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Preface to the First Edition

In recent years, mathematics has made a considerable impact as a tool with
which to model and understand biological phenomena. In return biology has
confronted the mathematician with a variety of challenging problems which
have stimulated developments in the theory of nonlinear differential equations.
This book is the outcome of the need to introduce undergraduates of math-
ematics, the physical and biological sciences to some of these developments.
It is primarily directed to university students who are interested in modelling
and the application of mathematics to biological and physical situations.

Chapter 1 is introductory, showing how the study of first-order ordinary
differential equations may be used to model the growth of a population, mon-
itoring the administration of drugs and the mechanism by which living cells
divide. In Chapter 2, a fairly comprehensive account of a linear ordinary dif-
ferential equation with constant coefficients is given while Chapter 3 extends
the theory to systems of equations. Such equations arise frequently in the
discussion of the biological models encountered throughout the text. Chap-
ter 4 is devoted to modelling biological phenomena and in particular includes
(i) physiology of the heartbeat cycle, (ii) blood flow, (iii) the transmission of
electrochemical pulses in the nerve, (iv) the Belousov—Zhabotinskii chemical
reaction and (v) predator—prey models.

Nearly all the biological models described in Chapter 4 have special solu-
tions which arise as solutions to first-order autonomous systems of nonlinear
differential equations. Chapter 5 gives an account of such systems through the
use of the Poincaré phase plane.

With the knowledge of differential equations developed thus far, we are in
a position to begin an analysis of the heartbeat, nerve impulse transmission,
chemical reactions and predator—prey problems. These are the subjects of
Chapters 6-9.

In order to gain a deeper insight into biological models, it is necessary
to have knowledge of partial differential equations. These are the subject
of Chapters 10 and 11. In particular, a number of the models discussed in
Chapter 4 involve processes of diffusion (Chapter 12), and the evolutionary
equations considered in Chapter 11 are basic for an understanding of these
processes. A special feature of Chapter 12 is a treatment of pattern formation
in developmental biology based on Turing’s famous idea of diffusion driven
instabilities. The theory of bifurcation and chaotic behaviour is playing an in-
creasing role in fundamental problems of biological modelling. An introduction
to these topics is contained in Chapter 13. Chapter 14 models and studies

xiii



xiv Preface to the First Edition

problems of growth of solid avascular tumours. Again differential equations
play a fundamental part. However, a new feature here is that we encounter
moving boundary problems. The book concludes in Chapter 15 with a discus-
sion of epidemics and the spread of infectious diseases, modelled via various
differential equations.

As an encouragement to further study, some of the chapters have notes
indicating sources of material as well as references to additional literature.
Each chapter has a set of exercises which either illustrate some of the ideas
discussed or require readers to develop and test models of their own.

In writing the book, the authors have endeavoured to give it a multipur-
pose role. For example, it can be used (i) as a course in differential equations
based on Chapters 1, 2, 3, 5, 10 and 11; (ii) as a course in biological modelling
for students of mathematics and the physical sciences or (iii) as a course
in differential equation models of biology for life science students based on
Chapters 1, 2, 3, 5, 10, 11, 12 and 13, together with a selection of the remain-
ing chapters depending on the students’ interests. Throughout the stages of
writing this book, the authors have benefited from discussions and advice
from colleagues in the Department of Mathematics, University of Dundee and
the School of Mathematics, University of Leeds. To them all, we express our
appreciation.

Finally, it is a pleasure to thank Nick Hill, Mel Holmes, Michael Plank,
Doreen Ross and David Sleeman for all their efforts in connection with the
preparation of this book.

D. S. JONES and B. D. SLEEMAN
Dundee and Leeds



Preface to the Second Edition

Since the first appearance of Differential Equations and Mathematical Biol-
ogy, published by Allen and Unwin in 1983, mathematical biology has become
a mainstream branch of applied mathematics and many student programs
in colleges and universities across the world now offer mathematical biology
and systems biology courses. Over this past quarter of a century, theoreti-
cal research in biology has intensified leading to significant advances in many
fields. The book grew out of the need to introduce students in the physi-
cal, mathematical and biological sciences to some of fundamental modelling
and analytical techniques with which to deepen understanding of biological
phenomena.

In the first edition published by CRC Press in 2003, and in light of bio-
logical developments, some reassessment of the material was undertaken. For
example the chapter on catastrophes was replaced by a discussion of bifurca-
tion and chaos. The chapter on problems of diffusion was expanded to include
an introductory account of diffusion driven instability and Turing patterns.
A further important addition was an introduction to the symbolic algebra
package Mathematica®.

The current edition represents a continuation of this evolutionary process.
Many of the chapters have been expanded to include new and topical material.
For instance Chapter 8 now includes a section on spiral waves and Chapter
9 has been expanded to include some recent developments in tumour biol-
ogy. The most significant part of the evolutionary process has been to include
much more on the numerical solution of differential equations and numerical
bifurcation analysis. An ideal tool for such computational approaches is the
programming package MATLAB®, which is now widely used in the mathe-
matical and systems biology communities.

Many more examples and exercises have been added which we hope will be
useful to students.

In the course of writing this edition the authors have benefitted from dis-
cussions and cogent criticisms from colleagues and students both in the School
of Mathematics, University of Leeds and the Department of Mathematics and
Statistics, University of Canterbury. Thanks to them all.

XV



xvi Preface to the Second Edition

All MATLAB® files found in the book are available for download from
the publisher’s Web site. MATLAB® is a registered trademark of The Math-
Works, Inc. For product information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA

Tel: 508 647 7000

Fax: 508 647 7001

E-mail: info@mathworks.com

Web: www.mathworks.com

D. S. JONES, M. J. PLANK and B. D. SLEEMAN
Dundee, Canterbury and Leeds
July 2009



About the Authors

Douglas S. Jones, a Fellow of the Royal Society and of the Royal Society of
Edinburgh, is Professor Emeritus, formerly Ivory Professor, of mathematics
in the University of Dundee. His many contributions to applied mathematics
and in particular to electromagnetic theory have been recognized by a number
of awards including the Naylor Prize of the London Mathematical Society, the
van der Pol Gold Medal of the International Union of Radio Science, the Keith
Prize of the Royal Society of Edinburgh, the Marconi Prize of the Institute of
Electrical Engineers and an Honorary Doctorate of the University of Strath-
clyde. Professor Jones is an Honorary Fellow of Corpus Christi College Oxford
and past president of the Institute of Mathematics and its Applications.

Michael J. Plank is a senior lecturer in Mathematics at the University of
Canterbury, Christchurch, New Zealand. He completed his PhD in applied
mathematics under the supervision of Professor Sleeman at the University of
Leeds in 2003. He moved to the University of Canterbury in 2004, first as a
postdoctoral fellow, and subsequently as a lecturer from 2006. He is actively
researching in a number of areas of mathematical biology and was recently
awarded an Emerging Researcher Award by the University of Canterbury.

Brian D. Sleeman, a Fellow of the Royal Society of Edinburgh, is Profes-
sor Emeritus, formerly professor of applied mathematics, in the University of
Leeds. In recognition of his contributions to applied analysis and in particular
to mathematical biology he holds honorary professorships at the University
of Dundee, the University of Abertay Dundee and the University of Wuhan,
Peoples Republic of China. He is also a member of Clare Hall, University
of Cambridge. Professor Sleeman is a former Erskine Visiting Fellow of the
University of Canterbury, New Zealand and past president of the Edinburgh
Mathematical Society. He is also founding Editor of the Journal Computa-
tional and Mathematical Methods in Medicine.

xvii






Chapter 1

Introduction

1.1 Population growth

To indicate why the study of differential equations can be useful some simple
examples will be considered.

The way that the size of a population varies in time is a matter of interest
in several contexts. Let the number of individuals in a given area at time ¢ be
p(t). At time ¢+ T the number of individuals is p(t+T") so that p(t+T) — p(t)
must be the number of individuals that have been added to the population
during the time interval T'. The longer the interval the more individuals can
be expected to arrive and the shorter the time the fewer additions can be
expected. So write the change in the time interval T as NT and then

p(t+T)—pt)=NT

. p(t+T) — p(t)
T

Letting T" — 0 we see that the left-hand side becomes the derivative of p with
respect to t. Consequently, we have

dp(t)

dt

= N.

To gain an idea of the properties of N suppose that the change in size of
the population is due entirely to individuals being born. As time progresses
the fertility of parents may alter so that more or less offspring are born. Then
the number born in the interval T may vary as time proceeds. In other words
N may alter as t does. Another effect is introduced by the simple hypothesis
that the more individuals there are at time ¢ the more births are likely to
occur. Then N will depend on p(t) also. Both possibilities can be allowed for
by rewriting our equation as

dz—? = N{t,p(t)} (1.1.1)

to show explicitly quantities on which NV depends.
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Sometimes
1dp
pdt
is known as the specific growth rate or per capita growth rate. So
another way of describing (1.1.1) is to say that the specific growth rate is
N(t.p)/p-

It is plausible to assume that, in a short time interval, there will be about
twice as many births as in a time interval of half its length. Thus, one could
expect that the number of births would be proportional to p(¢t)T when T is
small. If the fertility of the parents does not change, the actual number of
births in the time interval T can be expressed as Nop(t)T with Ny a suitable
constant. Then (1.1.1) becomes

dp(t)
——= = Nop(t 1.1.2

i op(t) ( )
which states that the specific growth rate is Ny, the same for all times and all
sizes of population.

The solution of (1.1.2) is
p(t) = poe™ot (1.1.3)
where pg is any constant. This may be confirmed by taking a derivative of
(1.1.3) with respect to t. The value of pg can be fixed by putting ¢ = 0 in

(1.1.3); evidently pg is the size of the population at ¢ = 0. By rearranging
(1.1.3), it can be seen that

When p(t) = epg, we get t = 1/Np, and hence 1/Nj is the time taken for the
population to increase by a factor of e.
Another way of verifying the result in (1.1.3) is to integrate (1.1.2) with

respect to t. Thus
t t 1 d
No / dt = / =P g
0 o pdt

/P(t) dp
p(0) P

on changing the variable of integration from ¢ to p. Hence

Not = In{p(t)/p(0)} (1.1.4)

which agrees with (1.1.3).

The behaviour of the population as time increases according to (1.1.3) is
displayed in Figure 1.1.1. The size grows steadily, and the increase becomes
dramatic as time goes on. Of course, in any real situation, there will be a limit
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FIGURE 1.1.1: Graph of exponential growth.

to the growth because of a shortage of essential supplies, insufficient food and
self-pollution of the environment. Nevertheless, many organisms exhibit ex-
ponential growth in their initial stages. It is always easy to check whether a
population is growing exponentially by plotting Inp against time; a straight
line should be obtained. The slope of the line is the specific growth rate Ny
as is clear from (1.1.4).

Equation (1.1.2) has been derived on the assumption that only births occur.
In the event that there are deaths but no births the same equation can be
reached. However, Ny is now a negative number since the population decreases
in the time interval T. It follows from (1.1.3) that the population decays
exponentially with time from its size at ¢ = 0.

More facets of the population problem can be incorporated. For instance,
we may postulate that the number of deaths in the short time interval T is
Dop(t)T. Similarly, individuals may enter the given area from outside, say
I(t)T immigrants in the interval T'. Likewise, some may depart from the area
giving rise to F(t)T emigrants. Then

p(t+T) = p(t) = Nop()T — Dop(t)T + I()T — E()T

leading to

dz_(tt) = (No — Do)p(t) + I(t) — E(t) (1.1.5)

when T — 0.
More generally, I and E could be made to depend on p so that (1.1.5),
which is often called Verhulst’s differential equation, can be difficult to
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solve. In fact, (1.1.5) could be regarded as a particular case of (1.1.1) with
an appropriate definition of N but that does not make it any easier to solve.
Notwithstanding this, it is transparent that, if we hope to predict the size of a
population at a given time, finding the solution of a differential equation will
be an essential requirement.

1.2 Administration of drugs

When a drug is administered, it forms a concentration in the body fluids.
This concentration diminishes in time through elimination, destruction or
inactivation. The rate of reduction of the concentration is found, in most cases,
to be proportional to the concentration. Therefore, if ¢(t) is the concentration
at time ¢, and there is no external input of the drug, we have

—c(t) = ——, (1.2.1)

where 7 is a constant which measures the rapidity with which the concentra-
tion falls. This simple model describes drug concentration in a single com-
partment (such as the blood plasma), which is assumed to be well mixed (i.e.,
the concentration throughout the compartment is assumed to be the same at
any given point in time).

Exactly the same differential equation can be derived from (1.1.5) for a
population which changes only by deaths which happen at a constant specific
rate. So conclusions about drugs can be transferred easily to populations which
alter by death alone.

Analogous to (1.1.3) the solution of (1.2.1) is

t) = coe VT, (1.2.2)

where ¢y is the concentration at time ¢ = 0. Notice that when t = 7 the
concentration has dropped to ¢g/e, so that in time 7 the concentration has
been reduced to 1/e of its initial value. This explains the significance of the
time 7; the larger it is, the more slowly the drug disperses.

According to (1.2.2) the drug never disappears completely from the body
except after infinite time. However, the residual concentration will usually be
negligible when ¢ > 7. Notwithstanding this, the fact that some of the drug is
always left is relevant when repeated doses are made, as is common practice.
The level to which the drug accumulates is then of particular importance.

Suppose that a dose is administered regularly at the times ¢ = 0, tg, 2tg,
3to, . ... It is assumed that each dose raises the drug concentration by a fixed
amount ¢y, and that this change in concentration happens instantaneously
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Concentration of drug

Co

Number of doses
1 2 3 4 5 .

FIGURE 1.2.1: Concentration of drug initially.

(i.e., all of the drug administered is instantly absorbed into the fluid com-
partment). At time ¢g the residual concentration r; just before the second
dose is

r = coe_tO/T,

and then the second dose is given so that the total concentration ¢; is given
by

c1 = co + coe /7.

From t = tg to t = 2ty the concentration will fall exponentially so that the
residual concentration ro just before the third dose at ¢ = 2¢ is

Ty = Cle_tU/T = Coe_tO/T(l + e_tO/T).
After the third dose the concentration ¢y is
Co =¢Co+1ro= Co(]_ —+ e_tO/T + 6_2t0/7—).

Clearly, if we keep doing this, we shall discover that at ¢ = (n — 1), with n
a positive integer,

cno1 = co(l+e t/m pe72t0/m 4 4 em(nDto/T)
1 — e~ nto/7T

= C

on summing the geometric series. The residual concentration r, at t = ntg
will be

1— efntg/r

Tn = Cp_1e /T = coeto/7

1_67_%/7_ (1.2.4)

from (1.2.3).
The manner in which the drug builds up as the number of doses increases is
illustrated in Figure 1.2.1. The level of concentration grows in an oscillatory
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fashion. At first sight it looks as though there is no limit to the concentration.
To check whether this is true examine (1.2.3). The only term involving n is
€~™0/T in the numerator. Since this term decreases as n increases, ¢, does
increase with n. However, the growth is not unlimited because the exponential
decays to zero. Thus the concentration never exceeds cp; where

€o

= (1.2.5)

CMm
The concentration becomes cjs only in the limit as n — oo, yet cpr is a
good estimate of the concentration immediately after a dose when ntg/7 > 1.
Indeed, if ntg > 57, ¢,—1 differs from ¢jp; by less than 1% so that, unless ¢o/7
is small, the level of concentration will not be far from cy; after a few doses.
To put it another way, if you want to reach the maximum concentration in
about 5 doses, you should make the interval between doses larger than 7.
Naturally, the larger ¢to/7 is made the closer the maximum becomes to cg, the
concentration of a single dose.
Similarly, just before a dose the residue approaches r as n increases, where
r is given by

to/r c
r=cye /" = rﬁo_ o (1.2.6)

Observe that ¢y = ¢o + r. Notice also that (1.2.6) implies that r becomes
small when to/7 is large. The larger ¢o/7 the more the level of concentration
varies between doses. Thus, there is a trade-off between keeping the residue
above a certain level and reaching cp; in a few doses.

When sufficient doses have been administered for (1.2.5) and (1.2.6) to be
good approximations the concentration behaves as in Figure 1.2.2. It swings
between cpr and r, never exceeding cps nor falling below 7.

The oscillatory build-up of Figure 1.2.1 may be undesirable. Several an-
tibiotics can have harmful effects until their concentration has surpassed a
certain threshold, since sub-optimal concentrations may induce resistance to
the drug by the micro-organisms. The oscillatory growth can be avoided by
taking advantage of the behaviour in Figure 1.2.2. An initial large dose of
co + 7 or cy is given and thereafter doses of ¢y are supplied at intervals of
to. The first dose takes the concentration to ¢p; and from then on the level
follows the curve of Figure 1.2.2. So long as r is above any threshold imposed
the difficulty referred to has been surmounted.

Example 1.2.1

A drug is available in doses of M mg, which raise the blood plasma con-
centration of an average adult by 10 mg 1~!. Once in the blood plasma, the
drug concentration decays according to equation (1.2.1) with 7 =4 h. Health
regulations require that the concentration never exceed 15 mg 17!, What is
shortest safe time interval at which doses can be given regularly? What is the
minimum concentration if doses are given at this time interval? In general,
what will be the minimum concentration of a drug that decays according to
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Concentration of drug

Cum

Number of doses

16 17 18 19 20

FIGURE 1.2.2: Concentration of drug after many doses.

(1.2.1), and is given in doses that raise plasma concentration by cg at regular
intervals to ensure that its concentration never exceeds cps?

Rearranging equation (1.2.5) to find ¢g, the time interval between doses in
terms of maximum safe concentration c,;, the dose concentration ¢y and the

time constant 7 gives
c
to=7ln (i) |
Cp — Co

Substituting in the values cpy = 15 mg 17, ¢g = 10 mg 1™ and 7 = 4 h
gives tg = 4.4 h. If the drug is given regularly at this time interval, the lowest
concentration will occur immediately before the second dose at ¢ = ty. The
concentration at this time will be

c(to) = coe /T =3.3 mg 171

In the general case, the minimum concentration always occurs just before the
second dose at t = ty. Using the expression above for t; gives

c(to) = coe /T = ¢ (1 — C—O> .

CMm

In other words, the drug concentration will fall to a minimum of 1 — ¢y/cps of
its administered concentration.

Example 1.2.2

Suppose a virus enters the blood stream and develops at a rate proportional
to its concentration. An antidote to the virus is administered at a time h
and decays according to the law (1.2.1). Write down a simple model of virus-
antidote interaction and estimate the dosage of antidote needed to eradicate
the viral infection as quickly as possible.
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Let the virus concentration be denoted by ¢(t) and the antidote concentra-
tion by a(t). A basic model is represented by:

d

d—; = kc — pa,

da a

—_—=—— 1.2.7
dt T’ ( )

where k£ > 0 is the rate of proportionality and p is the rate at which the
antidote kills virus cells.
At ¢t = 0 suppose ¢(0) = ¢p. For 0 < ¢t < h we assume a(t) = 0 (which
means that c(h) = coe®") and at t = h, a(h) = ao.
(From (1.2.2) we find that a(t) is given by;
a(t) =0, 0<t<h,
h—t

:aoe+, t > h.

Substituting this result into the equation for ¢ we have

dC h—t
— — ke = —page 7, t > h.
i pao =
This equation can be rearranged as
d(ce?) Bt gy
= —page” 7
dt pao

(a general method for doing this will be explained in Section 1.6), which on
integrating both sides with reset to ¢ gives

t
c(t)e ™k — ¢y = —page*® / e~k )e gy,
h

or

_ page k" . pag (h—t)
ct) = <c0 — W) ekt 4 TSy (1.2.8)

For ¢(t) to decrease it is clear that the antidote administered at ¢t = h should
satisfy the condition
c
ap > —(k+1/7)e"".
p

This shows that the virus will be eradicated at a time T' > h satisfying the
equation

ottt/ _ (a0 — colk + 1/T)e)
bao

Co kh
=1——(k+1/7)e"". 1.2.9
(ke 1/7) (1-29)

)

Clearly the larger the dose ag, the quicker the virus ¢(t) is cleared from the
blood stream.
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1.3 Cell division

When cells divide, their numbers grow by a process akin to that of Sec-
tion 1.1. A new feature is that the multiplication in numbers is restricted by
crowding effects. Biochemically, these may be due to lack of nutrient, shortage
of oxygen, change in pH or the production of inhibitors, for example. What-
ever the cause, the cells are interacting with one another. Since each cell can
interact with p others there are p? possibilities. This suggests that, in (1.1.1),
we should put

N{t,p(t)} = Nop(t) — ap(t)? (131

where Ny and a are positive constants. The term involving Ny is the same as
before and accounts for the increase due to division. The term containing a
represents the inhibition on growth caused by crowding. With the substitution
(1.3.1), (1.1.1) gives

d
d_f = Nop — ap? (1.3.2)

which is called the logistic equation.
If we integrate (1.3.2) from 0 to ¢, as in Section 1.1, we obtain

t t
1 dp
dtz/ ———dt
/0 o Nop —ap? dt
)

p(t dp
»0) Nop —ap?’

when p is employed as the variable of integration. Now,

/L_L/G_L)d_iln(L)
Nop —ap* Ny p ap—No )T TN \ap— o)

Hence we have

1 (p(0{ap(0) — No)
t‘mlﬂww—%w@)
whence

p(t){ap(0) — No} = {ap(t) — No}p(0)e™°".
Consequently,

Nop(0)
ap(0) + {No — ap(0) }e~Not

which is known as the logistic law of growth.

The curve of logistic growth is shown in Figure 1.3.1, assuming that Ny >
ap(0). The curve rises steadily from the value p(0) at ¢t = 0 to an eventual
value of Ny/a, there being no maxima or minima in between. There may,

p(t) = (1.3.3)
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p(t)

No/a —————————————————————

No/2a |- — —

[
p(0) I
[
|
[

fo
FIGURE 1.3.1: The curve of logistic growth.

however, be a point of inflexion where the curve crosses its tangent at ¢t = tg

where ) N
to=—1In{ —> — 1
°= N “<ap<o> )
and p(tg) = No/2a.

Observe that the final value No/a of p does not involve p(0), so that, no
matter what the initial size of the population, its final size is always the same
and does not depend on the starting size of the population. This final value
imposes a limit on growing populations and is referred to as the carrying
capacity of the environment.

Example 1.3.1
Suppose a population of cells grows logistically according to equation (1.3.1),
with a per capita growth rate of Ny = 0.1 h~! (i.e., a small population that
is not approaching carrying capacity will take approximately 10 h to increase
by a factor of e). If the initial size of the population is 10% of the carrying
capacity, how long will it take for the population to reach 95% of the carrying
capacity?

The solution (1.3.3) to the logistic equation can be rewritten, by multiplying
the numerator and denominator by 1/a as:

Kp(0)
p(0) + (K —p(0)) e~Not”

p(t) =

where K = Ny/a is the carrying capacity. Rearranging to find ¢ in terms of
p(t) gives
() (K~ p(0))

YT N M p(0) (K pt))
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Substituting in Ngp = 0.1 h™! and the conditions p(0) = 0.1K and p(t) =
0.95K, we find t = 51.4 h. I

The logistic law assumes that all the cells divide at the same rate. This is
not always true. There are types in which some cells divide faster than others.
Whether the logistic law can be applied still depends upon the differences
between the various rates of division present. If the rates are not too far apart
it is probably feasible to take Ny as their average. For greater deviations it
may be necessary to adopt a model in which the statistics of the number of
cells of a given age and type at a given time play a part.

1.4 Differential equations with separable variables

Having seen from the preceding sections that models lead naturally to dif-
ferential equations, we shall devote the rest of this chapter to investigating
some of the methods of solution for differential equations. In general, a dif-
ferential equation picked out of a hat will be insoluble, at least in terms of
elementary functions. However, progress can be made with particular types
and attention will be concentrated on those which yield to analytical attack.

The first type to be considered is that which can be written

f(y)cé—?; = g(1). (1.4.1)

It is called a differential equation of the first order with separable
variables. The phrase “of the first order” signifies that the only derivative
which is present, namely dy/dt, is of the first order. Integrate both sides of
(1.4.1) to obtain

s = [ gt

where tg is some constant. If t1 is another constant

/t: g(t)dt = /tl75 g(t)dt + /t:I g(t)dt

and the second term on the right-hand side is just a constant. Therefore we

can write
dy t
/ fly dt / g(t)dt+C (1.4.2)

without indicating the lower hmlt of integration (other than that it is a con-
stant) providing that the constant C' is left at our disposal. On the left-hand
side of (1.4.2) change the variable of integration to y and then

/y fly)dy = / g(t)dt + C. (1.4.3)
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If (1.4.1) were expressed formally as
fly)dy = g(t)dt,

(1.4.3) could be obtained by placing an integral sign on each term and adding
the constant C.

A value cannot be assigned to C unless y is prescribed for some value of
t. Thus a general solution such as (1.4.3) is bound to involve an arbitrary
constant.

Example 1.4.1
Find the general solution of

dy
T? —t*)—= +ty=0
( ) Tty =0,
T being a constant.
Using the formal approach described above, we rewrite the differential equa-

tion as
dy tdt

Y g

so that the general solution is

Y dy botdt
[ meee

By carrying out the integrations, we obtain

207

Iny—il|T? -} =C

whence
y = eC|T2 _ t2|1/2.

Put e¢ = K and then the general solution is
y = K|T? — t3|1/2, (1.4.4)

where now K is the arbitrary constant.
If it is known that y = 1 when ¢ = T'/2, substitution in (1.4.4) gives

1=KTV3/2
from which is deduced that K =2/ T+/3. Thus

2|T2 _ t2|1/2

is the solution of the differential equation which takes the value 1 when ¢t =
T/2.

(1.4.5)
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Example 1.4.2

Find the general solution of
dy _ ky
dt — y+M’

where k and M are constants.
Rearranging the equation to separate the variables y and ¢ gives

y+ M

dy = kdt

and integrating both side of this equation gives
y+ Mny =kt + C,

where C' is an arbitrary constant. This can be easily solved to give ¢ in terms
of y, but there is no explicit solution for y in terms of ¢. The value of C is
again determined by some given initial condition. For example, if y = yo when
t = 0 then
Yo+ Mlnyy =C,
which leads to
Y — yo + M1n (y/yo) = kt.

Example 1.4.3
Find the general solution of the differential equation

d _
dt )
Rearrange the equation as in the previous example to get

1

and integrate both sides to obtain

where c is an arbitrary constant.
This example has the important feature that the solution may not exist for
all time. For instance if at t =0, y = yo > 0 then

Yo
yit) = ———=
Ty
and so y(t) cannot exist beyond the time ¢ = 1/yq. I

All the solutions derived in the first three sections were based on separable
equations but the existence of Verhulst’s equation (1.1.5) indicates that other
types need to be discussed.
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1.5 Equations of homogeneous type

A differential equation that has the form

‘2—2 = f(%) (1.5.1)

where f(y/t) is a function of the single variable y/t, is said to be of homo-
geneous type.
To solve (1.5.1), make the substitution

y = tz. (1.5.2)

Then, by the product rule for taking a derivative,

dy _ 0
at ~ °
and so (1.5.1) becomes
dz
i f(2)
or y
td—i = f(2) - 2. (1.5.3)

In (1.5.3) the variables are separable, and so it may be solved as in Section
1.4. All that the reader needs to remember, therefore, is to make the change
of variable (1.5.2) when an equation of homogeneous type is met.

Example 1.5.1
Find the general solution of

dy _ (y)2
dt  \t)
Making the substitution (1.5.2) gives

PP

We rearrange this equation to separate the variables z and ¢:

1

1

Using partial fractions to expand the left-hand side of this equation, and

integrating, gives
1 1 1
/ EN P / Lat
z—1 =z t
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Carrying out the integration gives

In

_1’:1nt+C,

which leads to )

FTILKL

where K = ¢“. Finally, substituting for z according to (1.5.2) gives the solu-
tion in the original variables y and t:

ot
T 1+ Kt

Y

Note that, if we allow the constant K to be positive or negative, the + may
be replaced by a +.

Example 1.5.2
Find the general solution of

(3t — y)fi—?j +t=3y. (1.5.4)

Since the differential equation can be written as

d_y_3y—t_3(y/t)—1
dt  3t—y 3—(y/t)’

it is of homogeneous type. With the substitution (1.5.2), we have

z+td—z—3z_1
dt  3—2z’
which implies that
d_z_z2—1
dt  3—=z'

Hence the general solution is

Since
3. 3/ 1 1
22—-1 2\z—-1 z+4+1)’
we obtain .
z—1 1
| —Zln|z2=1]=Int+C.
2nz—|—1‘ pnlem—1f=ht+C
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Consequently
|z — 1]

— = Kt
(z+1)2

where K = e“. Substituting for z from (1.5.2), we obtain
y—t=K(y+t)? (1.5.5)

as the general solution in the original variables. I

1.6 Linear differential equations of the first order

A differential equation that can be expressed as

Yt oy = o) (1.61)

where y does not occur in either f(¢) or g(¢), is called a linear differential
equation of the first order.

Why the nomenclature “linear” is employed can be understood from consid-
eration of (1.6.1) when g is replaced by zero so that the differential equation
becomes

dy B
E + f(t)y =0.

Suppose that y; and ys are solutions of this differential equation, i.e.,

dy1

o T /Oy =0 (1.6.2)
ddl; + f(t)y = 0. (1.6.3)

The addition of (1.6.2) and (1.6.3) shows that y; + y2 is also a solution.
Actually, if A and B are constants, Ay; + Bys is a solution. This construction
of solutions by adding together constant multiples of solutions is the property
of linearity. In nonlinear differential equations, the sum of two solutions cannot
be asserted to be a solution without independent verification. Another linear
property is that, if y; = 1 when ¢ = tg and y2 = C when t = to, then ys(t) =
Cy1(t). Thus, if the initial value of a solution is increased, all subsequent
values are increased in the same proportion. The problem of cell division in
Section 1.3 led to a solution which after a long time was the same for all initial
populations and so the logistic growth equation is nonlinear, as is also evident
from the structure of (1.3.2).
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The technique for solving (1.6.1) is to multiply by h(¢) to form

dy
h(t) 2 + RO f )y = h(t)g (D).
The function h is to be chosen so that the left-hand side is the same as
d(hy)/dt; it is then known as an integrating factor.

Now d dy dh
Y
Z(hy) = h2? 4 20
) =ha gy
which is the same as the left-hand side provided that
dh
— = hf.
dt /

In this differential equation for h the variables are separable and so

Inh(t) = /75 fu)du + Cy

where C is a constant, the lower limit of integration being omitted for the
reasons given in deriving (1.4.2). Hence

h(t) = exp (ca + / t f(u)du).

However, if h(t) is an integrating factor so is Coh(t) when Cy is any constant.
Therefore we can take for our integrating factor

h(t) = exp( / t f(u)du). (1.6.4)

The differential equation, after multiplication by the integrating factor, can
be written as

d

E(hy) = hg

with the general solution

Substitution from (1.6.4) gives

y(t) = Utg(v) exp(/vf(u)du>dv+0] exp(—/tf(u)du). (1.6.5)

The rule for the reader to remember for a linear equation of the first order
is to multiply by the integrating factor defined by (1.6.4), making sure first
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that the differential equation is in the form (1.6.1). It is not worth committing
(1.6.5) to memory.

Example 1.6.1
Find the general solution of

dy 1
2 E——
(t +1)dt +iy =3 (1.6.6)

The differential equation is linear and can be rearranged into the form of
(1.6.1) with
t 1 1

241’ 2¢2 41"

/f /t2+1dt:%1n(t2+1)

and, according to (1.6.4), the integrating factor is

h(t) = exp {3 In(t> + 1)} = (2 + 1)1/2

flt)=

Therefore

Hence, multiply
dy t 1 1

el T IE
by (t? +1)/? with the result

dy ¢ 11
2% _t .
D) T Y T aE e

Consequently

—_

d 2 1/2
S+ 1)) =

which gives on integration

1
2 (12 +1)1/2

E+1) 2y =1n{t+ @+ 1)V} +C (1.6.7)
where C' is an arbitrary constant. Equation (1.6.7) provides the general solu-

tion of (1.6.6).

Example 1.6.2
Find the general solution of

2y
=3+t—— 1.6.8
A (1.6.8)
The differential equation is linear with
2
f) =<5,  glt)=3+t

t
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According to (1.6.4), the integrating factor is
h(t) = exp(2Int) = 2.

Multiplying both sides of the differential equation (1.6.8) by h(t):
d o 2
%(t y) =t*(3+1).

Integrating and rearranging to find y in terms of ¢ gives the general solution
of (1.6.6):
_i 84 G
y - 4 tQ )
where C' is an arbitrary constant. I

Observe that, if f(¢) has the constant value fo, the integrating factor is e/o?
so that the general solution of (1.6.1) is then

t
y(t) = e,fot/ g(a)eloTdz + Ce=Tot, (1.6.9)

C being an arbitrary constant.

1.7 Numerical solution of first-order equations

Many differential equations, particular nonlinear equations, are difficult or
impossible to solve analytically. In such cases, it is necessary to turn to nu-
merical techniques to find an approximation to the true solution. A typical
differential equation of the first order can be expressed as

dy

o = [ty (1.7.1)
Precise attributes of the function f that will guarantee that the differential
equation does possess a solution are not of concern here. It will be sufficient
to suppose that, corresponding to each pair of values (t,y), there is a definite
value of f and that small changes of ¢,y will be accompanied by only a small
variation in f. Then, if a point (¢, y) in the (¢, y)-plane is chosen, (1.7.1) asserts
that at (¢,y) the derivative dy/dt has the value f(¢,y). In other words, (1.7.1)
assigns a direction to a point of the (¢, y)-plane. If a curve can be drawn so
that, at each of its points, its gradient satisfies (1.7.1), then this curve will
have an equation which is a solution of the differential equation. Any such
curve may be called a solution curve of the differential equation.
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FIGURE 1.7.1: Polygonal approximation to solution curve.

An approximate solution curve can be constructed graphically. Suppose it
is required that y = yo when t = to (this is the initial condition for the dif-
ferential equation). Take the point (to,yo) in the (¢,y)-plane as Py (Figure
1.7.1). Draw the straight line through Py with slope f(to,y0) and let it inter-
sect t = to+ h at P;. Let Py be the point (o + h,y1). At P; draw the straight
line of slope f(to+h,y1) and let it intersect ¢ = to+2h at P, with ordinate ys.
Draw the straight line P, P; with slope f(to + 2h,y2). Continuing in this way,
we construct a polygonal curve PyP, P> Ps ... which has the slope prescribed
by the differential equation at the points t = to,tg + h, to + 2h,.... If h is
kept small, the slope of the polygonal curve will never deviate by much from
that demanded by the differential equation. It would therefore seem that, as
h — 0, the polygonal curve would tend to the solution curve of the differen-
tial equation which passes through (o, yo), i.e., provide the solution of (1.7.1)
such that y(tp) = yo. Since only one slope can be drawn at each point, there
is only one solution curve.

The procedure can be defined iteratively as follows

tn+1 =1, + hv Yn+1 = Yn + hf(tnvyn)

We anticipate that y1,ys ... will be reasonable approximations to the values
of the solution curve at ¢y, to, ..., though it must be stressed that we have not
proved that this is so.

This approximate technique is known as Euler’s method and is straight-
forward to implement in MATLAB® (or any other computer programming
language). The following is an example of a MATLAB function called euler
that uses Euler’s method to solve a differential equation of the form (1.7.1).
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function [t, y] = euler(dydt, tspan, yO, Nsteps)
% Function to solve a single first-order DE by Euler’s method
%INPUTS: dydt - handle to a function f(t, y) that calculates

dy/dt
A tspan - 1x2 row vector containing the starting and
A finishing values of t
% yO - initial value of y
% Nsteps - number of steps of Euler’s method to use
% OUTPUTS: t - vector of equally spaced t values
% y - vector of corresponding y values

dt = (tspan(2)-tspan(1))/Nsteps;
t = (tspan(l):dt:tspan(2))’; % vector of equally spaced t values
y = zeros(Nsteps+1, 1); % set up vector to store y values
y(1) = yO0; % store initial condition in y(1)
% Loop through t values calculating new y value each time:
for I = 1:Nsteps
y(I+1) = y(I) + dt*dydt(t(I), y(I));
end

This program should be saved in a file called euler.m.

Although Euler’s method is simple to use, it is not particularly efficient (it
is often necessary to use a very small step size to obtain an accurate solution).
However, it is the prototype for a suite of more advanced numerical methods
of solving a differential equation by a step-by-step process that are capable
of providing solutions to any required degree of accuracy. Indeed, there are
methods that automatically adjust themselves so as to achieve the level of
accuracy prescribed by the user at the outset. MATLAB has several built-in
functions that make use of these more sophisticated methods. One of the most
commonly used of these is ode45 (see below for an example of usage), which
uses adaptive step size to ensure an accurate solution, so there is no need for
the user to specify the number of steps to take (or equivalently the step size
The above MATLAB function, euler, can be thought of as a black box.
Specify the starting and finishing ¢ values, and the number of steps to take,
and supply some means of calculating f(¢,y) on the right-hand side of (1.7.1),
and euler will calculate the solution. It remains to write a short function file
that calculates f(t,y) for any given values of ¢ and y (sometimes it is first
necessary to rearrange the equation so that it is in the form (1.7.1)). This is
illustrated in the following example.

Example 1.7.1

d P
b _Qy (1.7.2)
dt K +yr
is called a Hill equation, and arises in enzymatic reactions (see Section 4.4).
This equation is difficult to solve in general for y as an explicit function of ¢.
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For parameter values of say Q = 1, K =5 and p = 3.3, calculate and plot an
approximate solution from ¢ = 0 to ¢ = 10, with an initial condition y(0) = 5.

The function euler needs to know how to calculate dy/dt for any given
values of ¢t and y. We must therefore provide it with a MATLAB function
that does this. The input arguments to this function are ¢t and y, and the
output is dy/dt, calculated according to equation (1.7.2). We must also give
this MATLAB function a name, say hill_fn (which means that the file name
should be hill_fn.m). The function should read as follows.

function f = hill_fn(t, y)
Q=1; K=5; p=3.3;
f = -Qxy"p/(K+y~p);

To solve the differential equation using Euler’s method with say 10 steps,
the following commands may be entered at the MATLAB command prompt:

>> t0 = 0; t1 = 10; y0O = 5;
>> [t, y] = euler(@hill_fn, [tO, t1], yO, 10);

Note the four arguments (listed in the round brackets) to euler in the above
command correspond to the four inputs in the euler program listed above.
The first argument @hill_fn is called a function handle, and tells euler the
name of the function to use to evaluate the right-hand side of the differential
equation (this doesn’t always have to be @hill_fn — it can be any appropriate
function f(¢,y)). The second argument [t0, t1] tells euler to solve from
t=t0 to t=t1. The third and fourth arguments respectively specify the initial
value of y, and the number of steps to use.

Alternatively, to use the built-in MATLAB function ode45, the command
calling euler can be replaced by

>> [t2, y2] = oded45(@myrhs, [tO0, ti1], yO0);

Note that the arguments to ode45 are the same as to euler, except that there
is no fourth argument to ode45 since there is no need to specify the number
of steps to take. This time, the outputs from the function are stored in t2 and
y2, so the results from euler are not overwritten.

Now we would like to plot the results.

>> plot(t, y, ’o-7, t2, y2, ’x-’)
>> axis([t0 t1 0 y0])

>> legend(’euler’, ’ode45’)

>> xlabel(’t’)

>> ylabel(’y(t)’)

The plot command draws two curves on the same graph: one of y against
t, and one of y2 against t2 (you can include as many pairs of vectors in the
graph as you like). The o=’ and ’x-’ arguments tell MATLAB to mark
the positions of the points with symbols (o for the first curve and x for the
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FIGURE 1.7.2: Numerical solution to equation (1.7.2) with @ =1, K =5,
p = 3.3 and y(0) = 5 calculated using Euler’s method (euler) and MATLAB’s
built-in function (ode45).

second), and connect them with solid lines (). The axis, legend and label
commands customize the plot, by adjusting the limits of the axes, and adding
a legend and axis labels. Running the above commands gives the graph shown
in Figure 1.7.2. The solution calculated by ode45 is more accurate than the
one calculated by euler.

Sometimes we are less interested in the solution y as a function of the
independent variable ¢ than in the time at which the solution reaches a certain
value. For instance, in the example above, we might want to know the time at
which y first drops below 1. The following MATLAB function can be used to
find all the times at which y is equal to a predefined value ye,it (y is assumed
to be a continuous function of t).

function th = hitting_ times(t, y, y_crit)

% Function to find the times at which y = y_crit

% INPUTS: t - vector of increasing t values

% y — vector of corresponding y values

% y_crit - critical y value

% OUTPUTS: th - vector of times at which y = y_crit

N = length(t);

th = zeros(N,1);

hits = 0;

% Loop through the vector of t and y values

for T = 1:N-1
% Test if y crosses y_crit between t(I) and t(I+1)
if (y(I)-y_crit)*(y(I+1)-y_crit) <= 0
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hits = hits+1;
% Interpolate between t(I) and t(I+1) to find the
% approximate hitting time
th(hits) = t(D)+(& I+ -t (I))*(y_crit-y(I))/(y(I+1)-y(I));
end
end
th = th(1:hits); % truncate th to the number of hits found

Example 1.7.2

Find the time at which the solution from ode45 shown in Figure 1.7.2 falls
below y = 1.

This can be calculated by the following command.

>> th = hitting_times(t2, y2, 1)
th = 6.1240

1.8 Symbolic computation in MATLAB®

Although primarily designed for numerical calculations, MATLAB can also
be implemented to perform computations using symbolic algebra. This feature
can be used to obtain analytical solutions to some differential equations. A full
exposition of MATLAB’s symbolic computation power is beyond the scope of
this book (for further details, see the MATLAB help files). Here, we take a
brief look at the basic commands and syntax, and a few examples of how
they are used to solve differential equations (see also Section 5.9 for solving
higher-order equations and systems of equations).

MATLAB’s symbolic representation of the derivative dy/dt is simply Dy.
Similarly d?y/dt? is represented by D2y, etc. The command for solving a dif-
ferential equation is dsolve. The basic syntax is

y_sol = dsolve(’ode’, ’icl’, ’ic2’, ... , ’var’)

where ode is the equation to be solved, ic1, ic2 ... are the initial conditions,
and var is the independent variable. The initial conditions may be omitted,
in which case MATLAB will attempt to find the general solution. If the inde-
pendent variable is omitted, it will be assumed that the independent variable
is t.
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Example 1.8.1
To solve the separable equation

dy 2t

il eI (1.8.1)

the appropriate MATLAB command is
>> y_sol = dsolve(’Dy = 2%t/ ((1+t"2)*y)’)
This produces the following output

y_sol =
(2%¥1log(1+t~2)+C1)~(1/2)
-(2*log(1+t~2)+C1) " (1/2)

Here, y_sol is a vector containing the two branches of the solution. The
symbol C1 is an arbitrary constant. This tells us that the general solution to
(1.8.1) is

y(t) = £ (1 +£2) + 1) % . (1.8.2)

If we have a specific initial condition, say y(0) = —1, we can provide this
information to MATLAB in the dsolve command:

>> y_sol = dsolve(’Dy = 2*t/((1+t"2)*y)’, ’y(0) = -1’)
y_sol = -(2xlog(1+t~2)+1)~(1/2)

Note that this corresponds to the negative branch of the general solution
(1.8.2) with Cy = 1.

In order to plot the solution, we need to generate vectors containing actual
t and y values. In order to do this, we first declare t as a symbolic variable.

>> syms t

Now we define a vector of ¢ values to plot (let’s try 0 < ¢ < 10, at intervals of
0.1, and call it t_plot). Then we get MATLAB to calculate the corresponding
y values, by substituting the values in t_plot into the symbolic variable t:

>> t_plot [0:0.1:10];
>> y_plot = subs(y_sol, t, t_plot);
>> plot(t_plot, y_plot)

The resulting plot is shown in Figure 1.8.1.

Example 1.8.2
To solve equation (1.5.4), the appropriate MATLAB input and output is
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-35
0

FIGURE 1.8.1: Plot of the solution (1.8.2) to equation (1.8.1) with initial
condition y(0) = —1.

>> y_sol = dsolve(’ (3%t-y)*Dy+t=3%y’)
y_sol =
-1/2% (2%C1¥t-1-(-8xC1xt+1)~(1/2))/C1
-1/2% (2%C1*t-1+(-8xC1*xt+1)~(1/2))/C1

Hence, the general solution is
= —— (201—1:&(1—8Ct)é)

which you may recognise as the roots of the quadratic equation (1.5.5), which
was found as the general solution in Example 1.5.2.

Example 1.8.3
If we try to solve the Hill equation (1.7.2) symbolically, this is what happens:

>> y_sol = dsolve(’Dy=-Q*y~p/(K+y~p)’)
Warning: Explicit solution could not be found; implicit solution
returned.
> In dsolve at 315
y_sol =
y=0
t+1/Q*y-1/Q/ (p-1) ¥y~ (1-p)*K+C1 = 0

MATLAB cannot find y as an explicit function of ¢ (excluding the trivial
solution y = 0). Instead, it returns an implicit solution

Kylfp

Z@:ﬂ+q:0 (1.8.3)

y
t+ = —
Q
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Numerical techniques are needed to obtain explicit y values. This may be done
either by solving equation (1.8.3) by a root finding method, such as Newton’s
method, for each value of ¢ required, or by solving the original equation (1.7.2)
numerically, as described in Section 1.7.

I

1.9 Notes

For a specialist text on numerical techniques, the reader is referred to J.
D. Lambert, Computational Methods in Ordinary Differential Equations, John
Wiley & Sons, New York, 1973 and Numerical Methods for Ordinary Differen-
tial Systems, John Wiley & Sons, New York, 1991. For a text on implementing
numerical methods in MATLAB, see S. C. Chapra, Applied Numerical Meth-
ods with MATLAB, McGraw-Hill, New York, 2005. For a guide to the MAT-
LAB programming language, see D. J. Higham and N. J. Higham, MATLAB
Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA,
2005.

Exercises

1.1 A spherical water drop loses volume by evaporation at a rate propor-
tional to its surface area. Express its radius at time ¢ in terms of the
constant of proportionality and its radius rg at t = 0.

1.2 The rate of increase of bacteria in a culture is proportional to the num-
ber present. The population multiplies by the factor n in the time inter-
val T'. Find the number of bacteria at time ¢ when the initial population
is po.

1.3 In Exercise 1.2 the population is found to increase by 2455 bacteria
from ¢t = 2 to t = 3 and by 4314 bacteria from ¢t = 4 to ¢t = 5. Show
that py = 4291 approximately and that, when T' = 3, n is about 2.33.

1.4 What changes take place in the curve of logistic growth in Figure 1.3.1
if No < ap(0)?

1.5 Observations on animal tumours indicate that their sizes obey the
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1.6

1.7

1.8
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Gompertz growth law

rather than the logistic law. Here k and S are positive constants. By

ds S

putting y = In s prove that

where A = In(S/sp), so being the size at t = 0. Deduce that, in Gom-
pertz growth, the size moves steadily from its initial value to an eventual
value of S without passing through maxima or minima, though there is

s(t) = Sexp(—Ae~*t)

a point of inflection if sy < Se~!.

Find the general solutions of the following equations and check your

answer using MATLARB’s symbolic computation.

()
(b)
()

Find the general solutions of the following equations and check your

dy
1+t
t— (1+1t)y,
dy
t(2y+3)§ =y +y),

d
2ty(1 + t)d—z =1+y%

answer using MATLAB’s symbolic computation.

(a)

(b)

dy 't vy

By means of the substitution w — 1 = y,u + 2 = ¢ show that

dv u+w+1
v u—w +3
can be solved.
Generalise this result to

dw au +bw + ¢

du  du+bw+c
when ab’ # a'b by substituting w = y + h,u = t + k where

ak +bh +c =0,
dk+bh+c =0.
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1.9 Find the general solutions of

() (- gy = (1),

dy
(b) i (t —4)e* +ty,
d
(c) twd—lf = t* + w? by putting w? = y.

In each case, write a MATLAB program to verify your solution by
solving the differential equation numerically with an initial condition
y(0) = 1, and plotting the numerical and the analytical solutions on
the same graph.

1.10 Bernoulli’s differential equation has the form

dy

pris f)y =gt)y"”.

Show that it can be made linear by the substitution w = y'~". Hence
find the general solution of

dy 2
— +ty =ty°.
dt+y Y

1.11 Use Exercise 1.10 to solve
dy 2

t+1 ——1) =
@ (s 1) =02

dy
A
dt

1.12 The function y;(t) is known to be a solution of the Riccati equation

(b) (#* —2y+1)

C:Z_Z +a(t)y + b(t)y? = c(t).

Show that the general solution can be found by putting y = y; +w and
using Exercise 1.10. Hence solve

dy 5 6
92 2
a T TR

given that y = 2/t is a solution.

1.13 Use Exercise 1.12 to find the general solutions of

d
(a) tzd—zt/ + ty + t?y* = 4 given that y = 2/t is a solution,

d
(b) td—zt/ — (2t + 1)y + 4> = —t? given that y = ¢ is a solution.
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1.14 Find the general solutions of

() (- DY 4y =212,

dt
d 1/2
() 157 =y + (32 +42)"",
dy t
92 _ ott2y
(¢) 250 = e,

(d) (2t+2y+5)%:2y—2t+1,
=2(2t —
(e) = =202t =)

() (t—l—a)d— — 3y =2(t +a)’,

dt
dy

(8) tor =y~ 3t cos®(2y/t),

(h) (2y — 2t + 5)%

(i) &y + (1 — 4y?) tan 2t = 0,

dt
() (=&)Y oy = (-2,

=2y —2t+1,

09 (1 + 9P = (1 4y 117,

Q) 1+t2—z =e yfl—z sec? y.

1.15 According to Newton’s law of cooling, the rate of decrease of tempera-
ture of a body is proportional to the difference between its temperature
and that of its environment. If the temperature of the environment is
20°C and the body cools from 80°C to 60°C in 1 h, show that it will
take somewhat over 4 h to cool to 30°C. Verify your answer by solv-
ing the differential equation numerically in MATLAB and plotting the
temperature against time.

1.16 A body cools in 10 min from 100°C to 60°C when the environment is
at 20°C. How long does it take to cool to 25°C?

1.17 After administration of a dose, the concentration of a drug decreases
by 50% in 30 h. How long does it take to fall to 1% of its initial value?

1.18 The amount of light absorbed by a layer of material is proportional to
the incident light and to the thickness of the layer. If a layer 35 cm
thick absorbs half the light incident on its surface, what percentage of
the incident light will be absorbed by a layer 200 cm thick?
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When the drug theophylline is administered for asthma, a concentration
below 5 mg 17! has little effect and undesirable side-effects appear if
the concentration exceeds 20 mg 17!. For a body that weighs W kg, the
concentration when M mg is present is 2M /W mg 171, If the constant
that measures the rapidity at which the concentration falls is 7 = 6 h,
find the concentration at time ¢ h after an initial dose of D mg.

If D =500 and W = 70, show that a second dose is necessary after
about 6 h to prevent the concentration from becoming ineffective. What
further time can elapse before a third dose is necessary?

What is the shortest safe time interval ¢y at which doses of 500 mg can
be given regularly?

Verify your results by solving the problem numerically.

If the drug in Exercise 1.19 is fed into the blood stream continuously by
infusion at a rate of D; mg h™!, instead of being given by separate doses,
show that the concentration approaches a steady level of 12D /W mg
171, What permissible range of D; does this imply for a 60-kg patient?

In the reservoir model of the heart, it is imagined as a balloon. The
balloon or heart is blown up by the influx of blood during the systole
and, when the heart valve closes, the reservoir forces blood out during
the diastole. At time ¢, the volume is v(t), the inflow per unit time is
I(t) and the outflow per unit time is F'(t). Interpret

dv/dt = I(t) — F(t).
If the pressure p(t) is such that

p(t) = K{v(t) —w},  F(t) =pt)/R,

where K, v9 and R are constants, find the differential equation satisfied
by p.

In the diastole which lasts from ¢ = tg to ¢t = T, I(t) = 0. Find p(¢) in
terms of pg, the value of p(tp), during the time interval. In the systole,
from ¢ =0 to t = o, I(t) = Iy (a constant). Find p.

Since the heart is cyclic, p(0) = p(T'). Deduce that

_pol-— exp(—KT/R)
~ Ip1—exp(—Kty/R)’

R






Chapter 2

Linear Ordinary Differential
Equations with Constant Coefficients

2.1 Introduction

In Chapter 1, the solution of a first-order differential equation was consid-
ered. Higher derivatives can occur in some problems, and so we are led to the
general ordinary differential equation

dy d2y dny
Flty,—,—,... =0 2.1.1
(7y7 dt? dt27 ’dtn ) ( )

where F' is some function with n + 2 arguments. It is called ordinary because
it involves only the ordinary derivatives of y with respect to the single variable
t. Later on we will study cases in which y is a function of more than one vari-
able. In that case, partial derivatives of y can arise and a partial differential
equation has to be solved.

The order of an ordinary differential equation is the order of the highest
derivative appearing. Thus

dy  dy (dy ,
dt4_dt<dt3> +y

dy ? 2 2
i =t
(ﬁ) i
is of order 1.

The two main categories into which ordinary differential equations are clas-
sified are linear and nonlinear. The form of the general linear ordinary
differential equation of order n is

is of order 4, whereas

dny dn—ly dy B
an(t)—— g T On- 1(t)dt”—*1 +oFa(t )E +ao(t)y = f(t), (2.1.2)
where ag(t),...,an(t) are known functions of t. If all of ag(t),...,a,(t) are

constants, (2.1.2) is known as a linear ordinary differential equation with

33
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constant coefficients. Any ordinary differential equation which does not
have the structure of (2.1.2) is called nonlinear; it will contain products such
as

PRT
’ dt dt?
or functions such as e¥. For example,
d? d
t%—i—etd—z +y cos t = t3 tan ¢
is linear and of order 2,
d*y | dy 2
5— +4—+43y=In"t¢
TR T
is linear with constant coefficients and of order 2, while
dy
2
27—t
dt

is nonlinear.

The solution of an ordinary differential equation is always sought on an
interval (a,b) (a < b) of t. It is a relation between y and ¢ which satisfies the
ordinary differential equation when ¢ is any point of the interval and does not
contain any derivatives or integrals of y. Integrals of functions of ¢ may be
involved but these should be evaluated when it is reasonable to do so.

The general solution (sometimes called the complete primitive) of an
ordinary differential equation of order n must contain n arbitrary constants.
Any solution that does not have n arbitrary constants is not the general
solution. For instance, you can check that

y=ce" — 1/t (2.1.3)

satisfies the ordinary differential equation

2
tB(d J_ y) ) (2.1.4)

at?

but it is not the general solution because the general solution must contain
two arbitrary constants whereas (2.1.3) has none. Similarly

y=Ce " —1/t, (2.1.5)

with C an arbitrary constant, is a solution of (2.1.4) but is not the general
solution. On the other hand,

y=Cret +Coe™t —1/t, (2.1.6)

with C; and Cs arbitrary constants, is the general solution of (2.1.4).
When additional information is available, it may be possible to assign par-
ticular values to the arbitrary constants in the general solution. For example,
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suppose that a solution of (2.1.4) is desired such that y = 1 and dy/dt = 1
when ¢ = 1. From the general solution (2.1.6)

dy/dt = Cret — Coe™" + 1/t%,
and so the conditions at ¢ = 1 can be satisfied if

Cie + 026_1 —1=1,
Cie — 026_1 +1=1.

These require that C; = e~ ! and Cy = e; hence
y=e14elTt 1/t

is the solution of (2.1.4) which takes the correct values at t = 1.

An ordinary differential equation may not possess a solution. There are
theorems, called existence theorems, which tell you that certain types of
differential equations have a solution. If a solution exists and you can prove
that it is the only one that satisfied any conditions imposed, then you have
demonstrated a uniqueness theorem. Existence and uniqueness are beyond
the scope of this chapter (for some information, see Section 5.11).

Even when existence and uniqueness theory is available, the actual finding of
a solution may be a difficult task. For instance, there is an existence theorem
for linear ordinary differential equations with variable coefficients, but the
solution cannot always be written down easily. Again, the solution of

dy 2 2

i t“+y
cannot be expressed in terms of elementary functions although the solution is
known to exist. Therefore, one must turn to numerical techniques, as discussed
for example in Section 1.7, to find an approximation to the solution.

This chapter will be confined to discussing linear ordinary differential equa-
tions with constant coefficients. For these, not only is existence theory avail-
able but also the general solution can be determined explicitly.

2.2 First-order linear differential equations

The linear ordinary differential equation with constant coefficients of the

first order is

d
a1+ aoy = f(1)

where a1 and ag are constants. However, a; # 0 otherwise there would not be
a differential equation to solve. Therefore we can divide by a; or, equivalently,
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put a; = 1 and take as the standard form
d
Y+ a0y = 110) (2.2.1)

This has been solved already in Section 1.6 and we may quote the general
solution

t
y = e_a"t/ e f(u)du + Ce™ ", (2.2.2)

where C' is an arbitrary constant.
The term Ce™%! satisfies

(% + ao) Ce "' =0.

Since Ce™ ! is the general solution of (2.2.1) with zero right-hand side (i.e.,
with f(t) = 0) it is called the complementary function. The integral term
in (2.2.2) satisfies (2.2.1) and any solution of (2.2.1) is called a particular
integral. Consequently,
the general solution of (2.2.1)
= particular integral + complementary function.

It does not matter which particular integral is chosen as we shall show now.
Suppose h(t) is any function such that

dh

— h= f(t).
o Taoh=f(t)
Put y = h + z; then
dy dh dz dz
E—Fdoy— E—F%—Faoh—FaoZ—f(t)—FE—FaoZ
so that, if y satisfies (2.2.1), we must have
d
d_i + agz =0,

i.e., z is the complementary function.

2.3 Linear equations of the second order

The linear ordinary differential equation of the second order with constant
coefficients can be expressed as

L) (2.3.1)
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after division by the coefficient of the second derivative (which must be non-
zero if the differential equation is to be of the second order). With zero right-
hand side, (2.3.1) is

dy | dy

— — =0 2.3.2

pTe +a; ar + aoy ( )
and is known as the associated homogeneous differential equation. Let
the general solution of (2.3.2) be denoted by y. and called the complemen-
tary function. Let y, be any solution of (2.3.1) and designate it as a par-

ticular integral. Put y = y, 4+ z. Then

d?y dy d?y dy d?z dz
7t +ay = dt;’ +a1d—tp +aoyp + o5 + a1 +aoz
d?z dz
= f(t) + F7e) + aq o + apz.

Therefore y satisfies (2.3.1) provided that

@—i—ad—z—i—az—o
a2 a0

ie., 2 = y.. Hence y =y, + y. and
general solution = particular integral + complementary function

as before.

Thus the general solution of both first- and second-order equations has the
same structure, and we shall find that this is true for the linear ordinary
differential equation with constant coefficients of order n.

2.4 Finding the complementary function

The determination of the complementary function requires the general so-
lution of (2.3.2), i.e., of
y+ay+ay=0 (2.4.1)

if we use the notation g = dy/dt, ij = d?y/dt>.
Consider the equation for A

M+ a\+ag =0, (2.4.2)

which will be called the characteristic equation. It has two roots A; and
Ao such that
)\1 + )\2 = —a
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and
)\1 )\2 = ag.
Now )
d (dy _d7y dy
dt(dt Aly) “w M
so that

d dy d?y dy
— =)= My ) = = — M+ Xa)— + A
(dt 2)<dt 1y) 72 (A1 + 2)dt+ 12y

=4+ a1y + aoy

because of the properties of A\; and Ay. Consequently (2.4.1) can be written

as p p
Y
— = — — A =0.
(dt 2) (dt 1y>
Write p
Y
= — — \y.
w at 1Y
Then J
w
— — Xw = 0.
ar ~ 2Y
This is of the first order and has general solution
w = Ce?t.
Therefore J
Y Aot
— — Ay = Ce™?
ar -~ e

Since this is linear and of the first order, it can be solved by multiplying by
the integrating factor e~*1*, which gives

%(ye—Alt) — CG(AQ—)\l)t
whence .
woi = [,
If Ay #£ Ao,
t A2—A1)t
/ e()\2_>\1)udu _ 6( 2 1)
A2 — A1
and )
2—A1)t
ye‘Alt = 706 + D

A2 — A1
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or
Aot Ait
y = Che™?" + Che™’,

where C and Cs are arbitrary constants.

If A\ = Ao,
t t
/ eP2=A)ugy, z/ du=1

ye Mt =Ct+ D

and

or
y=(Cy+ C’gt)eklt.

The rule for finding the complementary function can be stated now as: solve
the characteristic equation (2.4.2):

(a) if the roots are different

it Aot
Yo = Cre™t" + Che™?’;

(b) if the roots are the same

Ye = (Cl + Cgt)eAlt.

The characteristic equation may be arrived at in the following way. Try
y = M so that § = AeM, §j = A\2eM. Then (2.4.1) is satisfied if

()\2 + a1+ ao)e)‘t =0

or
AN+ ad+ap=0,

which is the characteristic equation.
Example 2.4.1
Find the general solution of
16y — 8y +y =0.
The characteristic equation is
16A* —8A+1=0

so that \; = i = X2. The rule now gives

y=(Cy + Cat)e'’*

as the general solution. I
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It may happen that A\; or A2 is complex. No problem occurs because, if
A1 = a + ib where a and b are real, it is known that (compare with De
Moivre’s theorem)

eMt = etett — % (cos bt + i sin bt),

so that the solution can be expressed in terms of trigonometric functions if
desired.

If ap and a1 are real, we may be seeking a real solution of (2.4.1). In this
case when A\; = a + b the characteristic equation forces Ao to be the complex
conjugate, i.e., Ao = a — ib. Since b # 0, because we are assuming a complex
root of (2.4.2), the rule gives

Yo = Cle(a+ib)t + CQe(a—ib)t

where C1 and Cj are arbitrary (complex) constants. To make y. real, we must
make y* = y., the asterisk indicating a complex conjugate. But, when a¢ and
ay are real, y* also satisfies (2.4.1) and so

y: _ Cike(a—ib)t + C;e(a_‘—ib)t.

Thus y} = y. demands that C5 = C;. This means that, if C; = A+ iB with
A and B real, Co = A — iB. It follows that

ye = (A+iB)el™™™" 4 (A —iB)elo—0)t
= 2e*(A cos bt — B sin bt),

which gives a real complementary function with real arbitrary constants A
and B.

Example 2.4.2
Find the solution of
y—2y+2y=20
satisfying the initial conditions, y(0) = 0, y(0) = 1.
The characteristic equation is

M2 +2=0,

so that Ay = 144 and Ay = 1—i. From the above reasoning we can immediately
write down the general solution in the form

y = e'(Acost + Bsint).

By imposing the initial conditions we find that A = 0 and B = 1, which shows
that the solution is
y = e'sint.
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2.5 Determining a particular integral

There are various devices for finding a particular integral, each of which has
advantages and disadvantages. Three methods will be described here.

2.5.1 TUndetermined coefficients

The method consists essentially of guessing an appropriate form for the
answer and substituting it in the differential equation. It is suitable if the
right-hand side is a polynomial, exponential, sine, cosine or a product of these.
The technique will be illustrated by means of examples.

Example 2.5.1
Find a particular integral of

i — 29 — 3y = 3t%.

The idea is to try to find a polynomial solution, and we show how this can be
done by starting from the simplest and gradually making it more complicated.

Try y = C. Then §j — 2 — 3y = —3C. Since this can never agree with 3t2,
it must be rejected.

Try y = Bt. Then § — 2y — 3y = —2B — 3Bt, and again the attempt is
unsatisfactory.

Try y = At?. Then §j — 2 — 3y = 2A — 4At — 3At?, which again is not
suitable but does at least contain a term involving ¢2.

This suggests that we should try y = At?2 + Bt + C. Then

§— 25— 3y =2A — 2B — 3C — (4A + 3B)t — 3At%.
We can make this the same as 3t2 if

—34 =3,
4A+3B =0,
24— 2B —3C = 0.

These equations are satisfied if A = -1, B = % and C' = —%. Therefore
yp=—t"+ 3t -1
supplies a particular integral. I

In general this suggests, since the derivative of a polynomial of degree n is
a polynomial of degree n — 1, that when the right-hand side of (2.3.1) is a
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polynomial of degree n and ag # 0 try a polynomial of degree n with arbitrary
coefficients. If ag = 0 but a1 # 0 try a polynomial of degree n + 1.

Example 2.5.2
Find a particular integral of
§j— 29— 3y =e*.
In this case we try y = Ae?!. Then the left-hand side is
4Ae? — 4Ae?* — 3Ae% = —3Ae™
which is the same as e? if A = —%. Therefore

Yp = —%e%. 0

Example 2.5.3
Find a particular integral of

§—29—3y=e".

Again we try y = Ae™t. The left-hand side becomes
Ae P4 24e7t —34et =0

so that A cannot be found. The try fails in this case because e~* satisfies the
associated homogeneous differential equation and so is part of the comple-
mentary function.

The lesson to be learned is that the complementary function should always
be found first. The characteristic equation is

M —2X-3=0
so that A\ =3, A2 = —1 and
Ye = Cye3t + Cye .

If the right-hand side is part of the complementary function, it cannot be a
suitable particular integral.
Try instead y = Ate™* so that §y = A(1 —t)e~*,jj = A(t — 2)e". Then

G—2y—3y={t—2-2(1—1t)—3t}Ae”"
= —44e7t

which agrees with e~t if A = —%. Therefore

yp = —3te " I
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Example 2.5.4
Find a particular integral of

j— 4y +4y = e

To determine the complementary function, solve the characteristic equation
A —4X+4=0,

which gives Ay = 2 = A\g. Therefore

Yo = (C1 + Cat)e*.
In this case, both €% and te?* will fail as particular integrals. So try At2e?,
which will be found to work.
Example 2.5.5
Find a particular integral of

ij — 29 — 3y = —9te?t.

The right-hand side is not part of the complementary function and is a
product of a polynomial and an exponential. This suggests that we try (At +
B)e?t. The left-hand side becomes then

(2A — 3B — 3At)e*,
which agrees with the right-hand side if A = 3 and B = 2. Therefore
yp = (3t +2)e.

If €2 had been part of the complementary function but not te?, we would
have tried (At + B)te?!; if te?* had been part of the complementary function
also, the trial function would have been (At + B)t?e?:.

;From these examples we can construct the following prescription for a
particular integral. If
i+ a1y + agy = t"e™ (2.5.1)

where ag # 0 and m is a nonnegative integer,

(I) when a is not a root of the characteristic equation \* +a1 X +ag = 0, try
Yy = eat(Amtm 4+ Am_ltm_l —+ -4+ Ao),

(IT) when a is a single oot of the characteristic equation, multiply the ex-
pansion in (1) by &
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(III) when a is a double root of the characteristic equation, multiply the ex-
pansion in (1) by t2.

Substitution of the proposed expansion in the differential equation will con-
firm that the right-hand side can be obtained by an appropriate choice of
Ag, .. Am.

A right-hand side that is composed of a sum of the type in (2.5.1) can be
handled because, if

i+ a1y +aoy = fi(t) + f2(t) + -+ ful(t) (2.5.2)

and y; is a particular integral of

i+ a1y + aoy = fi(t),

then

Yp=Y1 T Y2+ -+ Yn
is a particular integral of (2.5.2) as may be confirmed by substitution in the
differential equation.

Trigonometric functions are also covered by the rule given because we can

write
cost = 2(et +e7), sint= g (e —e ) (2.5.3)

1
and use the fact that a can be complex in (2.5.1).

Example 2.5.6
Find a particular integral of

§j— 29— 3y =2 sint.

First consider the right-hand side of e®. This is not part of the complemen-
tary function as can be seen from Example 2.5.3. Therefore try y = Ae®’. The
left-hand side is (—4 — 2i) Ae®, which agrees with e® if A = —1/(4 + 2i). Sim-
ilarly, the particular integral corresponding to e~ is —e~% /(4 — 2i). Hence,

from (2.5.3),
B 1 eit N e—it
=\ T2 T2
= %(cost—Qsint). I

Example 2.5.7
Find a particular integral of

1 + 4y = 32t cos 2t — 8sin 2t.
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The characteristic equation is A? + 4 = 0, which implies that A\ = 2i, Ay =
—2i. The complementary function may be expressed in terms of €2 and e=2%
or, in real form, by

Yo = Cq cos 2t 4+ Co sin 2t.

For the right-hand side we consider first e**. Since 2i is a single root of the
characteristic equation, case (II) above applies and we try Ate?¥. Similarly for
te? we would try (Bt + C)te?. However, it is more economical to combine
the two and make (Bt + C)te?" reproduce the term (16t + 44)e?" required on
the right-hand side. We find B = —2i and C' = 2, so that

Yyp = (—2it 4 2)te*" + (2it + 2)te” >
= 4t cos 2t + 4t% sin 2t.

The general solution is

y = C1 cos 2t + Cy sin 2¢ + 4t(cos 2t + ¢ sin 2t). I

Example 2.5.8
Find a particular integral of

4§ — 9y — 2y = cosht.

The characteristic equation is A2 — A — 2 = 0, so that A\ =2, s = —1 and
the complementary function is

ye = C1e?' + Core™ .

The right-hand side can be converted to standard form by using cosht =
$(e' +e7). For e’ case (I) applies because 1 is not a root of the characteristic
equation, but for e~ case (II) is relevant because —1 is a single root of the
characteristic equation. Therefore, try Ae’ + Bte™'; it is found that A=—1,
B=—1and

G an

yp = —2el — Lt
is a particular integral. I

The differential equation

jt2ty=te’

provides an illustration of case (IIT). A particular integral is

— 143 ,—t
Yp = gtoe "
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2.5.2 Factorisation of the operator

In this method the differential equation is split into two first-order differ-
ential equations in the same way as was employed for discovering the comple-
mentary function in Section 2.4. An example will demonstrate the technique.

Example 2.5.9
Reconsider
i —y — 2y = cosht

which was discussed in Example 2.5.8.
The differential equation can be expressed as

d dy _
(E + 1) (5 — 2y> = cosht.

d
d_ztz +u=cosht = (" +e7").

Put v =y — 2y. Then

The integrating factor is e! and

d
(et = 42 + 1)
so that
uet = 3e* + 1t +C
Therefore

§—2y=qe' + gte”' + Ce "

2t

The integrating factor is e~ and

d
G oty 1 ¢, 1,,-3¢ —3t
dt(ye ) = ze "+ gte™" + Ce™.
Since
t t
ze 3%dr = —tte ™ 4 L [ 730y = —Lte 3 — Le Bt
3 3 3 9 ;
—2t _ _ 1.t _ 1,,-3t_ 1 _-3t_ 1lov,—3t
ye < = —ze gle i8¢ sCe ™" + D
whence
y=—1e' — tte7! — Let — 1Ce~! + De?'.

Actually, this analysis has given the general solution, but we could have
obtained a particular integral by leaving C' and D out when they arose. The
resulting particular integral differs from that of Example 2.5.8 by —f—ge_t
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but, since this is part of the complementary function, there is no change to
the general solution.

The advantages of this method are that it can give the general solution
directly and always works even when the right-hand side is not a polynomial,
exponential, sine or cosine. On the other hand, it often involves more labour
than undetermined coefficients when the right-hand side is such that either
method is applicable. It can also be awkward to implement when the roots of
the characteristic equation are complex.

2.5.3 Variation of parameters

Another method that can be adopted for any right-hand side is variation
of parameters.
Suppose that the complementary function of

j+ a1y +aoy = f(1) (2:54)
is
Ye = Crn(t) + Caya(t).
We seek a solution of (2.5.4) in the form

y = u(t)yi(t) +v(t)ya(t), (2.5.5)

i.e., we allow the parameters C; and C5 to vary—which explains the nomen-
clature. There are two unknown functions u and v so that two conditions are
needed to determine them. One condition is obtained by substituting (2.5.5)
in (2.5.4). The other we can pick for ourselves and we want to do it so as to
avoid second derivatives of v and v if possible; otherwise we are no better off.
Now, from (2.5.5),

Y = uy1 + vy + wy1 + 0y

and, if second derivatives of u and v are not to occur in §, we must insist that
uyr + vy2 = 0. (2.5.6)

Then
Y = uy1 + vye
and
§ = uy1 + vz + uyr + vye.
Now (2.5.4) can be satisfied if

u@ir + vz + 41 + 092 + a1 (ugr + vy2) + ao(uyr + vy2) = f(¢)

or
(41 + ar191 + aoy1)u + (Yo + a192 + aoyz)v + Wy + 0y2 = f(t).
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But y; and y2 both satisfy the associated homogeneous differential equation,
and so the terms in the two sets of parentheses vanish. Consequently

ugn + vYe = f(t). (2.5.7)

The equations (2.5.6) and (2.5.7) are now solved for @ and ©. Integration
then supplies u, v and hence a particular integral.

It should be remarked that it is possible to solve (2.5.6) and (2.5.7) provided
that y192 — 91y2 # 0. Suppose that this is not true and that y192 — g1y = 0.
Then ¢2/y2 = §1/y1 which implies that Inys = Iny; + C or y2 = Ay;. Thus
Ciy1 + Cays = (C1 + ACs)y; and this cannot be the complementary function
since it contains only one arbitrary constant. Therefore, so long as the genuine
complementary function has been found, the solution of (2.5.6) and (2.5.7) can
always be carried out.

Example 2.5.10
Solve
i — Yy — 2y = cosht

by means of variation of parameters.
The complementary function is

Ye = Cie?t 4 Chet.
Therefore y; = e, y, = e~! and (2.5.6) gives
e +ve =0

whereas (2.5.7) becomes

2ue? — ve~! = cosht.
Hence
3ue? = cosht, ve ' = —% cosht
or
i=g(et+e ), o=—1(1+e*)
Consequently
_ 1.t _ 1 -3t _ 1 1,2t
u=—ge ge O +C, v=—5t— e+ D
and

= (et = e O (i e+ D)ot

= Ce? + (D — %)e_t — %et — %te_t.

This is the same general solution as derived in Examples 2.5.8 and 2.5.9. If we
had placed C' = 0, D = 0 earlier we would have obtained a particular integral
but not the general solution. I
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Example 2.5.11

Solve Example 2.5.7 by the variation of parameters method. In this example it
is more convenient to replace the trigonometric functions by their exponential
representation. That is we consider the differential equation

§+ dy = 16t(e2it + e~ 2) 4 4i(e2t — =2,
The complementary function is
Yo = Cre2it 4 Cye2it,
Consequently (2.5.6) and (2.5.7) become
aeit 4+ pe—2it —
and
qe?it — pe2it = _8jt(e2it 4 e~ 2it) 4 9(e2it — =2ty
This pair of equations is easily solved to give
0= —4it(1 4+ e 4) 4 (1 — e~ %),
0 = 4it(1 + ') + (1 — etih),

which on integration by parts and ignoring the arbitrary constants of integra-
tion gives the results

. 317
u=t(1— 2t) + e~ it (¢ — gz),
; +4it 31
v=1t(1+2it)+e (t+§).

Substituting these expressions for w and v into (2.5.5) and writing the ex-
ponential forms back into trigonometric functions we obtain the particular
integral

3
yp = 4t cos 2t + 4% sin 2t — 1 sin 2t,

which when combined with the complementary function gives the solution as
found before.

The method of variation of parameters is applicable for any right-hand side
and works even if the characteristic equation has complex roots. It can also
be generalised to other types of differential equations. Its disadvantage is that
it often requires a lot of effort to carry through.

In summary, the strategy suggested is that the method of undetermined
coefficients should be employed whenever the right-hand side has the right
form. If it does not, try either factorisation of the operator or variation of
parameters with preference for variation of parameters when the roots of the
characteristic equation are complex.
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2.6 Forced oscillations

A differential equation that arises frequently in practice is
i+ 26Q + Q*y = F cos(wt + 3), (2.6.1)

where b,), F,w and § are real constants with £ > 0. It represents an os-
cillatory system subject to damping, when b > 0 as we shall assume, being
vibrated by external means. In one application y represents the displacement
of a particle subject to a restoring force 22y per unit mass and viscous damp-
ing 2bQ)y per unit mass acted on by a force of magnitude F' per unit mass and
circular frequency w.

If b # 1, the complementary function is

Yo = C1et + Che®?t, (2.6.2)

where §; = —bQ + Q(b? — 1)'/2 and 65 = —bQ — Q(b> — 1)*/2. The quantities
01 and d9 are real if b > 1 and complex if b < 1. In either case, the real parts
of §; and &5 are negative.

If b = 1, the characteristic equation has the double root —€2 and

Yo = (A+ Bt)e . (2.6.3)

To find a particular integral, we consider the right-hand side Fe!(@t+5),
Since iw is not a root of the characteristic equation, we try Ce*“*+8) which
leads to

(—w? + 2ibQw + Q*)C = F.

Therefore
) Fei(wt+ﬁ) Fefi(wt+ﬁ)
Yo = 2t 120w T O — W — 2ib0w
_ 2F{(? — w?) cos(wt 4 ) + 200w sin(wt + ()}
N (22 — w?)2 + 42Q0%w?

Consequently, the general solution of (2.6.1) is

ot F cos(wt + 3 — ¢)
Y= Ve T HQr — 02 1 42w 1/

(2.6.4)

where g, is given by (2.6.2) or (2.6.3) depending on the value of b, and

QQ _ w2
cos ¢ = )
(02 = w22 + 4202w )1 /2
2002
sin ¢ = bk (2.6.5)

{(92 — w?)2 + 4b2Q2w2}1/2°
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The first term on the right-hand side of (2.6.4) is always present whether
F = 0 or not. Its value depends upon what conditions are set at ¢ = 0, but
wherever it starts it will diminish to zero as ¢ becomes large enough because
of the form of (2.6.2) and (2.6.3). For this reason, the first term of (2.6.4) is
often known as a transient.

The second term of (2.6.4) only occurs when F' # 0 and varies at the same
rate as the forcing device. Its amplitude is independent of the conditions at
t = 0 and there is no decay as t — oco. It is known as the forced oscillation.

When one is concerned only with what happens for large ¢, the forced
oscillation alone survives. Its amplitude Y can be expressed as

F/Q?

Y= [{1 _ (w2/92)}2 + 4b2w2/92]1/2'

As w varies, changes in Y occur only in the denominator and are dictated by
the behaviour of

(1 — 2%)% 4 4b*2*
with 22 = w?/Q2. The derivative of this is

—4(1 — %)z + 8b*2

which vanishes when z = 0 or 22 = 1 — 2b%. The second derivative has the
value 4(2b? — 1) when z = 0 and the value 8(1 —2b?) when 2% = 1 — 2b2. Since
22 cannot be negative, the denominator of Y has a minimum at z = 0 and no
other stationary point if 2b® > 1, but a maximum at z = 0 and a minimum at
2% =1-2b? if 2b* < 1. Hence (i) if 20> > 1,Y has a maximum at w = 0 and
(ii) if 2b> < 1,Y has a minimum at w = 0 and a maximum at w?/Q? = 1—2b%.
The value of Y at w?/Q? = 1 — 2b? is F/2Q%b(1 — b)'/2. So the maximum
of the forced oscillation is larger the smaller b is, i.e., with low damping it is
possible to excite large vibrations provided that w is chosen appropriately.

It can be seen from (2.6.5) that ¢ = 17 when w = €, that ¢ ~ 0 when
w/ <« 1 and that ¢ — 7 as w/Q — oo.

Example 2.6.1
Solve the differential equation

I + eki + x = €F cost,

governing simple harmonic motion with weak forcing and weak damping. The
characteristic equation is
N +ekA+1=0

so that Ay, Ay = —% +iy/1 — €2k? /4. For e sufficiently small we can approx-
imate the complementary function y. by

Yo ~ e~ F/2(Acost + Bsint)
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for arbitrary constants A, B.
To determine the particular solution we try
yp = Ccost + Dsint

from which it is found that C = 0 and D = F/k. Consequently we have the
approximate solution

F
Yo ~ e~ F/2(Acost + Bsint) + % sint.

We conclude that as ¢ — oo the solution becomes one of simple harmonic
motion with amplitude F'/k.
I

2.7 Differential equations of order n

Much of the discussion for the equation of second order carries over to the

linear differential equation with constant coefficients of order n, namely
n n—1
"y CY gy = (1), (2.7.1)
Exactly as in Section 2.3, one may show that the general solution can be
written
Y="Yc+Yp

where y, is a particular integral of (2.7.1) and y. is the complementary func-
tion, i.e., the general solution of the associated homogeneous differential equa-
tion.

The complementary function is determined by solving the characteristic

equation. Recalling from Section 2.4 that the characteristic equation could be
reached by trying y = e, we do the same here and obtain

N da, N 4 ag = 0. (2.7.2)

Equation (2.7.2) has n roots A1, Ag, ..., A,. For any A\; which is different from
all the rest, there is a contribution to the complementary function of Cje*it.
If, however, A; occurs m times, the complementary function acquires a term

(D1 + Dot + - - - + D t™ HeMit,

Example 2.7.1
Find the general solution of
ddy d*y d3y d?y

dy
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The characteristic equation is
AP+ 6T + 1503 + 2607 + 36 + 24 = 0.
Now

AP+ 6AT + 1507 + 2607 + 36 + 24
= (A +2)(A* +4X° +7A% + 12X + 12)
=(A+2)2(\° +2X* + 31+ 6)
= (A +2)3(\* +3).

Thus the roots of the characteristic equation are —2 (three times) and 4iv/3,
once each. Therefore the general solution is

y = (C1 + Cst + Cst2)e™2t 4 Cye'™V3 4 Cye V3
= (Cy + Cot + 03t2>€—2t + Acos V3t + Bsin V3t

for a real solution. (

Any of the three methods described for deriving a particular integral for
the second-order differential equation may be employed for the general order
in the right circumstances. For undetermined coefficients, the rules (I), (II)
and (IIT) of Section 2.5(a) need to be supplemented because a root of the
characteristic equation can be repeated more than twice. It is, however, clear
from (I), (II) and (III) that the pertinent change is that if a appears m times
as a root of the characteristic equation, multiply by t™ the expansion that
would have been tried for a solitary root. For instance, if the right-hand side
in Example 2.7.1 were te~2¢, the trial function would be t3(A + Bt)e=2,
leading to A = 1/168, B = 2/147.

There is nothing new to add to the method of factorisation of the operator,
but now n equations of the first order have to be solved and the method
becomes increasingly cumbersome as the size of n grows.

The principle of variation of parameters is unaltered but further detail is
necessary. Let

Ye = Cry1(t) + Caya(t) + -+ - + Coyn(t)

be the complementary function. Then a solution of (2.7.1) is sought in the
form

y = u1()y1(t) + ua()y2(t) + - - + un()yn(t) (2.7.3)
with uq,...,u, subject to the n — 1 conditions
duy dus duy, -
gttt =0
duidyy  dupdys du_"dﬂ:o (2.7.4)

dt dt dt dt dt dt ’
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%dn72yl @dn72y2 du_nd”’Qyn
dt dtn=2 dt dtn=2 dt dtn=2

If (2.7.3) is inserted in (2.7.1) and the conditions (2.7.4) imposed, the addi-
tional equation

%d"‘lyl %dn—ly2 %d”_lyn _f(t)
dt dtn—1 dt dtn—1 dt din=1

(2.7.5)

is obtained. The equations (2.7.4) and (2.7.5) constitute n linear equations for
the unknowns 11, ..., @,. Solving this system for 1, ..., u,, integrating and
substituting in (2.7.3) then leads to the desired solution.

Example 2.7.2
Solve, by variation of parameters,

By Py dy
dt3 dt? dt

The characteristic equation is
A 45N —6A=0
with roots 0, 1, —6, so that
ye =Ch + Cset 4+ Csze 5.

Now try
y=wui(t) + 1L2(1f)e75 + u;),(t)e*&.

Equations (2.7.4) become
u1 + ﬂget + ﬂ3€76t =0,
Uge’ — 6uze % =0,
while (2.7.5) is
ige’ + 36uze” " = 9¢e™.

3t 9 2t

Therefore 11 = —%6 y U2 = =€ Uz = %egt

and
_ 1.3t _ 9 2t _ 1 9t
Uy = —z€ + Dy, Ug = 77€ + Do, Uz = z€ + Ds.

Consequently
y = e + Dy + Dae' + Dse™ 6

is the required general solution. I
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2.8 Uniqueness

The general solutions that have been constructed contain arbitrary con-
stants and are therefore capable of assuming different values by assigning
the constants in different ways. What we shall show now is that, if certain
conditions are imposed, the values of the constants are fixed once and for all.

The general solution of

y+aoy =0 (2.8.1)

is y(t) = Ce™%!. Suppose now that the extra condition y(0) = 0 is imposed.
Then, there is no alternative to taking C' = 0 and y(¢) = 0 throughout the
interval where the differential equation holds.

The second order differential equation

74 a1y + apy =0 (2.8.2)
can be rewritten, according to Section 2.4, as
w—ow =0 (2.8.3)

where
w=g—A\y. (2.8.4)

Now require that y = 0 and ¢y = 0 at ¢t = 0. It follows from (2.8.4) that w =0
at t = 0. But (2.8.3) is of the same form as (2.8.1) and we conclude from
the preceding paragraph that w = 0. That makes (2.8.4) of the same type as
(2.8.1) and since y = 0 at t = 0,y = 0 is the only possibility. In other words,
the solution of (2.8.2) such that y = 0 and y = 0 at ¢t = 0 vanishes throughout
the interval.
Evidently, by factorising the operator in
n n—1

i—g+an_1%+-~-+aoy20 (2.8.5)
and proceeding step by step as above we may deduce that the solution of
(2.8.5) such that

n—1
dy oy

y=0,
at t = 0 vanishes identically.
There is an important consequence for the differential equation (2.7.1). Let
it be desired to find a solution such that

d
_y :D17

 Y_p,_ 2.8.7
dt ! (2.8.7)

y = Do,
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at t = 0 with Dy, ..., D,_1 some given constants. There could be two or more

solutions which satisfy these conditions. Let y; and y2 be two of them. Since

y1 and y2 both comply with (2.8.7) their difference y; — y2 satisfies (2.8.6) at

t = 0. Also, since both are solutions of (2.7.1), their difference y; — y2 is a

solution of (2.8.5). By what has been established in the preceding paragraph

y1 — Yo vanishes identically, i.e., there is no difference between y; and ya.
This result may be stated as: there is one, and only one, solution of

—_y_|_..._|_a0y — f(t) (2.8.8)

which meets the conditions (2.8.7) at t = 0.

To put it another way, the solution of (2.8.8) subject to (2.8.7) at t =0 is
UNLQUE.

Of course, it is not necessary to specify the conditions at the origin—that
was chosen to fix ideas. If (2.8.7) held at ¢ = a the same argument would carry
through and uniqueness would be valid still. However, it is essential that all
the conditions are imposed at the same value of ¢. If some are enforced at one
value of ¢ and others at another, the situation is changed totally as will be
seen in the next chapter.

Exercises

2.1 Find the general solutions of

(a) 4 —8y+ 15y =0,

(b) 4 —8y+ 16y =0,

(¢) 4+ 29+ by = 5t2 + 5t,

(d) §—9— 2y = 30e*,

(e) i+ w?y = cos Ut (Q? # w?),
(f) 4+ w?y = coswt,

(g) §i+y+y=3sin’t.

2.2 Find the general solutions of

(a) 4+ 3y + 2y = 4> — 2t,
(b) 4+ 29 —2y = 3t°,

(c) §+ 3y =6t +3t+3,

(d) i+ 9 +y = 26¢' sint,

(e) 4+ 3y = 15sint + 5,

(f) § — 29 +y = 6e’ + 2sint,
(g) ¥ + 9y = 3sin 3t + 6 cos 3t.
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2.3

2.4

2.5

2.6

2.7

2.8

Give a suitable real form, but do not evaluate the coefficients, for a
particular integral of

(a) §+y =2t +tsint,

(b) 4 — 45 + 4y = t* + 3te®' + 4t sin 2t,

(c) 4+ 37+ 2y = 2(1 +t?)e sin 2t — e’ cost + 3et,
(d) ij + 4y = 2te? + 3tsin 2t.

Do you think it would be simpler to employ exponentials with complex
exponents in any of these cases?

Show that
2§ + bity + boy = f(t),

where by and b; are constants, can be converted to a linear ordinary
differential equation with constant coefficients by the substitution ¢t =
e”. Hence find the general solution of

29—ty +y = 2t.
Use factorisation of the operator to find the general solution of
i — 1 — 2y = 15e*.
Find the general solution of § +y = 3¢ by (a) undetermined coefficients

and (b) factorisation of the operator.

By means of (a) undetermined coefficients and (b) variation of parame-
ters find a particular integral of

i+ 4y = e’ +sin 2t
explaining any difference between the answers.
(a) Find a particular integral of
4204y =be H(1+1)/?
by (i) factorisation of the operator and (ii) variation of parameters.
(b) Find the general solution of
J+y=1/sint

by variation of parameters.

Would the method of undetermined coefficients be suitable for (a) or
(b)? Would it be feasible to use factorisation of the operator for (b)?
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2.9 The general solution of
§+p1(t)y +po(t)y =0

is y = Cyy1(t) + Coya(t). Show, by variation of parameters, that the
general solution of

§+p1(t)y +po(t)y = f(2)

can be expressed as
y = _yl(t)/ y2(u)f<u)du+y2(t)/ yl(u)f(u)du

where W(t) = y1(t)72(t) — 91(t)y=(t).

2.10 Find the general solutions of

d*y d?y
Py dy dy
b) —4+7—+16— 4+ 12y =0,
(b) G g T165; 12
dy d3y d?y
dy Py Py dy

2.11 Prove that, if p and ¢ are nonnegative integers,

[i _ artqe“t _ {0 (p>q),
dt qlg—1)---(g—p+ 1)t Pe™ (p<q).

2.12 Use the method of variation of parameters to solve

By dy
(a) ﬁ—g—smt,
d4
(b) —F —y=1+7,
d*y  d%y
CY BT et
() o — =~ Me

2.13 (a) Show that, if yo(¢) is a solution of the associated homogeneous
differential equation of

n

Y
— 7 1 (t
s +pn—1(t)

dnfly

W‘F""Fpo(t)y:f(t),

the substitution y = u(t)yo(t) leads to a differential equation of order
n — 1 for du/dt.
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(b) Given that e~ is a solution of
4 4ty + (482 +2)y = 0,

find the general solution.

(¢) Given that 1/t satisfies the associated homogeneous differential
equation of
2§ + 4ty + 2y = tsint,

findysothat y=1,y=0at ¢t =1.






Chapter 3

Systems of Linear Ordinary
Differential Equations

3.1 First-order systems of equations with constant
coefficients

In studying natural phenomena, we are often interested in more than one
quantity and the several quantities may well be connected by differential equa-
tions. We are therefore led to consider what happens when more than one
differential equation has to be solved at a time. Suppose

ax + 0y + ax + diy = f1(t), (3.1.1)
as® + bay + cox + doy = fg(t)

where a1, b1, ¢1, d1, asz, b, ca, do are constants and z, y are to be found. In
other words, two simultaneous differential equations of the first order have to
be solved.

Multiply (3.1.1) by b2 and (3.1.2) by b;. Then subtraction gives

(a1by — azxby)i + ax + Oy = F(t) (3.1.3)

where oo = Clbg — Cgbl, ﬁ = d1b2 — d2b1 and F(t) = bgfl(t) — blfg(t).
There are two distinct cases to discuss according as a1bs — a2by is or is not
zero. We call a1ba — asb; the test determinant.

3.1.1 Test determinant is nonzero

If 8 # 0, (3.1.3) can be solved to give y in terms of z and &. If this expression
is substituted in (3.1.1) or (3.1.2) a linear differential equation with constant
coefficients of order 2 is obtained for x. This differential equation can be
solved by techniques already described and its general solution will involve
two arbitrary constants. Having found = we can determine y from (3.1.3). No
further arbitrary constants are introduced and so the whole solution contains
two arbitrary constants.

If 8 =0, (3.1.3) is a differential equation of the first order for & which can
be resolved by means of an integrating factor. Its general solution will possess

61
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one arbitrary constant. Once x is known, it can be substituted in (3.1.1) or
(3.1.2) resulting in a differential equation of the first order for y. Its general
solution will bring in another arbitrary constant so again the whole solution
contains two arbitrary constants.

3.1.2 Test determinant is zero

When a1by = agby, (3.1.3) reduces to
ax + By = F(t). (3.1.4)

If B # 0, solve (3.1.4) for y and substitute in (3.1.1) or (3.1.2). The conse-
quent differential equation for x is of the first order and so its general solution
has one arbitrary constant. With z known, y is given by (3.1.4). Since no addi-
tional arbitrary constant is entailed, the whole solution possesses one arbitrary
constant.

If 5 =0, (3.1.4) immediately furnishes = provided that o # 0. Then (3.1.1)
or (3.1.2) supplies y with one arbitrary constant. Again the whole solution
contains one arbitrary constant.

If 3 =0 and a = 0, (3.1.4) becomes 0 = F(t). There are now two
possibilities. Either F(¢) is not zero over the interval of ¢ under consider-
ation when (3.1.4) cannot be satisfied and the original differential equations
are inconsistent, or F'(t) is zero over the interval and then (3.1.2) is a constant
multiple of (3.1.1).

To sum up, when the test determinant is nonzero, the whole solution can
be found and contains two arbitrary constants. When the test determinant
vanishes, either there is a solution and it includes one arbitrary constant, or
there is no solution, or the two differential equations are not different.

Although ¢ was eliminated to arrive at (3.1.3), a similar equation could
be obtained by eliminating &. The general conclusion concerning the role of
the test determinant would remain unaltered. In practice, it is a matter of
convenience whether & or g is eliminated.

Example 3.1.1
Solve

TH+29+x—y=t,
T—y—x—2y=1.

The test determinant is —1—2, which is nonzero; so the whole solution
should possess two arbitrary constants.
Eliminating y from (3.1.5) and (3.1.6) we obtain

3t —x—by=t+2
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whence
y=+(Bi—x—t—2). (3.1.7)

Insertion of (3.1.7) in (3.1.6) gives

—%x - %x = —%t
or
. _ 2
T4z =3t
It follows that
x = Cycost + Cysint + 2t. (3.1.8)

From (3.1.7)
y = +(3Cy — C1)cost — £(3Cy 4 Cy)sint — xt.

Only two arbitrary constants C; and Cs appear in the solution in accordance
with earlier observations. I

Having found z in (3.1.8), one might have tried to find y from (3.1.6) instead
of (3.1.7). Not only would this require more effort but also it would display
another feature. Substitution of (3.1.8) in (3.1.6) gives

y+2y=(Cy — Cy)cost — (C1 + Cy)sint — 2t — &
from which can be deduced
Yy = 036_2t + %(302 — Cl) cost — %(301 + 02) sint — %t. (319)

An extra arbitrary constant C3 has made its presence known. However, be-
cause we did not find y from (3.1.7), there is no guarantee that (3.1.5) is
satisfied. If (3.1.8) and (3.1.9) are put in (3.1.5) it will be discovered that x
and y do not satisfy (3.1.5) unless C5 = 0. It is therefore essential to minimise
labour, to work through (3.1.7) or (3.1.3) in the general case.

There is another technique which suggests itself and which should be avoided,
namely to try to treat (3.1.5) and (3.1.6) like algebraic equations and remove
both & and z (or y and y) at the same time. Apply (d/dt) — 2 to (3.1.5) and
(d/dt) — 1 to (3.1.6). There results

P30+ 2m 42§+ 3y — 2y =1+ 2t,
2 — 3d + 1 — 2§ — 3y + 2y = —1.

By addition
3%+ x) = 2t,

which supplies the same z as in (3.1.8). But, unless we re-derive (3.1.7), we
have to determine y by substituting for x in one of the original differential
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equations. This will run into the same trouble as in the preceding paragraph
and recover (3.1.9).

Example 3.1.2
Find the solution of

b2y —ax=¢é, (3.1.10)
—2i +4y+y=1. (3.1.11)

Here the test determinant vanishes and one of three possibilities may occur.
Elimination of § provides

2z +y = 2¢' + 1. (3.1.12)

Thus the equations are consistent and different; consequently, there will be a
general solution with one arbitrary constant only.
Substitute for y from (3.1.12) in (3.1.10). Then

5& + x = 5et

whence
x=Ce t/5 4 %et.

From (3.1.12)
y=1tet+1-2Ce />

and the whole solution contains the single arbitrary constant C'. I

Finally, note that, when the test determinant does not vanish, (3.1.3) can
be divided by a1bs — asb; with the result

$:a1$+ﬁly+F1(t). (3113)
Similarly, by getting rid of & from (3.1.1) and (3.1.2), we obtain
§ = aox + fay + Fa(t). (3.1.14)

Thus (3.1.1) and (3.1.2) could be replaced by (3.1.13) and (3.1.14), if desired,
so long as the test determinant is nonzero.

3.2 Replacement of one differential equation by a system

The second-order differential equation

§+ a1y + aoy = f(2) (3.2.1)
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can be represented as a system of first-order equations. Put

y(t) = a1(t), y(t) = z2(1). (3.2.2)
From the first of (3.2.2), y = 41 and so, from the second of (3.2.2),
i‘l = X9. (323)

Furthermore, (3.2.1) can be written as
iy = f(t) — 122 — a1, (3.2.4)

Thus (3.2.1) gives rise to the system of first-order equations (3.2.3) and
(3.2.4). Any solution y of (3.2.1) provides a solution of the system via the
identification (3.2.2). Conversely, given a solution of (3.2.3) and (3.2.4), we
can substitute from (3.2.3) in (3.2.4) to obtain

T +a121 + agr1 = f(t)

so that a solution of (3.2.1) is obtained by putting y = x;. Therefore the
differential equation (3.2.1) and the system (3.2.3)—(3.2.4) are equivalent. It
is thereby possible to deduce properties of a second-order differential equation
from those of a first-order system or vice versa.

These notions can be extended to the differential equation of order n

dny dnfly

— nel—— + - = f(t 3.2.5
Zgn T a1y o Faoy = f(1) (3:2.5)
by placing
dnfl
y(t) :xl(t)7 y=$2(t)7 s Wy(t) :xn(t)'
It is evident from these last relations that
'jjl = T2,
T = X3,
jjn—l = Tn.
Moreover, (3.2.5) can be expressed as
Tn = f(t) —apxy — - — Ap_1%n.

Again a system (of n first-order equations) has been produced. The equiva-
lence of the system and (3.2.5) can be demonstrated in the same manner as
for the second-order differential equation.

The systems derived here have the same structure as (3.1.13) and (3.1.14)
but the latter are more general than the former. From now on it will be
assumed that the test determinant of our system is nonzero so that (3.1.13)
and (3.1.14) are valid. Their generalisation will be investigated in the next
section.
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3.3 The general system

A system of differential equations,
@i =Y agz;+ filt) (i=1,...,n), (3.3.1)
j=1

where every a;; is a constant, is known as a system of linear differential
equations of the first order with constant coefficients. The system

&= agz; (i=1,...,n) (3.3.2)

j=1
is called the associated homogeneous system. A general solution of (3.3.1)
or of (3.3.2) must determine the n quantities 1, x3,...,Z,. It is convenient
to use the abbreviated notation x for the n quantities =1, x2, ..., z, and say

that x is a solution of (3.3.2) when the z1, x3, ..., x, satisfy (3.3.2).
Suppose now that x(*) is a solution of (3.3.2) for & = 1,...,n. Consider

zi=Y G (i=1,...,n) (3.3.3)

k=1

where the C} are constants. Then

a':i = zn: Cka'fgk) = Xn: Ck Xn: aijl‘gk)
k=1 k=1 j=1

Z Q5 Ckl‘gk)

j=1 k=1
n
=Y aiz;
j=1

so that (3.3.3) also furnishes a solution of the associated homogeneous system.
This explains why the system is called linear.

The formula (3.3.3) is a candidate for the general solution. It will be satis-
factory if we can choose C1,...,C, so that z;(tg) = z,0 (i =1,...,n) for any
to in the interval under consideration and for any selection of the constants
;0 that we care to make. The choice is possible if

ZCkxEk)(to):xio (zzl,,n)

k=1
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These constitute n linear algebraic equations for the unknowns Ci,...,C,,.
They can be solved for arbitrary right-hand sides if, and only if, the determi-
nant of the coefficients is nonzero, i.e.,

P L)
1 2 n
SRl
S B A
The determinant is known as the Wronskian and written W (x™, ... x(™)
for brevity. If the Wronskian is nonzero throughout the interval, the solutions
xM .. x(™ are said to form a fundamental system. We conclude that if
x(M ... x(™ form a fundamental system, the general solution of (3.3.2) can

be expressed as
x; = ZCkxEk) (t=1,...,n)
k=1

where C1,...,C, are arbitrary constants.
Given the general solution of the associated homogeneous system, the gen-
eral solution of (3.3.1) is

zi=Y G +X; (i=1,...n) (3.3.4)
k=1
where X7, ..., X, is some particular solution of (3.3.1). The proof is the same

as for the second-order differential equation, the first term on the right of
(3.3.4) corresponding to the complementary function and the second to the
particular integral.

The most reliable way of finding X for general values of n is the method
of variation of parameters. With the solutions x(*), ... x(® forming a funda-
mental system, we look for a solution of (3.3.1) of the type

zi(t) =Y u®)a? (1) (i=1,...,n). (3.3.5)

Then

k=1
n n n
k
= g ukxg )—i— E Uk E ai5T; )
k=1 k=1 j=1

because x(¥) satisfies (3.3.2). Thus (3.3.5) implies that

n n
. o )
T aijTj = Ugx;
j=1 k=1
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and (3.3.1) is satisfied if
SV =fi (i=1,....n). (3.3.6)
k=1

There are n equations in (3.3.6) for the n unknowns 4y, ..., u,. They can
always be solved because the determinant of the coefficients is the same as
the Wronskian, which is nonzero because x(V), ..., x(™ make a fundamen-
tal system. Integration supplies u1, ..., u, and a particular integral has been
found.

The reader should verify that, for a single differential equation of order n,
the equations (3.3.6) do go over to (2.7.4) and (2.7.5) when the substitutions
of Section 3.2 are made.

3.4 The fundamental system

It is evident from the preceding section that the general solution of a system
can be elicited if a fundamental system can be unearthed. For the single
differential equation, searching for solutions proportional to e’ was profitable
and so the same device may be effective for a system. Therefore try z; = ¢;e
for i = 1,...,n. The system (3.3.2) will be satisfied if

n
At At
Ae;e :E a;jc;e
Jj=1

or

D age; =X (i=1,...,n). (3.4.1)
j=1

The linear equations (3.4.1) will force every ¢; to be zero unless the deter-
minant of the coefficients vanishes. To obtain a nonzero solution, at least one
¢; must be different from zero. Hence the determinant of the coefficients must
be made to vanish, i.e.,

al]l — A ai2 . A1n
a1 a9 — Ao agn
=0. (3.4.2)
an1 an2 e Apn — )\

When expanded, the determinant becomes a polynomial of degree n in A,
which may be expressed as

A" 4 P AT 4 4 pg = 0. (3.4.3)
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This polynomial has a special property (needed later) which is usually desig-
nated as the Cayley-Hamilton Theorem. Denote the n x n-matrix (a;;), with
entries as in (3.4.2) when A = 0, by A. Then, if [ is the unit n X n-matrix,

A" 4+ pp1 A"+ po = 0. (3.4.4)

There are n values of A which satisfy (3.4.2). Let these roots be denoted by
Al,. .., Ap; they are called the eigenvalues of the matrix (a;;). Put A = A
in (3.4.1) and solve for ¢; to obtain cgk), say. Then z; = cgk)ek’@t
of the associated homogeneous system.

We must now investigate whether the identification ml(-k) = cgk)e/\kt for k =
1,...,n will construct a fundamental system. Suppose that Aq,..., A, are all

different. Let there be n constants By, ..., B, such that

is a solution

S Bie® =0 (i=1,....n). (3.4.5)
k=1
Then . .
ZaijZBkCyﬂ) =0 (i=1,...,n)
j=1 k=1
or, from (3.4.1),
ST MBre =0 (i=1,...,n). (3.4.6)
k=1

Multiply (3.4.5) by A,, and subtract from (3.4.6). Then

n—1

SO = A)Biet” = 0. (3.4.7)
k=1
Since A, # Ay, for k # n, we have equations of the same form as (3.4.6) except
that cgn) has been removed. Starting from (3.4.7) we can repeat the process

and strike off an—l). Continuing in this way we arrive at

By =0 (i=1,...,n) (3.4.8)
where Bj is a nonzero multiple of By. At least one of cgl), . ,csll) is not zero
so that B} = 0, which implies that By = 0. But now the stage before (3.4.8)
will enforce Bécl(.z) = 0, which entails B, = 0. Repetition of the procedure
leads to the conclusion that, if (3.4.5) holds, B =0 (k= 1,...,n). However,

that is possible only if the determinant of the coefficients is nonzero, i.e.,

W@

S S
cél) ng) Lo

> | #0.

P Y
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Remembering that the Wronskian is e+ +2)t times this determinant, we
see that the Wronskian does not vanish. Thus, in this case, a fundamental
system has been obtained.

What has been shown is that, if all the eigenvalues are distinct, the general
solution of the associated homogeneous system is

zi=Y MMt (i=1,...,n). (3.4.9)
k=1

Example 3.4.1
Find the general solution of

T =4+ vy,
Y =3z + 2y.

The determinantal equation (3.4.2) is

4— X 1
‘ 3 2—A ‘ =0

or

A —6A+5=0.
Thus we can take \; =1 and Ay = 5.

For A =1, (3.4.1) becomes
309) + cgl) =0

twice. Consequently cgl) = (1, cgl) = —3C where C] is an arbitrary constant.

For A =5, (3.4.1) goes over to
—cf) + cgz) =0

so that c§2) = (5, 052) = (5 where (5 is an arbitrary constant.
The desired general solution is

C16t + Cge5t,
Yy = —3C, et + Cqedt. [

T

When some of the eigenvalues are repeated, the situation is much more
complicated. Assume that \; occurs p times. When A is placed equal to A1 in

(3.4.1) there may be p solutions D c§p> such that

i

p
S Bie® =0 (i=1,...,n)
k=1
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enforces By =0 (k= 1,...,p). In that case our earlier analysis ensures that
the contribution of this eigenvalue has the same form as in (3.4.9).

It may happen that p solutions cannot be found. Additional solutions must
now be generated. Drawing on our experience with the single differential equa-
tion we try

€T; = (dl + Cit)ekt.

This will satisfy (3.3.2) if

(Ad; + ¢ + Acit)eM = Zaij(dj +et)er (i=1,...,n).
j=1

These can be true for an interval of ¢ only if

Z @i Cj = /\Ci, (3410)
j=1
Zaijdj = Xd; +¢; (3.4.11)
j=1

for i = 1,...,n. Equation (3.4.10) is the same as (3.4.1) and may be solved
in the same way as before. Once ¢; has been determined, we solve (3.4.11) for
d;. In this manner, extra solutions of the differential system may be created.

There may still not be enough to fill the p slots available. If so, quadratic
and possibly higher powers of ¢ can be added into the expression for x;. In
fact, it can be asserted that the trial solution

T; = (7‘1‘ 44 ditiﬂ—Q + Citp_l)eM

is bound to produce enough solutions corresponding to the eigenvalue A;.
An alternative method for manufacturing solutions is discussed in the next
section.

Example 3.4.2
Find the general solution of

T = dx + 3y,
Y= —3T—y.
In this case (3.4.2) is
5—A 3
’ 3 —1-) ‘_ 0

or
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The eigenvalue 2 occurs twice. With A = 2 in (3.4.1)
3ct 43 =0,
—3clM —3cM = 0.

Now cgl) =, cgl) = —( is the only possible solution and so is insufficient
for our purposes. Invoking (3.4.11) we have

3dy + 3ds = ¢,
—3d1 - 3d2 = —C1
since cg = —c1. A solution is di = Cs,ds = 0,¢1 = 3C5. No other solution

is necessary since it will differ from this only by a solution of (3.4.10). Two
solutions are known now and

Che?t + Oy(1 + 3t)e*,
= —01€2t — 302t€2t.

The reader should confirm that the Wronskian is nonzero, consistent with the
derivation of a fundamental system.

3.5 Matrix notation

The system (3.3.1) can be expressed in terms of matrices by introducing

the column vector x with components x1,...,x,, the column vector f with
components fi,..., f, and the matrix A = (a;;). Then
x=Ax+f (3.5.1)

and the associated homogeneous system is
x = Ax. (3.5.2)

The similarity of (3.5.2) to the single first-order differential equation sug-
gests that it ought to be possible to write the general solution as

x =etC (3.5.3)

where C is an arbitrary column vector. However, (3.5.3) has no significance
until a meaning is attributed to the matrix e*4. A suitable definition is

1

3't3A3 +--- (3.5.4)

1
e =T+tA+ 5t2A2 +
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where [ is the unit n X n-matrix. The presence of an infinite series in the
definition means that (3.5.3) has a deceptive air of simplicity. It conceals the
fact that it may be quite difficult to calculate et4.

By putting ¢t = 0 in (3.5.4) we see at once that

=1 (3.5.5)

Furthermore, by taking derivatives of (3.5.4) with respect to ¢ term-by-term,
without worrying about the legitimacy, we obtain
d
—eth = Aett = A, (3.5.6)
dt
Next, notice that the polynomial (3.4.3) would occur when considering
solutions of the differential equation

d"w n d" 1w
i Pl gpm=1

+ -+ pow = 0. (3.5.7)

This suggests that the solutions of (3.5.2) are related in some way to those of
(3.5.7). In fact, a derivative of (3.5.2) gives

% = Ax = A’x
by virtue of (3.5.2). Clearly
d"x
_— = Am ..
T x (3.5.8)

in general. Observe that this is consistent with (3.5.3) as can be seen by
invoking (3.5.6). From (3.5.8)

d™x d"x
—— + Dn-1

dtn Tt ot pex = (AT g AT e pol)x = 0 (3.5.9)

on account of (3.4.4). Comparison of (3.5.9) with (3.5.7) reveals that each
element of x is a solution of the differential equation (3.5.7).

Suppose now that x = 0 at t = 0. Then (3.5.8) implies that the derivatives of
x are also zero at t = 0. Hence each element of x is a solution of (3.5.7) which,
together with its derivatives, vanishes at ¢ = 0. The theory of Section 2.8 tells
us that such a solution must be identically zero. Hence, if x = 0 at t = 0,
the solution of (3.5.2) is zero throughout the interval under consideration. It
follows, as in Section 2.8, that the solution of (3.5.1) such thatx = C at t =0
is unique. Naturally, the point ¢ = 0 can be replaced by some other if desired.

Now consider some special solutions wy, wa, ..., w, of (3.5.7). We choose
wi so that

w1 = 17 dw1/dt = O, d2w1/dt2 = 0, ey dn—lwl/dtn—l -0
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at t = 0. For wy we take
wy =0, dwy/dt =1, d*wy/dt* =0, ..., d" twy/dt" =0

at t = 0 and generally we select d™w;/dt™ to vanish at ¢ = 0 except for
m = i — 1 when the value is to be unity. The functions wy,ws,...,w, are
uniquely defined (Section 2.8) and any solution of (3.5.7) can be expressed in
terms of them by adding appropriate multiples to reproduce values specified
for the solution and its derivatives at ¢ = 0. Accordingly, there are constant
vectors ¢, ..., c, such that

X = wiC1 + waCs + - - - + Wy Cpy. (3.5.10)

Let x = C at t = 0. Putting ¢t = 0 in (3.5.10) we have ¢; = C. Take a
derivative of (3.5.10) and put ¢ = 0. Then x = ¢ = AC by virtue of (3.5.8).
Repeating the process we obtain ¢ = A?C and generally c,, = A" !C.
Consequently, the solution of (3.5.2) such that x =C at t =0 is

x = (w1 I+ wA+---+ wnAnfl)C.

On the other hand, (3.5.5) indicates that (3.5.3) is the solution that is C at
t = 0. By the uniqueness property, which has been demonstrated already, the
two solutions must be the same, i.e.,

AC = (wil +waA+ -+ wnA"_l)C.
But C is arbitrary since no particular values have been assigned to it and so
e = wi T +waA+ - +w, AV (3.5.11)

The formula (3.5.11) has the advantage over (3.5.4) of being a finite series
rather than an infinite one. However, it does entail the determination of n
solutions of (3.5.7). Whether it is more effective in practice than the method
described in earlier sections is more difficult to assess. Probably, the earlier
method is best when all the eigenvalues of A are distinct. With repeated
eigenvalues the scales will tend to tilt towards (3.5.11). To aid the reader in
forming an assessment some of the preceding examples will be tackled by the
method of this section.

Example 3.5.1
Find the general solution of

T =4x + vy,
Y = 3x + 2y.

The analogue of (3.5.7) is, from Example 3.4.1,

w— 6w +5=0.
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5

Consequently, wy = (5et —e!)/4 and wy = (e’ — ') /4. Substitute in (3.5.11)

with n = 2. Then

10 41
tA _ (gt _ 5t 56t
4e*” = (5e e)(o 1>+(e e)(3 2)
365t 4ot 5t — et
- (3€5t —3et ebt 4 3et)'
Consequently, if C has elements Cy, Cs

r = (3C) + Cy)e’ /4 + (Cy — Cy)el /4,
y = (3C1 + Cy)ed /4 — 3(Cy — Cr)el /4.

This has the same structure as in Example 3.4.1 although here C and C5 are

the values of x and y at t = 0.

Example 3.5.2
Find the general solution of

T = dx + 3y,
y=-—3r—y.

The differential equation to be solved is, by Example 3.4.2,
w — 4 + 4w = 0.

Therefore wy = (1 — 2t)e?* and wy = te?'. Hence

i o (143t 3t
©=° (—3t 1-3t

resulting in

x = {Cy +3(Cy + Cy)t}e*,
y={Cy—3(C1 + Cg)t}e%.

Again there is consistency with Example 3.4.2 on adjusting the constants.

Example 3.5.3
Find the general solution of

T =3z +vy,
y=3y+z,
z = 3z.

[
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310 9 6 1
Inthiscase A= |0 3 1| andA2= [0 9 6 | The relevant differ-
0 0 3 0 0 0
ential equation is
d3w d*w dw
— —9— 4+ 27— — 27w =0.
ar ~ae tar TA
Hence wy = (1 — 3t + 9t2/2)e3, wy = (t — 3t2)e3, w3 = t2e3!/2 leading to
1t t2)2
et=eMl0 1 t
00 1

and
T = (Cl + Cot + C3t2/2)63t,
y = (Cs + Cst)e™,
z = Cye’. [

Matrix notation offers a neat way of representing a particular integral of
the system

x = Ax + £(¢). (3.5.12)

When f is absent we know that a solution of (3.5.12) can be expressed as
x = e'4xq. Therefore, as in the method of variation of parameters, try

x = ey (1) (3.5.13)

as a solution of (3.5.12). Since, from (3.5.6),
x = Ae'y(t) + ey (t) = Ax + ey (t)
(3.5.12) is satisfied provided that

Hence y(t) = e~ *Af(t) and
y(t) = /t e~ “Af (u)du.
It follows from (3.5.13) that a particular integral of (3.5.12) is
x(t) = et /t e~ "Af (u)du. (3.5.14)
The meaning of [ g(u)du is specified by

J g1(u)du
/g(u)du - J g2(u)du

J gn(u)du
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when g7 = (91,92, ...,9n) where g’ is the transpose of g.
Observe that e~*4 differs from e* only in the sign of t. Consequently, e~
can be written down as soon as e*4 has been calculated.

tA

Example 3.5.4
Find a particular integral for

& = bx + 3y + 2te*,
y=—-3xr—y+4.

We know from Example 3.5.2 that

A o (143t 3t
©=° (—3t 13t

A (13t =3t
c e <3t 1+3t)

Hence, with f7 = (2te?,4),

b (P2 432t 1)
e “f(u)du = 3 o .
2t% — (6t + H)e

and so

We do not need to include arbitrary constants since they add only multiples
of the complementary function.
After insertion in (3.5.14) we obtain the particular integral

r=t*+13)e* 43,
Yy = —t3e% — 5. [

3.6 Initial and boundary value problems

It has been mentioned from time to time that solutions of differential equa-
tions are often subject to extra conditions. This section will be devoted to
a discussion of two types of conditions that are of frequent occurrence in
practice.

Suppose a solution of

e o taoy = f(1) (3.6.1)
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is required such that

d dnfl
_,0 Y ) e Y _ (-1
y=y" =y . o=y
at t = to, with 4@, ...,y prescribed constants. This is termed an initial

value problem.
The general solution of (3.6.1) is

yzclyl+"'cnyn+yp

where y,, is a particular integral and the remaining terms represent the com-
plementary function. Then the imposed conditions can be complied with if

d™y d™yn d™y
. C, =qym 2P =0,1,...,n—1
Crggm T arm Y gm  (Mm=01L....n=1)
when t = tg. These n equations for C1,...,C), can always be solved if
yl y2 DRI yn
v ™
dn—lyl dn—1y2 dn—lyn
dtnfl dtnfl dtnfl

This determinant is the same as that derived from the Wronskian of Section
3.3 when the differential equation is converted to a first-order system and,
accordingly, is also known as a Wronskian. The nonvanishing of the Wronskian
warrants the statement that

Biyi(t) + -+ Bryn(t) =0 (3.6.2)

for an interval of ¢, which necessitates the constants By, ..., B, all being zero.
For n — 1 derivatives of (3.6.2) give a set of equations for By,..., B, with
nonzero determinant and zero right-hand side. Expressed in other words, the
nonvanishing of the Wronskian makes y1, ..., y, linearly independent over
the interval. To put it another way, it makes certain that the complementary
function has been determined correctly.

Since there is only one set of Ci,...,C), that satisfies the equations for
nonzero Wronskian, it has been demonstrated that the initial value problem
always possesses a solution and there is only one which satisfies the imposed
conditions. This constitutes another verification of the uniqueness property.

The initial value problem is characterised by all the restrictions being ap-
plied at a single value of ¢. In some instances the conditions refer to more
than one value of t—we then have a boundary value problem. In contrast
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to the initial value problem, it is by no means certain that a boundary value
problem has a solution. Consider

y+y=0
of which the general solution is
y = Ccost + Csysint.

Let the conditions be y(0) = 0,y(1) = 0. The first requires C; = 0 and the
second Cy sin 1 = 0. Since sin 1 # 0 we must have Co = 0 and the only solution
is the trivial one which vanishes everywhere. Now change the conditions to
y(0) = 0,y(w) = 0. In this event, y = Cysint is a solution with Cy arbitrary.
Thus, boundary value problems may have many solutions or none (if the trivial
one is discounted). It is also obvious that the interval of ¢ has a critical role
to play.

Instead of varying the interval, it is usual to fix it and incorporate a pa-
rameter in the differential equation. A typical problem might be to solve

% (p(t)%) +{q@)+A}y=0 (3.6.3)

subject to y(a) = 0,y(b) = 0. This is an example of a Sturm—Liouville
problem. The values of A, which is independent of ¢, are crucial. For some
there will be only the trivial solution and for others there will be many so-
lutions. Those A for which nontrivial solutions exist are called eigenvalues
and the corresponding solutions eigenfunctions.

Example 3.6.1
Consider
j+Ay=0

under the conditions y(0) = 0,y(w) = 0.

If A = 0, the general solution is y = A + Bt, which satisfies the boundary
conditions only if A =0 and B = 0. Therefore A = 0 is not an eigenvalue.

If XA # 0, the general solution is

y = Cy cos VAt 4+ Co sin VAL

To comply with the boundary conditions we must have C; = 0 and Cj sin v/ Ar
= 0. For a nontrivial solution Cy # 0 and A = m? where m is a positive
integer. The eigenvalues are real and infinite in number. They may be desig-
nated A1, Ag,... where \,, = m?. The eigenfunction corresponding to \,, is
Cy, sinmt where Cy, is arbitrary.

The discussion of (3.6.3) will assume that p(t) is a continuously differen-
tiable real function that does not change sign for any ¢ in (a,b). No loss of
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generality is incurred in taking it to be positive. The function ¢ will be as-
sumed to be real and continuous in (a, b). We shall also suppose that there is an
infinite set of eigenvalues A1, A2, ... with associated eigenfunctions Y7, Y5, .. ..

With these assumptions the first thing to be shown is that the eigenvalues
are real. Y, satisfies

% (p(t) d;; ) +{g(t) + A}V = 0 (3.6.4)

and Y,,(a) = 0,Y,,(b) = 0. By taking a complex conjugate

% (p(t) d;/f) +{a(t) + AL}V, =0 (3.6.5)

and Y;x (a) = 0,Y(b) = 0. Multiply (3.6.4) by Y,*, (3.6.5) by Y., and subtract.
There results

d dy, d ay;
* Pom oy o — m )\m_)\* Ym2:
Vi (05 ) < gy (05 ) + O = T
Hence

b b
d dy, d ayr
* 2 — * m _ el m
(Ao = Am) / Vo2t / {Ym - (p(t) = ) Yo (p(t) = )}dt

dy,, Ay ] b

= Y p(t)—— — Yop(t) —= 3.6.6
V) 5~ V) 2 (3.6.6)
by integration by parts. The right-hand side of (3.6.6) is zero because of the
conditions on Y, Y* at t = a,t = b. The integral on the left is positive because
Y., is a nontrivial solution. Consequently, \,,, = A, and A, is real.

The reality of the eigenvalues means that there is no loss of generality in
taking the eigenfunctions to be real. With this understood, note that
d dy,
— n(t A )Y, =0 3.6.7
i (P52 ) + a0+ 0) (3.6.7)
and Y;,(a) = 0,Y,,(b) = 0. Multiply (3.6.4) by Y,,, (3.6.7) by Y,,,, subtract and
proceed as above. Then

/ Yy Yodt = [()(Y d;/t Ym%)]: (3.6.8)

The right-hand side is zero on account of the values of Y;,,, Y;, at the endpoints.
Therefore, if A, # A,

b
/ Y, Yodt = 0. (3.6.9)
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Functions that satisfy (3.6.9) are said to be orthogonal, i.e., the eigenfunctions
of distinct eigenvalues are orthogonal. If, in addition, the eigenfunctions are
normalised so that f; Y,2dt = 1, the eigenfunctions are called orthonormal.

It will not have escaped the reader’s notice that the right-hand sides of
(3.6.6) and (3.6.8) can vanish for conditions other than those delineated. For
example, if y(a) = 0 is replaced by

a1y(a) + asy(a) =0, (3.6.10)

where at least one of the real aq, as is nonzero, the right-hand sides are still
zero. A similar remark is true if y(b) = 0 is changed to

Pry(b) + B2y(b) =0 (3.6.11)

where (1, 32 are real with at least one nonzero. Equations (3.6.10) and (3.6.11)
can be deemed standard boundary conditions (they include the previous
ones by putting oy = 0, 82 = 0). What has been shown is that the eigenvalues
are real and the eigenfunctions orthogonal for standard boundary conditions.

Example 3.6.2
Find the eigenfunctions of § + Ay = 0 subject to y(0) = 0,¢(w) = 0.

For A = 0, the solution y = A+ Bt meets the boundary conditions if B = 0.
The eigenfunction is y = A.

For A\ # 0, proceed as in Example 3.6.1 to show that there is an eigenvalue
n? with eigenfunction C,, cos nt.

The first eigenfunction can be subsumed in the second group by allowing
n = 0. Thus the eigenfunctions are C;, cosnt for n =0,1,2,....

Eigenvalues can also occur for periodic boundary conditions where
p(a) = p(b), y(a) = y(b), y(a) = y(b). Again the eigenvalues are real and
the eigenfunctions orthogonal.

Example 3.6.3
Find the eigenfunctions of § + Ay = 0 subject to y(0) = y(7) and (0) = g(x).
If A = 0, the general solution is y = A 4+ Bt which satisfies the boundary
conditions if B = 0 and so A = 0 is an eigenvalue with a corresponding
constant eigenfunction.

If A # 0 then the general solution is

y = Asin VAt + Bcos VL.

On applying the boundary conditions we find that the following set of homo-
geneous equations must be satisfied:

Asin VA1 + B(cos VAT — 1) = 0
A(cos VAT — 1) — BsinVar = 0.
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This set of equations has a nontrivial solution only if cosvAr = 1, that is
A =4n2 n = 1,2,.... is an eigenvalue with corresponding eigenfunction
Yn = Ay sin2nt+ B,, cos 2nt, where A,, and B,, are arbitrary constants. These
constants can be chosen so that the eigenfunctions are normalised to give
Yn = \/2/7sin(2nt 4+ a,) with arbitrary constant a,.

3.7 Solving the inhomogeneous differential equation

This section is concerned with the boundary value problem in which

d dy

— t)— t)y = f(t). 3.7.1

i (%) + a0 =100 (3.7.1)
For simplicity, the conditions y(a) = 0,y(b) = 0 will be imposed, although
it will be clear that the technique is equally valid for the standard boundary
conditions.

Let A1, A2,... and Y7,Y5, ... be the eigenvalues and eigenfunctions deter-
mined in the section before. Assume that we can write

F&) =" bmYm ().
m=1

Multiply by Y;, and integrate from a to b. Then, by virtue of the orthogonality
of the eigenfunctions,

b, /b YZidt = /b F)Y,(t)dt
which specifies the coefficient b,,. Putting
Y= i Yo (1) (3.7.2)
m=1
in (3.7.1) we obtain, provided that derivatives can be taken term-by-term,
- i A Am Yo (t) = i b Y (),
m=1 m=1

which suggests that (3.7.2) is the desired solution of the boundary value prob-
lem when a,, = —by,/Am.

Example 3.7.1
Find the solution of
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such that y(0) = 0,y(7) = 0.

It should first be pointed out that this problem can be solved easily without
eigenfunctions but for many problems there is no option to finding the solution
as a series of eigenfunctions.

The eigenfunctions are sinnt and so

bn:/ tsinntdt// sin? nt dt = (—1)"*12/n.
0 0

Since A\, = n? our solution is

[e%e) _1ym
y=2 Z ( mg sin mt.
m=1

The derivation of the series solution rested on a number of assumptions,
namely

(a) f can be expanded in a series of eigenfunctions,
(b) am = —bm/Am form=1,2,...,

(€) > bm Y /A is a continuous function that possesses two derivatives
which can be calculated by taking derivatives of the series term-by-term.

There is no difficulty about (b) when A, # 0 for m = 1,2,... and a unique
solution is obtained. If, however, one of the eigenvalues, say A1, is zero, the
boundary value problem has no solution when b; # 0 and an infinite number
of solutions when by = 0.

Both (a) and (c) raise delicate matters because they require knowledge of
the properties of expansions of functions in terms of eigenfunctions. It would
take us too far afield to derive these properties; so we content ourselves with
a few observations without proof. Generally speaking, the smoother f is, i.e.,
the more derivatives it has, the more likely is the process to be legitimate. In
fact, for the standard boundary conditions, the series for a piecewise smooth
function converges uniformly and absolutely to the function on any closed
interval in which the function is continuous. Nevertheless, even in the absence
of a specific theorem, there is nothing to prevent one from carrying out the
process formally and then attempting to confirm that the resulting series has
the desired properties.
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3.8 Numerical solution of linear boundary value prob-
lems

The solution of boundary value problems by numerical methods is quite
different from the solution of initial value problems (see Section 1.7). The
reason is that, for initial value problems, the solution is completely known at
some initial time, and can be systematically stepped forward to obtain an ap-
proximation to the solution at any future time. In contrast, a boundary value
problem has partial information specified at two (or more) different values of
the independent variable (¢ or x), so simple marching methods, such as Euler’s
method, are not applicable. Instead, a system of equations for the solution at
each value of x must be set up and solved simultaneously. This is done by
dividing the domain up into a set of grid points and replacing derivatives in
the differential equation by corresponding finite difference approximations.

As an example, consider the second-order linear differential equation

d*y dy _
2 Tea) o+ a(@)y = g(a), (3.8.1)

subject to the boundary conditions

y(a) = «, y(b) = 6. (3.8.2)

Note that the coefficients p and ¢, and the right-hand side g, are permitted to
be functions of the independent variable x. The basic idea is to approximate
derivatives of y in (3.8.1) using central difference approximations. The
approximations for the first two derivatives are

dy  yle+h)—y(e—h)

dx 2h ’
Py ylx+h) +ylx—h) - 2y(x)
dz? h? '

These may be derived from the Taylor expansion of y(x + h) about z. We
now define a grid of equally spaced x values xg,...,x, (where z; = a + ih
and the step size is h = (b — a)/n), with corresponding approximate y values
Y0, - - -, Yn. Equation (3.8.1) now reads

. + oy — 2 . — i
Yo TV 2y ) SV gy = glan). (38.3)
h 2h
By setting i = 1,...,n—1, this gives an equation for each of the n — 1 interior
lattice points. The boundary conditions yg = « and y, = [ provide two

further equations, giving a system of n + 1 equations in the n + 1 unknowns
Yo, - - -, Yn- Since the differential equation (3.8.1) is linear, the resulting system
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of finite difference equations is also linear. It may, therefore, be written in the
form of a matrix—vector equation Ay = b, where

i 1
e - SOV
A= : )
ot —foe) o+ o
L 1
i (6%
g(xl)
b= :
g(xn)
| B

This system can be readily solved by standard methods. Indeed, MATLAB
has a built-in command for solving linear systems: the solution of the matrix
equation Ay = b may be found via the command y = A\b. Note that, be-
cause each of the equations (3.8.3) only contains three of the unknowns (y;_1,
y; and y;1+1), the matrix A has a tridiagonal structure (i.e., all entries that
are not on the main diagonal or the first subdiagonal or superdiagonal are
zero). Moreover, there is a clear pattern followed by the entries on these three
diagonals. These properties can be used to define the matrix A efficiently. The
following MATLAB function file calculates the approximate solution to the
boundary value problem (3.8.1) and (3.8.2) using a specified number of lattice
points N.

function [x, y] = bvp(coeffs, xspan, BCs, N);
% Function to solve a linear second-order BVP
% INPUTS: coeffs - handle to a function that returns the three

% coefficients p(x), q(x) and g(x)

% xspan - 1x2 vector containing the min and max values
A of x

% BCs - 1x2 vector containing the corresponding values
% of y

% N - number of lattice points to use

% OUTPUTS: x - vector of equally spaced x values

% y - vector of corresponding y values

dx = (xspan(2)-xspan(1))/N; Y spacing between lattice points
x = (xspan(l):dx:xspan(2))’; % vector of equally spaced values

A = zeros(N+1, N+1); % initialise A as a matrix of zeros
b = zeros(N+1, 1); % initialise b as a vector of zeros
AC1, 1) = 1; % row 1 of matrix A
b(1) = BCs(1); % row 1 of vector b

for I = 2:N % loop through rows 2 to N of A and b
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X

FIGURE 3.8.1: Numerical solution of the boundary value problem (3.8.1)
and (3.8.2) with p(z) =0, ¢g(x) =6, g(z) =22, a=0,b=1, a=1, =15,
using n = 50 lattice points.

% get values of coefficients at x(I):
[p, 9, gl = coeffs(x(I));
A(T, I-1) = 1/dx"2-p/(2*dx);
A(I, I) = -2/dx"2+q;
A(I, I+1) = 1/dx"2+p/(2*dx);
b(I) = g;
end
A(N+1, N+1) = 1; % row N+1 of A
b(N+1) = BCs(2); % row N+1 of b
y = A\b; % solution to matrix equation Ay=b

The coefficients p(x), g(x) and g(z) are calculated by a simple user-supplied
function. For example, if p(z) =0, ¢(x) = 6 and g(z) = 2z, we would write

function [p, q, gl = mycoeffs(x)
p=0; q=6; g= 2%x;

The boundary value problem with boundary conditions of, for example,
y(0) =1 and y(1) = 5 may be solved, using 50 lattice points, and plotted (see
Figure 3.8) with the following commands:

> a=0; b=1; alpha =1; beta = 5;
>> [x, y] = bvp(@mycoeffs, [a, b], [alpha, betal], 50);
>> plot(x, y)

In the above example, both boundary conditions are in the form y(x;) =
Up, 1.e., they specify the value of the dependent variable y at the boundary
values of x. This is known as a Dirichlet boundary condition. Another
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common form of boundary condition is a Neumann boundary condition,
which specifies the value of the derivative dy/dx (also written y'(x)) at the
boundary value of z. For example, the Neumann boundary conditions

Y@=a  yb) =7

are equally valid conditions for the differential equations such as (3.8.1). Fur-
thermore, any boundary condition can contain a mixture of Dirichlet and
Neumann terms, e.g., (3.6.10).

Boundary conditions containing derivatives are slightly more complicated
than Dirichlet conditions to implement numerically, but the basic approach is
the same: replace derivatives of y with finite difference approximations. The
difficulty is, in order to use a central difference at the left-hand boundary
point x = xg, we need xo + h and zo — h. The first of these is fine as zog+ h =
x1, but for o — h, we must introduce an additional lattice point x_; (with
corresponding y value y_1) that is outside the domain. Then, we can use the
central difference approximation:

o) L1
In doing this, we have introduced an additional unknown y_1, so we need an
additional equation. This is achieved simply by taking the difference equation
(3.8.3) with i = 0, as wellas i = 1, ..., n. If the right-hand boundary condition
also contains a derivative term, the same procedure can be carried out at
r = x,. Here, an additional lattice point is introduced at z,41, and we get
an additional equation (3.8.3) with i = n.

Exercises

3.1 Find the general solution of

(a) £+2x+3y=0,
U+ 3z + 2y = 2e?;

(b) &+ 9 — bx + 3y = 15t1/2¢t,
& — 2y +x = —30tY/2et,

3.2 Find the general solution of

% bz — 2 —y =2

by eliminating (a) y, (b) .

3.3 Find the general solution of
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3.4

3.5

3.6

3.7
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(a) & =9x — 8y,
y =24z — 19y;
y=-2x—y;

(c) t=xz+y,
Y=y

(d) 2 =2—-2y— 2z,
y=—-x+y+z,
z=x— 2z

(e) t=a—y+z,
y:$+y_Z,
z=2z—y.

Show that z = ef, y = 2¢! and z = te?t, y = (2t — 1)et form a funda-
mental system for

T=3r—y+1, y=4r—y+1t

and hence find the solution of the system such that x = 1, y = 0 at
t=0.

Find the solutions of the initial value problems

(a) 2+2x+3y =0, y+3x+2y =2e* withx =0, y=0at t = 0;

(b) 24+3z+2y=3t—1, y+3z—2y=3t— 10 withz =1, y =0 at
t=0.

Find a particular integral by matrix methods of

i =3z +y+ 3t%e,
y=3y+z+9t,
z =3z+ 18.

The function f(t) is defined by

(¢ 0<t<m),
f(t) - { ﬂ.eﬂ'—t (t Z 7'('),
Find the solution of the initial value problem

i+y=f(t)

which is continuous, with a continuous derivative, for all ¢ > 0 and such
that y=0, y=1at t =0.
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3.8 If f(¢) is defined as in Exercise 3.7, show that the boundary value prob-
lem with y(0) = 0, y(27) = a has no continuous solution with contin-
uous derivative on 0 < ¢ < 27 if @ # $m(e™™ — 1), but has infinitely
many such solutions if a = ix(e™™ —1).

3.9 Find the eigenvalues and eigenfunctions of ¢ + Ay = 0 subject to the
boundary conditions

(a) g(=m) =0, y(m) =0;
(b) y(0) =0, ay(b)+y() =0 (a>0,b>0).

3.10 Show that
dy 4
cJ_ -0
ar MY
has nontrivial solutions satisfying the boundary conditions y(0) = 0, ¢(0) =
0, y(1) =0, y(1) =0 if, and only if, cospcoshp =1 (u # 0).

3.11 The steady-state temperature T of a one-dimensional object in a medium

of ambient temperature T, satisfies the steady-state equation

d*T

@'FC(TQ—T) 20,
where ¢ > 0 is a heat transfer coefficient. The endpoints of the object
are held at a constant temperature of T'= o at x = 0 and T = ( at
2 = 1. Find the solution to this boundary value problem analytically.
Confirm your answer by solving the problem numerically when ¢ = 4,
T, =0, a =20 and § = 40, and plotting the analytical and numerical
solution on the same graph.

If the left-hand endpoint is insulated so that there is no heat flow in or
out of the object, the boundary condition becomes a Neumann condition
T'(0) = 0. How does this change the solution to the problem?

3.12 Find series solutions in terms of eigenfunctions of

(a) g =t(t —2m) subject to y(0) =0, y(m) =0;
(b) ¢ =sin(wt/b) subject to y(0) =0, y(b) = 0;
(c) t% (tz—zz) + 5y =3sin(51lnt) subject to y(1) =0, y(e™) =0.

3.13 Show that, for

& (02 + 10+ M0y =0
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subject to the standard boundary conditions and r positive, the eigen-
values are real and the eigenfunctions are orthogonal with respect to
the weight function r, i.e.,

b
/ rY,,Y,dt =0

when Y,,, and Y,, correspond to distinct eigenvalues.

The eigenfunctions Y; (¢), Ya(¢), . . .satisfy

d%y, dy,
= (24 At2) Y, =0
75 - + (3 + )

on 7 < t < 2w under the boundary conditions Y, (7) =0, ¥,,(27) = 0.
Show that the eigenfunctions are orthogonal with respect to a suitable
weight function.

By means of the substitution y(t) = t*/?u(t), obtain as a series of eigen-
functions the solution of

25—ty + (3 — %) y = t°/2

such that y(7) =0, y(27) = 0.



Chapter 4

Modelling Biological Phenomena

4.1 Introduction

Mathematical modelling of physical phenomena, such as the dynamics of
a rigid body, the deformation of an elastic material or the propagation of
electromagnetic waves in the atmosphere, is based, to the best of our present
scientific knowledge, on sound physical laws. Thus to describe the dynamical
behaviour of a rigid body undergoing the influence of external forces we have
the fundamental Newtonian laws of motion at our disposal. The behaviour
of deforming elastic materials is governed by the constitutive equations of
continuum mechanics; Maxwell’s equations are the fundamental postulates
that govern electromagnetic waves.

These basic laws have been the result of centuries of experiment, observation
and inspiration of mathematicians and scientists including Sir Isaac Newton,
Leonard Euler and James Clerk Maxwell.

In biology and the life sciences in general, this interplay between the ob-
served phenomenon and its mathematical description is still in the early stages
of development and, apart from the Hardy—Weinberg law associated with
the Mendelian theory of genetics, there are few sound postulates to guide us.
Instead the philosophy is to develop mathematical models that in the first
instance describe in only a qualitative way the observed biological process. As
in all scientific endeavours, the real test of the model is that it not only agrees
qualitatively with the biological process but has the ability to suggest new
experiments and bring deeper insight to the biological situation. If enough
experience is gained by this philosophy then hopefully, together with a better
understanding of the life sciences, sound postulates will emerge upon which a
mathematical theory can be developed.

This philosophy of qualitative description will be exploited in the topics
treated in this chapter and throughout a major portion of this book.

4.2 Heartbeat

The heart is a complex but robust pump (see the simplified illustration in
Figure 4.2.1). It consists of four chambers and four valves. There are essentially

91
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FIGURE 4.2.1: Schematic description of the heart as viewed from the front
of the body.

two circuits for the blood, one which spreads through the lungs to pick up oxy-
gen and the other which spreads through the body to deliver the oxygenated
blood. The first circuit is a low-pressure circuit so as not to damage the deli-
cate membrane in the lungs, whereas the second is a high-pressure circuit in
order for the blood to get down to the feet and up again. From Figure 4.2.1,
it is apparent that the right side of the heart is the low-pressure pump to the
lungs while the left side is the high-pressure pump to the body.

Each pump has a main pumping chamber called the ventricle with an inlet
and an outlet valve. The purpose of the inlet valve is to prevent flow back up
the veins while pumping, and the outlet valve is to prevent flow back from
the arteries while filling. Since the heart is made of nonrigid tissue it only has
the power to push out and no power to suck in. Thus to get a good pump of
blood it is necessary to fill the ventricle completely, and to aid this there is
a small chamber called the atrium whose job is to pump gently beforehand,
just enough to fill the ventricle but not enough to cause any flow back.

During the heartbeat cycle there are two extreme equilibrium states, namely
diastole which is the relaxed state and systole which is the contracted state.
What makes the heart beat is the presence of a pacemaker which is located on
the top of the atrium. The pacemaker causes the heart to contract into systole.
That is, it triggers off an electrochemical wave which spreads slowly over the
atria causing the muscle fibres to contract and push blood into the ventricles
and then spreads rapidly over the ventricles causing the whole ventricle to
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contract into systole and deliver a big pump of blood down the arteries. The
muscle fibres then rapidly relax and return the heart to diastole; the process
is then repeated.

In order to develop a mathematical model that reflects the behaviour of the
heartbeat action described above, we choose to single out the following fea-
tures. First of all, the model should exhibit an equilibrium state corresponding
to diastole. Secondly, there must be a threshold for triggering the electrochem-
ical wave emanating from the pacemaker causing the heart to contract into
systole. Thirdly, the model must reflect the rapid return to the equilibrium
state.

We begin by doing a little mathematical experimentation. Suppose we let
x denote muscle fibre length referred to some convenient origin, say = = 0,
which corresponds to the equilibrium state. Let b be an electrical control
variable which governs the electrochemical wave. As far as the muscle fibres
are concerned, we look for a differential equation which has z = 0 as an
equilibrium state and at least for small times has a rapidly decreasing solution.
An appropriate equation exhibiting these features is

dx
— = 4.2.1
=, (42.1)
where € is a small positive parameter. When Ccll—f, the velocity of the fibre, is

zero we have the equilibrium state = 0. Furthermore we know (Chapter 1)
that (4.2.1) has the general solution

x = Aexp(—t/e) (4.2.2)

which is rapidly decreasing in time. Thus (4.2.1) seems to be a good candidate
to represent the behaviour initially of the muscle fibres causing contraction
into systole.

Turning now to the electrochemical wave, we need the control b to represent
initially the relatively slow spread of this wave over the atria. A simple model
which does this is

db
dt

Here b = 0 is an equilibrium state and (4.2.3) has the solution

—b. (4.2.3)

b = Bexp(—t), (4.2.4)

which, in comparison with (4.2.2), represents a relatively slow decay time.
The features that are not covered by this simple model obtained from (4.2.1)
and (4.2.3) are (i) the threshold or trigger and (ii) the rapid return to equi-
librium. At this stage, our knowledge of differential equations is insufficient
to include these features and the discussion must be deferred until Chapter 6.
The model that incorporates the desired features is the coupled nonlinear
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first-order system

dx

€= — (2% + ax +b),
db
7 =8 T (4.2.5)

Here z represents the length of the muscle fibre, —a represents tension, b
represents the chemical control and z, represents a typical fibre length when
the heart is in diastole. The model (4.2.5) is due to E.C. Zeeman.

That Zeeman chose to single out the above three qualities of the heartbeat
cycle and to attempt to model them through the system of equations (4.2.5)
should not lead the reader to assume that such a description is the only one.
Indeed, the model can only be considered a reasonable one if it reflects the
basic features of the heartbeat cycle well.

It is appropriate to remark, however, that the model (4.2.5) has been
quite successful in distinguishing between some extreme forms of heartbeat
behaviour, for example, the effects of high blood pressure or an excess of
adrenalin in the bloodstream due to rage or vigorous exercise. Likewise there
is the situation when the heart beats in a feeble manner and does not contract
into systole.

4.3 Nerve impulse transmission

The axon portion of a nerve cell (see Figure 4.3.1) is made up of a conducting
material called axoplasm which is contained in a roughly cylindrical membrane
between 50 and 70 A thick. The membrane is permeable to potassium ions,
K+, concentrated in the interior, and to sodium ions, Na', concentrated in
the exterior. Also present, but to a much lesser extent, are other ions such as
chlorine C1~. In nature, the high concentration of sodium ions is maintained
by the organism in the fluid medium exterior to the nerve cell. In its resting
state there is a potential difference across the axon membrane of between —50
and —70 millivolts (mV).

Suppose we place a segment of axon in a bath containing a sodium con-
centration similar to the one usually present in the exterior fluid medium
and apply a potential difference across the membrane. In the laboratory, this
is usually done by inserting a fine micropipette into the axon and injecting
sodium ions. The induced sodium gives rise to an applied current. It is ob-
served that if a small potential difference, which is positive relative to the
resting potential, is applied across the membrane, the sodium and potassium
ionic currents are briefly disturbed but quickly return to their zero resting
state and the membrane settles back to the resting potential. If a much larger



Modelling Biological Phenomena 95

synapses

membrane

axoplasm

%
dendrites

(@) ()
FIGURE 4.3.1: Schematic description of the nerve axon.

positive membrane potential is applied (between 7 and 10 mV) the equilibrium
state is exceeded and the sodium currents become active. What happens now
is that the axon membrane becomes permeable to positive sodium ions which
flow inwards, making the membrane potential increase and this causes the
membrane to become even more permeable to sodium ions. If circumstances
are just right in that the inflow of sodium ions keeps the membrane potential
increasing, there is a critical level in membrane permeability which we call the
threshold, which results in a rapid impulsive rise in potential difference across
the membrane to about 100 mV relative to the negative resting potential.

Following this “firing” of the axon two things happen. First the sodium ion
permeability begins to decrease slowly and secondly the potassium ion perme-
ability rapidly rises. Potassium ions thus flow outwards and eventually restore
the membrane potential once again to its resting state after an overshoot of
about 5 mV. The impulse lasts about 3 to 5 ms (see Figure 4.3.2).

The question to ask now is how an impulse is transmitted along the axon
during this process. Near the point of stimulation, an impulse is created, which
is shot off down the axon along the membrane, being renewed at each point,
to approximately 100 mV as the membrane potential at each point achieves
a value that initiates the active phase of sodium. As we mentioned above, a
threshold is involved, that is, either this voltage is not achieved and no impulse
is propagated or it is achieved and at least one impulse is propagated.

Except at a discrete set of points called nodes of Ranvier, which are
about 1 mm apart, every vertebrate nerve axon is covered with a sheath
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FIGURE 4.3.2: Membrane potential.

that electrically insulates the axoplasm and surrounding membrane from the
exterior medium. A vertebrate nerve fibre is said to be myelinated and,
although current in a vertebrate nerve fibre can easily pass freely along the
axoplasm or the exterior fluid as happens in an invertebrate unmyelinated
nerve, it can pass through the membrane only at certain points. Currents
circulate on paths around the boundary of a section of arbitrary location for
the membrane of an unmyelinated axon, but only on paths that pass through
the nodes of Ranvier for a myelinated axon.

Our understanding of the mechanism governing the action potential is due
chiefly to the inspired and carefully executed experiments of the physiologists
A.L. Hodgkin and A.F. Huxley in 1952. This work, which led to the award
of a Nobel prize, was largely performed on the large axon to be found in the
squid Loligo, and culminated in the development of a mathematical model.
This model not only agrees in a qualitative way with the experimental results
but gives remarkably accurate quantitative results. Since the development of
this model, others have been subsequently formulated which reflect current
experimental findings with good agreement. However the so-called Hodgkin—
Huxley model is still regarded as the fundamental model governing nerve
impulse transmissions. The experiments performed by Hodgkin and Huxley
were set up in the same way as described above, except that the induced
current was achieved not by injection of sodium ions but by inserting a fine
current-carrying wire into the axon. This induced current, which we denote
by I, is found to give rise to a membrane potential E which is the same at
each point of the segment of axon and depends only on the time ¢. That is, F
is independent of x, the position of a point along the axon relative to some
convenient origin. This configuration is known as space clamp.

The basic assumption of the Hodgkin—Huxley theory is that there are sep-
arate channels for the sodium, potassium and other ions like chlorine. We can
envisage these channels in terms of the electrical circuit shown in Figure 4.3.3.
Thus, each channel is described in terms of a voltaic cell F in series with a
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FIGURE 4.3.3: Conductance model of the nerve membrane.

conductance g together with a capacitance C, across the whole ensemble.
The transmembrane current is then given by

1= 4 g(B— Bxa) + 9xc(E — i) + (B~ B, (43.)
where [ is the current density, E is the membrane potential, C,, is the mem-
brane capacity, gy, is the sodium conductance, gx is the potassium conduc-
tance, g; is the leakage conductance, Ey, is the sodium equilibrium potential,
FEx is the potassium equilibrium potential and F; is the leakage equilibrium
potential. The conductances gy, and gx are assumed to vary with time and
the potential E, while g; is assumed constant. To describe the variation in gy,
and gx Hodgkin and Huxley assumed that gk is described by

gx = gin®, (4.3.2)
and that gy, is determined by
GNa = gNam>h. (4.3.3)

In these expressions, gk is the maximum potassium conductance and gy, is
the maximum sodium conductance. The quantities n, m and h are dimension-
less quantities that vary between 0 and 1 and are functions of E and ¢. Their
precise forms are determined as solutions of the system of ordinary differential
equations:

W (B m) + B (B)m, (4.3.4)
W an(B)(1 1)+ BB, (43.5)
D an(E)(1 = h) + Bu(E)n. (4.3.6)

dt
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In these equations the coefficient functions o, 3;, 7 = m, h, n, are functions of
the membrane potential E, and were found by careful empirical fitting with
the experimental results. The exact forms of these coefficient functions are
complicated formulae involving exp E. The mathematical model developed
from the Hodgkin—Huxley theory is the formidable system of linked differen-
tial equations given by (4.3.1)—(4.3.6). That Hodgkin and Huxley were able to
solve these equations at all is quite remarkable, especially if one appreciates
the limited computational facilities available in 1952. It should be remarked,
however, that although this system admits to numerical solution, the under-
lying analytical structure is by no means fully understood.

If the space clamp is removed in the sense that the membrane potential
is allowed to vary with position x along the axon, then Hodgkin and Huxley
assumed Kelvin’s cable theory to assert that the current I is given by

a O°F
I= 5 922 (4.3.7)
where a is the radius of the axon and R is the specific resistivity of the
axoplasm. Since E now depends on both z and ¢ all derivatives must be
replaced by partial derivatives, and so by incorporating (4.3.7) in (4.3.1) we
are led to consider the partial differential equation

2
0 E = 027 4 galB  Bra) + 95 (B — Ei0) + (B~ B), (438)
together with the system (4.3.2)—(4.3.6).

As we have mentioned before, several alternative mathematical models of
nerve impulse transmission have been developed since 1952. Some of these
are of the same complexity as the Hodgkin—Huxley model while others, by
making certain additional assumptions about the behaviour of the various
ionic conductances, are considerably simpler. These simplified models never-
theless retain the main features characteristic of the Hodgkin-Huxley theory.
One such model that has attracted much interest is the FitzHugh—Nagumo
model, originally proposed by R. FitzHugh in 1961 and subsequently devel-
oped by J. Nagumo and his co-workers in 1962. This model is developed in
analogy with the van der Pol oscillator, well known to electrical engineers
and physicists, and takes the form

O*u  Ou
ow
o = bu — vw, (4.3.10)

where a,b and 7 are positive constants and 0 < a < 1. In this simplified
model, u represents the membrane potential E and, as before, x measures
distance along the axon and ¢ is time. The cubic term u(l — u)(u — @) in
(4.3.9) is analogous to an instantaneous turning on of sodium permeability
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and can be thought of as playing the role of the variable m in the Hodgkin—
Huxley equations. w is a recovery variable and is analogous to the turning on
of potassium permeability and so behaves like the variable n in the Hodgkin—
Huxley model. There is no counterpart to inactivation of sodium permeability.

There is a further simplification which can be adopted and which comes
about from the following observation. The simplified model cannot be ex-
pected to give quantitative comparisons with experiment, as the Hodgkin—
Huxley model does. Thus we can only expect a qualitative comparison and,
consequently, if we could simplify the nonlinearity in (4.3.9), (4.3.10) without
destroying the desired behaviour of solutions, then the methods of solution
could be greatly simplified. To this end H.P. McKean in 1970 proposed that
the term u(1 — u)(u — a) in (4.3.9) could be replaced, for example, by the
piecewise linear term illustrated in Figure 4.3.4, where the angle 6 can take
any value in the semi-open interval 0 < § < 7/2. The benefit of incorporating
this simplification is that, along each line segment, the system of equations
(4.3.9) and (4.3.10) is linear and in general linear equations are much easier
to solve than nonlinear ones.

The mathematical models of nerve impulse transmission are incomplete
without some notion of the solutions to expect or the appropriate initial and
boundary conditions. If we consider the Hodgkin—-Huxley model as applied
to the giant axon of the squid, we know that the length of the axon is large
compared with its radius a. Thus if we put

X=z/Va (4.3.11)

in (4.3.7) and (4.3.8) we can approximate the range of X to be infinitely large.
In this way we take the range of = in the system (4.3.9), (4.3.10) also to be
0 <2< o0

Both of the models we have discussed have solutions that depend only
on x+ct and are called travelling waves. That is, there are membrane
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potentials E(x,t) = E(z+ct) that move along the axon with no loss of strength
and in a direction determined by the sign of ¢. The rate of propagation is |c|
and the problem of finding this value is very important.

Suppose the axon is stimulated from one end defined, for example, by x = 0.
Then the appropriate conditions are:

E(0,t) = P(t), t>0,
E(x,0)=0, z>0.

Here P(t) is a function of ¢ which defines the stimulus emanating at z = 0.
An important and largely unresolved problem is to classify those stimuli P(t)
so that E(x,t) approaches a travelling wave E(x + ct) as t — oco. The study
of travelling waves will be taken up in Chapter 7, while some idea of the
behaviour of stimulated membrane potentials will be considered in Chapter 12.

4.4 Chemical reactions
Chemical notation and the law of mass action

As is standard in Chemistry, we write

A+B-E C (4.4.1)

to indicate that a molecule of substance A and a molecule of substance B
combine to form a molecule of substance C. If the reaction is reversible (i.e.,
a molecule of C' can also decompose into a molecules each of A and B), we
write
A+BEC
%
The quantities k£ and k' are rate constants.

The law of mass action states that the rate of the reaction is proportional to
the product of the concentrations of the reactants. Thus, for reaction (4.4.1)
(and denoting the concentration of substance A by [A], etc.), the law of mass
action gives n B
dlA d|B

ar ~ MBI === ==

The Belousov—Zhabotinskii reaction

The chemical reaction described here is not part of any living system and is
certainly not biological. However, its interest and importance lies in its ability
to “oscillate”, forming patterns such as parallel bands, concentric rings and
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cell-like structures. Such phenomena are well known in biology: for example,
in morphogenesis (discussed later in Chapter 12), the regulating processes
involved in living cells and organisms, and in information transmission. A fur-
ther reason for studying pattern formation in nonliving systems is that the
constituent forces are more limited than those of even the simplest biological
systems where electrical forces, surface tensions, colloid properties and crys-
tallising forces, and complex chemical reactions may play a significant role.

The reaction we shall consider is the usually dramatic oscillatory reaction
discovered by Belousov in 1958 and Zhabotinskii in 1964. The Belousov—
Zhabotinskii reaction, as it is now called, is essentially the oxidation of
malonic acid by bromate in a sulphuric acid medium, in the presence of a
cerium catalyst. In the reaction, two overall processes I and II can be identi-
fied, and the chemistry involved can be described as follows. In the reaction
when the bromide ion (Br™) is above some critical concentration, process I
occurs. Here the bromate ion (BrOj3') is reduced to bromine (Brg), with bro-
mous acid (HBrOz) as an intermediary, and the malonic acid, CHz(COOH)a,
is brominated. During this process there is little oxidation of the cerium ion
Ce(III). Process I thus uses up the bromide. When the concentration of bro-
mide becomes sufficiently low, process II takes over. In this the bromous acid
and the bromate ion produce a radical bromate species (BrOs), which oxi-
dises the cerium ion Ce(III) to the Ce(IV) form with bromous acid generated
autocatalytically. When all of the Ce(III) has been oxidised to Ce(IV) and
the bromide ion concentration is low, the Ce(IV) then reacts with the bro-
momalonic acid to produce the cerium ion Ce(III) and bromide again. When
the bromide passes a critical concentration, process I takes over again and the
cycle is repeated. During the process, one sees the reagent oscillate in colour,
turning alternatively bright blue and reddish purple if ferroin is used as an
indicator.

On the bases of the mechanism described above, Field and Noyes have sug-
gested the following mathematical model which involves three intermediaries
which oscillate and which are associated with the bromide ion (Br™), bromous
acid (HBrO3) and the cerium ion Ce(IV).

If X = HBrOs, Y = Br~ and Z = Ce(IV), the Field-Noyes system is

A+Yy 55 X, (4.4.2)
X+Y 2 p (4.4.3)
A+ X Fox 17 (4.4.4)
2x 1, Q, (4.4.5)

7z *2 fy. (4.4.6)

In this system, A is the reactant BrOj, which is maintained at a constant
concentration, P and @) are products and f is a constant stoichiometric factor.
To arrive at the mathematical model, we invoke the law of mass action. For
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the reaction (4.4.2), the law of mass action says that X is produced at the rate
k1[A][Y]. However, at the same time, X is being used up in reaction (4.4.3)
to produce P at rate ko[ X][Y], and by reaction (4.4.5) to produce @ at rate
k4[X]%. Finally, reaction (4.4.4) produces X at the rate k3[A][X]. Thus the
total rate of change of X is

dX]

g = alAY] = ke X]Y] + ks[A][X] — ka[X]%. (4.4.7)

If we analyse the rates of change of Y and Z in the same way, the law of mass

action gives
dy]

S = RAIY] ~ R [XIY] + fhs 12, (1.48)
and
U _ o ia)x) - k5121 (4.4.9)

The system of coupled first-order differential equations (4.4.7)—(4.4.9) is the
mathematical model of Field, Koros and Noyes representing the Belousov—
Zhabotinskii (B-Z) reaction.

Before we proceed further with the mathematical models of the B-Z reac-
tion, let us describe one or two of the experiments performed on this reaction
and the patterns that arise.

Under certain conditions, the reagent is capable of organising itself into
spatially inhomogeneous structures that are seen as coloured patterns. The
physical reasons for the pattern formations as well as the patterns themselves
are different according to the experimental setup. If the reagent is placed
in a thin layer and allowed to convect, say, by heating the fluid from below
or cooking it from above by evaporation, then a reaction—diffusion process
resembling the Bénard phenomenon of cellular convection occurs. Here the
fluid, when viewed from above, organises itself into hexagonal or rectangular
cells, which are outlined in reddish purple. It seems that the boundaries of the
convection cells appear to contain most of their cerium in the reduced state,
while the rest of each cell contains more cerium in an oxidised state. However,
the precise behaviour of this hydrodynamic and chemical phenomenon is not
fully understood.

An interesting pattern formation is observed when the reagent is placed in a
vertical container and a gradient of temperature or of one of the concentrations
is imposed on the fluid. In the latter case, sulphuric acid is carefully added after
the other ingredients have been mixed. Under these circumstances, horizontal
bands form and propagate vertically through the container. In this case there
is no fluid motion at all; it is only the lines of constant phase of the oscillation
that are moving through the fluid. The explanation of this phenomenon is
as follows: the concentration gradient or temperature gradient produces a
vertical gradient in the frequency of the oscillation. This frequency gradient
can account in detail for the space-time behaviour of the patterns that emerge.
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Diffusion plays a negligible role unless the pattern has a very small spatial
scale.

Perhaps the most striking pattern formations that can be observed are
those found in the experiments of Zaikin and Zhabotinskii using ferroin for
the catalyst and malonic acid in the Belousov reaction. Here the reagent is
spread thinly, about 2 mm thick on a petri dish. Circular chemical waves are
observed propagating outwards. These waves, essentially oxidation bands, are
blue and they propagate through the reddish background fluid. When two
waves collide both disappear. When a faster one catches up with a slower one
the latter is entrained. These waves have been designated “trigger” waves since
diffusion combines with the chemical reaction to trigger the waves. To include
diffusion effects in our model (4.4.7)—(4.4.9) we suppose the intermediaries
X,Y and Z can diffuse with diffusion coefficients Dx, Dy, Dz and hence are
functions of the space variables z,y, z and time ¢. The system (4.4.7)—(4.4.9)
is modified to read

% = ki [A]Y] = ko[ X[Y] + ks[A)[X] — [ X]? + Dx V*[X],(4.4.10)
% = k1 [AllY] = ko[ X][Y] + fhs[ 2] + Dy V[V, (4.4.11)
W a)x) - k2] + Do¥12), e

This model is a reaction—diffusion system of coupled partial differential
equations and, under certain circumstances, admits travelling wave solutions.
For instance, if we take [Z] = 0 and assume [X| = &(z+ct) and [Y] = n(x+ct),
then the reduced system (4.4.10), (4.4.11) can be studied in the same way as
the travelling wave solutions of nerve axon equations are considered. Of course
boundary and initial conditions are somewhat different. These considerations
will be taken up in Chapters 8 and 12.

Enzymatic catalysis

A reaction that is extremely common in biological systems is enzymatic
catalysis. This covers the broad class of reactions where a substrate (.5)
reversibly reacts with an enzyme (or catalyst) (E) to form a compound sub-
stance (or complex) (SE). This compound then decomposes into a product
(P), and the original enzyme (E):

S+E =} SE,

k2

SE — P+ FE.

Typically, the enzyme is present at very low concentration, which limits the
rate at which the substrate can be converted to the product. Hence, this type
of reaction is often referred to as a rate-limited reaction.
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Applying the law of mass action to this reaction gives the following differ-
ential equations for the four reactants:

% = —ky[S][E] + k_1[SE,

% — —Ki[S][E] + k_1[SE] + ks[SE],
@ = k1 [S)[E] — k_1[SE] — ks[SE],

ap] _

S = hlsE]

The appropriate initial conditions are
[8](0) = So,  [E](0) =Eo,  [SE](0)=0,  [P](0)=0,

where Sy and Ej represent the initial concentrations of substrate and en-
zyme respectively. This system of four differential equations can be simpli-
fied by noting that the first three equations do not depend on [P] and that
d/dt ([E](t) + [SE](t)) = 0, so [E](t) + [SE](t) = Ep. We hence consider the
reduced system

% = —k1Eo[S] + (k1[S] + k1) [SE], (4.4.13)
d[jf] = k1Bo[S] — (k[S] + k-1 + k2) [SE]. (4.4.14)

It is useful to nondimensionalise all variables by making the following trans-
formations:

T =kiEt, u(T)=[S|(t)/So,  o(T)=[SE|(t)/Eo

k k_1+k E
)\:k1§07 K= kiSOQ’ EZ_(?'
Then, the system (4.4.13), (4.4.14) reads

du
— = K- 4.4.1
¥id u+ (u+ A)v, ( 5)
dv
— =u-— K 4.4.1

€gm = u (u+ K)v, ( 6)

with initial conditions u(0) = 1 and v(0) = 0. Methods for dealing with non-
linear systems of this type are dealt with in Chapter 5 and, in general, finding
an explicit solution is not trivial. However, the fact that the initial concen-
tration of enzyme Ej is typically much smaller than that of the substrate Sy
means that ¢ is a small parameter (¢ < 1). This can be exploited by seeking
a solution as a power series in €:

w(T) = uo(T) + eur(T) + us(T) + ...,
v(T) = vo(T) + evy (T) + vo(T) + .. ...
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We now substitute these forms into (4.4.15) and (4.4.16) and equate coeffi-
cients of powers of €. At O(e"), we have

d
% = —ug + (uo + K — \)vo, (4.4.17)
0=wug— (UQ + K)’Uo, (4418)
with initial conditions ug(0) = 1 and vy(0) = 0. Equation (4.4.18) implies that
uo(T)
T)= —/———. 4.4.19
o) =)+ K (4.4.19)

Substituting this into (4.4.17), solving by separation of variables (see Section
1.4), and using the initial condition on ug gives

uo(T) + K Inug(T) =1 — AT. (4.4.20)

The problem now is that the solution for vo(7T") does not satisfy the initial
condition v9(0) = 0. This problem arises because we have essentially assumed
that edv/dT < 1. However, at T = 0, the initial conditions state that u = 1
and v = 0, and hence from equation (4.4.16) dv/dT is of the order e 1, so
our assumption is incorrect there. This problem may be elegantly solved by
introducing a fast time variable, S = T/e, transforming equations (4.4.15)
and (4.4.16) to this variable and again seeking solutions as a power series in
e. This gives a solution (called the inner solution) that is valid for very small
times (i.e., values of S of the order 1). By matching with the solution found
above (called the outer solution), which is valid for T' > e, it is possible to
obtain a matched solution that is valid for all times.

The fact that dv/dT is very large near T = 0 indicates that the v reaction
is so fast that it is close to equilibrium at all times. Hence, in practice, v may
be assumed to be in the pseudo-steady state defined by (4.4.19). This was
the hypothesis made by Michaelis and Menten in their 1913 work on chemical
kinetics. Typically, it is the reaction rate du/dT that is of primary interest,
rather than the concentration w(7"). Implicit differentiation of (4.4.20) gives

duy _ o
dT_ K+UO'

Neglecting terms of order € and higher, and returning to the original dimen-
sional variables, we have

diS] _ _kaBolS] (1.4.21)
dt K,+S

where K, = (k_1 + k2)/k1 is called the Michaelis constant. We hence see
that the rate of uptake of the substrate S is proportional to the enzyme
concentration Ey, but is nonlinearly related to the concentration of substrate
[S]. When [S] <« Ky, the increase in reaction rate is approximately linear in
[S], but as [S] approaches K,,, the reaction rate levels off (saturates), and has
a maximum value of ko Ey. The reaction rate defined as (4.4.21) is sometimes
referred to as Michaelis—Menten kinetics.
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4.5 Predator—prey models

The problems we shall consider here are of fundamental importance in ecol-
ogy, i.e., the study of the interactions between living organisms and their envi-
ronment. Let us consider two organisms or species characterised, for example,
by their respective population densities, say X and Y. Thus X may be the
population density of a carnivore occupying a certain habitat and Y may be
the population density of a herbivore occupying the same habitat as X and
considered as a food source for X. Alternatively, X and Y may be used to
represent parasite and host, or herbivore and plant.

It is convenient to classify the direct interaction between a pair of species
into the following categories:

(a) Competition: each species has an inhibiting effect on the growth of
the other.

(b) Commensalism: each species has an accelerating effect on the growth
of the other.

(¢) Predation: one species, the “predator”, has an inhibiting effect on the
growth of the other; the “prey” has an accelerating effect on the growth
of the predator.

Throughout this section, we consider the interaction between X and Y to
be that of predation. Furthermore, we shall make the following simplifying
assumptions.

(a) The density of a species — that is, the number of individuals per unit
area — can be represented as a function of a single variable, time. Thus
we ignore possible age differences and differences of sex or genotype.

(b) Changes in density are deterministic; that is, we assume there are no
random effects in the environment influencing the interaction between X
and Y. Obviously this is a severe limiting assumption in many realisable
situations.

(¢) The effects of interactions within and between species are instantaneous.
In the predator—prey interaction, this means that the delay between the
moment a predator eats a prey, and the moment when the ingested
material is converted into part of a new predator is ignored.

We begin by considering some simple models of predator—prey interaction.
Let X be the predator density and Y the prey density. In the absence of
predators, we expect no inhibition in the growth of the prey. A simple growth
relation Y could be

ay
— = kY, 4.5.1
=k, (45.1)



Modelling Biological Phenomena 107

where ¢ is time and k is a positive rate constant. We know that the ordinary
differential equation (4.5.1) has the solution

Y = Ype, (4.5.2)

where Yy is the initial population density. Thus if (4.5.1) is used to describe
the population growth of Y, then Y will increase exponentially in time. Such a
growth behaviour is reasonable for a limited time, but ultimately an increasing
population will exhaust its resources. Consequently we expect in practice that
Y will either settle down to some steady state value, fluctuate between various
levels or decline. If the first possibility arises then we could replace (4.5.1) by

the logistic equation

dY
E = CLY — bY2, (453)

which has the general solution
_ aYy

bYy + (a — bYp)e—at’
The justification for this type of growth is that

(a) when Y is small, (4.5.3) formally reduces to (4.5.1) and the growth is
exponential;

Y

(4.5.4)

(b) as t increases Y approaches the value a/b steadily and without oscilla-
tion.

In (4.5.3), it is standard to call a the intrinsic rate of increase and k = a/b
the carrying capacity.

Before we introduce into either (4.5.1) or (4.5.3) the effects of predation by
X, let us consider the behaviour of the predator species X in the absence of
prey. Without prey, the predators X are expected to decrease and so their
decline could be represented in terms of the exponentially decaying solution
Xoexp(—et) of the differential equation

dXx
— = —eX 45.
7 = X (4.5.5)

where e is a positive constant. Again, like (4.5.1), the exponentially declining
population of predators X is only reasonable for a limited period of time,
since one would expect X to become extinct in a finite rather than an infinite
amount of time when starved of prey Y.

If we assume, as Volterra and Lotka did, that in the absence of predation,
Y follows a logistic growth curve and that the rate at which prey are eaten
is proportional to the product of the densities of predator and prey, then we
arrive at the model

dX
dt
dy
dt

—eX + XY, (4.5.6)

aY —bY? —cXY. (4.5.7)
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The assumptions of Volterra and Lotka are valid under the following condi-
tions:

(a) one or both species move at random;

(b) when they meet, there is a constant probability that the predator will
kill the prey;

(¢) the time taken by the predator in consuming the prey is negligible.

There are a number of variants of the Volterra—Lotka model that have
been proposed and that attempt to take into account other effects that may
influence the predator—prey interaction. For example, when a constant number
Y of the prey can find some cover or refuge, which makes them inaccessible
to the predator, then the system (4.5.6), (4.5.7) is modified to the form

dd_): =X+ fX({Y-Y), (4.5.8)
Y _
C;_t =aY —bY? —cX(Y —Y). (4.5.9)

In a much more general way, we can follow the model of Rosenzweig and
MacArthur (1963) and assume a general growth rate f(Y') for the prey in the
absence of predators and assume that prey are eaten at a rate proportional
to some function h(X,Y) (referred to as the functional response) by the
predators. In this case we obtain the general model:

Cii_f = —eX +kh(X,Y), (4.5.10)
% = f(Y) - h(X,Y). (4.5.11)

If h(X,Y) = ¢XY (often called a type-I functional response) then (4.5.10)
and (4.5.11) reduce to the basic Volterra-Lotka model (4.5.6), (4.5.7) with
general prey growth rate f(Y) instead of logistic growth. A more realistic
choice for h(X,Y) is a function that increases linearly with predator density
X, but saturates with respect to prey density Y. This reflects the fact that
there is typically a maximum amount of food than one predator can consume
and, if there is sufficient prey available for predators to obtain their maxi-
mum intake, further increasing the prey density will not significantly alter the
overall rate of prey consumption. A common choice is the function

cXY
h(X,Y) = .
(X.Y) K+Y
This type of function was first used in a predator—prey model by Holling in
1959 and is often referred to as a type-II response. Note that this function
is strikingly similar to the Michaelis-Menten reaction rate (see Section 4.4),
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and shares the same characteristic of saturating at some maximum level as
prey density (or, in the case of Michaelis-Menten, substrate concentration)
becomes very large. A type-III functional response is of the form

cXY?
hX,Y) = Iy
Like the type-II response, the type-III response saturates for large Y'; unlike
type-IL, it is not linear in Y for small Y but increases as a sigmoidal (S-
shaped) curve. This models the situation where the predators cannot find
prey as effectively when the prey are very rare.

The Rosenzweig-MacArthur model (4.5.10), (4.5.11) will be examined in
some depth in Chapter 9, under certain simplifying but nevertheless realistic
assumptions regarding the functions f(Y) and h(X,Y).

To conclude this section, we introduce a somewhat different but also inter-
esting ecological interacting two-species model. Suppose we have two species
X and Y competing to exist in the same habitat. We assume that, in the
absence of Y, X grows according to a logistic law and, similarly in the ab-
sence of X, that Y does the same. However, when X and Y are both present,
it is natural to assume that each has an inhibiting effect on the growth of
the other. Suppose the inhibition is the same as that in the Volterra—Lotka
model. Then we have the system

% — X(e— fY - gX), (4.5.12)
% —Y(a—bY — eX), (4.5.13)

This is called a competition model.

4.6 Notes
Heartbeat

Much of the material here is based on the work of E.C. Zeeman and can
be found in his article “Differential equations for the heart beat and nerve
impulse”, which appeared in Towards a Theoretical Biology, vol. 4, C.H.
Waddington, Ed., Edinburgh University Press, Edinburgh, 1972.

Nerve impulse transmission

It is highly recommended that the reader consult the fundamental papers of
A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve, J. Physiol.,
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117, 500-544. There are several sources of good background material re-
lating to nerve modelling. See, for example, B. Katz, Nerve, Muscle and
Synapse, McGraw-Hill, New York, 1966; D. Junge, Nerve and Muscle Ezcita-
tion, Sinauer Associates, Sunderlund, MA, 1976; H.C. Tuckwell, Introduction
to Theoretical Neurobiology, vols. 1, 2, Cambridge University Press, London,
1988; and J. Cronin, Mathematical Aspects of Hodgkin-Huxley Neural Theory,
Cambridge University Press, London, 1987.

Chemical reactions

A comprehensive treatment of the Belousov—Zhabotinskii reaction and en-
zymatic catalysis is to be found in J.D. Murray, Mathematical Biology,
Springer-Verlag, Heidelberg, 1993. For a dedicated text on methods for solving
problems involving a small parameter, see E.J. Hinch, Perturbation Methods,
Cambridge University Press, 1991.

Predator-prey models

The books by J. Maynard Smith, Models in Ecology, Cambridge University
Press, London, 1974 and J.D. Murray, Mathematical Biology, Springer-Verlag,
Heidelberg, 1993 are good sources of information relating to predator—prey
models as well as some general models of species interaction.
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Exercises

4.1 Show that Zeeman’s heartbeat equations have a unique resting state
= 1,,b=—(z3+ar,) and derive a single differential equation satisfied
by the muscle fibre length x.

4.2 In the differential equation satisfied by the muscle fibre length x of
Exercise 4.1, let x = x, +y and assume that y is small and that y‘fi—f and

yQ% can be neglected. Show that, if z, < \/—a/3,y grows exponentially
with time but decays exponentially with time if x, > 1/—a/3. What

happens when z, = \/—a/3? Give possible interpretations of these three
cases.

4.3 In the Hodgkin—-Huxley model of nerve impulse transmission, assume
the potential FE(x,t) has the form of a travelling wave as well as the
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conductances m, h and n and show that such solutions satisfy the system

a d’E dE
IR 2 = COmE + gno(E — ENo) + 9k (F — Ex) + gi(E — E}),

dm
Cd_f = an(E)(1 —m) + Bn(E)m,
G = (E)L =B+ (B,
dn
Cd_§ = an(E)(1 —h) + Bu(E)n,

where £ = x + ct and c is the wave number.

Assume the FitzHugh-Nagumo equations (4.3.9) and (4.3.10) admit
travelling wave solutions u(z,t) = ¢(z + ct),v(z,t) = ¢(z + ct). De-
duce the equations to be satisfied by ¢ and .

Verify that if b = 0 = v and (4.3.9) and (4.3.10) have travelling wave

solutions then )

P(x +ct) = 9(§) = 1o Ve

is a solution provided ¢ = 1/2(3 —a),0 < a < 3.

For what values of the wave speed c is

sven=3( o (3 o) Jovm 0 1)

1
0<a< =
“=5

a solution of (4.3.9) and (4.3.10) when b =y = 07

If the FitzHugh—Nagumo equations have travelling wave solutions, show
that the system governing these solutions has a unique rest state if and
only if

(1 —a)? < 4b/y.

In the simplified McKean model of nerve impulse transmission (see Fig-
ure 4.3.4), let b = 0 = v and determine the forms of travelling waves as
functions of £ = x + ¢t, —00 < £ < 0o and which satisfy the conditions
P(§) — 0as £ — —o0, ¢(§) — 1 as { — oo.

Determine the wave speed c in each of the cases § = 7 and tanf = %.
Determine the rest states in the Belousov—Zhabotinskii reaction gov-
erned by the model (4.4.7)—(4.4.9).
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Using the law of mass action, derive a system of equations modelling
the chemical reaction

A+2B 4 C,

_k
C+D —k: E,
E 2 wB+F
where n > 0 is a constant.

Consider the following chemical reaction.
A+ X £y

If the reactant A is held at a constant concentration a, use the law of
mass action to derive a system of equations for the concentrations of
X and Y. Suppose the initial concentrations of X and Y are X, and
Yy respectively. Solve the system of equations to obtain X (¢) and Y'(¢)
(find X (t) first, then substitute into the equation for ¥ to find Y(¢)).

Using the law of mass action, derive a mathematical model governed by
the intermediaries X and Y in the trimolecular reaction:

A— X,
B+X —Y+D,
2X+Y — 3X,

X — FE,

where A, B, D and FE are initial and final products, and all rate constants
are equal to 1.

Consider an enzymatic reaction in which the concentration of the en-
zyme E is not constant, as in equation (4.4.21), but decays according to
law E(t) = Ege™“*. Suppose the initial concentration of the substrate S
is S(0) = Sp. Solve the differential equation

ds kES

dt Km+S
to obtain an equation for S(t). Show that S(¢) tends to some positive
value as t — oo.

Determine the rest states in the Volterra—Lotka model of predator—prey
interaction (4.5.6), (4.5.7). If predator and prey are present in the steady
state, show that the coefficients a,b,c,e and f must satisfy the con-
straints o e

- > -, 0.

b 7

Discuss the same problem as in Exercise 4.16 in relation to the models
(4.5.8), (4.5.9) and (4.5.12), (4.5.13).






Chapter 5

First-Order Systems of Ordinary
Differential Equations

5.1 Existence and uniqueness

In Chapters 2 and 3 certain types of differential equations have been dis-
cussed and methods for deriving their solutions have been described. When
more general differential equations are considered it is not by any means ob-
vious that they possess solutions. Spending a lot of time trying to solve a
differential equation, which does not have a solution, can be very frustrating
to say the least. Therefore, we shall give one theorem, which guarantees that
a differential equation that satisfies its conditions possesses a solution, and
say something about its ramifications. The proof of the theorem is given in
the Appendix to this chapter as well as a method for finding the solution.

EXISTENCE THEOREM I
Let f(t,y) be a single-valued continuous function of t and y intg <t < to+h,
ly — yo| < k that satisfies:

(a) [f(t,y)| <M,
(b) |f(t,y) = ft,¥)| < Kly =y

for any (t,y) and (t,y") that comply with the above inequalities. Then, for
h < k/M, the differential equation

y=rf(ty) (5.1.1)

possesses one, and only one, continuous solution y(t) in to <t <tg+ h such
that y(to) = yo.

The constant h determines the range of ¢ for which the solution is valid while
the constant k sets a limit on how far y(t) deviates from its initial value. It
would be ideal if h could be made as large as desired. However, the restriction
h < k/M means that h cannot be increased beyond a certain point without a
corresponding increase in k. But, larger h and k may entail an increase in the
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bound M to meet condition (a) and this increase may be sufficient to prevent
any improvement in k/M.

Nevertheless, it may be possible to extend the solution to larger ¢ by taking
y(to + h) as the initial value at t = to 4+ h provided that suitable new h, k, M
can be found with this starting point.

Suppose that f satisfies the conditions of the theorem and, by some means,
two continuous solutions y(t), y2(t) of (5.1.1) have been found such that
y1(to) = yo and ya(to) = yo. Suppose, further, it is known that y; (¢) is valid
for tg <t <tg+ hy whereas yo (t) holds for tg <t < tg+ hy with hy > hy. The
uniqueness part of the theorem then says that y; () = ya(¢) for tg < t < tg+h;.
The same assertion cannot be made for larger values of ¢ unless it can be
demonstrated that y(¢t) can be continued beyond ¢ = ¢y + hi. For example,
yi1(t) =1 —t+t2—--. and y2(t) = 1/(1 + t) are solutions of (1 +t)y = —y,
which are unity at £ = 0 so long as hy < 1, but the series in y; is not valid in
t>1.

Generally, it is not difficult to recognise when f is continuous and to assess
M. Checking (b) can require more effort but there is one case when (b) holds
for sure and that is when

h%f@yﬁgjv (5.1.2)

for tg <t <wyo+h,|ly —1yo| <k and N finite.
For then

|f(t7y) - f(t7y/)| =

Yo
/y/ af(uu)du

y=y 9 ng

lv=y'l'| 9 )
S/o 8_uf(t7u_y)du
< Nly—y'|.
Example 5.1.1
The differential equation
jy=g(t)y’

in which ¢ is continuous clearly has f(¢,y) continuous and, because

a% (t)y* = 29(t)y,

satisfies the condition (5.1.2) so long as ¢t and y are bounded. Therefore
the differential equation has one and only one continuous solution such that
y(to) = yo. It remains valid as ¢ increases as long as ¢ and y remain finite.
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Consider, in particular, § = y2. The solution of this such that y(to) = 0
is y(t) = 0 for all t. On the other hand, if y(to) = yo with yo # 0, y(t) =
yo/{1+ (to — t)yo}- If yo < O this solution holds for all ¢ > ty. In contrast, if
Yo is positive, y(t) becomes unbounded as t approaches to + 1/yo; in this case
the region of validity is confined to to <t < to + 1/yo.

The conditions of Existence Theorem I are sufficient but not necessary.
There are differential equations that do not satisfy the conditions but which
possess a unique continuous solution. For example,

. f@=2ty (t>0)
vy= { (2t — 1)3 (t <0) (5.1.3)

subject to y = yo (£ 0) at ¢ = 0. In this case, f is discontinuous at ¢ = 0 when
yo # 0 so the conditions of Existence Theorem I are not met. Nevertheless
there is a unique continuous solution, namely

y(t) _ {yoet_t2 (t 2 O)

yoet 7t (£ <0).
There may, however, be values of tg or yo for which the initial value problem
(i) has no solution;
(ii) has a discontinuous solution;
(iii) has more than one continuous solution.

For instance, the differential equation
yy = —t (5.1.4)

has solution y? + ¢ = C where C is a constant. An example when there is no
solution is to take y = 0 at t = 0. Then C' = 0 and y? + t?> = 0. This forces
t = 0 and there is no solution for ¢ > 0.

An illustration of more than one solution is provided by y = 0 at t =ty # 0.
Then C = t2 and y = +(t2 — t?)/? giving two solutions while t> < 3.

Thus the initial value y = 0 originates difficulties for (5.1.4). For it, f(¢,y)
in (5.1.1) is —t/y, which is infinite at y = 0 for any nonzero ¢, and so the
conditions of Existence Theorem I cannot be met. Thus there is no warranty
of a unique continuous solution. Yet, there is no problem if y(ty) = yo with
yo # 0. Now Existence Theorem I applies and there is the unique continuous
solution y = (t2 + y2 — t2)'/2 so long as t* < 12 + 2.

Any point (to,yo) at which (i), (ii) or (iii) is true is known as a singular
point. For example, any point (¢, 0) is a singular point of (5.1.4). At a singular
point Existence Theorem I must fail, but the converse is false as (5.1.3) shows.
Thus, while places where f does not abide by the conditions of Existence
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Theorem I are candidates for singular points, a special investigation has to be
undertaken to check whether or not they are actually singular points.

The same nomenclature of singular points is used in connection with sys-
tems and with the differential equation of order n when (i), (ii) or (iii) occurs.
Existence Theorems II and 11T (given in the Appendix) are invalid at singular
points but the points where their conditions are unsatisfied are not necessarily
singular points.

The linear system

i = DOy + (0 (= 1.n) (5.1.5)

conforms to Existence Theorem II except at those values of ¢ where a;; or
fi are discontinuous. Apart from these values, the initial value problem has
a unique continuous solution. In particular, the linear system with constant
coefficients possesses a unique continuous solution except, perhaps, for those
t where f; is not continuous.

5.2 Epidemics

The simplest model of the spread of an epidemic in a population stipulates
that at time t there are x susceptible individuals and y infected who may
transmit the disease. It is assumed that the mixing of these two groups passes
on the illness and that, in the short time §t, pxydt new infections occur. Also
some of those infected will die, or stop mixing, or recover and become immune;
suppose that vydt disappear in this way. Then, if pdt new susceptibles arrive
in the interval dt,

T = —pxy + p, Y= pry — vy. (5.2.1)

Normally p,v and p are taken as nonnegative constants and it is convenient
to assume that they are positive. The right-hand sides of (5.2.1) vanish for
T = x0, Yy = Yo where

—pxoyo+p =0,  proyo —vyo =0 (5.2.2)

orxzg =v/p, yo = p/v. If x(t) = xg, y(t) = yo then & = 0,y = 0 and the differ-
ential equations (5.2.1) are satisfied. In other words, (zq, yo) is an equilibrium
state in which the numbers of susceptibles and infected do not vary.

Let us now address the question of whether equilibrium is approached from
a nearby state and, if so, in what manner. Put

x = x(1+ &), y=yo(l+n)
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where £ and 7 are so small that their products may be neglected. Then (5.2.1)
becomes

E=—ol&+m), 0=k
where o = pp/v. Substituting for £ from the second equation we obtain

n+on+ovn=20

of which the solution such that n =g, n =€y at t =0 is
—ot/2 1 1 :
n=e no coswt + — (véo + Lomg) sinwt
w
where w? = ov — 02 /4. Hence

E= o= 0t/2 {50 coswt — %(fo + 2np) sin wt}.

When w? > 0, ie., 4v > o or 40> > up, the population, after a small
departure from equilibrium, returns to equilibrium in an oscillatory fashion
with exponential decay. If w? < 0 or 4v% < up the fact that |w| < o/2 ensures
exponential decay again but there is no accompanying oscillation. In either
case the population returns to equilibrium, the approach being more rapid
when oscillations are present.

5.3 The phase plane and the Jacobian matrix

If less specific assumptions are made about the mechanism of propagation
of epidemics, the most that can be said is that a system of the type

= f(z,y), Y=gy (5.3.1)
will need to be solved. Any point (zg,yo) such that
f(zo,90) =0,  g(x0,%0) =0 (5.3.2)

is called a critical point or fized point or equilibrium point. A solution that
starts at an equilibrium point never leaves it because @ and g both vanish
there provided that f and g satisfy the conditions of Existence Theorem II.
When the solution of (5.3.1) has been found, say = = hi(t),y = ha(t), the
point (z,y) can be plotted in the (z,y)-plane at time t. As ¢ varies, (z,y)
will trace a curve in the (z,y)-plane. This curve is known as a trajectory and
the (z,y)-plane is called the phase plane. By attaching an arrow to each
trajectory the direction in which (z,y) moves as ¢ increases can be indicated.
The phase plane then contains all the information in (5.3.1) except the rate
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at which the trajectory is traversed. The slope of a trajectory is given from
(5.3.1) by

dy _ i _ 9(z,y) (5.3.3)

dx flay)
A trajectory is vertical at any (z,y) where g(z,y) # 0, f(x,y) = 0 and hor-
izontal where g(z,y) = 0, f(z,y) # 0. The trajectory corresponding to an
equilibrium point reduces to a single point.

When f and g satisfy the conditions of Existence Theorem II, the initial
value problem has a single continuous solution in the neighbourhood of ¢t =
to. Therefore, in this case, only one trajectory passes through a given point
of the phase plane, i.e., under the conditions of Existence Theorem II, two
trajectories do not intersect in general.

All these notions can be generalised to a system of n equations. A solution
still describes a trajectory, which is now a curve in a space of n dimensions,
and we talk of a phase space rather than a phase plane. Diagrams are,
however, much more difficult to draw.

The same question about behaviour near equilibrium that was asked for
epidemics can be raised here. Put

r=wxo+& Y=yo+n

where (zo,¥o) is in conformity with (5.3.2). Because of the smallness of £ and
7, it will be assumed that f(z,y) can be approximated by the first terms in
its Taylor expansion, namely

af af
f(a?)ﬁ”(a—y)o

where ()p means calculate the value at x = o, y = yo. The approximation to

(5.3.1) is then
. (9f of
§_€<8x>0+n<8y)0’ (5.3.4)

. Jg dg
n=_¢ <%>O+n (8—y)07 (5.3.5)

a linear system with constant coefficients. The behaviour of such systems in
the phase plane will be examined in succeeding sections. It is worth noting
that this linear system can be written in matrix—vector notation (see Section
3.5):

u= (J)ou,

where u = (§,7) and J is a matrix called the Jacobian matrix. The entries
of J are the four partial derivatives of f and g with respect to = and y:

3_f@_f]

3oy) - [ =
oz Oy
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The behaviour near equilibrium is a matter of local stability and, as we
shall see in the next section, can be determined by the eigenvalues of the
Jacobian matrix. The larger question of what happens when the initial state
is not near equilibrium is one of global stability. This will be tackled in
Section 5.5 and, in the meantime, we merely remark that for systems of three
or more equations global behaviour is very varied and imperfectly understood.

5.4 Local stability

It has been discovered in the preceding section that local stability reduces
to a discussion of

T = ax + by, U =cr+dy (5.4.1)

where a,b,c and d are real constants (corresponding to the entries of the
Jacobian matrix, evaluated at the fixed point). The goal of this section is to
determine the trajectories of this system and, in doing so, the stability of the
fixed point at (z,y) = (0,0).

Let us first remark that, if « is a real constant, x(t + «), y(t + «) occupies
the same points in the phase plane as t varies as x(t), y(¢) though at a time
« earlier. So both points describe the same trajectory despite being different
solutions. More than one solution can lie on one trajectory.

In finding the trajectories we shall ignore the degenerate case in which ad =
bc; should it arise, the equations can be integrated directly without trouble.
It would, in any case, be necessary to reconsider the validity of (5.3.4) and
(5.3.5) as an adequate prescription for local stability in these circumstances.
Therefore, from now on, it will be assumed that

ad # be (5.4.2)
so that there is a single fixed point at the origin.
According to Section 3.4, the first attempt at a solution is = ae, y =
Bert. For the satisfaction of (5.4.1) we require
(a—XNa+b5=0, (5.4.3)
ca+ (d—N)p =0. (5.4.4)

These give nonzero «, 3 only if
(a—=N(d—=X)—bc=0

or
A — (a+d)X\+ad—bc = 0.
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The roots are \; Ao where

oA =a+d+ {(a—d)? + 4bc}'/?,
2o =a+d—{(a—d)?+4bc}'/?

Note that A\; and Ay are the eigenvalues of the Jacobian matrix
a b
J= {c d } '

Several cases have to be studied.
(a) (a—d)? +4bc > 0.

In this case the values of \; and Ao are real and distinct; the special proce-
dure for multiple roots does not have to be called on.

Assume first that b # 0. Then, from (5.4.3), we can choose « = b, f = A1 —a
corresponding to A; and a = b, 8 = Ay —a corresponding to Ae. Consequently

T = b(C’le/\175 + C'Qe’\zt), (5.4.5)
y = (M —a)CreMt + (\g — a)Cye?! (5.4.6)

where Cy and Cy are arbitrary constants. These equations may be rearranged
to give

(A2 — a)x — by = b(Ag — A\1)CreM?, (5.4.7)
(M —a)z — by = b(A\; — \g)Cae™2t. (5.4.8)

From (5.4.7), (A2 — a)z — by cannot change sign as t varies. Therefore the
trajectory cannot go over the line (A2 — a)x = by. Similarly, from (5.4.8), the
trajectory cannot trespass across (A\; — a)x = by. These lines are displayed
in Figure 5.4.1 as well as the regions to which the trajectory is confined for
various choices of C7, C; when b > 0 and both A1, A2 are negative.

Suppose now that both A; and Ay are negative. It is evident that x — 0,
y — 0ast— oo. Also A\; > Ag so that (A} —a)x ~ by as t — oo, so long as
Cy # 0. Moreover, as t — —oo, |z| and |y| become large and (A2 — a)z ~ by
provided Cy # 0, x approaching —oco when b > 0, Cy < 0. The trajectories,
therefore, have the shape depicted in Figure 5.4.2 for b > 0. The exclusion so
far of C; = 0 or C; = 0 can be remedied immediately because their trajectories
are the dividing straight lines on account of (5.4.7) and (5.4.8). The arrows
on the curves indicate the direction in which (x,y) moves as t increases. A
fixed point of this type is known as a stable node.

When A; and Ao are both positive, the curves are similar in character to
those in Figure 5.4.2 but the directions of the arrows are reversed because
(z,y) moves away from the origin as ¢ increases. We have an unstable node.

The remaining possibility is that A; and Ay have opposite signs so that
A1 > 0 and Ay < 0. From (5.4.7), the magnitude of (A2 — @)z — by increases
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by = (A — a)x by = (A — a)x
Cy, C;>0
Ci>0,C,<0
X
Ci<0,C5>0
C1, C2<0
C1=0 CZ=0

FIGURE 5.4.1: Lines that cannot be crossed by trajectories.

with time whereas that of (A; — @)z — by diminishes. The origin can never be
reached unless C7 = 0 when the trajectory is a straight line. The trajectory
is also a straight line when Cy = 0, but now the origin is departed from. The
behaviour of the trajectories is displayed in Figure 5.4.3. The fixed point is
called a saddle-point. Clearly a point (z,y) started near the origin cannot
stay near it in general and there is no stability.

So far we have assumed that b # 0. If b = 0 we see at once from (5.4.1) that
x = Cre™® and then

y = Credt + cCre®/(a — d).

We remark that a # d because (a — d)? must be positive when b = 0. In this
case, the dividing lines are = 0 and (a — d)y = cz. Apart from this change
the pictures are practically unaltered. There is a node if ¢ and d have the
same sign (stable if @ < 0, unstable if a > 0) and a saddle-point if ¢ and d
have opposite signs.

(b) (a—d)? +4bc <0

This possibility can occur only when bc < 0; so neither b nor ¢ vanishes and
they have opposite signs. The roots A\; and A are still distinct but they are
now complex conjugates. Write A\; = 3(a + d) + iw, A2 = $(a + d) — iw where

w? = —i(a— d)? — be.

Then
1
x = Ae2 (Tt cos(wt — ) (5.4.9)
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y
by = (A — a)x

by = (A, - a)x

X
FIGURE 5.4.2: The stable node.
where A and « are arbitrary constants. From (5.4.1)
y= (A/b)e%(‘”'d)t {3(d - a) cos(wt — a) — wsin(wt — @) }. (5.4.10)
The formulae (5.4.9) and (5.4.10) can be combined to give
cx?® + (d — a)zy — by? = —(w?A? /b)elot D, (5.4.11)

Suppose that a+d = 0 so that A; and Ay are purely imaginary. The equation
of a trajectory is given by (5.4.11) as

cx® + (d — a)zy — by* = —w?A?/b.
Rotate the axes by means of the transformation
x=Xcosf—Ysinf, y=Xsinf+Y cosb
where

tan 20 = d—a.
b+c

The equation of the curve goes over to

AX2H0Y? = —w?A?)b
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y
by = (A —a)x

by = (Ap— a)x

— —

FIGURE 5.4.3: The saddle-point.

where

A=

P2+ (d - a2},
c' = 2

% +c
(c=b) = H{(b+) + (d—a)*}V2

N[—= N|=

Since A'C' = w?, A’ and C’ have the same sign. Also A’ + C’ = ¢ — b so
that if b < 0, which implies ¢ > 0, A’ and C’ are positive, whereas if b > 0,
which makes ¢ < 0, A’ and C” are negative. Thus A’ and C’ have the opposite
sign to b and the trajectory is an ellipse with semi-axes w|A|/(—bA")'/? and
w|A|/(=bC") /2. Typical trajectories are drawn in Figure 5.4.4; the fixed point
is known as a centre. With regard to the direction of motion on a trajectory,
we see from (5.4.1) that when z = 0, & = by. Hence, when b > 0, z must
be increasing at positive y and so the direction is as shown in Figure 5.4.4; if
b < 0 the arrows have to be reversed.

The equations (5.4.9) and (5.4.10) make it evident that x and y vary har-
monically when a + d = 0. The point (z,y) therefore makes continual circuits
round the origin and is forever retracing its path. A trajectory started from
near the origin never leaves the neighbourhood but never swings into the ori-
gin. Therefore, there is stability in the sense that (z,y) remains in the vicinity
of the fixed point, if it is initially near there, but it never attains the fixed
point.

It should be observed that any closed trajectory implies periodic motion be-
cause it entails there being a fixed T such that (¢t + T) = z(t), y(t + T) = y(¢)
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FIGURE 5.4.4: The centre.

for all . The motion need not, however, have the simple harmonic character
mentioned above when the system is more general than (5.4.1).

Turning now to the case when a + d # 0, we note that the only difference is
the exponential factor in (5.4.11). The trajectory may be thought of instan-
taneously as an ellipse whose axes are changing exponentially. The trajectory
therefore spirals about the origin as shown in Figure 5.4.5. If a + d < 0, the
point (z,y) must approach the origin as ¢t — co. The direction of motion along
a trajectory is then that of Figure 5.4.5 and the fixed point is called a stable
focus. When a+d > 0, (z,y) departs from the origin, the arrows are reversed
and we have an unstable focus.

(c) (a—d)®+4bc=0

In this case Ay = A2 = 1 (a + d). However,
(a+d)? = (a — d)? + 4ad = —4bc + 4ad # 0
by (5.4.2) so A1 and A are nonzero.

If b # 0, (5.4.3) and (5.4.4) supply only the single solution o = b, § =
%(d — a). To find a second solution we try, according to Section 3.4, x =

(v + at)ez@ Dty — (§ 4 Bt)ez( @Dt with the result that v =0, § = 1. The
technique of Section 3.5 leads to the same answer. Consequently

x=b(Cy + CQt)e%(a-‘rd)t’

Yy = {CQ + %(d —a)(Cy + Czt)}e%(’”'d)t.



First-Order Systems of Ordinary Differential Equations 127

y y

e

V)
7

U2
N

() (b)

FIGURE 5.4.5: The focus when a +d < 0; (a) b> 0, (b) b <0.

The line by = 3 (d—a)z cannot be crossed and the structure of the trajectories
is similar to that of Figure 5.4.2 when the dividing lines coalesce. This fixed
point is therefore also termed a node; it is stable if a + d < 0 and unstable if
a+d>0.

If b =0, then a = d and z = C1e™, y = (Cy + cCit)e® and the trajectories
are not much changed in shape if ¢ # 0. If, in addition, ¢ = 0 the trajectories
are the straight lines y/x = constant (see Figure 5.4.6). The fixed point is still
designated a node, stable if a < 0 and unstable if a > 0.

These results can be summarised as follows. If ad # be, the fixed point of
(5.4.1) is:

1. Stable if Re(A1) < 0 and Re(A2) < 0 (Re(X) denotes the real part of
A).

(a) If Ay and Ay are real, the trajectories form a stable node.

(b) If A\; and Ay are a complex conjugate pair, the trajectories form a
stable focus.

2. A saddle point if A\; and \; are real and have opposite signs.
3. A centre if A\; and Ay are purely imaginary.

4. Unstable if Re(A1) > 0 and Re(A2) > 0.

(a) If A; and Ag are real, the trajectories form an unstable node.
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FIGURE 5.4.6: Thecaseb=c=0,a <0.

(b) If A; and A2 are a complex conjugate pair, the trajectories form an
unstable focus.

The reader will note that the stability of the fized point is determined solely
by the sign of the real part of the eigenvalues A1 and 3. The fixed point is
stable if and only if both A\; and Ao have negative real part. In addition, there
can be no oscillation if A\; and Ay are real; in particular, the system will not
be oscillatory if be > 0.

5.5 Stability

We now want to investigate what general conclusions can be drawn about
the behaviour of solutions to (5.3.1) on the basis of the model of (5.3.4), (5.3.5)
and the trajectories determined in Section 5.4. To fix ideas, we consider a
somewhat generalised model of epidemics in which the number of susceptibles
2 and of infected y satisfy

&= h(z,y)r, §=k(z,y)y.
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The behaviour near an equilibrium point in which neither = nor y is zero is
of interest. So xg and yy are taken to satisfy

h(zo,y0) =0,  k(xo,y0) = 0.
It then follows that, in the notation of Section 5.3,

(0f/0x)o = h1xo,  (Of/0y)o = hawo,
(0g/0x)0 = k1yo, (09/0y)o = k20

where hy, ha, k1 and ko are the values of Oh/dx,0h/dy,0k/dx and Ok/dy,
respectively, at (2o, yo). Thus, in the theory of Section 5.4, a = hyxg,b = haxg,
Cc = klyo, d= kgyo.

Since the presence of the infected tends to reduce the number of susceptibles
by infection, we expect he < 0. As the number of infected increases there will
be less opportunity to affect the susceptibles and so ke < 0, k1 > 0. If there is
a birth rate of susceptibles, we can suppose h; > 0, though h; will be rather
small in comparison with other partial derivatives in most epidemics, because
they tend to spread much faster than susceptibles are created.

Since ad — bc = (h1ka — hok1)xoyo we can be sure that ad # bc when hy
is small, as suggested above, and the theory of Section 5.4 can be applied.
In order that there can be any kind of oscillation, we must have case (b) of
Section 5.4, i.e.,

(himo — kayo)? + 4hakizoyo < 0.

The second term on the right-hand side is negative; so the inequality is feasible
if the first term is not too large. Since h; is small, this will be true if ko is
not too large. The oscillations are likely to remain near equilibrium because
a+d = hixo + kayo is negative on account of the smallness of hy. The fixed
point will be a stable focus or, possibly, a centre.

In the absence of oscillations, A; and A2 will both be negative because
ad — be is positive and the equilibrium will be a stable node.

Quite a lot of qualitative information about the behaviour of the solution
has been obtained without too specific assumptions about h and k. Of course,
further conclusions could be drawn if more was known about h and k. In
other problems, the signs of the partial derivatives might be different and
the behaviour near equilibrium changed thereby. Some of the unstable fixed
points might occur. However, such instability merely means departure from
equilibrium and, once this exceeds a certain amount, the model of (5.3.4) and
(5.3.5) loses its validity because it assumed motion near equilibrium. We then
enter the arena of global stability, with the possibility of some kind of stable
behaviour away from equilibrium, a matter to be discussed in the next section.

In the foregoing the presence of an equilibrium point has been assumed and
it will not be amiss to say a word or two about how the existence of an equi-
librium point is verified. Often it will be done most simply by graphical means
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but sometimes an analytical argument is helpful. With 0k/0x > 0, k(z,y) =0
can be solved for x to give a unique function z(y) of y. Because

dx Ok /0y

dy ~ 0k/ox

we have dz/dy > 0 when 0k/0y < 0. There can be no infected if there is
no population, and so z(y) > 0 but less than some bound. Thus h(z(y),y) is

such that
dh  Ohdx = Oh

dy ~ rdy Oy
which will be negative when both dh/dx and Oh/Jy are. Then h(z(y),y)
decreases as y increases so that if h(x(y), y) is positive for small y and negative
for large y there will be one and only one equilibrium point.

As a final illustration we consider a case in which the trajectories can be
traced completely, namely

P=y = 4(1-a?)

or, equivalently,
i+ 3(@?-1)=0.

We have p
Y 1
Yar ~ z(1— a?)
which gives, on integration,

y2:x—%x3+0.

These trajectories are displayed graphically in Figure 5.5.1. The fixed point
z=1,y=0isacentre and x = —1, y = 0 is a saddle-point. If -2 < C' < 2
the closed curves surrounding z = 1, y = 0 show that periodic motion is
possible with proper initial conditions. If C' = % no oscillations are allowed
but x = —1, y = 0 can be tended to if the initial conditions are appropriate.
IfC > %, x and y always approach negative infinity as t — oo.

A quick idea of the shapes of the trajectories can be obtained as follows.
Put

y? =C —v(x).

Since y? cannot be negative the only values of x that can occur are those
that satisfy v(z) < C. Such values can be seen easily from a graph of v(x).
In Figure 5.5.2 a graph is displayed together with various possibilities for C.
The line on which C' = 2.2 intersects the curve at x = 2.4 approximately and
is above the curve for x < 2.4. Hence v(z) is below 2.2 for < 2.4. Thus
the trajectory starts at © = —oo with y positive (because & must be positive
at the start) and moves to the right until it crosses the z-axis at © = 2.4
approximately. Thereafter it returns to x = —oo with y negative. Likewise,
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/—\ X
1 \1—/ 2
ﬁ ~2/3<C<2/3

FIGURE 5.5.1: Nonlinear conservative system.

FIGURE 5.5.2: Qualitative determination of trajectories.
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V(x)

FIGURE 5.5.3: Graph of 2* — 222 — 3.

when C' = —2.2, x is restricted to x < —2.4; the trajectory goes from —oo
and back again, crossing the z-axis at £ = —2.4 approximately. On the other
hand, when C' = %, there are three intersections with the curve at x1, x2 and
3. Two trajectories are possible now. On one x < x; and it is similar to the
one when C' = —2.2. On the other trajectory = is confined to the interval
ro < x < x3 so that the trajectory is a closed curve. It is clear from Figure
5.5.2 that trajectories that are closed curves are possible only for 7% <C< %

This is an example of a nonlinear conservative system. A more general
version is

d
=y, g=- V)
o qv
i V@ g
dx

The trajectories can be determined as above and are
12+ V(z)=C.

The graphical method will give an indication of the shapes of the trajecto-
ries. As an illustration take

V(z) =2t — 222 — 3.

Its graph is drawn in Figure 5.5.3. Evidently, when C' > —3 the trajectory
consists of a single closed curve. When —3 > C' > —4, however, the trajectory
has two parts. One is a closed curve surrounding x = —1 while the other is a
closed curve around x = 1. There is no trajectory for C' below —4. Since the
equilibrium points are x = 0, =1 the trajectories are as shown in Figure 5.5.4.
The points x = 1 and x = —1 are centres whereas z = 0 is a saddle-point.
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FIGURE 5.5.4: The trajectories corresponding to Figure 5.5.3.

5.6 Limit cycles

As a beginning to the discussion of global stability, let us examine the
system
t=y, gy=el-a’)y-=z

where € is a nonnegative constant. Eliminating y we obtain
i—e(l—a®)i+z=0 (5.6.1)

which is known as van der Pol’s equation.
Assume that € is small. As a first approximation one would ignore the term
involving €. The general solution is then

x=Ccos(t —a)

where C' and « are arbitrary. Let us study how the presence of the term in e
affects the solution x = C cost. Since this is expected to be a reasonable first
approximation, we try z = Acoswt where w is a constant that is nearly 1.
Substitution in (5.6.1) leads to

Al —w?) coswt = —¢(1 — A% cos® wt)wA sinwt

A? 1
= ewA {T sin 3wt — (1 — ZA2> sinwt}.

This equation can be satisfied for all ¢ only if the coefficients of different
sinusoidal terms vanish. The term in coswt disappears if w = 1, and the term
in sinwt is removed by taking A = 2. Thus we choose

w=1, A=2.
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That still leaves the term containing sin 3wt unaccounted for because we have
now fixed w and A. To get rid of the extra term we need to try a higher
approximation such as

z = Acoswt + By cos 2wt + C1 sin 2wt

and repeat the process. We shall expect w to be nearly 1, A to be nearly 2
and Bj, C7 small. Even then, there will still be extra terms in the equation
which we cannot dispose of. To tackle these we could contemplate adding
further terms to the expression for z by introducing sinusoidal functions of
3wt, dwt, . ... However, we shall not go into this complication but stay with our
first approximation in the belief that the extra terms will represent a small
correction. According to our first approximation, there is a periodic motion

T = 2cost

in which the amplitude 2 is in error by order ¢ and the error in the argument
of the cosine is of order €2.

The influence of a small nonlinearity has been radical. Instead of a simple
harmonic motion in which the amplitude C can take any value the periodic
motion has been restricted to the single amplitude 2.

Of course, we do not know whether this periodic state can ever be reached
and the theory of local stability is no aid because the motion is nowhere near
the fixed point at x = 0, y = 0. Nevertheless, some progress can be made.
Multiply (5.6.1) by & and integrate with respect to ¢ from ¢t = 7 to t = 7+ 27.
Then

T4+27
t[a? + yQ]:HW = / e(1 — x?)a2dt.
T
Although z is not known precisely, it can be expected to be substantially of
the form B cost for a time interval of 27. The error in calculating the integral
by this formula should not be more than order €2. Now

T4+27 T2
/ e(1—z*)i%dt = / (1 — B%cos? t)B?sin® t dt

= %W€B2(4 — B?).
Thus, if B > 2,22 + y? is reduced after one period. Repeating the argument
for each consecutive period we conclude that if the motion starts with B > 2
it must eventually arrive at the position where B = 2. Similarly, for a motion
that begins with B < 2, 22 + 3?2 increases after each period and continues to
do so until B = 2. Consequently, the system ends up in the specified periodic
motion whatever the initial point.

A typical trajectory can be seen in Figure 5.6.1. Any closed trajectory that
is eventually reached by a system is called a limit cycle. For van der Pol’s
equation x2 + y? = 4 is a limit cycle, according to our first approximation.
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FIGURE 5.6.1:

The limit cycle.

The theory can be arranged to cover the more general

¥+x=—eg(z, i) (5.6.2)
and the corresponding system. Put z = A coswt and let

g(Acoswt, —Awsinwt) = aq coswt + by sin wt + ag cos 2wt + by sin 2wt + - - - .
Taking advantage of the orthogonality of the trigonometric functions and
Section 3.7 we have

27w
/ g(Acoswt, —Awsinwt) coswt dt = may Jw,
0

27w
/ g(Acoswt, —Awsin wt) sinwt dt = by /w.
0

Since the left-hand side of (5.6.2) is A(1 — w?) coswt the coefficients of coswt
and sinwt can be made to agree by requiring that

27w
1—w?=—ca; /A= i

g(A coswt, — Aw sin wt) cos wt dt,
7TA 0

(5.6.3)
27w
bi/w = / g(A coswt, — Aw sin wt) sin wt dt.
0

(5.6.4)

135
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Equation (5.6.3) tells us that w = 1 + O(e) and, taking advantage of this in
(5.6.4), we obtain

2T
/ g(Acost,—Asint)sintdt =0 (5.6.5)
0

to determine A. Substitution back into (5.6.3) then leads to a more accurate
determination of w. Knowing w and A enables us to locate the positions of
any limit cycles.

To establish whether the system tends to a limit cycle we note that when
T = Bcost

2m
2% + 7] (Q)W = eB/ g(Bcost,—Bsint)sint dt. (5.6.6)
0

It is too much to expect to be able to estimate the sign of the right-hand side
of (5.6.6) in general, but it is possible to form an opinion of what happens
near a limit cycle, i.e., when B ~ A where A satisfies (5.6.5). We want the
left-hand side of (5.6.6) to decrease if B > A and to increase when B < A if
the trajectory is to approach the limit cycle from either side, i.e., we need the
right-hand side of (5.6.6) to go from positive to negative values as B increases
through A. This demands that the derivative of the right-hand side of (5.6.6)
with respect to B shall be negative when B = A, i.e.,

2w

€ {9+ [9z)Acost — [gy]Asint}sintdt < 0
0

where
9] = [%g(x, y)} l9y] = L%g(x, y)]

and the substitution x = Acost, y = —Asint is made after the derivatives
have been performed. The first integrand gives a zero contribution by virtue
of (5.6.5) but is retained because, by integration by parts,

2 2
0]
/ gsintdt = —gcostdt

2
=— Acost{[gs]sint + [g,] cost}dt.
0

Hence the inequality becomes

/ T lgldt > 0 (5.6.7)
0

since € and A are both positive. The inequality (5.6.7) is the condition under
which the system tends to go into the periodic motion of the limit cycle, i.e.,
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the limit cycle is stable. If the inequality in (5.6.7) is reversed, i.e., the left-
hand side is negative, the system would tend to depart from the limit cycle,
which would then be unstable.

The number of possible limit cycles is fixed by the number of distinct posi-
tive values of A which satisfy (5.6.5). Their stability can be assessed by means
of (5.6.7). One can thereby obtain an idea of which limit cycle (if any) will be
attained under given initial conditions.

The theory expounded above has been based on € being small and is plausi-
ble rather than rigorous. Notwithstanding this, it indicates what can happen.
To deal with cases when € is not small, much more elaborate analysis is nec-
essary and we shall confine ourselves to quoting two theorems.

LIMIT CYCLE CRITERION

In (5.6.2) let g(x,%) = ©G(x) where G(x) is an even function of x such that
G(z) <0 for |z| <1 and G(x) > 0 for |x| > 1. Suppose further that for some
finite xo there is Go > 0 such that G(x) > Go for |x| > zo. Then, for any
€ >0, (5.6.2) has just one limit cycle and this limit cycle is stable.

POINCARE-BENDIXSON THEOREM

If there is a bounded region D in the (x,y)-plane such that any solution of the
system

z = f(z,y), v =g(x,y)

that starts in D remains in D, then D contains either a stable fixed point or
a limit cycle.

Note that D is often referred to a trapping region, or an invariant set,
due to the property that it “traps” trajectories: once a trajectory has entered
D, it can never escape.

The Poincaré—Bendixson theorem deals with a more general situation than
the limit cycle criterion but provides less specific information. The reader
should not, however, attempt to apply the Poincaré—Bendixson theorem to a
system of more than two differential equations.

Limit cycles make their presence felt only with nonlinear differential equa-
tions; they do not occur when the governing equations are linear. Caution
should therefore be exercised in introducing a linear model for a natural phe-
nomenon where the behaviour is essentially nonlinear. At best it will describe
local stability characteristics but it may give no clue as to what takes place
globally or, worse, may suggest misleading conclusions.

The Poincaré—Bendixson theorem does not distinguish between the cases
of a fixed point and a limit cycle. It is sometimes helpful in deciding between
them to observe that a limit cycle must contain a fixed point. For example,
take the limit cycle as the boundary of D in the Poincaré—Bendixson theorem.
Then there must be a limit cycle or fixed point inside. If there is no limit cycle



138 Differential Equations and Mathematical Biology

the assertion is proved and if there is one we repeat the argument for that
one.

Example 5.6.1
Use the Poincaré—Bendixson theorem to show that the system

bP=x—y—a (5.6.8)
j=x+y—y’ (5.6.9)

has a stable periodic orbit.
In examples like this one, it is often useful to convert to polar coordinates

r and ¢, where
T = rCcos g, y = rsin ¢. (5.6.10)

It can easily be seen geometrically from Figure 5.6.2 that r and ¢ satisfy
r? = 2% 497, tan¢ = Y. (5.6.11)
x

Note that, in this transformation, r can never be negative: it represents the
length of the radius vector from the origin to the point (z,y). Differentiating
equations (5.6.11) with respect to t shows that

rr =z + yy, 2 = xy — yi. (5.6.12)

These formulae are very useful for transforming systems of two differential
equations to polar coordinates. Substituting equations (5.6.8) and (5.6.9) into
(5.6.12) gives

i =1 —1%(cos’ ¢ +sin? ¢) , (5.6.13)

¢ =1 (5.6.14)

We immediately see that there is a constant angular velocity (qS) of 1, so
the radius vector in Figure 5.6.2 sweeps steadily counterclockwise, and there
is no possibility of a fixed point other than possibly at the origin. If r = 0
then 7 = 0, so the system has a unique fixed point at the origin. To check
its stability, we look at the Jacobian matrix for original system of differential

equations in (z,y):
I {1 —3z2 -1 }

1 1—3y?
At the fixed point (z,y) = (0,0),

J:[}ﬂ.

The eigenvalues A of this matrix satisfy the equation

(L= N1 =N +1=0,
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FIGURE 5.6.2: Polar coordinates.

which has roots A = 2 + 2i. These eigenvalues are a complex conjugate pair
with positive real part. Hence we are in case 4(b) of Section 5.4 and the
fixed point is an unstable focus. We now observe that cos* ¢ + sin* ¢ always
lies between 1/2 and 1. The largest possible value for 7 in equation (5.6.13)
therefore occurs when cos? ¢ + sin* ¢ = 1 /2, and this gives an upper bound

on 7:
r3 r2
P r— — = 1-—.
r<r > r( 2>

Hence we can guarantee that 7 < 0, regardless of the value of ¢, provided r >
V2. Therefore, the circle D of radius v/2 is a trapping region, meaning that
any trajectory that starts within D will always remain within D (see Figure
5.6.3). Thus D satisfies the conditions of the Poincaré-Bendixson theorem
and, since we have shown that D does not contain a stable fixed point (the
only fixed point is the one at the origin, which is unstable), D must contain
a limit cycle.

[

5.7 Forced oscillations

The investigation of the effect of an external oscillatory disturbance on a
nonlinear system is very difficult. If the nonlinearity is small some insight can
be gained by the method of Section 5.6. To illustrate the technique and to
display the new features that can be present we shall consider van der Pol’s
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FIGURE 5.6.3: A trapping region D for the system (5.6.8), (5.6.9), to-
gether with the vector field (arrows indicating the direction of movement in
the phase plane) and two sample trajectories (dashed lines). Note that the
direction arrows all point into the trapping region. Poincaré—Bendixson the-
orem predicts the existence of a stable limit cycle in D and both trajectories
can be seen tending towards this limit cycle. See Section 5.8 for details of how
to produce plots of this type in MATLAB.

equation with a forcing term, namely
i—e(l—2?)i+z=FEsinQt (5.7.1)

where E and ) are constants, and € is small.

When E = 0, previous theory indicates a stable limit cycle x = 2 cost and
the system can be expected to go into a self-excited oscillation. If ¢ = 0 but
E # 0, there is a forced oscillation with harmonic time variation of argument
Ot (Section 2.6). When neither € nor E is zero, both types of oscillation have
to be allowed for.

Therefore, try

x = Acos(wt + ) + Csin(Qt + 0) (5.7.2)

where the constants «v and 6 have been incorporated to cover the influence of
the self-excited and forced oscillations on each other. It is to be expected that
w is near 1 and, if Q2 is not near 1, that C is not far from E/(1 — Q?) with ¢
small. No estimate of A and « can be made at this stage.
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The substitution of (5.7.2) in (5.7.1) leads to

A1 — w?) cos(wt +7) + C(1 — Q) sin(Qt + 0) — Esin Q¢
= €[QC(1 - FA? — $C?) cos(Qt + 0)
+ (2A4% + $C? — 1)wAsin(wt + 7)
—142C(Q + 2w) cos{(Q + 2w)t + 2v + 0} + L A3wsin3(wt + )
+7 A2 (2w — Q) cos{(Q — 2w)t — 2y + 0} + 1QC3 cos 3(Q + 0)
AC?*(w + 29Q) sin{(w + 2Q)t + v + 20}
1A02(2Q w)sin{(w — 2t + 7 — 20}]. (5.7.3)

C
C
sin{

All the sinusoidal terms on the right-hand side of (5.7.3) have different time
variations unless Q = 0, 3w w or 3w. The case 0 = 0 has already been
disposed of (being the same as £ = 0) and, for the moment, the exceptional
cases in which Q = tw, w or 3w will be ignored. On the two sides of (5.7.3)
equate the coefficients of cos(wt + ), sin(wt + ), cos 2t and sin Qt to obtain

A(l —w?) =0, (5.7.4)

(A% +3C% —1)wA =0, (5.7.5)

C(1—0?)sinf — eQC(1 — $A% — 1C?) cos 0 = 0, (5.7.6)
C(1—Q?)cosh+eQC(1— 1A% — 1C?)sinf = E. (5.7.7)

It is evident from (5.7.6) and (5.7.7) that
C = Ecosf/(1-0?), tand = eQ(1 — 242 — 1C?) /(1 - 0?).

Thus, so long as 22 is not near 1, 6 is small and cos # may be replaced by unity.
In other words, the nonlinearity has very little effect on the forced oscillation.
On the other hand, (5.7.4) and (5.7.5) imply that

w=1, A= (4-20%"2

As C? increases from 0, A decreases from 2 to 0 and finally becomes imaginary
for C? > 2. Imaginary values of A are not permitted and so, when C? >
2, the only possible solution to (5.7.4) and (5.7.5) is A = 0. The influence
of the forcing term, therefore, is to reduce the amplitude of the self-excited
oscillation when C? < 2 and to extinguish it completely when C? > 2, i.e.,
E? >2(1 - Q2)2.

Thus, even in the unexceptional case, a strong enough external vibration
can obliterate totally the self-excited oscillation.

Turn now to the exceptional case in which 2 = 3w. Since w is near 1 this
can occur only when € = 3+ 6 and w = 1+ £6 with || < 1. The terms
involving sin 3(wt + ) and cos{(2 — 2w)t — 2y + 0} in (5.7.3) cannot now
be neglected. Equate the coefficients of cos(wt 4 ), sin(wt 4 ), sin 3wt and
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cos 3wt on the two sides of (5.7.3); then

A(l — w?) + TeA?Cwcos(3y — 0) = 0, (5.7.8)

(142 + 3C? — 1)wA — 1A%?Cwsin(3y — 0) =0, (5.7.9)

C(1 —9w?) cosf — E + 3ewC (1 — A% — 1C?) sinf = LeA3wcos 3y, (5.7.10)
C(1 — 9w?)sinf — 3ewC (1 — 3 A% — 1C?) cos 0 = LeAPwsin3y. (5.7.11)

From (5.7.10) and (5.7.11), C = —FE/8 to the first order and tané is small
so that the forced oscillation is virtually the same as in the absence of the
nonlinearity. In (5.7.8) and (5.7.9) put w = 1+ 34, put A cos(3y —6) = £ and
put Asin(3y — ) = n. Then, if only dominant terms are retained,

—%54— ieCf =0,
e+ (n-10)° =4-70%4.

Consequently, £ and 1 (and thereby A and +) are determined by the intersec-
tion of a straight line and a circle. The circle is imaginary if C? > 16/7 and
the line does not intersect the circle if 4 — 7C?/4 < (85/3eC)?. Therefore A
is nonzero only if 4 — 7C%/4 > (83/3¢C)?; this inequality cannot be satisfied
unless (6/€)? < 9/28. Hence, if (§/¢)? < 9/28 and 4 — 7C? /4 > (85/3¢C)?,

A2 =4 302 + {402 — 104 — (85/3¢)2} 7 (5.7.12)

Having found A, we can proceed to determine v. However, v occurs only in
the form 3~ so that if 4o is a possible value so are v + 27/3 and ~yy + 47/3.
Thus, to a given amplitude of the self-excited oscillation there correspond
three possible distinct phases.

According to this approximation when the magnitude of the forcing term
is small, C? is not large enough for A to exist. Thus application of a small
forcing term of three times the natural frequency extinguishes the self-excited
oscillation. As the magnitude of the forcing term and C? grow there comes
a point where A is nonzero and self-excited oscillations can occur. Further
increase of C? will eventually reach a point when A disappears again so that
the self-excited oscillation is absent when the magnitude of the forcing term
is large enough. For the upper sign in (5.7.12), A will increase with C? to a
maximum before dropping back to zero. The possibility of A increasing and
of surpassing the value 2 are new aspects. For instance, 4 >2if0< C? <1
when § = 0. In general, A > 2 if (85/3¢)? < 1 and

_{1 — (85/36)2}1/2 < 202 — 1 < {1 _ (85/36)2}1/2

This magnification of the self-excited oscillation by the application of a vibra-
tion, which is an integer multiple of the self-excited, is known as subharmonic
resonance.

Our investigation does not permit us to say which of the many oscillations
that have been uncovered can be reached by the system starting from given
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initial conditions. A more refined analysis reveals that the negative square root
in (5.7.12) corresponds to an unstable state, whereas the upper sign provides
a stable state. Therefore, under conditions in which A is nonzero, the system
tends to adopt the larger value of A; the phase will depend on the initial
conditions.

The exceptional case 2 = %w may be discussed in a similar manner. As
regards the special case 2 = w, there is no necessity to have both terms in
(5.7.2) and C can be placed equal to zero.

5.8 Numerical solution of systems of equations

The numerical methods for solving initial value problems consisting of sys-
tems of differential equations of the form

i = fi(y1, -, Yn), i=1,...,n (5.8.1)

are essentially the same as those for solving initial value problems with a
single first-order equation (see Section 1.7). The only difference is that the
dependent variable y = (y1,...,yn) is a vector rather than a scalar and, to
MATLAB, this makes very little difference. If using the built-in solver ode45,
the only change from the usage described in Section 1.7 is that the user-defined
function myrhs now takes a vector y as its second input and returns a vector
of values for y as output, and that the initial condition is also a vector.

For example, suppose we wish to solve the general Volterra-Lotka compe-
tition model (4.5.12) and (4.5.13). First note that this system may be written
in vector form y = f(t,y) (see Section 3.5 for vector-matrix notation), where
f is defined by

_ | y1(ao — arys — azy2)
ft.y) = ya(bo — b1yr — bay2) |’ (5:8.2)
and the a; and b; are constants. Picking some example values for the constants,
we can write a MATLAB function to evaluate the vector function f as follows:

function f = volterra_lotka(t, y)

a0 = 1.2; a1l = 0; a2 = 0.6; b0 = -0.8; bl = -0.3; b2 = 0;
f = zeros(2, 1); % define f as a 2x1 matrix

£(1) = y(1)*(a0-alxy(1)-a2*y(2));

£(2) = y(2)*(b0-blxy(1)-b2*y(2));

Note the syntax for defining the column vector £: first £ is defined as a 2 x 1
matrix (i.e., a column vector of length 2); then each component is calculated
in turn.

The initial value problem with initial conditions of, for example, y(0) =
[2,1] may then be solved and plotted, up to say ¢t = 20, with the following
commands:
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FIGURE 5.8.1: Numerical solution to the Volterra-Lotka system (5.8.2)
with a9 = 1.2, a1 = 0, ag = 0.6, bg = —0.8, by = —0.3, by = 0, calculated
using ode45. (a) Time-series of both species (y; and y2 against t). (b) Phase
diagram (y2 against y1).

>> t0 = 0; t1 = 20; yO = [2; 1];
>> [t, Y] = ode4b5(@volterra_lotka, [t0, t1], y0);
>> plot(t, Y)

Note that, since the solution y(¢) consists of a vector of 2 values, Y is a matrix
with 2 columns. The k' row of Y contains the solution vector corresponding
to the k'™ value of t. The above plot command graphs each component of
the solution (i.e., the total population of each species) against ¢ as a separate
curve, and is equivalent (for the two-variable case) to the command

>> plot(t, Y(:, 1), t, Y(:, 2))

The resulting plot is shown in Figure 5.8.1(a), which reveals the cyclical nature
of the solution.

It is often useful to plot the solution to a system of differential equations
in the phase plane, i.e., plot y2 against y;, instead of plotting each dependent
variable against ¢. This can be done with the command

>> plot(Y(:, 1), Y(:, 2))

which produces the graph shown in Figure 5.8.1(b). The key observation here
is that the trajectory in the phase plane is a closed curve, which implies that,
after some amount of time, the system returns to its previous state. This
demonstrates that the solution is periodic.

Often, it is desirable to plot not just a single trajectory corresponding to
a particular initial condition in the phase plane, but to produce a plot that
is representative of the entire phase portrait. One way to achieve this is to
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plot the vector field that defines the system of differential equations. The
MATLAB command for plotting vector fields is quiver. Before using this
command, we must define the grid we are working on. This can be done with
the following commands:

>> yl = yl min:h:yl_max; y2 = y2_min:h:y2_max;
>> [Y1, Y2] = meshgrid(yl, y2);

Here the meshgrid command takes the vectors y1 and y2 and creates matrices
Y1 and Y2 corresponding the y; and y2 coordinates throughout the rectangular
region. The minimum and maximum values of y; and y2, and the plotting
resolution h can be adjusted as required. Now we can define and plot the
vector field. For the example given in equation (5.8.2), the following commands
produce the graph shown in Figure 5.8.2 (compare this graph to the particular
solution shown in Figure 5.8.1(b)):

>> F1 = Y1.*(a0-al*Y1-a2*Y2);
>> F2 = Y2.x(b0-b1*xY1-b2*Y2) ;
>> quiver(Y1, Y2, Fi, F2)

Note the use of the array multiplication operator . *. This takes two arrays
of the same size and multiplies them component-by-component, as opposed
to *, which will attempt to calculate the matrix product of two arrays. For
example,

[a, bl .* [c, d] = [a*c, bx*d]
[a, b] * [c; d]l = axc+b*d

Similar operations can be achieved with ./ for component-by-component di-
vision, and .~ for raising components to a power.

It is also useful to add the nullclines of the system to the graph in Figure
5.8.2. These are the curves on which one of the variables is stationary. Hence
the yp-nullcline is defined by the equation 3 = 0 and likewise for the ys-
nullcline. For this example, the nullclines are simply given by

y2 = (a0 —ary1)/az  and g1 = (bo — bay2)/b1.
These may be added to the graph with the following commands:

>> hold on
>> nullclinel = (a0-al*yl)/a2; nullcline2 = (b0-b2x*y2)/bl;
>> plot(yl, nullclinel, nullcline2, y2)

(The command hold on causes the following plot command to be superim-
posed on the existing Figure.) Notice that the vector field has no y; (hori-
zontal) component on the y;-nullcline, and no ys (vertical) component on the
yo-nullcline. In this particular example, the nullclines are straight lines, ei-
ther vertical or horizontal. However, in general the nullclines will be a pair of
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FIGURE 5.8.2: Vector field plot for the Volterra—Lotka system (5.8.2) with
ag=1.2,a1 =0, as = 0.6, bp = —0.8, by = —0.3, by = 0. The solid lines are
the nullclines for the system.

curves and are very useful for building a picture of the phase portrait. Points
where the nullclines intersect are fixed points (equilibria) of the system.

Example 5.8.1
Plot solutions to van der Pol’s equation (5.6.1) (with ¢ = 0.25) in the phase
plane for two initial conditions: (i) z(0) = 3, #(0) = 0; (ii) z(0) =1, ©(0) =
0. Draw the corresponding vector field plot, including the nullclines of the
system.

First we write (5.6.1) in the form of a first-order system:

Y1 = Y2, v = e(1—yi)y2 — y1.

From this, we can write a MATLAB function that calculates the right-hand
sides of the differential equations:

function f = van_der_pol(t, y)
epsilon = 0.25;
f=1[y(2) ; epsilon*(1-y(1)"2)*y(2)-y(1) 1;

We can calculate the solution for say 0 < ¢ < 25 and initial condition (i), and
plot in the phase plane with the commands:

>> [t, Y] = ode45(@van_der_pol, [0, 10], [3; 01);
>> plot(Y(:, 1), Y(:, 2))

Including the other initial condition gives the two trajectories shown in Figure
5.8.3(a). This graph clearly shows the existence of a limit cycle, which both
trajectories tend towards. The limit cycle itself can be calculated and added
to the graph by plotting the solution after a long period of time has elapsed
(say 500 <t < 510).
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FIGURE 5.8.3: van der Pol’s equation (5.6.1) with e = 0.25: (a) numerical
solutions in the phase plane for two different initial conditions (indicated by

open circles); (b) vector field plot (solid lines are nullclines).

To plot the vector field, we define a grid [Y1, Y2] as described above, and
then draw the graph:
>> F1 = Y2; F2 = epsilon*(1-Y1.72).%Y2-Y1;
>> quiver(Y1, Y2, F1, F2)
The nullclines for the system are given by
y2=10 and v2 =1/ (e(1—93)),
which can be added to the vector field plot (Figure 5.8.3(b)) as follows:

>> hold on
>> nullclinel = O*yl; nullcline2 = yl1./(epsilon*(1-y1.72);
>> plot(yl, nullclinel, y1, nullcline2)

Notice that the ya-nullcline has vertical asymptotes at y; = £1.
I

5.9 Symbolic computation on first-order systems of equa-
tions and higher-order equations

MATLAB’s dsolve command, introduced in Section 1.8, can handle sys-
tems of equations and higher-order equations. This is best illustrated by ex-
ample. It is worth remembering that exact analytical solutions to nonlinear
systems are rarely available, and the following examples are therefore linear.
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Example 5.9.1
Consider the linear system

Y1 = —y1 — 10y2, (5.9.1)
Y2 = 10y1 — 2.

The appropriate MATLAB input/output is

>> y_sol = dsolve(’Dyl=-y1-10xy2’, ’Dy2=10*yl-y2’)
y_sol =

y1: [1x1 sym]

y2: [1x1 sym]

Here, because there is more than one dependent variable, the output from
dsolve (y_sol) is what is called a structure. In this case, there are two
dependent variables, so the structure y_sol has two fields y1 and y2. The
syntax for accessing the fields of a structure is structure.field. Hence to
extract the contents of the two fields to two new variables y1_sol and y2_sol,
the appropriate commands are

>> y1_sol = y_sol.yl
yl_sol =
exp(-t)*(Cl*cos (10*t)-C2*sin(10%*t))
>> y2_sol = y_sol.y2
y2_sol =
exp(-t)*(Cl*sin(10*t)+C2*cos(10*t))

We can now plot these solutions, with initial conditions of say y1(0) = 1
and y2(0) = 0, following the same procedure as in Example 1.8.1. The time
series and phase plane plot are shown in Figure 5.9.1.

I

Example 5.9.2
Bessel’s equation is an equation that frequently arises when solving steady-
state temperature distribution problems in cylindrical coordinates (¢ here rep-
resents location rather than time):

t2@+t@+(t2—v2)y=0 (5.9.3)

dt?  dt ' o

We could write this as a system of first-order equations (see Section 3.2).
Alternatively, we can try to solve it directly. The command we need for this
is

>> y_sol = dsolve(’t”~2*D2y+t*Dy+(t"2-v"2)*y=0’)

which returns the solution as
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FIGURE 5.9.1: Solution to the linear system (5.9.1) and (5.9.2), with
initial conditions y1(0) = 1 and y2(0) = 0, calculated using symbolic com-
putation. (a) Time-series of both variables (y; and yo against t). (b) Phase
diagram (y2 against y1).

y_sol = Cl*besselj(v,t)+C2*bessely(v,t)

Here besselj and bessely are special functions called Bessel functions.
Note that, because equation (5.9.3) is a second-order differential equation,
there are two linearly independent solutions (with arbitrary constants C; and
C5) in the general solution. MATLAB will happily plot these functions (see
Section 1.8), if given a value of v and suitable initial conditions. For a second-
order differential equation, we need two initial conditions. For example, the
solution with v = 1 and initial conditions y(0) = 0, 3’(0) = 1 may be found
by

>> y_sol = dsolve(’t 2*xD2y+t*Dy+(t~2-1)*y=0’, ’y(0)=0’,
’Dy (0)=1")
y_sol = 2xbesselj(1,t)

5.10 Numerical solution of nonlinear boundary wvalue
problems

Although linear boundary value problems were dealt with in Chapter 3,
nonlinear boundary value problems are more difficult to solve as they entail
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solving a system of n + 1 nonlinear equations. In general, this is a nontriv-
ial task, and root-finding methods for nonlinear systems, such as Newton’s
method, usually require a reasonable approximation of the solution to use as
a starting point.

Newton’s method for a system of equations

f1($1,...,xn) = O,

fn(xlw‘wxn) = 07

is based on the multivariable Taylor expansion of the vector function f(x) =

(fl; ey fn)
£(x) = f(x0) + J(x0)(x — Xo) + O ((x—x0)2>, (5.10.1)

where J is the Jacobian matrix of the vector function f (see Section 5.3), i.e.,
the (4, j) entry of J is the partial derivative of f; with respect to z;:

_ Ofi
Jij = o,

Setting x in (5.10.1) to be the root of the vector equation (i.e., f(x) = 0) and
. 2 . .
neglecting terms of order (x — x¢)“ and higher gives

J(x0)(x — x¢) = —f(x0).

Given an initial approximation x¢ to the root, this equation enables an im-
proved estimate for the root x to be calculated. Applying this procedure
iteratively gives:

Xpt1 = Xn + AX, where J(x,)Ax = —f(x,,).

The following code is a MATLAB function that attempts to solve a vector
equation f(x) = 0 by Newton’s method.

function x = newton(func, x, tol, maxits)

% Function to solve a system of equations f(x)=0 by Newton’s
% method

% INPUTS: x - initial approximation to the solution

% tol - relative tolerance for testing convergence
% func - handle to a function that calculates f(x)
% maxits - maximum number of iterations to carry out

% OUTPUTS: x - solution vector

delta_x = 10*xtolx*x;

count = O;

while ~“(norm(delta_x, inf)/norm(x, inf) < tol) && count < maxits
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[f, J] = jacobian(func, x);
delta_x = -J\f;
x = x+delta_x;
count = count+1;
end

This function takes an initial approximation to the solution, and attempts to
improve the accuracy of this approximation by Newton’s method, terminating
if the relative change in the approximations between successive iterations falls
below some specified tolerance tol. The function jacobian calculates the
Jacobian matrix for the user-supplied vector function f(x):

function [f0, J] = jacobian(func, x)
% Function to evaluate a vector function and find its Jacobian
% INPUTS: func - handle to the vector function

% X - argument to vector function

% OUTPUTS: fO - value of the vector function at x

% J - Jacobian matrix at x

N = length(x); % length of the vector x

dx = 1e-10; % value of dx to use to calculate the Jacobian

f0 = func(x); Y% evaluate func at x
J = zeros(N); % initialise J as an NxN matrix

for I = 1:N % loop through columns of J
x0 = x(I);
x(I) = x(I)+dx; % perturb x(I) by dx
f = func(x); % evaluate func at perturbed x
J(:, I) = (£f-f0)./dx; % calculate column I of Jacobian
x(I) = x0; % restore x(I) to unperturbed value
end

The user-supplied function that calculates f(x), which is passed to newton
in the argument func, depends on the specific boundary value problem. This
is best illustrated by example.

Example 5.10.1
Write MATLAB code to solve the nonlinear boundary value problem

Py

dx?
As with a linear problem, the first thing we need to do is to replace derivatives
of y with appropriate finite difference approximations:

+py*+q=0, y(0)=aqa,y(l) =4 (5.10.2)

Yir1 +Yi-1 — 2y

12
By setting ¢ = 1,...,n — 1, this gives n — 1 equations. The two boundary
conditions make a system of n+ 1 equations in the n+ 1 unknowns yo, . .., yn.

"+ py; +q=0.
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FIGURE 5.10.1: Numerical solution of the boundary value problem
(5.10.2) witha =2, =1, p=1and ¢ =0.

This system can be written in vector form
f(y) =0, (5.10.3)

where y = (yo,...,yn) and f is a vector function of y. All we need now is
a MATLAB function that calculates f(y) for a given vector y, and then we
can use the Newton’s method function to find the solution to the system of
equations (5.10.3). At this point, we need to specify values of the boundary
conditions v and (8 and the coefficients p and ¢q. Let’s choose a = 2, § = 1,
p=1and ¢ =0. We’ll call the function my_bvp.

function f
global x

% GLOBALS: x - a vector of N+1 equally spaced x values

% INPUTS: y - a vector of N+1 corresponding y values

% OUTPUTS: f - a vector containing the right-hand sides of the

my_bvp (y)

% system of N+1 equations in N+1 unknowns
alpha = 2; beta=1; p=1; q = 0; % define the constants
N = length(x)-1; % number of lattice points

dx = (x(N+1)-x(1))/N; 7 spacing between lattice points
f = zeros(N+1, 1); % initialise f as a column vector of size N+1
£(1) = y(1)-alpha; % first boundary condition
f(N+1) = y(N+1)-beta; 7% second boundary condition
% loop through the N-1 equations derived from the DE:
for I = 2:N
£(I) = (y(I+1)+y(I-1)-2¢y (1)) /dx"2 + pry(I)"2 + q;
end
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Note that the vector of = values, rather than being passed to this function
as an argument, has to be defined as a global variable. This means that it is
accessible to all MATLAB functions (rather than being local to the function
in which it is declared). Hence, we need to define x as a global variable in the
command window, and set it up as the vector of z values we are interested
in, with a step size of 0.02 :

>> global x
>> x = (0:0.02:1)7;

(The  transposes x to give a column vector rather than a row vector.) Re-
member, we need an initial approximation to the solution for y. Let’s just try
a linear function to see if that works. The linear function that satisfies the
boundary conditions y(0) = 2 and y(1) = 1 is y = 2 — x, which we can ap-
ply with the command >> y = 2-x;. Now we can call the Newton’s method
function newton to obtain the solution (with a tolerance of 10~%), and plot y
against x:

>> y = newton(@my_bvp, y, le-4, 100);
>> plot(x, y)

This produces the graph shown in Figure 5.10.1.

The above example is relatively straightforward because the nonlinearity is
confined to the dependent variable. If there are nonlinearities in the derivatives
of the dependent variables, the problem become more difficult. Nevertheless,
the code in the function my_bvp is easily adaptable to more complicated equa-
tions, although a better initial approximation to the solution may be required.

5.11 Appendix: existence theory
5.11.1 Single first-order equation

The aim of existence theory is to specify conditions under which one can
be sure that there is a solution to a differential equation such as

§ = ft,y). (5.11.1)

There is no point in wasting analytical and computational effort on trying
to find a solution when there is not one. Basically, there are two ways of
demonstrating existence, nonconstructive in which no attempt is made to
show how one might arrive at a solution, and constructive in which a method
for building up the solution is described. We shall consider only a constructive
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FIGURE 5.11.1: The domain of existence.

approach, one that lays the foundation for a numerical attack when that is
desired.

The initial value problem for (5.11.1) seeks a solution such that y = yo at
t = to and this is the problem that we shall discuss in some detail when yq is
a prescribed constant.

The purpose of the analysis is to show that, under specified conditions,
when ¢ does not stray too far from ty there is a solution y which does not
differ from yy by more than a certain amount. So we consider what happens
as t ranges from to to to + h where h is positive (similar considerations apply
when h is negative). In this range we are prepared to consider deviations of
y from yo of magnitude k, i.e., we expect y to lie between yg — k and yo + k.
The points that originate values of f(¢,y) are then in the domain D of Figure
5.11.1. Suppose that f is bounded in D, say | f| < M; then we shall impose the
restriction h < k/M. This can always be arranged by reducing h if necessary.
The constraint is an expression of our expectation that the more ¢ departs
from ty the more y will deviate from yg. Further conditions are placed on f
in the following theorem.

EXISTENCE THEOREM I
Let f(t,y) be a single-valued continuous function of t and yin D such that

(@) [f(ty)l <M in D,
(b) (Lipschitz condition)
|f(ta y) - f(ta y/)| < K|y - y/|7

K being a finite constant, for any pair of points (t,y) and (t,y’) in D. Then,
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for h < k/M, the differential equation (5.11.1) possesses one and only one
continuous solution y(t) in tg <t < to+ h such that y(to) = yo.

PROOF The proof starts by observing that the problem is equivalent to

showing that
t

y(t) =yo + t f(u,y(u))du (5.11.2)
0
has a solution. For, since f is bounded, the integral exists and tends to zero as
t — to with the consequence that y(ty) = yo. Also, a derivative with respect
to t of (5.11.2) returns, because of the assumed continuity of f, to (5.11.1).
So it is sufficient to discuss (5.11.2).
Now solve (5.11.2) by iteration by making a series of approximations. First
put y(u) = yo in the integral to generate y;(t) given by

t
yit) =yo+ [ f(u,yo)du. (5.11.3)

to
Now produce the sequence y,,(t) defined by

yn(t) =yo + [ flu,yn—1(u))du. (5.11.4)

to

In each approximation the right-hand side can be calculated and a practical
mechanism of solution has been erected, provided that the iteration converges
to a solution.

Note firstly that (5.11.3) implies that y;(¢) is a continuous function of ¢
and, since (u,yo) is in D for t < tg + h,

[y1(t) — yo| < M(t —to) < Mh <k;
thus (¢,y1(¢t)) is in D for ¢t < tg + h. The reasoning can now be repeated to
show that y2(t) is a continuous function of ¢ such that (¢,y2(t)) is in D for
t < to+ h. It is then clear from (5.11.4) that y,,(¢) is a continuous function of
t such that (¢,y,(t)) is in D for every n while t < ty + h.
Suppose now that

[Yn(t) — yn_1(t)] < MEK™ 1 (t — ty)" /n! (5.11.5)

for tg <t < tg+ h, a result already proved for n = 1. Then, from (5.11.4),

[Yne1(t) = yn(O] < [ [f(wsyn(w) = (4, yn—1(w))|du

to
t

< / Ky () — g ()| du
to
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by the Lipschitz condition. Invoking our hypothesis, we have

[Yn+1(t) —yn(t)| < MK”/ (u —to)"du/n!

to

< MEK"™(t —to)" ™ /(n+ 1)!

which is the same as (5.11.5) except that n is replaced by n + 1. Since it is
true for n = 1 it follows by induction that (5.11.5) holds for every n.
Accordingly

< lyol + > MK}t —to)"/r!

r=1
< |yo| + MeXK =10 /K¢
< |yo| + MeX" /K

o+ > Aye(t) —yra (D)}

which reveals that the series on the left is absolutely and uniformly convergent
(by the Weierstrass M-test) in tg < ¢t < tg + h. But the sum of a uniformly
convergent series of continuous functions is itself continuous and, since

Yo + Z{yr(t) —yr—1(t)} = yn(t),
r=1

it follows that lim, o yn(t) exists and is a continuous function g(¢) in tg <
t<to+h.
It remains to identify § as a solution of (5.11.2). Now

n—oo

i) = Jim () =0+ im [ Flays (o)
=t [ i) Jim [0 0) = Fli)du

By the Lipschitz condition, the magnitude of the last integral does not exceed

K | lyn-1(u) = §(w)ldu < K(t — to) max|y,—1(u) — §(u)|

which tends to zero as n — oo. Equation (5.11.2) has been recovered.

The existence of a continuous solution has now been verified and to complete
the theorem it is necessary to show there is no other. Suppose, in fact, there
were another solution Y'(t) such that Y (t9) = yo, which is continuous in
to <t <ty+ H with H < h and |Y () — yo| < k. Then

Y(t) = yo —|—/t fu, Y (u))du.



First-Order Systems of Ordinary Differential Equations 157

Hence, if
Y (t) = yn-1(t)] < K" Hh(t —to)" 1/ (n — 1)L,

Y (&) =y (@) < [ [f(w, Y () = fu, yn-1(u))|du

to

< KK™(t — to)" /nl.

This inequality is valid by induction if it is true for n = 1. But

Y(t) — () < K / 1Y () — yoldu < Kk(t — to)

and so the result for n = 1 holds. Letting n — oo in the inequality we have
Y (t) = limp— 00 yn(t) = §(¢) and uniqueness has been established.

5.11.2 System of first-order equations

The theory of the preceding section generalises to the system

gm = fm(ty1,02,- - yn) (m=1,....n) (5.11.6)

under the initial conditions y,, = ymo at t = tg. The region D is not so simple
to depict since it is a rectangular parallelepiped in space of n + 1 dimensions,
because each y,, may change by a different amount from its initial value as
t moves from tg. So D is defined by tg <t < tg+ A, |Ym — Ymo| < km (Mm =
1,...,n). Analogous to the conditions for a single equation the restrictions
|[fm| < M and h < ky,/M for m =1,2,... are imposed.

EXISTENCE THEOREM II
Let fom(t,y1,-..,yn) be single-valued continuous functions of t, y1,...,Yn
in D such that form=1,....n

(a) |fm(t7y17"'7yn)| < MinD?
(b) (Lipschitz condition)
[Fyns - yn) = F(E YLyl < Ky — il + o+ Kalyn — i,

Ky, ..., K, being finite constants, for any (t,y1,...,Yn) and (&, Y1, ..., ys) in
D. Then, for h < kp/M (m = 1,...,n) the system (5.11.6) possesses one
and only one set of continuous solutions y1(t),...,yn(t) into <t <to+h
such that Y, (to) = ymo(m =1,...,n).

PROOF The method of proof runs parallel to that for a single equation.
It begins with

ym(t):ym0+/t Fon (w1 (w), .y (u))du  (m=1,...,n)
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and an iteration is performed according to
t
e )= B+ [ ot (0), 2 ()
to

In view of the similarity to the single equation, details will be omitted. I

5.11.3 Differential equation of order n

The above theory can be applied to the order n differential equation

n n—1
flt—f —f (t,y, %,...,‘fm—_f) (5.11.7)

with the initial conditions

y =110, dy/dt=ys, ..., d"7'y/dt"" =y
at t = tg. Make the substitutions

=0, Yo, . DLy,
The system

Y1="Y2, Y2=Y3, -y Yn—1="Yn,

yn = f(t7yl7y27 cee 7yn)
is obtained. When this is compared with (5.11.6) we see that

_ S ymnr (m=1,...,n—1)
fm(t,y17...7yn) = {f(t,y1,,yn) (m:n)

The f,, form = 1,...,n—1 obviously satisfy the conditions stated in Existence
Theorem II. Therefore, if we make f,, comply with these conditions, that
theorem is available for (5.11.7). Accordingly, we have the next theorem.

EXISTENCE THEOREM III
If f(t,y1,...,Yn) is continuous and

|f(tay177yn)_f(tvyll77yiz)| <K1|y1 _y/1|++Kn|yn_y;L|

the differential equation (5.11.7) has one and only one continuous solution
y(t) such that dy/dt,...,d" ty/dt"~! are continuous for to <t <ty +h and
such that y,dy/dt, ...,d" " 1y/dt"~1 take given values at t = ty.

It may be remarked that, if (5.11.7) is linear,

f(t7 Yt - -- ,yn) = g(t) - aO(t)yl —ax (t)yQ -t an—l(t)yn-
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Since this is a polynomial in y1,...,y, the conditions of Existence Theorem
IIT are met except at those values of ¢ where one or more of g, ag, ...,a,_1 are
not continuous. Hence, a linear differential equation has a unique continuous
solution to the initial value problem, provided that ¢y is not a point where
there is lack of continuity on the part of g, ag,...,an_1.

Exercises

5.1 At what points are the conditions of Existence Theorem I not satisfied
for

Are the points where failure occurs singular points?
5.2 Sketch the trajectories in the phase plane of

(a) © = bx + 2y,

y =2z + 2y,
(b) & =6z + 12y,
y=3r+y,

(¢) & =4z + by,

y = —dz — 4y.
y = 4x — by,
(e) & =5z — by,
y = 5T — 3y,
(f) & =5z + 4y,
y =9z,
(g) © =4z + 13y,
y = —13x — 6y,

(h) & =5z — 13y,
y = 13z — by.
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5.3

5.4

5.5

5.6

5.7

5.8

5.9

Differential Equations and Mathematical Biology

In each case, use MATLAB to solve the system numerically for initial
condition z(0) = 1, y(0) = 1, and plot the solution as a time series
(i.e., z(t) against ¢ and y(t) against ¢) and in the phase plane (i.e., y(t)
against z(t)).

Draw the trajectories in the phase plane of

2
d_$_|_3d_x

2% = 0.
az Tt

Use MATLAB to solve the system numerically for an initial condition
of (0) =0, (0) = 1.

Examine what fixed points arise in the phase plane for
% + Qbili—f +ar =0
where a and b are constants (a # 0).
Discuss the trajectories of
T —4x 4402 =0

in the phase plane by making the substitution x = pcos¢, y = psin ¢.
Examine the possibility of periodic solutions of

ci + (24 3az + 4bx*)x = 0
where a, b and ¢ are constants, ¢ being positive.

Sketch the trajectories in the phase plane of

T +sinz = 0.

In the differential equation
(1+a?z?)& + (b+a*iH)z =0
a and b are constants. Discuss the behaviour of the solution.
Discuss the trajectories of
G = (cosf — ) sin6

for —m < 6 < 7, the constant u (# 1) being positive.
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5.11

5.12

5.13

5.14

5.15
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In the differential equation
i+ N®+2=0

the constant A is positive. Obtain dy/dx where y = & and hence derive
the differential equation satisfied by w = y2. Find the trajectories and
determine when they are closed curves.

Prove that

i—e(l—aYi+x=0
has a stable limit cycle and that its amplitude is 23/% (~1.68) when
0<ex 1.
Show that

F+f(2)+2=0
becomes
i+ f(@)i+2=0

on putting 2 = x. Hence obtain information about the limit cycle of
Rayleigh’s equation

Pte(322—2)+2=0
when 0 < e < 1.
In Duffing’s equation

&+ Di+x+ B2® = EsinQt

Q=14+¢dand D, 8, E and ¢ are all small. Show that, if an approximate
solution is = Asin{(1 + 0)t + 6}, A satisfies

(8543 —20A)° + D?A? = E2.

After transformation to polar coordinates x = rcos ¢, y = rsin ¢, the
differential equations of a system are

=1 —1>+ urcoso, ¢ =1.

(a) In the case u = 0, show that the system has a stable limit cycle.
Solve the differential equations directly to verify this result and
write down an explicit equation for the limit cycle.

(b) In the case 0 < p < 1, show that the system has a stable limit
cycle.

Show that the polar coordinate system

7= (r —1)(a + sin? ¢), d=1

has stable limit cycles when a < —%. What happens when a > —%?
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5.16 Solve the following nonlinear boundary value problem numerically.

d*y
yoz =10cos(z),  y(0) =1, y(1)=2y(1) =0



Chapter 6

Mathematics of Heart Physiology

6.1 The local model

We begin by recalling the three basic features of the heartbeat cycle upon
which a mathematical model is to be developed. These are:

(a) the model must exhibit an equilibrium state corresponding to diastole;

(b) it should also contain a threshold for triggering the electrochemical wave
emanating from the pacemaker causing the heart to contract into systole;

(c) it should reflect the rapid return to the equilibrium state.

As in Section 4.2, we suppose the important quantities that model these
features to be z, a typical muscle fibre length, which will necessarily depend
on the time ¢, and b, an electrical control variable which governs the electro-
chemical wave, and which also depends on t.

In order to make any reasonable progress in modelling the heartbeat cycle,
we must assume that the mathematical equations must be drawn from a
particular class of equations which have in them the ability to describe at
least the main features of heart physiology. The class we choose here is taken
from the class of autonomous dynamical systems in two degrees of freedom.
In other words we seek a mathematical model of the form

dx
E = f(.l?,b),
% — g(x,b). (6.1.1)

For this model to satisfy the first important quality (a) above, we ask that
it has a unique stable rest state. Suppose this occurs at the critical point
(bo, o) of (6.1.1). That is, (bo,xo) satisfy the equations

f(xo,b0) = g(x0,b0) = 0. (6.1.2)

163
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If the system (6.1.1) is linearised, as in Chapter 5, about the rest state (bg, )
we have

dr df(xo,bo) df(xo,bo)
i = f(iL'O, bO) + (Z’ xo) o + (b b()) b
+ higher order terms,
db 0g(z0, bo) dg(xo, bo)
i g(zo,bo) + (x — o) o + (b—bo) b
+ higher order terms.
That is,
dx .
i a11(x — xo) + a12(b — bo) + higher order terms,
% = az1(x — x0) + a22(b — bo) + higher order terms, (6.1.3)
where
of of 9g 9g
a1l = oz AL

8_96’ aiz2 = b’ az1 = 8_:16’ a22 = o’
each evaluated at © = x¢,b = bg.

From Chapter 5 we know that the local stability of the system (6.1.3) in
the neighbourhood of (bg, z¢) is governed by the roots A1, Ay of the quadratic
equation

P Ala11 + ag2) + aj1a22 — a12a91 = 0. (6.1.4)

Furthermore we know that our system is stable near (bg, o) if the real parts of
A1, A2 are negative. We shall in fact assume a little more and suppose A1, A2 to
be real and negative, thus eliminating any undesirable oscillatory behaviour
in our mathematical model. This requires that

arpn +ag <0,
aiiaze — ajzaz > 0. (6.1.5)

The inequalities (6.1.5) provide an infinite number of ways in which to choose
the constants a;j,7,j = 1,2. Thus, to make further progress towards a possi-
ble model, we make some hypotheses, which, of course, ask for experimental
confirmation. The hypotheses we make are the following:

H1: The rate of change of muscle fibre contraction depends, at any particular
instant, on the tension of the fibre and on the chemical control.

H2: The chemical control changes at a rate directly proportional to muscle
fibre extension.

For the moment we shall not specify under hypothesis H1 precisely how
tension should enter into our model but focus on the implication of hypothe-
sis H2. Mathematically, H2 is simply stated through the equation

db

o =& %o (6.1.6)
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FIGURE 6.1.1: Phase plane for the local model (6.1.9).

In other words the function g(x,b) in (6.1.5) is linear and independent of b and
furthermore as; = 1, age = 0. Consequently the inequalities (6.1.5) simplify to

a1 <0, a2 <O0. (6.1.7)

The third of the features required by our mathematical model is that it should
reflect the rapid return to the equilibrium state. This quality suggests that
a11 be large and negative and since %, by hypothesis H2, is proportional to
T — xo we expect a1z to be large and negative as well.

With this information we try

a 1
ann =——, ai2=—-, (6.1.8)
€ €

where a and € are positive constants with € small.
Putting these remarks and conclusions together, we arrive at the “local
linearised model”

dz
e = —a(x —x0) — (b—bp),
db

This model is depicted in the phase plane (Figure 6.1.1) and is constructed
as follows. Take by < 0,29 > 0, then along the line

1 dx
For
1 dx
_ Z(b—b s
(:L’ CE()) + a( 0) >0, I <0,

that is, x is decreasing and for = > xg, % > (0 and so b is increasing.
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Furthermore, away from the line
1
(x — o) + E(b_bo) =0,

|%| is large because of the presence of the small factor € and consequently the

trajectories are largely vertical. Notice also that as the line
1
(x—xo)—ka(b—bo) =0

is approached from below along a trajectory with b < bg, the trajectory crosses
the line and is horizontal at the point of crossing. A similar phenomenon occurs
when b > by and we approach the line from above. In fact (bg, o) is a stable
node. Figure 6.1.1 summarises these remarks.

6.2 The threshold effect

In this section we seek to modify the local mathematical model (6.1.9) so
as to incorporate the feature (b) of Section 6.1, namely that the model should
contain a threshold for triggering the electrochemical wave. Of course we must
specify what is meant by the term threshold.

To help define these terms and so improve on the model (6.1.9), we recall
from Chapter 4 the following facts.

During the heartbeat cycle there are two equilibrium states, namely diastole
and systole. The diastolic state is included in our model (6.1.9) whereas the
systolic state is not, and so some modifications to include this are required.
Furthermore, we observe that the pacemaker triggers off an electrochemical
wave, which spreads slowly over the atria causing the muscle fibres to contract
fairly slowly. The wave then spreads rapidly causing the whole ventricle to
contract into systole.

This discussion suggests that, during the first part of the heartbeat cycle,
the muscle fibre x contracts slowly at first and then at a certain point rapidly
contracts further until the systolic equilibrium state is achieved. We shall call
the point at which the rapid contraction occurs the threshold. While this
contraction is going on, the chemical control variable b will be rising to a
value b; corresponding to systole.

The remarks we have made so far are summarised in Figure 6.2.1.

Following contraction into systole, the muscle fibres rapidly relax and return
the heart to diastole and thus complete the cycle. The return is depicted
schematically by the dotted line in Figure 6.2.1.

The problem then is to seek to modify the equations (6.1.9) so as to in-
corporate the general features shown in Figure 6.2.1. Such a modification is
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FIGURE 6.2.1: The heartbeat cycle.

largely developed by trial. We propose that the model (6.1.9) is modified to
the nonlinear form

dx )
ey = —alz—20) = (b—bo) — (z — w0)? = 3xo(x — w0)?,
db

In order to assist with the development, we wish to write (6.2.1) in the form

dx 3

R O S T
€ (z x +b), >0,

db

o = & %o (6.2.2)

If we use Taylor’s theorem to expand the right-hand side of the first equation
appearing in (6.2.2) about the point (bg,xo), we can compare the system
(6.2.2) with the system (6.2.1). Thus from (6.2.2)

dx

=" [xg —Txo+ by + (33:3 —T)(z — x) + 3oz — z0)?

+(x — 20)* + (b — bo)],

and so we deduce that
:L'g —Txzy+by=0
and
323 — T = a,

from which
T=3z%—a
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and the control by is expressed in terms of zg and a via the relation
by = 23@3 —azo.

When tension has been appropriately identified, we shall see in the following
section that the system (6.2.2) can be considered as contributing to a “local”
model for the heartbeat cycle in that hypotheses H1 and H2 are included in
the system and the qualities depicted in Figure 6.2.1 are almost accounted for.

6.3 The phase plane analysis and the heartbeat model

In order to develop the final form of our model of the heartbeat cycle,
we begin by describing the phase plane portrait associated with the system
(6.2.2).

To begin with consider the curve

2 —Tr+b=0 (6.3.1)

shown by the solid line ABCD in Figure 6.3.1.

On this curve dz/dt = 0 and the flow is parallel to the b axis. Near the
equilibrium (bo, zo) the configuration has that which is depicted in Figure
6.1.1. Furthermore, the direction of flow is determined by the second member
of the system (6.2.2).

If we are above the cubic curve (6.3.1), i.e., where

23— Tz +b>0,

then we see from (6.2.2) that dz/dt is large and negative and so the flow is
largely vertically downwards, whereas if we are below the curve (6.3.1) the
flow is vertically upwards. Thus, in general, the phase portrait consists of
vertical trajectories except in the neighbourhood of the cubic curve.

We notice also that the trajectories always flow towards the portions AB
and CD of (6.3.1) but always away from the portion BC'. It is natural therefore
to refer to the segments AB,CD as attractors for the flow and the segment
BC' as a repeller for the flow. The points B,C are important in that they
can be associated with the threshold phenomenon discussed in the previous
section.

If we now compare Figures 6.3.1 and 6.2.1, we see that the lower attractor
CD gives rise to trajectories which follow a path back to (bg, zo) similar to the
dotted line of Figure 6.2.1. Therefore the systolic state could be represented
by a point (b1, z1) on the attractor CD.

However, the flow on the upper attractor AB is not in accordance with
the general feature depicted by the solid line in Figure 6.2.1 in that there is
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FIGURE 6.3.1: Phase portrait for the system (6.2.2).

no mechanism for providing a trajectory corresponding to a smooth change
of the chemical control from by to b;. The mechanism for doing this could
be thought of as due to the pacemaker and thus is not present in the model
(6.2.2). If we switch the equilibrium state from (bg, zg) to (b1, 1), then the
flow on the upper attractor AB would provide trajectories similar to the solid
line in Figure 6.2.1. This is achieved for the alternative model

dz 3

= (3 —T
e (x x +b),

db

a =T — T, (632)

the phase portrait of which is shown in Figure 6.3.2.

In this figure we see that the flow along the upper attractor AB does con-
form to the general behaviour of the solid line in Figure 6.2.1 and the point
B can be identified with the threshold. However, the flow along the lower at-
tractor C'D cannot now be identified with the systolic state of the heartbeat
cycle.

What is required is a modification of either (6.2.2) or (6.3.2), which incor-
porates both the desirable features of Figures 6.3.1 and 6.3.2, but excludes
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FIGURE 6.3.2: Phase portrait for the system (6.3.2).

those features that do not conform to the known physiological behaviour of the
heartbeat cycle. A model that does satisfy the above criteria is the following:

dx

e = —(2® — Tx +b),
db
7 (x — x0) + (z0 — 1)U, (6.3.3)

where u is a control variable associated with the pacemaker and is defined as
follows:

u =1 for (a) by < b < by and for those values of x for which 2® —Tx+b > 0
and for (b) b > by and all values of x.

u = 0 otherwise.

The system (6.3.3) will be called the heartbeat equations and the cor-
responding phase portrait is shown in Figure 6.3.3, where the dashed line
indicates the heartbeat cycle.

We should not leave the discussion leading up to the model (6.3.3) without
drawing the reader’s attention to the mathematical problem of proving that
there is a closed trajectory, shown dotted in Figure 6.3.3, corresponding to a



Mathematics of Heart Physiology 171

diastole L
—~ _—

RELAXATION CONTRACTION

by

e — e e e e —

-

A\
\
N

N
\\
w \ \ systole

FIGURE 6.3.3: Phase portrait for the heartbeat equations.

complete heartbeat cycle. This is a difficult problem and will not be pursued
here.

Finally we have to identify the contribution of tension to our model. To
help us here, imagine that the muscle fibres are not under tension so that
contraction into systole is slow and rather sluggish. In other words, we would
not expect the sharp downward trajectories shown in Figure 6.3.3 but rather
the slow behaviour shown in Figure 6.3.4.

Referring back to our model (6.3.3) we see that a portrait corresponding to
Figure 6.3.4 is obtained if we set T' = 0. We therefore identify T' as tension.
In the following section we shall consider this further when we discuss the
predictions of the model (6.3.3) compared with known physiological facts.

6.4 Physiological considerations of the heartbeat cycle

In this section we expand upon some of the physiological aspects of the
heartbeat outlined in Chapter 4 and see how they may be interpreted in the
context of the heartbeat equations (6.3.3).

Rybak in 1957 originated the following experiment. If the heart of a frog is
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FIGURE 6.3.4: Low-tension heartbeat.

diastole
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systole

FIGURE 6.4.1: The overstretched heart leading to cardiac failure.

taken out, then, not surprisingly, it ceases to beat. However, if it is then cut
open into a flat membrane and subject to slight tension, it begins to beat once
more and continues to do so for some hours. Alternatively, if the pacemaker
is removed, then again beating stops. Rybak’s experiment is analogous to set-
ting "= 0 in (6.3.3), leading to the sluggish cycle shown in Figure 6.3.4. As T'
increases slightly we again obtain a figure similar to Figure 6.3.3, but this time
most of the work is done by the pacemaker wave in moving the control b from



Mathematics of Heart Physiology 173

by to by and providing the large amount of squeezing necessary to contract
the heart into systole. In fact, this low-tension heartbeat corresponds to the
small atrial beat described in Chapter 4. Another relevant feature is known
as Starling’s law. This says that the more the muscle fibres are stretched
before beating the more forcible is the beat. Therefore suppose excitement of
one form or another causes adrenalin to be injected into the blood stream;
the adrenalin then causes the arteries to contract and the pulse rate increases,
which in turn causes the blood pressure to rise and the atria to push more
blood into the ventricles. Starling’s law describes how the stretched ventricles
give a larger beat, overcoming the increased arterial back-pressure and circu-
lating the blood faster. Starling’s law is present in the model (6.3.3) if T is
large, but not too large.

Finally, if the ventricles are overstretched beyond a certain point, as can
happen, for example, when someone with high blood pressure receives a sud-
den shock, then the heart may fail to beat, or only beat feebly and cardiac
failure may result. This particular aspect can be realised in our mathematical
model if we increase the tension so much that the threshold extends beyond
the systolic equilibrium point by, that is, when

T > (2767 /4)"2.

(6.4.1)
This condition is such as to prevent the trigger from reaching threshold and
so the muscle fibres remain in diastole (see Figure 6.4.1). In other words the
heart does not beat and cardiac failure has occurred.

6.5 A model of the cardiac pacemaker

The heartbeat originates in the sino-atrial node, a region of cells which have
the capability of depolarising spontaneously towards the threshold, firing and
then recovering. However, the mechanism underlying the pacemaker wave is
not fully understood, even though it is the basis of the field of electrocardio-
graphy.

In this section we propose a tentative mathematical model of the pacemaker
firing mechanism that incorporates the control variable u introduced in the
previous section.

Let us suppose that the pacemaker is characterised by a state y,0 <y <1,
which satisfies the ordinary differential equation
% =—yy+u, (6.5.1)
and that, when y = 1, the pacemaker fires and jumps back to y = 0. We regard
~ as a small positive number less than 1/4 and intrinsic to the pacemaker.
Furthermore, it is natural to suppose that the motion of y is periodic, of
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period T say. Thus if {t,} denotes the set of firing times we suppose u = 1
fort, <t<t,+T/2andu=0fort,+T/2 <t <t,t1 where t,41—t, =T.
In other words, the times {¢,} correspond to the heart being in diastole while
the times {t,, + T//2} correspond to the heart being in systole.

Equation (6.5.1) is a simple differential equation of integrating factor type
and is readily solved to give the solution

t
y(t) = / ey () at!, (6.5.2)
t

n

where y(t,) = 0 and ¢, < t < t,41. The equation for the firing times is
therefore

tnt1
1= / e 1=ty (¢ at!
t

n

which because of the properties of u(t) can be written in the form
tn+T/2
tn

ie.,

¥ = 677(tn+1*tn*T/2) _ 6*7(t1z+1*tn)

or

y=e T2 T, (6.5.3)

From (6.5.3) we can compute the period T as follows: setting z = e T/2 we
can write (6.5.3) as the quadratic equation

22— z24+v=0,

the solutions of which are

2= 50+ - 4)),

e 207772 = (14 /(1 — 4v)). (6.5.4)

Since we expect vT' to be small, we choose the positive root in (6.5.4), and if
we neglect terms of order higher than 2 we have

2e77T/2 2 — 2y — 242,
which further approximates to
21 —AT/2) = 2 — 2y — 27°

or
T2+ 2.

Thus if T is known, this equation can be used to estimate the parameter -,
or conversely if v is known from experiment then T can be estimated.
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6.6

Notes

This chapter has been largely motivated by the work of E.C. Zeeman.
Section 6.5 was inspired by the paper of B.W. Knight, Dynamics of encoding
in a population of neurons, J.Gen. Physiol., 59, 734—766, 1972.

Exercises

6.1

6.2
6.3
6.4

6.5

Verify the phase portrait (Figure 6.1.1) for the “local model” (6.1.9) by
solving the system for x and b as functions of t.

Provide a full phase plane analysis for the model (6.2.2).
Provide a full phase plane analysis for the heartbeat equations (6.3.3).

Verify the statements in Section 6.4 regarding Rybak’s experiment and
Starling’s law by analysing the behaviour of the phase plane trajectories
for the heartbeat equations as the tension T varies between T = 0 and
T = (2702 /4)1/2.

If the “cubic” term in the first of the heartbeat equations (6.3.3) is
replaced by a piecewise linear expression similar to that depicted in
Figure 4.3.4, a simplified model is obtained. Specifically, consider the
system

dzx

— = —F(x,b
“at (2, ),
db
i (x — o) + (xo — x1)u,

where
1
F(z,b) =z +b+ VT, a:<—§\/T,
1 1
=z — b, —§ﬁ§x§§ﬁ,

1

Provide a complete analysis of this model and compare the results with
those of the system (6.3.3).






Chapter 7

Mathematics of Nerve Impulse
Transmission

7.1 Excitability and repetitive firing

In this chapter we make a study of some of the principal properties of the
simplified model of nerve impulse transmission (4.4.7) due to FitzHugh and
Nagumo.

For the space clamped case the model is

du

M w1l —w)(u—a) —w+ It

(1~ ) a) 0+ T(0),

dw

i bu — yw, (7.1.1)

where 0 < a < 1,b > 0,v > 0 and I(t) is the total membrane current, which
may be an arbitrary function of time. If the space clamp is removed then the
model becomes

ou  0%u
i @—i—u(l—u)(u—a)—m
%—;U = bu — yw. (7.1.2)

To begin with we wish to determine whether the model (7.1.1) exhibits the im-

portant threshold property mentioned in Section 4.3. In mathematical terms

this property is the same as asking whether the system (7.1.1) is excitable.
Consider the ordinary differential equation,

Wy )y~ a), (713)
where y = 0, a, 1 are rest states. This equation has stable rest states at y = 0,1
and an unstable rest state at y = a. These statements are easily checked by
observing that if initially y(0) < a then % < 0 and so y(t) — 0, whereas
if y(0) > a then ‘fl—f > 0 and y(t) — 1. The implication of this is that for
“small” (i.e., y(0) < a) initial data the solution is attracted to the rest state

177
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y = 0, whereas if the initial data is “large” (i.e., y(0) > a) then the solution
is attracted to y = 1. We call the parameter a the threshold and call the
equation (7.1.3) excitable.

Let us now see if a similar property is present in the system (7.1.1). For
simplicity we only consider the case where I(t) = 0. The case I(t) # 0 will
be discussed later. With I(¢) = 0 the system (7.1.1) can be studied using the
techniques developed in Chapter 5. First of all it is an important requirement
that (7.1.1) has a unique rest state. That is, on setting

du_dw _
dt  dt
we require the pair (i.e., the nullclines)

w=u(l—u)(u—a),
bu = yw (7.1.4)

to have the unique solution (u,w) = (0,0). That is, the equation

b
u(l—u)(u—a)= ;u

must have the single solution u = 0. For this to be the case the quadratic
equation,

b
u2—(1+a)u+a+;=O,

can only have complex roots. That is, the parameters a, b, ¥ must be restricted
so that

(1—-a)?< 4%, v > 0. (7.1.5)

Notice that if v = 0 then (7.1.1) has the unique rest state (0,0) without
restriction on the parameters a and b.
Linearising (7.1.1) about (0,0) results in the system

du _ —au —w

dt ’

d

d_ttu = bu — yw. (7.1.6)

As in Chapter 5 we look for solutions of the form u = aexp M, w = B exp At.
Substituting these into equations (7.1.6) leads to the requirement that

(a+XNa+p8=0,
(’y+)‘)ﬂ_ba:07

which has nontrivial solutions « and g only if

M+ (@+y)A+b+ay=0. (7.1.7)
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FIGURE 7.1.1: Global phase portrait for the system (7.1.8).

Since (b + ay) and (a + ) are positive, it follows that the roots of (7.1.7)
have negative real parts and so we conclude that the rest state (0, 0) is locally
stable. Such an analysis does not help to determine global properties of the
trajectories. Nevertheless let us try to use the ideas followed in treating the
simple problem (7.1.3). We consider the system

du

2wl — —a) —

o u(l —u)(u—a) —w,

—i;: = bu — yw, (7.1.8)

subject to super threshold initial data

u(0) =up, a<ug<l1l, w(0)=0.

It follows from this that initially % >0, % > 0 and so (u,w) moves upwards
in the positive quadrant of the phase plane and further away from (0,0).

Notice that as v and w increase, % will decrease until it reaches the nullcline

w = u(l — u)(u— a) where 24 =0 but £2 is still positive. Beyond this point
% < 0 but w increases until the trajectory meets the nullcline yw = bu, where
Cg—qf = 0 and ?1_? < 0. Continuing this argument we see that the trajectory
returns to again meet the nullcline w = u(l — u)(u — a) in the upper-left
quadrant where again % = 0 and this time ‘fi—:’ < 0. From here, either the
trajectory progresses directly to (0,0), if the solutions of (7.1.7) are real and
negative, or spirals towards (0,0), if the solutions of (7.1.7) are complex with
negative real parts as shown in Figure 7.1.1.

The same sequence of arguments is used if the initial data are chosen so
that

u(0) = uo > 1, w(0) = 0.

Although this is not a conclusive proof, it is enough to convince one that the
system (7.1.1) is excitable and that a is the threshold parameter.

Let us now consider the system in which the current I(t) is not zero but set
at some nonzero value I, which may be positive or negative. Whether I < 0
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FIGURE 7.1.2(a): Nullclines for I > 0.

or I > 0, the resulting system is still excitable. The only difference being that
the unique rest state is a solution to

u(l—u)(u—a)—w+1=0,
bu = ~yw, (7.1.9)

and is no longer at (0,0). That is, for I >0 the nullclines are as shown in
Figure 7.1.2(a) whereas for I <0 the nullclines are as shown in Figure 7.1.2(b).

Of particular interest here is the case when I > 0. In their prize-winning
work, Hodgkin and Huxley observed that on applying a constant current to
the axon, repetitive firing of the action potential was observed. It is therefore
of interest to see whether a similar phenomena is present in the FitzHugh—
Nagumo system. Mathematically we ask whether the system (7.1.1) has pe-
riodic orbits or limit cycles. A natural tool for exploring this is to use the
Poincaré-Bendixson theorem discussed in Chapter 5, Section 5.6. To illustrate
the ideas involved we consider the system

% = u(l —u?) —w,

dw

— =u. 1.1
il (7.1.10)

This system has the unique rest state (u,w) = (0,0) and the nullclines are
shown in Figure 7.1.3.
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FIGURE 7.1.2(b): Nullclines for T < 0.
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FIGURE 7.1.3: Nullclines of the system (7.1.10).

Linearising (7.1.10) about (0,0) we have the system

du _ U —w

dt ’

dw

= 7.1.11
i ( )

from which the characteristic determinant is

’1A -1

1 A':Q

or
M _A+1=0,
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=1

FIGURE 7.1.4: Region € for the system 7.1.10.

from which we conclude that (0,0) is an unstable focus. This means that
trajectories starting in a neighbourhood of (0,0) move away from (0,0). To
be able to make use of the Poincaré-Bendixson theorem we need to show
that there is a larger region  surrounding (0, 0) within which all trajectories
starting in 2 remain in Q for all time. Choosing such a region is often an art.
A suitable choice for the problem at hand is that shown in Figure 7.1.4.

Notice that since on replacing (u, w) by (—u, —w) leaves (7.1.10) unchanged,
it is sufficient to consider Figure 7.1.4 with v > 0. On the face AB, w =
R,u <0 and (fi—qf = u < 0, with zero only occurring at v = 0. That is, for
any R, trajectories always enter {2 along AB. Similarly on the face AD,u =
—R,0<w < R and ‘fi—qt‘ = —R(1 - R?) —w > 0 for R sufficiently large. Thus
we conclude that trajectories cross AD in the positive u direction for R large
enough.

On the face w = R — u,

du
2= (1 —ud) —
I u(l —u®) — R+ u,
dt
and so
dw u

du  u(l—w?)+u—R
If fi—qqf > —1for 0 < u < R, for R sufficiently large, then trajectories will cross

in  along BC'. Hence we need

dw _ Z > -1
du  u(l—wu2)+u—R ’
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for all 0 < u < R. This means that u < —u(1 —u?) —u+ R, or
H(u) =3u—u®>—R<0,

for 0 < u < R.
Now H(u) can be rewritten in the form

Hu)=—(u+2)(u—-1)>*+2-R<0,

if R > 2. So we conclude that if R is sufficiently large then all trajectories
of (7.1.10) remain in Q. It now follows from the Poincaré-Bendixson theorem
that all trajectories converge to a limit cycle contained in €.

An alternative way of considering the flow along the segment BC'is to argue
as follows:

Since n = %(1, 1) is the outward unit normal vector to BC and (4%, 2)
is tangential to all trajectories, then where a trajectory crosses the boundary
BC, the flow will be inwards if

du dw

That is, we require

(1,1) - (u(l —u?) — R+ u,u) = 3u—u’ — R,
= H(u) <0,

for 0 < uw < R as above.

We now return to the system (7.1.1) with I(¢) = I > 0 and constant. The
system has the unique rest point (u., w.) given by the solution to (7.1.8). For
excitability we again wish to find an annular region 2 in the (u,w)-plane that
does not contain the rest point (u.,w.) and for which the Poincaré-Bendixson
theorem can be applied. Suppose we construct a large circle of radius R in the
(u, w)-plane. We want to show that for R sufficiently large the flow is always
directed inwards. To do this set

u = rcosb, w = rsinf. (7.1.13)
Then
du dr do .
y7i %cosﬂ—rabmé,
=u(l—u)(u—a)—w+1I,
dw dr |, do
v %blne—l—r%cm@,

= bu — yw,
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and so

% =u(l —u)(u—a)cost —wcosl + Icosf + businh — ywsin b,
=rcos? (1 —rcosf)(rcos —a) —rsinfcosf + I cos
+ brsinf cos @ — yrsin? . (7.1.14)

Now let 7 — oo. Due to the presence of the cubic term in u on the right-
hand side of (7.1.14) we have ‘fi—; < 0, for all 4. jFrom the Poincaré-Bendixson
theorem we claim that there will be a limit cycle in the phase plane if the rest
point (ue, w.) is an unstable node or focus. To investigate this we linearise
(7.1.1) about (uc, we).

Set

U = Uc + 67
w = w. + 1, (7.1.15)

and expand f(u) = u(1 — u)(u — a) as a Taylor series about (u., w.) giving

fu) = flue) + f'(uc)é + O(E?). (7.1.16)
The linearised system is
8
di | _ (f (te) _1> (5) (7.1.17)
dn b —y Ui
dt

The characteristic determinant is therefore

Plao-x 1|
b —y = A
or
N+ (7= f'(ue)) A+ b — £ (ue)y = 0. (7.1.18)

For (u.,w.) to be unstable we need

v—f(ue) <0 b— f'(uc)y >0,
v < f(ue) < b/. (7.1.19)

An interpretation of the inequality (7.1.19) is that the slope of the w nullcline
at (u., w.) must be less than the slope of the w nullcline at that point. Finally
we conclude from (7.1.19) and the Poincaré-Bendixson theorem that there is
a limit cycle. That is, the FitzHugh—-Nagumo system exhibits repetitive firing
as originally observed by Hodgkin and Huxley.
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7.2 Travelling waves

We now investigate travelling wave solutions to the system (7.1.2). Such
solutions are of the form

u=¢(x + ct), w = Y(x + ct), (7.2.1)

subject to the requirement that, with £ = x + ct,

lim (&) = lim ¢"(&) = lim ¥(¢) =0. (7.2.2)

|§]—o0 |§]—o0 |€]—o0

Among the many problems to be investigated in relation to travelling waves
are the following;:

(a) provide analytic evidence to support the conjecture that the potential
¢(x + ct) has a form similar to that depicted in Figure 4.3.2;

(b) obtain estimates for the wave speed c.

In the course of investigating these problems, we shall see that the parame-
ters a, b and +y entering in the system (7.1.2) cannot be chosen arbitrarily but
must satisfy some simple constraints.

As a first step to analysing the above problems we substitute the supposed
solutions (7.2.1) into (7.1.2) to obtain the coupled system of ordinary differ-
ential equations

¢" =ct' — (1 =) (¢ —a) + ¢,
)’ = bp — v, (7.2.3)

where the primes denote differentiation with respect to £. If we set 6 = ¢/
then (7.2.3) can be written as the system

0" =ct— (1 - ¢)(d —a) +,
¢ =0,

b
W =2¢- Ly, (7.2.4)
C C

The critical points of this system corresponding to “rest states” of the system
(7.2.4) are given by

b
<O7¢i7 ;¢i>7 1= 172»37 (725)

provided v > 0 and ¢; is a root of the equation

x {(x —a)(l—a)— %} =0. (7.2.6)
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An important requirement of the system (7.2.4) is that it has a unique “rest
state” and this can only be achieved if the cubic equation (7.2.6) has only the
real root x = 0. In other words the quadratic equation

b
x2—(1+a)x+a+;:O

must have complex roots. As argued in Section 7.1 we know that this leads
to the restriction

(1—-a)?< 4%, v > 0. (7.2.7)

Again if v = 0 then (7.2.4) has the unique rest state (0,0) without any re-
strictions on the parameters a, b.

A complete “phase plane” analysis of the system (7.2.4) is quite difficult
due to the fact that it is a third order system rather than a second order one.
The methods we employ in this situation will, as shown in the next section,
be somewhat different from those discussed in Chapter 5. As a prelude to this
consider the special case in which b = 0. Here the system (7.2.4) partially
decouples in that 1 now satisfies the equation

.
W ==y,
from which it follows that
1 = Aexp (7—5>

For such a solution to satisfy the conditions (7.2.2) it is clear that A = 0.
In other words ¥ = 0 and the system (7.2.4) simplifies to the second order
system

0" =ct—o(1—¢)(¢—a),
¢’ = 0. (7.2.8)

In the (¢, 0) phase plane there are three finite singular points, namely
(0,0), (a,0), (1,0). (7.2.9)

Following the treatment of Chapter 5, we see that (0,0) and (1,0) are saddle-
points whereas (a,0) is a centre if ¢ = 0, a repulsive spiral for 0 < ¢ <
24/]a(l — a)] or a repulsive node if ¢ > 24/[a(1 — a)] (see Figure 7.2.1).

To provide a complete, that is global, analysis of the (¢, ) phase plane is
quite a formidable task and will not be pursued here. However, a glance at
Figure 7.2.1 leads one to ask whether there is a trajectory which leaves (0,0)
and enters (1,0). The answer to this is certainly “yes” and one such trajectory
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FIGURE 7.2.1: Local behaviour of the phase plane.
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is provided by the answer to Exercise 4.8. That is, if c = \/5(% —a), 0<a< %,
we have the solution

1 exp —£/V?2

e YT e —gver

(7.2.10)

In fact this is the only trajectory that connects the points (0,0), (1,0).

7.3 Qualitative behaviour of travelling waves

If we look at Figure 4.3.2 we observe that the graph of the membrane
potential crosses the £ axis at one point. Evidence that supports the same
type of behaviour for ¢ can be demonstrated as follows. Integrate (7.2.3) over
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the range —oo < £ < oo and use the conditions (7.2.2) to obtain

/_Z¢(1—¢>(¢—a>d§=/_°;wdf

[pae=2 ] o

provided 7 # 0. Eliminating ¥ between these identities shows that

In (as(l —$)6—a) - §¢>dg 0.

— 00

and

This means that the function ¢(1 — ¢)(¢ — a) — %(b must change sign and,
since we require the inequality (7.2.7) to hold, it follows that the equation

B(1- )6 —a) -~ 26 =0
Y

has only the root ¢ = 0. In other words ¢ = 0 for at least one value of £. This
argument of course does not preclude the possibility that ¢ = 0 for more than
one value of ¢ and so does not completely confirm Figure 4.3.2.

In what follows we assume that ¢ and v are sufficiently well behaved for
all integrals that occur to converge.

Multiply the first of equations (7.2.3) by ¢ and the second by 1, and then

integrate the resulting expressions with respect to £ from —oo to oo. This
together with the conditions (7.2.2) gives

/_Z¢>2(1—¢>(¢—a>df=/_Z<¢>’>2ds+/_o; o e,
7/_0; B2 = b/_o; up de. (7.3.1)

Next we repeat the process but this time we multiply by ¢’ and 1, respec-

tively. The result is
o wra=- [ sva

c [ Z () 2de = b [ O:o o de. (7.3.2)

/_O;Mdé:—/_o;wclf

and so from (7.3.2) we find that

7 Z 0%as = [ O; () de. (7.3.3)

But
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Finally, multiply the second of equations (7.2.3) by ¢ and integrate, using
(7.3.1), to get

b /_ (¢)*dé = be /_ P’ dg +~* /_ (1h)? dE. (7.3.4)

If we now eliminate [ (¢)'2de, 1= (1) de, 75 o de and [ ¢ dE be-
tween equations (7.3.1)—(7.3.4) we obtain

o[ <%¢2—¢2(1—¢)(¢—a)>d€= @27;7) | wrte @)

— 00

oo

If, instead of eliminating [*_2d¢, we eliminate | (1')%d¢ then we obtain

the identity -
0o b S
o[~ (—¢> . a))clf ~Za-a) [ v @30

Now consider the integrand on the left-hand side of (7.3.5). We have

(¢_M)2+Q_(1—4a)2120,

#(2+@-o0-0) =4 ) +2

on noting the inequality (7.2.7). Thus since the left-hand side of (7.3.5) is
positive, the same must be true of the right-hand side and this means that

>, (7.3.7)

which provides a lower bound on the wave speed c. A better lower bound can
be achieved as follows. Using the inequality (7.3.7) we deduce from (7.3.6)

that oo
/ (%& — % (1 - 9)(6 — a))cif <0

— 00
and so the expression c% — (1 — ¢)(¢ — a) must take negative values. This is

possible if and only if
b
2
(14+a)” > 4(0_2 + a),

ie.,

b
2
and so
> 4b(1 —a)? > . (7.3.8)

In establishing this lower bound on ¢ we can obtain further insight into the

role of a as a threshold parameter. Since the expression % — (1 — ¢)(¢ — a)
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must take negative values, it follows that the maximum value ¢4, of ¢ must
exceed the smallest root of the equation

b
5= (1=9)¢—a)=0
That is,
l+a 1 A
¢mam> 2 —§<(1—G) _8_2)

But more than this, it is easy to see that

l+a 1 AN
— (1= - =
<= 2(( a) ) ,

and so
(bmaz > a.

;From this fact we again see that a plays the role of a threshold parameter.
To conclude our discussion of the qualitative behaviour of the travelling
wave ¢(£) we remark that there are a number of problems remaining:

(a) Obtain an upper bound for the wave speed c.
(b) Is the travelling wave ¢ stable with respect to small perturbations?
(¢) Are there other wave-like solutions?

These and other problems have been discussed in the literature but we shall
not pursue them further here.

7.4 Piecewise linear model

In Chapter 4 it was mentioned that further insight into the behaviour of
travelling waves can be gained by studying the more tractable of the system
(7.1.2) in which the cubic term is replaced by the piecewise linear form shown
in Figure 4.3.4. Here we consider the case where § = Z and study travelling

2
wave solutions of the system

ou  0%*u
i w—u—i—H(u—a)—w,
88—1: = bu — yw, (7.4.1)

where H is the Heaviside step function defined as H(z) = 1 for x > 0,
H(z)=0 for z <O0.
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We seck a travelling wave solution u = U(z), w = W(z) where u is of the
form shown in Figure 4.3.2 and z = = + ct. jFrom (7.4.1) it follows the U(z)
and W (z) must satisfy the system

U—cU—-U+HU=—a)—W =0,
bU — cW — W = 0. (7.4.2)

Since this system is autonomous we can specify U(0) = a and that for some
z1 > 0 we assume U(z1) = a. Furthermore at z = 0, U increases through the
threshold U = a and the nonlinear term jumps by 1 and so there must be
corresponding jump of —1 in U at z = 0,
ot

[U]O -1 (7.4.3)
Similarly at z = 23, U is assumed to decrease through a and so there is a
further jump discontinuity in Uatz=z:

RN
[U} f o1 (7.4.4)
21
If we differentiate the first of equations (7.4.2) and eliminate W then U is

seen to satisfy

U - e~ i - 1 40— 1

U =0, (7.4.5)

for z € (—00,)\{0, 21}
The characteristic polynomial associated with (7.4.5) is
(b+7)

p(N) =2 — (c— %))\2 — (L - (7.4.6)

By using the same arguments that led to the inequality (7.3.7) we find that
the c satisfies the same lower bound ¢? > 7 in the piecewise linear model. As
a consequence we conclude that the characteristic polynomial (7.4.6) has one
positive root «; say and either two negative real roots a3 < as < 0 or two
complex roots with negative real part. Now U(z) is given by
U=ae"* 2<0,
= Ae®'® + Be®?* + Ce™*, z € (0, 21),
= De™* + Ee™*, 2 > z, (7.4.7)
where B, C, D, E and F are constants to be determined by demanding
that U and U are continuous at z = 0 and z = z; together with the jump
discontinuities (7.4.3) and (7.4.4). Thus at z = 0 we deduce that
A+B+C =a,
a1A+ asB 4+ asC = aaq,
AGA+ 3B+ a3C = aat — 1. (7.4.8)
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It is convenient to write this system of equations in matrix form:

1 11 A—a 0
Q1 Q2 Q3 B — 0
a? a3 o} C -1
Now if we define
ey
Pi X A=aq;
then we find that
1 1 1
A_a/:__7 =——, = ——, (7.49)
P1 P2 P3

Similarly for the conditions to be satisfied at z = z; we have the system:

1 11 Ae*1#1 0
o1 09 3 (B—D)ex=* | =10 |,
a? a3 a3 (C — E)e~s= -1

from which we deduce that

—Q2z1 __ 1 —Q3z1 __ 1
D = 677 E= 67, (7.4.10)
P2 P3
together with
e" M = (1 —ap1). (7.4.11)
Finally, continuity at z = 0 and z = 2z; give the conditions
A+ B+C =a,
Ae??t 4 Be®?*t 4 (et = q
De*?*t 4 Fe®3#1 = q. (7.4.12)

Using equations (7.4.11) and (7.4.12) we obtain the relation

a= _1 Me*az/al — Meﬂm/al_ (7.4.13)

4! P2 p3
For a,b and + fixed the roots «; as well as the derivatives p; are all functions
of the wave speed ¢. This means that (7.4.13) is a transcendental equation
to be solved for ¢, then the above equations can be solved for the unknowns
A, B, C;, D and E.
It turns out that it is better to consider ¢ as fixed and think of (7.4.13) as
an equation for a. To this end define

—Q121

s=(L—ap)=e ",

then (7.4.13) can be written as
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where
F(s)=2-s5+ Pl e—azfon | PLo—as/on (7.4.14)
P2 P3

Since s = e~ %1 < 1 it is clear that we seek a solution of F(s) =0 in (0,1).
Using the relations between «; and p; it is easy to show that

dF(1)
FO)—2=0=F(1)=
0 m =10
and
&*F p1 2 7, (1+7)
STy =L o1 e
dsQ() a? al(c c) a?

If F has a maximum at s = 1 then it must have a root in (0,1) and this can
only happen if

o — 203 (c — %) —a1(1+7) <0.

Combining this with (7.4.6), i.e., p(a1) = 0 we obtain the estimate

b 1/2
ar > ( 2+7> . (7.4.15)

2=

c2—~

1/2
Since ¢ — v > 0 this estimate implies that p (( bty ) ) < 0, which gives
the inequality

<b+7)3/2— (b+7)1/2(1+w)—2@<0.

02_,}/ CZ—’)/

It is tedious to extract an estimate of the wave speed ¢ from this inequality
in general; however in the case where v = 0 the inequality simplifies to

b 3/2 b 1/2 b
(2) -(5) =<

2, b
(1+2b1/2)°

leading to

c (7.4.16)

If with b fixed, in this case, we allow ¢ to range over a set of values greater
than this and solve F' =0 for s € (0,1), and so for a, we can make a plot of ¢
against a for which a travelling wave exists. It turns out that for each value of
a there are two possible values of ¢. The higher speed corresponds to a stable
wave, while the slower wave is unstable.
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7.5

Notes

A detailed discussion of the phase plane depicted in Figure 7.2.1 together
with the global behaviour of the system (7.2.8) is contained in the paper by
H.P. McKean, Nagumo’s equation, Adv. Math., 4 209-223, 1970. A detailed
account of the piecewise linear model considered in Section 7.4 is to be found
in the paper by J. Rinzel and J. B. Keller, Travelling wave solutions of a nerve
conduction equation, Biophysical Journal, 13 1313-1337, 1973.

Exercises

7.1

7.2

7.3

7.4

7.5
7.6

Consider the space clamp model (7.1.1) where the induced current I
is assumed constant. Determine the critical points of this system when
ab

the current takes the values I = %7 1= >

Prove that the system (7.1.1) has a single unstable critical point only
when it lies on that part of the u-nullcline which has a positive gradient.

Verify the local behaviour of the phase plane depicted in Figure 7.2.1
for the system (7.2.8).

Consider the general system:

ou  0%u

o~ g T/
ow

Ezbu—ww,

where f(0) = 0.

Derive the equations to be satisfied by a travelling wave u(z,t) = ¢(z+
ct), w(z,t) = ¥(x + ct), and determine conditions on f(¢) so that the
resulting system has a unique rest state.

Derive the identities (7.3.5) and (7.3.6).
Suppose the function f(u) in Exercise 7.4 is specialised to
flw)=—-u, u<a/2,

=u—a, a/2<u<(14+a)/2,
=1-u, (14a)/2<u.

Does this system exhibit the same types of behaviour as found in the
original FitzHugh—-Nagumo system?



7.7

7.8

7.9

7.10

7.11
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Suppose the function f(u) in Exercise 7.4 is specialised to
fu)=—-u+ H(u—a).

Determine travelling periodic wave trains. In the notation of Section 7.4
construct solutions U(z) of period T satisfying the periodic, continuity
and jump conditions

For fixed a, b and 7 these conditions yield eight conditions for nine
unknowns. Show that as T is varied one may solve, in principle, for the
wave speed ¢ and z;. Compute the dispersion curve of ¢ versus 7.

Suppose the function f(u) is as given in Exercise 7.6. Show that in this
case the FitzHugh-Nagumo system has three rest states provided
b 1-a

< .
v a+1

In this case construct travelling wave solutions connecting the rest states
b
(0,0) and (35, 733)-

Under the conditions of Exercise 7.8 construct periodic wave solutions
of period T to the FitzZHugh-Nagumo system of the form
u(z,t) = Ulkz + wt), w(z,t) = W(kx + wt),

where the parameters k£ and w satisfy the conditions

k2 — L= 9 2_b—W2T2.

T —
Az Y 472

Use the Poincaré Bendixson theorem to establish the existence of closed
orbits to the FitzHugh—Nagumo system of Exercise 7.9.

Write MATLAB programs to compute travelling waves and periodic
travelling waves to the FitzHugh—Nagumo system.






Chapter 8

Chemical Reactions

8.1 Wavefronts for the Belousov—Zhabotinskii reaction

In this chapter we discuss a simplification of the Belousov—Zhabotinskii
reaction model described in Section 4.4. In particular, we give a qualitative
analysis of the front of certain travelling concentration waves which have been
observed frequently in experiments.

To begin with, we assume that the wave front depends primarily on the con-
centrations of bromous acid (HBrO;), which we have denoted by X, and the
bromide ion (Br~) denoted by Y and to a lesser extent on the concentration
of the oxidised state Ce(IV) denoted by Z. We also assume that the diffusion
coefficients Dx, Dy are constant and that Dx = Dy = D. Furthermore, for
simplicity, we consider only one space dimension x.

Therefore, if we neglect the concentration Z and take note of the above
assumptions, the reaction—diffusion system (4.5.9)—(4.5.11) reduces to

X 2X
OX _ JoAY — 1oXY + ks AX — 2y X2 + D22
ot Ox?
oY %Y
— = —kAY — ke XY+ D—. 8.1.1
o " A A Do (8.1.1)
For later purposes it is convenient to nondimensionalise (8.1.1) by setting

2ks X koY

k‘gA » U kgA’/"
1/2
= (%) x, t = ksAt,

2k4k k k
L= =21 p= 2
kaS k’g 2]€4
where r is a suitable parameter. The reason for making these transformations
is that the solutions v and v, which are of interest, lie in the interval 0 <wu, v <1.

With the transformations (8.1.2), the system (8.1.1) takes the form

(8.1.2)

ou 8%u
£ :Lrv—i—u(l—u—rv)—l—w,
ov 9%v
@ = MU— buv—i— w

197
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From experimental measurements it is found that r varies from between 10
to about 50 while

L~84x107% M~21x10"% and b~ 2.5x10.

Since w and v are of order 1, the values of L and M allow us to neglect the
first terms on the right of the above system. With this further simplification
and removing the primes from z’,#', we arrive at the travelling front model:

ou 8%u

B zu(l—u—rv)—kﬁ,
v 0%
E = —buv + @, (813)

where z € (—00,00) and 0 < u,v < 1.
The solutions we are interested in are those that satisfy the conditions

lim u(z,t) =0= lim v(z,?),
lim u(z,t) =1= lim v(z,?). (8.1.4)

One class of solutions that satisfy these conditions precisely are the desired
travelling fronts. However, before discussing these further we observe that if
u=1—-wvand b =1-—rr <1, the system (8.1.3) reduces to the single
equation

ou 0u

where b = 1 — r. This equation is called Fisher’s equation and arises in the
study of population genetics. It also occurs in many other problems and we
shall come across it again in a different context in Chapter 11. It is there-
fore sufficiently important to warrant some attention before going on to the
general case.

(8.1.5)

8.2 Phase plane analysis of Fisher’s equation
We seek a solution u of (8.1.5) in the form of a travelling wave, viz.
u(z,t) = ¢(x + ct), (8.2.1)

where 0 < ¢ < 1 and ¢ (>0) is the wave speed.
Bearing in mind the conditions (8.1.4) we see that, as a function of £ =
x + ct, ¢ must satisfy
lim 6(6) =0, Jim ¢(¢) = 1. (8.2.2)

E——o0
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On substituting (8.2.1) into (8.1.5) we see that ¢ satisfies the nonlinear ordi-
nary differential equation

" —cd' +bp(1 — ¢) =0, (8.2.3)

where the primes denote differentiation with respect to &.
By writing ¢’ = 1, (8.2.3) can be rewritten as the system

Y = ctp —bp(1 — ¢),
¢ = (8.2.4)

The singular points of this system in the (¢,v) plane are (0, 0) and (1, 0),
respectively.

If we analyse the character of these singular points we find that (0, 0) is an
unstable node if ¢ > 2\/5, a stable focus if 0 < ¢ < 2v/b and a centre if ¢ = 0.
The point (1, 0) is a saddle-point for all ¢ > 0.

Observe that since we are looking for the particular solution of (8.2.4) sat-
isfying the condition 0 < ¢ < 1 and (8.2.2), the range 0 < ¢ < 2v/b is inadmis-
sible, since in this situation ¢ would become negative near the singular point
(0, 0). Thus for the required solution we must have ¢ > 2v/b.

In fact it can be shown that there exists a unique trajectory leaving (0, 0)
and entering (1, 0), which remains inside the strip (0 < ¢ < 1,4 > 0), but we
shall not prove this here.

8.3 (Qualitative behaviour in the general case

Let us now look for wavefront solutions
u(z,t) = ¢lx +ct), v(z,t) =P(x+ ct), (8.3.1)

to the system (8.1.3), (8.1.4). As before if we set £ = « + ct, then ¢, ¢ satisfy
the equations

¢" —c¢' +¢(1 — ¢ —1¢) =0,
P’ = = by = 0, (8.3.2)

where
Jim 6(¢) = 1= _lim (o)
lim ¢(§) =0= 5liﬂm Y(€). (8.3.3)

£——o0
It is possible to write (8.3.2) as an equivalent system of first-order equations.
However, the resulting system is of fourth order and a phase plane analysis
would be extremely difficult to perform. Instead, we shall treat (8.3.2) by
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methods similar to those used to discuss the FitzHugh-Nagumo equations of
Chapter 7.

Recall that we are looking for wavefronts ¢, ¥ such that 0 < ¢, ¢ < 1. If we
suppose ¢ > 0 then we shall show that ¢ and 1 have the following properties:

(i) v >0, (i) ¢’ <0, (i) ¢ >0. (8.3.4)

In other words, we shall show that ¢ is monotonic increasing from 0 to 1 while
1) is monotonic decreasing from 1 to 0 as £ varies from —oo to 4o00.

To prove (i) suppose ¥ < 0 for some range of £. Then since (—oc0) = 1 and
1(00) = 0 there must be a negative minimum for which ¢’ = 0 and ¢" > 0.
But from (8.3.2) ¥ = bt < 0 at such a point and this contradicts the above
inequalities. Thus we must have ¢ > 0 for all values of &.

To show that ¢’ < 0 we argue as follows. Since ¢ > 0 by assumption and
we have just proved that ¥ > 0, then from (8.3.2) we have

W' — el = b > 0.

Now % cannot have a positive maximum since this would mean that for some
point &y, %’ (§0) = 0,%"” < 0, which is impossible. Thus either ¢’ > 0 or ¢’ <0
for all £. Since ¥ > 0,9(—00) = 1,7(c0) = 0, we have ¢’ < 0.

The statement (iii) that ¢’ > 0 is a little more involved and has to be proved
in steps depending on whether 0 < r < 1,7 =1 or r > 1. To begin with we
note that 1 — ¢ — r¢ # 0, since if it were not so (8.3.2) would yield

QS//—C(;S/:O

giving ¢ = A + Bexpc{, which cannot satisfy the conditions (8.3.3) for any
choice of A and B. Set
F=1—-¢—1v¢ (8.3.5)

and combine equations (8.3.2) to give
F" —cF' — ¢F = —br¢op <0, (8.3.6)

from which it follows that F' cannot have a negative minimum. From the
boundary conditions (8.3.3) we have

lim F()=1—r, lim F(£)=0. (8.3.7)

E——o0 £—o0
There are now three cases, 0 <r < 1,r =1,r > 1, to consider.

Take the case 0 < r < 1; then since F'(—o0) > 0 and the fact that F' cannot
have a negative minimum we must have F > 0 for all £. Furthermore, F
cannot have a positive minimum followed by a positive maximum. Suppose
this could happen; then there would be points &min, Emax Where Emin < Emax

such that
F'=0, F'>0
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at & = Emin, 1€,
F" = ¢F —bréyp > 0

or
F>bry

at & = Epin- Similarly, at £ = &pax we have
F <bry

at é. = fmax-

Since we have supposed that F(&nax) > F(&min), the above inequalities
could only hold if 9(&max) > ©¥(&min), Which is impossible because we have
already proved that ¢’ < 0. This contradiction proves the statement. It is
possible, however, for F' to have a positive maximum. In any case, we have
proved that F' > 0 for all £ and so from (8.3.2)

¢" —c¢/ = —¢F <0.

Suppose ¢ has a positive maximum, then in order to satisfy the condition
¢ — 1 as £ — 00, ¢ would have to approach 1 from above, which would mean
that FF =1 — ¢ — r < 0 for some range of £. This is a contradiction and so
¢’ >0 for all £ and 0 < r < 1. The possibility ¢’ < 0 is excluded by virtue of
the boundary conditions (8.3.3).

Similar but more straightforward arguments are used to show that ¢’ > 0
for all £ when r > 1.

Let us now turn to the problem of estimating the wavefront speed c. Through-
out remember that 0 < ¢, 1 < 1. Integrating the equations (8.3.2) from —oo
to oo gives

e= [ o-o-ruag, (8.3.8)
and -
c:b/ ) de. (8.3.9)
Substituting for .
| ovae
then gives
b oo

Now as £ — —o0, the boundary conditions (8.3.3) require ¢ — 0 and ¢ — 1
and so (8.3.2) behave near £ = —co as the linearised equations

¢ — e + o1 —1) =0,
= e~ bo =0,
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the solutions of which are oscillatory unless
A >4(1—r), r<l. (8.3.11)

Oscillatory solutions are not possible asymptotically when r > 1. Thus (8.3.11)
gives a lower bound on the wave speed.

In order to obtain more useful information about the wave speed ¢ and in
particular on its variation with b, we proceed as follows. Multiply the first
equation in (8.3.2) by ¢ and integrate to get

I'= / ¢"?de = —g +/ *(1 — ¢ — rep)dE. (8.3.12)
Similarly, repeating the process but multiplying first by ¢’ gives
o= [ wodc~ [ sodc-r [ o
1 1 e,
~5-g-r [ _devde

ie.,
=L f/_ & ¢ dE. (8.3.13)

6c ¢

We now estimate the integral appearing on the right-hand side of equation
(8.3.13) via Schwarz’s inequality which states that if F' and G are integrable

then 1o s
/abFGdgg (/abF2d£) (/abG2d§> .

In our case we take a = —00,b = 00, F = ¢/, G = ¢1) to obtain

00 oo 1/2 0o 1/2
/_ ¢’¢wds<( /_ ¢’2d5> ( /_ (¢w)2d£>
0o 1/2
=17 (/ <¢¢>2d£)
S 1/2
< 2 (/ <¢>w>d£)

— /2 (%) (8.3.14)

Substituting this into (8.3.13) results in the inequality

1 ro/c
k)
>60 c \b

or

! 11/2—i>0,

I
* (cb)1/2 6c
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ie.,
2
1 r2
2" -
( To@iz) T 6e 1
1 /1 n r2
2¢\3 2b
and so ,
1 /1 r2\'V?
e " L.
Ty tegr\3tw)
ie.,
2
1 9 \1/2
I > E <7’2 + §b> — 7"| . (8315)

Next, since 0 < ¢, 1 < 1 we have from (8.3.12)

1=—5+ [ eu-ope—r [ v
c o0
<5+ [ on-o

c b+r
‘5“( b )

C
<o (b+2r). (8.3.16)

ie.,

Combining (8.3.16) and (8.3.15) to eliminate I we find that

2
9 \ /2
(7“2 + §b> — 7‘1

from which it follows that

o L3
- 2(b+ 2r)

1

e (b +2r)

l\D|Q

Numerical results show that ¢ < 4 and so we have the final result

[(r2+ 30)" —r]?
2(b+