18)

Proceeding in the same way as before we have

dE

dt
=

∫ 1

0

u
∂u

∂t
dx

=

∫ 1

0

u

(

D
∂2u

∂x2
+ f(u)

)

dx

= D

∫ 1

0

u
∂2u

∂x2
dx+

∫ 1

0

uf(u)dx

= D

[

u
∂u

∂x

]1

0

−D

∫ 1

0

(

∂u

∂x

)2

dx +

∫ 1

0

uf(u)dx

= −D
∫ 1

0

(

∂u

∂x

)2

dx+

∫ 1

0

uf(u)dx. (12.2.19)

Unlike the problem treated above, the inequality (12.2.8) does not help us to
estimate usefully the first integral appearing in (12.2.9). However, if we look
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at (12.2.16) and observe that the substitution V (x) = dw/dx satisfies the
conditions

V (0) = V (1) = 0,

then we have an inequality for V of the form

∫ 1

0

(

∂V

∂x

)2

dx ≥ π2

∫ 1

0

V 2dx. (12.2.20)

Using this in (12.2.19) gives

dE

dt
≤ −2Dπ2E(t) +

∫ 1

0

uf(u)dx.

Now suppose |uf(u)| < mu2 for all solution values of u. Then we have

dE

dt
≤ −2Dπ2E(t) +m

∫ 1

0

u2dx

= 2(m−Dπ2)E(t),

and once again we see that if D > m/π2, E(t) → 0 as t → ∞, which
implies u(x, t) → 0 as t→ ∞, and this means that the concentration u decays
exponentially to zero regardless of the form of the initial conditions.

In a similar way we may deduce a corresponding behaviour if uf(u) ≤ −du2

for all x ∈ [0, 1] and t ≥ 0. Here we do not need the inequality (12.2.20) but
simply ignore the first term on the right-hand side of (12.2.19) to arrive at
the estimate

dE

dt
≤
∫ 1

0

uf(u)dx

≤ −d
∫ 1

0

u2dx = −2dE(t),

and so

E(t) ≤ E(0)e−2dt.

The conclusions above hold also in this case. It is useful to note that unlike
the problem in which there are “zero flux” conditions at x = 0, x = 1, we
have obtained our asymptotic results by imposing certain constraints on the
form of the reaction term f(u) other than requiring it to be bounded for all
solution values.

We shall look at this again in the following section.
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12.3 Global behaviour of nerve impulse transmissions

In the study of the various models proposed to govern nerve impulse trans-
missions, an important feature that requires investigation is the long-term
behaviour of the axon potential. This is a formidable task if we consider the
Hodgkin–Huxley model. However, the FitzHugh–Nagumo system is a little
more tractable and allows for the application of the energy arguments that
we used in the previous section.

The problem to discuss is defined as

∂2u

∂x2
=
∂u

∂t
− u(1 − u)(u − a) + w,

∂w

∂t
= bu− γw, x ≥ 0, t ≥ 0, (12.3.1)

u(0, t) = P (t), u(x, 0) = 0,

w(0, t) = b

∫ t

0

P (s)e−γsds, w(x, 0) = 0. (12.3.2)

Recall that in the conditions (12.3.2), P (t) represents the stimulus emanating
at x = 0. In practice, this stimulus acts over a finite interval of time and so
we make the additional assumption that

P (t) = 0 for t ≥ T

for some time T . Furthermore we assume that u(x, t), w(x, t) tend sufficiently
rapidly to zero as x tends to infinity so that the integrals

∫∞
0
u2(x, t)dx,

∫∞
0 w2(x, t)dx exist and are finite for all t.

If we multiply the first of equations (12.3.1) by bu and the second by w and
subtract the resulting equations, we obtain

bu
∂2u

∂x2
− w

∂w

∂t
= bu

∂u

∂t
− bu2(1 − u)(u− a) + γw2,

i.e.,

bu
∂u

∂t
+ w

∂w

∂t
= bu

∂2u

∂x2
+ bu2(1 − u)(u− a) − γw2

or

1

2

∂

∂t
(bu2 +w2) = b

∂

∂x

(

u
∂u

∂x

)

−b
(

∂u

∂x

)2

+bu2(1−u)(u−a)−γw2. (12.3.3)
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Integrating this expression with respect to x and using the initial conditions
(12.3.2) we find, for t ≥ T , that

1

2

d

dt

∫ ∞

0

(bu2 + w2)dx =

∫ ∞

0

b
∂

∂x

(

u
∂u

∂x

)

dx− b

∫ ∞

0

(

∂u

∂x

)2

dx

+

∫ ∞

0

[bu2(1 − u)(u− a) − γw2]dx

= −b
∫ ∞

0

(

∂u

∂x

)2

dx+

∫ ∞

0

[bu2(1 − u)(u− a) − γw2]dx

≤
∫ ∞

0

[bu2(1 − u)(u− a) − γw2]dx. (12.3.4)

Suppose now that u(x, t) < a for all x, t > 0; then we can find a constant δ
which depends on a so that

u2(1 − u)(u− a) ≤ −δu2.

This estimate used in (12.3.4) gives the inequality

1

2

d

dt

∫ ∞

0

(bu2 + w2)dx ≤ −
∫ ∞

0

(bδu2 + γw2)dx.

If C = min{δ, γ} then

d

dt

∫ ∞

0

(bu2 + w2)dx ≤ −2C

∫ ∞

0

(bu2 + w2)dx.

From this we conclude that
∫ ∞

0

(bu2 + w2)dx ≤ Ke−2Ct. (12.3.5)

In summarising this result we can say that if u(x, t), w(x, t) are sufficiently
smooth and if the action potential always remains below the potential value a,
then the mean square of u(x, t) decays exponentially in time. In other words,
a represents a threshold effect. Recall that we have already identified a as
a threshold parameter in Chapter 7 where we considered the dynamics of
the space-clamped FitzHugh–Nagumo model. Thus it is reasonable to con-
clude that, unless the potential u(x, t) exceeds a, a pulse will not propagate.
Whether the axon reaches threshold or not depends on the stimulus P (t).

From numerical and biological evidence there is support for the conjecture
that a strong stimulus of short duration or a weak stimulus of long duration
is sub-threshold. Mathematically, this conjecture can be shown to be correct
as follows.

Suppose a > b/γ and that the stimulus P (t) is bounded, continuous and
satisfies the conditions

(i) P (t) = P (0) = 0 for all t ≥ T > 0,

(ii) sup
t≥0

|P (t)| ≤M.
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Then

sup
x≥0

|u(x, t)| ≤ k

∫ T

0

|P (t)|dt

for all t ≥ T. Furthermore there are constantsC, k and λ such that if
∫ T

0 |P |dt <
λ then

sup
x≥0

|u(x, t)| ≤ k exp(−Ct), t ≥ 0.

This result, the proof of which is beyond the scope of this book, says that if a
is not too small but the mean absolute value of the stimulus P is sufficiently
small then the action potential u will decay exponentially. One can prove a
further result, namely that if M in (ii) is sufficiently small then

sup
x≥0

|u(x, t)| ≤ k exp(−Ct), t ≥ 0.

Throughout our discussion of nerve axons we have always taken the axon to
be infinite in extent. A real nerve is of finite extent and the correct problem
to be studied is a mixed initial-boundary problem.

Suppose the axon is of length l. At x = 0 we retain the conditions (12.3.2)
while at x = l we impose the condition

u(l, t) = 0, t ≥ 0,

or
∂u(l, t)

∂x
− αu(l, t) = 0, t ≥ 0, α ≤ 0. (12.3.6)

What the precise conditions prevail in practice at x = l is not known.

In order to analyse the problem governed by (12.3.1), (12.3.2) and (12.3.6)
we again suppose that the stimulus P (t) is nonzero over a finite time interval,
i.e., P (t) = 0, t ≥ T.

Multiply the first of equations (12.3.1) by u and the second by b−1w and
subtract the results to get

1

2

∂

∂t

(

u2 +
w2

b

)

= u
∂2u

∂x2
+ u2(1 − u)(u− a) − γ

b
w2.

Integrating this over the interval [0, l] we find

1

2

∫ l

0

∂

∂t

(

u2 +
w2

b

)

dx =

∫ l

0

(

u
∂2u

∂x2
+ u2(1 − u)(u− a) − γ

b
w2

)

dx.

(12.3.7)

Now
∫ l

0

u
∂2u

∂x2
dx =

[

u
∂u

∂x

]l

0

−
∫ l

0

(

∂u

∂x

)2

dx.
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If u(0, t) = 0 = u(l, t), t ≥ T , then

∫ l

0

u
∂2u

∂x2
dx = −

∫ l

0

(

∂u

∂x

)2

dx.

Similarly if

u(0, t) = 0 =
∂

∂x
u(l, t) − αu(l, t), t ≥ T,

then
∫ l

0

u
∂2u

∂x2
dx = αu2(l, t) −

∫ l

0

(

∂u

∂x

)2

dx.

Thus, in either case, (12.3.7) gives rise to the inequality

1

2

∂

∂t

∫ l

0

(

u2 +
w2

b

)

dx ≤
∫ l

0

[

u2(1 − u)(u− a) − γ

b
w2dx−

(

∂u

∂x

)2
]

dx.

(12.3.8)
In order to analyse (12.3.8) we first observe the quadrature term (1−u)(u−a)
has a maximum at u = (1 + a)/2 given by (1 − a)2/4 and so we can write

1

2

∂

∂t

∫ l

0

(

u2 +
w2

b

)

dx ≤
∫ l

0

[

(1 − a)2

4
u2 − γ

b
w2 −

(

∂u

∂x

)2
]

dx. (12.3.9)

Next, we estimate the last term in (12.3.9) using the Poincaré inequality dis-
cussed in the previous section. For example, if we use the boundary conditions

u(0, t) = 0 = u(l, t), t ≥ T,

then
∫ l

0

(

∂u

∂x

)2

dx ≥
(π

l

)2
∫ l

0

u2dx. (12.3.10)

A similar inequality is obtained if we use the boundary condition

∂

∂x
u(l, t)− αu(l, t) = 0.

Thus from (12.3.10) we have

1

2

∂

∂t

∫ l

0

(

u2 +
w2

b

)

dx ≤
∫ l

0

[(

(1 − a)2

4
− π2

l2

)

u2 − γ

b
w2

]

dx.

Now if (1 − a)2/4 − π2/l2 < 0, i.e., l < 2π/(1 − a), then with

C = max

{

π2

l2
− (1 − a)2

4
, γ

}
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we have
∂

∂t

∫ l

0

(

u2 +
w2

b

)

dx ≤ −2C

∫ l

0

(

u2 +
w2

b

)

dx.

From this we can argue, as we did above, to conclude that

∫ l

0

(

u2 +
w2

b

)

dx

decays exponentially in time for t ≥ T . In other words, unless the axon is long
enough, all stimuli decay exponentially with time. The reader should bear in
mind, from our previous discussion, that the converse is not necessarily true.
That is, even an axon of infinite length cannot propagate a stimulus unless
that stimulus satisfies certain criteria. The precise nature of P (t) necessary
for the propagation of an action potential is not fully understood.

12.4 Global behaviour in chemical reactions

In this section we take up once more a study of the simplified model of
the Belousov–Zhabotinskii reaction, which we dealt with in Chapter 8. The
objective here is to enlarge on the discussion of travelling wavefronts.

The model to be considered is defined through the reaction–diffusion equa-
tions

∂u

∂t
= u(1 − u− rv) +

∂2u

∂x2
,

∂v

∂t
= −buv +

∂2v

∂x2
, −∞ < x <∞, t > 0, (12.4.1)

where u represents the nondimensionalised concentration of bromous acid
(HBrO2) and v represents the nondimensionalised concentration of bromide
ion (Br−). The constants r and b are positive and are of the order 10 and
2.5 × 10, respectively. Furthermore, the concentrations u and v satisfy the
inequalities

0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

The type of wavefront solutions we seek are those which satisfy the boundary
conditions

u(−∞, t) = 0, u(∞, t) = 1,

v(−∞, t) = 1, v(∞, t) = 0. (12.4.2)

There is one special case that can be treated fully; this is the situation in
which

v = 1 − u. (12.4.3)
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For now we need only consider the equations

∂u

∂t
=
∂2u

∂x2
+ (1 − r)u(1 − u),

∂u

∂t
=
∂2u

∂x2
+ bu(1 − u), (12.4.4)

which are the same if b = 1 − r with r < 1.
We have shown in Chapter 8 that the equation

∂φ

∂t
=
∂2φ

∂x2
+ kφ(1 − φ)

has travelling wave solutions φ(x + ct) satisfying the conditions φ(−∞) =
0, φ(∞) = 1, provided c ≥ 2

√
k. Consequently the system (12.4.4) has trav-

elling wave solutions of speed

c ≥ 2
√

(1 − r) = 2
√
b, if r ≤ 1.

If, however, we impose initial data of the form

u(x, 0) = h(x), (12.4.5)

where h(x) is zero for x < 0 and equals one for x > 0, then Kolmogorov,
Petrovskii and Piskounov, as long ago as 1937, proved that u(x, t) satisfying
(12.4.4), (12.4.5) evolves into a travelling wave u(x + ct) as t → ∞, where
c = 2

√

(1 − r) = 2
√
b if r ≤ 1.

This result can be established by following comparison type arguments sim-
ilar to those used in Chapter 11, and depends very much on the nonlinear term
u(1 − u). We shall not go further into the matter here.

We now demonstrate that any wave solution, in which u ≥ 0, v ≥ 0, must
have a wave speed c(r, b) ≤ 2 for all b ≥ 0 and all r ≥ 0. To do this, we shall
introduce the function w(x, t) defined as the solution to the problem

∂w

∂t
=
∂2w

∂x2
+ w(1 − w),

w(x, 0) = h(x),

w(−∞, t) = 0, w(∞, t) = 1, (12.4.6)

where h(x) is of the same form as described above.
We now know that w(x, t) evolves into a travelling wave speed 2. We write

w̄(x, t) = u(x, t) − w(x, t), (12.4.7)

where u(x, t) is the unique solution of (12.4.1) which has the same initial and
boundary conditions as w(x, t). Subtracting the equation in (12.4.6) from the
first of equations (12.4.1), we find

∂2w̄

∂x2
− ∂w̄

∂t
+ [1 − (w + u)]w̄ = ruv (12.4.8)
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with the restriction w ≥ 0, u ≥ 0 and with the class of initial conditions we
have u ≤ 1, w ≤ 1. This last statement is a consequence of the comparison
theorem in Chapter 11. Thus 1− (w+ u) ≤ 1. What we would like to do now
is to employ the maximum principle of Chapter 11 in order to estimate w̄.
However, since the coefficient of w̄ (12.4.8) is less than one, some modification
must first be carried out. If we set

W = w̄e−Kt

for some positive constant K then (12.4.8) becomes

∂2W

∂x2
− ∂W

∂t
+ [1 − (w + u) −K]W = ruve−Kt ≥ 0.

Choose K > 1 so that 1 − (w + u) −K < 0. On noting that W satisfies the
same boundary and initial conditions as w̄, the maximum principle can now
be invoked to conclude that W has its maximum at t = 0 or at |x| = ∞.

Thus w̄ has its maximum at either of these possible points. However, the
maximum value of w̄ occurs at the maximum value of u(x, t)−w(x, t), which
is zero at t = 0 and x = ±∞. From this we conclude that

u(x, t) ≤ w(x, t) (12.4.9)

for all x and t > 0. But this implies that the solution u(x, t) is at all points
less than or equal to w(x, t); in particular this is true for the travelling wave
solution w(x, t) = f(x + ct) of (12.4.6). Thus, if u(x, t) does evolve into a
travelling wave solution with speed c then c ≤ 2; for if the wave speed were
greater than two the inequality (12.4.9) would be violated.

To complete our discussion we consider the behaviour of the wave speed
c(r, b) for limiting values of r and b. If b = 0 then the second equation of
(12.4.1) reduces to the heat equation

∂v

∂t
=
∂2v

∂x2
,

which does not have travelling wave solutions and so neither can the equation
for u(x, t). Thus we conclude that c(r, b) → 0 as b→ 0 with r > 0.

If b→ ∞ then (12.4.1) implies v = 0 (the trivial solution u = 0 is excluded).
In this case c(b, r) → 2 as b → ∞ with r ≥ 0. Next, if r = 0 then (12.4.1)
decouples and, in particular, we have to discuss the equation

∂u

∂t
=
∂2u

∂x2
+ u(1 − u).

This equation is simply the equation (12.4.6) for which travelling wave so-
lutions exist with speed c = 2. Thus with r = 0 both u and v evolve into
travelling waves with speed c = 2, i.e., c(r, b) → 2 as r → 0, b > 0. If r → ∞
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r = 0

r = 0.25

r = 0.75

r = 0.5

r = 1
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1
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b

FIGURE 12.4.1: Wave speed c as a function of b for various values of r.

then u ≡ 0 or v ≡ 0 and in either case there can be no wave solution and so
c(r, b) → 0 as r → ∞. These results are summarised in Figure 12.4.1

There are a number of important problems that remain in the discussion
of the Belousov–Zhabotinskii reaction and diffusion problems in general. For
example, there is the question of existence of periodic solutions, as well as a
thorough study of those classes of initial data h(x) for which u and v evolve
into travelling waves. That is to say, how do solutions behave under small dis-
turbances of initial and/or boundary data? Such problems are largely beyond
the scope of this book, but the interested reader is encouraged to consult the
literature cited in the notes at the end of this chapter.

12.5 Turing diffusion driven instability and pattern for-
mation

Here we discuss the role of pattern in developmental biology and the mech-
anisms proposed to analyse it from a mathematical point of view. To begin
with we introduce the following biological concepts:
Embryology : embryology is that part of biology that is concerned with the

formation and development of the embryo from fertilization until birth.
Embryological development is a sequential process and follows a ground
plan layed down early in gestation.



312 Differential Equations and Mathematical Biology

Morphogenesis : morphogenesis is that part of embryology that is con-
cerned with the development of pattern and form. How the development
of the ground plan is established is not really understood.

Pattern and form : Whatever pattern is observed in the animal world it is
almost certain that the process that produced it is unknown. The mech-
anism must be genetically controlled but the genes themselves cannot
create the pattern.

This promotes the question: how is genetic information translated into pat-
terns?

There have been proposed two major concepts that provide mechanisms
for pattern formation: (i) positional information due to Lewis Wolpert (1969)
and (ii) diffusion driven instability due to Alan Turing (1952).

Wolpert’s idea of positional information suggests that cells are pre-
programmed to read a chemical (or morphogen) concentration and differ-
entiate accordingly into different kinds of cells leading to the development of,
for example, cartilage, bone, tissue, hair, etc. This point of view separates the
developmental process into the following steps.

(i) The creation of a morphogen concentration of spatial pattern (a mor-
phogen is the chemical associated with creating morphogenesis).

(ii) The establishment of positional information that depends on a chemical
pre-specification so that the cell can read out its position in the coordi-
nates of chemical concentration and differentiate, undergo appropriate
cell shape change or migrate.

(iii) Once the pre-pattern is established, morphogenesis is a slave process.

To date it is very much an open problem as to how this idea is to be
implemented in mathematical modelling.

In 1952 Alan Turing suggested that under certain conditions chemicals can
react and diffuse in such a way as to produce steady state heterogeneous
spatial patterns of chemical concentration. It is this counterintuitive idea that
we pursue here.

To begin with let us return to the discussion leading to the derivation of
Fick’s second law. This time, however, instead of considering the flow of solute
through an arbitrary volume of fluid, we first suppose the volume V to contain
a mixture of chemicals of concentration ci, i = 1, . . . , n and further that there
is a chemical source f that is vector valued and depends only on the chemical
concentrations ci. Using the law of conservation of mass we argue as we did
before. That is, the rate of change of a chemical concentration in V must equal
the rate of change of flow of chemical across the surface S together with the
chemical concentration created in V . Consequently for each chemical ci we
have

∂

∂t

∫

V

ci(x, t)dV = −
∫

S

Ji · n dS +

∫

V

fi dV, (12.5.1)
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where Ji = −Di∇ci with Di being the diffusion constant for ci. Again, by
noting that V is arbitrary we arrive at the reaction–diffusion equation

∂ci
∂t

= Di∇2ci + fi(c1, . . . , cn), i = 1, 2, . . . , n. (12.5.2)

In matrix notation
∂c

∂t
= D∇2c + f(c), (12.5.3)

where D is a diagonal diffusivity matrix with entries Di, i = 1, . . . , n, c =
(c1, . . . , cn), f(c) = (f1(c1, . . . , cn), . . . ,fn(c1, . . . , cn)).

Throughout we shall consider the case of chemicals c1, c2, n = 2. That is,
we consider the system

∂c1
∂t

= D1∇2c1 + f1(c1, c2),

∂c2
∂t

= D2∇2c1 + f2(c1, c2). (12.5.4)

Suppose in the first instance that the spatial domain is one-dimensional and
infinite in extent. The situation in which the domain is finite will be considered
later. In this case we have the system

∂c1
∂t

= D1
∂2c1
∂x2

+ f1(c1, c2),

∂c2
∂t

= D2
∂2c1
∂x2

+ f2(c1, c2). (12.5.5)

Suppose that there exists a steady state to this system in which the chemicals
are well mixed and uniform. Turing’s profound idea is simple. He suggested
that if in the absence of diffusion (i.e., D1 = D2 = 0 in (12.5.5)), c1 and c2
approach a linearly stable uniform steady state as t→ ∞; then under certain
conditions spatially inhomogeneous patterns can evolve by “diffusion driven
instability” for D1 6= D2 6= 0.

It is this fundamental idea that we shall explore.
Suppose there are solutions

c1 = c1,0, c2 = c2,0 (12.5.6)

of (12.5.5) which are independent of time t and space x. Notice that if c1,0

and c2,0 are steady states then, from (12.5.5), they must satisfy

f1(c1, c2) = f2(c1, c2) = 0. (12.5.7)

Consequently there may be several steady states, each determined as a solu-
tion of (12.5.7).

We now ask a fundamental question:
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Can spatially inhomogeneous patterns spontaneously develop from arbitrar-
ily small perturbations from a uniform linearly stable steady state?

To investigate this question let

c1(x, t) = c1,0 + d1,

c2(x, t) = c2,0 + d2, (12.5.8)

where |di| ≪ 1, i = 1, 2.
We now “linearise” (12.5.5) by expanding fi(c1, c2) as a Taylor series about

(c1,0, c2,0). That is,

fi(c1, c2) = fi(c1,0, c2,0) + d1
∂fi

∂c1
(c1,0, c2,0) + d2

∂fi

∂c2
(c1,0, c2,0)

+ higher order terms in d1, d2, i = 1, 2.

To a first order approximation in which we neglect the higher order terms and
noting that fi(c1,0, c2,0) = 0 we arrive at the linear system

∂di

∂t
= Di

∂2di

∂x2
+ d1

∂fi

∂c1
(c1,0, c2,0) + d2

∂fi

∂c2
(c1,0, c2,0), i = 1, 2. (12.5.9)

For notational convenience and ease of presentation we define the quantities

aij ≡ ∂fi

∂ci
(c1,0, c2,0), i, j = 1, 2. (12.5.10)

Then (12.5.9) can be written as

∂d1

∂t
= Di

∂2d1

∂x2
+ a11d1 + a12d2,

∂d2

∂t
= Di

∂2d2

∂x2
+ a21d1 + a22d2, (12.5.11)

or, in matrix form,
∂d

∂t
= D

∂2d

∂x2
+Ad, (12.5.12)

where d = (d1, d2)
T , D = diag(D1, D2) and A is the 2× 2 matrix with entries

ai,j .
The system (12.5.12) can be solved by the method of separation of variables

as described in Chapter 11.
We shall look for solutions of the form

[

d1

d2

]

=

[

α1

α2

]

eσt cos kx, (12.5.13)

in which αi(i = 1, 2), σ and k are constants. This form of solution is not the
most general solution to (12.5.12). Indeed we could choose a solution of the
form

[

d1

d2

]

=

[

β1

β2

]

eσt sin kx, (12.5.14)
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or even a linear combination of such solutions. Whichever choice is made leads
to the same analysis and so there is no loss in generality. The importance of
the form (12.5.13) will become apparent when we consider diffusion driven
instability for systems defined on finite spatial domains in which boundary
conditions have to be taken into account.

On substituting (12.5.13) into (12.5.12) and dividing the resulting equations
throughout by eσt cos kx we arrive at the pair of algebraic equations

α1σ = a11α1 + a12α2 −D1k
2α1,

α2σ = a21α1 + a22α2 −D2k
2α2,

i.e.,

α1(σ − a11 +D1k
2) − α2a12 = 0,

−α1a21 + α2(σ − a22 +D2k
2) = 0. (12.5.15)

If we think of this pair of equations as simultaneous equations for the deter-
mination of (α1, α2) then for a nontrivial solution to exist we must have

∣

∣

∣

∣

∣

σ − a11 +D1k
2 −a12

−a21 σ − a22 +D2k
2

∣

∣

∣

∣

∣

= 0,

i.e.,

σ2 + σ((D1 +D2)k
2−(a11 + a22))+((a11 −D1k

2)(a22 −D2k
2) − a12a21) = 0.

(12.5.16)
This is the characteristic equation for the determination of σ. Of fundamental
importance is the fact that σ determines the growth or decay in time of the
solution (12.5.13). That is, if Re(σ) > 0 then the solution (12.5.13) grows
exponentially in time and so is unstable. This means that the homogeneous
steady state (c1,0, c2,0) is unstable to small spatially inhomogeneous pertur-
bations. Likewise if Re(σ) < 0 then the steady state (c1,0, c2,0) is stable to
small spatially inhomogeneous perturbations.

Recall that in the absence of diffusion we require the uniform steady state
(c1,0, c2,0) to be linearly stable. So on setting D1 = D2 = 0 in (12.5.16) we
require the roots σ1, σ2, say, of

σ2 − σ(a11 + a22) + (a11a22 − a12a21) = 0, (12.5.17)

to satisfy Re(σi) < 0, i = 1, 2. Now

σ1 + σ2 = a11 + a22,

σ1σ2 = (a11a22 − a12a21),

from which it is clear that whether σ1, σ2 are real or complex, Re(σi) < 0 if
and only if

a11 + a22 < 0,

a11a22 − a12a21 > 0. (12.5.18)
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That these inequalities hold is crucial as to whether spatially inhomogeneous
patterns can evolve by diffusion driven instability.

When D1, D2 6= 0 we require the roots σ′
1, σ

′
2 of (12.5.16) to be such that

Re(σ′
1) and/or Re(σ′

2) are nonnegative.
Now

σ′
1 + σ′

2 = (a11 + a22) − (D1 +D2)k
2 (12.5.19)

and

σ′
1σ

′
2 ≡ H(k2) = (a11 −D1k

2)(a22 −D2k
2) − a12a21. (12.5.20)

Since D1, D2 are positive and noting (12.5.18) it is clear that

σ′
1 + σ′

2 < 0. (12.5.21)

If σ′
1, σ

′
2 are complex then (12.5.21) implies that Re(σ′

i) < 0, (i = 1, 2) and
σ′

1σ
′
2 = |σ′

1|2 > 0 and so the perturbation (12.5.12) decays exponentially
and patterns do not form. So the only possibility is that σ′

1, σ
′
2 are real and

σ′
1σ

′
2 < 0, i.e., H(k2) < 0.

Let us examine H(k2) more closely. As a quadratic equation in k2 we have

H(k2) = D1D2k
4 − (D1a22 +D2a11)k

2 + a11a22 − a12a21. (12.5.22)

When k = 0, H(k2) > 0 and if H(k2) < 0 for some values of k2 then (12.5.22)
must have real positive roots and so

D1a22 +D2a11 > 0 (12.5.23)

and
(D1a22 +D2a11)

2 ≥ 4D1D2(a11a22 − a12a21). (12.5.24)

In general the graph of H(k2) against k2 will take one of the forms illustrated
in Figures 12.5.1a,b,c.

From (12.5.23), (12.5.24) and Figures 12.5.1a,b,c we arrive at some very
important conclusions about the type of reaction diffusion systems that lead
to diffusion driven instability. From (12.5.18) and (12.5.23) we immediately
conclude that D1 6= D2. In other words one morphogen must diffuse faster
than the other. Again from these inequalities we see that a11 and a22 must be
of opposite sign.

Suppose a11 > 0 and a22 < 0. Then from (12.5.10) we have

a11 =
∂f1
∂c1

(c1,0, c2,0) > 0, a22 =
∂f2
∂c2

(c1,0, c2,0) > 0,

which means that c1 is activated by its own rate of production whereas c2
is inhibited by its rate of production. In this case we naturally refer to c1 as
the activator and c2 as the inhibitor.
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H(k2)

k2

FIGURE 12.5.1a: Steady state stable; no pattern formation. H(k2) > 0
and the steady state is stable to small perturbations.

Furthermore we also see that

D2

D1
> −a22

a11
> 1,

or
D2 > D1. (12.5.25)

In other words the inhibitor c2 diffuses faster than the activator c1.
With the choice a11 > 0, a22 < 0, the fact that (see (12.5.18)) a11a22 −

a12a21 > 0 means that a12a21 < 0. If a12 < 0, a21 > 0 then we have an
activator-inhibitor system whereas if a12 > 0, a21 < 0 we have a positive
feedback system.

Turning now to Figures 12.5.1a,b,c, we see that in a) there are no values of
k2 for which H(k2) < 0 and so small perturbations are stable and no patterns
form. Figure 12.5.1b shows the critical case in which there is precisely one
value k2

c of k2 occurring when H(k2) = 0. This value is easily calculated to be

k2
c =

1

2

(

a11

D1
+
a22

D2

)

, (12.5.26)

where D1 and D2 are critical diffusion constants that satisfy

(D1a22 +D2a11)
2 = 4D1D2(a11a22 − a12a21).

In other words the critical wave number and critical diffusion constants are
related by

k2
c =

[

(a11a22 − a12a21)

D1D2

]1/2

. (12.5.27)
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H(k2)

k2kc
2

FIGURE 12.5.1b: Critical case; onset of instability. H(k2) has a single
critical root k2

c indicating the onset of instability of the steady state to small
perturbations.

H(k2)

k2

kc
2

FIGURE 12.5.1c: Steady state unstable; patterns form. H(k2) < 0 for a
range of k2 for which the steady state is unstable to small perturbations.
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In Figure 12.5.1c, H(k2) < 0 and so there are a continuum of spatial patterns
that can evolve by diffusion driven instability for a continuum of k2 satisfying

k2
1 < k2 < k2

2 , (12.5.28)

where H(k2
i ) = 0, i = 1, 2.

To illustrate the general analysis we consider the specific example:

∂c1
∂t

=
c21
c2

− bc1 +D1
∂2c1
∂x2

,

∂c2
∂t

= c21 − c2 +D2
∂2c2
∂x2

, (x, t) ∈ (−∞,∞) × (0,∞), (12.5.29)

where b is a positive constant.
The steady states of the system (12.5.29) are determined by

c21
c2

= bc1, c21 = c2. (12.5.30)

The nontrivial steady state is therefore

c1,0 =
1

b
, c2,0 =

1

b2
. (12.5.31)

As above we linearise the system about this steady state by writing

c1 =
1

b
+ d1, c2 =

1

b2
+ d2. (12.5.32)

Furthermore, from (12.5.10), we can write down the coefficients aij , i, j = 1, 2
of the linearised system (12.5.11) as

a11 = b, a12 = −b2,

a21 =
2

b
, a22 = −1. (12.5.33)

Note that a11 and a22 are of opposite sign and furthermore the inequalities
(12.5.18) demand that

0 < b < 1. (12.5.34)

For the evolution of pattern we require H(k2) given by (12.5.22) to be non-
positive, i.e.,

D1D2k
4 − (bD2 −D1)k

2 + b ≤ 0, (12.5.35)

together with the inequalities (see (12.5.23) and (12.5.24))

bD2 −D1 > 0 (12.5.36)

and
(bD2 −D1)

2 ≥ 4D1D2b. (12.5.37)
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D2/D1

b

3 + 2√2

FIGURE 12.5.2: Turing parameter space for the system (12.5.29).

Consequently
D2

D1
>

1

b
> 1,

showing that the inhibitor c2 diffuses faster than the activator c1.
Also from (12.5.37) we deduce that

D2

D1
b ≥ 3 + 2

√
2. (12.5.38)

This inequality defines the “Turing parameter space”, shown in Figure 12.5.2,
in which diffusion driven instability occurs.

Next, the critical wave number kc is given by

k2
c =

1

2

(

b

D1
− 1

D2

)

(12.5.39)

and a continuum of spatial patterns can evolve for all values of k2 satisfying

k2
1 < k2 < k2

2

where H(k2
i ) = 0, i = 1, 2. In other words

2D1D2k
2
1 = (bD2 −D1) −

√

(bD2 −D1)2 − 4D1D2b

and
2D1D2k

2
1 = (bD2 −D1) +

√

(bD2 −D1)2 − 4D1D2b.
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12.6 Finite pattern forming domains

Let us now consider the general system (12.5.4) defined on a bounded do-
main. In the case of one-space dimension we consider the domain to be the
interval x ∈ [0, l]. To complete the formulation of the problem we require
boundary as well as initial conditions. That is, in addition to (12.5.4) we
assume c1(x, t), c2(x, t) satisfy

c1(x, 0) = f1(x), c2(x, 0) = f2(x), (12.6.1)

where f1(x) and f2(x) are given concentrations. Also we impose the “no flux”
boundary conditions

∂ci
∂x

(x, t) = 0, x = 0, l, i = 1, 2. (12.6.2)

The reason for choosing zero flux boundary conditions is that we are primarily
interested in self-organisation of patterns. No flux boundary conditions mean
that there is to be no external input of morphogens.

To develop an analysis of Turing driven instabilities in this case we proceed
in precisely the same way as we did above for an infinite domain. The crucial
point is that the perturbations d1 and d2, which solve the system (12.5.11),
must now satisfy the conditions

∂di

∂x
(x, t) = 0, x = 0, l, i = 1, 2. (12.6.3)

A little thought shows that d1, d2 must be of the form (12.5.13) where

cos kx = 0 (12.6.4)

for x = 0, l. Consequently, rather than being arbitrary, the parameter k must
take the discrete values kn, n = 1, . . . , where

sin kl = 0,

i.e.,

kn =
nπ

l
, n = 1, 2, . . . . (12.6.5)

This observation is crucial; it is fundamental to deciding which patterns are
selected. Proceeding precisely as before we find that the critical wave number
kc is given by

n2π2

l2
=

1

2

(

a11

D1
+
a22

D2

)

, (12.6.6)

which may or may not be satisfied for a given l. However if one is allowed to
vary l then it is possible to choose a mode characterised by n so that (12.6.6)
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is satisfied. In other words a critical pattern of a certain form is dependent on
the size of the domain.

More generally we see that spatial patterns evolve if we can select integer
values of n so that H(k2

n) < 0. This can only happen if we can choose n so that

k2
1 <

n2π2

l2
< k2

2 (12.6.7)

where k2
i , i = 1, 2 . . . , satisfy H(k2

i ) = 0. That is,

(D1a22 +D2a11) −
√

(D1a22 +D2a11)2 − 4D1D2A

2D1D2
<
n2π2

l2

<
(D1a22 +D2a11) +

√

(D1a22 +D2a11)2 − 4D1D2A

2D1D2
, (12.6.8)

where A = (a11a22 −a12a21) > 0. The number of integers n for which (12.6.8)
is satisfied determines the modes of pattern selection. To see this suppose the
domain size l is such that (12.6.8) is satisfied only for n = 1. The only unstable
mode is cos πx

l and morphogen concentration

c1(x, t) ∼ c1,0 + α exp

[

λ

(

π2

l2

)

t

]

cos
πx

l
, (12.6.9)

where λ(π2

l2 ) is the positive root of (12.5.6). This unstable mode is the dom-
inant one which emerges as t increases. If we say that black corresponds
to a concentration above the steady state c1,0 and white corresponds to a
concentration below c1,0 then we have the pattern shown in Figure 12.6.1.

C1

X

C > C10 C < C10

Ö,/2 Ö,

FIGURE 12.6.1: Morphogen pattern for n = 1.

Similarly if n = 2 is the only value of n for which the inequality (12.6.8)
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C1

XÖ,/2 Ö3,/4Ö,/4 Ö,

FIGURE 12.6.2: Morphogen pattern for n = 2.

holds then (12.6.9) becomes

c1(x, t) ∼ c1,0 + α exp

[

λ

(

4π2

l2

)

t

]

cos
2πx

l
, (12.6.10)

leading to the pattern shown in Figure 12.6.2.
Which mode or combination of modes and hence patterns are selected de-

pends on initial conditions (12.6.1).
Now consider the two-dimensional domain Ω defined by 0 ≤ x ≤ l, 0 ≤ y ≤

h, with rectangular boundary ∂Ω on which no-flux boundary conditions are
imposed.

Once again the theory developed above in the one-dimensional case is fol-
lowed with only minor modifications. Most importantly we seek solutions of
the linearised problem (12.5.11) of the form

[

d1

d2

]

=

[

α1

α2

]

eσt cos k1x cos k2y, (12.6.11)

where the wave numbers k1 and k2 are chosen so that d1 and d2 satisfy the
boundary conditions:

∂di

∂x
= 0, x = 0, l,

∂di

∂y
= 0, y = 0, h, (12.6.12)

i = 1, 2.
By the method of separation of variables, or otherwise, we find that

k1 =
mπ

l
, k2 =

nπ

h
, (12.6.13)
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for integers m,n = 1, 2 . . . .
Now proceed precisely as before to see that if we define

K2 = k2
1 + k2

2 , (12.6.14)

then we again arrive at equations (12.5.16) and (12.5.22) with k2 simply re-
placed by K2. The critical wave number K2

c is given by

K2
c =

m2π2

l2
+
n2π2

h2
=

1

2

(

a11

D1
+
a22

D2

)

(12.6.15)

and modes characterised by m and n exist if they satisfy the inequalities

(D1a22 +D2a11) −
√

(D1a22 +D2a11)2 − 4D1D2A

2D1D2
<
m2π2

l2
+
n2π2

h2

<
(D1a22 +D2a11) +

√

(D1a22 +D2a11)2 − 4D1D2A

2D1D2
. (12.6.16)

To illustrate possible modes, suppose the domain size is sufficiently large so
that (12.6.16) holds form = 3, n = 2.Then the pattern shown in Figure 12.6.3
is possible where the shaded areas indicate regions in which the morphogen
concentration is above the steady state.

Y

h

XÖ,
(m = 3, n = 2)

FIGURE 12.6.3: Morphogen pattern for m = 3, n = 2.

The fundamental assumption of pattern formation via Turing diffusion
driven instabilities is that the linearly unstable modes that grow exponen-
tially in time will eventually be bounded by the nonlinear kinetic terms in
(12.5.4). This is indeed the case. To prove mathematically that this happens
one has to show that in the positive quadrant of morphogen space there is a
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compact region about the uniform steady state (c1,0, c2,0) to which c1 and c2
are always confined. Such a region is called a confined set or a contracting set.
The determination of such sets is often difficult and is beyond the scope of
this book. The interested reader is encouraged to consult the literature cited
in the notes at the end of this chapter.

12.7 Notes

Diffusion through membranes

Most of the material here is based on the results of S.I. Rubinow and we rec-
ommend his book Introduction to Mathematical Biology, John Wiley & Sons,
New York, 1975 for further developments and a host of biological applications.
See also J.D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1993.

Global behaviour of nerve impulse transmissions

For a fuller background to the material here, we refer to the survey article
of S.P. Hastings, Some mathematical problems from neurobiology, Am. Math.
Monthly, 82, 881–895, 1975 and the detailed results in J. Smoller, Shock Waves
and Reaction-Diffusion Equations, Springer-Verlag, Berlin, 1983.

Global behaviour in chemical reactions

An excellent treatment of the Belousov–Zhabotinskii reaction and many
other diffusion problems in biology are to be found in J.D. Murray, Mathe-
matical Biology, Springer-Verlag, Berlin, 1993.

Diffusion driven instability and pattern formation; Finite pat-
tern forming domains

The interested reader is recommended to read the fundamental papers:
A.M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc.
Lond, B237, 37–72, 1952; and L. Wolpert, Positional information and the
spatial pattern of cellular differentiation, J. Theor. Biol., 25, 1–47, 1969. See
also the treatment in J.D. Murray, Mathematical Biology, Springer-Verlag,
Berlin, 1993.
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Exercises

12.1 A cell of solute concentration c and characteristic length δ is placed in a
large bathing solution of solute with fixed concentration c0. If the region
0 ≤ x ≤ δ represents the cell while the regions x < 0, x > δ represent
the cell exterior, show that the solution concentration of the cell is given
by

c(x, t) = c0

[

1 − 4

π

∞
∑

n=1

1

2n−1
sin

(

(2n−1)πx

δ

)

exp[−(2n−1)2π2Dt]/δ2

]

,

where D is the diffusion constant.

12.2 In one dimension, let there be a slab of solute of uniform concentration
c0 and of thickness 2a. At t = 0

c(x, 0) =

{

c0, −a < x < a,

0, |x| > a.

Find the concentration c(x, t) for all x and t.

12.3 A stationary spherical cell of radius a is metabolising a nutrient that is at
uniform concentration c0 in the surrounding medium initially. Assume
that the cell instantaneously metabolises any nutrient molecules that
enter it, so that the nutrient concentration at the cell wall is zero at all
times. Solve the diffusion equation in spherical polar co-ordinates and
find the nutrient concentration c = c(r, t) in the surrounding medium
as a function of the radial position r and the time t.

12.4 By considering the energy function

E(t) =

∫ t+T

t

(

du

dx

)2

dx,

show that the ordinary differential equation

du

dt
= F (u),

where F (u) = df(u)
du , cannot have a periodic solution of period T .

12.5 Consider the reaction-diffusion system

∂u

∂t
= D1

∂2u

∂x2
+ f(u, v),

∂v

∂t
= D2

∂2v

∂x2
+ g(u, v),
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defined for x, t ∈ (0, 1) × (0,∞), and where u, v satisfy the following
initial and boundary conditions

∂u

∂x
=
∂v

∂x
= 0 for x = 0, 1, t ≥ 0,

u(x, 0) = u0(x), v(x, 0) = v0(x) for 0 ≤ x ≤ 1,

du0

dx
=
dv0
dx

= 0 for x = 0, 1.

Define the energy function

E(t) =
1

2

∫ 1

0

[

(

∂u

∂x

)2

+

(

∂v

∂x

)2
]

dx

and show that

dE

dt
≤ −d

∫ 1

0

[

(

∂2u

∂x2

)2

+

(

∂2v

∂x2

)2
]

dx+
m

2

∫ 1

0

[

(

∂u

∂x

)2

+

(

∂v

∂x

)2
]

dx

≤ (m− 2π2d)E,

where d = min(d1, d2) and

m = maxu,v

[∣

∣

∣

∣

∂f

∂u

∣

∣

∣

∣

+

∣

∣

∣

∣

∂f

∂v

∣

∣

∣

∣

+

∣

∣

∣

∣

∂g

∂u

∣

∣

∣

∣

+

∣

∣

∣

∣

∂g

∂v

∣

∣

∣

∣

]

.

Here, maxu,v means the maximum over the solution values of u and v.

Deduce that if m < 2π2d then E(t) → 0 as t→ ∞. Interpret this result.

12.6 From the general theory of diffusion driven instability and using the
notation of Section 12.5 derive the inequalities

D2 > D1 and D1τ1 < D2τ2,

where
τi = |aii|−1, i = 1, 2.

12.7 Consider the reaction-diffusion system

∂u

∂t
= αuv − βu2 + δ2∇2u,

∂v

∂t
= v − uv + v2 + ∇2v,

where u and v represent concentrations of morphogens and α, β and δ
are positive constants. Find the nonzero equilibrium point and determine
conditions on α and β for a Turing instability to occur.
Calculate the values of δ for which the Turing instability can take place.
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12.8 A model capable of diffusion driven instability is

∂u

∂t
= γ(a− u+ u2v) +

∂2u

∂x2
,

∂v

∂t
= γ(b− u2v) + d

∂2v

∂x2
, (x, t) ∈ (−∞,∞) × (0,∞).

Determine the homogeneous steady state and show that it is stable
provided

(b − a) − (a+ b)3 < 0.

By linearising the system about the homogeneous steady state show that
diffusion instability can occur if

H(k2) ≡ dk4 = k2

[

γ(a+ b)2 − dγ
(b − a)

(a+ b)

]

+ γ2(a+ b)2 < 0.

12.9 Derive diffusion driven instability and pattern forming properties of the
two dimensional reaction-diffusion system

∂u

∂t
= a− bu− u2

v
+ ∇2u,

∂v

∂t
= u2 − v + d∇2v,

where a, b are positive parameters and d is a positive diffusion coefficient.
The system is defined on the rectangular region 0 ≤ x ≤ A, 0 ≤ y ≤ B
and the morphogens u and v satisfy the boundary conditions

∂u

∂x
= 0,

∂v

∂x
on x = 0, A

and u = 0, v = 0 on y = 0, B.



Chapter 13

Bifurcation and Chaos

13.1 Bifurcation

In Chapter 5, we saw that equilibrium points, or fixed points, are impor-
tant features of many systems of differential equations. In addition, the local
stability of any equilibrium points is significant because it is this property
that determines whether solutions of the differential equations that start near
to equilibrium will tend towards the equilibrium point, or away from it. Fre-
quently, systems of differential equations contain one or more parameters,
that are usually assumed to be constants. A natural question to ask, however,
is how do the position and stability of an equilibrium change as one of the
parameters of the system is varied. Such a parameter will be called a control
parameter to distinguish it from any parameters which remain fixed.

As a physical example, consider a ball that is free to roll along the friction-
less track shown in Figure 13.1.1(a). The motion of the ball can be described
by a system of differential equations, but without worrying about the mathe-
matical details, we can immediately say that the system has two equilibrium
states, which occur when the ball is stationary at the positions marked A and
B in the diagram. Furthermore, our intuition tells us that A is locally stable,
whilst B is unstable – any slight perturbation to the ball’s position will cause
it to roll away from B. Now suppose that we rotate the track through an
angle θ (Figure 13.1.1(b)). Here, θ is the control parameter (θ = 0 in Figure
13.1.1(a)), and we are interested in what happens to the two equilibria as
θ changes. Again, our intuition tells us that, to begin with, the two equilib-
ria move slightly – A is always at the track’s local minimum, B at the local
maximum, and their respective stability properties do not change. Eventually,
however, if we rotate the track enough, it will reach a point where there is
no longer a local minimum or maximum, and hence the equilibria no longer
exist (Figure 13.1.1(c)). This is called a bifurcation: a sudden, qualitative
change in the system’s behaviour, such as a change in the stability or (as in
this example) the number of equilibria. The value of the control parameter θ
at which the behaviour changes is called the bifurcation point. This chapter
is concerned with identifying different classes of bifurcation and where they
occur.

329
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FIGURE 13.1.1: A bifurcation caused by tilting a track through angle θ:
(a) At θ = 0, there is a stable equilibrium at A and an unstable equilibrium at
B; (b) As θ increases a small amount, the equilibria move but their stability
is unchanged; (c) For sufficiently large θ, both equilibria are destroyed.

Example 13.1.1

Consider the nonlinear conservative system in which µ ≥ 0 and

ẋ = y, ẏ = µ sinx− x.

The equilibrium points are given by y = 0 and solutions of

µ sinx− x = 0. (13.1.1)

One solution of (13.1.1) is x = 0. To see if there are any other solutions
we examine the derivative with respect to x of the left-hand side of (13.1.1),
namely µ cosx− 1. The derivative is always negative if 0 ≤ µ < 1. Therefore,
for this range of µ, the left-hand side of (13.1.1) decreases steadily as x in-
creases from 0. Since it is zero when x = 0 it cannot vanish subsequently and
there is no other solution of (13.1.1) for 0 ≤ µ < 1.

If µ > 1, the derivative is positive at x = 0. As x increases the derivative
decreases, passes through zero and then stays negative up to x = π; for sim-
plicity we limit x to (−π, π). Therefore, as x increases, the left-hand side of
(13.1.1) first increases from 0 to some positive maximum where µ cosx = 1
and then decreases steadily to x = π. At x = π it is negative and so there
is a zero x = x1 6= 0 of (13.1.1) when µ > 1. By the preceding argument
µ cosx1 < 1. Since (13.1.1) is unaffected by changing the sign of x there is
also a solution x = −x1.

Thus, we have found one equilibrium point for 0 ≤ µ < 1 and three for
µ > 1.

To examine the nature of the equilibrium we proceed as in Section 5.3. Near
the equilibrium point (0,0) put x = ξ, y = η with ξ and η small. Then

ξ̇ = η, η̇ = (µ− 1)ξ.
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According to Section 5.4, the equation for the eigenvalues of the Jacobian
matrix at the equilibrium is

λ2 = µ− 1.

If µ < 1, the two values of λ are imaginary complex conjugates and the
equilibrium point is a centre. When µ > 1, the two values of λ are real but of
opposite sign; the equilibrium point is a saddle-point.

When µ > 1 the equilibrium point (x1, 0) can occur. Near it put x = x1 +ξ,
y = η to obtain

ξ̇ = η, η̇ = (µ cosx1 − 1)ξ.

In this case
λ2 = µ cosx1 − 1.

Since µ cosx1−1 is negative, as shown above, the equilibrium point is a centre.
The same is true for the equilibrium point (−x1, 0).

Several features of this example should be noted. The position of the equi-
librium point x = 0 does not change as the control parameter µ is altered but
its character switches as µ passes through 1. It could be regarded as going
from a stable regime to an unstable one—termed interchange of stabilities
by Poincaré. At the switch, extra equilibrium points are born; their position
varies with the control parameter but not their character. The changing of
the character of an equilibrium point and/or the creation of extra ones by
alteration of a control parameter is known as bifurcation. The value of µ
where bifurcation occurs is called a bifurcation point.

An aid to keeping track of what is going on as the control parameter varies
is the bifurcation diagram. This is a plot of the positions of the equilibrium
points against the control parameter (see Figure 13.1.2). The letters c and s
signify which curves represent centres and saddle-points, respectively. Adding
information about λ would render the diagram too complicated; so sometimes
there is a separate plot of λ against µ. It can be somewhat awkward when
λ is complex. To avoid a three-dimensional picture λ can be plotted on the
complex λ-plane with values of µ attached to the points.

On account of its appearance a bifurcation like that of Figure 13.1.2 is
sometimes known as a pitchfork bifurcation.

Example 13.1.2

If the equation for ẏ in Example 13.1.1 is changed to

ẏ = µ− x2 − µ1/4y, (13.1.2)

there are no equilibrium points for µ < 0. For µ > 0 there are two equilib-
ria: (

√
µ, 0) and (−√

µ, 0). Again, following the method of Section 5.4, the
eigenvalues λ for the first of these equilibria satisfy

λ2 + µ1/4λ+ 2µ1/2 = 0.
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c

c

c

s

x

µ

FIGURE 13.1.2: Bifurcation diagram for Example 13.1.1, showing a pitch-
fork bifurcation. For values of µ below the bifurcation point, there is a single
equilibrium that is a centre (c); for values of µ above the bifurcation point,
there is a saddle-point (s) and two centres (c).

The roots of this equation are λ = (µ1/4/2)(−1 ±
√

7i), which are a complex
conjugate pair with negative real part. Hence this equilibrium is a stable focus.
The eigenvalues for the second equilibrium (x, y) = (−√

µ, 0) satisfy

λ2 + µ1/4λ− 2µ1/2 = 0.

The roots of this equation are λ = (µ1/4/2)(−1±3) and hence this equilibrium
is a saddle-point. The resulting bifurcation diagram is shown in Figure 13.1.3.

This class of bifurcation, where a stable and an unstable equilibrium collide
and destroy one another at the bifurcation point, is called a fold bifurcation
or saddle-node bifurcation. In fact, we have met this type of bifurcation
previously, in the the tilting track example in Figure 13.1.1. For small θ, there
is a stable and an unstable equilibrium. As θ increases, and the track is tilted,
the equilibria move steadily closer together, until θ reaches the bifurcation
point, where the equilibria coalesce into a single equilibrium point. As θ in-
creases above the bifurcation point, this equilibrium disappears altogether.

Bifurcation is not restricted to the conservative systems that have been
studied so far. For example, the system

ẋ = 5x+ (3 − µ)y + 5x3,

ẏ = x+ 5y + x3
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s

x

sf

µ

FIGURE 13.1.3: Bifurcation diagram for Example 13.1.2, showing a fold
bifurcation. For values of µ below the bifurcation point, there are no equilibria;
for values of µ above the bifurcation point, there is a stable focus (sf) and a
saddle (s).

x

µ
3n f

FIGURE 13.1.4: Bifurcation from node (n) to focus (f).

with µ ≥ 0 has an equilibrium point at (0, 0). It is a node for µ < 3 and a
focus for µ > 3. The bifurcation diagram is displayed in Figure 13.1.4, the
letters n and f indicating node and focus, respectively.

The reader should be warned that often the term bifurcation is employed
much more strictly than has been used here. It is kept to denote points where
the stability of the system changes. A diagram like Figure 13.1.4 would not
be regarded as bifurcation in the strict sense because the stability is unaltered
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although the behaviour of the system changes radically from nonoscillatory
to oscillatory.

It should be stressed that the identification of the type of equilibrium point
has been carried out by the approximation of Section 5.3. Thus, the equations
are valid only near the equilibrium point. They represent what is occurring
locally. How the local scene fits into the global picture can be very difficult to
resolve.

Of course, there may be more than one control parameter as in

ẋ = y, ẏ = µ1x+ µ2x
2 + µ3x

3 + x5,

which has three control parameters µ1, µ2 and µ3. Discussion of bifurcation is
generally extremely tricky even for the equilibrium point in which x = 0, let
alone the determination of other equilibrium points. Pictorial representation
is far from straightforward since three dimensions are occupied already by the
control parameters. Accordingly, we shall concentrate on cases in which there
is a single control parameter.

Often what we have called equilibrium points are known as fixed points in
bifurcation theory, for reasons that will become apparent later. Sometimes it
will be convenient to use one term in the rest of this chapter and sometimes
the other.

13.2 Bifurcation of a limit cycle

Bifurcation is not confined to the types of equilibrium points in Section 5.4
although they are common in systems of two differential equations. Limit
cycles can be involved even with two differential equations. As the number
of differential equations increases to three and upwards the possible types
of common bifurcations proliferate rapidly. Also discussion of them becomes
increasingly complicated, going beyond the scope of this book. So we shall
stay mostly with two differential equations.

An example where limit cycles are involved in bifurcation is provided by
the differential equations

ẋ = −y + x(µ− x2 − y2), (13.2.1)

ẏ = x+ y(µ− x2 − y2). (13.2.2)
Make the transformation to polar coordinates by putting x = r cosφ, y =

r sinφ. Using the polar coordinate transformation formulae (5.6.12) gives

ṙ = r(µ − r2), (13.2.3)

φ̇ = 1. (13.2.4)

Equation (13.2.4) can be solved immediately to give

φ = φ0 + t (13.2.5)



Bifurcation and Chaos 335

µ
sf

sl

r

uf

FIGURE 13.2.1: The Hopf bifurcation, from a stable focus (sf) to an un-
stable focus (uf) and stable limit cycle (sl).

where φ0 is the value of φ at t = 0. Thus, the radius vector (see Figure 5.6.2)
sweeps steadily counterclockwise as t increases. The end of the radius vector
describes the trajectory, which starts from (r0, φ0) where r0 is the initial value
of r.

When µ < 0, (13.2.3) shows that ṙ is negative for any positive r. There-
fore, r decreases steadily and the trajectory spirals round the origin in a
counterclockwise sense and moves inwards as time progresses. Eventually, the
trajectory ends up at the equilibrium point r = 0. The origin is a stable focus.

When µ > 0, the right-hand side of (13.2.3) is positive for r2 < µ. Hence r
increases and the spiral round the origin moves outwards. Now the origin is
an unstable focus. The outward movement of r does not continue unabated
because r =

√
µ is another equilibrium point (r = −√

µ is not a possibility
because r is not allowed to be negative). The trajectory with r0 =

√
µ is

the circle r =
√
µ, i.e., a limit cycle. Consequently, a trajectory started with

r20 < µ spirals counterclockwise and outwards, steadily approaching the limit
cycle. If r2 > µ, ṙ < 0 and a trajectory spirals inwards to the limit cycle.
Accordingly, the limit cycle is stable. The bifurcation diagram is shown in
Figure 13.2.1.

The creation of a limit cycle in this way by variation of a control parameter
is known as Hopf bifurcation.

Although we have not needed it the solution of the differential equation
(13.2.3) is available. It is

r2 =
µr20

r20 + (µ− r20)e
−2µt

(13.2.6)
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where the positive square root of the right-hand side gives r. You should check
that it leads to the same conclusions as have been obtained above.

Notice that the linear approximation of Section 5.3 leads to

ṙ = µr

instead of (13.2.3). This does predict correctly that a stable focus switches to
an unstable focus as µ passes through 0. However, it does not tell us what
happens to the trajectories as they spiral away from the unstable focus. As
far as the local behaviour is concerned they could be going off to infinity. It
is only with the full equation (13.2.3) that we discover that they end up on a
limit cycle eventually. This illustrates yet again the care that is necessary in
extrapolating local behaviour to the global picture in nonlinear systems.

13.3 Discrete bifurcation and period-doubling

Often observations on a system have to be taken at intervals that are too
wide apart for it to be sensible to use a model based on differential equations.
For example, if the crop of grain on a farm is measured just at the end of
the year, the frequency would be insufficient for a differential equation on our
normal time scale. Nevertheless, phenomena similar to those described above
may occur.

As a simple model, suppose that, at the end of the first year, the crop is
C1 and the farmer sets aside a proportion of this as seed for the next year.
Assume perfect germination and no loss of seed; the crop at the end of the
second year C2 will be proportional to C1, say

C2 = µC1.

If the farmer carries out the same process at the end of each year, C3 = µC2

and generally Cn+1 = µCn. Obviously, Cn+1 = µnC1, which shows that the
crop increases steadily from year to year when µ > 1. In contrast, when µ < 1,
the crop decays towards zero. There is a bifurcation as µ passes through 1
from a stable (but undesirable) state to an unstable state.

Of course, the assumption that µ does not vary from year to year is not
likely to be valid in a practical situation. This might be overcome by using an
average value but there is a more serious objection to the model. It takes no
account of losses due to bad weather or parasites. Moreover, there could be
a limit to the size of crop which the nutrients in the soil could support. The
simplest way of allowing for such effects is to change the relation between Cn

and Cn+1 to

Cn+1 = µCn − νC2
n (13.3.1)
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with µ and ν positive constants. Making ν positive ensures that the extra
term in (13.3.1) represents losses. Furthermore, because it contains C2

n, it will
inhibit the growth if the crop becomes too large.

Now, make the substitution

Cn = µxn/ν

in (13.3.1). This gives
xn+1 = µxn(1 − xn). (13.3.2)

Since negative crops are not permitted xn must be restricted to lie between
0 and 1. Note that µ cannot exceed 4. If µ is greater than 4 it is possible to
generate values of xn outside the permitted range. For example, xn = 1/2
would make xn+1 too large.

Equation (13.3.2) constitutes an iteration scheme or map in which each
value is determined from its predecessor once x1 has been fixed. Equation
(13.3.2) in particular is called the logistic map. If xn tends to a limit x0 as
n→ ∞ then x0 satisfies

x0 = µx0(1 − x0). (13.3.3)

The If is in bold because we do not yet know whether or not xn tends to a
limit.

The solutions of (13.3.3) are known as the fixed points of the iteration
scheme. They are

x0 = 0, x0 = 1 − 1/µ. (13.3.4)

Since x0 is forced to lie between 0 and 1 the second possibility does not exist
unless µ > 1. Consequently, there are two fixed points when µ > 1 but only
one when µ < 1. Note that, when xn → 1 − 1/µ, Cn → (µ− 1)/ν.

Observe that, if x1 = 1, x2 = 0 and all subsequent xn are zero. So the
iteration goes straight to the fixed point x0 = 0 whenever x1 = 1.

To find out what happens near a fixed point, there is a simple test for the
stability of fixed points. In general, iteration schemes such as (13.3.2) can be
written in the form

xn+1 = f(xn), (13.3.5)

for some function f . We now take equation (13.3.5) and carry out a Taylor
expansion of f(xn) about the fixed point x0:

xn+1 = f(x0) + f ′(x0)(xn − x0) +O
(

(xn − x0)
2
)

,

where f ′(x0) is the derivative of f(x) evaluated at x = x0. Noting that, by
definition, a fixed point x0 must satisfy x0 = f(x0), and writing xn = x0 + ǫn,
we get

ǫn+1 = f ′(x0)ǫn +O(ǫ2n). (13.3.6)

Here, f ′(x0) is a constant and ǫn is the deviation of xn from the fixed point
x0. Hence if

|f ′(x0| < 1, (13.3.7)
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TABLE 13.3.1:
Iteration for µ = 3.1.

n xn

1 0.250
2 0.581
3 0.755
4 0.574
5 0.758
6 0.569
7 0.760
8 0.565
9 0.762

10 0.562
11 0.763
12 0.561
13 0.764
14 0.560
15 0.764
16 0.559
17 0.764
18 0.559
19 0.764
20 0.558

then, provided ǫn is small so that the terms of order ǫ2n and higher can be ne-
glected, (13.3.6) implies that |ǫn+1| < |ǫn|, so the deviation decreases steadily
and tends to zero as n → ∞. In this case, the fixed point can be regarded
as stable. In contrast, if |f ′(x0| > 1, then the deviation increases with each
iteration, and the fixed point is unstable.

Now let us apply this test to the iteration scheme (13.3.2). Here the function
f is given by f(x) = µx(1 − x), and differentiating gives f ′(x) = µ(1 − 2x).
We now simply substitute in the fixed points x0 found in (13.3.4) to get

f ′(0) = µ, f ′(1 − 1/µ) = 2 − µ.

Hence the stability of the fixed points is determined by the value of the pa-
rameter µ. If µ < 1, then x0 = 0 is stable and x0 = 1 − 1/µ is unstable. If
1 < µ < 3 then x0 = 0 is unstable and x0 = 1−1/µ is stable. Finally, if µ > 3,
then both fixed points are unstable. There are therefore bifurcations at µ = 1
and µ = 3.

That leaves us with the puzzle of what happens when µ > 3 and neither
fixed point is stable. The possibility of xn going off to infinity is prevented by
xn being confined to (0, 1), so something new must be taking place. A clue is
offered by a numerical calculation. Table 13.3.1 shows the first 20 values of
xn when x1 = 0.250 and µ = 3.1. It is clear that alternative entries are pretty
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much the same from x10 onwards. In other words, the iteration is oscillating
between two values without settling down to one or the other. The bifurcation
at µ = 3 is said to be a period-doubling bifurcation, because the period
of the iteration has doubled, in this case from period 1 (i.e., a fixed point) to
period 2.

What it means, in terms of our original model, is that the crop is high one
year, low the next, and so on.

Let us see if analysis supports the numerical evidence. Applying (13.3.5) to
xn+2 gives

xn+2 = f(xn+1) = f(f(xn)). (13.3.8)

If the system arrives at a state, as suggested by Table 13.3.1, where the same
value x0 repeats every second iteration, then (13.3.8) implies that

x0 = f(f(x0)). (13.3.9)

After insertion of f from (13.3.2), (13.3.9) can be rearranged as

x0

(

1 − x0 −
1

µ

){

(1 − x0)
2 +

(

1

µ
− 1

)

(1 − x0) +
1

µ2

}

= 0. (13.3.10)

That two of the solutions of (13.3.10) are the fixed points found already in
(13.3.4) is not surprising because, for them, the value is repeated every itera-
tion (rather than merely every second iteration), so xn+1 = xn, and certainly
xn+2 = xn. The remaining two solutions of (13.3.10) are given by

2(1 − x0) = 1 − 1

µ
±
{(

1 − 3

µ

)(

1 +
1

µ

)}1/2

. (13.3.11)

For µ = 3.1, the two values of x0 in (13.3.11) are 0.5580 and 0.7646 to four
significant figures. These values agree well with those at the end of Table
13.3.1.

To check whether the period-2 solution is stable (i.e., whether the iteration
will converge to this pair of alternating values), a linear analysis of (13.3.8) is
performed, analogous to the linear analysis of (13.3.5) to test for stability of a
fixed point. In fact, we note from (13.3.9) that the period-2 solution is nothing
more than a fixed point of the function g, defined by g(x) = f(f(x)). Hence,
we can simply apply the fixed point stability test (13.3.7) to g by calculating
g′(x0). By chain rule,

g′(x0) = f ′(x0)f
′(f(x0)). (13.3.12)

Note that, since the two roots in (13.3.11) form a period-2 cycle, one root
gives x0 and the other root gives f(x0) (this is easily checked). Substituting
these values for x0 and f(x0) into (13.3.12) gives

g′(x0) = 4 + 2µ− µ2.
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TABLE 13.3.2: Bifurcation
points for period-doubling.

µ1 3 period-2
µ2 3.4495 period-4
µ3 3.5441 period-8
µ4 3.5644 period-16
µ5 3.5687 period-32
...

...
...

µ∞ 3.569946

The right-hand side is equal to 1 when µ = 3 and decreases as µ increases
until it reaches −1 at µ = 1 +

√
6 = 3.4495. Hence the fixed point of g, which

corresponds to the period-2 solution of f , is stable for 3 < µ < 1+
√

6 but not
elsewhere. Accordingly, period-2 behaviour occurs in the range 3 < µ < 1+

√
6

but something else must happen for µ > 1 +
√

6. There is another bifurcation
to be considered.

At the bifurcation both points of the period-2 solution split into two. Now,
after enough iterations have been carried out, the iteration oscillates between
four values. For example, when µ = 3.5, the four values are (0.8750, 0.3828,
0.8269, 0.5009); in other words there is period-4 behaviour. Hence the bifur-
cation at µ = 1 +

√
6 is another period-doubling bifurcation, this time with

the period doubling from 2 to 4.

However, period-4 behaviour lasts only up to µ = 3.5441. Then there is
another period-doubling bifurcation resulting in period-8 behaviour. The pro-
cess continues with the intervals between bifurcation points getting shorter
and shorter (see Table 13.3.2).

Finally, the process comes to a halt when µ reaches the value µ∞ ≈ 3.5699.
An increase of µ above µ∞ produces an entirely new regime which is best
understood from the bifurcation diagram as µ goes from 3, where period-
doubling commences, to 4, its maximum permitted value (Figure 13.3.1). It
can be seen that the iteration seemingly wanders all over the place without
converging. Here we have an example of chaos.

It should be noted that the bifurcation diagram in Figure 13.3.1 is slightly
different from those in earlier sections in that all stable fixed and periodic
points are shown (rather than just fixed points), but no unstable points ap-
pear. The reason is that this diagram has been generated by a computer
starting from some arbitrary point and finding the points of convergence (see
Section 14.4 for examples of how to do this in MATLAB). Unless the initial
point happens to coincide with an unstable fixed point its presence will never
be detected and it will be absent from the bifurcation diagram.

While this simple model of crops shows extremely complex behaviour it is
not likely that real crops exhibit the same phenomena because many other
factors than those considered may be relevant. Nevertheless, the important
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FIGURE 13.3.1: Bifurcation diagram for µ between 3 and 4.

point is that a simple mathematical relation, involving only a quadratic, can
display a rich set of features as the control parameter µ varies. For some values
of µ the chaotic behaviour would entail wild variations in the crop from year
to year, which might be interpreted as due to the vagaries of the weather or
some other factor when they are, in fact, part and parcel of the model.

One of the difficulties in verifying experimentally whether a system con-
forms to the model is the closeness of successive bifurcation points. Their
difference is so small that it could be hidden easily in experimental error.
Notwithstanding, a set of experiments on the flour beetle indicates that pop-
ulations can exhibit period-doubling and chaotic behaviour with variation of
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a control parameter. In this case, the control parameter is the rate of canni-
balism of pupae by adults.

The methods following (13.3.5) can be used to discuss other iteration schemes
such as

xn+1 = µ sin(πxn),

which also displays period-doubling and chaotic behaviour. For these and more
complicated iterations, such as that for the flour beetle, it will not be possible
to progress very far without extensive computation (see Section 14.4).

NOTE: The logistic growth equation

dp

dt
= N0p− ap2 (13.3.13)

was discussed in Section 1.3. Its solution tends to N0/a as t → ∞ so long
as p is not initially zero. In solving a differential equation numerically the
derivative is often approximated so that an estimate of the solution is obtained
at intervals of time, say t = 0, τ , 2τ , . . .. For example, the fact that

dp

dt
= lim

h→0
{p(t+ h) − p(t)}/h

suggests the approximation

dp

dt
= {p((n+ 1)τ) − p(nτ)}/τ.

Writing p(nr) = pn, we have the approximation

pn+1 = (N0τ + 1)pn − aτp2
n

for (13.3.13). This has the same form as (13.3.1) with µ = N0τ + 1. Since
Cn → (µ − 1)/ν as n → ∞ when 1 < µ < 3 it follows that pn → N0/a
provided that 0 < N0τ < 2. Once N0τ exceeds 2 the iteration does not
tend to the solution of (13.3.13) but can exhibit period doubling and chaos,
an illustration of the importance of choosing the time interval correctly in
the numerical approximation. Of course, pn tending to the right limit when
0 < N0τ < 2 does not mean that intermediate values of the iteration are good
approximations to the solution of (13.3.13) without further investigation.

13.4 Chaos

The chaotic behaviour in Figure 13.3.1 looks as though it is the result of
a random process. Nevertheless, the wild wandering is entirely deterministic;
each point is determined directly from its predecessor via the iteration scheme.
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TABLE 13.4.1: Iteration for µ = 3.99.

n xn xn xn

1 0.5000 0.5005 0.5010
2 0.9975 0.9975 0.9975
3 0.0100 0.0100 0.0100
4 0.0393 0.0393 0.0394
5 0.1507 0.1507 0.1509
6 0.5106 0.5107 0.5112
7 0.9971 0.9970 0.9970
8 0.0117 0.0118 0.0119
9 0.0462 0.0464 0.0471

10 0.1759 0.1767 0.1790
11 0.5784 0.5804 0.5864
12 0.9730 0.9717 0.9677
13 0.1050 0.1097 0.1246
14 0.3750 0.3900 0.4352
15 0.9351 0.9488 0.9807
16 0.2421 0.1937 0.0753
17 0.7321 0.6232 0.2780
18 0.7825 0.9369 0.8008
19 0.6791 0.2358 0.6364
20 0.8694 0.7189 0.9232

No considerations of probability are involved. One property that is not evident
from the figure can be seen in Table 13.4.1, which shows the iteration for three
different starting values when µ = 3.99.

The way that successive values swing about is obvious but there is another
feature. The initial values are close together and the first few iterates tally.
But soon the iterates in the three columns begin to deviate and after about 16
iterations they bear little or no resemblance to one another. A small change
in the initial value can produce a very large difference in the iterates. This
property, often referred to as sensitivity to initial conditions, is one of the
hallmarks of chaos.

It must not be supposed that the onset of chaos precludes the possibility of
fixed points and bifurcation. An expanded version of the bifurcation diagram
with µ lying between 3.82 and 3.86 is displayed in Figure 13.4.1. For example,
when µ = 3.835, there is a stable period-3 solution, consisting of the three
points (0.95863, 0.15207, 0.49451). Not only is there a gap between two regions
of chaos with period-3 behaviour, but there is also bifurcation with period-
doubling (with the period following the sequence 3, 6, 12, . . .). Similar ‘periodic
windows’ in an otherwise chaotic picture have been found to occur with other
iteration schemes.

Another important feature concerns the values of µ at bifurcations before
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FIGURE 13.4.1: Bifurcation diagram for µ between 3.82 and 3.86.

the onset of chaos (see Table 13.3.2). Define

δn =
µn+1 − µn

µn+2 − µn+1
. (13.4.1)

A numerical investigation reveals that, as n → ∞, δn → δ = 4.6692016; δ is
known as Feigenbaum’s number.

Feigenbaum’s number can be useful in two ways. If µ1, µ2 and µ3 are known,
(13.4.1) suggests that

µ4 = µ3 + (µ3 − µ2)/δ. (13.4.2)



Bifurcation and Chaos 345

There is, naturally, no guarantee that µ4 exists for an arbitrary iteration
scheme but, if it does, (13.4.2) offers a clue as to where to search for the
bifurcation point.

More generally, if δn can be replaced by δ in (13.4.1) for n ≥ N ,

µn+2 − µn+1(1 + 1/δ) + µn/δ = 0. (13.4.3)

Try µn = an and then

a2 − a(1 + 1/δ) + 1/δ = 0,

whence a = 1 or 1/δ. Hence the general solution of (13.4.3) is

µn = A+B/δn.

The constants A and B can be fixed by putting n = N and n = N + 1. The
result is that

µn = µN+1 +
(µN+1 − µN )(1 − δN+1−n)

δ − 1
(13.4.4)

for n ≥ N .
As a test of (13.4.4) take N = 1 with µ1 and µ2 as in Table 13.3.2. Then

(13.4.4) predicts that µ3 will be 3.5458, µ4 = 3.5664 and µ5 = 3.5708. While
these differ a little from the values in Table 13.3.2 they are sufficiently close
to be a good guide in a search for bifurcation points where period-doubling
occurs.

Since δ > 1 the prediction of (13.4.4) for the onset of chaos is

µ∞ = µN+1 +
µN+1 − µN

δ − 1
. (13.4.5)

When N = 1, (13.4.5) predicts µ∞ = 3.5720 which is surprisingly close to
the correct value.

It is remarkable that such good predictions are obtained fromN = 1 and one
would expect to do much better with larger values of N . For other iteration
schemes exhibiting period-doubling leading to chaos, one would hope that
(13.4.4) and (13.4.5) would prove equally valuable. Unfortunately, it is true
only for functions with a single maximum near where a good approximation
is a quadratic like (13.3.2). For functions of the type

f(x) = 1 − a|x|m (13.4.6)

there is period-doubling and δ exists for each m but the value of δ changes
with m. Some values are

m = 2 4 6 8

δ = 5.12 9.32 13.37 17.40
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where δ has been rounded to two decimal places. The more general iteration

xn+1 = f(xn, yn),

yn+1 = g(xn, yn)

has been found to possess bifurcations with period-doubling when

∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
= 1

but now δ = 0.72. Period-doubling between chaotic regions as in Figure 13.4.1
is governed by yet other values of δ.

To sum up, the basic features that have been observed in the iteration are:

(i) There are successive bifurcations at which period-doubling occurs, the
values of µ becoming ever more compressed.

(ii) Chaotic regions appear for µ > µ∞.

(iii) In a chaotic region the iteration is highly sensitive to changes in initial
value.

(iv) Period-3, period-5, . . . and multiples thereof can appear between chaotic
regions.

(v) Positions of bifurcation points can be estimated if an appropriate Feigen-
baum number δ is available.

As already explained, chaos is not a random process. What distinguishes a
chaotic solution to a deterministic equation is that it is highly sensitive to the
initial conditions and wanders all over the place in a manner that seems to be
random. Solutions that alter sharply after small changes in initial conditions
but do not exhibit random behaviour or simply tend to infinity are not classed
as chaotic.

13.5 Stability of limit cycles

In the discussion of the Hopf bifurcation in Section 13.2 it was shown that
the limit cycle was stable. There is another method of demonstrating this
property; it uses the Poincaré section of a limit cycle.

The Poincaré section is formed by the following procedure. Draw a line
segment in the phase plane that intersects the limit cycle. Any convenient
line can be chosen so long as it intersects the limit cycle. Let P0 be a point of
intersection with the limit cycle. Start a trajectory from a point near to, but
not on, the limit cycle. As we follow the trajectory it will cross the line of the
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FIGURE 13.5.1: The Poincaré section.

Poincaré section at a point, say P1 (Figure 13.5.1). The next time around, the
crossing will be at P2, say, and the next one at P3. If the sequence of points
P1, P2, P3, . . . approaches P0 as in Figure 13.5.1 the trajectory is tending to
the limit cycle. If the sequence leaves P0 as for Q1, Q2, Q3, . . . in Figure 13.5.1
the trajectory is going away from the limit cycle. Thus, a stable limit cycle can
be identified by the sequences on both sides of P0 tending to P0. A sequence
always stays on one side of P0 because distinct trajectories in the phase plane
cannot intersect in finite time. Two trajectories are said to be distinct when
the starting point of one does not lie on the other.

Example 13.5.1

The discussion of the Hopf bifurcation in Section 13.2 was based on the polar
coordinates r and φ. Explicit formulae for them were obtained, namely

r2 =
µr20

r20 + (µ− r20)e
−2µt

,

φ = φ0 + t

(see (13.2.5) and (13.2.6)) for a trajectory starting at (r0, φ0).

Take the line φ = φ0 for the Poincaré section. Then r will give the distance
of the point of intersection from the origin. The first return of the trajectory
to the Poincaré line occurs when t = 2π and so

r21 =
µr20

r20 + (µ− r20)e
−4πµ

.

At the nth return t = 2nπ and

r2n =
µr20

r20 + (µ− r20)e
−4πµn

.

We deduce that

r2n+1 =
µr2ne

4πµ

µ+ r2n(e4πµ − 1)
, (13.5.1)

which is an iteration scheme to determine rn from its initial value. It is easy
to check that, when µ > 0, the iteration possesses fixed points at r = 0 and
r =

√
µ, the second corresponding to the limit cycle, in harmony with what

is known already.
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Equation(13.5.1) can be rewritten as

r2n+1 = µ+
µ(r2n − µ)

µ+ r2n(e4πµ − 1)
(13.5.2)

= r2n +
(µ− r2n)r2n(e4πµ − 1)

µ+ r2n(e4πµ − 1)
. (13.5.3)

These equations are helpful in noting certain features. From (13.5.2) can be
inferred r2n+1 ≷ µ according as r2n ≷ µ. Thus the sequence of points on the
Poincaré section does stay on one side of P0(r

2 =µ) in conformity with the
general theory. Also (13.5.3) shows that r2n+1 ≷ r2n according as µ ≷ r2n.
Hence the sequence is steadily increasing (or decreasing) and is bounded above
(or below). In either case, the sequence converges and the only possibility is
convergence to P0. Consequently, the limit cycle is stable, in agreement with
the conclusion of Section 13.2.

The Poincaré section has two characteristics. Firstly, it transforms a two-
dimensional problem into one on a line, thereby saving a dimension. Secondly,
instead of working through differential equations with continuous variations in
time, it employs values at discrete time intervals, each interval being roughly
the time to go round the limit cycle once.

Since a trajectory that starts at Pn is completely specified, so is Pn+1, i.e.,
Pn+1 can be inferred from Pn. To put this on a mathematical footing select
any convenient reference point Pr on the Poincaré line and identify a point
on the line by its distance s from Pr, with sign depending on which side of Pr

it lies. If Pn is at sn the relation between Pn+1 and Pn can be expressed as

sn+1 = f(sn). (13.5.4)

The point P0 is a fixed point of (13.5.4) because the trajectory that starts
at P0 is a limit cycle and, therefore, must cross the Poincaré line exactly at
P0 on every circuit. Accordingly, if P0 is designated by s0,

s0 = f(s0). (13.5.5)

From (13.5.4) and (13.5.5)

sn+1 − s0 = f(sn) − f(s0).

For sn close to s0, a Taylor expansion to the first order gives

sn+1 − s0 = (sn − s0)

[

df(s)

ds

]

s=s0

.

Writing

M =

[

df(s)

ds

]

s=s0

(13.5.6)
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we have

sn+1 − s0 = Mn(s1 − s0).

It follows that, if |M | < 1, sn+1 → s0, i.e., the points on the Poincaré line
tend to P0 and the limit cycle is stable. In contrast, when |M | > 1, sn+1

separates further and further from s0 and the limit cycle is unstable. The case
|M | = 1 needs further consideration. Actually, M cannot be negative. If M
were negative sn+1 and sn would be on opposite sides of P0. For that to occur
the trajectory would have to cross the limit cycle and that is not allowed.

For the scheme of (13.5.3) you can verify that M = e−4πµ < 1, another
confirmation that the limit cycle involved is stable.

The Poincaré section offers another method of determining the character of
a limit cycle by using an iteration scheme. The main difficulty in its application
is finding the function f in (13.5.4). This is equivalent to solving the original
set of differential equations, a task which may be extremely difficult or even
impossible in practice. Without explicit knowledge of f or some adequate
approximation to it the applicability of the Poincaré section is restricted.

We have seen in Section 13.3 that iteration schemes can display chaotic be-
haviour. That raises the question: Could an iteration scheme for the Poincaré
line generate chaos and, if so, would the associated trajectory in the phase
plane be chaotic? The question cannot be answered without a decision on
what constitutes a chaotic trajectory, which is a solution of differential equa-
tions. Confining our attention to systems in which the trajectories stay in
a bounded region (so that there is no possibility of the solution becoming
infinite) we expect the conditions for chaos to be

(a) distinct trajectories do not intersect,

(b) the trajectories are bounded,

(c) trajectories, which are initially close, diverge widely and rapidly.

Not all of these conditions can be met by trajectories in the phase plane,
showing that chaos cannot arise for the phase plane or Poincaré line.

The situation is quite different in phase space with three or more dimensions.
Here the trajectories can intertwine without intersection and stay in a bounded
region so that chaos is possible. A chaotic trajectory cannot return to its initial
point; if it did, it would correspond to a periodic solution of the differential
system. It might, however, return to near the initial point but then, on account
of (c), its subsequent path would bear little or no resemblance to the path
from the initial point. That chaos can occur in phase space is illustrated in
the next section.
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13.6 The Poincaré plane

Rather than attempt a treatment of general phase space we shall consider
only three dimensions. Then a first order system would take the form

ẋ = f(x, y, z),

ẏ = g(x, y, z),

ż = h(x, y, z),

where f , g and h do not involve the time derivatives of x, y and z or the time
itself. Control parameters may be present also. Such a system is said to be
autonomous.

When the functions involve the time as well, as in forced oscillations, the sys-
tem is called nonautonomous. There is a trick for turning a nonautonomous
system into the autonomous type in one higher dimension. Suppose

ẋ = f(x, y, t),

ẏ = g(x, y, t). (13.6.1)

Put z = t so that ż = 1. The system becomes

ẋ = f(x, y, z),

ẏ = g(x, y, z),

ż = 1, (13.6.2)

which is autonomous but in three dimensions instead of the original two.
This device enables the treatment of nonautonomous systems on the same
footing as autonomous systems. The cost is the necessity to work with an
extra dimension in the phase space. Furthermore, the new system has no
fixed points because the right-hand side of the equation for ż never vanishes.
However, that difficulty can be overcome by generalising the Poincaré line of
two dimensions to higher dimensions.

The simplest generalisation is when the functions in (13.6.1) are periodic,
i.e., there is a constant T such that

f(x, y, t+ T ) = f(x, y, t), g(x, y, t+ T ) = g(x, y, t)

for all x, y and t. If, now, a trajectory of (13.6.2) is drawn in the three-
dimensional space from t= 0 it will intersect the planes t = T , 2T , . . .. Denote
(x, y) by x and let the points of intersection starting from x0 be x1, x2, . . .
(see Figure 13.6.1). Plot the points x0, x1, x2, . . . on the (x, y)-plane (Figure
13.6.2). The resulting diagram is known as the Poincaré plane. To put it
another way, the Poincaré plane is constructed by plotting the points x(0),
x(T ), x(2T ), . . . of the trajectory on the (x, y)-plane.
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FIGURE 13.6.1: A three-dimensional trajectory.

Of course, construction of the Poincaré plane is equivalent to solving the
system of differential equations. So it does not simplify the determination of
a solution. Fortunately, there are cases where a reliable approximation can be
devised as will be seen in the next section. It is evident from Figures 13.6.1
and 13.6.2 that a complete trajectory will produce a scatter of points on the
Poincaré plane. As a result it can be awkward to understand what is going
on. Therefore, it is generally wise to delay plotting until any transients have
died away so that the long-term behaviour is more easily visible. Once the
transients are unimportant the picture on the Poincaré plane will consist of
a single point if the system tends to periodic motion with period T . On the
other hand, if the period is 2T , the picture will show two points and, generally,
for period nT , there will be n points. When T corresponds to the period of a
periodic forcing term, two or more points on the Poincaré plane indicate that,
in the long-term, the system will oscillate in a subharmonic of the periodic
force.

On a trajectory abbreviate x(nT ) and y(nT ) to xn and yn, respectively.
Since the point (xn, yn) determines (xn+1, yn+1) there is a relation

xn+1 = F (xn, yn),

yn+1 = G(xn, yn), (13.6.3)

i.e., the points on the Poincaré plane satisfy an iteration scheme. The long-
term behaviour is dictated by the fixed points of this scheme; they are the
solutions of

x0 = F (x0, y0),

y0 = G(x0, y0). (13.6.4)
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FIGURE 13.6.2: The Poincaré plane.

Every solution of (13.6.4) corresponds to a limit cycle in the three-dimensional
phase space.

If (xn, yn) is close to (x0, y0) the subtraction of (13.6.4) from (13.6.3) fol-
lowed by a Taylor expansion leads to

xn+1 − x0 = A(xn − x0) +B(yn − y0),

yn+1 − y0 = C(xn − x0) +D(yn − y0) (13.6.5)

where

A =
∂F (x, y)

∂x
, B =

∂

∂y
F (x, y), C =

∂

∂x
G(x, y), D =

∂

∂y
G(x, y),

(13.6.6)
all the derivatives being evaluated at (x0, y0).

To solve (13.6.5) try both xn − x0 and yn − y0 being proportional to λn.
Then λ must satisfy

λ2 − λ(A+D) +AD −BC = 0. (13.6.7)

If the solutions of (13.6.7) are λ1, λ2 there are constants A1, A2, B1 and B2

such that

xn − x0 = A1λ
n
1 +A2λ

n
2 , yn − y0 = B1λ

n
1 +B2λ

n
2
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unless λ1 = λ2 when λn
2 is replaced by nλn

1 . In any case, for (xn, yn) to
tend to (x0, y0), whatever the initial conditions it is necessary that |λ1| < 1
and |λ2| < 1. If |λ1| > 1 and |λ2| > 1, (xn, yn) will tend to separate from
(x0, y0). When |λ1| < 1 and |λ2| > 1, (xn, yn) will approach or deviate from
(x0, y0) according as A2 or B2 is or is not zero; this will depend on the initial
conditions. Limit cycles that are approached from some nearby points and
separated from others are often known as saddle limit cycles. In summary we
have

|λ1| < 1 and |λ2| < 1 stable limit cycle,

|λ1| > 1 and |λ2| > 1 unstable limit cycle,

|λ1| < 1 and |λ2| > 1 saddle limit cycle.

Obviously, if varying a control parameter causes |λ1| or |λ2| to pass through
unity, a bifurcation occurs.

To illustrate these points we consider the motion of a particle that is given a
constant velocity for an interval of time, the constant depending upon the po-
sition of the particle at the beginning of the interval. The resulting behaviour
is amazingly complex.

Example 13.6.1

For every positive integer n, (x, y) satisfies

in n < t < n+ 1/3, ẋ = 0, ẏ = 3(1 − ax2),
in n+ 1/3 < t < n+ 2/3, ẋ = 3(b− 1)x(n+ 1/3), ẏ = 0,
in n+ 2/3 < t < n+ 1, ẋ = 3y(n+ 2/3)− 3x(n+ 2/3), ẏ = −ẋ.

The quantities a and b are nonnegative constants. Integration of the differen-
tial equations gives

x(n+ 1/3) = x(n), y(n+ 1/3) = y(n) + 1 − ax(n)2,
x(n+ 2/3) = bx(n+ 1/3), y(n+ 2/3) = y(n+ 1/3),
x(n+ 1) = y(n+ 2/3), y(n+ 1) = x(n+ 2/3).

Combining these equations and writing xn for x(n) we have the iteration
scheme

xn+1 = yn + 1 − ax2
n,

yn+1 = bxn. (13.6.8)

In the discussion of the iteration it will be assumed that 0 < b < 1 and
a ≥ 0. Also b will be kept fixed while a is regarded as the control parameter.

The values of x at fixed points satisfy

ax2 + (1 − b)x− 1 = 0
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with solutions

2ax
(1)
0 = b− 1 + {4a+ (1 − b)2}1/2, (13.6.9)

2ax
(2)
0 = b − 1 − {4a+ (1 − b)2}1/2. (13.6.10)

At x
(1)
0 , (13.6.6) gives

A = −2ax
(1)
0 , B = 1, C = b, D = 0

so that (13.6.7) becomes

λ2 + 2ax
(1)
0 λ− b = 0. (13.6.11)

Evidently λ1 and λ2 have opposite signs; take λ1 > 0 and λ2 < 0. When

a = 0, ax
(1)
0 = 0 so that λ1 =

√
b, λ2 = −

√
b. Since b < 1 there is stability at

a = 0. In

λ1 − b/λ1 = −2ax
(1)
0 (13.6.12)

the right-hand side decreases as a increases. Therefore λ1 decreases and hence
so does λ2. Consequently, stability continues until λ2 = −1 and λ1 = b. This
occurs, according to (13.6.12) and (13.6.9), when

4a = 3(1 − b)2. (13.6.13)

Thus (13.6.13) specifies when bifurcation will take place.

For the fixed point x
(2)
0 replace x

(1)
0 by x

(2)
0 in (13.6.11) and (13.6.12). At

a = 0, 2ax
(2)
0 = 2(b − 1) and then the left-hand side of (13.6.11) is negative

when λ = 1 so that λ1 > 1. Since −ax(2)
0 increases with a so does λ1 on

account of (13.6.12). Hence x
(2)
0 is never stable; since |λ2| < b it corresponds

to a saddle limit cycle.
Hence for a less than the value in (13.6.13), the iteration has two fixed

points, of which x
(1)
0 is stable and x

(2)
0 is not. For a > 3(1 − b)2/4, period-

doubling occurs. A bifurcation diagram for x when b = 0.3 is shown in Figure
13.6.3 (fixed points that are not stable do not appear on such diagrams as
explained in Section 13.3). Here a goes from 0 to 1.04 and it is clear that
there are further bifurcations with accompanying period-doubling. Moreover,
the distance between successive bifurcations grows steadily shorter just as in
Section 13.3.

As a increases beyond 1.04 matters become much more complicated. Fig-
ure 13.6.4 shows the continuation of the bifurcation diagram as a goes from
1.04 to 1.06. More period-doubling takes place and regions of chaotic be-
haviour make their appearance. Beyond 1.06 the situation is even more com-
plex but discussion of the details would take us too far afield.
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FIGURE 13.6.3: Bifurcation diagram for x when b = 0.3 and a ranges
from 0 to 1.04.

The example has demonstrated that period-doubling and chaos can be
present when three variables are involved. It shows also that even a parti-
cle moving at constant velocity at intervals can exhibit behaviour that is far
from simple. In this case we were able to find the exact formula connecting
points on the Poincaré plane but in many circumstances this is not feasible.
So we turn now to a method of approximation that allows progress when
conditions are suitable.

13.7 Averaging

The method of averaging is designed to relate a nonautonomous system
to an autonomous one by means of an approximation. It is appropriate for
problems where a small perturbation is made to a system that can be solved
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FIGURE 13.6.4: Bifurcation diagram for x when b = 0.3 and a ranges
from 1.04 to 1.06.

exactly. Although the perturbation may be small that does not mean that the
solutions of the perturbed system stay close to those of the unperturbed. This
anomaly is seen in the problem:

ẍ+ 2ǫẋ+ x = 0, (13.7.1)

subject to the initial conditions

x(0) = a, ẋ(0) = 0. (13.7.2)
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The exact solution of this problem is

x(t) = ae−ǫt{cos(
√

1 − ǫ2t) +
ǫ√

1 − ǫ2
sin(

√

1 − ǫ2t)}, (13.7.3)

corresponding to an oscillation with decaying amplitude. Now look for a so-
lution to (13.7.1) in the form of a regular perturbation expansion of the form

x(t, ǫ) = x0(t) + ǫx1(t) + ǫ2x2(t) + · · · , (13.7.4)

where the unknown functions x0(t), x1(t), x2(t), · · · are to be determined
from (13.7.1) and the initial conditions (13.7.2). Substituting (13.7.4) into
(13.7.1) and equating powers of ǫ to zero, it is found that

ẍ0 + x0 = 0,

ẍ1 + 2ẋ0 + x1 = 0,

ẍ2 + 2ẋ1 + x2 = 0. (13.7.5)

The initial conditions (13.7.2) require that

x0(0) = a, ẋ0(0) = 0,

x1(0) = 0, ẋ1(0) = 0,

x2(0) = 0, ẋ2(0) = 0. (13.7.6)

Consequently

x0(t) = a cos t,

x1(t) = a sin t− at cos t,

and the expansion (13.7.4), to first order in ǫ, is

x(t, ǫ) = a cos t+ ǫa(sin t− t cos t) + O(ǫ2). (13.7.7)

This expansion corresponds to an oscillation with increasing amplitude due
to the presence of the secular term t cos t. In fact (13.7.7) is the beginning of
a convergent series expansion of the exact solution provided ǫt≪ 1. However
in practice one is interested in the behaviour of the solution for fixed small
ǫ and not fixed t. Therefore, just taking the unperturbed system as the first
approximation may lead quickly to erroneous results; an approximation with
a behaviour similar to that of the perturbed system is needed.

The type of system to be considered is, in vector form,

ẋ = ǫf(x, t, ǫ) (13.7.8)

where the scalar ǫ is very small compared with unity and ǫ ≥ 0. As regards f
we require it to be periodic in t so that

f(x, t+ T, ǫ) = f(x, t, ǫ) (13.7.9)
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for all t under consideration. Moreover, f has to possess at least two contin-
uous derivatives in its variables and to be bounded for bounded values of its
arguments.

The related autonomous system is obtained by averaging f over a period.
To be specific define w to be the solution of

ẇ =
ǫ

T

∫ T

0

f(w, t, 0)dt. (13.7.10)

In the integration on the right-hand side of (13.7.10) w is treated as a constant.
Under the above assumptions it is possible to prove the following:

(a) If x(t) is a solution of (13.7.8) such that x(0) =x0 and w(t) is a solution
of (13.7.10) such that w(0)=w0, then, if |x0−w0| = O(ǫ), |x(t)−w(t)| =
O(ǫ) for values of t up to O(1/ǫ).

(b) If w ≡ (u, v) and (13.7.10) has a fixed point wp, which corresponds
to a stable, unstable, or saddle limit cycle, then the Poincaré plane of
(13.7.8) has a fixed point at wp +O(ǫ) with the same stability.

Property (a) shows that solutions of (13.7.8) and (13.7.10), which start close
together, stay close for a long time since ǫ is small. Thus (13.7.10) does provide
a good approximation to the trajectories of (13.7.8). In addition, property (b)
indicates that a good idea of the limit cycles of (13.7.8) can be obtained from
(13.7.10).

Example 13.7.1

Find an approximate solution of

ẋ = −ǫx sin2 t (13.7.11)

by the method of averaging.
Actually, the exact solution of (13.7.11) can be found by separation of vari-

ables. It gives, if x(0) = x0,

x(t) = x0 exp
{

−ǫ
(

1
2 t− 1

4 sin 2t
)}

. (13.7.12)

The averaged equation corresponding to (13.7.11) is, from (13.7.10),

ẇ = −ǫw 1

2π

∫ 2π

0

sin2 t dt = −1

2
ǫw (13.7.13)

since w is regarded as a constant in the integration. The solution of (13.7.13)
such that w = w0 at t = 0 is

w(t) = w0 exp
(

− 1
2ǫt
)

. (13.7.14)

The difference between (13.7.11) and (13.7.14) is

ẋ(t) − w(t) = exp
(

− 1
2 ǫt
)[

x0 − w0 + x0

{

exp
(

1
4ǫ sin 2t

)

− 1
}]

. (13.7.15)
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This shows immediately that, if x0 − w0 = O(ǫ), then x(t) − w(t) = O(ǫ)
for t ≥ 0. Thus, property (a) is confirmed and for a larger range of t than
specified. However, if (13.7.14) were replaced by

ẋ = ǫx sin2 t,

the only modification to (13.7.15) would be a change in the sign of ǫ. Then,
as t increased beyond 1/ǫ, the first factor of the right-hand side of (13.7.15)
could become large enough to offset the O(ǫ) of the second factor. Hence the
upper limit on t in (a) cannot be removed.

The only fixed point of (13.7.13) is w = 0. According to property (b) there
is a nearby fixed point associated with (13.7.11) and obviously it is x = 0, as
may be checked from (13.7.12).

Example 13.7.2

Consider the perturbed oscillator

ẍ+ x = E cosωt−Dẋ−Bx3

where E, D and B are to be regarded as small, positive constants.
Converting the differential equation into a first order system by the substi-

tution y = ẋ we have

ẋ = y, (13.7.16)

ẏ = −x−Dy −Bx3 + E cosωt. (13.7.17)

The system does not have the structure of (13.7.8) so that the method of
averaging cannot be applied directly. To transform it to the requisite form
introduce polar coordinates. Write

x(t) = r(t) cos{ωt− θ(t)}, (13.7.18)

y(t) = −ωr(t) sin{ωt− θ(t)}. (13.7.19)

Substitution in (13.7.16) and (13.7.17) leads to

ṙ cos(ωt− θ) + rθ̇ sin(ωt− θ) = 0,

−ωṙ sin(ωt− θ) + ωrθ̇ cos(ωt− θ) = F

where

F = Dωr sin(ωt− θ) + (ω2 − 1)r cos(ωt− θ) −Br3 cos3(ωt− θ) + E cosωt.

Solving these equations for ṙ and θ̇ we have

ωṙ = −F sin(ωt− θ), (13.7.20)

ωrθ̇ = F cos(ωt− θ). (13.7.21)
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If, now, F were replaced by ǫ(F/ǫ) this system would be of the desired form
with the various small coefficients in F divided by ǫ. However, it is slightly
more convenient to proceed with the original form without explicitly writing
in the multiplication and division by ǫ.

The averaged equations are obtained from formulae like

ω

2π

∫ 2π/ω

0

cos2(ωt− θ)dt =
1

2
,

ω

2π

∫ 2π/ω

0

cos(ωt− θ) cosωt dt =
1

2
cos θ.

The result is

ωṙ = − 1
2Dωr + 1

2E sin θ, (13.7.22)

ωrθ̇ = 1
2r(ω

2 − 1) − 3
8Br

3 + 1
2E cos θ. (13.7.23)

A fixed point (r0, θ0) of (13.7.22) and (13.7.23) satisfies

E sin θ0 = Dωr0, (13.7.24)

E cos θ0 = 3
4Br

3
0 + r0(1 − ω2). (13.7.25)

According to (13.7.24), sin θ0 can never be negative so that θ0 can be re-
stricted to the interval (0, π). With that convention θ0 can be determined
from (13.7.25) once r0 is known. The elimination of θ0 gives

r20
(

3
4Br

2
0 + 1 − ω2

)2
+D2ω2r20 = E2 (13.7.26)

or, with R = r20 ,

9B2R3 + 24BR2(1 − ω2) + 16R{D2ω2 + (1 − ω2)2} − 16E2 = 0, (13.7.27)

which is a cubic equation to fix r0. It is transparent from (13.7.26) that no root
of the cubic can be negative. Since the left-hand side of (13.7.27) is negative
when R = 0 there is at least one positive root. When ω2 ≤ 1 there is at most
one positive root by Descartes’s rule of signs. Hence there is precisely one
positive root when ω2 ≤ 1. For ω2 > 1 there may be three positive roots or
one.

Keep B, D and E fixed and treat ω as a control parameter. Typical values
of r0 obtained from (13.7.27) are shown in Figure 13.7.1. The graph was drawn
for B = 0.2, D = 0.2, E = 1.25, values chosen to make what happens clearly
visible rather than ensuring that they are small enough to comply with the
requirements of the theory of averaging. For most of the range of ω the cubic
has a single root but for ω in the neighbourhood of 1.5 there are three roots.
The corresponding values of θ0 are displayed in Figure 13.7.2; over much of
the range θ0 is not far from 0 or π.
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FIGURE 13.7.1: Behaviour of r0 as ω varies.
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FIGURE 13.7.2: Variation of phase with ω.

Since r is the length of the radius vector the value of r0 specifies the radius
of a limit cycle. Therefore, we expect the original system to have a limit
cycle whose distance from the origin is approximately r0. In an interval of ω
there are three possible limit cycles; which of these does the system adopt?

To answer the question consider a nearby trajectory where r = r0 + ρ,
θ = θ0 + η. Then, for a first approximation, (13.7.22) and (13.7.23) become

ωρ̇ = − 1
2Dωρ+ 1

2Eη cos θ0,

ωr0η̇ = 1
2 (ω2 − 1)ρ− 9

8Br
2
0ρ− 1

2Eη sin θ0.

According to Section 5.4 the behaviour of this system is governed by the roots
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λ1, λ2 of

λ2 +
1

2
λ{Dω + (E/r0) sin θ0} +

D

4r0
Eω sin θ0

− E

4r0

(

ω2 − 1 − 9

4
Br20

)

= 0. (13.7.28)

Evidently, one of λ1, λ2 is always negative and the other is negative or positive
according to the term in (13.7.28) independent of λ is positive or negative.
Substitution for θ0 from (13.7.24) and (13.7.25) reveals that this term is 1/64
times the derivative of the left-hand side of (13.7.27) with respect to R. When
the cubic has a single positive root the derivative must be positive at the root.
When there are three positive roots the derivative is positive at the smallest
and largest roots but negative at the intermediate one. Thus, λ1 and λ2 are
both negative except at the intermediate r0 of three.

Since λ1 and λ2 both negative corresponds to stability it follows that the
limit cycle associated with r0 is stable unless r0 is the intermediate value of
three when it is unstable. Consequently, the solid curves of Figures 13.7.1 and
13.7.2 indicate stable limit cycles while the dashed curves indicate an absence
of stability.

Now, we see that as ω increases the system can occupy a stable limit cycle
related to the upper solid curve of Figure 13.7.1 until ω reaches the point
where the solid and dashed curves meet. If ω is increased further the system
cannot transfer to the limit cycle, which is not stable; so it must jump to the
lower solid curve and continue along it. Decreasing ω now induces a similar
phenomenon but there is a jump upwards when the lower solid curve meets
the dashed curve. Translating this back to the perturbed oscillator we expect
it to exhibit similar jumps as ω is varied. The existence of jumps has been
verified experimentally.

Example 13.7.3

Consider the general autonomous problem

ẍ+ x = ǫf(x, ẋ) (13.7.29)

subject to given initial conditions. As in Example 13.7.2 introduce the polar
coordinate transformation

x(t) = r(t) cos{t− θ(t)}, (13.7.30)

ẋ(t) = −r(t) sin{t− θ(t)}. (13.7.31)

Substitution into (13.7.29), noting that the derivative of the right-hand side
of (13.7.30) must be consistent with the right-hand side of (13.7.31), leads to

ṙ = −ǫ sin{t− θ(t)}f (r(t) cos{t− θ(t)},−r(t) sin{t− θ(t)}) ,
rθ̇ = ǫ cos{t− θ(t)}f (r(t) cos{t− θ(t)},−r(t) sin{t− θ(t)}) . (13.7.32)
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Now the right-hand sides of these equations are periodic of period 2π and,
treating θ as constant, so the averaged equations are:

ṙ = − ǫ

2π

∫ 2π

0

sin{t− θ(t)}f (r(t) cos{t− θ(t)},−r(t) sin{t− θ(t)}) dt,
(13.7.33)

rθ̇ =
ǫ

2π

∫ 2π

0

cos{t− θ(t)}f (r(t) cos{t− θ(t)},−r(t) sin{t− θ(t)}) dt.
(13.7.34)

Since the right-hand sides of these equations are independent of θ they can
be written in the concise form

ṙ = −ǫf1(r),
θ̇ =

ǫ

r
f2(r), (13.7.35)

where

f1(r) ≡ 1

2π

∫ 2π

0

sin{t− θ(t)}f (r(t) cos{t− θ(t)},−r(t) sin{t− θ(t)}) dt,

f2(r) ≡ 1

2π

∫ 2π

0

cos{t− θ(t)}f (r(t) cos{t− θ(t)},−r(t) sin{t− θ(t)}) dt.

Applying the method to van der Pol’s equation, discussed in Section 5.6,

ẍ+ x = ǫ(1 − x2)ẋ

one gets the averaged equations

ṙ =
ǫ

2
r(1 − 1

4
r2), θ̇ = 0. (13.7.36)

Choosing r(0) = 2 shows that r(t) = 2, t ≥ 0 and taking θ(0) = 0 leads to the
solution

x(t) = 2 cos t+ O(ǫ)

on a time scale 1/ǫ. The averaging method also allows one to find an approx-
imation to other solutions by solving equations (13.7.36) to get

r(t) =
r(0)e

1
2 ǫt

[

1 + 1
4r

2(0)(eǫt − 1)
]

1
2

, θ(t) = θ(0).

Since x(t) = r(t) cos(t−θ(t) it is seen that as t increases the solutions approach
the periodic solution.
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Exercises

13.1 Show that

ẋ = x(y − 1),

ẏ = µ− y(x+ 1)

has an equilibrium point, which is a stable node, for µ < 1 that becomes
a saddle-point as µ passes through the bifurcation point µ = 1. Also
show that there is an additional equilibrium point when µ > 1, which
is a stable node.

13.2 Show that

ẋ = µx(2y − 1),

ẏ = µ− y(2x+ 1)

has an equilibrium point, which is a stable node, for 1/2 < µ < 1 and
a stable focus for µ > 1. Prove that µ = 1/2 is a bifurcation point.

13.3 Show that
ẍ+ µẋ+ 2x+ x2ẋ+ x3 = 0

has a Hopf bifurcation at µ = 0.

13.4 Show that the iteration scheme

xn+1 = 1 − µxn(1 − xn)

has a stable fixed point x0 = 1 for µ< 1 and that µ= 1 is a bifurca-
tion point where the fixed point x0 =1/µ appears. Show that period-
doubling occurs as soon as µ exceeds 3.

13.5 Study the fixed points and period-doubling of

xn+1 = 1 − µx2
n.

13.6 Demonstrate that period-doubling can occur for

xn+1 = µ sinπxn

and try to draw a bifurcation diagram for µ between 0 and 0.07.

13.7 Show that if the iteration

xn+1 = exp(−7.5x2
n) − 0.9

is started with x1 = 0, xn tends to 0.067 approximately, but that if
x1 = 0.7, xn tends to −0.898 approximately.
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13.8 Draw a bifurcation diagram for

xn+1 = exp(−4x2
n) + µ

with µ ranging from −1 to 1.

13.9 Estimate the Feigenbaum number for

xn+1 = 1 − µx4
n.

13.10 By changing to polar coordinates and using the Poincaré line show that

ẋ = −y + 1
2µx− 1

2x(x
2 + y2)2,

ẏ = x+ 1
2µy − 1

2y(x
2 + y2)2

has a stable limit cycle when µ > 0.

13.11 On a Poincaré plane successive points are related by

xn+1 = 1
2yn,

yn+1 = −xn + 1
2µyn − y3

n.

Show that there is a bifurcation at µ = 3. Show that the limit cycle
in 0 < µ < 3 is stable and becomes of saddle type when µ exceeds 3.
Verify that the two other limit cycles for µ just above 3 are stable.

13.12 Demonstrate that the solutions of

ẋ = −ǫx cos2 t

and the averaged equation stay close together if they are initially close.

13.13 A trajectory in the phase plane of

ẍ+ ǫx = −ǫx cos2 t

starts from the same point as a trajectory of the averaged equations.
Show that the trajectories stay close together.

13.14 Transform the first order system derived from

ẍ+ ǫ(x2 − 1)ẋ+ x = ωǫE cosωt

to polar coordinates and then average. If E = 1/2 and µ = (ω2 − 1)/ωǫ
show that the averaged equations have three fixed points, two of which
are unstable, when µ = 0. Draw a graph of r0 against µ for µ going
from 0 to 1.
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13.15 Show that the equation

ẍ+ x+ ǫx3 = 0,

for small positive parameter ǫ, has one critical point and that all other
solutions are periodic.

Use the method of averaging to construct a first order approximation
of the solutions for general (ǫ independent ) initial conditions.

13.16 Use the method of averaging to show that the equation

ẍ+ x = ǫ(1 − ax2 − bẋ2)ẋ

has a periodic solution which, to first order, is approximated by

x =
2√

a+ 3b
cos t.



Chapter 14

Numerical Bifurcation Analysis

14.1 Fixed points and stability

The fixed point is one of the most fundamental features of a dynamical sys-
tem, and the starting point for most dynamical systems analysis is to find fixed
points and determine their stability. For a system of differential equations,

ẏ = f(y), (14.1.1)

fixed points y∗ are found by solving the vector equation

f(y) = 0. (14.1.2)

The method for doing this in MATLAB is to write a function that calculates
f(y), just as for solving the differential equations themselves (see Section 5.8).
Then the solution can be found using a root-finding method, like Newton’s
method (see function newton in Section 5.9) with a command such as

>> y = newton(@myfunc, y0, tol, maxits);

where y0 is an initial approximation to the solution, tol is a defined con-
vergence tolerance, maxits is the maximum number of iterations of Newton’s
method to carry out, and myfunc is a function that calculates f(y).

Solving a nonlinear system of equations numerically is not a trivial task and
usually requires a reasonable approximation to the solution to use the start-
ing point y0 for the iterations. In practice, it is sometimes necessary to try a
number of different initial approximations by systematically looping through
phase space. This process is usually computationally expensive, but can some-
times be made more efficient if some knowledge about which regions of phase
space are likely to contain fixed points can be gained, either analytically or
from numerical solution of the full time-dependent equations (14.1.1).

Assuming that fixed points y∗ of a system of the form (14.1.1) have been
found, their stability can be determined by evaluating the Jacobian matrix of
f(y) at y = y∗ and calculating its eigenvalues. This can be achieved with the
following MATLAB commands (see Section 5.9 for the function jacobian).

>> [f, J] = jacobian(@myfunc, y_star);

>> lambda = eig(J);

367
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If all eigenvalues lambda have negative real part, then the fixed point is
stable; if at least one eigenvalue has positive real part, then the fixed point is
unstable.

Example 14.1.1

Find the fixed points of the system

ẏ1 = y1

(

1 − y1 −
ay2

(

1 − e−by1
)

y1

)

, (14.1.3)

ẏ2 = ry2

(

1 − y2
y1 + c

)

, (14.1.4)

and determine their stability, when a = 2, b = 1, c = 0.1 and r = 0.5. This is
a form of the Volterra–Lotka predator–prey model (see Section 4.5) modified
to include more realistic logistic (rather than simply exponential) growth of
the prey (y1) and predator (y2) species.

It can easily be seen that (y1, y2) = (0, 0) (extinction of both species),
(y1, y2) = (1, 0) (existence of prey species only) and (y1, y2) = (0, c) (existence
of predator species only) are fixed points. Furthermore, equation (14.1.4) in-
dicates that any other fixed points must satisfy y2 = y1 + c. However, in this
case, there is no closed-form solution to the steady state of equation (14.1.3),
and numerical methods become useful. The first step, as always, is to write
a MATLAB function that evaluates the right-hand sides of the differential
equations as a vector:

function f = lv_logistic(y)

a = 2; b = 1; c = 0.1; r = 0.5;

f = zeros(2, 1);

f(1) = y(1)*(1-y(1)) - a*y(2)*(1-exp(-b*y(1)));

f(2) = r*y(2)*(1-y(2)/(y(1)+c));

This function (after modifying the inputs to be (t, y) rather than just y)
could be inserted into a differential equation solving routine such as ode45 to
find the solution for a given initial condition. Here, we are interested in the
fixed points. To do this via Newton’s method, we need an initial estimate of
the solution. Let’s try (1, 1):

>> y0 = [1; 1];

>> y_star = newton(@lv_logistic, y0, 1e-10, 100);

These commands return (y1, y2) = (0.3037, 0.4037) as the solution (which
is easily checked to be a fixed point of the system (14.1.3), (14.1.4)). Hence we
have found four fixed points. To determine stability, we calculate the eigen-
values of the Jacobian at each fixed point with the commands:

>> [f, J] = jacobian(@lv_logistic, y_star);

>> lambda = eig(J);
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FIGURE 14.1.1: Fixed points (filled circles) and sample orbits (dashed
curves) calculated numerically for the modified Volterra–Lotka system
(14.1.3), (14.1.4). All the solutions shown tend towards the stable fixed point
(y1, y2) = (0.3, 0.4).

This calculates the eigenvalues λ at each fixed point y∗, enabling us to classify
their stability:

Fixed point y∗ Eigenvalues λ1, λ2 Stability
(0, 0) 0.5, 1 Unstable
(1, 0) −1, 0.5 Saddle
(0, 0.1) −0.5, 0.8 Saddle
(0.3037, 0.4037) −0.3517± 0.4898i Stable focus

An alternative approach, in this example, is to work out the Jacobian ana-
lytically (rather than numerically using the jacobian function):

J =

[

1 − 2y1 − aby2e
−by1 a

(

−1 + e−by1
)

ry2
2

(y1+c)2
r(y1+c−2y2)

y1+c

]

.

The calculated fixed points may then be substituted into this analytical ex-
pression for J and the eigenvalues calculated.

Figure 14.1.1 shows the fixed points, together with some sample orbits. It
is impossible to be sure that we have located all the fixed points of the system
(14.1.3), (14.1.4). However, trying initials approximation in Newton’s method
in the range 0 < y1, y2 < 500 does not reveal any further fixed points.

The results of the numerical analysis can be checked by solving the time-
dependent problem (see Section 5.8) with an initial condition in the vicinity
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of the fixed points. For stable fixed points, y should tend towards y∗; for
unstable fixed points, y should move away from y∗.

It should be noted that, although the methods described in this chapter
are applicable to continuous dynamical systems (systems of differential equa-
tions) many are equally applicable to discrete, iterative systems, or maps (see
Sections 13.3 and 14.4). The main differences between a dynamical system
based on differential equations and one based on a map is that, for a map
defined by xn+1 = f(xn), fixed points x∗ satisfy x∗ = f(x∗) rather than equa-
tion (14.1.2), and the requirement for stability is that the eigenvalues of the
Jacobian evaluated at x∗ have modulus less than 1 (i.e., |λ| < 1).

14.2 Path-following and bifurcation analysis

Having found the fixed points of a dynamical system and determined their
stability, it is often desirable to carry out a bifurcation analysis with respect
to some parameter µ, as described in Section 13.1. When done numerically,
this is known as path-following. A naive approach would be simply to repeat
the procedure of the previous section for a series of equally spaced values of µ.
An exhaustive search of phase space for fixed points is usually prohibitively
expensive, but this could be avoided because the fixed points already found
for the preceding value of µ will be close to the fixed points for the current
value of µ, and hence would be good candidates to try as starting values for
Newton’s method. The problem with this approach is that it breaks down
just where we are most interested in its results: at a bifurcation. Consider for
example the fold bifurcation shown in Figure 13.1.3. Starting with a small
value of µ and working upwards will not work because, for small values of µ,
there are no fixed points to work with. Starting with a large value of µ and
trying to follow one of the two fixed points as µ decreases will work initially.
However, as µ approaches the bifurcation point, the method will simply ‘fall’
off the end of the fold bifurcation into the region where there are no fixed
points, without finding the other branch of the bifurcation diagram.

Path-following proceeds by treating the parameter µ as an additional de-
pendent variable in phase space. Suppose that two nearby points on the bi-
furcation curve z1 = (y1, µ1) and z2 = (y2, µ2) have been found by the naive
approach described above (see Figure 14.2.1). We now seek a third point
z3 = (y3, µ3) as the solution to the equation

f(y, µ) = 0. (14.2.1)

We construct an initial approximation za (to feed into Newton’s method)
to this point simply by linearly extrapolating from the two known points:
za = 2z2 − z1 (see Figure 14.2.1). By treating µ as a free variable, we have
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FIGURE 14.2.1: Numerical method for path-following: (a) two existing
points z1 and z2 on the bifurcation diagram are used to generate a third
point z3; (b) the process is repeated to generate z4, and so on.

effectively introduced an extra unknown into the system of equations, so we
need an extra equation for the problem to remain well defined. Remember
that the goal is to ‘follow’ the fixed point around the fold bifurcation, rather
than to find the fixed point for pre-determined values of µ. Hence, we obtain
an extra equation by constraining the third point in the bifurcation curve to
lie on the line that: (i) passes through the initial approximation to the point;
(ii) is perpendicular to the line through the first two points (see Figure 14.2.1).
This extra equation can be expressed in vector notation as

(z3 − za).(za − z2) = 0, (14.2.2)

where the points z2 and za are known constants. (In higher dimensions,
(14.2.2) is the equation of a hyperplane perpendicular to the line through the
first two points.) Combining equations (14.2.1) and (14.2.2) gives N +1 equa-
tions in N + 1 unknowns (z3 = (y1, . . . , yn, µ)). Solving these (via Newton’s
method with an initial approximation za) gives the point z3. This process can
now be repeated using the points z2 and z3 to construct a new point z4, and
so on. The stability of each fixed point found can be determined by looking
at the eigenvalues of the Jacobian.

Note that the distance between the initial points z1 and z2 is the approxi-
mate arc length distance between consecutive computed points on the bifur-
cation curve. These initial points should therefore be chosen to be sufficiently
close that a reasonably smooth curve is produced, but not so close that an
infeasibly large number of points are required to give the desired portion of
the curve.

A MATLAB function implementing this procedure is shown below, and will
be used in the following examples
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function Z = path_follow(dydt, z1, z2, M)

% Function for following the path of a fixed point through

% phase-parameter space

% Inputs: dydt - handle to a function that calculates dy/dt = f(z)

% z1, z2 - two initial points on the bifurcation curve

% where z = [y_1, ..., y_n, mu]

% M - number of points on the bifurcation curve to

% calculate

% Outputs: Z - matrix whose columns correspond to points on the

% bifurcation curve

tol = 1e-10;

ftol = 1e-8;

maxits = 100;

N = length(z1);

Z = zeros(N, M);

Z(:, 1) = z1;

Z(:, 2) = z2;

for I = 1:M-2

zp = Z(:, I+1); % most recent known point zp

za = 2*zp-Z(:, I); % initial approximation za

fh = @(z)path_follow_func(dydt, z, za, zp);

Z(:, I+2) = newton(fh, za, tol, maxits);

% stop if Newton’s method did not find a valid point:

if ~(abs(path_follow_func(dydt, Z(:, I+2), za, zp)) < ftol)

Z = Z(:, 1:I+1);

return;

end

end

The function path_follow_func is a function whose root is the point z, i.e.,
path_follow_func returns a vector containing the left-hand sides of equations
(14.2.1) and (14.2.2):

function f = path_follow_func(dydt, z, za, zp)

N = length(z);

f = zeros(N, 1);

f(1: N-1) = dydt(z);

f(N) = (z-za)’*(za-zp);

Also very useful is a function to calculate the eigenvalues of the Jacobian
at each point on the bifurcation curve, as this will enable us to distinguish
stable and unstable points. All the necessary information is contained in the
matrix Z that is output from path_follow: it is just a matter of separating
the dependent variables (y) from the parameter µ, and treating the function
f as a function of y only, rather than y and µ.

function L = calculate_eigenvalues(dydt, Z)
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% Function to calculate eigenvalues of the Jacobian at a number

% of points on a bifurcation curve

% Inputs: dydt - handle to a function that calculates dy/dt=f(z)

% Z - NxM matrix of points on the bifurcation curve as

% output from path_follow

% Outputs: L - corresponding (N-1)xM matrix of eigenvalues

[N, M] = size(Z);

L = zeros(N-1, M);

for I = 1:M % go through each point on the bifurcation curve

y = Z(1:N-1, I); % extract y from the Ith column of Z

mu = Z(N, I); % extract mu from the Ith column of Z

% calculate Jacobian of dydt (treating mu as a constant):

[f, J] = jacobian(@(y)dydt([y; mu]), y);

L(:, I) = eig(J); % store eigenvalues in Ith column of L

end

Example 14.2.1

Consider the differential equation

ẏ = f(y) = y − y4 + µ, (14.2.3)

where µ is a parameter. Find the fixed points of the system when µ = 0 and
follow the fixed points as µ varies to produce the bifurcation diagram.

Figure 14.2.2(a) shows a graph of f(y) against y when µ = 0. Varying
µ simply shifts this graph in the vertical direction. When µ = 0, the fixed
points satisfy y(1 − y3) = 0. There are therefore two fixed points y∗ = 0 and
y∗ = 1. We now use the path-following routine to follow the first of these
two fixed points as µ decreases. We already have one point on the bifurcation
curve z1 = [y1, µ1] = [0, 0]. A second point z2 can be obtained by numerically
solving the steady-state equation when say µ = −δµ, where δµ is a suitably
small number, say 10−3. Note that δµ is not a prescribed step size for µ,
merely the approximate distance between consecutive computed points on
the bifurcation curve.

We again need a function that calculates the right-hand side of the differ-
ential equation. In line with the path-following routine described above, this
is regarded as a function of the parameter as well as the independent variable,
and hence the input to the function is z = (y, µ).

function f = fold_bif(z)

f = z(1)-z(1)^4+z(2);

We are now in a position to compute the bifurcation curve, and calculate
the corresponding eigenvalues with the following commands

>> Z = path_follow(@fold_bif, z1, z2, 1000);

>> L = calculate_eigenvalues(@fold_bif, Z);
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FIGURE 14.2.2: (a) Graph of the function f(y) for the differential equa-
tion (14.2.3) against y when µ = 0, showing the two fixed points, their sta-
bility and how the parameter µ alters the system. (b) Bifurcation diagram
calculated by numerical path-following. The system has a fold bifurcation at
µ = − 3

44/3 ≈ −0.47: as µ decreases towards this value, the stable and the
unstable fixed point collide and destroy each another.

Note that, in the one-dimensional case, the Jacobian is just a 1 × 1 matrix
simply df/dy. Hence the stability of any fixed point can easily be determined
analytically (by the sign of df/dy). Nevertheless, the command is shown here
to illustrate the general method for n-dimensional systems.

To plot the bifurcation curve, in a one-dimensional example such as this
one, we simply plot the first row of the matrix Z (i.e., the values of y∗) against
the second row (i.e., the corresponding values of µ):

>> plot(Z(2, :), Z(1, :))

This produces the graph shown in Figure 14.2.2(b), which also indicates the
stability of each part of the curve (as determined by the contents of the eigen-
value matrix L). The system has a fold bifurcation in which the stable and
the unstable fixed point collide and destroy each other. The exact value of µ
at which this occurs can be calculated, as it is the value at which the max-
imum of the function f(y) (see Figure 14.2.2(a)) is zero. Standard calculus
techniques show that the bifurcation point is µ = − 3

44/3 .

Example 14.2.2

Plot the bifurcation diagram for the differential equation

ẏ = f(y) = µy − y3, (14.2.4)

where µ is a parameter.
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FIGURE 14.2.3: Bifurcation diagram for the differential equation (14.2.4):
(a) the curve produced by following the fixed point (y, µ) = (0,−1); (b) the
curve produced by following the fixed point (y, µ) = (1, 1). The system has a
pitchfork bifurcation at µ = 0: as µ increases through 0, the stable fixed point
becomes unstable, and two new stable fixed points are created.

The differential equation (14.2.4) can be dealt with analytically using the
methods of Chapter 13, and is the prototypical form of a system with a
pitchfork bifurcation. Nevertheless, we will implement the numerical path-
following method to illustrate how this type of bifurcation can be found. Before
we begin, we need two points on the bifurcation curve, which can be obtained
by finding the fixed point when, say, µ = −1 and µ = −1 + δµ. For µ < 0,
there is a unique fixed point at y = 0, so our first two points are defined by

>> z1 = [0; -1];

>> z2 = [0; -1+delta_mu];

We also need a MATLAB function that evaluates f(y, µ):

function f = pitchfork_bif(z)

f = z(2)*z(1)-z(1)^3;

We can now call path_follow as above, and plot the bifurcation curve,
which is shown in Figure 14.2.3(a). The change of stability at µ = 0 indicates
a bifurcation, and there may be something else on the bifurcation diagram
that the path-following routine has not found. We therefore check if there
are any other fixed points when µ > 0. At µ = 1, there are fixed points at
y = ±1. Let’s try and follow the fixed point at y = 1 as µ decreases towards
the bifurcation point. This gives another branch of the bifurcation diagram,
shown in Figure 14.2.3(b). The bifurcation diagram now clearly shows the
pitchfork bifurcation, in which a single stable fixed point bifurcates into one
unstable and two stable fixed points.



376 Differential Equations and Mathematical Biology

14.3 Following stable limit cycles

Fixed points are relatively easy objects to deal with, as they are the so-
lution of a known system of algebraic equations, and their stability is easily
determined by the Jacobian. Periodic orbits (i.e., solutions y(t) to the system
of differential equations that satisfy y(t + T ) = y(t) for some fixed, positive
value of T ) are more difficult to analyse. Even with a numerical solution of
the differential equations, periodic orbits can be difficult to identify.

Consider the case of a Hopf bifurcation, in which a fixed point loses
stability and a stable limit cycle is simultaneously created. This is indicated by
a complex pair of eigenvalues crossing the imaginary axis in the complex plane.
The procedure outlined in Section 14.2 should follow the fixed point through
the bifurcation, but what about the limit cycle? As with any attractor, the
limit cycle can be found by numerically solving the system of differential
equations for a suitable initial condition, in this case a point near to the
unstable fixed point. Disregarding the transient behaviour should yield the
limit cycle. This cycle can now be ‘followed’ as the parameter µ changes:
change µ by a small amount and use the final value of y from the previous
solution as the initial condition for the current value of µ. In order to produce
a meaningful bifurcation diagram, it is usually desirable to plot one or more
scalar values representing the limit cycle for each value of µ. Typically, these
might be the maximum and minimum values of |y| over the course of the
cycle, or the value of |y| on a suitably defined Poincaré section (see Section
13.5). If the limit cycle loses stability as µ changes, the numerical solution of
the differential equations will cease to converge to the limit cycle.

Example 14.3.1

Consider the system of differential equations

ẏ1 = µ− y1 −
4y1y2
y2
1 + 1

, (14.3.1)

ẏ2 = y1

(

1 − y2
y2
1 + 1

)

. (14.3.2)

This system is a simplified model of the chlorine dioxide–iodine–malonic acid
reaction (comparable to the Field–Noyes model of the Belousov–Zhabotinskii
reaction seen in Chapter 4). Here, y1 and y2 represent the dimensionless con-
centrations of iodine and chlorine dioxide respectively, and µ > 0 is a param-
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FIGURE 14.3.1: (a) Bifurcation diagram for the system (14.3.1), (14.3.2).
The system has a Hopf bifurcation at µ = µc ≈ 7.3: as µ increases through µc,
the stable fixed point becomes unstable, and a stable limit cycle is created.
(b) Phase portrait when µ > µc, showing the unstable fixed point, stable limit
cycle and typical orbits.

eter representing one of the reaction rates. Plot the bifurcation diagram for
the system (14.3.1), (14.3.2).

We start, as in the previous section, by looking for fixed points of the
system. Finding the fixed point at µ = 1 and then following it as µ increases,
as described in the previous section, produces the fixed point curve shown
in Figure 14.3.1(a). The fixed point loses stability at µ = µc ≈ 7.3: at this
value of µ, a complex conjugate pair of eigenvalues pass through the imaginary
axis, which is the signature of a Hopf bifurcation. (In this example, the fixed
point and its stability can also be found analytically, using the techniques
described in Chapter 13.) How can we test for limit cycles and include them
in the bifurcation diagram? The following MATLAB program implements the
procedure outlined above and, for each value of µ, records the maximum and
minimum values of |y| for plotting.

mu = mu_min:delta_mu:mu_max;

nudge = 1e-6; % small perturbation to steady state

t_trans = 100; % enough time to remove transients

t_cycle = 100; % enough time to go round cycle at least once

M = length(mu);

maxy = zeros(1, M);

miny = maxy;

fh = @(t, y)myrhs([y; mu(1)]);

% solve the DEs to remove transients:

[t, Y] = ode45(fh, [0, t_trans], (1+nudge)*y_star);

for I = 1:M % go through each value of mu
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% solve the DEs, starting with the most recent value of y:

fh = @(t, y)myrhs([y; mu(I)]);

y0 = Y(size(Y, 1), :);

[t, Y] = ode45(fh, [0, t_cycle], y0);

% calculate the norm of y at each point on the orbit:

P = size(Y, 1);

y_norm = zeros(P, 1);

for J = 1:P;

y_norm(J) = norm(Y(J, :));

end

% record the maximum and minimum values of the norm:

maxy(I) = max(y_norm);

miny(I) = min(y_norm);

end

plot(mu, miny, mu, maxy)

Here, the minimum and maximum values of µ (mu_min and mu_max), the
increment in µ (delta_mu) and the fixed point at the minimum value of µ
(y_star) need to be specified. myrhs is the usual function for calculating ẏ:

function f = myrhs(z)

f = zeros(2, 1);

f(1) = z(3)-z(1)-4*z(1)*z(2)/(z(1)^2+1);

f(2) = z(1)*(1-z(2)/(z(1)^2+1));

(As before, the last entry z(3) in the vector z is used to store the value of the
parameter µ.) This program produces the stable limit cycle curve shown on
the bifurcation diagram in Figure 14.3.1(a), confirming that the system does
indeed have a Hopf bifurcation at µ = µc. Figure 14.3.1(b) shows the phase
portrait when µ > µc, including the unstable fixed point, some typical orbits
and the stable limit cycle (found by calculating an orbit and disregarding the
transients).

14.4 Bifurcation in discrete systems

In Section 13.3, we saw examples of how a discrete, iterative scheme of the
form

xn+1 = f(xn) (14.4.1)

can undergo bifurcations as a parameter µ of the function f is varied. Bifur-
cation diagrams of the type shown in Section 13.3 can be easily constructed
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simply by iterating equation (14.4.1) and discarding transient behaviour to
plot only stable fixed and periodic points. As in Section 14.3, we are following
stable objects: in Section 14.3, these objects were limit cycles of a system of
differential equations; here, they are fixed or periodic points of the iterative
equation (14.4.1). The technique is therefore very similar: each time we move
to a new value of the parameter µ, we use the final value of x from the pre-
vious set of iterations as the initial condition for the next set (it is also wise
to perturb the initial condition slightly to avoid getting caught on an unsta-
ble solution). The following MATLAB function produces a matrix of x values
suitable for plotting in a bifurcation diagram. Each column of the matrix con-
tains all the stable points of the iterative scheme for the corresponding value
of µ. As usual, the user needs to supply a function that calculates f(x) as in
equation (14.4.1).

function Xs = bif_discrete(func, mu, x1)

% Function to produce the bifurcation diagram for an iterative

% map

% Inputs: func - handle to the iteration function f(x, mu)

% mu - vector of values of the parameter mu

% x1 - initial condition for x

% Outputs: Xs - matrix containing the stable fixed/periodic

% points for each value of mu

Ntrans = 100; % iterations to get past transient behaviour

Nplot = 50; % number of points to plot for each mu

nudge = 1e-6; % small perturbation to each initial condition

M = length(mu);

Xs = zeros(Nplot, M);

x = x1; % set x to initial condition

for J = 1:M

% Do Ntrans iterations with Jth value of mu:

for K = 1:Ntrans

x = func(x, mu(J));

end

% Do Nplot iterations, storing results in Jth column of X:

Xs(1, J) = x;

for K = 1:Nplot-1

Xs(K+1, J) = func(Xs(K, J), mu(J));

end

% perturb final value slightly for next set of iterations:

x = Xs(Nplot, J)+nudge;

end

The number of iterations (Ntrans) required to get past the transient be-
haviour, and the number of stable x points (Nplot) to store for each value of
µ can be adjusted as required.
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Example 14.4.1

Use the MATLAB function bif_discrete to produce the bifurcation dia-
grams for the logistic map (13.3.2) shown in Figures 13.3.1 and 13.4.1.

First, we need a function that calculates f(x) for a given value of µ:

function f = logistic_map(x, mu)

f = mu*x*(1-x);

Next we need to set up a suitable vector of µ values. The range for µ in Figure
13.3.1 is between 3 and 4. If we use a step size of 0.001, then the appropriate
command is

>> mu = 3:0.001:4;

Finally, we just need to call bif_discrete to generate the x values, and then
plot them to produce the diagram:

>> Xs = bif_discrete(@logistic_map, mu, 0.4);

>> plot(mu, Xs, ’k.’, ’MarkerSize’, 1)

(The ’k.’ option tells MATLAB to plot the graph using disconnected points
of the same colour (black), rather than a connected line, and reducing the
MarkerSize to 1 uses smaller points to produce a higher-quality plot.) This
produces the diagram shown in Figure 13.3.1. Figure 13.4.1 can be reproduced
simply by changing the range for µ.

14.5 Strange attractors and chaos

Fixed points and limit cycles are some of the fundamental objects of dy-
namical systems. However, as seen in Chapter 13, more complex types of
dynamics can also occur in nonlinear systems. We have seen how attracting
(stable) solutions (including fixed points and limit cycles) can be found by
solving a system of differential equations numerically and disregarding any
transient behaviour. Having found an attractor in this way, we may wish to
know whether we are seeing regular, periodic behaviour or something more
complex, such as chaos. One means of making this distinction is to examine
the sensitivity to initial conditions, i.e., the tendency for two nearby initial
conditions to result in quite different solutions. This sensitivity may be quan-
tified by the Lyapunov exponents of the system, which measure the rate
of divergence (or convergence) of nearby orbits. If the divergence/convergence
for two initial conditions y1(0) and y2(0) is exponential in time then we may
write

|y2(t) − y1(t)| = |y2(0) − y1(0)| eλt.



Numerical Bifurcation Analysis 381

The constant λ is the maximal Lyapunov exponent (for an n-dimensional
system, there are in fact n Lyaponuv exponents, but it is the largest one that
controls the rate of separation of orbits). If λ > 0 then the orbits separate
as t increases; if λ < 0 then the orbits become closer together as t increases.
Rearranging for λ and letting t tend to zero gives the following definition of
the maximal Lyapunov exponent:

λ = lim
t→0

1

t
ln

|y2(t) − y1(t)|
|y2(0) − y1(0)| .

If the maximal Lyapunov exponent of an attractor is positive, this is indicative
of chaotic dynamics and the attractor is called a strange attractor.

The maximal Lyapunov exponent of an attractor can be calculated numer-
ically as follows.

1. Start with an initial condition y1(0) that is in the attractor’s basin of at-
traction (i.e., that tends towards the attractor). Calculate the numerical
solution for sufficient time t0 that the solution y1(t0) is on the attractor.
This may require some knowledge of the system, and the characteristic
timescale for any transients.

2. Choose a point y2(t0) in phase space that is separated from y1(t0) by a
small distance d0, i.e., such that |y2(t0) − y1(t0)| = d0.

3. Advance both solutions by a short time δt and calculate the new sepa-
ration:

d1 = |y2(t0 + δt) − y1(t0 + δt)| .

4. Evaluate

λ =
1

δt
ln
d1

d0
.

5. Readjust the orbit y2 so that its separation from y1 is equal to d0,
without changing the direction from y1 to y2 in phase space, which is
the direction of maximum expansion. This may be done by setting

y2(new) = y1 +
d0

d1

(

y2(old) − y1

)

.

6. Repeat steps 3–5 and take the average of the values of λ calculated in
step 4. After a sufficient number of repetitions, this average should settle
down to the maximal Lyapunov exponent, which should be reasonably
independent of the initial condition y1(0) (provided it converges to the
desired attractor), and the values of d0 and δt.
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FIGURE 14.5.1: (a) Graph of y1(t) against y3(t) for the Lorenz equations
(14.5.1)–(14.5.3) with σ = 10, r = 28, b = 8/3 and y(0) = (0, 1, 0). The solu-
tion quickly converges to the Lorenz attractor, with its characteristic butterfly
shape. (b) Maximal Lyapunov exponent λ for the Lorenz attractor computed
numerically. The running average of λ converges to approximately 0.9. Since
λ > 0, orbits on the attractor are sensitive to initial conditions, indicating
chaotic dynamics.

Example 14.5.1

The Lorenz equations

ẏ1 = σ(y2 − y1), (14.5.1)

ẏ2 = ry1 − y2 − y1y3, (14.5.2)

ẏ3 = y1y2 − by3, (14.5.3)

are a simplified model of convection rolls in the atmosphere. (They also de-
scribe the motion of a waterwheel that consists of a number of leaky buckets,
with a steady supply of water from the top.) When σ = 10, r = 28 and
b = 8/3, find the attractor for the system (14.5.1)–(14.5.3) with the initial
condition y(0) = (0, 1, 0), and determine its maximal Lyapunov exponent.

To find the attractor, we simply find the numerical solution of the differen-
tial equations with the specified initial condition. Plotting y1(t) against y3(t)
gives the graph shown in Figure 14.5.1(a). Note that the orbit appears to
cross itself in numerous places. However, if we were to plot the orbit in its
true, three-dimensional phase space (y1, y2, y3), we would see that in fact this
never happens.

The procedure for computing the maximal Lyapunov exponent of this at-
tractor can be implemented by the following MATLAB function:

function mle = lyapunov(dydt, y0, t_trans, d0, delta_t, t_max)

% Function to calculate the maximal Lyapunov exponent of
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% an attractor of a system dy/dt=f(y, t) (it is implicitly

% assumed that f(y, t) is independent of t)

% Inputs: dydt - handle to a function that calculates dy/dt

% y0 - initial condition in the basin of attraction

% t_trans - time for transients to disappear

% d0 - initial separation of two orbits

% delta_t - time step

% t_max - length of time (after t_trans) to integrate for

% (steps 3-5 are repeated until this time is reached)

% Outputs: mle- running average of the maximal Lyapunov

% exponent at each time step

% integrate to get rid of transient behaviour:

[t, Y] = ode45(dydt, [0, t_trans], y0);

y1 = Y(size(Y, 1), :)’; % final value of solution is y1

y2 = y1+[d0; zeros(length(y1)-1, 1)]; % perturb by d0 to get y2

N_steps = t_max/delta_t; % number of steps required

sl = zeros(1, N_steps);

sum = 0;

for I = 1:N_steps

% integrate both orbits by a time delta_t:

y1 = rk4step(dydt, [0, delta_t], y1);

y2 = rk4step(dydt, [0, delta_t], y2);

d1 = norm(y2-y1); % new separation

lambda = log(d1/d0)/delta_t; % Lyapunov exponent

sum = sum+lambda; % running sum of Lyapunov exponents

sl(I) = sum;

y2 = y1+(y2-y1)*d0/d1; % renormalise y2 so separation is d0

end

% divide running sum by number of iterations to get running avg:

mle = sl./(1:N_steps);

Here, rather than using one of MATLAB’s built-in solvers, which can give
inaccurate results in chaotic systems, rk4step is a simple function for calculat-
ing one step of the fourth-order Runge–Kutta method for solving differential
equations, with a pre-defined step size:

function y = rk4step(dydt, tspan, y0)

% Function for calculating one step of the fourth-order

% Runge-Kutta method on a system dy/dt = f(t, y)

% Inputs: dydt - handle to a function that calculates dy/dt

% tspan - vector containing the starting and

% finishing values of t

% y0 - initial condition vector

% Outputs: y - solution vector after one RK4 step

delta_t = tspan(2)-tspan(1);
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k1 = dydt(tspan(1), y0);

k2 = dydt(0.5*(tspan(1)+tspan(2)), y0+0.5*delta_t*k1);

k3 = dydt(0.5*(tspan(1)+tspan(2)), y0+0.5*delta_t*k2);

k4 = dydt(tspan(2), y0+delta_t*k3);

y = y0+delta_t/6*(k1+2*k2+2*k3+k4);

As usual, we require a function for calculating the right-hand sides of our
differential equations (14.5.1)–(14.5.3) (since we are not doing a bifurcation
analysis here, the value of the parameters σ, r and b are fixed):

function f = lorenz(t, y)

sigma = 10; r = 28; b = 8/3;

f = zeros(3,1);

f(1) = sigma*(y(2)-y(1));

f(2) = r*y(1)-y(2)-y(1)*y(3);

f(3) = y(1)*y(2)-b*y(3);

In addition, the function lyapunov requires the initial condition y(0), the
transient time (i.e., the time required for the orbit to settle down onto the
attractor), the values of d0 and δt, and the total length of time for which
to repeat steps 3–5 of the procedure above. These can be supplied with the
following MATLAB command.

>> lambda = lyapunov(@lorenz, [0; 1; 0], 100, 1e-8, 1e-4, 20);

This returns into the variable lambda a running average of the maximal Lya-
punov exponent calculated after successive repetitions of steps 3–5. Plotting
this running average against t gives the graphs shown in Figure 14.5.1(b). As
the graph shows, λ converges to a value of approximately 0.9. Since λ is posi-
tive, orbits on the attractor are sensitive to initial conditions, demonstrating
that it is a strange attractor, with associated chaotic dynamics.

14.6 Stability analysis of partial differential equations

A complete account of the numerous numerical methods for solving partial
differential equations is beyond the scope of this book. However, this section
contains an outline of a method for analysing the stability of steady states of
partial differential equations. Given a partial differential equation

∂u

∂t
= L(u), (14.6.1)

where L is some differential operator, steady solutions of the equation satisfy

0 = L(u). (14.6.2)
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Equation (14.6.2) may be solved numerically by approximating the solution
u(x) to (14.6.2) by a vector u = (u0, . . . , un) which satisfies

0 = f(u), (14.6.3)

where f(u) is the approximation to L(u) obtained by replacing derivatives
by finite differences (see Section 3.8). Combining (14.6.3) with the boundary
conditions on u gives a system of algebraic equations that, given a sufficiently
accurate initial approximation, may be solved by Newton’s method as in Sec-
tion 5.9.

How can we determine the stability of the steady state? One approach would
be to start with an initial condition that is close to the steady state, then
numerically solve (14.6.1) to see if the solution converges towards the steady
state, or moves away from it. However, this may be computationally expensive.
A more efficient approach is to examine the eigenvalues of the Jacobian matrix
that is calculated during the Newton’s method routine. Just as with a fixed
point of a system of ordinary differential equations, if all the eigenvalues of the
Jacobian evaluated at the steady state have negative real part, then the steady
state is stable, otherwise it is unstable. The reason for this is as follows. Just as
we replaced L(u) by a finite difference approximation f(u) in the steady-state
equation (14.6.2), we may do likewise in the full partial differential equation
(14.6.1). This gives a system of n− 1 ordinary differential equations (where n
is the number of grid points being used), of the type studied in Section 14.1:

du

dt
= f(u). (14.6.4)

Clearly, the steady state of this system of differential equations is given by
the solution u∗ to equation (14.6.3), and the stability of this steady state is
determined by the Jacobian of f(u) evaluated at u∗.

In approximating the solution u(x, t) by a time-dependent vector u(t), we
are approximating the continuous spectrum of eigenvalues of the partial dif-
ferential equation by the n discrete eigenvalues of the corresponding system
of ordinary differential equations. As we decrease the space step δx and hence
increase the number n of mesh points, the set of eigenvalues should tend to-
wards a continuous curve in the complex plane. If this curve lies entirely to the
left of the imaginary axis, the steady state is stable, otherwise it is unstable.

14.7 Notes

An excellent introduction to dynamical systems is S.H. Strogatz, Nonlinear
dynamics and chaos, Westview Press, MA, 1994, and several of the examples
in this Chapter are based on material in this book.
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The model in Example 14.3.1 is due to I. Lengyel, G. Rabai and I.R. Ep-
stein. Experimental and modelling study of oscillations in the chlorine dioxide–
iodine–malonic acid reaction. J. Am. Chem. Soc. 112, 9104-9110, 1990.

The method for numerical calculation of the maximal Lyapunov exponent
is based on that of J.C. Sprott, Chaos and time-series analysis, Oxford Uni-
versity Press, 2003 (section 5.6).

The Lorenz equations were originally analysed in E. Lorenz. Deterministic
nonperiodic flow. J. Atmos. Sci. 20, 130-141, 1963.

For more mathematical detail on path-following methods, and possible im-
provements to the basic method described here, see J. Brindley, C. Kaas–
Petersen and A. Spence. Path-following methods in bifurcation problems.
Physica D 34, 456-461, 1989.

AUTO

Although relatively simple systems of the type studied in this chapter may
be analysed numerically by writing simple programs in any computer lan-
guage such as MATLAB, there are dedicated software packages available for
more complex problems. The original numerical bifurcation analysis software
is a package called AUTO, which is freely available, along with complete doc-
umentation, from: http://indy.cs.concordia.ca/auto.

Exercises

14.1 Consider the following model for a population of a prey (y1) and predator
(y2) species

ẏ1 = y1

(

1 − y1 −
ay2 (1 − e−y1)

y1 + c

)

,

ẏ2 = ry2

(

1 − y2
y1 + c

)

.

Find the fixed points (equilibria) of the system when a = 2, c = 0.1,
r = 0.5 by solving the steady-state equations numerically. Determine the
stability of the fixed points. Check your answers by finding the solution
of the differential equations for initial conditions near to each of the
fixed points.

14.2 For the system (13.2.1)–(13.2.2), verify the existence of a stable limit
cycle near the origin for µ = 0.01 by finding the solution numerically for
a suitable initial condition. Follow the stable limit cycle as the value of
µ increases and draw a bifurcation diagram that plots the amplitude of
the limit cycle against µ.
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14.3 A population of animals grows logistically at rate r > 0 and is subject to
external predation. If the intensity of predation decays as the population
size grows, then the total size y of the population can be modelled by

ẏ = ry(1 − y) − µye−y/2,

where µ ≥ 0 is a parameter describing the level of predation.

(a) Find the fixed points of the equation when µ = 0, and determine
their stability.

(b) Fox a fixed value of r = 5, construct the bifurcation diagram for
0 ≤ µ < 5 and identify any bifurcation points.

14.4 Consider the system

ẏ1 = µ− y1 −
8y1y2
y2
1 + 2

,

ẏ2 = y1

(

1 − y2
y2
1 + 2

)

,

where µ is the control parameter. Show that the system has a bifurcation
at which a fixed point changes from stable to unstable. Draw the bifur-
cation diagram and determine the bifurcation point. Show that there
is a stable limit cycle for parameter values for which the fixed point is
unstable.

14.5 For the system in Exercise 14.1, produce a bifurcation diagram with
respect to the parameter a by following each fixed point as the value of
a changes in the range 0 < a < 20, and plotting

√

y2
1 + y2

2 against a.
Assume all other parameter values are as in Exercise 14.1.

14.6 Plot the bifurcation diagram for the iteration scheme

xn+1 = µ sin(πxn)

for values of µ in the range 0 to 1.

14.7 Consider the iteration scheme

xn+1 = f(xn) = µx(1 − x2)

(a) Find the largest value of µ such that f(x) is always between 0 and
1 provided x is between 0 and 1.

(b) Plot the bifurcation diagram for a suitable range of values of µ.

14.8 (a) Consider the Lorenz equations (14.5.1)–(14.5.3). Find the fixed
points of the system analytically. Write down the Jacobian ma-
trix for the system and substitute the expression for each fixed
point into the Jacobian matrix.
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(b) Write a simple MATLAB program that calculates the Jacobian
matrix you wrote down in part (a), and its eigenvalues, for each
fixed point, for σ = 10, b = 8/3 and r = 15. Now get your program
to repeat this task for a range of values of r from 15 to 35. For each
fixed point, plot the maximum real part of the eigenvalues against
r. What does your numerical analysis tell you about the stability
of the fixed points?

14.9 Use the MATLAB code provided in Section 14.5 to calculate the maxi-
mal Lyapunov exponent for the Lorenz equations (14.5.1)–(14.5.3), for
a range of values of the parameter r between r = 15 and r = 35. How
do your findings relate to your answer to Exercise 14.8?



Chapter 15

Growth of Tumours

15.1 Introduction

Tumours can arise from the cells of nearly all types of body tissue and this
diversity of origin is largely responsible for the wide variety of the structural
appearance of tumours. In this chapter we describe the main features of tu-
mour growth and ways in which to model the processes involved. During the
course of discussion we shall draw attention to some of the recent ideas and de-
velopments. In the earliest stages of development, tumour growth seems to be
regulated by direct diffusion of nutrients and wastes from and to surrounding
tissue. When a tumour is very small, every cell receives nourishment by simple
diffusion and the growth rate is exponential in time. However, this stage can-
not be sustained because, as a nutrient is consumed, its concentration must
decrease towards the centre of the tumour. Eventually the concentration of a
vital nutrient near the centre will fall below a critical level insufficient to sus-
tain cell life. A central necrotic core then develops. The rate of growth of the
tumour then falls away and it becomes more difficult to obtain nourishment
and to dispose of wastes solely by diffusion.

Unfortunately this is not the end of the process. A majority of tumours
exhibit the phenomenon of angiogenesis marking the transition from the rel-
atively harmless and localised avascular state described above to the more
dangerous, vascular state, wherein the tumour develops the ability to prolif-
erate, invade surrounding tissue and metastasize, i.e., spread, to distant parts
of the body.

In its early stages the tumour grows only a few millimetres in diameter
and consists of an outer shell several cell layers thick, which grows and pro-
liferates (see Figure 15.1.1). As we move into the interior of the tumour, the
proliferation of cells decreases markedly until we reach a region of quiescent
nondividing cells and further inward until we reach the central core of necrotic
debris in various stages of disintegration.

We have discussed various processes of diffusion before, but here we are
faced with a completely new situation, namely that the boundary of the tu-
mour is moving and is unknown except in the initial stages of growth. Indeed
the basic problem to be addressed is to formulate mathematical models that
enable us to focus attention on the movement of the tumour outer cell layer,
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FIGURE 15.1.1: An avascular tumour cell colony.

to track its movement and to examine its stability.

The question of stability is extremely important; it is central to determining
whether a tumour is nonmalignant and growth limited or, like cancer cells,
exhibits unlimited growth and becomes malignant. Most tumours involve some
vascularisation due to angiogenesis. This is the process by which tumours
induce blood vessels from the host tissue to sprout capillaries which migrate
towards and ultimately penetrate the tumour, providing it with a circulating
blood supply (see Figure 15.1.2).

To be able to control vascularisation in cancer cells is of paramount impor-
tance. It is well documented that cancer cells produce a variety of chemical
growth factors called tumour angiogenesis factors (or TAF) that stim-
ulate the formation of new capillaries. That is, as the tumour approaches
its diffusion-limited size, the TAF initiates angiogenesis. The malignancy be-
comes vascularised and perfusion replaces diffusion as the dominant mecha-
nism for the supply of nutrients and the removal of wastes. Once the tumour
connects with the circulatory system all constraints imposed by diffusion are
eliminated and subsequent growth is explosive. If one could block the chemical
messages for vascularisation sent from the tumour to surrounding tissue, it
might be possible to maintain the tumour indefinitely in its dormant or non-
malignant state or even to kill the tumour completely by cutting off its blood
supply. Currently there are drugs undergoing clinical trials that are designed
specifically to starve malignant tumours. These are called anti-angiogenesis
drugs and include angiostatin and endostatin.

Mathematical modelling of tumour growth and the processes of angiogenesis
are being actively pursued and hopefully will help biomedical scientists and
clinicians to develop strategies with which to better understand and combat



Growth of Tumours 391

FIGURE 15.1.2: A vascularised tumour as the result of angiogenesis.

this life-threatening disease.
The two mathematical models we develop here are concerned with avascular

tumour growth.
The first model, referred to as Model I, is the earliest mathematical model

and is based on the following simplifying assumptions.

(a) The cell colony and surrounding medium are essentially in a diffusive
equilibrium state at all times. The tumour has a three-layer structure
comprising an outer layer of live proliferating cells enveloping a thin
inner layer of quiescent nonproliferating cells, which, in turn, envelops
a large core of necrotic debris.

(b) Cells proliferate as long as the available concentration of nutrient supply
denoted by σ(x, y, z, t) remains above a critical level σ1. Cells die when
σ falls below a critical level σ2. In the quiescent region σ2 < σ < σ1. The
thickness h of the layer of live proliferating cells depends on σ1 and the
value of σ at the outer surface of the tumour. Experimental evidence
suggests that

h =

{

ν
√
σ − σ1, for σ > σ1,

0 for σ < σ1,
(15.1.1)

where ν is a positive constant.
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(c) If dA is an element of surface area of the tumour, then the incremental
volume of live cells dV = hdA creates new cell volume at the rate βhdA
where β is a constant. Nutrient is consumed by this volume at the rate
γhdA where γ is another constant.

(d) Proliferating cells become quiescent when the nutrient supply σ lies in
the region σ2 < σ < σ1 and the rate of gain of quiescent mass per unit
volume is constant.

(e) Necrotic debris disintegrates continually into simpler compounds. The
rate of loss of necrotic mass per unit volume is constant.

(f) A surface tension force T proportional to the mean curvature κ of the
boundary keeps the tumour a compact and continuous mass.

(g) The birth or death of cells produces internal pressure differentials which
cause the motion of cellular material. This is assumed to be governed
by

q = −∇P (15.1.2)

where q(x, y, z, t) is the cell velocity and P (x, y, z, t) is proportional
to internal pressure. Indeed the colony is assumed to behave like an
incompressible fluid composed of cells and cellular debris.

The second model, referred to as Model II, while being inspired by the
insights gained from Model I, concentrates more on nutrient supply in con-
trast to pressure profiles. In this model assumptions (a), (d), (e) and (g) are
retained. Assumption (b) is largely retained except for the assumption relat-
ing the thickness of the proliferating layer to nutrient supply through equation
(15.1.1). Assumption (f) is replaced by the “Gibbs–Thomson” relation. This
states that, on the boundary of live proliferating cells, the nutrient concentra-
tion is less than that in the surrounding tissue by a factor proportional to the
mean curvature κ of the boundary, this being the energy needed to maintain
intercellular bonds.

15.2 Mathematical Model I of tumour growth

In order to develop this mathematical model of tumour growth, we endeav-
our to combine diffusion processes with the above assumptions, to arrive at
a set of equations which allow us to relate the dynamics of the surface of
the tumour with variations in the nutrient concentration σ and the internal
pressure P .

Suppose the outer surface is represented by the unknown functional equation

Γ(x, y, z, t) = 0. (15.2.1)
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FIGURE 15.2.1: Model of a tumour.

Similarly the outer surface of the necrotic core is represented by the unknown
functional equations ΓN (x, y, z, t) = 0.

Apply the law of conservation of mass to the elemental volume shown in
Figure 15.2.1. This says that since h is small, the mass/volume flow out of the
surface dA of the elemental volume dV , namely (q+ · n̂ − q− · n̂)dA, equals
the rate of mass/volume production within this small volume, namely βhdA.
Thus

q+ · n̂ = q− · n̂+ βh, on Γ = 0. (15.2.2)

Similarly the rate of nutrient diffusion into dV (with diffusion coefficient k)
through the outer surface is kn̂ · ∇σdA, which is equal to the rate at which
nutrient is consumed in this small volume, namely γhdA. Thus

kn̂ · ∇σ = γh, on Γ = 0. (15.2.3)

Notice that since σ ≤ σ1 in the quiescent region and the necrotic core, there
is no diffusive transport from the interior.

Suppose the proliferation rate of new cells is so large that its product with
small quantities, such as outer shell thickness, is of order one, i.e.,

βh = βν
√

(σ − σ1) = λ
√

(σ − σ1), λ = O(1)

and
γh = γν

√

(σ − σ1) = µ
√

(σ − σ1), µ = O(1).

Next we suppose that the pressure P and tangential velocity components are
continuous across each of the surfaces Γ = ΓN = 0.
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For example, at the outer surface Γ = 0

P+ = P− = P,

q+ × n̂ = q− × n̂. (15.2.4)

From assumption (f) the pressure on the surface of the tumour must equal
the surface tension T and thus in turn is proportional to the mean curvature
κ, i.e.,

P = ακ on Γ = 0, (15.2.5)

where α is a constant.
If a typical point on the outer surface of the tumour is represented by the

vector r, then the motion of Γ = 0 is represented by

dr

dt
= q+ (15.2.6)

where Γ(x, y, z, t) = 0 is assumed known.
If we let q denote cell velocity within the tumour and S(x, y, z, t) the cell

loss rate at a point inside the tumour then conservation of mass can be written
as

∇ · q = −S. (15.2.7)

The cell loss rate S is modelled in the following way. Cell loss due to apoptosis,
programmed cell death, is restricted to the proliferating and quiescent region
and occurs at the constant rate S1. Cell loss due to necrosis is assumed to
occur at the constant rate S2. In terms of the Heaviside step function H we
can write S in the concise form

S(x, y, z, t) = S1H(|r| − |rN|) + S2H(|rN| − |r|) (15.2.8)

where rN is a point on the surface of the necrotic region ΓN = 0.
The equation for nutrient concentration σ, which is assumed to be in diffu-

sive equilibrium, is
∇2σ = 0, (15.2.9)

outside and within the tumour colony.
There are several problems that can be investigated with this model, includ-

ing the effect of a nearby source of nutrient or the presence of another tumour
cell colony. It is also of importance to examine the effect of the presence of
an impermeable wall (e.g., artery). Here we shall consider the surrounding
medium to be large in comparison with the tumour size and that there is a
constant supply of the nutrient, i.e.,

σ → σ∞ as |r| → ∞. (15.2.10)

It is convenient to bring our mathematical model together in the following
collection of equations and boundary conditions:

∇2P = S inside Γ = 0,

∇2σ = 0 in the tumour and the surrounding medium, (15.2.11)
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where the first of equations (15.2.11) comes from combining (15.1.2) and
(15.2.7).

On the boundary Γ = 0 of the tumour we have

P = ακ, (15.2.12)

q+ · n̂ = −n̂ · ∇P + λ
√

(σ − σ1), (15.2.13)

q+ × n̂ = −∇P × n̂, (15.2.14)

n̂ · ∇σ = µ
√

(σ − σ1). (15.2.15)

The boundary surface is defined by

dr

dt
= q+ (15.2.16)

and the initial configuration is given by

r = a, (15.2.17)

at t = 0 where a is assumed known.

Furthermore P and σ are continuous together with their normal derivatives
across the surface

ΓN = 0.

Finally

σ = σ2 on ΓN = 0. (15.2.18)

The set of equations (15.2.11)–(15.2.18) constitutes a moving boundary
problem which is usually very difficult to solve both analytically and com-
putationally. However, for some prescribed geometric configurations we can
solve the equations exactly. This is the subject of the following section.

15.3 Spherical tumour growth based on Model I

Suppose, as is commonly observed in vitro, that the tumour is initially a
sphere (of radius a) and continues to grow as a sphere. In this situation an
exact solution may be obtained. Because the tumour maintains its spherical
shape the equation of the outer surface of proliferating cells can be represented
by

r = R(t), (15.3.1)

where R(t) denotes the radius of the tumour at time t. Clearly R(0) = a.
Equations (15.2.11) expressed in spherical polar coordinates reduce, because
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of spherical symmetry, to

1

r2
∂

∂r

(

r2
∂P

∂r

)

= S, r ≤ R(t),

1

r2
∂

∂r

(

r2
∂σ

∂r

)

= 0. (15.3.2)

In order to proceed with the solution we have to construct appropriate solu-
tions in each of the proliferating cell regions and the necrotic core, respectively.

Region: RN < r ≤ R:
Here we have to solve the equations

1

r2
∂

∂r

(

r2
∂P

∂r

)

= S1, RN < r ≤ R(t),

1

r2
∂

∂r

(

r2
∂σ

∂r

)

= 0. (15.3.3)

From these we find that

P = S1
r2

6
+
A1

r
+B1 (15.3.4)

and

σ =
C1

r
+D1, (15.3.5)

where A1, B1, C1 and D1 are constants to be determined by the boundary
conditions. Using the condition (15.2.12) we obtain from (15.3.3)

S1
R2

6
+
A1

R
+B1 =

α

R
, (15.3.6)

on noting that the mean curvature κ = 1/R. From (15.2.10) and (15.3.5) we
find

D1 = σ∞. (15.3.7)

Region: 0 < r ≤ RN : In this region we find

P = S2
r2

6
+
A2

r
+B2,

σ =
C2

r
+D2. (15.3.8)

Here we require both P and σ to exist at r = 0 and so we must take A2 =
C2 = 0. On the boundary r = RN we demand that

S2
R2

N

6
+B2 = S1

R2
N

6
+
A1

RN
+B1,

S2
RN

3
= S1

RN

3
− A1

R2
N

(15.3.9)
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and also

C1 = (σ2 − σ∞)RN ,

D2 = σ2.

In principle we now have enough information to solve for all the unknown
quantities Ai, Bi, (i = 1, 2), provided we know the boundary radius RN . Since
A2 = 0 the three equations (15.3.6) and (15.3.9) can be solved for A1, B1, B2.

The all important question now is to determine how the boundary of the
tumour, r = R(t), evolves with time. To do this we need to use equations
(15.2.13) and (15.2.16). First of all combine (15.2.13) and (15.2.15) to get

q = −∂P
∂r

+
λ

µ

∂σ

∂r

on r = R(t) which when combined with (15.2.16) gives the evolution

dr

dt
= −∂P

∂r
+
λ

µ

∂σ

∂r
. (15.3.10)

We now carry out the task of solving for all the unknown quantitiesA1, B1, B2.
From (15.3.9) we can solve directly for A1 to get

A1 = (S1 − S2)
R3

N

3
. (15.3.11)

Knowing A1 we can use equation (15.3.6) to find B1, namely,

B1 =
α

R
− S1

R2

6
− (S1 − S2)

R3
N

3R
. (15.3.12)

With A1, B1 known, the first of equations (15.3.9) can be used to get B2,
i.e.,

B2 =
α

R
− S1

R2

6
− (S1 − S2)

R3
N

3R
+ (S1 − S2)

R2
N

2
,

=
α

R
− S1

R2

6
+ (S1 − S2)(3R− 2RN)

R2
N

6R
. (15.3.13)

Having determined all the quantities Ai, Bi, Ci, Di, i = 1, 2 we summarise the
pressure and nutrient distributions in each of the two regions as follows:

Region: RN < r ≤ R:

P =
α

R
− S1

6
(R2 − r2) + (S1 − S2)

R3
N

3

(

1

r
− 1

R

)

,

σ =
(σ2 − σ∞)

r
RN + σ∞. (15.3.14)
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Region: 0 < r ≤ RN :

P =
α

R
+ S2

r2

6
− S1

R2

6
+ (S1 − S2)

R2
N

6R
(3R− 2RN),

σ = σ2. (15.3.15)

To determine the evolution of the outer boundary, R(t), of the tumour we
substitute (15.3.14) in (15.3.10) to get

dR

dt
= −S1

R

3
+ (S1 − S2)

R3
N

3R2
− λ

µ
(σ2 − σ∞)

RN

R2
. (15.3.16)

This nonlinear ordinary differential equation can be solved numerically pro-
vided RN is known. We can find RN in terms of R by using (15.3.14) in
(15.2.15) to obtain the quadratic equation

(σ∞ − σ2)
2R2

N + µ2(σ∞ − σ2)R
3RN − µ2(σ∞ − σ1)R

4 = 0, (15.3.17)

which has the positive solution

RN =
−µ2R3 + µR2

√

µ2R2 + 4(σ∞ − σ1)

2(σ∞ − σ2)
. (15.3.18)

This expression for RN can now be substituted into the ordinary differen-
tial equation (15.3.16) for the determination of R(t). Figure 15.3.1 shows the
numerical solution of (15.3.16), (15.3.18) and also the outer boundary of the
quiescent layer, RQ, determined by calculating the depth of the thin layer h of
proliferating cells, using (15.1.1), for the parameter values S1 = 60, S2 = 100
together with λ = 1, µ = 10, ν = 0.002 and σ1 = 0.7, σ2 = 0.5, σ∞ = 1.

In the opening section of this chapter we gave a brief account of the processes
of angiogenesis whereby a tumour may become vascularised and receive its
own blood supply. The growth of the tumour is then freed of its diffusion
limiting mechanism and tumour invasion and metastases occurs. Our model
of avascular tumour growth can be modified to give some insight into this
important phenomenon as follows.

If the tumour has become vascularised then we may assume that both the
quiescent layer and the necrotic core are absent. In other words we may assume
RQ = RN = 0. However assumption b) and equation (15.1.1) no longer apply.
In other words, cell proliferation may take place throughout the tumour. If we
assume cell proliferation due to mitosis occurs at the constant rate S3 then
(15.2.8) may be replaced by

S(x, y, z, t) = (S1 − S3)H(|r|). (15.3.19)

This time the pressure and nutrient concentration within the tumour is given
by

P =
α

R
+

(S3 − S1)

6
(R2 − r2),

σ = σ∞. (15.3.20)
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FIGURE 15.3.1: Evolution of spherical tumour with time.

Notice that we retain the cell loss due to apoptosis by including the rate S1.
The rate of growth of the tumour is now governed by the simple first order
differential equation

dR

dt
=

(S3 − S1)

3
R, (15.3.21)

subject to the initial condition R(0) = a.
Thus

R(t) = a exp (S3 − S1)t/3. (15.3.22)

From this simple result we deduce that if the rate of cell production exceeds the
rate of apoptosis (S3 > S1) then the tumour grows exponentially fast, whereas
if apoptosis exceeds cell mitosis (S3 < S1) the tumour decays exponentially
with time.

15.4 Stability of tumour growth based on Model I

Surface tension, as we have already mentioned, plays an important role in
maintaining the compactness of the tumour. Any perturbation that allows sur-
face tension to be overcome by pressure forces could be an important feature
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in determining whether the tumour becomes vascularised and consequently
malignant.

In other words, the question of whether the spherical tumour is stable with
respect to small deviations from its spherical shape is of fundamental impor-
tance. The models described above can be examined for stability under such
perturbations and, in the case of instability, lead to some quite dramatic de-
viations from the initial spherical shape. In some situations the tumour may
even break into two or more pieces.

A detailed analysis of stability is beyond the scope of this book. Neverthe-
less we can indicate how such an analysis can be performed. To do this we
motivate the ideas by considering a further modification of our general model.
Specifically we consider a tumour with a very small proliferating outer layer
enclosing a large necrotic core. In fact this model is the one originally devel-
oped by H.P. Greenspan (see the notes at the end of this chapter). In other
words we take the cell loss rate to be

S(x, y, z, t) = S2. (15.4.1)

Carrying out the by now familiar analysis we find

P =
S2

6
(r2 −R2) +

α

R
, r ≤ R(t) (15.4.2)

and

σ =
D

r
+ σ∞, r ≥ R(t), (15.4.3)

where the constant D is determined from the boundary condition (15.2.15) to
be

D =
1

2
µR2{µR−

√

[µ2R2 + 4(σ∞ − σ2)]}. (15.4.4)

Notice that since there is no quiescent layer we have set σ1 = σ2. The rate of
growth of the radius of the tumour is determined from (15.2.13) and (15.2.16)
as the solution to the ordinary differential equation

dR

dt
= −1

2
S2R+ λ

√

(σ∞ − σ2) +
1

2
µR[µR− (µ2R2 + 4(σ∞ − σ2))1/2].

(15.4.5)
Without solving this equation we can estimate the ultimate size of a stable
spherical tumour by setting dR

dt = 0 to get the limiting size

R∞ =
3λ

S2

(

σ∞ − σ2

3λµ/S2 + 1

)1/2

. (15.4.6)

To indicate how a stability analysis should proceed let P̄ (r, t), σ̄(r, t) and
R̄(r, t) be the quantities determined by (15.4.2), (15.4.3) and the solution
to (15.4.5). Suppose these quantities are perturbed by amounts ǫP̃ (r, θ, t),
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ǫσ̃(r, θ, t) and ǫξ̃(θ, t) independent of the azimuthal angle φ and where ǫ is a
small parameter. Under these perturbations the total pressure and nutrient
concentration are represented by

P (r, θ, t) = P (r, t) + ǫP̃ (r, θ, t),

σ(r, θ, t) = σ(r, t) + ǫσ̃(r, θ, t) (15.4.7)

and the surface of the tumour is given at any time by

Γ(r, θ, t) = r −R(t) − ǫξ(θ, t) = 0. (15.4.8)

On substituting (15.4.7) and (15.4.8) into equations (15.2.11)–(15.2.17) and
equating coefficients of ǫ to zero, we have the following problem to solve:

∇2P̃ = 0, r ≤ R(t),

∇2σ̃ = 0, r ≥ R(t), (15.4.9)

with σ̃ → 0 as r → ∞, while on r = R(t),

∂ξ

∂t
= −

(

∂2P̃

∂r2
ξ +

∂P̃

∂r

)

+
λ

2
√
σ̃

(

ξ
∂σ̃

∂r
+ σ̃

)

,

∂2σ̃

∂r2
ξ +

∂σ̃

∂r
=

µ

2
√
σ̃

(

ξ
∂σ̃

∂r
+ σ̃

)

,

∂P̃

∂r
ξ + P̃ = − α

2R2

(

∂

∂η
(1 − η2)

∂ξ

∂η
+ 2ξ

)

, (15.4.10)

where η = cos θ. The solutions of (15.4.10) are time-dependent multiples of
harmonic functions from which the equation for ξ(t) can be solved to show, for
a range of parameter values, that if the harmonics are of sufficiently high order
then ξ(t) has exponential growth. The tumour is then unstable and radically
departs from its original spherical shape no matter how small ǫ may be.

15.5 Mathematical Model II of tumour growth

The tumour colony, as in Model I, is assumed to have a multilayered struc-
ture with proliferating cells in the outer layer, quiescent cells in the adjacent
middle layer and necrotic cells confined to the central core. Cells towards the
centre of the tumour are deprived of sufficient nutrients and cease to prolifer-
ate. As the tumour grows, the proportion of each cell type changes. Assuming
there is no increase in oxygen and nutrients available to the tumour then, as
it enlarges, there is an increase in the quiescent layer, which in turn leads to
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a further decrease in the minimum nutrient concentration towards the cen-
tre. More cells towards the centre of the tumour, being starved of nutrients,
become necrotic.

In order to develop the mathematical model we again make some simplifying
assumptions, in addition to assumptions (a)-(g) of Section 15.1.

(h) Local nutrient concentration provides an accurate measure of cell density
and type, with high nutrient levels indicating cell proliferation and lower
levels indicating quiescence and then necrosis.

(j) The tumour maintains its multilayered structure as it grows.

(k) The nutrient concentration satisfies the Gibbs–Thomson condition on
the outer boundary of live proliferating cells.

Now we consider the situation wherein tumour growth is controlled by three
factors:

i an externally supplied nutrient, σ, which is sufficient to promote cell
proliferation;

ii an internally supplied inhibitor, ω, which may be regarded as a growth
inhibitor produced by the tumour;

iii an externally supplied inhibitor, β, which could be an anti-cancer drug.

Reaction–diffusion kinetics are used to model the evolution of σ, ω and β,
with Fσ, Fω and Fβ their respective reaction rates. It is known that a typ-
ical chemical diffusion time scale is much shorter than a typical tumour cell
doubling time so that, as the tumour grows, σ, ω and β rapidly redistribute
throughout the new volume. We therefore assume that these quantities are in
diffusive steady state. In other words the governing equations are:

0 = ∇2σ + Fσ = ∇2ω + Fω = ∇2β + Fβ , (15.5.1)

in which the assumed diffusion coefficients have been absorbed into the reac-
tion terms.

Regarding the tumour as an incompressible fluid, local changes in the cell
population due to proliferation and apoptosis (programmed cell death) of cells
will induce motion of neighbouring cells. Similarly to model I we denote by
S(σ, ω, β) the loss rate at a point inside the tumour and denote the cell velocity
by q.

By applying the law of mass conservation we obtain the equation

∇.q = −S(σ, ω, β). (15.5.2)

As before let the outer boundary of the tumour be represented by Γ(x, y, z, t) =
0. Then the equation on motion of a point on Γ(x, y, z, t) = 0 is given by

n̂ · dr
dt

= q · n̂, (15.5.3)
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where n̂ is the unit outward normal to the surface. In a similar manner we
define the boundaries ΓQ(x, y, z, t) = 0 and ΓN (x, y, z, t) = 0 to delineate
quiescent and necrotic layers. These interfaces are defined implicitly and arise
when the nutrient σ passes through prescribed critical values just as we did
in the case of Model I. Thus quiescence occurs when σ = σ1 and necrosis
when σ = σ2 < σ1. Consequently cells cease to proliferate if σ2 < σ < σ1 and
cells death leading to necrosis occurs when σ < σ2.

The next step is to use Darcy’s law which relates internal pressure p to the
velocity q by

q = −µ∇p (15.5.4)

where µ denotes the motility of tumour cells. By eliminating q between equa-
tions (15.5.2) and (15.5.4) we obtain the system

µ∇2p = S(σ, ω, β) (15.5.5)

n̂ · dr
dt

= −µ∇p · n̂, on Γ(x, y, z, t) = 0. (15.5.6)

To complete the model we need to impose boundary and initial conditions.
To ensure that σ, ω and β remain bounded at the centre of the tumour we
demand

∇σ = ∇ω = ∇β = 0 at (x, y, z) = (0, 0, 0). (15.5.7)

On the boundary of Γ(x, y, z, t) = 0 we impose

σ = σ∞ − 2ακ, β = β∞, ω = 0, p = p∞. (15.5.8)

Here σ∞, β∞ and p∞ denote the values of σ, β and p in the outer tissue. The
condition on the nutrient σ realises the assumption that it satisfies the Gibbs–
Thomson condition and where κ denotes the mean curvature on the outer
boundary of the tumour. By assuming that the internally produced inhibitor
does not spread beyond the tumour we have set ω = 0 on Γ(x, y, z, t) = 0.

To ensure continuity of σ, ω, β and p, together with their first derivatives
across the interior layers, we specify: σ, ω, β, p and ∇σ,∇ω,∇β,∇p are con-
tinuous across ΓQ(x, y, z, t) = 0 and ΓN (x, y, z, t) = 0.

Finally the interior layers are specified implicitly by

σ = σ1, on ΓQ(x, y, z, t) = 0, (15.5.9)

σ = σ2, on ΓN (x, y, z, t) = 0, (15.5.10)

and the initial condition

Γ(x, y, z, 0) = 0 (15.5.11)

is assumed to be given.
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15.6 Spherical tumour growth based on Model II

The assumption of a spherical tumour, as in the case of Model I, leads
to considerable mathematical simplifications and allows for explicit analysis
together with some further understanding of avascular tumour growth.

With radial symmetry the tumour grows as a sphere with radius R(t) and so
the mean curvature κ = 1/R(t). The model system (15.5.1), (15.5.5), (15.5.6)
is

0 =
1

r2
∂

∂r

(

r2
∂σ

∂r

)

+ Fσ =
1

r2
∂

∂r

(

r2
∂ω

∂r

)

+ Fω =
1

r2
∂

∂r

(

r2
∂β

∂r

)

+ Fβ ,

(15.6.1)

0 =
µ

r2
∂

∂r

(

r2
∂p

∂r

)

− S(σ, ω, β) (15.6.2)

dR

dt
= −µ∂p

∂r
, on Γ(x, y, z, t) = r −R(t) = 0. (15.6.3)

The boundary and initial conditions become

∂σ

∂r
=
∂ω

∂r
=
∂β

∂r
= 0, at r = 0, (15.6.4)

σ = σ∞ − 2α/R(t), β = β∞, ω = 0, p = p∞ on r = R(t), (15.6.5)

σ = σ1, on r = RQ(t), (15.6.6)

σ = σ2, on r = RN (t), (15.6.7)

r = R(0) is prescribed. (15.6.8)

If we integrate (15.6.2) over the tumour volume we get

µR2∂p

∂r
= µ

∫ R

0

∂

∂r

(

r2
∂p

∂r

)

dr =

∫ R

0

S(σ, ω, β)r2dr. (15.6.9)

Finally, if we eliminate p from this equation using (15.6.3), we see that the
rate of growth of the tumour is governed by

R2 dR

dt
= −

∫ R

0

S(σ, ω, β)r2dr, (15.6.10)

together with boundary and initial conditions (15.6.4)–(15.6.8).
We now model the reaction terms Fσ, Fω and Fβ as well as the nutrient

loss term S. For simplicity we choose

Fσ = −(λ0 + λ1β)H(r −RN ), (15.6.11)

Fβ = −λ2, (15.6.12)

Fω = λ3H(RN − r) − λ4, (15.6.13)

S(σ, ω, β) = sσ̄H(r −RN ) + sωH(RN − r) − sσH(r −RQ). (15.6.14)
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As before H denotes the Heaviside step function. The form of Fσ assumes
that σ is taken up by proliferating and quiescent cells at the constant rate
λ0 and degraded by the externally supplied inhibitor at the rate λ1β. At the
same time β decays throughout the tumour at the constant rate λ2. For Fω

we assume that ω is produced at the constant rate λ3 by the necrotic cells and
decays at the constant rate λ4. The loss rate S consists of three factors: cell loss
due to apoptosis which is restricted to the proliferating and quiescent layers
where it occurs at the constant rate sσ̄ (where s is a proportionality constant),
cell loss due to necrosis which occurs at the rate sω and a production term
due to mitosis, restricted to the outer layer, at the rate sσ.

The model developed above is very flexible and can be used to investigate
several aspects of avascular tumour growth. We describe two particular cases;
namely uniform growth where there is no quiescence or necrosis and then
when quiescence is included.

In the case of uniform growth we assume RQ = RN = 0 and that there are
no growth inhibitors present, i.e., β = ω = 0. In this case the first of equations
(15.6.1) reduces to

1

r2
∂

∂r

(

r2
∂σ

∂r

)

− λ0 = 0,

which on applying the boundary conditions (15.6.4), (15.6.5) can be solved to
give

σ =
λ0

6
(r2 −R2) + σ∞ − 2α

R
. (15.6.15)

In a similar manner (15.6.10) reduces to

R2 dR

dt
= s

∫ R

0

(σ − σ̄)r2dr,

which may be integrated to give

dR

dt
= −s

3

(

λ0
R3

15
+ (σ̄ − σ∞)R+ 2α

)

. (15.6.16)

If we impose the constraint σ(0, t) > σ1 then we get an expression which de-
fines the range of tumour radii for which nonquiescent solutions are obtained,
i.e.,

σ∞ − σ1 >
λ0R

2

6
+

2α

R
.

When α = 0 this expression gives an upper bound on R with quiescence pre-
dicted when R2 ≥ 6(σ∞−σ1)/λ0. When α > 0 there is a nonzero lower bound
for R which can be interpreted as a nucleation radius. By setting d/dt = 0 in
equation (15.6.16) we obtain an expression which shows how the steady state
tumour radius depends on the system parameters. It is important therefore to
determine the stability or otherwise of these steady states and thus to assess
whether the tumour becomes malignant or not.
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Suppose we now consider the presence of an externally supplied inhibitor.
In this situation β and σ are given by

β = β∞ − λ2

6
(R2 − r2), (15.6.17)

σ = σ∞ − 2α

R
− λ0

6
(R2 − r2)− λ1

6

(

β∞ − λ2R
2

6

)

(R2 − r2) − λ1λ2

120
(R4 − r4)

(15.6.18)
and the ordinary differential equation governing R becomes

dR

dt
= −sR

3

(

λ0R
2

15
− (σ∞ − σ̄) +

2α

R

)

− sλ1R
3

45

(

β∞ − 2λ2R
2

21

)

. (15.6.19)

Once again, for valid nonquiescence we require σ(0, t) > σ1 and noting the
expressions for σ, β and dR/dt we see that

σ(0, t) |β>0= σ(0, t) |β=0 −λ1R
2

6

(

β(0, t) +
λ2R

2

20

)

< σ(0, t) |β=0

and
(

3

sR

dR

dt

)

β>0

=

(

3

sR

dR

dt

)

β=0

− λ1R
2

15

(

β(0, t) +
λ2R

2

14

)

<

(

3

sR

dR

dt

)

β=0

.

Consequently we deduce that the minimum nutrient concentration is reduced
when the external inhibitor is present and so quiescence is more rapidly initi-
ated.

Now consider the case when the tumour consists of an outer proliferating
layer and an inner quiescent layer. Without the externally supplied inhibitor,
β = 0, we find that σ(r, t) satisfies (15.6.15) and R(t) satisfies the ordinary
differential equation

R2

s

dR

dt
= −1

3

(

λ0R
2

15
− (σ∞ − σ̄) +

2α

R

)

(R3−R3
Q)+

λ0R
3
Q

30
(R2−R2

Q)−
σ̄R3

Q

3
,

(15.6.20)
with the condition σ(0, t) > σ2 to ensure nonnecrotic solutions. The radius of
the quiescent RQ(t) is determined implicitly by the condition σ(RQ, t) = σ2.
That is

σ2 = σ∞ − 2α

R
− λ0

6
(R2 −R2

Q).

15.7 Stability of tumour growth based on Model II

As we did in the case of Model I we give a flavour of the analysis of the
stability of a uniformly proliferating tumour colony. Setting β = 0 = RQ =
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RN and assuming the spherical tumour undergoes a small perturbation away
from the purely radial, then, as in Model I equations (15.4.7) and (15.4.8),
we assume

p(r, θ, t) = p(r, t) + ǫp̃(r, θ, t),

σ(r, θ, t) = σ(r, t) + ǫσ̃(r, θ, t) (15.7.1)

and the surface of the tumour is given at any time by

Γ(r, θ, t) = r −R(t) − ǫξ(θ, t) = 0, (15.7.2)

where (15.6.2) is solved to give

p(r, t) = p∞ +
s

6µ

(

σ∞ − σ̄ − 2α

R
− λ0R

2

6

)

+
sλ0

120µ
(R4 − r4). (15.7.3)

The first-order terms are seen to satisfy the system:

0 = ∇2σ̃ = µ∇2p̃+ sσ̃, (15.7.4)

∂ξ

∂t
= −µ

(

∂p̃

∂t
+ ξ

∂2p

∂r2

)

|r=R(t), (15.7.5)

subject to the conditions

∂p̃

∂r
= 0 =

∂σ̃

∂r

σ̃ =
α

R2

(

2ξ +
1

sin θ

∂

∂θ

(

sin θ
∂ξ

∂θ

))

− ξ
∂σ

∂r
|r=R(t)

p̃ = −ξ ∂p
∂r

|r=R(t)

ξ(θ, 0) = ξ0(θ), given.

The solutions of the above system of equation can be solved, as in the case of
Model I, in terms of time-dependent multiples of harmonic functions.

In the absence of cell–cell adhesion, (α = 0), it can shown that radially
symmetric steady state solutions are generally unstable. However when α 6=
0 there is a range of harmonic modes for which there are both stable and
unstable modes.

There are many problems relating to stability and mode configurations that
may be investigated as well as their consequences for tumour development.

15.8 Notes

Model I of tumour growth discussed in this chapter is inspired by the
model due to H.P. Greenspan, On the growth and stability of cell cultures
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and solid tumors, J. Theor. Biol., 56, 229–242, 1976 and is the outcome of a
previous article by the same author, Models for the growth of a solid tumor
by diffusion, Stud. Appl. Math., 51, 317–340, 1972.

In the former paper, Greenspan carries out a detailed stability analysis
along the lines briefly described in Section 15.4 and also shows that tumour
cell colonies which share the same nutrient supply repel each other and move
apart. The model is quite versatile and can be modified to describe several
important problems; for example, that of describing the movement of tumours
in the presence of solid boundaries or the effect on growth with changes in
the nutrient supply. Similar problems can be posed for the models developed
in this chapter.

Since the work of Greenspan there has been a considerable development in
our understanding of growth of solid avascular tumours both in in vitro and
in in vivo studies. This has led to other mathematical models being devel-
oped. Among such models is Model II which focuses on nutrient supply and
diffusion processes. This model is due to H.M. Byrne and M.A.J. Chaplain,
Free boundary value problems associated with the growth and development
of multicellular spheroids, Eur. J. Appl. Math., 8, 639–658, 1997.

Research into avascular tumour growth is increasingly being carried out
across the world, with the developed countries investing vast sums of money
in order to find cures and in improving treatments. At the same time math-
ematics is making a growing contribution to understanding the biochemical
and physical mechanisms underlying avascular tumour growth. A recent re-
view which provides an up-to-date and comprehensive account of existing
models is given in the article T. Roose, S. J. Chapman and P. K. Maini,
Mathematical models of Avascular Tumor growth, SIAM Review, 49,179-208,
2007.

We have mentioned in the introduction to this chapter the important role of
angiogenesis, the process whereby the tumour is able to acquire its own blood
supply from host tissue and nearby blood vessels. Many of the fundamental
discoveries associated with tumour angiogenesis were made by J. Folkman
and his colleagues (see the biography Dr. Folkman’s War by Robert Cooke,
Random House, New York, 2000). Mathematical models of angiogenesis of
varying degrees of complexity have and continue to be developed, see for
example: M.A.J. Chaplain and A.R.A. Anderson, Modelling the growth and
form of capillary networks in On Growth and Form, M.A.J. Chaplain, G.D.
Singh, and J.C. McLachlan, Eds. John Wiley & Sons, 1999; H.A. Levine,
S. Pamuk, B.D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling
of capillary formation and development in tumor angiogenesis: Penetration
into the stroma, Bull. Math. Biol., 63, 801–863, 2001; M.J. Plank, and B.D.
Sleeman, Lattice and non-lattice models of tumour angiogenesis, Bull. Math.
Biol., 66, 1785–1819, 2004.



Growth of Tumours 409

Further reading

Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson,
Molecular Biology of the Cell, 3rd ed., Garland, New York and London,
1994.

Folkman, J., The vascularisation of tumors. Sci. Am., 234, 58–64, 1976.

King, R. J. B., Cancer Biology, 2nd ed., Harlow, London and NY: Prentice
Hall, 2000.

Paweletz, N. and M. Knierim, Tumor related angiogenesis, Crit. Rev. Oncol.
Hematol., 9, 197–242, 1989.

Plank, M. J. and Sleeman, B. D. Tumour induced angiogenesis: a review, J.
Theor. Med., 5, 137–153, 2003.

Sherratt, J. A. and M. A. J. Chaplain, A new mathematical model for avas-
cular tumour growth. J. Math. Biol., 43, 291–312, 2001.

Sleeman, B. D., Mathematical aspects of modelling tumour angiogenesis,
in Nonlinear dynamics and evolution equation, Eds H. Brunner, Xiao-
Qiang, and Xinfu Zou, Fields Institute Communications, vol. 48, 257–
278, 2007.

Exercises

15.1 Write a MATLAB program to solve the differential equation (15.3.16)
for the evolution of the outer boundary, R(t), of a tumour subject to
the initial condition R(0)=1 and where RN is given by (15.3.18). Ex-
periment by choosing various values of Si, i = 1, 2 and σj , j = 1, 2 and
σ∞ to investigate the effects of proliferation, quiescence and necrosis.

15.2 Verify the steady state radius given by (15.4.6).

15.3 A tumour colony is cultured in a circular dish of radius A. Assume the
nutrient concentration σ has the constant value σA at the edge of the
dish. If the tumour colony is initially a circle of radius a and is assumed
to grow radially, formulate a mathematical model of type I of colony
growth under the same assumptions as for the growth of a spherical
tumour colony.

Hint: formulate the model using polar coordinates.

15.4 In Exercise 15.3 show that the outer boundary of the colony satisfies
the differential equation

dR

dt
= −S1

R

2
− (S2 − S1)

R2
N

2R
+
λ

µ

(σA − σ2)

R ln (A/RN )
,
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where R(t) and RN (t) are related by

(σA − σ2)
2

R2

= µ2[(σA − σ2) ln (R/A) ln (A/RN ) + (σA − σ1)(ln (A/RN ))2].

15.5 Investigate the growth of a fully vascularised tumour colony growing in
a circular dish, using Model I.

15.6 A vascularised tumour colony in a laboratory experiment grows along
a straight narrow tube. Using Model I and by ignoring any curvature
at the growing boundary, determine the rate of growth of the tumour
colony.

15.7 In equation (15.6.16) set dR/dt = 0 and draw a graph of R versus
σ∞ − σ̄ to show how the steady state varies with the parameter α.

15.8 Linearise (15.6.16) about the steady state solution and determine its
stability. Show that the steady state is locally stable provided the tu-
mour radius R satisfies

R2 >
5

λ0
(σ∞ − σ̄).

15.9 For Model II with uniform growth, in the presence of an externally
supplied inhibitor, show that β and σ are given by equations (15.6.17)
and (15.6.18).

Show that the tumour radius R satisfies the ordinary differential equa-
tion (15.6.19) and write a MATLAB program to solve it.

15.10 Suppose a tumour comprises an outer proliferating rim and an inner
quiescent region. Use Model II with β = 0 to show that σ satisfies
(15.6.15) and that the tumour radius R(t) satisfies the ordinary differ-
ential equation

R2

s

dR

dt
= −1

3

(

λ0R
2

15
+ (σ̄ − σ∞) +

2α

R

)

(R3 −R3
Q) +

λ0R
3
Q

30
(R2 −R2

Q)

−
σ̄R3

Q

3
,

where RQ is defined explicitly in terms of R by the condition σ = σ1:

σ1 = σ∞ − 2α

R
− λ0

6
(R2 −R2

Q)

and σ(0, t) > σ2 must be satisfied for nonnecrotic solutions.



Chapter 16

Epidemics

16.1 The Kermack–McKendrick model

The problem of epidemics is to assess how a group of individuals with a
communicable infection spreads the disease to a population able to catch it.
The model constructed depends upon the assumption made about the dis-
ease and the behaviour of the population. One possibility has been discussed
(Section 5.2) and the aim is now to amplify the study, as well as to take
account of more characteristics of the process of infection.

In the Kermack–McKendrick model, the population is presumed to be con-
stant in size and to be divided into three classes. There are I infected indi-
viduals who can pass on the disease to others and s susceptibles who have
yet to contract the disease and become infectious. The remaining group con-
tains r members who have been infected but cannot transmit the disease for
some reason, e.g., they have been isolated from the rest of the population.
These types of models are often referred to as SIR models. The governing
equations will be taken as

ṡ = −asI, (16.1.1)

İ = asI − bI, (16.1.2)

ṙ = bI (16.1.3)

with a and b positive constants.

The basis for (16.1.1) is that the susceptibles become infected at a rate
that is proportional to the number of contacts between individuals of s and I,
assuming that contact depends only on the numbers of each group, i.e., there is
uniform mixing of the population. The assumption in (16.1.3) is that the rate
at which individuals become unable to transmit the disease is proportional
to the number infected. It represents some kind of average of the process in
which particular individuals take different lengths of time to reach a state in
which they neither contract nor pass on the infection.

If now we add on the hypothesis of the constancy of the population, we
have

s(t) + I(t) + r(t) = N (16.1.4)

411
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where N is the population’s invariable size. A derivative of (16.1.4) then adds
(16.1.2) to (16.1.1) and (16.1.3).

At the beginning, t = 0 and r = 0 so that

s(0) + I(0) = N. (16.1.5)

There must be some infected and some available for infection at the start, so
I(0) > 0 and s(0) > 0.

Only solutions in which s, I and r are nonnegative are of concern. Therefore,
(16.1.1) implies that ṡ < 0 when both infected and susceptibles are present.
Hence s decreases steadily and

s(t) < s(t1) < s(0) (16.1.6)

for t > t1 > 0. The constant diminution of s and the fact that s must be
nonnegative means that, as t → ∞, s must tend to a limit (which may be
zero), i.e., s(∞) = limt→∞ s(t) exists.

From (16.1.2), İ < 0 if as < b. In view of (16.1.6) it follows that, if as(0) <
b, İ < 0 for all t and the infection is eventually wiped out. Thus there is
a critical level, or threshold value, of b/a which the initial population of
susceptibles must exceed if the epidemic is to spread. The threshold will be
low if b≪ a, i.e., the rate at which immunity is conferred is small enough for
the disease to prosper.

According to (16.1.3), r increases monotonically while (16.1.4) forces r(t) ≤
N. Hence r(∞) = limt→∞ r(t) exists. It follows from (16.1.4) and what has
been proved about s that I(∞) = limt→∞ I(t) also exists. The quantity
{I(∞) − r(∞)}/N is a measure of the extent to which the infection swept
through the population and so now we attempt to estimate the limits.

From (16.1.1) and (16.1.3)

ds

dr
= −as

b

so that
s = s(0)e−ar/b. (16.1.7)

Since r ≤ N, we are forced to have s ≥ s(0)e−aN/b and therefore s(∞) > 0,
i.e., there are always susceptibles available. Thus some individuals never suffer
from the disease; there are still susceptibles available when the disease stops
spreading.

The trajectories in the phase plane for s and I can be drawn. They are
solutions of, according to (16.1.1) and (16.1.2),

dI

dṡ
= −1 +

b

as

whence, on account of (16.1.5),

I = N − s+ (b/a) ln{s/s(0)}.
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FIGURE 16.1.1: The trajectories for an epidemic.

They are plotted in Figure 16.1.1, the direction of the arrows being dictated
by the steady decrease of s. Evidently, s(t)−s(∞) > 0 and I(t) → 0 as t→ ∞
(there are no critical points off I = 0). The consequence of this, (16.1.7) and
(16.1.4), is that

s(∞) = s(0) exp[−a{N − s(∞)}/b], (16.1.8)

a transcendental equation to determine s(∞). The equation is satisfied by
only one positive value of s(∞) less than b/a. Once s(∞) is known, r(∞) can
be calculated from r(∞) = N−s(∞) and the spread of the infection measured
by r(∞)/N or 1 − s(∞)/N.

16.2 Vaccination

In the preceding section, it has been implicitly assumed that the individuals
who are naturally immune are small enough in number to be neglected and
we shall continue to adopt this hypothesis. However, if a calculation by the
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previous model suggests that the infection will spread to unacceptable levels,
we may decide to introduce some immunity by means of vaccination.

For a simple model assume that vaccination removes an individual instanta-
neously from s or r without joining the group I and that a device is available
that prevents the infected from being vaccinated. There is then a group v of
vaccinated and we have

ṡ = −asI − α(t), (16.2.1)

v̇ = α(t) (16.2.2)

where (16.2.1) replaces (16.1.1) but (16.1.2) and (16.1.3) are retained, α being
the vaccination rate.

A decision on the function to be selected as the vaccination rate is not at
all easy. Any vaccination program involves cost through the employment of
people, equipment and supplies. Against this must be set the damage that is
caused to society by the infection. It may be desirable to vaccinate in order
to limit the total number who are infected in a given time interval, or to keep
the peak of those infected at any particular instant below some level, or both.
To ensure that no more than N1 of the population contract the disease for
0 ≤ t ≤ T we want

r(T ) + I(T ) ≤ N1 (16.2.3)

and, to force the peak of infection below N2 in the same time interval, we
need

max
0≤t≤T

I(t) ≤ N2. (16.2.4)

To control the disease in this way, α(t) would have to be chosen so that
(16.2.3) and (16.2.4) were satisfied while the cost of vaccination was kept to
a minimum. This is a problem in dynamic programming for which there
are available techniques, but they are beyond the scope of this book.

Before pursuing the model too far for a particular disease, it would be
necessary to verify that it complied with the two hypotheses on vaccination,
for vaccination may not grant immediate immunity and there may be no
acceptable way of determining those already infected.

16.3 An incubation model

In the Kermack–McKendrick model of Section 16.1, an individual is capa-
ble of passing on the infection as soon as he or she has succumbed to it. For
some diseases there is an incubation period during which an individual has
become infected but cannot communicate the disease to others. The incorpo-
ration of this feature into the model of an epidemic will be considered in this
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section. At the same time, the possibility that an individual may be infectious
for not more than a finite time will be allowed for.

Let s(t) be the number of those who are susceptible but who have not
yet been exposed to the disease and let E(t) be the number who have been
exposed to but cannot yet transmit the infection. The groups I and r are
defined as before.

Continue to assume that there is homogeneous mixing of the population so
that the rate of exposure is proportional to the number of contacts between
individuals of s and I. Then

ṡ = −asI. (16.3.1)

Thus (16.1.6) is still valid and s(∞) exists. Also a solution of (16.3.1) satisfies

s(t) = s(0) exp

{

−a
∫ t

0

I(u)du

}

. (16.3.2)

Suppose that the epidemic is started by a number of infectious individuals
entering a population which has been unexposed previously to the disease.
Assume that we know how many of these infectious individuals will remain
infectious as time varies. Until the population produces members who are
infectious

I(t) = I0(t) (16.3.3)

where I0(t) is a known function.
Assume now that an individual who contracts the infection at time t does

not become infectious until time t+T so that T specifies the incubation pe-
riod. Then, for 0 ≤ t ≤ T,

E(t) = s(0) − s(t) (16.3.4)

and, for t ≥ T,
E(t) = s(t− T ) − s(t). (16.3.5)

Keeping the population constant entails

s(t) + E(t) + I(t) + r(t) = N. (16.3.6)

While t ≤ T, incubation prevents any new infectious individuals from ap-
pearing. Therefore, (16.3.3) is valid and s(t) can be found from (16.3.2). Then
E(t) follows from (16.3.4) and r(t) from (16.3.6). Thus, all quantities are
known during the initial incubation period.

When t ≥ T , some of those who have been incubating the disease will have
become infectious. In fact, all those who were infected up to the time t − T
will be infectious. Consequently, (16.3.3) must be modified and replaced by

I(t) = I0(t) + s(0) − s(t− T ). (16.3.7)

Substitution of (16.3.7) into (16.3.1) leads to a differential-difference equation
for s(t) but its solution will not be required for our purpose.
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Now introduce the assumption that an individual remains infectious only for
the time interval σ. A necessary consequence is that I0(t) = 0 for t > σ because
all those who started the epidemic were infectious from the beginning. Since
none of those infected in the initial incubation period cease being infectious
for t ≤ T +σ, the equation (16.3.7) is valid for T ≤ t ≤ T +σ. However, when
t ≥ T + σ, some of the infected are no longer infectious; they are the ones
who were infected up to the time t−T −σ. Therefore, their numbers must be
removed from the infectious and (16.3.7) must be replaced by

I(t) = I0(t) + s(t− T − σ) − s(t− T ). (16.3.8)

Actually, the term I0(t) could be dropped because it is zero for t > σ and, a
fortiori, for t ≥ T + σ.

To determine s(∞) the integral in (16.3.2) has to be calculated. Now, for
t > T + σ,

∫ t

0

I(u)du =

∫ T

0

I(u)du+

∫ T+σ

T

I(u)du+

∫ t

T+σ

I(u)du.

Insert (16.3.3), (16.3.7) and (16.3.8), respectively, into the three integrals.
Then, after a change of variable of integration where s is involved,

∫ t

0

I(u)du =

∫ σ

0

I0(u)du+ σs(0) −
∫ t−T

t−T−σ

s(u)du

since I0(u) vanishes for u > σ. Let t→ ∞ so that both limits in the integral of
s(u) become large. But it has been pointed out that s(u) → s(∞) as u → ∞
so that s(u) can be replaced effectively by s(∞) in the integral, i.e.,

∫ t−T

t−T−σ

s(u)du ∼ s(∞)

∫ t−T

t−T−σ

du = σs(∞)

as t→ ∞. Hence

∫ ∞

0

I(u)du =

∫ σ

0

I0(u)du+ σ{s(0) − s(∞)}.

Consequently, we deduce from (16.3.2) that

s(∞) = s(0) exp

[

−a
∫ σ

0

I0(v)dv − aσ{s(0) − s(∞)}
]

, (16.3.9)

which constitutes an equation to determine s(∞).
Equation (16.3.9) can be expressed in the form

z = exp{β(z − 1 − ǫ)}, (16.3.10)
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FIGURE 16.3.1: Variation of z = s(∞)/s(0) with β.

where z = s(∞)/s(0), β = aσs(0) and

ǫ = (a/β)

∫ σ

0

I0(v)dv.

The left-hand side of (16.3.10) is 0 at z = 0 and 1 at z = 1, whereas the
right-hand side is positive and less than 1 (since ǫ > 0), respectively, at the
two points. Hence there is a positive root with z ≤ 1, i.e., s(∞)/s(0) ≤ 1 as
there should be. The root does not differ by much from z = 1 when βǫ is
fairly small. Some graphs of the value of z for various values of β and ǫ are
shown in Figure 16.3.1. They are knee-shaped with a distinct kick near β = 1
when ǫ is very small. Interpreting ǫ as a measure of the infectiousness of the
initial infectives, and β as the number of susceptibles likely to be infected by
each infective, we see that, when the initial infectives are only a very small
proportion of the population, the infection tends to die out without altering
the susceptibles much if β < 1, but to originate a substantial epidemic if
β > 1. This is a kind of threshold effect. The effect becomes less pronounced
for higher values of ǫ, indicating that when there are sufficient initial infectives
there is a tendency for a significant epidemic to occur.

Various refinements to the foregoing model have been proposed, some of
which are in the exercises. One possibility is that the parameter a should
be made a function of time in order to permit seasonal and cyclic changes.
For example, measles has relatively high and low incidences in alternate years,
whereas chickenpox recurs annually. It is more probable that the low incidence
of measles is due to periodic alteration of a than to a threshold effect.
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The model can be generalised to the case of two populations as when par-
asites transmit disease (e.g., mosquitoes infecting humans with malaria) or
when an infection is transferred from one sex to another, but details will be
omitted.

16.4 Spreading in space

A basic hypothesis in the preceding sections is that the population is mixing
thoroughly, so that there is no distinction between the individuals in one place
and those in another. When this is not so, the disease may spread faster in
some parts than in others and it is necessary to allow the variables to depend
on space as well as time. For simplicity, we shall assume that only one space
variable is involved, though most of the ideas carry over to more general cases.

Take x as the single space variable. Then, in the Kermack–McKendrick
model, s and I will be functions of t and x giving the distributions of sus-
ceptibles and infected, respectively, at time t at the position x. Moreover,
it is necessary to allow for the effect of the infected at one position on the
susceptibles at another place. Therefore, replace (16.1.1) by

∂s

∂t
= −

{∫ ∞

−∞
F (x, x′)I(t, x′)dx′

}

s(t, x) (16.4.1)

where the nonnegative function F (x, x′) is a measure of the influence of the
infected at the position x′ on the susceptibles at x. The integration permits
the possibility of all those infected at time t affecting the susceptibles at x.
The corresponding replacements for (16.1.2) and (16.1.3) are

∂I

∂t
=

{∫ ∞

−∞
F (x, x′)I(t, x′)dx′

}

s(t, x) − g(t, x)I(t, x) (16.4.2)

and
∂r/∂t = g(t, x)I(t, x), (16.4.3)

respectively.
The presence of F in the system (16.4.1)–(16.4.3) makes the system highly

flexible and offers the ability to cover many different situations. Unfortunately,
this very flexibility makes the system awkward from an experimental point of
view. Unless the structure of F is very simple it is unlikely that its functional
behaviour can be determined by experimental observations alone. The best
approach is to make plausible assumptions about F based on any informa-
tion available and compare the consequent predictions with experiment. For
instance, it is known that certain epidemics have a propensity for spreading
like a wave travelling in space. One possible supposition on F that reproduces
such behaviour will be discussed now.
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A plausible hypothesis for some diseases is to imagine that the transmission
of infection depends only on the distance between individuals. Furthermore,
it seems reasonable to suppose that the transmission will be relatively poor
unless the individuals are close to one another. This suggests trying

F (x, x′) =

{

f(|x− x′|) (|x− x′| < δ)

0 (|x− x′| ≥ δ)

where δ is a small quantity. Then

∫ ∞

−∞
F (x, x′)I(t, x′)dx′ =

∫ x+δ

x−δ

f(|x− x′|)I(t, x′)dx′

=

∫ δ

−δ

f(|u|)I(t, x+ u)du

on putting x′ = x+u. On account of the smallness of δ introduce the approx-
imation

I(t, x+ u) = I(t, x) + u
∂

∂x
I(t, x) +

1

2
u2 ∂

2

∂x2
I(t, x).

As a result

∫ ∞

−∞
F (x, x′)I(t, x′)dx′ = I(t, x)

∫ δ

−δ

f(|u|)du+
1

2

∂2I

∂x2

∫ δ

−δ

u2f(|u|)du

since uf(|u|) is an odd function of u. With this approximation equations
(16.4.1) and (16.4.2) convert to

∂s

∂t
= −s

(

θI + φ
∂2I

∂x2

)

, (16.4.4)

∂I

∂t
= −∂s

∂t
− gI (16.4.5)

where θ and φ are positive constants defined by

θ =

∫ δ

−δ

f(|u|)du, φ =
1

2

∫ δ

−δ

u2f(|u|)du.

The partial differential equations (16.4.4) and (16.4.5) constitute the diffu-
sion approximation to the problem of the spatial spread of an epidemic.

Let us examine whether the diffusion approximation is capable of sustaining
a wave-like epidemic. If it is, then there must be solutions of (16.4.4) and
(16.4.5) which are travelling waves. According to Section 10.7 a travelling
wave is a function of x − ct where c is the speed of the wave. Consequently,
solutions of the form

s(t, x) = s1(x− ct), I(t, x) = I1(x− ct)
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are sought in which the constant c is real and positive. Whether c can be
chosen freely or is subject to limitations will have to be investigated.

Write ζ = x − ct and substitute the assumed progressive waveforms for s
and I into the partial differential equations. There results

cs′1 =
(

θI1 + φI ′′1
)

s1, (16.4.6)

cI ′1 = −cs′1 + gI1 (16.4.7)

where the primes signify derivatives with respect to ζ.
Divide (16.4.6) by s1 and integrate with respect to ζ starting from ζ = A.

Then

c ln{s1(ζ)/s1(A)} =

∫ ζ

A

{θI1(u) + φI ′′1 (u)}du

= θ

∫ ζ

A

I1(u)du+ φ{I ′1(ζ) − I ′1(A)}. (16.4.8)

Integration of (16.4.7) gives, when g is a constant,

c{I1(ζ) + s1(ζ) − I1(A) − s1(A)} = g

∫ ζ

A

I1(u)du. (16.4.9)

Elimination of the integral from (16.4.8) and (16.4.9) leads to

φI ′1(ζ) = φI ′1(A) + c ln{s1(ζ)/s1(A)}
−{θc/g){I1(ζ) + s1(ζ) − I1(A) − s1(A)}, (16.4.10)

which is a differential equation of the first order for I1. Insertion of (16.4.10)
into (16.4.7) gives

s′1(ζ) = (g/c)I1(ζ) − I ′1(A) − (c/φ) ln{s1(ζ)/s1(A)}
+ {θc/gφ){I1(ζ) + s1(ζ) − I1(A) − s1(A)}. (16.4.11)

In this way (16.4.6) and (16.4.7) are transformed into the first-order system
(16.4.10) and (16.4.11)

Since the spread of the epidemic is dictated by the motion of the wave we
do not expect any individuals to be infected at the position x until the wave
arrives. The number of susceptibles at that position before the advent of the
wave is fixed by the initial state of the susceptibles. Since t→ −∞ corresponds
to the time before the wave gets going these conditions are met by requiring:
s1(∞) to be some positive constant and I1(∞) = 0, I ′1(∞) = 0 assuming that
the wave starts smoothly. Letting A→ ∞ in (16.4.10) and (16.4.11) we have

I ′1(ζ) = (c/φ) ln{s1(ζ)/s1(∞)}
− {θc/φg)(I1(ζ) + s1(ζ) − s1(∞)}, (16.4.12)

s′1(ζ) = (g/c)I1(ζ) − (c/φ) ln{s1(ζ)/s1(∞)}
+ {θc/gφ){I1(ζ) + s1(ζ) − s1(∞)}. (16.4.13)
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The discussion of (16.4.12) and (16.4.13) is simplified somewhat by switch-
ing to the variables X(ζ) = s1(ζ)/s1(∞) and Y (ζ) = I1(ζ)/s1(∞). This has
the advantage that only values of X(ζ) between 0 and 1 need be considered.
In terms of the new variables, (16.4.12) and (16.4.13) become

X ′(ζ)/α = − lnX(ζ) + β{X(ζ) − 1} + (β + γ)Y (ζ), (16.4.14)

Y ′(ζ)/α = lnX(ζ) − β{X(ζ) − 1} − βY (ζ) (16.4.15)

where

α = c/φs1(∞), β = θs1(∞)/g, γ = φgs1(∞)/c2. (16.4.16)

Note that the constants α, β and γ are all positive.
Once the wave has passed a particular position there should be no infected

there and the number of susceptibles should have settled down to a steady
level (which may be zero). This will be the state at a point as t → ∞ and
so the conditions Y (−∞) = 0 and X ′(−∞) = 0 are imposed. It follows from
(16.4.14) that the final number of susceptibles, obtained from X(−∞), is
determined by

lnX(−∞) = β{X(−∞)− 1}. (16.4.17)

The exponential of (16.4.17) is the same as (16.3.10) with ǫ = 0, which
enables us to say that, when β ≤ 1, the only solution of (16.4.17) in the
permitted range of X is X(−∞) = 1. But, in that case, the susceptibles have
been unaffected and there has been no epidemic. Therefore, in order for an
epidemic to occur, it is necessary that β > 1, i.e.,

s1(∞) > g/θ (16.4.18)

from (16.4.16). Thus (16.4.18) is a necessary condition for the existence of a
wave and sets a lower bound on the initial density of susceptibles in order for
the population to support a progressing epidemic. Hence there is a threshold
below which the susceptibles are inadequate for a wave-like epidemic.

When (16.4.18) is satisfied there is a solution of (16.4.17) with X(−∞) < 1
and, furthermore, X(−∞) < 1/β (see Exercise 16.5). Consequently,

s1(−∞) < g/θ. (16.4.19)

Comparison with (16.4.18) indicates that, after the passage of the wave, the
number of susceptibles is insufficient to sustain the wave again. In other words,
according to this model, once a wave epidemic has swept through a population
it cannot do so again until more susceptibles have been added to the population.

So far nothing has been said about the speed at which the epidemic travels
through the population. Some information can be garnered from the phase
plane for X and Y on the assumption that (16.4.18) and (16.4.19) hold.
Equations (16.4.14) and (16.4.15) possess then only two critical points at
(X(−∞), 0) and (1, 0), respectively. Near the point (X(−∞), 0) put X(ζ) =
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X(−∞)+ ξ, Y (ζ) = η and linearise the differential equations (Section 5.3) to
give

ξ′/α =

{

β − 1

X(−∞)

}

ξ + (β + γ)η,

η′/α =

{

1

X(−∞)
− β

}

ξ − βη.

The equation for the exponents (see Section 5.4) is

λ2 +
αλ

X(−∞)
− α2γ

{

1

X(−∞)
− β

}

= 0, (16.4.20)

which corresponds to a saddle-point since βX(−∞) < 1. The dividing lines
of Figure 5.4.3 have equations

X(−∞)(β + γ)η =

[

1

2
− βX(−∞) ± 1

2
{1 + 4γX(−∞)(1 − βX(−∞))}1/2

]

ξ

with the upper sign for the line which leaves the saddle-point. Evidently, the
line with the upper sign has positive slope whereas that with the lower sign
has negative slope. Consequently, there is just one trajectory from (X(−∞), 0)
entering the first quadrant of the phase plane in X(ζ) > X(−∞).

The linearised equations for the critical point (1, 0) are the same except for
X(−∞) being replaced by unity. Hence (16.4.20) continues to hold with the
same replacement. Since β > 1 the critical point is either a stable node or a
stable focus. A focus is unacceptable because a trajectory in its neighbourhood
would spiral around the critical point (1, 0) and values of X(ζ) greater than 1
would occur on it. Since X(ζ) is not permitted to exceed 1 the critical point
cannot be a focus. In order that it be a stable node it is necessary that

4(β − 1)γ ≤ 1. (16.4.21)

Expressed in terms of the original quantities via (16.4.16) this implies that

c ≥ 2[φs1(∞){θs1(∞) − g}]1/2, (16.4.22)

which sets a lower bound on the speed of a possible wave.
To confirm that there is a wave with a speed satisfying (16.4.22) we must

show that there is a trajectory connecting the two critical points subject to
(16.4.18), (16.4.19) and (16.4.21). Since it has been shown already that there
is a trajectory leaving (X(−∞), 0) on which X(ζ) increases it will be sufficient
to verify that this trajectory must end up at (1, 0). On Y = 0 we see from
(16.4.14) and (16.4.15) that Y ′ > 0 and X ′ < 0 between the critical points.
Hence no trajectory can leave the first quadrant by crossing Y = 0 between
the critical points. On X = X(−∞) it is clear that X ′ > 0 and Y ′ < 0 so
that no trajectory in X > X(−∞) can depart through the line X = X(−∞).
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Now consider what happens on the line

(β + γ)Y =
(

1
2 − β

)

(X − 1). (16.4.23)

Since lnX ≤ X − 1 for X > 0

X ′/α ≥ − 1
2 (X − 1) > 0,

Y ′/α ≤
(

1
2β + γ − γβ

)

(X − 1)/(β + γ).

Accordingly, on a trajectory

dY

dX
≤ 2γ(β − 1) − β

β + γ
≤ 1/2 − β

β + γ

by virtue of (16.4.21). The conclusion is that, since β > 1, no trajectory
can pass through the line (16.4.23) from below to above. Thus the sides of the
triangle bounded by Y = 0, X = X(−∞) and (16.4.23) are impassable barriers
to a trajectory in the interior. It follows from the Poincaré–Bendixson theorem
(Section 5.6) that a trajectory from (X(−∞), 0) must go to either a limit cycle
or the other critical point. If there were a limit cycle the observation at the end
of Section 5.6 indicates that there would have to be a critical point interior
to it and, therefore, in the interior of the triangle. But that is contrary to
what has been demonstrated already. Any trajectory inside the triangle must
go more or less directly to the stable node at (1, 0). Therefore, the trajectory
entering from (X(−∞), 0) must go to (1, 0), i.e., there is a unique trajectory
starting from (X(−∞), 0) and ending at (1, 0).

The trajectory is traversed from start to finish as ζ increases. Increasing ζ
corresponds to decreasing t. Therefore, as t increases, ζ falls and progress along
the trajectory must be in the opposite direction. In other words, as t grows
with x fixed, s1 changes continuously from s1(∞) to s1(−∞). An epidemic
wave can exist that alters the number of susceptibles from s1(∞) before the
arrival of the wave to s1(−∞) after the wave has finally died away provided
that (16.4.18), (16.4.19) and (16.4.22) are valid. The only restriction on the
wave speed is that of (16.4.22). For every value of c which satisfies (16.4.22)
there is a trajectory in the phase plane which accomplishes the transition of
susceptibles from start to finish.

In summary the predictions of this model are as follows:

(i) There can be no epidemic wave unless there are sufficient initial suscep-
tibles as specified by (16.4.18).

(ii) If there are enough susceptibles initially for a wave the number of suscep-
tibles left behind is insufficient for another wave without regeneration.

(iii) There can be no wave with a speed less than

2[φs1(∞){θs1(∞) − g}]1/2
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and the larger s1(∞) the faster the wave must travel, i.e., the more sus-
ceptibles there are initially the quicker the epidemic must spread. There
can be epidemic waves with speeds higher than the minimum. Altering c
changes γ (but not β or X(−∞)) and thereby the pattern of trajectories
but there is still one from (X(−∞), 0) to (1, 0).

Exercises

16.1 Show that (16.1.8) determines one and only one positive value of s(∞)
less than b/a.

16.2 In another version of the incubation model, a variable time to become
infectious is allowed for by saying that an individual becomes infectious
at time t if exposed to the disease at the earlier time τ(t) so that τ(t) ≤ t.
Assume that τ(0) = 0 and that τ(t) increases steadily with t. Show that
the equations for I(t) in Section 16.3 are replaced by

I(t) = I0(t) + s(0) − s{τ(t)} (0 ≤ t ≤ σ),

I(t) = I0(t) + s{τ(t− σ)} − s{τ(t)} (t ≥ σ)

when an individual remains infectious for the time σ.

Deduce that

∫ ∞

0

I(v)dv =

∫ σ

0

I0(v)dv + σ{s(0) − s(τ(∞))}.

Show that (16.3.10) is still satisfied with z = s(τ(∞))/s(0) and

ǫ =
1

β

[

a

∫ σ

0

I0(v)dv − ln

{

s(τ(∞))

s(∞)

}]

.

Prove that ǫ > 0.

16.3 To allow for a nonconstant time during which an individual is infectious
in Exercise 16.2 let p(x) be the proportion of individuals who are still
infectious after a time x has elapsed from becoming infectious. Assume
that p(x) is positive, decreases steadily as x increases and p(x) = 0 if
x > σ. Show that

I(t) = I0(t) −
∫ t

0

p(t− u)
d

du
s{τ(u)}du.



Epidemics 425

Prove that
∫ ∞

0

I(v)dv =

∫ σ

0

I0(v)dv + {s(0) − s(τ(∞))}
∫ σ

0

p(u)du

and that the other conclusions to Exercise 16.2 still hold, but with

β = as(0)

∫ σ

0

p(u)du.

16.4 Show that, if ǫ > 0 in (16.3.10) and β > 1, there is a unique positive
root with z < 1 and it satisfies 0 < z < 1/β.

[Hint: ln x ≤ x− 1 for x > 0.]

16.5 If ǫ = 0 in (16.3.10) show that there is one positive root with z < 1 if,
and only if, β > 1 and that then 0 < z < 1/β.

16.6 Prove that (16.4.1)–(16.4.3) imply that

s(t, x) + I(t, x) + r(t, x) = N(x)

where N(x) is the initial population at point x, and deduce that

lim
t→∞

r(t, x) = R(x)

exists.

16.7 If g(t, x) = h(x) in (16.4.1)–(16.4.3), prove that

N(x) = R(x) + s(0, x) exp

{

−
∫ ∞

−∞
F (x, x′)R(x′)dx′/h(x′)

}

where N and R are defined in Exercise 16.6.

16.8 Generalise (16.4.1)–(16.4.3) to two space dimensions x, y and show that,
if

F (x, y, x′, y′) = f1(|x− x′|)f2(|y − y′|)
in the small region |x−x′| < δ1, |y−y′| < δ2 but is otherwise zero, the as-
sociated diffusion approximation includes a partial differential equation
of the form

∂s

∂t
= −s

(

θI + φ1
∂2I

∂x2
+ φ2

∂2I

∂y2

)

.

16.9 Substitute for ∂s/∂t in (16.4.5) from (16.4.4). Show that the resulting
partial differential equation for I has a solution

I(t, x) =
e(θs−g)t

t1/2
e−x2/4φts
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when s and g are constants. If a is positive and
∫∞

a
I(t, x)dx = C(t) find

the formula for C(t). Deduce that, as t→ 0 with a fixed,

aC(t) = 2φt1/2s exp{(θs− g)t− a2/4φts}

approximately.



Answers to Selected Exercises

Chapter 1

1.1 r0 − αt.

1.2 p0(n)t/T .

1.4 The curve drops steadily, without any point of inflexion, from an initial
value of p(0) to an eventual value of N0/a. This demonstrates that, if
the population could be started above N0/a by some means, crowding
would force it down to N0/a in the end.

1.6 (a) y = Dtet; (b) y2 + 3y = Dt; (c) y2 + 1 = Dt(1 + t).

1.7 (a) Dt = ey2/2t2 ; (b) {(y/t) − 1}ey/t = C + ln t; (c) y = t/(C + ln t).

1.8 (a) New equation is dy/dt = (t+ y)/(t− y), which is of homogeneous
type (with solution tan−1 z − 1

2 ln(1 + z2) − ln t = C, z = y/t).

(b) New equation is dy/dt = (at+ by)/(a′t+ b′y), which is of homoge-
neous type.

1.9 (a) y = (t+C)(1− t2)−1/2; (b) y = Cet2/2−e2t; (c) w = ±t(C+ t2)1/2.

1.10 y = (1 + Cet2/2)−1.

1.11 (a) y2 = C(t+ 1)2 − 2(t+ 1); (b) t2 = Ce2y + 2y.

1.12 y =
2

t
+

1

Ct8 − 2t/7
.

1.13 (a) y =
2

t
+

1

Ct5 − t/4
; (b) y = t+

1

t+ C
.

1.14 (a)

{

t− 1

t+ 1

}1/2

y = 1
2 ln(t+ 1) + C;

(b) sinh−1(2y/t) = ln t+ C;

(c) et + e−2y = C;

(d) 1
2 ln{4(t+ 1)2 + (2y + 3)2} + tan−1

(

y + 3/2

t+ 1

)

= C;

427



428 Differential Equations and Mathematical Biology

(e) 1
2 ln

(

1 + 2t− y

1 − 2t+ y

)

= 2t+ C;

(f) (t+ a)−3y = (t+ a)2 + C;

(g) tan(2y/t) + ln t = C;

(h) 1
8 (2y − 2t+ 5)2 + 2t = C;

(i) (2y − 1) cos2 2t = C(2y + 1);

(j) (1 − t)1/2y = 2(1 + t)1/2 + C;

(k) 2t− 2y + ln{(2t+ 2y + 1)2 + 1} = C;

(l) tey = tan y + C.

1.16 40 min.

1.17 200 h.

1.18 98.1%.

1.19 c = (2D/W )e−t/6; about 8 hours; about 7 1
2 hours.

1.20 25–100 mg/h.

1.21 p = p0 exp{−K(t− t0)/R}; p = RI0 + (p0 −RI0) exp{−K(t− t0)/R}.

Chapter 2

2.1 (a) C1e
3t + C2e

5t;

(b) (C1 + C2t)e
4t;

(c) (C1 cos 2t+ C2 sin 2t)e−t + t2 + 1
5 t− 12

25 ;

(d) C1e
2t + C2e

−t + 10te2t;

(e) C1 cosωt+ C2 sinωt+ cosΩt/(ω2 − Ω2);

(f) C1 cosωt+ C2 sinωt+ (t/2ω) sinωt;

(g) (C1 cos 1
2

√
3t+ C2 sin 1

2

√
3t)e−t/2 + 3

2 + 9
26 cos 2t− 3

13 sin 2t.

2.2 (a) C1e
−2t + C2e

−t + 2t2 − 7t+ 17/2;

(b) C1e
(
√

3−1)t + C2e
−(

√
3+1)t − 3

10 t
5 − 3

2 t
4 − 9t3 − 36t2 − 99t− 135;

(c) C1 + C2e
−3t + 1

2 t
4 − 2

3 t
3 + 7

6 t
2 + 2

9 t;

(d) (C1 cos 1
2

√
3t+ C2 sin 1

2

√
3t)e−t/2 + 2et(2 sin t− 3 cos t);

(e) C1 + C2e
−3t + 5

3 t− 3
2 (3 cos t+ sin t);

(f) (C1 + C2t)e
t + cos t+ 3t2et;

(g) C1 cos 3t+ C2 sin 3t+
(

sin 3t− 1
2 cos 3t

)

t.
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2.3 (a) {(At+B) cos t+ (Ct+D) sin t}t+ Et+ F ;

(b) At2 +Bt+ C + (Dt+ E)t2e2t + (Ft+G) cos 2t+ (Ht+ I) sin 2t;

(c) (At2 + Bt + C)et sin 2t + (Et2 + Ft + G)et cos 2t + et(H cos t +
I sin t) +Ket;

(d) (At+B)et + {(Ct+D) cos 2t+ (Et+ F ) sin 2t}t.

2.4 (C1 + C2 ln t+ ln2 t)t.

2.5 C1e
2t + C2e

−t + 5te2t.

2.6 C1 cos t+ C2 sin t+ 3t.

2.7 1
5e

t − 1
4 t cos 2t.

2.8 (a) 4
3e

−t(1 + t)5/2;

(b) (C1 − t) cos t+ (C2 + ln sin t) sin t.

2.10 (a) A cos t+B sin t+ C cos 2t+D sin 2t;

(b) (A+Bt)e−2t + Ce−3t;

(c) A+Bt+ (C cos 3t+D sin 3t)e−t;

(d) (C1 + C2t+ C3t
2 + C4t

3)et.

2.12 (a) C1 + C2e
t + C3e

−t + 1
2 cos t;

(b) C1 cos t+ C2 sin t+ C3e
t + C4e

−t − 1 − t2;

(c) (t2 − 5t)et + C1 + C2t+ C3e
t + C4e

−t.

2.13 (b) (At+B)e−t2 ;

(c) (cos 1 + 2 sin 1 − 1)/t2 + (2 + cos 1 − sin 1)/t− (t sin t+ 2 cos t)/t2.

Chapter 3

3.1 (a) x = C1e
t + C2e

−5t − 6
7e

2t,

y = −C1e
t + C2e

−5t + 8
7e

2t;

(b) x = (C1 + C2t− 8t5/2)et,

y = (C1 − 1
2C3 + C2t+ 10t3/2 − 8t5/2)et.

3.2 x = 3
2 + Ce−t/2, y = − 1

2 − 3Ce−t/2.

3.3 (a) x = C1e
−7t + 2C2e

−3t,

y = 2C1e
−7t + 3C2e

−3t;
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(b) x = (C1 cos 2t+ C2 sin 2t)e−t,
y = (C2 cos 2t− C1 sin 2t)e−t;

(c) x = (C1 + C2t)e
t,

y = C2e
t;

(d) x = C1 + C3e
2t,

y = C2e
−t − 2C3e

2t,
z = C1 − 2C2e

−t + C3e
2t;

(e) x = C1e
2t + {C2 + (2 + t)C3}et,

y = (C2 + C3t)e
t,

z = C1e
2t + {C2 + (1 − t)C3}et.

3.4 x = (2 + 3t)et − t− 1,
y = (6t+ 1)et − 3t− 1.

3.5 (a) x = et − 1
7e

−5t − 6
7e

2t,

y = −et − 1
7e

−5t + 8
7e

2t;

(b) x = 2e−4t + e3t + t− 2,

y = e−4t − 3e3t + 2.

3.6 x = t3e3t + t,
y = 1 − 3t,
z = −6.

3.7 t (0 ≤ t ≤ π), 1
2πe

π−t − 1
2π cos t− (1

2π + 1) sin t (t > π).

3.14 − 4

π
t1/2

∞
∑

m=0

sin(2m+ 1)(t− π)

(2m+ 1){(2m+ 1)2 + 1} .

Chapter 4

4.1

ǫ
d2x

dt2
+ (3x2 + a)

dx

dt
+ x = xa.

4.4

φ′′ − cφ′ + φ(1 − φ)(φ − a) = ψ,

cψ′ = bφ− γψ.

4.6

c = 0.
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4.8

a−1 = 1 +

[

c

2
+

√

(

c2

4
+ 1

)

]2

, θ =
π

2
;

a−1 = 1 +

(

1 +
(

c
2 + γ

) [

c+
(

c
2 + γ

)

p
]

1 +
(

γ − c
2

) (

(γ − c
2

)

p− c)

)1/2

× exp

[

cβ

2
cos−1

(

p− c2

2 − 1

p+ 1

)]

,

where

γ =

√

(

c2

4
+ 1

)

, β =

√

(

p− c2

4

)

, p = tan θ.

4.9

(0, 0, 0);

(

Xi,
fk3AXi

(k1A+ k2Xi)
,
k3AXi

k5

)

,

where Xi, i = 1, 2, satisfies

2k2k4X
2 + [k2k3A(f − 1) + 2k1k4A]X − k1k2A

2(f + 1) = 0.

4.12

dX

dt
= A− (B + 1)X +X2Y,

dY

dt
= BX −X2Y.

4.14

(0, 0);

(

a

b
, 0

)

;

(

e

f
,
af − be

cf

)

.

4.15

(0, 0);

(

a

b
, 0

)

;

(

e

f
+ X̄,

(e+ fX̄
[

af − b(e+ fX̄)
]

cef

)

,

c 6= 0, af > b(e+ fX̄).

(0, 0);

(

a

b
, 0

)

;

(

0,
e

g

)

;

(

ce− ag

cf − gb
,
fa− bc

cf − gb

)

;

ce− ag

cf − gb
> 0 and

fa− bc

cf − gb
> 0.
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Chapter 5

5.1 (a) None; (b) y0 = 0, singular; (c) t0 = 0, singular; (d) t0 = 0, singular;
(e) t0 = 0, singular.

5.2 (a) Unstable node, (b) saddle-point, (c) centre, (d) stable node,
(e) unstable focus, (f) saddle-point, (g) stable focus, (h) centre.

5.3 Stable node.

5.4 a < 0, saddle-point; b2 > a > 0 node (stable b > 0, unstable b < 0);
b = 0, a > 0, centre; b2 < a focus (stable b > 0, unstable b < 0).

5.5 Focus.

5.6 The trajectories are 1
2cy

2 + x2 + ax3 + bx4 = constant and x = 0, y = 0
is a centre.

5.8 If b > 0 there is a centre at x = 0, y = 0 and, if b < 0, a saddle-point. If
b = 0 either x = constant, y = 0 for all t or y remains of one sign.

5.9 θ = ±π are saddle-points. For 0 < µ < 1 there is a saddle-point at θ = 0
and centres at θ = ± cos−1 µ. For µ > 1, there is a centre at θ = 0.

5.10 The trajectories are 2λ2y2 = 2Cλ2e−2λx+1−2λx where C is a constant.
Closed curves for −1 < 2λ2C < 0.

5.14 Unstable limit cycles.

Chapter 7

7.2 Critical points are (ui,
b

γ
ui), where ui, i = 1, 2, 3, satisfies

u3 − u2(1 + a) +

(

a+
b

γ

)

u− I = 0,

I =
b

γ
: (u,w) =

(

1,
b

γ

)

, if a2 <
4b

γ
;

(u,w) =

(

1,
b

γ

)

,

(

a±
√

(a2 − 4b/γ)

2
,
b

γ

[

a±
√

(a2 − 4b/γ)

2

])

,

if a2 ≥ 4b

γ
;

I =
ab

γ
: (u,w) =

(

a,
ab

γ

)

, if
b

γ
>

1

4
;
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(u,w) =

(

a,
ab

γ

)

,

(

1 ±
√

(1 − 4b/γ)

2
,
b

γ

[

1 ±
√

(1 − 4b/γ)

2

])

, if
1

4
≥ b

γ
.

7.4

cφ′ = φ′′ + f(φ) − ψ,

cψ′ = bφ− γψ.

Unique rest state if f(φ) = φg(φ) and g(φ) 6= b/γ.

Chapter 9

9.1 47 years; 200 whales.

9.2 1.26 million (in fact 5 million were killed each year in the early 1870s).

9.3 If A = ad− cg there are three critical points where A > 0: saddle-points
at (0, 0) and (a/g, 0) whereas (c/d,A/bd) is a stable node if A < g2c/4d
but a stable focus if A > g2c/4d. Predator population becomes A/bd
eventually. If A < 0 there is a saddle-point at (0, 0) and a stable node
at (a/g, 0); the predators are eventually wiped out.

9.4 Four critical points (0, 0), (a/g, 0), (0, c′/g′),

(

ag′ − bc′

gg′ + bd
,
ad+ c′g

gg′ + bd

)

. No.

Chapter 10

10.2 2y + 2(y − x)2.

10.3 3x.

10.4 4θ + 2ρe−θ.

10.5 3(y − x)(x − 1) + 3(y − x)2e−2x + 3(y − x)e−x.

10.6 ln y − x2 + y2 − 1
2 ln(y2 − x2).

10.7 1
2x

2 − 1
4y

2 + 1
2x

2y + 1
4 .

10.8 x(1 + 2y/x)2 − 2xy.

10.9 1
2xy + f(y/x) where f is any function such that f(1) = 0.

10.10 (a) Elliptic everywhere; (b) hyperbolic everywhere; (c) elliptic in |x| >
2|y|, hyperbolic in |x| < 2|y|; (d) hyperbolic in first and third quadrants,
elliptic in second and fourth; (e) parabolic everywhere; (f) parabolic
everywhere.
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10.11 4 cos2 α
∂2u

∂ξ∂η
=
∂u

∂ξ
+
∂u

∂η
.

10.12 2
∂2u

∂ξ∂η
=

1

ξ − η

(

∂u

∂ξ
− ∂u

∂η

)

.

10.13 3 ln y + 3x2y − x2y4 − 6.

10.14 (Ax+B)2ν/(2ν−1).

10.15 (a) One solution; (b) several solutions; (c) either one or none.

10.21 Use the polar version of the two-dimensional animation program of Sec-
tion 10.10. The command for defining U is:

(a) U = cos( Omega*t(I) + m*Theta + R );

(b) U = cos( Omega*t(I) + m*Theta + log(R) );

Chapter 11

11.2

u(x, t) = 1 − φ(x/
√

4t), φ(s) =
2√
π

∫ s

0

e−t2dt.

11.3

u(x, t) =
∞
∑

n=1

Ane
−n2π2t sinnπx, An = 2

∫ 1

0

f(x) sinnπxdx.

11.4

u(x, t) =
8

π

∞
∑

n=1

e−n2t

n3
sinnx.

11.5

u(x, t) = 2 + 2
∞
∑

n=1

[(−1)n+1 − 1]

(2 + n2)
e−n2t cosnx.

11.6

u(x, y, t) =
4

π2

∞
∑

m=1

∞
∑

n=1

e−(m2+n2)π2t

mn
(−1)m+n sinmπx sinnπy.
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11.8

u =
1

2
exp(cξ), −∞ < ξ < 0,

=
1

2
+

c

2
√

(c2 − 4)
exp

[(

c+
√

(c2 − 4)

2

)

ξ

]

− c

2
√

(c2 − 4)
exp

[(

c−
√

(c2 − 4)

2

)

ξ

]

, 0 ≤ ξ ≤ ξ1

= 1 − 1

4
exp

[(

c−
√

(c2 + 4)

2

)

(ξ − ξ1)

]

, ξ1 < ξ <∞,

where c > 2 with c and ξ1 satisfying

exp

(

1

2
cξ1

)

sinh

(

√

(c2 − 4)

2

)

ξ1 =

√

(c2 − 4)

4c
,

coth

(

√

(c2 − 4)

2

)

ξ1 = 4

√

(c2 + 4)

c
− 2.

11.14 No.

Chapter 12

12.2

c(x, t) =
c0

(4πt)
1
2

∫ a

−a

exp

(

−(x− y)2

4t

)

dy.

12.3

c(r, t) =
2c0a

rπ

∞
∑

n=1

(−1)n+1

n
sin
(nπr

a

)

exp

(

−Dn
2π2t

a2

)

, r ≤ a,

= c0

(

1 − 2a

rπ
1
2

∫ ∞

(r−a)/(4πt)1/2

e−x2

dx

)

, r > a.

12.7

(u, v) =

(

α

α− β
,

β

α− β

)

, α > β, α > 1

δ >

√

α

β
(
√

α− β +
√
α).
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Chapter 14

14.1 Fixed points are at (0, 0) (unstable); (0, 0.1) (saddle); (1, 0) (saddle);
(0.37, 0.47) (stable focus).

14.3 (a) When µ = 0, fixed points are y = 0 (unstable) and y = 1 (stable).

(b) The function required in MATLAB is

function f = myrhs(z)

r = 5;

f = r *z(1)*(1-z(1)) - z(2)*z(1)*(1+exp(-0.5*z(1)));

z(2) represents the parameter µ. Using this function in conjunction
with newton, path_follow and calculate_eigenvalues produces
the following bifurcation diagram:

0 1 2 3 4 5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

µ

y

 

 

stable

unstable

14.4 The system has a Hopf bifurcation at µc = 15.1. For µ < µc, there is
a stable fixed point; for µ > µc, there is an unstable fixed point and a
stable limit cycle.

14.5 The unstable and saddle fixed points do not change location or stability
as a changes; the stable fixed point changes location (

√

y2
1 + y2

2 decreases
as a increases) but does not change stability in the range 0 < a < 20.

14.7 (a) µ = 3
√

3/2.
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(b)
0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

µ

x

14.8 (a) Fixed points are at y∗
1 = (0, 0, 0) and

y∗
2 =

(

±
√

b(r − 1),±
√

b(r − 1), r − 1
)

. The Jacobian matrix at

these points is

J(y∗
1) =





−σ σ 0
r −1 0
0 0 −b



 ,

J(y∗
1) =





−σ σ 0

1 −1 ∓
√

b(r − 1)

±
√

b(r − 1) ±
√

b(r − 1) −b



 .

(b) The fixed point y∗
1 is unstable for all values of r; y∗

2 is stable for
r < 24.3 and unstable for r > 24.3.

14.9 The maximal Lyapunov exponent is negative for r < 24.3 and positive
for r > 24.3.

Chapter 15

15.5

P =
(S2 − S1)

4
(r2 −R2) +

α

R
,

R(t) = R(0) exp(S1 − S2)
t

2
.

15.6
X(t) = X(0) exp(S1 − S2)t,

where X(t) is the outer boundary of the tumour colony.
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Bessel function, 149
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fold, 332, 370, 374
Hopf, 335, 346, 376–378
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of limit cycle, 334–336
period-doubling, 339–346, 354,

378–380
pitchfork, 331, 375
point, 277, 329, 331
saddle-node, 332

theory, 277
Bilipid layer, 295
Boundary conditions, 81

Dirichlet, 86, 236
mixed, 237
Neumann, 87, 236
no flux, 321
periodic, 81

Boundary value problem, 78–87, 275
Bray, D., 409
Brindley, J., 386
Brunner, H., 409
Byrne, H. M., 408

Carrying capacity, 10, 107
Cauchy’s problem, 247–250
Cells

division, 9–11, 391, 402
Cellular transport model, 295
Chaos, 340, 342–346, 349, 354, 380–

384
Chaplain, M. A. J., 408, 409
Characteristic equation, 37, 52

repeated roots, 53
Characteristics, see Partial differen-

tial equations
Chemical reactions, 100–105, 110, 308–

311
Chlorine, 94
Commensalism, 106
Comparison theorem, 277–288
Competition, 106

model, 109, 143
Complementary function, 36–40, 52
Confined set, 325
Conservation of mass, 393–394
Conservative system, 132, 330
Contracting set, 325
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Cooke, R., 408
Critical point, see Equilibrium
Cronin, J., 110

d’Alembert’s solution, 242, 254
Damping, 50, 51
Darcy’s law, 403
Diastole, 92, 163, 166
Dictyostelium discoideum, 204
Diffusion, 103, 270, 390, 402

coefficient, 294
driven instability, 311–325
equation, 234, 259–264, 293
matrix, 293, 313
system, 293–325
through membranes, 293–299

Drugs
concentration of, 4–8

Duffing’s equation, 161
Dynamic programming, 414

Eigenfunction, 79, 82, 263
orthogonal, 81

Eigenvalues, 69, 79, 121, 122, 127,
138, 263, 331, 367, 372, 385

Embryology, 311
Energy method, 299–303
Enzymatic reactions, 21, 103–105, 110
Epidemic, 118–119, 128, 411–424

diffusion approximation, 419
incubation, 414–418
spreading in space, 418–424

Equilibrium, 95, 118–132, 212–215
and bifurcation, 329–334, 367–

369
discrete system, 337
in partial differential equations,

311–325, 384–385
pseudo-steady state, 105

Euler’s method, 20
Euler–Darboux equation, 245, 250–

251
Evolutionary equation, 269–277, 313
Excitability, 177–184

Existence of solution, 35, 115–118,
153–159

Existence theorem, 115, 153–159

Factorisation of the operator, 46–47
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“… a valuable addition to the growing literature in mathematical biology from a 
deterministic modeling approach. … topics are carefully chosen and well balanced. 
…The book is written by experts in the research fields of dynamical systems and 
population biology. As such, it presents a clear picture of how applied dynamical 
systems and theoretical biology interact and stimulate each other … .”
—Mathematical Reviews, Issue 2004g

Applying mathematics to biological and physical situations, Differential Equations 
and Mathematical Biology, Second Edition introduces fundamental modeling 
and analytical techniques used to understand biological phenomena. In this edition, 
many of the chapters have been expanded to include new and topical material.

New to the Second Edition
•	 A section on spiral waves 
•	 Recent developments in tumor biology
•	 More on the numerical solution of differential equations and numerical 

bifurcation analysis
•	 MATLAB® files available for download online
•	 Many additional examples and exercises 

The book uses various differential equations to model biological phenomena, 
including the heartbeat cycle, chemical reactions, electrochemical pulses in 
the nerve, predator–prey models, tumor growth, and epidemics. It explains 
how bifurcation and chaotic behavior play key roles in fundamental problems 
of biological modeling. The authors also present a unique treatment of pattern 
formation in developmental biology based on Turing’s famous idea of diffusion-
driven instabilities.
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