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Elastic-Plastic Waves in a 
Long Uniform Bar
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Elastic-plastic Waves
• We consider the dynamic loading in tension of a long thin 

bar, the loaded end of which moves in some prescribed 
way so as to initiate elastic and plastic longitudinal waves.

• We assume throughout that the tensile stress-tensile 
strain relation for monotonic loading is at all times 
independent of the rate of strain.

• Donnell apparently first investigated longitudinal plastic 
wave propagation in a paper published in 1930.

• If the nominal stress suddenly reached at the end of the 
bar is !! < #, it will be propagated through the unstrained 
bar at a speed of $/&. 
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Elastic-plastic Waves
• Further, if a stress !! is applied where !! > # so that the 

nominal stress increment (!! − #) and strain increment 
()! − )") are related through the modulus *, then this 
excess stress should be propagated with a speed of 
*/&! through the bar in its unstrained configuration.
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Elastic-plastic Waves
• If the speed at which the free end of the bar is moved at 

an instant results in a tensile stress !! > #, this stress may 
be expected to be transmitted by two waves, which start 
at the same instant from the loaded end of the bar but 
move at the different speeds c! = $/& and c# = */&.

• As ! increases the distance between the head of each of the two 
waves increases. Thus elastic stress " and corresponding 
elastic strain #! are propagated at speed $" whilst the plastic 
wave following up at speed $# increases " to %".
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Elastic-plastic Waves
• A slight generalization may now be arrived at for the 

speed of propagation of longitudinal stress wave through 
a bar of material which has a continuously turning !! − )
curve, concave to the strain axis.

• Equation of motion:

• % is the true longitudinal stress across 
the element whose current cross-
sectional area is &. 

• However, as &"%" = &% where 
&" is the initial cross-sectional 
area of the bar,
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Elastic-plastic Waves
• Hence,

• Since ) = -./-/, ⁄1) 1/ = -$./-/$,

• Thus the speed of wave propagation along the x-axis is,

• Note that for elastic wave (%"/(# = *, and for a bilinear 
plasticity, (%"/(# = +.
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Elastic-plastic Waves
• If the long bar is loaded to a nominal stress level of !!

instantaneously, with strain )%, then over the elastic range 
of stress, the wave speed is constant at c! = $/&, whilst 
for every stress level !! > #, the wave speed is less, at 
(1!!/1))/&!, being the smaller, the greater is !!.
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Elastic-plastic Waves
• Three distinct regions at given time 4 may be identified by 

reference to the position of the unstressed bar,

• (i) Between , = 0 and , = $#!, the strain is constant at ##; 
$# = ((%"/(#)/0", where %" is the greatest nominal stress 
imposed.

• (ii) Between , = $#! and , = $"!, there is a variable distribution 
of strain between ## and #$.

• (iii) For , > $#! i.e. ahead of the elastic wave, the bar is 
physically unstressed. 
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Particle Speed
• A simple and direct derivation of the speed of movement 

at the end of a bar in order to produce a strain of )%, is 
obtained after considering a small element of the bar in its 
unstretched state of length 1/, and noting that the time, 
14, taken for it to propagate a force increment 1(5!!!) at 
stress level !! is 1//6%.

• We emphasize that the speed here has reference to the 
unstretched length of the element or the space occupied by it.

• However, applying the momentum equation,
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Particle Speed
• Hence, eliminating 14,

• Thus the total speed acquired by the element,

• For the bilinear nominal stress-engineering curve,
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Critical Impact Speed
• The critical impact speed for a bar, 7&, is the speed of the 

loaded end which will cause fracture in the bar.

• We have,

• From the stress-strain curve given, the computed value of 2%
was 150 ft/sec and rupture of the specimen actually occurred at 
an impact speed of 171 ft/sec.
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Shock Wave
• In all the cases so far considered the stress-strain curve 

has been concave towards the strain axis.

• In a few cases (e.g. nickel-chrome steel and poly-
crystalline material), the slope increases with strain, the 
speed of propagation of a stress wave in a long rod 
increases with increase in stress intensity. 

• The largest stress or strain imposed is propagated at a 
faster rate than the early or lower stresses and strains so 
that, if the bar is sufficiently long, following waves will 
overtake early waves and eventually all should coalesce to 
give one strong wave front, a shock wave.
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Shock Wave
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Elastic Precursor
• For a bar preloaded to plastic 

stress !!', the stress increment 
1!!

' would propagate at a speed 
of (1!'!/1)()/&!.

• Experiment shows however that 
both elastic and plastic waves 
are propagated by the extra load.

• The elastic wave is commonly 
referred to as the precursor.
• In fact, imposing stress increment (%"& causes a total strain 

increment (#' which is made up of elastic (#(, and plastic (##, 
strain increments; the elastic strain increment must be 
propagated at the elastic wave speed.
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Unloading Waves
• If the load is completely and instantaneously removed, 

this will take place as an unloading elastic wave, 
effectively as an elastic compressive wave. 
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Unloading Waves
• It will be propagated into the bar and at time 4) will have 

overtaken the slower moving loading plastic wave at 
distance /) from the original loaded end.

• When the two waves meet, depending upon the original 
intensity of the applied stress !!, the plastic wave may 
propagate further into the bar or it may be arrested and an 
elastic wave only, continue.

• Also, an elastic wave is reflected from a section distance 
/) into the bar, back towards the now free end, there to 
be reflected yet again up the bar.



Impact of a Uniform Bar of 
Linear Hardening Material 

with a Rigid Flat Anvil
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Elastic-Plastic Impact
• Let a uniform bar of elastic 

linear strain-hardening 
material, impinge normally 
on a rigid flat anvil and the 
nominal stress rise to
!! > #, the yield stress.

• For 0 < ! < 4/$", three 
distinct regions in the bar; 
region I which is that 
traversed by both the elastic 
and the plastic waves, region 
II which is traversed thus far 
only by elastic waves, and 
region III which is 
undisturbed.
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Elastic-Plastic Impact
• The minimum velocity necessary to initiate plastic strains 

is just #/&6! = 6!)*. 

• The speed of particles in region II is 7 = 8 − 6!)* and 
since this speed is reduced to zero when the plastic 
‘shock’ front passes, the compressive stress jump is,

• So that, the compressive stress in region I is,

• Also the total compressive strain is,
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Elastic-Plastic Impact
• If there is no further plastic strain in region I, then the 

residual plastic strain )+, is given by,

• Hence, 
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Elastic-Plastic Impact
• Just after time 4 = 9/6!, the elastic wave will be reflected 

from the free end of the bar and the slower moving plastic 
wave front will have advanced further to the right.
• The effect of reflecting the elastic stress wave will be to 

progressively and completely unload the right hand end of the 
bar or much of region III; the velocity of region III will be 
decreased to (V − 2$"#$ ).

• The approaching reflected elastic wave and the advancing 
plastic stress wave eventually meet at time 8) after it has 
advanced ,) from the end of the bar at which impact first took 
place,

• So,
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Elastic-Plastic Impact
• Since 6,/6! is often about 0.1 for many materials,
/,/9 ≅ 0.18. 

• When the reflected unloading wave and the outward going 
plastic wave meet, at some section ?,?, at time @,, it will 
be as if the length of bar (9 − /,) having a speed
(8 − 26!)*) or (26!)* − 8), suddenly impinges on a 
stationary bar of length /,, which is already subjected to a 
compressive stress !!.

• The result of this impact is that just after time @,, waves 
will be reflected back into each part of the bar.

• If it is assumed that both the reflected waves are elastic, 
then immediately after impact the particle speed must be 
the same on both sides of ?,?,.
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Elastic-Plastic Impact
• The change in speed of that part of region I embraced by 

the reflected elastic wave from ?,, i.e. region V is then just 
7; since this particle speed is oppositely directed to that of 
the wave, it implies the propagation of a tensile stress 
wave and the imposition of tensile strain.

• And because region V is already loaded in compression 
and has zero speed, therefore the tensile wave elastically 
unloads region V by amount &!6!7 to [* )- − )* + $)*
− &!6!7].

• At the same time, the stress in that part of region III which 
is traversed by the rightward moving reflected elastic 
stress wave, i.e. region IV, becomes [&!6! 8 − 26!)* + 7 ].
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Elastic-Plastic Impact
• However, the forces at the interface ?,?, must be the 

same for both region V and IV, so that,

• Substituting for )-,

• This equation may be reduced to,
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Elastic-Plastic Impact
• The elastic strain ), engendered in region IV is,

• Now the greatest value which ), can take and region IV 
still remain elastic, is )*, so that if ), = )*, then
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Elastic-Plastic Impact
• The compressive strain )′ remaining in regions I and V, 

after traversal by the elastic wave reflected from ?,?,
results from a change in compressive strain
)* + (8 − 6!)*)/6,, by an amount of tensile strain &6!7/$,
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Elastic-Plastic Impact
• Provided that only elastic waves leave section ?,?,,elastic 

waves will travel up and down the bar after contact with 
the anvil ceases and the total strain at any section will 
vary; but the plastic strains—particularly in region I—will 
remain constant.

• Thus provided that, 

• There will only be one region embracing an original length of bar 
of extent ,) in which plastic deformation occurs.
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Elastic-Plastic Impact
• ?,?, is known as a stationary front of second order 

discontinuity in strain.

• When 8 is just sufficient to initiate further plastic 
deformation, i.e. beyond ?,?,, we find,
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Elastic-Plastic Impact
• If 8 > 6!)*(1 + 26!/(6! + 6,)), then a further plastic wave 

propagates to the right from ?,?,, as well as elastic waves 
in both directions.

• Either of these latter elastic waves after reflection from the 
ends of the bar, may later intercept the plastic wave and 
cause a second stationary front of second order strain 
discontinuity ?$?$.

• The bar, if only one stationary front arises, will appear, as 
in (a) and if two are created as in (b).
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Elastic-Plastic Impact
• The sequence of events and the interaction of the wave 

motions may be well represented in the characteristic 
(/, 4) plane as shown.
• Which of the two elastic waves 

from 9)9) first meets the 
plastic wave depends on the 
ratio $"/$).

• The critical case arises when 
both elastic waves meet the 
plastic wave simultaneously.

• Let this happen after further 
time 8* at a further distance 
along the unstrained bar from 
9)9) of ,* , i.e. at section 9*9*.
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Elastic-Plastic Impact
• For the elastic wave which travels to the left of the plastic 

wave,

• For the other elastic wave,

• and for the plastic wave,

• So, 
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Elastic-Plastic Impact

• Which reduces to,

• So,

• Thus if $"/$) > 4.24, then the leftward moving elastic wave from 
section 9) first intercepts the plastic wave.



Analysis of the Dynamic 
Compression of a Short 

Cylinder Between Rigid Dies
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Dynamic Compression
• We consider a short cylindrical block of elastic-linear 

strain-hardening material, situated on a frictionless flat 
rigid bottom die, which is compressed by an identical 
upper die moving with a speed 8 which remains constant 
for a period of time 69!/6,, where 6, = */&! is the plastic 
wave speed and 9! is the original height of the cylinder.

• All material engulfed by the plastic wave will be moving at 
speed 8, i.e. the die speed, and that through which the 
elastic wave only has passed will have a speed . where,
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Dynamic Compression
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Dynamic Compression
• Since the particles in contact with the lower die are at rest, 

then the wave reflected from it must be such as to change 
the incident elastic wave particle speed from 6!)* to zero.

• Further, since the material is already stressed to the 
compressive yield stress, the reflected wave must be a 
plastic wave.

• where ∆8 is the change in particle speed that the plastic 
wave brings about. Now ∆8 = 6!)* and thus,
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Dynamic Compression
• The plastic wave from the lower die and the initiated 

plastic wave meet at 5, distant I, from the bottom die.

• From this meeting of the two plastic waves, only two 
identical (or continuing) plastic waves can be produced.

• no elastic effects intervene since the cylinder is still being 
compressively loaded by the top die moving with speed V.

• At time 4 = 9!/6,, the stress level in zone [2] is,

• Let the particle speed in zone [II] be J, then from a 
consideration of zones [1] and [II], the stress in zone [II] is,
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Dynamic Compression
• From a consideration of zones [2] and [II], the stress in 

zone [II] is,

• However, 

• So, 
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Dynamic Compression
• Thus the stress in zone [II] is,

• It is straightforward to arrive at the strain and stress levels 
in each region from observations about the particle speed.

• Note that when the upper die is arrested at 4 = 69!/6,, an 
unloading wave of intensity (# + 6&!6,8) is propagated 
into the cylinder and results in it springing away from the 
bottom die to some extent in due course.

42
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Dynamic Compression
• Some typical figures for steel

(# = 172 L*M, 6,/6! = 0.1, 8 = 18 N/O), 

High Speed Impact of Perfectly 
Plastic Solid Cylindrical Blocks 

with a Flat Rigid Anvil
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Bar Impact with a Rigid Anvil
• In this section, we consider the normal, high speed impact 

with consequent plastic deformation of a short, solid 
cylindrical bar with a rigid anvil.

• The end at which impact takes place ‘mushrooms’, and 
this shape is characteristic of this type of process.

• The analysis which follows is originally due to Taylor.

• The approach is applicable in cases where &!7!$ ≅ #
where 7! is the initial bar or projectile speed.

• The aim is to account for the ‘mushrooming’ of bullets or 
projectiles during the impact process.

• The analysis here is for rigid-perfectly plastic materials.
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Taylor’s Momentum Approach
• At impact with the rigid anvil, two waves are initiated and 

move out from the anvil; 

• One travels with the elastic wave speed $" and the other—a 
plastic wave—at a much slower speed which is to be 
determined.

• The stress in the bar immediately rises to 
the elastic limit and particularly the elastic 
compressive stress, travels to the free end 
of the bar, giving rise to a change in 
particle speed of "/0"$" to the right.

• If the initial speed of the bar was 2" the 
speed of the particles in the bar through 
which this wave has travelled relative to 
the fixed anvil, is reduced to 2" − "/0"$".
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Taylor’s Momentum Approach

• At the free end of the bar, the compressive elastic wave is 
reflected as a tension wave, so progressively unloading the bar.

• There are three regions in the bar; one which is plastically 
strained, a second which is not strained at all and a third-
between the plastic wavefront and the elastic wavefront in which 
elastic strains of magnitude "/* are imposed.
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Taylor’s Momentum Approach
• The reflected wave of tension moving to the left, of itself 

causes a change in particle speed of magnitude !/#!$! to 
the right, so that the speed of the unloaded rear end of the 
bar is as a whole (&! − 2!/#!$!).

• Thus, when the rightward-moving compressive plastic wave 
and the leftward-moving, unloading, tensile elastic wave 
meet, the whole of the bar to the right of the plastic wave 
front has the speed (&! − 2!/#!$!).

• The continuous passage of the elastic wave up and down 
the rear portion of the bar, which is reflected from the slowly 
advancing plastic wavefront and the free end of the bar, 
feeds energy forward for its subsequent dissipation
plastically and slowly, after many traversals of the rear part 
of the bar, brings it to rest.
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Taylor’s Momentum Approach
• This rear portion, i.e. that which is not plastically deformed 

at a given time, may thus reasonably be treated as a 
continuously retarded rigid body whose motion is 
determined by events at the plastic wavefront.

• The momentum flux at the plastic wavefront decreases 
with time and hence the plastic strain developed also 
decreases with time; thus a mushroom shape is expected.

• A simple theoretical model may now be conceived in 
which the portion of the bar moving through the plastic 
wavefront (or shock) is brought to rest and, in doing so, 
the material spreads out laterally undergoing compressive 
plastic deformation.

50

Aluminum Cylinder
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Basic Equations

• In the figure, bring the plastic wave front, *P, which has 
an absolute speed of 6% to relative rest, so that rigid 
material from the right moves across it with speed (7 + 6%); 
7 is the instantaneous absolute speed of the end of the 
bar of initial cross-sectional area 5!.

• Thus, the equation for no change in volume gives,
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Basic Equations
• Also at *P, the net force is #(5 − 5!); the pressure in the 

‘shock’ is everywhere the same at magnitude #.

• This is equal to the rate of change of momentum across the 
shock plane, i.e. the mass arriving per unit time is 0"&"(2 + $#)
and its change in velocity is from (2 + $#) to $#.

• Hence,

• If the longitudinal compressive engineering strain in any element 
of original length (4" which has been plastically compressed to 
length (4 is #, then
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Basic Equations
• From 5! 7 + 6% = 56%,

• Substituting, 

• Which on simplifying reduces to,
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Deformed Length
• For the two principal portions of the bar which are of 

current increasing length ℎ and decreasing length /, we 
have,

• Further, for the undeformed portion of the rod, applying 
Newton’s second law,

• Eliminating 14,



55

Deformed Length
• But from 5! 7 + 6% = 56%,

• Substituting,

• The term 7. 17 can be eliminated using 
⁄&!7$ # = ⁄)$ (1 − )),

• So,
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Deformed Length
• We may now integrate, noting that when / = R, i.e. at the 

beginning of the plastic deformation, ) = )!. Hence,

• Also at the end of plastic deformation ) = 0, and we may 
denote the remaining undeformed length of bar by I so 
that from equation,
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Deformed Length
• Or,

• Figure shows how
I/R varies with )!
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Example 
• Consider )! = 0.5, then,

• and I/R = 0.43.
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Example
• To facilitate depicting the sequence of states of 

deformation, the corresponding values of ℎ are required.

• The integral can be graphically 
interpreted after plotting ,/=
versus (1 − #),
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Profile Shape
• The profile of the ‘mushroom’ for each value of ) or at 

each section //R, is given by the ratio of plastically 
deformed diameter as it becomes stationary on crossing 
the plastic wave front 1, to the original bar diameter 1!,

• Values of 1/1! corresponding to values of ) appear in 
Table 5.1.
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Time-wave Position
• Finally, the time 4 which elapses since impact first 

occurred, for the plastic wave front to reach distance ℎ
from the anvil, is,

• But,

• So,

• with the help of 0"2"*" = #"*/(1 − #")
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Time-wave Position
• The function (//R)(1 − )/2)/(

)
1

− ) ./$ versus ), is plotted for the 
case considered, i.e. &!7!$/#=0.5

• Below, three terminal profiles for 
&!7!

$/# =0.5, 1.63 and 3.2 are 
shown as calculated by Taylor.
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Simplified Calculation
• For &!7!$/# =0.5, and 1.63, the ‘mushroomed’ end 

appears as an almost straight-sided conical frustrum.

• For each particular value of &!7!$/#, the final depth of the 
mushroomed head, V, requires to be numerically 
calculated as above.

• However, the amount of labor involved in calculating V/R
may be avoided without too great an error.
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Simplified Calculation
• The volume of the deformed head,

is expressed as,

• Thus,



65

Simplified Calculation
• It is interesting to note that 

?/= has a maximum of about 
0.43 when 0"2"*/" ≅ 1.

• The values of ?/= appear to 
be the same as those given 
by Taylor and significant 
curvature of the sides of the 
mushroom is evidently only 
taken on when 0"2"*/">1.63, 
a feature of no great 
importance since the solution 
is obviously in error at this 
level of 0"2"*/".
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Plastic Wave Speed
• Plots of ℎ/R against 7!4/R show that the plastic wave 

speed is nearly constant.

• For the case considered, i.e. &!7!$/#=0.5, if this is denoted 
by 6%, then ℎ/7! is the slope of the line made by plotting 
ℎ/R by 7!4/R from Table 5.1; in this case 6% ≅ 1.127!.

• By treating 6% as constant,

• Integrating, 
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Plastic Wave Speed
• When 7 = 7!, / = R and thus,

• Hence,

• Since 7 = 0, when / = I,
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Strain Rate Effects
• Strain rate effects are the more pronounced the higher the 

homologous temperature at which a test is conducted.
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Xu, et al., Semi-Crystalline Polymers Applied to Taylor Impact Test: 
Constitutive, Experimental and FEM Analysis, Polymers 2020, 12, 1615

• Taylor test of PA66 rod at 128 m/s:

• at 168 m/s: 
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Banerjee, Taylor impact tests: detailed report, C-SAFE Internal Report No. C-
SAFE-CD-IR-05-001, 2005.

• Computed versus 
experimental 
profiles for Taylor 
test of copper.

• =" = 30 BB
C" = 6.0 BB
E" = 188 B/G
8" = 718 I
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Corelation
• OFHC copper:
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Energy Method Based on 
Deformation into a Frustum



75

Non-hardening Material
• If the final ‘mushroomed’ head of the projectile is assumed 

to be frustum-shaped, the compressive strain distribution 
may be presumed to be implicitly specified as proportional 
to distance from the anvil and thus the plastic work done 
in arriving at this state may be found.

• From the figure, 
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Non-hardening Material
• For a transverse element of height 1ℎ at ℎ from the anvil, 

the plastic work done in expanding its radius from M! to M
is

• For the whole frustum,

• Now, 5!1ℎ! = 51ℎ, where 5 and 5! denote initial and final 
cross-sectional areas and hence,
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Non-hardening Material
• Thus,

• Or,
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Non-hardening Material
• Now the energy for doing the plastic work is derived from 

the kinetic energy of the projectile and thus,

• Simplifying,
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Non-hardening Material
• However, from previous work,

• where / = W!/M!. Substituting,
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Linear Hardening Material
• By following a similar approach to that just presented, it 

may be shown for a material which is rigid/linear strain-
hardening, i.e. ! = # + *X, where * is the plastic modulus, 
that the plastic work required to be done to attain the 
frustum shape, determined on the same assumptions as 
before, is:
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Mean Strain After Impact
• The mean strain X0 imparted, for the non-hardening 

material is,

• For W!/M!=1.5, 2, and 3, the corresponding values of X0
are 0.48, 0.92, and 1.63, respectively. 

Hawkyard’s Energy Method
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Energy Balance Equation
• In this section, with all the same assumptions as before, 

the consequences of establishing an energy balance 
across the discontinuity at the plastic wavefront are 
examined—an investigation originally made by Hawkyard.

• An elemental cylindrical length, 1/, passes through the 
plastic wavefront and is so deformed as to acquire an 
area 5, and height 1Y; the plastic wave speed is thus
6% = 1Y/14. 
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Energy Balance Equation
• In the same time, the rear portion of the cylinder moves 

forward a distance 1O so that 7 = 1O/14. 

• The rate at which plastic work is dissipated in crossing the 
wavefront is,

• Since, 1/ = 1O + 1Y, i.e.
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Energy Balance Equation
• The loss of kinetic energy in the undeformed rear portion 

in decreasing in speed from 7 to (7 − 17) is equal to the 
arresting force times the distance it moves, i.e. #5!1O and 
the deformed element loses its entire kinetic energy, i.e. 
5!&! 1/ 7$/2.

• Thus the rate of loss of energy of the projectile is

• Since 1$/14 = 1Z/14,

• Combining,
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Velocity-Strain Equation
• Re-writing previous equation,

• With the initial condition 7 = 7!, the initial strain )! is given 
by,

• The equation of motion for the rear undeformed portion of 
the cylinder is,
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Undeformed Length and Strain
• But by differentiating with respect to O,

• Hence, 

• But 1O = −)1/, so

• Integrating,
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Deformed Length and Strain
• We have for the element which crosses the plastic 

wavefront,

• Substituting for /

• Integrating,

• The final deformed length is V and

• and the final length =) = J + ?.
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Terminal Profile
• The final profile of the deformed end of the cylinder can be 

obtained by using previous equation.

• Terminal profile shapes for various values of 0"2"*/" as 
calculated by Hawkyard are shown.

• All profiles are of concave form and have the shape given by 
experimental results; the profiles differ significantly from those 
given by Taylor particularly for the larger values of 0"2"*/"
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Plastic Wave Speed
• From equations (5.37) and (5.36) (slides 49, 50),

• and using (5.71) (slide 76) for 7,

• The momentum balance theory gives,

• For a given value of #, the $K of (5.87) is greater than that of 
(5.86) and the difference increases as # increases.


