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Combining a theoretical background with engineering practice, Design of Steel-Concrete 
Composite Bridges to Eurocodes covers the conceptual and detailed design of composite 
bridges in accordance with the Eurocodes. Bridge design is strongly based on prescriptive 
normative rules regarding loads and their combinations, safety factors, material properties, 
analysis methods, required verifications, and other issues that are included in the codes. 
Composite bridges may be designed in accordance with the Eurocodes, which have recently been 
adopted across the European Union. This book centers on the new design rules incorporated in 
the EN-versions of the Eurocodes. 

The book addresses the design for a majority of composite bridge superstructures and guides 
readers through the selection of appropriate structural bridge systems. It introduces the loads 
on bridges and their combinations, proposes software supported analysis models, and outlines 
the required verifications for sections and members at ultimate and serviceability limit states, 
including fatigue and plate buckling, as well as seismic design of the deck and the bearings. 
It presents the main types of common composite bridges, discusses structural forms and 
systems, and describes preliminary design aids and erection methods. It provides information 
on railway bridges, but through the design examples makes road bridges the focal point.

This text includes several design examples within the chapters, explores the structural details, 
summarizes the relevant design codes, discusses durability issues, presents the properties for 
structural materials, concentrates on modeling for global analysis, and lays down the rules 
for the shear connection. It presents fatigue analysis and design, fatigue load models, detail 
categories, and fatigue verifications for structural steel, reinforcement, concrete, and shear 
connectors. It also covers structural bearings and dampers, with an emphasis on reinforced 
elastomeric bearings. The book is appropriate for structural engineering students, bridge 
designers or practicing engineers converting from other codes to Eurocodes.
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Foreword

Composite structures of steel and concrete have become popular for a number of reasons. 
One reason is that while concrete is excellent for dealing with compressive forces, steel also 
can carry large tensile stresses. In some sense, any reinforced concrete beam is a composite 
structure, with the reinforcement in composite action with the concrete.

Furthermore, it is often necessary when constructing concrete structures to carry the concrete 
before it has hardened. The steel girders’ ability to support the formwork, the rebars, and the 
wet concrete has indeed contributed to the increasing popularity of composite structures. For 
the case of a road bridge, every month of earlier opening saves money for the contractor, but 
also for the road user. This fact is often neglected when evaluating different structural solutions.

I strongly believe that this book could spread knowledge about composite bridges while 
teaching students and experienced designers the techniques of designing composite bridges 
according to the Eurocodes.

It has been a long process to write the Eurocodes, but the advantages of having a common set 
of codes are obvious, making it easier to design and construct bridges all over Europe, which may 
not only lower prices in individual projects but also provide cost-effective solutions. Moreover, 
it will also be more effective to implement in European R&D projects, since researchers and 
designers will be using the same set of codes. Last but not least, it will give engineers an opportu-
nity to work in other countries, which is important in order to attract talented young engineers. 
In the long run, I also think that the Eurocodes will be spread to countries outside Europe. The 
picture shows a haunched composite box girder bridge over the river of Ljusnan, Sweden.

Peter Collin
Professor, Luleå University of Technology

Bridge Designer, Ramböll
Luleå, Sweden
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Preface

Bridges have a strong symbolism as they connect opposite sides. It is not a coincidence that 
bridges are illustrated on one side of Euros. For many engineers, bridge design assumes 
top priority in their practice. In fact, the design of the optimal, technical, economical, and 
aesthetical solution with existing tools and means is a challenge for any structural engineer. 
International best practices show that the search for alternative solutions and the choice 
of the optimal one are essential for the construction of a successful bridge. The criteria 
for selection may be governed by technical, economical, operational, aesthetical, and envi-
ronmental considerations and may be the choice of either the owner, the contractor, the 
designer, or the user. As a result, bridge construction builds a healthy competition as regards 
structural types, construction materials, construction methods, and other parameters that 
result in a polymorphy of bridges. In some aspects, bridges reflect the technological develop-
ment in a period or in a country.

Among the different types of bridges, composite bridges have a significant place, because 
the combination of the most common construction materials, steel and reinforced con-
crete, allows the construction of safe, operational, durable, and robust bridges economi-
cally. Bridge design is strongly based on prescriptive normative rules regarding loads and 
their combinations, safety factors, material properties, analysis methods, required verifica-
tions, and other issues that are included in the codes. Composite bridges may be designed 
in accordance with the Eurocodes, which have recently been adopted across the European 
Union and many other countries worldwide. Eurocode 4, part 2 (EN 1994-2), is exclusively 
devoted to the design of composite bridges. However, many Eurocodes and their different 
parts would need to be consulted as the design of bridges includes a variety of constructional 
issues and due to the fact that two construction materials are involved.

This book presents in 13 chapters the main information needed for the design of compos-
ite bridges in accordance with the Eurocodes:

• Chapter 1 introduces the subject and provides a list of symbols used in the book.
• Chapter 2 presents the main types of common composite bridges. It discusses struc-

tural forms and structural systems, describes preliminary design aids and erection 
methods, and delves into the structural details.

• Chapter 3 summarizes the relevant design codes. These refer to actions, combinations 
of actions, safety factors, material properties, and limit state design.

• Chapter 4 discusses the actions to be considered, including traffic loads for road and 
railway bridges, temperature, wind, and earthquake, as well as the effects of shrinkage 
and creep of concrete.

• Chapter 5 introduces the limit states, presents safety factors for actions and resistances 
and factors for combinations of actions, and discusses durability issues.
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• Chapter 6 presents the properties for structural materials used with reference to con-
crete, structural, reinforcing, and prestressing steel, as well as mechanical connectors, 
and provides criteria for their selection.

• Chapter 7 is devoted to modeling for global analysis. It presents alternative models 
for global analysis, shear lag effects, effects of rheological behavior, and cracking of 
concrete and models for slab analysis.

• Chapter 8 discusses the effects of plate buckling and deals with the critical and post-
critical plate behavior and the column-buckling behavior of stiffened plated elements.

• Chapter 9 presents the verifications at ultimate limit states for members and cross sec-
tions with reference to various cross-sectional classes and for lateral torsional buckling.

• Chapter 10 refers to verifications at serviceability limit states, which include stress 
limitations, web breathing, control of cracking of concrete, deflections, and vibrations.

• Chapter 11 lays down the rules for the shear connection between concrete and steel by 
means of headed studs.

• Chapter 12 presents fatigue analysis and design. It presents fatigue load models, detail 
categories, and fatigue verifications for structural steel, reinforcement, concrete, and 
shear connectors.

• Chapter 13 covers structural bearings and dampers, with an emphasis on reinforced 
elastomeric bearings.

Covering all topics related to composite bridge design is a challenging task. The authors 
have tried to provide as comprehensive a coverage as possible. Although not all types of 
bridges, for example, arch, cable-stayed, or suspension bridges, are fully covered and their 
substructures and foundations not addressed, the basic knowledge on steel structure is dealt 
with and topics related to analysis and design for the overwhelming majority of composite 
bridge superstructures are addressed.

The book is didactical and is addressed primarily to structural engineering students. 
However, it might also be helpful for bridge designers or practicing engineers who are con-
verting from other codes to Eurocodes. For better understanding of the design procedures 
and the use of code provisions, several design examples are incorporated in the chapters.
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1

Chapter 1

Introduction

1.1 GENERAL

Bridges are built to overcome an obstacle, whether a valley, a strait, a river, or an existing 
road or railway line. They carry traffic from pedestrians, cyclists, vehicles, or trains, being 
distinguished as footbridges, road, or railway bridges. In some cases, they carry exclusively 
pipelines (e.g., for gas or water). Bridges are mostly fixed but may be movable if they obstruct 
sea traffic in harbors or channels or are used for lifting of entire ships.

A bridge is composed of the superstructure, the substructure, and the foundation. 
Bearings are inserted between super- and substructure or, in some cases, between sub-
structure and foundation, unless for integral bridges where bearings are missing. The 
superstructure may be composed of plate, box, or truss girders that act alone or are 
supported by arches, portal frames, stay cables, or suspension cables. The substructure 
includes the abutments, the piers, and any pylons or towers. Spans vary from a few meters 
to nowadays 2 km, but short spans, let’s say <5 m, are defined as culverts and not bridges. 
The construction materials for super- and substructures may be stone, timber, steel, and 
reinforced or prestressed concrete.

Bridge design and construction is one of the most challenging issues for a structural engi-
neer. Choices have to be made in respect to structural systems, construction materials, foun-
dation types, or execution processes that are based on structural performance, construction 
and maintenance costs, local conditions, and aesthetics. Architects are recently involved, 
not always with success, in the conceptual design phase. However, structural engineers are 
the main actors in design that includes the final and the construction stages, the latter being 
so important that it is said that a bridge design is primarily the design at construction stages.

Composite bridges are composed of steel girders and reinforced concrete decks to com-
bine the benefits of both structural materials. They are suitable for almost all bridge spans, 
except the very long spans, having the advantages of reduced dead loads, high prefabrica-
tion, simpler and quicker erection, and simpler maintenance procedures when compared 
with reinforced concrete ones.

Following a decision by the European Commission to develop harmonized technical spec-
ifications in the field of construction, and after an effort of almost 40 years, the Eurocodes 
were prepared to be used as design codes in replacement of national standards. By the cor-
rect use of the Eurocodes and all underlying standards, it is demonstrated that construction 
works including bridges are sufficient safe, fit for purpose, and robust.

This book intends to cover the design of composite bridges, primarily of girder-type 
bridges, following the provisions of the Eurocodes as they are understood by the authors. 
It provides information for their background and guidance on their application. Design 
examples are introduced in each chapter for better understanding of the design methods.



2 Design of steel–concrete composite bridges to Eurocodes

1.2 LIST OF SYMBOLS

Effort was made for the symbols to be in accordance with those used by the Eurocodes. 
A single symbol is used for those quantities where different symbols are used by different 
Eurocodes.

General Symbols for Geometric Properties

b Width
d Depth
h Height
t Thickness
L, l Length

General Symbols for Mechanical Properties

A Area
I Second moment of area 

(moment of inertia)
S First moment of area 

(static moment)
W Cross-sectional 

modulus

General Symbols for Internal Forces and Moments

M Bending moment
MT Torsional moment
N Axial force
V Shear forces

General Symbols for Stresses

σ Direct (normal) stress
τ Shear stress

Indexes

a Structural steel
b Beam
bear Bearing
c Concrete, compression
d Design value, diagonal
dur Durability
eq Equivalent
eff Effective
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(continued)

el Elastic
f Flange, effect due to fatigue loading
inf Lower value
k Characteristic value
l Lightweight concrete
long Longitudinal
max Maximum value
min Minimum value
nom Nominal values
o Top
p Steel sheeting
pl Plate, plastic
s Reinforcement
ser Serviceability
sup Upper value
sur Surface
sa Steel + reinforcement
t Tension
tot Total
x Longitudinal x-axis of member, longitudinal direction of 

bridge
y Yield, cross-sectional major axis of bending, transverse 

direction of bridge
z Cross-sectional minor axis of bending, vertical 

direction of bridge
u Ultimate
w Web, warping
x Longitudinal x-axis of member, longitudinal direction of 

bridge
y Yield, cross-sectional major axis of bending, transverse 

direction of bridge
z Cross-sectional minor axis of bending, vertical 

direction of bridge
u Limit value, bottom
E Action effect, equivalent
H Horizontal
L Longitudinal, long term
P Permanent
PT Temporary permanent
R Resistance
S Shrinkage
T Torsional
V Vertical
0 Initial
1 Uncracked
2 Fully cracked
I First order
II Second order
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Axes

x Longitudinal axis of bridge or member
y Transverse axis of bridge, major principal axis 

of cross section
z Vertical axis of bridge, minor principal axis 

of cross section

Operators

∆ Difference

Latin Small Letters

a Length, distance between rail supports
ag Peak ground acceleration
b Width
bo Half distance between webs
beff

s Effective width due to shear lag

bfo Width of top flange of steel girder
bfu Width of bottom flange of steel girder
c Outstand flange width, concrete cover of reinforcement, 

smeared spring constant
ce Exposure factor
cf Wind coefficient
cmin Minimum value of concrete cover
cnom Nominal value of concrete cover
cφ Stiffness of rotational spring
d Differential, diameter, shank diameter of shear connector, 

length of diagonal
dhead,sc Head diameter of shear connector
dref Reference height of bridge
dtot Total height of bridge
e Eccentricity, distance of rail from girder flange, center 

distance between stiffeners
eD Edge distance of shear connectors from steel flange
eh Horizontal distance of tendon to steel web
eL Spacing of shear connectors in longitudinal direction
eT Spacing of shear connectors in transverse direction
eV Edge distance of shear connectors from concrete haunch, 

vertical distance between tendon and plane of shear 
connection

e0 Imperfection
f Reduction factor
fyd Design strength of structural steel
fyk Characteristic yield stress of structural steel
fy,red Reduced yield stress due to simultaneous shear
fcd Compression strength of concrete, design value
fck Compression strength of concrete, characteristic value
fcm Compression strength of concrete, mean value
fct,eff Tensile strength of concrete, mean value
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(continued)

fctm Tension strength of concrete, mean value
fctk 0.05 Tension strength of concrete, 5% fractile
fctk 0.95 Tension strength of concrete, 95% fractile
fclm Compression strength of lightweight concrete, mean 

value
fclk Compression strength of lightweight concrete, 

characteristic value
fcltm Tension strength of lightweight concrete, mean value
fcltk 0.05 Tension strength of lightweight concrete, 5% fractile
fcltk 0.95 Tension strength of lightweight concrete, 95% fractile
fpk Tensile strength of prestressing steel
fp0,1k Proof strength of prestressing steel
fQ Coefficient for shear area
fsd Design strength of reinforcement
fsk Characteristic yield strength of reinforcement
ftk Characteristic tensile strength of reinforcement
fy Yield stress of structural steel
fu Tensile strength of structural steel
g Permanent load, acceleration of gravity
ga Self-weight of steel girder
gc Self-weight of concrete
h Height, depth of concrete
hc Height of concrete slab
hw Height of web
h0 Notional size
i Index
k Spring constant
k1, k2 Reduction coefficients for concrete strength
kσ Plate buckling coefficient
kτ Shear buckling coefficient
l Length
lk Buckling length
ly Effective loaded length
n Number, modular ratio of concrete, number of shear 

connectors
n0 Modular ratio for short-term loading, fundamental natural 

frequency
ni Applied number of cycles of constant amplitude
nL Modular ratio depending on the type of loading
m Mass, distributed moment, slope of fatigue curve
p Uniformly distributed load
q Uniformly distributed load, behavior factor
qfk Uniformly distributed load on footways
qfk,comb Combination value of uniformly distributed load on 

footways
qil Uniformly distributed traffic load on lane i
qvk Uniformly distributed traffic load on railway bridges

(continued)
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(continued)

r Radius, transverse distance between rails
s Reinforcement bar spacing, coefficient for cement
sf Spacing of transverse reinforcement in longitudinal 

direction
ss Length of stiff bearings
t Thickness, time, age
tf Thickness of flange
tfo Thickness of top flange of steel girder
tfu Thickness of bottom flange of steel girder
ti Thickness of elastomeric layers
tLd Design life
ts Thickness of steel plates of elastomeric bearings
tw Thickness of web
u Perimeter, deformation along in x direction
v Loading speed, deformation in y direction
vb Basic wind velocity
vc,Rd Crushing design resistance of struts
vMt Shear flow due to torsional moments
vL Longitudinal shear flow
vL,Ed Longitudinal shear flow, design value
vL,Rd Longitudinal shear flow, design resistance
vx or y Deformation of bearings in x, y directions
w Width, deformation in z direction, width of carriageway
wk Crack width
wi Width of lane i
x Longitudinal axis
xpl Depth of plastic neutral axis

Greek Small Letters

α Aspect ratio of panel, modification factor for railway loads, 
imperfection factor

αcrit Critical load multiplier
αLT Imperfection factor for lateral torsional buckling
αult Yield load multiplier
αq Weight factor for uniform traffic loads
αQ Weight factor for axle loads
αt Coefficient of thermal expansion
β Reduction factor for shear lag, reduction factor for plastic 

sagging moment
βc Coefficient for the development of creep
γ Safety factor, specific weight
γA Partial safety factor of accidental actions
γAE Partial safety factor of seismic actions
γc Partial safety factor for concrete
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(continued)

γf, γF Partial safety factors for actions
γF,f Partial safety factor for fatigue actions
γG Partial safety factor of permanent actions
γΜ Partial safety factor for a material property
γΜf Partial safety factor for fatigue strength
γP Partial safety factor for prestress
γQ Partial safety factor of variable actions
γRd Partial safety factor for resistance
γs Partial safety factor for reinforcement
γv Partial safety factors for shear connectors
γI Importance factor
γM0 Partial safety factor for yield
γM1 Partial safety factor for stability
γM2 Partial safety factor for fracture and connections
γM3 Partial safety factor for slip
δ Deflection
ε Strain
εca Autogenous shrinkage strain
εcd Drying shrinkage strain
εcs Shrinkage strain
fyd Design strength of structural steel
θ Rotation, twisting angle, angle of inclination of strut
κ Curvature
λ– Nondimensional slenderness for flexural buckling

λ–LT Nondimensional slenderness for lateral torsional buckling

λ–p Nondimensional slenderness for plate buckling

λ–w Nondimensional slenderness for web, for shear
μ Friction coefficient
ν Poisson ratio
ξ Interpolation factor for column-like behavior, damping ratio
ρ Density, reduction factor for plate buckling, reduction factor for 

presence of shear
ρs Reinforcement ratio
σ Direct stress
σa Stress of structural steel
σc Stress in concrete
σcr,p Critical stress for plate buckling
σcr,c Critical stress for column buckling
σs Stress in reinforcement
σw Stress in web
τ Shear stress
τcr Critical shear buckling stress
τsm Mean value of bond stress
φ Creep coefficient
φ0 Notional creep coefficient

(continued)
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(continued)

χ Buckling reduction factor, relaxation factor
χc Reduction factor for column buckling
χw Reduction factor for shear buckling
χLT Reduction factor for lateral torsional buckling
ψ Stress ratio
ψL Creep multiplier
ψ0 Basic value of combination factor
ψ1 Frequent value of combination factor
ψ2 Quasi permanent value of combination factor
ω Warping function
ω0 Natural circular frequency

Capital Letters

A Cross-sectional area, plan area of bearings, accidental action
Aa Cross-sectional area of structural steel
Ab Area of bottom reinforcement of slab
Abh Area of bottom transverse haunch reinforcement
Ac Cross-sectional area of concrete
Ac,eff Effective area of compression flange
Acp Partial area of concrete
Ac,tot Total area of concrete flange
Act Area of tension zone before cracking
Aeff Effective cross-sectional area due to plate buckling
AE Seismic action
Anet Net section area at holes
Ap Gross area of plate
Ar Reduced area of elastomeric bearings
Aref Reference area for wind force
As Area of reinforcement
Asl Gross area of longitudinal stiffener
Asp Partial area of reinforcement
As,tot Total area of reinforcement
Asf Area of transverse reinforcement cutting a section
As,min Minimum reinforcement area
Asl,eff Effective area of longitudinal stiffeners
At Area of top reinforcement of slab
Av Shear area
A1 Area of steel plates of elastomeric bearings
C Concrete, creep of concrete, wind load factor, spring constant
Dc Action due to replacement of bearings
∆l Elongation, contraction
∆σE2 Equivalent direct stress range for 2 · 106 cycles
∆τE2 Equivalent shear stress range for 2 · 106 cycles
∆σR Fatigue resistance to direct stresses
∆τR Fatigue resistance to shear stresses
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(continued)

∆T Temperature difference
∆TM Linear temperature difference
∆TN Uniform temperature difference
E Modulus of elasticity
Ea Modulus of elasticity of structural steel
Eb Compression modulus of elastomer
Ec Modulus of elasticity of concrete
Ec,28 Modulus of elasticity of concrete at 28 days
Ecm Modulus of elasticity of concrete—mean value
Ed Design value of the effects of actions
Ed,dst Design value of the effects of destabilizing actions
Ed,stb Design value of the effects of stabilizing actions
ED Absorbed hysteretic energy
Elcm Modulus of elasticity of lightweight concrete—mean value
Es Modulus of elasticity of reinforcement
F Force
Fcr Critical concentrated load
FRd Design buckling resistance to concentrated transverse forces
FW Wind force
G Weight, shear modulus, permanent action
Ga Shear modulus of structural steel
Gc Shear modulus of concrete
G1 Self-weight
G2 Superimposed dead weight
Gset Permanent action due to settlement permanent action due to 

settlement
H Horizontal force, lateral force
I Second moment of area (moment of inertia), length, influence length
Inet Second moment of area of net section
Ip Second moment of area of plate, polar second moment of area of 

a stiffener
Isl Second moment of area of stiffened plate
IT Torsional constant of cross section
IW Warping constant
I1 Second moment of area of uncracked section
I1,0 Second moment of area of uncracked section for short-term 

loading
I2 Second moment of area of fully cracked section
I2,sa Second moment of area of fully cracked section (structural steel + 

reinforcement)
J Creep function, impact energy, torsional constant
K Spring stiffness of bearings, stiffness of system
Keff Effective stiffness
L Length, span
Le Distance between zero moments
Leff Effective length for resistance to concentrated forces

(continued)
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(continued)

Lf Influence length
LM Load model
LΦ Determinant length
M Bending moment, mass
Ma,el,Rd Elastic design moment resistance of steel girder
Mcr Bending moment at cracking of concrete
Mel Elastic moment resistance
Mel,Rd Elastic design moment resistance
MEd Design moment
Mf,Rd Design bending resistance of cross section consisting of the 

flanges only
Mmax,f Maximum moments due to fatigue loading
Mmax,f,Ed Maximum moments in the fatigue combination
Mmin,f Minimum moments due to fatigue loading
Mmin,f,Ed Minimum moments in the fatigue combination
MN,pl,Rd Design bending resistance of cross section allowing for axial 

forces
Mperm Moments due to all actions in combination except fatigue traffic 

loads
Mpl Plastic moment
Mpl,Rd Design plastic bending resistance
Mpl,V,Rd Design plastic bending resistance allowing for shear forces
MRd Design bending resistance
Msh Primary shrinkage moment
MT,Ed Design torsional moment
Mx Torsional moment
Mxp Uniform torsional moment
Mxs Nonuniform torsional moment
MI Moment from first-order theory
MII Moment from second-order theory
Mw Bimoment
M1 Bending moment acting on noncracked composite section 

(state 1)
M2 Bending moment acting on fully cracked composite section 

(state 2)
N Axial force, number of cycles
Nb,Rd Design buckling resistance
Nc Axial force in concrete
Nc,el Force in concrete at elastic resistance of steel girder
Nc,f Force in concrete for full shear connection
Ncr Euler buckling load, axial force at cracking of concrete
Nc,Rd Design resistance to compression
NEd Design axial force
Nobs Number of lorries per year in the slow lane
NEd Design axial force
Nt,Rd Design resistance to tension
Nu,Rd Design resistance to tension for sections with holes
Npl,Rd Plastic design resistance force
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(continued)

Ns Axial force in reinforcement
Nsh Primary shrinkage axial force
P Load, force, prestressing, permanent
PT Secondary effects of creep and shrinkage
PRd Shear resistance of shear connectors at ultimate limit state (ULS)
PRd,ser Shear resistance of shear connectors at serviceability limit state (SLS)
Q Variable action, traffic load
Qik Axle load
Qlk Braking force
Qm1 Average gross weight of lorries in slow lane
Qtk Centrifugal force
Qvk Concentrated vertical force for rail traffic
R Resistance, relaxation factor
Rd Design resistance
RH Relative humidity
S Shrinkage of concrete, soil factor, static moment (first moment of 

area), shape factor of bearings
Sa,d Design response spectrum, design spectral acceleration
Se Elastic response spectrum, elastic spectral acceleration
Sw Sectorial area
T Temperature, vibration period
Tb Total thickness of elastomeric bearings
Te Total nominal thickness of elastomeric layers
Tq Total thickness of elastomeric layers including upper and lower layers
TS Tandem system
UDL Uniformly distributed load
V Shear force, vertical load, train speed
Vb,Rd Design shear resistance
Vbf,Rd Design shear resistance contribution of the flange
Vbw,Rd Design shear resistance contribution of the web
VL Force due to longitudinal shear
Vmax,f Maximum shear forces due to fatigue loading
Vmin,f Minimum shear forces due to fatigue loading
Vbw,Rd Shear buckling resistance
VEd Design shear force
Vpl,Rd Plastic shear resistance
VRd Design shear resistance
W Section modulus, wind load
Weff Elastic section modulus of effective cross section
Wel Elastic section modulus
Wpl Plastic section modulus
Φ Diameter of bars

F s
* Maximum bar size for crack control

Φ2 Dynamic factor
Φ3 Dynamic factor
X Material property
Z Through-thickness property
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Examples

M1,Ed,0 Design (Ed) bending moment (M) acting on noncracked (1) composite 
section due to short-term (0) actions

Mel,Rd,∞ Long-term (∞) elastic (el) design (d) bending moment (M) resistance (R)
σc,Ed,∞ Design (Ed) concrete (c) normal stress (σ) due to long-term (∞) actions

Structural Analysis Programs Used

• RSTAB (www.dlubal.com)
• SOFISTIK (www.sofistik.com)
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Chapter 2

Types of steel–concrete 
composite bridges

2.1 GENERAL

Reinforced concrete slabs rigidly connected with steel girders have been used to form the 
basic superstructure of large numbers of deck bridges for many decades in Europe. This is 
due to the fact that the composite construction method offers the bridge engineers a great 
variety of solutions for different types of problems. An illustration of such problems, arising 
during the conceptual planning of a bridge, is given in Figure 2.1.

It is therefore obvious that finding the optimum solution is a difficult exercise for design-
ers. Knowledge and experience from different fields of civil engineering are required, and 
therefore, the success of the final choice highly depends on teamwork. The aforementioned 
complexity in combination with the notorious difficulty of assessing costs keeps inexpe-
rienced designers closer to conventional concrete solutions. Furthermore, for small and 
medium spans, many contractors prefer concrete bridges due to the fact that they tend to 
maintain the same building technique and materials for the entire structure (concrete foun-
dations, piers, abutments, and superstructure).

The percentage of composite bridges in the European market mainly depends on the cost 
level of labor and the price of structural steel. In high labor-cost countries (central and 
north Europe), fast-track solutions with prefabricated elements are undoubtedly the most 
cost-effective ones. Low weather temperatures also boost this trend. The prefabrication 
techniques are continuously under development, and composite bridges with partially or 
fully prefabricated slabs have already a relative big share in the domestic markets. In south 
countries, concrete bridges dominate the markets due to cheap labor. However, many inter-
esting composite bridges with more cast-in-place elements can be found.

In literature, composite bridges are considered to be competitive for spans larger than 
35 m. In practice, there is no proof that composite bridges are less competitive than the 
concrete ones even for smaller spans; see [2.17] and [2.18]. As mentioned earlier, many con-
tractors neglect fundamental advantages of steel–concrete composite bridges in their evalu-
ations and maintain their opinion about “unforeseeable price increases in the steel market.”

Nowadays, innovations in welding technology, high-strength steel qualities, and new types 
of precast slabs, specially fabricated for cooperating with steel beams, prepare the ground 
for a successful comeback for composite bridges. Table 2.1 provides an overall insight on 
their advantages mainly connected with safety (S), economy (E), constructional simplicity 
(CS), functionality (F), and aesthetics (A).

The main disadvantage of structural steel in bridge construction, its susceptibility to cor-
rosion, is being increasingly overcome by improved protective coatings. Weathering steel is 
also used with great success giving the ability of avoiding painting (or future repainting), 
thus keeping maintenance costs low.
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2.2 COMPOSITE BRIDGES: THE CONCEPT

A typical composite cross section of a highway bridge is shown in Figure 2.2. A series of 
parallel steel girders are rigidly connected with a reinforced concrete slab through shear 
connectors. The shear connectors installed are mostly welded studs allowing the use of the 
deck as part of the top flange (deck-plate girders). The longitudinal bending of the composite 
T girders, at positive bending areas, results in tension in steel and compression in concrete. 
The simultaneous operation of both of these materials generates the composite action that 
is the most important feature for the formation of stiff and high-strength cross sections. In 
areas of negative moments, concrete is considered to be fully cracked. Despite the contribu-
tion of the steel reinforcement to the hogging moment of resistance strengthening locally, 
the steel cross section, by adding cover plates or concreting, can sometimes be necessary.

Direct loads from the wheels are distributed by the bending action of the reinforced 
concrete deck slab to the longitudinal composite girders. In addition, deck slab acts as a 
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Figure 2.1 Conceptual bridge design considerations.

Table 2.1 Advantages of steel–concrete composite bridges

Low self-weight of superstructure → • Cheaper foundations and bearings (E)
• Lower seismic forces (E, S)
•  Cheaper reconstruction and 

retrofitting (E)
Assembly capability on site → • Lower transport and lifting costs (E)

• Flexible site planning (F, E)
No propping during construction → • No traffic interruption (E, F)

• Elimination of formworks (CS)
Big spans and low construction depth → • Slender appearance (A)

• Fewer piers (F)
Maximum prefabrication → • High quality (S)

• Fewer cast-in-place activities (CS)
• High speed of construction (E)
• Low labor costs (E)
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diaphragm in cases of seismic loadings, braking forces, etc. Therefore, the slab’s thickness hc 
must be high enough to guarantee both an adequate out-of-plane and in-plane stiffness. In 
correspondence to the girder’s spacing a, which usually varies from 2.5 to 4.0 m, the slab’s 
thickness varies from 25 to 30 cm. It is advantageous to choose a girder’s spacing not larger 
than the effective width, calculated according to EN 1994-2 provisions, so that the entire 
concrete slab contributes to the structural performance of the superstructure.

Cantilevers at the edge of the deck slab should normally be less than 1.6 m. Cast-in-place activi-
ties for the cantilevers are always a difficult part of the construction process, and subsequently, 
minimizing the edge length b should always be in the designer’s mind. Bridge decks with wide 
sidewalks can however lead to increased cantilever lengths sometimes even greater than 3 m.
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Figure 2.2 Two-lane plate-girder highway bridge—the composite effect.
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An even number of steel girders achieves better material optimization and allows bracing 
at piers. In cases of medium spans, the designer will have to choose between twin- or multi-
girder bridges. Both of these options offer different advantages, which will be discussed in 
the following paragraphs.

At piers, steel girders rest normally on bearings. Bearings are structural assemblies 
installed to secure the safe transfer of all reactions from the superstructure to the substruc-
ture without generating any harmful restraining forces. They must be able to spread the 
reactions over adequate areas of the substructure, adapt thermal and other deformations of 
the superstructure, and isolate the superstructure from seismic excitations coming from the 
substructure. Transverse bearing stiffeners are required to transfer support reactions from 
the web into the bearings and to introduce concentrated loads into the webs.

For short and medium spans, steel girders are often preassembled in pairs through inter-
mediate bracings and then lifted into final position by mobile cranes enabling rapid erection. 
Intermediate bracings offer increased stability during deck concreting, and therefore, tem-
porary supports can be avoided. This is of great importance especially when traffic disrup-
tion under the bridge must be kept at a minimum level.

Short Up to 35 m
Span lengths are described as Medium 35–80 m

Long Greater than 80 m

Transverse bracing at supports is also needed to transfer horizontal loads from wind, earth-
quake, and centrifugal forces to the bearings. Since the bearing’s design life is less than that 
of the bridge itself, bracing at piers should be also able to resist high jacking loads in case of 
replacement of bearings.

For simply supported bridges with spans up to 25 m and for continuous bridges with spans up 
to 30 m, steel girders can be of rolled sections HEB or HEM type. For longer spans, nonsym-
metrical welded plate girders are the most commonly used cross sections. With depths to main 
span ratios h/L varying from 1/20 to 1/30, an appealing design can be reached. More slender 
bridge sections can be in some cases feasible, but considerations of deflections or vibrations may 
be critical for the design. In order to reach the highest possible slenderness, the number of the 
girders can be increased so that the bay width a becomes even lower than 2.0 m; see [2.4].

In Figure 2.2, one can also see the precambering’s shape of the steel girders (supereleva-
tion). Precambering of the steel girders is necessary to compensate for deflections under 
permanent loads, temperature effects, and creep and shrinkage of concrete, so as to avoid 
any appearance of excessive downward deflection. Curved in elevation, rolled sections can 
only be fabricated by few companies with heavy rolling equipment. Fabricating welded plate 
girders with an upward deflection is much easier as webs are cut based on the precamber-
ing’s geometry and then welded with the flanges.

The previous offered a brief description of a common plate-girder composite bridge. In the 
following paragraphs, more types of composite bridges are presented and commented on.

2.3 HIGHWAY BRIDGES

2.3.1 Plate-girder bridges with in situ concrete deck slab

The main geometric and structural aspects of a deck-plate-girder bridge have already been 
demonstrated in the previous paragraph. The most commonly used structural steel quality 
is S355, but in some European countries, S420, S460, and even S690 have already been 
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implemented; see [2.2]. For the in situ parts of the deck concrete qualities, C30/37 and 
C35/40 are the most appropriate ones.

The use of full in situ concrete deck slabs is by far the most popular building method. 
If the steel girders are not supported during concreting, a mobile formwork runs along 
the steel beams concreting sections with a maximum length of 25 m; see Figure 2.3. 
Since cast-in-place activities with temperatures below 5°C can be problematic, warm 
weather is an important requirement. The mobile formwork technique is offered by 
many construction companies, and therefore, low prices can be expected due to high 
competition. The main disadvantages of this method are long execution time, high 
shrinkage forces, and use of large amount of structural steel due to the noncomposite 
action during concreting.

Concreting of the deck slab on temporary soffit formworks, usually made of timber, in 
conjunction with supporting towers (props), is in many cases the most cost-effective solu-
tion. Experienced contractors always come up with tailor-made formwork ideas, which are 
less expensive than mobile formworks. Furthermore, support of the deck during concreting 
leads to lighter cross sections for the steel girders since composite action is generated for 
both permanent and traffic loads. Precambering values are also significantly reduced. It is 
particularly worth mentioning that propping during concreting results in considerably less 
amount of intermediate bracings since stability problems are eliminated. This has a positive 
effect on both the economy and the appearance of the bridge.

Releasing the props in continuous bridges after concrete hardening can produce cracks 
due to the imposed rotations at internal supports. This can be avoided if the construction 
sequence of Figure 2.4 is followed.

Single-span steel girders are placed on bearings, and thereafter, concrete is poured on 
timber soffits supported by steel towers. After concrete hardening, props are released, and 
the simply supported composite girders deflect due to the bridge’s self-weight. Finally, con-
creting of the internal support transforms the former isostatic system into a stiffer continu-
ous one. Hogging bending moments due to permanent loading, creep, and shrinkage are 
significantly reduced; the bridge maintains its static indeterminacy, and cracking of concrete 
is easier controlled.

In situ deck concreting allows different slabs’ shapes. Typical geometries are shown in 
Figure 2.5. Slabs with uniform thickness (case A) are, from a constructional point of view, 
the easiest ones, and they are mainly chosen for short-span straight bridges with decks nar-
rower than 7 or 8 m. Thicknesses from 220 to 250 mm are commonly preferred. Slabs with 
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Figure 2.3 Typical mobile formwork superstructure.
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variable thickness (case B) provide the desired inclination without increasing the thickness 
of surfacing. The slab’s top surface follows the road’s geometry, while the soffit is aligned 
with the girders’ upper flanges. In cases of decks with significant inclination, steel girders 
are usually at different levels. For wide decks, a cost-optimized steel and concrete consump-
tion can be achieved by designing haunched slabs in conjunction with increased girder spac-
ing (case C). Geometries with a bay width 6 m, a central slab thickness 35 cm, and a haunch 
of 45 cm are feasible without transverse prestressing.

2.3.2 Plate-girder bridges with semiprecast concrete deck slab

In Figure 2.6, a simply supported composite bridge with lightweight precast concrete ele-
ments supplemented with in situ concrete is demonstrated (semi-precast deck slab). The pre-
fabricated slabs are used as permanent formwork for the topping, and they are supported 

A

B D

C

Slab with uniform thickness Slab with haunches

Slab with variable thickness at
the cantileversSlab with variable thickness

Figure 2.5  Bridges with different slabs’ geometries. (A) With uniform slab thickness, (B) with variable slab 
thickness, (C) with haunches, and (D) with variable thickness at cantilevers.
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Figure 2.4 Construction sequence for controlling cracking in a continuous bridge.
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statically determined between the steel girders. The outer cantilevers are casted in situ 
through the use of conventional formwork, with supports attached to the edge beams. This 
type of bridges is generally preferred when passing over existent rail- and highways without 
any restriction to traffic during erection. The main advantages of this method are short con-
struction time, easy erection, and reduced creep and shrinkage effects.

The thickness of the precast slabs depends mainly on the spacing of the girders and is 
typically 70–100 mm. The concrete quality for the prefabricated elements is preferred to 
be C40/50 or greater and for the in situ concrete topping C30/37. Lattice girders embed-
ded with their lower chord in the precast slabs bar ensure the composite action, so that the 
longitudinal reinforcement of the precast elements can be taken into account in the capac-
ity design of the entire deck slab. Increasing the height of lattice girders results in greater 
permissible spans in bridges with large girder spacing. It should be noted that the structural 
design of lattice girder precast slabs has to be regulated by official approvals based on static 
and dynamic tests with special reference to bridges. This design issue is not covered in detail 
by Eurocode 2.

In Figure 2.6, one can also see that steel girders are delivered on site with elastic strips on 
top. The elastic strips are usually made of elastomeric material in order to obtain a compen-
sation for tolerances and a waterproof joint between steel and concrete. Especially in cases 
of bridge sections with steel girders at different levels (see section B in Figure 2.6) or high 
precambering values, elastic supporting strips can be described, from a constructional point 
of view, as mandatory. In many bridges, shims have been used, instead of elastic strips, due 
to lower cost. The contact area of the shims with the top of the girders has proved to be 
sensitive to corrosion, and therefore, shims should be avoided.

In bridges with semi-precast deck slabs, the laying plan of the prefabricated elements 
is of primary importance. Indeed transverse joints between adjacent precast slabs are 
considered to be the weak points of the deck slab, and minimizing their number must 
always be in the designer’s mind. Typical lengths for precast slabs are 8–10 m, and 
for multi-girder bridges, a width lower or equal to 2.5 m is convenient to select due 
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Before concreting
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Transverse reinforcement

acc. to EN 1994-2/6.6.6

Joint reinforcement

Section b–bSection a–a
Reduced

static
depth

Seal
Mortar a

a

b

b
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Figure 2.6 Composite bridge with a partially prefabricated deck slab.
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to easy transportation. Furthermore, the detailing of the joints is equally important. 
Fixing of the joints with nonshrinkable mortar before concreting gives the superstruc-
ture the adequate horizontal stiffness during concreting so that horizontal braces can 
be reduced and even eliminated. It should also be noted that in locations of transverse 
joints, the longitudinal reinforcement of the precast slabs is interrupted and therefore, 
additional rebars (joint reinforcement) are necessary. Comparing section a–a with b–b 
in Figure 2.6 shows that the required amount of joint reinforcement should be increased 
due to its reduced effective depth. It is also considerably higher than the longitudinal 
reinforcement of the precast slabs.

The prefabrication rate can be considerably increased by using precast deck elements that 
cover the cantilever parts together with the adjacent internal bays; see Figure 2.7. Precast 
elements of this type are specially designed with box-shaped pockets so that an arrangement 
of the shear connectors in groups is possible. Transverse reinforcement fully anchored in the 
precast units between the adjacent rows of the connectors should be sufficient enough in 
order to prevent premature local failure of the precast or the in situ concrete. Obviously, the 
pocket’s reinforcement has to be perfectly suited to shear connectors’ distribution since the 
available tolerances are limited. It has to be noted that EN 1994-2 allows the arrangement 
of shear connectors in groups but special precautions should be taken into account from 
the designers considering fatigue of connectors and concentrated forces due to nonuniform 
longitudinal shear.

In order to prevent overturning of the outer precast planks during concreting of the deck, 
the direction of concreting has to be from the inside to the outside. In cases of decks with 
large sidewalks, the outer elements must be anchored to the internal girders. This requires 
special detailing and extra costs.

It is obvious from Figure 2.7 that steel girders during concreting carry their self-weight 
and also the weight of the precast slabs and fresh concrete. Additional construction loads 
may need to be taken into account. Excessive deformations due to this loading may result 
in increasing the dimensions or the precambering of the steel girders. Moreover, buckling 
phenomena of the girders may lead to an increased number of bracings and crossbeams.

Before concreting Final stage

a

a

Section a–a

Outer precast element
Transverse rebars

Distribution plan of precast elements

Groups of shear connecors

Figure 2.7 Composite bridge with a partially prefabricated deck slab.
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Figure 2.9 shows a simple solution that activates shear connection of the girders with the 
precast slabs prior to casting the in situ concrete topping (partial composite action). The 
latter is easily achieved by using short studs welded together—double-headed studs; see 
Figure 2.8.

After placing the precast planks, grouting of the lower studs with mortar follows. 
Therefore, a composite T section of high stiffness is formed that ensures limitation of deflec-
tions and the desired stability during in situ deck concreting. Therefore, a buckling analysis 
is conducted for an ultimate limit state (ULS) load combination that only includes the dead 
loads of the steel girders, the prefabricated elements, and the mortar, including possible 
construction loads.

Due to the low magnitude of the previous loads, the stability check during erection 
can be of minor importance even for medium-span bridges. The partial composite action 
method may offer bridges free of intermediate braces, thus combining aesthetics with 
economy.

From a structural point of view, it is worth mentioning that precast slabs of Figure 2.9 
must be equipped with transverse hooked rebars that surround the shear studs. The hooked 
rebars transmit the longitudinal shear forces from the headed studs’ area to the precast slabs 
ensuring the cooperation of the entire precast concrete flange with the steel girder (dowel 
action). From a constructional point of view, it has to be noted that the designer should 
provide the necessary detailing so that a conflict between the hooked rebars and the studs 
during erection is avoided. This is important since bending of the hooks on site is impossible 
due to their short length.

In conclusion, the use of double-headed studs represents a very interesting solution for 
composite bridge engineering. Unfortunately, there are not many bridges constructed with 
this type of shear connectors, and consequently, experience is limited. EN 1994-2 does not 
exclude this type of connectors and can be treated similar to an equivalent single one. A soft 
pad placed under the intermediate head in order to prevent a mechanical interlocking is also 
advised to be used; see Figure 2.8.

Soft pad

Figure 2.8 Double-headed stud.
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2.3.3 Plate-girder bridges with fully precast concrete deck slab

In cases of temperatures below 0°C, cast-in-place activities are avoided, and fully prefab-
ricated deck slabs are preferred. Nowadays, innovative fully precast concrete elements are 
used offering multiple advantages as rapid construction, high quality, and reduced labor 
costs and construction during freezing periods; see [2.4]. In Figure 2.10, a composite bridge 
with a deck slab as full precast unit is shown. The precast elements are equipped with over-
lapping tongues so that dry joints can be achieved. The tongues should be specially designed 
in order to prevent loss of contact between the prefabricated slabs during vehicles passing 
over the joints. Above the steel girders, void channels are filled with in situ concrete through 
grout holes. Transverse reinforcement in the slab with spacing equal to this of the shear 
connectors ensures safety against longitudinal splitting and damage of the console during 
erection.

The transverse joints between the precast units should always be under compression 
in order to prevent cracking and water leakage under service loads. Therefore, the dry 
joint technique is recommended only in cases of simply supported bridges. Continuous 
bridges with fully precast deck slabs can be designed when the deck is prestressed by 
tendons before mounting of the shear connectors (pretension). Posttension can result in 
overloading of the studs and compression of the steel girders reducing their rotational 
capacity.

Despite the advantages of the fully prefabricated deck slab method, the following dis-
advantages have to be taken into account. From both design and constructional point of 
view, a high know-how is required. In addition, not many precast companies can deliver 
full precast deck slabs, and therefore, high prices due to limited competition should be 
expected.
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Cross section

Structural
system

Loading = steel girders +
precast planks + mortar

Loading = concrete topping +
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rebars

Precast
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Double headed
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Placing of the
precast elements

Grouting of the
lower studs

Casting of topping

Figure 2.9 Partial composite action concept.
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2.3.4  Plate-girder bridges with composite slab 
deck with profile steel sheeting

Instead of using prefabricated elements as permanent formwork, cold-formed steel 
sheets can be used as well; see Figure 2.11. This is an interesting fast-track construction 
method for multi-girder bridges with spacing not greater than 3 m. Profile steel sheets 
are much lighter than precast planks, and they act both as a platform for construction 
and as shuttering for the wet concrete; elastic strips are not needed. Moreover, profile 
steel panels can be easily field cut using a grinder or nibbler. Yet, field cut should be kept 
to a minimum.

Steel panels should be placed simply supported since through deck welding of the studs is 
not allowed. Furthermore, panels should be fixed with shot-fired fastenings to the underly-
ing girders to prevent movements prior or during concreting. It is important to note that 
the deck slab must be designed as a reinforced concrete slab with a total height equal to the 
depth of concrete above the ribs. Unfortunately, EN 1994-2 does not provide any regula-
tions for the application of steel decking composite slabs in bridges.

The concrete’s depth above the ribs should be at least 25 cm. This is due to the fact that 
overloading of an underlying girder is in cases of slim slabs possible. Normally, deck slabs 
with profile steel panels have a total thickness with a minimum value of 30 cm. In addition, 
the slab’s main reinforcement should be located above the panels’ ribs. Increasing reinforce-
ment should not be followed for raising the slab’s stiffness.

There is a huge variety of profile steel panels in the domestic markets. Use of open-through 
profile sheets with a minimum thickness of 1.50 mm is recommended. It has to be noted that 
profile steel sheets must be dimensioned against buckling in the wet-concrete condition. The 
selection of a suitable decking is usually made using manufacturers’ design charts or tables. 

Before grouting
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b b
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a
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Section a–a
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Figure 2.10 Composite bridge with a fully prefabricated deck slab.
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In verification for steel sheeting, the ponding effect has to be taken into account (increased 
weight of wet concrete due to deflection of sheeting).

Temporary supports for the steel panels during concreting may be in some cases neces-
sary; see Figure 2.12. Trusses or telescopic beams attached on the main girders offer the 
ability of bridging long bays with steel decking of reduced height. However, this is not 
always a cost-effective solution since connecting and removing the support elements demand 
numerous man-hours.

An easier method to set up a composite bridge with a steel decking on long distanced gird-
ers can be followed by casting the deck slab in two phases; see Figure 2.13. The first concrete 
layer is poured on high-bond steel sheets. The layer must be as thin as possible so that lateral 
torsional buckling of the steel girders during concreting is prevented and plan bracing for 
the upper flanges is reduced and even eliminated. Limited deflections for the sheeting and a 
negligible ponding effect can also be achieved.

After concrete hardening, the second layer is then poured on a reinforced concrete slab. 
The hardened layer offers a stiff construction platform and acts as diaphragm against wind 
or earthquake loadings during second-phase concreting. Attention must be paid to the rein-
forcing of the layers’ interface against slipping. Bent-up bars or lattice girders can be used. 
A reinforcing detail is shown in Figure 2.13.
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Figure 2.11 Composite bridge with profile steel sheets as shuttering.
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In Figure 2.13, one can also see that the solution of concreting the deck slab in two phases 
can be effectively combined with double-headed studs. A partial shear connection during 
construction can be consequently achieved for both transverse and longitudinal direction. 
This solution may be convenient to follow in cases of self-supported bridges with spans 
larger than 25 m.

In cases of non-compact thin webs, the configuration of Figure 2.14 is an interesting one. 
Steel panels are placed below the top flange of the steel girders on angle cleats welded on the 
webs. With this solution, thick slabs do not affect the slenderness of the bridge; this can be 
important when the available construction depth is highly restricted.

Excessive flexural stresses can limit the web’s resistance and lead to local buckling. A situ-
ation like this can be critical for non-stiffened thin webs both during construction and in the 
final stage. Angle cleats act as longitudinal stiffeners enabling the web to reach an adequate 
level of strength. An optimum design should obviously ensure full plasticity, but this is not 
always feasible. One can also see that angle cleats are welded in an asymmetrical way so that 
a greater part of the web is protected.

Due to encasement in concrete, solution A provides upper flanges of small dimensions (eco-
nomical steel consumption). Additionally, no cover is provided for the top of the  connectors 

Steel decking

Before concreting
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Figure 2.13 Bridge with two concreting phases.
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Figure 2.14 Shallow composite sections with angle cleats and steel decking.
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allowing a shallower construction. A zero cover provision for the studs can be found in EN 
1994-2 and is recommended for nonaggressive environments.

Solution B may be more attractive for small-span bridges. EN 1994-2 provides calculation 
formulas for the shear resistance of horizontal lying connector studs taking into account the 
surrounding reinforcement. This gives the designer the ability to form cross sections without 
upper flange leaving this role for the angle cleats. Looking Figure 2.14 closer, one can also 
see that angle cleats with unequal members can sometimes be preferable. The longer mem-
bers give the steel girders a greater bending capacity around the weak axis, thus increasing 
their lateral torsional buckling resistance in wet-concrete condition.

2.3.5  Plate-girder bridges with partially 
prefabricated composite beams

For reasons discussed before, it is often preferable, where possible, to install shear connec-
tion prior to concreting. Middle-span bridges with lengths larger than 35 m can be erected 
in an economic way by the use of partially prefabricated composite girders; see Figure 2.15. 
Steel girders rigidly connected through shear studs with thin precast slabs 100–120 mm 
can be fabricated in factory. Obviously, the connected precast slabs serve as formworks for 
the in situ concrete supplement and stabilize the steel girders, thus eliminating the use of 
intermediate bracings.

Prefabricated girders with a maximum length of 60 m can be transported by road and 
lifted into place by using mobile cranes. Girders with a length of 80 m can be transported 
by water.

During the last 15 years, partially prefabricated composite girders are implemented in 
Germany with great success. This solution is known as the VFT construction method and 
leads to numerous advantages for both the owner and the users; see [2.43], [2.44], and 
[2.52]. These advantages are short construction time, low steel consumption, and high sus-
tainability. In cases of bridges rigidly connected to piers/abutments (integral bridges) with 
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Before concreting After concreting

Figure 2.15 Bridge with prefabricated composite girders.



Types of steel–concrete composite bridges 27

variable construction depth, impressive slenderness ratios are feasible, h/L = 1/45 for high-
way bridges and 1/35 for railroad ones.

2.3.6 Double-girder bridges

For the curved bridge of Figure 2.16, two different section types are shown. Cross section 
A is a double-girder bridge with main girders of unequal heights. In this way, a severe 
inclination of the deck slab can be achieved. Cross section B is equipped with identical steel 
girders that are positioned at different levels. This results in a lower steel consumption but 
can be problematic when launching is selected as the bridge’s construction method.

Double-girder bridges are mainly suitable for medium spans. The main advantage is that 
there are fewer girders to erect and fewer piers to construct. The main negative feature of a 
double-girder bridge is its zero redundancy. Indeed, if a girder is damaged, internal forces 
cannot be redistributed to an adjacent beam and collapse is highly possible.

Bridges with symmetrical cross sections are also called twin-girder bridges; see Table 2.2.
In Figure 2.16, one can also see the variable depth of the deck slab in transverse direction. 

The slab’s depth is usually 25–30 cm at deck center and 35–45 cm at main girders. Deck 
slabs with spans less than 15 m can be easily constructed as reinforced concrete ones. For 
larger widths, a transverse prestress is unavoidable.

Main girders are fabricated by shop welding into I sections. In cases of curved bridges, main 
girders are usually accommodated in I-beam construction by connecting a series of straight sec-
tions. For the flanges, plates wider than 600 mm and thicker than 60 mm are not rare. Designers 
should always have in mind possible steel’s strength reduction in cases of thicker plates.
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Figure 2.16 Double-girder bridge.
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For continuous systems, steel girders with variable depth are preferred in order to achieve a 
better aesthetic and an improved clearance. At internal supports, steel cross sections are always 
heavier than those at spans due to the interaction of strong negative bending moments and shear 
forces. The web thickness mainly depends on the steel girder’s height and at spans rarely exceeds 
20 mm. In multilane bridges, the web thickness at hogging moment areas can reach 35 mm.

Table 2.2 Preliminary design for twin-girder bridges
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Example
A three-span bridge with a deck slab width: 
bc = 12.3 m

Girder spacing (a) 8.42 m
Main girder depth (ha) 1.51 m at pier

1.51 m at midspan

24.5 m 42.0 m 24.5 m
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Slab thickness (hc) 0.39 m at main girders
0.29 m at deck center

Bottom flange width (bfu) 0.94 m
Top flange width (bfo) 0.84 m
Steel consumption 135.9 kg/m2
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Cross girders at spans are 500–700 mm high and are placed at a constant distance of no 
more than 8 m. Through this, a steel frame with an adequate stability during erection is 
formed. The connection of the main girders with the transverse ones must be classified as 
rigid, and therefore, thick gusset plates are used. Bolted connections are usually avoided. 
A T-section link welded to the cross girders’ web (see section a–a in Figure 2.16) ensures 
the members’ continuity. For small deck widths, standard half T sections are preferred; for 
larger widths, welded T sections are more suitable. Cross girders at piers are stiffer than 
those at spans with depth ranging from 600 to 1600 mm. In continuous bridges, high values 
of hogging moments at piers can result in lateral torsional buckling of bottom flanges. In 
such cases, the cross girders spacing is reduced. Table 2.2 summarizes a preliminary design 
for twin-girder bridges with a deck slab of variable depth; see [2.32].

2.3.6.1 Ladder deck bridges

Twin-girder bridges with cross girders rigidly connected with the deck slab are generally 
known as ladder deck bridges; see Figure 2.17. Due to its simplicity, the ladder deck configu-
ration has been successfully implemented in many European countries and especially in the 
United Kingdom. Experience shows that this arrangement is convenient for bridges with a 
dual two-lane carriage way.

The girders’ spacing fits to the width of the slab. Main girders are mostly welded cross sec-
tions with wide and thick plates. Cross girders are normally spaced every 3.0–3.5 m so that 
a depth of 25 cm for the deck slab can be suitable. The main and cross girders effectively 
act as supports for the deck slab allowing an economical reinforcing against global and 
local bending. Cross girders transfer the vertical loads from the deck slab to main girders. 
Torsional overloading of the main girders must be avoided, and therefore, cross girders are 
designed as simply supported beams.
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Pinned connection with
pre-stressed bolts

Cross girderAt mid-span

a

a

Before concreting After concreting

Figure 2.17 Ladder deck bridge.
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A bolted connection of the cross girder’s web with the stiffener of the main girder is 
shown in Figure 2.17. The connection must be designed as slip resistant at ULS according 
to EN 1993-2 so that cross girders restrain the main girders against lateral torsional buck-
ling. In addition, tensile stresses in concrete due to hogging moments at the centroid of the 
bolt group should be carefully calculated, and slab cracking must be avoided. EN 1994-2 

Table 2.3 Preliminary design for ladder deck bridges
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Example
A three-span bridge a deck slab width: bc = 12.3 m

Girder spacing (a) 8.42 m
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Main girder depth (ha) 1.51 m at pier
1.51 m at midspan
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Cross girder (hcross) 750 mm
Slab thickness (hc) 24–26 cm
Bottom flange width (bfu) 0.92 m
Top flange width (bfo) 0.82 m
Steel consumption 164.9 kg/m2



Types of steel–concrete composite bridges 31

does not provide information on the calculation procedure of these stresses, thus forcing 
designers to adopt conservative assumptions; see [2.16].

In Table 2.3, one can find preliminary design equations for ladder deck bridge cross sec-
tions; see [2.32].

In some countries, main and cross girders are welded together on site. The top flanges of 
the crossbeams are welded straight onto the main girders’ flanges; see figures in Table 2.3. 
These welds are hidden under the deck slab after concreting making future inspection impos-
sible. Fracture of these welds due to fatigue is at these regions highly possible, and therefore, 
welded joints are not recommended. Nowadays, cantilever girders are implemented in the 
majority of the ladder deck bridges. This helps considerably the construction procedure and 
ensures a proper load transfer between the bottom flanges of both the cross girders and the 
cantilever girders.

2.3.7 Bridges with closed box girders

For spans larger than 60 m, plate girders can be uneconomical due to excessive flange sizes, 
complicated bracing systems, and/or temporary supports. In such cases, the use of box gird-
ers can result in less steel consumption and to a more aesthetic appearance; see Figure 2.18. 
Box girders are closed cross sections with a high value of torsional rigidity leading to an 
improved stability during both the erection and the final stage. Therefore, intermediate 
bracings can be avoided, and cross girders are located mainly at pier areas. Box-girder sec-
tions may have an orthogonal or a trapezoidal shape and are very effective in cases of curved 
road layouts where torsional loadings are critical.
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Figure 2.18 Closed box-girder bridges.
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Bridges with two separate box girders are successfully implemented in many 
European countries mainly for carrying minor roads with two lanes. The steel beams 
are fabricated in the shop and then are transferred on site. Where possible long steel 
girders are easily erected by cranes, otherwise launching can be chosen as the most 
convenient construction method. A depth to span ratio equal to 1/30 is for continuous 
systems feasible.

Due to the high slenderness of the plates, longitudinal and transverse stiffeners for the 
webs and/or for the flanges may be unavoidable (plates of class 4). The stiffeners secure 
the plates against buckling, but complicated welding procedures and a great amount of 
 man-hours are required. Furthermore, the designer must allow through manholes suffi-
cient ventilation for internal inspection and openings for access in emergency situations. 
The previous lead to a demanding detailing that considerably raises the structure’s cost. 
It is also worth mentioning that a dense net of welds is associated with a high failure risk 
due to fatigue. EN 1993-1-9 does not cover all the detail categories that may arise during a 
fatigue design procedure of such bridges. Therefore, a multi-box-girder configuration with 
narrower steel cross sections may sometimes be seen as a simpler solution.

With multiple narrow box girders, the need for longitudinal stiffeners can be eliminated 
and a slenderness h/L equal to 1/45 is achievable. Prefabricated composite girders can also 
be erected offering a high prefabrication rate and a protection for the upper flange during 
concreting or launching; see [2.38]. Multiple boxes are usually preferred for wide roads with 
more than two lanes and for spans up to 50 m.

It is important to note that closed cross sections exhibit a different structural behavior com-
pared to typical I girders. Due to the high torsional rigidity of the closed girders, strong tor-
sional moments will appear. Torsion is followed by an out-of-plane deformation of the section 
(distortion) that is associated with an interaction between shear and normal stresses. The 
previous stress situation is known as warping and can result in unexpected failure modes dur-
ing erection and the final stage; such failure modes can be plate buckling at serviceability limit 
state (SLS), weld ruptures due to fatigue at welds, and local yielding of structural steel at unex-
pected positions. Thus, a detailed investigation for appropriate internal stiffening that prevents 
excessive distortional effects and high warping stresses should be conducted.

Figure 2.19 shows a comparison of a closed cross-sectional beam with and without inter-
mediate plated diaphragms. Intermediate diaphragms ensure that the shape of the cross 
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Types of steel–concrete composite bridges 33

section remains unchanged and that torsion is distributed as a shear flow along the box’s 
perimeter. Moreover, they act as rotational springs “captivating” the distortional effects 
between adjacent diaphragms. Plated diaphragms must be connected along all four edges of 
the box for a better fatigue performance.

The efficiency of the internal stiffening depends on the flexibility and the spacing of the 
diaphragms. Flexible diaphragms result in excessive out-of-plane deformations that may 
considerably increase the instability risk. On the other hand, very stiff diaphragms may lead 
to high values of warping stresses especially at positions where webs and flanges are met. 
It is obvious from the previous that intermediate diaphragms should not be considered as 
secondary structural elements and neglected during structural analysis. The finite element 
method is preferred as the most accurate analysis method for closed girder bridges due to the 
calculation complexity of the distortional effects.

At supports, plated diaphragms transfer strong shear forces from the webs of the box 
girders to the bearings; see Figure 2.18. Support diaphragms are much thicker than the 
intermediate ones and are equipped with vertical stiffeners; see section b–b. The stiffeners 
protect the diaphragm against buckling and are connected to the top flange to avoid fatigue 
problems. In other words, a stiff and high-capacity internal column connecting the lower 
with the upper flange at supports ensures a safe loading transmission from the upper struc-
ture to the piers.

Alternative stiffening solutions to diaphragms can be triangular cross frames or ring 
frames. The selection of the appropriate type mainly depends on the cost-effectiveness and 
the fabrication simplicity. Unfortunately, there are no specifications in the Eurocodes for 
structural elements such as cross girders and diaphragms. Guidance notes for best practice 
based on experience can be found from country to country; see, for example, [2.23].

Attention must be paid at the final stage since the torsional rigidity of the main girders 
may lead to an overloading of the adjacent elements such as cross girders or the deck slab.

The torsional restraint offered to the slab by the main girders results in high-tension 
forces on the shear studs at the corner of the box; see Figure 2.20. Without the appropriate 
reinforcing, a pullout concrete failure is possible; see Figure 12.5.
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Figure 2.20 Local failures due to torsional rigidity.
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Care should also be taken to avoid local bending of the top flange due to tension of the 
studs. Such failure can take place when the flange is very thin.

A non-negligible part of the torsional moment is expected to be transferred as bending 
moment to the deck slab. As a consequence, cracking in the vicinity of the webs at SLS is 
possible. This is more critical in cases of long distance girders.

Closed box girders have wide flanges, and due to the shear lag effect, a part of them may 
be considered as ineffective during design. Indeed, according to EN 1993-1-5 for flanges 
with a width bf greater than Le/25, where Le is the length of the equivalent span (distance 
between zero bending moments), a reduced effective width must be applied. The designer 
must be aware of this limitation and if possible avoid flanges with excessive widths. Shear 
lag can significantly affect the magnitude of the peak stresses during fatigue design.

It can be concluded that closed box-girder bridges are offered in certain cases as an attrac-
tive solution. The designer should be experienced with this type of bridges since their struc-
tural behavior differs significantly from that of the I-girder ones. Usually designers contact 
the steel fabricator for consulting prior to the design process. Pre-dimensioning equations 
is almost impossible to offer, and therefore, a trial and error procedure must be followed to 
reach an optimal solution.

2.3.8 Open-box bridges

For continuous bridges with a maximum span length greater than 50 m, a solution with a 
single open-box girder is in many cases the most cost-effective and aesthetical one. A typical 
cross section of an open-box-girder bridge that carries a symmetrical bidirectional banked 
road is demonstrated in Figure 2.21. The box girder has a trapezoidal shape and consists of 
a wide bottom flange equipped with longitudinal stiffeners; the stiffeners protect the flange 
from plate buckling due to high compression stresses that may arise during the final and/or 
the erection stage.

The webs are slightly inclined with the angle θ being equal to a value between 15° and 
25°. This gives the cross section a more attractive appearance. Furthermore, the webs’ incli-
nation is important for the following reasons:

• The reduced width of the bottom flange leads to a better structural performance 
because a smaller part of the flange will be ineffective due to the shear lag effect. It 
makes also the plate buckling verification easier and achievable with fewer stiffeners.

• The distance between the bearings is smaller, and thus, bending of the transverse 
frames at supports becomes easier to control.

• Small-sized abutments can be designed allowing the construction of a slender 
substructure.

The steel girders are opened cross sections and without internal stiffening are vulnerable to 
torsional and distortional effects. For this reason, transverse frames of T sections are welded 
to the webs and the bottom flange and are placed every 4–7 m at spans; see also sections 
a–a and b–b in Figure 2.21. At piers, the transverse frames must form a fork-bearing sup-
port capable of transferring high torsional support reactions from the upper structure to the 
abutments. Therefore, the transverse frames at supports are closer with each other and much 
stiffer than those at spans.

It therefore becomes obvious that the bending rigidity of the transverse frames determines 
the torsional rigidity of the entire bridge. In most cases, the torsional rigidity due to the 
transverse frames is insufficient, and additional stiffening is necessary. This is easily achieved 
by supporting the frames with internal trusses consisting of diagonals and tension members. 
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Diagonals are usually closed cross sections ensuring an adequate buckling resistance. Double 
L or C sections are used as tension members. The designer must be sure that no reversed 
loading will take place during erection in these members; this can happen due to wind or 
earthquake during the erection phase. In such cases, closed cross sections must be used for 
all internal members.

Taking a closer look in Figure 2.21, one can also observe that the plates of the box girder 
at supports are thicker than those at spans. This is mainly due to the strong support reac-
tions and the zero tension capacity of concrete in hogging moment areas. The thickness of 
the bottom flange usually varies longitudinally between 25 and 35 mm within the spans 
and between 60 and 80 mm at supports. At piers, the bottom flange is also slightly wider 
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than the standard width allowing a connection with an external stiffener above the bearing 
area; see detail 1. The width of the bottom flange should not exceed the maximum width 
determined by the fabrication. This is usually 5 m for bridges with straight road layouts. For 
bridges with curved deck, the width to be chosen must be less than 5 m, since the bottom 
flange will be cut from rectangular plates with a maximum width of 5 m.

The thickness of the webs varies also longitudinally between 14 and 18 mm at spans and 
20–25 mm at supports. The previous values are feasible only through the application of lon-
gitudinal stiffeners capable of resisting high normal and shear stresses; see detail 2.

The thickness of the top flanges ranges between 20 and 40 mm at spans and at supports 
can exceed 100 mm. Accordingly, the flanges’ width at spans varies longitudinally from 600 
to 800 mm and at supports can reach 1200 mm.

In many bridges, the overall width of the bottom flange is slightly greater than the dis-
tance between the webs; see detail 1. This gives enough space for the outer welding and is 
advantageous during launching because launching devices can be placed directly under the 
webs. However, it has the disadvantage of water or dirt accumulation in the corner.

In the previous, a typical box-girder bridge and its main structural elements were 
described. Different cross-sectional geometries can also be implemented. The choice of the 
optimum solution depends on several factors that were already commented in Section 1.1. 
Different cross-sectional cases are shown in Figure 2.22.

Case A depicts a box-girder bridge in which the top beams of the transverse frames are 
rigidly connected with a semi-precast deck slab through shear studs. The combination of 
directly supporting beams together with cantilever girders and precast slabs offers a high 
prefabrication rate. Therefore, complex concreting operations with mobile formworks are 
avoided; see Figure 2.3. It is also easy to observe that internal trusses are missing. This is 
due to the fact that the rigidity of the transverse frame is considered as sufficient. Indeed, 
the transverse frame consists of double T sections (see section b–b in Figure 2.22) rigidly 
connected with the composite crossbeam and the bottom flange. Such frames can offer an 
adequate stiffness in cases of narrow boxes. A load path through additional plates between 
the crossbeams and the cantilever beams ensures a secure transmission of internal forces 
through the webs. At piers, instead of transverse frames, plated diaphragms have been 
chosen. Diaphragms are preferred in cases of very large torsional effects, for example, due 
to high horizontal curvature. The diaphragms have a thickness of 30–60 mm and a top 
flange that is connected to the slab. They are heavily stiffened in order to possess sufficient 
resistance and in-plane stiffness. The stiffening of the diaphragms is not a straightforward 
procedure and is conducted through complicated plate buckling analysis. Manholes necessary 
for inspection complicate the analysis, and finite element models are used.

In case B, the bottom flange has an inclination corresponding to the road banking. This 
geometric configuration is followed in cases of heavily banked roads (>2.5%) so that webs 
of equal depth can be designed. Banked bottom flanges can be problematic when launch-
ing is chosen as the bridge’s erection method. One can also see the existence of a reinforced 
concrete slab rigidly connected through headed studs with the bottom flange. This is known 
as double composite action and is followed when a great amount of longitudinal stiffeners 
or an excessive thickness increase is necessary for ensuring the stability of the bottom flange 
at supports. The designer must pay attention to the fact that secondary internal forces will 
develop due to the rheological behavior of the bottom composite slab. This needs a detailed 
time-dependent analysis in which cracking of the deck slab and creep and shrinkage of the 
bottom slab are taken into account. Unfortunately, EN 1994-2 does not offer a design pro-
cedure for cases of double composite action.

Case C shows a cross section with a heavily banked road, a usual case for curved bridges 
with high values of horizontal curvature. The weight difference at webs’ heights causes 
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distortional forces during both the erection and the final stage. These effects must be care-
fully considered during analysis. One can also see that the distance between the support 
bearings is larger than that of the webs. This can be the case when a large lever arm for the 
bearings is needed due to high torsional support reactions. This problem is solved through 
the lateral extension of the stiffened diaphragm; the extended part is generally known as 
ear. The diaphragm’s extension is an interesting solution that allows also having a wider 
bottom flange at piers. It may also be observed that open longitudinal stiffeners were used 
for both the webs and the bottom flange. Instead of trapezoidal stiffeners, T, C, and Γ sec-
tions are also used in composite bridges. The choice of the appropriate stiffener is discussed 
in Chapter 8.

Section a–a

Section b–b Web
b

Directly supporting
cross-beam a

a

b
Manhole

At mid-span
At pier

Precast plank
Cantilever

girder

Sti�ened
diaphragm

A

Horizontal sti�ener

Vertical sti�ener

External vertical
sti�ener Internal vertical

sti�ener

At mid-span

At pier

“Ear”

At mid-span

At pierBottom slab
(cast-in-place)

B

C

Figure 2.22  Different types of box-girder cross sections. (A) With composite cross-beams, (B) with inclined 
bottom flange and haunches, and (C) with heavily banked road.



38 Design of steel–concrete composite bridges to Eurocodes

With Figure 2.22, cross-sectional configurations, depth to main span ratios h/L varying 
from 1/15 to 1/25, are usually feasible. More appealing slenderness values can be achieved 
with multicell box girders; see Figure 2.23. Due to the web in the middle, a greater part of the 
bottom flange becomes effective, and therefore, both resistance and stiffness are increased. 
This is important in cases of bottom flanges with widths larger than 5 m. Furthermore, 
shear and torsional capacity of the cross section is obviously higher.

Sections a–a and b–b depict an interesting detailing that can be advantageous when a 
transverse launch is employed to move the steel girder to its permanent bearing location. 
At piers, an external transverse frame is formed by welding a T stiffener to the bottom 
flange and the webs. This increases considerably the bending resistance of the cross frame. 
Moreover, concentrated forces induced from the launching devices to the diaphragm are 
distributed in a more uniform manner.

In addition, the multi-supported deck slab requires less reinforcement, and transverse 
prestress is avoided. The middle flange is also slightly higher than the adjacent ones, and 
the deck slab is easily built with the desired inclination. This leads to a reduced volume of 
surfacing materials that is important for bridges with wide decks.

There is also an aesthetical feature in the bridge of Figure 2.23 that has to be noticed. 
The outermost flanges project only on the inner side of the web. This is believed to improve 
the appearance of the bridge although many designers argue that it is not noticed by most 
people.

Bridges carrying roads with more than two traffic lanes are in general difficult to 
construct, and therefore, twin bridges with separate deck slabs and piers are preferred 
by many designers as the simplest solution; see Figure 2.24. The main advantage of the 
twin bridges configuration is that the full traffic can be diverted from the one bridge on 
the other during maintenance period. Disadvantageous is that two bridges must be built 
instead of one.
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When for both bridges the road layout is exactly the same, only one structural system 
should be analyzed. It is important to notice that in seismic regions the joint between the 
decks must be large enough in order to avoid an earthquake-induced pounding.

Although twin bridges are convenient solutions, designers sometimes prefer more difficult 
alternatives such as the super bridges of Figure 2.25. This can be due to high aesthetical 
and/or environmental demands. Single-box bridges with very wide decks (>20 m) carry-
ing multilane roads are very attractive and slender in constructions. Case A is a single-box 
girder that carries two roads of different directions. The left road has one lane more than 
the right one. Therefore, the cross section is constantly under torsion. A system of internal 
and external diagonals forms a transverse truss that supports the deck slab and resists the 
traffic loads. The external diagonals act also as props for the cantilevers whose length may 
in certain cases be greater than 10 m.

Case B shows also a wide deck bridge. Interesting is that the top part of the transverse truss is 
not a “heavy” crossbeam but a flexible steel chord; see section a–a. The cord consists of a steel 
plate with shear studs welded on it. It becomes after concreting part of a composite member that 
is subjected to different types of loading; see section b–b. These are bending due to local traffic 
loads and obviously tension. The designer must be aware of the difficulties that may arise during 
the fatigue verification of the connection of the chords with the longitudinal elements. A special 
detailing is therefore necessary. Different types of transverse chords with comments on advan-
tages and drawbacks can be found in [2.12]. Numerous applications of bridges with transverse 
composite tension members are mainly found in Germany; see also [2.31].
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2.3.9 Arch bridges

Typical arch bridges consist of two or more parallel arches that carry the bridge’s deck 
through hangers. The hangers are connected with a plane grillage system of transverse 
and longitudinal beams that supports the deck slab; see Figure 2.27. This is a very elegant 
configuration that is preferred in cases of rivers and canals because it gives enough under 
clearance. Arch bridges are usually simply supported systems that are used for span lengths 
ranging from 50 to 180 m. The maximum value of the total construction depth is in most 
cases between 1/5 and 1/6 of the span length. More demanding slenderness values can be 
asked due to architectural reasons and not structural ones.

The structural performance of arched bridges is schematically demonstrated in Figure 2.26.
The dead weight of the deck together with the traffic loads is transferred from the transverse 

beams to the edge girders that are also known as stiffening girders. The hangers behave as inter-
mediate supports for the stiffening girders and transmit the vertical loads to the upper part of 
the structure, the arches. Obviously, the arches are under compression, and therefore, buckling 
is highly possible. Due to this reason, arches are made of reinforced concrete or of steel closed 
cross sections. In pure arched bridges (Figure 2.26a), the stiffening girders are connected to the 
arch only by the hangers. The arch thrust is transferred to the foundation and the soil. When 
the stiffening girders and the arches are rigidly connected with each other at the bridge ends 
(Figures 2.26b, c and 2.27), the thrust is transferred to the stiffening girders that behave as ten-
sion ties. These systems are known as bowstring arches [2.13] or arch-and-tie bridges.

The arches have usually parabolic form that follows the bending moment diagram of a 
simply supported beam with a uniform loading. This ensures that arches are uniformly com-
pressed under self-weight and bending moments remain low. Biaxial bending due to wind 
or earthquake can take place, and therefore, symmetrical cross sections of closed geometry 
are chosen. It has to be stated that a precise buckling analysis must be conducted. This has 
to be done by calculating the critical buckling factors for every load combination and the 
corresponding buckling modes. This is a demanding design procedure that severely affects 
the morphology and the cross-sectional geometry of arches. EN 1993-2 provides buckling 
factors and imperfection values for a second-order theory analysis of arched structures. 
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Figure 2.26 Role of the stiffening girder. (a) Without stiffening girder, (b) with stiffening girder, and (c) load path.
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A validation of the code’s proposed buckling factors with the results of a buckling analysis 
of a 3D model is in any case to recommend.

Stiffening girders behave as continuous systems with equally spaced concentrated forces; 
these are the support reactions of the transverse beams. As mentioned earlier, they also act 
as tension ties due to their “cooperation” with the arches. Thus, an interaction between 
bending and tension must be carefully taken into account in different positions along the 
bridge’s length. The most critical verification points are usually those of the hangers. For 
this reason, designers place the hangers at positions that are coincident to those of the trans-
verse beams. This obviously allows a more direct and economical force transfer.

Hangers are compact tension rods with the commonly used diameters ranging from 50 
to 140 mm. They are connected with the arches and the stiffening girders through gus-
set plates; see details 1, 2, and 3 in Figure 2.27. In details 1 and 2, one can see that the 

Detail 1

h

Arch girder

Hanger Detail 3

X “X”a

a

Detail 2

Gusset plate

Gusset plate

Stiffening
girder

Composite transverse beam

After concretingBefore concreting

Cross section

L
Elevation

Section a–a

Plan view

Figure 2.27 Arch-and-tie-bridge.



42 Design of steel–concrete composite bridges to Eurocodes

hollow-box cross section of the arc is penetrated by a thick plate. The external part of the 
gusset plate transfers the tension load from the hanger to the internal part that works as a 
diaphragm. It is welded with the hanger through double-sided fillet welds; different types 
of welds are also possible. It is important to note that hangers constantly vibrate under the 
action of wind and therefore, a careful fatigue detailing is necessary. The dynamic behavior 
of the hangers needs therefore to be investigated since measurements have shown that their 
damping capacity is very low [2.51]. In case of resonance, the stress variations at the edge 
connections will be maximized and may be the reason of an unexpected brittle failure. 
Central hangers are usually more sensitive against wind-induced vibrations due to higher 
slenderness. Designers usually calculate the natural frequencies of the hangers (as isolated 
elements) by taking into account the effects of the axial forces due to the imposed loads 
and the shrinkage stresses of the welds and by considering different types of supports at 
the edges; the natural frequencies should be greater than a minimum value (recommended 
is 7 Hz); otherwise, dampers are installed. EN 1993-1-11 covers issues of tension members 
but does not offer adequate guidance on the vibration control of hangers. Finally, hangers 
should be replaceable since they cannot endure the total design working life of the bridge.

Arch bridges with inclined hangers are shown in Figure 2.28. The main advantage of such 
structures is mainly aesthetical since the inclination of the hangers gives to the structure an 
aerodynamic shape. Due to their increased length, inclined hangers are more sensitive to 
vibrations and construction difficulties arise especially at the connections with the arches 
and the stiffening girders. In order to minimize the effects of vibrations, additional hori-
zontal stabilizing elements connecting adjacent hangers may be used, but this will have a 
negative effect on the appearance of the bridge.

In Figure 2.29, one can also see that the arch girders may be connected through top 
bracings. These braces are necessary for increasing the stability of the arch girders due to 
compression but also for enhancing the lateral stiffness in case of wind or seismic actions. 
Designers can choose different shapes for the bracing systems such as X, K, and Λ-diagonals 
or rigid frames; see also the network arched bridges in 2.4.7 that are preferably chosen for 
railroad applications. The decision of applying or not a top-bracing system is a difficult one 
since heavier arches may be finally more cost-effective and elegant alternatives.

The concrete slab may be separated from the stiffening girders in which case concrete is 
allowed to shrink or expand without affecting the steel elements. This may be seen advanta-
geous, but the positive effects of the composite action are lost. However, the structure loses 
its redundancy that is a necessary characteristic for modern bridges. In other arch bridges, 
the concrete slab is connected with the steel elements and in bowstring arches additionally 
prestressed by tendons in the longitudinal direction; this is due to the fact that concrete 
is part of the tie and its cracking may not be taken into account in design realistically. 
Figure 2.29 shows a bowstring arch where a horizontal end bracing system is provided to 
allow for the participation of the entire bridge deck in the transfer of the arch thrust. The 
deck is a cracked composite tension member with effective cross-sectional properties, as 
provided by EN 1994-2. This leads to more slender structural members and raises the com-
petitiveness of the “arched solution.”

Figure 2.28 Arch bridge with inclined hangers.
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A sensitive point in design of a concrete deck under tension is its shear resistance against 
the point loads of the wheels. When the crack width is excessive, the shear transfer is achieved 
by the dowel action of the reinforcement. The aggregate interlock becomes negligible, and 
the shear resistance decreases. In such a case, the reinforcing bars are constantly under cyclic 
bending, and fatigue failure is highly possible. For this reason, the maximum crack width 
should be limited to 0.1 mm for normal forces and to 0.2 mm for combined local bending and 
normal forces [2.13]. These values are smaller than those of EN 1992-2 for durability.

The erection of pure arch bridges starts with the construction of the arch that is done 
either on temporary falsework, if possible in swallow valleys, or by cantilevering in steep 
valleys or over water. In cantilevering, construction starts from the two springing points 
and continues with the position of new segments until the two halves are joined at midspan. 
During the progress of works, the parts of the arch in place must be temporarily tied back 
by cables. The prefabricated deck modules are then lifted and hung from the deck hangers 
that are connected to the arch.

Arch-and-tie bridges have the advantage of been external statically determinate. All steel 
parts including arches, hangers, and stiffening girders may be erected near the site and the 
entire bridge moved in place by barges. This is a common solution for medium-span river 
bridges. At the end, the deck is concreted. In that manner, the weight of the bridge during 
its put in place is reduced. Additional braces to ensure diaphragm action of the deck and 
temporary compression elements between the arch and the deck during moving operations 
are needed since the hangers are not in tension and therefore not effective.

2.3.10 Cable-stayed bridges

Cable-stayed bridges offer an economical and elegant solution for spans larger than 150 m 
and can be competitive for spans as long as 600 m; see Rion-Antirion multi-span cable 
bridge (www.gefyra.gr). The static behavior of a cable-stayed bridge is considerably differ-
ent from that of an arch bridge. A typical case is shown in Figure 2.30. The inclined cables 
that are connected with a central pylon work as stable, however, elastic supports for the 
deck. The vertical loads (permanent and traffic) are transferred through tension forces from 

Top bracing

Cross section

Plan viewHorizontal
end-bracing
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the cables to the tower and finally to the concrete pier. In contrast to arch bridges, the main 
girders are in most cases under compression, and therefore, closed cross sections such as 
composite boxes or steel boxes with orthotropic decks are preferred. The girders are in most 
cases shallow, and depths usually range from 1/60 to 1/80 the main span.

The towers may have different shapes and be made of structural steel or prestressed con-
crete. In general, the height of a pylon is about 1/6–1/8 the span. For reasons of strength 
and cost-efficiency, steel pylons are composed of segments with different dimensions that 
follow the normal force distribution. In Figure 2.30, one can see that the tower’s cross 
 section is a closed one, equipped with longitudinal and transverse stiffeners. Such cross 
 sections  “suffer” not only from high normal stresses but from high shear stresses due to 
shear and torsion. The complicated stress situation, the residual stresses due to the large 
number of welds, and the existence of holes in the plated elements make the design signifi-
cantly  difficult. In Chapter 8, one will read that EN 1993-1-5 for the dimensioning of plated 
elements does not refer to plates with holes. Therefore, nonlinear finite element analysis and 
an experimental verification may be necessary. Attention should be paid at the anchoring 
positions of the cables where stress concentrations are expected.

Modern cables are composed of groups of strands that are formed from steel galvanized or 
stainless wires. A commonly used type of cables is shown in Figure 2.31a, bundle of parallel 
strands (BPSs). A number of strands are closed around a core strand. Wires have a diameter 
3–7 mm and are made of high-strength steel with a tensile strength fu ranging from 1300 to 
1800 Mpa. After installation of the cables, additional corrosion protection is applied that 
usually consists of a polyethylene tube. Such tubes have discontinuous spiral on their surface 
in order to combat combined effects of wind and rain. The space between the rope and the 
tube is filled with a suitable hydrophobic material such as cement grout so that circulation of 
water and heat is avoided. An alternative solution is the parallel wire strand (PWS) shown in 
Figure 2.31b in which wires are bundled in parallel. PWS cables may have different shapes, 
usually a circular or a hexagonal one, and are usually chosen in cases of smaller loads.
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Figure 2.30 Cable-stayed bridge.
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Another type of cables is shown in Figure 2.32 and is known as locked coil rope (LC). 
One can see that deformed wires are used for the outside layer of a spiral rope. The main 
advantage of the LC cables is that the special corrosion protection that is necessary for the 
BPS and the PWS cables can be avoided; therefore, inspection and replacement are much 
easier. A disadvantage is the limited size that can be fabricated.

In Figure 2.32, the tension force–strain diagram of a LC is also shown [2.1]. One can 
observe that the initial value of the modulus of elasticity is the same as for structural 
steel. With increased stresses, the elastic modulus is decreased; for serviceability condi-
tions, this decrease may be up to 50%. The behavior of cables is considerably nonlinear, 
and this has to be taken into account by conducting a third-order or a large displace-
ment global analysis at both SLS and ULS. EN 1993-1-11 offers a stress-adjusted modu-
lus of elasticity E = f(σ) so that nonlinear deformation effects can be estimated. It is 
important to note that in cable-stayed bridges, composite members may be severely 
compressed. Therefore, the nonlinear behavior of the cables should be combined with 
the reduced cross-sectional properties of the composite members due to creep of con-
crete; see Section 6.1.2.

Cables are preloaded elements. This means that during and/or after erection, cables are 
prestressed so that the structure adopts the required geometric profile and stress distribution. 
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Finally, the BPS, PWS, and LC cables are mainly used as final-stage elements. During erec-
tion, other types of cables are used such as strand or spiral strand ropes; see EN 1993-1-11.

The erection of cable-stayed bridges starts with the construction of the pylons. It is fol-
lowed by successive cantilevering out of the pylons of prefabricated deck units suspended 
from the stay cables. This constitutes the main advantage of cable-stayed bridges over deep 
valleys and over waters.

2.3.11 Suspension bridges

Suspension bridges are generally preferred for spans over 600 m. A typical case of cable-
suspended bridge is depicted in Figure 2.33. The stiffening girder is suspended through 
hangers from flexible main cables. The main cables are curved and are hung from towers. 
At the edges, main cables are anchored in massive concrete blocks capable of resisting strong 
tension forces. However, there are some bridges where the cables are connected to the main 
girders. This avoids the heavy anchorage blocks but introduces high compression forces in 
the girders and needs the completion of the deck before starting the cable erection. Main 
cables and hangers may be BPS, PWS, or LC ropes.

Stiffening girders distribute concentrated loads, act as chords for the lateral system, and 
secure the aerodynamic stability of the structure. They may be single-box cross sections 
with orthotropic deck. An orthotropic deck is a continuous flat steel plate with stiffeners 
welded to its underside. Single-box girders with orthotropic deck allow the design of differ-
ent bridge types with considerable slenderness. The surfacing material is usually asphaltic, 
but due to the elastic and thermal properties of the steel plate, problems may arise, espe-
cially due to frost. Therefore, many designers are fond of stiffening trusses with concrete 
deck plate. Stiffening trusses are less slender than boxes with orthotropic deck, but they are 
advantageous due to their smaller air resistance.

A suspended bridge is obviously a flexible system, generally more flexible than cable-
stayed bridges. The long span associated with the narrow deck makes the aerodynamic 
stability for the major bridges the most significant issue. Fluctuating wind loads may lead to 
an unexpected buffeting response; see Figure 2.34a. This is a dangerous resonance phenom-
enon in which certain wind velocities favor vibration modes with higher frequency, usually 
the torsional ones. For this reason, the cross section of the stiffening girder has slanted walls 
and rounded corners. In certain cases, stiffening girders are equipped with vortex spoilers 
so that the performance of the bridge against wind gusts and vortices is further improved; 
see Figure 2.33. It is also worth mentioning that the cross-sectional shape of the deck is 
optimized by wind tunnel measurements in which the structure is tested at different angles 
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Figure 2.33 Cable-suspended bridge with orthotropic deck.
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of wind attacks. The effects of vortex-excited vibrations can be estimated according to the 
regulations of EN 1991-2-4.

Wind effects may be more severe during erection. The most efficient way to stabilize the struc-
ture against buffeting is to increase its fundamental frequency. This is achieved by temporary 
ropes (or stabilizing ropes); see Figure 2.34b. Use of stabilizing ropes can also help reduce the 
unbalanced bending moment in the tower during construction. After placing the permanent 
cables, the bridge takes its final form and stabilizing ropes are disconnected (Figure 2.33).

The erection of suspension bridges starts with the pylons. Subsequently, the main cables are 
erected. The most usual method for cable erection is the air-spinning method in which small, for 
example, 5 mm, wires are spun one by one. The wire is reeled onto an unreeling/reeling winch 
then it is pulled out from this winch making round trips over the catwalk. Each wire is placed 
around the strand shoe and fixed to both anchorages. The cable is made by uniting the individual 
wires together. The stiffening girders are assembled in unit blocks that are transported to place, 
lifted from the main cables to position, connected to the hangers, and field welded.

2.4 RAILWAY BRIDGES

2.4.1 General

A typical cross section of a railway bridge is shown in Figure 2.35. One can see the rail-
way infrastructure that comprises the permanent way (track), the access ways beside the 
track, and the associated plant equipment that allows the proper function of the railway. 
The track carries the railway traffic and consists of the rails, the sleepers, and the ballast. 
When the track is on curves, it is superelevated to compensate for the effects of centrifugal 
forces.
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Figure 2.34 (a) Torsional vibration due to wind and (b) temporary stabilization during erection.
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The rails are mainly steel bars laid on the sleepers, and their weight ranges from 55 
to 80 kg/m. In older railways, rails used to be bolted on the sleepers, but nowadays, 
continuous welded rails are preferred. The rails are pretensioned in order to remain 
stress-free and avoid buckling due to compression from braking–acceleration forces and 
thermal actions.

Sleepers pass under the rails and hold them at the right spacing. In high-speed routes, 
sleepers are usually of prestressed concrete, but when construction depth is very limited, 
shallow timber or steel alternatives are also used.

Ballast works as a resilient bed for the sleepers since it distributes the wheel loads onto 
the deck plate and allows for drainage. It consists of coarse stone, slag, or clinker about 
50–65 mm with a density of 20–22 kN/m3 and is mechanically compacted. The usual bal-
last depth under the sleeper ranges from 250 to 300 mm depending on the requirements 
of the local authorities. These values ensure a satisfactory load distribution and drainage. 
When construction depth is severely restricted, lower ballast depths may be adopted. In 
some bridges, ballast and sleepers were omitted by fastening the rails directly to the bridge 
deck, direct fastening. This method seems to solve the problem of the restricted construc-
tion depth, but special detailing and experience are necessary. Moreover, track mainte-
nance problems may arise when a rail is damaged. In general, a reduced ballast depth is the 
 simplest solution and often the most preferable one.

Railway bridges are very demanding structures. The magnitude of both permanent and 
live loads may be several times larger than that of a typical highway bridge. As already 
noted, the construction depth is more difficult to optimize due to the additional depths of 
the ballast and the rails. Therefore, serviceability verifications (mainly deformation and 
vibration controls) are in many cases onerous, especially in multitrack railways. Designers 
should ensure that the track geometry remains and that the contact between the rails and 
the wheels is not lost.

Another important design aspect is the fatigue verification due to the dynamic nature 
of live loads. A railway bridge must be able to endure repeated actions whose magnitude 
depends on the annual tonnage of the traffic on every lane. Connections and especially the 
welded ones should be carefully designed and located where inspection, blast cleaning, and 
repainting is possible. It is true that in most railway bridges the inspection costs throughout 
the design life are comparable with the total cost of the structure. For these reasons, railway 
engineers are more concerned with the life cycle costs than with initial construction costs. 
From the design point of view, this is an important difference between rail- and roadway 
bridges.

Most of the cross sections described previously for the roadway bridges are also applied 
for railway applications. Modifications and special issues are discussed subsequently.

2.4.2 Half-through bridges

A popular solution is the bridge that is depicted in Figure 2.35. Two main girders are con-
nected together through crossbeams. The crossbeams consist of composite cross sections 
and carry the tracks. The main girders are welded double T sections, and the connection 
between them and the crossbeams is rigid so that a stiff frame is formed. If the plate thick-
nesses of the steel flanges are not sufficient, then doubler plates are welded. This is a practical 
solution but may lead to corrosion problems at the interface of the two plates, and therefore, 
noncontinuous welds are not allowed. If possible, doubler plates should be avoided and 
thicker plates should be chosen.

Rolled steel beams have better fatigue resistance than welded ones and are recommended 
to be used as crossbeams. One can also observe that longitudinal stiffeners at the web are 
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placed outside the bridge. This is done in order to avoid damage during track maintenance 
activities (relaying and reballasting operations).

Half-through bridges are usually preferred for railway underline bridges. The underline 
clearance is in such cases limited, and the half-through construction offers the most suit-
able alternative. The spans are generally simply supported; this simplifies construction and 
replacement activities during traffic conditions. For spans less than 17 m, the top of the main 
girders need not be more than 100 mm above the rail level. This minimizes the construction 
depth that is the vertical dimension between the tops of the rails and the bridge soffit as 
much as possible. However, the main girder cannot be considered to provide a safe support 
(robust kerb) against derailment loads; additional parapets acting as robust kerbs are neces-
sary. A main girder is generally considered as a robust kerb when the top of the main girder 
extends at least 300 mm above the rail level [2.22].

Half-through plate-girder bridges with a twin-track railway may be competitive for spans 
up to 50 m. For larger spans, half-through box-girder bridges are preferred. In the litera-
ture, one can find a variety of half-through bridges. One is shown in Figure 2.36. For large 
spans, the longitudinal steel girders suffer from lateral torsional buckling. During construc-
tion, additional bracing systems can be used but not at the final stage. For this reason, main 
girders are casted so that composite action is activated. This leads to an elegant structure, 
and excessive steel consumption is avoided. In cases of twin-track continuous bridges, slen-
derness values 1/10–1/15 are feasible [2.43].

2.4.3 Plate-girder bridges

Plate-girder bridges are chosen for railway applications when the construction depth is not 
critical. The longitudinal girders consist of welded cross sections, and the concrete deck’s 
geometry is similar to that employed for roadway bridges. Figure 2.37 shows some common 
cases. Deck plates with precast planks and in situ topping offer a fast and simple construc-
tion method (case A). Fully precast concrete deck slabs with dry joints are the best solutions 
for reconstruction activities, but experience on durability issues for railway bridges is lim-
ited; see Figure 2.10. In situ concrete deck slabs (cases B and C) is applied in more complex 
geometries or when transverse prestressing with tendons is necessary. In case B, the deck 
plate is designed to provide a robust kerb; thus, additional support parapets are avoided. A 
modern solution is depicted in case D. Prefabricated composite girders arrive on site, and the 
final deck concreting follows, VFT construction method [2.43]. Such cross sections seem to 
be very effective since it makes the limitation of deformations less laborious, especially in 
continuous and integral bridges.

Composite bridges with multiple girders can be applied for spans up to 50 m. For larger 
spans, twin-girder bridges are more cost-effective and easier to construct. Twin-girder 
bridges are less redundant structures than those with multiple girders, and therefore, fatigue 
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Figure 2.36 Half-through plate-girder bridge with composite main girders.
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resistance seems to be their weak point. However, inspection and repair are less compli-
cated, and with a rigorous maintenance policy, this risk is minimized.

In Figure 2.37, one can see that some plate-girder bridges are equipped with lower bracing sys-
tems. These may be trusses or stiff frames. Lower braces increase the redundancy of the structure 
and its torsional stiffness. Indeed the cross section behaves as a closed one, and expensive solutions 
with steel boxes are avoided. In case C, a concrete slab has been chosen to serve as lower bracing. 
This activates also a double composite action that is advantageous in continuous systems.

2.4.4 Box-girder bridges

Closed or opened box girders are used in a similar way as for the highway bridges. Due to 
their increased flexural and torsional strength, they are mainly preferred for long spans. For 
small and medium spans, they are less competitive, and simpler solutions are obviously cho-
sen. One of the main disadvantages of the boxed sections is the large areas that have to be 
repainted due to corrosion; this significantly increases maintenance costs. Moreover, repaint-
ing is time consuming, and this can be very dangerous under load conditions. In coastal 
regions, corrosion is considerably accelerated by airborne salt, and this has been detected as 
the main reason for many damages. A solution to this can be ship-bottom-shaped cross sec-
tions; see Figure 2.38. This configuration helps rainwater to wash away the airborne salt and 
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Figure 2.37  Plate-girder railway bridges. (A) With precast planks, (B) with lower steel bracing, (C) with 
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decreases the repainting frequency. Ship-bottom-shaped cross sections in combination with 
special types of weathering steel can enhance the salt corrosion resistance considerably [2.19].

2.4.5 Filler-beam bridges

Encasing steel beams in concrete is beneficial from many points of view. Steel beams do 
not require coating, a composite action can be achieved without the use of headed studs, 
local buckling of steel plates is avoided, and a better stiffness with less steel is achieved. 
In Figure 2.39, a filler-beam bridge is shown. These are small-span bridges and are used 
both as simply supported (max. span ≈ 15 m) and continuous systems (max. span ≈ 30 m). 
Transverse reinforcement passes through holes at the webs of the steel beams; thus, shear 
connection is ensured. EN 1994-2 offers detailed guidance on the design of filler-beam deck 
bridges.

2.4.6 Pipe-girder bridges

For small and medium spans, the cross-sectional configuration of Figure 2.40 may be seen in 
certain cases as an attractive solution. Steel pipes do not suffer from lateral torsional buckling, 
and therefore, horizontal bracing systems during concreting are omitted. This has a positive 
effect on both the speed of construction and the appearance of the bridge. Steel pipes can be 
filled with concrete at hogging moment areas so that a double composite action is achieved. At 
midspans, pipes can be filled with low-density mortar so that the noise level is improved [2.34]. 
Finally, the tubular shape of the pipes increases the corrosion resistance since it minimizes the 
accumulation of airborne salt especially in coastal regions. A pipe-girder cross section has been 
successfully designed by the authors for a 25 m simply supported one-track railway bridge.

2.4.7 Arch bridges

In arch bridges, nonsymmetrical vertical loads result in strong bending moments both to 
the arch and the stiffening girders. Therefore, in cases of railway applications, cross sections 
of excessive size and weight may arise. An alternative solution is network arches in which 
inclined hangers form internal trusses (see Figure 2.41). This develops a diaphragmatic 
action between the arch and the stiffening girders, a characteristic that is missing from 
a common arch bridge. The hangers in the networks are positioned in such a way so that 

Figure 2.39 Filler-beam bridge.
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Figure 2.40 Pipe beam bridge.
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bending moments in arch and stiffening girders are practically negligible and only normal 
forces arise. Network arches are stiffer than regular ones and with more slender structural 
elements [2.9]. Therefore, deflections and vibrations are easier to control.

2.4.8 Lattice girder bridges

Composite lattice girder bridges may be a viable option for long spans with no underclearance 
limitations (Figure 2.42). The steel structural elements of the girder are usually closed cross 
sections with adequate resistance against buckling. The top chord is rigidly connected with 
the deck slab. In Figure 2.42, this is achieved through an additional boxed beam encased in 
concrete so that longitudinal shear forces are closer to the gravity center of composite upper 
chord. In this way, local forces and bending moments in the connection are minimized [2.33].

Lattice girder bridges may be equipped with lower bracing systems or concrete slabs in 
order to develop closed box behavior. At hogging moment areas, a thicker concrete slab 
increases the flexural resistance and stabilizes the bottom chords laterally in plane. It is 
worth mentioning that regulations for composite lattice girders are not given in EN 1994-2. 
Attention should be paid to the rheological and the temperature effects. In order to neu-
tralize members’ shortening due to shrinkage of concrete, longer segments may need to be 
erected. The use of prefabricated elements has reduced creep- and shrinkage-induced defor-
mations and is in such cases to recommend.

2.5 CONSTRUCTION FORMS

2.5.1 General

Choosing the most appropriate structural system for a bridge project is not an easy task. The 
final decision is determined by many different parameters such as the available construc-
tion depth, the soil quality, the seismicity of the area, future reconstruction activities, and 
maintenance. A discussion on the advantages and the disadvantages of each system follows.
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2.5.2 Simply supported bridges

Simply supported bridges (Figure 2.2) and bridges consisting of isostatic spans can be 
described as the simplest structural forms. Thermal effects, creep, and shrinkage do not 
cause any additional internal forces, and cracking of concrete is avoided since the deck plate 
is constantly under compression. Due to compression in the deck, many designers favor the 
implementation of an isostatic solution when prefabricated elements are to be used. Tension 
in the deck plate in hogging moment areas of continuous bridges may cause cracking in 
concrete or fatigue damages in reinforcement due to the movement of the joints between the 
precast planks during passage of vehicles.

Bridges with multiple isostatic spans facilitate erection and increase the prefabrication 
rate. Indeed main girders have smaller lengths and weights and can be placed on the 
piers with cranes of lower capacity. For larger spans, temporary falseworks must be used 
at intermediate positions. In some cases, isostatic systems are used during construction 
and at final stage are constructed as continuous ones. An example has been given in 
Figure 2.4.

Isostatic systems are also preferable when strong support movements are expected due 
to weak or compressible soils. Moreover, such bridges can be easier reconstructed or 
replaced, for example, after an earthquake. This is important in the case of urban areas 
where such activities must be conducted as quick as possible and with the less traffic 
disturbance.

2.5.3 Continuous bridges

Simply supported bridges can be cost-effective solutions mainly for small and medium 
spans. However, for longer spans, serviceability verifications are onerous and steel con-
sumption becomes excessive. Therefore, stiffer systems are chosen. Continuous composite 
bridges (Figure 2.16) are associated with a limited deformability, increased redundancy, 
and redistribution capabilities. These are important structural characteristics that modern 
bridges should possess.

The structural topology of a continuous bridge often depends on the available posi-
tions for placing the piers. Piers are constructed in positions of “healthy soil conditions,” 
and the trend is to reduce their number as much as possible. For the superstructure, 
the size of end spans should be equal to 80% of the internal spans so that bending 
moments at internal supports are approximately of the same magnitude. Obviously, this 
is not always feasible. Excessive hogging moments arising from the decompensation of 
long next to small spans can be reduced by lowering the structure at intermediate sup-
ports after concrete hardening. This is an indirect way of prestressing concrete without 
longitudinal tendons. However, designers have additional means for reducing bending 
moments at supports. An example is depicted in Figure 2.36 in which a central V-shaped 
pier reduces the lengths of the main spans and contributes to the bridge’s performance 
both structurally and aesthetically.

Continuous bridges may be erected by launching. This is a sequential construction quite 
appropriate for box girders that starts from one end of the bridge. A new segment is added, 
and the whole deck including diaphragms and lateral bracing that rests on a system of 
guided rollers is pushed by hydraulic rams. A temporary launching nose is attached to the 
front of the first span to limit the weight and reach the next pier. The bridge may be launched 
downhill if a small inclination is present. Plate buckling of the girder webs must be checked 
since they are subjected to concentrated compression forces from the rollers during launch-
ing operations; see Figure 8.31.



54 Design of steel–concrete composite bridges to Eurocodes

2.5.4 Frame bridges

In many bridges, longitudinal movements due to temperature, shrinkage, and any kind of hori-
zontal support movement are supposed to be absorbed by expansion joints (Figure 2.43). These 
elements need to be replaced due to leakage of the joints. Moreover, expansion joints lead to 
discomfort for the drivers during passage of vehicles. Bearings should also be replaced during 
the design life of a bridge. Therefore, many designers tend to eliminate all movement joints and, 
if possible, all bearings as well. This is achieved through frame and integral construction in 
which super- and substructure act together in response to loading and imposed deformations.

In framed bridges, piers are rigidly connected with the main girders. This type of con-
struction is suitable for long spans and in general where deformation, resonance, and fatigue 
requirements are difficult to fulfill. In the railway bridge of Figure 2.42, the lattice deck and 
the piers form a stiff composite frame. Through the trial and error method, bridge engineers 
try to optimize the stiffness ratio between horizontal and vertical components. For example, 
deck rotations should be avoided, and for this reason, the deck is more flexible than the 
piers. However, in seismic regions, an earthquake may cause plastic hinges in the deck, 
and this is not acceptable. Therefore, an adequate number of weaker piers should be placed 
capable of developing high-ductile plastic hinges (Figure 2.44).

Piers at side spans experience higher deformations and loadings due to temperature effects, 
creep, and shrinkage. This is because of their larger distance from the neutral displacement 
point of the deck. This is defined as the stiffness center of the deck in which horizontal 
displacements are equal to zero. In Figure 2.45, one can see the estimation procedure of 
this point whose coordinate depends on the stiffnesses of the piers and the bearings if any. 
Moreover, the maximum values of deformations and forces arise at the abutments. For this 
reason, most of the designers avoid the rigid connection of the deck with the abutments by 
the use of bearings and expansion joints.
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Piers in bridges crossing over valleys may be extremely high. Piers with a total height larger 
than 200 m are not peculiarities. Obviously, such slender structural elements are associ-
ated with an increased buckling risk. It is worth noting that architects favor “very thin” 
piers that do not attract the observer’s attention from the surrounding environment. Framed 
bridges ensure for the piers a reduced buckling length due to their rigid connection with the 
deck. This is an additional advantage that designers always consider.

2.5.5 Integral and semi-integral bridges

Bearings and expansion joints can be omitted by connecting the main girders rigidly with 
the abutments. The elements of the superstructure act together with those of the substruc-
ture, and thus, a rigid frame is formed. Integral bridges are very robust structures that can 
reach spans up to 100 m with impressive slenderness values (min h/L ≈ 1/50). This made 
them very popular both for high- and railway applications in many European countries.

One can find a variety of end connections for integral bridges. A typical one is shown in 
Figure 2.46. Steel or concrete piles are connected with each other through a reinforced concrete 
crossbeam (pile cap). On the upper side of the pile cap, the main girders are placed on the pile 
cap through the use of temporary bearings, for example, steel plates. Thereafter, the endscreen 
wall is completed after the deck steelwork has been erected and the deck slab cast. In this way, 
bending moment continuity is achieved. Moreover, the encased part of the steel girders has to be 
well anchored. Therefore, girders are equipped with shear connectors, hoops, and/or tie beams. 
Holes in the webs are also needed for the reinforcement continuity of the endscreen wall.
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Figure 2.45 Calculation of neutral displacement point.
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The piles have to be flexible enough in order to absorb the horizontal deformations of the 
deck due to thermal expansion and contraction, concrete shrinkage, etc. Therefore, they 
are positioned in a straight line. The soil pressures due to the aforementioned displacements 
should be carefully calculated in order to achieve an economic and safe design. This is a 
difficult task because soils are often inhomogeneous. To further complicate matters, second-
order theory deformations due to buckling of the piles may arise.

When the endscreen wall does not provide support to the main girders, the bridge is 
defined as semi-integral. In such cases, horizontal deformations are accommodated by con-
ventional bearings that are placed on footings or piles; design is easier and uncertainties 
due to soil conditions do not need detailed consideration. An end connection of a semi-
integral bridge is depicted in Figure 2.47. The main girders are placed on the bearings and 
grouting of the joint between them, and the retaining wall with nonshrinkable mortar 
follows. The moment continuity is ensured by means of high-strength anchor bolts that 
connect the upper flanges with the backfill and the lower flanges with the retaining wall. 
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Prefabricated footings and back walls are used when old bridges need to be replaced and 
traffic disturbance must be minimized. Erection time can be further reduced with fully 
precast elements for the deck plate.

It is worth mentioning that in cases of skew bridges, soil pressure tends to cause plan 
rotation of the deck. For this reason, integral construction should be considered for skews 
up to 30°.

In seismic regions, abutments have a major contribution to the seismic resistance, and the 
bridge should be designed to remain elastic during the earthquake event. EN 1998-2 pro-
vides limit values for the displacements at the abutments so that the soil or the embankments 
behind them are not severely damaged.

Interesting information and experiences from integral and semi-integral bridges are given 
in numerous papers of [2.3].

2.6 ERECTION METHODS

2.6.1 General

The final choice of an appropriate erection procedure is of great importance for achiev-
ing the desired geometry, construction speed, and cost-efficiency. The erection method 
defines the loading history of the bridge and has a primary influence on the evolution of 
stresses and deformations. For the majority of medium- and long-span bridges, the cross 
sections, the bracing, and the strengthening members mainly depend on the internal forces 
that emerge during erection. This means that the static design for the transient situations of 
erection may be more crucial than for the final-stage design; usually it is more laborious as 
well. Experienced designers discuss all the possible alternatives together with steel fabrica-
tors and contractors. The risk assessment of the proposed alternatives is a demanding task, 
and detailed safety plans need to be prepared. The erection of bridges is a complicated issue 
and cannot be covered in few paragraphs. However, a brief introduction follows. Interesting 
information on erection techniques is found in [2.48].

2.6.2 Lifting by cranes

Lifting steel members with cranes is the most economic method for the erection of small- 
and medium-span bridges. Mobile cranes can lift 50 tones at 50 m radius or 100 tones 
at 28 m radius. For lifting heavier elements, cranes can be used in tandem, but this may 
increase the costs considerably. Cranes are used in tandem when erection has to be  carried 
out during a limited period of time and I girders are lifted in pairs. Similarly, lifting of 
complete composite members may be preferable. This may be the case for the VFT beams 
described in Section 2.3.5.

The most common type of cranes is the road-mobile ones; see Figures 2.30 and 4.26. 
Other types are the rail-mounted cranes or those on a floating vessel. In all cases, the advice 
of a specialist contractor is necessary so that important factors are considered, for example, 
overhead electrification equipment, access to site, and exposure to wind.

2.6.3 Launching

This method is based on the concept of assembling the bridge’s steel part and launching it 
forward on rollers or sliders to its final position; see Figure 8.31. A tapered launching nose 
is connected to the main girders so that stressing and cantilever deflections can be kept to 
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a minimum. The launching nose is a light truss construction with a length approximately 
equal to 30% of the length to be crossed. Rollers and sliders are placed on the piers and 
on temporary piers in the case of very long spans. The slide path generally runs parallel 
to the lines of the substructure, and temporary piers are located where stable solid exists. 
It is important to note that during launching laborious stability investigations have to be 
conducted for all the possible launching phases since plate buckling due to shear, bend-
ing, or concentrated support reactions may occur; see Figure 8.1. Moreover, the system 
needs to be robust against pulling forces that are produced from the launching devices. 
These devices consist of a system of hydraulic jacks for heavy structures or winches for 
the lighter ones.

Rollers are usually ball bearings constrained in a channel (Figure 2.23) and are used for 
light superstructures. Sliders are devices composed of different materials with sliding inter-
faces. These may be phosphor/bronze or a PTFE sledge on stainless steel. Sliders during 
launching may exhibit a friction coefficient up to 8% and are used for heavier structures.

Launching operations are usually conducted for the pure steel girders; thereafter, rein-
forcement is placed and concreting follows. Launching the steel frame with its slab rein-
forcement on it has been applied in few bridges where steel cage handling had to be avoided. 
However, this alternative should be treated as a nonstandard solution. In cases of bridg-
ing very busy roads or railways, launching steel–concrete composite frames has been seen 
by some engineers as an attractive option. Launching the completed composite structure 
is sometimes preferred when casting with mobile formwork (Figure 2.3) is considered as 
expensive, more time consuming, or causing under clearance problems. Obviously such an 
erection method leads to an increased steel consumption since it is more difficult to ensure 
stability. Moreover, stronger launching devices are needed. The picture in Figure 2.48 shows 
the world’s longest composite bridge ever constructed with composite launching.

Figure 2.48 Box-girder bridge of the Montreal Autoroute A30 in Canada during construction (ARUP©).
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The launching method, known also as incremental launching, is usually chosen for mul-
tiple continuous span bridges with constant height girders and when lifting is seen as impos-
sible, for example, bridges crossing deep valleys. It is a complicated procedure and more 
expensive than crane lifting and carries higher risks. An additional drawback is the need of 
an assembly area behind the abutments. However, launching is associated with a high erec-
tion speed that ranges from 30 to 50 cm/h.

2.6.4 Shifting

The steel structure is fully constructed on temporary supports alongside its final position. 
Then it is moved transversely trough rollers and jacked down onto its permanent bearings 
(Figure 2.23). The main advantages of this method are the brief traffic interruption and the 
reduced need of stability strengthening since the structure remains always in its final struc-
tural configuration. Many bridge engineers are fond of combining shifting with launching. 
In urban areas, it may be difficult to find a sufficiently wide area next to the final position.

2.6.5 Hoisting

Lifting devices attached to the cantilever parts of the bridge hoist up vertically central parts 
to their final level (Figure 4.26). This is a rarely used method that is mainly appropriate 
for bridges crossing waterways. The hoisting operations are performed by cables drawn by 
launching jacks or winches with pulley blocks. Heavy and very large beams can be erected 
in few hours with this method. The wind speed during erection must be very low.

2.6.6 Segmental construction

This is the standard construction method for box-girder frame bridges crossing deep valleys, 
also known as the cantilever method. Steel segments are transported and hoisted up to their 
final level. The next segments are suspended in place by cranes and on-site welding follows; 
see Figure 2.49. The construction is repeated until the span is completed. The segmental 
construction may begin from different starting points, usually central piers. The length of 
the steel segments usually varies from 3 to 6 m. For equilibrium reasons, segments at sup-
ports are obviously rigidly connected with the piers.

2.7 CONCRETING SEQUENCE

Simple span bridges with a length up to 25 m are concreted in one stage. The concrete of 
single-span bridges of middle to long spans may be cast in several stages in order that the 
weight of the wet concrete is not resisted by the pure steel girders. The concrete may be cast 

Figure 2.49 Cantilever method.
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first in the span region and then near the ends so that the most stressed middle region acts 
as a composite section when the ends are concreted.

The concrete of continuous bridges is usually cast also in stages in order to limit the nega-
tive moments on the composite section and consequently the tension stresses of concrete. 
In small-span bridges, hogging moments is not an issue, and continuous concreting may be 
followed; see method 1 in Figure 2.50. This is the simplest method that contractors prefer. 
For longer spans, hogging moments need to be reduced as much as possible. This may be 
achieved by concreting first the span regions and then the regions at internal supports; the 
length of the casted parts varies between 15 and 25 m. In practice, two sequences of con-
crete casting are used, one where the sequence of casting follows the direction of concreting 
(method 2) and one where the sequence of casting is opposite to this direction (method 3). 
One can see that with the methods 2 and 3, positive bending moments at internal supports 
arise and negative at spans [2.11]. Combining the aforementioned methods with imposed 
settlements at supports makes control of cracking at final stage feasible. However, due to 
cement hydration (see Section 6.1.5) and shrinkage (see Section 6.1.3), cracks may emerge 
after the 1st days of concreting in unexpected areas, that is, spans. For this reason, the 
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Figure 2.50 Casting of concrete of the deck slab in stages.
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cement type should be carefully selected and cracking reinforcement should be placed in all 
parts of the structure. If possible, concreting operations during summertime should take 
place during evening.

Finally, it is important to note that in methods 2 and 3 the mobile formwork needs to 
travel backward a distance equal to the span length before starting casting again. This is 
time consuming and onerous for the concrete contractors. In long bridges, two or more 
mobile formworks are used.

2.8 EXECUTION

Execution covers all activities necessary for the realization of a bridge project. This includes 
procurement of material, fabrication, surface treatment, transportation, erection, inspec-
tion, and documentation. Involved in the execution is the owner who decides, supervises, 
checks, and pays; the designer who is the technical authority for the implementation of his 
or her design; the general contractor who is responsible for the delivery of the completed 
bridge; and the steelwork contractor who fabricates and possibly erects the steelwork as well 
as any subcontractors.

EN 1090-2 is the European document on execution of steel structures including bridges. 
This document covers specification and documentation, specifications for constituent 
 products (structural steels, steel castings, welding consumables, mechanical fasteners, studs 
and shear connectors, grouting materials, expansion joints, cables, structural  bearings), 
preparation and assembly, welding, mechanical fastening, erection, surface treatment, 
 geometric tolerances, inspection, testing, and correction.

Crucial for execution is the definition of an execution class that is given in the design phase 
to ensure consistency between design assumptions and requirements for execution of the 
work. Bridges belong to service category 2 (SC2) since they are subject to fatigue loading and 
contain welded components from steel grade not smaller than S355, so they are assigned a 
production category 2 (PC2). The combination of CS2 and PC2 gives normally an execution 
class 3 (EXC3) and in exceptional cases of extreme consequences of structural failure EXC4.

Although many items are based on a common execution class that is given for the whole 
of works, other items demand selection of the execution class on the basis of a component, 
or connection detail, that is, some component or connections (e.g., bolted connection), may 
have a different execution class. For instance, items of generic application refer to quality 
documentation, identification, traceability and marking of constituent products, thickness 
tolerances, surface conditions and special properties of structural steels, inspection certifi-
cates of finished products, thermal cutting, flame straightening execution of holing during 
preparation and assembly, qualification of welding procedures, welders and operators, joint 
preparation, acceptance criteria for welds, handling and storage on site, fit up and align-
ment, inspection after welding, inspection of preloaded bolted connections, and geometric 
survey of connection nodes. On the other side, differentiations are possible for specific com-
ponents or connection details. For instance, although quality level B in accordance with EN 
ISO 5817 [2.7] is assigned to EXC3 for acceptance of weld imperfections (misalignment, 
weld shape, porosity, lack of fusion or penetration, etc.), for welding of secondary members, 
the lower quality level C could be sufficient.

A quality documentation is required that includes, among others, the allocation of tasks 
and authority during execution, procedures, methods and work instructions to be applied, 
an inspection plan, and procedures to handling modifications and nonconformities.

It should be emphasized that matters related to execution require considerable expertise 
and experience and are not within the scope of this book.
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2.9 INNOVATION IN COMPOSITE BRIDGE ENGINEERING

In the last 20 years, European road freight transport has increased by 40%, and this strong 
growth is forecasted to continue. At the same time, architectural and environmental require-
ments become more demanding. Bridge engineers will have to cope with new problems that 
will be difficult to solve with today’s design codes. Some of the research trends that may lead 
to innovative types of composite bridges are the following:

• Steel plates of variable thickness (LP plates) have been successfully used in long-span 
bridges in order to avoid welded joints. This offers improved fatigue behavior and bet-
ter cost optimization (Figure 2.51a). Unfortunately, few mills can produce such plates.

• Steel girders with corrugated webs (Figure 2.51b) and no top flange are associated 
with higher values of transverse bending stiffness [2.28]. Therefore, cross frames and 
braces for the erection stage are significantly reduced. In addition, corrugated webs 
form an own shear connector. The combination with horizontally lying studs leads to 
an increased longitudinal shear resistance.

• Rolled sections can be cut into halved ones and connected with the deck slab without 
the use of headed studs (Figure 2.51c). With the appropriate reinforcing, detailing 
dowel action is activated and shear transmission is ensured. Light prefabricated com-
posite elements can be fabricated and erected in very short time. Bridges with impres-
sive slenderness values are feasible.

• As already noticed, welded joints should be kept to a minimum. Lattice girder compos-
ite bridges with casted joints lead to a reduced number of welding operations and an 
increased fatigue resistance [2.28]. Moreover, higher flexibility concerning geometry 
is achieved.

(a) (b)

(c) (d)

Figure 2.51  Innovative developments in steel–concrete composite bridges. (a) Steel girders with LP plates, 
(b) steel girders with corrugated webs, (c) halved rolled section with clothoidal composite 
dowels, and (d) road bridge with hollow sections and casted joints.
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Chapter 3

Design codes

3.1 EUROCODES

3.1.1 General

Civil engineering design is generally guided by design codes. In some construction works, 
the conditions are not fully known in advance so that the design assumptions and conse-
quently the design have to adjust to the new conditions that appear during the progress 
of works. An example is tunneling, where during construction differences between initial 
design assumptions concerning soil/rock properties, existence of underground water veins, 
and the real site conditions may occur so that design and construction have to be appropri-
ately modified during construction works. In contrast, bridge design is subject to extensive 
regulations concerning loads, materials, required verifications, etc., provided by codes. How 
a bridge is to be built and how it is designed are strongly linked. The design then provides 
construction and erection methods and their sequences and includes the relevant verifica-
tions for situations during construction. Modifications of the design assumptions during 
construction should generally be avoided as they may result in increase in time and costs. 
This book makes reference to the Eurocodes [3.21] as design standards, which will be briefly 
presented and discussed in the following.

The structural Eurocode program comprises standards shown in Table 3.1 generally 
 consisting of a number of parts.

The first two Eurocodes are of general application for design, EN 1990 describing the 
requirements for safety, serviceability, and durability of structures and EN 1991 providing 
the actions (“loads”) on structures. All other Eurocodes related to superstructures (i.e., all 
except EN 1997) concern specific construction materials (concrete, steel, composite steel 
and concrete, etc.). A special case is EN 1998 that includes both a generic part on seismic 
actions and specific parts related to types of structures with relevant construction materials.

Despite the vertical distinction, there exist horizontal connections between the mate-
rial-related Eurocodes. EN 199X-1 (part 1) of each Eurocode gives generic design rules 
intended to be used with the other parts and also gives supplementary rules applicable to 
buildings. The horizontal connection between Eurocodes in relation to bridges is created 
by EN 199X-2 (part 2). Consequently, the leading document for the design of composite 
bridges is Eurocode 4, part 2 (EN 1994-2). However, since composite construction com-
bines the use of both structural steel and reinforced concrete, EN 1994 calls, besides the 
generic Eurocodes, both relevant material Eurocodes, EN 1992 and EN 1993. Figure 3.1 
offers a schematic navigation to the regulations necessary for bridge design.

In composite bridge construction, structural steel is of primary importance. Indeed, the 
strength and stability verifications in the construction phase refer to the steel girders alone, 
but also most checks during service concern the steel parts. Consequently, the provisions of 
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Figure 3.1 Navigation to standards for designers and contractors.

Table 3.1 The Eurocodes

EN 1990 Eurocode 0 Basis of structural design
EN 1991 Eurocode 1 Actions on structures
EN 1992 Eurocode 2 Design of concrete structures
EN 1993 Eurocode 3 Design of steel structures
EN 1994 Eurocode 4 Design of composite steel and concrete structures
EN 1995 Eurocode 5 Design of timber structures
EN 1996 Eurocode 6 Design of masonry structures
EN 1997 Eurocode 7 Geotechnical design
EN 1998 Eurocode 8 Design of structures for earthquake resistance
EN 1999 Eurocode 9 Design of aluminium structures
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EN 1993 are of crucial importance for the design of composite bridges. This Eurocode is 
the most extensive from all others and is structured in a special way. EN 1993 consists of a 
“core” composed of 12 parts (EN 1993-1-1 to EN 1993-1-12) and a “periphery” composed 
of five parts (EN 1993-2 to EN 1993-6). The “core” is for general application for all types of 
steel construction, while the “periphery” covers specific steel constructions, like bridges (EN 
1993-2), towers, masts, and chimneys. The periphery makes reference to the core whenever 
special verifications, like plate buckling and fatigue, or design issues are needed. Figure 3.2 
gives a survey on all parts relevant to Eurocode 3.

In the following, the Eurocodes that should be mainly consulted in composite bridge 
design are given and shortly described.

3.1.2 EN 1990: Basis of structural design

Basis of Design [3.1]
This code defines the basic requirements, introduces the limit state design, provides the clas-
sification for actions, gives design values for actions and resistances for various limit states 
and design situations, and defines combinations for actions. Bridges are given the design 
working life category of 5, with a design working life of 100 years.

Annex 2 [3.2]
This annex gives rules and methods for establishing combinations of actions for bridges. It 
also gives the recommended design values and combination factors for actions during con-
struction and at service to be used in the design for bridges.
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3.1.3 EN 1991: Actions on structures

EN 199-1-1: Actions: General Actions [3.3]
This part provides specific weights for materials, self-weights, and imposed loads for 
buildings.

EN 199-1-4: Wind Actions [3.4]
Chapter 8 of this part provides wind actions for bridges.

EN 199-1-5: Thermal Actions [3.5]
Chapter 6 of this part provides temperature changes in bridges.

EN 199-1-6: Actions during Construction [3.6]
Annex A2 of this part provides rules for bridges and gives design values for settlements in 
the longitudinal and transverse directions.

EN 1991-2: Traffic Loads on Bridges [3.7]
This part defines models of traffic loads for the design of road bridges, footbridges, and 
railway bridges.

3.1.4 EN 1998: Design of structures for earthquake resistance

EN 1998-1: Seismic Design: General Rules and Seismic Actions [3.8]
This part refers to the design and construction of buildings and civil engineering works in 
seismic regions.

EN 1998-2: Seismic Design: Bridges [3.9]
This part is applicable to the design of bridges in seismic areas. It includes provisions for 
analysis, verifications, detailing, and seismic isolation.

3.1.5 EN 1994: Design of composite steel and concrete structures

EN 1994-2: Composite Structures: Rules for Bridges [3.10]
This part gives basic design rules for composite bridges or members of bridges. It does not 
fully cover the design of cable-stayed bridges.

3.1.6 EN 1993: Design of steel structures

EN 1993-1-1: Design of Steel Structures [3.11]
This part provides general rules and rules for buildings made of steel.

EN 1993-1-5: Plated Structural Elements [3.12]
This part includes plate buckling rules and provides design requirements for unstiffened and 
stiffened plates.

EN 1993-1-8: Design of Joints [3.13]
This part gives methods for analysis and design of bolted and welded joints.

EN 1993-1-9: Fatigue [3.14]
This part gives methods for the assessment of the fatigue resistance of members and joints.

EN 1993-1-10: Selection of Materials for Fracture Toughness [3.15]
This part contains design rules for selecting steel materials to provide resistance to brittle 
fracture and lamellar tearing.



Design codes 71

EN 1993-1-11: Design of Structures with Tension Components [3.16]
This part gives design rules for structures with replaceable wire ropes.

EN 1993-2: Steel Bridges [3.17]
This part gives a general basis for the structural design of steel bridges and steel parts of 
composite bridges covering issues related to resistance, serviceability, and durability.

3.1.7 EN 1992: Design of concrete structures

EN 1992-1-1: Design of Concrete Structures [3.18]
This part applies to the design of buildings and civil engineering works in concrete.

EN 1992-2: Concrete Bridges [3.19]
This part gives the basis for the design of reinforced and prestressed concrete bridges.

3.2 NATIONAL ANNEXES

It is noted that the national standards implement the various Eurocodes by means of a 
 relevant National Annex. This annex contains country-specific data, for example, for 
 climatic actions. It also provides design values of some parameters where the Eurocodes 
give recommended values. All these data are referred as nationally determined parameters. 
This book uses the recommended values of those parameters.

Finally, it should be mentioned that Eurocode 3 is accompanied by a very important 
document concerning construction. This is EN 1090-2 “Execution of steel structures and 
aluminium structures” [3.20], which specifies requirements for any type and shape of steel 
structure including bridges.
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Chapter 4

Actions

4.1 CLASSIFICATION OF ACTIONS

Actions are classified according to EN 1990 [4.1] in relation to their duration, magnitude, 
and probability of occurrence as

• Permanent (G), which has a small variation in magnitude during a reference period, or 
this variation is monotonic until it reaches a certain limit value.

• Variable (Q), for which the variation in magnitude is neither negligible nor monotonic.
• Accidental (A), actions of short duration and significant magnitude that have a small 

probability to occur during the design life.
• Seismic (AE), which develops during an earthquake ground motion.

Further on, the actions are distinguished as

• Direct, which are forces (loads) applied to the structure, for example, self-weight, traf-
fic loads, and wind.

• Indirect, which develop due to imposed deformations or accelerations, for example, 
during temperature changes, uneven settlements, creep, shrinkage, or earthquake.

The actions taken under consideration for the superstructure of composite bridges are given 
in the following with reference to their duration.

4.1.1 Permanent actions

Types of permanent actions are listed in Table 4.1. Longitudinal prestressing in composite 
bridges is in many cases provided by controlled imposed deformations by means of settlements 
at internal supports. Such a prestressing causes positive bending at supports and therefore com-
pression in the concrete slab. Prestressing by tendons refers either to the slab in the transverse 
direction, in case of large span (distance between steel girders and large cantilever), or to pre-
stress by external tendons, usually during upgrading or retrofitting works. Prestressing by ten-
dons is a direct action.

4.1.2 Variable actions

Types of variable actions are listed in Table 4.2.

4.1.3 Accidental actions

Accidental actions are due to collision from vehicles or derailment of railway vehicles. These 
accidental actions are direct and are given in EN 1991-2 [4.4] by relevant forces. Other acciden-
tal actions (e.g., collision of ships) are examined in individual cases.
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4.1.4 Seismic actions

Seismic actions are described in the relevant Eurocodes EN 1998-1 [4.5] and EN 1998-2 [4.6].

4.1.5 Specific permanent actions and effects in composite bridges

Composite bridges have some peculiarities compared to pure steel or pure concrete bridges. 
This is due to the fact that they are composed of two different structural materials: steel 
(elastic) and concrete (viscoelastic). These peculiarities are summarized as follows:

 a. The concrete part of the cross section is subjected to time-dependent deformations due 
to concrete’s rheological behavior (creep and shrinkage), while the steel part is not. 
This leads to reduced cross-sectional values of the composite section and redistribu-
tion of the internal forces and moments from the concrete slab to the steel girder.

 b. The steel girder carries the fresh concrete during the construction phase. The compos-
ite action becomes effective after the hardening of the concrete. Therefore, apart from 
the time-dependent property changes of the composite section, the sections change 
during construction from pure steel to composite. This change does not happen at the 
same time for the entire structure due to the fact that concreting usually takes place at 
distinct phases, known also as concreting stages.

 c. In statically indeterminate bridges, additional bending moments at supports (second-
ary effects) develop due to creep and shrinkage, which have influence at both service-
ability limit states (SLS) and ultimate limit states (ULS).

Table 4.1 Permanent actions

Symbol Description Type

G1 Self-weight of the structure (structural and reinforcing steel, 
concrete and shear connectors)

Direct

G2 Superimposed deadweight, for example, road surfacing, rails, fixed 
equipment like crashing barriers, pedestrian railing, and parapets

Direct

Gset Differential settlements between supports Indirect
P Prestressing by controlled imposed deformations Indirect

Table 4.2 Variable actions

Symbol Description Magnitude Type

Q Traffic loads and 
loads on footways

Vertical–horizontal
Dependent on the type of bridge (road, railway, 
footbridge)

Load models dependent on the considered limit 
state (ultimate, fatigue)

Direct

T Temperature Uniform temperature component ∆TN either 
contraction or expansion

Vertical linear temperature component ∆TM is as 
follows:

∆TM,heat when top is warmer than the bottom
∆TM,cool when bottom is warmer than the top
Combination of ∆TN and ∆TM

Direct and indirect

W Wind For loaded bridges
For unloaded bridges

Direct

Dc Replacement of 
bearings

Imposed deformation (jacking) of supports to 
replace a bearing

Indirect
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4.1.6 Creep and shrinkage

The effects of creep and shrinkage of concrete on the structure change with time. However, 
these actions are considered as temporarily permanent, because unlike the variable actions, 
which may appear or not, creep and shrinkage are always present (Table 4.3). It should be 
noted that concrete creeps only due to permanent actions and shrinkage and differently for 
each type of action. Concrete does not creep due to variable actions because of their short 
duration.

The effects of creep and shrinkage are discussed in Chapters 6 and 7.

4.1.7 Actions during construction

As mentioned in Chapter 2, concreting of the slab usually takes place in phases. The weight 
of the fresh concrete, the formwork, and the possible mechanical or other equipment are 
supported from the steel girder alone. The composite section resists lighter construction 
loads due to hardening of the concrete and removal of the formwork. The fresh reinforced 
concrete according to EN 1991-1-1 Table A1 has a density of 26 kN/m2, while the hardened 
concrete 25 kN/m2. The described actions are direct (loads).

4.2 TRAFFIC LOADS ON ROAD BRIDGES

4.2.1 Division of the carriageway into notional lanes

The width of the carriageway (w) is measured between the inner limits of vehicle restraint sys-
tems and does not include neither the distance between fixed vehicle restraint systems nor kerbs 
of a central reservation nor the widths of these vehicle restraint systems. This width is divided 
into notional lanes (Figure 4.1), whose width (w1) and number (n1) are given in Table 4.4.

Table 4.3 Special permanent actions

Symbol Description Type

C Creep of concrete Indirect
S Shrinkage of concrete Indirect

Notional lane Nr. 1 w1

w1

w1

w
Notional lane Nr. 2

Notional lane Nr. 3

Remaining area

Figure 4.1 Example of lane numbering.
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For example, the number of notional lanes will be

• n1 = 1 if w < 5.4 m
• n1 = 2 if 5.4 m ≤ w < 9 m
• n1 = 3 if 9 m ≤ w < 12 m

Where the carriageway on a bridge deck is divided into two parts separated by a central 
restraint system, then

 a. Each part should be separately divided in notional lanes if this system is permanent.
 b. The whole carriageway, central part included, should be divided in notional lanes if 

this system is temporary.

Where the carriageway consists of two separate parts on two independent decks, each part 
is considered as a carriageway and separate numbering is used for the design of each deck.

w is the carriageway width
w1 is the notional lane width

The lane giving the most unfavorable effects is numbered lane 1, followed by lane 2, etc. 
As traffic loads are variable actions, they are placed in such a way that the most adverse 
effects are obtained. That means that they are placed longitudinally and transversely only 
in regions where the influence line of the relevant effect (internal moment, shear, support 
reaction, deformation, etc.) is either positive or negative. Their position is not necessarily 
as indicated in Figure 4.1 (1–2–3) but may be different (e.g., 1–3–2). In fact, the position 
and numbering of the lanes may be different for each member (e.g., main beam and trans-
verse beam).

4.2.2 Vertical loads on the carriageway

The following load models apply for loaded lengths less than 200 m. For greater lengths, the 
load model may be defined in the National Annex or for the individual project.

4.2.2.1 Load model 1 (LM1)

Current traffic situations in European roads are covered by means of load models. EN 
1991-2 [4.4] gives four load models, out of which load model 1 (LM1) should be used for 
global and local verifications. It covers most of the effects of the traffic of lorries and cars.

Table 4.4 Number and width of the notional lanes

Width of 
carriageway (w)

Number of 
notional lanes

Width of a 
notional lane w1

Width of the 
remaining area

w < 5.4 m n1 = 1 3 m w – 3 m

5.4 m ≤ w < 6 m n1 = 2
w
2

0

w ≥ 6m n Int
w

1
3

= Ê
ËÁ

ˆ
¯̃

3 m w – 3 · n1
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LM1 consists of two partial systems (see Table 4.5):

• Double axle concentrated loads (tandem system (TS)) with weight αQi · Qk per axle
• Uniformly distributed loads (UDL), with weight αqi · qik

It is noted that

• No more than one TS should be taken into account per notional lane.
• One complete TS should be taken into account, meaning that all four wheels should be 

loaded, even if some of them produce a favorable effect when they load the influence 
line in the opposite direction.

• Each TS travels centrally along the notional lane.
• The axle load is equally divided into the two wheels, each one being loaded by 

0.5 · αQi · Qik.
• Amplifications due to dynamic effects are included in the characteristic values of Qik 

and qik, and thus no further magnifications are required.
• The contact surface of each wheel is taken as square with a surface of 0.4 × 0.4 m2.

Table 4.5 Characteristic values of LM1

Location

TS UDL system

Axle loads Qik [kN] qik [kN/m2]

Lane number 1 300 9
Lane number 2 200 2.5
Lane number 3 100 2.5
Other lanes 0 2.5
Remaining area 0 2.5
Recommended valuesa αQi = 1.0 αqi = 1.0

0.50 mb
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0.50 mb

0.50 mb

0.50 mb

0.50 mb
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Notional lane Nr. 3

Q1k = 300 kN

Q2k = 200 kN

q1k = 9 kN/m2

q2k = 2.5 kN/m2

Q3k = 100 kN q2k = 2.5 kN/m2

Remaining area q2k = 2.5 kN/m2

2.00 m

2.00 m

a The values for the adjustment factors are given in the National Annex.
b For w1 = 3 m.
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The adjustment factors represent the return period for traffic on the main roads in Europe. 
An adjustment factor aq equal to 1 is equivalent to a return period of 1000 years for the 
characteristic values and corresponds to a heavy industrial international traffic; fatigue is 
excluded. This is also equal to a probability of exceedance in 50 years equal to 5%. For 
lighter traffic conditions, such as cases of highways and motorways, reduced adjustment 
factors may be found in the National Annexes.

For local verifications, for example, for the design of the slab, the wheel loads may be 
considered as uniformly distributed taking into account the contact area of the wheel and 
the dispersal of the load through the pavement and the concrete slab (Figure 4.2).

4.2.2.2 Load model 2 (LM2)

Load model 2 (LM2) is a single axle model, which is applied when a local verifica-
tion for short structural elements is necessary. Such elements can be crossbeams, upper 
flange stiffeners of orthotropic decks, or deck panels of composite slabs with profile 
steel sheeting. The internal forces due to LM2 may then be more critical compared to 
those of LM1. This can also happen at the vicinity of the expansion joints as discussed 
subsequently.

LM2 is applied at any location of the carriageway and consists of a single axle load with 
a magnitude equal to βQ · Qak. βQ is an adjustment factor whose value may be defined in the 
National Annex. According to EN 1991-2, it is recommended that βQ Qak = αQ1 · Qak is equal 
to 400 kN.

The contact surface of the wheels is of rectangular shape with dimensions 0.35 × 0.60 m2 
corresponding to twin tires. Therefore, LM2 wheels result in different stress distributions in 
the deck slab than the LM1 ones.

The adjustment factor βQ includes dynamic amplifications. Attention must be paid in the 
vicinity of expansion joints (critical area in Figure 4.3) where βQ must be multiplied with the 
following amplification factor:

 
Djfat

D= ◊ -Ê
ËÁ

ˆ
¯̃
≥1 30 1

26
1 0. .  (4.1)

where D is the distance of the cross section verified from the expansion joint in m.
Despite the fact that expression (4.1) is recommended by the code, a more simplified and 

conservative approach is to adopt an amplification factor equal to 1.3. As mentioned earlier, 

2.00 m

1.20 m

0.40 m

0.40 m

Wheel contact pressure
Pavement
Concrete slab

45°

≥0.50 m

2.00 m

Figure 4.2 Application of the TS for local verifications.
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this has to be done for any cross section within the critical area: 6 m from the expansion 
joint. The increase of the adjustment factor at the vicinity of the expansion joints is due to 
impact loading, which takes place during vehicle overpassing.

4.2.2.3 Load model 3 (LM3)

Some road bridges must be designed against special traffic loads. This is the case of bridges 
that may experience a military use during their lifetime (see [4.11]). Annex A of EN 1991-2 
defines standardized models of special vehicles whose total weight ranges from 600 to 2400 kN. 
For vehicles that are expected to move at speeds greater than 70 km/h, the following dynamic 
amplification must be taken into account:

 
j = - ≥1 40

500
1 0. .L  (4.2)

where L is the influence length in m.

4.2.2.4 Load model 4 (LM4)

Load model 4 is called crowd loading and is represented by a UDL equal to 5 kN/m2. 
It  includes dynamic amplification and in certain cases can be more critical than LM1. In 
[4.12], comparative analyses have shown that crowd loading may be more critical in

• Bridges with span lengths L ≥ 47.8 m and with a carriageway width w = 14.5 m
• Bridges with span lengths L ≥ 145 m and with a carriageway width w = 10.0 m
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Figure 4.3 Load model 2.
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Similar bridge configurations are usually found in urban areas. Therefore, designers should 
not underestimate the effects of the crowd loading by comparing its magnitude with that of 
LM1 because this can be misleading.

LM4 can be applied at every location of the bridge’s deck and should be associated only 
with a transient design situation.

4.2.3 Vertical loads on footways and cycle tracks

Vertical loads on footways and cycle tracks include a UDL qfk = 5 kN/m2 (Figure 4.4) that 
acts on the unfavorable parts of the influence line in longitudinal and transverse directions. 
For local verifications, the previously mentioned load may be replaced by a concentrated 
load Qfwk = 10 kN acting on a surface of sides 0.10 × 0.10 m2. For road bridges, a vertical load 
qfk,comb = 3 kN/m2 in combination with the traffic loads is taken into account.

Figure 4.4 demonstrates two modeling approaches for a pedestrian loading. In the detailed 
one, the load is only applied between the railing and the crash barrier. Many designers 
though prefer the simplified modeling in which the pedestrian loading covers the entire 
width from the railing up to the kerbs.

4.2.4 Horizontal forces

4.2.4.1 Braking and acceleration forces

The braking force is a longitudinal force that acts at the surfacing level of the carriageway. 
It is transferred to the expansion joints, the bearings, and the substructure.

The characteristic value of the braking force Qlk for the total width of the carriageway is 
equal to

 
Q Q q w Llk Q k q k= ◊ ◊ ◊ + ◊ ◊ ◊ ◊0 6 2 0 101 1 1 1 1. ( ) .a a  (4.3)

with

 180 9001◊ £ £aQ lkkN Q kN( )

where L is length of the deck or of part of it under consideration.
This force should be taken into account as acting along the axis of any lane. However, if 

the eccentricity effects are not significant, this force may be transformed to a uniform line 
load Qlk/L over the length L acting along the carriageway axis. In Figure 4.5, a calculation 
example for a simply supported bridge is shown.

qfk,comb

qfk,comb

Simplified

Detailed

Figure 4.4 Vertical loading on footways.
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EXAMPLE 4.1

• Bridge: h = 1.2 m, L = 30 m
• Traffic loads and notional lane 1

 Q =300 kN q = kN/m w = mlk lk 1, ,9 32

• Adjustment factors: αQ1 = αq1 = 1.0
• Braking force: Qlk = 441 kN
• Support reactions: H = Qlk = 441 kN

R = 441 · 1.2/30 = 17.64 kN

From the earlier example, one can see that the horizontal support reactions ΣH are of con-
siderable magnitude. Moreover, braking forces cause vertical support reactions ΣR as well. 
Their magnitude is very small though and cannot result in uplifting of the bearings.

In bridges with expansion joints, the horizontal force that is transmitted by them may be 
found in the National Annex. Otherwise, the following expression is recommended to be used:

 
Q Qlk Q lk,exp .= ◊ ◊0 6 1a  (4.4)

Acceleration forces are of the same magnitude as the braking forces but act in opposite 
direction, meaning that both types of forces are to be considered as ±Qlk (Figure 4.6).

In curved bridges, lateral forces due to skew braking or skidding should be taken into 
account. The transverse force Qtk is equal to 25% of the longitudinal force Qlk. Both forces 
act simultaneously and at the finished carriage level. Forces due to earthquake, wind, or col-
lision on Kerbs are in most cases more critical.

4.2.4.2 Centrifugal forces

The centrifugal force is a transverse force that acts at the level of the finished carriageway 
level and radially to the carriageway axis. It is acting as a point load Qtk at any point of the 
carriageway. Its value is given in Table 4.6.

From the diagram of Figure 4.7, the centrifugal forces for the most common cases of 
loaded notional lanes 1 + 2 and 1 + 2 + 3 can be estimated.

Bridges with curved layouts may have a nonconstant horizontal radius along the axis of 
the bridge. Therefore, the centrifugal force should be calculated at different locations.

Qlk

ΣH
ΣR ΣR

h

L

Figure 4.5 Braking force calculation example.
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Qv = 1200 kN

αQi = 1.0

Qv = 1000 kN
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Figure 4.7 Centrifugal forces for different weights of vertical TS loads.

Table 4.6 Characteristic values of centrifugal forces

Q Q kNtk v= ◊0 2. ( ) If r < 200 m

Qtk

r

Q
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kNtk
v= ◊40 ( ) If 200 ≤ r ≤ 1500 m

Qtk = 0 If r > 1500 m

Notes:

r, the horizontal radius of the carriageway centerline in m.
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Figure 4.6 Calculation diagram for braking forces.
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4.2.5 Groups of traffic loads on road bridges

As shown before, the traffic loads include vertical and horizontal forces on the carriageway 
and on footways. The probability that those loads appear simultaneously with their character-
istic values is small. Accordingly, groups of loads are considered, where one type is taken with 
its characteristic value, while the others with their combination values. Each of these groups of 
loads is considered as a single characteristic traffic action to be combined with other nontraffic 
loads. Table 4.7 gives the groups of loads for LM1, marking the primary loads in the group. 
It is noted that there are additional groups that refer to the other load models. Group gr1a is 
used for global verifications of the structural elements both at ULS and SLS. Group gr1b 
is used for local verifications of the deck slab such as punching resistance. Group gr2 mainly 
consists of horizontal loadings and is critical for the design of bearings and expansion joints. 
Group gr3 consists of a UDL with a recommended value qfk = 5 kN/m2, which represents 
loads due to pedestrians or cyclists on footways or cycle tracks. Gr4 (dense crowd load) and 
Gr5 (abnormal vehicles) are applied in cases of specific design specifications imposed by the 
responsible authorities. If group gr4 is specified, then this substitutes group gr3.

4.3 ACTIONS FOR ACCIDENTAL DESIGN SITUATIONS

The accidental design situations include the following:

4.3.1 Collision forces from vehicles moving under the bridge

4.3.1.1  Collision of vehicles with the soffit of the bridge, for example, 
when tracks are higher than the clear height of the bridge

Such accidental situations may be critical in cases of bridges with very light decks, for exam-
ple, footbridges without a concrete deck slab. They may lead to inelastic horizontal defor-
mations, and therefore appropriate protection measures should be taken. A high clearance 
is in most cases the most common and cost-effective solution.

A bridge is recommended to be classified as sensitive to collision when the vertical support 
reaction per bearing is smaller than 250 kN.

4.3.1.2 Collision of vehicles on piers

Impact loads on piers or other structural elements, which support the bridge, should be taken 
into account according to the regulations of the National Annex. A concentrated force of 1000 
kN acting in the direction of vehicle travel and 500 kN perpendicular to that are recommended 
by EN 1991-2 as minimum values. These forces act 1.25 m higher than the ground level.

In general, reinforced concrete piers with a minimum width are not susceptible to buckling 
during collision damage and do not endanger the superstructure. Investigations have shown 
that a minimum width of 0.9 m for piers at motorways can be described as safe (see [4.12]).

Impact loads on piers should be combined with the frequent values of the traffic loads so 
that an interaction of vertical and horizontal forces is considered.

4.3.2 Actions from vehicles moving on the bridge

4.3.2.1  Vehicles on footways or cycle tracks up to 
the position of the safety barriers

An accidental axle load with a magnitude of αQ2 · Q2k (see Table 4.5) should be placed on the 
parts of the footways or the cycle tracks, which are considered as unprotected. The part of the 
footway that is going to be classified as unprotected depends on the stiffness and the location 
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of the crash barrier. In Figure 4.8, one can see two different cases of load arrangement. In the 
first case, a part of the footway is protected by a stiff concrete barrier. The axle load is placed 
adjacent to the outer side of the barrier so that the most adverse effects can be investigated. 
This is done with two different orientations: a longitudinal and a transverse one.

In many bridges, flexible safety barriers are used. It is obvious that in such cases high-
speed vehicles may crash on the barrier. Flexible safety barriers can be found at any location 
of the footway. The traffic arrangement is different now, and the axle loads are placed near 
the pedestrian parapet. If the designer is not sure of the type of barrier to be used, then both 
load arrangements of Figure 4.8 should be carefully examined. Further information may be 
found in the National Annex.

The accidental loads on footways or cycle tracks should not be combined with other vari-
able loads. They are only applied for local verifications.

4.3.2.2 Collision forces on kerbs

Kerbs are high-quality concrete elements, usually prefabricated, which are used for border-
ing the carriageway and limiting the footways. The actions taken into account for the capac-
ity design of the kerbs and the footways are shown in Figure 4.9.

The collision force has a magnitude of 100 kN and acts in the horizontal direction 5 cm 
below the top of the kerb. A base line of 50 cm long can be assumed for the transmission 
of the collision force by the kerbs into the supporting elements. The angle of dispersal is 
considered equal to 45° for rigid elements. In cases of flexible footways, different values of 
dispersal angles may need to be investigated.

In Figure 4.9, one can also see that a vertical force equal to 0.75 · αQ1 · Q1k acts simultane-
ously with the collision force. Qv is only applied when this has an unfavorable effect. For αQ1 

Flexible
barrierStiff barrier

Protected part

Pedestrian
parapet

0.5 m

2.0 m

Footways with flexible
safety barriers

(OR)

2.0 m

0.4 m

0.4 m

0.5 m

2.
0 

m

(OR)

2.
0 

m

αQ2  Q2k
αQ2  Q2k

Footways with stiff
safety barriers

Figure 4.8 Load arrangement for footways with safety barriers of different stiffness.
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and Q1k, see Table 4.5. For the most conservative case with an adjustment factor αQ1 equal 
to 1.0, the vertical force Qv becomes equal to 225 kN.

4.3.2.3 Collision forces on safety barriers

The magnitude of the collision forces on barriers and other vehicle restraint systems may be 
given in the National Annex. EN 1991-2 recommends the following classification depending 
on the stiffness of the barrier.

The recommended values of Table 4.8 are based on experimental tests for barriers, which 
are commonly used for bridges. It has to be stated that the stiffness of a barrier highly 
depends on the stiffness of its connection with the footway. For example, a stiff reinforced 
concrete barrier with a weak connection should be classified as a flexible one.

In Figure 4.10, the arrangement of the collision forces is schematically demonstrated. The 
horizontal force H, given in Table 4.8, may be applied for the lowest value of the following 
distances:

• 100 mm below the top of the barrier
• 1.0 m above the carriageway or footway

Furthermore, force H acts along a base line of 50 cm and is distributed in the bridge deck in 
a similar way with the collision force of Figure 4.9. When unfavorable, force H should act 

50 cm

100 kN

5 cmKerb

Footway

Qv = 0.75  αQ1  Q1k

45°

45°

Figure 4.9 Vehicle collision forces on kerbs.

Table 4.8  Horizontal force transferred by 
safety barriers

Recommended 
class

Horizontal 
force (kN)

Stiffness of 
barrier

A 100 Very flexible
B 200 —
C 400 —
D 600 Very stiff
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simultaneously with a vertical force Qv. The magnitude of Qv may be found in the National 
Annex. EN 1991-2 recommends a value equal to 0.75 · αQ1 · Q1k.

4.3.2.4 Collision forces on unprotected structural members

Unprotected structural elements above or beside the carriageway may be designed accord-
ing to the prescriptions of the National Annex or in agreement with the bridge owner. EN 
1991-2 recommends collision forces, which are the same with those at piers. These forces 
should not be in combination with other variable loads.

4.4 ACTIONS ON PEDESTRIAN PARAPETS AND RAILINGS

Actions transferred by the pedestrian parapets to the bridge deck should be considered as 
variable loads. EN 1317-6 gives loading classes for pedestrian parapets and railings. Class 
C should be chosen as the recommended minimum class for bridges.

A line force of 1.0 kN/m, which acts horizontally or vertically on the top of the parapet, 
is described in EN 1991-2 as the recommended loading type in case of footways. For service 
side paths, a reduced value of 0.8 kN/m is suggested. As already mentioned, these are vari-
able loads in which accidental effects are not taken into account. More information may be 
found in the National Annex.

The line force should be combined with a vertical surface load qfk acting on the support-
ing footway or cycle track (see Figure 4.11). This must be the case during the capacity design 
of the supporting footway or cycle track and only when the pedestrian parapet is considered 
adequately protected. The recommended value of qfk according to EN 1991-2 is 5 kN/m2.

If the pedestrian parapet is not protected, then the supporting structure should be designed 
against an additional accidental load HA equal to 1.25 times the characteristic resistance of 
the parapet or its base connection. The variable load qfk is then not taken into account.

100 mm
1.0 m

Qv Qv

H
(see Table 4.8)

H
(see Table 4.8)

Figure 4.10  Loading cases for collision forces on safety barriers. (From EN 1991-2: Eurocode 1: Actions on 
structures—Part 2: Traffic loads on bridges, 2003.)

1.0 kN/m (0.80 kN/m) 1.0 kN/m (0.80 kN/m)

HA

qfk (kN/m2)

Protected
pedestrian parapets

Unprotected
pedestrian parapets

Figure 4.11 Actions on pedestrian parapets.
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4.5  LOAD MODELS FOR ABUTMENTS AND 
WALLS IN CONTACT WITH EARTH

4.5.1 Vertical loads

A simplified load model representing the LM1 for the capacity design of the carriageway 
located behind abutments, wing walls, and side walls is recommended by EN 1991-2. The 
TS is allowed to be replaced by an equivalent uniformly distributed surface load qeq. This 
load is spread over a rectangular surface depending on the dispersal of the loads through 
the backfill. A simplified model is proposed in Figure 4.12. The load surface for the TS is 
assumed to be 3 × L m2. L is calculated based on the dispersal of the axle loads. For the 
notional lane 1, the equivalent surface load is then

 
q Q

Leq i Q i
ik

, .= ◊ ◊
◊

a 2
3

In EN 1997, one can find detailed information on the dispersal of loads through the back-
fills. If the backfill is properly consolidated, EN 1991-2 recommends a dispersal angle value 
equal to 30°; L becomes then equal to 2.2 m. With a load surface of 3 × 2.2 m2, the load qeq 
is 90.91 kN/m2 for the notional lane 1 and 60.61 kN/m2 for the notional lane 2 (for aQi = 1).

4.5.2 Horizontal loads

At the surfacing level of the carriageway, no horizontal loadings should be considered over 
the backfill.

The upstand walls of the abutments should be designed against the forces shown in Figure 
4.13; 0.6 · αQ1 · Q1k represents a longitudinal braking or accelerating force. When unfavor-
able, this force should act simultaneously with the axle load αQ1 · Q1k from the LM1 and with 
the earth pressure from the backfill.

It should be noted that the vertical load alone, without the horizontal force, should be also 
investigated as a different loading case. The opposite need not to be examined since there 
can be no braking force without the vertical force of the axle loads.

Notional lane Nr. 2

2.50 kN/m2

2.50 kN/m2

2.50 kN/m2

Remaining area

qeq,1

qeq,2

3.0 m

3.0 m

Notional lane Nr. 1
9.00 kN/m2 9.00 kN/m2

L

Figure 4.12 Simplified load model for the carriageway behind abutments.
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4.6 TRAFFIC LOADS ON RAILWAY BRIDGES

4.6.1 General

The loads due to railway traffic on the European mainline network, excluding narrow-
gauge railways and tramways, are defined by various load models. EN1991-2 [4.4] gives 
five load models denoted as load model 71 (LM71), SW/0, SW2, high-speed load model 
(HSLM), and “unloaded train,” which represent different traffic conditions. In the fol-
lowing, the first three, which are the most usual, are presented. For the other two, HSLM 
representing traffic at speeds higher than 200 km/h and the effects of an unloaded train, 
reference is made to the code. It is noted that the load models do not describe actual loads 
but have been selected so that their effects, with due dynamic enhancement, represent the 
effects of service traffic.

4.6.2 Vertical loads

4.6.2.1 Load model 71

This represents the static effect of normal rail traffic (see Figure 4.14).
During global analysis, the local effects due to the concentrated loads can be neglected. 

Therefore, an equivalent UDL qQ,vk can be applied (see Figure 4.15). The magnitude of this 
load is obviously equal to 250/1.6 = 156.25 kN/m.

The earlier characteristic values are multiplied by a factor α on lines carrying rail traffic, 
which is heavier or lighter than normal rail traffic. When multiplied with this factor, these 
loads are called classified vertical loads.

Factor α takes the following values:

0.75 – 0.83 – 0.91 – 1.00 – 1.21 – 1.33 – 1.46

Upstand wall
Bridge deck

αQ1  Q1k

0.6  αQ1  Q1k

Abutment

Figure 4.13 Loads on upstand walls.

qvk = 80 kN/m qvk = 80 kN/m

Qvk = 250 kN

Unlimited Unlimited0.8 m 1.6 m 1.6 m 1.6 m 0.8 m

Figure 4.14  Characteristic values of vertical loads for load model 71. (From EN 1991-2: Eurocode 1: Actions 
on structures—Part 2: Traffic loads on bridges, 2003.)
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Factors α > 1.0 are usually applied in cases of bridges, which carry international lines. The 
value to be used for nonnormal rail traffic may be found in the National Annex and has to 
be verified by both the track fabricator and the authorities.

When α ≠ 1.0, then the following actions shall be multiplied with the same factor α:

• Vertical loads for earthworks and earth pressure effects
• Load model SW/0 for continuous span bridges
• Accidental actions due to derailment
• Nosing forces (only if α > 1)
• Centrifugal forces
• Traction and braking forces
• Combined response of structure and track to variable actions

Load model 71 is mostly applied in cases of simply supported bridges.

4.6.2.2 Load models SW/0 and SW/2

Load model SW/0 represents the static effect of normal rail traffic on continuous systems 
and is multiplied by factor α. For continuous bridges, it is considered as an alternative to 
LM 71. This means that continuous bridges are loaded separately with LM 71 and SW/0 
and the most critical internal forces are chosen from the envelope of the two. Usually, LM 
71 provides the largest effects at the spans, while SW/0 at the support regions. Load model 
SW/2 represents heavy rail traffic on lines that are specifically designated as carrying heavy 
traffic. Load model SW/2 is not multiplied by factor α.

The earlier load models are described in Figure 4.16 and in Table 4.9.

qQ,vk = 156.25 kN/m
qvk = 80 kN/m qvk = 80 kN/m

UnlimitedUnlimited 6.40 m

Figure 4.15 Simplified load model 71 for global analysis.

qvk qvk

aca

Figure 4.16 Load models SW/0 and SW/2.

Table 4.9  Characteristic values for 
vertical loads of SW/0 
and SW/2

Load model
qvk 

[kN/m] a [m] c [m]

SW/0 133 15 5.3
SW/2 150 25 7.0
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4.6.2.3 Load model “unloaded train”

A special type of load model is the “unloaded train.” It is represented by a UDL equal to 10 
kN/m. Different values may be given by the National Annex. In certain cases, the unloaded 
train may result in a critical loading situation. This can arise during the stability analysis of 
a railway bridge, which carries an “unloaded train” in combination with strong wind forces 
(verification of adequate torsional rigidity; see also load group gr15 in Table 4.13).

4.6.2.4 Eccentricity of vertical loads (load models 71 and SW/0)

The uniform and concentrated loads of LM 71 and SW/0 are not distributed equally to the two 
rails but with the ratio 1.25:1.0 in order to take into account possible eccentricities as shown 
in Figure 4.17. The maximum resulting eccentricity is equal to e = r/18, where r is the distance 
between rails (usually r = 1.435 m). This eccentricity may be neglected in the fatigue verifications.

4.6.2.5  Longitudinal distribution of concentrated loads by the rail and 
longitudinal and transverse distribution by the sleepers and ballast

For the design of local deck elements (concrete slabs, cross girders, etc.), the concentrated 
loads of LM 71 are considered to be distributed over three rail support points (Figure 4.18a). 
These loads are further distributed beneath sleepers up to the upper surface of the deck, in 
the longitudinal direction by an angle 4:1 (Figure 4.18b) and in the transverse direction, so 
that the point loads are transformed to distributed loads. Accordingly, local effects for the 
capacity design of the deck slab can be taken into account.

4.6.2.6 Transverse distribution of actions by the sleepers and ballast

The distribution of actions in transverse direction for bridges with ballast depends on the 
existence of cant (u) (see Figure 4.19b). Cant is the relative vertical distance between the 
uppermost surfaces of the two rails at a particular location along the track.

In Figure 4.19a, one can see the vertical axle load Qv (see Figure 4.17) and the horizontal 
force Qh. Qh can be due to wind and centrifugal actions (curved tracks). Vertical loads are 
distributed through the ballast by an angle 4:1.

It should be noted that eccentricities between the mass center of the train’s section and the 
axis of the bridge and of the track should be carefully taken into account. Equivalent hori-
zontal forces Qh can also be applied for considering additional loadings due to the previously 
mentioned eccentricities. A simple example is shown in Figure 4.20. A composite crossbeam, 

qv1 + qv2

qv1, Qv1 qv2, Qv2

Qv2, qv2
qv1

e

r

Qv1 + Qv2 = Qv

Qv1 + Qv2 : axle load
Qv1, Qv2 : wheel loads

Qv1

e
r

≤ 1.25,

≤

≤ 1.25

1
18

Transverse distance between wheel loads

Figure 4.17 Eccentricity of vertical loads (load models 71 and SW/0).
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which is considered as simply supported, carries the traffic load Qv that acts at the gravity 
center of the train’s section. This vertical load is distributed through the ballast and is trans-
formed into a UDL q. Thus, the internal forces of the crossbeam due to Qv can be calculated. 
The eccentricity e of Figure 4.17 must also be taken into account. This can be done with a 
fictitious horizontal force Qh,v, which results in an additional loading on the crossbeam equal 
to ∆q. When unfavorable, the internal forces due to ∆q should be added to those of q (Qv).

4.6.3 Dynamic effects (including resonance)

Since the trains are moving at high speeds over the bridge, the actual loading is obviously 
dynamic in nature, which may be enhanced due to possible resonance effects and inevitable 
track or train imperfections. Accordingly, a dynamic analysis including these effects should 
be conducted. However, for simplification reasons, static analysis in accordance with the 
load models described earlier may be performed and their effects subsequently being mul-
tiplied by a dynamic factor Φ. Such an analysis is allowed (a) for continuous bridges with 
train speeds V ≤ 200 km/h, (b) for simply supported bridges with train speeds V ≤ 200 km/h 
and fundamental bending natural frequency within the limits of Table 4.10, and (c) for 

Qh Qh

Qv
Qv

u

h h

A

σ σ

R M B A R M B

Reference
plane

Q
r

Q
r

4:1 4:1 4:1

4:1

(b)(a)

Figure 4.19 Transverse distribution of loads by the sleepers and ballast (a) without cant and (b) with cant.

Qvi, i = 1, 2
(see Figure 4.17) 

Qvi/2

Qvi/4

Qvi/(4  A)

Rail

Sleeper

Ballast

Deck
plate

q (kN/m2)4:1

Rail

Sl
ee

pe
r

Qvi/(2  A) Qvi/(4  A)

Surface loads for
local verifications

Qvi/4

a a
(a) (b)

Figure 4.18 Longitudinal distribution of concentrated loads (a) by the rail and (b) the sleepers and ballast.
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e

Qv

q Δq

[ΔV][V]

[M] [ΔM]

Qh,v

Qh,v =
Qv  e

h

h

Internal forces due to vertical loads Additional internal forces due to eccentricity

Figure 4.20 Internal forces in a crossbeam due to horizontal forces and eccentricities.

Table 4.10  Limits of bridge natural frequency to avoid dynamic analysis

The upper limit of n0 is governed 
by dynamic enhancement due to 
track irregularities and is given by 150.0

100.0
80.0
60.0

40.0

20.0
15.0

10.0
8.0
6.0

4.0

1.5

1.0
2 4 6 810 15 20 40 60

Lower
limit of n0

Upper
limit of n0

n0 (Hz)

L (m)

80 100

n L0
0 74894 76= ◊ -. . (4.8)

The lower limit of n0 is governed 
by dynamic impact criteria and is 
given by

For 4 m ≤ L ≤ 20 m

n
L

0
80

= (4.9a)

For 20 m < L ≤ 100 m

n L0
0 59223 58= ◊ -. .

(4.9b)

Source: EN 1991-2: Eurocode 1: Actions on structures—Part 2: Traffic loads on bridges, 2003.

Note: n0, fundamental bridge frequency in bending taking account of mass due to permanent loads; 
L, span length for simply supported bridges or LΦ for other types of bridges.
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simply supported bridges with train speeds V > 200 km/h, span ≥40 m, and fundamental 
bending natural frequency within the limits of Table 4.10. In all other cases, a dynamic 
analysis is required, reference for which is made to EN 1991-2.

The fundamental natural frequency in bending for a simply supported bridge may be 
estimated by the formula

 
n0

0

17 75= .
d

 (4.5)

where δ0 is deflection at mid-span [mm] due to permanent loads using the short-term modu-
lar ratio from Table 6.4.

REMARK 4.1

Equation 4.5 is defined as follows:
The deflection at mid-span of a simply supported beam is given by

 
d0 =

5
384

m g L
E I

◊ ◊ ◊
◊

( )

,

4

10

 (R4.1)

where
m is the mass of the structure (permanent loads)
g is 9.81 m/s2

E · I1,0 is the short-term stiffness of the composite cross section
L is the span length of the beam

The natural circular frequency of a simply supported beam is

 
w p p

d0
2

4
2
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=
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=
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 (R4.2)

The first natural frequency is calculated as follows:

 
n =

g
0

0w
p

p
d2 2

5
3840◊

= ◊ ◊
◊

 (R4.3)

With δ0 [mm] and g [m/s2], Equation R4.3 gives the following expression:
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The dynamic factor Φ, which enhances the static load effects for load models 71, SW/0, and 
SW/2, is either Φ2 or Φ3 depending on the track maintenance as follows:

For a carefully maintained track,

 
F F

F
2

1 44
0 2

0 82 00=
-

+.
.

. † . .
L

w ith 1 1672£ £  (4.6)

For a track with regular maintenance,

 
F F

F
3

2 16
0 2

0 73 00 00=
-

+.
.

. . .
L

w ith 1 23£ £  (4.7)

where LΦ is “determinant” length given in Table 4.11.

EXAMPLE 4.2

Simply supported railway bridge
Span length L = 25 m
Deflection at mid-span due to permanent loads δ0 = 37 mm
Equation 4.5 gives the fundamental natural frequency:

 
n =

17.75

37
= 2.92 Hz0

Upper limit of n0 is taken from Equation 4.8 (Table 4.10):

 max n = = 8.53 Hz0
0.74894 76 25. ◊ -

Lower limit of n0 is taken from Equation 4.9b (Table 4.10):

 min n =23.58 25 =3.51Hz > n0.592
00 ◊ -

The bridge is not stiff enough!

4.6.4 Horizontal forces

4.6.4.1 Centrifugal forces

In regions where the track on the bridge is curved, a centrifugal force acting horizontally at 
height 1.80 m above the running surface is considered. This force acts simultaneously with 
the vertical forces. Its characteristic value is equal to

 
Q V

r
f Qtk vk=

◊
◊ ◊

2

127
( ) (4.10a)



96 Design of steel–concrete composite bridges to Eurocodes

Table 4.11 Determinant length LΦ

Case Structural element Determinant length LΦ

Main girders
1.1 Simply supported girders and slabs 

including filler beam decks
Main girder span

1.2 Continuous girders and slabs with 
average length

L
n

L L Lm n= ◊ + + +1
1 2( )…

where
n is number of spans

L k L L i nm iF = ◊ ≥ =max , , , ...,1 2

where
n = 2 3 4 ≥5
k = 1.2 1.3 1.4 1.5

1.3 Portal frames or boxes
Single span As case 1.2 with k = 1.3
Multi-spans As case 1.2 with k = 1.5

1.4 Single arch, stiffened girders of 
bowstrings

Half span

1.5 Suspension bars (in conjunction with 
stiffened girders)

Four times the spacing of the suspension bars

Concrete deck slab for local and transverse design (with ballast)
2.1 Deck slab as part of box girder or 

upper flange of main beams spanning
Transversely to the main girders Three times span of deck plate
In the longitudinal direction Three times span of deck plate
On cross girders Twice the length of the cross girder
Transverse cantilevers supporting 
railway loading

e

e ≤ 0.5 m: three times the distance between the 
webs

e > 0.5 m: requires special study
2.2 Deck slab continuous over cross 

girders
Twice the cross girder spacing

2.3 Deck slab for half through and 
through bridges spanning

Perpendicular to the main girders Twice the span of deck slab + 3 m
In the longitudinal direction Twice the span of deck slab

2.4 Deck slabs in filler beam decks Twice LΦ in longitudinal direction
2.5 Longitudinal cantilevers of deck slab e ≤ 0.5 m: 3.6 m

e > 0.5 m: requires special study
2.6 End cross girders or trimmer beams 3.6 m

Structural supports
3.1 Columns, trestles, bearings, tension 

anchors, and for the calculation of 
contact pressures under bearings

LΦ of the supported members

Source: EN 1991-2: Eurocode 1: Actions on structures—Part 2: Traffic loads on bridges, 2003.
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q V

r
f qtk vk=

◊
◊ ◊

2

127
( ) (4.10b)

where
V is the maximum train speed [km/h]
r is the radius of curvature [m]
Qvk, qvk are the vertical forces of the corresponding load models
f is the reduction factor for LM 71 and SW/0 (see Equation 4.11 or Table 4.12)

The reduction factor is calculated by the following equation:

 

f V
V Lf

= - - ◊ +Ê
ËÁ

ˆ
¯̃
◊ -
Ê

Ë
ÁÁ

ˆ

¯
˜̃

È

Î
Í
Í

˘

˚
˙
˙
≥1 120

1000
814 1 75 1 2 88 0 3. . . 55  (4.11)

 f 1 if V 12  km /h or L 2 88 mf= £ £0 . .

In the earlier relation, Lf [m] is the influence length of the part of the curved track, which is loaded. 
The part of the track that is loaded must be the one that results in the most unfavorable effects.

Expression (4.11) can be avoided through the following simplified method. The centrifu-
gal forces are rewritten as follows:

 
Q Q

rtk fV
vk= ◊g  (4.12a)

 
q q

rtk fV
vk= ◊g  (4.12b)

where

 
gfV

V f= ◊2

127  (4.12c)

γfv is in [m] and its value can be taken from Table 4.12. Then, through multiplication with 
the known ratios Qvk/r and qvk/r, the centrifugal forces are calculated.

EXAMPLE 4.3

V = 160 km/h, r = 560 m, Lf = 40 m
From Table 4.12: γfV = 161.26
Centrifugal forces are calculated as follows:
Qtk = 161.26 · (250/560) = 71.99 kN
qtk = 161.26 · (80/560) = 23.04 kN/m

For curved bridges, the loading case without the effects of the centrifugal forces shall also 
be considered.

When the maximum train speed V is greater than 120 km/h, the following two loading 
cases should be considered:

 a. The load model 71 (or SW/0 if required) multiplied by its dynamic factor Φ2 or Φ3 (see 
Section 4.6.3) and the centrifugal forces calculated with γfV = 113.39 (V = 120 km/h).

 b. A “reduced” load model 71 (or SW/0 if required) without the dynamic factor Φ2 or Φ3 
and with axle loads equal to f · Qvk and f · qvk. The centrifugal forces are calculated with 
γfV for the maximum speed V specified.
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It is important to note that centrifugal forces are not multiplied by the dynamic factor Φ of 
Section 4.6.3.

In Figure 4.21, five different load cases are demonstrated for a simply supported curved 
bridge with a span of 40 m and a radius of curvature equal to 560 m. Load cases LC4 and 
LC5 refer to load model SW/2, which in most cases may not need to be taken into account.

4.6.4.2 Nosing force

This is a horizontal concentrated force Qsk = 100 kN, transverse to the track axis applied at 
the top of the rails in combination with the vertical traffic loads. It is not multiplied with Φ 
or f but with α if this is larger than 1 (see Section 4.6.2).

EXAMPLE 4.4

Q tk = 50.71 kN
q tk = 16.20 kN/m

84.4 kN/m

84.4 kN/m

Φ 2 
  Q vk = 263.75 kN

Φ 2 
  q vk= 158.25 kN/m

Φ 2 
  q vk= 158.25 kN/m

Q tk = 71.99 kN
q tk = 23.04 kN/m

q tk
= 30.37 kN/m

f  Q vk = 200.0 kN f  q vk = 64.0 kN/m

Unlimited
Unlimited

Unlimited
Unlimited

Unlimited

Unlimited

1.
80

 m

LC1
Load model 71 with

dynamic enhancement

LC3
Load model 71 without

centrifugal forces

1.44
40 – 0.2

Centrifugal forces for LCI, LM 71 (V = 120 km/h)
From Table 4.12: γfv = 113.39 m

80

150

560

560 = 30.37 kN/m

= 16.20 kN/m

= 50.71 kN

Centrifugal forces for LC2, LM 71 (V = 160 km/h)

Centrifugal forces for LC4, SW/2 (V = 80 km/h)

From Table 4.12: γfv = 113.39 m

See Example 4.3, f = 0.8 (see diagram in Table 4.12)

qtk = 113.39  

qtk = 113.39    

Qtk = 113.39  

 Dynamic enhancement acc. to Equation 4.6:

Φ2 = + 0.82 = 1.055, 1.00 ≤ Φ2 ≤ 1.67

LC4
SW/2 with centrifugal

forces (if necessary)

LC5
SW/2 without centrifugal

forces (if necessary)

LC2
Reduced load model 71

f = 0.80

Φ 2  
 q vk = 84.4 kN/m

Φ 2 
  q vk = 84.4 kN/m

23.04 kN/m

64.0 kN/m

30.37 kN/m

158.25 kN/m

158.25 kN/m

25.0 m

25.0 m

7.0 m

7.0 m

25.0 m

25.0 m

16.20 kN/m

250
560

Φ 2 
. Q vk = 263.75 kN

Figure 4.21  Load cases (traffic loads + centrifugal forces) for a simply supported curved bridge with L = 40 m 
and r = 560 m.
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4.6.4.3 Actions due to traction or braking

These are forces in the longitudinal direction acting at the top of the rails in combination 
with the vertical traffic loads. They are taken as uniformly distributed line loads over the 
corresponding influence length La,b [m] for the structural element considered. Their direc-
tion corresponds to the permitted direction of travel on each track. The characteristic values 
of these forces are the following:

Traction force for LM 71, SW/0, SW/2, and HSLM

 Q L kNlak a b= ◊ £33 1000,  (4.13)

Braking force for LM 71, SW/0, and HSLM

 Q L kNlbk a b= ◊ £20 6000,  (4.14a)

Braking force for SW/2

 Q Llbk a b= ◊35 ,  (4.14b)

These forces are not multiplied with Φ or f but with α for LM 71 and SW/0.
For loaded lengths La,b > 300 m, additional requirements may be found in the National 

Annex.
Different values than the aforementioned may need to be taken into account in cases of 

lines carrying special traffic. EN 1991-2 [4.4] accounts for 25% of the sum of the axle loads 
of the real train, which act on the loaded length. Requirements may depend on the type of 
the project though.

When the track is continuous at one or both ends of the bridge, only one part of the earlier 
forces is transferred through the deck to the bearings. The other part is transmitted through 
the track and resisted behind the abutments. EN 1991-2 contains detailed provisions on how 
to calculate the part of the longitudinal forces due to traction/braking, thermal effects, and 
temperature variations that are transferred through the deck.

When comparing railway with roadway bridges, one can easily observe that braking/trac-
tion forces of the second ones are much more critical for the design of the entire structure 
(sub- and superstructure). Moreover, it should be underlined that braking forces in railway 
bridges have different magnitudes than the traction forces.

4.6.5  Consideration of the structural interaction 
between track and superstructure

In most bridges, rails are continuous over discontinuous locations such as the support joints. 
Obviously, a part of the longitudinal forces due to thermal effects, braking or traction, and 
other secondary effects is transferred through the rails to the embankment and the bear-
ings. Therefore, the structural model should take into account both the superstructure and 
the track system. EN 1991-2 suggests a model in which the track and the superstructure are 
connected with nonlinear springs, which represent the longitudinal stiffness of the rails (see 
Figure 4.22a).

The spring that is defined as K1 in Figure 4.22 may have a stiffness whose value is defined 
in the National Annex or by the fabricator of the rails. A typical load–displacement diagram 
is shown in Figure 4.22b. One can observe that the longitudinal behavior of the track–
superstructure system depends on the type of the rail and on the loading condition. Indeed, 
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if the track is loaded, then, due to high friction forces, both the longitudinal resistance and 
the stiffness become higher. Therefore, designers should take into account a variation of the 
longitudinal shear flow ql.

For the capacity design of the rails, a longitudinal support reaction FL should be calcu-
lated as follows:

 
F FL i li= ◊Â y 0  (4.15)

where
Fli is the individual longitudinal support reaction that corresponds to action i
ψ0i is combination factor that is taken as equal to 1.0 for the calculation of rail stresses 

or from EN 1990 A2 for the calculation of load effects in the superstructures, bear-
ings, and substructures

The stresses on rails should be limited to 72 N/mm2 for compression and to 92 N/mm2 
for tension. The previous values are valid for tracks complying with the following criteria:

• UIC 60 rails with a tensile strength ≥900 N/mm2

• Track with a straight layout or a radius ≥1500 m
• For ballasted tracks with a consolidated ballast with a depth of at least 30 cm
• For ballasted tracks with stiff concrete sleepers with a center-to-center spacing ≤65 cm

In cases that differentiate considerably from the preceding text, experimental tests should 
be conducted.

EN 1991-2 imposes additional limitations for the deformability of the rails. Some of the 
limitations are the following:

• Traction and braking
The relative longitudinal displacement between the deck’s end and the adjacent 
abutment shall not exceed 30 mm in the case of tracks with continuous ballast and 
with rail expansion devices at both ends of the deck. If a ballast with a movement 
gap over the supports and rail expansion devices is provided, then values greater 
than 30 mm are allowed.

Rail ql

qR1 Resistance of the rail in sleeper in case of loaded track

qR3 Resistance of the rail in sleeper in case of unloaded track
qR2 Resistance of sleeper in ballast in case of loaded track

qR4 Resistance of sleeper in ballast in case of unloaded track

Longitudinal non-
linear spring (K1)

Rail expansion
device (if present)

qR1SuperstructureLongitudinal
springs (K2)

qR2

qR3

qR4q l
 (k

N
/m

)

u (mm)
(a) (b)

Figure 4.22  (a) Modeling example of a track–structure system. (b) Relation of longitudinal shear flow (ql) 
with relative longitudinal displacement (u) for different loading cases.
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• Vertical traffic actions (load models LM 71 and SW/0)
The longitudinal displacement of the upper surface of the deck at its ends shall not 
exceed 8 mm when the structural interaction between the track and the superstruc-
ture is taken into account. For simple models in which the structural interactions are 
neglected, the maximum allowable value is 10 mm.

• Variable actions
The relative vertical displacement between the upper surface of the deck and an adja-
cent construction shall not be greater than 3 mm for a maximum line speed up to 
160 km/h. For higher speed values, the displacement limit is 2 mm.

4.6.6 Other actions and design situations

Other actions include aerodynamic actions from passing trains that develop in noise bar-
riers, overhead protective structures, or platform canopies. Accidental design situations 
include derailment of rail traffic running on the bridge. EN 1991-2 gives detailed provisions 
for their calculations.

Longitudinal forces due to breakage of rails, actions from catenaries and other overhead 
line equipment attached to the structure, and other railway infrastructure and equipment 
are also referred to without specific provisions in the earlier code.

4.6.7 Groups of loads

Horizontal and vertical traffic loads act simultaneously on the bridge. This is taken into 
account considering groups of loads that define a single variable characteristic action to be 
combined with nontraffic action. The load groups are denoted as gri,j, where i is the number 
of tracks on the bridge (i = 1, 2, 3 …) and j the current group number. The groups of loads 
for bridges with one track (i = 1) are given in Table 4.13. For more tracks, reference is made 
to EN 1991-2 [4.4].

Table 4.13 Group loads for rail traffics for one track according to EN 1991-2

Load 
group

Vertical forces Horizontal forces

Comments
LM 71, 

SW/0, HSLM SW/2
Unloaded 

train
Traction, 
braking

Centrifugal 
force

Nosing 
force

gr11 1 — — 1b 0.5b 0.5b c
gr12 1 — — 0.5b 1b 1b d
gr13 1a — — 1 0.5b 0.5b e
gr14 1a — — 0.5b 1 1 f
gr15 — — 1 — 1b 1b g
gr16 — 1 — 1b 0.5b 0.5b h
gr17 — 1 — 0.5b 1b 1b i

Source: EN 1991-2: Eurocode 1: Actions on structures—Part 2: Traffic loads on bridges, 2003.
a It should be reduced to 0.5 in case of favorable effects.
b When favorable, these values shall be taken as equal to zero.
c Unfavorable vertical and longitudinal effects.
d Unfavorable vertical and transverse effects.
e Unfavorable effects in the longitudinal direction.
f Unfavorable lateral effects.
g Verification of global stability.
h Unfavorable vertical and longitudinal effects with SW/2.
i Unfavorable vertical and transverse effects with SW/2.
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The vertical forces have to be considered with the eccentricities shown in Figure 4.17. In 
cases of nonnormal traffic loads, “classified vertical loads” must be applied (see factors α in 
Section 4.6.2.1).

The combination of vertical and horizontal loads should be performed as in Example 4.4 
(see Figure 4.21). Attention must also be paid to whether dynamic amplifications (Φ2 and Φ3) 
are taken into consideration or not.

4.7 TEMPERATURE

4.7.1 General

A detailed investigation of the temperature effects is necessary during both the erection and 
the final stages. Provisions are described in EN1991-1-5 (see Section 6 of the code) [4.3], but 
additional guidelines may be found in the National Annex. Figure 4.23 demonstrates the 
division of a “real” temperature profile [∆TREAL] into four independent components. The first 
component [∆TN] is uniformly distributed along the height of the cross section causing longi-
tudinal deformations. Components [∆TMY] and [∆TMZ] result in rotations around the strong 
and the weak axis, respectively. One can see a fourth component [∆TE], which represents the 
nonlinear part of the temperature’s profile. This distribution may cause out-of-plane deforma-
tions, which may be critical in certain types of bridges such as box girder bridges.

The real distribution is nonlinear and obviously time dependent. Therefore, [∆TREAL] is 
described by a combination of the previously mentioned temperature components together with 
the enhancement factors ω(t). The magnitude of these factors is mainly dependent on the

• Geometry of the cross section
• Time of the day and the season
• Thermal conductivity and the density of the materials
• Orientation of the bridge
• Thickness and color of the surfacing
• Variation of air temperature
• Wind speed
• Humidity

From the preceding text, it can be concluded that none of the components can be considered 
as more important than the others. The consideration of [∆TN] and [∆TMY] can be described 
for the majority of the plate-girder bridges as adequate. The first component leads to lon-
gitudinal deformations ∆u, which are associated with forces and shear drifts in bearings 

Centroidal
axis

[ΔTREAL]

[ΔTREAL] = ωN(t)   [ΔTN] + ωMY(t)  [ΔTMY] + ωMZ(t)   [ΔTMZ] + ωE(t)   [ΔTE]

[ΔTN] [ΔTMY] [ΔTMZ] [ΔTE]

x, u

z, w

y, v

ωN(t), ωMY(t), ωMZ(t), ωE(t): time-dependent factors

Figure 4.23 Division of temperature profile in four parts.
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(see Figure 4.24). When the temperature varies linearly over the cross section, additional 
deflections ∆w and bearings’ rotations ∆φ should be taken into account.

In cases of bridges with flexible deck slabs, for example, footbridges, bending of the 
bridge due to [∆TMZ] along the weak axis may occur; ∆v ≠ 0. Nonlinear temperature varia-
tions produce self-equilibrating stresses, which are also known as eigen- or residual stresses. 
This is because any fiber, being attached to other fibers, cannot perform free temperature 
expansion. More information about the consideration of nonlinear temperature effects is 
given in Section 4.7.5.

Both for global analysis and stress estimations, the coefficient for thermal expansion αT is 
needed. For the composite sections, a value equal to 10−5/°C both for concrete and for steel 
can be used. For steel cross sections during the erection stage, an increased thermal expan-
sion factor equal to 1.2 × 10−5/°C must be applied.

When the deformations and rotations due to temperature are restrained, additional inter-
nal forces are developed (also see Section 4.7.5). This is always the case in indeterminate 
systems such as continuous, frame, or integral bridges. Stresses that are caused by these 
forces are also known as continuity stresses.

The main provisions given in EN 1991-1-5 are presented in the following paragraphs. 
A discussion about the effects of temperature during the erection phase can be found in 
Section 4.7.6.

4.7.2 Uniform temperature component ∆TN

∆TN expresses a global increase or decrease in temperature of the structure due to the corre-
sponding temperature changes in the environment. If the minimum and maximum shade air 
temperatures are Tmin and Tmax, respectively the corresponding minimum and maximum tem-
peratures of the bridge are Te,min and Te,max respectively. The former are nationally determined 
parameters provided in the National Annex of EN 1991-1-5. For group 2 decks (composite 
decks), the bridge temperatures are approximately 5°C above the air temperatures. The initial 
temperature T0 is the temperature at which the structure is finished or when the bearings are 
placed. If unknown, it may be taken as the mean temperature during the construction period 
with a recommended value of T0 = 10°C.

The characteristic value of the maximum contraction range is given by

 DT T TN con e, ,m in= -0  (4.16)

The characteristic value of the maximum expansion range is given by

 
DT T TN e,exp ,m ax= - 0  (4.17)

Due to [ΔTN]

Due to [ΔTMZ] Due to [ΔTE] Residual stresses
∫σx  dA = 0
∫σx  z  dA = 0

Due to [ΔTMY]Δu

Δw
Δ  

Δγ

Δv

Figure 4.24 Temperature effects on a simply supported composite bridge.
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For the design of bearings and expansion joints, it is recommended to increase the aforemen-
tioned values by 20°C in general or by 10°C if the temperatures at which the bearings or joints 
are set and specified. For example, for values Te,min = −15°C, Te,max = +45°C, and T0 = 10°C, it is

 
D DT C and T CN con N, ,exp( )= - - = ∞ = + - = ∞10 15 25 45 10 35

For bearings and expansion joints with unspecified temperatures at placement, the corre-
sponding values are

 
D DT C and T CN con N, ,exp= + = ∞ = + + = ∞25 20 45 35 20 55

Unfavorable effects due to the aforementioned temperature differences may obviously arise in 
cases of longitudinal restraints during both the erection and the final stages. An expansion tem-
perature of 35°C may result in excessive compression forces causing buckling phenomena, lat-
eral deformations, local failures, etc. Due to creep, the magnitude of these forces is considerably 
reduced in concrete bridges or filler beam decks. Unfortunately, this relief does not take place in 
steel and composite bridges. Therefore, greater attention must be paid.

4.7.3 Temperature difference component ∆TM

This expresses the fact that not all parts of the bridge change temperature at the same rate. 
It includes a linear varying temperature component along the vertical axis, a linear varying 
temperature component along the horizontal axis, and a nonlinear temperature component 
that produces self-equilibrating stresses. Out of the three, the first component only, denoted 
as Approach 1 in EN1991-1-5 [4.3], is usually considered in bridge design. According to 
Approach 1, ∆TM is a temperature difference between the top and the bottom of the bridge 
deck. Two values are considered, ∆TM,heat when the top is warmer than the bottom and 
∆TM,cool when the bottom is warmer than the top.

The recommended values for composite decks with a surfacing of 50 mm are

 D DT C and T CM heat M cool, ,= ∞ = ∞15 18

For different depths of surfacing, the aforementioned values should be multiplied with the fac-
tor ksur of Table 4.14. These values represent upper bound values for surfacing of dark color.

Table 4.14 ksur values according to EN 1991-1-5

Temperature Unsurfaced
Water 
proofed 50 mm 100 mm 150 mm

Ballast 
750 mm

Ttop > Tbottom

Tbottom

0.9 1.1 1.0 1.0 1.0 0.8

Tbottom > Ttop

Ttop 1.0 0.9 1.0 1.0 1.0 1.2

Source: EN 1991-1-5: Eurocode 1: Actions on structures—Part 1–5: General actions—Thermal 
actions, 2003.
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4.7.4 Combination between ∆ΤΝ and ∆TM

In some cases (e.g., in integral or frame bridges), the temperature effects ∆TN and ∆TM 
should be combined and regarded as single actions. The relevant combination rule is

 
D D D DT or T T or TM heat M cool N N N con, , ,exp ,( ) ( )+ ◊w  (4.18a)

or

 
wM M heat M cool N N conT or T T or T◊ +D D D D, , ,exp ,( ) ( ) (4.18b)

The aforementioned are considered as a single action, and the most adverse effect should be 
chosen. The recommended values for the combination factors are ωN = 0.35 and ωM = 0.75.

The temperature combinations (4.18) are highly consistent with the ω(t) factors shown 
in Figure 4.23. For reasons of simplicity, the code avoids time-dependent factors by 
offering the earlier combinations. In (4.18a), the linear temperature component [∆TM] is 
the dominant one. In contrast, (4.18b) covers the case of a dominant uniform distribu-
tion [∆TN].

4.7.5 Nonuniform temperature component ∆TE

Nonlinear temperature variations may be in certain cases much more critical than the 
linear ones. As already mentioned, residual stresses are developed and can accelerate 
cracking and yielding procedures. In compressed areas, these stresses may also play a 
negative role and increase the buckling risk. For compact cross sections (classes 1 and 2), 
nonlinear variations can be neglected. For noncompact cross sections, a more detailed 
analysis with [∆TE] may be necessary. EN 1991-1-5 suggests that nonlinear temperature 
variations should be considered without any reference to cross sections, materials, or 
structural systems.

In Figure 4.25, one can find the temperature differences over composite cross sections 
with a surfacing of 100 mm. EN 1991-1-5 offers two kinds of procedures: the normal and 
the simplified one. For different depths of surfacing, recommended values for ∆T1 and ∆T2 
are given in Annex B of EN 1991-1-5.

It must be pointed out that [∆T] incorporates [∆TM] and [∆TE] together with a small 
part of [∆TN]. When designers wish to consider all the temperature components and 
include nonlinear effects, then in combinations (4.18a) and (4.18b), [∆TM] should be 
replaced by [∆T].

Generally, the computation of the residual stresses and the corresponding internal forces 
due to nonlinear effects is laborious. Interesting information on this issue is also given in 
[4.7] and [4.10].

4.7.6 Temperature effects during erection

Steel cross sections in bridges consist of thin plates, which may easily deform due to 
thermal effects, thus leading to erection difficulties. Figure 4.26 shows the erection 
procedure of a composite bridge with an open box steel cross section over a river bank. 
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The solar radiation on one side of the steel girder leads to lateral deformations v. 
Usually, segment A is equipped with thicker plates than those of segment B. Therefore, 
the relative lateral displacements between A and B may cause considerable assembly 
problems.

Additional difficulties will arise due to different temperatures between the webs (TN1 > TN2). 
This results in an out-of-plane deformation of the cross section whose unfavorable effects 
may only be discovered on site.

100 mm

100 mm

Cross sections Temperature distribution

Normal procedure

Simplified procedure

(a) Heating (b) Cooling

(a) Heating (b) Cooling

h

h h

h (m)
40.2

0.3
13
16 4

hh1 h1

h1 = 0.6  h
h2 = 0.4 mh2 h2

ΔT2

ΔT2 (°C)

ΔT2

ΔT1

ΔT1 −ΔT1

ΔT1 = 10°C 

ΔT1 (°C) h (m)
−80.2

0.3
−3.5
−5 −8

ΔT2 (°C)ΔT1 (°C)

ΔT1

h

h

100 mm

h

Figure 4.25  Temperature variations for composite bridge decks. (From EN 1991-1-5: Eurocode 1: Actions 
on structures—Part 1–5: General actions—Thermal actions, 2003.)

Segment B
v

A
B

T1 > T2
TN1 > TN2 TN2

u1 > u2

u2

T2

Segment A

Figure 4.26 Deformations due to thermal effects during the erection stage.
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Experienced designers are aware of the “tricky” situations that may emerge due to tem-
perature effects. Unfortunately, the codes do not provide the necessary guidelines, and 
assumptions are unavoidable. Explicit calculations with sophisticated FE-structural models 
are usually used, and the following parameters are considered:

• Different temperature variations.
• The torsional flexibility of the girders. A 2nd-order theory analysis is recommended.
• Additional temperature effects due to welding procedures.
• Changes of the structural system during construction.
• Fabrication tolerances according to EN1990 [4.1].

4.8 WIND

4.8.1 General

Guidance on the determination of wind actions on structures is given by EN1991-1-4 [4.2]. 
This includes the whole structure, parts of it, and elements attached to the structure. Section 
4.8 of this code gives the wind loads for plate and single or multiple box-girder bridges of 
constant depth. It does not cover arch, suspension, or cable-stayed bridges. In the usual 
coordination system for bridges, x-axis is along the longitudinal direction of the bridge, 
y-axis is along the transverse direction, and z-axis is the vertical axis, while in EN1991-1-4, 
the longitudinal axis is denoted with y and the transverse axis with x (see Figure 4.28). 
Wind along the longitudinal direction x (y according to EN1991-1-4) is usually negligible. 
Wind in the vertical direction z is taken into account for large span bridges, when aerody-
namic stability is to be examined.

The wind force is given as a function of

• The basic wind velocity vb

• The exposure factor ce

• The force coefficient cf

• The reference area Aref

4.8.2 Wind force in bridge transverse direction y

When aerodynamic effects are not relevant, the wind force may be determined from

 
F v C AW yk b refy= ◊ ◊ ◊ ◊ [ ]1

2
2r , kN  (4.19a)

where
vb is basic wind velocity [m/sec] (see Section 4.8.3)
ρ is density of air
C is wind load factor, C = ce · cf,y; for ce (see Section 4.8.4)
cf,y is force coefficient in transverse direction; cf,y = cfy,0 (see Section 4.8.5)
Aref,y is reference area in transverse direction [m2] (see Section 4.8.6)
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The density of air is taken as equal to 1.25 kg/m3, and therefore Equation 4.19a is rewritten 
as follows:

 
F v C AW yk b refy= ◊ ◊ ◊ [ ]1

1600
2

, kN  (4.19b)

4.8.3 Basic wind velocity

The basic wind velocity is given by

 v c c vb dir season b= ◊ ◊ 0  (4.20)

Since the recommended values for the directional and seasonal factors cdir and cseason, respec-
tively, are equal to 1.0, the basic wind velocity is usually equal to the fundamental value 
of the basic wind velocity vb0. This is determined statistically as the characteristic 10 min 
mean wind velocity 10 m above the ground level in open country terrain with low vegetation 
which is given in the National Annex of each country.

4.8.4 Exposure factor

The exposure factor ce is a function of

• The terrain category. Five terrain categories, denoted as 0, I, II, III, or IV, are distin-
guished so as to express the terrain roughness.

• The distance z of the axis of the structure, that is, the middle height of the bridge, from 
the ground.

Values of the exposure factor as a function of the height z above terrain and the terrain cat-
egory are illustrated in Figure 4.27.
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0 Terrain categories [4.2]
0 Costal or sea areas exposed to open sea 

Flat and horizontal areas and lakes without
obstacles and with negligible vegetation

Areas with low vegetation such as grass and
isolated obstacles (buildings, trees) with
separations at least 20 obstacle heights

Areas with regular cover of  vegetation or
buildings or with isolated obstacles with
separations of maximum 20 obstacle heights,
e.g., villages, permanent forests, and
suburban terrains

Areas in which at least 15% of the surface is
covered with buildings and their average height
exceeds 15 m

Figure 4.27 Exposure factor ce.
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4.8.5 Force coefficient cfy,0

For normal bridges, it may be taken as cfy,0 = 1.3. This value is valid for b/dtot ≥ 4, where 
b = width of the deck and dtot = total height of deck, including vehicles, parapets, and noise 
barriers (see Figure 4.28b). For b/dtot = 0, it is cfy,0 = 2.4, while for intermediate values, a lin-
ear interpolation applies.

Where the windward face is inclined to the vertical (e.g., in box girders), cfy,0 may be 
reduced by 0.5% per degree of inclination from the vertical, up to 30% (see Figure 4.28c).

Where a bridge deck is sloped transversely, cfy,0 should be increased by 3% per degree of 
inclination but no more than 25%.

Where two similar decks are at the same level and separated transversally by a gap smaller than 
1 m, the wind force may be calculated, by increasing the width b, as if it were a single structure.

4.8.6 Reference area Aref,y

The reference area is given by

 
A L drefy ref, = ◊  (4.21)

where
L is total length of the bridge (see Figure 4.28a)
dref is reference height of the bridge, dependent on whether traffic is present or not

The reference height for wind without traffic is given in Table 4.15.
The reference height in presence of traffic is taken, independent of the position of the 

vehicles, as equal to

• d + 2 m for road bridges
• d + 4 m for railway bridges

Erection stage

With solid and open parapets
With vehicles

dtot

dtot

dtot
dtot

FWyk ± FWzk

FWxk

y

zx

b

Attention: �is is not the coordinate
                         system of EN 1991-1-4 [4.2]

(b)

eL

α1(a) (c)

Figure 4.28  (a) Wind forces. (b) Determination of dtot for different cases. (c) Cross section with an inclined 
windward face.
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Obviously, if this value is smaller than for the bridge without traffic, for example, due to the 
presence of high solid parapets, the larger value should be considered.

On a bridge with traffic, wind is combined with traffic loads so that the wind force on 
the bridge is considered with the combination value ψ0 · FWk. This force should be limited to

• y 0 ◊ £F FW k W* for road bridges

• y 0 ◊ £F FW k W** for railway bridges

The forces FW* and FW** are determined as aforementioned, with a reduced wind velocity with 
recommended values:

• v mb0 23* s= / for road bridges
• v mb0 25* s= /  for railway bridges

4.8.7 Wind force in bridge vertical direction z

Wind force may be determined from Equation 4.19 with a force coefficient cfz = 0.9. This 
force acts both downward and upward. The reference area is equal to

 A L brefz, = ◊  (4.22)

This force is eccentric to the axis of the bridge, the relevant eccentricity being e = b/4 (see 
Figure 4.28). This force should only be considered if it is of the same order as the dead 
weight of the bridge.

Table 4.15 Reference height dref for wind without traffic

Road restraint system On one side On both sides

Open parapet or open safety barrier d + 0.3 m d + 0.6 m
Solid parapet or solid safety barrier d + d1 d + 2 · d1

Open parapet and open safety barrier d + 0.6 m d + 1.2 m

Solid parapet or solid
safety barrier or
noise barrier

Open safety
barrier

300 mm

d

Open
parapet

dl

Notes:

For decks with truss girders, d is equal to the sum of the solid face area (one cornice, 
footway, or ballasted track) and the solid parts of the truss girders above or below that 
area in normal projected elevation divided by L.

For decks with several main girders during construction prior to concreting of the slab; 
d includes the height of two main girders.
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EXAMPLE 4.5

The wind force in the transverse direction on a simply supported bridge of span L = 25 m and a 
cross section shown in the succeeding text is to be determined. The fundamental value of the 
basic wind velocity is 33 m/s, the distance of the deck from the ground is 6 m, and the area is 
flat and horizontal with low vegetation (Figure 4.29).

Equation 4.20, basic wind velocity: v = v = m/sb b0 33
Middle height of the bridge from the ground: z= / = m6 1 5 3 5 25- ( . ) .
The area is classified as terrain category II.
Figure 4.27, exposure factor: ce = 1.7
Width of deck: b = 12.6 m

Bridge without traffic
Total height: dtot = 1.50 + 1.0 = 2.5 m

Force coefficient:

 

b
d

=
12.6
2.5

= 5.04> 4.0 c =1.3
tot

fy,0fi

Table 4.15, reference height: dref = 1.5 + 2 · 1.0 = 3.5 m (solid parapets on both sides)
Equation 4.21, reference area:

 A = = mref,y 25 3 5 87 5 2◊ . .

Wind load factor: C = 1.7 · 1.3 = 2.21
Equation 4.19b, wind force:

 
F = = kNWyk

1
1600

33 2 21 87 5 131 62◊ ◊ ◊. . .

Bridge with traffic
Total height: dtot = 1.50 + 2.0 = 3.5 m

Force coefficient:

 
b

d
= = < c = + =

tot
fy,0

12 6
3 5

3 6 4 0 1 3
2 4 1 3

4
4 3 6 1 41

.
.

. . .
. .

. .fi - ◊ -( )

In presence of traffic, the reference height is dref = 1.5 + 2.0 = 3.5 m.

1.0 m
0.5 m

Solid parapet
12.60 m

1.0 m

Figure 4.29 Cross section of the road bridge of Example 4.5.



Actions 113

Equation 4.21, reference area:

 A = = mref,y 25 3 5 87 5 2◊ . .

Wind load factor: C = 1.7 · 1.41 = 2.4
Equation 4.19b, wind force:

 
F = = kNWyk

1
1600

33 2 4 87 5 142 92◊ ◊ ◊. . .

The combination value with traffic loads is

 y 0 WykF = = kN◊ ◊0 6 142 9 85 74. . .

The maximum value in the combination is

 
F = = kN < kNW
* . . . .

1
1600

23 2 4 87 5 69 4 85 742◊ ◊ ◊

Accordingly, the combination value is 69.4 kN.

Notes
 a. The vertical component of the wind force of the bridge without traffic is calculated as 

follows:
  Force coefficient: cfz = 0.9
   Wind load factor: C = 0.9 · 1.7 = 1.53
  Reference area, Equation 4.22:

 A = = mref,z 25 12 6 315 2◊ .

 
F = = kNWzk

1
1600

33 1 53 315 328 022◊ ◊ ◊. .

 b. The transverse wind load in the construction period (concreting of the slab), where the 
area of two girders is considered, is equal to

  Total height: dtot = 1.25 m (0.25 m slab’s depth)
   Force coefficient:

 

b
d

= = > c =
tot

fy,0
12 6
1 25

10 1 4 0 1 3
.

.
. . .fi

  Reference height: dref = 0.25 + 2 ∙ 1.0 = 2.25 m
   Reference area:

 A = = mref,y
225 2 25 56 25◊ . .

  Wind load factor: C = 1.7 · 1.3 = 2.21
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   Construction phases constitute transient design situations with return periods smaller 
than 50 years that are the basis of the definition of the basic wind velocity. For example, 
the return period for wind and other climatic actions is 5 years if the construction period 
is up to 3 months but more than 3 days. The recommended value for the basic wind veloc-
ity is then 20 m/s:

 
F = = 31.08 kNWyk

1
1600

20 2 21 56 252◊ ◊ ◊. .

4.9 EARTHQUAKE

Seismic actions are described in EN 1998-1 [4.5]. The seismic action has two horizontal 
and one vertical component. In usual bridges, the earthquake forces are determined by spec-
trum analysis in which the seismic motion is described by means of a response spectrum. In 
general, like for bridges on low damping elastomeric bearings (see Chapter 13), the elastic 
response spectrum should be used. For the horizontal components of the seismic action, the 
elastic response spectrum is defined by following expressions:

 
0 1 2 5 1£ £ = ◊ ◊ + ◊ ◊ -( )È

ÎÍ
˘
˚̇

T T S T a S T
TB e g
B

: ( ) . h  (4.23a)

 
T T T S T a SB C e g£ £ = ◊ ◊ ◊: ( ) .h 2 5  (4.23b)

 
T T T S T a S T

TC D e g
C£ £ = ◊ ◊ ◊ ◊: ( ) .h 2 5  (4.23c)

 
T T S T a S T T

TD e g
C D£ = ◊ ◊ ◊ ◊ ◊: ( ) .2 5 2h  (4.23d)

where
a ag gR= ◊gI  is the peak ground acceleration (PGA) on type A ground; ground of type A 

refers to all rock-like geological formations
γI is the importance factor (see Table 4.16)
agR is the reference value of the peak ground acceleration
S is the soil factor (see [4.5] or National Annex)

h
x

=
+

≥10
5

0 55.  is the damping correction factor

ξ is the viscous damping ratio in %
T is the fundamental vibration period of the structure in sec
TB, TC, TD are the characteristic periods of the spectrum as a function of the soil in sec

The values of the parameters of the spectrum are nationally determined parameters 
described in the National Annex of EN 1998-2. For the vertical component, the values of 
PGA and the periods TB, TC, and TD are different. However, the vertical component is usu-
ally small and may be, like vertical wind loading, disregarded.
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The application of the elastic response spectrum implies elastic structural behavior during the 
seismic event. However, in regions of moderate to high seismicity, ductile design could be envis-
aged, mainly by allowing the formation of plastic hinges at piers rigidly connected to the super-
structure while the bridge deck remains elastic. Seismic forces are then reduced compared to 
elastic behavior. This force reduction is taken into account by consideration of a design response 
spectrum where a global reduction factor, called behavior factor q, is introduced. The design 
response spectrum for the horizontal seismic components is given by the following equations:

 

0 1
1 5

2 5 1
1 5

£ £ = ◊ ◊ + ◊ -Ê
Ë
Á

ˆ
¯
˜

È

Î
Í
Í

˘

˚
˙
˙

T T S T a S T
T qB a d g
B

: ( )
.

.
.,  (4.24a)

 
T T T S T a S

qB C a d g£ £ = ◊ ◊: ( ) .
,

2 5  (4.24b)

 
T T T S T a S

q
T
T

aC D a d g
C

g£ £ = ◊ ◊ ◊ ≥ ◊: ( ) .
,

2 5 b  (4.24c)

 
T T S T a S

q
T T
T

aD a d g
C D

g£ = ◊ ◊ ◊ ◊ ≥ ◊: ( ) .
,

2 5
2 b  (4.24d)

where
β is the lower bound factor of the horizontal design spectrum; the recommended value 

is equal to 0.2
q is the behavior factor

The maximum values of the behavior factor are summarized in Table 4.17. Different values 
of q may be used in the two horizontal directions. Upon the decision of the owner/designer, 
smaller values of q than those suggested by Table 4.17, implying less ductility demands and 
less potential damage, may be employed.

For higher seismic forces, high damping elastomeric bearings, dampers, or combinations 
of dampers with bearings may be used. For long bridges with lengths between 300 and 600 
m, dependent on the soil conditions, or if the soil conditions vary considerably along the 
bridge, the spatial variability shall be considered in order to take into account asynchronous 
soil motions [4.6]. Modified response spectrums apply (see Chapter 13).

EN 1998-2 [4.6] allows the implementation of several analysis methods for the seismic design 
of bridges such as linear and nonlinear methods, equivalent static force methods, and pushover 
or time-series analysis. The method to be chosen mainly depends on the complexity level of each 
case, for example, the geometry of the bridge and the seismicity of the region. For complicated 
cases, designers usually compare different analysis methods and validate the final results.

For “normal bridges,” the fundamental mode method can be described as the most 
convenient. In this method, the earthquake excitations are represented by equivalent 

Table 4.16 Importance categories and importance factors

Importance 
category Description

Importance 
factor (γΙ)

I Bridges not critical for communication with a design life of 50 years 0.85
II Road and railway bridges generally 1.0
III Bridges of vital importance for retaining communications after 

the seismic event, major bridges with larger design life, or bridges 
the failure of which would result in a large number of fatalities

1.3
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static forces acting at the mass center of the superstructure. A normal bridge is the one 
that fulfills the following criteria:

• The bridge is straight with a continuous deck.
• The theoretical eccentricity between the mass center of the deck and the stiffness cen-

ter of the supporting members does not exceed 5% of the deck’s length.
• The mass of the piers is less than 20% of the tributary mass of the deck, the piers carry 

simply supported spans, and no significant interaction between piers is expected.

Table 4.17 Maximum values of the behavior factor q for non-isolated bridges

Members Limited ductility High ductility

Reinforced concrete piers
Vertical piers in bending 1.5 3.5 · λ(αs)
Inclined struts in bending 1.2 2.1 · λ(αs)

Steel piers
Vertical piers in bending 1.5 3.5
Inclined struts in bending 1.2 2.0
Piers with normal bracing 1.5 2.5
Piers with eccentric bracing — 3.5

Deck rigidly connected with the abutments
In general 1.5 1.5
Locked-in structures (Thorizontal ≤ 0.03) 1.0 1.0
Arches 1.2 2.0

Source: EN 1998-2: Eurocode 8: Design of structures for earthquake resistance—Part 2: 
Bridges, 2005.

Notes:

as
sL

h
=  is the shear span ratio of the pier.

Ls is the distance from the plastic hinge to the point of zero-bending moment.

h is the depth of pier’s cross section in the direction of flexure of the plastic hinge.

If αs ≥ 3, then λ(αs) = 1.0.

If 3 > αs ≥ 1.0, then l a a
( )s

s=
3

. 
Ls Mpl

In cases of piers with rectangular shape, the minimum of the αs corresponding to the two sides 
of the cross section should be used.

The q-factors for high ductility are valid only when special detailing for the structural members 
is followed (see [4.6]). If not, the low ductility q-factors should be chosen.

For reinforced concrete members of high ductility, the normalized axial force nk = NEd/(fck/Ac) 

should not exceed 0.3. If 0.30 < nk ≤ 0.60, the q-factors should be reduced as follows: 

q q
n

qr
k= - - ◊ - ≥0 3
0 3

1 1 0
.

.
( ) . .

If nk > 0.6, then qr = 1.0 (elastic response).

NEd is the compressive force at the plastic hinge for the seismic design situation  (compression with 
a positive sign).

If the locations of the plastic hinges are difficult to inspect, then q-factors should be  multiplied 
with 0.6. Final values should be at least equal to 1.0. However, in the cases where plastic hinges 
are located in piles, the final q-values need not to be less than 2.1 for vertical piles and 1.5 for 
inclined piles. This remark is valid only for the case of high ductility.
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When the earlier conditions are satisfied, then the system can be represented by a single 
dynamic degree of freedom model (SDOF). This is briefly demonstrated in Figure 4.30.

From the aforementioned, it is obvious that all the structural elements that contribute to 
the mass and the stiffness of the system should be included in the dynamic model. The rea-
son for this is the following. The calculated seismic forces are equal to the effective mass of 
the structure M multiplied by the spectral acceleration Sd(T). The magnitude of the spectral 
acceleration is highly dependent on the natural period T, thus the mass M, and the stiffness K.

The mass M should be taken as a combination of the mean values of all the permanent 
loads and the quasi-permanent values of the masses corresponding to the variable actions, 
ψ2,1 · Qk,1, where Qk,1 is the characteristic value of the traffic load. Table 4.18 provides the 
recommended values according to [4.6] for the combination factor ψ2,1.

Different approaches for the fundamental mode method are found in EN 1998-2: the 
rigid deck, the flexible deck, and the individual pier models. The rigid deck model is the 
most common one because in most cases road- and railway bridges consist of reinforced 
concrete deck slabs, which can be considered as rigid diaphragms. Bridges of elongated 
geometries or without diaphragms should be analyzed with the flexible deck model. When 
the seismic action is mainly resisted by piers, then the individual pier model is applied. Table 
4.19 offers an overview of the previously mentioned approaches.

In the case of the rigid deck model, the seismic force in the transverse direction should be 
distributed along the deck proportionally to the distribution of the effective mass.

±FEx

±FEy

±e
Grillage
model

Springs
(Bearings; see
Chapter 13)

±FEy

K
Lumped

masses mi

Piers
Foundation

Springs (Soil interaction; see EN 1998−5)

SDOF DECK

L

b
M = Σmi

Model for
seismic analysis

Figure 4.30 Model of a simply supported bridge under seismic loads.

Table 4.18 Recommended values for y 2 1,

M M QG k k= + ◊Â , , ,y 2 1 1

For normal traffic and foot bridges: ψ2,1 = 0
(see also Annex A2 of [4.1])

For severe traffic:
Road bridges ψ2,1 = 0.2
Railway bridges ψ2,1 = 0.3

Notes:

Road bridges with severe traffic carry motorways and other roads of national importance.

Railway bridges with severe traffic carry intercity rail links and high-speed railways.

For the traffic loads Qk,1, the adjustment factors aQ and aq should be taken into account.
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For skewed bridges, an eccentricity in mass distribution shall apply. In case the rigid deck 
model is used, this eccentricity shall be equal to

 e e ea d= +  (4.25)

where
ea is 0.03 · L or 0.03b is the accidental eccentricity of the mass
ed is 0.05 · L or 0.05b is an additional eccentricity taking into account the simultaneous 

presence to translational and torsional modes
L is the total bridge length for single span or continuous bridges
b is the deck width

Table 4.19 Approaches of the fundamental mode method

Rigid deck model Flexible deck model Individual pier model

Applied when Applied when Applied when
(a) Longitudinal direction

Always for straight bridges with 
continuous deck

(b) Transverse direction
and
L/b ≤ 4.0 (see Figure 4.30)
Or
Dd

ad
£ 0 20.

where
L is the total bridge length in 
continuous bridges

b is the width of the deck
∆d and da are respectively the 
maximum difference and the 
average of the displacements 
in the transverse direction of 
all pier tops under FEy.

The limitations for rigid deck 
model are not fulfilled.

When the seismic action in the 
transverse direction is mainly 
resisted by piers and there is no 
significant interaction between 
adjacent piers and
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where
Mdir is the effective mass of the 
structure in the direction i

Kdir is the total stiffness of the 
system in the direction i

where
Mi is the mass at the ith nodal 
point

di is the displacement of the 
ith nodal point in an 
approximation of the shape 
of the 1st mode

g gravity acceleration

where
Tpier is the fundamental period of the 
same pier, considered independently 
of the rest of the bridge

Mpier and Kpier are the mass and the 
stiffness, respectively, attributed 
to each pier
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REMARK 4.2

When traffic loads are dominating and ψ2,1 ≠ 0 (see Table 4.18), it is recommended to investigate 
different arrangements of the LM1 on the carriageway. This should be done because seismic 
forces may be applied with eccentricities much greater than e. This usually happens in small span 
bridges. A seismic analysis may also be necessary during the erection stage.
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Chapter 5

Basis of design

5.1 GENERAL

The design life of bridges is conventionally set to 100 years [5.1]. During this life, the 
bridge has to comply with certain basic requirements that refer to structural resistance, 
serviceability, and durability and are met by appropriate design, production, execution, and 
use. Concerning the design, this is based on consideration of ultimate and serviceability 
limit states (SLSs) that have to be verified for persistent, transient, and accidental design 
situations.

Ultimate limit states (ULSs) are associated with the safety of people and of the structure 
and for composite bridges refer to

• EQU: Loss of static equilibrium of the structure or parts of it, regarding them as a 
rigid body, design of hold-down anchors or verification of uplift of bearings in con-
tinuous bridges

• STR: Failure by collapse or excessive deformation of the superstructure or its members 
and more specifically to
• Resistance of cross sections and connections
• Stability of members
• Resistance of shear connection

• FAT: Failure caused by fatigue
• GEO: Failure or excessive deformation of the foundation and the ground

REMARK 5.1

The loss of static equilibrium (EQU) for the majority of bridges during persistent situations 
is quite impossible. In contrast, the risk of losing equilibrium can be considerably high during 
erection, transient situations. Typical examples are the cantilever method (Figure 2.49) in which 
destabilizing effects may lead to collapse; see Equation 5.9.

SLSs concern the functioning of the structure under normal use, the comfort of people, 
and the structural appearance and are associated with

• Deformations
• Cracking of concrete
• Vibrations
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5.2 LIMIT STATE DESIGN

In limit states verification, design values are considered. The design values of actions are 
defined as

 F Fd f k= ◊ ◊g y  (5.1)

where
Fd is the design value of the action
Fk is the characteristic value of the action
γf is the partial safety factor of the action that takes into account the possibility of 

 unfavorable deviations of the action values from the characteristic values
ψ is the combination value of the action with other action and is either 1.0 or ψ0, ψ1, or ψ2

However, verifications are not made in practice by direct comparison between design 
values and limit values of actions. Actions result in internal forces and moments, defor-
mations, and vibrations in bridges that are characterized as action effects and are evalu-
ated by appropriate structural analysis. The design values of the effects of one action 
are given by

 
E E Fd Sd f k= ◊ ◊ ◊[ ]g g y  (5.2)

where γSd is the partial safety factor that takes into account uncertainties in modeling the 
actions and in modeling the bridge structure in analysis.

Usually, factors γSd and γf are merged together to a single partial safety factor:

 g g gF Sd f= ◊  (5.3)

The effects of actions are then determined from

 
E E Fd F k= ◊ ◊[ ]g y  (5.4)

Following the classification of actions presented in 4.1 in respect to their duration, partial 
safety factors are distinguished in

γG for permanent actions
γQ for variable actions
γA for accidental actions
γAE for seismic actions

Furthermore, two values of the safety factors for permanent actions γF,inf and γF,sup are 
used, depending on whether they produce favorable or unfavorable effects. An example 
is the EQU verification for a cable-stayed bridge that is erected by cantilevering from 
the pylon, where the permanent loads are multiplied by γF,inf on one side and γF,sup on 
the other side of the pylon to produce the largest overturning moment on the pylon; see 
Figure 5.1b.
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For a linear structural response, the analysis may be performed with the characteristic 
action values and the design values of the action effects determined by multiplication with 
the safety factors and the combination values, that is, the action effects are given by

 
E E Fd F k= ◊ ◊ [ ]g y  (5.5)

This has an important implication in design when regarding combinations of actions. For 
linear structural response, analysis is made for each individual action separately, and the 
combination refers to the resulting actions. However, for nonlinear response, the design 
values of the actions are combined, and analysis is made for each combination.

The design resistances are similarly determined from

 
R R X

d
Rd

k

m
= ◊ È

ÎÍ
˘
˚̇

1
g g

 (5.6)

where
Xk is the characteristic value of a material property
γRd is the partial safety factor covering uncertainties in modeling the resistances

As for the actions, factors γRd and γm of resistances are usually merged together to a single 
partial safety factor:

 g g gM Rd m= ◊  (5.7)

The design resistances are then determined from the relevant characteristic values:

 
R R

d
k

M
=
g

 (5.8)

5.3 ULTIMATE LIMIT STATE (ULS)

5.3.1 Design formats

The design format for the limit state of static equilibrium (EQU) may be written as

 E Ed dst d stb, ,£  (5.9)

where
Ed,dst is the design value of the effects of destabilizing actions
Ed,stb is the design value of the effects of stabilizing actions

γQ=1.35
γG,sup= 1.35

γG,inf= 0.95
γG,sup= 1.05

(a) (b)

Figure 5.1  (a) Safety factors for the span moment of a continuous bridge and (b) the overturning moment at 
the pylon foot during construction of a cable-stayed bridge.
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The design format for the limit state of collapse or excessive deformation (STR and GEO) 
may be written as

 E Rd d£  (5.10)

where
Ed is the design value of the effects of actions, like internal forces or moments
Rd is the design value of the corresponding resistances

5.3.2 Combination of actions

The effects of individual actions are combined to form load cases to take into account their 
simultaneous presence. Three combination types are distinguished: basic, accidental, and 
seismic. In the basic combinations, one variable action is considered as leading action, the 
others being accompanying actions. The leading action in the accidental combination is the 
accidental action itself, while variable actions are introduced with their combination values 
and multiplied by the relevant factors ψ. The combinations at ULS other than fatigue are 
presented in Tables 5.1 and 5.2.

Table 5.1 Combinations of actions at ULS other than fatigue

Basic combinations

g g g g gGj kj

j

Gj kj

j

P k Q k QiG G P Q,sup ,sup ,inf ,inf◊ + ◊ + ◊ + ◊ + ◊
≥ ≥
Â Â

1 1

1 1 yy 0 ki

i

Qi◊
>
Â

1

(5.11a)

g g g g yGj kj

j

Gj kj

j

P k Q kG G P Q,sup ,sup ,inf ,inf◊ + ◊ + ◊ + ◊ ◊ +
≥ ≥
Â Â

1 1

1 01 1 gg yQi 0 ki

i

Q◊ ◊
>
Â i

1

(5.11b)

x g g g g g◊ ◊ + ◊ + ◊ + ◊ +
≥ ≥
Â ÂG j kj
j

,sup ,sup ,inf ,infG G P QGj kj

j

P k Q k Q

1 1

1 1 ii 0i ki

i

Q◊ ◊
>
Â y

1

(5.11c)

Accidental A

G G A P or Q Qkj

j

kj d

j

k k i ki

i

,sup ,inf , , ,( )
≥ ≥ >
Â Â+ + + + ◊ + ◊

1 1

11 2 1 1 2

1

y y yÂÂ (5.12)

Seismic E (see also Table 5.11)

G P A Qkj

j

k I Ed ki

i≥ ≥
Â Â+ + ◊ + ◊

1

2 1

1

g y , (5.13)

Notes:

+ does not mean summation but “combination with.”

∑ means “the combined effect of.”

Gsup are the permanent actions with unfavorable effects.

Ginf are the permanent actions with favorable effects.

P are the prestressing actions.

Q1 is the leading variable action.

Qki are the accompanying variable actions.

Ad is the leading accidental action.

AEd is the seismic action.

γI is the importance factor from Table 4.16.
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It should be pointed out that for the basic combinations at ULS, EN 1990 offers three dif-
ferent expressions that can be applied for both persistent and transient design situations; see 
Equations 5.11a through c in Table 5.1. For EQU limit states, Equation 5.11a applies with 
the safety and combination factors given in Tables 5.3 through 5.5. For the design of struc-
tural elements (STR limit states) without the involvement of geotechnical actions, the choice 
between 5.11a, b, and c will be found in the National Annex. Again, safety and combination 
factors are given in Tables 5.3 through 5.5. For the verification of structural elements (STR 
and GEO) involving geotechnical actions (footings, side walls, wing walls, piers, piles, reten-
tion walls, etc.), three different approaches are envisaged that are not presented in this book.

For construction three combinations are similarly examined, the basic, accidental, and 
seismic as illustrated in Table 5.2.

REMARK 5.2

Permanent loads that result from a single source, for example, self-weight of the structure, 
the road surface, rails, and fixed equipment, are multiplied by either γG,sup or γG,inf depending 
on whether the resulting action effect is unfavorable or favorable. Normally, for such actions, 
a unique value of the partial factor (γG) is applied. Nevertheless, when the permanent actions 
are sensitive to variations, then the upper and lower limits γG,sup and γG,inf should be considered. 
A typical example of a permanent action with a “variable” magnitude is the fresh concrete, con-
creting stages. This issue is further discussed in Chapter 7.

5.3.3 Safety factors and combination values

For the basic combinations, values of safety factors γF and combination factors ψ0 for 
road bridges are given in Table 5.3, for railway bridges in Table 5.4, and for footbridges 
in Table 5.5. It is noted that shrinkage of concrete is not a separate action. However, it is 
included separately in the tables since it is treated as a loading by imposing equivalent tem-
perature gradients as outlined in Section 7.4.3. Geotechnical designs often do not work with 

Table 5.2 Combinations of actions at construction stages ULS

Basic EQU/STR/GEO

g g g gGj kj

j

Gj kj

j

P k Q c kG G P Q,sup ,sup ,inf ,inf ,◊ + ◊ + ◊ + ◊
≥ ≥
Â Â

1 1

(5.14)

Accidental A

G G P A Qkj

j

kj

j

k d c k,sup ,inf ,

≥ ≥
Â Â+ + + + ◊

1 1

2y (5.15a)

Seismic E (see also Table 5.11)

G G P A Qkj

j

kj

j

k I Ed c k,sup ,inf ,

≥ ≥
Â Â+ + + ◊ + ◊

1 1

2g y (5.15b)

Notes:

Qc,k are construction loads.

The importance factor γI takes into account the lower return period 
during construction.
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Table 5.3  Safety and combination factors of road bridges for limit states EQU and STR/GEO 
without geotechnical actions

Action situation Symbol Unfavorable effect
Favorable 

effect Factor ψ0

Permanent for 
persistent and 
transient 
situations (EQU)

G γG 1.05 0.95 or 0.8 
when 
self-weight 
is not well 
defined

—

Permanent for 
persistent and 
transient 
situations 
(STR/GEO)

G γG 1.35 (ξ = 0.85) 1.0 —

Uneven 
settlements

Gset γG,set 1.2 (for linear 
elastic analysis)

1.35 (for nonlinear 
analysis)

0a

0 —

Secondary effect of 
shrinkage

Ssec γS 0a or 1.0 0a or 1.0 —

Prestress by 
imposed 
deformations at 
internal supports

P γP 1.0 1.0 —

Stability for 
external prestress

P γP 1.35 1.0 —

Traffic loads gr1a 
(LM1 + loads on 
footways and 
cycle tracks qfk*)

Q γQ 1.35 0 TS: 0.75
UDL: 0.40
Footways and cycle 
tracks: 0.40

Traffic loads gr1b, 
gr2, gr3, gr4, gr5

Q γQ 1.35 0 0

Wind W γQ 1.50 0 Persistent
Execution
For FW

*

0.6
0.8
1.0

Snowc during 
construction

S γQ 1.50 0 0.8

Thermal T γQ 0a or 1.5b 0 0a or 0.6b

Construction loads 
(EQU)

Qc γQ 1.35 0 1.0

a For bridges where all cross sections are of class 1 or 2.
b For bridges with cross sections of class 3 or 4.
c Snow is considered to be removed during service so that it is only accounted for during construction. This is 

implied in EN 1990-A2 where ψ0-values only during construction are given for snow. Cases where snow 
is the leading action, where ψ0-values are not required, are obviously less unfavorable than cases where traffic 
is the leading action.
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Table 5.4  Safety and combination factors of railway bridges for limit states EQU and 
STR/GEO without geotechnical actions

Action situation Symbol
Unfavorable 

effect
Favorable 

effect Factor ψ0

Traffic loads.
Individual componentsa

Q γQ 1.45 0 LM 71, SW/0 0.8
SW/2 0
Unloaded 
train

1.0

HSLM 1.0
Real trains 1.0
Nosing force 1.0
Aerodynamic 
effects

0.8

Traffic loads Q γQ 1.45 0 0.80
Groups of loads
gr11-15, gr21-25, gr31, and 
gr26, 27 associated with 
LM1, SW/0 (STR/GEO)

Traffic loads Q γQ 1.20 0 0.80
Groups of loads
gr16,17, SW/2, and gr26,27 
associated with SW/2 
(STR/GEO)

Traffic loads gr1b, 2,3,4,5 
(STR/GEO)

Q γQ 1.35 0 0.80

Wind W γQ 1.50 0 0.75b

Wind during construction W γQ 1.50 0 0.80
Snow during construction S γQ 1.50 0 0.80
Thermal T γQ 0c or 1.5d 0 0c or 0.6d

Construction loads (EQU) Qc γQ 1.35 0 1.0
Construction loads 
(STR/GEO)

Qc γQ 1.50 0 1.0

Notes:

Permanent for persistent and transient situations (EQU), permanent for persistent and transient situ-
ations (STR), uneven settlements, secondary effect of shrinkage, and prestress by imposed deforma-
tions at internal supports and stability for external prestress as in Table 5.3.

For EQU limit states for all the rail traffic loads, γQ = 1.45 (0 where unfavorable). For road and pedes-
trian traffic actions, γQ = 1.35.
a Individual components of traffic actions (i.e., traction and braking, centrifugal forces, and interac-

tion forces due to deformation under vertical traffic loads) in design situations where the traffic 
loads are not considered as groups of loads should use the same values of ψ0 as those for the 
associated vertical loads.

b For wind forces FW**, it is ψ0 = 1.0.
c For bridges where all cross sections are of class 1 or 2.
d For bridges with cross sections of class 3 or 4.
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factored loads and include the safety factors in the right side of Equation 5.10. In such cases, 
other γ-values for GEO are employed.

REMARK 5.3

• In the previous tables, one can observe that effects due to shrinkage and thermal differ-
ences are neglected during the ULS verifications when all cross sections are class 1 or 
2. This is due to the adequate rotation capacity of the compact sections that allows the 
imposed deformations to be released. This is only allowed when lateral torsional buckling 
failure at hogging moment areas is excluded.

• It is also worth mentioning that both for favorable and unfavorable effects, the par-
tial safety factor γF due to imposed deformations at ULS is taken equal to 1.0. EN 
1994-2 allows this simplification only in cases of controlled deformations. However, 
EN 1993-2 permits the effects of imposed deformations to be ignored when all cross 
sections are class 1. In such a case, designers should follow the recommendation of 
EN 1994-2.

• The safety factor γG for the differential settlements depends on the type of analysis. This 
can be explained by the fact that a linear elastic analysis offers more conservative results 
than a nonlinear one for cases of time-dependent settlements since the ability of redis-
tributions is omitted. Therefore, the code proposes a reduced safety factor equal to 1.20 
for linear global analysis.

Table 5.5  Safety and combination factors of footbridges for limit states EQU and 
STR/GEO without geotechnical actions

Action situation Symbol

Effect

Factor ψ0Unfavorable Favorable

Permanent (STR/GEO) G γG 1.35 1.0 —
Permanent (EQU) G γG 1.05 0.95 —
Secondary effect of 
shrinkage

Ssec γS 0a or 1.0b 0a or 1.0b —

Prestress by imposed 
deformations at supports

P γP 1.0 1.0 —

Stability for external 
prestress

P γP 1.35 1.0 —

Traffic loads gr1, Qfwk, gr2 Q γQ 1.35 0 gr1 0.40
Qfwk 0
gr2 0

Thermal T γQ 0a or 1.5b 0 0a or 0.6b

Wind W γQ 1.5 0 0.3
Snow during construction Sc γQ 1.5 0 0.8
Construction loads Qc γQ 1.35 0 1.0

a For bridges where all cross sections are of class 1 or 2.
b For bridges with cross sections of class 3 or 4.
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Figure 5.1 gives simple examples for appropriate selection of partial safety factors. For 
the span moment of the continuous bridge for an STR limit state, γG,sup = 1.35 applies to 
all permanent loads, while variable loads are considered only in the relevant span and 
are multiplied by γQ = 1.35 (Figure 5.1a). On the other side, the overturning moment for 
an EQU limit state at the pylon foot during segmental erection of a cable-stayed bridge 
that is required to verify the stability of the structure as a rigid body to overturning is 
determined by the application of γG,sup = 1.05 on the longer side and γG,inf = 0.95 on the 
shorter side. This overturning moment is critical for checking the foundation. However, 
the resistance of the pylon section at its base is verified by application of γG,sup = 1.35 to 
the self-weight on both sides of the pylon, since this belongs to an STR/GEO situation.

REMARK 5.4

It can be said that the main difference between STR and EQU limit states is that for the latter, the 
partial factor γG for the permanent actions is not uniform over the whole structure; it gets higher 
values in regions with destabilizing actions. This book mainly covers STR limit states since the 
EQU ones are mainly associated with the design of foundations (see EN 1997).

5.3.4 Basic combinations

The effects of temperature, creep, and shrinkage may be neglected at ULSs for bridges in 
which all cross sections are of class 1 or 2 (see Remark 5.3) and not susceptible to lateral 
torsional buckling (see Section 9.13). Where structural systems like continuous bridges or 
frame bridges are sensitive to differential settlements, such settlement shall be taken into 
account. Such settlements are considered as permanent actions for which Gset, as given in 
Table 4.1 must be specified. Gset may be represented by a set of values that correspond to 
the calculated settlement dset,i due to permanent loads of individual foundations or groups 
of foundations. The predicted values of dset,i are in accordance with the requirements 
found in EN 1997. In addition, two individual foundations or groups of foundations are 
considered to settle at a value dset,i + ∆dset,i, where the latter takes into account uncertainties 
connected to the estimation of the settlement. Possible value of ∆dset,i is 10 mm. It is worth 
mentioning that box-girder bridges are very sensitive to differential settlements in both 
longitudinal and transverse bearing lines and therefore, designers should be very careful 
with the design.

For road bridges, the following rules apply:

• Wind needs only to be combined with gr1a of Table 4.7.
• Snow is generally not combined with traffic loads, except in cases of roofed bridges; 

see notes in Table 5.3.
• Wind and temperature are not considered to act simultaneously.
• Load group gr1b is combined with no other variable nontraffic action; see Table 4.7.

The most usual ULS basic combinations for road bridges are summarized in Table 5.6 and 
for bridges where all cross sections are of class 1 or 2 in Table 5.7. The box of the leading 
action is shown in bold face. Combinations with traffic loading as the leading action are 
critical for the superstructure, while those with temperature and wind may be critical for 
piers and bearings. Variable actions are obviously considered if they act unfavorably.
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For railway bridges, the following rules apply:

• Wind is not combined with gr13, gr16, gr17, gr23, gr26, and gr27 and individual load 
model SW/2.

• Snow is generally not considered.
• Aerodynamic actions of rail traffic should be combined with wind actions. Each action 

should be taken into account individually as a leading variable action.

The most usual ULS basic combinations for railway bridges are summarized in Table 5.8 
and for bridges where all cross sections are of class 1 or 2 in Table 5.9. The box of the 
leading action is shown in bold face. Combinations with traffic loading as the leading 
action are critical for the superstructure, while those with temperature and wind may 
be critical for piers and bearings. Variable actions are obviously considered if they act 
unfavorably.

Table 5.6  Basic combinations according to Equation 5.11a at ULS for road bridges generally (STR/GEO)

No.

G + Csec Ssec Q T W Gset

Permanent and 
secondary 

effects of creep

Shrinkage 
secondary 

effects Traffic loads Temperature Wind

Differential 
settlements 
(Table 5.3)

1 1.35 1.0 gr1a · 1.35 0 1.5 · 0.6 or 
1 5. *◊FW

1.2a or 1.35b

2 1.35 1.0 (gr1b,2,3,4,5) · 1.35 1.5 · 0.6 0 1.2 or 1.35
3 1.35 1.0 1.35 · (TS · 0.75 + 

UDL · 0.4 + qfk* · 0.4)
1.5 0 1.2 or 1.35

4 1.35 1.0 1.35 · (TS · 0.75 + 
UDL · 0.4 + qfk* · 0.4)

0 1.5 loaded 
bridge

1.2 or 1.35

5 1.35 1.0 0 0 1.5 unloaded 
bridge

1.2 or 1.35

a For linear elastic analysis.
b For nonlinear analysis.

Table 5.7  Basic combinations according to Equation 5.11a at ULS for 
road bridges with all cross sections of class 1 or 2 (STR/GEO)

No.

G Q W

Permanent neglecting 
effects of creep Traffic loads Wind

1 1.35 gr1a · 1.35 1.5 · 0.6 or 1 5. *◊FW

2 1.35 (gr1b,2,3,4,5) · 1.35 0
3 1.35 1.35 · (TS · 0.75 + 

UDL · 0.4 + qfk
* · 0.4)

1.5 loaded bridge

4 1.35 0 1.5 unloaded bridge
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5.3.5 Accidental combinations

Accidental combinations include all permanent actions, prestress only due to tendons but 
not due to imposed support deformations, and the accidental action itself. Traffic loads need 
not be included, unless otherwise specified. In this case, traffic loads are reduced by the 
relevant combination factors ψ1 of Table 5.13. However, for accidental combinations at con-

Table 5.8  Basic combinations according to Equation 5.11a at ULS for railway bridges generally 
(STR/GEO)

No.

G + Csec Ssec Q T W Gset

Permanent 
and secondary 

effects of 
creep

Shrinkage 
secondary 

effects Traffic loads Temperature Wind
Differential 
settlements

1 1.35 1.0 (gr11, gr12, gr14, gr15, 
gr21, gr22, gr24, 
gr31) · 1.45

1.5 · 0.6 1.5 · 0.75 or 
1 5. **◊FW

1.2a or 1.35b

2 1.35 1.0 (gr13, gr23) · 1.45 1.5 · 0.6 0 1.2 or 1.35
3 1.35 1.0 (gr16, gr17, gr26, gr27, 

SW/2) · 1.20
1.5 · 0.6 0 1.2 or 1.35

4 1.35 1.0 (gr11, gr12, gr14, gr15, 
gr21, gr22, gr24, 
gr31) · 1.45 · 0.8

1.5 1.5 · 0.75 or 
1 5. **◊FW

1.2 or 1.35

5 1.35 1.0 (gr13, gr23) · 1.45 · 0.8 1.5 0 1.2 or 1.35
6 1.35 1.0 (gr16, gr17, gr26, gr27, 

SW/2) · 1.20 · 0.8
1.5 0 1.2 or 1.35

7 1.35 1.0 (gr11, gr12, gr14, gr15, 
gr21, gr22, gr24, 
gr31) · 1.45 · 0.8

1.5 · 0.6 1.5 loaded 
bridge

1.2 or 1.35

8 1.35 1.0 0 1.5 · 0.6 1.5 unloaded 
bridge

1.2 or 1.35

a For linear elastic analysis.
b For nonlinear analysis.

Table 5.9  Basic combinations according to Equation 5.11a at ULS for 
railway bridges with all cross sections of class 1 or 2 (STR/GEO)

No.

G Q W

Permanent neglecting 
effects of creep Traffic loads Wind

1 1.35 (gr11, gr12, gr14, gr15, 
gr21, gr22, gr24, 
gr31) · 1.45

1.5 · 0.75 or 1 5. **◊FW

2 1.35 (gr13, gr23) 1.45 0
3 1.35 (gr16, gr17, gr26, gr27, 

SW/2) · 1.20
0

4 1.35 (gr11, gr12, gr14, gr15, 
gr21, gr22, gr24, 
gr31) · 1.45 · 0.8

1.5 loaded bridge

5 1.35 0 1.5 unloaded bridge
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struction stages, the full construction loads are accounted for. The accidental combinations 
during service and at construction stages are given in Table 5.10.

5.3.6 Seismic combinations

Seismic combinations include all permanent actions, prestress only due to tendons but not 
due to imposed support deformations, and earthquake as the leading action. The only vari-
able loads are traffic loads and need to be considered only for major bridges of important 

Table 5.10 Accidental combinations

During service

G G P A or Q Qkj

j

kj

j

k d k ki

i

,sup ,inf , , ,( )
≥ ≥ >
Â Â+ + + + ◊ + ◊

1 1

11 2 1 1 2

1

y y y iÂÂ (5.16)

At construction stages

G G P A Qkj

j

kj

j

k d c k,sup ,inf ,

≥ ≥
Â Â+ + + + ◊

1 1

2y
(5.17)

Notes:

For the combination factors ψ1 and ψ2, see Table 5.13.

The main variable action may be taken into account in combination (5.16) with its frequent or its 
quasipermanent value according to the recommendation of the National Annex.

In combination (5.17), Qc,k is the characteristic value of construction loads as defined in EN 
1991-1-6.

Table 5.11 Seismic combinations of actions

Road and railway bridges of importance categories I 
and II—footbridges

G P Akj

j

k I Ed

≥
Â + + ◊

1

g (5.18)

Road bridges of importance category III

G P A Qkj

j

k I Ed k

≥
Â + + ◊ + ◊

1

10 2g . (5.19)

Railway bridges of importance category III

G P A Qkj

j

k I Ed k

≥
Â + + ◊ + ◊

1

10 3g . (5.20)

Qk1 are traffic loads where only one track is loaded and SW/2 is 
neglected.

Construction stages

G P A Qkj

j

k I Ed c k

≥
Â + + ◊ +

1

g , (5.21)

Qc,k are construction loads.

Note: γI is importance factor from Table 4.16.
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category III (see Table 4.16) with relevant combination factors. However, the masses of 
traffic loading to be considered in the seismic situation as given in Table 4.18 do not depend 
on the importance category but on the type of traffic (normal or severe). This means that, 
for example, for a motorway with severe traffic but of importance category II in the sense 
of Table 4.16, the masses to determine the structural periods and the basic shear include 
20% of the mass due to traffic but the loads due to traffic are not considered in the seismic 
combination; see Equation 5.18.

At construction stages, the full construction loads are taken into account. However, the 
value of the importance factor γI is reduced due to the smaller return period of the seismic 
event during construction. The seismic combinations are given in Table 5.11.

5.4 SERVICEABILITY LIMIT STATE (SLS)

Design formats: The design format for SLSs may be written as

 E Cd d£  (5.22)

where
Ed is the design value of the effects of actions, like stresses, deflections, frequencies, and 

crack widths in concrete
Cd is the corresponding limiting design value

Three combinations of actions associated to different verifications are considered at SLS. 
Table 5.12 gives a summary of them with the related verifications. It should be noted that in 
the SLSs, both primary and secondary effects of creep and shrinkage of concrete are to be 
taken into account. In addition, snow loads are not examined for SLSs.

Table 5.13 gives the combination factors ψ1 and ψ2 for road-, rail-, and footway bridges.
The resulting combinations at SLSs for road- and railway bridges under consideration of 

the aforementioned ψ-values are summarized in Tables 5.14 through 5.18.

Table 5.12 Combinations of actions at SLS

Combinations Application

Characteristic 

G P Q Qkj

j

k k i ki

i≥ >
Â Â+ + + ◊

1

1 0

1

y (5.23) Stress limitation for structural steel and 
reinforcement

Stress limitation for concrete for exposure 
classes XS, XF and XD (see Remark 5.5)

Resonance control for railway bridges
Cracked regions for placing min. 
reinforcement (see Figure 7.19)

Frequent 

G P Q Qkj

j

k k i ki

i≥ >
Â Â+ + ◊ + ◊

1

11 1 2

1

y y, (5.24) Web breathing
Deformations and vibrations for road bridges

Quasi-permanent 

G P Qkj

j

k i ki

i≥ ≥
Â Â+ + ◊

1

2

1

y (5.25) Stress limitation for concrete
Limitation of crack width for non-prestressed 
members
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Table 5.13 Combination factors ψ1 and ψ2

Road bridges ψ1 ψ2

Traffic loads gr1a
TS
UDL
Foot, cycle tracks

0.75
0.4
0.4

0
0
0

gr1b
gr2
gr3
gr4
gr5

0.75
0
0
0.75
0

0
0
0
0
0

Wind Service condition
Construction stage
FW
*

0.2
—
—

0
0
—

Temperature T 0.6 0.5
Construction loads Qc — 1.0
Snow (during 
construction)

Sc — —

Railway bridges ψ1 ψ2

Traffic loads 
Single components

LM71 and SW/0 0.8 If one track is 
loaded

0a

0.7 If two tracks 
are loaded

0.6 If three or 
more tracks 
are loaded

SW/2 1.0 0
Traction or 
breaking

The same values as for 
vertical loads if traffic 
loads are considered as a 
single leading action

Centrifugal forces

Nosing force 0.8 0
Loads in footways 0.5 0

Traffic loads 
Groups of loads

gr11 to gr17
gr21 to gr27
gr31

0.8
0.7
0.6

0
0
0

Wind Service condition
FW**

0.5
0

0
0

Thermal T 0.6 0.5
Construction loads Qc — 1.0

Footbridges ψ1 ψ2

Traffic loads gr1 0.4 0
Wind W 0.2 0
Thermal T 0.6 0.5
Construction loads Qc — 1.0
a If deformations are taken into account for persistent and transient design situations, 

then ψ2 = 1.0 for rail traffic loads.
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Table 5.14 Characteristic SLS combinations for road bridges

No.

G S Q T W

Permanent and 
creep (primary 
and secondary 

effects)

Shrinkage 
(primary and 

secondary 
effects) Traffic loads Temperature Wind

1 1.0 1.0 gr1a · 1.0 0.6 0.6a

2 1.0 1.0 (gr1b,2,3,4,5) · 1.0 0.6 0
3 1.0 1.0 (TS · 0.75 + UDL · 0.4 + 

qfk* 0.4)
1.0 0

4 1.0 1.0 (TS · 0.75 + UDL · 0.4 + 
qfk* · 0.4)

0 1.0

5 1.0 1.0 0 0 1.0

a For wind forces FW* , it is ψ0 = 1.0.

Table 5.15 Characteristic SLS combinations for railway bridges

No.

G S Q T W

Permanent and 
creep (primary 
and secondary 

effects)

Shrinkage 
(primary and 

secondary 
effects)

Traffic loads 
Individual 

components or 
groups, except 

gr1b and gr2 to 5 Temperature Wind

1 1.0 1.0 1 0.6 0.75a

2 1.0 1.0 1.0 · 0.8 1 0.75
3 1.0 1.0 1.0 · 0.8 0.6 1

a For wind forces FW**, it is ψ0 = 1.0.

Table 5.16 Frequent SLS combinations for road bridges

No.

G S Q T W

Permanent and 
creep (primary 
and secondary 

effects)

Shrinkage 
(primary and 

secondary 
effects) Traffic loads Temperature Wind

1 1.0 1.0 (TS · 0.75 + UDL · 0.4 + 
qfk* · 0.4)

0.5 0

2 1.0 1.0 gr4 · 0.75 0.5 0
3 1.0 1.0 0 0.6 0
4 1.0 1.0 0 0 0.2
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EXAMPLE 5.1

A two-span continuous composite bridge with 25 m + 25 m spans is casted at one stage. The 
internal forces at midspan and at internal support are given in Table 5.19. At sagging moment 
areas, the composite cross sections are class 1 and at the hogging ones class 3. The design forces 
will be calculated for ULS and SLS verifications (persistent situation).

It will be shown in Chapters 6, 7, 9 and 10 that internal forces and cross-sectional proper-
ties of composite members are time dependent due to the rheological behavior of concrete 
(creep and shrinkage). This means that the effects of several actions need to be calculated and 
combined at different times (short- and long-term effects). For the majority of the composite 
bridges, design combinations are calculated before (t0 = 0 days) and after (t∞ = 30,000 days) the 
development of creep and shrinkage. However, in part of the literature, t0 is the time of traffic 
opening. In such a case, creep and shrinkage are active, and they are taken into account both 
for t0 and t∞. In this book, the first approach is adopted; short term means without creep and 
shrinkage.

In this bridge, the cross section at the internal support is class 3, and therefore, differential 
temperatures ∆TM,cool and ∆TM,heat are considered. For this reason, secondary effects due to 
creep and shrinkage are also taken into account. One can observe the high value of the hogging 
moment at mid-support due to shrinkage (−1901.12 kN-m). These effects are discussed in detail 
in Chapters 6 and 7.

Table 5.17 Frequent SLS combinations for railway bridges

No.

G S Q T W

Permanent and 
creep (primary and 
secondary effects)

Shrinkage 
(primary and 

secondary effects)

Traffic loads
Individual components or groups, 

except gr13 and gr2 to5 Temperature Wind

1 1.0 1.0 (LM1, SW/0) · 0.8 to 0.6 
depending on the number of the 
loaded tracks + Footways · 0.5

0.5 0

2 1.0 1.0 Nosing force · 0.8 0.5 0
3 1.0 1.0 (gr11 to gr 17) · 0.8 0.5 0
4 1.0 1.0 (gr21 to gr27) · 0.7 0.5 0
5 1.0 1.0 gr31 · 0.6 0.5 0
6 1.0 1.0 0 0.6 0
7 1.0 1.0 0 0 0.50

Table 5.18  Quasi-permanent SLS combinations for road- and 
railway bridges and footbridges

No.

G S Q T

Permanent and 
creep (primary and 
secondary effects)

Shrinkage 
(primary and 

secondary effects)
Traffic 
loads Temperature

1 1.0 1.0 0a 0.5
a If deformations are taken into account for persistent and transient design 

situations, then ψ2 = 1.0 for rail traffic actions.
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Basic Combination at ULS according to Equation 5.11a for Resistance Verifications
Span
Short-term design
Leading variable gr1a:

 

maxM 1.35 G 1.35 TS UDL q 1.5 0.6 T 1.Ed,0 i

1

5

fk M,heat*= ◊ + ◊ + + + ◊ ◊ +Â ( ) D 00 D(t 0)

6197 21kN-m

◊ =

= .

Leading variable ∆TM,heat:

 

maxM 1.35 G 1.5 T 1.0 D(t 0)

1.35 0.75 TS

Ed,0 i

1

5

M,heat= ◊ + ◊ + ◊ =

+ ◊ ◊ +

Â D

( 00.4 UDL 0.4 q 4871.93 kN-mfk*◊ + ◊ =)

Long-term design
Leading variable gr1a:

 

maxM 1.35 G 1.35 C 1.0 S 1.35 TS UDL qEd, i

1

5

sec sec fk*• = ◊ + ◊ + ◊ + ◊ + +

+

Â ( )

11.5 0.6 T 1.0 D(t ) 5093.48 kN-mM,heat◊ ◊ + ◊ = • =D

Table 5.19 Bending moments and shear forces for a two-span composite bridge

Actions

Span (class 1) Internal support (class 3)

maxMEd (kN-m) VEd (kN) minMEd (kN-m)

G1—steel elements 155.24 62.47 −346.32
G2—concrete slab 1029.95 386.51 −2099.53
G3—surfacing 93.99 26.98 −148.23
G4—concrete caps on footways 558.57 188.86 −916.97
G5—parapets, cornices 31.30 10.66 −51.60
Ssec—secondary effects due to shrinkage −668.52 80.38 −1901.12
Csec—secondary effects due to creep −324.89 45.87 −650.45
∆TM,heat—positive differential temperature 373.58 −41.56 1034.79
∆TM,cool—negative differential temperature −448.30 49.88 −1241.74
UDL—uniformly distributed load 1306.79 329.74 −1620.31
TS—tandem system (two axles) 921.74 154.26 −426.28
qfk*—crowd loading at footpaths 155.24 62.47 −346.32
D(t = 0)—imposed deformation of 10 mm at 
internal support (short-term effects)

119.68 81.97 321.4

D(t = ∞)—imposed deformation of 10 mm at 
internal support (long-term effects)

123.07 62.36 245.44

Gset(t = 0)—uneven settlement (short-term effects) −45.08 29.37 −99.76
Gset(t = ∞)—uneven settlement (long-term effects) −38.09 12.34 −76.90
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Leading variable ∆TM,heat:

 

maxM 1.35 G 1.35 C 1.0 S 1.5 T 1.0 D(Ed, i

1

5

sec sec M,heat• = ◊ + ◊ + ◊ + ◊ + ◊Â D tt )

1.35 0.75 TS 0.4 UDL 0.4 q 4004.22 kN-mfk*

= •

+ ◊ ◊ + ◊ + ◊ =( )

Shear forces at midspan are low, and therefore, they are not presented.

Note: Secondary effects Csec due to self-weights were multiplied with 1.35 despite having a 
favorable effect. EN 1990:2002 imposes that all actions originating from the same source should 
be multiplied with the same safety factor.

Internal support
Short-term design
Leading variable gr1a:

 

V 1.35 G 1.20 G (t 0) 1.35 TS UDL q

1.5 0.6

Ed,0 i

1

5

set fk*= ◊ + ◊ = + ◊ + +

+ ◊

Â ( )

◊◊ + ◊ = =

= ◊ + ◊Â
DT 1 D t 181174 kN

minM 1.35 G 1.20 G

M,cool

Ed,0 i

1

5

s

. ( ) .0 0

eet fk

M,cool

(t 0) 1.35 TS UDL q

1.5 0.6 T 1 D t 8

*= + ◊ + +

+ ◊ ◊ + ◊ = =-

( )

. ( )D 0 0 9955 9 kN-m.

Leading variable ∆TM,cool:

 

V G G t T D (t 0)

1.

Ed,0 i set M,cool= ◊ + ◊ = + ◊ + ◊ =

+

Â1 35 1 20 0 1 5 1 0
1

5

. . ( ) . .D

335 0.75 TS 0.4 UDL 0.4 q 1471.91kN

minM 1.35 G

fk

Ed,0 i

1

5

*◊ ◊ + ◊ + ◊ =

= ◊

( )

ÂÂ + ◊ = + ◊ + ◊ =

+ ◊ ◊ +

1.20 G (t 0) 1.5 T 1.0 D (t 0)

1.35 0.75 TS 0.

set M,coolD

( 44 UDL 0.4 q 7964.09 kN-mfk*◊ + ◊ = -)

Long-term design
Leading variable gr1a:

 

V 1.35 G 1.20 G (t ) 1.35 TS UDL q 1.5 0.6Ed, i

1

5

set fk
*• = ◊ + ◊ = • + ◊ + + + ◊Â ( ) ◊◊

+ ¥ = • + ¥ + ¥ =

=•

DT

1.0 D(t ) 1.0 S 1.35 C kN

minM 1.

M,cool

sec sec

Ed,

1914

335 G 1.20 G (t ) 1.35 TS UDL q 1.5 0.6 Ti

1

5

set fk M,co
*◊ + ◊ = • + ◊ + + + ◊ ◊Â ( ) D ool

sec sec1.0 D(t ) 1.0 S 1.35 C kN-m+ ◊ = • + ¥ + ¥ = -11783 6.
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Leading variable ∆TM,cool:

 

V 1.35 G 1.20 G (t ) 1.5 T 1.0 D (t )

1.

Ed, i

1

5

set M,cool• = ◊ + ◊ = • + ◊ + ◊ = •

+

Â D

335 (0.75 TS 0.4 DL 0.4 q ) 1.0 S 1.35 C 1574.17 kNfk sec sec*◊ ◊ + ◊ + ◊ + ◊ + ◊ =

mminM 1.35 G 1.20 G (t ) 1.5 T +1.0 D (tEd, i

1

5

set M,cool• = ◊ + ◊ = • + ◊ ◊ = •Â D ))

1.35 0.75 TS 0.4 UDL 0.4 q

1.0 S 1.35 C 107

fk

sec sec

*+ ◊ ◊ + ◊ + ◊

+ ◊ + ◊ = -

( )

991.8 kN-m

Due to secondary effects, the bending moment at support was increased by 31.5%. By imposing 
a deformation at internal support greater than 10 mm, this unfavorable increase could be lower. 

In the following, only the more critical combinations for SLS are demonstrated.

Characteristic Combination at SLS according to Equation 5.23 for Stress 
Limitations of Structural Steel and Reinforcement
Span
Short-term design
Leading variable gr1a:

 

max . . ( .M = G gr1a T D t = 0) = 4596 65 kN-Ed,ser,0 i M,heat

1

5

0 6 1 0Â + + ◊ + ◊D mm

Internal support
Long-term design
Leading variable gr1a:

 

V G G (t ) gr1a 0.6 T 1.0 D(t )

1.0

Ed,ser, i

1

5

set M,cool• = + = • + + ◊ + ◊ = •

+

Â D

◊◊ + ◊ =

= + = • +• Â
C 1.0 S 1452.83 kN

minM G G (t ) gr1a

sec sec

Ed,ser, i

1

5

set ++ ◊ + ◊ = •

+ ◊ + ◊ = -

0.6 T 1.0 D(t )

1.0 C 1.0 S 9083.63 kN-m

M,cool

sec sec

D

Quasi-permanent Combination at SLS according to Equation 5.25 for Stress 
Limitations of Concrete at Span
Span
Short-term design

 
maxM G G (t T D tEd,ser,0 i set M,heat= + = + ◊ + ◊ = =Â

1

5

0 0 5 1 0 0 2175) . . ( ) .D 552 kN-m
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5.5 SAFETY FACTORS OF RESISTANCES γΜ

The design values for resistances are determined by provision of appropriate safety factors 
γM as described by Equation 5.8. These safety factors depend on the limit state, the type 
of material, and the failure mode under consideration. Table 5.20 gives a summary of the 
γM-factors.

The safety factors for connections are as follows:

Resistance of bolts, pins, welds, and plates in bending: γM2 = 1.25
Slip resistance: γM3 = 1.15
Resistance of joints in hollow sections: γM5 = 1.10
Resistance of pins at SLS: γM6,ser = 1.10
Preload of high-strength bolts: γM7 = 1.10

5.6 DURABILITY

Durability is a structural property that ensures compliance with the basic requirements of 
safety and serviceability throughout the intended design life. The basic factor affecting dura-
bility is corrosion of steel, which is highly influenced by the environmental conditions. Steel 
reinforcement and shear connectors are protected by concrete while structural steel by appro-
priate coating systems. Accordingly, the rules ensuring durability refer to the concrete cover of 
reinforcement and the protection of steel as a function of the environmental conditions.

5.6.1 Concrete cover

Reinforcement
EN 1992-1-1 [5.2] defines 18 exposure classes related to environmental conditions 
ranging from X0 (no risk of corrosion) to XA3 (highly aggressive chemical environ-
ment). The relevant exposure classes for the concrete elements of composite bridges are 
as follows:

• XC3 for bridges away from the sea. Moreover, this is the recommended exposure class 
for deck slabs protected by waterproofing according to EN 1992-2.

• XS1 for bridges near the coast.
• XF4 bridges exposed to deicing agents.

Table 5.20 Safety factors for resistances γM except fatigue

Limit state Combination
Structural steel 

(resistance of members)

Reinforcing 
steel Concrete

Shear 
connectors

γs γc γv

ULS Basic and 
seismic

Yield
Stability
Fracture

γM0 = 1.0
γM1 = 1.1
γM2 = 1.25

1.15 1.5

1.25

SLS Accidental 1.0 1.0 1.3 1.0
1.0 1.0 1.0 1.25
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The nominal concrete cover may be determined from

 c c com devn m in= +D  (5.26)

where
cmin is the minimum value of concrete cover
∆cdev is an extra safety element to allow for deviations with a recommended value 

of 10 mm. For precast units where accurate measurements of cover are feasible, a 
reduced value may be applied

Minimum concrete cover, cmin, is provided for the following:

• The safe transmission of bond stresses between steel and concrete
• The protection of the steel against corrosion (durability)

The minimum value is the largest of three values:

 c c c m mb durm in m in, m in,m ax( ; ; )= 10  (5.27)

where
cmin,b is the minimum value that assures good bond with the concrete. It is equal to the 

diameter of the reinforcement for aggregate sizes up to 32 mm
cmin,dur is the minimum value due to environmental conditions and is given in Table 5.21 

as function of the exposure and the structural class

The structural class for bridges with a service life of 100 years is 6 in general. The struc-
tural class may be reduced by 1 if the strength class of concrete is ≥35/45 for exposure class 
XC3 and ≥40/50 for exposure class XS1. If the position of reinforcement is not affected by 
the construction process then the construction class can be reduced by 1. Finally, if special 
quality control measures are taken, the structural class may be further reduced by 1. 

For exposure class XF4, special attention must be given to the concrete composition, so 
that class XS1 applies.

Table 5.21  Minimum concrete cover cmin,dur [mm]

Type of steel
exposure class

Reinforcement 
steel

Prestressing 
steel

XC3 XS1 XC3 XS1

Structural class 3 20 30 30 40
Structural class 4 25 35 35 45
Structural class 5 30 40 40 50
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REMARK 5.5

It should be noted that XS1 and XF4 exposure classes affect the stress limit of concrete under 
the characteristic combination; the maximum compressive stress should be lower than k1·fck 
with recommended k1 = 0.6; see EN 1992-2. Therefore, the choice of a durable concrete may in 
some cases lead to a concrete quality higher than what is required for structural design.

Shear connectors
The concrete cover over the shear connectors should be as specified earlier for reinforcing 
steel less 5 mm but ≥20 mm.

EXAMPLE 5.2

The concrete cover for the longitudinal-slab reinforcement of a composite bridge deck shall be 
determined. The bridge is situated 2 km from the sea. The strength class of concrete is C 35/45 
and the diameter of transverse reinforcement 20 mm.

The distance from the sea is considered low, so that an exposure class XS1 is selected.
The calculation of the structural class is based on Table 4.3N, of EN 1992-1-1.
The initial structural class is 6. Since the concrete quality is not greater than C40/50, the 

structural class is not reduced. Moreover, the position of reinforcement is not affected by con-
struction process, and therefore, the construction class is reduced to 5. A further reduction is 
applied due to special quality control; the final structural class is 4.

Table 5.21: cmin,dur = 35 mm
 cmin,b = 20 mm
Equation 5.27: cmin = max{20; 35; 10} = 35 mm
Equation 5.26: cnom = 35 + 10 = 45 mm
The required concrete cover of the longitudinal reinforcement is accordingly 45 + 20 = 65 mm.
The concrete cover for the shear connectors is then equal to 65 − 5 = 60 mm, which is larger 

than 20 mm.

5.6.2 Structural steel

The steel of steel girders must be protected by appropriate coating systems in accordance 
with the environmental conditions. Steel that is in contact with concrete is protected by 
the concrete and need no coating. However, steel surfaces that are in contact with concrete 
including the underside of baseplates shall be coated for a minimum of the first 50 mm of the 
embedded length. Uncoated parts of the surface must be blasted or wire brushed to remove 
loose mill scale and cleaned to remove dust, oil, and grease.

When precast slabs are used that rest directly on the girder, the top flange of the steel 
girder must be protected over the entire width as the rest of the steelwork except the top 
coating provided after erection.
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Chapter 6

Structural materials

6.1 CONCRETE

6.1.1 Strength classes

6.1.1.1 Normal concrete

Normal concrete is characterized by the letter C followed by two figures that express the 
characteristic (5%) cylinder strength fck and the cube strength fck,cube at 28 days. Accordingly, 
C35/45 is a concrete with fck = 35 MPa and fck,cube = 45 MPa. In composite bridges designed 
by Eurocode 4-2, concrete of strength classes between C20/25 and C60/75 should be used. 
However, the most usual strength class of the concrete slab is C35/45. The properties of 
normal concrete are given in Table 6.1, where the aforementioned strength class is shown 
in italic face [6.3].

Other properties of concrete are as follows:

Specific weight gc  kN/m=25 3

Specific weight of wet concrete gc wet  kN/m, =26 3

Poisson ratio for uncracked concrete νc = 0.2
Poisson ratio for cracked concrete νc = 0

Coefficient of thermal expansion a per Ct = ◊ ∞-10 10 6 [ ]

The design value of the compressive stress of concrete is defined as

 
f f
cd cc

ck

c
= ◊a

g
 (6.1)

where
fck is the characteristic value of the compressive stress (see Table 6.1)
γc is the relevant safety factor (see Table 5.20)
αcc is a reduction factor that takes into account the long-term effects on the compressive 

strength

The recommended values for αcc are 0.85 for unconfined concrete and 1.0 for confined one. 
Different values may be found in the National Annex.

For the capacity design of steel–concrete composite cross sections, the stress–strain rela-
tions of Figure 6.1 can be used. The parabola–rectangle diagram describes the “exact” 
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behavior of the compressed concrete but it obviously makes the calculations more onerous. 
The bilinear diagram offers a more simplified approach.

The stress–strain diagrams are used when a nonlinear computation of the bending resistance 
is mandatory. This can be the case for composite girders with excessive compression.

6.1.1.2 Lightweight concrete

Lightweight concrete is denoted as LC followed by the two figures of cylinder strength and 
the cube strength. The strength and stiffness of lightweight concrete depend on its density. 
In Table 6.2, one can find the density classification according to [6.18].

Table 6.3 provides the main mechanical characteristics for lightweight concrete.

Table 6.1 Properties of concrete (units in MPa)

Grade fck fcm fctm fctk,0.05 fctk,0.95 Ecm (×103)

C20/25 20 28 2.2 1.5 2.9 30
C25/30 25 33 2.6 1.8 3.3 31
C30/37 30 38 2.9 2.0 3.8 33
C35/45 35 43 3.2 2.2 4.2 34
C40/50 40 48 3.5 2.5 4.6 35
C45/55 45 53 3.8 2.7 4.9 36
C50/60 50 58 4.1 2.9 5.3 37
C55/67 55 63 4.2 3.0 5.5 38
C60/75 60 68 4.4 3.1 5.7 39

Notes:

fcm is the mean compressive strength at the age of 28 days.
fctm is the mean tensile strength.
fctk0.05 = 5% fractile of tensile strength.
fctk0.95 = 95% fractile of tensile strength.
Ecm is the mean value of modulus of elasticity.

0 ≤ εc ≤ 1.75‰
σc =

εc
0 .00175

fcd  

1.75‰ ≤ εc ≤ 3.5‰fcd,

Parabola–rectangle diagram Bi-linear stress–strain relation

2.0 3.5 1.75 3.5

σc σc

fcd
fcd

εc (‰) εc (‰)

εc
2

2‰1– 1–

2‰ ≤ εc ≤ 3.5‰

, 0 ≤ εc ≤ 2‰
σc=

fcd,

fcd ,

Figure 6.1  Stress–strain relations for the capacity design of cross sections for C20/25 till C50/60 (concrete 
under compression).
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It should be noted that the density ρ used in the design calculations should be verified on 
site by appropriate measurements. More information on lightweight concrete are provided 
in Section 11 of EN 1992-1-1 [6.3].

6.1.2 Time-dependent deformations due to creep

6.1.2.1 General

Concrete is subjected to time-dependent deformations. If a compression stress σc0 is applied, 
concrete is subjected initially to elastic deformations εc0 = σc0/Ecm that are followed by time-
dependent deformations so that the final deformations at the time t are equal to

 
e e jc ctt tt(, ) (, )0 0 01= ◊ +[ ] (6.2)

The time-dependent deformations under compression stresses are called creep deformations, 
while the coefficient φ(t, t0) creep coefficient. Creep is mainly due to movement of unbounded 
water molecules from regions of low to regions of high pressure and depends on

 a. The age of concrete at time of load application (t0)
The time of load application is essential for creep, since the movability of the water mole-
cules decreases as the time increases due to the fact that more water is bounded to cement.

Table 6.2  Design densities ρ (kg/m3) for lightweight aggregate 
concrete for density classes according to EN 206-1

Density class 1.0 1.2 1.4 1.6 1.8 2.0

max ρ 1000 1200 1400 1600 1800 2000
min ρ 801 1001 1201 1401 1601 1801
Plain concrete 1050 1250 1450 1650 1850 2050
Reinforced 
concrete

1150 1350 1550 1750 1950 2150

Table 6.3 Properties of lightweight concrete (units in MPa)

Quality flck flcm flctm flctk,0.05 flctk,0.95 Elcm (×103)

LC20/25 20 28
LC25/30 25 33
LC30/37 30 38
LC35/45 35 43
LC40/50 40 48 = fctm · n1 = fctk,0.05 · n1 = fctk,0.95 · n1 = Ecm · nE

LC45/55 45 53
LC50/60 50 58
LC55/67 55 63
LC60/75 60 68

Notes:

n /E = ( )r 2200 2, coefficient for the determination of the secant modulus Elcm.
n /1 = + ◊0 40 0 6 2200. . ( )r , coefficient for the determination of the tensile strength.
ρ is the upper limit of the density for the relevant class according to Table 6.2.
For fctm, fctk,0.05, and Ecm, see Table 6.1 for normal concrete.
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 b. The density of concrete
The movability of the water molecules decreases with increasing density and conse-
quently the creep deformations.

 c. The humidity of the environment
An increase in humidity reduces the pressure difference between the inside of the con-
crete and the outside environment resulting in a reduction of the creep deformations.

 d. The temperature of the environment
In environments with high temperatures, the unbounded part of water evaporates 
faster. Therefore, creep deformations are larger than in cold environments.

 e. The dimensions of the concrete element
Thick concrete elements sustain greater part of the humidity; creep is reduced.

6.1.2.1.1 Creep due to permanent loads (P)

The time-dependent behavior of concrete is influenced also by the type of loading. Figure 6.2 
depicts the strain development in a concrete cylinder subjected to a constant compressive 
force N at time t0; as already mentioned, t0 is the age of concrete at loading. One can observe 
that the additional deformations due to creep εcφ can be 2–3 times greater than the elastic 
ones. Indeed, from Equation 6.2, the creep strains are calculated:

 
e e e j e j ej jc c c c ctt tt0 0 0 0 01+ = ◊ +[ ]fi = ◊(, ) (, )  (6.3)

Taken into account that the creep coefficient is in most cases between 2 and 3, one can 
easily understand the importance of considering creep in calculations of stresses and defor-
mations. Creep due to permanent loads, for example, self weights, will be notated with the 
letter P, referring to permanent.

Instantaneous
elastic strain

Creep
deformations (εc   )

Strains

Induced stresses

t

σc(t)
σc0

t (days)

t (days)

εc0

t0

N = ct.
N = 0

t > t0

εc0
εc

t0

εc(t, t0)

Creep factor
(t, t0)

t (days)

ttt0 t0

Figure 6.2  Creep due to permanent loads (type L = P).
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6.1.2.1.2 Creep due to temporarily permanent loads (PT)

In bridges, there is also an important type of loading that refers to permanent loads whose 
magnitude changes constantly with time. They are not described as permanent because of 
their time-dependent magnitude; therefore, they are called temporarily permanent actions 
and are notated with PT. These may be stresses due to secondary internal forces that are 
developed in statically indeterminate structures or due to longitudinal prestressing. An 
example is shown in Figure 6.3. The axial force N(t) diminishes with time and the stress 
variation σc(t) is changed into a series of stress increments ∆σi. Time is also divided into n 
intervals ∆ti, in the middle of which ∆σci is introduced. Obviously, the total strain at time tk 
due to ∆σci is estimated with Equation 6.2 and thus is equal to ( ) ( , ).Ds jci cm k m iE t t/ ◊ +[ ]1

According to the theory of viscoelasticity, the superposition of strains caused by stress 
increments is allowed. The final strain at time tk is represented by the following summation:

 
e s j sc k ci

cm
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cmi

k

ci k m i
i

t
E

t t
E

Jt t( ) ( , ) ( , )= ◊ +È
ÎÍ

˘
˚̇
= ◊

= =
Â D D1

1 1

kk

Â  (6.4)

J(t, t0) is known as creep function and expresses the total strain at time t due to a unit stress 
introduced at age t0.

EN 1994-2 [6.7] offers a more simplified approach than the aforementioned incremental 
procedure. This is achieved with the creep factor ψL explained subsequently.

The aforementioned numerical method is also used for considering the effects of creep 
during construction stages, for example, segmental construction.

6.1.2.1.3 Creep due to imposed deformations (D)

Imposed deformations in bridges may be due to support settlements. These displace-
ments may be sudden or time varying. Sudden support settlements are introduced to the 

εc(tk)

εc(t) Strains

t (days)

t (days)

Induced stresses

tk

tkt0i t0(i+1)

Δti

Δσci

t0

t0

σc(t)

Δσci
Ecm

tk > t0

εc

N(t)

t0

Creep factor

t (days)

tkt0it01 t02

(t, t0)
(tk, t01)
(tk, t02)

(tk, t0i)

tmi

Figure 6.3  Creep due to temporary permanent loads (type L = PT).
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intermediate supports of continuous composite bridges to limit cracking. This is an alterna-
tive solution to longitudinal prestressing. Time-varying support movements may arise due 
to soil consolidation. In both cases, strains are introduced in concrete that are developed 
under the influence of creep.

In Figure 6.4, the reduction of stresses after an instantaneous induced strain is illustrated. 
The resulting stresses decrease gradually due to creep.

Time-dependent stresses can be easily calculated through Equation 6.4, which is rewrit-
ten as follows:

 
e s sc k ck k m k ci k m i

i

k

t Jt t Jt t( ) ( , ) ( , )= ◊ + ◊
=

-

ÂD D
1

1

 (6.5)

The strain εc(tk) is constant and equal to the initially induced strain εc0. The stress increment 
∆σck is therefore given by Equation 6.6:
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 (6.6)

The concrete stress at time tn > tk is calculated after the summation of the stress  increments ∆σck:
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 (6.7)

Therefore, the stress evolution due to creep after a successive application of Equation 6.7 
can be calculated.

The phenomenon of stress reduction due to imposed strains is also known as relaxation 
of concrete. In EN 1992-1-1, a relaxation function R(t, t0) is found. Multiplying R(t, t0) with 
the imposed strain εc0 offers the concrete stress at time t; thus,

 s ec n n ct R t t( ) ( , )= ◊0 0  (6.8)

t (days)
R(t, t0)  εc0

σc(t)

σc0Ac εc0 = ct.
Stresses due to εc(t) = εc0

t0 t

Figure 6.4  Relaxation of concrete (type D).
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Comparing Equations 6.7 and 6.8 enables the numerical evaluation of the relaxation 
function R.

The influence of relaxation of concrete on continuous composite bridges is discussed in 
Chapter 7. Creep due to imposed deformations is notated with D.

6.1.2.1.4 The creep coeff icient φ(t, t0)

According to EN 1992-1-1, Annex B [6.3], the creep coefficient in the time interval (t, t0) 
may be determined from

 j b j(, ) (, )tt ttc0 0 0= ◊  (6.9)

where
βc(t, t0) is the coefficient to describe the development of creep with time after loading
φ0 is the notional creep coefficient
t0 is the age of concrete at loading in [days], valid for normal hardening cements (class N). 

This age is corrected according to Equation 6.17 for other types of cement.

The concrete of the slab is connected with the girders by the shear connectors and is 
stressed in the longitudinal direction from the first day of casting if the girders are unsup-
ported. Therefore, the age t0 varies between individual segments for bridges cast in several 
stages. According to EN 1994-2, one mean value of time t0 may be used for all segments. 
The final age of concrete may be taken as t = t∞ = 30.000 days that corresponds to a service 
bridge life of 100 years.

The two factors of Equation 6.9 may be determined according to the following relations.

6.1.2.1.4.1 NOTIONAL CREEP COEFFICIENT

 j j b b0 0= ◊ ◊RH cmf t( ) ( ) (6.10)

where
φRH is a factor to account for the influence of relative humidity
β(fcm) is a factor to account for the influence of concrete strength
β(t0) is a factor to account for the effect of concrete age at loading

The aforementioned three factors may be determined from the following expressions:
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where
RH is the relative humidity of the ambient environment in %

h A
u

c
0

2= ◊
 is the notional size of the member in [mm]

Ac is the cross-sectional area
u is the perimeter of the member in contact with the atmosphere
fcm is the mean compressive strength of concrete from Table 6.1 in [MPa]

Figure 6.5 shows recommended values of h0 for in situ and partially prefabricated slabs or 
slabs with steel decking. It is obvious that for bridges with prefabricated planks and water 
proofing layers, lower values of φ(t, t0) are expected; reduced creep.

It has to be mentioned that b is the geometrical and not the effective width.

6.1.2.1.4.2 COEFFICIENT FOR THE DEVELOPMENT OF CREEP WITH TIME
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Figure 6.5  Notional size h0 for deck slabs of constant thickness with and without waterproofing layer.
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The aforementioned equations are valid for normal cements of type 32.5R and 42.5. For 
other types of cements, time t0 has to be modified to
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where
α = −1 for slowly hardening cements (class S)
α = 1 for rapid hardening cements (class R)
t0,T is the modified value of t0 according to the following expression:
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where
∆ti is the time interval in which temperature T(∆ti) prevails
T ti( )D  is the temperature in °C during ∆Ti

Expression 6.17 takes into account the effects of the temperature variation on the maturity 
of concrete within the range of 0°C–80°C.

For lightweight concrete, the creep coefficient φ(t, t0) is equal to the value of normal den-
sity concrete multiplied by a factor (ρ/2200)2.

REMARK 6.1

The creep factor φ(t, t0) calculated earlier is valid for compressive stresses not exceeding 
0.45 · fck(t0), where fck(t0) is the compressive strength of concrete at age t0.

• For 3 < t < 28 days,

 f (t ) (t ) f (MPa)ck 0 cc 0 cm= ◊ -b 8  (R6.1)
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s = 0.38, for cements 32.5N
s = 0.25, for cements 32.5R and 42.5N
s = 0.20, for cements 42.5R, 52.5N, and 52.5R

• For t ≥ 28 days, f t fck cm( )0 =
When σc ≤ 0.45 · fck(t0), the creep strains εcc are proportional to φ(t, t0) and Equation 6.2 
is valid. The strains’ time-dependent development is known as linear creep.
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Nonlinear creep occurs for higher stresses and the creep factor φ(t, t0) is replaced by φk(t, t0) 
as follows:
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Nonlinear creep should be avoided and concrete stresses should be limited accordingly.

6.1.2.1.5 Creep in composite girders

In composite bridges with one flange composite, the effects of creep are taken into account 
by introduction of the modular ratio of concrete, which is the ratio between the modulus of 
elasticity of steel to the modulus of elasticity of concrete. For short-term loading, for example, 
for traffic loads, wind, temperature, and earthquake, the modular ratio is given by (Table 6.4)

 
n E

E
a

cm
0 =  (6.19)

where
Ea is the modulus of elasticity of steel
Ecm is the mean value of modulus of elasticity of concrete

For long-term loading, the modular ratio may be determined from

 
n n ttL L= ◊ + ◊[ ]0 01 y j(, )  (6.20)

where ψL is the creep multiplier depending on the type of loading in accordance with 
Table 6.5.

Table 6.5 shows that creep is affected mostly by imposed deformations and less by second-
ary effects (see Section 7.4.3). Consequently, prestress by imposed deformations becomes less 
effective in time (see Figure 7.48), since a large part of it is lost due to relaxation of concrete.

Table 6.4  Short-term values for n0 for different qualities of normal 
concrete

C20 C25 C30 C35 C40 C45 C50 C55 C60

n0 7.00 6.77 6.56 6.18 6.00 5.83 5.68 5.53 5.38

Table 6.5 Creep multiplier ψL

Type of action Description ψL

Permanent (P) Permanent actions invariant in time 
(e.g., self weights)

1.10

Secondary effects (PT) Secondary effects of creep and 
shrinkage

0.55

Imposed deformations (D) Prestressing by imposed deformation 
(e.g., support settlement)

1.50

Source: EN 1994-2, Design of composite steel and concrete structures, Part 2: Rules 
for bridges, 2005.



Structural materials 155

A clearer picture on the effects of creep on composite girders at sagging moment areas is 
given in Figure 6.6. One can see that the deck slab is at time t0 under compression. This is 
the time that loading ML is imposed. Due to creep, time-dependent cross-sectional forces 
are developed that redistribute tension from concrete to steel; thus, concrete stresses become 
lower and steel stresses higher. Indeed, the cross-sectional properties of the concrete slab are 
reduced through the long-term modular ratio nL of Equation 6.20. In contrast, structural 
steel keeps its stiffness and as a result, time-dependent redistributions arise.

The redistributions are not only time- but loading dependent as well; the magnitude of 
the redistribution and the final results depend on the type of loading. If the bending moment 
ML is constant and due to permanent loads, then creep of type P will be developed (see 
Figure 6.2). If the bending moment acting on the girder is due to an imposed deformation, 
then in this case, creep of type D should be considered (see Figure 6.4).

In statically determinate structures, additional displacements and rotations due to creep 
are developed freely and they are called primary effects. In the case of indeterminate struc-
tures, primary deformations are restrained so that additional internal forces arise; these 
forces are known as secondary effects. The secondary internal forces are developed paral-
lel with creep. This means that they are permanent actions whose magnitude constantly 
changes. Hence, secondary effects are associated with creep of type PT (see Figure 6.3).

Figure 6.7 illustrates the effects of two different types of creep on a two-span bridge. 
The support settlement δ acts on a continuous system with a short-term stiffness deter-
mined by the modular ratio n0 (Figure 6.7a). Due to creep, the modular ratio n0 is changed 
into nD and the system’s stiffness is reduced. Obviously, the bending moment diagram 
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Figure 6.6  The effect of creep on stresses of a composite girder.
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Figure 6.7  The effect of creep on continuous systems. (a) Due to support settlement and (b) due to partial 
concrete loading.
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changes as well. In the second case, one part of the bridge is composite and the other pure 
steel (Figure 6.7b). Due to the rheological behavior of the composite part (n0 → nP), sec-
ondary bending moments (MPT) are developed. Secondary internal forces are developed 
in the cracked areas of composite bridges; in mixed bridges, for example, steel–concrete 
composite; in prestressed composite bridges; and during construction stages.

Computation methods for the previously described primary and secondary effects are 
found in [6.21] and [6.23]. A more detailed discussion on the effects of creep and shrinkage 
on composite bridges is found in Section 7.4.

EXAMPLE 6.1

A bridge deck is casted in five segments at different times as shown in Figure 6.8. The modular 
ratios nL shall be determined

 a. For short-time loading
 b. At the time of traffic opening t = 100 days
 c. At time t∞ = 3 · 104 days

The slab thickness is 250 mm.
Waterproofing is provided at the top of the concrete slab.
The relative humidity is supposed to be RH = 80%.
The concrete grade is C35/45.
Conservatively, it is assumed that the age of concrete t0 at time of loading L is for all segments 

equal to 1 day. The duration of casting is for all segments 1 day.
From Table 6.1, fcm = 43 MPa and Ecm = 34 GPa
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The notional size of the slab, for simplification not extracting the width of the girder top 
flange that is in contact with the slab, is equal to h0 = 2 · 250 = 500 mm (see Figure 6.5).
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Modular ratio for short-time loading (Table 6.4) n0 = 6.18
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Figure 6.8  Numbering of segments and time of loading L.
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Segment 1
Modular ratios at traffic opening (t = 100 days, t0 = 1 day)

Equation 6.13: b(t 1)
1

0.1 1
0.9090 0.2= =

+
=

Equation 6.10: j0 1.169 2.562 0.909 2.722= ◊ ◊ =

Equation 6.14: bc

0.3

(100,1)
100 1

1335.203 100 1
0.448= -

+ -
Ê
ËÁ

ˆ
¯̃

=

Equation 6.9: φ(100, 1) = 0.448 · 2.722 = 1.219
The long-term modular ratios are calculated through Equation 6.20:

 n 6.18 (1 1.1 1.219) 14.47P = ◊ + ◊ =

 n 6.18 (1 0.55.1.219) 10.32PT = ◊ + =

 n 6.18 (1 1.5.1.219) 17.48D = ◊ + =

Modular ratios at t∞ = 30 · 104 days
The repetition of the calculations gives the following modular ratios:

 n 24.45, n 15.32, n 31.09P PT D= = =

Figure 6.9 shows the development of the modular ratios due to creep for segment 1. It may be 
seen that creep is well developed after 3000 days (φt/φ∞ > 90%) and is largely influenced by the 
type of loading, whether permanent loading, secondary effects, or imposed deformations.

Segments 2–5
Modular ratios at traffic opening (t = (100-casting time), t0 = 1 day)
At traffic opening, the calculations must be repeated for a time at loading t0 = 1 day for all seg-
ments, but for different times t for each segment corresponding to the time difference between 
the 100 days and the time at concrete casting. The results are summarized in Table 6.6.

Modular ratios at t∞ = 30 · 104—casting time
The modular ratios for t = t∞ casting time may not be repeated, since the influence of casting 
time on the creep factor is very low. Therefore, for all segments at t∞,

 n 24.45, n 15.32, n 31.09P PT D= = =

Traffic openingTraffic opening

t (days)t (days)

3  104 104104 103103 102102 1010 11
1.0
1.5
2.0
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3.0
3.5
4.0
4.5
5.0
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nL
n0

0
10
20
30
40
50
60
70
80
90

100
L = D

L = P

L = PT

(t, 1)
()

(∞, 1)

(a) (b)
3  104

Figure 6.9  Development of the modular ratios nL and the creep coefficient φ(t, t0) in time for segment 1.
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REMARK 6.2

According to EN 1994-2 [6.7], for bridges cast in several stages, one mean value of t0 may be 
used for all segments. In Example 6.1, this was conservatively assumed equal to 1 day. However, 
both the creep factor φ(t, t0) and the modular ratios nL are sensitive to deviations in t0. This is 
illustrated in Table 6.7.

The Code proposes this simplification because its implication on the overall cross- sectional 
properties and later on the distribution of internal forces and moments is assumed to be rela-
tively small. However, this is not always true and more conservative values for t0 need to be 
considered.

For box-girder bridges, torsional redistributions may also occur. The effect of creep may be 
taken into account by integrating in the torsional stiffness of the composite cross section the 
following modular ratio:

 
n n ttLG G L= ◊ + ◊[ ]0 01 y j(, )  (6.21)

where
n0G is the short-term torsional modular ratio equal to Ga/Gc; given in Table 6.8
Ga is the elastic shear modulus of structural steel
Gc is the elastic shear modulus of concrete
ψL is the creep multiplier in Table 6.5

For cross sections with double composite action, the modular ratios described earlier 
should not be used. The effects of creep can only be estimated by applying the incremental 
method based on Equation 6.4.

Table 6.6 Modular ratios at traffic opening

Segment t0 (days) t (days) φ(t, t0) nP nPT nD

2 1 93 1.20 14.34 10.26 17.30
3 1 85 1.17 14.13 10.16 17.03
4 1 76 1.13 13.86 10.02 16.66
5 1 70 1.10 13.66 9.92 16.38

Table 6.7  Sensitivity of creep factor and long-term 
modular ratios against t0 (RH = 80%, 
h0 = 500 mm, C35/45)

t0 (days) 1 7 14 21 28 56

φ(30 · 104, t0) 2.69 1.88 1.65 1.53 1.44 1.26
nP/n0 3.96 3.07 2.82 2.68 2.58 2.39
nPT/n0 2.48 2.03 1.91 1.84 1.79 1.69
nD/n0 5.04 3.82 3.48 3.30 3.16 2.89
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6.1.3 Time-dependent deformations due to shrinkage

6.1.3.1 General

Time-dependent deformations develop also if the concrete is not under stress. These defor-
mations are due to the gradual migration of water through the hardened concrete, so that 
the crystals of the vehicular come closer together. This contraction of the concrete is denoted 
as shrinkage.

Shrinkage increases

 a. With development of high temperatures and low humidity in the beginning of the 
hardening

 b. With the increase of cement content or the reduction of the aggregates content, since 
only the cement jelly contracts

 c. With increase in water
 d. With inappropriate composition of the aggregates

Shrinkage has two components, the drying shrinkage and the autogenous shrinkage. The for-
mer develops slowly, the latter during hardening of concrete (see Figure 6.10). In composite 

Table 6.8  Short-term values for n0G for different qualities of normal 
concrete

If concrete is considered as uncracked (νc = 0.2)
C20 C25 C30 C35 C40 C45 C50 C55 C60

n0G 6.46 6.25 6.06 5.70 5.54 5.38 5.24 5.10 4.97

If concrete is considered as cracked (νc = 0)
C20 C25 C30 C35 C40 C45 C50 C55 C60

n0G 5.38 5.21 5.05 4.75 4.62 4.49 4.37 4.25 4.14

Note: EN 1992-1-1 gives Poisson’s ratio vc as 0.2 and zero, depending on whether 
the concrete is uncracked or cracked. This obviously has influence on the value of the 
short-term ratio n0G.

Traffic opening(×10–6)
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t > ts
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3  104

Service stageConstruction

Figure 6.10  Development of shrinkage strains.
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bridges, only drying shrinkage is considered directly for the calculation of stresses and 
deformations, while autogenous shrinkage should be taken into account together with con-
crete hydration (see Section 6.1.5) during concreting.

6.1.3.1.1 Drying shrinkage

The drying shrinkage strain at time t may be determined from

 e b ecd ds s h cdt tt k() (, ) ,= ◊ ◊ 0  (6.22a)

where
t is the age of concrete at the considered time in days
ts is the age of concrete at the beginning of drying shrinkage that is taken as ts = 1 day
kh is a coefficient depending on the notional thickness h0 of the slab being taken equal 

to 1.0 for h0 = 100 mm, 0.85 for h0 = 200 mm, 0.75 for h0 = 300 mm, and 0.7 for h0 ≥ 
500 mm

The function describing the time-dependent development of the drying shrinkage is

 

bds s
s

s

tt t t
t t h

(, )
.

= -
- + ◊0 04 0

3
 (6.22b)

The basic drying shrinkage strain εcd,0 is given by the following expression:

 
e a acd ds ds

cmf
, . exp0 1 2

60 85 220 110
10

10= ◊ + ◊( )◊ - ◊Ê
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ˆ
¯̃

È
Î
Í

˘
˚
˙◊ ◊- bbRH  (6.22c)

where
fcm is the mean compressive strength of concrete (see Table 6.1)
ads1 = 3 for class S cements, 4 for class N cements, and 6 for class R cements
ads2 = 0.13 for class S cements, 0.12 for class N cements, and 0.11 for class R cements

 

bRH
RH= ◊ -Ê
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ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

( )1 55 1
100

3

.
%

, % RH  relative hum idity  (6.22d)

6.1.3.1.2 Autogenous shrinkage

As noted before, the effects of autogenous shrinkage may be neglected. However, dur-
ing construction stages, tension stresses may develop in some cross sections at service-
ability limit state that result in cracking of concrete. The corresponding shrinkage strain 
is equal to

 e b eca as cat t() () ( )= ◊ •  (6.23a)
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where

 
eca ckf( ) .• = ◊ -( )◊ -2 5 10 10 6  (6.23b)

 bas t t() exp( . ).= - - ◊1 0 2 0 5  (6.23c)

6.1.3.1.3 Total shrinkage

As already mentioned, the total shrinkage strain during construction stages may be deter-
mined by adding both drying and autogenous shrinkage strains so that it is equal to

 e e ecs ca cd= +  (6.24)

The creep multiplier for ψS, for calculating the long-term modular ratio for the primary 
effects due to shrinkage, is equal to 0.55. Moreover, shrinkage in cracked areas is of negli-
gible magnitude and is not taken into account.

EXAMPLE 6.2

Determine the shrinkage strain for the bridge deck of Example 6.1 at the time of traffic opening 
t = 100 days. Waterproofing is provided at the top of the slab.

The basic drying shrinkage strain εcd,0 is calculated as follows:

Equation 6.22d: bRH

3

1.55 1
80%

100%
0.756= ◊ -Ê

ËÁ
ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙
=

Cement class N: a ads1 ds24, 0.12= =

Equation 6.22c: ecd,0
60.85 (220 110 4) exp 0.12

43
10

10 0.75= ◊ + ◊ ◊ - ◊Ê
ËÁ

ˆ
¯̃

È
Î
Í

˘
˚
◊̇ ◊- 66 253.16 10 6= ◊ -

The notional size of the slab, for simplification not extracting the width of the girder top 
flanges that are in contact with the slab, is equal to h0 = 2 · 250 = 500 mm. Therefore, kh = 0.7.

The time that shrinkage starts is ts = 1 day.
The coefficient for the development of shrinkage in time is equal to

Equation 6.22b: bds s
3

(t, t )
100 1

100 1 0.04 500
0.18= -

- + ◊
=

The drying shrinkage at 100 days is then
Equation 6.22a: ecd

6 6(t) 0.18 0.7 253.16 10 31.9 10= ◊ ◊ ◊ = ◊- -

If autogenous shrinkage has to be taken into account, the relevant shrinkage strain is
Equation 6.23b: eca

6 6( ) 2.5 (35 10) 10 62.5 10• = ◊ - ◊ = ◊- -

Equation 6.23c: bas
0.5(t) 1 exp( 0.2 100 ) 0.86= - - ◊ =

Equation 6.23a: eca
6 6(t) 0.86 62.5 10 53.75 10= ◊ ◊ = ◊- -

The total shrinkage strain may be obtained from
Equation 6.24: ecs

6 6(31.9 53.75) 10 85.65 10= + ◊ = ◊- -

Note: The development of shrinkage over time may be seen in Figure 6.10. It may be observed 
that the long-term values of autogenous shrinkage are considerably lower compared to those of 
drying shrinkage. In contrast, during the initial stages of evolution, autogenous shrinkage is the 
dominant one. For this reason, autogenous shrinkage should be taken into account during casting.
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6.1.4  Time-dependent deformations due to time-dependent 
development of the modulus of elasticity of concrete

For reasons of simplicity, the elastic modulus of concrete was considered constant and equal 
to Ecm. For more detailed calculations, the modulus of elasticity of concrete should be calcu-
lated considering time as follows:

 E t t Ec E c() () ,= ◊b 28  (6.25a)

where Ec,28 is the modulus of elasticity at 28 days, approximately equal to Ecm. For a more 
detailed estimation, see [6.3].
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1 28  is a tim e function  w ith  (6.25b)

s = 0.38, for cements 32.5N
s = 0.25, for cements 32.5R and 42.5N
s = 0.20, for cements 42.5R, 52.5N, and 52.5R

Figure 6.11 gives βE values for different cement types. One can observe that for t < 28 days, 
the modulus of elasticity is highly dependent on time.

t s = 0.38 s = 0.25 s = 0.2

1 0.44 0.58 0.65
3 0.68 0.77 0.81
7 0.83 0.88 0.90

14 0.93 0.95 0.96
28 1.00 1.00 1.00
50 1.05 1.03 1.02
75 1.08 1.05 1.04

100 1.09 1.06 1.05
200 1.13 1.08 1.06
365 1.15 1.09 1.07

t (days)

1.40

1.20

1.00

0.80

0.60

0.40

s = 0.20

βE (t)

s = 0.25
s = 0.38

28
3  1041 10 102 103 104

Figure 6.11 Time function βE(t).
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The creep coefficient φ(t, t0) in Equation 6.9 is related to the elastic deformation at 28 days. 
For loadings imposed at different ages than 28 days, the creep coefficient is recommended 
to be multiplied with the factor βΕ(t = t0). The creep function is thus given by

 
Jtt

E t
t tt

c
E(, )

( )
( ) (, )0

0
0 0

1= + ◊b j  (6.26)

With the aforementioned modification of the creep coefficient, a more refined approach is achieved.

REMARK 6.3

There is an inconsistency between EN 1994-2 and EN 1992-1-1 concerning the use of the creep 
factor φ(t, t0). EN 1992-1-1 relates φ(t, t0) to an elastic deformation at 28 days. For this reason, 
when t0 ≠ 28 days, the creep factor should be replaced by the quantity βΕ0 · φ(t, t0), as mentioned 
earlier. EN 1994-2 gives Equation 6.20 for the long-term modular ratios in which the influence 
of the time-dependent behavior of the elastic modulus of concrete is missing.

Equation 6.20 and the creep multipliers in EN 1994-2 are based on the creep functions of the 
old German Codes for prestressed concrete, DIN 4227 [6.1], and the dissertation of Haensel 
in [6.20]. Thus, it can be stated that the creep factor φ(t, t0) according to EN 1992-1-1 and the 
creep multipliers ψL of EN 1994-2 are incompatible.

Numerical investigations on new creep multipliers in [6.21] and [6.23] that are based on the 
creep function of EN 1992-1-1 led to improved values for ψL. With Table 6.9, the influence of the 
time-dependent behavior of Ec is considered. One can also observe that the creep multipliers 
depend on the age of concrete t0 at the time of loading.

6.1.5 Time-dependent deformations due to hydration of cement

The chemical reaction of hydration of cement generates heat over the curing period. As a result, 
time-dependent temperature variations in concrete lead to induced stresses that in certain cases 
may cause cracking. The procedure is schematically described in Figure 6.12. After concrete 
casting, temperature gradually starts to rise; this usually takes place in a week. Due to restraints 
in deformations, compressive stresses arise. These stresses are generally not very high due to 

Table 6.9 Recommended creep multipliers ψL

t0 (days) 1 3 7 14 28 50 100 365

ψP — — 1.35 1.25 1.20 1.15 1.10 1.05
ψPΤ — — 0.75 0.80 0.80 0.85 0.90 0.95
ψS 0.15 0.30 0.40 0.45 0.50 0.55 0.60 0.70
ψD — — 1.60 1.40 1.25 1.20 1.10 1.05

Source: Hanswille, G., Zur Behandlung der Einflüsse aus dem Kriechen und 
Schwinden des Betons, Forschungsvorhaben: Eurocode 4 Teil 2—Verbundbrücken, 
Wuppertal, Germany, 1998.

Notes:
Long-term modular ratio n n t tL E L: ( , ) .= ◊ + ◊ ◊ÈÎ ˘̊0 0 01 b y j
Short-term modular ratio: n E /E ta c0 0= ( ); for Ec(t0) and βE0 (see Equation 6.25).
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interaction with creep. After the temperature’s peak, the cooling phase starts and temperature 
vanishes slowly over a much longer period. When temperature reaches its lowest value, high 
tensile stresses have been already developed. As mentioned earlier, cracking may be the result.

Due to the rigid connection of the deck slab with the upper flange of the steel cross sec-
tion, excessive tensile stresses due to hydration of cement are developed at the bottom sur-
face of the slab. This usually occurs when casting takes place in the summer period. It has 
to be mentioned that the phenomenon of cement’s hydration can be strong enough to also 
influence the precambering of simply supported composite bridges erected by propped con-
struction. According to EN 1994-2, for simplification, a temperature difference ∆T = 20°C 
between steel and concrete (concrete cooler) may be assumed.

6.1.6 Cracking of concrete

6.1.6.1 General

Tensile stresses higher than the concrete’s tensile strength lead to cracking. Knowing the 
background of the cracking mechanism is of great importance and its main features are illus-
trated in Figure 6.13. A reinforced concrete section is subjected to tension and for an axial 
force N smaller than Ncr1, the section remains uncracked; Ncr1 is the force producing the first 
crack. The noncracked state is also known as state 1. When the first crack is produced, sev-
eral cracks (1st, 2nd, … , ith) follow corresponding to tensile forces Ncr1 < Ncr2 < … < Ncri. This 
stage is the crack formation stage during which the axial stiffness of the section continuously 
drops. Thereafter, cracks stop to develop and the axial stiffness stabilizes. When the force 
N continues to rise the width, but not the number of cracks, increases too. For high tensile 
forces, yielding of the reinforcement results in an additional stiffness decrease.

6.1.6.1.1 Minimum reinforcement to avoid steel yielding

The axial force Ncr1 occurs when concrete stresses reach a tensile strength fct1 for which 
the corresponding strain is approximately equal to 0.001; this obviously takes place at the 

Temperature
of concrete

ΔT

I II III IV V

Tc
Tcmax

σc

t (days)

t (days)

+

– Concrete
cracking

Stresses due to
prevented deformations

σc > fctm

Figure 6.12  Induced stresses due to hydration of cement. (I) Concrete casting and compacting; (II) develop-
ment of temperature; (III) due to increase of the modulus of elasticity of concrete, compressive 
stresses are developed; (IV) cooling phase leads to reduction of compressive stresses; (V) due 
to further cooling, tensile stresses are developed.
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weakest section. The second crack develops at the second weakest section for a tensile strength 
slightly greater than fct2 and so on. In general, the difference among the values of the crack-
ing forces Ncri is relatively small and employing a mean value Ncr is considered as acceptable.

Obviously, Ncr depends on the tensile strength of concrete fctm. As mentioned earlier, 
self-equilibrating stresses due to shrinkage, humidity, or temperature already exist in non-
cracked members and considerably accelerate the cracking procedure. Ncr can therefore be 
written as follows:

 
N f Acr ctm eq i= -( )◊s 1  (6.27)

where
fctm is the strength of concrete in tension
σeq is a tensile stress expressing the effect of the self-equilibrating stresses
Ai1 is the area of transformed section in state 1 at time t given by Equation 6.28:

 
A A E A

E ti c
s s

c
1 = + ◊

()
 (6.28)

and
Es is the elastic modulus of reinforcing steel
Ec(t) is the elastic modulus of concrete at time of loading t
As is the reinforcement area
Ac is the concrete area
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Figure 6.13  Reinforced concrete section subjected to tension.
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Immediately after cracking, the stress in the reinforcement rebar is σs = Ncr/As. Setting σs = fsk 
and As = As,min gives the minimum reinforcement area required that ensures non-yielding at 
cracking:
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 (6.29a)

The difference between the tensile strength fctm and the mean value of the residual stress σeq 
is equal to k · kc · fctm where k and kc are factors that consider the effects of the nonuniform 
self-equilibrating stresses; k ≤ 1.0 and kc ≤ 1.0 (see [6.3]).

Equation 6.29a can be rewritten as follows:
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 (6.29b)

The term 1- ◊( ) ( )E E f fs c ctm sk/ /  is approximately equal to unity. Thus, the minimum reinforce-
ment is written in the simpler form:

 
A f k k A

fs
ctm c c

sk
,m in =

◊ ◊ ◊
 (6.29c)

The aforementioned expression can be found in EN 1992-1-1 for reinforced concrete mem-
bers in tension. A similar expression is also offered by EN 1994-2 for the concrete flange of 
composite girders at hogging areas (see Equation 10.6).

6.1.6.1.2 The effect of tension stiffening

After cracking is stabilized, the sections situated between two cracks are noncracked, 
state 1. The bond between concrete and the rebar restrains the elongation of the steel, and 
thus, a part of the tensile force in the reinforcement at a crack is transmitted to the concrete 
situated between cracks. Therefore, stresses and strains in the rebar vary longitudinally with 
the maximum values arising in cracks, in locations of state 2. In an opposite way, the axial 
stiffness of the concrete section in Figure 6.13 reaches its maximum value in the noncracked 
sections. The contribution of the noncracked concrete in the rigidity of the cracked mem-
bers is referred in the Codes as tension stiffening. Ignoring the effect of tension stiffening in 
composite bridges results in the following:

• Normal stresses in the reinforcement at hogging areas are underestimated.
• Normal stresses in structural steel are overestimated.
• Deflections of filler-beam decks are overestimated.
• Crack widths are overestimated.
• The shear flow at the interface between structural steel and concrete is underestimated.

As already mentioned, the strain along the length of the member varies and therefore is 
convenient to adopt a mean value εsm. This strain is smaller than the maximum strain at 
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cracks εs2 = N/(Es · As) by a quantity ∆εs that represents the participation of concrete in 
carrying tensile stress between the cracks; thus, the tension stiffening effect. The mean 
strain is given by

 
e e e e b

rsm s s s= - = - ◊
◊2 2D f
E
ctm

s s
 (6.30)

where
β is a factor that expresses the mean value of the crack spacing (=0.4 for long-term or 

repeated loading and 0.6 for short-term loading; for fatigue in composite girders 
β = 0.2, see Remark 11.9)

ρs is the reinforcement ratio (=As/Ac)

Multiplying both sides of Equation 6.30 with Es · As gives the additional tension force in the 
reinforcement due to the tension stiffening; ∆Νs = β · fctm · Ac. One can see that the enhance-
ment due to tension stiffening is equal to 40%–60% of the tensile resistance of the concrete 
cross section; thus, it should not be neglected. Redistributions and stress concentrations due 
to tension stiffening should be carefully investigated in composite tension members such as 
chords or ties in bowstring members.

Based on experimental tests, EN 1992-1-1 adopts a hyperbolic variation of ∆εs with σs2 
as follows:
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where
σsr is the stress in reinforcing steel at first crack
∆εsmax is the maximum value of the strain enhancement due to the tension stiffening effect
σs2 is the stress in reinforcing steel at state 2

From the geometry of Figure 6.14a,
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Figure 6.14  Axial stress versus mean strain: (a) exact and (b) simplified.
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Comparing Equations 6.31, the mean strain εsm is calculated:

 
e z e z esm s s= -( )◊ + ◊1 1 2  (6.32a)

where ζ is a dimensionless coefficient ranging between 0 (state 1) and 1 (state 2) and is 
 calculated by
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Ncr is calculated according to Equation 6.27.
With the aforementioned expressions, the mean strain εsm can be calculated by taking into 

account the tension stiffening. EN 1992-1-1 goes a step further and replaces Equation 6.32b 
with the following:
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where
β– is a coefficient taking account of the influence of the duration of the loading
=1.0 for a single short-term loading
=0.5 for sustained loads or many cycles of repeated loading

EN 1992-1-1 extends the use of Equation 6.32a in concrete sections subjected to bending. 
The curvature is estimated as follows:

 
k z k z k= -( )◊ + ◊1 1 2  (6.34a)

with
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where M and Mcr are the bending moment acting on the cross section and the bending 
moment that produces tensile stress fctm at the extreme fiber.

By integrating the curvatures κ along the length of the concrete beams, deflections can 
be estimated. This method is used in Section 10.5 for the estimation of deflections in filler-
beam decks.

6.1.6.1.3  Control of cracking due to direct loading: Verif ication 
by limiting bar diameter or bar spacing

Where at least the minimum reinforcement is provided, the limitation of crack width 
for direct loading may generally be achieved by limiting the spacing or the diameters of 
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the rebars. The theoretical background of the expressions offered in the Codes is briefly 
explained in this section.

As shown in Figure 6.15, stresses and strains in steel reach their maximum values in 
cracked locations (state 2) (position 2 in Figure 6.15). In contrast, concrete stresses and 
strains reach their maximum values at a distance Lint from position 2 where the bond 
between the two materials is well recovered. After cracking formation in position 2, the 
axial force in position 1 is Nc1 = Ncr (see Equation 6.27).

The distance Lint is calculated from the strain compatibility in position 1 and the equilib-
rium of forces in steel between positions 1 and 2:
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Substitution of Equation 6.35a in Equation 6.35b gives
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Assuming τsm is an average value of the bond stress, it can be written that

 N Lc sm1 = ◊ ◊ ◊t pint ( )F  (6.37)
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Figure 6.15 Stress and strain variation at cracked positions.
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Therefore, Equation 6.36 leads to
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where
Φ is the diameter of the rebar
τsm is the mean value of the bond stress; for ribbed bars, τsm ≈ 1.8·fct,eff

fct,eff is the mean value of the tensile strength of the concrete effective at the time when 
the crack may first be expected to occur

fct,eff = fctm or lower if cracking is expected earlier than 28 days
Act,eff is the effective area of concrete in state 2 (see EN 1992-1-1)
σs is the stress in rebar in position 2

The maximum spacing between two adjacent cracks is

 
m ax ints Lr

s

sm
= ◊ = ◊

◊
2

2
s
t
F

 (6.39)

The width of crack can be derived by multiplying the spacing max sr with the difference 
between the mean values of the strains for reinforcing steel and concrete. Thus,

 
w sk r sm cm= ◊ -( )m ax e e  (6.40a)

with
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 e b ecm c= ◊ 1  (6.40c)

The crack width can be derived by substituting Equations 6.39 in Equation 6.40a:
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It has to be mentioned that Equation 6.41 gives the most conservative values for the crack 
width wk because it is based on the maximum spacing max sr. Moreover, the width of cracks 
mainly depends on the stress σs in reinforcing steel after cracking. The maximum bar diam-
eter for a required crack width is given by
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For a reference value for the tensile strength of concrete fct,eff = 2.9 MPa and β = 0.4 for long-
term or repeated loading, Equation 6.42 gives the maximum bar size F s* for crack control:
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where the minimum reinforcement given by Equation 6.29c is provided; crack widths are 
unlikely to be excessive if the bar sizes calculated by Equation 6.43 are not exceeded. As a 
simplification, EN 1992-1-1 offers Table 6.10.

According to EN 1992-1-1, the maximum bar diameter F s* should be modified.

 
F Fs s
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h d
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,

2 9 8
 (6.44)

where
h is the overall depth of the concrete section
hcr is the depth of the zone in tension immediately prior to cracking
d is the effective depth to the centroid of the outer layer of reinforcement
σs is the stress in rebar in position 2

Table 6.10 will also be used for the crack control of the concrete flanges of composite girders 
at hogging moment areas (see Chapter 10). However, the maximum bar sizes F s* are differ-
ently modified.

Instead of limiting the diameter of the bars, EN 1992-1-1 gives an alternative method by 
limiting the bar spacing according to Table 6.11.

The limiting calculated crack width wk chosen for using Tables 6.10 or 6.11 depends on 
the exposure class of the structural members. For reinforced concrete sections and pre-
stressed sections with unbonded tendons, a crack width of 0.3 mm is generally satisfactory 

Table 6.10 Maximum bar diameters F s* for crack control

Steel stress 
σs [N/mm2]

Maximum bar diameter F s
* (mm)

wk = 0.4 mm wk = 0.3 mm wk = 0.2 mm

160 40 32 25
200 32 25 16
240 20 16 12
280 16 12 8
320 12 10 6
360 10 8 5
400 8 6 4
450 6 5 —

Source: EN 1992-1-1, Design of concrete structures, Part 1-1: General 
rules and rules for buildings, 2004.

Table 6.11 Maximum bar spacing s for crack control

Steel stress 
σs [N/mm2]

Maximum bar spacing s (mm) for width wk

wk = 0.4 mm wk = 0.3 mm wk = 0.2 mm

160 300 300 200
200 300 250 150
240 250 200 100
280 200 150 50
320 150 100 —
360 100 50 —

Source: EN 1992-1-1, Design of concrete structures, Part 1-1: 
General rules and rules for buildings, 2004.
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in respect of durability. For prestressed members with bonded tendons, 0.2 mm should be 
applied. However, different recommendations may be found in the National Annex.

6.2 STRUCTURAL STEEL

6.2.1 Steel grades

The European Standard that defines grades and properties of structural steel is EN 10025 
[6.2]. According to the system used in this standard, structural steel is designated by the 
letter S, followed by a number providing its yield strength at thickness t ≤ 16 mm in [MPa] 
and one or two symbols specifying the material toughness as indicated in Table 6.12. The 
toughness is expressed by the minimum Charpy V-notch impact energy. The most usual 
steel grade for bridges is S355 because its cost-to-strength ratio is lower than for other 
grades. It may be non-alloy, normalized or thermomechanically treated, grades that are 
described in Parts 2–4 of EN 10025 correspondingly as shown in Table 6.13. It should be 
noted that the prescribed value of the yield strength of structural steel is, unlike the concrete 
or the  reinforcing steel strength, not a characteristic value but a minimum guaranteed value, 
allowing thus the application of smaller material safety factors as indicated in Table 5.20.

The mechanical properties of structural steels are mainly characterized by the yield and 
tensile strengths that are designated in Eurocodes 3 and 4 as fy and fu correspondingly. 
The yield strength for thicknesses up to 16 mm is the number followed by the letter S. The 
steel grades, the yield strength for higher thicknesses, and the tensile strength are shown 
in Table 6.14. Table 6.14 includes only steels that are covered by the design rules of the 
Eurocode (EN 1994-2). Grades higher than S460 need special permission and compliance 
with additional rules. It should be noted that the yield and tensile strength are differently 

Table 6.12 Designation of steel grades according to EN 10025

Letter Number
Symbol 1 

(see Table 6.13)
Symbol 2—optional 

(see Table 6.16)

S Yield strength [MPa] at 
thickness t ≤ 16 mm

Charpy V-notch 
impact energy in [ J] 
at temperature T

Improved through- 
thickness properties 
against lamellar tearing

Source: EN 10025, Hot rolled products of structural steels, 2004.

Table 6.13 Material toughness for symbol 1 of steel designation

EN 10025 [6.2] Symbol 1

Longitudinal direction

Temperature 
T [ °C ]

Charpy V-notch 
impact energy [ J]

Part 2
Non-alloy structural steels

JR 20 27
J0 0 27
J2 −20 27
K2 −20 40

Part 3
Normalized/normalized rolled 
weldable fine-grain structural steels

N
NL

−20
−50

40
27

Part 4

Thermomechanically rolled weldable 
fine-grain structural steels

M
ML

−20
−50

40
27
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designated in EN 10025 compared to the Eurocodes. In EN 10025, the symbol used for the 
yield strength is ReH while for the tensile strength Rm.

For data related to other properties of structural steels, for example, the chemical com-
position, as well as for other types of steel, reference is made to EN 10025. Eurocode 3, EN 
1993-1-1, allows a simplification regarding the mechanical properties of structural steel 
produced to EN 10025. These values are presented in Table 6.15 and may be used instead 
of the values of Table 6.14.

6.2.2 Fracture toughness and through thickness properties

The material thickness in modern bridge construction may be very large. Thicknesses of 
flange plates up to 150 mm are not unusual in I girders and the top flange of box girders. 
Thick plates have the advantage of avoiding welding operations to strengthen the flanges 
by additional plates therefore reducing the manual labor costs and the residual welding 
stresses. However, thick plates have lower yield strength as discussed before and must have 
improved properties in respect to their toughness.

6.2.2.1 Material toughness

Material toughness is a property of structural steel that indicates its tendency to brittle fracture. 
In simple words, if steel is insufficiently tough and subjected to tensile stresses, internal cracks 
propagate rapidly and a non-ductile failure may result. Toughness is measured by the absorbed 
energy during a V-notched Charpy impact test (see Figure 6.16). The apparatus consist of a 
pendulum axe swinging at a notched specimen. The energy transferred to the specimen can be 
estimated by comparing the difference in the height of the hammer before and after the fracture. 
Standard methods can be found in [6.16] and [6.24]. Generally, test specimens should exhibit an 
impact energy equal or higher than 27J at a specified test temperature T (see Table 6.13).

As shown in Figure 6.16, the toughness depends on the test temperature. Three regions of 
material toughness may be distinguished: the upper shelf region, the lower shelf region, and 
the transition region. In the upper shelf region, steel specimens exhibit elastic– plastic behav-
ior with ductile modes of failure irrespective of the presence of small flaws and welding 

Table 6.15  Mechanical properties of structural steels 
produced to EN 10025, in accordance with EN 
1993-1-1

Steel grade 
to EN 10025

Nominal thickness of the element t in mm

t ≤ 40 mm 40 mm < t ≤ 80 mm

fy in MPa fu in MPa fy in MPa fu in MPa

S 235 235 360 215 360
S 275 275 430 255 410
S 355 355 510 335 470
S 275 N/NL 275 390 255 370
S 355 N/NL 355 490 335 470
S 420 N/NL 420 520 390 520
S 460 N/NL 460 540 430 540
S 275 M/ML 275 370 255 360
S 355 M/ML 355 470 335 450
S 420 M/ML 420 520 390 500
S 460 M/ML 460 540 430 530
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discontinuities from fabrication. In the lower shelf region, brittle failure due to very low 
temperature occurs. The region of the toughness–temperature diagram in which the mate-
rial toughness decreases and the failure mode changes from ductile to brittle is called transi-
tion region. The temperature values T27J required are located in the lower part of this region.

Designers and fabricators should ensure sufficient toughness of steel to prevent brittle 
fracture at lowest service temperature, to provide sufficient ductility at welded details in the 
upper shelf region, and to assure sufficient through thickness properties.

Important parameters for the required material toughness include

• The lowest service temperature
• The element thickness
• The type of loading (static or dynamic)
• The intensity of the applied stresses due to external loading
• The intensity of the residual stresses due to restraint or fabrication
• The construction detail in reference to stress concentrations and weld details

The aforementioned complexities can be avoided through a simplified method offered 
by EN 1993-1-10 [6.8]. Tabulated values for the maximum permissible plate thickness 
allow the selection of appropriate steel grades for the parent material as a function of 
the reference temperature and the level of applied stresses σEd. The stresses σEd are deter-
mined from the accidental design combination:

 G Qk k+ ◊y1  (6.45)

where
Qk is the characteristic value of the traffic loads
ψ1 the relevant combination factor according to Table 5.13

It is obviously from the aforementioned that the applied stresses σEd refer to the final stage 
(composite system). This covers the majority of bridges, which are subjected to only moder-
ate tensile stresses or to less severe minimum temperatures during the construction stage. If 
this is not the case, designers should select an appropriate toughness based on the tension 
stresses emerging during the construction stage.

Figure 6.17 shows the relevant charts at stress levels equal to ¼, ½, and ¾ of the yield 
strength for the usual steel grade for bridges S355. In recognition that the minimum bridge 

Lower shelf
region

Transition
region

Ductile behavior:
Toughness requirement
needed to meet
demands of design
27

Upper shelf
region

�e charpy
impact test Starting

position

h1h2 Impact energy
Av = B  (h1 – h2)

Final
position Hammer

Specimen

Notch

Hammer

Impact tester
Specimen
10 × 10 × 55 mm

Av (J)

Brittle behavior:
Toughness requirement
needed available;
EN 1993-1-10,
EN 13445

T27J Temperature (°C) 40 mm

Figure 6.16  Toughness–temperature diagram. (From EN 1993-1-10, Design of steel structures, Material 
toughness and through thickness properties.)
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service temperature for the majority of the cases does not follow below −20°C, the corre-
sponding maximum permissible plate thicknesses are notated.

Residual stresses are globally taken into account as equal to 100 MPa. The stress level is 
obviously well below the yield strength since it is determined from a less severe combination. 
The level of the applied stress σEd may be estimated during preliminary design and checked 
at final design. Brittle fracture refers mainly to tension stresses. However, for plates in com-
pression, σEd = 0.25 · fy may be considered.

EXAMPLE 6.3

The girder of a continuous bridge is made of steel S355. The steel grades shall be determined 
for flange and web thicknesses as shown in Figure 6.18.

Reference temperature TEd = −20°C.
The yield strength distribution throughout the bridge is assumed to be as in Figure 6.18. 

Steel will be chosen according to EN 10025 (see Table 6.14).

Webs at spans: The stress intensity for the accidental combination of Equation 6.45 is esti-
mated as σEd = 0.5 · fy = 0.5 · 355 = 177.5 N/mm2. Figure 6.17 suggests for JR a maximal allowed 
thickness of 40 mm for this stress level and a temperature −20°C that is above the thickness 
used. Therefore, for the webs at spans, steel grade S355JR is selected.

For S355JR with t < 16 mm → fy = 355 MPa (correct yield strength assumption).
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Figure 6.17  Selection of steel grades for material toughness for S355. (From EN 1993-1-10, Design of steel 
structures, Material toughness and through thickness properties.)
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Webs at edge and internal supports: The stress intensity for the accidental combination of 
Equation 6.45 is estimated as σEd = 0.5 · fy = 0.5 · 345 = 172.5 N/mm2. Figure 6.17 suggests for JR a maxi-
mal allowed thickness of 40 mm for this stress level and a temperature −20°C that is above the 
thickness used. Therefore, for the webs at edge and internal supports, steel grade S355JR is selected.

For S355JR with 16 mm < t ≤ 40 mm → fy = 345 MPa (correct yield strength assumption).

Flanges at internal support: The bottom flange is in compression at service conditions. 
Therefore, σEd = 0.25 · fy = 0.25 · 295 = 73.75 N/mm2 is considered. The required grade for 110 mm 
thickness is J2. Steel grade S355J2 is selected.

For S355J2 with t = 110 mm → fy = 295 MPa (correct yield strength assumption).
The top flange is in tension with σEd = 0.50 · fy = 0.5 · 295 = 147.5 N/mm2. The required grade for 

110 mm thickness is NL or ML. Steel grade S355NL is selected.
For S355NL with t = 110 mm → fy = 295 MPa (correct yield strength assumption).

Flanges at end supports: The end supports are subjected to low bending moments. 
Therefore, σEd = 0.25 · fy = 0.25 · 345 = 86.25 N/mm2 is considered for both flanges. The required 
grade for 40 mm thickness is JR. Steel grade S355JR is selected.

For S355JR with t = 40 mm → fy = 345 MPa (correct yield strength assumption).

Flanges at span: The top flange is in compression at service conditions. Therefore, σEd = 0.25 · fy = 
0.25 · 325 = 81.25 N/mm2 is considered. The required grade for 65 mm plate thickness is JR. Steel 
grade S355JR is selected.

For S355JR with t = 65 mm → fy = 325 MPa (correct yield strength assumption).
The bottom flange is in tension at service conditions. σEd = 0.50 · fy = 0.5 · 325 = 162.5 N/mm2 is 

considered. The required grade for 65 mm thickness is J2. Steel grade S355J2 is selected.
For S355J2 with t = 65 mm → fy = 325 MPa (correct yield strength assumption).
The steel qualities are shown schematically in Figure 6.19.
As already mentioned, the estimated stress intensity should be checked at final design.
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Figure 6.18 Thicknesses of flanges and web of the steel girder of a two-span composite bridge.
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Figure 6.19  S355 subgrade distribution.
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6.2.2.2 Lamellar tearing

When plates are subjected to transverse tension, lamellar tearing (i.e., separation into leaves) 
may occur. Lamellar tearing (also called delamination) is associated with internal cracks 
that are caused due to very high out-of-plane stresses in steel. Such cracks can only be 
inspected by performing ultrasonic testing.

Delamination can also occur due the weld shrinkage. Welds shrink during fabrication 
and cracking in the transverse direction of the connected elements is highly possible. This is 
especially the case for cruciform, T- and corner joints, and for full penetration welds.

Intermediate webs and intermediate cross girder post flanges in multi-girder bridges are 
endangered by delamination. Additional examples are shown in Figure 6.20. One can see that 
the top flange of the main girder is endangered by its welded connection with the gusset plate 
of the hanger (see section a–a). Internal cracks may also arise in the hanger (see section b-b).

In compliance with EN 1993-1-10 [6.8], designers can minimize the delamination risk by 
satisfying the following condition:

 Z ZEd Rd£  (6.46)

where
ZEd is the required design Z-value resulting from the magnitude of strains from restrained 

metal shrinkage under the weld beads
ZRd is the available design Z-value for the material according to EN 10164 [6.11]

A method for determining the required Z-grade according to EN 1993-1-10 is summa-
rized in Table 6.16. It has to be mentioned that the view of many welding experts is that 
the method contained in [6.8] is for the most cases very conservative (see [6.22]). Therefore, 
different methods or values may be found in National Annex.

From Table 6.16, one can see that the ZEd-value depends on many factors as the type and 
the size of the weld, the thickness of the material, and the level of restraint and preheating. 
The through thickness resistance ZRd is solely dependent upon the delamination risk level. 
For low and medium risk levels, Z15 and Z25 qualities should be specified accordingly. For 
high risk situations, Z35 steel should be used [6.17]. Designers should be able to identify 
by themselves the risk level of the welded connections. Usually T- and cruciform joints with 
butt and deep penetration welds for plates with s > 25 mm are classified as high risk cases. 
More information may be found in National Annexes or Best Practice Guidance Notes.

Hanger
Section b–b

Section a–a

Gusset platebb

a

a Web

X

Hanger

Girder’s �ange

Figure 6.20  Example of potential lamellar tearing due to through thickness tension.
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Table 6.16 Design procedure for improving through thickness properties

Design Z-value Z Z Z Z Z ZEd a b c d e= + + + +  Available design Z-value Z15 if 10 < ZEd ≤ 20
Z25 if 20 < ZEd ≤ 30
Z35 if ZEd > 30

Weld depth relevant for straining from metal shrinkage Za

aeff
s

Effective weld depth aeff for shrinkage
a for fillet welds

aeff ≤ 7 mm a = 5 mm 0
7 mm < aeff ≤ 10 mm a = 7 mm 3
10 mm < aeff ≤ 20 mm a = 14 mm 6
20 mm < aeff ≤ 30 mm a = 21 mm 9
30 mm < aeff ≤ 40 mm a = 28 mm 12
40 mm < aeff ≤ 50 mm a = 35 mm 15
aeff < 50 mm a > 35 mm 15

Shape and positions of welds Zb

0.7  s

s −25

S/2

S
Corner joints −10

S

Single-run fillet welds with −5
aeff ≤ 7mm or fillet welds with
aeff > 7mm with buttering with weld 
material of low strength

S Multi-run fillet welds 0

6

6
1

7
2

s
44 22 11 33 5

5

Partial and full penetration welds with 
appropriate welding sequence to 
avoid weld shrinkage

3

S

Partial and full penetration welds 5

S

Corner joints 8

(continued)
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6.2.3 Other material properties for structural steel

In composite structures, structural steel is designated by the index a in order to differentiate 
it from reinforcing steel. Other properties of structural steel are as follows:

Specific weight ga kN/m= 78 5 3.

Modulus of elasticity Ea = 210 GPa
Poisson ratio νa = 0.3

Shear modulus G
E

GPaa
a

a

=
◊ +

=
2 1

81
( )n

Coefficient of thermal expansion a per Ct = ◊ ∞-10 10 6 [ ]

The aforementioned value of at is taken as equal to the corresponding one for concrete 
in order to simplify the design calculations. However, in order to determine the elonga-
tion/contraction of the bridge due to uniform temperature changes, the improved value of 
at = 12 · 10−6 is used.

6.3 REINFORCING STEEL

In composite structures, reinforcing steel is designated by the index s in order to differenti-
ate it from structural steel. EN 10080 [6.13] describes the requirements for reinforcing steel 
but does not specify steel grades. The grades are characterized by two letters and a figure 
in between, as for example, B500B. The first letter B symbolizes weldable high-bond bars 
that are mainly used in composite bridges. The figure 500 indicates the characteristic value 
(5% fractile) of the yield strength fsk. In this example, fsk = 500 MPa. For composite bridges, 
the yield strength of reinforcing bars should be between 400 and 600 MPa. The third letter 
indicates the ratio between tensile and yield strength k = ftk/fyk. It is

A for k ≥ 1.05
B for 1.08 < k < 1.15
C for 1.15 ≤ k < 1.35

The recommended classes are B or C, that is, 1.08 < k < 1.35, in order to ensure sufficient 
ductility. The modulus of elasticity of reinforcing steel may be taken as Es = 210 GPa. This is 

Table 6.16 (continued) Design procedure for improving through thickness properties

Effect of material thickness s Zc Effect of shrinkage restraint Zd

s ≤ 10 mm 2 Free shrinkage possible 0
10 mm < s ≤ 20 mm 4 Free shrinkage restricted 3
20 mm < s ≤ 30 mm 6 High restraint 5
30 mm < s ≤ 40 mm 8
40 mm < s ≤ 50 mm 10 Influence of preheating Ze

50 mm < s ≤ 60 mm 12 Without preheating 0
60 mm < s 15 With preheating (≥100°C) −8

Source: EN 1993-1-10, Design of steel structures, Material toughness and through thickness properties.



Structural materials 181

in contrast to EN 1992-1-1 for concrete structures where Es is taken equal to 200 GPa. The 
reason for the adoption of 210 GPa in composite structures is that no differentiation is made 
between the moduli of elasticity for structural and reinforcing steel. The other properties 
are those for structural steel.

6.4 PRESTRESSING STEEL

In composite bridges, prestressing refers mainly to the concrete slab in transverse direc-
tion. The properties of prestressing tendons are given in EN 10138 [6.14], Parts 2–4. 
They refer to the 0.1% proof stress fp0,1k, the value of the ratio between tensile and proof 
strength k = fpk/fp0,1k like for reinforcing steel, the class indicating the relaxation behav-
ior, and the size and the surface characteristics. Prestressing steel should have k ≥ 1.1. 
Prestressing devices include anchorages that transmit the forces of tendons in the concrete 
and couple for the connection between tendons. Such devices must be in accordance with 
relevant Technical Approval.

Cables are used as external tendons or as hangers in cable stayed, arch, or suspended 
bridges. Three classes, A, B, and C, are distinguished. Class A includes tension rod systems, 
class B ropes, and class C bundles of parallel wires or strands. The modulus of elasticity is 
that of steel for class A but varies from 80 to 210 GPa for classes B and C. Specific informa-
tion for cables is given in EN 1993-1-11 [6.9].

6.5 BOLTS

Bolt classes are characterized by the yield strength fyb and the tensile strength fub. Table 6.17 
gives the classes with reference to EN 1993-1-8 [6.5]. Preloaded bolts for slip-resistant con-
nections must be of classes 8.8 or 10.9. Bolts assemblies consisting of bolts, nuts, and wash-
ers (if needed) must be from the same producer.

6.6 STUD SHEAR CONNECTORS

Shear stud connectors are prescribed in EN ISO 13918 [6.15] and [6.19]. The steel grades 
correspond to mild steel in accordance to either structural steel or steel for bolts. Usual 
steel grades are S235J2 or 4.8. Depending on the supplier, shaft diameters d are specified 
in millimeters or inches. The height of the connector must comply with the requirements 
for sufficient concrete cover as presented in Section 5.6.1, with the additional condition 
h ≥ 3d.

Table 6.17 Bolt classes to EN 1993-1-8

Bolt class 4.6 5.6 6.8 8.8 10.9

fyb [MPa] 240 300 480 640 900
fub [MPa] 400 500 600 800 1000

Source: EN 1993-1-8, Design of steel structures, 
Joints, 2008.
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Chapter 7

Modeling and methods 
for global analysis

7.1 GLOBAL ANALYSIS MODELS

7.1.1 Introduction

Modeling for analysis is required in order to determine the internal bending moments and 
forces, the deformations, and the vibrations of bridge decks. A bridge analysis model should 
be based on the following criteria:

• It should reflect the structural response in terms of deformation, strength, and local 
and global stability.

• It should include as many as possible structural elements and parts (cross frames, stiff-
eners, bearings, etc.), and their possible eccentric connections.

• It should cover all construction stages and loading cases.
• Loads should be easily introduced.
• It should allow the performance of dynamic analysis and include the most important 

modes of vibration.
• It should be easily implemented.
• The resulting output should be such that it enables easily the execution of the Code-

prescribed verifications.
• It should be supported by commercial analysis and design software.

The most general bridge representation is by means of finite elements (FEM). However, its 
implementation is not easy if all structural parts, including stiffeners and other construc-
tion details, should be represented; it requires large computer time and delivers stresses 
rather than internal forces and moments that are required for most code-based verifications. 
Therefore, other structural representations, mostly based on beam elements, are commonly 
used for bridge global analysis. FEM models may be applied to study local effects for certain 
construction details, for slab analysis in transverse direction in the presence of concentrated 
vehicle loads, or for calibration purposes. In the following, some of the current analyses and 
designs of computer-based models for composite bridges will be presented.

7.1.2 Beam models

7.1.2.1 Bridges with two main girders

For composite bridges with two main girders, the system in transverse direction is statically 
determinate. Vertical loads may be distributed between the two main girders according to a 
linear influence line as indicated in Figure 7.1, if the torsional rigidities are neglected and the 
system deck slab–cross girders are assumed as infinite rigid. Accordingly, in the first step, 
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vertical loading due to permanent and traffic actions is distributed transversely to the main 
girders, while in the second step, the main girders in the longitudinal direction are modeled 
as beams as shown in Figure 7.2. Global analysis in the longitudinal direction is therefore 
performed on a single beam.

Depending on the progress of construction, the cross sections of the beam vary; see 
Figure 7.2. During construction, they are of pure steel section, while after hardening of con-
crete of composite cross section, composed of the steel section and the concrete slab within 
the effective width (see Section 7.2). The beam may be simply supported or continuous, 
depending on the relevant support conditions of the bridge. The vertical loads on the beam 
due to dead loads and traffic are determined from an analysis in the transverse direction.

Additional vertical loading results in from eccentric wind (Figure 7.3). However, this 
loading is generally of minor importance for the superstructure of road bridges (not for the 
bearings) and might be neglected. In cases of railway bridges with traffic, the additional 
internal forces due to eccentricities should be taken into account.

Single beam models have the advantage that they are supported by commercial analysis 
and design software that account for the construction phase, the influence of temperature, 
creep, and shrinkage, and performs automatically all required code verifications at ULS, SLS, 
fatigue, shear connection, etc.; see [7.11]. However, analysis and design with this model refer 
to the main beams for vertical actions. It does not cover other structural elements like cross 
girders, cross bracings, and lateral stability of girders that have to be analyzed and designed 
separately. It is also noted that this model is inaccurate for skewed or curved bridges.

7.1.2.2 Bridges with multiple main girders and stiff cross girders

In the presence of stiff, closely spaced cross girders, the transverse influence line may also be 
assumed to be linear, provided that the deck’s stiffness in the transverse direction is much 

1.0

P = 1.0
e

[Pleft]
0

Figure 7.1 Influence line of support reaction for the left main girder.

Simply supported 

At spans At internal supports

Cross section during
construction stage

Cross sections
in �nal stage

Continuous

Figure 7.2 Single beam model for bridges with two main girders.
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higher than the stiffness in the longitudinal one. Thus, the transverse profile of the deck 
maintains a straight geometry at loading; see Figure 7.4.

Under these conditions, the analysis is performed in two steps:

Step 1: Transverse distribution of vertical loads to the main girders
Step 2: Representation of the main girders as beams

The transverse distribution of vertical loads is performed by the Courbon method [7.9] 
which assumes that

 a. The girders are either flexible in torsion or connected to the slab by means of hinges.
 b. The girders have the same length so that their stiffness may be represented by the stiff-

ness of their cross sections EI.

Wind

Figure 7.3 Vertical loads due to eccentricity of wind.

i = 1 i = 2

P [kN]
qsur [kN/m2]

Lq [kN/m] Equation 7.3a

Equation 7.3b
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D
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Plong = P  np [kN]

nq1 + nq2
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e > 0

xi > 0
i i = n

In�uence line for girder A; see Equation 7.1

Figure 7.4 Load distribution according to the Courbon method.
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Considering the transverse distribution of loading, the total reaction of the girders to a unit 
load P = 1 at distance e (Figure 7.4) is given by Equation 7.1. The first term of this equation 
refers to the deck translation and the second term to the deck rotation:

 

P
EI
EI

EI x
EI x

ei
i

i

i i

i i
= ( )

( )
+ ( )◊

( )◊
◊Â Â 2

 (7.1)

For main beams with equal stiffness, Equation 7.1 is written as

 

P
n

x
x

ei
i

i
= + ◊Â
1

2
 (7.2)

where
n is the total number of girders i
xi is the distance of girder i from the center of gravity of the girders
e is the eccentricity of the loading

Equations 7.1 and 7.2 refer to an influence line for the support reaction of the girder i. This 
is shown in detail in Figure 7.4 in which the Courbon method for the main girder A is sche-
matically described. The surface load qsur and the point load P are transformed through the 
influence line into qlong and Plong for an analysis in the longitudinal direction. The loads can 
be placed in many different positions both in transverse and longitudinal directions and 
favorable (and unfavorable) action effects can be easily investigated.

It is noted that this method is inaccurate for skewed or curved bridges since condition (b) 
is not fulfilled. Actually, in both cases, the main girders have different lengths so that their 
stiffness may not be represented by the bending stiffness EI of their cross sections alone.

The Courbon method can be easily implemented with an Excel sheet. It generally gives con-
servative results and is especially recommended for pre-dimensioning. An example follows.

EXAMPLE 7.1

Determine the maximum internal forces for the outer girder A of the simply supported bridge 
in Figure 7.5 (L = 25 m) with the Courbon method due to the

 a. Self-weight of the concrete slab
 b. Load Model 1

The influence line of the total reaction PA for the main girder A can be calculated with Equation 7.2:

 
P

4.35
(4.35 1.45 )

e 0.25 0.1 ei 2 2= +
◊ +

◊ = + ◊1
4 2

 (R7.1)

Loads that are imposed on locations with PA < 0 result in favorable action effects and when com-
bined should be multiplied with γinf.

 a. Internal forces due to the self-weight of the concrete slab
  The concrete slab’s depth is 25 cm and the characteristic value of the permanent surface 

load is 25 kN/m3 · 0.25 m = 6.25 kN/m2.
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The part of the deck with the unfavorable action effects has a width of  7.12 m. 
Therefore, the load per unit length with the unfavorable effects is equal to 6.25 ((1/ 2) .◊
7.12 0.74) 16.47 kN/m◊ =

The load per unit length with the favorable effects is equal to 6.25 ◊ ◊ ◊[( ) .1 2 2 28/
( . )] .- = -0 74 5 27 kN/m

The design value of the load per unit length at ULS due to the slab’s self-weight is

g 16.47 5.27 1.35 (16.47 5.27) 15.12 kslab,Ed G,sup G,sup= ◊ - ◊ = ◊ - =g g NN / m

  Maximum shear force: max V 15.12 25/2 189 kNc,Ed = ◊ =
  Maximum bending moment: maxM 15.12 25 /8 1181.25 kN-mc,Ed

2= ◊ =

Note: Theoretically, the loads in the part of the deck with favorable action effects (P < 0 
in the influence line of Figure 7.5a) should be multiplied with γG,inf = 1.0. However, in EN 
1990:2002, it is stated that all actions originated from the same source should be 
multiplied with the same safety factor.
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Figure 7.5  Implementation of the Courbon method for determining the internal forces V, M due to (a) the 
self-weight of the concrete slab and (b) Load Model 1.
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 b. Internal forces due to Load Model 1
  The surface loads of the Load Model 1 (UDL) can be easily transformed into loads per 

unit length through the influence line of Equation 7.2. Thus,

 

qUDL,k = ◊ +Ê
ËÁ

ˆ
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◊ + ◊ +Ê
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3 3
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. . . .
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17.74 kN /m

  The concentrated loads due to the Tandem System (TS) are:

 P 208 kNTS,k = ◊ + + ◊ + =150 0 64 0 44 100 0 33 0 13( . . ) ( . . )

  The value of the shear force at supports due to UDL is 17.74 · 25/2 = 221.75 kN.
The bending moment at mid-span due to UDL is 17.74 · 252/8 = 1385.94 kN-m.
The maximum value of the shear force due to TS is estimated by imposing the con-

centrated forces at supports as shown in Figure 7.5b. Through the influence line V
–
 in the 

longitudinal directions, max VTS,k is calculated as follows:

 max V (1.00 0.95) 405.6 kNTS,k = ◊ + =208

  Therefore, the maximum shear force due to Load Model 1 acting on girder A is 
221.75 + 405.6 = 627.35 kN.

The maximum bending moment due to TS is estimated by imposing the concentrated 
loads at mid-span. Through the influence line M

–
, the maximum bending moment is equal 

to 208 · (6.25 + 5.65) = 2475.20 kN-m.
Therefore, the maximum bending moment acting due to Load Model 1 on girder A is 

1385.94 + 2475.20 = 3861.14 kN-m.
At ULS, the internal forces due to LM1 should be multiplied with the safety factor 

γG,sup = 1.35.

7.1.2.3 Box-girder bridges

Box girders have a large torsional stiffness so that they resist eccentric loading differently 
than I-girder decks. As indicated in Figure 7.6, an eccentric loading P may be split into a 
centric loading that results in bending in the cross section and a nonsymmetrical loading 
that results in torsion. Torsion is resisted generally by St. Venant torsion and warping 
torsion. In box girders, warping torsion is usually small due to the high torsional rigidity 
of the box section. However, the shape of the box-girder cross section tends to distort 
due to torsional forces that are not distributed in the cross section walls in proportion to 
the St. Venant torsional stresses. Accordingly, in box girders, three effects due to torsion 
have to be accounted for: St. Venant torsion, warping torsion, and cross section distor-
tion. Both warping torsion and distortion tend to change the shape of the cross section. 
Deformations due to warping torsion are out of plane for the cross section but in plane 
for its walls, while for distortion in plane for the cross section and out of plane for the 
walls. The resulting bending stresses are added to the stresses due to global bending. 
Stresses due to warping torsion, illustrated in Figure 7.6, are in the plane of  the walls 
and like the stresses due to global bending are in the longitudinal direction of the bridge. 
On the other side, stresses due to distortion are through-thickness bending  stresses. 
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Distortion is controlled by diaphragms, internal cross frames, or cross bracings that are 
spaced along the length of the girder. More information on the treatment of torsion in 
bridges is given subsequently.

Box-girder bridges with one box may be modeled by a single beam, provided that the walls 
of the box are sufficiently stiffened by closely spaced diaphragms, cross frames, or cross brac-
ings to prevent cross-sectional distortion; see Figure 7.7. This condition is usually fulfilled 
when the spacing of transverse elements is between 3.5 and 5 m, depending on the dimensions 
of the box. Accordingly, the model of a single box-girder bridge without distortion of the box 
section is a beam consisting of the entire cross section, where the top concrete flange and the 
bottom steel flange enter with their effective widths. The beam is loaded by the sum of the 
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Figure 7.7 Beam model for single box girders without distortion.
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vertical loads without the need for distribution in transverse direction as for the bridges with 
two main girders. This model produces for eccentric loading equal bending stresses in the two 
webs when the usual beam elements of commercial software are employed in which warping 
is neglected; see Figure 7.6. In case of large eccentricities and high torsional moments, a gril-
lage model presented in Section 7.1.3 should be preferably used; see Figure 7.23 and design 
Example 9.4. Another option, if supported by the software, is to use special 7-DOF beam ele-
ments that are described subsequently; see Figure 7.10.

Care shall be given to the support conditions of the beam in order to correctly deter-
mine the support reactions. Since the bearings are usually positioned near or exactly 
below the two webs, two support reactions exist at each support section. This may be 
modeled by providing a rigid transverse element at the supports with a length equal to 
the distance of the bearings from the shear center. The supports are placed at the ends 
of the transverse beams so that the torsion in the main beam results in unequal support 
reactions.

As already mentioned, the warping part of torsion leads to additional out-of-plane 
deformations of the cross section and the main assumption of the Bernoulli Theory 
(plain sections remain plain) is violated; see Figure 2.19. If restrained, shear and normal 
stresses are developed, which when integrated over the cross section result in additional 
internal forces. This is shown in Figure 7.8 and is briefly discussed in the following 
paragraphs.

The total applied torsion Mx consists of two components; the St. Venant torsion Mxp and 
the warping torsion Mxs.

St. Venant torsion leads to circular shear flows τxp (primary shear stresses) inside the steel 
plates of the cross section. For open cross sections, for example, box girders in the construc-
tion phase where the section has not been closed by the slab, the maximum shear stress in 
the ith plate is calculated as follows:
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where
ti is the thickness of the plate i
IT is the torsional constant of the cross section
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For closed cross sections, the maximum shear stress is calculated in accordance with the 
first formula of Bredt by Equation 7.5 and is considered constant across the plate’s thick-
ness; see Figure 7.8:

 
m ax

m in,txp i xp

m i

M
A t
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where
Am is the enclosed cross-sectional area
min ti is the minimum wall thickness

Warping torsion Mxs causes direct stresses σw that lead to out-of-plane deformations:
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where
ω is the warping function in m2

Mw is the bimoment in kN-m2; M dAw w= ◊( )Ús
In addition, secondary shear stresses develop that are calculated from
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where
Iw is the warping constant
Sw is the warping sectoral area; S dAw = ◊( )Úw
ti is the wall thickness

The bimoment Mw is a secondary internal force that causes out-of-plane cross section 
 deformations uw and as shown in Figure 7.8 is a function of the warping rigidity Ea · Iw and 
the  second derivative of the twisting angle θx. The warping function ω expresses the longi-
tudinal deformation shape of the cross section due to a unit bimoment Mw = 1 and depends 
on the location of the shear center. It determines the warping constant according to the 
 following equation:

 

I dAw = ◊Úw2

A

 (7.8)

The variation of the warping function for a closed box section is shown in Figure 7.9. The 
calculation of ω = ω(y, z) is out of the scope of this book. Detailed information on this issue 
may be found in [7.18], [7.37], and [7.17].

Analysis software with special beam elements with seven degrees of freedom is usu-
ally used for investigating the warping behavior of box girders. The seventh DOF is the 
first derivative of the twisting angle q qx xd dx ¢= /  and its implementation is summarized in 
Figure 7.10. It can be observed that the DOFs u, θy, and θz refer to the gravity center of 



192 Design of steel–concrete composite bridges to Eurocodes

259.36

–8.4

102.8

–259.36–102.8
Pl. 900  10

z
y

[ω(cm2)]8.4

Pl. 400  10

Pl. 500  10

Pl. 400  10

Figure 7.9 Warping function of a closed box section.
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Figure 7.10 Beam elements with seven DOFs for investigating warping torsion.
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the cross section and correspond to N, My, and Mz. The shear and torsional DOFs θx, v, 
w, and θ′x correspond to Mx, Vy, Vz, and Mw, respectively and refer to the shear center of 
the cross section. Therefore, the distance ∆z between the gravity and the shear center is of 
great importance. The greater this distance is, the higher the magnitude of the torsional 
internal forces becomes.

In Figure 7.10, the stiffness matrix of a 7-DOF beam element is demonstrated. One can 
also see that the torsional stiffness terms (colored with gray in the stiffness matrix) are 
dependent on the warping factor εT. Cross sections with high torsional rigidity G · IT have 
a high warping factor. In such cases, warping torsion is of negligible magnitude (Mxs ≈ 0, 
Mw ≈ 0) and the usual 6-DOF implementation can be considered as acceptable. Cross sec-
tions with high values of εT are closed box girders or open box girders after concreting. Open 
box girders may need a detailed warping investigation during the erection stage because the 
torsional rigidity is low and the distance between the gravity and shear the center is high. 
After casting the concrete deck, the torsional properties of the cross section are greatly 
enhanced and also the distance between the gravity and the shear center becomes smaller.

REMARK 7.1

In most cases, shear deformations are quite small because bending moments are much higher 
than the shear forces acting on the walls of the boxes. The stiffness matrix demonstrated in 
Figure 7.10 does not include any complementary terms for the shear deformations and can be 
described for the majority of the bridges as accurate. For small-span bridges, the influence of 
shear deformations should be taken into account. An improved stiffness matrix for such bridges 
is found in [7.25].

By taking a closer look at the torsional terms (colored with gray) of the 14 × 14 stiffness 
matrix, one can observe that the general expression of k(m, n) is

 
k m n T G I L WT T( , ) ( , ) ( ) , , , ,= ◊ ◊ +[ ] =e b m  (or n) 6 7 13 14  (7.9)

where
T G I LT( , )◊  is a function that expresses the St. Venant torsion
W T( )e  is a function that expresses the influence of warping; W T T( )e a e= / 2

Obviously, if εT → ∞, then W(εT) → 0 and warping-related forces can be neglected. In prac-
tice, systems with εT > 10 can be considered as “free of warping.” Warping-free cross sec-
tions are those with Iw → 0 (i.e., square boxes with flanges and webs of the same thickness). 
Unfortunately, such sections are rarely used in bridges.

For the majority of the box-girder bridges, the cross-sectional properties vary longitudi-
nally and the expression for εT indicated in Figure 7.10 cannot be applied. To account for 
these variations, the following weighted εT calculated for each span can be used:
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EXAMPLE 7.2

A stress calculation example of an open box steel cross section with 7-DOF beam elements is 
given in Figure 7.11. This is the cross section of a straight simply supported bridge with a span 
of 60 m. The distributed load q = 20 kN/m is a construction load (i.e., wet concrete), and an 
accidental eccentricity with a peak at mid-span equal to max v0 = L/240 has been considered. 
A second-order theory has been applied so that the increase of the torsional flexibility of the 
cross section due to Mx is taken into account.

At supports, the warping torsion Mxs is dominant and therefore, Mxp is not shown. However, 
torsional shear stresses are much smaller than those due to Vz. A bending moment around the weak 
axis is developed as well but due to its low magnitude is also not illustrated. The most interesting 
part of the example refers to the normal stresses due to the bimoment Mw at mid-span. One can 
see that min σw = −2.32 kN/cm2, almost 50% of normal stresses (−4.89 kN/cm2) due to the bend-
ing moment My. It may be seen that warping direct stresses add in the web closer to the load and 
subtract in the web far from the load. Therefore, neglecting direct warping stresses would be unsafe 
for the most loaded web. This conclusion is justified also from the warping value εT that is equal to 
0.93 ≪ 10. Moreover, the distance between the shear center and the gravity one is 269.2 cm.

A commonly used method to avoid an analysis with 7-DOF beam elements and to include 
the warping torsion effects is the Tension Element Analogy (TEA) method. It is summa-
rized in Table 7.1. The TEA method is based on the similarity of the equilibrium equations 
of a deflected element under bending and tension (second-order theory analysis) and an ele-
ment under torsion. Therefore, using a commercial software, the warping components Mxs 
and Mw can be estimated.
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Figure 7.11 Stress calculation example of an opened box cross section during erection stage; stresses in kN/cm2.
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Table 7.1 Analysis of warping torsion with the tension element analogy method

Warping torsion Bending with tension force and second-order theory

mx

Ga  IT, Ea  Iw
Mx

L

→

Pz qz

N*

L

Ea  Iy

Equilibrium equations

E I ma w x◊ ◊ - ◊ ◊ =q q¢¢¢¢ ¢¢( )G Ia T
→ E I w N w qa y z◊ ◊ ¢¢¢¢- ◊ ¢¢=*

Twisting angle θ → Displacement w
Torsional rigidity Ga · IT → Tension force N*
Warping rigidity Ea · Iw → Bending stiffness Ea · Iy
Concentrated torque Mx → Concentrated force Pz

Uniformly distributed torsional moment mx → Uniformly distributed load qz

Internal forces
Bimoment Mw [kN-m2] → Bending moment My [kN-m]
Total torsional moment Mx [kN-m] → Transverse forces Vz* [kN]
Warping torsion Mxs → Shear forces Vz [kN]
St. Venant torsion Mxp = Mx − Mxs [kN-m] → ∆V = Vz

* − Vz

Support boundary conditions
Simple torsional 
support

→ Pinned support

(Mw,support = 0) (My,support = 0)
q q= ¢¢=0 0, w w= ¢¢=0 0,

Fixed torsional 
support

→ Fixed support

(Mw,support ≠ 0) (My,support ≠ 0)

q q= ¢=0 0, w w= ¢=0 0,

Source: Roik, K., Vorlesungen über Stahlbau—Grundlagen, Ernst & Sohn, Berlin, Germany, 1983.

Note: Internal forces with (*) refer to the non-deformed beam axis.
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As already mentioned, after concreting, a composite closed cross section with high torsional 
rigidity is formed; see Figure 7.12. The total torsional constant of the composite box-girder 
IT,tot section is calculated through the use of the modular ratio n0G in Table 6.8 as follows:
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where
IT,box is the torsional constant of an equivalent closed cross section composed by the steel 

cross section and the concrete slab with a thickness equal to hc/n0G

IT,slab is the torsional constant of the concrete slab = ◊ ◊Ê
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ˆ
¯̃

1
3

3b hc c

In case of creep, n0G can be replaced by nLG of Equation 6.21. Obviously, due to creep, 
torsional redistributions from concrete to structural steel will take place. In continuous 
bridges, secondary torsional loadings will be developed.

7.1.2.4  Bridges with two main girders and horizontal 
bracing between the lower flanges

Bridges with two main girders and continuous horizontal truss bracing between the lower 
flanges (Figure 7.13) may be modeled in a similar way as box-girder bridges by replacing the 
horizontal bracing with an equivalent continuous steel sheet that closes the section. Then, 
the torsional constant IT of the cross section can be calculated. The analysis provides the 
shear flow in the box. The shear flow in the bottom wall of the box must then be trans-
formed to forces in the bracing members.

bc
hc hc,G

IT,box

=hc/n0G For sagging moment areas
For hogging moment areas=0.5   hc/n0G

IT,slab
n0G+=

Figure 7.12  Calculation of the torsional constant IT of composite box girder.

Lower bracing

View a–a

a a

Figure 7.13 Bridge with two main girders and horizontal bracing at the lower flange.
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The thickness of the sheet is determined by comparing its shear stiffness with the 
 corresponding shear stiffness of the bracing through the use of the virtual work principle. It 
has to be mentioned that cross sections with lower bracings may be more cost-effective than 
box girders both for cases of roads with straight or curved layouts.

The cross section of Figure 7.14 is equipped with a lower bracing that consists of diago-
nals Ad and post beams with a center-to-center distance equal to s. Due to the shear flow T 
in the steel sheet, the displacement δ is
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◊
b T b
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According to the principle of virtual work, the displacement δ can be
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The equivalent sheet thickness can be derived now from Equations 7.12:
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Equation 7.13 is valid only when Af ≫ Ad that is anyway the most usual case in bridge engi-
neering applications.

It is important to note that the “fictitious sheet” with the equivalent thickness teq par-
ticipates only in torsion and not in bending. The cross sections are therefore different in 

δ

b

teq

γ

d
Ad

Af

Fd

Lower bracing

Fd

Fv = 0

δ

“1” “1”

Diagonal

Equivalent steel sheet Actual shear flow Virtual unit shear flow

T b

T  dT  b

T  b

T  b

T  b

T 2 s

2  s

T
 2

 s T  2  s

T 2 s

FdFd === 1 dd
b 2 s

Figure 7.14 Application of the virtual work principle.
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bending and torsion. This may be taken into account in practical analysis by changing the 
modulus of elasticity of steel to Ea = 0 for the lower sheet but keeping the value of its shear 
modulus Ga.

More exact values for teq and for various bracing systems are given in Table 7.2. Forces in 
the diagonals and the post beams are also offered.

Table 7.2 Equivalent thickness of bracing systems for shear
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Source: Roik, K., Vorlesungen über Stahlbau—Grundlagen, Ernst & Sohn, Berlin, Germany, 1983.

Note: Af, cross-sectional area of the flanges; Ad, cross-sectional area of the diagonals; If, moment of 
inertia of the flanges; Ib, moment of inertia of the post beams; b, distance between flanges; s, distance 
between post beams; Fd, force in diagonal; Fv, force in post beam; and T, shear flow [kN/m].
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REMARK 7.2

The equations in Table 7.2 can also be used for determining the torsional sectional properties 
of opened box girders with a top bracing or plate girders with top and lower bracings during 
erection, see Figure 7.15. Thus, opened cross sections can be treated as closed ones. As already 
discussed in Chapter 2, bracings connected with the flanges are provided to ensure stability.

By taking a closer look at the equations for the equivalent thickness in Table 7.2, one can 
observe that teq is highly dependent on the distance s between the post beams and the cross-
sectional area Ad of the diagonals. The most appropriate values for these two parameters to 
choose are the ones for which the warping factor εT (Figure 7.10) becomes greater than 10. This 
is a good strategy to avoid warping effects and the laborious analysis with 7-DOF beam elements.

7.1.3 Grillage models

7.1.3.1 General

The most popular computer-aided modeling method for the analysis of composite bridges 
with multiple main girders is simulation by means of a plane grillage system [7.14], [7.21], 
[7.27–7.29], [7.34]. This is due to the fact that this system is easy to apply and comprehend as 
well as that it has been proved to be sufficiently accurate for a wide variety of bridge decks. 
This refers to both analysis and design of the bridge for the most common design situations 
as well as the construction stages. In this model, the structure is idealized by means of a series 
of longitudinal and transverse beam elements rigidly interconnected at nodes. Each element is 
given an equivalent bending and torsion inertia to represent the relevant portion of the deck.

7.1.3.2 Simply supported plate-girder bridges

Figure 7.16 illustrates a grillage representation of a simply supported composite bridge with 
four main girders. Longitudinal grillage members are arranged to represent the main gird-
ers with the inertia properties of the composite section (steel section with a part of the slab 
corresponding to the effective width). Transverse members represent the deck slab with 
thickness hc equal to the thickness of the slab and width b equal to the distance of the 
transverse beams. A noncracked flexural rigidity for the slab elements is usually applied. 
Many designers though consider cracking of the slab by inputting an average rigidity Ec · Ic = 
0.5 · (Ec · I1 + Ec · I2), where Ec · I1 is the “uncracked” and Ec · I2 the “cracked” flexural rigidity. 
For the spacing of the slab elements, it is convenient to choose a width b equal to the dis-
tance of the axle loads (i.e., for Load Model 1, b = 1.20 m). This leads to dense arrangement 
of the transverse elements that is due to profound reasons advantageous. The torsion con-
stant per unit width of slab is given by [7.14] and is equal to I hT c= 3 6/ . For cracked concrete, 
Poisson’s ratio is equal to zero and the torsional rigidity of the slab elements becomes equal 

Top bracing Top bracing

Lower bracing

Figure 7.15 Quasi-closed cross sections with bracings.
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to G I E b hc c T cm c( )n = ◊ = ◊ ◊0 123/ . However, a torsionless approach for the slab elements for 
both directions may also be followed (IT = 0) so that discontinuities in bending moments are 
avoided. This has little effect on the final results.

The total in-plane second moment of area of the slab is equally shared between the two 
extreme main girders (A and D), while the intermediate girders (B and C) are given Iz = 0. 
This is because wind loads mainly act on the edge girders of the bridge.

The bearings are represented by three axial springs of equivalent stiffness corresponding 
to the relevant stiffness properties in horizontal and vertical directions; the calculation of the 
bearings’ stiffness is presented in Section 13.2.2. The axes of the main beams coincide with 
the center of gravity of their cross sections. However, the bearings are positioned beneath the 
lower flange. Accordingly, rotations of the main girders result in horizontal deformations u 
of the bearings and additional support reactions Nbear. The support nodes are therefore put 
at a lower level from the grillage members and are connected to the longitudinal beams by 
rigid vertical bars whose height h is equal to the distance between the center of gravity of 
the main composite beams and the bottom flange; for better accuracy, the shear center of the 
cross section should be used which is assumed to be the “real” center of rotation. In case of 
intermediate cross girders whose stiffness may influence the transverse distribution of the ver-
tical loads, these girders are taken into account with beam elements of appropriate stiffness.

At piers, truss elements are used for the representation of the cross braces; see Figure 7.16. 
Due to the height h of the rigid elements, the geometry of the bracings in the model may not 
follow the exact geometry of the bracings in real structure. A height adjustment for the rigid 
elements may then be necessary. This should be done only for the purpose of estimating the 
forces of the bracing members due to horizontal loadings, that is, wind or earthquake. It has 
to be stated that in most bridges, the gravity center of the composite cross sections is located 
near the top flange. For such cases, a height adjustment of “few centimeters” will not cause 
any considerable difference in the results.

The vertical loads act directly on the slab elements and for many different arrangements that 
cover all the possible unfavorable situations. A convenient way to avoid the analysis of noncriti-
cal loading cases is to locate the areas of the carriageway that lead to unfavorable action effects. 
This can be done with the influence lines produced by the Courbon method. In Figure 7.17, one 
can see the loaded areas for favorable and unfavorable effects for the extreme girder A.

It is important to note that the slab elements of the grillage model are mainly used for the 
transverse distribution of the vertical loads on the main girders and for modeling the in- and 
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Figure 7.16 Grillage model of a simply supported composite bridge.
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out-of-plane stiffness of the deck slab. The internal forces in the slab elements should not be 
used as final values for the design of the deck slab. This is due to the fact that the slab’s mono-
lithic behavior is inaccurately described by transverse slab elements, especially in the case of 
concentrated wheel loads. Therefore, local analysis of the deck slab should be treated separately 
from the global analysis preferably with FEM. In case of widely spaced main girders, nominal 
longitudinal slab elements can be placed in between so that additional bending moments and 
torques in the slab can be calculated. This also offers the advantage of an easier load application.

7.1.3.3 Continuous plate-girder bridges

A two-span plate-girder bridge is shown in Figure 7.18. In support regions, where the 
concrete is considered as fully cracked, the properties of the longitudinal elements are 
determined from the properties of the steel section and the longitudinal reinforcement 
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γsup  (qk or Qk)

Area with favorable action
 effects for Girder A

γinf  (qk or Qk)

PA

Lunf Lfav

Figure 7.17 Determination of areas with favorable and unfavorable action effects.
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Figure 7.18 Grillage model of a two-span continuous composite bridge.
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(cracked flexural rigidity Ea · I2). The tension-stiffening effect can also be considered in the 
cross-sectional properties of the main girders; this is also discussed in Remark 7.5. At sag-
ging moment areas, the uncracked flexural rigidity Ea · I1 is applied, exactly as in the case of 
the simply supported bridge of Figure 7.16.

Concrete cross girders possess a high torsional rigidity (Ga · IT,cross in Figure 7.18) that 
leads in additional negative bending moments ∆MT at supports especially for nonsym-
metrical loadings, for example, concentrated wheel loads TS. Concrete is considered as 
cracked and the shear modulus Gc is equal to Ecm/2. The torsion constant of an orthogo-
nal cross girder bcross · hcross is c1 · hcross · b3

cross, where c1 is a constant that depends on the 
ratio hcross/bcross.

Attention must be paid during the modeling of composite bridges whose total depth varies 
longitudinally. A dense discretization of the main girders is necessary so that the longitudi-
nal variation of the cross-sectional properties is adequately taken into account. The eccen-
tricity ez between the centroids of adjacent cross sections should also be carefully considered 
because additional bending moments due to axial forces are developed, for example, due to 
shrinkage and temperature differences. Many software packages do not account for these 
eccentricities and designers should implement them manually in their models as offsets. 
Moreover, the eccentricities ez change with time due to creep and therefore, secondary inter-
nal forces will emerge.

In continuous bridges, the difference in stiffness between the cracked cross sections in 
hogging moment areas and the noncracked ones in sagging moment areas determines the 
results given by the global analysis. An overestimation of the length of the cracked zones 
at internal supports will result in an underestimation of the negative bending moments at 
supports. Excessive deformations will also be calculated and this will have a negative effect 
on the determination of the precambering values. EN 1994-2 [7.11] offers two methods for 
calculating the “cracked lengths” based on an elastic global analysis.

The first method, which is also known as the general method, is illustrated in Figure 7.19. 
The first step is to determine the extent of cracking in the longitudinal beams by conduct-
ing an uncracked global analysis. The flexural stiffness Ea · I1 is assumed throughout, and 
an envelope of bending moments for the characteristic SLS combination is calculated. The 
calculation of the envelope should include the casting sequence. Thereafter, the extreme-
fiber tensile stresses max σc in concrete are estimated (end of second step). Sections in 
which max σc exceeds twice the mean value of the axial tensile strength fctm given in EN 
1992-1-1 or in Table 6.1 should be considered for the next analysis as cracked (third 
step). The procedure continues till convergence is achieved; see also Section 10.3.4 and 
Example 10.1.

The length of the cracked regions depends on many parameters such as the casting 
sequence, the intensity of concrete shrinkage, and the ratio of adjacent spans. In Figure 7.19, 
one will observe the discontinuities of the tensile stresses in concrete at the end of each 
slab segment. This is because the cross-sectional properties of the main girders vary lon-
gitudinally. It should not be a surprise the fact that in zero-bending moment points, the 
concrete tensile stresses are not zero. This may be due to shrinkage and/or thermal actions. 
Further observations have to do with the discontinuity and the symmetry of the cracked 
zones. Indeed, isolated and/or nonsymmetrical cracked regions may also emerge in cases 
of symmetrical systems. Both are associated with the casting sequence. It is also important 
to notice that the calculation accuracy of the length of the cracked regions is linked to 
the adopted meshing for the beam elements, the offsets ez discussed previously, and other 
modeling parameters.
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REMARK 7.3

It has been stated that the sections in which max σc exceeds twice the mean value of the axial 
tensile strength fctm should be considered as cracked. The main reasons for this enhancement 
are the following:

• Tension stiffening effects lead to an increased strength against tensile stresses (especially 
during initial cracking).

• Concrete’s real strength is likely to be higher than the mean strength fctm.
• The general method is based on an envelope of bending moments. Therefore, the cracked 

regions will not be as extensive as determined by the analysis.

For finding the cracked regions of the longitudinal members, it can be assumed that the short-
term cross-sectional values are the critical ones and that creep and shrinkage are neglected. 
This does not mean that creep and shrinkage are not present, but that their effect on the length 
of the cracked zones is negligible. Indeed, creep reduces the tensile stresses in concrete due to 
shrinkage; see Equation 6.20. Therefore, only two characteristic combinations can be applied 
with traffic and with temperature as leading actions. It is important to note that temperature 
effects due to hydration of cement are taken into account according to Section 6.1.5. This is 
further discussed in Section 10.3.4.

1
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Figure 7.19 Determination of cracked regions in a three-span composite bridge (general method).
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The second method for including the effects of cracking in the global analysis is known as 
the simplified method. It is a noniterative method in which the cracked flexural stiffness 
Ea · I2 is used over 15% of the span on each side of each internal support and the uncracked 
values Ea · I1 elsewhere. The basic requirement is that all the ratios of the length of adja-
cent continuous spans (shorter/longer) between supports are at least 0.6. This method is 
applicable only to some situations as conventional continuous bridges and framed bridges. 
The simplified method offers good results when it is known that the casting sequence cho-
sen leads to limited cracked zones. In any other case, cracked zones may be two or even 
three times larger than the 15%—length of the simplified method. Then the general method 
should be applied.

In case of uncracked analysis, the bending moments at internal supports should be reduced 
by 10% so that redistributions due to cracking are taken into account. For each load case, 
the internal forces and moments after redistribution should be in equilibrium with the loads. 
Uncracked analysis is rarely used in composite bridges.

7.1.3.4 Skew bridges

In skew bridges, the support abutments or piers are placed at angles other than 90° (in 
plain view) from the longitudinal centerlines of the girders. There are different ways of 
defining the skew angle. Usually, it is defined as the angle between the longitudinal axis 
of the bridge and a line square to the supports, although a different convention may be 
used. Figure 7.20 shows different cases of skewed bridges. The presence of skew affects 
the geometry and the behavior of the structure. Special phenomena, like twisting and 
out-of-plane rotation of the main girders during concreting, uplifting forces at bearings, 
and fatigue problems due to out-of-plane web distortion, makes the analysis and design 
of skewed bridges intricate. The transverse elements representing the slab are usually ori-
ented perpendicular to the main girders (orthogonal mesh); this is the most usual grillage 
model used by the designers. Alternatively, the transverse members can be placed paral-
lel to the line of supports (skewed mesh). Generally, the skewed mesh is convenient for 
low skew angles (θ < 20°) or when the intermediate bracing is not arranged square to the 
main girders.
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Slab elements
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ew
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pp
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ts
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Main girders
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Orthogonal mesh
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Figure 7.20 Grillage models for skew bridges.
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7.1.3.5 Curved bridges

Curved composite bridges display unique behavioral characteristics, some of which are 
not immediately obvious. The presence of curvature affects the geometry and as a conse-
quence, the behavior of the structure. Figure 7.21 shows the internal forces developed in 
a deck element of a curved twin-girder bridge due to external loadings qx, qy, qz, and mx. 
Due to the plan curvature R and the distance between the shear and the gravity center 
zSC, longitudinal bending moments My and torques Mx are coupled. This leads to a sig-
nificant enhancement of the bending moments My that are usually much greater than the 
moments developed in straight bridges. Torsional moments mxI are due to loadings that 
act eccentrically to the shear center of the cross sections. One can see that additional 
torsional moments mxII are developed due to the curvature R and the distance zsc.

Curved decks pose no particular problem for grillage modeling. A curved bridge deck 
can be represented by a grillage of curved members or of straight members. Some com-
puter programs support curved members but others do not. Generally, a grillage of straight 
beams with a very fine mesh is for small values of curvature sufficiently accurate. For highly 
curved bridges, 3D models (see Section 7.1.4) or FE models should be used for comparison.

It has to be pointed out that for the majority of the small- and medium-span bridges with 
open steel cross sections, the concrete slab attracts a non-negligible part of the torsional load-
ing. This is due to the fact that the torsional rigidity Gc · ITc of the deck slab may be consider-
ably higher than the torsional rigidity Ga · ITa of the steel girders. Therefore, the rigidity Gc · ITc 
should be included in the cross-sectional properties of the main girders; see Figure 7.22.

7.1.3.6 Box-girder bridges

In a previous paragraph, a one-beam model with 7-DOF beam elements appropriate for 
the analysis of opened box girders has been discussed; see Figures 7.8 and 7.10. However, 
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Universität, Bochum, Germany, 2009.)
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conventional software packages make use of 6-DOF beam elements. Then the simplified gril-
lage model of Figure 7.23 can be implemented. One can see that the box girder is divided into 
two opened composite cross sections in which the shear lag effect on the deck slab and the 
lower flange is considered through the effective widths given in EN 1994-2 and EN 1993-2. 
The grillage is thus composed of two main composite girders A and B transversely connected 
with beams representing the internal braces or diaphragms, not the slab. The torsional rigidity 
of the composite box girder calculated with the Equation 7.11 is represented in the model by a 
fictitious girder located between the main composite girders. The central girder comprises also 
the whole bending (IZ,tot)—and shear stiffness of the deck slab (AY ≈ slab area).

The distance h in the model in Figure 7.23 should be equal to the distance between the 
upper surface of the bearing and the shear center of the cross section.

After the transverse distribution of the vertical loads through the use of a simply sup-
ported beam, the reaction forces Qi and qi (i = 1, 2) on the main girders are calculated; see 
Figure 7.23. A structural analysis of the grillage system will give shear forces, bending 
moments, and displacements for the main girders A and B. The fictitious girder obviously 
gives axial forces, torsional moments, and twisting angles.

The shear flexibility of the internal braces is of great importance for the structural behav-
ior of the bridge since it significantly affects the twisting of the deck due to torsion and the 
stresses in the cross sections and the horizontal bearing forces. Internal braces and dia-
phragms are included in the model with transverse members with a shear area As given in 
Table 7.3. Further modeling adjustments are given in [7.27–7.29].

At final stage, the grillage model of Figure 7.23 is considered as an acceptable one because 
warping moments are of negligible magnitude usually. The grillage model with the fictitious 
girder for torsion is appropriate for twin-girder bridges and can also be applied in skew and 
curved structural systems. However, during erection, parts of the bridge may be composed 
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Figure 7.22 Grillage model of a simply supported curved bridge.
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by open cross section that may suffer from high normal stresses and out-of-plane deforma-
tions due to warping; see Example 7.2. Then a more complicated analysis with 7-DOF beam 
elements or FEM is unfortunately unavoidable.

A multiple box-girder bridges can be analyzed with a grillage based on the same principles 
as the model illustrated in Figure 7.23. The outer beams of the adjacent box girders will be 
connected with transverse elements that represent the deck slab.

Table 7.3  Shear area for the equivalent beam element in the global analysis and 
determination of shear forces and axial forces in the diagonals
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7.1.4 3D models

7.1.4.1 General

The structural representation of bridge decks with truss girders or I-shaped plate girders 
may be done by means of 3D models as proposed in [7.1–7.2] and [7.30–7.32]. Truss girders 
are represented by their chord and bracing members, while plate girders are transformed 
to equivalent trusses. Such models have been proven to be advantageous for modeling 
 orthogonal, skewed, and curved bridges. Unlike grillage models, they are able to consider:

• Eccentricities among the structural elements of a bridge and therefore additional inter-
nal forces and possible load distributions.

• The transversal variation in the level of the neutral axis.
• Torsion and distortional warping effects.
• The dispersed structural behavior of the deck slab, in which bending takes place in 

two directions.
• Buckling phenomena of the steel girders during erection stages.
• Diaphragms, bracing systems, and stiffeners; possible overload or fatigue effects are 

taken into account.

In the following, the development of such models for representing plate-girder bridge decks 
by equivalent trusses will be shown. Evidently, the representation of truss girder decks is 
more straightforward since the trusses are introduced by the properties of the chord and the 
bracing members.

7.1.4.2 Representation of steel and composite I girders

Steel and composite I cross sections are modeled by a “hybrid” truss as shown in Figure 7.24. 
For the steel girder, the flanges of the truss are beam elements with a cross section composed 
of the flange and part of the web of the steel girder. Comparative analyses showed that 1/3 
of the web height may be associated with the flange. Therefore, the flanges of the truss are T 
sections consisting of the flange of the steel girder and 1/3 of the web and are positioned at 
the center of gravity of the T section. The webs are represented by diagonal truss elements 
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Figure 7.24 Truss idealization for a steel–concrete composite girder.
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with width equal to 1/3 of the web height and thickness equal to the web thickness. It has 
been also shown that the cross-sectional area Ad = hw · tw/3 for the diagonals adequately cor-
responds to the shear stiffness of the web.

The post beams are located at a spacing s = 5% of the span of the bridge. This distance 
is generally acceptable for small and medium-span bridges because the angle between the 
diagonals and the flange elements usually remains between 35° and 45°. Post beams repre-
sent both the in- and out-of-plane stiffness of the web.

For a composite section, the same procedure is followed, with the concrete slab repre-
sented by another beam element connected with the upper flange of the truss through the 
appropriate offset; offset = distance between the centroids Cc and Cfo. The nodes of the ele-
ments that represent the slab are the same nodes of those representing the upper flange of the 
truss. It is recommended that a fine mesh is used for the beam elements of the concrete slab 
and the top flange of the steel girder so that a full shear connection is achieved. Without a 
fine mesh, the beam elements of the slab may deflect differently than those of the top flange.

In Figure 7.25, one can see the deflected shape of a simply supported equivalent truss, the 
partial internal forces of the girder, and the stresses in steel and concrete due to a uniformly 
distributed load. Axial forces and bending moments are developed in the beam elements and 
therefore, normal stresses can be easily calculated. The N–M forces are discontinuous due 
to the concentrated forces imposed by the diagonals. The true value of the internal forces 
can be estimated through an average diagram. The shear forces can be easily calculated 
from the equilibrium of the normal forces at each node.

The aforementioned modeling for steel and composite girders clearly constitutes a 
practical approximation. However, comparative results with FEM on a large number of 
bridge sections indicated its appropriateness; see [7.32]. Indicatively, Table 7.4 shows results 
for simply supported girders subjected to uniform loading in terms of deflections, stresses, 
and the fundamental frequencies of vibrations. In addition, the critical load factor for lateral 
torsional buckling, which is the factor by which the applied load must be multiplied in order 
to reach the fundamental buckling mode, is determined. It can be seen that the results of the 
proposed model are in very good agreement with those of the finite element analysis.

The suggested model is also used for the analysis of continuous systems. This is briefly 
demonstrated with the Table 7.5. A two-span continuous beam is investigated both with 
pure steel and composite cross sections. For the steel–concrete composite systems, the 
cracked area is assumed to have a length equal to 15% of the span according to the simpli-
fied method of EN 1994-2. In this region, concrete is considered as fully cracked and the 
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Figure 7.25 Partial internal forces and stresses.
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cross section consists of the steel section and the reinforcement that is placed in the centroid 
of the slab. It should be mentioned that no FEM analysis was carried out for the composite 
systems due to the difficulty of being able to simulate the cracking of the concrete accurately. 
One can see the resultant values for the 3D model correlate very well with those obtained 
from the two other methods. Deflections, eigenvalues for buckling and dynamic analysis, 
and stresses at sagging moment areas do not show any significant difference between the 
compared methods. As expected at hogging moment areas, deviations between the 3D and 
the 1D models become larger.

The 3D model recommended by the authors is based on representing lateral torsional 
buckling modes of steel girders. Designers will find the model convenient for the lateral tor-
sional buckling investigations during the concreting stages and for the half-through bridges 
(Figure 2.35). This is discussed in detail in the next section.

7.1.4.3 Slab representation

Slabs are structurally continuous in both directions x and y, and they resist applied loads 
by shear forces, bending moments, and torques that are coupled with each other. For this 
reason, it was previously mentioned that the transverse slab elements of the grillage models 
should not be used for the final design of the slab. A brief description of an isotropic solid 
slab is given in Figure 7.26.

A slab element with plane dimensions dx · dy is extracted from a deck slab with thick-
ness hc. The applied load dQ is carried by the vertical shear forces vx and vy, the bending 
moment mx and my, and the torques myx = mxy; all internal forces are all per unit width. 
After forming the equilibrium equations, it is easy to observe that they differ significantly 
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Figure 7.26 Equilibrium and compatibility equations of an isotropic slab element.
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from those of a single beam. Due to the slab’s infinite indeterminacy, more complicated load 
paths are developed and internal redistributions take place. One can also see that the shear 
force is not a simple differential of the bending moment and therefore, it is not the slope of 
the bending moment diagram. Moreover, bending of the slab is associated with transverse 
torques in both directions; torques result in cyclic shear flows and stresses τxy. The torsion 
shear stresses τxy have a linear distribution and they are proportional to distance z from the 
slab’s neutral axis. Taking a closer look at Figure 7.26, it is obvious that the magnitude of 
the shear stresses τxy are dependent on the torsional rigidity per unit Gc · iT,slab = Gc · hc

3/6. This 
constant has been multiplied with the width b of the transverse slab elements in the grillage 
model of Figure 7.16.

It is also worth mentioning that the structural behavior of concrete slabs highly depends 
on the value of Poisson’s ratio. It is reminded that for cracked concrete, νc = 0.

The equations shown in Figure 7.26 are for isotropic solid slabs; these are slabs with 
similar stiffnesses in longitudinal and transverse directions. In orthotropic slabs, Poisson’s 
ratio will be different in the two directions. These are, for example, slabs with significantly 
different amounts of reinforcement in x and y directions and slabs with profile steel sheeting 
or filler beam decks.

A grillage model that considers the dispersed bending and torsion stiffness of a solid slab 
is illustrated in Figure 7.27. The grillage mesh should be sufficiently fine so that the grillage 
deflects in a smooth surface in a similar way as a real slab. A smooth deflected surface is 
equivalent to the requirement that the twist 𝜕2w/𝜕x𝜕y is the same in orthogonal directions 
and that myx = mxy. The spacing of the beams should not be less than 2.5 times the slab depth. 
If the local dispersion of concentrated loads has to be considered or in regions of sudden 
change, then smaller values have to be adopted. Transverse beams should have spacing simi-
lar to that of the longitudinal beams. It is also recommended that the row of longitudinal 
beams at each edge of the grillage should be located at a distance of 0.3 · hc from the edge of 
the slab, where hc is the slab depth. This is where the resultant of the shear flows is located; 
see [7.14]. The width of the edge member for the calculation of IT should be therefore reduced 
to b − 0.3 · hc.

Shear �ow at the
edge of the slab

hc

[M] Grillage output

12 12
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b = bs (for transverse elements)
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0.3  hc

Figure 7.27 Grillage model for an isotropic solid slab.
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REMARK 7.4

According to EN 1991-2, for local verification of the deck slab, the wheel loads may be consid-
ered as uniformly distributed taking into account the contact area of the wheel and the dispersal 
of the load through the pavement and the concrete slab. According to Figure 4.2, the effective 
loaded length is equal to

blf = 0.4 + 2 · hpav + hc [m],

where
hpav is the thickness of the pavement
hc is the slab’s depth

If the beam spacing bl and bs (see Figure 7.27) are smaller or equal to blf, then the wheel load can 
be assumed to be sufficiently dispersed for the grillage to reproduce the moments’ distribution 
throughout the slab.

The slab reinforcement can be calculated from the bending moment diagrams both of 
the transverse and the longitudinal beams. Due to the torque moments mxy, bending dia-
grams are usually discontinuous. This is due to the fact that the final moment diagram [M] 
represents a superposition of a sawtooth moment diagram due to torsion on a continuous 
moment diagram due to pure bending; see Figure 7.27. However, in a real slab, the bending 
diagram is not discontinuous and an average diagram can be taken into account.

Reinforced concrete deck slabs used in composite bridges often have similar stiffness in 
longitudinal and transverse directions and they can be assumed as isotropic. The earlier 
described grillage model reproduces the behavior of isotropic solid slabs reasonably accurate 
and it will be used subsequently for the representation of the deck slab of a 3D model.

7.1.4.4 3D model implementation

The grillage model for the slab’s representation in Figure 7.27 can be combined with the 
truss model that is shown in Figure 7.24. Figure 7.28 illustrates a 3D model that is rec-
ommended for the structural analysis both of simple and continuous composite bridges. 
Attention must be paid so that the grillage has its longitudinal members coincident with the 
center lines of the steel sections. At sagging moment areas, longitudinal slab elements are 
used with their uncracked properties. At hogging moment areas, concrete is considered as 
fully cracked and the total reinforcement is considered due to simplicity at the center of the 
slab. Transverse slab elements can be considered with their uncracked properties.

One can see that the model can be set up in a detailed way by taking into account all 
the necessary structural elements, that is, cross bracings and bearings. Imperfections, pre-
cambering, and girders with variable cross sections can also be implemented in the model. 
Therefore, structural phenomena that may be difficult or impossible to investigate with 
plane grillages are included in the outputs of the 3D model, for example, arch effects in 
integral bridges with longitudinally variable cross sections.

Another interesting issue depicted in Figure 7.28 is the representation of well-anchored 
concrete parapets on the structural performance of the bridge. Solid parapets at the edges 
of the deck slab usually possess inertia properties comparable to those of the main compos-
ite girders. Such stiff parapets attract a significant part of the normal stresses and have a 
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non-negligible effect on the transverse distribution of the vertical loads. With the 3D model, 
parapets can be included in the model as longitudinal concrete beams.

When the longitudinal slab elements are very close to each other, compression forces 
away from the main girder decrease and the shear lag effect is indirectly taken into account. 
This is the case of Figure 7.28. As already mentioned, a very fine mesh for the slab beams 
is used when local effects due to the distribution of the wheel loads in the slab have to be 
considered in the model. Nevertheless, when the 3D model is not used for the design of 
the deck slab, then the configuration of Figure 7.29 can be chosen as a simpler solution 
because it leads to a less fine mesh. Longitudinal concrete beams at sagging moment areas 
with a width bl,i represent the effective part of the slab. Obviously, the summation of the 
widths bl,i should be equal to the effective width beff,1 according to EN 1994-2. At hogging 
moment areas, the effective width of the slab has a different value, and the cross-sectional 
area of the longitudinal beams is equal to the total reinforcement amount, which can be 

Arch effects in an integral bridge with
longitudinally variable depth and precambering

Longitudinal slab beams
(State 2)

Solid parapet as part
of the structure

Longitudinal slab
beams (State 1)

Transverse
slab beams

b1

b1

b

hc

hc

y
zAsu

As,tot

As,tot = Aso + Asu
Iy ≈ 0
Iz ≈ 0
IT ≈ 0

Aso

At hogging moment areas

At sagging moment areas

Figure 7.28 3D models of a two-span continuous bridge and an integral one at final stage.

Ineffective
longitudinal
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beff,1 beff,2
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bl,i
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z z

yy
Asu
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At sagging moment areas At hogging moment areas

Figure 7.29 Alternative representation of the concrete elements.
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assumed at the center of the slab. The tension stiffening effect can be considered by using 
an increased area for the effective beam i as follows; see [7.16]:
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where
As,i is the total amount of reinforcement in the slab element i
ρs,tot is the total reinforcement ratio
fctm is the mean tensile strength of concrete; see Table 6.1
fsk is the characteristic yield strength of reinforcement steel

REMARK 7.5

With the Equation 7.14, tension stiffening is taken into account at hogging moment areas through 
a “semi-cracked” concrete cross section At. Indeed, according to Equation 6.30, the mean strain 
in reinforcement (As) is due to tension stiffening equal to
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For an equivalent “semi-cracked” concrete section with A = At under an axial tension Ns, the 
mean strain εsm is Ns/(Es · At). From the previous expressions, At is calculated as a function of Ns:
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The semi-cracked concrete section enters state II when Ns ≈ 0.8 · As · fsk; therefore, the equiva-
lent cross-sectional area At becomes
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The longitudinal beams, which are located outside the effective width beff, do not participate 
in the distribution of the normal stresses and therefore, their cross-sectional area is set equal 
to zero.

The long-term behavior of concrete can be taken into account by using the modular ratios 
nL for the effective longitudinal beam at sagging moment areas; see Equation 6.20. For the 
transverse slab elements, the following age-adjusted modulus of elasticity can be used:
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where
Ecm is the mean value of modulus of elasticity; see Table 6.1
φ(t, t0) is the creep coefficient according to EN 1992-1-1; see Section 6.1.2
χ is the relaxation factor according to EN 1992-2 (=0.8 for nonprestressed members)
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7.1.4.5 Analysis during the concreting stages

3D models allow the investigation of the lateral stability of the steel girders during concret-
ing. At this construction stage, lateral bracings that connect the compressed top flanges are 
required. The load intensity is equal for all girders since the concrete is not hardened yet 
and the load of wet concrete between girders and at the cantilever is transferred by simple 
statics to the girders.

The 3D model is a very important tool for the design of composite bridges because brac-
ings require a lot of man-hours and they have an effect on the appearance of the bridge. 
Through the eigenforms of the structure, designers are able to make safe conclusions for 
the buckling type, that is, lateral or lateral torsional buckling, and for the areas that need 
to be strengthened. Comparative analysis between the 3D and FE models led to very small 
deviations, lower than 3%; see [7.32]. The proposed model deemed accurate for the stability 
investigations of the following cases:

• Statically determinate and indeterminate systems
• Systems with longitudinally variable cross sections
• Mixed systems with parts that are composite or pure steel

The 3D model is not used for plate buckling analysis.
Figure 7.30 illustrates an example of a buckling analysis of a simply supported bridge that 

is casted in one stage. Hot-rolled steel girders that are placed every 2.90 m on elastomeric 
bearings carry the weight of the wet concrete. The spacing of the post beams is 4% of the 
span, thus equal to 1.0 m. Bracing members are represented by beam elements with pinned 
ends so that members’ instabilities can be analyzed.

One can see that the first eigenmode of the nonbraced steel structure depicts a typi-
cal lateral torsional buckling failure. The corresponding load factor αcrit is less than one, 
which means that the level of the applied loading is higher than the level of elastic stabil-
ity. Obviously, this cannot be accepted and the stiffness of the structure must be increased 
through a “cost-effective” combination of plane and vertical braces. This is done with a 
step-by-step strengthening procedure that starts from the most deflected area; in most 
cases, this will be the mid-span. In the second analysis, the structure exhibits a lateral 
buckling mode; rotations of the main girders are zero, but the load factor remains low and 
therefore, further strengthening is required. A third analysis with more bracing members 
is performed and then the load factor becomes significantly higher. Additionally, the buck-
ling length of the main girders becomes less than 50% of the span’s length. Finally, central 
bracings are placed near supports so that the load factor αcrit becomes higher than 10. 
According to the clause 5.2.1(4) of EN 1993-2, bridges and components of bridges may be 
checked with first-order theory if αcrit ≥ 10. Hence, a laborious second-order global analy-
sis can be avoided.

If needed, bracings can be arranged so that the load factor is smaller than 10 but a second-
order analysis is then mandatory. The designer must be experienced enough to interpret 
correctly the outputs of the analysis by looking closely to the buckling modes. Then accord-
ing to the buckling shapes, imperfections should be applied on the structural elements; this 
is a time-consuming procedure. In some cases, different buckling modes may exhibit the 
same values of αcrit; this makes it difficult to recognize which buckling mode is the critical 
one. Moreover, in second-order analysis, the principle of superposition is not valid and 
all loads must be applied to the structure with all the respective combination factors. EN 
1993-2 recognizes the previous drawbacks and includes a simplified procedure according 
to which, when the stability of the structure is mainly governed by the first buckling mode, 
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Figure 7.30 Buckling analysis of a simply supported bridge during concreting.
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second-order moments MII may be calculated by the application of a magnification factor 
to the moments from first-order analysis MI:
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From Equation 7.16, one can see that the load factor is
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The requirement αcrit ≥ 10 for avoiding a second-order analysis becomes then
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Equation 7.18 implies that the magnification of the bending moments ∆M due to second-
order effects is less than 11% of the bending moments calculated with first-order analysis 
and therefore can be neglected. However, the fulfillment of the criterion αcrit ≥ 10 is essential 
for the structural performance of a bridge as a whole and it is not just a design facilitation. 
Experience shows that systems with load factors greater than 10 are laterally stiff (non-
sway), and they exhibit an improved load distribution during concreting that is important 
for the straightness of the deck.

It is worth mentioning that a load factor that is greater than 10 for the loading case of con-
creting may be much smaller for another loading case as wind or an earthquake. For very wide 
decks, accidental eccentricities during construction (see Example 7.2) may also lead to different 
types of buckling modes and load factor values. Peculiarities during a second-order analysis 
of curved bridges may also arise. For the previous cases, keeping αcrit greater than 10 is also 
recommended.

Looking back at the third analysis in Figure 7.30, one can observe translations in the 
bearings. Therefore, bearings represent a source of flexibility in the structure that has a 
non-negligible effect on the buckling shapes and the values of the load factors αcrit. In this 
analysis, bracings are mainly concentrated at the center part of the bridge and therefore, 
deformations emerged in the most flexible region; near the bearings’ area. After an appro-
priate strengthening, the final analysis offered a load factor greater than 10 that corresponds 
to a buckling mode of local instability; see detail B. Indeed, in the finalized structure, one 
observes buckling of two angle cleats connected with the top flanges of the main girders. 
Generally, bracings should be arranged in such a way that buckling modes with local insta-
bilities become the critical ones. Hence, the possibility of a sway behavior can be excluded; 
unfortunately, this is not always feasible.

REMARK 7.6

• The magnitude of the flexural torsional buckling load Mcrit given in Eurocode 3 depends 
on the height of the load relative to the height of the shear center. In the 3D model, 
loads apply on the gravity center of the top T section. The destabilizing effect that can be 
caused due to this inconsistency is however negligible, and this has been proven through 
numerous comparative analyses with FEM.



Modeling and methods for global analysis 221

• In Eurocode 3, one will find many expressions for the calculation of the elastic critical loads 
Ncrit and Mcrit. The analytical expressions for these loads are usually derived for simple sys-
tems that may be appropriate for buildings but not for bridges. This is because various 
parameters such as the stiffness of the bracings, the bearings, and the geometry of the bridge 
are not considered in the Codes’ equations. Due to the doubts raised, designers often cal-
culate the buckling loads with finite element models. This is an accurate method but time 
consuming and complicated as well since countless plate buckling modes usually emerge. 
With the 3D model, unnecessary plate buckling modes are avoided.

• The 3D model is compatible with the simplified method found in EN 1993-2, clause 
6.3.4.2(2), in which the compression part of a steel beam subjected to bending is replaced 
by a compression chord with an effective area Aeff = Af + Awc/3 where Af is the area of the 
flange and Awc the area of the web under compression. Lateral torsional buckling of the 
main girders can be represented by lateral buckling of the compression flanges.

• For a buckling analysis, bracing members are recommended to be modeled as beam ele-
ments with bending releases at their ends. In contrast to truss elements, the previous 
configuration allows the investigation of members’ instabilities.

As already mentioned, during concreting, the girders deflect under their own weight and the 
weight of the fresh concrete. On straight bridges, the deflections across any section of the 
bridge due to the deck weight are almost identical. The point of maximum deflections for each 
steel girder will be at mid-span of each girder. On a square bridge, these points align across the 
width of the bridge. By contrast, on a skewed bridge, the deflections are not the same across 
the width of the bridge, since the girders are longitudinally offset from each other by the skew. 
On curved bridges, the deflections are not the same across the width of the bridge because the 
girders do not have the same length, with the outer girders being longer than the inner ones.

Figure 7.31 shows the analysis of a curved bridge that is assumed to be casted at one stage. 
The uniformly distributed load represents the weight of the fresh concrete. The steel girders 
are connected with intermediate cross bracings that consist of L sections. One can see the 
significant difference among the values of the vertical deflections w of the main girders A, 
B, and C. Moreover, lateral and horizontal deformations (v and u) can be estimated with the 
3D model with an adequate accuracy.

Generally, the webs of the I girders are not stiff enough, resulting in web distortion associ-
ated with the flange lateral bending between the cross-frame locations. At construction stages, 
where there is no slab, both the bottom and the upper flanges are subjected to lateral bending 
between the cross-frame locations. Figure 7.31 also shows the stresses on the upper and lower 
flanges of the steel section, for the 3D model and the FE model, under the weight of concreting. 
The results are almost identical. It is worth mentioning that the points of maximum stresses are 
the positions of the transverse bracing. The differential deflections that occur at these points 
(which would be much higher without the presence of transverse bracings) are restrained by the 
transversal bracing, and lateral stresses are developed on the upper and lower flanges. The afore-
mentioned stress situation cannot be investigated with the use of a conventional grillage model.

7.1.4.6 Analysis at final stage

At the final stage, concrete is hardened and the steel girders behave compositely with 
the slab. The slab restrains laterally the upper flanges so that cross bracings are not 
required. The 3D model implementation at the final stage has been explained in the 
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previous section and is shown in Figure 7.28. The following example demonstrates the 
importance of including bracing members in the model and its influence on the distribu-
tion of the vertical loads.

The simply supported railway bridge of Figure 7.32 has three main steel girders of 3353 
mm total height, connected with a concrete slab of 28 cm thickness. The total length of the 
bridge is 70 m. Diagonal cross frames are placed every 7 m connecting the main girders 
between each other. Two different analyses take place for the composite bridge. In the first 
case, there is no lateral bracing system between the bottom flanges of the steel girders but 
the diagonal bracing. In the second case, the bottom flanges are connected using the lateral 
bracing system. Both the 3D and the FE models are illustrated. For the FE model, shell ele-
ments have been used for the representation of the steel girders, volume for the slab, and truss 
elements for the diagonals.

Two different load cases are applied on the composite structure: an eccentric linear load 
of 50 kN/m, on the middle and outer girder, and the Load Model 71 of Eurocode 1, rep-
resenting possible rail traffic on bridge. The results for the deflections and the stresses are 
summarized in Table 7.6. One can see that for both the unbraced and the braced structures, 
the results of the finite element analysis and the 3D representation correlate very well with 
each other. Especially, for the second load case of the eccentric train LM71, the reduction in 
stresses and deformations is significant for the bridge with the bottom bracing. The stress of 
the outer girder is reduced by 25% (according to FEM results). As far as the vertical defor-
mations are concerned, there is a reduction of 33% for the maximum value of wA. For the 
unbraced structure, it seems that the outer girder carries the most part of the load. With the 
placement of the bottom bracing, the total torsional constant of the whole bridge increases 
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and the rotation of the bridge section is reduced (see the diagrams of w). The load distribu-
tion changes and the whole bridge behaves in a way close to a box section bridge. At the 
same time, the maximum deformation of the extreme girder reduces significantly.

7.1.5 Models for other types of bridges

The previous sections presented models for common composite bridges. Other types are 
represented by appropriate models. The models for arch bridges include the arches; the stiff-
ening girders; other longitudinal girders, if present; cross girders; and the suspension bars/
cables. For global analysis of cable-stayed bridges, pylons, stays, cross girders, and stiffening 
girders are usually included in the model.

7.2 EFFECTIVE WIDTH OF WIDE FLANGES DUE TO SHEAR LAG

7.2.1 General

When I or T beams are flexed, the compression/tension force in each steel flange is injected 
into the concrete flange by longitudinal edge shear forces whose magnitude depends on the 
variation of the bending moment; see Figure 7.33. The longitudinal distribution of the edge 
shear forces affects the distribution of the normal stress, which decreases toward the outside 
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Figure 7.32 Simply supported composite bridge with bracings at bottom flanges; 3D and FE models.
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edge causing distortion of the flange. The decrease of normal stresses away from the loaded 
edge due to shear distortion is known as shear lag.

Simple beam theory cannot capture correctly the true stress distribution along wide 
flanges. Due to shear lag, these stresses are not any more proportional to the distance from 
the neutral axis but rather concentrate near the flange-to-web junctions. Accordingly, the 
theory of elasticity is more appropriate for a correct determination of the stress distribu-
tion. However, in order to retain the application of the engineering beam theory, effectives 
widths due to shear lag are introduced. The effectives width is determined by the condition 
of equal axial forces resulting from (a) the full flange with nonuniform stresses determined 
by the theory of elasticity and (b) the effective width with uniform maximal stresses. It is 
noted that this effective width is denoted as effectives width, that is, with the superscript s, 
to distinguish it from the effective width due to plate buckling.

Table 7.6  Deflections and stresses for the composite bridge of Figure 7.32

Vertical deflections

50 kN/m

Load case 1 Load case 2

A

w w

1 2
175

w
 (

m
m

) 150
125
100
75
50
25
0

175
200

w
 (

m
m

)

150
125
100
75
50
25

–25
0

A 1 2 3

3 1 2 3
With bottom

bracing

With bottom
bracingWithout bottom

bracing

Without bottom
bracing

B

Transversal sense

A 1 2 3 B
Transversal sense

B A B

LM 71

FE model 3D model

Normal stresses (in N/mm2)

σc σ1 σ2 σ3

Load Case 1

Without bottom bracing
3D model −12.50 147.4 105.0 68.5
FE model −11.70 138.0 102.0 71.6

With bottom bracing
3D model −8.10 121.9 97.2 78.4
FE model −8.20 116.0 94.8 79.4

Load Case 2

Without bottom bracing
3D model −18.3 178.0 103.5 29.7
FE model −16.2 171.0 100.4 28.5

With bottom bracing
3D model −10.4 136.5 91.4 74.4
FE model −10.9 128.5 92.9 82.5

Notes:

σc is the minimum concrete stress at the upper face of the concrete.
σi is the maximum steel stress at the lower flange of main girders (i = 1, 2, 3).
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In composite plate-girder or truss bridges, the effectives width refers only to the concrete 
slab. However, for box girders, effectives widths must be introduced also for the bottom 
steel flange. Subsequently, effectives widths are given for both the concrete slab and the box-
girder steel flanges.

7.2.2 Effectives width of concrete flanges

The effectives width of the concrete slab may be determined from

 
b b beff i ei= + ◊Â0 b  (7.19a)

where (Figure 7.34)
b0 is the distance between the centers of outstand shear connectors

 
b L
ei

e=
8

 (7.19b)

Le is the distance between points of zero-bending moment given in Figure 7.34, provided 
that the adjacent internal spans do not differ more than 50% and any cantilever is not 
larger than ½ the adjacent span

bi is the distance from the outstand shear connector to a point midway between adjacent 
webs or distance to the free edge

 
bi e

ei

L
b

= + ◊ £0 55 0 025 1 0. . . atend supportsforthecalculation ofbefff,0  (7.19c)

bi=1 0.  elsewhere (for beff,1 and beff,2)

Generally, the effectives width and consequently the properties of the cross section vary 
along the bridge as indicated in Figure 7.34. Effectives widths at intermediate supports are 
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Figure 7.33 Stress distribution in wide flanges and effectives widths.
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smaller than those for the span regions. This is because the effect of shear lag is greatest at 
locations of high shear where the edge forces in the flanges are changing rapidly. However, 
when elastic global analysis is employed, a uniform effective width may be used, equal to 
the value of beff,1 at mid-span for span supported to both ends and beff,2 at the support for a 
cantilever.

During the initial design phase, the distance b0 between the exterior connectors may be 
unknown. In such cases, it is allowed to assume b0 = 0.

7.2.3 Effectives width of steel flanges

In cases of wide steel flanges as in box-girder bridges, effectives widths must also be deter-
mined. The elastic effectives width for shear lag is determined from

 b b i Figureeffi i, , , ( . )= ◊ =b 0 1 2 7 35  (7.20)

where
b0i is the distance between web and free end for outstand elements (i = 1) or half width 

of internal elements (i = 2)
β is a reduction factor given in Table 7.7
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Figure 7.35 Notations for shear lag.
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Figure 7.34  Length Le and distribution of effectives width of concrete slab along the span. (From EN 1994-2, 
Design of composite steel and concrete structures, Part 2: Rules for bridges, 2005.)
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If b0i < Le/50, shear lag in steel flanges may be neglected.
The effective length Le used in Table 7.7 expresses the distance between points of zero-

bending moment and is given in Figure 7.34 under the same conditions stated before (adja-
cent internal spans do not differ more than 50% and any cantilever is not larger than ½ the 
adjacent span).

For quicker calculations, the reduction factor β can be taken from the diagram in 
Figure 7.36. As expected, the factor β and subsequently beff are smaller for hogging moment 
areas than for the sagging ones. Moreover, it may be seen that the factor κ increases by the 
addition of longitudinal stiffeners; in this case, the effectives width decreases. This is due 
to the fact that shear deformations occur on the unstiffened steel sheet with little participa-
tion of the stiffeners.

Table 7.7 Effectives width factor β for elastic behavior

Hogging moment
areas

Le for β2

Le= 0.25 (L1+ L2)

Sagging moment
areas

Le for β1

Le= 2 L3

Le= 0.85 L1 Le= 0.70 L2

L2L1 L3

β0

β1 β1β2 β2

L1/4 L2/4 L2/4L2/2L1/4L1/2 L3

Factor κ
Location for 

bending β-Value

κ ≤ 0.02 β = 1.0
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Source: EN 1993-2, Design of steel structures, Steel bridges, 2006.
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Asl,i is the area of all longitudinal stiffeners within the width b0i.
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Concluding, it may be said that the introduction of the effectives width allows for the 
determination of the flange stresses from the simple beam theory according to

 
s1 =

M
W

 (7.21)

where
M is the acting bending moment
W is the section modulus of the cross section with the effectives flange width

However, for stress verifications at serviceability and fatigue limit states, the accurate 
nonuniform elastic stress distribution across the wide flange as determined by the theory of 
elasticity and given in Table 7.8 shall be accounted for.

Effectives widths due to shear lag as discussed before are based on results of the theory of 
elasticity and are therefore valid for elastic behavior only. However, when the applied load 
is increased beyond the value at which the peak stress at the flange-to-web junction reaches 
the yield stress, the nonlinear stress distribution becomes less pronounced and the effectives 
width increases since the neighboring parts of the flange reach also the yield stress in order 
to retain equilibrium. In addition, the increased values of the effectives widths interact with 
plate buckling effects. These increased values may optionally be taken into account at ulti-
mate limit states. Accordingly, it may be said that for global analysis and for verifications at 
serviceability and fatigue limit states where the behavior is elastic, effectives widths for steel 
flanges are to be determined according to Tables 7.7 and 7.8. These values may be conserva-
tively used for verifications at ultimate limit states.

At ultimate limit states, increased values may optimally be used in interaction with plate 
buckling effects, as presented in Table 7.9. The National Annex may choose the more appro-
priate method to be used for the calculation of shear lag at ULS. If this is not the case, then 
according to EN 1993-2, the method 3 is to be recommended.

For small- and medium-span bridges, flanges are not sufficiently wide so that shear lag 
will not usually have a great effect. However, for box-girder bridges with very wide flanges, 
a considerable reduction of the acting flange width is likely to be imposed. High reductions 
are expected at SLS and for the hogging moment areas; see Figures 7.37 and 7.38. It is also 
important to note that during erection (i.e., launching or cantilever method), the effectives 
widths change according to the construction process. This is demonstrated with the follow-
ing example.
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Figure 7.36 Reduction factor β.
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Table 7.8 Elastic stress distribution across a wide flange due to shear lag
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Source: EN 1993-2, Design of steel structures, Steel bridges, 2006.

Note: σ1 is calculated from Equation 7.21.

Table 7.9 Shear lag calculation methods at ultimate limit states

Effectives width factors

Method 1 (elastic) β according to Table 7.7

Method 2 βult calculated as in Table 7.7 but replacing α0 with a0
0

=
◊

A
b t

c eff,

where Ac,eff is the effective area of compression flanges due to plate buckling
Method 3 Elastic plastic shear lag effects allowing for limited plastic strains may be taken 

into account using Aeff as follows:

A A Aeff
k

c eff c eff= ◊ ≥ ◊b b, ,  (7.22)

where
Ac,eff = the effective area of a compressed flange accounting for plate buckling
β, κ = factors given in Table 7.7

Source: EN 1993-2, Design of steel structures, Steel bridges, 2006.

Note: The expressions in Methods 2 and 3 may also be applied for flanges in tension in which case Ac,eff should be 
replaced by the gross area of the tension flange.
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EXAMPLE 7.3

The effectives widths are calculated for both the concrete and the steel flanges of a com-
posite box-girder bridge. The bottom flange has continuous longitudinal stiffeners such that 
Asl/(b0 · t) = 0.6. The effectives widths acting with each web will be determined at final stage and 
indicatively over a temporary support at erection stage.

• Concrete flange (final stage)
For the external spans with L = 55 m
Since the distance between the shear connectors is not known, it can be assumed that b0 = 0.

From Figure 7.34 fi = ◊ =L 0.85 55 46.75 me

 
b

46.75
8

5.844 m
10
2

5.0 m b 5.0 me1 e1= = > = fi =

 
b

46.75
8

5.844 m 2.5 m b 2.5 me2 e2= = > fi =

Effective width:

 b b b b 7.5 meff,1 0 e1 e2= + + =

10 m

At final stageAt erection stage

55 m 55 m85 m

5.0 m 2.5 m

55 m 40 m 30 m

Figure 7.37 Box-girder bridge at erection and final stage.

At final stage

Concrete

At final stage At erection stage

Hogging bending
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beff ,2 = 6.875 mbeff ,1 = 7.5 m beff ,1 = 7.5 m beff ,2 = 6.875 m
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Steel
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ULS* beff = 4.36 m beff = 4.75 m

*Method 3 from Table 7.9

Figure 7.38 Summary of effectives widths at final and erection stage for the cross sections of Figure 7.37.
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For the internal span is

 L 59.5 m 46.75 m b 7.5 me eff= ◊ = > fi =0 7 85.

At sagging moment areas, the concrete flange is entirely effective.

At internal support
From Figure 7.34 fi = ◊ + =L 0.25 (55 85) 35 me

 
b 4.375 m 5.0 m b 4.375 me1 e1= = < = fi =35

8
10
2

 
b

35
8

4.375 m 2.5 m b 2.5 me2 e2= = > fi =

Effective width:

 b b b b 6.875 meff,2 0 e1 e2= + + =

At hogging moment areas, the effective part of the concrete flange is reduced.

• Steel flange (final stage)
Sagging bending (external spans with L = 55 m)
Table 7.7 fi = ◊ = = + = =L 0.85 55 46.75 m, 1 0.6 1.265,b 5.0 me 0 0a

 
k = ◊ =1.265 5.0

46.75
0.135

For sagging moment areas,

 
0.02 0.70

1
1 6.4 0.135

0.8961 2< £ fi = =
+ ◊

=k b b

SLS: Equation 7.20 fi = ◊ =b 0.896 5.0 4.48 meff

ULS: Table 7.9 fi = ◊ = > ◊ =b 5.0 0.896 4.93 m 5.0 0.896 4.48 meff
0.135

Sagging bending (internal span with L = 85 m)
Table 7.7 fi = ◊ = = =L 0.7 59.5 m, 1.265,b 5.0 me 085 0a

 
k = ◊ =1.265 5.0

59.5
0.106

For sagging moment areas,

 
0.02 < κ ≤ 0.70 ⇒b b= =

+ ◊
=1

1
1 6.4 0.106

0.9322

SLS: Equation 7.20 fi = ◊ =b 0.932 5.0 4.66 meff

ULS: Table 7.9 fi = ◊ = ≥ ◊ =b 5.0 0.932 4.96 m 0.932 5.0 4.66 meff
0.106

Hogging bending
Table 7.7 fi = ◊ + = = =L 0.25 (55 85) 35 m, 1.265,b 5.0 me 0 0a

 
k = ◊ =1.265 5.0

35
0.181
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For hogging moment areas, 0.02 < κ ≤ 0.70 ⇒

 
b b= =

+ ◊ - ◊ + ◊
=2 2

1
1 6.0 (0.181 (1/2500 0.181)) 1.6 0.181

0.471

SLS: Equation 7.20 fi = ◊ =b 0.471 5.0 2.36 meff

ULS: Table 7.9 fi = ◊ = ≥ ◊ =b 5.0 0.471 4.36 m 0.471 5.0 2.36 meff
0.181

• Steel flange (erection stage)
The effectives width of the bottom flange at the temporary support is investigated.
Table 7.7 fi = = ◊ = = =L 30 m,L 2 30 60 m, 1.265,b 5.0 m3 e 0 0a

 
k = ◊ =1.265 5.0

60
0.105

For hogging moment areas,

 
b b= =

+ ◊ - ◊ + ◊
=2 2

1
1 6.0 (0.105 (1/ 2500 0.105)) 1.6 0.105

0.615

SLS: Equation 7.20 fi = ◊ =b 0.615 5.0 3.08 meff

ULS: Table 7.9 fi = ◊ = ≥ ◊ =b 5.0 0.615 4.75m 0.615 5.0 3.08 meff
0.105

7.3 CROSS-SECTIONAL PROPERTIES

As discussed in the previous sections, the longitudinal girders are composed of the steel 
beams and the associated slab within the effectives width. This cross section is transformed 
in an equivalent cross section of steel material alone, by reducing the concrete area with the 
modular ratio n0 for short-term loading or nL for long-term loading. The cross-sectional 
properties are summarized in Figure 7.39.

Gravity center

Gravity center
Gravity center of

steel section

beff,1

beff,2

Uncracked composite section

 Fully cracked composite section

Steel section

Steel cross section

Reinforcement

Fully cracked composite cross section (state II)

Uncracked composite cross section (state I)

Modular ratio nL
For short-term loading L = 0; see Table 6.4
For long-term loading L=P, S, PT or D; see Equation 6.20

Center of gravity: z1,L =

Static moment: S1,L =Ac,L
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Concrete cross section
Aa, Ia = Area and inertia moment

Area: A2,sa = Aa + As,tot

Center of gravity:

Moment of inertia: I2,sa = Ia + Aa

A2,sa

As,tot = Total reinforcement within beff,2

Ac, Ic = Area and inertia moment,
Transformed properties: Ac,L = Ac/nL, Ic,L = Ic/nL

Concrete section
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za
z2,sa z2,sa =

z2
2,sa(z2,sa – za)2+ As,tot

Aa   za

Area: A1,L = Aa + Ac
nL

Aa  za

z1,L

Moment of inertia: I1,L = Ic,L + Ia + S1,L   za

Figure 7.39 Geometry and cross-sectional properties of composite sections.
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In the expressions for the cross-sectional properties in Figure 7.39, the slab’s reinforcing 
bars have been considered as concentrated at the slab’s center of gravity. This approximation 
simplifies the calculations without affecting its accuracy.

At hogging moment areas, instead of a fully cracked composite section, a “semi-cracked” 
section can be used by taking into account the effect of tension stiffening; see Section 6.1.6. 
This can be achieved by the consideration of a slab area that is calculated by Equation 7.14.

For composite box girders, the calculation of the torsional constant has been discussed in 
Section 7.1.2; see Figure 7.12 and Equation 7.11.

7.4  EFFECTS OF THE RHEOLOGICAL BEHAVIOR 
OF CONCRETE ON STRUCTURAL SYSTEMS

7.4.1 General

A discussion on the time-dependent behavior of concrete is found in Section 6.1.2. For the 
concrete members of a composite bridge, creep can be taken into account through the age-
adjusted modulus of elasticity given in Equation 7.15. In composite members, the interac-
tion between concrete and steel must be considered through the long-term modular ratio nL 
given in Equation 6.20. The modular nL depends also on the type of loading that may be 
permanent (P), temporarily permanent (PT), imposed deformations (D), or shrinkage (S). 
Creep in composite members results in a reduction in bending stiffness with consequences 
that depend on the static system.

7.4.2 Creep in statically determinate systems

In statically determinate, single-span systems, the concrete is under compression and the 
bending stiffness EI is determined for the uncracked cross section. The stiffness reduction 
from Εa · I1,0 to Εa · I1,P(t) due to creep in the time interval t0 to t results in

 a. Increased deflections
 b. No change in the internal acting moments and shear forces
 c. Stress redistribution in the cross sections, where the stresses in the steel girders are 

increased, while the stresses in the concrete slab are decreased; see also Figure 6.6

Figure 7.40 shows how a global positive moment M0 on the composite section is split into 
partial moments and a pair of axial forces in the concrete slab and the steel girder that may 
be determined from the following equations:
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Through the time-dependent partial forces and moments given in Equations 7.23, the 
stresses in concrete and steel can be calculated at any time. In Figure 7.40, one can see the 
magnification of the deflections that mainly depends on the value of the long-term inertia 
moment I1,P.

7.4.3 Creep and shrinkage in statically indeterminate systems

In statically indeterminate continuous beams, the concrete slab is under compression in the 
span and tension in the internal support regions. The stiffness reduction in the time interval 
(t−t0) due to creep has therefore an effect only on the uncracked span regions. The support 
regions where the concrete is cracked remain unaffected from creep. This means that the 
stiffness in the support regions increases relatively to the stiffness in the span. Accordingly, 
the supports attract higher moments while the moments in the spans reduce. Consequently, 
creep results in continuous beams:

 a. Increased deflections
 b. Changes in the internal acting moments with an increase of moments at the supports 

and moment reduction in the spans; see Figure 7.41
 c. Corresponding shear forces that induce longitudinal shear forces at the interface 

between the concrete slab and the steel beam
 d. Stress redistribution in the cross sections at sagging moment areas, where the stresses 

in the steel girders are increased, while the stresses in the concrete slab are decreased

The final stresses at the time t are due to the moments at time t (due to MP and live loads) 
and the change of moments MPT(t, t0) between the times t0 and t. The MPT moments are 
called secondary moments. A calculation example for a two-span continuous system is 
demonstrated in Figure 7.41. For the estimation of the secondary moments MPT, the force 
method is used. The initial bending moment diagram [M0] is calculated by applying the 
short-term modular ratio n0 at the noncracked regions. Due to creep, the moment of inertia 
of the composite parts will decrease from I1,0 to I1,P. This results in an additional rotation θP 
in the released structure that can be easily calculated by integrating the short-term bending 
diagram [M0] with the curvature diagram due to unit moments M

–
 at the internal support. 

The rotation θP is inconsistent with the actual structure and an additional moment min MPT 
is developed. The secondary bending moment min MPT produces a rotation at the internal 
support of the released structure that must eliminate the inconsistency θP; this is expressed 
by the compatibility equation that offers the value for min MPT.

Mc,P

M0 = ct

Nc,P

Na,P

Ma,P
[w]

[M]

Permanent loading (g)
Sectional forces at time t

GC.S: gravity center of the concrete slab
GC.CS: gravity center of the composite section
GC.A: gravity center of the steel section

GC.A
GC.CS

GC.S

z1,P L

+ M0

w0 wt

Δw(t) = wt – w0 = 1 1–
I1,P(t) I1,0

g  L4

384  Ea

Figure 7.40 Influence of creep in statically determined simple span beams.
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As shown in Figure 7.41, the secondary moments are negative and may be considered as 
resulting from a concentrated upward support force. Instead of rotations at supports, deflec-
tions can be calculated by releasing the internal support in the vertical direction.

It should be noted that the secondary bending moments may even reach half of the 
value of the initial bending moments at internal supports. Obviously, they should not be 
neglected. Moreover, the calculation of secondary internal forces with the force method 
can only be achieved for very simple systems, for example, one-beam models. A more con-
venient way to calculate secondary effects is through the use of an equivalent temperature. 
Indeed, when the cross section is subjected to a moment M0 that causes creep, its curvature 
changes by a magnitude:
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If the same cross section with a height h were subjected to a linear temperature difference 
∆ΤMP between its upper and lower flanges, a curvature given in the succeeding text would 
be caused:
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Figure 7.41 Calculation of secondary bending moments with the force method.
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Accordingly, the influence of creep may be accounted for by introducing a linear tempera-
ture difference as a “loading,” where the upper part is colder and the lower part warmer. 
This difference may be determined by setting equal the two curvatures and is given by
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where
Ea is the modulus of elasticity for steel
αT is the thermal expansion coefficient for steel
I1,0 is the short-term moment of inertia of the composite section; see Figure 7.39
I1,P is the long-term moment of inertia of the composite section (L = P); see Figure 7.39

As shown in Figure 7.42, the temperature difference is introduced only in the uncracked 
regions with I = I1,PT and not in the cracked ones; see creep due to temporarily permanent 
loads in Section 6.1.2. For simplicity, the temperature difference may be considered with its 
maximum value, corresponding to the maximum moments. This is obviously a conservative 
approximation.

The secondary bending moments cause additional normal stresses that have an unfa-
vorable effect at hogging moment areas and a favorable one at the sagging moment areas. 
The partial internal forces in the uncracked composite section due to secondary bending 
moments can be calculated by Equations 7.23 by replacing the index P with PT.

REMARK 7.7

• Adding bending moments due to different types of loading leads to false results. For 
example, adding the short-term moment min M0 at internal support with the secondary 
moment min MPT is a mistake. Stresses should be calculated for each bending moment 
separately and then superpositioned.

• Bridges that are axially restrained develop normal forces NP and NPT. These forces should 
be included in the Equations 7.23. A further discussion on the stress calculation of axially 
restrained systems is found in [7.15].

Ea I1,0

gM0M0

x
Moment diagram

[M0] at t0

Precise [ΔTMP]
M0 = ct

Equivalent temperature difference

ΔTMP(x) = M0(x) h 1 1
I1,P I1,0

–
Ea αT

h

Simpli�ed [ΔTMP]

max ΔTMP

I1,PT

I1,PT

I1,PT

I1,PT

I2,sa

I2,sa

+ +
–

Ea I1,P

Figure 7.42 Calculation of secondary bending moments with an equivalent temperature difference.
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7.4.3.1 Creep due to movements of supports

In continuous bridges, the negative moments at internal supports are in many cases signifi-
cantly high causing excessive tensile stresses and concrete cracking. In order to reduce the 
bending moments at hogging moment areas, a support movement δ is imposed as shown 
in Figure 7.43. The positive moments [MD(t0)] at time t0 can be calculated by applying the 
short-term cross-sectional properties of the composite girders. Unfortunately, the positive 
moments decrease due to creep. For systems with constant cross-sectional properties along 
the bridge’s axis, the time-dependent bending moments MD(t) can be estimated with the 
simple expression of Equation 7.27:
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where I1,D is the moment of inertia due to creep of type D; for creep due to imposed deforma-
tions, see in Section 6.1.2.

When MD(t) is known, then the partial internal forces can be calculated through Equations 
7.23 by replacing the index P with D. Subsequently, concrete stresses can be estimated and 
cracking can be controlled by imposing an adequate support movement δ.

When the cross-sectional properties of the main girders vary longitudinally, then the 
simplified method demonstrated in Figure 7.43 should not be applied. The secondary 
hogging moments MPT that cause the reduction of MD are calculated through the fol-
lowing steps:

 1. The bending moments (MD(t0)) due to the support movement δ are calculated by apply-
ing the short-term cross-sectional properties.

 2. The equivalent temperature of Equation 7.26 is applied at the noncracked areas that 
have inertia moment I1,PT.

 3. The secondary moments MPT are then calculated.

Attention must be paid to the fact that in Equation 7.26, the inertia moment I1,P should not 
be replaced by I1,D. This is because the moments MD(t0) are treated as permanent loading 
and not as imposed deformations. It is also worth mentioning that stresses due to MD and 
MPT should be calculated separately.
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L

[MD]
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at t > t0

gSectional forces at time t
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GC.CS
GC.A

z1,D L

δ
I1,0

Cross-sectional properties
longitudinally constant

MD(t) = MD(t0)
I1,D

I1,0

MD(t0)

Figure 7.43  Support movement of a continuous two-span composite bridge with nonvariable cross-sectional 
properties.
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7.4.3.2 Shrinkage

The shortening of the concrete slab due to shrinkage is restrained due to its shear connection 
with the steel girder so that there develops a tension force Nsh in it. Since this force is due to 
restraint, an equal compression force acts in the composite section as well as a moment Msh 
that equilibrates the pair of forces of the slab and the composite section; see Figure 7.44. 
Concluding, shrinkage results

• In the concrete slab
a tension force:
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• In the composite section
a compression force:

 
- = ◊ ◊ ◊N E Ash cs

S
cm ce h

h
0

and a moment:

 M N zsh sh S= ◊ 1,  (7.28b)

where
n0 is the short-term modular ration given in Table 6.4
nS is the long-term modular ratio for shrinkage; see Equation 6.20
z S1,  is the gravity center of the equivalent section calculated with nS; see Figure 7.39
Ecm is the concrete’s modulus of elasticity given in Table 6.1
Ac is the sectional area of the concrete slab based on the geometric width
εcs is the shrinkage strain according to Section 6.1.3

The time-dependent sectional forces and moments are calculated as follows:
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Figure 7.44 Primary and secondary effects due to shrinkage.
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The aforementioned self-equilibrating system of forces and moments constitute the primary 
effects of shrinkage; see Figure 7.44. In statically determinate systems, the primary effects 
of shrinkage result in non-negligible values of stresses and deflections.

The secondary internal forces in statically indeterminate systems can be calculated with 
the force method. But as previously mentioned, a more convenient method is the application 
of an equivalent temperature difference ∆TMS at the noncracked regions. The temperature 
difference is calculated with the following equation:
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In 3D models, the effects of shrinkage can be calculated by introducing a uniform tempera-
ture difference in the longitudinal slab elements equal to
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The secondary effects of shrinkage have to be taken into account in both ultimate and ser-
viceability limit states. If all cross sections are class 1 or 2, then secondary effects need not 
to be taken into account at ultimate limit states.

EXAMPLE 7.4

Calculation of the secondary effects for a two-span composite beam due to Figure 7.45.

• Permanent loads (uniformly distributed 40 kN/m, φ(7, ∞) = 2.5)
• Shrinkage (with εcs = 330 · 10−6, φ(1, ∞) = 3.6)
• Support movement (δ = 30 mm)

C35/45 As,tot = 75 cm2

CS1 CS2 CS1

3000 mm 3000 mm

25.5 m 25.5 m

250 mm

Cross section 1 Cross section 2

Pl. 400   20 Pl. 400   20

Pl. 1200  12.5
2  4.5 m

Pl. 400   30

Pl. 1200  12.5

Pl. 400   30

Figure 7.45 Cross sections at cracked and noncracked regions.
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The cross-sectional properties can be calculated according to Figure 7.39 and are given in Table 7.10.

• Figure 7.46 shows the “short-term” moment diagram [M0]. According to the simplified 
method of Figure 7.42, the equivalent temperature difference max ∆TMP is calculated from 
Equation 7.26 as follows:
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As previously mentioned, max ∆TMP is applied on the uncracked regions with moment of 
inertia equal to I1,PT = 2325001.35 cm4.

One can see that the secondary bending moment min MPT is significantly high. A less 
conservative calculation can be achieved by applying a temperature variation that follows 
the bending moment diagram [M0].

• The axial force Nsh due to shrinkage is according to Equation 7.28a:

 
N 2823.27 kNsh = - ◊ ◊ ◊ ◊ ◊ = --330 10

6 18
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The bending moment Msh is calculated by Equation 7.28b:

 M 2823.27 0.3774 1065.50 kN-msh = ◊ =

Table 7.10 Cross-sectional properties

nL zL cm( ) AL (cm2) IL (cm4)

Steel section — 81.64 350.00 913,809.5
Cross section 1
Short-term L = 0 6.18 18.28 1563.59 2,787,747.54
Long-term L = P 23.18 42.42 673.62 2,051,464.70
Long-term L = PT 
for φt = 2.5

14.68 33.19 860.99 2,325,001.35

Long-term L = S 18.42 37.74 757.25 2,189,674.69
Long-term L = PT 
for φt = 3.6

18.42 37.74 757.25 2,189,674.69

Long-term D 29.36 47.19 605.49 1,911,522.82
Cross section 2 — 67.24 425 1,325,506.00

[MPT]

[M0]

2913.38 kN-m

min MPt = –869.43 kN-m

–3498.32 kN-m

max ΔTMP= 26.79°C

I1,PT

I2,sa

I1,0 I1,0

+ +

–

–

I1,PT (with   t = 2.5)

Figure 7.46 Calculation of secondary effects with an equivalent temperature difference for permanent loading (P).
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The temperature difference that will be applied on the uncracked regions is according to 
Equation 7.30 (Figure 7.47)
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• At internal support, a movement equal to 30 mm is imposed; see Figure 7.48. Since the 
cross-sectional properties of the beam do not vary longitudinally, the expression in 
Equation 7.27 can be used. The final value for the positive moment at internal support 
becomes after the reduction due to creep equal to

 
M 576.17 395.07 kN-m

1911522.82
2787747.54
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REMARK 7.8

The tension stiffening effect could be taken into account in the previous calculations by increasing 
the reinforcement of the fully cracked section (CS2) from 75 cm2 to At,i, where At,i is calculated 
by Equation 7.14 as follows:
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The inertia moment of the cross section 2 becomes then I2,sa = 1,472,822 cm4.
This leads to an increase of the hogging moments ∼5%.

It has to be noted that the calculation procedure for the secondary effects with an equivalent 
temperature can be easily applied on grillage systems. The influence of the secondary effects 
on elements such as cross girders, diagonals, and bearings can be in this way investigated.

I1,PT I2,sa

–
min MPT = –1069.19 kN-m[MPT ]

ΔTMS = 34.76°C

I1,PT (with    t = 3.6)

Figure 7.47 Calculation of secondary effects with an equivalent temperature difference for shrinkage (S).

30 mm

395.07 kN-m

+
[MD]

at t0

at t∞

I1,0

576.17 kN-m

Figure 7.48 Calculation of secondary effects for imposed deformations (D).
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7.5  MODELS FOR SLAB ANALYSIS AND DESIGN 
IN TRANSVERSE DIRECTION

7.5.1 General

The models presented so far mainly refer to the longitudinal direction of the bridge. However, 
they do not cover the analysis and design of the concrete slab that spans usually in the trans-
verse direction between the longitudinal steel girders. The analysis of the slab provides the 
bending moments that allow for the determination of the required reinforcement at ultimate 
limit states, the control of crack widths, and all other requirements for design. The slab is 
subjected to distributed loading due to self-weight, traffic, and concentrated wheel loads.

7.5.2 Distributed permanent and variable loads

The analysis for distributed loads may be performed on a strip of unit width. The cross 
section of the strip is of reinforced concrete with constant or variable thickness in case of 
haunches. This means that uncracked analysis is performed in transverse direction. The 
strip is supported by the longitudinal steel girders or the webs of the box for box-girder 
sections as shown in case b in Figure 7.49. The influence lines for the moments at critical 
sections, as indicatively shown in Figure 7.50, provide the areas where the traffic loads are 
to be positioned in order to determine the most unfavorable effects. Accordingly, traffic 
loads are placed for support moments only over regions of negative values of the influence 
line, whereas for span moments, only over regions of positive values of the influence line. 
Design moments are determined by multiplication with the relevant safety factors γG and γQ. 
Theoretically, distinction should be made between favorable and unfavorable values of γG 
and γQ. This means that γG should be taken equal to 1.0 in regions of positive values of the 
influence line and 1.35 in regions of negative values of the influence line in order to deter-
mine the design value of support moments. However, this constitutes an overstatement of 
the physical probability and many designers do not follow this in practice.

The assumption that the girders provide rigid support represents the conditions near the 
support region of the girders. However, in the span region, the girders deflect at loading and 
provide rather a flexible than a rigid support to the slab. Accordingly, the strip should be con-
sidered as supported by springs. The spring constant may be determined by consideration of 
the deflection of the girders due to loading. This deflection is a function of the longitudinal 
position considered and the overall support conditions of the bridge. For example, for a simply 
supported girder, the deflection at mid-span due to a uniformly distributed load p is equal to

 
d= ◊ ◊

◊ ◊
5
384

4p L
E I

 (7.32)

2.902.902.90 1.951.95

Support
1 m

Strip(a) (b)

Figure 7.49  Strip model for the analysis of the slab in transverse direction. (a) For multi-girder and (b) box 
girder bridges.
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The spring constant may be then determined from

 
k p L E I

L
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384
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where
L is the span length
E · I is the bending stiffness of the girder

Evidently, the flexibility of the spring relative to the flexibility (thickness) of the slab influ-
ences considerably the response of the strip to loading. Figure 7.51 shows indicatively the 
bending moments of a 30 cm thick slab resting on four main girders, for a simply supported 25 
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Figure 7.51  Bending moments in kN-m/m of slab (a) on rigid and (b) on flexible supports due to uniformly 
distributed loading in the central regions.
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m span bridge for girders with I = 27 · 105 cm4 under uniformly distributed loading 5.28 kN/m 
between the girders. It may be seen that the model on rigid supports provides  conservative 
values of the support moments, while the model on flexible supports for span moments.

Besides their values, the influence lines of the bending moments differ for flexible sup-
ports. Figure 7.52 shows indicatively the influence lines for the support moment and the 
two-span moments for a slab with the properties given earlier. It may be seen that the influ-
ence lines do not change sign from span to span any more. Consequently, the lanes with 
traffic loads should be positioned differently compared to the case of rigid supports.

Concluding, it may be said that the bending moments due to distributed permanent and 
traffic loads may be determined by two strip models: one on rigid supports that expresses the 
conditions in the support regions of the bridge and one on flexible supports that expresses 
the conditions in the span regions of the bridge. The first model provides unfavorable bend-
ing moments at the supports of the slab, the second at the spans.

7.5.3 Wheel loads from traffic

The strip model is not appropriate for the determination of the slab moments due to wheel 
loads from traffic. As discussed before, the strip model provides only transverse and not 
longitudinal moment that exists when a slab is subjected to concentrated forces. In addition, 
the width of the strip depends on the distance between girders and the contact area of the 
wheel. Using the theory of elasticity, Westergaard [7.35] proposes for a simply supported 
slab under central load, presented in Figure 7.53, following crude approximation for this 
width, called effective width:

 b s cc = - ◊ + ◊0 58 2.  (7.34)

where
s is the distance between girders (=span of the slab)
c is the radius of the circle over which the load is considered to be distributed
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However, this simple formula cannot cover the practical situations since the load models 
considered have more wheels acting on any position and the support conditions of the slab 
do not always correspond to simple supports. A solution was given by Pucher [7.22] who 
developed charts with influence areas for the moments in transverse and longitudinal direc-
tions for elastic slabs under various support conditions, ranging from simple supports to 
fixed supports. The wheel loads are then placed appropriately within the chart to produce 
the most unfavorable effects. In fact, the wheel loads are acting in a small contact area, 
determined from Figure 4.2, and these contact areas are positioned into the charts, as indic-
atively shown in Figure 7.54. In the United States, similar methods based on Westergaard 
are applied. The final design moments are determined by superposition of the moments due 
to distributed and wheel loads.

7.5.4 Finite element models

Finite element models are most appropriate for the analysis and design of the deck slab. They 
are based on the theory of elasticity and provide transverse and longitudinal moments for 
any type of loading whether distributed or concentrated. The simplest way is to isolate the 
slab from the overall system and set fixed support conditions at the positions of the girders. 

P

c

s/2s/2

s

Figure 7.53 Simply supported slab under concentrated central load.

Traffic
direction

Transverse moments

Longitudinal moments

Figure 7.54  Influence areas for bending moments of a simply supported slab and the position of wheel loads 
to determine maximum values.
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The advantage of this model compared to those previously presented is that it delivers the 
bending moment distribution with a common and not with separate models for distributed 
and concentrated loads. Figure 7.55 shows indicatively an FE slab model of a bridge slab sup-
ported by four girders. In this example, the length of the bridge is 33 m, the width of the slab 
9.44 m, its thickness 22 cm, and the distance between girders is 2.65 m. The figure shows 
the deformed shape of the deck when subjected to four wheel loads of the tandem system of 
Load Model 1 presented in Chapter 4. As shown in Table 4.5, each wheel load is 150 kN, the 
distance between wheel is 2.0 m in transverse and 1.2 m in longitudinal direction. In trans-
verse direction, the two loads are placed at mid-span between the intermediate girders, the 
other two 1.2 m on the left. The deformed shape shows that after a certain distance the loads 
do not affect the deck. Consequently, only a small part of the deck in longitudinal direction 
may be modeled. This length corresponds to the effective width proposed by Westergaard.

Figure 7.56 shows the bending moments in a part of the deck near the applied loads. It may 
be seen that the influence length in this example is about 4.0 m, but this clearly depends on 

Figure 7.55 Deformed shape of an FE model of a bridge deck on four girders under four wheel loads.
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Figure 7.56 Bending moments of the deck; units in kN-m/m.



Modeling and methods for global analysis 247

the distance between the girders. The shape of the transverse moments is similar to the shape 
for continuous beams, exhibiting positive moments at span and negative over supports. It 
may be seen that for concentrated forces, the longitudinal moments are quite high and can-
not be neglected in design. In this example, the maximal longitudinal span moment is 18 kN-
m/m, while the maximal transverse span moment 44.4 kN-m/m, their ratio being about ½.

The FE models with rigid supports are based on similar assumptions as the approximate 
methods introduced before that were used for a long time in slab analysis. However, they 
do not consider the flexibility of the longitudinal girders in the span region that corresponds 
to a rather flexible than rigid support. A further step in FE modeling of the slab is to con-
sider the entire bridge, introducing the girders for simplicity by means of beam elements. As 
shown in Figure 7.57, the girders deflect under wheel loads in the span region, thus provid-
ing flexible supports to the slab.

Figure 7.58 shows the transverse bending moments when the bridge is subjected to uniformly 
distributed loading 5.28 kN/m2 between the girders, but not in the cantilevers. It may be seen 
that the shape of the diagram is similar to those provided by the strip model. The moments in 
the span region are always positive, either in the span or over the girders, similar to the results 
of the strip model on flexible supports shown in Figure 7.51. However, near the bridge sup-
ports, the moments over the girders become negative since the girders deflect less and get stiffer.

Similar observations may be made for concentrated wheel loads. Figure 7.59 shows that 
the minimum moment over the girder for wheel loads near supports is −38.9 kN-m/m, 
more than twice as large compared to the moment for wheel loads in span, −12.4 kN-m/m. 
Contrary, the maximal moment in span for wheel loads in the span, 58.9 kN-m/m, is 
approx. 35% larger than the corresponding moment for wheel loads near supports, 
43.7 kN-m/m.

Figure 7.60 shows the longitudinal moments for both loading conditions. It may be seen 
that the moments in span are in both cases as high as 50% of the transverse moments.

z

Figure 7.57 Deformed shape of a bridge deck on four girders under four wheel loads in the span.
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7.6 FINITE ELEMENT MODELS FOR GLOBAL ANALYSIS

Finite element analysis may be employed for global analysis as well. This analysis allows for

 a. Tracing of regions of stress concentrations.
  The stresses cannot be determined correctly by application of beam theory in compli-

cated structural details. Therefore, modeling such areas by FEM is useful for stress 
and fatigue verifications and appropriate strengthening at such details.

 b. Code provisions differ in the estimation of the effective widths. Therefore, especially 
for fatigue verifications, FEM might be used.

 c. Calibration of results of other methods.

As seen before, the appropriateness of simplified analysis models may be checked by com-
parison with FEM results.

Figure 7.61 shows the FE model of a box-girder bridge. The web and the bottom flange of 
the cross section and the plated diaphragms are represented by shell elements. For the top 
flange, it is more convenient to use beam elements due to the easy connection with the nodes 
of the elements of the concrete slab. An additional reason for choosing beam elements for 
the top flanges is that they are usually classified as compact cross sections; thus, unnecessary 
plate buckling modes can be avoided.

Stiffeners should be modeled as beam elements. From the internal forces in the  stiffeners, 
the designer can judge about their participation in the structural performance of the cross 
section. For example, stiffeners that attract low axial forces are noneffective and their posi-
tion should be changed. Moreover, designers should take a close look at the deformations 
of the flanges and the webs. Thus, conclusions can be drawn about the stiffness of the 
 stiffeners. This is discussed further in Chapter 8.

Internal braces are modeled as truss or beam elements. It is important to note that truss 
elements possess only longitudinal degrees of freedoms, and during a buckling analysis, the 
buckling modes of the bracings will not be analyzed. In such cases, bracings should be mod-
eled as beam elements with rotational releases at the ends.

The concrete slab is usually modeled with shell elements. This is easy to implement but has 
the disadvantage of neglecting the eccentricity between the gravity centers of the slab and 
the top flange. In cases of slabs with haunches, volume elements give more accurate results. 

Deck slab
(shell or volume elements)

Top flange
(beam elements)

Internal bracing
(truss elements) Internal frame

(beam elements)

Stiffeners
(beam elements)

Plated diaphragm
(shell elements)

Bearings
(spring elements)

Cross section

FE-model

Web and bottom flange
(shell elements)

Figure 7.61 FE model for a composite box-girder bridge.
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A convenient way to consider concrete cracking at hogging moment areas is to use a reduced 
modulus of elasticity according to the following equation:

 
E E A

h bccr
s t

c ref
, = ◊

◊
 (7.35)

where
hc is the depth for the deck slab
Es is the modulus of elasticity of reinforcing steel
bref is a reference width (usually equal to 1 m)
At is the cross-sectional area of the cracked slab taking into account the tension stiffen-

ing effect according to Equation 7.14 for the reference width bref

As already mentioned in Chapter 6, Poisson’s ratio of the cracked concrete is taken as 
equal to zero.

REMARK 7.9

Many FE programs have shell and volume elements with orthotropic properties. In the lon-
gitudinal direction, the elastic modulus of elasticity of the slab elements is determined from 
Equation 7.35 so that cracking is considered; thus, Ex = Ec,cr. However, in the transverse direc-
tion, concrete cracking may not be of the same magnitude (e.g., in multi-girder bridges of Figure 
2.5); therefore, Ey = Ecm. With orthotropic FEM, both cracking in the longitudinal direction and 
the increased flexural stiffness in the transverse direction for the distribution of the vertical 
loads on the main girders can be “realistically” taken into account. For the sagging moment 
areas, noncracked isotropic elements are used (Figure 7.62).

Interesting information for FE modeling is found also in [7.18] and [7.24].

hc

Ey = Ecm (Table 6.1)

Ey = Ecm (Table 6.1)

Ex = Ec,cr (Equation 7.35)

Orthotropic elements

Cracked zone

Uncracked zones

Isotropic elements

Ex = Ecm (Table 6.1)

Figure 7.62 Use of orthotropic FEM in cracked regions and isotropic elements in the uncracked ones.



Modeling and methods for global analysis 251

EXAMPLE 7.5

The deck slab of a continuous bridge has a constant depth at hogging moment areas of 27 cm 
and a reinforcement ratio 2.1%. The slab will be modeled with shell elements whose equivalent 
modulus of elasticity at hogging moment areas is to be calculated. Materials C35/45, B500B.

C35/45 (Table 6.1): Ecm = 3400 kN/cm2, fctm = 0.32 kN/cm2

B500B: Es = 20,000 kN/cm2, fsk = 50 kN/cm2

For a reference width bref = 1 m:

Equation 7.14: A
0.021 27 100

(0.5 0.32 / 0.021 50)
66.89 cm /mt

2= ◊ ◊
- ◊ ◊

=
1

Equation 7.35: E
21000 66.89

520.3 kN/cmc,eff
2= ◊

◊
=

27 100
Cracked regions will be modeled with orthotropic C35/45 shell elements with an elastic 

modulus of elasticity in the longitudinal direction equal to Ex = 520.3 kN/cm2.
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Chapter 8

Buckling of plated elements

8.1 INTRODUCTION

Box girder bridges were a popular choice during the road building expansion in the 1960s. 
A serious blow to this use was a sequence of five serious disasters, where new bridges failed 
or collapsed in 1969 (Danube bridge in Vienna), 1970 (West Gate bridge in Melbourne, 
Cleddau bridge in Wales), 1971 (Rhine bridge in Koblenz), and 1973 (Zeulenroda); see [8.14]. 
All accidents happened during construction that was made by incremental launching, where 
new segments are placed onto the completed portions of the bridge until the bridge super-
structure is completed. It was found that failures were primarily due to plate buckling of 
the bottom flanges that were subjected to compression at the cantilever support (Figure 8.1). 
These bridges were designed by different codes, so that their revision was set as a priority 
of the time. Since then, a lot of effort was made to provide safe buckling rules that will be 
presented in this chapter.

Cross sections of composite bridge girders are composed of plated elements connected at 
common joints by welding. But also, rolled sections, although homogeneous in production, 
are composed of plated elements. Figure 8.2 shows the decomposition of an I section and 
a box section into their plated elements. The common edges provide supports that are con-
sidered for simplicity reasons as simple supports. Two types of elements are distinguished: 
internal elements supported at both edges and outstand elements supported at one edge. 
For the composite I-girder of Figure 8.2a, element 1 is an internal element and 2 and 3 out-
stand elements, while for the box girder, all elements are internal. When a cross section is 
subjected to internal forces and moments or concentrated forces, in-plane direct and shear 
stresses develop in its plated elements. It could be suggested that the strength of the element 
is exhausted when the maximum stress reaches its limit value, which is the yield stress fy 
for compression and ty yf= / 3 for shear stresses. However, in-plane loaded plates may be 
subjected to out-of-plane deformations as shown in Figure 8.3 for the bottom flange of a box 
girder with a concrete top flange. These deformations lead to plate buckling phenomena that 
result in a reduction of the corresponding strength. Like in buckling of struts, the strength 
reduction depends on the plate slenderness, which is a function of its thickness. Therefore, 
thinner plates are more prone to plate buckling and exhibit larger reduction in strength. 
Plate buckling, as Figure 8.3 shows, affects only the compression parts and not the entire 
cross section and is therefore often referred to as local buckling.

A reduction in weight is crucial for an economic design of composite bridges. This leads in 
practice to thin-walled, and mostly welded, cross sections that are prone to local buckling. 
As indicated in Table 8.1, such sections are referred to as class 4 cross sections and shall be 
verified for plate buckling.

An increase in strength may be achieved by provision of longitudinal and/or transverse 
stiffeners as shown in Figure 8.4 (see also Figures 2.21 through 2.25). Stiffening of plates is 
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often preferred to a global increase in plate thickness, because the stiffeners may be accom-
modated in the most stressed regions resulting in less weight and welding of thick sheets is 
avoided.

Plate buckling refers to flat rectangular panels of thickness t and dimensions a × b, where 
a is the panel length and b the panel width (see Figure 8.5).

Figure 8.1  Buckling of compressed bottom flange, Danube bridge in Vienna. (From Scheer, J., Failed bridges. 
Case Studies, Causes and Consequences. Ernst und Sohn, Berlin, Germany, 2010.)

Internal elements
11

22

3

3 Outstand elements

(b)(a)

Figure 8.2 Decomposition of (a) I and (b) box girder sections into internal and outstand plated elements.

M < 0

Figure 8.3 Out-of-plane deformations and plate (local) buckling of the bottom flange.
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Table 8.1 Design procedures for strut and plate buckling for class 4 cross sections

Buckling of struts Buckling of plates

Problem
N

Step 1:
Elastic critical buckling stress

Ncr
cr

cr

Step 2:
Nondimensional slenderness l

s
= fy

cr
l

s
l

t
= =f

or
fy

cr
w

y

cr

/ 3

Step 3:
Reduction factor from 
buckling curves

χ ρ or χw

Step 4:
Design strength s c

gRd
y
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f= ◊
1
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Figure 8.4 Stiffening of plates with transverse and longitudinal stiffeners.
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Figure 8.5 Panel dimensions for rectangular panels and at haunches.
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Curved panels may be regarded as flat, provided that the curvature radius satisfies

 
r b

t
≥

2

 (8.1a)

Nonrectangular panels, as in case of haunches, may be considered as rectangular, pro-
vided a and b are taken as the largest dimensions of the panel (see Figure 8.5). The panels 
are supported at their edges. The longitudinal edges are at the joints with the neighboring 
panels of the cross section, as shown in Figure 8.2, and run parallel to the bridge direc-
tion. For internal elements, both longitudinal edges are supported, while for outstand 
elements, one longitudinal edge is supported the other being free. The transverse edges 
are at the positions of diaphragms or sufficiently stiff transverse stiffeners. When flex-
ible transverse stiffeners are provided, the panel includes these stiffeners as they are not 
considered as supported edges. Figure 8.6 shows a panel stiffened with two longitudinal 
and transverse stiffeners. For panels with longitudinal stiffeners, subpanels between stiff-
eners may be regarded.

The panels are loaded in-plane along their edges. Out-of-plane loading is not considered. 
Stresses acting at midplane of panels, as shown in Figure 8.7 for the bottom flange of a box 
girder, are considered. This is due to the fact that membrane theory is used for buckling 
analysis. Compression stresses are positive, tension stresses negative.

This chapter presents the design of members with plated, class 4 elements following the 
rules of the Eurocodes and especially of EN 1993-1-5 [8.4]. It will be seen that plate buckling 
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Subpanel between longitudinal stiffeners

Figure 8.6 Dimensions for rectangular (sub)panels.

Longitudinal stresses

MEd

t t/2
t/2

Membrane stresses σx = σau
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Figure 8.7 Membrane stresses of panels.
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behavior is influenced by two effects: post-critical strength and column-like behavior. For 
direct stresses, two design methods may be employed [8.5]: the effective width method and 
the reduced stress method.

In composite bridges, the slab is connected to the top flange of the steel girder and pre-
vents its out-of-plane deformations. In addition, the bottom flanges of I-girders are usually 
sufficiently thick not to be classified in class 4. Therefore, the following plated elements are 
practically considered in design at the final stage:

 a. Webs of I- and box girders subjected to direct stresses due to moments and compression
 b. Webs of I- and box girders subjected to shear stresses due to vertical shear and torsion
 c. Bottom flanges of box girders subjected to direct stresses due to negative moments and 

compression
 d. Bottom flanges of box girders subjected to shear stresses due to torsion
 e. Webs of I- and box girders subjected to direct and shear stresses due to concentrated 

forces, for example, during launching operations

Obviously, at construction stages before placement of the concrete, more elements may be 
affected by plate buckling since the girders are of pure steel.

As an introduction, it is said that the design procedures for buckling of struts and plates 
illustrated in Table 8.1 are similar. It may be seen that the first step includes an elastic buck-
ling analysis to determine the elastic critical buckling stress that is subsequently used as 
reference for the calculation of a nondimensional slenderness. The design strength is finally 
calculated by determination of reduction factors from relevant buckling curves and applica-
tion of the factors to the yield stress.

Following these steps, this chapter presents first the determination of critical plate-buckling 
stresses for single and combined loading conditions, followed by presentation of the plate 
buckling curves and finally the panel and cross-sectional verifications for internal forces and 
moments.

8.2 ELASTIC CRITICAL STRESS

8.2.1 Introduction

As outlined before, the first step in the analysis for plate buckling is the determination of 
the elastic critical buckling stress. This is the stress at which an ideal plate without imper-
fections and elastic behavior becomes unstable. Critical stresses may be determined by the 
application of linear plate buckling theory, which considers small displacements. In the fol-
lowing, critical buckling stresses of unstiffened and stiffened panels and subpanels under 
direct and shear loading and various loading combinations will be presented.

8.2.2 Unstiffened panels

As widely known, the equilibrium of a compression strut under Euler conditions— elastic 
behavior, no geometric or structural imperfections, and no load eccentricity—becomes 
unstable, and the initially straight strut buckles when the load reaches a critical value, which 
is equal to the Euler load Ncr. Similarly, a perfect elastic plate buckles at a critical stress 
when loaded in-plane. Figure 8.8 shows a plate with Navier (simple) support conditions at 
all edges for uniform compression.
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The bending stiffness of this plate is given by

 
D E t= ◊

◊ -

3

212 1( )n
 (8.1)

where
E is the modulus of elasticity
t is the plate thickness
v is the Poisson ratio (=0.3 for steel)

The shape of the plate at the buckling state is expressed by double Fourier series as follows:
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where
w is the out-of-plane displacement
m and n are the number of sinusoidal half-waves in longitudinal and transverse direc-

tions x and correspondingly y.
Amn is the unknown coefficient representing generalized displacements

The critical buckling stress of this plate is determined from
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The minimum value of the critical stress occurs when n = 1 that corresponds to one half-
wave in transverse direction. Using Equations 8.1 through 8.3, the critical buckling stress 
may be written as
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Figure 8.8 Plate panel under uniform compression.
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where kσ is the buckling factor determined from
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Figure 8.9 shows values of the buckling factor for a simply supported plate under uniform 
axial compression as a function of the aspect ratio a/b. Evidently, the critical stress is deter-
mined from the least value of kσ. For the loading and support conditions considered, it may 
be seen that the minimum value of the buckling factor is equal to kσ = 4 and is achieved if the 
aspect ratio is an integer number or if it is larger than 4.

Each value of m corresponds to a buckling mode. Figure 8.10 shows the first two buckling 
modes of the plate of Figure 8.9 having an aspect ratio α = a/b = 1.2. The first mode is the 
critical one.

Figure 8.9 indicates that the critical number of half-waves increases with increasing 
value of the aspect ratio. For a plate with an aspect ratio 3, m = 3 provides the least buck-
ling factor, followed by m = 4. Figure 8.11 shows the first buckling mode of such a plate, 
confirming the earlier observation. It may be seen that the half-wave length for a long 
plate is approximately equal to its width b. This leads to the conclusion that, contrary 
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Figure 8.9 Buckling factor kσ of unstiffened simply supported panels under uniform axial compression.

Second buckling mode: m = 2First buckling mode: m = 1

Figure 8.10 First two buckling modes of the panel of Figure 8.9 with aspect ratio 1.2.
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to struts, the buckling length of a plate is determined from its width, not its length. This 
is of significant practical importance since a long plate corresponds to an unstiffened 
wall of a cross section.

It may be noted that the critical stress is determined by numerical methods, since it is 
almost impossible to find analytical solutions. The most usual method employed is the 
Rayleigh–Ritz energy method, where the variations of the strain energy of the plate, ∆U, 
and the internal work, ∆Wint(Scr), for critical stresses Scr are determined (see [8.1]). The criti-
cal state corresponds to indifferent equilibrium and therefore to the condition:

 D DU W S im umcr- = =int( ) m in0  (8.6)

The strain energy of an isotropic plate is given by
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The internal work of an isotropic plate is given by
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The plate stiffness D and the deflection w from Equations 8.1 to 8.2 are introduced in the 
earlier expressions, and all necessary derivations and integrations are performed. Then the 
expressions are substituted in (8.6). This leads to the solution of an eigenvalue problem that 
provides the buckling modes. For stiffened plates, the same procedure is followed; however, 
the strain energy and the internal work of the stiffeners must be added in Equations 8.7 and 
8.8 as shown later in Section 8.2.3.

The critical buckling stress for steel plates under more general loading and supporting 
conditions is given by

 
s sscrp ek, = ◊  (8.9)

First buckling mode: m = 3 Second buckling mode: m = 4

Figure 8.11 First two buckling modes of the panel of Figure 8.9 with aspect ratio 3.
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where kσ is the buckling factor and
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The critical buckling shear stress is similarly given by

 t stcr ek= ◊  (8.11)

where kτ is the buckling factor for shear stresses.
It is reminded that the Euler stress of a strut is given by
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where l = L
i

 is the slenderness.

Comparing the expressions of the critical plate buckling stress with the Euler stress of the 
strut, it may be observed that the slenderness of the plate is expressed by the ratiο b/t, where 
the width of the plate corresponds to the “length (L)” and the thickness (t) to the “radius of 
gyration (i).”

The buckling factor depends on

• The support conditions
• The type of stresses (direct or shear stresses)
• The loading conditions—uniform compression, bending, bending and compression—

that are expressed by the ratio ψ of the edge stresses

Tables 8.2 and 8.3 give buckling factors for internal and outstand unstiffened panels (see [8.4]).

8.2.3 Stiffened panels

The critical stresses, and ultimately the panel strength, may be increased by provision of 
stiffeners. In bridges, both longitudinal and transverse stiffeners are provided. The longitu-
dinal stiffeners may have open cross section—flat bars, tees, angles, bulbs—or trapezoidal 
closed sections as shown in Figure 8.12a. Trapezoidal stiffeners are preferred since they have 
higher torsional rigidity and are not subjected to lateral torsional buckling when in compres-
sion. For fabrication reasons, transverse stiffeners are tees with cutouts in the web to allow 
passing of the longitudinal stiffeners as shown in Figure 8.12b.

Panels under uniform compression (ψ = 1), like bottom flanges of box girders under 
negative bending, are stiffened by equally distanced longitudinal stiffeners (Figure 8.12b). 
In webs that are subjected to tension and compression, a small number of individual stiffen-
ers is provided only in the compression zone.

Critical stresses may be determined for stiffened panels by the energy method as 
introduced before. However, in this case, the strain energy and the internal work of the 
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Table 8.2 Buckling factors kσ and kτ for internal panels

Distribution of direct stresses (compression positive)

b

a 2> 0

1

2 2< 0

1 11

2

y s
s

= 2

1

1 1 > ψ > 0 0 0 > ψ > −1 −1 −1 > ψ > −3

Buckling 
factor kσ

4.0 8.2/(1.05 + ψ) 7.81 7.81 − 6.29 · ψ + 
9.78 · ψ2

23.9 5.98 · (1 − ψ)2

Shear stresses

b

a

Aspect ratio a = ≥a
b

1 a = <a
b

1

Buckling 
factor kτ

kt a
= +5 34

4 0
2.
.

k = 4.0+
5.34

2t a
Source: EN 1993-1-5, CEN (European Committee for Standardization): Design of steel structures, 
Part 1–5: Plated structural elements, 2006.

Table 8.3 Buckling factor kσ for outstand panels

Maximum compression at free edge

1 1
2

2

y s
s

= 2

1

1 0 −1 −1 ≥ ψ ≥ −3

Buckling factor kσ 0.43 0.57 0.85 0.57 − 0.21 · ψ + 0.07 · ψ2

Maximum compression at supported edge

2
11

2

y s
s

= 2

1

1 1 > ψ > 0 0 0 > ψ > −1 −1

Buckling factor kσ 0.43 0.578/(0.34 + ψ) 1.70 1.7 − 5 · ψ + 17.1 · ψ2 23.8

Source: EN 1993-1-5, CEN (European Committee for Standardization): Design of steel structures, 
Part 1–5: Plated structural elements, 2006.
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stiffeners must be added to those of the plate. This may be done either by “smearing” the 
stiffeners in the plate and writing the relevant expressions for an orthotropic plate or by 
considering each stiffener individually and adding its strain energy and work to those of 
the plate. For example, the strain energy and the internal work of ni longitudinal stiffeners 
at the positions y = yi, with a stress σxi, may be written as
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where
Asxi is the cross-sectional area of the stiffener i
Jsxi is the torsional constant of the stiffener i

It is reminded that in practice transverse stiffeners constitute rigid supports for the panel. 
This is due to the fact that this support is required during the examination of the column-
like behavior of the panel is discussed in Section 8.3.3. Accordingly, the panel length is 
normally equal to the spacing between transverse stiffeners, and the relevant strain energy 
and internal work are not considered.

The critical and the reference stresses of stiffened plates are determined by Equations 8.9 
through 8.11, valid also for unstiffened panels, the only difference being the values of the 
buckling factors. Buckling factors of stiffened plates may be found in the literature [8.12]. 
Tables 8.4 and 8.5 are given in EN 1993-1-5 [8.4] and provide values of buckling factors for 
plates with many equal stiffeners. In Table 8.4, the stiffeners are smeared into an equiva-
lent orthotropic plate. Attention must be paid to the limitations for the stress ratio ψ ≥ 0.5 
(whole panel under compression) and the aspect ratio α ≥ 0.5.

Tables 8.6 and 8.7 give directly the critical stress for plates with one or two stiffeners in 
the compression zone. They are derived as a critical stress of the stiffener, considering them 
as a strut on elastic foundation reflecting the plate effect in transverse direction, known also 
as the fictitious column method.

Transverse
stiffener

Longitudinal stiffeners

(a) (b)

Figure 8.12 (a) Shapes of longitudinal stiffeners and (b) transverse stiffeners with web cutouts.
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REMARK 8.1

The buckling factors and stresses given in EN 1993-1-5 (Tables 8.4 through 8.7) assume that

• Transverse stiffeners are rigid. The verification of the rigidity of the transverse stiffeners 
is discussed in Section 8.11. Flexible transverse stiffeners are not covered by the code, and 
their use is not recommended.

• Longitudinal stiffeners are not class 4. If not reduced, cross-sectional properties due to 
local buckling should be used (see Section 8.5).

• The torsional rigidity of the longitudinal stiffeners is zero. Indeed, one can see that in the 
expressions given in the previous tables, the torsional constant of the longitudinal stiffen-
ers is missing. This is obviously a conservative assumption, which in the case of panels 
with closed stiffeners can be considerably uneconomical.

• Torsional buckling failure of the longitudinal stiffeners is avoided.
• The panels have no openings.

Table 8.4  Buckling factors for Navier panels (simply supported at 
all edges) with three or more equal distant longitudinal 
stiffeners considered as orthotropic plates
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Design of steel structures, Part 1–5: Plated structural elements, 2006.
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An alternative to closed formulae is the employment of numerical methods. When finite 
elements are employed, the plate may be modeled by shell elements and the stiffeners by 
beam or shell elements. Applying linear buckling analysis provides the critical load factor 
αcr by which the applied loads must be multiplied to reach the critical state. The critical 
stresses are then determined from Equation 8.15, and similarly, for the shear stresses

 s a scr cr= ◊  (8.15)

where σ is the acting stress.

Table 8.5 Shear buckling factors for Navier panels (simply supported at all edges)
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Notes:

Isl = Second moment of area around z–z axis of one stiffener including an associated plate width 
15 · ε · t (e= 235/fy , fy in N/mm2).

I =slÂ  Sum of the second moment of area of the stiffeners (if more than two)—not necessarily 
equally spaced.
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Table 8.6  Critical stress for Navier panels with one longitudinal stiffener in the compression zone under 
direct stresses
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Source: EN 1993-1-5, 2006 Eurocode 3: Design of steel structures, Part 1–5: Plated Structural Elements, 2006.

Note: Asl,1, gross area of the stiffener and the adjacent parts of the plate as shown in the figure earlier; ψ, the stress ratio 
of the subpanel under consideration; Isl,1, second moment of area of the stiffener and the adjacent parts of the plate as 
shown in the figure earlier; b1, b2, the distances from the longitudinal edges of the web to the stiffener; b1 + b2 = b, the width 

of the whole stiffened plate, a
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4. , , the wavelength of buckling, assuming the rigid transverse stiffeners to 
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Table 8.7  Critical stress for Navier panels with two longitudinal stiffeners in the compression zone

B*

B*

B*

I

IIII (rigid)

I (rigid)
b1
*

b1
*

b1
*

b2
*

b2
*

b2
*

(a) Stiffener I (b) Stiffener II (c) Lumped stiffener

Cross-sectional area Asl,l Asl,2 Asl,1 + Asl,2

Second moment of area Isl,1 Isl,2 Isl,1 + Isl,2
Three cases are considered where each time one stiffener is considered so that the critical 
stress is determined according to Table 8.6. Any stiffeners in the tension zone are ignored.

Case I  Stiffener II is considered as rigid. The widths b, b1, and b2 of Table 8.6 are set as in 
Figure (a) earlier.

Case II  Stiffener I is considered as rigid. The widths b, b1, and b2 of Table 8.6 are set as in 
Figure (b) earlier.

Case III  The two stiffeners are considered as one lumped stiffener that is located at the 
resultant of the respective forces σ · Asl of the individual stiffeners. The widths b, b1, 
and b2 of Table 8.6 are set as in Figure (c) earlier.

The critical stress is the smallest of the three cases.
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A powerful tool for the determination of the critical stresses for unstiffened and stiffened 
rectangular panels is developed in [8.6] and may be downloaded free of charge.

EXAMPLE 8.1

A plate of length a = 3.0 m, width b = 2.0 m, and thickness t = 10 mm shown in Figure 8.13 is 
subjected to compression with edge stresses σx1 = 10 N/mm2 and σx2 = 5 N/mm2. The plate is 
stiffened by three equal distanced longitudinal flat stiffeners of height h = 150 mm and thickness 
t = 10 mm. The critical stresses are to be determined.

Numerical determination
The load factor for the 1st buckling mode (Figure 8.13) was found by the numerical method as 
equal to αcr = 40.23; the critical stress is then, Equation 8.15:

 scr N mm= ◊ =40 23 10 402 3 2. . /

Determination by formulae according to Table 8.4
Equation 8.10, reference stress:
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Figure 8.13 Stiffened plate of Example 8.1 and first buckling mode.
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Equation 8.9, critical stress:

 scr p N mm, . . .= ◊ =89 47 4 75 424 98 2/

This value is 5.6% higher compared to the numerical one.

EXAMPLE 8.2

The stiffened plate of Example 8.1 (a = 3.0 m, b = 2.0 m, t = 10 mm) is subjected to a shear stress 
τ = 15 N/mm2. The critical stresses are to be determined. Steel S 355.

Numerical determination
The critical load factor for the 1st buckling mode shown in Figure 8.14 was found by the numeri-
cal method as equal to αcr = 21.27. The critical stress is then, Equation 8.15:

 tcr N mm= ◊ =21 27 15 319 05 2. . /

Determination by formulae according to Table 8.5
Equation 8.10, reference stress:
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Steel S 355

Associated plate width to the stiffener: 2 · 15 · 0 . 81 · 1 + 1 = 25.3 cm; see note in Table 8.5.
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Second moment of area of one stiffener including the associated plate width:

 I cmsl = 886 04 4.

 I cmslÂ = ◊ =3 886 04 2658 12 4. .
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 tcr N mm= ◊ =34 96 4 75 166 06 2. . . /

Figure 8.14 shows that the first buckling mode includes deformations of the stiffeners. By exami-
nation of more buckling modes, it may be observed (Figure 8.15) that in the 5th buckling mode, 

First buckling mode

Pl. 150.10

Stresses [N/mm2]
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m10

15
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Figure 8.14 Stiffened plate of Example 8.2 and first buckling mode.

Figure 8.15 Fifth buckling mode of the stiffened plate of Example 8.2.
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the stiffeners do not deform so that buckling refers only to the unstiffened subpanels between 
stiffeners. The critical load factor for this buckling mode is αcr = 31.45, and the corresponding 
critical stress becomes

 tcr N mm= ◊ =31 45 15 471 8 2. . /

The geometric properties of this subpanel are a = 3.0 m, b = 0.5 m, and t = 10 mm.
The critical buckling stress may be also determined analytically.

Reference stress: se mm= ◊Ê
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ˆ
¯̃
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2, . N/
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Buckling factor: kt= + + =5 34
4
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0 5 452. .

 tcr N mm= ◊ =5 45 75 92 413 76 2. . . /

The critical shear stresses are summarized in Table 8.8. It may be seen that the minimum values 
refer to the stiffened panel and not the unstiffened subpanels.

EXAMPLE 8.3

The stiffened plate of Example 8.2 (b = 2.0 m, t = 10 mm) is subjected to a shear stress 
τ = 15 N/mm2. The critical stresses are to be determined when the length of the plate varies 
from 2.0 to 9.0 m.

The critical shear stresses determined numerically and from Table 8.5 are shown in Table 8.9. 
It may be seen that the formulae provide too conservative values. The critical stress for the uns-
tiffened subpanels for all considered lengths is the same as determined before in Example 8.2. It 
may be observed that the critical stress for the complete panel is always smaller than the one for 
the subpanels.

Table 8.8 Critical shear stresses τcr [N/mm2]

Numerical 
method Formulae

Stiffened panel 319 166
Subpanel between stiffeners 472 414
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8.2.4  Stiffened and unstiffened panels: 
Combined loading conditions

The critical state for combined loading σx,Ed, σz,Ed, and τEd, is reached when the stresses reach 
following values:

 s a s s a s t a ttcrx crx x Ed crz crz z Ed cr cr Ed, , , , , , ,, ,= ◊ = ◊ = ◊  (8.16)

where αcr is the critical load factor and the index Ed defines the design values of the applied 
stresses.

αcr may be determined by application of the Rayleigh–Ritz energy method as outlined 
before. However, if values of this factor, αcr,x, αcr,z, and αcr,τ, are known for individual stress 
conditions, the multiplication factor αcr for combined loading may be determined approxi-
mately from the following interaction formula:
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ψx is the longitudinal direct stress ratio
ψz is the transverse direct stress ratio

The load factors αcr,x and αcr,z should be calculated taking σx,Ed and accordingly σz,Ed as the 
greatest compressive stress.

It has to be noted that in cases of tensile direct stresses σx throughout the panel, acr,x is taken 
equal to infinity (∞). Load factors with negative values should not be used in Equation 8.17. 
Panels that are wholly in tension still need to be checked since shear buckling may still be sig-
nificant, for example, bottom flanges of box girder bridges at spans with shear due to torsion.

EXAMPLE 8.4

The critical stresses for an unstiffened plate with the geometric properties a = 3.0 m, b = 2.0 m, 
and t = 40 mm subjected to combined loading as shown in Figure 8.16 are to be determined.

Numerical determination
The numerical calculation provides a critical load factor for the first buckling mode (Figure 8.16) 
αcr = 17.18.

Table 8.9  Critical shear stresses τcr [N/mm2] for different 
plate lengths

Plate length a = 2 m a = 3 m a = 4 m a = 9 m

τcr from Table 8.5 342 166 104 50
τcr numerical 381 319 238 86



272 Design of Steel-Concrete Composite Bridges to Eurocodes

Accordingly, Equation 8.16:
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Determination by formulae according to Tables 8.2 and 8.5
From Equation 8.10, reference stress:
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 scr x N mm, . . .= ◊ =5 58 75 92 423 6 2/
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.

.= =423 6
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Stresses σz

The critical stress is determined by the same procedure as for σx, but taking as width of the 
panel its length b = 3.0 m.
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Figure 8.16 Unstiffened plate of Example 8.4 under combined load.
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From which, αcr = 15.76 (deviation from numerical method is − 8.2%).

REMARK 8.2

In cases of excessively stiffened plates, FE analysis may give buckling modes followed by load 
factors with negative values. This does not mean that the software calculates wrong. A negative 
value for the load factor signifies that all the loads of that loading case need to act in the direc-
tion opposite to that in which they have been applied to cause buckling. The designer should 
neglect such buckling modes.

8.3 STRENGTH OF PLATES

8.3.1 General

Like in struts, the ultimate strength of plates differs from the critical buckling strength. 
Table 8.1 shows that the ultimate strength is determined by buckling curves, the critical 
buckling strength being only a reference value for the calculation of the nondimensional 
slenderness that is the abscissa of the buckling curve. The difference between critical stresses 
and ultimate strength is due to the fact that

 a. The assumption made to determine the critical stresses is not valid in real plates, as 
such plates
• Are not plane before loading but have geometric imperfections.
• They have also structural imperfections (initial welding stresses) due to the fabrica-

tion processes.
• They do not behave indefinitely elastically but are entering into the elastic–plastic 

state at higher levels of loading.
 b. Plates possess considerable post-buckling strength.
 c. Plates under compression with many stiffeners or short plates exhibit column-like 

behavior and may lose the post-buckling strength.

These aspects will be discussed in the following sections.
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8.3.2 Postbuckling plate behavior: Plate buckling curves

As outlined before, an absolutely plane elastic plate remains plane for applied loads smaller 
than the critical buckling load. If the load is increased beyond the critical value, the plate 
starts to buckle. As shown in Figure 8.17, buckling is accompanied with a reduction in in-
plane rigidity and increase of out-of-plane deformations. However, unlike struts, plates are 
supported at the longitudinal edges, so that after buckling a catenary action (Z forces in 
Figure 8.17) develops in transverse direction, which “supports” transversely the plate and 
allows a further increase of the longitudinal load and a stable loading path. A plate has 
therefore post-buckling strength, which is accounted for in design. Figure 8.17 shows that a 
plate with geometric imperfections behaves at large displacements similar to a perfect plate, 
implying its low sensitivity to geometric imperfections.

The description of the post-buckling behavior may be done by application of nonlin-
ear plate buckling theory that involves large displacement analysis. For elastic plates, the 
Karman–Marguerre [8.17] solutions of the relevant equations exist. However, the behav-
ior of real plates differs from the one for elastic plates due to inelastic material behavior. 
Figure 8.18 shows such load–deflection curves for plates with yielding material, with and 
without geometric imperfections indicating that the stiffness reduction is not only due to 
out-of-plane displacements but also due to material yielding.

Figure 8.18 indicates that the ultimate strength of the plate is different from the critical 
buckling stress. The ultimate strength may be determined by appropriate buckling curves 
that provide, like in buckling of struts, a reduction factor to be applied to the yield stress. In 

analogy to the nondimensional slenderness of struts l s= fy cr/ , the nondimensional slender-
ness of plates may be determined by the following relations:
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For shear stresses:
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where σcr,p and τcr are the critical buckling stresses.
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Figure 8.17 Axially compressed elastic plate and load–deflection curve.
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The nondimensional slenderness may be determined by substitution of σcr,p of Equations 
8.9 and 8.10 in Equation 8.18:
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where e= 235/fy  (= 0.81 for the usual steel grade in bridges S 355).
Similarly, the nondimensional slenderness for shear is given by
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Further on the buckling factor for a plate with a large aspect ratio, α, is equal to kτ = 5.34 
(see Table 8.5) so that the earlier expression becomes
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Buckling curves provide reduction factors as a function of l. EN1993-1-5 [8.4] uses for 
internal and outstand panels modified Winter curves [8.18] as buckling curves that are given 
in the following:
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Figure 8.18 Load–deflection curves of inelastic plates.



276 Design of Steel-Concrete Composite Bridges to Eurocodes

Outstand panels:
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Figure 8.19 illustrates plate buckling curves for direct stresses for various ratios of applied 
stresses as well as the Euler hyperbola that expresses the critical buckling stress. The fol-
lowing may be observed:

• At low slenderness, the strength is influenced by yielding.
• The influence of post-buckling strength is pronounced at high slenderness, and the 

buckling curves exhibit higher values than the Euler hyperbola.
• Imperfections affect the strength at intermediate slenderness.

Reduction factors for shear buckling are given in Table 8.10. The corresponding shear buck-
ling curves are shown in Figure 8.20, together with the critical curve. Similar observations 
regarding yielding and post-buckling strength, like for direct stresses, may be made. Table 8.10 
implies that a reduction in shear strength due to shear buckling shall be accounted for plates 

Internal elements with ψ = 1
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Figure 8.19 Plate buckling curves for direct stresses.

Table 8.10 Reduction factors χw for shear buckling resistance

Rigid end posts, Figure 8.30 Nonrigid end posts, Figure 8.30

0.83/h l> w η η

0.83 1.08/h l£ <w 0.83/lw £1 0.83/lw £1

lw ≥1.08 1.37 0.7/( )+lw 0.83/lw £1

Notes:
EN1993-1-5 recommends η = 1.2. For steel grades higher than S460 η = 1.0. Different values may be found in the National 
Annex. η expresses the strength increase due to strain hardening.

lw is determined from Equation 8.22 for plates without or Equation 8.21 with longitudinal stiffeners. In the latter case, kτ is 
the smallest value between the stiffened panel and all subpanels between longitudinal stiffeners.
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of slenderness l hw > 0 83. ./  This suggests, considering Equations 8.21 and 8.22, that shear 
buckling shall be accounted for when the width-(hw, height of web)-to-thickness (t) ratios 
exceed the following values (in parenthesis values for steel grades equal or higher than S 460):

Unstiffened panels:
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REMARK 8.3

In order to provide a better insight into the buckling curves of Figure 8.20, the following 
approach is presented.

In Figure 8.39, one can see the stress field of a girder web after shear buckling. For pure shear, 
the principal stresses are calculated as follows:
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where
τ is the shear stress
φ is the angle between horizontal and principal stresses
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Figure 8.20 Shear buckling curves (n = 1.0, ε = 1).
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Experimental tests indicated that the principal stress σ2 does not exceed the elastic shear stress 
for shear buckling τcr. This leads to the following conservative assumption:
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The principal tensile stress becomes then equal to
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The ultimate strength of the web is based on the von Mises criterion and is reached when

 s s s s1
2

2
2

1 2
2+ - ◊ = fy  (R8.5)

Substituting Equations R8.3 and R8.4 with Equation R8.5 gives the following shear strength:
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The expression in (R8.6) generally overestimates the shear resistance of girder webs with no 
rigid end posts (see Figure 8.30). However, it matches reasonably with the experimental results 
for cases with rigid end posts (see [8.10]). Equation R8.6 is the “background equation” for the 
reduction factors given in Table 8.10. Modifications have been applied so that the scattering of 
the test results has been considered.

8.3.3 Column-like behavior

As mentioned before, the post-buckling plate strength is based on the catenary action in 
the transverse direction (see Figure 8.17). However, under certain conditions, this catenary 
action cannot be activated. This is the case of stiffened plates or unstiffened plates with 
low aspect ratio (α < 1) subjected to compression. Indeed, under these conditions, the plate 
curvature in transverse direction is low, as indicatively shown in Figure 8.21a, so that the 
catenary action is very weak. This suggests that the plate behaves like a column, that is, a 
plated element without longitudinal supports (Figure 8.21b).
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Again, linear buckling theory is used to check if column-like behavior is present or not. 
The relevant criterion is the ratio:
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where
σcr,p is the critical plate buckling stress
σcr,c is the critical column buckling stress, that is, the Euler stress of the same plate in 

which the supports along the longitudinal edges are removed.

For large values of σcr,p/σcr,c, the element behaves more than a plate and exhibits post-buck-
ling strength. However, as this ratio approaches unity, the plate behaves more like a column 
and loses its post-buckling strength.

For plates with distributed loading along their edges, the critical column buckling stress 
σcr,c may be determined from Expressions 8.28 and 8.29.

Unstiffened plates
The critical column buckling stress for unstiffened plates under uniform compression may 
be obtained from
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For nonuniform compression (ψ ≠ 1), σcr,c is the largest compression stress across the panel 
and according to own calculations may be obtained from

 s s yy ycrc crc, , , , ( . . )π == ◊ - ◊1 1 1 5 0 5  (8.29)

Stiffened plates
The Euler stress of the most compressed longitudinal stiffener is given by
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where Isl,1 and Asl,1 are the second moment of area and the cross-sectional area of the stiff-
ener, respectively, including adjacent parts of the plate as shown in Table 8.11, column 2.

However, Figure 8.22 indicates that the aforementioned stress is not the highest compres-
sion stress of the plate and cannot be directly compared to the corresponding one for plate 

(a) (b)

Figure 8.21  First buckling mode of a short plate (aspect ratio α = 0.5) (a) with and (b) without longitudinal 
supports (column buckling behavior).
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buckling. Therefore, using simple geometric relations, the critical column buckling stress to 
be introduced in Equation 8.27 is obtained from
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where
bc is the distance from the position of zero direct stress to the most compressive panel 

fiber; it is different from that in Table 8.6 (see Remark 8.5)
bsl,1 is the distance from the position of zero direct stress to the stiffener
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Figure 8.22 Notation for Equations 8.28 through 8.31.

Table 8.11 Widths b1, b2, and b3 of Figure 8.22
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REMARK 8.4

The column buckling load σcr,sl of Equation 8.30 gives conservative results since it is based on 
the following assumptions:

• The compression force acting on the stiffener is considered constant. In reality, axial 
forces in stiffeners follow the bending diagram and are longitudinally variable.

• The longitudinal stiffener is considered simply supported ignoring the rotational restraint 
at its ends.

REMARK 8.5

EN 1993-1-5 uses the same definition of bc in Equation 8.31, which corresponds to Figure 8.22, and 
in Table 8.6 for the determination of the critical stress for panels with one longitudinal stiffener in 
the compression zone. The designer should be very careful during the calculation of bc in each case.

Column-like behavior is accounted for by modifying the reduction factor ρ for plate 
buckling as follows:

 r r c x x cc c c= - ◊ ◊ - +( ) ( )2  (8.32)

where
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Equation 8.32 indicates that for ξ = 1, that is, in cases where σcr,p  ≥ 2 · σcr,c, a column-like 
behavior does not exist so that it is ρc = ρ, while for ξ = 0, the plate behaves rather like a 
 column and does not exhibit post-buckling strength. The plate buckling stress σcr,p cannot 
be smaller than σcr,c, and consequently a lower limit of zero is placed on ξ.

The notation for Equation 8.32 is the following:
χc is the reduction factor for column buckling as a function of the nondimensional slender-
ness lc determined in the following:
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 for unstiffened plates (8.34)
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 for stiffened plates (8.35)

βA,c = 1.0 for classes 1, 2, and 3 stiffeners

bA, ,,

,
c

sl eff

sl

A
A

= 1

1

 is the ratio of effective to gross area of the stiffener, for class 4 stiffeners

It is noted that it is not recommended to use class 4 stiffeners that are themselves prone to 
local buckling. However, this is not always feasible.
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The reduction factor χc for column buckling is determined from the European column-
buckling curves according to the following relations:

 

c
l

c
c

=
+ -

£1 1
2 2F F

 (8.36)

 
F = ◊ + ◊ - +ÈÎ ˘̊0 5 1 0 2 2. ( . )a l lc c  (8.37)

The imperfection factor α shall be determined as follows:

Unstiffened panels α = 0.21 that corresponds to the European 
buckling curve a

Stiffened panels a ae
i/e

= + 0 09.

i
I
A

= sl

sl

,

,

1

1

 radius of gyration of the most 

compressed stiffener
e = max (e1, e2) as indicated in Figure 8.22
e1 = distance between gravity centers of the 
stiffener + associated plate and the stiffener alone

e2 = distance of the gravity center of the 
stiffener + associated panel from midsurface of 
the panel

α = 0.34 (buckling curve b) for closed stiffeners
α = 0.49 (buckling curve c) for open stiffeners

EXAMPLE 8.5

The reduction factor of an internal unstiffened panel with a = 1.0 m, b = 2.1 m, and t = 16 mm when 
subjected to uniform longitudinal compression is to be determined. Steel grade S 355.
Reference stress, Equation 8.10:

 
se N mm= ◊Ê

ËÁ
ˆ
¯̃
=189 800

16
2100

11 02
2

2, . /

Aspect ratio:

 
a = =100

210
0 476.

Buckling factor (m = 1), Equation 8.5:

 
ks = +Ê

ËÁ
ˆ
¯̃
=1

0 476
0 476 6 64

2

.
. .

Critical plate buckling stress, Equation 8.9:

 scr p N mm, . . .= ◊ =6 64 11 02 73 17 2/
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Nondimensional plate slenderness, Equation 8.18:

 
lp = = >355

73 17
2 20 0 673

.
. .

Uniform compression: ψ = 1
Reduction factor for plate buckling, Equation 8.23:

 
r = - ◊ + =2 2 0 055 3 1

2 2
0 412

. . ( )
.

.

It is α = 0.476 < 1.0 so that column-like behavior shall be considered.
Euler column stress, Equation 8.28:

 
s p

cr c N mm,
, .

( . )
.= ◊ ◊

◊ - ◊
◊ =

2 2

2 2
221 000 1 6

12 1 0 3 100
10 48 5 /

Nondimensional column slenderness, Equation 8.34:

 
lc = =355

48 5
2 7

.
.

Unstiffened panel: European buckling curve a with α = 0.21, Equation 8.37:

 F = ◊ + ◊ - +ÈÎ ˘̊=0 5 1 0 21 2 7 0 2 2 7 4 412. . ( . . ) . .

Reduction factor for column buckling, Equation 8.36:

 
cc =

+ -
=1

4 41 4 41 2 7
0 127

2 2. . .
.

Equation 8.33:

 x= - =73 17
48 5

1 0 51
.
.

.

Final reduction factor, Equation 8.32:

 rc = - ◊ ◊ - + =( . . ) . ( . ) . .0 41 0 127 0 51 2 0 51 0 127 0 342

It may be seen that for this small aspect ratio, the reduction factor is reduced due to column-like 
behavior from 0.41 to 0.34.
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EXAMPLE 8.6

The reduction factors of an internal panel with a = 3.0 m, b = 2.1 m, and t = 16 mm (Figure 8.23), 
subjected to nonuniform longitudinal compression with ψ = 0, shall be determined. The panel is 
stiffened by two flats of height h = 150 mm and thickness t = 20 mm that are positioned at 1/3 of 
the panel width. Steel grade S 355.

Subpanel 1
Width:

 
b cm= =

210
3

70

Reference stress, Equation 8.10:

 
se N mm= ◊Ê

ËÁ
ˆ
¯̃
=189 800

16
700

99 2
2

2, . /

Stress ratio: ψ = 140/210 = 0.67
Buckling factor (Table 8.2):

 
ks = +

=8 2
1 05 0 67

4 77
.

. .
.

Critical plate buckling stress, Equation 8.9:

 scr p N mm, . . .= ◊ =4 77 99 2 473 2 2/

Nondimensional plate slenderness, Equation 8.18:

 lp = = >355
473 2

0 87 0 673
.

. .

Reduction factor for plate buckling, Equation 8.23:

 
r = - ◊ + =0 87 0 055 3 0 67

0 87
0 882

. . ( . )
.

.

Aspect ratio a = = >300
70

4 29 1.  so that column-like behavior is not relevant.

 

1

First buckling mode

2

3

2.
1 

m

Pl. 150.20

16

3.0 m

Figure 8.23 Stiffened panel of Example 8.6 and first buckling mode.
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Subpanel 2
This subpanel has identical geometric properties with subpanel 1, the difference being in the 
stress ratio, which is ψ = 70/140 = 0.5. Repeating the calculations, the reduction factor is derived 
as ρ = 0.93.

Complete stiffened panel
Plate buckling
Reference stress: σe = 11.02 N/mm2

The critical buckling factor is determined numerically as equal to kσ = 52.6.

Critical plate buckling stress: σcr,p = 52.6 · 11.02 = 579.65 N/mm2

Nondimensional plate slenderness: lp = = >355
579 65

0 78 0 673
.

. .

Reduction factor for plate buckling: r r= - ◊ + = Æ =0 78 0 055 3 0
0 782

. . ( )
.

1.28 >1.0 1.0

Column-like behavior
Gross area of the most compressed stiffener:

 A cmst = ◊ =15 2 30 2

Second moment of area of the stiffener:

 I cmst =
◊ =15 2

12
562 5

3
4.

Calculation of the associated plate width of the most compressed stiffener
With the notation of Figure 8.22, it is for the upper subpanel 1 ψ1 = 0.67 and for the lower 

subpanel ψ2 = 0.50.
The participating plate widths are accordingly (Table 8.11),

 
b cm1

3 0 67
5 0 67

70 37 7,inf
.
.

.= -
-

◊ =

 b cm2
2

5 0 5
70 31 1,sup

.
.=

-
◊ =

The stiffener under consideration has a T section, composed of the flat and an associated plate 
width of 37.7 + 31.1 + 2 = 70.8 cm. This T section has the following properties:

 A cm I cm i cmsl sl, ,. , , .1
2

1
4144 1 2382 4 1= = =   

Euler stress of the stiffener, Equation 8.30:

 
s p

cr sl kN cm N mm,
,
.

. .= ◊ ◊
◊

= =
2

2
2 221 000 2382

144 1 300
38 03 380 3/ /

Critical column buckling stress of the panel, Equation 8.31:

 
scr c N mm, . .= ◊ =210

140
380 3 570 4 2/
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The stiffener is not classified as class 4:

 ( . . ) ,b t A c/ /= = < ◊ = Æ =150 20 7 5 14 11 34 1e b

Column slenderness, Equation 8.34:

 
lc = =355

570 4
0 79

.
.

Figure 8.22: e1 = 6.48 cm, e2 = 1.82 cm

 e = max (6.48, 1.82) = 6.48 cm

Imperfection factor for open stiffener section:

 
ae = + =0 49

0 09
4 1 6 48

0 63.
.

. .
.

/

Equation 8.37:

 
F = ◊ + ◊ - +ÈÎ ˘̊=0 5 1 0 63 0 79 0 2 0 79 1 02. . ( . . ) . .

Reduction factor, Equation 8.36:

 

cc =
+ -

=1

1 0 1 0 0 79
0 62

2 2. ( . . )
.

Equation 8.33:

 
x= - =579 65

570 4
1 0 016

.
.

.

Final reduction factor, Equation 8.32:

 rc = -( )◊ ◊ -( )+ =1 0 0 62 0 016 2 0 016 0 62 0 63. . . . . .

Note: The critical plate buckling stress may be determined by the formulae given in Table 8.6 
and the procedure described in Table 8.7 (two longitudinal stiffeners in the compression zone).

Case 1
The following figures are obtained with reference to Table 8.7:

 b1 = 700 mm, b2 = 700 mm → b = b1 + b2 = 1400 mm

Stress ratios for the upper/lower subpanel:

 y y1 2 0 67 0 5/ /= . .
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Adjacent widths of the plate for the two subpanels according to Table 8.6 (without reversal of 
stresses): 37.7/31.1 cm

The stiffener has a T section consisting of the stiffener and 70.8 cm associated plate width. 
The properties of this T section are

 A cm I cmsl sl, ,. ,1
2

1
4144 1 2382= =

The reference length according to Table 8.6 is

 
a cm a cmc = ◊ ◊ ◊

◊
= > =4 33

2382 70 70
1 6 140

432 7 300
2 2

3
4.

.
.

The critical stiffener stress is

 

s p
pcr sl,

,
.

, .
(

= ◊ ◊
◊

+ ◊ ◊ ◊
◊ ◊

2

2

3 2

2

21 000 2382
144 1 300

21 000 1 6 300 140
4 11 0 3 144 1 70 70

38 03 8 69 46 72 467 2

2 2 2

2 2

- ◊ ◊ ◊

= + = =

. ) .

. . . .kN cm N mm/ /

where the first term is the Euler stress of the stiffener alone and the second the transverse 
contribution of the plate.

Width of compression zone bc = 140 mm:

 
scr p N mm see Table, . . ; .= + ◊ =140 70

140
467 2 700 8 8 62/

Case 2
Repeating this methodology for the second stiffener following the procedure of Table 8.7 with 
bc = 70 mm gives

 
scr p N mm see Table, . . ; .= + ◊ =70 70

70
467 2 934 4 8 62/

Case 3
The consideration of an equivalent lumped stiffener with b1 = 1011 mm, b2 = 1089 mm, b = 2100 mm 
(centre of force for the two stiffeners) gives the following cross-sectional properties:

 

A cm

I cm

sl lumped

sl lumped

,

,

. . ,= ◊ =

= ◊ =

2 144 1 288 2

2 2382 4764

2

4

 

 

The reference length according to Table 8.6 is

 
a cm a cmc = ◊ ◊ ◊

◊
= > =4 33

4764 101 1 108 9
1 6 210

697 300
2 2

3
4.

. .
.
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The critical stiffener stress is

 

s p
pcr sl,

,
.

, .
(

= ◊ ◊
◊

+ ◊ ◊ ◊
◊ ◊

2

2

3 2

2

21 000 4764
288 2 300

21 000 1 6 300 210
4 11 0 3 288 2 101 1 108 9

38 03 1 30 39 33 393 3

2 2 2

2

- ◊ ◊ ◊

= + = =

. ) . . .

. . . .kN cm N/ //mm2

The critical panel stress is with bc = 1089 mm:

 
scr p N mm see Table,

. .
.

. . ; .= + ◊ =108 9 101 1
108 9

393 3 758 3 8 62/

The critical plate buckling stress is finally the lowest value, 700.8 N/mm2. This is higher than the 
numerically determined.

8.4 DESIGN BY THE REDUCED STRESS METHOD

The reduced stress method is a simplified design method. It is based on the assumption that 
the resistance of the cross section is exhausted when its most unfavorable wall reaches its 
design strength as given in the following. The beneficial load shedding from overstressed 
panels is not taken into account, and this makes the method in most cases conservative. 
In reduced stress method, the cross sections may be classified as class 3 cross sections. The 
relevant design procedure is illustrated in Figure 8.24 and may be summarized as follows:

Step 1:  Performance of static analysis, possibly including 2nd-order effects (e.g., in 
cable-stayed bridges) in order to determine internal forces and moments.

Step 2:  Isolation of panels for each wall, considering simple support conditions at their 
joint edges.

Step 2: Isolation of panels

Step 3: Calculation of stresses (as class 3)

Subpanel 1
Subpanel 2
Subpanel 3

a

beff,2

τEd

τEd

VEdMEd

σx,Ed

σx,Edψ

b = hw

Step 1: Global analysis

Step 4: Constant stress conditions

≥ 1γM1

Step 5: Verification of strength
for local and global buckling

ρ  αult,k

Figure 8.24 Design procedure in the reduced stress method for class 4 cross sections.
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Step 3:  Definition of design stresses σx,Ed, σz,Ed, and τEd from internal forces and 
moments, based on gross cross-sectional properties.

Step 4:  Consideration of constant stress conditions at panel edges. For stress gradients 
along the panel, use the stresses at a distance s = min {0.4·a or 0.5·b} of the 
most stressed panel end. The distance s is chosen by the code because failure 
is mainly dependent on the stresses within the middle portion of the buckling 
waveform and not at its boundaries.

Step 5:  Verification of each panel and subpanel separately, according to the design 
conditions given in the following.

The panel may be verified by means of the following condition:

 

r a
g
◊ ≥ultk

M

,

1
1 (8.38)

where αult,k is the minimum multiplier of the design stresses that leads to yielding.
Using the von Mises criterion, this multiplier may be obtained from

 

1 32

2 2

2a
s s s s t

ultk

x Ed

y

z Ed

y

x Ed z Ed

y

E

f f f,

, , , ,=
Ê

Ë
Á

ˆ

¯
˜ +

Ê

Ë
Á

ˆ

¯
˜ - ◊ + ◊ dd

yf
Ê

Ë
Á

ˆ

¯
˜
2

 (8.39)

The reduction factor is equal to ρ = min(ρx, ρz, χw) and is determined as a function of lp from 
Equation 8.40:

 
l a

ap
ult,k

cr
=  (8.40)

where αcr is the minimum multiplier of design stresses to reach the critical first buckling 
mode of the plate under the combined stresses. It may be approximately determined from 
Equation 8.17 if only the multipliers for the individual components are known.

Substituting Equation 8.39 with Equation 8.38 offers the following verification:

 

s
g

s
g

s s
g

x Ed

y

z Ed

y

x Ed z Ed

y Mf f f
, , , ,

/ / /M M1

2

1

2

2
1

2
Ê

Ë
Á

ˆ

¯
˜ +

Ê

Ë
Á

ˆ

¯
˜ - ◊ +33

1

2
2◊

Ê

Ë
Á

ˆ

¯
˜ £t

g
rEd

yf / M  
(8.41)

A less conservative approach is given by the code in Equation 8.42:

 

s
r g

s
r g

s s
r

x Ed

x y

z Ed

z y

x Ed z Ed

xf f
, , , ,

◊
Ê

Ë
Á

ˆ

¯
˜ +

◊
Ê

Ë
Á

ˆ

¯
˜ - ◊

◊/ /M M1

2

1

2

rr g
t

c gz y M

Ed

w yf f◊
+ ◊

◊
Ê

Ë
Á

ˆ

¯
˜ £2

1
2

1

2

3 1 0
/ / M

.
 

(8.42)

It is important to note that in the case of stiffened panels, the final reduction factors ρx and 
ρz should be obtained as an interpolation between plate and buckling column behaviors (see 
Equations 8.32 and 8.33).
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EXAMPLE 8.7

The panel of Example 8.5 is to be verified if the acting stress is σx,Ed = 110 N/mm2.
Equation 8.39:

 

1 110
355

3 232

2

a
a

ult k
ult k

,
, .= Ê

ËÁ
ˆ
¯̃
Æ =

Plate buckling behavior
Load factor:

 
acr p,

.
.= =73 17

110
0 67

Equation 8.40:

 
lp = = >3 23

0 67
2 2 0 673

.

.
. .

Reduction factor for plate buckling, Equation 8.23:

 
r =

- ◊ +( )=2 2 0 055 3 1

2 2
0 412

. .

.
.

Column buckling behavior
Load factor:

 
acr c,

.
.= =48 5

110
0 44

Equation 8.40:

 
lc = =3 23

0 44
2 7

.

.
.

Unstiffened Panel: European buckling curve a with α = 0.21
Equation 8.37:

 
F = ◊ + ◊ - +ÈÎ ˘̊=0 5 1 0 21 2 7 0 2 2 7 4 412. . ( . . ) . .

Reduction factor for column buckling, Equation 8.36:

 
cc =

+ -
=1

4 41 4 41 2 7
0 127

2 2. . .
.

Equation 8.33:

 
x= - =73 17

48 5
1 0 51

.
.

.
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Final reduction factor, Equation 8.32:

 
rc = -( )◊ ◊ -( )+ =0 41 0 127 0 51 2 0 51 0 127 0 342. . . . . .

Equation 8.42:

 

110
0 342 355 1 1

1
. / .◊

=  (sufficient)

EXAMPLE 8.8

The panel of Example 8.6 (Figure 8.23) is to be verified if the acting stress at the edge is σx,Ed = 200 
N/mm2.
Upper subpanel
Equation 8.39:

 

1 200
355

1 782

2

a
a

ult k
ult k

,
, .= Ê

ËÁ
ˆ
¯̃
Æ =

Plate buckling behavior
Load factor:

 acr p,
.

.= =473 2
200

2 36

Equation 8.40:

 
lp = = >1 78

2 36
0 87 0 673

.
.

. .

Reduction factor for plate buckling, Equation 8.23:

 r = - ◊ + =0 87 0 055 3 0 67
0 87

0 882

. . ( . )
.

.

Column buckling behavior

Aspect ratio: a = = Æ300
70

4 29.  Column buckling behavior is not relevant.

Equation 8.42:

 200
0 88 355 1 1

0 7 1
. .

.
◊

= <
/

 (sufficient)

Complete stiffened panel
Plate buckling behavior
Load factor:

 
acr p,

.
.= =579 65

200
2 9
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Equation 8.40:

 
lp = = >1 78

2 9
0 78 0 673

.
.

. .

Reduction factor for plate buckling:

 
r r=

- ◊ +( )= Æ =
0 78 0 055 3 0

0 782

. .

.
1.28 >1.0 1.0

Column buckling behavior

 
acr c,

.
.= =570 4

200
2 85

Equation 8.40:

 
lc = =1 78

2 85
0 79

.
.

.

Figure 8.22: e1 = 6.48 cm, e2 = 1.82 cm

 e = max (6.48, 1.82) = 6.48 cm

Imperfection factor for open stiffener section:

 
ae = + =0 49

0 09
4 1 6 48

0 63.
.

. .
.

/

Equation 8.37:

 
F = ◊ + ◊ -( )+ÈÎ ˘̊=0 5 1 0 63 0 79 0 2 0 79 1 02. . . . . .

Reduction factor, Equation 8.36:

 
cc =

+ -
=1

1 0 1 0 0 79
0 62

2 2. ( . . )
.

Equation 8.33:

 
x= - =579 65

570 4
1 0 016

.
.

.

Final reduction factor, Equation 8.32:

 rc = - ◊ ◊ - + =( . . ) . ( . ) . .1 0 0 62 0 016 2 0 016 0 62 0 63

Equation 8.42:

 
200

0 63 355 1 1
0 98 1 0

. / .
. .

◊
= £  (sufficient)
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In Example 8.6, it was seen that the critical buckling stress of the upper subpanel is lower than 
the corresponding stress of the full stiffened panel (473.2 vs. 579.65 N/mm2). Figure 8.23 con-
firms it since the first buckling mode involves buckling of the upper subpanel only. However, 
this example shows that the resistance of the complete panel is lower than the resistance of the 
subpanel. This is due to the fact that the stiffened panel exhibits column-like behavior (ξ ≈ 0), 
while the subpanel does not. It may be concluded that the results of linear plate buckling theory 
cannot be directly transferred to strength. They merely serve as reference values for the resis-
tance determination.

It should also be noted that the reduction factors ρ and ρc have the same values with 
those in Example 8.6. This is due to the fact that no interaction with shear or transverse 
stresses exists.

EXAMPLE 8.9

A cross section of a box girder bridge shown in Figure 8.25 and cross frames at a distance of 
4.5 m shall be verified in the support region. The relevant design internal forces and moments 
at a distance 0.4·a = 0.4·4.5 = 1.8 m < 0.5·b = 0.5·4.15 = 2.07 m from the support are as follows: 
 bending moment MEd = −39,000 k-Nm, shear force VEd = 1600 kN, and torque MT,Ed = 7550 kN-m. 
The bottom flange is stiffened by four longitudinal trapezoidal stiffeners, the web by two stiff-
eners L100 × 50 × 8. The stiffeners are equally distanced. The flange stiffeners participate in the 
compression resistance, the web stiffeners do not. The latter are placed merely to increase the 
buckling strength of the web. Steel grade S 355.

Design stresses
The bending moment produces tension in the concrete slab so that the stresses are determined 
for the structural steel cross section. For simplicity reasons in this example, the contribution 
of the slab reinforcement was neglected. The stiffeners of the bottom flange participate in the

10,000 mm

300 mm

2,045 mm

15 mm

350

Pl. 4150  15

350 350 350

50 mm

Pl. 2120  12145

8

74.7°

L100 × 50 × 8

300

Pl. 700  50

550 550 550 550 550

Figure 8.25  Cross section of box girder of Example 8.9 and dimensions of the trapezoidal stiffeners of the 
bottom flange.
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resistance to direct stresses. In order to take into account this contribution, their area is 
smeared over the entire bottom flange width. This is done by enhancing the thickness t of the 

bottom flange according to the relation t t A /bsmeared st= +Â 1

4
, where Ast is the area of one 

stiffener and b is the width of the bottom flange. The  equivalent smeared thickness is 20.1 mm. 
The stiffeners of the web are placed only to enhance its buckling resistance so that they do not 
enhance its thickness (see also Section 8.11.5).
The properties of the box girder cross section are as follows:

Second moment of area: Iy = 18.35 · 106 cm4

Distance of neutral axis from bottom flange: z = 96.3 cm
Area of the cross-section trapezoid between mid-lines of plates: A0 = 105,757 cm2

Stresses in the flange
Direct stresses:

 sEd kN cm= ◊
◊

◊ =3 9 10
18 35 10

96 3 20 47
6

6
2.

.
. . /  (compression positive)

Shear stresses:

 
tEd

T EdM
A t

kN cm=
◊ ◊

= ◊
◊ ◊

=,

.
.

2 2 1 5
2 38

0

5
27.55 10

105757
/

where t is 1.5 cm, that is, the enhancement in the flange thickness does not refer to the shear 
stresses due to torsion.

Stresses in the web
Maximal compression stress:

 
sEd kN cm= ( )20 47 2. / as in the flange

Shear stresses from torsion:

 
tEd

T EdM
A t

kN cm=
◊ ◊

= ◊
◊ ◊

=,

.
.

2 2 1 2
2 97

0

27.55 10
105757

/
5

Shear stresses from shear force:

 
t

aEd
Ed

w
o

V
A

kN cm=
◊ ◊

=
◊ ◊ ◊

=
2

1600
2 212 1 2 74 7

3 26 2

sin . sin .
. /

where 74.7° is the angle of inclination of the web.
The resultant shear stresses in the web are τEd = 2.97 + 3.26 = 6.23 kN/cm2.
The previously mentioned shear stresses refer obviously to one web, since the shear flow 

due to torsion adds in one web and subtracts in the other web to the shear flow due to 
shear force.
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Verification of the bottom flange

Subpanel 1 between stiffeners
Direct stresses
Width b = 55 cm, t = 1.5 cm

Reference stress, Equation 8.10:

 se kN cm=14 12 2. /

Stress ratio: ψ = 1
Buckling factor (Table 8.2): kσ = 4
Critical plate buckling stress, Equation 8.9:

 scr p kN cm, . .= ◊ =4 14 12 56 48 2/

Load factor:

 acr x,
.
.

.= =56 48
20 47

2 76

The subpanel is long (α > 1), so that column-like behavior is not considered.

Shear stresses

 a t= = > Æ = + = ( )450
55

8 18 1 5 34
4

8 18
5 42. .

.
.k see Table 8.5

Equation 8.11:

 tcr kN cm= ◊ =5 4 14 12 76 25 2. . . /

 
a tcr,

.
.

.= =76 25
2 38

32 04

Reduction factors
Equation 8.17:

 

1 1 1
4 2 76

1 1
4 2 76

1
32 04

2 02
2

2a
a

cr
cr= +

◊
+ +

◊
Ê
ËÁ

ˆ
¯̃
+ Æ =

. . .
.

Equation 8.39:

 

1 20 47
35 5

3
2 38
35 5

1 72

2 2

a
a

ult k
ult k

,
,

.
.

.
.

.= Ê
ËÁ

ˆ
¯̃
+ ◊Ê

ËÁ
ˆ
¯̃
Æ =

Equation 8.40:

 
lp = = >1 7

2 02
0 92 0 673

.
.

. .
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Equation 8.23:

 
r =

- ◊ +( )=0 92 0 055 3 1

0 92
0 832

. .

.
.

 Table w p w8 10 0 92
0 83
0 92

0 9. : .
.
.

.l l c= = Æ = =

Verification
Equation 8.42:

 

20 47
0 83 35 5 1 1

3
2 38

0 9 35 5 1 1
0 58 1

2 2
.

. . .
.

. . .
.

◊
Ê
ËÁ

ˆ
¯̃
+ ◊

◊
Ê
ËÁ

ˆ
¯̃
= £

/ /
..0 (sufficient)

Subpanel 2 between webs of stiffener
Width b = 35 cm, t = 1.5 cm
It is b/t = 35/1.5 = 23.3 < 42 · ε = 42 · 0.81 = 34 → no class 4 wall with reduction for plate buckling.

Subpanel 3 inclined web of stiffener
Width b = 31.9 cm, t = 0.8 cm
The repetition of the calculations as for subpanel 1 gives ρ = 0.87, χw = 0.97.
Equation 8.42:

 

20 47
0 87 35 5 1 1

3
2 38

0 97 35 5 1 1
0 55

2 2
.

. . .
.

. . .
.

◊
Ê
ËÁ

ˆ
¯̃
+ ◊

◊
Ê
ËÁ

ˆ
¯̃
= £

/ /
11 0. †( )sufficient

Subpanel 4 top part of stiffener
Width b = 14.5 cm, t = 0.8 cm

It is b/t = 14.5/0.8 = 18.1 < 42 · ε · = 42 · 0.81 = 34 → no class 4 wall with reduction for plate 
buckling.

Complete stiffened panel
Plate buckling behavior
Geometric properties:
a = 450 cm, b = 415 cm, t = 1.5 cm
Reference stress, Equation 8.10:

 se kN cm=0 248 2. /

Stress ratio: ψ = 1
Table 8.4:

 Gross area: Ap cm= ◊ =415 1 5 622 5 2. .

Second moment of area:

 
I cmp =

◊ =415 1 5
10 92

128 3
3

4.
.

.
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Properties of the longitudinal stiffeners:
Asl = 61.08 cm2, Isl = 5629.3 cm4, and zsl = 12.14 cm (distance of center of gravity from top)

Area of four stiffeners:

 
A cms1

24 61 08 244 32Â = ◊ =. .

 
d= =244 32

622 5
0 392

.
.

.

Second moment of area of the plate and the four stiffeners:

 
I cmsl =Â 83 400 4,  

 
g= =83 400

128 3
650 23

,
.

.

It is

 
a g= = < = =450

415
1 08 650 23 5 054 4. . .

Buckling factor:

 
k ps,

. .

. .
.=

◊ +( ) + -È
ÎÍ

˘
˚̇

◊ +( )◊ +( ) =
2 1 1 08 650 23 1

1 08 1 1 1 0 392
402

2 2

2 775

Critical stress, Equation 8.9:

 scr p kN cm, . . .= ◊ =402 75 0 248 99 88 2/

Load factor:

 
acr x,

.

.
.= =99 88

20 47
4 88

For the shear stresses:
Associated plate width at each side of the stiffeners webs (Table 8.5):
15 · ε · t = 15 · 0.81 · 1.5 = 18.2 cm > 35/2 = 17.5 cm
This means that the total width of the associated plate is 35 + 2 · 18.2 = 71.4 cm.
The second moment of area of the stiffener and the associated plate is

 Isl,1 = 18,640.3 cm4

And for the four stiffeners:

 
I cmsl l, . .Â = ◊ =4 18640 3 74561 2 4
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k stt,

.
.

.
.

.
.

.= ◊
◊

Ê
ËÁ

ˆ
¯̃
= ≥ ◊9

1 08
74561 2

1 5 415
152 1

2 1
1 5

74561 2
42 3

3

4

115
7 93 = .

The shear buckling factor is determined from Table 8.5, for α = 1.08 > 1:

 
kt= + + =5 34

4 0
1 08

152 1 160 872.
.

.
. .

Critical shear buckling stress, Equation 8.11:

 tcr kN cm= ◊ =160 87 0 248 39 9 2. . . /

 
a tcr,

.
.

.= =39 9
2 38

16 4

Equation 8.17:

 

1 1 1
4 4 88

1 1
4 4 88

1
16 4

4 51
2

2a
a

cr
cr= +

◊
+ +

◊
Ê
ËÁ

ˆ
¯̃
+ Æ =

. . .
.

Equations 8.23 and 8.40:

 
l rp = = £ Æ =1 7

4 51
0 61 0 673 1

.
.

. .

Column buckling behavior
Associated plate width of the stiffeners

For all subpanels, it is ψ1 = 1.0 and ψ2 = 1.0.
The participating plate widths adjacent to each stiffener web are accordingly (Table 8.11),

 
b cm1

3 1
5 1

55 0 5 55 27 5,inf . .= -
-

◊ = ◊ =  

 
b cm2

2
5 1

35 0 5 35 17 5,sup . .=
-

◊ = ◊ =  

Each trapezoidal stiffener has therefore an associated plate width of 2 · (27.5 + 17.5) = 90 cm.
This section has the following properties:

 A cm I cm i cmsl sl l, ,, , , .1
2 4196 20 215 10 15= = =

Euler stress of the stiffener, Equation 8.30:

 
s p

cr sl kN cm,
, ,

.= ◊ ◊
◊

=
2

2
221 000 20 215

196 450
105 5 /

Critical column buckling stress of the panel, Equation 8.31:

 scr c kN cm, .=105 5 2/
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Load factor:

 
acr c,

.
.

.= =105 5
20 47

5 15

Equation 8.17:

 

1 1 1
4 5 15

1 1
4 5 15

1
16 4

5 2
2

2a
a

cr
cr= +

◊
+ +

◊
Ê
ËÁ

ˆ
¯̃
+ Æ =

. . .
.

It may be observed that σcr,c > σcr,p. This result is physical meaningless since the critical stress of 
the plate without longitudinal supports may not be larger than the one with such supports is 
corrected later in the derivation of the factor ξ.

Note: In order to determine the effective cross section of the stiffener, only the direct stresses 
should be taken into account for the calculation of the reduction factors ρ [EN 1993-1-5/4.3.(3)]. 
Therefore, the previous reduction factors calculated for subpanels 1–4 should not be used for 
the determinations of Asl,1,eff and Isl,1,eff.

Subpanel 1 between stiffeners
Width b = 55 cm, t = 1.5 cm
Reference stress, Equation 8.10:

 se kN cm=14 12 2. /

Stress ratio: ψ = 1
Buckling factor (Table 8.2): kσ = 4
Critical plate buckling stress, Equation 8.9:

 scr p kN cm, . .= ◊ =4 14 12 56 48 2/

Nondimensional plate slenderness, Equation 8.18:

 
lp = = >35 5

56 48
0 793 0 673

.
.

. .

Reduction factor for plate buckling, Equation 8.23:

 
r =

- ◊ +( )=0 793 0 055 3 1

0 793
0 9112

. .

.
.

Subpanel 3 inclined web of stiffener
Width b = 31.9 cm, t = 0.8 cm

The repetition of the calculations as for subpanel 1 gives ρ = 0.864.
The reduction factors for the inclined wall of the stiffener and the plate between stiffeners are 

equal to ρ = 0.864 and ρ = 0.911, respectively. Therefore, the relevant widths must be reduced 



300 Design of Steel-Concrete Composite Bridges to Eurocodes

due to plate buckling to 0.864 · 31.9 = 27.6 cm and 0.911·55 = 50.1 cm, respectively. The effective 
area of the stiffener and the associated plate is accordingly

 

A cm

I

sl eff

sl

, ,

,

. . . . . . .1
2

1

35 50 1 1 5 2 27 6 0 8 14 5 0 8 183 41= +( )◊ + ◊ ◊ + ◊ =

,, .
.

.
.eff cm i cm= Æ = =19450 3

19450 3
183 41

10 32

Figure 8.22: e1 = 12.8 cm, e2 = 5.80 cm
e = max(12.8, 5.80) = 12.8 cm

Imperfection factor for closed stiffener section:

 
ae = + =0 34

0 09
10 312 8

0 45.
.

. .
.

/

 
bA c,

.
.= = ( )183 41

196
0 94 class 4 stiffeners

Equation 8.35:

 
lc =

◊ =0 94 35 5
105 5

0 56
. .

.
.

Equation 8.37:

 
F = ◊ + ◊ -( )+ÈÎ ˘̊=0 5 1 0 45 0 56 0 2 0 56 0 742. . . . . .

Reduction factor, Equation 8.36:

 
cc =

+ -
=1

0 74 0 74 0 56
0 82

2 2. . .
.

Equation 8.33:

 
x x= - = - < Æ =99 88

105 5
1 0 05 0 0

.
.

.

Final reduction factor, Equation 8.32:

 r cc c= = 0 82.

The nondimensionless slenderness for shear is taken as λ ̅w = λ ̅ p determined previously for the 
plate buckling interaction of direct and shear stresses without consideration of the column-like 
buckling behavior due to the fact that the latter affects only direct but not shear stresses. This 
means that the slenderness used for shear buckling corresponds to the plate supported along 
its longitudinal edges. This issue is not clarified in the Code, that is, whether this assumption 
should be made or conservatively λ  ̅w = λ  ̅c is to be adopted.
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Accordingly it is, lw = < =0 61
0 83
1 2

0 69.
.
.

.

From Table 8.10: χw = 1.2

 Equation 8.42: 20 47
0 82 35 5 1 1

3
2 38

1 2 35 5 1 1
0 61 1

2 2
.

. . .
.

. . .
.

◊
Ê
ËÁ

ˆ
¯̃
+ ◊

◊
Ê
ËÁ

ˆ
¯̃
= £

/ /
..0 (sufficient)

It is noted that a further strength reduction due to shear lag as presented in Section 7.3 might 
be necessary. In this example, no such reduction of the effectives width of the bottom flange 
was considered to be present.

Verification of the web
The clear width of the web between flanges is hw = 212.0 cm. The width of the tension zone is 
112.2 cm and of the compression zone 99.8 cm. Therefore, the lower stiffener is in compression 
and the upper stiffener in tension. The distances of the two stiffeners from the neutral axis are 
41.53 cm and 29.13 cm for the upper and the lower stiffeners, respectively.

+

–
70.67

70.67

70.67

11
2.

2
99

.8

41
.5

3
29

.1
3

[cm]

Lower subpanel between lower stiffener and bottom flange (most compressed)
Plate buckling behavior
Width b = 212/3 = 70.67 cm, t = 1.2 cm
Stress ratio:

 
y = =29 13

99 8
0 29

.
.

.

Reference stress, Equation 8.10:

 se kN cm= 5 47 2. /

Buckling factor (Table 8.2):

 
ks = +

=8 2
1 05 0 29

6 11
.

. .
.

Critical plate buckling stress, Equation 8.9:

 scr p kN cm, . . .= ◊ =6 11 5 47 33 42 2/
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Load factor:

 
acr x,

.

.
.= =33 42

20 47
1 63

The subpanel is long (α > 1) so that column-like behavior is not considered.
For the shear stresses:

Aspect ratio:

 
a = = >450

70 67
6 36 1

.
.

Buckling factor (Table 8.5):

 
kt = + =5 34

4 0
6 36

5 442.
.

.
.

Critical shear buckling stress, Equation 8.11:

 tcr kN cm= ◊ =5 44 5 47 29 8 2. . . /

Load factor:

 
a tcr,

.
.

.= =29 8
6 23

4 78

Reduction factors:
Equation 8.17:

 

1 1 0 29
4 1 63

1 0 29
4 1 63

1
4 78

2 05
2

2a
a

cr
cr= +

◊
+ +

◊
Ê
ËÁ

ˆ
¯̃
+ Æ =.

.
.
. .

.

Equation 8.39:

 

1 20 47
35 5

3
6 23
35 5

1 532

2 2

a
a

ult k
ult k

,
,

.
.

.
.

.= Ê
ËÁ

ˆ
¯̃
+ ◊Ê

ËÁ
ˆ
¯̃
Æ =

Equation 8.40:

 
lp = = >2 05

1 53
1 16 0 673

.
.

. .

Equation 8.23:

 
r =

- ◊ +( )=1 16 0 055 3 0 29

1 16
0 732

. . .

.
.

Table 8.10: l l cw p w= = > Æ = =1 16 1 08
0 83
1 16

0 72. .
.
.

.  (nonrigid end posts)
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Verification
Equation 8.42:

 

20 47
0 73 35 5 1 1

3
6 23

0 72 35 5 1 1
0 97

2 2
.

. . .
.

. . .
.

◊
Ê
ËÁ

ˆ
¯̃
+ ◊

◊
Ê
ËÁ

ˆ
¯̃
= £

/ /
11 0.  sufficient( )

Complete stiffened panel
Plate buckling behavior
Geometric properties:
a = 450 cm, b = hw = 212.0 cm, t = 1.2 cm
The critical plate buckling stress will be determined according to Table 8.6 since only one stiff-
ener is in the compression zone:

Distances b1 = 70.67 cm, b2 = 212.0 − 70.67 = 141.33 cm, bc = 29.13 cm
Stress ratio for the lower subpanel: ψ1 = 0.29, determined before.

Associated plate widths for the stiffener (Table 8.6):
Lower panel:

 
b cm1

3 0 29
5 0 29

70 67 40 66,inf
.
.

. .= -
-

◊ =

Intermediate panel:

 b cm2 0 4 29 13 11 65,inf . . .= ◊ =  (due to reversal of stresses)

The associated plate width is therefore 40.66 + 11.65 = 52.31 cm.
Properties of the longitudinal stiffeners L100 × 50 × 8:
Ast = 11.5 cm2, Ist = 116 cm4, and zs = 3.59 cm (distance of the center of gravity from the top)
Properties of the longitudinal stiffener + associated plate width:
As1,1 = 74 cm2, Is1,1 = 590 cm4, i = 2.8 cm

 
ac cm a cm= ◊ ◊ ◊

◊
= > =4 33

590 70 67 141 33
1 2 212

487 5 450
2

3

2

4.
. .

.
.   

Critical stress of the stiffener (Table 8.6):

s p
pcr sl,

, , .
( .

= ◊ ◊
◊

+ ◊ ◊ ◊
◊ ◊ -

2

2

3 2

2

21 000 590
74 450

21 000 1 2 212 450
4 1 0 33 74 70 67 141 33

8 2 5 9 14 12 2 2
2

) . .
. . .

◊ ◊ ◊
= + = kN cm/

The first term of the earlier relation is the Euler stress of the stiffener, while the second is the 
contribution of the plate in transverse direction.

Critical plate buckling stress (Table 8.6):

 
scr p kN cm, .

. .
.

.= ◊ + =14 1
29 13 70 67

29 13
48 3 2/

Load factor:

 
acr x,

.
.

.= =48 3
20 47

2 36
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For the shear stresses:
Aspect ratio:

 
a = =450

212
2 12.

Reference stress, Equation 8.10:

 se kN cm=0 608 2. /

Associated plate width at each side of the stiffeners webs (Table 8.5):

 15 · ε · t = 15 · 0.81 · 1.2 = 14.6 cm

This means that the total width of the associated plate is 2 · 14.6 + 0.8 = 30 cm.
The second moment of area of the stiffener and the associated plate is Isl.1 = 540 cm4

Table 8.5: a t< Æ = +
+ ◊

◊
Ê
ËÁ

ˆ
¯̃+ ◊

◊
3 4 1

6 3 0 18
540

1 2 212
2 12

2 2
540

1 2

3

2 3k ,st .
. .

.
.

.
. 2212

8 13 = .

The shear buckling factor is determined from Table 8.5:

 
kt= + + =5 34

4 0
2 12

8 10 14 32.
.

.
. .

Critical shear buckling stress, Equation 8.11:

 tcr kN cm= ◊ =14 3 0 608 8 69 2. . . /

Load factor:

 
a tcr,

.

.
.= =8 69

6 23
1 39

Stress ratio for the web panel:

 
y = - = -112 2

99 8
1 12

.
.

.

Equation 8.17:

 

1 1 1 12
4 2 36

1 1 12
4 2 36

1
1 39

1 41
2

2a
a

cr
cr= -

◊
+ -

◊
Ê
ËÁ

ˆ
¯̃
+ Æ =.

.
.
. .

.

Equation 8.39:

 

1 20 47
35 5

3
6 23
35 5

1 532

2 2

a
a

ult k
ult k

,
,

.
.

.
.

.= Ê
ËÁ

ˆ
¯̃
+ ◊Ê

ËÁ
ˆ
¯̃
Æ =

Equation 8.40:

 
lp = = >1 53

1 41
1 04 0 673

.
.

. .
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Equation 8.23:

 
r =

- ◊ -( )=1 04 0 055 3 1 12

1 04
0 872

. . .

.
.

Column-like behavior
The Euler stress of the stiffener and associated plate widths, Equation 8.30 (Table 8.11 and Figure 8.22):

 
s p

cr sl kN cm,
,

.= ◊ ◊
◊

=
2

2
221 000 590

74 450
8 2 /

Critical column buckling stress of the panel, Equation 8.31; bc = 99.8 cm, bsl,1 = 29.13 cm:

 
scr c kN cm, .

.
.

.= ◊ =8 2
99 8
29 13

28 1 2/

Equation 8.35:

 
l bc =

◊ = =1 35.5
1  stiffeners are not class 4A c

28 1
1 12

.
. ( , ),

Figure 8.22: e1 = 5.94 cm, e2 = 1.07 cm
e = max (5.94; 1.07) = 5.94 cm

Imperfection factor for open stiffener section:

 
ae = + =0 49

0 09
2 8 5 94

0 68.
.

. .
.

/

Equation 8.37:

 
F = ◊ + ◊ - +ÈÎ ˘̊=0 5 1 0 68 1 12 0 2 1 12 1 442. . ( . . ) . .

Reduction factor, Equation 8.36:

 
cc =

+ -
=1

1 44 1 44 1 12
0 43

2 2. . .
.

Equation 8.33:

 
x= - =48 3

28 1
1 0 72

.

.
.

Final reduction factor, Equation 8.32:

 rc = - ◊ ◊ - + =( . . ) . ( . ) . .0 87 0 43 0 72 2 0 72 0 43 0 84
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8.5 EFFECTIVE WIDTH METHOD

8.5.1 General

The reduced stress method is conservative since it limits the stresses in all panels sepa-
rately. Therefore, the effective width method allows shedding of direct stresses between 
panels and subpanels, which results in an enhanced resistance of the complete cross 
section. The effective width method is used for panels subjected to direct stresses that 
result in from global bending moments and axial forces. It is combined with the relevant 
verifications for shear forces as presented in the following paragraphs to check combined 
effects.

The effective width method is used under the following restrictions:

• The panels should be rectangular.
• The flanges should be parallel (to within 100).
• Skewed stiffeners should not be allowed.
• The diameter of any unstiffened open hole or cutout should not exceed 5% of the 

panel’s width.
• No flange-induced buckling should occur (see Section 8.10).
• Members should be of uniform cross sections.

8.5.2 Unstiffened panels

The effective width method starts from the observation that the stress distribution across a 
panel is nonuniform in the post-buckling range. Figure 8.26 shows that there takes place a 
redistribution of stresses from the middle buckled part to the stiffer edges. In the effectivep 
width model [8.17], the nonuniform stress distribution over the entire width b is substituted 
by a uniform stress distribution over a reduced effective width beff, a procedure similar to the 
effectives width model. The effective width is determined from the condition that the acting 
axial force is equal in both cases, according to the relation

 

s s sm x

b

effb y dy b◊ = ◊ = ◊Ú ( ) m ax

0

 (8.43)

The slenderness to be used for shear is λ ̅  ̅w = λ ̅ p = 1.04 that was determined previously for the 
plate buckling interaction of direct and shear stresses.

Table 8.10: cw = =0 83
1 04

0 80
.
.

.

Verification

Equation 8.42: 

 

20 47
0 84 35 5 1 1

3
6 23

0 80 35 5 1 1
0 74

2 2
.

. . .
.

. . .
.

◊
Ê
ËÁ

ˆ
¯̃
+ ◊

◊
Ê
ËÁ

ˆ
¯̃
= £

/ /
11(sufficient)
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At the ultimate load, it is σm = ρ · fy and σmax = fy. The effective width is determined by substi-
tuting in Equation 8.43 and is given by

 b b beff= ◊ £r  (8.44)

where ρ is the reduction factor due to plate buckling from Equations 8.23 and 8.24 as a 
function of the nondimensional slenderness lp.

However, if the maximum compression stress σcom,Ed is smaller than fy, the nondimen-
sional slenderness may be reduced according to

 
l l s

gp red p
com Ed

y Mf,
,= ◊

/ 0
 (8.45)

The effective width of unstiffened internal and outstand panels is given in Tables 8.12 and 
8.13, respectively. It is noted that the effective width is introduced only in class 4 plated ele-
ments for which it is ρ < 1.

8.5.3 Longitudinally stiffened panels

For stiffened panels, an effective area rather than an effective width is determined. The effec-
tive area is composed of full areas at the stiff edges and effective areas of the central buckled 
parts. The effectivep area of the compression zone of a stiffened panel may be taken as:

 
A A b tceff c c effloc edge eff, , , ,= ◊ + ◊Âr  (8.46)

where ρc is the reduction factor for global buckling of the stiffened panel, ignoring local 
buckling of subpanels.

The area Ac,eff,loc is composed of the effectivep area of all the stiffeners and subpanels that 
are full or partly in compression, except the effective width adjacent to the two longitudi-
nally supported edges, as indicatively shown in Figure 8.27:

 

A A b tceffloc s eff loc
c

c loc, , , ,= + ◊ ◊Â� r  (8.47)

be�/2

P > Pcr

P > Pcr

P > Pcr

P > Pcr

b

σx(y)
σm

σmax x y

a

be�/2

σmax

(a) (b)

Figure 8.26 Panel under compression: (a) real stress distribution and (b) stress distribution.
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where

c
Â  applies to the compression part of the stiffened panel, except the edge parts of 

width bedge,eff

As eff�,  is the sum of the effectivep areas of the longitudinal stiffeners in the compression zone
bc,loc is the width of the compression part of each subpanel
ρloc is the reduction factor for each subpanel

REMARK 8.6

For plates where the stress reverses and becomes tensile, the tensile area should be included 
in the calculation of Ac,eff,loc.

For wide flanges, the interaction between shear lag and plate buckling shall be accounted 
for by further reduction of the effectivep area of Equation 8.46 in accordance to Table 7.9

 A A or oreff c eff ult= ◊, ( )b b bk  
(8.48)

where β, βult, and βk are the effectives width factors at ultimate limit states presented in Table 7.7.

Table 8.12  Effectivep widths for internal elements

Stress distribution (compression positive) Effectivep width beff

be1

1 2

be2

+

b

ψ = 1

b b

b b

b b

eff

e eff

e eff

= ◊

= ◊

= ◊

r

1

2

0 5

0 5

.

.

+

b

2

1

be2be1 1 > ψ ≥ 0

b b

b b

b b b

eff

e eff

e eff e

= ◊

=
-

◊

= -

r

y1

2 1

2
5

+

b

bc bt

1

2

be2be1

ψ < 0

b b
b

b b

b b

eff c

e eff

e eff

= ◊ = ◊
-

= ◊

= ◊

r r
y1

0 4

0 6

1

2

.

.

Source: EN 1993-1-5 Eurocode 3: Design of steel structures, Part 1–5: 
Plated Structural Elements, 2006.

Note: ψ = σ2/σ1.

For ξ < 1, Equation 8.33, ρ is substituted by ρc of Equation 8.32.
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8.6  MEMBER VERIFICATION FOR AXIAL 
COMPRESSION AND BENDING

Cross sections with unstiffened class 4 walls or stiffened walls subjected to axial compres-
sion and uniaxial bending may be verified by introduction of the properties of the effective 
rather than the gross cross section. The effective cross section is determined separately for 

b1 b2 b3

b3/2b1/2

Ac

b1

2
ρ1  b1

b2 b3

2
ρ2  b2

2
ρ2  b2

2
ρ3  b3

b1,edge,e� Ac,e�,loc b3,edge,e�

Figure 8.27 Example of a stiffened panel under uniform compression. Gross area Ac and effectivep area Ac,eff,loc.

Table 8.13 Effectivep widths for outstand elements

Stress distribution (compression positive) Effectivep width beff

1

2

beff

+

c

1 > ψ ≥ 0
beff = ρ · c

1

beff

bt bc

+

2

ψ < 0
beff = ρ · bc = ρ · c/(1 − ψ)

beff

+

c

2
1

1 > ψ ≥ 0
beff = ρ · c

beff

+

bc bt

2

1

ψ < 0
beff = ρ · bc = ρ · c/(1 − ψ)

Source: EN 1993-1-5 Eurocode 3: Design of steel structures, Part 1–5: Plated Structural 
Elements, 2006.

Note: ψ = σ2/σ1.

For ξ <1, Equation 8.33, ρ is substituted by ρc of Equation 8.32.
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axial compression and for bending. As outlined before, an important parameter for the 
determination of effective widths for unstiffened walls or subpanels and effective areas for 
stiffened walls is the ratio ψ between the edge stresses (see Tables 8.12 and 8.13).

For axial compression, the stress ratio is obviously ψ = 1 for all parts of the cross section. 
Therefore, the determination of the effective cross section is straightforward. For nonsym-
metric sections, seldom in composite bridge sections, the centroid of the effective cross sec-
tion may be shifted in relation to the centroid of the gross cross section. This fact should be 
taken into account in design as indicated in Equation 8.49.

For uniaxial bending, the stress distribution and accordingly the stress ratio are deter-
mined separately for the flanges and the webs. The stress distribution for the flanges is based 
on the properties of the gross cross section, possibly accounting for the effects of shear lag 
for both compression and tension flanges. Following this distribution, a new cross section 
is found consisting of the effective area of the compression flange and the gross area of the 
tension flange and the webs (Figure 8.28a). For this new cross section, a new stress distribu-
tion is found providing the stress ratios and the effective area of the webs (Figure 8.28b).

The following is noted:

 a. The stress distribution follows elastic analysis.
 b. Effective cross sections are generally different for axial compression and for bending.
 c. For I-girder composite bridges, the effective areas refer only to the webs, while for box 

girder composite bridges to the bottom flange and the webs.
 d. The properties of the effective cross section may be used for flexural or lateral tor-

sional buckling member verifications.
 e. For construction stages, the stresses from the various stages may be calculated for the 

cross section with effective flanges only (Figure 8.28a). The resulting stresses from all 
stages may then be used to determine the effective area of the webs. The final stress 
distribution is then used for the effective section (Figure 8.28b).

Member verifications are performed according to the following relation:
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where
Aeff is the effective cross-sectional area for axial compression
Weff is the elastic section modulus of the effective cross section for pure bending
eN is the shift of the neutral axis between gross and effective sections for axial compression
NEd is the design axial force
MEd is the design bending moment

(a) (b)

Figure 8.28 (a) Cross section with effective flange and full webs and (b) effective cross section.
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For panels with variable stresses along their length, the verification of Equation 8.49 
should be done at a distance s = min{0.4·a or 0.5·b} of the most stressed panel end. This 
check needs to be repeated at the end of the panel using gross-sectional properties.

It is noted that NEd and MEd may possibly be accounted for by second-order analysis, 
where relevant. This refers mostly to arch or stay cable bridges that are subjected to signifi-
cant compression forces.

REMARK 8.7

The verification of members under compression and bending with the approach of Section 8.6 may 
be in some cases laborious and consequently impractical. Indeed, the shift eN in the neutral axis 
leads to a change in the applied moment, which will in turn cause a change in stress distribution. 
In such cases, designers will find the reduced stress method of Section 8.4 much more convenient.

8.7 RESISTANCE TO SHEAR

In webs subjected to shear forces, a tension field is developed in the post-buckling state. This 
tension field is anchored in the flanges as shown in Figure 8.29. The girder behaves then 
quasi like a truss with the tension field acting as tension diagonals. Accordingly, the flanges 
anchoring the tension field contribute also to the shear resistance and not only the web as 
considered in the reduced stress method.

Flange contribution:

 
V M

cbfRd
fRd

,
,= ◊2

The design shear resistance is then obtained from

 
V V V f h t
b Rd bw Rd bfRd

yw w

M
, , ,= + £ ◊ ◊ ◊

◊
h

g3 1  
(8.50)

For η, see Table 8.10.
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In the earlier relation, the first term expresses the contribution of the web and the second 
of the flanges. The contribution of the web is given by

 
V f h t
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w yw w

M
, = ◊ ◊ ◊

◊
c

g3 1  
(8.51)

where
χw is the reduction factor for shear as determined from Table 8.10
fyw is the yield strength of the web and the other notation as shown in Figure 8.30

The contribution of the flange is given by
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 (8.52)

No end post

t

tf

hw

Rigid end post
a

Nonrigid end post

Figure 8.30 Notations and types of support conditions.

Flange
tf

bf

PEd

PEd Vb,Rd

Mf,RdVbf,Rd

Mf,Rd

Tension field

a

c

Figure 8.29 Tension field in web under shear force.
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where
bf and tf are taken for the flange leading to the lowest resistance (that has the lowest 

product bf · tf · fyf). However, if one flange is connected to a concrete slab and acts 
compositely, the width and thickness of the noncomposite flange should be taken.

bf being taken as not larger than 15 · ε · tf on each side of the web

M M
fRd

fk

M
,

,=
g 0

 is the design-bending resistance of the cross section consisting of the 

flanges only. If a β-factor smaller than 1 applies for the determination of Mpl,Rd of the 
composite section (Figure 9.8), then Mf,Rd should be reduced by this factor.

M N N efk Rf Rf, m in ,= { }◊1 2  NRf1, NRf2 axial resistance of the effectivep area of the flanges, 
taking into account the contribution of concrete in compression for flanges acting 
compositely with concrete

e distance between centroids of flanges
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a distance between rigid transverse stiffeners.

When an axial force NEd is present, the value of Mf,Rd should be reduced by the factor
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For a composite section, NEd is the axial force acting on the composite section.
Obviously, the contribution of the flanges is high at end supports and small at intermedi-

ate supports where high-bending moments act simultaneously with shear.
The verification for shear is performed according to the following relation:

 
h3 1 0= £V

V
Ed

b Rd,
.  (8.55)

REMARK 8.8

The tension field shown in Figure 8.29 may transfer nonnegligible axial forces to the shear con-
nectors and consequently lead to a local damage of the concrete plate (e.g., pullout  failure). This 
may occur in cases of cross sections with “very strong” upper flanges (i.e., hybrid girders where 
fyf > fyw or high values of tf). Therefore, it is advisable to ignore the flange contribution during 
the calculation of Vb,Rd.

8.8 RESISTANCE TO CONCENTRATED TRANSVERSE FORCES

In bridges, web stiffeners are provided at supports. However, there are cases where the 
transfer of concentrated forces through an unstiffened web may not be avoided. This occurs 
typically in bridges that are constructed by launching, where all sections, whether stiffened 
or not, are subjected to concentrated support forces (Figure 8.31).
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The design buckling resistance of girders to concentrated transverse forces may be 
obtained from

 
F f L t
Rd

yw eff w

M
= ◊ ◊

g 1
 (8.56)

where
tw is the web thickness
fyw is the yield stress of the web
Leff is the effective length for resistance to concentrated forces determined from

 
L leff F y= ◊c  (8.57)

where
ly is the effective loaded length obtained from Table 8.14
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For webs without longitudinal stiffeners, the coefficient kF is taken from Figure 8.32 as a 
function of the loading conditions and the length of the panel between transverse stiffeners.

The length of stiff bearing ss should not be taken as larger than hw.
For webs with longitudinal stiffeners, the buckling coefficient kF for the case of Figure 8.32a 

may be obtained from Equation 8.61, provided that the following geometric conditions 

apply: 0 05 0 31. .£ £
b
hw

 and 
b
a
1 0 3£ . :
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Launching direction

a

a

Launching
device

Section
a–a

Figure 8.31 Bridge during launching.
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a

ss ss ss

Fs

hw

c

Fs Fs

akF

2hw6 + 2= kF
2hw

a
3.5 +2= kF ≤ 6ss+c

hw

2 + 6=

(a) (b) (c)

Figure  8.32  Buckling coefficients kF for concentrated forces in unstiffened panels. (a) Load applied through 
one flange, (b) load applied through one flange and directly transferred to the other flange, and 
(c) load applied through one flange close to an unstiffened end.

Table 8.14 Effective loaded length ly

End posts as in Figure 8.32a and b End posts as in Figure 8.32c
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Notes:
– Length of stiff bearing ss from Figure 8.32
– The estimation of the bearing length ly is based on the collapse mechanism of Figure 8.34.
It is assumed that four plastic hinges are formed in the flange. The internal work due to the 
plastification of the flange is 4·Mpl,f,Rd · θ where M f b tpl f Rd yf f f, , = ◊ ◊ 2 4/  and θ = 2 · ∆/sy.

Therefore, the internal work is written as W f b t syf f f yint = ◊ ◊ ◊ ◊2 2 D/ .
The external works is equal to Wext = [ly − (ss + 2 · tf) − 0.5 · sy] · fyw · tw.
From Figure 8.34, one can see that ly = ss + 2 · tf + sy.
Thus, Wext = 0.5 · sy · fyw · tw.
Equating the work done externally to work done internally gives
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where
b1 is the height of the loaded subpanel, equal as the clear distance between the loaded 

flange and the closest stiffener:
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Isl,1 is the second moment of area of the closest stiffener, including an effective width 
of the plate as indicated in Figure 8.33. Different values of kF may be found in the 
National Annex.

The length of stiff bearing ss is the distance over which the applied force is effectively 
distributed from the flange to the web. The dispersion through solid steel material is at 
a slope 1:1, as shown in Figure 8.35. For several closely spaced concentrated forces at 

Fs

tf

45° 45°

Fs Fs

Fs

ss ss ss ss

Figure 8.35 Length of stiff bearing ss.

Flange
tf

fyw  ly  tw

fyw  (ss + 2  tf) tw

sy/2 ss + 2  tf sy/2

ly

θΔ Mpl,f,Rd

bf

Figure 8.34 Flange collapse mechanism.

Loaded flange

b1

2  15  ε  tw + tsl,1hw

tw

tsl,1

a

Figure 8.33 Notation for webs with longitudinal stiffeners.
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center-to-center distance ss, verifications for each individual force and for the sum of 
forces at distance ss are required.
The verification is performed as follows:

 
h2 1 0= £F

F
sEd

Rd

, .  (8.63)

REMARK 8.9

By comparing Equation 8.61 with the kF values in Figure 8.32, one can observe that for small 
values of b1, the resistance FRd of an unstiffened panel may be greater than the resistance of a 
stiffened one. Indeed, this happens for small values of b1:

 
k from Equation k from Figure case a

b
a

F F ( . ) . .8 61 8 32 0 0391< Æ <

This is physically not meaningless. A stiffener that is close to the loaded flange may not be 
capable of stabilizing the web. However, designers should in such cases conservatively choose 
for kF, the value for the unstiffened panel. Other parameters such as the type of the stiffeners 
(i.e., closed or opened) and their distribution along the web are unfortunately not considered 
in the procedure of determining kF according to EN 1993-1-5 (see [8.13], [8.9]). In all cases, it is 
therefore recommended to calculate kF from an FE analysis.

8.9 INTERACTION

8.9.1 Interaction N, M, V

Members under the simultaneous action of axial compression, bending moments, and shear 
forces should be verified by Equation 8.49 for compression and bending as described in 
Section 8.6 and by Equation 8.55 for shear as described in Section 8.7. Additionally, they 
shall be verified for the interaction of all action effects as given in the following. The veri-
fications for this interaction include all cross sections, except those at a distance smaller 
than the web height, hw/2, from internal supports with vertical stiffeners. This is because 
in the code, it is assumed that there is a bearing stiffener present. However, an additional 
 verification at support is recommended.

For sections subjected to small axial compression forces, the interaction relation is given 
by Equation 8.64. The axial compression is considered small if it does not completely sup-
press the tension-bending stresses so that the entire web is in compression. The interaction 

shall be considered only in cases when n–3 > 0.5 and h1 ≥
M
M

fRd

N plRd

,

, ,
, where h1  and h3 are given 

in the following. Otherwise, no interaction should be examined. The first condition indicates 
high shear in the web, the second high bending that may not be resisted by the flanges alone:
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where
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The plastic bending moment accounting for the presence of axial force may be taken as
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It is noted that in Equation 8.67, the plastic bending moment is taken into account irrespec-
tively of the section class.

Mf,Rd is the design-bending resistance of the cross section consisting of the flanges only as 
described in Section 8.7. In presence of axial forces, the value of Mf,Rd should be reduced by 
the factor of Equation 8.54.

For sections subjected to high axial compression so that the whole web is in compression, 
Mf,Rd is set to zero.

Flanges of box girders may also be verified by Equation 8.64 taking Mf,Rd = 0. The shear 
stresses in the panel result in global torque plus ½ of the maximum shear stress across the 
flange from shear forces. In addition, the edge subpanels between the web and the extreme 
longitudinal stiffeners should be verified adding the shear stresses from global torque with 
the average shear stresses in the subpanel from shear.

8.9.2 Interaction N, M, Fs

For concentrated force Fs acting in the compression flange, the following interaction should 
be verified in addition to Equation 8.64:

 h h2 10 8 1 4+ ◊ £. .  (8.68)

REMARK 8.10

In Equation 8.68, one can observe that the influence of shear is not considered in the interaction 
with the patch load. This is due to experimental observations that led to this exclusion [8.9].

8.10 FLANGE-INDUCED BUCKLING

In modern I-girder bridges, the flanges may be formed from very thick plates. When these 
thick flanges are in compression, significant deviation compression forces develop in the web 
due to the curvature (Figure 8.36) that may lead to buckling of the flange in the plane of the 
web. To prevent this possibility, the following geometric limitation is set:
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where
Aw is the web area
Af,eff is the effective area of the compression flange
k = 0.4 if the plastic moment resistance is utilized
k = 0.55 if the elastic moment resistance is utilized

For girders curved in elevation, the right side of Equation 8.69 should be divided by 
the factor
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3
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E h
r f
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where r is the radius of curvature of the compression flange.
The flange-induced buckling may occur in cases of highly curved beams with large com-

pressed flanges and slender webs. In such cases, Equation 8.69 may be decisive when deter-
mining the web dimensions.

8.11 DESIGN OF STIFFENERS AND DETAILING

8.11.1 Introduction

As noted in the introduction, most of the failures occurred in box girder bridges in the 1970s 
were due to insufficient construction detailing. Most failures took place in splice regions 
of flange plates or were due to lateral torsional buckling of longitudinal or open-section 
stiffeners. These issues were studied extensively experimentally and numerically and led to 
the formulation of code provisions as presented in the following. Transverse stiffeners limit 
the buckling length of the longitudinal ones. In addition, they reduce the distortional frame 
deformations of box girder walls if placed at small distances.

8.11.2 Intermediate transverse stiffeners in compression panels

As noted before, in the current construction practice, transverse stiffeners are selected suffi-
cient rigid to provide rigid supports of the adjacent panels. The sufficiency in rigidity of trans-
verse stiffeners may be checked by application of linear plate buckling theory. Figure 8.37 
shows the first buckling mode of a compression panel with two longitudinal stiffeners and 
two types of transverse stiffeners with different rigidities. It may be seen that the first stiffener 
(Figure 8.37a) deforms, while the second remains straight. Accordingly, its rigidity should be 
sufficient. However, the information provided by linear plate buckling theory is only limited 
as it does not refer to the post-buckling state and does not provide the stress state. Therefore, 
second-order analysis for the stiffener with imperfections is employed instead.

a Section a–a

Compressed flange

Web

a

Figure 8.36 Flange-induced buckling.
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Transverse stiffeners are then treated as simply supported beams with sinusoidal imper-
fection w0 given in the following (Figure 8.38b). The span of the beam is b, equal to the 
width of the panel under consideration. Obviously, b is equal to hw for web stiffeners or to 
the width of the bottom flange for flange stiffeners in box girders.
The deviation forces due to imperfection result in a uniform transverse loading that is equal to

 
q w wm el= ◊ ◊ +p s

4 0( ) (8.70)

where
σm is defined in Equation 8.73
w0 = s/300 is the value of the imperfection (see Figure 8.38b)
wel is the additional deflection to be calculated iteratively or set equal to b/300
s is the min (a1, a2, b)
a1, a2 are the lengths of the adjacent panels
b is the panel width (=span of transverse stiffener)

The verification for stiffeners subjected to compression forces NEd (e.g., due to tension 
field action; see forces PEd in Figure 8.29 or external load) is performed by limiting the 

Transverse sti�ener
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w(x)
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Section A–A
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sti�eners

Section B–B
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Figure 8.38  Imperfection of transverse stiffener. (a) Longitudinal section, (b) transverse section, and (c) panel 
with geometrical imperfections.

Flexible sti�ener Rigid sti�ener

(a) (b)

Figure 8.37  First buckling mode of a panel under uniform compression (a) with flexible and (b) with rigid 
transverse stiffeners.
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resulting maximal stress to the design yield stress according to Relation 8.71, which implies 
also that the additional deflection is smaller than b/300:
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NEd is the maximal design compression force of the adjacent panels but not smaller than the 
maximal compression stress times half the effectivep compression area of the panel including 
the longitudinal stiffeners. When axial forces in adjacent panels differ, the larger of the two 
is taken into consideration (see Example 8.12).

Ncr,st is the elastic critical buckling (Euler) load of the stiffener.
It is noted that any transverse loading present should be added to the deviation forces q 

in Equation 8.71.
Transverse stiffeners not subjected to compression forces may be verified alternatively as 

having a minimum second moment of area given by
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emax is the distance of the extreme fiber of the stiffener to the centroid of the stiffener
σcr,c/σcr,p is the ratio of column-like critical buckling stress to the plate critical buckling 

stress (0.5 ≤ σcr,c/σcr,p ≤ 1)

REMARK 8.11

In EN 1993-1-5, it is not clear for which panel length should the buckling stresses σcr,c and σcr,p 
be calculated. A conservative simplification would be to take the ratio σcr,c/σcr,p equal to 1 [8.2]. 
In some cases, this can be significantly uneconomical. Therefore, it is recommended to calculate 
the buckling stresses for the shorter panel. This maximizes the ratio σcr,c/σcr,p and keeps the 
calculation at a safe level [8.9].

REMARK 8.12

The stiffener to be checked is assumed to have straight and rigid adjacent stiffeners. The devia-
tion forces q(x) can be then approximated by the following equation:
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where
w(x) is the initial sinusoidal bow with max w = w0

NEd the compressive force due to the membrane action in the adjacent panels
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The maximum value of the deviation forces is obviously equal to

 max max ( ) max ( )q w x q wm m= ◊ Æ = ◊ +s s 0 D  (R8.8)

where ∆ is the deflection at mid-height.
By taking the previous in consideration, the maximum stress and the maximum deflection are 

written as follows:
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where
Mmax is the maximum value of the bending moment due to deviation forces
emax is the distance of the extreme fiber of the stiffener to the centroid of the stiffener

By introducing (R8.10) in (R8.9), the stiffener’s second moment of inertia becomes
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 (R8.11)

or
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The minimum allowable values for Ist can be determined by introducing σmax = fy/γM1 and w = b/300 
in Equations R8.11 and R8.12, respectively. This leads to Equation 8.72 given in EN 1993-1-5.

8.11.3 Shear in transverse stiffeners

Rigid end posts
The cross-sectional shear resistance at supports is usually calculated assuming a rigid 
end post (see Figure 8.30). In such cases, the bearing stiffeners should be capable of 
resisting the membrane forces in the web (see NH in Figure 8.39) by acting as beams 
spanning between the flanges. Membrane forces are developed due to the tension field 
action in the adjacent panels and act only when the shear stress τ reaches the critical 
value τcr [8.7], [8.16].

Rigid end posts may comprise two transverse stiffeners on both sides of the web. This 
results in a short beam with an I cross-section the flanges of which are the stiffeners and the 
web the strip of web panel between them (Figure 8.39a). Alternatively, a rolled section may 
be used instead.
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Each double-sided stiffener consisting of flat plates should have a minimum cross-sec-
tional area:

 
m inA h t

est
w= ◊ ◊4 2

 (8.75)

where
t is the panel thickness
e is the center distance between the stiffeners

In addition, it must be e > 0.1 · hw.
If the end posts are not made of flat stiffeners, its section modulus for bending around a 

horizontal axis perpendicular to the web must be at least equal to

 W h twm in= ◊ ◊4 2
 (8.76)

Rigid end posts are checked for buckling due to compression and bending, using buckling 
curve c and for buckling length 0.75 · hw. Compression results from the reaction force while 
bending from the longitudinal membrane stresses in the plane of the web.

REMARK 8.13

Designing a bearing stiffener as a rigid end post is not always feasible. Moreover, rigid end post 
conditions do not offer economical advantages for web slenderness lw <1 08.  (see Table 8.10). 
For this reason, EN 1993-1-5 offers a second alternative by providing a single double-sided 
bearing stiffener and a vertical stiffener adjacent to the support so that the subpanel resists the 
maximum shear when designed with a nonrigid end post. Panels beyond the adjacent stiffener 
are then designed with rigid end-post conditions (Figure 8.40).

NH

Section a–a

aa

hw

t

Rigid end post

e

(a) (b)

Resulting beam
section

NH/2

NH/2

NHNH

τ

τ

–σ1
σ2

σ2 σx

21

Tension �eld

1

2

Membrane force: NH = σx   dAw = f (τ, τcr), τ ≥ τcr

–σ1

Figure 8.39 (a) Rigid end post and (b) tension field action and membrane force.
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Intermediate transverse stiffeners
The effective section of intermediate transverse stiffeners acting as rigid supports for web 
panels must have a second moment of area Ist that satisfies the conditions:

 
I h t

a
if a
hst w
w

≥ ◊ ◊ <1 5 23
3

2.
 (8.76a)

 
I h t if a

hst w
w

≥ ◊ ◊ ≥0 75 23.  (8.76b)

Intermediate transverse stiffeners are checked for buckling to an axial compression force, 
using buckling curve c and for a minimum buckling length equal to 0.75 · hw. The compres-
sion force is given by

 
P V f h t
Ed Ed

w yw w= - ◊ ◊ ◊
◊

c
g3 1M

 (8.77)

where
χw is calculated for the web panel between adjacent transverse stiffeners assuming the 

stiffener under consideration is removed (i.e., taking twice the panel length)
VEd is the shear force at distance 0.5 · hw from the edge of the panel with the largest shear force

It is worth mentioning that the force PEd acts on the plane of the web and is activated 
due to the shear tension field action. Designers should be careful in cases of asymmetric 
stiffeners and take into account the resulting eccentricity by verifying the stiffener against 
axial load and bending. Despite the fact that EN 1993-1-5 allows a verification based on 
the plastic resistance of the stiffener, a check based on the elastic properties is recommended 
Moreover, lateral–torsional buckling of the stiffener should be excluded.

The notation P in Equation 8.77 has been chosen so that it can be distinguished from the 
force NEd presented in 8.11.2.

8.11.4 Torsional requirements for open section stiffeners

To avoid torsional buckling around the plane of the panel they are stiffening, longitudinal 
and transverse stiffeners must comply with the following requirement:
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Design as
nonrigid
end post

Design as
rigid end post

Section a–a

aa

Figure 8.40 Alternative solution to avoid rigid end post.
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where
Ip is the polar second moment of area of the stiffener around the edge fixed to the plate
IT is the St. Venant constant of the stiffener alone

The earlier relation gives for a flat stiffener of height h and thickness t:

 
I h t and I h t h t h h t
T P= ◊ = ◊ + ◊ ◊Ê
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ˆ
¯̃
= ◊3 3 2 3

3 12 2 3

Substituting in Equation 8.78, the condition for the flat may be written as
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where

 
e= 235

2f m my[ ]N /

Stiffeners with warping rigidity may alternatively fulfill the condition:

 
s qcr yf≥ ◊  (8.80)

where
θ is a parameter with a recommended value 6
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2  is the critical stress for torsional buckling around the edge 

fixed to the plate
a is the length between transverse stiffeners

For angles or tees, σcr is equal to the critical stress of the double section (i.e., a U or an 
I section of double height) without restraint from the plate.

8.11.5 Discontinuous longitudinal stiffeners

Longitudinal stiffeners in compression flanges pass usually through openings made in the 
transverse stiffeners and are welded to them in order to provide continuity (see Figure 8.4). 
Continuity may be also provided by fully splicing them. Accordingly, longitudinal  stiffeners 
in flanges are considered in the global analysis and stress calculations. Example 8.9 presents 
a practical method on how to include them in analysis and design; by “smearing” them into 
the flange, they stiffen and accordingly notionally increase the thickness of this panel.

Oppositely, longitudinal stiffeners in webs may be discontinuous. In such a case, they are 
not considered in global analysis and stress calculations but are merely used for buckling 
verification to increase the panel buckling strength as indicatively shown in Example 8.9.
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8.11.6 Splices of plate sheets

The plate sheets for flanges and webs are delivered in certain lengths and must be welded on 
site to form the entire bridge. Their thickness may vary along the bridge to accommodate 
the gradient of action effects. The thickness of the thicker sheet is gradually reduced to the 
thinner to allow an execution of a butt weld and alleviate fatigue problems (Figure 8.41). 
One side of the sheet, for bottom flanges, the lower side, does not change in level that results 
in an eccentricity between the middle planes of adjacent sheets. At splices of sheets with 
changes in thickness, transverse stiffeners should be provided. The effects of eccentricity 
need not be taken into account when these transverse stiffeners are stiffening the thinner 
sheet and their distance to the splice is lower than min (b0/2, 200 m), where b0 is the width 
of subpanels between stiffeners.

8.11.7 Cutouts in stiffeners

Cutouts in longitudinal stiffeners are provided at positions of splices of plate sheets to avoid 
weld concentrations (Figure 8.42). Large cutouts in stiffeners may result in buckling of the 
compressed sheet in the unsupported region. A typical example was the Rhine bridge in 
Koblenz in which the cutout in the compression bottom flange had a length l = 460 mm or 
l = 42 · t for a plate thickness of 11 mm. Buckling of this sheet resulted in the collapse of 
this bridge during the cantilevering erection. As a consequence, maximum dimensions for 
 cutouts both in height and length are specified. The height shall be limited to ¼ of the height 
of the stiffener but no more than 40 mm. The maximum length is limited to

• l ≤ 6 · tmin for flat stiffeners in compression
• l ≤ 8 · tmin for other stiffeners in compression
• l ≤ 15 · tmin for stiffeners without compression

Section a–a

tmin

l

a

hs

≤ min
hs
4 , 40 mm

a

Figure 8.42 Cutouts in longitudinal stiffeners.

Welded joint

Pl1. Pl2.
Pl2.Pl1.

Transverse weld

Transverse stiffener

b0

s

b0 ,
2

200 mms ≤ min

Longitudinal
stiffener

Figure 8.41 Splice of plate sheets with change in thickness and transverse stiffener.
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If the acting compression stress of the panel σx,Ed is lower than the buckling resistance σx,Rd, 
then the earlier figures may be enhanced by the factor s sx Rd x Ed, ,/ , but the resulting length 
should not exceed 15 · tmin.

8.11.8 Transverse stiffeners

Cutouts in transverse stiffeners are provided to allow continuity of the longitudinal  stiffeners 
that pass through them. Their maximum dimensions are shown in Figure 8.43. In addition, 
the web of the stiffener in the cutout region should resist the following shear force:
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m ax g

p
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 (8.81)

where
Inet is the second moment of area of the net section of the transverse stiffener
max e is the maximum distance from the neutral axis of the net section
bG is the span of the stiffener

8.11.9 Web to flange welds

When the web is able to resist the acting shear without contribution of the flanges, that is, 
when VEd ≤ Vbw,Rd from Equation 8.51, the web to flange welds may be designed to resist the 
nominal shear force. Otherwise, they shall be designed for the full shear resistance of the 
web n f tyw M◊ ◊ ◊/( ).3 1g

EXAMPLE 8.10

The cross section of the box girder bridge in Example 8.9 shall be verified by the effective width 
method.

Effective area of the bottom flange

 a. Effective width of the edge subpanels
  The edge subpanels between the web and the edge stiffeners have width b = 55 cm and 

thickness t = 1.5 cm.
   Reference stress, Equation 8.10:

 se kN cm=14 12 2. /

≤ 0.6  hs

Web

max e hs

Transverse
sti�ener

Figure 8.43 Cutouts in transverse stiffeners.
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  Stress ratio: ψ = 1
  Buckling factor (Table 8.2): kσ = 4
  Critical plate buckling stress, Equation 8.9:

 scr p kN cm, . .= ◊ =4 14 12 56 48 2/

  Nondimensional plate slenderness, Equation 8.18:

 
lp = = >35 5

56 48
0 793 0 673

.
.

. .

  Reduction factor for plate buckling, Equation 8.23:

 
r = - ◊ + =0 793 0 055 3 1

0 793
0 9112

. . ( )
.

.

  Effective width (Table 8.12):

 b cmeff = ◊ =0 911 55 50 11. .

  Figure 8.27:

 b cmedge eff1 0 5 50 11 25 06, , . . .= ◊ =

 b. Reduction factors for other subpanels of plate
  For the subpanels between the webs of the stiffeners (b = 35 cm, t = 1.5 cm), it was found 

from Example 8.9 that there is no reduction due to plate buckling so that ρloc = 1.
   For the subpanels between the stiffeners (b = 55 cm, t = 1.5 cm), it was found from 

Example 8.9 that ρloc = 0.911. Therefore, from Table 8.12, beff = 0.911 · 55 = 50.11 cm
   Accordingly, the effective area of the bottom plate is, Equation 8.47,

 
rloc c loc

c

b t cm◊ ◊ = ◊ + ◊ ◊ =Â , ( . ) . .4 50 11 4 35 1 5 510 7 2 

  The effective parts of the subpanels that are supported by the webs were excluded.
 c. Effective area of the stiffeners
  The reduction factor for the inclined web of stiffener (b = 31.9 cm, t = 0.8 cm) was found 

in Example 8.9 ρ = 0.864.
   For the top part of stiffener (b = 14.5 cm, t = 0.8 cm), it was found from Example 8.9 that 

ρ = 1.0.
   The effective area of the stiffeners is therefore

 A cmsl eff, , ( . . . ) . .1
22 0 864 31 9 14 5 0 8 55 7= ◊ ◊ + ◊ =

  Effective area of all stiffeners:

 A cmsl eff, . .= ◊ =4 55 7 222 8 2
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 d. Effective area of the stiffened panel
  The effective area of the stiffeners and subpanels is equal to, Equation 8.47,

 A cmc eff loc, , . . .= + =222 8 510 7 733 5 2

  The reduction factor of the stiffened panel is calculated as follows.

  Plate buckling
  From Example 8.9, it was found that

 scr p kN cm, .= 99 88 2/

  Nondimensional plate slenderness, Equation 8.18:

 
lp = = £35 5

99 88
0 596 0 673

.
.

. .

  Reduction factor for plate buckling, Equation 8.23: ρ = 1

  Column-like behavior
  From Example 8.9, it was found that

 scr c kN cm, .=105 5 2/

  During the subpanel verifications, it was found that the reduction factors for the inclined 
wall of the stiffener and the plate between stiffeners are equal to ρ = 0.864 and ρ = 0.911, 
respectively. Therefore, the relevant widths must be reduced due to plate buckling to 
0.864 · 31.9 = 27.6 cm and 0.911 · 55 = 50.1 cm, respectively. The effective area of the stiff-
ener and the associated plate is accordingly
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( . ) . . . . . .1
235 50 1 1 5 2 27 6 0 8 14 5 0 8 183 41= + ◊ + ◊ ◊ + ◊ =

Æ b == =183 41
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0 936
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.

  Column slenderness, Equation 8.35:

 
lc =

◊ =0 936 35 5
105 5

0 55
. .

.
.

 
I cm i cmsl eff, , , .

.
.

.1
419 450 3

19450 3
183 41

10 3= Æ = =

  Figure 8.22: e1 = 12.8 cm, e2 = 5.80 cm

 e = max (12.8, 5.80) = 12.8 cm

  Imperfection factor for closed stiffener section:

 
ae = + =0 34
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0 45.
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. .
.

/
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  Equation 8.37:

 
F = ◊ + ◊ - +ÈÎ ˘̊=0 5 1 0 45 0 55 0 2 0 55 0 732. . ( . . ) . .

  Reduction factor, Equation 8.36:

 
cc =

+ -
=1

0 73 0 73 0 55
0 826

2 2. . .
.

  Equation 8.33:

 
x x= - = - < Æ =99 88

105 5
1 0 05 0 0

.
.

.

  Final reduction factor, Equation 8.32:

 r cc c= =0 826.

  The effective area of the stiffened panel is then, Equation 8.46,

 A cmc eff, . . . . .= ◊ + ◊ ◊ =0 826 733 5 2 25 06 1 5 681 1 2

  Effective area of the web
  The stress ratio of the web will be determined for a new cross section consisting of the 

effective flange area and the gross web area. In order to determine the properties of this 
cross section, the equivalent thickness of the bottom flange is found from

 
t

A
b

cmeq
c eff= = =, .

.
681 1
415

1 64

  The properties of this cross section are as follows:
   Second moment of area:

 I cmy = ◊17 371 106 4.

  The clear width of the web between flanges is hw = 212.0 cm. The width of the tension 
zone is 100.4 cm and of the compression zone 111.6 cm. Therefore, the lower stiffener is 
in compression of the upper stiffener in tension.

  The stiffeners are equally distanced. All subpanels between the stiffeners have therefore 
a width of

 
b cm= =

212
3

70 67. .
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70.67
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 a. Effective width for the intermediate panel
  b = 70.67 cm, t = 1.2 cm
  Stress ratio: ψ = −0.73
  Reference stress, Equation 8.10:

 se kN cm=5 47 2. /

  Buckling factor (Table 8.2):

 ks = - ◊ - + ◊ - =7 81 6 29 0 73 9 78 0 73 17 612. . ( . ) . ( . ) .

  Critical plate buckling stress, Equation 8.9:

 scr p kN cm, . . .= ◊ =17 61 5 47 96 32 2/

  Nondimensional plate slenderness, Equation 8.18:

 
l rp = = £ Æ =35 5

96 32
0 61 0 673 1

.
.

. .

  Effective width (Table 8.12):

 b cmeff = ◊ =1 0 40 93 40 93. . .

 b. Effective widths for the compression edge subpanel
  The lower edge subpanels between the web and the compression stiffener have a width 

b = 70.67 cm and thickness t = 1.2 cm.
   Stress ratio: ψ = 0.37
  Reference stress, Equation 8.10:

 se kN cm= 5 47 2. /
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  Buckling factor (Table 8.2):

 
ks = +

=8 2
1 05 0 37

5 77
.

. .
.

  Critical plate buckling stress, Equation 8.9:

 scr p kN cm, . . .= ◊ =5 77 5 47 31 6 2/

  Nondimensional plate slenderness, Equation 8.18:

 
lp = = >35 5

31 6
1 06 0 673

.

.
. .

  Reduction factor for plate buckling, Equation 8.23:

 
r = - ◊ + =1 06 0 055 3 0 37

1 06
0 782

. . ( . )
.

.

  Effective width (Table 8.12):

 b cmeff = ◊ =0 78 70 67 55 1. . .

  Effective width of intermediate subpanel, Figure 8.27:

 
b cmedge eff1

0 78 70 67
2

27 55, ,
. .

.= ◊ =

 c. Reduction factor for the stiffened panel
  Plate buckling
  Geometric properties:

 a = 450 cm, b = hw = 212.0 cm, t = 1.2 cm

  The critical plate buckling stress will be determined according to Table 8.6 since only one 
stiffener is in the compression zone. With the notation of this table, it is

 b cm b cm b cmc1 270 67 2 70 67 141 34 70 67 40 93= = ◊ = = - =. , . . , . .  111.6  

  Stress ratio for the lower subpanel:

 
y1

40 93
111 6

0 37= =.
.

.

  Stress ratio for the intermediate subpanel:

 
y 2

29 74
40 93

0 73= - = -.
.

.
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  Associated plate widths for the stiffener (Table 8.6):
  Lower subpanel:

 
3
5

3 0 37
5 0 37

70 67 42 51

1
1

-
-

◊ = -
-

◊ =y
y

b cm
.
.

. .

  Intermediate subpanel: 0.4 · bc = 0.4 · 40.93 = 16.4 cm (due to reversal of stresses)
  The associated plate width is therefore 42.5 + 16.4 = 58.9 cm.
   Properties of the longitudinal stiffeners L100 × 50 × 8:
   Ast = 11.5 cm2, Ist = 116 cm4, zs = 3.59 cm (distance of center of gravity from top)
   Properties of the longitudinal stiffener + associated plate width:

 A cm I cm i cmsl sl, ,. , . , .1
2

1
482 2 599 6 2 7= = =

  Table 8.6: a cm a cmc = ◊ ◊ ◊
◊

= > =4 33
599 6 70 67 141 34

212 1 2
489 5 450

2 2

3
4.

. . .
.

.

  Critical stress of the stiffener (Table 8.6):

 

s p
pcr sl,

.
.

.
(

= ◊ ◊
◊

+ ◊ ◊ ◊
◊ ◊ -

2

2

3 2

2

21000 599 6
82 2 450

21000 1 2 212 450
4 1 00 3 82 2 70 67 141 34

7 5 5 3 12 8

2 2 2

2

. ) . . .

. . .,

◊ ◊ ◊

Æ = + =scr sl kN cm/

  Critical plate buckling stress (Table 8.6):

 
scr p kN cm, .

. .
.

.= ◊ + =12 8
40 93 70 67

40 93
34 9 2/

  Nondimensional plate slenderness, Equation 8.18:

 
lp = = >35 5

39 4
0 95 0 673

.

.
. .

  Stress ratio for the web panel:

 
y = - = -100 4

111 6
0 9

.

.
.

  Reduction factor for plate buckling, Equation 8.23:

 
r = - ◊ - =0 95 0 055 3 0 9

0 95
0 922

. . ( . )
.

.

  Column-like behavior
  Critical stress of the stiffener according to Equation 8.30 and cross sectional properties 

according to Figure 8.22 and Table 8.11:

 
s p

cr sl kN cm, .= ◊ ◊
◊

=
2

2
221000 672

92 450
7 5 /
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  Critical column buckling stress of the panel, Equation 8.31:

 
scr c kN cm, .

.
.

.= ◊ =7 5
111 6
40 93

20 4 2/

  The stiffener is not class 4 → βA,C = 1
  Column slenderness, Equation 8.35:

 
lc =

◊ =1 35 5
20 4

1 32
.

.
.

  Figure 8.22: e1 = 6.05 cm, e2 = 0.96 cm

 e = max (6.05, 0.96) = 6.05 cm

  Imperfection factor for open stiffener section:

 
ae = + =0 49

0 09
2 7 6 05

0 69.
.

. .
.

/

  Equation 8.37:

 F = ◊ + ◊ - + =0 5 1 0 69 1 32 0 2 1 32 1 762. [ . ( . . ) . ] .

  Reduction factor, Equation 8.36:

 
cc =

+ -
=1

1 76 1 76 1 32
0 34

2 2. . .
.

  Equation 8.33:

 
x= - =34 9

20 4
1 0 71

.

.
.

  Final reduction factor, Equation 8.32:

 rc = - ◊ ◊ - + =( . . ) . ( . ) . .0 92 0 34 0 71 2 0 71 0 34 0 87

 d. Effective area of the compression zone
  The effective area of the web is, Equation 8.47,

 

A b t cmc eff loc loc c loc

c

, , , .
.

. .= ◊ ◊ = +Ê
ËÁ

ˆ
¯̃
◊ =Â r 40 93

55 1
2

1 2 82 2 2

  This area does not include the area of the stiffeners, since it does not participate in the 
compression resistance, but is used only for increasing the buckling resistance of the 
panel; Asl,eff = 0 in Equation 8.47.

 e. Effective area of the web
  The effective area of the compression zone includes the area near the compression stiff-

ener and the area of the edge zone, Equation 8.46:

 A cmc eff, . . . . .= ◊ + ◊ =0 87 82 2 27 55 1 2 104 6 2

  Area of the tension zone:

 A cmten = ◊ =100 4 1 2 120 5 2. . .
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  Effective area of the web:

 A cmeff = + =104 6 120 5 225 1 2. . .

  In order to determine the properties of the effective cross section, a reduced thickness 
of the web is considered:

 t cmeq = =
225 1
212

1 06
.

.

  Effective cross section
  The properties of the effective cross section with equivalent thickness for the flange 1.64 cm 

and for the web 1.06 cm are as follows:
  Second moment of the area:

 I cmy = ◊16 736 106 4.

  Distance of neutral axis from the top fiber: z = 102 cm
  Distance of neutral axis from the bottom fiber: z = 110 cm
  Section modulus of the effective cross section:

 
W cmeff =

◊ = ◊16 736 10
110

152 1 10
6

3 3.
.

  Bending verification
  Equation 8.49:

 n sufficient1

6

3

3 9 10
152 1 10 35 5 1 0

0 72 1= ◊
◊ ◊

= £.
. . .

. †( )
/

  Resistance to shear of the flange
  The shear of the flange is due to torsion that may be determined from the second formula 

of Bredt.
   Shear flow in the flange due to torsion:

 
v

M
A

kN cmEd
T=
◊

= ◊
◊

=
2 2

3 57
0

57.55 10
105757

/.

  Design shear force of the flange:

 V v b kNEd Ed= ◊ = ◊ =3 57 415 1481 55. .

  The reduction factor for shear was determined from Example 8.9 as χw = 1.0.
   Shear resistance of the flange, Equation 8.51:

 

V kN V

kN sufficie

w Rd Ed,
. .

.
.

. (

= ◊ ◊ ◊
◊

= >

=

1 415 1 5 35 5

3 1 1
11598 8

1481 55 nnt Equation, ( . ))  8 55
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  It is (Equation 8.66) n3
1481 55
11 598 8

0 5= <.
, .

.  so that no interaction with the bending moment 

needs to be considered.

  Resistance to shear of the web
  The webs resist shear due to shear force and torsion.
   Shear due to shear force:

 V
V

kNEd V
Ed

,
sin sin .

.=
◊

=
◊

=
2

1600
2 74 7

829 5
a

  Shear due to torsion:

 V v b kNEd T Ed, . .= ◊ = ◊ =3 57 212 756 8

  The two shear forces are added in one web and subtracted in the other.
  Shear force in the most stressed web:

 V V V kNEd Ed V Ed T= + =, , .1586 3 

  The buckling stress for shear was determined from Example 8.9 as τcr = 8.69 kN/cm2.
   Slenderness, Equation 8.19:

 
lw = ◊ =0 76

35 5
8 69

1 53.
.

.
.

  Reduction factor (Table 8.10):

 cw = =0 83
1 53

0 54
.
.

.  (for nonrigid end post)

  Shear resistance due to contribution of the web, Equation 8.51:

 
V kN V kN sufficbw Rd Ed,

. . .

.
. . (= ◊ ◊ ◊

◊
= > =0 54 212 1 2 35 5

3 1 1
2559 7 1586 3 iient)

  It is (Equation 8.66) n3
1586 3
2559 7

0 62 0 5= = >.
.

. .  so that the interaction with the bending 

moment needs to be considered.

  Interaction bending moment and shear
  The plastic moment of the box section is found as Mpl,Rd = 5.754 · 106  kN-cm.
   There is no axial force, so that MN,pl,Rd = Mpl,Rd.
   Equation 8.65:

 
n1

6

6

3 9 10
5 754 10

0 68= ◊
◊

=.
.

.

  For a box girder, it is Mf,Rd = 0.
  Interaction, Equation 8.64:

 0 68 1 0 2 0 62 1 0 74 12. ( ) ( . ) .+ - ◊ ◊ - = £ (sufficient)
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REMARK 8.14

The effective width method has attracted criticism [8.3], [8.8], [8.9] due to the fact that it does 
not cover typical loading situations, which can occur during launching. This can be the case of 
very long launching bearings. Moreover, in certain cases, there may not be any considerable eco-
nomic advantages compared to the reduced stress method (compare Examples 8.9 and 8.10).

EXAMPLE 8.11

The longitudinal web stiffeners of Examples 8.9 and 8.10 should be verified for lateral torsional 
buckling. Cross section L100 × 50 × 8, steel grade S 355.
Properties of the cross section:
Ast = 11.5 cm2,  Ist = 116 cm4,  zs = 3.59 cm,  Iz = 19.5 cm4,  IT = 2.5 cm4

Distance of the stiffener’s centroid from the web plate z = 10 − 3.59 = 6.41 cm.
Distance between stiffener’s centroid and midline of its web y = 0.73 cm.
Second moments of area of the stiffener around the edge fixed to the plate:

 I cmy = + ◊ =116 11 5 6 41 5872 4. .  

 I cmz = + ◊ =19 5 11 5 0 73 25 62 4. . . .

Polar second moment of area of the stiffener around the edge fixed to the plate:

 I cmp = + =587 25 6 612 6 4. .

Torsional requirement, Equation 8.78:

 

2 5
612 6

0 0041 5 3
355

210 000
0 009

.
.

. .
,

.= < ◊ =

The criterion is not satisfied so that the criterion of Equation 8.80 taking into account the warp-
ing rigidity will be examined:

 
I h t b tw st st st st= ◊ - ◊ ◊ ◊ = ◊ - ◊ ◊ ◊ =1

3
0 5

1
3

10 0 5 0 8 5 0 8 30722 3 2 3( . ) ( . . ) .   cm6

The length between transverse stiffeners is a = 450 cm. However, since the transverse stiffen-
ers provide fixity to the longitudinal one, the buckling length will be taken as half this distance:

 

s p
cr = ◊ ◊

◊ +
+ ◊ ◊Ê

Ë
Á

ˆ

¯
˜

=

1
612 6

21 000 2 5
2 1 0 3

21 000 3072
225

53

2

2.
, .
( . )

,

.. .5 6 35 5 2132 2kN cm kN cm/ /< ◊ =

Accordingly, criterion (8.80) is also not satisfied.
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In a further step, σcr is determined taking into account restraining from the web plate that 
provides a continuous elastic torsional support. The relevant rigidity is given by

 
c

E I
b

E t
b

a plate a
q n
= ◊ ◊ = ◊

◊ ◊ -
4

3 1

3

2( )

where b is the distance between stiffeners.
Considering the stiffener as a strut on elastic support, its critical stress is obtained from

 
s qcr

p
a w a T

I
c E I G I= ◊ ◊ ◊ ◊ + ◊1

2( )

that is valid if the length of the stiffener is larger than l
E I

c
cr

a w= ◊ ◊p
q

4 .
For the stiffener under consideration, it is

 
c kN m mq =

◊
◊ ◊ -

=21 000 1 2
3 70 67 1 0 3

188
3

2

, .
. ( . )

- /

The critical length is

 
l cm cmcr = ◊ ◊ = <p 21 000 3072

188
76 0 4504

,
.

The critical stress is then

 
scr kN cm= ◊ ◊ ◊ ◊ + ◊ =1

612 6
2 188 21 000 3072 21 000 2 6 2 5 392 2

.
( , ( , . ) . )/ /

and

 scr kN cm> ◊ =6 35 5 213 2. ( )/ sufficient

EXAMPLE 8.12

In Examples 8.9 and 8.10, the transverse stiffeners of the bottom flange have a T shape with 
flange plate 200 × 20 mm and a web plate 300 × 15 mm. The distance of the stiffeners is 450 mm. 
The stiffeners shall be verified.

The stiffeners are not subjected to axial forces so that they will be verified by Equation 8.72.
Maximal compression stress of the flange, Example 8.9:

 smax .=20 47 2kN cm/

Effective area of the flange, from Example 8.10:

 A cmc eff, .=681 1 2
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Compression force of the adjacent panels:

 
N kNEd = ◊ =20 47

681 1
2

6971 1.
.

.

Critical plate buckling stress, Example 8.9:

 scr p kN cm, .=99 88 2/

Critical column buckling stress, Example 8.9:

 scr c kN cm, .=105 5 2/

Length of stiffener = width of compression flange: b = 415 cm
Length of adjacent panels: a1 = a2 = 450 cm

Equation 8.73:

 
sm kN cm= ◊

◊
◊ =105 5 6971 1

99 88 415
2

450
0 0788 2. .

.
. /

The stiffener includes adjacent parts of the flange plate with width 15 ·ε · t (= 15·0.81·1.5 = 18.23 cm) 
on each side of the web. For this section, it is Ist = 26,899 cm4, and the distance of its centroid 
from the extreme fiber is emax = 18.8 cm.

Equation 8.74:

 
u u= ◊ ◊

◊ ◊
= < Æ =p2 21 000 18 8

35 5 300 415 1 1
0 97 1 1

, .
. .

.
/

Imperfection: w0 = min (415, 450)/300 = 1.38 cm

Equation 8.72:

 
Ist,min

.
,

.= ◊Ê
ËÁ

ˆ
¯̃
◊ + ◊ ◊Ê
ËÁ

ˆ
¯̃
=0 0788

21 000
415

1 1 38
300
415

1 228
4

p
77 1 4. cm

and Ist = 26899 cm4 > Ist,min (sufficient)
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Chapter 9

Ultimate limit states

9.1 CLASSIFICATION OF CROSS SECTIONS

The purpose of cross-sectional classification is to examine whether their bending resistance 
may be determined by elastic or plastic analysis and whether their walls are subjected to 
local buckling so that additional verifications to plate buckling according to Chapter 8 will 
be required. Four classes of cross sections are distinguished as indicated in Table 9.1:

Class 1: Sections develop their plastic bending resistance and have sufficient rotation 
capacity.

Class 2: Sections develop their plastic bending resistance but have limited rotation 
capacity.

Class 3: Sections develop their elastic bending resistance.
Class 4: Sections are subjected to local buckling and have a resistance lower than the 

elastic resistance.

Since local buckling is crucial for cross sections in developing their strength and ductility, 
the width to thickness ratios (c/t) of the compressed walls serves as the criterion for the clas-
sification. To classify a cross section under a combination of an axial force and a bending 
moment (N, M), a plastic stress distribution is considered first. Subsequently, the c/t ratios 
are examined for each wall separately, to classify them in class 1 or 2. If the walls fail to 
be classified in class 1 or 2, an elastic stress distribution is considered to examine if the 
walls satisfy the limits for class 3. If they do not, these walls belong to class 4. The entire 
cross section is then classified in accordance with the largest class of its walls. Class 4 cross 
sections can be classified as class 3 if plate buckling verifications are made by the reduced 
stress method in accordance with Section 8.4. Alternatively, the effective width method in 
accordance with Section 8.5 is employed. The reduced stress method refers mainly to cross 
sections with longitudinally stiffened walls. Cross sections with unstiffened walls are almost 
always verified for plate buckling with the effective width method.

Tables 9.2 and 9.3 give the limiting c/t ratios for internal elements supported at two edges 
and external elements supported at one edge only. It may be seen that for rolled sections, 
the width c is composed of the straight part of the element and for welded elements of the 
clear part between weld toes. For external elements, c/t limits are given only for compres-
sion, since they mirror stress conditions due to uniaxial bending of the cross section that is 
usually relevant for bridge sections. The distinction between classes 1 and 2 is in practice of 
limited importance for bridges, since analysis by plastic hinge theory that applies only for 
class 1 and not for class 2 may be employed only for accidental loadings.

Tables 9.2 and 9.3 may be used for the classification of steel girders at construction stages 
before concrete casting. After concrete casting, the top flanges are rigidly connected to the 
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concrete slab through the shear connectors. In such cases, the steel flange attached to the 
slab may be classified as class 1 or 2, although it could be class 3 or 4, provided the spac-
ing of connectors is appropriately selected (see Table 9.3), since concrete prevents its local 
buckling. Accordingly, the classification of composite bridge sections at the service stage is 
relevant mainly for hogging bending where the bottom flange is in compression and the web 
partly in compression. In sagging bending, the cross section is usually class 1 or 2, since 
the compression flange is connected to the slab, and therefore, class 1 and the compression 
part of the web are usually small due to the position of the neutral axis near the top flange.

It is important to note that the class of a composite cross section depends also on the sequence 
of construction and the effects due to creep and shrinkage. Therefore, the classification should 
be conducted for short- and long-term design; see Tables 9.12 and 9.13. If, for example, the 
web is classified as class 3 for the short-term effects, then it may be changed to class 4 for the 
long-term ones. Indeed, the factor ψ in Table 9.2 is determined from the direct stresses that are 
time dependent due to creep and shrinkage; see Example 9.4. Moreover, the classification of a 
box-girder cross section is also influenced from the shear lag effect on the wide flanges.

Table 9.4 gives the classification limits for the bottom flanges of steel cross sections 
encased in concrete (filler-beam decks). Obviously, classification takes place only for the 
hogging moment areas. It is noted that for the hogging moments of continuous filler-beam 
decks with class 1 cross sections, a redistribution at ultimate limit state (ULS) other than 
fatigue up to 15% is allowed.

Cross sections with class 1 or 2 flanges and class 3 web may be classified as class 2 pro-
vided that only an effective part of the web in accordance with Figure 9.1 is considered. The 
effective part of the web in compression extends 20 · ε · tw from the plastic neutral axis of 
the effective section and 20 · ε · tw from the compression flange, the remaining part being not 
effective.

Table 9.1  Classes of cross sections

Mb

Mel

Mpl

MR

Class 1

Class 2

Class 3

Class 4

pl max Class
Bending 

resistance
Rotation 
capacity

1 Mpl Yes
2 Mpl Limited
3 Mel No
4 Mb < Mel No

Notes:

Cross sections where plate buckling verifications are required:

Class 4 treated as class 3: Class 4 cross sections where plate buckling verifications are made by 
the reduced stress method; see Section 8.4.

Class 4: Plate buckling verifications are made by the effective width method; see Section 8.5.
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Table 9.2  Classification of internal elements

t t t
t

c c c c

Stress distribution in 
relevant part 
(compression 
positive)

Class of part

c

+fy

–fy

Part in bending

c

+fy

–fy

Part in compression

c
   c

+fy

–fy

Part in bending and 
compression

1
c
t
£ ◊72 e c

t
£ ◊33 e a e

a

a e
a

> fi £ ◊
◊ -

£ fi £ ◊

0 5
396

13 1

0 5
36

.

.

c
t

c
t

2
c
t
£ ◊83 e c

t
£ ◊38 e a e

a

a e
a

> fi £ ◊
◊ -

£ fi £ ◊

0 5
456

13 1

0 5
41 5

.

.
.

c
t

c
t

Stress distribution in 
relevant part 
(compression 
positive)

c

+fy

–fy

c

+fy

–     fyψ

c

+fy

3
c
t
£ ◊124 e c

t
£ ◊42 e y

e
y

y

e y y

> - fi

£ ◊
+ ◊

£ - fi

£ ◊ ◊ - ◊ -

1

42
0 67 0 33

1

62 1

c
t

c
t

. .

( ) ( )

Source: EN 1993-1-1, Design of steel structures, Part 1-1: General rules and rules for buildings, 2005.

Note: e= 235
fy

 fy in [MPa] for buckling analysis or e
s

= 235

com

 for section design, where σcom is the 

maximum compression stress in the part in [MPa].
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Table 9.3  Classification of external elements

c c

tt
++

Hot rolled Welded

Compression part attached to the 
concrete slab

Compression
flange

st

Composite section

Class of part Part in compression

1 Hot rolled
c
t
£ ◊10 e

Class 1

Welded
c
t
£ ◊9 e If the center-to-center longitudinal 

spacing of the shear connectors 
is not greater than

2 Hot rolled c
t
£ ◊11 e 22·ε·t for slabs that are in contact 

with the top flange over the full 
length (e.g., solid slabs)

Welded c
t
£ ◊10 e 15·ε·t for slabs that are not in 

contact with the top flange over 
the full length (e.g., slab with 
profile steel sheeting)

3 Hot rolled
c
t
£ ◊15 e see Section 2.3.4

Welded
c
t
£ ◊14 e st ≤ 9·ε·t

Sources: EN 1993-1-1, Design of steel structures, Part 1-1: General rules and rules for buildings, 2005; 
EN1994-2, Design of composite steel and concrete structures. Part 2: Rules for bridges, 2005.

Note: ε as in Table 9.2.

Table 9.4  Classification of filler-beam decks

Class of cross 
section

Type of steel 
girder Limit

1 Hot rolled 
or welded

c
t
£ ◊9 e

tc c
Hot rolled Welded

2
c
t
£ ◊14 e

3
c
t
£ ◊20 e

Source: EN1994-2, Design of composite steel and concrete structures. Part 2: Rules for bridges, 2005.

Note: ε as in Table 9.2.
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REMARK 9.1

Treating class 3 cross sections as class 2 according to Figure 9.1 is a design facilitation for avoid-
ing complicated stress calculations. For composite cross sections, secondary internal forces 
due to the effects of creep and shrinkage for the ULS verifications should not be neglected; use 
Tables 5.6 or 5.8. The reason for this is that no plastifications will occur to absorb the secondary 
stresses. Unfortunately, this is not adequately explained in EN 1994-2.

The purpose of classification is to determine the bending resistance of cross sections, 
whether of pure steel or composite. In composite bridges, the cross sections turn during 
construction stages from pure steel to composite. However, the classification for persistent 
design situations refers to the final composite section. This is due to the fact that the level 
of loading during construction stages is generally low so that the bending resistance of the 
pure steel section is not exhausted. At such low levels of moments, the moment–rotation 
response is linear (see Table 9.1) and no local buckling occurs. On the contrary, during 
construction stages that constitute transient design situations, for example, during incre-
mental launching of the steel girder or during concreting, the steel girder might be loaded 
near its capacity. Therefore, only for such design situations, a classification of the steel 
girder might be required. Concluding, it may be said that for a bridge design, the classifi-
cation and the corresponding verifications depending on the class refer to the composite 
section. With these remarks, Table 9.5 gives a short presentation of the cross-sectional 
classes most usually found in composite bridges as well as the relevant section in which 

20  εw  tw

20  εw  tw

Class 2

tw

Tension

Compression

fy,ao

fyw

fyw

xpl

p.n.a

Class 3

Class 1 or 2

Class 1 or 2

Class 3

fy,au

Figure 9.1  Effective class 2 web that was initially class 3. (From EN 1993-1-1, Design of steel structures, Part 
1-1: General rules and rules for buildings, 2005.)

Table 9.5  Most usual bridge section classes

Bridge section Top flange
Bottom 
flange Web(s)

Plate buckling 
Verifications Cross section

Verifications 
described in

Plate girder 1 or 2 1 or 2 1 or 2 — 1 or 2 9.7
1 or 2 1 or 2 3 — 2 with 

effective web
9.8

1 or 2 1 or 2 3 — 3 9.9
1 or 2 1 or 2 4 Reduced stress 

method
Treated as 
class 3

9.10

1 or 2 1 or 2 4 Effective width method 4 9.11
Box girder 1 or 2 3 3 — 3 9.9

1 or 2 4 3 or 4 Reduced stress 
method

Treated as 
class 3

9.10 or 9.12

1 or 2 4 3 or 4 Effective width method 4 9.11 or 9.12
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the required verifications are described. It may be seen that the flanges in plate girders 
are usually class 1 or 2 so that they are fully effective in bending. Oppositely, geometric 
considerations and detailing practice reveal that bottom flanges of box girders are wide 
and thin. They are therefore mostly class 4 and are stiffened by longitudinal stiffeners in 
hogging bending regions.

EXAMPLE 9.1

A bridge section is composed of two main girders. The steel girder is a welded plate girder 
(Figure 9.2). On top of the girder is a 30 cm thick concrete slab with an effective width of 6.0 m. 
The area of the reinforcement is at the top 145 cm2 and at the bottom 93 cm2 (Figure 9.3). The 
cross section shall be classified (a) for transient design situations during launching and (b) for 
persistent design situations at service stages. Steel grade for the steel girder S355, strength class 
of concrete C35/45, reinforcement B500B.

Yield stress of structural steel (Table 6.14):
Web t = 18 mm: fy = 345 N/mm2

Flange t = 80 mm: fy = 325 N/mm2

Accordingly, it is for the web e= =235
345

0.825 and for the flange e= =235
325

0.85.

325
(a) (b)Cross section

15

15

Pl. 2500  18

Pl. 1100  80

Pl. 800   80

345

1392
1863

607 702

1958
1487

1173

+

+

––
345

1078

325

Figure 9.2  Girder section at construction stages and (a) plastic and (b) elastic stress distribution for the steel 
girder for sagging bending. Sign of stresses (+, compression; −, tension). Stresses in N/mm2.

1440 1535

1125
1223

+

+

– –

1247 1342

1318345

434.78145 cm2

93 cm2

Composite cross section
(state 2)

6000 mm (a) (b)

345

300 mm
325

15

15

Pl. 2500  18

Pl. 800  80

325Pl. 1100  80

Figure 9.3  Girder section at service stages and (a) plastic and (b) elastic stress distribution for hogging bend-
ing, stresses in N/mm2.



Ultimate limit states 347

TRANSIENT DESIGN SITUATIONS AT CONSTRUCTION 
STAGES DURING LAUNCHING

For such situations, the concrete slab is not present, and the cross section is composed only 
of the steel girder. Accordingly, the classification refers to the pure steel girder that might be 
stressed up to its capacity and shall be made for positive and negative bending.

Sagging bending

For sagging bending, the classification refers to the top flange that is under compression and 
the web that is partly under compression. A plastic stress distribution as shown in Figure 9.2 is 
considered first.

Top flange

The top flange is an outstand element subjected to pure compression:

 
c

800 18
2

15 376 mm= - - =

Table 9.3:

 

c
t

376
80

4.7 9 0.85 7.65= = £ ◊ =

The top flange is class 1.

Web

The web is an internal element subjected to partial compression:

 c 2500 2 15 2470 mm= - ◊ =

The distance of the plastic neutral axis from the top fiber is 1958 mm. The compression part of 

the web is 1958 − 80 − 15 = 1863 mm → a = = >1863
2470

0.75 0.5.
Table 9.2:

 

c
t

2470
18

137.22
456 0.825
13 0.75 1

42.99

the web is not c

= = > ◊
◊ -

=

Æ llass 2 and therefore also not class 1.

Accordingly, an elastic stress distribution is considered to determine if the web is class 3 or 4. 
For the elastic distribution, the distance of the center of gravity (neutral axis) from the top 
fiber is 1487 mm and from the bottom fiber 1173 mm. The part of the web under compression 
is 1487 − 80 − 15 = 1392 mm and under tension 1173 − 80 − 15 = 1078 mm. The stress ratio is 

accordingly y = = - > --1078
1392

0.77 1.
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Table 9.2:

 

c
t

2470
18

137.22
42 0.825

0.67 0.33 ( 0.77)
83.31

the web i

= = > ◊
+ ◊ -

=

Æ ss not class 3, and therefore, it is class 4.

Finally, the section is class 4 for sagging bending.

Hogging bending

For hogging bending, the classification refers to the bottom flange that is under compression 
and the web that is partly under compression. The stress distribution is the same as for sagging 
bending, as shown in Figure 9.2, the difference being the sign of the stresses that is reversed 
now. A plastic stress distribution is considered first.

Bottom flange

The bottom flange is an outstand element subjected to pure compression:

 
c

1100 18
2

15 526 mm= - - =

Table 9.3:

 

c
t

526
80

6.58 9 0.85 7.65= = < ◊ =

The bottom flange is class 1.

Web

For plastic stress distribution, the compression part of the web is 607 mm:

 
a = = <607

2470
0.245 0.5

Table 9.2:

 

c
t

2470
18

137.22
36 0.825

0.245
121.22= = > ◊ =  → not class 1

 

c
t

2470
18

137.22
41.5 0.825

0.245
139.74= = £ ◊ =  → the web is class 2

Accordingly, the section is class 2 for hogging bending.

PERSISTENT DESIGN SITUATIONS AT SERVICE STAGES

At service stages, the concrete is casted and the cross section is composite. The cases 
of sagging and hogging bending will be considered.
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Sagging bending

For sagging bending, the classification refers to the web that is potentially under compression. 
The compression top flange is protected from local buckling due to its attachment to the con-
crete slab and is classified as class 1; see also requirements for the shear connection in Table 
9.3. The distance of the neutral axis from the top fiber of the slab considering a plastic stress 
distribution is 337 mm, which is smaller than 300 + 80 = 380 mm. Accordingly, the neutral axis 
is within the top flange. Consequently, the entire web is in tension and needs no classification. 
The cross section is therefore class 1.

Hogging bending

Design yield stress of reinforcing steel:

 
f

500
1.15

434.78 N/mmsd
2= =

For hogging bending, the bottom flange and part of the web are in compression. The bottom 
flange was already found to be class 1. Therefore, only the web will be classified.

Plastic stress distribution

The width of the web is c = 2500 − 2 · 15 = 2470 mm.
The plastic neutral axis is found to have a distance 1425 mm from the extreme fiber of the 

slab. The height of compression stresses is therefore 2960 − 1425 = 1535 mm.
The compression part of the web is 1535 − 80 − 15 = 1440 mm:

 
a = = >1440

2470
0.58 0.5

Table 9.2:

 

c
t

2470
18

137.22
456 0.825
13 0.58 1

57.52= = > ◊
◊ -

=  → web is not class 2.

Accordingly, an elastic stress distribution is considered to determine if the web is class 3 or 4.

Elastic stress distribution

For the elastic distribution, the distance of the center of gravity (neutral axis) from the top fiber 
is 1618 mm and from the bottom fiber 1342 mm. The part of the web under compression is 
1342 − 80 − 15 = 1247 mm and under tension 1618 − 300 − 80 − 15 = 1223 mm. The stress ratio is 

accordingly y = - = - > -1223
1247

0.98 1.

Table 9.2:

 

c
t

2470
18

137.22
42 0.825

0.67 0.33 ( 0.98)
99.97

the web i

= = > ◊
+ ◊ -

=

Æ ss not class 3 and therefore it is class 4.

Finally, the section is class 4 for hogging bending.
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9.2  RESISTANCE TO TENSION: ALLOWANCE FOR 
FASTENER HOLES IN BENDING CAPACITY

The resistance to tension is smaller between the plastic resistance of the gross section and 
the ultimate resistance of the net section, the latter considering deductions for fastener holes 
and other openings. Accordingly, it is

 
N N NtRd plRd u Rd, , ,m in ,= { } (9.1)

where

N A f
plRd

y

M
, = ◊

g 0

 (9.2)

N A f
u Rd

net u

M
,

.= ◊ ◊0 9
2g

 (9.3)

fy is the yield stress
fu is the ultimate strength
A is the gross section area
Anet is the net section area
γM0, γM2 are the partial factors of safety with recommended values 1.0 and correspond-

ingly 1.25 (see Table 5.20)

For non-staggered fastener holes, the failure plane is perpendicular to the member axis 
crossing all holes so that the net area is the gross area less the sum of the sectional areas 
of the holes. For staggered holes, the failure plane may have a zigzag shape. To account for 
its larger length, the net area is determined deducing all holes crossing the failure plane 
but adding a component t · s2/(4 · p) for consecutive staggered holes, where p is the distance 
between centers of holes perpendicular to the member axis and s parallel to it. Table 9.6 
presents an example calculation.

Table 9.6  Example calculation of net section area

t t 2

2 1s

p

1
Anet

Ag

d0

1–1a–a
a 1

a 1

Non-staggered holes Staggered holes

Section 1–1 Section 1–1
Anet =  Ag − 2 · d0 · t Anet(1−1) =  Ag − 2 · d0 · t

Section 2–2

A A d t t
s

p
net g( )2 2 0

2

2 2
4

- = - ◊ ◊ + ◊ ◊
◊

Anet = min{Anet(1−1), Anet(2− 2)}

Note: d0 is the diameter of the hole.
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If connections are of category C, that is, slip resistant at ULS using preloaded bolts, the 
member resistance to tension at fasteners holes is obtained from

 
N A f

netRd
net y

M
, = ◊

g 0
 (9.4)

To ensure ductile member behavior, the plastic resistance should be smaller than the ultimate 
resistance, that is, Npl,Rd ≤ Nu,Rd. Considering Equations 9.2 and 9.3, this may be written as

 

A f A f A
A

f
f

y

M

net u

M

net y

u

M

M

◊ £ ◊ ◊ fi ≥ ◊ ◊
g g

g
g0 2

2

0

0 9 1
0 9

.
.

 (9.5)

Consideration of ductile behavior is important for determining the bending capacity of plate 
girders at bolted splice regions. Ductile behavior for the tension flange is ensured if

 

A
A

f
f

fnet

f

y

u

M

M

,

.
≥ ◊ ◊1
0 9

2

0

g
g

 (9.6)

where Af and Af,net are the gross and net section areas of the tension flange.
If condition (9.6) is fulfilled, the section modulus of the girders may be determined 

on basis of the gross cross section ignoring fastener holes. However, if this condition is 
not fulfilled, the girder cross section is composed of the gross section of the compression 
flange and the web and the net section of the tension flange. A similar rule applies for the 
tension zone of the web, where fastener holes should be allowed for if condition (9.6) is 
not satisfied, where Af and Af,net are the gross and net section areas of the tension flange 
and the tension zone of the web. In compression zones, fastener holes need not be allowed 
for, that is, there is no need to determine net sections.

9.3  RESISTANCE OF STEEL MEMBERS AND 
CROSS SECTIONS TO COMPRESSION

Steel members in composite bridges to which this section refers may be chords and diagonals 
of truss girders, cross bracings, or plan bracings in the top or bottom flange used for lateral 
stability of main girders at construction stages or to provide a quasi-closed cross section; 
see Figure 7.15.

The resistance of steel cross sections to compression may be obtained from

 
N A f

cRd
y

M
, , ,= ◊

g 0
 for classes 1  2  and 3 cross sections (9.7)

 
N A f

cRd
eff y

M
, = ◊

g 1
 for class 4 cross sections (9.8)

where
A is the area of the gross cross section not allowing for fastener holes
Aeff is the area of the effective cross section allowing for local buckling as described in 

Chapter 8
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The buckling resistance of steel members to compression may be obtained from

 
N A f

b Rd
y

M
, ,= ◊ ◊c

g 1
 for classes 1  2, and 3 cross sections (9.9)

 
N A f

b Rd
eff y

M
, = ◊ ◊c

g 1
 for class 4 cross sections (9.10)

where
χ is the reduction factor for flexural buckling
χ = 1 for l £ 0 2.
c

l
l=

+ -
>1 0 2

2 2F F
 for .  (9.11)

F = ◊ + ◊ - +0 5 1 0 2 2. [ ( . ) ]a l l  (9.12)

l is the nondimensional slenderness

l = ◊A fy
crN
for classes 1  2, and 3 cross sections,  (9.13)

A = Aeff for class 4 cross sections
α is an imperfection factor in dependence of the relevant buckling curve (Table 9.7)

N cr
k

E I
l

= ◊ ◊p2
2 is the Euler buckling load  (9.14)

lk is the buckling length for the axis considered
γΜ1 = 1.1 (recommended value) for bridges

Five European buckling curves with different imperfection factors are distinguished. 
The imperfections are equivalent geometric imperfections that unite geometric and 
structural imperfections (residual stresses). Both imperfections are different for various 
section shapes and affect differently the buckling response about the strong and weak 
axis of the cross section. Accordingly, the buckling curves are associated to shapes and 
dimensions of cross sections and the axis about which buckling is considered as shown 
in Table 9.8.

Table 9.7  Imperfection factors (α) for European buckling 
curves

Buckling curve a0 a b c d

Imperfection factor α 0.13 0.21 0.34 0.49 0.76

Source: EN 1993-1-1, Design of steel structures, Part 1-1: General 
rules and rules for buildings, 2005.
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Table 9.8  Selection of buckling curves

Cross sections Limits
Buckling 

about axis

Buckling curve

S235–S420 S460

h
y y

z

tf

z

b

Rolled sections h/b > 1.2 tf ≤ 40 mm y–y a a0

z–z b a0

40 mm < tf ≤ 
100 mm

y–y b a
z–z c a

h/b ≤ 1.2 tf ≤ 100 mm y–y b a
z–z c a

tf > 100 mm y–y d c
z–z d c

h
y y

z

tf

z

b

Welded I sections tf ≤ 40 mm y–y b b
z–z c c

tf > 40 mm y–y c c
z–z d d

Hollow sections Hot finished Any a a0

Cold formed Any c c

h
y y

tf
tw

z

z

b

Welded box sections Generally (except as 
follows)

Any b b

Thick welds: a > 0.5 · tf 
b
tf

< 30,
 

h
tw

< 30

Any c c

L sections Any b b

Source: EN 1993-1-1, Design of steel structures, Part 1-1: General rules and rules for buildings, 2005.
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9.4  RESISTANCE TO SHEAR DUE TO VERTICAL 
SHEAR AND TORSION

Vertical shear is resisted by the steel sections alone and due to equilibrium conditions only 
by the webs, as indicatively shown in Figure 9.4a and b. Shear stresses develop also in the 
flanges, but are usually not considered for ULS design since they are not relevant for the pro-
vision of vertical equilibrium. The shear stresses in box-girder flanges due to vertical shear 
are considered also in serviceability limit state (SLS) stress verifications.

Torsion due eccentric loading is resisted by differential bending of the steel girders in mul-
tiple I-girder bridges, as outlined in Chapter 7. Accordingly, torsion does not directly affect 
the main girders for such types of bridge decks. However, in box-girder bridges, torsion is 
resisted primarily by means of St. Venant torsion due to the high torsion rigidity of the box 
section. Under this condition, box girders resist torsional moments MT,Ed by development of 
a constant shear flow in their walls that according to the first formula of Bredt is equal to

 
v M

AM T Ed
T Ed

,
,=

◊ [ ]2 0
in kN /m  (9.15)

where A0 is the area enclosed between centerlines of the walls.
This shear flow results in shear forces in the walls determined from

 
V v bM T Ed M T Ed, ,= ◊ [ ]in kN  (9.16)

where b is the length of the relevant wall.
In case of combined vertical shear and torsion, the shear forces are added in one web 

and subtracted in the other; see Figure 9.4c. In the flanges, they are only due to torsion. 
Concluding, it may be said that vertical shear results in shear forces in the webs of plate and 
box girders and torsion shear forces in all walls of box girders.

The resistance to shear at ULS must be checked for webs and for bottom steel flanges of 
box girders. Shear forces in the concrete flange due to torsion are resisted by the diaphragm 
action of the slab that is much thicker than the walls of the steel girder and is usually not 
verified. However, the horizontal shear in the concrete flange due to torsion is transferred by 
the shear connectors as Figure 9.4d shows. Accordingly, shear connectors are designed for 
the simultaneous action of both longitudinal and transverse shear forces, the former due to 
vertical shear and the latter due to torsion.

The shear resistance of steel walls, whether webs of I and box girders or bottom flanges 
of box girders, may be determined at ULSs as the plastic shear resistance in accordance 

Vv

VEd

Vslab

VMT

MT,Ed

Vslab

Vslab/2VEd

Vv – VMT Vv + VMT

MT,Ed
(d)

(a) (b) (c)

Figure 9.4  Shear forces in box girders due to (a) vertical shear, (b) torsion, (c) resultant forces due to 
vertical shear and torsion in box girders, and (d) shear forces in the connectors due to tor-
sion in box girders.
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with Equation 9.19 or as the shear buckling resistance in accordance with Section 8.7. Shear 
buckling is not relevant if the width to thickness ratio of the walls is limited to:

For walls without longitudinal stiffeners according to Equation 8.25:
Steel grades up to S420:

 

h
t
w

w
£ ◊60 e (9.17a)

Steel grades S460 and higher:

 

h
t
w

w
£ ◊72 e (9.17b)

For walls with longitudinal stiffeners according to Equation 8.26:
Steel grades up to S420:

 

h
t
w

w
£ ◊ ◊25 8. e kt  (9.18a)

Steel grades S460 and higher:

 

h
t
w

w
£ ◊ ◊31 e kt  (9.18b)

where according to Figure 9.5,
hw and tw are the width and correspondingly the thickness of the walls under consideration
κτ is the relevant shear buckling factor determined from Table 8.5

The plastic resistance may be obtained from

 
V f AplRd

y

M
v, =

◊
◊

3 0g
 (9.19)

tw

tw

twtf
bf

hw
twhw hw

hw

r

(a) (b) (c)

Figure 9.5  Notation for the width and thickness of walls for the shear area. (a) Rolled I sections, (b) welded 
I sections, and (c) box sections.
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Av is the shear area to be determined from:
Webs of rolled I and H sections (see Figure 9.5a):

 A A b t t r t h tv a f f w f w w= - ◊ ◊ + + ◊ ◊ ≥ ◊ ◊2 2( ) h  (9.20)

where according to notes of Table 8.10,
η = 1.2 for steel grades up to S420
η = 1.0 for steel grades S460 and higher

Webs of welded I and H sections (see Figure 9.5b):

 A h tv w w= ◊  (9.21)

Webs and bottom flanges of box sections (see Figure 9.5c):

 A h tv w w= ◊  (9.22)

Walls not complying with the limits given by conditions (9.17) and (9.18) must be verified 
for shear buckling in accordance with Section 8.7. If the verification is performed by the 
effective width method, the shear buckling resistance may be determined in accordance 
with Equation 8.50; see Remark 8.8. If the verification is performed by the reduced stress 
method, the shear buckling resistance is obtained from

 V Abw Rd Rd v, = ◊t  (9.23a)

where

 
t c

gRd w
yw

M

f= ◊
◊3 1

 (9.23b)

For χw, see Table 8.10.
Equation 9.23 is equivalent to Equation 8.51.

9.5 RESISTANCE TO BENDING OF STEEL CROSS SECTIONS

During construction stages and before casting of concrete main girders are composed of 
their steel section. The bending resistance of such sections or other pure steel sections, like 
transverse beams not connected to a concrete slab, may be determined as follows:

 
M M f W

cRd plRd
y pl

M
, ,= = ◊

g 0
 for cross sections of classes 1 and  2  (9.24)
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 for cross sections of class 3  (9.25)
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 for cross sections of class 4  (9.26)
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In the aforementioned relations, the section moduli, possibly accounting for fastener holes 
in tension areas if required (see Section 9.2), are as follows:

Wpl is the plastic section modulus of the cross section
Wel,min is the elastic section modulus of the cross section for the fiber with the maximum 

stress
Weff,min is the section modulus of the effective cross section for the fiber with the maxi-

mum stress

It is noted that a cross section may have a different class for sagging and hogging bend-
ing so that different formulae apply to the bending resistance and that the properties of the 
effective cross section may be determined in accordance with Section 8.5.

Cross sections that are designed for plate buckling in accordance with the reduced stress 
method are considered as class 3 sections. Such sections are verified in accordance with 
Section 8.4.

9.6  INTERACTION OF BENDING WITH SHEAR 
FOR STEEL CROSS SECTIONS

In the presence of shear forces VEd, resulting from either vertical shear or torsion, part of 
the material strength of the walls is “exploited” to resist the shear. The relevant wall is 
then not able to develop the full yield strength to resist bending moments (or axial forces). 
Accordingly, the bending resistance may be determined for a cross section with the same 
geometry but with reduced yield strength of the walls that resist shear forces as shown in 
Figure 9.6. The reduced yield strength may be determined from

 
f fy red yd, ( )= - ◊1 r  (9.27a)

where fyd design strength of steel (see Table 9.9).

 
r = ◊ -Ê

ËÁ
ˆ
¯̃

2 1
2V

V
Ed

Rd
 (9.27b)

where
VEd is the design shear force of the relevant wall resulting from vertical shear and torsion
VRd is the design shear resistance of the wall, either the plastic resistance Vpl,Rd 

(Equation 9.19) or the shear buckling resistance Vbw,Rd determined from Equation 9.23

Cross section

Mpl,Rd,V

Stress
distribution

VEd

fyd

(1 – ρ)  fyd

(1 – ρ)  fyd

fyd

Figure 9.6  Plastic stress distribution allowing for the interaction with shear.
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It is noted that due to high shear, the position of the plastic neutral axis may change. This 
should be accounted for in the classification of the web.

Where conditions (9.28a or 9.28b) apply, interaction is not accounted for and the yield 
strength need not to be reduced:

 

V
V

Ed

plRd,
.£ 0 5  (9.28a)

or

 

V
V

Ed

bw Rd,
.£ 0 5  (9.28b)

where
Vpl,Rd is the plastic shear resistance of the wall according to Equation 9.19
Vbw,Rd is the buckling resistance of the wall according to Equation 9.23

Cross sections that are designed for plate buckling by the reduced stress method are verified 
following the procedure described in Section 8.4, which takes into account the interaction 
of bending with shear through the von Mises criterion.

9.7 CLASS 1 AND 2 CROSS SECTIONS

9.7.1 General

Class 1 or 2 cross sections may be checked in the level of internal forces and moments, by 
comparison of the acting internal forces and moments with the corresponding plastic design 
resistances. Accordingly, this section refers to the determination of the plastic bending resis-
tance for sagging and hogging bending allowing for shear or axial forces.

9.7.1.1 Sagging bending

For sagging bending I, girder composite sections are usually class 1 or 2, as explained 
in Section 9.1. The cross section is composed of the steel girder, the concrete flange, and 

Table 9.9  Design strengths of materials at ULS for class 1 or 2 cross sections

Concrete In compression 0 85 0 85 0 85
1 5

. . .
.

◊ = ◊ = ◊f
f f

cd
ck

c

ck

g
In tension 0

Structural steel In tension and compression f
f f

yd
yk

M

yk= =
g 0 1 0.

[or f fy red yd, ( )= - ◊1 r  for high shear]

Reinforcement Compression or tension f
f f

sd
sk

s

sk= =
g 1 15.
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the relevant reinforcement within the effective width of the slab; see Section 7.2.2. For 
full shear connection between the steel beam and the concrete slab, the bending resis-
tance may be determined considering a plastic stress distribution, where all materials are 
stressed up to their design strength given in Table 9.9. This stress distribution leads to the 
determination of the plastic moment of the section M1,pl,Rd (index 1 means that the contri-
bution of concrete in bending resistance is taken into account; state 1). For sagging bend-
ing, the contribution of the reinforcement is usually small and may be neglected. In areas 
of design shear larger than 50% of the corresponding shear resistance (Equations 9.19 or 
9.23), the design strength of structural steel is reduced by the factor (1 − ρ); see Equations 
9.27 and Table 9.9. The relevant design moment resistance for sagging bending may be 
assigned as M1,pl,V,Rd; M2,pl,V,Rd is for hogging bending (state 2 for the deck slab). Figure 9.7 
shows indicatively plastic stress distributions for the determination of the plastic bending 
resistance of cross sections subjected to high shear, where the design strength in the web 
is reduced. These stresses, when integrated over the relevant areas, give no axial force in 
the section. For a simultaneous presence of a design axial force NEd, the stress distribu-
tions have to be modified to result in, by appropriate integration, the axial force NEd. In 
bolted splices, allowance for fastener holes must be taken into account in tension areas as 
for steel beams.

9.7.1.2 Hogging bending

Concrete under tension does not participate in the bending resistance. Accordingly, for hog-
ging bending, the cross section is composed of the steel section and the reinforcement only. 
In regions of hogging bending, a minimum ratio of tension reinforcement shall be provided 
as follows:

 
r r ds

s

c
s

y ctm

sk
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f f
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235

 (9.29)

beff,2
fsd

fyd

VEd

x2,pl

State 2
Requirement (9.29)

(1 – ρ)  fyd

M2,pl,V,Rd

beff,1

h
fyd

fyd VEd

State 1
(1 – ρ)  fyd

M1,pl,V,Rd

0.85  fcdx1,pl

(a)

(b) fyd

Figure 9.7  Plastic stress distribution to determine Mpl,V,Rd: (a) for sagging bending and shear and (b) for hog-
ging bending and shear.
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where
δ is 1.0 or 1.1 for cross-sectional class 1 or correspondingly 2
As is the area of tension reinforcement of ductility class B or C; see Section 6.3
Ac is the area of the concrete flange within the effective width beff,2

fy is the yield strength of structural steel in [N/mm2]
fctm is the mean tensile strength of concrete in [N/mm2]; see Table 6.1
kc is a coefficient; see Section 10.3.2. Conservatively, kc = 1

REMARK 9.2

minρs is the minimum reinforcement that is required for a ductile flexural failure without fracture 
of the reinforcement. Reinforcing rebars should be adequately anchored according to the provi-
sions of EN 1992-1-1 [9.2]. Welded meshes should be avoided due to brittle behavior.

A plastic stress distribution may be realized if the strain does not exceed the ultimate 
material strain. This strain limitation does not affect structural steel or reinforcing steel 
of ductility classes B and C since the ultimate strain is sufficiently high. However, the limit 
concrete strain is smaller and may be reached if the steel beam is of high-strength steel 
S420 or S460 and the distance of the plastic neutral axis from the extreme concrete fiber is 
large. Therefore, the design resistance to sagging moment has to be reduced by the factor-β. 
Figure 9.8 shows that the reduction starts when x1,pl/h > 0.15, that is, when the depth of 
the plastic neutral axis is larger than 15% of the overall depth of the cross section. For 
x1,pl/h > 0.40, the bending resistance should be determined either by nonlinear methods con-
sidering the stress–strain curves of the materials or taken equal to the elastic resistance.

REMARK 9.3

In case of hybrid girders with flanges of S420 or S460 and web of S355, the reduction factor-β 
of Figure 9.8 should also be applied.

As discussed in Chapter 7, elastic global analysis is employed in composite bridges, 
although some inelastic rotation, that is, some moment redistribution, should be developed 
at the internal supports of continuous beams to allow for the development of the plastic 
moment resistance in the span regions. However, this inelastic rotation capacity is limited if 
the cross section at these supports is of class 3 or 4. In addition, larger rotations and higher 
redistributions are needed if adjacent spans have quite unequal lengths. Therefore, for con-
tinuous beams, the bending resistance of class 1 or 2 cross section in the span regions with 

fyd

fyd

M1,pl,Rd

M1,Rd = M1,pl,Rd

Neutral axis

x1,pl

x1,pl/h

h

x1,pl/h ≤ 0.15
0.85  fcd

M1,Rd = β M1,pl,Rd

Nonlinear
calculation of M1,Rd

1.0

β

0.85

S420 or S460 0.15 0.40

Figure 9.8  Reduction factor-β for the plastic sagging moment for steel qualities S420 and S460.
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sagging bending should not exceed 90% of the design resistance moment if the cross sec-
tions at adjacent internal supports are class 3 or class 4 and the ratio of the shorter to the 
longer spans adjacent to that support is less than 0.6; see Figure 9.9. Table 9.10 summarizes 
the resistance of class 1 or 2 cross sections.

It is reminded that if all cross sections of a bridge are class 1 or 2 and not susceptible to lat-
eral torsional buckling (see Section 9.13), secondary internal forces due to creep, shrinkage, and 
temperature are ignored in the combination of actions for verifications at ULSs; see Table 5.7.

EXAMPLE 9.2

Verify the cross section of Figure 9.10 for a design hogging moment MEd = 50,000 kN-m and a 
design shear force VEd = 3,500 kN. The reinforcement area is Aso = 58 cm2, Asu = 38 cm2. Grade 
of steel girder S355, strength class of concrete C35/45, grade of reinforcement B500B.

Design yield stress of structural steel (Table 6.14):

Web t = 18 mm:

 
f N mmyd = =

345
1 0

345 2

.
 /

M1,Rd ≤ 0.9  M1,pl,Rd M1,Rd ≤ 0.9  M1,pl,Rd

L2 L3

Class 3 or 4
Class 1 or 2

M1,Rd ≤ M1,pl,Rd

Class 3 or 4

L4L1

L1
L2

< 0.6, L3
L2

< 0.6

Class 1 or 2Class 1 or 2Class 1 or 2

Figure 9.9  Moment resistance limitation for spans of continuous beams.

Table 9.10  Verifications of class 1 or 2 cross sections for bending and shear

Field of application Shear Bending

Spans of simple or continuous beams 
except last case below

VEd ≤ 0.5 · VRd MEd ≤ β · M1,pl,Rd

VEd > 0.5 · VRd MEd ≤ β · M1,pl,V,Rd

Internal supports of continuous beams VEd ≤ 0.5 · VRd MEd ≤ M2,pl,Rd

VEd > 0.5 · VRd MEd ≤ M2,pl,V,Rd

Spans of continuous beams with cross 
sections at adjacent supports class 3 
or 4 and ratios of adjacent spans ≤0.6

VEd ≤ 0.5 · VRd MEd ≤ 0.9 · β · M1,pl,Rd

VEd > 0.5 · VRd MEd ≤ 0.9 · β · M1,pl,V,Rd

Notes:

VRd is the plastic resistance (Equation 9.19) or the shear buckling resistance (Equation 9.23).

M1,pl,Rd and M2,pl,Rd are the plastic moments for sagging and hogging bending.

M1,pl,V,Rd and M2,pl,V,Rd are the reduced plastic moments for sagging and hogging bending due 
to shear.

For β, see Figure 9.8.



362 Design of steel–concrete composite bridges to Eurocodes

Flange t = 80 mm:

 
f N mmyd = =

325
1 0

325 2

.
 /

Figure 9.10 shows the plastic stress distribution. The distance of the neutral axis from the 
top concrete fiber is found to be x2,pl = 1572 mm. The height of the compression zone is then 
2260 − 1572 = 688 mm.

Design yield stress of reinforcing steel:

 
f N mmsd = =

500
1 15

434 78 2

.
.  /

CROSS-SECTIONAL CLASSIFICATION

Bottom flange

 
f N mmy = Æ = =325

235
325

0 852 / e .

The bottom flange is an outstand element subjected to pure compression:

 
c mm= - - =1100 18

2
15 526 

Table 9.3:

 

c
t
= = £ ◊ =526

80
6 58 9 0 85 7 65. . .

The bottom flange is class 1.

58 cm2

38 cm2

Composite cross section
(state 2)

3000 mm

15
1272

325

325

345

345

M2,pl,Rd

300 nm

Plastic distribution
434.78

688
15

Pl. 1800  18

Pl. 800  80

Pl. 1100  80 [N/mm2]

Figure 9.10  Cross section of Example 9.2 and plastic stress distribution for classification.
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Web

 
f N mmy = Æ = =345

235
345

0 8252 / e .

The width of the web is c = 1800 − 2 · 15 = 1770 mm.

The compression part of the web is 688 80 15 593
593

1770
0 34 0 5- - = Æ = = < mm a . . .

Table 9.2:

 

c
t
= = > ◊ = Æ1770

18
98 33

36 0 825
0 34

87 35.
.

.
.  the web is not class 1

 

c
t
= £ ◊ = Æ98 33

41 5 0 825
0 34

100 70.
. .

.
.  the web is class 2

Accordingly, the section is class 2 for hogging bending.

Ductility reinforcement in the slab

Required minimum reinforcement ratio according to Equation 9.29:

 
min .

.
. .rs = ◊ ◊ ◊ =1 1

345
235

3 2
500

1 0 0 0103

where it is set on the safe side fyk = 345 N/mm2 of the web, which is larger than that of the flange 
and for kc = 1.

Required reinforcement area:

 
As cm= ◊ ◊ =0 0103 300 30 92 7 2. ( ) .

The actual reinforcement is 58 + 38 = 96 cm2, larger than the minimum required.

SHEAR RESISTANCE

The web does not have longitudinal stiffeners.

 Equation 9.17a: h
t

w

w

= = > ◊ =1800
18

100 60 0 825 49 5. .

Accordingly, the shear buckling resistance is relevant and will be calculated in accordance with 
Chapter 8. Transverse vertical stiffeners are supposed to be provided at a distance a = 3.0 m.

Aspect ratio of the panel (Table 8.5):

 
a = =3 0

1 8
1 67

.
.

.

Reference stress, Equation 8.10:

 
se kN cm= ◊Ê

ËÁ
ˆ
¯̃
=18980

1 8
180

1 898
2

2.
.  /
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Buckling factor for shear (Table 8.5):

 
kt = + =5 34

4
1 67

6 772.
.

.

Critical buckling shear stress, Equation 8.11:

 tcr kN cm= ◊ =6 77 1 898 12 85 2. . .  /

Nondimensional slenderness, Equation 8.19:

 
lw = ◊ = >0 76

34 5
12 85

1 25 1 08.
.

.
. .

Reduction factor for nonrigid end posts (Table 8.10):

 
cw = =0 83

1 25
0 66

.
.

.

Shear resistance of web, Equation 8.51:

 
V kNbw Rd,

. . .

.
= ◊ ◊ ◊

◊
=0 66 34 5 180 1 8

3 1 1
3872 

Shear verification: VEd = 3500 kN < Vbw,Rd (sufficient)
Note: Remark 8.8

BENDING RESISTANCE

It is 
V
V

Ed

Rd

= = >3500
3872

0 90 0 5. . .

Accordingly, there is a moment–shear interaction.
Reduction factor for shear stress in the web, Equation 9.27b:

 
r = ◊ - =( . ) .2 0 90 1 0 642

The design stress in the web is then

 345 1 0 64 124 2 2◊ - =( . ) .  /N mm

The bending resistance is then found as M2,pl,V,Rd = 51840.1 kN-m.
Note that the full plastic resistance is M2,pl,Rd = 55624.18 kN-m, that is, the reduction due to 

interaction with shear is only 6.6%.
Bending check, Table 9.10 row 4: MEd = 50000 kN-m < M2,pl,V,Rd = 51840.1 kN-m
It is noted that for the new stress distribution, the distance of the plastic neutral axis from 

the top slab fiber is 2010 mm. It may be proved that the web and accordingly the cross section 
can be classified as class 1.
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9.8  CROSS SECTIONS WITH CLASS 3 WEBS THAT MAY BE 
TREATED AS CLASS 2 SECTIONS (HOLE-IN-WEB METHOD)

Cross sections with class 1 or 2 flanges and class 3 web may be classified and designed as 
class 2 provided that only an effective part of the web is considered, hole-in-web method. 
The plastic bending resistance of such sections, possibly reduced by the presence of shear or 
axial force, is determined by consideration of part of the web as not effective. Figure 9.11 
shows plastic stress distributions for the determination of their plastic bending resistance. 
The verifications of such sections are similar to those for sections 1 and 2 as presented in 
the previous section.

Plastic neutral axis for sagging bending:

 
x h t N N N N

f tpl fu
plfu plc plfo pl d

yw d w
1

20

1,
, , , , ,

,( )
= - + - - -

- ◊ ◊
e

r
 (9.30a)

Plastic neutral axis for hogging bending:

 
x h t N N N N

f tpl c fo
plfu pl d plfo pls

yw d w
2

20

1,
, , , , ,

,( )
= + + + - -

- ◊ ◊
e

r
 (9.30b)

where
Npl,fo = fy,fo,d · Afo

Npl,fu = fy,fu,d · Afu

Npl,c = 0.85 · fcd · beff,1 · hc

Npl,s = fsd · As

ew ywf M Pa= 235/ [ ]
N f tpl d yw w w, , ( )20

21 40e r e= - ◊ ◊ ◊ ◊

h
x1,pl

Ineffective
Afo tfo

tfu fy,fu,d

fy,fo,d

VEd

M1,pl,V,Rd

hc

beff,1

20  ε  tw

20  ε  tw

Afu

tw

p.n.a

p.n.a = plastic neutral axis

(1 – ρ)  fy,w,d

(1 – ρ)  fy,w,d

0.85  fcd

(a)

x2,pl

fsd

As p.n.a

fy,fu,d

fy,fo,d
VEd

M2,pl,V,Rd

beff,2

20  ε  tw

20  ε  tw

(1 – ρ)  fy,w,d

(b)

Figure 9.11  Cross sections with class 3 webs treated as class 2 and plastic stress distribution to determine 
Mpl,V,Rd: (a) for sagging bending and shear and (b) for hogging bending and shear.
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EXAMPLE 9.3

Verify the cross section of Figure 9.12 for a design hogging moment MEd = 50,000 kN-m and a 
design shear force VEd = 1450 kN. The reinforcement area is Aso = 58 cm2, Asu = 38 cm2. Grade of 
steel girder S355, strength class of concrete C35/45, grade of reinforcement B500B.

Design yield stress of structural steel (Table 6.14):
Web t = 16 mm:

 
f N mmyd = .

=355
1 0

355 2 /

Flange t = 80 mm:

 
f N mmyd = =

325
1 0

325 2

.
 /

Design yield stress of reinforcing steel:

 
f N mmsd = =

500
1 15

434 78 2

.
.  /

Figure 9.12 shows the plastic stress distribution. The distance of the neutral axis from the 
top concrete fiber is found to be x2,pl = 1599 mm. The height of the compression zone is then 
2260 − 1599 = 661 mm.

CROSS-SECTIONAL CLASSIFICATION

Bottom flange

fy = 325 N/mm2 → e= =235
325

0 85.

The bottom flange is an outstand element subjected to pure compression:

 
c mm= - - =1100 16

2
12 530 

434.78
300 mm

58 cm2

38 cm2

Composite cross section
(state 2)

3000 mm

325

355

[N/mm2]

355

661

1299

P1. 1100  80

P1. 800  80

12
325

P1. 1800  16

12

(a)

918 826

950
1342

(b)

Figure 9.12  Cross section of Example 9.3 with (a) plastic and (b) elastic stress distribution for classification.
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Table 9.3:

 

c
t
= = £ ◊ =530

80
6 63 9 0 85 7 65. . .

The bottom flange is class 1.

Web

fy = 355 N/mm2 → e= =235
355

0 81.

The width of the web is c = 1800 − 2 · 12 = 1776 mm.

The compressed part of the web is 661 − 80 − 12 = 569 mm → a = = £569
1776

0 32 0 5. .

Table 9.2:

 

c
t
= = > ◊ = Æ1776

16
111

41 5 0 81
0 32

105
. .
.

 web is not class 2

Accordingly, an elastic stress distribution is considered to determine if the web is class 3 or 4.
Elastic stress distribution; see Figure 9.12.
For the elastic distribution, the distance of the center of gravity (neutral axis) from the top 

fiber is 1342 mm and from the bottom fiber 918 mm. The part of the web under compression 
is 918 − 80 − 12 = 826 mm and under tension 1342 − 300 − 80 − 12 = 950 mm. The stress ratio is 

accordingly y = - = - £ -950
826

1 15 1. .

Table 9.2: 
c
t
= = £ ◊ ◊ + ◊ =1776

16
111 62 0 81 1 1 15 1 15 115 8. ( . ) . .  → The web is class 3, and there-

fore, the cross section is class 3.

Note: The stress ratio should be calculated by taking into account the concreting sequence; 

y s s
s s

= +
+

a w Ed o w Ed o

a w Ed u w Ed u

, , , , , ,

, , , , , ,

2

2

 where σa,w,Ed are the stresses acting on the pure steel cross section and 

σ2,w,Ed are the stresses acting on the fully cracked section. A classification taking into account the 
construction sequence is demonstrated in Example 9.4.

SLAB REINFORCEMENT

See Example 9.2.

SHEAR RESISTANCE

The web does not have longitudinal stiffeners.
Equation 9.17a:

 

h
t

w

w

= = > ◊ =1800
16

112 5 60 0 81 48 6. . .

Accordingly, the shear buckling resistance is relevant and will be calculated in accordance with 
Chapter 8. Transverse vertical stiffeners are supposed to be provided at a distance a = 3.0 m.
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Aspect ratio of the panel (Table 8.5):

 
a = =3 0

1 8
1 67

.
.

.

Reference stress, Equation 8.10:

 
se kN cm= ◊Ê

ËÁ
ˆ
¯̃
=18980

1 6
180

1 5
2

2.
.  /

Buckling factor for shear (Table 8.5):

 
kt = + =5 34

4
1 67

6 772.
.

.

Critical buckling shear stress, Equation 8.11:

 
tcr kN cm= ◊ =6 77 1 5 10 16 2. . .  /

Nondimensional slenderness, Equation 8.19:

 
lw = ◊ = >0 76

35 5
10 16

1 42 1 08.
.

.
. .

Reduction factor for nonrigid end posts (Table 8.10):

 
cw = =0 83

1 42
0 58

.
.

.

Shear resistance of web, Equation 8.51:

 
V kNbw Rd,

. . .

.
.= ◊ ◊ ◊

◊
=0 58 35 5 180 1 6

3 1 1
3112 4 

Shear verification:

 V kN VEd bw Rd= £1450  (sufficient),

It is 
V
V

Ed

Rd

= = <1450
3112 4

0 47 0 5
.

. . ;  therefore, there is no moment–shear interaction.

BENDING RESISTANCE

The flanges are class 1 and the web class 3. Accordingly, the section will be treated as class 2 
by determination of the plastic bending resistance considering part of the web as noneffective 
(Figure 9.13).

The position of the plastic neutral axis is calculated from Figure 9.11 as follows:

 
N kN N kNpl s pl fo, ,

.
. , .= ◊ = = ◊ =50

1 15
96 4173 9 32 5 640 20800  
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N kN Npl fu pl d, , ,. , . . . .= ◊ = = ◊ ◊ ◊ =32 5 880 28600 35 5 40 0 81 1 6 294420

2 e 55 kN

 
x cmpl2 30 8

28600 2944 5 20800 4173 9
35 5 1 6

153 7,
. .
. .

.= + + + - -
◊

=

Width of effective parts: 20 · 0.81 · 16 = 259 mm.
This gives a bending resistance M2,pl,Rd = 55093.56 kN-m.
Bending check, Table 9.10 row 3: MEd = 50000 kN-m ≤ M2,pl,Rd (sufficient)

9.9 CLASS 3 CROSS SECTIONS

Opposite to class 1 or 2 sections, verifications for class 3 cross sections at ULSs are 
performed in the level of stresses rather in the level of internal forces and moments. 
Stresses under factored loads are limited to the design material strengths, the latter being 
determined with larger resistance safety factors compared to SLSs. Design stresses are 
determined by elastic stress analysis of the gross cross section, possibly allowing for shear 
lag as presented in Section 7.2. The relevant combinations of actions are presented in 
Tables 5.6 and 5.8. It may be seen that the secondary effects of creep and shrinkage have 
to be taken into account. Stresses at construction stages must also be accounted for. 
Direct, shear, and von Mises design stresses are limited to the relevant design resistances 
as presented in Table 9.11.

The stress points to be verified are usually (Table 9.12)

• For concrete, the top fiber of the deck slab “co” (row 1 in Table 9.11)
• For reinforcement, the upper layer “so”
• For structural steel,

• The extreme fiber of the top flange “ao”
• The extreme fiber of the bottom flange “au”
• The point in the web where shear stresses have their maximum value “wm”
• Extreme points “wo” and “wu” in the web where von Mises stresses must be lim-

ited as direct and shear stresses coexist

Plastic distribution
434.78

Composite cross section
(state 2)

3000 mm

325

355

58 cm2

38 cm2

259

P1. 800  80

12
113

259

300

1237

355

355

325

P1. 1800  16

P1. 1100  80

12

[N/mm2]

Figure 9.13  Plastic stress distribution with effective part of the web.
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As already mentioned, the loading history of a bridge due to concreting sequence is for the stress 
verifications of primary importance; see Figure 2.50. Stresses should be calculated for combi-
nations of short-term and long-term actions. The short-term design refers to the beginning of 
the bridge’s life where creep and shrinkage are not well developed and can for simplification be 
neglected. Therefore, global analysis and stresses are based on the short-term modular ratio n0 
given in Table 6.4. On the contrary, the long-term design refers to a time in which creep and 
shrinkage have been fully developed and must be taken into account, t = 30,000 days.

The short-term design is usually critical for the concrete stresses (Equation 9.31). The 
short-term design considering the loading history is demonstrated in Table 9.12. Bending 
moments acting on the same composite cross section can be combined, and the final stress 
value is calculated. Moreover, preloading of the pure steel girders (e.g., due to wet concrete) 
is considered at both sagging and hogging bending areas (Equation 9.32).

Long-term design usually leads to critical verifications for the reinforcing and the struc-
tural steel. Tensile stresses in concrete due to shrinkage may be developed at the bottom fiber 
of the deck slab; this may need to be investigated especially in the case of small-span bridges 
where compressive stresses are not high. Considering loading history is more laborious than 
in the case of short-term design due to the concrete’s rheological behavior. This is shown in 
Table 9.13 and is explained as follows:

For sagging bending areas:

• Stresses due to preloading of the pure steel girders are not shown in the figures of 
Table 9.13 but are obviously to be taken into account.

• The design bending moment M Ed i
Perm anent
1 0, ,,  of the loading case (i) is calculated without the 

effects of creep for a system with short-term cross-sectional properties. M Ed i
Perm anent
1 0, ,,  is intro-

duced when concrete has an age t0i and causes creep of type P (Section 6.1.2). Therefore, 
stresses at time t = ∞ due to M Ed i

Perm anent
1 0, ,,  are based on the long-term inertia moment I1,P(t0i, ∞) 

calculated with a creep factor ϕ(t0i, ∞); see Figure 7.39. It is noted that M Ed i
Perm anent
1 0, ,,  refers to 

the design moments due to permanent loadings G and imposed deformations D, if any.
• In continuous systems, additional deformations and rotations due to creep are 

restrained due to the system’s static indeterminacy. At the position of M Ed i
Perm anent
1 0, ,, , a sec-

ondary bending moment M1,Ed,i,PT is developed calculated according to Section 7.4.3. 

Table 9.11  Stress design for class 3 cross sections (shear buckling not relevant)

Material Stresses Verification

1 Concrete Compression s
gc Ed
ck

c

ckf f
, ,

.
0

1 5
£ =

2 Structural steel Direct stresses s
ga Ed yd

yk

M

ykf
f f

,
.

£ = =
0 1 0

3 Shear stresses t
ga Ed

yk

M

ykf f
,

.
£

◊
=

◊3 3 1 00

4 von Mises stresses
s
g

t
g

a Ed

yk M

a Ed

yk Mf f
, , .

/ /0

2

0

2

3 1 0
Ê

Ë
ÁÁ

ˆ

¯
˜̃ + ◊

Ê

Ë
ÁÁ

ˆ

¯
˜̃ £

5 Reinforcement Tension (or compression) s
gs Ed sd
sk

s

skf
f f

,
.

£ = =
1 15

Note: The von Mises stress refers to points where direct and shear stresses coexist, for exam-
ple, in webs.
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Table 9.12  Short-term stress calculation for class 3 cross sections considering 
loading history

Loading history for calculating short-team direct stresses

Notation for stresses (i = number of loading case)

Direct stresses

Short-term
neutral axis

wu,0

au,0

wo,0
ao,0
cu,0

co,0 so,0

su,0

wm,0

VEd =

vo,0

v,wo,0

vm,0

v,wu,0

vu,0

z1,0

Shear stresses von Mises

VEd,i
i
∑

Bending moments acting on
pure steel (Ia)

Sagging bending areas Hogging bending areas

Bending moments acting on
pure steel (Ia)

Ma,Ed,i
i
∑ Ma,Ed,i

i
∑

zaza

Bending moments acting on
uncracked composite section (I1,0)

beff,1

z1,0 z2,sa

M1,Ed,i,0
i
∑ M2,Ed,i,0

i
∑

beff,2

Bending moments acting on
fully cracked composite section (I2,sa)

Direct stresses for sagging bending

Concrete: sc Ed Ed i

i

cM
z

n I
, , , , ,

,

,
0 1 0

0

0 1 0

= ◊
◊Â  for fibers “co” and “cu” (9.31)

Structural steel:

sa Ed a Ed i

i

a

a
Ed i

i

aM
z
I

M
z
I

, , , , , , ,
,

,
0 1 0

0

1 0

= ◊ + ◊Â Â  for fibers “ao, au, wo, wu” (9.32)

Direct stresses for hogging bending
Reinforcement:

ss Ed Ed i

i

s sa

sa

M
z
I

, , , , ,
,

,
0 2 0

2

= ◊Â  for fibers “so” and “su” (9.33)

Structural steel:

sa Ed a Ed i

i

a

a
Ed i

i

a sa

sa

M
z
I

M
z
I

, , , , , , ,
,

,
0 2 0

2

= ◊ + ◊Â Â  for fibers “ao, au, wo, wu” (9.34)

Shear stresses:

ta Ed Ed i w

i

V A, , ,0 =Â (9.35)
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Table 9.13  Long-term stress calculation for class 3 cross sections considering loading history

z1,P

Long-term
neutral axis

beff,1 beff,1

See Section 7.4

M1,Ed,i,PT

Secondary (PT) design
bending moments (Ed) due

to permanent loading i

Short-term (0) design
bending moment (Ed)

due to permanent
loading i acting at t0i

z1,PT

I1,PT(t0i,∞)

(i = number of loading case)

Short-term bending moments acting on
uncracked composite section (I1,p)*

Secondary bending moments acting on
uncracked composite section (I1,PT)

Shrinkage forces acting on
uncracked composite section (I1,s)

Short-term bending moments acting on
uncracked composite section (I1,0)

Bending moments acting on fully cracked composite section (I2,sa)

Short termz2,sa

beff,2

See Section 7.4.3

Short-term design
bending moment due to

traffic, temperature...

M1,ED,i,0
z1,0

beff,1beff,1

*P includes short-term bending moment due to
imposed deformations, see MD(t0) in Figure 7.43.

I1,P(t0i, ∞)

t0i: age of
concrete when
M1,Ed,i,0     actsPermanent

Nsh

Z
1,S

A1,S, I1s
Primary
stresses

Msh
I1,0

M2,Ed,i,0M2,Ed,i,0
i i

M1,Ed,i,0
Permanent

Short term
neutral axis

Hogging bending areas

Sagging bending areas

∑ ∑M2,Ed,i,PT

Secondary
effects

+

Direct stresses for sagging bending
Concrete: according to EN. 1994-2, the verification can be omitted.
Structural steel: for fibers “ao, au, wo, wu,”

sa Ed a Ed i

i

a

a
Ed i

Permanent a P i

P

M
z
I

M
z t
I

, , , , , , ,
,

,

( , )
(

• = ◊ + ◊ •Â 1 0
0

1 tt

M
z t
I t

ii

Ed i PT
a PT i

PT ii

0

1
0

1 0

, )

( , )
( , )

, , ,
,

,

•

+ ◊ •
•

Ê
Ë
Á

ˆ
¯
˜+

Â

Â N
A

sh

11,S
sh

a,S

1,S

+M
z
I

◊Ê
Ë
Á

ˆ
¯
˜+ ◊Â M

z
I

Ed i

i

a
1 0

0

1 0
, , ,

,

,

 (9.36)

Direct stresses for hogging bending
Reinforcement: for fibers “so” and “su,”

ss Ed Ed i

i

s sa

sa
Ed i PT

i

s sa

sa

M
z
I

M
z
I

, , , , ,
,

,
, , ,

,

,
• = ◊ + ◊Â Â2 0

2
2

2

 (9.37)

Structural steel: for fibers “ao, au, wo, wu,”

sa Ed a Ed i

i

a

a
Ed i PT

i

a sa

sa
Ed i

i

M
z
I

M
z
I

M, , , , , , ,
,

,
, , ,• = ◊ + ◊ +Â Â Â2

2
2 0 ◊◊

z
I

a sa

sa

,

,2

 (9.38)

Shear stresses:

ta Ed

Ed i Ed i PT

ii

w

V V

A
, ,

, , ,

• =
+

Ê

Ë
ÁÁ

ˆ

¯
˜̃ÂÂ

 (9.39)
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This bending moment is permanent but with a magnitude that continuously changes, 
creep of type PT (Section 6.1.2). Stresses due to M1,Ed,i,PT are calculated based on the 
inertia moment I1,PT(t0i, ∞).

• Shrinkage forces are calculated from Equations 7.28a and 7.28b. They cause self-equilibrat-
ing stresses (primary effects). Secondary bending moments due to shrinkage (see Section 
7.4.3) are treated as M1,Ed,i,PT moments acting on cross sections with I1,PT(t0S = 1 day, ∞).

• Bending moments due to nonpermanent actions (e.g., traffic, temperature, wind) are 
calculated from a system with short-term cross-sectional properties. They act on com-
posite sections with moment of inertia equal to I1,0.

• Long-term stresses are then combined and σc,∞ and σa,∞ are calculated; Equations 9.36 
through 9.39.

For hogging bending areas:

• Stresses due to preloading of the steel girder are not shown in the figures of Table 9.13, 
but they are obviously taken into account.

• All the bending moments acting on the fully cracked cross section are added, and 
stresses in structural steel and reinforcement are calculated.

REMARK 9.4

• Secondary bending moments due to creep are hogging moments that lead to a consider-
able increase of stresses at internal supports and decrease them at spans; see Figure 7.41. 
However, since they result from the same source, a unique safety factor, 1.35 as for perma-
nent loads, is applied although the effects are favorable at internal supports and unfavorable 
at spans.

• Primary effects of shrinkage act on the uncracked areas and have an unfavorable influence 
on the stresses of structural steel; see Equation 9.38. Secondary bending moments due 
to shrinkage are in most cases considerably high (Figure 7.44). They tend to increase the 
stresses at internal supports and reduce them at spans. In all cases, shrinkage effects are 
multiplied with a safety factor equal to 1.0. Shrinkage stresses are included in the fourth 
term of Equation 9.36.

• It was mentioned that imposed deformations can be treated as permanent loadings 
causing creep of type P and not D. Indeed, the short-term sagging moment due to a 
support settlement (MD(t0) in Figure 7.43) is considered as a permanent action caus-
ing creep of type P. The stresses due to this action are integrated in the second term 
of Equation 9.36. The secondary hogging moment due to the support settlement can 
be calculated with the equivalent temperature of Equation 7.26 by substituting M0 
with MD(t0). The corresponding secondary stresses are included in the third term of 
Equation 9.36.

• Cross sections in bridges are not loaded instantaneously. Therefore, there is no objective 
rule for defining the age of concrete at loading time t0. For example, the age of concrete of a 
composite section may be 14 days at the beginning of casting and 28 days at the end of it. Many 
designers consider t0 as the average value, that is, (14 + 28)/2 = 21 days. However, creep will 
start developing from the very beginning. Conservatively, the minimum value of concrete’s 
age can be applied.
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• It was noted that for the short-term design (Table 9.12), creep and shrinkage are not 
taken into account. In part of the literature [9.8], short-term design is represented by 
the age of concrete at the time of traffic opening, and therefore, creep and shrinkage are 
not neglected. This approach is not followed in this book because it makes calculations 
considerably laborious and no significant differences arise.

• For bridges casted in several stages, EN 1994-2 permits the use of one mean value t0 
for the determination of the creep coefficient. This simplification is allowed due to 
the lack of adequate information on the timetable of construction at the design stage. 
However, it is recommended to avoid the code’s suggestion since it has no theoreti-
cal background and can lead to unsafe results for stresses, secondary moments, and 
deformations. Indeed, the mean value t0 for a continuous bridge is unlikely to be less 
than a month. For the majority of the segments, the first loading may occur at an age 
as low as a week; thus, adopting a mean value will underestimate creep factor ϕ(t, t0) 
considerably. Designers should be able to make safe assumptions for the age of concrete 
at loading; see Example 9.4.

• For the majority of bridges, verifications for the extreme cases of short- and long-term 
design are considered as adequate. However, verifications for intermediate periods 
(between t0 and t∞) may be considered from the designer as necessary. Guidance may also 
be given in the National Annex.

• It is reminded that the web should be classified both for short- and long-term effects by 
taking into account the construction sequence and shear lag effect; see Example 9.4.

Table 9.14  Stress design for class 3 cross sections (shear buckling is relevant)

Material Stresses Verification
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ck
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£ =
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.
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.
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Notes:

The von Mises stress refers to points where direct and shear stresses coexist, for example, in webs.

Additional stresses, if any, in concrete and in reinforcement due to local bending of the deck slab 
should be taken into account.

Warping stresses should be neglected if the distortional effects do not exceed 10% of the 
bending ones.
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Table 9.11 applies to class 3 cross sections, where the web is not prone to shear buckling. 
If shear buckling of the web is relevant, the shear stresses in the web must be limited to the 
shear buckling strength. Additionally, the interaction between direct and shear buckling 
strength, usually by application of the reduced stress method, must be examined. In this 
case, the design stresses that are introduced in the interaction do not refer to specific points 
of the web but to the average design shear stress and the maximal direct stress in the web 
panel. Table 9.14 presents the required verifications.

9.10  CLASS 4 CROSS SECTIONS THAT ARE 
TREATED AS CLASS 3 CROSS SECTIONS

Class 4 cross sections in which plate buckling verifications are performed by the reduced 
stress method (see Section 8.4) may be treated as class 3 cross sections. This category applies 
usually to cross sections with longitudinally stiffened walls, since in the absence of longitu-
dinal stiffeners, the effective width method (see Section 8.5) may be more easily applied. In 
addition, in the presence of torsion, the effective width method does not provide interaction 
relations including torsion so that the reduced stress method is applied. Consequently, this 
section refers more often to box-girder bridges with longitudinal stiffeners in the bottom 
flange and the webs. The verification procedure for such types of cross sections with refer-
ence to the section of Figure 9.14 is as follows:

Step 1: Performance of static analysis, possibly including second-order effects (e.g., in 
cable-stayed bridges), to determine internal forces and moments.

Step 2: Definition of design direct and shear stresses from internal forces and moments, 
from elastic section analysis based on gross section properties with shear lag effects; 
see Section 7.2.

Step 3: Limitation of stresses at extreme points for parts of the section where plate buck-
ling is not relevant. In Figure 9.14, these are the tensile stress of the top girder flange 
and the tensile stress of the upper reinforcement layer.
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cross frames
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τw,Ed

Figure 9.14  Stresses in box girders under hogging bending, vertical shear and torsion, and isolation of panels.
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Step 4: Isolation of panels for each wall, considering simple support conditions at their 
joint edges. The transverse edges coincide with the position of transverse stiffeners or 
cross frames.

Step 5: Limitation of stresses of panels or subpanels by the reduced stress method. In 
Figure 9.14, these are the webs and the bottom flange.

REMARK 9.5

At sagging moment areas, bottom flanges are under tension. However, in some cases, buckling verifi-
cations due to interaction of tension with high shear forces may be necessary (i.e., in curved bridges).

Table 9.15 presents the required design relations. It may be seen that stress limitations in 
structural steel refer to individual points with extreme stresses for section parts that are not 

Table 9.15  Design for class 4 cross sections treated as class 3 sections (reduced stress 
method)

Material Stresses Verification
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.
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(see also Equation 8.42 or 8.41)
Notes:

maxσa,Ed is the maximum compression stress in the panel under consideration. Direct stresses refer to 
midplane of panels.

Additional stresses, if any, in concrete and in reinforcement due to local bending of the deck slab should be 
taken into account.

Warping stresses should be neglected if the distortional effects do not exceed 10% of the bending ones.
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prone to plate buckling. In the example of Figure 9.14, this may be the stress in the extreme 
fiber of the tension flange. Oppositely, stress limitations for panels subjected to plate buckling 
verifications refer not to individual points but to the maximum compression stress in the panel 
and the average shear stress. Direct stresses in panels for plate buckling verifications refer to 
midplanes of the panels and not at extreme fibers. Accordingly, the direct stress in the bottom 
flange in the example of Figure 9.14 is determined at its midplane and not at the bottom fiber.

In composite bridges, hybrid steel girders are used quite often; see Example 9.4. These are 
steel girders with flanges and web(s) made of different steel grades. According to EN 1993-
1-5, flanges may have a yield strength fyf up to 2 · fyw, where fyw is the yield strength of the 
web. This limitation is based on available tests in this field.

EXAMPLE 9.4

A two-span road bridge has a composite box cross section (Figure 9.16). The bottom flange is 
stiffened by four longitudinal stiffeners. The upper reinforcement area of the slab is Aso = 300 cm2 
and the lower Asu = 200 cm2. After placing the steel girder, the concrete is casted in segments 
as shown in Figure 9.15.

The self-weight of the steel girder is g1 = 30.4 kN/m, the dry self-weight of the slab is 
gc = 11 · 0.3 · 25 = 82.5 kN/m, and the self-weight of the superstructure is g2 = 3.4 kN/m2 (water-
proofing layer 3 cm, asphalt 8 cm, two concrete pavement 0.2 × 0.5 m2 all with specific weight 
25 kN/m2), safety barriers 1.3 kN/m, and cornices 0.5 kN/m.

The cross sections of the bridge at the internal support and the midspan shall be verified at ULSs. 
Steel grade of the flanges is S420 at span and S460 at internal support. Steel grades for the webs are 
S355 and S460 correspondingly. Strength class of concrete C35/45, grade of reinforcement B500B.

The thickness of the concrete slab and the depth of the steel girder actually vary along the 
bridge width. However, in this example, they are both taken as constant for simplification of the 
calculations of the composite girder.

The resistance of the cross section will be verified for the internal forces arising at internal 
support and at span (x = 27.5 m).
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Figure 9.15  Structural system and concreting sequence.
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Assumption: The reduction factors ρ for plate buckling are calculated according to Chapter 8. 
They are assumed to be equal to 0.90 both at erection and at final stage. The shear buckling 
reduction factor χw for the webs is assumed to be equal to 0.80.

CROSS-SECTIONAL CLASSIFICATION

Design yield stress of structural steel (Table 6.14):
Web at span t = 25 mm:

 
f N mmyd = =

345
1 0

345 2

.
 /

Top flange at span t = 50 mm:

 
f N mmyd = =

390
1 0

390 2

.
 /

Bottom flange at span t = 15 mm:

 
f N mmyd = =

420
1 0

420 2

.
 /

Web at internal support t = 25 mm:

 
f N mmyd = =

440
1 0

440 2

.
 /

Top flange at internal support t = 50 mm:

 
f N mmyd = =

430
1 0

430 2

.
 /

Bottom flange at internal support t = 15 mm:

 
f N mmyd = =

460
1 0

460 2

.
 /

In order to define the elastic cross-sectional properties, the cross-sectional area of the longitu-
dinal stiffeners in the bottom flange is “smeared” over the flange width. The resulting additional 

thickness is t
A
b

mmstiffeners

flange

= =20 . Accordingly, the elastic properties are determined for a total 

thickness of the bottom flange 15 + 20 = 35 mm. The web stiffeners do not have any significant 
influence on the total thickness of the web that remains equal to 25 mm.

Note: Longitudinal stiffeners may possibly have much lower thickness than the web or the flange 
that they support and therefore higher yielding stress. However, keeping the yielding stress of 
the supported plate is a conservative calculation approach. Longitudinal stiffeners in webs are 
allowed to be considered only to enhance the resistance to plate buckling and therefore not to 
be taken into account for the determination of the cross-sectional properties.

Classification at internal support

Web

The web should be classified for both short- and long-term design. However, the internal forces 
for the long-term design are much more critical, and only the “long-term classification” is shown.
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The long-term stresses in the web are calculated in page 389 by taking into account the concreting 
sequence, creep, shrinkage, and shear lag. The maximum tensile stress is σwo,Ed,∞ = 37.53 kN/cm2 and 
the compressive one σwu,Ed,∞ = 34.37 kN/cm2.

The long-term stress ratio is accordingly y• =- = - < -37 53
34 37

1 09 1
.
.

. :

 
f 44  N/mmy

2= Æ = =0
235
440

0 73e .

From geometric considerations, the width of the web, neglecting the weld thicknesses, is deter-
mined as c = 2915 mm.

Table 9.2:

 

c
t
= = > ◊ ◊ + ◊ =2915

25
116 6 62 0 73 1 1 09 1 09 98 75. . ( . ) . . .  → the web is class 4.

Note: Classification of a stiffened plate is conducted with the nominal thickness value and not 
the smeared one.

Bottom flange

The bottom flange is subjected to compression:

fy = 460 MPa → e= =235
460

0 71.

Table 9.2: 
c
t
= = > ◊ = Æ4000

15
266 67 42 0 71 29 82. . .  The flange is class 4, and then the cross sec-

tion is class 4.

Short-term classification at midspan

Web

The maximum tensile stress is σwu,Ed,0 = 19.94 kN/cm2 and the compressive one σwo,Ed,0 = 
12.96 kN/cm2; see page 391:

 
f 345 MPay = Æ = =e 235

345
0 83.

The short-term stress ratio is accordingly

 
y 0

19 94
12 96

1 54 1= - = - < -.
.

.

Table 9.2:

 
c
t
= = < ◊ ◊ + ◊ =2915

25
116 6 62 0 83 1 1 54 1 54 162 2. . ( . ) . .  → the web is class 3

The composite section for the short-term design is class 3.

Long-term classification at midspan

Web

The maximum tensile stress is σwu,Ed,∞ = 19.1 kN/cm2 and the compressive one σwo,Ed,∞ = 
16.67 kN/cm2; see page 395.
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The short-term stress ratio is accordingly

 
y• = - = - < -19 1

16 67
1 15 1

.
.

. .

Table 9.2:

 
c
t
= = < ◊ ◊ + ◊ =2915

25
116 6 62 0 83 1 1 15 1 15 118 65. . ( . ) . .  → the web is class 3

The composite section for the long-term design is class 3.
For the cross section at internal support, the bottom flange and the web are class 4. Therefore, 

the cross section is class 4. At midspan, the composite section is class 3 for both the short- 
and long-term design. However, since plate buckling of the bottom flange and the web is per-
formed by the reduced stress method (see Section 8.4), the cross sections are treated as class 3. 
Accordingly, sections will be designed on the basis of stresses taking into account construction 
stages for short- and long-term design as demonstrated in Tables 9.12 and 9.13. Construction 
stages shall be generally considered for the entire bridge, independent on whether other cross 
sections, for example, at spans, are class 1 or 2. This is due to the fact that in order to neglect 
construction stages, creep and shrinkage all cross sections must be class 1 or 2.

MODULAR RATIOS

The short-term modular ratio is given in Table 6.4: n0 = 6.18.
The creep factors are calculated according to Equation 6.9 and the long-term modular ratios 

from Equation 6.20. The results are given in Table 9.16.
The torsional modular ratios for the sagging bending areas are n0G,1 = 5.7 (Table 6.8) and for 

the hogging ones n0G,2 = 4.75. It is assumed that permanent loadings cause no torsion so that 
long-term modular ratios nL,G are not taken into account.

SHEAR LAG IN CONCRETE FLANGES

For sagging bending

According to Figure 7.34, Le = 0.85 · 60 = 51 m.
Considering for simplicity b0 = 0, the full widths adjacent to the webs are

 b m and b m1 27 2 3 5 2 0= = =/   . .

From Equation 7.19b,

 b m b and b m be e1 1 2 251 8 6 375 51 8 6 375= = > = = >/  /  . .

The concrete flanges are not reduced due to shear lag; therefore, for the whole section, 
beff,1 = 11.0 m.

Table 9.16  Long-term modular ratios and 
creep factors

t0 in days ϕ(t0, ∞) P S PT

1 2.66 — 15.22 15.22
7 1.86 18.82 — 12.50

14 1.63 17.26 — 11.72
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For hogging bending

According to Figure 7.34,

 L 0.25 (60 60) 30 me = ◊ + =  

From Equation 7.19b,

 b 30/8 3.75 m b and b 30/8 3.75 m be1 1 e2 2= = > = = >

The concrete flanges are not reduced due to shear lag; therefore, beff,2 = 11.0 m

SHEAR LAG IN BOTTOM FLANGE

For sagging bending

According to Table 7.7,

 L 0.85 60 51 me = ◊ =  

It is b0 = 4/2 = 2.0 m > Le /50 = 1.02 m → Shear lag must not be neglected.

It is Asl/(b0 · t) = 20/15 = 1.33 → a0 1 1.33 1.53= + = :

 
k k b b= ◊ = fi < £ Æ = =

+ ◊
=1 53 2 0

51
0 06 0 02 0 7

1
1 6 4 0 06

0 981 2

. .
. . .

. .
.

Effectives width, Equation 7.20:

 b meff = ◊ =0 98 2 1 96. .  

To take into account the effectives width, the smeared thickness of the bottom flange is taken 
as teq = 3.5 · 1.96/2 = 3.4 cm.

For hogging bending

According to Table 7.7:

 L me = ◊ + =0 25 60 60 30. ( )  

It is b0 = 4/2 = 2.0 m > Le /50 = 0.6 m → Shear lag must not be neglected.
It is Asl/(b0 · t) = 20/15 = 1.33 → a0 1 1 33 1 53= + =. . .

 

k k

b b

= ◊ = fi < £ Æ

= =
+ ◊ -

◊

1 53 2 0
30

0 102 0 02 0 7

1

1 6 0 0 102
1

2500 0 10

2

. .
. . .

. .
. 22

1 6 0 102
0 62

2Ê
ËÁ

ˆ
¯̃
+ ◊

=
. .

.

Effectives width, Equation 7.20: beff = 0.62 · 2 = 1.24 m
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To take into account the effectives width, the smeared thickness of the bottom flange is taken 
as teq = 3.5 · 1.24/2 = 2.17 cm.

The aforementioned values reflect elastic effectives widths. For cross-sectional verifications 
at ULSs, plastic effectives widths will be used. Following method 3, (see Table 7.9) the following 
effective widths will be used for verifications.

For sagging bending

Effectives width:

 b 0.98 2 2.0 m 1.96 meff
0.06= ◊ = >

The smeared thickness of the bottom flange is taken as teq = 3.5 cm.

For hogging bending

Effectives width:

 b 0.62 2 1.90 m 1.24 meff
0.102= ◊ = >

The smeared thickness of the bottom flange is taken as teq = 3.5 · 1.9/2 = 3.4 cm.
In sagging and bending moment areas at ULS, teq is approximately equal to 35 mm. There will 

be no reduction of the cross-sectional properties due to shear lag in the bottom flange.

CROSS-SECTIONAL PROPERTIES (TABLES 9.17 AND 9.18)

LOADINGS

Self-weight steel 1.05a · 30.4 = 31.92 kN/m
Wet concrete 26 · 11 · 0.3 = 85.8 kN/m
Hardened concrete 25 · 11 · 0.3 = 82.5 kN/m
Superstructure 3.4 · 11 = 37.4 kN/m
Safety barriers 1.3 kN/m
Cornices 0.5 kN/m
Thermal ∆TM,heat Table 4.14 for waterproofed surface: 1.1 · 15 = 16.5°C
Thermal ∆Tcool Table 4.14 for waterproofed surface: 0.9 · 18 = 16.2°C
Shrinkage εcs(1, ∞) = 300 · 10−6

Secondary effects As follows
Traffic loads (group gr1a) From Figure 9.17, the loads in longitudinal direction 

are calculated as
For half girder A: qUDL,A,k = 31.92 kN/m and axle loads 
PTS,A,k = 336.5 kN

For half girder B: qUDL,B,k = 4.58 kN/m and axle loads 
PTS,B,k = 163.5 kN

a A 5% increase for the self-weight of the steel cross section was considered so that the 
weights of bracings, studs, and stiffeners are taken into account.
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GRILLAGE MODEL: INTERNAL FORCES

A grillage as described in Figure 7.23 is used for the calculation of the internal forces.
For the bracings, the equivalent shear area is calculated from Table 7.3 as follows:

 
fQ = + =7 4

7
1 57.

From Figure 9.16 for the diagonals, h ≈ 2.2 m, b = 7 m, d = 4.13 m, and Ad = 68.5 cm2.

Table 9.17 Cross-sectional properties for ULS with tau = 35 mm

Sagging and hogging bending
Steel girder

Neutral axis

tau = 35 mm

zsu zso

zau

zao= zcu
zcoAa 3872.77 cm2

zao 142.34 cm
zau 114.16 cm
Ia 0.45454 · 108 cm4

Sagging bending Hogging bending
Short term with n0 = 6.18 Fully cracked section
A1,0 9712.58 cm2 A2,sa 4372.77 cm2

zco,0 77.64 cm zao,sa 124.14 cm
zao,0 47.64 cm zau,sa 132.36 cm
zau,0 208.86 cm zso,sa 148.14 cm
I1,0 1.037 · 108 cm4 zsu,sa 130.14 cm

I2,sa 0.567 · 108 cm4

Sagging bending for t0 = 1 day (shrinkage)
Long term with nS = 15.22 Long term with nPT = 15.22
A1,S 6540.97 cm2 A1,PT 6540.97 cm2

zco,S 108.02 cm zco,PT 108.02 cm
zao,S 78.02 cm zao,PT 78.02 cm
zau,S 178.48 cm zau,PT 178.48 cm
I1,S 0.8493 · 108 cm4 I1,PT 0.8493 · 108 cm4

Sagging bending for t0 = 7 days
Long term with nP = 18.82 Long term with nPT = 12.50
A1,P 6126.22 cm2 A1,PT 7012.77 cm2

zco,P 114.32 cm zco,PT 101.76 cm
zao,P 84.32 cm zao,PT 71.76 cm
zau,P 172.18 cm zau,PT 184.74 cm
I1,P 0.8107 · 108 cm4 I1,PT 0.8878 · 108 cm4

Sagging bending for t0 = 14 days
Long term with nP = 17.26 Long term with nPT = 11.72
A1,P 6284.71 cm2 A1,PT 7188.47 cm2

zco,P 111.81 cm zco,PT 99.64 cm
zao,P 81.81 cm zao,PT 69.64 cm
zau,P 174.69 cm zau,PT 186.86 cm
I1,P 0.8261 · 108 cm4 I1,PT 0.9008 · 108 cm4
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Shear area:

 
A cms = ◊ ◊ ◊ ◊

◊
=1 57

21000
8100

220 700 68 5
2 413

67
2

3
2.

.

The aforementioned value is introduced as Az in the fictitious transverse beams of Figure 7.23. 
The torsional constants of Table 9.18 are introduced as IT in the fictitious central girder.

The loading history and the distribution of the cross-sectional properties along the bridge 
are explained as follows:

• The self-weights of steel and wet concrete of the first concreting phase (1–6 days) act on pure 
steel cross section. The edge girders have a bending stiffness equal to Ea · Ia/2 (Figure 9.18).

• The next concreting phase (7–13 days) takes place at internal region with the wet con-
crete acting on the pure steel cross section. At the same time, superstructures are placed 
on the composite parts of the system. The age of concrete is conservatively taken equal 
to 7 days. For the calculation of stresses at sagging moment areas, the composite girders 
are accounted for a bending stiffness equal to Ea · I1,0/2 with t0 = 7 days; see Remark 9.4. 
For the stress calculation, the secondary effects due to creep must be taken into account. 
The maximum short-term sagging moment is equal to 7050.2 kN-m; see Figure 9.19. The 
equivalent temperature that acts on the composite parts with a bending stiffness Ea · I1,PT/2

Table 9.18  Torsional constants for ULS

Sagging bending Hogging bending

Steel girder Steel girder
IT,a 16,855.8 cm4 IT,a 16,855.8 cm4

Composite section (n0G,1 = 5.7) Fully cracked section (n0G,2 = 4.75)
IT,1 1.628 · 108 cm4 IT,2 1.382 · 108 cm4

Note: Torsional constants for the composite section were calculated according 
to Figure 7.12. For the sagging bending areas, νc = 0.2 and hc,G = 30/5.7 = 5.26 cm. 
For the hogging bending areas, νc = 0 and hc,G = 0.5 · 30/4.75 = 3.16 cm. One can see 
that the torsional rigidity of the cross section at internal support is 15% lower 
than the torsional rigidity at spans.
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Figure 9.16  Cross section of the bridge at the intermediate support.
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with t0 = 7 days is calculated from Equation 7.26; this leads to the bending diagram due to 
secondary effects in Figure 9.19:

 
DTMP =

◊ ◊ ◊
◊

-
◊

Ê
ËÁ

ˆ
¯̃
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2 705020
21000
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1
0 8107 10
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55 18. oC

• The entire system now consists of composite cross sections. The superstructures for 
the internal region are placed between 14 and 21 days. The short-term bending moment 
diagram is shown in Figure 9.20. The maximum short-term sagging moment is equal to 
1098.45 kN-m. The age of concrete of the edge composite parts is taken equal to t0 = 
14 days, and the equivalent temperature is equal to
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For the internal uncracked parts, the age of concrete is taken equal to t0 = 7 days. The maxi-
mum bending moment for this segment is equal to 1098 kN-m. Thus,
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◊
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The aforementioned temperature differences are acting on the composite parts with 
bending stiffnesses Ea · I1,PT(14, ∞)/2 and Ea · I1,PT(7, ∞)/2 accordingly. For the support region, 
the state II bending stiffness Ea · I2,sa is applied.

Note 2: Some designers take advantage from the weight reduction of concrete due to 
hardening from 26 to 25 kN/m3 by considering an opposite load equal to (25–26) · hc = 
−hc (kN/m2) acting on the final system. This is not followed in this example.

• Shrinkage is calculated according to Figure 7.44.

 Equation 7.28a: N kNsh = - ◊ ◊ ◊ ◊ =-300 10
6 18

15 22
3400 33000 13667 466 .

.
.  

From Table 9.17 for t0 = 1 day:

 z cmS1 108 02 15 93 02, . .= - =  

 Equation 7.28b: M kN msh = ◊ =13667 46 93 02 100 12713 47. . ./  -

 
Equation 7.30: DT CMS

o=
◊ ◊

◊ =-
1271347

21000 0 8493 10
286 5
10

20 428 5.
.

.

For the calculation of the secondary effects, the aforementioned temperature is applied 
on the uncracked composite parts with I1,PT = I1,S.

• The application of thermal actions is demonstrated in Figure 9.22. Thermal actions are 
considered as short-term, and therefore, creep is neglected.

• For the traffic actions, the group load gr1a of Table 4.7 is considered; see also Figure 9.17. 
It  is noted that a torsional constant IT,1 = 1.628 · 108 cm4 is accounted for the sagging 
moment areas. For the cracked region, IT,2 = 1.382 · 108 cm4. The torsional bending dia-
gram taken from the central girder of the grillage model is shown in Figure 9.23.



386 Design of steel–concrete composite bridges to Eurocodes

DESIGN ACTIONS AND STRESS: CALCULATIONS

The basic combination at ULS with traffic loads as leading action is exemplarily investigated. 
Combinations with other leading variables should be verified as well.

Internal support

Short-term design

Obviously, the hogging bending moments are less critical than those for the long-term 
design due to the development of the secondary moments. Therefore, short-term design 
is not shown.
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Figure 9.17  Influence lines in transverse direction.
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Long-term design

The bending moment that acts on the pure steel cross section is taken from Figures 9.18 and 
9.19 and is equal to

 min . . . . ., ,M kN ma k • = - - - - =-7104 5 13202 6 9121 4 803 6 30232 1 -

 min . ( ). ., ,M kN ma Ed • = ◊ =- -1 35 30232 1 40813 3 -

The basic combination at ULS according to Equation 5.11a for the actions acting on the fully 
cracked cross section (structural steel + reinforcement) with the traffic loads gr1a as leading 
variable (Table 5.6, line 1) offers the following results:

 

min . ( . . ) . ( . ) . . (, ,M Ed2 1 35 2479 0 250 79 1 0 6934 3 1 5 0 6 8• = ◊ - - + ◊ - + ◊ ◊ - 3397 2

1 35 9227 8 30634 5

. )

. ( . ) .+ ◊ - =-  kN m-

Wet concrete

Wet concrete

40 m
40 m

40 m

42.90 kN/m

Ia/2

Self-weight steel
15.96 kN/m

Ia/2

3875.9 kN-m
(V = –78.5 kN)

–13202.6 kN-m (V = –792 kN)

–7104.5 kN-m (V = –597.2 kN)

Ia/2
Ia/2

9187.2 kN-m
(V = –255.8 kN)

First concreting phase

Figure 9.18  Loads acting on the pure steel system and results for the half girders.
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Second concreting phase + superstructures

Secondary effects due to creep
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I1,0/2
Max = 7050.2 kN-m 7033.6 kN-m

(V=–26.1 kN)

–803.6 kN-m (V = –13.4 kN)

–9121.4 kN-m (V = –1140.4 kN)

Secondary bending moments

Short-term bending diagram

Ia/2

Ia/2

ΔTMP = 5.18°C

ΔTMP = 5.18°C

20.5 kN/m
Superstructures

Superstructures

Wet concrete

–368.3 kN-m
(V = –13.4 kN)

Figure 9.19  Loads acting on the mixed system (pure steel + composite) and results for the half girders.
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The coexisting shear and torsion are calculated as follows:

 

min . ( . . . . ) . ( .,VEd • = ◊ - - - - - - + ◊ -1 35 597 2 792 1140 4 13 4 383 4 2 1 0 115 6))

. . ( . ) . ( ) .+ ◊ ◊ - + ◊ - = -1 5 0 6 139 9 1 35 1168 5774 08 kN

 min . ( . ) .,M kN mT Ed = ◊ - =1 35 2167 2 2925 72 -

Stresses on structural steel, Equation 9.38:
For the top flange, the tensile stress is
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For the bottom flange, the absolute value of the compressive stress is
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Actually, the design stress should be determined at the midplane of the bottom flange due to 
the fact that this flange is designed for plate buckling; see note of Table 9.15. In this example, this 
stress was determined at the extreme fiber considering that the difference between the two 
stresses is negligible due to the small thickness of the bottom flange (15 mm).

The shear stress in the bottom flange due to torsion is calculated from tT au
T Ed

o auA t
,

,=
◊ ◊
M

2

Equation 9.15, where A mo ª
+ ◊ =7 4
2

2 5 13 75 2. . .
Therefore,
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No verification for interaction between direct and shear stresses is necessary.
For the web, shear stresses are considered constant along its length. The maximum shear 

stress due to vertical shear is equal to
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The shear stress due to torsion is calculated as follows:
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The shear stress in the web due to torsion is added to the shear stress due to vertical shear. 
The maximum total shear is calculated equal to
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The maximum tensile stress in the web is equal to
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von Mises stress verification:
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For the compressed part of the web, the maximum value for the direct stresses is
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The interaction between shear and direct stresses is verified through Table 9.15, row 8:
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Note: If the number of longitudinal stiffeners in the web is increased, then the buckling fac-
tor ρ may become equal to one. In this case, the previous check becomes sufficient. The local 
increase of longitudinal stiffeners at internal support will not have any significant effect on the 
cost of the structure.

Stresses in reinforcing steel:
For the top reinforcement layer, Equation 9.37 (Table 9.13):
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There are no additional stresses due to local bending of the deck slab since the TS is located 
away from the internal support.
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Span (x = 27.5 m)

The bending that acts on the steel cross section is taken from Figure 9.18 and is equal to

 M kN ma k, . . .= + =3875 9 9187 2 13063 1 -

 M kN ma Ed, . . .= ◊ =1 35 13063 1 17635 19 -

Short-term design

The basic combination at ULS according to (5.11a) for the actions acting on uncracked cross 
section with leading variable the traffic loads gr1a (Table 5.6, line 1) offers the following 
results:

 M Ed1 0 1 35 7033 6 743 1 5 0 6 3920 1 35 10293 7 27922, , . ( . ) . . . . .= ◊ + + ◊ ◊ + ◊ = 991 kN m-

The coexisting shear force is calculated as follows:
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.= -  kN

The coexisting torsional moment is equal to

 M kN mT Ed, , . . .1 1 35 354 8 478 98= ◊ =  -

For the concrete slab, the maximum value of compressive stress is calculated from Equation 
9.31 and is equal to
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The TS is located where the maximum sagging moment arises. The additional concrete stress 
due to local bending of the deck slab is 0.24 kN/cm2 (FE calculation):
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For the top flange, the maximum value of the compression stress is equal to (Equation 9.32)
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For the bottom flange, the tensile stress due to permanent actions is equal to
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Torsion at span causes at bottom flange negligible shear stresses.
The maximum shear stress due to shear in the web is equal to
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The torsional bending moment at x = 27.5 m is small, and the corresponding shear stresses are 
negligible (τT,w ≈ 0). Therefore,
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The maximum value of tensile stress in the web is equal to
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von Mises stress verification (Table 9.14, row 5):
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The maximum value of the compressive stress in the web is equal to
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von Mises stress verification (Table 9.15, row 8):
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Long-term design

The basic combination at ULS according to (5.11a) for the actions acting on the uncracked cross 
section with leading variable the traffic loads gr1a offers the following results:

Permanent bending moment due to permanent loads acting on the composite cross section of 
type P with age of concrete 7 days; see short-term bending diagram in Figure 9.19:

 M kN mEd1 7 1 35 7033 6 9495 36, , . . .= ◊ =  -

Temporarily permanent bending moment acting on the composite cross section of type PT with 
age of concrete 7 days; see diagram of secondary bending moments in Figure 9.19:

 M kN mEd PT1 7 1 35 368 3 497 21, , , . ( . ) .= ◊ - = -  -

Permanent bending moment acting on the composite cross section of type P with age of concrete 
14 days; see short-term bending diagram in Figure 9.20:

 M1,Ed,14 = 1.35 · 743 = 1003 kN-m

Temporarily permanent bending moment acting on the composite cross section of type PT with age 
of concrete 14 days; see diagram of secondary bending moments in Figure 9.20:

 M kN mEd PT1 14 1 35 114 9 155 11, , , . ( . ) .= ◊ - = -  -

Secondary bending moment due to shrinkage; see Figure 9.21:

 M kN mEd PT1 1 1 0 3178 2 3178 2, , , . ( . ) .= ◊ - = -  -

Short-term bending moments due to traffic and thermal actions taken from Figures 9.22 and 9.23:

 M kN mEd1 0 1 35 10293 7 0 6 1 5 3920 17424 5, , . . . . .= ◊ + ◊ ◊ =  -

(7, ∞)
(7, ∞)

40 m

51 m
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Superstructures

Final superstructures

Secondary effects due to creep

State 251 m

11 m 11 m2 × 9  m
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I1,PT/2

I1,PT/2 I2,sa/2

I2,sa/2

ΔTMP = 0.74°C

ΔTMP = 0.74°C
ΔTMP = 0.81°C

Max = 1098.45 kN-m 743 kN-m
(V = 27 kN)

–114.9 kN-m
(V=–4.2 kN)

–250.79 kN-m (V = –4.2 kN)

–2479.0 kN-m (V = –383 kN)

Secondary bending moments

Short-term bending diagram

40 m

Figure 9.20  Loads acting on composite system and results for the half girders.
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The coexisting shear force is calculated as follows:
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The coexisting torsional moment is equal to

 M kN mT Ed, , . . .1 1 35 354 8 478 98= ◊ =  -

Thermal actions

I1,0/2
I2,sa/2

I1,0/2

ΔTM,cool = 16.2°C

ΔTM,heat = 16.5°C

–8397.2 kN-m (V = –139.9 kN)

8552.7 kN-m (V = 142.6 kN)

–3848.7 kN-m

3920 kN-m

(V = –139.9 kN)
State II51 m

51 m
2 × 9 m 

(V = 142.6 kN)

Figure 9.22  Thermal actions and results for the half girders.
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Figure 9.21  Shrinkage and results for the half girders.
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Figure 9.23  Traffic actions and results for the half girders.
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For the top flange, the maximum value of the compression stress is equal to (Equation 9.36)
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One can see that the top flange stress due to long-term effects has been increased from 
13.61 kN/cm2 to 17.39 kN/cm2 (28%). The compressive stress due to preloading of the pure 
steel cross section is 11.04 kN/cm2 (63.5% of the total stress). The top flange stress due to 
the primary effects of shrinkage (last term in bracket) is 3.26 kN/cm2 (18.8% of the total 
stress).

For the bottom flange, the maximum tensile stress is equal to (Equation 9.36)

 

sau Ed, , .
.

.
.

.
• = ◊

◊
+ ◊

◊
17635 19 949536

114 16
0 45454 10 2

172 18
0 81078 / 110 2

184 84
0 8878 10 2

100300
174 69

0 8261 10
49721

8

8 8

/

/
+ - ◊

◊
+ ◊

◊
( )

.
.

.
. //

/

2

15511
186 86

0 9008 10 2
317820

178 48
0 8493 108 8+ - ◊

◊
+ - ◊

◊
( )

.
.

( )
.

. //

/

2

208 86
1 037 10 2

13667 46
6540 97

1271347 178
1742450 8+ ◊

◊
+ - + ◊.

.
.
.

..
.

.
.

†(

48
0 8493 10

19 31
42
1 0

42

8

2 2

◊
Ê
ËÁ

ˆ
¯̃

= £ = /  /kN cm kN cm sufficieent)

One can see that the bottom flange stress due to long-term effects has been reduced from 20.1 
kN/cm2 to 19.31 kN/cm2 (−3.9%). The stress due to preloading of the pure steel cross section is 
8.86 kN/cm2 (45.8% of the total stress). The bottom flange stress due to the primary effects of 
shrinkage (last term in bracket) is 0.58 kN/cm2 (only 3% of the total stress). Obviously, shrinkage 
is not that critical for the bottom flange as for the top one.

Torsion at span causes at the bottom flange negligible shear stresses.
The coexisting shear stress due to shear in the web is equal to
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The torsional bending moment at x = 27.5 m is small, and the corresponding shear stresses are 
negligible (τT,w ≈ 0). Therefore,
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von Mises stress verification:
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The maximum compressive stress in the web is
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Obviously, the total depth of the cross section at spans can be significantly reduced. In real 
cases, the total depth varies parabolically along the bridge as in Figure 2.21. Therefore, stresses 
should be verified for many different positions and not only at midspan and the supports.
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Note: The use of different modular ratios nL depending on the age of concrete is from the theoreti-
cal point of view the correct approach. However, it makes calculations laborious especially in bridges 
with many concrete segments. In [9.11], it is shown that stresses σco, σcu, and σau are considerably 
robust against the deviations of modular ratios; for deviations |∆nL|/nL ≤ 20%, the maximum change 
for the concrete stresses is less than 10% and for the tension stress in the bottom flange less than 
3%. The stresses in the upper part of the steel cross section σao and σwo are very sensible against the 
nL deviations and in some cases may govern the design. The position of the elastic neutral axis is also 
quite sensible against the deviations of nL, and this may be critical for the classification of the cross 
section. It is suggested that for concrete segments with modular ratios with a relative difference less 
than 20%, the modular ratio with the highest value can be chosen as the representative one. For 
greater differences in modular ratios, generalizations should be avoided. In Table 9.16, the deviations 
for both nP and nPT for 7 and 14 days are smaller than 20%, so calculations could be done for all of 
the segments with nP = 18.82 and nPT = 12.5; this would reduce the computation load significantly.

9.11 CLASS 4 CROSS SECTIONS

This section refers to class 4 cross sections where plate buckling verifications are made by 
the effective width method. The procedure for this section class was presented in detail in 
Section 8.6; see Figure 8.28. The necessary steps are shown once more as follows:

Step 1: Determination of direct stresses on the basis of the gross section
Step 2: Determination of the effective area of the compression flange
Step 3: Determination of the direct stresses based on the gross section of the web(s) and 

effective section of the compression flange
Step 4: Determination of the effective area of the web(s) and the final effective cross 

section
Step 5: Section verification for bending moments and axial forces
Step 6: Resistance to shear
Step 7: Verification for the interaction bending moments, axial forces, and shear forces

Table 9.19 illustrates the procedure for the same cross section as in Figure 8.28. The design 
relations of Table 9.19 indicate that the procedure leads to cross-sectional verifications. 
However, plate buckling verifications to determined effective areas are performed for pan-
els that have a specific length. Accordingly, member verifications are included in design. In 
the presence of torsion, the webs resist different shear forces. Verifications for shear and its 
interactions should therefore be based on the larger shear force. Example 8.10 demonstrates 
the application of the effective width method on the cross section of a box-girder bridge.

9.12 CLASS 4 CROSS SECTIONS COMPOSED OF THE FLANGES

In the previous sections, it was seen that cross sections with class 1 or 2 flanges and class 
3 webs may be treated as class 2 sections by introduction of an effective area for the web. 
A practical, although conservative, alternative is to assign the entire bending resistance to 
the flanges and all shear resistance to the web. The bending resistance of the cross section 
composed of the two flanges is only determined as Mf,Rd. Since the web is resisting shear 
force only and the flanges bending moment only, there is no need to examine interaction. 
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This  methodology is especially advantageous for cross sections with class 4 webs; plate 
buckling verifications for direct stresses for the web are avoided. Webs are then verified only 
for shear buckling.

For sagging bending, both flanges are class 1 and M1,f,Rd is determined with a plastic stress 
distribution.

The resistance to hogging bending M2,f,Rd is determined as follows:

• For class 1 or 2 compression flanges with a plastic stress distribution, so that M2,f,Rd = 
M2,pl,f,Rd.

• For class 3 compression flanges with an elastic stress distribution, with limiting stresses 
fyd for structural steel in compression or tension and fsd for reinforcement. It is then 
M2,f,Rd = M2,el,f,Rd. In such case, the loading history should be taken into account.

• For class 4 compression flanges, as usually in box girders, with an elastic stress distri-
bution on the section with effective compression flange area, with limiting stresses as 
for class 3 sections and effective width method in Section 8.5.

• For class 4 compression flanges with an elastic stress distribution on the section with full 
compression flange area, with limiting stresses fyd for structural steel in tension, the reduced 
stress σRd = ρ · fyd in accordance with Section 8.4 (reduced stress method) for structural steel 
in compression and fsd for reinforcement. Again the loading history should not be omitted.

Table 9.19  Design procedure for class 4 sections

Direct stresses on the gross section

Direct stresses on the section with 
effective flange

Not effective due to plate buckling

Direct stresses on the effective 
section

Not effective due
to plate buckling

Not effective due to plate buckling

Verification to axial force and 
bending moment

See Equation 8.49 in Section 8.6.

Verification to shear See Equation 8.55 in Section 8.7.
Interactions N, M, V See Equation 8.64 in Section 8.9.

Notes:

Aeff is calculated in presence of compression force.

Aeff and Weff are calculated separately.

Concentrated forces and their interaction are verified separately; see Sections 8.8 and 8.9.2.
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9.13 LATERAL TORSIONAL BUCKLING

9.13.1 Introduction

Compression flanges of in-plane loaded girders are susceptible to instability in the form of 
 lateral out-of-plane deformations. Lateral out-of-plane deformations due to instability may 
also occur in truss, arched, arch-and-tie bridges, etc., where the entire compression chord 
deflects laterally. The former type of instability, where the compression part of the cross 
 section is susceptible to lateral deformations, is named lateral torsional buckling; the latter, 
where the entire section deforms laterally, is called lateral or flexural buckling. Resistance 
to lateral or lateral torsional buckling may be enhanced by addition of bracing that provides 
 lateral  support. Depending on the conditions, the lateral support may be rigid or flexible. Rigid 
support is generally provided by the connection of bracing elements directly to the compres-
sion flange, whereas elastic support provides cross frames or bracing elements in the tension 
flange or the web. Flanges connected to the concrete slab are not susceptible to lateral torsional 
buckling due to the lateral restraint provided by the slab. For lateral buckling, bracing elements 
are usually connected directly to the member, for example, the arch, that may deform laterally.

Geometric and loading conditions change during construction stages in composite 
bridges. Top flanges are not supported before concrete casting by the concrete deck and may 
deform laterally, whereas at service conditions, only bottom flanges at internal supports are 
susceptible to lateral deformations. Lateral torsional buckling may be verified by different 
methods that are presented in the following.

9.13.2 General method

The general method is applicable to both lateral and lateral torsional buckling. It requires 
the performance of a linear buckling analysis for the entire 3D system in order to obtain the 
critical load factor αcrit. This factor is the load amplifier of the in-plane design loads at 
which the fundamental buckling mode for lateral or lateral torsional buckling occurs; see 
Figure 7.30. Since the overall system is considered, the general method applies not only to 
the lateral stability problems of compression flanges for cross sections but also to the lateral 
stability of entire systems as arches, trusses, etc.

The nondimensional out-of-plane slenderness of the system is determined from

 
l a

aop
ultk

crit
= ,  (9.40)

where
αult,k is the load amplifier of the design loads to reach the characteristic resistance of the 

most critical section neglecting any out-of-plane effects. If necessary, second-order 
bending moments should be included

αcrit is the load amplifier of the in-plane design loads to reach the fundamental buck-
ling mode for lateral or lateral torsional buckling. For the calculation of αcrit, the 3D 
model described in Section 7.1.4 should be used

The reduction factor χop for lateral or lateral torsional buckling may be determined as a 
function of lop by the following condition:

 
c c cop LT= m in( , ) (9.41)
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where
χ is the reduction factor for lateral buckling to be determined by Equation 9.11, as 

described in Section 9.3
χLT is the reduction factor for lateral torsional buckling that is determined by a similar 

equation as follows:
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 with l lLT op=

The imperfection factor α is determined from Table 9.7 using the buckling curves of Table 
9.20. It is mentioned that EN 1993-1-1 also gives alternative expressions for Equations 9.42 
and 9.43 that are accompanied by the application of different buckling curves.

The buckling verification may be written as
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REMARK 9.6

• When first-order global analysis is conducted, αult,k can be calculated from the capacity 
expressions of EN 1993-1-1 corresponding to the most critical cross section. For a cross 
section under a bending moment MEd and an axial force NEd, the simplest way for calculat-
ing the amplifier ault,k is achieved with the following interaction:
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• Expression R9.1 should not be used when second-order global analysis is conducted. This 
is because internal forces do not have a linear relation with the imposed loads. In such a 
case, the imposed loads should be progressively increased until the cross section reaches 
its characteristic strength.

Table 9.20  Selection of buckling curves for lateral 
torsional buckling of I girders

Type of cross section
Height to flange 

width ratios Buckling curve

Rolled I sections h/b ≤ 2 a
h/b > 2 b

Welded I sections h/b ≤ 2 c
h/b > 2 d

Other cross sections All d
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EXAMPLE 9.5

The lateral stability of the girders of Figure 7.30 at construction stages during concrete casting 
shall be determined. Steel grade S355.

The design load due to self-weight of the girder and the concrete weight is a uniformly dis-
tributed load of 24.19 kN/m.

 The design bending moment is max . . .M kN mEd = ◊ =24 19
25
8

1889 84
2

 -

It may be easily proven that the cross section is class 1 with characteristic moment of resistance 
MRk = 5881.12 kN-m.

 Equation R9.1: ault k,
.
.

.= =5881 12
1889 84

3 11

For lateral torsional buckling from Table 9.20, rolled section with h/b > 2 → buckling curve b → 
Table 9.7, α = 0.34

For lateral buckling from Table 9.8 for h/b > 1.2 → buckling curve b
Accordingly, χLT is equal to χop = χLT.
From the analysis of Figure 7.30, the nondimensional out-of-plane slenderness, the reduction 

factor, and the resistance against lateral torsional buckling are calculated as follows:

• First analysis (αcrit = 0.58):
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However, it was obvious that the verification is not sufficient because αcrit < 1.
• Second analysis (αcrit = 2.95):
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• Third analysis (αcrit = 8.41):
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• Final analysis (αcrit = 10.48):
The buckling mode refers to the lateral buckling of the angle cleat L150 · 10 with αcrit > 10. 
For verification, see Section 9.13.5.
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9.13.3 Simplified method: Rigid lateral supports

9.13.3.1 Verification during concreting stages

The simplified method may be used to verify the resistance to lateral torsional buckling of 
a compression flange only and not for lateral buckling of full systems. This method isolates 
from the cross section the compression flange including 1/3 of the compressed part of the 
web (Figure 9.24) and treats it as a compression member subjected to out-of-plane flexural 
buckling. The supports are considered as rigid when the compression flange is directly sup-
ported by stiff bracing elements.

The nondimensional slenderness is found by the following expressions:
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where
Af is the area of the flange or its effective area for class 4 flanges
Awc is the compression zone of the web but not more than the effective width of the web 

adjacent to the compression flange
Ncr is the critical buckling, Euler, load of the column for out-of-plane buckling
Ieff,z is the transverse second moment of area of the flange and the effective web
L is the length between the “rigid” supports

The reduction factor χLT is determined by Equation 9.42 as a function of lLT. The lateral 
torsional buckling verification is then written as
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eff y£ ◊ ◊c
gM 1

 (9.48)

where max Nf,Ed is the maximum design force developed inside L. It can be taken from a 
first-order analysis of the 3D model; see Section 7.1.4.
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Figure 9.24  Modeling of the compression flange as a T-section column on rigid supports.
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Expression 9.47 is used when braces are considered to act as rigid supports for the com-
pression flange. This means that the effective length is restricted to the distance between 
the braces. However, Figure 7.30 shows that buckling modes at erection stages involve 
rotations and transverse displacements of the compressed flanges for much longer spans. 
Therefore, taking L equal to the distance of the braces may be in some cases unsafe; see 
Example 9.6. A better alternative is to calculate the Euler load Ncr from the following 
expression:

 N a Ncr crit fEd= ◊ ,  (9.49)

where acrit is the load factor calculated from a buckling analysis of the 3D model.

EXAMPLE 9.6

The lateral stability of the girders in Figure 7.30 will be verified for the third analysis with the 
simplified method. Steel grade S355.

The maximum compression force is taken from the 3D model at midspan:

 max .,Nf Ed = 2113 23 kN

Note: The total depth of the equivalent T section is equal to
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The cross-sectional area of the T section is

 A cmeff = ◊ + ◊ =30 2 4 15 47 2 1 153 29 2. . . .  

The bending moment at midspan is

 max . .M kN mEd = ◊ =24 19 25 8 1889 842 /  -

The maximum compression force is calculated as follows:
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The 3D model offers a 13.7% more conservative value than the exact one.
The Euler load is calculated from Equation 9.49:

 N kNcr = ◊ =8 41 2113 23 17772 3. . .  
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From Table 9.20 for h/b > 2 → buckling curve b → Table 9.7, α = 0.34

 Equation 9.43: F LT = ◊ + ◊ - + =0 5 1 0 34 0 55 0 2 0 55 0 712. [ . ( . . ) . ] .
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.
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If plane bracings are considered as rigid supports, then L = 2.5 m, and this leads to less conserva-
tive results. Indeed,
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REMARK 9.7

• Neglecting the web during the calculation of Aeff in Equation 9.46 will reduce the slender-
ness value from Equation 9.45; therefore, it may be an unsafe approach.

• As explained in Section 7.1.4, the effective flanges of the 3D model are composed of the cor-
responding flanges and one-third of the web. This is not totally compatible with the simpli-
fied method in which one-third of the compressed part of the web is required. However, this 
difference causes negligible deviations, and the approximation for the web in the 3D model is 
considered as adequately precise; see also comparative analysis for acrit in Tables 7.4 and 7.5.

9.13.3.2  Verification at hogging moment areas 
of continuous plate-girder bridges

At the final stage of continuous I plate-girder bridges, lateral torsional buckling may occur 
in the hogging moment areas. The bottom flange needs to be supported by braces acting as 
“rigid supports.” In such a case, the Euler load for the effective flange should not be calcu-
lated from Equation 9.47 but from the following procedures:
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M1 is the maximum absolute value of the hogging moment. M2 is the absolute value of the 
hogging moment at the location of the bracing (Figure 9.25a). V2 and V1 are the coexisting 
shear forces. The factors m1, m2 take into account the variation of the bending moment that 
is assumed to be parabolically distributed.

A U-frame action may be activated by transverse bending of the web as in Figure 9.25b. 
This is expressed by the γ-factor that is calculated as follows:
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However, this stiffness is generally very low, and the γ-factor may be taken equal to zero.
When web stiffeners are present and rigidly connected to the top steel flanges, the 

spring constants C and c may be determined by Equations 9.55 and 9.56, where the 
second moment of area Iv includes the transverse stiffeners and the adjacent parts of 
the stiffened plate at width 15 · ε · tw as indicated in Section 9.13.4 (see also last point 
of Remark 9.8).

It is important to note that the Euler load calculated with Equation 9.50a is valid only 
when the bending moment does not reverse within length L. This is valid for the stability 
checks from internal support till the position of the adjacent bracing (L in Figure 9.25a). For 
the length Lrem, there is a moment reversal, and a conservative assumption is unavoidable; 
this is M2 = 0, V2 = V1, and c = 0 that leads to m = 1.88.
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Figure 9.25  (a) Definitions needed to calculate Ncr of Equation 9.50a and (b) U-frame action.
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Once Ncr is known the slenderness value can be calculated from Equation 9.45. Finally, 
the reduction factor for lateral torsional buckling can be calculated from Equations 9.42 
and  9.43. However, according to EN 1993-2, the resistance verification for the beam is 
required to be conducted at a distance s L m= ◊0 20. /  from the support. At this section, the 
bending moment can be approximately estimated after a linear interpolation:
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M Ms ª - ◊ -1 1 2( ) (9.51)

The slenderness at this section is different than lLT and becomes
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A new reduction factor χLT,s referring to ls should then be calculated. The new verification 
is expressed as follows:

 M Ms LT s Rd£ ◊c ,  (9.53)

REMARK 9.8

• It was mentioned that for the calculation of the Euler load, the U-frame action can be 
taken into account. This leads to less conservative results, but it has the disadvantage that 
tension forces may be transferred to the shear studs. A careful design for avoiding local 
failure in the deck plate will be necessary. Conservatively, the γ-factor can be set equal 
to zero.

• EN 1993-2 requires that the design of the main girders should be conducted at a distance s 
from the adjacent support. This is because the highest stresses from the transverse buck-
ling of the bottom flange arise at some distance away from the rigid support. Comparing 
the moment M1 at support with the resistance with respect to lateral torsional buckling 
is too conservative; however, in part of the literature, it is recommended, that is, [9.10].

• The procedure previously described leads to the following expression for the slenderness 
of the compressed flange (see Figure 9.25):
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• In the case of integral bridges, coexisting axial compression forces may arise. A linear 
interaction should be used:
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where Nb,Rd is the flexural resistance according to Equation 9.9 or 9.10 for buckling around 
the minor axis.
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• It was noted that factors m1 and m2 in Equations 9.50c and 9.50d are based on a parabolic 
bending distribution with negligible axial loading. In a different case, the aforementioned 
expression should be avoided. An improved method is found in [9.1].

• The spring constant in Equation 9.50h does not include the rigidity of the transverse stiffen-
ers. A less conservative approach is to estimate c by the use of Equations 9.54 and 9.56.

EXAMPLE 9.7

A two-span composite bridge has a rigid cross bracing at a distance 5 m from the internal sup-
port (L = 5 m in Figure 9.25a). Bracings every 12 m follow (Lrem = 12 m in Figure 9.25a). The cross 
section of the main girders is shown in Figure 9.10; it is the same along the bridge. The hogging 
moment at the internal support is M1 = 50,000 kN-m and at the bracing M2 = 30,250 kN-m. The 
shear at bracing is 75% of the value at internal support. Steel S355.

Check at internal support (L = 5 m, Figure 9.25); recommended:

 A cmf = ◊ =110 8 880 2 

 I cmeff z, .= ◊ =110 8 12 887333 33 4/  

 Equation 9.50e: m = =V
V

2

1

0 75.

 Equation 9.50f: F =
◊ -Ê
ËÁ

ˆ
¯̃

+
=

2 1
30250
50000

1 0 75
0 45

.
.

Web stiffeners are not attached to the top flange, and U-frame action cannot be activated. 
Therefore, γ = 0.

 Equation 9.50c: m1
1 51 0 44 1 0 75 0 45 0 1 23= + ◊ + ◊ + =. ( . ) . ..

 Equation 9.50d: m2 1 23= .

 Equation 9.50b: m = 1.23

 Equation 9.50a: N kNcr = ◊ ◊ ◊ =1 23
21000 887333 3

500
903921

2

2.
.p

 

The compression zone of the web is calculated from the plastic distribution of stresses since the 
fully cracked cross section is class 2. Therefore, hwc = 68.8 − 8 = 60.8 cm.

 Equation 9.46: A cmeff = + . ◊ . = .880
60 8 1 8

3
916 48 2 

At internal support:

 Equation 9.45: lLT =
. ◊ . = . <32 5 916 48

0 18 0 2
903921

.

 Equation 9.42: cLT =1
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The resistance is not reduced due to lateral torsional buckling:

 M M kN m M kN mb Rd pl V Rd, = = < =2 147817 7 50000, , , .    (not sufficien- - tt)

Note: The hogging bending resistance M2,pl,V,Rd (Example 9.2) was calculated with γM1 = 1.1.

At a distance s cm= ◊ =0 20 500 1 23 90 2. . ./   from the internal support, the design bending 
moment is approximately calculated from Equation 9.51:

 
M kN ms ª - ◊ -( )=50000

90 2
500

50000 30250 46437 1
.

.  -

The slenderness is estimated from Equation 9.52:

 
l cs LT= ◊ = < Æ =0 18

50000
46437 1

0 19 0 2 1.
.

. .

Again, the resistance is not reduced due to lateral torsional buckling. The shear force is approxi-
mately equal to V1, and therefore, the same value of M2,pl,V,Rd is used:

 1.0 · 47,817.7 kN-m > 46,437.1 kN-m (sufficient)

Check in the area where bending reverses (Lrem = 12 m, Figure 9.25):
The bending moment reverses and Equation 9.50a is not valid. Conservatively, it is assumed that 
M2 = 0, V2 = V1, c = 0 → m = 1.88.

 Equation 9.50a: N kNcr = ◊ ◊ ◊ =1 88
21000 887333 3

1200
239861 6

2

2.
.

.
p

 

 Equation 9.45: lLT =
. ◊ . =32 5 916 48

0 35
239861 6.

.

Using curve d (Table 9.7): α = 0.76

 Equation 9.43: F LT = ◊ + ◊ - + =0 5 1 0 76 0 35 0 2 0 35 0 622. [ . ( . . ) . ] .

 
Equation 9.42: cLT =

+ -
= .1

0 62 0 62 0 35
0 88

2 2. . .

The resistance is reduced due to lateral torsional buckling:

 M kN m kN mb Rd, = . ◊ = >0 88 47817 7 42079 58 30250. .    (sufficient)- -
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It may be seen that cross bracings at the service stage are required only at the intermediate 
support and at two positions adjacent to it to ensure lateral torsional buckling stability of the 
bottom flanges. However, more cross bracings, as indicated in Figure 9.25a, are required at con-
struction stages to ensure lateral torsional buckling stability of the top flanges.

9.13.4 Simplified method: Flexible lateral supports

Lateral supports do not always exist at the level of the compression flange. The compres-
sion flange is then laterally supported indirectly through the stiffness of adjacent elements, 
mostly in the form of U frames, and then considered as flexibly supported. Figure 9.26 illus-
trates typical examples. Figures 9.26a and b show I-girder bridges at service state, where the 
lateral stability of the bottom flange at internal supports is provided by activating a U-frame 
action. Figure 9.26c shows a half-through bridge where the lateral stability of the top flange 
is provided by a flexible U steel frame, same as in Figure 9.26d.

H = 1 H = 1

δδ

aa

(c)

hv tw

Iv

bq

b

b

hIq

Section a–a

Rigid joint
Section b–b

n.a. of
cross-girder

15  ε  tw

15  ε  tw

H = 1 H = 1 H = 1 H = 1

δ δ δ δ

H = 1 H = 1
δδ

a a
hv

(a)

bq

b
h

b

Iq
Iv

Section a–a
15  ε  tw
15  ε  tw

Section b–b

n.a. of
cross-girder

aa

(b)

hv

bq

b

b

hIq

Iv

Section a–a Section b–b

n.a. of
cross-girder

15  ε  tw

15  ε  tw

H = 1 H = 1

δδ
aa

b

Section a–a

Section b–b

30  ε  tau

15  ε  tw

15  ε  tw

b(d)

Figure 9.26  Examples of flexible supports and relevant models. (a) Multiple I-girders, (b) twin I-girders, 
(c) half-trough section, and (d) opened box girder.
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The compression flange is modeled as a column on spring supports as illustrated in 
Figure 9.27. The spring constant C may be determined by application of transverse forces 
H = 1 at the ends of the cross frames as shown in Figure 9.26. It is equal to

 C kN m= H / /d [ ] (9.54)

where
H = 1 kN are the lateral forces
δ is the corresponding lateral displacements in m. Different directions for the forces 

H which may lead to the maximum displacement δ (minimum C value) should be 
investigated

As shown in Figure 9.26, the cross sections of the web or flange beam elements of this model 
are composed of the transverse stiffeners and the adjacent parts of the stiffened plate at a 
distance 15 · ε · tw for the web sheet and 15 · ε · tau of the bottom flange sheet (Figure 9.26d). 
The transverse girders are composed of their own cross section. Transverse girders may be 
composite (Figure 9.26a) or pure steel (Figure 9.26b through d). The spring stiffness C for 
the configurations of Figure 9.26a through c is estimated from the following expression:

 

C E I
h h b I

I

kN ma v

v q v

q

= ◊

+ ◊ ◊
◊

3 2

3 n

 /[ ] (9.55)

where
n = 3 only for the internal girders in Figure (9.26a)
n = 2 in all other cases

For configurations different than those in Figure 9.26a through c, Equation 9.54 should be 
employed, for example, in Figure 9.26d.

C

E�ective �ange

hwc/3

Nf,Ed Nf,Ed

C.G. e0e0
L

L

L

C

c

C

C

(a) (b) (c)

Figure 9.27  Modeling of the compression flange as a T-section column on flexible supports. (a) With discrete 
springs, (b) with a continuous spring, and (c) with imperfections.
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The springs may be “smeared” over the length L, so that the column is supported continuously 
by springs with a constant

 c C L kN m= / /[ ]2  (9.56)

The distance of the lateral supports L is the distance of the cross frames.
The cross section of the column is a T section composed as before by the compression 

flange and 1/3 of the compressed part of the web. The design procedure is the same as 
before, the only difference being the magnitude of the critical buckling load Ncr that must be 
determined by linear buckling analysis. The critical buckling load of an axially compressed 
column on continuous elastic supports (Figure 9.27b) may be determined from

 
N c E Icrit a effz= ◊ ◊ ◊2 ,  (9.57)

Ieff,z is the transverse second moment of area of the effective flange.
It is important to note that Equation 9.57 is based on the assumption of rigid end sup-

ports (Figure 9.27). This can be the case of stiff X bracings, heavily stiffened plated dia-
phragms, or concrete cross girders. However, in some bridges, flexible end supports are 
present. The buckling load then should be calculated through linear buckling analysis of 3D 
or FE model by taking into account the reduced rigidity of the end supports. Moreover, rigid 
connections between the structural elements are assumed (Figure 9.26c). Flexible bolted 
connections may enhance the buckling lengths.

EXAMPLE 9.8

The lateral stability of the top flange of the box-girder bridge of Example 9.4 shall be verified at 
construction stages. Cross frames are placed every 5 m. X cross bracings are provided only at 
supports.

Before casting of the concrete slab, the top flanges when in compression are susceptible to 
lateral torsional buckling. Accordingly, lateral torsional buckling may occur at spans where the 
top flange is in compression. The lateral support of the top flange is flexible and is provided by 
the stiffness of the cross frames; see Figure 9.26d. The cross frames of the girder are shown in 
Figure 9.28. Their cross sections consist of the T stiffeners and an adjacent part of the flange 
and web sheet. The participating effective widths are calculated as follows and are shown in 
Figure 9.28 (sections a–a and b–b):

Flange sheet:

 30 30 0 748 1 5 33 7420◊ ◊ = ◊ ◊ =eS aut cm. . .

7000

25
b

aa

15

2500

50
P1. 1000  50

P1. 400  10 P1. 500  15

Section b–bSection a–a
P1. 200  15P1. 200  15

b 30  εS355  tw 30  εS420  tauP1. 4000  15

Figure 9.28  Cross section and cross frames of the hybrid steel girder.
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Web sheet:

30 30 0 825 2 5 61 8355◊ ◊ = ◊ ◊ =eS wt cm. . .  

εS420 and εS355 were calculated with yielding strengths of Table 6.14.

The cross-sectional properties for the cross girder in section a–a of Figure 9.28 are

A cm I cm z cm z cmy ao au= = = =224 5 56570 70 33 35 10 652 4. , . , . , .    

The cross-sectional properties for the cross girder in section b–b of Figure 9.28 are

 A cm I cm z cm z cmy ao au= = = =155 55 67249 60 29 9 23 12 4. , . , . , .    

Figure 9.26d illustrates the analysis model for the cross frames, where two horizontal forces 
H = 1 kN act at the level of the top flange. The lateral displacement due to these forces is deter-
mined as δ = 0.16 mm.

Spring stiffness of the lateral supports, Equation 9.54:

 C kN m= ◊ =-1 0 16 10 62503/  /( . )

The largest positive moments before hardening of concrete are due to self-weight of the steel 
girder and self-weight of concrete at edge segments. These are the load cases shown in Figure 
9.18. The highest design moment at span is equal to

 max . ( , . , . ) , .,M kN ma Ed = ◊ + =1 35 4 068 95 9 949 8 18 925 31 -

The reduction of the cross-sectional properties of the steel girder due to plate buckling of the 
web is negligible, and therefore, values are taken from Table 9.17. Otherwise for the calculation 
of the cross-sectional properties, the effective width method should be used; see Section 8.5. 
The second moment of area is Ia = 0.45454 · 108 cm4, the distance of the neutral axis from the 
top fiber of the top flange zao = 142.34 cm.

 
Compression part of the web h

142 34 5
sin 59 8

16wc:
( . )

( . )
.= -

∞
=

0
0 114 cm

The verification is performed for a beam under compression on elastic spring supports (Figure 
9.27b). The cross section of the beam has a T cross section and is composed of the flange and 
1/3 of the compressed part of the web. The participating web height is then 160.14/3 = 53.38 cm. 
The cross-sectional properties of the effective flange are

 
A cm I cm zeff eff z eff a= ◊ + ◊ = =100 5

160 14
3

2 5 633 45 4167262 4.
. . , ,, ,  oo cm= 7 23.  

zeff,ao is the distance of the neutral axis from the top fiber of the steel flange.
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Distance of this axis from the neutral axis of the steel girder:

 142.34 − 7.23 = 135.11 cm

Maximal direct stress at this fiber due to design moment:

 
s =

◊
◊ =1892531

0 45454 10
135 11 5 638

2

.
. .  /kN cm

Axial force on the T section, Figure 9.24:

 max . . .,N kNf Ed = ◊ =5 63 633 45 3566 32 

 
Equation 9.56: c kN m= =6250 5 1250 2/  /

The critical buckling load is calculated from Equation 9.57:

 N kNcrit = ◊ ◊ ◊ ◊ =-2 1250 10 21000 416726 66148 494 .  

 
Equation 9.45: lLT =

◊ + ◊ =34 5 133 45 39 500
0 60

66148 49
. .

.
.

Using curve d (Table 9.7): α = 0.76

 Equation 9.43: F LT = ◊ + ◊ - + =0 5 1 0 76 0 6 0 2 0 6 0 832. [ . ( . . ) . ] .

 
Equation 9.42: cLT =

+ -
= .1

0 83 0 83 0 6
0 71

2 2. . .

Lateral torsional buckling verification, Equation 9.48:

 
3566 32 0 71

34 5 133 45 39 500
1 1

15558 05. .
. .

.
(.   kN kN suffici£ ◊ ◊ + ◊ = eent)

It is important to note that the support shown in Figure 9.16 has been considered as a rigid one; 
if this assumption is correct, it is checked in Example 9.9. In the presence of flexible end sup-
ports, the buckling load would be significantly lower.

It may be seen that cross frames or cross bracings of box girders serve several functions:

• They provide transverse supports on bottom flange and web panels and their longi-
tudinal stiffeners and enhance their plate buckling resistance, as shown in Chapter 8.

• They provide elastic support on top flanges at construction stages and enhance their 
resistance to lateral torsional buckling.

• They limit the cross-sectional distortional deformations and allow modeling of the 
sections as beam elements.
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9.13.5 Resistance and rigidity of supporting members

Supporting members, whether cross frames, cross bracings, or transverse bracings, have to 
resist the deviation forces of the primary system resulting from initial bow imperfections 
(Figure 9.27c). Rewriting the Euler formula, the critical buckling length of the system on 
elastic supports is given by

 
l E I

Nk
a effz

cr
= ◊ ◊p ,  (9.58)

Such a system on elastic supports, subjected to a compression force Nf,Ed, is shown in Figure 
9.27. The imperfection is taken as e0 = lk/640. Instead of the system with imperfections, an 
equivalent system without imperfections but with a lateral uniform force qEd is considered. 
Equating the moments at midspan of the two systems gives the equivalent uniformly dis-
tributed load

 

q l N e
N
N

N l
N
N

q N
Ed

k fEd

fEd

cr

fEd k

fEd

cr

Ed
f◊ = ◊

-
= ◊

-
Æ =

2
0

8 1

640

1
,

,

,

,

,/ EEd

k fEd

cr

l N
N

◊
◊
-80
1

1 ,
 (9.59)

The distance of the springs is L; the lateral spring forces are then FEd = qEd · L. Introducing 
in the previous equation, the lateral forces of the supporting elements may be determined 
as equal to

 

F N
l

L
N
N

Ed
fEd

k fEd

cr

=
◊

◊
-

,

,80 1
 (9.60a)

According to EN 1993-2, the aforementioned relation holds if lk > 1.2 · L. Otherwise the 
lateral forces are given by

 
F N ifl LEd

fEd
k= < ◊, .

100
1 2  (9.60b)

FEd is applied to the bracing member for buckling verification.
It has been said that the knowledge of the rigidity of the bracing members is of primary 

importance for a “realistic” calculation of the buckling length for the lateral torsion verifi-
cation of the main girder. The buckling load for rigid restraints is estimated from Equation 
9.47 while for flexible supports from Equation 9.57. The minimum rigidity for classifying 
a supporting member as a rigid one can be calculated by equating the two expressions as 
follows:

 
2

4

2

2

4

4◊ ◊ ◊ = ◊ ◊ Æ = ◊ ◊
◊

m in m in,
, ,c E I E I

L
c E I

La effz
effz a effzp p

 (9.61)

Normally, the rigidity verification of the supporting member should be the first one. Then 
resistance verifications follow.
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EXAMPLE 9.9

The rigidity of the supporting members for the bridge in Example 9.4 should be verified:

• For the spans (Figure 9.28)
• For the end supports (Figure 9.16)

For the spans, the stiffness c has been calculated in Example 9.8: c = 1250 kN/m2.
From Equation 9.61:

 
min . .c kN cm c kN cm= ◊ ◊

◊
= > =p4

4
2 221000 416726

4 500
3 4 0 125  / /

The U frames should be considered as flexible supports.
At end supports, the cross frames are triangulated by the CHS sections (see Figure 9.16) so 

that they may be considered as rigid. Indeed the application of a unit load on the end cross frame 
including the CHS 193.7 × 12 gives a negligible deformation of δ = 0.00231 mm.

 Equation 9.54: C kN m= ◊ =-1 0 00231 10 432900 433/  /( . ) .

 Equation 9.56: c kN cm c kN cm= ( )◊ = > =-432900 43 8 65 3 45 10 4 2 2. . .min/  /  /

The bracing configuration of Figure 9.16 can be considered as a rigid support.

9.14 DESIGN OF THE CONCRETE DECK SLAB

The concrete deck is usually a reinforced concrete slab subjected to bending moments and 
shear forces from self-weight and traffic loads and must be designed as a reinforced concrete 
section at ultimate and serviceability limits in accordance with the provisions of Eurocode 
2 [9.2], [9.3]. The necessary verifications are the following:

• Bending and vertical shear resistance for the ULS combinations of actions
• Punching shear for the concentrated wheel loads
• Limitations of the crack widths for frequent SLS combination of actions
• Stress limitations for the characteristic SLS combination of actions
• Minimum reinforcement
• Shear resistance of the joints between adjacent concreting segments
• Shear transmission between casted in situ concrete and precast elements.

Calculations of the internal forces can be conducted either with the strip method described 
in Section 7.5.2 or the FE method of Section 7.5.4. For the reinforced concrete design, ref-
erence is made to the relevant literature. However, the following comments are noticeable:

• For the majority of the deck slabs, there will be no need for adding shear reinforce-
ment, except those required from construction detailing.

• Punching shear due to the concentrated wheel loads is rarely critical for the design of 
the deck slab. However, local bending moments due to the wheel loads should be taken 
into account by adding them to the global ones. Local bending moments are not of 
negligible magnitude.

• The deck slab should be verified both against LM1 and LM2.
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• EN 1992-1-1 (clause 5.8.3.1) imposes a demanding slenderness criterion that should 
be taken into account during the design of the deck slab. If the slab’s slenderness λ is 
higher than the minimum slenderness λlim required from the code, second-order bend-
ing moments in the slab should be calculated. For multiple plate-girder bridges with a 
slab of 25 cm and main girders at a distance of 3.5–4 m, the code’s slenderness crite-
rion is usually not fulfilled.

• The bending resistance of filler-beam deck slabs can be calculated assuming a plastic 
distribution of stresses (for class 1 or 2) as shown in Figure 9.29. Due to the encasement 
in concrete, there is no danger of lateral torsional buckling failure at the final stage.

For the estimation of the shear resistance, the contribution of concrete can be taken into 
account. The partial shear forces Vc,Ed and Va,Ed (Figure 9.30) are calculated based on the 
distribution of the partial bending moments Mpl,s,Rd, Mpl,fw,Rd, and Mpl,V,Rd. The shear force 
acting on concrete depends on the plastic resistance of the reinforced concrete cross section 
and is estimated from the following equation:

 
V V M

McEd Ed
plsRd

plRd
,

,,

,
= ◊  (9.62)

The shear force of Equation 9.62 should be lower or equal to the shear resistance of the con-
crete section according to EN 1992-1-1. The shear force that acts on the steel cross section 
is obviously equal to

 
V V M M

M
V Va Ed Ed

plfw Rd plV Rd

plRd
Ed c Ed,

, , , ,

,
,= ◊ + = -  (9.63)

Formwork
Anti-corrosion

coating
sw

ha

cst

Drilled holes
fyd

Mpl,Rd

xpl

sf
c

fsd

fsdfyd

SteelConcrete
0.85  fcd

Rebars

Figure 9.29  Block stress diagrams for the calculation of the plastic bending resistance of filler-beam deck 
slabs.
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Figure 9.30  Block stress diagrams for the calculation of the shear resistance of filler-beam deck slabs.
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The shear resistance of the steel section is calculated according to Equation 9.19. Due to 
encasement in concrete shear buckling can be considered as irrelevant.

The main restrictions that are imposed by the code for filler-beam deck bridges are the 
following:

• The steel beams should not be curved in plan.
• The deck skew should not be higher than 30°.
• The steel girder’s depth ha (Figure 9.29) should lie between 210 and 1100 mm.
• The beams’ spacing sw (Figure 9.29) should fulfill

s h m m m mw a£ +[ ]m in ,/   3 600 750

• The concrete cover cst (Figure 9.29) should fulfill

c m m and c m m h x tst st a pl f≥ £ -ÈÎ ˘̊70 150 3  /m in , ,

• The distance sf (Figure 9.29) should not be smaller than 150 mm, so that concrete can 
be adequately compacted.

• The concrete should be of normal density and the steel’s surface descaled.
• The bottom layer of transverse reinforcement passes through drilled holes (not punched) 

and has a diameter not less than 16 mm and a spacing not more than 300 mm.

It is pointed out that cross sections of steel girders that are fully encased in concrete are not 
covered from the regulations of EN 1994-2.
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Chapter 10

Serviceability limit states

10.1 INTRODUCTION

Serviceability limit states (SLSs) concern the functioning of the structure and its structural 
members under normal use, the comfort of people, and the structural appearance, associ-
ated with inappropriately high deformations or cracking rather than aesthetics, and refer to

• Stress limitations for structural steel, reinforcement, and concrete
• Web breathing
• Design of shear connectors (see Chapter 12)
• Control of cracking for concrete
• Deflections and vibrations control

10.2 STRESS ANALYSIS AND LIMITATIONS

Stress analysis refers to the determination of internal forces and moments and subsequently 
of stresses for all cross sections and their fibers along the bridge. Stress analysis is similar to 
this at ultimate limit state (ULS) for cross sections of classes 3 and 4 (see Sections 9.9 and 
9.10 and Example 9.4). It is based on the following considerations:

• Internal forces and moments are determined for SLSs by means of elastic global analy-
sis (Chapter 7). Second-order global analysis as indicated by Equation 7.18 may be 
required to be performed.

• The combinations of actions to be examined are described in Table 5.12.
• The effects of creep and shrinkage in concrete are taken into account by the use of 

appropriate modular ratios of concrete in accordance with Equation 6.20.
• The primary effects of creep and shrinkage are taken into account in the uncracked 

regions in accordance with Section 7.4.
• The secondary effects of creep and shrinkage are taken into account by introduction 

of equivalent temperature changes in the uncracked regions as additional “loads” in 
accordance with Equations 7.26 and 7.30 correspondingly.

• Shear lag is taken into account by introduction of elastic effectives widths for the con-
crete flange and the steel bottom flange of box girders in accordance with Section 7.2. 
It is reminded that the effective widths for the steel plates are greater at ULS.

• The effects of plate buckling for class 3 or 4 cross section are normally ignored, unless 
the effective area of a compression wall of a cross section is smaller than 50% of its 
gross section or the reduction factors ρ for plate buckling are smaller than 0.5.

• The sequence of construction is taken into account (see Tables 9.12 and 9.13).
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• Concrete in tension is neglected so that in regions of hogging moment, the properties 
of the fully cracked section in accordance with Section 7.3 are considered.

• The effect of tension stiffening during the stress calculation in reinforcing steel is taken 
into account.

• Tensile stresses due to shrinkage and hydration of cement (see Section 6.1.5) are inves-
tigated so that cracking at unexpected areas, that is, at spans, is avoided.

• Stresses in concrete and in reinforcing steel due to local bending of the deck slab due to 
concentrated wheel loads should be added to those due to global effects (see Section 7.5.4).

For girder-type bridges, the response is linear not only in respect to material behavior but also in 
respect to geometry. Accordingly, stress analysis that includes as discussed before global analysis 
and stress determination along the bridge may be performed for each individual action or “load” 
separately, presumed that the extent of cracked regions is correctly estimated (see Example 10.1). 
The combinations, presented in Table 5.12, refer to the stresses rather than the actions. The 
resulting stresses are the design stresses for the relevant SLS combination and are assigned as 
σEd,ser and τEd,ser for structural steel, σs,Ed,ser for reinforcement, and σc,Ed,ser for concrete.

For some types of bridges, for example, cable stayed, the effects of deformations may not 
be ignored and second-order global analysis has to be employed. The combination rules for 
such analysis apply directly to the actions.

REMARK 10.1

It is reminded that

• The shear lag effects at SLS for wide steel flanges are more pronounced than for ULS (see 
Section 7.2.3). Effectives widths for box-girder bridges at hogging bending areas at SLS 
may be up to 50% of the effectives widths at ULS (see Figure 7.38). In such cases, omitting 
the SLS stress verifications may lead to irreversible deformations due to yielding of the 
structural steel.

• According to EN 1993-2, distortional effects may be neglected when the effects from 
distortion do not exceed 10% of the bending effects.

The design serviceability stresses must be appropriately limited. Stress limitations refer to 
structural steel, reinforcement, and concrete as described in the following.

10.2.1 Structural steel

To ensure elastic behavior under service loads, the design stresses of structural steel for the 
characteristic SLS combination of actions (Table 5.12, Equation 5.23) must be limited to the 
yield strength of steel as follows:

Direct stresses:
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von Mises stresses:

 
s t

gEd,ser Ed,ser
y

M ,ser

f2 23+ ◊ £  (10.3)

The partial resistance factor for serviceability is, according to Table 5.20, equal to γM,ser = 1.0 
(recommended value).

It is noted that highest direct stresses appear in the extreme flange fibers and highest von 
Mises stresses usually at the flange–web intersection. Therefore, the stress points to be veri-
fied are the extreme fibers of the flanges and the flange–web intersections.

10.2.2 Reinforcement

To ensure elastic behavior and avoid excessive cracking or deformation, tensile stress in the 
reinforcement for the characteristic SLS combination must be limited to the following:

 s ssEd ser s skk f, , + £ ◊D 3  (10.4a)

When the stress is caused by an imposed deformation, for example, prestress by imposed 
deformations or for settlements, it should be verified instead:

 s ssEd ser s skk f, , + £ ◊D 4  (10.4b)

where
σs,Ed,ser is the tension stress in the reinforcement under the characteristic SLS combination 

combining global and local effects (i.e., due to wheel loads; see Sections 7.5.3 and 7.5.4)
∆σs is the additional stress due to tension stiffening (Equation 10.4c)
fsk is the characteristic strength of the reinforcement

The additional stress due to tension stiffening is estimated as follows:
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where
ρs is the reinforcement ratio (=As,tot/Ac)
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fctm is the mean tensile strength of concrete (Table 6.1)
Aa, Ia are the area and the second moment of area of the steel section
A2,sa, I2,sa are the area and the second moment of area of the fully cracked composite 

section (steel section + reinforcement) (Figure 7.39)

The recommended values of the strength parameters are k3 = 0.8 and k4 = 1.0. Obviously, the 
aforementioned verifications are made in the cracked regions where the reinforcement is in 
tension.
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10.2.3 Concrete

The compressive stress of concrete must be limited in order to avoid micro-cracking. 
Accordingly, the following stress limitations exist for the characteristic SLS combination for 
exposure classes XD, XF, and XS (see Section 5.6):

 sc Ed ser ckk f, , £ ◊1  (10.5a)

For composite cross sections at sagging moment areas, the following stress limitation for the 
quasi-permanent SLS combination applies so that creep remains linear:

 sc Ed ser ckk f, , £ ◊2  (10.5b)

where
σc,Ed,ser is the compression stress in the concrete under the characteristic or quasi-permanent 

SLS combination combining global and local effects (i.e., due to wheel loads; see Sections 
7.5.3 and 7.5.4)

fck is the characteristic strength of the concrete

The recommended values of the strength parameters are k1 = 0.6 and k2 = 0.45.

REMARK 10.2

• For composite cross sections of class 3 or 4 at sagging moment areas, Equations 10.5a and b 
are usually covered from the ULS verification for concrete in Tables 9.13 through 9.15.

• Concrete stresses are calculated for short-term design so that the favorable effects from 
creep and shrinkage are ignored.

10.3 CRACKING OF CONCRETE

10.3.1 General

A concrete slab supported by longitudinal steel girders has two main functions in com-
posite bridges. In transverse direction, it acts as a concrete plate for distributing the 
loads to the girders, while in the longitudinal direction it constitutes, through its effec-
tives width, the top flange of the girder. Since concrete under tension inevitably cracks, 
cracking of concrete affects both transverse and longitudinal function. Crack control in 
transverse direction refers to reinforced concrete cross sections, possibly prestressed by 
transverse tendons. In the longitudinal direction, it refers to the concrete flange of the 
steel girder.

Cracking of concrete under tension is inevitable. However, when applying certain rules, 
as presented in the following, cracks widths will be limited and durability will not be sub-
stantially affected. At the final stage at hogging moment areas, a minimum reinforcement 
amount is placed so that yielding of reinforcing steel immediately after cracking is avoided. 
Cracking is controlled by limiting the spacing or the diameters of the rebars. The necessary 
theoretical background on cracking of concrete is found in Section 6.1.6.
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10.3.2 Minimum reinforcement

For concrete members (e.g., deck slab in transverse direction or concrete cross frames), Equation 
6.29c applies. For composite members under hogging bending, a similar expression is used:
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 (10.6)

where
ks is the 0.9 reduction factor accounting for the reduction of tensile force in the deck slab 

due to local slip of the shear connection
k is the 0.8 reduction factor allowing for the effect of nonuniform self-equilibrating 

stresses (see residual stresses in Figure 6.13)
fct,eff is the mean value of the tensile strength of concrete that may be taken as fctm 

(see Table 6.1) or in case of uncertainty for the age of concrete at cracking as 3 MPa
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 is a coefficient that takes into account the nonlinear dis-

tribution of stresses immediately prior to cracking. For tension members, for exam-
ple, tension chords of trusses and ties in arch-and-tie bridges, kc = 1

z–1,0 is the distance between centroids of the concrete flange and the composite section 
calculated with the short-term modular ratio n0 (see Figure 7.39)

σs is the maximum permissible stress in the reinforcement after cracking that may be 
set to fsk or to a lower value depending on the bar diameter to satisfy the crack width 
limits in accordance with Table 6.10

Act is the area of the tension zone prior to cracking that may be set equal to Ac, the area 
of the concrete flange within the effective width beff,2 (see Section 7.2.2)

At least half of the minimum reinforcement should be placed adjacent to the top fiber of 
the concrete flange.

10.3.3 Limitation of crack width

As outlined before, cracking of concrete in tension is unavoidable. However, crack widths may 
be limited if certain rules concerning size and spacing of reinforcing bars are respected. These 
rules concern both transverse and longitudinal directions of the slab. The limiting crack widths 
depend generally on the exposure class of the bridge. However, they are more or less fixed to 
0.3 mm for reinforced concrete slabs and 0.2 mm for slabs prestressed by tendons. If the slab is 
prestressed in transverse direction, the 0.2 mm limit is valid also for the longitudinal direction.

REMARK 10.3

According to EN 1992-2, the recommended exposure class for a concrete surface protected 
by waterproofing is XC3 (see Section 5.6.1). For this exposure class, the recommended crack 
width is 0.3 mm.

In case that minimum reinforcement is provided in accordance with Section 10.3.2, the con-
trol of crack width may be achieved by observing rules concerning bar sizes or bar spacing 
in accordance with Tables 6.10 and 6.11. High-bond bars are used for reinforcement.
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When the maximum bar diameter is limited for controlling the crack width of concrete 
members, Equation 6.44 applies. For composite girders, the bar diameter should be modi-
fied as follows:
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where
F s* is the maximum bar diameter from Table 6.10

fct,0 is the reference strength of concrete (=2.9 N/mm2)

The steel stress σs in reinforcement to be used in Tables 6.10 and 6.11 is determined for the 
fully cracked section (state 2) for the quasi-permanent combination of actions for long-term 
design by taking into account the stress enhancement due to tension stiffening according to 
Equation 10.4c.

Filler-beam decks are verified against cracking similar to reinforced concrete sections 
according to the provisions of EN 1992-1-1 (see Section 6.1.6).

10.3.4  Thermal cracking during concreting 
(determination of cracked regions)

It was mentioned in Section 7.1.3 that defining the cracked regions along the bridge is of 
primary importance for the quality of the results taken from the global analysis. With the 
simplified method, the casting sequence is not taken into account and actually cracked parts 
of the bridge may be treated as uncracked. On the other hand, the general method is more 
laborious, but it is in any case recommended.

Strictly, when the general method is applied, the casting sequence and the rheological 
behavior of concrete should be carefully taken into account. However, this needs a detailed 
knowledge of the construction’s time plan that during design is rarely known. But even if the 
time plan is known during the design phase, a time-consuming step-by-step analysis with 
the incremental method of Section 6.1.2 would be necessary. The cracked regions can be 
practically located through a short-term design by neglecting creep and shrinkage accord-
ing to the recommendations of Remark 7.3. Indeed, a negligible part of drying shrinkage is 
developed during the time period of construction (see Figure 6.10). Autogenous shrinkage 
develops more rapidly, but due to coexisting creep, its effect is reduced. Moreover, a great 
part of creep and shrinkage is developed before composite action is activated, and this justi-
fies the use of short-term cross-sectional properties in finding the cracked regions through-
out the bridge.

The hydration of cement has been presented in Section 6.1.5. This can be one of the main 
causes of cracking evolution during the erection stage, known also as early thermal cracking. 
The phenomenon develops during the concrete’s curing period (≈5–7 days), but if cracks 
arise, these are irreversible. Therefore, temperature effects due to cement’s hydration should 
be taken into account. According to EN 1994-2, a temperature difference of 20°C between 
steel and concrete should be assumed. This is equivalent to a free strain of εΗ = −200 · 10−6 
for the concrete slab. The shortening of the concrete slab due to εΗ is restrained due to its 
shear connection with the steel girder so that there develops a tension force NH in it. Since 
this force is due to restraint, an equal compression force acts in the composite section as well 
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as a moment MH that equilibrates the pair of forces of the slab and the composite section, 
similar to Figure 7.44 for shrinkage. This results in the following:

• In the concrete slab
• A tension force:

 N E AH H cm c= - ◊ ◊e  (10.8a)

• In the composite section
• A compression force:

 - = ◊ ◊N E AH H cm ce

• A moment:

 M N zH H= ◊ 1 0,  (10.8b)

where
n0 is the short-term modular ratio given in Table 6.4
z–1,0 is the gravity center of the equivalent section calculated with n0 (see Figure 7.39)
Ecm is the concrete’s modulus of elasticity given in Table 6.1
Ac is the sectional area of the concrete plate based on the geometric width

The primary effects in the deck slab (residual stresses) due to the hydration of cement are 
calculated as follows:
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where
zco,0 is the vertical distance between the gravity center of the composite section for short-

term loading and the top fiber of the concrete slab
zcu,0 is the vertical distance between the gravity center of the composite section for short-

term loading and the bottom fiber of the concrete slab

The secondary effects due to the hydration of cement can be estimated through an equiva-
lent temperature as that of Equation 7.30. Thus,
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where
h is the total depth of the composite section
I1,0 is the second moment of area of the composite section for short-term loading
αt is the coefficient for thermal expansion taken equal to 10−5/°C

The application of Equation 10.10 leads to additional tensile stresses in concrete.
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It is important to note that hydration of cement has a non-negligible effect only on the 
length of the cracked regions. In these regions, cracking should be controlled by placing the 
minimum reinforcement and limiting the diameter or the spacing of the bars according to 
Sections 10.3.2 and 10.3.3. Stresses and secondary internal forces due to the hydration of 
cement are not considered for limiting stresses at SLS or ULS.

EXAMPLE 10.1

The cracked regions of the box-girder bridge in Example 9.4 will be defined according to the 
general method of EN 1994-2. The concreting sequence is shown in Figure 9.15.

Concrete C35/45: from Table 6.1, fctm = 3.2 MPa
From Table 9.17, the cross-sectional properties of the composite section for short-term loading are

A1,0 9712.58 cm2

zco,0 77.64 cm
zcu,0 47.64 cm
I1,0 1.037 · 108 cm4

As a first step, an uncracked analysis considering all loads as short term is conducted. The loads 
and the corresponding bending moments acting on the composite parts of the bridge are shown 
as follows. Bending moments acting on pure steel cross sections do not have an influence on the 
length of the cracked regions and thus are not taken into account (see the jump of the bending 
moment in the first diagram at the end of the edge segments in Figure 10.1).

Note: The determination of the cracked regions is based on the maximum bending moments 
acting on the half girder A (Figure 9.17). A less conservative approach would be to determine 
the cracked regions by adding the bending moments and conduct the stress calculations for the 
whole cross section.

The hydration of cement is taken into account as an imposed strain in the deck slab equal 
to εH = −200 · 10−6. Therefore, the corresponding tensile force in the slab is estimated from 
Equation 10.8a:

 N 200 10 3, 400 (1,100 300) 22, 440 kNH
6= ◊ ◊ ◊ ◊ =-

Equation 10.8b (Table 9.17):
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The primary stresses are considered constant along the bridge and equal to
Equation 10.9a:
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Secondary effects due to hydration of the cement should be calculated for each segment sepa-
rately. A tolerable simplification is to apply the equivalent temperature of Equation 10.10 along 
the uncracked system as shown in Figure 10.1:

Equation 10.10:

 
DT

286.5
21,000 10

18.49 C
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1.037 10
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Figure 10.2 shows the longitudinal distribution of the maximum tensile stress in concrete after 
one uncracked and two cracked analyses. The fist cracked length was determined equal to 2·36 m. 
After the application of a 72 m cracked length, a second global analysis was conducted and con-
crete stresses were recalculated. The cracked length was reduced to 2 · 31 m. The third cracked 
analysis offered almost identical concrete stresses, and thus, convergence was achieved.
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Thermal actions
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Figure 10.1  Uncracked analysis for locating cracked regions and bending moments acting on composite sec-
tions (bending moments refer to half girder A).



426 Design of steel–concrete composite bridges to Eurocodes

The cracked lengths calculated with the general method are quite robust against deviations of NH 
and MH. Therefore, high accuracy calculations are from practical point of view unnecessary. One can 
also observe that the cracked length is almost equal to 52% of the total length. This is a great difference 
compared to the simplified method of EN 1994-2 with which a 15% cracked length can be assumed. 
Obviously with a different construction sequence, the cracked lengths can be further reduced.

It is pointed out that the procedure presented in Example 10.1 is strictly applied for the 
determination of the cracked length and not for stress limitation.

Note: In case the designer wishes to take into account autogenous shrinkage, this can be calculated 
with Equation 6.23. The shrinkage strain can be added to εΗ and Equation 10.10 can be applied.

EXAMPLE 10.2

The stresses at SLS for the box-girder bridge in Example 9.4 are verified. In addition, the crack-
ing of concrete at intermediate support is controlled. The cracked lengths of the simplified 
method are applied.

The effective widths of the concrete flanges is independent of the type of the limit state (ULS 
or SLS). Therefore, according to Example 9.4, there is no reduction due to shear lag. In contrast, 
the effective widths of the bottom flange is highly dependent on the type of the limit state espe-
cially, for the case of hogging bending. Indeed, taking a closer look in Example 9.4, one can see 
that the effectives width of the bottom flange for hogging bending at ULS is 2 · 1.90 = 3.80 m and 
at SLS 2 · 1.24 = 2.48 m (35% smaller!!!). The latter leads to an equivalent thickness of the bottom 
flange equal to 21.7 mm for hogging bending; the corresponding cross-sectional properties are 
summarized in Table 10.1. For sagging bending, the thickness remains practically unchanged and 
approximately equal to 35 mm so that the values in Table 9.17 are adopted.

Internal support
Stresses in reinforcing steel
The design bending moment is calculated according to the characteristic combination of actions 
(Equation 5.23) with leading variable of the traffic loads for long-term design.
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Figure 10.2  Longitudinal tensile concrete stress variation.
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Bending moment acting on fully cracked section:

 

minM 2, 479.0 250.79 6,934.3 9,227.8 0.6 ( 8,3972,Ed,ser,• = - - - - + ◊ - ..2)

23,930.21 kN-m= -

The stress in the upper layer of reinforcement is equal to
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0.46049 10 /2
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The enhancement due to tension stiffening is calculated as follows:
Equation 10.4d:
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Equation 10.4c:
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The total stress becomes (Equation 10.4a)

 
sso,Ed,ser,

2 213.56 6.05 19.61 kN /cm 0.8
50
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40 kN/cm (s• = + = £ ◊ = uufficient)

Stresses in structural steel
The design bending moment is calculated according to the characteristic combination of actions 
(Equation 5.23) with leading variable of the traffic loads for long-term design.

Bending moment acting on pure steel cross section:

 minM 7,104.5 13,202.6 9,121.4 803.6 30,232.1 ka,Ed,ser,• = - - - - = - NN-m

Bending moment acting on fully cracked section:

 minM 23,930.21 kN-m2,Ed,ser,• = -

The coexisting shear and torsion are equal to

 

V

M

4297.74 kN

2167.2 kN-m

Ed,ser,

T,Ed,ser

• =

=

-

-

Table 10.1  Cross-sectional properties for SLS 
with tau,eq = 21.7 mm for hogging bending 
for the cross section of Figure 9.16

Steel girder Fully cracked section

Aa 3323.6 cm2 A2,sa 3823.6 cm2

zao 124.74 cm zao,sa 106.47 cm
zau 131.76 cm zau,sa 150.03 cm
Ia 0.37562·108 cm4 zso,sa 130.47 cm

zsu,sa 112.47 cm
I2,sa 0.46049 · 108 cm4
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The tensile stress in the upper flange is equal to (Equation 10.1 and Table 10.1)
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The compressive stress in the bottom flange is equal to (Equation 10.1 and Table 10.1)
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Strength reduction due to plate buckling was omitted because all ρ = 0.9 > 0.5 (see Example 9.4).
Shear stresses in the bottom flange are negligible, so no verification for σ–τ interaction is 
necessary.

The maximum shear stress in the webs due to shear is equal to
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The shear stress due to torsion is equal to
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The total shear stress in the web becomes (Equation 10.2)
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The maximum tensile stress in the web is equal to (Equation 10.1)
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The von Mises stress is calculated from Equation 10.3:

 
sv,wo,ser,
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The maximum compressive stress in the web is equal to (Equation 10.1)
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The von Mises stress is calculated from Equation 10.3:
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Stresses in concrete
The maximum bending moment acting on the composite section at span (x = 27.5 m) for short-
term loading is calculated for the quasi-permanent combination of actions (Equation 5.25):

 max . . . -, ,M kN mser1 0 7033 6 743 0 5 3920 9736 6= + + ◊ =  

The maximum compressive stress in concrete is calculated as follows (Equation 10.5b and 
Table 9.17):
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The aforementioned verification is sufficient and guarantees a linear creep evolution.
The maximum bending moment acting on the composite section at span for short-term load-

ing is calculated for the characteristic combination of actions (Equation 5.23):

 max , . . , , . , . -, ,M kN mser1 0 7 033 6 743 0 6 3 920 10 293 7 20 422 3= + + ◊ + =  

The maximum compressive stress in concrete is calculated as follows:
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The previous stress refers to the global effects. An additional stress due to local bending of the 
deck slab from the wheel loads is calculated according to Section 7.5.4 and is found 0.24 kN/cm2. 
The total compression stress becomes (Equation 10.5a)

 sco Ed ser kN cm kN cm, , , . . . . . .0
2 20 49 0 24 0 73 0 6 3 5 2 1= + = < ◊ = /  /

The direct stresses in structural steel are calculated both for short- and long-term designs based 
on the loading sequence shown in Figures 9.18 through 9.23. The design stresses are based on the 
characteristic combination with leading variable of the traffic load group gr1a (see Table 4.7). 
Plate buckling is not taken into account since all plate buckling factors are higher than 0.5. The 
results are summarized in Tables 10.2 and 10.3. The third column refers to the second moment 
of area (I) on which the stress calculation is based. Shear stresses due to vertical shear and 
torsion are negligible and therefore are not presented. Finally, multiplying the stresses in the
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Table 10.3  Direct stresses in structural steel at midspan for long-term design in kN/cm2 
(Half girder A, characteristic combination)

Loading from Figure I (108 · cm4) M (kN-m) σao σau σwo σwu

Pure steel 9.18 Ia = 0.45454 3,875.9 2.43 1.95 2.34 1.92
First concreting 9.18 Ia = 0.45454 9,187.2 5.75 4.61 5.55 4.55
Second concreting + 
superstructures

9.19 I1,P = 0.8107 7,033.6 1.46 2.99 1.38 2.96

Superstructures 9.20 I1,P = 0.8261 743.0 0.15 0.31 0.14 0.31
0.6 ·  Thermal 9.22 I1,0 = 1.037 2,352.0 0.22 0.95 0.19 0.94
Traffic (gr1a) 9.23 I1,0 = 1.037 10,293.7 0.95 4.15 0.85 4.12
Secondary from 
second concreting

9.19 I1,PT = 0.8878 −368.3 −0.06 −0.15 −0.06 −0.15

Secondary from 
superstructures

9.20 I1,PT = 0.9008 −114.9 −0.02 −0.05 −0.02 −0.05

Shrinkage − primary 
effects

7.44 I1,S = 0.8493 — 3.26 0.58 3.18 0.56

Shrinkage + 
secondary effects

9.21 I1,PT = 0.8493 −3,178.2 −0.58 −1.34 −0.55 −1.32

Σσ 13.55 14.00 13.01 13.84
fyk/γΜ,ser 39.0 42.0 34.5 34.5

Note: For the short-term design, creep and shrinkage have been neglected (see also Example 9.4). In part of 
the literature, shrinkage is included in the calculation of the short-term steel stresses at spans at the time of 
traffic opening. For example, assuming that when the bridge is delivered to traffic, the shrinkage strain is 30% 
of its long-term value; thus, primary stresses due to shrinkage become.

σao,S = 0.3 · 3.26 = 0.98 kN/cm2.

σau,S = 0.3 · 0.58 = 0.17 kN/cm2.

σwo,S = 0.3 · 3.18 = 0.95 kN/cm2.

σwu,S = 0.3 · 0.56 = 0.17 kN/cm2.

The short-term design stresses are then equal to

σao = 0.98 + 10.06 = 11.04 kN/cm2.

σau = 0.17 + 14.79 = 14.96 kN/cm2.

σwo = 0.95 + 9.57 = 10.52 kN/cm2.

σwu = 0.17 + 14.64 = 14.81 kN/cm2.

Table 10.2  Direct stresses in structural steel at midspan for short-term design in kN/cm2 
(Half girder A, characteristic combination)

Loading from Figure I (108 · cm4) M (kN-m) σao σau σwo σwu

Pure steel 9.18 Ia = 0.45454 3,875.9 2.43 1.95 2.34 1.92
First concreting 9.18 Ia = 0.45454 9,187.2 5.75 4.61 5.55 4.55
Second concreting + 
superstructures

9.19 I1,0 = 1.037 7,033.6 0.65 2.83 0.58 2.81

Superstructures 9.20 I1,0 = 1.037 743.0 0.07 0.30 0.06 0.30
0.6 ·  Thermal 9.22 I1,0 = 1.037 2,352.0 0.22 0.95 0.19 0.94
Traffic (gr1a) 9.23 I1,0 = 1.037 10,293.7 0.95 4.15 0.85 4.12

Σσ 10.06 14.79 9.57 14.64
fyk/γM,ser 39.0 42.0 34.5 34.5
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following text with the partial factors for ULS leads to the design stresses of Example 9.4. 
Obviously, the stress calculation at ULS is more critical than that for the SLS.

The time when the bridge is delivered to traffic is rarely known during design. Therefore, a 
conservative assumption for the magnitude of the “short-term shrinkage” may be necessary; 
however, this should not be greater than 50% of its long-term value.

Minimum reinforcement at intermediate support
The age of concrete during cracking is unknown and fct,eff was taken as equal to 3 MPa. From 
Table 6.10, the stress in reinforcing steel after cracking for a crack width equal to 0.3 mm for a 
reinforcing bar diameter of 20 mm is σs = 220 MPa.

The sectional area of the fully cracked section according to Table 10.1 is 3823.6 cm2. Assuming 
that the reinforcement is located in the gravity center of the slab, the elastic neutral axis for the 
cracked section is equal to 106.47 + 30/2 = 121.47 cm. The cross-sectional area of the uncracked 
section at internal support for a short-term modular ratio n0 = 6.18 is calculated as follows:

 
A cm10

230 1100
6 18

3823 6 9163 41,
.

. .= ◊ + =  

The vertical distance between the gravity center of the uncracked deck slab and the gravity 
center of the composite section is
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The kc factor then becomes
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From Equation 10.6:
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According to the code, at least half of As,min should be placed in the upper layer:

 A cm cm cm sufficientso,min . ( )= ◊ = <0 5 324 162 3002 2 2  

Limitation of crack width
The design bending moment acting on fully cracked section is calculated for the quasi-permanent 
combination of actions (see Equation 5.25 in Table 5.12). For example, the traffic group gr1a is 
selected as leading variable. Obviously, the long-term design offers the most unfavorable results:
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The stress in the upper layer of reinforcement is estimated by taking into account the tension 
stiffening effect as previously found:
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Note: Local bending moments at internal support are zero because min M2,Ed,ser,∞ arises when 
the wheel loads are located at the spans.

For this stress, Table 6.10 gives a maximum bar diameter of 32 mm. The maximum modified 
bar diameter is calculated as follows:

 
max

.
.F s mm= ◊ =3

2 9
32 33 1

The selected bar diameter was 20 mm < 33.1 mm, and therefore, crack control is satisfactory. 
Alternatively, Table 6.11 gives a maximum bar spacing above 300 mm.

10.4 WEB BREATHING

Slender webs may slightly buckle each time traffic passes over the bridge. These cyclic out-
of-plane deformations, which are similar to the chests’ movements during breathing, result 
in secondary bending stresses that may lead to fatigue cracks in the flange–web or in the 
web-to-transverse stiffener junction. Instead of calculating these deformations and the cor-
responding stresses and performing a fatigue analysis, detailing rules limiting the web slen-
derness are given, except for road bridges where plate buckling verifications are performed 
by the reduced stress method (see Section 8.4). For railway bridges and road bridges where 
plate buckling verifications are performed by the effective width method (Section 8.5), the 
following limitations must be examined:
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where
b is the height of the web or the height of the largest subpanel for longitudinally stiff-

ened webs
tw is the thickness of the web
L is the span of the bridge in meters, but not less than 20 m

Otherwise, the following stress limitation should be applied:
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where σx,Ed,ser and τEd,ser are the design stresses at the flange–web junction under the frequent 
SLS combination.

It is mentioned that the limitation of Equation 10.12 should be fulfilled both for short- 
and long-term design.
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EXAMPLE 10.3

The cross sections of the bridge in Example 9.4 shall be checked in respect to web breathing.
The depth of the largest subpanel (Figure 9.16) is 835 mm.
Equation 10.11a:

 

835
25

33 4 30 4 0 60 270 300= £ + ◊ = £. . ( )and
b
t

 sufficient

The aforementioned verification is valid if longitudinal stiffeners are considered as adequately 
rigid. Otherwise, b = 2917 mm and a more conservative check follows:

Equation 10.11a:
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In case of rigid longitudinal stiffeners, excessive breathing would arise if
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t
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w
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In the case of flexible longitudinal stiffeners for a web thickness, tw < 10.8 mm.
It is obvious that for the majority of bridges, web breathing will not govern the design.

10.5 DEFLECTIONS

10.5.1 General

Deflections are to be determined with due consideration of construction stages and time-
dependent effects. There exists no code-prescribed deflection limit for road and pedestrian 
bridges so that such limits must be agreed with the owner of the bridge. Problems arise 
mainly not due to deflections, δ, but due to slopes, φ, that is, variations of deflections. 
Figure 10.3 illustrates that the most adverse effects to the bridge and the vehicle are for vehi-
cle A that enters the bridge, where deflections are small and slopes large, and not for vehicle B 
at the middle of the bridge, where deflections are large but slopes small. Figure 10.3 shows 
that the largest slopes occur at common supports of consecutive single-span bridges. From 
this point, continuous systems are preferable. Large slopes give rise to impacts and introduce 
dynamic effects in the bridge and the vehicles affecting the dynamic behavior of the system, 
especially at high speeds. These effects may be critical for high-speed train lines. Large dif-
ferential deformations both in longitudinal and transverse direction may adversely affect 
the drainage of water from the bridge. Finally, large slope variations lead to high strains and 
may result in cracks in asphaltic surfaces.

Excessive deformations are controlled by enhancing the stiffness and by precambering. 
The value of precamber for highway bridges may be selected such that the deflections of the 
deck are within ±1/2 of the deflections due to frequent traffic loads.

A
B C δ

Figure 10.3  Deformations and slopes of consecutive single-span bridges.
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In the case of railway bridges, the simplified limits for vertical deflections in Table 10.4 
are recommended [10.1]. If these limits are respected, then the angular rotations φ of Figure 
10.3 need not be investigated.

The twist of the bridge deck is very important for rail traffic safety. Therefore, it should be 
checked considering the characteristic values of LM 71, SW/0, or SW/2 multiplied by the weight 
factor α in Section 4.6.2 and dynamic factor Φ (Equations 4.6 and 4.7). Centrifugal forces 
according to Section 4.6.4 must be considered as well. For speeds higher than 200 km/h, the 
high speed load models HSLM should be also included. The maximum recommended values for 
the deck twist t are given in Figure 10.4. One can see that the twist deck refers to a length of 3m.

It is pointed out that the limiting values in Figure 10.4 refer to the maximum deck twist 
that is caused by the corresponding load models. In case of additional deck twists, for 
example, due to temperature effects, the total deck twist should be limited to 7.5 mm/3 m.

EXAMPLE 10.4

The precamber of the bridge of Example 9.4 is to be determined. The cracked lengths of the 
simplified method will be used.

The concreting sequence, the long-term effects, and the shear lag effect (for SLS) are taken 
into account. In Table 10.5, the deflections for short-term design are summarized for 
three different positions along the bridge; x = 15, 30, and 45 m. One can see that the first two 
loading cases act on the pure steel system (I = Ia for all cross sections) (see Figure 9.18). In the sagging

3 m

s

t

Speed range 
V (km/h)

Maximum twist 
(mm/3 m)

V ≤ 120 4.5
120 < V ≤ 200 3.0
V > 200 1.5

Note: s is the track gauge (=1.35 m).

Figure 10.4  Definition of deck twist and recommended limiting values.

Table 10.4  Maximum vertical deflections to avoid excessive track 
maintenance

Speed range Permissible deflection

V < 80 km/h δstat ≤ L/600
80 ≤ V ≤ 200 km/h δstat ≤ L/(15 ·  V − 400)
V > 200 km/h δstat ≤ L/2600 and δdyn ≤ value from authorities

Notes:

δstat is the maximum vertical deflection measured along any track due to LM 71 (SW/0) 
(see Section 4.6.2).

δdyn is the maximum vertical deflection measured along any track due to high-speed 
trains (i.e., real trains defined by the authorities and/or the universal dynamic trains 
HSLM designed for international lines found in EN 1991-2).
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moment areas, the second moment of area is taken from Table 9.17. In the hogging moment area, the 
second moment of area is reduced due to the shear lag effect on the bottom flange and is taken from 
Table 10.1. In the second concreting phase (Figure 9.19), the composite region of the bridge has I = I1,0, 
while the remaining one I = Ia. The final part of the superstructures acts on a composite system (see 
Figure 9.20). Concrete in the hogging moment areas (2 · 15% · 60 = 18 m) is considered as fully cracked 
and the second moment of area is equal to I2,sa of Table 10.1. Thermal effects and traffic loads act on 
the same composite system but multiplied with the frequent combination factors.

In Table 10.6, the first two rows refer to the pure steel system and remain unchanged. In the 
mixed system of Figure 9.19 (third row), the composite regions have a reduced second moment 
of area due to creep equal to I = I1,P calculated with a creep factor φ(7, ∞). The fourth row refers 
to the system of Figure 9.20. The age of concrete of the edge composite regions has an age of 
14 days at the time of loading, and the long-term inertia moment Ι1,P is calculated with a creep 
factor φ(14, ∞). The remaining uncracked regions (40–51 m and 69–80 m) are assumed to have 
an age for concrete equal to 7 days. The cracked region 51–69 m is accounted for an inertia

Table 10.5  Short-term deflections, and total deflections for the frequent combination

Loading from

Second moment area (·108 cm4) Deflection in mm

x = 0–40 m
80–120 m

40–51 m
69–80 m

2 · 15%L
51–69 m x = 15 30 45

Pure steel Ia = 0.45454 Ia = 0.45454 Ia = 0.3756 21.2 25.5 12.3
First concreting Ia = 0.45454 Ia = 0.45454 Ia = 0.3756 50.0 57.8 25.5
Second concreting + 
superstructures

I1,0 = 1.037 Ia = 0.45454 Ia = 0.3756 12.2 15.3 8.2

Superstructures I1,0 = 1.037 I1,0 = 1.037 I2,sa = 0.46049 1.7 2.7 1.9
0.5 · Thermal I1,0 = 1.037 I1,0 = 1.037 I2,sa = 0.46049 6.3 6.8 3.5
0.75 · TS I1,0 = 1.037 I1,0 = 1.037 I2,sa = 0.46049 4.6 6.3 4.1
0.4 · (uniformly distributed 
load (UDL) + qfk)

I1,0 = 1.037 I1,0 = 1.037 I2,sa = 0.46049 6.9 9.3 6.2

Σδ0 102.9 123.7 61.7

Table 10.6  Long-term deflections and total deflections for the frequent combination

Loading from

Second moment area (·108 cm4) Deflection in mm

x = 0–40 m
80–120 m

40–51 m
69–80 m

2 · 15%L
51–69 m x = 15 30 45

Pure steel Ia = 0.45454 Ia = 0.45454 Ia = 0.3756 21.2 25.5 12.3
First concreting Ia = 0.45454 Ia = 0.45454 Ia = 0.3756 50.0 57.8 25.5
Second concreting + 
superstructures

I1,P = 0.8107 Ia = 0.45454 Ia = 0.3756 19.9 26.3 15.7

Superstructures I1,P = 0.8261 I1,P = 0.8107 I2,sa = 0.46049 2.0 3.0 2.1
0.5 · Thermal I1,0 = 1.037 I1,0 = 1.037 I2,sa = 0.46049 6.3 6.8 3.5
0.75 · TS I1,0 = 1.037 I1,0 = 1.037 I2,sa = 0.46049 4.6 6.3 4.1
0.4 · (UDL + qfk) I1,0 = 1.037 I1,0 = 1.037 I2,sa = 0.46049 6.9 9.3 6.2
Shrinkage—primary 
effects

I1,S = 0.8493 I1,S = 0.8493 I2,sa = 0.46049 25.8 32.4 19.7

Σδ∞ 115.5 141.9 76.8
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moment equal to I2,sa from Table 10.1. The short-term actions temperature and traffic are calculated 
as in Table 10.5 with their frequent values. Shrinkage is calculated by applying the I1,S second moment 
of area on the uncracked regions and the equivalent temperature of Figure 9.21. One can observe 
that the maximum deflection due to shrinkage is 22.8% (!!!) of the total long-term deflection.

Precamber is selected to be the average of deflections due to permanent loading for short- 
and long-term design and is shown in Figure 10.5. This leads to negative values of short-term 
deflections (min δ0 = −21.9 mm), which means that before creep and shrinkage are fully devel-
oped, the deck will be lightly curved toward the upside. The deck will deflect due to long-term 
effects and frequent traffic about 22 mm at the midspan.

Note: For simplification, the cracked lengths of the simplified method were used. Normally the 
cracked lengths of the general method in Example 10.1 should be adopted. These would lead to 
higher values of deformations and precamber.

10.5.2 Filler-beam decks

For the calculation of deflections of filler-beam deck bridges, cracking of concrete has to be 
taken into account carefully along the length of the bridge. EN 1994-2 states that the aver-
age second moment of area Ieff can be applied:

 
I I I
eff =

+1 2

2
 (10.13)

where
I1 is the second moment of area of the uncracked composite section
I2 is the second moment of area of the cracked composite section

For the estimation of I2, the code allows an additional simplification by taking as neutral 
axis the plastic neutral axis of the composite cross section. The neutral axis for the fully 
cracked section (state 2) is however an elastic one and is calculated from the equilibrium of 
the internal forces [10.9]. This leads to the recommended procedure presented in Figure 10.6. 
The second moment of area of the fully cracked cross section then becomes

 
I b c

n
I A z zc
sa sa sa2

3

0
2

2

3
= ◊

◊
+ + ◊ -( )  (10.14)

–150
δ 

(m
m

) x (m)

–100
Pre-camber

Short-term deflections
with pre-camber

Long-term deflections
with pre-camber

Short-term deflections
without pre-camber

–50

50
100

150

0

Long-term deflections
without pre-camber

Figure 10.5  Short- and long-term deflections (δ) due to frequent traffic loads and selected precamber.
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where
z–2 is the coordinate of the neutral axis of the fully cracked cross section calculated from 

the second-order equation in Figure 10.6
Asa is the cross-sectional area of the total steel cross section (structural + reinforcing 

steel)
Isa is the inertia moment of the total steel cross section (structural + reinforcing steel)
z–sa is the vertical distance between the centroid of the total steel cross section and the 

reference point B
n0 is the short-term modular ratio from Table 6.4
c is the depth of the compression zone (=eB + z–2)

Notation

The reference point B can be arbitrary but inside the web’s depth.
In Figure 10.7, one can see that the stiffness of a filler beam is not constant but dependent 

on the acting bending moment. Instead of using the average inertia moment of Equation 
10.13, deflections can be calculated by integrating the curvatures of Equation 6.34a. For the 
uncracked regions, the curvatures are
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The uncracked regions are those with M M f n I zEd ser cr ctm cu, ,£ = ◊ ◊0 1 1  where fctm is the mean 
tensile strength of concrete in Table 6.1.
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Figure 10.6  Determination of the elastic neutral axis for the cracked cross section (state 2).
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For the fully cracked sections in regions with MEd,ser > Mcr, the curvatures along the length 
of the bridge are
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The final values of the curvatures are calculated with Equations 6.34a and b. Deflections 
can be calculated by integrating the curvatures along the length of the bridge. The integra-
tion of the curvatures can be avoided by applying the following equivalent temperature on 
the uncracked system:
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where
κ1, κ2 are the curvatures for the uncracked and the fully cracked composite section 

according to Equations 10.15 and 10.16
h is the total depth of the composite cross section
αt is the coefficient of thermal expansion for steel
ζ(x) is the factor calculated from Equation 6.34b following the longitudinal variation of 

the bending moment MEd,ser
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Figure 10.7  Flexural rigidity distribution of a simply supported filler-beam deck bridge. (From Iliopoulos, A., 
Stahlbau, Ernst und Sohn, 78(8), 555, 2009.)
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The application of equivalent temperature difference ∆Τcr on the uncracked system gives 
the enhancement of the deflections due to cracking.

10.6 VIBRATIONS

Vibrations on bridges are mainly caused by traffic or wind. For large-span bridges, usually 
over 200 m, the aerodynamic stability in respect to vortex shedding, buffeting, fluttering, 
and galloping must be examined by calculation, wind tunnel tests, or combinations of them. 
For cable-stayed bridges, vibrations may also concern the cables, especially under wind and 
rain conditions.

Concerning traffic loading, vibrations of the structure including its interaction with traffic 
are usually examined in railway bridges during passing of high-speed trains. EN 1990-A2 
[10.2] asks for a minimum value of the fundamental frequency fb0 of the deck in transverse 
direction with a recommended value 1.2 Hz. Furthermore, it requires a limitation of the ver-
tical accelerations bv in the wagon for comfort purposes with recommended values between 
1.0 and 2.0 m/s2 depending on the level of comfort. These accelerations are determined by 
dynamic analysis including the train–bridge interaction. Alternatively, the vertical bending 
displacements due to LM71 including the weight factor α and the dynamic factor Φ must 
be limited to certain values depending on the span length, the train velocity, the number of 
spans, and the type of static system (single span, continuous). For bridges with spans up to 
120 m, a chart is given in [10.2] providing the maximal allowed displacements for bridges 
with 3 or more consecutive spans. These values may be appropriately adapted to other 
systems.

In Figure 10.8, two vibration modes due to vertical flexure and torsion of simply sup-
ported plate-girder bridge are demonstrated. Torsional vibration modes have a negative 
influence (especially due to fatigue) and their contribution to the dynamic response of the 
bridge should be limited.

Most susceptible to vertical and horizontal vibrations are very light pedestrian bridges. 
Vibrations caused by individuals or groups of people crossing the bridge may lead to dis-
comfort up to panic of persons. For detailed information, reference is made to the relevant 
specifications and the literature.

Torsional vibration mode

Flexural vibration mode

Figure 10.8  Vibration modes of a simply supported plate-girder bridge.
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Chapter 11

Fatigue

11.1 GENERAL

Fatigue is a process in which damage is accumulated in the material undergoing fluctuating 
loading. Damage takes the form of cracks in the material that develop slowly at early stages 
of loading and accelerate very quickly toward the end (Figure 11.1). Microcracks start to 
develop at points of stress concentration at nominal stresses that may be well below the 
elastic limit. These cracks grow slowly under continuing fatigue loading but start to acceler-
ate when the local stresses near the crack front increase due to cross-sectional reduction. 
Fracture occurs when the remaining section area is not able to support the applied load. 
Evidently, tension stresses are more significant than compression stresses. Fatigue is a local 
phenomenon that takes place at regions of stress concentration such as rapid changes of 
cross sections, at section reductions due to bolted connections or in welding regions, where 
the material undergoes metallurgic changes (see also Section 11.11).

Road and railway bridges are subjected to fatigue traffic loading, while long-span or very 
flexible bridges may be subjected to fatigue wind loading. Short to medium span bridges 
are more susceptible to fatigue, since the ratio between traffic to permanent loading is large 
compared to long-span bridges.

11.2 FATIGUE RESISTANCE TO CONSTANT AMPLITUDE LOADING

The fatigue resistance does not depend on the yield or tensile strength of the material. For 
constant amplitude cycles (Figure 11.2), it depends on the number of loading cycles, N, and 
the applied stress range that is given by

 Ds s s= -m ax m in  (11.1)

In nonwelded details or stress-relieved details, the influence of compression stresses is not as 
large as for tension stresses. The stress range for such details is calculated from

 
Ds s s s s= - ◊ = + ◊m ax m in m ax m in. .0 6 0 6  (11.2)

The fatigue resistance is accordingly expressed by the so-called S-N (or Wöhler) curves 
that relate the applied stress range ∆σ or ∆τ with the number of cycles N (Figure 11.3). The 
nominal fatigue resistance is the stress range ∆σc or ∆τc for two million cycles (NC = 2 · 106).
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Figure 11.1  Development of fatigue crack.
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Figure 11.3  S-N fatigue curves (Wöhler curves).
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Figure 11.3 indicates that in logarithmic scale, the number of cycles is linearly related to 
the applied stress range and is expressed by the following relations:

 log log logN m R= - ◊a sD  (11.3)

 log log logN m R= - ◊a tD  (11.4)

where α and m are constants.
Numerous experimental investigations [11.14] showed that the inclination of the 

straight line, m, for construction details has certain fixed values. For direct stress ranges, 
the inclination is m = 3 up to 5 million cycles, ND = 5 · 106. It then changes to m = 5 for higher 
number of cycles and up to 100 million cycles, NL = 108. For even larger number of cycles, 
there exists a cut-off limit for the fatigue resistance. That means that if the applied stress 
range is lower than ∆σL, no fatigue damage occurs, independent of the number of cycles. 
Similar conditions exist for shear stresses. The inclination here is m = 5 up to the cutoff limit 
of 100 million cycles.

In regions of constant inclination, Equation 11.3, and similarly 11.4, may be rewritten as 
follows:
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In the region m = 3, it is
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while in the region m = 5, it is

 

D
D

N
N

D D Ds
s

s s sL

D

D

L
L D C

Ê
ËÁ

ˆ
¯̃
= = ◊

◊
Æ = ◊ = ◊

5 6

8
5 10
1 10

0 549 0 405. .  (11.7)

The corresponding conditions for shear stresses may be written as
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The S-N curve gives the fatigue resistance as the number of cycles to failure Ni for a cer-
tain applied stress range ∆σi. If the stress range ∆σi is applied at a lower number of 
cycles, ni < Ni, no fatigue failure occurs but some damage is done. This damage may be 
 calculated from

 
D n

N
i

i
=  (11.9)
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D has the obvious limits

 0 D 1£ £  (11.10)

where D = 0 indicates no damage, while D = 1 indicates failure.

11.3 FATIGUE RESISTANCE TO VARIABLE AMPLITUDE LOADING

The applied loading is generally of variable amplitude. Such loading histories as indicatively 
shown in Figure 11.4 pose a problem in defining the number and amplitude of the cycles and 
are converted for fatigue analysis purposes to constant amplitude loading. This may be done 
by a cycle counting method, the reservoir method being the most used one.

The basis of the reservoir method is shown in Figure 11.5 using the stress history of 
Figure 11.4. The line of the stress history is extended so that the peak stress levels repeat 
themselves and the regions between peaks are filled with water to form a reservoir. 
Subsequently a tap is opened at the lowest trough (T1) to drain the reservoir. This cor-
responds to one cycle with stress range ∆σ1. The remaining level of water is now lowered 

Stress (σ)
Stress range
Δσ = Δσ(t)

Time (t)

Figure 11.4 Variable amplitude stress history.

Stress (σ)

Δσ2

T2

Time (t)Position after draining T2

Stress (σ)

Δσ3

T3

Time (t)Position after draining T3

Stress (σ)

Δσ1

Time (t)Position after draining T1

Stress (σ)

Extension Extension

Time (t)

Water

Initial reservoir

T1

Figure 11.5  Application of the reservoir method.
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to the next highest peak. A tap is now opened to the next lowest trough (T2) providing 
one cycle with stress range ∆σ2, and the water is allowed to drain. The procedure is 
repeated, that is, opening the tap from the lowest remaining trough and counting the 
stress ranges, until the reservoir is empty. Every stress range has n = 1 cycles unless dur-
ing opening a tap two or more equal stress ranges appear. If this is not the case, stress 
ranges may be grouped together, for example, every 10 MPa, so that more cycles cor-
respond to one group.

The next step is to define the stress histogram that gives the stress ranges ∆σi with the 
corresponding number of cycles ni (Figure 11.6a).

The fatigue damage done by each stress range is expressed by Equation 11.9. The total 
damage produced by the entire stress histogram is determined in accordance with the 
Palmgren–Miner law of linear damage [11.10], [11.11], as the sum of the damage done 
by each individual stress ranges independently. The law of linear damage accumulation is 
written as

 
D n

N
n
N

n
N

n
N

k

k

i

ii

k

= + + + =
=
Â1

1

2

2 1

�  (11.11)

where (Figure 11.6)
ni is the number of cycles for stress ranges ∆σi

Ni is the number of cycles to failure for stress ranges ∆σi

Stress ranges smaller than ∆σL are not included in the summation.

11.4 DETAIL CATEGORIES

As outlined in Section 11.1, fatigue is a local phenomenon that depends on stress concentra-
tions and therefore on the shape of the construction detail. Accordingly, the fatigue resis-
tance depends on the detail category. Each detail category is associated with a figure that 
gives the fatigue resistance at NC = 2 · 106 (2 million cycles). For example, detail category 71 
means that the fatigue resistance at 2 million cycles is 71 MPa. The relevant S-N curves 
for direct and shear stress ranges proposed in EN 1993-1-9 [11.4] are illustrated in Figures 
11.7 and 11.8. The fatigue resistance of shear connectors is 90 MPa with a slope m = 8. 
The fatigue resistance for reinforcement (straight or bent bars) in tension is 162.5 MPa at 

Δσ2
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Δσ

Δσ3 Δσ4
Δσ2

Δσ1

Δσ3Δσ4

N1 N2 N3 N4 log N

log Δσ

(b)(a)

Figure 11.6  (a) Stress histogram for variable amplitude loading and (b) number of cycles to failure versus 
stress ranges.
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1 million cycles with a slope m = 9. The relevant S-N curve is also shown in Figure 11.8. It 
may be seen that there exist only two detail categories for shear stresses, namely, 100 and 
80, while many more for direct stresses with the lowest category being 36. This, together 
with the steeper inclination of the fatigue curves, indicates that direct stresses are more 
detrimental to fatigue damage compared with shear stresses.

The main detail categories for common bridge applications according to EN 1993-
1-9 are given in Figures 11.9 through 11.12. More details are found in the code. For 
transverse butt welds, there is an important size effect for plate thicknesses t > 25 mm, 
expressed by the reduction factor ks = (25/t)0.2. In this way, gross stress concentrations 
due to abrupt changes and hot spots that are not included in the basic detail categories 
are taken into account.
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Figure 11.7 Fatigue resistance curves of steel for direct stress ranges.

100

104 105 106 107 108
2  106

m = 5

m = 5 ΔσC

m = 8 (shear studs)

109

St
re

ss
 ra

ng
e Δ

τ R
 in

 M
Pa

90
80

Number of cycles N

Figure 11.8 Fatigue resistance curves for steel and shear studs for shear stress ranges.



Fatigue 447

Automatic butt welds from
both sides without stop/start
position.
Automatic fillet or butt weld
with stop/start positions.

Manual fillet or butt weld.

Longitudinal butt-
or �llet weld with a
cope hole height not
greater than 60 mm.

Continuous �llet
welds
transmitting a
shear �ow, m = 5

Built-up sectionsRolled sections

Δσ

Δτ

Δτ

Δσ

m = 5

160

125

71

125

112

100

80

100

Figure 11.9 Detail categories for rolled and built-up welded sections.

For the cross-girder
(butt welds)

For the cross-girder
(butt welds)

Toe failure in full
penetration butt welds

Stiffener

Stiffener

Web

Web

Δσ

Δσ

Δσ

Δσ

Δσ

Δσ
r

L

Δσ
bf

bf

bf

tcg

tcg

tt

ll

 For the main girder

 For the main girder

As for the cross-girder
but with bf instead of L

For the main girder

45 90

40

71

50

≥r

r

1

r1 1

or r > 1503

36

L

L

L

bf > 300
and 30 < tcg ≤ 50

≤ ≤

<

bf > 300
and tcg > 5040 40

80

The above limits are valid for all t.

63
56

56
50

45

40
Root failure in partial penetration
Tee-butt joints or fillet welded joint

71

1
6

36

l < 50
50 < l ≤ 80

120 < l ≤ 200 and t > 20
or

l > 200 and 20 < t ≤ 30
200 < l ≤ 300 and t > 30

or
l > 300 and 30 < t ≤ 50

l > 120 and t ≤ 20

l > 300 and t > 50

80 < l ≤ 100

100 < l ≤ 120
45

For the cross-girder
(butt welds)

40

bf > 300
and 30 < tcg ≤ 50
bf > 300
and tcg > 50

Figure 11.10  Detail categories for transverse butt welds and load-carrying welded joints (dimensions in mm).



448 Design of steel–concrete composite bridges to Eurocodes

REMARK 11.1

In Example 7.2, it has been shown that in cases of significant torsional loadings, warping stresses 
should not be neglected. Theoretically, warping stresses should be taken into account during 
the calculation of the direct stress ranges ∆σ. However, after concreting, composite members 
possess high torsional rigidity and warping stresses become small; they usually do not have any 
considerable influence on the fatigue verifications and can be omitted.
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11.5 FATIGUE LOAD MODELS AND SIMPLIFIED FATIGUE ANALYSIS

Vehicles running on bridges have various shapes with different numbers of axles, axle loads, 
and axle spacing. Consequently, various load models are proposed by EN 1991-2 that may 
serve several purposes, for example, the assessment of remaining fatigue life of existing bridges. 
However, for road bridges, fatigue assessment may be done by a simplified procedure that is 
based on a single vehicle model. This is called fatigue load model 3 (FLM3) and is illustrated 
in Figure 11.13. The axle weight is 120 kN, the total weight is 480 kN, and the contact surface 
of the wheels is 0.40 × 0.40 m2. For bridges longer than 40 m, a second vehicle running on the 
same lane may be considered, with a center-to-center distance from the first larger than 40 m. 
The axle loading of the second vehicle is 36 kN, that is, 30% of that of FLM3. The vehicle 
moves along the bridge to produce maximum and minimum effects and is placed centrally 
on the appropriate notional lanes that are identified in the design. Horizontal forces acting 
simultaneously with the vertical ones, such as centrifugal forces, should be taken into account.

REMARK 11.2

In EN 1991-2, the reader will find five load models for fatigue verifications:

 1. FLM1: It is derived from LM1 with 70% of the characteristic values of axle loads and 30% 
of the characteristic values of uniformly distributed loads. This load model is in general 
very conservative [11.1].

 2. FLM2: It consists of a set of lorries, called frequent lorries, and is applied instead of FLM1 in 
the case of short influence lines. It is also a conservative model.

 3. FLM3: As shown in Figure 11.13, it is assumed that after a conventional number of cross-
ings, the same fatigue damage is reached as in the case of real traffic during the design 
lifetime of the bridge.

 4. FLM4: It consists of five equivalent lorries that reproduce more accurately the traffic effects 
on European roads than FLM3. The contribution of each lorry in the final fatigue model is 
based on probabilistic methods.

 5. FLM5: It is based on the direct use of recorded traffic data.

1.20 m

2.00 m

120 kN   120 kN 36 kN 36 kN 36 kN 36 kN120 kN 120 kN
Axle loads

3.00 m

1.20 m 6.00 m 1.20 m1.20 m 6.00 m

0.40 0.40 0.40 0.40

≥40.00 m

Figure 11.13 Dimensions of FLM3.
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FLM1 and FLM2 are used in order to check whether the fatigue life of steel bridges may be con-
sidered as unlimited when constant stress amplitude is given, for example, S-N curves. However, 
they are considered as inappropriate for the most common verifications.

The fatigue load model for railway bridges is load model 71 (LM71) and where required 
SW/0 (see Section 4.6.2), taking the factor α = 1 and including the dynamic factors Φ2 or 
Φ3 from Equations 4.6 through 4.7. By comparing the fatigue damage due to single vehicle 
for road bridges and LM71 for railway bridges with the corresponding damage due to real 
traffic, appropriate calibration factors were determined and were introduced in design in the 
form of damage equivalent factors λ. These factors were calibrated for spans up to 80 m for 
road and 100 m for railway bridges. For larger spans, an additional calibration is required. 
However, large-span bridges are less susceptible to fatigue due to the fact that permanent 
loads prevail so that stress ranges due to traffic are not so significant.

For structural steel, the characteristic serviceability limit state (SLS) combination, exclud-
ing traffic loads, is relevant for fatigue assessment of the effects of fatigue traffic loading 
being added. Secondary effects of creep and shrinkage together with the effects of staged 
construction are taken into account if unfavorable. Temperature is taken by the temperature 
difference component ∆TM that has in accordance with Section 4.7.3 positive or negative 
values. One of the two values is considered that produces the most unfavorable effects. If 
this is not obvious, both temperature values should be considered. Table 11.1 illustrates the 
combinations of actions for road and railway bridges.

Refined analysis models should be used for fatigue assessment. “Secondary” moments, 
for example, in truss girders, should be accounted for since they may produce significant 
stress ranges that are detrimental for fatigue. In case of box girders, effects of warping and 
cross-sectional distortion should be allowed. Internal forces and moments are determined 
by cracked elastic global analysis for composite bridges non-prestressed by tendons. Their 
extreme values are determined by adding the values due to all actions except fatigue loads to 
the minimum and maximum values due to fatigue loads. The extreme design moments, and 
similarly the extreme shear forces, are determined from

 
M M MfEd perm fm in,, m in,= +  (11.12)

 
M M MfEd perm fm ax,, m ax,= +  (11.13)

where
Mperm are the moments due to all actions in the combination except fatigue traffic loads
Mmin,f are the minimum moments due to fatigue loading
Mmax,f are the maximum moments due to fatigue loading

Table 11.1  Characteristic SLS combination of actions for fatigue 
assessment of structural steel

Actions → Noncyclic Cyclic

Type of 
bridge ↓

Permanent 
loads G Creep Csec Shrinkage Ssec

Temperature 
T (∆TM) Fatigue

Road 1.0 1.0 1.0 0.6 FLM3
Railway 1.0 1.0 1.0 0.6 LM71
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REMARK 11.3

It has to be noted that in the noncyclic part of Equations 11.12 and 11.13, there should be a dif-
ferentiation between the bending moments Ma,Ed acting on pure steel sections before concrete 
hardening and those acting on the composite sections Mcom,Ed after concrete hardening since they 
act on different cross sections and produce different stresses. The noncyclic part becomes then

 M Mperm a,Ed com,Ed= +M  (R11.1)

where
com = 1 for sagging bending (state 1)
com = 2 for hogging bending (state 2)

If positive and negative temperature values are taken into account, Mperm has also maximum 
and minimum values. In such a case, the earlier equations are written as

 
M M MfEd perm fm in,, ,m ax m in,= +  (11.14)

 
M M MfEd perm fm ax,, ,m ax m ax,= +  (11.15)

or

 
M M MfEd perm fm in,, ,m in m in,= +  (11.16)

 
M M MfEd perm fm ax,, ,m in m ax,= +  (11.17)

where
Mperm,max are the moments due to all actions in the combination, except fatigue traffic 

loads, with temperature value leading to maximum moments
Mperm,min are the moments due to all actions in the combination, except fatigue traffic 

loads, with temperature value leading to minimum moments

Maximum and minimum stresses are determined in the sections from the earlier internal 
forces and moments by carefully considering the construction sequence (see Remark 11.3). 
Stresses are determined on the basis of the uncracked section if concrete is in compression. 
For concrete in tension, stresses are determined for the cracked section, with due consider-
ation of the effect of tension stiffening for the stresses in reinforcement (see Section 6.1.6). 
Since fatigue is influenced mainly by the stress range and therefore the difference between 
minimum and maximum stresses developed during the movement of the fatigue vehicles 
along the bridge, it might be sufficient to consider only internal forces and moments from 
these vehicles. However, the influence of other actions in the fatigue combination is impor-
tant to detect regions where concrete is in tension or compression in order to correctly 
determine the stiffness properties for analysis and the stresses in the cross section.

For the verifications of the headed studs and concrete in road bridges, the passage of the spe-
cial vehicle FLM3 produces the required maximum and minimum internal forces. For railway 
bridges, similar procedure is followed with LM71. Noncyclic internal forces can be excluded.
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For the reinforcement verifications, Equations 11.12 through 11.17 apply but with the 
noncyclic part determined from the frequent combination of Table 11.2 with the traffic as 
the leading noncyclic action.

11.6 FATIGUE VERIFICATION FOR STRUCTURAL STEEL

11.6.1 Simplified fatigue assessment

In the simplified fatigue assessment, important parameters influencing fatigue resistance 
are taken into account by a damage equivalent factor λ, the values of which are calibrated 
for road bridges with span up to 80 m and for railway bridges with span up to 100 m. λ is 
obtained from

 l l l l l l= ◊ ◊ ◊ £1 2 3 4 m ax  (11.18)

where
λ1 is a factor accounting for the length of the critical influence line
λ2 is a factor accounting for traffic volume
λ3 is a factor accounting for the design life of the bridge
λ4 is a factor accounting for traffic in other lanes
λmax is the maximum value of λ depending on the fatigue limit ND

Values of the earlier factors for road and railway bridges are given in the following.

11.6.1.1 Road bridges

• Factor λ1 (Figure 11.14)
At midspan:

 
l1 2 55 0 7 10

70
= - ◊ -. . L

 (11.19)

Table 11.2  Frequent SLS combination of actions for fatigue 
assessment of reinforcement with annex NN, EN 1992-2

Actions → Noncyclic Cyclic

Type of 
bridge ↓

Permanent and 
secondary effects 

G, Csec, Ssec Traffic
Temperature 

T (∆TM) Fatigue

Road 1.0 TS 0.75 0.5 β · FLM3
UDL 0.4
qfk 0.4

Notes:

β = 1.75 for verification at internal supports in continuous bridges.
β = 1.40 for verification in other areas.
For railway bridges, see Annex NN in 1992-2.
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At support:

 
l1 2 0 0 3 10

20
0 0= - ◊ - £ £. . †L for 1  m L 3  m  (11.20a)

 
l1 1 7 0 5 30

50
0 0= + ◊ - £ £. . L for 3  m L 8  m  (11.20b)

where L is the critical length of the relevant influence line in [m] that is given in Table 11.3.
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Figure 11.14 Factors λ1 for road bridges.

Table 11.3 Critical length L

Effect System/member Position Critical length L

Moment Simply supported Span length Li

Continuous Span Span length Li of the considered span
Internal support Mean of the two spans Li and Lj 

adjacent to the support
Cross girders or frames 
supporting longitudinal 
stiffeners

Sum of the two adjacent spans of the 
stiffeners

Shear force Simply supported or 
continuous

Span 0.4 · Span under consideration Li

Support Span under consideration Li

Support reactions End support Span under consideration Li

Internal support Sum of the two adjacent spans Li + Lj

Arch bridges Hangers Twice the distance of hangers
Arch Half the span of the arch

Internal
support

Span Span

End support
0.15  L2

0.15  L20.15  L1

L1 L2
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• Factor λ2

This factor may be obtained from
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where Qm1 is the average gross weight in kN of the lorries in the slow lane, with
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Q0 = 480 kN (weight of FLM3 vehicle)
N0 = 0.5 · 106

Nobs is the total number of lorries per year in the slow lane (Table 11.4)
Qi the gross weight in kN of lorry i in the slow lane
ni is the number of lorries of weight Qi in the slow lane
m = 5

• Factor λ3

This factor may be obtained from
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where
tLd is the design life of the bridge in years (usually 100 years)
m = 5

• Factor λ4

This factor may be obtained from
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Table 11.4 Values of Nobs

Traffic categories
Nobs per year 
and slow lane

1 Roads and motorways with two or more 
lanes per direction with high flow rates 
of lorries

2 · 106

2 Roads and motorways with medium flow 
rates of lorries

0.5 · 106

3 Main roads with low flow rates of lorries 0.125 · 106

4 Local roads with low flow rates of lorries 0.05 · 106
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where
k is the number of lanes with heavy traffic
Nj is the number of lorries per year in lane j
Qmj is the average gross weight of lorries in lane j
nj is the value of the relevant influence line in the middle of the lane (Figure 11.15. 

For multi-girder bridges, the transverse influence line can be calculated with the 
Courbon method described in Section 7.1.2; see also Figure 7.4)

m = 5

• Factor λmax (Figure 11.16)
At midspan:

 
l lm ax m ax. .= - ◊ - £ =2 5 0 5 10

15
25 2L forL m else    (11.24)
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Figure 11.15 Definition of nj.
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Figure 11.16 Factor λmax for road bridges.
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At support:

 
l lm ax m ax. . .= + ◊ - ≥ =1 8 0 9 30

50
30 1 8L forL m else    (11.25)

11.6.1.2 Railway bridges

• Factor λ1 (Figure 11.17)
This factor depends on the type of traffic such as freight trains, passenger trains, or 
high-speed trains. EN 1991-2 gives eight train types as well as a mixed traffic that 
corresponds to a combination of train types. Figure 11.17 presents the envelope of all 
standard train types and values for mixed traffic. The critical length L is determined 
similarly as for road bridges from Table 11.3.
Factors λ1 for multiple unit and underground and rail traffic with 25t axles are found 
in EN 1993-2 [11.5].

• Factor λ2

This is obtained from Table 11.5.
• Factor λ3

This is obtained from Table 11.6.
• Factor λ4

This is obtained from Table 11.7.
• Factor λmax

For railway bridges, λmax = 1.4.

20
0.6
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1.0
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40

Envelope for all train types
EC traffic mix

60 80 100

λ 1

Critical length (L in m)

Figure 11.17 Factors λ1.

Table 11.5 Factor λ2

Annual traffic weight 
per track in million tons 5 10 15 20 25 30 35 40 50

λ2 0.72 0.83 0.90 0.96 1.00 1.04 1.07 1.10 1.15

Table 11.6 Factor λ3

Design life 
in years 50 60 70 80 90 100 120

λ3 0.87 0.90 0.93 0.96 0.98 1.00 1.04
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11.6.2 Stress range and fatigue assessment

The stress ranges at a point are determined as the difference between maximum and mini-
mum stresses and are multiplied for road bridges with the damage equivalent factor λ and 
for railway bridges additionally with the dynamic factor Φ2 or Φ3 (see Equations 4.6 or 4.7). 
This converts the reference stress range |σmax, f, Ed − σmin,f,Ed|, which is based on the extreme 
bending moments of Equations 11.12 and 11.13 into an equivalent one ∆σE, which can be 
compared against the fatigue strength ∆σR related to 2 · 106 cycles.

11.6.2.1 Road bridges

 
D E Es l s sE f d f d2 = ◊ -m ax,, m in,,  (11.26)

 
D E Et l t tE f d f d2 = ◊ -m ax,, m in,,  (11.27)

REMARK 11.4

In the vicinity of the expansion joints (D ≤ 6 m in Figure 4.3), the equivalent stress ranges have 
to be multiplied with the factor (1 + ∆Φfat); ∆Φfat is given by Equation 4.1. Fatigue verifications 
in expansion joint areas may become critical since the stress ranges are increased up to 30%.

11.6.2.2 Railway bridges

 
D F E Es l s sE i f d f d2 = ◊ ◊ -m ax,, m in,,  (11.28)

 
D F E Et l t tE i f d f d2 = ◊ ◊ -m ax,, m in,,  (11.29)

where
i = 2 for a carefully maintained track (see Equation 4.6)
i = 3 for a track with regular maintenance (see Equation 4.7)

Shear stresses result in shear forces and torsion and are resisted by the steel girder web 
or the flange for torsion. Shear stress ranges may be then directly determined from the 

Table 11.7 Factor λ4

∆σ1/∆σ1+2 1.00 0.90 0.80 0.70 0.60 0.50

λ4 1.00 0.91 0.84 0.77 0.72 0.71
∆σ1 Is the stress range at the considered 

point due to LM71 on one track
∆σ1+2 Is the stress range at the same point due 

to LM71 on any two tracks

Note: Table 11.7 applies if ∆σ1 and ∆σ1+2 have the same sign.
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differences between maximum and minimum stresses due to fatigue loading. In absence 
of torsion, the stress range may be obtained from
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REMARK 11.5

The calculation of the shear stress range should be based on the elastic stress distribution and 
not the average one. Therefore, Equation 11.30 is recommended instead of the following:
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Similar conditions apply for direct stresses, if the concrete is in tension or in compression for 
both the minimum and the maximum moments, Mmin,f,Ed and Mmax,f,Ed, from Equations 11.12 
and 11.13, so that the cross section is in both cases either cracked or uncracked. The stress 
range at the point under consideration in the absence of axial force may then be obtained from
Uncracked sections:
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Cracked sections:
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where
Mmax,f,Ed, Mmin,f,Ed are the maximum and minimum bending moments calculated with 

the characteristic combination
I1,0 is the second moment of area of the uncracked section for short-term loading (see 

Figure 7.39)
I2,sa is the second moment of area of the fully cracked section (see Figure 7.39)
z1,0 and z2,sa are the distances of the considered point from the centroid of the uncracked 

or cracked section

REMARK 11.6

For the fatigue assessment of steel in hogging moment areas, it is advisable to consider concrete 
as fully cracked by neglecting the effect of tension stiffening on the cross-sectional properties. This 
offers a conservative steel stress calculation, which is expressed by application of Equation 11.32.

However, if the moments Mmin,f,Ed and Mmax,f,Ed are of different signs and produce, in absence 
of axial force, tension or compression in the concrete slab, minimum and maximum stresses 
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for the total moment must be determined separately, one on the basis of the cracked section 
and the other on the uncracked section. At construction stages, some load cases may apply 
only at the steel section. The relevant stresses on the steel girder are determined on the basis 
of the steel section, and they are equal for maximum and minimum noncyclic moments, so 
that they do not contribute in the stress range (see Remark 11.7). Accordingly, stress ranges 
in this case may be determined from
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REMARK 11.7

In Remark 11.3, it has been noted that the noncyclic bending moment Mperm consists of the 
moment part acting on steel Ma,Ed and the part acting on the composite section M1,Ed (uncracked) 
or M2,Ed (cracked). The final expression for the stress range |σmax, f, Ed − σmin,f,Ed| depends on the 
signs of σmin,f,Ed and σmax,f,Ed as follows [11.12]:
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Case 2: Mmin,f,Ed < 0 and Mmax,f,Ed < 0 → s smax, , min, ,
,

,
f Ed f Ed f

sa

sa

z
I

- = ◊DM 2

2

 (R11.3)

Case 3: Mmin,f,Ed < 0 and Mmax,f,Ed > 0 → s smax, , min, ,f Ed f Ed-   
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One can see that in all three cases, the stress range does not depend on the loads acting on 
steel sections Ma,Ed.

The fatigue verification for structural steel includes checks for direct stresses, shear 
stresses, and their combination at points where they coexist. They may be written as
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where
γFf = 1.0
∆σE2, ∆τE2 are the equivalent stress ranges from Equations 11.26 to 11.29 for 2 · 106 cycles
∆σC, ∆τC are the fatigue strengths for Nc = 2 · 106 cycles
γMf,a is the partial safety factor for fatigue strength according to Table 11.8.
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γMf,a covers uncertainties associated with discontinuities, the size of the detail, the welding 
processes, and the residual stresses due to nonuniform temperature variations during weld-
ing (see Section 11.11).

γMf,a depends on the consequences of failure and the required reliability. Larger safety factors 
are foreseen for main than for secondary members, recognizing the fact that failure in main 
members may lead to total collapse, while if secondary members fail, such a collapse may be 
avoided by appropriate redistributions. The required reliability is influenced by appropriate 
detailing (e.g., provision of crack arresting holes) that limits the possibility of crack propagation 
after crack formation and the possibility for inspection of a detail and by regular inspection. 
This method is called damage-tolerant method and is associated with lower safety factors. If 
this is not applied, the so-called safe life method is employed for which higher safety factors are 
foreseen. Table 11.8 gives the recommended values of γMf factors for steel, designated as γMf,a.

It should be noted that in addition to the verifications of Equations 11.34 through 11.36, 
the stress ranges of the direct stress ∆σ and the shear stress ranges ∆τ due to frequent 
loads (ψ1 · Qk) must be limited to 1.5 · fy and 1 5 3. /◊fy  correspondingly. For hybrid girders, 
∆σfrequent ≤ 1.5 · fyf and ∆τfrequent ≤ 1 5 3. .◊f /yw

REMARK 11.7

• In EN 1993-1-9 [11.4], it is stated that fatigue verifications for some details should be based on 
the principal stresses instead of using the combined check in Equation 11.36. A typical case is 
when vertical stiffeners do not terminate in the flange (see Figure 11.12). Recommendations 
for such cases are also found in EN 1993-1-1. It has to be noted that the calculation of principal 
stresses is more trustworthy when structural elements are modeled with finite elements.

• The reader will find in EN 1993-2 the following expression for combining local and global 
stress ranges:

 D D Ds l s l sE glob f E glob loc f E loc road bridges2 = ◊ + ◊, , , , †( )  (R11.5)

 D F D F Ds l s l sE glob i glob f E glob loc i loc f E loc rail2 = ◊ ◊ + ◊ ◊, , , , , , †(  bbridges)  (R11.6)

i = 2 or 3 according to Equations 4.6 and 4.7.
Local effects may arise from concentrated wheel loads causing secondary bending 

moments. This is quite common in steel bridges with orthotropic deck.

Stresses in fillet welds are calculated according to Figure 11.18. Stress ranges for the com-
ponents σwf (transverse to the weld’s axis) and τwf (longitudinal to the weld’s axis) should be 
also verified according to Equations 11.34 through 11.36.

Table 11.8 Partial safety resistance factors γMf,a for steel

Consequences 
of failure

Assessment method Low High

γMf,a for steel Damage tolerant 1.00 1.15
Safe life 1.15 1.35
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11.7 FATIGUE VERIFICATION FOR HEADED STUDS

11.7.1 General

There are different types of fatigue failure for the case of headed studs (Figure 11.19), 
[11.8], [11.13]. For hogging bending, the top flange is in tension and the crack starts at the 
weld but proceeds into the base material away from the weld itself. In sagging moment 
areas (compressed flange), two different types of failures may occur: failure type A or B. In 
type A, the fatigue crack is developed in the shear stud, directly at the transition to the weld. 
In type B, the crack occurs in the base steel, directly at the transition to the weld. It is worth 
mentioning that the encasement of the shear studs in concrete makes inspection impos-
sible. Moreover, it has been shown that damage accumulation affects the static strength 
of the headed studs at ultimate limit states (ULSs) due to cyclic preloading [11.7], [11.8]. 
Therefore, a conservative design is recommended especially in hogging moment areas (see 
Remark 11.8).

11.7.2 Stress range and fatigue assessment

The fatigue verifications for shear connectors are similar to those for structural steel and 
are based on the experimental observations of Figure 11.19. The fatigue resistance of 
shear stud connectors is 90 MPa at 2 million cycles, and the slope of the fatigue curve is 

σ f
τ f

τ fWeld throat σ f

σwf

τwf

τ f

τwf = τ f

σ2
wf = σ f

2 2τ f+

Weld axis

Figure 11.18 Stress components in fillet welds.

Type A Type B

ΔP ΔP ΔP

Compression flangeTension flange

Figure 11.19 Fatigue failure of headed studs and crack propagation.
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m = 8 (Figure 11.8). The design of shear studs is based on shear stress ranges. The damage 
equivalent factor is obtained from Equation 11.37:

 l l l l lv v v v v= ◊ ◊ ◊, , , ,1 2 3 4  (11.37)

where
λv,1 = 1.55 for road bridges with spans up to 100 m

l lv v
L forL m else, . .1 10 9
133

20 0 75= - £ =    for railw ay bridges

λv,2 from Equation 11.21 with m = 8
λv,3 from Equation 11.22 with m = 8
λv,4 from Equation 11.23 with m = 8

Since stresses in the connectors are determined always on the basis of the uncracked section 
(Remark 11.8), the stress ranges may be obtained from the shear due to fatigue traffic loads 
only in accordance with
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where
Vmax,f, Vmin,f are the maximum and minimum shear forces due to fatigue loading only
S1,0 is the first moment of area (static moment) of the concrete slab and the reinforcement 

in respect to the centroid of the uncracked composite section
I1,0 is the second moment of area of the uncracked section for short-term loading
eL is the longitudinal spacing of shear connectors
n is the number of shear connectors in one section
Ad is the section area of the connector shank (=π · d2/4)

Stress ranges considering the damage equivalent factor and the dynamic factor are then 
obtained from

Road bridges:

 
Dt l t tE v fEd fEd2 = ◊ -m ax,, m in,,  (11.39)

Railway bridges:

 
D F Ft l t tE v fEd fEdor2 2 3= ◊ ◊ ◊ -( ) m ax,, m in,,  (11.40)

For shear connectors on tension flanges, the stress range of the top fiber of the tension 
flange is to be additionally verified treating it in the detail category 80. In addition, the 
interaction between direct and shear stress ranges in the top fiber of the steel section and 
the connectors correspondingly shall be verified. The design procedure is summarized in 
Table 11.9.
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REMARK 11.8

• In Figure 11.19, it was shown that in tension flanges, the fatigue crack starts at the weld 
and ends in the base steel. Therefore, in the verifications of Table 11.9, the shear stress 
∆τ at the steel–concrete interface and the normal stress range ∆σ in the tension flange 
are included. In compression flanges, cracks are “captivated” in the weld material leaving 
base steel intact; therefore, ∆σ is missing.

• In hogging moment areas, it is recommended to calculate the shear stress ∆τ by consider-
ing an uncracked deck plate. This is a conservative simplification for taking into account 
the shear flow increase due to the tension stiffening effect. In contrast, ∆σ in the top 
flange of the steel girder should be calculated with the cracked cross-sectional properties 
so that steel stresses are not underestimated.

11.8 FATIGUE VERIFICATION FOR REINFORCING STEEL

11.8.1 Fatigue assessment

Fatigue verification for reinforcing steel is in accordance with Annex NN of EN 1992-2 and 
is made similarly as for structural steel on the basis of the following relation:
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Table 11.9 Fatigue verification for shear connectors

Compression flange 
(sagging bending)

Tension flange 
(hogging bending)

Shear stress ranges for 
connectors

∆τE2 from Equations 
11.39 or 11.40

∆τE2 from Equations 11.39 
or 11.40

Direct stress ranges on top 
fiber of steel flange

Equation 11.32

Damage equivalent factor Equation 11.37 Equation 11.37
Resistance at 2 million cycles ∆τC = 90 MPa ∆τC = 90 MPa

∆σC = 80 MPa
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Note: The safety factor for shear studs, designated as γMf,v, has a recommended value 1.0 recogniz-
ing that it is a secondary element and has ductile behavior that allows redistributions. For γMf,a, see 
Table  11.8. The earlier verifications are valid only if the maximum longitudinal shear force per 
headed stud does not exceed 75% of its design shear resistance PRd under the characteristic com-
bination of actions. The interaction between normal and shear stresses in hogging moment areas 
should be verified for max∆σE2 and the corresponding ∆τE2, max∆τE2 and the corresponding ∆σE2, 
min∆σE2 and the  corresponding ∆τE2, and min∆τE2 and the corresponding ∆σE2, leading to four 
verifications.
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where

 
Ds l s ssequ s s fEd s fEd, ,m ax,, ,m in,, †= ◊ -  dam age equivalent stresss for road bridges (11.42)

 
D Fs l s ssequ s i s fEd s fEd, ,m ax,, ,m in,,= ◊ ◊ -  dam age equivalent strress for railw aybridges

 (11.43)

γFs,F = 1.0 is the partial safety factor for action effects
γMs,F = 1.15 is the partial safety factor for fatigue strength
∆σR,s = 162.5 MPa is the fatigue strength for straight and bent reinforcing bars at N* = 1 

million cycles
σs,max,f,Ed, σs,min,f,Ed are maximum and minimum stresses calculated with the frequent 

combination of Table 11.2
λs are the damage equivalent factors for reinforcement
i = 2 for a carefully maintained track according to Equation 4.6
i = 3 for a track with regular maintenance according to Equation 4.7

Unlike structural steel, fatigue resistance for reinforcement is defined at one instead of two 
million cycles so that modifications are made to fatigue loading and the damage equivalent 
factors as a result of a calibration procedure that are discussed in the following.

11.8.1.1 Road bridges

The damage equivalent factor is determined by the multiplication of four partial factors 
λs,i that express the same influencing factors as for structural steel (Equation 11.18) and an 
additional factor Φfat that expresses the influence of the pavement roughness:

 l j l l l ls fat s s s s= ◊ ◊ ◊ ◊, , , ,1 2 3 4  (11.44)

with Φfat = 1.2 for regularly maintained surfaces, else = 1.4.
For straight or bent bars, the factor λs,1 accounting for the length of the critical influence 

line may be determined from the following graph (Figure 11.20):
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Figure 11.20 λs,1 values.
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The factor λs,2 accounting for traffic volume is determined from

 
ls obskQ N

,2 62 10
2= ◊

◊  (11.45)

where
Nobs is the total number of lorries per year in the slow lane (Table 11.4)
k2 = 9 is the slope of the fatigue curve for straight or bent bars
Q
–
 is a coefficient for the type of traffic with values 1.0, 0.94, or 0.82 for long dis-
tance, medium distance, or local traffic. Long distance means hundreds of kilo-
meters, medium distance means 50–100 km, and local traffic means distances less 
than 50 km

The factor λs,3 accounting for the design life of the bridge is determined from

 
ls yearsk N

,3 100
2=  (11.46)

where Nyears is the design life of the bridge in years.
The factor λs,4 accounting for traffic in other lanes may be determined from
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where
Nobs,i is the number of lorries crossing lane i per year
Nobs,1 is the number of lorries crossing the slow lane per year

11.8.1.2 Railway bridges

The traffic model for railway bridges is LM71 (or SW/0 when required) without accounting 
for factor α. For traffic on more than one track, LM71 is applied maximal on two tracks. 
The damage equivalent factor is determined in accordance with

 l l l l ls s s s s= ◊ ◊ ◊, , , ,1 2 3 4  (11.48)

The factor λs,1 may be determined for loaded lengths of the influence line between 2 and 20 
m by following the expression

 
l l l ls s s sL m m m L, , , ,( ) ( ) ( ) ( ) (log .)1 1 1 12 20 2 0 3= + -ÈÎ ˘̊◊ -    (11.49)

where
λs,1(2 m) is the value of λs,1 for L = 2 m (Table 11.10)
λs,1(20 m) is the value of λs,1 for L = 20 m (Table 11.10)
λs,1(L) is the value of λs,1 for 2 m < L < 20 m
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The factor λs,2 accounting for traffic volume is determined from

 
ls k V

,2 625 10
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◊
 (11.50)

where
V is the traffic volume in million tons/year/track
k2 = 9 is the slope of the fatigue curve for straight or bent bars

The factor λs,3 accounting for the design life of the bridge may be determined from Equation 
11.22 with m = k2.

The factor λs,4 accounts for loading on more than one track. Only two, the most unfavor-
able, tracks are loaded. The factor λs,4 may then be obtained from

 
ls k kk n n s n s, ( ) ( )4 1 21 12 22= + - ◊ + - ◊  (11.51)
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n is the traffic proportion simultaneously crossing the bridge with recommended 
value 0.12

∆σ1, ∆σ2 is the stress range in the cross section under consideration due to LM71 on 
one track

∆σ1+2 is the stress range in the same cross section under consideration due to LM71 on 
two tracks simultaneously

k2 = 9 is the slope of the fatigue curve for straight or bent bars

11.8.2 Stress ranges

In cracked regions, the stress in reinforcement is determined accounting for the influence of 
tension stiffening. Stresses and stress ranges are determined accounting for the loading type 
in the concrete slab as it is demonstrated in Figure 11.21. When the slab is constantly under 

Table 11.10 Factors λs,1 for straight or bent bars

Normal traffic Heavy traffic

L ≤ 2 m L ≥ 20 m L ≤ 2 m L ≥ 20 m

Simple-span bridges 0.90 0.65 0.95 0.70
Internal span of 
continuous bridges

0.95 0.50 1.05 0.55

End span of 
continuous bridges

0.90 0.65 1.00 0.65

Internal supports of 
continuous bridges

0.85 0.70 0.85 0.75

Note: For light traffic, the values for normal traffic may be used as an 
approximation.
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tension (Figure 11.21a), the route CD expresses the fatigue behavior of the reinforcement. 
Starting from O route, OABC defines the stress σs by taking into account the tension stiffen-
ing effect. In point C, the hogging moment reaches its minimum value Mmin,f,Ed and then it 
is decreased till Mmax,f,Ed. Thereafter, stress σs is increased again and “oscillates” between 
C and D. In some cases, sagging bending may occur (Figure 11.21b). The deck slab changes 
from cracked to uncracked and the opposite. This fatigue behavior is expressed by the route 
DOC. It is worth mentioning that the linear approximation for the fatigue behavior does 
not realistically express the real behavior of the concrete slab under repeated loading but it 
offers a conservative approach that simplifies the calculations. This is shown in Equation 
11.53 subsequently. One can also observe that the route OC does not coincide with the 
extension of OD in Figure 11.21b. This means that during repeated loading, the tensile 
strength of concrete is neglected.

The stress ranges for

• Case 1 (slab constantly under tension; see Figure 11.21a)
The minimum and maximum total moments acting on the composite section, Mmin,f,Ed 
and Mmax,f,Ed, produce tension in the slab and the reinforcement. Mmin,f,Ed and Mmax,f,Ed 
are the minimum and maximum moments calculated for the frequent combination of 
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Figure 11.21  Stress ranges in reinforcement. (a) Slab constantly under tension and (b) slab under 
tension–compression.
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Table 11.2 in case of road bridges. In railway bridges, stresses are only due to LM71 
(or SW/0 when required). The maximum tensile stress in the reinforcement due to 
maximum moment, accounting for tension stiffening, is determined from
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I
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◊
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2
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where
β = 0.2 is the β-factor of Figure 11.21
fctm is the mean tensile strength of concrete (Table 6.1)
I2,sa is the second moment of area of the fully cracked section
z2,s is the distance of reinforcement from the centroid of the fully cracked section

ast
sa sa

a a

A I
A I

= ◊
◊

2 2, ,  
(11.52b)

Aa, Ia are the area and the second moment of area of the steel section
A2,sa, I2,sa are the area and the second moment of area of the fully cracked section 

(steel  section + reinforcement) (see Figure 7.39)

REMARK 11.9

In Figure 11.21, one can see that after the initial loading, the contribution of tension stiffening 
becomes nonconstant and dependent on the magnitude of the hogging moment M; β = β(M). For 
the fatigue verifications, a fixed value equal to 0.2 is used so that the decreasing of tension 
stiffening due to fatigue loading is considered [11.7], [11.12].

The minimum tensile stress in the reinforcement according to the configuration of 
Figure 11.21a is
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The stress range may be obtained from the combination of Equations 11.52a and 11.53 as 
follows:
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• Case 2 (slab under tension–compression; see Figure 11.21b)
The design moment on the composite section Mmin,f,Ed (Equation 11.12) produces ten-
sion, while Mmax,f,Ed (Equation 11.13) produces compression in the reinforcement.

The stress range may be obtained from
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 (11.55)

where z1,s is the distance of reinforcement from the centroid of the short-term uncracked 
section.
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• Case 3 (slab constantly under compression)
The minimum and maximum design moments acting on the composite section, 
Mmin,f,Ed and Mmax,f,Ed, produce compression in the slab and the reinforcement. Stresses 
on reinforcement are determined on the basis of the uncracked section for short-term 
loading. The stress range may be obtained from
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sM M z
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1 0
 (11.56)

REMARK 11.10

 1. By taking into account, the construction sequence Equations 11.54, 11.55, and 11.56 are 
rewritten as follows [11.12]:

 a. Case 1—Mmax,f,Ed < 0 and Mmin,f,Ed < 0
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 b. Case 2—Mmax,f,E > 0 and Mmin,f,E < 0
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 c. Case 3—Mmax,f,Ed > 0 and Mmin,f,Ed > 0 
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where
M1,Ed is the design bending moment due to all actions except fatique traffic loads 

acting on the uncracked composite section (state 1)
M2,Ed is the design bending moment due to all actions except fatique traffic loads 

acting on the fully cracked composite section (state 2)
Mmin,f is the minimum moment due to fatigue loading
Mmax,f is the maximum moment due to fatigue loading

 2. Deck slabs are also subjected to local fatigue loadings due to the presence of the 
concentrated wheel loads. Therefore, the fatigue verification in Equation 11.41 should be 
fulfilled in combination with Equations 11.42 for road bridges and 11.43 for railway bridges. 
Fatigue due to local effects may be surprisingly high for the reinforcement located in slabs 
near composite crossbeams (see Figure 2.17). Additional bending moments due to wheel 
loads can be calculated using Pucher’s method. However, FE methods as described in 
Section 7.5 are recommended.
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 3. It is important to note that the damage equivalent factor λs,1 for local effects is calculated 
for a different influence length than for global effects. If the length of the influence line is 
difficult to be found, then a conservative assumption is unavoidable. λs,2, λs,3, and λs,4 are 
the same for both local and global effects.

11.9 FATIGUE VERIFICATION FOR CONCRETE

Fatigue verification should be made for concrete under compression. Stresses refer, therefore, 
only to the uncracked section. The fatigue strength of concrete is given by

 
f e f f
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where
t0 is the concrete age at first loading in days
fck is the concrete strength in MPa
s is a factor in dependence of the hardening rate of concrete. It is equal to 0.2, 0.25, or 

0.38 for cements of rapid, normal, or slow hardening rate

The verification procedure is summarized in Table 11.11.

REMARK 11.11

• For the great majority of composite bridges, the fatigue verification for concrete will not 
be critical. This may not be the case in small span composite bridges where traffic loads 
govern the design.

• The verification procedure in Table 11.11 is according to EN 1992-1-1 and reference for 
this is given in EN 1994-2. The fatigue assessment of compressed concrete found in Annex 
NN of EN 1992-2 is not valid for composite bridges.

Table 11.11 Fatigue verification procedure for concrete

Nonfatigue loading Fatigue loading

Moments All loads except fatigue loading —

Mperm (frequent combination in Table 11.2)

Stresses (compression) s sc
c

c
cz

I n
z

I
,max

,
,min

,

,= ◊
◊

= ◊
◊

M Mperm perm
n1 0 0 1 0 0

Tension stresses are set to zero (0).
Verifications s sc

cd fat

c

cd fatf f
,max

,

,min

,

. .£ + ◊0 5 0 45  and (11.58)

sc

cd fatf
,max

,

.£ 0 9 if fck ≤ 50 MPa (11.59)

Note: I1,0, second moment of area of the uncracked section; zc, distance of the extreme concrete fiber 
from the centroid of the uncracked section; n0, short-term modular ratio of concrete; σc,min should be 
taken as zero if negative (in tension).
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11.10 POSSIBILITIES OF OMITTING FATIGUE ASSESSMENT

Fatigue assessment may be omitted when the following conditions are met:

• Pedestrian bridges, canal bridges, etc., that are predominantly statically loaded and 
are unlikely to be excited by wind loading

• Secondary parts of road and railway bridges that are not stressed by traffic loads nor 
are excited by wind

• Main girders and their attachments of road bridges when the detail category is at least 
71 and the span larger than 45 m

Accordingly, the following parts of road bridges with spans larger than 45 m are not required 
to be assessed for fatigue:

• Main girders from rolled sections in unspliced regions (detail categories 100–160, 
Table 8.1 in EN 1993-2, details 1–7)

• Plate and box main girders from built-up welded sections in unspliced regions (detail 
categories 71–125, Table 8.2 in EN 1993-2, details 1–11)

• Main girders in bolted splice regions with preloaded, fitted, or injection bolts, including 
bolts in shear (detail categories 80–112, Table 8.1 in EN 1993-2, details 8–12 and 15)

• For nominal stress ranges γFf · ∆σ ≤ 26/γMf [MPa]

• For numbers of loading cycles N M f

Ff E
£ ◊ ◊

◊
È
ÎÍ

˘
˚̇

2 10 366

2

/g
g sD

• For detail categories in which ranges γFf · ∆σ ≤ ∆σD/γMf

EXAMPLE 11.1

A road bridge carrying three lanes, out of which two are slow, has a concrete deck supported by 
two plate girders with dimensions shown in Figure 11.22. The bridge is continuous with two spans 
of 25 m each. It is part of a long-distance motorway with high flow rates of lorries. The girders are 
spliced by welding at a distance 16.25 m from the end support. The concrete is cast in one phase. 
The self-weight of superstructures is 37 kN/m length, equally divided in the two main girders.

Slow lane*
3.5 m

Slow lane*
3.5 m 3.5 m

3.4 m3.4 m

30
 cm

7.0 m

ρs,o = 1.3%
ρs,u = 0.8%

Mid-span Intermediate
support

16.25 m
25 m 25 m

Sp
lic

e

Longitudinal view

Cross section

Pl. 300   40
Pl. 1200  15

Pl. 500   40

*Slow lane = Lane with heavy traffic

Figure 11.22 Cross section of the road bridge of Example 11.1—longitudinal view and splice position.
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The fatigue resistance of the bridge at the splice cross section is to be verified for a design 
life of 100 years.

Concrete C35/45. Steel grades for structural steel, reinforcing steel, and shear connectors 
are not relevant for fatigue assessment.

Global analysis

A grillage model is used for global analysis. The longitudinal beam elements represent the 
composite girders that are composed of the steel girders and the associated effective width 
of the slab. The transverse beams represent the concrete slab (see Section 7.1.3). Cracked 
analysis is employed, with cracked sections in the region 0.15 · 25 = 3.75 m on the left and 
right side of the internal support. The properties of the uncracked section for short-time 
loading and the cracked section for hogging bending are given in Table 11.12. The longitudinal 
reinforcement ratio at hogging moment areas is 2.1%. For the top layer, it is 1.3% and for the 
bottom layer 0.8%.

The section properties in Table 11.12 were calculated with an effective width of 312.5 cm, 
which corresponds to hogging bending (see Figure 7.34). However, the cross section is not 
always under negative moments. Adopting the smallest value of beff for the cross-sectional prop-
erties is a conservative approach and in similar cases is recommended. Alternatively, different 
effective width values depending on the sign of Mperm should be used; this makes calculation 
quite laborious, but it may lead to a more economical design due to lower stresses in sagging 
bending areas.

The self-weight of the steel girder and the concrete slab act at the steel section of the gird-
ers and are not considered for fatigue. Global analysis is performed for the load cases that are 
relevant for fatigue, which are the self-weight of superstructures, G2; temperature difference 
∆TM,cool = 18°C (∆TM,heat is less critical); and the secondary effects of shrinkage, Ssec, and of creep, 
Csec, for 30,000 days. For traffic loads, load model 3 (FLM3) is used. This is positioned in longitu-
dinal and transverse direction in such a way to deliver the most adverse maximum and minimum 
moments of the composite girders at the cross section under consideration. For the correct 
position in longitudinal direction, the influence line of the moment is determined as shown in 
Figure 11.23. The four axle loads of FLM3 are then placed separately for maximum and minimum 
moments. In transverse direction, two slow lanes of 3.0 m width each are considered and the 
wheel loads applied (Table 11.13).

Table 11.12 Properties of uncracked and cracked section of the composite girders

A [m2] I [m4] zao [m] zau [m] zs [m] zc [m]

Steel section 500 · 10−4 1.40 · 10−2 −0.739 0.541 – –
Uncracked 
(short term)

1995.54 · 10−4 4.47 · 10−2 −0.073 1.207 −0.313 −0.373

Cracked 
(steel + reinf.)

696.9 · 10−4 2.58 · 10−2 −0.482 0.798 −0.722 −0.782

Note: I, second moment of area; z, distances of selected fibers from centroid of the section 
(+, downward; −, upward); ao, top fiber of top flange; au, bottom fiber of bottom flange; s, top 
reinforcement layer; c, top fiber of concrete slab.
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Fatigue assessment of steel girder

Beforehand, direct stress and the shear stress ranges due to frequent loads (ψ1 · Qk) are  calculated 
and limited to 1.5 · fy and 1 5 3. /◊fy  correspondingly. For the fatigue assessment, stresses and stress 
ranges will be determined at the top and bottom fibers of the steel girder, points “ao” and “au.”

The resulting moments for the combinations of actions relevant for fatigue (Table 11.1) 
are as follows:

• Combination G + Csec + Ssec + 0.6 · ∆TMcool + FLM3
  This combination gives minimum values of moments due to permanent loads:

 
M kN mperm,min = - - - = -600 802 961 671 1834 -

 M kN mfmin, =-449 -

 M kN mfmax, =1434 -

  Equation 11.16: M M M kN mf Ed perm fmin, , ,min min,= + =- - =-1834 449 2283 -

  Equation 11.17: M M M kN mf Ed perm fmax, , ,min max,= + =- + =-1834 1434 400 -
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Figure 11.23 Position of LM3 in longitudinal and transverse direction.

Table 11.13 Moments and shear forces of girder at splice section

Action
Notation

Superstructures
G2

Temperature 
difference
∆TM,cool

Shrinkage 
secondary

Ssec

Creep 
secondary

Csec

FLM3

Max Min

Moment [kN-m] 600 −1336.67 −961 −671 1434 −449
Shear force [kN] −113 −68.33 −52 −37 −248 −33
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  Both moments are negative and cause tension in the slab so that stresses are deter-
mined for the cracked section. Stress ranges may then be determined in accordance with 
Equation 11.32.

   Top flange, point “ao”
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  Bottom flange, point “au”

 
s smax, , min, ,

.
.

.f Ed f Ed- = - - -( )◊ ◊
◊ =-2283 400

0 798
2 58 10

1
10

5 822 4  kkN cm/ 2

  Alternatively, Equation R11.3 can be used.
• Combination G + Csec + Ssec + FLM3

  This combination gives maximum values of moments due to permanent loads:

 M kN mperm,max = - - = -600 961 671 1032 -

 M kN mfmin, = -449 -

 M kN mfmax, =1434 -

  Equation 11.14: M M M kN mf Ed perm fmin, , ,max min,= + = - - = -1032 449 1481 -

  Equation 11.15: M M M kN mf Ed perm fmax, , ,max max,= + = - + =1032 1434 402 -

  Minimum moment causes tension, and maximum moment compression in the slab so that 
stresses are determined for the cracked and correspondingly uncracked section. Stress 
ranges are then determined in accordance with Equation 11.33.
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  Alternatively, Equation R11.4 could be used.
   Subsequently, the damage equivalent factors λi will be determined.

• Factor λ1

  The system is a continuous beam. The critical length for the moments is equal to the span 
length Li of the considered span (Table 11.3). → L = 25 m:

Equation 11.19: l1 2 55 0 7
25 10

70
2 4= - ◊ - =. . .
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• Factor λ2

  The average gross weight of lorries in the slow lane may be determined from fatigue load 
model 4 (FLM4) that is represented from the distribution in Table 11.14:
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  Total number of lorries per year in the slow lane (Table 11.4): Nobs = 2.0 · 106:

  Equation 11.21: l2
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• Factor λ3

  Design life of the bridge tLd = 100 years:

  Equation 11.22: l3
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• Factor λ4

  Number of lanes with heavy traffic k = 2
  The values of the influence line for slow lanes (Figure 11.23) are assumed to be deter-

mined from a linear distribution among the main girders. The average gross weight of 
lorries and the number of lorries per year are assumed to be equal for both slow lanes:

  Equation 11.23: l4
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• Factor λmax, Figure 11.16

  Equation 11.24: lmax . .= - ◊ - =2 5 0 5
25 10

15
2

  Damage equivalent factor, Equation 11.18: λ = 2.4 · 1.224 · 1 · 1.01 = 2.97
  It is λ > λmax so that finally λ = 2.

• Damage equivalent stress ranges, Equation 11.26
  Top flange “ao”: DsE kN cm2

22 3 52 7 04= ◊ =. .  /

  Bottom flange “au”: DsE kN cm2
22 5 82 11 64= ◊ =. .  /

• Fatigue resistance
  The flange plates at the splice position are welded from both sides by transverse butt 

welds. The welds are ground flush to plate surface and tested by nondestructive methods. 
The detail may be then classified in detail category 112. The thickness of the flange plates 
is 40 mm > 25 mm (see Figure 11.11).

  Reduction factor for size effect:
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0 91
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.

  Fatigue resistance:

 DsC kN cm= ◊ =0 91 11 2 10 19 2. . .  /
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• Fatigue assessment
  Partial safety factor for action effects: γFf = 1.0
  Main girder with high failure consequences. Safe life assessment method
  Partial safety factor for fatigue resistance (Table 11.8): γMf,a = 1.35

  Equation 11.34: Top flange: 1 0 7 04
10 19
1 35

7 55 2. .
.
.

.◊ £ =  /kN cm  (sufficient)

  Equation 11.34: Bottom flange: 1 0 11 64
10 19
1 35

7 55 2. .
.
.

.◊ > =  /kN cm  (not sufficient)

Fatigue assessment of shear connectors

• Stress ranges
  The maximum longitudinal shear force per headed stud under the characteristic combina-

tion of actions should be calculated and compared to the 75% of the studs’ shear resistance 
(see Table 12.1 and notes in Table 11.9). It is assumed that this shear force is below 75% · PRd.

   Diameter of shear connectors 22 mm: A md = ◊ = ◊ -p 0 022
4

3 8 10
2

4 2.
.

   In the splice region, n = 4 connectors are placed in the cross section at a longitudinal 

spacing eL = 350 mm.
   Modular ratio of concrete for short-term loading (Table 6.4): n0 = 6.18
   Static moment of the slab (beff = 312.5 cm) + reinforcement:

  

Sc,
. .

.
. % . . .

.
0

3 125 0 3
6 18

2 1 3 125 0 3 0 373
0 3
2

= ◊ + ◊ ◊( )È
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˘
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◊ -Ê
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ˆ
¯̃
== ◊ -3 82 10 2 3.  m

Note: In the static moment Sc,0, the reinforcement was considered as concentrated in the 
centroid of the slab; this is a common simplification. If the reinforcement is neglected, a 
12% smaller static moment is calculated. This leads to underestimation of shear stresses.

  Stress range, Equation 11.38:
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• Damage equivalent factors

 Factor lv, .1 1 55=
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  Damage equivalent factor, Equation 11.37: λv = 1.55 · 1.13 · 1 · 1 = 1.75
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• Damage equivalent stress range
  Equation 11.39: DtE2

21 75 4 23 7 4= ◊ =. . . kN cm/

• Fatigue assessment
  Fatigue strength:

 Dtc MPa= 90 

  Table 11.9: 1 0 7 4
9

1 0
9 2. .

.
( )◊ < =  /  kN cm sufficient

For the direct stresses, the cross section is considered as fully cracked:
• Combination G + Csec + Ssec + 0.6 · ∆TMcool + FLM3

  Equation 11.32:

 
s smax, , min, ,

.
.

.f d fE - = - - -( )◊ ◊
◊ =-Ed  400 2283

0 482
2 58 10

1
10

3 522 4 kkN cm/ 2

   Table 11.9: DsC MPa=80  

  From previous calculations: la =2 0.

 
DsE2

2 22 0 3 52 7 04 1 0 7 04
8 0

1 35
5 93= ◊ = Æ ◊ > =. . .  /  /  kN cm kN cm no. .

.
.

. ( tt sufficient )

  Interaction is not checked. In case of sufficient verifications, the characteristic combina-
tion G + Csec + Ssec + FLM3 should be investigated as well.

Note: It is reminded that shear studs should be verified for all four possible combinations for 
different values of ∆σ and ∆τ (see notes in Table 11.9).

Fatigue assessment of reinforcing steel

Global effects

For the noncyclic part, the frequent combination in Table 11.2 is applied. Indicatively, the fol-
lowing four combinations will be verified:

Combination 1a:

 
G C S TS UDL q FLcool fk+ + + ◊ + ◊ + ◊ + ◊( )+ ◊sec sec . . . . .0 5 0 75 0 40 0 4 1 40DTM MM3

 M kN mperm,min . . .= - - - - = -600 668 3 961 671 3200 4 4900 7 -

 
M kN mfmin, . .= ◊ -( )= -1 4 449 628 6 -

 M kN mfmax, . .= ◊ =1 4 1434 2007 6 -

 Equation 11.16: M kN mf Edmin, , . . .= - - = -4900 7 628 6 5529 3 -

 Equation 11.17: M kN mf Edmax, , . . .= - + = -4900 7 2007 6 2893 1 -
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Combination 1b:

 
G C S TS UDL q FLMfk+ + + ◊ + ◊ + ◊( )+ ◊sec sec . . . .0 75 0 40 0 4 1 40 3

 M kN mperm,max . .= - - - = -600 961 671 3200 4 4232 4 -

 
M kN mfmin, . .= ◊ -( )= -1 4 449 628 6 -

 M kN mfmax, . .= ◊ =1 4 1434 2007 6 -

 Equation 11.14: M kN mf Edmin, , . .= - - = -4232 4 628 6 4861 -

 Equation 11.15: M kN mf Edmax, , . . .= - + = -4232 4 2007 6 2224 8 -

Combination 2a:

 G C S FLMcool+ + + ◊ + ◊sec sec . .0 5 1 40 3DTM

 M kN mperm,min . .= - - - = -600 668 3 961 671 1700 3 -

 M kN mfmin, . ( ) .= ◊ - = -1 4 449 628 6 -

 M kN mfmax, . .= ◊ =1 4 1434 2007 6 -

 Equation 11.16: M kN mf Edmin, , . . .= - - = -1700 3 628 6 2328 9 -

 Equation 11.17: M kN mf Edmax, , . . .= - + =1700 3 2007 6 307 3 -

Combination 2b:

 G C S FLM+ + + ◊sec sec .1 40 3

 M kN mperm,max = - - = -600 961 671 1032 -

 
M kN mfmin, . .= ◊ -( )= -1 4 449 628 6 -

 M kN mfmax, . .= ◊ =1 4 1434 2007 6 -

 Equation 11.14: M kN mf Edmin, , . .= - - = -1032 628 6 1660 6 -

 Equation 11.15: M kN mf Edmax, , . .= - + =1032 2007 6 975 6 -
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Notes:
• In the previous combinations, the noncyclic traffic load is treated as the leading variable 

action for the frequent combination given in Table 11.2. However, fatigue may be devel-
oped without the influence of the traffic load gr1a. For this reason, gr1a in combinations 
2a and 2b has been omitted.

• In combinations 1a and 1b, FLM3 has been multiplied with 1.40 because the position for 
which the verification is conducted is outside the cracked length (=15% · L) (see notes in 
Table 11.2).

• It may be seen that for both combinations 1a and 1b, tension in the reinforcement is 
produced. The stress ranges will be therefore determined by the procedure of case 1 in 
accordance with Section 11.8.2. For combinations 2a and 2b, one moment produces ten-
sion, and the other compression in the reinforcement. The stress ranges will be therefore 
determined by the procedure of case 2.

Equation 11.52b: ast =
◊
◊

=696 9 2 58
500 1 4

2 57
. .

.
.

Case 1 for combination 1a (slab constantly under tension), Equation 11.54:
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Case 1 for combination 1b (slab constantly under tension), Equation 11.54:
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Case 2 for combination 2a (slab tension–compression), Equation 11.55:
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Case 2 for combination 2b (slab tension–compression), Equation 11.55:

 

s ss f Ed s f Ed,max, , ,min, , .
.

.
.

.- = ◊
◊

+ - ◊-975 6
0 313

4 47 10
1660 6
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  /MPa kN cm

Subsequently, the damage equivalent factors λs,i will be determined.

• Factor λs,1

  Span of continuous bridge, L = 25 m, Figure 11.20: λs,1 = 1.17
• Factor λs,2

  For long-distance traffic: Q
–
 = 1

   Equation 11.45: ls,2

6

6
91

2 10
2 10

1= ◊ ◊
◊

=

• Factor λs,3

  Design life of the bridge tLd = 100 years.

   Equation 11.46: ls,

/

3

1 9
100
100

1= Ê
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ˆ
¯̃

=
• Factor λs,4

  For two slow lanes, Equation 11.47:

 
ls,

( )
.4

6

6
9

2 2 10
2 10

1 08= ◊ ◊
◊

=

	 	 Φfat = 1.2 for normal roughness of the pavement layer
  Damage equivalent factor, Equation 11.44: λs = 1.2 · 1.17 · 1 · 1 · 1.08 = 1.52

• Damage equivalent stress ranges, Equation 11.42
  Combination 1a: ∆σs,equ,glob = 1.52 · 8.45 = 12.84 kN/cm2

  Combination 1b: ∆σs,equ,glob = 1.52 · 8.75 = 13.3 kN/cm2

  Combination 2a: ∆σs,equ,glob = 1.52 · 7.92 = 12.04 kN/cm2

  Combination 2b: ∆σs,equ,glob = 1.52 · 6.52 = 9.91 kN/cm2

Local effects

The stress range in the reinforcement calculated with FE from the passage of FLM3 is deter-
mined as ∆σ = 4.8 kN/cm2. The influence line is based on the conservative assumption that 
λs,1,loc = λs,1,glob = 1.17.

Damage equivalent factor, Equation 11.44: λs = 1.2 · 1.17 · 1 · 1 · 1.08 = 1.52
Damage equivalent stress ranges, Equation 11.42: ∆σs,equ,loc = 1.52 · 4.8 = 7.3 kN/cm2

Combined loading due to local and global effects

Combination 1a: ∆σs,equ = 12.84 + 7.3 = 20.14 kN/cm2

Combination 1b: ∆σs,equ = 13.3 + 7.3 = 20.6 kN/cm2

Combination 2a: ∆σs,equ = 12.04 + 7.3 = 19.34 kN/cm2

Combination 2b: ∆σs,equ = 9.91 + 7.3 = 17.21 kN/cm2
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• Fatigue assessment, Equation 11.41

  Combination 1a: 1 0 20 14 20 14
16 25
1 15

14 13 2. . .
.
.

. †( )◊ = > =  /  kN cm not sufficient

  Combination 1b: 1 0
16 25
1 15

14 13 2.
.
.

. ( )◊ = > =20.6 20.6  /  notkN cm sufficient

  Combination 2a: 1 0 19 34 19 34
16 25
1 15

14 13 2. . .
.
.

. ( )◊ = > =  /   kN cm not sufficient

  Combination 2b: 1 0 17 21 17 21
16 25
1 15

14 13 2. . .
.
.

. ( )◊ = > =  /   kN cm not sufficient

Fatigue assessment of concrete

More critical are the combinations leading to the largest compression stresses in concrete. 
These are those without temperature, creep, or shrinkage:

 
G TS UDL qfk+ ◊ + ◊ + ◊( )0 75 0 40 0 4. . .

The noncyclic traffic load is placed in the most unfavorable position giving a positive bending 
moment equal to 3396 kN-m.

Mperm = 600 + 3396 = 3996 kN-m

Maximum concrete stress: sc kN cm,max
.

. .
.= ◊

◊ ◊
◊ =-

-3996
0 373

4 47 10 6 18
10 0 462

4 2/

Minimum concrete stress: sc kN cm,min = 0 2/  (conservative assumption)

Concrete age at first loading: t0 = 28 days

Concrete C35/45: fck = 35 MPa, f MPacd = =
35
1 5

23 3
.

.  

Cement of normal hardening rate: s = 0.25
Fatigue strength of concrete, Equation 11.57:

 
f ecd fat,

.

. . .= ◊ ◊ ◊ -Ê
ËÁ

ˆ
¯̃
=

◊ -
Ê

Ë
ÁÁ

ˆ

¯
˜̃

0 85 23 3 1
35
250

17 03
0 25 1

28
28    /MPa kN cm=1 7 2.

• Fatigue assessment (Table 11.11)
  fck < 50 MPa:

 

s sc

cd fat
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cd ff
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. . .
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0 27 0 5 0 45
0

1 7
0 5

aat
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EXAMPLE 11.2

In the bridge of Example 11.1, crossbeams are provided at every 1/3 of the span to support 
the lower flange from lateral torsional buckling. The beams have an IPE 300 cross section in 
the span region. The flanges of the crossbeams are butt welded to the transverse frames, 
and their web fillet welded to them (Figure 11.24). The fatigue assessment of this connection 
is to be made for the beam that is placed at a distance 1/3 · 25 = 8.33 m from the internal 
support.

The relative vertical displacements w1–w2 between girders 1 and 2 at the cross section 
under consideration have a maximum value of 6.6 mm and a minimum value of −1.8 mm when 
the vehicle of FLM3 crosses the bridge. The relative displacements result in end moments 
Mmax,f = 1.78 kN-m and correspondingly Mmin,f = − 0.492 kN-m at the crossbeam, as well as 
shear forces Vmax,f = 0.508 kN and Vmin,f = −0.141 kN.

• Fatigue assessment of the flanges connection
  The area of the IPE 300 flanges is Af = 15 · 1.07 = 16.05 cm2.
   The entire moment is associated to the flanges. The stress range is determined from

 
s smax, , min, , ( . )

. ( . )
.f Ed f Ed- = - -ÈÎ ˘̊◊

◊ -
=178 49 2

1
16 05 30 1 07 2

0 9
/

88 2kN cm/

  According to Table 11.3, the critical length for cross girders is the sum of the two adjacent 
spans of the stiffeners → L = 2 · 8.33 = 16.66 m.

  Equation 11.19: l1 2 55 0 7
16 66 10

70
2 48= - ◊ - =. .

.
.

  Example 11.1: l l l2 3 41 224 1 0 1 01= = =. , . , .

  Equation 11.24: lmax . .
.

.= - ◊ - =2 5 0 5
16 66 10

15
2 278

–0.492 kNm
[M]

w1
w2

3

111511

1.78 kNm

Figure 11.24 Crossbeams and their connection to the transverse frames.



484 Design of steel–concrete composite bridges to Eurocodes

  Damage equivalent factor, Equation 11.18: λ = 2.48 · 1.224 · 1 · 1.01 = 3.07
  It is λ > λmax so that finally λ = 2.278.
   Equivalent stress range, Equation 11.26: ∆σE2 = 2.278 · 0.98 = 2.23 kN/cm2

  Detail category
  The flanges are butt welded to the cross stiffeners. From Figure 11.10,
  l = 11 · 2 + 15 = 37 mm (Figure 11.24) < 50 mm → detail category 80
  Fatigue assessment, Equation 11.34
  Partial safety factor for action effects γFf = 1.0
   Main girder with low failure consequences. Safe life assessment method
   Partial safety factor for fatigue resistance (Table 11.8): γMf = 1.15

  
1 0 2 23

8 0
1 15

6 97 2. .
.

.
.◊ £ =  /  ( )kN cm sufficient

• Fatigue assessment of the web connection
  The entire shear force is associated to the web welds. The stress range is determined 

from the following relation:

 
max . .

. (
max, , min, ,

max, min,t tf Ed f Ed
f f

v

V V
A

-( )= ◊ - = ◊ - -
1 5 1 5

0 508 0.. )
.

.
141

2 0 3 24
0 068 2

◊ ◊
=  /kN cm

  Stress ranges, Equation 11.27: ∆τE2 = 2.278 · 0.068 = 0.15 kN/cm2

  Detail category 80 for shear stresses, Figure 11.9

  Fatigue assessment, Equation 11.35: 1 0 0 15
8

1 15
6 96 2. .

.
.◊ < = ( ) /  kN cm sufficient

11.11 RESIDUAL STRESSES AND POSTWELD TREATMENT

A welded joint contains a number of zones that differ from the base material due to metal-
lurgic changes that develop during and near after the welding process (Figure 11.25). These 
zones are the following:

• The weld metal zone that consists of an alloy formed by the melted base material, the 
electrode material, and/or filler material.

• The fusion zone.
• The heat affected zones in which the base material does not undergo melting. However, 

the nonuniform distribution of the temperature due to heating and cooling lowers the 
strength and the ductility of the individual sections and causes residual stresses in both 
directions x and y.

• The zone in which the properties of the base material remain unchanged.

The residual tensile stresses exceed the yield limit of the structural steel and contribute to the 
transition of internal cracks from one zone to another during a dynamic excitation: brittle 
failure. Grinding of the weld toe region reduces the stress concentration and improves the 
fatigue life. Indeed, after taking a closer look in Figure 11.11, one can observe that ground 
welded connections have 25%–40% higher fatigue strength than the nongrounded ones.
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Weld grinding is only one of the many post-weld treatment techniques. Another effective 
method is the introduction of compressive residual stresses by hammer peening [11.15]. 
This reduces the tensile residual stresses and obviously delays the formation of cracks. EN 
1993-1-9 does not provide any guidelines for the estimation of the fatigue strength improve-
ment due to these techniques, and approval is needed.
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Figure 11.25 Nonuniform temperature distribution due to welding and corresponding residual stresses.
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Chapter 12

Shear connection

12.1 INTRODUCTION

When a concrete slab rests on a steel girder without any connection, it deflects like the girder 
but has its own neutral axis so that its top fibers shorten while its bottom fibers elongate. 
The fibers of the steel girder are also subject to similar displacements in longitudinal direc-
tion, so a differential displacement appears at the concrete–steel interface (Figure 12.1a) 
due to the fact that the bottom fiber of the slab elongates, while the top fiber of the girder 
shortens. If the differential displacements at the interface are restraint, the slab and the 
girder behave as a composite girder with a single neutral axis (Figure 12.1b). The restraint is 
provided by shear connectors, while any natural bond between concrete and steel is ignored. 
The shear connectors transfer a longitudinal shear that develops due to vertical shear. In 
the case of box girder bridges an additional transverse shear (Figure 9.4d) is developed and 
resisted by the shear connectors. If the shear connection ensures the full development of the 
moment resistance of the composite member, it is characterized as full, otherwise as partial. 
This chapter presents the rules for design of the shear connection, which must be a full con-
nection for bridges designed by the rules of EN 1994-2 [1].

Shear connectors could be also subjected to direct tension. This may be the result of frame 
action between the slab and the girder, where the support moment M is transferred from 
the slab through the shear studs to the girder web (Figure 12.2). The support moments are 
very small due to the high flexibility of the web. However, higher moments, and therefore 
tension forces in the connectors, may develop at places of cross frames or transverse stiffen-
ers. Frame action and tension in the shear connectors may be neglected if the stiffeners or 
the elements of the cross frame are welded by butt welds to the girder flange and if the slab 
is modeled and designed by introduction of hinges at its junctions with the girders or girder 
webs (for box sections).

Figure 2.22 shows the most usual configuration of composite box girders, where the slab 
is on top of the steel girder and the connectors are welded to the top flange. At internal sup-
ports of continuous bridges, the bottom rather than the top flange is in compression. It could 
then be advantageous to provide in the zone of negative moments concrete in the bottom 
flange to create a double composite action rather than stiffening the bottom flange (Figure 
2.22b). The shear connection between the bottom plate and the concrete may be provided 
by studs welded on both the bottom plate and the web. The studs on the web are almost 
horizontal, depending on the web inclination.

Another type of double action is indicated in Figure 12.17. The top flange and its concrete 
are the compression flange of the girder in longitudinal direction and simultaneously act as 
a composite plate in transverse direction. This composite plate carries directly the traffic 
loads, where the steel plate is the lower reinforcement of the concrete slab.
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12.2  RESISTANCE AND DETAILING OF HEADED 
STUD SHEAR CONNECTORS

12.2.1 General

Among the various types of shear connectors, EN 1994-2 provides design rules only for 
headed studs welded to the steel girder but gives the possibility to use other types if relevant 
information is given in National Annexes. Headed stud shear connectors have sufficient 
deformation capacity, their mechanical behavior being regarded as ductile, allowing any 
inelastic redistribution of shear forces between them. Headed studs have a shank, a head, 
and a weld collar. The stud is supposed to be automatically welded to the steel element by 
appropriate machines. The diameter of the stud, d, is the diameter of the shaft; the height, 
hsc, is the overall height, which must be not smaller than three times the diameter. By provi-
sion of minimum dimensions for the head as given in Figure 12.3, uplift separation between 
the slab and the girder is prevented. The diameter of the stud should not be larger than 
2.5 times the thickness of the flange to which it is welded.

Verifications for the shear connection refer to

• Ultimate limit states (ULS)
• Serviceability limit states (SLS), under characteristic combinations of actions
• Fatigue limit states (FLS); see Chapter 11

Neutral axis

Neutral axis

Neutral axis

(a)

ss

s ≈ 0

(b)

Figure 12.1 Girders in flexure (a) without and (b) with full shear connection.

Transverse
stiffeners

Detail A (rigid joint)

A

Ften

Figure 12.2 Tension forces in studs.
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12.2.2 Shear resistance of vertical studs

The shear resistance of headed studs for the various limit states is given in Table 12.1.
Table 12.2 shows the shear resistance PRd at ULS for solid slabs, calculated in accordance 

with the analytical expressions of Table 12.1. They are valid for shear connectors with 
hsc ≥ 4 · d, which is the most usual case for composite bridges. One can see that for shear 
connectors with fu = 450 MPa, the stud’s resistance is determined from the shear failure at 
stud shank toe (PRd,1). For fu = 500 MPa and for the concrete quality C30/37, the stud’s shear 
resistance is determined from the crushing of concrete around the shank (PRd,2); for all the 
other concrete qualities, the stud’s shank toe is the weakest component. Obviously, crushing 
of concrete is the less ductile failure mode and this is one important reason why the lowest 
concrete quality for composite bridges should be C35/45.

In case of partially or fully precasted slabs, the minimum thickness of the infill (es in Figure 
12.4) around the shear connectors should be such that concrete can be cast properly. EN 
1994-2 gives no further recommendations. However, it is recommended to reduce the shear 
resistance PRd through the kp-factor of Figure 12.4 for infill thicknesses lower than 25 mm 
[12.2]. For totally prefabricated slabs with pockets and shear connectors arranged in groups, 
the inclination of the side openings of the pockets should be lower than 10°, otherwise an 
additional reduction of the shear resistance by 20% is necessary. If there is no detailed guid-
ance in the National Annex for the use of prefabricated slabs in composite bridges, then both 
static and fatigue tests may be required to demonstrate a satisfactory performance.

12.2.3 Tensile loading

In the presence of design tensile forces Ften, the shear resistance is not reduced if Ften ≤ 0.1 · PRd. 
The current design rules do not cover cases where Ften > 0.1 · PRd. Excessive tensile forces in 
the studs may arise in locations of bracings and plated diaphragms in closed box-girder 
bridges; see Figure 2.20. In order to avoid concrete’s pullout failure, the strengthening solu-
tion of Figure 12.5 with welded plates and horizontal studs can be described as an appropri-
ate one. Such a detailing ensures a safe transmission of local forces from steel to concrete by 
avoiding additional punching reinforcement.

For studs directly
located over the web:

d ≤ 2.5   t

Weld collar
(acc. to EN 13918)

Steel plate

Shank

Head
≥1.5  d

≥0.4  d

≥0.2   d
t

h s
c ≥

 3
.0

  d

≥1.25  d

Figure 12.3 Dimensions of headed studs.
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Table 12.1  Shear resistance of headed studs in solid slabs for various limit 
states

Failure mode 1 Shear at stud shank toe

P
f d

Rd
u

v
,

. ( )
1

20 8 4= ◊ ◊ ◊p
g

/ (12.1)

Failure mode 2 Crushing of concrete around the shank

P
d f E

Rd
ck cm

v
,

.
2

20 29= ◊ ◊ ◊ ◊a
g

(12.2)

Shear resistance at ULS PRd = min{PRd,1, PRd,2} (12.3)
Shear resistance at SLS PRd,ser = ks · PRd = 0.75 · PRd (12.4)
Shear resistance at FLS See Chapter 11

Parameters a = ◊ +Ê
ËÁ

ˆ
¯̃

£ £0 2 1 3 4.
h
d

for
h
d

sc sc (12.5)

a = >1 4for
h
d
sc (12.6)

γv = 1.25 partial safety factor

Notes:

d is the diameter of shank, but 16 mm ≤ d ≤ 25 mm and d ≤ 2.5 · tao.
tao is the thickness of the top steel flange.
fu is the specified nominal strength of stud material but ≤500 MPa.
fck is the cylinder strength of concrete (Table 6.1).
hsc is the height of stud, Figure 12.3.

Table 12.2  Shear resistance PRd (kN) of headed studs with hsc/d ≥ 4 in solid slabs 
at ULS

Shank 
diameter 
d (mm)

Minimum 
hsc (mm)

fu = 450 MPa and 
C30/37 to C60/75 
(Failure of shank)

fu = 500 MPa and

C30/37 
(Concrete crushing)

C35/45 to C60/75 
(Failure of shank)

25 100 141.30 144.27 157.00
22 88 109.42 111.73 121.58
19 76 81.61 83.33 90.68
16 64 57.88 59.09 64.31

Partially
prefabricated slab

Totally
prefabricated slab

θ tan θ ≤ 0.20

1.0
0.85

10

κp

25

es (mm)

eses

PRd,p = κp  PRd,solid

Pocket for shear connectors

Figure 12.4  Reduction factor kp for prefabricated deck slabs. (From Composite Bridge Design for Small and 
Mediums Spans, Design Guide, ECSC Steel Programme, 2002.)
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It is noted that for headed studs under tension and subjected to fatigue loadings, the 
diameter d (Figure 12.3) should not exceed 1.5 times the thickness of the flange to which it 
is welded.

12.2.4 Detailing of shear connectors

There exist certain detailing rules in respect to the spacing of shear connectors in longitudi-
nal and transverse direction, the distance between transverse reinforcement and the lower 
side of the head of studs, and the edge distance of the stud from the steel flange. Where the 
slab has haunches, the sides of the haunch must lie outside a line drawn at 45° from the out-
side edge of the stud. In addition, transverse reinforcement must be provided at the haunch. 
The detailing rules are given in Table 12.3.

12.2.5 Horizontal arrangement of studs

The estimation of the studs’ shear resistance according to Tables 12.1 and 12.2 is only valid 
when splitting forces are developed transverse to the direction of the slab thickness, in other 
words, for vertically arranged studs. However, in many cases, studs have to be placed in a 
horizontal arrangement and welded to the web(s) of the steel cross section; see Figures 2.14 
and 12.6. Then adequate anchored transverse reinforcement surrounding the connectors 
should be provided. If the anchoring length v of the shear studs is not smaller than 14 · d, the 
distance ev not smaller than 6 · d and the spacing s of the stirrups do not exceed 18 · d then 
the stud’s shear resistance can be calculated from Tables 12.1 and 12.2. In  addition, the stir-
rups should be designed against a splitting force Td equal to 0.3 · PRd, where PRd is the design 
shear resistance of the connector. If the previous conditions are not fulfilled, then the shear 

I-Plate girder bridge

Welded plate

Welded plate
Diaphragm

Closed-box girder bridge

Welded plate Pl1.

Welded plate Pl2.

NEd

NEd

Pl1.

Pl2.

Figure 12.5 Solution with welded plates for reducing tensile forces in studs.



492 Design of steel–concrete composite bridges to Eurocodes

Table 12.3 Detailing of shear connectors

Condition Limitation

Spacing in longitudinal direction (eL) eL

hc
d

5 · d ≤ eL ≤ min {4 · hc, 
800 mm}

Spacing in transverse direction (eT) 
and clear distance between edge 
of stud and edge of flange (eD)

eT

eD

eD ≥ 25 mm for solid 
slabs

eT ≥ 2.5 · d else
eT ≥ 4.0 · d

Studs on compression flanges that 
would be class 3 or 4 but are 
classified due to the shear 
connection as 1 or 2

eL ≤ 22 · ε · tao for solid slabs and ≤15 · ε · tao in other cases
eD ≤ 9  · ε · tao

Distance between down side of 
head and lower transverse slab 
reinforcement

≥30 mm for flat slabs
≥40 mm for slabs with haunches

Concrete cover from the side of 
the haunch to the connector (ev)

eV ≥ 50 mm

Concrete cover for shear 
connectors (c)

c ≥ max (20 mm, acc. to EN 1992-1-1)

If cover is not required, then a zero cover is allowed (c = 0).

≤45°
≥40 mm ≥30 mm

c ≥ cmin Solid slabHaunched slab

ev

Prevention of longitudinal splitting 
of concrete in edge girders

If the distance of the edge of the 
concrete flange to the centerline 
of the nearest row of shear 
connectors (eE) is less than 300 
mm, then additional U-bars passing 
around the shear connectors of 
the edge girders should be 
provided.

eE

ΦU

eE ≥ 6 · d
ΦU ≥ 0.5 · d

Note: e= fy ao, /235  where fy,ao is the yield strength for structural steel of the top flange in N/mm2 from Tables 6.14 
and 6.15. The limitations are also valid for bottom flanges.
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resistance of the horizontal headed studs becomes lower than that for the vertical ones and 
is calculated from the following expression; see also [12.3]:

 
P =0.0014 k (f d a ) /s m in[P ,P ]Rd,L

v ck r
0.4 0.3

v
Rd,1 Rd,2

◊ ◊ ◊ ◊ ¢ ◊ £( )a
g  

(12.7)

where
¢= - - ≥a a c m mr r v sF /2 50  is the effective edge distance

kv = 1 for connection in an edge position
kv = 1.14 for connection in a middle position
γv = 1.25 is the partial safety factor
fck is the characteristic cylinder strength of the concrete in MPa (Table 6.1)
d is the shank diameter of the headed stud in millimeters (19 mm ≤ d ≤ 25 mm)
α is the horizontal spacing of the studs with 110 mm ≤ α ≤ 440 mm
s is the spacing of the stirrups with α/2 ≤ s ≤ α and sar/¢£ 3
Φs is the diameter of the stirrups (≥8 mm)
cv is the vertical concrete cover in millimeters
PRd,1 and PRd,2 are the shear resistances for failure modes 1 and 2 in Table 12.1

The transverse reinforcement (stirrups of diameter Φs) should be designed for a tension force 
equal to 0.3 · PRd,L, where PRd,L is the design shear resistance of the connector; Equation 
12.7. The pullout failure of concrete can be avoided if the maximum value for the anchoring 
length v of the shear stud is greater than (Figure 12.6)

m ax 110m m ,1.7 ,0.85 sr◊ ¢ ◊{ }a  for uncracked concrete
m ax 160m m ,2.4 ,1.2 sr◊ ¢ ◊{ }a  for cracked concrete

Splitting force in
the direction of the

thickness

cv ar1

α

s

Φs

ev
v

D

D
vI,Ed

Td

ar2
ar3

Section a–aa

Stud 1
Stud 2
Stud 3

a

Figure 12.6  Geometric parameters of shear connections with horizontally arranged studs (bottom flange 
box-girder bridge with double composite action).
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In case of simultaneous action of vertical and horizontal shear (e.g., solution B in Figure 2.14), 
the following interaction should be applied:

 

F
P

F
P

1.0Ed,L

Rd,L

1.2
Ed,V

Rd,V

1.2Ê

Ë
Á

ˆ

¯
˜ +

Ê

Ë
Á

ˆ

¯
˜ £  (12.8)

where
FEd,V is the vertical force acting on the stud due to vertical support of the slab
FEd,L is the longitudinal force acting on the stud due to bending of the main girder
PRd,L is the shear resistance calculated with Equation 12.7
PRd,V is estimated as follows:

 
P 0.012 f d /s k
Rd,V

ck L
0.5 0.4

S
0.3

r,0
0.7

v

v
= ◊ ◊ ◊ ◊ ◊ ◊ ¢ ◊( ) ( ) ( ) ( )F Fa a

g
££ m in[P ,P ]Rd,1 Rd,2  (12.9)

where ¢ = - - ≥a a c m mr r v s, ,0 0 2 50F /  is the effective upper edge distance.
The nominal height of the stud connector should be at least 100 mm.

12.3 LONGITUDINAL SHEAR FOR ELASTIC BEHAVIOR

As explained in Section 12.1, the longitudinal shear at the concrete–steel interface results 
from vertical shear forces. The horizontal shear flow (shear force per unit length) may 
be determined from the well-known formula of mechanics for elastic behavior, in accor-
dance with

 
v V S

IL,Ed
Ed= ◊

 (12.10)

where
VEd is the design vertical shear force
S = S1,L is the first moment of area (static moment) of the concrete slab in respect to the 

center of gravity of the composite section for the load case and the time considered; 
see Figure 7.39

I = I1,L is the second moment of area of the composite cross section for the load case and 
the time considered; see Figure 7.39

The aforementioned relation is applied on the safe side also in regions of hogging moments, 
or generally where the concrete is considered as cracked and does not transfer direct stresses. 
This relation presumes elastic behavior and is applicable:

• For SLS
• For FLS
• For ULS, where the design moment is lower than the elastic moment resistance
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Equation 12.10 indicates that the longitudinal shear at the concrete–steel interface follows 
the vertical shear forces. However, for load combinations, the longitudinal shear cannot 
be determined by combination of the vertical shear but has to be determined separately for 
each individual load case and then combined for the following reasons:

• The cross sections, and accordingly S and I of Equation 12.10, are generally not con-
stant along the length of the bridge.

• The modular ratio of concrete and accordingly the cross-sectional properties are dif-
ferent for the various load cases and variable in time. The modular ratio of concrete is 
taken as n0 for traffic loads, temperature, and other actions of short duration; nP for 
permanent loads; and nS for shrinkage; see Equation 6.20.

• In cross sections where concrete has still not been cast, vertical shear but not longitu-
dinal shear exists.

The longitudinal shear is stressing the shear connectors and is always positive. However, 
the vertical shear has a positive or negative sign (Figure 12.7). The sign expresses the direc-
tion of the longitudinal shear and must be considered in the combination of actions, that is, 
longitudinal shears of the same direction are added, those of reverse direction subtracted.

Headed studs provide the longitudinal shear resistance, which may be determined at ULS 
and SLS from

 
v n P

eL,Rd
Rd

L
= ◊

 (12.11)

and

 
v

n P
eL,Rd,ser
Rd

L
=

◊ ,ser  (12.12)

where
n is the number of shear connectors at one cross section
eL is the longitudinal spacing of connectors
PRd is the shear resistance from Equation 12.3
PRd,ser is the shear resistance from Equation 12.4

Larger section

Horizontal shear [vL][vL]

[V][V]

Figure 12.7 Shear forces and horizontal shear.
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The design relations at ULS and SLS may be written as

 v vL,Ed L,Rd£  (12.13)

or

 v vL,Ed,ser L,Rd,ser£  (12.14)

The aforementioned relations show that the diagram of longitudinal shear is covered by appro-
priate selection of the size of shear connectors, their number in the cross section, and their lon-
gitudinal spacing as indicatively illustrated in Figure 12.8. Usually, the number and spacing of 
connectors is kept constant over certain lengths to achieve constant shear resistance. The design 
shear vL,Ed at ULS may exceed the shear resistance vL,Rd by 10% at certain points, provided that 
the total resisting force in this zone is larger than the design force, that is, the area of the diagram 
of the shear resistance is larger than the corresponding area of the design shear (Figure 12.8).

EXAMPLE 12.1

The shear connection of the box-girder bridge in Example 9.4 will be verified. Shear forces from 
structural analysis are provided in Table 12.4.

SHEAR CONNECTION AT EDGE SUPPORT

The shear flow between steel and concrete will be calculated taking into account the construc-
tion sequence, the rheological behavior of concrete, and the shear lag effects both on concrete 
and steel (bottom) flange.

• Shear connection for short-term design at ULS
The maximum shear force acting on the composite cross section at the edge  support is 
calculated according to the basic combination of Equation 5.11a with leading variable traf-
fic as follows:

 max . ( . . ) . . . . . .,VEd 0 1 35 537 6 27 0 1 5 0 6 142 6 1 35 892 0 2094 7= ◊ + + ◊ ◊ + ◊ = 55 kN

One can observe that the shear forces acting on the pure steel section were not taken 
into account because they do not produce any horizontal shear.

The short-term static moment of the half girder is calculated from Table 9.17 and Figure 7.39:

 
S cm10

330 1100 2
6 18

47 64 15 167 242 7,
,
.

( . ) , .= ◊ ◊ + =/

[vL] [vL]vL,Rd1 vL,Rd2
vL,Rdi

vL,Rd1

vL,Rd2

Figure 12.8 Cover of the diagram of longitudinal shear along the bridge.
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The horizontal shear flow is calculated from Equation 12.10:

 
v kN cmL Ed, ,

, .
( . )

.
, .

0 8

2 094 75
1 037 2 10

6 76
167 242 7= ◊
◊

=
/

/

The shear resistance of a headed stud with hsc = 250 mm, d = 22 mm, and fu = 450 N/mm2 
is taken from Table 12.2 and is equal to PRd = 109.42 kN.

For four connectors per row (n = 4), Equations 12.11 and 12.13:

 
6.76 v

4 109.42
e

e 64.7 cmL,Rd
L

L£ = ◊ Æ £

• Shear connection for long-term design at ULS
The shear forces act on cross sections with different cross-sectional properties. 
Therefore, the ULS combination refers to shear stresses and not to forces.

The loading case 2nd concreting + superstructures refers to a cross section with an age of 
concrete at loading time equal to 7 days. From Table 9.17, nP = 18.82, I1,P = (0.8107/2) · 108 = 
0.40535 · 108 cm4, and

 
S cmP1

330 1100 2
18 82

84 32 15 87 076 51,
,
.

( . ) , .= ◊ ◊ + =/

The loading case Superstructures refers to a cross section with an age of concrete 
at loading time equal to 14 days. From Table 9.17, nP = 17.26, I1,P = (0.8261/2) · 108 = 
0.41305 · 108 cm4, and

 
S cmP1

330 1100 2
17 26

81 81 15 92 547 22,
,
.

( . ) , .= ◊ ◊ + =/

Table 12.4 Shear forces for the half-girder A

Loading from Figure

At edge support At internal support

maxV (kN) minV (kN)

Pure steel 9.18 360.4 −597.2
First concreting 9.18 924.0 −792.0
Second concreting + 
superstructures

9.19 537.6 −1140.4

Superstructures (final) 9.20 27.0 −383.0
Thermal 9.22 142.6 −139.9
Traffic (gr1a) 9.23 892.0 −1168.0
Secondary effects from 
second concreting

9.19 13.4 −13.4

Secondary effects from 
superstructures (final)

9.20 4.2 −4.2

Shrinkage secondary effects 9.21 115.6 −115.6

Note: Shear forces acting on the pure steel cross section are faced with Italic.
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The loading case Secondary effects from 2nd concreting refers to a cross section with an age of 
concrete at loading time equal to 7 days. From Table 9.17, nPT = 12.50, I1,PT = (0.8878/2) · 108 = 
0.4439 · 108 cm4, and

 
S cmPT1

330 1100 2
12 50

71 76 15 114 523 2,
,
.

( . ) , .= ◊ ◊ + =/

The loading case Secondary effects from superstructures (final) refers to a cross section 
with an age of concrete at loading time equal to 14 days. From Table 9.17, nPT = 11.72, I1,PT = 
(0.9008/2) · 108 = 0.4504 · 108 cm4, and

 
S cmPT1

330 1100 2
11 72

69 64 15 119 160 4,
,
.

( . ) , .= ◊ ◊ + =/

The loading case Shrinkage secondary effects refers to a cross section with an age of con-
crete at loading time equal to 1 day. From Table 9.17, nPT = 15.22, I1,PT = (0.8493/2) · 108 = 
0.4247 · 108 cm4, and

 
S cmPT1

330 1100 2
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78 02 15 100 843,
,
.

( . ) ,= ◊ ◊ + =/

The design horizontal shear is (see Table 12.4)
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This value is lower than for short-term design.

• Shear connection for short-term design at SLS
The maximum shear force acting on the composite cross section at the edge support is 
calculated according to the characteristic combination of Equation 5.23 with leading vari-
able traffic as follows:

 max . ( . . ) . . . . ., ,V kEd ser 0 1 0 537 6 27 0 0 6 142 6 1 0 892 0 1542 16= ◊ + + ◊ + ◊ = NN

The horizontal shear flow is estimated from Equation 12.10:
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From Table 12.1,

 PRd ser, .= ◊ =0 75 109.42 82.1kN

For four connectors per row (n = 4), Equations 12.12 and 12.14:

 
4.97 v

4 82.1
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e 66 cmL,Rd,ser,0
L

L£ = ◊ Æ £
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• Shear connection for long-term design at SLS
The shear forces act on cross sections with different cross-sectional properties. 
Therefore, the ULS combination refers to shear stresses and not to forces.

The design horizontal shear is (see Table 12.4)
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Again, this value is lower than that for short-term design.

• Final choice
From the aforementioned, the short-term check at ULS is the less favorable (eL ≤ 647 mm). 
It is chosen that eL = 640 mm.

According to Table 12.3,

 

5 d 5 22 110 mm e 4 300, 800 mm

800 mm satisfied see F

L◊ = ◊ = £ £ ◊

=

min{ }

( ) ( iigure 12.9)

SHEAR CONNECTION AT INTERNAL SUPPORT

The shear flow between steel and concrete will be calculated taking into account the construc-
tion sequence, cracking of concrete, and shear lag effects both on concrete and steel (bot-
tom) flange. The long-term design shear force is obviously higher than the short-term one. 
Therefore, only the long-term design is shown.

• Shear connection for long-term design at ULS
The design shear forces is

min . ( . . ) . . . . . .,VEd • = ◊ - - - ◊ - ◊ ◊ - ◊1 35 383 0 4 2 1 0 115 6 1 5 0 6 139 9 1 35 11668

2341 03= - . kN

One can observe that the shear forces acting on the pure steel section were not taken into 
account because they do not produce any horizontal shear. As already mentioned, the effects 
of cracking of concrete cannot be taken into account accurately enough. Conservatively, the 
shear flow will be calculated with the properties of the uncracked composite section and 
with the effectives widths for hogging bending. For concrete, the entire deck slab is active 
(see Example 9.4). For the bottom flange, the shear lag effect was of negligible magnitude 
and the bottom plate was considered as fully active too. Therefore, the properties of the half 
girder’s cross section can be taken from Table 9.17: I1 = (1.037/2) · 108 = 0.5185 · 108 cm4 and
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The horizontal shear flow is estimated from Equation 12.10:
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The shear resistance of a headed stud with hsc = 250 mm, d = 22 mm, and fu = 450 mm is 
taken from Table 12.2 and is equal to PRd = 109.42 kN.

For six connectors per row (n = 6), Equations 12.11 and 12.13:
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• Shear connection for long-term design at SLS
The design shear forces is

 min . ( . . ) . . . . .,VEd • = ◊ - - - ◊ - ◊ - ◊ = -1 0 383 0 4 2 1 0 115 6 0 6 139 9 1 0 1168 17554 74. kN

The cross-sectional properties are affected from the shear lag in the bottom flange 
(Example 9.4) and are given in Table 10.1. For the fully cracked section,

 A 3823 6 cm I 46 49 1cm2 sa
2

2 sa
8

, , ,. , .. . ,= = + = ◊=z sa2 15 0 0 0106 47 121 47 ccm4

For the half girder,
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From the comparison of the cross-sectional properties for the noncracked cross section 
in Table 9.17 with the previous values, one can easily see that the shear lag effect in the 
bottom flange should not be neglected.

The horizontal shear flow is estimated from Equation 12.10:
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From Table 12.1,

 PRd ser, .= ◊ =0 75 109.42 82.1kN

For six connectors per row (n = 6), Equations 12.12 and 12.14:
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6 82.1
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e 82.2 cmL,Rd,ser,
L

L£ = ◊ Æ £•

• Final choice
From the aforementioned, the long-term check at SLS is the less favorable (eL ≤ 822 mm). 
It is chosen that eL = 800 mm.
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According to Table 12.3,

5 d 5 22 110 mm e 4 300, 800 mm 800 mm verified  (see FL◊ = ◊ = £ £ ◊ =min{ } †( ) iigure 12.9)

Note: The shear forces in the headed studs due to torsion are obviously of negligible magnitude 
and they have not been taken into account. This would not happen in the case of a curved bridge.

LIMITATIONS ACCORDING TO TABLE 12.3

• For the edge support,
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• For the internal support,
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The distance of the edge of the concrete flange to the centerline of the nearest row of 
shear connectors is much greater than 300 mm; additional U-bars passing around the 
shear connectors of the edge girders are not necessary.

Obviously, more positions along the length of the bridge should be similarly verified and 
the studs should be arranged according to the magnitude of the shear flow (Figure 12.8); 
attention is needed in bridges with cross sections of longitudinally variable total depth.

12.4 LONGITUDINAL SHEAR FOR INELASTIC BEHAVIOR

As discussed before, the mechanics’ Equation 12.10 is valid for elastic behavior. However, 
at ULS and for cross sections of class 1 or 2, it is possible to exploit the plastic bending 
resistance. In such cases, the design longitudinal shear is determined by consideration of the 

140 100160160160160160100

250 25022

Edge support Internal support

22

4 studs per 640 6 studs per 800

240240240140

Figure 12.9 Arrangement of studs at edge and internal support (for the edge support, see also Example 12.3).
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free-body equilibrium of the concrete slab. The design shear is then determined from the 
difference of the design axial forces on the slab at adjacent cross sections in accordance to 
Figure 12.10:

 
v N N

x
N
xL,Ed

c,Ed,right c,Ed,left c,Ed= - =
D

D
D

 (12.15)

The aforementioned procedure refers to positive bending. For negative bending, the design is 
covered by the determination of the longitudinal shear on the basis of the uncracked section 
as discussed earlier so that the procedure for elastic behavior is always followed.

Inelastic behavior refers to regions where the design moment is larger than the elastic 
moment resistance, MEd > Mel,Rd. The elastic moment is determined by consideration of 
the construction stages. If, for example, during construction stages the elastic moment 
of the steel beam during casting of concrete is reached, the elastic moment is equal to 
the elastic moment of the steel girder alone, Ma,el,Rd. If the steel girder is fully propped at 
construction stages, the elastic moment is equal to the elastic moment of the composite 
beam, M1,el,Rd. Accordingly, the elastic moment resistance Mel,Rd is not a fixed value but 
depends on the construction stages. Mel,Rd is determined by adding the stresses on the 
relevant sections, either pure steel or composite, during construction stages. When the 
design stress on the steel girder, the concrete, or the reinforcement reaches its design resis-
tance (see Table 9.11), the total moment provides Mel,Rd. The stress in reinforcement may 
be for simplicity omitted in this calculation. The procedure is illustrated in Table 12.5.

REMARK 12.1

• In inelastic regions, ductile connectors are mandatory so that shear forces can be trans-
ferred from one connector to the adjacent one. Connectors should be followed by a 
European Technical Approval (ETA) that guarantees that shear connectors posses suf-
ficient deformation capacity, minimum characteristic capacity of 6 mm. Otherwise, an 
experimental verification is mandatory.

Elastic
region

Elastic
region

MEd = MEl,Rd

Nc,el,Rd

Regions Distribution of studs
Elastic
Inelastic

Nonuniform
Uniform

maxMEd > Mel,Rd
maxMEd ≤ Mpl,Rd

Nc = Nc,el,Rd + ΔNc
Inelastic region

σa = fyd

fyd

fyd

vL

Section a–a Section b–b

Lpl

a b

b
a

[vL]

Figure 12.10 Longitudinal shear in inelastic regions.
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• In some countries, block connectors with hoops are used due to their increased resis-
tance against uplift, in many cases, in combination with headed studs. There are no experi-
mental investigations on the behavior of such mixed solutions and, therefore, they are not 
recommended.

Once the elastic bending resistance is determined, the compression force in the slab, Nc, in 
dependence on the design moment has to be evaluated in order to apply Equation 12.15. The 
compression force Nc at a section where the design moment exceeds the elastic resistance 
may be calculated from Figure 12.10:

 
N N M M

M M
N Nc c elRd

Ed elRd

plRd elRd
c fRd c elRd= + -

-
◊ -, ,

,

, ,
,, , ,( ) (12.16a)

where
Nc,el,Rd is the force acting in the deck slab due to Mel,Rd

  
= ◊ + ◊ ◊

◊ ◊
Ê

Ë
Á

ˆ

¯
˜M z z h b

n IelRd
co cu c eff

,
,

,

( ) 1

0 1 02
 (12.16b)

Nc,f,Rd is the force acting in the deck slab due to Mpl,Rd

  = ◊ ◊ ◊ £( . , ),0 85 1f x b x hcd pl eff pl c
 (12.16c)

Table 12.5 Determination of elastic moment resistance Mel,Rd for construction stages

Loading in

Steel girder M Ma Ed a Ed i

i

, , ,=Â
Composite girder M MEd Ed i

i

1 0 1 0, , , , ,=Â
Stresses in
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a
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,
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cf f M

z
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, , , ,
,

,
0 1 0

0
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◊

kc
I

Reinforcement ss Ed sd sd s Ed
sf f

I
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,

,
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Coefficients k
Concrete: 
k

M /
c

cd

Ed c

f
z n I

=
◊ ◊1 0 0 0 1 0, , , ,( )

Steel: 

k
f M z I
M z I

a
yd a Ed a a

Ed a

= - ◊
◊
,

, , , ,

( )
( )

/
/1 0 0 1 0

Reinforcement:

k
f

M z I
s

sd

Ed s

=
◊1 0 0 1 0, , , ,( )/

Critical coefficient k = min(ka, kc, ks)
Elastic bending resistance Mel,Rd = Ma,Ed + k · M1,Ed,0

Notes:

Ma,Ed,i is the design bending moment acting on the pure steel cross section for the loading case i.
M1,Ed,i,0 is the design bending moment acting on the composite cross section with short-term cross-sectional 
 properties for the loading case i.
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The shear flow vL,Ed is calculated from Equations 12.15 and 12.16 with Nc,Ed,right = Nc,el,Rd, 
Nc,Ed,left = Nc, and ∆x = Lpl/2 (Figure 12.10) and may be written as:

 
v = 2 M M

L M M
N NL,Ed

Ed el,Rd

pl pl,Rd el,Rd
c,f,Rd c,el,Rd

◊ -
◊ -

◊ -( )
( )

( )[[ ]kN /m  (12.17)

It is noted that MEd is the total design bending moment (=Ma,Ed + M1,Ed). This means that the 
construction sequence is not taken into account for the verification of the shear connection 
in the inelastic regions; stresses due to the preloading of structural steel are absorbed due to 
the rotational capacity of the compact composite section (class 1 or 2).

EXAMPLE 12.2

A 25 m long simply supported plate-girder bridge is casted in one stage. Concrete casting takes 
place on profiled steel sheeting. The bending moment Ma acts on the pure steel and M1 on the 
composite cross section; they are shown in Figure 12.11. Concrete is of quality C35/45, structural 
steel of quality S355, reinforcement of quality B500B. Shear studs are to be arranged for ULS.

The composite cross section is class 1 and a nonlinear behavior at midspan should be consid-
ered. The steel stresses in the bottom and the top flange are calculated according to the construc-
tion sequence (Table 12.6). One can see that yielding of the bottom flange starts at a location 
approximately 7 m from the supports. Therefore, the length of the nonlinear region is 11 m.

Stresses in concrete and reinforcing steel are shown in Table 12.7. Both materials remain 
elastic (k > 1).

In Table 12.8, the longitudinal variation of the elastic bending resistance is demonstrated. 
The lowest value arises at midspan. Seven meters away from edge supports, the design bending 
moment is approximately equal to the elastic resistance.

Nonuniform arrangement of studs in the elastic region
Longitudinal shear at the concrete–steel interface follows the vertical shear forces because the 
cross section remains constant along the bridge. Headed studs will be arranged according to the 
variation of the longitudinal shear; Figure 12.8.

The design shear force at the edge supports was found equal to 1483.7 kN. At a distance 
3.5 m from the edge support, the shear force is reduced to 1483.7 · 9/12.5 = 1068.3 kN.

For 0–3.5 and 21.5–25 m, Equation 12.10:

 
v

1,483.7 290 30 15.27
13.85 kN/cm

2,303,750 6.18
L,Ed =

◊ ◊ ◊ =
◊
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Figure 12.11 Cross section and total bending moments.
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Table 12.6 Calculation of k-factors for structural steel

Bottom flange Top flange

x (m)
Ma,Ed 

(kN-m)
M1,Ed 

(kN-m)

σau,a σau,com σau,tot kau 
Table 12.5

σao,a σao,com σao,tot kao 
Table 12.5(kN/cm2) (kN/cm2)

0 0.0 0.0 0.00 0.00 0.00 ∞ 0.00 0.00 0.00 ∞
1 415.1 874.0 2.90 3.81 6.71 8.55 2.90 0.01 2.91 3182.81
2 795.7 1675.2 5.55 7.31 12.86 4.10 5.55 0.02 5.57 1525.36
3 1141.6 2403.6 7.97 10.49 18.45 2.63 7.97 0.03 7.99 977.44
4 1453.0 3059.1 10.14 13.35 23.49 1.90 10.14 0.04 10.17 707.39
5 1729.7 3641.8 12.07 15.89 27.96 1.47 12.07 0.04 12.11 548.96
6 1971.9 4151.6 13.76 18.12 31.88 1.20 13.76 0.05 13.81 446.82
7 2179.5 4588.6 15.21 20.02 35.23 ≈1.00 15.21 0.05 15.26 377.33
8 2352.4 4952.8 16.41 21.61 38.03 0.88 16.41 0.06 16.47 328.79
9 2490.8 5244.1 17.38 22.88 40.26 0.79 17.38 0.06 17.44 294.82

10 2594.6 5462.6 18.10 23.84 41.94 0.73 18.10 0.06 18.17 271.71
11 2663.8 5608.3 18.59 24.47 43.06 0.69 18.59 0.07 18.65 257.31
12 2698.4 5681.1 18.83 24.79 43.62 0.67 18.83 0.07 18.90 250.39
12.5 2702.7 5690.2 18.86 24.83 43.69 0.67 18.86 0.07 18.93 249.53

Notes:

Ma,Ed and M1,Ed are the design bending moments acting on the pure steel and the composite cross section, respectively.
σa,a and σa,com are the steel stresses due to Ma,Ed and M1,Ed, respectively.

Table 12.7 Calculation of k-factors for concrete and reinforcing steel

x (m)
M1,Ed 

(kN-m)
σco 

(kN/cm2)
kco 

Table 12.5
σso 

(kN/cm2)
ks 

Table 12.5

0 0.0 0.00 ∞ 0.00 ∞
1 874.0 0.19 12.56 0.96 45.35
2 1675.2 0.36 6.55 1.84 23.66
3 2403.6 0.51 4.57 2.64 16.49
4 3059.1 0.65 3.59 3.36 12.96
5 3641.8 0.77 3.01 3.99 10.88
6 4151.6 0.88 2.64 4.55 9.55
7 4588.6 0.98 2.39 5.03 8.64
8 4952.8 1.05 2.22 5.43 8.00
9 5244.1 1.11 2.09 5.75 7.56

10 5462.6 1.16 2.01 5.99 7.26
11 5608.3 1.19 1.96 6.15 7.07
12 5681.1 1.21 1.93 6.23 6.98
12.5 5690.2 1.21 1.93 6.24 6.97
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For 3.5–7.0 and 18–21.5 m, Equation 12.10:

 
v

1,068.3 290 30 15.27
9.97 kN/cm

2,303,750 6.18
L,Ed =

◊ ◊ ◊ =
◊

( )

Note: For the calculation of the shear flow, the safest approach is to consider the total depth 
of the deck slab as active.

Headed studs d = 22 mm/fu = 500 MPa; Table 12.2 → PRd = 121.58 kN
For 0–3.5 and 21.5–25 m, Equations 12.11 and 12.13:

 
e

3 121.58
13.85

26.3 cmL £
◊ =

For 3.5–7.0 and 18–21.5 m, Equations 12.11 and 12.13:

 
e

3 121.58
9.97

36.6 cmL £
◊ =

For 0–3.5 and 21.5–25 m, it is chosen that there be 3 studs per 260 mm.
For 3.5–7.0 and 18–21.5 m, it is chosen that there be 3 studs per 360 mm.
According to Table 12.3,

 5 d 5 22 110 mm e 4 300, 800 mm 800 mm both are satisfiedL◊ = ◊ = £ £ ◊ =min{ } ( ))

Studs were arranged based on the short-term cross-sectional properties because due to the 
presence of class 1 or 2 cross sections, creep and shrinkage are neglected.

Table 12.8 Determination of the length of the elastic region

x (m)
MEd 

(kN-m)

mink 
Table 
12.5

Mel,Rd 
(kN-m)

0 0.00 ∞ 8135.20

8000

7000

6000

5000

4000

3000

2000

1000

0
0 2 4 6 8

7

M
 (

kN
-m

)

Mel,Rd

10 12.5
x (m)

MEd= Ma,Ed+ M1,Ed

1 1289.15 8.55 7886.52
2 2470.88 4.10 7658.58
3 3545.17 2.63 7451.35
4 4512.04 1.90 7264.85
5 5371.47 1.47 7099.06
6 6123.48 1.20 6954.01
7 6768.05 ≈1.00 6829.67
8 7305.20 0.88 6726.05
9 7734.91 0.79 6643.16

10 8057.20 0.73 6580.99
11 8272.50 0.69 6539.54
12 8379.48 0.67 6518.82
12.5 8392.91 0.67 6516.23
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Uniform arrangement of studs in the inelastic region
The plastic bending resistance of the composite cross section is equal to

Mpl,Rd = 11,089.79 kN-m with xpl = 22.46 cm (plastic neutral axis in the slab).
In composite girders with ribs due to steel shuttering, it is safer to consider the whole slab 

under compression. Therefore, the corresponding force in the slab is equal to Equation 12.16c:

 
N 0.85

3.5
1.5

290 30 = 17,225 kNc,f,Rd = ◊ ◊ ◊

The elastic bending resistance for x = 7 and 18 m is Mel,Rd = 6829.67 kN-m (Table 12.8)
The corresponding force in the slab is equal to Equation 12.16b:

 
N

682,967 0.27 30.27 290 30
2 6.18 2,303,750

6,372c,el,Rd =
◊ + ◊ ◊
◊ ◊

=( )
..86 kN

Equation 12.17:

 
v =

2
1,100

17,
8,392.91 6,829.67
11,089.79 6,829.67

L,Ed
◊ -
◊ -

◊( )
( )

( 2225 6,372.86 7.24 kN/cm - =)

Headed studs d = 22 mm/fu = 500 MPa; Table 12.2 → PRd = 121.58 kN
For 7–18 m, Equations 12.11 and 12.13:

 
e

3 121.58
7.24

50.4 cmL £
◊ =

It is chosen that there be 3 studs per 500 mm.
According to Table 12.3,

 5 d 5 22 110 mm e 4 300, 800 mm 800 mm satisfiedL◊ = ◊ = £ £ ◊ =min{ } ( )

The arrangement of the headed studs at ULS is shown in Figure 12.12.

12.5 LONGITUDINAL SHEAR DUE TO CONCENTRATED FORCES

Longitudinal shear develops not only from vertical shear due to direct loading or second-
ary effects but also from concentrated longitudinal forces. Such concentrated forces are due 
to the primary effects of shrinkage and develop at the ends of the bridge or at the ends of 

3Φ22 per 2603Φ22 per 360
3Φ22 per 500

3Φ22 per 3603Φ22 per 260

11 m3.5 m 3.5 m 3.5 m 3.5 m

Figure 12.12 Arrangement of studs per ULS.
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concrete segments at construction stages and may be determined by Equation 7.29a. The 
concentrated force Nc,S is transferred to the beam by shear connectors over a length equal to 
the effectives width, beff,0, of the slab; see Section 7.2.2. The shear flow is approximated by 
a triangular distribution with a maximal value (Figure 12.13):

 
v =2 N

bL,Ed,m ax
c,S

eff,0

◊
 (12.18)

Figures 12.7 and 12.13 indicate that the shear flow due to the primary effects of shrinkage 
is generally opposite to the corresponding one due to vertical shear. It should be mentioned 
that the end shear verification for shrinkage is conducted for the combination of actions of 
the long-term design.

The effectives width is determined in accordance with Section 7.2. At construction stages, 
the equivalent span Le is taken as the length of the concrete segment within the span con-
sidered. Concentrated forces arise at the ends of the concrete segments due to the sudden 
change of the cross section (Figure 12.14). This shear flow should be added to the longitudi-
nal shear from shrinkage, under consideration of its direction.

Concentrated longitudinal shear also develops due to the primary effects of tempera-
ture differences as presented in Figure 4.25 and has a similar distribution as for shrink-
age (Figure 12.13). The direction of these forces depends on whether the slab is cooler or 
warmer. In the former case, the direction of the forces is the same as for shrinkage; in the 
latter, it is opposite.

VL,Ed,max

beff,0

Nc,Ed

M1,EdMa,Ed

Figure 12.14 Distribution of end shear at a sudden change of cross section.

Simpli�cation
Real distribution

be�,0

Nc,S

Primary stresses
due to shrinkage

VL,Ed,maxEquation 7.19c

be�,0

Figure 12.13 Distribution of end shear due to shrinkage at an edge support.
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EXAMPLE 12.3

The end shear connection of the box-girder bridge in Example 9.4 at the end supports will be 
verified (Figure 9.16).

The shrinkage force in the composite cross section has been calculated to be equal to

 Nsh = 13,667.46 kN

The tensile force in the concrete slab is calculated according to Equation 7.29a and Table 9.17 
as follows:

 

N 13,667.46c,S = ◊ -
◊

-
◊ ◊

1
33 000

15 22 6 540 97
33 000

15 22 0 8493 1
,

. , .
,

. . 00
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2◊ -Ê
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ˆ
¯̃

=

( . )

.6117 86 kN

According to Figure 7.34, Le = 0.85 · 60 = 51 m
Equation 7.19c:

 
b b1 10 55 0 025

51
2 0

1 19 1 0 1 0= + ◊ = > Æ =. .
.

. . .

Equation 7.19c:

 
b b2 20 55 0 025

51
3 5

0 91 1 0 0 91= + ◊ = < Æ =. .
.

. . .

Equation 7.19a:

 b me1 1 0 2 0 2 0= ◊ =. . .

Equation 7.19a:

 b me2 0 91 3 5 3 19= ◊ =. . .

From Figure 12.9, b0 = 3 · 24 = 72 cm

Note: Conservatively, it can be set b0 = 0.

The effectives width of the whole deck slab is equal to

 b m m b meff eff, ,. ( . . ) . . .0 02 0 72 2 2 0 3 19 11 82 11 0 11 0= ◊ + ◊ + = > Æ =

The shear flow due to shrinkage is limited inside a length of 11 m.
Equation 12.18:

 
v =

2
11.0

1
100

=11.12 kN/cm
6117.86

L,Ed,max
◊

◊

Shrinkage is well developed at t = 30,000 days and, therefore, only the long-term shear flows due 
to vertical shear are taken into account.
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The maximum shear flow due to vertical shear was calculated in Example 12.1:

 ULS v = 6.27 kN/cm, SLS v = 4.69 kN/cmL,Ed, L,Ed,ser,: :• •

The shear resistance of a headed stud with hsc = 250 mm, d = 22 mm, and fu = 450 mm is taken 
from Table 12.2 and is equal to PRd = 109.42 kN. At SLS, this value should be reduced by 25%; 
see Table 12.1.

The shear flow due to shrinkage acts in an opposite direction than the shear flow due to 
vertical shear. Therefore, the verification of the end shear is conducted as follows:

 
ULS v =11.12 6.27 = 4.85 kN/cm

4 109.42
e

e 90.2 cmL,Ed,
L

L: min• - £ ◊ Æ =   > 64 cm

 
SLS v = 11.12 4.69 = 6.43 kN/cm

4 0.75 109.42
e

eL,Ed,
L

:
( )

min• - £ ◊ ◊ Æ LL 51.1cm < 64 cm=

The end shear connection at the edge supports as shown in Figure 12.9 (4 studs per 640 mm) 
is not sufficient since the SLS verification is not satisfied. The spacing should be changed to 4 
studs per 510 mm.

Similar enhancements may be necessary at the edges of the concrete segments (construction 
stages); see Figure 12.14.

12.6 LONGITUDINAL SHEAR IN CONCRETE SLABS

The longitudinal shear at the steel girder–concrete flange interface is transferred from the 
concrete slab to the shear connectors and then to the steel girder. In order to prevent shear 
failure or longitudinal splitting, appropriate transverse reinforcement must be provided in 
the slab to allow for this transfer. The shear is then transferred by a system of compressive 
struts and ties in the form of transverse reinforcement and is checked at ULS. Verifications 
are made at various sections of potential shear failures as indicatively shown in Figure 12.15.

Strut-and-tie mechanism for
transfer of longitudinal shear

a st
At

Ab

hsc

Shear cracks

Ab

At

Ab

Abh

At

b d d

Dc

Zs

θvL,Rd

ba a

a

a

a c c

Figure 12.15 Failure mechanism and typical sections for checking shear failure.



Shear connection 511

The design shear flow may be determined in sections a–a that cut part of the concrete 
flange as follows (Figure 12.16):

Concrete flange in compression:
(sagging bending)

 
v = v A

ALc,Ed L,Ed
cp,eff

c,tot,eff
◊  (12.19a)

Concrete flange in tension:
(hogging bending)

 
v = v A

ALc,Ed L,Ed
sp,eff

s,tot,eff
◊  (12.19b)

where
vL,Ed is the design shear flow in the flange at ULS, Equation 12.10 for elastic behavior, or 

Equation 12.15 for inelastic behavior or alternatively, for fully covering the resistance 
of the connectors:

 
v = n P

eL,Ed
Rd

L

◊  (12.20)

Acp,eff is the partial area of the concrete flange that is cut by section a–a
Ac,tot,eff is the total area of the concrete flange within the effectives width of the slab 

(hc · beff,1 for sagging bending and hc · beff,0 at the edge supports)
Asp,eff is the partial area of the longitudinal reinforcement on one side of the sec-

tion a–a
As,tot,eff is the total area of longitudinal reinforcement within the effectives width of the 

slab (ρs,tot · hc · beff,2 for hogging bending and ρs,tot · hc · beff,0 at the edge supports)
n is the number of shear connectors at one cross section
PRd is the design resistance of one connector
eL is the longitudinal spacing of connectors

In addition, sections b–b, c–c, or d–d around the studs must be checked. The design shear 
in these sections is equal to the full design shear flow in the flange, vL,Ed. The design shear 

At sagging moment areas At hogging moment areas

Acp,e�
a a

a

a a

aaa

Ac,tot,e� As,tot,e�Asp,e�

be�,1 be�,2

sf sf

vLc,Ed vLc,Ed

Figure 12.16 Design shear flow at section a–a.
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flow is resisted by a strut-and-tie mechanism, where the struts are composed of concrete ele-
ments and the ties of the transverse reinforcement (Figure 12.15).

The crushing resistance of the struts may be obtained from

 
v = f L f L 1
c,Rd cd v cd vn q q n

q q
◊ ◊ ◊ ◊ = ◊ ◊ ◊

+ -sin cos
cot cot 1  (12.21a)

where
Lv is the length of sections of potential shear failure as follows (Figure 12.15):
Sections a–a: Lv = thickness of the slab
Sections b–b: Lv = 2 · hcs + st + dhead,sc (st transverse distance of extreme shear connectors 

at the cross section considered, dhead,sc head diameter of shear connectors, hcs height 
of the connector)

Sections c–c: Lv = 2 · hcs + dhead,sc (for one shear connector in the cross section considered 
or for staggered connectors)

Sections d–d: Minimum length of section
θ is the angle of inclination of the strut that may be taken as
1.0 ≤ cot θ ≤ 2.0 for sagging bending with a recommended value cot θ = 1.2
1.0 ≤ cot θ ≤ 1.25 for hogging bending with a recommended value cot θ = 1.0

 
 = 0.6 1 f [M Pa]

250
ckn ◊ -Ê

ËÁ
ˆ
¯̃
 (12.21b)

The resistance of the ties is determined from

 
v = A

s
fs,Rd

sf

f
sd◊ ◊cotq  (12.22)

where
Asf/sf is the area of transverse reinforcement divided by the corresponding spacing as 

given in Table 12.9
fsd is the design strength of the reinforcement
cot θ takes the same values as for struts

Table 12.9 Ratios Asf /sf

Type of section 
for shear failure 
(Figure 12.15) a–a b–b c–c d–d

A
s

sf

f

Ab + At 2 · Ab 2 · Ab 2 · Abh

Note: Ab, area of bottom transverse reinforcement; 
At,  area of top transverse reinforcement; Abh, area of 
bottom transverse haunch reinforcement.
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The verifications required may be written as
Concrete (compression strut):

 v vLc,Ed c,Rd£  (12.23)

Transverse reinforcement (tie):

 v vLc,Ed s,Rd£  (12.24)

A minimum transverse reinforcement ratio must be provided that is given by

 
m in A

s h
0.08 f

f
sf

f c

ck

sk◊
= ◊

 (12.25)

where
hc is the (mean) slab thickness
fck is the characteristic concrete strength in MPa
fsk is the characteristic strength of transverse reinforcement in MPa

It should be noted that the aforementioned transverse reinforcement is the main reinforce-
ment of the slab when the slab rests on the longitudinal beams. This reinforcement is gener-
ally sufficient to resist the longitudinal shear.

EXAMPLE 12.4

The longitudinal shear in the concrete slab of Example 9.4 is to be verified.

At edge supports
According to Example 12.3, there are 4 studs d = 22 mm per 510 mm.
Equation 12.20:

 
v =

4 109.42
51

8.58 kN/cmL,Ed
◊ =

Section a–a: Lv = 30 cm (Figures 9.16 and 12.15)
The crushing resistance of the struts is calculated as follows:
The effectives width of the half girder is according to Example 12.3: beff,0 = 5.5 m.
The most critical value of shear flow arises at the internal part of the half girder. Therefore, 

from Equation 12.19a:

 v = 8.58
3.5 0.5

5.5
4.68 kN/cmLc,Ed ◊ - =  (Figure 9.16)

Equation 12.21b:

 
n= 0.6 1

35
250

0.52◊ -Ê
ËÁ

ˆ
¯̃
=

Equation 12.21a:

 
v = 0.52

3.5
1.5

30
1

1.2 + 1.2
17.9 kN/cm > 4.68 kN/cm (sc,Rd 1◊ ◊ ◊ =- uufficient)
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The required transverse reinforcement is obtained from Equation 12.22 (Table 12.9):

 
v = 

A
s

50
1.15

1.2 4.68 100
A A

s
8.97 cm /ms,Rd

sf

f

b t

f

2◊ ◊ ≥ ◊ Æ + ≥

Section b–b (Figure 12.15): Lv = 2 · 25 + 3 · 24 + 3.3 = 125.3 cm (Figure 12.9)

 v = 8.58 kN/cmLc,Ed

Equation 12.21a:

 
v = 0.52

3.5
1.5

125.3
1

1.2 + 1.2
74.77 kN/cm > 8.58 kN/cc,Rd 1◊ ◊ ◊ =- mm (sufficient)

The required transverse reinforcement is obtained from Equation 12.22 (Table 12.9):

 
v =

A
s

50
1.15

1.2 8.58 100
2 A

s
16.45 cm /m

A
s

8.2s,Rd
sf

f

b

f

2 b

f

◊ ◊ ≥ ◊ Æ ◊ ≥ Æ ≥ 33 cm /m2

It is chosen that there be Φ16/15 bottom + Φ10/15 top reinforcement

 

A
s

13 4 cm /m 8 23 cm /m satisfiedb

f

2 2= >. . ( )

 

( )
. . . . ( )

A A
s

13 4 5 2 18 6 cm /m 8 97 cm /m satisfiedb t

f

2 2+ = + = >

The minimum transverse reinforcement that must be provided is given by Equation 12.25:

 
min

A
s 30

0.08 35
50

min
A
s

= 0.28 cm /m satisfiedsf

f

sf

f

2

◊
= ◊ Æ ( )

At midspan
From Figure 12.9, there are 4 studs d = 22 mm per 640 mm.

Equation 12.20:

 
v =

4 109.42
64

6.84 kN/cmL,Ed
◊ =

Section a–a (Figures 9.16 and 12.15): Lv = 30 cm
The effectives width of the half girder is according to Example 9.4: beff,1 = 5.5 m.

Equation 12.19a:

 
v = 6.84

3.5 0.5
5.5

3.73 kN/cmLc,Ed ◊ - =

Equation 12.21a:

 
v = 0.52

3.5
1.5

30
1

1.2 + 1.2
17.9 kN/cm > 3.73 kN/cm (sc,Rd 1◊ ◊ ◊ =- uufficient)
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The required transverse reinforcement is obtained from Equation 12.22 (Table 12.9):

 
v =

A
s

50
1.15

1.2 3.73 100
A A

s
7.15cm /ms,Rd

sf

f

b t

f

2◊ ◊ ≥ ◊ Æ + ≥

Section b–b (Figure 12.15): Lv = 2 · 25 + 3 · 24 + 3.3 = 125.3 cm (Figure 12.9)

 v = 6.84 kN/cmLc,Ed

Equation 12.21:

 
v = 0.52

3.5
1.5

125.3
1

1.2 + 1.2
74.77 kN/cm > 6.84 kN/c,Rd 1◊ ◊ ◊ =- ccm (sufficient)

The required transverse reinforcement is obtained from Equation 12.22 (Table 12.9):

 
v = 

A
s

50
1.15

1.2 6.84 100
2 A

s
13.11cm /m

A
s

6.s,Rd
sf

f

b

f

2 b

f

◊ ◊ ≥ ◊ Æ ◊ ≥ Æ ≥ 556 cm /m2

It is chosen that there be Φ12/15 bottom + Φ10/15 top reinforcement

 

A
s

7 5 cm /m 6 56 cm /m satisfiedb

f

2 2= >. . ( )

 

( )
. . . . ( )

A A
s

7 5 5 2 12 7 cm /m 7 15 cm /m satisfiedb t

f

2 2+ = + = >

The minimum transverse reinforcement that must be provided is given by Equation 12.25:

 
min

A
s 30

0.08 35
50

min
A
s

= 0.28 cm /m satisfiedsf

f

sf

f

2

◊
= ◊ Æ ( )

At intermediate support
According to Example 12.1 (Figure 12.9), there are 6 studs d = 22 mm per 800 mm.
Equation 12.20:

 
v = 

6
80

8.21kN/cm
109.42

L,Ed
◊ =

The crushing resistance of the struts is calculated as follows:
Section a–a (Figures 9.16 and 12.15): Lv = 30 cm
The effectives width of the half girder is according to Example 9.4: beff,2 = 5.5 m.
The most critical value of shear flow arises at the internal part of the half girder. Therefore, 

from Equation 12.19b:

 
v = 8.21

3.5 0.5
5.5

4.48 kN/cmLc,Ed
s,tot

s,tot

◊ - ◊
◊

=( ) r
r
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Equation 12.21a:

 
v = 0.52

3.5
1.5

30
1

1.0 + 1.0
18.2 kN/cm > 4.48 kN/cm (sc,Rd 1◊ ◊ ◊ =- uufficient)

The required transverse reinforcement is obtained from Equation 12.22 (Table 12.9):

 
v = 

A
s

50
1.15

1.0 4.48 100
A A

s
10.3 cm /ms,Rd

sf

f

b t

f

2◊ ◊ ≥ ◊ Æ + ≥

Section b–b (Figure 12.15): Lv = 2 · 25 + 5 · 16 + 3.3 = 133.3 cm (Figure 12.9)

 v = 5.47 kN/cmLc,Ed

Equation 12.21a:

 
v = 0.52

3.5
1.5

133.3
1

1.0 + 1.0
80.87 kN/cm > 8.21 kN/c,Rd 1◊ ◊ ◊ =- ccm (sufficient)

The required transverse reinforcement is obtained from Equation 12.22 (Table 12.9):

 
v = 

A
s

50
1.15

1. 0 8.21 100
2 A

s
18. 88 cm /m

A
s

9.s,Rd
sf

f

b

f

2 b

f

◊ ◊ ≥ ◊ Æ ◊ ≥ Æ ≥ 444 cm /m2

It is chosen that there be Φ12/10 bottom + Φ10/10 top reinforcement

 

A
s

1131cm /m 9 44 cm /m satisfiedb

f

2 2= >. . ( )

 

( )
. . . ( )

A A
s

1131 7 85 19.16 cm /m 10 3 cm /m satisfiedb t

f

2 2+ = + = >

The minimum transverse reinforcement that must be provided is given by Equation 12.25:

 
min

A
s 30

0.08 35
50

min
A
s

= 0.28 cm /msf

f

sf

f

2

◊
= ◊ Æ

12.7 SHEAR CONNECTION OF COMPOSITE CLOSED BOX BRIDGES

In case of composite cross sections with wide flanges attached to the deck slab, the shear 
forces in the headed studs follow the distribution of the normal stresses due to the shear lag 
effect (see Figure 7.35). Therefore, an even distribution of the longitudinal shear flow 
vL,Ed according to Equations 12.11 and 12.12 in the transverse direction for SLS and 
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FLS would be nonrealistic if not unsafe. EN 1994-2 covers the shear lag effect on the 
studs’ forces with the following equation:

 

P (y) v
n

3.85 n
n

3 1 y
bEd

L,Ed

tot

w

tot

0.17
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Ê
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È
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Í
Í

˘

˚
˙
˙

£
2

Rd0.15 kN P[ ]  (12.26)

where
vL,Ed is the design longitudinal shear due to global effects
ntot is the total number of connectors of equal size per unit length of girder within the 

width b in Figure 12.17, provided that the number of connectors per unit area does 
not increase with y

nw is the number of connectors per unit length placed within a distance from the web aw 
equal to the larger of 10 · tao and 200 mm, where tao is the thickness of the top flange 
(for these connectors, y should be taken as 0. In case of a flange projecting up to aw 
outside the web, nw may include the connectors placed on the flange)

b is equal to half the distance between adjacent webs or the distance between the web 
and the free edge of the top flange

PRd is the shear resistance of the headed stud according to Tables 12.1 and 12.2

For ULS, all connectors within the effectives width carry the same longitudinal force. This 
is allowed provided that the headed studs are adequately ductile to redistribute the shear 
forces to the adjacent connectors.

The top flange is usually a slender element and plate buckling can be avoided through an 
appropriate anchoring of the studs in the deck slab. For this reason, the spacing of the con-
nectors depends on the class of the top flange. This is shown in Table 12.10:

In case of bridges with double composite action (see case B in Figure 2.22), the distribu-
tion of the shear connectors through the use of Equation 12.26 can be avoided provided 
that at least 50% of the total amount of the shear connectors are placed in the area aw with 
aw = max (20 · tau, 0.2 · bei, 400 mm); for bei, see Section 7.2.2.

For the shear studs at the internal
part of the top flange

nw PEd(y) PEd(y)

aw aw awaw

b

y y

b b

For the shear studs at the free
edge of the top flange

Figure 12.17 Notations for Equation 12.26.
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Table 12.10  Upper limit values for spacing of connectors lying on 
the compression flange

Class 2 Class 3

Longitudinal distribution Outstand and 
interior flanges

22 · tao · ε 25 · tao · ε

Transverse distribution Outstand flange 14 · tao · ε 20 · tao · ε
Interior flange 45 · tao · ε 50 · tao · ε

Note: e= 235/fy  where fy is the yielding strength of the compressed flange 
in N/mm2.
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Chapter 13

Structural bearings, dampers, 
and expansion joints

13.1 GENERAL

Bearings are structural devices that transmit loads while facilitating translations and/or rota-
tions. In composite bridge construction, bearings transfer the support reactions and allow for 
displacements due to temperature, shrinkage, creep, and seismic activities, as well as rotations 
produced by changes in camber, traffic loads, wind loads, and misalignment of bearing seats 
due to construction tolerances. In general, vertical displacements are prevented, rotations are 
allowed to occur as freely as possible, and horizontal displacements are either accommodated 
or prevented. Until the middle of the twentieth century, steel bearings were used that consisted 
of four types: pins, rollers, rockers, and metal sliding bearings. Pins are fixed bearings allowing 
rotations. Rollers and rockers allow translation and rotation, while sliding bearings utilize one 
plane metal plate sliding against another, with polytetrafluoroethylene (PTFE), better known 
as teflon, as intermediate lubricant material, to accommodate translations. Figure 13.1a shows 
indicatively a usual layout in plan of bearings for a simply supported bridge at that time, where 
the bridge deck is free from rigid body translation or rotation but may expand/contract in both 
directions to accommodate imposed deformations due to indirect actions (Tables 4.1 and 4.2).

However, steel-only bearings (e.g., Figure 13.1b) suffered from long-term problems, such 
as corrosion or dust and debris collection; they were of high costs due to the need of expen-
sive sliding surfaces and had ultimately poor performance. New trends led to the design of 
continuous bridges with fewer joints, widespread use of curved and skewed bridges with 
increased demands on bearings. This has led after 1950 to the development of modern 
bearings, where other materials as plastics or elastomers are used in combination with steel. 
Bearings are sensitive components of a bridge. As industrial products, they need certification 
and require manufacturing, transportation, temporary storage, and on-site installation in 
accordance with specifications and by qualified personnel. Such issues are covered in Europe 
by EN 1337 [13.5] that describes in its 11 parts the current types of bearings, gives a design 
methodology, and includes provisions for installation. The most common types of bearings 
are reinforced elastomeric bearings. However, the appropriate type of bearings must be 
chosen with due consideration of the design requirements, the initial and maintenance costs, 
the availability, or other parameters. EN 1337 includes in several parts provisions for some 
types of bearings as follows:

• Reinforced elastomeric bearings
• Roller bearings
• Pot bearings
• Rocker bearings
• Spherical and cylindrical bearings
• Guided bearings and restrained bearings
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The most usual type, reinforced elastomeric bearings, is described in Section 13.2, while 
spherical and pot bearings are described in Sections 13.3 and 13.4. For other types, refer-
ence is made to the code and the manufacturer’s specifications (see [13.9] and [13.10]).

13.2 REINFORCED ELASTOMERIC BEARINGS

13.2.1 General

Reinforced elastomeric bearings (known also as laminated elastomeric bearings) consist 
of uniformly spaced layers of elastomer (natural or synthetic rubber) and reinforcing steel 
plates that obtain their bonding through the process of vulcanization [13.9]. These bearings 
possess durability and require low to nil maintenance. The main types of such bearings as 
described in EN 1337-3 are the following (Figure 13.2):

• Type B (1) has elastomeric top and bottom layers and is not secured against slippage. 
Slippage is prevented by the compression load and the friction so that a minimum 
 pressure must always be present.

• Type B/C (1/2) has elastomeric top and steel bottom layer. It is secured against slip-
page on the bottom side by connecting the steel plate with the substructure by bolts, 
rods, dowels, etc. The one-sided anchorage allows easy installation and exchange so 
that it is the only bearing type allowed for railway bridges in some countries.

• Type C 2 has steel top and bottom layers and may be anchored against slipping on 
both sides.

The bottom bearing plate is connected to the concrete of the substructure usually by headed 
studs or anchor bolts, while the top plate with the lower flange of the steel girder by preloaded 
bolts (see Figure 13.3). In most bridges, the main girder bottom flanges are not horizontal; how-
ever, the upper bearing plate needs to be set horizontal so that horizontal forces do not arise 
due to vertical reactions. Therefore, additional tapered bearing plates are provided in between. 
The previous bolted connection can be designed according to EN 1993-1-8 and additionally 

Fixed on all sides
Movable in one direction

Movable in two directions

Fixed in one axis (guide bearing)
Fy = 0

Fx ≠ 0
y

x

Bearing layout(a) (b) Guide bearing

Figure 13.1 (a) Layout of bearings in plan for a simply supported bridge and (b) guide bearing.

Steel plate

Steel
plates

Steel plate

Steel plateElastomerElastomer

Type C 2Type B/C (1/2)Type B (1)

Figure 13.2 Types of reinforced elastomeric bearings.
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allows bearings to be replaced since elastomer has not an infinite life. A high-strength non-
shrinkable mortar layer is provided between the concrete and the steel plate for leveling pur-
poses. Figure 13.3 shows a typical anchorage of type C 2 bearings. The anchorage of type B/C 
(1/2) bearings to the substructure is similar with no anchorage to the superstructure.

REMARK 13.1

Bolting of the bearing plate with the lower flange of the girder is not always the best solu-
tion since clashes between bolts and bearing stiffeners may occur. Another popular method of 
attaching the bearing is to tap the tapered bearing plate and to weld it to the underside of the 
bottom flange of the girder. Bolts are tightened in the taped holes but not tensioned so that 
the threaded hole in the bearing plate is not damaged; the bolts should have higher material 
strength than the bearing plate. Despite the fact that this connection method is quite common 
among the manufacturers, some important drawbacks need to be mentioned:

• Bolting using taped holes is not covered by the design guidelines of EN 1993.
• Site welding of the bearing plates raises questions about the durability of the connection. 

Fatigue failure is possible to occur especially in cases of railway bridges.
• The connection using taped holes is not recommended for applications in seismic areas.

Reinforced elastomeric bearings accommodate translation and rotation (Figure 13.4) by 
deformation of the elastomeric layers, while the steel plates provide stiffness and resistance. 
Consequently, the deformation capacity increases with the total height of the elastomeric 
layers. The number of the steel plates depends on the total height that is between 10 and 
400 mm, with a number of elastomeric layers between 1 and 16. The shape of bearings in plan 
is rectangular, square, or circular. The dimensions in plan depend on the loading capacity to 
compression, ranging between 200 and 1200 mm.

The bearings are movable in longitudinal and transverse directions of the bridge. 
However, by provision of stoppers (or steel keep strips), as indicatively shown in Figure 13.5, 
one or both displacements may be restrained. The bearings resist horizontal forces in the 

Bottom �ange of steel girder
Bearing stiffener

Bearing plate (tapered)

Elastomer

High strength,
nonshrinkable mortar

Bolting using
taped holes

Bolting through
the girder �ange

Studs or
anchor bolts

Lower plate
Steel plates

Upper plate

Preloaded bolts

Taped hole

Concrete of substructure

Figure 13.3  Connection of type C 2 bearings with concrete substructure and steel superstructure with 
bolting through the girder flange or using taped holes.
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corresponding  direction and deformations are restricted to about 40 mm from the mean 
 position. Obviously, elastomeric bearings should not be used as fixed bearings unless forces 
are small (i.e., footbridges or small-span road bridges).

Reinforced elastomeric bearings are not suitable to transfer tension forces. EN 1337-3 
does not contain rules for such a possibility. However, for short-term loading that develops 
under an unfavorable load combination, tension stresses of approximately 1 MPa could 
be sustained. The bearing should then be appropriately detailed to give the possibility of 
exchange. EN 1337-3 describes the required verifications for these bearings, valid for plan 
dimensions up to 1200 × 1200 mm and service temperatures between −25°C and +50°C.

13.2.1.1 Check of distortion

The total design distortion must be limited in accordance with the following relation:

 
e e e etd L c d q d a dK, , , ,( ) .= ◊ + + £ 7 0  (13.1)

where
εc,d is the distortion due to compression, Equation 13.2
εq,d is the distortional deformation, Equation 13.5
εa,d is the distortion due to angular rotation, Equation 13.6
KL is a factor that depends on the type of loading (=1.5 for traffic loads and 1.0 for other 

load types. In general, a value equal to 1.0 is recommended)
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Figure 13.4 Deformations and rotations of reinforced elastomeric bearings.

Longitudinal direction Longitudinal direction

a
a b b

Plan view

Steel plates
with stoppers

Section a–a Section b–b

Plan view

Fixed in longitudinal
direction

Fixed in transverse
direction

Figure 13.5 Bearings fixed in longitudinal and transverse directions.
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13.2.1.1.1 Distortion due to compression εc,d

 
ec d z d

r
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◊ ◊

1 5
 (13.2)

where
Fz,d is the vertical design load, compression
G is the shear modulus of the elastomer (in most cases, 0.9 MPa; see Remark 13.2)
Ar is the reduced cross-sectional area of the bearing, Equation 13.3
S is the shape factor, Equation 13.4
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where
a′, b′ are the widths of the steel reinforcement plates (see Figure 13.6)
A1 is the cross-sectional area of the steel reinforcement plates, possibly reduced due to 

holes
A1 = a′ · b′ for rectangular bearings without holes
vy,d and vx,d are the maximal displacements parallel to side b (transverse) and corre-

spondingly a (longitudinal) (see Figure 13.4):

 
S a b

t a bi
= ¢◊ ¢

◊ ◊ ¢+ ¢( )2
 (13.4)

ti is the thickness of the each elastomeric layer (see Figure 13.6)

13.2.1.1.2 Distortional deformation εq,d

 
eq d xy d

q

v
T,

, .= £1 0  (13.5)

where
vxy,d is the shear design deformation v vx d y d, ,

2 2+( )
Tq is the nominal thickness of the shear elastomer according to Figure 13.6

- �e bearing: Tb = n   (ti + ts)+ ts + 2  e
- Elastomer: Te = Tb – (n + 1)  ts

Tq = n   ti if e ≤ 2.5 mm

Elastomeric layer Steel plate

a΄or b΄ or D΄

≥4 mm

e Total nominal thickness of:

n is the number of internal elastic layers

ts
Tb ti

- �e shear elastomer:
Tq = Te if e > 2.5 mm

a or b or D

Figure 13.6 Notation for reinforced elastomeric bearings.
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13.2.1.1.3 Distortion due to angular rotation εa,d

 
ea d a d b d

i

a a b a
n t,

, ,= ¢ ◊ + ¢ ◊
◊ ◊

2 2

22
 (13.6)

where
aa,d is the angle of rotation over the width a of the bearing (Figure 13.4)
ab,d is the angle of rotation over the width b of the bearing, if any
ti is the thickness of the internal elastomeric layers
n is the number of internal elastomeric layers (see Figure 13.6)

13.2.1.2 Check of the tension of the steel plates

The thickness of the steel plates must be checked in order to limit their tension stresses. For 
constant thickness of the elastomeric layers ti, the relevant relation is written as
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where
Fz,d is the maximum design compression force
fy is the yield stress of the steel plates, usually 235 MPa
Ar is from Equation 13.3
Kp = 1.3 is a correction factor
Kh is equal to 1 for bearings without holes and 2 for bearings with holes
γm is a partial safety factor that may be set equal to 1.0. For seismic load combinations 

the recommended value is 1.15

13.2.1.3 Limitation of rotation

In order to avoid excessive unsticking, the bearing rotation must be limited in accordance 
to the following relations:

• Rectangular bearings
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• Round bearings
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where
Fz,d is the vertical design load, compression
G is the shear modulus of the elastomer
A1 is the area of the steel plates as defined in Equation 13.3
n is the number of internal elastomeric layers
Eb = 2 GPa is the compression modulus of the elastomer
Kr,d is a rotation coefficient that may be taken as 3
S is the shape factor, Equation 13.4
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13.2.1.4 Stability

In order to assure stability, the mean pressure must be limited as follows:
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where
Te is sum of all elastomer layers (see Figure 13.6)
and all other symbols as explained before.

13.2.1.5 Safety against slip

To avoid slip of the bearings, the following conditions must be met:

 
F Fxy d e z d, , ,m in£ ◊m  (13.11)

and under permanent loading,
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where
Fxy,d is the resulting horizontal force
Fz,d,min is the coexisting minimum vertical design force
Fz,Gmin is the minimum vertical design force under permanent loads
Ar is from Equation 13.3

The friction coefficient may be determined from
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where
Kr may be taken as 0.6 for concrete and 0.2 for all other materials, including resins
σm is the mean compression stress in [MPa] that corresponds to Fz,d,min

13.2.2 Modeling for global analysis: Provision of seismic isolation

Reinforced elastomeric bearings are usually introduced as springs in global analysis (see 
Figures 7.16 and 7.18). The spring stiffness in each unrestrained horizontal direction may 
be obtained from

 
K or K A G

Tx y
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where
A is the plan area of the bearings (=a · b or π	· D2/4)
Te is the total nominal thickness of the elastomer layers
G is the shear modulus of the elastomer (=0.9 MPa for non-seismic combinations)
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In vertical direction, the bearing is practically incompressible so that the vertical displace-
ment is restrained without any use of springs. The spring forces and displacements as 
determined from global analysis give directly the horizontal forces on the bearings Fx,d or 
Fy,d as well as the horizontal displacements vx,d or vy,d. The vertical displacement is equal 
to 0, while the vertical reaction is the one at the joint below the springs. The angles of rota-
tion aa,d or ab,d are those from global analysis at the joint of the superstructure connected 
to the spring.

REMARK 13.2

In part of the literature, bearings are represented in the model in vertical direction also by 
springs (see Figure 7.16). In this case, the vertical stiffness may be estimated by the following 
equation [13.11], [13.12]:
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 (R13.1)

where Eb is the compression modulus of the elastomer.
Designers should be aware of the fact that the stiffness given in Equations 13.14 and R13.1 

offers indicative values and changes due to creep, temperature differences, or aging phenomena 
may need to be taken into account. These are usually considered in global analysis by introduc-
ing in the stiffness equations varying values of the shear modulus G. According to EN 1337, 
G = 0.9 ± 0.15 MPa. For the modulus of elasticity Eb, designers should follow the suggestions of 
the manufacturer.

Elastomeric bearings are important structural elements for seismic design because they 
provide seismic isolation. Their flexibility is very high compared to the flexibility of the 
deck, so that the deck may be considered to behave as rigid in plan (Figure 13.7). The 
fundamental period of the bridge analyzed by the fundamental mode method modeled 
as a single mass vibrator is obtained from Equation 13.15, while the seismic force is from 
Equation 13.16 (see also Section 4.9 and Table 4.19):

 
T M

K
= ◊ ◊2 p  (13.15)

 F M S Ta d= ◊ , ( ) (13.16)

where
M is the mass of the superstructure (see Table 4.18)
K = ΣKi is the stiffness of the system, equal to the sum of the stiffness of the bearings
For bridges on piers, the stiffness of piers is added to the stiffness of bearings (Figure 13.14).

Sa,d(T) is design spectral acceleration, Equation 4.24, with q = 1, the behavior factor for low-
damping reinforced elastomeric bearings.
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The spectral displacements for 5% damping that corresponds to the damping properties 
of the common elastomeric bearings and elastic behavior are determined by Equation 13.17 
and are also shown in Figure 13.7:

 
d S T T
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◊

Ê
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ˆ
¯̃p

 (13.17)

where
Se(T) is the elastic spectral acceleration, Equation 4.23
T is the fundamental period of the system, Equation 13.15

The earlier mentioned relations and Figure 13.7 indicate that the introduction of common 
elastomeric bearings results in a shift in the fundamental period (∆Τ = Τ − Τini) of the struc-
ture and accordingly a reduction of seismic forces and an increase of displacements.

The stiffness of bearings in the seismic situation is determined by Equation 13.18 and may 
be regulated for certain plan dimensions by the thickness of the elastomeric layers:

 
K or K A G

Tx y
b

e
= ◊

 (13.18)

where Gb = 1.1 · G is an increased value of the shear modulus of the elastomer in the 
seismic  situation to account for the speed of loading and all other symbols as in 
Equation 13.14.

For seismic combinations, upper and lower values of the shear modulus are applied in 
Equation 13.18. Upper values, Gb,max, are used to determine maximum forces, and lower 
values, Gb,min, to determine maximum displacements. EN 1998-2 recommends to consider 
Gb,min = 1.0 · Gb and Gb,max = 1.5 · Gb.
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Elastomeric bearings
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TB TC TDT TB TC TDT
T T

Sa,d(T) < Sa,d(Tini) d(T) > d(Tini)

Spectral
acceleration

Sa,d(T)

Spectral
deformation

d(T)

Single DOF-system

K

MF

Tini: fundamental period without bearings

Figure 13.7 Seismic isolation by common elastomeric bearings.
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13.3 SPHERICAL BEARINGS

Spherical bearings allow horizontal displacements and rotations in all directions and are 
composed of three basic components (Figure 13.8):

• A sole plate that transfers the loads from the superstructure to the bearing
• A convex spherical segment that provides a PTFE (Teflon) sliding surface for the sole 

plate and a PTFE convex surface for rotation
• A concave spherical segment that provides a mating surface for the convex segment 

and transfers load to the substructure

Displacements and rotations are accommodated through two independent sliding 
motions, one between the sole plate and the convex segment and one between the two 
segments.

The plates are made of steel, plated with stainless steel, hard chrome, or similar materials. 
PTFE is used due to its low frictional characteristics, the chemical inertness, and high dura-
bility. Its friction coefficient varies usually between 0.04 and 0.08 depending on the pressure. 
Spherical bearings may be also guided to restrain displacements in one or both horizontal 
directions.

13.4 POT BEARINGS

Pot bearings are based on the incompressibility of natural rubber when placed in a closed 
steel pot where natural rubber behaves like a fluid. Pot bearings are able to transfer high 
compression forces in a small surface, their dimensions being primarily determined by the 
permissible concrete pressure of the substructure. They allow rotations around all axes, 
while displacements are possible by provision of a sliding material. All-round movable pot 
bearings are composed of the following parts (Figure 13.9):

• A top steel plate, possibly of stainless steel
• A cap with embedded sliding material (PTFE)
• A round elastomer pad
• A steel pot where the elastomer pad is placed
• Sealing rings that prevent the penetration of moisture, dust, or water in the pot

Bottom flange of
steel girder

Convex spherical segment

Concave spherical segment

Concrete of substructure

Bolts

Sole plate
PTFE sliding layer

High strength, non-
shrinkable mortar

Figure 13.8 Cross section of a spherical bearing.
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13.5 SEISMIC ISOLATION

The reduction of seismic forces may be achieved by inelastic behavior of the superstructure 
and the piers/abutments. When the deck is rigidly connected to the abutments as in integral 
bridges or is fixed with the piers, energy dissipation leading to higher than unity behavior 
factors q may be obtained (Table 4.17). This leads to a reduction of seismic forces as indi-
cated by Equation 4.24. However, such a reduction of seismic forces is not substantial, and 
in addition, damages may be caused by inelastic action. Therefore, bridges in seismic areas 
are commonly provided with seismic isolation systems that reduce the response to horizon-
tal seismic action so that the deck and the piers remain elastic. Seismic isolation may be 
achieved by the following:

 a. By introduction of low-stiffness bearings, such as reinforced elastomeric bearings, to 
shift the fundamental period toward higher values. As discussed in Section 13.2.2, 
this results in a reduction of seismic forces but increase of seismic displacements.

 b. By introduction of high-damping bearings or damping devices to reduce displacements 
and, in most cases, forces.

 c. By a combination of the two.

The most common low-stiffness seismic isolators are low-damping elastomeric bearings. 
These are bearings with an equivalent damping ratio ξ equal to 6%. They can be considered 
during seismic analysis as linear springs with horizontal stiffness given by Equation 13.18.

The spectral displacements for 5% damping and elastic behavior are determined by 
Equation 13.17. For higher damping values, the spectral displacements are determined from

 d deffx h= ◊ 5%  (13.19)

where

h
x

=
+

≥10
5

0 4.

ξ(%) is the equivalent viscous damping ratio

The spectral acceleration is also reduced by the factor η. Figure 13.10 illustrates the effect of 
increased damping on spectral accelerations and displacements.

Bolts Bottom �ange of
steel girder

Sealing ring
Elastomer pad

Concrete of substructure

Sole plate

PTFE sliding layer

High strength, non-
shrinkable mortar

Cap

Steel pot

Figure 13.9 Cross section of a movable pot bearing.
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Special devices with high-damping properties have been developed in recent times [13.10], 
some of which are briefly discussed in the following. Prior to use, these devices need to be 
tested and certified in accordance with the relevant specifications.

13.5.1 High-damping reinforced elastomeric bearings

These are bearings in which the common elastomer is substituted by high-damping elas-
tomer. Their equivalent viscous damping ratio ξ reaches values between 10% and 20%, 
while common elastomeric bearings have damping ratios below 6%. The behavior of such 
bearings is considered as linear hysteretic. These bearings are modeled in global analysis 
like common elastomeric bearings as linear springs. The reduction in seismic forces and 
displacements is taken into account by the factor η. This reduction is shown in Figure 13.11. 
One can see the improved time-dependent behavior of a bridge with high-damping bearings.
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13.5.2 Lead rubber bearings

These are common reinforced elastomeric bearings with low-damping elastomer and a 
cylindrical lead core that may reach damping values up to 40% (Figure 13.12).

During cyclic loading, the lead core is yielding and strain hardening so that the hysteretic 
response of the bearings, as illustrated in Figure 13.13, is typical for a yielding and strain-
hardening material. The effective damping ratio ξeff at a certain design displacement dbd may 
be obtained from

 
x

peff
D

bd

E
F d

=
◊ ◊ ◊2 m ax

 (13.20)

where
ED is the absorbed hysteretic energy, equal to the area of the hysteresis loop
dbd is the design displacement
Fmax is the corresponding force

In analysis, the bearings may be modeled by bilinear springs with elastic stiffness Ke for 
displacements up to the yield displacement and post-elastic tangent stiffness Kp for larger 
displacements. Alternatively, they may be represented by linear springs with an effective 

Bottom flange of
steel girder

Elastomer
Lead core

Upper plate

Steel plates

Lower plate

Studs or
anchor bolts

High strength, 
nonshrinkable mortar

Concrete of substructure

Figure 13.12 Lead rubber bearing (LRB).
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Figure 13.13 Response of LRBs to cyclic loading.
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stiffness Keff equal to the secant stiffness corresponding to the maximal displacement. This 
analysis must be iterated since the maximum displacement and accordingly the secant stiff-
ness are not known in advance.

Elastic stiffness:

 K K Ke L R= +

Post-elastic stiffness:

 
K F F

d d
KP

y

bd y
R= -

-
=m ax

Yield force:
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Ky Ly
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= ◊ +Ê
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ˆ
¯̃

1

where
KR and KL are the shear stiffnesses of the elastomeric and the lead core, respectively
FLy is the yield force of the lead core
F0 = Fy − Kp · dy is the force at zero displacement

Note: When KL ≫ KR, then Ke ≈ KL and FLy ≈ Fy

REMARK 13.3

When reinforced elastomeric bearings are used as isolators, they are designed against increased 
displacements dm:

 
d d d d dm Gi C S IS bd= + + ◊ + ◊Â Â Â, .0 5 DT g  (R13.2)

where
dGiÂ  are the displacements induced by the permanent actions

dC S,Â  are the long-term displacements due to creep and shrinkage (in most cases, dC,S 
can be neglected)

dDTÂ  are the displacements due to thermal actions

dbd is the design displacement of the isolator due to earthquake that is increased by the 
amplification factor γIS with a recommended value equal to 1.5

Then the design verifications of EN 1337 as previously explained should be fulfilled. Attention 
should be paid to the following when simple low-damping bearings are used as isolators.

The verification in Equation 13.5 becomes εq,d ≤ 2.0 for the design displacement of Equation R13.2.
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13.6 ANCHORAGE OF BEARINGS

Anchorage of bearings should be verified at ultimate limit states (ULS) as follows:

 
V V N VEd Rd

k
Ed pd£ = ◊ +m

gm
 (13.21)

where
VEd is the design value of the shear force
NEd is the minimum design force acting normal to the joint in conjunction with VEd

Vpd is the design value of shear resistance of any fixing device in accordance with the 
Eurocodes (e.g., studs or anchor bolts)

μk is the characteristic value of the friction coefficient. Recommended values are 0.4 for 
steel on steel and 0.6 for steel on concrete

γμ is the partial safety factor for friction. Recommended values are 2.0 for steel on steel 
and 1.2 for steel on concrete

For railway bridges and structures subjected to earthquake, the contribution of friction in 
VRd is not taken into account (μk = 0).

The reaction forces VEd for persistent design situations at fixed points are calculated for 
the case of sliding bearings as follows:
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where
gG kG,supÂ ◊  are the unfavorable values for dead loads

gG kG,infÂ ◊  are the favorable values for dead loads

γQ · Q1k are the forces from acceleration and braking
ψ1 · γQ · Qki are the traffic loads

y g0i Q i kiQÂ ◊ ◊  are the other variable actions

μa, μr are the adverse and relieving coefficients of friction accordingly

 m m aa = ◊ ◊ +0 5 1. ( )m ax  (13.23a)

 m m ar = ◊ ◊ -0 5 1. ( )m ax  (13.23b)

For PTFE sliding bearings, μmax = 0.03.
α is a factor dependent on the type of bearing and the number of bearings (nb), which are 

exerting either an adverse or relieving force as appropriate.
The recommended values are
α = 1 for nb ≤ 4
α = (16 − nb)/12 if 4 < nb ≤ 10
α = 0.5 if nb > 10
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For elastomeric bearings,
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where
γQ · Q1k are the forces from acceleration and braking
ψ1 · γQ · Qki are the traffic loads

y g0i Q i kiQÂ ◊ ◊  are the other variable actions

Gsup, Ginf are the nominal values of shear modulus; 1.05 N/mm2 and 0.75 N/mm2 
accordingly

A is the plan area of the bearings (=a · b or π	· D2/4)
εq,d are the shear deformations of the bearings (see Equation 13.5)

For seismic design situations, the design value of the horizontal reaction force is found 
in EN 1998-2 (see Table 5.11). It is reminded that the variability of the shear modulus 
of the elastomeric bearings should be considered by conducting two analyses with Gb,min 
and Gb,max.

13.7 CALCULATION OF MOVEMENTS AND SUPPORT REACTIONS

Movements and bearing forces should be calculated as accurate as possible. Wrong estima-
tions may lead to changes in the geometry of the bridge and cause additional internal forces 
and deformations. Typical examples are the following cases:

• Systems in which the deformations are significant for action effects and second-order 
analysis needs to be conducted

• Bridges with complicated erection in which great accuracy is necessary
• Curved bridges
• Bridges with slender piers (e.g., over deep valleys)

For the aforementioned reasons, the following particularities during calculations should be 
considered:

• The design values for the movements of bearings are determined according to the 
regulations EN 1990.

• A mean value for the creep factor ϕt is used that is multiplied with 1.35 for the persis-
tent design situations.

• A mean value for the shrinkage factor εcs is used that is multiplied with 1.60 for the 
persistent design situations.

• Nonuniform distribution of permanent loads is taken into account by applying 
±0.05 · Gk on the influence line for uplift and for anchoring.
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• The bridge should be calculated with second-order theory by taking into account 
deformations of the piers if required by EN 1992-1-1, 5.8.2 (6). Then equivalent geo-
metric imperfections with only 50% of the geometric member imperfections specified 
in EN 1992-1-1, 5.2 are applied.

• In the case of an elastic global analysis, the elastic horizontal stiffnesses of the founda-
tions, piers, and bearings may be modeled by individual springs (Figure 13.14). The 
individual springs (Kbearing, Kpier, and Kfoundation) are combined to a global spring stiff-
ness (K) at the bearing location for the calculation of the movements and restraints. 
A  grillage model can be used. Moreover, the neutral displacement point shown in 
Figure 2.45 can be calculated reasonably accurate.

The aforementioned model can be used both for static and dynamic loadings. For concrete 
piers, an effective stiffness based on each cross section’s moment–curvature diagram should 
be calculated. EN 1998-2 provides guidance for the estimation of the effective stiffness of 
reinforced concrete ductile members. The rotational stiffness of the foundation should take 
into account the soil’s type.

REMARK 13.4

In bridges with piers of low height (≤10 m), the stiffness of the bearings is usually much smaller 
than all the other stiffness values (Kpier, Kfoundation, etc.). In such cases, the stiffness of the springs 
in Figure 13.14 is practically equal to Kbearing.

The change in the position of the bearings due to climatic changes should be considered 
both during erection and at the final stage. Excessive changes in the position of the 
supports should be avoided both for structural and constructional reasons. Otherwise, 
resetting procedures during construction are necessary and unexpected costs may 
arise. For the common bridges (e.g., plate girder bridges), the most adverse combina-
tion of action effects with the uniform temperature components ∆ΤΝ of Section 4.7.2 
is sufficient for the design of bearings (see Example 13.1). However, in regions with 
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Figure 13.14 Spring model for the calculation of movements and restraints.
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extreme temperature variations between day and night, bearings should be calculated 
with the following temperature difference:

 D D D DT T T Td K= + +0 g  (13.25)

where
∆T0 is a temperature uncertainty for the reference temperature T0 (T0 refers to the final 

geometrical form of the bridge during installation of the bearings)
∆Τ0 is equal to:
0°C if installation takes place with measured temperature and with correction by resetting
15°C if installation takes place with estimated temperature and without correction by 

resetting with bridge set at T0 ± 10°C
30°C if installation takes place with estimated temperature and without correction by 

resetting and also one or more changes in the position of the fixed bearing
∆Tγ is the additional safety term to allow for the temperature difference in the bridge 

given in the National Annex
∆TK is the safety term to take into account the uncertainty of the position of the bearing 

at the reference temperature given in the National Annex

In the absence of recommendations for ∆Τd in the National Annex, the following expression 
can be used:

 DT T Td ed ed= -,m ax ,m in  (13.26)

with the constant temperature components being equal to

 
T Ted F,m ax ,exp= + ◊ +0 0g DT DTN  (13.27a)

 T Ted F con,m in ,= - ◊ -0 0g DT DTN  (13.27b)

where
γF is a partial safety factor (=1.35)
∆ΤΝ,exp is the extreme characteristic value of the uniform temperature component for 

expansion (see EN 1991-1-5 or see Section 4.7.2)
∆ΤΝ,con is the extreme characteristic value of the uniform temperature component for 

contraction (see EN 1991-1-5 or see Section 4.7.2)

If a second-order analysis is conducted, ∆Τd is determined incrementally.

13.8  BEARING SCHEDULES, SUPPORT PLANS, 
AND INSTALLATION DRAWINGS

A drawing of the support plan with the symbols of EN 1337-1, Table 1, should be prepared. 
The drawing should contain the following:

• A simplified bearing layout (see Figure 13.1)
• The type of bearing at each location
• Details at the bearing locations as recess and reinforcements
• Bedding and fixing details
• Additional information that the designer considers important for the bearings’ manu-

facturer and the constructors, for example, indicator devices (see Remark 13.5)
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REMARK 13.5

In many bridges, bearings are equipped with indicator devices for the measurement of transla-
tions. Such devices consist of a measuring scale and a pointer that are mounted on a well-visible 
area of the bearing.

The support plans are followed by the bearings’ schedules that ensure that bearings are 
designed and constructed so that under the influence of all possible actions, unfavorable 
effects of the bearing on the structure are avoided. Therefore, a bearing schedule contains 
a detailed list of forces and movements of the bearings for each action. Other performance 
characteristics can be included. Such documents are given to the bearing producers to design 
the bearings according to the rules in EN 1337. EN 1993-2 gives a typical bearing schedule 
in Annex A similar to that of Table 13.1.

In the bearing schedule, the number of the bearing is included in order to be located in the 
layout of the support plan. The bearing type is also given (e.g., elastomeric C 2). One can see 
that the bridge’s temperature reference T0 is also provided.

Together with the bearing schedules, bearing installation drawings should be prepared. 
In these drawings, the installation procedure is explained so that a stress-free construction 
process is feasible.

EXAMPLE 13.1

The twin-girder bridge of Example 13.1 is supported by simple low-damping elastomeric bear-
ings. The bridge is continuous with two spans of 25 m each (Figure 13.15). The bridge is located 
in a seismic area with peak ground acceleration 0.10 g. The characteristic values of the response 
spectrum are TB = 0.15 s, TC = 0.50 s, and TD = 2.0 s. The importance factor of the bridge is γΙ = 1.0, 
and the behavior factor for elastomeric bearings is q = 1.0. The thickness of the surface is 50 mm.

Soil factor S = 1.0.
The bearing dimensions are to be specified and verified.

Actions on the bridge
The actions to be considered and the relevant load cases are described in Table 13.2. Traffic 
loads are represented by LM1 (see Section 4.2.2). Uniform distributed loading (UDL) and tan-
dem system (TS) traffic loads are considered separately since they are introduced with different 
coefficients in the groups of traffic loads (see Table 4.7). For maximum support forces at the 
internal supports, traffic loads are imposed on the entire bridge deck, while for maximum forces 
at end supports, on one span only (Figure 13.16).

Braking forces are determined in accordance with Section 4.2.4 as follows:

• For bearings at internal supports

 Equation 4.3: Q kNlkm = ◊ ◊ ◊ + ◊ ◊ ◊ ◊ =0 6 1 2 300 0 1 1 9 3 50 495. .  
 and 180 kN ≤ 495 kN ≤ 900 kN

• For bearings at end supports

 Equation 4.3: Q kNlke = ◊ ◊ ◊ + ◊ ◊ ◊ ◊ =0 6 1 2 300 0 1 1 9 3 25 427 5. . .  
 and 180 kN ≤ 427.5 kN ≤ 900 kN
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Table 13.1 Typical bearing schedule

Bearing schedule no.
Bearing no.
Type

Reference temperature T0 (°C)
Uncertainty ∆T0 (°C): ±

x

y

z

Max/Min Max/Min Max/Min Max/Min Max/Min Max/Min
V Hx Hy Mz Mx My
w vx vy θz θx θy

Permanent
1 Self-weight kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
2 Dead load kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
3 Creep–shrinkage kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad

Variable
4 Traffic kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
5 Braking/acceleration kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
6 Centrifugal kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
7 Nosing kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
8 Footpath kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
9 Wind kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
10 Temperature kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
11 Settlement kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad

Accidental
12 Derailment kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
13 Collision kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad

Seismic
14 Earthquake (ULS) kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
15 Earthquake (SLS) kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
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These forces are uniformly distributed along the main girders. Each main girder is assigned a 
longitudinal force 495/(2 · 50) = 4.95 kN/m over the entire bridge length for the first case and 
427.5/(2 · 25) = 8.55 kN/m over one span for the second case.

Wind forces equal to 3.6 kN/m are considered over the entire bridge length in the  transverse 
direction. They are shared between the two main girders.

Dimensions and mechanical properties of elastomeric bearings
Type B elastomeric bearings (Figure 13.2) are selected in accordance with preliminary calcula-
tions. The bearings do not have any holes. Their dimensions are given in Table 13.3.

The bearings are represented by means of springs acting in longitudinal and transverse directions. 
The spring constant is determined in accordance with Equation 13.14.

For the internal bearings, it
Total nominal thickness of the elastomer, Figure 13.6: Te = Tb − (n + 1) · ts = 60 mm
Plan area: A = 45 · 50 = 2250 cm2

Spring constant, Equation 13.14: K K kN mx y= = ◊ ◊ =0 09 2250
6

100 3375
.

 /

Similarly for the end bearings, it is Kx = Ky = 2000 kN/m

Table 13.1 (continued) Typical bearing schedule

Max/Min Max/Min Max/Min Max/Min Max/Min Max/Min

V Hx Hy Mz Mx My
w vx vy θz θx θy

Combinations
1 kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
2 kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
3 kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
4 kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
5 kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad
6 kN kN kN kN-m kN-m kN-m

mm mm mm mrad mrad mrad

3.4 m 3.4 m

Pl. 1200 × 15
Pl. 500 × 40

7.0 m

30 cm

y

x

25 m 25 m
System

z

Cross section

Pl. 300 × 40

Figure 13.15 Continuous bridge of Example 13.1.



540 Design of steel–concrete composite bridges to Eurocodes

Global analysis and combination of actions
For global analysis, the bridge is represented by a grillage. The longitudinal beam elements rep-
resent the main composite girders, and the transverse beams the concrete slab.

Cracked analysis is made considering cracked cross-sectional properties at a length 15% 
of the span adjacent to the internal support. The bearings are introduced as springs acting in 
longitudinal (x) and transverse directions (y), while displacements are blocked in the vertical z 
direction (see Remark 13.2).

Global analysis provides reactions, displacements, and rotations at supports for all load cases 
considered. These are appropriately combined to form ULS combinations. For traffic loads, 
groups of loads are considered in accordance with Table 4.7. In the specific case, groups 1a and 2 
are considered. gr1a includes the characteristic values of LM 1. gr2 includes the frequent values

Table 13.2 Actions for dimensioning of bearings

LC Symbol Description

1 G Self-weight of superstructure
2 LM1 middle LM1, unfavorable for middle bearings
3 LM1 frequent middle Frequent LM1, unfavorable for middle bearings
4 Qlkm Braking/acceleration force, unfavorable for middle 

bearings
5 LM1 end LM1, unfavorable for end bearings
6 LM1 frequent end frequent LM1, unfavorable for end bearings
7 Qlke Breaking/acceleration force, unfavorable for end 

bearings
8 ∆TN,con (see Section 4.7.2) Uniform temperature contraction for bearings 45°C
9 ∆TN,exp (see Section 4.7.2) Uniform temperature expansion for bearings 55°C

10 ∆TM,heat (see Section 4.7.3) Temperature difference (heating), top warmer 15°C
11 ∆TM,cool (see Section 4.7.3) Temperature difference (cooling), top colder 18°C
12 W Wind in transverse direction
13 S Shrinkage at time ∞
14 C Creep at time ∞
15 Ex Earthquake in x (longitudinal) direction
16 Ey Earthquake in y (transverse) direction

UDL

UDL

For the internal support

For the end supports

LM1

1.0

1.0

LM1 –

+

+

Figure 13.16 Influence lines and position of LM 1 for the support reactions at internal and end supports.
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of LM 1 set equal to 3 kN/m2 over the entire deck and the characteristic values of the braking/
acceleration forces. Accordingly, the following groups of traffic loads are considered:

gr1a: TS + UDL (load cases 2 or 5)
gr2: (TS + UDL) frequent + breaking/acceleration (load cases 3 + 4 or 6 + 7)

Subsequently, ULS load combinations in accordance with Table 5.6 are formed. The load combi-
nations considered for the specific bridge are given in Table 13.4. Analysis results for the bear-
ings at internal supports for two combinations are illustrated indicatively in Table 13.5.

Verification of bearings
The bearing verifications shall be performed for all combinations. In the following, verifications 
for the bearings at internal supports for the load combination 1 in accordance with Table 13.4 
will be illustrated. Forces, rotations, and displacements are presented in Table 13.5, line 1.

Length of steel plates, Figure 13.6: a′ = 450 − 10 = 440 mm
Width of steel plates, Figure 13.6: b′ = 500 − 10 = 490 mm

 Area: A = a · b = 45 · 50 = 2250 cm2

 Area of steel plates: A1 = 44 · 49 = 2156 cm2

Table 13.3  Dimensions of elastomeric bearings in 
millimeters (see Figure 13.6)

a b Tb n ti ts e

Internal support 450 500 84 5 11 4 2.5
End support 250 400 63 5 8 3 2.5

Table 13.4 Combinations of actions for bearing design

Line No. of combination Combination

1 1 1.35 · (G + Csec) + Ssec +1.35 · gr1a + 1.5 · 0.6 · W
2 1.35 · (G + Csec) + Ssec +1.35 · gr1a + 1.5 · 0.6 · T

T is
2 ∆TN,con or
3 ∆TN,exp or
4 ∆TM,heat or
5 ∆TM,cool or
6 ∆TM,heat + 0.35 · ∆TN,exp or
7 ∆TM,cool + 0.35 · ∆TN,con or
8 0.75 · ∆TM,heat + ∆TN,exp or
9 0.75 · ∆TM,cool + ∆TN,con

3 10–17 1.35 · (G + Csec) + Ssec + 1.35 · gr2 + 1.5 · 0.6·T
For T, see line 2

4 18–25 1.35 · (G + Csec) + Ssec + 1.35 · (0.75 · TS + 0.4 · UDL + 0.4 · qfk
* ) + 1.5 · T

For T, see line 2
5 26–27 1.35 · (G + Csec) + Ssec + 1.35 · (0.75 · TS + 0.4 · UDL + 0.4 · qfk

* ) ± 1.5 · W 
(loaded bridge)
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Shape factor, Equation 13.4: S = ◊
◊ ◊ +

=44 49
2 1 1 44 49

10 54
. ( )

.

Reduced area, Equation 13.3: A cmr = ◊ - -Ê
ËÁ

ˆ
¯̃
=2156 1

0
44

0 929
49

2115 2.

 a. Check of distortion
Distortion due to compression, Equation 13.2: ec d,

.
. .

.= ◊
◊ ◊

=1 5 5959
0 09 2115 10 54

4 46

Shear deformation: v cmxy d, . .= + =0 0 929 0 9292 2

Total thickness of the elastomeric layers, Figure 13.6: Tq = Te = 6.0 cm

Distortional deformation, Equation 13.5: eq d,
.
.

.= =0 929
6 0

0 15

Distortion due to angular rotation, Equation 13.6: ea d,
( . . )

.= ◊ + ◊ ◊
◊ ◊ ◊

=
-44 4 88 49 0 25 10

2 5 1 1
0 83

2 2 3

2 ea d,
( . . )

.= ◊ + ◊ ◊
◊ ◊ ◊

=
-44 4 88 49 0 25 10

2 5 1 1
0 83

2 2 3

2

Total design distortion, Equation 13.1: εt,d = 1.0 · (4.46 + 0.15 + 0.83) = 5.44 < 7 with KL = 1 
and εq,d = 0.15 < 1.0 (sufficient)

 b. Check of the tension of the steel plates

Equation 13.7: required t mm mms =
◊ ◊ ◊ ◊ ◊

◊
◊ = >1 3 5959 2 1 1 1 1

2115 23 5
10 3 4 2

. .
.

.   

ts = 4 mm > 3.4 mm (sufficient)

 c. Limitation of rotation

Equation 13.8: 
5959 5 1 1

2156
1

5 0 09 10 54
1

200
0 38

44 4 88 49 0
2

◊ ◊ ◊
◊ ◊

+Ê
ËÁ

ˆ
¯̃
= ≥ ◊ + ◊.

. .
.

. ..25
3 103◊

=  

0 076. ( ) sufficient

 d. Check of stability

Equation 13.10: 
5959
2115

2 82
2 44 0 09 10 54

3 6
4 64= < ◊ ◊ ◊

◊
=.

. .
. ( ) sufficient

 e. Safety against slip

Fz,Gmin = Fz,d,min = 2231 kN

Mean compression stress: sm kN cm MPa= = =2231
2250

0 99 9 92. . /  

Friction coefficient, Equation 13.13: me = + ◊ =0 1
1 5 0 6

9 9
0 19.

. .
.

.

Shear force, Equation 13.11: F kN kNxy d, . . . .= + = £ ◊ =0 37 9 37 9 0 19 2231 423 892 2   

Equation 13.12: 
F

A
MPa MPa sufficientZ G

r

, min . ( )= ◊ = ≥2231
2115

10 10 5 3   

Table 13.5  Support reactions, rotations, and displacements for 
internal bearings

No. of 
combination

Pz
(kN)

Px
(kN)

Py
(kN)

aa,d 
(mrad)

ab,d 
(mrad)

vx,d
(mm)

vy,d
(mm)

1 5959 ≈0 37.9 4.88 0.25 ≈0 9.29
26 4775 ≈0 63.8 3.9 0.184 ≈0 15.6

Note: For illustration purposes, values for load combination 1 and 26 are given. 
However, in practice, all combinations shall be examined.
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Seismic design
 The masses for seismic analysis correspond to the self-weight of the bridge (G) plus ψ2,1 = 

0.2 of the Qk,1 = 2 · 300 = 600 kN traffic load (see Table 4.18). The total weight in the seis-
mic situation is accordingly equal to 7496 + 0.2 · 600 = 7616 kN. Traffic loads are placed 
over lane 1 to account for possible eccentricities.

  For seismic analysis, minimum and maximum values Gb,min = 1.0 · Gb and Gb,max = 1.5 · Gb 
(Gb = 1.1 · G) are used for the shear modulus of the elastomer. The spring constants for 
the internal bearings are then Kmin = 3712.5 kN/m and Kmax = 5568.75 kN/m, and similarly, 
2200 kN/m and 3300 kN/m for the end bearings.

  Multimodal response spectrum analysis is performed. The resulting fundamental modes 
of vibration correspond to translations in longitudinal and transverse directions. The 
fundamental periods are almost equal in both directions since translations are due to 
the flexibility of the bearings only, which is equal in both directions. The participating 
mass factors for both modes amount to almost 100%. Consequently, the fundamental 
mode method may also be applied (Table 4.19). This is done in the following for illustra-
tion purposes.

  The overall stiffness of the system equals to the sum of stiffness of the bearings (four 
end, two middle bearings). Therefore, Kmax,tot = 24,337.5 kN/m, and Kmin,tot = 16,225 kN/m.

  The fundamental periods are determined from Table 4.19.

  For Kmax,tot, it is T= ◊ ◊ =2
7616 9 81
24337 5

1 12p / .
.

. s, and similarly, T = 1.37 s for Kmin,tot.

  The corresponding base shears with TC ≤ T ≤ TD, Equation 4.24c, are

 
V kNb = ◊ ◊ ◊ ◊Ê

ËÁ
ˆ
¯̃
=7616 0 11 0

2 5
1 0

0 5
1 12

850. .
.
.

.
.

 

 for Kmax, and similarly, Vb = 694.9 kN for Kmin.
  The deck and bearing translations, equal in the two directions, are determined from
  u = (850/24337.5) · 1000 = 34.9 mm for Kmax, and similarly, u = 42.8 mm for Kmin.
  It may be confirmed that upper values lead to maximum forces, and lower values to 

maximum displacements. The horizontal forces of bearings for Kmax are at internal supports 
Fx = Fy = 5568.75 · 34.9/103 = 194.3 kN and at end supports Fx = Fy = 3300 · 34.9/103 = 115.2 kN.

  It may be confirmed that the base shear is Vb = 2 · 194.3 + 4 · 115.2 ≈ 850 kN.
  Table 13.6 provides the design values of internal bearings in the seismic situation.
  The bearing verification procedures for internal bearings for the seismic situation are 

similar as for the basic ULS combinations. The most critical are the safety against slip for 
Kmax and bearing distortion for Kmin that are illustrated subsequently.

Table 13.6  Forces, rotations, and displacements for internal bearings 
in the seismic situation

Calculation 
with

Pz
(kN)

Px
(kN)

Py
(kN)

aa,d
(mrad)

ab,d
(mrad)

vx,d
(mm)

vy,d
(mm)

Kmax 2331 194 194 ≈0 ≈0 34.9 34.9
Kmin 2331 159 159 ≈0 ≈0 42.8 42.8
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• Safety against slip for Kmax

Reduced area, Equation 13.3: A cmr = ◊ - -Ê
ËÁ

ˆ
¯̃
=2156 1

3 49
44

3 49
49

1831 4 2. .
.  

Shear force: F kNxy d, .= + =194 194 274 42 2  

Mean compression stress: sm kN cm MPa= = =2331
2250

1 102 /  

Friction coefficient, Equation 13.13: me = + ◊ =0 1
1 5 0 6

10
0 19.

. .
.

Equation 13.11: F kN kN sufficientxy d, . . . ( )= < ◊ =274 4 0 19 2331 442 89  

 

F
A

MPa MPa sufficientz G

r

, min

.
. ( )= ◊ = ≥2331

1831 4
10 12 7 3   

• Bearing distortion for Kmin

 Reduced area, Equation 13.3: A cmr = ◊ - -Ê
ËÁ

ˆ
¯̃
=2156 1

4 28
44

4 28
49

1758 2. .
 

 Distortion due to compression, Equation 13.2: ec d,
.

( . . ) .
.= ◊

◊ ◊ ◊
=1 5 2331

1 1 0 09 1758 10 54
1 91

 Shear distortion: v v v cmxy d x d y d, , , . . .= + = + =2 2 2 24 28 4 28 6 05 

 Distortional deformation, Equation 13.5: eq d,
.= ◊1.5

= 1.51< 2 (sufficient, see Remark 13.3)
6 05
6

eq d,
.= ◊1.5

= 1.51< 2 (sufficient, see Remark 13.3)
6 05
6

 Distortion due to angular rotation, Equation 13.6: ea d,
.

= ◊ + ◊
◊ ◊

=44 0 49 0
2 5 1 1

0
2 2

2

 Total design distortion, Equation 13.1: εt,d = 1.0 · (1.91 + 1.51 + 0) = 3.42 < 7 (sufficient)
 with KL = 1.

REMARK 13.6

In Example 13.1:

• The stiffness of the piers and the foundations were not taken into account. It was assumed 
that Kpier, Kfoundation  ≫ Kbearing (see also Remark 13.4). A more detailed 3D model can be chosen.

• The verifications for the bearings were based on the results of the most adverse combi-
nation of action effects. Due to the simplicity of the bridge and the mild climate condi-
tions, this can be described as an acceptable approach. In a different case, the increased 
temperature of Equation 13.25 according to the recommendations of the National Annex 
should be applied, alternatively Equation 13.26.

13.9 FLUID VISCOUS DAMPERS

These dampers behave like safety belts, developing low resistance at slow loading velocities 
and high resistance at high loading velocities (Figure 13.17a). Consequently, displacements 
are not restrained at service conditions due to temperature changes, creep, or shrinkage, 
but the dampers “block” and restrain deformations at higher velocities like during an 
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earthquake, sudden breaking, or acceleration. Damping is produced by the displacement 
of a piston moving in a cylinder filled with oil, silicon, or similar materials (Figure 13.18a). 
Small orifices allow the flow of oil for low loading velocities, while at higher speeds, the 
orifices prevent the free flow and damp the movement. Dampers are called in EN 1998-2 
shock transmission units.

The reaction (or damping) force is a function of the loading speed in accordance with 
Equation 13.28 and is illustrated in Figure 13.17a for a sinusoidal motion:

 F C va= ◊  (13.28)

where
C is a device-specific viscous damping coefficient [kN · s/m]
v is the loading velocity [m/s]
a is a device-specific damping exponent (usually 0.2–0.25)

Such dampers are used in combination with bearings. Their application is associated with 
nonlinear time history analysis since they cannot be modeled in the frame of a spectrum 
analysis (see Figure 13.18b).

13.10 FRICTION DEVICES

Friction devices exploit the energy dissipation with development of friction. The restoring 
force for flat sliding surfaces is equal to

 F N sign dd Ed bd= ◊ ◊m ( )�  (13.29)

Fmax

F

d
dbd

ED

(b)

Earthquake

≈1 mm/s
(a)

Temperature,
creep, and
shrinkage

Re
st

or
in

g 
fo

rc
e

v

Loading
velocity

F

Figure 13.17  (a) Response of hydraulic viscous dampers for various loading velocities and (b) response to 
cyclic loading.

Elastomeric
bearingDamperConnection to

substructureConnection to
deck

Viscous fluid

PistonOrifices

(a) (b)

Figure 13.18  (a) Schematic representation of a fluid damper and (b) combination of dampers with elasto-
meric bearings.
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while the dissipated energy by

 E N dd d Ed bd= ◊ ◊ ◊4 m  (13.30)

where
μd is the dynamic friction coefficient
NEd is the applied vertical force
dbd is the maximal design device displacement
sign(d

·
bd) is the sign of the velocity vector

It may be seen that such devices (Figure 13.19) have zero stiffness and no restoring 
capability so that they must be complemented by additional devices. Other devices with 
curved sliding surfaces such as friction pendulum devices have been developed that do 
have restoring capabilities and improved stiffness properties (Figure 13.19b). The restor-
ing force is given by

 
F N

R
d N sign dEd

d
bd d Ed bd= ◊ + ◊ ◊m ( )�  (13.31)

where Rb is the radius of the spherical surface and all other symbols as in Equation 13.29.
The dissipated energy is the same as for flat sliding surfaces and is given by Equation 13.30.

13.11 EXPANSION JOINTS

As already explained, horizontal deformations of the superstructure arise due to temper-
ature, creep, shrinkage, earthquakes, traffic, etc. These deformations are associated with 
significant uncertainties and accurate calculations are obviously not feasible. Expansion 

Fmax

ED

F0

dbd

d

Kp = NEd/Rb

Rb F0

NEddbd F

NEd

F

ED
dbd

d

F0 = μd  NEd

F0

(a)

(b)

Figure 13.19 (a) Response of friction devices with flat and (b) spherical sliding surfaces.



Structural bearings, dampers, and expansion joints 547

joints are flexible links that connect independent parts of a road bridge at piers and 
the  abutments. They are capable of absorbing the aforementioned deformations, and 
in case of failure, they can be easily replaced. A typical cross section of an expansion 
joint is shown in Figure 13.20 [13.1]. The joint is made of natural or synthetic rub-
ber with steel plates embedded in it (reinforced elastomer). The dimensions of the joint 
BxLxt depend on the required design movement. For small-span bridges, longitudinal 
deformations usually range between ±20 and ∼40 mm with BxLxt ≈ (250 ∼ 400) × 2000 × 
(30 ∼ 50). For long-span applications, the required deformations may exceed ±300 mm 
and BxLxt  ≥ 1000 × 2000 × 80. The expansion joint in Figure 13.20 is fixed through 
chemical anchors in the deck plate.

Expansion joints should

• Not increase the degree of the bridge’s static indeterminacy by restraining degrees of 
freedoms at supports

• Be waterproof
• Produce low noise when vehicles are passing over them

Expansion joints should be manufactured and designed according to the regulations of the 
European Technical Approval (ETA) [13.8]. Such a document specifies the design guide-
lines of the expansion joint that are compatible with the requirements of the Eurocodes. 

Section a–a

Asphalt
Binder

Leveling mortar

170 ~250 mm

Deck plate Nominal gap Resin adhesive

Bolt hole
sealing

Elastomer
Central plate

Epoxy resin mortar

Lateral plate

a

a

L

t
B

Rubber sealing sheet

Expansion point

Figure 13.20 Highway expansion joint.
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Alternative types of expansion joints are described in EN 1993-2 [13.7] for the use in steel 
bridges and they are as follows:

• Buried expansion joint
The surfacing is continuous over the joint gap and the expansion joint is not flush with 
the running surface. The joint consists of waterproofing membranes or an elastomeric 
pad and is formed in situ.

• Flexible expansion joint
This is an in situ poured joint that is flush with the running surface. The joint gap is 
covered with steel plates that support the surfacing materials (aggregates or binder).

• Nosing expansion joint
It has lips or edges made of concrete, resin mortar, or elastomeric. The gap between 
the edges is filled by a prefabricated flexible profile. The components of the joints are 
not flush with the running surface.

• Mat expansion joint
The movements of the structure are absorbed by a flexible prefabricated elastic strip. 
The strip is fixed by bolts to the structure (see Figure 13.20). The joints’ components 
are flush with the running surface.

• Cantilever expansion joint
Cantilever symmetrical and nonsymmetrical elements (such as comb or sawtooth 
plates) are anchored on one side of the deck joint gap and interpenetrated to span the 
deck joint gap. The elements are flush with the running surface.

• Supported expansion joint
This joint consists of an element that is fixed by hinges on one side and sliding sup-
ports on the other side. This element is flush with the running surface and spans 
the deck joint gap. Movements are allowed through sliding on the non-fixed side 
of the hinged element.

• Modular expansion joint
Steel beams encased in watertight materials bridge the joint gap in a way that a move-
able joint is formed. The beams are flush with the running surface.

More details are found in the “Guideline for European Technical Approval of Expansion 
Joints for Road Bridges” [13.8].

An expansion joint schedule should be prepared so that the final design is verified by 
the manufacturer. This schedule should contain the arrangement of the expansion joints in 
conjunction with the geometry of the bridge and a list of actions and imposed deformations. 
Moreover, the designer should describe in detail the installation procedure.
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