
 EasyPy - Basic

 Data , Expressions,
 Variables

 Python IDLE

 >>> Interactive Shell new file (cntrl + n)

 Script

save script

 cntrl + s

run script

 F5

comment

 #

indent region

 cntrl + [

dedent region

 cntrl +]

comment out region

 alt + 3

uncomment region

 alt + 4

 Expression

 values 2

 operators

 + , -, /, % , ...

 Syntax Error examples
 5 +

 42 + 5 + * 2

 evaluate
 Python will keep evaluating parts of the
 expression until it becomes a single value. expression-evaluate.png

 Operators Math Operators (Highest to Lowest Precedence)

 Operator

 **

 %

 //

 /

 *

 -

 +

 Operation

 Exponent

 Modulus/remainder

 Integer division/floored quotient

 Division

 Multiplication

 subtraction

 Addition

 Example

 2 ** 3

 22 % 8

 22 // 8

 22 / 8

 3 * 5

 5 - 2

 2 + 2

 Evaluates to ...

 8

 6

 2

 2.75

 15

 3

 4

 Data Types

Floating-point numbers

 -1.25, -1.0, 0.6, 5.76 ...

Integers

 -2, 0, 5, 10, ..

Strings

 'a' , 'aa' , 'Hello!' , '11 cats' , ...

 'Hello'

Concatenation

 + 'World!' = 'HelloWorld!'

 'Alice'

Replication

 * 2

 Interger

 = 'AliceAlice'

Boolean

 True , False

 Storing Data in Variables

Assignment

 =

 spam = 42

 spam = 'Goodbye'

 spam = 'Hello'

 Variable Names

 you moved to a new house and labeled all
 of your moving boxes as Stuff !!!
 You never find anything!

 A descriptive name will help make your code more readable

rule 1

 It can be only one word with no spaces.

rule 2

 It can use only letters, numbers, and the
 underscore (_) character.

rule 3

 It can't begin with a number

 Style guide

 variable names are case-sensitive

 spam

 SPAM

 Spam

 sPAM

 are different variables

 Camelcase style lookLikeThis

 Underscore style look_like_this

 @itTechGohar

 www.MISGohar.blog.ir

 ITTechGohar_Programming

 Flow Control

 example flowchart

 Comparison Operators

 Operator

 ==

 !=

 <

 >

 <=

 >=

 Operation

 Equal to

 Not equal to

 less than

 Greater than

 less than or equal to

 Greater than or equal to

 Example

 42 == 42

 3 != 4

 42 < 42

 50 > 42

 42 <= 42

 42 >= 42

 Evaluates to ...

 True

 True

 False

 True

 True

 True

 Difference between the == and = operators

 The == operator (equal to) asks whether two values
 are the same as each other.

 The = operator (assignment) puts the value on the
 right into the variable on th left.

 BooleanOperators

 and

 and

 True and True True

 True and False False

 False and False False

 False and True False

 evaluating and operator

 or

 or

 True or True True

 True or False True

 False or True True

 False or False False

 not

 not

 not True False

 not False True

 Elements of Flow control

 Blocks of Code group of lines

 you can tell when a block begins and ends
 from the indentation of the lines of code.

 Blocks begin when the indentation
 increases.

 Blocks can contain other blocks.

 Blocks end when the indentation decreases
 to zero or to a containing block's
 indentation. 3 block of code

 condition

 always evaluate down to a Boolean value,
 True or False.

 decide what to do based on whether its
 condition is True or False

 Flow control statements

 if Statement if Statement flowchart example Subtopic 1

 else Statement else Statement flowchart

 elif Statement elif Statement flowchart example multiple elif Statement flowchart example. The X path will logically never happen.

 for loop Statement

 if you want to execute a block of code
 only a certain number of times? for loop statement over range() includes the

 for keyword

 A variable name

 A call to the range() method with up to
 three integers passed to it

 A colon

 Starting on the next line, an indented
 block of code (called the for clause)

 for <variable name> in range(start [, stop , step]) :

 loof by range() function

 Iterating over a sequence

 Iterating over multiple sequences

 for Statement flowchart code

 while loop Statement

 execute block of code over and over again
 using a while statement.

 The code in a while clause will be executed
 as long as the while statement's condition
 is True.

 a while statement always consists of the

 while keyword.

 A condition (that is, an expression that
 evaluates to True or False)

 A colon

 Starting on the next line, an indented
 block of code (called the while clause)

 while Statement flowchart

 code

 Note:

 Infinite while loop refers to a while loop where the while condition never becomes false. When a
 condition never becomes false, the program enters the loop and keeps repeating that same block of
 code over and over again, and the loop never ends

 break Statement
 if the execution reaches a break statement, it
 immediately exits the loop's clause. break Statement flowchart. The X path will logically never happen. code

 continue Statement

 When the program execution reaches a continue
 statement, the program execution immediately
 jumps back to the start of the loop and
 reevaluates the loop's condition.

 swordfish program that asks for a name and password. The X path will logically never happen, because the
 loop condition is always True code

 Short Programs
 Guess the Number

 Rock, Paper, Scissors

 Structural Pattern Matching

 The match statement will check patterns from top to bottom. If the pattern doesn’t match the subject, the
 next pattern will be tried. However, once the first matching pattern is found, the body of that case is
 executed, and all further cases are ignored. This is similar to the way that an if/elif/elif/... statement works.

 Matching Specific Values

 Matching Sequences

 Verify that the subject has certain structure. In your case, the ["load",
 fileName] pattern matches any sequence of exactly two elements. This is
 called matching

 It will bind some names in the pattern to component elements of your subject. In
 this case, if the list has two elements, it will check if subject[0] == "load" and bind
 fileName = subject[1].

 Matching Multiple Patterns

 Matching Multiple Values

 Python 3.10 and later.

 >>> (4 < 5) and (5 < 6)
 True
 >>> (4 < 5) and (9 < 6)
 False

 >>> (1 == 2) or (2 == 2)
 True

 Data Structures

 Lists

 A list is a value that contains multiple values in an ordered sequence.

 The term list value refers to the list itself (which is a value that can be stored in a variable
 or passed to a function like any other value), not the values inside the list value.

 begin with an opening square bracket and end with a closing square bracket, [] .

 and can also contain any value like oter list values.
 items.

 Values inside the list are also called

 in place
 Mutable.

 list is mutable in place list is mutable in place. this figure of list values in not accurate but is simple for this concept.

 change values with Indexes. change values remove values with del keyword

 or with remove() method

 is Ordered Sequence. can access to each value with its index

 Operations on lists

 Concatenation

 Replication

 in /not in
 in return True else return False. exist, Checking whether a value exists in a list. If the value

 not in return True else return False. does not exist Checking whether a value exists in a string. if the value

 Methods

 .index()
 To find index of a value in list

 .remove()
 To remove a value from a list

 .append()
 To add new value to a list

 .insert()
 To insert a value befor index in list

 .clear()
 To remove all items from list

 sort()
 To sort of items in list

 .pop()
 Return and remove item at index (default last)

 copy() Return a shallow copy of list

 modify their lists in place

 tuple

 Cousin of list but

 begin with an opening parenthese and end with a closing parenthese, ().

 immutable
 in place

 Can not change item of tuple Can not remove item from tuple

 Methods
 index()

 count()

 Dictionaries

 Key-Value pair Type
 A dictionary is typed with braces, { }

 can access values through their keys by [] after variable name.

 is Unoredered. There is no first item in a dictionary.

 Dictionaries vs Lists. dictionaries are not ordered.

 To organize your data in powerful ways. The program to store data about your friends' birthdays. Birthday Program Code Birthday Program Output

 in place
 is Mutable. change values with Indexes. change values remove values with del keyword

 or with remove() method

 Operations on Dictionaries in / not in
 in return True else return False. exist, Checking whether a key or value exists in a dictionary. If the key

 not in return True else return False. does not exist Checking whether a key or value exists in a dictionary. if the key

 Methods

 keys() list-like values of the dictionary's keys.

 values() list-like values of the dictionary's values.

 items() list-like values of the dictionary's key-value pairs.

 get()
 Checking whether a key or value exists in a dictionary

 if if that key does not exist, returns a fallback value. by default is None and we can change.

 setdefault()
 Insert key with a value of default if key is not in the dictionary.

 Return the value for key if key is in the dictionary, else default.

 count number of letter in a string

 result of program

 copy() Return a shallow copy of dictionary

 ...

 The values returned by these methods are
 not true lists.

 Pretty Printing Module
 pprint.pprint() Pretty-print a Python object to a stream [default is sys.stdout]

 pprint.pformat() Format a Python object into a pretty-printed representation.
 import pprint

 Strings

 string values are typed with quote characters to mark where
 the string begins and ends.

 Single quote

 Double quote

 Triple quote Multi Line String

 escape caharacters

 Let's you use characters that are otherwise impossible
 to put into a string.

 consists of a backslash (\) followed by the character you want to add to the string.

 \'

 \"

 \n

 \t

 \\

 \

 whitespace characters

 immutable
 in place

 Can not change single character of string Can not remove character from string

 is Ordered Sequence

 Operations on string

 Concatenation

 Replication

 in / not in
 in return True else return False. exist, Checking whether a character exists in a string. If the character

 not in return True else return False. does not exist Checking whether a character exists in a string. if the character

 interpolation

 %s operator inside the string acts as a marker to be
 replaced by values followeing the string.

 benefit: str() function doesn't have to be called to convert values
 to strings.

 f-string Python 3.6 and later
 ussed instead of %s

 have an f prefix before the starting quotation mark.

 Summary

 Methods

 upper()

 lower()

 islower()

 isupper()

 is...()

 startwith()

 endwith()

 join()

 The join() method is useful when you have a list of strings that need to be
 joined together into a single string value.

 The join() method is called on a string, gets passed a list of strings, and returns a string. The
 returned string Manipulating Strings is the concatenation of each string in the passed-in list. Subtopic 1

 split()
 the string 'My name is Simon' is split wherever whitespace characters such
 as the space, tab, or newline characters are found.

 partition()

 The partition() string method can split a string into the text before and after a
 separator string.

 This method searches the string it is called on for the separator string it is passed, and
 returns a tuple of three substrings for the “before,” “separator,” and “after” substrings If the separator string you pass to partition() occurs multiple times in the string that partition()

 calls on, the method splits the string only on the first occurrence

 strip(), rstrip,() lstrip()

 string.strip([chars])

 f the chars argument is not provided, all leading and trailing
 whitespaces are removed from the string.

 The lstrip() and rstrip() methods will remove whitespace
 characters from the left and right ends, respectively

 Passing strip() the argument 'ampS' will tell it to strip occurrences of a, m, p, and capital S from the
 begin and end of the string stored in spam. The order of the characters in the string passed to strip()

 does not matter: strip('ampS') will do the same thing as strip('mapS') or strip('Spam').

 isX()

 there are several other string methods that have names beginning with the word
 is. These methods return a Boolean value that describes the nature of the string example

 isalpha() Returns True if the string consists only of letters and isn’t blank

 isalnum() Returns True if the string consists only of
 letters and numbers and is not blank

 isdecimal() Returns True if the string consists only of numeric
 characters and is not blank

 isspace() Returns True if the string consists only of spaces, tabs, and newlines and is not blank

 istitle() Returns True if the string consists only of words that begin with an uppercase
 letter followed by only lowercase letters

 he upper() and lower() methods are helpful if you need to make a
 case insensitive comparison

 The startswith() and endswith() methods return True if the string value they are
 called on begins or ends (respectively) with the string passed to the method;

 otherwise, they return False.

 The Multiple Assignment Trick

 References

 Variables are storing references to the computer memory locations
 where the values are stored. The list variable reference to location of values

 Variables are like boxes that contain values. but list variables don't actually contain lists.

 This references will have ID numbers that Python uses internally.

 References are important for understanding how arguments get passed to functions.

 All parameters (arguments) in the Python
 language are passed by reference

 When a function is called, the values of the arguments are
 copied to the parameter variables. For lists and dictionaries, this
 means a copy of the reference is used for the parameter.

 Note: when food() is called, a return value is not used to assign a new
 value to foodName. Instead, it modifies the list in place, directly.

 Copy by Assingment , =
 Changing the immutable variable by assignment, = , is actually
 making it refer to a completely different value in memory

 id() Function

 The numeric memory adress where the value is stored is returned by the id() function.

 Python picks this address based on which memory bytes happen to be free on your
 computer at the time, so it'll be different each time you run this code.

 Copy by copy Module

 if the function modifies the list or dictionary that is passed, you may not want these
 changes in the original list or dictionary value.

 Python provides a module named copy that provides both
 the copy() and deepcopy() functions

 copy.copy()

 Return a shallow copy

 When you alter the list that cheese refers to, the list that spam
 refers to is also changed, because both cheese and spam refer
 to the same list and list is mutable in place.
 The reference ID numbers are no longer the same for both
 variables because the variables refer to independent lists code

 memory in shallow copy code

 Shallow copies of dictionaries can be made using dict.copy(), and of lists by assigning a slice of
 the entire list, for example, copied_list = original_list [:].

 copy.deepcopy()

 Return a deep copy Subtopic 1

 memory in deep copy code

 automatic garbage collector
 Python's automatic garbage collector deletes any values not being
 referred to by any variables to free up memory.

 Short Programs

 Conway's Game of Life

 Comma Code

 Character Picture Grid

 Indexing

 access to each value on sequence by index.

 Getting Individual Values in a List with Indexes.

 Getting Individual Values in a string with Indexes.

 Getting Individual Values in a tuple with Indexes.

 The integer inside the square brackets that
 follows the Ordered Sequence object name <ordered sequence name> [<index>]

 Indexes can be only integer values.

 Negative Indexes

 Slicing

 the extraction of a part of a string, list, or tuple. It enables users to access the specific
 range of elements by mentioning their indices

 “Start” specifies the starting index of a slice
 “Stop” specifies the ending element of a slice
 You can use one of these if you want to skip certain items

 Using Data Structures to Model Real-World Things

 chessboard

 Tic-Tac-Toe board

 Exception Handling

 The program detect errors, handle them, and then continue to run.

 try and except Statement
 The code that could potentially have an error is put in a try clause.

 The program execution moves to the start of a following except clause if an error happens.

 Modules

 Each module is a Python program that contains a related group of functions
 that can be embedded in your programs.

 Before you can use the functions in a
 module, you must import the module with

 import <module name>

 from <module name> import <object name>

 from <module name> import *

 Standard Libraries random

 rnadom.choice()

 rnadom.shuffle()

 random.randint()

 Functions

 A function is like a miniprogram within a program.

 major purpose : group code that gets executed multiple times. Without a
 function defined, you would have to copy and paste this code each time,
 and the program would be bad design.

 Deduplication makes your programs shorter, easier to read, and easier to update.

 types of functions

 Built-in

 input(<prompt>)

 30

 user entered

 output of input function always is a string

 >>> age

 '30'

 >>> age = int(age)

 >>> age

 30

 run

) 'enter your age: ' age = input (

 <prompt>

 print(values)

error

 print("I am " + 29 + " years old.")

 "I am " + 29 + " years old."

 print(("I am " + str(29) + " years old.")

 "I am " + str(29) + " years old."

 print(age)
 run

 30

 print(expressions)

 len(obj) len('hello')
 run

 5

 str() str(20)
 run

 '20'

 int() int("29")
 run

 29

 float()

 float(50)
 run

 50.0

 float("37.5")
 run

 37.5

 Summary Explicit Casting

 import with modules

 random.randint()

 random.choice()

 copy.copy()

 Note: before use of this functions, must import their libraries.

 defined by programmer

 Calling function

 sending the execution to the top of the function's code. function call is just the function's name followed
 by parentheses, possibly with some number of arguments in between the parentheses.

 argument
 that is passed to a function call is an A value

 most arguments are identified by their
 position in the function call.

 example: random.randint(1, 10) si different
 from andom.randint(10, 1).

 Types of arguments

Required Argument

 Positional Arguments
 The non-optional arguments' values must be provided otherwise an error will be thrown.

 Optional Arguments

 An argument in Python that has a default value is called an optional argument A default value for an argument can be specified using the assignment operator.

 When calling a function, there is no requirement to provide a value for an optional argument.

 If a default value is present for an argument, it will be used if no alternative value is provided.

 Without utilizing keyword justifications.
 default arguments

 passing value to a parameter is necessary because a is positional argument.
 But b has default value.

 Use keyword justifications.

 keyword arguments
 Keyword arguments are related to the function calls

 identified by the keyword put before them in the function call.
 When you use keyword arguments in a function call, the
 caller identifies the arguments by the parameter name

 example: the print() function has the optional parameters end and sep to specify what
 should be printed at the end of its arguments and between its arguments (separating them).

 Variable-length Arguments

 You may need to process a function for more arguments than you specified
 while defining the function.

 An asterisk (*) is placed before the variable name that holds the
 values of all nonkeyword variable arguments.

 are not named in the function definition

 The Call Stack

 is how Python remembers where to return the execution after each function call

 isn't stored in a variable in your progrma; rather, Python handles it behind
 the scenes. When your program call a function, Python creates a frame
 object on the top of the call stack. Frame object store the line number of
 the original function call so that Python cam remember where to return.

 When a function call returns, Python removes a frame object from the
 top of the stack and moves the execution to the line number stored in it.

 Note: frame objects are always added and removed from the
 top of the stack and not from any other place.

 Function Call

 Call Stack

 <function name> (arguments)

 define your own function

 def Statement defines function at the first line.

 parameters

 Variables that have arguments assigned to them are
 parameters

 All parameters (arguments) in the Python language are passed by reference

 optional parameters
 Default argument

 keyword argument

 body

 of the function
 return value

 The value that a function call evaluates to is called the

 return Statement

 return statement.

 return <return value>

 When creating a function using the def statement, you can specify what the return value should be with a

 Noe value

 Other programming languages might call this value null, nil or undefined.

 The value-without-a-value

 example: print() function desplays text on the screen, but it doesn't need to
 return anything in the same way len() or input() does.

 Local and Global Scope

 Local Scope

 local scope
 Parameters and variables that are assigned in a called function are said to exist in that function's

 A local scope id created whenever a function is called. any variables assigned in the
 function exist within the function's local scope. When the function returns, the local
 scope is destroyed, and these variables are forgotten.

 are also stored in frame objectd on the call stack.

 Global Scope
 global scope

 Variables that are assigned outside all functions are said to exist in the

 There is only one global scope, and it is created when your program begins and when program
 terminates, the global scope is destroyed, and all its variables are forgotten.

 global Statement
 modify a global variable from within a function.

 Short Programs

 Zigzag

 Collatz Sequence

 Notes

 You will rememeber the things you do much better than the things
 you only read.

 Program will crash if they contain code the computer can't understand,
 which will cause Python to show an error message. An error message
 won't break your computer, though, wso don't be afraid to make
 mistakes. A crash just means the program stopped running
 unexpectedly.

 a list of common Python error messages :
 https://inventwithpython.com/blog/2012/07/09/16-common-python-
 runtime-errors-beginners-find/

 Everything in Python is Object.

 object

 Attributes

 each object type has its own set of Attributes.
 <obj name> . <its attributes>

 Methods

 is the same thing as a function, except it
 is 'called on' a value.

 if a list value were stored in spam, you
 would call the index() list method on that
 list like so: spam.index('hello')

 each object type has its own set of Methods.
 <obj name> . <its methods> ()

 A good variable name describes the data it contains.

 Consistency with the style guide is
 important. But most importantly:
 know when to be inconsistent -
 sometimes the style guide just doesn'
 t apply. When in doubt, use your best
 judgment.

 >>> 42 == '42'
 False
 >>> 42 == 42.0
 True
 >>> 42.0 == 00042.00
 True

 Infinite loop

 integers and floats are both
 numbers but strings are text

 Notes

 Scope matter for several reasons:

 code in th global scope, outside of all
 functions, cannot use any local variables.

 Subtopic 1

 However, code in a local scope can access
 global variables.

 global variable eggs can be read from spam()'s local scope frame objects

 code in a function's local scope cannot use
 variables in any other local scope.

 local variable eggs is defferent from the one in spam()'s local scope. frame objects

 You can use the same name for different
 variables if they are in different scopes.
 That is, there can be a local variable
 named spam and a global variable also
 named spam.

 local and global variables with the same
 name. output frame objects on print 'spam local' line.

 4 rules to tell whether a variable is in a local scope or global scope:

 If a variable is being used in the global
 scope (that is, outside of all
 functions), then it is always a global
 variable

 If there is a global statement for that
 variable in a function, it is a
 global variable.

 Otherwise, if the variable is used in an
 assignment statement in the
 function, it is a local variable.

 If you try to use a local variable in a function before you assign a value
 to it, as in the following program, Python will give you an error example Error

 But if the variable is not used in an
 assignment statement, it is a
 global variable.

 Subtopic 30

 Formatted String

 Encodeing/Decoding

 Every digital asset you’ve ever
 encountered — from software to mobile
 apps to websites to Instagram stories — is
 built on this system of bytes, which are
 strung together in a way that makes sense
 to computers. When we refer to file sizes,
 we’re referencing the number of bytes.1

American Standard Code for Information Interchange

 ASCII

 ASCII is an 8-bit code. That is, it uses eight bits to represent a letter or
 a punctuation mark. Eight bits are called a byte. A binary code with
 eight digits, such as 1101 10112, can be stored in one byte of computer
 memory.

 The ASCII standard was certified by ANSI in 1977,and the ISO adopted an
 almost identical code as ISO 646.

 the code doesn’t include any information about the way the text should
 look (its format). ASCII only tells you which characters the text
 contains.

 ASCII’s library includes every upper-case and lower-case letter in the Latin
 alphabet (A, B, C…), every digit from 0 to 9, and some common symbols (
 like /, !, and ?).

 encode American English it does not include the accented characters and
 ligatures required by many European languages (nor the UK pound sign £).

 ascii full

 Subtopic 1

Unicode Transformation Format

 Utf

 A Way to Store Every Symbol,

 Like ASCII, Unicode assigns a unique code, called a code point, to each character.
 However, Unicode’s more sophisticated system can produce over a million code
 points, more than enough to account for every character in any language.

 Unicode is now the universal standard for encoding all human languages. And
 it even includes emojis.

 utf-8

 UTF-8 is an encoding system for Unicode. It can translate any
 Unicode character to a matching unique binary string, and can also
 translate the binary string back to a Unicode character. This is the
 meaning of “UTF”, or “Unicode Transformation Format.”

 UTF-8 is unique because it represents characters in one-byte units.

 UTF-8 encoding is preferable to UTF-16 on the majority of websites,
 because it uses less memory.

 Summary

 utf-16

 UTF-8 is not the only encoding method for Unicode characters —
 there’s also UTF-16. These methods differ in the number of bytes
 they need to store a character. UTF-8 encodes a character into a
 binary string of one, two, three, or four bytes. UTF-16 encodes a
 Unicode character into a string of either two or four bytes.

 Both UTF-8 and UTF-16 can translate Unicode characters into
 computer-friendly binary and back again

 UTF-16 is only more efficient than UTF-8 on some non-English websites. If a
 website uses a language with characters farther back in the Unicode
 library, UTF-8 will encode all characters as four bytes, whereas UTF-16
 might encode many of the same characters as only two bytes.

 example of Unicode characters

 Encoding is the process of converting
 characters in human languages into binary
 sequences that computers can process.

 you can use expressions any
 where in Python code that you

 could also use a value.

 Flow control statements can
 decide which Python instructions
 to execute under which conditions

 Iterating over multiple
 sequences

 zip() Function

 with multiple assignment

 enumerate() Funcation

 Iterating over a sequence

 Augmented Assignment Operators

 The sortcut of assignment operators + , - , * , / , %

 Variables that have arguments assigned to
 them are parmaters.

 you can use \' inside a string that bbegins and
 ends with single quotes

