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Solutions Chapter 1

SECTION 1.1

1.1.9 (www)

For any z,y € R, from the second order expansion

—~

see Appendix A, Proposition A.23) we have

fly) = f@) = (y—2)Vi)+ 5y —2)V3(z)(y —2), (1)

DN | =

where z is some point of the line segment joining x and y. Setting = 0 in (1) and using the
given property of f, it can be seen that f is coercive. Therefore, there exists z* € R™ such that

f(z*) = infzern f(x) (see Proposition A.8 in Appendix A). The condition
mllyl]> <y'V2f(x)y,  Va,yeRm,

is equivalent to strong convexity of f. Strong convexity guarantees that there is a unique global

minimum z*. By using the given property of f and the expansion (1), we obtain

(v — 2y VI (@) + 2lly —all? < Fy) — F(a) < (v — 2y V() + Blly — a2

Taking the minimum over y € R™ in the expression above gives

min ((y = 2)'Vf(@) + Ty = ll?) < f(a*) = f(2) < min (<y V() + o lly - x|2) .

yeERN? yERM

Note that for any a > 0

min (v -2/ 5) + Sy~ 2ll2) =~ VAP

vf

and the minimum is attained for y = x — % Using this relation for a = m and a = M, we

obtain
1 1
_ 2 < *) < - 2,
VAR < fa) ~ £(2) < — 5 195
The first chain of inequalities follows from here. To show the second relation, use the expansion

(1) at the point z = z*, and note that V f(z*) = 0, so that

Fl) ~ F@*) = Sy~ 2y V2 ()~ 2°),

The rest follows immediately from here and the given property of the function f.
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1.1.11 (www)

Since z* is a nonsingular strict local minimum, we have that V2f(z*) > 0. The function f is
twice continuously differentiable over 37, so that there exists a scalar § > 0 such that

V2f(z) >0, Vx, with ||z —2*|| <.

This means that the function f is strictly convex over the open sphere B(x*,d) centered at z*
with radius §. Then according to Proposition 1.1.2, x* is the only stationary point of f in the
sphere B(x*,0).

If f is not twice continuously differentiable, then x* need not be an isolated stationary
point. The example function f does not have the second derivative at x = 0. Note that f(z) > 0
for x # 0, and by definition f(0) = 0. Hence, 2* = 0 is the unique (singular) global minimum.

The first derivative of f(x) for x # 0 can be calculated as follows:
f'(z) =2z (\/5 —sin (5% - \/§ln(x2)> + V3 cos (%T - \/§ln(x2))>
=2z <\/§ — 2cos g sin <%T - \/gln(m2)> + 25sin g oS <%T - \/gln(x2)>)
=% (ﬁ+2sin (g - %” + \/§1n(x2)>>
=2z (\/5 - 2cos(2\/§lnz)) .

(1—8k)7 —(14-8k)7
Solving f/(xz) = 0, gives 2k = ¢ 83 and y* =e 8v3 for k integer. The second derivative

of f(x), for x # 0, is given by

f'(x) =2 (\/_ —2cos(2V3Inz) + 4\/§Sin(2\/§lnaﬁ)) .

Thus: - .
1"(prk) — — — n —
f(xk) 2(\/_ 20054+4\/§sm4)
=2 <f2£ +4\/§£>
2 2
= 4V6.
Similarly

Fr(yk) = =2 (\/5 — 2cos (_Tﬂ) +4/3sin (%))
=2 <\/§—2§—4\/§?>

= —46.

Hence, {z* | k > 0} is a sequence of nonsingular local minima, which evidently converges to z*,

while {y* | k > 0} is a sequence of nonsingular local maxima converging to z*.
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1.1.12 (www)

(a) Let x* be a strict local minimum of f. Then there is § such that f(z*) < f(z) for all x in
the closed sphere centered at x* with radius 6. Take any local sequence {z*} that minimizes f,
ie. ||zk —2*|| <6 and limg oo f(2*) = f(2*). Then there is a subsequence {z*i} and the point
T such that zFi — T and ||T — z*|| < ¢. By continuity of f, we have

f(@) = lim f(zhi) = f(z*).

11— 00

Since x* is a strict local minimum, it follows that T = x*. This is true for any convergent
subsequence of {z*}, therefore {z*} converges to x*, which means that x* is locally stable. Next
we will show that for a continuous function f every locally stable local minimum must be strict.
Assume that this is not true, i.e., there is a local minimum z* which is locally stable but is not

strict. Then for any 6 > 0 there is a point z¢ # x* such that

0< ||zt —a*|| <8 and f(af)= f(x*). (1)
Since z* is a stable local minimum, there is a 6 > 0 such that ¥ — z* for all {z¥} with

Jm f(z%) = f(z*) and [[z* —a*|| <o. (2)

For # = ¢ in (1), we can find a point 20 # x* for which 0 < ||z0 — z*|| < § and f(20) = f(z*).
Then, for § = $||z0 — z*|| in (1), we can find a point ! such that 0 < [|z1 — z*|| < 3||z0 — z*||
and f(z!) = f(z*). Then, again, for § = %|[z1 — z*|| in (1), we can find a point 22 such that
0 < ||z2 — 2*|| < 3|[#* — 2*|| and f(22) = f(z*), and so on. In this way, we have constructed
a sequence {z¥} of distinct points such that 0 < ||k — z*|| < §, f(z¥F) = f(z*) for all k, and

limy_,00 % = 2*. Now, consider the sequence {y*} defined by
y2m =gm, y2m+1 — {,CU, Y m Z 0.

Evidently, the sequence {y*} is contained in the sphere centered at z* with the radius . Also
we have that f(y*¥) = f(z*), but {y*} does not converge to x*. This contradicts the assumption

that z* is locally stable. Hence, x* must be strict local minimum.

(b) Since z* is a strict local minimum, we can find § > 0, such that f(z) > f(z*) for all  # z*
with ||z —2*|| < 0. Then min,_,«=5 f(z) = f0 > f(z*). Let G = max|;_»*||<s |9(z)|. Now,
we have

f(x) —eG < f(z) +eg(x) < f(x) + eGY, Ve>0, Va |lz—a* <.

)
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Choose €% such that

fO— GO > fla*) 4 €G3,
and notice that for all 0 < € < €9 we have
fo— €GO > f(z*) + eGo.
Consider the level sets
L(e) = {z | f(x) +eg(x) < f(a*) + G0, flx —a*[| <6}, 0<e<e

Note that
L(el) € L(e2) C B(z*,9), VO<el <e2<eéd, (3)

where B(z*,d) is the open sphere centered at x* with radius 6. The relation (3) means that
the sequence {L(e)} decreases as e decreases. Observe that for any € > 0, the level set L(e) is
compact. Since x* is strictly better than any other point x € B(z*,0), and a* € L(e) for all
0 <e<éd, we have

No<e<es L(€) = {z*}. (4)

According to Weierstrass’ theorem, the continuous function f(z)+ eg(z) attains its minimum on
the compact set L(e) at some point z. € L(e). From (3) it follows that . € B(z*, ) for any € in

the range [0, €/]. Finally, since zc € L(e), from (4) we see that lime_.oc e = x*.

1.1.13 (www)

In the solution to the Exercise 1.1.12 we found the numbers § > 0 and €5 > 0 such that for all
€ € [0,€9) the function f(z)+ eg(x) has a local minimum z. within the sphere B(z*,d) = {z |
||z — z*|| < §}. The Implicit Function Theorem can be applied to the continuously differentiable
function G(e,z) = Vf(z) + eVg(x) for which G(0,2*) = 0. Thus, there are an interval [0, €), a
number dy and a continuously differentiable function ¢ : [0,e) — B(x*,d0) such that ¢(e) = x¢

and

Vo(e) = V.G (6,6(€)) (VoG (6,0() ", Ve€l0e).

We may assume that € is small enough so that the first order expansion for ¢(e) at € = 0 holds,

namely

¢(e) = ¢(0) +eVe(0) +o(e),  Vee(0,e). (1)

It can be seen that VG (0,¢(0)) = V,G(0,2*) = V2 f(z*), and V.G (0,¢(0)) = Vg(x*)’, which
combined with ¢(e) = z¢, ¢(0) = (z*)’ and (1) gives the desired relation.
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SECTION 1.2

1.2.5 (www)

(a) Given a bounded set A, let r = sup{||z| | z € A} and B = {z | ||z|] < r}. Let L =
max{||V2f(x)|| | + € B}, which is finite because a continuous function on a compact set is

bounded. For any z,y € A we have

1
V@) = Vi = [ V(e (1= 0y -yt
0
Notice that tz + (1 — t)y € B, for all t € [0, 1]. It follows that

IV f(@) = f)l < Lljz -yl
as desired.

(b) The key idea is to show that x* stays in the bounded set
A={z|f(z) < f(=°)}

and to use a stepsize a* that depends on the constant L corresponding to this bounded set. Let
R = max{||z|| | z € A},

G =max{[|Vf(z)| |z € A},

and

B={z||z| < R+2G}.

Using condition (i) in the exercise, there exists some constant L such that |V f(x) — Vf(y)| <
L|lz — y||, for all x,y € B. Suppose the stepsize ok satisfies

0<e<ak <(2—¢€)yk min{l,1/L},

where
_ [V f(ak)dk|
[ak(z -

Let 8k = ak(vk — La*/2), which can be seen to satisfy 8% > €2~k /2 by our choice of ak. We

’Yk

will, show by induction on k that with such a choice of stepsize, we have z* € A and

f(ak+1) < fak) — BR[|k, )

7
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for all £ > 0.

To start the induction, we note that 20 € A, by the definition of A. Suppose that zF € A.

By the definition of v*, we have

YRdE(2 = [V f(ak)ydh| < ||V f(®)] - ldkl.
Thus, [|d*|| < ||V f(z*)||/v* < G/+*. Hence,

[a* + aFd¥]| < [z*]] + oa*G /A% < R +2G,

which shows that x¥ + akd* € B. In order to prove Eq. (*), we now proceed as in the proof of
Prop. 1.2.3. A difficulty arises because Prop. A.24 assumes that the inequality |V f(z) =V f(y)| <
L||z — y|| holds for all x,y, whereas in this exercise this inequality holds only for z,y € B. We
thus essentially repeat the proof of Prop. A.24, to obtain

flaktl) = fak + akdF)

1
:/ bV f(xF + TakdF)'dk dr
0

1 /
< akV f(xk)'dF + / ak (Vf(ask + ak"rdk) - Vf(xk)) dk dr
0

1
< oV f(zkydk + (ak)2||dk||2/ Lrdr
0

k)2
= kv f(aryas + X0 e

We have used here the inequality
|V f(zF + akrdF) — V f(xF)|| < akL7||dF|,
which holds because of our definition of L and because z¥ € A C B, xk 4+ akdk € B and (because

of the convexity of B) zF + aFrdF € B, for T € [0, 1].

Inequality (*) now follows from Eq. (**) as in the proof of Prop. 1.2.3. In particular, we
have f(ak+1) < f(zF) < f(a9) and zF+! € A. This completes the induction. The remainder of

the proof is the same as in Prop. 1.2.3.

1.2.10 (www)
‘We have .
V(z) - V(z+) = /0 V2f (2% + t(x — o)) (x — o)t

and since

Vf(z) =0,
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we obtain
1 1
(x —az*)Vf(x) = / (x —z*)V2f(z* + t(x — x*))(z — x*)dt > m/ |l — a*||2dt.
0 0
Using the Cauchy-Schwartz inequality (x — 2*)'V f(z) < ||l — 2*||||Vf(2)||, we have

1
m / o — o |2dt < o — = ||V F(@)]]

and
Vf(x
o aef < IF@I
m
Now define for all scalars t,
F(t) = flax + t(z — z%))
We have
F'(t) = (x — a*)'V f(a* + t(x — z*))

and

Frt) = (x —z*)'V2f(z* + t(x — z*))(x — 2*) > m|lz — z*||? > 0.
Thus F” is an increasing function, and F’(1) > F'(t) for all ¢ € [0, 1]. Hence

f@) = fa*) = F / Frlt)dt
< F'(1)=(z—z*)Vf()
k

< - 29 @) < LD,

where in the last step we used the result shown earlier.

1.2.11 (www)

Assume condition (i). The same reasoning as in proof of Prop. 1.2.1, can be used here to show

that
0 < Vf(z)p, (1)

where Z is a limit point of {#*}, namely {z*}, ¢ — Z, and
dk _
pr= W» {P"}rex — D (2)
Since V f is continuous, we can write
Vf(@)p= lim _Vf(zk)pk
k—oo, ke

= liminf WV f(ak)pk
k—oo, keEKX

liminf, o ger V/(ab)dt

lim Supk—>oo, keK | |dk| |

<0,

9
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which contradicts (1). The proof for the other choices of stepsize is the same as in Prop.1.2.1.

Assume condition (ii). Suppose that V f(xz*k) # 0 for all k. For the minimization rule we
have

Flak+1) = glzlgf(mk + adk) = glzigf(xk + 0p*), (3)

for all k, where pk = I\Z:H' Note that

Vf@k)ypk < —cl[Vf@R), Yk (4)

Let #k+1 = zk+apF be the iterate generated from z* via the Armijo rule, with the corresponding

stepsize &, and the descent direction p*. Then from (3) and (4), it follows that
fQahtt) = faF) < f(@hH1) = f(ah) < oapV [ (2F)ph < —ocar|[V f(2F)][. (5)

Hence, either {f(z*)} diverges to —oco or else it converges to some finite value. Suppose
that {z¥}rex — T and Vf(Z) # 0. Then, limy_— o rex f(2*) = f(Z), which combined with (5)
implies that

: A V|2 —
lim @[V = o.

Since limy o0 ke Vf(2F) = Vf(Z) # 0, we must have limy_,o0 peic & = 0. Without loss of
generality, we may assume that limy_ o kexc P¥ = p. Now, we can use the same line of arguments
as in the proof of the Prop. 1.2.1 to show that (1) holds. On the other hand, from (4) we have
that

lim Y f(ek)pk = V(@)D < [V f(@)]| <0.

k—o0,k€E

This contradicts (1), so that Vf(z) = 0.

1.2.13 (www)

Consider the stepsize rule (i). From the Descent Lemma (cf. the proof of Prop. 1.2.3), we have

for all k£
ok L

f($k+1) < f(xk) — ak (1 — 5

) IV FER)|P.

From this relation, we obtain for any minimum x* of f,

F@) < @) = 5 DIV b

k=0
It follows that V f(z*) — 0, that {f(2*)} converges, and that >~ ||V f(z¥)||2 < oo, from which

oo

D llaktt — k|2 < oo,
k=0

10
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since V f(zk) = (xk — ak+1) /ak.
Using the convexity of f, we have for any minimum x* of f,
k1 — a2 = [k — w2 = b+t — k[ < 2w — R (k1 — 2b)
= 2ak(xz* — xk)'V f(zF)
< 20k (f(z*) - f(aF))

so that
bt — 2 < flak — @ |2 + - a2

Hence, for any m,
m—1

fom — 2 < ]2 — 22 4+ Y ekt — k|2,
k=0
It follows that {z*} is bounded. Let T be a limit point of {x*}, and for any € > 0, let k be such
that
o
loF T <o 3 et -t < e
i=k
Since 7 is a minimum of f, using the preceding relations, for any k > k, we have
k—1
lzF — 2|2 < |28 —Z||2 + Y [l — 2?2 < 2e.
i=k
Since € is arbitrarily small, it follows that the entire sequence {z*} converges to Z.
The proof for the case of the stepsize rule (ii) is similar. Using the assumptions af — 0
and Y ;- ok = 0o, and the Descent Lemma, we show that V f(z¥) — 0, that {f(z¥)} converges,
and that
o0
D flaktt — 2k]2 < oo
k=0

From this point, the preceding proof applies.

1.2.14 (www)

(a) We have
loh+L — y||2 = [lak — y — ak V £ (k)|
= (¢ —y — oV f(ah)) (aF —y — akV f(zF))
= ||k — y||* — 20k (zk — y)'Vf(2*) + (k|| V £(F)]])?
= ||k — y||* + 20k (y — 2k V f(2k) + (k|| V £ (zF)]])?
< [lak =yl + 20 (F(y) = f(2)) + (o ||V f(F)]])?
= [k — y[|* — 20% (f(2%) — £(y)) + (a*||V f(z5)]])?,

11



Section 1.2

where the inequality follows from Prop. B.3, which states that f is convex if and only if

fly) = f(x) > (y—2)'Vf(z), Vazy.

(b) Assume the contrary; that is, liminfy_,o f(2*) # infzepn f(2). Then, for some 6 > 0, there
exists y such that f(y) < f(x¥) — 6 for all k > k, where k is sufficiently large. From part (a), we

have
a4t — g < ok — ylI® — 20% (F(*) — () + (@H T F ()]

Summing over all &k sufficiently large, we have

S okt — gl < 37 ok -yl 2% (F(aF) — ) + @IV A,
k=k k=k

or
0 < [l — gyl - Z 206 + Z (@ VFh))* = ok = yl2 =D ok (26 — ak[|[V f(z*)]?).
k=k k=Fk k=k

By taking k large enough, we may assume (using o*||V f(z*)||2 — 0) that ok||V f(zk)||2 < § for
k > k. So we obtain .
0<|jzk —y|2 - 5Zak.

k=k
Since > ok = oo, the term on the right is equal to —oo, yielding a contradiction. Therefore we

must have liminfy_ o f(z*) = infzeqnn f(2).

(c) Let y be some z* such that f(z*) < f(z*) for all k. (If no such z* exists, the desired result

follows trivially). Then

k1 — y[|2 < ok — y[|* = 20k (f(2*) — f(y)) + (@¥[|V f(29)]])”
<k = ylI* + (aF ||V £ (@¥)]])*

_ _ 2 k T ?
— ok~ 1 + (o 97
= ok — gl + (s4)?

< [kt = | + (5571)2 + (59)2
k
<< a0 =yl + D)2 < o
=0

Thus {z*} is bounded. Since f is continuously differentiable, we then have that {Vf(a*)} is
bounded. Let M be an upper bound for ||V f(z*)||. Then

e = ore 2 3 2 -

12
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Furthermore,

aF[|Vf(aF)[|? = s¥[[V f(2F)]| < s M.
Since > (s¥)2 < 00, sk — 0. Then a*||V f(x*)]|2 — 0. We can thus apply the results of part (b)
to show that liminfy_ o f(2F) = infyenn f().

Now, since liminfy_,o f(2%) = infyepn f(z), there must be a subsequence {a*} g such that

{z*} Kk — Z, for some T where f(Z) = inf epn f(x) so that T is a global minimum. We have
lzk+1 — 22 < J|lak — 2 + (s%)2,

so that
N
2N — F|2 < [|lzk — 2]+ ) " (sm)2, VEN>1L

m=k
For any e > 0, we can choose k € K to be sufficiently large so that for all k € K with k > k we

have

o0
ok —Z|2 < e and Y (sm)2 <.

m=k
Then
|xk+N —Z||2 <2, VN>I1.

Since € > 0 is arbitrary, we see that {x*} converges to Z.

1.2.17 (www)

By using the descent lemma (Proposition A.24 of Appendix A), we obtain

F(kH1) = F(H) S —akV () (V) + k) + 5 (@R[ VF (k) + |

L L
= ot (1= 5ot VAR + G (@2t — k(1 — Lab) V(oY
Assume that ok < % for all k, so that 1 — La* > 0 for every k. Then, using the estimates

L
1 - Sak>1- Lok,

1
Vi(akyer 2 =2 (IIVF@R)|2 +[lek]?),
and the assumption ||ek|| < 4 for all k, in the inequality above, we obtain

L5

flaktt) — f(aF) < —%k(l = La®) (IVF(@®)[[2 = 0%) + (a*)2 = (1)

Let ¢’ be an arbitrary number satisfying ¢’ > 4. Consider the set K = {k | ||V f(zF)|| < ¢’'}. If

the set K is infinite, then we are done. Suppose that the set IC is finite. Then, there is some

13
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index ko such that ||V f(xk)|| > ¢’ for all k > ko. By substituting this in (1), we can easily find

that

flak+t) — f(ak) < _O‘; ((1— Lak) (6 = 62) — akLé2), Y k> ko.

By choosing « and @ such that 0 < o < & < min{ ‘55,2L , 11}, and of € [, @] for all k > ko, we

have that

a (0 —02—aLs®),  Yk=>k. (2)

1 1
Flak+) = (k) < =3

Since 6% — 62 — aLé’* > 0 for k > ko, the sequence {f(z*) | k > ko} is strictly decreasing.

Summing the inequalities in (2) over k for kg < k < N, we get

(N — ko)

5 a (6 —02—aLé?), VN> k.

f@N+1) = f(aho) < —

Taking the limit as N — oo, we obtain limy e f(2V) = —c0.

1.2.19 (www)

(a) Note that
Vf(x) = VaF(z,9(x)) + Vg(2)Vy F(z,9(x)).

We can write the given method as
aktl =gk + akdk = ok — aFV F(zF, g(aF)) = aF + oF (=V f(2F) + Vg(zF)Vy F(a*, g(zF)),
so that this method is essentially steepest descent with error

el = —Vg(zF)V,F(xk, g(ak)).

Claim: The directions d* are gradient related.
Proof: We first show that d* is a descent direction. We have
Vi(ah)dk = (Vo F (b, g(a*)) + Vg(a)VyF(a*, g(ab))) (= VaF (2%, g(ab)))
= — [VaF(a*,g(z*)|* = (Vg(2)Vy F(a*, g(a*))) (Vo F (a*, g(a*)))
< — [[VaF(ak, g(xh)|* + | Vg(@)Vy F(zk, g(xk) || |V F(a, ()|
—IVaF(z*, g(@))II* + 7 Vo F (2, g(2*))|
(=1 +7) Vo F(a¥, g(«k))||*

<0 for |ViF(xk, g(z*))|| # 0.

IN

14
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It is straightforward to show that || V4 F (z¥, g(z*))|| = 0 if and only if |V f(z*)|| = 0, so that we
have V f(zF)'d* < 0 for |V f(x*)|| # 0. Hence d* is a descent direction if =¥ is nonstationary.

Furthermore, for every subsequence {z*}rcx that converges to a nonstationary point Z, we have

4] = = [IVaF (o gl = 71 TPk g(ab)) ]
< 2 (IVLFlat g~ [Vg(a)V, Flat, gl
< o VP g(a) + Vg() T, Fak g(a))|
= IVl

and so {d*} is bounded. We have from Eq. (1), Vf(zk)dt < —(1 — ~)||V.F(a*, g(z*))|.
Hence if limy_ o infrex Vf(2F)'d* = 0, then limg_,o0 kek ||VE (z¥, g(2*))|| = 0, from which
IVF(z,g(z))|| = 0. So Vf(Z) = 0, which contradicts the nonstationarity of z. Hence,

i i kY qk
Rl Ve <

and it follows that the directions d¥ are gradient related.

From Prop. 1.2.1, we then have the desired result.

(b) Let’s assume that in addition to being continuously differentiable, h has a continuous and
nonsingular gradient matrix Vyh(x,y). Then from the Implicit Function Theorem (Prop. A.33),
there exists a continuously differentiable function ¢ : ®* — R™ such that h(z, ¢(z)) = 0, for all

x € R, If, furthermore, there exists a v € (0,1) such that

IVo(2)Vy f(z, p(a)ll < v IVaf(z, ¢(@))], VzeRn,

then from part (a), the method described is convergent.

1.2.20 (www)

(a) Consider a function g(a) = f(a* + adF) for 0 < o < ¥, which is convex over I*¥. Suppose
that ¥ = xk + @dk € I* minimizes f(z) over I*. Then ¢/(@) = 0 and from convexity it follows
that ¢’(ak) = Vf(ak+1)'dk > 0 (since ¢’(0) = V f(xk)'d¥ < 0). Therefore the stepsize will be
reduced after this iteration. Now, assume that Z° ¢ I*. This means that the derivative g’(c)
does not change the sign for 0 < o < ok, i.e. for all & in the interval (0, a*) we have ¢’(a) < 0.

Hence, ¢/(ak) = V f(xk+1)’dk < 0 and we can use the same stepsize a¥ in the next iteration.

15
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(b) Here we will use conditions on V f(z) and d* which imply
Vf(@kttydk <V f(ah)ds + ||V f(zbtt) = Vf(zF)]] - [|d¥]]
< Vf(@k)'dh + o Lf|dM|]?

< —(e1 — b L)[|V f (zF) 2.

When the stepsize becomes small enough so that c; —coak L > 0 for some 12:, then V f(xk+1)/dk <0

for all £ > k and no further reduction will ever be needed.

(¢) The result follows in the same way as in the proof of Prop.1.2.4. Every limit point of {z*} is

a stationary point of f. Since f is convex, every limit point of {z*} must be a global minimum

of f.

1.2.21 (www)
By using the descent lemma (Prop. A.24 of Appendix A), we obtain
L
FahH1) = (k) < QR Fah)(dh +eF) + (ak)2 2k + k|2 (1)

Taking into account the given properties of d¥, e¥, the Schwartz inequality, and the inequality

[yl - [[21] < [lyl[ + ||2[[?, we obtain

Vf(@k) (dF 4 F) < —(er — par)[[V F(2F)|]? + qa¥[|V f (2F)

|
< — (a1 = (p+ Daw) [[Vf(@P)[]? + aFg?.

To estimate the last term in the right hand-side of (1), we again use the properties of d¥, e¥, and
the inequality ||y + 2|2 < ||y||2 + ||2||2, which gives
1
S lld* + ek[[2 < [|dk]]2 + [le*]?
< 2(c3 + (pak)?) [[Vf(@F)| 2 +2(c3 + (qa*)?)
< 2(3 + PV F(@h)|? +2(c3 + ¢2), Y k > ko,
where kg is such that oy <1 for all k > ko.

By substituting these estimates in (1), we get
flaktt) — f(@¥) < —ak(er = O)IVF(@R)|]? + (F)?b2, V& = ko,

where C' =1+ p + 2L(c% + p?) and bs = ¢2 + 2L(c2 + ¢2). By choosing k¢ large enough, we can
have

fQ@Hh) = f(ak) < —a*ba||[Vf(2F)[[? + (@F)2b2, ¥ k> ko.

16
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Summing up these inequalities over k for kg < K < k < N gives

N N
F@Nt) +b1 Y ak[[Vf@R)|2 < f(@5)+b2 Y (ak)?,  Vho<K<k<N.  (2)
k=K k=K
Therefore
limsup f(aN+1) < f(xK) + by Z (ak)2, vV K > ko.
N—o0 =K

Since Y"p- (k)2 < oo, the last inequality implies

limsup f(zN+1) < liminf f(zX),
N—oo K—o0

i.e. limg_ o0 f(2F) exists (possibly infinite). In particular, the relation (2) implies

oo

Y ak|IVfEh)][? < oo

k=0

Thus we have lim inf_. ||V f(2*)|| = 0 (see the proof of Prop. 1.2.4). To prove that lim,_. ||V f(z*)|| =}}

0, assume the contrary, i.e.

limsup ||V f(z¥)]| > € > 0. (3)

k—oo

Let {m;} and {n;} be sequences such that
m; < nj; < Mji1,
€
§<||Vf(:ck)|| for m; <k < ny,

IV f(z9)]] < for n; <k <mjy1. (4)

Wl m

Let j be large enough so that

oo 63
EIIV f(zF)]]2 < .
D HIVIEIP S g )

J

17
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For any j > j and any m with m; <m <n; — 1, we have

njfl
IV f(@") = Vf@m)|| < Y ([Vf(@ktt) = Vf(ah)|
k=m
njfl
<L) |laktt — okl
k=m
njfl
<L) ar (lld] + [lek]])
k=m
njfl njfl
< L(ea+q) Z ag | + Lca +p) Z ag ||V f(zF)]|
k=m k=m
9 3 nj—l
< (et 0g + Lo +n)?) ¥ o960
n;—1

LR P4 N~ 19 s

k=m
9L(2c2+p+4q) €3
€2 27L(2¢c2 + g+ p)

€2

€
3
Therefore

v [ L=
IVl < [[Vfa")l[+ 3 < Vij>j, mj<m<mn;—1

i
— 3 )
From here and (4), we have

2
IVieml<S,  Ymzm,

which contradicts Eq. (3). Hence limg_o0o Vf(zF) = 0. If T is a limit point of {z¥}, then
limy o0 f(2*) = f(Z). Thus, we have limy_, V f(2F) = 0, implying that V f(z) = 0.

SECTION 1.3

1.3.2 (www)

Let 3 be any scalar with 0 < 8 < 1 and B(z*,€) = {x | ||z —z*|| < €} be a closed sphere centered
at z* with the radius € > 0 such that for all z,y € B(z*,€) the following hold

V2f($) >0, ||V2f(.%')71|| < M, (1)

18
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IVf(@) = Vil < Mallz —yll,  Mz2= i )HVQf(z)IL (2)
2 2 ﬁ

IV2f(z) = V2T Wl < 53 3)
2 -1 i

ld(z) + V2f @)V @) < 53 IV @)L (4)

Then, by using these relations and V f(z*) = 0, for any = € B(z*,€) one can obtain
|z +d(z) = 2*|| < [|lz — 2% = V2f(2) IV f(@)]| + [|d(z) + V2f (2) "V f ()]
<[IV2f(2) = (V2 f(2)(z — 2%) = Vf(2)) | + 2%QHVJ”(%)H
< Mi[[V2f(2)(x — 2*) = Vf(x) + V()| + %I\W(w) = V()|

< M[V2f () (z — a*) — /0 V2f (2 + t(x — 2))" (& — a*)dt]| + g\lw — x|

' p
<ot ([ 1921(@) = 92 (@ tla =) e ) o = 7]+ G o =)
< e — 2.

This means that if 29 € B(z*,€) and ok =1 for all k, then we will have
|lzk — || < BF[]a® —z*||, ¥V k>0, ()

Now, we have to prove that for € small enough the unity initial stepsize will pass the test of

Armijo rule. By the mean value theorem, we have
fla+d@) — f(2) = VS (yd) + () T2 @),
where T is a point on the line segment joining x and x + d(x). We would like to have
Vi @yd(z) + Ly V2 @)d) < oV f(@)d(z), ()

for all z in some neighborhood of x*. Therefore, we must find how small € should be that this

holds in addition to the conditions given in (1)-(4). By defining

V@) L dw)
PO T N
the condition (6) takes the form
(1 - o)p(e)a(x) + 2@y V2 f(@)(z) < 0. (7)

2

The condition on d(x) is equivalent to

g(z) = = (V2f(2*)) " pl(z) + v(x),
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where v(z) denotes a vector function with v(z) — 0 as x — z*. By using the above relation and

the fact V2f(z) — V2f(z*) as * — x*, we may write Eq.(7) as

(1= o)p() (V2f ()" p(x) - %p(x)’ (V2f(@*) " plz) = y(x),

where {7(z)} is some scalar sequence with lim,_,z« y(z) = 0. Thus Eq.(7) is equivalent to

(5-) play (727 plo) 2 2(0). 0

Since 1/2 > o, ||p(z)|| =1, and V2f(z*) > 0, the above relation holds in some neighborhood of
point xz*. Namely, there is some € € (0,€) such that (1)—(4) and (8) hold. Then for any initial
point 20 € B(X*, €) the unity initial stepsize passes the test of Armijo rule, and (5) holds for all
k. This completes the proof.

1.3.8 (www)

In this case, the gradient method has the form z*+1 = 2k — oV f(2*). From the descent lemma

(Prop. A.24 of Appendix A), we have

f(ah 1) = f(aF) < —ad |V f(a5)]]?, (1)

where a < %, and ¢ = 1 — aL/2. By using the same arguments as in the proof of Prop. 1.3.3, we
can show that

lim d(zk, X*) =0. (2)

k—o0
We assume that d(z¥, X*) # 0, otherwise the method will terminate in a finite number of itera-

tions. Convexity of the function f implies that
f(@k) = fax) S Vf(ak) (@b —2x) <||Vf@h)]] - [lah =], Var e X~
from which, by minimizing over z* € X*, we have
f(@k) = f= <[V f(@h)]|d(zh, X*). 3)

Let ek = f(x¥) — f*. Then, inequalities (1) and (3) imply that

(€¥)?

kE+1 < ek — [ S A—
e <e ach(a:k,X*)’

vV k.

The rest of the proof is exactly the same as the proof of Prop. 1.3.3, starting from the relation

_IVIENI?

k) < f(ak) 5T

20
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1.3.9 (www)

Without loss of generality we assume that ¢ = 0 (otherwise we make the change of variables

x =1y — @ 1c¢). The iteration becomes

Tht1 _ 1+ —-aQ —-pI T
o ) I 0 Th—1
A:<(1+5)1—04Q —ﬂ1>.

I 0

Define
If i is an eigenvalue of A, then for some vectors v and w, which are not both 0, we have
u U
A =L ,
w w

U= pw and ((1 + 01— aQ)u — Bw = pu.

or equivalently,

If we had p = 0, then it is seen from the above equations that u = 0 and also w = 0, which is

not possible. Therefore, i # 0 and A is invertible. We also have from the above equations that

U= pw and (1+B) —aQ)u = (u—i—g) u,

so that p + 8/u is an eigenvalue of (1 + )1 — a@). Hence, if p and X satisfy the equation
w+ B/p=1+ 0 —al, then p is an eigenvalue of A if and only if A is an eigenvalue of Q.

0<a<2(ﬂ),

Now, if

M

where M is the maximum eigenvalue of @), then we have
N+8—-—aX<1+4+0
for every eigenvalue A of (), and therefore also
'u + g’ <1+p

for every eigenvalue p of A. Let the complex number p have the representation p = |u|e?. Then,

since p + (/p is a real number, its imaginary part is 0, or

|| sin@ — 3(1/|u|) sin@ = 0.

If sin@ # 0, we have |u|2 = § < 1, while if sinf = 0, p is a real number and the relation
lw+ B/ul < 1+ B is written as p2 + 8 < (1 + B)|p| or (Ju| — 1)(Jju| — B) < 0. Therefore,
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B < |u| < 1. Thus, for all values of 6, we have 8 < |u| < 1. Thus, all the eigenvalues of A are
strictly within the unit circle, implying that x; — 0; that is, the method converges to the unique

optimal solution.

Assume for the moment that o and 3 are fixed. From the preceding analysis we have that
1 is an eigenvalue of A if and only if 2 + 3 =14 8 — a\, where A is an eigenvalue of ). Thus,

the set of eigenvalues of A is

{1+ﬂa)\i\/(1+ﬂw\)2

—4
5 p ‘ A is an eigenvalue of Q} ,

so that the spectral radius of A is

(A) = max 1+ B —aX+/(1+8—aN?2—4p
P = 2

‘ A is an eigenvalue of Q} .

For any scalar ¢ > 0, consider the function g : R+ — R* given by
g(r) =|r++vr2 —.
We claim that
g(r) = max{\/c,2r — /c}.

Indeed, let us show this relation in each of two cases: Case I: r > /c. Then it is seen that
V12 — ¢ > 1r—+/c, so that g(r) > 2r —/c > y/c. Case 2: r < /c. Then g(r) = \/r2+ (¢ —r2) =
Ve >2r— /e

We now apply the relation g(r) > max{/c,2r — y/c} to Eq. (3), with ¢ = 48 and with
r = |1+ 8 — al)|, where )\ is an eigenvalue of Q. We have

1
p2(A) > 1 max{44, max{2(1 + 5 — aX)?2 — 45 | A is an eigenvalue of Q}}.
Therefore,
1
p2(A) > 1 max{4/3,2(14+ 8 —am)?2 —43,2(1 + f — aM)? — 45}

or

p*(A) = maX{ﬁ, %(1 + B —am)? - B, %(1 + 3 —aM)? —ﬁ}.

It is easy to verify that for every g,

—_

max{%(l—i—ﬂ—am)?—ﬂ, %(1+6—aM)2—ﬁ} > 5(1+6—a’m)2—ﬁ,

where o/ corresponds to the intersection point of the graphs of the functions of « inside the
braces, satisfying

S4B = (14— M)
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or

L2049

C om+ M’
From Egs. (4), (5), and the above formula for o/, we obtain

p2(4) 2 max {ﬁ,% ((1+6>Am4+_ﬁ>2 —6}

Again, consider the point (3’ that corresponds to the intersection point of the graphs of the

functions of § inside the braces, satisfying

‘We have

and

Therefore,

Note that equality in Eq. (6) is achievable for the (optimal) values

2

g (YA

VM + /m

and
L2145
m+ M
In conclusion, we have

.8 VM + /m

and the minimum is attained by some values o/ > 0 and §’ € [0,1). Therefore, the convergence
rate of the heavy ball method (2) with optimal choices of stepsize « and parameter [ is governed

by
2kt VM —/m
k < :
[zl VM + /m

It can be seen that

VM —/m < M—-m
VM +ym ~— M+m’
so the convergence rate of the heavy ball iteration (2) is faster than the one of the steepest descent

iteration (cf. Section 1.3.2).
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1.3.10 (www)

By using the given property of the sequence {e*¥}, we can obtain
|lek+1 — k|| < Br+1-k||ek — eh—1]|, Vk>k

Thus, we have
lem — k]| < Jem — em=1]] + [Jem=1 — em=2]] 4.+ [Jek+1 — k]

< (6m—l_c+1 4 ﬂm—l_f + o+ ﬁk—/_c+1) ||el_c _ el_c—1||
B B B m
< 1 ek — k1] Y pi.
j=k
By choosing ko > k large enough, we can make Z;ﬂ:k (7 arbitrarily small for all m,k > ko.
Therefore, {eF} is a Cauchy sequence. Let lim;,—o €™ = e*, and let m — oo in the inequality

above, which results in

o _ o . _ gk _
k _ px* 1—k k _ pk—1 — Al1-k k _ pk—1 — gk Rk
ek —ex|| < BL=F [[ek — er=1| _Ekﬂﬂ—ﬁ ek —e Hl_ﬁ—qﬂ, (1)
]:

for all k > k, where ¢k = fil__; ||ek — ek=1||. Define the sequence {g* | 0 < k < k} as follows

r_ lleF—e]
q - k 9
B

Combining (1) and (2), it can be seen that

Yk, 0<k<k. (2)

lek —e[| <gpF,  VE,

where ¢ = maxg<,<r q*.

1.3.11 (www)

Since a* is determined by Armijo rule, we know that ok = 8™ks, where my is the first index m

for which

(k= BmsV f(a4)) — f(a4) < —oBms|[V F ()2 1)
The second order expansion of f yields
i )2
f(ak = BV fa) — fa) = 3|V + P paryv2 (@) v ),

for some Z that lies in the segment joining the points z* — 3'sV f(a*) and z*. From the given

property of f, it follows that

Flak = a9 ) - ) < s (1= 250 ) v s 2)
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Now, let i be the first index ¢ for which 1 — %,@is > o0, ie.
M . M .
lf?ﬂzs<a Vi, 0<i<iyg, and 177@1&520. (3)

Then, from (1)-(3), we can conclude that my < ir. Therefore af > &k, where &% = (3% s. Thus,

we have
fak — bV f(ah)) = fak) < —odk ||V f(2*)][. (4)
Note that (3) implies

M M
0> 1— T fhls =1 oak

20
Hence, &% > 208(1 — o) /M. By substituting this in (4), we obtain

Flak) = fa) < 1) — 1)~ 220 g pamy e )

The given property of f implies that (see Exercise 1.1.9)
f@) ~ fa) < 5 AIF@IR, Yo eRe (6)
m
Pl -l < f@) — f@), VaeRn )
By combining (5) and (6), we obtain
flak+t) = f(a*) <r(f(zk) = f(z)),

. _ 4dmpBo(l1—0o)
withr=1— M

. Therefore, we have
f@k) = flax) <k (f(20) = f(z¥)), VY,
which combined with (7) yields

[|zh — z*||2 < grk, Yk,

with ¢ = 2 (f(a0) — f(a*)).

SECTION 1.4
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1.4.2 (www)

From the proof of Prop. 1.4.1, we have

1
ekt — av]) < M ( [ 19060) = Vgt 4160 - w*))dt) T

By continuity of Vg, we can take § sufficiently small to ensure that the term under the integral
sign is arbitrarily small. Let d; be such that the term under the integral sign is less than /M.
Then

Jahtt — | < rflak — 2.

Now, let .

M(z) = /0 Vg (z* +t(x — x*)) dt.
We then have g(x) = M(z)(x — z*). Note that M(z*) = Vg(z*). We have that M(xz*) is
invertible. By continuity of Vg, we can take § to be such that the region Ss around z* is
sufficiently small so the M (x)’ M (z) is invertible. Let d2 be such that M (x)’M(zx) is invertible.
Then the eigenvalues of M (x)'M (x) are all positive. Let v and I" be such that

0<~v< min eig(M(x)M(z))< max eig(M(z)M(z)) <T.
lz—a* <52 llz—a*[|<52

Then, since ||g(2)||2 = (z — x*) M'(z)M (x)(x — x*), we have
Yo —a*? < llg(@)|* < Tlle — 22,

or

(k1) < [lzh+1 — 2#|| and rl|ak — 2% < —||g(a*)]].

1
ﬁllg <75

Since we've already shown that ||zF+1 — z*|| < 7|2k — z*||, we have

/T
Al

g+ lg(® ).

Let 7 = ’“\ﬁr. By letting § be sufficiently small, we can have 7 < r. Letting 6 = min{é, d2} we

have for any r, both desired results.

1.4.5 (www)

Since {z*} converges to nonsingular local minimum x* of twice continuously differentiable func-
tion f and

lim ||H* = V2 f(z¥)[| = 0,

k—o0
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we have that

Jim || HF — 92f ()| = 0. (1)

Let m* and m denote the smallest eigenvalues of H* and V2 f(x*), respectively. The positive
definiteness of V2 f(z*) and the Eq. (1) imply that for any € > 0 with m — e > 0 and ko large
enough, we have

O<m—e<mrk <m+e, V k> ko. (2)

For the truncated Newton method, the direction d* is such that

1
idk’dek + Vf(xk)ydk <0, YEk>0. (3)
P . g _VIEh -
Define gk = 7 @ and p ACIE Then Eq. (3) can be written as

1
§qk’Hqu _|_pk’qk <0, V>0
By the positive definiteness of H¥, we have
mk
5 lla* I <Tla*ll, vk =0,

where we have used the fact that ||p¥|| = 1. Combining this and Eq. (2) we obtain that the

sequence {g*} is bounded. Thus, we have

4 (V@) VI IV V)]
A, NSl =M N

=M lim [[V2f(z*)g" + p*|]

< M Jlim [|V2f () — HF|[ - |lg|| + M Jim [[Hgb 4 ph|
oo k—o0
= ()7

where M = ||(V2f(z*))~1||. Now we have that all the conditions of Prop. 1.3.2 are satisfied, so

{||x* — x*||} converges superlinearly.

1.4.6 (www)

For the function f(z) = ||z||3, we have

3 3
Vf(x) =3|z||z, V2f(x)=3z|+ mmf’ = m(IIwHU + za’).

Using the formula (A + CBC’)~1 = A-1 — A-1C(B~! + C’A-1C)~1C"A-1 [Eq. (A.7) from
Appendix A], we have

1 1
(olfr 4yt = o (1= gt
EEANEEEE
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and so

2‘%71:1 —1xac’
w10 = g7 (1 )

Newton’s method is then

ok tl = gk — o (V2f (k)7 V f(2h)

1 < 1
=zk -« I- xk(xk)’) 3||xk ||k
3f* ]l 2[|ac* |2

1
— ok _ kE_ __ — .k k
= “(m waf”“”ﬁ

1
=k -« (mk - §xk)
)

Thus for 0 < a < 2, Newton’s method converges linearly to z* = 0. For a® = 2 method converges

in one step. Note that the method also converges linearly for 2 < a < 4. Proposition 1.4.1 does

not apply since V2 f(0) is not invertible. Otherwise, we would have superlinear convergence.

Alternatively, instead of inverting V2f(z), we can calculate the Newton direction at a
vector x by guessing (based on symmetry) that it has the form vz for some scalar 7, and by
determining the value of v through the equation V2f(z)(yz) = —Vf(z). In this way, we can
verify that v = —1/2.

SECTION 1.6

1.6.3 (www)

‘We have that
FlaF 1) < max (14 NP*(\))? f(209), (1)

for any polynomial P* of degree k and any k, where {);} is the set of the eigenvalues of ). Chose

Pk such that
(z1=A) (22—-A) (= —A)

L+APEQ) = 21 22 2k

Define I; = [z; — ;,2; + ¢;] for j =1,..., k. Since \; € I; for some j, we have

(14 AiPk(M\))? < max (14 APk(X))?.

/\EIj
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Hence

PE())E < k 2
max (1 4+ X PF(N))” < max rAngg(H/\P ()" (2)

For any j and A € I; we have

(21 =A)2 (22—=A)?2 (2 —\)?

1+ APk(N))* = :
(eapy = BN
(2 + 08 —21)%(2 + 6 — 22)? - (25 + 6 — 2j-1)207
S Z2 ';'22 :
%

2
Here we used the fact that A € I; implies A < z; for [ = j+ 1,...,k, and therefore % <1
1

foralll =j+1,...,k Thus, from (2) we obtain
max (1 + X\ PF(\i))* < R, (3)

where

20 2.2 »TT T 2.1

R— 5% 5%(224-52—21)2 5z(zk+6k—21)2---(zk+5k—zk_l)Q
22 2322 222y 2 '

The desired estimate follows from (1) and (3).

1.6.4 (www)

It suffices to show that the subspace spanned by ¢°,g,...,gk=1 is the same as the subspace
spanned by g%, QgY,...,Q%=1g0 for k = 1,...,n. We will prove this by induction. Clearly, for

k =1 the statement is true. Assume it is true for k — 1 <n — 1, i.e.

span{g®, g',..., g1} =span{g®, Qg°,...,QF1¢0},

where span{v9,...,v!} denotes the subspace spanned by the vectors v0,... v!. Assume that
gk #£ 0 (ie. ak # z*). Since g¢ = Vf(z¥) and z* minimizes f over the manifold z0 +

span{g®, ¢1,...,gk—1}, from our assumption we have that

k—1 k—1
gt =Qak —b=Q (mo + Z&Qig"> —b=Qu0 — b+ Y &QHg".

i=0 =0
The fact that ¢0 = Q0 — b yields
g5 = g%+ &Qg° + £1Q%¢° + ... + Er—2QF g0 + & 1QFgO. (1)

If &1 = 0, then from (1) and the inductive hypothesis it follows that

g* € span{g®,g',...,g" 1} (2)
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We know that ¢g* is orthogonal to ¢0,...,g*—1. Therefore (2) is possible only if g¢ = 0 which
contradicts our assumption. Hence, {1 # 0. If Qg0 € span{g?, Qg°,..., Q% 1¢0}, then
(1) and our inductive hypothesis again imply (2) which is not possible. Thus the vectors
g%, QgY, ..., QF 190 Qkg0 are linearly independent. This combined with (1) and linear inde-

pendence of the vectors ¢, ..., gk—1, gk implies that
span{g®, gt,..., gk=1, gk} = span{g®, Qg°, ..., Q*"1g0, Qkg°},

which completes the proof.

1.6.5 (www)

Let x* be the sequence generated by the conjugate gradient method, and let d* be the sequence

of the corresponding Q-conjugate directions. We know that x¥+1 minimizes f over
a9 + span {d°,d?,. .., dk}.

Let % be the sequence generated by the method described in the exercise. In particular, Z! is
generated from 0 by steepest descent and line minimization, and for & > 1, Z*+1 minimizes f

over the two-dimensional linear manifold
Z* + span {gF and T+ — zF-1},

where gk = V f(2*). We will show by induction that xk = Z* for all k > 1.

Indeed, we have by construction z! = #1. Suppose that 2t = ¢ for ¢ = 1,..., k. We will
show that zk+1 = zk+l We have that gk is equal to gk = @kdk—-1 — dF so it belongs to the

subspace spanned by d¥—1 and d*. Also % — £*k—1 is equal to 2k — 2k—1 = ok—1dk—1, Thus
span {g* and Z*k — zk—1} = span {d*—1 and d*}.
Observe that =¥ belongs to
29 +span {d°,dl,... dk-1}

SO

29 4 span {dY,d',...,d*1} D ok + span {d*—1 and d¥} D zF 4 span {d*}.

The vector xF+1 minimizes f over the linear manifold on the left-hand side above, and also
over the linear manifold on the right-hand side above (by the definition of a conjugate direction

method). Moreover, £*¥+1 minimizes f over the linear manifold in the middle above. Hence

ph+l — Fh+1,
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1.6.6 (PARTAN)

Suppose that x1,. .., z* have been generated by the method of Exercise 1.6.5, which by the result
of that exercise, is equivalent to the conjugate gradient method. Let y* and z*+! be generated

by the two line searches given in the exercise.

By the definition of the congugate gradient method, z* minimizes f over

a2V + span {g%, ¢1,..., gk 1},
so that
gk Lspan {¢° g',... ,g" 1},
and in particular
gk L gkt (1)
Also, since y* is the vector that minimizes f over the line yo, = ¥ — agk, a > 0, we have
gk LV f(yk). (2)
Any vector on the line passing through z¥-1 and y* has the form
y =oazk~ 14+ (1 — a)y*, a€ER,
and the gradient of f at such a vector has the form
Vf(axk=1+ (1 - a)yk) = Q(azk~-1 + (1 — a)yk) — b
= a(Qzr1 —b) + (1 — o) (Qy* — b) 3)
= agh 1+ (1 - @)V ().
From Egs. (1)-(3), it follows that g* is orthogonal to the gradient V f(y) of any vector y on the

line passing through zF-1 and y*.
In particular, for the vector z¥+! that minimizes f over this line, we have that V f(z*+1)
is orthogonal to g*k. Furthermore, because z*+1 minimizes f over the line passing through z*-1
and y*k, V f(x*+1) is orthogonal to y* — xk—1. Thus, V f(xF+1) is orthogonal to
span {gka yk - zk_l}a
and hence also to
span {gk, xk — xk-1}

since k=1 zk and y* form a triangle whose side connecting z¥ and y* is proportional to g*.
Thus z¥+1 minimizes f over

xk + span {gk, b — xk-1},

and it is equal to the one generated by the algorithm of Exercise 1.6.5.
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1.6.7 (www)

The objective is to minimize over ™, the positive semidefinite quadratic function
1
flx) = ix’Qx + b,

The value of ¥ following the kth iteration is
k—1 k—1
xk = arg min {f(:z:)|:c =20+ Z'yidi,'yi € 3?} = arg min {f(m)|x =20+ Zéigi,éi € 3?} ,
i=1 i=1
where d¢ are the conjugate directions, and ¢* are the gradient vectors. At the beginning of the

+ 1)st iteration, there are two possibilities:
k + 1)st iteration, th two possibiliti
(1) gk = 0: In this case, z* is the global minimum since f(z) is a convex function.

(2) gk # 0: In this case, a new conjugate direction d* is generated. Here, we also have two

possibilities:
(a) A minimum is attained along the direction d* and defines x*+1.

(b) A minimum along the direction d¥ does not exist. This occurs if there exists a direction
d in the manifold spanned by dO, ..., d* such that d’Qd = 0 and &’d # 0. The problem

in this case has no solution.

If the problem has no solution (which occurs if there is some vector d such that d’Qd = 0
but &d # 0), the algorithm will terminate because the line minimization problem along such a

direction d is unbounded from below.

If the problem has infinitely many solutions (which will happen if there is some vector d
such that d’Qd = 0 and ¥’d = 0), then the algorithm will proceed as if the matrix ) were positive

definite, i.e. it will find one of the solutions (case 1 occurs).

However, in both situations the algorithm will terminate in at most m steps, where m is

the rank of the matrix @, because the manifold

k-1
{zx e Rnjz =20 + Z’yidi,vi e R}

=0

will not expand for k& > m.

1.6.8 (www)

Let S1 and S2 be the subspaces with S1 N Sz being a proper subspace of R* (i.e. a subspace
of R other than {0} and R™ itself). Suppose that the subspace S1 N Sz is spanned by linearly
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independent vectors vi, k € K C {1,2,...,n}. Assume that 2! and 22 minimize the given
quadratic function f over the manifolds M; and M2 that are parallel to subspaces S and So,
respectively, i.e.

xl = arg zrg}lv?l f(z) and 22 =arg zrélll\?z f(x)

where My =yl + 51, M2 = y2 + So, with some vectors y!,y2 € R?. Assume also that z! # 2.
Without loss of generality we may assume that f(22) > f(x1). Since 22 ¢ M, the vectors z2 —z1

and {vi | k € K} are linearly independent. From the definition of 21 and 22 we have that

d d
— f(z! + tvk) =0 and — f(x2 + tvk) =0,
dt =0 dt =0

for any vk. When this is written out, we get
2V Quk — vk =0 and 22’ Quk — bvk = 0.
Subtraction of the above two equalities yields
(xl —22)'Quk =0, VkeK.

Hence, z! — 22 is Q-conjugate to all vectors in the intersection S1 N S2. We can use this property
to construct a conjugate direction method that does not evaluate gradients and uses only line

minimizations in the following way.

Initialization: Choose any direction d! and points y! and z! such that M| = y! + span{d'},
M} = z! +span{d'}, M| # M}. Let d? = x{ — 22, where 2t = argmin, ¢ 1 f(z) fori=1,2.

Generating new conjugate direction: Suppose that Q-conjugate directions d!,d?,. .. d,
k < n have been generated. Let M} = y¥ + span{d!,...d*} and z} = arg min, ¢ f(z). If =},
is not optimal there is a point z¥ such that f(z*) < f(z}). Starting from point z* we again
search in the directions d',d?,...,d* obtaining a point 7 which minimizes f over the manifold

M} generated by zF and d',d?, ..., d*. Since f(z2) < f(z*), we have

f@@3) < f(x).

As both z} and z7 minimize f over the manifolds that are parallel to span{d!,...,d*}, setting
dk+1 = 22 — x} we have that d!,...,d*,dk+1 are Q-conjugate directions (here we have used the

established property).

In this procedure it is important to have a step which given a nonoptimal point x generates
a point y for which f(y) < f(x). If « is an optimal solution then the step must indicate this fact.
Simply, the step must first determine whether = is optimal, and if x is not optimal, it must find
a better point. A typical example of such a step is one iteration of the cyclic coordinate descent

method, which avoids calculation of derivatives.
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SECTION 1.7

1.7.1 (www)

The proof is by induction. Suppose the relation D¥q? = p¢ holds for all kK and i < k — 1. The
relation DF+1g? = pt also holds for ¢ = k because of the following calculation

ykyk' gk

Dhtlgk = Dhgh + =7
'y

= Dkgk + yk = Dkgk + (pk — Dkgk) = pk.

For i < k, we have, using the induction hypothesis D¥q? = pt,

y* (% — Drgbyq o yF (g — ¢F'p)
Kok =P Kok
7'y 7'y

Dk+lgi = Dkgi +

Since p*'qi = p*'Qpi = ¢*'pi, the second term in the right-hand side vanishes and we have
prq p

Dk+1lgi = pi. This completes the proof.

To show that (D")~! = @, note that from the equation D*+1¢i = pi we have

Dn = [pO pn71][q0 qn71]717 (*)

while from the equation Qpi = Q(zi+!1 — %) = (Qzitl —b) — (Qz? —b) = Vf(xit1) =V f(2?) = ¢,
we have

Q[po pn—l] — [qo qn—l}’

or equivalently

Q= [qo qn71][p0 pnfl]_l_ (**)

(Note here that the matrix [po p"—l] is invertible, since both @ and [qo q”—l} are

invertible by assumption.) By comparing Egs. (*) and (**), it follows that (D7)—1 = Q.

1.7.2 (www)

For simplicity, we drop superscripts. The BFGS update is given by

_ ' Dqq'D D Dq '’
Do DD g (B ) (- )
p'q  ¢Dq e ¢'Dq) \p'q qDq
pr'  DegD ( ' Dgp'+pg'D | Dqg'D ) _
P'q¢  ¢Dq Pa)?  @Wao(d'Dq)  (¢'Dq)?
ID / D / /D
:D+(1+q q)@_ ap’ +pq

v'q ) p'q P'q
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1.7.3 (www)

(a) For simplicity, we drop superscripts. Let V = I — pgp’, where p = 1/(¢’p). We have
V'DV + ppp’ = (I — pgp’)' D(I — pgp’) + ppp’
=D — p(Dgp’ + pg'D) + p?pq' Dap’ + ppp’

Dav’ 'D 'D / /
_p_ D tr¢D  (¢Do)wr) | pp

q'p (¢'p)? q'p
/D / D / /D
D+<1+q/q>z£ qpqu
P'q ) Pa P'q

and the result now follows using the alternative BFGS update formula of Exercise 1.7.2.

(b) We have, by using repeatedly the update formula for D of part (a),
Dk = Vk=1'Dk=1Yk=1 4 ph—1pk—1pk—1'
= Vk=1VYk=2'Dk=2Y k=2 k=1 4 pk=2\ k=1'pk—2pk=2"} k=1 L pk—1pk—1pk-1"
and proceeding similarly,
Dk = Vk=1yk=2".. . 1V0'DOYO ... Vk—2Y k-1
+ pOV k=1 Y p0p0 YL k=1
+ plVk=1 Y2 piply2. . k-1
4o
+ pk—2V k=1 ph=2pk—2" k=1
4 pk—lpk—lpk—l’
Thus to calculate the direction —D*V f(xF), we need only to store DO and the past vectors p?,
qt,1=0,1,...,k — 1, and to perform the matrix-vector multiplications needed using the above

formula for D*. Note that multiplication of a matrix V¢ or Vi’ with any vector is relatively

simple. It requires only two vector operations: one inner product, and one vector addition.

1.7.4 (www)

Suppose that D is updated by the DFP formula and H is updated by the BFGS formula. Thus

the update formulas are

D:D+p—p/——qu/D

P ¢Dq’
= p’Hp\ q¢ Hpq +qp'H
o 1)

If we assume that HD is equal to the identity I, and form the product HD using the above

formulas, we can verify with a straightforward calculation that HD is equal to I. Thus if the
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initial H and D are inverses of each other, the above updating formulas will generate (at each

step) matrices that are inverses of each other.

1.7.5 (www)

(a) By pre- and postmultiplying the DFP update formula

_ ' Dqq'D
p=pst Dub
e  q'Dgq

with Q1/2, we obtain

QV2pp QY2 QY/2Dqq' DQY/2

Ql/QDQ1/2 — Q1/2DQ1/2 + : :
P'q q'Dq

Let
R=Q1/2DQ1/2, R=Q1/2DQ1/2,

r=Q?p, q=Qp=QY?.

Then the DFP formula is written as

_ rr’  Rrr'R
R=R+—— ——.
+ r'r ' Rr
Consider the matrix
Rrr'R
P=R- .
' Rr
From the interlocking eigenvalues lemma, the eigenvalues pu1, ..., un satisfy
1S A S g < S < A,
where A1, ...\, are the eigenvalues of R. We have Pr = 0, so 0 is an eigenvalue of P and r is a

corresponding eigenvector. Hence, since A1 > 0, we have 1 = 0. Consider the matrix

_ rr’
r'r
We have Rrr = r, so 1 is an eigenvalue of R. The other eigenvalues are the eigenvalues ja, .. ., fin
of P, since their corresponding eigenvectors ea, . .., e, are orthogonal to r, so that

Re; = Pe; = pe;, t=2,...,n.

(b) We have
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so if we multiply the matrix R with r/r/r'Rr, its eigenvalue range shifts so that it contains 1.

Since
r'r P'Qp 'q P'q

" Rr PQI2RQY2p = ¢Q-12RQ-12q ~ ¢Dq’

multiplication of R by »/r/r’Rr is equivalent to multiplication of D by p’q/q’' Dq.

(¢) In the case of the BFGS update

_ 'D. / Dan' 'D
D:D+<1+q/q)@_ qu/qu
va ) va P'q

(cf. Exercise 1.7.2) we again pre- and postmultiply with Q!/2. We obtain

ReR4 <1+T’RT> ' R?"?"’—i—?”r’R7

r'r r'r r'r

and an analysis similar to the ones in parts (a) and (b) goes through.

1.7.6 (www)

(a) We use induction. Assume that the method coincides with the conjugate gradient method

up to iteration k. For simplicity, denote for all &,

gk =V f(xk).

We have, using the facts pk'gk+1 = 0 and p* = akdk,

dk+1 = — Dh+1gh+1
C(p (N PP PR
i G vl B k! ok 9
prq prq praq
Eok! gk+1
— _ghtl %
prq
k1 _ ok gkt 1
— _gh+l (g™* g sy
A g

The argument given at the end of the proof of Prop. 1.6.1 shows that this formula is the same as

the conjugate gradient formula.

(b) Use a scaling argument, whereby we work in the transformed coordinate system y = D~1/2z,

where the matrix D becomes the identity.
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