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Preface 

The area of Lagrange multiplier methods for constrained minimization 
has undergone a radical transformation starting with the introduction of 
augmented Lagrangian functions and methods of multipliers in 1968 by 
Hestenes and Powell. The initial success of these methods in computational 
practice motivated further efforts aimed at understanding and improving 
their properties. At the same time their discovery provided impetus and a 
new perspective for reexamination of Lagrange multiplier methods proposed 
and nearly abandoned several years earlier. These efforts, aided by fresh 
ideas based on exact penalty functions, have resulted in a variety of interest- 
ing methods utilizing Lagrange multiplier iterations and competing with 
each other for solution of different classes of problems. 

This monograph is the outgrowth of the author's research involvement in 
the area of Lagrange multiplier methods over a nine-year period beginning 
in early 1972. It is aimed primarily toward researchers and practitioners of 
mathematical programming algorithms, with a solid background in intro- 
ductory linear algebra and real analysis. 

Considerable emphasis is placed on the method of multipliers which, 
together with its many variations. may be viewed as a primary subject of the 
monograph. Chapters 2, 3, and 5 are devoted to this method. A large portion 
of Chapter 1 is devoted to unconstrained minimization algorithms on which 
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the method relies. The developments on methods of multipliers serve as a 
good introduction to other Lagrange multiplier methods examined in 
Chapter 4. 

Several results and algorithms were developed as the monograph was 
being written and have not as yet been published in journals. These include 
the algorithm for minimization subject to simple constraints (Section 1 .9 ,  
the improved convergence and rate-of-convergence results of Chapter 2, the 
first stepsize rule of Section 2.3.1, the unification of the exact penalty methods 
of DiPillo and Grippo, and Fletcher, and their relationship with Newton's 
method (Section 4.3), the globally convergent Newton and quasi-Newton 
methods based on differentiable exact penalty functions (Section 4.5.2), and 
the methodology for solving large-scale separable integer programming 
problems of Section 5.6. 

The line of development of the monograph is based on the author's 
conviction that solving practical nonlinear optimization problems effi- 
ciently (or at all) is typically a challenging undertaking and can be accom- 
plished only through a thorough understanding of the underlying theory. 
This is true even if a polished packaged optimization program is used, but 
more so when the problem is large enough or important enough to warrant 
the development of a specialized algorithm. Furthermore, it is quite common 
in practice that methods are modified, combined, and extended in order to 
construct an algorithm that matches best the features of the particular 
problem at hand, and such modifications require a full understanding of 
the theoretical foundations of the method utilized. For these reasons, we 
place primary emphasis on the principles underlying various methods and 
the analysis of their convergence and rate-of-convergence properties. We 
also provide extensive guidance on the merits of various types of methods 
but, with a few exceptions, do not provide any algorithms that are specified 
to the last level of detail. 

The monograph is based on the collective works of many researchers as 
well as my own. Of those people whose work had a substantial influence on 
my thinking and contributed in an important way to the monograph I 
would like to mention J. D. Buys, G. DiPillo, L. Dixon, R. Fletcher, T. Glad, 
L. Grippo, M. Hestenes, D. Luenberger, 0. Mangasarian, D. Q. Mayne, 
E. Polak, B. T. Poljak, M. J. D. Powell, B. Pschenichny, R. T. Rockafellar, 
and R. Tapia. My research on methods of multipliers began at Stanford 
University. My interaction there with Daniel Gabay, Barry Kort, and 
David Luenberger had a lasting influence on my subsequent work on the 
subject. The material of Chapter 5 in particular is largely based on the 
results of my direct collaboration with Barry Kort. The material of Sec- 



PREFACE xiii 

tion 5.6 is based on work on electric power system scheduling at Alphatech, 
Inc. where I collaborated with Greg Lauer, Tom Posbergh, and Nils R. 
Sandell, Jr. 

Finally, I wish to acknowledge gratefully the research support of the 
National Science Foundation, and the expert typing of Margaret Flaherty, 
Leni Gross, and Rosalie J. Bialy. 





Chapter 1 

Introduction 

1.1 General Remarks 

Two classical nonlinear programming problems are the equality con- 
strained problem 

(ECP) minimize f ( x )  

subject to h(x) = 0 

and its inequality constrained version 

(IcP) minimize f ( x )  

subject to g(x) I 0, 

where$ R" -+ R, h: R" -+ Rm, g :  Rn -t Rr are given functions. Computational 
methods for solving these problems became the subject of intensive investiga- 
tion during the late fifties and early sixties. We discuss three of the approaches 
that were pursued. 

The first approach was based on the idea of iterative descent within 
the confines of the constraint set. Given a feasible point x,, a direction d, 
was chosen satisfying the descent condition Vf (xk)'dk < 0 and the condition 
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x, + ad, : feasible for all a positive and sufficiently small. A search along the 
line {x, + ad, 1 a > 0) produced a new feasible point x,, , = x, + x,d, 
satisfying f (x,, ,) < f (x,). This led to various classes of feasible direction 
methods with which the names of Frank-Wolfe, Zoutendijk, Rosen, Goldstein, 
and Levitin-Poljak are commonly associated. These methods, together with 
their more sophisticated versions, enjoyed considerable success and still 
continue to be very popular for problems with linear constraints. On the 
other hand, feasible direction methods by their very nature were unable to 
handle problems with nonlinear equality constraints, and some of them 
were inapplicable or otherwise not well suited for handling nonlinear 
inequality constraints as well. A number of modifications were proposed for 
treating nonlinear equality constraints, but these involved considerable 
complexity and detracted substantially from the appeal of the descent idea. 

A second approach was based on the possibility of solving the system of 
equations and (possibly) inequalities which constitute necessary conditions 
for optimality for the optimization problem. For (ECP), these conditions are 

(la) V,L(x, A) = Vf (x) + Vh(x)A = 0, 

(lb) V, L(x, A) = h(x) = 0, 

where L is the (ordinary) Lagrangian function 

L(x, A) = f (x) + A1h(x). 

A distinguishing feature of this approach is that the Lagrange multiplier 
/Z is treated on an equal basis with the vector x. Iterations are carried out 
simultaneously on x and A, by contrast with the descent approach where 
only x is iterated upon and the Lagrange multiplier plays no direct role. 
For this reason algorithms of this type are sometimes called Lagrangian 
methods. Several methods of this type were considered in Arrow et al. (1958). 
In addition to Newton's method for solving system (I), a gradient method 
was also proposed under the condition that the local concexity assumption 

(2) V:, L(x*, A*) > 0 

holds at a solution (x*, A*). It was noted, however, by Arrow and Solow 
(1958) that if the local convexity assumption did not hold, then (ECP) could 
be replaced by the equivalent problem 

(3) minimize f (x) + 4c 1 h(x) 1 
subject to h(x) = 0, 

where c is a scalar and 1 . 1  denotes Euclidean norm. If c is taken sufficiently 
large, then the local convexity condition can be shown to hold for problem (3) 
under fairly mild conditions. The idea of focusing attention on the necessary 
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conditions rather than the original problem also attracted considerable 
attention in optimal control where the necessary conditions can often be 
formulated as a two-point boundary value problem. However, it quickly 
became evident that the approach had some fundamental limitations, 
mainly the lack of a good mechanism to enforce convergence when far from a 
solution, and the difficulty of some of the methods to distinguish between 
local minima and local maxima. 

A third approach was based on elimination of constraints through the 
use of penalty functions. For example the quadratic penalty function method 
(Fiacco and McCormick, 1968) for (ECP) consists of sequential uncon- 
strained minimization of the form 

minimize f (x) + tc, 1 h(x) 1' 
subject to x E R", 

where {c,) is a positive scalar sequence with c, < ck+ , for all k and c, + ccj. 

The sequential minimization process yields 

( 5 )  lim inf { f (x) + Sc, 1 h(x) 1 2 ) .  
c r + m  x e R n  

On the other hand, the optimal value of (ECP) can be written as 

inf lim (f (x) + tc, 1 h(x) 12), 
x e R n  c r -m 

and hence the success of the penalty method hinges on the equality of the 
expressions (5) and (6), i.e., the validity of interchanging "lim" and "inf." 
This interchange is indeed valid under mild assumptions (basically con- 
tinuity off and h-see Chapter 2). Lagrange multipliers play no direct role 
in this method but it can be shown under rather mild assumptions that the 
sequence {ckh(x,)), where x, solves problem (4), converges to a Lagrange 
multiplier of the problem. Despite their considerable disadvantages [mainly 
slow convergence and ill-conditioning when solving problem (4) for large 
values of c,], penalty methods were widely accepted in practice. The reasons 
can be traced to the simplicity of the approach, its ability to handle nonlinear 
constraints, as well as the availability of very powerful unconstrained 
minimization methods for solving problem (4). 

The main idea of the descent approach also made its appearance in a 
dual context whereby an ascent method is used to maximize the dual func- 
tional for (ECP) given by 

d(A) = inf{ f (x) + ?,'h(x)) = inf L(x, A). 
X X 
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In the simplest such method one minimizes L(., A,) (perhaps in a local 
sense) over x for a sequence of multiplier vectors (A,). This sequence is 
generated by 

(7) A k +  1 = + 
where x, is a minimizing point of L(., A,) and cr is a stepsize scalar parameter. 
It is possible to show under the appropriate assumptions (see Section 2.6) 
that h(xk) = Vd(;ik), so (7) is actually a steepest ascent iteration for maxi- 
mizing the dual functional d. Such methods have been called primal-dual 
methods. Actually the dual functional and the method itself make sense only 
under fairly restrictive conditions including either the local convexity 
assumption (2) or other types of convexity conditions. The method is also 
often hampered by slow convergence. Furthermore in many cases it is diffi- 
cult to know a priori an appropriate range for the stepsize a. For this reason 
primal-dual methods of the type just described initially found application 
only in the limited class of convex or locally convex problems where mini- 
mization of L(., A,) can be carried out very efficiently due to special structure 
involving, for example, separable objective and constraint functions (Everett, 
1963). 

Starting around 1968, a number of researchers have proposed a new 
class of methods, called methods of multipliers, in which the penalty idea is 
merged with the primal-dual and Lagrangian philosophy. In the original 
method of multipliers, proposed by Hestenes (1969) and Powell (1969), the 
quadratic penalty term is added not to the objective function f of (ECP) 
but rather to the Lagrangian function L = f + L'h thus forming the aug- 
mented Lagrangian function 

(8) Lc(x, A) = f (x) + ;ilh(x) + 4cI h(x) 12. 

A sequence of minimizations of the form 

(9) minimize Lc,(x, A,) 
subject to x E Rn 

is performed where {c,) is a sequence of positive penalty parameters. The 
multiplier sequence {A,) is generated by the iteration 

where x, is a solution of problem (9). The initial vector A, is selected a priori, 
and the sequence {c,} may be either preselected or generated during the 
computation according to some scheme. 

One may view the method just described within the context of penalty 
function methods. If c, + -x, and the generated sequence {A,} turns out to 
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be bounded, then the method is guaranteed to yield in the limit the optimal 
value of (ECP), provided sufficient assumptions are satisfied which guarantee 
the validity of interchange of "lim" and "inf " in the expression 

lim i n f { f ( x )  + &h(x)  + 4ckjh(x)I2),  
C k + C O  X 

similarly as for the penalty method considered earlier. 
Another point of view (see Chapter 2)  is based on the fact that iteration 

(10) is a steepest ascent iteration for maximizing the dual functional 

dc,(A) = inf { f ( x )  + Xh(x)  + i ck  1 h(x)  1 2 ) ,  
X 

which corresponds to the problem 

minimize f (x) + 4ck 1 h(x) l 2  
subject to h(x)  = 0. 

As noted earlier, if c, is sufficiently large, this problem has locally convex 
structure, so the primal-dual viewpoint is applicable. 

It turns out that, by combining features of the penalty and the primal- 
dual approach, the method of multipliers actually moderates the dis- 
advantages of both. As we shall see in the next chapter, convergence in 
the method of multipliers can usually be attained without the need to increase 
ck to injnity thereby alleviating the ill-conditioning problem that plagues 
the penalty method. In addition the multiplier iteration (10) tends to converge 
to a Lagrange multiplier vector much faster than iteration (7)  of the primal- 
dual method, or the sequence {ckh(x,)) in the penalty method. Because of these 
attractive characteristics, the method of multipliers and its subsequently 
developed variations have emerged as a very important class of constrained 
minimization methods. A great deal of research has been directed toward 
their analysis and understanding. Furthermore their discovery provided 
impetus for reexamination of Lagrangian methods proposed and nearly 
abandoned many years ago. These efforts aided by fresh ideas based on 
penalty functions and duality have resulted in a variety ofinteresting methods 
utilizing Lagrange multiplier iterations and competing with each other for 
solution of different classes of problems. 

The purpose of this monograph is to provide a rather thorough analysis 
of these Lagrange multiplier methods starting with the quadratic method of 
multipliers for (ECP) just described. This method is the subject of Chapter 2. 
In Chapter 3, the method is extended to handle problems with both equality 
and inequality constraints. In addition the Lagrange multiplier approach is 
utilized to construct algorithms for solution of nondifferentiable and minimax 
problems. In Chapter 4, we consider a variety of Lagrangian methods and 
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analyze their local and global convergence properties. Finally, in Chapter 5, 
we explore the possibility of using a penalty function other than quadratic, 
and we analyze multiplier methods as applied to convex programming 
problems. 

1.2 Notation and Mathematical Background 

The purpose of this section is to provide a selective list of mathematical 
definitions, notations, and results that will be frequently used. For detailed 
expositions, the reader should consult texts on linear algebra and real 
analysis. 

Algebraic Notions 

We denote by R the real line and by Rn the space of all n-dimensional 
vectors. Intervals of real numbers or extended real numbers are denoted 
as usual by bracket-parentheses notation. For example for a E R or a = - cc 
and b E R or b = + co we write (a, b] = (x la < x I b). Given any subset 
S c R which is bounded above (below), we denote by sup S (inf S) the least 
upper bound (greatest lower bound) of S. If S is unbounded above (below) 
we write sup S = co (inf S = -a). In our notation, every vector is con- 
sidered to be a column vector. The transpose of an m x n matrix A is denoted 
A'. A vector x E Rn will be treated as an n x 1 matrix, and thus x' denotes a 
1 x n matrix or row vector. If x,, . . . , x, are the coordinates of a vector 
x E Rn, we write x = (x,, x,, . . . , x,). We also write 

A symmetric n x n matrix A will be said to be positice semidejinite 
if x'Ax 2 0 for all x E Rn. In this case we write 

We say that A is positive definite if x'Ax > 0 for all x # 0, and write 

When we say that A is positive (semi)definite we implicitly assume that 
it is symmetric. A symmetric n x n matrix A has n real eigenvalues y,, 
y 2 ,  . . . , yn and n nonzero real eigenvectors el,  ez, . . . , en which are mutually 
orthogonal. It can be shown that 

(1) yx'x I x'Ax I Tx'x V x E Rn, 
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where 

y = min{yl,.. . , y )  r = max{y,,. . . , y,). 

For x equal to the eigenvector corresponding to l- (y), the inequality on the 
right (left) in (1) becomes equality. It follows that A > 0 (A 2 O), if and only 
if the eigenvalues of A are positive (nonnegative). 

If A is positive definite, there exists a unique positive definite matrix the 
square of which equals A. This is the matrix that has the same eigenvectors 
as A and has as eigenvalues the square roots of the eigenvalues of A. We 
denote this matrix by All2. 

Let A and B be square matrices and C be a matrix of appropriate dimen- 
sion. The very useful equation 

(A + CBC')- = A-  - A -  T ( B -  + C'A- lc ) -  'CIA- 

holds provided all the inverses appearing above exist. The equation can 
be verified by multiplying the right-hand side by (A + CBC') and showing 
that the product is the identity. 

Consider a partitioned square matrix M of the form 

There holds 

where 
Q = (A - BD-'C)-', 

provided all the inverses appearing above exist. The proof is obtained by 
multiplying M with the expression for M- l  given above and verifying that 
the product yields the identity matrix. 

Topological Notions 

We shall use throughout the standard Euclidean norm in Rn denoted 1 . 1 ;  
i.e., for a vector x E Rn, we write 

1x1 = fi. 
The Euclidean norm of an m x n matrix A will be denoted also 1 . 1 .  

It is given by 

1 Ax 1 Jx' A'AX I A 1 = max ---A = max 
x f O  1x1 x + o  6 ' 
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In view of (I), we have 

I A I = Jmax eigenvalue(AIA). 

If A is symmetric, then if A,, . . . , An are its (real) eigenvalues, the eigenvalues 
of A2 are 21, . . . , A:, and we obtain 

A sequence of vectors x,, x,, . . . , x,, . . . , in Rn, denoted {x,), is said to 
converge to a limit vector x if I x, - x I + 0 as k + oo (that is, if given E > 0, 
there is an N such that for all k 2 N we have Ix, - xl < E). If {x,) con- 
verges to x we write x, + x or lim,,, x, = x. Similarly for a sequence of 
m x n matrices {A,), we write A, + A or lirn,,, A, = A if I A, - A 1 -+ 0 
as k -+ CG. Convergence of both vector and matrix sequences is equivalent 
to convergence of each of the sequences of their coordinates or elements. 

Given a sequence {x,), the subsequence {x, 1 k E K)  corresponding to an 
infinite index set K is denoted {x,),. A vector x is said to be a limit point 
of a sequence {x,) if there is a subsequence {x,}, which converges to x. 

A sequence of real numbers {r,) which is monotonically nondecreasing 
(nonincreasing), i.e., satisfies r, I r,, , (r, 2 r,, ,) for all k, must either 
converge to a real number or be unbounded above (below) in which case we 
write lirn,,, r, = + cc (lirn,,, r, = - x). Given any bounded sequence 
of real numbers {r,), we may consider the sequence {s,) where s, = 

sup{rili 2 k). Since this sequence is monotonically nonincreasing and 
bounded, it must have a limit called the limit superior of {r,) and denoted by 
lirn sup,,, r,. We define similarly the limit injerior of {r,) and denote it by 
lim inf,,, r,. If {r,) is unbounded above, we write lim sup,,, r, = + CG, 

and if it is unbounded below, we write lim inf,,, r, = - x. 

Open, Closed, and Compact Sets 

For a vector x E R" and a scalar E > 0, we denote the open sphere cen- 
tered at x with radius E > 0 by S(x; E ) ;  i.e., 

(2) S(X;E) = {zI /z  - X I  < E). 

For a subset X c Rn and a scalar E > 0, we write by extension ofthe preceding 
notation 

A subset S of Rn is said to be open, if for every vector x E S one can find an 
E > 0 such that S(x: E) c S. If S is open and x E S, then S is said to be a 
neighborhood of .u. The irlterior of a set S c Rn is the set of all x E S for ~ h i c h  
there exists E > 0 such that S(x: E) c S. A set S is closed if and only if its 
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complement in Rn is open. Equivalently S is closed if and only if every 
convergent sequence {x,) with elements in S converges to a point which also 
belongs to S. A subset S of Rn is said to be compact if and only if it is both 
closed and bounded (i.e., it is closed and for some M > 0 we have 1x1 I M 
for all x E S). A set S is compact if and only if every sequence {x,) with 
elements in S has at least one limit point which belongs to S. Another impor- 
tant fact is that if So, S,, . . . , S,, . . . is a sequence of nonempty compact 
sets in Rn such that S, 2 S,, , for all k then the intersection n,"=, S, is a 
nonempty and compact set. 

Continuous Functions 

A function f mapping a set S, c Rn into a set S, c Rm is denoted by 
f: S, -t S,. The function f is said to be continuous at x E S, iff (x,) +f (x) 
whenever x, + x. Equivalently f is continuous at x if given E > 0 there 
is a 6 > 0 such that 1 y - x 1 < 6 and y E S1 implies I f  ( y )  - f (x) 1 < E.  

The function f is said to be continuous over S1 (or simply continuous) if it is 
continuous at every point x E S,. If S , ,  S,, and S3 are sets and fl : S, -+ S, 
and f,: S, + S3 are functions, the function f, . fl : S, -t S3 defined by 
( f, . fJ(x) = f2[ f1(x)] is called the composition of f, and f,. If fl : Rn -t Rm 
and f,: Rm + RP are continuous, then f, f; jl is also continuous. 

Differentiable Functions 

A real-valued function f :  X -t R where X c Rn is an open set is said to 
be continuouslydifferentiable if the partial derivatives af (x)/axl, . . . , af (x),@xn 
exist for each x E X  and are continuous functions of x over X. In this case 
we write f E C1 over X. More generally we write f E CP over X for a function 
f: X -t R, where X c Rn is an open set if all partial derivatives of order p 
exist and are continuous as functions of x over X. Iff  E CP over Rn. we 
simply write f E CP. Iff E C1 on X, the gradient 0f.f at a point x E X is defined 
to be the column vector 

Iff E C2 over X, the Hessian off at x is defined to be the symmetric n x n 
matrix having i?2f(x)/i?xi axj as the ijth element 

V2f(x) = -- 
ax, 2xj [ 22f(x)l. 
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Iff: X + Rm where X c Rn, then f will be alternatively represented by 
the column vector of its component functions f1 , f2 ,  . . . , fm 

If X is open, we write f E CP on X iffl E CP, f2 E CP, . . . , fm E CP on X. We 
shall use the notation 

V f ( x )  = CVfl ( x )  . . . Vfm(x)I. 

Thus, the n x m matrix Vf has as columns the gradients Vf,(x) ,  . . . , Vf , (x)  
and is the transpose of the Jacobian matrix of the functionf: 

On occasion we shall need to consider gradients of functions with 
respect to some of the variables only. The notation will be as follows: 

Iff: Rn+' + R is a real-valued function of ( x ,  y) where x = (x, ,  . . . , x,) E 

Rn, y = (y  ,, . . . , y,) E Rr, we write 

Iff: Rn" -, Rm, f = ( f , ,  f,, . . . , fm), we write 

For h: Rr -+ Rm and g :  Rn + Rr, consider the functionf: Rn -+ 

by 

f ( x )  = hCg(x)l. 

Then if h E CP and g E CP, we also have f E CP. The chain rule of differentiation 
is stated in terms of our notation as 



1.2 NOTATION AND MATHEMATICAL BACKGROUND 11 

Mean Value Theorems and Taylor Series Expansions 

Let f:  X + R, and f~ C' over the open set X c Rn. Assume that X 
contains the line segment connecting two points x, y E X. The mean value 
theorem states that there exists a scalar u with 0 < x < 1 such that 

If in addition f E C 2 ,  then there exists a scalar x with 0 < a < 1 such that 

Let$ X -+ Rm and f E C' on the open set X c Rn. Assume that X contains 
the line segment connecting two points x, 4; E X. Thefirst-order Taylor series 
expansion off around x is given by the equation 

If in addition f E C 2  on X, then we have the second-order Taylor series 
expansion 

Implicit Function Theorems 

Consider a system of n equations in m + n variables 

where h: Rmf" -+ Rn, x E Rm, and y E R". Implicit function theorems address 
the question whether one may solve the system of equations for the vector 
y in terms of the vector x, i.e., whether there exists a function 4, called the 
implicit function, such that h[x, 4(x)] = 0. The following classical implicit 
function theorem asserts that this is possible in a local sense, i.e., in a neigh- 
borhood of a solution (?, j), provided the gradient matrix of h with respect 
to y is nonsingular. 

Implicit Function Theorem 1: Let S be an open subset of Rm+", and 
h: S + R" be a function such that for some p 2 0, h E CP over S, and assume 
that V, h(x, y) exists and is continuous on S .  Let ( 2 ,  J) E S be a vector such 
that h(Z, T) = 0 and the matrix V,h(.T, J) is nonsingular. Then there exist 
scalars r > 0 and 6 > 0 and a function 4 :  S(Z; E )  -+ S(j; 6) such that 4 E CP 
over S ( 2 ;  E ) ,  4; = $(F), and h[x, 4(x)] = 0 for all x E S(Z; E). The function 
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4 is unique in the sense that if x E S(X; E), y E S(j; d), and h(x, y) = 0, then 
y = 4(x). Furthermore, if p 2 1, then for all x E S(X; E )  

V$(x> = - VxhCx, CV, hCx, 4(x)l1- '. 
We shall also need the following implicit function theorem. It is a special 

case of a more general theorem found in Hestenes (1966). The notation (3) 
is used in the statement of the theorem. 

Implicit Function Theorem 2: Let S be an open subset of Rm+", X be a 
compact subset of Rn', and h: S -+ Rn be a function such that for some 
p 2 0, h E Cp on S. Assume that V,h(x, y) exists and is continuous on S. 
Assume that J E Rn is a vector such that (2, j )  E S, h(2, j) = 0, and the matrix 
V,h(Z, j) is nonsingular for all Z E X. Then there exist scalars E > 0, 6 > 0, 
and a function $: S(X; E) -+ S(j; 6) such that 4 E CP on S(X; E), 3 = $(X) 
for all 2 E X, and h[x, $(x)] = 0 for all x E S(X; E). The function 4 is unique 
in the sense that if x E S(X; E), y E S ( j ;  6), and h(x, y) = 0, then y = $(x). 
Furthermore, if p 2 1, then for all x E S(X; E) 

V4(x> = - V A x ,  4(x)I[V,hCx, $(x>ll - '. 

When X consists of a single vector Z, the two implicit function theorems 
coincide. 

Convexity 

A set S c Rn is said to be convex if for every x, y E S and a E [O,1] we have 
ax + (1 - x)y E S. A function f: S -+ R is said to be convex over the convex 
set S if for every x, y E S and x E [O,l] we have 

f [xx + (1 - a)y] I xf(x) + (1 - x) f (y). 

Iff is convex and f E C1 over an open convex set S, then 

If in addition f~ C2 over S ,  then V2f(x) 2 0 for all x E S. Conversely, if 
f~ C' over S and (4) holds, or iff E C2 over S and V2f(x) 2 0 for all x E S, 
then f is convex over S. 

Rate of Concergence Concepts 

In minimization algorithms we are often interested in the speed with 
which various algorithms converge to a limit. Given a sequence {x,) c Rn 
with x, -+ x*, the typical approach is to measure speed of convergence in 
terms of an error function e: Rn -+ R satisfying e(x) 2 0 for all x E Rn and 
e(x*) = 0. Typical choices are 

e(x) = Ix - x*I, 4x1 = lf(x> -f(x*)I, 
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where f is the objective function of the problem. The sequence {e(x,)) is then 
compared with standard sequences. In our case, we compare {e(x,)} with 
geometric progressions of the form 

where q > 0 and p E ( 0 , l )  are some scalars, and with sequences of the form 

where q > 0, 0 E (0,  I ) ,  and g > 1 are some scalars. There is no reason for 
selecting these particular sequences for comparison other than the fact 
that they represent a sufficiently wide class which is adequate and convenient 
for our purposes. Our approach has much in common with that of Ortega 
and Rheinboldt (1970), except that we do not emphasize the distinction 
between Q and R linear or superlinear convergence. 

Let us introduce some terminology: 

Definition: Given two scalar sequences (e,) and {r,) with 

we say that {e,) converges faster than {r,) if there exists an index E 2 0 such 
that 

We say that (e,) converges slower than {r,) if there exists an index & 2 0 
such that 

Definition: Consider a scalar sequence {e,) with e, 2 0,  ek + 0.  The 
sequence {e,} is said to converge at least linearly with convergence ratio P ,  
where 0 < 0 < 1, if it converges faster than all geometric progressions of 
the form qDk where q > 0, D E ( 8 , l ) .  It is said to converge at most linearly 
with convergence ratio p, where 0 < < 1, if it converges slower than all 
geometric progressions of the form qDk, where q > 0,  ,D E (0, P). It is said to 
converge linearly with convergence ratio P, where 0 < P < 1 ,  if it converges 
both at least and at most linearly with convergence ratio P. It is said to 
converge superlinearly or sublinearly if it converges faster or slower, respec- 
tively, then every sequence of the form qBk, where q > 0, P E (0, 1). 

Examples: (1) The following sequences all converge linearly with 
convergence ratio p :  
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where q > 0 and ~ E ( O ,  1). This fact follows either by straightforward 
verification of the definition or by making use of Proposition 1.1 below. 

(2) Let 0 < p, < /3, < 1, and consider the sequence {e , }  defined by 

Then clearly {e , )  converges at least linearly with convergence ratio p, and 
at most linearly with convergence ratio p,. Actually { ek }  can be shown to 
converge linearly with convergence ratio a fact that can be proved 
by making use of the next proposition. 

(3) The sequence { l l k }  converges sublinearly and every sequence 
of the form q/3p", where q > 0, /I ~ ( 0 ,  I), p > 1, can be shown to converge 
superlinearly. Again these facts follow by making use of the proposition 
below. 

Proposition 1.1: Let { e k )  be a scalar sequence with e ,  2 0, e, -+ 0. 
Then the following hold true: 

(a) The sequence {e , }  converges at least linearly with convergence 
ratio /3 E (0, 1) if and only if 

lim sup e:lk I p. 
k - m  

It converges at most linearly with convergence ratio p E (0, l )  if and only if 

lim inf ei ik  2 p. 
k -  m 

It converges linearly with convergence ratio p E (0, 1) if and only if 

lim eLik = p. 
k- 02 

(b) If {e,}  converges faster (slower) than some geometric progression of 
the form qpk, q > 0, p E (0, I), then it converges at least (at most) linearly 
with convergence ratio p. 

(c) Assume that ek # 0 for all k, and denote 

ek+ l ek+ 1 
= lim inf -, p2 = lim sup -. 

k - m  ek k + m  ek 

If 0 < p, < P2 < 1, then { e , )  converges at least linearly with convergence 
ratio p ,  and at most linearly with convergence ratio P,. 

(d) Assume that ek # 0 for all k and that 

ek+ l lim - - - B. 
k + m  ek 
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If 0 < p < 1, then {e,) converges linearly with convergence ratio P. If P = 0, 
then {e,) converges superlinearly. If fi = 1, then {e,) converges sublinearly. 

Proof: (a) If (5) holds, then for every p E (p, 1) there exists a k 2 0 
such that e, I pk for all k 2 k. Since {Pk) converges faster than every sequence 
of the form qPk, with q > 0, f i  E (p, l), the same is true for {e,). Since p can be 
taken arbitrarily close to p, it follows that {e,) converges at least linearly 
with convergence ratio p. Conversely if {e,) converges at least linearly with 
convergence ratio p, we have for every p E (p, l), e, I $ for all k sufficiently 
large. Hence, lirn sup,,, ellk I , 8 .  Since P can be taken arbitrarily close 
to p, (5) follows. An entirely similar argument proves the statement con- 
cerning (6). The statement regarding (7) is obtained by combining the two 
statements concerning (5) and (6). 

(b) If e, I ( 2 ) q j k  for all k sufficiently large then e:Ik 5 (2)q l tkp  
and lirn sup,,, (lim infk,,)e:lk I (2 )p .  Hence, by part (a), {e,) converges 
at least (at most) linearly with convergence ratio P. 

(c) For every p, E (b,, I), there exists E 2 0 such that 

e,, Je, I p2 v k 2 E. 

Hence, e, +, < &ef and e h & +  rn) I f??i(E + m)ehi(E+ ,). Taking the limit superior 
as m + a, we obtain 

lirn sup e:lk I fl, . 
k-+m 

Since B2 can be taken arbitrarily close to P2 we obtain lim sup,,, e:lk I P2, 
and the result follows by part (a). Similarly we prove the result relating to PI. 

(d) If 0 < ,f? < 1, the result follows directly from part (c). If p = 0, 
then for any p E (0, l )  we have, for some k 2 0, e,,, I pe, for all k 2 k. 
From this, it follows that {e,} converges faster than {pk), and since fl can be 
taken arbitrarily close to zero, {e,) converges superlinearly. Similarly we 
prove the result concerning sublinear convergence. Q.E.D. 

When (e,) satisfies lim sup,,, e,+,/e, = /? < 1 as in Proposition l . ld, 
we also say that {e,) converges at least quotient-linearly (or Q-linearly) with 
conrjergence ratio p. If P = 0, then we say that {e,) converges Q-superlinearly. 

Most optimization algorithms which are of interest in practice produce 
sequences converging either linearly or superlinearly. Linear convergence 
is quite satisfactory for optimization algorithms provided the convergence 
ratio p is not very close to unity. Algorithms which may produce sequences 
having sublinear convergence rates are excluded from consideration in 
most optimization problems as computationally inefficient. Several optimiza- 
tion algorithms possess superlinear convergence for particular classes of 
problems. For this reason, it is necessary to quantify further the notion of 
superlinear convergence. 
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Definition: Consider a scalar sequence {e,) with e, 2 0 converging 
superlinearly to zero. Then {e,) is said to converge at least superlinearly 
with order p, where 1 < p, if it converges faster than all sequences of the 
form qpp,where q > 0, p E (0, I), and p E (1, p). It is said to converge at 
most superlinearly with order p, where 1 < p, if it converges slower than all 
sequences of the form qpgk, where q > 0, p E (0, I), and p > p. It is said to 
converge superlinearly with order p, where p > 1, if it converges both at least 
and at most superlinearly with order p. 

We have the following proposition, the proof of which is similar to the 
one of Proposition 1.1 and is left as an exercise to the reader. 

Proposition 1.2: Let {e,) be a scalar sequence with e, 2 0 and e, + 0. 
Then the following hold true: 

(a) The sequence {e,) converges at least superlinearly with order 
p > 1 if and only if 

lim e: " = 0 V p E (1, p). 
k - m  

It converges at most superlinearly with order p > 1 if and only if 

lim e: pk = 1 V p > p. 
k -  m 

(b) If {e,) converges faster (slower) than some sequence of the form 
qppk, where q > 0, p E (0, l), and p > 1, then it converges at least (at most) 
superlinearly with order p. 

(c) Assume that e, # 0 for all k. If for some p > 1, we have 

ek+l lim sup --- < z, 
k - m  ekP 

then {e,) converges at least superlinearly with order p. If 

ek+ 1 lim inf -- > 0, 
k - m  ekP 

then {e,) converges at most superlinearly with order p. 

If 
ek+ 1 lim sup - < m, 

k - m  ekP 

as in Proposition 1.2c, then we say that {e,} converges at least Q-super- 
linearly with order p. 



1.2 NOTATION AND MATHEMATICAL BACKGROUND 17 

Choleskj. Factoriratiorz 

Let A = [aij]  be an n x n positive definite matrix and let us denote 
by Ai  the leading principal submatrix of A of order i, i = 1,  . . . , n, where 

It is easy to show that each of the submatrices A ,  is a positive definite matrix. 
Indeed for any y E Ri,  y # 0, we have by positive definiteness of A 

which implies that Ai is positive definite. 
The matrices Ai satisfy 

A1 = [a1112 

where xi is the column vector in Ri- '  given by 

We now show that A can be written as 

A = LL', 

where L is a unique lower triangular matrix and L' is the transpose of L-an 
upper triangular matrix. This factorization of A is called the Cholesky 
factorization. 

The Cholesky factorization may be obtained by successively factoring 
the principal submatrices Ai as 

We have 

A1 = LlL;, L,  = [&I 
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Direct calculation using (8) yields that if A,-, = Li- ,Lf- ,, then we also 
have A, = L, L;, where 

and a, is given by (9). Thus, to show that the factorization given above is 
valid, it will be sufficient to show that 

a,, - l f  1, > 0, 

and thus A,, is well defined as a real number from (13). Indeed define b = 

A1r-l1ai. Then because A, is positive definite, we have 

Thus, A,, as defined by (13) is well defined as a positive real number. In order 
to show uniqueness of the factorization, a similar induction argument may 
be used. The matrix A,  has a unique factorization, and if A,-, has a unique 
factorization A, -  = Li- ,L;-,, then Li is uniquely determined by the 
requirement A, = L, L; and Eqs. (8)-(13). 

In practice the Cholesky factorization is computed via the algorithm 
(10)-(13) or some other essentially equivalent algorithm. Naturally the 
vectors li in (12) are computed by solving the triangular system 

L. 1. = 2. 1 - 1 1  r 

rather than by inverting the matrix L,-,. For large n the process requires 
approximately n3/6 multiplications. 

1.3 Unconstrained Minimization 

We provide an overview of analytical and computational methods for 
solution of the problem 

(Up) minimize f (x) 

subject to x E R", 
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wheref: R" + R is a given function. We say that a vector x* is a local minimum 
for (UP) if there exists an E > 0 such that 

It is a strict local minimum if there exists an E > 0 such that 

f (x*) < f (x) V x E S(x*; r), x # x*. 

We have the following well-known optimality conditions. Proofs may be 
found, for example, in Luenberger (1973). 

Proposition 1.3: Assume that x* is a local minimum for (UP) and, for 
some E > 0, f E C1 over S(X*; E). Then 

Vf (x*) = 0. 

If in addition f E C2 over S(X*; E), then 

In what follows, we refer to a vector x* satisfying Vf (x*) = 0 as a critical 
point. 

Proposition 1.4: Let x* be such that, for some E > 0, f E C2 over S(X*; E) 
and 

Vf(x*) = 0, V2f (x*) > 0. 

Then x* is a strict local minimum for (UP). In fact, there exist scalars y > 0 
and 6 > 0 such that 

When x* satisfies the assumptions of Proposition 1.4 we say that it 
is a strong local minimum for (UP). 

We say that x* is a global minimum for (UP) if 

f (x*) 2 f (x) V x E Rn. 

Under convexity assumptions on f, we have the following necessary and 
sufficient condition: 

Proposition 1.5: Assume that f~ C1 and is convex over R". Then a 
vector x* is a global minimum for (UP) if and only if 

Vf (x") = 0. 

Existence of global minima can be guaranteed under the assumptions 
of the following proposition which is a direct consequence of Weierstrass' 
theorem (a continuous function attains a global minimum over a compact 
set). 
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Proposition 1.6: I f f  is continuous over Rn and f (x,) -+ m for every 
sequence {x,) such that 1 x, 1 + x, or, more generally, if the set { x  I f ( x )  I a )  
is nonempty and compact for some a E R, then there exists a global minimum 
for (UP). 

1.3. I Convergence Analysis of Gradient Methods 

We  assume, without further mention throughout the remainder of Section 
1.3, that f E C' over Rn. The reader can easily make appropriate adjustments 
iff E C' over an open subset of Rn only. 

Most of the known iterative algorithms for solving (UP) take the form 

X k + l  = x, + ~ k d k ,  

where if Vf (x,) # 0, d, is a descent direction, i.e., satisfies 

The scalar r,  is a positive stepsize parameter. We refer to such an algorithm 
as a generalized gradient method (or simply gradient method). Specific 
gradient methods that we shall consider include the method of steepest 
descent [d, = - Vf (x,)] and scaled versions of it, Newton's method, the 
conjugate gradient method, quasi-Newton methods, and variations thereof. 
We shall examine several such methods in this section. For the time being, 
we focus on the convergence behavior of gradient methods. Rate of con- 
vergence issues will be addressed in the next subsection. 

Stepsize Selection and Global Convergence 

There are a number of rules for choosing the stepsize a, [assuming 
Vf (x,) # 01. We list some that are used widely in practice: 

(a) Minimization rule: Here x, is chosen so that 

f ( x ,  + akdk) = min f ( x ,  + xd,). 
120 

(b) Limited minimization rule: A fixed number s > 0 is selected and x, 
is chosen so that 

f ( x ,  + akdk) = min f ( x ,  + xd,). 
1 € [ 0 . 5 ]  

(c) Armijo rule: Fixed scalars s, P, and o with s > 0, PE(O, I), and 
o E ( 0 , i )  are selected, and we set a, = Pmks, where m, is the first nonnegative 
integer m for which 
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i.e., m = 0, 1, . . . are tried successively until the inequality above is satisfied 
for m = m,. (A variation of this rule is to use, instead of a fixed initial stepsize 
s, a sequence {q) with sk > 0 for all k. But this case can be reduced to the 
case of a fixed stepsize s by redefining the direction d, to be 2, = (s,/s)d,.) 

(d) Goldstein rule: A fixed scalar o E (0,+) is selected, and zk is chosen to 
satisfy 

It is possible'to show that iff is bounded below there exists an interval of 
stepsizes a, for which the relation above is satisfied, and there are fairly 
simple algorithms for finding such a stepsize through a finite number of 
arithmetic operations. However the Goldstein rule is primarily used in 
practice in conjunction with minimization rules in a scheme whereby an 
initial trial stepsize is chosen and tested to determine whether it satisfies 
the relation above. If it does, it is accepted. If not, a (perhaps approximate) 
line minimization is performed. 

(e) Constant stepsize: Here a fixed stepsize s > 0 is selected and 

The minimization and limited minimization rules must be implemented 
with the aid of one-dimensional line search algorithms (see, e.g., Luenberger, 
1973; Avriel, 1976). In general, one cannot compute exactly the minimizing 
stepsize, and in practice, the line search is stopped once a stepsize r, satisfying 
some termination criterion is obtained. An example of such a criterion is 
that r, satisfies simultaneously 

and 

where o and are some scalars with o E (0,;) and E (a, 1). If sck is indeed a 
minimizing stepsize then Vf (x, + sc,d,)'d, = df(x, + a,d,)/dx = 0, so (2) is 
in effect a test on the accuracy of the minimization. Relation (I), in view of 
Vf (x,)'d, < 0, guarantees a function decrease. Usually o is chosen very 
close to zero, for example o~ lo-'], but trial and error must be 
relied upon for the choice of a. Sometimes (2) is replaced by the less stringent 
condition 

The following lemma shows that under mild assumptions there is an interval 
of stepsizes sc satisfying (I), (2) or (I), (3). 
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Lemma 1.7: Assume that there is a scalar M such that f ( x )  2 M for all 
x E Rn, let o E (0, i) and P E (o,  I ) ,  and assume that Vf (x,)'d, < 0. There 
exists an interval [c,, c2] with 0 < c1 < c2, such that every a E [c,, cz] 
satisfies ( 1 )  and (2) [and hence also (1) and (3)]. 

Proof: Define g(a) = f (x ,  + ad,). Note that dg(a)/da = Vf  (x ,  + adk)'dk. 
Let j? be such that o < j? < p, and consider the set A defined by 

Since g(x) is bounded below and dg(0)/8a = Vf(xk)'dk < 0 it is easily seen that 
A is nonempty. Let 

& = min{a / a  E A) .  

Clearly B > 0 and it is easy to see using the fact f i  < b that 

and there exists a scalar 6, E (0, &) such that 

We have from (4) 

or equivalently 

f ( x k )  - f ( xk  + Bdk) > - odvf (xk)'dk. 

Hence there exists a scalar 6, E (0, d )  such that 

f ( x k )  - f (xk  + ad,) 2 -oaVf (xk)'dk, V x E [ B  - h2, B + d2]. 

Take 6 = min{6,,6,). Then for all a in the interval [ B  - 6, B + 63 both 
inequalities (1) and (2) are satisfied. Q.E.D. 

In practice a line search procedure may have to be equipped with various 
mechanisms that guarantee that a stepsize satisfying the termination criteria 
will indeed be obtained. We refer the reader to more specific literature for 
details. In all cases, it is important to have a reasonably good initial stepsize 
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(or equivalently to scale the direction d, in a reasonable manner). We discuss 
this in the next paragraph within the context of the Armijo rule. 

The Armijo rule is very easy to implement and requires only one gradient 
evaluation per iteration. The process by which a, is determined is shown in 
Fig. 1.1. We start with the trial point (x, + sd,) and continue with (x, + psd,), 
(x, + p2sdk), . . . until the first time that pms falls within the set of stepsizes a 
satisfying the desired inequality. While this set need not be an interval, it 
will always contain an interval of the form [0, 63 with 6 > 0, provided 
Vf (x,)'d, < 0. For this reason the stepsize sr, chosen by the Armijo rule is 
well defined and will be found after a finhe number of trial evaluations of 
the value off at the points (x, + sd,), (x, + psd,), . . . . Usually o is chosen 
close to zero, for example, o E lo-']. The scalar fl is usually chosen 
from + to lo-' depending on the confidence we have on the quality of the 
initial stepsize s. Actually one can always take s = 1 and multiply the 
direction d, by a scaling factor. Many methods incorporate automatic 
scaling of the direction d,, which makes s = 1 a good stepsize choice (compare 
with Proposition 1.15 and the discussion on rate of convergence later in this 
section). If a suitable scaling factor for d, is not known, one may use various 
ad hoc schemes to determine one. A simple possibility is to select a point ti 
on the line (x, + rd, la > 01, evaluate f (x, + &I,), and perform a quadratic 

FIG. 1.1 Line search by the Armijo rule 
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interpolation on the basis of J'(x,), V f (x,)'d, = 8f ( x ,  + ad,)/& I,,, , and 
, f ( x ,  + iid,). If 2 minimizes the quadratic interpolation, d, is replaced by 
2, = Edk, and an initial stepsize s = 1 is used. 

The constant stepsize rule is the simplest. It is useful in problems where 
evaluation of the objective function is expensive and an appropriate constant 
stepsize value is known or can be determined fairly easily. Interestingly 
enough, this is the case in the method of multipliers as we shall explain in the 
next chapter. 

We now introduce a condition on the directions d, of a gradient method. 

Definition: Let {x,) be a sequence generated by a gradient method 
x,,, = x, + a,d,. We say that the sequence {d,) is uniformly gradient 
related to {x,}  if for every convergent subsequence {x,}, for which 

lim Vf (x,) # 0 
k -  cc 
k e K  

there holds 

(6) 0 < lim inf I Vf (x,)'d, 1 ,  lim sup / d, I < x 
k -  cc k -  m 
k e K  h e  h 

In words, id,) is uniformly gradient related if whenever a subsequence 
{Vf ( x , ) ) ~  tends to a nonzero vector, the corresponding subsequence of 
directions d, is bounded and does not tend to be orthogonal to Vf (x,). 
Another way of putting it is that ( 5 )  and (6) require that d, does not become 
"too small" or "too large" relative to Vf (x,) and the angle between d, and 
V f ( x k )  does not get "too close" to 4 2 .  Two examples of simple conditions 
that, if satisfied for some scalars c, > 0, c, > 0, p ,  2 0, and p ,  2 0 and all k, 
guarantee that {d,) is uniformly gradient related are 

with D, a positive definite symmetric matrix satisfying 

For example, in the method of steepest descent where D, = I, this condition 
is satisfied if we take c, = c, = 1 ,  p ,  = p ,  = 0. 

We have the following convergence result: 

Proposition 1.8: Let {x,} be a sequence generated by a gradient method 
x,,, = x, + x,d, and assume that {d,} is uniformly gradient related and 
a, is chosen by the minimization rule, or the limited minimization rule, 
or the Armijo rule. Then every limit point of {x,] is a critical point. 
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Proof: Consider first the Armijo rule. Assume the contrary, i.e., that 
X is a limit point with V f ( x )  f 0. Then since { f ( x k ) )  is monotonically 
decreasing and f is continuous. it follows that { f ( x k ) )  converges to f  ( x ) .  
Hence, 

By the definition of the Armijo rule, we have 

f ( ~ k )  - f ( ~ k +  1) 2 - 0 ~ k V f  ( ~ k ) ' d k .  

Hence, akVf(xk)'dk -+ 0. Let { x , ) ,  be the subsequence converging to 2. 
Since i d k )  is uniformly gradient related, we have 

lim inf I V f  (xk)'dk I > 0, 
k -  30 
k € K  

and hence, 

Hence, by the definition of the Armijo rule, we must have for some index 
I2 2 0 

ie., the initial stepsize s will be reduced at least once for all k E K, k 2 E .  
Denote 

P k  = d k / / d k I ,  X k  = % k l d k l / b  

Since ( d k )  is uniformly gradient related, we have lim sup,, ,, , Idk I < m, 
and it follows that 

{Ek), -+ 0. 

Since Ipkl = 1 for all k E K, there exists a subsequence { P , ) ~  of { p , ) ,  such 
that {pk) , -  -+ p where p is some vector with l j 7  = 1. From (7) ,  we have 

Taking limits in ( 8 )  we obtain 

Since o < 1, we obtain 

On the other hand, we have 
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By taking the limit as k E R, k + co, 

lim inf I Vf (x,)'d, I 
- V f  (q 'p  2 

lim sup I d ,  I > 0, 

which contradicts (9). This proves the result for the Armijo rule. 
Consider now the minimization rule, and let {x,), converge to 2 with 

Vf (2) # 0. Again we have that { f (x,)) decreases monotonically to f (F). 
Let Z,,, be the point generated from x, via the Armijo rule, and let ii, be 
the corresponding stepsize. We have 

By simply replacing cc, by 2, and repeating the arguments of the earlier 
proof, we obtain a contradiction. In fact the line of argument just used 
establishes that any stepsize rule that gives a larger reduction in objectiae 
function value at each step than the Armijo rule inherits its convergence 
properties. This proves also the proposition for the limited minimization 
rule. Q.E.D. 

Similarly the following proposition can be shown to be true. Its proof 
is left to the reader. 

Proposition 1.9: The conclusions of Proposition 1.8 hold if {d,) is 
uniformly gradient related and r,  is chosen by the Goldstein rule or satisfies 
(1) and (2) for all k. 

The next proposition establishes, among other things, convergence for 
the case of a constant stepsize. 

Proposition 1.10: Let {x,) be a sequence generated by a gradient 
method x,+, = x, + cc,d,, where {d,} is uniformly gradient related. Assume 
that for some constant L > 0. we have 

and that there exists a scalar E such that for all k we have d ,  # 0 and 

Then every limit point of {x,} is a critical point off  

NOTE: If {d;J is such that there exist c, ,  c, > 0 such that for all k we 
have 
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then (1 1) is satisfied if for all k we have 

For steepest descent [d, = -Vf (x,)] in particular, we can take c, = c2 = 1, 
and the condition on the stepsize becomes 

Proof: We have the following equality for u 2 0, 

By using (lo), we obtain 

From (1 1). we have r ,  2 F: and Sx, L Id, l 2  - I Vf (xk)'dk 1 I -SF: 1 V f  (xk)'dk 1. 
Using these relations in the inequality above, we obtain 

Now if a subsequence {x,), converges to a noncritical point 2, the above 
relation implies that IVf(x,)'d,j -, 0. But this contradicts the fact that 
{d,} is uniformly gradient related. Hence, every limit point of {x,) is critical. 
Q.E.D. 

Note that when d, = -D,Vf (x,) with D, positive definite symmetric, 
relation (12) holds with 

if the eigenvalues of D, lie in the interval [;:, T] for all k. It is also possible to 
show that (10) is satisfied for some L > 0, iff E C2 and the Hessian VZf is 
bounded over Rn. Unfortunately, however, it is difficult in general to obtain 
an estimate of L and thus in most cases the interval of stepsizes in (11) or 
(13) which guarantees convergence is not known a priori. Thus, experi- 
mentation with the problem at hand is necessary in order to obtain a range 
of stepsize values which lead to convergence. We note, however, that in the 
method of multipliers, it is possible to obtain a satisfactory estimate of L 
as will be explained in Chapter 2. 
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Gradient Concergence 

The convergence results given so far are concerned with limit points 
of the sequence {x,). It can also be easily seen that the corresponding sequence 
{f (x,)) will converge to some value whenever {x,) has at least one limit 
point and there holds f (x,, ,) If (x,) for all k. Concerning the sequence 
{Vf (x,)}, we have by continuity of Vf that if a subsequence {x,), converges 
to some point E then.{Vf (x,)), -P Vf (E). If E is critical, then {Vf (x,)), + 0. 
More generally, we have the following result: 

Proposition 1.11 : Let {x,) be a sequence generated by a gradient 
method x,, , = x, + sc,d,, which is convergent in the sense that every limit 
point of sequences that it generates is a critical point ofJ Then if {x,) is a 
bounded sequence, we have Vf (x,) -P 0. 

Proof: Assume the contrary, i.e., that there exists a subsequence {x,), 
and an E > 0 such that I Vf (x,) 1 2 E for all k E K. Since {x,), is bounded, 
it has at least one limit point 2 and we must have IVf (211 2 E. But this 
contradicts our hypothesis which implies that x must be critical. Q.E.D. 

The proposition above forms the basis for terminating the iterations 
of gradient methods. Thus, computation is stopped when a point x,- is ob- 
tained with 

where E is a small positive scalar. The point x,- is considered for practical 
purposes to be a critical point. Sometimes one terminates computation 
when the norm of the direction d, becomes too small; i.e., 

(15) 

If d, satisfies 

for some positive scalars c,, c,, p,, p,, and all k, then the termination cri- 
terion (15) is of the same nature as (14). Unfortunately, it is not known a 
priori how small one should take E in order to guarantee that the final point 
x,- is a "good" approximation to a stationary point. For this reason it is 
necessary to conduct some experimentation prior to settling on a reasonable 
termination criterion for a given problem, unless bounds are known (or 
can be estimated) for the Hessian matrix off (see the following exercise). 

Exercise: Let x* be a local minimum off and assume that for all x 
in a sphere S(x*; 6) we have, for some m > 0 and M > 0, 
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Then every x E S(x*; 6) satisfying I Vf (x) I < E also satisfies 

I x - x* I 5 ~ / m ,  f (x) - f (x*) < 
Local Convergence 

A weakness of the convergence results of the preceding subsection is 
that they do not guarantee that convergence (to a single point) of the gen- 
erated sequence {x,} will occur. Thus, the sequence {x,) may have one, 
more than one, or no limit points at all. It is not infrequent for a gradient 
method to generate an unbounded sequence {x,). This will typically occur 
if the function f has no critical point or iff decreases monotonically as 
1x1 -t cc along some directions. However {x,) will have at least one limit 
point if the set {x I f (x) < f (x,)} is bounded or more generally if {x,) is a 
bounded sequence. 

On the other hand, practical experience suggests that a sequence gener- 
ated by a gradient method will rarely have more than one critical limit 
point. This is not very surprising since the generated sequence of function 
values (f (x,)) is monotonically nonincreasing and will always converge to 
a finite value whenever {x,) has at least one limit point. Hence, any two 
critical limit points, say Z and 1, of the sequence {x,} must simultaneously 
satisfy Vf (2) = Vf (1) = 0 and f (2) = f (1) = lim,,, f (x,). These relations 
are unlikely to hold if the critical points off are "isolated" points. One may 
also prove that iff has a finite number of critical points and the Armijo 
rule or the limited minimization rule is used in connection with a gradient 
method with uniformly gradient-related direction sequence (d,), then the 
generated sequence {x,) will converge to a unique critical point provided 
that {x,) is a bounded sequence. We leave this as an exercise for the reader. 

The following proposition may also help to explain to some extent why 
sequences generated by gradient methods tend to have unique limit points. 
It states that strong local minima tend to attract gradient methods. 

Proposition 1.12: Let f E C2 and {x,) be a sequence satisfying f (x,, ,) I 
f (x,) for all k and generated by a gradient method x,,, = x, + x k d k  which 
is convergent in the sense that every limit point of sequences that it generates 
is a critical point off: Assume that there exist scalars s > 0 and c > 0 such 
that for all k there holds 'xk I s and Id, 1 I c 1 Vf (x,) 1 .  Then for every local 
minimum x* off with V2f(xX) > 0, there exists an open set L containing 
xX such that if xi E L for some > 0 then x, E L for all k 2 k and {x,j-+x*. 
Furthermore, given any scalar F: > 0, the set L can be chosen so that 
L c S(x*: e). 

NOTE: The condition xk 2 s is satisfied for the Armijo rule and the 
limited minimization rule. The condition Id,( 5 c(Vf(x,)( is satisfied if 
d, = - DkVf (x,) with the eigenvalues of D, uniformly bounded from above. 
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Proof: Let x* be a local minimum with V2f (x*) positive definite. Then 
there exists E > 0 such that for all x with ( x  - x* ( I 6, the matrix V2f(x) 
is also positive definite. Denote 

y = min z'V2f (x)z, r = max z'V2 f (x)z. 
( x - x * ( < 2  l x - x * ( < i  

I z j  = 1 j z ( =  1 

We have y > 0 and r > 0. Consider the open set 

L = {x ( ( x  - x* ( < 6, f (x) < f (x*) + 3y[6/(1 + scr)12). 

We claim that if x,- E L for some I? 2 0 then x, E L for all k 2 k and further- 
more x, -+ x*. 

Indeed if xi E L  then by using Taylor's theorem, we have 

)./Ixh - X* l 2  sf (xi) - f (x*) < &i[i/(1 + X r ) l 2  

from which we obtain 

On the other hand, we have 

Ixk+1 - x*( = I x ;  - X* 4- ~(,-d,-l I I x ;  - x*) + ~(kldkl 

I l x c  - x*/  + scIVf(xk_)I. 

By using Taylor's theorem, we have I Vf (xc) 1 I i: 1 x,- - x* I and substituting 
in the inequality above, we obtain 

By combining this relation with (l6), we obtain 

Furthermore, using the hypothesis f (x,, ,) sf (x,) for all k, we have 

f (~ ;+1)  I f (xi) < f (x*) + +)[6/(1 f S C ~ ) ] ~ .  

It follows from the above two inequalities that x ; + ~  E L  and similarly 
x, E L  for all k 2 k. Let E be the closure of L. Since .E is a compact set, the 
sequence {x,) will have at least one limit point which by assumption must 
be a critical point off. Now the only critical point off within L is the point x* 
(since f is strictly convex within L). Hence x, + x*. Finally given any E > 0, 
we can choose E I E in which case L  c S(x*; E). Q.E.D. 

Rate of Cont'ergence-Quadratic Objecti~e Function 

The second major question relating to the behavior of a gradient method 
concerns the speed (or rate) of convergence of generated sequences {x,). 
The mere fact that x, converges to a critical point x* will be of little value in 
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practice unless the points xk are reasonably close to x* after relatively few 
iterations. Thus, the study of the rate of convergence of an algorithm or a 
class of algorithms not only provides useful information regarding compu- 
tational efficiency, but also delineates what in most cases are the dominant 
criteria for selecting one algorithm in favor of others for solving a particular 
problem. 

Most of the important characteristics of gradient methods are revealed 
by investigation of the case where the objective function is quadratic. Indeed, 
assume that a gradient method is applied to minimization of a function 
f: R" -+ R, f E C2, and it generates a sequence {x,) converging to a strong 
local minimum x* where 

Vf (x*) = 0, V2f (x*) > 0. 

Then we have, by Taylor's Theorem, 

f (x) = f (x*) + &x - x*)'V2f(x*)(x - x*) + o(lx - x* 12), 

where o(lx - x* 12)/lx - x* l 2  -+ 0 as x + x*. This implies that f can be 
accurately approximated near x* by the quadratic function 

f (x*) + +(x - x*)'V2f (x*)(x - x*). 

We thus expect that rate-of-convergence results obtained through analysis 
of the case where the objective function is the quadratic function above 
have direct analogs to the general case. The validity of this conjecture can 
indeed be established by rigorous analysis and has been substantiated by 
extensive numerical experimentation. 

Consider the quadratic function 

f (x) = $(x - x*)'Q(x - x*) 

and the gradient method 

where 

We assume that Q and Dk are positive definite and symmetric. Let 

M, = max eigenvalue of (D:'2QD:12), 

m, = min eigenvalue of (D: 2QD112). 

We have the following proposition: 

Proposition 1.13: Consider iteration (17), and assume that r, is chosen 
according to the minimization rule 
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Then 

Proof: The result clearly holds if gk = 0, so we assume gk # 0. We 
first compute the minimizing stepsize c c k .  We have 

Hence, by setting this derivative equal to zero, we obtain 

f ( ~ k +  1) = f ( ~ k  - ~ k D k 9 k )  = &k - X* - %kDk9k)'Q(~k - X* - ~ k D k 9 k )  
= %xk - x * ) ' Q ( x ~  - x * )  + - c ( ~ ~ ; D ~ Q ( x ~  - x*) 
= f ( ~ k )  + B&lbDk QDk9k - ~kghDkgk> 

and finally 

Also we have 

We shall now need the following lemma, a proof of which can be found in 
Luenberger (1973, p. 151). 

Lemma (Kantorovich Inequality): Let L be a positive definite symmetric 
n x n matrix. Then for any vector y E Rn, y # 0, there holds 

where M and m are the largest and smallest eigenvalues of L. 
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Returning to the proof of the proposition, we have by using Kantorovich's 
inequality in (23) 

From (19), we obtain, assuming g, # 0 for all k, 

lim sup --- 
k - m  f ( ~ k )  

If p < 1 (as will be the case if {mk/Mk) is bounded away from zero), it follows 
that { f (N,)} converges at least Q-linearly with convergence ratio P (see 
Section 1.2). If P = 0. then the convergence rate is superlinear. If P < 1, then 
the sequence { f (x,, ,)) is majorized for all k sufficiently large by any geo- 
metric progression of the form qpk, where q > 0, > f l  (see Section 1.2). 
If 7 is the minimum eigenvalue of Q, we have 

so the same conclusion can be drawn for the sequence { I  x, - x* 1'). Relation 
(19) also indicates that the iteration x,,, = xk - cxkDkgk yields a large 
relative reduction in objective function value if M,/m, - 1. This shows that 
in order to achieve fast convergence, one should select D, so that the eigen- 
values of D:'~QD:'~ are close together, such as when D, - Q-I, and this is 
the main motivation for introducing the matrix D, instead of taking Dk 5 I. 
If in particular D, = Q-', then we obtain M ,  = mk = 1 and, from (19), 
f (xk+ ,) = 0 which implies x,, , = x*; i.e., convergence to the minimum is 
attained in a single iteration. 

When the ratio Mk/mk is much larger than unity, then (19) indicates that 
convergence can be very slow. Actually, the speed of convergence of (x,) 
depends strongly on the starting point x,. However, if D, is constant, it is 
possible to show that there always exist "worst" starting points for which 
(19) is satisfied with equality for all k. [The reader may wish to verify this by 

2 considering the case D, = I, f (x) = +I;=, yixi, where 0 < y1 I y2 I . . . I 
y,, and the starting point x, = (y; ', 0, . . . ,0,  y; I).] 

Similar convergence rate results can be obtained for the case of the limited 
minimization rule. For example, notice that from (20), we obtain 

where y, = D:'2gk. Hence, we have x, 5 llm,, and (19) also holds when a, 
is chosen by the limited minimization rule 
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provided that 

s 2 l / m k ,  k = 0 , 1 ,  . . .  . 

Qualitatively, similar results are also obtained when other stepsize rules 
are used, such as a constant stepsize. We have the following proposition: 

Proposition 1.14: Consider the iteration x k + ,  = xk - a k D k g k .  For all 
a, 2 0  and k ,  we have 

Furthermore, the right-hand side of ( 2 4 )  is minimized when 

and with this choice of a , ,  we obtain 
2 

(26)  ( x k +  - x*)'D; ' ( x k +  - x*)  I (E: ::) ( x ,  - X * ) ' D ; ' ( X ~  - x*). 

Proof: We have 

A straightforward calculation yields 

Hence, 

where A, is the maximum eigenvalue of Gk = (I - C ( , D ; ' ~ Q D ~ ' ~ ) .  The 
eigenvalues of G, are 1 - rxkei(~:'2QD:'2) ,  i = 1 ,  . . . , n, where e i ( ~ ; ' 2 Q ~ : ' 2 )  
is the ith eigenvalue of D ~ " Q D ~ ' ~ .  From this we obtain by an elementary 
calculation 

and (24)  follows. The verification of the fact that rk as given by (25)  minimizes 
the right-hand side of (24)  is elementary and is left to the reader. Q.E.D. 

The result shows that if Dk = D for all k where D  is positive definite and 

limsupmax{Il -cckmj2, 11 - x , M / ~ )  = p ,  
k - a  

where m, M are the smallest and largest eigenvalues of (Dl  2 Q D 1 1 2 ) ,  then 
{ ( x k  - x X ) ' D -  ' ( x k  - x * ) )  converges at least linearly w ~ t h  convergence 
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ratio B provided 0 < P < 1. If c  > 0 is the smallest eigenvalue of D-' and l- 
is the largest eigenvalue of Q7 we have 

( c I ~ )  f  ( xk )  5 $C I xk - X* 1' 5 $(xk - x*)'D- ' ( x k  - x*).  

Hence, if 0 < p < 1, we have that { f  ( x , ) )  and ( / x, - x* j 2 )  will also converge 
faster than linearly with convergence ratio B. The important point is that 
[compare with (26) ]  

and hence if M l m  is much larger than unity, again the convergence rate can 
be very slow even if the optimal stepsize a,  = 2/(mk + M k )  (which is generally 
unknown) were to be utilized. From this, it follows again that Dk should 
be chosen as close as possible to Q- '  so that M ,  - mk - 1 .  Notice that 
if D, has indeed been so chosen, then (25) shows that the stepsize a,  = 1 
is a good choice. This fact also follows from (20), which shows that when 
Dk - Q- ' then the minimizing stepsize is near unity. 

Rate of Convergence-Nonquadratic Objective Function 

One can show that our main conclusions on rate of convergence carry over 
to the nonquadratic case for sequences converging to strong local minima. 

Let f  E C 2  and consider the gradient method 

where Dk is positive definite symmetric. Consider a generated sequence 
{ x , )  and assume that 

(28) xk x*, v f  ( x* )  = 0, V2f (x* )  > 0, 

and that xk # x* for all k .  Then it is possible to show the following: 

(a) If a,  is chosen by the line minimization rule there holds 

(29)  lim sup 
k + m  f ( ~ k ) - f ( ~ * )  k - m  

where M k  and m, are the largest and smallest eigenvalues of D : / ' v ~ ~  ( x * ) D : ' ~ .  
(b) There holds 

lim sup ( ~ k  + 1 - x*)'Di- Yxk + 1 - x* )  
k - a  ( xk  - x*)'D; ' ( x k  - x* )  

I lim sup max{/ 1 - xkmkI2, 11 - x k M k  1'). 
k -  a: 
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The proof of these facts involves essentially a repetition of the proofs of 
Propositions 1.13 and 1.14. However, the details are somewhat more tech- 
nical and will not be given. 

When D, + V2f (x*)- ' ,  then (29) shows that the convergence rate of 
{ f  (x,) - f  (x*) )  is superlinear. A somewhat more general version of this 
result for the case of the Armijo rule is given by the following proposition: 

Proposition 1.15: Consider a sequence {x,) generated by (27) and 
satisfying (28). Assume further that Vf (x,) f 0 for all k and 

lim I LDk - V 2 f ( ~ * ) -  'lvf ( ~ k )  1 
= 0. 

k +  m I v f ( x k )  l 
Then if sck is chosen by means of the Armijo rule with initial stepsize s = 1, 
we have 

and hence { I x ,  - X* 1 )  converges superlinearly. Furthermore, there exists 
an integer It 2 0 such that we have crk = 1 for all k 2 E (i.e., eventually no 
reduction of the initial stepsize will be taking place). 

Proof: We first prove that there exists a E 2 0 such that for all k 2 E 
we have ak = 1. By the mean value theorem we have 

f ( ~ k )  - f Cxk - Dkvf ( ~ k ) ]  = Vf  ( ~ k ) ' ~ k ~ f  ( ~ k )  - iVf ( - ~ k ) ' ~ k ~ ? f ( ~ k ) ~ k ~ f  ( ~ k ) t  

where Z, is a point on the line segment joining x, and xk - DkVf(xk). It 
will be sufficient to show that for k sufficiently large we have 

(3 I1  - o ) ~ h  D k ~ k  2 h; DkV2f  (%klDkpk. 

From (28), (30), we obtain DkVf(xk) + 0. Hence, x, - DkVf (x,) + x*, and it 
follows that Zk + x* and V2f (2,) + V2f(x*) .  Now (30) is written as 

where {P,) denotes a vector sequence with 0, + 0. By  using the above 
relation and the fact that V2f ( zk )  + V2f(x*),  we may write (31) as 

where {y,) is some scalar sequence with 7, -+ 0. Thus (31) is equivalent to 
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Since $- - o > 0, I p, I = 1, and V2f (x*) > 0, the above relation holds for k 
sufficiently large, and we have a, = 1 for k 2 I; where I; is some index. 

To show superlinear convergence we write, for k 2 I;, 

We have, from (30) and for some sequence (6,) with 6, + 0, 

From Taylor's theorem we obtain 

from which 

[V2f (x*)] - 'Vf(x,) = x, - x* + o( 1 x, - x* I), 

I '~(XL) 1 = O( / ~k - X* 1). 

Using the above two relations in (33), we obtain 

DkVf(xk) = Xk - X* + o(~x ,  - x*I) 

and (32) becomes 

X , + l  - x* = o(Ix, - x*I), 

from which 

lim I x k + l  - x*/  
= lim 0(Ixk - x*I) 

= 0. Q.E.D. 
k+m I X k  - x*I k - t m  Ixk - x*/ 

We note that one can prove that Eq. (30) is equivalent to 

lim I [Dk - V2f(x*)IDkVf (xd 1 
= 0 

k-+ a. I DkVf(xk) I 
assuming (28) holds. Equation (34) has been used by Dennis and More (1974) 
in the analysis of quasi-Newton methods and is sometimes called the Dennis- 
More condition (see also McCormick and Ritter, 1972). 

A slight modification of the proof of Proposition 1.15 shows also that 
its conclusion holds if u, is chosen by means of the Goldstein rule with 
initial trial stepsize equal to unity. Furthermore for all k sufficiently large, 
we shall have r, = 1 (i.e., the initial stepsize will be acceptable after a certain 
index). 

Several additional results relating to the convergence rate of gradient 
methods are possible. The main guideline which consistently emerges from 
this analysis (and which has been supported by extensive numerical ex- 
perience) is that in order to achieve fast concergence of the iteration 
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one should try to choose the matrices D, as close as possible to [V2f (x*)]-I  so 
that the corresponding maximum and minimum eigenvalues of D:'2V2f(~*)D:i2 
satisfy M ,  - 1 and m, - 1. This fact holds true for all stepsize rules that we 
have examined. Furthermore, when M ,  - 1 and m, - 1,  the initial stepsize 
s = 1 is a good choice for the Armijo rule and other related rules or as a starting 
point for one-dimensional minimization procedures in minimization stepsize 
rules. 

Spacer Steps in Descent Algorithms 

Often in optimization problems, we utilize complex descent algorithms 
in which the rule used to determine the next point may depend on several 
previous points or on the iteration index k. Some of the conjugate direction 
algorithms to be examined in the next chapter are of this type. Other al- 
gorithms may represent a combination of different methods and switch 
from one method to the other in a manner which may either be prespecified 
or may depend on the progress of the algorithm. Such combinations are 
usually introduced in order to improve speed of convergence or reliability. 
However, their convergence analysis can become extremely complicated. 
It is thus often of value to know that if in such algorithms one inserts, perhaps 
irregularly but infinitely often, an iteration of a convergent algorithm such 
as steepest descent, then the theoretical convergence properties of the overall 
algorithm are quite satisfactory. Such an iteration will be referred to as a 
spacer step. The related convergence result is given in the following proposi- 
tion. The only requirement imposed on the iterations of the algorithm other 
than the spacer steps is that they do not increase the value of the objective 
function. 

Proposition 1.16: Consider a sequence (x,) such that 

Assume that there exists an infinite set K of nonnegative integers for which 
we have 

where {d,), is uniformly gradient related and a, is chosen by the minimization 
rule, or the limited minimization rule, or the Armijo rule. Then every limit 
point of the subsequence {x,) ,  is a critical point. 

The proof requires a simple modification of the proof of Proposition 
1.8 and is left to the reader. Notice that iff is a convex function, it is possible 
to strengthen the conclusion of the proposition and assert that every limit 
point of the whole sequence (x,) is a global minimum off: 
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1.3.2 Steepest Descent and Scaling 

Consider the steepest descent method 

X k  + 1 = X k  - a,Vf ( x d  

and assume that f  E C2. We saw in the previous section that the convergence 
rate depends on the eigenvalue structure of the Hessian matrix V2f. This 
structure in turn depends strongly on the particular choice of variables x  
used to define the problem. A different choice may change substantially the 
convergence rate. 

Let T be an invertible n x n matrix. We can then represent points in 
Rn either by the vector x  which enters in the objective function f  (x) ,  or by 
the vector y, where 

Then the problem of minimizing f  is equivalent to the problem 

minimize h(y) f  (Ty) 

subject to y  E Rn. 

If y* is a local minimum of h, the vector x* = Ty* is a local minimum off. 
Now steepest descent for problem (36) takes the form 

Multiplying both sides by T and using (35) we obtain the iteration in terms 
of the x  variables 

xk+ = x, - x, T TIVf(xk) .  

Setting D = T T ' ,  we obtain the following scaled version of steepest descent 

with D being a positive definite symmetric matrix. The convergence rate 
of (37) or equivalently (38), however, is governed by the eigenvalue structure 
of V2h rather than of V2J: We have V2h(y) = T'V2f (Ty)T, and if T is sym- 
metric and positive definite, then T = Dlt2 and 

v2h(y)  = D ~ / ~ v ~ ~ ( x ) D ~ ~ ~ .  

When D - [V2f(x)]- ' ,  we obtain V2h(y) - I, and the problem of mini- 
mizing h becomes well scaled and can be solved efficiently by steepest 
descent. This is consistent with the rate of convergence results of the previous 
section. 

The more general iteration 
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with D, positive definite may be viewed as a scaled version of the steepest 
descent method where at each iteration we use different scaling for the 
variables. Good scaling is obtained when D, - [V2f (x*)] - ' ,  where x* is a 
local minimum to which the method is assumed to converge ultimately. 
Since V2f(x*) is unavailable, often we use D, = [V2f(x,)]-' or D = 

[V2f(xO)]-  ', where these matrices are positive definite. This type of scaling 
results in modified forms of Newton's method. A less complicated form of 
scaling is obtained when D is chosen to be diagonal of the form 

with 

d' - [ a ' f ( ~ ~ ) / ( d x ~ ) ~ ] - ' ,  i = I, . . . , n;  

i.e., the Hessian matrix is approximated by a diagonal matrix. The approxi- 
mate inverse second derivatives di are obtained either analytically or by 
finite differences of first derivatives at the starting point x,. It is also possible 
to update the scaling factors di periodically. The scaled version of steepest 
descent takes the form 

xi+ = xi - x,di 2f (x,)/dxi, i = 1, . . . , n. 

While such simple scaling schemes are not guaranteed to improve the 
convergence rate of steepest descent, in many cases they can result in spec- 
tacular improvements. An additional advantage when using the simple 
diagonal scaling device described above is that usually the initial stepsize 
s = 1 will work well for the Armijo rule, thus eliminating the need for 
determining a range of good initial stepsize choices by experimentation. 

1.3.3 Newton's Method and Its Modif;cations 

Newton's method consists of the iteration 

(39) x k +  1 = X k  - ~ k [ ~ Z f ( ~ k ) ]  - lVf (xk), 

assuming that [VZf(xk)] -  ' exists and that the Newton direction 

is a direction of descent (i.e., d;Vf (x,) < 0). This direction is obtained as the 
solution of the linear system of equations 
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As explained in the section on scaling, one may view this iteration as a 
scaled version of steepest descent where the "optimal" scaling matrix 
Dk = [V2f (xk)]- '  is utilized. It is also worth mentioning that Newton's 
method is "scale-free" in the sense that the method cannot be affected by a 
change in coordinate system as is the case with steepest descent (Section 1.3.2). 
Indeed if we consider a linear invertible transformation of variables x = Ty, 
then Newton's method in the space of the variables y is written as 

Y k + l  = Y k  - ~ k [ V ; ~ f  ( T ~ . k ) l - ' V ~ f  VY,) = yk - ~ k T - ' v ~ f ( T Y k ) - ' v f ( T Y k ) ,  

and by applying T to both sides of this equation we recover (39). 
When the Armijo rule is utilized with initial stepsize s = 1, then no 

reduction of the stepsize will be necessary near convergence to a strong 
minimum, as shown in Proposition 1.15. Thus, near convergence the method 
takes the form 

which will be referred to as the pure form of Newton's method. A valuable 
interpretation of this iteration is obtained by observing that x k + ,  as given 
above minimizes the second-order Taylor's series expansion off around xk 
given by 

X ( X )  = f ( x ~ )  f Vf ( x ~ ) ' ( x  - xk) + $(x - xk)'V2f(xk)(x - xk). 

Indeed by setting the derivative ofX equal to zero, we obtain 

The solution of this equation is x k - ,  as given by Eq. (40). It follows that 
when f is positive definite quadratic the pure form of Newton's method 
yields the unique minimum off in a single iteration. Thus, one expects that 
iteration (40) will have a fast rate of convergence. This is substantiated by 
the following result which applies to Newton's method for solving systems 
of equations: 

Proposition 1.17: Consider a mapping g : Rn + R", and let r > 0 and 
x* be such that g 5 C' on S(x*; r ) ,  g(x*) = 0, and Cg(x*) is invertible. 
Then there exists a 6 > 0 such that if x ,  E S(x* ; 6), the sequence {x,} generated 
by the iteration 

X k  + 1 = X k  - C V d x k ) ' l  - l d x k )  

is well defined, converges to x*, and satisfies x, E S(x*; 6 )  for a11 k. Further- 
more, if x, # x* for all k ,  then 

lim I x k + l  - x*I 
= 0 ;  

k+cc Ixk  - x*I 
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i.e., { / x, - x* I ) converges Q-superlinearly. In addition given any r > 0, there 
exists a 6, > 0 such that if x, E S(X*; a,), then 

If we assume further that for some L > 0 and M > 0, we have 

then 

I x , , ,  - x*( I ~ L M I X ,  - x*12 V k = 0, 1 ,..., 

and { I xk - x* I ) converges Q-superlinearly with order at least two. 

Proof: Let 6 E (0, E )  and M > 0 be such that [Vg(x)]-' exists for all 
x E S(X* ; 6) and 

If x, E S(X*; 6), we have 

from which 

By continuity of Vg, we can take 6 sufficiently small to ensure that 

Then from (43, (46), and (47), we obtain 
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It follows that if xo E S(x* ; 6) then x, E S(x* ; 6) for all k and x, + x*. Equation 
(41) then follows from (48). 

We have 
gi(xj = V ~ ~ ( Z J ( X  - x*) v i = 1, . . . , Q ,  

where Zi is a vector lying in the line segment connecting x and x*. Therefore 
by denoting Vg(2) the matrix with columns Vgi(Zi), we have 

I g(x) l 2  = (x - x*)'Vg(Z)Vg(Z)'(x - x*). 

Choose 6, > 0 sufficiently small so that Vg(Z)Vg(Z)' is positive definite 
for all x with Ix - x* 1 I 6,, and let A > 0 and A > 0 be upper and lower 
bounds to the eigenvalues of [Vg(T)Vg(T)']"2 for x E S(x*; 6,). Then 

A2 / x  - x* l 2  I (x - x*)'Vg(2)Vg(Z)'(x - x*) 

I A 2 1 ~ - ~ * 1 2  V X E S ( X * ; ~ ~ ) .  

Hence, we have 

Now from (48), it follows easily that given any r > 0, we can find a 6, E (0, 6,] 
such that if x, E S(X*; 6,), then 

thereby showing (42). Combining the last two inequalities we also obtain 

and (43) is proved. 
If (44a) and (44b) hold, then from (48) we have 

M L  * < M [Lrlxk - x*ldi\x, - x *  = -lx, - x*12. I x k + l  - I - 2 
Q.E.D. 

For g(x) = Vf (x), the result of the proposition applies to the pure form 
of Newton's method (40). Extensive computational experience suggests 
that the fast convergence rate indicated in the proposition is indeed realized 
in a practical setting. On the other hand, Newton's method in its pure form 
has several serious drawbacks. First, the inverse [V2f (xk)]-' may fail to 
exist, in which case the method breaks down. This may happen, for example, 
iff is linear within some region in which case V2f = 0. Second, iteration (40) 
is not a descent method in the sense that it may easily happen that f (xk+ ,) > 
f (x,). Third, the method tends to be attracted by local maxima just as much 
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as it is attracted by local minima. This is evident from Proposition 1.17 where 
it is assumed that Vg(x*) is invertible but not necessarily positive definite. 

For these reasons, it is necessary to modify the pure form of Newton's 
method (40) in order to convert it to a reliable minimization algorithm. 
There are several schemes by means of which this can be accomplished. 
All these schemes convert iteration (40) into a gradient method with a uni- 
formly gradient-related direction sequence, while guaranteeing that whenever 
the algorithm gets sufficiently close to a point x* satisfying the second-order 
sufficiency conditions, then the algorithm assumes the pure form (40) and 
achieves the attendant fast convergence rate. 

First Modification Scheme: This method consists of the iteration 

where a, is chosen by the Armijo rule with initial stepsize unity (s = I), and 
d, is chosen by 

while otherwise 

The matrix D is some positive definite symmetric scaling matrix. The scalars 
c,, c,, p,, and p,  satisfy 

c ,  > 0, c,  > 0, p ,  > 2, and p, > 1. 

In practice c ,  should be very small, say c ,  should be very large, say 
lo5, and p ,  and p, can be chosen equal to three and two, respectively. 

It is clear, from Proposition 1.8, that a sequence (d,) generated by the 
scheme above is uniformly gradient related and hence the resulting al- 
gorithm is convergent in the sense that every limit point of a sequence that 
it generates is a critical point of$ Now consider the algorithm near a local 
minimum x* satisfying 

Vf(x*) = 0, V2f(x*) > 0. 

Then it is easy to see that for x, close enough to x*, the Hessian V2f (x,) 
will be invertible and the tests (50) and (51) will be passed. Thus, d, will be 
the Newton direction (49) for all xk sufficiently close to x. Furthermore, 
from Propositions 1.12 and 1.15, we shall have x, + x*, and the stepsize 
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a, will equal unity. Hence, if x, is sufficiently close to x*, then x, -+ x*, and 
the pure form of Newton's method will be employed after some index, thus 
achieving the fast convergence rate indicated in Proposition 1.17. 

A variation of this modification scheme is given by the iteration 

x, + 1 = Xk + a,[@, 4' - (1 - ~ k P f  ( ~k ) l ,  

where D is a positive definite matrix and dr  is the Newton direction 

if [V2f(xk)] - ' exists. Otherwise df = - DVf (x,). The stepsize a, is chosen by 
an Armijo-type rule with initial stepsize unity whereby a, = Pmk and m, 
is the first nonnegative integer m for which 

f (xk) - f r x k  + fimdk(Prn>I 2 -opm lVf ( ~ k >  12, 

where o E (0, 31, p E (0, I), and 

This is a line search along the curve of points of the form 

z, = x[xdf - (1 - c)DVf (x,)] 

with a E [0, 11. For sc = 1 we obtain the Newton direction, while as a -+ 0 
the vector zcJcx tends to the (scaled) steepest descent direction -DVf(x,). 
Assuming o is chosen sufficiently small, one can prove similar convergence 
and rate of convergence results as the ones stated earlier for this modified 
version of Newton's method. 

Second Modification Scheme: Since calculation of the Newton direction 
d, involves solution of the system of linear equations 

it is natural to compute d, by attempting to form the Cholesky factorization 
of V2f(xk) (see the preceding section). During the factorization process, 
one can detect whether V2f(xk) is either nonpositive definite or nearly 
singular, in which case V2f (x,) is replaced by a positive definite matrix of 
the form F, = V2f (x,) + E,, where E,  is a diagonal matrix. The elements 
of E, are introduced sequentially during the factorization process, so that 
at the end we obtain F, in the form F, = L,L;, where L, is lower triangular. 
Subsequently d, is obtained as the solution of the system of equations 
L, LLd, = -Vf (x,), and the next point x,, , is determined from x,, , = 
x, + x,d,, where a, is chosen according to the Armijo rule. The matrix E, 
is such that the sequence {d,) is uniformly gradient related. Furthermore, 
E, = 0 when x, is close enough to a point x* satisfying the second-order 
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sufficiency conditions for optimality. Thus, near such a point, the method 
is again identical to the pure form of Newton's method and achieves the 
corresponding superlinear convergence rate. The precise mechanization 
of the scheme is as follows. 

Let c > 0, > 0, and p > 0 denote fixed scalars and let a!j denote the 
elements of V2f ' ( xk ) .  Consider the i x i lower triangular matrices LI, i = 

1 ,  . . . , n, defined recursively by the following modified Cholesky factorization 
process (compare with Section 1.2): 

i fa t ,  > O  and f i 2 c l V f ( x k ) l p ,  
otherwise, 

Then the direction d, is determined from 

where L, = Li. The next point x ,  + , is determined from 

where r, is chosen by the Armijo rule with initial stepsize s = 1 whenever 
VZf (xk )  = LkLh. 

Some trial and error may be necessary in order to determine appropriate 
values for c, p, and p. Usually, one takes c very small so that the Newton 
direction will be modified as infrequently as possible. The value of p should 
be considerably larger than that of c in order that the matrix L,L; is not 
nearly singular. A choice 0 < p I 1 is usually satisfactory. Sometimes one 
takes p = 0, although in this case the theoretical convergence rate properties 
of the algorithm depend on the value of c. 

The following facts may be verified for the algorithm described above: 

(a) The direction sequence {d,) is uniformly gradient related, and hence 
the resulting algorithm is convergent in the sense that every limit point of 
{x,} is a critical point off. 
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(b) For each point x* satisfying Vf (x*)  = 0 and VZf(x*) > 0, there 
exists a scalar F > 0 such that if Ixk - x* I < E then LkL;  = V2f ( xk ) ;  i.e., 
the Newton direction will not be modified, and furthermore the stepsize a, 
will equal unity. Thus, when sufficiently close to such a point x*, the algorithm 
assumes the pure form of Newton's method and converges to x* with 
superlinear convergence rate. 

There is another interesting modification scheme that can be used when 
V2f(xk)  is indefinite. In this case one can use, instead of the direction 
[V2f (xk)]- 'Vf  (xk) ,  a descent direction which is also a direction of negative 
curvature, i.e., a d, such that Vf(xk)'dk < 0 and d;Vzf (xk)dk < 0. This can 
be done in a numerically stable and efficient manner via a form of triangular 
factorization of V2f (x,). For a detailed presentation we refer to Fletcher and 
Freeman (1977), More and Sorensen (1979), and Goldfarb (1980). 

Periodic Reevaluation of the Hessian 

Finally, we mention that a Newton-type method, which in many cases is 
considerably more efficient computationally than those described above, is 
obtained if the Hessian matrix VZfis recomputed every p iterations (p 2 2) 
rather than at every iteration. This method in unmodified form is given by 

where 

D i p + j =  [V2f (x iP)] - l ,  j = 0, 1 ,..., p - 1, i = 0, 1 , .  

A significant advantage of this method when coupled with the second 
modification scheme described above is that the Cholesky factorization of 
VZf  (xi,) is obtained at the ipth iteration and is subsequently used for a total 
of p iterations in the computation of the direction of search. This reduction in 
computational burden per iteration is achieved at the expense of what is 
usually a small or imperceptible degradation in speed of convergence. 

Approximate Newton Methods 

One of the main drawbacks of Newton's method in its pure or modified 
forms is the need to solve a system of linear equations in order to obtain 
the descent direction at each iteration. We have so far implicitly assumed 
that this system will be solved by some version of the Gaussian elimination 
method which requires a finite number of arithmetic operations [O(n3)]. 
On the other hand, if the dimension n is large, the amount of calculation 
required for exact solution of the Newton system can be prohibitive and 
one may have to be satisfied with only an approximate solution of this 
system. This approach is often used in fact for solving large linear systems 



48 1. INTRODUCTION 

of equations where in some cases an adequate approximation to the solution 
can be obtained by iterative methods such as successive overrelaxation 
( SOR)  much faster than the exact solution can be obtained by Gaussian 
elimination. The fact that Gaussian elimination can solve the system in a 
finite number of arithmetic operations while this is not guaranteed by SOR 
methods can be quite irrelevant, since the computational cost of finding the 
exact solution can be entirely prohibitive. 

Another possibility is to solve the Newton system approximately by 
using the conjugate gradient method to be presented in the next section. 
More generally any system of the form Hd = -9, where H is a positive 
definite symmetric n x n matrix and g E Rn can be solved by the conjugate 
gradient method by converting it to the quadratic optimization problem 

minimize id'Hd + g'd 

subject to d G Rn. 

It will be seen in the next section that actually the conjugate gradient method 
solves this problem exactly in at most n iterations. However this fact is not 
particularly relevant since for the type of problems where the use of the 
conjugate gradient method makes sense, the dimension n is very large and 
the main hope is that only a few conjugate gradient steps will be necessary 
in order to obtain a good approximation to the solution. 

For the purposes of unconstrained optimization, an important property 
of any approximate method of solving a system of the form Hkd = -Vf(x,), 
where H, is positive definite, is that the approximate direction 2 obtained 
is a descent direction, i.e., it satisfies Vf (xk)'d < 0. This will be automatically 
satisfied if the approximate method used is a descent method for solving 
the quadratic optimization problem 

minimize +dfHkd + Vf (x,)'d 

subject to d E Rn, 

and the starting point do  = 0 is used, for the descent property implies 

or Vf(x,)'Z < -;J1H,2i < 0. As will be seen in the next section, the conjugate 
gradient method has this property. 

Conditions on the accuracy of the approximate solution ri that ensure 
linear or superlinear rate of convergence in connection with approximate 
methods are given in Dembo et al. (1980). Generally speaking if H, 4 

V2f (x , )  and the approximate Newton directions d k  satisfy 

lim 
k - 5  I V f ( ~ k ) I  
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the superlinear convergence rate property of the method to a strong local 
minimum is maintained (compare with Proposition 1.15). Approximate 
Newton methods based on the conjugate gradient method are applied to 
large scale nonlinear multicommodity flow problems in Bertsekas and 
Gafni (198 1). 

1.3.4 Conjugate Direction and Conjugate Gradient Methods 

Conjugate direction methods are motivated by a desire to accelerate 
the convergence rate of steepest descent while avoiding the overhead and 
evaluation of second derivatives associated with Newton's method. Con- 
jugate direction methods are typically analyzed for the purely quadratic 
problem 

(52) minimize f (x) = 3x'Qx 
subject to x E Rn. 

where Q > 0, which they can solve in at most n iterations (see Proposition 
1.18 that follows). It is then argued that the general problem can be approxi- 
mated near a strong local minimum by a quadratic problem. One therefore 
expects that conjugate direction methods, suitably modified, should work 
well for the general problem-a conjecture that has been substantiated by 
analysis as well as practical experience. 

Definition: Given a positive definite n x n matrix Q, we say that a 
collection of nonzero vectors d l , .  . . , d, E R" is mutually Q-conjugate if 
for all i and j with i # j we have diQdj = 0. 

It is clear that @ d l ,  . . . . d, are mutuallj. Q-conjugate then the?. are linearly 
independent, since if, for example, we had for scalars x, ,  . . . , x, -, 

dk = x l d l  + , , .  + ~ , - ~ d ~ - l ,  
then 

dkQd, = r ld;Qd,  + . . .  + ~ ~ - ~ d ~ Q d , - ,  = 0, 

which is impossible since d, # 0. and Q is positive definite. 
Given a collection of mutually Q-conjugate directions d o ,  . . . , dn- ,, 

we define the corresponding conjugate direction method for solving problem 
(52) by 

where x, is a given vector in Rn and x, is defined by the line minimization 
rule 

. f ( x k  + xkdk)  = min f ( x ,  + xd,). 
1 
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We shall employ in what follows in this and the next section the notation 

We have the following result: 

Proposition 1.18: If x,,  x,, . . . , x, are the vectors generated by the con- 
jugate direction method (53 ) ,  we have 

Furthermore, for k = 0, 1, . . . , n - 1, xk+ , minimizes f over the linear 
manifold 

and hence xn minimizes f over Rn. 

Proof: By (54), we have 

so we need only verify ( 5 5 )  for i = 0, 1, . . . , k - 1. We have, for i = 0, 1, . . . , 
k - 1, 

To show the last part of the proposition, we must show that 

which is (55) .  Q.E.D. 

It is easy to  visualize the result of Proposition 1.18 for the case where 
Q = I, for in this case, the surfaces of equal cost off are concentric spheres, 
and the notion of Q-conjugacy reduces to usual orthogonality. By elementary 
geometry or a simple algebraic argument, we have that minimization 
along n orthogonal directions leads to the global minimum off ,  i.e., the 
center of the spheres. The case of a general positive definite Q can actually 
be reduced to the case where Q = I by means of a scaling transformation. 
By setting y = Q1"x, the problem becomes min (31 y 1 ' )  y E Rn). If wo, . . . , 
wn-,  are any set of orthogonal nonzero vectors in Rn, the algorithm 
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where a, minimizes 41 y, + xwkI2 over ct, terminates in at most n steps at 
yn = 0. To pass back to the x-coordinate system, we multiply this equation 
by Q-li2 and obtain 

where d, = Q-'I2wk. Since W ~ W ,  = 0 for i f j, we obtain dfQdj = 0 for 
i # j; i.e., the directions do , .  . . , dn-, are Q-conjugate. This argument can 
be reversed and shows that the collection of conjugate direction methods for 
the problem min(+xfQx I x E Rn) is in one-to-one correspondence with the 
set of methods for solving the problem mini31 y12 Iy E Rn), which consist 
of successive minimization along n orthogonal directions. 

Given any set of linearly independent vectors t o , .  . . , (,- ,, we can 
construct a set of mutually Q-conjugate directions do,  . . . , dn- , as follows. 
Set 

(56) do = to ,  

and for i = 1, 2, . . . , n - 1, define successively 

where the coefficients cij are chosen so that di is Q-conjugate to the previous 
directions di-,, . . . , do. This will be so if, for k = 0, . . . , i - 1, 

df Qd, = <jQd, + 1 cijdjQdk = 0. 
j = O  

If previous coefficients were chosen so that do, . . . , di-,  are Q-conjugate, 
then we have dlQd, = 0 if j f k, and (58) yields 

(59) cij = -<jQdj/d>Qdj Vi = 1,2 ,..., n - 1, j = 0, 1 ,..., i - 1. 

Thus the set of directions do, . . . , d,- , defined by (56), (57) and (59) is Q- 
conjugate, and (56) and (57) show also that, for i = 0, . . . , n - 1, we have 

(60) (subspace spanned by d o , .  . . , d,) = (subspace spanned by t o ,  . . . , ti). 

We now define the most important conjugate direction method. 

The Conjugate Gradient Method 

The conjugate gradient method is obtained by the procedure described 
above by taking to = -go, . . . , 5,- = -gn- More specifically, starting 
at xo with go # 0, we use go as our first conjugate direction, i.e., do = -go. 
We find x ,  = xo + xodo by line search and obtain our second direction 
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dl  using the procedure defined by (56), (57) and (59) with 5, = -go and 
<, = - g,. This yields, from (57) and (59), 

By using the equation 

we can write (61) as 

By repeating the process with 5, = -go, = - g l , .  . ., and tk = -gk, 
we obtain at the (k + 1)st step 

from which 
k -  1 g;(gj+ 1 - ~ j >  d, = -9, + d,. 2 d;@j+ 1 - gj) 

By using the fact that the subspace spanned by go ,  . . . , gk-,  is also the 
subspace spanned by do,  . . . , dk- , [compare with (60)] and the relation 
g;dj = 0 for j = 0, . . . , k - 1 (Proposition 1.18), we obtain 

so (62) reduces to the simple formula 

(63) 

with 

(64) 
g;(gk - gk- 1) 

P k  = d, ( 
k - 1  9k - gk-1) ' 

Note that by using the facts g;gj = g;dj = 0, j = 0, . . . , k - 1, and dk-,  = 
-gk- + Pk- ldk- 2 ,  we see that the coefficient Pk of (64) can also be written 
as 

An important observation from (63) and (64) is that in order to generate 
the direction dk one need only know the current and precious gradients gk and 
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g k - ,  and the pre~ious direction dk-  ,. This fact is particularly significant 
when the method is extended to nonquadratic problems. 

Scaled Conjugate Gradient Method 

This method. also referred to as the preconditioned conjugate qrudienr 
method, is really the conjugate gradient method implemented in a new 
coordinate system. Suppose we make a change of variables, as in Section 
1.3.2. x '= TJ . ,  where T is a symmetric invertible n x n matrix, and apply the 
conjugate gradient method to the equivalent problem 

minimize h(j) = f ( T j )  = t y 1 T Q Q  

subject to 4. G Rn. 

The method is described by [compare with (63) and (65)] 

where x, is obtained by line minimization and d ,  is generated by 

where 

Setting x ,  = TJ,, Vh(j,) = Tg,, d, = ~ d , ,  and 
(66)-(68) the equivalent method 

(69) x k + l  = x ,  + w 4 ,  

(70) do = -Hgo,  dk = -Hgk f Pkdk-1, 

where 

H = T2, we obtain from 

k = 1, . . . ,  n, 

(71) P k  = gbHgkIg; - lHgk - 1. 

Since V2h(4.) = TQIT; we have that 2,. . . . , dn-, are (TQT)-conjugate, and 
in view of d, = T C ? ~ .  we have that do ,  . . . , d n - ,  are Q-conjugate. By carrying 
further this line of argument we see that 

g ; H g J = g ; d J = O  V j = O ,  . . . ,  k -  1, 

and x, minimizes f over the linear manifold 

M k =  { z ~ z = x o + ; ' o d o + ~ ~ ~ + ; ' k - l d k - l , ; ~ o  . . . . ,  j . k - l ~ R }  

= { z I z  = xo + y0Hg0 + . . .  + ;',-,Hg,-,, y o , .  . . E R ) .  
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The motivation for employing scaling typically stems from a desire to improve 
the speed of convergence of the method within an n-iteration cycle (see the 
following analysis). This in turn may be important even for a quadratic 
problem if n is large. 

Rate of Convergence ofthe Conjugate Gradient Method 

There are a number of results relating to the convergence rate of the 
conjugate gradient method applied to quadratic problems. We describe a 
particular result due to Luenberger (1973). 

Consider an algorithm of the form 

where y i j  are arbitrary scalars. Since gi = Qx,, we have that for suitable 
scalars iki the algorithm above can be written for all k 

where P, is a polynomial of degree k. Among all algorithms of the form (72), 
the conjugate gradient method is optimal in the sense that for every k, 
it minimizes f (xk+ ,) over all sets of coefficients y k o ,  . . . , y k k .  It follows from 
the equation above that in the conjugate gradient method we have, for every k, 

Let A,, . . . , An be the eigenvalues of Q, and let e l , .  . . , en be corresponding 
orthogonal eigenvectors normalized so that / ei / = 1. Since el, . . . , en form 
a basis, any vector xo E Rn can be written as 

for some scalars ii. Since 

we have, using the orthogonality of el, . . . , en and the fact that lei\ = 1, 
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Applying the same process to (73), we obtain for any polynomial Pk of de- 
gree k 

t n  

and it follows that 

One can use this relationship for different choices of polynomials Pk 
to obtain a number of convergence rate results. We provide one such result. 

Proposition 1.19: Assume that Q has n - k eigenvalues in an interval 
[a, b] with a > 0, and the remaining k eigenvalues are greater than b. Then 
for every x,, the vector x k + ,  generated after (k + 1) steps of the conjugate 
gradient method satisfies 

b - a  
f ( ~ k + I )  5 (=) f (x0) .  

This relation also holds for the scaled conjugate gradient method (69)-(71) 
if the eigenvalues of Q are replaced by those of H ' i 2 Q ~ 1 ' 2 .  

Proof: Let A,, A,, . . . ,Ak be the eigenvalues of Q that are greater than 
b and consider the polynomial Pk defined by 

Since 1 + Ai Pk(Ai) = 0 we have, using (74), (76), and a simple calculation, 

[ A  - +(a + b)I2  b - a  
I max x 0  = ( )  o Q.E.D. 

a s A s b  C%a+b)12 

An immediate consequence of the proposition is that if the eigenvalues 
of Q take only k distinct values then the conjugate gradient method will 
find the minimum of the quadratic function f in at most k iterations. (Simply 
take a = b in the proposition.) Another interesting possibility, arising for 
example in some optimal control problems, is when Q has the form 

where M is positive definite symmetric, and v i  are some vectors in Rn. We 
have the following result, the proof of which we leave as an exercise for the 
reader. 
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Exercise: Show that if Q is of the form (77), then the vector x,,, 
generated after (k  + 1 )  steps of the conjugate gradient method satisfies 

where a and b are the smallest and largest eigenvalues of M. Show also 
that the vector xk- ,  generated by the scaled conjugate gradient method 
with H = .M-' minimizesf. [Hint: Use the interlocking eigenvalues lemma 
of Luenberger (1973, p. 202).] 

The (k + 1)-step scaled conjugate gradient method is particularly inter- 
esting when Q is of the form (77), k is small relative to n, and systems of 
equations involving M can be solved easily (see Bertsekas, 1974a). 

We also leave the following strengthened version of Proposition 1.19 
as an exercise to the reader. 

Exercise (Hessian with Clustered Eigenvalues): Assume that Q has all 
its eigenvalues concentrated at k intervals of the form 

where we assume that cii 2 0, i = 1, .  . . . k, 0 < z ,  - 6,, and 

Show that the vector x k + ,  generated after (k + 1) steps of the conjugate 
gradient method satisfies 

where 

The Conjugate Gradient Method Applied to Nonquadratic 
Problems 

The conjugate gradient method can be applied to the not necessarily 
quadratic problem 

minimize f (x) 

subject to x E R". 
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It takes the form 

where x, is obtained by line search 

(79) f  ( x k  + cikdk) = min f  ( x ,  + xd,), 
% 

and d, is generated by 

The two most common ways to compute P, are 

and 

The use of (81) has been suggested by Fletcher and Reeves (1964) while the 
use of (82)  was proposed by Polak and Ribiere (1969), Poljak (1969a), and 
Sorenson (1969). The direction d, generated by (80) will be a direction of 
descent in either case. To  see this, note that if V f  (x,) # 0,  then 

since V f  ( xk ) ' dk - ,  = 0  in view of (79). However, while these two formulas, 
along with several others, are equivalent when the method is applied to a 
quadratic problem, this is no more true in the general case. Extensive 
computational experience has established that the use of (82) results in 
much more efficient computation than the use of (81). A heuristic reason 
that can be given is that due to nonquadratic terms in the objective function 
and possibly inaccurate line searches, conjugacy of the generated directions 
is progressively lost and a situation may be created where the method 
temporarily "jams" in the sense that the generated direction dk is nearly 
orthogonal to the gradient V f ( x k ) .  When this occurs, then V f ( x k , , )  - 
V f ( x k ) .  In that case pk+ ,, generated by (82), will be nearly zero and the next 
direction d, + ,, generated by (go), will be close to - V f  ( x ,  - ,) thereby breaking 
the jam. This is not the case when (81)  is used. A more detailed explanation 
of this phenomenon is given by Powell (1977). 

Regardless of the formula for computing the scalar Pk, one must deal 
with the loss of conjugacy that results from nonquadratic terms in the 
objective function. The conjugate gradient method is often employed in 
problems where the number of variables n is large, and it is not unusual 
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for the method to start generating nonsensical and inefficient directions 
of search after a few iterations. For this reason it is important to operate the 
method in cycles of conjugate direction steps given by (80), with the first 
step in the cycle being a steepest descent step. Some possible restarting 
policies are : 

(a) Restart with a steepest descent step n iterations after the preceding 
restart. 

(b) Restart with a steepest descent step k iterations after the preceding 
restart with k < n. This is recommended when the problem has special 
structure so that the resulting method has good convergence rate (compare 
with Proposition 1.19 and the following discussion). 

(c) Restart with a steepest descent step n iterations after the preceding 
restart or if 

(g3) Ivf ( ~ k ) ' ~ f  ( ~ k -  111 > Y IVf ( ~ k -  1)12, 

where y is a scalar with 0 < y < 1, whichever comes first. Relation (83) 
is a test on loss of conjugacy, for if the generated directions were indeed 
conjugate then we would have Vf(x,)'Vf(xk-,) = 0. This procedure was 
suggested by Powell (1977) who recommended the choice of y = 0.2. 

Note that in all these restart procedures the steepest descent iteration 
serves as a spacer step and guarantees global convergence (Proposition 1.16). 
If the scaled version of the conjugate gradient method is used, then a scaled 
steepest descent iteration is used to restart a cycle. The scaling matrix may 
change at the beginning of a cycle but should remain unchanged during the 
cycle. Another possibility, stemming from a suggestion of Beale (1972), is 
to use the last direction generated in a cycle as the first direction in the new 
conjugate direction cycle instead of using steepest descent. We refer to papers 
by Powell (1977) and Shanno (1978a,b) for a discussion of this possibility. 

An important practical issue relates to the line search accuracy that is 
necessary for efficient computation. An elementary calculation shows that if 
line search is carried out to the extent that 

then d,, generated by (80) and (81), satisfies Vf (xk)'dk < 0 and is a direction 
of descent. On the other hand, a much more accurate line search may be 
necessary in order to keep loss of direction conjugacy and deterioration of 
rate of convergence within a reasonable level. At the same time, insisting 
on a very accurate line search can be computationally expensive. Consider- 
able research has been directed towards clarifying these questions, and 
several implementations of the conjugate gradient method with inexact line 
search have been proposed by Klessig and Polak (1972), Lenard (1973, 
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1976), and Powell (1977). Among recent works, Shanno (1978a,b) suggests 
a rather imprecise line search coupled with a method for computing conjugate 
gradient directions which views each iteration as a memoryless quasi- 
Newton step. This method appears relatively insensitive to line search errors 
and yields descent directions under essentially no restriction on line search 
accuracy. 

1.3.5 Quasi-Newton Methods 

Quasi-Newton methods are descent methods of the form 

where D, is a positive definite matrix adjusted during the course of the com- 
putation in a way that (84) tends to approximate Newton's method. The 
stepsize a, is determined by one of the stepsize rules of Section 1.3.1. The 
popularity of the most successful of these methods stems from the fact 
that they tend to exhibit a fast rate of convergence while avoiding the second 
derivative calculations associated with Newton's method. 

There is a large variety of quasi-Newton methods, but we shall restrict 
ourselves to the so-called Broyden class of quasi-Netvton algorithms where 
D,, , is obtained from D, and the vectors 

by means of the equation 

where 

the scalars (', satisfy, for all k, 

(91) O I l k - - < l ,  

and Do is an arbitrary positive definite matrix. If j', = 0, one obtains the 
Dacidon-Fletcher-Powell (DFP) method (Davidon, 1959; Fletcher and 
Powell, 1963), which is historically the first quasi-Newton method. If ik E 1, 
one obtains the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method 
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(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) for which 
there is growing evidence that it is the best general purpose quasi-Newton 
method currently available. 

We first show that under a mild assumption the matrices Dk generated 
by (88)  are positive definite. This is a most important property, since it 
guarantees that the search direction d,  is a direction of descent. 

Proposition 1.20: If D, is positive definite, V f ( x k + , )  # 0 ,  and the 
stepsize cc, is chosen so that x,,  , satisfies 

(or equivalently p;qk > 0) ,  then D,,, given by (88)  is well defined and is 
positive definite. 

Proof: First note that (92)  implies that q, # 0 and 

(93)  P; qk = ' ~ k  d;[Vf ( ~ k  + 1 - vf ( ~ k ) ]  > O. 

Thus all denominator terms in (88) ,  (89) ,  and (90)  are nonzero, and D k + ,  is 
well defined. 

Now for any z  # 0 ,  we have 

Define a = D:12z, b  = D:'2qk, and write (94)  as 

From (90), (91) ,  (93) ,  and the Cauchy-Schwarz inequality we have that 
all the terms on the right-hand side of (95)  are nonnegative. In order that 
z f D k ,  ,z > 0 ,  it will suffice to show that we cannot have simultaneously 

( a 1 2 ( b [ 2 = ( a ' b ) 2  and z lpk=O.  

Indeed if ( a I2  1 bI2 = ( ~ ' b ) ~ ,  we must have a = Ilb for some 3. # 0 or z = Ilq,, 
so if z'p, = 0 ,  we must have q;pk = 0 ,  which is impossible by (93). Q.E.D. 

Note that if D, is positive definite, we have V f  (x,)'dk < 0 ,  so in order to 
satisfy condition (92) ,  it is sufficient to carry out the line search to a point 
where 

If a, is determined by the line minimization rule, then V f  (x, , ,)Id, = 0 and 
(92)  is certainly satisfied. 
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A most interesting property of the Broyden class of algorithms is that 
when applied to the positive definite quadratic function 

f (x) = 4xJQx, 

with the stepsize r, determined by line minimization, they generate a Q- 
conjugate direction sequence, while simultaneously constructing the inverse 
Hessian Q- '  after n iterations. This is the subject of the next proposition. 

Proposition 1.21: Let {x,) and {d,) be sequences generated by the 
algorithm (84)-(90) applied to minimization of the positive definite quadratic 
function f (x) = ix'Qx with r, chosen by 

(96) f (x, + rkdk) = min f (x, + rd,). 
1 

Assume none of the vectors x,, . . . , x,-, is optimal. Then 

(a) The vectors do, . . . , A,-, are mutually Q-conjugate. 
(b) There holds 

Proof: It will be sufficient to show that for all k 

Equation (97) proves (a). Equation (98) proves (b), since for k = n - 1 it 
shows that p,, . . . , p,- , are eigenvectors of D,Q corresponding to unity 
eigenvalue. Since pi = r id i  and do, . . . , d,-, are Q-conjugate, it follows that 
the eigenvectors p,. . . . , p,-, are linearly independent and therefore D,Q 
equals the identity. 

We first verify that for all k 

From (88), we have 

An elementary calculation shows that cbq, = 0, and (99) follows. 
We now show (97) and (98) simultaneously by induction. For k = 0 

there is nothing to show for (97). while (98) holds in view of (99). Assuming 
that (97) and (98) hold for k ,  we prove them for k + 1. We have. for i < k, 
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Using (96) ,  (97) ,  ( l o o ) ,  the fact p, = x ,d , ,  and the fact p ;V f ( xk ,  ,)  = 0. we 
obtain 

plVf(xk + ,) = plVf'(xi+ ) = 0 ,  0 I i < k + 1 

Hence from (98) ,  

and since pi = aid i ,  d k+  , = - Dk+ ,Vf ( x ,  + ,), we obtain 

d : Q d k + ,  = 0, 0 1  i <  k +  1.  

This proves (97)  for k + 1. 
From the induction hypothesis ( 98 )  and (97) ,  we have 

Using (88) ,  (89) ,  (97) ,  (101), and a straightforward calculation, we 
O s i I k ,  

have. for 

Taking into account (99) ,  we have a proof of (98)  for k + 1.  Q.E.D. 

It is also interesting to note that the sequence (x,} in Proposition 1.21 is 
identical t o  the one that would be generated by the scaled conjugate gradient 
method with scaling matrix H = Do; i.e., for k = 0, 1 , .  . . , n - 1, the vector 
x k + ,  minimizes f over the linear manifold 

.Wk = { z  1 z = x o  + ;:o DoVf (x , )  + . . . + ;,, DoV f ( xk ) ,  7 , .  . . . , ./, E R) .  

This can be proved for the case where Do = I by verifying by induction that 
for all k there exist scalars pfj such that 

Therefore, for some scalars bf and all k ,  we have 

Hence. for all i, x , - I  lies on the manifold 
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and since the algorithm is a conjugate direction method the result follows 
using Proposition 1.18. The proof for the case where Do # I follows by 
making a transformation of variables so that in the transformed space the 
initial matrix is the identity. A consequence of this result is that any algorithm 
in Broyden's class employing line minimization generates identical sequences 
of points for the case o f a  quadratic objective function. This is also true ecen 
for a nonquadratic objective function (Dixon, 1972a,b) which is a rather sur- 
prising result. Thus the choice of the scalar [, makes a difference only if the 
line minimization is inaccurate. 

Computational Aspects of Quasi-Newton Methods 

Consider now the case of a nonquadratic problem. Even though the 
quasi-Newton method (84)-(90) is equivalent to the conjugate gradient 
method for quadratic problems, it has certain advantages which manifest 
themselves in the presence of inaccurate line search and nonquadratic terms 
in the objective function. The first advantage is that when line search is 
accurate the algorithm (84)-(90) not only tends to generate conjugate 
directions but also constructs an approximation to the inverse Hessian 
matrix which tends to be more accurate as the algorithm progresses. As a 
result, near convergence to a strong local minimum, it tends to approximate 
Newton's method thereby attaining a fast convergence rate. This fact is 
suggested by Proposition 1.21 and has also been established analytically 
by Powell (1971) [for a proof, see also Polak (1971)l. It is significant that this 
property does not depend on the starting matrix Do,  and as a result it is not 
usually necessary to periodically restart the method with a steepest descent- 
type step-something that is essential for the conjugate gradient method. 
A second advantage over the conjugate gradient method is that quasi- 
Newton methods are not as sensitive to accuracy in the line search. This has 
been verified by extensive computational experience and can be substan- 
tiated to some extent by analysis (see Broyden et al., 1973). One reason that 
can be given is that, under essentially no restriction on the line search 
accuracy, the quasi-Newton method (84)-(90) generates positive definite 
matrices Dk and hence directions of descent (Proposition 1.20). 

In an effort to compare further the conjugate gradient method and 
quasi-Newton methods, we consider their computational requirements per 
iteration. The kth iteration of the conjugate gradient method requires 
computation of the objective function and its gradient (perhaps several 
times in view of the employment of line search) together with O(n)t multi- 
plications to compute the conjugate direction dk and next point x,, ,. A 

+ In t h ~ s  context O ( n )  multiplications means that there is an integer Msuch that the number 
of multiplications per iteration is bounded by Mn, where n is the dimension of the problem. 
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quasi-Newton method requires roughly the same amount of computation 
for function and gradient evaluations together with 0(n2) multiplications to 
compute the matrix D, and next point x, + ,. If the computation time necessary 
for a function and gradient evaluation is larger or comparable to 0(n2) 
multiplications, the quasi-Newton method requires only slightly more 
computation per iteration than the conjugate gradient method and holds 
the edge in view of its other advantages mentioned earlier. In problems where 
a function and gradient evaluation requires computation time much less 
than 0(n2) multiplications, the conjugate gradient method is preferable. For 
example in optimal control problems where typically n is very large (over 
100 and often over 1000) and a function and gradient evaluation typically 
requires O(n) multiplications, the conjugate gradient method is preferred. 
In general, both methods require less computation per iteration than 
Newton's method which requires afunction, gradient, and Hessian evaluation, 
as well as 0(n3) multiplications at each step. This is counterbalanced by 
the faster speed of convergence of Newton's method. The case for Newton's 
method is strengthened if periodic reevaluation of the Hessian is employed 
since each step that utilizes a previously evaluated (and factored) Hessian 
requires only 0(n2) multiplications. The same is true if the problem has 
special structure that can be exploited to compute the Newton direction 
efficiently. For example in optimal control problems, Newton's method 
typically requires O(n) multiplications per iteration versus 0(n2) multi- 
plications for quasi-Newton methods. 

Finally, we note that multiplying the initial matrix Do by a positive 
scaling factor can have a significant beneficial effect on the behavior of the 
algorithm. A popular choice is to compute 

once the vector x, (and hence also po and q,) has been obtained, and use 
6, in place of Do in computing Dl. The rationale for this is explained in 
Luenberger (1973). Among other things it can be shown that if the initial 
scaling (102) is used, then the condition number M,/mk, where 

Mk = max eigenvalue of (D,':~QD::~), 

wz, = min eigenvalue of (D:'~QD:'~), 

is not increased (and is usually decreased) at each iteration (compare with 
the discussion on rate of convergence in Section 1.3.1). Sometimes it is 
beneficial to scale Dk even after the first iteration by the factor pi qJq; Dk q, 
and this has given rise to the class of self-scaling quasi-Newton algorithms 
due to Oren and Luenberger [see Oren and Luenberger (1974), Oren (1973, 
1974), Oren and Spedicato (1976)l. 
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1.3.6 Methods Not Requiring Ecaluation of Derivatices 

All the gradient methods examined so far in Section 1.3 require calculation 
of at least the gradient Vf (x,) and possibly the Hessian matrix V2f (x,) at 
each generated point x,. In many problems, these derivatives are either not 
available in explicit form or else are given by very complicated expressions 
and hence their evaluation requires excessive computation time. In such 
cases, it is possible to use the same algorithms as earlier with all unavailable 
derivatives approximated by finite differences. Thus, second derivatives 
may be approximated by theforward diference formula 

or the central difference formula 

In these relations, h is a small positive scalar and ej  is the jth unit vector 
(jth column of the identity matrix). Similarly first derivatives may be approxi- 
mated by 

(1 06) df(xk)ldxi - (1!2h)[ f (xk + he,) - f (x, - he,)] 

The central difference formula has the disadvantage that it requires twice 
as much computation as the forward difference formula. However, it is 
much more accurate. By forming the corresponding Taylor series expansions, 
it may be seen that the absolute value of the error between the approxi- 
mation and the actual derivatives is O(h) for the forward difference formula 
while it is 0(h2) for the central difference formula. In some cases the s a m  
value of h can be used for all partial derivatives, but in other cases, particularly 
when the problem is poorly scaled, it is essential to use a different value of 
h for each partial derivative. 

From the point of view of reducing the approximation error (or trunca- 
tion error), it is advantageous to choose the finite difference interval h as 
small as possible. Unfortunately there is a limit to the amount that h can be 
reduced due to the significant cancellation error, which occurs when quaatities 
of similar magnitude are subtracted by the computer. Cancellation error is 
particularly evident in the approximate formulas (105) and (106) near a 
critical point where Vf is nearly zero. 



66 1. INTRODUCTION 

Practical experience suggests that a good policy is to keep the scalar h 
for each derivative at a $xed value which balances the truncation error 
against the cancellation error. When second derivatives are approximated 
by finite differences of first derivatives in discretized versions of Newton's 
method, practical experience suggests that extreme. accuracy is not very 
important in terms of speed of convergence. For this reason, exclusive use 
of the forward difference formula (103) is advisable in most cases. By con- 
trast, when first derivatives are approximated by finite differences of function 
values, the approximation can become poor near a critical point and can 
vitally affect the convergence characteristics of the algorithm if the forward 
difference formula (105) is used exclusively. A good practical rule is to use 
the forward difference formula (105) until the absolute value of the cor- 
responding approximate derivative becomes less than a certain tolerance; 
i.e., 

l(1lh)C.f (xk + hei) - f (xk>l I 5 8, 

where r > 0 is some small prespecified scalar. At that point a switch to the 
central difference formula is made; i.e., the formula (106) is used whenever 
the inequality above is satisfied. This has been suggested by Gill and Murray 
(1972). An extensive discussion of implementation of gradient methods 
based on finite difference approximations can be found in Gill et al. (1981). 

There are several other algorithms for minimizing differentiable functions 
without the explicit use of derivatives, the most interesting of which, at least 
from the theoretical point of view, are coordinate descent methods. For a 
discussion of these and other nonderivative methods we refer the reader to 
Avriel (1976), Brent (1972), Luenberger (1973), Polak (1971), Powell (1964, 
1973), Sargent and Sebastian (1973), and Zangwi11(1967a, 1969). 

1.4 Constrained Minimization 

We consider the problem 

minimize f ( x )  

subject to x E X, 

where$ Rn -+ R is a given function and X is a given subset of Rn. We say 
that a vector x* E X is a local minimum for (CP)  if there exists an E > 0 such 
that 

f ( x * )  5 f ( x )  V X  E S(X*;  E),  x E X .  

It is a strict local minimum if there exists an r > 0 such that 
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It is a global minimum if 

f(x*) 5 f(x) v x  EX. 

We have the following optimality conditions for the case where X is 
a convex set. Proofs may be found in the sources given at the end of the 
chapter. 

Proposition 1.22: Assume that X is a convex set and for some I > 0 
and x* E X, f E C' over S(x* ; I). 

(a) If x* is a local minimum for (CP), then 

(1) Vf (x*)'(x - x*) 2 0 V X E X .  

(b) Iff is in addition convex over X and (1) holds, then x* is a global 
minimum for (CP). 

We shall be mostly interested in optimality conditions for problems 
where the constraint set X is described by equality and inequality constraints. 

Equality Constrained Problems 

We consider first the following equality constrained problem 

(ECP) minimize f (x) 

subject to h(x) = 0, 

where f:  Rn + R and h: Rn + Rm are given functions and m I n. The com- 
ponents of h are denoted h,, . . . , h,. 

Definition: Let x* be a vector such that h(x*) = 0 and, for some E > 0, 
h E C' on S(x* ; I). We say that x* is a regular point if the gradients Vhl(x*), . . . , 
Vhm(x*) are linearly independent. 

Consider the Lagrangian function L :  Rn+" + R defined by 

L(x, 1) = f (x) + Illh(x). 

We have the following classical results (see, e.g., Luenberger, 1973). 

Proposition 1.23: Let x* be a local minimum for (ECP), and assume 
that, for some E > 0, f E C', h E C1 on S(X* ; I), and x* is a regular point. Then 
there exists a unique vector A* E Rm such that 

(2) V, L(x*, A*) = 0. 

If in addition f E C2 and h E C2 on S(X*; I) then 

(3) z'V;, L(x*, i * ) z  2 0 Q z E Rn with Vh(x*)'z = 0. 



68 1. INTRODUCTION 

Proposition 1.24: 
f € C 2  and h € C 2  on 
such that 

Let x* be such that h(x*) = 0 and, for some E > 0, 
S(x*; E) .  Assume that there exists a vector A* E Rm 

and 

( 5 )  z 'V; ,~(x*,  A*)z > 0 V z # 0 with Vh(x*)'z = 0. 

Then x* is a strict local minimum for (ECP). 

It is instructive to provide a proof of Proposition 1.24 that utilizes 
concepts that will be of interest later in the analysis of multiplier methods. 
We have the following lemma: 

Lemma 1.25: Let P be a symmetric n x n matrix and Q a positive 
semidefinite symmetric n x n matrix. Assume that x'Px > 0 for all x # 0 
satisfying x'Qx = 0. Then there exists a scalar c such that 

Proof: Assume the contrary. Then for every integer k, there exists a 
vector x, with Ix,l = 1 such that 

(6)  x; Px, + kxb Qx, 5 0. 

The sequence {x,) has a subsequence {x,), converging to a vector F with 
IF 1 = 1. Taking the limit superior in (6), we obtain 

Z'PZ + lim sup(kx; Qx,) I 0. 
k -  cc 
k s K  

Since x;Qx, 2 0, (7)  implies that {xLQx,), converges to zero and hence 
Z'QZ = 0. From the hypothesis it then follows that F'PZ > 0 and this contra- 
dicts (7). Q.E.D. 

Consider now a vector x* satisfying the sufficiency assumptions of 
Proposition 1.24. By Lemma 1.25 it follows that there exists a scalar 2 such 
that 

(8) V;, L(x*, A*) + EVh(x*)Vh(x*)' > 0. 

Let us introduce the so-called, augmented Langrangian function, L,: Rnf "+' + 

R defined by 

(9) L,(x, A) = f ( x )  + %'h(x) + $c h(x) 12. 
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We have, by a straightforward calculation: 

(10) V,Lc(x, A) = Vf(x) + Vh(x)[A + ch(x)], 
m 

(1 1) V:, L,(x, 2) = V2f(x) + [Ai + chi(x)]V2hi(x) + cVh(x)Vh(x)'. 
i =  1 

Therefore, using also (8), we have, for all c 2 2, 

(12) V, L,(x*, A*) = V, L(x*, A*) = 0, 

(13) V:, L,(x*, A*) = V:, L(x*, A*) + cVh(x*)Vh(x*)' > 0. 

Now by using Proposition 1.4 and the preceding discussion, we obtain the 
following result : 

Proposition 1.26: Under the sufficiency assumptions of Proposition 
1.24, there exist scalars E,  y > 0, and 6 > 0 such that 

(14) Lc(x, A*) 2 L,(x*, A*) + y 1 x - x* l 2  V x E S(x*; 6), c 2 C. 

Notice that from (9) and (14), we obtain 

which implies that x* is a strict local minimum for (ECP). Thus a proof of 
Proposition 1.24 has been obtained. 

The next proposition yields a valuable sensitivity interpretation of 
Lagrange multipliers. We shall need the following lemma: 

Lemma 1.27: Let x* be a local minimum for (ECP) which is a regular 
point and together with its associated Lagrange multiplier vector A* satisfies 
the sufficiency assumptions of Proposition 1.24. Then the (n + m) x (n + m) 
matrix 

V:, L(x*, A*) Vh(x*) 
Vh(x*)' 0 1 

is nonsingular. 

Proof: If J were singular, there would exist y E Rn and z E R" not both 
zero such that (y ,  z) is in the nullspace of J or equivalently 

Premultiplying (16) by y' and using (17), we obtain 
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Hence y = 0, for otherwise the sufficiency assumption is violated. It follows 
that Vh(x*)z = 0, which in view of the fact that Vh(x*) has rank m implies 
z = 0. This contradicts the fact that y and z cannot be both zero. Q.E.D. 

Proposition 1.28: Let the assumptions of Lemma 1.27 hold. Then there 
exists a scalar 6 > 0 and continuously differentiable functions x ( . ) :  S(0; 6)  -, 
R", A(.): S(0; 6)  + Rm such that x(0) = x*, A(0) = A*, and for all u E S(0; d), 
(x(u),  A(u)) are a local minimum-Lagrange multiplier pair for the problem 

(18) minimize f ( x )  

subject to h(x)  = u. 

Furthermore, 

Proof: Consider the system of equations in ( x ,  A, u):  

It has the solution (x*, A*, 0). Furthermore the Jacobian of the system with 
respect to ( x ,  A)  at this so~lution is the invertible matrix J of (15). Hence 
by the implicit function theorem (Section 1.2), there exists a 6 > 0 and 
functions x ( . )  E C1, ;I(.) E C1 on S(0; 6) such that 

For u sufficiently close to u = 0, the vectors x(u), A(u) satisfy the sufficiency 
conditions for problem (18) in view of the fact that they satisfy them by 
assumption for u = 0. Hence 6 can be chosen so that {x(u),  A(u)} are a local 
minimum-Lagrange multiplier pair for problem (18). 

Now from (19), we have 

By differentiating the relation h[x(u)J = u, we obtain 

Combining (20) and (21), we have 

Vu f Cx(.)l = - i (u ) ,  

which was to be proved. Q.E.D. 
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Inequality Constraints 

Consider now the case of a problem involving both equality and inequality 
constraints 

(NLP)  minimize f ( x )  

subject to h(x) = 0, g(x) I 0, 

where f :  Rn -, R, h:  Rn -, Rm, g: Rn -, Rr are given functions and m I n. 
The components of g are denoted by g,, . . . , g,. We first generalize the 
definition of a regular point. For any vector x satisfying g(x) I 0, we denote 

(22) A(x)  = { j lg j (x )  = 0,j = 1,  ..., r). 

Definition: Let x* be a vector such that h(x*) = 0, g(x*) I 0 and, for 
some E > 0, h E C1 and g E C1 on S(X*; E).  We say that x* is a regular point 
if the gradients Vh,(x*), . . . , Vhm(x*) and Vgj(x*), j E A(x*), are linearly 
independent. 

Define the Lagrangian function L:  Rn+"+' -, R for (NLP)  by 

We have the following optimality conditions paralleling those for equality 
constrained problems (see, e.g., Luenberger, 1973). 

Proposition 1.29: Let x* be a local minimum for (NLP)  and assume 
that, for some E > 0, f E C', h E C',  g E C' on S(X*; E), and x* is a regular 
point. Then there exist unique vectors A* E Rm, p* E Rr such that 

(23) V ,  L(x*, A*, ,2) = 0: 

If in addition f E C2, h E C2, and g E C2 on S(X* ; E),  then for all z E Rn satisfying 
Vh(x*)'z = 0 and Vgj(x*)'z = 0, j E A(x*), we have 

Proposition 1.30: Let x* be such that h(x*) = 0, g(x*) I 0, and, for 
some E > 0, f E C2, h E c 2 ,  and g E c2 on S(X*;  E) .  Assume that there exist 
vectors A* E Rm, p* E Rr such that 

(26) V, L(x*, A*, p*) = 0, 
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and for every z # 0 satisfying Vh(x*)'z = 0, Vgj(x*)'z I 0, for all j E A(x*), 
and Vgj(x*)'z = 0, for all j E A(x*) with @ > 0, we have 

Then x* is a strict local minimum for (NLP).  

Optimality Conditions via Conversion to the Equality Constrained 
Case 

Some of the results for inequality constraints may also be proved by 
using the results for equality constraints provided we assume thatf, hi,  gj E C2. 
In this approach, we convert the inequality constrained problem ( N L P )  into 
a problem which involves exclusively equality constraints and then use the 
results for (ECP) to obtain necessary conditions, sufficiency conditions, 
and a sensitivity result for (NLP) .  

Consider the equality constrained problem 

(29) minimize f ( x )  

subject to h l ( x )  = 0 ,..., h,(x) = 0, 

g ,(x)  + 2: = 0, . . . ,g,(  x )  + 2: = 0, 

where we have introduced additional variables z,, . . . , z,. It is clear that 
(NLP)  and problem (29) are equivalent in the sense that x* is a local minimum 
for problem (NLP)  if and only if (x*,[-g,(x*)I1 *, . . . , [ -gr(x*)]1 '2)  is a 
local minimum for (29). By introducing the vector z = (z , ,  . . . , z,) and 
the functions 

problem (29) may be written as 

(30) minimize f ( x ,  z )  

subject to hi(x, z) = 0, ij,{x, z )  = 0, i  = 1, . . . , m, j = 1, . . . , r. 

Let x* be a local minimum for our original problem (NLP)  as well as 
a regular point. Then (x*, s*), where z* = (z?, . . . , z:), zT = [ -g j (x*)]1:2 ,  
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is a local minimum for problem (30). In addition (x*, z*) is a regular point 
since the gradients 

vgj(x*, z*) = 

can be easily verified to be linearly independent when x* is a regular point. 
By the necessary conditions for equality constraints (Proposition 1.23), 
there exist Lagrange multipliers AT, . . . , A:, p f ,  . . . , p,* such that 

Vf(x*, z-.:) + 1 ATVhi(x*, z*) + 1 pj"Vijj(x*, z*) = 0. 
i =  1 j=  1 

In view of the form of the gradients off, hi, and ijj, the condition above is 
equivalent to 

(314 

(3 1b) 

The last equz 

(32) 

m r 

Vf (x*) + C A"h,(x*) + C /lj*vgj(x*) = 0, 
i =  1 j= 1 

2pT[-gj(x*)]' = 0, j = I , .  . . , r .  

ltion implies p? = 0 for all j 4 A(x*) and may also 

pj"gj(x*)=O, j = l ,  . . . ,  r .  

be written as 

The second-order necessary condition for problem (30) is applicable, in 
view of our assumption f, hi, gj E C2 which in turn implies f, hi, ijj E C2. It 
yields 

v:, L(x*, A*, p*) ' 0 ----------- -1 ---------- 
(33) [y', G'] / 2.d 0 i O ' . . .  10 2/(,* 
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for all y E Rn, v = ( v l ,  . . . , v,) E Rr satisfying 

By setting vj = 0 for j E A(x*) and taking into account the fact pT = 0 for 
jg  A(x*) [compare with (32)] we obtain, from (33) and (34), 

(35) Y'V?, ~ ( x * ,  A*, p*)y 2 0, 

V y, with Vk(x*)'y = 0, Vgj(x*)'y = 0, j E A(x*). 

For every j with zT = 0, we may choose y = 0, vj # 0, and v, = 0, for k # j, 
in (33) to obtain 

(36) pT 2 0. 

Relations (31), (32), ( 3 9 ,  and (36) represent all the necessary conditions 
of Proposition 1.29. Thus we have obtained a proof of Proposition 1.29 
(under the assumption f; hi, g , ~  C2)  based on the transformation of the 
inequality constrained  problem"(^^^) to the equality constrained problem 
(29). . . 

The transformation described above may also be used to derive a set 
of sufficiency conditions for (NLP) which are somewhat weaker than those 
of Proposition 1.30. 

Proposition 1.31: Let x* be such that k(x*) = 0, g(x*) I 0, and, for 
some E > 0, f E C2, k E C2,  and g E C2 on S(X*; E) .  Assume that there exist 
vectors A* E Rm, p* E Rr satisfying 

V, L(x*, A*, p*) = 0, 

as well as the strict complementarity condition 

Assume further that for all y # 0 satisfying Vh(x*)'y = 0 and Vgj(x*)'y = 0, 
for all j E A(x*), we have 

y1V,2, L(x*, A*, p*)): > 0. 

Then x* is a strict local minimum for (NLP). 

Proof: From (31), (33), and (34), we see that our assumptions imply 
that the sufficiency conditions of Proposition 1.24 are satisfied for (x*, z*) 
and A*, p*, where z* = ( [ - g , ( ~ * ) ] ' / ~ ,  . . . , [ -gr(x*)]1 '2)  for problem (29). 
Hence (x*, z*) is a strict local minimum for problem (29) and it follows that 
x* is a strict local minimum off subject to k(x)  = 0, and g(x) I 0. Q.E.D. 
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We formalize some of the arguments in the preceding discussion in the 
following proposition. 

Proposition 1.32: If the sufficiency conditions for (NLP)  of Proposition 
1.31 hold, then the sufficiency conditions of Proposition 1.24 are satisfied 
for problem (29). If in addition x* is a regular point for (NLP) ,  then (x*, z*), 
where z* = ( [ - g , ( ~ * ) ] ' ~ ~ ,  . . . , [-gr(x*)]'I2), is a regular point for problem 
(29). 

Linear Constraints 

The preceding necessary conditions rely on a regularity assumption on 
the local minimum x* to assert the existence of a unique Lagrange multiplier 
vector. When x* is not regular, there are two possibilities. Either there 
does not exist a Lagrange multiplier vector or there exists an infinity of 
such vectors. There are a number of assumptions other than regularity 
that guarantee the existence of a Lagrange multiplier vector. A very useful 
one is linearity of the constraint functions as in the following proposition. 

Proposition 1.33: Let x* be a local minimum for the problem 

minimize f ( x )  

subject to aSx - b j  5 0, j = 1, .  . . , r, 

where f :  Rn -t R, b E Rr, and a j  E Rn, j = 1, . . . , r. Assume that, for some E > 0, 
f E C 1  on S(x*; E).  Then there exists a vector y* = (y?, . . . , y:) such that 

Sufficiency Conditions under Conoexity Assumptions 

Consider the convex programming problem 

(37) minimize f ( x )  

subject to g(x) 5 0, 

where we assume that the functions f and g,, . . . , gr are convex and differ- 
entiable over Rn. Then every local minimum is global, and the necessary 
optimality conditions of Proposition 1.29 are also sufficient as stated in the 
following proposition. 
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Proposition 1.34: Assume that f and g,, . . . , gr are convex and con- 
tinuously differentiable functions on Rn. Let x* E R" and p* E Rr satisfy 

Vf (x*) + Vg(x*)p* = 0, 

g (x* )10 ,  $ 2 0 ,  ,@gj(x*)=O, j = l ,  . . . ,  r .  

Then x* is a global minimum of problem (37). 

1.5 Algorithms for Minimization Subject to Simple Constraints 

There is a large number of algorithms of the feasible direction type for 
minimization of differentiable functions subject to linear constraints. A 
survey of some of the most popular ones may be found in the volume edited 
by Gill and Murray (1974), and computational results may be found in the 
paper by Lenard (1979). In this section, we shall focus on a new class of 
methods that is well suited for problems with simple inequality constraints 
such as those that might arise in methods of multipliers and differentiable 
exact penalty methods, where the simple constraints are not eliminated by 
means of a penalty but rather are treated directly (cf. Sections 2.4 and 4.3). 
We shall restrict ourselves exclusively to problems involving lower and/or 
upper bounds on the variables, but there are extensions of the class of al- 
gorithms presented that handle problems with general linear constraints 
(see Bertsekas, 1980~). 

Consider the problem 

(SCP) minimize f (x) 

subject to x 2 0, 

where f :  Rn -t R is a continuously differentiable function. By applying 
Proposition 1.22, we obtain the following necessary conditions for optimality 
of a vector x* 2 0. 

(la) 2f (x*)/dxi = 0 if x * ~  > 0, i = 1, .  . . , n, 

An equivalent way of writing these conditions is 

(2) x* = [x* - aVf (x*)]+, 

where u is any positive scalar and [.I' denotes projection on the positive 
orthant; i.e., for every z = (zl, . . . , zn), 



1.5 SIMPLE CONSTRAINTS 77 

If a vector x* 2 0 satisfies (I), we say that it is a critical point with respect to 
(SCP). 

Equation (2) motivates the following extension of the steepest descent 
method 

where ci, is a positive scalar stepsize. There are a number of rules for choosing 
a, that guarantee that limit points of sequences generated by iteration (4) 
satisfy the necessary condition (1) (Goldstein, 1964, 1974; Levitin and 
Poljak, 1965; McCormick, 1969; Bertsekas, 1974~). The rate of convergence 
of iteration (4) is however at best linear for general problems. We shall 
provide Newton-like generalizations of iteration (4) which preserve its 
basic simplicity while being capable of superlinear convergence. 

Consider an iteration of the form 

where D, is a positive definite symmetric matrix and r, is chosen by search 
along the arc of points 

It is easy to construct examples (see Fig. 1.2) where an arbitrary choice of 
the matrix D, leads to situations where it is impossible to reduce the value 

FIG. 1.2 
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of the objective by suitable choice of the stepsize a (i.e., f [x,(a)] 2 f(x,) 
Q cr 2 0). The following proposition identifies a class of matrices D, for which 
an objective reduction is possible. Define, for all x 2 0, 

We say that a symmetric matrix D with elements dij is diagonal with 
respect to a subset of indices I c {1,2, . . . , n},  if 

Proposition 1.35: Let x 2 0 and D be a positive definite symmetric 
matrix which is diagonal with respect to I + (x), and denote 

(a) The vector x is a critical point with respect to (SCP), if and only if 

x = x(a) Q a 2 0. 

(b) If x is not a critical point with respect to (SCP), there exists a scalar 
Z > 0 such that 

Proof: Assume without loss of generality that for some integer r, we 
have 

I+(x) = {r  + 1, .  . . , n) .  

Then D has the form 

where B is positive definite and di > 0, i = r + 1, . . . , n. 
Denote 

(12) p = DVf (x). 

(a) Assume x is a critical point. Then, using (I), (7), 

These relations and the positivity of di, i = r + 1, . . . , n, imply that 
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Since xi(cc) = [xi - api]+ and xi = 0 for i = r + 1,.  . . , n, it follows that 
xi(cc) = xi, for all i, and cc 2 0. 

Conversely assume that x = x(a) for all a 2 0. Then we must have 

p i = O  V i = l ,  ..., n with x i > O ,  

pi 2 0 V i = 1, .  . . , n with xi = 0. 

Now by definition of I+(x), we have that if xi = 0 and i #  I+(x), then 
df (x)/dxi 5 0. This together with the relations above imply 

Since, by (I 1) and (12), 

and D is positive definite, it follows that 

Since, for i = r + 1, . . . , n, df (x)/axi > 0, and xi = 0, we obtain that x is a 
critical point. 

(b) For i = r + 1, .  . . , n, we have df (x)/dxi > 0, xi = 0, and, from 
(1 1) and (l2), pi > 0. Since xi(cc) = [xi - %pi] +, we obtain 

Consider the sets of indices 

(14) I l = { i l x i > O  or x i = O  and p i < O ,  i = l ,  . . . ,  r), 

(15) 1, = {ijxi = 0 and pi 2 0, i = 1 , . . . ,  r). 

Let 

(16) a, = sup{cc 2 OIxi - rpi 2 0, i~ I,) .  

Note that, in view of the definition of I,, cc, is either positive or + E. Define 
the vector p with coordinates 

In view of (13)-(16), we have 

(18) X(X) = X - cip v ci E (0, XI), 
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In view of (15) and the definition of I'(x), we have 

and hence 

Now using (17) and (20), we have 

Since x is not a critical point, by part (a) and (18), we must have x # x(a) 
for some cx > 0, and hence also in view of (l3), pi # 0 for some i E (1, . . . , r ) .  
In view of the positive definiteness of and (1 1) and (12), it follows that 

It follows, from (21), that 

Combining this relation with (18) and the fact that a, > 0, it follows that 
p is a feasible descent direction at x and there exists a scalar Z > 0 for which 
the desired relation (10) is satisfied. Q.E.D. 

Based on Proposition 1.35, we are led to the conclusion that the matrix 
Dk in the iteration 

should be chosen diagonal with respect to a subset of indices that contains 

Unfortunately, the set Ii(xk) exhibits an undesirable discontinuity at 
the boundary of the constraint set whereby given a sequence {x,) of interior 
points that converges to a boundary point Z, all the sets I+(xk) may be 
strictly smaller than the set I f  (Z). This causes difficulties in proving con- 
vergence of the algorithm and may have an adverse effect on its rate of 
convergence. (This phenomenon is quite common in feasible direction 
algorithms and is referred to as zigzagging or jamming.) For this reason, 
we shall employ certain enlargements of the sets I+(xk) with the aim of 
bypassing these difficulties. 
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The algorithm that we describe utilizes a scalar i: > 0 (typically small), 
a fixed? diagonal positive definite matrix M (for example, the identity), 
and two parameters /? E (0, 1) and a E (0, i) that will be used in connection 
with an Armijo-like stepsize rule. An initial vector x, 2 0 is chosen and at 
the kth iteration of the algorithm, we have a vector x, 2 0. Denote 

(Actually there are several other possibilities for defining the scalar ck as 
can be seen by examination of the proof of the subsequent proposition. I t  is 
also possible to use a separate scalar r:; for each coordinate.) 

(k  + 1)st lterution of the Algorithm 

We select a positive definite symmetric matrix Dk which is diagonal 
with respect to the set 1: given by 

Denote 

Then x, + , is given by 

( 2 5 )  Xk+ 1 = -~k (~k )>  

where 

and m, is the first nonnegative integer m such that 

The stepsize rule (26) and (27) is quite similar to the Armijo rule of 
Section 1.3. We have chosen a unity initial stepsize. but any other positive 
initial stepsize can be incorporated in the matrix D,, so this choice involves 
no loss of generality. The results that follow can also be proved if 

f Actually the reaults thal follow can alho be proved I I '  the fixed lnatrlx .CI 15 replaced by a 
sequence oi'diagonal poait~vc detintte ~natricea ;.W,; w i t h  diagonal clernenth that are bounded 
abo \e  and away from zero. 
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SET O F  ACCEPTABLE ACCEPTABLE UNSUCCESSFUL 
TRIAL STEPSIZES 

0 

FIG. 1.3 Line search by the Armijo-like rule (26), (27). 

in (27) is replaced by y, xi$,; [af (xk)/dxi]ph, where y, = min{l, E,) and 
ii, = sup{x Ixh - up; 2 0 6 i $ I:). Other variations of the stepsize rule are 
also possible. The process of determining the stepsize a, is illustrated in 
Fig. 1.3. When 1: is empty, the right-hand side of (27) becomes apmVf (xk)'pk 
and is identical to the corresponding expression of the Armijo rule for 
unconstrained minimization. Note that, for all k, 1: 3 I+(x,) so D, is 
diagonal with respect to I'(x,). It is possible to show that for all m 2 0, 
the right-hand side of (27) is nonnegative and is positive if and only if x, 
is not a critical point. Indeed since D, is positive definite and diagonal with 
respect to I:, we have 

while for all i E I:, in view of the fact df (xk)/dxi > 0, we have pi > 0, and 
hence 

This shows that the right-hand side of (27) is nonnegative. If x, is not critical, 
then it is easily seen [compare also with the proof of Proposition 1.35(b)] 
that one of the inequalities (28) or (29) is strict for cx > 0 so the right-hand 
side of (27) is positive for all m 2 0. A slight modification of the proof of 
Proposition 1.35(b) also shows that if x, is not a critical point, then (27) will 
be satisfied for all m sufficiently large so the stepsize sc, is well defined and 
can be determined via a finite number of arithmetic operations. If x, is a 
critical point then, by Proposition 1.35(a), we have x, = x,(r) for all r 2 0. 
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Furthermore the argument given in the proof of Proposition 1.35(a) shows 
that 

so both terms in the right-hand side of (27) are zero. Since also xk = xk(a) 
for all a 2 0, it follows that (27) is satisfied for m = 0 thereby implying 
that 

xk+ , = xk(l) = xk if xk is critical. 

In conclusion the algorithm is well defined, decreases the value of the 
objective function at each iteration k for which xk is not a critical point, and 
essentially terminates if x, is critical. We proceed to analyze its convergence 
and rate of convergence properties. To this end, we shall make use of the 
following two assumptions: 

Assumption (A): The gradient V f is Lipschitz continuous on each bounded 
set of Rn; i.e., given any bounded set S c Rn there exists a scalar L (depending 
on S) such that 

(30) IVf(x) - Vf(y)I I LIx - Y I  VX,YES. 

Assumption (B): There exist positive scalars A,  and I., and nonnegative 
integers q ,  and q2, such that 

(31) A,wg11z12 I zfDkz I A , w ~ ~ / z / ~  VzeRn,  k = 0,1, ... , 

where 
Wk = Ixk  - Cxk - MVf(xk)l+ 1. 

Assumption (A) is not essential for the result of Proposition 1.36 that 
follows but simplifies its proof. It is satisfied for just about every problem 
likely to appear in practice. For example, it is satisfied when f is twice differ- 
entiable, as well as when f is an augmented Lagrangian of the type con- 
sidered in Chapter 3 for problems involving twice differentiable functions. 
Assumption (B) is a condition of the type utilized in connection with un- 
constrained minimization algorithms (compare with the discussion preceding 
Proposition 1.8). When q, = q,  = 0, relation (31) takes the form 

(32) A,lzI2 I zlDkz I A2lzI2 VZER", k = 0, 1 ,..., 
and simply says that the eigenvalues of D, are uniformly bounded above 
and away from zero. 

Proposition 1.36: Under Assumptions (A) and (B) above, every limit 
point of a sequence {x,) generated by iteration (25) is a critical point with 
respect to (SCP). 
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Proof: Assume the contrary; i.e., there exists a subsequence {x,) ,  
converging to a vector Z which is not critical. Since { f  (x,)) is decreasing 
and f  is continuous, it follows that { f  (x,)) converges to f  (F) and therefore 

[ f ( ~ k >  - f ( x k + I > l  - 0. 

Since each of the sums in the right-hand side of (27)  is nonnegative [compare 
with (28)  and (29)] ,  we must have 

Also since 2 is not critical and M is positive definite and diagonal, we have 
clearly 1 %  - [Z - M V f  (Z)]' I # 0, so (31)  implies that the eigenvalues of 
{D,), are uniformly bounded above and away from zero. In view of the 
fact that D, is diagonal with respect to I:, it follows that there exist positive 
scalars 2, and 2, such that, for all k E K that are sufficiently large, 

We shall show that our hypotheses so far lead to the conclusion that 

lim inf a, = 0. 
k +  m 
k o K  

Indeed since Z is not a critical point, there must exist an index i such that 
either 

(38)  xi > 0 and d f (2 ) / dx i  # 0 

(39)  Zi = 0 and af (2) /dx i  < 0. 

If i $1: for an infinite number of indices k E K, then (37)  follows from 
(33) ,  (36) ,  (38) ,  and (39). If i E I: for an infinite number of indices k E K, 
then for all those indices we must have d f ( xk ) / 5x i  > 0, so (39)  cannot hold. 
Therefore, from (38) ,  

(40) Zi > 0 and df (%)/axi  > 0. 



1.5 SIMPLE CONSTRAINTS 85 

Since, for all k E K for which i E I: [compare with (29)], we have 

it follows from (34) and (40) that 

Using the above relation, (35), and (40), we obtain (37). 
We shall complete the proof by showing that {cr,), is bounded away 

from zero thereby contradicting (37). Indeed in view of @I), the subsequences 
{xk),, {pk),, and {xk(x)),, cr E [O,l], are uniformly bounded, so by Assump- 
tion (A) there exists a scalar L > 0 such that, for all t E [0, 11, cr E [0, 11, and 
k E K, we have 

For all k E K and a E [O,l], we have 

and finally, by using (41), 

For i E I:, we have xh(a) = [xi - xph] + 2 xi - api and pi > 0, so 
0 I xi - xi(&) I xpt. It follows, using (39,  that 

Consider the sets 
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For all i E I we must have xi > E, for otherwise we would have i E I:. 
Since 12 - [Z - MVf (Z) ]  + I # 0, we must have lim inf,, ,, , , , E, > 0 and 
E, > 0 for all k. Let .G > 0 be such that 2 5 E, for all k E K, and let B be such 
that \ p i  1 5 B for all i and k E K. Then, for all a E [0, ElB], we have xi(a)  = 

xi - ap:, so it follows that 

Also, for all a 2 0, we have xi - xi(a)  5 a&, and since af (xk) /ax i  5 0, 
for all i E 12,,, we obtain 

Combining (44)  and ( 4 9 ,  we obtain 

For all a 2 0, we also have 

Furthermore, it is easily seen, using Assumption (B), that there exists I > 0 
such that 

Using the last two relations, we obtain, for all a 2 0, 

We now combine (42), (43), (46) ,  and (47)  to obtain, for all a E [0, E/B] 
withsr I l a n d k ~ K ,  

Suppose a is chosen so that 
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or equivalently 

Then we have from (48) and (49)' for all k E K ,  

This means that if (50) is satisfied with pm = a, then the inequality (27) of 
the Armijo-like rule will be satisfied. It follows from the way the stepsize is 
reduced that a, satisfies 

This contradicts (37) and proves the proposition. Q.E.D. 

We now focus attention at a local minimum x* satisfying the following 
second-order sufficiency conditions which are in fact the ones of Proposition 
1.31 applied to (SCP), as the reader can easily verify. For all x 2 0, we 
denote by A(x)  the set of indices of active constraints at x ;  i.e., 

Assumption (C): The local minimum x* of (SCP) is such that, for some 
6 > 0, f ' is  twice continuously dlflerentiable in the open sphere S(x*; 6 )  and 
there exist positive scalars m ,  and m2 such that 

(53) m , 1 ~ 1 ~ I z ' V ~ f ( x ) z I m ~ 1 ~ 1 ~  V x ~ S ( x * ; 6 )  and z f O ,  

such that zi = 0 V i E A(x*). 

Furthermore, 

The following proposition demonstrates an important property of the 
algorithm, namely, that under mild conditions it is attracted by a local 
minimum x* satisfying Assumption ( C )  and identijies the set of active con- 
straints at x* in a finite number of iterations. Thus, if the algorithm converges 
to x*, then after afinite number of iterations it is equivalent to an unconstrained 
optimization method restricted on the subspace of active constraints at x*. 
This property is instrumental in proving superlinear convergence of the 
algorithm when the portion of D,, corresponding to the indices i # I:, is 
chosen in a way that approximates the inverse of the portion of the Hessian 
off corresponding to these same indices. 
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Proposition 1.37: Let x* be a local minimum of (SCP) satisfying 
Assumption (C), and let Assumption (B) hold in the stronger form whereby, 
in addition to (31), it is assumed that there exists a scalar 2, > 0 such that 
the diagonal elements d i  of the matrices D, satisfy 

There exists a scalar 6 > 0 such that if {x,) is a sequence generated by 
iteration (25) and for some index I( we have 

1xE - x*I 1 8, 

then {x,) converges to x*, and we have 

I: = A(x,) = A(x*) V k 2 k + 1. 

Proof: Since f is twice differentiable on S(x*; 6), it follows that there 
exist scalars L > 0 and dl E (0, dl such that for all x and Y with I x - x* I 1 dl 
and - x*1 1 dl, we have 

Also for x, sufficiently close to x*, the scalar 

wk = I Xk - Cxk - Mf ( ~ k ) l +  / 

is arbitrarily close to zero while, in view of (54), we have 

where mi is the ith diagonal element of M. It follows that, for x, sufficiently 
close to x*, we have 

while 

Since, by Assumption (C), ~f(xk)/2xi  > 0 for all i E A(x*) and x, sufficiently 
close to x*, (56) and (57) imply that there exists 6, E (0, d l ]  such that 

(58) A(x*) = I: V k such that xk - x* 1 1 6, 

Also there exist scalars E > 0 and 6, E (0,6,] such that 

(59) x; > E V i 4 A(x*) and k such that 1 x, - x* 1 1 6,. 
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By repeating the argument in the proof of Proposition 1.36 that led to (51), 
we find that there exists a scalar 5 > 0 such that 

(60) 2 , 2 Z  V k  suchthat I x ~ - x * ~ < ~ ~ .  

By using (55) and (58), i t  follows that 

(61) 0 < X ,  df (xk)/5xi I p: V  i E A(x*) and k  
such that I x, - x* 1 I 63, 

while, by Assumption (B), there exists a scalar A > 0 such that 

V k  suchthat l x , - x * l 1 6 ~ .  
i Q A ( x * )  

Since Zf (x*)/dxi > 0 for all i E A(x*) and df (x*)/dxi = 0 for all i $ A(x*), it 
follows from (58)-(62) that there exists a scalar 6, E (0, 631 such that 

(63) A(x*) = A(x,+ ,) V  k  such that Ix, - x* 1 1 6, 

and 

(64) I x , + , - x i -  * ' 6  , V k  suchthat I x k - x * l < 6 ,  

In view of (58), we obtain, from (63) and (64), 

(65) A(x*) = A(.Y,+ ,) = Ik+, , V  k  such that Ixk - x* 1 I 6,. 

* < 6  Thus when Ix, - x *  I d , ,  we have jx,+, - x  1 -  ,, A(x*)= A(x,+,), 
and the ( k  + 1)th iteration of the algorithm reduces to an iteration of an 
unconstrained minimization algorithm on the subspace of active constraints 
at x* to which Proposition 1.12 applies. From this proposition, it follows 
that there exists an open set N(x*) containing x* such that N(x*) c S(x*; 6,) 
and with the property that if x k f l  E N(x*) and A(x,+,) = A(x*), then 
x, + , E N(x*) and, by (63), A(x,- ,) = A(x*). This argument can be repeated 
and shows that if for some k 2 0 we have 

x i  E N(x*), A(xi) = A(x*), 

then {x,) + x* and 

x, E N(x*), A(x,) = A(x*) V k  2 k. 
To complete the proof, it is sufficient to show that there exists 6 > 0 such 
that if / x, - x* I I 8 then x, +, E N(x*) and A(x,, ,) = A(x*). Indeed by 
repeating the argument that led to (63) and (64), we find that given any 
6 > 0 there exists a 8 > 0 such that if / x k  - x* 1 I 8, then 

By taking 2 sufficiently small so that S(x*; d) c Ri(x*) the proof is com- 
pleted. Q.E.D. 
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Under the assumptions of Proposition 1.37, we see that if the algorithm 
converges to a local minimum x* satisfying Assumption (C) then it reduces 
eventually to an unconstrained minimization method restricted to the 
subspace 

S* = {xIxi = 0, V i~ A(x*)). 

Furthermore, as shown in the proof of Proposition 1.37 [compare with 
(%)I, for some index E,  we shall have 

(66) 1: = A(x*) V k  2 &. 
This shows that if the portion of the matrix D, corresponding to the indices 
i $ I: is chosen to be the inverse of the Hessian off with respect to the indices 
i q! I:, then the algorithm eventually reduces to Newton's method restricted 
to the subspace S*. 

More specifically, by rearranging indices if necessary, assume without 
loss of generality that 

(67) I: = { r k  + 1, . . . , n ) ,  

where r, is some integer. Then D, has the form 

where d i  > 0, i = r, + 1, . . . , n, and Dk can be an arbitrary positive definite 
matrix. Suppose we choose D, to be the inverse of the Hessian off with 
respect to the indices i = 1, . . . , r,; i.e., the elements [D;'Iij of DL' are 

By Assumption (C), VZf (x*) is positive definite on S*, SO it follows from 
(66) that this choice is well defined and satisfies the assumption of Proposition 
1.37 for k sufficiently large. Since the conclusion of this proposition asserts 
that the method eventually reduces to Newton's method restricted to the 
subspace S*, a superlinear convergence rate result follows. This type of 
argument can be used to construct a number of Newton-like and quasi- 
Newton methods and prove corresponding convergence and rate of con- 
vergence results. We state one of the simplest such results regarding a 
Newton-like algorithm which is well suited for problems where f is strictly 
convex and twice differentiable. Its proof follows simply from the preceding 
discussion and Propositions 1.15 and 1.17 and is left to the reader. 
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Proposition 1.38: Let f be convex and twice continuously differentiable. 
Assume that (SCP) has a unique optimal solution x* satisfying Assumption 
(C), and there exist positive scalars m ,  and m2, such that 

Assume also that in the algorithm (22)-(27), the matrix D, is given by 
D, = H;' ,  where H, is the matrix with elements H? given by 

if i f j  andeither i~l: or j~l:, 
82f(xk)/dxi dxj otherwise. 

Then the sequence {x,) generated by iteration (25) converges to x*, and 
the rate of convergence of { (x, - x* ( ) is superlinear (of order at least two if 
V2fis Lipschitz continuous in a neighborhood of x*). 

It is worth noting that when f (x) is a positive definite quadratic function, 
the algorithm of Proposition 1.38 finds the unique solution x* in a finite 
number of iterations, assuming x* satisfies Assumption (C). 

An additional property of the algorithm of Proposition 1.38 is that after 
a finite number of iterations and once the set of binding constraints is 
identified, the initial unity stepsize is accepted by the Armijo rule. Computa- 
tional experience with the algorithm suggests that this is also true for most 
iterations even before the set of binding constraints is identified. In some 
cases, however, it may be necessary to reduce the initial unity stepsize 
several times before a sufficient reduction in objective function value is 
effected. A typical situation where this may occur is when the scalar 7 ,  
defined by 

is much smaller than unity. Under these circumstances a nonbinding con- 
straint that was not included in the set I: becomes binding after a small 
movement along the arc {xk(cc)l r 2 0) and it may happen that the objective 
function value increases as a becomes larger than 7,. To correct such a 
situation, it may be useful to modify the Armijo rule so that if after a fixed 
number r of trial stepsizes 1, p, . . . . pr -  ' have failed to pass the Armijo 
rule test, then 7,  is computed and, if i t  is smaller than p-', it is used as the 
next trial stepsize. 

Another (infrequent) situation, where the algorithm of Proposition 1.38 
can exhibit a large number of stepsize reductions and slow convergence 
when far from the optimum, arises sometimes if the set of indices 
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where p, = DkVf (x,), is strictly larger than the set I: of (22). (Note that, 
under the assumptions of Proposition 1.38, we always have I: c 1: with 
equality holding in a neighborhood of the optimal solution x*.) Under these 
circumstances, the initial motion along the arc {x(cc) I cc 2 0) may be along a 
search direction that is not a Newton direction on any subspace. A possible 
remedy for this difficulty is to combine the Armijo rule with some form 
of line minimization rule. 

Extension to Upper and Lower Bounds 

The algorithm (22)-(27) described so far in this section can be easily 
extended to handle problems of the form 

minimize f (x) 

subject to b ,  l x 5 b 2 ,  

where b ,  and b, are given vectors of lower and upper bounds. The set I: 
is replaced by 

I,# = {il bi I xg I bi + E, and Sf (x,)/2xi > 0 
or b\ - E, I xi I b$ and df (xk)/2xi < 01, 

and the definition of x,(cc) is changed to 

where for all z  E R" we denote by [z]' the vector with coordinates 

bi if b\ I 2, 
zi if b ' , < z i < b \ ,  
b', if zi I b;. 

The scalar E, is given by 

E, = min{s, I x, - [x, - MVf (xk)] " 1 >. 

The matrix D, is positive definite and diagonal with respect to I,#, and M 
is a fixed diagonal positive definite matrix. The iteration is given by 

where r,  is chosen by the Armijo rule (26), (27) with [xi - x@~) ]+  replaced 
by [xg - x~(Pm)]#. 

Similar extensions of the basic algorithm can be provided for problems 
where only some of the variables xi are simply constrained by upper and/or 
lower bounds. 



1.6 Notes and Sources 

Notes on Section 1.2: The proof of the second implicit function theorem 
may be found in Hestenes (1966, p. 23). The theorem itself is apparently due 
to Bliss (Hestenes, personal communication). 

Notes on Section 1.3: The convergence analysis of gradient methods 
given here stems from the papers of Goldstein (1962, 1966), and bears sim- 
ilarity with the corresponding analysis in Ortega and Rheinboldt (1970). 
Some other influential works in this area are Armijo (1966), Wolfe (1969), 
and Daniel (1971). Zangwill(1969) and Polak (1971) have proposed general 
convergence theories for optimization algorithms. The gradient method 
with constant stepsize was first analyzed by Poljak (1963). Proposition 1.12 
is thought to be new. The linear convergence rate results stem from Kan- 
torovich (1945) and Poljak (1963), while the superlinear rate results stem 
from Goldstein and Price (1967). For convergence rate analysis of the 
steepest descent method near local minima with singular Hessian, see Dunn 
(1981b). The spacer step theorem (Proposition 1.16) is due to Zangwill 
(1969). For an extensive analysis and references on Newton-like methods, 
see Ortega and Rheinboldt (1970). The modification scheme for Newton's 
method based on the Cholesky factorization is related to one due to Murray 
(1972). 

Conjugate direction methods were originally developed in Hestenes and 
Stiefel(1952). Extensive presentations may be found in Faddeev and Faddeeva 
(1963), Luenberger (1973), and Hestenes (1980). Scaled (k + 1)-step con- 
jugate gradient methods for problems with Hessian matrix of the form 

were first proposed in Bertsekas (1974a). For further work on this subject, 
see Oren (1978). 

Extensive surveys of quasi-Newton methods can be found in Avriel 
(1976), Broyden (1972), and Dennis and More (1977). 

Notes on Section 1.4: Presentations of optimality conditions for con- 
strained optimization can be found in many sources including Fiacco and 
McCormick (1968), Mangasarian (1969), Cannon et al. (1970), Luenberger 
(1973), and Avriel(1976). For a development of optimality conditions based 
on the notion of augmentability, which is intimately related to methods of 
multipliers, see Hestenes (1975). 

Notes on Section 1.5: The methods in this section are new and were 
developed while the monograph was being written. Extensions to general 
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linear constraints may be found in Bertsekas (1980~). The methods are par- 
ticularly well suited for large scale problems with many simple constraints. 
An example is nonlinear multicommodity flow problems arising in com- 
munication and transportation networks (see Bertsekas and Gafni, 1981). 
The constrained version of the Armijo rule (26), (27) is based on a similar 
rule first proposed in Bertsekas (1974~). The main advantage that the methods 
of this section offer over methods based on active set strategies [compare 
with Gill and Murray (1974) and Ritter (1973)l is that there is no limit to the 
number of constraints that can be added or dropped from the active set in 
a single iteration, and this is significant for problems of large dimension. At 
the same time, there is no need to solve a quadratic programming problem 
at each iteration as in the Newton and quasi-Newton methods of Levitin 
and Poljak (1965), Garcia-Palomares (1975), and Brayton and Cullum (1979). 



Chapter 2 

The Method of Multipliers for 
Equality Constrained Problems 

The main idea in the methods to be examined in this chapter is to approxi- 
mate a constrained minimization problem by a problem which is consi- 
derably easier to solve. Naturally by solving an approximate problem, we 
can only expect to obtain an approximate solution of the original problem. 
However, if we can construct a sequence of approximate problems which 
"converges" in a well-defined sense to the original problem, then hopefully 
the corresponding sequence of approximate solutions will yield in the 
limit a solution of the original problem. 

It may appear odd at first sight that we would prefer solving a sequence 
of minimization problems rather than a single problem. However, in practice 
only a finite number of approximate problems need to be solved in order to 
obtain what would be an acceptable approximate solution of the original 
problem. Furthermore, usually each approximate problem need not be 
solved itself exactly but rather only approximately. In addition, one may 
utilize efficiently information obtained from each approximate problem 
in the solution of the next approximate problem. 
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2.1 The Quadratic Penalty Function Method 

The basic idea in penalty methods is to eliminate some or all of the 
constraints and add to the objective function a penalty term which prescribes 
a high cost to infeasible points. Associated with these methods is a para- 
meter c, which determines the severity of the penalty and as a consequence 
the extent to which the resulting unconstrained problem approximates the 
original constrained problem. As c takes higher values, the approximation 
becomes increasingly accurate. In this chapter, we restrict attention to the 
popular quadratic penalty function. Other penalty functions will be con- 
sidered in Chapter 5. 

Throughout this section we consider the problem 

minimize f (x) 

subject to x E X, h(x) = 0, 

where f: Rn -t R, h: R" -t Rm are given functions and X is a given subset of 
R". We assume throughout that problem (1) has at least one feasible solution. 

For any scalar c, let us define the augmented Lagrangian function 
LC: R" x Rm + R by 

(2) L,(x, A) = f (x) + A'h(x) + icI h(x)I2. 

We refer to c as the penalty parameter and to A as the multiplier vector (or 
simply multiplier). 

The quadratic penalty method consists of solving a sequence of problems 
of the form 

minimize Lc,(x, A,) 

subject to x EX,  

where {A,) is a bounded sequence in Rm and {c,) is a penalty parameter 
sequence satisfying 

O < C k < C k + l  Qk, Ck+rn .  

In the original version of the penalty method the multipliers i, are taken 
to be equal to zero, 

A , = O  Q k = O , l ,  . . . ,  

and the method depends for its success on sequentially increasing the 
penalty parameter to infinity. We shall see later in this chapter that it is 
possible to improve considerably the performance of the method (under 
certain assumptions) by employing nonzero multipliers i, and by updating 
them in an intelligent manner after each minimization of the form (3). 
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In this section, however, we concentrate on the effect of the penalty parameter, 
and we make no assumption on {A,) other than boundedness. 

The rationale for the penalty method is based on the fact that when 
{A,) is bounded and c, -, co, then the term 

which is added to the objective function, tends to infinity if h(x) # 0 and 
equals zero if h(x) = 0. Thus, if we define the functionfl Rn + (- m, + ccj] by 

f ( x )  if h(x) = 0, 
00 

i(x) = { 
if h(x) # 0, 

the optimal value of the original problem can be written as 

(4) f * = inf f ( x )  = inf J ( x )  = inf lim Lck(x, A,). 
h(x)  = 0 X E X  x o X  k - m  . . 

x o x  

On the other hand, the penalty method determines, via the sequence of mini- 
mizations (3), 

J; = lim inf Lck(x, A,). 
k-m X E X  

Thus, in order for the penalty method to be successful, the original problem 
should be such that the interchange of "lim" and "inf " in (4) and ( 5 )  is valid. 
The following proposition guarantees the validity of the interchange, under 
mild assumptions, and constitutes the basic convergence result for the 
penalty method. 

Proposition 2.1 : Assume that f and h are continuous functions and X is 
a closed set. For k = 0, 1, . . . , let x, be a global minimum of the problem 

(6) minimize Lc,(x, A,) 
subject to x E X, 

where (A,) is bounded and 0 < c, < c,,, for all k, c, -, x. Then every 
limit point of the sequence (x,) is a global minimum off subject to x E X, 
h(x) = 0. 

Proof: Let .% be a limit point of (x,). We have by definition of x, 

Let f * denote the optimal value of the original problem. We have 

f * = inf f ( x )  = inf Lck(x, A,). 
h(x) = 0 h(x) = 0 
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Hence, by taking the infimum of the right-hand side of (7) over x E X ,  
h(x)  = 0, we obtain 

The sequence {A,) is bounded and hence it has a limit point 1. Without 
loss of generality, we may assume A, + 2. By taking the limit superior in 
the relation above and by using the continuity off and h, we obtain 

(8)  f (Z) + Z'h(Z) + lim sup 3ck 1 h(xk) j 2  If *. 
k - c o  

Since I  h(x,) l 2  2 0, ck + a, it follows that we must have h(x,) -+ 0 and 

for otherwise the limit superior in the left-hand side of (8) will equal + co. 
Since X is a closed set we also obtain that Z E X. Hence Z is feasible, and 

Using (8), (9), and ( lo ) ,  we obtain 

f * + lim sup i c ,  I  h(xk) l 2  5 f (x) + lim sup t c ,  I  h(x,) l 2  sf  *. 
k - m  k -  x 

Hence, 

lim +ck 1  h(x,) l 2  = 0 
k - x  

and 

f (3 = f *, 
which proves that 2 is a global minimum for problem (1). Q.E.D. 

The proposition shown above has several weaknesses. First, it assumes 
that the problem 

minimize L,,(x, A,) 

subject to x E X 

has a global minimum. This may not be true, even if the original problem 
( 1 )  has a global minimum. As an example, consider the scalar problem 

minimize -x4 

subject to x = 0. 

This problem has, of course, a unique global minimum-the point x* = 0. 
We have 

LCk(x, 1,) = - x4 + Akx + +ck x2. 
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Clearly, inf, Lck(x, A,) = - a, and Lck(x, A,) has no global minimum for 
every c, and A,. This example shows a weakness of the penalty method 
and focuses attention at a situation where some care should be exercised. 
One should choose the order of growth of the penalty function in such a 
way that the augmented Lagrangian has a minimum. For instance, in the 
example above if we use a penalty function of the form 

where p > 4, then Lck(x, A,) has a global minimum for every A, and c, > 0. 
We shall consider such penalty functions in Chapter 5. If one cannot find 
a suitable penalty function, an alternative is to impose additional artificial 
constraints on the problem so that the constraint set X is compact. Then 
L,,(x, A,) will attain a global minimum over X by Weierstrass' theorem. 
Another possibility is to replace the objective function f by an equivalent 
objective which is bounded below, such as ef'"', although this is seldom 
recommended as it tends to introduce numerical difficulties. 

A second weakness of Proposition 2.1 is that it relates exclusively to 
global (as opposed to local) minima of both the original problem and the 
augmented Lagrangian. The following proposition remedies the situation 
somewhat. We first introduce a definition: 

Definition: A nonempty set X* c Rn is said to be an isolated set of 
local minima of problem ( 1 )  if each point in X* is a local minimum of problem 
( 1 )  and, for some E > 0, the set 

contains no local minima of problem ( 1 )  other than the points of X*. 

Note that a strict local minimum may be viewed as an isolated set of 
local minima consisting of a single point. 

Proposition 2.2: Let f and h be continuous functions, X be a closed set, 
{A,) be bounded, and 0 < c, < c,, , for all k, c, -, co. Assume that X* is 
an isolated set of local minima of problem ( 1 )  which is compact. Then 
there exists a subsequence {x,), converging to a point x* E X* such that 
x, is a local minimum for the problem 

(12) minimize Lck(x, A,) 
subject to x E X 

for each k E K. Furthermore, if X* consists of a single point x*, there exists a 
sequence {x,) and an integer k 2 0 such that x, -, x* and x, is a local 
minimum of problem (12) for all k 2 E. 
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Proof: Consider the set 

X: = {x 1 ( x  - x* I I E' for some x* E X*}, 

where 0 < E' < E and E is as in (1 1). The compactness of X* implies thatX: is 
also compact, and hence the problem 

minimize Lck(x, A,) 

subject to x E X: n X 

has a global minimum x, by Weierstrass' theorem. By Proposition 1.1, 
every limit point of (x,) is a global minimum of the problem 

minimize f (x) 

subject to x E X: n X, h(x) = 0. 

Furthermore, each global minimum of the problem above must belong to 
X* by the definition of X:. It follows that there is a subsequence {x,),. 
converging to a point x* E X*. Let K = {k E K' 1 I x, - x* I < E') .  Then K 
is an infinite subset of the integers, and x, is a local minimum of problem (12) 
for each k E K. The argument given above proves also the last part of the 
proposition. Q.E.D. 

Both Propositions 2.1 and 2.2 assume implicitly that a method is avail- 
able that can find a local or global minimum of the augmented Lagrangian. 
On the other hand, unconstrained minimization methods are usually 
terminated when the gradient of the objective function is sufficiently small, 
but not necessarily zero. In particular, when X = R" and f, h~ C1 the 
algorithm for solving the unconstrained problem 

minimize Lck(x, 1,) 

subject to x E R" 

will typically be terminated at a point x, satisfying 

where E, is some small scalar. We address this situation in the next proposi- 
tion, where it is shown in addition that one can usualIy obtain as a by- 
product of the computation a Lagrange multiplier vector. 

Proposition 2.3: Assume that X = R and f, h E C'. For k = 0, 1,. . . , 
let x, satisfy 
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where {A,) is bounded, 0 < c, < c,,, for all k, c, + cc, and 0 I E, for all 
k, E, + 0. Assume that a subsequence {x,), converges to a vector x* such 
that Vh(x*) has rank m. Then for some vector A*; we have 

(2, + ~kh(~k))K + A*, 

Vf (x*) + Vh(x*)A* = 0, h(x*) = 0. 

Proof: Define for all k 

2, = CWx,)'Vh(x,)l - lVh(xk)'CVx LCk(xk, A,) - Vf (x,)]. 

Since V, Lc,(xk, A,) + 0, it follows that 

{i,), + A* A - [Vh(x*)'Vh(x*)] - 'Vh(x*)/Vf (x*), 

and 

V, Lo(x*, A*) = 0. 

Since {A,) is bounded and {A, + c,h(x,)), + A*, it follows that {c, h(x,)), 
is bounded. Since c, + cc, we must have h(x*) = 0. Q.E.D. 

Proposition 2.3 relates to the case where we utilize a method for un- 
constrained minimization which aims at finding for each k a critical 
point of the augmented Lagrangian. Assuming that the kth unconstrained 
minimization is terminated when I V, Lc,(x,, A,) 1 I E, where E, + 0, there 
are three possibilities: 

(a) The method breaks down, because for some k a vector x, satisfying 
I V, L,,(x,, A,) I < E, cannot be found. 

(b) A sequence {x,) with I V, Lck(x,. A,) 1 I E, for all k is found, but it 
either has no limit points, or for each of its limit points X* the matrix Vh(x*) 
has linearly dependent columns. 

(c) A sequence {x,) with I V, Lck(x,, i,) / I E, for all k is found and it 
has a limit point x* with Vh(x*) having rank m. This point x* together with 
i*-the corresponding limit point of (2 ,  + c,h(x,))-satisfies the first-order 
conditions for optimality. 

Possibility (a) will usually occur if LC,(., IL,) is unbounded below as 
discussed following Proposition 2.1. 
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Possibility (b) usually occurs when LC,( . ,  A,) is bounded below, but the 
original problem has no feasible solution. Typically then the penalty term 
dominates as k + co, and the method usually converges to an infeasible 
vector x* which is a critical point of the function I h (x )  1'. This means that 
Vh(x*)h(x*)  = 0 implying that V h ( x * )  does not have rank m. However 
possibility (b) may also occur even if the original problem has a feasible 
solution. A typical example is when f ( x )  A 0 and A, = 0 .  Then for all c, > 0 ,  
a vector x* is a critical point of L C , ( .  , 0 )  if and only if it is a critical point 
of the function lh(x)I2, or equivalently if and only if Vh(x*)h(x*)  = 0 .  If 
Vh(x*)  does not have rank m, it is possible that Vh(x*)h(x*)  = 0 while 
h(x*)  # 0 .  This can occur regardless of whether there is a feasible solution. 
We provide an example of such a situation. 

Example: Let n = 2, m = 2,  f ( x )  2 0 ,  

h , ( x , ,  x 2 )  = X I  - 3, h 2 ( x 1 ,  x 2 )  = - 2 x 1  + x : .  

The vectors ($, f , / 2 3 )  are the only feasible solutions. On the other 
hand for the infeasible vector x* = (-  1 , O )  we have, for all c > 0 ,  

Possibility (c) is the normal case where the unconstrained minimization 
algorithm terminates successfully for each k and { x , )  converges to a feasible 
vector which is also a regular point. It is possible of course that { x , )  converges 
to a local minimum x* which is not a regular point as shown by Proposition 
1.2. In this case, if there is no Lagrange multiplier vector corresponding to 
x*, the sequence (1, + c,h(x,)) diverges and has no limit point. 

Extensive practical experience has shown that the penalty function 
method is on the whole quite reliable and usually converges to at least a 
local minimum of the original problem. Whenever it fails, this is usually 
due to the fact that unconstrained minimization of Lck(x,Ak) becomes 
increasingly ill-conditioned as c, + co. We proceed to discuss this in what 
follows in this section. In Section 2.2, we shall show how, by introducing 
suitable updating formulas for the multipliers A, ,  the difficulties due to 
ill-conditioning can be significantly alleviated, and in fact it might not even 
be necessary to have c ,  + co in order to induce convergence. 

The Problem of Ill-Conditioning 

Since the penalty method is based on the solution of problems of the 
form 

(13) minimize Lck(x,  2,) 
subject to x E X, 
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it is natural to inquire about the degree of difficulty in solving such problems. 
When X = Rn andf, h E C2,  the degree of difficulty for solving problem (13) 
depends on the eigenvalue structure of the Hessian matrix V:,Lck(x,, A,). 
We have 

rn 

V:.xLck(x,, A,) = V2f (x , )  + 1 [A,  + c,h(x,)liv2hi(xd + c,Vh(xdVh(xdf. 
i =  1 

By using the notation 2, = A, + c,h(x,), we can write 

The minimum eigenvalue y(x,, A,, c,) of Vf, L,,(x,, A,) satisfies 

z ' V : ~ L ~ ( X ,  i k ) z  
( 1  5) y(x, , A,, c,) = min I min , 

z t 0 Z Z i f 0  Z'Z 

where we assume that m < n, and hence there exists a vector z # 0 with 
Vh(x,)'z = 0. The maximum eigenvalue T ( x ,  , A,, c,) of V f ,  Lck(x, , A,) 
satisfies 

(16) T(x, ,  A,, c,) = max 
~ " f . x  L c k ( x k ,  

z t 0 z'z 
z'Vf, L0(xk , &)z z'Vh(x,)Vh(x,)'~ 

2 min + c, max 
z t 0  z'z z + 0 z'z 

If {x,)  converges to a local minimum x* which is a regular point with 
associated Lagrange multiplier vector A*, then, by Proposition 2.3, we have 
i, -t I.*. Since Vh(x*)  # 0, it follows, from (15), (16), that 

In other words, the condition number of problem (13) becomes progressively 
worse and tends to infinity as k -+ xj. 

A conclusion that can be drawn from the above analysis is that for high 
~a lues  of the penalty parameter c, the corresponding unconstrained optimiza- 
tion problem becomes ill-conditioned and hence difficult to solve. For example, 
steepest descent is out of the question as a possible solution method. Even 
Newton's method can encounter significant difficulties if c, is very high, and 
the starting point for minimizing LC,(., A,) is not near a solution. 

The ill-conditioning associated with the unconstrained minimization 
problems (13) is a basic characteristic feature of penalty methods and 
represents the overriding factor in determining the manner in which these 
methods are operated. Ill-conditioning can be overcome only by using for 
each k a starting point for the unconstrained minimization routine which 
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is close to a minimizing point of LC,(., A,). Usually, one adopts as a starting 
point the last point x,- ,  of the previous minimization. In order for x,- ,  
to be near a minimizing point of LC,(., A,), it is necessary that c, is close to 
c,- ,. This in turn implies that the rate of increase of the penalty parameter c, 
should be relatively small. If c, is increased at a fast rate, then convergence 
of the method (i.e., of the sequence {x , ) )  is faster, albeit at the expense of 
ill-conditioning. In practice, one must operate the method in a way which 
balances the benefit of fast convergence with the evil of ill-conditioning. 
Usually, a sequence {c,) satisfying c,, , = pc, with P E [4, 101 works well. 
There is no safe guideline as to what is a suitable value for c,, so one may 
have to resort to trial and error in order to determine the value of this 
parameter. 

2.2 The Original Method of Multipliers 

Consider the equality constrained problem 

(ECP) minimize f ( x )  
subject to h(x)  = 0, 

where f: Rn + R, h :  Rn -t Rm are given functions. The components of h are 
denoted by h,, . . . , h,. For any scalar c, consider also the augmented 
Lagrangian function 

L,(x, 2) = f ( x )  + A1h(x) + i c  I h(x)  1 2 .  
Throughout this section, we shall assume that x* is a local minimum satis- 
fying the following second-order sufficiency condition (compare with 
Proposition 1.24). 

Assumption (S): The vector x* is a strict local minimum and a regular 
point of (ECP), andf,  h E C2 on some open sphere centered at x*. Further- 
more x* together with its associated Lagrange multiplier vector A* satisfies 

zlv:, L,(x*, A*)z > 0, 

for all z # 0 with Vh(x*)'z = 0. 

A formal description of the typical step of the original version of the 
method of multipliers (Hestenes, 1969; Powell, 1969) is as follows: 

Giuen a multiplier aector Lk and a penalty parameter c,, we minimize 
LC,(. , i,) ouer Rn thereby obtaining a aector x,. We then set 

(1) Ibh& 1 = ih + C k  h(xk) ,  

we choose a penalty parameter c,,, 2 c, and repeat the process. 
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The initial vector A, is chosen arbitrarily, and the sequence {c,} may be 
either preselected or determined on the basis of results obtained during the 
algorithmic process. 

The description given above is not meant to be precise, but is rather 
aimed at providing a starting point for the analysis that follows. The reader 
can view, for the time being, the method of multipliers simply as the penalty 
function method where the multipliers A, are determined by using the 
updating formula (1). 

2.2.1 Geometric Interpretation 

We provide a geometric interpretation of the method of multipliers 
which motivates the subsequent convergence analysis. Consider the primal 
functional p of (ECP) defined by 

where the minimization is understood to be local in an open sphere within 
which x* is the unique local minimum of (ECP). We specify p more precisely 
later, but for the moment we shall use this informal definition. Clearly 
p(0) = f (x*), and, from Proposition 1.28, we have Vp(0) = -A*. We can 
break down the minimization of LC(., A) into two stages, first minimizing 
over all x such that h(x) = u with u fixed, and then minimizing over all u 
so that 

min Lc(x, i )  = min min { f(x) + A1h(x) + icl  h(x) 1') 
x u h ( x )  = u  

= min {p(u) + i 'u + ~ c I u ~ ~ ) . ,  
U 

where the minimization above is understood to be local in a neighborhood 
of u = 0. This minimization can be interpreted as shown in Fig. 2.1. The 
minimum is attained at the point u(A, c) for which the gradient of p(u) + 
A'u + $C I u l 2  is zero, or equivalently 

Thus the minimizing point u(A, c) is obtained as shown in Fig. 2.1. We have 
also 

min Lc(x, A) - iru(3-, C) = p[u(JL, c)] + +C u(A, C) 1 2 ,  
X 

so the tangent hyperplane to the graph of p(u) + $clu12 at u(i, c) (which 
has "slope" -A) intersects the vertical axis at the value minx Lc(x, A) as 
shown in Fig. 2.1. It can be seen that if c is sufficiently large then p(u) + 
A'u + i c  1 u l 2  is convex in a neighborhood of the origin. Furthermore, the 
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FIG. 2.1 Geometric interpretation of minimization of the Augmented Lagrangian 

value minx L,(x, A) is close to p(0) = f ( x* )  for values of ;I close to A* and 
large values of c. 

Figure 2.2 provides a geometric interpretation of the multiplier iteration 
(1). To understand this figure, note that if x ,  minimizes LCk(. ,  A,), then by 
the analysis above the vector u, given by u, = h(x,) minimizes p(u) + 
A; u + i c ,  1 u  12. Hence, 

and 

It follows that, for the next multiplier A,+ ,, we have 

as shown in Fig. 2.2. The figure shows that if A, is sufficiently close to A* 
and/or c, is sufficiently large, the next multiplier A,+, will be closer to A* 
than A, is. In fact if p(u) is linear, convergence to A* will be achieved in one 
iteration. If V2p(0) = 0, the convergence is very fast. Furthermore it is not 
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FIG. 2.2 Geometric interpretation of the first-order multiplier iteration 

necessary to have c, -, cc in order to obtain convergence but merely to have 
that c, exceeds some threshold level after some index. We proceed to make 
these observations precise. 

2.2.2 Existence of Local Minima of the Augmented Lagrangian 

As in the case of the penalty method, it is natural to inquire whether 
local minima of the augmented Lagrangian exist, and if so how their distance 
from local minima of the original problem is affected by the values of the 
multiplier A and the penalty parameter c. To this end, we focus on the local 
minimum x* satisfying Assumption (S) together with its corresponding 
Lagrange multiplier A*. We have, for any scalar c, 

( 2 )  VXL,(xX;,  i*) = Vf (x*)  + Vh(x")[R* + clr(x*)] = VxL,(x*, 2") = 0 

and [compare with (14) in the previous section] 

v;,L,(x*, A*) = V;,Lo(x*, A*) + cVh(x*)Vh(x*)' 
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Lemma 1.25 and Assumption (S)  imply that there exists a scalar c such that 

(3)  V:, Lc(x*, A*) > 0 V c 2 2. 

From (2) and (3), we have that x* is a strict local minimum of LC(. ,  A*) for 
all c 2 2. It is thus reasonable to infer that if A is close enough to A*, there 
should exist a local minimum of LC(.,  A) close to x* for every c 2 2. Proposi- 
tion 2.2 suggests that this will also be true even if A is far from A* provided c 
is sufficiently large. The following proposition makes this idea precise. 
It also provides estimates on the proximity of the local minimum of LC(.,  A) 
to x* and the corresponding Lagrange multiplier estimate to A*. 

Proposition 2.4: Assume (S)  holds and let 2 be a positive scalar such 
that 

(4) V:, L,(x*, A*) > 0. 

There exist positive scalars 6, E, and M such that: 

(a) For all (5 c) in the set D c Rm" defined by 

( 5 )  D = { ( A ,  C )  / IA - A* 1 < 6c, C I c)? 

the problem 

(6) minimize Lc(x, A)  

subject to x E S(X*; E )  

has a unique solution denoted x(A, c). The function x ( . ,  .) is continuously 
differentiable in the interior of D, and, for a11 (A, c)  E D, we have 

(b) For all (A, c) E D ,  we have 

where 

(9) 

(c) For all (2, c) E D, the matrix V:,Lc[x(A, c), A] is positive definite 
and the matrix Vh[x( l ,  c)] has rank m. 

Proof: For c > 0, consider the system of equations in ( x ,  2, A, c) 

(10) Vf ( x )  + ~ h ( x ) L  = 0, h(x) + (I" - J)/c = 0. 

By introducing the variables t E Rm, i: E R defined by 

( 1  1) t = ( 2  - i*),,c, i' = l /c,  
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we can write system (10) as 

(12) Vf  ( x )  + ~ h ( x ) J  = 0, h(x) + t + ?A* - g i  = 0. 

For  t = 0 and g E [0, 1/21, system (12) has the solution x = x* and 1 = A*. 
The Jacobian with respect to ( x ,  2) at  such a solution is 

(13) : x , A *  W x * )  - y l  

where I is the identity matrix. We show that matrix (13) is invertible for all 
j: E [0, 1/?]. By Lemma 1.27, this is true for y = 0. T o  show this fact for 
j: E (O,l/Z], suppose that for some z E Rn and w E Rm, we have yx L 0 y  Vh(x*)] [ z ]  = 0 

Vh( 1 w 

or  equivalently 

Substituting the value of w from (16) into (15), we obtain 

[ ~ f , ~ ~ ( x * ,  A*) + (ll.;)Vh(x*)Vh(x*)']z = 0. 

For  g = l /c  with c 2 ?,this yields V f ,  L,(x*, A*)z = 0, and since V:, L,(x*, A*) 
> 0 for c 2 ?, we obtain z = 0. From (16), we also obtain w = 0. Thus if 
(14) holds, we must have z = 0 and w = 0, and it follows that matrix (13) is 
invertible for all j: E [0, 1/?]. 

We now apply the second implicit function theorem of Section 1.2, 
to the system ( l 2 ) ,  where we identify the compact set K = ( ( 0 , ~ )  I y E [0, lji;]) 
with the set X of that theorem. I t  follows that there exist E > 0 and 6 > 0 and 
unique continuously differentiable functions 2(t,  y )  and i ( t ,  7 )  defined on 
S(K ; 6)  such that ( I2(t, ;.) - x* l 2  + j.(t, ;.) - A* 1 ' ) '  < e for all ( t .  7 )  E 
S ( K ;  6 )  and satisfying 

(17) Vf [2(t, y ) ]  + Vh[2(t,  ?)];(t, y )  = 0, 

(18) h[2(t, y ) ]  + t + pi.* - ::i.(t, y )  = 0. 

Clearly S and E can be chosen so that in addition Vh[2(t,  ?)I has rank m and 

Vzx Lo[2(t. y), i ( t ,  p ) ]  + cVh[2(t, ;.)]Vh[2(t. y ) ] '  > 0 

for ( t ,  y )  E S ( K ;  6),c 2 ?. For c 2 ? and A - ).* I < 6c, define 
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Then in view of ( 1  l ) ,  (17), and (18), we obtain, for ( A ,  c) E D, 

v f  [ ~ ( n ,  c)]  + v ~ [ x ( / z ,  c ) i X ( ~ ,  C )  = 0, 

X(L, c) = A + ch[x(A, c)] ,  

V?,Lo[x(A, c), X(A, c)] + cVh[x(A, c)]Vh[x(A, c)]' = V?,L,[x(A, c), A] > 0. 

Thus, the proposition is proved except for (7)  and (8). 
In order to show (7) and (8), we differentiate (17) and (18) with respect 

to t and y. We obtain, via a straightforward calculation, 

V ,  R(t, y)' V ,  R(t, y)' 
v , i ( t ,  y)' v,K(t, y)' 

where 

We have for all ( t ,  y ) ,  such that 1 t 1 < 6 and y E [0, 1/21, 

Since matrix (13) is invertible for all y E [O,l/2], it follows that, for 6 suffi- 
ciently small, A(t, y )  is uniformly bounded on (( t ,  y )  I It 1 < 6, y E [0, 1/21]. 
Let p be such that / A(t, y )  I I p for all It 1 < 6, y E LO, 1/21, and if necessary 
take 6 sufficiently small to ensure that p6 < 1. Then, from (21), we obtain 

(22) (12(t, Y )  - X* l 2  + 131(t, y )  - A * ( ~ ) ~ ' ~  

From this, it follows that, for all ( t ,  y )  with It 1 < 6, y E [0, 1/21, and y < 6, 

Using the inequality above with i t ,  [ y ,  i E [O,l] in place oft, y ,  we obtain 

P max 1 ;(it, [ y )  - A* I 5 - 
o<<r 1 1 - py 

It l 

Combining (22) and (23), we obtain, for all ( t ,  y )  with It 1 < 6, y E [0, 1/21, 
and y < 6, 
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By taking 6 sufficiently small if necessary, we obtain 

( l a ( t , y ) - x * I 2 +  JX(t,?) -A*l2)'I2 1 2 p ) t J .  

By using ( 1 1 )  and writing x(A, c) = R(t, y )  and ;(A, c) = X(t, y ) ,  we have 
that, for all (A, c) with I A - A* I < 6c and c > max{E, 1/61, there holds 

( x ( 5 c ) - x * J < 2 y J % - % * l / c ,  J ~ ( A , c ) - A * / I ~ ~ J A - A * J / c .  

Thus (7) and (8)  hold with M = 2p for all (A ,  c) with IA - A* 1 < 6c and 
c > max{c, 1/61. Because x( . ,  .) is continuously differentiable, we can also 
find an M so that (7) and (8)  hold for all (A, c) with 1A - A*I < 6c and 
E I c < max{C, 1/61. This completes the proof. Q.E.D. 

Figure 2.3 shows the set D of (5 )  within which the conclusions of Proposi- 
tion 2.4 are valid. It can be seen that, for any A, there exists a c, such that 
(5 c)  belongs to D for every c 2 c,. The estimate 6c on the allowable distance 
of 1 from A* [compare with ( 5 ) ]  grows linearly with c. In particular problems, 
the actual allowable distance may grow at a higher than linear rate, and in 
fact it is possible that for every 1 and c > 0 there exists a unique global 
minimum of LC( .  , A). (Take for instance the scalar problem min{3x2 1 x = 01.) 
The following example shows however that the estimate of a linear order 
of growth cannot be improved. 

Example: Let n = m = 1, and consider the problem 

minimize -xP 

subject to x = 0, 

where p is an even integer with p > 2. We have x* = A* = 0 and Assumption 
(S) is satisfied. We have 

Lc(x, 2) = - xP + Ax + i c  / x  J Z ,  

V ,  Lc(x, A) = - pxp- ' + L + cx, 

v; Lc(x, A) = - p(p - 1)xp- + c. 

A straightforward calculation shows that 

V:,L,(x, 2) > 0 - I x l < Cclp(p - 111 l l ( p -  21, 

v, Lc(x, A) = 0 1 = x(pxP- - c). 

FIG. 2.3 Region D of pairs (i., c) for which the method of multipliers is defined 
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FIG. 2.4 Form of the set (24) 

Using these relations it can be verified that LC( . ,  A) has a unique local 
minimum x(A, c) with V;, Lc[x(A, c), A] > 0 for all ( A ,  c) in the set 

shown in Fig. 2.4. The order of growth on the allowable distance of 2 from A* 
is (p - l ) / (p  - 2) and tends to unity as p increases. Thus, we cannot demon- 
strate, in general, a better than linear order of growth of the allowable 
distance of A from A* as c increases. 

Proposition 2.4 can yield both a convergence and a rate-of-convergence 
result for the multiplier iteration 

;Ik 1 = Ak f Ck h(xk). 

It shows that if the generated sequence {A,) is bounded [this can be enforced 
if necessary by leaving 2, unchanged if A, + c, h(x,) does not belong to a 
prespecified bounded open set known to contain A*], the penalty parameter 
c, is sufficiently large after a certain index, and after that index minimization 
of LCk( . ,  A,) yields the local minimum x, = x(&, c,) closest to x*, then we 
obtain x, + x*, A, + A*. However the threshold level for the penalty param- 
eter is unknown thus far. We try to characterize this level and obtain a 
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sharper convergence and rate of convergence result. The primal functional 
plays a key role in this respect, so we first analyze its properties. 

2.2.3 The Primal Functional 

Consider the system of equations in (x ,  A, u) 

Vf ( x )  + Vh(x)A = 0, h(x) - u = 0. 

It has the solution (x*, A*, 0). By the standard implicit function theorem, 
there exists a 8 > 0 and functions x ( . )  E C' and A(-) E C1, such that x(0) = x* 
and A(0) = A*, and, for I u I < 6, 

(25) V f [ x ( u ) ] + V h [ x ( u ) ] A ( u ) = O ,  h [ x ( u ) ] - u = 0 .  

Furthermore, for some E > 0, we have Jx(u)  - x* 1 < e and j A(u) - A* I < E 

for 1 u 1 < 6. The function p :  S(0; 6) + R given by 

p(u) = f Cx(u)l V u E S(0; 8) 

is referred to as the primal functional corresponding to x*. In view of (S), 
we can take 6 and E sufficiently small so that x(u) is actually a local minimum 
of the problem of minimizing f ( x )  subject to h(x) = u. Thus, an equivalent 
definition of p is given by 

From Proposition 1.28, we have 

Differentiating (25), we obtain 

(28) V, x(u)VZ, L,[x(u), A(u)] + V ,  i(u)Vh[x(u)lt = 0, 

(29) V,x(u)Vh[x(u)] = I .  

From (29), we have, for any c E R, 

and by adding (28) and (30), we obtain 

From this, we obtain, for every c for which the inverse below exists, 
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Multiplying both sides with Vh[x(u)]  and using (27) and (29), we obtain 

(31) cl  + V2p(u)  = {Vh[x(~)I1(V,ZxLo[x(u) ,  %u)l 
+ cVh[x(u)]Vh[x(u)]')  - 'Vh[x (u)] ) -  ' .  

Equation (31) holds for all u with 1 u 1 < 6 and for all c for which the inverse 
above exists. For u = 0, we obtain 

V2p(0) = { ~ h ( x * ) ' [ V ~ , ~ , ( x * ,  A*)] - lVh(x*))- l - cI, 

for any c for which V:, Lc(x*, A*) is invertible. If [V:, Lo(x*, A*)] - ' exists, 
then 

The following proposition shows that the threshold level for the penalty 
parameter in Proposition 2.4 can be characterized in terms of the eigenvalues 
of the matrix V2p(0). In the next section, we shall see that the rate of con- 
vergence of the method of multipliers can also be characterized in terms of 
these eigenvalues. 

Proposition 2.5: Let (S) hold. For any scalar c, we have 

(34) v:, Lc(x*, A*) > 0 o c > maxi - e l ,  . . . , - em) o V2p(0) + c l  > 0, 

where e l ,  . . . , em are the eigenvalues of V2p(0). 

Proof: Since the eigenvalues of V2p(0) + cl are ei + c, i = 1, . . . , m, 
the condition c > max{-el, . . . , -em) is equivalent to 

If V:, Lc(x*, A*) > 0, then from (32) it follows that (35) also holds. Conversely 
if (35) holds, then, using (27), we have that u = 0 is a strong local minimum 
of p(u) + A*'u + ~ c I u \ ~ .  It follows that, for some 6 ,  > 0,  7 > 0 ,  and all u 
with jul < 61, 

Hence using (26), we have that there is an E > 0 such that 

As a result V,2,L0(x*, A*) + (c - .i)Vh(x*)Vh(x*)' 2 0 or 

(36) V:,L,(X*, A*) 2 yVh(x*)Vh(x*)' 
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It follows that V f ,  Lc(x*, A*) 2 0. If there exists a z # 0 such that 

then, from (36), Vh(x*)'z = 0 and using (S )  we have z'Vf,L,(x*,A*)z > 0 
or equivalently z 'V5 L,(x*, A*)z > 0. Thus, we must have z'Vf, L,(x*, A*)z > 
0 for all z # 0, and V;,L,(X*, A*) must be positive definite. Q.E.D. 

An alternative proof of Proposition 2.5 can be given by making use of 
(32) and the result of the following exercise. 

Exercise: Let Q be a symmetric n x n matrix and L be a subspace of 
Rn. Assume that 

zlQz>O V z e L ,  z # O .  
Then 

Q > O o Q - ' e x i s t s a n d w l Q - ' w > O  V w e L 1 ,  w # O ,  

where L' is the orthogonal complement of L. Hint: Consider a set of basis 
vectors for LL and let B be the matrix having as columns these vectors. Show 
that min{+xlQx B'x = u )  = $ul(B'Q- ' B ) -  'u.  

It is interesting to interpret the condition (35) in terms of the "penalized" 
primal functional p,(u) = p(u) + 3cl u l 2  of Figs. 2.1 and 2.2. Relation (34) 
can be written as 

(37) v;,L,(x*, A*) > 0 o V 2 ~ , ( 0 )  > 0, 

so we have Vf,L,(x*, A*) > 0 if and only if p, is conuex and has positive 
dejinite Hessian in a neighborhood of u = 0. 

2.2.4 Conuergence Analysis 

We shall obtain a convergence and rate-of-convergence result for the 
method of multipliers which is sharper than the one implied by Proposition 
2.4. To this end, we need the following intermediate result. 

Proposition 2.6: Assume (S)  holds and let 2 and 6 be as in Proposition 
2.4. For all (Jb, c) in the set D defined by (5 ) ,  there holds 

(38) qi, C )  - I+* = j": N J I *  + :(A - i.*)](l - A*) d;, 

where for all (A, c)  E D ,  the m x m matrix N ,  is given by 

(39) N,(A) = I - cVh[x(A, c)ll{Vf, L,[x(R, c), I , ] )  - 'Vh[x(A, c)] 

and I is the identity matrix. 
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Proof: Going back to the proof of Proposition 2.4 we have, by using the 
matrix inversion formula of Section 1.2, that for y > 0 the matrix A(t, y), 
defined by (20), is given by 

where 

~ ( t ,  7) = {v:~ ~ , [ a ( t ,  y),  2(t, y)] + Y -  lvh[~( t ,  ?)]vh[~(t, y ) ] ~  - l .  

Using (19) we have, for any y E (0, 1/21, 

Substituting .J = l/c, t = (2 - A*)/c, x(i, c) = 2(t, y),  and 2(A, c) = l(t, y) = 

i + ch[x(A, c)], we obtain the result. Q.E.D. 

We can now show our main convergence and rate-of-convergence result. 

Proposition 2.7: Assume (S) holds, and let 2 and 6 be as in Proposition 
2.4. Denote by el, . . . , em the eigenvalues of the matrix V2p(0) given by (32) 
or (33). Assume also that 

(40) 2 > max{-2el, . . . , -2em), 

(or equivalently that V2p(0) +id > 0). Then there exists a scalar 6, with 
0 < 6, I 6 such that if (c,) and 2, satisfy 

(41) / 2 0 - i * j / ~ o < 6 1 ,  2 I c k < c k + 1  Q k = O , l ,  . . . ,  

then the sequence {A,) generated by 

(42) AL L I = Ak + Ck h[x(ik, ck)] 

is well definedt and we have i, -, i *  and x(ibk, c,) -+ x*. Furthermore if 
lim sup,, , c, = c* < x and A, # A* for all k, there holds 

lim sup I i k T 1  - 2*1 

k - r n  1 - * 

while if c, -, x and A, # i,* for all k there holds 

t By this we mean that, for all k ,  (i.,, c,) belongs to the set D of ( 5 ) .  and hence x( i , .  c,) 
is well defined. 
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Proof: Consider the matrix N,  of (39). We have 

Nc(A*) = I - cVh(x*)'[V& L,(x*, A*)] - 'Vh(x*).  

Using (32), we obtain 

Nc(A*) = I - c[V2p(0) + cI] - ' .  

If p,(c), . . . , p,(c) are the eigenvalues of Nc(A*), we have 

For all (A,  c )  in the set D of (9, we can rewrite (39) as 

N,(A) = I - Vh[x(A, c)] ' (c-  'V;, L,,[x(A, c), :(A, c)] 

+ Vh[x(A, c)]Vh[x(A, c)] ')- 'Vh[x(A, c)].  

By using the result of Proposition 2.4 and the above expression, it is easy to 
see that given any > 0 there exists a 6 ,  E (O,6] such that, for all (A, c) with 
/i - A*I/c < d l , ?  I c,wehave 

Using (38), we obtain for all these pairs (i, c)  

From (40) and (41), we have maxi,, , ,,,,, I ei/(ei + c)  / < 1 ,  so by choosing E ,  

sufficiently small we have for some p E (0, 1 )  and all (A, c) with 12 - A* I/c < 
6, ,?  1 c, 

/ I (A ,c )  - R*I I p / A  - A*I. 

This combined with (7) and (41) shows that A, + A* and x(A,, c,) -t x*. The 
rate-of-convergenceestimates (43) and (44) follow from (45) and the preceding 
argument. Q.E.D. 

The region Dl of initial multiplier-penalty parameter pairs (A,, c,) for 
which convergence is attained according to Proposition 2.7 is shown schema- 
tically in Fig. 2.5. It can be seen that a poor choice of A, can be compensated 
by a choice of sufficiently high c,. Furthermore, if for some k the algorithm 
generates a pair (A,, c,) that lies in the shaded region of Fig. 2.5, convergence 
of A, to A* is guaranteed. 
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FIG. 2.5 Region of convergence of the first-order multiplier iteration 

Regarding the threshold value 2, note that: 

(a) If V2p(0)  > 0, which by Proposition 2.5 is equivalent to the local 
convexity condition 

v:, Lo(x*, A*) > 0, 

then any positive c can serue as a threshold level. The same is true even if 
V2p(0)  2 0. We shall reencounter this result in the context of convex pro- 
gramming problems in Chapter 5. 

(b) If V 2 p ( 0 )  has a negative eigenvalue, then any 2 satisfying 2 > 
max{-el, . . . , -em) is sufficient for Vf,LF(x*,  A*) > 0 to hold (Proposition 
2.5). However, it is necessary to take 2 > 2 max{ - e l ,  . . . , -em) in order 
to induce convergence [compare with (40)l. The reason for this can be 
understood by examination of Fig. 2.2, where it can be seen that to achieve 
convergence the "penalized" primal functional p, must have at least as 
much "positive curvature" as the "negative curvature" of p. 

Regarding rate of convergence, we see from (43) and (44) that we have at 
least Q-linear convergence if (c,} is bounded and superlinear convergence 
i f  either {c,) is unbounded or V2p(0)  = 0. These rate-of-convergence results 
cannot be improved, since for any dimensions n and m, it is possible to 
construct a problem with a quadratic objective function and linear equality 
constraints and a starting point A, for which, if c, = c* for all k ,  relation (43) 
holds as an equality. The reader can verify this by first considering the 
scalar problems min{x2 1 x = 0 )  and min{ - x 2  1 x = 0 )  and then by con- 
structing a related example for the general case. Note that the rate of con- 
vergence improt'es as c, increases. The case where V Z p ( 0 )  = 0 is not as 
uninteresting as might appear at first sight. From (27) and (28), we have 

V:, Lo(x*,  A*)Vh(x*) = 0 * V2p(0)  = 0. 

Thus if the objective and all the constraint functions have zero curvature 
on the subspace 

{ z  1 z = Vh(x*)w, w G Rm),  
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which is orthogonal to the manifold tangent to the constraints at x*, then 
we have V2p(0) = 0 and a superlinear rate of convergence. A related situation 
occurs in linear programming problems, for which in fact we shall show in 
Chapter 5 that the corresponding method of multipliers converges in a 
finite number of iterations. 

It should be noted that our convergence analysis is contingent upon 
the generation of the points x(A,, c,) by the unconstrained minimization 
method employed, at least for all k after a certain index. These points are, 
by Proposition 2.4, well defined as local minima of LC,(. , A,) closest to x*. 
Naturally LC,(., A,) may have other local minima to which the uncon- 
strained minimization method may be attracted. Thus, unless the uncon- 
strained minimization method stays after some index in the neighborhood 
of the same local minimum x* of (ECP), our convergence analysis is not 
applicable. On the other hand, as extensive computational experience has 
shown, the usual practice of using the point x, obtained from the kth mini- 
mization as a starting point for the (k + 1)th minimization tends to produce 
sequences {x,) that are close to one and the same local minimum x* of 
(ECP). As a result, in the great majority of practical cases, our analysis 
applies and provides an accurate measure of the convergence behavior of 
the method of multipliers. 

Dependence of Convergence Results on the Assumptions 

A careful examination of the convergence results obtained reveals that 
they depend to a large extent on the fact that the primal functional p is 
twice continuously differentiable in a neighborhood of u = 0. This in turn is 
guaranteed under the sufficiency assumption (S). When this assumption is 
relaxed the primal functional need not be twice differentiable, and this 
can have a substantial effect on the convergence and rate-of-convergence 
properties of the method of multipliers. Some simple examples illustrate 
these points. 

Example 1 : Consider the problem min{ - I  x l P  1 x = 0), where 1 < p < 
2. Then for any c > 0, one can find a neighborhood of x* = 0 within which 
LC(., A) does not have a local minimum for every value of A. Here Assumption 
(S) is violated. The situation can be corrected by using a nonquadratic 
penalty function of the form 4(t) = 1 t l P '  or 4(t) = It lp '  + S t 2 ,  where p' 
satisfies 1 < p' < p (see Chapter 5). 

Example 2: Consider the problem min; I x I P  1 x = 0), where 1 < p < 2. 
Here again Assumption (S) is violated, but it will be shown in Chapter 5 
that the method of multipliers converges to A* = 0 for any starting A, 
and any nondecreasing penalty parameter sequence {c,). When {c,) is 
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bounded and A, # A*, the sequence { / 2, - A* ) converges sublinearly. This 
can be verified directly by the reader (see also the analysis of Chapter 5). 

The choice of a quadratic penalty function also has a substantial effect 
on the convergence rate. If a different penalty function is chosen, then the 
convergence rate can become sublinear or superlinear. We provide some 
examples below. A general convergence rate theory for nonquadratic 
penalty functions will be provided in Chapter 5 in the context of a convex 
programming problem. 

Example3: Consider the scalar problem min{$x2 Ix = 0), with x* = 0 
and 2" = 0, and the generalized method of multipliers (see Chapter 5) con- 
sisting of sequential unconstrained minimization of 

followed by multiplier iterations of the form 

Here 4(t) is the penalty function, and V4 is its first derivative. If 4(t) = 

$ 1  t 13, c = 1, and 2 I 0, the minimizing point of L,(x, A) is 

For a starting point A, < 0 and c, = 1, the multiplier iteration takes the 
form - 

R k + ,  = / Z k  + [$(-I + J1 - 4Ak)l2 = )(I - y/l - 42,). 

It can be verified that A, + A* = 0 and lim,,, ] A , + ,  - i*I!//l,, - i*I = 1. 
Thus, sublinear convergence occurs. 

If instead we use the penalty function #(t)  = $JtJ3!2, then, for 2 5 0, 

If 2,  < 0 and c, -= 1, the multiplier iteration takes the form 

It can beverifiedthat&+l," = Oandlim,,, / A , + ,  - A*1/1A, - A*I2 = 1. 
Thus the convergence is superlinear of order two. 

We finally point out that if we use the (nondifferentiable) penalty function 
#(t) = 1 t 1, then the augmented Lagrangian L,(x, A) is minimized at x* = 0 
for all i and c such that ) A  1 < c. Thus the method is exact in the sense that the 
optimal solution x" can be obtained by a single minimization of L,(x, i ) .  
This type of method will be studied in Sections 4.1 and 5.5. 
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2.2.5 Comparison with the Penalty Method-Computational 
Aspects 

Since Proposition 2.4 applies to both the method of multipliers and 
the penalty method where the iteration 

(46) 2, + 1 = 2, + C ,  h(xd 
is not employed, it provides a natural vehicle for comparison of these 
methods. From (7), it follows that, in the penalty method where A, - const, 
it is ordinarily necessary to increase c, to infinity. It follows, from Proposition 
2.6, that it is not necessary to increase c, to infinity in order to induce conuergence 
in the method of multipliers. This is an important advantage, since it results 
in elimination or at least moderation of the ill-conditioning problem. 
A second important advantage of the method of multipliers is that its 
conuergence rate is considerably better than that of the penalty method. 
This can be seen by comparing the convergence rate of the two methods as 
given by the estimates (7),  (8) and (43), (44). While in the method of multi- 
pliers, the rate of convergence is linear or superlinear, in the penalty method, 
the rate of convergence is much worse and essentially depends on the rate 
at which the penalty parameter is increased. This advantage in speed of 
convergence has been verified in many computational studies, where a 
consistent reduction in computation time ranging from 80 to 30 % has been 
reported when the multipliers were updated via (46) over the case where i, 
was kept constant. For illustration purposes, we provide the following 
example, which is trivial in terms of computational complexity but none- 
theless is representative of the computational savings resulting from employ- 
ment of the multiplier iteration (46). 

Example: Consider the two-dimensional problem 

minimize $ [ ( x ' ) ~  + f ( ~ ~ ) ~ ]  

subject to x1 + x 2  = 1. 

The augmented Lagrangian is given by 

L,,(x, ik) = + 4 ( ~ ~ ) ~ ]  + i k ( x l  f x 2  - 1) + $ck(xl + x Z  - 

Minimization of LC,(. ,  A,) yields 

The optimal solution is x* = (0.25, 0.75), and the corresponding Lagrange 
multiplier is i *  = -0.25. In Table 2.1, we show the results of the computa- 
tion for the penalty method where 2, = 0 for all k and for the method of 
multipliers. where 

A ,  = , + c x  + x - 1 J q  = 0. 



TABLE 2.1 

Computational Results with the Penalty Method and the First-Order Method of Multipliers. 

Penalty Multiplicr Penalty Multiplier Penalty Multiplier 

x: x: 4 x: x: x: 

0.0714 0.2142 0.0714 0.2142 0.0714 0.2142 
0.1813 0.5439 0.1904 0.5714 0.2074 0.6224 
0.2407 0.7221 0.2406 0.7218 0.2824 0.7452 
0.2496 0.7489 0.2487 0.7463 0.2499 0.7499 
0.2499 0.7499 0.2498 0.7495 

0.2499 0.7499 
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Notice that the method of multipliers requires a smaller number of minimiza- 
tions to obtain the solution. The number of minimizations required for 
both methods decreases when the penalty parameter is increased at a faster 
rate. However, the effects of ill-conditioning are felt more under these 
circumstances when the unconstrained minimization is carried out numeri- 
cally. 

An important practical question is how one should select the initial 
multiplier A, and the penalty parameter sequence. Clearly, in view of (8), 
any prior knowledge should be utilized to select A, as close as possible to A*. 
The main considerations to be kept in mind for selecting the penalty param- 
eter sequence are as follows: 

(a) The parameter c, should eventually become larger than the threshold 
level necessary to bring to bear the positive features of the multiplier iteration. 

(b) The initial parameter c, should not be too large to the point that 
ill-conditioning results in the first unconstrained minimization. 

(c) The parameter c, is not increased too fast to the point that too 
much ill-conditioning is forced upon the unconstrained minimization 
routine too early. 

(d) The parameter c, is not increased too slowly, at least in the early 
minimizations, to the extent that the multiplier iteration has poor conver- 
gence rate. 

These considerations are to some extent contradictory, and, in addition 
for nonconvex problems, it is difficult to know a priori the corresponding 
threshold level for the penalty parameter. A scheme that usually works 
well in practice is one whereby a moderate value of c, is chosen (if necessary 
by some preliminary experimentation), and subsequent values of c, are 
monotonically increased via the equation c,+ , = Be,, where ,8 is a scalar 
with B > 1. Typical choices are P E 14, 101. In this way, the threshold level 
for multiplier convergence will eventually be exceeded. 

Another reasonable parameter adjustment scheme is to increase c, 
by multiplication with a factor j3 > 1 only if the constraint violation as 
measured by I h[x(A,, c,)] I is not decreased by a factor g < 1 over the previous 
minimization ; i.e., 

Choices such as j3 = 10 and 7 = 0.25 are typically recommended. Assuming 
that { A k )  remains bounded, one can prove, for this scheme, that the penalty 
parameter sequence {c,} will remain bounded. To see this, suppose that { 2 , }  
remains bounded and c, becomes unbounded. Then after some k, the param- 
eter c, will be sufficiently high for the estimates (7) and (8) of Proposition 
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2.4 to become effective and in addition ck - ,  > M. Let L be a Lipschitz 
constant for 12. We have, from (7)  and ( 8 )  for all k 2 %, 

Combining (48) and (49). we obtain 

From (47) and (50), it follows that the assumption that {c,} is unbounded 
implies c,+, = c,, for all k sufficiently large, which is a contradiction. 
Hence, {c,) will remain bounded if the penalty parameter adjustment scheme 
(47) is adopted, while convergence will be achieved by virtue of enforcement 
of asymptotic feasibility of the constraints; i.e., 

lim I h[x(A,, c,)] 1 = 0. 
k-oc 

Another possibility along the same lines is to use a different penalty 
parameter for each constraint hi(x) = 0, and to increase by a certain factor 
only the penalty parameters which correspond to those constraint equations 
for which the constraint violation as measured by 1 hi[x(Ak, c,)] 1 is not 
decreased by a certain factor over the previous minimization. It is to be 
noted that the convergence analysis given earlier can be easily modified to 
handle the case where a separate penalty parameter is used for each con- 
straint. 

As an example of a situation where using a different penalty parameter 
for each constraint can be beneficial, consider a problem with "poorly 
scaled" constraints such as 

minimize + [ ( x ' ) ~  + ( x ~ ) ~  + ( x ~ ) ~ ]  

subject to x2 = 0, 105x3 = 0. 

We have 

Clearly. minimization of L C ( .  , A) is an ill-conditioned problem. A scheme 
that allows a different penalty parameter for each constraint and adjusts 
these parameters depending on the progress made towards satisfying these 
constraints can partially compensate for poor scaling. As an additional 



measure, one can multiply initially the constraints with scaling factors 
that make the norms of their gradients at the starting point equal to unity. 
This is generally recommended as a good heuristic (but not fail-safe) tech- 
nique. 

We finally note that the overall efficiency of the method strongly depends 
on the initial choice of the multiplier A,. As suggested by the convergence 
analysis given thus far, a choice of A, close to A* can reduce dramatically the 
computational requirements of the method. 

2.3 Duality Framework for the Method of Multipliers 

Let E,6, and E be as in Proposition 2.4, and define for (A, c) in the set 

(1) D = {(A,c)I Ii - A*I < 6c,C I c) 

the dual functional d, given by 

Since x( . , c) is continuously differentiable (Proposition 2.4), the same is true 
for d,. We compute the gradient of d, with respect to A. We have 

Vdc(A) = Vj.x(A, c){Vf [x(A, c)] + Vh[x(A, c)]A + cVh[x(i, c)]h[x(A, c)]) 

+ hCx(A, c>l 

= V,x(A, c)V,L,Cx(A, c), A1 + hCx(A, c>l. 

Since VxLc[x(A, c), A] = 0, we obtain 

(3) Vdc(A) = h[x(A, c)]. 

Since x(., c) is continuously differentiable, the same is true for Vd,. Differ- 
entiating with respect to A, we obtain 

(4) V2dc(?L) = Vj,x(i, c)Vh[x(i, c)]. 

We also have, for all (I,, c) in the set D, 

V,L,[x(A, c). i] = 0. 

Differentiating with respect to A, we obtain 

and since 

v;, Lc[x(2, c), A] = Vh[x(i, c)]', 
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we obtain 

VAx(5 C) = - Vh[x(i, c)]'{V;, LC[x(A, c), A])- '. 
Substitution in (4) yields the formula 

(5) V2dc(A) = -Vh[x(A, c)lt{V;, LC[x(A, c), A]}- 'Vh[x(A, c)]. 

Since V% LC[x(i., c), A] > 0 and Vh[x(A, c)] has rank m for (A, c) E D 
(Proposition 2.4), it follows from (5) that V2dc(;i) < 0 for all (A, c) E D. 
Furthermore using (3), we have, for all c 2 2, 

Vdc(;i*) = h[x(A*, c)] = h(x*) = 0. 

Thus, for every c 2 2, A* maximizes d,(A) over {A I / A - A* I < 6c). Also the 
multiplier iteration in view of (3) can be written as 

and represents a steepest ascent iteration for maximizing d,,. When ck = c 
for all k, then (6) is the constant stepsize steepest ascent method 

for maximizing d, and is of the type discussed in Section 1.3.1. 

2.3.1 Stepsize Analjsis for the Method of Multipliers 

As discussed following Proposition 1.10, the choice of stepsize in the 
steepest ascent method is crucial both in terms of convergence and rate of 
convergence. It is a rather remarkable fact that the particular stepsize c 
used in iteration (7) works so well. Nonetheless, it is of interest to try to 
compare the stepsize c with other possible stepsizes and investigate whether 
there exists an optimal stepsize. In order to simplify the analysis, we restrict 
ourselves to the case where f is a (not necessarily positive definite) quadratic 
function and h is a linear function, i.e., the problem 

minimize $xlQx 

subject to Ax = b, 

where Q is a symmetric n x n matrix, A is an m x n matrix of rank m, and 
b E Rm is a given vector. It is assumed that this problem has a unique minimum 
x*, which together with a Lagrange multiplier A* satisfies Assumption (S). 
It is a routine matter to extend the analysis to the general case under Assump- 
tion (S). Iff * is the optimal value of the problem, the function dc is quadratic 
of the form [compare with (91 



for all c for which Q + cA'A > 0. Consider, for A, # A* and r > 0, the 
iteration 

(9) A, + , = A, + uVd,(A,). 

By Proposition 1.14, we have 

(10) l A k + l  - A*l/lik - A*l s r(a), 

where 

( 1  1 )  r(x) = max{ I 1 - aE, I ,  I 1 - re, 1 ), 

and E, and e, are the maximum and minimum eigenvalues of 

A(Q + c AIA)-  'A' .  

Convergence occurs for 

(12) 0 < a < 2/Ec. 

The optimal convergence ratio is attained for the stepsize x*, minimizing 
r(a) over ct, 

(13) a* = 2/(Ec + e,), 

and is given by 

r(u*) = (Ec - ec)l(Ec + ec). 

Let us assume that Q is invertible. Then, by using the matrix identity 
given in Section 1.2, we have 

( I  + c A Q - ~ A ' ) - ~  = I  - C A ( Q  + C A ' A ) - ~ A ' .  

Thus the eigenvalues of (AQ-'A')- '  and A(Q + cA'A)-'A' are related by 

( 1  + c/ei[(AQ-'A')- '])- '  = 1 - cei[A(Q + cA'A)- 'A'] .  

Let 'J and l- denote the eigenvalues of (A'Q- 'A)- '  corresponding to E, and 
e, via the relation above. We have, via a straightforward calculation, 

Note, from Eq. (33) of Section 2.2.2. that the Hessian of the primal functional 
is given by 

V2p(0) = (AQ- ' A f ) - ' ,  

and y and I- are the smallest and largest eigen~alues ofV2p(0), respectively. 
In view of ( lo) ,  ( 1  I ) ,  (12), and (14), we have that convergence occurs for 
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and the convergence ratio is 

In particular for M = c, we obtain that convergence occurs if -27 < c and 

as already derived in Proposition 2.6. Using (13), (14), and (16) we obtain, 
via a straightforward calculation, the expressions for the optimal stepsize 
M* and the corresponding convergence ratio 

We note that, from (IS), one can verify that we have 

thereby implying that as c increases the ratio M*/C tends to unity. We now 
distinguish two cases of interest. 

CASE (a) (7 < 0 < T):  Here we assume that V2p(0) is neither positive 
semidefinite nor negative semidefinite. It can be seen that we must have 
- 7  < c in order to guarantee Vf,L,(x*, A*) > 0 (Proposition 2.5), in which 
case, from (15), we see that there exist some stepsizes x which achieve con- 
vergence. However, the particular stepsize x = c guarantees convergence 
only if -29 < c (compare with Proposition 2.6). For values of c close to 
-29, Eq. (17) shows that the convergence ratio r(c) is poor (close to one). 
However, as c increases, not only does the convergence ratio r(c) improve 
but also the ratio r(c)/r(x*) decreases, and in fact, from (17) and (19), we have, 
via an easy calculation, 

~ ( c )  { 2 ? I  , 21rl ] < 2. lim - = max - - 
c - e  r(x*) l - -?  I - - ?  

Thus, in the case 7 < 0 < T for large values of c, we have that r(c) is close to 
being optimal and can be improved only by a factor of at most 2 by optimal 
stepsize choice. 

CASE (b) (7 5 T 5 0 or 0 2 '; 5 T): Here VZp(0) is either positive 
semidefinite or negative semidefinite. The case where 0 < ;% I I- can often be 



easily recognized in practice since it corresponds to a convex programming 
problem. We have, from (17) and (19), that if r # y 

r(c) lim - 
c-oa r(a*) 

while if = y we have r(a*) = 0. Thus, in this case, there is considerable 
room for improvement by alternative stepsize choice. The potential benefits 
become greater as the ratio approaches unity. 

It is, of course, possible to compute at least approximately the eigen- 
values of VZp(0), thereby obtaining an approximate value of the optimal 
stepsize. This can be done by computing the eigenvalues of 

and by using Eq. (31) of Section 2.2. Such an approach probably would not 
be worthwhile for most problems, but, in some problems which are solved 
repetitively with slightly varying data, it may be profitable to compute 
approximately these eigenvalues at least once and obtain approximate 
values of y and r for use in the optimal stepsize formula (18). 

Another possibility is based on the fact that, from (18), we obtain 

and an underestimate of r *  is given by 

This underestimate is quite accurate for large c. For problems that are 
solved repetitively with slightly varying data one can use the stepsize formula 

where p is a parameter approximating (l- + y) and determined by experi- 
mentation with a few trial runs. When p = 0, (20) yields a, = c,. For ck 
very large, we have x, 2: c,. For problems with convex structure where 
VZp(0) 2 0, we shall have p 2 0, so the stepsize a, of (20) satisfies 

Such a stepsize lies within the interval of convergence [compare with (15)], 
so the corresponding method 

with r, given by (20). is guaranteed to converge in the quadratic case. In 
fact, one may show that this is also true in the general case under Assumption 
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(S). We leave the proof of this fact as an exercise for the reader (see also 
Proposition 5.13). For problems with V2p(0) 5 0, we shall have p 1 0. 
In order to avoid a negative r, from (20), it is advisable to select p so that r, 
as given by (20) satisfies 

where p is some small scalar with 0 < p < 1. For c, greater than the threshold 
level -2p, we see that r, lies within the interval of convergence [compare 
with (15)], and the resulting method is guaranteed to converge. Unfortunately 
it is not ordinarily easy to determine whether the condition V2p(0) S O  
holds in a given problem. 

Example: Consider the three-dimensional problem 

minimize f{(x2 + x3)2 + (xl + x3)2 + (xl + x ~ ) ~ )  

subject to x1 + x2 + 2x3 = 2, x1 - x2 = 0. 

The optimal solution is x* = (0,0, 1) and the corresponding Lagrange 
multiplier is A* = ( -  1,O). The optimal value is equal to unity. We show, 
in Table 2.2, the sequences {d,,(A,)) generated via the iteration 

where cr, is given by the stepsize rule (20) for various values of p. The starting 
point in all runs was 2, = (10, - 5). It can be seen that a value of p between 
1 and 5 improves considerably the rate of convergence over the standard 
stepsize ( p  = 0 and a, = c,). 

There is another way to improve the convergence rate of the method of 
multipliers by alternative stepsize choice when either V2p(0) > 0 or VZp(0) < 
0. We proceed to describe i t  briefly for the case of the general problem (ECP) 
under Assumption (S). Consider the system of equations in (x, A) 

Using the implicit function theorem, it follows that there exists a continuously 
differentiable function x(A) defined in a neighborhood N(R*) of A* such that 
x(A*) = x* and 

Define 



a 2 m m  
Ot- m m  

N m ~ m o o m h  z 4; ~ 8 2 2 2 
2 7 7  I 

I 

c - ~ m d v i ~ ~  
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A calculation analogous to the one given in this section following (2)  shows 
that 

Vd(R) = h[x(A)], 

V2d(A) = - Vh[x(A)]'{V~,Lo[x(A),  i]} -'Vh[x(A)]. 

where we assume that Vf,Lo(x*, A*) is invertible and N(A*) is chosen so 
that {V,2,Lo[x(A), A ] ) - '  exists for all A E N(A*). We have 

Vd(A*) = h(x*) = 0. 

From (33) of Section 2.2, we have that if V2p(0)  > 0 then V2d(A*) < 0 while 
if V2p(0) < 0 then V2d(A*) > 0. Thus, if V2p(0) > 0, we have that A* maxi- 
mizes d, while if V2p(0) < 0, we have that A* minimizes d. We mention that 
in the case where V2p(0) > 0, the function d is the ordinary dual functional 
in the local duality framework of Luenberger (1973). Now when operating 
the method of multipliers, each time we obtain a vector x(A,, c,), we have 

This means that if X, is sufficiently close to A*, we have 

This information on gradients and values of d can be utilized to determine 
a stepsize for the multiplier iteration by interpolation aimed at maximizing 
or minimizing d depending on whether V2p(0) > 0 or VZp(O) < 0, respec- 
tively. It is necessary to carry out the interpolation every second iteration 
so as to collect sufficient data in the intermediate iteration. We describe the 
typical step of this procedure. 

Given A,, and c,,, k = 0, 1 , .  . . , we obtain x,, and h(x,,) by uncon- 
strained minimization of the augmented Lagrangian, and we set 

Similarly, we obtain x2,+ , and h(x2,+ ,) by means of unconstrained mini- 
mization of the augmented Lagrangian. However, we now set 



This choice of stepsize a2,+, is based on quadratic interpolation of 
d[/Z2,+ + ah(x2,+ ,)I based on 

Vd('2k+l)=h(x2k), V d [ / 1 2 k + l + c 2 k + l h ( x 2 k + l ) 1 = h ( x 2 k + l ) .  

The stepsize r2,+ ,, given by (22), is the one for which the derivative of the 
interpolating polynomial is zero. In the case where V2p(0) > 0 [V2p(0) < 01, 
it may be a good idea to restrict r2,+, to be less or equal to 2c2,+, LC,,+ l]. 
This will guarantee convergence [compare with (15)l. 

It is possible to show that this stepsize procedure improves the con- 
vergence rate of the method of multipliers (see Bertsekas, 1975c), although 
in most cases the improvement is not spectacular. Some related computa- 
tional results can be found in Bertsekas (1975a,c). On the other hand, the 
added computational overhead of the procedure is negligible, and it may 
be worth trying as a means of accelerating the rate of convergence of the 
basic method when Newton-type iterations to be examined in the next 
section are inappropriate. 

2.3.2 The Second-Order Multiplier Iteration 

In view of the interpretation of the multiplier iteration as a steepest 
ascent method, it is natural to consider Newton's method for maximizing 
the dual functional d, which is given by 

In view of (3) and (5), this iteration can be written as 

where 

We shall provide a convergence and rate of convergence result for 
iteration (24), (25). To this end, we consider Newton's method for solving, 
for c E R, the system of necessary conditions 

In this method, given the current iterate, sap (x, A), one obtains the next 
iterate (2, ?) as the solution of the linear system of equations (compare with 
Proposition 1.17) 
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If V;,L,(x, A) is invertible and Vh(x)  has rank m, we can solve system (27) 
explicitly. We first write (27) as 

(28) v:, L,(x, A)(a - X )  + vh(x)(; - A) = - V ,  L,(x, A), 

Premultiplying (28) with Vh(x)'[V% L,(x, A)] - ' and using (29), we obtain 

- h(x) + Vh(x)'[V:,L,(x, A)]- '~h(x)(X - A) 

= - Vh(x)'[V;, L,(x, A)] - ' V ,  L,(x, A) 

from which 

(30) E: = A + { V ~ ( X ) ~ [ V ; ,  L,(x, A)]  - ' v h ( x ) )  - I 

x [h(x) - Vh(x)'[V;, L,(x, i)] - 'V ,  L,(x, A)] .  

Substitution in (28) yields 

(31) a = x - [v:, L,(x, A)]  - 9, L,(x, 2).  
Returning to (24), (25) and using the fact that V,L,[x(i, c), A] = 0, we see 
that iteration (24), (25) is of the form (30). 

For a triple ( x ,  i, c) for which the matrix on the left-hand side of (27) 
is invertible, we denote by R(x, A, c), i ( x ,  A, c)  the unique solution of (27) 
and say that i ( x ,  2, c), I (x ,  A, c) are well dejned. Thus (24), (25) is written 

Proposition 2.8: Let c be a scalar. For every triple (x ,  i ,  c), the vectors 
2(x, A, c), ;(x, A, c) are well defined if and only if the vectors i [ x ,  2 + ch(x), 01, 
j[x, i + ch(x), 01 are well defined. Furthermore 

Proof: Wehave 

V;, L,(x, A) = V;, Lo[x,  1. + ch(x)] + cVh(x)Vh(x)', 

V ,  L,(x, 3.) = VxLo[x ,  ,i + ch(x)]. 

As a result, the system (27) can be written as 



The second equation yields Vh(x)'(2 - x) = - h(x), which, when substituted 
in the first equation, yields 

Thus, system (35) is equivalent to 

This shows (33) and (34). Q.E.D. 

In view of (34), we can write (32) [or equivalently (24), (25)] as 

where 

This means that one can carry out the second-order multiplier iteration (24), 
(25) in two stages. First execute the jrst-order iteration (38) and then the 
second-order iteration (37), which is part of Newton's iteration at [x(A,, c,), 
;(A,, c,)] for solving the system of necessary conditions Vf (x) + Vh(x)A = 0, 
h(x) = O. NOW, we know that [x(R,, c,), X(Rk, ck)] is close to (x*, A*) for 
(i,, c,) in an appropriate region of Rm+' (Proposition 2.4). Therefore, using 
known results for Newton's method, we expect that (37) will yield a vector 
I.,, , which is closer to A* than i,,. This argument is the basis for the proof 
of the following two propositions. 

Proposition 2.9: Assume (S) holds, and let ? and 6 be as in Proposition 
2.4. Then, given any scalar .; > 0, there exists a scalar 6, with 0 < 6, I S 
such that for all (A, c) in the set D, defined by 

there holds 

where 
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If, in addition, V2f and V2hi, i = 1, .  . , m, are Lipschitz continuous in a 
neighborhood of x*, there exists a scalar M, such that, for all (A, c) E D,, 
there holds 

Proof: Let M  be as in Proposition 2.4. Given any y > 0, there exists 
an E > 0 such that if x(i, c) E S(x* ; E) and ;(I,, c) E S(A* : E), there holds 

(44) 1 (2[x(5 c), I(;, c), 01, i[x(A, c), L(A, c), 01) - (x*, 2*) 1 

S (y/&M) I[x(3+, c), ,?(Ib, c)] - (x*, A*) I 

(compare with Proposition 1.17). Take 6, sufficiently small so that, for 
(x, A) E D2, we have x(A, c) E S(x* ; E) and ;(A, c) E S(A*; E) (compare with 
Proposition 2.4). Using.(7) and (8) in Section 2.2, (44), and the fact 

;(A, c) = 33[x(3,, c), i(A, c), 01, 

we obtain 

and (40) is proved. 
If V2f and V2hi are Lipschitz continuous, then there exists an M ,  such 

that for x(2, C) E S(x*: E) and ;(A, c) E S(x*; E), we have 

(45) I (2[x(5 c), ?(i c), O],~[x(l,, c), i(2, c), 01) - (x*, A*) I 

I (M,/2M2)/ [x(A c), ;(A, c)] - (x*, l , * )~2 .  

Using again (7) and (8) in Section 2.2, and (45), we obtain 

and (43) is proved. Q.E.D. 

An almost immediate consequence of Proposition 2.9 is the following 
convergence result : 

Proposition 2.10: Assume (S) holds. and let F and 6 be as in Proposition 
2.4. Then there exists a scalar J2 with 0 < 6, I 6 such that if {c,) and A, 
satisfy 



then the sequence {A,) generated by [compare with (41), (42)] 

is well defined, and we have A, + A* and x(A,, c,) -, x*. Furthermore 
{ I A, - A* 1 ) and { I x(&, c,) - x* I ) converge superlinearly. If in addition 
V2f and V2hi, i = 1, . . . , m, are Lipschitz continuous in a neighborhood of 
x*, then (1 A, - A* / ) and (Jx(A,, c,) - x* / ) converge superlinearly with 
order at least two. 

Proof: Take g E (0, E) and let 6, be as in Proposition 2.9. Then A, + A* 
by (40) and x(A,, c,) -, x* by Proposition 2.4. The convergence rate assertions 
follow from (40) and (43). Q.E.D. 

It is interesting to compare the result of the proposition above with 
the corresponding result for the first-order iteration 

(Proposition 2.7). The region of convergence of both iterations is of a similar 
type but the threshold level for the penalty parameter in the first order iteration 
(48) is higher than that for the second-order iteration (47) if V2p(0) has a 
negative eigenvalue. Indeed if 7 is the smallest eigenvalue of V2p(0) and 
g < 0, we must have 2 > 2 1 .J 1 in the first-order method and E > I g 1 in the 
second-order method in order to assert convergence for 2, sufficiently close 
to A* (compare Propositions 2.5.2.7, and 2.10). Furthermore the second-order 
iteration has a faster convergence rate than the first-order iteration. On the 
other hand, the second-order iteration requires availability and computation 
of second derivatives as well as more overhead than the first-order iteration. 
The first-order iteration has an additional advantage which will become 
apparent when we consider convex programming problems in Chapter 5. 
We shall see there that for such problems. the first-order iteration is guaran- 
teed to converge even without differentiability assumptions and for an arbi- 
trary starting multiplier A,. By contrast, the second-order iteration requires 
second derivatives for its implementation and in general convergence can 
be guaranteed only for a limited region of initial multipliers. This suggests 
that for problems with inherently cont.ex structure thejirst-order iteration is 
more robust than the second-order iteration. 

It is worth noting that from (32) of Section 2.2 and (5), we have V2d,(A*) = 

- [VZp(0) + cI] - ' and therefore 

I V2d,(?.*)- ' + c l  1 
lim = 0. 
c -02  C 

Thus the first-order iteration approaches the second-order iteration as 
C +  X .  
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2.3.3 Quasi-Newton Versions of the Second-Order Iteration 

It is possible to eliminate the need for availability and computation 
of second derivatives if a quasi-Newton method such as the DFP  or BFGS 
method, described in Section 1.3.5, is used for minimization of the augmented 
Lagrangian. In these methods, one obtains usually (but not always) a good 
estimate D, of {V%Lck[x(A,, c,), A,])-' which, in view of ( 9 ,  can be used in 
turn to generate an estimate of V2dck(A,) by 

We thus can use the approximate version of the Newton iteration (24), 
(25) given by 

This type of method avoids computation of second derivatives at the expense 
of what is usually an insignificant degradation of rate of convergence over 
the second-order iteration (24), (25). For problems with a quadratic objective 
function and linear constraints, if the starting point x, in the first uncon- 
strained minimization is such that a complete set of n iterations of the 
quasi-Newton method is required for termination, then the final inverse 
Hessian approximation D, is exact (Proposition 1.21), and application of 
(49) will yield A* in a single iteration; i.e., 2 ,  = A*. For this, it is necessary, 
of course, that the initial penalty parameter satisfies c, > -y, where y is the 
minimum eigenvalue of V2p(0), for, otherwise, Leo(. , A,) is unbounded below 
and has no local minimum. 

Another advantage of this approach is that the matrix D, obtained via 
the quasi-Newton method at the end of the kth minimization may be used to 
generate a good starting matrix for the quasi-Newton method at the next 
minimization. If c,, , # c,, we have 

V$ L,*+ ,(x*, A*) = V:, Lc,(x*, A*) + (c, + , - c,)Vh(x*)Vh(x*)'. 

so if D, is a good approximation to V:,Lc,(x", A*)-', then it is reasonable 
that 

should be a good approximation to V;,Lck+ ,(x*, %*)-'. By using the matrix 
identity of Section 1.2, we also have 

Depending on whether one actually works with a Hessian or inverse Hessian 
approximation in the quasi-Newton scheme, one formula may be preferable 



to the other. If a separate penalty parameter is used for each constraint, 
then the corresponding formula is 

where ci is the penalty parameter used for the ith constraint. An equivalent 
form is given by 

where N ,  is the matrix having as columns the gradients Vhi(x,) for which 
c:+ # c: and Ck is the diagonal matrix having the nonzero penalty param- 
eter differences c i T ,  - c; along the diagonal. 

Another idea for approximating the inverse Hessian [V2dc,(A,)]-' is 
based on the formula [compare (31) of Section 2.2 and ( 9 1  

- [V2dCk(&)] - ' = V2p[h(x,)] + ck I .  

Thus, the second-order iteration can be written as 

Now during the course of the computation, we obtain the values and gradients 
of p(u) at several points, since we have, for each j I k, 

From these function values and gradients, we can generate an approximation 
of V2p[h(x,)] via a quasi-Newton iteration. This approximation can be 
used, in turn, in place of V2p[h(x,)] in the second-order iteration above. 
Unfortunately, several points are necessary before a reasonable approxima- 
tion to V 2 p  can be obtained, so the idea can lead to substantial improvements 
only for problems where the number of constraints m is small. Note however 
that this scheme is applicable regardless of whether a quasi-Newton method is 
used for unconstrained minimization of the augmented Lagrangian. 

2.3.4 Geometric Interpretation of the Second-Order Multiplier 
Iteration 

We finally offer a geometric interpretation of the second-order iteration 
in terms of the primal functional p. Given A,, c,, and x, such that 

V x  L c k ( ~ k  / Z k )  = 0, 

the second-order iterate A, + , is given by 
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This equation can be written in terms of the primal functional p as 

(50)  ,I,+, = I., + [V2p(u,) + c, I-ju, = X, + V2p(u,)u,, 

where 

( 5 1 )  U k  = h(xk), ik = hk + CkUk. 

If we form the second-order Taylor series expansion of p around u,  

@k(') = P ( u ~ )  + V ~ ( u k ) ' ( u  - ~ k )  f q(u - uk) 'V2~(uk)(u - ~ k ) ,  

we obtain 

(52) V P k ( " )  = v~(",) - V2~(u , )u , .  

Since (compare with Fig. 2.2) we have 

( 5 3 )  & = - V P ( U ~ ) ,  

it follows from (50)-(53) that 

VP,(O) = - A, + , 
as shown in Fig. 2.6. In other words the second-order iteration yields the 
predicted value of -Vp(O) based on a second-order Taylor series expansion 

FIG. 2.6 Goometr~c interpretation of the second-ordcr iteration 



of p around uk = h(xk). By contrast the first-order iteration yields the pre- 
dicted value of -Vp(O) based on a first-order Taylor series expansion of 
p around u, = h(xk) (compare with Fig. 2.2). 

2.4 Multiplier Methods with Partial Elimination of Constraints 

In the algorithms of Sections 2.2 and 2.3, all the equality constraints 
were eliminated by means of a penalty. In some cases however, it is of interest 
to consider algorithms where only part of the constraints are eliminated by 
means of a penalty, while the remaining constraints are retained explicitly. 
A typical example is a problem of the form 

minimize f (x) 

subject to h(x) = 0, x 2 0, 

where the dimension n of the vector x is large and h(x) = 0 represents a 
small number of nonlinear constraints. While, in addition to the constraints 
h(x) = 0, it is possible to eliminate the simple inequality constraints x 2 0 
by 'means of a penalty function, it is probably desirable in most cases to 
handle these constraints directly by suitable modifications of unconstrained 
minimization methods (compare with Section 1.5). The corresponding 
method of multipliers consists of (simply) constrained minimizations of the 
form 

minimize f (x) + A; h(x) + 3c, 1 h(x) l 2  
subject to x 2 0 

yielding vectors x,, followed by multiplier updates of the form 

In this section, we provide an analysis of multiplier methods of this type. 
We restrict attention to the case where the explicitly retained constraints 
are equalities. There is no loss of generality in doing so since, as will be seen 
in Section 3.1, a parallel analysis can be given for inequality constraints 
after they are converted to equalities by using additional variables. 

Suppose that (ECP) can be written as 

(1) minimize f (x) 
subject to hl(x) = 0, h,(x) = 0, 

where jh,, h,) = h. h,:  Rn -, Rml,  and h,: R" + Rm2. For c 2 0, consider the 
partial augmented Lagrangiarz function L , ,  , : Rn-"' + R defined by 
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The (first-order) multiplier method with partial elimination of con- 
straints is defined, under Assumption (S), by the iteration 

where x, solves locally in a neighborhood of x* the problem 

(4)  minimize L ,  , ,(x, A,, ,) 

subject to h,(x) = 0. 

As before, {c,) is a sequence of positive penalty parameters, and A, , ,  is 
chosen a priori. 

As mentioned earlier, we have in mind primarily cases where the con- 
strained problem (4) can be solved quite easily and possibly even more 
easily than the problem of unconstrained minimization of the ordinary 
augmented Lagrangian. 

The analysis of partial multiplier iterations of the form (3) is very similar 
to the one given in the previous two sections. In fact it is possible to argue 
that the method (3), (4)  is really no different than the ordinary multiplier 
method. To see this, partition x as 

where x ,  E Rn-m2 and x ,  E Rm2, and assume without loss of generality that 
the m, x m, gradient matrix V,,h,(xT, x:) is nonsingular. Then, using the 
implicit imction theorem, it is possible to solve near x* = (xT, x:) the 
system of equations 

and obtain x ,  in terms of x, as an implicit function 4(x1) .  Then problem (1) 
becomes 

(6)  minimize f [x, ,  4 ( x l ) ]  

subject to h,[x,, q5(xl)] = 0, 

while problem (4) becomes 

(7 )  Ininirnize Ll,c[xl ,4(xl>,nl ,k l  

subject to X ,  E Rm< 

It is easy to see that the partial multiplier iteration (3)  is nothing but the 
ordinary multiplier iteration for problem (6)  and involves in effect un- 
constrained minimizations of the form (7). It is thus possible to extend all 
the results of Sections 2.2 and 2.3 to cover partial multiplier iterations of 
the form (3) by making use of the implicit solution of the system of equations 



(5). It is probably more straightforward however to develop these results 
directly by simply paralleling the analysis of Sections 2.2 and 2.3. Some of 
the details will be left to the reader. 

The following proposition parallels Proposition 2.4. Here and in what 
follows in this section we assume that (x*,  A*) satisfi Assumption ( S )  and 
A: ( A T )  is the zector of thejrs t  m ,  (last m,) coordinates of A*. 

Proposition 2.11: Assume ( S )  holds, and let 2 be a positive scalar? 
such that 

zlV&L,(x*, A*)z > 0 V z # 0, Vh,(x*)'z = 0. 

There exist positive scalars 6, E ,  and M such that 

(a) For all (A,, c)  in the set D c Rml+  ' defined by 

D = {(A,, c)  I ( 2 ,  - AT I < 6c, c < c ) ,  

the problem 

minimize L ,  , ,(x, A,) 

subject to h2(x)  = 0 

has a unique solution denoted x(A,, c). The function x( . ,  .) is continuously 
differentiable in the interior of D, and for all (A,, c)  E D, we have 

Ix( i , ,c)  - x * /  < MIA, - 3,TIjc. 

(b) For all ( A , ,  c )  E D, we have 

lJl(Al,  C )  - Ayl  < MIA, - ATlJc, 
where 

i l ( A 1 ,  C )  = A1 + chl[x(Al ,  c)] .  

(c) For all (A,, c)  E D, there exists a vector X,(A,, c)  such that 

V x L [ x ( A 1 ,  c), A1, %A1, c )]  = 0, 

z'V&L,[x(;l,, c) ) ,  A,, ,?,(A1, C ) ] Z  > O V z # 0, Vh2[x(A1, c)]'z = 0, 

where L,(x, A,, A,) = L,, ,(x,  A , )  + A j  h,(x). Furthermore, the matrix 
Vh[x(Al ,  c)]  has rank m, and we have A,(,?:, c )  = AT for all c 2 c'. 

Proof: For c > 0, consider the system of equations in ( x ,  I , ,  A,, A,, c), 

Vf ( x )  + ~ h , ( x ) X ,  + Vh2(x)/Z2 = 0, 

(8b) h,(x)  + (il - &)/c = 0, 

t We leave ~t to  the reader to verify that Assumption (S) implies that such a scalar (T exists. 
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By introducing the variables t E Rm and g E R defined by 

t = ( A l - ; I T ) / c ,  y = l / c ,  

we write system (8) as 

( 9 4  VJ ' (x)  + V h l ( x ) i l  + Vh,(x)ll, = 0 

(9b)  h l ( x )  + t + yAT - ? i 1  = 0 

( 9 ~ )  h2(x )  = 0 

For t = 0 and y E [O,l/E], system (9) has the solution x = x*, 2 ,  = 17, 
A, = 2;. The Jacobian, with respect to ( x ,  A, ,  A,), at such a solution is 

V;, Lo(x*, A*) Vh,(x*)  Vh,(x*) 
Vh,(x*)' - gl 
Vh,(x*)' 0 0 

Similarly as in the proof of Proposition 2.4, we show that this Jacobian 
is invertible for all 1; E [0, lli;]. We then apply the second implicit function 
theorem of Section 1.2 to system (9),  and the remainder of the proof proceeds 
along the lines of the proof of Proposition 2.4, We leave the details to the 
reader. Q.E.D. 

In Section 2.2, we saw that the eigenvalues of the primal functional 
play a significant role in the convergence analysis. Within the framework 
of the present section it is appropriate to define the partial primal functional 
p ,  : S(0: 6 )  -+ R by 

where E and 6 are sufficiently small scalars [compare with Section 2.2.3 and 
Eq. (26) in that section]. Clearly, we have 

 PI(^,) = p(u,, 0 )  Vu1 with lull < 6, 

where p(u) = p(ul, u,) is the primal functional of Section 2.2.3. Thus 

Vp,(u1) = V U l ~ ( ~ 1 >  01, 

v2P1(ul)  = .v ,21ul~(ul .  0). 

We leave it to the reader to transfer the argument of the proof of Proposition 
2.5 and show the following. 

Proposition 2.12: Let (S) hold. For any scalar c, we have 

z'V;,L,.,(x*, I1T)z > 0 V z # 0 ,  Vh,(x*)'z = 0, 

if and only if 

c > m a x ( - e l ,  . . . ,  - eml} ,  



where e l ,  . . . , em, are the eigenvalues of V2pl (0 ) .  

We also have the following convergence result. 

Proposition2.13: Assume (S) holds, and let 2 and 6 be as in Proposition 
2.11. Denote by el, . . . , em, the eigenvalues of the matrix V2pl(0).  Assume 
also that 

There exists a scalar 6 ,  with 0 < 6 ,  I 6 such that if {c,} and A,,, satisfy 

then the sequence {A,.,} generated by 

is well defined, and we have A, , ,  -+ 3,: and x(A,,,, c,) 4 x*. Furthermore if 
lim sup,,, c, = c* < x and A,, ,  # AT for all k ,  there holds 

lim sup I +  - I max ei 1 
k - c c  I i 1 . k  - AT1 i = l ,  ..., m ,  ei + C* ' 

while if c, -+ a and A,., # AT for all k. there holds 

The proof of this and other extensions of the results of Sections 2.2 and 
2.3 are obtained by means of the following observation. For E and 6 as in the 
definition of the partial primal functional, the problem 

(10) minimize L , ,  ,(x, A,)  

subject to h,(x) = 0, x E S(x*;  E), 

can also be written as a problem in the variables ( x ,  u , )  of the form 

minimize L , ,  ,(x, A,) 

subject to h,(x)  = u,, h,(x) = 0. u ,  E S(0: a),  x E S(X*: E ) .  

This problem in turn is equivalent to 

(11) minimize p,(u,) + R;ul + i c l u ,  1, 
subject to u ,  E S(0;  6). 
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in the sense that if u,(A,, c )  solves this problem and x[u,(A,, c )]  solves 
the problem 

minimize f  ( x )  

subject to h , ( x )  = u,(A,, c), h 2 ( x )  = 0, x E S(x* ;  E ) ,  

then the vector x(A,, c )  = x[u,(A,, c )]  solves problem ( l o ) ,  and we have 
ul(A1,  C )  = hl  [x(A1, c )] .  It can be seen now that the partial multiplier 
iteration A,,,, , = A,,, + c, h[x(A,,,, c,)] is in effect the (ordinary) multi- 
plier iteration for the problem 

(12)  minimize p,(u,) 

subject to u ,  = 0, 

which involves unconstrained minimizations of the form (1  1). By applying 
Proposition 2.7 to problem (12), we obtain a proof of Proposition 2.13. 

Similarly by working with problem (12), we can define a partial dual 
functional 

= min { f ( ~ ) + ; l ; h ~ ( x ) + ~ c l h ~ ( x ) ~ ~ )  
x E S(x*; e )  
h2(x)  = 0 

for (A,, c )  in a set of the form (compare with Proposition 2.1 1) 

The gradient and Hessian matrix of d, are given by [compare with (3) ,  (5) 
of Section 2.31 

VdLC(A1) = h , C x ( L  ell, 

V2d1,,(Al) = - {VZp,[ul(A, ,  c) l  + c I ) - '  = - { V 2 p l [ h l [ x ( i l ,  c ) ] ]  + c I ) - ' .  

Using these expressions, we can define Newton's method for maximizing 
dl, , ,  and we can also prove a convergence result similar to Proposition 2.9. 
As shown earlier, the Hessian of p, is given by 

where p is the primal functional of Section 2.2.3. Thus, we can compute 
V 2 p l ( u l )  using Eq. (31) of Section 2.2.3 and the solution x ( i , ,  c )  and corre- 
sponding Lagrange multiplier of the partially constrained problem 

minimize L,,,(x, A,) 

subject to h 2 ( x )  = 0. 
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2.5 Asymptotically Exact Minimization in Methods of 
Multipliers 

The multiplier methods considered in the previous sections have the 
drawback that unconstrained minimization of the augmented Lagrangian 
must be carried out exactly prior to updating the Lagrange multiplier. In 
practice, this can be achieved only approximately since unconstrained 
minimization of the augmented Lagrangian requires in general an infinite 
number of iterations. Furthermore computational experience has shown that 
insisting on accurate unconstrained minimization can be computationally 
wasteful. More efficient schemes result if the unconstrained minimization 
is terminated and the multiplier is updated as soon as some stopping criterion 
is satisfied. In this section, we consider the case where the stopping criterion 
becomes more stringent after every multiplier iteration so that minimization 
is asymptotically exact. 

First-Order Iteration 

Consider the first-order iteration 

where x, satisfies 

and {E,) is a sequence such that E, 2 0 for all k and E, + 0. 
The following result relates to this method and extends Proposition 2.4. 

Proposition 2.14: Assume (S) holds, and let 2 be a positive scalar such 
that 

(3) v:, L,(x*, A*) > 0. 

There exist positive scalars 6, E,  and M such that: 

(a) For all (A, c, r )  in the set D c Rmf "" defined by 

there exists a unique vector x,(/Z, c) within S(x*; E )  satisfying 

( 5 )  V X L L ~ R @ >  c), A1 = r. 

The function x, is continuously differentiable in the interior of D, and, for 
all (A, c, cc) E D, we have 

( 6 )  Jx,(A,c) - x*j I M(IA - A*I2/c2 + lul2)l  2.  
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(b) For all (A,  c, x) E D, we have 

where 

(8) J,(A, c) = II + ch[x,(A, c)] .  

(c) For all (A ,  c, x) E D, the matrix V:, ~,[x , ( / l ,  c), A] is positive definite, 
and the matrix Vh[x,(A, c)] has rank m. 

Proof: The proof is very similar to that of Proposition 2.4. For c  > 0, 
we consider the system of equations in ( x ,  X ,  A, c, a) 

We introduce the variables t  E Rm and y E R, defined by 

(10) t  = ( A  - A*)/c and y = l /c ,  

and write system (9)  as 

(11) vf (x) + v h ( ~ ) X  = U, h ( ~ )  + t + Y/Z* - Y ;  = 0. 

For t = 0. y E [O,l/C], and a  = 0, system ( 1 1 )  has the solution x  = x*, 
i. = A*. As in the proof of Proposition 2.4, we can apply the second implicit 
function theorem of Section 1.2 to system ( 1 1 )  and assert the existence of 
E > 0  and 6 > 0  and unique continuously differentiable functions R,(t, y ) ,  
;,(t, y )  defined on S (K;6 ) ,  where K  = { ( O , y , O ) l y  E [ O ,  1/21} such that 
( I  R,(t, y )  - x* l 2  + / i,(t, y )  - A* l 2 ) l I 2  < E for all ( t ,  y ,  a) E S ( K ;  6 )  and satis- 
fying 

Furthermore 6 and E can be chosen so that Vh[a,(t, y ) ]  has rank m, and 

(14) v:,L,[R,(~, j.), i:,(t, y ) ]  + cvh[~ , ( t ,  y ) ] vh[~ , ( t ,  y)] '  > o 
for ( t ,  y ,  r )  E D. This proves parts (a) and (c) except for (6)  similarly as in 
the proof of Proposition 2.4. 

To show (6)  and (7), we differentiate (12) and (13) with respect to t, y, 
and x. We obtain 

where 
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We have, for all (t, y, a) such that I (t, a) I < 6 and "y' [O, 1/21, 

(16) 

Let I.( be such that I A(t, y, a) I I I.( for all I ( t ,  a) I < 6 and p E [0, 1/21, and take 
6 sufficiently small to ensure that p6 < 1. We have, from (161, 

(1 a,(t, y )  - x* l 2  + / &(t, 7 )  - A* /2)1'2 5 p(/ (t, a) ( + max /&(it, iy) - A* I y), 
O < < < l  

and, from this point on, the proof of (6) and (7) proceeds exactly as in the 
proof of Proposition 2.4 with I ( t ,  a) / replacing I t 1 .  Q.E.D. 

We can obtain a convergence result from Proposition 2.14 as follows. 
Consider the iteration 

where 0 < c, I c,+ , for all k, and assume that for some sequence (E,) with 
E, -+ 0, 0 I ck for all k, we have 

where 

(19) 

Assume that for some E we have 

(20) E, < 6 1 4 ,  12, - A*/ < ~ ~ 6 1 ~ 5 ,  cx 2 rnax(2, $M), 

where 2, M ,  and 6 are as in Proposition 2.14. Then (A,-, c,, c(,) E D, and 
assuming xi; is the unique point corresponding to (A,, c,, x,) as in Proposition 
2.14, we have, in view of c, + , 2 c, 2 &M, 

)Ai;+ - A* j I M(I& - A* I'/'C$ + l ~ ~ 1 ~ ) ~ ' ~  < M6 I cE+ 16/$. 

Given also that E,+ , 5 EE < 6 1 3 ,  we obtain 

(;-E- 1, C i +  1, %,+ 1) E D .  

This argument can be repeated, and we are thus led to the conclusion that 
if, for some i, (20) holds, then we have 

(A,, c,, LY,) E D V k 2 I? 

provided that for each k the vector x, generated by the algorithm is the 
unique point corresponding to (A,, ck, a,) as in Proposition 2.14. This 
means that the estimate (7) is applicable for k 2 & and we have 
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Since c, 2 &M for k 2 k ,  we obtain 

- A*/ I (+(Ak - A*I2 + M2&;)lI2 v k 2 I?, 

from which 

Hence, for m 2 1, 

It is easily seen that E, -+ 0 implies lim,,, xy= "=,- '"- ')  M ~ E ; + ~  = 0, and it 
follows that I AE+, - A* I -+ 0 as m -+ cc ; i.e., 

lim A, = A*. 
k-m 

Also from (6 ) ,  we obtain 

(x, - x* I 5 M(l& - A* I2/c; + &;)Ii2 v k 2 E, 

and it follows that 

lim x, = x*. 
k-m 

However, the rate of convergence of ( I A, - A* / } and ( I  x, - x* I ) need not 
be linear. In order to achieve a linear rate of convergence, it is necessary that 
the tolerance 8, decreases to zero as fast as 12, - A* 1 /ck . This can be achieved 
by replacing the stopping criterion (18), (19) by the stronger condition 

where y is some scalar. We have, from (7), 

Using (l7), we obtain 

from which 

For c, > M L  the relation above yields 

I h(x,)I I [(M + ck)/ck(ck - My)]  12, - A* I V k 2 I?. 



Substituting in (22), we obtain 

For c, > M(l + 2y), this relationship can be strengthened to yield finally 

Relation (23) holds if x, satisfies the stopping criterion (21) and c, exceeds the 
(unknown) threshold level M(l + 2y). If (23) is effective and c, > M(l + 2y) 
for all k sufficiently large, then A, + A* and x, -t x*. The convergence rate 
is at least linear if c, + c* < co and superlinear if c, -+ co, similarly as in 
the method with exact minimization. 

The preceding analysis shows that if the sequence {e,) used in the stop- 
ping criterion (21) is bounded above by a sufficiently small positive number 
then, given any initial multiplier A,, there exists a generally unknown 
threshold level for the penalty parameter c,. If c, exceeds this level conver- 
gence is obtained. It is actually possible to obtain a sharper convergence and 
rate-of-convergence result. To this end, we consider the following algorithmic 
model : 

Two sequences {E,) and {y,), with 0 < E, + , < E,, E, + 0,0 < 7,- < yk, 
and yk + 0, are given. An initial multiplier A, and a penalty parameter 
sequence {c,} are also given and are assumed to satisfy 

where ? and 6 are as in Proposition 2.14. For k = 0, 1 , .  . . and for any 
(A,, c,, E,) satisfying 

we consider the sets 

We focus attention at the iteration given by 

Iteration (27), (28) is equivalent to A , + ,  being any element of the set 
A(2,. c,, e,). We say that the iteration is well defined if A,, {E,), {c,) are such 
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that, for k = 0, I, . . . , if (A,, c,, E, )  satisfies (24), then every ,I,+, E A(&, c,, E,) 

satisfies 

The idea underlying the elaborate construction given above is to ensure 
that multipliers generated by iteration (27), (28) lie within the region for 
which approximate local minima of the augmented Lagrangian can be 
guaranteed to exist in accordance with Proposition 2.14. 

The following proposition provides a convergence and rate-of-con- 
vergence result for iteration (27), (28). Its proof utilizes the machinery 
developed in the proof of Proposition 2.14 similarly as the proof of the 
related Proposition 2.7 made use of the arguments of Proposition 2.4. We 
leave the straightforward but lengthy details to the reader. 

Proposition 2.15: Assume (S) holds, and let 2 and 6 be as in Proposition 
2.14. Denote by el,  . . . , em the eigenvalues of the matrix V2p(0) given by 
(32) of Section 2.2. Assume also that 

There exist positive scalars dl, y such that if 

then iteration (27), (28) is well defined and any generated sequences {;I,) 
and {x,) converge to A* and x*, respectively. Furthermore, if A, # A* for 
all k, we have 

lim sup I A k +  l - A* 1 
= 0 

k-co / a k - A * I  

Second-Order Iteralion 

The key to deriving the proper form of the second-order iteration when 
unconstrained minimization is not exact lies with the result of Proposition 
2.8 and Eqs. (30) and (34) of Section 2.3 in particular. The second-order 
iteration should consist of the first-order iteration followed by an iteration 
of Newton's method for solving the system of first-order necessary conditions. 
Based on equations (30) and (34) of Section 2.3, we obtain the iteration 



The same reasoning together with Proposition 2.14 and the argument of the 
proof of Proposition 2.9 yields the following result: 

Proposition 2.16: Assume (S) holds and let 2 and 6 be as in Proposition 
2.14. Then given any scalar y > 0, there exists a scalar 8, with 0 < 8, I 8 
such that, for (A, c, a) in the set D, defined by 

D2 = {(A, c, x)I(IA - A* I2/c2 + 1 ~ 1 ~ ) ' ' ~  < 6,c, 2 I c), 

there holds 

If in addition V2f and V2hi, i = 1, .  . . , m, are Lipschitz continuous in a 
neighborhood of x*, there exists a scalar M ,  such that for all (A, c, a) E D, 
there holds 

There is also an analog of Proposition 2.10 that can be proved for iteration 
(29), assuming that 2 I c, I cki for all k, and x, satisfies for all k the 
stopping criterion 

2.6 Primal-Dual Methods Not Utilizing a Penalty Function 

One of the first Lagrange multiplier methods proposed for solving the 
equality constrained problem 

( E W  minimize f (x) 

subject to h(x) = 0 

consists of sequential minimizations of the form 

(1) minimize L,(x. A,) 
subject to x E Rn 



yielding vectors x,, followed by multiplier iterations of the form 

(2 )  2, + , = 4 + ah(%), 

where r is a positive stepsize parameter. 
A method of this type is particularly useful in separable problems having, 

for example, the form 

minimize x 
i =  1 

subject to 1 hi(&) = 0, 
i =  1 

where x = ( t , ,  . . . , t,). For such a problem, the minimization of the Lagran- 
gian Lo( . ,  A,) can be decomposed into n one-dimensional minimizations 

with considerable simplification resulting. 
Essential for the validity of this method is the presence of some kind of 

convex structure in the problem. In local versions of the method (which 
are the only ones that will be examined in this section), one focuses on a 
local minimum x* satisfying the sufficiency Assumption ( S )  of Section 2.2 
and the additional local convexity condition 

( 5 )  V:, L ~ ( X * ,  A*) > 0. 

There are also global versions of the theory where the underlying problem 
is a convex programming problem (see, e.g., Lasdon, 1970). 

The analysis and indeed the motivation of method (I), (2) is based on 
local duality. In fact all the necessary analysis has already been carried 
out in Sections 2.2-2.5 and can be brought to bear by means of the following 
simple observation : 

For a positive scalar parameter a, consider the problem 

(6) minimize f ( x )  - +a 1 h(x )  1' 
subject to h(x )  = 0. 

It is a simple matter to verify that this problem is equivalent to (ECP) in the 
sense that the two problems have the same local minimum-Lagrange multiplier 
pairs. l f a n y  such pair satisfies Assumption (S),for one problem, it also satisfies 
it for the other. It is evident now that the iteration 



where x, minimizes Lo(., A,) locally around x* is simply thejirst-order method 
of multipliers for problem (6) with (constant) penalty parameter equal to r.  

Thus the analysis of the preceding sections can be used to infer con- 
vergence and rate-of-convergence results for the method. In particular, 
it is easy to verify the following facts assuming (S) and the local convexity 
condition (5). 

(a) There exist E > 0 and 6 > 0 such that for all A E S(A* ; 6) the problem 

minimize L,(x, 2) 

subject to x E S(X*; E )  

has a unique solution denoted x(A) and such that V:,Lo[x(A), A] > 0 and 
Vh[x(A)] has rank m (compare with Proposition 2.4). 

(b) A dual functional d is defined by 

d(A)=L,[x(A),A] VAES(A*;~)  

and has gradient and Hessian given by 

(compare with Section 2.3). 
(c) If p is the primal functional of (ECP) (compare with Section 2.2.3), 

then the primal functional of problem (6) is given by 

F(u) = p(u) - I  u 12, 

and if e is the minimum eigenvalue of V2p(0) then (e - cc) is the minimum 
eigenvalue of V2p(0). 

(d) There exists a 6, E (0,6] such that the iteration 

A,+ 1 = A k  + ghCx(A,)l 

is well defined and converges to A* if A, E S(A* ; a,), a > 0, and a > - 2(e - r )  
(compare with Proposition 2.7) or equivalently if 

where e is the minimum eigenvalue of the primal functional p of (ECP). 
Furthermore if A, # A* for all k there holds 

l ? L k + l  - A*l e, - a 
lim sup - < max - 

k -  - * i , . .  I Pi I 
where e l , .  . . , em are the eigenvalues of V2p(0). 
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(e) There exists a 6, E (0,6] such that the second-order iteration 

is well defined and converges to A* if A, E S(A* ; 6,) (compare with Proposition 
2.10). Furthermore, the rate of convergence is superlinear (at least order 2 
if V y  and V2hi,  i = 1, . . . , m, are Lipschitz continuous in an open sphere 
centered at x*). 

Notice from (7) that the region of stepsizes that guarantee convergence 
depends on the minimum eigenvalue e of V2p(0) and is generally unknown in 
practice. Furthermore a good initial choice A, is necessary to guarantee 
convergence. These facts limit the usefulness of the simple primal-dual 
methods of this section to large-scale problems with special structure [for 
example, the separable problem (3)], which satisfy the local convexity 
condition (5). It is possible to construct primal-dual methods for large-scale 
separable problems satisfying Assumption (S) in place of the stronger local 
convexity condition (9, but this requires a more elaborate structure (see 
Bertsekas, 1979b). 

2.7 Notes and Sources 

Notes on Section 2.1: The basic idea of penalty function methods is 
quite old. An extensive work which had substantial influence on further 
developments is Fiacco and McCormick (1968). The rate of convergence of 
the quadratic penalty function method was analyzed by Poljak (1971). 

Notes on Section 2.2: The quadratic method of multipliers was first 
proposed independently by Hestenes (1969) and Powell (1969). It was also 
proposed a year later by Haarhoff and Buys (1970). The thesis by Buys 
(1972) and the paper by Rupp (1972) provided the first local convergence 
results for a fixed value of the penalty parameter. Related results were also 
given by Wierzbicki (1971). Convergence results of a global nature and for a 
variable penalty parameter were first given independently in Bertsekas (1973, 
1976a) and Poljak and Tretjakov (1973). A related result was given in Hes- 
tenes (1975). A sharp bound on the rate of convergence was first given in 
Bertsekas (1975~). The issue of convergence to a single limit point of the 
sequence {x,} generated by a method of multipliers is addressed in Polak and 
Tits (1979). The convergence analysis in this section follows Bertsekas (1979a) 
and sharpens the results of earlier works while weakening some of the assump- 
tions. 
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Notes on Section 2.3: The local duality framework for the method of 
multipliers was developed independently by Buys (1972) and Luenberger 
(1973). The stepsize analysis of Section 2.3.1 extends the one of Bertsekas 
(1975~). The stepsize rule (20) is new. An alternative stepsize rule has been 
proposed by Jijtontrum (1980). The convergence and rate-of-convergence 
analysis for the second-order iteration improves on earlier results in Bertsekas 
(1976b, 1978). The first quasi-Newton version of the second-order iteration 
was suggested independently by Fletcher (1975) and Brusch (1973). The 
second quasi-Newton scheme is new. 

Notes on Section 2.4: Multiplier methods with partial elimination of 
constraints were first considered in Bertsekas (1977). The convergence 
analysis given here is an improvement over the one in that reference. 

Notes on Section 2.5: Multiplier methods with inexact minimization 
were proposed and analyzed by Buys (1972), Bertsekas (1973, 1975c, 1976a), 
and Poljak and Tretjakov (1973). Proposition 2.14 improves a result of 
Bertsekas (1973) and Poljak and Tretjakov (1973). while Proposition 2.16 
improves a result of Bertsekas (1978). 

Notes on Section 2.6: These methods were pioneered by Everett (1963). 
Additional relevant works are Poljak (1970), Luenberger (1973), and 
Lasdon (1970). Ideas related to methods of multipliers have been used for 
algorithmic solution of special types of large-scale separable problems for 
which the local convexity assumption is not satisfied -see Stephanopoulos 
and Westerberg (l975), Stoilow (1977), Watanabe et al. (1978). A different and 
more general approach has been proposed in Bertsekas (1979b). 



Chapter 3 

The Method of Multipliers for 
Inequality Constrained and 
Nondifferentiable Optimization 
Problems 

3.1 One-sided Inequality Constraints 

Consider a nonlinear programming problem involving both equality 
and inequality constraints 

(NLP)  minimize f ( x )  
subjectto h(x)=O,  g(x)<O,  

where f: R n  + R, h:  Rn + Rm, and g :  Rn + Rr are given functions and m I n. 
The components of h  and g are denoted by h,, . . . , hm and g,, . . . , g,, respec- 
tively. 

As discussed in Section 1.4, it is possible to convert (NLP)  into an 
equality constrained problem by introducing a vector of additional variables 
z  = (z , ,  . . . , 2,).  This problem is given by 

(1) minimize f ( x )  
subject to h,(x) = . . . = hm(x) = 0, 

g l ( x )  + z: = . . .  = g,(x) + z,2 = 0. 
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We have that x* is a local (global) minimum of (NLP) if and only if 
(x*, z:, . . . , z:), where z? = ,,I"-, j = 1;. . . , r, is a local (global) 
minimum of problem (1). 

Based onthis conv&ion, we shall extend all the algorithms and results 
of Chapter 2 to (NLP). Essentially, no new analysis is required for this 
extension. 

Consider first the augmented Lagrangian for problem (1) defined for 
c > Oby 

In applying the methods of Chapter 2 to problem (I), we must minimize the 
augmented Lagrangian (2) with respect to (x, z) for various values of A, p, 
and c. An important point here is that minimization of L,(x, z ,  A,p) with 
respect to z can be carried out explicitly for eachjixed x. To see this, note that 

(3) min L,(x, z, p) = f (x) + Illh(x) + 3c I h(x) 1' 
Z 

r 

+ C min{pj[gj(x) + z?] + 3clgj(x) + z?I2). 
j z l  - 

" J 

The minimization with respect to zj is equivalent to 

The function in braces above is quadratic in uj. Its unconstrained (global) 
minimum is the scalar iij at which the derivative is zero. We have 

from which 

There are two possibilities. Either iij 2 0 in which case iij solves problem (4), 
or else the solution of problem (4) is uj* = 0. Thus the solution of problem 
(4) is 

and we have 
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Let us use the notation 

Then, from (3)-(S), we obtain 

min L,(x, z, A, p) = f ( x )  + l.'h(x) + i c  I h(x)  1' 

+ p19+(x, p, c)++cIg+(x, p, ell2. 

We are thus led to the following definition of the augmented Lagrangian for 

(NLP) 

(9)  Lc(x, A, p) = f ( x )  + 2'4x1 + p'g + ( x ,  P, c) 

+ +c{Ih(x)l2 + Ig+(x, p, c)12). 

An alternative expression for L,(x, A, p) is given by 

The equality of the expressions (9)  and (10) can be verified by a straight- 
forward calculation. The form of the last term in (10) is shown in Fig. 3.1. 

The conclusion from the preceding discussion is that the problem 

(1 1 )  minimize L,(x, z, A, p, c) 

subject to ( x ,  Z )  E Rn-r 

is equivalent to the problem 

minimize L,(x, A, p) 

subject to x E Rn, 

FIG. 3.1 Penalty function for one-sided 
inequality constraints 
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and [x(& p, c), z(A, p, c)]  is a solution of problem ( 1  1) i f  and only i f  x(A, p, c )  
is a solution or problem (12) and [compare with ( 3 1  

As a result, the methods of Chapter 2 can be applied to problem (NLP) after 
it has been converted to the equality-constrained problem (I), but the 
computation itself need not involve the additional variables z,, . . . , z, since 
we can solve in place of problem (1 1) the equivalent problem (12). 

We now develop some results, relating to problem (1) and the augmented 
Lagrangian (9), which allow an almost mechanical extension of all the 
algorithms and results of Chapter 2 to (NLP). 

Proposition 3.1: (a) Iff, h, and g are continuous on a subset S of Rn, 
then LC(., A, p) is continuous on S for each A, p, and c > 0. 

(b) Iff, h, g E C1 on an open subset S of R", then LC(., A, p) E C1 on S 
for each 2, p, and c > 0. 

(c) Iff, h, g E C2 on an open subset S of R", then LC(., A, p) E C2 on the 
set 

for each A, p, and c > 0. 

Proof: The proof follows from the expression (10) for Lc(x, A, p). 
Q.E.D. 

Much of the analysis of Chapter 2 focused on a local minimum x* and 
rested on Assumption (S) of Section 2.2. Here again we focus attention at 
a local minimum for (NLP) satisfying an analogous assumption stated 
below. 

Assumption (S'): The vector x* is a strict local minimum and a regular 
point of (NLP), andf, h, g E C2 on some open sphere centered at x*. Further- 
more x* together with associated Lagrange multiplier vectors i*, p* satisfies 

for all z # 0 with Vh(x*)'z = 0, and Vgj(x*)'z = 0 for all j E A(x*) = 

{ j  )gj(x*) = 0). In addition,p* satisfies the strict complementarity assumption 

gj(x") = 0 * pT > 0, j = 1, .  . . ,  r .  

Restating Proposition 1.32, we have : 

Proposition 3.2: If x* satisfies Assumption (SA) then the local minimum 
(x*, J-gl(x*), . . . , J-gr(x*)) of the equality constrained problem (1) 
satisfies Assumption (s) of Section 2.2. 
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In view of Propositions 3.1 and 3.2, it is evident that we can extend the 
algorithms and analysis of Chapter 2 by applying them first to problem (1) 
and then transfering them to (NLP). Consider for example the first-order 
multiplier iteration. Ifx(Ak, pk,  ck) is obtained by minimization of LC,(., A,, p,), 
the first-order multiplier iteration for problem (1) is given by [compare 
with (6)-(S)] 

In view of (7), we can also write (16) as 

and finally 

where pf denotes the jth coordinate of yk.  Equation (17) gives the inequality 
constraint analog of the first-order iteration. Note that from this equation, it 
follows that if x(Ak, pk, ck) + x*, then the multipliers corresponding to con- 
straints that are inactive at x* converge to zero in ajinitenumber ofiterations. 

Duality and Second-Order Iterations 

The duality theory of Section 2.3 can also be extended in a straight- 
forward manner. Under ( S + )  the dual functional is defined for all (A, p, c) in 
the set 

via the equation 

where 6, E ,  and c are as in Proposition 2.4 applied to problem (1). We have, 
for (2, p, c) E D, 

where x(A, p, c) is the solution of the minimization problem in (19). The 
Hessian of d, can be easily computed by writing (21) as [compare with (7), 
@)I 

(22) dd,(jL, p)/5pj = max(gj[x(5 p, c)], -pj/c}, j = 1, . . . , r. 
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If x ( 5  p, c)  belongs to the set s,., of ( l4 ) ,  we have that d, is twice continuously 
differentiable in a neighborhood of (A ,  p, c). For all indices j such that 
gjCx@, 1.1, c>l < -pj /c ,  we have 

For indices j, such that g j [ x ( 5  p, c)] > - p J c ,  the corresponding second 
derivatives are computed using the formulas of Section 2.3 by treating the 
inequality constraints gj(x)  l 0 as equalities. It can be seen that for (1, p) 
sufficiently close to (A*, p*), the vector x(A, p, c) belongs to s,,, by the strict 
complementarity assumption, so for such (A,p) the Hessian V2dc(A,p) 
exists. 

To give an explicit formula for V2d,  when x(A, p, c) E s,, , , assume without 
loss of generality that for some index p we have 

gjCx(h p, c)] < -pj/c,  j = p + 1 ,  . . . , r 

Then V2dc has the form 

where I is the (r - p) x ( r  - p) identity matrix and 

Bc(A PI  = - N ' ~ v : x L c [ x ( ~ ,  p> 2, PI 1 - 

The Newton iteration takes the form 

In view of (22) and (24), we have 

where 

Ak = { j  1 g j [ ~ ( ~ k  2 3 4 1  > - d/ck1. 

The set A, may be viewed as the set of indices of inequality constraints esti- 
mated to be active at x*. The Newton iteration can perhaps be described 
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better with words than with equations. W e  set equal to zero the multipliers of 
inequality constraints estimated to be inactive at x* (j $ A,), and we treat 
the remaining multipliers as if they correspond to equality constraints. 

When employing the Newton iteration (25), it is quite possible that some 
of the multipliers p i + ,  will turn out to be negative. On the other hand, we 
know that p* 2 0, so it appears sensible to set the negative multipliers to 
zero, i.e., to use in place of (25) the iteration 

This can be justified in two ways. First, we clearly have 

so that p,+ ,  is closer to the solution p* than ,ilk. Second, it can be seen 
from (10) that for all x, i, p, we have 

It follows that 

so the value of the dual functional cannot be decreased by replacing Fk by 
pk+ '. These facts are sufficient to establish that every convergence and rate of 
convergence result that can be shown for iteration (25) can also be shown for 
iteration (26), (27). At the same time, they suggest that iteration (26), (27) 
may provide some computational savings over iteration (25). 

3.2 Two-sided Inequality Constraints 

Many problems encountered in practice involve two-sided constraints 
of the form 



3.2 TWO-SIDED INEQUALITY CONSTRAINTS 165 

where xj and pj  are some scalars. Each two-sided constraint could of course 
be separated into two one-sided constraints which could be treated as 
discussed in the previous section. This would require, however, the assign- 
ment of two multipliers per two-sided constraint. We describe a more 
efficient approach which requires only one multiplier per two-sided constraint. 

We consider for simplicity the following problem involving exclusively 
two-sided constraints. The reader can make appropriate adjustments for the 
case where there are additional equality or one-sided inequality constraints. 

(1)  minimize f ( x )  

subject to a j  I gj(x)  I P j ,  j = 1 , .  . . , r,  

where f: Rn + R, g j :  Rn  -+ R, and aj  and p j ,  j = 1,.  . . , r, are given scalars 
with xj < pj.  Problem (1 )  is equivalent to the problem 

(2) minimize f ( x )  

subjectto aj I gj(x)  - uj I P j ,  u j  = 0 ,  j = 1 ,..., r. 

Now consider a multiplier method for problem (2) where only the con- 
straints uj  = 0 are eliminated by means of a quadratic penalty function. 
This corresponds to partial elimination of constraints discussed in Section 
2.4. The method consists of sequential minimizations over x and u,, . . . , ur 
of the form 

minimize f ( x )  + ~ { p j , ~ ~ + ~ ~ ~ l ~ ~ l ~ )  
j =  1 

subject to r j  I g j (x )  - uj  I p j ,  j = 1, .  . . , r, 

The multipliers pi are updated by means of the iteration 

where u,', . . . , ui together with a vector x ,  solve problem (3). Now similarly 
as in the previous section, minimization in problem (3) can be carried out 
first with respect to u j  yielding the equivalent problem 

minimize f ( x )  + 1 pj[gj(x),  c,] 
j =  1 

subject to x E R: 

where 
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A straightforward calculation shows that the minimum above is attained at 
the point ui given by 

and pj is given by 

It is easily seen that if gj  E C1, then pj[gj(x), pi, c,] is continuously differ- 
entiable in x. If gj E C2, then pj[gj(x), pi, c,] is twice continuously differ- 
entiable on the set {xlp', + c,[gj(x) - flj] # 0, pi + c,[gj(x) - aj] # 0). 
The form of the function pj is shown in Fig. 3.2. 

The conclusion from the preceding analysis is that a method of multi- 
pliers for problem (1) consists of sequential minimizations of the form (5), 
(7), which do not involve the variables u,, . . . , u,. The (first-order) multi- 
plier iteration is given by [compare with (4), (6)] 

where xk solves problem (5). It is also possible to develop a second-order 
iteration which is best described verbally as follows (compare with the 
procedure for one-sided constraints described in the previous section). 

For every index j such that 

2c 

FIG. 3.2 Penalty function for two-sided 
inequality constraints 
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set ,uh+ = 0. For every other index j, treat the constraint gj(x) 2 ccj or the 
constraint gj(x) I bj as an equality constraint depending on whether 

3.3 Approximation Procedures for Nondifferentiable and 
Ill-Conditioned Optimization Problems 

Many optimization problems of interest can be written as 

minimize f Cx, y 1 Cg,(x)l, . . ., y,Cg,(x)ll 

subject to hCx, ? I  C ~ I  (x>I, . . . ,  ~mCgrn(x>II = 0, 

where f: Rn -+ R, g,:  Rn -+ R", and h, y ,  are given functions. 
We are primarily interested in the case wheref, h, gi  E C', but the presence 

of the functions y ,  introduces difficulties in the numerical solution of the 
problem in the sense that, if the functions yi were replaced by some real- 
valued continuously differentiable functions Y i ,  then the problem could be 
solved in a relatively easy manner. For example, the functions yi may induce 
constraints, nondifferentiabilities, or ill-conditioning. 

We shall initially focus on the simpler case where the problem is of the 
form 

m 

( 1 )  minimize f ( x )  + 2 yi[gi(x)] 
i =  1 

subject to x E X c R", 

and we shall subsequently discuss the more general case. In connection with 
problem ( I ) ,  we shall assume that for each i, yi: Rrz -+ (- c ~ ,  +a]  is an 
extended real-valued, lower semicontinuous, convex function with y i ( t )  < cc 
for at least one t E Rr'. (Such functions will be referred to as closed proper 
convex functions in Chapter 5.) 

We provide some examples of functions y i  that are ofinterest in connection 
with problem ( 1 ) .  In the first five examples, yi is a function defined on the 
real line R (r i  = 1 ) .  

Example 1: Equality Constraints: 

Here, the presence 
equality constraint 

if t = 0, 
yi(t) = + x otherwise. 

of ;'i[gi(x)] in problem ( 1 )  is equivalent to an additional 
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Example 2: One-sided Inequality Constraints: 

if t I 0, 
yi(t) = + x otherwise. i" 

Here, the presence of yi[gi(x)] induces the constraint 

Example 3: Two-sided Inequality Constraints: 

if a i I t _ < p i ,  
+ cc otherwise, 

where ai and pi are scalars with xi < pi.  
Example 4: Polyhedral Functions: 

if I t / l a ,  
yi(t) = {!IZ- otherwise, 

max { y j t  + J j )  if a  l t 5 P, 
(8) yi(t) = ,j; I;.,~ 

otherwise, 

where a, p, y j ,  and J j  are given scalars. 

Example 5: Ill-Conditioning Terms: 

where s, a, and f i  are given scalars with s > 0 and a  > 0. The term (9) may 
induce ill-conditioning in problem (1 )  if s is very large, while the term (10) 
may induce ill-conditioning in problem (1) if ,O is very large. More generally, 
if the second derivatives or third derivatives of yi are very large, relative to 
other terms in the cost functional, the numerical solution of problem ( 1 )  
may run into serious difficulties. 

Example 6: Minimax Problems: For t = ( t , ,  t,, . . . , tri) E R", consider 

yi(t) = max t ' z ,  
I = - X I  5 1 

where a is a given vector in Rr' .  
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This section presents an approach for solving numerical problems of the 
type described above. The approach consists of the approximation of 
problem ( 1 )  by a sequence of optimization problems which involve relatively 
well-behaved objective functions. The approximation is effected by intro- 
ducing additional variables and constraints in problem ( I ) ,  thus forming an 
equivalent constrained minimization problem. This problem is subse- 
quently handled by the method of multipliers. For the case of Examples 1, 
2, and 3, our approach turns out to be identical to multiplier methods 
introduced earlier. Thus the present section in effect extends the range of 
applicability of the methods already discussed. 

Throughout this section, we shall restrict ourselves to first-order multi- 
plier iterations. Second-order iterations are also possible and can be devel- 
oped along lines used earlier. 

It is clear that problem ( 1 )  is equivalent to the following problem: 
m 

(14) minimize f ( x )  + C yi[gi(x) - ui], 
i =  1 

subject to x EX,  ui = 0, i = 1, . . . , n1, 

where we have introduced the additional vectors 

A method of multipliers for the problem above is based on sequential 
minimization over x, u,, . . . , u, of the form 

subject to x E X, 

where are multiplier vectors in Rrl, c, is a positive scalar penalty parameter 
and prime denotes transposition. Equivalently, problem ( 1 5 )  is written as 

m 

(16) minimize f ( x )  + C pt,[gi(x), yi] 
i =  1 

subject to x E X, 

where 

The initial multiplier vectors y b .  i = 1 , .  . . . m, are arbitrary. and after each 
minimization (16), the multiplier vectors y; are updated by means of 
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where u!, i = 1, . . . , m, solve (151, together with some vector x,. Alternate 
methods could be obtained by using a nonquadratic penalty function in 
(15); in fact, in some cases, the use of such nonquadratic penalty functions is 
essential. We shall restrict ourselves for the moment to quadratic penalty 
functions and discuss methods based on nonquadratic penalty functions in 
Section 5.1.3. 

It is important to note that the function ptk of (17) is both real-calued and 
continuously diflerentiable in x, provided the function g i  is continuously 
differentiable. Hence, problem (16) can be solved by the powerful methods 
available for differentiable functions whenever f and g i  are differentiable. 
These properties of the function ptk can be inferred from the following 
result. 

Proposition 3.3: Let y :  Rr + (- a, + cc J be a lower semicontinuous 
convex function, and assume that y(t) < + cc for at least one vector t E Rr. 
Also let A be any vector in Rr and c  > 0 be a scalar. Then, the function 
pc(., A) defined by 

(19) pc(t, A) = inf (y(t - u) + A'u + j c  1 u 1') 
U 

is real-valued, convex, and continuously differentiable in t. Furthermore, 
the infimum with respect to u in (19) is attained at a unique point for every 
t E R'. 

Proof: The function pc(., t )  is the infimal convolution (Rockafellar, 
1970) of the convex function y and the quadratic convex function h: Rr + R 
defined by 

(20) h(u) = A'u + j c  1 u 1'. 

Since 

h(u)-+cc as lul+co,  

it follows from Corollary 9.2.2 of Rockafellar (1970) that p,(., A) is convex 
and the infimum is attained for each 3.by some u. Since h is strictly convex and 
real-valued, it follows that pc(., 2 )  is also real-valued and the infimum is 
attained at a single point. Also, h is a smooth function and from Corollary 
26.3.2 of Rockafellar (1970), it follows that pc(., A) is an essentially smooth 
convex function. Since it is also real-valued, it is continuously differen- 
tiable. Q.E.D. 

The interpretation of p,(., A) in the proof above as the infimal convolution 
of y and h defined by (20) is useful in visualizing the form of p,(., A). The 
epigraph of p,(., A) is obtained as the vector sum of the epigraph of the 
functions y( . )  and h(.) (see Rockafellar, 1970, Theorem 5.4). 
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In some cases, it is useful to work with a dual expression for the function 
p,(., A) of (19). This expression is given in the following lemma, the proof 
of which follows by straightforward application of Fenchel's duality theorem 
(Rockafellar, 1970, Theorem 3 1.1). 

Proposition 3.4: The function p,(., 1) of (19) is also given by 

where 

is the convex conjugate function of g. Furthermore, the supremum in (21) is 
attained at a unique point u*(t, A, c), and we have 

(22) u*(t, A, C) = A + cu(t, 2, C) = V,p,(t, A), 

where u(t, 1, c) is the unique point attaining the infimum in (19) and V,p, is 
the gradient of p, with respect to t. 

The correspondence between Eqs. (22) and (18) is often convenient in 
the analysis of specific cases. 

It is to be noted that, even though we employed the additional vectors 
u,, . . . , u, in order to introduce the algorithm, the numerical computation 
itself need not involve these vectors, since, in the cases of interest to us, the 
functions pt, of (16)-(17) can be obtained in explicit form. Furthermore, the 
minimizing vectors uf of (18) can be expressed directly in terms of mini- 
mizing vectors xk in problem (16), since u! is uniquely defined in terms of 
x,, c,, and yi as the minimizing vector in (17). We provide the corresponding 
analysis for the examples given earlier. 

Example 1 :  For the case where yi(t) is given by (2), we obtain from 
(1 7)-(18) : 

~f,Cgi(x>, YLI = yL~i(x) + +ck[gi(x)l2> 
y i + l = y L + c k g i ( ~ , ) ,  i = 1 ,  . . . ,  m. 

In this case, the iteration reduces to the ordinary first-order multiplier 
iteration for equality constraints. 

Example 2: For yi(t) given by (3), we obtain from (17)-(18) by straight- 
forward calculation : 
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The algorithm reduces to the first-order multiplier method for inequality 
constraints. 

Example 3: For the case of two-sided inequality constraints, where 
yi(t) is given by (4), we obtain 

~L[gigi(x) - Pi] + h,[gi(x)  - Pi12 if Pi - y:/cL S gi(x), 
y;[gi(x) - ail + + c ~ [ s ~ ( x )  - ~ ( ~ 1 ~  if gi(x) 5 ui - &ck, 
- ( ~ t > ~ / ~ c k ,  otherwise; 

The iteration reduces to the first-order iteration for two-sided inequality 
constraints given in the previous section. 

Example 4: Consider the case where yi(t) = max{O, t ) .  Then, by 
straightforward calculation, we obtain 

Notice that a single multiplier per term yi[gi(x)] is utilized. If one were to 
convert the problem to a nonlinear programming problem of the form 

m 

minimize f ( x )  + C zi 
i =  1 

subject to gi(x) I z i ,  0 l z i ,  i = 1, .  . , nz, 

where zi,are additional variables, then two multipliers per term y,[gi(x)] 
would be required in order for the problem to be solved by the method of 
multipliers. 

The case where y i ( t )  is given by (6) can be converted to the earlier case 
by writing 
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Let y i ( t )  be given by ( I ) ,  where sr is some positive number. Such terms 
appear, for example, in the cost functional of minimum-fuel problen~s in 
optimal control. We have by straightforward calculation 

and iteration (18) takes the form 

Notice that a single multiplier per term y i  is utilized in place of four multi- 
pliers per term y i  for the ordinary method of multipliers. 

Similarly, one may obtain the function pr, and iteration (18) in ex- 
plicit form for the function ;.,(t) given by (8) .  Again, only one multiplier 
per term is required in place of r i 2 multipliers for the ordinary multiplier 
method. 

Example 5: Let y , ( t )  = i s , t 2  [compare with (9)]. Then, we have by 
straightforward calculation: 
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and iteration (18) takes the form 

Y:+ I = Y: + c,Csi~i(xJ - AI/(si + c J .  

Notice that the second derivative of pk,(., y;) given above is sick.(si + ck) 
and can be made arbitrarily small by choosing c, sufficiently small. 

The case where yi(t) is given by (10) requires a slightly different approxi- 
mation method and a nonquadratic penalty function. It will be examined in 
Chapter 5. 

Example 6: Let y(t) = max{tl, . . . , t,) [compare with (ll)]. From 
Eq. (21), we have 

where the convex conjugate function of y can be easily calculated as 

if xi=, uT = 1, u F 2 0 ,  i = l ,  . . . ,  r,  
''*(U*) = 
/ + cc otherwise. 

Hence 

By introducing a Lagrange multiplier y(t, A, c) corresponding to the con- 
straint 

and carrying out the straightforward optimization in (23), we obtain 

The maximizing vector ii* in (23) has coordinates given by 

(24) GT = max(0, Ai + c[ti - p(t, A, c)]), i = 1, . . . , r ,  

and the Lagrange multiplier p(t, A, c) is determined from 

x max(0, Ai + c[ti - y(t, A, c)]) = 1. 
i =  1 

In the context of problem (I), a term of the form 
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is approximated by 

The gradient with respect to x of the expression above is obtained from (22) 
and (24): 

The scalar ,u[g(x), y, ,  c k ]  is determined from 

It is easy to see that the value of p[g(x), y k ,  c,] can be computed from the 
relation above with very little effort. 

Regarding the multiplier iteration, we have [see (18), (22), and (24)] 

For the case where 

a very similar calculation as the one for the previous case yields the following: 

where 

The gradient of pck[g(x), yk] with respect to x is given by 
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The scalar p[g(x) ,  y,, c,] is determined from 

The multiplier iteration is given by 

where U* is defined above. 
The case where yi(t) is given by (13)  and other related cases where y is 

the support function of a relatively simple set can be handled in a similar 
manner. We note that an  alternative approximation procedure for minimax 
problems, based on an exponential penalty function, is given in Section 5.1.3. 
This procedure has the advantage that it leads to twice differentiable 
approximating functions and for many problems should be preferable over 
the one described above. 

Generalized Minimax Problems 

Similar approximation procedures can be employed for solution of 
generalized versions of problem ( 1 )  such as the problem 

where 7, :  Rrt -+ R, i = 1 ,  . . . , m, are convex real-valued functions and 
f: R"+" -t R, g,: Rn -+ RrL, and h:  Rn+" -+ R" are continuously differentiable 
functions. A special case of particular interest is when 7;  in problem (26) is 
of the form (1 1) 

;:,(t) = max{t,.t,. . . . ,  t ,),  i = 1 , . . . ,  m. 

The corresponding method of multipliers consists ofsequential unconstrained 
minimizations of the form 
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where c, is the penalty parameter sequence, yi,, is the multiplier corresponding 
to y,, and ;I, is the multiplier corresponding to h. If xk solves (perhaps approx- 
imately) problem (27), the multipliers yi, are updated by means of [compare 
with (25)] 

and the multiplier 2, is updated by means of the usual iteration 

Under assumptions paralleling the second-order suflciency assumption (S) 
of Chapter 2, it is possible to show convergence ofthis algorithm without the 
need to increase c, to injnity. It is also possible to construct a (local) duality 
theory similar to the one of Section 2.3 and interpret iterations (28) and (29) 
as steepest ascent iterations for maximizing a related dual functional. 
Second-order iterations are also possible. The corresponding analysis closely 
parallels the one in Chapter 2, but is tedious and will not be given here. We 
refer to Papavassilopoulos (1977) for an account. 

Finally we mention that the approach of this section applies to situations 
where the functions y, appear in the objective function and constraints in 
forms different than in problem (26). For example, the approach is applicable 
to a problem of the form 

minimize f Cx, 71 Cg1(x, 72(x))ll 
subjectto h(x) = 0. 

In other words it is possible that the functions y i  may contain as arguments 
other such functions. It is interesting to note in this connection that the 
function max{t,, t,, . . . , t r )  can be expressed in terms of the simpler function 
y: R -t R given by 

~ ( t )  = max(0, t} 

by means of the equation 

Another interesting situation of this type is when the objective function can 
be expressed as a concatenation of operators of the type max{., ., . . . , . )  
as for example in dynamic programming. For an application of this type in a 
problem of power system scheduling see Bertsekas, Lauer, Sandell, and 
Posbergh (1981). The general approach in such problems is to replace the 
functions y i  as they appear in the cost function and the constraints by suitable 
approximating functions and sequentially solve the resulting approximate 
minimization problems. Each minimization is followed by multiplier 
updates using the appropriate formulas. 



178 3. INEQUALITY CONSTRAINTS ; NONDIFFERENTIABLE OPTIMIZATION 

3.4 Notes and Sources 

Notes on Section 3.1: The proper form of the quadratic augmented 
Lagrangian function for inequality constraints was first given and analyzed 
by Rockafellar (1971, 1973b). 

Notes on Section 3.2: The treatment of two-sided inequality constraints 
by using a single multiplier per constraint was first given in Bertsekas (1976b. 
1977). 

Notes on Section 3.3: Approximation procedures based on the 
method of multipliers for nondifferentiable optimization problems were 
introduced in Bertsekas (1974b, 1977). When the multiplier updating 
formulas (28) and (29) are used, the performance of the method is very 
similar to that of the first-order method of multipliers, and indeed, if the 
functions max{t,, t,, . . . , t,) enter linearly in the objective function and 
do not appear in the constraints, the two methods are mathematically 
equivalent. The corresponding local duality theory and second-order 
algorithms may be found in the M S .  thesis by Papavassilopoulos (1977). 
His results can be strengthened by using an analysis that parallels the one 
given in Chapter 2. Relations with the proximal point algorithm are ex- 
plored in Poljak (1979). 



Chapter 4 

Exact Penalty Methods and 
Lagrangian Methods 

The methods presented in Chapters 2 and 3 require the solution of several 
unconstrained or partially constrained minimization problems. It is thus 
quite interesting that it is possible to construct methods which require the 
solution of only a single unconstrained problem. We call such methods exact 
penalty methods and consider them in the first three sections of this chapter. 

In the fourth section, we consider a class of seemingly unrelated methods 
which attempt to solve the system of equations and inequalities that constitute 
the necessary optimality conditions for the constrained optimization problem. 
The methods here are similar to those used for solving systems of nonlinear 
equations. We term these methods Lagrangian methods in view of the promi- 
nent role played by the Lagrangian function and Lagrange multiplier itera- 
tions. 

An important disadvantage of Lagrangian methods is that they require a 
good starting point in order to converge to an optimal solution, i.e., they 
converge only locally. In order to enlarge their region of convergence, it is 
necessary to combine them with other methods that have satisfactory global 
convergence properties. Such combinations are discussed in the last section 
of this chapter and here we find that the method of multipliers of Chapters 2 
and 3 and the exact penalty methods of this chapter are well suited for this 
purpose. 
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Throughout this chapter we shall consider the problem 

(NLP) minimize f (x) 

subject to h(x) = 0, g(x) I 0, 

where f :  Rn + R, h: Rn -t Rm, g: Rn -t Rr, and m I n. 
We shall also consider the special cases of (NLP) 

(ECP) minimize f (x) 

subject to h(x) = 0 

minimize f (x) 

subject to g(x) < 0. 

The components of h and g are denoted h,, . . . , k, and g,, . . . , g,, respectively. 
A standing assumption will be that f, h, g E C1 on Rn. 

TERMINOLOGY: In what follows we shall encounter several constrained 
optimization problems involving differentiable functions, equality constraints, 
inequality constraints, or a mixture of both. We shall say that a pair (triple) 
of vectors is a Kuhn-Tucker (K-T for short) pair (triple) if it satisfies the 
first-order necessary optimality conditions of Proposition 1.29, referred to as 
the K-T conditions. For example, (x*, A*, p*) is a K-T triple for (NLP) if 

Vf (x*) + Vh(xY)A* + Vg(x*)p* = 0, 

h(x*) = 0, g(x*) I 0, p* 2 0, pTgj(x*) = 0, j = 1,. . . , r. 

Much of the analysis of this chapter focuses on K-T pairs satisfying the 
second-order sufficiency assumptions (S) or (S') of Sections 2.2 and 3.1, 
respectively. 

4.1 Nondifferentiable Exact Penalty Functions 

We shall show that solutions of (NLP) are related to solutions of the 
(nondifferentiable) unconstrained problem 

(NDP), minimize f (x) + cP(x) 
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To see why something like this should be true, consider the special case 

(ECP) minimize f (x) 

subject to h(x) = 0, 

and let x* be a strict local minimum satisfying, together with a corresponding 
Lagrange multiplier vector A*, Assumption (S) of Section 2.2. Consider also 
the primal functional p: S(0; 6) + R defined in Section 2.2.3 and given by 

p(u) = min( f (x) 1 h(x) = u, x E S(x* ; E ) )  

[compare with Section 2.2.3, Eq. (26)l. Then 

where 

Since Vp(0) = -A*, by the mean value theorem, we have, for each u and 
some E E [0, 11, 

Thus 

Assume that, for some 7 > 0, 

Then we have 

Using this relation in (3), we obtain 
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For 1 u I sufficiently small, the last term is dominated by the next to last term, 
so we have 

for all u # 0 in a neighborhood of the origin. Hence u = 0 is a strict local 
minimum of pc as shown in Fig. 4.1. By using (2) and the fact that x* is a strict 
local minimum of (ECP), it follows that if c > "=, AT 1, then x* is a strict 
local minimum off + cP. 

FIG. 4.1 

The preceding analysis can be extended to the general case of (NLP) 
simply by converting the inequality constraints to equalities as in Section 3.1. 
We have thus proved by means of this abbreviated but simple argument the 
following proposition. 

Proposition 4.1: Let x* be a strict local minimum of (NLP) satisfying, 
together with corresponding Lagrange multiplier vectors A* and p*, Assump- 
tion (S+) of Section 3.1. Then, if 

the vector x* is a strict unconstrained local minimum off + cP. 
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Proposition 4.1 indicates that solution of (NLP) may be attempted by 
solving the unconstrained problem (NDP),. We would like to prove other 
similar results that require less restrictive assumptions than (S'). In the 
process we shall develop several results that are useful for the construction of 
algorithms. We first consider the case where there are no equality constraints. 
We then extend the analysis to the general case by converting each constraint 
hi(x) = 0 to the two inequality constraints hi(x) 5 0 and - hi(x) 5 0. 

Inequality Constrained Problems 

Consider the problem 

( I W  minimize f (x) 

subject to g(x) 5 0, 

and for c > 0, the corresponding problem 

(NDP), minimize f (x) + cP(x) 

subject to x E Rn 

For notational convenience, we denote by go the function which is identically 
zero 

and thus 

For x E Rn, d E Rn. and c > 0, we use the notation 

(6) J(x) = {j 1 gj(x) = P(x), j = 0, 1 ,  . . . , r). 

Definition: We say that x* E Rn is a critical point o f f  + cP if for all 
d E Rn there holds 

O,(x*; d )  2 0. 

We note that d,(x*: d) in the above definition can be shown [compare 
with (9)] to be the Gateaux differential off + cP at x* in the direction d 
(Ortega and Rheinboldt, 1970, p. 65, Luenberger, 1969, p. 171). Our definition 
of critical point is consistent with analogous definitions for nondifferentiable 
functions that are Gateaux differentiable. The following two propositions 
show that descent directions off  + cP can be found only at noncritical 
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points. Furthermore, such directions can be obtained from the following 
(convex) quadratic program, in (d, 5) E Rn+',  

(QP),(x, H, J )  minimize Vf (x)'d + 3d'Hd + c( 

subject to gj(x) + Vgj(x)'d I 9,  , j  E J: 

where c > 0, H is a positive definite matrix and J is an index set containing 
J(x); i.e., 

(8) O < c .  O <  H, J ( x ) c  J c  (0, 1 , . . . ,  r). 

It is easily seen that (QP),(x, H, J )  has a unique optimal solution (in uiew of 
H > 0, c > O), and at least one Lagrange multiplier uector (Proposition 1.33). 

Proposition 4.2: (a) For all x E Rn, d E Rn, and x > 0, 

(9) j ( x  + rd) + cP(x + ad) - f (x) - cP(x) = d, (x :  d) + o(x), 

where lime,,+ o(x)/cc = 0. As a result, if 8,(x; d) < 0, then there exists 2 > 0 
such that 

f (x + xd) + cP(x + xd) < f(x) + cP(x) Vcc~(O,2]. 

(b) For any x E Rn, H > 0, and J with J(x) c J c (0, 1, . . . , r), if (d, <) 
is the optimal solution of (QP),(x, H, J )  and d # 0, then 

Proof: (a) We have, for all u > 0 and j E J(x), 

f (x + xd) + cgj(x + ad) 
= f (x) + aVf(x)'d + c[gj(x) + rVg,(x)'d] + oj(r), 

where lim,,, - oj(r)/cc = 0. Hence 

f (x + rd) + c max{gj(x + ad)[ j E J(x)) 

= f (x) + ctVf(x)'d + c max{gj(x) + aVgj(x)'d I j E J(x)) + o(r), 

= f (x) + cP(x) + r@,(x; d) + o(r) 

where lime,,+ o(cr)/a = 0. We have, for all x that are sufficiently small, 

max(gj(x + rd) 1 j E J(x)) = max(gj(x + xd) 1 j = 0,1, . . . , r) = P(x + xd). 

Combining the two above relations we obtain (9). 

(b) We have gj(x) + Vgj(x)'d I 5 for all j E J. Since gj(x) = P(x) for 
all j E J(x), it follows that Vgj(x)'d I 5 - P(x) for all j E J(x) and therefore 
using the definition of 0, we have 
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Let {pjI j E J )  be a set of Lagrange multipliers for (QP),(x, H, J). The K-T 
conditions are written 

(12) Vf(x) + Hd + xpjVgj(x) = 0, 
je J 

(13) C - &lj = 0' 
je J 

(14) gj(x) + Vgj(x)'d I <, pj 2 0 V j E J ,  

From (12) we obtain 

(16) Vf (x)'d + d'Hd + pjVgj(x)'d = 0 
je J 

while from Eqs. (131, (15) and the fact that gj(x) I P(x) for all j E J we have 

Combining (16) and (17) we obtain 

(18) Vf(x)'d + d'Hd + c[< - P(x)] I 0 

Adding (1 I)  and (18) we obtain finally 

which is the desired result. Q.E.D. 

Proposition 4.3. (a) If x* is a critical point off + cP, then the quad- 
ratic program (QP),(x*, H, J )  has {d = 0: < = P(x*)) as its optimal solution 
for every J and H with 

(b) If {d = 0, 2 = P(x*)) is the optimal solution of some quadratic 
program (QP),(x*, H, J) where H and J satisfy (l9), then xs is a critical point 
off + cP. 

Proof: (a) If x* is critical then Proposition 4.2b shows that {d = 0, 
< = P(x*)) is the optimal solution of (QP),(x*, H. J). 

(b) Suppose {d = 0, 2 = P(xs)) is the optimal solution of (QP),(x*, H, J). 
Then the K-T conditions [compare with Eqs. (12) and (13)] yield for some 
set of Lagrange multipliers {p, 1 j E J }  
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If x* is not a critical point off + cP then, by definition, there must exist 
d E Rn such that 

The inequality constraints of (QP),(x*, H, J )  corresponding to indices 
j $ J(x*) must be inactive, so pj = 0 for all j $ J(x*). Therefore, in view of 
(20), at least one of the multipliers pj, j E J(x*) must be positive. By mul- 
tiplying (21) by pj and adding over J(x*) we obtain 

which contradicts (20). Q.E.D. 

Just as the quadratic program (QP),(x. H, J )  is related to (NDP),, 
there is a quadratic program associated with the nonlinear program (ICP). 
This program is 

(QP),(x, H, J )  minimize Vf (x)'d + 4d'Hd 

where 

(22) 0 < H, J(x) c J c (0, 1, .  . . , r ) .  

For notational convenience, we allow the possibility 0 E J which corresponds 
to the inequality go(x) + Vgo(x)'d I 0 or 0 I 0. This inequality is superfluous 
and can be assigned an arbitrary nonnegative Lagrange multiplier. Note that 
the program (QP),(x, H, J )  may not be feasible for some x and J .  If it is 
feasible, it has a unique optimal solution and at least one Lagrange multiplier 
vector which are related to K-T pairs of (ICP) as in the following proposition. 

Proposition 4.4: If a pair {x*, (pT, . . . , p:)) is a K-T pair for (ICP), there 
existsap,* 2 Osuchthat {d* = 0, {p: 1 j E J ) )  isaK-Tpairfor(QP),(x*, H, J )  
for all H and J satisfying (22). Conversely, if (d* = 0, {pT I j E J ) )  is a K-T 
pairfor(QP),(x*, H, J)forsome Hand Jsatisfying(22),then {x*, (pT, . . . , p:)) 
is a K-T pair for (ICP), where we define pj* = 0 for all j # J. 

Proof: The K-T conditions for (ICP) are 
r 

(23) Vf (x*) + 1 pTVy,(s*) = 0. 
j= 1 

p * ( x * )  = 0 V j = 1, . . . , r .  (24) g(x*) I 0, p; 2 0, , g, 
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By taking p;j: = 0 and using the fact that g,(x) A 0, we see that these conditions 
imply that (0, (pT I j E J ) )  satisfy the K-T conditions for (QP),(x*, H, J). 
Conversely, if we write the conditions for (0, (pj* ( f  E J ) )  to be a K-T pair for 
(QP),(x*, H. J), we find that they imply (23) and (24). Q.E.D. 

The next proposition shows that if (QP),(x, H, J) is feasible, then its 
optimal solution can also be obtained by solving (QP),(x, H, J u (0)) for c 
sufficiently large. 

Proposition 4.5: If {d, {yjI j E J )}  is a K-T pair of (QP),(x, H, J) and 

then {d, < = 0, {,iijI j E J ) )  is a K-T pair of (QP),(x, H, J )  where 

Proof: The hypothesis implies that 

Using the definition of 5, ,Gj, and the fact that go(x) 0, we see that these 
relations imply 

These are precisely the K-T conditions for {d, < = 0, {,iij I j E J ) )  in connection 
with (QP),(x, H, J) .  Q.E.D. 

An immediate consequence of the preceding proposition is the following 
result showing that K-T pairs of the nonlinear program (ICP) give rise to 
critical points of j' + cP provided c is sufficiently large. 

Proposition 4.6: If {x*, (pT, . . . : p:)) is a K-T pair of (ICP), then x* is 
a critical point off + cP for all c with 
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Proof: By Proposition 4.4, there exists p;S 2 0, such that {d* = 0, 
(PC, pT, . . . , p,*)) is a K-T pair of (QP),(x*, H, (0, 1, . . . , r)). It follows, from 
Proposition 4.5, that if c 2 pT, then {d* = 0, t* = 0) is an optimal 
solution of (QP),(x*, H, (0, 1, . . . , r)). By Proposition 4.3, x* is a critical 
point off + cP. Q.E.D. 

While each K-T pair of (ICP) gives rise to a critical point off + cP, the 
reverse is not true. It is possible in general that critical points off + cP do 
not correspond to K-T pairs of (ICP), which is somewhat unfortunate since 
we are contemplating solution of (ICP) by unconstrained minimization of 
f + cP. The following three propositions, among other things, delineate 
situations where this difficulty does not arise. 

Proposition 4.7: Let X  c Rn be a compact set such that, for all x E X ,  the 
set of gradients 

is linearly independent. There exists a c* 2 0 such that for every c > c*: 

(a) If x* is a critical point off + cP and x* E X ,  there exists a p* E Rr  
such that (x*, p*) is a K-T pair for (ICP). 

(b) If (x*, p*) is a K-T pair of (ICP) and x* E X ,  then x* is a critical 
point off + cP. 

For the proof of Proposition 4.7, we shall need the following lemma: 

Lemma 4.8: If X  is a compact set satisfying the assumption of Pro- 
position 4.7, then for each x E X  there exists a unique vector p ( ~ )  = [p,(x), 
. . . , p,(x)] minimizing over p = (pl, . . . , p,) the function 

The function p(.) is continuous over X ,  and if (x*, p*) is a K-T pair of (ICP) 
with x* E X ,  then 

p(x*) = p*. 

Proof: To show uniqueness of the minimizing vector of (25), it will 
suffice to show that the second-order term of q,(p) 

cannot be zero unless p = 0. Indeed if this term is zero, then pj = 0 for all 
j = 1, . . . , r with P(x) > gj(x) while at the same time 2 ~ = ,  pjVgj(x) = 0. 
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Hence 

Since {Vgj(x) 1 j E J(x),  j # 0 )  is a linearly independent set by hypothesis it 
follows that pj = 0 for all j with gj(x) = P(x). Hence p = 0. 

Continuity of p follows from continuity of V f ,  Vg j ,  and P. If (x*, p*) is a 
K-T pair for (ICP), then q,,(p*) = 0. Hence p* minimizes q,,(.), and it 
follows that p* = p(x*). Q.E.D. 

Proof of Proposition 4.7: Let 
r 

c* = max x pj(x), 
x a X  j = l  

where ,Ej(.) is as in Lemma 4.8. The maximum in the above equation is 
attained since X is compact by hypothesis and jj(.) is continuous by Lemma 
4.8. 

(a) If x* E X  is a critical point of f + cP, then, by Proposition 4.3, 
{d = 0,  5 = P(x*)) is the optimal solution of (QP),(x*, H, (0, 1, .  . . , r)) .  
Hence, there exist pg, pT, . . . , p: such that 

Since go(x) 6 0, we obtain 

Using the above equations and Lemma 4.8, it follows that p,* = jij(x*) for all 
j = 1 ,  . . . , r. If c > c*, then we obtain 

Since 0 = p;T[go(x*) - P(x*)] = -p;P(x*), it follows that P(x*) = 0 and 
x* is feasible for (ICP). It follows from (26) and (27) that {x*, (pT, . . . , p,*)} is a 
K-T pair for (ICP). 

(b) If (x*, p*) is a K-T pair for (ICP) and x* E X, then, by Lemma 4.8, we 
have p* = p(x*). If c > c*, then 
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and using Proposition 4.6, we obtain that x* is a critical point off  + cP. 
Q.E.D. 

The next two propositions are similar to Proposition 4.7 but employ 
convexity assumptions in place of the linear independence assumption. 

Proposition 4.9: Assume that g,, . . . , gr are convex over Rn and that there 
exists a vector 2 such that 

Then for every compact set X, there exists a c* 2 0 such that for all c > c*: 

(a) If x* is a critical point off + cP and x* E X ,  there exists a p* E Rr 
such that (x*, p*) is a K-T pair for (ICP). 

(b) If (x*, p*) is a K-T pair for (ICP) and x* E X ,  then x* is a critical 
point off + cP. 

It is convenient to state the main argument needed for the proof of 
Proposition 4.9 as a lemma. 

Lemma 4.10: Let X c Rn be a set such that for each x E X  the system of 
inequalities in d 

has at least one solution. Fix H > 0, and assume that there exists ac* 2 0 with 
the following property: 

For each x E X, (QP)o(x, H, J(x)) has a set of Lagrange multipliers 

Then for all c > c*: 

(a) If x* E X is a critical point of f + cP and x* E X, there exists a 
p* E Rr such that (x*, p*) is a K-T pair for (ICP). 

(b) If (x*, p*) is a K-T pair for (ICP) and x* E X ,  then x* is a critical 
point off + cP. 

Proof: (a) Assume that x* E X is critical. Let { d * ,  {p,(x*)l j E J(x*))) 
be the corresponding K-T pair of (QP),(x*, H, J(x*)). Let c > c*. Since 
0 > j E J ( X * )  p,(x*), it follows from Proposition 4.5 that {d*, < = 0) is the 
optimal solution of (QP),(x*, H, J(x*)). Since x* is critical. Proposition 4.3 
shows that 

d * = O ,  P(x*)=O. 
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It follows from Proposition 4.4 that {x*, (p?, . . . , p,*)), where 

pj. = 
,uj(xY) for j E J(x*), j # 0, 

for j $! J(x*), j # 0. 

is a K-T pair for (ICP). 
(b) Assume that {x*, (p?, . . . , ,u,*)) is a K-T pair for (ICP) and x* EX. 

Then, by Proposition 4.4, d* = 0 is the optimal solution of(QP),(x*, H, J(x*)). 
Let pj(x*) be the Lagrange multipliers satisfying c* 2 xj, J,x*,  pj(x*) accord- 
ing to the hypothesis. It follows from Proposition 4.5 that {d* = 0, <* = 0) is 
an optimal solution of (QP),(x*, H, J(x*)) for all c 2 c*. Using Proposition 
4.3, we obtain that x* is a critical point off + cP for all c 2 c*. Q.E.D. 

Proof of Proposition 4.9: Fix H > 0. By convexity of gj, we have 

g j ( x ) + V g , { x ) ' ( 2 - x ) l g j ( Z ) < O  VXER", j = 1 ,  ..., r .  

Hence for every x E Rn, the program (QP),(x, H, J(x)) has d = (x - x) as a 
feasible solution. Let d(x) be its optimal solution and {pj(x) / j  E J(x)) be a 
corresponding set of Lagrange multipliers. We have that d(x) minimizes 

over all d while 

I Vf (x)'(Z - x) + $(Z - x)'H(Z - x) - b C pj(x), 
je  J ( x )  

where 

b = min{-gj(x)(j = 1, . . . .  r )  > 0. 

We also have 
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By combining (28) and (29), we obtain 

1 pJ(x) l c(x) V x E Rn, 
J E  J ( x )  

where 

C(X) = [+Vf(x)'H-'Vf (x) + Vf (x)'(x - x) + +(x - x)'H(x - x)]/b. 

Given a compact set X and a fixed H > 0, define 

C* = max c(x), 
X E X  

and note that 

The result now follows from Lemma 4.10. Q.E.D. 

Proposition 4.11: Assume that f, g,, . . . , g, are convex over Rn and that 
(ICP) has at least one Lagrange multiplier vector p* = (pT, . . . , p:), in the 
sense that yT 2 0, j = 1, . . . , r,  and 

inf { f (x) + p*'g(x)) = inf f (x). 
x e R n  g ( x )  0 

Then, for every c > &, p?, a vector x* is a global minimum off + cP if and 
only if x* is a global minimum of (ICP). 

We postpone the proof of Proposition 4.1 1 until Chapter 5, where we shall 
show a stronger version (Proposition 5.25.) 

The following two examples illustrate the limitations of the preceding 
results. 

Example 1: Let n = 2, r = 1, and for all x = (x,, x,), 

Here f and g, are convex and (ICP) has a unique optimal solution {xT = 0, 
xz = 0). Consider the function 

f(x)  + cP(x) = (x, - 1)' + x; + c max(0, x:$ 

For every c > 0, it has a unique critical point (x,(c), x2(c)} (in fact a global 
minimum) given by 

x l ( c ) = l / ( l + c ) ,  x,(c)=O. 

Thus the optimal solution (xT = 0, x; = 0) of (ICP) is not a critical point of 
f + cP for any c > 0. Conversely, none of the critical points (x,(c), x,(c)}, 
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c > 0, is an optimal solution of (ICP). Here {xT = 0, x t  = 0) is not a regular 
point [Vg,(x*) = 01, and it can be verified that there is no corresponding 
Lagrange multiplier yT. Thus Proposition 4.7 cannot be applied to a compact 
set containing {xT = 0, x t  = 01, and the assumption of Proposition 4.11 is 
violated. Because there is no Z such that g,(x) < 0, the assumption of 
Proposition 4.9 is also violated. 

Example 2: Let n = 1, r = 2, and for all x, 

The function 

is shown in Fig. 4.2. 

FIG. 4.2 Function P ( x )  for Example 2 

Since f (x) A 0, the critical points off + cP do not depend on c. They are 

x = & 1  -$I, x = o ,  1 I x .  

Of these, only the ones with x 2 1 correspond to K-T pairs of (ICP) (each 
with Lagrange multipliers yT = 0 and y$ = 0). Proposition 4.7 applies to 

,- 
these points with c* = 0. The critical points i (1  - 4 5 )  and 0 are not covered 
by Proposition 4.7 since the corresponding sets of gradients {Vgj(x) Igj(x) = 

P(x), j = 1,2) are linearly dependent. Propositions 4.9 and 4.11 are in- 
applicable, since g2 is not convex. 

Example 2 illustrates the type of difficulties that are unavoidable if we 
attempt to solve (ICP) by minimizing f + cP. The minimization method will 
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be attracted to the infeasible local minimum 3 1  - 4) if started near it 
independently of the value of c (compare with Fig. 4.2). A very similar situa- 
tion occurs in connection with the quadratic penalty method (compare 
with the example following Proposition 2.3). 

Extension to Mixed Equality and Inequality Constraints 

Consider now the general problem 

(NLP) minimize f (x) 

subject to h(x) = 0, g(x) 5 0. 

We can convert this problem into one of the form (ICP) by converting each 
equality constraint into two inequality constraints. 

By denoting 

we obtain the problem 

minimize f (x) 

subject to gj(x) 5 0, j = 1, .  . . , r + 2m. 

We can then transfer in a straightforward manner the analysis for (ICP) to 
(NLP). We summarize these results, leaving many of the details to the reader. 

Denote, for all x E Rn, d E Rn, and c > 0, 

where 

A vector x is said to be a critical point off + cP if 
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We have that if x is a critical point off + cP, then (compare with Proposition 
4.3) the quadratic program 

(QP),(x, H, J ,  I) minimize Vf (x)'d + 4d'Hd + c< 

subject to gj(x) + Vgj(x)'d I [, j E J ,  

I hi(x) + Vhi(x)'d 1 I <, i E I, 

has {d = 0, [ = P(x)) as its optimal solution for each H, J ,  and I with 

Conversely, if {d = 0, < = P(x)) is the optimal solution of (QP),(x, H, J ,  I )  
for some H, J ,  and I satisfying (30), then x is a critical point off + cP. 

If x is not a critical point o f f  + cP, then there is a d E Rn such that 
B,(x; d) < 0. Such a d is a descent direction for f + cP and can be obtained by 
solving (QP),(x, H, J ,  I) (compare with Proposition 4.2). 

Consider the quadratic program 

(QP),(x, H, J ,  I) minimize Vf (x)'d + 4d'Hd 

subject to gj(x) + Vgj(x)'d I 0, j E J ,  

hi(x) + Vhi(x)'d = 0, i E I, 

where H, J ,  and I satisfy (30). If {x*, (p:, . . . , p:), (AT, . . . , A:)) is a K-T triple 
of (NLP), then {d* = 0, {pT ( j E J ) ,  {AT ( i E I)),  where p,* = 0, is a K-T triple 
of (QP),(x*, H, J ,  I). Conversely if {d* = 0, {pT I j E J ) ,  {AT 1 i E I ) )  is a K-T 
triple of (QP),(x*, H, J ,  I )  then {x*, (p:, . . . , p:), (AT, . . . , A:)) is a K-T triple 
of (NLP), where , L L ~  = AT = 0 for all j $ J and i $ I (compare with Pro- 
position 4.4). 

If d is the optimal solution of (QP),(x, H, J, I), with corresponding 
Lagrange multipliers {,LL,~ 1 j E J}, {Ai 1 i E I), and 

then {d,  j' = 0) is the optimal solution of (QP),(x, H, J ,  I) (compare with 
Proposition 4.5). 

If {x*, (pT, . . . , p:), (AT, . . . , A:)) is a K-T triple of (ICP), then x* is a 
critical point off + cP for all c with 

(compare with Proposition 4.6). 
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We state formally the analog of Proposition 4.7: 

Proposition 4.12: Let X c Rn be a compact set such that for all x E X the 
set of gradients 

is linearly independent. There exists a c* 2 0 such that for every c > c*: 

(a) If x* is a critical point off + cP and x* E X, there exist y* E Rr and 
11* E Rm such that (x*, p*, 11*) is a K-T triple for (NLP). 

(b) If (x*, y*, A*) is a K-T triple of (NLP) and x* E X ,  then x* is a 
critical point off + cP. 

The proof of Proposition 4.12 is nearly identical to the proof of Proposition 
4.7. As a threshold value c*, one may take 

where p(x) and i(x) are the unique minimizing vectors of 

4.2 Linearization Algorithms Based on Nondifferentiable Exact 
Penalty Functions 

4.2.1 Algorithms for Minimax Problems 

We first consider an algorithm for finding critical points off + cP, where 
c > 0, 

and f, g j  E C', j = 1, . . . , r. We subsequently specialize the algorithm and the 
corresponding convergence analysis to (ICP). 

Linearization Algorithm: A vector xo E Rn is chosen and the kth iteration 
of the algorithm is given by 



where r ,  is a nonnegative scalar stepsize, and d, is a direction obtained by 
solving the quadratic program in (d, <) 

(QP),(x,, H,, J,) minimize V f (x,)'d + +dlH,d + c( 

subject to gj(x,) + Vgj(xk)'d I 5, j E J,. 

We require that H, and J ,  satisfy 

0 < H,, J ~ ( X , )  c J k  c (0, 1 ,  . . . , r ) ,  

where 

Jdxk) = {jlgj(xk) 2 P(xd - 6,; = 0, 1 , .  . . , r ) ,  

and 6 is some positive scalar which is fixed throughout the algorithm. The 
stepsize u, is chosen by any one of the stepsize rules listed below: 

(a) Minimization rule: Here sr, is chosen so that 

f ( x ,  + ukdk) + cP(xk + zkdk) = mini f ( x ,  + ad,) + cP(x, + ad,)). 
22 0 

(b) Limited minimization rule: A fixed scalar s > 0 is selected and a, is 
chosen so that 

f (xk + %dk) + cP(xk + rkdk)  = min( f ( x ,  + xd,) + cP(x, + zd,)) 
~ € [ O , S I  

(c) Armijo rule: Fixed scalars s, P, and G, with s > 0, P E (0, I), and 
G E (0, +), are selected and we set sr, = Pmks, where m, is the first nonnegative 
integer m for which 

(2 )  f (x,) + cP(xk) - f ( x ,  + Pmsd,) - cP(xk + Pmsd,) 2 a/?"sd~H,d,. 

We do not discuss the rather complex question of practical (approximate) 
implementation of the minimization rules. On the other hand, it is easy to 
show that ifd, # 0, the Armijo rule will yield a stepsize after a finite number of 
arithmetic operations. To see this, note that by Proposition 4.2, we have 
for all r > 0, 

( 3 )  f (x,) + cP(x,) - f ( x ,  + rd,) - cP(x, + zd,) = - xOc(x,: d,) + o(x) 
2 ad; Hkdk + o(x). 

Hence if ii > 0 is such that for r E (0, i] we have (1  - a)rd;H,d, + 
o(x) 2 0, then it follows using (3) that 

f (x,) + cP(x,) - f ( x ,  + srd,) - cP(xk + ad,) 2 ~ad;H,d,  V z E (0, E l .  
Therefore there is an integer m such that (2)  is satisfied. Note also that if 
d, = 0 then. by Proposition 4.3, x, is a critical point of , f '  + cP. 

Note that, in implementing the algorithm instead of solving (QP),(x,, 
H,, J,), it is possible to solve a dual problem. The reader who is familiar with 
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duality theory can verify that one such dual problem involving maximization 
with respect to the Lagrange multipliers pj ,  j E J,, is given by 

subject to 1 pj = c, pj 2 0 V J E J , .  
j € J k  

It may be advantageous to solve the dual problem above, since it has a simpler 
constraint set than (QP),(xk, H,, J,) and possibly a smaller number of 
variables. 

We have the following convergence result: 

Proposition 4.13: Let { x k )  be a sequence generated by the linearization 
algorithm where the stepsize cc, is chosen by either the minimization rule or 
the limited minimization rule or the Armijo rule. Assume that there exist 
positive scalars y and r such that 

Then every limit point of {x,) is a critical point off + cP 

Proof: We provide a proof by contradiction. Assume that a subsequence 
{x,),  generated by the algorithm using the Armijo rule converges to a vector 
x which is not a critical point off  + cP. We may assume without loss of 
generality that for some index set J,  we have 

J6(x) C J C (0, 1, . . . , r) ,  Jk = J v k E K.  

Since f (x,) + cP(x,) is monotonically decreasing, we have f (x,) + cP(x,) + 

f ( x )  + cP(x) and hence also (f (x,) + cP(x,) - f (x,+ ,) - cP(x,+ ,)) + 0. 
By the definition of the Armijo rule, we have 

Since for k E K, dk is the optimal solution of (QP),(x,, H,, J), it follows that 
for some set of Langrange multipliers {p: 1 j E J) and all k E K, we have 
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where 

The relations c = xjeJ , L L ~  and 2 0 imply that the subsequences {yj"}, are 
bounded. Hence, without loss of generality, we may assume that for some 
pj, j E J, we have 

(8) { P ~ ) K  + Pj v j  E J .  

Using assumption (4), we can also assume without loss of generality that 

for some positive definite matrix H. 
Now from (5 ) ,  it follows that there are two possibilities. Either 

lim inf(IdkI) = 0 
k +  ca 
k € K  

or else 

(1 1 )  lim inf rk = 0, lim inf { I d, 1 } > 0. 
k-  m k- m 
k e K  k e K  

If (10) holds, then we may assume without loss of generality that {dk), + 0 
and from (6)-(9), we have 

where ( = maxjEJ gj(x). Hence the quadratic program (QP),(x, H, J )  has 
{ d  = 0, P(x) )  as its optimal solution, while we have J ( x )  c J,(x) c 
J c (0, 1, . . . , r). From Proposition 4.3, it follows that x is a critical point of 
f + cP thus contradicting the hypothesis made earlier. 

If ( 1  1) holds, we may assume without loss of generality that 

(12) {rk)x -' 0. 

Since (6), (8), and ( 9 )  show that {dkjK is a bounded sequence, we may assume 
without loss of generality that 

where d is some vector which cannot be zero in view of ( 1  1). Since (r,), + 0, 
it follows, in view of the definition of the Armijo rule, that the initial stepsize s 
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will be reduced at least once for all k E K after some index k .  This means that 
for all k E K ,  k 2 iE, 

where 

4Ek) lim = 0, 
k- m C(k 

while from Proposition 4.2b, we have 

- Q,(x, ; d,) 2 dh H, d, . 

Combining this relation with (14) and (16), we obtain 

In view of (9)> (13), and (17) this leads to a contradiction. This completes the 
proof of the proposition for the case of the Armijo rule. 

Consider now the minimization rule and let {x,}, converge to a vector x 
which is not a critical point off + cP. Let I,,, be the point that would be 
generated from xk via the Armijo rule and let jik be the corresponding stepsize. 
We have 

f (xk)f cP(-Y,) - f (xkt 1) - ('P(-\.l. + 1) 2 f (~k )+  ('P(S~) - 

f ( Ik+l )  - c P ( % - l )  2 uakd;Hkdk. 
By simply replacing x, by Ekin the arguments of the earlier proof, we obtain a 
contradiction. In fact, this line of argument establishes that any stepsize rule 
that gives a larger reduction in objective function value at each iteration than 
the Armijo rule inherits its convergence properties. This proves also the 
proposition for the limited minimization rule. Q.E.D. 

It is possible to relax somewhat condition (4) and still be able to prove 
the result of Proposition 4.13 similarly as in Section 1.3.1. For example, the 
reader may wish to verify that (4) can be replaced by the condition 

where q ,  and q ,  are some nonnegative scalars and w(.) is a continuous function 
such that w(x) # 0 if x is not a crit~cal point off + cP [for example, ~ ( x )  = 

min{8,(x; d)lldl I I}]. 
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The method of proof of Proposition 4.13 can be used to show that if an 
alternative form of the Armijo rule given by 

where 5, is defined by 

then the result of Proposition 4.13 also holds. The verification of this fact is 
left for the reader (see also Section 4.5.3). This form of the Armijo rule has 
been suggested by Mayne and Polak (1978). In contrast with (2), it requires 
the evaluation of the gradients of all the constraint functions. 

4.2.2. Algorithms for Constrained Optimization Problems 

Consider the inequality constrained problem 

(ICP) minimize f (x) 

subject to gj(x)  5 0, j = 1,. . . , r. 

We know that each K-T pair (x*, p*) of (ICP) gives rise to a critical point of 
f + cP provided c 2 xS= p?. Thus we can apply the linearization algorithm 
for finding critical points off + cP. The difficulty with this is that we may not 
know a suitable threshold value for c. Under these circumstances, a possible 
approach is to choose an initial value c, for c and increase it as necessary at 
each iteration k if the algorithm indicates that the current value c, is in- 
adequate. An underestimate for a suitable value of c, is x jeJk .  jZOpr, where 
{p>i j E J,} are Lagrange multipliers obtained by solving (QP),(x,, H,, J,) 
(compare with Proposition 4.5). At the same time, we know that if 

then the problem (QP),(x,, H,, J,) is equivalent to (QP),,(xk, H,, Jk u (0)) 
in the sense that d, is the optimal solution of the former if and only if (d,, 0) 
is the optimal solution of the latter (Proposition 4.5). So by solving 
(QP),(xL. H,, J,), we not only solve (QP)Jx,, H,, J, u {O)), as needed in the 
linearization algorithm, but we also simultaneously obtain an underestimate 
for a suitable value ofc,. These considerations lead to the following algorithm: 

Modified Linearization Algorithm: A vector x, E Rn and a penalty 
parameter c, > 0 are chosen. The kth iteration of the algorithm is given by 
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where ct, is chosen by any one of the stepsize rules given in Section 4.2.1 with c 
replaced by 2,. [For example, the minimization rule takes the form 

f (xk  + ctkdk) + EkP(xk + ctkdk) = min{ f (x, + ctd,) + E,P(x, + ctd,)). 
a 1 0  

The vector d, and the scalar 2, depend on x,, c,, a matrix H,, and an index set 
J, satisfying 

0 < Hk, J6(xk) J k  (0, 1, . . . r ) ,  
where 

J & k )  = { j  l gj(xk) 2 P(xk) - 6, j  = 0, 1, . . . , r )  

and 6 > 0 is a scalar fixed throughout the algorithm. They are obtained 
depending on which of the following cases holds true as follows: 

CASE 1 : There exists d E Rn satisfying 

In this case d, is the unique solution of 

(QP),(xk, H,, J,) minimize V f  (x,)'d + +dlHkd 

subject to gj(xk) + Vgj(xk)'d I 0 V j  E Jk 

and Ek is defined by 

where {pjk I j  E J k )  is a set of Lagrange multipliers for (QP),(x,, H,, J,), and 
E > 0 is a scalar that is fixed throughout the algorithm. 

NOTES : (1) When there are equality constraints of the form hi(x) = 0, 
they can be treated by conversion to the inequalities hi(x) s Oand - hi(x) I 0. 
In that case, the corresponding quadratic program is 

minimize Vf (xk)'d + id'H,d 

subject to gj(xk) + Vgj(xk)'d I 0 Q j E J,, 

hi(xk) + Vhi(xk)'d = 0 Q i E I,, 

where I,  is an index set containing {i 1 I hi(xk) 1 2 P(x,) - 6 ) .  The definition of 
Ek becomes 

k k zk = { ? i J r . j + o  P j  f Z i r l k  I A f I  + & if Z j i i . , j t o  P; + Z i r l k  IAi I >  C k ;  

otherwise, 

where {I*;, Af 1 j E Jk .  i E I k }  is a set of Lagrange multipliers for the quadratic 
program. 



(2) In place of (QP),(x,, H,, J,), it may be easier to solve the dual 
problem in pj, j E J,, 

subject to pj 2 0, j E J,. 

CASE 2: There does not exist d E Rn satisfying (19). In this case, d, to- 
gether with some t, > 0 are the unique solution of 

(QP),k(x,, H,, J,) minimize V f (x,)'d + id'H, d, + c, : 
subject to gj(lxk) + Vgj(x,)'d I 5, j E J,, 

and 
- 
Ck = C,. 

We observe that the sequence {c,) generated by the algorithm is un- 
bounded only if the sequence {x,) is such that the system (19) is feasible for an 
infinite number of indices k with xj,Jk,j+o pjk 2 c,. Otherwise, for some 
Z > 0, we have c, = E for all k sufficiently large, and Proposition 4.5 implies 
that the algorithm is equivalent to the earlier linearization algorithm for which 
Proposition 4.13 applies. In this way, we obtain the following convergence 
result. 

Proposition 4.14: Let {x,} be a sequence generated by the modified 
linearization algorithm where the stepsize a, is chosen by either the minimiza- 
tion rule or the limited minimization rule or the Armijo rule. Assume that 
there exist positive scalars y and r such that 

(a) If there exist I? and c such that 

(20) c k = E  V k > I ? ,  

then every limit point of {x,) is a critical point off + EP. If, in addition, the 
system of inequalities 

(21) gj(xk)+Vgj(xk)'dIO V j E J ,  

is feasible for an infinite set of indices K, then every limit point of {x,, pkIK is a 
K-T pair of (ICP), where for k E K, we have that 

{p: 1 j E J,} is a set of Lagrange multipliers of (QP),(x,, H,, J,), and p; = 0 
for j #  J,. 
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(b) If the functions g,, . . . , g, are convex, there exists a vector 2 E Rn such 
that 

and the sequence {x,) is bounded, then every limit point of (x,, pk) is a K-T 
pair of (ICP). 

Proof: (a) The proof follows from the remarks preceding the statement 
of the proposition. 

(b) Under the assumptions of this part, the system (21) is feasible for all 
k. An argument which is very similar to the one used in the proof of Proposi- 
tion 4.9 shows that 

It follows that if {x,) is bounded then {Zj,,,, j,,  pr) is also bounded which 
implies that (20) holds for some E. The result follows from part (a). Q.E.D. 

It is interesting to note that the proof of Proposition 4.14b hinges on the 
fact that its assumptions guarantee that the system (21) is feasible and the 
sequence of multipliers {p?Ij E J,, j # 0) of (QP),(x,, H,, J,) is bounded if 
{x,) and { H , )  are bounded. There are assumptions other than the ones of 
Proposition 4.14b that guarantee boundedness of { & j  E J, ,  j # 0). For 
example, the reader may wish to verify a convergence result similar to 
Proposition 4.14b for the problem 

(ECP) minimize f (x) 

subject to hi(x) = 0, i = 1, .  . . , m, 

under the assumption that the set {Vhi(x)j i = 1. . . . . in) is linearly indepen- 
dent for all x E Rn. 

Implementation Aspects 

One of the drawbacks of the modified linearization algorithm is that the 
value of the penalty parameter c, may increase rapidly during the early stages 
of the algorithm, while during the final stage of the algorithm a much smaller 
value of c, may be adequate to enforce convergence to a K-T pair of (ICP). 
A large value of c, results in very sharp corners of the surfaces of equal cost of 
the penalized objective f + c, P along the boundary of the constraint set, and 
can have a substantial adverse effect on algorithmic progress. In this con- 
nection, it is interesting to note that if the system gj(xk) + Vgj(xk)'d I 0, 
j E Jk is feasible, then the direction d, is independent of c, while the stepsize r, 
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depends strongly on c,. For this reason, it may be important to provide schemes 
that allow for reduction of c, if circumstances appear to  be favorable. One 
possibility is to monitor the progress of the generated sequence {(x,, pk)} 
towards satisfying the K-T conditions. If at some iteration k, a pair (x,, pk) is 
obtained for which a measure of violation of the K-T conditions [for example, 
/ H,d, I + P(x,) or something similar] is reduced by a certain factor over the 
last time c was reduced, then we set c,-, = Cj,,,, j + o  pr + E even if xjEJk, j + o  pr < c,. This guarantees that even if c, is reduced for an infinite 
set of indices K then every limit point of (x,,  p"), will be a K-T pair. If c, 
is reduced only a finite number of times, the resulting scheme is essentially 
the same as the one involving no reduction for the purposes of convergence 
analysis. 

A most important question relates to the choice of the matrices H,. In 
unconstrained minimization, one tries to employ a stepsize uk = 1 together 
with matrices H, which approximate the Hessian of the objective function at 
a solution. A natural analog for the constrained case would be to choose H, 
close to the Hessian of the Lagrangian function 

4 x 9  P )  = f ( x )  + p'g(x) 

evaluated at a K-T pair (x*, p*). Indeed if the objective function is positive 
definite quadratic, the constraints are linear, and J o  = (0, 1, . . . , r}, then the 
corresponding algorithm will find the optimal solution in a single iteration. 

There are two difficulties relating to such an approach. The first is that 
V:,L(x*, p") may not be positive definite. Actually this is not as serious as 
might appear. As we discuss more fully in Sections 4.4.2 and 4.5.2, what is 
important is that H, approximate closely V;, L(x*, p*) only on the subspace 
tangent to the active constraints. Under second-order sufficiency assumptions 
on (x*, p"), this can be done with positive definite H,, since then V;,L(x*, p*) 
is positive definite on this subspace. 

The second difficulty relates to the fact that even if we were to choose H, 
equal to the (generally unknown) matrix V;, L(x*, p*) and even if this matrix 
is positive definite, it may happen that arbitrarily close to x* a stepsize u, = 1 
is not acceptable by the algorithm because it does not decrease the value of the 
objective fucntion f + cP. An example illustrating this fact is given in 
Section 4.5.3. This example shows that unless modifications are introduced in 
the linearization method, we cannot expect to prove a superlinear rate of 
convergence for broad classes of problems even with a favorable choice of the 
matrices H,. We shall consider such modifications in Section 4.5.3, where we 
shall discuss the possibility of combining the linearization method with 
superlinearly convergent Lagrangian methods. 

When the Iinearization method converges to a local minimum of (NLP) 
satisfying the sufficiency Assumption (S+) of Section 3.1, it can be normally 



206 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS 

expected to converge at least at a linear rate. As an indication of this, we note 
that when there are no constraints the method is equivalent to the (scaled) 
steepest descent method. The proof of a linear convergence rate result is 
sketched in Section 4.4.1 (see also Pschenichny and Danilin, 1975). 

It is interesting to note one important special case where the linearization 
method with H, equal to the identity can be expected to converge super- 
linearly under reasonable assumptions. This is the case where f ( x )  & 0, and 
(ICP) is equivalent to the problem of solving the system of nonlinear in- 
equalities 

We refer again to Pschenichny and Danilin (1975) for related analysis. 

4.3 Differentiable Exact Penalty Functions 

4.3.1 Exact Penalty Functions Depending on x and 3, 

In this section, we show that it is possible to construct a differentiable 
unconstrained optimization problem involving joint minimization in x and A 
and having optimal solutions that are related to K-T pairs of the problem 

(ECP) minimize f ( x )  

subject to h(x) = 0, 

where we assume that f, h E C2 on Rn. To see that something like this is possible 
consider the Lagrangian function 

(1)  L(x, A) = f ( x )  + /l'h(x), 

the necessary conditions for optimality 

(2) V, L(x, A) = 0, Vj, L(x, A)  = h(x) = 0, 

and the unconstrained optimization problem 

(3)  minimize f 1 h(x) l 2  + $ 1  V, L(x, A) l 2  
subject to ( x ,  A) E Rn x Rm. 

It is clear that (x*, A*) is a K-T pair for (ECP) if and only if (x*, A*) is a 
global minimum of (3). It is thus possible to attempt the solution of (ECP) 
by solving instead the unconstrained problem (3). A drawback of this 
approach is, however, that the distinction between local minima and local 
maxima of (ECP) is completely lost when passing to problem (3). 
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As an alternative to problem (3), we may consider the problem 

(4)  minimize P(x, A; c, cc) 
subject to (x, A) E Rn x Rm, 

where P is defined by 

(5)  P(x, A ;  c, cx) = L(x, A) + $c 1 h(x) 1' + $a] V,L(x, A) 1' 
and c and cc are some positive scalar parameters. As initial motivation for 
this, we mention the fact that, for all c > 0 and cx > 0, if (x*, A*) is any K-T 
pair of (ECP) then (x*, A*) is a critical point of P(. ,  . ; c, cc) [compare with (2)  
and (5)].  Our main hope, however, is that by introducing L(x, A) in the 
objective function and by appropriately choosing c and cx, we can build into 
the unconstrained problem (4) a preference towards local minima versus local 
maxima of (ECP). Before going into this, we examine the relation of critical 
points of P with K-T pairs of (ECP). 

Proposition 4.15: Let X x A be a compact subset of Rn x Rm. Assume 
that Vh(x)  has rank m for all x E X. There exists a scalar E? > 0 and, for each 
ol E (0, E l ,  a scalar ?(a) > 0 such that for all c and r with 

every critical point of P(. ,  . ; c, cc) belonging to X x A is a K-T pair of (ECP). 
If Vf,L(x,  A)  is positive semidefinite for all (x ,  11) E X x A, then ii can be 
taken to be any positive scalar. 

Proof: The gradient of P is given by 

where all gradients are evaluated at the same point (x, 2)  E X  x A. At any 
critical point of P in X x A, we have V P  = 0 which can be written as 

Let E > 0 be such that for all ol E (0, El the matrix I + crVf,L is positive 
definite on X x A. (If V ~ , L  is positive semidefinite on X x A, then ii can 
be taken to be any positive scalar.) Then from the first equation of system 
(7), we obtain 

(8) V ,  L = - C ( I  -t- ctv:,~)-lvhh, 

and substitution in the second equation yields 

(9) [ X C V ~ ' ( I  + stv,2,~)-lvh - 11h = 0. 
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For any a E (0, El, we can choose ?(a) > 0 such that, for all c 2 Z(a), the 
matrix on the left above is positive definite on X x A. For such c and a, we 
obtain from (9) h = 0 and from (8) V x L  = 0. Q.E.D. 

The proof of the proposition can be adapted to show that there exist 
E > 0 and 2 > 0 such that, for all a E (0, E l  and c E (O,E], every critical 
point of P in X x A is a K-T pair of (ECP). However, as will be seen in 
Proposition 4.16, there are other reasons that make us prefer a large rather 
than a small value of c. 

The result of Proposition 4.15 might lead one to hypothesize that if 
h has rank m on the entire space Rn then all the critical points of P(., . ; c, a) 
are K-T pairs of (ECP). This is not true however. Even under quite favorable 
circumstances P can have, for every c > 0 and a > 0, critical points that are 
unrelated to K-T pairs of (ECP). According to Proposition 4.15, these 
spurious critical points move towards "infinity" as c + ac, and a + 0. 
We illustrate this situation by an example. 

Example 1: Consider the scalar problem where 

f (x) = &x3, h(x) = x, P(x, /l; c, a) = &x3 + AX + fcx2 + faJ+x2 + AI2. 

Here {x* = 0, A* = 0) is the unique K-T pair. Critical points of P are 
obtained by solving the equations 

From the second equation, we obtain 

and substitution in the first equation yields, after a straightforward 
calculation, 

By solving these equations, we obtain that the critical points of P are 
{x* = 0, /l* = 0) and {x(c, a) = c - I/@, A(c, a) = (1 - c2a2)/2a2). It can 
be seen that, for every c > 0 and cr > 0 with ca # 1, the critical point [x(c, a), 
A(c, a)] is not a K-T pair of (ECP). On the other hand, for any fixed a > 0, 
we have lim,,, x(c, a) = x and lim,,, A(c, a) = - so which is consistent 
with the conclusion of Proposition 4.15. 

The next example shows that if V;,L is not positive semidefinite on 
X x A then the upper bound a cannot be chosen arbitrarily. 

Example 2: Let n = 2, m = 1, and 
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Here {x: = 0, xT = 0, A* = 0) is the unique K-T pair (a global maximum). 
Also Vh is constant and equal to (0, 1) so that the rank assumption in 
Proposition 4.15 is satisfied. Take x = 1. We have, for every c > 0, 

Since P is independent of x,, any vector of the form {x, = y, x2 = 0, A = 0) 
with y E R is a critical point of P and of these only the vector {xT = 0, xT = 0, 
A* = 0) is a K-T pair of (ECP). 

The next proposition indicates how local minima of (ECP) relate to 
unconstrained local minima of P. 

Proposition 4.16: Assume f ,  h E C3 on R". 

(a) If x* is a strict local minimum of (ECP) satisfying, together with a 
corresponding Lagrange multiplier vector A*, the second-order sufficiency 
assumption (S) of Section 2.2, then for every x > 0 there exists a ?(a) > 0 
such that, for all c 2 ?(x), (x*, A*) is a strict unconstrained local minimum 
of P, and the matrix V2P(x*, A* ; c, a) is positive definite. 

(b) Let (x*, A*) be a K-T pair of (ECP). Assume there exists z E Rn 
such that Vh(x*)'z = 0 and z'V2, L(x*, A*)z < 0. Then there exists ti > 0 
such that for each a E (0, ti] and c > 0, (x*, A*) is not an unconstrained local 
minimum of P. 

Proof: (a) By differentiating VP as given by (6) and taking into 
account the fact that V,L(x*, A*) = 0 and h(x*) = 0, we obtain, via a 
straightforward calculation, 

V2P(x*, A*; c, a) = [:, A:] + [' y :I + r [ A c ]  [ H  XI. 

where 

H = V;, L(x*, A*), N = Vh(x*). 

We can write, for any (z, w) E R"' m, 

where Q and R are the quadratic forms 

If (2, w) # (0, 0) and R(z, w) = 0, then N'z = 0 which implies 
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By the second-order sufficiency assumption we have z'Hz > 0 if z # 0 
while if z = 0 then w # 0 and the full rank assumption on N implies 
I Hz + NW l 2  = I NW l 2  > 0. In either case, we obtain Q(z, w) > 0 for all 
(z ,  w) # 0 with R(z, w) = 0. Since R is positive semidefinite, by Lemma 1.25, 
there exists a E(a) > 0 such that for all c 2 ?(a) the quadratic form Q + cR, 
or equivalently the matrix V2p(x*,  A*; c, a), is positive definite. Hence, 
(x*, A*) is a strict local minimum of P. 

(b) Let z be such that N'z = 0 and z'Hz < 0. For a < -ztHz/l Hz12 
we obtain, from (10)-(12), 

[z' 0]V2P(x*, A*; c, a) = zlHz + a 1 Hz l 2  < 0, LJ 
which implies that V2P(x*, A*; c, a) is not positive semidefinite. Hence, 
(x*, A*) cannot be a local minimum of P. Q.E.D. 

If in Example 2 we take cr > 1, then we see that the global maximum 
{xT = 0, xT = 0 )  gives rise to a global minimum of P, and this shows that 
the upper bound on a is necessary for the conclusion of Proposition 4.16b. 
Also in Example 1 by computing V2P at the global minimum {x* = 0, 
A* = 0 ) ,  we find that it is positive definite if and only if ac > 1, so the lower 
bound c(a) on c is necessary for the conclusion of Proposition 4.16a. 

Proposition 4.16b shows in particular that local maxima of (ECP) 
satisfying the second-order sufficiency conditions for optimality cannot 
give rise to unconstrained local minima of P provided a is chosen small 
enough, while under sufficiency assumptions local minima of (ECP) give 
rise to local minima of P provided c is chosen large enough. This supports 
our contention that by employing the exact penalty function P in place of 

h(x) l 2  + $ 1  V,L(x, A) l 2  we provide a preference towards local minima 
rather than local maxima of (ECP). 

We are still not completely satisfied, however, in view of the fact that this 
property depends on proper choice of both parameters c and r. It turns out 
that we can eliminate the effect of the parameter a and simultaneously 
gain some additional flexibility by considering the function 

where, for each x, M(x)  is a p x n matrix where m I p I n. We assume that 
M E  C' on the open set 

(14) X *  = {x 1 Vh(x)  has rank m}.  

Note that, for p = n and 

M(x)  = J a l ,  

we obtain the function P(x, L; c, r )  considered earlier. 
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We calculate the gradient of P. Let m,, . . . , mp denote the columns of 
M' so that 

m 1 (x)' 
1 1 0 )  = [ i 1, 

mp(x>' 

and let el,  . . . , e, denote the columns of the p x p identity matrix, so that 

Using this notation and suppressing the argument of all functions, we have 

= V:,LMt eiei MV,L + VmiVx Lef MV,L. 
( 1  ) (i•‹1 ) 

Since Cf,, eiej = I, we finally obtain 

Using this expression and (13), we obtain 
P 

(15a) V,P = V, L + cVhh + V:,LM' + C VmiV, Lef 
i =  1 

where the argument of all functions in the expressions above is the same 
(typical) vector (x, A) E X* x Rm. 

The following result is an immediate consequence of the form of P and 
VP given by (13) and (15). 

Proposition 4.17: If (x*, A*) is a K-T pair of (ECP) and x* E X*, then 
(x*, A*) is a critical point of P(., . ; c, M) and 

P(x*, A* ; c, M) = f (x*). 

The following three propositions apply to the case where p = m, and 
the m x m matrix M(x)Vh(x) is nonsingular in some subset of R". This can 
be true only if Vh(x) has rank m in which case any choice of M of the form 
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where A(x)  is an m x m nonsingular continuously differentiable matrix on 
X*, makes M(x)Vh(x) nonsingular. For example, we may choose 

M ( x )  = qVh(x)', 
where q is any positive scalar. 

Proposition 4.18: Let X x A be a compact subset of X* x Rm, where 
X* is given by (14) and assume that M(x)Vh(x)  is an m x m nonsingular 
matrix for all x E X .  Then there exists a 2 > 0 such that, for all c 2 c, every 
critical point of P(. ,  . ; c, M )  belonging to X x A is a K-T pair of (ECP). 

Proof: By (1  5), the condition V ,  P = 0 at some point of X x A implies 

(17) M V ,  L = - (VhlM')-  ' h ,  

so if at this point Vx P = 0 also holds, we obtain, using (15) and (17), 

0 = MV,P 

( 
m 

= MV,L + cMVhh + M VZXLM1 + z VmiV,Lej 
i =  1 

= -(Vh'Mf)- ' h  + cMVhh 
m 

vZ,LM' + 1 VmiVx Lef 
i =  l 

Since MVh is invertible on X, M E  C' on X*, and X x A is compact, there 
exists a C > 0 such that, for all c 2 F ,  the matrix on the right in the above 
expression is nonsingular. Thus, if c 2 C, then for every point in X x A, 
with V x P  = 0 and V,P = 0, we obtain h = 0, and from (17), M V x L  = 0. 
Using (15a), we also obtain V x L  = 0. So, for c 2 ?, every critical point of 
P( . ,  . ; c, M )  in X x A is a K-T pair of (ECP). Q.E.D. 

We note that Example 1, given earlier, satisfies the assumption of Proposi- 
tion 4.18 on every compact set with M ( x )  = & ~ h ( x ) ' .  We saw in that 
example that, for every c > 0 and a > 0, P has a spurious critical point 
that is not a K-T pair. This critical point moves towards "infinity" as c 
increases, which is consistent with the conclusion of the proposition. 

The next proposition and corollary show that isolated local minima of 
(ECP)  on compact sets. which are also regular points, give rise to isolated 
local minima of P for c sufficiently large. 

Proposition 4.19: Let (x*, i*) be a K-T pair of (ECP) and X be a 
compact subset of X*. Assume that x* is the unique global minimum off 
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over X n { x  I h(x) = 0 )  and that x* lies in the interior of X. Assume further 
that M(x*)Vh(x*) is an m x m nonsingular matrix. Then, for every compact 
set A c Rm containing A* in its interior, there exists a 2 > 0 such that, 
for all c 2 E ,  (x*, A*) is the unique global minimum of P(.,  . ; c, M )  over 
X x A. 

Proof: Let A c Rm be a compact set such that A* belongs to the interior 
of A. Assume that the conclusion of the proposition is false. Then, for any 
integer k ,  there exists c, 2 k and a global minimum (x,, A,) of P( . , . ; c,, M )  
over X x A such that (x,, A,) # (x*, A*). Therefore 

where the last equality follows from Proposition 4.17. Hence we have 

(19) lim sup P(x,, A,; c,, M )  I f (x*). 
k +  w 

We shall show that ((x, ,  A,)} converges to (x*, A*). Indeed if ( E ,  2)  is a 
limit point of {(x,, A,)), then since c, -+ cc we must have h(E) = 0 and 

(20) f ( E )  + 3 1 M(E)V, L(2, 2) I I f (x*)  

for otherwise (19) would be violated. Since also .T E X and x* is the unique 
global minimum of f over X n { x / h ( x )  = 0 ) ,  it follows from (20) that 
Z = x* and M(Z)V, L(E, 2) = M(x*)V, L(x*, 2) = 0. Taking into account 
the fact that V,L(x*, A*) = 0, we obtain 

Since M(x*)Vh(x*) is invertible we have 2 = A*. 
Since {(x,, A,)) converges to (x*, A*), it follows that there are open 

spheres S,, and S,, contained in the interior of X and A, and centered at x* 
and A*, respectively, such that (x,, A,) E S,, x S,, for all k sufficiently large. 
Furthermore we can choose S,, so that M(x)Vh(x) is invertible in the closure 
of S,,. By Proposition 4.18, there exists a i; > 0 such that, for all c 2 i;, 
every critical point of P( . ,  . ; c, M )  in the closure of S,, x S,, is a K-T pair. 
Hence for k sufficiently large, (x,, A,) is a K-T pair, implying h(x,) = 0, 
and from (IS),  f (x,) I f (x*). Since x* is the unique global minimum off  
over X n {xIh(x)  = 0) ,  it follows that x, = x* for all k sufficiently large. 
Since V,L(x,, A,) = 0 and Vh(x,)(= Vh(x*)) has rank m, it follows that 
A, = A* for all k sufficiently large. This contradicts the hypothesis (x,, A,) # 
(x*, A*) for all k. Q.E.D. 

Corollary 4.20: Let (x*, A*) be a K-T pair of (ECP) such that x* is the 
unique local minimum of (ECP) over an open sphere S,,, centered at x* 
with S,, c X*, and Vh(x*) has rank m. Then there exists a Z > 0 and an open 
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sphere S,, centered at A* such that, for all c 2 Z, (x*,  A*) is the unique local 
minimum of P(.,  . ; c, M )  over S,, x S,, . 

The next proposition shows that local minima of P over any bounded 
set give rise to local minima of (ECP) provided c is sufficiently large. 

Proposition 4.21: Let X x A be a compact subset of X* x Rm and 
assume that M(x)Vh(x)  is an m x m nonsingular matrix for all x E X .  Then 
there exists a Z > 0 such that, for all c 2 Z, if (x*, A*) is an unconstrained 
local minimum of P( . ,  . ; c, M )  belonging to X x A, then x* is a local mini- 
mum of (ECP). 

Proof: By Proposition 4.18, there exists Z > 0 such that, for all c 2 Z, 
if (x*,  A*) is an unconstrained local minimum of P, then (x*,  A*) is a K-T 
pair of (ECP).  This implies 

and that there exist open spheres S,,, S , ,  centered at x* and A*, respectively, 
such that 

The last two relations yield 

(21) f'(x*) I f ( x )  + 1 M ( x ) V f ( x )  + M ( ~ ) v h ( x ) ? ~  I 2  V XES,, n { x  I h(x )  = 0) ,  

By the continuity and rank assumptions, there exists an open sphere s,, 
centered at x* such that 

By combining (21) and (22), we obtain 

f  ( x * )  I f ( x )  V x E sxt n { x  I h(x)  = 01, 

which implies that x* is a local minimum of (ECP). Q.E.D. 

Proposition 4.21 illustrates the advantage gained by using the m x n 
matrix M in the formulation of the exact penalty function. Under a non- 
singularity condition on MVh we can, by proper choice of the single param- 
eter c. guarantee that, within a bounded set, local minima of P(., .; c, M )  
can arise only from local minima of (ECP).  By contrast, it was necessary to 
choose appropriately both c and a in the penalty function P(. ,  . ;  c, a )  in 
order to achieve the same effect. The price for this is a more complex expres- 
sion for both P and its derivatives. 
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We finally mention the more general penalty functions 

P,(x, A; c, or) = L(x, 1) + Kc + z1A12)1h(x)12 + & / V x ~ ( x , 1 ) ) 2  

and 

P,(x, A; c, M )  = L(x,  A) + g c  + z 1 A 1 2 )  1 h(x) l 2  + 4 I M(x)Vx L(x, A) 1 2 ,  

where z 2 0 is some fixed scalar. When z = 0, we obtain the penalty functions 
examined earlier. A possible advantage in using a positive scalar z is that if 
,f' + icl hi2 is bounded below, then P,(., .; c, M )  is also bounded below for 
z > 0 but this is not necessarily true for 1- = 0. This can have a beneficial 
effect in the performance of unconstrained methods for minimizing P. It is 
possible to show that the results of this section generalize to the penalty 
functions P,. As an aid in this, note that the extra term 

contributes to V:, P, at a K-Tpair (x*, A*) the term z/A* J2Vh(x*)Vh(x*)' and 
does not otherwise affect the Hessian V2P, at (x*, A*). Thus, as far as V2P, is 
concerned, the effect of the added term 32 ) A  l 2  1 h(x) l 2  at (x*, A*) is the same 
as adding z 1 A* l 2  to the penalty parameter c. 

4.3.2 Exact Penalty Functions Depending Only on x 

If our ultimate objective is to solve (ECP) by minimizing with respect 
to ( x ,  A) the exact penalty function P, we can take advantage of the fact 
that P is quadratic in A and minimize explicitly P with respect to A. Consider 
the set 

(23) X* = { x  I Vh(x)  has rank m). 

Let us choose, for x EX*, 

(24) M(x)  = [Vh(x)'Vh(x)] - 'Vh(x)' 

Then M(x)Vh(x) equals the identity, and we have 

(25) P(x, A; c, M )  = f ( x )  + A'h(x) + t c  I h(x) j 2  + 31 M(x)Vf ( x )  + AI2. 

By setting V ,  P = 0, we obtain 

(26) h(x) + M(x)Vf ( x )  + A = 0, 

so the minimum of P with respect to /2 is attained at 

(27) I ( x )  = - h(x) - [Vh(x)'Vh(x)] - 'Vh(x)'Vf (x) .  
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Substituting in (25) and using (26), we obtain 

(28) min P(x, A ;  c, M )  
I 

= f  ( x )  - h(x) '[Vh(x) 'Vh(x)]- 'Vh(x)'Vf ( x )  + p(c - 1 )  1 h(x)  1 2 .  
We are thus led to consideration of the function 

where 

Note that from (28) we have, for all x EX*, 

(3  1) P ( x ;  c )  = min P(x, A ;  c + 1 ,  M),  
2. 

where 

(32) M ( x )  = [Vh(x)'Vh(x)] - 'Vh(x)' V x E X*. 

From (31), we obtain 

where i ( x )  is given by (27). Differentiation with respect to x yields 

Since 

by definition of X(x), we obtain, using (34) and (15a), 

where 3: is given by (27), M is given by (32), mi is the ith column of M', and 
ei is the ith column of the m x m identity matrix. We have the following 
proposition. 

Proposition 4.22: The following hold true for the set X* and the function 
p defined by (23) and (29), (30). 

(a) If (x*,  A*) is a K-T pair of (ECP) and x E X * ,  then x* is a critical 
point of p ( .  ; c)  for all c > 0. 

(b) Let X be a compact subset of X*. There exists a 2 > 0 such that, 
for all c 2 2, if x* is a critical point of p( .  ; c)  and x* E X, then [x*, A(x*)] 
is a K-T pair of (ECP). 



4.3 DIFFERENTIABLE EXACT PENALTY FUNCTIONS 217 

(c) Let (x*, A*) be a K-T pair of (ECP) and X be a compact subset of 
X*. Assume that x* is the unique global minimum off over X n {x 1 h(x) = 0) 
and that x* lies in the interior of X. Then there exists a 2 > 0 such that, 
for all c 2 2, x* is the unique global minimum of P( .  ; c) over X. 

(d) Let X be a compact subset of X*. There exists a 2 > 0 such that, 
for all c 2 2, if x* is a local unconstrained minimum of p( .  ; c) belonging to 
X, then x* is a local minimum of (ECP). 

Proof: (a) We have Vf (x*) + Vh(x*)A* = 0 from which Vh(x*)'Vf (x*) 
+ Vh(x*)'Vh(x*)A* = 0. Since Vh(x*) has rank m and h(x*) = 0, it follows 
that A* = &x*) [compare with (27)l. Since V, L[x*, i(x*)] = 0 and h(x*) = 

0, it follows from (36) that v ~ ( x * ;  c) = 0 for all c > 0. 
(b) From (34) and (35), it follows that x* E X is a critical point of 

p( .  ; c) if and only if [x*, X(x*)] is a critical point of P( ., . ; c + 1, M). Consider 
the compact set A = {A / A = l(x), x E X). By Proposition 4.18, there exists 
a 2 > 0 such that if c 2 2 and [x*, %(x*)] E X  x A is a critical point of 
P( . ,  . ; c + 1, M), then [x*, l(x*)] is a K-T pair of (ECP). Since for h(x*) = 0, 
we have i(x*) = yx*), the result follows. 

(c) By Proposition 4.19, for any compact set A containing A* in its 
interior, there exists a 2 > 0 such that, for all c 2 c, (x*, A*) is a global 
minimum of P(., . ; c + 1, M) over X x A. The result follows using (31). 

(d) From (31) and (33), it follows that x* E X is a local unconstrained 
minimum of p( .  ; c)  if and only if [x*, %(x*)] is a local unconstrained minimum 
of P(., .; c + 1, M). The result follows from Proposition 4.21. Q.E.D. 

The reader may wish to verify that, for Example 1 of Section 4.3.1, the 
function P(. ; c) has, for every c > 0, a critical point x(c) that does not 
correspond to a K-T pair of (ECP). For this critical point, we have 
lim,,, x(c) = a which is consistent with the conclusion of Proposition 
4.22b. 

We note that the form of the function fj of (29) depends on the particular 
choice for M given in (25). Different choices for M yield different exact 
penalty functions. Other functions can also be obtained by minimization of 
P,(., .: c, M) over A for positive values of s. 

4.3.3 Algorithms Based on Differentiable Excrct Penalty 
Functions 

We have examined so far in this section the following three basic types of 
exact penalty functions of varying degrees of complexity 
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where 

A(x) = - [Vh(x)'Vh(x)] - 'Vh(x)'Vf (x) .  

The preceding analysis suggests that unconstrained minimization of any 
one of these penalty functions is a valid approach for solving (ECP). Any 
unconstrained minimization algorithm based on derivatives can be used for 
minimization of P or p. However it is important to use an algorithm that 
takes into account the special structure of these functions. The salient 
feature of this structure is that the gradients of P and P involve the second 
derivati~es o f f  and h. If these second derivatives are unavailable or are 
difficult to compute, they can be suitably approximated by using first 
derivatives. As an example, take the gradient of P(x, A; c, a). From (6), we 
have 

V,P(x, 2; c, a) = V,L(x, A) + cVh(x)h(x) + srV:,L(x, A)V,L(x, A), 

At any point ( x ,  A), the troublesome term 

can be approximated by 

t- '{V,L[x + tV,L(x, A), A] - V,L(x, A)), 

where t is a small positive scalar. Thus we can bypass the need of computing 
V:,L(x, A) by means of a single additional evaluation of Vf and Vh. A 
similar approach can be used for the other penalty functions. 

If second derivatives can be computed relatively easily then there arises 
the possibility of using a Newton-like scheme for unconstrained minimiza- 
tion. The difficulty with this is that the Hessian matrix of P or p involves 
third derivatives o f f  and h. It turns out, however, that at K-T pairs of 
(ECP), the third derivative terms ~anish, so they can be neglected in a Newton- 
like algorithm without loss of the superlinear rate of convergence property. 

Consider first the function P(x, A ;  c, z). We can write 

P(x, A; c, x )  = L(x,  A) + iVL(x ,  i ) 'KVL(x,  A), 

where K is the matrix 

We have 
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while at a K-T pair (x*, A*), we have 

(38) V2p(x*, A*; C ,  a) = V2L(x*, A*) + V2L(x*, A*)KV2L(x*, A*). 

Thus V2p(x*,  A*; c, a) involves only first and second derivatives off and h. 
Consider the Newton-like method 

(39) 

where a, is a 

(40) 

(41) 

positive stepsize parameter and 

Since B, approaches V2P(x*, A*; c, a) as (x,, A,) approaches a K-T pair 
(x*, A*), we conclude (compare with Proposition 1.15) that the method is 
well defined and converges superlinearly if V2P(x*, A*;c, sc) > 0 and a, 
is chosen by the Armijo rule with unity initial stepsize. Now from (37), 
(40), and (41), we have 

and finally 

An important observation is that d, is the Newton direction for solving the 
system of equations V L  = 0. Thus iteration (39) coupled with a stepsize 
procedure based on descent of the exact penalty function P(x, A; c, a) can be 
alternately viewed as a means for enlarging the region of convergence of 
Newton's method for solving the system V L  = 0. We shall discuss more 
specific methods of this type in Section 4.5.2. 

Consider next the function P(x, A ;  c, M). We can write 

P(x, A ;  c, M )  = L(x, A) + +VL(x, A)'K(x)VL(x, A), 

where 

We have 
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where V(KVL) denotes the gradient matrix of the function KVL with 
respect to (x, A). At any K-T pair (x*, A*), we have 

(44) v2p(x*, A*; C, M) = v 2 ~ ( x * ,  A*) + +v2~(x* ,  A*)K(X*)V~L(X*, A*) 
+ +v(K(x*)vL(x*, A*))V~L(X*, A*). 

We are thus led to consideration of the Newton-like method 

where a, is a positive stepsize parameter and 

In view of (43), (46), and (47), we can also write 

Thus the direction of descent for the Newton-like method is again the Newton 
direction for solving the system VL = 0. 

In both Newton-like methods presented for minimizing P(x, A; c, G!) and 
P(x, A; c, M), it may be necessary to introduce modifications in order to 
improve their global convergence properties. Such modifications together 
with quasi-Newton versions are given in Section 4.5.2. 

Finally consider the function p(x; c). We have, from (29), 

If (x*, A*) is a K-T pair and Vh(x*) has rank m, then A* = A(x*) and, by 
differentiating VP at x* and using the facts V,L(x*, A*) = 0 and h(x*) = 0, 
we obtain 

Thus we may consider a Newton-like method of the form 

where xk is a stepsize parameter and d, is obtained by solving the system of 
equations 

H k d k  = -vP(xk; c), 
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Again it may be necessary to introduce modifications similar to those for 
Newton's method (compare with Section 1.3.3) in order to improve the 
global convergence properties of the method. Additional Newton-like 
methods and quasi-Newton versions for minimizing the penalty function 
will be analyzed in Section 4.5.2. 

Choice of the Penalty Parameter 

For each of the exact penalty methods examined so far, the penalty 
parameter c must be chosen sufficiently high, for otherwise the method 
breaks down. We can gain some insight regarding the proper range of values 
for c by considering a problem with quadratic objective function and linear 
constraints 

(50) minimize f (x) = 4x'Hx 

subject to N'x = 0, 

where we assume that f (x) > 0 for all x # 0 with N'x = 0, and that N has 
rank m. (This corresponds to the case where the K-T pair {x* = 0, II* = 0) 
satisfies the second-order sufficiency conditions for optimality.) Consider 
first the function 

(51) p(x; c) = 4x'Hx + /Z(x)'Nfx + i c  1 N'x 12, 

where 

/Z(X) = - (N'N)- 'N'Hx. 

Appropriate values of c are those for which the Hessian v2F is positive 
definite. We have 

(52) v2P = V2$(x) + cNN', 

where 

$(x) = L[x, L(x)] = 3x'Hx + L(x)'N'x. 

By differentiation of $, we obtain 

V2$ = H - HN(NIN)-'N' - N(NIN)-'N'H. 

Denote 

(53) E = N(NrN)-IN', E = I - E. 
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Then a straightforward calculation yields 

(54) V2$ = H - H E  - EH = EHE - EHE.  

The matrices ,!? and E are projection matrices for the subspaces 

W = { x  1 N ' x  = 0)  

and its orthogonal complement 

respectively. By this, we mean that any vector x E Rn can be written as 

x = E x  + Ex ,  

and E x  is the orthogonal projection of x on W, while E x  is the orthogonal 
projection of x on V1. Furthermore, we have 

From (54), ( 5 9 ,  and (56), we obtain 

Thus we find that V2$ has the same curvature as H on the subspace %? (the 
constraint set), and the opposite curvature of H on the subspace V1 (the 
subspace orthogonal to the constraint set). 

Returning to (52), we see that the term cNN'  cannot influence the curva- 
ture of V 2 P  along W. Its purpose is to counteract the possibly negative 
curvature of V2$ along or equivalently the possibly positive ( I )  curvature 
of H along Wi. More precisely, from (53), we have EN = N ,  so using (52) 
and (54), we can write 

It follows that v2P is positive definite if and only if 

(57) z'Hz > 0 V z # O ,  Z E V  

cz 'NN'z  > z'Hz V z  # 0, z E W'. 

By assumption, we have that (57) holds. Thus we obtain 
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It follows that if H is negative semide$nite on the subspace V' any positive 
calue of c is suitable for use in the exact penalty function. Otherwise there is a 
lower bound 2 > 0 that suitable calues of' c must exceed. This implies in 
particular that for concex programming problems we can expect that high 
values of c may be necessary. The preceding observations show that there is a 
striking diflerence between the roles of the penalty parameter c in the method 
of multipliers and in the exact penalty methods of this section. In the method 
of multipliers, the threshold value for c increases as the curvature of the objec- 
tice along %?' becomes smaller, while the exact opposite is true for the exact 
penalty methods of this section. This may be viewed as a fundamental difference 
between the two types of methods. 

Consider next the penalty function 

P(x,  A; c, M )  = $xlHx + 2 N ' x  + $c 1 N'x  l 2  + 3 I M ( H x  + NA) j 2 ,  

where M is a p x n matrix with m I p I n and such that M N  has rank m. 
We are interested in conditions on c and M that guarantee that V 2 P  is 
positive definite. Consider the function 

F ( x ;  c, M )  = min P(x, R ;  c, M).  
I 

Since P is positive definite quadratic in A for every x, the minimization 
above can be carried out explicitly and the minimizing vector is given by 

Substitution in the expression for P yields 

P ( x ;  c, M) = $xl[H + H M ' M H  + cNN' 

- ( N  + H M ' M N ) ( N ' M f M N ) - ' ( N '  + N f M ' M H ) ] x .  

It can be easily verified that V 2 P  is positive definite if and only if 

Consider the matrices 

A straightforward calculation shows that P" may also be written as 

The matrix [I - M N ( N 1 M ' M N ) - ' N ' M ' ]  is a projection matrix and is 
therefore positive semidefinite. Hence the second term in the right-hand 
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side in the previous equation is nonnegative, and it follows that in order that 
v2P"(x; c, M )  > 0 it is sufficient that 

Consider the subspace 
% = { x l N ' x  = 0) .  

For any x E Rn, we have, using (58), 

N ' E M x  = N'x ,  Nr,!?,x = N f ( I  - E,)X = 0. 

Hence 

(60) E,XEV V X E R " .  

We have also 
N'x  = N'Ex,  

where E is given by (53). In view of (58), this implies 

By using the above two equations, we can write (59) as 

In view of the fact that E,x E V [compare with (60)] and the hypothesis 
z'Hz > 0 V z # 0 with z  E W, the first term in the previous relation is non- 
negative. Hence, the relation will hold if and only if 

z ' [Eh HE,  + N ( N 1 M ' M N ) -  ' N f ] z  
(61) c  > max 

z 'NN'z 

This in turn implies that the matrix V 2 P  will be positive definite if c satisfies 
(61). 

Consider now the case M = 41, for which we have P(x,  A; c, M )  = 

P(x,  I I ;  c, r) .  Since every vector z  E W1 can be represented as z  = N<, where 
5 E Rm, and EM = N(AT 'N) - 'N ' ,  relation (61) is easily shown to be equivalent 
to 

C X ( N ' N ) ~  - rN 'HN - N'N > 0, 

or by right and left multiplication with ( N ' N ) - ' ,  

(62) cal - ~ ( N ' N ) -  ' ( N ' H N ) ( N ' N ) -  - (N'N)- '  > 0. 

This relation suggests rules for selection of the parameters c and r .  Given 
a, one should select c sufficiently large so that (62) holds. If the value of a is 
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not sufficiently small to the extent that unconstrained minimization yields 
critical points of P which are not local minima of (ECP), then c i  must be 
reduced but this reduction must be accompanied by a corresponding increase 
of c so that (62) holds. A good rule of thumb is therefore to increase c so as to 
keep the product ca roughly constant. 

Automatic Adjustment of the Penalty Parameter 

Since a proper range of values of the penalty parameter may be unknown 
in a practical situation, it may be useful to provide for a scheme that auto- 
matically increases c if the results of the computation indicate that the value 
currently used is inadequate. We provide an informal discussion of such 
schemes. 

Consider first the penalty function P(x,  A ;  c, M).  One possibility for 
automatic penalty adjustment is based on the idea that if the penalty param- 
eter were increased only finitely often, say to a maximum value c, then the 
unconstrained minimization algorithm will normally converge to a critical 
point (2,;) of P(.,  . ; ?, M).  Thus we would have 

(63) lim VP(x, ,  A,; c,, M )  = VP(F, 3 ;  2, M )  = 0. 
k -  w 

Now if we had h(2) = 0, it can be seen from (15) that (63) implies V ,  L(F,?) = 
0 so that (2 , ; )  is a K-T pair. If h(2) f 0, then, for k sufficiently large and any 
positive scalar y, we would have 

where F is any continuous function such that F = 0 when V P  = 0. Thus 
when (64) holds, it provides us with an indication that the current value c, 
is inadequate and should be increased. 

Thus we are led to a scheme whereby at each iteration k we perform an 
iteration of an unconstrained algorithm for minimizing P( . ,  . ; c k ,  M )  to obtain 
(x,, ,, A,, ,). W e  then check to see if (64) is satisfied. I f  so we increase c, to 
c,, , = PC,, where p > 1 is a fixed scalar factor. Otherwise we set c,, , = c, 
and continue. 

In order for such a scheme to have a good chance of success it is necessary 
to show that, under normal conditions, if c, becomes large enough then 
(64) will not hold so that c, will normally be increased finitely often. This 
can be guaranteed if M(x )Vh(x )  is an m x m norzsing~ilar matrix in the 
region of interest X* = { x  1 V h ( x )  has rank m) .  We choose 

P 

(65) F = MV,P - V:, LM' + 1 VmiV,  Lei 
i =  1 
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The motivation for this complicated formula will become apparent later 
where it will be seen that in special cases it leads to a simple test [compare 
with (66)l. We have, using (15a) and (15b), 

MV, L = (VhlM')- '(V), P - h), 

from which we obtain 

It is clear that, given any y > 0 and any compact subset X x A c X* x Rm, 
there exists a E > 0 such that 

So if ((x,, A,)) remains within a bounded subset of X* x Rm, inequality (64) 
will never be satisfied if c, increases beyond a certain level. 

To summarize, if the algorithm with the automatic penalty adjustment 
scheme just described is used to generate a sequence {(x,, A,, c,)) there are 
only two possibilities: 

(a) There is no compact subset of X* x Rm containing the sequence 
{ ( ~ k ,  2,)). 

(b) The sequence {(x,, A,)) belongs to a compact subset of X* x Rm 
in which case c, is constant for k sufficiently large. If the unconstrained 
algorithm used to minimize P(., . ; c, M) has the property that, for every 
c > 0, all limit points of sequences it generates are critical points of P(.,  .; 
c, M), then all limit points of {(x,, A,)) are K-T pairs of (ECP). 

We can similarly construct a penalty adjustment scheme for the penalty 
function P. Since [compare with (24), (27), (28), and (31)] 

p(x; c) = min P(x, A; c + I, M) = P[x, $x); c + 1, MI, 
2 

where 
&x) = - h(x) - [Vh(x)'Vh(x)] - 'Vh(x)Vf (x), 

any unconstrained algorithm for minimizing p ( .  ; c) may be viewed as an 
unconstrained algorithm for minimizing P(., . ; c + 1, M). We are thus 
reduced to the case examined earlier. This leads to the test [compare with 
(641 

lF(x!,-1, ) " k - l : c k  + l>AM)l < ?lh(x!,-1)l> 
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where F is given by (65) and 

A k + l  = & k + l ) .  

Since [compare with (35) and (36)] 

V ; , P ( X ~ + ~ , & ~ I ;  Ck + 1, M )  = 0, 

V,P(x,+1, & + I ;  ck + 1, M )  = V&,+1; c,), 
the test above can also be written as 

(66) I M ( X ~ + ~ ) V & ~ + ~ ; ~ ~ ) I  < Y I ~ ( X ~ + ~ ) I .  

Whenever the relation above holds, we increase ck by multiplying it with 
a scalar > 1. Similar statements regarding convergence can be made as for 
the scheme given earlier in connection with the exact penalty function 
P(x, A; c, M).  

Extensions to Inequality Constraints 

Some of the preceding results and algorithms admit straightforward 
extensions for problems involving inequality constraints. This can be done 
by converting inequality constraints to equality constraints. Consider the 
equality constrained problem 

(67) minimize f ( x )  

subject to gj(x)  + zj2 = 0, j = 1, . . . , I', 

obtained from (ICP) by introducing the additional variables z j ,  j = 1 ,  . . . , I'. 
Consider also the corresponding exact penalty function 

I 

(68) P(x, z, p ; c, n) = f ( x )  + C { yj[gj(x)  + z:] + +c[gj(x) + zj2I2) 
j =  1 

r 

+ $a 1 V ,L(x,  p) l 2  + 2a C z jp j ,  
j =  1 

where 

Minimization of P with respect to ( x ,  z ,  p) can be carried out by mini- 
mizing first with respect to z and by subsequently minimizing the resulting 
function with respect to ( x ,  p). A straightforward calculation yields 

A 
(69) P+(x,  y ;  c, 3) = min P(x, z, y ;  c, a )  = f ( x )  + 3c( I V ,  L(x ,  p) l 2  
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with the minimum attained at 

Thus minimization of P can be carried out by minimizing instead the function 
P f  of (69) which does not involve the additional variables z j .  

If instead of the penalty function (68), we use the penalty function 

where z > 0, then we can similarly eliminate z and obtain the penalty function 

(70) P:(x, p; c, a) 4 min P,(x, z, p; c, sr) = f ( x )  + 3% I V,L(x, p) I 2  
z 

1 + 
2(c + 2 1 ~ 1 ~ )  

The minimum is attained at 

pj + 2apY 
zZ(x, p; c, x) = max 0, - 

c + rip12 - gj(x)). 

A similar procedure can be used for the penalty function P,(x, z, p; c, M).  
In connection with problem (67), let us choose 

where q is a positive scalar, R ( x )  is a continuous r x n matrix, and Z is the 
diagonal matrix 

we have 
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Again minimization of P with respect to (x, z, p) can be carried out by 
minimizing first with respect to z and by subsequently minimizing the result- 
ing function with respect to (x, p). It is straightforward to verify that 

(71) P:(x, p; c, M) min PJx, z, p; c, M) 
Z 

where mj(x)' is the jth row of the matrix R(x)  (see also DiPillo and Grippo, 
1979b). 

Unfortunately, when the penalty function p(x, z; c )  is used in con- 
junction with problem (67), it does not seem possible to eliminate the addi- 
tional variables zj. However, Glad and Polak (1979) have been able to 
construct an exact penalty function analogous to for problem (ICP) that 
does not employ additional variables. The same reference gives a correspond- 
ing superlinearly convergent algorithm under an assumption that is some- 
what stronger than Assumption (S'). 

Newton-like algorithms for minimizing the penalty functions P:(., .; c, a) 
and P:(., .; c, R) will be given in Section 4.5.2. 

Extensions to Nonnegativity Constraints 

When the only inequality constraints are nonnegativity constraints on 
the variables, it may be worthwhile to consider an alternative approach. 
Consider the problem 

(ECP) + minimize f (x) 

subject to h(x) = 0, x 2 0, 

where f :  Rn + R and h:  Rn -+ Rm. An equivalent problem is obtained by 
making the change of variables 

where xi,  i = 1, .  . . , n are the coordinates of x. The problem is then trans- 
formed into 

(ECP)? minimize P(z) 

subject to h(z)  = 0; 

where 
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and 
2 f ( z ) =  f(z:, . . . ,  z,'), &(z)=h(z :  ,... ,z,). 

It is easily seen that 

v.(z) + V&(Z)A = ZCVf (z:, . . . , z,') + Vh(z:, . . . , z,2)A], 

where 

Consider the expression for the penalty function P,(z, A; c, cr) for problem 
(ECP);. Based on the relation above we find that the variables z,, . . . , z, enter 
in this expression exclusively in squared form so that by using the substitution 
xi = z; it is possible to write this expression in terms ofthe variables xi .  It takes 
the form 

p,(x, A; c, x )  = L(x, A) + iVL(x ,  A)'K(x, c, u)VL(x, A), 

where 

L(x, A) = f ( x )  + A'h(x), 

Thus the unconstrained minimization problem 

minimize P,(z, A; c, a )  

subject to z E Rn, A E Rm, 

is equivalent to the (simply) constrained problem 

minimize P,(x, A; c, a) 

subject to x 2 0, A E Rm. 

By solving this latter problem for suitable values of c and a, we can, based on 
the theory of this section, reasonably hope to obtain a solution of (ECP); and 
hence also of (ECP)'. A similar approach can be developed by using in 
connection with (ECP)' the penalty function P,(z, A; M, c) with 
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4.4 Lagrangian MethodsLocal Convergence 

The methods to be examined in this section may be viewed as methods for 
solving the system of nonlinear equations (and possibly inequalities) that 
represent the necessary conditions for optimality of the constrained minimiza- 
tion problem. Thus the necessary conditions for optimality of (ECP) 

(1) Vf (x) + Vh(x);l = 0, h(x) = 0, 

are viewed as a system of (n + m) nonlinear equations with (n + m) un- 
knowns-the vectors x and A. 

We can view system (1) as a special case of the general system 

(2) F(z) = 0, 

where F :  RP + RP and p is a positive integer. A general class of methods for 
solving system (2) is given by 

(3) zk f l=G(zk ) ,  k = O , l  ,..., 
where G: RP + RP is some continuous function. If {z,) generated by (3) 
converges to a vector z*, then by continuity of G, we must have z* = G(z*), so 
G must be chosen so that its fixed points are solutions of (2). General tools 
for showing convergence of iteration (3) are various fixed point theorems of 
the contraction mapping type. We give one such theorem that is often quite 
useful. Its proof may be easily deduced from the analysis in Ortega and 
Rheinboldt (1970, p. 300). We first introduce the following definition: 

Definition: A vector z* E RP is said to be a point of attraction of iteration 
(3) if there exists an open set S such that if z, E S then the sequence {z,) 
generated by (3) belongs to S and converges to z*. 

Ostrowski's Theorem: Assume that G : RP + RP has a fixed point z*, and 
that G E C' on an open set containing z*. Assume further that all eigenvalues 
of VG(z*)' lie strictly within the unit circle of the complex plane. Then z* is a 
point of attraction of iteration (3), and if the sequence {z,) generated by (3) 
converges to z*, the rate of convergence of { 1 z, - z* 1 ) is at least linear. 

In what follows in this section, we consider various Lagrangian methods 
starting with a first-order method which does not require second derivatives. 
We then examine Newton-like methods and their quasi-Newton versions. 
Throughout this section, we focus on local convergence properties, i.e., 
questions of convergence and rate of convergence from a starting point 
that is sufficiently close to a solution. Our presentation, however, is geared 
towards preparing the ground for the developments of Section 4.5 where 
modifications of Lagrangian methods will be introduced with the purpose of 
improving their global convergence properties. 
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4.4.1 First-Order Methods 

The simplest of all Lagrangian methods for the equality constrained 
problem 

(ECP) minimize f ( x )  

subject to h(x) = 0 

is given by 

where L is the Lagrangian function 

L(x, A) = f ( x )  + A'h(x) 

and a > 0 is a scalar stepsize. We have the following result: 

Proposition 4.23: Let (x*, A*) be a K-T pair of (ECP) such that f ,  h E C2 
in an open set containing x*. Assume that the matrix Vh(x*) has rank m 
and the matrix V:,L(x*, A*) is positive definite. There exists E > 0, such 
that for all cc E ( O , ] ,  (x*, A*) is a point of attraction of iteration (4), (5 ) ,  and 
if the sequence {(x,, A,)) generated by (4), (5) converges to (x*, i*), then the 
rate of convergence of { 1 (x,, A,) - (x*, A*) I ) is at least linear. 

Proof: The proof consists of showing that, for a sufficiently small, the 
hypothesis of Ostrowski's theorem is satisfied. Indeed for a > 0, consider the 
mapping G,: R" +" + Rn +" defined by 

[ 
x - av ,  L(x, A) 

G,(x, 4 = A + xV, L(x, I I )  1. 
Clearly (x*, A*) is a fixed point of G,, and we have 

(6) VG,(x*, A*)' = I - a 
where 

V:, L(x*, A*) Vh(x*) 
B = [  - Vh(x*)' 

0 .  I 
We shall show that the real part of each eigenvalue of B is strictly positive, and 
then the result will follow from (6) by using Ostrowski's theorem. For any 
complex vector y,  denote by ,C its complex conjugate, and for any complex 
number q ,  denote by Re(y) its real part. Let P be an eigenvalue of B, and let 
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(z, w) # (0, 0) be a corresponding eigenvector where z and w are complex 
vectors of dimension n and rn, respectively. We have 

while at the same time, using (7), 

Since we have for any real n x m matrix M 

Re{P1M'w) 

it follows from (8) and (9) that 

(10) Re{llV:, L(x*, ll*)z) = Re [i' { 
Since for any positive definite matrix 

Re{ilAz) > 

A we have 

0 V z f O ,  

it follows from (10) and the positive definiteness assumption on V:, ~ ( x * ,  A*) 
that either Re(P) > 0 or else z = 0. But if z = 0 the equation B[:.] = P[z,] 
yields 

Since Vh(x") has rank m it follows that w = 0. This contradicts our earlier 
assumption that ( 2 ,  w) f (0, 0). Consequently we must have Re(P) > 0. 

Q.E.Q. 

By appropriately scaling the vectors x and A, we can show that the result 
of Proposition 4.23 holds also for the more general iteration 

where D and M are any positive definite symmetric matrices of appropriate 
dimension (compare with Section 1.3.2). However the restrictive positive 
definiteness assumption on V:,L(x*, A*) is essential for the conclusion to 
hold. 

There are other first-order Lagrangian methods available in the literature. 
As an example, we mention the linearization method of Section 4.2 with a 
constant stepsize and constant matrix H ,  which can be shown to converge 
locally with a linear rate to a K-T pair satisfying Assumption ( S ' )  of Section 
3.1 provided the stepsize is sufficiently small. We sketch a proof of this fact 
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for the case of problem (ECP) and the choice H ,  I. The method takes the 
form 

X k  + , = X k  + Nx,), 
where d(x,) is the solution of the quadratic program 

minimize Vf(x,)'d + $ 1  d l 2  
subject to h(x,) + Vh(x,)'d = 0, 

and cr > 0 is a constant stepsize parameter. If Vh(x,) has rank m, the Lagrange 
multiplier for this program can be calculated to be 

and it follows from the condition Vf (x,) + vh(xk) i (xk)  + d(x,) = 0 that 

So the method takes the form 

The result of Proposition 4.26 in Section 4.4.2, together with Ostrowski's 
theorem, can be used to show that if cr is sufficiently small, this iteration con- 
verges locally with a linear rate to a local minimum x* satisfying Assumption 
(S). For a detailed analysis together with an extension of this result to the case 
of inequality constraints we refer the reader to Pschenichny and Danilin 
(1975). 

4.4.2 Newton-like Methods for Equality Constraints 

Consider the system of necessary optimality conditions for (ECP) 

( 1  1) Vf ( x )  + Vh(x)ll = 0, h(x) = 0, 

or equivalently 

(12) VL(x ,  A) = 0. 

Newton's method for solving this system is given by 

where (Ax,, All,) E Rn+" is obtained by solving the system of equations 
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We have 

where 

Thus, the system (14) takes the form 

We say that (xk+ ,, A,+ ,) is well deJined by the Newton iteration (13), (14) 
if the matrix V2L(xk, A,) is invertible. Note that at a K-T pair (x*, A*) 
satisfying the sufficiency Assumption (S) of Section 2.2, we have that 
V2L(x*, A*) is invertible (Lemma 1.27). As a result, V2L(x, A) is invertible in a 
neighborhood of (x*, A*), and within this neighborhood points generated by 
the Newton iteration are well defined. In the subsequent discussion, when 
stating various local convergence properties of the Newton iteration in con- 
nection with such a K-T pair, we implicitly restrict the iteration within a 
neighborhood where it is well defined. 

The local convergence properties of the method can be inferred from 
Proposition 1.17, and in fact we have already made use of these properties 
in Section 2.3.2 (compare with Proposition 2.8 and the subsequent analysis). 
For purposes of convenient reference, we provide the corresponding result in 
the following proposition. 

Proposition 4.24: Let x* be a strict local minimum and a regular point of 
(ECP) satisfying together with a corresponding Lagrange multiplier vector 
A* the sufficiency Assumption (S) of Section 2.2. Then (x*, i*) is a point of 
attraction of the Newton iteration (13), (14). Furthermore if {(x,, A,)) 
generated by (13), (14) converges to (x*, A*) the rate of convergence of 
( I (x,, A,) - (x*, A*) I ) is superlinear (at least order two if V2f and V2hi, 
i = 1, . . . , m, are Lipschitz continuous in an open set containing x*). 

Alternative Implementations of Newton's Method 

We first observe that ifHk is invertible and Nk has rank m we can provide a 
more explicit expression for the Newton iteration. Indeed the system (17) can 
be written 



236 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS 

By multiplying the first equation with N ;  H; ' and using the second equation, 
it follows that 

- h(xJ + N ;  H; 'NkAAk = - N;H; ' V ,  L ( x k ,  A,). 

Since N ,  has rank m, the matrix N; H;'N, is nonsingular, and we obtain 

we also have 

( N ; H i  ' N k ) - ' N ; H k  ' V x L ( x k ,  A,) = + ( N L H i  INk)-  'N6Hk1Vf  (x,), 

' .x  L(xk  + N k  = V x  L(xk, + 1) .  

Using these equations in (20) and (18), we finally obtain 

Another way to  write the same equations is based on the observation that 
for every scalar c we have, from (19), 

and substitution in (18) yields 

Thus, if ( H ,  + cN,  Nk)- '  exists, then we obtain by the same type of calcula- 
tion used to obtain (21) and (22): 

Note that for c = 0, Eqs. (23)-(25) reduce to (21) and (22). An advantage that 
(23)-(25) may offer is that the matrix H, may not be invertible while ( H ,  + 
c N k N ; )  may be invertible for some values of c. For example, if (x*,  A*) satisfy 
Assumption (S) then H, need not be invertible, while for sufficiently large c 
and (x,, 1,) sufficiently close to (x*,  A*), we have that ( H ,  + cNkN;)  is not 
only invertible but also positiue dejinite. An additional advantage offered by 
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this property is that it allows us to differentiate between local minima and local 
maxima, for if (x,, A,) is near a local maximum-Lagrange multiplier pair 
satisf4.ing the suficiency conditions for optimality, then ( H ,  + cN,N;) will not 
be positive definite for any value, of c. Note that positive definiteness of 
( H ,  + c N ,  N;) can be easily detected if the Cholesky factorization method is 
used for solving the various linear systems of equations in (23) and (25). 

A third implementation of the Newton iteration is based on the observa- 
tion that Eqs. (22) and (19) can be written as 

and are therefore the necessary optimality conditions for (Ax,, A,, ,) to be 
a K-T pair of the quadratic program 

(26) minimize V f  (x,)'Ax + iAx 'H ,  Ax 

subject to h(x,) + N ; A x  = 0. 

Thus we can obtain (Ax,, 2,. ,) by solving this problem. This implementation 
is not particularly useful for practical purposes but provides an interesting 
connection with linearization methods. This relation can be made more 
explicit by noting that the solution Ax, of (26) is unaffected if H,  is replaced by 
any matrix of the form ( H ,  + 2Nk N;), where E E R, thereby obtaining the 
program 

(27) minimize V f  (xk) 'Ax + 3Ax1(Hk + EN, N;)Ax 

subject to h(x,) + N ; A x  = 0. 

To see that problems (26) and (27) have the same solution Ax,, simply note 
that they have the same constraints while their objective functions differ by 
the constant term (1 2 )  2AxrNk N ;  Ax = (1  2 )  2 I h(xk)  1'. Near a local minimum- 
Lagrange multiplier pair (x*,  A*) satisfying Assumption (S), we have that 
( H ,  + 2NkN;)  is positive definite if 2 is sufficiently large and the quadratic 
program (27) is positive definite. We see therefore that, under these cir- 
cumstances, the Newton iteration can be viewed in effect as a special case of the 
linearization method of Section 4.2 with a constant unity stepsize, and scaling 
matrix n, = H, + EN, N6 where 2 is any scalar for which H ,  is positiue definite. 

Still another implementation of Newton's method which offers computa- 
tional advantages in certain situations will be given in Section 4.5.2. 

Descent Properties of Newton's Method 

Sincr- -AC would like to improve the global convergence properties of 
Newton's method, it is of interest to search for functions for which (x,+ , - x,) 
is a descent direction at x,. By this, we mean functions F: R" -, R such that 

FCxk + @ k +  1 - ~ k ) l  < F b k )  v (0, 4 ,  
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if x, # x* and ii is a sufficiently small positive scalar. We have already 
developed the necessary machinery for proving the following proposition. 

Proposition 4.25: Let x* be a strict local minimum of (ECP), satisfying 
together with a corresponding Lagrange multiplier vector A* the sufficiency 
assumption (S) of Section 2.2. There exists a neighborhood S of (x*, A*) such 
that if (x,, &) E S and x, # x*, then (x,+ ,, A,+ ,) is well defined by the Newton 
iteration (13), (14) and the following hold true: 

(a) For every c > 0, the vector (x,, , - x,) is a descent direction at x ,  
for the exact penalty function 

(b) The vector {(x,,, - x,), (A,,, - A,)) is a descent direction at 
(x,, A,) for the exact penalty function 

Furthermore given any scalar r > 0, there exists a 6 > 0 such that if 

[(x ,  - x*, A, - A*) I < 6, 

we have 

(c) Let M(x)  be a continuous p x 17 matrix with m I p I n and such 
that M(x*)Vh(x*) has rank m. For every x,, A, and c > 0 for which the matrix 

is positive definite, the vector {(x,+ , - x,), (A, +, - A,)) is a descent direction 
at (x,, A,) of the exact penalty function 

(d) For every c E R for which (H,  + cN,Nb) is positive definite, the 
vector (x,, , - x,) is a descent direction at x, of the augmented Lagrangian 
function LC(.,  A, + ,). 

Proof: (a) Take 2 > 0 sufficiently large and a neighborhood S of 
(x*, A*) which is sufficiently small, so that for (x,, A,)€ S, the matrix 
(H ,  + ZN, N,) is positive definite. Since Ax, is the solution of the quadratic 
program (27), it follows from Proposition 4.2 that if x, # x*, then Ax, is a 
descent direction of (28). 
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(b) We have 

and the descent property follows. 
From Proposition 4.24, we have that, given any F > 0, there exists a 6 > 0 

such that for I (xk - x*, Ak - A*) I < 8 we have 

For every (x, A), we have, by the mean value theorem, 

where each row of B is the corresponding row of V2L at a point between 
(x, A) and (x*, i*). Since V2L(x*, A*) is invertible, it follows that there is an 
8 > 0 and scalars p > 0 and M > 0 such that for I(x - x*, A - i*)I < E,  we 
have 

(34) pj(x - x*, i, - A*)) I )VL(x, A)) I M)(x  - x*, A - A*)). 

From (33) and (34), it follows that for each ? > 0 there exists 6 > 0 such that, 
for l(xk - x*, Ak - A*) 1 < 6, 

or equivalently 

Given r > 0, we take ? = (p/M),,h in the relation above, and (30) follows. 
(c) This part was shown in effect in Section 4.3.3. 
(d) From (24) and (25), we have 

and the result follows. Q.E.D. 
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Variations of Newton's Method 

A variation of Newton's method is obtained by introducing a positive 
parameter c, in the second equation so that Ax, and AA, are obtained by 
solving the system 

As c, + m, the system becomes in the limit the one corresponding to Newton's 
method. We can show that the system (35), (36) has a unique solution if either 
H;' or ( H ,  + c,N,N;)-' exists. Indeed when H L L  exists, we can write 
explicitly the solution. By multiplying (35) by N ; H L 1  and by using (36), we 
obtain 

from which 

AA, = [c; ' I  + N;  H; 'N,]  - ' [h(x,)  - N i  H,  ' V ,  L(x,, A,)] 

and 

From (35), we obtain 

Also if ( H ,  + c, N ,  N;)- I exists, by multiplying (36) with c, N ,  and adding the 
resulting equation to (35), we obtain 

(Hk + ck NkN;)Axk = - V X L ( x k ,  A,) - c k N k  h(xk),  

and finally 

where LC, is the augmented Lagrangian function. Also from (36), we obtain 

Note that the preceding analysis shows that N ,  need not have rank m in 
order for the system (35), (36) to have a unique solution, while this is not 
true for the Newton iteration. Another interesting fact that follows from (39) is 
that $(H, + c, N ,  N;) is positive definite, then (x,+ - x,) is a descent direction 
for the augmented Lagrangian function LC,(., A,). Furthermore, if the con- 
straints are linear, then (40) can be written as 
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while if in addition the objective function is quadratic and ( H ,  + c, N ,  Nb) 
is positive definite, then from (39), x,+ , is the unique minimizing point of the 
augmented Lagrangian function LC,(., A,). Hence, it follows that if the 
constraints are linear, [h(x)  = N'x - b] ,  the objective function is quadratic 
[ f ( x )  = $xlQx], and for all k ,  c, is such that (Q + c k N N 1 )  is positive dejinite, 
then the iteration (39), (40) is equivalent to thefirst-order method of multipliers 
of Section 2.2. This suggests that if c, is taken sufficiently large, then iteration 
(39), (40) should converge locally to a local minimum-Lagrange multiplier 
pair (x*,  A*) satisfying Assumption (S). Furthermore the rate of convergence 
should be superlinear if c, + co. Indeed this can be shown either directly or by 
appealing to the theory of consistent approximations (see Ortega and Rhein- 
boldt, 1970, Theorems 11.2.2 and 11.2.3). The proof is routine and is left to 
the reader. 

Another variation of Newton's method is given by 

This iteration is the same as (39), (40) except that the term h(x,+ ,) in (42) 
replaces its first-order linear approximation [h(x,) + N;(x,+, - xk)]  in 
(40). When the constraints are linear, the two iterations are identical. It is 
possible to show that, if c, is constant but sufficiently large, iteration (41), (42) 
converges locally to a K-T pair satisfying Assumption (S) at a linear rate. 
Since this iteration seems less interesting than (39), (40), as well as the itera- 
tions (43), (44) and ( 4 9 ,  (46) that follow, we omit the proof. 

Two more variations of Newton's method are obtained by replacing 
( H ,  + c, N ,  Nb) in (39) or (41) by V;, Lck(xk ,  A,), thereby obtaining the itera- 
tions 

(43) X k  + 1 = X k  - [V:x 2 - l V x  Lck(xk 2 

(44) Ak + 1 = 4 + c,Ch(x,) + Nxxk + 1 - x,)I 
and 

(45) X k  i 1 = X k  - Lcr(xk 2 lk)]  - lVxLck(xk 3 

(46) J*k+l  = A k  + ~ k h ( ~ k + l ) .  
Since 

m 

V:, Lck(xk ,  A,) - ( H k  + ck Nk Nb) = ck 2 hi(xk)V2hi(xi): 
i =  1 

we see that if c, is chosen in a way that ckh(xk) + 0, then iteration (43), (44) 
becomes asymptotically identical with (39), (40) while (45), (46) becomes 
asymptotically identical with (41), (42). The condition c,h(x,) + 0 can be 
enforced in a practical algorithm by means of a test on the magnitude of 
I h(x,) I which allows c, to be increased by a factor P > 1 only if I h(x,) I has been 
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decreased by a factor y > /? over the previous time c, was changed. Another 
simple way to enforce the condition c, h(xk) + 0 is to keep c, constant 

c , = c  Q k = O , l ,  . . . .  
Under these circumstances, if c is chosen sufficiently large, both iterations (43), 
(44) and (45), (46) can be shown to converge locally to a K-T pair (x*, A*) 
satisfying Assumption (S) at a linear rate. We show this fact for iteration (45), 
(46). The proof for iteration (43), (44) is similar and will be omitted. 

Let c > 0 be such that 

Vf,L,(x*, I*)  > 0. 

For (x,, A,) sufficiently near a K-T pair (x*, A*) satisfying Assumption (S) so 
that V:, Lc(xk, ,Ik) is nonsingular and Vh(xk) has rank m, consider the iteration 

X k  + l = X k  - CV;.x Lc(xk, Ak) l  - lVx  L c ( ~ k ,  I&), 

A k + l  = Ak +- f h ( ~ k + l ) .  

We have, by the mean value theorem, 

VxLc(xk, I,) = RF(xk - x*) + Nk(& - A*), 
where each row of R,(Nk) equals the corresponding row of V:, LC (Vh) 
evaluated at a point lying between (x,, 2,) and (x*, A*). Similarly, we have 

h ( ~ k + l )  = m x k + l  - x*), 
where each row of q equals the corresponding row of Vh' evaluated at a 
point between x k + ,  and x*. By combining the relations above we obtain 

where the matrices A,, Bk,  C,,  and D, are given by 

A, = I - Vf,L,(x,, 2,)-'R,, 

B k  = - V;,L,(xk, 4 -  Nk, 
Ck = &LA,, 

Dk = I - V f ,  Lc(xk, ?.k)- Nk  . 
For any E > 0 such that V;,L,(x*, A*) > 0, we have, by using the matrix 
identity of Section 1.2, 

V;, L,(x*, A*)-'Vh(x*) 

= [V:,L,(x*, I*)  + (c - E)Vh(x*)Vh(x*)']-'Vh(x*) 
= V:, LAX*, I*)- 'Vh(x*) 

x { I  - [I/(c - 2.) + Vh(x*)'V:,LXx*, A*)-'Vh(x*)]-' 

x Vh(x*)'V:, L,(x*, A*)- 'Vh(x*)). 
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Hence 
lim V:, Lc(x*, A*)- 'Vh(x*) = 0. 
c- m 

We also have, from Eq. (32) of Section 2.2.3, 

lim [I - cVh(x*)'V?, Lc(x*, A*)-'Vh(x*)] = 0. 
c- m 

By using these relations, it is easy to see that given any E > 0 there exists a 
?(E) > 0 such that for every c 2 E(E) there is a neighborhood N(c, E) of (x*, A*) 
within which I A, 1 < E, I B, 1 < E, I C, I < E, and 1 D, I < E.  Hence, given any 
r > 0, there exists a ?(r) > 0 such that for every c 2 ?(r) there is a neighbor- 
hood of (x*, A*) within which there holds 

I(X,+~ - x * , I ~ + ~  - l*)I rI(xk - x*, /Zk - A*)[. 

It follows that if c is sufficiently large then (x*, A*) is a point of attraction of 
iteration (45), (46). The convergence rate is at least linear with a convergence 
ratio that can be made arbitrarily small by choosing c sufficiently large. 

Newton's Method in the Space of Primal Variables 

As indicated by Proposition 4.24, it is necessary to have a good initial 
choice for both x and A in order to ensure convergence of the Newton itera- 
tion. If however a good initial choice xo is available, then it is possible to 
obtain a good initial choice A, from 

A, = X(xo), 

where the function 2 is given for all x in the set 

(47) X* = {x I Vh(x) has rank m )  

by 

(48) A(x) = [Vh(x)'Vh(x)] - '[h(x) - Vh(x)'Vf (x)] V x E X*. 

Indeed for any K-T pair (x*, A*) such that x* EX*, we have shown (Proposi- 
tion 4.22) that X(x*) = A*. Since I(.) is a continuous function on X*, it follows 
that J(xo) is near A* if xo is near x*. This leads to a Newton-like iteration 
whereby (x,+ ,, A,+ ,) are obtained by solving the system 

This system can also be written as 
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We derive now an explicit formula for x,+ ,. From (51), we have 

(52) W x , )  [Vh(x,)'Vh(x,)l- 'Vh(x,)'(x,+ 1 - x,) 

= - Vh(x,)[Vh(xk)'Vh(xk)] - 'h(x,), 

while from (50), we obtain 

By adding (50), (52), and (53) and by making use of (48), we obtain 

(54) {E(x,) + [I - E(xk)IV:,LCxk, &,)l)(x,+1 - x,) = -V,LCx,, &,)I, 

where E is defined by 

We shall demonstrate shortly that the inverse above indeed exists for x ,  
sufficiently close to a local minimum x* satisfying Assumption (S) (Proposi- 
tion 4 .26~) .  W e  have thus obtained a Newton-like method bvhich can be carried 
out in the space ofpriinal rariables x without any reference to the dual aari- 
ables 3,. 

We can develop iteration (56) by starting from a different viewpoint. 
Consider for x E X* the equation 

The following proposition shows that K-T pairs of (ECP)  can be obtained by 
solving this equation. 

Proposition 4.26: Let x* E X* and assume f, h E C2 in a neighborhood of 
x*. Then: 

(a )  (x* ,  A*) is a K-T pair of (ECP)  if and only if x* is a solution of Eq. 
(57) and A* = K(x*). 

(b) If x* is a solution of Eq. (57), then the Jacobian matrix (with respect 
to x )  of V,L[x ,  i ( x ) ]  evaluated at x* is given by 

(c) If x* is a local minimum of (ECP)  which together with A* = ;(x*) 
satisfies Assumption (S) of Section 2.2, then the matrix (58) is nonsingular. 
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More specifically this matrix has m eigenvalues equal to one and its remaining 
(n - m) eigenvalues are equal to the (n - m) positive eigenvalues y , , . . . , y,-, 
of the matrix 

(59) [I - E(x*)]V:,L(x*, A*) [I - E(x*)]. 

(Note: It will be shown as part of the proof that the matrix (59) has exactly 
(n - m) positive eigenvalues and a zero eigenvalue of multiplicity m.) 

Proof: (a) If (x*, A*) is a K-T pair then the equation Vf (x* )  + 
Vh(x*)A* = 0 yields 

Vh(x*)'Vf (x*)  + Vh(x*)'Vh(x*)A* = 0 
from which 

A* = - [Vh(x*)'Vh(x*)] -'Vh(x*)'Vf (x*). 

Using (48) and the fact that h(x*) = 0, we obtain A* = a(x*). Hence, 0 = 
Vf (x*)  + ~ h ( x * ) l ( x * )  = V ,  L[x*, %(x*)], and it follows that x* is a solution 
of Eq. (57). 

Conversely let x* be a solution of Eq. (57); i.e., 

From (48), we obtain 

(61) h(x*) = vh(x*)'vf (x*) + v ~ ( x * ) ~ v ~ ( x * ) ; ~ ( x * )  
= Vh(x*)'V, L[x*, l (x*)] .  

By combining (60) and (61) and writing A* = a(x*), we obtain 

V ,  L(x*, A*) = 0, h(x*) = 0: 

showing that (x*, A*) is a K-T pair for (ECP). 
(b) Denote, for x E X*, 

(62) p(x) = v, L[x ,  L(x)]. 

By differentiation, we obtain 

(63) vp(x) '  = V% L[X,  X ( X ) ]  + v ~ ( x ) v X ( X ) ~  
From ( 5 9 ,  it follows that, for x E X * ,  

(64) [I - E(x)]Vh(x) = 0. 

By applying [I - E(x)] to both sides of (63) and using (64), we obtain 

(65) [ I  - E(x)]Vp(x)' = [I - E(X)]V?, ~ [ x ,  %(x)]  V x E X*. 

Also from (48), we have Vh(.x)'V, L[x ,  ;(x)] = h(x)  or, equivalently, 
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By differentiating and by taking into account the fact that p(x*) = 0, we 
obtain 

Multiplying with Vh(x*) [Vh(x*)'Vh(x*)]- ' and using (55), we obtain 

(66) E(x*)Vp(x*)' = E(x*). 

By combining (65) and (66), it follows that 

which, in view of (62), is identical to (58). 
(c) Let y be an eigenvalue of the matrix (58) and let y # 0 be a corre- 

sponding eigenvector. We have 

By using the relation 

and by multiplying (67) in turn by E(x*) and [I - E(x*)],  we obtain 

(69) E(x*)y = yE(x*)y, 

(70) [ I  - E(x* ) ]v~ ,  L(x*, ;l*)y = ?[I  - E(x*)]y. 

There are two possibilities: 

(i) E(x*)y # 0. Then it follows from (69) that y = 1. 
(ii) E(x*)y = 0. In this case, [I - E(x*)]y = y, and (70) yields 

(71) [I - E(x*)]V;,L(x*, A*)[I - E(x*)]y = yy; 

i.e., y is an eigenvalue of the matrix (59) and y is a corresponding eigenvector. 
Since matrix (59) is symmetric, both y and y are real. Hence from (71), we also 
obtain 

Y'[ I  - E(x*)]v,Z,L(X*, A*)[I  - E ( x * ) ] ~  = ylyI2, 

from which, using the fact that E(x*)y = 0, it follows that 

By using (55), the equation E(x*)y = 0 is written 

and by multiplying with Vh(x*)', we obtain 

Vh(x*)'y = 0. 
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By using Assumption (S) and the fact that y # 0, we obtain 

ylv:, L(x*, A*)y > 0. 

In view of (72), this implies that 
y > 0. 

Conversely, if 7 j #  0 is an eigenvalue of matrix (59) and J # 0 is the cor- 
responding eigenvector, then both 7 and J are real since this matrix is sym- 
metric. We have 

(73) [I - E(x*)]Vf, L(x*, A*) [I - E(x*)]~  = Tj 

and by multiplying with E(x*) and using the fact that E(x*) [I - E(x*)] = 0, 
we obtain 0 = ?E(x*)j or 

(74) E(x*)j = 0. 

Combining (73) and (74), we obtain 

Hence, 7 is also an eigenvalue of matrix (58), and 7 is a corresponding eigen- 
vector. This together with (74) and the facts already proved also imply that 
7 > 0. 

Summarizing, we have shown up to this point that each nonzero eigen- 
value of matrix (59) is positive and is also an eigenvalue of matrix (58), and 
all the remaining eigenvalues of matrix (58) equal unity. The proposition will 
be proved if we can show that matrix (59) has a zero eigenvalue of multiplicity 
exactly m. It can be easily seen, using Assumption (S), that the nullspace of 
matrix (59) is the m-dimensional subspace {z 1 [I - E(x*)]z = 0). For sym- 
metric matrices the multiplicity of the zero eigenvalue is equal to the dimen- 
sion of the nullspace and the result follows. Q.E.D. 

It can now be seen that iteration (56) is a Newton-like method for solving 
Eq. (57), where the Jacobian of V,L[x, X(x)] is replaced by the matrix 

Since at a solution these two matrices are equal by essentially repeating the 
proof of Proposition 1.17 (compare also with the proof of Proposition 4.25b), 
we obtain the following result: 

Proposition 4.27: Let x* be a local minimum of (ECP) satisfying, to- 
gether with A* = ;(x*), Assumption (S) of Section 2.2. Then: 

(a) x* is a point of attraction of iteration (56), and if a sequence {x,) 
generated by (56) converges to x*, the rate of convergence of { I x, - x* I ) is 
superlinear. 
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(b) Given any scalar r > 0, there exists a 6 > 0 such that if I x, - x* I < 6 
then 

It is worth mentioning that for x, E X* we can obtain both ;(x,) and 
V, L[x,, I(x,)] by solving the quadratic program 

minimize Vf (x,)'d + 4 1 d l 2  
subject to h(x,) + Vh(x,)'d = 0. 

Indeed the K-T conditions for this program are Vf (x,) + Vh(x,)A + d = 0 
and h(x,) + Vh(x,)'d = 0, and it can be easily seen that the (unique) Lagrange 
multiplier vector of this program is j(x), while the unique optimal solution is 

4.4.3 Newton-like Methods for Inequality Constraints 

There are two main approaches for developing Newton-like methods for 
problems with inequality constraints. In the first approach, inequality con- 
straints are treated by separating them explicitly or implicitly into two groups. 
In the first group are those that are predicted to be active at a solution and 
these are treated essentially as equality constraints. In the second group are 
those that are predicted to be inactive at a solution, and these are essentially 
ignored. This will be referred to as the active set approach. In the second 
approach inequality constraints are treated directly. Since all the methods of 
this type that we shall consider involve the solution of quadratic programming 
subproblems, we refer to this approach as the quadratic programming 
approach. 

For simplicity we restrict attention to the problem 

( Icp)  minimize f (x) 

subject to g(x) I 0. 

The methods to be described can be extended to handle additional equality 
constraints in a manner that should be obvious to the reader in light of the 
developments so far in this chapter. 

Acthe Set Approaches 

The first active set approach to be examined is based on a transformation 
by means of which the K-T conditions for (ICP) are converted into a system 
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of nonlinear equations. For a fixed scalar c > 0, consider the open set 
S,* c Rn x Rr defined by 

and the system of equations on S,* 

Note that gf  is differentiable on S: as many times as g, so the system (77), 
(78) is well defined. We remind the reader that g+ appears in the definition of 
the augmented Lagrangian function for (ICP) which takes the form 

LAX, p) = f (x) + p'g + (x, p, c) + 3c Is + (x, p, c) l 2  
[compare with Section 3.1, Eq. (9)]. 

The following proposition establishes the validity and relevance of 
Newton's method for solving the system (77), (78). 

Proposition 4.28: Let c > 0 be a scalar. 

(a) A pair (x*, p*) belongs to S: and is a solution of the system (77), (78) 
if and only if (x*, p*) is a K-T pair of (ICP) satisfying the strict comple- 
mentarity condition 

(b) If (x*, p*) is a K-T pair of (ICP) satisfying Assumption (S') of 
Section 3.1, then (x*, p*) is a point of attraction of Newton's method for 
solving the system (77), (78). If {(x,, p,)) generated by Newton's method 
converges to (x*. p*), then the rate of convergence of { / (x,, p,) - (x*, p*) I ) 
is superlinear (of order at least two if V'f and V 2 g j ,  j = 1, . . . , I., are Lipschitz 
continuous in a neighborhood of x*). 

Proof: (a) Assume that (x*, p*) belongs to ST and is a solution of the 
system (77), (78). Since gf  (x*, p*, c) = 0, it follows in view of (79), (80) that 



250 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS 

In view of these relations, the equation Vf (x*) + V,g+(x*, p*, cjp* = 0 can 
be written as 

Vf (x*)  + Vg(x*)p* = 0. 

Hence all the K-T conditions, as well as the strict complementarity condition 
( 8 1 ) ,  are satisfied by (x*, p*). The proof of the converse is straightforward 
and is left for the reader. 

(b) There is a neighborhood of (x*, p*) such that gj(x) > -pj/c if 
gj(x*) = 0 and gj(x) < -pj/c if gj(x*) < 0 for all ( x ,  p) in this neighborhood. 
Within this neighborhood, the functions appearing in the system (77), (78) are 
continuously differentiable and Proposition 4.24 applies. Q.E.D. 

Consider now the implementation of Newton's method. Define, for 
(x ,  I*) E 2, 

and assume without loss of generality that Ac(x, p) = (1, . . . , p }  for some 
integer p (which depends on x and p). We may view Ac(x, p) as the active 
index set, in the sense that indices in Ac(x, p) are "predicted7' by the algorithm 
to be active at the solution. By differentiation in the system (77), (78) we find 
that Newton's method consists of the iteration 

(84) X = x + A x ,  , i i = p + A p ,  

where (Ax,  Ap) is the solution of the system 

In the equation above, N(x,  p, C )  is the n x p matrix having as columns the 
gradients Vgj(x),  j E Ac(x, p), I is the (r - p )  x (r - p )  identity matrix, and 
the zero matrices have appropriate dimension. Since we have 

gf  ( x ,  I*, c) = - pj/c V j $ Ac(x, p), 

it follows, from (84) and (85), that 

(86) ,iij = 0 V j $ AC(.y, p). 
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It also follows from (85) that the remaining variables Ax and Ayl, . . . , Ayp are 
obtained by solving the reduced system 

where we have made use of the fact that 

If we note the fact that 

(89) V X L f ( x , ~ , c ) = V f ( x ) +  1 V S ~ ( X ) P ~ ,  
j o  A&, P )  

we can see from (86), (87), and (89) that the Newton iteration can be described 
in a simple manner. W e  set the Lagrange multipliers of constraints that are not 
in the active set A,(x, y)  to zero, and treat the remaining constraints as ifthey 
are equalities. 

The second active set approach to be examined is based on the last 
Newton-like method described in the previous section. We consider the 
quadratic program 

(90) minimize Vf (x)'d + 4 1 d l 2  

and 6 > 0 is a fixed scalar. For x such that the program (90) has a feasible 
solution, let Pj(x), j E J6(x), be corresponding Lagrange multipliers and set 
Pj(x) = 0 for j # J,(x). Let the a c h e  index set be 

and assume, without loss of generality, that A(x)  contains the first p indices 
where p I r .  Define the n x p matrix X ( x )  by 

N(x )  = CVg . . . Vgp(x)l, 
and let 

E(x)  = N(x )  [N (x) 'N(x)]  - ' N(x)' 

A Newton-like method can now be defined by 

X = x + Ax, 
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where Ax is the solution of the system [compare with (56)] 

{E(x)  + [ I  - E(x)IV;,LCx, ii(x)l1Ax = - VxLCx, f ib)] .  

Again we see that this method consists of treating the constraints in the active 
set as equalities and ignoring the remaining constraints. It is relatively easy to 
show that if x* is a local minimum of (ICP) satisfying the sufficiency Assump- 
tion (S') of Section 3.1, then x* is a point of attraction of the method just 
described, and that the rate of convergence of { 1 x, - x* I ) is superlinear. We 
leave the verification of this fact as an exercise for the reader. 

As a precautionary note, we finally mention that active set approaches 
depend strongly for their success on the choice of a starting point which is 
sufficiently favorable to enable accurate identification of the constraints that 
are active at the solution. For many problems such a choice is unavailable, so 
active set approaches are typically effective only when combined with methods 
that incorporate a mechanism for enforcing convergence from poor initial 
starting points. Such combinations will be considered in Section 4.5. 

Quadratic Programming Approach 

This approach is based on a direct extension of Newton's method to 
inequality constrained problems. Given (x,, p,), we obtain (x,,,, p,,,) 
as a K-T pair of the quadratic program 

(9 1)  minimize Vf(x,)'(x - x,) -k i ( x  - x,)'V;, ~ ( x , ,  p,) ( x  - x,) 

subject to g(x,) + Vg(x,)'(x - x,) < 0. 

Note that V:, ~ ( x , ,  p,) need not be positive definite even near a K-T pair 
(x*, p*) satisfying Assumption (S') of Section 3.1. For this reason it is 
necessary to show that, at least for (x,, p,) near (x*, p*), the program (91) has 
at least one K-T pair and to further specify which of its possibly multiple 
K-T pairs will be the next iterate (x,. ,, p,+ ,) of Newton's method. This can 
be done by making use of the implicit function theorem as we now show. 

Consider the following system of (n + I . )  equations, with unknowns the 
vectors x E Rn. p E Rr, x E Rn, and ,ii E Rr, 

(92) V f  ( x )  + Vg(x),ii + V;,L(X, p)(X - x )  = 0, 

(93) ,iij[gj(x) + Vgj(x)'(F - x)]  = 0, j = 1, . . . , r. 

Note that (92) and (93) are necessary conditions for {a  = (2 - x),  8) to be 
a K-T pair of the quadratic program 

(94) minimize Vf(x)'d + qd'V;, L(x,  p)d 

subject to g(x) + Vg(x)'d I 0, 
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the remaining K-T conditions being 

(95) g(x) + Vg(x)'(X - x) 1 0, Ji 2 0. 

Let (x*, p*) be a K-T pair of (ICP) satisfying the sufficiency Assumption (S") 
of Section 3.1. Then x = x*, p = p*, X = x*, and ,L = p* is a solution of the 
system (92), (93). The Jacobian matrix of this system, with respect to (X, ,ii) 
evaluated at the solution (x*, p*, x*, p*), can be calculated to be 

In order to apply the implicit function theorem, we must show that G* is non- 
singular. Indeed if (z, w,, . . . , wr) is a vector in the nullspace of G*, then we 
have 

Let A(x*) denote the set of indices of active constraints at x* 

A(x*) = {jlgj(x*) = 0, j = 1, .  . . , r ) .  

Since (x*, p*) satisfy Assumption (Sf), we have the strict complementarity 
condition 

pT > 0 o j E A(x*), pT = 0 o j $ A(x*). 

These relations together with (98) imply that 

Multiplying (97) with z', we obtain 
r 

(100) zlv:, L(x*, p*)z = - C wjz1Vgj(x*). 
j= 1 

From the last three relations, it follows that, for all j E A(x*), 

Using Assumption ( S ' ) ,  we obtain 

(101) z = 0. 
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Therefore, using (97) and (99a) we have 

C wjVgj(x*) = 0. 
j~ A(x*) 

Since by (Sf)  the gradients Vgj(x*), j E A(x*), are linearly independent, we 
obtain 

(1 02) w j = O  v j ~ A ( x * ) .  

From (99a), (101), and (102) it follows that the only vector in the nullspace of 
G* is the zero vector. Hence G* is nonsingular. 

Now by applying the implicit function theorem to the system (92), (93), it 
follows that there exist open spheres S ,  and S ,  centered at (x*, p*) and a 
continuous function $(., .): S, + S ,  with 

such that 

q x * ,  p*) = x*, &x*, p*) = p*, 

and for all ( x ,  p) E S1, there holds 

We can take S ,  sufficiently small, so that for all ( x ,  p) E S ,  

and x(x,  p), p(x, p) is the solution of (92), (93) closest to (x*, p*) in terms of 
Euclidean distance. Observe that (103)-(106) are the K-T conditions for 
{a  = ?(x, p) - x, p(x, p)) to be a K-T pair of the quadratic program (94). 
Furthermore {a, P(x, p)) is the K-T pair of (94) which is closest to (x*, p*) 
in terms of Euclidean distance. 

We are now in a position to define the iteration of Newton's method for 
(ICP). For (x , ,  p,) in the open sphere S ,  specified above via the implicit 
function theorem, the iteration consists of 

( lo7)  X k  + 1 = X(xk, ~ k ) ,  p k  + 1 = p ( ~ k ,  ~ k ) ,  

where [X(x,, pk), ,E(xk, I*,)] is the K-T pair of the quadratic program (91) which 
is closest to (x*, p*) in terms of Euclidean distance. 
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Note that from (104)-(106), we have 

It follows that, for (x,, p,) E S ~ ,  the Newton iteration can be alternately 
described as follows : 

We set 

and we obtain [x , ,~ ,  1 j E A(x*))] as the K-T pair of the quadratic 
program 

minimize Vf(x,)'(x - x,) + g x  - xk)'VzxL(xk, p,)(x - x,) 

subject to gJ(xk) + Vgj(xk)'(x - x,) = 0, j E A(x*), 

which is closest to [x*, {pT 1 j E A(x*))]. Equivalently, 

are obtained by solving the system of equations 

Except for the additional term 

in (108), this system is the same as the one solved in Newton's method of the 
previous section applied to the equality constrained problem 

minimize f (x) 

subject to g j(x) = 0, j E A(x*). 

Now, since pT = 0, for j $ A(x*), the term [CjeA(x*) pjkVZgJ(xk)] can be made 
arbitrarily small by taking p, sufficiently close to p*. Based on this fact, it can 
be verified, by essentially repeating the proof of Proposition 1.17, that given 
any scalar r > 0, there exists a 6, > 0 such that if I(x,, p,) - (x*, p*)I < 6 
then 

~ x ~ + ~ - x * / ~ +  l p r + 1 - p T 1 2 ~ ~ 2 ( I ~ k - ~ * ) 2 +  1 lpr-/lj*12). 
j A(x*) j e  A(x8) 

Since prf' = pT = 0 for j $ A(x*), we also obtain 
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or equivalently 

I ( ~ k + l  - x*, pk+l - p*)I r l ( x k  - x*, pk - P*)I. 

This implies that (x*, p*) is apoint of attraction of iteration (107) and the rate of 
convergence is superlinear. If V2fand V2g,:, j E A(x*), are Lipschitz continuous 
in a neighborhood of x*, then the rate of convergence is superlinear of 
order at least two. 

4.4.4 Quasi-Newton Versions 

We can develop quasi-Newton versions of the Newton-like methods of 
Section 4.4.2 simply by replacing various Hessian or inverse Hessian matrices 
wherever they appear in Newton-like iterations by approximations obtained 
via quasi-Newton updating formulas such as the BFGS, DFP, and others 
(see Section 1.3.5). 

Thus a quasi-Newton version of the Newton iteration (21), (22) is given by 

(1 10) 2, + 1 = (N;  H i  IN,)- [h(x,) - N; HL 'V f  (x,Jl, 

(111) X,+l  = X k  - Hi lVxL(x , ,  A k + l ) >  

where N ,  = Vh(x,) and H, is an approximation to V%L(x,,  A,). Another 
quasi-Newton version of the same iteration is given by 

(1 12) 4 + 1 = (NL B, N,) - l [&I - Nh B, V f  ( x d l ,  

(113) X!i+l = X k  - B k V x L ( x k . 2 k + 1 ) ,  

where B, is an approximation to [V?, L(x,, A,)] - '. 
In a similar manner, one can provide quasi-Newton versions of variations 

of Newton's method (compare with (37)-(38), (43)-(44), and (45)-(46)] and 
of Newton's method for inequality constraints [compare with (91)l. 

There are a number of formulas for updating the approximating matrices 
H, and B, of (1 10)-(113). Some examples follow. 
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where 

The formula (1 14) stems from Powell (1970), while (1 15) is an analog of the 
Davidon-Fletcher-Powell formula considered in Section 1.3.5. The formula 
(116) stems from Greenstadt (1970), while (1 17) is an analog of the Broyden- 
Fletcher-Goldfarb-Shanno formula (Section 1.3.5). 

The convergence analysis of the iterations just described follows a pattern 
established in papers by Broyden et al. (1973) and Dennis and MorC (1974). 
The main assumptions are that the starting matrices H, and B, are close to 
V% L(x, , A,) and [V;, L(xo , A,)] - ', respectively, and that (x,, A,) is close to a 
K-T pair (x*, A*) satisfying Assumption (S). For the case of the formulas (1 15) 
and (1 l7), it is also necessary to assume that VEX L(x*, A*) is positive definite. 
These assumptions are of course quite restrictive, but it should be recalled that 
the analysis of this section is purely local in nature. The principal idea of the 
analysis is that the updating formulas are such that the differences [H, - 
V;, L(x*, A*)] and [B, - [V:, L(x*, A*)] - I ]  remain small as k -t cx, and tend 
to zero along the directions of interest. This in turn implies superlinear con- 
vergence of { I (x, - x* , A, - A*) I ). For a detailed analysis we refer the reader 
to Glad (1979), Han (1977a), Tapia (1977), and Gabay (1979). An alternative 
quasi-Newton approach, due to Powell (1978a), will be described in Section 
4.5.3. 

4.5 Lagrangian Methods-Global Convergence 

In order to enlarge the region of convergence of Lagrangian methods, it is 
necessary to combine them with some other method that has satisfactory 
global convergence properties. We refer to such a method as a global method. 
The main ideas here are very similar to those underlying modifications of 
Newton's method for unconstrained minimization (compare with Section 
1.3.3), although the resulting implementations tend to be somewhat more 
complex. Basically, we would like to have a combined method that when 
sufficiently close to a local minimum of (NLP) satisfying the sufficiency 
conditions for optimality switches automatically to a superlinearly convergent 
Lagrangian method, while when far away from such a point it switches auto- 
matically to the global method which is designed to make steady progress 
towards approaching the set of K-T pairs of (NLP). Prime candidates for use 
as global methods are various penalty and multiplier methods, such as those 
examined in Chapters 2 and 3, and exact penalty methods, such as those 
considered in this chapter. 
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There are many possibilities for combining global and Lagrangian 
methods, and the suitability of any one of these depends strongly on the 
problem at hand. For this reason, our main purpose in this section is not to 
develop and recommend specific algorithms, but rather to focus on the main 
guidelines for harmoniously interfacing global and Lagrangian methods while 
retaining the advantages of both. Our emphasis thus is placed on explaining 
ideas rather than proving specific convergence and rate of convergence 
theorems. 

Once a global and a Lagrangian method have been selected, the main 
issue to be settled is the choice of what we shall call the switching rule and the 
acceptance rule. The switching rule determines on the basis of certain tests at 
each iteration whether a switch should be made to the Lagrangian method. 
The tests to be used depend on the information currently available, and their 
purpose is to determine whether an iteration of the Lagrangian method has a 
reasonable chance of success. As an example, for (ECP) such tests might 
include verification that Vh has rank m and that V2,L is positive definite on 
the subspace { z  1 Vh'z = 0). We hasten to add here that these tests should not 
require excessive computational overhead. In some cases a switch might be 
made without any test at all, subject only to the condition that the Lagrangian 
iteration is well defined. 

The acceptance rule determines whether the results of the Lagrangian 
iteration will be accepted as they are, whether they will be modified, or whether 
they will be rejected completely and a switch will be made back to the global 
method. Typically, acceptance of the results of the Lagrangian iteration is 
based on improvement of some criterion of merit such as reduction of the 
value of some exact penalty function. 

Nearly all the combined methods to be considered are motivated by the 
descent properties of Newton's method and its modifications discussed in 
Section 4.4.2 (compare with Proposition 4.25). 

4.5.1 Combinations with Penalty and Multiplier Methods 

One possibility for enlarging the region of convergence of Lagrangian 
methods is to combine them with methods of multipliers discussed in 
Chapters 2 and 3. The resulting combined methods tend to be very reliable, 
since they inherit the robustness of the method of multipliers. At the same time 
they typically require fewer iterations to converge within the same accuracy 
than pure methods of multipliers. 

The simplest possibility is to switch to a Lagrangian method at the begin- 
ning (or the end) of each (perhaps approximate) unconstrained minimization 
of a method of multipliers and continue using the Lagrangian method as long 
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as the value of the exact penalty function I VL l 2  is being decreased by a certain 
factor at each iteration. If satisfactory progress in decreasing IVLI2 is not 
observed, a switch back to the method of multipliers is made. Another 
possibility is to attempt a switch to a Lagrangian method at each iteration. 
As an example, consider the following method for solving (ECP) which 
combines Newton's method for unconstrained minimization of the augmented 
Lagrangian together with the Lagrangian iteration (43), (44) of Section 4.4.2. 

At iteration k, we have x,, A,, and a penalty parameter c,. We also have a 
positive scalar w,, which represents a target value of the exact penalty function 

I VL 1' that must be attained in order to accept the Lagrangian iteration, and a 
positive scalar E, that controls the accuracy of the unconstrained minimization 
of the method of multipliers. At the kth iteration, we determine x,, ,, A,, ,, 
w,, ,, and E,+ as follows: 

We first form the modified Cholesky factorization LkLfk of the matrix 
V~~L,,(X,, A,) as in Section 1.3.3. In the process, we modify v:,L,,(x,, I,) if 
it is not "sufficiently positive definite" (compare with Section 1.3.3). We then 
find the Newton direction 

and if V,2,LCk(xk, A,) was found "sufficiently positive definite" during the 
factorization process, we also carry out the Lagrangian iteration [compare 
with (43) and (44) in Section 4.4.2) 

then we accept the Lagrangian iteration and we set 

where y, is a fixed scalar with 0 < y, < 1. Otherwise we set 

where the stepsize is obtained from the Armijo rule (compare with Section 
1.3.1) 

Xk = pmr, 
where m, is the first nonnegative integer m such that 
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and p and o are fixed scalars with 0 E (0, 1) and o E (0,i). If 

implying termination of the current unconstrained minimization, we set 

where y2  and r are fixed scalars with 0 < y2  < 1 and r > 1. If 

we set 

and proceed with the next iteration. 
The preceding algorithm is only an example of a large variety of methods 

that one can construct based on combinations of multiplier methods and 
Lagrangian iterations. For example, a quasi-Newton approximation could be 
used in place of the Newton direction (1); a different Lagrangian iteration 
could be used in place of (2), (3); a second-order multiplier iteration could be 
used in place of (4); etc. Finally, one can handle inequality constraints via 
Lagrangian iterations employing an active set strategy (compare with 
Section 4.4.3). We refer to the paper by Glad (1979) for some specific algorithms 
and computational results. 

4.5.2 Combinations with DifSeerentiable Exact Penalty Methods 
-Newton and Quasi-Newton Versions 

We have already observed, in Section 4.3.3, that the Newton direction for 
solving the system of equations VL(x, i.) = 0 of (ECP) approaches asymp- 
totically the Newton direction for minimizing the exact penalty functions 
(compare with Section 4.3.1) 

and 

where c > 0, x > 0, z 2 0, M ( . )  is continuous, and M(x)Vh(x) is invertible for 
all x in the set X* defined by 

X*  = { x  I Vh(x) has rank m). 
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More precisely for (x,, A,) sufficiently close to a K-T pair (x*, A*) satisfying 
the sufficiency assumption (S), the Lagrangian iteration 

where 

is well defined. Furthermore iteration (8) can be expressed as 

where B(. ,  . ; c, cr), B(. ,  . ; c, M )  are continuous matrices satisfying 

B(x*, A*; C,  a) = V2P,(x*, A*; c, a)-', 

B(x*, A*; c, M )  = V2P,(x*, A*; c, M)- ' .  

Based on this fact, we can introduce in the Lagrangian iteration (7), (8 )  a 
stepsize procedure based on descent of the penalty function (5) or (6) and 
combine the iteration with modifications such as those considered in con- 
nection with Newton's method for unconstrained minimization to enforce 
convergence from poor starting points. We consider two types of modifica- 
tions. The first is based on a'combination with the steepest descent method, 
while the second is based on modification of the Hessian V;,L(x,, A,) to 
make it positive definite along the subspace which is tangent to the con- 
straint surface. 

It appears that the algorithms of this section that are based on descent 
of the penalty functions (5) and (6) are primarily useful in the case where 
second derivatives of the objective and constraint functions are available. 
Quasi-Newton versions of these algorithms are possible [see Eqs. (58)-(61) 
in this section], but then it seems preferable to use for descent purposes an 
exact penalty function depending only on x (compare with Section 4.3.2) as 
will be described in what follows [see Eqs. (74), (75) in this section]. We 
assuine throughout this section that f ,  11 E C3.  

Combination with the Steepest Descent Method 

Let us consider an algorithm that combines the Newton iteration (7), (S), 
a scaled steepest descent method with a positive definite scaling matrix D, and 
the Armijo stepsize rule with parameters o E (0, j), p E (0, I), and unity initial 
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stepsize. The algorithm consists of the iteration 

where m, is the first nonnegative integer m for which 

The direction (Ax,, AL,) is the Newton direction (8), if V2L(xk, A,) is invertible 
and if 

where g is a positive scalar with typically very small value, and q is a scalar 
with q > 2. (These tests represent the switching rule to the Lagrangian 
iteration.) Otherwise (Ax,, AA,) is the scaled steepest descent direction 

The preceding algorithm is not necessarily the most efficient for any given 
problem, but rather represents an example of how one can enlarge the region 
of convergence of the Lagrangian iteration (7), (8). It is straightforward 
(compare with the analysis in Sections 1.3.1 and 1.3.3) to verify the following 
facts: 

(a) Every limit point of a sequence {(x,, A,)) generated by iteration 
(9)-(12) is a critical point of P,(., . ; c, M). 

(b) Suppose (x*, A*) is a K-T pair of (ECP), satisfying Assumption (S), 
and c is such that V2P,(x*, A*; c, M) is positive definite. If (x*, A*) is a limit 
point of {(x,, A,)) generated by (9)-(12) then {(x,, A,)) actually converges 
to (x*, A*). Furthermore, the rate of convergence is superlinear. In addition 
there exists an integer E such that, for all k 2 I?, (Ax,, AA,) is given by the 
Newton direction (8) and the stepsize equals unity [m, = 0 in (9)]. If (x,, A,) 
is sufficiently close to (x*, A*) then the same is true for all k. 

A similar algorithm can be constructed in connection with the penalty 
function P,(., . ; c, a), and convergence results analogous to the one stated 
above can be shown. In fact for this penalty function, it is possible to char- 
acterize somewhat more precisely the region of pairs (x,, A,) for which the 
Newton direction (8) is a direction of descent. This result is given in the 
following exercise, the proof of which can be obtained by straightforward 
adaptation of the proof of Proposition 4.29 that follows. 
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Exercise: Consider the penalty function P,(., . ; c, a)  of ( 6 )  where z 2 0 
and a > 0. Let X be a compact subset of X* and A a compact subset of Rm 
such that, for some positive scalars y and I-, we have 

for all ( x ,  A)  E X x A, and z E R" with Vh(x) 'z  = 0. Then there exist scalars 
F > 0 and p > 0 (depending on X and A )  such that the solution ( A x ,  AA) 
of the system 

satisfies, for all ( x ,  A) E X x A and c 2 F. 

Positive Definiteness ModiJication on the Tangent Plane and Quasi-Newton 
Versions 

We remind the reader that one of the modified versions of Newton's 
method for the unconstrained problem 

minimize f ( x )  

subject to x E Rn 

consists of the iteration (compare with Section 1.3.3) 

where D, is a positive definite matrix of the form 

where E, is a diagonal matrix which is either zero if V' f (x , )  is "sufficiently 
positive definite" or else is a positive definite matrix obtained via the Cholesky 
factorization process. 

The natural constrained analog of this procedure is to modvy the Hessian 
of the Lagrangian V$,L(x,, A,) by  adding a matrix so as to make it positive 
definite along the tangent plane 

By this, we mean replacing V$,  L ( x k ,  Ak)  by 



264 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS 

where E, is an n x n matrix such that 

Similarly as in unconstrained minimization, this modification can be em- 
bedded within a factorization process used for solving the system of equations 

that yields the Newton direction, as we now show. 
Assume that x, belongs to the set 

(16) X* = {x (Vh(x )  has rank m}, 

and let Z k  be an n x (n - m) matrix, the columns of which form an ortho- 
normal basis for the tangent plane V k  of (13); i.e., 

Let also Yk be an n x m matrix with columns forming a basis for the subspace 
spanned by the gradients Vh,(xk), . . . , Vhm(xk). This is the subspace V 1  which 
is orthogonal to %', 

Clearly, we have 

Actually, we can take Y,  = Vh(x,), but it is possible to obtain other choices via 
the LQ-factorization of Vh(x,) which yields simultaneously a matrix Z ,  
satisfying (17) (see Gill and Murray, 1974, p. 61). Now, every vector w E R" can 
be written as 

in terms of unique vectors 5 and I) belonging to Rn-" and Rm, respectively. We 
can write, in this manner, 

and system (15) can then be written as 

Since Vh(x,)'Z, = 0, the second equation yields 
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By premultiplying the first equation by Z;  and by taking into account the 
fact that Z;Vh(x,) = 0, we also obtain 

(21) Zh V f ,  L(xk,  Ak)Zkdz = Z;[V& L(xk . A,) Y J V h ( x , ) ' ~ ] -  'h(x,) - Vf(x,)] .  

Thus if ZLV:, L(x,, A,)Z, is invertible, we can solve for d ,  thereby completely 
determining Ax. A very interesting fact that follows from Eqs. (20) and (21) is 
that the vector Ax depends on V% L(x,, A,) only through the product V:, L(xk,  
A,)Z,. Similarly ifV:,L(x,, A,) is replaced in ( 1 5 )  b j  any matrix H, such that 
ZhH,Z, is inuertible, Ax will depend on H, only through the product H k Z k .  
Regarding the vector A;,, we see that given Ax it can be determined from the 
equation 

(22) AA = - [Vh(x,)'Vh(x,)] - lVh(xk)'[V$x ~ ( x , ,  ,?,)Ax + V ,  L(x,, A,)]. 

Now the matrix ZrkV%L(xk, A,)Z, may be viewed as the restriction of the 
Hessian V:, L(x,, A,) on the tangent plane %?, . Suppose we add to V:, L(x,, A,) 
a matrix E, of the form 

Ek = zk E k z ; ,  

where E, is diagonal, thereby forming the matrix 

Then in view of the fact that Z;Z ,  = I, we have 

By choosing appropriately E,, we can make the matrix H, positive definite on 
the tangent plane W,; i.e., 

and in fact this can be done during the Cholesky factorization process that 
may be used to solve system (21) similarly as in the unconstrained case con- 
sidered in Section 1.3.3. At the same time, the Hessian V:,L(x,, A,) and its 
modification H, operate identically on vectors in the subspace 9: spanned by 
the constraint gradients. 

In conclusion, we have shown that by modifying V:, L(x,, A,), as in (23), 
we can obtain a matrix H, that is positive definite on the tangent plane g,, 
and furthermore this can be done conveniently during the factorization 
process used in solving the system (21). Of course once V;,L(x,, A,) is 
replaced by H,, we shall obtain a solution (Ax, AA) of the system 
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rather than the original system (15). We have yet to demonstrate that some 
substantive purpose is served by such a modification. As a first step in this 
direction, we show the following proposition which essentially says that if H, 
is positive definite on the tangent plane, the pair (x,, A,) satisfies for all k a 
relation of the form 

(26) M(x,)V, L(xk > 1,) = 4, > A,)h(x,), 

where A is a continuous m x m matrix function, and the parameter c is 
sufficiently large, then the solution (Ax,, AA,) of system (25) is a direction of 
descent of the penalty function 

It appears that in order to construct globally convergent algorithms 
based on solution of the system (25) and descent of the above penalty func- 
tion, it is necessary that a condition such as (26) be satisfied by successive 
iterates (x,, A,). We will subsequently show how one can construct algorithms 
where condition (26) is automatically satisfied. 

Proposition 4.29: Consider the penalty function P,  of (27) where z 2 0 
and M(x) is an m x n twice continuously differentiable matrix function on X* 
such that M(x)Vh(x) is nonsingular for all x E X*. Let X be a compact set of 
symmetric n x n matrices, let y and I- be some positive scalars, let X be a 
compact subset of X*, let A be a compact subset of Rm, and let A(x, A) be 
an m x m matrix function which is continuous on X x A. There exist 
scalars i; > 0 and B > 0 (depending on 2, A, y ,  r, X, and A) such that, for 
all vectors x E Xand A E A and matrices H E 2 satisfying 

(29) ~ I Z ) ~  I zlHz I I - 1 ~ 1 ~  V z E Rn with Vh(x)'z = 0, 

the solution (Ax, AA), of the system 

exists, is unique, and satisfies, for all c 2 i;, 

Proof: For vectors x E X* and A E A satisfying (28), let us use the abbre- 
viated notation 
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We have, using this notation, 

(34) V,P,(x, A; c, M )  = a + (c + zl/Z12)Nb + QMa, 

(35) Vj.P,(x, 2; c, M )  = b + z 1 b I2A + N'M'Ma. 

Consider any H E A? satisfying (29). Let us denote 

where (Ax ,  AA) is the solution of system (30). (The fact that this solution exists 
and is unique follows by repetition of the proof of Lemma 1.27.) 

Let p 2 0 be a scalar such that the matrix 

is positive definite with eigenvalues uniformly bounded above and away from 
zero over all x E X  and H EX satisfying (29). (It is straightforward to show 
that such a scalar p exists by a minor adaptation of the proof of Lemma 1.25). 
The second equation of system (30) yields 

By substituting in the first equation and using (37), we obtain 

(39) R A x  + NAA = -a - pNb. 

By multiplying this equation by N'R- '  and using (38), we obtain 

(40) An = (N 'R - IN) - ' [ ( I  - pN'i7-'N)b - N'R- 'a] .  

Substitution in (39) yields finally 

(41) Ax = - [H- '  - R - ' N ( N ' R - ' N ) - ' N ' R - ~ ] ~  

- R- ' N ( N ' W - ~ N ) -  lb. 

We now rewrite the inner product J of (36) using Eqs. (34) and (35). 
We have 

J = a'Ax + (c + z li12)b'N'Ax + a1M'Q'Ax + b'(I + 7bi')A;l + a1M'MNA/Z. 

Using equations (38), (39), and (40), we obtain 

J = a'Ax - ( c  + s 1 i 1 2 )  1 b l 2  + a1M'Q'Ax + b'(I + ?b/Zf)(N'R- IN)- '  

x [ ( I  - P N ' R - I N ) ~  - N'R- 'a]  - afM'M(pNb + a + RAx) .  

By rearranging terms and using (28) and (41), we find that J can be expressed 
as a sum of two quadratic forms 

(42) J = R(a, b) - c jbJ2 ,  
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(Note: A critical step in the above calculation, that uses the assumption (28), 
is to substitute b'A' in the third term in the right side in place of u'M'. This 
step makes the following argument possible.) 

The quadratic form R(a, b) when restricted on the subspace {(a, b) 1 b = 0) 
can be written 

We claim that R(a, 0) is negative definite. Indeed, since both matrices 
[I - fl(filfl)- 'n ']  and fit&? are positive semidefinite, it follows that R(a, 0) 
is negative semidefinite. If R(6,O) = 0 for some Zi # 0, then we must have 
a1[1 - fl(fll#)- ' f l ' ] ~  = Oand a ' f i ' f ia  = 0. Since [I - fl(fllfl)-'R'] is the 
projection matrix on the subspace { z  I n ' z  = 0}, the first equation shows that 
5 belongs to the orthogonal subspace; i.e., Zi = fit for some S' E Rm. Then the 
equation Zi'fi'fi~ = 0 yields ('R'fi'&?fl< = 0. Since fin = MN and MN is 
invertible, we obtain 5 = 0 which is a contradiction. Having established 
negative definiteness of R(a, 0), it follows, using (42) and Lemma 1.25, that 
for c sufficiently large, we can represent J as a negative definite quadratic 
form; i.e., 

where D(x, i, R, c) is a negative definite matrix. Since the matrix D(x. i., B: c) 
is continuous in all its arguments. it is straightforward to use the previous 
reasoning and a minor extension of Lemma 1.25 in order to show that there 
exists 2. > 0 such that, for all c 2 2., x E X, 2 E A, and H E 2 satisfying (28) 
and (29). the eigenvalues of D(x, 1,. H. c) are negative and uniformly bounded 
above and away from zero. Since, in view of (34) and (35), the square norm of 
the gradient V P ;  can be expressed as a quadratic form in (a, b), it follows that 
there exists /l > 0 such that (31) holds. Q.E.D. 



Let us now consider an algorithm of the form 

(43) X k + l  = X k  + rkAxk, 

(44) = A, + u,Ai,, 

where (Ax,, Ai,) is the solution of the system 

r ,  is a scalar stepsize based on descent of the exact penalty function 
P,(., . ; c, M )  and is obtained, for example, via the Armijo rule. The matrix Hk 
is assumed positive definite on the tangent plane W, and can be obtained from 
either the Hessian V;,L(x,, A,) or a quasi-Newton approximation of it by 
appropriate modification, if necessary, as described earlier [compare with 
(23)l .  We know from our earlier analysis that if H, = V:,L(x,, 2,) then 
for (x,, A,) in a neighborhood of a K-T pair (x*,  A*) satisfying Assumption (S) 
the direction (Ax,, AA,) is a descent direction for P, for sufficiently large c. 
Proposition 4.29 shows that this is also true even if H, # V;,L(x,, A,) and 
(x,, A,) is not near (x*, A*) provided c is sufficiently large and a relation of the 
form 

(46) M(x,)VxL(x,, 2,) = A b k ,  A,)h(x,) 

is satisfied for some continuous m x m matrix A. It is possible to construct a 
convergent algorithm in which a relation of the form (46) is satisfied by making 
A, depend continuously on x, via the relation 

(47) 2, = X(x,), 
where 

(48) X(x) = - {Vh(x) 'M(x)'M(x)Vh(x) 
+ z 1 h(x)  / ' I ) -  ' [ h ( x )  + Vh(x) 'M(x) 'M(x)Vf(x)] .  

Using the above definition we have 

V,P,[x, ; ( X I ;  c, MI = h(x)  + z 1 h(x)  l2X(x) 
+ Vh(x) 'M(x) 'M(x)V,  L [ x ,  2(x)]  

= 0, 

so it can be seen that ;+(x) minimizes P,(x, A ;  c, M )  ouer all A E Rm. It is also easy 
to verify via a straightforward calculation that Eq. (46) is satisfied with 

(49) A(x ,  A) = - [Vh(x) 'M(x) ']  - ' [ I  + d ( x ) h ( x ) ' ] .  

Therefore, given any pair ( x ,  2) with x E X*, ij'we replace 3. by  T(x),  the ualue of 
P, cannot increase; i.e., 

(50) P,[x, ;(x);  c, MI 5 P,(x, i; c, M )  V x EX*, A E Rm, 



270 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS 

while at the same time, Eq. (28), which is suficient to guarantee the descent 
property of Proposition 4.29, is satisfied. This leads to the following type of 
algorithm. 

Given x, E X* and A, = &x,), compute the solution (Ax,, AA,) of the 
system of equations 

where Hk is positive definite on the tangent plane 6. Then set 

where ct, is obtained by line search based on descent of the penalty function 
PI( . , . ; c, M) (compare with Proposition 4.29). Then set 

and proceed to the next iteration. 
Thus the algorithm above utilizes a two-step procedure at each iteration. 

Given (x,, A,) with x, E X* and A, = X(x,), in the first step we obtain by line 
search a pair (x,+ ,, 1,. ,) with a lower value of P,, and in the second step, we 
replace A,,, by X(x,+ ,) which, in view of (50), also lowers the value of P,. 

Summarizing the developments so far, we have seen that there are several 
algorithmic possibilities for minimizing the exact penalty function P,(x, A; 
c, M) based on solution of the system 

where Hk is positive definite on the tangent plane W,. Given any (x,, A,) 
sufficiently close to a K-T pair (x*, A*) satisfying Assumption (S), the direc- 
tion (Ax,, AA,) obtained from system (55) is a descent direction at (x,, A,) of 
P, if H, = V%L(x,, A,). When far from (x*, A*) or when H, # V:,L(x,, A,), 
it may be necessary to replace A, by K(x,), given by (48), in order to obtain a 
descent direction in the same manner. To do this, it is necessary that the 
penalty parameter c exceeds a certain (generally unknown) threshold. There is 
complete freedom in choosing the matrix H, as long as it is positive definite on 
the tangent plane. Thus H, may equal the Hessian V:,L(x,, A,) perhaps 
modified along the tangent plane, as discussed earlier, or it may equal a 
quasi-Newton approximation generated, for example, by one of the quasi- 
Newton formulas discussed in Section 4.4. 

A reasonable algorithm seems to be one whereby the direction (Ax,, Ail,) 
is computed via solution of the system (55) and is tested to determine whether 
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it is a descent direction by computing its inner product with the gradient VP,. 
In the case where it is not, the vector I(x,) is computed and A, is replaced by 
&,). I t  is not necessary to resolve the system (55) since the vector Ax, and the 
vector (A,  + AA,) do not depend on A, [compare with (20)-(22)l. Thus the 
only additional computation in the case where (Ax,, AA,) is not a descent 
direction is the computation of i(x,), and even this need not be difficult since 
for the typical choice M = (VhfVh)-'Vh the computation of A(xk) [compare 
with (48)] requires the inverse (VhrVh)-' which is normally available from 
earlier computations during the current iteration [compare with (22)l. In a 
practical setting, it is of course quite possible that, even after A, is replaced by 
2(xk), a direction of descent is not yet obtained because the parameter c is not 
sufficiently large. In this case, a reasonable scheme is simply to increase c by 
multiplication with some scalar until a descent direction is obtained. This can 
be coupled with an automatic penalty parameter adjustment procedure of the 
type discussed in Section 4.3.3. 

Convergence and Rate of Convergence 

It is possible to show various convergence results for specific algorithms of 
the type described above. These results are based on Proposition 4.29 and the 
analysis of Chapter 1 and should be routine for the experienced reader. 

When the algorithms are combined with the Armijo rule with unity initial 
stepsize, it is easy to show superlinear convergence to a K-T pair (x*, A*) 
satisfying Assumption (S) under the condition 

The proof of this is fairly evident, since we have already shown in the beginning 
of this section that if H, = V:, L(x,, 1,) the algorithm reduces asymptotically 
to Newton's method for minimizing P,. 

In some cases where a quasi-Newton scheme is used, it is not reasonable to 
expect that the condition H, + V:, L(x*, A*) will be attained in practice. 
Powell's variable metric scheme, to be discussed in the next section, is a prime 
example of this situation. For this scheme, one can expect at most that the 
condition 

(57) [ H ,  - V:, L(x*, /1*)]Z* -, 0 

will be attained, where Z* is an n x (n - m) matrix the columns of which form 
a basis for the tangent plane 

It will be shown later in this section that if this condition holds and if the 
stepsize a, in the algorithm 
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is unity for all k sufficiently large, then the rate of convergence of the sequence 
{x,) is superlinear. Unfortunately, if only (57) is satisfied in place of (56), it is 
not possible to guarantee that the condition a, = 1 for all k sufficiently large 
will be attained as long as we insist on reduction of the exact penalty function 
P, at each iteration. It is possible to bypass this difficulty by modifying the 
vector A& in the following manner: 

Consider the iteration 

where AX, together with a vector Ail, solve the system 

H, Vh(x,) Ax vxL(xk2 A,) 
V ( x )  0 ] [Ail] = - [ h(x,) 1' 

H ,  is positive definite on the tangent plane Vk, and 6, is defined by 

where 

Note that the computation of y ,  requires the use of second derivatives, but it is 
possible to estimate yk accurately by the finite difference scheme 

where t is a small positive scalar. 
By essentially repeating the proof of Proposition 4.29, it is possible to show 

the following result. 

Proposition 4.30: Consider the penalty function P, of (27) where z 2 0 
and M is a continuous m x n matrix such that M(x)Vh(x) is nonsingular for 
each x E X*. Let X be a compact set of symmetric n x n matrices, and ;, and I' 
be two positive scalars. Also let X be a compact subset of X*, and A be a com- 
pact subset of Rm. There exists a scalar 2 > 0 and a scalar b > 0 (depending on 
2, y, r, X, and A) such that for all vectors x E X and A E A and matrices 
H E YY satisfying 

Y ~ Z / '  1 Z'HZ I r ) z I 2  V Z E  Rn with Vh(xk)'z = 0, 

the vectors Ax, and 6,, defined via the solution of system (59) and Eqs. (60) 
and (61), satisfy, for all c 2 E ,  
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Proposition 4.30 asserts that the algorithm (58)-(61) has global descent 
properties. We now sketch a proof of the fact that if the sequence {H,) is 
bounded and if the algorithm converges to a K-T pair (x*, A*) satisfying 
Assumption (S) and the condition [H, - V;,L(x*, i*)]Z* -+ 0 holds [com- 
pare with (57)], then close enough to (x*, A*) the stepsize r, = 1 will be 
acceptable by the algorithm in the sense that it leads to a reduction of P,. To 
this end, we show that the direction (Ax,, 6,) differs from the direction 
(d,,, d,,) generated by solving the Newton system 

by a term that goes to zero faster than IVL(x,, A,)/; i.e., 

(65)  6, = d ~ ,  + 4 I VL(x, > A,) I 1. 
We have that Ax,(d,,) depends on H,[V;,L(X,, A,)] only through the 

matrices H,Z, [V;,L(x,, QZ,], where Z, is an orthonormal basis matrix 
for the tangent plane [compare with (20) and (21)l. We can assume, without 
loss of generality, that Z, -+ Z* so that (57) yields 

[H, - V:, ~ ( x * ,  A*)]Z, + 0. 

Since Ax, = 0 (  1 VL(x,, II ,)  1 ) (in view of boundedness of {H,)), it is easily seen 
that (64) holds. 

Now the vector d , ,  satisfies 

and therefore 

The vector y, of (61) can be expressed as 

yk = [M(xk)Vh L(xk, f O( I VL(xk, ik) I )IAx,. 

Since Ax, = O( I VL(x,, A,) I), the previous equation and (60) yield 

By taking into account (64) and comparing (66) and (67), we obtain (65). 
We know from our earlier analysis that (d,,, d,,) differs from the Newton 

direction for minimizing P, by a term o() VL(x,, 3,) 1). In view of (64) and (65), 
it follows that the same is true for the direction (Ax,, 6,). This is sufficient to 
show that near (x*, i*) the stepsize r, = 1 will be acceptable by the algorithm 
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(58)-(61) (in the sense that it leads to "sufficient" reduction of the value of P,) 
and that the rate of convergence is superlinear under the conditions stated 
earlier. 

Quasi-Newton Algorithms for Diferentiable Exact Penalty Functions 
Depending Only on x 

Let us consider the exact penalty function p introduced in Section 4.3.2. 
We have, for all x E X*, 

where 

(69) A(x) = - [Vh(x)'Vh(x)] - 'Vh(x)'Vf(x). 

We saw, in Section 4.3.2, that p can be expressed as 

where 

(71) P(X,A;C,M)=L(~,/I)+~CI~(X)I~+~~M(X)V,L(X,A)/~, 

(72) M(x) = [Vh(x)'Vh(x)] - 'Vh(x)', 

(73) X(x) = - h(x) - [Vh(x)'Vh(x)] - 'Vh(x)'Vf (x). 

It is thus natural to expect, in view of the analysis given earlier, that algorithms 
of the type considered so far in this section can also be used for minimizing the 
penalty function p. Indeed let us consider an algorithm of the form 

where cr, is a stepsize obtained by descent on (for example via the Armijo 
rule with unity initial stepsize). Assume that Ax, together with a vector A/Zk 
solves a system of the form 

where A, is an arbitrary vector in Rm and H, is a symmetric n x n matrix which 
is positive definite on the tangent plane 

(76) Vk  = { Z  1 Vh(xk)'z = 0). 

We shall show first that Ax, so obtained is a descent direction of p at x,. 
To this end, we note the basic fact that Ax, does not depend on A, at all and 
depends on H k  only through HkZk ,  where 2, is an n x (n - m) orthonormal 
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basis matrix for 9, [compare with (19)-(21) and the related discussion]. We 
next observe, using (72), that (73) can be written as 

and hence the condition (28) of Proposition 4.29 is satisfied by all pairs 
(x, j(x)), x E X*, with A equal to -I. Proposition 4.29 shows therefore that, 
for all c sufficiently large, the direction (Ax,, AA,) is a descent direction of 
P(., .; c + 1, M) at (x,, K(x,)). Furthermore we have, for all x E X* [compare 
with (35) and (36) in Section 4.3.21, 

(77) V, P[x, j(x) ; c + 1, MI  = V ~ ( X  ; c), 

(78) V, P[x, i(x); c + 1, MI = 0. 

Using these equations in Proposition 4.29, we obtain that, for some p > 0, 

It follows that Ax, is a descent direction of p at x, for sufficiently large c. 
Indeed based on Proposition 4.29, we have proved by the argument above 
the following result: 

Proposition 4.31: Let Af be a compact set of symmetric n x n matrices, 
let y and l- be two positive scalars, and let X be a compact subset of X*. There 
exists a scalar i? > 0 and a scalar p > 0 (depending on Af, y, T, and X) such 
that for all vectors x E X  and A E Rm and matrices H E  2 satisfying 

ylz12 I Z'HZ I r lz I2  V Z E R "  with V~(X)'Z = 0, 

the solution (Ax, AA) of the system 

satisfies, for all c 2 2, 

v ~ ( x ;  c)'Ax -PlVP(x; c)12. 

Proposition 4.31 shows that the algorithm (74), (75) has global conver- 
gence properties provided the penalty parameter c is chosen sufficiently large. 
We shall show that if{H,) is bounded, the algorithm converges to a K-T pair 
(x*, A*) satisfying Assumption (S), and the condition 

(79) Ax;[H, - V;,L(x*, A*)]Z*/ 1 Axk I -t 0 

holds, where Z* is an orthonormal basis matrix for the tangent plane V* = 
{z 1 Vh(x*)'z = 0), then for suficiently large k the stepsize ct, = 1 is acceptable 
(in the sense that it leads to a "sufficient" reductiot? of the calue of p) and the 
rate of conuergence of the algorithm is superlinear. To this end, it will be 
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sufficient to show (compare with the proofs of Propositions 1.15 and 1.17) that 
(79) implies 

(80) v2P(x* ; c)Ax, = - v ~ ( x , ;  c) + o( I xk - x* I ). 
In order to show (80), we first observe (using the boundedness of {H,))  

that we have 

(81) ~ x k = ~ ( I V ~ ~ ~ x k , ~ ~ x k ~ l l ~ + O ( I h ( x k ~ l ) = O ( I x k - x * I ) .  

A straightforward calculation shows that 

(82) vP(xk; c) = VxL[xk, A(xk)l + V4xk)h(xk) + cVh(xk)h(xk), 

(83) v2P(x*; C) = V:, ~ ( x * ,  A*) + VA(x*)Vh(x*)' + Vh(x*)VA(x*)' 
+ cVh(x*)Vh(x*)'. 

Hence Eq. (80), which is to be proved, can be written as 

(84) [V&L(x*, A*) + VJ.(x*)Vh(x*)' + Vh(x*)VA(x*)' 
+ cVh(x*)Vh(x*)']Ax, 

= - [VxLCxk, A(xk)l + VJ-(xJh(xk) + cVh(xk)h(xk)l 
+ o(lx, - x* I). 

Using (81) and the fact that h(x,) = -Vh(x,)'Ax,, we have 

(8 5) VA(xk)h(xk) = - VA(xk)Vh(xk)'Axk = - VA(x*)Vh(x*)'Ax, 

+ o(lxk - x*/),  

Using these equations, we see that (84) is equivalent to 

(87) [V:, L(x*, A*) + Vh(x*)VA(x*)']Ax, + V,L[x,, A(xk)] = o(Ixk - x* I). 

From the definition of 2 ( . ) ,  we have, for all x E X*, 

(88) Vh(x)'V, L[x, L(x)] = Vh(x)'Vf (x) + Vh(x)'Vh(x)i(x) = 0. 

Since V, L[x,, A(x,)] = O( I x, - x* ) and Vh(x,) = Vh(x*) + O( I x, - x* I), 
Eq. 88) yields 

Vh(x*)'VXL[xk, )b(xk)] = o(~x ,  - X* I ) .  
Also by differentiating (88) at x*, we obtain 

Vh(x*)'[V:, L(x*, A*) + Vh(x*)VA(x*)'] = 0. 

The last two equations yield 

(89) Vh(x*)'{[V~,L(x*, ?,*) + Vh(x*)Vi(x*)']Ax, + V,L[x,, A(x,)]) 
= o(1xk - X* 1). 
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We shall now show that 

Since the n x n matrix 

[Vh(x*) Z*] 

is invertible, Eqs. (89) and (90) will imply the desired relation (87) and hence 
also (80). 

In order to show (90), we note that Eqs. (79) and (81) and the fact that 
Z*'Vh(x*) = 0 imply 

(91) Z*'[V;,L(X*, A*) + Vh(x*)VA(x*)']Axk = Z*'HkAxk + o(lxk - X* I). 

We also have, from the definition of Ax,, 

(92) H k  Ax, + Wxk)  [A, + 1 - &xk)l = - V, LCxk, 4xk)l, 

where A,,, is obtained from the solution of system (75). We can write this 
equation as 

Ak + 1 - 4xk) = - [Vh(xk)'Vh(xk)l- 'Vh(x,)'{H, Ax, + Vx Ux, ,  4 ~ k ) l ) ,  

so by also using (81) and the boundedness assumption on {H,), we obtain 

A k + l  - A(~k)  = O(lxk - ~ " 1 ) .  

Using the equation above and the fact that Z*'Vh(x,) = O(Ixk - x* I), we 
obtain, from (92), 

(93) Z*'HkAxk + Z*'VXL[xk> A(xk)] = o(lxk - X* 1). 

By combining (91) and (93), we see that (90) holds and therefore our proof of 
validity of (80) is complete. 

To summarize, we have shown that the algorithm (74), (79, coupled with 
the Armijo rule with unity initial stepsize and descent on p, has a rate of 
convergence to a local minimum x* satisfying (S) which is superlinear 
provided the following three conditions hold: 

(a) The penalty parameter c is sufficiently large to ensure that x* is a 
strong local minimum of the penalty function p( .  ; c). 

(b) The sequence {H,) is bounded. 
(c) The condition 

Ax;[Hk - V&L(x*, /2*)]Z*/ 1 Axk 1 + 0 

holds. 
The algorithm (74), (75) has one main disadvantage when compared with 

the earlier algorithms, which were based on the exact penalty function 
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P,(x, A ;  c, M),  namely, that each function evaluation requires the computa- 
tion of A(x) and hence the inverse [Vh(x)'Vh(x)]-'. This however may not be 
serious, since the solution of system (75) requires 0(n3)  operations versus 
0(m3)  for computation of [Vh(x)'Vh(x)] - '.Also the inverse [Vh(x,)'Vh(x,)] - ' 
may be computed at each iteration as part of the solution of the system (75). 
Thus additional overhead results only at iterations requiring more than one 
function call; and we have shown that under circumstances where super- 
linear convergence is obtained, only one function call per iteration is necessary 
when near convergence. In any case, it is possible to limit the number of extra 
evaluations per iteration of [Vh(x)'Vh(x)]-' to at most one by performing 
instead a line search on the function P( . ,  . ; c + 1,  M )  of the form 

starting at the pair (x,, I(x,)) for each k. We have already shown that 
(AX,, [2(xk +  AX^) - l ( x k ) ] )  is a descent direction at (x,, 3:(xk)) of P( . ,  . ; 
c + 1, M )  [Proposition 4.29 and (77), (78)l. Since 

the preceding analysis shows that if the condition (79) holds, the stepsize 
a, = 1 will be acceptable by the algorithm near convergence and that the rate 
of convergence of the algorithm will be again superlinear. 

We finally note that the algorithm (74), (75) can similarly be shown to be 
superlinearly convergent if line search is based on other exact penalty func- 
tions of the form 

(94) p,(x; c) = min P,(x, A ;  c, M). 
2. 

For example, if 

then the minimizing vector in (94) is given by 

X(x) = - (1 + t 1 h(x) 1')-'(h(x) + [Vh(x)'Vh(x)]- 'Vh(x)'Vf ( x ) } ,  

and a straightforward calculation shows that P, takes the form 

For t = 0, we obtain P,(x; c )  = p(x ;  c - 1) where P is the penalty function 
(68). It appears, however, that using a positive scalar t improves the numerical 
stability of the resulting algorithm, so the function P, of (94) with 7 > 0 may 
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offer some advantage over the function of (68). More generally the mini- 
mizing vector in (94) is given by 

I ( X )  = - [Vh(x)'M(x)'M(x)Vh(x) + T 1 h(x)  j21] - ' 
x [h(x)  + Vh(x)'M(x)'M(x)Vf ( x ) ] .  

When M(x)  is defined for all x E Rn [including those x for which Vh(x)  does 
not have full rank, such as for example when M(x)  = Vh(x) '] ,  a choice 
T > 0 is particularly interesting since then i ( x )  is defined for all x E Rn for 
which either Vh(x)  has full rank or h(x) # 0. For example, for the two- 
dimensional problem min{x, jx: + x; = 1) the function p(x ;  c) of (68) is 
not defined at the origin. It tends to - x and + r ~ :  as x approaches the origin 
along the directions (1, 0)  and ( -  1, 0 )  respectively. By contrast this peculiar 
behavior does not arise when M ( x )  = Vh(x)  and T > 0. In that case b,(x; c) 
is everywhere continuously differentiable. 

Some Extensions to Inequality Constraints 

We shall develop an extension of the Newton iteration (7) ,  ( 8 )  to the in- 
equality constrained problem 

(ICP) minimize f ( x )  

subject to gj(x) 5 0, j = 1,. . . , r,  

where f ,  g j  E C3. The iteration employs an active set strategy and is similar 
to some of the iterations examined in Section 4.4.3. 

We will make use of the exact penalty function [compare with (70) in 
Section 4.3.31 

where 

Fix c > 0, T 2 0, and cc > 0 and define, for each ( x ,  y )  E Rn+', 

(96) A f ( x , y ) =  { j / p j + 2 c ( y ~ + ( c + ~ I y 1 2 ) g j ( ~ ) > 0 , j = 1 ,  . . . ,  r ) ,  
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For a given (x, p), assume (by reordering indices if necessary) that A+(x, p) 
contains the first p indices where p is an integer with 0 < p I r .  Define 

We note that p, g, ,  g - ,  p + ,  p - ,  and L +  depend on (x, p), but to simplify 
notation we do not show explicitly this dependence. 

In the extension of Newton's method that we consider, given (x, p), we 
denote the next iterate by (2, P) where fi = (PI, . . . , fir). We also write 

The iteration, roughly speaking, consists of setting the multipliers of the 
inactive constraints Cj E A-(x, p)] to zero, and treating the remaining con- 
straints as equalities. More precisely, we set 

and obtain i, ,D+ by solving the system 

assuming, of course, that the matrix on the left above is invertible. 
We consider the following combination of the Newton iteration (102), 

(103) with the Armijo rule and a scaled steepest descent method for minimizing 
the penalty function P;(., . ; c, r )  of (95). Let a E (0, i). P E (0, l), ;: > 0, and 
D be a positive definite matrix. Given (x, p), the next iterate (2, p)  is given by 

where iE is the first nonnegative integer m for which 

(105) P'(x. p: c, a )  - P-:(x + Bmp,, p + Pmp,; c, x) 
2 - opmp'vP- (x, p ;  c. %). 
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The direction p = (p,, p,) is given by the Newton direction, obtained from 
(102) and (103), 

if the matrix on the left in (103) is invertible and 

(107) - (2 - x)'V,P: (x, p; C, a) - (4 - p)'V,P:(x, p; C, a) 

2 ;'IvP:(x, p; C, a)lq, 

where q is a scalar with q > 2. Otherwise 

(108) p = - DVP:(x, p; c, a). 

Based on the results for unconstrained minimization methods developed in 
Section 1.3, it can be shown that any limit point of a sequence generated by the 
method described above is a critical point of P:. There remains to show, 
similarly as for equality constrained problems, that the direction generated by 
the Newton iteration (102), (103) approaches asymptotically the Newton 
direction for minimizing P' as (x, p) approaches a K-T pair (x*, p*) 
satisfying Assumptions (Sf) .  A superlinear convergence rate result then 
follows. 

Consider a K-T pair (x*, p*) of (ICP) satisfying Assumption (SC). In 
view of the strict complementarity assumption [pT > 0 if gj(x*) = 01, for 
each c > 0, z 2 0, and a > 0, there exists a neighborhood of (x*, p*) within 
which we have 

(1 09) A+(x,p)  = A(x*) = {jJgj(x*) = 0 , j  = 1, . . . ,  r). 

Within this neighborhood, the Newton iteration (102), (103) reduces to the 
Newton iteration for solving the system of necessary conditions 

corresponding to the equality constrained problem 

minimize f (x) 

subject to gT(x) = 0. 

Based on this fact, it is easy to see that (x*, p*) is a point of attraction of itera- 
tion (102), (103), and the rate of convergence is superlinear. Let c, r ,  and 
a be such that VVP:(xX,p*; c, x )  is positive definite. We shall show that, in a 
neighborhood of (x*, p*)  within which (109) holds, we have 
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where Hz(., . ; c, a) is a continuous matrix satisfying 

(111) H,(x*, p*; C, x) = V2P:(x*, p*; C, x). 

We show this fact for T = 0. 
Consider the (n + r) x (n + r) matrix 

I 
+cVg+Vg', +XV~,L+V;,L+I vg+ + ~ v ~ , L + v ~ +  1 ~ v ; , L + v ~  + 

I I -----------------------+------------+------------ 
1 I 

Vg', + rVg; V f, L + I aVg', Vg+ I aVgr+ Vg- 
I 

-----------------------L------------L------------ 
I I 

xVgL V f, L - I aVgL Vg + 1 xVg' Vg - + F 
I 

where all derivatives are evaluated at a point (x, p) in a neighborhood of 
(x*, p*) within which (109) holds, the (r - p) x (r - p) diagonal matrix F is 
given by 

(113) F = 

and the n x ( r  - p) matrix E is given by 

The function P +  can also be written as 

By differentiating this expression, we obtain 
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where F is given by (1 13). We now observe that the solution (2  - x, f i +  - y - )  
of the system (103) also satisfies 

By using (1 12)-(114) and (116), (1 17), it is straightforward to verify that 

and hence the vector (2, f i )  generated by (102), (103) satisfies [compare with 
(1 1011 

[i I i] = - H - I V P + ( X ,  p ;  c, a). 

Denote by H* the matrix H of ( 1  12) evaluated at (x*, y*). Taking into account 
the fact that V,L(x*, p*) = 0 and p? = 0, j = p + 1, . . . , r, it is easy to verify 
that 

H* = V2P+(x*,  y*; c, a). 

We have shown therefore that, for z = 0,  ( 1  10) and (1 11) hold with H(x,  y ; c, r )  
being the matrix (1 12). The proof for the case where z > 0 is similar but very 
tedious as the reader may surmise from the analysis of the case where z = 0. 
We shall omit the details. 

It is worth noting that if the algorithm (104)-(108) is modified at the 
expense of a slight loss in reliability, so that the test (107) is replaced by 

then, near a K-Tpair (x*, y*) satisfying Assumption (S+), it is not necessary to 
compute the gradient matrix Vg - ( x )  corresponding to the inactiue constraints. 
To see this, note that computation of the Newton direction [compare with 
(102) and (103)l does not require knowledge of Vg-(x).  Next, with the aid of 
(1 16), observe that if y-  = 0 [and hence also ( f i -  - y - )  = 01, then computa- 
tion of the inner products in (107) and (108) also does not require knowledge 
of Vg-(x) .  If the algorithm converges to a K-T pair (x*, y*) satisfying 
Assumption (S+), then the Newton iteration will be accepted and the set of 
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inactive constraints will remain the same for all iterations after some index. 
After this index, we shall have y-  = 0, and there will be no need for computing 
Vg-(x) with potentially significant computational savings resulting. 

The role of the parameter u in preventing convergence to a local maximum 
can be observed from the definition of the active constraint set. For inequality 
constrained problems, local maxima typically have negative Lagrange 
multipliers associated with active constraints. Now the Newton iteration (103) 
ignores all constraints j for which [compare with (97)] 

This means that if u is sufficiently small, then within a neighborhood of a local 
maximum-Lagrange multiplier pair (x*, y*) for which strict complementarity 
holds (yT < Oifgj(x*) = 0) all constraints are ignored by theNewton iteration 
(103) which then becomes an iteration of Newton's method for unconstrained 
minimization off (x). Thus even though the method may be initially attracted 
to a local maximum-Lagrange multiplier pair and may approach it during 
several iterations while it attempts to reach the feasible region, it has the ability 
to eventually recognize such local maxima and to take large steps away from 
them. 

We mention also that it may be advantageous to exploit the a priori 
knowledge that Lagrange multipliers corresponding to inequality constraints 
are nonnegative. Thus, instead of minimizing P; subject to no constraints on 
(x, y), it is possible to use special methods that can handle efficiently simple 
constraints in order to minimize P: subject to y 2 0 (compare with Section 
1.5). This eases the problem of selection of an appropriate value for the param- 
eter a, since by enforcing the constraint y 2 0 we preclude the possibility thaf 
the method will converge to a K-T pair with a negative Lagrange multiplier 
such as the usual type of local maximum. When f and gj  are convex functions, 
then for all x and y 2 0, the matrix V:,L is positive semidefinite and the 
appropriate extension of Proposition 4.15 shows that any positive value of r is 
suitable. Thusfor convex programming problems, the selection of the parameter 
u presents no diflculties as long as minimization of P,f is carried out subject to 
the constraint p 2 0. This makes the method described above particularly 
attractive for convex programming problems for which second derivatives 
of the objective and constraint functions are readily available. 

43.3 Combinations with Nondzfferentiable Exact Penaltj 
Methods-Pokvell's Variable Metric Approach 

As shown in Section 4.4.2 [compare with (26) and Proposition 4.25a1, the 
Newton iteration for solving the system of necessary conditions for (ECP) can 
be viewed as a special case of the linearization method of Section 4.2 with 
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unity stepsize. The same can be said of the inequality constrained version of 
Newton's method based on quadratic programming and given in Section 4.4.3. 
We also saw in Section 4.4.3 a somewhat different type ofmethod for inequality 
constraints which is based on an active set approach and solution of quadratic 
programming subproblems of the type appearing in the linearization method 
[compare with (90) in Section 4.4.31. It is possible to exploit these relations 
with the linearization method in an effort to enlarge the region of convergence 
of Newton-like iterations, and this is the subject of the present section. 

Methods that Utilize Second Derivatives 

The main idea in such methods is to perform the Newton iteration and test 
whether some criterion of merit is improved. If so, the results of the iteration 
are accepted. If not, we fall back to the linearization method. We shall discuss 
two distinct approaches for the problem 

(NLP) minimize f (x) 

subject to hi(x) = 0, gj(x) I 0, i = 1, .  . . , m, j = 1, . . . , r, 

based on the exact penalty function, of Sections 4.1 and 4.2, 

where c > 0 is the penalty parameter. Throughout this section we assume that 
f ,  hi, gj E C 2 .  

First Approach : This method is due to Pschenichny (private communica- 
tion) and is based on the second active set approach described in Section 4.4.3. 
Fixed scalars 6 > 0 and y E (0, 1) are selected. Given x E Rn, we consider the 
quadratic program 

(QUx minimize Vf (x)'d + q 1 d l 2  
subject to hi(x) + Vhi(x)'d = 0, i = I , .  . . , m, 

gj(x) + Vgj(x)'d I 0, j  E J&), 
where 

(1 18) J6(x) = { j  1 gj(x) 2 P(x) - 6, j = 1, . . . , r). 
For simplicity, we assume that this problem has at least one feasible solution 
for every x E Rn (and hence also a unique optimal solution). Otherwise, 
modifications of the type described in Section 4.2 must be introduced. Given 
x, E Rn after the kth iteration, let d, be the optimal solution of (QP),, and let 
i(x,), pj(x,), j E J,(xk), be corresponding Lagrange multipliers. Let also 
Pj(xk) = 0 for j I$ J6(xk). Define 
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and assume without loss of generality that A(x,) contains the first p, indices, 
where p, 5 r. Define the n x (m + p,) matrix N, by 

and define 

if the inverses appearing above exist. Solve (QP),, and let 2, be the correspond- 
ing optimal solution. The next point x,,, is obtained as follows: 

If the inverses in (119) and (120) exist and 

then 

Otherwise 

where the stepsize a, is obtained as in the linearization method of Section 4.2 
based on descent of the exact penalty function f + cP, where c > 0 is the 
penalty parameter. 

It is easily seen that limit points of the generated sequence {x,) must be 
either K-T pairs of (NLP) or at least critical points of the exact penalty 
function f + cP. Based on the theory of Section 4.3, it is also easily shown that 
if the starting point x, is sufficiently close to a local minimum x* of (NLP) 
satisfying the sufficiency condition (St) then xk+ ,  is generated by (120) and 
(121), for all k = 0, 1, . . . , and { I x, - x* 1 ) converges to zero superlinearly. 

Second Approach: This approach is basically the linearization method of 
Section 4.2.2 with the matrices H, being either equal to V,~,L(X,, I,, p,), if 
this is judged appropriate by the algorithm, or equal to some positive definite 
matrix. (For equality constrained problems, H ,  can be taken to be a positive 
definite modification of V;, L(xk, ik ,  1,) along the tangent plane as discussed 
in the previous section.) Here A,, 1, are approximations to Lagrange multi- 
pliers of the problem obtained for example in the previous iteration. Thus, 
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given x, after iteration k, the basic method consists of solving the quadratic 
program 

(122) minimize Vf (x,)'d + 4d1Hkd 

subject to hi(xk) + Vhi(xk)'d = 0 V i = 1, . . . , m, 

followed by the iteration 

where 6 > 0 is a fixed scalar, J,(x,) is given by (118), d, is the unique solution 
of (122), and a, is obtained by a line search procedure based on descent of the 
exact penalty function f + cP. For simplicity, we assume that problem (122) 
has at least one feasible solution for each k and that a suitably large value of 
the penalty parameter c is known. It is possible, of course, to handle situations 
where these assumptions are not satisfied as described in Section 4.2.2. 

The algorithm should be set up in such a way that near a K-T pair 
(x*, p*), satisfying Assumption (S'), H, is chosen to be equal to 
V?,L(x,, A,, p,) in which case Eq. (123) is closely related to the Lagrangian 
method of Section 4.4.3, which is based on the quadratic programming 
approach. The main additional feature is the introduction of the stepsize a, 
which enforces descent of the exact penalty function f + cP and thereby 
enlarges the region of convergence of the method. If the stepsize a, turns out to 
equal unity for all k sufficiently large and the method converges to a local 
minimum x* satisfying the sufficiency Assumption (S + ), then according to the 
theory of Section 4.4.3, the rate of convergence is superlinear. Unfortunately, 
it is impossible to guarantee that a unity stepsize will result in a reduction of 
the exact penalty function f + cP even when the algorithm is arbitrarily close 
to a solution. We shall demonstrate this fact later in this section, and we shall 
discuss possible remedies. 

Powe1l.s Variable Metric Approach 

Consider again (NLP), the exact penalty function 

and the linearization method 
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where d ,  together with corresponding Lagrange multipliers A,, p, is the 
solution of the problem 

(QP),(x, , H,, J,) minimize Vf (x,)'d + id", d 

subject to hi(xk) + Vhi(xk)'d = 0 V i = 1, . . . , m, 

and sr, is chosen by one of the line search rules of Section 4.2.1 based on 
descent of the exact penalty function f + cP. We assume for simplicity that 
problem (QP),(x,, H,, J,) has at least one feasible solution-otherwise the 
algorithm should be modified as in Section 4.2. We also make the assumptions 

where J,(x,) = ( j  1 gj(xk) 2 P(x,) - 6 )  and 6 is a fixed positive scalar. 
As already discussed in this section, if the starting point xo is sufficiently 

close to a solution x* satisfying together with Lagrange multipliers A*, p* 
Assumption (S+), H, is for all k sufficiently close and converges to V;, L(x*, 
A*, p*), and the stepsize rk  equals unity for all k, then the resulting method is 
superlinearly convergent. Note however that sinceV;, L(x*, A*, p*) need not 
be positive definite, if we require that H, + V:, L(x*, A*, p*), then we may 
violate the positive definiteness requirement on H,. Powell (1978a) observed 
that in order to attain superlinear convergence in the linearization algorithm, 
it is sufficient that 

lim [V$ L(x*, j*,  p*) - H,]Z* = 0, 
k- w 

where Z* is a matrix of basis vectors for the tangent plane at x* (compare with 
the discussion in the previous section). He concluded that it is possible to 
achieve superlinear convergence by choosing H, to be for all k a positive 
definite matrix and showed that this can be done by updating Hk via variable 
metric formulas utilizing only first derivatives of the objective and constraint 
functions. He suggested the following updating scheme based on the BFGS 
formula (see Section 1.3.5) 

where 

the vectors pk and q,  are given by 
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where A,, pk are Lagrange multipliers of (QP),(x,, H,, J,), and the scalar 8, 
is given by 

When 0, = 1, then from (126), r, = q, and the updating formula (125) is the 
same as the BFGS formula for updating the approximation to V2,L. The 
scalar 0, is introduced in order to ensure that phr, > 0 which, by Proposition 
1.20, ensures that positive definiteness of H, implies positive definiteness 
of H, +, via (125). Indeed. with r ,  chosen by (126), we have 

= ekp; qk + (1  - 0k)p iHk~k  3 

so it is easily seen that if 0, is chosen by (129) and H ,  is positive definite then we 
have p; r, > 0. 

There are two main advantages of Powell's algorithm. The first is that there 
is no need for computation of second derivatives-a typical feature of variable 
metric methods. The second is that the algorithm maintains positive definite- 
ness of the matrix H,, and this eliminates the possibility of difficult indefinite 
quadratic programs arising in the computations as is possible with some of 
the Newton and quasi-Newton methods of Sections 4.4.3 and 4.4.4. 

Powell (1978b) shows that if the stepsize sc, is unity for all k sufficiently 
large and some additional mild conditions hold, then the rate of convergence 
of the algorithm to a solution x* satisfying Assumption (S ' )  is superlinear. 
This is a far from obvious result since the sequence of matrices {H,) typically 
does not converge to the Hessian of the Lagrangian at the corresponding 
K-T pair. The result owes its validity primarily to the fact that near con- 
vergence many of the steps taken by the algorithm tend to be parallel to 
the tangent plane at the solution. As a result the variable metric formula 
(125)-(129) tends to provide a good approximation of the Hessian of the 
Lagrangian function along this subspace, and this is sufficient to induce 
superlinear convergence. 

On the other hand, we have already mentioned in this section that even 
when arbitrarily close to x* it may not be possible to select x ,  = 1 and still 
achieve a reduction of the exact penalty function f + cP. We proceed to 
discuss this difficulty. 

Rate of Conuergence Issues 

We first provide an example showing that it may not be possible to select a 
unity stepsize in algorithms (123) and (124) while achieving a reduction of the 
exact penalty function f + cP, even arbitrarily close to a solution and with 
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an "optimal" scaling matrix H,. This fact seems to have been first observed by 
Maratos (1978), (see also Chamberlain et a/., 1978). 

Example: Consider (NLP) for the case of a single equality constraint 
h(x) = 0, h: Rn -, R (i.e., m = 1 and r = 0). Let d be the solution of the 
quadratic program 

minimize Vf(x)'d + 3d'Hd 

subject to h(x) + Vh(x)'d = 0, 

where we assume that Vh(x) # 0. Let also A be the corresponding Lagrange 
multiplier. We have then 

(130) Vf (x) + Vh(x)A + Hd = 0, 

From the mean value theorem, we have 

(132) f (x + d) = f (x) + Vf (x)'d + $d1V2f(?)d, 

(133) h(x + d) = h(x) + Vh(x)'d + $d' V2h(n)d, 

where 2 and R are points on the line segment connecting x and (x + d). By 
combining (130), (1 3 I), and (1 32), we obtain 

(134) f (x + d) = f (x) + ih(x) - d'Hd + $d'V2f ( ~ ) d ,  

while by using (131) in (133), we have 

The last two equations yield 

Let (x*, A*) be a local minimum-Langrange multiplier pair satisfying Assump- 
tion (S). Assume that x is very close to x*, but x # x*, h(x) = 0, and further- 
more H is chosen to be the "optimal" scaling matrix V:,L(x*, A*). Then 
d # 0, 2 x*, 1 Z x*, and the sign of the expression in the right-hand side of 
(136) depends on the magnitude of c and the curvature of h. In particular, if 
V2h(x*) is positive definite (or negative definite), there exists a threshold 
value 2 such that for all c 2 2 we have 

and the Newton step leads to an increase of the exact penalty function 
f + cP. This example reveals also the nature of the difficulty which is that in 
moving from x to (x + d) we may attain a decrease of the objectiue function f 
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but also an increase of the penalty / h I of comparable magnitude, with a net 
increase of f  + cP for sufficiently large values of the penalty parameter c. 
As shown by (136), this situation is more likely to occur when x is near the 
constraint boundary [h(x) E 01 in which case the quadratic term in the right- 
hand side of (136) dominates. It is interesting to note in this connection that 
some of the difficulties with establishing the descent property of the Newton 
direction for differentiable exact penalty functions also occur when x is near 
the constraint boundary, and this necessitated the introduction of condition 
(28) in Proposition 4.29. 

The phenomenon illustrated in the example above has potentially serious 
consequences, since it may prevent superlinear convergence of algorithms 
(123) and (124) even under very favorable circumstances. Two different 
techniques for overcoming this difficulty are proposed in Chamberlain et al. 
(1979), in Mayne and Polak (1978), and in Gabay (1979). In the first approach, 
a unity stepsize is accepted even if it does not result in a reduction of the exact 
penalty function provided additional tests based on descent of the Lagrangian 
function L(., A,, p,) are passed. The overall technique is supplemented by 
safeguards that ensure satisfactory theoretical convergence properties. The 
complete details can be found in Chamberlain et al. (1979) and in the thesis by 
Chamberlain (1 980). 

In the approach of Mayne and Polak (1978) and Gabay (1979), the 
stepsize search is performed not along the line { z  1 z = x, + xd,, cc 2 0 )  but 
rather along an arc of points which attempts to follow the constraint boundary. 
We describe this technique for the case of the equality constrained problem 

(ECP) minimize f ( x )  

subject to h(x) = 0. 

Similarly as earlier, given x,, we obtain the solution d, of the quadratic 
programming problem 

(137) minimize V f (x,)'d + $d'H, d 

subject to h(xk) + Vh(x,)'d = 0. 

We then obtain the solution p, of the quadratic programming problem 

(138) minimize $ 1  1' 
subject to h(x, + d,) + Vh(x,)'p = 0. 

The next point x,+, is given by 
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where the stepsize x, is obtained by an Armijo-type line search along the arc 
{ x ,  + ad, + r2pk la E [0, 11). More specifically 

where m, is the first integer m satisfying 

and &(x;  d )  is given by [compare with (18) in Section 4.2.11 

The scalars j3 and o satisfy B E (0, 1 )  and o E (0, $1. 
It is assumed that the symmetric scaling matrix H ,  is uniformly positive 

definite on the tangent plane; i.e., for some positive scalars y and l- and all k, 
we have 

To simplify matters it is also assumed that Vh(x)  has rank m for all x. This 
together with (143) implies that both quadratic programs (137) and (138) 
have a unique optimal solution. 

The solution p, of the quadratic program (138) may be viewed as an 
approximate Newton step from ( x ,  + d,) towards satisfying the constraint 
h(x)  = 0. The result that follows can also be proved if (138) is replaced by the 
quadratic program 

subject to h(x, + d,) + Vh(x,  + d,)'p = 0. 

The solution of this program can be viewed as a more exact Newton step from 
( x ,  + d,) towards the constraint surface than the solution p, of (138). The 
advantage of using (138) in place of (144) is that the computation of 
Vh(x,  + d,) is saved. Nonetheless, it is quite possible that, in some situations, 
using (144) rather than (138) can result in more efficient computation, par- 
ticularly in the initial stages of the algorithm. Note that the solution p, of 
problem (138) can be written explicitly as 

and that the inverse [Vh(x,)'Vh(x,)]-' is normally available as a by-product 
of the solution of the quadratic program (137). 
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It is not difficult to modify the proof of Proposition 4.13 and show that, 
under the preceding assumptions and if c is sufficiently large, all limit points of 
the sequence {x,) generated by algorithm (137)-(142) are critical points of 
f + cP. We shall leave the verification of this fact to the reader. The following 
proposition addresses the convergence rate properties of the algorithm. 

Proposition 4.32: Let {x,) be a sequence generated by algorithm (137)- 
(142). Assume that {x,) converges to a local minimum x* of (ECP) which 
together with a Lagrange multiplier A* satisfies the sufficiency Assumption (S), 
and furthermore c > "=, 1: I. Assume also that the sequence {H,) is 
bounded and satisfies (143) and that 

(1 46) lim [V;, L(x*, A*) - Hk]Z* = 0, 
k+ m 

where Z* is an n x (n - m) matrix of basis vectors for the tangent plane 

Then for all k sufficiently large, the stepsize LY, equals unity, and {x,) converges 
to x* superlinearly. 

The proof of Proposition 4.32 is quite long. For this reason we isolate some 
of the basic steps in the following lemma. 

Lemma 4.33: Let the assumptions of Proposition 4.32 hold, and let A, be 
the Langrange multiplier of the quadratic program (137). Then 

(a> P(xk + dk) = O( 1 dk 12). 
(b) pk = O( 1 dk 12). 
(c) P(xk f dk + ~ k )  = O( 1 dk 12). 
(d) There exists a scalar 7 > 0 such that, for all k sufficiently large: 

(e) There holds 

where 

(f) There holds 

(g) There holds 
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Proof: (a) From Taylor's theorem we have 

and since dk is the solution of (137), we also have h(x,) + Vh(xk)'dk = 0. The 
result follows. 

(b) Part (b) follows from (145) and part (a). 
(c) From Taylor's theorem, we have 

Since pk solves problem (138), we have h(x, + d,) = -Vh(xk)'pk and sub- 
stitution in the preceding equation yields 

h ( ~ k  + dk + ~ k )  = LVh(xk + dk) - Vh(xk)l'~k + O( 1 pkI2). 

Since Vh(xk + d,) - Vh(x,) = O( 1 dk 1) and from part (b), p, = O( Idk 12), we 
obtain 

from which the result follows. 
(d) From (142) and the fact that hi(xk) + Vhi(xk)'dk = 0, we obtain 

Let C be a scalar such that the matrix B, given by 

is positive definite for all k with eigenvalues uniformly bounded below by a 
positive scalar. [Such a scalar exists in view of the assumption (143) and the 
boundedness assumption on {H,}.] From the necessary conditions for 
optimality of d, in problem (137), we have 

Using this equation, (148), and the fact that Vh(x,)'d, = - h(xk), we obtain 

Vf (xk)'dk - [ A k  + zh(xk)lih(xk) 4- diRkdk = 0. 

Combining this equation with (147), we obtain 

Using the assumption c > "=,AT I and the fact that I I ,  + ch(xk) -+ A*, we 
obtain, for sufficiently large k, 

and the result follows. 
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(e) Denote 

We have 

By assumption, [H,  - V:,L(X,, Ak)]Z* = O(l/k)  and Vh(x,)'Z* = O(l/k). 
Hence, S,Z* = O(l/k) ,  and we obtain 

Also 

Vh(x*)'A,Vh(x*) = Vh(x*)'[H, - V&L(xk ,  /Z,)]Vh(x*) 

- Vh(x*)'Sk[Hk - V:, L(xk ,  i k ) ]Sk  Vh(x*). 

Since Vh(x*)'S, = Vh(x*)' + O(l/k),  we obtain 

(152) Vh(x*)'A,Vh(x*) = O(l/k).  

Every vector w E Rn can be uniquely decomposed as w = Z*y + Vh(x*)z, so 
using (151) and (152), we have 

It follows that A, = O(l/k),  and the result is proved. 
(f) We have, from Taylor's theorem and part (b), 

Also from (149) and the fact that h(x, + d,) = -Vh(x,)'p,, we obtain 

Using part (b) and the fact that 

hi(x, + d,) = hi(xk) + Vhi(xk)'dk + jdLV2hi(xk)dk + 0 ( I d k l 2 )  

= idbV2hi(~k)dk + 0(I dk  1 ' )  
in (154), we have 



296 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS 

Combining Eqs. (147), (153), and (155), we have 

Using part (c), we obtain from this equation the desired result. 
(g) From (149), we have 

Using (147) and the fact that Vh(xk)'dk = - h(xk) in this equation, we obtain 

Substituting the expression for Hk in part (e) and using the fact that Vh(xk)'dk 
= - h(xk), we obtain 

where the matrix Mk is given by 

Since IIk + Mk h(xk) + II* and c > "=, IF I, we have, for sufficiently large k, 

(157) h(xJ1[/Zk + Mkh(xk)] - cP(xk) S 0. 

By combining (156) and (157), the result follows. Q.E.D. 

We are now ready to complete the proof of Proposition 4.32. 

Proof of Proposition 4.32: From parts (d), (f), and (g) of Lemma 4.33, we 
obtain, for sufficiently large k, 

It follows from the definition (140)-(141) of the stepsize rule that we have 
xk = 1 for all k sufficiently large. 

In order to show the superlinear convergence property of the algorithm, 
we note that the assumption (146) implies (see the analysis following Pro- 
position 4.31) that 



It is also easily shown that dk = O(Ixk - x* I), and therefore, using part (b) of 
Lemma 4.33, 

Pk = O( I xk - X* 1'). 

The two equations above yield 

Ixk + d k  f pk -x*I  5 I x k + d k - x * /  + Ipkl 
= O(l/k) lx, - x* I + O(lxk - X* j2) 
= O(l/k) 1 xk - X* I. 

For k sufficiently large, the stepsize a, is unity and therefore 

X k + l  = Xk + dk + Pk. 
Combining the last two relations, we obtain 

I xk+ - X* I 5 O(l/k) 1 xk - X* I. Q.E.D. 

We note that if the matrices H, satisfy the stronger condition 

< Z ' H ~ Z  I rjz12 v z  E R" 

for some positive scalars y ,  r, in place of (143) then the result of Proposition 
4.32 can be proved also for the case where the right side of (141) is replaced 
by Pmd; H,d, [compare with (150)l. This form of the Armijo rule is consistent 
with the one of Section 4.2. 

While the idea of introducing an additional step towards the constraint 
surface was motivated by the desire to improve the rate of convergence 
properties of the algorithm when near a solution, there are indications that 
this step frequently improves these properties even when far from the solution. 
The reason is that in order to keep decreasing the value of the exact penalty 
function f + cP the algorithm must follow closely the constraint surface, 
particularly for large values of c. The extra step towards the constraint surface 
helps to achieve this without an excessive number of stepsize reductions and 
attendant function evaluations at each iteration. 

We finally note that it is possible to extend the algorithm just given to 
inequality constraints by using an active set strategy whereby the active 
inequality constraints are the ones for which the Lagrange multipliers, ob- 
tained from the quadratic program analogous to (137) [compare with (122)], 
are positive. An alternative approach together with convergence analysis is 
given in Mayne and Polak (1978). 

4.6 Notes and Sources 

Notes on Section 4.1: Nondifferentiable exact penalty functions have 
been analyzed by several authors including Zangwill (1967b), Ermoliev and 
Shor (1967), Pietrzykowski (1969), Luenberger (1970), Evans et al. (1973), 
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Howe (1973), Bertsekas (1975b), and Dolecki and Rolewicz (1979). Detailed 
references and a thorough discussion for nonconvex problems is given in 
Han and Mangasarian (1979). Proposition 4.7 is taken from Mayne and 
Polak (1978), and the proof of Proposition 4.9 uses an adaptation of an 
argument in Pschenichny and Danilin (1975, p. 196). 

Notes on Section 4.2: The linearization algorithm for minimax and 
nonlinear programming problems including a global convergence result 
based on the Armijo rule and descent of the exact penalty function f + cP 
was first given in Pschenichny (1970). This convergence result is given here as 
Proposition 4.13. Our proof of this result is new and does not require a 
Lipschitz assumption on the gradients of the objective and constraints that 
was necessary in the original proof of Pschenichny. The linearization 
algorithm was rediscovered in weaker form by Han (1977b), and several 
related algorithms were given by Mayne and Maratos (1979). Convergence 
results relating to the linearization algorithm have also been given by Mayne 
and Polak (1978) and Bazaraa and Goode (1979). The convergence rate of the 
algorithm is analyzed in detail in Pschenichny and Danilin (1975). 

Notes on Section 4.3: The exact penalty functions P(x ,  %; c, u)  and 
P(x, A; c, M) were introduced by DiPillo and Grippo (1979a). The proofs of 
all the results of Section 4.3.1 are taken from DiPillo et al. (1979) with the 
exception of Proposition 4.15 which is new. Related penalty functions have 
been proposed by Boggs and Tolle (1980) and Han and Mangasarian (1981). 

The exact penalty function p(x; c) of Section 4.3.2 was first introduced by 
Fletcher (1970) and further discussed in connection with specific algorithms 
in Fletcher and Li11 (1971), Fletcher (1973), Mukai and Polak (1975), Glad 
and Polak (1979), and McCormick (1978). The line of analysis given here is 
new and is based on the connection with the penalty functions of DiPillo and 
Grippo first reported in Bertsekas (1980a). 

The algorithms based on second derivatives of Section 4.3.3 are due to 
DiPillo et al. (1979) and Fletcher (1973) with the exception of those algorithms 
that are based on Newton's method for solving the system VL(x, 1) = 0, 
which were first considered in Bertsekas (1980a). The analysis of the penalty 
parameter choice for the penalty function p(x; c) is due to Fletcher (1970), 
while the corresponding analysis for the penalty functions P(x, A ;  c, a) and 
P(x, A ;  c, M) is new. The main idea of the automatic penalty parameter adjust- 
ment schemes is due to Polak (1976) and has been applied by several authors 
(Mukai and Polak, 1975: Glad and Polak, 1979: Mayne and Maratos, 1979; 
Mayne and Polak, 1978). The scheme given here is new. An alternative scheme 
has been given by DiPillo et al. (1979). 



Notes on Section 4.4 The first extensive work on Lagrangian methods 
is Arrow et al. (1958). Proposition 4.23 is due to Poljak (1970). Analysis 
relating to first-order methods for inequality constrained convex problems 
may be found in Zangwi11(1969), Maistrovskii (1976), Campos-Filho (1971), 
Golshtein (1972), and Korpelevich (1976). A class of Lagrangian functions for 
inequality constrained problems which leads to unconstrained saddle point 
problems was introduced by Mangasarian (1974, 1975). Some early interest- 
ing work on Lagrange multiplier iterations using augmented Lagrangian 
functions can be found in Miele et al. (1971a, b, 1972). 

Newton-like and quasi-Newton methods of the Lagrangian type were 
systematically analyzed only recently. Important works in this area are 
Garcia-Palomares and Mangasarian (1976), Tapia (1977), Glad (1979), Han 
(1977a), Biggs (1978), Gabay (1979), and Powell (1978a, b). Early works using 
quasi-Newton updating formulas for equality constrained problems are 
Kwakernaak and Strijbos (1972) and Biggs (1972). The proof of local con- 
vergence of iteration (45), (46) is due to Glad (1979). Newton's method in the 
space of primal variables [cf. 48)] was first discussed in Tapia (1977) and 
Pschenischny and Danilin (1975). Proposition 4.26 is due to Pschenichny 
and Danilin (1975). The quadratic programming version of Newton's 
method for inequality constrained problems was first suggested by Wilson 
(1963). Its convergence rate has been established by Robinson (1974). Corre- 
sponding quasi-Newton methods were first proposed by Garcia-Palomares 
and Mangasarian (1976). Conditions for superlinear convergence of quasi- 
Newton methods for constrained minimization are given in Boggs, Tolle, 
and Wang (1982). 

Notes on Section 4.5: Some good quasi-Newton algorithms combining 
Lagrangian methods and multiplier methods are given in Glad (1979). 

The results and algorithms of Section 4.5.2 are due to Bertsekas (1980a, b) 
with the exception of the quasi-Newton algorithm (58)-(62), which was first 
proposed by Dixon (1980). 

Basic references for the material of Section 4.5.3 are Mayne and Polak 
(1978), Powell (1978a, b), Gabay (1979), Chamberlain (l980), and Chamber- 
lain et al. (1979). A related approach is proposed in Coleman and Conn 
(1980a, b). Proposition 4.32 was proved by Mayne and Polak (1978) and 
Gabay (1979). Mayne and Polak (1978) have also treated inequality con- 
strained problems. 

It is difficult to compare accurately the performance of exact penalty 
methods, such as those described in Section 4.5, with methods of multipliers 
discussed in Chapters 2 and 3. The computational evidence available suggests 
that if relatively good choices of the penalty parameter and the starting point 
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are known, then exact penalty methods are as reliable as multiplier methods 
and typically require fewer iterations for problems where the sufficiency 
assumptions (S) or (Sf )  are satisfied. On the other hand, the overhead per 
iteration of exact penalty methods can be significantly higher than the one of 
multiplier methods-particularly when the dimension of the problem is large. 
We can however conclude that ifgood initial information regarding the penalty 
parameter and the starting point is available, and the dimension of the problem 
is small, then exact penalty methods hold an advantage over multiplier 
methods. In the absence of good initial information, multiplier methods tend 
to be more reliable, easier to "tune," and in the author's experience, often 
require fewer iterations to converge-particularly when combined with 
Lagrangian methods as described in Section 4.5.1. We can thus conclude that 
multiplier methods hold the advantage for problems of large dimension, and 
for problems where the initial information is of poor quality. The preceding 
statements should only be viewed as general guidelines, and it should be 
kept in mind that the relative significance of overhead per iteration depends 
very much on the computation required for evaluating the function values 
and gradients needed at each iteration. Furthermore an important factor in 
comparing the merits of each class of methods is the nature of the application 
at hand. If repetitive solution of the same problem with minor variations is 
envisioned, then it may be reasonably assumed that good initial information 
will eventually become available and this favors the use of an exact penalty 
method. If only a limited amount of computation needs to be performed 
after development of the optimization code, one is typically better off using 
a method of multipliers. 

It is also difficult to compare globally convergent Newton and quasi- 
Newton methods based on differentiable and nondifferentiable penalty 
functions (Sections 4.5.2 and 4.5.3, respectively). Both types of methods 
essentially behave identically near a solution when the superlinear con- 
vergence property takes effect. Far from a solution, their behavior can be 
quite different in the sense that in any given iteration the stepsize may have to 
be reduced by different amounts from its initial value of unity in order to 
achieve descent for each penalty function. It is significant in this respect that 
the threshold values for the penalty parameter on any given problem can be 
greatly different for differentiable and nondifferentiable penalty functions 
(compare the estimates given in Sections 4.1 and 4.3.3). Methods based on 
differentiable exact penalty functions require more overhead in view of the fact 
that they involve first derivatives of the constraints in the penalty function. 
However this overhead need not include evaluation of second derivatives 
of objective and constraint functions and is not as much as may appear at 
first sight (see the discussion of Section 4.5.2). Another aspect of differenti- 
able exact penalty Lvhich may constitute a tangible practical disadvantage 
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is the fact that their extensions currently available for handling inequality 
constraints are not as "clean" as those available for nondifferentiable 
penalty functions. On the other hand, methods based on differentiable 
penalty functions have the theoretical advantage that they do not require 
any modifications such as those of Mayne and Polak (1978), Gabay (1979), 
and Chamberlain et al. (1979) in order to obtain superlinear convergence. 

We finally note that in quadratic programming based quasi-Newton 
schemes, such as Powell's, where an exact penalty function is used as a descent 
function, one should try to avoid gradient evaluations of the penalty function. 
For nondifferentiable penalty functions these gradients are of little value 
even at points where they exist. The computation of a gradient of a differ- 
entiable penalty function is undesirable since it involves either exact second 
derivatives or their finite difference approximations. Therefore one should 
try to use one-dimensional line search procedures that require function 
values only. The simplest possibility is to use the Armijo rule with o = 0, 
i.e., a rule that reduces the stepsize by a certain factor until a reduction in the 
exact penalty function value is observed. While this simplification of the 
Armijo rule involves a theoretical risk of nonconvergence, this risk. for 
practical purposes. appears to be negligible. 



Chapter 5 

Nonquadratic Penalty Functions - 
Convex Programming 

5.1 Classes of Penalty Functions and Corresponding Methods of 
Multipliers 

The quadratic penalty function is the most widely used in practical 
implementations of methods of multipliers. However, there is occasionally 
a tangible advantage in using a different penalty function. We describe some 
situations where this is the case: 

(a) It may occur that while the objective function is bounded below 
along the constraint set, the augmented Lagrangian is unbounded (over the 
entire space) for every value of the penalty parameter. For example, the 
augmented Lagrangian for the trivial scalar problem 

minimize -x4 

subject to x = 0 

is given by 

302 
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Clearly LC(., 1) is unbounded below for every c and as a result the uncon- 
strained minimization algorithm used for minimizing LC(., 1) diverges unless 
the starting point is close to the unique local minimum of LC(., I). This 
situation can often be corrected by using a penalty function with sufficiently 
high order of growth. For the preceding example a penalty function of the 
form 

in place of 4c I  x l 2  will resolve the difficulty. 
(b) The augmented Lagrangian functions for inequality constraints and 

some of the approximating functions developed in Chapter 3 do not have 
continuous second derivatives. On the other hand, the methods most likely to 
be used for unconstrained minimization of the augmented Lagrangian rely 
conceptually on continuity of second derivatives. Despite this fact, it appears 
that for many practical problems the second derivative discontinuities do 
not have a significant adverse effect on the performance of methods, such as 
the conjugate gradient method, quasi-Newton methods, and Newton's 
method. Nonetheless under extreme circumstances, these discontinuities can 
slow down considerably the rate of convergence of these methods and can 
be the cause of algorithmic failure. In this case, it is preferable to use a twice 
continuously differentiable augmented Lagrangian of the type to be intro- 
duced shortly. 

(c) Multiplier methods corresponding to different types of penalty 
functions can exhibit drastically different rates of convergence. The speed of 
convergence may be much faster or much slower depending on the penalty 
function employed as illustrated in the examples of Section 2.2.4. This 
perhaps surprising feature, which is not present in ordinary penalty methods, 
raises the interesting possibility of delineating a penalty function which 
matches best the problem at hand in terms of computational efficiency. 

In what follows in this section, we introduce various classes of penalty 
functions that are suitable for use in multiplier methods, and develop some of 
their properties that will be useful for the analysis of subsequent sections. 

5.1.1 Penalty Functions for Equality Constraints 

Consider the equality constrained problem 

(ECP) minimize f (x) 

subject to h(x) = 0. 

We consider the following class of penalty functions: 
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Class of Penalty Functions P,: All functions 4 :  R -t R having the fol- 
lowing properties. 

(a) 4 is continuously differentiable and strictly convex on R. 
(b) 4(0) = 0 and V4(O) = 0. 
(c) lim,, -, V4(t) = - cc and lim,,, V4(t) = cc. 

Examples of functions in the class P, are 

(i) $(t) = i t 2  (quadratic). 
(ii) 4(t) = p -  ' 1 t l P ,  p > 1 (p-order of growth). 

(iii) 4(t) = p -  ' 1 t l P  + i t2 ,  p  > 1. 
(iv) 4(t) = cosh(t) - 1. 

We associate with a given penalty function 4 in the class P ,  the augmented 
Lagrangian function 

(1) 
1 "  

L,(x, A) = f (x) + A'h(x) + - 1 4[chi(x)]. 
c is' 

The first-order method of multipliers corresponding to 4 consists of sequential 
unconstrained minimization of the form 

(2) minimize L,,(x, A,) 

subject to x E R", 

yielding a vector x,. Minimization is followed by the multiplier iteration 

Note that, for 4(t) = i t2, iteration (3) reduces to A,+, = II, + ckh(xk), and we 
obtain the quadratic method of multipliers studied in Chapter 2. Similarly as 
for that method, it is possible to consider inexact minimization of the aug- 
mented Lagrangian (1). It is also possible to develop second-order iterations 
under a second-order differentiability assumption on 4. Other variations 
include the use of a different penalty function and/or penalty parameter for 
each constraint. 

There is a subclass of PE which admits an analysis which is almost 
identical to the one for the quadratic penalty function. This is the class of 
penalty functions 4 which are twice continuously differentiable with V24(0) 
= 1. We call such penalty functions essentially quadratic since near a solution 
they behave in essentially the same way as the quadratic penalty function. The 
entire analysis of Chapter 2 can be shown to hold with minor modifications 
for essentially quadratic penalty functions as the reader can easily verify. In 
particular, under Assumption (S), one can prove convergence results for the 
corresponding multiplier method similar to those for the quadratic method. 
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The rate of convergence is at least linear if {c,) is bounded above and super- 
linear if c, -. a. 

The rate of convergence of the multiplier method corresponding to the 
penalty function 

is superlinear for p E (1, 2) under Assumption (S). We shall demonstrate this 
fact in Section 5.4 in the context of a convex programming problem. For 
p 2 2, 4(t) is essentially quadratic and no better than a linear rate of con- 
vergence can be expected in general. It may appear that a choice p E (1,2) 
would be always preferable but it should be noted that in this case 4(t) is not 
twice differentiable at t = 0 and in fact V2q5(t) tends to cc as t tends to zero. 
This has the effect of making the unconstrained minimization of the augmented 
Lagrangian ill-conditioned. Thus, the advantage of superlinear convergence 
of the multiplier iteration may be offset by ill-conditioning difficulties in 
unconstrained minimization. Nonetheless, we know of problems where the 
use of the function (4) with p E (1,2) has yielded better results than the 
quadratic penalty function. Also, in problems which are solved repetitively 
with minor variations, it may be possible through the use of good starting 
points, special powerful unconstrained minimization methods, and "fine- 
tuning" to reduce significantly the effects of ill-conditioning. Under these 
circumstances, the method of multipliers that employs the penalty function 
(4) with p E (1, 2) can substantially outperform the quadratic method. 

5.1.2 Penalt,~ Functionsfor Inequality Constraints 

Consider the inequality constrained problem 

(IcP) minimize f(x) 

subject to g(x) s 0. 

We first consider the following class of penalty functions. 

Class of Penalty Functions PI: All functions p: R2 -. R having the 
following properties. 

(a) p is continuous on R x [0, + m), continuously differentiable on 
R x (0, + m), and possesses for all t E R the right partial derivative 
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Furthermore, p(. ; 0) is continuously differentiable with respect to t on R. 
[The partial derivative with respect to the first argument is denoted by 
V,p(.; .) and the one with respect to the second argument by V,p(. ; .).I 

(b) p(t; .) is concave on [0, + co) for each fixed t E R. 
(c) For each p 2 0, p(. ; p) is convex on R and satisfies the following 

strict convexity condition: 

(i) to > 0 or (ii) Vcp(to; p) > 0, 

then 

In Fig. 5.1, we show the shape of a typical function in PI. The predominant 
effect of the multiplier p is to alter the slope asp(. ; p) passes through the origin 
[properties (d) and (e)]. For t near zero, p(t ; p) FZ pt, but elsewhere the penalty 
effect dominates. The main consideration is that p(. ; p) passes through the 
origin with slope p. As t -, co, p(t; p) grows to infinity with unbounded slope. 
As t -+ - a, p(t ; p) approaches or reaches a finite infimum which is less than 
or equal to zero. 

/ 

FIG. 5.1 Form of penalty function p in the class P, 
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The augmented Lagrangian corresponding to a function p E P, is given by 

The first-order multiplier method corresponding to p consists of sequential 
unconstrained minimization of the form 

(6 )  minimize L,,(x, pk) 

subject to x E X, 

yielding a vector x k .  Minimization is followed by the multiplier iteration 

Note that iteration (7) is such that the equality 

V x  L c r ( x k  3 ~ k )  = V x  L ( x k  7 pk + 1) 

is satisfied for all k, where L is the ordinary Lagrangian function given by 
L ( x ,  p )  = f ( x )  + plg(x) .  The initial multiplier satisfies 1, 2 0. Note that 
from Eq. (7) and properties (c), (f), and (g), it follows that p, 2 0 for 
all k. 

Figure 5.2 shows the term c -  ' p ( c t ;  p)  in the augmented Lagrangian ( 5 )  and 
the effect of the parameter c in particular. The penalty effect increases with 

FIG. 5.2 Penalty functions c ;  ' p ( c ,  r ;  p )  and c ;  ' p ( c 2 t ;  p )  for c ,  < c ,  



308 5. NONQUADRATIC PENALTY FUNCTIONS-CONVEX PROGRAMMING 

increasing c. Indeed for p 2 0, the convexity of p ( . ;  p) and the fact that 
p(0; p) = 0 can be used to show that 

Examples of penalty functions in the class PI are as follows: 

Example 1 (Class P:): This subclass of PI is defined as the class of 
functions p: R2 + R of the form 

(8 )  
pt + 4 ( t )  if p + V 4 ( t )  2 0, PO; P)  = min,,, {pz + +(z)) otherwise, 

where 4:  R + R belongs to the class of penalty functions P ,  for equality 
constraints defined in the previous subsection. As an example, if $(t) = i t 2 ,  
we obtain the piecewise quadratic function 

The corresponding augmented Lagrangian (5) can be written as 

and is identical to the one used for one-sided inequality constraints in Section 
3.1. The multiplier iteration (7), corresponding to (9), takes the form 

and again is identical to the one of Section 3.1. More generally, we have, using 
(8), 

p + V4( t )  if p + V 4 ( t )  2 0,  
otherwise, 

or equivalently 

so the multiplier iteration (7) corresponding to the penalty function p E P,f of 
(8)  is given by 

Furthermore the reader can verify that each function p of the form (8) is 
obtainedfrom the corresponding function 4 E P, in the same manner as (9)  was 
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obtained from the quadratic penalty function 4(t) = +t2 in Section 3.1, i.e., by 
conuerting the inequality constraints to equality constraints by using additional 
uariables and by subsequently eliminating these variables from the actual 
computation. Thus the class P: corresponds to multiplier methods for (ICP) 
after it has been converted to an equality constrained problem. The next 
example yields penalty functions designed exclusively for inequality con- 
straints. An advantage of such functions is that they lead to twice continuously 
differentiable augmented Lagrangians. This property cannot be attained with 
functions in the class P,f .  

Example 2 (Twice Differentiable) : Consider any function $ : R + R, 
with $ E C2, V2$(t) > 0 for all t E R, $(O) = 0, V$(O) = 1, lirn,, - , $(t) > - co, 
lim,,-, V$(t) = 0, and lirn,,, V$(t) = co, and any convex function 
<: R + R, with < E C2, V2t(0) = 0, <(t) = 0 for all t I 0, <(t) > 0 for t > 0, 
and lirn,,, V<(t) = m. Each such pair (I), 5) defines a function p E PI by 
means of 

As an example, take 

We have 

Vtp(t; P) = per + [max{O, t)I2, dZp(t ; p)/at2 = pet + 2 max{O, t). 

Another example of a twice differentiable penalty function, which can 
be evaluated with simple arithmetic operations, is given by 

It is easy to verify that all functions of Examples 1 and 2 satisfy the con- 
ditions (a)-(h) and do indeed belong to PI. 

There is another class of penalty functions defined below that is often 
useful even though the analysis relating to them is not as powerful as the one 
relating to the class PI .  

Class of Penalty Functions p, : All functions p: R2 -+ R of the form 

where $: R + R is any function such that I) E C2, V2$(t) > 0 for a11 t E R, 
$(0) = 0, V$(O) = 1, 1 , ( t )  > - lim ,,-, V$(t) = 0, and 
lirn,,, V$(t) = a. 
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Note that all functions in the class PI are twice differentiable. A prominent 
example is the exponential penalty function 

Functions in the class PI satisfy all conditions (a)-(h) of the definition of the 
class P, with the exception of (c) and (g) which are satisfied only for ,u > 0. 

The augmented Lagrangian corresponding to the class P, is similarly 
given by 

The first-order multiplier method consists of sequential unconstrained 
minimization of LC,(., pk) over X yielding a vector xk. Minimization is 
followed by the multiplier iteration 

P ~ + ~ = V ~ P [ C ~ Q ~ ( X ~ ) ; P ~ ] = P ~ ~ I C / [ C ~ Q ~ ( X ~ ) ~ ,  j = l ? . . . , r .  

The initial multiplier must be positive, i.e., yo > 0. Note that the properties 
lirn,,-, V$(t) = 0 and V2$(t) > 0 imply that V$(t) > 0 for all t E R, so it 
follows that the sequence {yk) generated by the iteration aboue satisjies y, > 0 
for all k.  

In the remainder of this chapter, we shall provide a convergence analysis 
of multiplier methods corresponding to the classes PI and PI as applied to 
convex programming problems. For this analysis, we shall need a number of 
properties of the classes PI and PI which we collect in the following proposition. 

Proposition 5.1: Let either p E PI, y 2 0, and t E R or p E PI, p > 0, and 
t E R. Then 

Proof: We consider only the class PI. The proofs are valid also for the 
class PI since properties (a)-(h) in the definition of PI are satisfied by p E P, if 
p > 0. 

(a, b) Fix t E R and y 2 0. By property (d) and the convexity of p(.; y), 
we have 

0 = p(O; P) 2 PO; P) + (0 - t)V, p(t; P )  
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Similarly, using properties (d) and (e), we obtain 

By concavity of p(t; .), we have 

Combining the last two inequalities, we obtain 

By setting p = 0, we have 

while by letting ji + co we obtain 

Combining (12), (14), and (15) we obtain a proof of (a) and (b). 
(c) From part (a) we have, for fixed t E R, 

(d) To show the equivalence of (dl)-(d5), first assume that (d5) holds. 
There are two cases to consider: 

CASE I. (t = 0): In this case, (dl)-(d4) follow immediately from proper- 
ties (d) and (e). 

CASE 11. (t < 0 and y = 0): Properties (e) and (f)  together with the fact 
that V , p ( . ;  0) is nondecreasing (by convexity) yield V,p(t; 0) = 0 for t < 0. 
That together with property (d) implies 

p(t ; 0) = V, p(t ; 0) = y = 0. 

This proves (dl)-(d4). 
It will now suffice to show that if (d5) does not hold, then the same is true 

for (dl)-(d4). If (d5) does not hold then there are two cases. 
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CASE I. (t > 0): The proof of (12) and (13), together with the strict 
convexity property (c), imply that 

Since t > 0, these inequalities imply that (dl)-(d4) do not hold. 

CASE 11. (t < 0 and p > 0): By property (e), we have V,p(O; p) = y, and 
since Vtp( ; y) is continuous on R, there is an open interval of scalars i con- 
taining the origin in which V,p(i; y) > 0. By property (c), strict convexity 
holds for i in this interval. Using this fact in the proofs of (12) and (13), we 
obtain again (16) which shows that (dl)-(d4) do not hold. Q.E.D. 

5.1.3 Approximation Procedures Based on Nonquadratic Penalty 
Functions 

The approximation procedure described in Section 3.3 is based on a 
quadratic penalty function. As a result some of the approximating functions 
described there, such as the one corresponding to the function (compare with 
Example 6, Section 3.3) 

are not twice differentiable. By using a suitable nonquadratic penalty func- 
tion, it is possible in some cases to obtain more convenient or twice differ- 
entiable approximating functions. 

Let y: Rr + (- m, + 021 be a lower semicontinuous, convex function with 
y(t) < cc for at least one t E Rr. Assume further that y is monotonically non- 
decreasing in the sense that for any t,, t, E Rr we have 

(18) t,  I t2-y(t,) I &). 

Then for g: Rn + R', the problem 

minimize y [g(x)] 

subject to x E X  

is equivalent to the problem 

minimize y [g(x) - u] 

subject to x E X ,  u 5 0. 

By eliminating the inequality constraints u I 0 by means of a penalty 
function cC1p(cu; p), c > 0 and y 2 0, such as the ones considered in the 
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previous section, we obtain the approximating problem 

minimize Qc[g(x); p] 

subject to x E X, 

where the approximate objective function Q, is given by 

The general approximation procedure for problems containing several 
functions of the form y[g(x)] consists of replacing these functions by the 
approximating functions Q,[g(x); p] wherever they appear, followed by 
solution of the approximating problem. The process is repeated after suitable 
updating of the multipliers and the penalty parameter. 

As an example, consider the function 

[compare with (10) of Section 3.33, and the exponential penalty function 
[compare with (1 I)] 

(23) c-  'p(cu; p) = c-  'p(ecu - 1). 

A straightforward calculation yields that the approximating function of (21) is 
given by 

The corresponding multiplier iteration is given by 

This last fact can be verified by the reader by adapting the reasoning of Section 
3.3 to the present case and by carrying out the straightforward calculations 
(see also Bertsekas, 1976e). 

The exponential penalty function (23) can also be used in connection with 
the function 

to yield via (21) the twice differentiable approximating function 
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The corresponding multiplier iteration can be calculated to be 

During calculation of QcCg(x); p], as in (25), it is possible that computer 
overflow (or underflow) will occur if cgi(x) is too large (small). This difficulty 
can be eliminated by computing Qc[g(x); p], using the formula 

with ei(x, p, c) given by 

where y[g(x)] is given by (24), and A > 0 is a large scalar such that both e-A 
and eA lie within the computer's range. Similarly, the updated multipliers 
pi+, of (26) should be computed by using the formula 

As an example of using the penalty function (25), consider the following 
simple method for finding a solution of the system of nonlinear inequalities 

This problem is equivalent to the problem 

minimize y [g(x)] 

subject to x E Rn, 

where y[g(x)] is given by (24). Consider a method consisting of sequential 
unconstrained minimizations of the form [compare with (25)] 

1 
minimize - log 1 ,u; eCkgi@) 

c { i : l  ] 
subject to x E Rn, 

where pi, i = 1, . . . , r are multipliers satisfying 

and ck > 0 is a penalty parameter. Let v,* be the optimal value of problem (28). 
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If there exists a feasible solution to the system (27), then it is easily seen that 

while if there exists a strictly feasible solution E with y[g(Z)] < 0 then 

On the other hand, suppose that there is no feasible solution to the system (27) 
and assume that 

and for some E > 0, we have 

Then it is easily seen that, for all k sufficiently large, we have v: > 0. These 
observations can be used to show that if the method is operated so that (29) 
and (30) hold, and for each k, xk  is an optimal solution of problem (28), then 

(a) If the system (27) is feasible, every limit point of {x,) is a feasible 
solution. 

(b) If the system (27) is strictly feasible, then there exists an index k such 
that xi; is a strictly feasible solution. 

(c) If the system (27) is infeasible, then there exists an index k such that 
v Z  > 0 thereby confirming the fact that no feasible solution exists. 

We note also that it is possible to show that if the functions gi, i = 1, . . . , r, 
are convex then, under a mild assumption, the conclusions (a), (b), and (c) hold 
even if the conditions (29) and (30) are not enforced (see Proposition 5.12 in 
Section 5.3). 

5.2 Convex Programming and Duality 

We consider the following convex programming problem 

(cPp>  minimize f ( x )  

subject to x E X, gj(x) 5 0, j = 1, . . . , r,  

where we make the following standing assumptions. 

Assumption (Al): The set X is a nonempty convex subset of Rn and the 
junctions f : Rn -+ R, g j :  Rn -+ R, j = 1. . . . , r are concex over X .  

Assumption (A2): There exists at least onefeasible solution for (CPP) .  
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Assumption (A3): The optimal value f * of (CPP) isfinite, i.e., 

It is possible to extend the definition of (CPP) to include linear equality 
constraints, but, for simplicity, we shall not consider this possibility. The 
methods we shall discuss together with the corresponding analysis can be 
suitably extended with essentially trivial modifications. 

We shall employ, throughout the remainder of this chapter, the standard 
terminology of convex analysis. An excellent source for this material is 
Rockafellar (1970). Thus a function f :  Rn + [- co, co] is said to be convex 
if the epigraph off, i.e., the set { (x ,  p) I f ( x )  I p, x E Rn, p E R )  is convex. We 
say that f is proper iff ( x )  > - co for all x E Rn and f (2) < co for at least one 
2 E Rn. We say that f is closed if it is lower semicontinuous. The conjugate 
convex function of a convex function f :  Rn -t [I- co, + co] is defined by 

f *( z )  = sup (z 'x  - f (x ) ) .  
x e R "  

The function f * is convex and closed. It is proper if and only iff is proper. Iff 
is closed, then the conjugate off * is f .  The subdiferential af ( x )  of a convex 
function f is defined for each x E Rn by 

8f ( x )  = { z  1 f (2) 2 f ( x )  + zf(2 - x),  V 2  E Rn). 

The subdifferential 5f ( x )  is a closed (possibly empty) convex set for each x. 
Iff is real valued, then 8f ( x )  is nonempty and compact for each x. The pre- 
ceding discussion is intended to provide only limited orientation, and we 
shall make frequent references to Rockafellar's text for additional notions 
and specific results. It is thus necessary that the reader should be somewhat 
familiar with the contents of this source in order to follow the subsequent 
development. 

We review some known results for (CPP). Consider the ordinary Lagrang- 
ian function 

Definition: A vector p* E Rr is said to be a Lagrange multiplier for (CPP) 
if p* 2 0 and 

(2) inf L(x,  p*) = f *. 
x s x  

We have the following well-known results (see Rockafellar, 1970). 

Proposition 5.2: Let p* be a Lagrange multiplier for (CPP). Then 
x* E Rn is an optimal solution for (CPP) if and only if the following conditions 
hold : 

(3) L(x*, p*) = inf L(x,  p*), 
X E X  

(4) x* E X ,  g(x*) I 0, p*'g(x*) = 0. 



Proposition 5.3: The vectors x* and p* form an optimal solution- 
Lagrange multiplier pair for (CPP) if and only if x* E X, p* 2 0, and (x*, p*) 
is a saddle point of the Lagrangian L in the sense 

(5) L(x*, p) < L(x*, p*) < L(x, p*) v x E X, p 2 0. 

Consider the dual junctional d: Rr + [- a, co) of (CPP) defined by 

inf (L(x, p) 1 x E X) if p 2 0, 
-a otherwise. 

The following proposition holds. 

Proposition 5.4: (a) If there exists at least one Lagrange multiplier then 

f * = sup d(p). 
~ 2 0  

(b) If (7) holds, then a vector p* is a Lagrange multiplier for (CPP) if and 
only if it is an optimal solution of the dual problem 

(8) maximize d(p) 

subject to p 2 0. 

When (7) holds, we say that there is no duality gap. It is easily seen that 
d(p) I f  * for all p E Rr. Therefore the fact that existence of a Lagrange 
multiplier implies that no duality gap is present follows from the definition 
of a Lagrange multiplier. Corollary 28.2.1 of Rockafellar's text shows that 
a sufficient condition for existence of a Lagrange multiplier is the Slater 
condition that there exists an 2 E X such that g,(%) < 0, for all j. The Slatev 
condition guarantees also that the set of all Lagrange multipliers is compact 
as \yell as nonempty (see Corollary 29.1.5 of Rockafellar's text). 

Consider now the primal junctional q: Rr -+ [- a, + co] defined by 

(9) q(u) = inf { f (x) I x E X, g(x) < u} V u E Rr. 

The primal and dual functionals are intimately related as we now show. We 
have. for p 2 0, 

= inf inf { f  (x) + plg(x) 1 x E X, g(x) I u} 
u s R r  

= inf inf { f (x) + p'u I x E X, g(x) I u) 
u e R r  

= inf {q(u) + p'u} 
u s R r  
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so that 

where q* is the conjugate convex function of q. 
Now notice that q is monotonically nondecreasing in u in the sense that 

for all u E Rr and ii 2 0 we have q(u) 2 q(u + ii). Hence, if p = ( p l ,  . . . , p,)' 
is such that pj < 0 for some j, we have 

inf {q(u) + p'u) = - rn 
u s R r  

It follows using (6), and ( 1  1 )  that 

(12) d - q * )  V ~ E R '  

The nature of the primal functional provides the key to questions regarding 
existence of Lagrange multipliers. It is shown in Rockafellar's text (Theorem 
29.1) that a vector p* is a Lagrange multiplier if and only if -p* E dq(0). If q is 
closed then we have f *  = sup,., d(p)  (see Rockafellar's text, Theorem 30.3). 
The primal functional q is in turn closed i f X  is a closed set and the set of optimal 
solutions for (CPP)  is nonempty and compact. This last fact can be verified by 
using Theorem 9.2 of Rockafellar's text (see also Theorem 30.4 of the same 
reference). 

The Augmented Lagrangian and the Penalized Dual Functional 

Consider now the augmented Lagrangian LC corresponding to a scalar 
c > 0 and a penalty function p, where p belongs to the class P, or the class 
p, defined in Section 5.1.2. We have 

where we use for convenience the notation 

Consider the conjugate convex function of P C ( .  ; p) defined by 

In view of the form (14) i t  is easily seen that we have 



where s j  and yj denote the jth coordinates of s and y respectively, and 
p*( . ; yj) is the conjugate convex function of p( . ; yj) given by 

When p belongs to the class P: defined in Section 5.1.2, its conjugate can be 
characterized more precisely. A function p E P: has the form 

where 4 belongs to the class PE of Section 5.1.1. Note that this expression 
makes sense even if yj < 0. From (16) and (17) we obtain via a straight- 
forward calculation for all y j  E R 

* - y if s j  2 o 
(19) ~ " ( s j ;  ~ j )  = 

otherwise, 

and for all y E Rr 

where 4" is the conjugate convex function of 4 defined by 

Since, by definition of the class PE in Section 5.1.1, we have 4(t) 2 0 for all 
t E R, lim,, -, V$(t) = - cc, lim,,, V+(t) = x, 4(O) = 0, V4(O) = 0, it can 
be easily seen that 

0 5 +*(L') < "c v L' E R: 
min 4*(y) = 4*(0) = 0. 
y e R  

Since 4 is strictly convex and differentiable, it follows from Theorem 26.3 of 
Rockafellar (1970) that 4" is also strictly convex, and differentiable. Finally 
the facts that 6 is the convex conjugate of q5* and 6 is real-valued imply 
that lim,,, V$*(t) = - x and lirn,,, V4*(t) = x. The conclusion is that 
4 E PE ifand only i f  q5* E P E .  We shall make frequent use of the properties 
of 4" just shown. 

The penalized dual functional, denoted d,, is defined on the set {yl y 2 0) 
by 
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If p E PE+ this definition also makes sense for every p E Rr (not just for 
p 2 O), and for p E PEf we shall view dc in what follows as a function defined 
by (22) for all p E Rr. A calculation similar to the one in (10) yields 

where q( . ) is the primal functional of (CPP). 
The following proposition provides some basic facts. 

Proposition 5.5. Let c > 0. 
(a) Assume that p 2 0 and p E PI ,  or p > 0 and p E PI, or p E Rr and 

p E Pg.  The conjugate convex function P,*( . ; p) satisfies 

(25)  P,*(s; p) = o if sj  < 0 for some j = 1, . . . , v. 
Furthermore P,*( . : p) is strictly convex on the set { s  1 s 2 0). 

(b) Assume that p 2 0 and p E PI ,  or p > 0 and p E PI, or ,u E Rr and 
p E P;. Assume also that f * = sup,,, d(p). Then 

and the maximum above is attained at a unique point s(p, c) 2 0. Further- 
more if the infimum in the definition 

(27) dc(p) = inf Lc(x, p) 
x c x  

is attained at a point x(p, c) (not necessarily unique) we have 

where ~ ( p ,  C) is the unique point attaining the maximum in (26). 
(c) Assume that p E PEL, and that f * = sup,,, d(p). Then dc is con- 

tinuously differentiable on Rr and 

where sj(p, c) is the jth coordinate of the vector s(p, c) defined in (b) above. 

Proofi (a) From the properties of PI .  P I ,  and P: it can be seen 
that in all cases p(0; pj) < 0. Therefore from (17) we have p*(sj; pj) 2 0 
for all s j  2 0. Also in all cases lim,, -, V,p(t, p) = 0 and lim,,, V,p(t; p) = 

x. It follows that the supremum in (17) is attained if s j  > 0, while for s i  = 0 
we have ~ ' " ( 0 ;  pj) = -inf,,, p(t: pj) < x. Hence p*(sj: pj) < x for all 
s j  2 0 and (24) follows. 



Since in all cases p ( . ;  pj) is nondecreasing and bounded below, (17) 
yields p*(sj; pj) = x8 if sj  < 0, from which (25) follows. 

In all cases p ( . ;  pj) is a real-valued, differentiable convex function. 
Therefore by Theorem 26.3 of Rockafellar (1970), we obtain that p*(,; pj) 
is strictly convex on the set of s j  for which the subdifferential of p*( . ; pj) with 
respect to sj  is nonempty. Since p*( . ; pj) is defined on the real line it follows 
that p:( . ; pj) is strictly convex on {sjJp*(sj; pj) < x). Therefore, by (24), 
PT( . ; p) is strictly convex on the set (s 1s 2 0). 

(b) Assumptions (A1)-(A3) and the fact that f * = sup,,, d(p) imply 
that the functions q, q*, and d are proper convex functions. Furthermore 
PC( . ; p) is real-valued. These facts guarantee that assumption (a) of the 
Fenchel duality theorem (Rockafellar, 1970, Theorem 31.1) is satisfied. It 
follows from (23) and the conclusion of this theorem that 

and that the maximum is attained at some point s(p, c). This point must be 
unique in view of the fact that P T ( . ;  s) is strictly convex and real-valued 
on {s 1 s 2 0) as shown in part (a). Equation (26) follows from (12) and (30). 

If x(p, c) attains the infimum in (27), then the vector u(p, c) = g[x(p, c)] 
attains the infimum in (23). We have, using (23) and (30), 

Hence 

so s(p, c) is a subgradient of PC( . : p )  at u(p, c). Since PC( . ; p) is differentiable 
and u(p, c) = g[x(p, c)] we obtain (28). 

(c) Since sup,,, d(p) = f * and f * > - x [by Assumption (A3)] it 
follows from (24) and (26) that 

Hence d, is real-valued and as a result the subdifferential ?d,(p) is nonempty 
and compact for all p E R'. Fix p E Rr and let w E ?d,(p). Then for all ,ii E Rr, 
we have, using (26), 

= d[s(p, c)] - P:[s(p, C) : p] + wl(ji - p) V ,ii E Rr. 
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Using (20) we obtain 

Combining the above two equations and (32) we obtain for all j and ,iij E R 

This implies that (-wj) is a subgradient of the function hj(pj) = 

@*[sj(p, c) - pj] at pj. Hence 

and (29) follows. Q.E.D. 

The differentiability property of d,, shown in Proposition 5.5c, does not 
hold for p $ PB, since d, is not even defined outside the set {pjp 2 0). It is 
possible, however, to show that if the assumptions of Proposition 5 . 5 ~  are 
satisfied and p E PI or p E p, then the penalized dual functional d, is con- 
tinuously differentiable on the set {p I p > 0). The proof of this is very similar 
to the proof of Proposition 5 . 5 ~  and is left for the reader. 

We can now prove the following proposition relating optimal solutions 
and Lagrange multipliers of (CPP) with minimizing points of the augmented 
Lagrangian and optimal solutions of the following penalized dual problem 

maximize dc(p) 

subject to p 2 0. 

Proposition 5.6. Let c > 0, and assume that p E P, or p E p,. 
(a) Assume f * = sup,,, d(p). Then the set of maximizing points of 

both d and d, over {p Ip 2 0) coincides with the set of Lagrange multipliers 
of (CPP). 

(b) Assume that p E PI and let p* be a Lagrange multiplier for (CPP). 
Then a vector x* is an optimal solution of (CPP) if and only if it minimizes 
LC( . , p*) over x E X. 

(c) Assume that p E PI. Then (x*, p*) is an optimal solution-Lagrange 
multiplier pair of (CPP) if and only if x* E X, p* 2 0, and (x*, p*) is a saddle 
point of LC in the sense that 

(33) L,(x*, p) I Lc(x*, p*) I Lc(x, p*) v x E X :  p 2 0. 
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If in addition p E P, f ,  then ( x* ,  p*) is an optimal solution-Lagrange mul- 
tiplier pair if and only if x* E X, p* E Rr, and 

Proof: (a) We first note that by a similar argument as the one used 
in the proof of Proposition 5.5 we can show that the relations 

(36)  d,(p) = max{d(s )  - P X s ;  p) )  
s € R r  

hold for all p 2 0 (i.e., even if p E p, and pj  = 0 for some j). Furthermore the 
maximum in (36) is attained for some s(p, c )  2 0 (not necessarily unique if 
p E PI and pj  = 0 for some j). Therefore using also Proposition 5.lb 

From Proposition 5.4 and (37)  it follows that if p* is a Lagrange multiplier 
it must maximize both d and d, over { p  1 p 2 01, while if p* maximizes d it 
must be a Lagrange multiplier. 

Let p* 2 0 maximize d, over {p i  p 2 0) .  We will show that p* is a 
Lagrange multiplier. Indeed in view of (37)  and the fact that f  * = sup,,, d (p )  
we have 

(38)  f * = d,(p*) = d[s(p*, c>l - p:[s(p*, c ) ;  p*l. 

From (35) ,  (37), (38)  and the fact that f  * > - x we obtain 

and 

(40)  P:[s(p*, c ) ;  p*] = 0.  

From (40)  we obtain 

and 

Since p(0: p?) = 0, it follows from (41)  that sj(p*, c )  is a subgradient of 
p( . : p?) at t = 0. But V,p(O; p;) = pT for all p; 2 0, so it follows that 

From ( 39 )  and Proposition 5.4 it follows that p* is a Lagrange multiplier. 
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(b) We have by part (a) 

(42) f * = dc(p*) = inf Lc(x, p*) I Lc(x*, p*) 
x o x  

= f (x*)  + Pc(x*; p*) v x* E X .  

If x* is an optimal solution of (CPP) we have f * = f (x*)  and Pc(x* ; p*) I 0. 
It follows from (42) that x* minimizes LC( .  , p*) over X .  

Conversely, assume that x* minimizes LC( .  , p*) over X .  Using Proposi- 
tion 5.lb and the fact that p* is a Lagrange multiplier we have 

Since x* minimizes L C ( .  , p*) over X ,  equality must hold throughout in (43). 
Therefore 

f'cCg(x*); p*1 = p*'g(x*) 

and, using Proposition 5.ld, it follows that 

(44) g(x*) I 0, p*'g(x*) = 0. 

Since equality holds in (43) we have 

(45) L(x*, p*) = d(p*) = inf L(x, p*). 
x s x  

Using (44), ( 4 9 ,  and Proposition 5.2 it follows that x* is an optimal solution 
of (CPP). 

(c) If (x*, p*) is an optimal solution-Lagrange multiplier pair we have 
by part (b) 

(46) Lc(x*, p*) I Lc(x, p*) Q x E X .  

Also, since g(x*) I 0, we have P,[g(x*); p] I 0 for all p 2 0. Therefore 

(47) Lc(xY, p )  If (x*)  = Lc(x*, p*) t! p 2 0. 

From (46) and (47) we obtain (33). If p E P;, then we have P,[g(x*); p ]  I 0 
for all p E Rr and similarly (34) follows. 

Conversely, assume that x* E X, p* 2 0 and (33) is satisfied. Then 

(48) Lc(x*, p*) = sup Lc(x*, p )  2 sup L(x*, p) 
p t o  p t o  

f (x*)  if g(x*) I 0 
otherwise. 

Therefore we must have g(x*) I 0 and it follows that 
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Hence 

(49) L,(x*, p*) = S ( x * )  + P,[g(x*); p*] I f  ( x * )  = L,(x*, 0 ) .  

Using (33) it follows that equality holds throughout in (49) ,  and therefore 

(50)  P,[g(x*): p*] = 0. 

From Proposition 5.ld we obtain 

We have from (50)  and (33)  

( 52 )  f (x*) = L,(x*, p*)= inf L,(x, p*) 
x e x  

inf L,(x. p*) f ( x )  V x E X ,  g ( x )  I  0. 
x e  X 

q ( x )  5 0 

Combining (51)  and (52)  we obtain that x* is an optimal solution of (CPP) .  
Denote u* = g(x*). Then from (52)  we have that u* attains the infimum 

in the equation 

f * = inf ( q (u )  + P,(u; p*)). 
u e R r  

It follows that q is proper and, since P C ( . :  p*) is real-valued, application 
of the Fenchel duality theorem (Rockafellar, 1970, Theorem 31.1) yields for 
some vector s* 

(54 )  q(u*) + P,(uY : p*) = - q*(-  s*) - P,*(s*; p*) 

= - sup( - u's* - q(u) )  - sup{u's* - Pc(u; p*)) .  
u s R r  u c R r  

From (54)  we obtain 

q(u*) + P,(u*; p*) I  u*'s* + q(u*) - u's* + P,(u; p*) V u E Rr, 

P,(u*; p*) + ( u  - u*)'s* P,(u; p*) V 11 E Rr 

Hence s* is a subgradient of P C ( .  : p * )  at u*. In view of (50)  and Proposition 
5.ld we obtain 

From (54)  we also obtain 

(56)  q ( ~ * )  + Pc(u*; p*) 5 u's* + q(u)  - u*'s* + P,(u* ; p*) V u E Rr. 
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Combining (55) and (56) we obtain 

q(u*) + u*'p* I q(u) + u'p* V u E Rr, 

or equivalently 

q(u*) + u*'p* = inf L(x,  p*). 
x o x  

Since q(u*) = f * and u*'p* = 0 by (51) it follows that p* is a Lagrange 
multiplier for (CPP). 

It is easily seen that, if p E PC, then, for all p E Rr, we have Lc(x*, p+)  2 
L,(x*, y) where p+ is the vector with coordinates max(0, p j ) ,  j = 1 , .  . . , r 
with strict inequality holding if pj < 0 for some j. Therefore (34) implies 
that p* 2 0, and the preceding proof shows that (x*,  p*) is an optimal 
solution-Lagrange multiplier pair. Q.E.D. 

Note that, by Proposition 5.6b, it is sufficient for optimality that x* 
minimizes L C ( .  , p * )  over X. By contrast, it is not enough for a vector x* to 
minimize L ( .  , p*) over X .  The additional conditions g(x*) I 0 and p*'g(x*) 
= 0 are also needed (compare with Proposition 5.2). Proposition 5 . 6 ~  
shows that when X = Rn and p E PC, the search for local minima-Lagrange 
multiplier pairs can be reduced to a search for unconstrained saddle points 
of LC.  We refer to the paper by Mangasarian (1975) for related algorithms and 
analysis. Note that the results of parts (b) and (c) of Proposition 5.6 do not 
hold if p E p,. Nonetheless this fact does not seem to impair the utility of 
the class p, for algorithmic purposes as will be discussed in the next section. 

5.3 Convergence Analysis of Multiplier Methods 

The algorithms that we consider are based on exact or approximate 
minimization of the augmented Lagrangian 

where P E P {  or p ~ p I .  
Throughout this and the next section, we shall adopt the following 

assumption in addition to the assumptions (A1)-(A3) made in the beginning 
of Section 5.2. 

Assumption (A4): The set X is closed and (CPP) has a nonempty and 
compact optimal solution set denoted X*. Furthermore the set of all Lagrange 
multipliersfor (CPP) denoted M* is nonempty and compact. 
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Actually some ofthe subsequent results can be obtained under assumptions 
weaker than (A4). The reader can easily identify these results, and thus we 
prefer to assume ( A 4 )  at the outset so as to avoid overburdening the pre- 
sentation. 

We consider two algorithms, denoted A and B, employing exact and 
inexact minimization of LC( . ,  p), respectively. 

Algorithm A (Exact Minimization) : Select an initial penalty parameter 
c,  > 0 and an initial multiplier p, satisfying pO 2 0 if p E PI and p0 > 0 if 

STEP 1 : Given p, and c,, find an x ,  solving the problem 

minimize Lck(x,  p,) 

subject to x E X. 

STEP 2: Set 

(1) pi+ , = VtpCckgj(xk); pi], J = 1, . . . , r .  

Select c,, , 2 c,, and return to Step 1. 

Notice that if p E PI, we have, from ( I ) ,  pk 2 0 for all k, while if p E PI we 
have p, u, 0 for all k. Also note that (1 )  can be written as 

(2) Pk + 1 = Vz PCk[9h '> ,  ~ k 1 .  

This equation together with Proposition 5.5 [compare with (26) and (28)] 
imply that p,, , is the unique point attaining the maximum in the equation 

(3) d c k ( ~ k >  = max [d(s)  - P:(s; 
s e R r  

A geometric interpretation of this fact for the case where p E P z  is given in 
Fig. 5.3. 

In practice, the minimization in Step 1 of Algorithm A should be carried 
out only approximately. Not only this is necessary in order for the algorithm 
to be implementable, but in addition it usually results in substantial com- 
putational savings. We provide below an implementable version of the 
algorithm which employs inexact minimization. For c > 0 and p 2 0, 
consider the convex function LC(. ,  p) given by 

Denote by A,E,(x, p) the element of minimum Euclidean norm of the sub- 
differential (with respect to x )  o',Lc(x, p) for every x E Rn for which a,Lc(x, p) 
is nonempty. We have 

(5 )  lAxLc(x ,p ) I=  min l z l .  
z E a, i l , (x ,  P I  
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FIG. 5.3 Geometric interpretation of the multiplier iteration for p E P; 

Note that AxLc(x, y) is just the ordinary gradient VxLc(x, p), if LC(., y) is 
differentiable and x lies in the interior of X. In the following algorithm, 
minimization of LC,(., y,) over X is terminated at a point x, where 
IAxLck(xk, yk)l is sufficiently small. This type of stopping criterion makes 
sense only if an algorithm is available that produces sequences (2,) with the 
property lim,, , I AxLck(zi, y,) / = 0. Such algorithms are available if X = Rn 
andf, gj E C1. They are also available in other situations, for example if X is 
specified by upper and lower bounds on the coordinates of x (see Section 1.5). 

Algorithm B (Inexact Minimization): Select a sequence {y,) with y, 2 0 
for all k, q,  --+ 0, an initial penalty parameter c, > 0, and an initial multiplier 
yo satisfying yo 2 0 if p E PI and po > 0 if p E P , .  

STEP 1 : Given y, and c,, find an x, satisfying 

STEP 2:  Set 

(7) pi+ 1 = V r ~ [ ~ k ~ j ( ~ k ) ;  J = 13 . . . 3 r. 

Select c,, , 2 c,, and return to Step 1. 

Again from (7), we obtain for all k, y, 2 0 if p E P, and y, > 0 if p E PI. Also 
from Proposition 5.lb, it follows that the right-hand side of the stopping 
criterion (6) is nonnegative. When q, = 0 in (6), then x, minimizes LC,(., y,) 
over X. Since q, -t 0, the possibly inexact minimization indicated by (6) is 



5.3 CONVERGENCE ANALYSIS OF MULTIPLIER METHODS 329 

asymptotically exact. We shall demonstrate shortly that when v, > 0, then 
under a fairly mild assumption a vector x,  satisfying (6) can be obtained by 
means of a finite process. This assumption is stated below and will be in effect 
only for the results relating to Algorithm B. 

Assumption (AS) (For Algorithm B): There exists a positive scalar 
cc such that, for all x ,  Z E Rn, and z E df (Z), 

(8) f ( x ) 2  f ( Z ) + z ' ( x - Z ) + + l x - ~ 1 ~ .  

In the remainder of this chapter every result for Algorithm A assumes 
(A1)-(A4), while every result for Algorithm B assumes (A1)-(A4) and (A.5). 
The following proposition shows that Step 1 in both Algorithms A and B 
can be carried out. For the proof of the proposition, we shall need the notion 
of a direction of recession. Let h:  Rn -, (- m, + a]  be a closed, proper 
convex function. A vector z E Rn, z # 0 ,  determines a direction in Rn, namely 
the direction of the ray emanating from the origin and passing through z. For 
x E Rn such that h(x)  < m, the one-dimensional function v(t)  = h(x + tz), 
t E R, is a cross section of h along the direction z passing through x. The 
direction z is a called a direction ofrecession of h if q(t)  is nonincreasing over 
the entire real line. It can be shown that the set of minimizing points of h (i.e., the 
set (21 h(X) = inf,,,, h(x ) ) )  is nonempty and compact if and only if h has no 
directions of recession (Rockafellar, 1970, Corollary 8.7.1, Theorem 27.ld). 
Another relevant fact is that if for some ii E R the level set { x  I h (x)  I Z) is 
nonempty and compact then all level sets { x  I h(x)  < cc) ,  x E R, are compact. 
The recession function of h denoted hOi is defined by 

(9 )  
h(x + t z )  - h(x)  

~ o + ( z )  = lim = lim t h ( f )  v z E R", 
t-cc t 110 

where x is any vector such that h(x)  < cc (see Rockafeller, 1970, Theorem 8.5, 
Corollary 8.5.2). Thus hO'(z) does not depend on x as long as h(x)  < co. 
It may be shown that the direction z # 0 is a direction of recession of h at 
every x for which h(x)  < a if and only if hO+(z) I 0. [In fact this statement 
constitutes an equivalent definition of a direction of recession (see Rockafellar, 
1970).] Part of Assumption (A4)  is that (CPP) has a nonempty and compact 
solution set, which is equivalent to assuming that the functions g,, . . . , g, and 
the function f given by 

have no common direction of recession. This can be seen from the fact that for 
any collection h,, . . . , hm of closed proper convex functions for which the 
sum ( h ,  + . . . + h,) is not identically + x, we have 

(11) (hl  + . . . + hm)Oi = hlOi + . . . + hmO+. 
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(see Rockafellar, 1970, Theorem 9.3). Our earlier assertion follows if we 
apply this formula to the function f and the functions 6,, . . . , 6, given by 

Proposition 5.7: (a) Let p E PI and p 2 0 or p E p, and p > 0. Under 
(A1)-(A4), the set of vectors minimizing LC(., p) over X is nonempty and 
compact for every c > 0. If in addition (A5) holds, then this set consists of a 
single vector. 

(b) For each k in Algorithm B, if y, > 0, p, is not a Lagrange multiplier, 
{z,) is a sequence converging to the unique minimizing point of LC,(., p,), 
and A,Lck(zi, p,) + 0, then there exists a vector x, E {zl, z2, . . .) satisfying the 
stopping criterion (6). 

Proof: (a) We shall show that for every c > 0 the function LC(., p) 
given by (4) has no direction of recession. In view of the earlier discussion, this 
implies that the set of minimizing points of LC(., p) over X is nonempty and 
compact. We need to compute the recession function of LC(., p). We have, 
using (10) and (1 I), 

where h j  is given by 

Using (9), we have 

Suppose z is a direction of recession of gj. Then 

Using the properties of p, we have, for all t 2 0 

- x < inf p(cu; pj) 5 p[cgj(x + tz): pj] < p[cgj(x); pj] 
U 

It follows that the limit in (14) is zero. Now suppose z is not a direction of 
recession of gj. By (9), 
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Since z is not a direction of recession of gj we have gjO+(z) = limtlo tgj(z/t) 
> 0, so there exist f > 0 and cSi > 0 such that tgj(z/t) 2 cSi for all t E (0, El. 
Then, from (15), 

hjO'(z) 2 lim tp(cZ/t; pj) = pO-(cZ; pj). 
t10 

Since lim,,, p(cu; pj) = cc, it follows that pO+(cZ; pj) = x, SO h,O+(z) = 
x. We have thus shown than 

0 if z is a direction of recession of gj, 
hj0+(2) = 

cc if z is not a direction of recession of gj. 

Using (13), we have 

f O+(z) if z is a direction of recession of each gj, 

LcO+ (z, p) = j =  1, ..., r,  
otherwise, 

Thus, LcO+(z, p) > 0 for all z # 0 [equivalently, the set of minimizing points 
of LC(., p) is nonempty and compact] if and only iff and g,, . . . , g, have no 
common direction of recession. As stated earlier, this is equivalent to (CPP) 
having a nonempty and compact solution set. This proves part (a) except for 
the last assertion. 

If (AS) holds, then it is easily seen that we have, for all x, 2 E Rn, c > 0, and 
z E a, LC(% A, 

Lc(x, p) 2 L,(Z, p) + Z'(X - X) + + X I X  - 212. 

If Z minimizes LC(. , p) then 0 E a, LC(?, p), so by taking z = 0 in the preceding 
relation, we obtain 

from which the uniqueness of the minimizing point follows. 
(b) If pk is not a Lagrange multiplier and 5 is the minimizing point of 

LC,(., p,) (and also the limit of {zi)), then we cannot have both gj(F) I 0 
for all j and XI=, gj (~)p j  = 0. By using Proposition 5.l(b) and (d), we obtain 

Since A,L,,(zi, p,) -+ 0 and 17, > 0, we obtain that the stopping criterion (6) 
will be satisfied for sufficiently large i. Q.E.D. 
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We turn now to proving that the vectors pk generated by Algorithms A 
and B eventually ascend the ordinary dual functional d. This fact leads to the 
interpretation of Algorithms A and B as primal-dual methods. 

Proposition 5.8. If {(x,, pk)) is a sequence generated by Algorithm A or 
B then: 

(a) For Algorithm A, we have 

with strict inequality throughout if pk is not a Lagrange multiplier. 
(b) For Algorithm B and all k such that vk < 2r, we have 

with strict inequality throughout if pk is not a Lagrange multiplier. 

Proof: We will prove part (b). A similar (in fact simpler) argument proves 
also part (a). In view of Eq. (7) defining pk+ it is easy to show that 

where 

From (A5) we have, for all x G Rn and z E d,E(xk, pk+ 

from which by taking infima with respect to x, we find that 

The stopping rule (6) can also be written as 
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Since L(x,, p,+ ,) = L(x,, pk+ ,), we obtain 

Lck(xk, ~ k )  5 d ( ~ k  + 1). 

We also have, by the definition of d and the properties of p, 

so the proof of (17) is complete. If p, is not a Lagrange multiplier, then Pro- 
position 5.1 (b) and (d) and the definition of p,, , imply that L(xk, p,, ,) > 
Lck(x,, p,), so in view of vl, < 2 4  the last inequality in (21) is strict. Similarly, 
the right inequality in (22) is strict, so strict inequality is obtained throughout 
in (17). Q.E.D. 

Corollary 5.9: A sequence {pk) generated by Algorithm A or B is 
bounded. 

Proof: Since 17, -+ 0, there exists an index E such that 17, < 2r for all 
k 2 k. By Proposition 5.8, for all k 2 E + 1, p, belongs to the level set 
{p 1 d(y) 2 d(pE + 1)) and d(pi + l)  2 Lck(xz, pg) > - z. Since the set of 
maximizing points of d [i.e., the set of Lagrange multipliers of (CPP)] is 
compact by (A4), the same is true for all level sets of the form {p Id@) 2 P) 
where P > -a (Rockafellar, 1970, Corollary 8.7.1). Thus, the level set 
{p I d(p) 2 d(pE+ ,)) is compact, and it follows that {y,) is bounded. Q.E.D. 

We continue the convergence analysis by first considering the case where 
P E PI. 

Proposition 5.10: Let p E P, . A sequence {x,) generated by Algorithm 
A or B is bounded. 

Proof: Let {y,) be the corresponding multiplier sequence generated by 
the algorithm. By Corollary 5.9, (p,) is bounded, so there exists M > 0  such 
that 0 I pjk I M for all k and j. Using the properties of p, we have 

Using these inequalities and the fact that p ( t ;  0 )  = 0 for all t < 0 and 
inf, p(t ; M) I 0. we have, for all j and k ,  
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Hence 

= Lco(x, 0) + I inf p(z; M )  V x E Rn. 
CO r 

Now the function Lco(x, 0) has no direction of recession, as shown in the proof 
of Proposition 5.7, and hence it has bounded level sets. By Proposition 5.8, 
we have that, for k sufficiently large, LCk(x,, p,) = Lck(x, , p,) I d(pk + ,) I f *. 
Using (23), it follows that x, belongs to the level set 

r . 
xIL,,(x,O) I f* - -~n fp (z ;  Co r M) 

Hence {x,) is bounded. Q.E.D. 

The following is the main convergence result for Algorithms A and B and 
for p chosen within the class P I .  

Proposition 5.11: Let p E P,. Every limit point of a sequence ((x,, p,)) 
generated by Algorithm A or B is an optimal solution-Lagrange multiplier 
pair of (CPP). Furthermore at least one such limit point exists and we have 
lim,, , f (x,) = lim,, , d(pk) = f *. 

Proof: Let (2, p) be a limit point of a subsequence {(xk, P , ) ) ~ .  We first 
show that X is feasible. Indeed since X is closed and xk E X for all k, we have 
,? E X, SO, if X is infeasible, there must exist j E (1, . . . , r ) ,  6 > 0, and an index E 
such that gj(xk) 2 6 for all k E K with k 2 E.  For such k, we have, by Prop- 
osition 5.lc, 

We may assume without loss of generality that r] ,  < 2a for all k 2 E. There- 
fore by Proposition 5.8b we have d(pk) <  d(yk+,) I f  * for all k 2 E.  It 
follows that we must have {d(p,+ ,) - d(pk)) -+ 0, so (17) and (22) imply 

This contradicts (24), and therefore 2 is feasible. 
Using Proposition 5.lb, we have, for all j, 

so (25) implies 
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Using Proposition 5.ld, we obtain pjgj(2) = 0 for all j. Hence we have, by 
using (17) and (22), 

r 

max d(p) 2 lim d(yk) = lim L(xk, pk) = f (2) + 1 pjgi(2) = f (2). 
P k- oc k +  oc j =  1 

Since 2 is feasible, we also have f (2) 2 f * = max, d(p), so it follows that 
f (2) = f *, 2 is optimal, and lirn,, , d(p,) = d(fi = f *. The existence of 
least one limit point follows from the boundedness of {(x,, p,)) (compare with 
Corollary 5.9 and Proposition 5.10). Q.E.D. 

The preceding proposition establishes that first-order multiplier iterations 
based on penalty functions from the class PI have satisfactory convergence 
properties. Unfortunately when the penalty function p is chosen from the 
class p,, the convergence results available are not as powerful. The main 
reason is that p(t; 0) is zero for t > 0, and this affects materially the proofs of 
Propositions 5.10 and 5.1 1. The author's extensive computational experience 
with penalty functions in fi, (particularly the exponential penalty function) 
suggests, however, that their convergence properties are as good in practice 
as those of penalty functions in the class PI . The following analysis supports 
the validity of this observation. 

Let S be the set of all subsets of (1, . . . , r). For any index set J  E S consider 
the function d, defined by 

and d,(,u) = - x if pi < 0 for some j e  J. Clearly d, is the dual functional 
corresponding to the problem 

(CPP), minimize f (x) 

subject to x E X, gj(x) 1 0, j~ J .  

This problem is the same as (CPP) except that the inequality constraints 
g,(x) I 0, j $ J ,  have been eliminated. The corresponding dual optimal value 
is 

(27) df = sup d,(y). 
l I 2 0  

It is easily seen from (26) that we have, for all J , ,  J ,  E S,  

* < dS2 d~~ - if J , c J ,  
In particular, 

d,* sup d(p) = f * 
p 2 0  
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Define 

(29) S =  { J E S I - m  < dJ* < f * } .  

We shall prove the convergence of Algorithms A and B for the case where 
p E PI under the following assumption. 

Assumption (A6) (For Penalty Functions p E PI): For each J E 3, and 
j E J there do not exist any two vectors j i  2 0 and j i  2 0 maximizing d J  and 
such that j i j  = 0 and j i j  > 0. 

Note that (A6) is not a very restrictive assumption. It  is satisfied in 
particular if each of the problems (CPP),, J E S, has a unique Lagrange 
multiplier vector. We do not know whether it is possible to relax this assump- 
tion and still be able to prove the result of the following proposition. 

Proposition 5.12: Let p E PI and assume that (A6) holds. Then every 
limit point of a sequence {pk} generated by Algorithm A or B is a Lagrange 
multiplier of (CPP). Furthermore at least one such limit point exists and we 
have lirn,,, f (xk) = lim,,, d(pk) = f *. 

Proof: We have, for all k,  

Similarly, as in the proof of Proposition 5.1 1 [compare with (25)], we have, 
for some E, 

Since for all k and j, we have pj, > 0 and $[co gj(xk)] - c0 gj(xk) 2 0 [compare 
with Proposition 5.lb], we obtain, from (30) and (32), 

Using the properties of $, it is easy to see that (33) implies 

Combining (31) and (34), we obtain 

(35) lim d(pk) = lim L(x,, pk) = lim f (x,) 5 f * 
k- w k -  x k-  x 
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If lirn,,, f (x,) = f *, we are done, so in the remainder of the proof we 
assume that lirn,,, f (x,) < f *. 

Since, by Corollary 5.9, {p,) is bounded, it has at least one limit point. 
We shall first show that in order to prove the proposition it is sufficient to 
prove the following statement (S). 

(S) If for some limit point ji of {p,) and index j we have jij = 0, 
then lim,,, pi = 0. 

Indeed if (S) holds, then we can extract a subsequence {,u,)~ converging 
to some vector ji such that, for all j, 

pj = 0 o lim sup gj(xk) I 0, 
k-  m 
k e K  

jij > 0 => lirn gj(xk) = 0. 
k -  m 
k o K  

To see this, note that if pj = 0 for some limit point p of {p,), then by (S), 
lirn,,, pi = 0. Thus, we have pi > pi+ ,  = pj,V+[ckgj(xk)] for an infinite 
number of indices k. This implies that V$[ckgj(xk)] < 1 or equivalently, 
gj(xk) < 0 for an infinite number of indices, so a subsequence {p,), con- 
vergent to some vector ,ii can be chosen satisfying (36). Relation (37) must also 
be satisfied in view of (34). Now consider, for all k E K, the vector u, with 
coordinates 

We then have 

q(uk) = inf{ f (x) 1 x E X, gj(x) 5 ui, j = 1, . . . , r j  I f (x,), 

where q is the primal functional. From (36)-(38) we have {u,), + 0, and since 
q is lower semicontinuous [in view of the assumption that the set of optimal 
solution of (CPP) is nonempty and compact-see the discussion in Section 
5.21, we have 

f * = q(0) I lirn inf q(u,) I lirn f (x,). 
k-  or k -  m 
k s K  k c K  

Combining this relation with (39, we obtain lim,,, d(p,) = lim,,, f (x,) 
= f *. Taking into account (36) and (37), we conclude that the proposition 
will be proved if we can show statement (S). 

To prove (S), we argue by contradiction. Suppose there exists an index J 
and two subsequences {p,), and {p,),- converging to ji and ,il, respectively, 
such that 



338 5. NONQUADRATIC PENALTY FUNCTIONS-CONVEX PROGRAMMING 

Consider the index sets 

J = j 1 lim sup g,{xk) I 0, lim sup gj(xk) I 0 J + = J LJ { J )  i k-co  k-% 
k o  K k o K  

In view of (34), we have 
lirn SAX,) = O1 
k -  m 
k e K  

and hence, 

lirn sup gj(xk)  I 0 V j E J'. 
k -  9 
k € K  

By using an argument similar to the one given earlier starting with (38), we 
have 

dJ(p )  = d,(p) = max dJ(y )  = df = lirn f (xk):  
p , o  k -m 

d J + ( d )  = max d J + ( y )  = dJ*+ = lirn f (x,). 
P 2 0 k -  co 

Thus dJ* = d f +  and since p" = 0, we also have 

d f +  = d,* = dj(,E) = inf 
xox 

= inf f ( x )  + 1 ,ijgj(x)j = d,+(,ii). 
xex i jo  J -  

So both ,ii and p maximize d, . over p 2 0, while for the index j E J + we have 
,Ey = 2 and pi > 0. By our earlier assumption, lim,_, f (x,) < f *. So 
J +  E S,  and we obtain a contradiction of (A6). Thus we have proved (S), and 
by the earlier discussion, the proof of the proposition is complete. Q.E.D. 

Special Results for the Quadratic Penalty Function 

The quadratic penalty function is given by 

It belongs to P: and a fortiori to P I ,  and it has already been considered 
in Chapter 3. The conjugate convex function of 4 ( t )  = i t 2  is @*(y) = i y 2  
as the reader can easily verify. Thus we have, by using Proposition 5.5, 
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and 

If s(p, c) is the unique maximizing point in the equation above we have 
from Proposition 5.5 

where x(p, c) is any vector minimizing L C ( .  , p) over X .  Using (2)  and the 
relations above, we obtain, for any sequence {p,) generated by Algorithm 
A and all k, 

(42) llk + 1 = ~( l l k ,  ck), 

(43) V d c k ( ~ k )  = c; l ( ~ k +  1 - ~ k ) .  

Thus 

11k+ 1 = 11k + Ck V d C k b k ) 3  

and each iteration of Algorithm A may be viewed as a jixed stepsize steepest 
ascent iteration aimed at maximizing dck. 

For any ji E Rr consider the quadratic function 

4 4  = dCs(P, c)l - (112~)  l s(P, c) - P l 2  
It satisfies 

and 

(45) 

These two properties imply that 

Since h(p) is quadratic with Hessian - c T 1 l ,  we have 

By combining (44)-(47), we obtain 

This relation yields a short proof of convergence of the generalized multiplier 
iteration 

(49) l k  + 1 = ilk + xkVdc(~k), 

where xk is a stepsize satisfying 
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and 6 is any scalar with 0 < 6 I 1 (compare with the analysis of Section 
2.3.1). 

Proposition 5.13: Let p be the quadratic penalty function (39). Then the 
sequence {p,) generated by iteration (49) is bounded and each of its limit 
points is a Lagrange multiplier for (CPP). 

Proof: From (48)-(50) we have, for all k, 

(5 I1 dc(~k + 1) 2 dc(~k) f xk  / Vdc(~k) 1' - I Vdc(~k) l 2  
= dc(~k) f C ~ k ( ~ c  - ~ k ) / ~ c I  1 Vdc(~k) l 2  
2 dc(~k) f w2 I Vdc(~k) l 2. 

Hence dc(pk+ ,) 2 dc(pk) for all k, and {p,} belongs to the compact set 
{pldc(p) 2 dc(p,)). Thus {p,) is bounded. Since f * 2 d,(pk+ ,), from (51) 
we also obtain I Vd,(p,)) -+ 0 so all limit points of {pk} maximize d, and are 
thus Lagrange multipliers for (CPP). Q.E.D. 

There is also an analog of Proposition 5.13 for an algorithm involving 
inexact minimization of the augmented Lagrangian which can be found in 
Bertsekas (1975a). 

Another interesting fact regarding the quadratic penalty function is 
that for sequences {p,) generated by the corresponding Algorithms A and B 
we can assert that they converge to a unique limit point [even though 
(CPP) may have more than one Lagrange multiplier]. Actually such a 
statement can be made under other conditions-for example, each time 
we can assert that for some q > 0 and f l  E (0, I), we have 

(52) j ~ k + l  - ~ k l  5 qpk .  

If (52) is satisfied, then {p,) can be easily shown to be a Cauchy sequence 
and therefore must converge to a unique limit. Conditions under which 
(52) is satisfied will be derived in the next section (compare with Propositions 
5.22 and 5.24 and Lemma 5.17). It is quite interesting however that these 
conditions are not necessary when the penalty function is quadratic. 

Propostion 5.14: Let p be the quadratic penalty function (39). Then 
a sequence (p,) generated by Algorithm A converges to a Lagrange multi- 
plier of (CPP). 

Proof: It was shown earlier [compare with (42)] that pk+ , equals the 
unique maximizing point s(p,, c,) in (41). Thus we have 

d(p,+ ,) - (1!,2c) lp,- , - pk 1" d(s) - (1:2c)ls - p, 1' V s E Rr. 

For any s such that d(s) 2 d(pk+ ,), the relation above yields 
2 

I ~ k f l  -pkI 5 l s - p k I 2 >  
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so pk+ is the projection of pk on the level set {p ld (p )  2 d(pk+ ,)I, and we 
have 

( ~ k + l - ~ k ) ' ( ~ - ~ k + 1 ) 2 0  v s E { ~ / d ( ~ ) 2 d ( ~ k + 1 ) ) .  

This yields 

In particular, for every Lagrange multiplier P, we have 

By Proposition 5.1 1, every limit point of { p k )  is a Lagrange multiplier and 
at least one limit point exists. It follows that { p k }  can have at most one limit 
point, since if ,G and f i  were two distinct limit points then we could find 
indices k and I? > k such that 

thereby obtaining 

l,4 - PI 2 IP - bl - I , %  - F l  > +lP - PI > I &  - PI 
and violating (53). Q.E.D. 

5.4 Rate of Convergence Analysis 

In the rate of convergence analysis of this section we restrict attention 
to methods utilizing penaltyfunctions in the class P:, so that 

where 

( 2 )  {pjt j  + $(tj) 
if pj + V$( t j )  2 0, 

' (  = i n  { p  + 4 )  otherwise 

for some penalty function 4 E P,. There are some convergence rate results 
available for methods utilizing other penalty functions but these are frag- 
mentary and they will not be presented. 

We shall be interested in the rate at which a sequence {p,)  generated 
by Algorithm A or B converges to the set M" of Lagrange multiplier vectors 
of (CPP). Denote 
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We examine the convergence of {pk} to the set .M* in terms of the distance 
J1pk - M*ll. Note that, from the convergence result of Proposition 5.11, 
we have 

l I ~ k  - M*ll -' O. 

We shall make use of the following additional assumptions 

Assumption (A7): There exist scalars M, 2 M, > 0 and p > 1 such 
that for some open interval N o  containing zero 

where 4 corresponds to p as in (2). 

Assumption (A8): There exists a &neighborhood (6 > 0) 

(5) S(M*; 6) = {p / there exists p* EM* with jp - p* j < 6), 

a scalar :/ > 0, and a scalar q 2 1 such that the dual functional d satisfies 

(6) d(p) I max d(w) - y lip - M*1I4 V p E S(M*; 6).  
w e R r  

Assumption (A7) may be explained as a growth assumption on 4. 
Roughly speaking, it states that in a neighborhood of zero, 4 ( t )  behaves 
like It jP. Similarly (A8) is a growth assumption on the dual functional d. 
It says that in a neighborhood of the maximum set M*, d(p) grows (down- 
ward) at least as fast as y(lp - M*11q. This assumption is much weaker than 
regularity assumptions which require d to be twice differentiable with 
negative definite Hessian at a unique maximum (compare with Section 2.3). 
In fact (A8) does not require once differentiability of d or even finiteness of d 
in the entire neighborhood S(M*; 6). 

W e  assume throughout this section that (A1)-(A4) and (A7) and (A8) 
hold. In  all the results where explicit reference is made to Algorithm B we 
also assume that (A5) holds. 

Preliminary Analysis 

We first introduce some notation and conventions and subsequently 
prove a few lemmas which set the stage for the proof of the main propositions. 

For each p E R' we denote by ,ii the unique projection of p on M*; i.e., 

(7) ,ii= arg min / p - p * /  V ~ E R ' .  
p* € 41' 

When considering results relating to Algorithm B, we use the notation 



5.4 RATE OF CONVERGENCE ANALYSIS 343 

To simplify statements of results, we assume without essential loss of generality 
(since qk -, 0 )  that for some C > 0 we haue 

The results of all subsequent lemmas and propositions, where v, and i appear, 
hold also with v, E Ofor the case of Algorithm A. 

Consider the conjugate convex function P,*(. ; p) of the penalty function 
PC( . ; p). As shown in Section 5.2 we have, for all p E Rn, 

For a sequence {p,) generated by Algorithm A or B, denote by u, the vector 
with coordinates 

ui = ( l / ~ , ) V 4 * ( p i + ~  - pi), j = 1, . . . , r. 

Note that 

and more generally u, is a subgradient of P:k (p ,  + , : p,) with respect to the 
first argument. In terms of Fig. 5.3, u, can be identtfied with a support 
hyperplane to the graphs of P:k(.; p,) + dCk(pk) and d ( . )  at the "point of 
contact" corresponding to p,+ ,. We shall derive an alternative characteriza- 
tion of u,. We have, for all j, 

In view of ( l l ) ,  it follows that ( p i + ,  - pi) attains the supremum above so 

It follows that 

or equivalently 

Hence ( p i + ,  - pi) is a subgradient of 4 at ckuj:, and since 4 is differentiable 
we have 
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Now for both Algorithms A and B, we have, as shown earlier [Section 5.1.2, 
Eq. (lo)], 

By comparing (13) and (14) and taking into account that 4 is strictly convex, 
it is easily seen that 

where 

(16) *ri = arg min {pi z + 4(z)), j = 1, . . . , r. 
7 

We now develop some preliminary results through a series of lemmas. 

Lemma 5.15: For all p E Rr, c > 0, and x E R", we have 

(17) Lc(x, P) = max{L(x, s) - PT(s; p)). 
S 

Furthermore if {(x,, p,)) is a sequence generated by Algorithm A or B, we 
have, for all k .  

where P? is given by (10). 

Proof: In view of (10) and the fact that PT (.; p) is the conjugate convex 
function of PC(.; p), we have 

= max{L(x, s) - PT(s; p)), 
S 

where the maximum is attained by strict convexity of P,*(.; p). 
We have, by definition for all k, 

so g(xk) attains the maximum in the equation 

It follows that 
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Therefore pk+,  attains the maximum in (19) when x = x,, c = c,, and 
p = pk, and (18) follows. Q.E.D. 

Lemma 5.16: Let {p,) be a sequence generated by Algorithm A or B. 
For all k sufficiently large, we have 

where 0, is the projection of pk on M* [compare with (7)], and vk = yk/2a 
[compare with (8)]. In addition, I pk+,  - pk I -+ 0. 

Proof: Using Lemma 5.15 and the fact that max,d(p) = d(Pk) I 
L(xk, ilk), we have 

The stopping rule for Algorithm B can also be written 

Combining the two relations above with (18), we obtain 

We have already shown [compare with (19) in Section 5.31 that 

The last two relations yield 

Combining this relation with (21) and (6) (which is in effect for k sufficiently 
large), we obtain 
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from which (20) follows. Also from (20) and the expression (10) for Pz,  we 
have 

r r 

(1 - vk) C $*(pi+ 1 - pi!) I 1 $*(pi - 
j =  1 j =  1 

Since (pi - pi) + 0 and vk is bounded away from unity, we obtain 
$*(pi + - pi) -f 0 for all j which implies I pk+,  - pk I + 0. Q.E.D. 

Lemma 5.17: Let {p,) be a sequence generated by Algorithm A or B. 
There exists a scalar M, such that for all k 

I ~ k f l  - ~ k l  5 M ~ l l ~ k  - M*I. 

Proof: From (4), 

MIItlP-l I /V$(t)I  I M21tlP-1 V t € N o ,  

Hence for any scalar s, 

sup st---ItlP 2sup{s t -$ ( t )}2sup  
reNo { 1 Z E N O  reNo 

Let [-a, a] c No, r. > 0. Then if Is1 I MlaP-', the suprema above are 
attained and by the definition of the conjugate convex function, we obtain 

where a is the conjugate exponent of p defined by o-'  + p-' = 1 or 
equivalently 

0 = PAP - 1). 

Since I pk+,  - pk I + 0 (by Lemma 5.16) and I pk - fik I + 0 (by Proposition 
5.11), we have that for all j and all k sufficiently large both jp',+, - pi1 
and Ips - Pi I are less than MI@- l. Applying (lo), (20), and (24), we obtain 

1 
I i lfii 

(1 - vk)ckoM;-l j = l  

Hence 

Ipk+l - pklo I ( M ~ / M ~ ) ~ I ~ ( ~  - ~ k ) ( ~ - ~ ) ' ~ j f i k  - 
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where 1.1, denotes the 1,-norm. Passing to the standard norm 1 . 1 ,  via the 
topological equivalence theorem for all norms on Rr, and using the fact that 
vk I i j  < 1, we obtain, for k sufficiently large and some Mo > 0, 

By increasing M ,  to a sufficiently high value, we obtain that this relation 
holds for all k. Q.E.D. 

Lemma 5.18: Let {p,) be a sequence generated by Algorithm A or B. 
For all k sufficiently large, we have 

where uk is given by (1 I), r is the number of constraints, and M1 and M, are 
as in Assumption (A7). 

Proof: Using (1 3) and the fact that I pk, - pk I + 0 (Lemma 5.16), 
we obtain V+(ckuj,) -, 0. It follows by the continuity and strict monotonicity 
of V4 that cku: + 0. Hence, ckuk E NO for k sufficiently large. Applying 
(A7) and (13), we have, for k sufficiently large, 

M1Ickuj,IP-l I IV+(Ckujk)l = - pi1 I MM2ICkUilP-l. 

By squaring and summing over j, we obtain 

Now it is easy to prove that if 0 < p - 1 I 1 then 
p - 1  r (il lCkui2) 5 2 l ~ ~ ~ { 1 " ~ - ~ ~  < r2-' 

j= 1 

Combining the last two relations we obtain 

from which, by taking square roots, (25) follows. If 1 5 p - 1, we have 

and similarly we obtain 

r2-PM:I~k~k12(p-11 5 I ~ k + l  - pkI2 I M ? \ c k u k I  ,(P- I1 

Again by taking square roots, we obtain (26). Q.E.D. 
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The following technical lemma provides some useful estimates. 

Lemma 5.19: Let {pk) be a sequence generated by Algorithm A or B. 
For all k sufficiently large we have 

(27) Y I I P ~ + ,  - wq - v ~ P , * , ( P ~ + , ; P ~ )  5 I U ~ I  - M * I I ,  

(28) I I P ~ + ,  - M * I I ~ + Y C ~ I I P ~ + ,  - M * I I ~ - V ~ C ~ P T ~ ( P ~ + ~ ; P ~ )  

5 ;lPh-l - ckuk - Aw*l~ l l ~ k + l  - Abf*ll. 

Proof: Take k sufficiently large so that pk + , E S(M* ; 6). Then applying 
(A8), (22), (23), and the fact that max, d(p) = d(fi,+,) 5 L(x,, fi,, ,). we 
obtain 

(29) YIIP,,, - M * I I ~ I ~ ~ X ~ ( P ) - ~ ( P ~ + ~ )  
P 

5 L(~k,Pk+l)  - Lbk,  P k + J  
+ (1/2sOIAxt(xk,~k+~)l2 

= d~k)'(fik+l - pk+l) + (l/2u)lAxZ(~k,~k+1)12. 

5 dxk)'(fik + 1 - Pk+ 1) f ~ k ~ ; ~ ( ~ l k +  1 ; ~ k ) .  

We have ilk+, 2 0, while from (14)-(16) we obtain that if g,j(xk) < uj, then 
pj, + , = 0 while if pi,, > 0 then yi(x,) = 1 4 .  It follows that 

d~k)'(iik+ 1 - Pkt 1) 5 4'(Pkt 1 - Pkt 11, 
so (29) yields 

(30) ? / l I ~ k + i  - M*lIq 5 ~b(fik+l - ~ k + l )  + ~ k ~ T ~ ( ~ k + l ; ~ k )  
5 b k l  j l ~ k t 1  - M*ll + ~ k ~ , * , ( ~ k + l ; ~ k ) .  

This proves (27). 
By multiplying with ck both sides of the first inequality in (30) and 

adding (pk+ , - p*)'(yk+, - fik+ ,), we obtain, for each p* E M*, 

b k + 1  - ~l*) ' (~ki - l  - fik+l) + ~~klIpk+l  - M * / q  

5 @ k + l  - P* - ~ k ~ k ) ' ( ~ k + l  - fik+l) + ~ k ~ k ~ : ~ ( ~ k + l ; ~ k )  

5 l ~ k + l  - P* - ckukI IIpk+l - M*l + ~ k ~ k ~ c * ~ ( ~ k i l ; ~ k ) .  

Since ,ilk+, is the projection of pk+ ,  on M*, we have 

( ~ k + l  - ~ * ) ' ( ~ k + l  - fik+l) 
2 \ k + i  - f i k + i  l 2  = \ l ~ k + i  - M*/12 VP*EM*, 

so the last two inequalities yield 

I I P ~ + ~  - M * I '  + Y C ~ / I P ~ + ~  - M * I I ~  - v ~ c ~ P ? ~ ( P ~ + I ; P ~ )  

5 I P ~ + I  - P* - ck~kl i I ~ k ~ 1  - M*l. 

By taking the minimum over p* E .21* we obtain (28). Q.E.D. 
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Convergence Rate of Algorithm A (Exact Minimization) 

Proposition 5.20 (Superlinear Convergence): Assume q > 1 and denote 

If {pk) is a sequence generated by Algorithm A, pk $ M* for all k ,  and w > 1, 
then 

lim sup IIpkfl - M*Il < m ;  
k - m  I l ~ k  - M*lW 

i.e., the rate of convergence is superlinear of order at least w. 

Proof: Apply Lemmas 5.17 and 5.18 together with (27) (with vk = 0). 
For sufficiently large k ,  

Proposition 5.21 (Finite Convergence): Assume y = 1. If {p,) is a 
sequence generated by Algorithm A, then there exists an index k such that 
pk E M* for all k 2 15. 

Proof: From (27) (with vk = 0), we obtain for all k sufficiently large 

From Lemma 5.16, we have Ip,+ , - pk 1 + 0, so (1 1) yields IukI + 0. Since 
;. > 0, we have u, - 7 < 0 for all k sufficiently large so the only way (31) can 
hold is if - .'ll*! = 0 for all k sufficiently large. Q.E.D. 

Proposition 5.22 (Linear Convergence): Assume that p = 2 in (A7) and 
q = 2 in (A8). Assume further that 4 is twice continuously differentiable 
in a neighborhood of the origin and V24(0) = 1. If {p,) is a sequence gen- 
erated by Algorithm A and p, I$ M* for all k, then 

lim sup IIPk-rl - M*Il 1 
I- if limc, = 2 < x, 

k-co  l ~ k  - M*ll + Y? k-cc  

and 

lim I l ~ k +  1 - M* / = O  if l i m c , = x .  
k - o ,  l l ~ k  - M*ll k'3~ 
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Proof: By Taylor's theorem and using the fact that V 2 4 ( 0 )  = 1, we 
have 

V ~ ( C , U ~ , )  = ckui + o(c,ui), 

where o ( . )  is such that lim,,, o(cc)/cc = 0. Hence from (13), 

pi+ 1 = pi f V4(ck ~ i )  = + ckujk + o(c~u{)  
or equivalently 

pk+ 1 - flk - Ck U k  = pk - fik + ~(ckuk) .  

Combining this equation with (28) (with vk = 0 and q = 2), we obtain 

(32) f y c k ) l l ~ k + 1  -M*lI 5 I ~ k + l  - f i k - ~ k ~ k l  I I ~ k - f i k I  + o ( c ~ u ~ )  
= / I  ~k - M* 1 1  f O ( C ~  ~ k ) .  

By Lemma 5.17 and (25), we have 

IckukI I M ; ' I P ~ + ,  - pkI ( M ~ / M 1 ) I I ~ k  - M * i ,  
so (32) yields 

I l ~ k + ~  - M*ll I (1 + ~ c ~ ) - ~ C I l l * k  - M*l + ~( l lpk  - M*ll)l. 

From this the result follows. Q.E.D. 

Interpretation of Results 

The last three propositions show that the rate of convergence of Algorithm 
A is primarily determined by the two scalars q and p, introduced in Assump- 
tions (A7) and (A8). The scalar q depends on the rate at which the dual 

I P ; i ~ j ~ k ) + d c k ( p k )  

FIG. 5.4 q 2 1, Fast convergence 
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FIG. 5.5 q 9 1, Slow convergence 

functional d grows (downward). If the graph of d is sharply pointed (q - l), 
the rate of convergence is fast. If d is relatively "flat" near the optimal set 
M* (q: large), the rate of convergence is slow. These observations are illus- 
trated in Figs. 5.4 and 5.5, where we have chosen 4 (and hence also 4") to be 
quadratic. At the same time, the rate of growth of the penalty function 4 is 
equally important in determining the rate of convergence. When p is large, 
then 4 grows slowly and 4" grows rapidly near the origin. As a result, the 
rate of convergence is poor as shown in Fig. 5.6. Conversely, when p is small 
then 4 grows rapidly, 4* grows slowly, and the rate of convergence is fast as 
shown in Fig. 5.7. 

FIG. 5.6 p $ 1, Slow convergence 
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FIG. 5.7 p - 1, Fast convergence 

An extreme case occurs when q = 1. Then by Proposition 5.21, con- 
vergence occurs in a finite number of iterations. In this case, the dual func- 
tional d has a "corner" all around its boundary. More precisely, if p is any 
vector in S(M*; 6) and fi is its projection on M*, then (A8) (with q = 1) 
implies 

For every w E ?d(p), we have d(P) I d(p) + d(j2 - p )  so IL"(P - p) 2 
d(j2) - d(p) 2 yip - $ 1 .  Hence, 

It follows that, for q = 1, (A8) implies 

so all subgradients at points near but outside M* must have a norm ex- 
ceeding ;. We show in Fig. 5.8 a situation where q = 1. and illustrate the 
process of finite convergence. A typical case is when d is polyhedral as, 
for example, where (CPP) is a linear (more generally polyhedral) program. 
Then it is straightforward to show that (A8) is satisfied with q = 1 so con- 
vergence of Algorithm A is obtained in a finite number of steps for every 
PEP; 

Some other conclusions from Propositions 5.20 and 5.22 are that when 
q < 2 the quadratic penalty function leads to a superlinear rate of con- 
vergence while if q = 2 the convergence rate is at least linear (superlinear if 
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FIG. 5.8 q = 1, Finite convergence 

c, + x). When q > 2 then it is possible to show by example that the quad- 
ratic penalty function leads to a convergence rate which is sublinear in 
general. Thus, when q > 2 the only way one can achieve a linear or superlinear 
convergence rate is by choosing a penalty function with p  E (1, 2) .  More 
generally Proposition 5.20 shows that any  order of convergence can be 
achieved by a suitable choice of the penalty function. There is a price for this 
however. When p  < 2, 6 is not twice differentiable at the origin and the 
minimization of the augmented Lagrangian L C ( .  , y) may pose difficulties 
due to ill-conditioning. As a result rapid convergence of (y,) is achieved at 
the expense of ill-conditioning the unconstrained minimization. However, in 
situations where one repeatedly solves the same basic problem with minor 
variations, one may be able to "fine tune" the algorithm by choosing {c,) 
and (q , )  in a near optimal fashion. Since good estimates of the solution are 
already known, ill-conditioning may not be a problem. and then one can 
exploit the superior convergence rate of the order p  < 2 penalty without 
incurring undue cost in computing the unconstrained minima. It is worth 
pointing out that our results imply that the order p  < 2 penalty functions 
lead to fast convergence only after the method is near convergence. When far 
from the solution, Fig. 5.7 indicates that convergence may be slow unless 
the penalty function q5 contains, implicitly or explicitly, terms of the form 
I t lP1 where p ,  2 2. For this reason penalty functions of the form $( t )  = 

( t I P  + ( I ( ~ * ,  with 1 < p  < 2 and 2 _< p , ,  seem to be preferable to functions 
of the form $( t )  = 1 t I P  with 1 < p  < 2.  
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Comparison with Penalty Methods 

If the multipliers p, are not updated in Algorithm A but rather are held 
fixed at a constant value, then an ordinary exterior penalty method is 
obtained. We derive the rate of convergence of this method and show that 
it is typically inferior to the one of the method of multipliers. For con- 
venience we assume that p, - 0 so the penalty method consists of a sequence 
of minimizations of the form 

(33) minimize L,,(x, 0 )  

subject to x E X 

for a sequence {c,) such that 

The multiplier update formula is not used but it is still relevant, as it provides 
a sequence (9,) of Lagrange multiplier estimates 

where x, is a solution of problem (33). We shall derive an estimate of 
l l f ik  - M*il. 

By Proposition 5.5, f i ,  is the unique vector attaining the maximum in 
the expression 

max ( 4 s )  - P:k(s; O)), 
s e R r  

so for any p* E M * ,  we have 

The sequence { f i , )  is bounded since d has bounded level sets and d(fik) 2 
dc,(0) 2 dc,(0) (by Proposition 5.8). By taking limits as ch -t x in (35) ,  we 
obtain using (10) 

d )  + d * ) .  I ,ilk - M*I + 0. 

It follows that for c, sufficiently large we have f i ,  E S(M*; 4, so by using (A8), 
we have 

(36) d ( , i i , ) ~ r n a ~ d ( p ) - y l J ~ , - M * l j ~ = d ( p * ) - y J j , i i , - M * ~ ~ ~ .  
1l 

Combining (35) and (36), we obtain 
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is real valued and convex, it is Lipschitz continuous on bounded sets, so if 
N is the Lipschitz constant, for the set { p  (d (p )  2 d,,(O)), we have 

(38) I pTk(~* ; O )  - p,h,(bk;  0 )  I 5 (N/ck) l P* - F k  I .  
Combining (37) and (38), we obtain for all ck sufficiently large 

Taking the infimum over p* E M* we obtain, for q > 1, 

By comparing this estimate with the estimates of Propositions 5.20 and 
5.22, we see that the convergence rate properties of the penalty method 
are not as attractive as those of multiplier methods. Indeed the rate of 
convergence of the penalty method depends on the rate at which the param- 
eter c, is increased. Note that (40) indicates that for q near unity the 
convergence is faster. The order of growth p of the penalty function does 
not enter the estimate (40), and indeed it appears that the choice of the 
penalty function is immaterial unless the multiplier update formula is 
utilized. 

An interesting situation occurs when q = 1. In this case, we obtain, 
from (39), 

O 5 ( N  - ~ k ~ ) l l b k  - M*ll, 

so it follows that 

Thus, when q = 1, the penalty method (33), (34) yields a Lagrange multiplier 
of (CPP) for ck suflciently large. In particular, this occurs when the dual 
junctional is polyhedral. This situation is illustrated in Fig. 5.9. 

Conuergence Rate of Algorithm B (Inexact Minimization) 

Proposition 5.23 (Superlinear Convergence) : Assume q > 1 and denote 

If {p,} is generated by Algorithm B, p, $ M* for all k ,  and w > 1, then 

Proof: By Lemma 5.18, we have 
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FIG. 5.9 Finite convergence of the penalty method for c, sufficiently large 

where a, = M I  min{l, r ( 2 - p ) / 2 ) .  Using this inequality together with (27), 
we obtain 

1 
(41) ( I  - I 2 I ~ ~ ~ ~ I  t ) . c k I l i r k + l  - M * ~ q - l  

where o = p / ( p  - 1). From (24), we have for large k 
r 

where D = max{l, T ' ~ - " ) ' ~ ) .  Combining this with (41), we obtain 

Equivalently, 
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By Lemma 5.17, we have 

while using the triangle inequality 

The last two relations yield 

Given that a = p/(p - 1) we have, for k sufficiently large, 

- I l ~ k +  1 - M * / / l l ~ k  - M*llp'(p-l)q < M ,  

where M is some scalar, and the proposition is proved. Q.E.D. 

Note from Proposition 5.23 that the order of convergence of Algorithm B 
[p/(p - l)q] is smaller than the one of Algorithm A [l/(p - l)(q - I)]. 
It is possible however to increase the order of convergence of Algorithm B 
up to l/(p - l)(q - 1) provided a mechanism is introduced that forces the 
scalar vk in the stopping rule to decrease sufficiently fast. It can be shown 
that if the stopping rule of Algorithm B is of the form 

where 

and {qk), B, and p satisfy 

then the order of convergence of Algorithm B is restored to l/(p - l)(q - 1) - 
the same as for Algorithm A. A proof of this fact is given in Kort and Bertsekas 
(1976, pp. 287-288). 

Proposition 5.24 (Linear Convergence): Assume that p = 2 in (A7) and 
q = 2 in (A8). Assume further that 4 is twice continuously differentiable 
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in a neighborhood of the origin and V2@(0)  = 1. If { p k )  is a sequence gen- 
erated by Algorithm B and pk $ M* for all k, then 

lim sup I I P ~ + ~  - M*lI <- 1 
- if lim ck = 2 < cc, 

k-+w lipk - M*ll + Y~ k -  w 

and 

lim I j ~ k + l  - M*ll 
= 0 if lim c, = m. 

k-+m IIPk - M*ll k -  m 

Proof: As in the proof of Proposition 5.22, we have 

Pk+ l - P k  - C k U k  = Pk - P k  + 4 ~ k ~ k ) .  

Using this equation together with (28) (for q = 2), we obtain 

By using (20) to upper-bound P,*,(pk+ ; pk), substituting in (45), and using 
also (46), we obtain 

Using (24) (for o = 2), we also have 

The last two inequalities yield 
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where 

Since 8, -+ 0, from (47) we must have either Rk -+ 0 or else 

lim sup (akRk - 7,) I 0. 
k- co 

If lim,,, c, = C < a, it follows in either case that 

limk-m y ,  1 
lim sup Rk I =- 

k- a2 l k k  1 + Y E '  

If ck -t x then u, -+ o, 7 ,  + 1, and it follows that R, -+ 0. Q.E.D. 

Note that under the assumptions of Proposition 5.24, the bound on the 
convergence ratio 

I l ~ k f l  - M*ll/ll~k - M * l i  
is identical for both Algorithms A and B, so the ultimate speed of con- 
vergence is unaffected by the fact that minimization of LC,(., pk) is not 
exact. This of course, is true for the particular stopping rule utilized in 
Algorithm B. When other stopping rules are used, then there is no guarantee 
that this property will be maintained. In fact it is possible to construct 
examples (see Bertsekas, 1975c) where the (natural) stopping rule 

is used, and the assumptions of Proposition 5.24 are satisfied, but the con- 
vergence rate of the corresponding algorithm is sublinear. 

5.5 Conditions for Penalty Methods to be Exact 

It was shown in the previous section (Proposition 5.21) that the method 
of multipliers with exact minimization under certain (rather restrictive) 
assumptions yields a Lagrange multiplier of (CPP) in a finite number of 
iterations. One extra minimization will be required in order to obtain an 
optimal solution of (CPP) [compare with Proposition 5.6bI. On the other 
hand, it is possible to obtain under much less restrictive assumptions an 
optimal solution of (CPP) provided we use a nondifferentiable penalty 
function. We developed the relevant theory for nonconvex problems in 
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Section 4.1. In this section, we develop a generalized version of this theory 
for convex problems. 

We consider (CPP) and assume throughout that Assumptions (A1)-(A3) 
of Section 5.2 are in eject. We also assume that j'* = sup,,, d(p).  We con- 
sider penalty functions p :  Rr -+ R which are real valued convex and satisfy 

(2) p(t) > 0 if t j  > 0 for some j = 1, . . . , r. 

It is easily seen that ( 1 )  implies that the conjugate 

p*(s) = sup {s't - p(t)) 
f 

satisfies 

Typical conjugate convex pairs p and p* that are of interest within the 
context of this section are shown in Fig. 5.10. 

FIG. 5.10 Typical conjugate pairs p and p* 
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Consider the problem 

(4) minimize f (x) + p[g(x)] 

subject to x E X. 

It is easy to verify, by essentially repeating the proof of Proposition 5.7a, 
that if Assumption (A.4) holds then problem (4) has a nonempty and compact 
solution set. We are interested in deriving conditions under which optimal 
solutions of problem (4) are also optimal solutions of (CPP). The situation 
can be visualized by using Fenchel's duality theory (Rockafellar, 1970, 
Theorem 3 1.1) to write 

where q is the primal functional of (CPP) [compare with (9) in Section 5.21 
and d is the dual functional. Notice the similarity of Eq. (5) with Eqs. (23) 
and (26) of Section 5.2 (compare with Proposition 5.5). It can be easily 
shown (see also the proof of Proposition 5.5b) that our assumptions guaran- 
tee that condition (a) of (Rockafellar, 1970, Theorem 31.1) is satisfied, and 
this in turn implies that the maximum in ( 5 )  is attained (even though this 
maximum may equal -a). The maximization in ( 5 )  is illustrated in Fig. 
5.1 1 where the scalarfis defined by 

It can be seen that in order for problem (4) to have the same optimal value 
as (CPP), it is necessary for the conjugate p* to be "flat" along a sufficiently 
large "area." This is formalized in the following proposition. 

Proposition 5.25: Assume that (A1)-(A3) hold and that 

(a) In order for some optimal solution of problem (4) to be an optimal 
solution of (CPP) it is necessary that there exists a Lagrange multiplier p of 
(CPP) for which 

(6 )  t'ji I p(t) V t E Rr. 

(b) In order for problem (4) and (CPP) to have exactly the same 
optimal solutions, it is sufficient that 

(7)  t'p < p(t) V t E R r  with t j  > 0 for some j 

for some Lagrange multiplier ,ii of (CPP). 
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FIG. 5.1 1 Geometric interpretation of 
the maximization in (5) 

Proof: (a) Let 2 be a common optimal solution of problem (4) and 
(CPP). Since x is feasible for ( C P P ) ,  we have f * = f ( x )  and p [ g ( x ) ]  = 0. 
Using (5) we obtain 

Let ,ii be any vector attaining the maximum above. Then 

Hence p*(,E) I 0 and since from (3) we have p*(s) 2 0 for all s, it follows that 

It follows from (8) that d(,E) = f *, so ,ii is a Lagrange multiplier. We can 
rewrite ( 9 )  as 

sup{plt - p(t) )  = 0 
r 

SO 

t'l* - p(t)  l 0 v t  E R' 

implying (6). 
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(b) If 2 is an optimal solution of (CPP), then by (I), (7), and the definition 
of a Lagrange multiplier, we have, for all x E X, 

Hence, 2 is also a solution of problem (4). 
Conversely, if 2 is a solution of problem (4), then X is either a feasible 

point in which case it is also a solution of (CPP) (in view of p[g(x)] = 0 for 
all feasible points x), or it is infeasible in which case gj(X) > 0 for some j. 
Then by using (7) we have that there exists an E > 0 such that 

(10) P'g(x) + E < PCB(X)I. 

Let 2 be a feasible solution of (CPP) such that f (2) sf * + e. Since p[g(,f)] = 0 
and f * = inf,,, { f (x) + plg(x)) we obtain 

(1 1) f(n)  + p[g(n)l = f(a)  s f *  + E I j ( ~ )  + p1g(z) + E. 

By combining Eqs. (10) and (1 1) we obtain 

which contradicts the fact that 2 is an optimal solution of problem (4). 
Hence problem (4) and (CPP) have exactly the same solutions. Q.E.D. 

As an application of Proposition 5.25, consider the penalty function 

where c > 0. Clearly it satisfies (1) and (2). Condition (6) can be written as 

and is clearly equivalent to 

, i i j I c  V j =  1, ..., r .  

Similarly, condition (7) is equivalent to 

More generally, consider the case where 

j= 1 

where pj: R + R are convex real-valued penalty functions satisfying 

(12) pj(t) = 0 V t 1 0, p,(t) > 0 v t > 0. 
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Then condition (6) can be written as 

and is clearly equivalent to 

Pj t j  I pj(tj) V t j  E R, j = 1, . . . , r. 

In view of (12) and the convexity of pj,  this condition can be easily seen to be 
equivalent to 

Similarly condition (7 )  is equivalent to 

Consider also for c > 0 the penalty function 

p(t) = c max(0, t  ,, . . . , t,) 

discussed in Section 4.1. Condition (6) can be written as 
r 

1 p j t j  I c max(0, t,, . . . ,t,) V t  E Rr, 
j =  1 

and a little thought shows that it is equivalent to 

Similarly, condition (7 )  is equivalent to 

The results of Proposition 5.25 for this penalty function should be compared 
with the results of Section 4.1. 

5.6 Large Scale Separable Integer Programming Problems and the 
Exponential Method of Multipliers 

We noted in Section 5.4 that multiplier methods are fully applicable to 
linear or polyhedral programs and furthermore give convergence in a finite 
number of iterations if the penalty function used belongs to the class P,' and 



the minimization of the augmented Lagrangian is carried out exactly (Prop- 
osition 5.21). Despite their finite convergence property, it seems that 
multiplier methods are typically not competitive with the simplex method 
for solution of linear programs of small dimension. There are however large 
dimensional linear programs with special structure for which the simplex 
method is hopelessly time consuming and for which other methods designed 
for nondifferentiable optimization are much more effective. In this section 
we discuss the application of approximation methods for nondifferentiable 
optimization to an interesting class of polyhedral programs. 

An important feature of nondifferentiable optimization methods is that, 
by contrast with the simplex method, they are not oriented towards moving 
from one extreme point of the feasible set to a neighboring extreme point. 
As a result, they are typically not guaranteed to solve the problem in a 
finite number of iterations. However, because they are not constrained to 
follow a (usually conservative) path consisting of adjacent extreme points 
they are often capable of locating rather quickly a good approximation to 
an optimal solution. In most applications, this is sufficient for practical 
purposes. The potential of nondifferentiable optimization methods for 
solving important classes of polyhedral problems arising for example via a 
duality transformation in integer programming was appreciated early in 
the Soviet Union following the development of the subgradient method 
(Shor, 1964; Poljak, 1969b) and space dilation methods (Shor, 1970; Shor 
and Jourbenko, 1971). Considerable interest in nondifferentiable optimiza- 
tion was also generated several years later in the West (Held and Karp, 1970: 
Held et al., 1974) and new methods such as the E-subgradient method 
(Bertsekas and Mitter. 1971, 1973; Lemarechal, 1974), conjugate subgradient 
methods (Wolfe, 1975; Lemarechal, 1975). and other descent methods 
(Goldstein, 1977, Mifflin, 1977) were developed (see Auslender, 1976, and 
Shapiro, 1979, for an extensive account). 

The approximation methods for nondifferentiable optimization discussed 
in Sections 3.3 and 5.1.3 provide an interesting alternative for solving poly- 
hedral optimization problems arising in integer programming via a duality 
transformation. One of their advantages versus subgradient-type methods 
is that, in addition to solving the nondifferentiable optimization problem 
at hand, they provide additional information in the form of the multipliers 
entering the approximation formulas. These multipliers often turn out to 
be extremely valuable in generating a good suboptimal solution of the 
original integer programming problem. In this section, we describe this 
methodology as applied to an important class of integer programming 
problems. It has been recently successful in solving problems involving 
several thousands of integer variables that have resisted solution for many 
years using other methods (see Bertsekas et al., 1981). 
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The approximation approach to be described is based on the exponential 
penalty function as in Section 5.1.3. By contrast with penalty functions in 
the class P z ,  the use of the exponential function does not lead to a finitely 
convergent algorithm for polyhedral problems. Its main advantage is that 
it leads to twice differentiable approximating problems, and it appears that 
this is a very important factor when the problem to be approximated is 
polyhedral. 

A Class of Integer Programming Problems 

We consider the following (primal) integer programming problem 

I 

(PIP)  minimize 1 J;(xi, ni) 
i= 1 

I 

subject to 1 hi(xi7 n,) I b ni E N i ,  xi E Xi(ni), i = 1, . . . , 1, 
i =  1 

where for each i, ni is an integer variable constrained to take values in a 
bounded integer set N i ,  and for each ni E N , ,  x i  is a vector in RPz constrained 
to take values in a bounded polyhedron Xi(ni) which depends on n,. The 
real-valued function A ( .  , ni) is assumed to be concave ( for  example linear) 
on Xi(ni)for all i and ni E Ni. Also, for each i and ni G N,,  the function h i ( .  , n,) 
maps RPL into Rm. The vector b E Rm is given. We assume that each component 
of the function hi( . , n,) is concaae on Xi(ni). 

One may interpret (PIP)  as a problem of finding a minimum cost pro- 
duction schedule by I production units while meeting the "demand" con- 
straints implied by If=, hi(xi ,  ni) I b. Each set Xi(ni)  may be viewed as a 
"production region" within which the production cost is J;.(xi, n,). In this 
way, a broad variety of production cost functions is allowed including 
discontinuous, concave, and piecewise linear convex functions. An example 
is shown in Fig. 5.12, where xi  is a scalar! and there are four production 
regions. 

A dynamic version of (PIP)  is obtained by considering a time horizon of 
T periods ( T  > 1) and "setup" costs for passing from one production 
region to another at the beginning of each time period. The problem is 

subject to C hidxi,, nit) I b,, t = 1, . . . , T ,  
i =  1 
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FIG. 5.12 

Here, for each i and t, f i t ,  hit, and Xi( satisfy similar assumptions as f i ,  hi ,  
and Xi in (PIP), the integer constraint set Nit(ni,,- ,) for nit depends on 
ni , t - l ,  and sit(ni,,_,, nit) represents the setup cost for passing from the 
production region ni,,-, to the region nit at time period t .  

We now introduce a dual problem for (PIP)  and its dynamic version. 

The Dual Problem 

For p 2 0 define 

The dual problem corresponding to (PIP)  is 

(DIP) maximize d(p) 

subject to y 2 0. 

Similarly for p = (p,, . . . , pT), where for all t ,  y, E Rm, P,  2 0, define 

(3) &4 = 
T I 

xi t  Xit (ni t )  

The dual problem corresponding to the dynamic problem (1) is 

(4) maximize J(p) 

subject to p 2 0. 
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The value of the dual functional d(y) can be calculated relatively easily. 
In view of the separable nature of the objective and constraint functions, the 
minimization in (2) can be carried out separately for each i. Because fi(., n,) 
and the components hi(., n,) have been assumed concave over Xi(n,), it is 
sufficient to carry out each of the separate minimizations in (2) over the 
extreme points of Xi(ni). In what follows we shall implicitly assume that 
these extreme points are readily available. If x,(j, n,), j = I, . . . , j,,, are the 
extreme points of Xi(ni), we can write d(y) as 

I 

( 5 )  d ( p )  = 1 min {f,[xi(j, ni), nil + plhi[xi(j, n,), nil} - p'b. 
i = l  n i ~ l V ,  

j =  1 ..... j,, 

Similarly, given the extreme points of Xit(nit) for each i and t, it is possible 
to carry out the minimization in (3) separately for each i by means of a simple 
dynamic programming recursion. In what follows we shall restrict ourselves 
for simplicity to (PIP) but the analysis to be given fully extends to its dynamic 
version (1) (see Bertsekas et al., 1981). 

One of the most common approaches for solving integer programs such 
as (PIP) is the so-called Lagrangian relaxation method (Geoffrion, 1974; 
Shapiro, 1979) which is based on solution of the dual problem. The dual 
optimal value provides a lower bound to the optimal value of the original 
integer program. This lower bound together with the solution of the dual 
problem is used in turn (possibly in conjunction with the branch-and-bound 
technique) to provide a good approximate solution of the original problem. 
Verification of the quality of this solution is based on its cost (which is an 
upper bound to the optimal cost) and the lower bound obtained from the 
dual problem. 

An approach of this type is typically successful in solving problems of 
large size only if the following two conditions are met: 

(a) The difference between the optimal values of the primal and dual 
problems (the duality gap) is relatively small. 

(b) The method used for solving the dual problem provides sufficient 
information for generating a nearly optimal feasible solution of the primal 
problem. 

It turns out that the duality gap for (PIP) is typically quite small (in 
relati~e terms) if the number of separable terms I is large, and in fact becomes 
smaller as I increases. We shall demonstrate this fact under some conditions 
[see Assumption (A) that follows] in the next subsection. 

Regarding the possibility of generating a good suboptimal solution of 
(PIP), the solution of the following problem is of particular interest. 



The Relaxed Problem 

Consider a problem which is the same as (PIP)  except that instead of 
choosing, for each i, an integer ni E N i  and a vector xi  E Xi(ni) we choose a 
probability distribution over all the extreme points of the sets Xi(ni), ni E N i .  
In other words, for each i, we enlarge the feasible set { ( x i ,  ni)lni E N i ,  X ; E  

Xi(ni ) )  to include all randomized decisions. I f  xi( j ,  ni), j = 1, . . . , jni, denotes 
the extreme points of Xi(ni) and pi(j, n,) are the corresponding probabilities, 
the relaxed version of (PIP) is stated as 

(RIP)  minimize 1 1 pi(j, ni)f i[xi(j ,  ni), nil 
i = l  n i o N ,  j = l  

There is also a relaxed problem for the dynamic problem (1 )  (see Bertsekas 
et al., 1981), which admits an interpretation consistent with the theory of 
relaxed optimal control. 

The duality gap estimate of the next section and the subsequent analysis 
is based on the following assumption which can be expected to hold for many 
problems of practical interest: 

Assumption (A) : Given any feasible solution 

of (RIP)  there exists a feasible solution {(Ti,, li) ( i  = 1, . . . , I }  of (PIP)  such 
that 

.in, 

h i ( l i ,  Tii) < 1 1 pi(j. ni)hi[xi(j. ni), n,] V i = 1, . . . , I 

We note that (RIP)  is a linear program in the variables pi(j, ni), i = 
1, . . . , 1, ni E N, ,  and j = 1, . . . , jni. I f  we write, using ( 5 ) ,  the dual problem 
(DIP) in the equivalent form 

I 

maximize zi - p'b 
i =  1 

subject to p 2 0, f i[xi(j ,  nil, nil + p'hi[xi(j, ni), nil 2 zi, 
i =  1 , . . . , I ,  n i € N i ,  j =  1 , . . . ,  jn,, 
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then we find that (RIP) and (DIP) are dual linear programs and therefore have 
the same optimal tialue. Furthermore, every feasible solution of (RIP) in 
which all probabilities pi(j, n,) are either zero or unity correspond to a 
feasible solution of (PIP). Therefore the duality gap can alternatively be 
viewed as the decrease in optimal cost obtained by allowing randomized 
decisions. 

In view of the fact that (RIP) has I equality constraints and m inequality 
constraints (except for the nonnegativity constraints), we have that in any 
basic solution of (RIP) there can be at most (m + I) nonzero probabilities 
p,(j, n,). Since for each i at least one probability p i ( j ,  n,) must be nonzero, , 
it follows (assuming I > m) that, for at least ( I  - m) indices i, all the prob- 
abilities p,(j, n,) are either zero or unity, and for only a maximum of m 
indices it is possible to have two or more probabilities pi(j, n,) being nonzero. 
This suggests that. if I is much larger than m, then it should be possible to 
devise heuristic rules for modifying an optimal solution of (RIP) to obtain a 
feasible solution of (PIP) with value that is relatively close to the optimal 
value of (RIP). The value of this feasible solution of (PIP) can then be 
compared with the optimal value of (RIP) or equivalently, the optimal 
value of (DIP). If these values are sufficiently close, the feasible solution will 
be accepted as final. Otherwise one has to proceed with the branch-and- 
bound technique. Actually the procedure we have described amounts to 
examining the first node of the branch-and-bound tree in the context of the 
Lagrangian relaxation process. 

We claim that if I is much larger than m and use is made of the solution 
of the relaxed problem, then an excellent suboptimal solution of (SIP) can 
typically be obtained at the very first node of the branch-and-bound tree. We 
shall demonstrate this fact via the computational example given in Section 
5.1.3. The papers by Lauer et al. (1981) and Bertsekas et al. (1981) provide 
computational results substantiating this claim for the corresponding 
methodology as applied to dynamic problems of the form (1) arising in 
electric power system scheduling. 

The main advantage that the approximation method of Section 5.1.3 
offers over subgradient-type methods is that, when used to solve the dual 
problem (DIP), it simultaneously provides an optimal solution of the 
relaxed problem (RIP). This relaxed solution can then be used to generate a 
good suboptimal solution of (PIP). We note that the capability of solving 
simultaneously both the dual and the relaxed problem is also shared by the 
simplex method. It is unclear whether in a specific instance of (PIP) it is 
preferable to use the approximation method over the simplex method. The 
advantages of the approximation method manifest themselves primarily in 
the context in the dynamic problem (1) for which the simplex method 
quickly becomes unwieldy as the number of time periods T increases. 
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5.6.1 An Estimate of the Duality Gap 

The estimate of the duality gap to be derived applies to a broad class 
of problems that includes (PIP) as a special case. It is therefore worthwhile 
as well as convenient to develop this estimate in a general setting. 

Consider the following problem: 
I 

minimize C fi(xi) 
i = l  

I 

subject to xi E Xi,  C hi(xi) s b, 
i =  1 

where I is a positive integer, b is a given vector in Rm (m is a positive integer), 
Xi  is a subset of RPi (pi is a positive integer for each i), and f i :  conv(Xi) + R 
and hi: conv(Xi) + Rm are given functions defined on the convex hull of Xi 
denoted conv(Xi). We assume the following: 

Assumption (Al): There exists at least one feasible solution of problem 
( 0  

Assumption (A2): For each i, the subset ofR 

{(xi 7 hi(xi), f,(xi)) I xi E Xi) 

is compact. 

Assumption (A2) implies that Xi  is compact. It is satisfied whenever Xi  
is compact and both f i  and hi are continuous on Xi.  It is also satisfied for 
the special case of the integer program (PIP) described earlier. Note that no 
convexity assumptions are made on f i ,  hi, or Xi .  

For each i, define the function f i :  conv(Xi) + R by 

The function f i  may be viewed as a "convexified" version of f i  on conv(Xi). 
Figure 5.13 shows an example of f i  and the corresponding f i ,  where Xi 
consists of the union of an interval and a single point. Similarly, define the 
function i i :  conv(Xi) + R" by 
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FIG. 5.13 

where the infimum is taken separately for each of the m coordinates of the 
function hi. Note that if f i  is a convex function on(Xi) and (Xi) is convex, 
then f ,  = f i .  A similar statement can be made concerning hi and Li. 

Our third assumption corresponds to Assumption (A) regwding (PIP). 

Assumption (A3): For each i, given any vector .? in conv(Xi). there 
exists x E Xi such that hi(s) 2 hi(.f). 

Note that (A3) issatisfied if Xi  is convex andeachcomponentof hi islaicon- 
vex function.It can be expected to hold in many problems of practical interest. 

Define for each i the function f i :  conv(Xi) + R by 

(8) f i ( l )  = inf { fi(x) I hi(x) I h,(l), x E Xi) V 1 E conv(Xi). 

Note that, by (A3), the constraint set for the minimization indicated in (8) 
is nonempty. Our estimate of the duality gap is given in terms of the scalars 

Since we have. for all x E conv(Xi), 

it follows that an easily obtainable overestimate of pi is 

Figures 5.14-5.17 show the scalar p ,  for X i  consisting of the union of an 
interval and a single point. and for specific cases of fi  and hi. 

Consider now the dual problem 

(Dl maximize d(p) = inf [,fi(xi) + prhi(xi)] - p'b 
i = 1  ...., 1 

subject to 11 2 0. 



FIG. 5.14 hi(x)  = - x ,  p, > 0 

FIG. 5.15 h,(x)  = X .  pi = Q 

FIG. 5.16 h;(x)  = - X, 0 ,  > 0 
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FIG. 5.17 h,(x)  = x, 0, > 0 

Let inf(P) and sup(D) denote the optimal values of the primal and dual 
problems respectively. We have the following result. 

Proposition 5.26: Under Assumptions (A1)-(A3) there holds 

(10) inf(P) - sup(D) I (m + 1)E, 
where 

(1 1) E = max(pili = 1, . . . ,  I).  

Proof: Define the sets 

and their vector sum 

(1 3) Y = Y, + Y;! + . . .  + YI 

In view of (A2), Y, conv(Y), and Yi, conv(Yi), i = 1, . . . , I ,  are all compact 
sets. By definition of Y, we have 

(14) inf(P) = min{w 1 there exists ( z ,  w) E Y with z 5 b} .  

By using (Al), (A2), and a standard duality argument (see Magnanti et al., 
1976; Shapiro, 1979, p. 150) we can also show that 

(15) sup(D) = min{\r./ there exists (z, LV) E conv(Y) with z I b). 

We now use the following theorem (see Ekeland and Temam, 1976, Appendix 
1). 

Shapley-Folkman Theorem: Let Yi, i = 1, . . . , I, be a collection of 
subsets of Rm+'. Then for every y E c o n v ( ~ f , ,  y), there exists a subset 
I(y) c (1, . . . , I }  containing at most (m + 1) indices such that 



5.6 LARGE SCALE SEPARABLE INTEGER PROGRAMMING PROBLEMS 375 

Now let (5, E) E conv(Y) be such that [compare with (15)] 

(16) E = sup(D), Z I b. 

By applying the Shapley-Folkman theorem to the set Y = C!=, Yi given by 
(12) and (13), we have that there exists a subset I c (1, . . . , I), with at most 
( m  + 1) indices, and vectors 

(bi,Ei)Econv(Yi), i ~ l ,  Z i € X i ,  i $ i ,  

such that [compare with (16)] 

C-f i(2i) + wi = sup(D). 
i d 1  iei 

Using the Caratheodory theorem for representing elements of the convex 
hull of a set, we have that, for each i E 7, there must exist vectors x!,  . . . , 
x y + 2  E Xi and scalars r ! ,  . . . . r:'-2 such that 

Using the definition of?,, hi, and pi [compare with (6)-(9)], we have 

By combining (16)-(20), we obtain 

Given any E > 0 and i E I ,  we can find [using (A3)] a vector xi E X i  such that 
[compare with (S)] 
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These relations together with (21) and (22) yield 

Since by (23), (F,, . . . , TI) is a feasible vector for (P), we have inf(P) 5 
Cf = f i(xi), and (24) yields 

inf(P) I sup(D) + 1 (pi + E). 
i o i  

Since E is arbitrary, I contains at most (m + 1) elements, and E = max{pi I i = 
1, . . . , I), (25) proves the desired estimate (10). Q.E.D. 

The significance of Proposition 5.26 lies in the fact that the estimate 
( m  + l)E depends only on m and E but not on I. Thus if we consider instead 
of problem (P), the problem 

1 ' 
minimize - 2 fi(xi) 

I , = ,  
I 

subject to xi E Xi, 1 hi(xi) I b, 
i = l  

the objective function of which represents "average cost per term," the duality 
gap estimate becomes 

Thus the duality gap goes to zero as I + cc. Otherwise stated, ifthe optimal 
value of problem (P) is proportional to I, the ratio of the duality gap over the 
optimal value goes to zero as I + cc. 

5.6.2 Solution of the Dual and Relaxed Problems 

We consider solution of the dual problem (DIP) via the approximation 
method based on the exponential penalty function [compare with Section 
5.1.3, Eqs. (25) and (26)l. Taking into account the expression (5) for the 
dual functional, we form an approximate dual functional defined by 



where 

c is a positive scalar parameter, and the multipliers pi(j, n,) are positive 
scalars satisfying 

The approximation method consists of sequential solution of approximate 
dual problems of the form 

(29) maximize dCk(p; pk) 

subject to p 2 0 

followed by multiplier iterations of the form 

where p, solves problem (29). The initial multipliers p;(j, ni) are strictly 
positive and satisfy (28), and the penalty parameter sequence {c,) satisfies 
0 < c, I c, - ,  for all k .  

We note that the approximate dual problem (29) is twice continuously 
differentiable and thus can be solved by means of a constrained version of 
Newton's method-for example, the one discussed in Section 1.5. The 
generated sequence {pk}  can be expected to converge to an optimal solution 
of the dual problem (compare with Proposition 5.12), and the multiplier 
sequences {p f ( j ,  n,)} can also be expected to converge to limits pi(j, n,) 
satisfying [compare with (28)] 

pi(j, ni) 2 0, i = 1 , . . . , I ,  n i € N i ,  j = 1 , . . . ,  j,,, 

Furthermore, by applying Proposition 5.12 and using the fact that the relaxed 
problem (RIP) and the dual problem (DIP) are dual linear programs? we 
find that the set of multipliers {pi( j ,  ni)I i = 1 ,  . . . , I ,  ni E ,Yi, j = 1 .  . . . . jni) 
is an optimal solution ofthe relaxed problem. Thus the approximation method 
can be expected to soloe simultaneously both the dual and the relaxed problems. 

We now demonstrate via example how the solution of the relaxed 
problem can be used to generate a good suboptimal solution of (PIP). 
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Example: Consider the problem 

(3 1) minimize 

FUNCTIONS-CONVEX PROGRAMMING 

fi(xi> 
i =  1 

I 

subject to xi 2 b, 
i =  1 

where b is a given scalar, for each i, xi is a scalar taking values in a set of the 
form 

Xi = (0) u Cui, Pil, 

and fi: Xi + R has the form shown in Fig. 5.18. Clearly this problem is a 
special case of (PIP). There are three production regions (ni E {I, 2, 3)) and 
the corresponding production sets are 

xi(1) = (O), Xi(2) = Cai, gui + Pi)], Xi(3) = [%xi + Pi), Pi]. 

Thus, there is a total of five extreme points xi(j, ni), for each i, 

Suppose that after applying the approximation method, we obtain a 
solution (pi(j, n,)} of the relaxed problem. We shall describe a reasonable 
procedure for generating a feasible solution of problem (31). The main idea 
is to assign, for each i, a production region ni on the basis of the probabilities 
pi(j, ni) and then choose optimally xi within the corresponding region. The 
procedure is guaranteed to generate a feasible solution assuming that 
problem (31) has at least one such solution. 

FIG. 5.18 



5.6 LARGE SCALE SEPARABLE INTEGER PROGRAMMING PROBLEMS 

Choose 7 = 0.5. For all i, set 

Then test whether the condition 
I 

is satisfied. If not, increase -y by 0.1 and repeat the procedure until (32) is 
satisfied. Let I = {i 1 Tii # l), and choose 6 = 0. For all i  E I ,  set 

Define I, = { i  1 iii = 2) and I, = { i  1 ni = 31, and test whether the condition 

is satisfied. If not, increase d by 0.1, and repeat the procedure until (33) is 
satisfied. Then solve the (trivial) linear program 

I 

(34) minimize C fi(xi) 
i =  1 

subject to 2 xi 2 b, xi E Xi(&), i = 1, . . . , I ,  
i =  1 

to obtain a feasible solution { Z J i  = 1 , .  . . , I) of problem (31). It can be 
easily seen that the procedure for selecting ni described above guarantees 
that problem (34) has at least one feasible solution. 

In Table 5.1, we provide some computational results using this procedure 
and randomly generated problems. The table shows the number of produc- 
tion units I, and the ratio (LTB - LB);LB, where LB is the best lower bound 
obtained from solution of the dual problem, and CB is the value of the 
feasible solution of the primal problem ( 3 1 )  generated via the procedure 
described above. Each entry represents an average over five randomly 
generated problems with b = 21 and mi, Pi, f . . . . f (refer to Fig. 5.18) 
chosen as 
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where r , ,  . . . , r ,  are scalars chosen according to a uniform probability 
distribution from the interval [0, 11. It can be seen from Table 5.1 that the 
relative difference between the upper and lower bound decreases as I in- 
creases, which is consistent with the estimate of the duality gap of Proposition 
5.26. 

TABLE 5.1 

Estimates of Relative 
Duality Gap for 

Various Problem Sizes 

C'B-LB 

5.7 Notes and Sources 

Notes on Section 5.1: The class of penalty functions P, and PI were 
first proposed in Kort and Bertsekas (1972), while the class PI was proposed 
in Kort and Bertsekas (1973). Rockafellar (1971) proposed earlier the use 
of the augmented Lagrangian based on the quadratic penalty function 
4(t) = (1/2)t2. The use of the exponential penalty function in approximation 
procedures for minimax problems was suggested in Bertsekas (1977). For an  
application of this function in optimization of multicommodity network 
flows. see Vastola (1979). and for an  application in electric diode network 
analysis. see Bertsekas (1976e). Convergence analysis for nonconvex prob- 
lems relating to this function and the associated method of multipliers is 
p r o ~ i d e d  in Nguyen and Strodiot (1979). The application of the exponential 
penalty function to the problem of finding a feasible point of a system of 
inequalities was suggested by Schnabel (1980). 

Notes on Section 5.2: Most of the results of this section were sho~vn by 
Rockafellar (1973a) for the case where 4 is quadratic. They \Yere extended 
in Kort and Bertsekas (1973. 1976) and Kort (1975a). 
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Notes on Section 5.3: The algorithms of this section together with 
Propositions 5.7-5.11 are due to Kort and Bertsekas (1973, 1976). Some 
additional material is given in the Ph.D. thesis by Kort (1975a). A conver- 
gence analysis of the algorithm corresponding to the quadratic penalty 
function was also given independently by Rockafellar (1973b). The inexact 
minimization algorithm suggested by Rockafellar (1973b) uses a different 
stopping rule which can be translated into a gradient-based stopping rule 
such as ours, as shown later in Rockafellar (1976~). Relations of the methods 
of multipliers with the proximal point algorithm were shown in Rockafellar 
(1976a,b). The same references describe a modified version of the method 
which is suitable for problems where Assumption (A5) is not satisfied. 
Proposition 5.12 is an improved version of an unpublished result due to 
Kort and Bertsekas. Proposition 5.13 was given in Bertsekas (1975a), but 
the inequality (48) on which its proof rests is due to Rockafellar (1973a). 
Proposition 5.14 is due to Rockafellar (1973b). 

Notes on Section 5.4: The convergence rate analysis of this section is 
due to Kort and Bertsekas (1976) with the exception of the result of Proposi- 
tion 5.21. This result together with the finite convergence property of the 
penalty method for c sufficiently large are new in the general form given here 
but stem from independent work of Poljak and Tretjakov (1974) and 
Bertsekas (1975b, 1976c) regarding polyhedral convex programming 
problems and the quadratic penalty function. A convergence rate analysis 
of the proximal point algorithm (which includes as a special case the method 
of multipliers with a quadratic penalty function) is given in Luque (1981). 
This work also considers situations where the rate is sublinear. 

Notes on Section 5.5: Proposition 5.25 is a generalized version of a 
result given in Bertsekas (1975b) but descends from earlier works on specific 
exact nondifferentiable penalty functions referenced in Section 4.6. 

Notes on Section 5.6: The material in this section is new and was 
developed as the monograph was being written. It is based on a method for 
power system scheduling described in Bertsekas et al. (1981) and Lauer 
et al. (1981). The analysis of the duality gap bears similarity with the one of 
Aubin and Ekeland (1976). Our estimate is based on different assumptions 
and is considerably sharper than the one in that reference. 
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