
A

How To Create Your first 
Artificial Neural Network In 
Python

ll machine Learning beginners and enthusiasts need some 

hands-on experience with Python, especially with creating 

neural networks. This tutorial aims to equip anyone with 

zero experience in coding to understand and create an Artificial 

www.analyticsindiamag.com

4 mins read



Neural network in Python, provided you have the basic understanding 

of how an ANN works.

Prerequisites

• Basic understanding of Artificial Neural Network

• Basic understanding of python language

Before dipping your hands in the code jar be aware that we will not 

be using any specific dataset with the aim to generalize the concept. 

The codes can be used as templates for creating simple neural 

networks that can get you started with Machine Learning.

Neural Network in Python

We will use the Keras API with Tensorflow or Theano backends for 

creating our neural network.

Installing libraries

Theano

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

Tensorflow 

pip3 install --user --upgrade “tensorflow_url for specific to the 

environment”

Find the tensorflow_url here

Notes:



Requires a 64 bit Architecture

Keras

pip install --upgrade Keras

By default Keras uses Tensorflow backend. If you feel the need to use 

Theano backend instead, locate the file /home/user/.keras/keras.json 

(or %USERPROFILE%/.keras/keras.json in windows) and replace the 

line "backend": "tensorflow" with "backend": "theano"

If the file is not present, create the file in the same location and add 

the following lines :

{

"image_data_format": "channels_last",

"epsilon": 1e-07,

"floatx": "float32",

"backend": "theano"

}

Let’s get coding :

Import the  libraries

import keras

from keras.models import Sequential

from keras.layers import Dense

Initialising the Artificial Neural Network

model = Sequential()

The Sequential model is a linear stack of layers.

Creating the Input-layer and the first hidden layer

model.add(Dense(input_dim = 2, units = 10, activation='relu', 

kernel_initializer='uniform'))



This line adds the input layer and one hidden layer to our neural 

network. Lets break down the arguments one by one:

Dense(): lets us create a densely connected neural network

input_dim : shape or number of nodes in the input layer

units : the number of neurons or nodes in the current layer (hidden 

layer)

activation : the activation function applied to each node.”relu” stands 

for Rectified Linear Unit

kernel_initializer: initial random weights of the layer

The number of input layer depends on the problem you wish to solve 

using the network. For example, if the problem is to predict the 

salaries by considering a person’s experience and age, ‘Salary’ being 

the dependent and ‘Experience’ and ‘Age’ being the independent 

variables, the model will have 2 input nodes and a single output node. 

Giving an optimal number of nodes in the hidden layers requires a 

deeper understanding. However, you can experiment with different 

numbers and see its effects on the result.

Creating a second hidden layer

model.add(Dense(units = 20, activation='relu', 

kernel_initializer='uniform'))

The line creates and adds another hidden layer to the model with 20 

nodes and ‘rectifier’ activation function and uniform distribution of 

weights. More layers can be added depending on the problem and its 

complexity.



Creating the output  layer

model.add(Dense(units = 1, activation='sigmoid', 

kernel_initializer='uniform'))

Units here is the number of nodes in the output layer. Here we have a 

single output layer.

Sigmoid or softmax are the commonly used activation functions for 

an output layer.

Compiling the ANN classifier

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=

['accuracy'])

The ANN needs to be compiled with an optimizer function and a loss 

function before being trained.

• Optimizer: an optimizer function for the network, There are 

several types of optimizers and the choice depends on the 

nature of the problem

• Loss: used for calculating the losses and errors.There are 

several types and the choice depends on the nature of the 

problem.

• Metrics: the metric used to measure the accuracy of the 

model.Types of metrics.

Fitting the model with the training set

model.fit(X_train,Y_train,batch_size=500, epochs=10)

X_train: The training data consisting of only the independent factors

Y_train: The training data consisting of only the dependent factors 

Batch_size: the weight is updated after training each batch of samples



epochs: one epoch stands for one complete training of the neural 

network with all samples.

You will see a similar output as follows:

The values of loss and accuracy displayed along the right side denote 

the loss and accuracy attained during the training of the model at 

each epoch

Evaluating the performance on the test set

model.evaluate(X_test,Y_test)

Output:

Loss = 0.48 0r 48%

Accuracy = 0.7975 or 79%

It means that 79% of the predicted results match with the actual 

values in the test set.

The parameters can be tweaked to see its effects on the results and 

optimal values can be chosen.The Python code can be used to solve 

any problems such as regression or classification and just requires 

you to change some arguments.

Related Stories



Top 7 Python Neural Network Libraries For Programmers

Python can be said as one of the most widely used languages because 

of its multiple features which include a large variety of useful 

libraries, extremely vast community, and other such things. The 

libraries mentioned here provide basic and neural network variants 

for accessing the neural network and deep learning…

How To Become A Data Scientist In 2018

Even in 2018, there is a lot of interest in data science – it’s a high 

impact job that commands the best salary and has a huge demand. 

Now, the usual learning path follows a pattern – for years the data 

science route has been a combination of Python <…

A Hands-On Primer To TensorFlow

Deep Learning, AI and Advanced Analytics are transforming the way 

we live and work on this planet. Some experts are comparing it to 

transformations like electricity or internet which were paradigm 

shifts for many industries. Deep learning has applications like face 


