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Preface to the Dover Edition

This edition contains minor corrections to the original edition. In the 28 years
that have elapsed between these two editions, there have been great changes in
computing equipment and in the development of numerical methods. However,
the analysis required to understand and to devise new methods has not changed,
and, thus, this somewhat mature text is still relevant. To the list of important
tOpiCS omitted in the original edition (namely, linear programming, rational
approximation and Monte Carlo) we must now add fast transforms, finite
elements, wavelets, complexity theory, multigrid methods, adaptive gridding,
path following and parallel algorithms. Hopefully, some energetic young
numerical analyst will incorporate all these missing topics into an updated
version to aid the burgeoning field of scientific computing.

We thank the many people who have pointed out errors and misprints in the
original edition. In particular, Mr. Carsten Elsner suggested an elegant
improvement in our demonstration of the Runge phenomenon, which we have
adopted in Problem 8 on page 280.

EUGENE ISAACSON AND HERBERT B KELL~.R

New York and Pasadena
July 1993





Preface to the First Edition

Digital computers, though mass produced for no more than fifteen years,
have become indispensable for much current scientific research. One basic
reason for this is that by implementing numerical methods, computers
form a universal tool for "solving" broad classes of problems. While
numerical methods have always been useful it is clear that their role in
scientific research is now of fundamental importance. No modern applied
mathematician, physical scientist, or engineer can be properly trained
without some understanding of numerical methods.

We attempt, in this book, to supply some of the required knowledge. In
presenting the material we stress techniques for the development of new
methods. This requires knowing why a particular method is effective on
some problems but not on others. Hence we are led to the analysis of
numerical methods rather than merely their description and listing.

Certainly the solving of scientific problems should not be and is not
the sole motivation for studying numerical methods. Our opinion is that
the analysis of numerical methods is a broad and challenging mathematical
activity whose central theme is the effective constructibility of various
kinds of approximations.

Many numerical methods have been neglected in this book since we do
not attempt to be exhaustive. Procedures treated are either quite good and
efficient by present standards or else their study is considered instructive
(while their use may not be advocated). Unfortunately the limitations of
space and our own experience have resulted in the omission of many
important topics that we would have liked to include (for example, linear
programming, rational approximation, Monte Carlo methods).

The present work, it turns out, could be considered a mathematics
text in selected areas of analysis and matrix theory. Essentially no

Vll



Vlll PREFACE TO THE FIRST EDITION

mathematical preparation beyond advanced calculus and elementary linear
algebra (or matrix theory) is assumed. Relatively important material on
norms in finite-dimensional spaces, not taught in most elementary courses,
is included in Chapter 1. Some familiarity with the existence theory for
differential equations would be useful, but is not necessary. A cursory
knowledge of the classical partial differential equations of mathematical
physics would help in Chapter 9. No significant use is made of the theory
of functions of a complex variable and our book is elementary in that
sense. Deeper studies of numerical methods would also rely heavily on
functional analysis, which we avoid here.

The listing of algorithms to concretely describe a method is avoided.
Hence some practical experience in using numerical methods is assumed
or should be obtained. Examples and problems are given which extend
or amplify the analysis in many cases (starred problems are more difficult).
It is assumed that the instructor will supplement these with computational
problems, according to the availability of computing facilities.

References have been kept minimal and are usually to one of the general
texts we have found most useful and compiled into a brief bibliography.
Lists of additional, more specialized references are given for the four
different areas covered by Chapters 1-4, Chapters 5-7, Chapter 8, and
Chapter 9. A few outstanding journal articles have been included here.
Complete bibliographies can be found in several of the general texts.

Key equations (and all theorems, problems, and figures) are numbered
consecutively by integers within each section. Equations, etc., in other
sections are referred to by a decimal notation with explicit mention of the
chapter if it is not the current one [that is, equation (3.15) of Chapter 5].
Yielding to customary usage we have not sought historical accuracy in
associating names with theorems, methods, etc.

Several different one-semester and two-semester courses have been
based on the material in this book. Not all of the subject matter can be
covered in the usual one-year course. As examples of some plans that have
worked well, we suggest:

Two-semester courses:

(A) Prerequisite-Advanced Calculus and Linear Algebra, Chapters 1-9;
(8) Prerequisite-Advanced Calculus (with Linear Algebra required only

for the second semester), Chapters 3, 5-7, 8 (through Section 3),
1,2,4,8,9.

One-semester courses:

(A) Chapters 3, 5-7, 8 (through Section 3);
(8) Chapters 1-5;
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(C) Chapters 8, 9 (plus some material from Chapter 2 on iterative
methods).

This book benefits from our experience in trying to teach such courses
at New York University for over fifteen years and from our students'
reactions. Many of our former and present colleagues at the Courant
Institute of Mathematical Sciences are responsible for our education in
this field. We acknowledge our indebtedness to them, and to the stimulat­
ing environment of the Courant Institute. Help was given to us by our
friends who have read and used preliminary versions of the text. In this
connection we are happy to thank Prof. T. E. Hull, who carefully read
our entire manuscript and offered much constructive criticism; Dr.
William Morton, who gave valuable suggestions for Chapters 5-7; Pro­
fessor Gene Golub, who helped us to improve Chapters I, 2, and 4. We
are grateful for the advice given us by Professors H. O. Kreiss, Beresford
Parlett, Alan Solomon, Peter Ungar, Richard Varga, and Bernard Levinger,
and Dr. 01of Widlund. Thanks are also due to Mr. Julius Rosenthal and
Dr. Eva Swenson who helped in the preparation of mimeographed lecture
notes for some of our courses. This book grew from two sets of these
notes upon the suggestion of Mr. Earle Brach. We are most grateful to
Miss Connie Engle who carefully typed our manuscript and to Mr.
Richard Swenson who helped in reading galleys. Finally, we must thank
Miss Sallyanne Riggione, who as copy editor made many helpful sug­
gestions to improve the book.

New York and Pasadena
April, 1966

E. ISAACSON AND H. B. KELLER
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1

Norms, Arithmetic, and

Well-Posed Computations

O. INTRODUCTION

In this chapter, we treat three topics that are generally useful for the
analysis of the various numerical methods studied throughout the book.
In Section I, we give the elements of the theory of norms of finite dimen­
sional vectors and matrices. This subject properly belongs to the field of
linear algebra. In later chapters, we may occasionally employ the notion
of the norm of a function. This is a straightforward extension of the
notion of a vector norm to the infinite-dimensional case. On the other
hand, we shall not introduce the corresponding natural generalization,
i.e., the notion of the norm of a linear transformation that acts on a
space of functions. Such ideas are dealt with in functional analysis, and
might profitably be used in a more sophisticated study of numerical
methods.

We study briefly, in Section 2, the practical problem of the effect of
rounding errors on the basic operations of arithmetic. Except for calcula­
lations involving only exact-integer arithmetic, rounding errors are in­
variably present in any computation. A most important feature of the
later analysis of numerical methods is the incorporation of a treatment
of the effects of such rounding errors.

Finally, in Section 3, we describe the computational problems that are
"reasonable" in some general sense. In effect, a numerical method which
produces a solution insensitive to small changes in data or to rounding
errors is said to yield a well-posed computation. How to determine the
sensitivity of a numerical procedure is dealt with in special cases through­
out the book. We indicate heuristically that any convergent algorithm is a
well-posed computation.



2 NORMS, ARITHMETIC, AND WELL-POSED COMPUTATIONS [Ch. 1]

1. NORMS OF VECTORS AND MATRICES

We assume that the reader is familiar with the basic theory of linear
algebra, not necessarily in its abstract setting, but at least with specific
reference to finite-dimensional linear vector spaces over the field of com­
plex scalars. By "basic theory" we of course include: the theory of linear
systems of equations, some elementary theory of determinants, and the
theory of matrices or linear transformations to about the Jordan normal
form. We hardly employ the Jordan form in the present study. In fact
a much weaker result can frequently be used in its place (when the divisor
theory or invariant subspaces are not actually involved). This result is all
too frequently skipped in basic linear algebra courses, so we present it as

THEOREM 1. For any square matrix A of order n there exists a non­
singular matrix P, of order n, such that

B = P- 1AP

is upper triangular and has the eigenvalues of A, say Aj == AlA), j = I,
2, ... , n, on the principal diagonal (i.e., any square matrix is equivalent to a
triangular matrix).

Proof We sketch the proof of this result. The reader should have no
difficulty in completing the proof in detail.

Let A1 be an eigenvalue of A with corresponding eigenvector U1.t Then
pick a basis for the n-dimensional complex vector space, en, with U1 as
the first such vector. Let the independent basis vectors be the columns of a
non-singular matrix P1 , which then determines the transformation to the
new basis. In this new basis the transformation determined by A is given
by B1 == p 1- 1AP1 and since AU1 = '\lU1>

(

Al al a2

B, ~ P,-'AP, ~ r A,

where A 2 is some matrix of order n - 1.

The characteristic polynomial of Bl is clearly

det (Mn - Bl ) = (A - A1) det (Mn - l - A 2 ),

t Unless otherwise indicated, boldface type denotes column vectors. For example, an
n-dimensional vector Uk has the components U'k; i.e.,

(
Ulk)

Uk;;::: ~2k •

Unk
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where In is the identity matrix of order n. Now pick some eigenvalue A2

of A 2 and corresponding (n - I)-dimensional eigenvector, v2 ; i.e.,

A 2v2 = A2V 2'

With this vector we define the independent n-dimensional vectors

and thus if we set U1 = P1U1, U2 = P1U2 , then

AU1 = A1u1, AU2 = A2U2 + aU1'

Now we introduco;: a new basis of en with the first two vectors being U1

and U2' The non-singular matrix P2 which determines this change of basis
has U1 and 112 as its first two columns; and the original linear transformation
in the new basis has the representation

A1 X X X

0 A2 X X

B2 = P2 -lAP2 = 0 0

Aa

0 0

where Aa is some matrix of order n - 2.
The theorem clearly follows by the above procedure; a formal inductive

proof could be given. •

It is easy to prove the related stronger result of Schur stated in Theorem
2.4 of Chapter 4 (see Problem 2.13(b) of Chapter 4). We turn now to the
basic content of this section, which is concerned with the generalization
of the concept of distance in n-dimensional linear vector spaces.

The "distance" between a vector and the null vector, i.e., the origin,
is a measure of the "size" or "length" of the vector. This generalized
notion of distance or size is called a norm. In particular, all such general­
izations are required to have the following properties:

(0) To each vector x in the linear space, "Y, say, a unique real number is
assigned; this number, denoted by Ilxll or N(x), is called the norm of
x iff:
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(i) Ilxll ;::: 0 for all x E 1/ and Ilxll = 0 iff x = 0;

where 0 denotes the zero vector (if 1/ == Cn, then 0t = C);

[Ch. 1]

(ii) Ilaxll = lal'llxll for all scalars a and all xE 1/;

(iii) II x + y II :$; II xII + II y II, the triangle inequality,t for all x, y E 1/.

Some examples of norms in the complex n-dimensional space Cn are

n
(I a) Ilxll i == NI(x) == L lXii,

i= 1

(n r(Ib) IIxl1 2 == N2(x) == i~ Ixil2 ,

( n rp

(Ie) Ilxll p == Np{x) == i~ Ixil p
, p ;::: 1,

(I d) Ilxll", == N",(x) == max IXil·i
It is an easy exercise for the reader to justify the use of the notation in
(Id) by verifying that

lim Np(x) = N",(x).
p~oo

The norm, 11·112, is frequently called the Euclidean norm as it is just the
formula for distance in ordinary three-dimensional Euclidean space
extended to dimension n. The norm, 11·11"" is called the maximum norm
or occasionally the uniform norm. In general, II· lip, for p ;::: 1 is termed
the p-norm.

To verify that (I) actually defines norms, we observe that conditions
(0), (i), and (ii) are trivially satisfied. Only the triangle inequality, (iii),
offers any difficulty. However,

n

NI(x + y) = L IXi + Yil
i= 1

t For complex numbers x and y the elementary inequality Ix + yl :$ Ixl + Iyl
expresses the fact that the length of any side of a triangle is not greater than the sum
of the lengths of the other two sides.
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and

NORMS OF VECTORS AND MATRICES

Noo(x + y) = max lx, + y,l,
:::; max (lx;1 + ly;1) :::; max Ix;1 + max IYkl

; ; k

5

= N",(x) + N",(y),

so (la) and (ld) defin~ norms.
The proof of (iii) for (lb), the Euclidean norm, is based on the well­

known Cauchy-Schwarz inequality which states that

To prove this basic result, let Ixl and Iyl be the n-dimensional vectors
with components Ix;1 and ly;l,j = 1,2, ... , n, respectively. Then for any
real scalar, g,

n n n

o :::; N~(glxl + Iyl) = e 2: Ix,I2 + 2g 2: Ix;lly;1 + 2: IY1[2.
;=1 ;=1 ;=1

But since the real quadratic polynomial in g above does not change sign
its discriminant must be non-positive; i.e.,

However, we note that

and (2) follows from the above pair of inequalities.
Now we form

N2(x + y) = (~ lx, + y;12r = (,~ (Xj + y;)(x, + y;)r
= (~ Ix,I2 + ;~ (xty, + xjy,) + ;~ ly, I2r

:::; (N22(X) + 2 ;~ Ix,I·1 y,l + N22(y)r·

An application of the Cauchy-Schwarz inequality yields finally

N2(x + y) :::; N2(x) + N2(y)

and so the Euclidean norm also satisfies the triangle inequality.
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The statement that

[Ch. 1]

(3) p ~ 1,

so that

is know as Minkowski's inequality. We do not derive it here as general
p-norms will not be employed further. (A proof of (3) can be found in
most advanced calculus texts.)

We can show quite generally that all vector norms are continuous
functions in Cn• That is,

LEMMA 1. Every vector norm, N(x), is a continuous function ofXl' X 2, .•• ,

X n , the components ofx.

Proof. For any vectors x and 5 we have by (iii)

N(x + 5) ~ N(x) + N(5),

N(x + 5) - N(x) ~ N(5).

On the other hand, by (ii) and (iii),

N(x) = N(x + 5 - 5)

~ N(x + 5) + N(5),

so that

- N(5) ~ N(x + 5) - N(x).

Thus, in general

IN(x + 5) - N(x)1 ~ N(5).

With the unit vectorst {ek}, any 5 has the representation

Using (ii) and (iii) repeatedly implies

(4a)
n

N(5) ~ L N(8 k ek )

k~l

n

~ L 18kI N (ek)
k=l

n

~ max 18kl L N(ej )

k j= I

= MNA5) ,

t e. has the components elk, where e,. = 0, i # k; ekl' = 1.
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where

(4b)

NORMS OF VECTORS AND MATRICES

n

M == L N(e}).
j=1

7

Using this result in the previous inequality yields, for any £ > 0 and alI S
with N ",,(S) ~ £/M,

IN(x + S) - N(x)1 ~ £.

This is essentialIy the definition of continuity for a function of the n
variables Xl> X 2 , .•• , X n• •

See Problem 6 for a mild generalization.
Now we can show that alI vector norms are equivalent in the sense of

THEOREM 2. For each pair of vector norms, say N(x) and N'(x), there exist
positive constants m and M such that for all x E Cn :

mN'(x) ~ N(x) ~ MN'(x).

Proof The proof need only be given when one of the norms is N"",
since Nand N' are equivalent if they are each equivalent to N",JO Let
S C Cn be defined by

(this is frequently calIed the surface of the unit balI in Cn). S is a closed
bounded set of points. Then since N(x) is a continuous function (see
Lemma I), we conclude by a theorem of Weierstrass that N(x) attains its
minimum and its maximum on S at some points of S. That is, for some
XO E S and Xl E S

or

N(xO) = min N(x),
xeS

N(xl) = max N(x)
xeS

or

for alI XES.
For any y#-o we see that y/N",,(y) is in S and so

N(xO) ~ N(N:(y») ~ N(x
l
)

N(xO)N",,(y) ~ N(y) ~ N(xl)N",,(y).

The last two inequalities yield

mN",,(y) ~ N(y) ~ MN",,(y),

where m == N(xO) and M == N(xl). •
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A matrix of order n could be treated as a vector in a space of dimension
n2 (with some fixed convention as to the manner of listing its elements).
Then matrix norms satisfying the conditions (O)-(iii) could be defined as in
(I). However, since the product of two matrices of order n is also such a
matrix, we impose an additional condition on matrix norms, namely that

(iv) IIABII ~ IIAII·IIBII·

With this requirement the vector norms (I) do not all become matrix
norms (see Problem 2). However, there is a more natural, geometric,
way in which the norm of a matrix can be defined. Thus, if x E Cn and 11·11
is some vector norm on Cm then II x II is the "length" of x, II Ax II is the
"length" of Ax, and we define a norm of A, written as II A II or N(A), by
the maximum relative" stretching,"

(5) IIAII == sup IIAxll.
x;<o Ilxll

Note that we use the same notation, 11·11, to denote vector and matrix
norms; the context will always clarify which is implied. We call (5) a
natural norm or the matrix norm induced by the vector norm, II· II. This is
also known as the operator norm in functional analysis. Since for any
x '# 0 we can define u = x/llxll so that Ilull = I, the definition (5) is
equivalent to

(6) IIAII = max IIAul1 = IIAYII, Ilyll = I.
Ilull= 1

That is, by Problems 6 and 7, IIAul1 is a continuous function ofu and hence
the maximum is attained for some y, with Ilyll = I.

Before verifying the fact that (5) or (6) defines a matrix norm, we note
that they imply, for any vector x, that

(7) IIAxl1 ~ IIAII·llxll·

There are many other ways in which matrix norms may be defined.
But if (7) holds for some such norm then it is said to be compatible with
the vector norm employed in (7). The natural norm (5) is essentially the
"smallest" matrix norm compatible with a given vector norm.

To see that (5) yields a norm, we first note that conditions (i) and (ii)
are trivially verified. For checking the triangle inequality, let y be such
that Ilyll = I and from (6),

II(A + B)II = II(A + B)yll·

But then, upon recalling (7),

IIA + BII ~ IIAyl1 + IIByl1

~ IIAII + IIBII·
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Finally, to verify (iv), let ywith Ilyll = I now be such that

II(AB)II = II(AB)YII·
Again by (7), we have

IIABII ~ IIAII·IIByll
~ IIAHIBII,

so that (5) and (6) do define a matrix norm.
We shall now determine the natural matrix norms induced by some of

the vector p-norms (p = I, 2, 00) defined in (1). Let the nth order matrix
A have elements ajk, j, k = I, 2, ... , n.

(A) The matrix norm induced by the maximum norm (Id) is

(8)
n

IIAII", = max L la'kl,
j k =1

i.e., the maximum absolute row sum. To prove (8), let y be such that
IIYII", = I and

Then,

n n

~ max IYkl·max L lajkl = IIYII", ·max L laikl
k j k=I i k=I

= max i laikl,
, k= 1

so the right-hand side of (8) is an upper bound of II A II "'. Now if the
maximum row sum occurs for, say, j = J then let x have the components

k = 1,2, ... , n.

Clearly Ilxll", = 1, if A is non-trivial, and

n

IIAxll", = L laJkl ~ IIAII""k=I
so (8) holds. [If A == 0, property (ii) implies
norm.]

(B) Next, we claim that

IIA II = 0 for any natural

•
(9)

n

IIAII I = max L lajkl,
k j= 1
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i.e., the maximum absolute column sum. Now let Ilylll = 1 and be such
that

!lAIIl = IIAYlll'
Then,

IIAlll = J~ Ikt aJkYkl ~ j~ kt lajkl·lhl

k~l (Ihi J~ laJk l ) ~ k~l IYkl (m:x J~ laJm l )

n n

= 1IY111 max L la}ml = max L laJml,
m ;=1 m j=1

and the right-hand side of(9) is an upper bound of IIA IiI- If the maximum
is attained for m = K, then this bound is actually attained for x = eK ,

the Kth unit vector, since IleK 111 = 1 and

Thus (9) is established.

IIAedl = j~ Ikt aJkDkK !

= i laJKI·
J= 1

•
(C) Finally, we consider the Euclidean norm, for which case we recall

the notation for the Hermitian transpose or conjugate transpose of any
rectangular matrix A == (at;),

i.e., if A'" == (hI;)' then btJ = iiji • Further, the spectral radius of any square
matrix A is defined by

(10) peA) == max IAs(A)I,
s

where ,\,(A) denotes the sth eigenvalue of A. Now we can state that

(II) IIAI12 = Vp(A*A).

To prove (II), we again pick ysuch that IIyl12 = 1 and

IIA 112 = IIAyI12'
From (I b) it is clear that IIxl1 22= x*x, since x* == (X l ,X2'oo"Xn).

Therefore, from the identity (Ay)* = y* A*, we find

(12) IIAI122= IIAyl122 = (Ay)*(Ay)

= y*A*Ay.
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But since A*A is Hermitian it has a complete set of n orthonormal eigen­
vectors, say U10 U2, ... , Un, such that

(13a)

(13b)

ulUIe = llile'

A*Aus = Asus.

The multiplication of (l3b) by Us* on the left yields further

As = u:A*Aus ;:::: O.

Every vector has a unique expansion in the basis {us}. Say in particular
that

and then (12) becomes, upon recalling (13),

n n

jjAI1 22 = L tXtut*A*A L asus
t=l s=l

n

:s; max As L latl2 = max As = p(A*A).
S t =1 s

Thus p'/,(A* A) is an upper bound of II A 112' However, using y = u., where
As = p(A*A), we get

and so (11) follows.

IIAus l1 2 = (u:A*Aus)'/,

= p'/,(A*A),

•
We have observed that a matrix of order n can be considered as a vector

of dimension n2
• But since every matrix norm satisfies the conditions

(O)-(iii) of a vector norm the results of Lemma I and Theorem 2 also
apply to matrix norms. Thus we have

LEMMA 1'. Every matrix norm, IIAII, is a continuous function of the n2

elements ai, of A. •

THEOREM 2'. For each pair of matrix norms, say IIAII and I[AII', there
exist positive constants m and M such that for all nth order matrices A

miIAII' :s; IIAII :s; MIIAII'· •
The proofs of these results follow exactly the corresponding proofs for
vector norms so we leave their detailed exposition to the reader.
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There is frequently confusion between the spectral radius (10) of a
matrix and the Euclidean norm (II) of a matrix. (To add to this confusion,
IIA 112 is sometimes called the spectral norm of A.) It should be observed
that if A is Hermitian, i.e., A* = A, then \(A*A) = "/(A) and so the
spectral radius is equal to the Euclidean norm for Hermitian matrices.
However, in general this is not true, but we have

LEMMA 2. For any natural norm, 11,11, and square matrix, A,

peA) :s; IIAII·
Proof For each eigenvalue \(A) there is a corresponding eigenvector,

say Us> which can be chosen to be normalized for any particular vector
norm, Ilusll = 1. But then for the corresponding natural matrix norm

IIAII = max IIAyl1 ~ IIAu.11 = II "su.11 = I"sl·
ItYII=l

As this holds for all s = 1,2"", n, the result follows. •
On the other hand, for each matrix some natural norm is arbitrarily

close to the spectral radius. More precisely we have

THEOREM 3. For each nth order matrix A and each arbitrary E > °
a natural norm, II A II, can be found such that

peA) :s; IIA II :s; peA) + E.

Proof The left-hand inequality has been verified above. We shall show
how to construct a norm satisfying the right-hand inequality. By Theorem
1 we can find a non-singular matrix P such that

PAP -1 == B == A + U

where A = (A;(A)Sj;) and U == (Uij) has zeros on and below the diagonal.
With S > 0, a "sufficiently small" positive number, we form the diagonal
matrix of order n

S-1

Now consider

i = 1,2, ... , n.j> i,{
O,

elj = ~j_j
UjjU ,

C = DBD- 1 = A + E,

where E == (ej j ) = DUD- 1 has elements

j :s; i
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Note that the elements ej j can be made arbitrarily small in magnitude by
choosing 0 appropriately. Also we have that

A = P-1D-1CDP.

Since DP is non-singular, a vector norm can be defined by

Ilxll == N 2(DPx) = (x*P* D* DPX)Y2.

The proof of this fact is left to the reader in Problem 5. The natural
matrix norm induced by this vector norm is of course

IIAII == max IIAyll·
liYII = 1

However, from the above form for A, we have, for any y,

IIAyl1 = N 2(DPAy) = NiCDPy).

If we let z == DPy, this becomes

IIAyl1 = N 2(Cz) = (z*C*Cz)v,.
Now observe that

C*C = (A* + E*)(A + E)

= A*A + .#(0).

Here the term .It(0) represents an nth order matrix each of whose terms is
@(o).t Thus, we can conclude that

z*C*Cz ~ max 1A.2(A)1 z*z + Iz*.lt(o)zI
s

since

Iz*.#(o)zl ~ n2z*z@(0) = z*z@(o).

Recalling I!yll = N2(z), we find from Ilyll = I that z*z = I. Then it
follows that

IIAII ~ [p2(A) + @(o)]v,

= peA) + @(o).

For 0 sufficiently small @(o) < £. •
t A quantity, say f, is said to be 0(0), or briefly 1= 0(0) iff for some constants K ~ 0
and 00 > 0,

III ~ K 10 1, for 101 ~ 00.
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It should be observed that the natural norm employed in Theorem 3
depends upon the matrix A as wel1 as the arbitrary smal1 parameter E.

However, this result leads to an interesting characterization of the spectral
radius of any matrix; namely,

COROLLARY. For any square matrix A

peA) = inf (max N(Ax»)
{N()} N(x) ~ 1

where the inf is taken over all vector norms, N(·); or equivalently

peA) = inf I[A [I
{II II}

where the inf is taken over all natural norms, II· [I.
Proof By using Lemma 2 and Theorem 3, since E > 0 is arbitrary and

the natural norm there depends upon E, the result fol1ows from the
definition of info •

1.1. Convergent Matrices

To study the convergence of various iteration procedures as wel1 as
for many other purposes, we investigate matrices A for which

(14) lim Am = 0,
m~oo

where ° denotes the zero matrix al1 of whose entries are O. Any square
matrix satisfying condition (14) is said to be convergent. Equivalent
conditions are contained in

THEOREM 4. The following three statements are equivalent:

(a) A is convergent;
(b) lim IIAml1 = O,/or some matrix norm;

m~oo

(c) peA) < 1.

Proof We first show that (a) and (b) are equivalent. Since 11·11 is
continuous, by Lemma 1', and 11011 = 0, then (a) implies (b). But if (b)
holds for some norm, then Theorem 2' implies there exists an M such that

Hence, (a) holds.
Next we show that (b) and (c) are equivalent. Note that by Theorem 2'

there is no loss in generality if we assume the norm to be a natural norm.
But then, by Lemma 2 and the fact that '\(Am) = ,\m(A), we have

IIAml1 ~ p(Am) = pm(A),
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so that (b) implies (c). On the other hand, if (c) holds, then by Theorem 3
we can find an f' > 0 and a natural norm, say N(·), such that

N(A) ::; peA) + f' == 8 < I.

Now use the property (iv) of matrix norms to get

N(Am) ::; [N(A)]m ::; 8m

so that lim N(Am) = 0 and hence (b) holds. •
A test for convergent matrices which is frequently easy to apply is the

content of the

COROLLARY. A is convergent iffor some matrix norm

IIAII < I.

Proof Again by (iv) we have

IIAmll::; IIAllm
so that condition (b) of Theorem 4 holds. •

Another important characterization and property of convergent
matrices is contained in

THEOREM 5. (a) The geometric series

I + A + A 2 + A3 + ... ,
converges iff A is convergent.

(b) If A is convergent, then I - A is non-singular and

(/- A)-l = I + A + A2 + A 3 + ....
Proof A necessary condition for the series in part (a) to converge is

that lim Am = 0, i.e., that A be convergent. The sufficiency will follow

from part (b).
Let A be convergent, whence by Theorem 4 we know that peA) < 1.

Since the eigenvalues of I - A are 1 - A(A), it follows that det (I - A) #- 0
and hence this matrix is non-singular. Now consider the identity

which is valid for all integers m. Since A is convergent, the limit as m ~ 00

of the right-hand side exists. The limit, after multiplying both sides on the
left by (I - A) - 1, yields

(/+ A + A 2 + ... ) = (/- A)-l

and part (b) follows. •



16 NORMS, ARITHMETIC, AND WELL-POSED COMPUTATIONS [Ch.l]

A useful corollary to this theorem is

COROLLARY. If in some natural norm, IIA II < 1, then I - A is non-singular
and

Proof By the corollary to Theorem 4 and part (b) of Theorem 5 it
follows that I - A is non-singular. For a natural norm we note that
Ii I II = 1 and so taking the norm of the identity

1= U - A)(l - A)-1

yields

:s; IIU - A)II·II(l - A)-III

:s; (1 + IIAII)IIU - A)-III·
Thus the left-hand inequality is established.

Now write the identity as

U - A)-1 = I + AU - A)-1

and take the norm to get

IIU - A)-III :s; 1 + IIAII·IIU - A)-III·
Since IIA II < 1 this yields

•
It should be observed that if A is convergent, so is (-A), and IIAII =

11- A II. Thus Theorem 5 and its corollary are immediately applicable to
matrices of the form I + A. That is, if in some natural norm, IIA II < 1,
then

+ IIAII

PROBLEMS, SECTION 1

1. (a) Verify that (l b) defines a norm in the linear space of square matrices
of order n; i.e., check properties (i)-(iv), for liAIIE2 = 21a1112.

I,

(b) Similarly, verify that (la) defines a matrix norm, i.e., IIAII =
2lalll·
I'

2. Show by example that the maximum vector norm, 1J(A) = max lalli,
i.1

when applied to a matrix, does not satisfy condition (iv) that we impose on a
matrix norm.
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3. Show that if A is non-singular, then B == A*A is Hermitian and positive
definite. That is, x*Bx > 0 if x #- o. Hence the eigenvalues of B are all positive.

4. Show for any non-singular matrix A and any matrix norm that

II/II <'= 1 and IIA-III <'= II~II'

[Hint: IIIII = Ill/II:$; 11/11 2
; IIA-IAII:$; IIA-III·IIAII.]

5. Show that if 7](x) is a norm and A is any non-singular matrix, then N(x)
defined by

N(x) == 7](Ax),

is a (vector) norm.
6. We call 7](x) a semi-norm iff 7](x) satisfies all of the conditions, (O)-(iii),

for a norm with condition (i) replaced by the weaker condition

(i'): 7](x) <'= 0 for all x E "Y.

We say that 7](x) is non-trivial iff 7](x) > 0 for some x E "Y. Prove the follow­
ing generalization of Lemma 1:

LEMMA r. Every non-trivial semi-norm, 7](x), is a continuolls function of
Xl, X2, .•• , X n , the components of x. Hence every semi-norm is continuous.

7. Show that if 7](x) is a semi-norm and A any square matrix, then N(x) ==
7](Ax) defines a semi-norm.

2. FLOATING-POINT ARITHMETIC AND ROUNDING ERRORS

In the following chapters we will have to refer, on occasion, to the errors
due to "rounding" in the basic arithmetic operations. Such errors are
inherent in all computations in which only a fixed number of digits are
retained. This is, of course, the case with all modern digital computers and
we consider here an example of one way in which many of them do or
can do arithmetic; so-called floating-point arithmetic. Although most
electronic computers operate with numbers in some kind of binary
representation, most humans still think in terms ofa decimal representation
and so we shall employ the latter here.

Suppose the number a#-O has the exact decimal representation

(1)

where q is an integer and the dl , dz, ... , are digits with d l #- O. Then
the "t-digit floating-decimal representation of a," or for brevity the
"floating a" used in the machine, is of the form

(2)
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called the mantissa and q is called the exponent of f1(a). There is usually a
restriction on the exponent, of the form

(3) -N:-::;q:-::; M,

for some large positive integers N, M. If a number a i= 0 has an exponent
outside of this range it cannot be represented in the form (2), (3). If,
during the course of a calculation, some computed quantity has an ex­
ponent q > M (called overflow) or q < - N (called underflow), meaningless
results usually follow. However, special precautions can be taken on most
computers to at least detect the occurrence of such over- or underflows.
We do not consider these practical difficulties further; rather, we shall
assume that they do not occur or are somehow taken into account.

There are two popular ways in which the floating digits Sj are obtained
from the exact digits, d j • The obvious chopping representation takes

(4) j = 1,2, ... , t.

Thus the exact mantissa is chopped off after the tth decimal digit to get the
floating mantissa. The other and preferable procedure is to round, in
which caset

(5)

and the brackets on the right-hand side indicate the integral part. The
error in either of these procedures can be bounded as in

LEMMA 1. The error in t-digit floating-decimal representation of a number
a i= 0 is bounded by

{
p - 1 rounded,

ja - f1(a) I :-::; 5lallO-tp -,
p = 2, chopped.

Proof From (I), (2), and (4) we have

[a - f1(a) [ = IOH(.dt+ldt + 2 ···)

IOq-I(.dt + 1dt + 2 ···) I::
IO- t (.dt+ldt+ 2 ···) lal·

(.d1d2 ••· )

t For simplicity we are neglecting the special case that occurs when d, = d2 = ... =
d, = 9 and d, +' 2: 5. Here we would increase the exponent q in (2) by unity and set
0, = I, 01 = 0, j > I. Note that when d, +, = 5, if we were to round up iff d, is odd,
then an unbiased rounding procedure would result. Some electronic computers
employ an unbiased rounding procedure (in a binary system).
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But since 1 ~ d l ~ 9 and O. dl +ldl + 2' .• ~ 1 this implies

la - fl(a) I ~ lQl-llal,
which is the bound for the chopped representation. For the case of round­
ing we have, similarly,

•

o ~ 14>1 ~ 5 rounding,

o ~ 14>1 ~ 10 chopping.

We shall assume that our idealized computer performs each basic
arithmetic operation correctly to 2t digits and then either rounds or chops
the result to a t-digit floating number. With such operations it clearly
follows from Lemma 1 that

(6a) flea ± b) = (a ± b)(l + 4>1O- t
)}

(6b) fl(ab) = a·b(l + 4>10- 1)

(6c) fl(~) = ~ (1 + 4>10- 1)

In many calculations, particularly those concerned with linear systems,
the accumulation of products is required (e.g., the inner product of two
vectors). We assume that rounding (or chopping) is done after each
multiplication and after each successive addition. That is,

(7a) fl(albl + a2b2) = [a l b l (1 + 4>1 10 - I)
+ a2b2(1 + 4>210-1)](1 + 810-1)

and in general

(7b)

The result of such computations can be represented as an exact inner
product with, say, the at slightly altered. We state this as

LEMMA 2. Let the floating-point inner product (7) be computed with round­
ing. Then if nand t satisfy

(8)

it follows that

(9a)

where

nlO l - t ~ 1

(9b) ISail ~ (n - i + 2)ladlQl-t,
i=2,3, ... ,n.
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Proof By (6b) we can write

f1(akbk) = akbk(l + q,k lO - t),

since rounding is assumed. Similarly from (6a) and (7b) with n = k we
have

f1C~l aib!) = [f1C~ aibi) + (akbk)(l + q,klO-t)](1 + °klO-t)

where

k = 2,3, ....

Now a simple recursive application of the above yields

n

== L akbk(l + Ek),
k=l

where we have introduced Ek by

n

1 + Ek == (1 + q,klO-t) TI (1 + OjlO-t).
i=k

A formal verification of this result is easily obtained by induction.
Since 01 = 0, it follows that

(1 - 5·IO- t)n-k+2 ~ 1 + Ek ~ (1 + 5·IO- t)n-k+2, k = 2,3, ... , n,

and

Hence, with € = 5·IO- t ,

IE1 1 ~ (1 + €)n - 1,

IEkl ~ (1 + €)n-k+2 - I, k = 2,3, ... , n.

But, for p ~ n, (8) implies that p€ ~ 1, so that

(
p-I p-lp-2 )

(I + €}p - 1 == p€ I + -2- € + -2- --3- €2 + ...

~ P€(l + 1 + (1)2 + ... )
~ 2p€ = p 101 - t •

Therefore,

k = 2,3, ... , n.
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Clearly for k = 1 we find, as above with k = 2, that

IE1 1 ~ n·101
-

t
•

The result now follows upon setting

8ak = akEk·

(Note that we could just as well have set 8bk = bkEk.) •

Obviously a similar result can be obtained for the error due to chopping
if condition (8) is strengthened slightly; see Problem 1.

PROBLEMS, SECTION 2

1. Determine the result analogous to Lemma 2, when" chopping" replaces
.. rounding" in the statement.

[Hint: The factor 101 - t need only be replaced by 2· 101 - t, throughout.]

2. (a) Find a representation for fl (~l C}
(b) If Cl > C2 > ... > Cll > 0, in what order should fl(tl Ct) be cal­

culated to minimize the effect of rounding?
3. What are the analogues ofequations (6a, b, c) in the binary representation:

flea) = ± 2Q(.8 182 • .. 8t)

where 81 = 1 and 81 = 0 or 1?

3. WELL·POSED COMPUTATIONS

Hadamard introduced the notion of well-posed or properly posed
problems in the theory of partial differential equations (see Section 0 of
Chapter 9). However, it seems that a related concept is quite useful in
discussing computational problems of almost all kinds. We refer to this
as the notion of a well-posed computing problem.

First, we must clarify what is meant by a "computing problem" in
general. Here we shall take it to mean an algorithm or equivalently: a set
ofrules specifying the order and kind ofarithmetic operations (i.e., rounding
rules) to be used on specified data. Such a computing problem may have
as its object, for example, the determination of the roots of a quadratic
equation or of an approximation to the solution of a nonlinear partial
differential equation. How any such rules are determined for a particular
purpose need not concern us at present (this is, in fact, what much of the
rest of this book is about).
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Suppose the specified data for some particular computing problem are
the quantities aI, a2 , •.• , am, which we denote as the m-dimensional vector
a. Then if the quantities to be computed are XI. X2, ... , X., we can write

(I) x = f(a),

where of course the n-dimensional function f(·) is determined by the rules.
Now we will define a computing problem to be well-posed iff the al­

gorithm meets three requirements. Theftrst requirement is that a "solution,"
x, should exist for the given data, a. This is implied by the notation (I).
However, if we recall that (I) represents the evaluation of some algorithm
it would seem that a solution (i.e., a result of using the algorithm) must
always exist. But this is not true, a trivial example being given by data
that lead to a division by zero in the algorithm. (The algorithm in this
case is not properly specified since it should have provided for such a
possibility. If it did not, then the corresponding computing problem is
not well-posed for data that lead to this difficulty.) There are other, more
subtle situations that result in algorithms which cannot be evaluated and
it is by no means easy, a priori, to determine that x is indeed defined by (I).

The second requirement is that the computation be unique. That is,
when performed several times (with the same data) identical results are
obtained. This is quite invariably true of algorithms which can be evaluated.
If in actual practice it seems to be violated, the trouble usually lies with
faulty calculations (i.e., machine errors). The functions f(a) must be
single valued to insure uniqueness.

The third requirement is that the result of the computation should
depend Lipschitz continuously on the data with a constant that is not too
large. That is, "small" changes in the data, a, should result in only
"small" changes in the computed x. For example, let the computation
represented by (I) satisfy the first two requirements for all data a in some
set, say a E D. If we change the data a by a small amount Sa so that
(a + Sa) E D, then we can write the result of the computation with the
altered data as

(2) x + Sx = f(a + Sa).

Now if there exists a constant M such that for any Sa,

(3) IISxl1 s MIISall,

we say that the computation depends Lipschitz continuously on the data.
Finally, we say (I) is well-posed iff the three requirements are satisfied and
(3) holds with a not too large constant, M = M(a,1]), for some not too
small 1] > 0 and all Sa such that II Sa II s 1]. Since the Lipschitz constant
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M depends on (a, ')) we see that a computing problem or algorithm may
be well-posed for some data, a, but not for all data.

Let 81'(a) denote the original problem which the algorithm (I) was devised
to "solve." This problem is also said to be well-posed if it has a unique
solution, say

y = g(a),

which depends Lipschitz continuously on the data. That is, .9'(a) is well­
posed if for all Sa satisfying IISal1 :s; " there is a constant N = N(a, n
such that

(4) Ilg(a + Sa) - g(a) II :s; NIISall·

We call the algoflthm (1) convergent iff f depends on a parameter, say €

(e.g., € may determine the size of the rounding errors), so that for any
small € > 0,

(5) Ilf(a + Sa) - g(a + Sa)11 :s; €,

for all Sa such that IISal1 :s; S. Now, if .9'(a) is well-posed and (I) is con­
vergent, then (4) and (5) yield

(6) Ilf(a) - f(a + Sa)11 :s; Ilf(a) - g(a) II + Ilg(a) - g(a + Sa)11

+ Ilg(a + Sa) - f(a + Sa)11

:s; € + NllSal1 + €.

Thus, recalling (3), we are led to the heuristic

OBSERVATION 1. If.9'(a) is a well-posed problem, then a necessary condition
that (I) be a convergent algorithm is that (I) be a well-posed computation.

Therefore we are interested in determining whether a given algorithm
(I) is a well-posed computation simply because only such an algorithm
is sure to be com-ergent for all problems of the form 81'(a + Sa), when
&P(a) is well-posed and IISal! :s; S.

Similarly, by interchanging f and g in (6), we may justify

OBSERVATION 2. If8l' is a not well-posed problem, then a necessary condition
that (I) be all accurate algorithm is that (I) be a not well-posed computation.

In fact, for certain problems of linear algebra (see Subsection 1.2 of
Chapter 2), it has been possible to prove that the commonly used al­
gorithms, (I), produce approximations, x, which are exact solutions of
slightly perturbed original mathematical problems. In these algebraic
cases, the accuracy of the solution x, as measured in (5), is seen to depend
on the well-posed ness of the original mathematical problem. In algorithms,
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(1), that arise from differential equation problems, other techniques are
developed to estimate the accuracy of the approximation. For differential
equation problems the well-posedness of the resulting algorithms (1) is
referred to as the stability of the finite difference schemes (see Chapters 8
and 9).

We now consider two elementary examples to illustrate some of the
previous notions.

The most overworked example of how a simple change in the algorithm
can affect the accuracy of a single precision calculation is the case of
determining the smallest root of a quadratic equation. If in

x 2 + 2bx + c,

b < 0 and c are given to t digits, but Icl/b2 < IO- t
, then the smallest

root, X2' should be found from X2 = clx1, after finding XI = -b + Vb2
- c

in single precision arithmetic. Using

X 2 = -b - vb2
- c

in single precision arithmetic would be disastrous!
A more sophisticated well-posedness discussion, without reference to

the type of arithmetic, is afforded by the problem of determining the zeros
of a polynomial

If Qn(z) == zn + bn_1zn- 1 + ... + bIZ + bo, then the zeros of Pn(z; €) ==
Pn(z) + €Qn(z) are "close" to the zeros of Pn(z). That is, in the theory of
functions of a complex variable it is shown that

LEMMA. If Z = ZI is a simple zero of Pn(z), then for I€I sufficiently small
Pn(z; €) has a zero ZI(€), such that

I () Qn(ZI)I_ "'( 2)ZI € - ZI + €Pn'(ZI) - V' € .

IfZl is a zero ofmultiplicity r ofPn(z), there are r neighboring zeros ofPnCz; €)
with

Now it is clear that in the case of a simple zero, ZI' the computing prob­
lem, to determine the zero, might be well-posed if Pn'(ZI) were not too
small and Qn(ZI) not too large, since then IZl(€)-zll/l€1 would not be
large for small €. On the other hand, the determination of the multiple
root would most likely lead to a not well-posed computing problem.
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The latter example il1ustrates Observation (2), that is, a computing
problem is not wel1-posed if the original mathematical problem is not
well-posed. On the other hand, the example of the quadratic equation
indicates how an ill-chosen formulation of an algorithm may be well-posed
but yet inaccurate in single precision.

Given an E > 0 and a problem .9'(a) we do not, in general, know how
to determine an algorithm, (I), that requires the least amount of work
to find x so that Ilx - yll ~ E. This is an important aspect of algorithms
for which there is no general mathematical theory. For most of the al­
gorithms that are described in later chapters, we estimate the number of
arithmetic operations required to find x.

PROBLEM, SECTION 3

1. For the quadratic equation

x 2 + 2bx + C = 0,

find the small root by using single precision arithmetic in the iterative schemes

C xn
2

(a) Xn+l = - 2b - Tb'
and

(b)
X n

2 + 2bxn + C

X n + 1 = X n - 2x
n

+ 2b

If your computer has a mantissa with approximately t = 2p digits, use

C = I,
for the two initial values

(i) Xo = 0;

b = -lOP

(ii) Xo = -~.
b

Which scheme gives the smaller root to approximately t digits with the smaller
number of iterations? Which scheme requires less work?
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Numerical Solution of

Linear Systems and Matrix Inversion

O. INTRODUCTION

Finding the solution of a linear algebraic equation system of "large"
order and calculating the inverse of a matrix of "large" order can be
difficult numerical tasks. While in principle there are standard methods
for solving such problems, the difficulties are practical and stem from

(a) the labor required in a lengthy sequence of calculations,
and

(b) the possible loss of accuracy in such lengthy calculations performed
with a fixed number of decimal places.

The first difficulty renders manual computation impractical and the second
limits the applicability of high speed digital computers with fixed" word"
length. Thus to determine the feasibility of solving a particular problem
with given equipment, several questions should be answered:

(i) How many arithmetic operations are required to apply a proposed
method?

(ii) What wiII be the accuracy of a solution to be found by the proposed
method (a priori estimate)?

(iii) How can the accuracy of the computed answer be checked (a
posteriori estimate)?

The first question can frequentlyt be answered in a straightforward
manner and this is done, by means of an "operational count," for most

t For "direct" methods, the operational count is easily made; while for "indirect"
or iterative methods, the operational count is made by multiplying the estimated
number of iterations by the operational count per iteration.

26
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of the methods in this chapter. The third question can be easily answered
if we have a bound for the norm of the inverse matrix. We therefore indi­
cate, in Subsection 1.3, how such a bound may be obtained if we have an
approximate inverse. However, the second question has only been recently
answered for some methods. After discussing the notions of "well-posed
problem" and" condition number" of a matrix, we give an account of
Wilkinson's a priori estimate for the Gaussian elimination method in
Subsection 1.2. This treatment, in Section I, of the Gaussian elimination
method is followed, in Section 2, by a discussion of some modifications
of the procedure. Direct factorization methods, which include Gaussian
elimination as a special case, are described in Section 3. Iterative methods
and techniques for accelerating them are studied in the remaining three
sections.

The matrix inversion problem may be formulated as follows: Given a
square matrix oforder n,

C
a12 a,")

(I) A == (atJ ==
a21 a22 a2n

anI an2 ann

find its inverse, i.e., a square matrix of order n, say A -1, such that

(2)

Here I is the nth order identity matrix whose elements are given by the
Kronecker delta:

(3) D
tj

== {O,
I,

if i i= j;

if i = j.

It is well known that this problem has one and only one solution iff the
determinant of A is non-zero (det A i= 0), i.e., iff A is non-singular.

The problem of solving a general linear system is formulated as follows:
Given a square matrix A and an arbitrary n-component column vector
f, find a vector x which satisfies

(4a) Ax = f,

(4b)

or, in component form,

al1x l + a12x2 + + alnxn = fI>
a21x l + a22X2 + + a2nXn = f2,
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Again it is known that this problem has a solution which is unique for
every inhomogeneous term f, iff A is non-singular. [If A is singular the
system (4) will have a solution only for special vectors f and such a solution
is not unique. The numerical solution of such "singular" problems is
briefly touched on in Section I and in Problems 1.3, 1.4 of Chapter 4.]

It is easy to see that the problem of matrix inversion is equivalent to
that of solving linear systems. For, let the inverse of A, assumed non­
singular, be known and have elements Cjj, that is,

A-I == (Cj j ).

Then multiplication of (4a) on the left by A-I yields, since Ix = x,

(Sa) x = A-If,

or componentwise,

(Sb) i Ctdj,
j=I

j = 1,2, ... , n.

Thus when the Cij are known it requires, at most, n multiplications and
(n - I) additions to evaluate each component of the solution, or, for the
complete solution, a total of n2 multiplications and n(n - I) additions.

On the other hand, assume a procedure is known for solving the non­
singular system (4) with an arbitrary inhomogeneous term f. We then
consider the n special systems

(6) Ax = e(j), j = 1,2, ... , n,

where e(j) is the jth column of the identity matrix; that is, the elements
of e(j) are eV) = 8tj , i = I, 2, ... , n. The solutions of these systems are n
vectors which we call x(j), j = 1,2, ... , n; the components of XU) are
denoted by xV). With these vectors we form the square matrix

(7)

in which the jth column is the solution xU) of the jth system in (6). Then
it follows from the row by column rule for matrix multiplication that

(8)

Since A was assumed to be non-singular, we find upon multiplying both
sides of (8) on the left by A -1 that

X = A-I.

Thus, by solving the n special systems (6) the inverse may be computed;
this is the procedure generally used in practice. The number of operations
required is, at most, n times that required to solve a single system. However,
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this number can be reduced by efficiently organizing the computations
and by taking account of the special form of the inhomogeneous terms,
e(f), as we shall explain later in Subsection 1.1.

PROBLEMS, SECTION 0

1. If the columns of A form a set of vectors such that at most c of the columns
are linearly independent, then we say that the column rank of A is c. (Similarly
define the row rank of A to be r by replacing "columns" by "rows" and
"c" by "r.") Prove that the row rank of A equals the column rank of A.

[Hint: Let row rank (A) == r; and use a set of r rows of A to define a sub­
matrix B with row rank (B) = r. Then show that c == column rank (A) =

column rank (B). Hence, since B has r rows, c :s:: r. Similarly show that
r :s:: c.] Hence define rank of A by rank (A) == r = c.

2. (Alternative Principle) If A is of order n, then either

or else
Ax = 0 iff x = 0,

r == rank (A) < n

and there exist a finite number, p, of linearly independent solutions {XCi)}
that span the null space of A, i.e.,

Ax(f) = 0, j = 1,2, .. . ,p,
•

and if Ax = 0 there exist constants {af} such that x = L ajx(f). Show that
f= 1

p = n - r.
3. Observe that

(9) Ax = f

has a solution ifffis a linear combination of the columns of A. Hence show that:
(9) has a solution x iff rank (A) = rank (A, f); (9) has a solution x iff yTf = 0
for all vectors y#-o such that yTA = o. (In this problem, A may be rect­
angular; (A, f) is the augmented matrix).

1. GAUSSIAN ELIMINATION

The best known and most widely used method for solving linear systems
of algebraic equations and for inverting matrices is attributed to Gauss.
It is, basically, the elementary procedure in which the "first" equation is
used to eliminate the" first" variable from the last n - 1 equations, then
the new "second" equation is used to eliminate the" second" variable
from the last n - 2 equations, etc. If n - I such eliminations can be
performed, then the resulting linear system which is equivalentt to the

t Two linear systems are equivalent iff every solution of one is a solution of the
other.
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original system is triangular and is easily solved. Of course, the ordering
of the equations in the system and of the unknowns in the equations is
arbitrary and so there is no unique order in which the procedure must be
employed. As we shall see, the ordering is important since some orderings
may not permit n - 1 eliminations, while among the permissible orderings,
some are to be preferred since they yield more accurate results.

In order to describe the specific sequence of arithmetic operations used
in Gaussian elimination, we will first use the natural order in which the
system is given, say

(la)

where

Ax = f,

(lb)

Before the variable X k is eliminated, we denote the equivalent system (i.e.,
the reduced system), from which XI. X 2, ... , X k -1 have been eliminated, by

(2a) k = 1,2, ... , n,

f(k) ==
(

fl
k

»)
f~k)

f~k)

For k = 1 we have A(l) == A, f(l) == f, and the elements in (2b) for k =

2, 3, ... , n, are computed recursively by

where

(2b)

(3a)

(3b)

for i :0; k - 1,

for i ~ k, j :0; k - 1,

for i ~ k, j ~ k;

for i :0; k - 1,

for i ~ k.

These formulae represent the result of multiplying the (k - l)st equation
in A(k -l)X = f(k -1) by the ratio (a~~k!i/akk_-1~)k -1) and subtracting the
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result from the ith equation for all i ;::: k. In this way, the variable Xk-l

is eliminated from the last n - k + I equations. The resulting coefficient
matrix and inhomogeneous term have the forms

a(}) all) 0 0 ) a~~)k>l all) a(l) 1"1)II 12 13 1k 1n

0 a~2d 0(2) a~7~-1 0(2) 0(2) Ih
2

)2J 2k 2n

0 0 a1~)

(4) A'k) ==
0

; f(kJ ==
aL""'-l~)k-l a(k-l) a(k'" 1) ['k-I)

k -I, k k'" I, n k-1

0 a(k) a(k) I'.k)kk kn

0 a~k';'l. k a~k; I, n f'k)
k+1

0 0 0 0 a(k) a~kj I~k)nk

It has been assumed above that the elements aLl1 "# 0 for k = I, 2, ... , n.
When this is the case we have

THEOREM 1. Let the matrix A be such that the Gaussian elimination
procedure defined in (2)-(3) (i.e., in the natural order) yields non-zero
diagonal elements aLI<,;, k = I, 2, ... , n. Then A is non-singular and in fact,

(5a)

The final matrix A(n) == V is upper triangular and A has the factorization

(5b) LV = A,

where L == (m ik ) is lower triangular with the elements

(5c)
{

o
m'k = I

dk)/dk),k kk

for i < k,

for i = k,

for i > k.

The final vector fin) == g is

(5d) g = L -If.

Proof Once (5b) is established, we have that det A = (det L) (det V) =
det V and so (5a) follows. To verify (5b), let us set LV = (CiJ. Then,
since L and V are triangular and (4) is satisfied for k = n,

n

Cij = 2: mikaW,
k~1
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We recall that a~;) == au and note from (3a) and (5c) that

for 2 ~ k ~ i, k ~ j.

Thus, if i ~ j we get from the above

This holds also for i > j since aW 1) = 0 and so (5b) is verified.
Define h == Lg so that

Now from (3b) and (5c)

for k < i,

and f~l) =.Ii. Thus, we find hi =.Ii, and since L is non-singular (5d)
follows. •

Under the conditions of this theorem, the system (I) can be written as

LUx = Lg.

Multiplication on the left by L - 1 yields the equivalent upper triangular
system

(6a) Ux = g.

If we write U == (U'i)' then (5) is easily solved in the order Xm Xn-l, ... , Xl
to get

i = n - I, n - 2, ... , I.
(6b)

Xi = ~ (gi - i UiiXi)'
Un j=i+ 1

We recall that the elements of U == A(n) and g == f(n) are computed by the
Gaussian elimination procedure (3), without the explicit evaluation ofL -1.

We now consider the generalization in which the order of elimination
is arbitrary. Again we set A(1) == A and f(l) == f. Then we select an arbitrary
non-zero element a~;}l called the I st pivot element. (If this cannot be done
then A == 0 and the system is degenerate, but also trivially in triangular



[Sec. 1] GAUSSIAN ELIMINAnON 33

form.) Since a~~), #- 0 is the coefficient of the jIst variable, xiI' in the iist
equation we can eliminate this variable from all of the other equations.
To do this, we subtract an appropriate unique multiple of the iist equation
from each of the other equations; i.e., to eliminate xiI from the kth
equation the multiplier must be mkiI = (akYJa~~)J

The reduced system is written as A(2)X = f(2) and it is such that omitting
the iist equation yields n - 1 equations in the n - 1 unknowns X k ,

k #- ji' We now proceed with this reduced system and eliminate a second
unknown, say xi,' To do this we must find some element a~;)2 #- 0 with
i2 #- il and j2 #- jl' called the 2nd pivot element. If a~;) = 0 for all r #- il

and s #- ji the process is terminated as the remaining equations are
degenerate. After this second elimination the resulting system, say,
A(3)X = f(3l, is composed of the iist equation of A(I)X = f(ll, the i2nd
equation of A(2)X = f(2) and n - 2 remaining equations in only n - 2
variables, Xk with k #- jl> k The general process is now clear and can be
used to prove

THEOREM 2. Let the matrix A have rank r. Then we can find a sequence
of distinct row and column indices (il> jl), (i2' j2), ... , (i" jr) such that the
corresponding pivot elements in A(l), A(2), ... , A(r) are non-zero and a~? = 0
if i #- il> i2, ... , ir' Let us define the permutation matrices, whose columns
are unit vectors,

P == (e(i,), e(i2 ), ••• , e(i,l, , e(in »,

Q == (e(i, ), e(i2 l, ... , e(f,), , e(jn»,

where ik , A, for 1 :s; k :s; r, are the above pivotal indices and the sets
{ik} and Uk} are permutations of 1, 2, ... , n.
Then the system

By = g,
where

g == PTf,

is equivalent to the system (1) and can be reduced to triangular form by
using Gaussian elimination with the natural order ofpivots (1, 1), (2, 2), ... ,
(r, r).

Proof. The generalized elimination alters the matrix A == A(l) by
forming successive linear combinations of the rows. Thus, whenever no
non-zero pivot elements can be found the null rows must have been linearly
dependent upon the rows containing non-zero pivots. The permutations
by P and Q simply arrange the order of the equations and unknowns,
respectively, so that bvv = ai,i" v = 1, 2, ... , n. By the first part of the
theorem, the reduced matrix B(r) is triangular since all rows after the rth
one vanish. •
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If the matrix A is non-singular, then r = n and Theorem 2 implies that,
after the indicated rearrangement of the data, Theorem I becomes applic­
able. This is only useful for purposes of analysis. In actual computations
on digital computers it is a simple matter to record the order of the pivot
indices (iv, jv) for v = I, 2, ... , n, and to do the arithmetic accordingly.
Of course, the important problem is to determine some order for the
pivots so that the elimination can be completed.

One way to pick the pivots is to require that (ik,A) be the indices of a
maximal coefficient in the system of n - k + I equations that remain at
the kth step. This method of selecting maximal pivots is recommended as
being likely to introduce the least loss of accuracy in the arithmetical
operations that are based on working with a finite number of digits.
We shall return to this feature in Subsection 1.2. Another commonly used
pivotal selection method eliminates the variables Xl, x 2 , ... , Xn-l in
succession by req uiring that (ik> k) be the indices of the maximal coefficient
of Xk in the remaining system of n - k + I equations. (This method of
maximal column pivots is particularly wnvenient for use on an electronic
computer if the large matrix of coefficients is stored by columns since the
search for a maximal column element is then quicker than the maximal
matrix element search.)

1.1. Operational Counts

If the nth order matrix is non-singular, Gaussian elimination might be
employed to solve the n special linear systems (0.6) and thus to obtain
A-I. Then to solve any number, say m, of systems with the same co­
efficient matrix A, we need only perform m multiplications of vectors by
A -1. However, we shall show here that for any value of m this procedure
is less efficient than an appropriate application of Gaussian elimination to
the m systems in question. In order to show this, we must count the number
of arithmetic operations required in the procedures to be compared.
The current convention is to count only multiplications and divisions.
This custom arose because the first modern digital computers performed
additions and subtractions much faster than they did multiplications and
divisions which were done in comparable lengths of time. This variation
in the execution time of the arithmetic operations is at present being
reduced, but it should be noted that additions and subtractions are about
as numerous as multiplications for most methods of this chapter. On
the other hand, for some computers, as in the case of a desk calculator, it
is possible to accumulate a sequence of multiplications (scalar product
of two vectors) in the same time that it takes to perform the multiplications.
Hence one is justified in neglecting to count these additions since they do
not contribute to the total time of performing the calculation.
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Let us consider first the m systems, with arbitrary f(j),

(7) Ax = f(j), j = 1,2, .. . ,m.

We assume, for the operational count, that the elimination proceeds in
the natural order. The most efficient application then performs the opera­
tions in (3a) only once and those in (3b) once for each j; that is, m times.
On digital computers, not all of the vectors f(j) may be available at the
same time, and thus the calculations in (3b) may be done later than those
in (3a). However, since the final reduced matrix A(n) is upper triangular,
we may store the" multipliers"

a(k-1)
_ t, k-1

mt.k-1 = (k 1) ,
ak-1, k-1

2 .::; k .::; i,

in the lower triangular part of the original matrix, A. (That is, mi. k -1 is put
in the location of a\~k!D. Thus, no operations in (3a) ever need to be
repeated.

From (3) and (4) we see that in eliminating Xk-b a square submatrix
of order n - k + I is determined and the last n - k + 1 components
of each right-hand side are modified. Each element of the new submatrix
and subvectors is obtained by performing a multiplication (and an addition
which we ignore), but the quotients which appear as factors in (3) are
computed only once. Thus, we find that it requires

(n - k + 1)2 + (n - k + 1)

(n - k + I)

ops. for (3a),

ops. for (3b).

These operations must be done for k = 2, 3, ... , n and hence with the
aid of the formulae,

i" = n(n + 1),
v= 1 2

i ,,2 = n(n + 1)(2n + I)
v= 1 6

the total number of operations is found to be:

(8a)
n(n2 - I)

3
ops. to triangularize A,

(8b)
n(n - I)

2
ops. to modify one inhomogeneous vector, f(j).

To solve the resulting triangular system we use (6). Thus, to compute Xt

requires (n - i) multiplications and one division. By summing this over
i = I, 2, ... , n, we get

(8c)
n(n + I)

2
ops. to solve one triangular system.
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Finally, to solve the m systems in (7) we must do the operations in (8b)
and (8c) m times while those in (8a) are done only once. Thus, we have

LEMMA 1.

(9)
n3 n- + mn2

-­
3 3

ops.

ops. to compute A -1.

are required to solve the m systems (7) by Gaussian elimination. •

To compute A - 1, we could solve the n systems (0.6) so the above count
would yield, upon setting m = n,

4n3 n
3-:3

However, the n inhomogeneous vectors e(!) are quite special, each having
only one non-zero component which is unity. If we take account of this
fact, the above operational count can be reduced. That is, for any fixed
j, I ~ j ~ n, the calculations to be counted in (3b) when f == e(j) start
for k = j + 2. This follows, since f~V) = 0 for v = 1,2, .. .,j - I and
f~f) = I. Thus, if j = n - I or j = n, no multiplications are involved and
in place of (8b), we have

n n-j-l

2: (n - k + 1) = 2: V

k=j+2 v=l

= !U 2
- (2n - I)j + n2

- n] ops.

to modify the inhomogeneous vector e(j) for j = I, 2, ... , n - 2.
By summing this over the indicated values of j, we find

ops. to modify all e(j), i = 1,2, ... , n.

The count in (8c) is unchanged and thus to solve the n resulting triangular
systems takes

-t(n3 + n2
) ops.

Upon combining the above with (8a) we find

LEMMA 2. It need only require

(10) ops. to compute A -1. •
Now let us find the operational count for solving the m systems in (7)

by employing the inverse. Since A -1 and f(j) need not have any zero
or unit elements, it requires in general

n2 ops. to compute A -If(j).
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Thus, to solve m systems requires mn2 ops. and if we include the n3

operations to compute A-I, we get the result:

(II) ops.

are required to solve the m systems (7), when using the inverse matrix.
Upon comparing (9) and (II) it follows that for any value ofm the use

of the inverse matrix is less efficient than using direct elimination.

1.2. A Priori Error Estimates; Condition Number

In the course of actually carrying out the arithmetic required to solve

(12) Ax = f

by any procedure, roundoff errors will in general be introduced. But if the
numerical procedure is "stable," or if the problem is "well-posed" in
the sense of Section 3 of Chapter I, these errors can be kept within reason­
able bounds. We shall investigate these matters for the Gaussian elimina­
tion method of solving (12).

We recall that a computation is said to be well-posed if" small" changes
in the data cause" small" changes in the solution. For the linear system
(12) the data are A and f while x is the solution. The matrix A is said to be
"well-conditioned" or "ill-conditioned" if the computation is or is not,
respectively, well-posed. We shall make these notions somewhat more
precise here and introduce a condition number for A which serves as a
measure of ill-conditioning. Then we will show that the Gaussian elimina­
tion procedure yields accurate answers, even for very large order systems,
if A is well-conditioned, and single precision arithmetic is used.

Suppose first that the data A and fin (12) are perturbed by the quantities
SA and Sf. Then if the perturbation in the solution x of (12) is Sx we have

(13) (A + SA)(x + Sx) = f + Sf.

Now an estimate of the relative change in the solution can be given in
terms of the relative changes in A and f by means of

THEOREM 3. Let A be non-singular and the perturbation SA be so small
that

(14)

Then ifx and Sx satisfy (12) and (13) we have

(15) IISxII J1- (11Sfll liSA II)
lXf ~ I - J1-IISAII/IIAII lff + lAf '

where the condition number J1- is defined as

(16)
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Proof Since IIA-ISAII :::;; IIA-111·IISAII < I by (14) it follows from the
Corollary to Theorem 1.5 of Chapter I that the matrix I + A -ISA is
non-singular, and further, that

II (I + A -1 SA) - 111 < I < I .
- I - IIA ISAII - I - IIA 111·IISAII

If we multiply (13) by A -Ion the left, recall (12) and solve for Sx, we get

Sx = (I + A- 1SA)-IA- 1(Sf - SAx).

Now take norms of both sides, use the above bound on the inverse, and
divide by Ilxll to obtain

IISxl1 IIA-
1

11 (11Sfll )N:::;; I - IIA 111·IISAII N + IISAII .

But from (12) it is clear that we may replace Ilxll on the right, since

Ilxll ~ Ilfil/IIAII,

and (15) now easily follows by using the definition (16). •
The estimate (15) shows that small relative changes in f and A cause

small relative changes in the solution if the factor

I - JL IISAII/IIAII

is not too large. Of course the condition (14) is equivalent to

IISAII
JL 1Af < 1.

Thus, it is clear that when the condition number JL(A) is not too large,
the system (12) is well-conditioned. Note that we cannot expect JL(A) to be
small compared to unity since

We can apply Theorem 3 to estimate the effects of roundoff errors
committed in solving linear systems by Gaussian elimination and other
direct methods. Given any non-singular matrix A, the condition number
JL(A) is determined independently of the numerical procedure. But it is
possible to view the computed solution as the exact solution, say x + Sx,
of a perturbed system of the form (13). The basic problem now is to deter­
mine the magnitude of the perturbations, SA and Sf. This type of approach
is called a backward error analysis. It is rather clear that there are many
perturbations SA and Sf which yield the same solution, x + Sx, in (13).
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Our analysis for the Gaussian elimination method will define 8A and Sf
so that

Sf == 0.

Then the error estimate (15) becomes simply

(17) Ilhll fL118AII/IIAII
liXf ~ 1 - fLI18AII/IIAII'

and it is clear that only 118A II in this error bound depends upon the round­
off errors and method of computation.

In the case of Gaussian elimination we have seen in Theorem 1, that
exact calculations yield the factorization (5b),

LV = A.

Here Land U are, respectively, lower and upper triangular matrices
determined by (5c) and (3a). However, with finite precision arithmetic in
these evaluations, we do not obtain L and V exactly, but say some tri­
angular matrices!£' and qt. We define the perturbation E due to these
inexact calculations by

(18) !£,(;7f == A + E.

There are additional rounding errors committed in computing g defined
by (3b) or (5d), and in the final back substitution (6b) in attempting to
compute the solution x. With exact calculations, these vectors are defined
from (5d) and (6a) as the solutions of

Lg = f, Vx = g.

The vectors actually obtained can be written as g + Sg and x + Sx
which are the exact solutions of, say,

(I9a)

(19b)

(!£' + 8!£')(g + Sg) = f,

(U7f + 8U7f)(x + Sx) = (g + Sg).

Here!£' and U7f account for the fact that the matrices Land U are not
determined exactly, as in (18). The perturbations 8!£' and 8U7f arise from
the finite precision arithmetic performed in solving the triangular systems
with the coefficients!£' and U7f. Upon multiplying (l9b) by !£' + 8!£' and
using (19a) we have, from (13) with Sf = 0,

(A + 8A) = (!£' + 8!£')(U7f + 8U7f).

From (18), it follows then that

(20) 8A = E + !£'(8U7f) + (8!£')U7f + (8!£')(8U7f).
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Thus, to apply our error bound (17) we must estimate IIEII, 1180//11, and
1182' II. Since 2' and all are explicitly determined by the computations,
their norms can also, in principle, be obtained.

We shall assume that floating-point arithmetic operations are performed
with a t-digit decimal mantissa (see Section 2 of Chapter I) and that the
system has been ordered so that the natural order of pivots is used [i.e., as
in eq. (3)]. In place of the matrices A(k) == (a~7» defined in (2) and (3a),
we shall consider the computed matrices B(k) == (b~~» with the final such
matrix B(n) == °1/ = (u i }), the upper triangular matrix introduced above.
Similarly, the lower triangular matrix of computed multipliers 2' == (Sjj)
will replace the matrix L == (m,j) of (5c). For simplicity, we assume that the
given matrix elements A = (aij) can be represented exactly with our
floating-decimal numbers.

Now in place of (3a) and (5c), the floating-point calculations yield
b~7) and Sij which by (2.6) of Chapter I can be written as:

for k = I,

(2Ia) b~Jl=alj, i,j=I,2, ... ,n;

fork = 1,2, ... ,n - I,

+ 8~7) IO - t)]( I + 1>~7) IO - t),

i?:.k+l,j?:.k+l;

i :::; k,

(21 b)
{

b(k)
I} ,

° i?:. k +b(k+l) = '
I}

[b'k) - s b(k)(1
t} 1k k;

I, j:::; k,

and finally

i>j.

i = j;

i < j;

(2Ic)

{

a,
I,

Sij =
bWb;;) (I + .pjj IO - t),

11

Here the quantities, 8, 1>, .p satisfy

18\7)1 :::; 5, 11>\1)1 :::; 5,

and they account for the rounding procedures in floating-point arithmetic.
Of course, the above calculations can be carried out iff the bj? #- °for
j :::; n - I. However, this can be assured from

LEMMA 1. If A is non-singular and t sufficiently large, then the Gaussian
elimination method, with maximal pivots and floating-point arithmetic
(with t-digit mantissas), yields multipliers Sl} with ISljl :::; I and pivots
bji/ #- 0.

Proof See Problem 8. •
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It turns out that we require a bound on the growth of the pivot elements
for our error estimates. That is, we seek a quantity G = G(Il), independent
of the alb such that

(22a)

where

Ihi'i I ~ G(n)a, j = 1,2, ... , n;

(22b) a == max lalil.
I. i

Under the conditions of Lemma I, it is not difficult to see, by induction
in (2Ib), that

(22c) G(n) ~ [I + (I + 5 X lO-t)2]n-1 = 2n- 1 + e((n - 1)I01-t).

This establishes the existence of a bound of the form (22), but it is a
tremendous overestimate for large n. In fact for exact elimination (i.e.,
no roundoff errors) using maximal pivots it can be shown that

(23a)

where

(23b)

laWI < g(j)a,

The quantity g(n) would be a reasonable estimate for G(n) if the maximal
pivots in the sequence {B<kl} were located in the same positions as the
maximal pivots in {A<kl}. We know that if A is non-singular and t is suffi­
ciently large, then the indices of the maximal pivotal elements used to find
{BCkl} are also indices of maximal pivots in an exact Gaussian elimination
procedure for A. For two special classes of matrices it is established in
Problems 6 and 7 that g(n) ~ I and g(n) ~ n. The best (i.e., lowest)
bound for G(n) [or for g(n)] is not known at present.

We now turn to estimates of the terms in SA. Our first result is a bound
on the elements of E which we state as

THEOREM 4. Under the hypothesis of Lemma J the Gaussian elimination
calculations (21) are such that

!i'iJIf = A + E

where E == (eiJ) satisfies

(24) lei < {U - 1)2aG(n)10
1
-

t
,

IJ - j2aG(n)101-t,

Here G(n) is any bound satisfying (22).

Proof We write the last line of (21 b) as

for i ~ j;

for i > j.

i ;;:: k + 1, j ;;:: k + I,
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where from Lemma 1 and (22) it follows that

(25b) i~k+l,j~k+I.

Similarly, multiplying the last line of (2Ic) by b}~) and dividing by
I + <pjjIO-t, we can write the result as

(26a) i > j;

where again we find that

(26b) i > j.

Upon recalling (21) we have

f£' == (Si;) ,

so that

(f£'qj)ij = ~ Sikbk~)
k=l

min (I,n

"" b(k)L, Sik kj'
k=l

Now let i > j and sum (25a) over k = I, 2, ' ."j - I and then add (26a)
to get, with the aid of (21),

o = blP - ~ SlkbW + ±"~7 + 1), i > j.
k=l k=l

From the last two equations above and the fact that

we see that the elements el j with i > j of E = f£'qj - A are

(27a)
j

e.. = "" ,,(k + 1)
I} ~ lJ ,

k=l
i > j.

For the elements with i :s: j, we just sum (25a) over k = 1,2" .. , i-I,
recalling that Sii = I, and obtain as before

(27b)
1-1

e .. = "" ,,(k + 1)
I) L l} ,

k=l
i :s: j.

But now (24) follows from (27) by using the bounds (25b) and (26b). •

As a simple corollary of this theorem, we note that since Ieljl :s:
2(n - 1)aG(n)I01-t, it follows that

(28) IIEII", :s: 2an(n - I)G(n)lOl-t.
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The elements in S!l' and So/I can be estimated from a single analysis of
the error in solving any triangular system (with the same arithmetic and
rounding). Thus we consider, say,

(29a) Tu = h

where T == (tij) is lower triangular and non-singular, i.e.,

(29b) j > i; i = 1,2, ... , n.

The exact solution of (29) is easily obtained by recursion and is

(30a)

(30b) i = 2,3, ... , n.

For numerical solutions, we have

THEOREM 5. Let the "solution" of (29) be computed by using t-digit
floating-point arithmetic to evaluate (30). Then the computed solution, say v,
satisfies

(3Ia) (T + ST)v = h

where the perturbations are bounded by

(3Ib) IStul :::; max [2, Ii -.i + 11]lt'iII01-1:::; nltii I10 1
-

1
•

Here t is required to be so large that n I01 - I :::; I.

Proof In the notation of Section 2 of Chapter I the floating-decimal
evaluations, Vi> of the formulas (30) are

v = f1(~).
1 t11 '

i = 2,3, ... , n.

Then by using (2.6c) of Chapter I, we must have from the above

(32a) VI = hI (1 + </>110-1), 1</>11:::; 5;
t 11

fI (hi _i~l tikVk )

(32b) Vi = ;~1 (I + </>ilO-I), I</>d :::; 5, i = 2,3, .. . ,n.
Il
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If, in the floating-point evaluation of the numerator in (32b) the sum is
first accumulated and then subtracted from h;, we can write, with the use
of (2.6a) and Lemma 2.2 of Chapter I,

f1(h i - ~~: tikVk) [hi - ~~ (tik + 8tik)Vk] (\ + 8i lO- t
),

i = 2, 3, ... , n.

Here 18d :s; 5 and

18
t 1< {U - k + 1)ltik II01

-t,

ik - 21t IlOl-t
i. i-I ,

2 :s; k :s; i-I,

k = 1, i = 2,3, ... ,n.

From the above and (32) we now obtain, solving for the hi>

tUVl(\ + 1>1 1O - t)-1 = hI>

i-I

tiiVi(\ + 1>i lO - t)-I(\ + 8ilO- t)-1 + 2: (tik + 8tik)Vk = h;,
k~1

i = 2,3, ... , n.

However, if we write

t 11 + 8tu = t 11(\ + 1>1 1O - t)-1

tii + 8tii = tii(\ + 1>i lO - t)-I(1 + 8t lO- t)-1

then it follows from l1>il :s; 5, 18il :-:; 5, and nlO 1
-

t :-:; 1 that

18tul :-:; It 11 110 1
-

t
,

18tiil :-:; 2Itu!101
-

t, i> 1. •
We are now able to obtain estimates of the elements in 8:t' and 8011

or more importantly those in 8A. These results are contained in the
basic

THEOREM 6 (WILKINSON). Let the nth order matrix A be non-singular and
employ Gaussian elimination with maximal pivots and t-digit floating-point
arithmetic to solve (12). Let t be so large that Lemma I applies and that

nI0 1 - t :-:; 1.

Then the computed solution, say x + Sx, satisfies

(A + 8A)(x + Sx) = f
where

(33) 18aul :-:; (2n + 3n2 )G(n)aI01
-

t

and G(n) is any bound satisfying (22).
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Proof We have already shown that 8A is given by (20) where the ele­
ments of E are estimated in (24). Since 82' is the perturbation (I9a) in
solving the lower triangular system 2'g = f, we can apply Theorem 5.
We note that the elements of 2' == (sij) are given by (2Ic). Since maximal
pivots are used Ibj;) I :::: Ibg'1 so that Is!}1 ::; 1 and we easily get from (3Ib)
in this case

The elements of SOli are the perturbations in solving a system of the
form (;lIy = z with 011 == (Uij) == (bll» where the bl? are defined by (21 b).
This system is, of course, upper triangular but the estimates of Theorem 5
still apply. Since maximal pivots are used we have, recalling (22),

IUiil == Ibg)1 ::; IN:)I ::; G(n)a,

and now (31 b) yields

i ::; j, i = 1,2, ... , n;

I(8(;lI);il == 18u;il ::; nG(n)aI01-t.

From (20) we have

min<i, j)

8a;i = e ii + L (S;k 8uki + 8SikUki + 8S;k8uki)·
k~l

By taking absolute values and using the above bounds on 18uijl, 18s;il,
IUfjl, ISiil, as well as (24), we easily obtain

18aijl ::; (2n + 2n2 + n3IOl-t)G(n)aIOl-t.

However, since it was required that nIO l -t < 1, the result in (33)
follows. •

From this theorem, it follows that the computed solution is the exact
solution of a system only slightly perturbed from the original if enough
figures are used, i.e., t sufficiently large. Appropriate values for t depend
upon n and the bound G(n). If, as indicated in (22c), G(n) were of the order
2n -1, only relatively small order systems could be treated effectively.
On the other hand, if G(n) :;;;: g(n) ::; 3n Y2 + y'ln n, as in (23), then quite
large order systems can be treated with the number of digits used on
modern digital computers (say t :::: 8). It is generally believed, however,
that even this latter estimate for G(n) is a generous overestimate, when
using maximal pivots. It should be observed that essentially all of the
previous analysis is valid if only partial pivoting, say maximal column
pivoting, is employed since then IStil ::; I is maintained. However, the
growth factor G(n) for this procedure cannot be estimated well in general.
In fact, it is possible that the upper bound (22c) which still applies may be
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attained. In spite of this, partial pivoting is found to be effective in practice
but the absence of any type of maximal pivoting strategy frequently leads to
catastrophic growth of rounding errors. t

From (33) we easily find that

(34)

and this can be employed in (17) to obtain maximum norm bounds on
the relative error. It is clear that this relative error in x may not be small
even though the relative perturbation, II SA II/IIA II, is small. In such a case,
A would be ill-conditioned. By (17), the relative error 115x IIIII x II is small
if IIA-IIIIISAII is small. For a given G(n) and !-teA) equation (34) may
be used to find the value of t that assures a solution with a prescribed
accuracy.

Finally, we recall that a computed inverse of A can be obtained by sol­
ving the n systems (0.6). If we denote the matrix obtained as A-I + F,
then as above we can show that each column vector of A-I + F, i.e.,
(A -1 + F) j, satisfies an equation of the form, for some perturbation
matrix SA(j),

(35a) (A + SA(j»(A -1 + F) j = e(j), j = 1,2, ... , n.

Under the assumptions of Theorem 6, the estimates (33) and (34) also
apply to the current perturbations, SA(j). Then, if 118A(j)11 ::; liliA-III
we have, almost as in the proof of Theorem 3,

(35b)

Thus, as was to be expected, the columns of the inverse matrix are obtained
to within the same relative error [i.e., compare (17)] as is the solution of
any particular system.

1.3. A Posteriori Error Estimates

Although we do not advocate inverting a matrix to solve linear systems,
it is of interest to consider error estimates related to computed inverses.

t Experience indicates that we usually achieve greater accuracy in the single precision
solution, if we first scale the matrix A. That is, if with B = D,A Dz, we solve

By = D,j

for y; and then determine x from D 2 y = x. Here D, and D z are some diagonal
matrices chosen so that the n columns and the n rows of the matrix B have approxi­
mately equal norms. A complete mathematical explanatIOn of this phenomenon IS

not available.
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Let A be the matrix to be inverted and let C be the computed or alleged
inverse. The error in the inverse is defined by

(36a)

we also use another measure of error called the residual matrix:

(36b)

We have first

THEOREM 7.

(37a)

(37b)

(37c)

R = AC - I.

If IIRII < I then:

A and C are non-singular;

IIA- 1 11 ~ IICII/(l - IIRII);

IIFII ~ IICII·IIRII/(l - IIRII)·
Proof We write (36b) as

AC = 1+ R,

and use the corollary to Theorem 1.5 of Chapter I and IIRlj < I to deduce
that AC is non-singular. Part (37a) then follows. Take the inverse of both
sides in the above equation and multiply on the left by C to find

A-I = C(I + R)-l.

Now (37b) follows by taking norms and by again using the corollary to
Theorem 1.5 of Chapter 1. From (36) we see that F = A-IR and so,
IIFII ~ II A- 1 11·IIRII, and (c) follows by an application of (b). •

Note that we may just as well consider A to be an approximation to the
inverse of C. Thus we obtain the

COROLLARY. Under the hypothesis of Theorem 7,

(37d)

(37e)

IIC- 1 11 ~ IIAII/(I - IIRII),

IIA - C- 1 11 ~ IIAII·IIRII/(l - IIRII)· •
Since A and Care presumed known, we could actually compute II CII,

IIAII, and IIRII in the estimates (37). This, of course, is what is meant by
a posteriori estimates. In general, n3 multiplications are required to form
A C and this computation, as well as that of the norms, is subject to simply
estimated roundoff errors. In contrast, the quantity SA entering the a
priori estimates (17) and (34) cannot be computed. It is hardly necessary
to point out that G(n) is determined easily after the elimination process
has been completed.
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It is of interest to note that, under the hypothesis of Theorem 7, with
C an approximate inverse of A we can find the perturbation SA, so that C
is the exact inverse of A + SA. That is, set

(A + SA)C = 1.
Hence,

-SA = (AC - I)C-l

= RC- l .

Upon taking norms and using (37d), we then have

(38) II SA II < II R II· II A II.
- 1 - IIRII

Finally, we observe that the computed inverse can also be used to
estimate the error in solving a linear system. We state this result as

THEOREM 8. Let an approximate solution y of

Ax = f

have the residual vector

(39) r = Ay - f.

Then, if an approximate inverse C of A satisfies IIRII - IIAC - III < 1,
we have

(40)

Proof
(39)

IIY - xii < Ilrll·IICII.
- 1 - IIRII

From Theorem 7 it follows that A is non-singular and so from

y = A-l(r + f).

Subtract x = A -if from this to find, after taking norms,

Ily - xii ~ IIA-111-llrll·
The result (40) then follows from (37b). •

The determination of the residual vector r is the first step in an iterative
procedure to improve upon the accuracy of the solution (see Subsection
4.3).

It should be noted that the result in this theorem is independent of the
manner in which the approximate solution, y, is obtained. Thus, it was
not assumed that y = Cf. This suggests, in fact, that the sole purpose for
computing C and R might be to use them in error estimates of the form
(40). That is, once the constant M == IICII/O - liRII) is known, it requires
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only n2 multiplications to compute r for each approximate solution y
of a system with coefficient matrix A. If one wished to use (40), after
finding y by Gaussian elimination, then an approximate inverse C could
be obtained by using the approximate factorization of A. This, by (8a)
and (10), would require twice as much labor as was already expended to
find y.

PROBLEMS, SECTION 1

1. Show that A(k) is non-singular iff A is non-singular, for the Gaussian
elimination method.

2. Describe how the maximal pivot scheme permits the completion of the
elimination method, when A is singular.

3. Prove the following corollary to Theorem 2: If interchanges of rows and
of columns are made and r = n, then

det A = (-lfa~g,agJ2" .al~Jn'

where a~~}k are the successive pivotal elements in the Gaussian elimination
scheme and (_I)J = det P det Q.

4. If A is symmetric and positive definite (that is, x* Ax ~ 0 and
n

L a'lxlxl = 0 only if x, = 0 for all i; at! and x, real), show that
'.1=1

(a) ajj > 0
(b) max au = max lalil. [Hint: For (b), if laTsl = max laol, then with

I 1.1 1.1

X, = 0 for i # r, s
n

L a'lx,xI == arrxT2 + 2aT.xTx S + a,sx," = 0
'.1= 1

for non-trivial x" x, if arra" < aT,"']
5. If A is symmetric, positive definite, then the submatrices (a~~) for

k :::; i,j :::; n are symmetric, positive definite. [Hint: Use mathematical In­

duction on k. Symmetry from
a'l)

d 2) - aO) 11 al')
Ii - II - aW 11'

Positive definiteness from Problem (4a) and

n (2) _ n (1) (1) [ n GJ1) ] 2L all XIXI = L all XIXI - all Xl + L m XI .
1,1=2 1,1=1 1=2 all

That is, if (a~J') is not positive definite, then (aU) is not.]
6. (Von Neumann-Goldstine.) If A is symmetric, positive definite, then

a\~) :::; a~~-l) for k:::; i :::; n, k = 2,3, ... , n. (Hence by Problem (4b),
max la~7)1 :::; max laill.)

1,1 1,1

7. (Wilkinson.) If A is a Hessenberg matrix (Le., all = 0 for i ~ j + 2),

max lal7)1 :::; n max lalil,
1.1 1.1

if maximal column pivots are used. [Hint: Only one row is changed in passing
from A(k -1) to A(k).]
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8. Prove Lemma 1.
9. If A is symmetric, use the first part of Problem 5 to show: the number of

operations to solve (1) by Gaussian elimination, with diagonal pivots, is
n3 /6 + (I)(n2

).

10. If in (1), A and f are complex, show that (1) may be converted to the
solution of a real system of order 2n.

2. VARIANTS OF GAUSSIAN ELIMINATION

There are many methods for solving linear systems that are slight varia­
tions of the Gaussian elimination method. None of these methods has
succeeded in reducing the number of operations required, but some have
eliminated much of the intermediate storage or recording requirements.
Caution should be taken in applying any variation that does not allow
for the selection of some sort of maximal pivots, which is generally neces­
sary to prevent the growth of rounding errors.

The modification due to Jordan circumvents the final back substitution.
This is accomplished by additional computations which serve to eliminate
the variable Xk from the first k - I equations as well as from the last n - k
equations at the kth stage of the reduction. In other words, the coefficients
above the diagonal are also reduced to zero and the final coefficient matrix
which results is a diagonal matrix. The obvious modifications which are
required for this Gauss-Jordan elimination are contained in

(Ia) aW = alj

(I b)

(I c)

(Id)

(2a)

for i #- k - I, j ~ k - I

for j ~ k - I

for j < k - 1.

(2b)

(2c)

for i #- k - I

for k = 2, ... , n.

The solution is then

It is clear that pivoting on the maximal element in the remaining square
submatrix may be retained in this procedure. Hence, multipliers for
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i < k - 1 may exceed unity. Furthermore, the number of operations is
somewhat greater than in the ordinary Gaussian elimination with back
substitution; it is now

(3)
n3 n
"2 + n2

- 2" ops.

Thus, there does not seem to be any great advantage in using the Gauss­
Jordan elimination in actual calculations with automatic computing
equipment.

Another variation is the so-called Crout reduction. This method is
applicable if the rows and columns are so arranged that no column inter­
changes are required in the Gaussian elimination (as in the case of sym­
metric, positive definite matrices; see Theorem 3.3). Thus, in general, the
pivots will not be the maximal elements. Hence, errors may grow very
rapidly in the Crout method and it is not recommended unless the system
is of relatively small order or if it can be determined that the error growth
will not be catastrophic. (In practice one may apply the method and test
the accuracy of the solution a posteriori.) On the other hand, the Crout
method is specifically designed to reduce the number of intermediate
quantities which must be retained. Thus, for hand computations and
digital computers with small storage capacities it may be of great value.
The Crout method may be modified to use maximal column pivots, by
incorporating row interchanges as described in Theorem 3.1 (or see
Theorem 1.2).

This" compact" elimination procedure is based on the fact that only
those elements a~~), in the Gaussian elimination, for which j ~ i and
i ~ k, are required for the final back substitution.

Thus, we seek a recursive method of defining the columns of L (lower
triangular matrix of multipliers) and rows of U (upper triangular matrix).
From Theorem 1.1, we know that

LU= A.

Hence, let us write the formula for ak ; from the rule for matrix multipli­
cation, after a simple algebraic transformation, in the form

(4)
k-l

Uk; = ak; - L mkpup;,
p=l

if k ~ j;

and the formula for atk in the form

(5) if i > k.
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We now may use (4) and (5) for k ~ 2 to find first the elements of the
kth row of V and then the elements of the kth column of L, provided
that we know the previous rows and columns, respectively, of V and L.
Hence, we need only define the first row

for I :-::; j :-::; n

and first column

for 2 :-::; i :-::; n.

If we define U1,n+1 =/1; ai,n+1 =/; and use (4) for j = n + 1, we find
a column (ut • n +d which is the vector g of Theorem 1.1.

We then use the back substitution to solve Vx = g as before [where V
represents the first n columns of (Ui))]. The operational count, for producing
L, V, and g, is easily found to be (2n3 + 3n2

- 5n)j6. It is not surprising
that this is the same as the number of operations required by the conven­
tional Gaussian elimination scheme to produce L, V, and g (since we
merely avoid writing down the intermediate elements but have ultimately
to do the same multiplications and divisions).

We could show now, if the inner products in (4) and (5) are accumulated
in double precision before the sum is rounded, that the effect of rounding
errors is appreciably diminished. In fact, the estimate in place of (1.34)
becomes

PROBLEM, SECTION 2

1. Verify the operational count for the Crout method: (2n3 + 3n2
- 5n)/6,

3. DIRECT FACTORIZATION METHODS

The final forms, (2.4) and (2.5), that are used in the Crout method,
suggest a more general study of the direct triangular decomposition

(1) LV = A,

in which the diagonal elements of L are not necessarily unity. In fact,
if we consider L == (lti) then (1) implies

(2a)
k-1

Ikkukk = a kk - L lkpupk'
p=1

for k ~ 2
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(2b) u kj = ~ (ak j - :~: IkPUpj), for j > k ~ 2
lkk

Itk = ~ (a l k -
k-I )

(2c) P~I ljpupk , for i > k ~ 2.
Ukk

[Equations (2a, b, c) hold for k = I, if we remove the L term.] Equation
(2a) determines the product lkkukk in terms of data in previous rows of U
and columns of L. Once lkk and Ukk are chosen to satisfy (2a), we then
use (2b) and (2c) to determine the remaining elements in the kth row
and column.

If lkkukk = 0, the factorization is not possible, unless all of the brackets
vanish in (2b), for j > k, or all of the brackets vanish in (2c), for i > k.
If A is non-singular, then the use of maximal column pivots results in the
sequence (iI' I), (i2' 2), ... , (im n) as pivotal elements. Hence, the Gaussian
elimination process shows that the triangular decomposition

LU = PTA,

is possible, where P is defined in Theorem 1.2. In fact, if A is non-singular,
one of the bracketed expressions in (2c) does not vanish, for some i ~ k.
Therefore, one of the bracketed expressions in (2c) is of maximum ab­
solute value for i ~ k, say for i = ik ~ k. We may then move the elements
of the row ik in both A and in the part of L that has already been found
up to row k. (The rows k, k + I, ... , ik - 1 are moved down in both
L and A to fill the gap.) Hence, if A is non-singular we may, with row
interchanges, employ (2a, b, and c) to achieve a triangular factorization.
We summarize these facts in

THEOREM 1. If A is non-singular, a triangular decomposition, LU = A,
may not be possible. But a permutation of the rows of A can be found such
that B == PTA = LU, where P = (Prs) and

{
O,

Prs = 1,

In fact, the P may be found so that

for i > k;

r i= is

r = is.

k = 1,2,oo.,n - 1. •
Note that in this result, in contrast to that in Theorem 1.2, we have only

employed row interchanges.
A symmetric choice lkk = Ukk may lead to imaginary numbers, if the

right-hand side of (2a) is negative; a less symmetric choice lkk = IUkkl

keeps the arithmetic real if A is real (see Problem 1).
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As in the Crout method, we may consider f as an additional column
of A (i.e., ai. n + I == j;) and use (2b) for j = n + I to define the elements
gi == Ui. n + I such that

Ux = L -If = g.

In Subsections 3.1, 3.2, and 3.3, we consider special applications of this
procedure.

3.1. Symmetric Matrices (Cholesky Method)

We begin with

THEOREM 2. Let A be symmetric. If the factorization LU = A is possible,
then the choice lkk = Ukk implies lik = Uk" that is, LLT = A.

Proof Use (2) and induction on k. •
A simple, non-singular, symmetric matrix for which the factorization is

not possible is

On the other hand, if the symmetric matrix A is positive definite (i.e.,
x*Ax > 0 if x*x > 0), then the factorization is possible. We have

THEOREM 3. Let A be symmetric, positive definite. Then, A can be factored
in the form

LU = A.

Proof Problems 4 and 5 of Section I show that the Gaussian elimina­
tion method can be carried out, without any interchanges, to give the
factorization (miJ(biJ = A, where bii > O. But if we define

then by Problem I, we will obtain from (2b, c) the elements in the factoriza­
tion

LU= A,
where

•
A count of the arithmetic operations can be made if we remark that only

the elements lik defined by (2a, c) are involved. If we count the square
root operations separately, we have

n3 n"6 + n2
- 60ps. + n square roots = no. of ops. to find Land g.
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In addition, to find x we must solve a triangular system which requires
(n 2 + n)/2 operations. Thus, to solve one system using the Cholesky method
requires n3/6 + 3n2/2 + n/3 operation plus n square roots.

To apply our previous error analysis, we deduce from

the bounds

I/tk l2 ::;; ail ::;; a = max latil.
i. j

For single precision square roots and G(n) = I, we could prove (as we do
in Theorem 1.6)

THEOREM 4. If A is symmetric and positive definite, then the approximate
solution of Ax = f obtained by factorization and floating-point arithmetic
with t digits satisfies

(A + SA)y = f,

where for t sufficiently large

•
COROLLARY. Under the hypothesis of Theorem 4, if inner products are
accumulated exactly, prior to a final rounding, then for t sufficiently large

•
3.2. Tridiagonal or Jacobi Matrices

A coefficient matrix which frequently occurs is the tridiagonal or Jacobi
form, in which aiJ = 0 if Ii - JI > I. That is,

(3) A =

bn - 1 an - 1 Cn-l

bn an
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Assume this matrix can be factored in the bidiagonal form

A = LV=

Then we find,

Yn-l

(4a)

(4b)

(4c)

i = 2,3, ... , n;

i = 2, 3, ... , n - 1.

Thus, if none of the al vanish, the factorization is accomplished by
evaluating the recursions in (4). The "intermediate" solution g of Lg = f
becomes

(5a)

(5b)

gl = fl/al;

gl = U; - blgl-l)/aj, i = 2, 0'0' n;

and the final solution x of Vx = g is given by

(6a)

(6b) j = n - 1, n - 2, ... , 1.

In many of the applications of this procedure, the elements (3) of A
satisfy

(7a)

(7b)

(7c)

lad> lell > 0;
lall ~ Ibd + lcd,
lanl > Ibnl > O.

i = 2,3, ... , n - 1;

In such cases, the quantities al and Yl can be shown to be nicely bounded
and in fact A is non-singular. We state this as

THEOREM 5. If the elements of A in (3) satisfy (7) then det A # 0 and the
quantities in (4) are bounded by

(a) Iyd < 1;
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Proof From (4a) and (7a), it follows that IYII < 1. Assume Iyd < I
for i = 1,2, ... ,j - 1. Then by (4b, c)

and thus

by the inductive assumption. Finally, by using (7b, c) in the above, it
follows that IYtl < I and hence (a) is proved. Using this result and (4b)
it follows that

latl + Ibd > lad> lad - Ibd (;::: !etl),
which concludes the proof of the inequalities (a) and (b). But then

n

detA = (detL)·(det U) = TI at #- O.
t= I •

It should be noted that, when the conditions (7) hold, the procedure
defined in (4) must be valid. Further if biCt = 0 for some i #- I, n, then the
system can be reduced to two systems which are essentially uncoupled.
Similarly, if CI = 0 or bn = 0 then Xl or X n , respectively, can be eliminated
to get a reduced system.

The operational count for this procedure is somewhat striking:

(4) requires 2(n - I) ops.

(5) requires I + 2(n - I) ops.

(6) requires n - lops.

or a total of

(8) 5n - 4ops.

to solve a single system. If there are m such systems to be solved, the
quantities at. Yt in (4) need be computed only once and (5) and (6) are then
each done m times for a total of

(9) (3n - 2)m + 2n - 2 ops.

to solve m systems. Consequently, the inverse can be obtained, although
it should never be used in such circumstances to solve the system, in not
more than

3n2 - 2ops.

The low operational counts in (8) and (9) are due to the fact that the zero
elements of A have been accounted for in performing the calculations.
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It should be observed that the factorization computed in (4) is not unique.
Thus, for instance, we could try the form

I

f32

A = LV=:

Cn-l

The reader should derive the recursions analogous to (4)-(6) for this case
and prove the corresponding version of Theorem 5. We give the reader
leave to develop a treatment and operational count for the general band
matrix. A matrix (eif) of order n is called a band matrix of width (b, a) iff

Ci i = 0 for j - i :2: a or i - j :2: b.

3.3. Block-Tridiagonal Matrices

Another form which is encountered frequently, especially in the numeri­
cal solution of partial differential equations and integral equations, is the
so-called block-tridiagonal matrix

Al C1

B2 A 2 C2

(10) A=

Here, each of the Ai represents a square matrix, of order mh and each
of the Bi and Ci are rectangular matrices which just" fit" the indicated
pattern. That is, Bi must have mi rows and mi-l columns, and C must
have mt rows and mi+1 columns. Note that if all mi = m, then all
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the submatrices are square and of order m. The order of the matrix A is
nL mj, or again if all mj = m then the order is (mn).

j=l

A system with coefficient matrix of the form (IO) may be solved by a
procedure formally analogous to the previous factorization of a Jacobi
matrix. Thus, let the system be

(II)

where now

(I 2)

Ax = f

x = (~(l»), f = (:(1)),
x(n) f(n)

and each xU) and fCi) are mj-component column vectors. That is, the com­
ponents of the vector x are grouped into subsets, x(i), and these subsets
are to be "eliminated," as in the Gaussian procedure, a group at a time.
Thus, the method to be described is a special case of more general methods
known as group- or block-elimination.

Exactly as in Subsection 3.2 we seek a factorization of the form

(13) A = LU=

Al 11 r 1

B2 A2 12 r 2

B3 A3 13

r n - 1

l Bn An) In

where the I j are identity matrices of order mj> the A j are square matrices of
order m j , and the r j are rectangular matrices with m j rows and mj+1
columns. Proceeding formally, we find that

(I4a)

(I4b)

(I4c)

Ai = Ai - Bir i - 1 ,

r i = Ai -leb

i = 2,3, ... , n;

i = 2,3, ... , n - I.

From the definitions of the matrices involved, it is clear that each r i is
rectangular of the indicated order and that the product Biri -1 and hence
Ai is square of order mi' The system (II) is now equivalent to

(IS) Ly = f, Ux = y
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where y also has the compound form indicated in (12). We thus obtain
formally, from (13) in (I5),

(16)
i = 2,3, ... , n,

and
x(n) = yin)

(17)
i = n - 1, n - 2, ... ,1.

This method requires (or rather seems to require) the inversion of the
n matrices A j and the formation of the 2(n - 1) matrix products A j -lCh

Bjfj _l • To estimate the total number of operations used, we consider the
cases where all mt = m. Then with Gaussian elimination to obtain the
inverses, we require from (1.l0) (see discussion below on improving
efficiency by not computing inverses explicitly),

nm3 ops. for all At-I.

The product of two square matrices of order m requires m3 operations,
hence, we have

2(n - I)m3 ops. for all Aj -lCt and Bjfl _ 1•

Thus, the evaluation of (14) involves not more than

(18) (3n - 2)m3 ops.

The evaluation of (16) and (17) involves only products of m-component
vectors by square matrices and we find

(16) requires (2n - I)m2 ops.;

(17) requires (n - 1)m2 ops.

The total for (14), (16), and (17) is thus

(19) (3n - 2)(m3 + m 2
) ops.,

to solve the system (11) with coefficient matrix (l0).
Notice that this number is much superior to estimates of the form

-Hnm)3 which are appropriate for direct elimination methods applied to
arbitrary systems of order (nm). In fact, if n = m the block-elimination
scheme requires about 3m4 operations, while from (1.9) straightforward
Gaussian elimination uses on the order of tm6 operations. The great
gain in economy of operations is again due to the careful account taken
of the large number of zero elements in A. In fact, even greater efficiency
is attained if each f t is computed by solving the m linear systems, Ajfj =
C, and not by computing At -1; and if similarly (I5) is solved for y<O.
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The count in (19) is then reduced from the order of 3nm3 operations
to the order of tnm3 operations when we do not compute inverses.

The justification of the block-factorization method is given in

THEOREM 6. If the leading diagonal submatrices

Al CI

B2 A 2

A (1<) == k = I, 2, ... , n,

Ck - I

Bk Ak

of the original matrix (10) are non-singular, then the block-factorization
in (14) may be carried out (i.e., the Ai are non-singular).

Proof This is left to Problem 2.

PROBLEMS, SECTION 3

•

1. If LV == A is a factorization of A satisfying (2), show that llkukj is in­
dependent of the choice of lkk and Ukk that satisfy (2a).

2. Prove Theorem 6.

4. ITERATIVE METHODS

The previous direct methods for solving general systems of order n
require about n3 j3 operations. In addition, it has been indicated that, in
practical computations with these methods, the errors which are neces­
sarily introduced through rounding may become quite large for large n.
Now we consider iterative methods in which an approximate solution is
sought by using fewer operations per iteration. In general, these may be
described as methods which proceed from some initial" guess," x(O), and
define a sequence of successive approximations x(l), x(2),... which, in
principle, converge to the exact solution. If the convergence is sufficiently
rapid, the procedure may be terminated at an early stage in the sequence
and win yield a good approximation. One of the intrinsic advantages of
such methods is the fact that errors, due to roundoff or even blunders,
may be damped out as the procedure continues. In fact, special iterative
methods are frequently used to improve" solutions" obtained by direct
methods (see Subsection 4.3).
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A large class of iterative methods may be defined as folIows: Let the
system to be solved be

(I) Ax = f

where det IA I #- o. Then the coefficient matrix can be split, in an infinite
number of ways, into the form

(2) A=N-P

where Nand P are matrices of the same order as A. The system (1) is then
written as

(3) Nx = Px + f.

Starting with some arbitrary vector x<O\ we define a sequence of vectors
{x(V)}, by the recursion

(4) Nx(V) = Px(V -1) + f, J/ = 1,2, ....

It is now clear that one of the restrictions to be placed on the splitting
(2) is that

(5) det N #- 0,

in which case the recursions (4) define a unique sequence of vectors for
alI X(D) and f. As a practical matter, it is also clear that N should be chosen
such that a system of the form

(6) Ny = z

can be "easily" solved. Furthermore, if greater accuracy is desired, it
would be better to calculate with (4) in the equivalent form

N(x(V) - X(V-1») = f - Ax(V-l).

This point wilI be discussed further in Subsection 4.3.
The convergence of the sequence {x(V)} to the solution x of (I) is studied

by introducing the matrix

(7)

and the error vectors

(8) e(V) = x(v) - x, J/ = 0,1,2, ....

Subtract (3) from (4) to obtain, upon multiplication by N-l,

e(V) = Me(v -1)

= M 2e(v-2)

(9)

J/ = 1,2, ... ,
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where e(O) is the arbitrary initial error. Thus, it is clear that a sufficient
condition for convergence, i.e., that lim e(v) = 0, is that lim MV = 0,

v-+oo V"'" 00

and this is also necessary if the method is to converge for all e(O).

A matrix, M, that satisfies this condition is called a convergent matrix.
The basic results characteristizing convergent matrices have been estab­
lished in Chapter I, Theorem 1.4 and its Corollary, which we restate here
as

THEOREM 1. The matrix M is convergent, i.e.,

lim MV = 0,
v~ ""

if.! all eigenvalues of M are less than one in absolute value. •
(This condition is frequently stated as p(M) < 1 where p(M) is the
spectral radius of M defined by

p(M) == max IAd
;

where the A; are the eigenvalues of M.)

COROLLARY 1. The matrix M is convergent if, for any matrix norm,

IIMII < 1. •

It is, in general, difficult to verify the conditions of Theorem 1. However,
Corollary 1 may frequently be used to show that p(M) < 1. We have
(see Chapter 1, Section 1, for the notation)

COROLLARY 2. The matrix M == (mi;) is convergent if either

n

(lOa) 11M II"" == max L Im;il < 1;
I i ~!

or

n

(lOb) IIMII! == max L Imiil < 1.
J i = 1

Proof We have shown in Chapter I, Section I, that IIMII"" and IIMlll
are matrix norms. •

Let us return to the iteration scheme (4)-(9) and assume it to be a
convergent one. We introduce the notion of the rate of convergence, R,
of the iterative scheme by setting

(11) R == -log p(M).
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The significance of this quantity is most easily seen if we recall
the corollary to Theorem 1.3 of Chapter I, which states that: p(M) =

g.l.b. IIMII (here {II II} is the set of natural norms). Given the initial
{II II)

error, e(O), (9) permits the estimate in terms of any natural norm

Then for a given £ > 0, there is some norm such that

(12)

On the other hand, again from (9), if e(O) is an eigenvector of M correspond­
ing to the largest eigenvalue, Ile(V)11 = [p(M)]Vlle(O)II. Let it be required to
reduce the amplitude of the error by a factor of at least IO- m, m > O.
From (12), we see that, in some norm, the error amplitude is reduced by
a factor close to [p(M)]v. The number of iterations required is the least
value of v for which

[p(M)]V ::; IO- m•

By taking logs and recalling that 0 ::; p(M) < I, we obtain

(13)
m m

v> =-.
- -log p(M) R

Thus, the number of iterations required to reduce the initial error by the
factor 10 - m is inversely proportional to R, the rate of convergence.

4.1. Jacobi or Simultaneous Iterations

A special case (attributed to Jacobi) of the previous general theory is

(14)

From (14) in (4), it is seen that the components xlV) of the vth iterate are
simply computed with x(O) arbitrary by

(15)

i = 1,2, ... , n; v = 1,2, ....

Thus, this procedure may be employed provided only that att #- 0 for all
i = I, 2, ... , n. However, for the convergence of these iterations, Theorem
I requires that all roots of det I,\J - N-1PI = 0 satisfy IAI < 1. This
equation can be written as, assuming det INI #- 0,
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Aall 0 12 aln

(16) det IAN - PI = det
021 Aa2 2

= O.
an-I, n

anI an2 Aann

In general, the roots of such an equation, for large n, are not easily
obtained and so we seek simpler sufficient conditions for convergence, as
given in Corollary 2. The relevant matrix M is easily obtained since N-l =
(ali-181J) and thus

(17)

Now conditions (lOa) and (lOb) of Corollary 2 become

(18a)

(l8b)

IIMII.., = max i lOtiI< 1,
I i= 1 ali

(j>d)

IIMlll = max i lalil < 1.
i t =1 ali

<I"j)

These tests are easily applied in practice. Since p(M) ~ 11M II we obtain a
lower bound on the rate of convergence

1
R = log p(M)

(19)

The operational count for the Jacobi iteration is simply obtained from
(15); it is

(20) n2 ops. per iteration.

Thus by (13), if these iterations converge they require a total of about

m x n2

-R-- ops.,

to reduce the initial error by at least lO-m. We see that if such an iterative
method is to be at least as efficient as the direct elimination method it
should have a rate of convergence and required accuracy factor, say lO-m,
satisfying

m n- <-.R-3
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(We assume here that m has been so chosen that the iterative solution will
have an accuracy comparable to the accuracy obtained by the direct
elimination method using the same number of digits in the arithmetic.)

4.2. Gauss-Seidel or Successive Iterations

It is clear from (15) that in the ordinary Jacobi iten~tions some com­
ponents of XCV) are known, but not used, while computing the remaining
components. The Gauss-Seidel method is a modification of the Jacobi
method in which all of the latest known components are used. The term
"successive" which is frequently applied to this method refers to the
fact that" new" components are successively used as they are obtained.
(In contrast, the previous scheme was called" simultaneous" since new
components were not employed as found, i.e., the "new" components
were introduced simultaneously at the end of the iterative cycle.)

The obvious modification of (15) suggested by the above remarks is,
with x(O) arbitrary,

(21)

i=1,2, ... ,n;

The splitting of A that yields this iterative scheme is

v = 1,2, ....

(22) N== P == N - A.

Since N is triangular, det INI # 0 is assured again if at! # 0; i = I, 2, ... ,
n. The characteristic equation, whose roots must be in absolute value
less than unity for convergence, is now of the form

Aall a12 a1n

Aa21 Aa22

(23) det = O.

an-I. n

Aanl Aan2 Aann
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The roots of this equation are just as difficult to find as are those of
(16), but the sufficient conditions of Corollary 2 are now much more com­
p�icated than those for the Jacobi iteration. However, a simple sufficient
condition for convergence of the Gauss-Seidel method can be obtained.
To derive this condition, we introduce the error vectors defined in (8)
and find from (I) and (21) that the components of these vectors must
satisfy

(24)
(-I n

e(V) _ _ "'" aj j e(v) "'" ali e(V -1)
j- L-j-L-j,

j=l ajj j=t+l ajj

i = 1,2, ... , n; v = 1,2, ....

The result to be proved may now be stated as

LEMMA 1. Let the vectors e(V), v = I, 2, ... , be defined by (24) with e(O)
arbitrary. Define the maximum norm, 11,11"" and factors, rj, by

(25a)

(25b)

and let the matrix A satisfy

(26)

Then

(27)

and e(v) -+ 0 as v -+ 00.

Ile(V)II", == max le?)I,
j

r == max rj < I.
j

Proof The lemma clearly follows from the inequalities

(28) v = 1,2, ... ;

which we shall prove by induction (on the components of e(V». From (24)
with i = I we obtain, using (25) and (26),

leiV)1 ::; i laljl'le?-lll
j= 2 all
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Now assume lekvll ~ rlle(V-1lll"" for k = 1,2, ... , i-I. Then again from
(24), recalling that r < 1

le~vll ~ I!l laIJI'le~Vll + i laIJI'le~V-lll
J = 1 au J =I + 1 au

~ Ile(V-llll",,{I~>lalJl + i latJI}
J=l au J=I+l au

~ Ile(V-1lll"" i lalJI = rdle(V-llll""
J=l au
(NO

~ rlle(V-1lll ro •

Thus, the induction argument is complete and since the above inequality
is valid for all i = 1, 2, ... , n, it follows by (25) that (28) is valid. •

The convergence test of this lemma is easily applied and is formally
identical to that of (I 8a) for the Jacobi method. However, it is not generally
true that if the Gauss-Seidel method converges then the Jacobi method
will converge, nor is the converse generally true.

See Subsection 4.4 for other convergence tests.

4.3. Method of Residual Correction

This iterative scheme improves upon the accuracy of the approximate
solution of (I) (obtained for example by the Gaussian elimination method),
by using the approximate numerical triangular factorization of A. That
is, the triangularization of (I), performed with t digits, produces .P
(lower), 'FI (upper), and X(ol. Now define

P == N- A,
(29)

r(Ol == r - AX(ol.

Observe that N is easily invertible, or rather that the equation

.P'FIy = z

may be readily "solved," since.P and 'FI are triangular, by using n(n + 1)
operations. [If.P == (slj) has Su = 1 for all i, then the number of operations
used to solve.Pw = z is n(n - 1)/2, while the number for solving 'Fly = w
is n(n + 1)/2. Hence, in this case n2 is the operational count for solving
Ny = z.]

Now, the iteration scheme given by (4) is convergent if M, defined by
(7), satisfies

IIMII == III - N-1AII < 1.
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This inequality is satisfied if IIPII·II A-III < 1- (see Problem 5). In practice,
(4) is not solved in the form

(30) !i'lJIix(V) = (!i'1JIi - A)x(V -1) + f.

Rather, we introduce the change in the iterate by

Sx(V -1) == x(V) _ x(v -1)

and the .esidual of the iterate by

(31) r(v-l) == f - Ax(v-l).

Then (30) can be written simply as

(32)

and the computations are done with these equations.
The evaluation of r(v) involves n2 operations; hence each iteration step,

(31) and (32), requires n(2n + I) operations (only 2n2 operations if Sit = I
for all i). By using (I) and (31) the error satisfies

(33)

But from (32), the definition of M, and the corollary to Theorem 1.5 of
Chapter 1,

IIA-lr(V)11 = IIA-WSx(V)11 = II(I - M)-ISx(V)11

IISx(v)11
<--,- I - q

provided q == IIMII = IIN-l(N - A)II < 1.
As described in Subsection 1.2, the numerical solution of (32) produces

a vector Sx(V -1) that satisfies

(34)

where

The perturbations o!i'v and olJliv are small relative to !i' and IJIi respectively
if the number of digits carried in the arithmetic calculations is large enough.
Set

and



70 NUMERICAL SOLUTION OF LINEAR SYSTEMS [Ch.2]

Then the error

e(V) == x(v) - X,

satisfies

e(V) = MV_Ie(V-I)

= M v _
I
M v _

2
e(V-2)

If IIM!II :-:; q < I for all i, then II e(V) II :-:; qVlle(O)II, and the scheme is con­
vergent for any e(O).

As a practical matter, from equations (31) and (32), we see that rV -* 0

may occur only if the right-hand side of (31) is calculated to ever higher
precision as v increases. On the other hand, equation (32) or equation (34)
requires only single precision accuracy for r(V -1), in order to determine
Sx(V -1) by using single precision arithmetic.

4.4. Positive Definite Systems

Many of the large order linear systems that arise in practice have
real symmetric matrices which are positive definite. In such cases we can
show that a quite general class of iteration methods converges. We state
this result as

THEOREM 2. Let A be Hermitian (of order n) and N be any non-singular
matrix (of order n) for which

(35) Q == N + N* - A

is positive definite. Then the matrix

M == 1- N-IA

is convergent iff A is positive definite.

Proof For any eigenvalue, A, and corresponding eigenvector, u, of
Mwe have

Mu = Au.

But since N is non-singular this implies

(36) Au = (I - A)Nu,

and so A = 1 iff Au = o.
Now let A be positive definite (i.e., v* Av > 0 if v # 0) and u be any

eigenvector of M. Then Au # 0 so that the corresponding eigenvalue A
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of M satisfies ,\ #- 1. By taking the complex inner product of each side of
(36) with u we then obtain

I u*Nu
1="1 = u*Au'

The complex conjugate of this expression is, since u*Au is real,

I u*N*u
I - A= u*Au'

If we add these two equations we get

2 Re _1_ = u*(N + N*)u.
1 - ,\ u*Au

Now set ,\ = a + if3 and recall (35) to write this as

2(1 - a) u*Qu
(I - a)2 + f32 = I + u*Au > I,

since by hypothesis Q is positive definite. Hence, we have the inequality

The sufficiency is thus demonstrated. The necessity part of the proof is
indicated in Problems I and 2. •

As an immediate corollary of this theorem, we have a result on the
convergence of the Gauss-Seidel method for Hermitian matrices.

COROLLARY 1. Let A be Hermitian with positive diagonal elements. Then
the Gauss-Seidel method for this matrix converges iff A is positive definite.

Proof By the hypothesis on A it can be written as

A = D + E + E*

where D is a diagonal matrix of positive diagonal elements and E is strictly
lower triangular (i.e., zeros on and above the diagonal). The Gauss-Seidel
method applied to A, see (22), is equivalent to the splitting

N== D + E, P = -E*.

However, with this choice for N we have

Q == N + N* - A = D

which is clearly positive definite. Thus the hypothesis of Theorem 2
applies and the proof is concluded. •
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Similarly, we obtain a result on the convergence of the Jacobi iterations
as a special case of

COROLLARY 2. Let D = D* be non-singular and

D - (E + E*)

be positive definite. Then

D- 1(E + E*)

is convergent iff A == D + (E + E*) is positive definite.

Proof Use N == D in the theorem. •
In the special case that D is a diagonal matrix, Corollary 2 yields the

convergence of the Jacobi method for the matrix A.

4.5. Block Iterations

There are other splittings of A which in many important cases yield
rapidly convergent iterations. In particular, since tridiagonal and block­
tridiagonal systems are easily solved, it is natural to consider iterations in
which N has either of these forms. Many of the large order systems which
arise in the finite difference methods for partial differential equations
suggest such block iterations. More generally, if the elements" close" to
the diagonal of a matrix are large compared to the other elements, it is
usually advantageous to include all of these large elements in N (assuming,
of course, that the resulting systems which determine the iterates are still
easily solved). Of course, in all applications of these block methods,
attempts should be made to prove the convergence of the method and,
if possible, to estimate the rate of convergence.

PROBLEMS, SECTION 4

1. Let the sequence {vv} be defined, with Vo arbitrary, by

Vv+1 = Mv" v = 0,1, ... ,

where M := I - N -1 A and A is Hermitian. Then
(a) Verify the identity

vv*Avv - v~+lAvv+1 = (vv - VV+1)*Q(Vv - VV+1)

where Q := N + N* - A;
(b) If Q is positive definite show that {vv*Avv} is a non-increasing sequence.
(In fact, the sequence is strictly decreasing if 1 is not an eigenvalue of M.)

2. Use part (b) of Problem 1 to show that if M is convergent then A is
positive definite.
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[Hint: Use proof by contradiction; assume vo· Avo ~ 0 for some Vo # o.
Then, since M is convergent, V1 # va. Therefore,

This is a contradiction, since the convergence of M implies v, ---+ 0.]
3. Analyze the convergence of the Jacobi and the Gauss-Seidel iterative

methods for the second order matrix

Ipl < I, XO # o.

4. Determine when the Jacobi iterative method converges for the com­
pound matrix

A== (I S), with Iand S
ST I

of order n.

[Hint: Work with the compound vectors (;:). Define the compound error

vectors

Find a recursion formula for {e,} that doesn't involve {g,}.]
5. The convergence of the residual correction scheme defined by (30) is

assured if III - N - 1A II < I. Verify that this inequality holds if

11P11·IIA- 1 11 < !.
[Hint: Let B = A-lN. Then

1- N-1A = I - B-1 = B-1(B - I)

= B-1(A -lP).

Note that B = A -1P + I and therefore, by the remark following the corollary
to Theorem 1.5 of Chapter 1, we have liB -111 < 2.]

5. THE ACCELERATION OF ITERATIVE METHODS

Given any iteration procedure, for a specific system of equations, it
may be possible to improve its rate of convergence by a simple device.
Such modifications, which we call acceleration, are frequently termed
"extrapolation," "over-relaxation," or various other names depending upon
the problem to which they are applied or perhaps upon the particular
form of device which is used. In any event, the general principle common
to almost all acceleration procedures is the introduction of a splitting,
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similar to (4.2), which depends upon some real parameter, say a, in an
"appropriate" manner. The splitting may be denoted by

A = N(a) - P(a)

and is still subject to the requirement that

det IN(a)1 #- O.

(This will place some restriction on the permissible values of a.) Now,
as has been shown in Section 4, an iteration scheme based on the above
splitting will converge, for arbitrary initial vectors, iff all eigenvalues of

M(a) == N-1(a)P(a),

are in absolute value less than unity.
Let these eigenvalues be denoted by

"l(a), i = 1, 2, ... , n;

where, as indicated, their values may depend upon the choice of the
parameter a. Now if a value of a can be determined such that

p[M(a)] == max I"t(a) I < 1,
1

the scheme will converge. Furthermore, since the rate of convergence is

1
R(a) = log p[M(a)]'

the convergence is "best" for the value a = a* such that

p[M(a*)] = min p[M(a)].
a

The selection of an optimal a* is the most important feature of acceleration
procedures.

Some acceleration procedures that are commonly used are described
as follows: Let some definite splitting, (4.2), be given by

(1) A = No - Po,

where No and Po are fixed matrices with det INol #- O. Let the relevant
eigenvalues of this scheme, i.e., those of

(2a)

be

(2b) i = 1,2, ... , n.
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(3)

Then we introduce the one-parameter family of splittings

N(a) = (I + a)No,

pea) = (I + a)No - A = Po + aNo.

In order that det IN(a)1 #- 0, we need only require a #- -1. Then if the
eigenvalues of M(a) == N- 1(a)P(a) are denoted by fLt(a), i = 1,2, ... , n,
we claim that

(4)
Ai + a

fLt(a) = -1--'+a
i=I,2, ... ,n.

The verification of (4) requires only a simple application of the defini­
tions of eigenvalue and eigenvector. Specifically from (2) and (3) we have

1
M(a) = N- 1(a)P(a) = -1- No -1(PO + aNo)

+a

a I
= -1-- 1 + -1-- Mo·+ a + a

Thus, if u is any eigenvector of M o belonging to the eigenvalue A, that is
Mou = Au, we obtain from the above

a A A + a
M(a)u = 1 + aU + 1 + aU = 1 + aU.

That is, U must also be an eigenvector of M(a) belonging to the eigenvalue
(A + a)/(I + a). Conversely, if M(a)v = fLY we obtain

a 1
fLY = M(a)v = -l--v + -1--Mov,+ a + a

or, since 1 + a#-O by assumption,

Mov = [fL(I + a) - a]v.

Thus every eigenvector of M(a) is an eigenvector of M oand (4) is established
for all a #- -1.

In order to determine convergent schemes of the form (3), we must
study the relation (4). This is done first for a very important class of
special cases in which the "best" such scheme can be obtained. These
results may be stated as

THEOREM 1. Let No and Po be such that the eigenvalues At of No -IPO are
all real and satisfy

(5) Al :-::; A2 :::; ••. :::; An < I.

Then the scheme (3) will converge for any a such that

1 + Al
(6) a> --2- > -1.
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Furthermore, the largest rate of convergence for these schemes is obtained
when

(7)

for which value

(8) p[M(a.)] == ~in p[M(a)] = m!n (~!IX IfLt(a)I ) = 2 ~n A~ ~l An < 1.

Proof. A scheme of the form (3) will converge if IfLt(a) I < I, i =
1,2, ... , n. Let us introduce

(9)
1

x == I + a;

I -1
I

Figure

j = 1,2, ... , n.

x

Then (4) can be written as

(10) i= 1,2, ... ,n,

where by (5), all mt < O. The equations (10), for the fLl as functions of x,
represent n straight lines with negative slopes. Let us assume that the
At have been ordered as in (5). Then by (9) we have

and all the lines (10) are bounded by those for i = 1 and i = n (see Figure
1). Thus, we have for

(11)
x > 0: fLI = mIX +
x < 0: fLn = mnx +

~ fLl ~ mnx + 1 = fLn;

~ fLl ~ mIX + 1 = fLl. i = 1,2, ... , n.
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Clearly then, all JLt < I iff x > O. Similarly, all JLi > - I iff JLI > - I or
equivalently x < -2Iml' Thus, IJLil < I iff 0 < x < -21mb and using
(9) we obtain (6).

For x > 0 we have by (I I)

JL = m;x IJLtI = max (imix + I I, Imnx + Ii).
t= I

From Figure I it is then clear that

min JL = ImIx* + II = Imnx* + II
x>o

where x* = - 2/(ml + mn). Upon applying (9) again, we obtain (7) and
(8) and the proof is complete. •

Y A-plane

(a> -1)

Y A-plane

(a < -1)

Y Ii-plane

x

(a) (b) (e)

Figure 2

By an exactly analogous proof similar results can be obtained for the
case where all At > I (see Problem I).

In the general case, the Af and hence also the JLla) will be complex.
Then the schemes (3) will be convergent if the complex numbers JLla) ==
Ua) + iT]la) all lie in the interior of the unit circle

(12)

a#- -1.(13)

of the (t, T])-plane. The relations (4) can now be considered as special
points of the mapping of the A = x + iy plane into the JL-plane

A + a
JL = I + a'

This is a special case of the well-known Mobius transformations studied
in function theory. If a is real, we can easily verify directly that the unit
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circle (12) in the jL-plane corresponds to a circle in the A-plane given by

(14) (x + a)2 + y2 = (1 + a)2.

It can also be shown that any interior point of the circle (14) is mapped by
(13) into an interior point of(12). The transformation (13) is illustrated in
Figure 2 for a > - I and a < - I.

From this figure it can be seen that convergent schemes can be found
if the eigenvalues At satisfy either

(15a)

or

(I5b)

Re (At) < I, i = 1,2, ... , n,

i = 1,2, ... , n.

That is, a "convergent" value of a can be obtained corresponding to any
circle in the A-plane which has the properties:

(i) the center is on the real axis;
(ii) it passes through the point (I, 0);

(iii) all eigenvalues At are interior to it.

If such a circle exists, then we call the coordinates of its center (-a, 0)
and this value of a yields a convergent scheme. However, now it is not a
simple matter to determine the best value of a.

5.1. Practical Application of Acceleration Methods

It is assumed that the basic scheme determined by (1) can be efficiently
computed. That is, to solve

Ax = f

we consider the iterates, with x(O) arbitrary, given by

(16) v = 1,2, ....

We assume that such systems can be solved in an efficient manner. Now
the iterates, x(V), satisfy the system of equations

(17) x(V) = MOX(V-I) + g, v = 1,2, ... ,

where g == No -If and M o is defined in (2a).
The acceleration (3) corresponding to this procedure yields with y(O)

arbitrary

(18)
I

y(V) = M(a)y(V-I) + 1 + a g, v = 1,2, ... ,

since N-I(a)f = 1/(1 + a)No-If. In terms of M o these iterates can be
written as

a I
(19) y(V) = 1 + a y(V-I) + 1 + a (Moy(V-I) + g), v = 1,2, ....
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A comparison of (17) and (19) yields some insight into the relationship
between the basic scheme and its accelerated version:

If a = 0 the basic scheme results. If a > 0 then for any real numbers
a and b,

min (a, b) ~ -Ia a + -1_I_ b ~ max (a, b).
+a +a

So in this case, the acceleration scheme yields a vector on the line segment
joining the previous iterate and what would have been the next iterate of
the basic scheme. The term" interpolated iteration" is frequently employed
to describe this type of acceleration. If - I < a < 0 then

a I b{~b--a+--
I+a I+a ~b

if b ~ a,

if b ~ a;

and the acceleration scheme yields vectors with components whose values
are definitely not between those of y(V -1) and M oy(V -1) + g. The scheme is
now termed an "extrapolated iteration." Similarly, the remaining case
a < - I is such an extrapolation method.

To compute using the scheme (19), we define the vectors z(v) by

(20a) v = 1,2, ... ,

and then write (18) as

(20b)
a 1

y(V) = __ y(V-1) + __ z(v).

I+a l+a

Thus, as in the basic scheme, the calculations only require the solution of
systems of the form (20a). [Note that in (20), z(v) is defined by a recursion
which is similar, but not identical, to (16).]

In general, the eigenvalues Ai> or in particular A1 and An, of the basic
scheme will not be known. But it may be possible to approximate the
value a = a* which yields the fastest convergence. This is accomplished
by some test calculations that are easily performed:

Since the rate of convergence is independent of the inhomogeneous
term, f, we seek the best scheme for solving

(21) Ay = o.

Since it is assumed that det IAI f= 0, this system has the unique solution
y = o. Apply the scheme (18) with some fixed value of a = a1 to (21) and
compute [actually use (20)]

(22) v = 1,2, ... ,
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where y(O) is an arbitrary but fixed initial vector. If the value al yields a
convergent iteration, compute until

where m is a fixed positive number. This requires some minimum number
of iterations which we may call v(al)' Repeat this procedure with the same
y(O) and m, for a sequence of values of a = a2' a3, ... , to obtain the corres­
ponding sequence {Veal)}' The approximate value for a* can be obtained
by plotting the points (v(at), at) and choosing that a which seems to mini­
mize the "function" v(a).

An obvious alternative is to compute the sequence {lly(N)(at)ll} using a
fixed number, say N, of iterations. Then an approximation to a* is that
value which minimizes IIY(N)(a)ll.

5.2. Generalizations of the Acceleration Method

There are numerous generalizations of the acceleration method which in
fact are more powerful than the scheme described by (3). The simplest type
of generalization proceeds from a single basic splitting of the form (l )-(2)
but employs cyclically a fixed sequence of acceleration parameters, say
al' a2' ... , aT' Specifically for; = 1,2, ... , r, define N(at) and peat) as in (3)
and the corresponding matrices M(al) by

(23) ;=1,2, ... ,r.

The iterations are defined as follows, with x(O) arbitrary, for v = I, 2, ... :

(24a) y(v.O) = x(V-1);

(24b) y(V. s) = M (as)y(v, s-1) + N - l(as)f, s = 1,2, ... , r;

(24c) XlV) = y(v. n.

Again, each of the r vectors of (24b) can be obtained by solving a linear
system of the form

N(as)y(v,S) = P(as)y(V.S-l) + f.

With this notation, one iteration of this generalized acceleration
scheme requires the same number of computations as r iterations in the
ordinary acceleration scheme. The convergence of this method can be
analyzed by means of the equivalent formulation

(25) v = 1,2, ... ,
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where by (24) we find that

M(al' a2, ... , aT) == M(aT)' .. M(a2)M(al);
(26)

PROBLEMS 81

g == [N-I(aT) + M(aT)N-I(aT_I)+'"
+ M(aT)" ·M(a2)N- I(al)]f.

As in the proof of (4), the eigenvalues of M(al' a2, ... , aT) can be deter­
mined, by using (23), in terms of the eigenvalues AI of Mo. We find in
fact, that

(27) i = 1,2, ... , n,

are the relevant eigenvalues. Now if we define the rth degree polynomial

(28) PT(A) == fr A + ai,
i= I 1 + ai

then convergence is implied by IPT(At)1 < 1 for i = 1,2, ... , n. In particu­
lar, if all the eigenvalues of M o are real and lie in the interval

a =s; A =s; b,

then convergence is implied by

a =s; A =s; b.

In this case, the fastest convergence can be expected for that polynomial
which has the smallest absolute magnitude in the indicated interval.
Such problems are considered in Chapter 5, Section 4, and it is found that
the Chebyshev polynomials can be used to find the polynomials of "least
deviation from zero." Hence, in principle, if a and b are known, the best
acceleration parameters aI, a2, ... , aT can be determined (see Problem 2).

Another type of generalization of the acceleration method is obtained
by employing a sequence of different basic splittings, say

i = 1,2, ... , r;

and their corresponding accelerated forms

N l(al), Plal)'

An application of this technique is contained in subsection 2.2 of
Chapter 9.

PROBLEMS, SECTION 5

1. State and prove a theorem analogous to Theorem 1, for the case that
(5) is replaced by
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2. If (5) is replaced by

(3)

compare the efficiency of
(a) the method using three acceleration parameters {ad such that {-al} are
the zeros of the Chebyshev polynomial of third degree for the interval [- 1, b],
with
(b) the method using the single parameter a = (I - b)j2.

6. MATRIX INVERSION BY HIGHER ORDER ITERATIONS

The previous methods of this chapter have been primarily concerned
with solving linear systems. Of course, as demonstrated in Section 0,
they can all be employed to determine the inverse of any given non­
singular matrix, A. We consider now an iterative method for directly
computing A -1. This method is a means for improving the accuracy of an
approximate inverse, say Ro, obtained by other procedures. However,
in many cases the present method is feasible when the initial approximate
inverse is assumed to have the simple form R o = wI. Because of the large
number of operations involved in matrix multiplication, these schemes are
not generally used.

Assume that Ro is any approximation to A -1 and define the error in this
approximation by

(I) Eo = I - ARo.

Clearly, if R o = A- 1 then Eo = O. Now with R o as the initial approxima­
tion, we define a sequence of approximate inverses by

(2a) Rv = Rv - 1(1 + E V - 1 + E;-l + ... + E~=D, v = 1,2, ,

(2b) Ev == 1- ARv, v = 1,2, .

Here, p is an arbitrary fixed integer not less than two. (This method is
usually described for the case p = 2 but, as will be shown, the "best"
value for this integer is p = 3.) From (2) we obtain

Ev = 1- ARv

= 1- ARv- 1(1 + E V - 1 + ... + E~=D

= 1- (1- E v - 1)(I + EV - 1 + ... + E~=D

= E~-l' v = 1,2, ....

Thus, in one iteration, the error matrix is raised to the pth power and the
method is consequently called a pth order method. Apply (3) recursively,
to find that

(4) v = 1,2, ....
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Also from (2b) and the above we have

A-l - R v = A-lEv

(5)

= Ro(l- Eo)-lEoP';

where we have used (1) and the assumption that det 1/ - Eol =I- O. It is
now clear that the iterations converge when Eo is a convergent matrix
(see Section 4).

Let us assume that Eo is a convergent matrix. Then its eigenvalues
A1(Eo) satisfy IAtl < 1, i = 1, 2, ... , n, from Theorem 4.1. Let

p == p(Eo) = max lAd.
j

Then, since the eigenvalues of EoP are At, the error Ev of (4) vanishes
like pPv.t

We now pose the problem of determining the "best" value of p to be
used for any convergent Eo. By "best" we shall mean that procedure
which for the least amount of computation yields an approximate inverse
of desired accuracy. Alternatively, the best scheme could be defined as
the one for which a given amount of computation yields the most accurate
inverse. Adopting our usual convention we find from (2), since the product
of two matrices requires n3 operations, that v iterations of a pth order
scheme require

vpn3 0ps.

If only K operations are to be permitted the number of iterations allowed
is

K
v=-,

pn3

where we assume K/(pn 3
) is an integer. Thus, the principal eigenvalue is

reduced to

Since K, n, and p < I are independent of p, we find that the error is
minimized when pllP is a maximum. Now it is easily shown that the
maximum of XliX is at x = e = 2.718 .... But a simple calculation (pointed
out by M. Altman) shows that for integers p the maximum is at p = 3.

In order to apply the procedure (2), we must have an initial estimate Ro
such that Eo = / - ARo is convergent. For a very important class of

t This is only rigorously true if the elementary divisors of Eo are simple. But, by the
corollary to Theorem 1.3 of Chapter 1, the statement isn't very wrong.



84 NUMERICAL SOLUTION OF LINEAR SYSTEMS [Ch.2]

matrices such an estimate is easily found. This result is contained in

THEOREM 1. Let A have real eigenvalues in the interval

j = 1,2, ... , n.

Then if Ro(w) =: wI and Eo(w) =: 1- wA, Eo(w) will be convergent for
all w in

(6)
2

0< w < M'

Further if pew) is the spectral radius of Eo(w), i.e., pew) =:p[Eo(w)], then

(7)
M-m

p(w.) = min pew) = ,
O<w<2/M M + m

2w. = M + m'

Proof This theorem is essentially a restatement of Theorem 5.1.
Ifwe make the association (x, mj ) f-+ (w, -A j ) in the proofofthat theorem,
the above follows. •

PROBLEMS, SECTION 6

1. Newton's method for improving Ro, the approximate inverse of A, is
formally obtained by setting

A = (Ro + 8Ro)-1

= [Ro(l + RO- 18Ro)]-1

= (l + RO - 18Ro)-lRo-l.
Therefore,

ARo = (I + RO- 18Ro)-1 ~ 1- RO - 18Ro•

Solve for 8Ro. Does this formula fit into the iteration scheme (2) for p = 2?
2. Show that if A is non-singular, the choice Ro == aA* with a == Ijtr(AA*)

produces a convergent matrix Eo in (1).



3

Iterative Solution of

Non-Linear Equations

o. INTRODUCTION

In this chapter, we consider iterative methods for determining the roots
of equations

f(x) = 0

where f and x are vectors of the same dimension k: Le., if k = 1 we have a
single equation; if k = n we have a system of n equations. Most of the
iterative methods can be written in the form X n +1 = g(xn) for some suitable
function g and initial approximation xo• The convergence of this iteration
process is assured if the mapping g(x) carries a closed and bounded set
SeCk into itself and if the mapping is contracting, i.e., if Ilg(x) - g(y) II ~
Mllx - yll for some norm, "Lipschitz" constant M < 1, and all x, yES.
Such an iteration scheme is sometimes referred to as the Picard iteration
method, or as a functional iteration method. It can be easily shown under
these conditions that g(x) has a unique fixed point Cl in S satisfying

Cl = g(Cl).

We shall study this contracting mapping theorem in one or more dimen­
sions and the related results which are basic to many of the iterative
methods of this chapter.

Usually the iterative methods are valid for real and complex roots.
However, in the latter case complex arithmetic must be incorporated
into the appropriate digital computer codes and the initial estimate of
the root must usually be complex (see Subsection 4.4 for an exception).
The iterative methods require at least one initial estimate or guess at the
location of the root being sought. If this initial estimate, say xo, is "suf­
ficiently close" to a root, then, in general, the procedures will converge.

85
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The problem of how to obtain such a "good" Xo is unresolved in
general. Frequently, a good estimate of the root is known to the problem
formulator (i.e., the engineer, physicist, mathematician, or other scientist
who is interested in the solution) or can be found by an analytical study.
For many purposes merely graphical accuracy (about two decimal figures)
is needed for the initial value. In these cases, one may tabulate the func­
tion and plot the data in one or two variables or "fit" linear forms

k

aw + 2: ajjxj to hex) to find the approximate starting values. If a digital
j~l

computer is to be employed, this plotting method is quite convenient since
all of the required function evaluations will be contained in the eventual
machine code for the problem.

As a general empirical rule, the schemes which converge more rapidly
(i.e., higher order methods) require closer initial estimates. In practice,
these higher order schemes may require the use of more significant digits
in order that they converge as theoretically predicted. Thus, it is frequently
a good idea to use a simple method to start with and then, when fairly
close to the root, to use some higher order method for just a few iterations.

For polynomial equations in one variable we know much about the
roots. While the general iteration schemes apply to them there are also
special methods which can be used to obtain the zeros of polynomials.
Such considerations are to be found in Section 4.

1. FUNCTIONAL ITERATION FOR A SINGLE EQUATION

Let us consider a scalar equation of the special form

(1) x - g(x) = 0, or x = g(x).

[It is clear that any equationf(x) = °can be written equivalently in this
form by defining g(x) == x - f(x).] If Xo is some initial estimate of a
root of (1), a scheme naturally suggested is to form the sequence

(2) X Y +1 = g(xy ), II = 0, 1, ....

An important result concerning the convergence of this procedure and a
proof of the existence of a unique root is contained in

THEOREM 1. Let g(x) satisfy the Lipschitz condition

(3a) Ig(x) - g(x') I ~ "Ix - x'l,

for all values x, x' in the closedt interval I == [xo - p, Xo + p] where the

t Unless otherwise specified: [a, bI denotes the closed interval, a :$ x :$ b; (a, b)
denotes the open interval, a < x < b; (a, bI and [a, b) denote respectively the half­
open intervals a < x :$ b and a :$ x < b.
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Lipschitz constant, '\, satisfies

(3b) O~'\<1.

Let the initial estimate, xo, be such that

(4)

Then

(i) all the iterates Xv> defined by (2), lie within the interval I; i.e.,

(5) Xo - p ~ Xv ~ Xo + p,

(ii) (existence) the iterates converge to some point, say,

lim Xv = a,
v~ 00

(in fact, Ixv - al ~ ,\vp)

which is a root of (I), and
(iii) (uniqueness) a is the only root in [xo - p, Xo + pl.

Proof We prove (i) by induction. Since Xl = g(xo), we have by (3b)
and (4)

(6)

and hence Xl is in the interval (5). Assume this true for the iterates
Xl' X2, ... , Xv' Then from (2)

and by the inductive assumption Xv and XV-1 are in the interval (5).
Thus, by (3a), the Lipschitz condition yields

IXv+1 - xvi ~ '\Ixv - xV-II

~ ,\2IxV_1 - x v- 21

(7)

~ ,\vl x1 - xol

~ ,\v(1 - '\)p.

Here we have used (2) and (3a) recursively and then applied (6). However,

IXv+1 - xol = l(xv+1 - xv) + (xv - XV-I) + + (Xl - xo)1

~ IXv+1 - xvi + Ixv - xV-II + + IX1 - xol

~ (,\v + ,\V-1 + ... + 1)(1 - '\)p = (1 _ ,\Y+1)p

~ p,

which completes the proof of (i).
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To prove part (ii), we first show that the sequence {xv} is a Cauchy
sequence. Thus, for arbitrary positive integers m and p, we consider

IXm - xm+pl = I(xm - Xm+l) + (Xm+1 - Xm+2)+'"
+ (Xm+p-I - xm+p)1

:'S: IXm - xm+11 + IXm+1 - xm + 2 1 + ...
(8) + IXm+p-I - xm+pl

:'S: (,.\m + ,.\m+1 + ... + ,.\m+l'-I)(l _ "\)p

:'S: (l - ,.\p)p,.\m.

Here we have used the inequalities (7) which are valid since (i) has been
proved. Now given any £ > 0, since ,.\ in 0 :'S: ,.\ < 1 is fixed, we can find
an integer N(£) such that IXm - xm+1'1 < £ for all m > N(£) and p > 0
(we need only take N such that ,.\N < £jp). Hence the sequence {xv} is a
Cauchy sequence and has a limit, say a, in I. Since the function g(x) is
continuous in the interval I, the sequence {g(xv)} has the limit g(a) and
by (2) this limit must also be a; that is, a = g(a). Now Ixv - al =
Ig(xv- I ) - g(a) I :'S: ,.\lxV - I - al; hence Ixv - al :'S: ,.\vl xo - al :'S: p"\v.

For part (iii), the uniqueness, let f3 be another root in [xo - p, Xo + pl.
Then, since a and f3 are both in this interval, (3) holds and we have, if
la - f31 # 0,

la - f31 = Ig(a) - g(f3)! :'S: "\Ia - f31 < la - f31·

This contradiction implies that a = f3 and the proof of the theorem is
concluded. •

COROLLARY. rr Ig'(x) I :'S: ,.\ < 1 for Ix - xol :'S: p and (4) is satisfied, then
the conclusion of Theorem 1 is valid.

~=-A
dx

x

Figure 1
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Proof. The mean value theorem implies g(x1) - g(x2) = g'(~)(Xl - x 2).
Whence Amay serve as the Lipschitz constant in (3a and b). •

A geometric interpretation of Theorem 1 is suggested by Figure 1. This
illustrates the case with g(xo) - X o = 71 > 0 and the triangles I and II, deter­
mined by lines with slope ± Athrough (xo, g(xo)), are the regions in which
the values of g(x) lie for Xo - P ~ x ~ Xo + p. It is easy to verify that

(a) if A~ 1, the line y = x will not intersect the upper boundary of
triangle I or if

(b) A < 1 and 71 > (1 - A)p that the line y = x will not intersect the
upper boundary of triangle I and hence may not intersect an ad­
missible function g(x) in the interval [xo - p, Xo + p].

In other words, the conditions A < 1, 1711 ~ (1 - A)p are necessary to
insure the existence of a root for every function g(x) satisfying conditions
(3a and b).

(a)

y

XQ X2 ex Xl x

(b)

Figure 2
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Figures 2a and 2b illustrate convergent iterative sequences for functions
g(x) with positive and negative slope, respectively. Note that the sequence
{xn} converges to a monotonically for g(x) of positive slope and converges
with values alternately above and below a for g(x) of negative slope.

Another convergence theorem is

THEOREM 2. If x = g(x) has a root at x = a and in the interval

(9a) Ix - al < p

g(x) satisfies

(9b) Ig(x) - g(a)j :<:; "Ix - ai,

with " < I, then for any Xo in (9a):

(i) all the iterates Xv of (2) lie in the interval (9a),
(ii) the iterates Xv converge to a,

(iii) the root a is unique in this interval.

Proof Part (i) is again proved by induction. By hypothesis Xo is in
(9a) and we assume Xl' x 2 , ••• , Xv -1 are also. Then since a = g(a) we have
from (2)

(lOa)
:<:; "Ia - xV-11,

whence" < 1 implies (i). Furthermore,

la - xvi :<:; "Ia - xV-11,

(lOb)

:<:; "via - xol.
By letting v "-* 00, we see that Xv "-* a, since" < 1. The uniqueness follows
as in Theorem 1. •

Notice that condition (9b) is weaker than the general Lipschitz condition
for the interval (9a), since the one point a is fixed. This feature is applicable
in Problem (I).

We can now prove a corollary (with a hypothesis which is oftentimes
more readily verifiable).

COROLLARY. If we replace (9b) by

(9b)' Ig'(x) I :<:; " < 1,

then the conclusions (i), (ii), and (iii) follow.
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Proof From the mean value theorem and (2)

(lOa)' ex - Xv = g(ex) - g(XV-I) = g'(tV-I)(ex - Xv-I)'

Hence (10a) follows from (9b)'. Therefore (lOb) and the rest of the proof
of Theorem 2 apply. •

It is clear from (lOa)' that, if the iterations converge, tv -+ ex and thus
"asymptotically " (as v -+ 0Cl)

(11)

for large enough k. The quantity

(12) x= Ig'(ex) I
is frequently called the (asymptotic) convergence factor and in analogy
with the iterative solution of linear systems

(l3)
1

R == log ~

may be called the rate of convergence (if'\ < 1). The number of additional
iterations required to reduce the error at the kth step by the factor lO- m

is then, asymptotically,

(14)
m

v =-.
R

We assume, in these definitions, that ,\ = Ig'(ex)1 # 0 and define such an
iteration scheme (2) to be a first order method; higher order methods are
considered in Subsection 1.2.

1.1. Error Propagation

In actual computations it may not be possible, or practical, to evaluate
the function g(x) exactly (i.e., only a finite number of decimals may be
retained after rounding or g(x) may be given as the numerical solution
of a differential equation, etc.). For any value X we may then represent
our approximation to g(x) by G(x) = g(x) + 8(x) where 8(x) is the error
committed in evaluating g(x). Frequently we may know a bound for
8(x), i.e., I8(x) I < 8. Thus the actual iteration scheme which is used may
be represented as

(15) v = 0, 1,2, ... ,

where the Xv are the numbers obtained from the calculations and the
8v == 8(Xv) satisfy

(16) v = 0, 1, ....
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We cannot expect the computed iterates Xv of(15) to converge. However,
under proper conditions, it should be possible to approximate a root to
an accuracy determined essential1y by the accuracy of the computations, 8.

For example, from Figure 3 it is easy to see that for the special case
of g(x) == ex + ;\(x - ex), the uncertainty in the root ex is bounded by
± 8/(1 - ;\). We note that, if the slope ;\ is close to unity the problem is
not "properly posed." We now establish Theorem 3 which states quite
general1y that when the functional iteration scheme is convergent, the
presence of errors in computing g(x), of magnitudes bounded by 8,
causes the scheme to estimate the root ex with an uncertainty bounded by
±8/(1 - ;\).

THEOREM 3. Let x = g(x) satisfy the conditions of Theorem 2. Let Xo be
any point in the interval

(l7a) lex - xl ~ Po,

where

(l7b)
8o < Po ~ P - I _ ;\.

Then the iterates Xv of (15), with the errors bounded by (16), lie in the
interval

lex - Xvi ~ P,
and

(18) lex - Xkl ~ _8_ + ;\k(pO __8_),
1 - ;\ I - ;\

where ;\k -+ 0 as k -+ 00.

6
a +l=>:

a

I y=g(x)=a+)..(x-a)I 1 __

i---r-
I I
I I
I I
I I
I I
I I
I I

a __6_
I-A

---------

y

y =g(x) + 8.:\..

y = g(x) - 8~_

Figure 3
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Proof It is clear that la - Xol :0::; po :;; Po + 0/(1 - A) :0::; p. Then for
an inductive proof assume Xo, Xl"'" X V - l are in la - xl :0::; p. By (15)
and (16)

la - Xvi :0::; I[g(a) - g(XV - l )] - 0V-li :;; Ig(a) - g(Xv-l)1 + O.

From (9b), we then have

la - Xvi :0::; Ala - XV-II + 0

:0::; A21a - Xv- 21 + Ao + 0

:0::; A31a - Xv - 3 1 + A20 + Aa + a

:0::; AVla - Xol + AV-l O+ ... + Ao + 0

1 - AV
:0::; AV po + T='"I a

\v a \v 0
:0::; 1\ Po + I _ A - 1\ I _ A

a
:0::; Po + I _ A

:0::; p.

Thus all iterates lie in la - xl :0::; p and the iteration process is defined.
Moreover, from the last inequality involving v we find the estimate (18)
which completes the proof. •

Theorem 3 shows that the method is "as convergent as possible,"
that is, the computational errors which arise from the evaluations of g(x)
may cumulatively produce an error of magnitude at most 0/(1 - A). It
is also clear that such errors limit the size of the error bound independently
of the number of iterations. Thus in actual calculations, it is not worth­
while to iterate until AV Po « a/(1 - A). In fact, if reasonable estimates of
A, a, and Po are known, it is an efficient procedure to have the two types of
error term in (18) of the same magnitude; i.e.,

AV 0 t
Po ~ I-A'

The number of iterations required is then about

v ~ log [(1 _0 A)pJ flOg A
(19)

t ~ reads" approximately equals" and we have tacitly assumed that 8/(1 - .\)« Po.
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Of course, if the acceptable error is much greater than S/O - ,\) the
number of iterations given by (13) and (14) is the relevant estimate. It is
essential to estimate S from the arithmetic calculations involved in evaluat­
ing g(x). Also, note that since the Xv need not converge any tests for the
termination of the iterations should allow for this roundoff effect.

1.2. Second and Higher Order Iteration Methods

It is clear from the corollary to Theorem 2, that if at the root x = a,

(20) g'(a) = 0,

then the convergence should be quite rapid. Let this be the case and
assume further that g"(x) exists and is bounded in some interval,
la - xl ~ p, in which (9) is satisfied. Then for any x in this interval we
have by Taylor's theorem:

(x a)2
g(x) = g(a) + 0 + 2 g"W,

_ (x - a)2 "(l:)
-a+ 2 gs·

Here f is some value between x and a. By using this result we obtain
for any iterate (2) (assuming la - xol < p and !plg"(x)1 ~ ,\ < I):

(21) Ixv - al = Ig(xv - 1) - g(a)1 = l-!g"(tv-l)I·lxv-l - a1 2
,

v = 1,2,3, ....

Thus, the error in any iterate is proportional to the square of the previous
error and ifg"(a) =I- 0 the procedure (2) is now called a second order method.

Let the bound on g"(x) be denoted by

(22)

Then from (21)

Ig"(x) I ~ 2M, la - xl < p.

(23)

Ixv - al ~ Mlxv_l - al 2

~ M· M 2 1xv _ 2 - al 4

~ M.M2.M4 Ixv_3 - al 8

~ (Mlxo - al)2 v
-

1 lxo - al·

Thus, if M,lxo - al < 1, the second order method converges and reduces
the initial error by at least 10 - m when
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The number of iterations required is now obtained from

2v ~ -m
= log (Mlxo - al)'

(24)
I m

v ~ log 2 log log I/(Mlxo-al)·

A comparison with first order schemes is possible, i.e., the estimates in
(12)-(14), if we assume X= Mlxo - aI- That is, by letting V(l) and V(2)

represent the exponents v in (lOb) and (23), respectively, we have equal
reduction of the error if

(25)

For instance, 130 iterations of the first order scheme are equivalent, under
the above assumptions, to about 7 iterations of a second order scheme!
A further striking property of second order schemes can be obtained by
assuming for all v :2': Vo that

Pv > 0;

i.e., Pv is essentially the number of correct decimals in the vth iterate.
Then from the first line of (23):

and upon taking the logarithm of both sides

(26) Pv ;::: 2pV-l - log M.

Thus, if M < I, then -log M > 0 and the number of correct decimals
more than doubles on each iteration. (If M > 1 the number does not quite
double but, since Pv » log M for large v, this doubling is at least asymp­
totically true.)

Schemes which are more quickly convergent than second order ones are
now easily described. Let us assume that at a root x = a of (I):

(27a) g'(a) = g"(a) = ... = g(n-l)(a) = 0;

(27b) g(n)(a) -:f. 0; Ig<n)(x) I ~ n!M In Ix - al ~ p.

Then by Taylor's theorem,

Ix - al < P
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where g is between x and ex. Again from (2) and the above

IXv+
1

- exl = Ig(nVv)llxv - exl n
n.

(28)
::; M.lxv - exl n.

The method (2) under conditions (27) is now called an nth order procedure
and one can easily deduce the results corresponding to (23)-(26) for such
methods. In the event that g(x) is calculated with an error of magnitude 0
as in (15), the root ex may be determined only to within an uncertainty
of at best ± o. This conclusion follows by letting ,\ -+ 0 in (18).

PROBLEMS, SECTION 1

1. Given g(x) == x 2 - 2x + 2. For what values Xo does (2) converge?
[Hint: Use Theorem 2.] What is the order of the convergence? Sketch a

graph analogous to Figures 2a and b.
2. For g(x) == cos x, show that X n + 1 = g(xn ) defines a convergent sequence

for arbitrary xo. Calculate the root ex = cos ex to three decimal places.

2. SOME EXPLICIT ITERATION PROCEDURES

The general problem to which the previous iteration methods are to
be applied is that of finding the root (or roots) of

(1) f(x) = 0

in some interval, say a ::; x ::; b. Let ef>(x) be any function such that

(2)

Then the equation

o < Ief>(x) I < 00, a::; x::; b.

(3) x = g(x) == x - ef>(x)f(x) ,

has roots which coincide with those of (1) in the interval [a, b] and no
others. Many of the standard iterative methods are obtained for special
choices of ef>(x).

Another procedure for defining the function g(x) is to use

(4) g(x) == x - F(f(x» ,

where F(y) is a function such that

F(O) = 0; F(y) #- 0, y #- O.

Such methods more naturally describe many higher order schemes.
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2.1. The Simple Iteration or Chord Method (First Order)

The simplest choice for 4>(x) in (3) is to take

(5) 4>(x) == m #- O.

If f\.x) ;s differentiable, we note that

(6) g'(x) = I - mf'(x),

and the scheme will be convergent, by the corollary to Theorem 1.2, in
some ir.terval about a provided that m is chosen such that

(7) o < mf'(a) < 2.

Thus m must have the same sign asf'(a), while if f'(a) = 0, (7) cannot be
satisfied.

The choice (5) yields the iteration equations

Xv + 1 = Xv - mf(xv)'

These iterates have a geometric realization in which the value Xv + 1 is the
X intercept of the line with slope 11m through (xv,f(xv». (See Figure 1.)
The inequality (7) implies that this slope should be between 00 (i.e.,
vertical) and -tf'(a) [i.e., half the slope of the tangent to the curve y = f(x)
at the root]. It is from this geometric description that the name chord
method is derived-the next iterate is determined by a chord of constant
slope joining a point on the curve to the x-axis.

2.2. Newton's Method (Second Order)

If the slope of the chord is changed at each iteration so that

(8)

y y=x/m~

/
/

/
//

/
/

/
/

/
/

/

Figure 1

y = {(x)

x
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(9)

then a second order procedure may be obtained. From (8) we find

I
m v = f'(x.)'

which suggests the choice in (3) of

(10)
I

.p(x) = f'(x)' or
_ f(x)

g(x) = x - f'(x)'

The resulting iteration procedure is now

(II)

and it is at least of second order if f'(a) #- 0 and f"(x) exists, since

(12)
, f(a)f"(a)

g (a) = [f'(a)]2 = o.

The geometrical interpretation of the scheme (II) simply replaces the
chord in Figure 1 by the tangent line to y = f(x) at (xv, f(x v»'

In applying Newton's method, we are required to evaluate f'(x v) as
weU asf(xv) at each step of the procedure. For sufficiently simple functions,
which are given explicitly, this may offer no serious difficulty. (This is
especiaUy true for polynomials whose derivatives are easily evaluated by
synthetic division; see Subsection 4.1.) However, if f(x) is known only
implicitly (say as the solution of some differential equation in which x
is a parameter in the initial data), it may be impractical to evaluatef'(xv)

at each iteration. In such cases the derivative may be approximated by
various methods, the most obvious approximation being

(13)

If this approximation is used, the procedure is no longer Newton's method
but is the method of false position discussed in the next subsection.

A useful observation on the application of Newton's method, or the
false position variation of it, is based on the fact that as the iterations
converge, f'(x v) or its approximations converge to f'(a). Thus, for aU
iterates v ~ vo, say, it may suffice to usef'(xvo ) in place of f'(x v) in (11).
The iteration method from this point on is then just the chord method
with 11m = f'(x vo )'

It should be noted that Newton's method may be undefined and con­
dition (2) violated iff'(x) = 0 for some x in [a, b]. In particular, if at the
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root x = a, rea) = 0, the procedure may no longer be of second order
since (12) is not satisfied. To examine this case we assume that

(14a) f(x) == (x - a)Ph(x), p > 1

where the function hex) has a second derivative and

(14b) h(a) ¥- O.

From (14) in (10) we find that

( 1) 2h'(x) 2 h"(x)
, 1 - P + (x - a) PJi(X) + (x - a) Jj2ii(X)

g (x) = [ h'(X)]2 .
1 + (x - a) ph(x)

Thus for Xo sufficiently close to a we have Ig'(x)1 < 1 for x E [xo, a] and
the iterations (11) will converge. The asymptotic convergence factor is
now

Ig'(a)1 = 1 - !.
p

So only in the case of a linear root, i.e., p = 1, is Newton's method second
order, but it will converge as a first order method in the general case (14).
If the order of the root, p, is known (or can be closely estimated) quadratic
convergence can be retained or approximated by the modification

_ f(x)
g(x) = x - p rex)'

The details of this procedure are left to the reader. A convergence proof
for Newton's method which does not require rea) ¥- 0 is contained in
Theorem 3.3 [see also Problems (3)-(6) of Section 3].

2.3. Method of False Position (Fractional Order)

If the difference quotient approximation to the derivative, given by (13),
is employed in (11) we obtain the iterative procedure:

v = 1,2, ....(15) I:() Xv - Xv -1
x V + 1 = Xv - JXv f(x v) - f(x

V
-

1
);

It should be noted that two successive iterates, Xo and Xl> must be esti­
mated before the recursion formula can be used. However, only one func­
tion evaluation, f(xv), is required at each step since the previous value,
f(x v -1), may be retained. [This is an advantage over Newton's method
where two evaluations, f(xv) and r(xv), are required.] The order of this
procedure cannot be deduced by the analysis of Section 1 since (15)
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(16)

cannot be written in the scalar form Xv + 1 = g(xv). To examine this question
let X = a be a root of f(x) = O. Then we may write, by subtracting each
side of (15) from a,

( ) ji() Xv - Xv -1
a - Xv+1 = a - Xv + Xv f(xv) _ f(Xv-1)

= (a _ xv)f[xv-l> Xv] - f[xv, a]
f[Xv-1' Xv]

where we define f[a, b] == [f(b) - f(a)]f(b - a). This can be further
simplified to the form

( )( ){ f[xv -1, Xv, a]}
a - Xv+ 1 = a - Xv a - Xv-1 - f[ ]'

Xv-1,X",
by introducing

f[ ] _f[xV- 1 ' xv] -f[xv,a]
Xv-I' Xv, a == .

X V -1 - a

Here we have anticipated the divided difference notation to be studied in
Chapter 6 and in Problems 2 and 3 of this section. If the function f(x)
has a continuous second derivative in an interval including the points
Xv, Xv -1> and a, then it is shown in Theorem 1.1 of Chapter 6 that

f[xV-l> xv] = ray)
(17)

f[xv- 1, Xv, a] = -!1"(1]v)

for some points ~v and 1]v in the obvious intervals. (See also Problem 3.)
Thus we deduce that

(18) v = 1,2, ....

Let us assume that all the iterates are confined to some interval about the
root a and that for all ~, 1] in this interval

(19)

Then by setting Mia - xvi == ev we obtain the inequalities

(20) eV +1 ~ eVeV - 1; v = 1,2, ... ,

upon multiplication of (18) with M and the use of (19). If we define
max (eo, e1) = 8 the inequalities (20) imply

e2 ~ 1)2

e3 ~ 1)3

e4 ~ 85
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where mo = m1 = 1 and mv +1 = m v + mv - 1, v = 1,2, .... The numbers
m v form what is known as a Fibonacci sequence. It may be shown (see
Problem 1) that

(21) m = _1_ (rV+1 _ rV+1)
v V5 + -,

Thus for large v:

r±
1 ± V5

2

1
m v ~ v5 (r +)V+1 ~ 0.447(1.618)"+1.

If S < I, then the initial error is reduced by IO- m when s(m,-l) ~ IO- m

and we may compare this number, v, of iterations with the corresponding
numbers V(2) for the second order method and V(l) for the first order method
(see equation 1.25) in the case S = Mlxo - al by noting that

(22)

or
I_ (r )V+ 1 ~ 2V(2)V5 + = .

Hence

(23)

where

v = c + dV(2)

c = log V5 _ I ~ 0.672
log r + -

and d = log 2 ~ 1.440.
log r + -

We see that somewhat more of the current iterations are needed for a
given accuracy than is the case for the second order methods (but it
should be recalled that only one function evaluation per iteration is
used).

If we were to postulate that as v -+00: la - xV +11 ~ Kia - xvi', then
(18), with the coefficient 11"/(2!,) 1 = M, would yield K = Mll', r = r +.

In other words, we might say that the false position method is of order
~ 1.618. Hence, two steps of Regula Falsi have an order ~(1.6)2 > 2.5
and require only two evaluations of f(x).

A geometric interpretation of the scheme (15) is easily given as follows:
in the x,f(x) plane let the line through (xv,f(xv» and (xv-1,f(xV -1»
intersect the x-axis at a point called Xv + l' In other words f(x) is approxi­
mated by a linear function through the indicated pair of points and the
zero of this linear function is taken as the next approximation to the desired
root. Depending upon the location of the points in question this procedure
may be an interpolation or an extrapolation at each iteration.
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In the classical Regula Falsi method, the point (xo,/(xo)) is used in (15)
in place of(xy -1, I(x y -1)) for all v = 1, 2, .... The geometric interpretation
of this scheme is quite clear, i.e., all lines pass through the original estimate,
which is a poor strategy in general. Again either interpolation or extra­
polation may occur.

Finally, we may use in (15), in place of (x y _ b l(xy - 1)), the latest point
for which the function value has sign opposite that of I(x y ). In this latter
method, only interpolation occurs, and furthermore, upper and lower
bounds for the root are obtained, which is ideal for estimating the error.
However, to start this scheme we must initially obtain such upper and
lower estimates of the root and, of course, it is only applicable if I(x)
changes sign at the root in question. This latter variation requires some
additional testing and storage of data and hence is slightly more compli­
cated to employ on a digital computer.

From the geometric description of the method of false position a natural
generalization is suggested. That is, we set

x y + 1 = PI<, lO), v=k,k+ I, ....

where PI<. y(f) is the polynomial in I of degree k which passes through the
k + 1 points (f(x y ), xv), (f(x y -1), X y _ d, ... , (f(x y _1<), X y _1<)' Clearly, for
k = 1, this is just the scheme (15). The construction of such interpolation
polynomials is, in general, treated in Chapter 6, and Section 2 of that
chapter is particularly suited for the present purpose. [We must inter­
change x and I or else use inverse interpolation. Also, it is assumed that
the function values I(x j ) are distinct.] It can be shown that these" multi­
point" methods have orders 7]1< which increase monotonically with k
and that lim 7]1< = 2. We have seen that 7]1 ~ 1.618 so that no great

I<~oo

improvement over the method of false position can be obtained. For
k = 2 or 3, the orders are close to 2.

Another possibility along the above lines is to use

X Y +1 = py.y(O), v = 1,2, ... ;

that is a vth degree polynomial in I through all the previous iterates
(f(Xj), XI), j = 0, I, ... , v is used to determine the (v + l)st iterate.
Again, the iterative linear interpolation scheme of Chapter 6, Section 2,
can be used for this purpose and it can be shown that the order of con­
vergence is now 2 (for simple roots).

2.4. Aitken's S%-Method (Arbitrary Order)
This procedure is frequently presented as a means for accelerating the

convergence of the functional iteration method based on (3). The method
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can be described and motivated as follows: If Xv is any number approxi­
mating a root of (1) or (3), let Xv + 1 be defined by

(24) Xv + 1 = g(xv)'

Then a measure of the "errors" in these two approximations, Xv and
Xv + 1, can be defined by

(25)

Since for a root this error should vanish, i.e., e(a) == g(a) - a =

-<j>(a)f(a) = 0, we may seek X V + 1 by "extrapolating the errors to zero."
That is, the line segment joining the points (X., ev) and (xv + b ev+ 1) is
extended to intersect the x-axis and the point of intersection is taken as
Xv + l' This yields the expression

(26a)

For actual calculations (26a) is usually written as

(26b)

and the evaluations proceed by using (24), (25), and (26b).
From (24)-(26) we see that the o2-method can be viewed as functional

iteration applied to

(27a)

where

(27b)

X = G(x),

G X = xg(g(x» - g2(X) .
( ) - g(g(x» - 2g(x) + x

(28)

[That is, from Xo we obtain the same sequence of iterates Xv by the pro­
cedure described in (24)-(26) as is obtained from X V +1 = G(xv).]

The functional iteration scheme applied to (27) is sometimes known as
Steffensen's method. In fact, Aitken's o2-methodt was originally proposed
to convert any convergent sequence (no matter how generated), {xn},

into a more rapidly convergent sequence, {xn'}, by using

(X x )2x' = x _ n+l - n •
n - n X n + 2 - 2xn + 1 + X n

t The denominator in (28) suggests the second difference notation 02 • See equation
(3.16a) of Chapter 6.
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Several general applications of the S2_process are illustrated in Problems
6 and 7.

The function (27b) is indeterminate at the root x = a since g(a) = a.
However, its value there is easily found by an application of L'Hospital's
rule, assuming g(x) to be differentiable at the root and g'(a) #- I:

G( ) = g(g(a» + ag'(g(a»g'(a) - 2g(a)g'(a)
a g'(g(a»g'(a) _ 2g'(a) + I

a + a[g'(a)j2 - 2ag'(a)
[g'(a)j2 - 2g'(a) + I

= a.

The case g'(a) = 1 corresponds to a multiple root of (I) at x = a. How­
ever, in this case too, it can be shown from (33d) that a = G(a). Thus,
it follows that (27a) has roots wherever (3) has them. To show further
that all roots of (27) are also roots of (3), assume that x is any finite root
of (27). Then there are two cases, either g(g(x» - 2g(x) + x vanishes or
not. If not, then clearing fractions in (27) is legitimate and yields

[g(x) - xj2 = O.

Thus, x is also a root of (3). If the denominator in (27b) vanishes, the
numerator must also vanish (since x was assumed finite). Now observe
that since the denominator vanishes, we may use

xg(g(x» = 2xg(x) - x 2

and substitute in the numerator to find that again [g(x) - xj2 = O. In
other words (27) has the same roots as (3).

The order of the S2-method is simply related to the order of the functional
iteration applied to x = g(x). To derive this result, we assume that x = a
is a root and that:

(29a)

(29b)

(29c)

g'(a) = g"(a) = ... = g(P-l)(a) = 0;

g<P)(a) = p!A #- 0;

g<P+l'(X) exists in Ix - al ~ p.

These conditions imply that g(x) determines a pth order method. By
Taylor's theorem and (29) for every £such that 1£1 ~ p:

g<P+O(a + 8£)
g(a + £) = g(a) + A£P + £P+l 0 < 8 < I;

(p + I)! '

(30a)

= a + S.
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Here we have introduced

AITKEN'S 02-METHOD 105

(31a)
_ g(P+ O(a + (1£)

B = (p + I)! ' 0== (A + &)£P.

Since A and B are bounded, we can pick £ sufficiently small such that
101 :s; p and then as in (30a)

(30b)

where

g(a + 0) = a + AoP + B'OP+l

(3Ib)
, g(P+l)(a + .po)

B = (p + I)! ' 0<.p<1.

From (30) in (27b) we obtain, with x = a + £ and £ #- 0,

(32)

G(a + £) = (a + £)g(a + 0) - (a + 0)2
g(a + 0) - 2(a + 0) + (a + £)

02 - A£oP - B'£oP+I

= a - £ _ 20 + AoP + B'oP+!'

There are two cases, p ~ 2 and p = 1, to be considered. First, with
p ~ 2 equation (32) can be written as

G(a + £) = a - £2P-I(A + B£)2

{
1 - A(A + B£)P-2£(P-0

2
- B'(A + B£)P-I£(P-02 +p }

. 1 - 2(A + &)£P-I + A(A + B£)P£PLI + B'(A + B£)P+l£P
2
+p-l •

It is clear that the bracketed expression approaches 1 as £ approaches 0,
and so the above may be written as

(33a) p ~ 2.

For the case p = 1, (32) becomes

(33b) G(a + £) = a - £2(A + &)

{
(B - B'A) - B'& }

. (l - A)2 - (2B - BA - B'A2)£ + 2B'BA£2 + B'B2£3 .

Now in general, if A #- I, the bracketed expression approaches B*j(1 - A)
as £ approaches 0 since B' and B approach B* == g"(a)j2 and so (33b) can
be written as

(33c) p = 1, g'(a) = A #- 1.
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for

(33d)

But, if A = g'(a) = 1 and a has multiplicityt m , then by Problem 4:

G(a + £) = a + (I - ~)£ + (T}(£2),

P = 1, g'(a) = 1,

g"(a) = ... = g(m-l)(a) = 0, gCm)(a) # 0;

for m = 2,3, ....

We now invoke a lemma which shall enable us to determine the orders
and convergence properties in the cases represented in (33a-d).

LEMMA 1. Let G(x) be afunction, with q + I derivatives in a neighborhood
ofx = a, such that

G(a) = a,

and for any £ sufficiently small

(34)

Then

0<0<1.

(35)

G'(a) = G"(a) = ... = G(q-l)(a) = 0, GCq)(a) = q!C.

Proof By Taylor's theorem we have, for sufficiently small £,

£ £q
G(a + £) = a + - G'(a) + ... + - G(q)(a)

I! q!

£q+ 1+ G(q+ l)(a + (h)
(q + I)! '

The lemma follows by comparing, in the order k = I, 2, ... , q, the
values obtained from (34) and (35) of:

•
By applying this lemma in (33a-d) we deduce the following

THEOREM 2. (i) If functional iteration applied to (3) is of order p ~ 2

t If the functions in (I), (2), and (3) have m derivatives, we may verify the equivalence
of the statements:

(i) a is a root of f(x) of multiplicity m ~ 2;
(ii)f(a) =f'(a) = ... =j<m-ll(a) = O,f'ml(a)"# 0;
(iii) g(a) = a, g'(a) = 1, g"(a) = ... = gem -ll(a) = 0, g,m'(a) "# O.

Statements (i) and (ii) are equivalent by definition. The equivalence of (ii) and (iii)
follows from Leibnitz' rule,

(.pl)(k) = .p(k)f + k.p(k-l'j' + ... + k.p'j<k-l) + .pf'k',

and the fact that .p "# 0, by induction on k = 1,2, ... , m.
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for some root a of (I), then the 82-method (24)-(26) is of order 2p - I for
this root.

(ii) If functional iteration in (3) is of first order (but not
necessarily convergent) for a simple root a of (I), then the 82-method is of
second order for this root.

(iii) If as in (ii), the root a of (I) has multiplicity m ~ 2,
then the 82-method isfirst order with asymptotic convergence factor I - 11m.

Proof Part (i) follows from (29), Lemma I, and (33a). Part (ii) follows
from Lemma I and (33c) since g'(a} # I is equivalent to f'(a) # 0 (i.e.,
that the root is simple). Finally, (iii) follows from Lemma I and (33d)
since an m-foldt root of f(x) = 0 at x = a implies g'(a) = I, g"(a) = ... =
g<m-1)(a) = 0 and g<m)(a} # O. (This proof has assumed thatf(x), g(x) and
G(x) have as many derivatives as required.) •

From this theorem, it follows that in all cases Aitken's 82-method con­
verges if la - xol is sufficiently small. Furthermore, it is always at least
of second order for simple roots. It is clear that this method can be quite
effective and it, or generalizations of it described below, may be very
profitably used in practice.

Iterations which converge even faster than the 82-method are naturally
suggested by the above" derivation" of (26). One such generalization is to
consider the set of more than two errors associated with Xy, XV + 1, ... ,

Xv +u as defined in (24) and (25), say

(36) flo > I;

and then determining Xv + 1 such that this set of errors is "extrapolated"
to zero. The details of such a procedure require a knowledge of poly­
nomial interpolation which is discussed in Chapter 6 (see Section 2 in
particular). The main point in the correct application of this procedure
is to consider the Xv as functions of the ev (i.e., inverse interpolation) in
which case the approximation x v + 1 can be computed directly by evaluating
at e = 0 the polynomial of floth degree in e that takes on the values Xv

at eY, and XV+k at eV+k for I :s; k :s; flo. Other generalizations of these
procedures can be obtained by successively increasing the value of flo.

These considerations are, in fact, the same as those in Subsection 2.3
where generalizations of false position were discussed. Another ob­
vious type of modification is described by introducing G(O)(x) == g(x),
G(l)(x) = G(x) and then forming G<n)(x) by recursive application of (27).

It should be noted that the correction in (26b), -ev
2/(e v + 1 - ev), is

the quotient of very small quantities. The denominator, being a difference

t See previous footnote.
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of small quantities, may require multiple precision evaluation of g(g(xv»
and g(xv), in order not to lose too many significant figures, especially if
g/(a) ;;;;' I (i.e., if the root is multiple or nearly so). For these reasons it is
important to determine an appropriate 0 which can be used in Theorem
1.3 in estimating the effect of errors in the 02-method.

PROBLEMS, SECTION 2

1. Solve the recursion mv+l = m v + mV-lt v = 1,2, ... , where ma = ml
= 1. (Try a solution of the form mv = rV which leads to a quadratic with roots
r ±. Then set mv = ar + v + br _v and determine a and b from v = 0, 1.)

2. The second divided difference of a function !(x) is defined by:

!(Xl) - !(X2) !(X2) - !(xa)

The first divided difference is just the difference quotient. Use these definitions
to verify the derivation of (16).

3. Verify (17).
[Hint: If !"(x) is continuous in an interval containing Xl, X2, and Xa, then

the second result in (17) can be derived by the expansion, via Taylor's formula
with remainder, of !(Xl) and !(xa) about X2 plus the fact that a continuous
function takes on all values between any two of its values. (Assume, with no
loss in generality, that Xl < X2 < Xa in the definition above. That is, it is
easy to verify ![Xlt X2, Xa] = ![XI, XI' Xk] where (i, j, k) is any permutation of
(1, 2, 3). This is a special case of a property established in Chapter 6, Section I,
namely that the divided difference is a symmetric function of its arguments.)]

4. Let g(a) = a, g'(a) = 1, g"(a) = gM(a) ='" = gm-l(a) = 0, and
gm(a) oF- O. Then if we assume g has derivatives of order 2m, g(a + E) =
a + " + BE2 where m ~ 2 and

g (m)(a) g(m +1)(a)
B(E) = -- Em - 2 + "m-l + ...

m! (m + 1)!

and similarly, with 0 == " + &2 then g(a + 0) = a + 0 + B'02, where

m( ) (m+ll( )
B'(o) = L.!:.- 8m-2 + g a 8m-l + ....

m! (m + I)!
Now observe that

and therefore

B'B = [g(:~a)r,,2m-4 + ...

B' - B = (m - 2)[g(:~a)r,,2m-a + ....

Hence, show that formula (33b) yields the results of (33d) for m = 1,2,3, ...•
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5. Verify that the functional iteration scheme is divergent for (a) g(x) ==
x + x 3 and (b)g(x) == 2x + x 3

• Nevertheless, as stated in part (ii) of Theorem
2, the Aitken 1)2-method is convergent and

(a)

(b)

x
G(x) = x - 3 + 3x2 + x 4 = tx + @(x

3
)

G(x) = 6x3 + @(x5 ).

6. (Aitken's 1)2_p,ocess). Let {xn }, n = 0, 1, 2, ... , converge to IX; so that,
for some constant b,

'n == X n - IX "" 0, n;::: N;

'n+1 = (b + €n)'n, Ibl < 1, €n = o(I).t

Show that (28) is meaningful for n ;::: N, i.e.,

Xn+2 - 2Xn+1 + Xn "" °
and that

for n ;::: N;

I· xn' - IX °Im--- = .
n_oo Xn - a

[Hint: Verify that

Xn+2 - 2Xn+1 + Xn = 'n+2 - 2'n+1 + 'n
= 'n[(b - 1)2 + 0(1)].

Also show from (28) that
, [b - 1 + o( 1)]2

X n - IX = 'n - 'n (b _ 1)2 + 0(1)

= 'no(1).]

7. Apply Aitken's 1)2·process (28) to the sequence

n = 0,1,2, ... ,

where Ip21 < Iptl < 1. Show that

x n' = IX + @(P2n) + @(P12n).

What improvement results by applying the 1)2_process to the sequence {xn'}?

3. FUNCTIONAL ITERATION FOR A SYSTEM OF EQUATIONS

Let x be an n-dimensional column vector with components Xl' X 2, ••• , X n

and g(x) an n-dimensional vector valued function, i.e., a column vector
with components gl(X), g2(X), ... , gn(x). Then the system to be solved is

(1) x = g(x).

t We write 3n = 0(1) iff there is some number N such that 3n is defined for all n ;::: N
and lim 3n = O. In the text, we also use 0(1) as a generic symbol to represent the

n_oo

members of any sequence which tends to zero.
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The solution (or root) is some vector, say a, with components a b a2, ... ,

an which is, of course, some point in the n-dimensional space. Starting with
a point x(O) = [xi°l, xkO), ... , Xho>jT, the exact analog of the functional
iteration of Section I is

(2) x(V+ 1) = g(x(V», v = 0, 1,2, ....

The first result is analogous to Theorem 1.1. But where absolute values
were used previously, we must now use some vector norm (see Chapter I,
Section 1). For example, we may choose anyone of the norms

Ilxll oo == max lXII,
1:::; t:::;n

(3)
n

Ilxll! == 2: Ixd,
i= 1

THEOREM 1. Let g(x) satisfy

(4a) Ilg(x) - g(y)11 ~ Allx - yll

for all vectors x, y such that Ilx - x(O)11 ~ p, Ily - x(O)11 ~ p with the
Lipschitz constant, A, satisfying

(4b) O~A<l.

Let the initial iterate, x(O), satisfy

(5)

Then: (i) all iterates, (2), satisfy

Ilx(V) - x(O)11 ~ p;

(ii) the iterates converge to some vector, say

lim x(v) = a,
v- 00

which is a root of (I):
(iii) CI is the only root of (I) in Ilx - x(O)11 ~ p.

Proof Duplicate the proof of Theorem 1.1 with the replacement of
absolute value signs by norm symbols. •

As a consequence of this proof, it is also seen that the iterates converge
geometrically, and at least as fast as AV --7 O. Of course, it is more difficult
to verify (4), the Lipschitz continuity of a vector valued function, than
it is in the case of a scalar function.
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However, again as in Section 1, a more useful result can be obtained
if we are willing to place more restrictions on g(x) and assume the existence
of a root. We immediately see that Theorem 1.2 and its proof hold if
absolute value signs are replaced by norms. Furthermore, the corollary
to Theorem 1.2 becomes

THEOREM 2. Let (I) have a root x = a. Let the components g;(x) have
continuous first partial derivatives and satisfy

(6)

for all x in

A < 1;

(7) Ilx - all", :os; p.

Then: (i) For any x(O) satisfying (7) all the iterates x(V) of(2) also satisfy (7).
(ii) For any x(O) satisfying (7) the iterates (2) converge to the root a

of (I) which is unique in (7).

Proof For any two points x, y in (7) we have by Taylor's theorem:

(8) i = 1,2, ... , n;

where !;<O is a point on the open line segment joining x and y. Thus,
!;(O is in (7), and using (3) and (6) yields

n 109 (!;<O)/
Igi(X) - gt(y) I :os; f~l -1x;- 'Ixf - Yfl,

:os; Ilx - yll", i IOgt(!;<O)I,
j= 1 OXf

:os; AIIX - YII",.

Since the inequality holds for each i, we have

(9) Ilg(x) - g(Y)II", :s; Allx - YII""

and thus we have proven that g(x) is Lipschitz continuous in the domain
(7), with respect to the indicated norm. Now note that for any x(O) in (7),

Ilx(1) - all", = Ilg(x(O» - g(a)ll",

:os; Allx(O) - all",

:os; Ap,
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and so x(1) is also in (7). By an obvious induction we have then

Ilx(V) - all", = Ilg(x(V-l) - g(a)ll",

~ Allx(V-l) - all",

(10)

~ AVllx(O) - all",

~ AVp

and hence all x(v) lie in (7). The convergence immediately follows from
(10) since A < 1. The uniqueness follows as before. •

The crucial point in the preceding proof is the derivation of (9). It is
clear from this derivation that (6) could be replaced by a number of
conditions which are perhaps less restrictive and the theorem would still
remain valid. One such condition is

(II) max i [gif(X) I ~ A < I,
t j =1

for all Ilx - all", < p,

i, j = I, 2, ... , n(12)

where we have introduced the elements gij(x) = 8gtCx)/8xj. If we define
the matrix G(x) == (gtlx» then (II) may be written as IIG(x)ll", ~ A < I
in which case we mean the natural matrix norm induced by the maximum
vector norm (see Chapter I, Section I).

If the function g(x) is such that at a root

G(a) == (8~~~») = 0,
and these derivatives are continuous near the root, then (6) as well as (II)
can be satisfied for some p > O. If, in addition, the second derivatives

82g;(x)
8xj 8Xk

all exist in a neighborhood of the root, then again by Taylor's theorem

Inn 82g;(!;t)
g;(x) - gt(a) = -2 L L~ (Xj - aj)(Xk - a,.).

j=l k=l uXjUXk

Now in the iteration, (2), we find

Ilx(V' - «II", ~ Mllx(V-l) - «II~,

where M is chosen such that
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Thus, quadratic convergence can occur in solving systems of equations by
iteration.

3.1. Some Explicit Iteration Schemes for Systems

In the general case, the system to be solved is of the form

(13) f(x) = 0

where f(x) = [fl(X)'/2(X), ... '/n(x)]T is an n-component column vector.
Such a system can be written in the form (1) in a variety of ways; we
examine here the choice

(14) g(x) == x - A(x)f(x),

where A(x) is an nth order square matrix with components aj,(x). The
equations (1) and (13) will have the same set of solutions if A(x) is non­
singular [since in that case A(x)f(x) = 0 implies f(x) = 0].

The simplest choice for A(x) is

(15) A(x) == A,

(16)

(17)

a constant non-singular matrix. If we introduce the matrix

J(x) == (OJ;(X»),
oXj

whose determinant is the Jacobian of the functions ft(x), then from (14)-( 16)
we have

G(x) == (OgtC X») = I - AJ(x).oXj

Thus by Theorem 2, or its modification in which (11) replaces (6), the
iterations determined by using

x(V+ 1) = x(V) _ Af(x(v»

will converge, for x(O) sufficiently close to a, if the elements in the matrix
(17) are sufficiently small, for example, as in the case that J(a) is non­
singular and A is approximately the inverse of J(a). This procedure is the
analog of the chord method and it naturally suggests a modification which
is again called Newton's method.

In Newton's method (15) is replaced by the choice

(18) A(x) == J -lex),

with the assumption of course that det IJ(x)1 #- 0 for x in Ilx - all :5; p.

In actually using the above procedure, an inverse need not be computed
at each iteration; instead, a linear system of order n has to be solved. To
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see this, and at the same time gain some insight into the method, we
note that by using (I8) in (14) the iterations for Newton's method are:

x(v+ 1) = g(x(V»),
(I9a)

From this we obtain

(I9b)

which is the system to be solved for the vector (XlV) - XlV +1)).
To show that this method is of second order we must verify that (I2)

is satisfied when (I 8) is used in (14). The jth column of G(x) is then given
by

og(x) = ox _ ~ [J -l(x)f(x)],
ox; ox; ox;

= ox _ J -l(X) of(x) _ oj -l(X) f(x).
ox; ox; ox;

By setting x = Cl in the above and recalling that f(Cl) = 0 and J = (ofi/ox;)
we get

G(Cl) = /- J- 1(Cl)J(Cl) - 0 = O.

To determine oj -l(X)/OX;, note that

0(1-1J) oj oJ- 1 0/
-'--:::--":" = J-1_ + --J = - = 0

ox; ox; ox; ox;
and hence

oj -l(X) = -J -l(X) oJ(x) J -l(X).
ox; ox;

Thus, we need only require that f(x) have two derivatives and J(x) be
non-singular at the root, and then the convergence of Newton's method is
quadratic.

For a geometric interpretation of Newton's method we consider a
system of two equations and drop subscripts by using

Then

J(x) = (fx fy)
gx gy

and the system (I9) can be written as:

(20a) (xv + 1 - xv)fx(xv, Yv) + (Yv + 1 - Yv)fixv, Yv) + f(xv, Yv) = 0

(20b) (XV+1 - xv)gx(xv,Yv) + (YV+1 - Yv)gixv,Yv) + g(xv,Yv) = 0
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i = 1,2, ... , n,

In the (x, y, z)-space the equations

(2Ia) z = (x - xv)fx(xv. Yv) + (y - Yv)fy(xv. Yv) + f(xv. Yv),

(2Ib) z = (x - xv)gxCxv. Yv) + (y - Yv)gy(Xv. Yv) + g(Xv. Yv),

each represent planes. The plane (2Ia) is tangent to the surface z = f(x, y)
at the point (Xv. Yv'/(Xv. Yv», and the plane (21 b) is tangent to z = g(x, y)
at the point (Xv. Yv. g(Xv. Yv». Clearly, the point (xv + 1, Yv + 1) determined
from (20) is the point of intersection of these two planes with the plane
z = 0, i.e., the (x, y)-plane. Thus, in passing from one dimension (Section
2.2) to two dimensions, Newton's method is generalized by replacing
tangent lines with tangent planes. In the more general case of n dimensions
the obvious interpretation, using tangent hyperplanes, is valid. Each of the
equations

z = i (Xk - XkV) 8f~~(V) + j;(x(V),
k~1 k

represents a hyperplane in the (x), X2' ... , x n , z) space of n + I dimensions
which is tangent at the point (x\'V), x~V\ ... , x~V) to the corresponding
hypersurface

The difficulties which may arise in the solution of systems using Newton's
method can be interpreted by means of these geometric considerations.

3.2. Convergence of Newton's Method
If the initial iterate x(O) is sufficiently close to the root a of f(x) = 0,

then Theorem 2 can be used to prove that the Newton iterates, XCV),

defined in (19) converge to the root. In addition, if the Jacobian J(x)
is non-singular at the root, x = a, and differentiable there, then the
convergence is second order. However, we do not know from these results
if a given initial iterate x(O) is close enough to the unknown root, a. We
shall develop a sufficient condition, under which Newton's scheme con­
verges, with the property that this condition may be explicitly checked
without a knowledge of a. In fact, the theorem to be established also
proves the existence of a unique root of f(x) in an appropriate interval
about the initial iterate, x(O). Thus, we have an alternative to Theorem I
which we state as

THEOREM 3. Let the initial iterate x(O) be such that the Jacobian matrix
J(x(O) defined in (16) has an inverse with norm bounded by

(22a)
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Let the difference of the first two Newton iterates be bounded by

(22b) Ilx(1) - X(D) II = 1I1-1(x(Q»)f(x(D»)11 =:; b.

Let the components of f(x) have continuous second derivatives which satisfy

(22c)

for all x in Ilx - x(D)!1 =:; 2b; i,j = 1,2, ... , n. If the constants a, b, and
c are such that

(22d) abc =:; 1
then: (i) the Newton iterates (19) are uniquely defined and lie in the
"2b-sphere" about X(D):

II XCV) - xeD) II =:; 2b;

(ii) the iterates converge to some vector, say lim XCv) = a, for which
v- 00

f(a) = 0 and

(23)

[All vector norms in the statement and proof of this theorem are maximum
norms, i.e., Ilx II = maXi Ix,l, and matrix norms are the corresponding

induced natural norm, i.e., IIAII = m~x (~1 la'il).]

Proof The proof proceeds by a somewhat lengthy induction. For
convenience, we use the notation J v == J(x(V») for the Jacobian matrices
(16) and show for all v = 0, 1,2, ... that with Av+ 1 == 1- Jv-1 Jv+ b

(24a)
b

Ilx(V+ 1) _ x(V)11 <- 1"
(24b) Ilx(v+l) - x(D)11 =:; 2b,

(24c) IIAv+ 1 11 == IIJv-Vv - Jv+ 1 )11 =:; 1,
(24d) II1v-;111 = 11(1 - AV+ 1)-IJv -111 =:; 2v + 1a.

From the hypothesis (22b) it trivially follows that (24a, b) are satisfied
for v = O. Now when (24b) is established up to and including any value v

then xcv +1) and XCv) are in the 2b-sphere about x(Q) in which we are assured
that the second derivatives of the .f.(x) are continuous. Then we can apply
Taylor's theorem to the components of Jv + 1 to obtain

iV(x(V+ 1») o'(x(V») n 02 1'. [XCV) + 8 (X(v+ 1) _ XCV»)]
Ji • = _J_",__ + L: (xkV+1) _ XkV») Ji, ,

OX; OX; k~ 1 OX; OXk
o < 8, < I.
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Since XCV +1) and XCV) are in II x - x(Q) II ~ 2b, so is the point
XCV) + 8(x(V +1) - XCV»), and (22c) applies. This gives from the above

(25)

At the present stage in the proof this is valid only for v = O. But then using
this and (22a, b, d) in (24c) with v = 0 yields

IIA111 ~ IIJo-111·IIJ1 - Joll

~ acllx(l) - x(O)11

~ abc

~t.

Now (24a, b, c) have been established for v = o.
If for any v the matrix Jv is non-singular, then we have the identity

where, as in (24c), A v + 1 == J v -l(Jv - J v + 1). But from the Corollary to
Theorem 1.5 of Chapter I it follows that if IIA v + 1 11 < I then J V + 1 is
non-singular and

(26)

Since (24c) is valid for v = 0 we can use this in (26) to get

Thus (24) has been verified for v = O.
Let us now make the inductive assumption that (24) is valid for all

v :-::; k - I and proceed to show that it is also valid for v = k. Since Jk

is non-singular, the (k + l)st Newton iterate, X(k+ 1), is uniquely defined
and we have from (19a):

(27) Ilx(k+1) - x(k)11 = IIJk -If(x(k))II

~ IIJk -lll·llf(x(k»)II·

However, since (24b) is valid for v = k - 1, the point X(k) is in the
2b-sphere about x(O). Then by Taylor's theorem, with remainder term
R, and (19b) with v = k - I:



118 ITERATIVE SOLUTION OF NON-LINEAR EQUATIONS [Ch.3]

Using (22c), we can bound the above remainder term to yield

Ilf(x(k))II = max IRtCx(kJ, X(k-1))1,

I

nn (X(.k) - X(k-1))(X(k) - X(k-1))
= max L L J J , I 1

t ;=1 1~1 2.

o < <Pi < I,

(28) ::;; ~ Ilx(k) - x(k-l)112.

Again, we have used the fact that X(k -1) + <p(X(k) - X(k - 1)) is in the
2b-sphere about x(O) since X(k) and X(k - 1) are in it. Now using (28) in
(27) and recalling that (24) is assumed valid for all v ::;; k - I we get

(29)

b< -.- 2k

Thus (24a) is established for v = k. Then since

Ilx(k+1) - x(O)11 = III~ (X(/+1) - X(!))II

k::;; L Ilx(/+1) - x(l)11
1=0

k I
::;;bL2i

1=0

::;; 2b,

we have also established (24b) for v = k. But then X(k + 1) is in the 2b-sphere
about x(Q) and so (25) is valid with v = k. This gives

IIAk+111 = Illk -1(Jk - lk+1)11

::;; IIJk- 111·ll l k+1- Jkll

::;; cllJk -1Hlx(k+l) - X(klll

::;; abc
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Thus (24c) is valid with v = k and implies that Jk + 1 is non-singular.
Then using (26) with v = k yields (24d), and the inductive proof of (24)
is complete.

Part (i) of the theorem follows from (24b, d). The convergence of the
XiV) follows from (24a) since they form a Cauchy sequence: i.e.,

v+m-1 v+m-1 I
=:; L: Ilx(l+ 1) - x(lJll =:; b L: I

l~v l=v 2

b
< --.- 2V - 1

Calling the limit vector a, we use (24a), (28) and the continuity of rex)
to deduce that

and lim f(Xlk» = f(a) = o. Letting m --+ 00, (30) implies
k-oo

2bIla - xlV)11 =:; 2v'

and so, part (ii) is established, concluding the proof of the theorem. •
This theorem is valid if n = I. The hypothesis permits the case that

J(a) is singular. Hence, it is reasonable that the conclusion (ii) shows at
most linear convergence. But (ii), moreover, implies that the convergence
factor is at most 1. This seems to contradict the fact shown earlier for the
scalar case (n = I), that the convergence factor is only I - 1/p if I(a) is a
zero of order p > 1. The contradiction doesn't exist because, as we show
in Problem 6, the requirement abc =:; 1 can only be satisfied if p =:; 2.
[For example,/(x) == XV and Xo #- 0 satisfy

On the other hand, if h == abc < t, then Kantorovich has shown in
general that

Il xlV) _ all < (2h)2
V

-1 b
- 2V 1 ,

i.e., quadratic convergence. See Problems 3, 4, 5, and 6 for further results
in the scalar case.
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3.3. A Special Acceleration Procedure for Non-Linear Systems

If the non-linear system to be solved is written in the form

(31) x = g(x),

then the obviously implied iterations

(32) x<O) = arbitrary; x(V +1) = g(x(V»), v = 0, I, ... ,

v = 0, I, ... ,
(33a)

mayor may not converge. However, as with linear systems, we can alter
the procedure (32) in a manner which will generally improve the rate of
convergence or may even yield a convergent scheme when the basic one
diverges. The acceleration procedure is defined by:

x(O) = arbitrary

x(v+ 1) = 0g(x(V») + (I - 0)x(V),

where 0 is a diagonal matrix given by

(33b)

Of course, if 0 = I, then the basic scheme (32) results. The scalar form of
the ith equation in (33a) is clearly

I ~ i ~ n,

and so the iterations are easily evaluated in an explicit manner.
Let us assume that (31) has a solution, say x = ex, and that in some

p-sphere about this solution, Ilx - exll ~ p, the vector function g has
continuous first partial derivatives, gij(x) == ogt(x)/OXj, which satisfy the
conditions

(34) [I - gjb) I > 2: Igtlx)l,
Ht

I ~ i ~ n.

Under these conditions it can be shown that the iteration:; (33) will con­
verge, for some choice of the OJ, to a solution of (31) for any initial guess
x(O) in Ilx<O) - ex II ~ p. In fact, under slightly different assumptions we
could even demonstrate the existence of a solution if Ilg(x(O») - x(O)11
is sufficiently small. However, we shall not present such specific theorems
but instead shall indicate the relevant arguments and concern ourselves
with the determination of the appropriate 0t to be used in (33). These
considerations, in turn, suggest a modification in which the OJ are changed
at each iteration.

If the error vector after the vth iteration is denoted by

e(V) = x(V) - ex,
then from (33a):

e(v +1) = 0[g(x(V») - g(ex)] + (I - 0)e(V).
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However, by Taylor's theorem we then have

(35) e(v+ 1) = (I - 0 + 0Gv)e (v) == Mve(V)

where Gv = (gtj) and the ith row of Gv is evaluated at some point !;(j. v) =
XCV) - cPt(xv - a), 0 < ,pj < I, for i = I, 2, ... , n. Clearly, the iterations
will converge if the coefficient matrices in (35) satisfy II M v II :'S: q < I for
all v. Now if we use the maximum vector norm and corresponding induced
matrix norm, these inequalities are satisfied if

(36) Ri(O,) == II - 0i[I - git(!;(i. V»]I + 10il L IgitC!;(i. V»I :'S: q < 1,
j#o!

I :'S: i :'S: n; v = 0, 1,2, ....

Thus, we are led to consider inequalities of the form

R(O)==II-Oal+IOlb<l, b:2:0.

It is easily shown that R(0) < I if lal > band 0 is in the interval:

(37a) 0 < 0 < ~b if a > b;
a+

(37b) a ~ b < 0 < 0 if -a > b.

Furthermore, in each of these intervals the minimum value of R(0) is
attained at

(37c) 0* = ~, and R* = R(O*) = I~I'

These results are easily deduced by considering the graphs of 10Ib and
II - Oal as functions of O. It is also clear from such graphs that under­
estimates of 10* I produce a smaller R than do overestimates (see Figure
I for the case I > a > b > 0).

a

-1

b

o

Figure 1

1 1 2
a ~

1
Ii

(J
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Employing (37) in (36) we find that: The scheme (33) converges if (34)
is satisfied and the acceleration parameters (Jj lie in the intervals

2
(38a) 0 < (Jj < I _ gjj(!;) + r

t
(!;)' if I - gtt(!;) > ft(!;);

2
(38b) I _ gu(f;) _ rj(!;) < (Jj < 0, if I - gtt(!;) < - rt(!;);

where rtC!;) =: L Igjl!;) I· [It should be noted that by the assumed
j '" j

continuity of the gi;(X) and (34), if rj(x) #- 0 then only one of the ranges
(38) can apply for each i = 1,2, ... , n.]

From a graph of any Rj«(J,), it is clear that the value of (Jj should not
lie near the end points of the intervals in (38). In fact, from (37c) it is
suggested that (Jj = I I[ I - gu(!;)] is the "best" value for (Jj. However,
since this value depends upon!;, a safe choice, (Jj*, which can be rigorously
justified is that for which (38) holds

(39) l(Jj*1 = m~in II _ ~tt(!;)I' I!; - al :5 p.

These considerations suggest a modification of the scheme (33) in which an
approximation to the best (J, is used at each step of the iteration. In fact,
if XlV) is close to a solution then the values

(40) W) - I I 2j - I _ gu(x(V»)' i = , , ... , n,

can be used in (33), to replace the constants (J" and this practical scheme is
of the form:

(41) x(v+l) = 0(V)g(x(V») + (1- 0(V»)x(V), J) = 0, I, ....

In carrying out this procedure, we need only evaluate the n partial deriva­
tives, gtt = 8g;/8x;, at each step to predict the appropriate 1JjV). If these
derivatives are not easily obtained or evaluated, one may frequently use
difference approximations which just require one extra evaluation of
each of the functions gt(x), i.e., since gt(x(V») is known we use

« v) (v) (v) + h (V) (V») ( (V»)
«

V») _ gj Xl , ... , Xi - 1> Xi , Xi + 1> ••• , X n - gi X
gtt x - h

with some suitably small value of h.
Although the conditions (34) seem severe and perhaps unusual they are

frequently satisfied in practice. In fact, many difference methods for solving
non-linear boundary value problems in ordinary and partial differential
equations result in such systems. For many of these systems, convergence
can even be obtained for some choice (JI = (J2 = ... = (In = (J (for example,
see a related scheme in Chapter 8, Subsection 7.2).
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1. State and prove a generalization of Theorem 1.3 for systems of equations.
2. State and prove a version of Theorem 2 which employs a different norm

(say II 112 or II Ill)'
3. For n = I, use the hypothesis of Theorem 3, with h == abc::; t and show

directly that there exists a root a with la - xol ::; 2b.
[Hint: Use Taylor's theorem,

(x x )2
f(x) = f(xo) + (x - xo)f'(xo) + -2 0 j"W

to show that
f(xo - 2b) < 0 < f(xo + 2b).]

f'(xo) - - f'(xo)

4. Under the same assumptions as in Problem 3, show that the root a
with la - xol ::; 2b is unique.

[Hint: If not unique, there exists TJ with ITJ - xol < 2b and f'(TJ) = O.
But from Taylor's formula

f'(TJ) = f'(xo) [I + (TJ -f'~;f(~)]'

show that f'(TJ) #- 0.]
5. Under assumptions of Problem 3, with h < t, show that f'(a) #- 0

(use hint of Problem 4).
6. Under the assumptions of Problem 3, iff'(a) = 0, show that la - xol = 2b

(by hint of Problem 4). Furthermore, if f'(a) = 0, show that j"(a) #- O.
[Hint: j"(a) = limf'(TJ)/(TJ - a), but by hint of Problem 4 and TJ < a,

n-a

4. SPECIAL METHODS FOR POLYNOMIALS

All of the previous schemes for single equations can be employed to
compute the roots of polynomials. Complex roots can be obtained by
simply using complex arithmetic and complex initial estimates. Or, by
reducing the evaluation of a polynomial at a complex point to its real and
imaginary parts, the iterative methods for real systems (of order two in this
case) could also be used to obtain the complex roots of polynomials.
However, it is possible to devise special iterative methods which are
frequently more advantageous than the general methods. We shall consider
some of these polynomial methods in this section.

It is of interest to note, first, that a very simple a posteriori test of the
accuracy of an approximate root of a polynomial is frequently quite
effective. Let the nth degree polynomial Pn(x) be

(I)
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with roots 'r, '2, ... , , n' Then since

(2)

we have the well-known result that

(3)

Now let a be an approximate root of Pn(x) which satisfies the test

(4)

(5)

Then from (2) and (3) it follows that (we assume an # 0)

Taking the nth root we now conclude, since

IPn(a)1 . 11 aln-- ;::.: mm -~'
an , "

that

m}n 11 - ~I ~ C:nlrn.
Thus we obtain an exact bound on the relative error of a as an approxima­
tion to some root of Pn(x). In many of the methods to be studied, Pn(a)
is already computed and so no extra calculations are required to employ
this test. Note that the roots and approximations in this test may be
real or complex.

4.1. Evaluation of Polynomials and Their Derivatives

An interesting special feature of polynomials is the ease with which
they may be evaluated. Let us write (1) as

(6) Pn(x) = aoxn + a1xn- 1 + ... + an-Ix + an

= { ... [(aox + a1)x + a2 ]x + .. ·}x + an'

The usual way to evaluate Pn(x) is by means of this" nesting" procedure.
More explicitly, to calculate Pn(t) we form:

(7)

bo = 00,

b1 = bo~ + 01'

b2 = bl~ + 02,

v = 1,2, ... , n;
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and note that bn = Pn(g). These operations are just those employed in
the elementary process of synthetic division. In fact, if we write

then clearly, Ro = Pn(g) = bn and it is easily verified (by multiplying out
and equating coefficients of like powers of x) that, using the quantities
in (7):

(8)

Dividing again by (x - g) we get, say,

Qn-l(X) = (x - g)Qn-2(X) + R1
and hence

Differentiating the last expression, we find that R1 = Pn'(t). Thus by
performing synthetic division of Qn-l(X) by x - g, we could determine
Qn-2(X) and P;(t). Clearly this procedure can be continued to yield
finally

(9)

v = 0, 1, ... , n.

The successive calculations to determine the R v and coefficients of the
intermediate polynomials Qv(x) can be indicated by the array in Table I.

Table 1

0 0 0

ao bo Co Rn

al bl CI Rn - 1

G n -2 bn - 2 Cn-2

an - 1 bn- I R1

an Ro

Any entry of Table I not in the first row or column (which are given
initially), is computed by multiplying the entry above by g and adding
the entry to the left. It follows from (9) by differentiation that

R = ~ dVPn(x) I .
v v! dxv x=~'
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From (9) it also follows easily that the polynomial with coefficients R v, say

R(y) == Rnyn + Rn_1yn-l + ... + Rly + Ro,

has as roots all those ofP(x) reduced by the amount t.
Finally we note that the evaluation of the entire Table I requires

1(n2 + n) multiplications and as many additions since the evaluation of
the first column requires only n of each operation. But in computing the
entries of the table, significant figures may be lost in any of the additions;
see eqs. (7). Often this necessitates the use of multiple precision arithmetic.

To employ Newton's method on polynomial equations, only the first
two columns in Table I need be computed. This is easily accomplished
by means of the recursions (7) and a similar set with av, bv replaced by
by, Cv for JJ = 0, I, ... , n - 1. An interesting application of Newton's
method to polynomials is found in Problem I.

4.2. Sturm Sequences

It would be very desirable to obtain successive upper and lower bounds
on the real roots of a polynomial equation or indeed of any equation, as
then the error in approximating the root is easily estimated. This could be
done if the number of real roots of the equation in any interval could be
determined, and this can in fact be done by means of the so-called Sturm
sequences which we proceed to define. Let the equation to be solved be
fo(x) = 0 where fo(x) is differentiable in [a, b]. Then the continuous
functions

form a Sturm sequence on [a, b] if they satisfy there:

(i) fo(x) has at most simple roots in [a, b];
(ii) fm(x) does not vanish in [a, b];

(iii) if fvCa) = 0, then Iv-l(a)fv+ l(a) < 0 for any root a E [a, b];
(iv) if fo(a) = 0, thenfo'(a)fl(a) > 0 for any root a E [a, b].

For every such sequence there follows Sturm's

THEOREM 1. The number ofzeros offo(x) in (a, b) is equal to the difference
between the number of sign variations in UO(a)Jl(a), .. . Jm(a)} and in
UO(b)Jl(b), ... Jm(b)} provided that fo(a)fo(b) #- 0 and {fo(x), fleX), ... ,
fm(x)}form a Sturm sequence on [a, b].

Proof The number of sign variations can change as x goes from a
to b only by means of some function changing sign in the interval. By (ii)
it cannot be fm(x). Assume that at some X E (a, b), fvCx) = 0 for some JJ in
o < JJ < m. In a neighborhood of x, the signs must be either
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x IV-1(X) Iv(x) Iv + l(X) or x \IV-1(X) Ib) IV+1(X)

X-E + ± X-E ± +
x + 0 x 0 +

x + E + ± X+E ± +

The signs in the row x = x follow from (iii). The signs in the first and last
columns then follow by continuity for sufficiently small Eo The sign possi­
bilities in the middle columns are general. But we see from these tables
that as x passes through x, there are no changes in the number of sign
variations in the Sturm sequence. We now examine the signs near a zero
x = x oflo(x):

x lo(x) 11 (X) or x lo(x)

x - E + X-E
X 0 X 0

X + E X + E +

+
+
+

The lo(x) columns represent the two possible cases for a simple zero.
The sign of II(x) then follows from (iv) and the continuity implies the
other signs in the last columns. Clearly, there is now a decrease of one
change in the number of sign variations as x increases through a zero of
lo(x). When these results are combined the theorem follows. •

It is easy to construct a Sturm sequence when lo(x) == Pn(x) is a poly­
nomial, say of degree n. We define

II(x) == lo'(x)

so that (iv) is satisfied at simple roots. Divide lo(x) by II(x) and call the
remainder - 12(X). Then divide II(x) by 12(X) and call the remainder
- 13(X). Continue this procedure until it terminates [which it must since
each polynomial lix) is of lower degree than its predecessor, Iv -leX)].
We thus have the array:

lo(x) = ql(x)/l(x) - 12(X),

II(x) = Q2(x)/2(X) - 13(X),

(10)

Im-2(X) = qm-l(x)lm-l(x) - Im(x),

Im-I(X) = qm(x)lm(x).

This procedure is well known as the Euclidean algorithm for determining
the highest common factor,lm(x), oflo(x) and II(x). [It is easily seen that
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fm(x) is a factor of all the hex), v = 0, I, ... , m - I; conversely any
common factor offo(x) andfl(x) must be a factor of/vCx), v = 2, 3, ... , m.]
Thus all multiple roots of fo(x) are also roots of fm(x) with multiplicity
reduced by one. If fm(x) is not a constant (i.e., fo(x) has multiple roots)
then we may divide all theh(x) by fm(x) and (denoting these quotients by
their numerators) obtain the sequence (10) in whichfo(x) has only simple
roots and fm(x) is a constant. It now follows that this reduced sequence
UO(X),fI(X), ... ,fm(x)} is a Sturm sequence. Only (iii) requires proof: If
fv(i) = 0 then, by (10), at this pointfv _lei) = -fv + I(i); but if/v _I(i) = 0,
then also foCi) = fl(i) = 0, a contradiction. Simple formulas for com­
puting the coefficients of theh(x) can be obtained from (10); we present
this as Problem 2.

The usual way to employ a Sturm sequence is with successive bisections
of initially chosen intervals. In this way, with each new evaluation of the
sequence, the error in determining a real root is at least halved. Thus this
procedure converges with an asymptotic convergence factor of at least 1.
The value of Sturm sequences is clearly not in rapid convergence properties
but rather in the ability to obtain good estimates of all real roots. When
the desired root or roots have been located it is more efficient to employ
a more rapidly converging iteration, say false position. Or, in fact, when a
root is known to lie in the given interval, (a, b), because f(a)f(b) < 0,
we may simply calculate f«a + b)/2). Now, (a + b)/2 may be a root. If
(a + b)/2 is not a root, then we would know from the sign of/«a + b)/2)
in which of the two sub-intervals, (a, (a + b)/2) or «a + b)/2, b), f(x)
does have a root. In this way, we may continue to bisect successive sub­
intervals in which we know f(x) to have a root. This procedure is known
as the bisection method. It has the conver~ence factor 1. Each step of the
bisection method requires fewer calculations than does the evaluation of
the Sturm sequence. At each step of the bisection method we have upper
and lower bounds for a real root.

4.3. Bernoulli's Method
Consider the polynomial equation

(11) P(x) == x n + alXn- 1 + ... + an-IX + an = 0

and assume that its roots, 'j, are distinct and ordered by

(12) hi > hi > ... > I'nl·
This equation and its roots bear an important relationship to the difference
equation or recursion (see Chapter 8, Section 4):

(l3a)

(l3b)

v = n, n + I, ...
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Given the n starting values, cio the gv are easily evaluated (with n multi­
plications and n - I additions per step). By seeking a formal solution of
(13a) of the form gv = rV, we find that any root of (11) yields a solution.
Furthermore, since the difference equations are linear it easily follows
that any linear combination of the powers of the roots of (II) is also a
formal solution of (l3a): thus we may write:

(14) v = 0, 1,2, ....

The polynomial (I I) is called the characteristic equation of the difference
equation (l3a). The conditions (l3b) yield a linear system of n equations
for the determination of the bj • The determinant of the coefficient matrix
of this system is a Vandermonde determinant which, by (12), does not
vanish [see (2.4) in Chapter 5]. It can also be shown that (14) is the most
general solution of (l3a), and hence with the b j as determined above, (14)
is the unique solution of (13a, b) (see Problem 3).

For v » I we have, recalling (12), gv ~ b1r1v, and hence we are led to
consider the sequence

(15)

Here we have assumed that b1 i= 0 and, in this case, clearly lim U v = r1'
v~<Xl

The rapidity of the approach is determined by the ratio hlr1 1. If this
ratio is not near unity, r1 is easily obtained and can be eliminated from the
original polynomial by synthetic division as in Subsection 4.1 and then a
new recursion is evaluated to determine r2, etc. (In practice, elimination
of the roots in decreasing order of magnitude may produce considerably
larger errors than elimination in increasing order of magnitude. See
Problem 6.)

If b1 = 0 for an unfortunate choice of starting values (l3b), it would
seem that the ratios then converge to r2 • This is theoretically correct but
for actual computations the roundoff introduced in the successive evalua­
tions of (l3a) has the effect of altering the exact b j which should occur in
(14). Thus after a few recursions there will be some perhaps small but non­
zero component b1 present and in subsequent steps the dominant root r1
may still be determined. In like manner, if some error or blunder is com­
mitted in the course of these Bernoulli iterations the subsequent steps,
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performed correctly, will obliterate the error and yield the correct result.
The expansion in (15) shows that the convergence of a v to '1 is geo­

metric with ratio h/'ll. To test the convergence of the sequence ray},
a number of devices can be employed. Perhaps the most frequently used
procedure in practice is to compute the differences lav + 1 - avl and to
stop when these are less than some predetermined small quantity. Another
possibility which yields more precise information at the cost of some extra
computation is to use the test (4). Of course, if sufficiently many steps
have been performed, a = av is closest to '1> the dominant root, and so
j = 1 in (5). Test (4) should not be made after every iteration but say
every several steps to reduce the computational effort.

The conditions (12) are most likely not satisfied for a polynomial since
in general some conjugate complex roots are to be expected. Suppose then
that the dominant real roots have been eliminated and (II) is the reduced
equation with '1 and '2 conjugate complex roots, '2 = '1> satisfying

(16)

The solution of(13) is again of the form (14) where the b; may be complex
and while (15) is valid the a v do not converge to '1 since hi'1I = 1.
For large v we now expect that

gv ~ b1'1 v + b2'2v.

Here we note that'2 = '1 and b2 = hI since the gv must be real (assuming
that the G; and c; are real). A simple calculation now reveals that

Av == gv+lgv-l - gv2 ~ Ibd2('1 - '2)2('1'2)"-1,

Bv == gV+2gv-1 - gv+1gv ~ Ibd2('1 - '2)2('1'2)"-1('1 + '2)'

Thus we expect that with Sv == BvlA v and Pv == AV+1IAv:

lim Sv = '1 + '2 == S,
V~<XJ

lim Pv = '1'2 == P,
V~<XJ

and the roots '1 and '2 are those of the quadratic equation

e - s~ + P = O.

Recalling (16) we can now estimate the error in this procedure for
complex roots. Let hi = hi == " hll' == 8 and we find as above:

gv = b1'1 v + b2'2v + (!!(,V8V),

Av = Ib112('1 - '2)2('1'2)"-1 + (!!(, 2V8V),

Bv = Ib11
2('1 - '2)2('I'2)V-l('1 + '2) + (!!(,2V8V).

Thus by the usual expansions

(17) Sv = S + (!!W), Pv = P + (!!W)·
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The equation actually solved is the quadratic
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(18) e - svf + P" = O.

It is easily shown, since S2 - 4p # 0, that the roots of this equation
differ from those for v = 00 by terms (1)(8").

If the dominant roots are equal but of opposite sign, then the above
procedure for complex roots is still applicable where now r2 = -ri' If
the dominant root is real but multiple, then the original procedure is
applicable but converges more slowly (see Problem 5).

4.4. Bairstow's Method

A much better scheme (than Bernoulli's) for determining quadratic
factors of a polynomial, Pn(x), is based on a generalization of synthetic
division and Newton's method for systems of equations. This procedure
also avoids the use of complex arithmetic. In brief, we seek real numbers,
say sand p, such that the quadratic

(\9) X
2 + sx + P

is an exact factor of Pn(x). The division of Pn(x) by this factor may be
indicated as:

(20) Pn(x) = (x2 + SX + p)Qn-2(X) + [xRI(s, p) + Ro(s, p)].

Here, R I and R 2 are the coefficients in the remainder which is at most
linear in x. As indicated, these coefficients are functions of sand p, the
parameters in the quadratic (\9). In order that the remainder be zero, s
and p must satisfy

(21) Ro(s, p) = o.
This is a system of two equations in two unknowns which we solve by
Newton's method. For this purpose we must evaluate the four derivatives

oR! oRo
as' os

(22)
oR! oRo
ap' ap'

We determine the quantities in (22) indirectly. Let Qn _2(X) in (20) be
divided by the quadratic (\9) to yield

(23) Qn-2(X) = (x2 + SX + p)Qn-4(X) + [xRis, p) + R2(s, p)].

We note that the specific values of the R,(s, p) in (20) and (23) for any
fixed (s, p) are easily obtained by carrying out the two indicated divisions.
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Using (23) in (20) we have the identity:

(24) Pn(x) = (x2 + SX + p)2Qn_4(X)

+ (x2 + SX + p)[xR3(s, p) + R2(s, p)]

+ [xR1(s, p) + Ro(s, p)].

Since Pn(x) is independent of sand p, we can differentiate (24) with respect
to sand p and evaluate the result at a root x = z of Z2 + SZ + P = 0
to get:

Since Z2 = - (sz + p) these equations can be written as

( OR1 ) (ORo )z ap + R 3 + ap + R2 = O.

If the quadratic is not a perfect square (in which case the roots would
be real and equal), the above must hold for two distinct roots, z, and hence
each coefficient in parentheses must vanish. Thus we deduce that:

(25)

oRl --R
op - 3,

The iteration scheme proceeds from an initial estimate (so, Po) which is
such that Po #- so2j4 and defines recursively the sequence (sv, Pv) by
Newton's method of solving (21); i.e.,

( ) ORl (sv, Pv) ( ) oRl (sv, Pv) R ( )
SV+l-Sv os + PV+l-Pv op =- lSv,PV'

(26)

( ) oRo (sv, Pv) ( ) CJRo (sv, Pv) R ( )
Sv+l-Sv os + Pv+I-Pv op =- oSv,Pv'

The coefficients and inhomogeneous terms in (26) are obtained by carrying
out the two divisions indicated in (20) and (23) with the quadratic factor
x 2 + SvX + Pv and then using (25). The divisions can be reduced to the
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evaluation of simple recursions by equating the coefficients on both sides
of the equality signs in (20) and (23); we leave the derivation of this
generalized synthetic division as an exercise. During the course of the
iterations it should be checked that pv #- sv2/4, so that (25) is valid. To
test the convergence we may employ (4) and (5), after noting that if z

is a root of x 2 + SX + P = 0 then, by (20),

Pn(z) = zR1(s, p) + Ro(s, p).

Usually the coefficients (sv> Pv) converge quickly, and so a direct test on
the roots need only be applied when the iterations are about to be
terminated.

PROBLEMS, SECTION 4

1. The square roots of a positive number fl are the zeros of the polynomial
f(x) := x 2 - fl.

(a) Apply Newton's method to obtain the sequence of approximations

Xv + 1 = 4(Xv + ~J
This procedure is known as the Newton-Raphson method for computing
square roots; it is frequently employed on high-speed digital computers.

(b) If Xo > v~ show that: XV+l < Xv, V = 0,1, ... (assuming exact
calculations).

(c) Derive and study the analogous procedure for the nth root of any positive
number where n is an integer.

2. Derive a recursion formula for finding the coefficients of the Sturm
n

sequence (10). Assumefo(x) = L ai.Oxn-i.
f~O

3. Show that every solution of (l3a, b) is unique and hence can be repre­
sented in the form (14).

4. If the coefficients ai in the polynomial Pn(x) := x n + alXn- 1 + ... + an
are altered by an amount at most €, then the polynomial Pol.•(x) :=

Pn(x) + €gn-l(X) is obtained where gn-l(X) := b1xn- 1 + b2 x n- 2 + ... + bn- 1
and Ibtl ~ I.

Show that to each simple real root rl of Pn(x), corresponds a simple real
root rl .• of Pol. ,(x) such that rl., - rj = l!7(€) as € --+ O.

[Hint: Plot Pol. ,(x) in a neighborhood of rl for sufficiently small €.l
5. Show how to modify Bernoulli's method for the case of a dominant

real multiple root. Estimate the convergence rate.
6. If Pn(x):= x n + aIXn- 1 + ... + an-IX + an with an i' 0, then let

Qn(z) := a"zn + an_lZn- 1 + ... + aiZ + I. Show that the roots {Zk} of
Qn(z) = 0 and roots {Xk} of Pn(x) = 0 are related by Zk = Ijxk; k = 1,
2, ... , n. Hence, show how the Bernoulli method may be used to find the
zeros of Pn(x) in ascending order of magnitude.



4
Computation of Eigenvalues

and Eigenvectors

o. INTRODUCTION

The eigenvalue-eigenvector problem for a square matrix A == (alj) of order
n is that of determining a scalar A and vector x such that

(I) Ax = Ax, x #- o.
The problem is clearly non-linear since both A and x are unknowns.
In fact, as is well known, the eigenvalues, A, are the n roots of the character­
istic equation

(2) det (AI - A) == PA(A) = O.

Thus the eigenvalues can, in principle, be found as the zeros of piA)
without recourse to any of the eigenvectors. Given some eigenvalue, A,
then the corresponding eigenvector is a non-trivial solution of the homo­
geneous linear system (I). On the other hand, if some particular eigen­
vector x is known, then the eigenvalue to which x belongs can be obtained
by taking the inner product of (I) with x to get

x*Ax(3) A=-.
x*x

Alternatively, we could use any non-zero component Xt to get, from the
ith row of (1),

1 n

A = - L atjxj.
XI j= 1

If some of the n eigenvalues of A are not distinct [i.e., if piA) has
multiple roots] then there may be fewer than n eigenvectors. For example,

A == (~ ~)

134
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has the repeated eigenvalue A = I, and only one eigenvector,

x = (~).

We consider, in Section I, the well-posedness of the eigenvalue problem
and a posteriori error bounds.

In Section 2, we study the power method and its ramifications. These
yield a sequence of scalars and vectors that converge (when the procedure
works) to some particular eigenvalue and its corresponding eigenvector.
In order to compute other eigenpairs, the iteration scheme must be
modified. These simple methods yield successively only a few of the
eigenvalues and vectors with acceptable accuracy, but for many applications
this will be all that is needed.

The methods studied in Section 3 use a finite or infinite sequence of
matrix transformations to find a similar matrix B = P- 1AP, such that the
evaluation of det (AI - B) is simpler than the calculation of det (AI - A).
We then find the eigenvalues as the zeros of piA), by means of an iterative
scheme, which does not explicitly use the coefficients of Pa. In the methods
based on the use of an infinite sequence of matrix transformations, the
eigenvalues themselves are usually explicitly exhibited in B. A special
calculation is then required to obtain the eigenvectors. In summary,
these methods may yield all of the eigenvalues without determining any
eigenvectors.

[We emphasize the practical importance of not finding explicitly the
coefficients of Pa(A) or piA) in order to evaluate the polynomials. All
experienced practitioners are aware of the large errors that may result
from the use of the approximate coefficients of Pa(A) or PA(A) for the
calculation of the zeros of the characteristic polynomials. We do not
study the methods based on finding the coefficients of piA).]

1. WELL-POSEDNESS, ERROR ESTIMATES

A simple criterion for localizing eigenvalues is given in

THEOREM 1 (GERSCHGORIN). Let A == (aij) have eigenvalues A and define
the absolute row and column sums by

Then,
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(a) each eigenvalue lies in the union of the row circles R;, i = I, 2, ... , n,
where

(b) each eigenvalue lies in the union of the column circles Cj , j = I,
2, ... , n, where

Cj == {z I Iz - ajjl ~ cj};

(c) each component (maximal connected union of circles) of URI or
I

U Cj contains exactly as many eigenvalues as circles. (The eigenvalues and
j

the circles are counted with their multiplicities.)

Proof (a) If A is an eigenvalue of A, then there exists an eigenvector
x i= 0 such that

Ax = Ax,
or

n

(A - ail)Xj = L aljxj,
j = I
j,oj

i= 1,2, ... ,n.

Pick an i such that Ixd = Ilxll", i= O. Then

IA - ail I ~ L laljll~1 ~ rl'j"l Xl

(b) Since the eigenvalues of A and AT are identical, (b) follows
from (a).

(c) Here we apply a simpler form of the basic lemma of the
theory of functions of a complex variable quoted in Chapter 1, Section 3,
namely:

LEMMA 1. The n zeros ofa polynomial

p(x) == x n + alXn- 1 + ... + an-IX + an

are continuous functions of the coefficients {aJ.

Consider the one-parameter family of matrices A(t) = D + tB, where
D == (aii8Ij) is a diagonal matrix and B = A-D. Consider, correspond­
ing to A(t), the circles RtCt) and Clt) with respective radii trl and tCj
about respective centers au and ajj' Now, A(O) = D and clearly (c) holds
for this diagonal matrix. The eigenvalues {A(t)} of A(t) are the zeros of
PA(t)(A) == det [..\I - A(t)]. As t increases continuously to t = 1, the
integer number of circles and, by Lemma 1, of eigenvalues in each com­
ponent of U RI(t) [or of U Clt)] varies continuously, and hence is

j j

constant, except for a finite number of values, t = t l , at which the number
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of circles in a component increases. At such values t = t l , (c) holds
because of Lemma 1. In other words, when the number of circles in a
component increases, the number of eigenvalues in the component
increases by the same amount. •

Gerschgorin's theorem has many applications; the first we make is in
the treatment of the well-posedness of the eigenvalue problem. In this
connection, it is necessary to introduce the notions of left and right
eigenvectors.

The eigenvector x that satisfies (0.1),

Ax = Ax, x # 0,

is more properly called a right eigenvector of A. Correspondingly a left
eigenvector, Y, of A is a vector that satisfies

(1) y*A = jLY*, Y # o.

In other words, Yis a left eigenvector of A iff Yis a right eigenvector of A*,
i.e., by starring both sides (by taking the complex conjugate transpose of
both sides),

A*y = flY.

(y* is also called a row eigenvector of A.) The sets of" left" {jL} and" right"
{A} eigenvalues are identical, since

det (Al - A) = det (AI - A) = det (AI - A*),

where the last equality follows from det B = det BT.
Now, when the matrix A is Hermitian, the left and right eigenvectors

are also identical; otherwise, when A is not Hermitian, the left and right
eigenvectors are distinct, in general.

LEMMA 2. Any left eigenvector, Y, and any right eigenvector, x, of the
matrix A, corresponding to any pair of distinct eigenvalues, are orthogonal,
i.e., y*x = O.

Proof Given as Problem 1. •

We say that the left and right eigenvectors are biorthogonal.
We may now ask, "How well-posed is the eigenvalue problem (0.1)

or (1)?" The answer is given in a special case by

THEOREM 2. Let A be of order n and have n linearly independent eigen­
vectors. For any fixed matrix C, with II CII = II A II, define the perturbed matrix

(2)
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Then, if Ais any eigenvalue of A, there is an eigenvalue A(.o) ofA(.o) such that

(3)

Moreover, if A is simple

(4)

IA(.o) - AI = l!J(.o).

lim A(.o) - A = y*Cx,
I.I~O .0 y*x

where x and yare, respectively, right and left eigenvectors ofA corresponding
to A.

Proof Let P be the matrix whose columns are the right eigenvectors
of A, i.e.,

(5) AP = PA

where A == (At;) is a diagonal matrix, such that {Att} are the eigenvalues of
A in some order. Therefore, from (5) and (2),

P-1A(.o)P = A + .op-1CP == A + .oE,
(6)

E == (elf) == P-1CP.

The estimate (3) now follows from Gerschgorin's theorem part (a), since
the eigenvalues of A(.o) are unchanged by the similarity transformation.

We can now improve upon (3), if the eigenvalue A = Att is simple.
That is, we observe that the circle Rl(.o) of the matrix P-1A(.o)P will not
intersect any other circles RtC.o), if H is small enough, since At! is distinct
from all other \f' Therefore, there is a unique simple eigenvalue A(.o) in
RiC.o) and therefore also a unique corresponding eigenvector x(.o) of A(.o).

Now, the eigenvalues A, A(.o) and eigenvectors x, x(.o) satisfy

(A + .oC)x(.o) = A(.o)x(.o)
(7)

Ax = Ax.

Therefore by subtraction,

(8) A[x(.o) - x] + .oCx(.o) = [A(.o) - A]x(.o) + A[x(.o) - x].

If we left-multiply both sides of (8) by the row vector y*, that satisfies
y*A = Ay*, then

(9) .oy*Cx(.o) = [A(.o) - A]y*x(.o).

The conclusion (4) follows if we show that

y*x #- 0

and that we may select x(.o) and x so that, as .0 -+ 0,

x(.o) -+ X.
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The fact that y 'I- 0 is orthogonal to each of the n - 1 other right eigen­
vectors of A, establishes the non-orthogonality of y and x. From the
relation (3), equation (7), and the assumed simplicity of A, we know that
the matrices A - AI and A + £C - A(£)/ have rank n - 1 and that we
can delete the same row and the same column from each to form non­
singular submatrices, if 1£1 is sufficiently small. Hence, if the deleted
column is the jth, we may set xk) = 1 and then, from Problem 3, x(£)
will converge as 1£1 -+ 0, to an eigenvector x satisfying (7). •

COROLLARY (BAUER-FIKE). Vnder the same hypothesis and definitions as are
used to establish (3), each eigenvalue A(£) of A + £C satisfies

(3') min IA(£) - AI =s; 1£IIICllpIIP- 1 1IpIIPllp,
1\

for any p-norm, Ilxllp= (,f: IXtlpf/P, with I =s; p =s; 00.

Proof Given as Problem 5. •

(10)

Observe that the algebraic Lemma of Section 3 in Chapter I suggests
only that (3) holds if Ais a simple zero of p A(A); but if A has multiplicity
m, then IA(£) - AI = (T}(£l/ m). On the other hand, although (9) holds for
the general case, (4) may not hold because y*x may vanish as shown in
Problem 2.

We see that when (4) holds, the well-posedness of the eigenvalue problem
for determining Adepends on the magnitude of

!
y*cxl·
y*x

Ifwe normalize the vectors, so that IIyl12 = IIxl12 = 1, and use the Schwarz
inequality (see Problem 6), there results

I
y*cxl < liCk
y*x - Iy*xl

In the special case that C= IIA 112V, where V is a unitary matrix (i.e.,
V* = V-I) such that Vx = y (see Problems 9 and 12), we find that
II C112 = II A 112 and furthermore

(10')
!
y*cxl = IIAII !y*y! =~ = liCky*x 2 y*x Iy*xl Iy*xl

Now, it is possible that the problem of finding A, an eigenvalue of A, is
not well-posed, although the problem of finding the same Aas an eigen­
value of B = P-lAP is well-posed (this fact is illustrated in Problem 13).
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(11)

The reader may on first impulse think that this statement is contradicted
by Theorem 3 given in Problem II. But a closer examination of Theorem 3
indicates that although the perturbed matrices A + €C and B + €D are
in the one to one correspondence D = P-1CP, the magnitudes of the
corresponding matrices, II D II and II ClI, may differ considerably unless
IIPII·IIP-III is not very large, since (see Problem 7)

liP II~I:IPII ~ IIp-ICPII ::; IICIIllp-IIIIIPII·

On the other hand, in the test for well-posedness of A, it is implied that we
consider only perturbations such that II CII = II A II or such that II D II = II BII·
Hence no contradiction is involved.

We may then justifiably say that when (4) holds for all Cand Iy*xl is
not small (for say 1IY112 = IIxl12= I), the eigenvalue problem for Aof A
is well-posed, since from (4), (10), and (10'), with IICII2 = IIAIb

max lim \A(€) - AI =~.
(e} .~O € Iy*xl

We have the immediate consequence of (10).

THEOREM 4. If A is Hermitian and A any eigenvalue of A, then the eigen­
value problem for A is well-posed.

Proof If A is not simple, use (7) and Problem 4 to find x(€) and x
with Ilx(€) - xii --+ O. Now set Y = x in (9) and note that y*x(€) --+ I. •

Fortunately, the most common matrix transformation methods use
orthogonal or unitary similarity transformations of A to produce a simpler
matrix B which, by accounting for roundoff errors, can be written as

The matrix P is unitary and, depending on the kind of arithmetic used,

(12)

where a = max lalil, p ~ 2, and t represents the number of figures used
I, i

in single precision arithmetic. A priori error estimates of the form (12)
have been obtained by Givens and Wilkinson. We shaH not pursue this
topic but rather give an account of some a posteriori error estimates.

1.1. A Posteriori Error Estimates

In the case of a Hermitian matrix, A, we can give a simple error estimate
for a computed eigenvalue, A, in terms of the residual vector, YJ.
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Let A be a Hermitian matrix of order n and have eigenvaluesTHEOREM 5.
{At}. If

(13)

then

Ax - Ax == lJ, x '# 0,

Proof Since A is Hermitian there exists, in en, an orthonormal basis
of eigenvectors {Ut} such that

i = 1,2, ... , n.

Therefore, we can express x as a linear combination

(14)

with at = ut*x. From (13) and (14),

n

lJ = L at(At - A)ut.
t= 1

Hence

lJ*lJ = i lad 2(A t - A)2.
t= 1

Therefore

(15)

with

Note that
n

L bt = 1,
t =1

whence
n

min (At - A)2 ::::; L bt(At - A)2.
t t =1

The conclusion

is thus established.

min IA - AI < IllJI12
I t - Ilx!12

•
An cbvious way to improve upon A when given an approximate eigen­

vector, x, is suggested by Theorem 5, namely
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THEOREM 6. Given A, a Hermitian matrix, and x, the residual vector "I
defined by (13) is minimal for

(16) A = A = x*Ax.
R - X*X

Proof The quadratic expression in A

11"11122 = (x*A - Ax*)(Ax - Ax) = x*A2x - 2Ax*Ax + A2X*X

assumes its minimum at A = AR • That is,

min "1*"1 = x*A 2x - AR2X*X.
A •

The quantity AR defined by (16) is called the Rayleigh quotient and will
be referred to later on in the discussion of iterative methods.

For the Hermitian matrix A, with eigenvalues {At} and corresponding
eigenvectors rUt}, let Ur denote the linear space spanned by the eigenvectors
Uj, i = 1, 2, ... , r. If we know something about the spacing of the eigen­
values, we may be able to estimate the error, Ilx - Urb of an approximate
eigenvector x. (We use here the notation for distance between a vector x
and a set S:

Ilx - SII = g.l.b. Ilx - yll·)
yeS

That is,

THEOREM 7. If IAt - AI :s; 11"1112 for i = 1,2, ° 00' r, with A, "I, and x that
satisfy (13), (14); IAt - AI ~ d> Ofor i = r + I, r + 2,. 0 0' n, then

(17)

Proof From the above definition and (14),

(18) Ilx - Ur l1 22 :s; Ilx - .i a(utII22 = i lat l2.
t=l t=r+1

Now by (13) and (14)

11"11122 = i la,12(At - A)2 ~ i lat I2(A( - A)2.
i=l f=T+l

Hence by the hypothesis on the spacing of eigenvalues,
n

d 2 L laf l2 :s; IIYJlll,
t =r + 1

or
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•
Theorems 5 and 7 give us a posteriori estimates for the error in an

approximate eigenvalue and eigenvector of a Hermitian matrix. These
estimates do not require detailed information about all of the eigenvalues
and eigenvectors of the matrix. Unfortunately, for a non-Hermitian matrix,
the situation is more complicated and we state

THEOREM 8 (FRANKLIN). Let A be of order n, and have a set of n linearly
independent eigenvectors {Ut}, eigenvalues {,\}, which satisfy AU = VA,
with V == (Ub U2, ... , un), A == (,\8 t /).

Iffor some E > 0,

(19)

then

(20)

Proof Define b == U -lX, so that

X = Ub,

(21)

Ax - Ax = U(A - '\l)b.

Now y = V- 1(Vy), implies Ilyll ::; IIU- 1 111IUyll. Therefore

(22)

With y == (A - AI)b, (22) and (21) imply

(23)

But from (19) and (23)

Ell VAbl1 2= EIIAxl1 2 :2: IIAx - Axl12 :2: II V- 1 112 -lll(A - AI)bI1 2.

Hence

Therefore, since Ax # 0 implies Ab # 0,

(24) II(A - Al)bl1 2< IIV- 1 11 IIVIIIIAbl1 2 - E 2 2·
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Now, let b have components (bi ), i = 1,2, ... , n. Clearly with the norm

11·112
n

II(A - AI)b11 22= L IAt - A/2Ibd 2 :2: L IAt - A1 21bd2;
i ~ 1 AI" 0

II Ab l1 22= i 1\121bj 12= L IAj l2lbj l2.
j=l Aj"O

Therefore,

II(A - A/):" 22 > L II _~12 IAtbd 2
IIAbl1 2 - At"O At a

2

where a2 == L IAj l2lbj l2. Hence
Aj" 0

(25) II(A - A/)b11 22> min II _~12
IIAbl1 22 - Ai"O At

since IAtbtl2/a2 :2: 0 and L IAtbtl2/a2= 1.
At ,,0

By combining the inequalities (24) and (25), the estimate (20) results. •

We have also the

THEOREM 9. The hypothesis of Ttleorem 8, with (19) replaced by

(19') IIAx - Axl12 :<;; .. llxlb
implies

(20') min IA - Ad s .. II V-111d V112'
t

Proof Left as Problem 8. •

Unfortunately, Theorems 7 and 8 require information about the matrix
of eigenvectors, which is not generally available in problems where we are
only interested in obtaining a few of the eigenvalues and eigenvectors. In
the special case of a Hermitian matrix, A, the matrix of eigenvectors, V,
is unitary (see Problem 9), whence IIVI12 = 11U-1b = 1. In this case, the
estimate (20') of Theorem 9 reduces to the estimate given in Theorem 5.
If, on the other hand, for the case that the eigenvectors {Ut} of A form a
basis of en, we have a set of vectors {Vi} that approximate the eigenvectors,
then let P == (Vb V2, ... , Vn).

Clearly, if we define Rand .. by

P-1AP == A + ..R
where A == (AtDij), II R II = I, then .. is small when P is a good approximation
of V. The Gerschgorin circles may now be small enough to give close
estimates for the eigenvalues.
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1. Ify is a left eigenvector and x is a right eigenvector of A, corresponding to
distinct eigenvalues, show that y*x = O.

2. (a) Show that the left and right eigenvectors corresponding to A = 1,
are orthogonal for

A == (~ ~).

(b) Find the eigenvalues A(..) for A(..) == A + ..C,

C == (~ ~),
and verify that

IA(..) - AI = (l)ev€).

(c) Find the eigenvectors x(..) of A(..) and verify by substitution that
(9) holds and that both the eigenvectors x(..) converge to the eigenvector of A.

3. Let Band B(..) be of order n, have rank n - I, and

as .. --+ O.

Show that for 1.. 1 sufficiently small there exists a vector x(..) in the null space
of B(..), Le.,

B(..)x(..) = 0,

Ilx(..)II"" ;:.; 1
such that

and

where
x(..) --+ x(O) as .. --+ 0,

Bx(O) = o.

[Hint: Since B(..) --+ B, we see that for all sufficiently small 1.. 1, the (II - l)st
order square submatrices Bli of Band Blf(") of B(..) found by deleting the ith
row and jth column from each of Band B(..) for some pair of indices (i,j),
are non-singular and Blf(") --+ Bli . Hence, the Gaussian elimination method
may be used to triangularize Bli • The same pivotal elements may be used to
triangularize Bll..) for 1.. 1 sufficiently small. Set x,(..) = I and solve B(..)x(..) = 0

by using the above triangularization.]
4. Let Band B(..) be of order n, B have rank n - r, B(..) have rank < n,

and
B(..) --+ B as .. --+ O.

Let the null space of B be S == {x I Bx = o}.
Show that for 1.. 1 sufficiently small, there exists a vector x(..) in the null space

of B(..), such that
IIx(..)II"" ;:.; 1,

min Ilx(..) - xii --+ 0 as
xeS

.. --+ O.

5. Carry out the proof of (3') (see corollary to Theorem 2).
[Hint: Let x(..) ¥- 0 be any eigenvector satisfying

(A + ..C)x(..) = A(..)x(..).
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With the matrices P and A used in the proof of Theorem 1,

If A(€)/ - A is singular, (3') holds. If A(€)/ - A is not singular,

P- 1x(€) = €[A(€)/ - A]-IP-1CP[P- lX(€)].

Take any norm II· lip of both sides to get (3').]
6. Apply Schwarz' inequality (i.e., Iy·xl ~ Ily11211x112) to show that

ly·Cxl ~ IIC11211y11211xllz.

7. Show that

IICII < IIP-1CPII ~ IICII liP-III IIPII·liP l1111P11 -

[Hint: C = P(P- 1CP)P- 1.]
8. Prove Theorem 9.
[Hint: Estimate

II(A - Al)bl1 22
L IIbl122

n

L lA, - A1 21b,12
'=1 n <': min lA, - AI 2.]

L Ibj l2 '
j= 1

9. If U is unitary, show that II UI12 = II U -1112 = 1.
10. If Pm(A) == coAm + C1Am-1 + ... + cm, and A has the eigenvalues {A,}

and the eigenvectors {ull, then Pm(A) has the eigenvalues {Pm(A,)} with the same
eigenvectors.

If A is Hermitian, show that the Rayleigh quotient, defined by (16) for any
x # 0, satisfies

where Al and An are the smallest and largest eigenvalues of A.
11. Prove

THEOREM 3. Let x be a right eigenvector and y a left eigenvector of A for the
eigenvalue A. For the similarity transformation given by any non-singular P, set

B == P-1AP,

•

Then y·Cx/y·x is invariant under P.
[Hint: u == p- 1 x is the right eigenvector of B corresponding to x; v == p.y

is the left eigenvector of B corresponding to y; €p-l CP is the perturbation
corresponding to €e. Hence, with D == p-1CP,

v· Du = v·p- 1 CPu = y.cx.J
v·u v·u y·x

12. Given x and y with IIxl12 = IIyl12 = 1, construct a unitary matrix C
such that Cx = y.

13. Construct the matrix A which has the eigenvalues Aj and the cor­
responding eigenvectors Xj where Xlk = 1 for I ~ k ~ n, Xkk = S for
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2 :<::: k :<::: n, and Xli = 0 otherwise. Show that the left unit eigenvectors Yi
are determined by the biorthogonality property. Hence verify that

(
IS[ )IYlli = (!) Vn _ I ' and (Vn=J")!Y·X!-l = (!) -IS-I- .

(Therefore, for small S, the eigenvalue problem for finding Al is not well­
posed. But the eigenvalue problem for B == P- 1 AP is exceedingly well-posed
if P == (XI, X2, ... , x n ).)

[Hint: Start with the diagonal matrix B == (A,S'i) and P. Construct P- 1 and
then A = PBP- 1

• Sketch a picture of Xi and Yi in the three dimensional case.]

2. THE POWER METHOD

The power method, in its basic form, is conceptually the simplest
iterative procedure for approximating the largest or principal eigenvalue
and eigenvector of a matrix. Let us assume, throughout this subsection,
that the nth order matrix A has real elements (aj j ), n linearly independent
eigenvectors {Uj}, j = I, 2, ... , n, and a unique eigenvalue of maximum
magnitude, i.e., the eigenvalues satisfy

Since the \ are the roots of a characteristic polynomial with real co­
efficients, the complex eigenvalues occur in complex conjugate pairs.
Hence Al is real. Since U1 satisfies AU1 = A1Ub the components (un) of
U 1 may be taken to be real.

Let Xo be an arbitrarily chosen real n-dimensional vector and form the
sequence of vectors

(1) v = 1,2, ....

Since A has a complete set of eigenvectors {Uj}, say with components
(Uij), there exist n scalars aj such that

(2)

Then the sequence (1) has the representation

v = 1,2, ....

n

Xv = 2: \Vajuj
j=l

(3)

= A1v[a1u 1 + j~ (~) VajUj] ;

Now clearly, since IAj / All < 1 for all j ~ 2, the directions of the vectors Xv

converge to that of U1 as v -+ 00, provided only that a1 #- O. Of course,
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A1
v, in general, either converges to zero or becomes unbounded, and so

the sequence (I) may not be practical for computations. However, a
simple scaling of the iterates Xv, to be introduced later, will remedy this
defect.

Since Xv, for large v, may be a close approximation to the eigenvector
belonging to AI' we can employ the methods indicated in the introduction
to approximate the eigenvalue. Thus let us form the ratio of, say, the kth
components of Xv and Axv = XV+ 1 • Call the ratio G V +1 and get from (3),

(4)

If a1 =1= 0 and k is chosen such that Uk1 =1= 0, then for v so large that
IA2/Ad v « I, (4) yields

(5)

Thus, in approximating the eigenvalues, the growth or decay of A1 v

causes no theoretical difficulties. The convergence of G v to Al is seen to be
at least of first order with ratio at most IA2/All. As in our previous studies
of iteration schemes (e.g., Chapter 2, Section 4; Chapter 3, Section I),
we may define the rate of convergence as

(6) R = In I~I'
Difficulties in convergence may be expected if the first two eigenvalues
(in magnitude) are" close."

Another way to approximate Al is by means of the Rayleigh quotient
indicated in (0.3). Thus we define

(7)
, x/Axv X v*XV +1

G V +1 = X*X =~.
v v v v

Then from (3) and (7) we have

A calculation reveals that G~ converges to Al just as does G v [i.e., as in
equation (5)]. However, if the vectors Ut are mutually orthogonal or say
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for convenience orthonormal, i.e., uj*u j = 8tj , then by Problem I, A is
symmetric and has real eigenvalues and eigenvectors, so that

(8)

Hence,

(9)

when A is symmetric, and the rate of convergence in this case is twice
that of the scheme used in (4). Of course, this gain in using (7) is only
achieved when the matrix A is symmetric. An interesting motivation for
using the approximation (7) in general is furnished in Problem 2; this
result should be compared with that of Theorem 1.6.

In order to terminate the iterative computations (I) and (4) or (7), a
variety of different tests can be suggested. For instance, if the quotients
in (4) agree for several values of k (i.e., ratios of several components)
then a fairly good approximation to '\1 has been obtained. Usually the
obvious test of little or no change in the eigenvalue iterates U v or u~ for
several successive values of v may be successfully employed. However,
a quantitative test, based on Theorems 1.8 or 1.9, requires little additional
computing and yields very precise information when A is symmetric.
That is, pick an arbitrary £ > 0 and iterate until

(10)

(11)

Here u = U V +l or U~+I' From Theorem 1.8, we then find

mjn II - ~I :5 £ IIVk II U-1112'

For sufficiently large v we can be assured that the minimum in (11) is
attained for j = 1 [assuming as usual that al #- 0 in (2)].

Thus, a bound on the relative error in approximating '\1 is attained.
However, the quantities IIV 112 and II U -1112 cannot be estimated in the
general case. But if A is symmetric, the matrix U is unitary and

Thus for the symmetric case the condition (10) implies the precise bound

(12)
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The present iterative scheme usually requires that the iterates Xv be
scaled at each step of the process. Thus in place of the sequence (1), we
actually calculate, with arbitrary Yo,

(13) v = 1,2, ....

The sequence of scale factors, Sv, can be chosen in a variety of ways.
The two most commonly used choices are

(14a)

and

(14b)

Sv = max Ifj . vi = II;vlloo,
j

The choice (14b) requires the taking of a square root at each step, but the
Rayleigh quotient estimate (7) of the eigenvalue becomes, since IIYvl12 = I,

(a' )2 = yv*Ayv
v+l Yv*Yv

= YV*;V+l'

The ratio estimate (4) is now computed as

fk. v + 1
a V +l =~.

The convergence test (10) now takes the form

II;V+1 - ayvl12 ::; £11;v+1112'
If the normalization (14b) is employed the computations for this test can
be simplified to

In any event, the convergence rates of (5) or (9) still apply in the appro­
priate cases as do the error estimates (II) or (12).

The power method as presented here is frequently adequate for approxi­
mating a simple principal eigenvalue and eigenvector. In the event that
the principal eigenvalues are Al = :\2, i.e., complex conjugate, but simple,
then the numbers AI. A2 will be approximated by the roots of a quadratic
equation found by examining three successive iterates X n , X n + I. and
Xn + 2 (see Problem 6). Similarly, if the principal eigenvalue has a known
multiplicity, the scheme for approximating Al can be suitably modified
(see Problem 7).

Of course, if the matrix A has no zero components, the operational
count for each iteration (1) is n2

, in general. We now turn to modifications
of the power method which improve its rate of convergence.
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2.1. Acceleration of the Power Method

Convergence to the principal eigenvalue by the power method has been
shown to be geometric with convergence factor 1.\2/.\11 (or by using the
Rayleigh quotient for a symmetric matrix, the eigenvalue convergence
factor is 1.\2/.\11 2). This ratio is frequently too near unity for practical
computations. Thus we seek modifications, analogous to those employed
in Chapter 2, Section 5, and Chapter 3, Subsection 3.3, to accelerate the
convergence.

Assume A to be symmetric with unique principal eigenvalue .\1 and con­
sider the power method for the modified real symmetric matrix

(IS)

The eigenvalues III of Bare

B == A + aI.

Ilj =.\1 + a, i= 1,2, ... ,n.

If III is the unique principal eigenvalue of B, the rate of convergence is now
determined by

I
.\i + almax --_.

N1 .\1 + a

We minimize this ratio with respect to a and find, if the .\i are now ordered
by

that the optimal value of a is

(16)

The proof is a simple modification of that of Theorem 5.1 in Chapter 2.
In order to apply this improvement, estimates of .\2 and .\n are required.

Such estimates may require auxiliary computations which is one of the
disadvantages of the proposed acceleration procedure. For example,
if a crude estimate a of .\1 is known (obtained perhaps by the ordinary
power method) then the principal eigenvalue of C == A - al will be
.\n - a. Thus the power method applied to C will yield an estimate of .\no
Good estimates of .\2 are more difficult to compute. However, if u is an
approximation to Ur. then using any X o such that xo*u = 0 as the initial
vector in (I) for a few iterations may yield a reasonable estimate of .\2
(assuming, of course, that 1.\21 > I.\nl). The reason is that, if X o is almost
orthogonal to u1, then 01 in (3) will be quite small. Whence, for appro­
priately "small" values of v, we may have l'\lva11 « 1'\2va21 and the ratio
xk,v+r!XkV will be a better approximation to.\2 than to '\1'
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On the other hand, if we are given a and (3 such that, for example,

(17)

then more efficient acceleration schemes for finding Al can be devised.
Let Pn.(A) be a polynomial of degree m, say

(18)

(19)

By Pm(A) we indicate the matrix which is the corresponding polynomial
in the matrix A. In Problem 10, it is shown that the eigenvalues of Pm(A)
are {Pm(At)}. We now consider the power method applied to the matrix
Pm(A) with the initial vector X o of (2). In place of (3), we now get after T

iterations
x, = Pm(A)X'-l

= Pm'(A)xo,

'(' )[ ~ (Pm(A j
))' ]x, = Pm "I a 1u 1 + j~ Pm(A

1
) ajUj •

To evaluate x" we do not actually form the matrix Pm(A) but recursively
compute the vectors AX'_l> ... , AmX'_l' Thus the number of operations
performed in one iteration of (19) is equivalent to that for m iterations of
(1). We then can compare the convergence rate by examining

max 1~lm and
j'i'l "I

In fact, the" best" polynomial (18) of degree ~ m to employ is that for
which max IPm(z)jPm(A 1) I is a minimum on a ~ Z ~ {3. This problem has

z

previously been met in Chapter 2, Section 5, in a similar context. The
determination of this best polynomial is described in Chapter 5, Section 4,
where we study the Chebyshev polynomials.

When the iterate x, has been computed the approximations a, + 1 or
a; + 1 are formed as bef6re by using Ax, and x,. The convergence test (10)
may still be employed.

The convergence of the eigenvalue and eigenvector iterates can also be
improved by the S2_process described in Chapter 3, Subsection 2.4 (see
Chapter 3, Problems 2.6, 2.7), when A has a unique principal eigenvalue
and a complete set of eigenvectors (see Problem 5).

2.2. Intermediate Eigenvalues and Eigenvectors (Orthogonalization,
Deflation, Inverse Iteration)

In the previous section, we have indicated procedures whereby the power
method could be modified to obtain estimates of A2 and An. The careful
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application of these methods can be made to yield accurate approximations
to several eigenvalues and their eigenvectors. In principle, all the values
(of a real symmetric matrix) could be determined by these procedures,
but in practice much accuracy may be lost in the later stages of the process.

Assume that A is symmetric, with principal eigenvalue '\1' and that the
ordering is

The matrix A - al has eigenvalues ,\j - a and, for real a, has principal
eigenvalue either '\1 - a or '\n - a (since the above ordering is preserved).
If a ~ '\1 then '\n - a is the principal eigenvalue of A - al and by the
ordinary power method '\n and Un can be accurately approximated. (Note
here that Theorem I.I provides bounds for {'\;}, whence such a a may be
obtained.)

However, this device cannot readily be used to yield the intermediate
eigenvalues.

The orthogonalization method is suitable for determining intermediate
eigenvalues and eigenvectors and will be described next. Once Ul has been
accurately determined, we may form a vector Xo which is orthogonal to Ul'

Such a vector has the eigenvector expansion (2) in which al = O. For
example, if z is any vector then

(20)
Ul*Z

Xo = Z - -*-u1
Ul U1

has the property, XO*Ul = O. Now the sequence Xv is formed and used
to compute '\2 (assuming 1'\21 > I'\jl, j = 3,4, ... , n) and U2' However,
after several iterations, roundoff errors will usually introduce a small but
non-zero component of Ul in the Xv and subsequent iterations will magnify
this component. This contamination by roundoff may be reduced by
removing the U1 component periodically; i.e., say after every r steps Xo

is recomputed by using Xr in place of z in (20). When '\2 and U2 have been
determined in this manner the procedure can in principle be continued to
determine '\3 and U3'

In general, if '\i and Ui are known for i = 1,2, ... , s then we form, for
arbitrary z,

(21)
s u.*z

X o = Z - 2: ~Ui'
i= 1 Ui Ui

Since the Ui are orthogonal, with z = i ajuj , we find that
j=l
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and the power method applied to this X o will yield .\s + 1 and Us + l' The
roundoff contamination is more pronounced for larger values of sand
hence (21) must be frequently reapplied with z replaced by the current
iterate, Xv'

If the matrix A were not symmetric, but did have a complete set of
eigenvectors, then the corresponding biorthogonalization process could
be carried out. For example, the unique principal left and right eigen­
vectors VI and U1 could be found: Ul by the iteration scheme (1); and VI

by the scheme, with Yo arbitrary,

(1 *) v = 1,2, ....

The unique next largest eigenvalue .\2 could be found by selecting, for z
arbitrary,

(22a)

or

(22b)

and then applying the power methods (1) or (1 *) respectively. The vectors
{xn} and {Yn} are orthogonal to VI and Ul respectively (see Problem 8).
Of course, in practice, the effect of rounding errors would have to be
removed by periodically re-biorthogonalizing the vectors {xn} and {Yn}'
To Problem 9, we leave the development of the analog of (21) for the
determination of \+1' us+ b and Vs +l'

A method for roughly approximating .\2 and U2 for the symmetric matrix
A is motivated as follows. With (I), (2), and (3), we define

(23)
n

Zv == Xv - '\l val u l = 2: '\/aju j,
j~2

v = 1,2, ....

By taking ratios of, say, the kth components of Zv and Zv + 1 we have,
assuming 1.\21 > 1.\31 ~ ... ~ I.\nl,

_ Zk. v+ 1 \ (1.\3I V
)

U V +l = -z;;:- = "2 + (!) X;; .

Similarly, by forming the Rayleigh quotient we have

u' = ZV*ZV+l =.\ + (!}(1~12V).
v + 1 Zv*Zv 2 .\2

Also as v --+ OCJ the direction of Zv converges to that of U2'
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Unfortunately, the process defined by (23) with

and

has the feature that many significant figures are lost in (23) as II gets large.
But these values a v+ 1 or a~ + 1 are good approximations of A2 only for large
II. Hence we must choose II judiciously in order to get a reasonable estimate
of A2 and U2' This procedure can be readily adapted for the sequence of
normalized iterates {Yv} defined in (13). It should be noted that the vectors
{xv} (or {YvD which are required have already been computed in determining
Al and U1. Thus, with little extra computation, we have found a rough
approximation for A2 and U2'

These two procedures removed components of the known eigenvectors
from the iterated vectors. However, it is also possible to alter the real
symmetric matrix A so that the known eigenvectors then correspond to
zero eigenvalues. Iteration on an arbitrary vector with this altered matrix
then automatically eliminates the known components. Thus, suppose
Ul and Al are known and that Ul is normalized by IIu11122 = U l *Ul = I.
Then we may form the matrix Al as follows

(24)

Since A is symmetric, so is AI' We also note that AlUI = o. For any other
eigenvector, Uj, belonging to an eigenvalue, \, j > I, it follows from the
orthogonality of the eigenvectors that A 1u; = A;u;. Thus Al has all the
eigenvectors of A and all its eigenvalues except Al which is replaced by
zero. A simple calculation and proofby induction reveals that (see Problem
10)

(25)

A comparison of this result and the sequence {xv} with X o given by (20)
shows that,for exact computation with normalized eigenvectors, the present
method is exactly equivalent to the orthogonalization method. The cancel­
lation errors of (23) do not occur now but instead an error grows due to
the fact that the Al and U1 employed are not an exact eigenvalue and eigen­
vector respectively. Thus the computed Al does not satisfy (25) exactly.
However, iterations with Al are usually more accurate than the more
economical computations in (23).
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If the matrix A were sparse (many zero elements), then we would not
recommend using (24) since it would, in general, produce a full matrix AI'
When '\2 and U2 have been determined from AI, the procedure can be
repeated by forming A 2 = Al - '\2U2U2*' etc., to determine the remaining
eigenvalues and eigenvectors.

In the above modifications of the matrix A, the resulting matrices AI<
are still of order n. It is, in principle, possible to successively alter the
matrix A, so that the resulting matrices BI< are of order n - k, k = 1,
2, ... , n - I, and have the same remaining eigenvalues. Such procedures
are called deflation methods, by analogy with the process of dividing out
the roots of a polynomial as they are successively found. For example,
the simplest such scheme is based on the method used in Theorem 1.1 of
Chapter 1 to show that every matrix is similar to a triangular matrix.
(The deflated matrices are the AI< defined there.)

We now describe another scheme, which has the additional feature that
when the matrix A is Hermitian, the deflated matrices are also Hermitian.

Let Au = '\u, u*u = I, UI ::::: 0; set

(26) P = 1- 2ww*,

where w is defined, with e l == (on), by the properties

w == (Wi)'

(27) w*w = 1,

Pel = u.

k = 2,3, ... , n.(28)

In Problems II and 12, we show that P is unitary and that the components
(Wi) of ware defined by

_(I - UI)Y.
WI - --2- ,

Now it is easy to see that

whence

(29)

Equation (29) shows that e l is an eigenvector of

(30) B I == P-IAP = PAP.

Therefore, the first column of B I is '\e l • In other words, A has been de­
flated.t This process can be continued with the matrix Al of order n - 1

t In practice the evaluation of B k could be performed economically by adapting the
procedure described in equations (3.16 k ).
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consisting of the last n - 1 rows and columns of B I • Let the matrix, Q,
of order n - I be of the form (26), and satisfy (27) and (28) relative to
the matrix Al with an eigenvalue jL and eigenvector v (of order n - I).
Then set

where 0 is of order n - I. It is easy to verify that P is unitary, in fact,
p I - I = PI * = Pl' Hence the matrix

Bz = PIPAPPI
has the form

A az a3 an

0 jL b3 bn

Bz = 0 0

Az

0 0

where Az is of order n - 2. This process may be continued to provide a
proof of

THEOREM 1 (SCHUR). The matrix A, of order n, is unitarily similar to a
triangular matrix.

Proof Left as Problem 13. •
COROLLARY.

matrix.
The Hermitian matrix A is unitarily similar to a diagonal

•
Finally, we describe another iteration scheme for determining the inter­

mediate eigenvalues and eigenvectors. This procedure is called inverse
iteration and is based upon solving

(31) (A - aI)xn = Xn - h n = 1,2, ... ,

with Xo arbitrary and a a constant.
Clearly, (31) is equivalent to the power method for the matrix (A - aI) -1.

We may use Gaussian elimination and (31) to calculate Xn•

Of course, the procedure will produce the principal eigenvalue of
(A - aI) - \ i.e., I/(Ak - a), where

IAk - al = min IAt - ai,
I

provided that a is closer to the simple eigenvalue Ak of A than to any
other eigenvalue of A. Each iteration step, after the first triangularization
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of A - aI, requires about n2 operations. The first iteration step requires
about n3 j3 operations [see Chapter 2, equation (1.9)]. The inverse
iteration method is very useful for improving upon the accuracy of an
approximation to any eigenvalue.

Other iteration schemes based on matrix transformations have been
devised to approximate the normal forms given in Theorem I and the
corollary. We treat such schemes in the next section.

PROBLEMS, SECTION 2

1. Prove that a real square matrix A of order n is symmetric iff it has n
orthogonal eigenvectors.

2. Let A, y, and a be real. Show that the scalar a such that ay is the best
mean square approximation to the vector Ay is given by

I y*(A + A*)y y* Ay
a = 2 =---'----y--:*;:"""y-....:..::.. = y*y'

[Hint: (y* A*y) = (y*Ay)*; 117) 1122 = 7)*7).]
3. Show that if A is Hermitian, then with A = S + iK, where S is real

symmetric, K real skew-symmetric, the eigenvector u = x + iy and eigenvalue
Asatisfy

Verify that if Ais a simple eigenvalue of A, then Ais a double eigenvalue of the
compound matrix.

4. The power method for computing left eigenvectors is based on the
sequence

JI = 1,2, ....

Then, with the use of the sequence (I), we may approximate Al by

" Zv·XV + 1
G V +l = Zv·xv.

Show that, if the matrix A has a complete set of eigenvectors and a unique
principal eigenvalue, then a~ converges with the ratio IA2 fA l I2. (Note, however,
that twice as many computations are required to evaluate each iteration step
here.)

5. Use Problems 2.6 and 2.7 of Chapter 3 to find the improvement in eigen­
values and eigenvectors obtained by applying the S2_process to av+l of (4)
or a~ + 1 of (7), when A is real symmetric and has a unique principal eigenvalue.

6. Show how to find the coefficients s, p of the quadratic equation
A2 - sA + p = 0, that is satisfied by the unique complex conjugate pair of
simple principal eigenvalues Al> A2 of the real matrix A.

[Hint: Given Al = ).2; IAll = IA21 > lAd, i = 3,4. o. 0' n; assume that for
the corresponding eigenvectors Ul and U2 = Ul> the respective first components
Ull and U12 are maximal. Then apply the technique of Bernoulli's method,
Chapter 3, equations (4.16)-(4.18).]
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7. When the maximal eigenvalue has multiplicity m, how can the power
method be used? (See Chapter 3, Problem 4.5.)

8. Verify that the sequences {xnl and {Ynl defined by (1), (1*), and (22) are
orthogonal to Vl and U1 respectively. That is, show

[Hint: Use induction with respect to n.]
9. Develop the biorthogonal analog of (21), for the case that A has a com­

plete set of eigenvectors. Describe the power method for the determination
of the unique intermediate eigenvalues when 1'\11 > 1'\21 > ... > I'\nl·

[Hint: Generalize (22) and use Problem 8.]
10. Prove (25), Le., if A is real symmetric, Au = '\u, and Ilul!2 = 1, then for

all z and v = 1, 2, ... ,

(A - '\uu*)Vz = AVz - ,\V(u*z)u.

11. Prove that the Hermitian matrix

P = 1- 2ww*

is unitary, in fact p-l = p* = p, iff

w*w = 1.
12. With

Ul ~ 0, u*u = 1,

and

show that if the matrix P of (26) satisfies (27), then

_(1 - Ul)Yz
Wl - --2-

k = 2,3, ... , n.

13. (a) Give a complete proof by induction on n of Theorem 1 (Schur),
along the line indicated in text.

(b) Give another proof of Theorem 1 by making use of Theorem 1.1
of Chapter 1.

[Hint: Construct B = P- 1 AP where B is triangular. Since P is non-singular,
construct a matrix Q whose columns are an orthonormal set of vectors formed
successively from the columns of P so that P = QR, where R is upper tri­
angular and non-singular. Therefore RBR - 1 = Q - 1 A Q. Show that the prod­
uct of two upper triangular matrices and the inverse of an upper triangular
matrix are upper triangular matrices.]

3. METHODS BASED ON MATRIX TRANSFORMATIONS

The methods of Section 2 are suitable for the determination of a few
eigenvalues and eigenvectors of the matrix A. However, when we are
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interested in finding all of the eigenvalues and eigenvectors then the
methods based on transforming the matrix A seem more efficient. Attempts
to implement Schur's theorem, by approximating a unitary matrix H
which triangularizes by similarity the given general matrix A, have been
recently made. We shall describe one of these later. In the case of a Hermi­
tian matrix A, however, the classical Jacobi's method does work well to
produce a unitarily similar diagonal matrix. The methods of Givens and
Householder produce either a similar tridiagonal matrix for a Hermitian
A or a similar matrix of Hessenbergt form for a general matrix A, with the
use of a unitary similarity transformation.

We will first describe Jacobi's, Givens', and Householder's methods for
treating the Hermitian matrix A. In this case, since the computational
problem in practice is usually reduced to that of finding the eigenvalues
of a real symmetric matrix (see Problem 2.3), we will assume that A is
real symmetric. All of these methods, however, require only simple
modifications to be directly applicable to the Hermitian case. Jacobi's
method reduces the real symmetric matrix A by an infinite sequence of
simple orthogonal similarity transformations (two dimensional rotations)
to diagonal form. The following lemmas provide the basis of the procedure.

LEMMA 1. Let B == p-1AP. If P is orthogonal (unitary), then

trace (B) = trace (A),
(1)

trace (B*B) = trace (A*A).

Proof Since B and A are similar matrices, the eigenvalues of Bare
the same as the eigenvalues of A. By definition,

trace (A) = i alt·
j= 1

The eigenvalues of A are the roots of

piA) == det (AI - A) = O.

By partially expanding the determinant, the coefficient of An in piA)
is seen to be unity while the coefficient of An -1 is - trace (A). Hence, we
find that

trace (A) = i Al = trace (B).
I~ 1

The orthogonality of P, i.e., p* = P -1, implies

B*B = (P*A*P)(P*AP) = P*A*AP.

Again, because the eigenvalues are unchanged under a similarity trans­
formation, the trace of A*A is unchanged. •

t See the definition of (upper) Hessenberg form in Problem 1.7 of Chapter 2.
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LEMMA 2. Let
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(2a)

be formed from elements ofa real symmetric matrix A and let

R == (ru rtf),
r ft rJJ

with ru = rJJ = cos <P, rtf = -r;t = sin <P, where

(2b)

Then

and

is a diagonal matrix.

Proof Let

7T 7T__ < .J.. <_.
4 - 't' - 4

R* = R-l

BI , == (bu btf
).

. b;t bJJ

Equation (2), by Problem 1, guarantees that bt; = b;t = O.

By Lemma I, since At; and Btf are orthogonally similar,
•

(3)

We say that the matrix R reduced to zero the element al;' We now con­
struct an orthogonal matrix of order n, to reduce to zero the element
atf of A. Let

(4)

where

and
Pt; = rtf'

otherwise.

With the elements rit , rtf' rib r;; defined in (2), p*p = pp* = I.
We call such a matrix P a two dimensional rotation. Now set,

Clearly, bi ; = bft = O. Hence the matrix P reduces to zero the element
at; of A. We now can show that P reduces the sum of the squares of the
off-diagonal elements of A. From the definition of trace (A* A), it is easy
to verify that

n

trace (A*A) = L: atl.
I. f= 1
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Now, by Lemmas 1 and 2 and equation (3), we find, since bkk = akk for
k #- i,j,

(5) L br/ = trace (B*B) - i bss
2

T*S s=1

= trace (A* A) - i as/ - 2ail
s= 1

= L ar / - 2atl·
r"s

If we pick (i,j) so that atl = max {akS 2}, then
k"s

(6)

In fact, (6) is satisfied by any ail that is not less than the average of the
squares of the off-diagonal elements of A.

By substituting the inequality (6) in (5), we have

(7)

Therefore, each two dimensional rotation defined in (2) and (4), and such
that (6) holds, reduces the sum of the squares of the off-diagonal elements
of a symmetric matrix A by a factor not greater than

2
1---<1

n2
- n

for n ~ 2.

In addition, we observe from (3) and the phrase preceding (5) that

(8)
n n

L bss
2 = L as/ + 2atl·

5=1 s=1

We therefore have the basis for proving

THEOREM 1 (JACOBI). Let A be real symmetric, with eigenvalues {/\};
let the matrices {Pm} be two dimensional rotation matrices of the form (4)
defined successively so that an above-average element of

Bo == A

is reduced to zero by Pb and thereafter Pm reduces to zero an above-average
element of Bm _ 1 in the similarity transformation defining Bm,

m = 1,2, ....
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Let

(9)

Then, as m -+00,
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Qm*AQm -+ A,

where A == (Aj?>jl)' for some ordering of the {Aj}.

Proof For m sufficiently large, by (7) and Gerschgorin's theorem

Bm == Qm*AQm

is approximately the diagonal matrix A, for some ordering of {Aj}. Now,
the angle of rotation <p, determined for Pm + 1 from Bm, is close to zero,
unless the two diagonal elements of Bm used to determine c/> correspond to
a pair of identical eigenvalues. Hence it is easy to verify that

Qm*AQm -+ A. •

Jacobi's method is the scheme in which Pk + 1 is determined so as to
reduce a maximal off-diagonal element of Bk to zero, k = 0, 1,2, ....
In practice, by listing the magnitude and column index of the maximal
off-diagonal element in each row of Bk , the Jacobi scheme is easily carried
out. That is, the only elements that change in going from Bk to Bk + 1 are the
elements in the rows and columns of index i or j. Hence, the list of maximal
elements in each row of Bk + 1 is easily constructed from the list for Bk

by making at most 2n - I comparisons. A common variation of the Jacobi
method consists in examining the off-diagonal elements of Bm in a sys­
tematic cyclic order given by the indices (1,2), (1,3), ... , (I, n), (2,3),
(2,4), ... , (2, n), (3, 4), ... , (n - I, n). The indices (i,j) used to determine
Pm + 1 correspond to the first element b~r) of Bmthat satisfies

Ib~r)1 ~ tm ,

where {tm} is a prescribed decreasing sequence of positive numbers called
thresholds. Such an iteration procedure is called a threshold scheme.
A bolder approach, namely to rotate the off-diagonal elements in sequence,
irrespective of size, is called the cyclic Jacobi scheme. Surprisingly enough,
with only a minor change in the definition of the angle <p, when <p ~ ±7T/4,
the cyclic Jacobi scheme has been shown (Forsythe-Henrici) to be con­
vergent also. In fact, if a comparison of the residual off-diagonal sum of

squares, L: (b}~»2, is made after each complete cycle of q == (n2 - n)/2
'#os

rotations, then it has been shown that the cyclic Jacobi scheme converges
and, in fact, that it converges quadratically for m large enough, i.e.,

L: (b}T+Ql)2 $ K[L: (W:l)2]2
r:#5 1"'/;5

for m large enough.
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In these Jacobi schemes, the eigenvalues of A are approximated by the
diagonal elements of Bm , for sufficiently large m. Furthermon:, the corre­
sponding eigenvectors of Bm are then approximately the unit vectors {et}.
Hence, the eigenvectors of A are approximated by the columns of

Qm = P1P2·· ·Pm.

Since only two columns of Qm are changed in going from Qm to Qm+h
only 4n multiplications are involved in this step. On the other hand, the
elements of the matrix Bm that are unaffected by the rotation Pm + 1 are
those that have indices (r, s) with r # i, j and s # i, j. Therefore, because
of symmetry, approximately 4n multiplications are needed to carry out
the rotation of Bm into Bm + 1 (if we neglect to count the square root
operations necessary to determine cos </> and sin </». Hence, about 8n
multiplications are required to determine Bm+ 1 and Qm + 1 from Bmand Qm'

We now consider the Givens transformation. Here a finite sequence of

M
= (n - 2)(n - I)
- 2

rotations are employed to reduce the real symmetric matrix A to tri­
diagonal form.

That is, we successively construct a sequence of matrices {P,J, k = I,
2, ... , M, and define

Bo == A,
(10)

I:::; k:::; M.

(12)

The matrices {Pm} are two dimensional rotations of the form (4) con­
structed so that the first k not-codiagonal elements of Bk are zero. That is,
we say {au} and {at. 1+ I} are the codiagonal elements of A. For a symmetric
matrix, we refer to the not-codiagonal indices listed cyclically in the order

(II) (1,3), (1,4), ... , (I, n), (2,4), (2,5), ... , (2, n), ... , (n - 2, n).

The first k not-codiagonal elements of Bk are the elements of Bk whose
indices are among the first k in the list (I I). The facts are summarized in

THEOREM 2 (GIVENS). Let A be real symmetric; Bo == A. Let (i - I,j)
be the kth pair of indices in the cyclic sequence (I I), and Bk -1 have elements
(b~~-O). Let Pk == I, if N"--l~j = 0; otherwise, set Pk == (p~~») with

(k) (k) bl"-l~l
Pu = Pii = . /(b(k 1»)2 (b(k 1»)2'

Y t - 1. I + 1-1. i

(k) _ (k) _ bl':l,lj
Plj - -Pit - - V(b<k 0)2 (b<k 1»)2'

I - I, I + 1- 1. i

p~~) = Or. for other (r, s).
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Let the matrices {B Ic } and {Pic} be defined by (10) and (12) for k = t,
2, ... ,M,

M
= (n - 2)(n - 1).
- 2

Then, Bic is real symmetric; the first k not-codiagonal elements of Bic are
zero, k = 1,2, ... , M; BM is tridiagonal.

Proof It is a simple matter to verify that if the first k - I not­
codiagonal elements of Bic -1 are zero, then the corresponding elements of
Bic also vanish. [This property of preserving zeros is not valid in general
for the rotations of the type used in Jacobi's method! In Jacobi's method
the matrix Pic' a two dimensional rotation in the (i,j) coordinates, an­
nihilated the (i,j) element; but in Givens' method the matrix Pic anni­
hilates the (i - I,j) element]. Furthermore, by Problem 2, the definition
(12) of Pic ensures that b~/c}.l. f = b~~)j-1 = O. Hence, by using mathematical
induction the proof may be completed. •

Aside from the calculation of the non-trivial elements of Pic' the cal­
culation of the non-zero elements of Bic in (10) involves approximately
4(n - i) multiplications. Now, in order to reduce to zero the elements in
row i-I, this process must be carried out for j = i + I, i + 2, ... , n.
That is, 4(n - i)2 multiplications are required to put zeros in all of the
not-codiagonal elements in row i - t. Therefore, for the complete reduc­
tion to tridiagonal form, we have the

COROLLARY. The Givens method requires

to transform the real symmetric matrix A to tridiagonal form. •
We shall complete the description of Givens' method for determining

the eigenvalues and eigenvectors after we study Householder's method for
reducing the matrix A to tridiagonal form. Householder's scheme uses a
sequence of n - 2 orthogonal similarity transformations of the form

(13) P = 1- 2ww*; w*w = t,

with suitably chosen vectors w. In Problem 3, p*p = PP* = I is verified.
We now describe how the matrices Pic are defined. Let the rows i = 1,

2, ... , k - t ~ n - 3 of the symmetric matrix Bic -1 have the reduced
form

bra = 0 for t ~ r ~ k - I and r + 2 ~ s.
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n-k

L b~.k+t = 0,
t=2

n-k

L b~. k +t =I- 0,
t=2

[Ch.4]

Pk = 1- 2ww*,(l4)k

with

where
w = f3v,

VI = 0,

Vk+l = 2y2S,

i = 1,2, ... , k,

i = k + 2, k + 3, ... , n;

1
f3 = 2yS'

and if bk • k + 1 =I- 0,

n-k

S2 = L btk+t,
t= 1

S = sign (bk • k + 1)VS2,

(b k • k + 1 + S)y= ,
2K

We then have

THEOREM 3 (HOUSEHOLDER). Let A be real symmetric. Set Bo == A, define

(l5h k = 1,2, ... , n - 2,

by means of (l4)k' Then w*w = 1; Bk is real symmetric; all of the not­
codiagonal elements of Bk, in the rows i = 1,2, ... , k, are zero; Bn - 2 is
tridiagonal.

Proof We leave the verification to Problem 4. •
Now, we note that the practical evaluation of Bk in (l5)k can be carried

out in the following fashion:

Bk = Pk*Bk-1Pk

= U - 2ww*)Bk_1U - 2ww*)
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Therefore,

where

with
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u == ; - av,

167

a == ,82 V *;.

Observe that in (16h, K need not be evaluated, and therefore only one
square root operation is required in each stage of Householder's method.
Furthermore, given v, the evaluation of; requires

(n - k)(n - k - 1) multiplications;
of a requires

n - k multiplications;
of uv* requires

(n - k)2 multiplications.

Hence we have shown that the number of multiplications required to
produce Bk is approximately 2(n - k)2.

COROLLARY. Householder's method reduces a real symmetric matrix to
tridiagonal form with the use of tn3 + (!}(n 2

) multiplications.

Proof The result follows from the formula

n-2 3.2 k2 = ~ + (!}(n 2
). •

k=l 3

We now remark that both Givens' method and Householder's method
can be employed to reduce any real matrix A to lower Hessenberg form.
The matrix B == (b lj ) is in lower Hessenberg form iff bj •• = 0 for
i + 2 ~ s ~ n.

Finally, we give the treatment of Givens for finding the eigenvalues of
the symmetric tridiagonal matrix B.

Let B == (blj) be real symmetric and tridiagonal, i.e.,

l~i~n-l.

1 ~ i,j ~ n;

j #- i-I, i, i + 1;
Set

(17)

b lj = bjj,

blj = 0,

~ i ~ n;

1 ~ i ~ n.

Recall that
piA) == det (AI - B).
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Givens observed that the principal minor determinants of AI - B
formed a sequence of polynomials having properties similar to those of a
Sturm sequence (see Chapter 3, Subsection 4.2). That is, let

Po(A) == I,

P1(A) == (A - a1),

(18) P2(A) == (A - a2)(A - a1) - C1 2,

Pt(A) == (A - at)pt-1(A) - (c.-l)2pt-2(A); i = 3,4, ... , n.

In Problem 5 it is shown that Pn(A) == paCA). If any Ct = 0, then the deter­
mination of the eigenvalues of B is reduced to the eigenvalue problem for
a smal1er matrix. Hence we assume Ct =1= 0, I ~ i ~ n - I. We have then,

THEOREM 4 (GIVENS). Let the tridiagonal, real symmetric matrix B be
defined by (17), with all Ct =1= O. Then the zeros ofeach Pt(A), i = 2, 3, ... , n,
are distinct and are separated by the zeros ofpt-1(A): and, ifPn(Y) =1= 0, the
number of eigenvalues of B that are greater than Y is equal to the number
of sign variations in the sequence Pn(Y), Pn-1(Y)"'" Pl(Y)' I.

Proof Since Ct =1= 0, no two successive polynomials Pt(A) and Pi-1(A)
can have a common zero. Otherwise, from (18), pt-2(A), ... , Po(A) would
also have that zero. By mathematical induction, we can now prove the
separation property. That is, a simple plot of P2(A) shows that the simple
zero of P1(A) separates the two simple zeros of P2(A). Assume that the
i - 2 simple zeros of pt-2(A) separate the i-I simple zeros of pt-1(A).
Now, from (18), at each zero of pt-l(A), the sign of pt(A) is opposite to the
sign of Pt _2(A). But, by the induction hypothesis, Pt _2(A) changes sign
between each pair of neighboring zeros ofP, _l' Therefore, pteA) also changes
sign and hence has a zero between each neighboring pair of zeros of
pt-1(A). Now

ptC +00) = +00, pte -00) = (-I)too , i = 1,2, ....

Therefore Pt(A) has a zero to the right of the largest zero of Pt -l(A) and a
zero to the left of the smal1est zero of Pt _l(A). On the other hand, PiCA)
can have no more than i zeros. Therefore, we have shown that the i-I
simple zeros of Pi -l(A) separate the i simple zeros of Pt(A). This separation
property is al1 that is needed to verify the rest of the theorem's conclusion,
by the kind of argument we used for treating Sturm sequences in Chapter 3,
Subsection 4.2 (see Problem 6). •

The evaluation of the characteristic polynomial of B, once we have
calculated {Ct 2

}, is then carried out by using (18). Thus a sequence of2n - 3
multiplications is required for each determination of Pn(A). If al1 of the
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eigenvalues of B are in the interval [a, b], then we may locate the eigen­
values more precisely by halving the interval and using the theorem to find
out how many zeros of piA) are in each half, i.e., pick y = (a + b)/2.
In this way, after t halvings, we will know the location of an eigenvalue to
within ±(a + b)2- tt + 1

\ at the expense of about 2tn multiplications.
Once an eigenvalue Aof B is found, a corresponding eigenvector can be

determined by using the fact that

B-AI

has rank ~ n - I.
If none of the off-diagonal terms Ct vanish, t then the equations

(B - AI)x = 0

may be solved simply by applying Gaussian elimination. That is, with the
use of maximal column pivots, we proceed to eliminate Xl. X2, ... , X n•

We neglect the last r equations of the essentially triangular system that
results, if the rank is n - r. We give arbitrary non-zero values to the vari­
ables Xn-r+l,"" X n, that appear in the last r equations; and solve the
first n - r equations of the triangular system. If the maximal column
pivots do not occur in order along the diagonal, we list the pivotal equa­
tions in the order that we find them. In this case, the then resulting upper
triangular matrix, U, may not be codiagonal. That is, the only non-trivial
elements in row i may be the elements Uti> Ut. t + band Ut. t + 2'

In Problem 8 we see that max IUtfl :-::; 5b where b = max Ibt/I. Hence
l.f t.f

by the theory of a priori estimates in Subsection 1.2, Chapter 2, though
the matrix B - AI is singular, the first n - r equations of U, when com­
puted with finite precision, give an accurate representation of the coefficients
of the unknowns Xl. X2, ... , X n - r that would arise by exact elimination.
Furthermore, the precise determination of r is not necessary!

If x is an eigenvector of B corresponding to the eigenvalue Athen

y = Px,

is the corresponding eigenvector of A, since

B = P-1AP.

For determining all of the eigenvalues and all of the eigenvectors of B,
experience has shown that the QR method (see end of section) for the
symmetric, tridiagonal matrix B is a more efficient procedure than Givens'
method.

t If any c, = 0, the system splits into two disjoint systems.
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We now turn our attention to the case of the general real matrix A.
If we are interested in determining all of the eigenvalues of A, then a
preliminary simplification to a similar Hessenberg form B is appropriate,
since the iterative operations on B will then require fewer calculations.
For example, as remarked after the corollary to Theorem 3, Givens'
or Householder's orthogonal similarity transformations might be used to
effect the reduction.

Review the discussion, between Theorem 3 and its corollary, of the
number of operations involved in using Householder's method. Since the
matrix B k -1 is not symmetric when A is not symmetric, we see that
the operational count for the vector; becomes (n - k)n + (!)(n) while
the other counts remain the same. Hence, the number of multiplica­
tions required to reduce the general real matrix A to Hessenberg form is
§n3 + (!)(n 2 ) since (16h is not valid.

A convenient and practical technique to evaluate PB(A), when B == (btj)

is in lower Hessenberg form, uses

LEMMA 3 (HYMAN). Let B be in lower Hessenberg form. If bt.l+ 1 # 0,
i = 1,2, ... , n - 1, define the sequence ofpolynomials mt(A)

mo == 1
(19)

-b•. 1+ 1ml == bnmo + bt2m1 + ... + bt. t- 1mt-2 + (btl - A)mt- 1 ,

i = I, 2, ... , n - 1.
Then

(20)
g(A) == bn1mo + bn2m 1 + ... + bn.n-1mn-2 + (bnn - A)mn_1.

Proof. Since bl. t + 1 # 0, we can successively add multiples of the
columns of B - AI to the first column in order to annihilate the first
n - 1 elements of the first column. This process defines the polynomials
{mt}, i = 1, 2, ... , n - 1, and does not change the value of the determi­
nant. But the (n, 1) element is g(A) and the expansion of the determinant
with respect to the elements of the first column results in (20). •

Clearly, if any bt • t + 1 = 0, the det (B - AI) can be written as the
product of two determinants of submatrices of B - AI.

In the case bt ,t+1 # 0, formulas (19) and (20) may be used to calculate
g(A), with the use of n2/2 + (!)(n) multiplications. Similarly, by differentia­
ting the formulas (19) with respect to A, a recursive evaluation of g'(A)
(or higher derivatives) is also simply carried out. Hence we may apply
any of the standard iterative methods for finding the roots of the poly-
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nomial g(A) (without evaluating its coefficients). A matter of considerable
practical importance for the evaluation of the polynomial g(A) is the double
precision accumulation of the inner products in (19) and (20).

Another family of methods for finding the eigenvalues of the lower
Hessenberg matrix A are called factorization methods. First, we note that
C == AT and A have the same eigenvalues, but that C is of upper Hessen­
berg form. The first factorization method we describe is Rutishauser's
LR method. That is, the LR method consists in constructing (when
possible) the factorization of the matrix C1 == C in the form

(21)

where L is lower triangular (with unit diagonal elements) and R is upper
triangular. Then Rutishauser considers

(22)

Next find

(23)

again a lower unit and upper triangular factorization.
Now

L2-lC2L2 = L2-lLl-1C1L1L2 = R2L2 == C3·

In general, a sequence of similar matrices {Ck } is constructed and their
LkRk factorization via Gaussian elimination is also found, so that

(24)

But if we define

then

and therefore

(25)

Ck = LkRk>

Ck+ 1 = Lk-lCkLk

= Lk-l···Ll-1C1Ll···Lk.

PkQk = Pk-1CkQk-l = C1Pk-1Qk-l

= C12Pk- 2Qk-2

= C/o
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Hence, PkQk is the LR factorization of C/o The fact that the matrix Ck
converges to an upper triangular form is shown under special assumptions
(which may be weakened considerably).

THEOREM 5 (RUTISHAUSER). Let ClX = XA, where A == (AtotJ Assume
1"11 > IA21> ... > IAnl > O. Set

y == X-I.

Assume X and Y can be factored in the form

X = LxRx, Y = LyRy,

where Lx and L y are lower unit triangular and Rx and R y are upper tri­
angular. Then with {Ck} defined by (21), we have the result: Ck converges to
upper triangular form.

Proof (Wilkinson). Clearly,

C k = XAky = XAkLyR y

= X(AkLyA -k)(AkRy).

But by the strict inequalities satisfied by {At}, the lower triangular matrix
Ek , defined by

satisfies

Therefore
e;~) = 0, i = 1,2, ... , n.

C/ = LxRxU + Ek)AkRy

= LxU + RxEkRx -1)RxAkR y.

But RxEkRx -1 -+ O. Therefore, the LR factors of I + RxEkRx -1 both
converge to I.

Hence, since RxAkR y is upper triangular, we see that the lower triangular
factor of C/, which by (25) is Pk , converges to Lx. That is,

Pk -+Lx .

Hence L k = P/;:lPk converges to I.
But then, since

L k -lCk = R k ,

is upper triangular, it follows that Ck must converge to upper triangular
furm. •

It is easy to verify that the LR method preserves the Hessenberg form
of the matrices {Ct}. The LR method can be made to converge much more
rapidly by introducing a shift

Dk = Ck - skI,

and then continuing with the factorization of D k •
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But we shall not pursue this avenue further. We merely remark that the
LR method does not always work as well as we have described, because
the LR factorization, even if possible, may give rise to ever increasing
magnitudes of numbers.

Another factorization method which seems not to suffer from the above
defect is the QR factorization of Francis and Kublanovskaja. That is, the
upper Hessenberg matrix CI is written

CI = QIRb

whence
QI-ICIQI = RIQI == C2 ,

where RI is upper triangular and QI is unitary, i.e.,

QI* = QI-I.
We then factor

In general, with

we set

C2 = Q2R2·

Ck = QkRk'

Qk -ICkQk == Ck + 1 = RkQk.

All the matrices Qk are unitary and all the matrices Rk are upper tri­
angular. Again, the Hessenberg form of {Ct } is preserved.

Francis and Kublanovskaja have given proofs of convergence of Ck

to upper triangular form, in special cases. Wilkinson has given a simpler
proof using techniques similar to those used in proving Theorem 5.

An important feature of Francis' work is that he shows how to use real
arithmetic and maintain the real Hessenberg form, even when some eigen­
values are complex and the accelerating shifts indicated above (for the LR
method) are complex numbers. Since he works with real numbers, when
the eigenvalues are distinct but some are complex conjugate, in pairs

then the matrices Ck converge to a form that is not triangular (i.e., the
limiting form has second order matrix blocks on the diagonal). t

The QR factorization is unique when C I is non-singular. The Gram­
Schmidt orthogonalization process is not recommended for carrying out
the QR factorization. Rather, left-multiplications may be performed
upon the matrix Cb by unitary matrices of the form I - 2ww*, in order
to successively reduce the columns of C I • That is,

(l- 2Wn-IW~-I)··.(l- 2WIWI*)CI = R I •

t These real matrices Ck are real orthogonally similar and therefore can only be
expected to converge to the Murnaghan-Wintner canonical form rather than the
Schur form of Theorem 2.1.
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The matrix Ql is given by the product of the unitary matrices,

Ql = (I - 2WIW1*)(I - 2W2W 2*)" .(1- 2wn - 1W:- 1).

When C 1 is in Hessenberg form, these unitary matrices are simple two
dimensional rotations.

PROBLEMS, SECTION 3

1. With All, R, and BII as defined in Lemma 2, show that bll = bll = O.
2. Give the details of the proof of Theorem 2.
[Hint: The only elements of Bk _ 1 that are transformed by Pk are in the

rows and columns with indices i or j. It is necessary only to examine the
components (wherej > i ~ 2)

b~~>, if s :s i - 2;
and

b;~), if I :s s :s i-I.]

3. Verify that for any matrix P of the form (13), p* = P and

p*p = pp* = I.

4. Carry out the verification of Theorem 3.
[Hint: Rows i = I, 2, ... , k - I are unaffected by (l5)k' Check that row

k is properly reduced.]
5. Verify that Pn(A) given by (18) satisfies Pn(A) == PB(A).
6. Complete the proof of Theorem 4. That is, use the hypothesis and assume

the root separation property to prove the recipe for counting eigenvalues.
7. What recurrence relation is satisfied by the functions (p/(A)}, where

{pt(A)} is defined in (18)?
8. Let B be tridiagonal, of form (17); c, #- 0, i = 1, 2, ... , n - 1; and Abe

an eigenvalue of B. Use Gaussian elimination with maximal column pivots
to solve (B - Al)x = o. Let U == (UII) be the matrix of the resulting equi­
valent upper triangular system. If max (Iall, lell) = b, then max IUI]I :s 5b
(Wilkinson). I. I I. I

[Hint: By Gerschgorin's theorem IAI :s 3b. Use induction and examine the
two equations involved in eliminating xd

9. Let A be Hermitian of order nand IJ. be an approximation to the simple
eigenvalue A. Let the eigenvector x correspond to A. For simplicity, suppose
max Ixtl = X n = 1. The usual way to approximate x consists in solving the

I

n - 1 equations

(26) (A - lJ.i)x = -c,

where A, 1, x, c consist in deleting the last row and column of A and I and
deleting the last component both ofx and of the last column c of A, respectively.
Then define the residual

(27) /(IJ.) = c*x + ann - IJ..
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(a) From (26), since x is a function of p.., verify by differentiation with
respect to p.. that

" "dx A •

(A - p..l) dp.. - x = o.

If p.. is close enough to A, and .4 - Ai is non-singular, then

~: = (.4 - p..i)-lX.

From (27),

dj _ "*(A" i)-lA 1dp.. - C - p.. x - .

(b) Verify, then, that in Newton's method for improving p..

j(p..) x*'1
!:>.p.. = - !'(p..) = x*x'

where 1}1 = 0 for 1 :s; i :s; n - I; 1}n = j(p..).
10. Define the circulant matrix A == (all), of order n, generated from

(a" a2, ... , an) by

{
al - l +"

all ==
an+J - f + 1,

i :s; j,

i > j.

Show that the eigenvectors {UI} and eigenvalues {AI} are given in terms of the
n roots of unity {Wj} [i.e., (Wj)n = 1] by

AI == al + a2Wj + a3wI2 + ... + anw7- 1.

11. For the circulant matrix generated by a, = I, 1 :s; i :s; 6, use House­
holder's method and Jacobi's method to find the eigenvalues and eigenvectors.

12. Show that Householder's method reduces a real skew-symmetric matrix
to a real tridiagonal skew-symmetric matrix. Carry out this procedure for
the circulant matrix generated by (aJ, a2, a3, a4, a5, aa) == (0, I, I, 0, - 1, - 1).

13. If C is of Hessenberg form, then show that each stage of the LR
transformation requires n2 + (7}(n) operations, while each stage of the QR
transformation requires 4n2 + (7}(n) operations.



5
Basic Theory of Polynomial

Approximation

O. INTRODUCTION

There are numerous reasons for seeking approximations to functions.
The type of approximation sought depends upon the application intended
as well as the ease or difficulty with which it can be obtained. In any
event, the" simplest "t approximating functions would seem to be poly­
nomials, and we devote much of our attention to them in this chapter.
Some consideration is also given to approximation by trigonometric
functions. We shall study the approximation of continuous (possibly
differentiable) functions, in a closed bounded interval.

In general, a polynomial, say Pn(x) of degree at most n, may be said
to be an approximation to a function, I(x), in an interval a ::; x ::; b
ifsome measure of the deviation of the polynomial from the function in this
interval is "small." This notion of approximation becomes precise only
when the measure of deviation and magnitude of smallness have been
specified.

To this end, we recapitulate the definition of norm, this time for a linear
space (not necessarily finite dimensional) whose elements are functions
{I(x)} (see Chapter 1, Section I). The norm, written

Norm(f) == N(f) == II !II,
is an assignment of a real number to each element of the linear space such
that:

t We do not study the theory of approximation by rational functions (i.e., quotient
of polynomials), even though rational functions are easy to evaluate and, in certain
cases, are more efficient than polynomials.

176
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(i) Ilfll ~ 0,
(ii) I1II1 = 0 iff f(x) == 0,

(iii) Ilefll = lei· IIIII for any constant e,
(iv) Ilf + gil ::<:; Ilfll + Ilgll, the triangle inequality.

177

The notion oflinear spaces of functions is of basic importance in the analy­
sis of many approximation procedures. In particular, for present applica­
tions we wish to examine not the polynomial approximation of a particular
function but, in fact, the properties of such approximations for any func­
tion in an appropriate linear space.

A measure of the deviation or error in the approximation of f(x) by Pn(x)
will be denoted generically by

If(x) - Pn(x) I

(sometimes with an appropriate subscript or superscript). This measure
of deviation will be required to satisfy the properties (i), (iii), and (iv) of a
norm, but not necessarily property (ii), because If I = 0 may not imply
f(x) == O. Such a measure is actually called a semi-norm. If we were to
introduce here equivalence classes of functions, i.e., identify f(x) and g(x)
if If - gl = 0, then the measure 1·1 becomes a norm in a natural way in
the linear space composed of these equivalence classes. For simplicity,
we refer to 1·1 as a norm in this chapter, even though we do not formally
introduce the equivalence classes of functions. Once such a norm has been
defined three questions are naturally suggested:

(a) Does a polynomial exist, of a specified maximum degree, which
minimizes the error?

(b) If such a polynomial exists, is it unique?
(c) If such a polynomial exists, how can it be determined?

With the convention that, unless otherwise specified, Pn(x) represents
a polynomial of degree at most n, it is clear that

(1) g.l.b. If(x) - Pn(x)l == dn ~ 0,
(Pn(x»

is a monotonic non-increasing function of n. If there exists a unique
polynomial Pn(x) for which the minimum error is attained, we may then
investigate methods for determining Pn(x) and the magnitude of dn (or any
other norm of the deviation). In particular, we are most interested in those
approximation methods for which dn -+ 0 as n -+ 00.

An example for which questions (a), (b), and (c) are easily answered is
furnished by a well-known polynomial approximation: the first m + 1
terms in the Taylor expansion of f(x) about xo. That is, we consider the
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m::::; n.

(4)

linear space composed of functions f(x) which have derivatives of order n
at x = xo. For any givenf(x) in this space we define

(2) Pm(x) == f(xo) + (x ~! xo) f(l)(xo) + (x ~ !XO)2 P2)(XO)

+ ... + (x ~ ~o)m pm)(xo),

This polynomial clearly minimizes the measure of error

(3) Ig(x)l (n) == i Ig(k)(XO)I,
k=O

with g(x) == f(x) - Qm(x) among all polynomials {Qm} of degree at
most m, since

{

0, if m = n,

If(x) - P (x)ICn) = n
m L IJk(xo)l, if m < n.

k=m+l

Thus existence and explicit construction of a best approximating poly­
nomial for this somewhat contrived normt are demonstrated. Uniqueness
of Pm(x) for a given m ::::; n can be proven by assuming that there is some
other polynomial of degree at most m, say Qm(x), which also minimizes
the error. By expressing Qm(x) as a polynomial in (x - xo) we find that
the coefficients Q<,';)(xo)/k! must be identical with those of Pm(x) given in
(2), since otherwise, If - Qml(n) > If - Pml ln

).

Now, if f(x) has an (n + I)st derivative in some interval about Xo,
say Ix - xol ::::; a, then by Taylor's theorem the remainder in the expansion
(or we may call it the pointwise error in the approximation) is given by

( )n+ 1

Rn(x) == f(x) - Pn(x) = \; :01)! pn+l)(~),

where Ix - xol ::::; a and ~ = ~(x) is some point in the open interval
(x, xo). For the special function f(x) == 1/(1 + x) in the interval -t ::::;
x ::::; 2 and Xo = 0, we find Pn(x) == I - x + ... + (_I)nxn and

( _I)n + 1xn + 1

Rn(x) == I .+x

In this case, although IRn(x)ICn) = 0, we note that for the maximum
norm

t Note that we may have Ig(x)l(n) = 0 but g(x) '" 0, e.g.,g(x) == (x - xo)n+'. Thus,
on the indicated space, (3) is an example of a semi-norm which is not a norm.
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and hence some caution must be used. What may be a good approximation
when measured in one norm [i.e., in 1·I<nl of (3)] may be a very poor
approximation in another norm (i.e., II· II ",). But, in this example, if the
interval were -t ::'S: x ::'S: t, then

and we find that the Taylor series, Pn(x), converges uniformly with respect
to x for this function. In fact, the series converges uniformly in any closed
interval contained in the open interval (-I, I). The latter property of
Taylor series is typical and is more fully treated in the study of analytic
functions of a complex variable.

The questions (a), (b), and (c) can be answered in many other specific
cases and we do this for several different norms in this chapter. However,
question (a), of existence, can be given an affirmative answer quite
generally. We do this in Theorem l. The answer to question (b), on unique­
ness, is a qualified yes given in Theorem 2. (For all the specific approxi­
mation problems treated in this chapter the answer is yes.) A general
answer to question (c) is not known but we show how to construct the
minimizing polynomial for several norms.

For the general results to be presented we assume that the polynomials
and the functions, f(x), to be approximated are in a linear space C [a, b]
of functions defined on the closed bounded interval, [a, b]. Then we have

THEOREM 1. Let the measure of deviation 1·1 be defined in C[a, b], and
let there exist positive numbers mn and M n which satisfy

(5) 0 < mn ::'S: Ij~ bjx
jI::'S: M n,

for all {bj} such that

n = 0, I, ... ,

Then for any integer nandf(x) in C [a, b] there exists a polynomial ofdegree
at most n for which

If(x) - Pn(xH

attains its minimum over all such polynomials.

Proof Write the general nth degree polynomial as

Pn(x) = ao + a1x + ... + anxn,

and consider the function of the n + I coefficients
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By the properties (iii) and (iv) of norms and the hypothesis (5), we obtain
the continuity of ,p, as follows:

,p(ao + EO, al + E10 ° 00' an + En) = 1f(x) - Pn(x) - f~ EfX
f I,

:;; ,p(ao, al' ° • 0' an) + 1i EjXj I,
f=O

:;; ,p(ao, a10 ° 00' an) + ~ IEjl·lxfl,
j=O

:;; ,p(ao, al,·· 0' an) + M n i IEjl·
j=O

Similarly, we find

,p(ao, aI, ° 00' an) = If(x) - Pn(x) - ~ EjXj + ~ Ejxjl
j=O j=O

:;; ,p(ao + EO, al + E10 ° 00' an + En) + M n i IE,!.
j=O

Hence for any {aj} and {Ej}

(6) l,p(ao + EO, a l + E10 ° •• , an + En) - ,p(ao, a10 . 00' an)1

:;; M n i IE,!.
j=O

This demonstrates that ,p(ao, a10 ° • 0' an) is a continuous function of the
coefficients (ao, a10 ° •• , an). (Compare Lemma 1.l of Chapter 1.)

Since ,p(ao, a10 0'" an) ~ 0, the "minimum deviation" in (I) can be
characterized as:

(7) g.I.b. ,p(ao, al , . 0 0, an) == dn ~ O.
(ao. ai_ .. an)

Thus, the existence problem is reduced to showing that there is a set of
coefficients, say (ao, a10 . 0 ., an), such that

However, since ,p is continuous, the result will follow from a theorem of
Weierstrass if we can show that dn is the g.I.b. of,p in an appropriate closed
bounded domain of the coefficients. That is, we will show that for some
R > 0,

(8) dn = g.I.b. {,p(ao, al' ... , an)}.
~ lal1 2 :5R2

1=0
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Then since the continuous function </>(ao, a1, ... , an) attains its minimum

dn on the closed bounded set ! lai l
2 ~ R2, the theorem follows.

1=0

To verify (8) we observe, using (iii) and (iv), that

If- gl ~ If I + Igl,
and setting f == u + g we get

(9) lu + gl ~ lui - Igl.
Therefore, for any constant /L > 0, by (9) and (iii),

If - Pn(x)l ~ IPn(x)l - If I,

~ /L I~ Pn(x) 1- If I.
n

Let us pick /L such that L lai//L12 = 1. Then by (5) in the hypothesis of
1=0

the theorem

I! Pn(x)I= Ii ~ xli ~ mn,
/L i=O /L

and the previous inequality implies

If - Pn(x)l ~ /Lmn - If I.
So, if /L satisfies

If I + dn +
/L~

then

If - Pn(x)1 ~ dn + 1.

Thus, we conclude that (8) is valid with the choice R = (IfI + dn + l)/mn

and the proof is ended. •

Observe that the function f(x) need not be continuous. Furthermore,
note that this theorem gives no estimate of the magnitude of dn • The
semi-norm (3) satisfies condition (5) for Xo = 0, with mn = (n + 1)-%,

M n = C~ (j!)2r; see Problem 2.

For the uniqueness result, we require the measure of deviation to be
strict. By definition a norm I .I is strict if

If + gl = IfI + Igl

implies there exist constants a, f3 such that lal + 1f31 -# °and

af(x) + f3g(x) == 0.
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Now we state

THEOREM 2. To the hypothesis of Theorem I add the requirement that I .I
is strict. Then the minimizing polynomial, say Pn(x), is unique.

Proof Assume, for a given f(x), that Pn(x) and Qn(x) both minimize
(I). Then from (7), (iii), and (iv), we find

dn ::; If - !(Pn + QnH ::; Hf - Pnl + Hf - Qnl = dn·

Hence, equality holds throughout, and since I· I is strict there exist non­
trivial constants a and {j such that

a f32 [f(x) - Pn(x)] + 2 [f(x) - Qn(X)] == O.

Now if a = -f3 =1= 0 then Pn(x) == Qn(x). Otherwise, a =1= -f3 and then
f(x) must be a polynomial of degree at most n. In this case, dn = 0, and
using (5) it follows that Pn(x) == f(x) == Qn(x), •

Again, observe that the function f(x) need not be continuous, as re­
marked after the proof of Theorem I. This theorem is valid for a semi­
norm which satisfies the appropriate additional conditions [i.e., (5) and
strictness]. Of course, the minimizing polynomial may be unique even
though the norm is not strict. Such an instance is furnished by the semi­
norm (3) which is not strict. Further examples follow.

PROBLEMS, SECTION 0

1. Show that if 1·1 is a norm defined for polynomials and satisfies (l)-(iv),
then

[Hint: Prove that

is a continuous function of (ao, aI, ... , an).]
2. Verify that for the semi-norm

n
Ig(x)l'n) == L Ig<k)(O)I,

k=O
(5) is satisfied with

mn = (n + 1)-\'2,
[

n ] Y,
M n = I~O (j!)2 .

[Hint: Note that some b, satisfies jbll ~ (n + I) - \'2. On the other hand,
n

apply Schwarz' inequality to estimate L (j!)lbll.]
j=O
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1. WEIERSTRASS' APPROXIMATION THEOREM AND BERNSTEIN
POLYNOMIALS

We are justified in seeking a close polynomial approximation to a
continuous function throughout a finite interval because of the funda­
mental

WEIERSTRASS' APPROXIMATION THEOREM. Let f(x) be any function contin­
uous in the (closed) interval [a, b). Then for any E > °there exists an integer
n = neE) and a polynomial Pn(x) ofdegree at most n such that

If(x) - Pn(x) I < E,

for all x in [a, b).

This theorem guarantees that arbitrarily close polynomial approxi­
mations are possible throughout a closed bounded interval provided only
that the function being approximated is continuous. The statement of the
theorem is one of existence and gives no hint about constructing such
approximations. However, a simple and elegant constructive proof of this
result is due to Bernstein and we shall present it in Theorem I.

First, a basic notion in analysis must be recalled and some preliminary
identities will be introduced. If f(x) is a continuous function in a closed
interval, say [0, I],t then the modulus of continuity of f(x) in [0, I] is
defined as

(I) w(f; 8) == I.u.b. If(x) - f(x')I.
{Xi:~~)~'P}

Since f(x) is continuous in a closed interval, and hence uniformly con­
tinuous, it follows that

lim w(f; 8) = 0.
O~O

If, in addition,f(x) satisfies a Lipschitz condition in [0, I], i.e., if

If(x) - f(x')1 :5 Alx - x'l,

for x, x' in [0, I] and some constant A, then from (I):

w(f; 8) :5 '\8.

The concept of a modulus of continuity is generally useful in analysis and
its use will recur in our study.

t We need only consider this case since:
An arbitrary finite interval a ~ y ~ b is mapped I-I onto the unit interval °~ x ~ I
by the continuous change of variable: x = (a - y)/(a - b) or y = (b - a)x + a.
Hence, if g(y) is continuous in [a, b], f(x) '" g((b - a)x + a) is continuous in [0, I].
Now, ifPn(x) approximatesf(x) in [0, I] to within E, then Qn(Y) '" Pn((a - y)/(a - b»
is a polynomial of degree at most n that is within E of g(y) in [a, b].
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The identities required all follow from the well-known binomial
expansion

(2a)

Upon forming 8(a + b)nj8a and 82(a + b)nj8a2 we obtain the further
identities

(2b)

(2c)

Now set a = x, and b = 1 - x; define the nth degree polynomials

(3) j = 0, 1, 0 0 0' n;

and the identities (2) become

(4a)

(4b)

(4c)

n

L fln.lx ) = 1,
1=0

n •

L 1. fln.lx) = x,
1=0 n

n 02 (1) 1L ./2 fln.lx ) = 1 - - x 2 + - x.
j=O n n n

It should be noted that for x in [0, 1], fln. ,ex) :::: 0.
Let the unit interval [0, 1] be subdivided into n equal subintervals with

the endpoints

(5) x· = 1,
J n j = 0, 1, O' 0' n.

We finally introduce the Bernstein polynomial of degree n for the function
f(x) on [0, 1] by the definition:

(6)
n

Bn(f; x) == L f(xj)fln. ,(x).
j=O

This is, from (3), clearly a polynomial of degree at most n and has co­
efficients depending upon the values off(x) at n + 1 equally spaced points
in [0, I].
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THEOREM 1. Let f(x) be any continuous function defined on [0, 1]. Then
for all x in [0, 1], and any positive integer n,

(7)

Proof From (4a) and (6) we may write

n

f(x) - Bn(f; x) = L [f(x) - f(x j)],8n.lx) == S1(X) + Six),
j=O

where we define, for any 8 > 0,

S1(X) == L
j IX-Xjl:S6

S2(X) == L
j.lx-xjl >6

Thus by the definition of w(f; 8) and (4a),

IS1(x)1 :-::; w(f; 8) L ,8n.lx )
j:lx-Xjl:S6

:-::; w(f; 8) i ,8n.lx) = w(f; 8).
j=O

For the remaining sum, since Ix - x,l > 8, we note

f(x) - f(x j) = [f(x) - f(t"1)] + [J(t"1) - f(t"2)] + ...
+ [f(t"p -1) - f(t"p)] + [f(t"p) - f(x j)],

where p == [Ix - x j l/8l,t and t"1' t"2"'" t"p are p points inserted uni­
formly between (x, Xi) where each of the p + 1 successive intervals is of
length Ix - xjl/(p + 1) < 8. Hence,

If(x) - f(xj) I :-::; (p + l)w(f; 8) :-::; (1 + Ix ~ xj!)w(f; 8).

Therefore,

IS2(X) I :-::; w(f; 8)[ L ,8n.lx) + i L Ix - xjl,8n.lX)]
j.lx-Xjl>6 j.lx-Xjl>6

:-::; w(f; 8) [1 + ~ L (x - XY ,8n.lX)]
j.lx-Xj!>6

:-::; w(f; 8) [1 + i2 j~ (x - x j)2,8n.lx )l
From (5) and (4)

~ 2 x(1 - x) 1
L. (x - Xj),8 (x) = :-::; -.j=O n., n 4n

t P == [xl for x > 0, means p is the largest integer satisfying p $ x.
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Therefore,

and finally,

•

If(x) - Bn(f; x)[ :-;; [Sl(X)1 + [S2(X)[

::; W(f, 1)(2 + 4~1)2)·

The error estimate (7) is obtained, if we choose I) = n-'1,. •

Weierstrass' theorem follows by picking n so large that w(f; n- Yz ) <
4£19.

If f(x) satisfies a Lipschitz condition, we find easily:

COROLLARY. Let f(x) satisfy a Lipschitz condition

If(x) - f(y) I ::; "Ix - yl,

for all x, y in [0, I]. Then for all x in [0, I],

(8) If(x) - Bn(f; x)1 :-;; tAn-'1,.

It can be shown that the approximation given by Bn(f; x) may be
better than is implied in this result (see Problem I). However, in general,
even if f(x) has p derivatives, the convergence is, at best, of order lin.
In fact, it can be shown that

lim n[Bn(f; x) - f(x)] = Y"(x)x(1 - x),
n_<Xl

if p ;::: 2.

As such convergence is quite slow compared to that of many other poly­
nomial approximation methods (see Theorem 9 of Section 3), the Bernstein
polynomials are seldom used in practice. It should be emphasized, how­
ever, that they converge (uniformly) for any continuous function when many
of the other polynomial approximations do not.

The Weierstrass approximation theorem is valid for functions of several
variables which are continuous on appropriate sets. In fact, the Bernstein
polynomials can again be employed to yield a constructive proof in various
cases (see Problem 2).

PROBLEMS, SECTION 1

1. If f(x) satisfies a Lipschitz condition with constant" in [0, 1], show
En = If(x) - Bn(f; x)1 :s; ("/2)n- Yz.

[Hint: Use Schwarz' inequality to get

En = IL [f(x) - f(xj)](,Bn. j(X»Yz(,Bn. j(x»'1'1

:s; {L [f(x) - f(xj)F,Bn. j(x)}Yz.
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2. Let f(x, y) be continuous on the closed unit square: 0:5 x :5 1,
o :5 Y :5 I. Then prove Weierstrass' theorem for this case by employing the
polynomials:

m n 'j k)
Bm.n(f; x, y) "" .L .L fl-m' - (3m.I(X){3n. k(Y)'

1=0 k=O \ n

Show how to extend this theorem to functions of more variables continuous
in arbitrary" cubes" with faces parallel to the coordinate planes.

[Hint: Let R(x, y) "" f(x, y) - Bm.n(f; x, y). Show that

. k]
R(x, y) = ~ [f(X, y) - f(~' n) (3m. ix){3n. k(Y)'

1+1 .L 1+1 .LIRI :5 1
Ilx-XII>6 k'ly-y"I>6

and use the reasoning of the one variable case.
To prove the theorem whenf(x, y) is continuous in a square, 0 :5 x - a :5 c,

o :5 Y - b :5 c: define g(u, v) "" f(cu + a, cv + b) for 0 :5 u, v :5 I. Then
construct Bm. n(g; u, v). Finally, set

(
x-ay-b)

Pm. n(x, y) "" Bm. n g; -c-' -c-

and observe that If(x, y) - Pm. n(x, y)1 can be made small.]
3.· If f(x) has a continuous first derivative in [0, 1], show that the first

derivatives of the Bernstein polynomials which approximate f(x) converge
to j'(x) uniformly on [0, I].

[Hint: Verify that

{3~.1 = n({3n-1.1-1 - (3n-l.l) for j = 1, ... , n - 1,

f3~,n = n{3n - 1, n- 1, {3~.0 = - n{3n - 1. O·

Then regroup the sum in terms of {3n -1. k for k = 0, I, ... , n - I.]

2. THE INTERPOLATION POLYNOMIALS

An approximation polynomial which is equal to the function it approxi­
mates at a number of specified points is called an interpolation polynomial.
Given the n + 1 distinct points Xl> i = 0, 1, ... , n and corresponding
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function values f(x t ), the interpolation polynomial of degree at most n
minimizes the norm:t

(I) If(x) - Pn(x)lJ == i If(xt) - Pn(xt)!.
t=O

We shall show that such a polynomial exists (by explicit construction) and
is unique; in fact, that the minimum value of the norm in (I) is O.

The least possible value of If - PnlJ is, of course, zero. Thus, we seek
a polynomial

(2)
n

Qn(x) = 2: akxk,
k=O

for which Qn(Xi) = f(xt). By considering the coefficients ak in (2) as un­
knowns, we have the system of n + I linear equations

i = 0, 1, ... , n.

This system has a unique solution if the coefficient matrix is non-singular.
The determinant of this matrix is called a Vandermonde determinant and
can be easily evaluated (see Problem 1) to yield

(4)

X n
n

n-1 [ n ]= n (Xt - Xj) == n n (Xt - x;) .
t>j j=O t=j+1

Since the {Xt} are distinct points, the determinant does not vanish and
(3) may be uniquely solved for the at to determine the interpolation poly­
nomial. Another proof of uniqueness is given in Lemma 1.

Rather than solve the system (3), we may use an alternative procedure
to obtain the interpolation polynomial directly. Set

(5a)
n

Pn(X) = 2: f(xj}<Pn.lx ),
j=O

where the n + I functions <Pn.lx) are nth degree polynomials. We note
that Pn(Xt) = f(xt) if the polynomials <Pn.lx) satisfy:

i,j=O,l, ... ,n.

t This is only a semi-norm. Of course, Theorem 0.1 shows that there is a Pn(x) which
minimizes the norm in (I), but we prove more here, namely that dn = O. We also
prove uniqueness which is not covered by Theorem 0.2, since (I) is not strict.
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(5b)

Such polynomials are easily constructed, since the {Xl} are distinct, i.e.,

'" () _ (x - xo)(x - Xl)" ·(x - Xj_1)(X - x j+ l)·· ·(x - Xn)
(6a) 'f'n j X - ,

, (X j - Xo)(Xj - Xl)" '(Xj - Xj_I)(Xj - Xj+1)' . '(Xj - Xn)

j = 0, 1, ... , n.

By introducing wn(x) == (x - xo)(x - Xl)' .. (X - Xn) we find that (6a)
can be written in the brief form [where wn'(xj) = (dwn(x)/dx)x=xj]:

wn(x)
(6b) ePn,tCx) = (x - xj)wn'(xj)'

The interpolation polynomial, especially when in the form (5), is called
the Lagrange interpolation polynomial and the polynomials (6) are called
the Lagrange interpolation coefficients. We can use the product notation
for eP which yields

n n X X
Pn(x) = L f(x j) TI - k.

j=O k=O x j - Xk
k#j

That the Lagrange interpolation polynomial is identical to the poly­
nomial defined by (2) and (3) is a consequence of the following

LEMMA 1. Let Pn(x) and Qn(x) be any two polynomials, ofdegree at most n,
for which

i=0,1,2, ... ,n,
where the n + I points {Xl} are distinct. Then Pn(x) == Qn(x),

Proof Define the polynomial

Dn(x) == Pn(x) - Qn(x),

which is of degree at most n. This polynomial has at least n + I distinct
roots:

i=O,I, ... ,n.

However, the only polynomial of degree at most n with more than n
roots is the identically vanishing" polynomial" Dn(x) == O. •

In summary, there is only one polynomial of degree at most n for which
(1) vanishes and it is given by (5) and (6). Of course, there are many other
ways of representing this polynomial; since such considerations are of
great practical interest they form a large part of the next chapter.

2.1. The Pointwise Error in Interpolation Polynomials

The pointwise error between a function, f(x), and some polynomial
approximation to it, Pn(x), is defined as

(7)
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It is, of course, quite useful to have an explicit expression for this error
and, if possible, simple bounds on it. Such information may yield, as in
the example of Section 0, an estimate of the rapidity of convergence of
Pn(x) to f(x) as n -+00 (or of divergence). Further, it facilitates a com­
parison of the different types of polynomial approximation.

For interpolation polynomials, a useful representation of Rn(x) is
readily obtained. This result may be stated as

THEOREM 1. Let f(x) have an (n + I )st derivative, pn + 1)(X), in an interval
[a, b]. Let Pn(x) be the interpolation polynomial for f(x) with respect to
n + 1 distinct points Xl> i = 0, 1, ... , n in the interval [a, b] (i.e., Pn(XI) =
f(xj) and Xl E [a, b]). Then for each X E [a, b] there exists a point g = g(x)
in the open interval:

(8) min (xo, Xl> ... , Xn, x) < g < max (xo, XI. . " ., Xn, x),

such that

(9) f(x) - Pn(x) == Rn(x) = (x - xo)(x(::1?;!" ·(x - xn)pn+l)(g)

wn(x) pn + oW
- (n + I)! .

Proof Since

Rn(xo) = Rn(XI) =. ". = Rn(xn) = 0,

we define Sn(x), for any x # Xl, by setting

(10) Rn(x) == (x - xo)(x - Xl)· ""(X - Xn)SnCX) = Wn(X)Sn(X).

Considering X to be fixed as above we also define a function F(z) by

Clearly, this function and its derivatives with respect to z are defined
and continuous wherever fez) and its derivatives are defined and con­
tinuous; thus, F(n+ l)(z) is defined in [a, b]. (See Problem 5 for a mild
generalization.)

We see that F(z) vanishes at n + 2 distinct points in [a, b], namely

F(xo) = F(XI) = ... = F(xn) = F(x) = 0.

Thus, there are n + I adjacent intervals in [a, b] at whose endpoints F(z)
vanishes. Rolle's theorem is now applicable, since F(z) is defined in
[a, b]. Therefore, in the interior of each of these intervals, there is at least
one point at which F(z) vanishes. Thus, there are at least n + I distinct
points in the interval (8) at which F(z) = 0. They form at least n intervals
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(II)

such that in the interior of each, by another application of Rolle's theorem,
the derivative of F(z) vanishes. That is, F"(z) = 0 for at least n distinct
points in (8). By continuing this process we find that there is some point,
say ~, in (8) at which the (n + l)st derivative of F(z) vanishes.

However, since Pn(z) is an nth degree polynomial,

dn+lPn(Z)
-.,...."...,-7--'- = 0,dzn+ 1

and a simple calculation yields

d n + 1

dzn+1 [wn(z)Sn(x)] = (n + 1)!Sn(x),

Thus,
F<n+ll(Z) =pn+l'(z) - (n + 1)!Sn(x),

and since p<n + l)(~) = 0 we obtain

S (x) = I pn+l)W
n (n + I)! '

With this in (10) the theorem follows. It should be pointed out that, al­
though Sn(x) is not defined for x = Xl> the final result (9) is valid for all x
in [a, b] [in fact, since Rn(XI) = 0, ~ for these values of x may be picked
arbitrarily]. •

If the maximum and minimum ofpn + l)(X) in [a, b] can be determined,
(9) will yield bounds on the error. It should be noted that the error (9)
for interpolation polynomials is similar to the remainder in Taylor's
expansion (0.4). In fact, we might naively assume that if Ix - xd <
Ix - xol for i = I, 2, ... , n then the interpolation polynomial error is
smaller than the error in Taylor's expansion about the point xo. This
assumption is not always justified since the terms pn + l)(~) in (0.4) and
(9) are not evaluated at the same point ~ for a given x.

Does the sequence of interpolation polynomials {Pn(x)} converge to
[(x) in [a, b] if {(x~n), ... , x~"')} covers [a, b]? This is a question that is not
completely answered. In the case of uniform spacing [i.e., x~n) = a,
X)n) = Xo + jh., hn = (b - a)/n], we illustrate the fact that divergence is
to be expected by studying Runge's example, I(x) = 1/(1 + x 2

) over
[- 5, 5] (see Chapter 6, Subsection 3.4). On the other hand, in Corollary 2,
Theorem 2 of Section 5, we exhibit a sequence of non-uniformly spaced
points, {(Xbn), ... , x~n»)}, for which uniform convergence of {Pn(x)} to
I(x) may be established for any function I(x) with continuous second
derivatives.t

t Amazingly, for any sequence {(Xbn', xin" ... , x~n,)}, there exists a continuous function
f(x) for which IPn(x) - f(x)! + O!
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From the remainder theorem we can deduce some interesting and useful
identities satisfied by the Lagrange interpolation coefficients. Since
dn+lxmjdxn+1 = °for m = 0, 1, ... , n, the interpolation polynomials of
degree n represent exactly all polynomials of degree at most n. Thus, with
f(x) == xm in (5), equation (9) yields

(12)
n

L xjmepn.tCx) = xm,
j=O

m=O,I, ... ,n.

The case m = °is particularly useful. [Compare (12) with equation (1.4)
for the Bernstein polynomials.]

2.2. Hermite or Osculating Interpolation

The osculating polynomial, a generalization of the interpolation poly­
nomial, is obtained by requiring agreement at the distinct poims of inter­
polation, xi> with the first rj - I derivatives of f(x). (This polynomial
arises also as the limit of the interpolation polynomials when rj points
of ordinary interpolation approach each other at the point Xj') This
procedure contains, as special cases, Taylor's expansion and ordinary
interpolation. The number of combinations is boundless, but, in fact,
a representation of the osculating polynomial can be found together with
an expression for the pointwise error (see Chapter 6, Section I, Problem
10). We shall consider in detail the case in which the function and its
first derivative are to be assigned at each point of interpolation. This
special procedure is usually called Hermite or osculatory interpolation.

The problem is to find a polynomial of least degree, say H 2n + leX),
such that:

(13) j=O,I, ... ,n.
j'(xj) = H~n+l(XJ,

By counting the data (i.e., 2n + 2 conditions), we find that a polynomial
of degree 2n + I has the required number of undetermined coefficients.
Thus, in analogy with the Lagrange interpolation formula (5), we seek a
representation in the form

n n

(14) H2n + 1(X) = L f(x,).pn.lx ) + L j'(xj)'Yn.tCx ).
j=O j=O

Here the polynomials .pn. tCx) and 'Yn. tCx) are required to be of degree at
most 2n + I and to satisfy

.pn.lx,) = aij, 'Yn.lxi) = 0,
(15) i, j = 0, I, ... , n.



[Sec. 2.2] HERMITE OR OSCULATING INTERPOLATION 193

Such polynomials are given in terms of the Lagrange interpolation
coefficients, <Pn. ix), as:

tPn.lx) == [1 - 2<p~.lx;)(x - Xj)]<p~,;(x),

(16)

'Yn.lx) == (x - x;)<p~,;(x).

The error in using (14) to approximate f(x) is

(17) I:() H () _ w n
2
(x) f<2n+2)«(:)

J ,x - 2n + I X - (2n + 2)! ~ ,

provided f(x) has a continuous derivative of order 2n + 2. The point
g = g(x) is again in the interval determined by the points x, Xo, ... , xn·
The proof of formula (17) is left to Problem 3.

From equation (17) we easily deduce, in analogy with (12), the identities:

n n

(18) L xttPn.lx ) + m L xj-I'Yn.,(x) = x m
,

1=0 j=O

m = 0, 1, ... , 2n + I.

PROBLEMS, SECTION 2

1. Evaluate the Vandermonde determinant to verify (4).
[Hint: Let each Xj, j = 0, I, ... , n, in order, be considered variable and

determine all the roots of the resulting polynomial. The remaining scalar
factor is obtained by evaluating the coefficient of any specific term, say
(I . Xl' X2 2 • •••• X nn). An alternative proof could be given by using mathe­
matical induction and expanding the determinant with respect to the elements
of the last column.]

2. Prove that the system (3) is non-singular by assuming that the homo­
geneous system has a non-trivial solution and using Lemma I to obtain a con­
tradiction.

3. Derive the error formula, equation (17), for Hermite interpolation if f(x)
is sufficiently differentiable.

[Hint: Proceed exactly as in the derivation of the interpolation error and
define: F(z) == f(z) - H 2n + 1(Z) - w n

2(z)Sn(x). After the first application of
Rolle's theorem, however, F'(z) will have 2n + 2 distinct zeros.]

4. Formulate the definition of the Hermite interpolation polynomial as a
minimizing polynomial for the appropriate semi-norm. Does this semi-norm
satisfy hypothesis (0.5) of Theorem 0.1 ? Is it strict?

5. Show that the conclusion of Theorem I follows under the weaker assump­
tion: f(x) is continuous in the closed interval [a, b], but has the requisite
derivatives only in the open interval (a, b).
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3. LEAST SQUARES APPROXIMATION

A property which is frequently used to determine an approximating
polynomial,

(1) Qn(x) = ao + alx + ... + anxn,

is that the L 2 norm, or mean square error,

(2) {i b }Y2
Ilf(x) - Qn(x)112 == a [f(x) - Qn(x)]2 dx

be a minimum. For the general polynomial (1) and any appropriatet
functionf(x), we define the function of n + 1 variables,

(3) ep(ao, aI, ... , an) == f [f(x) - Qn(x)]2 dx.

The least squares polynomial approximation to f(x) of degree at most n
is then determined by finding a point (£10' al> ... , an) in the n + 1 dimen­
sional space for which ep is a minimum.

THEOREM 1. For each appropriate function f(x), there is a unique least
squares polynomial approximation ofdegree at most n which minimizes (2).

Proof The hypotheses of Theorems 0.1 and 0.2 are satisfied by 11·112
(see Problem 10), whence existence and uniqueness are established. •

We now give an analytical description of a method for calculating the
coefficients II == (£10' al> ... , an) of the polynomial that minimizes ep(a)
in (3).

Since

+ j~ i~ ajai Lb

X
l
+

i dx,

ep is a quadratic function in the variables at. Now, at the minimum of ep
the coefficients a must satisfy

oep(ao, ~I' ..• , an) I = 0, k = 0, 1, ... , n.
ak a=i

t The given function, f(x), for this purpose need only be restricted so that it and its
square are integrable over [a, bl. The complete linear space for which (2) is a norm
consists of all such functions, if we identify two functions which differ only on a set
of measure zero in [a, b1, and use the Lebesgue integral. But we do not pursue this
avenue of generalization and shall, unless otherwise noted, consider only functions
that are continuous, except at a finite number of points, where certain conditions
will be specified.
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From (4) this necessary condition becomes

o = ~</> I = 0 - 2 fb xkf(x) dx +
uak i a

(5a)

n fbL at x i+k dx
t=O a

n fb
+ t~ at a X

k
+

t
dx

r n fb fb ]= 2L~ at a X
l+k dx - a xkf(x) dx ,

k=O,I, ... ,n.

A system of n + I linear equations for the determination of the {at} is
defined in (5a); it is frequently called the normal system.

We write the normal system (5a) in the form:

(5b) i = 0, 1, ... , n;

where the coefficient matrix and right-hand side are given by

(5c) Hn+l(a, b) == (hit), htt == Lb

x l+t dx; Cl == f xij(x) dx.

Now we have

THEOREM 2. The coefficient matrix Hn+l(a, b) is non-singular.

Proof F or a given arbitrary vector (co, Cl' ... , cn) it is possible to find
a polynomial f(x), such that

f xkj(x) dx = Ck, k = 0, 1, ... , n.

In fact, the polynomial can be of degree at most n and we leave this con­
struction to Problem II. If

n

f(x) == Lalxl,
1=0

then (5a) has the solution at = at. i = 0, I, ... , n. Therefore, the system
(5b) has at least one solution for any right-hand side and this implies
that the system is non-singular. •

In the special case [a, b] == [0, I], we get from (5c):

1 I 1
T "2 n + 1

I 1 1
(6) Hn+l(O, 1) == "2 "3 n + 2 == (hit),

1 I 1
n + 1 n + 2 2n + 1
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where hij = I/(i + j - I) and i,j = 1,2, ... , n + I, a so-called Hilbert
segment matrix. It is difficult to solve numerically a system of equations
with the matrix HnCO, I). (E.g., solve H4 x = (0,0,0, I) T: (a) exactly; (b) using
four-decimal-place arithmetic.) However, it IS possible to find the explicit
inverse of HnCO, I) with the aid of some properties of the Lagrange interpolation
coefficients (see Problems I, 2). As a consequence of the non-singularity of
Hn(a. b), and the fact that (5) is a necessary condition for a minimum of <!J(ao,
aI' ... , an)' we have another proof that the least squares polynomial
approximation of degree n is unique.

We may, by the linear change of variable x = a + (b - a)y, trans­
form the problem of fitting f(x) by Qn(x) in [a, b], to that of fitting
f(a + (b - a)y) == g(y) by Pn(y) in [0, I]. Afterwards, by setting

(
X - a)

Qn(x) == Pn b _ a '

we have the least squares polynomial that minimizes the norm in (2).
The least squares polynomial can be determined in a way which avoids

the difficulties inherent in directly solving the system (5). (This alternative
procedure is but a special case of the general theory of approximation by
orthogonal functions.)

Consider a set of n + I polynomials {Pk(x)}, k = 0, I, ... , n, where
Pk(x) is of degreet k in x. Then without loss of generality, we may let
Qn(x) be a linear combination of these polynomials, say

(7)

(8)

Now the mean square error (2) defines a function

J(co, Cl' ... , cn) = f [f(x) - Qn(x)]2 dx,

of the n + I variables {cd. As before, this function is quadratic in the Ck
and at a minimum we must have

oj fb n fb°= OCk = °- 2 a Pk(x)f(x) dx + 2 j~ CJ a Pj(x)Pix) dx;

or the normal system

k = 0, I, ... , n.

t Here we require that Pk(x) have exactly degree k, in order that the set {Pk(x)} for
k = 0, 1, 2, ... , be linearly independent.
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There seems to be no apparent gain in replacing the system (5) by (9).
However, the main point of the expansion in polynomials, rather than in
powers of x, is to choose appropriate Pk(x) so that the system (9) is easily
solved. In fact, the simplest choice would be one which makes the co­
efficient matrix diagonal, or, better still, the identity matrix. This requires

(10) f Plx)Pk(x) dx = 8fk .

In the next subsection, we define such a sequence {Pk(x)}. A set of poly­
nomials (or any functions) which satisfy (10) are called orthonormal over
[a, b]. The coefficients Cf are now simply given by

(11) Cf = f Plx)f(x) dx, j = 0, 1, ... , n.

An additional advantage of the expansion in orthonormal polynomials is
that the accuracy of the approximation (7) can be improved by adding an
additional term, Cn+lPn+l(X), without having to recompute the previously
determined coefficients, Co, Cl, ... , Cn' [It is also clear that (7), with the
coefficients (II), represents an approximation of least mean square error
for any set of orthonormal functions, not necessarily polynomials, which
satisfy (10).] For the approximation determined by (7) and (11), it easily
follows from (10) in (8) that

(l2a) J(co, Cl , •.• , cn) = rb

f2(X) dx - i cl ~ O.
Ja f=O

<Xl

If we let n --+00 it follows from (l2a) that 2: cl converges. Hence, we
f=O

deduce that lim cf = O. This is a conclusion about the integrals of form
f~<Xl

(11) for general orthonormal functions, Plx). The inequality (l2a) is
known as Bessel's inequality.

Convergence in the mean of the least squares polynomial approximation
to a continuous function is easily demonstrated. Specifically we have

THEOREM 3. Let f(x) be continuous on [a, b] and Qn(x), n = 0, 1,2, ... ,
be the least squares polynomial approximations to f(x) on [a, b] determined
by (7) and (11). Then

lim I n == lim rb

[f(x) - Qn(xW dx = 0,
n-+oo n-+oo Ja

and we have Parseval's equality

(l2b)
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Proof For a proof by contradiction assume that lim I n = 8 > O.
n-oo

Then we pick £ > 0 such that £2 = 8/[2(b - a)] and by the Weierstrass
theorem there is some polynomial Pm(x) such that I/(x) - Pm(x)I ~ £

in a ~ x ~ b. For this polynomial,

However, by (12a) I n is a non-increasing function of n; hence, the least
squares approximation of degree m, say Qm(x), satisfies

8/2 ;::: r [/(x) - Qm(X)]2 dx ;::: 8.

This is a contradiction unless 8 = O. Of course, this mean convergence im­
plies (12b), the Parseval equality. •

Unfortunately, these simple results yield no information about the
pointwise approximation of I(x) by the least squares approximation

n

Qn(x). In order to estimate Rn(x) == I(x) - L cjPlx) , with Cj defined
j=O

by (II) and {Pix)} orthonormal, we write

n fb
Rn(x) = I(x) - j~ Pix) Ja PlWIW df

= I(x) - f Gn(x, OIW df,

where

(l3a) Gn(x, f) == i Plx)PM)·
j=O

From the orthogonality property, we observe that

Therefore, we may rewrite Rn(x) as

(13b)

Now, the rate at which Rn(x) -+ 0, as n -+ 00, depends on the nature of
the kernel, Gn(x, f), and on the function I(x).
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A direct verification of convergence is possible if the sequence Qn(x) ==

i cJPlx) converges in the mean to f(x) and simultaneously converges
;=0
uniformly in [a, b]. That is, if we define

g(x) == lim Qn(x),
n~ 00

the function g(x) will be continuous in [a, b], since it is the uniform limit
of a sequence of continuous functions. On the other hand, because of the
uniformity of convergence, we may pass to the limit under the integral
sign, in the statement of mean convergence, to find

f [f(x) - g(x)]2 dx = 0.

Therefore, f(x) = g(x), since they are both continuous.
Now, it is possible to show that the sequence Qn(x) converges uniformly

if f(x) has two continuous derivativest in [a, b]. We carry out the details
for the interval [a, b] == [-I, I], in Subsection 3.4. On the other hand,
if the function f(x) is merely continuous, the sequence Qn(x) need not
converge.

3.1. Construction of Orthonormal Functions

The method by which a set of orthonormal polynomials {Pk(x)} can be
determined is a special case of a general procedure in which an or­
thonormal set of functions is constructed from an arbitrary linearly
independent set.tt This process is known as the Gram-Schmidt ortho­
normalization method and is described as follows.

We begin by defining the inner product of any pair of real valued functions
f(x), g(x) by

(14) (f, g) = (g,f) = f f(x)g(x) dx.

Now, let {g;(x)}, i = 0, I, ... , n, be n + I linearly independent and
square integrable functions over [a, b]. Consider the functions

fo(x) = do[go(x)],

(15) fleX) = dr[gl(X) - codo(X)],

t This requirement may be weakened.
tt In analogy with the definition of linear independence for vectors, the set {g,(x)},
i = 0, 1, ... , n, of functions are linearly independent in some interval [a, bl if and

only if the only linear combination I a,g,(x) that vanishes identically in [a, b] has
1=0

a, = 0, i = 0, 1, ... , n.
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We seek coefficients dk, Cj/c such that the set {j.(x)} is orthonormal over
[a, b]; i.e., using the inner product notation:

i,j = 0, I,. 00' n.

To normalize lo(x) we need only require

(foJo) = d0
2(go, go) = 1.

Since go(x) '" 0, or the set {gtCx)} could not be linearly independent, we
may define

1
do = .

v(go, go)
In order that °= (fOJ1) = d1(fo, g1 - codo)

= d1[(fo, g1) - cod,
we require

To normalize 11 we set

(f1J1) = d12(g1 - codo, g1 - codo) = 1.

The inner product on the right cannot vanish, by the assumed linear
independence of the {gtCx)}, and thus d1 is determined to within its sign.
As in (16)0 we adopt the convention of using the positive square root.

In general, then, if (ft, fj) = Otj for all i, j = 0, I, . 0 ., k - I, we find
(fjJk) = °for all j = 0, I, ... , k - 1, when we define l/c as in (IS) with

(l6)jk Cjk = (fj, g/c), j ~ k - I.

The normalization constant, d/c, is easily obtained as before by setting
(fkJ/c) = 1.

To apply the Gram-Schmidt procedure to the problem of obtaining
orthonormal polynomials {Pix)} over an interval [a, b], we observe that the
n + I polynomials

j = 0, 1, ... , n,

are linearly independent over any interval. The proof of their independence
follows from the fundamental theorem of algebra used in the proof of
Lemma 2.1. As in (IS) we form

Po(x) = do(l),

P1(x) = d1[x - COIPO(X)],
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Then

or

(17)0

CONSTRUCTION OF ORTHONORMAL FUNCTIONS

I
do = ----===V7J=Ct'

201

By either repeating the previous derivation or simply applying the formulae
(16)jk we have

Jb I b2
- a2

- (b + a)
(17)01 COl = a dox dx = vib _ a 2 = vib - a -2- .

Normalizing Pr(x) = dl[x - cordo] yields

1 = f P1
2(X)dx = dr2f [x2 - (b + a)x + (b: a)2] dx

= d1
2[b

3

~ a
3

_ (b + a) b
2

; a
2

+ (b : a)2 (b _ a)]

= dr2
(b _ a)3

12

or explicitly

The first two polynomials are thus

1
Po(x) = .! '

'vb - a

and any number of them can be obtained by continuing this procedure.
Let us denote by Pn(x; a, b), the sequence of orthonormal polynomials
over [a, b]. Then it is easily verified that

j -2 (2X - (a + b) )
Pn(x; a, b) == b _ a Pn b _ a ; -1, 1

is their representation in terms of the polynomials orthonormal over
[-1, 1]. In Problem 6, we verify that

1 d n

Pn(x; -1, 1) = (n + l)Yz '-2n -dn (x2 - 1)n.n. x
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The polynomials

k = 0, I, ... , n.

(20)

are called the Legendre polynomials.

3.2. Weighted Least Squares Approximation

The mean square measure of approximation defined in (2) gives equal
"weight" at each point in [a, b] to the deviation of the approximating
polynomial from the function, f(x). For some purposes, it may be
required that the approximation be better over some parts of the interval
[a, b] than it is over other parts. This suggests a natural generalization of
(2) which is:

(18) Ilf(x) - Qn(x)k w == {f [f(x) - Qn(x)]2w(x) dxt'
where w(x) ~ 0 in [a, b] and

(19) f w(x) dx > O.

The non-negative function w(x) is called the weight function; clearly, if
w(x) == I, the usual least squares approximation results. For convenience,
we require that w(x) be continuous in (a, b) and have at most isolated zeros
in this interval. By choosing an appropriate function w(x) and finding the
corresponding Qn(x) which minimizes (18), we may obtain an approxi­
mation with good relative accuracy in a specified region of [a, b]. An
extreme example of this is illustrated by the fact that the interpolation
problem can be formulated as a special limiting case of(l8) (see Problem 4).

If Qn(x) is assumed of the form (I) then, as before, we find a system of
equations for the determination of the coefficients {at}:

l~ [f Xl + IcW(X) dX] aj = f xY(x)w(x) dx,

Again, the necessity for solving this system can be eliminated by intro­
ducing a set of polynomials having appropriate properties. Specifically
we call a set of functions {Pix)} orthonormal over [a, b] with respect to
the weight w(x) if

f Pix)PIc(x)w(x) dx = ajle'

Then to minimize (18) with a polynomial of the form (7), we find that

(21) Cj = f Plx)f(x)w(x) dx.



[Sec. 3.3] SOME PROPERTIES OF ORTHOGONAL POLYNOMIALS 203

The construction of orthonormal functions with respect to a weight
w(x) can be accomplished by the procedure of the previous subsection.
That is, we introduce, in place of (14), a new definition of inner product

(22) (f, g) = (g,f) = f f(x)g(x)w(x) dx.

The generalizations of Bessel's inequality (12a), the mean convergence
proof for polynomial approximations of continuous functions and Parse­
val's relation (12b) are valid in the present case with essentially no change
in argument. An important special example w(x) == (I - x 2 )-Yz, [a, b] ==
[ -I, I], gives rise to the Chebyshev polynomials (see Problem 9). The
pointwise convergence of weighted mean square approximations is briefly
considered in Subsection 3.4. A proof of convergence for the Chebyshev
expansion of sufficiently smooth functions is given there.

3.3. Some Properties of Orthogonal Polynomials

Let the polynomials Pn(x), n = 0, I, 2, ... , be orthogonal over a ~ x ~ b
with respect to the non-negative weight function w(x). Then we have

THEOREM 4. The roots Xj, j = 1,2, ... , n of Pn(x) = 0, n = 1,2, ... , are
all real and simple and lie in the open interval a < x J < b.

Proof Letthose roots ofPn(x) = 0 in (a, b) be Xl> X2, ... , x" where any
multiple root is repeated the appropriate number of times. Then the poly­
nomial

Qr(x) = (x - x1)(x - x2)· .. (x - xr)

has sign changes wherever Pn(x) does in (a, b) and it is of degree r ~ n.
Thus, Pn(x) Qr(x) is of one sign in (a, b) and so

f Pn(X) Qr(x)w(x) dx # O.

This can only be true if r = n, since Pn(x) is orthogonal to all polynomials
of lower degree. Now assume some root, say Xl> is multiple. Then we can
write

where Pn-2(X) is of degree n - 2. But

and hence

f Pn(X)Pn-2(X)W(X) dx > O.
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But this is a contradiction since Pn(x) is orthogonal to any lower order
polynomial. Hence multiple roots cannot occur. •

The orthonormal polynomials satisfy a simple recursion formula which
is stated in

THEOREM S. Any three consecutive orthonormal polynomials are related
by

(23) Pn+l(x) = (Anx + Bn)Pn(x) - CnPn-l(x).

Ifak and bk represent the coefficients of the terms ofdegree k and k - I in
Pk(x) then

(24) A = an + l ,
n an

Proof With An given by (24) it follows that

Pn+l(x) - AnxPn(x) == Qn(x)

is a polynomial of degree at most n. Hence, Qn(x) can be expanded as

Qn(x) = anPn(x) + ... + aoPo(x).

By the orthogonality, however, we find that

ak = f Qn(x)Pk(x)w(x) dx

= f Pn+l(x)Pk(x)w(x) dx - An J: Pn(x)Pk(x)XW(X) dx

= 0, for k = 0, I, ... , n - 2.

Thus, the form in (23) follows upon setting an = Bn and an-l = - Cn'
Now we may write

where qn -leX) is of degree at most n - I. Then it follows that

Cn = An f Pn(x)Pn_l(x)XW(X) dx,

= A an-I.
n an
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The coefficient Bn is easily obtained by equating coefficients of the terms
of degree n in (23) and the proof is completed. We observe that (23) and
(24) are valid for n = 0 if we define a-I == P -l(X) == O. •

The result in Theorem 5 can be used to derive what is known as the
Christoffel-Darboux relation. We state this as

THEOREM 6. The orthonormal polynomials satisfy

(25)
n

~ [Pn+l(x)Pn(!f) - Pn+lWPn(x)] = (x - !f) L: P'(x)PjW·
an + 1 /=0

(27a)

Proof Multiply the recursion formula (23) by Pn(!f) to get:

Since this is an identity, it holds if we interchange the arguments x and !f.
Subtracting this interchanged form from the original form and multi­
plying by An -1 yields, with the aid of (24),

(x - !f)Pn(x)PnW = An -l[Pn+l(x)PnW - Pn+lWPn(x)]

- A;.\[Pn(x)Pn- 1W - PnWPn- 1(x)].

We now sum these identities over 0, I, ... , n and the theorem follows
(for n = 0, we use the convention a-I = 0) since An -1 = an/an + 1 • •

Theorem 6 gives a convenient representation of the kernel Gn(x, !f)
defined in (l3a).

3.4. Pointwise Convergence of Least Squares Approximations

We first consider the ordinary least squares approximation over [- I, I]
in which case the orthonormal polynomials [essentially the Legendre
polynomials, see (29)] can be defined as

(26) Pn(x; -I, I) == Pn(x) == v~ dd
n
n (x2

- Iy; n = 0, 1,2, ....
n. x

The derivation of this representation is contained in Problem 6. Given
f(x), we find the least squares polynomial approximation of degree at
most n to be as in (7) and (I I)

Qn(x) == i c,P,(x);
j=O

(27b) Cj == f 1 f(x)P,(x) dx.
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If f(x) is continuous on [-1, 1], it follows from Theorem 3 that

(28a) !~~ f 1

l [f(x) - Qn(x)j2 dx = 0,

(28b) lim Cn = O.
n-oo

If f(x) satisfies additional smoothness conditions, we can deduce uniform
convergence of Qn(x) to f(x). In fact, we have

THEOREM 7. Let Qn(x) be defined by (27) and let f(x) have a continuous
second derivative on [- 1, 1]. Then for all x E [ -1, 1] and any € > 0

If(x) - Qn(x) I ~ In
provided n is sufficiently large.

Proof We introduce the Legendre polynomials

(29)

n = 0, 1,2, ...

some of whose properties are described in Problems 6-8. If we set
u = x2

- 1 in (29), it easily follows that

d n + 2

2n + 1(n + 1)' p' (x) = -- un + 1
. n+l dxn+2

d n

= 2(n + I) dxn [(2n + l)un + 2nun- 1
],

= 2n+1(n + l)! [(2n + l)Pn(x) + P~-I(X)].

Thus we have deduced the relation

(30) n = 1,2, ... ;

which by (29) can be rewritten for the Pn(x) as:

(31) (n + t)-YzP~+I(X) - (n - !)-YzP~_I(X)

= (2n + l)(n + -t)-Yzpn(x);

Now we introduce the notation

n = 1,2, ....

(32) Ck" == (1 f"(x)PJx) dx;

k = 0, 1, ... ,
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and use integration by parts to deduce

(33) C~±l = f/'(X)Pk±l(X) dx,

= [f(X)Pk±l(X)] 1_11 - flf(X)P~±l(X)dX.

Let us assume for the present that f( ± 1) = 1'( ± 1) = O. Then (33)
simplifies and with (31) and (27b) yields

- (k + ~)-l~C~+l - (k - ·t)-Y.C~_l

= (2k + l)(k + 1-)-Y. fJ(X)Pk(X) dx,

= (2k + I)(k + 1-)-Y.Cko

From this, it follows that

(34)

(
2k + 1)Y. k (2k + 1)Y. k

A k == 2k + 3 2k + l' Bk == 2k - 1 2k + l'

But since f'(x) is continuous we may use (28) for f'(x) and cn' to conclude
from (34) that, since Ck' -+ 0, Ak -+ 1- and Bk -+ 1-,
(35)

This argument can be repeated with the function w(x) == f'(x). By the
hypothesis, it follows that w'(x) = rex) is continuous and in place of
(35) we get (having assumed that w( ± 1) = 1'( ± 1) = 0)

However, by using this result in (34), we find

(36)

From the property
IPn(X) I =:;; 1

exhibited in Problem 8 we deduce from (29) that for x E [-1, I]

(37)

By (36) we can pick any £ > 0 and find n sufficiently large so that kll Ck I< E
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for all k ~ n. Then from (27) and (37) we have for any m > nand
xE[-l,l]:

IQm(x) - Qn(X) I = Ik=t 1 i2 (PCk)Pk(X+

00 1
:$ V2 £ L k%'

k=n-t 1

(38)

Here we have used k-% < Lk

_1 f-% df. It follows from (38) that the least

squares polynomials {Qn(x)} form a Cauchy sequence and converge
uniformly on [- I, I].

If we call

lim Qn(x) = g(x),
n_oo

then g(x) is continuous on [- 1, 1] since it is the uniform limit of continu­
ous functions. Again, by the uniformity we may take the limit under the
integral sign in (28a) to find, since I(x) and g(x) are continuous, that

I(x) == g(x). Finally, letting m -+00 in (38) and replacing £ by £/(2V2) we
get the result stated in the theorem.

To complete the proof we must eliminate the requirement that
I( ± 1) = 1'( ± I) = O. To do this, we construct, for any I(x), the Hermite
interpolation polynomial, ha(x), for which

ha(± I) = I(± I), ha'( ± I) = 1'( ± I).

Then g(x) == I(x) - ha(x) satisfies all the requirements of the theorem.
However, since ha(x) has degree at most 3, it follows from (27b) and the
orthogonality of the polynomials Pn(x) , that the cj are unchanged for
j ~ 4 ifI(x) is replaced by g(x). •

By using the technique of the above proof, we find
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THEOREM 8. Let f(x) have a continuous rth derivative on [-I, I] where
r ~ 2. Then with Qn(x) and Cn defined in (27): lim k rCk = 0 and

k_oo

for all XE [-I, I].If(x) - Qn(x) I = lP(n- r +%),

Proof See Problem 12.

A simple linear change of variable yields the
•

COROLLARY. If f(x) has r ~ 2 continuous derivatives in [a, b] then there
exists a polynomial approximation, qn(x), of degree at most n such that
If(x) - qn(x)I = lP(n- r +%), for all x E [a, b].

Proof See Problem 13. •
Analogous results can be obtained for various weighted least squares

approximations. If the weight function is w(x) and the interval is [a, b],
then the approximation to f(x) is

Qn(x) = i CjPj(x)
j~O

where the Cj are defined in (21) and the orthonormal polynomials Pn(x)
satisfy (20). A proof of the pointwise convergence of Qn(x) to a sufficiently
smooth f(x) can be given if

(i) the Pn(x) are the eigenfunctions of a regular second order differential
operator, say

2'[Pn(x)] == a(x)Pn"(x) + b(x)Pn'(x) = AnPn(x),

whose eigenvalues, An, satisfy

lim Ann - 2 = const.;

(ii) the Pn(x) are bounded by

IPn(x) I = lP(nY.) for all x E [a, b].

In particular, we shall sketch the proof for the case in which the Pn(x)
are related to the Chebyshev polynomials. These polynomials are orthogonal
over [- 1, I] with respect to the weight

(39)
1

w(x) == - /1
v - x 2

n = 1,2, ...

In Problem 9 they are determined as (see Section 5):

Pn(x) = J~ cos (n cos- 1 x),(40)
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and they are solutions of

(41)

Thus in this case An = n2
• We require f(x) to have a continuous second

derivative on [-1, 1]. By the remarks at the end of the proof of Theorem 7,
we may assume without loss of generality that f( ± 1) = 1'( ± 1) = 0 in
the present proof. [Since (Pt(x), Pix» = 81i, the Cn of (21) are unchanged if
f(x) is replaced by f(x) - h3(x), see last paragraph of Theorem 7.]

From (39) and (41) in (21) with [a, b] = [-1, 1] we have

Cn = -~ fl V{(~ x2 [(1 - x 2)Pn"(x) - xPn'(x)] dx.

Integrating by parts, all derivatives can be removed from Pn(x) to get

(42a) Cn = - ~2 fl [a(x)f(x) + f3(x)f'(x) + y(x)r(x)]Pn(x)w(x) dx,

where

(42b)
1

a(x) == ---,
1 - x 2 f3(x) == -3x,

Since f( ± 1) = 1'( ± 1) = 0 and rex) is continuous, we note that a(x)f(x),
f3(x)f'(x) and y(x)r(x) are continuous on [- 1, 1]. Thus the coefficients
in the expansion of the sum [af + f3f' + yf"] tend to zero as n -+00 (by
the analog of Theorem 3 for weighted polynomials). Using this fact in
(42a) implies

(43)

(44)

A sharper bound than that in (ii) is easily obtained for the Chebyshev
polynomials. Clearly, from the representation (40),

IPn(x) I ~ J~.

From (43) and (44) we find, as in the proof of Theorem 7, that the Qn(x)
converge uniformly. However, by using this fact and the mean convergence
we easily find that

(45) for all x E [-I, 1].

Note that the error estimate here is smaller by (/)(ljVn) than that for the
Legendre polynomial expansion deduced in Theorem 7.

This argument is easily extended to give
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THEOREM 9. Let f(x) have a continuous rth derivative on [- I, I] where
r ;?; 2. Then the mean square Chebyshev approximations, Qn(x), with
coefficients cj defined by (39) and (40) in (21) satisfy

for all x E [ - I, I]. •
3.5. Discrete Least Squares Approximation

For a fixed set (XO, Xl' ... , XM) of distinct points we might seek to
minimize

(46)

over all polynomials of degree at most n. Here M is usually much larger
than the degree n of the class of approximating polynomials. The fact that
I .ID is a norm and essentially strict, is easily shown in Problems 15 and 16.
It then follows as in Theorem 0.1, that a minimizing polynomial exists.
Further, the minimizing Qn(x) is uniquely determined if n ~ M (see
Problem 17).

To actually determine the discrete least squares approximation, we
again use the notation

(47)

where

This function ,p is quadratic in the at since

M n M

(48) ,p(ao, al,···, an) = L P(Xt) - 2 L ak L x/f(Xt)
t=o k=O 1=0

n n M

+ L L akaj L
k=O j=O 1=0

At a minimum, {ciA of ,pea) we have the necessary conditions

X k +1
1 •

o,p I - 0
oak a=l - ,

which yield the normal system

k = 0, I, .. .,n,

(49)
n M M

'" a1 '" Xk
l +1 = '" Xkl:(x)'L. L. L. ljl,

1=0 1=0 t=O

k = 0, 1, ... , n.
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If n :::; M, the right-hand side of (49) may take on any preassigned
values (co, Cj, ... , cn) by suitably picking [f(xO),f(x1), ••• ,f(XM)] (e.g., if
M = n, the Vandermonde determinant lx/I is non-singular and if M > n,
there are fewer restrictions than variables f(x j ) to determine). Hence, the
system (49) is solvable for any right-hand side and therefore non-singular,
if M ~ n.

But, we may avoid the necessity of having to solve the general normal
system (49) if, in analogy with (10), we can construct a sequence of poly-
nomials Pn(x), n = 0, I, , M, which is orthonormal relative to sum-
mation over Xi> i = 0, I, , M. To this end, we define an inner product by

(50)
M

(f, g) = (g,f) == L f(xj)g(Xj).
i=O

With this inner product in the Gram-Schmidt process of Suosection 3.1,
we can orthonormalize the independent set {xk

} for k = 0, 1,2, ... , M.
The result is a set of polynomials {Pk(x)} for which

(51)
M

(P,(x), Ps(x)) = L P,(x,)Ps(x,) = 8,s;
i=O

r, S = 0, I, ... , M.

Now the unique polynomial Qn(x) of degree at most n :::; M that minimizes
(46) can be written as (see Problem 14)

(52a)

where

(52b)

n

Qn(x) = L dkPk(x),
k=O

M

dk = L f(xJPk(x j ).

j =0

We now consider the determination of polynomials which satisfy (51)
over various sets of points. As indicated, the Gram-Schmidt procedure
could be used, but for the special cases to be treated it is not required.
First, we consider uniformly spaced points {Xj} in [-1, 1]; say,

Xo = -1, X j = Xo + jh, h = ~; j = 0, 1, ....

The corresponding orthonormal polynomials that satisfy (51) can be
written as

(53) n = 0, 1, ... , M.
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Here the forward difference operators ~n are defined by:

~Of(x) == f(x)

~f(x) == f(x + h) - f(x),

(54) ~2f(x) == ~(~f(x)) = f(x + 2h) - 2f(x + h) + f(x),

n

~nf(x) == ~[~n-lf(x)] = 2: (-l)j (7)f(x + (n - j)h);
j=O

the coefficients Cn are constants given in (58) and

u[O)(x) = v[O)(x) = 1

(55) u[nl(x) = (x - xo)(x - Xl)' .. (X - Xn-1)

V[nl(X) = (X - XM+l)(X - XM+2)" ·(X - x M+n).

Formula (53) is the discrete analog of the formula (26) for the Legendre
polynomials.

The fact that these polynomials satisfy (51) may be verified by the use
of a formula for summation by parts, which is analogous to integration by
parts. To derive this formula, we note the identity

(56a) ~(FG) = F~G + G~F + (~F)(~G)

which can be written as

(56b) G~F = ~(FG) - F~G - (~F)(~G).

Now assume r > s and let

G(x) == ~·(u[·)(x)v[·)(x)).

We evaluate (56b) at each point Xt = Xo + ih and sum over 0 ::<::; i ::<::; M
to get

(57)
1 M M

C C 2: p.(Xt)PrCXt) = 2: G(xI)~F(xt)
• r 1=0 1=0

M M

= 2: ~[F(xI)G(xt)] - 2: F(xt)~G(xI)
1=0 1=0

M

- 2: [~F(xt)][~G(Xt)],
1=0

= F(x)G(x) I:~+ 1 _ I~ F(xt)~G(Xt)
M

2: [~F(xt)][~G(xl)]'
1=0
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We observe that F(xo) = F(XM + 1) = 0, whence from (53) and (57) we
have converted the sum in (51) into two sums in which t:J.G appears.

We may continue with this process of summation by parts to successively
form sums in which higher order differences of G appear. The boundary
terms vanish since, by Problem 21 and the identity (56a) for x = Xo or

x = XM+1
k = 0, I, ... , r - I.

Now, from the assumption r > s, it follows that after s + I such appli­
cations, the term t:J.2S+ l(U[SlV[SJ) will be a factor in all the resulting sums.
But dS1(x)v[sJ(x) = Q2S(X) is a polynomial of degree 2s and hence all the
sums vanish identically since for any polynomial Pn(x) of degree at most n,
the difference operator reduces the degree, i.e.,

t:J.pn(x) == Pn-1(X)

t:J.rnpn(x) == 0, for m > n.

The verification that (51) is valid for r = s follows when we define

(58) en = L~ {t:J.n[dnJ(Xt)dnl(Xt)W] -Yz.

The bracket in (58) is not zero if we can show that

t:J.n[u[nJ(xo)v[nJ(xo)] #- 0.
But the polynomial

has only the 2n zeros (xo, Xl. "" x n- 1; XM +l. x M +2' ... ' x M+n) and
M ;::: n. Then from (54) with/ex) == P2n(X), only one term in the expression
for t:J."f(xo) is non-zero, i.e.,

t:J.nP2n(Xo) = P2n(Xn) #- 0.

Hence the definition (58) is valid.
The polynomials Pn(x) of (53) have been called the Gram polynomials.

It can be shown that the polynomials Pn(x)/V2/M converge as M -+ 00

to the orthonormal polynomials defined in equation (26) (they are related
to the Legendre polynomials).

Another interesting set of points for discrete least squares approximation
in [-I, I] are the zeros, (xo, Xl. ... , XM) of the (M + I)-st Chebyshev
polynomial

(59) TM+ 1(X) = 2- Mcos [(M + I) cos- 1 x], M = 0, 1,2, ....



[Sec. 3.5] DISCRETE LEAST SQUARES APPROXIMATION 215

In Subsection 4.2 we show that these are polynomials of the indicated
degrees. Now the points {Xj} are not uniformly spaced, but are given by

(60) [
(2j +I)7T]

x j = cos (M + I) 2 ' j = 0, I, ... ,M.

Note that the corresponding points
_ -1 _ 2j + 17T

()j - cos x j - M + I 2
are uniformly spaced in [0, 7T].

We say that these sets {Xj} are interesting, because on the one hand, the
discretely orthonormal polynomials are easily found in Theorem 10; and
on the other hand,we prove in Subsection 5.1 that various approximation
polynomials based on these points converge uniformly to any function
f(x) with two continuous derivatives in [-I, I].

THEOREM 10. For the discrete set of points {Xj} defined in (60), the dis­
cretely orthonormal polynomials satisfying (51) are proportional to the
Chebyshev polynomials. Specifically they are:

Po(x) == (M + I)-Y.,
(61)

Pn(X) == 2Y.(M + I) -Y. cos (n cos -1 x), n = 1,2, ... , M.

Proof We must verify that Pn(x) defined in (61) satisfies (51). This
follows directly from the discrete orthonormality property of the trigono­
metric functions expressed in

LEMMA

(62)

where

(63)

1.

{

o
M M+ I
Leos r()j cos S()j = --2­
j= 0

M+ I

(). = 2j + I::
J M+ Ii

for 0 ~ r -:I s ~ M;

for 0 < r = s ~ M;

for 0 = r = s;

j = 0, I, .. ", M.

We can most readily evaluate the sum in (62) by making use of the well­
known formula,

(64) eiX == cos x + i sin x,

where i 2 = -I and x is a real number. Then we may write
M M

(65) Leos r()j cos S()j = 1- L [cos (r + S)()j + cos (r - S)()J]
j=O j=O
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for R = I, 2, ... , 2M.

But the right-hand sums may be treated as geometric series. That is, we
note that 8f - 80 = j280, whence for R = 1,2, ... , 2M,

= sin R(M + 1)80 etROo(M+l)

sin R80 •

By taking the real part, we find

(66) ( L:M ) sin R(M + 1)80 cos R(M + l)80
Re f=O e

lRO
, sin R80 '

sin 2R(M + l)80

2 sin R80 '

sin RTT
----;::--- = 0,
2

. RTT
sm 2(M + I)

If we now identify R = r ± s, then from (65) with r > s the first part
of (62) follows. The special case r = s > 0, of (62) results by using (65)
and observing that the sum in (66), for R = 0 is simply

M

Re L: efOO
, = M + I.

f= 0

Finally, the trivial case r = s = 0, of (62) is directly verifiable. Thus,
Lemma 1 is proven and from it follows Theorem 10. •

We note the fact that for any set of M + 1 distinct points (xo, Xl>' .. , X M ),

THEOREM 11. The discrete least squares approximation polynomial QM(X)
ofdegree at most M which minimizes

M

If(x) - QM(X)lD2 = L: [f(xt) - QM(Xt)]2,
t=O

is the interpolation polynomial for f(x) based on the distinct points
(xo, Xl> •.. , XM)'

Proof Let PM(x) be the indicated interpolation polynomial. Then
If(x) - PM(X)lD = 0 and since the interpolation polynomial is unique
we must have PM(x) == QM(X). •
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We recaIl that with least squares approximations (discrete or not) the
next higher degree approximation is obtained by simply adding a new term
to the previous approximation. Theorem II then shows that for the dis­
crete case, as the degree increases for a fixed set of points, the approxima­
tions "approach" the interpolation polynomial. However, for the n + I
unequaIly spaced points (60) we show in Subsection 5.1 that while the

nth degree interpolation polynomials converge like I/Vn as n --+ 00 (for
a sufficiently smooth function), so do the discrete least square polynomials

of degrees ::0: Vn.
We observe that one reason for working with the discrete least square

method is that sums are readily computable. On the other hand, the
integrals of the continuous least square method, say of the form

f f(x)Pn(x) dx,

are generally only determined approximately (frequently by using quadra­
ture formulae, i.e., sums).

The natural extension to weighted discrete least squares approximation
is omitted. An important application of these approximation methods is
to the art of fitting mathematical formulae to empirical data but we shaIl
not treat that here.

PROBLEMS, SECTION 3

1.* A generalization of the Hilbert segments is furnished by the matrix
A = (a'j), a'j = l/(a, + f3j), i, j = 1,2, ... , n, where the a, are distinct and the
f3j are distinct. Show that the determinant of A is

det A

for n ~ 2.
n

[Hint: Multiply the ith row of A by n (a, + f3j) for i = 1, 2, ... , nand
1=1

call the resulting matrix C. The elements of C are polynomials in {a" f3j},
hence, det C is a polynomial P({a,}, {f3j}) of degree at most n(n - 1). Observe
that P is divisible by each of the factors in the numerator of the right-hand side
because a determinant vanishes if two columns or two rows are identical.
Hence, P equals the numerator to within a constant factor, since the numerator
has degree n(n - I). Therefore, det A equals the right-hand side to within a
constant factor Kn • Determine Kn by induction.]

2.* Notice that the cofactor of any element in the above matrix, A, is the
determinant of a matrix of similar form. Use the cofactor and the determinant
of A to represent the elements of A -1 == (b'k)' Express these elements in terms
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of the Lagrange interpolation coefficients with respect to the points al and f3i;
the result should be

where

Verify, by using equation (2.12) that AA-l = A-IA = I.
3. Show that any polynomial of degree m which is orthogonal to the first

m + I orthogonal polynomials (i.e., to all orthogonal polynomials of degree m
or less) is the identically vanishing polynomial.

4. Verify that if I(x) is continuous in [a, b], (xo, Xl, ... , x,,) are distinct
points in (a, b) and

{

(x - Xi + 10M)
10M2

WM(X) == -(x - Xi - 10M)

10M2

°where

for Xi :s; X :s; Xi + 10M, j = 0, I, ... , n,

if X is not in any of the above intervals,

then the associated weighted least squares polynomial approximations
Pn.M(x) converge to the Lagrange interpolation polynomial as M -+00.

5. Given the linearly independent set offunctions {gl(X)} for i = 0, 1,2, ... ,
n, verify that with the definition (22), the Gram-Schmidt orthogonalization
process (15)-(16) produces an orthonormal set {ft(x)}.

6. If w(x) == 1, [a, b] == [-1, I], show that for gk(X) == x\ k = 0, 1,2, ... ,
the orthonormal polynomials Pn(x) resulting from (14)-(16) are

Pn(x) == (n + t)Yz /2n dd: (x 2
- l)n.n. X

[Hint: Verify

fl Pn(x)Pm(x) dx = 8nm

by integration by parts and use uniqueness of Gram-Schmidt process.]
[The polynomials Pn(x) == Pn(x)(n + t) - Yz are called the Legendre poly­

nomials, and have the properties

Pn(l) = I;
(recurrence relation)

2n + 1 n
Pn+l(X) = ---1 xPn(x) - --1 Pn-l(X),

n + n +
n ~ I.]
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7. Verify that the Legendre polynomials also satisfy (differential equation)

(I - x 2)Pn' - 2xp; + n(n + I)Pn = o.
[Hint: Let u = (x2 - I)n and apply Leibnitz' rule to get d n+ 1 jdxn+ 1 of

both sides of

(x2 - I)u'(x) = 2nxu.]

8. Prove that for the Legendre polynomials

for Ixl ::os; 1.
[Hint: Consider

n(n + I)f(x) == n(n + I)Pn2(x) + (I - x 2)[Pn'(x)]2.

Note thatf(x) = p,,2(X) ifPn'(x) = 0, or x 2 = 1. But, by using the differential
equation of Problem 7, n(n + I)f'(x) = 2x[p;(x)j2 ~ 0 if x ~ 0 and hence
the value of IPn(x)1 at a local maximum point, Ixl < I is ::os; 1.]

9. If w(x) == (I - x 2)-y" [a, b] == [-I, I], gk(X) == x k for k = 0, 1,2, ... ,
show that the sequence defined by Problem 5 is

Pn(x) == J1 cos (n cos- 1 x),

I
Po(x) == v;:

[The polynomials

Tn(x) == 2nl- 1 cos (n cos -1 x),

n = 1,2", "

n = 1,2, ... ,

To(x) == 2

are caHed Chebyshev polynomials of the first kind. They satisfy (recurrence
relation) :

(differential equation):

(I - x 2)Tn' = xTn' - n2Tn.]

10. Show that 11·112 is a strict norm [see (2)].
[Hint: (a) The triangle inequality foHows from the Schwarz inequality:

f f(x)g(x) dx ::os; FG

where

{f b }Y,
F == a [f(X)]2 dx ; G =={f [g(X)]2 dx}Y,.

Observe

o ::os; f [af(x) + ,8g(x)j2 dx == (aF + ,8G)2 + 2a,8 [I: f(x)g(x) dx - FG].

For F -# 0 -# G, aF + ,8G = 0 implies a,8 < 0 and the inequality follows.
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(b) Now to show strictness, note III + gil = IIIII + Ilgll implies

f I(x)g(x) dx = FG, whence with non-trivial a, {3,

o = (aF + (3G)2 == f [al(x) + {3g(xW dx.]

11. Given (co, Clo"" cn) find a polynomial Wn(x) of degree at most n,
such that

for k = 0, I, ... , n.

[Hint: Use the orthonormal polynomials Pj(x), j = 0, I, ... , n, defined by
(15), (16) and (17).]

12.· Prove Theorem 8.
13.· Prove Corollary to Theorem 8.
14. Given the discrete orthonormal polynomials {Pn(x)}, for 0 :s; n :s; M,

M

on the set {Xj} for 0 :s; j :s; M [i.e., 2: P,(Xj)P.(Xj) = 0,,] verify, if n :s; M,
j=O

that
n

Qn(x) = .2 dkPk(X)
k=O

M

with dk = .2 l(xj)Pk(Xj)
j=O

is the unique polynomial of degree at most n which minimizes

M

.2 I/(xj) - Qn(XjW·
j=O

[Hint: Show that

M M n

.2 I/(xj) - Wn(XjW = .2 I/(xj) - Qn(XjW + 2: ek2,
j=O j=O k=O

where

Wn(X) = Qn(x) + ~ ekPk(x),]
k=O

15. Show that 1·1 D is a semi-norm.
[Hint: 11+ glD :s; IIID + IglD is a consequence of the Cauchy-Schwarz

inequality (see Chapter I, Section 4)

Jo lig, :s; {1 (1i)2f~ {Jo (g,)2f'·]

16. I·ID is essentially strict if 11+ glD = I/ID+ IglD implies there exist
non-trivial a, {3 such that ali + (3gj = 0 for i = 0, I, .. , M. Prove 1·1 D is
essentially strict.

17. If n :s; M, show that the polynomial Qn(x) which minimizes I/(x) ­
Qn(x)I D is unique.

18. Verify that the orthonormal polynomials {Pn(x)} for weight w(x) and
interval [a, b) may be represented in the form

I d n

Pn(x) = Cn w(x) dxn [vn(x)],

with Cn a normalization constant, in the common classical cases:
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(a) [a, b] == [-1,1], w(x) == (l - x)a(l + x)P with IX > -1, f3 > -1 [i.e.,
vn(x) == (l - x)a+ n(l + x)P + n] (Jacobi polynomials)

(b) [a, b] == [0,00], w(x) == e- ax with IX > 0 [i.e., vn(x)==xne- aX] (Laguerre
polynomials)

(c) [a, b] == [-00,00], w(x) == e- a2x2 [i.e., vn(x) == e- a2X2 ] (Hermite poly­
nomials)

[Hint:
1 d n

Pn(x) == w(x) dxn [vn(x)]

is a polynomial of at most degree n, if vn(x) satisfies

d n
+ 1 [1 d n

]
dxn + 1 w(x) dxn (vn(x» = 0;

furthermore, s: Pn(x)Pm(x)w(x) dx = 0 for n > m is implied with the use of

integration by parts from

fb dn fb d n- 1
a dxn [vn(x)]Pm(x) dx = - a dxn-1 [vn(x)]Pm'(x) dx

if

d' Idx' [vn(x)] x=a. b = 0 for r = 0, 1, ... ,n - 1.]

19. By the use of Problem 18 find another representation for the Chebyshev
polynomials.

20.* Prove Theorem 9 for r > 2.
21. Verify that with the definitions (54) and (55),

~UlnJ(x) = nhuln - lJ(X), n 2:: 1.

4. POLYNOMIALS OF "BEST" APPROXIMATION

Another measure of the deviation between a function, I(x), and an
approximating polynomial of degree n,

(1)

is the so-called maximum norm:

(2) 11/(x) - Pn(x)lloo == max I/(x) - Pn(x) I == D(I. P n).
a$xSb

A polynomial which minimizes this norm is conventionally called a
polynomial of .. best" approximation.
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Equation (2) defines a function of the n + 1 coefficients {at} that is not
as explicit as (3.4),

(3) d(ao, ar. ... , an) == max If(x) - Pn(x)l·
a:Sx:Sb

A polynomial of best approximation is characterized by a point a in
(n + I)-space at which d(a) is a minimum. The existence of such a poly­
nomial is shown by

THEOREM 1. Let f(x) be a given function continuous in [a, b]. Then for
any integer n there exists a polynomial Pix), of degree at most n, that
minimizes Ilf(x) - Pn(x)II",·

Proof We shall verify the hypotheses of Theorem 0.1 to obtain
n

existence of a minimizing polynomial Pn(x) == 2: atxt.
j=O

Clearly, 11·11", is a norm in the space of continuous functions on [a, b].
We only need to establish (0.5) for this norm. That is, we must show that
on the subset of polynomials {Pn(x)} such that

i a/ = 1, min IIPn(x)ll", == mn > O.
j=O

By the argument in the proof of Theorem 0.1, IIPn(x)ll", is a continuous

function of the variables {aj }. If 2: is the closed bounded set i a/ = 1,
j=O

we may apply the Weierstrass theorem which assures us that there is a
point {aj} for which

is attained. But at this point

since
n

2: a/ = I
j=O

and any non-trivial polynomial, of degree at most n can have at most n
zeros (i.e., if 11.i\(x) II '" = 0 then Pn(x) == 0). •

At this point we observe that 11,11", is not a strict norm, and hence we
cannot use Theorem 0.2 to establish uniqueness of Pn(x). Nevertheless, the
"best" approximation polynomial is unique and we will prove this fact
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in Theorem 3. It is of interest to note that Theorem I remains true if the
norm II· 1100 of (2) is replaced by the semi-norm I· 100, S defined as

If(x)l""s == sup If(x) I
xeS

where S is any subset of [a, b] containing at least n + I points.
From the Weierstrass approximation theorem, it follows that

lim D(f, i\) = O.
n~oo

Furthermore, if f(x) has r continuous derivatives in [a, b], then by the
convergence result for expansions in Chebyshev polynomials (see Theorem
9 in Subsection 3.4)

for r ~ 2.

4.1. The Error in the Best Approximation

It is a relatively easy matter to obtain bounds on the deviation of the
best approximation polynomial of degree n. Let us call this quantity

(4) min d(ao, ... , an) == min D(f, Pn)'
{ao... an} (Pn(x)}

Then for any polynomial Pn(x) we have the upper bound

Lowers bounds can be obtained by means of

THEOREM 2 (DE LA VALLEE-POUSSIN). Let an nth degree polynomial Pn(x)
have the deviations from f(x)

(5) j = 0, I, ... , n + I,

where a ~ Xo < Xl < ... < Xn+ l ~ b and all ei > 0 or else all ej < O.
Then

(6) min leif ~ dn(f).
i

Proof Assume that for some polynomial Qn(x),

(7)

Then the nth degree polynomial

Qn(x) - Pn(x) = [f(x) - Pn(x)] - [f(x) - Qix)]

has the same sign at the points Xi as does f(x) - Pn(x). Thus, there are
n + I sign changes and consequently, at least n + I zeros of this difference.
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But then, this nth degree polynomial identical1y vanishes and so Pn(x) ==
Qn(x), which from (7) and (2) is impossible. This contradiction arose from
assuming (7); hence D(I, Qn) ~ min le;1 for every polynomial Qn(x),

f

and (6) is established. •

To employ this theorem we need only construct a polynomial which
oscil1ates about the function being approximated at least n + I times.
Thi~ can usually be done by means of an interpolation polynomial of
degree n.

A necessary and sufficient condition which characterizes a best approxi­
mation polynomial and establishes its uniqueness is contained in

THEOREM 3 (CHEBYSHEV). A polynomial of degree at most n, Pn(x), is a
best approximation ofdegree at most n to f(x) in [a, b] ifand only iff(x) ­
Pn(x) assumes the values ± D(I, Pn), with alternate changes ofsign, at least
n + 2 times in [a, b]. This best approximation polynomial is unique.

Proof Suppose Pn(x) has the indicated oscillation property. Then let
Xl with j = 0, I, ... , n + I be n + 2 points at which this maximum
deviation is attained with alternate sign changes. Using these points in
Theorem 2 we see that le;1 = D(I, Pn) and hence

dn(f) ~ D(I, Pn)·

From equation (4), the definition of dn(f), it follows that D(j, Pn) = dn(f)
and the Pn(x) in question is a best approximation polynomial. This shows
the sufficiency of the uniform oscillation property.

To demonstrate the necessity, we will show that if f(x) - Pn(x) attains
the values ± D(j, Pn) with alternate sign changes at most k times where
2 :0:; k :0:; n + I, then D(j, Pn) > dn(f). Let us assume, with no loss in
generality, that

j= 1,2, ... ,k,

where a :0:; Xl < X2 < ... < X k :0:; b. Then, there exist points ~b ~2"'"

~k- b separating the x;, i.e.,

Xl < ~l < X2 < ~2 < ... < ~k-l < X k

and an € > 0 such that If(~;) - Pn(~;)1 < D(I, Pn) and

- D(j, Pn) :0:; f(x) - Pn(x) < D(j, Pn) - €,

for X in the" odd" intervals, [a, ~d, [~2' ~3]' [~4' ~5]' ... ; while

- D(j, Pn) + € < f(x) - Pn(x) :0:; D(j, Pn),

for X in the "even" intervals, [~b ~2]' [~3' ~4]' .... For example, we may
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define tl = 1(711 + ~I) where 711 = g.l.b. {7J} for a s 71 S X2 and f(7J) ­
Pn(7J) = D(f, Pn); and similarly: ~I = I.u.b. m for a s ~ S X 2 and
fm - Pnm = - D(f, Pn). Then Xl S ~I < 711 S X2; otherwise, we may
insert 711 and ~I in place of Xl in the original sequence and find k + I
alternations of sign. That is, alternately for each of the k intervals
[a, gI], ... ' [gk-r. b], the deviation f(x) - Pn(x) takes on only one of the
extreme deviations ± D(f, Pn) and is bounded away from the extreme of
opposite sign. The polynomial

rex) = (x - gI)(X - t2)·· ·(x - tk-l)

has degree k - I and is of one sign throughout each of the k intervals in
question. Let the maximum value of Ir(x)[ in [a, b] be M. Now define
q(x) == (-I)kr(x)j2M and consider the nth degree polynomial (since
k - I S n)

Qb·) = Pn(x) + cq(x),

for sufficiently small positive c. We claim that D(f, Qn) < D(f, Pn),
and so Pn(x) could not be a best approximation. Indeed, in the interior
of any of the" odd" intervals (a, gI), (g2, g3), ... , we have that --!- S

q(x) < 0 and conversely in the "even" intervals (gr, t 2), (t3, g4), ... , we
have that 0 < q(x) s 1-- However, recalling the above inequalities,

- D(f, Pn) - cq(x) S f(x) - Qn(x) s D(f, Pn) - c[1 + q(x)],
X in odd intervals;

- D(f, Pn) + c[1 - q(x)] s f(x) - QnCx) s D(f, Pn) - cq(x),
X in even intervals.

From the signs and magnitude of q(x) in each interval, it easily follows that
D(f, Qn) < D(f, Pn) and the proof of necessity is completed.

To demonstrate uniqueness we assume that there are two best approxi­
mations say, Pn(x) and Qn(x), both of degree at most n. Since by assump­
tion D(f, Pn) = D(f, Qn) = dn(f), we have in [a, b],

If(x) - t[Pn(x) + Qn(x)] I s tlf(x) - Pn(x) I + tlf(x) - Qn(x) I
s dn(f).

Thus, t[Pn(x) + Qn(x)] is another best approximation and we must have,
by the first part of the theorem,

If(x) - HPn(x) + Qn(x)]1 = dn(f)

at n + 2 distinct points in [a, b]. From the inequality, it follows that at
these points f(x) - Pn(x) = f(x) - Qn(X) = ± dn(f). Thus, the difference
[f(x) - Pn(x)] - [f(x) - Qn(x)] = Qn(x) - Pn(x) vanishes at n + 2
distinct points. Since this difference is an nth degree polynomial, it vanishes
identically, i.e., Qn(x) == Pn(x), and the proof is complete. •
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This theorem can be used to recognize the best approximation poly­
nomial. It is also the basis, along with Theorem 2, of various methods for
approximating the best approximation polynomial. There is no finite
procedure for constructing the best approximation polynomial for arbi­
trary continuous functions. However, the best approximation is known in
some important special cases; see, for example, the next subsection and
Problem 2.

As an obvious consequence ofTheorem 3, it follows that the best approxi­
mation, Pn(x), of degree at most n is equal to I(x), the function it approxi­
mates, at n + I distinct points, say xo, Xb ... , Xn. Thus, Pn(x) is the
interpolation polynomial for I(x) with respect to the points {Xt} (since by
Lemma 2.1 the interpolation polynomial of degree at most n is unique).
Of course, for an arbitrary continuous function, I(x), a corresponding
set of interpolation points {xJ is not known a priori. Thus, this observa­
tion cannot, in general, be used to determine Pn(x). However, ifI(x) has
n + I continuous derivatives, Theorem 2.1 applies since Pn(x) is an inter­
polation polynomial, and we have dett:rmined a form for the error in the
best approximation of degree at most n. In summary, these observations
can be stated as a

COROLLARY. Let I(x) have a continuous (n + I)st derivative in [a, b] and
let Pn(x) be the best polynomial approximation to I(x) 01 degree at most n
in this interval. Then, there exist n + I distinct points xo, Xl' ... , Xn in
a < X < b such that

(8) Rn(x) =- I(x) - Pn(X) = (x - xo)(\~:IL; .(x - Xn) pn + ll(g),

where g = g(x) is in the interval:

min (x, Xo, ... , x n) < g < max (x, Xo, ... , x n). •
4.2. Chebyshev Polynomials

In the expression (8) for Rn(x), the error of the best approximation, it
will, in general, not be known at what point, g = g(x), the derivative is to
be evaluated. Hence, the value of the derivative is not known. An exception
to this is the case when pn + ll(x) = constant, which occurs if and only if
I(x) is a polynomial of degree at most n + 1. In this special case, the
error (8) can be minimized by choosing the points Xo, Xb ... , Xn such that
the polynomial

(9a)

has the smallest possible maximum absolute value in the interval in question
(say, a :s; x :s; b). In the general case, the choice of these same interpola-
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tion points may be expected to yield a reasonable approximation to the
best polynomial, i.e., the smaller the variation of pn+ll(x) in [a, b], the
better the approximation.

We are thus led to consider the following problem: Among all poly­
nomials of degree n + I, with leading coefficient unity, find the polynomial
which deviates least from zero in the interval [a, b]. In other words, we are
seeking the best approximation to the function g(x) == 0 among poly­
nomials of the form

(9b)

where Pn(x) is a polynomial of degree at most n. Alternatively, the problem
can then be formulated as: find the best polynomial approximation of
degree at most n to the function x n+l .

For this latter problem, Theorem I is applicable and we conclude that
such a polynomial exists and it is uniquely characterized in Theorem 3.
Thus, we need only construct a polynomial of the form (9) whose maximum
absolute value is attained at n + 2 points with alternate sign changes.

Consider, for the present, the interval [a, b] == [-1, 1]. We introduce
the change of variable

(10) x = cos 0,

which takes on each value in [-I, 1] once and only once when 0 is
restricted to the interval [0,7T]. Furthermore, the function cos (n + 1)0
attains its maximum absolute value, unity, at n + 2 successive points with
alternate signs for

j = 0, 1, ... , n + 1.

Therefore, the function

(II) Tn+l(x) = An+l cos (n + 1)0 = An+1cos[(n + I)cos-1x],

has the required properties as regards its extrema. To show that Tn+1(x)
is also a polynomial in x of degree n + 1 we consider the standard tri­
gonometric addition formula

(12) cos (n + 1)0 + cos (n - 1)0 = 2 cos 0 cos nO, n = 0, 1". '.

Let us define

(l3a) tn(x) == cos (n cos -I x), n = 0, 1,2,., "

in terms of which (12) becomes

(l3b) n = 1,2,3, ....
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Clearly, from (13a), to(x) = I, t1(x) = x and so, by induction, it follows
from (13b) that tn + 1(x) is a polynomial in x of degree n + I. It also follows
by induction that

(13c) tn+1(x) = 2nxn+1 + qn(x), n = 0, 1,2, ... ,

where qn(x) is a polynomial of degree at most n. Thus, with the choice
An + 1 = 2- n in (II), these results imply

(14) Tn+1(x) = 2- ncos [(n + I) cos- 1 x] = 2- ntn+1(x)

= xn+1 + 2- nqn(x).

At the n + 2 points
k77

(I Sa) tk = cos n + l' k = 0, I, .... n + I,

which are in [-I, 1], we have from (14)

(15b) Tn+Mk) = 2- ncos kTT = 2- n( _I)k.

Thus we have proven that Tn + 1(x) is the polynomial of form (9) which
deviates least from zero in [-I, I]; the maximum deviation is 2- n •

The polynomials in (14) are called the Chebyshev polynomials (of the
first kind-see Problem 9 of Section 3). If the zeros of the (n + 1)-st such
polynomial are used to construct an interpolation polynomial of degree
at most n, then for x in [-1, I] the coefficient ofpn+ 1)(0 in the error (8)
of this approximation will have the least possible absolute maximum.

If the interval of approximation for the continuous function g(y) is
a :-:; y :-:; b, then the transformation

a - 2y + b
(16) x = a _ b or y = Wb - a)x + (a + b)]

k = 0, I, ... , n;(l7a)

converts the problem of approximating g(y) into that of approximating
f(x) == g[y(x)] in the x-interval [ - 1, I]. The zeros of Tn + l(X) are at

(
2k + 177)

Xk = cos n+T:2 '

and the corresponding interpolation points in [a, b] are then at

(l7b) Yk = Wb - a)xk + (a + b)], k=O.I, ... ,n.
n

The value of the maximum deviation of n (y - Yi) from zero in [a, b]
i= 0

(18)

is then, using (16) and (17b):

n Ib al
n
+

1
n

an;~:b D[y - Yil = --T- . -~:~1 D(x - Xk)

= ~ Ib ; al
n

+
1

•
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We stress that when the points in (17b) are employed to determine an
interpolation polynomial for g(y) over [a, b], this polynomial will not, in
general, be the Chebyshev best approximation polynomial of degree n.
However, these points may be used to get an estimate for the error of the
best approximation polynomial. Iterative methods, based on Theorems
2 and 3, have been devised to compute with arbitrary precision the poly­
nomial of best approximation.

PROBLEMS, SECTION 4

1. Prove that the nth Chebyshev polynomial can be expressed as:

T,,(x) = 2-"[(x + vx2
- I)" + (x - vx2

- 1)"].

2. Find the best approximations of degrees 0 and 1 to f(x) E C2 [a, b]
provided f "(x) "# 0 in [a, b] [i.e., calculate the coefficients of these best
approximation polynomials in terms of properties of f(x)].

5. TRIGONOMETRIC APPROXIMATION

We say that Sn(x) is a trigonometric sum of order at most n, if

{Ia) "
Sn(x) = -tao + L (ak cos kx + bk sin kx).

k=l

The coefficients ak and bk are real numbers. By using the exponential
function

(I b) et8 == cos 8 + i sin 8,

and
. -i

SIn 8 = - (e t8
- e- lO )

2

where now i 2 = -I, it follows that (Ia) can be written in a simpler form
with simpler coefficients:

(Ie)

Here

n

Sn(x) = L CketkX .
k= -n

ao
Co ="2' Ck = -t<ak - ibk), C-k = Ck = -teak + ibk),

for k = 1,2, ... ,n.

A basic result on approximation by such trigonometric sums is again due
to Weierstrass and can be stated as:
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THEOREM 1 (WEIERSTRASS). Letf(O) be continuous on [-7T, 7T] and periodic
with period 27T. Then for any € > °there exists an n = n(€) and a trigono­
metric sum, Sn(8), such that

If(O) - Sn(O) I < €

for all 8.

Proof A proof of this theorem can be given by employing the Weier­
strass polynomial approximation theorem of Section 1.

We sketch a simpler proof based on the Weierstrass polynomial approxi­
mation theorem for a continuous function g(x, y) in the square, - 1 ~ x,
y ~ 1 (see Problem 2, Section 1). Define g(x, y) == pf(O) for x = p cos 0,
y = p sin 8, °~ p ~ 2, -7T ~ 8 ~ 7T.

Clearly, g(x, y) is defined and continuous in the square. Hence, given
€ > 0, there exists a polynomial Pn(x, y) such that Ig(x, y) - Pn(x, y)1 ~ €.

But, then for p = 1, we have g(x, y) == f(8), x 2 + y2 = 1, and therefore,
If(8) - Pn(cos 8, sin 8)1 ~ €. We leave as Problem 3, the verification that
Pn(cos 0, sin 8) may be written as a trigonometric sum, Sn(O). •

We proceed to show that the previous methods of polynomial approxi­
mation have corresponding trigonometric counterparts.

5.1. Trigonometric Interpolation

If the points of interpolation are equally spaced, it is relatively easy to
determine a trigonometric sum which takes on specified values at the
appropriate points. Let f(x) be continuous and have period 27T. For this
section only, we introduce the convention

n n

2' aj == 2 aj - t(an + a_ n)·
j=-n j=-n

With this notation, we define the trigonometric sum

(2)
n

Un(x) = 2' Cje1jX.
j= -n

On the interval [-7T, 7T] we place the 2n + 1 equally spaced points

(3)
7T

k = 0, ±l, ±2, ... , in, h =-.
n

The interpolation problem is to find coefficients cj such that

(4a) k = 0, ±l, .. " in.

Later we consider interpolation on a different set of uniformly spaced
points. Sincef(x) and Un(x) have period 27T,f(Xn) = f(x- n) and Un(xn) =
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Un(X- n), so that there are only 2n independent conditions in (4a) to deter­
mine the 2n + 1 coefficients, C/c' We require that

(4b)

as the extra condition, and it will be shown to be consistent with the
conditions (4a).

A simple calculation, based on summing a geometric series (see Sub­
section 3.5), reveals that

(5)
if)"¥- m (mod2n),t

if) == m (mod 2n).

In direct analogy with orthogonal functions over an interval, we see that
n

the quantities {et/cxf } are orthogonal with respect to the summation 2:'.
1= -n

Hence, we set x = X/c in (2), multiply both sides of (2) by e- tmxk and sum
with respect to k to find upon the use of (5):

n n n
2:' e-tmxkUn(X/c) = 2:' e- tmxk 2:' clellxk ,

k=-n k=-n i=-n

) = 0, ± 1, ... , ± n.(6)

{

2nCm

= 2n(Cn +2 en)

By applying the conditions (4), then

1 ~'fi( ) -ljXCI = 2n /cf:
n

X/c e k,

if Iml < n,

if Iml = n.

It is now easy to check, by using (5), that the trigonometric sum (2) with
coefficients given by (6) satisfies the conditions (4); i.e., the required
interpolatory trigonometric sum is determined.

If we define new coefficients al and f3j by

) = 0, 1, 2, ... , n,

then the sum (2) becomes, upon recalling (4b) and (lb),

(7)
n n-l

Un(X) = -lao + 2: al cos)x + 2: f3j sin)x.
1=1 j=l

t If j - m is an integral multiple of 2n, we say that j and m are congruent modulo
2n, or we write j == m (mod 2n). If not, we write j 'jI!; m (mod 2n).



232 BASIC THEORY OF POLYNOMIAL APPROXIMAnON [Ch.5]

From (6) it follows that these coefficients are real numbers given by

j = 0, 1, . .. , n,

(8)

j = 1, 2, ... , n - I.

j = 0, I, ... , n.(9)

Equations (7) and (8) are the real form for the trigonometric interpolation
sum. This form is suitable for computations without complex arithmetic.

It can be shown that the trigonometric sum (7) satisfying the conditions
(4) is unique. This follows from Lemma 2 in Subsection 5.3.

We may also determine unique interpolatory trigonometric sums of
order n that take on specified values at 2n + 1 distinct points arbitrarily
spaced in, say, -TT ~ X < TT (not including both endpoints). The coefficients
of such a sum are the solutions of a non-singular linear system. The
non-singularity of this system and the interpolating trigonometric sum are
treated in Problems 1 and 2.

However, another trigonometric interpolation scheme for equally spaced
points can be based on the orthogonality property expressed in Lemma 1
of Subsection 3.5. That is, using 8 as the independent variable, we consider
the n + 1 points,

8j = 80 + j!::J.8, 80 == !::J.
2
8, !::J.8 == n : I'

These 8j are equally spaced in [0, TT], there may be an odd or even number
of them, and they do not include the endpoints [in contrast to those points
in (3)]. Now we seek a special trigonometric sum of order n in the form

(lOa) Cn(8) = 1Yo + i Yr cos r8,
r=1

such that for some function g(8), continuous in [0, TT],

(11) j = 0, I, ... , n.

s=O,I, ... ,n.(lOb)

That is, we seek to interpolate g(8) at the points (9) with a sum of the form
(10). Using the form (10) in (11) we multiply by cos s8 j and sum over j
to get by (3.62)

Ys = n ~ 1 i g(8j ) cos s8"
1=0

Thus, the interpolation problem is solved with the coefficients (lOb) in the
trigonometric sum (lOa). [Compare the formulae (8) and (lOb).] We note
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that the sum (lOa) is an even function of B. Hence, if the same is true of
g(B), then Cn(B) is the interpolation sum at 2(n + I) equally spaced points in
[ -7T, 7T]. Again, uniqueness of the nth order sum casily follows in this
case from Lemma 2 of Subsection 5.3. If g( B) is not even, then the approxi­
mation (10) should be used only over [0, 7T].

An important convergence property of this approximation procedure is
contained in

THEOREM 2. Let g( B) be an even function with period 27T and a continuous
second derivative on [-7T, 7T]. Then the trigonometric interpolation sums
Cn(B) given by (lOa and b), which satisfy (II) on the equally spaced points
(9), converge uniformly as n ~ 00 to g( B) on [-7T, 7T]. In fact,

for all IB[ ~ 7T.

(13)

Proof. We first estimate the rate of decay of the coefficients Ys for large
s. Clearly from (lOb), since Icos sBI ~ I,

IYsl ~ n ~ I j~ Ig(B)J,

(12)
~ 2 max Ig(B)I.

O~O$:t

Such a bound holds for the coefficients in any sum of the form (10).
With the spacing t:.B = 7Tj(n + 1) of (9), we define the function

G(B) == g(B + M) - ~~~B)+g(B - M).

This function satisfies the same smoothness and periodicity conditions as
g(B). If we set

(14) BiB) == C;B)2[Cn(B + M) - 2Cn(B) + Cn(B - M)],

then from (II) and (13) it follows that

j = 0, 1, ... , n,

and so, Bn( B) is the unique nth order trigonometric interpolation sum for
G(B) with respect to the points Bj in (9). If we use (IDa) and the identities

cos (if> + h) - 2 cos if> + cos (if> - h) = cos .p(2 cos h - 2),

= -4 sin2 ~ cos if>,
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in (14), we obtain

Bn(fJ) = - C~err~ Yr sin2 r~e cos reo

Thus, Bn(e) has the form (10a) and by the remark after (12) it now follows
that

(15) IYrr2(r~e sin r~en ~ 2 o~::,. IG(e)l, r = 1,2,.,., n.

From Taylor's theorem
(M)2

gee ± M) = gee) ± Mg'(e) + -2- g"(e ± <p±M), 0 < <P± < I.

By using this and the continuity of g"(e) in (13), we find

IG(e)1 ~ I max Ig"(cp) I, eE [0, 1T].
os;rpsn:

This bound and the inequality (see Problem 5)

ISi~ hI~ ;, for 0 < h ~ i
in (15) yield finally

(16)
1T2

IYrl ~ -22 max 1g"(e) I,
r 0"9,,,.

r = 1,2,.,., n.

This is the required estimate of the coefficients in (10).
In Subsection 5.2 we define Fourier series, and for gee) as above it

follows from Theorem 3 that

(17) m = 1,2, ...

where the partial sums, Sm( e), and coefficients, am, are defined by

a m
(18a) Sm(O) == 20 + 2: ak cos ke, m = 1,2, ...

k=l

(18b) ak == ~ f,. gee) cos ke dO, k = 0, 1,2, ...

[The sine terms are absent since gee) is even, and hence the bk == 0.] For
any m ~ n, we define the truncated trigonometric interpolation sum

(19) en,m(e) == -!Yo + ~ Yr cos re,
r=l

where the Yr are given in (10b).
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(20)

Ig(O) - C,,(O) I = Ig(O) - Sm(O) + Sm(O)
- C".m(O) + C",m(O) - C,,(O)I,

:<:; Ig(O) - Sm(O) I + ISm(O) - C",m(O)1
+ IC",m(O) - C,,(O)I.

From (19), (10), and the estimate (16) we have

"(21) IC",m(O) - C,,(O) I = I .L Yr cos rOI,
r=m+ 1

:<:; i IYrl,
r=m+ 1

2 ro I
:<:; ~ max Ig"(O)1 .L "2'

r=m+l r

To estimate the middle term in (20) we note from (9), (lOb), (I8b), and
the evenness of g(0) that

ak - Yk = ~ [f g(O) cos kO dO - ,~g(Oj) cos kO, ilO}

k = 0, I, ....

This sum is clearly an approximation to the integral. It is, in fact, the
midpoint quadrature formula (see Chapter 7) and since the integrand has
a continuous second derivative it is easily shown that (see Problem 6)

lak - Ykl :<:; 12(n7T: 1)2 o~::" 1:;2 [g(O) cos kO]!

= {@(p/n2
), k :2: I,

@(I/n2
), k = O.

Using this estimate we have

ISm(O) - C".m(O)1 = l-t(ao - Yo) + k~ (ak - Yk) cos kol'

(22) :<:; ~ I@(l) + k~ @(k
2>!-

= @(::).
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Thus (17), (21), and (22) in (20) imply

Ig(8) - Cn(8) I = (!)(~ + :2}
Finally, we set m = Vn. •

Several interesting corollaries easily follow. First, we have

COROLLARY 1. Under the hypothesis of Theorem 2 let Vn ~ m ~ nand
Cn.m(8) be the mth order trigonometric sum defined by (19) and (lOb).
Then,

(23)

Proof It follows as in the theorem from (17), (22), and as in (21)

that ICn. v;;(8) - Cn.m(8)1 = (!)(1/vn). •
Thus various truncated trigonometric sums may furnish as good an

approximation as the entire nth order sum. Next, by changing variables
we obtain a result on the convergence of interpolation polynomials for
special unequally spaced points. We state this as

COROLLARY 2. Let f(x) have a continuous second derivative on [- I, I].
If Pn(x) is the interpolation polynomial of degree at most n for f(x), based
on the n + I points

(24) Xj = cos (~: : ;), j = 0, 1,2, ... , n,

then Pn(x) converges to f(x) on [-I, I] as n -+00. Infact,

If(x) - Pn(x) I = (!)(In).
Proof We introduce the new variable 8 in [0,17] by

8 = cos- 1 X,

and then define
g(8) = f(cos 8).

We make g(8) even and continuous, and 217 periodic by setting g( - 8) =
g(8). Thus, the points (24) become the points 8j of (9) and g(8) satisfies
the hypothesis of Theorem 2. Now the nth order interpolatory trigono­
metric sum (10) for g(8) becomes the interpolation polynomial of degree
at most n in x (represented in terms of the Chebyshev polynomials) upon
using the indicated variable change. So we have

•
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Ifwe use the variable change and functionf(x), we find from Corollary I
that for some polynomials, call them P",m(x), of degree at most m, where

Vn ~ m ~ n,

If(x) - P",m(x)1 = @(~,J
[Note that the P", m(x) are not obtained by simply truncating the inter­
polation polynomial, P,,(x).] It is not difficult to show however, that
P",m(x) is the mth degree discrete least squares approximation to f(x) with
respect to the n + I points (24), see Problem 7. Thus we have established
uniform convergence of the discrete least squares polynomials when the

n + I points are as in (24) and the degree is at least Vn. Our present
estimates of convergence indicate that no improvement occurs by inter­
polating at these n + I points with a polynomial of degree n. This is
another indication that high order interpolation polynomials should be
avoided.

5.2. Least Squares Trigonometric Approximation. Fourier Series

If f(x) is periodic of periodt 27T and square integrable on [-7T, 7T],
we can seek a trigonometric sum of form (la) for which

j"# k,

j = k "# 0,

j"# k,

j = k"# 0,

I fitbk = - sin kx f(x) dx.
7T -n

(27)

(26)

(25) Ilf - S,,112 = (f~1t [f(x) - S,,(x)]2 dXf'

is a minimum with respect to all such sums. This norm now defines a
quadratic function of 2n + I variables

J(ao,ab""a",bb,."b,,) = Ilf- S,,11 22
which can be minimized as was (3.8). The trigonometric functions satisfy
the orthogonality relations

fit cosjx cos kx dx = {::

fit sin jx sin kx dx = {O,
-n ~

f~1t sin jx cos kx dx = 0.

By using these results in the normal system obtained by minimizing (25),
we find in analogy with (3.11),

I fitak =; -It cos kxf(x) dx,

t If the period of f(x) is some number p, then the change of variable t = 27TX/p
results in a function g(t) == f(pt/2rr) which has period 27T.
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The trigonometric sum (la) with coefficients given in (27) determines the
best least squares approximation of order n to f(x) by such sums.

We deduce as in Section 3 the corresponding Bessel's inequality [by
using (26) and (27) in Ilf - Snl122 :2: 0]:

(28)

Since the right-hand side is independent of n, we also conclude that

'"
tao2 + L: (a1e

2 + b1e
2

) converges and that
1e=1

LEMMA 1.
lim ale = lim ble = O.

k-oo k-+oo •
The trigonometric sum (la) is, of course, the nth partial sum of the

infinite series

(29)
'"

tao + L: (ale cos kx + ble sin kx).
1e=1

(30a)

(30b)

With coefficients given by (27), this is the Fourier series associated with the
function f(x).

We can now state

THEOREM 3. Let f(x) be continuous and 217 periodic. Then the partial sums
Sn(x) of the Fourier series, with coefficients defined in (27), converge in the
mean to f(x) and Parseval's equality holds. That is,

:~~ fn [f(x) - Sn(x)]2 dx = 0

2 '" I In
a~ + Ie~ ale2 + ble2 =;: -n [f(X)]2 dx.

Proof Simply modify the proof of Theorem 3, Section 3. •

THEOREM 4. Let f(x) have two continuous derivatives and be 217 periodic.
Then

and

for -17 ~ X ~ 11".

Proof Let ale'" ble" be the Fourier coefficients corresponding to the 211"
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periodic and continuous functionj"(x). Now, by repeated use of integration
by parts,

ak" = ! In cos kx j"(x) dx = ~ In sin kx j'(x) dx
7T -1t 7T -n

k2 In= -- cos kxf(x) dx = -k2ak
7T -n

and similarly bk " = -k2bk •

But by Lemma 1, bk " -+ 0, and ak " -+ 0, whence

and

We therefore know that the Fourier series converges uniformly to a
continuous function g(x). Hence, we may let n -+00 under the integral in
the statement (30a) of mean convergence, thus proving that f(x) ==
lim Sn(x). The error estimate If(x) - Sn(x) I = ('J(lln) follows from the

n-<Xl

boundedness of {cos kx, sin kx} and the relation

•
The theory of approximation by orthogonal functions owes much to J.

Fourier, who employed trigonometric series of the form (29). In fact,
least squares approximations of the form (3.7) with orthogonal poly­
nomials or other orthogonal sets of functions are generally called Fourier
series (assuming n -+(0) and the coefficients given by (3.11), (3.21), or
(27) are called the Fourier coefficients.

Finally, we observe a close connection between the trigonometric
interpolation coefficients (8) and the Fourier coefficients (27). Recalling
the definitions of "2.' and the points Xk in (3) we can write (8) as

_ 1 ~ [COSjXk-r/(Xk- 1) + COSjXkf(Xk)]( _ )
aj - - L. 2 Xk Xk-l,

7T k=l-n

As n -+00 we have X k - X k- 1 = 7T!n -+ 0 and [say for piecewise continuous
f(x)] these sums converge to the corresponding integrals in (27). Thus,
(a j , (3j) -+ (a j , bj ) and the trigonometric interpolating sum (7) converges,
formally, to the Fourier series (29).

These sums correspond to the trapezoidal rule of numerical integration.
On the other hand, the coefficients Yj in (lOb) for trigonometric inter­
polation with respect to the points OJ in (9) approximate the coefficients aj
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by the midpoint rule for evaluating the integrals in (27). In the proof of
Theorem 2, it is shown that for fixed j: IYi - ail = (7)(I/n 2

). [For the case
that the function gee) is not necessarily even, the corresponding trigono­
metric interpolatory coefficients are defined in Problem 4, and similarly
converge to the Fourier coefficients.]

5.3. "Best" Trigonometric Approximation

If f(x) is continuous on [-7T, 7T] we can seek a trigonometric sum (I),
of order n, which minimizes the maximum norm

Ilf(x) - Sn(x)lloo = max If(x) - Sn(x)l·
-n::sx:$n

The existence of such a best trigonometric approximation could be
demonstrated by using an analogue of Theorem 0.1. Another proof is
given in Problem 9.

Results analogous to those in Theorem 4.2 and Theorem 4.3 are also
valid for the best trigonometric approximation of order n. A careful
glance at the proofs of these theorems reveals that the only property of
polynomials employed is the fact that if a polynomial of degree n vanishes
at n + I points, then it vanishes identically. Such a property is also true
of trigonometric sums. In fact, best approximation by other sets of func­
tions is possible and the property they must possess to insure a unique
best approximation is cal1ed the Haar property, defined as follows:

A sequence offunctions UO(X),fl(X), ... } has the Haar property if for
every m the only linear combination

Pm(x) == aofo(x) + adl(x) + ... + amfm(x)

with m + I distinct zerost is the identically vanishing combination
Pm(x) == O. It was proven by Haar that these conditions are necessary
and sufficient for uniqueness. However, we shall be concerned only with
the trigonometric case. Thus, we consider

LEMMA 2. The sequence of trigonometric functions

{I, cos x, sin x, cos 2x, sin 2x, ... , eos /lX, sin nx, ... }

has the Haar property.

Proof We need only show that every non-trivial trigonometric sum,
(I), of order n has at most 2n roots in -7T :S x < 7T. Let us define t = elX

and note that ItI = 1. Then we have from (Ie),

n

Sn(x) = t- n L Cktn+k.
k= -n

t If the !k(X) are periodic, then the zeros must all lie in a period.
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The sum on the right-hand side is a polynomial in f of degree at most 2n.
Thus, this sum has at most 2n roots if it has any non-zero coefficients. •

This lemma can be used to prove uniqueness of the trigonometric
interpolation problems solved in Subsection 5.1 and Problem 2. We
apply the lemma to prove the analog of Theorem 4.2, namely

THEOREM 5. Let f(x) E C[ -TT, TT] and let an nth order trigonometric sum,
Sn(x), have the deviations from f(x)

j = 0, I, ... , 2n + I,

where -TT ::::; Xo < Xl < ... < X2n+1 ::::; TT and all ef > 0 or all ej < O.
Then

Proof Assume that for some trigonometric sum of order n, say Sn*(x),

Ilf(x) - Sn*(x) II '" < min IeJ
f

Then, the nth order sum

Sn*(x) - Sn(x) = [f(x) - Sn(x)] - [f(x) - Sn*(x)]

has the same sign at the points x f as does f(x) - Sn(x). Thus there are
2n + I sign changes and at least 2n + I zeros of this difference in (-TT, TT).
But then, by the above lemma, this trigonometric sum vanishes identically
and so Sn(x) == Sn*(x) which leads to a contradiction. •

Continuing the analogy, we have in place of Theorem 4.3

THEOREM 6. A trigonometric sum oforder n, Sn(x), is the best trigonometric
approximation of order n to f(x) E C[ -TT, TT] if and only if f(x) - Sn(x)
assumes the values ± Ilf(x) - Sn(x)II"" with alternate changes of sign, at
least 2n + 2 times in [-TT, TT]. This best approximation is unique.

Proof The proof is exactly analogous to that of Theorem 4.4. To
show sufficiency we employ Theorem 5. To demonstrate necessity we must
construct a trigonometric sum of order 2k, say, and which has specified
zeros at distinct points fl' f2"'" f2k in (-TT, TT). This is done by forming
the determinant

cos x sin x cos kx sin kx

(31) t(x) =



242 BASIC THEORY OF POLYNOMIAL APPROXIMATION [Ch.5]

The expression t(x) is used in place of the polynomial rex) to obtain a
contradiction [Note the relation of t(x) to the determinant in Problem 1.]
The uniqueness follows by using the Haar property of the trigonometric
functions. The details are left to the reader. •

PROBLEMS, SECTION 5

1. Let -17::S; Xo < Xl < ... < X2n < 17, and define the determinant of
order 2n + 1,

a=

cos Xo sin Xo

cos Xl sin Xl

cos X2n sin X2n

cos nxo sin nxo

cos nXl sin nXl

cos nX2n sin nX2n

Show that a#-o and in fact, that

a = (_l)n(n-IJ/222n' Ii [ft! sin (Xf - Xk)].
f=l k=O 2

[Hint: Express sin 8 and cos 8 in exponential form, form linear combina­
tions of successive pairs of columns so that only one exponential appears in
each element, rearrange columns so that each row forms a geometric progres­
sion. The result is a Vandermonde determinant.]

2. Show that Sn(x) is a trigonometric sum which satisfies Sn(Xf) = f(Xf),
j = 0, 1, ... , 2n, where {Xk} is given as in Problem 1 and

This is the general interpolatory trigonometric sum of order n.
[Hint: Use Problem 3 and sin a sin b = t [cos (a - b) - cos (a + b)].]
3. Verify that a trigonometric polynomial of degree at most n,

Pn(cos 8, sin 8) =' 2: cl.lcos 8)I(sin 8)f,
(+j<n

may be written as a trigonometric sum of order at most n,

Pn(cos 8, sin 8) =' Sn(8):= i ak cos k8 + bk sin k8,
k~O

and vice versa.
[Hint: Use (l b).]
4. Given g(x) is 217 periodic, find the trigonometric sum

n-l b
Sn(x) = ~o + k~l (ak cos kx + bk sin kx) + 2nsin nx
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such that
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r (2j + 1)7T
lor XI = 2n ' -n ~ j ~ n - 1.

n-l {:[Hint: Establish L cosrXI cos SXI =
f= -n 2n

o
n-l

L cos rXI sin SXI = 0
j= -n

{

o
n-l n
L sin rXI sin SXI =

1= -n 0

2n

whence

r #- S

n>r=s>O

r = S = 0

r = S = n

r #- S

n>r=s>O

r=s=O

r = S = n,

5. Verify that

1 n-l
a, = - L g(xl) cos rXI,

n I=-n

1 n-l
b, = - L g(Xf) sin rXI']

n I=-n

provided 181 ~ 7T/2.
[Hint: Consider the chord joining (0,0) and (7T/2, I) on the graph of

y = sin x.]
6. Letr(x) be continuous in [a, b] and

'h hXI = Xo + J, Xo = a + 2'
Show that

b-a
h=--,

n + 1
j = 0,1, ... , n.

lEI - if f(x) dx - Jo f(xl)hl ~ Ib ; al h2

[Hint: Write

max
a<x<b

lr(x)l·

and then use Taylor's theorem in each integrand to get

(X - X)2 ( h)
f(x) = f(xl) + (x - XJ>j'(XI) + 2 f r xI + 8 2 ' -1 < 8 < 1.]
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7. Show that the mth degree discrete least squares polynomial approxima­
tion to J(x) with respect to the n + I points (24) is obtained by truncating the
nth order trigonometric interpolation sum (10) for g(x) on the points (9)
after the mth term and using the variable change 8 = cos -1 x, g(8) = J(cos 8).

[Hint: Simply change variables in the representation (3.52) by using the
discrete orthonormal polynomials (3.61). The uniqueness of the discrete
least square polynomials is used.]

8. With the notation of equations (2), (3), (4), and (6), verify the discrete
analogue of the Parseval equality,

1 n 1 n n

2n kIn IJ(Xk)12 = 2n kIn IUn(xk)12 = 1~~'n IC11 2
•

[Hint: Use equation (5).]
9. Prove the existence of a best trigonometric approximation in the form

(I) for the given function J(x) on the interval [-7T, 7T].
[Hint: In Problem 2, if IJ(x)1 < M and {xd are distinct, then the trigono­

metric sum Sn(x) has bounded coefficients. For fixed n, consider the non­
empty set, C, of trigonometric sums {Sn(x)} such that

M
IIJ(x) - Sn(x)ll", ~ T

Note that by the above remark, the coefficients of all of the sums in Care
bounded. Let SnV(x), V = I, 2, ... , be a minimizing sequence of trigonometric
sums in C, that is,

IIJ - Snvll", ---+ g.l.b. IIJ - Snll",·
c

Pick a subsequence of Sn" such that their coefficients converge, Le.,

akv, ---+ Gk' bk"1 ---+ Ok.

The sum
,. do n •

Sn(x) == 2' + k~l Gk cos kx + bk sin kx

is a best approximation.]



6
Differences, Interpolation

Polynomials, and

Approximate Differentiation

o. INTRODUCTION

Interpolation polynomials are of particular importance in numerical
analysis, and so we devote special attention to them in this chapter. We
are led naturally to the study of differences; both divided differences for
arbitrarily spaced points and ordinary differences for equally spaced
points. Not only can differences be neatly arranged in tables, for convenient
hand computation (presumably an affair of the past), but they permit one
to easily estimate the error in the approximation. Hence, methods based
on differences are useful in this age of digital computers as they suggest
very efficient computing techniques and can be used for checking the
accuracy of a calculation.

We examine the error in interpolation, when the polynomial passes
through equally spaced points, in some detail. This error is generally
much less near the center of the interval of interpolation points and grows
rapidly outside this interval, i.e., for what is termed extrapolation. There­
fore, we construct special forms of the interpolation formulae which are
convenient for evaluation near the center of the interpolation interval.

We use interpolation polynomials to determine formulae for the numeri­
cal approximation of derivatives of the interpolated function.

245
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1. NEWTON'S INTERPOLATION POLYNOMIAL AND DIVIDED
DIFFERENCES

We have shown in Chapter 5, Section 2, that the interpolation poly­
nomial exists and is unique. Furthermore, for a fixed set of interpolation
points, it is easily constructed using the Lagrange interpolation coefficients.
The Lagrange representation has the defect that if another point of inter­
polation were added, then the new higher degree interpolation polynomial
could not be obtained by easily modifying the previous one. (This is in
contrast, say, to Taylor's series expansion or to least squares expansion
in orthogonal functions where the next order approximation is obtained by
simply adjoining a term to the present approximation.) We seek then a
representation of the interpolation polynomial which has the property
that the next higher degree interpolation polynomial is found by simply
adding a new term.

Specifically, let Qk(X) be the interpolation polynomial for f(x), of degree
at most k, with respect to the k + I distinct points Xo, Xl> ... , Xk' We seek
the successive interpolation polynomials, {Qk(X)}, of degree at most k
in the form Qo(x) == f(xo) and

(Ia) for k = 1,2, ... ,n,

where qk(X) has at most degree k. Since we require

j = 0, I, ... , k - I

it follows that qixJ = 0 at these k points. Thus, we may write

(I b)
k-l

qk(X) = ak TI (x - xJ,
j=O

which represents the most general polynomial of degree at most k that
vanishes at the indicated k points. The constant ak remains to be deter­
mined. But, in order that Q/,(xk) = f(xk), it follows from (Ia and b) that

(I c)
f(xk) - Qk-l(Xk)

ak = k 1 '

TI (Xk - Xj)
j = 0

for k = I, 2, ... , n.

The zero degree interpolation polynomial for the initial point X o is,
trivially, Qo(x) == f(xo). Thus, with ao = f(xo), we obtain by using (Ia
and b) recursively, for k = I, 2, ... , n,
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The kth coefficient is called the kth order divided difference and is usually
expressed in the notation

(3)
ao = f[xo],

k = 1,2, ....

The values of f(x) which enter into the determination of ak are those at
the arguments of f[xo, Xl> •.• , Xk]' We now obtain a representation for
these coefficients which is more explicit than the recursive form given in
(1). Since Qn(x) in (2) is the unique interpolation polynomial of degree n,
we may equate the leading coefficient, an, in this form with that obtained
by using the Lagrange form, see (2.5) in Chapter 5. That is, from

n n X _ X

Qn(x) = Lf(xj) TI x _:
j~O k=O j kk",j

the coefficient of x n is

(4)

This form could also be deduced directly from (I); see Problem 1.
From the representation (4) it follows that the divided differences are

symmetric functions of their arguments. That is, if we adopt the additional
notation

fU.k ... == f[x i , xi> Xb"']

then this symmetry is expressed by

(5)

where (jO,jl'" .,jn) is any permutation of the integers (0,1, ... , n).
We may derive a more convenient form than (4) for computing the

divided differences by again making use of the uniqueness of the interpola­
tion polynomial. That is, we may construct the polynomial Qn(x) by
matching the values of f(x j ) in the reverse order j = n, n - 1, ... , 1, O. In
this way we would obtain, say,

(2') Qn(x) == bo + (x - xn)b1 + ...
+ (x - xn)(x - Xn-l)' .. (x - xl)bn

where

But an = bn since they are the coefficients of x n in the unique polynomial
Qn(x) of (2) and (2').
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Now if we subtract equation (2') from equation (2) but display only the
terms which contribute to the coefficients of xn and xn

-1 we obtain, using
an = bn,

0== [(x - Xo) - (x - xn)l(x - Xl)" ·(x - Xn-l)an
+ (an-l - bn_l)xn- l + Pn-2(X)

where Pn-2(X) is a polynomial of degree at most n - 2 in x. Since this
expression vanishes identically the coefficient of xn -1 vanishes and hence
o = [Xn - xo]an + (an-l - bn- l). Now the symmetry of the divided
differences, proven above, implies that

bn- l =f[XmXn-h···,xd =f[xh x 2, ... ,xnl,

whence from an = (an- l - bn-l)!(xo - xn), we have

(6) f[ 1- f[xo, xh ···, xn-d - f[Xh X2,"" xn]
X o, Xl' ... , X n - ,

X o - X n
n = 1,2, ....

We leave it to the reader to verify (6) directly from (4) in Problem 9.
This recursion formula justifies the use of the name divided difference.
Of course, we then define for completeness

The interpolation polynomial (2) may now be written as

(7) Qn(X) = f[xol + (x - xo)f[xo, xd + ...
+ (x - Xo)·· '(X - xn-l)f[xo, Xl"'" Xn].

This form is known as Newton's divided difference interpolation formula.
Note that to obtain the next higher degree such polynomial we need only
add a term similar to the last term but involving a new divided difference
of one higher order.

In fact, let us set k = n + I in (I b and c) and (3) and then replace
X n + 1 by x. We obtain

(8) f(x) - Qn(x) = [D (x - Xf)]f[Xo, Xh"" Xn, x],

which for x distinct from {Xj} defines the indicated divided difference.
On the other hand, this identity gives another representation of the error
in polynomial interpolation.

By means of formula (6) applied to (x j, xf+ h •.. , Xf+n) we can construct
a table of divided differences in a symmetric manner based on

(6)f I' - fi+l.j+2 ..... f+n - fi.f+l ..... f+n-l
If.f+l ..... f+n - .

Xf+n - Xf
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Table 1 Divided Differences

x I(x) I[x, xl I[x, x, xl I[x, x, x, xl

Xo 10

11 - 10 == 101
Xl - Xo

Xl 11
112 - 101 - .r.= 012
X2 - Xo

12 - 11 == 112 1123 - 1012 - .r.= 0123
X2 - Xl X3 - Xo

X2 12
123 - 112 - f= 123
X3 - Xl

13 - 12 == 123 123. - 1123 - f= 123.
X3 - X2 x. - Xl

X3 13
13. - 123 - J..

= 234x. - X2

I. - 13 == 13.
x. - X3

x. I.

See Table 1. The divided difference required to determine Qn + l(X) from
Qn(x) is easily obtained from Table I by just completing another "diago­
nal" line of differences. This simple property is not shared by the Lagrange
form of the interpolation polynomial.

Another representation of the divided differences, which is quite useful
for estimating their magnitude as wel1 as for many theoretical purposes,
is contained in

THEOREM 1. Let x, Xo, Xl> ... , Xk_ 1 be k + I distinct points and let f(y)
have a continuous derivative of order k in the interval

min (x, xo, ... , Xk-1) < y < max (x, xo, ... , Xk-1)'

Then for some point f = g(x) in this interval

(9)

Proof From equation (8) with n replaced by k - I we write
f(x) - Qk-1(X) = (x - xo)(x - Xl)" ·(x - x k-1)f[xo,···, Xk-l> x].

However, since Qk-1(X) is an interpolation polyr :'ll which is equal to
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f(x) at the k points Xo, Xl> ... , Xk -1 it follows from Theorem 2.1 of
Chapter 5 that

f(x) - Qk-I(X) == Rk-I(X)
Pkl(g)

= (x - xo)(x - Xl)" ·(x - Xk-I) (k)! .

But by the hypothesis (x - Xo)(x - Xl)' .. (X - Xk -1) #- 0, and the
theorem follows by equating the above right-hand sides. •

A generalization, permitting coincident values, is established as Corol­
lary 2 of Theorem 2 that follows.

As an immediate consequence of Theorem I, we can obtain some
information on the divided differences of polynomials. These results may
be stated as the

COROLLARY. Let

be any polynomial of degree n and let Xo, Xl> ... , Xk be any k + I distinct
points. Then

if k = n,

if k > n.

Proof. The corollary follows from Theorem 1 since dnPn(x)jdxn =

n! an; and higher derivatives vanish. •

We shall require some continuity and differentiability properties of
divided differences for our later discussion of the error in numerical
differentiation and integration. Most of these results can be derived from
still another representation of the divided differences which we state as

THEOREM 2. Let f(x) have a continuous nth derivative in the interval
min (xo, Xl> ... , x n) ::::; X ::::; max (xo, Xl> ... , x n). Then if the points Xo,
Xl> ... , Xn are distinct,

(lO)n f[xo,xl>""xn] = f dt i 5:1

dt2 • .. 5:-- 1

dtn

x pn) (tn[Xn - xn-rl + ... + tI[XI - xo] + xo),

where n ~ I, to = 1.

Proof. For an inductive proof, we first show that

f[xo, xrl = f dt i f'(tr[XI - xo] + xo)·
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Let a new variable of integration, t, be introduced by (since Xl #- Xo):

t = tl[Xl - Xo] + xo,

The integration limits become

(tl = O)-+(t = xo);

Therefore, we have

fl 1 iX'
dtd'(tl[Xl - xo] + xo) = dtf'W

o Xl - Xo XQ

= f(x l) - f(xo) = f[xo, xd.
Xl - Xo

Now we make the inductive hypothesis that

f[xo, ... , xn-d = { dtl f~l dtz ·· -f~n-2 dtn- l

x pn-l)(tn_l[Xn_l - xn-z] + ... + tl[Xl - xo] + xo).

In the integral in (lO)n we replace the integration variable tn by

t = tn[xn - xn-d + ... + tl[Xl - xo] + Xo,

dtn = dt/[xn - xn-d·

The corresponding limits become

(tn = 0) -+ (t = to == tn-l[Xn-l - xn-z] + ... + tl[Xl - xo] + xo),

(tn = tn-I) -+ (t = tl == tn-l[Xn - Xn-z]

+ tn-Z[Xn-z - Xn-3] + ... + tl[Xl - Xo] + Xo).

Now the innermost integral in (lO)n is, since X n #- X n - h

f: n

-. dtnpn)(tn[xn - xn-d + ... + tl[Xl - xo] + xo)

= r~l pn)w dt
J~o Xn - Xn-l

pn-l)(tl) - pn-l)(to).

Xn - Xn-l

However, by applying the inductive hypothesis we have

fl ft. ft n - 2 pn-l)(tl) - pn-l)(to)
dt1 dtz . . . dtn - 1 '----'-"-':.<.---"-----'=

o 0 0 Xn - Xn-l

f[xo, ... , Xn- z, Xn] - f[xo,"" Xn- z, xn-d
Xn - Xn-l

= f[xo, ... , xn]. •
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Notice that the integrand on the right-hand side of (10) is a continuous
function of the n + 1 variables xo, Xl> ••• , Xn. and hence the right-hand
side is a continuous function of these variables. Thus (10) defines uniquely
the continuous extension of f[xo, Xl> .•. , xn] when the arguments lie in
any interval of continuity of the nth derivative of f(x). That is, since the
divided differences have only been defined for distinct sets of arguments
[see (1) and the discussion leading to it], we are at liberty to define them
when some of the arguments are not distinct. Naturally, we do this in a
manner which maintains, if possible, the above observed continuity. If
pnl(x) is continuous, then Theorem 2 shows how this can be done for all
differences off(x) of orders 0, I, ... , n. These remarks can be summarized
as

COROLLARY 1. Let pnl(x) be continuous in [a, b]. For any set of points
xo, Xl"'" Xk in [a, b] with k ~ n let f[xo, Xl>"" xd be given by (10h.
The divided difference thus defined is a continuous function of its k + I
arguments in [a, b] and coincides with that defined by (4), or (6), when the
arguments are distinct. •

In fact, as in the proof of the First Mean Value Theorem for integrals,
(lO)n yields

m f dtlf~1 dt2··· f:·- 1dtn ~ f[xo,"', x n]

~ M f dtlf~1 dt2·· .J:'-1 dtn

where m == min pnl(x) and M == max pnl(x) for X in

min (xo, ... , xn) ~ X ~ max (xo, ... , x n).

Then by the continuity ofpn) there is a point fLn in this interval such that

pn)(fLn)
f[xo, ... , x n] = --,-'n.

Hence, we have established a generalization of Theorem 1, since the points
Xl need not be distinct, in

COROLLARY 2.
[a, b], then

(11)

Ifpnl(x) is continuous in [a, b] and xo, Xl>"" X n are in

where

•
A particular case is
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COROLLARY 3.

(12)

NEWTON'S INTERPOLATION POLYNOMIAL

Ifpnl(x) is continuous in a neighborhood of x, then

pnl(x)
f[x, x, ... , x] = -,-'

'----v-----" n .
n + 1 terms

253

•
Now, we can deduce yet another representation of the divided difference,

when several multiplicitiest occur.

COROLLARY 4. Ifpnl(x) is continuous in [a, b], Yo, Yl' ... , Yn are in [a, b],
and x is distinct from any Yh then

(13) f[ ]
- f[x, Yl> ... , Yn] - f[yo, Yl, ... , Yn]

x, Yo, Yl> ... , Yn - ,
X - Yo

gives the unique continuous extension of the definition of divided difference.
Proof By Theorem 2, the right-hand side of (13) is uniquely defined

and continuous in (Yo, Yl' ... , Yn) for Yo #- x. Hence, the left-hand side
is the unique continuous extension of the definition of divided difference
no matter what multiplicities occur in (Yo, Yl' ... , Yn). Observe that only
the continuity of the nth derivative is used. •

COROLLARY 5. If Xt #- Yh for 0 :os; i :os; p, 0 ~ j :os; q; pml(x) continuous
in [a, b]; {Xt}, {Yt} in [a, b]; 0 ~ p, q ~ m, then

f[xo, ... , Xpo Yo, ... , Yo] = g[xo, , xp]

= h[yo, , Yo]

(14)

where
g(x) == f[x, Yo, ... , Yo], hey) == f[xo, ... , xp,y],

provides the unique continuous extension of definition of divided difference.

Proof By (13), g(x) has m continuous derivatives for x #- Yt, 0 ~ i :os; q.
Therefore, by the theorem, g[xo, .. . , xp] is defined and continuous in
xo, ... , x p if Xl #- yj, as postulated. Furthermore, g(x) is continuous as a
function of the parameters (Yo, , Yo) if x #- Yt> by Corollary 4. Hence,
the representation (lO)p of g[xo, , xp] yields the continuity of g[xo, ... ,
xp] with respect to all variables (xo, ... , Xp, Yo, ... , Yo) provided merely
that Xl #- Yi-

Now the function f[xo, ... , xp, Yo, ... , Yo] as defined in (14) is con­
tinuous (if Xl #- Yj) in its variables; hence we conclude that (14) is the
unique continuous extension, since (14) is valid when the arguments are
all distinct. •

t The conclusions of Corollaries 4-7 that follow, concern continuity properties of and
representations for divided differences that are easily established when no multipli­
cities occur among the arguments. When multiplicities do occur, the corollaries estab­
lish the same representations under the hypothesis of minimal differentiability of
f(x).
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COROLLARY 6. If f(x) has a continuous derivative of order m in [a, b];
Xo, ... , Xp , Yo,· .. , yq, Zo,···, Zr are in [a, b]; Xi # YJ' XI # Zk, YJ # Zk
for all i,j, k; 0 :::; p, q, r :::; m; then

(15) f[xo, .. ·, x p , Yo,···, yq, Zo,···, zr]

I (jP (jq (jr I
= p!q!r!(jxP(jyq(jzrf[x,y,z](~.n.o

where

min (xo, , x p ) :::; g :::; max (xo, , x p ),

min (Yo, , yq) :::; YJ :::; max (Yo, , yq),

min (zo, , zr) :::; ~ :::; max (zo, , zr)'

Proof Let

g(x) == f[x, Yo, ... , yq, Zo, ... , zr]

(16) hey) == f[x, y, Zo,···, Zr]

k(z) == f[x, y, Z].

By Corollaries 2 and 5 [appropriately generalized for sets of variables
({Xi}, {YJ}' {Zk})], we have

The conclusion (15) follows from (17), (18), (19), and (20).
A special case is contained in

(17)

(18)

(19)

(20)

f[xo, ... , Xp , Yo, ... , yq, ZO, ... , Zr] = g[XO' ... , Xp ]

I (jP Ig[xo, ... , x p ] = , ~ g(x)
p. uX x=~

I (jq Ig(x) = h[yo, ... , yq] = '"ifQ hey)
q. y Y=n

I (jr Ihey) = k[zo, ... , Zr] = , <iT k(z) .
r. uZ z =,

•
COROLLARY 7. IfpmJ(x) is continuous in [a, b]; X, y, Z are distinct points
in [a, b]; 0 :::; p, q, r :::; m; then

(21)
I (jP(jqor

f[x, ... , X y, ... , y, Z, ... , z] = -,-,-,~ "'" -;rf[x, y, z] .
'-v-----' '-v-----' '-v-----' p. q. r. uX uy u Z

,,+1 Q+l r+l
•

We leave to Problems 3, 4, 5, 6, and 7, the independent proof of some
simple differentiability properties of divided differences, which are needed
later.
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PROBLEMS, SECTION 1

PROBLEMS 255

1. Deduce the representation (4) for divided differences directly from the
expression (I).

[Hint: Use induction and the form (2) for QIe+1(XIe)']
2. If Pn(x) is a polynomial of degree n, show that Pn[xo, x] for x #- Xo is a

polynomial of degree at most n - I in x.
3. Prove the following

LEMMA 1. IJ x, Xo • ... , Xn are n + 2 distinct points then

n

J[xo, ... , x n, x] = L
f=O

nn (Xf - XIe)
1e=0

(1e#1)

[Hint: Use equation (8) and the Lagrange form of the interpolation poly­
nomial.] This is another representation of the divided differences which is
very useful in deriving their continuity and differentiability properties.

4. Prove directly the following:

THEOREM 3. IJ J(x) E C[a, b] and j'(xJ exists Jor some fixed Xf E [a, b],
then J[x. Xf] is a continuous Junction oj x in [a, b] iJ we assign to it the value at
x = xf : J[Xf, Xf] = j'(Xf)·

5. Prove the following:

THEOREM 4. Let j'(x) E C[a, b] and j"(x) be continuous in an (arbitrarily
small) interval about some fixed Xf E [a, b]. Then dJ[x. xf]/dx is a continuous
Junction oj x in [a, b].

[Hint: Form dJ[x, xf]/dx for x #- Xi; use the Taylor expansion about Xf
and take limits as x = Xf ± h ---+ Xf.]

6. Use the results of Problems 3. 4. and 5 to state and prove, if (xo, Xl, ... ,

x n) are distinct and in [a, b],

(i) a theorem on the continuity of J[xo, ... , Xn• x] for x E [a, b];
(ii) a theorem on the continuity of (d/dx)J[xo, ... , Xn, x] for x E [a, b].

7. By using the theorem under (i) of Problem 6, note thatJ[xo, ... , Xn, x n] =
lim J[xo• ... , Xn• Xn + h]. Therefore, show that
h-O

d
J[xo• ... , Xn, x n] = -d J[xo•... , Xn].

X n

Prove that this representation is valid under the conditions: j'(xn) is defined
and Xo, Xl, ... , Xn are distinct.

[Hint: use the lemma of Problem 3 and the formula (6).]
8. Prove the symmetry of the divided difference by constructing the Qn(x)

in (2) using the points (fo, Xl, ... , x n ) in an arbitrary permuted order
(Xfo. Xf" ... , Xfn)' [This is a generalization of what was done in deriving (2')
and proving an = bn .]

9. Verify equation (6) (the divided difference property) directly from equation
(4).

10.* (Osculatory interpolation). If J(x) and its derivatives of order ro - I,
r1 - I, ...• r n - I are defined respectively at the distinct points (xo, Xl, ... , xn)
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in [a, bj, then there exists a unique polynomial QN(X) of degree at most N,

where N = i 'k - 1, such that Q'jS'>(Xj) = j<k)(Xj) for k = O,I, ... ,'j - 1,
k=O

j = 0, 1, ... , n. The special case '0 = '1 = ... = , n = 2 has been studied
in Chapter 5, Subsection 2.2.

[Hint: Show that the Newton form of the polynomial may be derived by
satisfying successively all of the '0 conditions at Xo before proceeding to satisfy
successively the '1 conditions at Xl> etc.
Arrive at the scheme

Qo(X) == f(xo)

Q.(x) == Q.-1(X) + b.(x - xo)', for 1 ~ S < So where So = '0

Q.(x) == QS-1(X) + b.[rr: (x - Xk)'+X - Xj)S-sl-l,

for Sj-1 ~ S < Sj, with j = 1, 2, ... , n,
j

where Sj = 2: 'k
k=O

Show that the b. may be recursively defined. The proof of uniqueness may
be based on the fact that if a polynomial has degree at most N and at least
N + 1 zeroes (counting multiplicities), then the polynomial is identically
zero.j

11.* If f<P>(x) is continuous in [a, bj, 0 ~ " - 1 ~ p, {x,} in [a, bj, then
show that the coefficients b. of Problem 10 are divided differences of f(x) of
order s, based on the first S + 1 arguments in the sequence Xo, Xo, ... , Xo;
Xl> Xl> ••• , where each x, appears 't times (the divided differences have been
defined in Theorem 2, Corollary 5).

12.* Verify that the error in osculatory interpolation (see Problem 10) is

:rl (x - x,)',
RN(x) == f(x) - QN(X) = ,= 0 j<N +1)(g)

(N + I)! '

if fhas N + I continuous derivatives in [a, bj, where g is in [a, b].
13. Given the values

sin (1.6) = .9995736030
sin (1.7) = .9916648105

cos (1.6) = - .0291995223
cos (1.7) = - .1288444943

approximate sin (1.65) to seven decimal places by evaluating Taylor's series
(about x = 1.6) including the third derivative term. Estimate the error by
examining the remainder term in the formula. Calculate sin (1.65) correct to
9 decimal places and verify that the above estimate of error is correct.

14. Use the table in Problem 13 and calculate sin (1.65) by linear interpola­
tion. Verify that the magnitude of the error is consistent with the remainder
term as given by (8) and (9), or equivalently by equation (2.9) of Chapter 5.

15. Construct a table of divided differences from the values given in Problem
13 for the function sin x with the repeated arguments (1.6) (1.6) (1.7) (1.7);
and find the Newton form of the osculating polynomial of degree 3. Calculate
sin (1.65) by evaluating the osculating polynomial, and verify that the magni­
tude of the error is explained by the formula in Problem 12.
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Table for Problem 15

PROBLEMS 257

f(x)

(1.6) sin (1.6)

(1.6) sin (1.6)

(1.7) sin (1.7)

(1.7) sin (1.7)

f[x, x]

cos (1.6)

10 (sin 1.7 - sin 1.6)

cos (1.7)

f[x, x, x] f[x, x, x, x]

16. Given the repeated arguments Xo, Xo, Xo, Xl, Xl and the values j<P)(XI)
in the accompanying divided difference table. Complete the table and verify
that the fourth order difference has the value given by (21) if Xl = Xo + h.

Table for Problem 16

f[x] fLx, x] f[x, x, x] f[x, x, x, x] f[x, x, x, x, x]

Xo fo

fa'
Xo fo

fo
H

2"
fa'

Xo fo
f01 - fo'

h
f01

Xl f1
f1' - f01

h
f/

Xl It

17. Given the m + n + p + 3 points (xo, Xl, ... , x m, Yo, Yl> ... , Y.. Zo,
Zl, . .. , zp) and f(x) which has derivatives of order (m, n, p) respectively,
in a neighborhood of each ofthe distinct points (x, Y, z). Show thatf[xo, ... , zp]
= g<m)(x) + h<n)(y) + k<P)(z) if XI = x, Yi = Y, z, = z for all i, j, r, where

g(x) = n f(x~
n (x - Yi) Il (x - z,)
j=O r=O

h(y) = --::m;---.....;f'--'("'-'Y~=---­
Il (y - Xl) Il (y - z,)
f=O r=O

k(z) = m f(z)n

Il (z - XI) Il (z - Yi)
1=0 1=0
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[Hint: f[xo, Xl, ... , Zp -1, zp] = g[xo, Xl, ... , x m] + h[yo, yl, ... , Yn] +
k[zo, Zl, , zpj for distinct points (xo, ... , zp). Therefore,

f[xo, , x m, Yo, ... , Yn, Zo, ... , zpj = g(m)(~) + Nn)(Tj) + k(P)(').

Now let Xl --+ X, YI --+ Y, z, --+ z, all i, j, r.j

2. ITERATIVE LINEAR INTERPOLATION

The Newton form of the interpolation polynomial permits one to in­
crease easily the accuracy (actually the degree) of the approximating
polynomial. It has many important applications and is indeed well suited
for computations when the data are available in the appropriate tabular
form. However, it can be viewed as one ofa class of methods for generating
successively higher order interpolation polynomials which we consider
briefly. These procedures are iterative and can be very effectively employed
on modern digital computers since they are based on successive linear
interpolations.

The lemma underlying the iterative linear interpolation schemes can be
stated as

LEMMA 1. Let Xl!' X12 ' ... , x ln be n distinct points and denote by
PI! . 12 •.••• In (X) the interpolation polynomial of degree n - I such that

v = 1,2, ... , n.

Then if XI' X'" and XI" v = 1,2, ... , m are any m + 2 distinct points

(1) PI!. 12 ..... 1m .j.,,(X)

== (X - X")PIl.12 ..... lm.lx) - (X - Xj ) PI,.12 .... lm.,,(X),
Xj - X"

for m = 0, I, 2, ....

Proof We establish (1) by observing that the right-hand side defines
a polynomial of degree at most m + I which takes on the values f(xI,)
at Xl, for v = I, ... , m, f(xJ at XI and f(x,,) at X". Hence, the polynomial
on the right-hand side of (1) is the unique interpolation polynomial which
appears on the left-hand side of (1). •

The variety of schemes which employ Lemma I to determine successively
higher order interpolation polynomials differ in the order in which the
pairs of values (Xj, f(xl)) are used. For many applications, particularly
on digital computers, the function values are generated sequentially and
it may not be known in advance how many values are to be generated.
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Xo !(Xo)

Xl !(X1)

X2 !(X2)

ITERAnVE LINEAR INTERPOLAnON

Table 1
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po. 1 ..... k(X)

For such cases we may employ always the latest pair ofvalues and compute
each row sequentially to find the array in Table 1. Any p .. ,{x) in this scheme
is obtained by using the two quantities to its left and diagonally above.
Thus, to determine, say, the (k + l)st row, only the kth row need be
retained. Of course, as more points are generated, rows of greater length
must be saved. If it is known in advance that a fixed number, say k + 1,
of function values is to be generated, then a different order of computing
is appropriate. That is, we may compute by columns and when a particular
column has been evaluated the preceding column may be discarded.
The schemes based on Table 1 are known as Neville's iterated interpolation.

Another sequence of interpolants are used in Aitken's iterative inter­
polation as is indicated in Table 2. Again, computation by columns is

Table 2

Xo !(xo)

Xl !(X1)

X2 !(X2)

po. 1 ..... k(X)

appropriate for a known fixed value of k. Note that the (k + l)st row
can be computed if we save only the" diagonal" elementsf(xo), POI(x), ... ,
PO• 1 ..... k (x). In brief, the basic difference between these two procedures
is that in Aitken's, the interpolants on the row with X k use points with
subscripts nearest 0, while in Neville's they use points with subscripts
nearest k, as we read the entries from left to right.

A particularly important application of Neville's method is to what is
called iterative inverse iterpolation. Given y = f(x) we define the inverse
function, x = g(y), such that y = f(g(y» and x = g(f(x». Then it is
desired to find a particular value of x, say x = i, such that f(i) = y.
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Thus, we need only find the value ofg(y). Given pairs of values (Xl> f(Xl» =

(g(YI), Yl), interpolation may be used to approximate g(y). As additional
pairs (Xj,f(x,» become available, better or rather higher order inter­
polation can be obtained by using Neville's scheme. Now, however, in
Table I, the first two columns are interchanged and the argument of the
polynomials is f (or y). The computation should be done by rows. After
several steps it is advisable to use only a few of the row elements and to
discard those rows involving values Xl which were "early" iterates and
thus presumably not sufficiently close to the desired value, x. It should
be noted that this procedure is essentially one of the generalizations of the
method of false position or of Aitken's o2-method (see Chapter 3, Sub­
sections 2.3 and 2.4). When the evaluation of the function f(x) is not a
difficult task, most workers prefer to use only a single linear interpolation
at each stage, where the values [x", f(x,,)] and [X"+l' f(x" + 1)] are the most
recent, i.e., regula falsi. Of course, inverse interpolation, in general, is
meaningful only if j-I(X) is defined as a single-valued function over the
interval in question.

PROBLEMS, SECTION 2

1. Given the accompanying table for sin (x), interpolate for sin (1.65) by
determining the value P3(1.65) of the Lagrange interpolation polynomial
with the use of both the Neville and the Aitken schemes of successive linear
interpolations. (Make up Tables corresponding to Tables I and 2.)

Table for Problem 1

sin (1.5) = .9974949866
sin (1.6) = .9995736030
sin (1.7) = .9916648105
sin (1.8) = .9738476309

2. Evaluate sin (1.65) by finding the Newton form of P 3(1.65). Compare
the amount of work in Problems I and 2, when done by hand.

3. FORWARD DIFFERENCES AND EQUALLY SPACED INTER­
POLATION POINTS

Many of the results in Section 1 are simplified and additional important
consequences are obtained if the points of interpolation are equally
spaced. Very many, if not most, of the practical applications are with
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such sets of points. Thus, we take Xo to be an arbitrary fixed point and let
h > 0 be the spacing between adjacent points. Then the points to be
considered are

(1) X j = Xo + jh; j = 0, ± 1, ± 2, ....

Note that x j - Xk = (j - k)h and, since j may be negative, X o need not
be an endpoint of the interval under consideration.

Associated with equally spaced points is the (first order) forward
difference which is defined by

(2) 6.f(x) == f(x + h) - f(x).

Higl1er order differences are defined in the obvious way as

(3) n = 1,2, ....

In analogy with the divided difference table, we can easily construct the
higher order forward differences for the points (1) by means of Table 1.

Table 1

x f(x)

Xo f(xo)
f(x,) - f(xo) = !:J.f(xo)

X, f(x,) !:J.f(x,) - !:J.f(xo) = !:J.'f(xo)
f(x.) - f(x,) = !:J.f(x,) !:J.'f(x,) - !:J.'f(xo) = !:J.3f(xo)

x. f(x.) !:J.f(x.) - !:J.f(x,) = !:J.'f(x,)
f(x3) - f(x.) = !:J.f(x.) !:J.'f(x.) - !:J.'f(x,) = !:J.3f(x,)

x 3 f(x3) !:J.f(X3) - !:J.f(x.) = !:J.'f(x.)
f(x.) - f(x3) = !:J.f(X3)

A relation between divided differences with equally spaced arguments
and forward differences is easily obtained from the representation (1.6)
and the definition (3). Thus by taking x to be anyone of the points X j

of (1), say xo, we have

f(Xl) - f(xo)
6.f(xo) = f(x l ) - f(xo) = (Xl - xo) = hf[xo, Xl]'

Xl - Xo

Now to proceed by induction on n, the order of the difference, we assume
that

(4)
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and obtain

= (n + 1)!hn+1f[xo,xh ... ,xn+d.

Thus (4) is established for all n ;::: I.

Another representation of the forward differences can now be obtained
by specializing the representation (1.4) to equally spaced points. We note
that, by (I)

n n

TI (Xt - xJ = TI (i - j)h
1=0 1=0
(NO (f¢O

t-1 n
= hn TI (i - j) TI (i - I)

j=O l=i+l

= (-I)n-thn(i)!(n - i)!

By using this result in (1.4) we obtain

(5)

where

(~) = i!(nn~ i)!

are the usual binomial coefficients and O! = I. From (5) in (4) there results

(6)

A final expression for the forward differences is obtained by using (4)
in (1.9) with x = X/c to get

(7)

Of course, (7) is valid assuming that f(x) has an nth derivative in the
indicated interval.

It is clear, from (7), that the nth forward difference of a polynomial of
degree n is a constant and that higher order differences vanish. More
generally, if f(x) has all derivatives bounded, say Ipn)(x)1 ~ M for all n,
then (7) implies that
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Thus if h < I the magnitude of nth order differences off(x) will in general
decrease as n increases. On the other hand, if the nth derivative of f(x)
grows with n, the nth difference will decrease only if h is "sufficiently
small." This may be illustrated by the function f(x) = e"X where a > 0.
Clearly, pn>(x) = ane"X and using (7) ~nf(xo) = hnane"~. If the inter­
polation points are to be confined to the interval Xo :<;; x :<;; Xo + L, then°:<;; nh :<;; L and the differences will generally decrease only if h < Ija
(we here neglect the variation in e"~ which may occur). Finally, if pn,(x)
is not bounded for all n we can expect I~YI to decrease, for sufficiently
small h, only for the first several values of n. This heuristic observation is
the basis of a method for detecting isolated errors in forward difference
tables of supposedly smooth functions.

To describe this method we first observe that

~n[f(x) + g(x)] = ~Y(x) + ~ng(x).

Now suppose that f(x) is a smooth function, say for simplicity with all
derivatives bounded, and that in tabulating this function an error of
amount 0 is made in the single entry f(xj). Thus the function actually
tabulated can be written as f(x) + g(x) where

{

O,
g(Xi) =

0,

i #- j;

i =j.

Applying the representation (6) we see that the column of nth differences
of g will contain quantities of the form

Thus in examining the higher differences of the tabulated dataf(x) + g(x),
since ~Y decreases with n, an error will be apparent if the entries, from
some column on, alternate in sign and the magnitudes of these varying
entries are proportional to the appropriate binomial coefficients. The
power of this method is illustrated in Problem 2.

This procedure will not be practical if the isolated error 0 is of the same
order of magnitude as the roundoff errors generally present in all of the
tabular data. In fact, we shall see that if roundoff errors are present,
differences of a sufficiently high order may have no significance. Let the
tabular entries be, f(x) + p(x), where p(x) is the rounding error.

Let E be a bound on the rounding error, i.e., Ip(x)1 :<;; E. The worst
possibility for the distribution of these errors is

(8)
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Table 2

p(x) ~ ~2 ~3 ~4

£
-2£

-£ 4£
2£ -8£

£ -4£ 16£
-2£ 8£

-£ 4£
2£

This is made clear by the table of differences for such a distribution
(Table 2). Any other distribution leads to some entries which would be
less in absolute value than the corresponding entries above. From Table 2
we see that

l~np(x;)1 = 2n
£.

[This result may be easily proved for j = 0 by using (8) in (6).] Thus the
roundoff error present in the nth difference is at most 2n

£. If there are s
decimals retained with a roundoff error of at most one-half unit in the
last place then £ = -1 10-°, and the bound on the roundoff error in the
nth difference becomes 2n - 1 10-°.

3.1. Interpolation Polynomials and Remainder Terms for Equidistant
Points

The Lagrange and Newton forms of the interpolation polynomials
become simplified when the interpolation points are equally spaced. To
be consistent with the notation (I) we introduce a new independent
variable, t, by setting

(9) x = Xo + tho

Thus, t measures x - Xo in units of h and is an integer only at the points
x; of (I).

Now the Lagrange interpolation coefficients, (2.6) of Chapter 5, can
be written as

n X - Xlc
<Pn.;(x) = <Pn.lxo + th) = TI-----::.

Ic=O x; - Xlc
(Ic~j)

n t - k
= TI-·-

Ic=OJ - k
(1c~;J

= (_l~n-; (~) fI (t - k).
n. ] Ic=O

(Ic¢j)
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It is convenient to introduce

(10)
7To(t) == t,

7Tn(t) == t(t - I)·· o(t - n), n = 1,2, 0 0 ••

(11)

The function 7T n(t) is a polynomial in t of degree n + I and is frequently
called the (n + 1)5t factorial polynomial. In terms of this polynomial,
the Lagrange interpolation coefficients become

.J.. ( h) = 7T n(t) (n) (-It-;.
'f'n j Xo + t ,. .. n. J t-J

Using this formula in (2.5) of Chapter 5, the Lagrange form of the inter­
polation polynomial simplifies to

Pn(Xo + th) = 7Tn({) i (_I)n-j(~) f~j~.
n. j=O J t J

Newton's form of the interpolation polynomial is simplified by using
(4), (9), and (IO) in (1.7) to get

(
7TO(t) 7T 1(t) 2

(I 2) Qn Xo + th) = f(xo) + -I-! f).f(xo) + 2! f). J(xo) + ...

+ 7Tn-~(t) f).nf(xo).
n.

The error in these interpolation polynomials is, by (1.8), (9), (10), and
Theorem 1.1,

(13) Rn(x) = Rn(xo + th) = 7Tn(t)hn+ 1f[xo, .. o,xn,x]

f <n+ 1)( t)
= 7T (t)hn+1 s .

n (n + I)!

Rn(x) may also be called the remainder for the interpolation formula. Of
course, the final form is valid only if f(x) has n + I derivatives in the
interval containing x, Xo and Xo + nh. To obtain a clear idea of the be­
havior of this error, we shall study some properties of the factorial
polynomials 7Tn(t).

From the definition (IO) it is clear that 7Tn(t) has n + I real roots and
they are at t = 0, I, ... ,n. These polynomials have certain symmetries
about the point t = nl2 which is the midpoint of the zeros of 7Tn(t).

LEMMA 1. For n odd,
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[i.e., 7Tn(t) is symmetric about t = n/2]; for n even:

[i.e., 7Tn(t) is anti-symmetric about t = n/2].

Proof ClearlY,7Tn(n/2 - 7) and 7Tn(n/2 + 7) are polynomials of degree
n + 1 in 7 and have the same n + 1 roots:

Thus, these polynomials differ by at most a constant factor. Comparing
coefficients of the leading terms in each then yields

•
A further result which contains a comparison of the magnitudes of

7T n(t) at various points is contained in

LEMMA 2. (a) Let t + 1 be any non-integral point in 0 < t + 1 ~ n/2.
Then

(b) Let t be any non-integral point in n/2 ~ t < n. Then

Proof Since, in part (a), t + 1 is non-integral, t < n is also non-
integral and we may form

l
7TnCt +1)1 = let +1)(t)(t - 1)· 0 o(t - n +1)1

7Tn(t) (t)(t - 1)0' o(t - n + 1)(t - n)

It+ll It+11 t+1
= t - n = n - t = (n + I) - (t + 1)

< n/2
- (n + 1) - (n/2)

1
1 + 2/n < I.

Thus, part (a) is proved. Part (b) fol1ows from part (a) by using the sym­
metry properties of Lemma 1. •

The properties of 7Tn(t) proven in Lemmas I and 2 are illustrated in
Figure 1 where 7Tn(t) is plotted for n = 5 and n = 6. It easily fol1ows from
Lemma 2 that the maximum of l7Tn(t) I in [0, n] occurs in the interval
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(0, 1), or equivalently in (n - 1, n). A lower bound on this magnitude is
furnished by

n

max l1Tn(t)1 ~ h(-!)1= TI 11 - jl
O:5t:5n j=O

(2n)!
= 22n + 1n!'

Using this bound we may compare the quantity hn+ 11Tn(t) for equally
spaced interpolation points with the corresponding error factor,

n

TI (x - Xj), for the Chebyshev interpolation points (i.e., with that
j=O

factor which deviates least from zero determined in Chapter 5, Subsection
4.2). If the interpolation is to be employed over the interval [a, b], then for
the Chebyshev points we have by (4.17) of Chapter 5

I
n I 1 (b - a)n + 1

M Ch == ~a; TI (x - Xj) = 2n -2- ;
a_x_b j=O

and this value is attained at least n + 2 times in the interval. For equal
spacing in [a, b], we have h = (b - a)/n and so

_ n+1 (2n)! (b - a)n+1
MEQ = max Ih 1Tn(t)1 > 22n + 1 , -- •

O:5t:5n n. n

Thus, using Stirling's formula we find that for n large

So if interpolation is to be employed over the entire range [a, b], we find
that the ratio of the maximum error factors essentially decreases, at least
exponentially, for large n. Thus, the Chebyshev fit is better in the above
comparison. However, we may only want to employ the interpolation
polynomial near the center of the interval [a, b]. Specifically for n odd,
say that n = 2m + 1, and that we are interested in the error over

i.e., an interval of length h centered in [a, b]. Now we find that

MEQ* == max Ihn+ 11Tn(t)1 = hn+111Tn(m + -!-)I
mstsm+l
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lI"n(t)

16.0

8.0

[Ch.6]

-8.0

-16.0

o 5

Figure la. Error factor for interpolation with 6 equidistant points.

Hence it follows that for large n = 2m + I,

M Ch '" (e)n _ nM
Eq

* '" t 2 - t(1.3591. .. ).

We thus find that for interpolation near the center of the interval of inter­
polation points the error factor for equally spaced points is exponentially
smaller than the maximum for the Chebyshev fit over the entire interval.
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40

o

-40

6

-80

n=6

Figure Ib. Error factor for interpolation with 7 equidistant points.

It should also be observed (see Figure 1) that the error factor l1Tn(t) I
grows rapidly for t < 0 and t > n. Thus if the" equally spaced" inter­
polation polynomial is used to extrapolate a function (i.e., to estimate
values outside the interval of the interpolation points) we may expect the
error to be much larger, in general, than it is for interpolation. Of course,
the same is also true of the extrapolation error using the Chebyshev
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points. In fact, for any distribution of interpolation points, the growth of
the magnitude of the error factor can be bounded, outside the interval of
interpolation points, by the error factor with the Chebyshev points.
More precisely, for any choice of interpolation points X o, Xl> ... , X n in

n

[- I, I] the error factor is, say, n (x - xJ == Pn+ leX). If the Chebyshev
j=O

points are used, then

nn (x - xJ = Tn+l(x),
j=O

Now if M == max IPn+ l(x)l, it can be shown (see Problem 5) that for all
-1:5X:51

x such that Ixl > I

IPn+I(X)1 :::; M2nITn+l (x)l·

The equality can only hold if Pn+I(X) == Tn+l(x),

3.2. Centered Interpolation Formulae

Consider the error (13) in the interpolation polynomial for equal spacing.
This error may be estimated ifpn+ 1)eg) does not vary "too much" in the
interval min (xo, x) < g < max (xn , x). [An idea of this variation may be
obtained, as a result of (7), by examining the differences t,n + If] If the
variation is not too large, then as an estimate of the error we may use

An approximate bound on the error is obtained if 1Tn(t) is replaced by its
maximum absolute value in the interval in question.

Since, in general, we do not know pn + 1)(g), the best that can be done in
order to obtain the smallest possible error is to use the interpolation poly­
nomials only for that range of t where 1Tn(t) has its least absolute value,
i.e., by Theorem 2, for t near nl2 or equivalently for x near the midpoint
of [xo, x n ]. So if there are tabular points equally distributed about the
interval of interpolation, then the interpolation polynomial to be employed
should use tabular points centered as nearly as possible about the interval
of interpolation. It is clear (see Figure I) that when x is outside the interval
[xo, x n ], or near the endpoints, l1T n(t)! may be relatively large and, if so,
may cause the extrapolation or interpolation error to be relatively large.

It is rather inconvenient, in general, to locate in the Difference Table
I those differences which must be employed in (I2) when t is at n12.
For this purpose we derive special formulae which simplify the task.
Let us assume that the interval in which the interpolation is to be done is
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X o < x < Xl> and that we have arbitrarily many tabular points Xl' j = 0,
± I, ±2, ... , about this interval. Then the ordinary Newton interpolation
polynomial, using successively the points Xo, Xl> X -l> X2' X _ 2, ••. , will have
the desired features with regard to the interval [xo, xd. This polynomial
is of the form

(14) Qn(x) =/0 + (x - XO)/O.1 + (x - xo)(x - x1)/o.1.-1

+ (x - xo)(x - x 1)(x - x-1)/o.1. -1.2 +"",
the form of the final term depending upon the oddness or evenness of n.

However, since the divided differences are symmetric functions of their
arguments we may write

10.1. -1 = /-1.0.1,

10.1. -1.2 = 1-1.0.1.2,

fO,l.-1, .• m.-m =f-m. .. -1,0,1. .m-

Then using (4) with the appropriate shifts in the subscripts,

/-1.0.1 = 2/h26.
2/_1.

I
1-1.0.1.2 = 3! h3 6.

3
/_1;

I-m .... -1.0.1 ..... m = (2m)\ h2m 6.
2ml_ m,

I I 6.2m + 1f
-m .. ". -1.0.1 .... m.m+1 = (2m + I)! h2m+1 -m'

The interpolation polynomial (14) can now be written as, for even n = 2m:

(15a)
t(t - I) 2

Qn(xo + th) =/0 + t6./o + 2! 6.]-1

+ t(t - ~~t + I) 6. 3/_1 +" ..

t(t - I)(t + 1) .. ·(t - m) 2m •

+ (2m)! 6. 'f-m,
and for odd n = 2m + I:

(I5b) Qn(xo + th) = 10 + t6./o + .. "

t(t - I)(t + I)·" ·(t - m)(t + m) 6.2m +1f
+ (2m + I)! -m'

This is the Gaussian (forward) lorm for the interpolation polynomials.
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The differences used in forming these polynomials are on the line containing
Xo and the line between Xo and Xl (see Table 3).

Table 3 Differences

x I(x) A 602 6.2m tl.2m+ 1

X- m I-m
A/-m

X-I 1-1
601-1

Xo 10 6.2/_1 6.2ml_ m
All 6.2m + I/_m

Xl 11

Alm-l
X m 1m

A more symmetric form of the interpolation polynomial can be obtained
when n = 2m + I (i.e., of odd degree). For this purpose we must introduce
the centered difference notation, for even order differences,

(l6a)
k = 2,3, ....

The point X r is always the midpoint about which these differences are
centered. With this notation, all odd order ordinary differences, higher
than the first, can be written as the difference of two centered differences:

(16b) m = 1,2, ....

Using (16) in (ISb) yields:

t(t - 1) 2 t(t - 1)«( + I) 3
Qn(Xo + th) =fo + tI~fo + 2! 6.'1-1 + 3! 6.'1-1 + ...

t(t - 1)(t + I)·· ·(t - m) 2m
+ (2m)! 6. 'f-m

+ t(t - 1)(t + 1)···(t - m)(t + m) 6.2m + 1f
(2m + I)! -m
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t(t - 1) 2
= fo + t (/1 - fo) + 2! 8 'fo

t(t - l)(t + 1) (021' 021')+ 3! 0J1-0l0 + ...

273

(17)

t(t - l)(t + 1) .. ·(t - m) 2m

+ (2m)! 8 ~

t(t - l)(t + 1)··· (t - m)(t + m) (8 2m I' _ 82m I')

+ (2m + l)! II lO

_ II' t(t - l)(t + 1) 021'
-tJ1+ 3! uJ1+'"

t(t - l)(t + 1)·· ·(t - m)(t + m) 2m

+ (2m + 1)! 8 'f1

t(t - 1) 2+ (1 - t)fo + 3! (2 - t)8'fo + ...

t(t - 1)(1 + 1)·· ·(t - m) ( 1 _ )82m l'

+ (2m + l)! m + t lO'

By introducing s == 1 - t we may simplify the coefficients of 82kfo and
the above finally takes on the symmetric form:

S(S2 - 12)
sfo + 3! 82fo + ...

S(S2 - 12) .•• (S2 - m2) 2m

+ (2m + l)! 8 'fo

t(t 2 - 12)+ if1 + 3! 82f1 + ...

t(t 2 - 12
) •• ·(t 2 - m2) 2m

+ (2m + l)! 8 'fl'

This is known as Everett's form of the interpolation polynomial.

3.3. Practical Observations on Interpolation

In this subsection, we gather and comment on some of the "rules of
thumb" which are used by the practitioners of interpolation.

(a) A convenient" rule" to determine approximately the magnitude of
the error in linear interpolation is

1

b.2
(XO)!If(xo + th) - tf(xo + h) - (1 - t)f(xo) I ::; -8-'
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The factor t is an upper bound for t(t - 1)/2, if 0 ~ t ~ I, while by (7)
h2f"W ~ Ll2f(xo) in the remainder term (13).

(b) A "rule" for estimating the magnitude of the error in general
polynomial interpolation is to use the magnitude of the first neglected
term in the Newton form. That is, the error in using (12), (I Sa), or (lSb)
is approximately the next term in the series. By (13) this estimate is seen
to be good if the ratio pn+ l)(f)lpn+ l)(TJ) is near to I for all f and TJ in an
interval containing x and all the indicated x,,

(c) In a table of differences, we may compute the" average value," lip,
of a column of pth order differences from the definition:

Lip = ! n~l LlPj;.
n t=o

It is easy to show (see Problem 7), that if an isolated error is made in fk'
for some k satisfying p ~ k ~ n - p, then Lip is unaffected. This observa­
tion provides a simple way of locating k and estimating the p + I errors
that arise in the column of pth order differences from an isolated error in
fk; and hence yields the error infk approximately.

A table user could difference a printed table (whose accuracy has not
been established) in order to weed out isolated typographical errors and
to decide upon the order of interpolation that may be necessary.

(d) In the construction of a mathematical table, one tries to present a
listing that provides a reasonable number of decimal places (or significant
figures) and also permits a simple interpolation process to attain almost
the full accuracy of the table, without its being too voluminous. To this
end, some table makers list not only f(xt) but $2f(xt), where $2f(xt) is
called a modified second difference (only the significant figures of $2 are
listed). The modification is based on the use of the Everett form of the
interpolation formula (17) with m = 2:

t(t 2
- I) [ t 2

- 4 ]f(xo + th) ~ t!(Xl) + 6 82f(x j ) + ------w- 84[(x1 )

S(S2- 1)[ s2-4 ]+ sf(xo) + 6 82f(xo) + -----w- 84f(xo) ,

where s = I - t. In order to incorporate most of the" effect" of the fourth
difference into the second difference, one uses an "average value" for the
coefficient (t 2

- 4)/20. Very simply, since

e p2 - 4J
o

------w- dp = -ii- ~ -0.18333,

we may define the modified second difference by

$2f(x) = 82f(x) - it 84j(x),
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and then use, for interpolation in the table,

Other, more sophisticated arguments have been given to justify the use
of other" average values" for the coefficient (t 2 - 4)/20, e.g., - 0.18393
(see Problem 6 for justification).

3.4. Divergence of Sequences of Interpolation Polynomials

It is not generally true that higher degree interpolation polynomials
yield more accurate approximations. In fact, for equidistant points of
interpolation one should use polynomials of relatively low order. We shall
illustrate this by examining the interpolation error, Rn(x), as a function
of n and x for a particular function.

Specifically we take a function considered by Runge:

(l8a) 1
f(x) == -I--2'+x

and consider, in [- 5, 5], the equally spaced points

(l8b) j = 0, I, 2, ... , n,
10

~X=-'
n

For each n there is a unique polynomial Pn(x) of degree at most n such that
Pn(Xj) = f(xJ. This is the interpolation polynomial for (l8a) using the
points (l8b). We shall show that If(x) - Pix) I will become arbitrarily
large at points in [- 5, 5] if n is sufficiently large. This occurs even though
the interpolation points {Xj} become dense in [- 5, 5] as n --+ 00.

The remainder in interpolation is, by (1.8)

(19)

n

= TI (x - xj)f[xo,···, Xn, x].
j= 0

However, with the function and points in (18) we claim that

(_1)'+1 {I,
(20) f[xo, ... , Xn, x] = f(x)· 1 •

TI (1 + xl) x,
j=O

if n = 2r + 1;

if n = 2r.

We first prove this for the odd case, n = 2r + 1, by induction on r. Note
that in this case there are an even number of interpolation points in (l8b)
and they satisfy x j = -Xn-j' For r = 0 we have n = I and Xo = -Xl'
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g(X) = f(x)· An

Then a direct calculation from the divided difference representation (1.4)
using (I8a) yields

(
I )( I) (-I)

f[xo, Xl> x] = - I + x 2 I + xo2 = f(x) I + X02'

and the first step of the induction is established. Now assume (20) to be
valid for n = 2r + I, with any x o, . .. , X n that are pairwise symmetric
(i.e., Xj = -Xn-j), and let m = n + 2 = 2(r + I) + 1. We define the
function g(x) by

g(x) == f[xl> x 2,·· ., Xm-l> x],

where now Xj = -Xm-h and use (1.6) to write

f[xo, Xl> ... , Xm, x] = g[xo, Xm, x].

However, by the inductive hypothesis it follows that

_ (-1)'+ 1
A, = -,:-'----''-----

f1 (I + xl)
j~l

Also from (l8b) we note that Xo = -Xm and hence by the previous cal­
culation

( -I)
g[xo, Xm, x] = f(x) I 2 An+ X o

which upon substitution for A, concludes the induction.
The verification of (20) for n = 2r is similar to the above and IS left to

the reader. Another proof of (20) is given as Problem 9.
Since (x - xJ(x - xn-J = x 2 - x J

2 by (l8b) and recalling that
X T = 0 for n = 2r we have

(21)
if n = 2r + I;

if n = 2r.

From (21) and (20) in (19) the error can be written as

(22)

Note that 2~ :-:;; f(x) :-:;; I for x in [- 5, 5] and so the convergence or
divergence properties are determined by gn(x). Further, since gn(x) =

gn( - x), we need only consider the interval [0, 5]. [It is also of interest to
note that Rn(x) is, in fact, an even function of x for all n.]
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To examine Ign(x)I for large n, or equivalently for large r, we write

(23a)

where from the definition in (22)

(23b)

In Problem 8 we show that for appropriate x E [1,5] and for all x/

(24) Ix + xii > C I.:l x 1
m •

For these values of x the sum in (23b) converges uniformly as n -*00;

that is, explicitly,

r IX2 - x.
2/lim .:lx In Ign(x) I = lim 2: In I ~ .:lx,

n ..... 00 r ..... 00 j = 0 + Xj

(25) fo IX2 - el= _5 In I + e df,

== q(x).

To demonstrate this convergence, we note that

In 1~2.; :'~21 = In Ix + xii + In Ix - xii - In II + xli,

and similarly, with Xi replaced by f. Next we show that each of the
three sums converges to the corresponding integrals. Those sums corre­
sponding to the last two terms converge to their corresponding integrals
by the definition of Riemann integrals since the corresponding integrands
are continuous functions of f [recall that x ~ I by (24) and Xi :5: 0 for
j :5: r by (I8b)]. Hence, we need only show that

(26)
r fO

}~~ i~ In Ix + xii dx = -5 In Ix + fl df,

provided x satisfies (24). Let 0 < I be an arbitrarily small fixed positive
number. Then

(27a) lim 2: In Ix + xii dx
r- 00 Ix+x/I>6
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since In Ix + tl is a continuous function of t over the indicated intervals
of integration. The missing part of the integral in (26) is

(27b) I~:_+66In Ix + tl dt = 2 fin TJ dTJ = 2(8 In 8 - 8).

The remaining part of the sum in (26) can be bounded if we take r so
large that ~x < 8. Then recalling (24) we have

I L In Ix + xli ~xl ~ 2~xlln c(~X)1Il I + I L In Ix + xli ~xl,
Ix+xJI$O ~x::;lx+Xjl::;o

(27c) ~ 2~xlln c(~)111 I + 21f In TJ d+
~ 2(~xl m In ~x + In cl + 811n 8 - II)

= (j)(8IIn 81)·

The first term on the right in the first line is obtained from the two terms
say, X k and Xk + I which are nearest to - x. The remaining sum has been
bounded by the integral by means of the monotonicity of the function
In x. That is, since 8 < I, we use

if Ix + xi-II < Ix + xii (otherwise limits of integration are Ix + xli,
Ix + xi+II). Letting r---+oo in (27c) and using (27a and b) we get (26)
since 8 is arbitrarily small. This concludes the proof of (25).

In Problem 10 we indicate how q(x) can be explicitly evaluated and it is
required to show that

(28a) q(x) = 0 at x = 3.63 ;

(28b) q(x) < 0 for Ixl < 3.63 ;

(28c) q(x) > 0 for 3.63 ... < Ixl ~ 5.

Now let x satisfy (14) and x > 3.63 ... as n ---+ 00. Then by (25) and (28c)
in (23a) we have, recalling that ~x = lOin,

lim Ign(x) I = 00.
n-O

That is, from (22), IRn(x) I ---+ 00 as n ---+ 00 for x as above. Also, since
Rn(x) = Rn( - x) the points of divergence are symmetrically located on the
axis.

This example illustrates part of the general convergence theory for
sequences of interpolation polynomials based on uniformly spaced points
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in an interval [a, b]. According to this theory, if fez) is "analytic" in a
domain of the complex plane containing [a, b], then the sequence of inter­
polation polynomials for fez) converges inside the largest" lemniscate"
whose interior is in the domain of analyticity of fez). The "lemniscate"
passing through z = ± 3.63 ... also passes through the points z = ± v-=T
at whichf(z) = I/O + Z2) is singular.

The" lemniscates" associated with an interval [a, b] are simple closed
curves which are analogous to the circles that characterize the domain of
convergence of a power series expansion about a given point. That is,
the sequence

n f<k)( )
Sn(z) = L _,_a (x - a)k

k=O k.

converges to the functionf(z) for all z inside the largest circle Iz - al = r
about a in which fez) is analytic. For fez) = 1/(1 + Z2) we obtain the
sequence

n

L2n(z) == L (- I )kz2k,
k~O

which converges for Izl < I. This is the largest circle about the origin not

containing the singular points z = ±v=!.

PROBLEMS, SECTION 3

1. Without using f1nf(x) = hnpn)(o, derive the value of f1npn(x) where
Pn(x) = ao + alX + ... + anxn.

2. Find the errors in the following table of function values taken at evenly
spaced arguments: 50173, 53503, 56837, 60197, 63522, 66871, 70226, 73566,
76950, 80320, 83695, 87084, 90459, 93849, 97244, 100634, 104049, 107460.
In this example it suffices to examine the column of second differences.

[Hint: See Problem 7.]
n

3. Compare error factors, n (x - XI), in equally spaced and Chebyshev
1=0

interpolation over [a, b]. (That is, use Stirling's approximation to n! and
verify the estimates of M Ch / MEq and M Ch / MEq·, following Lemma 2.)

4. Derive the result that L'11Tn(t) = (n + 1)1Tn -l(t), n = 1,2, ... ; where the
spacing in L'1 is h = I.

5.· Prove the following

THEOREM. IfPn(x) is a polynomial of degree at most n and max [Pn(x)1 = M
Ixl:S;l

then for all x in Ixl > I,

IPn(x)1 ~ M2 n- 1 Tn(x) == M cos (n cos- 1 x).

[Hint: For a proof by contradiction, consider the polynomial

Tn(x)
qn(x) = Pn{f) Tn{f) - Pn(x),

with ga point where the conclusion is invalid show qn(x) has n + 1 zeros.]
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6.· The technique of L. J. Comrie for modifying the second difference uses
the idea of selecting a constant, - c, to replace «(2 - 4)/20 and (S2 - 4)/20
in the Everett formula so that the maximum error in the resulting interpolation
formula is a minimum. Supply the missing details in the following sketch:

Let the Everett form of the interpolation polynomial be

Ps(xo + ph) = quo + PU1 + e(q)02uo + e(p)02u1 + d(q)04UO + d(p)04Ul,

where

Then

Ps(xo + ph) = quo + PU1 + e(p)(02U1 - C04U1) + e(q)(02uo - c04uo) + R,

with
R = [d(p) + ce(p)]04U1 + [d(q) + ce(q)]04uo.

If we try to pick c so as to minimize max [RI, we see that c must depend
OSpS!

on u.
Hence, we simplify the problem by noting that 04U1 = 04 UO + ~04UO'

Now if ~04UO is much smaller than 04UO we may neglect the fifth difference and
minimize

max [d(p) + d(q) + c[e(p) + e(q)] [
OSPSl

_ Ip(p2 - l)(p - 2) p(p - 1)1.
- max 24 + c 2

OSpS!

If we let the polynomial inside the absolute value sign be g(p, c), then the
maximum occurs when

og ~ t 2op == 1i(p - )(p - p - 1 + 6c) = 0

or p = t, t ± vi - 6c. Since p(p - 1) is of one sign, [g(p, c)[ should have
equal values at its maxima, in order that they be minimum. Set

which yields
3 - 16c

128
(l - 6C)2

24 .

Only the larger one of the roots, c, is appropriate: c :;;; 0.18393.
7. Given a table of !(x) for XI = Xo + jh, 0 :5 j :5 n. Show that if !k is

"-q
replaced by !k + 0, for any k with p :5 k :5 n - p then L ~"fj/(n-q+ 1)

1=0

is unaffected, for 1 :5 q :5 p.
8. For x a fixed positive irrational algebraic number of degree m, Liouville's

theorem states that for all positive integers (p. q) 3 a constant K (x) 3.

[x - plql > Kq-m .

Show that this implies (24) for some constant c(x) and all xl'
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9. Verify that if f(x) = I/(x + c)
I

f[xo, Xl, ..• , X n ] = (- I)n ---:n:-----

TI (Xi + c)
1=0

Hence, establish (20) by writing

I : X 2 = it (X ~ i - X ~ J
where i 2 = - 1.

10. Verify for the function

J5 IX2 - elq(x) = 0 In T+'12 dg
that

(a) q(x) = 0 at X ~ 3.63 ;
(b) q(x) < 0 for Ixl < 3.63 ;
(c) q(x) > 0 for 3.63 ... < Ixl ~ 5.

[Hint: Derive for 0 ~ X ~ 5,

q(x) =r In (x - g) dg + f In (g - x) dg

+ fa" {In (g + x) - In (I + en dg

=(5 + x) In (5 + x) + (5 - x) In (5 - x)

- 51n 26 - 2 arctan 5.]

4. CALCULUS OF DIFFERENCE OPERATORS

When dealing with equally spaced data there is a very useful operator
method available to suggest new formulae and to aid in recalling the
fundamental ones. The basic operators are:

(a) Identity If(x) == f(x);

(1)
(b) Displacement Ef(x) == f(x + h);

(c) Difference !:if(x) == f(x + h) - f(x);

(d) Derivative Df(x) == dfd~)'

Note that the displacement and difference operators imply a fixed spacing,
h, by which the argument is to be shifted. We assume that E and !:i use
the same such value unless otherwise specified. To employ D, the function
on which it operates must be differentiable. In fact, the classes of functions
to which all symbolic formulae apply must generally be restricted. We
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shall consider only the class of polynomials (but more general extensions
are possible). Two operators, A and B, are said to be equal if Af(x) =

Bf(x) for every function f(x) of the class under consideration, i.e., for
every polynomial.

From the definitions (I), it is clear that the four operators are linear,
Le., if A is anyone of them then

(2) A[af(x) + ,Bg(x)] = aAf(x) + ,BAg(x),

for arbitrary numbers a, ,B and functions f(x), g(x). The product, AB,
and the sum, A + B, of two operators A and B are defined by

(3a)

(3b)

(AB)f(x) == A[Bf(x)],

(A + B)f(x) == Af(x) + Bf(x).

From the definition (3a) the integral powers, An, of any operator A may
be defined inductively as

AO == I,
(4)

n = 1,2, ....

In addition, we define non-integral powers of the displacement (or shift)
operator, E', by

(5) E'f(x) == f(x + sh),

where s is any real number, and observe that E'Er = E5+r.
Using the definitions (la), (lb), and (3b) we have

Ef(x) = f(x + h)

= f(x) + f(x + h) - f(x)

= (I + l1)f(x).

Thus, we conclude, from the definition of equality of operators, that

(6) E = 1+11.

Equivalently, we have 11 = E - I and from the definition of powers of
operators it easily follows that

(7) I1 n = (E - I)n,

= i (_l)t(~)E(n-i).
i~ ° I

This result may be proved by induction, just as is the usual binomial
expansion. However, by applying (7) to f(x o) we obtain (3.6) which has
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previously been derived for general functions. Thus (3.6) yields an in­
dependent proof of (7).

From the extended definition (5) we may write

f(x + sh) = E'j(x).

On the other hand, the Newton form of the interpolation polynomial
gives

f(x + sh) = [I + 7TO(S)~ + 7T~(~) ~2 + ... + (k7TtsL! ~k + 1 + ... ] f(x) ,

where we note that the series terminates with ~P if f(x) is a polynomial
of degree p.

But the formal binomial series expansion of (I + ~)S, for s arbitrary,
is identical with the series on the right-hand side, and hence we adopt it as
the definition for s non-integral. That is, with this convention,

(8) E' = (I + ~)S for s arbitrary.

Thus, it is clear that the steps leading to (8) are not a derivation of New­
ton's formula but can now be used to recall that formula when required.

Similarly, such manipulations can be employed to suggest new formulae
which can then be verified independently. For example, we define the
backward difference operator, V, by

Vf(x) == f(x) - f(x - h).

Then as in deriving (6) we find that

E- 1 = (l- V),

and proceeding as in (8) we obtain, formally

(9) f(x - sh) = [I - 7To( s)V + 7T~(t) V2 + ...

+ (_1),(+1 7Tk(S) Vk+1 +"']f(x)
(k + I)! .

The formula suggested is, in fact, well known as Newton's backward
difference formula. By introducing centered difference operators,

of(x) ==f(X +~) - f(x - ~),

we could derive other formulae.
To relate D to the other operators we write the formal Taylor's series

expansion

h h2 hn

f(x + h) = f(x) + T/'(x) + 2"!f"(x) + ... + nlpn>(x) + ...
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in the symbolic form

Since the series in the brackets is the expansion of eltD and the equality
is valid for all polynomials, we have the interesting result:

(10) e"D = E = I + ~.

[We recall that this merely says that the operator E and the operator
I + hD + ... + hnDn/n! are equivalent when applied to a polynomial
of degree n, for all positive integers n.] Formally by taking logarithms in
equation (IO) we find that

(II) hD = In (I + ~)

This formula suggests that hD and the first n terms on the right-hand side
might be equivalent when applied to any polynomial of degree n. To verify
this we use the Newton formula, (8), for any polynomialf(x) of degree n:

f(x + sh) = [1 + s~ + s(s - 1) ~2 + ...
2!

s(s - 1)·· ·(s - n + I) ]+ , ~n f(x).
n.

Differentiate with respect to s and evaluate at s = 0 to get

which was to be shown. The relation (II) may now be employed to obtain
forward difference approximations to the derivative of a tabulated func­
tion. The general problem of approximating the derivatives of a function
is considered in more detail in the next section.

Symbolic methods may also be employed to determine formulae for the
approximate evaluation of integrals. Thus we define

(I 2)
rx + 1t

Jf(x) == Jx fW dg,

and by using (5) we have, formally,
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(13) Jf(x) = h f E'f(x) ds

= h f E S dsf(x) = h f es1nE dsf(x)

E-I
= h In E f(x)

M
In (I + t1/(x).

By using (II) this result implies J = t11 D or J D = DJ = t1 which may be
verified directly. However, if we write

In (I + t1) = t1(1 - R),

where by definition

R = -!t1 - tt12 + ... + (- I)n ! t1n- 1 + ...
n

then (13) becomes, symbolicaUy,

(14)
h

J=-­
1- R

= h(l + R + R2. .. ).

Again this might be interpreted as meaning that when applied to any
polynomialf(x) of degree n, J is equivalent to the first n + I terms on the
right, or more simply just those terms involving t1k for k ~ n. UsuaUy,
(14) is written in powers of t1, i.e.,

(15) J = h(l + -!t1 - -lit12 + ·i4"t13
- -llot14 + ... ).

To justify (14) we note that Jxn = t1xn+ l/(n + I). Now (11) and the
definition of R give

hDxn+ 1 = hen + I)xn

= t1(1 - R)xn + 1

Thus, t1xn+ 1 = hen + I)xn + Rt1xn+ l and iterating this result yields,
since Rn + lt1xn+ 1 = 0,

t1xn + l = hen + I)xn + R[h(n + I)xn + Rt1xn + l ]
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Thus, we have shown that

(16)

Since this holds for all integers n, the validity of (14) when applied to
polynomials follows. Different expressions for J can be obtained by using
other identities to eliminate E in the derivation of (13). However, Chapter 7
is devoted to the detailed study of approximation methods for the evalua­
tion of integrals.

The symbols 1/D and 1/6. are not operators in the same sense as D,
6., E, etc., since

(17) ~f(x) = {F(x)} == the set of polynomials F(x) such that
rex) = f(x).

(18) if(x) = {G(x)} == the set of polynomials G(x) such that
G(x + h) - G(x) = f(x).

Nevertheless, if f(x) is a polynomial of degree n, {F(x)} and {G(x)} have
the same structure, that is,

{F(x)} == {Pn+l(x) + c}, C any constant,

Pn+l(x) a fixed polynomial of degree n + I.

{G(x)} == {Qn+l(x) + d}, d any constant,

Qn + leX) a fixed polynomial of degree n + I.
Hence,

I
(EP - P)­

D
and

1
(EP - P)­

6.

are well defined operators. We leave as Problems 2 and 3 the proof that
the corresponding formal power series in 6. respectively satisfy (19) and
(20):

(19) (EP- Eq) ~f(X) = [(I + 6.)P - (I + 6.)q] log (:+ 6./(x)

i
x + PIt

= fWdg,
x+qh

where f(x) is a polynomial;

(20) (EP - P) if(x) = [(I + 6.)P - (I + 6.)Q] if(x)

p-l

= L f(x + jh),
j=q

if p > q are integers and f(x) is a polynomial.
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Equations (19) and (20) permit the development of formulae for inte­
gration and summation of polynomials [see Problems (4) and (5)]. Another
kind of representation of (20), with q = 0, arises from replacing the term
I/~ on the far left by the formal power series in D by setting, from (10),

elW - I
(21)

I
Ll h2 D2 h3D3

hD +~ + ----rr- + ...

_ I 1 1 hD 1 h3D3 1 hS S
- hD - "2 + 12 - 720 + 30,240 D - ....

We obtain the formula,

p -1 1 IX + ph

(22) j~O f(x + jh) = h x fW dg - -Hf(x + ph) - f(x)]

+ 1~ [rex + ph) - j'(x)]

h3

- 720 [P3)(X + ph) - P3'(X)]

hS
+-- [f(S'(x + ph) - PS)(x)] - ...

30,240 '

called the Euler-Maclaurin summation formula.

PROBLEMS, SECTION 4

1. Verify that the factorial polynomials Wo(x) == I, Wn(x) == x(x - h)· ..
[x - (n - I)h], n = 1,2, ° 00' satisfy LlWo(x) = 0, LlWn+1(x) = h(n + I)
Wn(x), and may be used as a basis for polynomials on which the calculus of
difference operators is applied, e.g., with

n

Pn(x) == 2: aj Wj(x),
j~O

n

LlPn(x) = h 2: jajWj_1(x).
j~l

2. Verify (19). Hint: [{(l + L'1)p-l + (l + L'1)P-2 + ... + (l + Ll)q}{(l + Ll)-l} =
(I + L'1)P - (l +Ll)q.]

3. Verify (20). [Hint: Same as in Problem 2.]
4. Use (19) with p = 2, q = 0 to find Simpson's rule valid for all poly­

nomials of degree ~ 3;

rX +2h hJ
x

f<O dg = "3 [f(x) + 4f(x + h) + f(x + 2h)].
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S. Use (20) with f(x) = x 3
, h = I, q = 0, p = n + I, x = I to get a

n

simple explicit expression for L j3. (Construct a table of differences for
f~l

j = 1,2,3,4.)
n

6. Use (22) to derive the formula for L p.
f=l

7.* Prove the Euler-Maclaurin summation formula (22) is correct for poly­
nomials. [Assume that you can use (21) to formally get an infinite series for
1/(ehD - I).]

S. NUMERICAL DIFFERENTIATION

A problem of importance in many applications is to approximate the
derivative of a function, being given only several values of the function.
An obvious approach to this problem is to employ the derivative of an
interpolation polynomial as the desired approximation to the derivative
of the function. This can also be done for higher derivatives, but clearly
the approximation must, in general, deteriorate as the order of the deriva­
tive increases. We have seen in Section 3 that the interpolation error factor
is least near the center of the interval of interpolation (for equally spaced
points), and indeed an analogous result is also true for numerical
differentiation.

Denote by Pn(x) the nth degree interpolation polynomial for f(x) with
respect to the n + 1 distinct points xo, Xl' ... , x n• Then as an approxima­
tion to

with k < n, we use P~k)(X). However, to assess this approximation we
require some convenient representation for the error:

(I)

If j<n+ j)(x) is continuous in the interval, lx, which includes the Xf and X,

it has been shown in Theorem 2.1 of Chapter 5 that

where f = f(x) is an unknown point in Ix for each x. It is tempting to
differentiate this expression for Rn(x) in order to obtain R~k)(X) but this
is not generally legitimate. First of all, f(x) may not be single valued,
let alone differentiable k times and secondly, f(x) may not be n + 1 + k
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times differentiable. If f(x) does have these differentiability properties,
then another alternative is presented by recalling (1.7) in the form

n

Rn(x) = n (x - xj)f[xo, .. 0' Xn, x].
j=O

It now follows by an application of Theorem 1.2 that this representation is
k times differentiable. However, the resulting expression is rather compli­
cated and only useful in the case of first derivatives, k = I, in which
x = Xt is one of the points of interpolation. The error becomes in this
special case

n

(2) r(Xt) - Pn'(Xt) = Rn'(xt) = n (Xt - Xj)f[xo, Xl' ° • 0' Xn, Xt]
j=O
U"O

The last expression in (2) can be deduced from Theorems 1.2 and 1.1.
To obtain practical error estimates for numerical differentiation in the

more general case, we return to Rolle's theorem which was the basis for
the original interpolation error estimates of Theorem 2.1 in Chapter 5.
The results may be stated as

THEOREM 1. Let the interpolation points be ordered by Xo < Xl < 0 • 0 < X n•

Let pn + l)(X) be continuous. Then for each k ::; n,

(3)

where the n +
intervals

R(k)(X) = nn-k (x _ 1:.) pn + 1)(TJ) •
n j=O sJ(n+l_k)!'

- k distinct points, ~j, are independent of x and lie in the

(4) Xj < ~j < Xj+k' j = 0, l,ooo,n - k;

and TJ = TJ(x) is some point in the interval containing x and the ~j'

Proof. Since Rn(x) = f(x) - Pn(x) has n + I continuous derivatives
and vanishes at x = Xh j = 0, I, 0 • 0' n, we may apply Rolle's theorem
k ::; n times. In applying this theorem we can keep track of the location
of the implied zeros of the higher derivatives of Rn(x) by means of Table I.
The kth column lists the open intervals, (x;, x j + k ), in each of which (by
means of Rolle's theorem) at least one distinct root, ~j, of R~k)(X) must lie.
Thus the points ~j of (4) are defined and we note that they depend only
upon the functionf(x) and the interpolation points Xj but not upon x.
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Table 1 Zeros of Higher Derivatives of Rn(x)

[Ch.6]

Rn(x) R~l)(X) R~2)(X)

Xo

Xl (XO' Xl)
X2 (Xl, X2) (XO, X2)

X3 (X2, X3) (Xl, X3)

Xk (Xk-h Xk) (Xk -2, Xk)

Xn (Xn-h Xn) (Xn- 2, Xn)

We now define the function

n-k
F(z) = R~k)(Z) - a TI (z - ~j),

j=O

and note that F(~j) = 0 for j = 0, 1, ... , n - k. For any fixed x distinct
from the ~j we pick a = a(x) such that F(x) = O. Then F(z) has n - k + 2
distinct zeros and we may apply Rolle's theorem again [noting that F(z)
has n - k + 1 continuous derivatives]. We deduce that F<n-k+l)(z) has a
zero, say at 1), in the interval containing x and the ~j' From this result
follows:

0= F<n-k+l)(1) = R~n+l)(1) - a(n - k + I)!

=pn+l)(1) - a(n - k + I)!,
or

pn + 1)(1)

a = (n - k + I)!

By using this value of a in F(x) = 0 the result (3) follows for all x. That is,
(3) holds also for x = ~j with arbitrary 1) since F(~j) = 0 for arbitrary
a. •

The expression (3) for the error in numerical differentiation is valid for
all x and so is of much more general applicability than expressions of the
form (2). Using the known intervals (4) it is possible to obtain bounds on
the error. For instance, if x and the X j all lie in [a, b] and in this interval
Ipn + l)(X) I ~ M then clearly,

Mlb - al n - k + l

IR~k)(x) I < ----,-''-----;-"---:::-:­
- (n - k + I)! .
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i = 1,2, ... , m.

Sharper estimates may be obtained by a more careful use of the inequalities
n-Ic

(4) in bounding the error factor, n (x - ~i)'
i= 0

There are other ways to determine numerical differentiation formulae
and their errors. Suppose the value plcl(a) is to be approximated by using
the values f(xt), i = I, 2, ... , m. With an f(x) that has n + I continuous
derivatives where n + I ;::: m we define hi == Xl - a and use Taylor's
theorem to write

f(Xl) = f(a + hi)

= f(a) + htf(l)(a) + ht2p2)(a) + ... + hlnpn)(a)
2! n!

hn+ 1

+ (n ~ I)!pn+ll(a+ 8Iht),

Here, of course, 0 < 81 < I. We now form a linear combination of these
equations with weights, al> to be determined.

l~ at!(Xt) = (~ al)f(a) + (~ alht)P1)(a) + ...

(5)

+ (~ alht) P:~a) + (n 11)! l~ alh? + Ipn + 1)(a + 8th/).

We choose the at in order that the linear combination of the values f(xI)
be the most accurate approximation to pk)(a). Thus we impose the m
conditions on the m unknowns at:

(6)
m

L aih/ = v!8vlc ,
t= 1

v = 0, I, ... , m - I.

It is clear that the system (6) has a unique solution since the coefficient
determinant is a Vandermonde determinant. Thus a necessary and sufficient
condition for (6) to have a non-trivial solution is that it be non-homo­
geneous, i.e., m > k. Hence, in order to approximate a kth derivative we
need more than k points. With the solution of the system (6) in (5) we obtain,
recalling that n + I ;::: m

m I (m )plc)(a) = l~ at/eXt) - m! l~ alht pm)(a) - ...

(7)
m

'" a hn+1j(n+1)(a + 8 h)I)! t-S t f I I,

m > k.
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This procedure is equivalent to what may be called the method of
undetermined coefficients: if we are given m function values,f(xf), we seek
that linear combination of the values at these points which would give the
exact value of the derivative jCk)(a) for all polynomials of as high a degree
as possible, at the fixed point a. Specifically for the first derivative, since

dx
v I = vav-I,

dx x=a

we seek at such that

(8)
m

L atx ;" = vaV
-

I
,

t = 1

v = 0, I, ... , m - I.

This system also has a unique solution and it is, in fact, the same as the
solution of the system (6) with k = I (assuming that the quantities xi> hi>
and a are related by hj = x j - a). This verification is posed as Problem I.
In the present derivation of the approximation formula no estimate of the
error term is obtained but this could be remedied. It should also be
observed that the method of undetermined coefficients can be used to
determine approximations to higher derivatives.

5.1. Differentiation Using Equidistant Points

Naturally the numerical differentiation formulae are somewhat simpli­
fied when equally spaced data points are used. For instance, the operator
identity (4.11) yields approximations of the form

(9a) f'(x) = ~ [~f(x) - -!~2f(x) + ... + (- IY+ 1 ~ ~nf(x)] + Rn'(x).

Here the data required are f(x), f(x + h), ... ,f(x + nh), so that this
formula only approximates the derivative at a tabular point and uses
only data on one side of this point. This formula is obtained by differentiat­
ing Newton's forward difference formula (3.12) and evaluating the result
at t = O. Thus the error determined in (2) is applicable and becomes in
this case

(9b) x < 7J < x + nh.

Another example is furnished by differentiating the Gaussian form of the
interpolating polynomial, say (3.15a) with n = 2m, and again setting t = 0,

(lOa) f'(xo) = *[~f(xo) - i! ~2f(x_I) - ;! ~3f(X-I) + ...

( I)m m!(m - I)! A2m'ji( )] R '( )+ - (2m)! '-' X- m + 2m Xo·
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(lOb)

Here the tabular points involved are symmetrically placed about Xo and
again the error formula (2) is valid:

R '(x) = (_ I)m (m !)2 hn'j(n + 1)(71)
2m 0 (n + I)! ., ,

Xo - mh < T) < Xo + mho

For nand m » I Stirling's approximation for n! implies, since n = 2m,

(m!)2 n-YzYh
(2m + I)! ~ 2n+ 1

Thus a comparison of (9b) and (lOb) indicates, for differentiation, the
superiority of centering the data points about the point of approximation.
An important special case of (10) occurs for n = 2; this can be written as

(II) f'(x) = I(x + h) ;/(X - h) _ ~ j<3)(T)), x - h < T) < x + h.

The approximation formula in (11) is called the centered difference approxi­
mation to the first derivative.

The second derivative, or in fact, any even order derivative, can be
approximated by a centered formula obtained by differentiating the other
Gaussian interpolating polynomial, (l5b) with n = 2m + I. For example,
with n = 3 the approximation ofr(xo) becomes on setting Xo = x:

(l2a) rex) = ~2/(~2- h) + R~2)(X)

_ I(x + h) - 2/(x) + I(x - h) R(2)()- ~ + 3 x.

The error term can now be estimated by Theorem 1:

(I2b) x - h < T) < x + 2h.

But a better bound for the error can be found by the Taylor expansion
procedure indicated by equations (6) and (7). That is, if we set k = 2,
m = 4, a = x, and ht = (i - 2)h, i = I, 2, 3, 4, we find that

The error expression, given by the last terms in (7), becomes, upon setting
n = 3,

x - h < f1 < X < f2 < X + h.
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But j<4)(X) was assumed continuous in this derivation so for some f in
fl < f < f2 we must have ![P4)(tl) + j<4)(f2)] = j<4)(t). Thus the error
is

(12c) x - h < f < x + h.

Note the improvement over the bound (l2b) both in the factor -h and the
decreased range of the argument of the fourth derivative. It is also of
interest to observe that the same approximation (l2a) and error (l2c)
are obtained for m = 3 and n = 3 in (7) with the above choice of hi;
that is, improving upon the accuracy by using data at one additional point
is not always possible. (See Problem 2.)

PROBLEMS. SECTION 5

1. Verify that the set of coefficients {ail produced by solving the system (8)
is the same as the solution {ail of system (6) for k = I, h, == Xi - a.

2. Verify that if {a,l produces the differentiation formula of maximum
accuracy .

f'k)(X) = 2: ad(x + ih),
t= -r

then
.+1

f'k)(x) = 2: fJd(x + ih)
t= -r

can be no more accurate, and is of the same accuracy only if f3. + 1 = 0,
f3, = a, for i = -r, ... , +r. Show also that the coefficients a, satisfy a p = a_ p

if k is even; a p = -a_ p if k is odd.

6. MULTIVARIATE INTERPOLATION

The problems of polynomial interpolation and approximate differ­
entiation for functions of several independent variables are important but
the methods are less well developed than in the case of functions of a
single variable. An immediate indication of the difficulties inherent in the
higher dimensional case can be seen in the lack of uniqueness in the general
interpolation problem. That is, we ask if PI> P2, ... , Pn are n distinct
points, say in the x, y-plane, then is there a unique polynomial of specified
degree which attains specified values, say f(pJ, at these points? Clearly the
answer, in general, must be no since if all of the points [Pj,f(Pj)] lie on a
straight line in x, y, z-space then there are infinitely many planes (i.e.,
linear polynomials) and perhaps higher degree polynomials of the form
z = P(x, y) containing this line. We shall not dwell on these aspects of
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interpolation in higher dimensions but shall show how to construct
appropriate polynomials when the points of interpolation are specially
chosen. It will also be found that in these special cases the interpolation
polynomials are unique. For simplicity, we concentrate on functions of
two variables but extension to more dimensions offers no difficulty.

Let us be given the (m + I)(n + I) distinct points Pii == (x;, Yi);
i = 0, I, ... , m, j = 0, I, ... , n and corresponding function valuesf(xt , Yi)'
These points form a rectangular array which is the set of intersections
of the vertical lines x = Xt with the horizontal lines Y = Yi in the x, Y­
plane. We seek a polynomial, P(x, y), ofdegree at most m in x and at most
n in Y such that

i = 0, I, ... ,m, j = 0, I, ... , n.

(1)

Such a polynomial must have the form

P(x, y) = ~ i atixiyi,
i=O j=O

with (m + I)(n + I) coefficients, ati' to be determined. This problem is
easily solved, due to the special form of the points Pii' with the use of the
Lagrange interpolation coefficients. Let us write the Lagrange coefficients
for the points {Xt} and {Yi} as

i = 0, I, ... , m;

(2)

j = 0, I, ... , n.

Then clearly, the polynomial Xm.t(x)Yn.;(y) is of degree m in x, of degree
n in Y and vanishes when (x, y) = Pv# unless v = i and fJ. = j in which
case it is unity. Thus the required polynomial satisfying P(Xi, Yi) = f(xh y;)
can be written as

(3) P(X, y) = ~ i Xm. i(X) Yn.ly)f(Xi' Yi)'
1=0 i=O

Since the number of coefficients in the general polynomial (I) of degree
m in x and n in Y is equal to the number of conditions imposed we may
expect that the interpolation polynomial (3) is unique. A formal proof
of this fact is indicated in Problem I. The extension to more independent
variables is obvious.

Another representation of the interpolation polynomial (3) can be
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obtained by using Newton's divided difference formulae. With the m +
distinct points Xi we have, recalling (I.7) and (1.8),

(4) f(x, y) = ~ Wk-I(X)f[xo, Xl' ... , Xk; y]
k=O

+ wm(x)f[xo,· .. , Xm, X; y].

Here we have introduced

W_I(X) == I; Wk(X) = Wk_I(X)(X - Xk), k = 0, I, ... ;

and the divided differences of a function of several variables are formed
by keeping all but one variable fixed and taking the indicated differences
with respect to the free variable. Hence f[xo, Xl> ... , Xk; y] as a function
of the independent variable Y has the Newton representation, using the
n + I points Yi:

n

(5) f[xo, Xl>"" Xk; y] = L Wi-l(y)f[xo, Xl"'" Xk; Yo, Yr, ... , Yi]
i=O

+ wn(y)f[xo, ... , Xk; Yo,···, Yn, y]

We use (5) for k = 0, I, ... , m in (4) to obtain

f(x, y) = Q(x, y) + R(x, y)
where

m n

(6) Q(x, y) == L L Wk-I(X)wi-l(y)f[xo, ... , Xk; Yo,·· ., Yi]
k=O i=O

and
m

(7a) R(x, y) = wn(y) L Wk-I(X)f[xo, ... , Xk; Yo,···, Ym y]
k=O

+ wm(x)f[xo, ... , Xm, X; y].

It is clear that R(xj, Yi) = 0 at the (m + I)(n + 1) points (xj, Yi) and
hence by the uniqueness proof mentioned we can conclude that P(x, y) ==
Q(x, y). The derivation of the interpolation polynomial also yields an
expression for the interpolation error, R(x, y). To simplify this expression
we again use Newton's formula and the m + I points Xl to write

f[x; Yo,···, Yn, y] = ~ WI-I(X)f[xo, ... , Xl; Yo,···, Yn, y]
1=0

+ wm(x)f[xo, ... , Xm, X; Yo, ... , Yn, y].

If we multiply this identity by wn(y) and subtract the result from (7a) we
obtain finally,

(7b) R(x, y) = wm(x)f[xo, ... , xm, X; y] + wn(y)f[x; Yo,···, Yn, y]
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(7c)

If f(x, y) has continuous partial derivatives of orders m + I and n + I,
respectively, in x and y and the appropriate mixed derivative of order
m + n + 2 then by applying the obvious extension of Theorem l.l the
error becomes

Wm(x) 8m + If(g, y) wn(y) 8n+If(x, 7))
R(x, y) = (m + I)! 8xm+1 + (n + I)!--ay~

wm(x)wn(y) 8m+ n+ 2f(g',7)')
(m + I)!(n + I)! 8xm+ 1 8yn+l

This error formula is not of the form of the two-dimensional Taylor series
error term, as was the case in one dimension, since different orders of
differentiation occur here.

By specializing the interpolation points to be equally spaced we can
obtain special forms of (3) and (6). These forms may be written in terms
of the difference operators of Section 4, generalized so that they operate
with respect to a particular independent variable. An example of such a
representation is to be found in Problem 2.

The interpolation problem solved above, by (3) or (6), does not specify
the degree of the polynomial in question but rather the maximum degree
in x and y, separately. If a polynomial in two variables is to have total
degree at most n, say, then it must have the form

(8)
n n-k

Pn(x, y) = 2: 2: bkjXkyj.
k~O j~O

We note that the coefficients bkj can be naturally arranged in a triangular
array of ten + I)(n + 2) numbers. [In contrast, the aij in (I) formed a
rectangular array of (m + I)(n + I) quantities.] We shall show that with
an appropriate "triangular" array of points, (xk , yJ, the interpolation
problem for polynomials of the form (8) can be uniquely solved.

Let {x,} and {Yj} be two sets of n + I distinct points, where j = 0,
I, ... , n. Then we consider the array of points:

(9) Pkf == (xk , y,); j + k = 0, I, ... , n.

[This array is actually triangular only if the values X j and Yj are ordered by
j and uniformly spaced, which we do not assume.] There are i(n + I )(n + 2)
such points and with them we pose the interpolation problem: find a
polynomial in x and y of degree at most n such that Pn(x/c> y,) = f(xk, Yf)
for °:-:::; j + k :-:::; n. Newton's divided difference formulae easily yield the
solution of this problem. We obtain, upon replacing m by n in (4) and n
by n - kin (5):

f(x, y) = Pn(x, y) + Rn(x, y)
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(11)

n n-k

(10) Pn(x, y) = L: L: Wk-l(X)wl-l(Y)![Xo, 0'0' Xk; Yo,· 0 0' YI];
k=O ;=0

and

Rn(x,Y) = i Wk-l(X)Wn_k(Y)![Xo,··o,xk;Yo,oo·,Yn_k,Y]
k=O

+ wn(x)![xo, ° 00' Xn, x; Y],

n*l Wk-l(X)W n-k(Y) (~)k(~)n-k+lf(t )
k~O k! (n - k + I)! ox oY . k' TJk .

The polynomial (10) has degree at most n. If we assume the indicated
partial derivatives of lex, y) to be continuous, then (II) yields the error
which vanishes at all points in (9). The uniqueness of this polynomial
follows from Problem 3. Thus the interpolation problem is solved by a
polynomial of the form (8) on any set of points of the form (9). If these
points are equally spaced and in monotone order, then the polynomial
(10) can be simplified by introducing difference operators (see Problem4).
The remainder term in (11) is now analogous to that in Taylor's formula.
In fact, if we let Xv -+ Xo and Yv --+ Yo for JI = 1,2,3,. 0" n then (10)
formally goes over into the Taylor expansion.

To approximate the partial derivatives of functions of several indepen­
dent variables we could proceed as in Section 5 for functions of one vari­
able. By using the error expressions of the form (7b) we could also obtain
representations for the error in these numerical differentiation methods
(if the function is sufficiently differentiable). However, in practice it
turns out that relatively low order approximations to partial derivatives are
usually all that are required. In these circumstances, it is easy to use the
method of undetermined coefficients or the Taylor expansion method
developed in Section 5. If no mixed derivatives occur and the points to
be used are on a coordinate line in the direction of differentiation then the
one-dimensional analysis is valid. For mixed derivatives the points em­
ployed in the expansion procedure must not be collinear. In Chapter 9,
where partial differential equations are treated, specific applications are
made in several examples.

PROBLEMS, SECTION 6

1. Show that every polynomial Q(x, y) of degree m in x and n in y which
vanishes at the (m + l)(n + I) distinct points (x" y;); i = 0, I, .. 0' m;
j = 0, 1, 0 0 0' n; vanishes identically.
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[Hint: Any such polynomial has the form

Q(x, y) = ~ i ay~xYy~ = ~ by(Y)xY.
v::=o ~=o V=Q

PROBLEMS 299

Set Y = YJ and then note that the polynomial Q(x, YI) of degree m in x vanishes
at m + I distinct points. Thus, bY(YI) = °for v = 0, I, ... , m. Next show that
all ay~ = 0.]

2. We define the difference operators Dox and Do. by:

Doxf(x, y) == f(x + h, y) - f(x, y),

Doyf(x, y) == f(x, Y + k) - f(x, y).

If XI = Xo + ih and YI = Yo + jk then show that the interpolation polynomial
of degree m in X and n in Y for f(x, y) using the points (Xl, YI); i = 0, I, ... , m;
j = 0, I, ... , n is:

P( h k) ~ ~ 1Ty(S)1T~(t) A yA ~f( )
Xo + s ,Yo + t = L, L, " U x U y xo, Yo .

y=o~=o v.p..

3. State and prove the analog of Problem I for polynomials in x and Y of
degree at most n using points of the form (9).

4. Use the difference operators of Problem 2 and special equally spaced
points of the form (9) to derive from (10):

n n-y 1TV<S)1T~(t) y ~
Pn(xo + sh, Yo + tk) = L L " Dox Do y f(xo, Yo).

y=o~=o v.p..

Define the corresponding backward difference operators Vx and Vy; use them
to write an interpolation polynomial of degree n in the plane; describe the set
of interpolation points employed.



7
Numerical Integration

o. INTRODUCTION

Simple explicit formulae cannot be given for the indefinite integrals of
most functions. Furthermore, in many problems the integrand, f(x), is not
known precisely but perhaps is given by tabular data or defined as the
solution of some differential equation (which cannot be solved explicitly).
Thus, we seek appropriate numerical procedures to approximate the value
of the definite integral, say

(I) l{f} == f f(x) dx.

Unless otherwise specified [a, b] is a finite closed interval.
The types of approximation to (I) that we shall consider are all essentially

of the form

(2)
n

In{f} == L at/(xj)'
j=1

When employed as an approximation to an integral, a sum of this form is
called a numerical quadrature or numerical integration formula. For
brevity, "numerical" is usually dropped. The n distinct points, Xj, are
called the quadrature points or nodes and the quantities aj are called the
quadrature coefficients. The basic problems in numerical integration are
concerned with choosing the nodes and coefficients so that In{f} will be a
"close" approximation to l{f} for a large class of functions,J(x). As with
polynomial approximation we note that different criteria may be used to
measure the quadrature error,

even though it is a scalar; these criteria suggest different types of quadrature
formulae.

300
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One particularly useful notion which measures the error of a quadrature
formula is its so-called degree ofprecision ; this is by definition the maximum
integer m such that En{xk

} = 0 for k = 0, I, ... , m but En{xm + 1
} =1= O.

Thus, if a formula has degree of precision m all polynomials of degree at
most m are integrated exactly by that formula.

In fact, an expression for the error En{f} of such a scheme is given in

THEOREM 1. If (2) has degree of precision m and f(x) has a continuous
derivative of order m + I, then

where

with

and [c, d] is the smallest interval containing [a, b] and all Xj.

Proof By 'Taylor's theorem (with remainder)

where

Clearly,

(4) c~x~d.

I{ } and In{ } are linear operators. i" Hence, since In{ } has degree of
precision m, I{Tm} = In{Tm} and

En{f} = I{Rm} - In{Rm}.

But for Rm(x) as given in (4), we find the expression (3), by interchanging
the order of the operations on the variables x and S. •

t J{ } is called a linear operator iff for all scalars a, b and functions j(x), g(x)

J{aj(x) + bg(x)} == aJ{f} + bJ{g}.
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then

It is left to Problem I, to show that Gn . m(c) = Gn . m(d) = O. In the follow­
ing sections, simpler expressions than (3) for the error are found in special
cases.

If a "close" approximation to f(x) in a ::; x ::; b IS known, then the
integral of the approximating function will be "close" to the integral of
f(x). That is, if

If(x) - g(x) I ::; €,

If f(x) dx - f g(x) dxl ::; Ib - ak

This simple result is the motivation for developing most numerical
integration methods. Of course, it is desirable that the approximating
function should have a simple explicit indefinite integral. Hence polynomial
approximations are naturally suggested and of these the interpolation
polynomials are most frequently employed. Although there are quadrature
formulae of great utility which are not necessarily motivated by the use of
simple interpolation polynomials, we shall see nevertheless that all such
methods ofgeneral value are what we will call interpolatory. There is con­
siderable freedom to choose the position of the interpolation points relative
to the interval of integration, so as may be expected there are a large
number of numerical integration formulae. The choice of which formula
to employ in a given case should depend upon its accuracy and relative
ease of application.

In Sections I through 4, we consider simple quadrature formulae; in
Section 5 we treat composite quadrature formulae. A composite formula is
obtained by applying a simple formula to successive subintervals of
[a, b]. In this fashion the problem of uniformly approximating the inte­
grand f(x) over [a, b] is treated by using polynomials of a fixed "low"
degree over each of the" small" subintervals into which the interval [a, b]
is divided.

In many integration problems the integrand cannot be accurately
approximated by a polynomial. Such cases may arise, for example, if
f(x) is discontinuous at some points of the interval. Special considerations
are required in these problems and we study some of them in Section 6.

In Section 7, we briefly treat the subject of approximating multiple
integrals where the current state of the theory is not fully developed.

PROBLEMS, SECTION 0

1. Under the conditions of Theorem I, show that
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1. INTERPOLATORY QUADRATURE

Let n + 1 distinct points x j be ordered by

Xo < Xl < ... < Xn·

With these points as interpolation points, we form the interpolation poly­
nomial Pn(x) of degree at most n [for the continuous function f(x)] such
that f(x J) = Pn(Xj), j = 0, 1, ... , n. Then as an approximation to the
integral (0.1), we set

(1)

This integral is easily evaluated. In fact, by using the Lagrange form for the
interpolation polynomial

n

(2a) Pn(x) = L <Pn. ;(x)f(xj)
j= °

Wn(X)
(2b) <Pn. ;(x) = (x _ Xj)wn'(x j) .i = 0, 1, ... , n,

where wn(x) == (x - xo)(x - Xl)' . ·(x - xn), we obtain from (1) the
quadrature formula

(3a) In+l{f} = i wn.t!(xj),
j=O

with the coefficients given by

(3b) Wn. j = f <Pn.lx ) dx.

It is clear that the coefficients Wn • j are determined completely by the end­
points of the interval of integration and by the interpolation points Xj'
which also are the nodes of the formula (3a); the coefficients are indepen­
dent of the integrand. Any quadrature formula of the form (3a and b)
is called an interpolatory quadrature formula.

The error in approximating the continuous function f(x) by Pn(x) is,
by (1.8) of Chapter 6 and the definition of wn(x) above,

f(x) - Pn(x) = wn(x)f[xo, ... , Xn, x].

Integrate this equation over [a, b] and use (0.1) and (1) to obtain the
interpolatory quadrature error

(4a) En+l{f} == l{f} - In+l{f}

= f wn(x)f[xo,···, Xm x] dx.
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If f(x) is a polynomial of degree n or less then En +l{f} = 0 follows from
the corollary to Theorem 1. I of Chapter 6. Thus we have shown that any
interpolatory quadrature formula using n + I nodes has degree ofprecision
at least n. We shall, in fact, see later that even higher degrees of precision
are possible if the nodes are specially placed with respect to the interval of
integration. From (4a) a simple error bound is found,

(4b) IEn+I{f}1 ::; max If[xo, Xl"", Xn, x]1 fb IWn(X) Idx,
xE[a,b] a

a < 1) < b.(5a)

where without loss of generality we assume a ::; b.
To examine the error in more detail let us consider the special case in

which wn(x) does not vanish in the open interl'al (a, b) [i.e., wn(x) does not
change sign there]:

Ifj'(x) is continuous on [a, b], it follows thatf[xo, ... , xn, x] is continuous
on [a, b] by Theorem 1.3 of Chapter 6. Thus the mean value theorem for
integrals can be employed in (4a) to yield

En+l{f} = f[xo, ... , xn, 1)] f wn(x) dx,

~ == ~(x) E (c, d).(5b)

If, in addition, pn +ll(x) is continuous on the smallest closed interval,
[c, d], containing [a, b] and the nodes {Xi}, then by (1.9) of Chapter 6,
(4a) becomes

En+l{f} = (n 1I)! f Wn(x)pn+l)(~) dx,

Now apply the same mean value theorem to (5b), where wn(x) is of one
sign and pn +lla(x)) is continuous in x because

pn+ll(g(x)) == (n + I)!f[xo, Xl"'" xn, X],

to find

(5c) 'E (c, d).

In the general case, some nodes will lie in the interval of integration and
the simple error formula (5c) is not generally valid. Our aim is to find a
suitable replacement for (5c).

Specifically let there be r - I > 0 interpolation points or nodes in the
open interval (a, b), as in Figure I,

Xo < ... < Xl ::; a < Xi + I < ... < Xi +r - I < b ::; Xt+ r < ... < xn·

For convenience of notation we introduce the r + I quantities, ~j,

~o=a; ~k=Xt+k' k=I,2, ... ,r-l; ~r=b.
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%0

a b

--I..-_..J.1__---L-&-±--1... --1..1--<±>----1-----I..-----;)~
Xl Xl %1+1 %I+r-l Xi+r Xn x

Figure 1

Now the error expression in (4a) can be written as

f
~'

En + 1{f} = wn(x)f[xo, ... , xn, x] dx
~o

, r~k

k~ J~k _ 1 wn(x)f[xo,···, X m x] dx.

In each of the intervals [gk- b gk] the quantity wn(x) is of one sign and it
changes sign at the points gl' g2' ... , g, -1' Thus as in the derivation of (Sa)
we now conclude that

(6a)

where

En + 1{f} = ~ Cd[xo,···, xn, 7]k],
k=1

(6b) k = 1,2,00.,r.

Ifpn+ 1)(x) is continuous in [xo, xn] then, as in (Sc), we obtain

(6c)

However, it is clear from (6b) that the constants Ck alternate in sign;
that is,

sign Ck + 1 = sign [-Cd, k = 1,2, ... , r - 1.

So the last form for the error can be written as two sums, each with co­
efficients of the same sign:

{

(n 1 I)! {Cr!<n+l)(SI) + Cd<n+1)(S3) + ... }
En + 1{f} =

+ (n 1l)!{Cd<n+l)(s2) + Cd<n+l)(S4) + ... }.

To simplify further, we require the following:

LEMMA 1. Let g(x) be a continuous function in [a, b] and let aI' a2' ... , an
be any set ofnon-negative numbers such that

~ al< = A.
1<=1
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Then for each set ofn points X k E [a, b] there exists a f E [a, b] such that

i tXkg(Xk) = Ag(f).
k=l

Proof Since g(x) is continuous on a closed interval, it has there a
finite maximum, M, a finite minimum, m, and actually takes on these
values and all intermediate values as x ranges over [a, b]. Thus for each
of the Xk

k = 1,2, ... , n.

Since the numbers tXk are non-negative, this implies

tXkm ~ tXkg(Xk) ~ tXk M .

Sum these inequalities for k = I, 2, ... , n, to find

n

Am ~ L tXkg(Xk) ~ AM.
k=l

Hence the value of the sum must be equal to Ag(t) for some f E [a, b]. •
It should be observed that this lemma is analogous to the mean value

theorem for integrals and that this proof copies the usual proof of that
theorem.

Returning to (6c) we now have, by an obvious application of Lemma 1
to each of the sums in brackets

where

(7b) K e == - C2 - C4 - •• "

X o < , .. '0 < X n•

The constants Ke and K o have the same sign and so some cancellation is
suggested by (7a). In fact, since

the error expression (7a) formally reduces to (Sc) if '0 = 'e = t. In general,'0 and 'e are unknown points and pn + ll(X) may change sign in (xo, xn)
so that the above reduction in the error may not occur. However, there are
important special cases where, in fact, this maximum suggested cancellation
does occur. We shall consider them later (see Theorem 2).

If the interpolation points or nodes are equally spaced, the above results
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can be modified to exhibit the dependence of the error on the spacing of
the points. That is, let the interpolation points be of the form

X j = Xo + jh, j = 0, 1, ... , n,

and introduce the change of variable from x to t,

x = Xo + tho

Now, from (3.10) of Chapter 6, we have

wn(x) = hn+ 17Tn(t),

and the integrals C, in (6b) can be written as

where

l
l+k

Bk = 7Tn(t) dt,
l+k-l

k = 2, 3, ... , r - 1;

The limits of integration ta and tb are given by

a - Xo
ta = -h-'

and lie in the interval

i ::; ta < i + 1,

b - Xo
tb = -h-;

i + r - 1 < tb ::; i + r.

Since 7Tn(t) is of one sign in these intervals, B1 and Br can be bounded by

and these bounds are independent of h. By using these results in (7), we
obtain the error representation

(8a)

where Xo < , .. '0 < X n and

(8b)

The constants L o and L e have the same sign and, in fact,
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We have thus shown, in general, that if fn + leX) is continuous in the
smallest inter1'Gl, [c, d], containing all the Xj, a and b, then an interpolatory
quadrature formula which uses n + I equally spaced nodes, of spacing h,
has an error of the form (8). Furthermore, by (8) or (4b):

This estimate is valid independent of the location of the nodes relative to
the interval of integration. We give the analogue of formula (Sc) which is
valid in the special case that (a, b) contains none of the uniformly spaced
points {x;}:

(8c) , E (c, d).

In the next subsection, we treat the Newton-Cotes formulae, and we
find representations of En + l{f} that are of the form (Sc) or (8c), even though
wn(x) changes sign in (a, b).

1.1. Newton-Cotes Formulae

Let the interpolation points, Xj, be equally spaced, say as before,

(9a) Xj = Xo + jh, j = 0, 1, ... , n;

(9b)

but now let the endpoints of the interval of integration be placed such that

b-a
Xo = a, X n = b, h = -n-·

With this choice of nodes the quadrature formula (3) as an approximation
to the integral (0.1) is called a closed Newton-Cotes formula. Note that
all of the nodes are in the integration interval [a, b] and the word" closed ..
means that the endpoints a and b are the extreme nodes of the formula (3).

To examine the error, we again introduce the change of variable
x = X o + th and obtain wn(x) = hn+ l7Tn(t). Now, however, t ranges over
the interval [0, n] and so we deduce properties of wn(x) over [a, b] analogous
to those of 7Tn(t) developed in Lemmas 3.1 and 3.2 of Chapter 6. With the
notation

a + b n
X n /2 = -2- = Xo + 2h,

these properties are restated in
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LEMMA 2.

W n(Xn12 + g) = ( - l)n + 1 wn(xn/2 - 0-

LEMMA 3. (a) For a < g + h ::; Xn/2 and g #- xj,j = 0, 1, ... , n:

(b) For Xnl2 ::; g < band g #- Xi> j = 0, 1, ... , n:

Let us introduce the functions

•

•
(10) n = 1,2, ... ,

which will be used to estimate the error in the closed Newton-Cotes
formulae. For these functions, we have

LEMMA 4. For n even

(a) Qn(a) = Qn(b) = 0;
(b) Qn(x) > 0, a < x < b.

Proof From the definition (10) it follows that Qn(a) = O. Since n is
even, by Lemma 2, the integrand in Qn(b) is antisymmetric about the mid­
point of the interval of integration and hence Qn(b) = O.

For part (b) we observe that a, Xl' X2,".' Xn- l , b are the only zeros
of wn(x), and hence wn(x) < 0 for X < a (since wn(x) is of odd degree).
Then wn(x) > 0 for a < x < Xl and thus

But by Lemma 3, we see that the negative contribution of wn(x) over
[Xl> X2] to Qn(x) is in magnitude less than the positive contribution over
[a, Xl]' Therefore,

for a < X < X2'

•

This argument can be repeated to cover the interval a < X < X n/2' For
X > X n/2, Lemma 2 is employed. •

Notice that these arguments can be used to yield

LEMMA 5. For n odd:

(a) Qn(a) = 0, Qn(b) = 2Qn(Xn/2);
(b) Qn(x) < 0, a < X ::; b.

However, we shall not require this lemma in our analysis of the error in
quadrature formulae.
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We are now prepared to estimate the error, En + b given by (4a), for the
closed Newton-Cotes formulae. We first treat the case of n even and assume
that the integrand, f(x), has n + 2 continuous derivatives. By using (10),
integration by parts [note that the continuity of (d/dx)f[xo, Xl' ... , x m X]
is assured by Problem 1.6 of Chapter 6], and Lemma 4a, the error is

Hence,

rb pn+ 2)(g(X))
En+l{f} = - Ja Qn(x) (n + 2)! dx

(from Problem 1.7 and Corollary 2 to Theorem 1.2, all of Chapter 6).

Now

pn+2)(g(X)) == :Xf[Xo, ... , X m x](n + 2)!

is continuous by Problem (1.6) of Chapter 6. By Lemma 4b, Qn(x) ~ O.
Hence, we may apply the mean value theorem for integrals in the above
to get

a < TJ < b.

In addition, integration by parts and Lemma 4 yield

rb

I
b rb

dJa Qn(x) dx = xQn(x) a- Ja X dx Qn(x) dx

= - f xwn(x) dx > O.

These results have established

THEOREM 1. Let the points of (9) divide [a, b] into an even number of
equal intervals. Let f(x) have a continuous derivative of order n + 2 on
[a, b]. Then the error, (4a), in the closed Newton-Cotes quadrature for­
mula, (3), for n even is

E {f} - Kn f<n + 2)( )
n+l -(n+2)'! TJ, a < TJ < b;
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•
where

Kn == J: xwn(x) dx < O.

We deduce from this theorem the interesting result that the closed Newton­
Cotes formula with an even number, n, of intervals has degree of precision
n + I (even though the interpolation polynomial employed is of degree n).

To treat the case of odd n, we could employ Lemma 5. This would lead
to an error expression containing two terms involving different order
derivatives of f(x). However, to obtain the simpler form of Theorem I
we first recal1 that wn(x) does not change sign in [b - h, b]. Then (4a)
yields by the mean value theorem for integrals and (1.9) of Chapter 6,

En + 1{f} = fb - h wn(x)f[xo, ... , x n, x] dx + (b wn(x)f[xo, ... , xn, x] dx
a Jb-h

a < f < b.

To treat the first integral, we write

Wn(x) = Wn_l(X)(X - xn) and On-leX) = LX Wn-lW dg.

Then the properties of divided differences given in (1.5) and (1.6) of Chapter
6 permit

f

b- h fb-h dan_leX)
a wn(x)f[xo,··., xn, X] dx = a dx (f[xo,.··, Xn-b X]

- f[xo, ... , xnD dx

Now n - I is even, and so On-lea) = 0n-l(b - h) = 0, or

J:- h
dOd~l(X)dx = O.

Hence we may neglect the integral involving the constant f[xo, ... , x n].
For the remaining integral, an integration by parts and application of the
mean value theorem for integrals as before yield

f

b- h pn+l)(f')fb-h
a wn(x)f[xo,· .. , xn, X] dx = - (n + I)! a On_leX) dx,

a < f' < b.
Thus we have deduced that
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A = - ( 1 1)' fb wn(x) dx, B = ( 1 I)' f
b
-
h

Dn_1(x) dx.
n + . Jb-h n + . Ja

However, since x = b is the largest zero of wn(x) and wn(x) > 0 for
x > b, it follows that wn(x) :-:; 0 in [b - h, b], and so A > O. That
B > 0 follows from Lemma 4, since n - I is even. Thus, if pn + ll(x) is
continuous on [a, b] an application of Lemma 1 implies that there exists
a point gin [e, e'] such that

En+1{f} = -(A + B)pn+lJ(g).

Since

( ) = dDn_1(x) ( _ b)
W n x dx x ,

we have through integration by parts and Lemma 4

fb
-

h
Ib-h fb

-
h

Ja wn(x) dx = Dn_1(x)(x - b) a - Ja Dn_1(x) dx

f b -
h

= - Ja Dn-1(x) dx.

Thus

I fb
A + B = (n + I)! Ja wn(x) dx.

In summary, we have

THEOREM 2. If the points of(9) divide [a, b] into an odd number of equal
intervals and f(x) has a continuous derivative of order (n + I) on [a, b]
then the error, (4a), in the closed Newton-Cotes quadrature formula (3),
for n odd is

a < g < b;

where

•
The formula covered by this theorem has degree of precision n. Note that
the result in Theorem 2 is formally similar to that in (5c).

To express the dependence of the errors given in Theorems 1 and 2
on the interval size, h, we use the change of variable, x = Xo + th, and
find
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COROLLARY. Under the hypotheses of Theorems I and 2, respectively,

M n hn+3 1'(n+2J(t) M = rn
t1T (I) dl < 0

(n + 2)! J S , n - Jo n ,

n even;

M n == f 1Tn(t) dt < 0,

n odd.•

Since the closed formulae are exact for polynomials of degree at most
n + I when n + I is odd, and are exact for polynomials of degree at
most n when n + I is even, it is generally preferable to employ the odd
formulae, i.e., those with an odd number of interpolation points. Also,
it clearly does not pay, in general, to add one point to a scheme with even
n; rather, points should be added in pairs.

Another useful integration formula with equal intervals is found by
using the points

(l2a)
where

Xj = X o + jh, j = 0, I, ... , n;

(l2b)
b-a

h = --, Xo = a + h
n + 2 '

X n = b - h.

The endpoints are then labeled X-I = a and X n + 1 = b. Since we do not
employ the endpoints in formula (3), it is now called an open Newton-Cotes
formula. In this procedure, all n + I points of interpolation are interior
to the interval of integration.

To examine the error we introduce, in place of !.1 n(x), the functions
In(x) defined by

(13) n = 1,2, ....

These differ from the functions in (10) since now a < X o and X n < b.
However, as in the proof of Lemma 4, it follows that for n even

In(a) = In(b) = 0; In(x) < 0, a < x < b.

Then, exactly as in the derivation of Theorem I, we have

THEOREM 1'. Replace" (9)" by "(12)" and" closed" by "open" in the
statement of Theorem I. Then the formula for En + 1{f} becomes

E {f} - Kn' f(n+2)(t)
n + 1 - (n + 2)! S ,

a < e< b; n even,

where

•
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Similarly, for n odd, by procedures analogous to those for closed-type
formulae, we find

THEOREM 2'. Use the hypothesis of Theorem I', but with n odd. Then

E {f} - Kn' f<n+1)(")
n+1 -(n+l)! s, a < g < b; n odd,

where

•
These errors for the open formula may be expressed in terms of the spacing
h as

COROLLARY. Under the hypothesis of Theorems l' and2', respectively,

E {f} = M n' hn+ 3.('<n+ 2)(")
n + 1 (n + 2)! J S ,

(l4a)

f
n+1

M n' = -1 t1Tn(t) dt > 0, n even;

E {f} = M n' hn+2 .('<n+l)(")
n + 1 (n + I)! J S ,

•n odd.

(l4b)

M n' = f~l 1Tn(t) dt > 0,

Again we find that for n even, the degree of precision is n + 1, while for
n odd it is only n. A comparison of (II) and (14) indicates that only the
values of the coefficients M n and M n' differ in the form of the error estimates
for open and closed Newton-Cotes formulae based on the same number,
n + I, of nodes. [However, for any fixed number of intervals in [a, b]
say m, the closed formulae use m + 1 nodes and the open formulae use
m - 1 nodes. Hence, the closed method has a degree of precision two
more than the open method on this basis, but requires two more evaluations
of the functionf(x).]

There are useful quadrature formulae that are neither open nor closed
but which have uniformly spaced nodes [e.g., see Problems 2, 3, and 5].
The formulae of Problems 2 and 3 are the basis for Adam's method for
the numerical solution of ordinary differential equations (see Table 2.1
of Chapter 8).
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1.2. Determination of the Coefficients

Let the interpolation points be equally spaced, say of the form X f =
Xo + jh, j = 0, I, ... , n, and let the endpoints a, b of the integration
interval also be of this form, say a = x p = Xo + ph and b = X o = Xo + qh,
(but not necessarily interpolation points). Then the coefficients, W".f' for
quadrature formulae of the form (3) can be written as, using x = Xo + th,

Wn.f = f ePn.tCx) dx

fo " t - k
= h TI· _ k dt

p k=O J
(k"f)

= (_I)n-f~ (~) fO 7T,,(t).dt,
n! J p t-J

Thus if we define the quantities

j = 0, 1, ... , n.

(15a) (_I)"-f (n) fO 7T n(t)
An.tCp, q) = --I-. -t_ .dt,

n. J p J
j = 0, 1, ... , n;

the coefficients are simply

(l5b)

In the special case of the closed Newton-Cotes schemes we have p = °
and q = n; for the open schemes of Section 1.1, p = - I and q = n + I.
It should be noted that the An. tCP, q) are independent of the spacing, h,
and thus may be tabulated as functions of the parameters n, j, p, and q.
Appropriate coefficients for a particular spacing, h, are then determined
by using (15b). Since the integrand in (15a) is a polynomial of degree n
the An•f (p, q) will all be rational numbers for rational p and q. Further,
we note that An.tCO, n) = An.,,-lO, n) and more generally, A",l-r, n + r)
= An, n _ tC - r, n + r) for any r. For p and q of these important special
forms, we need only tabulate the values for j ::; n12. Tables I and 2 list
the simplest closed and open Newton-Cotes formulae. The coefficients
A".ln, n + I) are to be found in Problem 6, for n = 1,2, 3, and 4.

An alternative indirect procedure, called the method of undetermined
coefficients, can also be employed to determine the coefficients for the
quadrature formula (3). This method is quite practical for unequally
spaced nodes as well as for fairly large values of n. In addition, it can be
used to prove
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Table 1 Closed Newton-Cotes Formulae

[Ch.7]

(trapezoidal rule)

(Simpson's rule)

Xo < g < X3.

(midpoint rule)

J
~ ~ 3~

Xo /(x) dx = "8 (/0 + 3/1 + 3/2 + /3) - 80 [<4)(f),

J
~ ~ 8~

Xo /(x) dx = 45 (7/0 + 32/1 + 12/2 + 32/3 + 7/.) - 945 P6)(f),

Xo < g < X•.

J
x s 5h

Xo /(x) dx = 288 (19/0 + 75/1 + 50/2 + 50/3 + 75/. + 19/5 )

_ 275h
7

/(6)(l:) l:
12096 ~ , Xo < ~ < X5·

Table 2 Open Newton-Cotes Formulae

J
X 2 h3

Xo /(x) dx = 2h/1 + 3" P2)(g), Xo < g < X2,

r
0

3
/(X) dx = 3

2
h (/1 + /2) + 3~ /(2)(g), Xo < g < X3.

J
X. 4h 28h5

Xo /(x) dx = 3" (2/1 - /2 + 2/3 ) + 90 /(4)(g), Xo < g < x•.

J
x s 5h 95h5

Xo /(x) dx = 24 (11/1 + /2 + /3 + 11/.) + 144 p')(g), Xo < g < X5.

J
X6 6h 4Ih7

Xo /(x) dx = 20 (11/1 - 14/2 + 26/3 - 14/. + 11/5) + 140 [<6)(f),

Xo < g < X8·

J
X7 7h

Xo /(x) dx = 1440 (611/1 - 453/2 + 562/3 + 562/. - 453/5 + 611/8)

5257h7
/(6)(1::\ l:+ 8640 ~" Xo < ~ < X7'

THEOREM 3. A quadrature formula which uses n + 1 distinct nodes is an
interpolatory formula iff it has degree ofprecision at least n.

Proof The necessity has been demonstrated by equation (4b). To
prove sufficiency, we let the n + I distinct points Xj' j = 0, I, ... , n, be
the given nodes. If the quadrature formula, with these points and coefficients

aj, has degree of precision at least n in approximating ff(X) dx, then we

must have
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(16)
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nL aj = (b - a)
j=O

n

L ajXj = -!-(b2
- a 2

)

j=O

317

n 1
~ ax n = __ (bn + l _ an + l ).
j'SJj n+I

This may be considered as a system of n + 1 equations for the determina­
tion of the n + 1 coefficients, aj' Since the coefficient matrix of the system
(16) is of the Vandermonde form, and the x j are distinct, there exists a
unique solution. On the other hand, note that the interpolatory formula (3),
with the same points Xj' is exact when applied to the powers 1, x, ... , xn •

Hence, the system (16) is satisfied with the aj replaced by the Wn,j' The
fact that (16) has a unique solution shows aj = wn • j' •

We shall see that most of the popular quadrature formulae are inter­
polatory. This follows by means of Theorem 3 and its extension, in Section
4, to weighted quadrature formulae.

The method of undetermined coefficients consists in solving the system
(16) for the aj' To determine the degree of precision of an interpolatory
quadrature formula, we simply form the quantities

E {Xk} = _1_ (bk+1 _ ak+l) _ * k
n+1 -k+I LajXj ,

j=O

k = n + 1, n + 2, ... ;

and determine the least integer k such that En+I{Xk} 'I- O. The degree of
precision is then k - 1.

If it is known that the error in the integration formula has the form
En +1{f} = Amj<m)(~) for some integer m, then we can determine the
coefficient Am by this method. That is, we must have m = k where k - 1
is the determined degree of precision. Hence, use f(x) == x k to get

1 n
(17) E {xk} = -- (bk + l - a k + l ) - ~ a·x k = k' A

n + I k + 1 j'S J J • k'

which can be solved for A k • For example, in (11) for the closed Newton­
Cotes formulae, we may use the quantities A n + 2 or A n + l to evaluate
the appropriate coefficient M n•

As an illustration of the application of the method of undetermined
coefficients, we consider the closed formula with one segment, n = 1,
and the two nodes X o = a and Xl = b. The system (16) now becomes

ao + al = (b - a);

aao + bal = -!-(b2 - a 2);
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and the solution of this system is

ao = al = !(b - a).

To determine the degree of precision we apply the formula to x 2
, x3

, ••• ,

and get first
E2{X2} = t(b3

- a3
) - !(b - a)(a2 + b2)

= -f;(b - a)3 '# O.

Thus the degree of precision is 1, as we knew since it is a closed Newton­
Cotes formula with n = 1. The error can be written as

E2{f} = Ad(2)W

where A 2 = (Md2 !)h3 and h = b - a. By usingf(x) = x 2 we find that

E2{X2} = -Hb - a)3 = 2A 2.

Thus A 2 = --h(b - a)3 and M I = -f;. The formula determined above
is the familiar trapezoidal rule which can now be written as

(18) f f(x) dx = b ; a [I(a) + feb)] _ (b ~/)3 j<2)W,

a < g < b.

PROBLEMS, SECTION 1

1. Add to the hypothesis of Lemma I : r of the coefficients (ak) are non-zero.
What is the smallest integer r for which the stronger conclusion gE (a, b)
is valid?

2. From equation (4.19) of Chapter 6, derive the formula

where do = I, and recursively

d dk - I dk - 2 ( l)k do 0
k - -2- + -3- + ... + - k+1 = , k = I, 2, ... , m + I;

x < g < x + mh; 11k! =- i (_l)k-j(/~)f(X + jh).
I~O J

[Hint: The coefficients {d,} satisfy the identity in Ll,

Ll =- log (l + Ll)(dol + dill + ... + dmLlm + ... ).]

Check the following listing:

~ 1+1+1-_2-_IL-z -I 2~4 1---:-1/-0 -1 T:O
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3. From equation (4.19) of Chapter 6, derive the formula

J:-h fW d~ = h[eof(x) + e1tlf + e2tl2f + ... + emtlmf]

+ hm+2em+lpm+l)(Tj),

and recursively,

where eo = I,

ek - ek-l + ek-2 + ... + (_I)k~ = (-I)k
2 3 k+I'

k = 1,2,oo.,m + I;

x - h < Tj < x + mh; tl as defined in Problem 2.

[Hint: The coefficients {et} satisfy the identity

tl - tl2 + tl3 + ... + (_l)mtlm+1 + ...

(
tl2 tl3

)== tl - "2 + T + ... (eol + eltl + e2tl2 + ... ).]

Check the following listing:

4. With {dt} and {et} as defined in Problems 2 and 3, and e -1 = 0, show that

5. From Everett's form of the interpolation polynomial, (3.17) of Chapter 6,
define the coefficients {rt} and Cm of the formula

~ L:l f(x) dx = ro(fo + fl) + rl(8% + 82fl) + ...

+ rm(82"'fo + 82mfl) + Cmh2m+2p2m+2)(~),

where

X-m<S<Xm+h XI = Xo + jh.

Explicitly find ro and rl'
6. Make a table listing the coefficients An.ln, n + 1), for n = 1,2,3,

and 4. [Hint: Use the result of Problem 3.]
7. Prove Lemma 5. [Hint: Let n = 2m + 1 and 0 < € s; t. Show that

!7Tn(t + 1)/7Tn(t)! < 1 for t = m - d

2. ROUNDOFF ERRORS AND UNIFORM COEFFICIENT FORMULAE

In almost all practical applications of integration formulae of the form
(0. 2) the exact function values, I(x), will not be available. This fact is
usually due to limitations in the calculation of these function values (or
in their measurement). Thus the quantities actually employed may be
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written as J(x;) = f(xi ) + Pi where Pi is the local roundoff error made in
computing (or error in measuring) f(x i ). The error in approximating (0.1)
by (0.2) with these values is then

where En{f} = I{f} - In{f} is the quadrature or truncation error and the
accumulated roundoff error is:

(1)

If, as is frequently the case, we know that the local errors are bounded,
say Ipil ~ pforj= 1,2, ... ,n,then

(2)

Let us also assume that the formula (0.2) has degree of precision ~ 0, i.e.,
that at least a constant is integrated correctly. Then with the integrand
f(x) == I we find

(3) i ai = (b - a).
i=l

Thus if all the coefficients, ai' are of one sign the bound (2) becomes

(4)

If the coefficients are not all of one sign, then clearly,

and a larger maximum accumulated roundoff is possible. To attain the
maximum value requires that

Pi = P sign ai

which is, of course, very special. By comparing (4) and (2), we find a
practical advantage in having the coefficients of a quadrature formula all
of one sign, especially if the truncation error is smaller than the rounding
error.

By introducing statistical notions of roundoff (or measurement) errors,
we can, in fact, show that it is of even greater advantage to have all of the
coefficients of the same value. There are several ways in which the statistical
notion of "randomness" of the local errors can be introduced. For
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instance, suppose we ask for those coefficients, aj, for which some measure
of Rn{f} is a minimum for all functions j, of some particular class, F.
Since the errors pj = pj{f} usually depend in an extremely complicated
way on the functionsj, direct attempts at such a minimization do not seem
possible. However, as f varies over the class F the errors Pj{f}, can be
expected to vary in an erratic manner. By making specific assumptions
about the nature of this variation and introducing a measure of" volume"
in F we can calculate various" averages" of Rn{f} over F.

Specifically, let us consider for F a one parameter family of functions of
x, say f(x; or), where the parameter or ranges over 0 :s; or :s; T. The roundoff
error in evaluatingf(xk ; or) for each or and k = 1,2, ... , n will be denoted
by Pk(or). We assume that IPk(or) I :s; P and that all values in this range are
equally likely for each value of or; or in particular, we assume that the
"average" roundoff over the family F vanishes; i.e., that

(5a)
I (T

Pk == T Jo Pk( or) dor = 0, k = 1,2,oo.,n.

Further, we assume that the roundoff errors at distinct points X j and Xk

are uncorrelated; i.e.,

(5b) if j f= k.

In effect, this means that the error committed at x j is independent of the
error at Xk for all the functions, f(x; or) in F. Finally, let us make the
assumption that all the local errors have the same mean-square value, say,

(5c) 2 - I r 2() d
a = T Jo Pj or or, j= 1,2,oo.,n.

Note that a :s; p.

We now consider some measures of the accumulated roundoff error
for the family F. We define for any or in 0 :s; or :s; T:

n

= 2: ajp;(or).
j=l

The mean-accumulated roundojffor the family F is, by (5a),

Thus the coefficients, aj, of the quadrature formula have no effect on the
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(8)

average accumulated roundoff. Next we compute the mean-square roundoff
error, using (5b and c), to get

(6) rn2 == ~ foT Rn2(r) dr

The coefficients clearly have an effect on this measure of the roundoff
error. Let us seek raj} which minimize the sum in the last line of (6) but
which also satisfy (3). This problem is easily solved by using the method
of Lagrange multipliers and we find for the minimizing coefficients:

b-a
(7) a1 = a2 = ... = an = -n-'

Thus to reduce the root mean-square roundofferror, r", as much as possible,
while retaining at least zero order precision, the coefficients should be
equal. Using (7) in (6) yields for the minimum of rn the value

alb - al
rn = Yn .

This result is somewhat surprising as it indicates that the root mean­
square roundoff error actually decreases as the number of quadrature
points (and hence of sources of error) increases! It should be noted that
when the weights are equal the bound (4) applies. Compare the maximum
bound, plb - ai, with the statistical result in (8) to find a reduction in the

dependence on n by the factor l/Yn for the statistical estimate. This is a
common feature of statistical estimates of roundoff. It is frequently found
in practice that the statistical estimate is a more realistic approximation
of the error than is the maximum-type estimate.

These results can be interpreted in a slightly different, perhaps more
familiar and intuitive way. We think of a family of calculations of the
quadrature formula applied to the same function, f(x). Each calculation
of the family is determined by the particular rounding employed in the set
of values f(xj), j = 1,2, ... , n. That is, PtCr) is the roundoff error in the
computation characterized by the parameter value r when computingf(xj ).

Of course, any fixed program for an electronic computer is represented
by a single value of the parameter. Thus, the intended interpretation
is not repeating the same calculation, but rather, altering the computational
procedure slightly each time. The above averages are then averages over an
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appropriate family of calculations. With this interpretation numerical
experiments using "randomly" generated and independent rounding
errors are easily devised.

We shall find that equal coefficient formulae of the form (0.2) cannot
approximate integrals of the form (0.1), with degree of precision n for all
values of n (see, however, Subsection 4.1).

2.1. Determination of Uniform Coefficient Formulae

An integration formula with uniform coefficients and n nodes has the
simple form

(9a)
n

In{f} == an L f(xj).
j=l

In order that this yield the exact result for

l{f} = f f(x) dx

when f(x) == I, it is clear that

(9b)
b-a

an = -n-·

We now try to determine the n nodes, Xj, such that (9) has as high a degree
of precision as possible. Thus we impose the n conditions, In{xV

} = l{xV
}

for v = I, 2, ... , n to get

(10)
n I

a "" X v = __ (bv+l _ aV + l)
nj~l j v+1 '

v = 1,2, ... , n.

If these equations have as solution n distinct real values, Xjo then the corre­
sponding quadrature formula (9) has degree of precision at least n, while
only n nodes are employed (as in the Newton-Cotes formulae for an even
number of uniform intervals or odd number of nodes). Thus, by Theorem
1.3, we can conclude that such equal coefficient formulae are interpolatory.
The error estimates of Section I are then applicable [say, of the form
(1.4)].

Let us set n = I in (9) and (10). We find al = b - a, Xl = Hb + a),
and the quadrature formula is simply the midpoint rule,

(
b + a)ll{f} = (b - a)f -2- ,

which is clearly exact for linear functions.
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For n = 2, the system (10) is easily reduced to a quadratic equation
which yields the nodes

b+a b-a
Xl = -2- - 2V3'

b+a b-a
X 2 = -2- + 2V3'

Note that in each of these cases the nodes are symmetrically located
about the center of the interval of integration.

In general, the solution of the system (10) determines the nth degree
polynomial

whose roots are the required nodes. This polynomial can be written in
the form

(11)

where the coefficients are the classical elementary symmetric functions of
the roots, i.e.,

al = - (Xl + X 2 + 0 0 • + x n)

a2 = (XIX2 + XIX3 + . 0 • + X n -IXn)

an = (-1)nxlx2 · 0 oXn.

However, the values of these symmetric functions can be obtained from
the sums of the powers of the roots

v = 1,2, .. 0' n,

which are directly determined in (10). The relations between the aj and
the Sv are known as Newton's identities (see Problem 2),

=0

=0

(12)

Sn + Sn-Ial + Sn-2a 2 + ...
+ Slan-l + nan = O.

Thus the determination of the nodes has been reduced to finding the roots
of the polynomial (11). The coefficients of this polynomial are recursively
computed from (12) by using the known values of the Sv'

The nodes for any interval [a, b] are easily obtained from the nodes for
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the special interval [-1, 1]. For this purpose we introduce the usual
linear change of variable

b+a b-a
(13) x = -2- + Y -2-'

and then note that

fb b - a II b - a
l{f} = a f(x) dx = -2- -1 g(y) dy = -2- J{g(y)},

where

(
b + a b - a)

g(y) =f -2- + y -2- .

The n-point uniform coefficient quadrature formula which approximates
J{g} is written as

In{g} = f3n ~ g(Yj)'
j~1

In order that this formula have degree of precision at least n, we must
have J {y'} = In{y'} for v = 0, 1, ... , n. Thus f3n = 21n and

(14) s, = ~1 y/ = 2(v: 1) [1 + (-1)'], v = 1,2, ... , n.

We note that the odd order power sums now vanish, i.e., SI = S3 = ...
= O. Newton's identities (12) become in this case

al = 0

n
3" + 2a2 = 0

(15)

n n
"5 + 3" a2 + 4a4 = 0

as = 0

Thus we find that the odd order elementary symmetric functions vanish
and the polynomial for the determination of the nodes, yj, becomes

(16)

The roots, y;, of Pn(y) = 0 are thus symmetric with respect to the
origin and if n is odd, then y = 0 is a root. Using the transformation (13)
we obtain for the nodes of the general quadrature formula (9a) the values

b+a b-a
Xj = -2- + Yj -2-'
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From the properties of the Yj it follows that the nodes X j are symmetrically
located with respect to the midpoint of the interval of integration and that
for n odd the midpoint is a node. If n is an even integer then by the sym­
metry of the Yj we have

n2: yj+1 = o.
j=1

That is, In{yn+ 1} = J{yn+ 1} and the degree of precision is n + I, when an
even number, n, of nodes is employed. The same must, of course, be true
in the general case (9) for n even.

In order to determine an n-point quadrature formula of the form (9)
which has degree of precision at least n, the polynomial (16) must have n
real distinct roots. However, for n = 8 and for all n ? 10 it can be
shown that a pair of complex roots occurs. For n :::; 7 and n = 9 the roots
have the required properties and are known to many decimals. We list in
Table I these roots in 0 :::; y :::; I; the others are obtained by symmetry.

Table 1.

YI 0.0

n = 1 n = 2

0.57735 02692

n = 3

0.0
0.70710 67812

n = 4

0.18759 24741
0.79465 44723

n = 5 n = 6 n = 7 n = 9

YI 0.0 0.26663 54015 0.0 0.0
0.37454 14096 0.42251 86538 0.32391 18105 0.16790 61842
0.83249 74870 0.86624 68181 0.52965 67753 0.52876 17831

0.88386 17008 0.60101 86554
0.91158 93077

Quadrature formulae with uniform coefficients and any number of
nodes arise in Subsection 4.1, in another setting.

PROBLEMS, SECTION 2

1. Verify that (7) characterizes the solution to the problem of minimizing

i a/ subject to i al = b - a.
1=1 1=1
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2. Verify Newton's identities (12).

GAUSSIAN QUADRATURE 327

n n

[Hint: Let Pn(x) == n (x - Xj) == L aleXn - Ie,
j=1 Ie=O

aO == I.

But,

Pn(X) - Pn(Xj)
x - Xj

n - 1

= L ale(xn- le - 1 + XjXn- le - 2 + ... + x7- le - 2x + x7- le - 1)
k=O

n-l
= x n- 1 + L (ap + ap_I Xj + ... + alxj'-1 + xl)xn- p- 1.

p=l

Hence
n-l

Pn'(x) = nxn- 1 + L (nap + Slap-l + ... + Sp-lal + Sp)xn- p- 1].
p=l

3. GAUSSIAN QUADRATURE; MAXIMUM DEGREE OF PRECISION

In Section 1 it is shown that, given n + 1 fixed nodes, we can determine
the coefficients of a quadrature formula which has degree of precision at
least n (by forming the appropriate interpolatory formula). In Subsection
2.1 we investigated the problem of determining n nodes such that all the
coefficients are equal and the degree of precision is at least n. Now we
allow a choice of both n nodes and n coefficients in order to determine
formulae with maximum degree of precision. Of course, the degree of
precision for such a formula will not be less than the corresponding degree
for the interpolatory formula using the same nodes. Hence by Theorem
1.3 we conclude that the quadrature formula with maximum degree of
precision is interpolatory.

If the formula is to have the n nodes X lo X2, ... , x n, it can be written as

(I) f
b n

a f(x) dx = j~l aJ!(xJ + En{f}.

However, since it must be interpolatory, the error can be written as,
recalling (1.4a),

(2) En{f} = f Pn(x)f[x1, ... , X n, x] dx,

where we have introduced

(3)
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Clearly, En{f} = 0 if f(x) is a polynomial of degree n - I or less. We
seek points Xi such that the error also vanishes when f(x) is any poly­
nomial of degree n + r where r = I, 2, ... , m and m is to be as large as
possible.

To determine such nodes we first recall that the nth divided difference
of any polynomial of degree n + r is a polynomial of degree at most r.
(This follows by repeated application, n times, of the result in Problem
1.2 of Chapter 6.) Thus from (2) we conclude that the necessary and
sufficient conditions for En{f} to vanish for all polynomials, f, of degree
n + m are that

(4) f Pn(x)xTdx = 0, r = 0, I, ... , m.

However, these are just the conditions that the polynomial Pn(x) be ortho­
gonal, over [a, b], to all polynomials of degree at most m. In fact, if we
take for Pn(x) the nth orthogonal polynomial, then (4) is satisfied for
m = n - 1. Further, (4) cannot be satisfied for m = n or else Pn(x) would
have to vanish identically which is impossible. These results may be
summarized as

THEOREM 1. The quadrature formula in (I) can have the maximum degree
of precision 2n - I. This is attained iff the n nodes, xi' are the zeros of
Pn(x), the nth orthogonal polynomial over [a, b], and the formula is
interpolatory. •

The formulae determined by Theorem I are called Gaussian quadrature
formulae. From Theorem 3.4 of Chapter 5 it follows that the nodes are all
interior to the interval of integration, (a, b). The coefficients in these
formulae are easily obtained (once the nodes are determined) since they
are interpolatory; we get as in (1.3b)

(5) ai = ---,-(1) fb Pn(x) dx, j = I, 2, ... , n.
Pn Xi a X - x j

Although it is not apparent from this expression, we have

THEOREM 2. The coefficients, ai' in the Gaussian quadrature formulae are
positive for all j = I, 2, ... , n and all n.

Proof Since the Gaussian quadrature formula with n nodes has

degree of precision 2n - I, it yields the exact value for f f(x) dx when

f(x) is any polynomial of degree 2n - I or less. In particular, then, it is
exact for

j = 1,2, ... , n,
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which are polynomials of degree 2n - 2; i.e.,

However, it is clear that

for k -:f. j;

n

qlxJ = n (xf - Xt)2 = [Pn'(xJ]2 > O.
i=l

(i*f)

Thus we find

I fb I fb Pn2(x) .
af = ----:--(.) qlx) dx = [ '( W (_ )2 dx > O.q) x) a Pn X) a X X) •

Note that the only property of Gaussian quadrature used in this proof
is the fact that the formula with n nodes has degree of precision at least
2n - 2. Thus we may also conclude that any quadrature formula of the
form in (I) using n nodes and having degree of precision 2n - 2 has
positive coefficients. Another formula for computing the coefficients af is
derived in the next section [see equations (4.5)].

We can obtain expressions for the error in Gaussian quadrature which
are more useful than that given in (2). The first such result can be stated as

THEOREM 3. Let F(x) be continuous in the closed interval [a, b]. Let
tj, t2, ... , tn be any n distinct points in [a, b1which do not coincide with
the zeros, Xl' X2," ., Xn, of the nth orthogonal polynomial, Pn(x). over

[a, b]. Then the error in n point Gaussian quadrature applied to Lb

f(x) dx

is

Proof Using the 2n distinct points x j and tj> the function f(x) can be
written as

f(x) = P2n - 1(X) + R2n - 1(X),

where P2n - 1(X) is the interpolation polynomial of degree at most 2n - I
agreeing with f(x) at the 2n points Xj and t j , and R2n - 1(X) is the inter­
polation error. With Newton's form for the remainder we write this error
as

n

R2n - 1(X) = n [(x - xj)(x - tJ]f[Xb' .. , X"' tb ... , t", x].
j=l
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These expressions in (1) yield

(7) f P2n - l(x)dx + f R2n - l(x)dx

n n

= L Ct. jP2n - l(XJ + L Ct.jR2n-l(Xj) + En{f}.
j=l j=l

However, since the degree of precision of the quadrature formula IS

2n - 1 we must have

Also, since f'(x) is continuous, it follows that f[Xl> ... , Xn'~l> ... , ~n, Xj]
has a finite value for j = 1, 2, ... , n and so R2n _1(X j ) = O. By using these
results in (7), we obtain (6). •

We note that there is great freedom in the choice of the n points ~j in
Theorem 3. Further, the conditions on f(x) could be relaxed somewhat
to require only continuity of f(x) on [a, b] and differentiability at the points
x j and ~j and the error representation (6) remains valid (see Problems
1.4 through 1.6 of Chapter 6). By requiring more differentiability of f(x),
the result in Theorem 3 can be simplified. The most common such
simplification is stated as the

COROLLARY. Let f(x) have a continuous derivative of order 2n in [a, b].

Then the error in n-point Gaussian quadrature applied to f: f(x) dx is

(8)

a < 1) < b.

where ~ is some point in (a, b).
Proof Under the assumed continuity conditions onf(x) the integrand

in (6) is a continuous function of the n points ~l>e2"'" en' Thus it is
legitimate in this integral to let ej --+ Xj for j = I, 2, ... , n, and obtain,
by applying the mean value theorem for integrals,

En{f} = f Pn2(x)f[xl> ... , X., Xl>' .. , xn, x] dx

= f[xl>"" xn, Xl,"" xn, 1)] Lb

Pn2(X) dx,

The result (8) now follows from the extension of Corollary 2 of Theorem
1.2 in Chapter 6. •



[Sec. 4] WEIGHTED QUADRATURE FORMULAE 331

(9)

It should be recalled in all of these results that Pn(x) is not the normalized
orthogonal polynomial of degree n over [a, b], but, by (3), is the one with
leading coefficient unity. So if the nth degree orthonormal polynomial is

Qn(x) = anxn + an_1xn- 1 + ... + ao,

then, since Pn(x) and Qn(x) have the same zeros,

1
Pn(x) = - Qn(x).

an

Thus we deduce that

fb I fb I
Pn2(x) dx = 2 Qn2(x) dx = -2'

a an a an

For example if a = -I and b = I then the Legendre polynomials, Pn(x),
are the relevant orthogonal polynomials. It can be shown that

Pn(x) = 2-i-, dd
n
n(x2

- I)nn. x

and they are normalized by forming J2n ; I Pn(x). Thus we find in this

case that

_ (2n)! J2n + I
an - 2n(n !)2 --2-'

and the error expression (8) becomes for Gaussian quadrature over
[-1,1]:

(10) E{f} - 2 [2n
(n !)2] 2!<2n)( i:)

n -(2n+I)! (2n)! ~,
-1<~<1.

4. WEIGHTED QUADRATURE FORMULAE

It is of practical and theoretical interest to consider the approximate
evaluation, for a fixed weight function w(x), of integrals of the form

(1) W{g} = f g(x)w(x) dx,

by quadrature formulae of the form

(2)
n

Wn{g} = L f3jg(X j).
f=1

We again call the points X j the nodes and the f3f the coefficients of the for­
mula. However, only the factor g(x) in the integrand enters directly into the
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evaluation of the integration formula (2). The weight factor, w(x), enters
into the determination of the coefficients and nodes. Once these are de­
termined the formula may be applied to integrals of the form (I) with
different functions g(x) but the same weight function. Formulae of the
form (2), when applied to approximate integrals of the form (I), are called
weighted quadrature formulae. To evaluate integrals of the form (0.1)
by such formulae, write

f f(x) dx = f ~~~~ w(x) dx,

and use (2) with g(x) == f(x)jw(x). As we shall see, there are frequently
advantages to such procedures.

Many of the previous results are valid, with but slight changes, for the
weighted quadrature formulae. Their degree of precision is defined as
before; i.e., (2) has degree of precision m if

for k = 0, I, ... , m,

but not for k = m + I.
Given n + I distinct points xo, Xl' ... , X n the weighted interpolatory

formula with these points as nodes and weight function w(x) over [a, b] is,
say,

(3a)

where

n

Wn+l{g} = 2: Wn,jg(Xj);
j=O

(3b) Wn,j = f <Pn.lx)w(x) dx, j = 0, 1, ... , n.

(3c)

Here the c/>n, tCx) are the Lagrange interpolation coefficients for the points
xo, Xl' ... , xn. Since g(x) = Pn(x) + wn(x)g[xo, ... , xn, x] where Pn(x) is
the Lagrange interpolation polynomial of degree n, the error in (3a and b)
is

En+l{g} = W{g} - Wn+l{g}

= f [g(x) - Pn(x)]w(x) dx

= f wn(x)g[xo, ... , xn, x]w(x) dx.

By assuming sufficient differentiability of g(x) we can simplify this error
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expression. Also if wn(x)w(x) does not change sign in [a, b), even further
simplification is possible. The case of equally spaced nodes does not yield
particularly simple error expressions for arbitrary weight functions, w(x),
and so we do not study these formulae further. It should be observed,
however, that a modification of the method of undetermined coefficients

still applies (i.e., the right-hand sides in (1.16) are changed from f XV dx

to f XVw(x) dx). Hence, the result of Theorem 1.3 is valid when modified

to refer to weighted formulae.
If the weight function, w(x), is positive in [a, b) and say for simplicity

continuous, then the Gaussian quadrature formulae also generalize in an
obvious manner. These generalizations are best derived by seeking the n
nodes, Xj, and coefficients, a j, such that the weighted formula (2) will
have the maximum degree of precision. We find now with qn(x) ==
(x - Xl)' .. (X - xn) that

THEOREM 1. The weighted quadrature formula (2) has degree of precision
at most 2n - I. This maximum degree of precision is attained iff the n
nodes, Xj, are the zeros ofqn(x), the nth orthogonal polynomial with respect
to the weight w(x) over [a, b]. The formula is a weighted interpolatory one.

Proof The details of the proof are left as an exercise to the reader.
They follow closely the proof of Theorem 3.1. •

The coefficients of the weighted formula of maximum precision are given
by

(4) j= 1,2, ... ,n.

Exactly as in Theorem 3.2 it follows that f3j > O. The coefficients, f3j, are
called the Christoffel numbers. The formulae (2) are of the type frequently
called weighted Gaussian quadrature with special names applied for special
weight functions (see Subsection 4.1).

The coefficients f3j of the weighted Gaussian formulae can be expressed
in a simpler form than that given by (4). For this purpose let Pix) denote
the nth orthonormal polynomial over [a, b1with respect to the given weight
function, w(x). If the leading coefficient of Pn(x) is an, we have Pn(x) =

anqn(x) and hence from (4)

Now set g = X k in the Christoffel-Darboux relation (3.25) of Chapter 5,
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multiply the result by w(x)/(x - xk ) and integrate over a ::; x ::; b.
This yields, since PiXk) = 0 and

Po(x) = [fw(x) dX] -Y';

-an fb Pn(x)
= - ( ) w(x)dxPn+1(Xk),an+l a X - Xk

Use this in the previous expression for flj to obtain

k = 1,2, ... , n.

(5a)

and (5a) becomes

(5b)

a < ~ < b.

fl. = -an + 1 •

, anPn'(x,)Pn+1(xJ

From the three term recursion of Theorem 3.5 in Chapter 5 we find that,
since Xj is a zero of Pix),

flj = , an .
an-1Pn(xj)Pn_1(x j)

It should be observed that the coefficients, (Xi> of the ordinary Gaussian
quadrature formulae are also given by the above formulae, (5), in which
the Pn(x) are orthonormal with respect to the uniform weight, w(x) == 1.

The errors of the weighted Gaussian formulae are derived exactly as in
Theorem 3.3 and its corollary. Thus under appropriate continuity con­
ditions on g(x) we have

(6) En{g} = W{g} - Wn{g}

= f qn(x)(x - ~l)' .. (x - ~n)

X g[xl , ... , Xn, ~l' ... , ~n, x]w(x) dx

= lab qn2(x)g[xr, ... , Xn, Xl"'" Xn, X]W(X) dx

= g[XI , ... , Xn, Xl,···, Xm 7]] f qn2(X)W(X) dx

g(2nJW rb

= (2n)! "a qn2(X)W(X) dx,

4.1. Gauss-Chebyshev Quadrature

The polynomials orthogonal over [-I, I] with respect to the weight
w(x) = (1 - x) -P(1 + x) -q, provided p < I and q < I, are known as the
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Jacobi polynomials. The special case, p = q = 1, arises in the treatment
of integrals of the form

(7) W{g} == JI g(x) dx.
-IVI-x2

That is, consider the orthonormal polynomials over [-1, I] with respect
to the weight function (I - x 2 )-Y" say Qn(x), such that

JI dx
Qn(x)Qm(x) V = °n.m'

-1 I - x 2

Introduce the change of variable

x = cos B, o :-::; B :-::; 7T,

and these integrals reduce to the form

f Qn(cos B)Qm(cos B) dB = on.m.

In Problem 3.9 and equation (4.13) of Chapter 5 we verify that the poly­
nomials are

(8)

Qn(x) == J~ cos (n cos -1 x), n = 1,2, ... ,

The nodes for the n-point quadrature formula of maximum degree of
precision are, by Theorem I, the points x j such that

(9)

But from (8) the zeros are

_ (2j - 1 )
Xj = cos Bj = cos ~ 7T , j=I,2, ... ,n.

for n = 1,2, ....

The Christoffel numbers, f3j, for this best formula are most easily
evaluated by using (5). That is, from (4.13) of Chapter 5 and (8)

Qn(x) = 2n
-

I J~ xn + ... ,

Hence

for n = 1,2, ... ,

1
Go = V:;;
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But by using (5b)

for n = 2, 3, ... ;

7T sin Of
(3j = Ii sin nOj cos (n - 1)OJ'

Now cos (n - I)Of = sin OJ sin nO j , whence

(10)
7T

(3j = -,
n

.i = 1, 2, ... , n.

The quadrature formulae thus derived are

(11 ) Wn{g} = ~ I g(x;) ,
1 =1

n = 1,2, ....

It is of great interest to note that each such formula has uniform coefficients
and that the n-point Gauss-Chebyshev formula (11) has degree of precision
2n - 1. Thus the problem posed in Section 2, of choosing coefficients (3j'
to minimize the mean-square roundoff error in evaluating the sum (2),
is solved by the same coefficients that yield maximum precision in approxi­
mating integrals of the form (7).

PROBLEM, SECTION 4

1. Carry out the proof of Theorem 1.

5. COMPOSITE QUADRATURE FORMULAE

By Theorem 1.3 (and its generalization for weighted quadrature) we
see that all of the formulae considered thus far have been interpolatory.
Thus, in effect, the integrand has been approximated by a single polynomial
over the entire interval of integration and the integral of this polynomial
is the approximation to the integral. (This is the justification of the name
simple quadrature formula.) In order to get reasonable accuracy over a
large integration interval, low degree polynomial approximations would in
general not suffice. We learned in Subsection 3.4 of Chapter 6 that a high
order interpolation polynomial may be a poor approximation to a smooth
function in the case that the nodes are uniformly spaced. Hence we avoid
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using integration formulae based on interpolation polynomials of high
degree and uniformly spaced nodes. On the other hand, thc coefficients
and nodes for formulae with maximum degree of precision are not avaIl­
able for large orders and are difficult to compute with great accuracy.
Nevertheless, it is possible to devise quadrature formulae which have
simple coefficients and nodes, and yet yield accurate approximations.
These are the so-called composite rules which, in brief, are devised by
dividing the integration interval into subintervals (usually of equal length)
and then applying some formula of relatively low degree of precision O"ef

each of the subintervals. There are many composite quadrature formulae,
and we only examine those most commonly used.

Let the integral to be approximated be

(I)

Given integers m and II, define

f I(x) dx.

(2a)
b - a

ff=:o--,
m

H
h =:0-.

II

and divide [a, b) into m submtervals, each of length fl, by the points

(2b) YJ = a + jff, j = 0,1, ... , ill.

Each of these subintervals is divided into finer subll1tervals of length h
by the points

(2c) X/c = a + kh, k = 0, 1, ... , mil.

(3)

(4)

Now (1) may be written as

f I(x) dx = j~l J~j_1 I(x) dx.

By using the appropriate points Xk of (2c) each of the m integrals on the
right-hand side of (3) can be approximated by a closed Newton-Cotes
formula with n + I nodes. That is, by adapting the notation of Section I,

f Yj nJl I(x) dx = L w~.)d(Yi-l + kh) + EAjl l[f},
Yj -1 k ~ 0

j = 1,2, ... , m;

where E;,il..{f} is the error in the (n + I)-point formula applied to the
;th integral and w~(\ is the kth coefficient for the jth integral.

The coefllcients, w~\, are independent of j. In fact, from (1.15), we may
write

(5)
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(6)

where An • k depends only upon the integers nand k. That is, corresponding
coefficients in each subinterval are equal. With the use of (4) and (5),
equation (3) becomes

f
b m n m

a f(x) dx = h j~ k~ An.d(Y'-1 + kh) + j~1 E~'ll{f}

= h k~O An.kL~/(Yj-1 + kh)] + j~1 EA'll{f}·

However, since Yj = Yj-I + nh it is seen that the values of the integrand
at the points Y, with j = 1,2, ... , m - I appear twice in (6). We account
for this repetition and rewrite the sum in the form

(7) ff(x)dX = h{An.of(Yo) + An,nf(Ym) + (An,o + An.n) ~~f(Yj)

+ l:~ An'kr~/(Yi-I + kh)]} + Em.n+1{f}.

Here we have introduced the composite error

(8)

Since the same closed Newton-Cotes formula has been employed over
each interval [Yi-I, Yj], we deduce from (1.11) and Lemma 1.1 applied
to (8), that

E {f} = mMn hn+3'f<n+2)(l:)
m.n+1 (n + 2)! ~ ,

n even;

(9a)

E {f} = mMn hn+2t<n+I)(l:)
m.n+1 (n + I)! J ~ ,

Mn== fan 7Tn(t) dt < 0, n odd.

Here a < t < b and we have assumed that the indicated derivative of
f(x) is continuous on [a, b]. By (2a) this error can be written as

(9b)
{

b - a M n Hn+2t <n+2)(t)
(n + 2)! nn + 3 J ,

Em.n+I{f} =
b - a !vfn Hn+If<n+l)(l:)

(n+I)!nn+2 ~,

n even;

n odd.
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Thus for fixed n, the error can be made arbitrarily small by letting H -+ O.
In this manner, we find that composite quadrature formulae may be very
accurate when applied to integrals whose integrands do not possess high
order derivatives.

The most common composite formulae are those with n = I (trape­
zoidal rule) and n = 2 (Simpson's rule). For the trapezoidal rule we have

and (7) and (9) yield

fb h { m-1}
(10) a f(x) dx = 2 f(a) + feb) + 2 j~l f(a + jh)

_ (b ~ a) h2j<2l(g).

For Simpson's rule, with n = 2 in (5) and (9),

H b - a
h = "2 = -----S;:Z' A 2 • 0 = A 2 ,2 = ~" A 2 . 1 = j, M 2 = - 1

4
5 ;

so that (7) becomes

fb h{ m-1
(I I) a f(x) dx = 3" f(a) + feb) + 2 i~l f(a + 2jh)

+ 4 ~ f(a + [2j - I]h)} _ (b - a) h4j(4JW.
i=l 180

We note that in formulae (10) and (II) the coefficients are all po~itive

and so the roundoff errors are not generally magnified. In fact, the Newton­
Cotes closed formulae have positive coefficients for n ~ 8.

In practice, the nodal tabulation of f(x) in [a, b] may not permit the
use of the composite Simpson's rule because the number of net points,
N + I, is even. That is, the uniformly spaced points are Xi = Xo + jh,
such that Xo = a, XN = b.

In this case we could use the closed formula

fa+3h 3h
a f(x) dx = '8 [f(a) + 3f(a + h) + 3f(a + 2h) + f(a + 3h)] + £4'

with

a < g < a + 3h.
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(12)

The remaining integral

fb f(x) dx
a+3h

can then be evaluated by the composite Simpson's rule.
The error term £4 is comparable to the error term

This illustrates the general principle of forming composite rules with
simple formulae of comparable accuracy.

5.1. Periodic Functions and the Trapezoidal Rule

Experience has shown that if f(x) is periodic, i.e., f(x + L) = f(x),
the formula for the integral over a period,

i
L L N-1 . L

o f(x) dx ~ N j~ f(x j ), x j = jh, h = N'

is remarkably accurate. One possible explanation is that (12) arises from
the composition of formulae having an arbitrarily high degree of precision.
That is, from the Euler-Maclaurin summation formula (4.22) of Chapter 6
(also see Problem 4.7 of Chapter 6) for p = 1,

f
X O +h h

Xo f(x) dx = h.f(xo) + 2 [f(X1) - f(xo)]

- ~; [.f'(x 1) - .f'(xo)]

If the above is composed for all of the intervals (xi> X j +1) where
o ::; j ::; N - 1, we find that the terms in brackets cancel in the interior
for any function f(x), but also cancel at Xo and X N since f(x) is periodic.

We have, in fact,

THEOREM 1. lff(x) E C 2m + 2 [0, L] andf(x) is L-periodic, then the composite
trapezoidal rule, (12), has the error

i
L L

eN == 0 f(x) dx - N [tf(xo) + f(x 1) + ... + f(XN-1) + tf(xN)]

where
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with some t such that 0 ~ t ~ L, and with a constant Cm that is in­
dependent of Nand f(x).

Proof Note the central difference integration formula that is derived
in Problem 1.5,

fX
f + 1 (d h ( ( 2 2,fix) X = 2 It +fi+l) + hrl oJi + oJj+l) + ...

Xf

+ hrm(02mji + 02mlt+l) + Cmh2m +3j<2m+2)(tJ.

Add the formulae for each interval (x;, x;+ I), 0 ~ j ~ N - l. The
difference terms contribute nothing to this sum. That is, with the notation

</;; == tit + 1t+1 + ... + It+N-I + tlt+N'

the integral becomes

fX

N

f(x) dx = h[</;o + 2r102</;0 + 2r204 </;0 + ... + 2rm02m</;0]
XQ

N-I

+ h2m +3 Cm 2: j<2m+2)(t;).
;= 0

But it is easy to see from the periodicity of f(x) that
N-I

</;; = 2: It+s = </;p
s= 0

for all integers p. Hence, in particular,

02k</;0 = 0 for all integers k ~ I.

Therefore, by Lemma l.l and the definition of h in (12),

(13) fX
N
f(x) dx = h[tfo + f1 + f2 + ... + fN-I + tfN]

xQ

N-I

+ h2m +3 Cm 2: j<2m+2)(t,)
;=0

= h[tfo + fl + /2 + .... + fN-I + tfN]

+ h2m +2LCmj<2m+2)(t), 0 ~ t ~ L. •

5.2. Convergence for Continuous Functions

In the event that the function f(x) is merely continuous (or piecewise
continuous, with jump discontinuities), we can still prove convergence of
composite quadrature formulae that have non-negative coefficients and
degree of precision s > 0, as in

THEOREM 2. With the notation of2 (a, b, and c), let
m

(14) Sm.n{.f} == 2: S~~n{.f},
;=1
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where

(I 5)

NUMERICAL INTEGRATION

SmU,Jn{j} == ~ U) /',( + kh)L..(Xn,kJ'Yi- 1 •
k=O

[Ch.7]

If f(x) is continuous in [a, b], (X~:k :2: 0 and if S~~n has degree ofprecision s
(i.e.,

S~~n{g} = fi gW dt
Yj - 1

for get) == tv, 0 ~ p ~ s), then

lim Sm. n{f} = fb f(x) dx.
m-+oo a

Proof As m tends to infinity the closed intervals [Yi -1> YJ] become
arbitrarily small. Hence given any E > 0 there is an M such that if m :2: M
there exist polynomials {PiiJ(x)} for j = 1, 2, . , " m, of degree at most s,
such that

Now

max If(x) - p~iJ(x)1 ~ E
lI j _ 1 '5X5Y j

for j = 1,2, ... ,m.

(16) IL:i_. f(x) dx - S~:n{nl ~ IL:i_. f(x) dx - L:i_. PiJ)(x) dxl

+ I{i_. Pii)(X) dx - S;';~n{nl

~ EIYi - Yi-ll + IS~~n{Pii) - nl
The fact that S:,{!n has degree of precision s was used to obtain the last

term on the right-hand side.
The fact that S:,{!n{g} is exact for get) identically constant and that

(X~:k :2: 0, implies that

Hence (16) yields

I{i_. f(x) dx - S~)n{nl ~ 2EIYi - Yi-ll·

Therefore,

IJ: f(x) dx - Sm, n{!}1 ~ 2Elb - al·

By picking p~iJ(x) == fCti), where t i == (Yi-l + yJ/2, we find the

•
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COROLLARY. Under the hypothesis of Theorem 2,
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If f(x) dx - Sm.n{f}! ::; 21b - alw(f; 8),

where w is the modulus of continuity and 8 == max IYi-1 - YJI/2. •
i

We leave to Problems 8 and 9 the formulation of generalizations of

Theorem 2.

PROBLEMS, SECTION 5

1. At what interval in x and to how many decimal places must f(x) be
5

tabulated in order to evaluate 10 f(x) dx correctly to six decimal places by

using:
(a) composite trapezoidal rule,
(b) composite Simpson's rule, for f(x) == cos x?
2. The composite midpoint rule is based on the single node, open Newton­

Cotes formula with error, £,:

f
a+2h

a f(x) dx == 2hf(a + h) + £1'

Find the expression for the composite formula and error term when the
integral to be evaluated is

f
a + 2mn

a f(x) dx,
b - a

m=--'
2h

3. Answer Problem I for the composite midpoint rule (see Problem 2).
4*. Use the notation of Problem 1.5 to derive the composite trapezoidal rule

with end corrections:

r: f(x) dx = h[(-!fo + f, + ... + fN-l + tfN)

+ k~' rk(dN,k - dO'k)] + Cm(XN - xo)h2m +2f(2m+2'(O,

where

and

[Hint: Use equation (3.16a) of Chapter 6 to get

82"f, = tJ.2k-1f, -k +, - tJ.2k - 'f, -k,
whence

N-1
L 82kf, = tJ. 2k - 1fN_k - tJ. 2k - 1f1_k']

5=1
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Since the coefficients of {fi} which occur in t,.nlo are the alternating binomial

coefficients (-l)n-je), we see that
k

dj,k = 2: Cp(klfi+p,
p= -k

where
p = 1,2,.", k.]

5.* Given the integer N > 0, let h = IjN, Xo = 0, Xj = Xo + jh;

tN == h(!fo + 11 + ... + IN-l + tiN)'

(a) From Problem 4, verify that if I(x) E C 2m + 2,

eN == Jo
1
/(X) dx - tN = j~l ajh

2j + fJ(h 2m
+

2).

[Hint: Expand the values Ip and IN + p, which appear in the end corrections,
by Taylor's series about Xo and XN respectively. Collect terms with like
powers of h.]

(b) Let
SN == h[/y, + 1% + ' . , + f(2N - 1)12].

SN is the composite midpoint rule for evaluating

fX
N

I(x) dx
Xo

(with intervals hj2-see Problem 2). Verify that

t2N = ytN + SN),
and

e2N == fo1/(X) dx - t2N = j~l aj(~rj + fJ(h 2m
+ 2).

(c) Show that

m

= 2: bjh2j + fJ(h 2m + 2),
j=2

and b, = 0 if a, = O.
Call t~~ == (4t 2 N - tN )j3 the first extrapolation of the trapezoidal rule,

6.* Romberg's method: With the notation of Problem 5, consider the
sequence of subdivisions obtained by halving, i.e., N = I, 2, 4, ... , 2", ....
Define

t~~) == t2 k

(1) 4t~~) - t~~)-1
t2 k == 3

k = 0, 1,2",,;

k = 1,2,3, ... ;

k = 2,3,4, ... ;

k = p, p + I, ....
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if p S; m.

I~f.) is called the plh extrapolation of the trapezoidal rule. Show, by induction
on p, that for fixed p :2: 0,

1Io f(x) dx - t~~) = @(2 - k(2p + 2»

Romberg's method consists in successively constructing the rows of the
triangular matrix R: (rk. p), with rk. p == d~). If ap '" 0, f(x) E C 2m +2[ - a,
I + a] for some a > 0, and 0 < P s; m, then, by (c), the entries in the pth

1

column converge more rapidly than those of the (p - I)st column toLf(x) dx.

In Romberg's method we may achieve the degree of precision of the end
correction formula and avoId the evaluation of f(x) outside of the interval
[xo, XN]. In practice, the rows of R may be successively computed until the
elements in some column have" converged" enough.

7.* Prove that the pth extrapolation of the trapezoidal rule is a quadrature
formula with non-negative weights and degree of precision at least 2p + I.

That is, to approximate (f(x) dx,

2 k

t ~~) _ 2 - k L c'!!3f(j2 - k),
j=O

where
2'

L ci:.l = 2\
1=0

ci:.l :2: O.

8.* State and prove a generalization of Theorem 2, to cover the case where
f(x) is piecewise continuous (with only a finite number of jump discontinuities)
and where the quadrature formula is not based on uniformly spaced nodes.

9.* Under the conditions of Theorem 2, if f(x) has a continuous derivative
of order r, show that

(a) If r S; S,

ar

2[b - al "I w(pr); a),
r.

for Yj-1 S; X S; yd

where a = max IY1-1 - YII/2.
1

[Hint: Pick

Pij)(x) = f(;) + {(l)(;)(x - 0 + ... + pr)\;I) (x - ;y,
r.

with ;1 (YI -1 + YJ/2. Verify that

ar
If(x) - Pij)(x) 1 S; "I w(f"); a)

r.
(b) If r > S,

If f(x) dx - Sm. nUll S;

where K == max Ip'+1)(x)l.
x
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6. SINGULAR INTEGRALS; DISCONTINUOUS INTEGRANDS

In deriving most of the quadrature formulae of this chapter and the
appropriate error formulae, it was either stated or implied that the inte­
grand and various of its higher order derivatives were continuous. (An
exception is found in the weighted quadrature formulae where the weight
need not be continuous.) If these conditions are violated, a quadrature
method may still yield a good approximation but the error will, in general,
be much larger than predicted. In less favorable circumstances, of course,
the approximation will be meaningless. There are a number of cases of
rather frequent occurrence in which such difficulties can be anticipated and
satisfactorily resolved.

6.1. Finite Jump Discontinuities

If the integrand has a finite jump discontinuity at a known point (or
any finite number of them), say at x = c in the interval of integration,
then we write

(I) f f(x) dx = rf(x) dx + f f(x) dx.

Now if fez) has sufficiently many continuous derivatives in [a, c] and
[c, b] the two integrals on the right-hand side may be accurately approxi­
mated by any of a variety of quadrature formulae. This simple procedure
can be considered as an application of a special composite rule, not
necessarily one with equal spacing.

If the integrand is continuous but has a discontinuity in some low order
derivative, a similar procedure can be employed. For example, if/ex) = Ixl
then rex) has a finite jump at x = O. In this case, a composite rule with
x = 0 as an endpoint of a subinterval could be used.

6.2. Infinite Integrand

We consider the case in whichf(x) becomes infinite as x -+ a, the lower
limit of integration. The upper limit can be similarly treated and an interior
discontinuity, say at x = c, is reduced to the endpoint cases by using (I).
We assume for the present that the integral is of the form

(2)
_ fb g(x)

I = a (x _ a)9 dx, o < 8 < 1,

where g(x) has continuous derivatives in [a, b] of "sufficiently high"
order. The restriction on 8 insures that the integral in (2) exists for rather
general functions g(x) [i.e., it is not required that g(a) = 0].
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(3)

(4)

(5)

METHOD I. For any positive number £ in 0 < £ < b - a we write (2) as
I = II + 12 where

- fa+< g(x) I = fb g(X).
II = a (X _ a)9 dx, 2 - ( )9a+< X - a

The range of integration in 12 is now such that the integrand has derivatives
of high order there. Thus, 12 can be approximated by many of the standard
procedures previously described, and in principle the error in this approxi­
mation can be estimated. It remains to approximate II to within a known
error.

By Taylor's theorem we have for X ?: a:

(x a)2
g(x) = g(a) + (x - a)g'(a) + ;! g"(a) + ...

(X a)S (x a)S+ 1+ - g(S)(a) + - g(s+ 1)(g(X)).
s! (s + I)!

Use this expansion in II and perform the indicated integrations to find

I = £1-9 [g(a) + ~ g'(a) + ~ g"(a) + ... + ~ g(S)(a) ]
1 1-8 1!2-8 2!3-8 s!s+I-8

1 fa+<+ , (x - a)s+1-9g(S+1)(g(x)) dx.
(s + 1). a

If the first (bracketed) term on the right in (4) is used as the approximation
to II we obtain the error bound

ES+ 2 - 6

[£(1)[ :::; (s + I)! (s + 2 _ 8) a,,~~~+< [g(s+ 1)WI·

For fixed s this bound is clearly an increasing function of £. Or for fixed
£ < 1, if the derivatives of g(S)(x) do not grow too fast with s it will also
be a decreasing function of s.

If the error in evaluating 12 is £(2) we must now determine conditions
on £, s and the quadrature formula such that [£<1)1 + 1£(2)[ < 0, where 0
is the maximum permissible error in approximating I. Of course, the
parameters should be chosen such that 1£(1)1 ~ 1£(2)1 since then some
cancellation of error may take place. For definiteness, let us assume that
12 is approximated by a composite rule using m subintervals and a closed
(n + I)-point Newton-Cotes quadrature formula with equal spacing over
each subinterval. Furthermore, we will assume n to be even. Then from
(5.9) we must have

£(2) = mMn hn+3 d
n

+
2

g(x) I ' a + € < g < b;
(n + 2)! dxn +2 (x - a)9 x=~
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(6)

where h = (b - a - E)/(mn). From this expression we obtain the bound

mM (b - a)n+3 Id
n
+

2
[ g(x) ]1£(2) < n __ max __ ,

I I - (n + 2)! mn a+E,;x,;b dxn+2 (x - a)O

in which the coefficient of the derivative term is independent of E. If the
derivatives entering into (5) and (6) can be estimated, say

Ig(S+l)(t)1 ::; M(S+l),

and

max
a+ESxsb

then for fixed s, n, and 0 we can find E and m such that

5+2-0 (b )n+3 0E M(s+l) = mK ~ N(n+2)(E) =_.
(s + I)! (s + 2 - (J) n mn 2

The bound N(n+2)(E) will, in general, become large for small E and so
may imply an unusually large m. Thus, we consider an alternative procedure
obtained by modifying these considerations.

METHOD II.

(7a)

where

Let us rewrite the Taylor expansion of g(x) as

(x a)5+ 1
g(x) = G.(x) + (s-+ I)! g(S+l)(t(x»,

(8)

(x - a)S
(7b) Gs(x) == g(a) + (x - a)g'(a) + ... + , g(S)(a).

s.
Now the integral (2) is identically represented by

I = fb g(x) - Gix) dx + fb Gix) dx == IN + I .
a (x - a)O a (x - a)O E

The second integral, IE' can be evaluated explicitly, just as was the first
part of 11 in (4), and we have

(9) IE = (b _ a)1-0[ g(a) + (b - a) g'(a) + ...
1 - (J I! 2 - (J

(b - a)S g(S)(a) ]
+ s! s + 1 - (J •

However, the first integral in (8), IN, no longer has a singular integrand
at x = a so it can be approximated by many of the standard quadrature
formulae. In fact, the first s derivatives of

g(x) - G.(x)
(x - a)O
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are finite at x = a and so the error in any closed formula with 11 + 2 :<:::: s
is bounded. For example, in a composite formula employing Simpson's
rule to approximate IN the error becomes, from (5.9) with n = 2:

E(N) = _ m h5~ [g(X) - Gs(X)]
90 dx4 (x - a)8 x=~

where

b-a
h == 2Jil' and a < g < b.

In order that the indicated derivative remain bounded as g-+ a, it is
sufficient that s = 4. Of course, if 0 :<:::: s < 4 the quadrature formula will
still yield an accurate approximation (see Theorem 5.1) but the above
form for the error cannot be used.

METHOD III. As a third alternative, which is restricted to singular
integrands of the form (2), we consider the change of variable

(x - a) = t rP dx = </>t rP - 1dt.

(10)

(I I)

Then (2) becomes, if </> = k/(l - 8) for k any positive integer,

f
<b - a)l/¢

I=</> 0 g(a+trP)tk-1dt.

Now, SInce k ;::0: I, the integrand of the above integral is continuous at
t = O. Thus numerical quadrature formulae may be directly applied to
(I 0). In fact, if 8 = q/p, i.e., rational, and k = p - q, the integrand is
smooth as long as g is smooth.

Methods I and II are applicable to other types of singularities. In fact,
if the integral is of the form

f g(x)S(x) dx

where Sea) is infinite, Methods I and II may be applied if integrals of the
form

(12) f
U+<

U (x - a)kS(x) dx, k = 0, I, _. _, s,

can be explicitly evaluated. For example, if Sex) == In (x - a), we can
employ these methods.

METHOD IV. In many cases of interest the singular part of the integrand,
i.e., Sex) in (II), is of one sign throughout [a, b]. Then, in principle, the
weighted quadrature methods outlined in Section 4 can be employed. In
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particular, the weighted Gaussian quadrature formulae are frequently
very effective for evaluating such singular integrals. Of course, such appli­
cations require the determination of the polynomials orthogonal over
[a, b] with respect to the weight S(x). For many special forms of S(x)
these polynomials are known; for instance, in the case

(13) S(x) == (x - a)-'h(b - x)-'h,

the Gauss-Chebyshev formula derived in Section 4.1 is the relevant
scheme. However, even if the required polynomials are not well known,
it may be of value to construct them and to devise the appropriate quadra­
ture formula. This is especially true if many integrals containing the same
singular part are to be evaluated.

6.3. Infinite Integration Limits

It is clear that an integral of the form

(14) 1= f'" g(x) dx

cannot, in general, be accurately approximated by the standard quadrature
methods (which employ a finite number of finite subintervals). The usual
approach to such problems is to write again I = II + 12 where now

(15) II == f g(x) dx, 12 == f" g(x) dx.

Then if b is "sufficiently large," it may be possible by analytical means
to show that 12 is negligible. Or alternatively, g(x) may be approximated
for x > b by some function from which 12 is then approximated; in this
case good error estimates are usually difficult to obtain. Another procedure,
too frequently disregarded, is to reduce 12 to an integral over a finite
interval.

That is, introduce the change of variable x = Iff and obtain

(16)

Here we have introduced the function

(17) /W == g(~~f).

Now if /(0 is not singular at f = 0, then 12 may be evaluated, in the form
(16), by standard quadrature methods. If /W is singular at f = 0, then
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the evaluation of /2 might be reduced to the previous case of Subsection
6.2.

In fact, a sufficient condition for /2 defined in (15) to converge (absolute­
ly) is that g(x) be continuous and that

(18) lim Xl +Eg(x) = 0
x~'"

for some E > O.

(19a)

This, by (17), is equivalent to

lim e-<fW = O.
~~o

Now this condition will be satisfied if fW behaves at ~ = 0 like ~-9

where 8 < 1 - E. If E < 1, the integral in (16) may have a singularity
of the form indicated in (2).

Finally, we point out that special weighted Gaussian quadrature formulae
may be effective for various integrals over infinite intervals. In particular,
the orthogonal polynomials over [-00,00] with respect to the weight func­
tion e- x2 are well known. They are called Hermite polynomials, Hn(x),
and they can be shown to be given by (see Problem 3.18 in Chapter 5)

Hn(x) = (_l)nex
2 :;n (e- X2

).

It is not difficult to deduce that

(19b)

and hence by induction, since Ho(x) = 1, that

(19c)

By repeatedly using integration by parts we can show that the normalized
Hermite polynomials are

(19d)

(20a)

The formulae based on the Hn(x) are called Gauss-Hermite quadrature
formulae and are used to approximate integrals of the general form

t"'", e- X2g(x) dx.

For integrals over [0,00], the Laguerre polynomials, Ln(x), defined as

dn

Ln(x) = (-l)ne~ dxn (xne- X
),



352 NUMERICAL INTEGRAnON [Ch.7]

are sometimes useful. They are orthogonal over [0,00] with respect to the
weight e- X

• It can be shown that

(20b)

and that the normalized Laguerre polynomials are O(n!)Ln(x). The
Gauss-Laguerre quadrature formulae are based on these polynomials and
are used to approximate integrals of the form

PROBLEMS, SECTION 6

1. Evaluate
1

fa vi - x 2 dx

by Method II, using the composite Simpson's rule, and obtain four-decimal­
place accuracy. What is the largest interval h that is permissible?

2. Use Method III and the composite Simpson's rule to evaluate

fa lVI - x 2 dx

correctly to four decimal places. What is the largest interval h that is per­
missible?

3. Substitute the new variable x = cos 8 and use the composite Simpson's
rule to evaluate

1

fa vi - x 2 dx

correctly to four decimal places. What is the largest permissible interval
h = M?

4. Verify the properties of the Hermite and Laguerre polynomials given in
the text [see equations (19) and (20)].

7. MULTIPLE INTEGRALS

The problem of efficiently approximating multiple integrals numerically
has not been completely solved. An obvious source of complexity is the
variety of domains of integration in higher dimensions compared to just
intervals in our study of one dimensional integrals. However, even if the
domain is restricted, say to the unit cube, then the resulting problem is
still not in a satisfactory state. A fundamental difficulty is essentially the
great degree of freedom in locating the nodes or equivalently in the large
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number of, say, uniformly spaced nodes required to get reasonable
accuracy.

One of the basic methods for approximating multiple integrals is, as
in the one dimensional case, to integrate a polynomial approximation
of the integrand. But since interpolation theory in higher dimensions is
not well developed, we again have difficulty in devising practical schemes.
Generalizations of the method of undetermined coefficients offer many
possibilities, but only a few of these have been exploited for multiple
integrals. Finally, we point out that the difficulties increase as the dimen­
sion of the domain of integration increases. This seems related to the
fact that the ratio of the surface area to the volume, for an n-dimensional
unit cube increases with n. We shall consider numerical methods for
evaluating double integrals for the most part. Many of the procedures
extend in an obvious way to higher dimensions, with perhaps a subsequent
loss in efficiency or accuracy. Approximation methods for double integrals
are frequently called cubature formulae since they approximate the volume
associated with the integrand.

In general, the problem is to approximate an integral of the form

(1) J{f} == {f(X)dx,

where x = (Xl> ... , x p ) and dx = dx , · .. dxp are a point and a volume
element in the p-dimensional space, respectively, and D is a domain in
this space. The approximations considered are all to be of the form

(2)
N

IN{f} == L Avf(xv).
v=l

Here the N points, xv, are the nodes of the formula and the A v are the
coefficients. We say that formula (2) has degree of precision m as an
approximation to the integral (I) if J{P(x)} = IN{P(x)} for all poly­
nomials, P(x), in x of degreet at most m but not for some polynomial
of degree m + I.

We cannot proceed as in Section I to study general interpolatory
schemes since the general interpolation problem is not well posed in
higher dimensions. However, if the nodes are specially chosen, say as in
Section 6 of Chapter 6, then mterpolation can be used and we consider
such cases first.

t We say P(x) is of degree at most m in x, if P(x) is a polynomial in (x" ... , xp)
of the form

P(x) == L CI,12 Ipxi'X~2... x:;'.
O~jl +12 + +fp;!;m
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7.1. The Use of Interpolation Polynomials

Let the integral in (1) be over a plane domain, say

(3) J{f} == I If(x, y) dx dy.
D

Let us pick as nodes the N = (m + I)(n + 1) distinct points: (x;, Yj),
i = 0, 1, ... , m; j = 0,1, ... , n; where the m + 1 distinct numbers {xt }

and n + 1 distinct numbers {Yj} are, at present, arbitrary. Then a poly­
nomial P(x, y), of degree m in x and n in Y which is equal to f(x, y) at
these N nodes is given by (6.3) in Chapter 6. We use this polynomial to
define the cubature formula

(4a) IN{f} == I I P(x, y) dx dy
D

Here we have introduced the coefficients, A ij , by the definitions

(4b) A tj = I I X m. t(X) Yn . t(Y) dx dy,
D

i = 0, 1, ... , m, j = 0, I, ... , n;

and the Lagrange interpolation coefficients X m • i(X) and Yn . t(Y) are defined
in (6.2) of Chapter 6.

While this procedure is formally valid for very general domains, D,
it is only practical when the integrals in (4b) can be evaluated explicitly.
A particularly simple and important special case is that of a rectangular
domain,

D: {x, y I a ::; x ::; b; c ::; y ::; d}.

In this case we have

and the quantities (Xt and f3J are just the coefficients for appropriate one
dimensional interpolatory quadrature formulae. Furthermore, if the num­
bers Xi are equally spaced in [a, b], and the Yj are equally spaced in [c, d],
then the (Xi and f3J are the coefficients in the (m + I)-point and (n + 1)­
point Newton-Cotes quadrature formulae respectively (see Problem 1).

The error in the cubature formula (4) as an approximation to the integral
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(3) is, upon recalling the expression (6.7c) of Chapter 6 for the error in the
interpolation polynomial,

(6) EN{f} == ff [f(x, y) - P(x, y)] dx dy
D

= ff R(x, y) dx dy
D

ff{ Wm(X) (0 )m+ 1
= (m + I)! ox fWx), y)

D

wn(y) (0)n+1
+ (n + 1)! oy f(x, 1)(Y»

_ wm(x)wn(y) (~)m+1(~)n+1
(m + I)! (n + I)! ox oy

x f(f(x), 1)'(y»} dx dy.

We deduce from this that the formula (4) has degree of precision at least
min (m, n). For instance, if as is frequently the case, we take m = n,
then by using N = (n + 1)2 nodes, a formula with degree of precision
at least n is obtained.

However, a formula using only M = -t(n + I)(n + 2) nodes can be
devised which also has degree of precision at least n. For this purpose,
we integrate the interpolation polynomial Pn(x, y), given by (6.10) of
Chapter 6, over D. The general result is somewhat cumbersome to write
down in the form (2). First, divided differences of the type f[xo, ... , Xk;
Yo, ... , Yf] must be expanded as linear combinations of the function
values, f(x" y~), and then all terms containing such function values
must be combined to determine the coefficients, B.~. For small values of n,
say n :5; 3, this is easily done (see Problem 2). However, for equally
spaced Xk and Yf difference operators may be employed to simplify the
notation and even the calculations. We indicate the general formula
obtained in this manner as

(7) KM{f}= ffPn(x, y) dx dy
D

n n-k

= L L f[xo,···, Xk; Yo,···, Yf]
k=O f=O

x ffWk_1(X)wf_1(Y) dx dy

D
n n-v

L L B.J(x., y~).
• =0 ~=o
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Figure la Figure Ib

The error in this formula is easily obtained from (6.11) of Chapter 6.
We only wish to observe that it implies that (7) has degree of precision
at least n.

The nodes that enter into this formula are a subset of the rectangular
array of (n + 1)2 points (xt> Yi)' i, j = 0, I, ... , n. If the numbers Xl and
Yi are monotonicaIly ordered, say Xo < Xl < X 2 < .. " then the nodes in
(7) are those on and below the main diagonal of a schematic n + 1 by
n + 1 matrix of dots (see Figure la). However, any other selection of
points obtained by permuting rows or columns could also be employed.
This just corresponds to a renumbering of the Xl and Yi> say as in
Figure 1b.

Both of the interpolatory cubature formulae (4) and (7) are easily
extended to integrals in higher dimensions. As the dimension increases,
there is a greater saving in number of nodes in extensions of KM{f}
formulae compared to IN{f} formulae while maintaining precision of
degree at least n. Thus, in the plane, IN{f} requires N = (n + 1)2 nodes and
KM{f} requires M = 1(n + I)(n + 2) nodes for each to have degree of
precision at least n. The ratio of the number of nodes required is

M n + 2 1
N = 2(n + I) ::::: 2'

In three dimensions the ratio becomes

for large n.

M (n + 1)(n2 + 5n + 6)/6 I
N = (n + 1)a ::::: 6' for large n.

7.2. Undetermined Coefficients (and Nodes)

The general formula (2) can be written for double integrals as

(8)
N

IN{f} = L Avf(xv, Yv).
v= 1
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We note that there are 3N parameters which determine such a scheme;
the N coefficients, A v, and the 2N coordinates of the nodes, (xv, Yv). As an
approximation to the integral (3) the cubature formula (8) will have degree
of precision at least n if for non-negative integers rand q:

(9) ~1 Avx:yv" = JJxTyq dx dy,
- D

r + q = 0, I, ... , n.

(lOa)

There are t(n + I)(n + 2) conditions imposed in (9). Hence, there are at
least as many free parameters in (8) as there are conditions in (9) if

N> (n + I)(n + 2) ~ n2

- 6 ~ 6

or

(lOb) n =:; 1-(vi I + 24N - 3) z vi6N.

We note from (lOa) that the number of nodes for which a degree of
precision n might possibly be obtained is about t the number used in the
cubature formula (7) and about t the number used in (4).

This procedure is practical only if the integrals on the right-hand side
of the equations in (9) can be evaluated explicitly (or perhaps if they can
be accurately approximated with ease). This is, of course, the case if D
is a rectangle or, in fact, any polygonal domain. However, the resulting
system of -Hn + I)(n + 2) non-linear equations in 3N unknowns must also
have a real solution with nodes in D. There are many special cases in
which the procedure can be employed successfully. Let us consider, for
example, the simple case of one node, N = I. Then from (l0) we find
that n = I and there are only three equations in (9), namely,

A 1 = Jfdx dy, A 1x 1 = fJx dx dy,
D D

Thus we find that the coefficient, A 1, is the area of the domain D and that
the node, (Xl> Y1), is at the centroid of D. The resulting cubature formula

is exact for all linear integrands in (3). This derivation and formula trivially
generalize to any number of dimensions.

The next simplest case of only two nodes, N = 2, yields Il = 2 by (10),
and hence a system of six non-linear algebraic equations of the form (9)
must be solved. However, it is easy to show that this system does not
always have a solution (see Problem 5). Thus we cannot, in general,
determine a two point cubature formula with degree of precision two.
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For domains which have symmetry about the x- and y-axes, the analysis
of the system (9) can be simplified if the nodes are required to be sym­
metrically placed and have equal coefficients at corresponding locations.
In this way various cubature schemes for integration over rectangles and
circles may easily be derived.

When a formula of the form (8) satisfies the conditions (9), and hence
has degree of precision n or more, an expression for the error can be
derived by analogy with the proof of Theorem 0.1. For this purpose we
require that the integrand function, f(x, y), have continuous partial
derivatives of all orders up to at least the (n + I)st. Then we can expand
the integrand about some point (xo, Yo) into a finite Taylor's series with
remainder in the form

f(x, y) = Tn(x, y) + Rn(x, y).

Here Tn(x, y) is a polynomial of degree at most nand Rn(x, y) is the
known remainder which can be written symbolically as

I [ 8 8]n+1
Rn(x, y) = (n + I)! (x - xo) 8x + (y - Yo) 8y f(f,7]).

The error in the cubature formula is then

EN{f} == J{f} - IN{f}

= J{Tn} + J{Rn} - IN{Tn} - IN{Rn}

= J{Rn} - IN{Rn}.

Here we have used the fact that since the degree of precision is n,
J{Tn} = IN{Tn}. In somewhat expanded form this error expression is

N

X f(f, 7]) dx dy - L Av
v==l

x [(Xv - xo) :x + (Yv - Yo) :yr+
1

f(f" 7]v)}.

The integrand in (II) is, of course, just symbolic since (~, 7]) depends upon
(x, y) for purposes of the integration but not for the differentiations.
Note that if the maximum distance from (xo, Yo) to any point in D or any
node (xv, Yv) is h then the error satisfies EN{f} = (!)(hn+ 1). In particular,
if the coefficients Av are all non-negative, so that

v~ Av = JJdx dy,
D
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and all (n + I)st order derivatives of f(x, y) are bounded by M n + b say,
then with h as above we deduce from (I I) that

(12) (2h)n+ 1 IIIEN{f} I :::; (n + I)! 2Mn + 1 dx dy.
D

This estimate holds for any cubature formula which has non-negative
coefficients and degree ofprecision n 2:: 0, provided that the integrand has
the appropriate smoothness.

7.3. Separation of Variables

Perhaps the most obvious way to devise approximations for multiple
integrals is by the repeated use of one dimensional quadrature formulae.
The domain, D, must be somewhat special, or else it must be the union of
special subdomains, in order for us to apply this method of separation of
variables. In two dimensions the restriction is that vertical (or horizontal)
lines have at most one segment in common with D. Integrals of the form
(3) can then be written as

(13) fb i1l2(X)
J{f} = f(x, y) dy dx,

a 1I,(x)

where the segment Yl(X) :::; Y :::; Y2(X) is in D for all x in [a, b]. If we intro­
duce for each f(x, y) a function of the single variable x by the definition

(l4a)
i

1l2 (X)

G(f; x) = f(x, y) dy,
1I,(X)

a:::; x:::; b,

(l4b)

then the double integral (13) becomes

J{f} = K{G} == f G(f; x) dx.

Now let us approximate the integral K{G} by some n-point quadrature
formula with coefficients aj and nodes, xi' which all lie in [a, b], say

(15) Kn{G} = i ap(f; Xj)'
j= 1

The numbers G(f; xJ which are required to evaluate this formula are given
in (l4a) as single integrals and hence can be approximated by applying
other one dimensional quadrature formulae. For ease of presentation we
use an m-point formula for each j and write the approximations to the
G(f; Xj) as

(16) Gm(f; Xj) == ~ f3jd(x j, Yjk),
k=l

j = 1,2, ... , n.
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Here the coefficients f3JI. and nodes Yik must, in general, depend upon the
value x J since the interval of integration, [Y1(X), Y2(X)] in (l4a) depends
upon x. By using (16) the value Kn{G} of (15) finally yields the cubature
formula

(17) Jmn{f} = i ~ CXjf3jJ.f(xj, Yjk)'
j~1 k= 1

ThiS formula employs mn nodes and is somewhat similar to that given
by (4a) with coefficients (5). If the domain were a rectangle, then the same
m-point formula could reasonably be used in (16) for all j. Then in (17)
we could replace I3JIc and Yjk by 13k and Yk, respectively, to get formal
agreement with (4a) and (5).

The error in the cubature formula (17) is defined as

Let us introduce for the quadrature errors in (15) and (16) the notation:

(18)
j = 1,2, ... , n.

Then from (14b) we have

(19) Emn{f} = K{G} - Kn{G} + Kn{G} - Jmn{f}

n

= en{G} + L CXj[G(f; Xj) - Gm(f; xJ]
j=1

= en{G} + i cxjemj{f}.
j =1

It is interesting to note that when the degrees of precision of the quadrature
form ulae (15) and (16) are known we do not, in general, know the degree
of precision of the cubature formula (17). This is because G(f; x) is not
generally a polynomial in x when f(x, y) is a polynomial. In fact, it is
easy to see that Jmn{f} may not even be exact for constant integrands
when the quadrature formulae employed have arbitrarily high degrees of
precision.

If the bounding curves Y1(X) and Y2(X) of D are polynomials of degree at
most s :2: 0, then lower bounds can be given for the degree of precision.
If f(x, y) is a polynomial of degree p then, by (l4a), G(f; x) is a polynomial
of degree at most s(p + I). So if (15) has degree of precision s(p + I)
and (16) has degree of precision p then Jmn{f} has degree of precision at
least p. Of course, if the domain is a rectangle, i.e., s = 0, then Jmn{f}
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has a degree of precision which is at least the minimum of those for (15)
and (16).

From this result it follows that cubature formulae of high degree of
precision with relatively few nodes may be devised if the domain of inte­
gration is a rectangle. To get degree of precision n in such a case we use
[en + l)j2]-point Gaussian quadrature formulae as the two relevant
schemes for (15) and (16). It is here assumed that n is odd and the total
number of nodes required is then only iCn + 1)2. For large values of n
this is about half the number of points that were required in the efficient
interpolation quadrature scheme (7) with the same degree of precision
(and about t the number required in Subsection 7.2 by the method of
undetermined coefficients). However, none of the nodes in the Gaussian
scheme can be on the boundary of the domain and hence its usefulness in
composite cubature formulae is reduced.

The extension to higher dimensions of the method of separation of
variables is fairly clear. The restrictions on the domain are somewhat
complicated, but, for instance, it is sufficient for the domain to be convex.
In particular, for rectangular parallelopipeds, only a single one dimensional
quadrature formula need be specified for each dimension. If the appro­
priate Gaussian schemes are used in this case, we obtain degree of precision
n (odd) by using only [en + l)j2]P nodes in p dimensions.

7.4. Composite Formulae for Multiple Integrals

Just as in the case of one dimensional integrals, it may be necessary
to decompose the integral (1) into a sum of integrals over smaller non­
overlappmg domains. That is, if D t n D j has no inner points for i =1= j and

D = D 1 U D 2 U ... U D M ,

then

(20) J{f} == Ivf(x) dx = i~ Iv/(X) dx.

If N nodes are used to calculate the integral over each of the primitive
domains D i say

N

JN{f, D t} == L ati/(x ij),

j~l

then at most MN evaluations of f(x) are used in (20). We say at most
because a node x of Dt may also be a node of Dj but f(x) need only be
found once for such a node.

If the region D is a p-dimensional rectangular parallelopiped, then a
corner (or vertex) node of Dt may also occur in as many as 2P - I
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adjoining cells D;. Hence the amount of work necessary to evaluate the
integrand may be minimized by selecting as many nodes as possible to be
vertex nodes, then edge nodes, then face nodes, etc. For example, in two
dimensions, the scheme of Figure 1b is more efficient than the scheme of
Figure la.

If the cubature formula used in Db IN{f; D i }, has degree of precision n,
and has non-negative weights {ai;}, then just as in the derivation of (12),

(21) Ii !!... I (ph)n+1 i
I(x) dx -L: a;;/(xiJ ~ ( 1),2Mn + 1 dx,

v, 1=1 n +. Vj

when D i is contained in a cube of side 2h, and

I
on+1 I

OX/I .. . [)X/. I(x) ~ M n + 1

p

for all x in D and all {A} satisfying L Jk = n + 1. With these conventions,
k~1

it is then a simple matter to derive the fundamental estimate of the error
in the composite cubature formula,

1

M. I (ph)n+ 1 r
(22) J{f} - i~ IN{f, Di } ~ (n + I)! 2Mn + 1 Jv dx.

PROBLEMS, SECTION 7

1. Devise the cubature schemes indicated by (4a) and (5) for equally spaced
nodes when (I) m = n = 0; (2) m = 0, n = 1; (3) m = n = 1; (4) m = n = 2.
Case (4) is the generalization of Simpson's rule and (3) is the generalization
of the trapezoidal rule to integrals over rectangles.

2. Determine the general cubature schemes for n = 0, I, 2 determined by
integrating Pn(x, y), given in (6.10) of Chapter 6, over an arbitrary domain D.
Specialize these results for a rectangle a ~ x ~ b, c ~ y ~ d. Take uniform
spacing in this rectangle in each case to simplify further. (Note: These schemes
are not uniquely determined; see Figure 1.)

3. Compare the schemes (3) and (4) of Problem I to those with n = I
and n = 2, respectively, in Problem 2 by approximating the integral

fo
l
fl
2

xv9 - y2 dx dy.

Try at least two of the nodal schemes fer each case of the methods of Problem 2.
4. Determine the ratio M / N for the number of nodes required in four and

five dimensions, to extend the formulae IN{f} and K",{f} of Subsection 7.1
which have a degree of precision at least n.
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5. Consider the case N = n = 2 in the equations (9). Show that the resulting
system does not have a solution in general by considering the special case

ffx dx dy = ffy dx dy = fJxy dx dy = O.
D D D

[Hint: Introduce the notation

A1Xl = g, AiYi = TJ, Ai = 1:, ffdx dy = 1:0
D

and show that the system reduces to

gTJ(~ + 1:0 ~ 1:) = 0, e(~ + 1:0 ~ 1:) = ff x
2

dx dy,
D

TJ2(~ + 1:0 ~ 1:) = Jfy2 dx dy.]
D

6. Give the proof of (22) in detail.



8
Numerical Solution of

Ordinary Differential Equations

o. INTRODUCTION

In order to study the effectiveness of various methods for the numerical
solution of differential equation problems, we illustrate the theory for
the case of the general first order ordinary differential equation

(I a)

subject to the initial condition

(I b)

dy
dx = f(x, y),

y(a) = Yo.

It is required to find a solution, y = y(x), of the problem (I) in some
interval, say a ~ x ~ b. Under suitable restrictionst on the function
f(x, y), it is well known that a unique solution exists.

The class of methods to be discussed uses a subdivision of the interval
I == [a, b], by a finite set of distinct points

(2) f:,: Xo = a, X t + 1 = X, + ~Xt, i = 0, I, ... , N.

Finer subdivisions also playa role and are denoted by the same generic
symbolltJ.. In the present context, the set of points defining a subdivision
is frequently called a net, grid, lattice, or mesh. The quantities ~X, are called
the net spacings or mesh widths. Corresponding to each point of the net
we seek a quantity, say Uh which is to approximate Yt == Y(Xt), the exact

t For instance, existence and uniqueness of the solution are assured if f(x, y) is
bounded, continuous in x, and Lipschitz continuous with respect to y in some
sufficiently large rectangle Rc : [a ~ x ~ b, Iy - yol ~ Cl, see equation (1.5).

364
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solution at the corresponding net point. The set of values {Ui} is called a
net function. Clearly, the values {Yi} also form a net function on Ill' We use
the generic symbol {u,} to denote a net function on any subdivision.

For most of the methods treated in this chapter, the quantities {Ui}
are to be determined from a set of (usually non-algebraic) equations which
in some sense approximate the system (I); these approximating equations
are called difference equations. The natural requirements for the approxi­
mating difference equations are that for any function f(x, y) (in some
class of sufficiently often differentiable functions):

(a) They have a unique solution.
(b) Their solution, at least for "sufficiently small" net spacings, should

be "close" to the exact solution of (I).
(c) Their solution should be "effectively computable."

Property (a) is trivially satisfied by many of the difference equations to
be studied, the so-called explicit schemes. Whether or not the implicit
schemes satisfy condition (a) is determined by a study of the roots of a
sequence of equations (or systems), of the form z = g(z) (see Section 2).
In general, if ~Xi is small enough, the implicit equations have a unique
solution.

Property (b) is related to the question of the convergence, as
max ~Xi --+ 0, of {Ui} to {yJ The study of such convergence properties of

i

the difference solution shall occupy a considerable part of this chapter.
In Sections I through 3 we examine separately the convergence of each
of several special methods. In Sections 5 and 6 we give a general treatment
of convergence which includes the previous cases.

The vaguely formulated property (c) involves two important considera­
tions: (i) the number of single precision computations required; (ii) the
growth of roundoff errors in the computed difference "solution." Of
course, these two points are related since having to compensate for
rounding errors by using more significant figures usually entails additional
computations. A trivial first approximation of (i) is based on the operational
count for infinite precision arithmetic. The growth of the roundoff error
is related to the notion of stability of difference equations. The stability
theory of difference equations treated in Section 5 is based on the study
of difference equations with constant coefficients developed in Section 4.
We establish the main general theorem of this chapter in Section 5 (i.e.,
stability is equivalent to convergence for consistent methods).

There are a number of systematic ways in which one can "derive" or
rather generate difference equations that approximate or are consistent
with (:). That is, these difference equations seem to be discrete models
for the continuous problem (I). But, no matter how reasonable the
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0<(J<1.

derivation, the efficacy of such difference equations can only be determined
by checking conditions (a)-(c). In fact, in Subsection 1.4 we derive a
discrete model which seems quite reasonable, but is absolutely useless
since the growth of the roundoff error cannot be controlled (i.e., it is
unstable).

Later, in Section 5, a simple criterion is developed for recognizing when
a finite difference scheme is stable and convergent.

It should be recalled that some of the numerical methods for approxi­
mating solutions of ordinary differential equations, and systems of them,
also have important theoretical applicatIOns. In fact, one of the basic
existence and uniqueness proofs uses the Euler-Cauchy difference method
of the next section. We resist the temptation to present such a proof here.
Rather, we will assume that Problem (I) is "well-posed," i.e., it has a
unique solution with a certain number of continuous derivatives and
furthermore, the solution depends differentiably on the initial data. As
indicated in the footnote on page 364, we can guarantee the well-posed ness
of Problem (I) for a wide class of functions f(x, y). We Will be interested
in showing that certain difference methods have properties (a)-(c) for such
a class of functions, f(x, y).

At the present time there seems to be no general way of formulatIng an
"ideal method" for solving (I). An "ideal method" is one which requires
the least amount of work (number of single precision computations) to
produce an approximate solution of (I) accurate to within a given E > O.

In the following sections a number of incqualities are derived With the
use of two simple lemmas;

LEMMA 1. For all real numbers z:

(3) I + z ::; eZ
,

(where the equality holds only for z = 0).

Proof Since the function eZ has continuous derivativcs of all orders
we have by Taylor's theorem

Z2
eZ

= I + z + "2 eBZ
,

But the last term on the right-hand side is non-negative and vanishes
only when z = 0 and so the lemma follows. •

A simple corollary of this result is contained in

LEMMA 1'. For all z such that I + z ;:0: 0,

(4) 0 ::; (I + z)n ::; enz, n ;:0: o.
Proof Obvious from Lemma I. •
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1. METHODS BASED ON APPROXIMATING THE DERIVATIVE:
EULER-CAUCHY METHOD

To illustrate the basic concepts we consider the simple difference
approximation to (O.la) which results from approximating the derivative
by a forward difference quotient,

(Ia) j = 0, I, ... , N - I.

Here, for simplicity only, we have choser a uniform net

(2) lh: Xo = a; Xj = Xo + jh, j = 0, ... , N;

The initial condition (0.1 b) is replaced by

(I b) Uo = Yo + eo,

where we have intentionally permitted the introduction of an initial error,
eo. Equations (I) are the difference equations of the Euler-Cauchy method.
This method is also called the polygon method, where the polygon is
constructed by joining successive points (xt> uj ) with straight line segments.
Each segment has the slope given by the value offat the left endpoint.

The existence of a unique solution Ui of the difference equations follows
from writing (Ia) as

(3) j = 0, 1, ... , N - 1.

Then with uo, given in (I b), the above yields recursively Ub U2,.'" UN

provided only that f(x j , uj ) is defined.
The present analysis of(3) is based on using infinite precision arithmetic.

That is, the numbers that would be calculated in finite precision arithmetic
satisfy Uj + 1 = [Uj + hf(xt> Ui )] + Pi+l where pj+l is the rounding error
made in evaluating the term in brackets. Later on, in Subsection 2, we
study the error, Ui - Yt> as h -+ O.

We now turn to a consideration of the error {ej} defined by

(4) j = 0, 1, ... , N.

(5) If(x, y) - f(x, y')1 :::; Kly - y'l,

For this study we require that, in some region S to be specified later,
f(x, y) be continuous in x and satisfy a uniform Lipschitz condition in the
variable y:

for some constant K > 0;
all (x, y) and (x, y') E S.

[If K = 0, thenf(x, y) is independent ofy and the problem (0.1) is a simple
problem of quadrature treated in Chapter 7.] In addition, we will need a
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measure of the error by which the exact solution of (0.1) fails to satisfy
the difference relation (la). This error is called the local truncation error
or discretization error and is defined by:

Yj+l - Yi fi( )Tj+l = h - Xj, yj, j = 0, 1, ... , N - I.

This relation is frequently written as

(6) j = 0, 1, ... , N - 1.

An explicit representation of the Tj will be derived shortly [under additional
conditions on f(x, y)]. If the Tj vanish as h -+ 0, we say that the difference
equations are consistent with the differential equation. But as will be seen
in Subsection 2, for another consistent scheme, the corresponding differ­
ence solution {u j } can diverge as h -+ 0, from the exact solution {yJ even
though eo is small. However, in the present case, we have

j = 0, 1, ... , N,

THEOREM 1. Let {Uj} be the solution of (l) and y(x) the solution of (0.1)
where f(x, y) satisfies (5) in the strip S: [a ::; x ::; b, Iyl < 00]. Then, with
the definitions (6) of h}:

IUj - Y(Xj)I ::; eK(XI-a)[leol + i]'(7)

where

Proof The subtraction of (6) from (3) yields

ej+l = ej + h[f(x!> uj) - f(x j, yj)] - hTf+h j = 0, I, ... , N - 1.

By means of the Lipschitz condition we deduce that

lef+ll ::; (1 + hK)lejl + 11-:-.

This inequality yields recursively

lej .. ll ::; (l + hKPlej_ll + [I + (l + hK)]hT,

::; (l + hK)3Iej_21 + [1 + (1 + hK) + (l + hK)2]hT,

where we have summed the geometric progression. Since K > 0, we may
apply Lemma 0.1' in the form
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(8)

Hence for all} ::; N - I,

lef+ll ::; eK(Xj + 1 -XoJ(leol + i),
and the theorem follows. •

The simple bound of Theorem I shows that the error at any net point,
Xf' will be small if both the initial error, eo, and the maximum local trun­
cation error, T, are small. Now, the value of leol is determined by the
accuracy with which the number Yo, the initial condition, is approximated.
On the other hand, we may guarantee that T can be made arbitrarily small
by picking h sufficiently small, if d 2yjdx2 is continuous in [a, b]. That is,
from Taylor's theorem.

} = 0, I, ... , N - 1.0< 8J < I,(9)

( h) - () h qy(xf) '!.. d
2
Y(Xf + 8fh)

y Xf + - Y Xj + dx + 2 dx2 '

°< 8f < I; } = 0, I, ... , N - 1.

However, since y(x) is the solution of (0. I), dY(Xi)jdx = f(xi, Yi) and a
comparison of the above with (6) yields

h d 2Y(Xf + 8fh)
T f + 1 = 2 dx2 '

Using this representation of Tf in Theorem and the formula obtained
from (O.la) by differentiation

d 2y dy
dx2 = fAx, y) + fix, y) dx'

we obtain a result which may be summarized as the

COROLLARY. If, in addition to the hypothesis of Theorem I, fx(x, y) and
hex, y) are continuous in S, then

lefl ::; eK(Xf-a>(leol + h ~) ::; eK(b-aJ(leol + h ~)

wheret

•
If eo = 0 or leol ::; ah for sC'me constant a, then as a consequence of the

corollary, lim ef = 0, or more precisely, the maximum norm of the error
h-O

{ef} is at most <!J(h) and converges uniformly to zero since the rightmost

t If in S, Ifxl ::; P, Ifyl ::; Q, and IfI ::; R, then I~;,I ::; P + QR. Hence for such a

class of functions f(x, Y), we find the a priori bound M" ::; P + QR.
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bound is independent of j. Note that since fy is assumed continuous in the
corollary, the condition (5) need not be postulated but can, in fact, be
deduced if K == sup Ifyl is finite.

s
In general, the bounds on the error are usually tremendous overestimates.

It is possible, however, to obtain more precise expressions for the error,
essentially under the conditions of the corollary. These expressions are in
turn not practical since they cannot be evaluated explicitly. But since they
do have analytical significance we present

THEOREM 2. If {ej} and {Tj} are defined by (4) and (6) respectively, and
fix, y) is continuous in S, then there exist numbers <PI in 0 < <PI < I such
that

(I 0) e, = AI,oeo - h i AI, jTt>
j=1

i = 1,2" .. , N;

where A o, 0 == 1 and

j = i,

j ? i +

AI'f=={~
ai-IAI-I.f j < i, al = I + hfy(xt. YI + <Pie;).

Proof The proof is similar to that of Theorem I but now the mean
value theorem is used in place of the Lipschitz condition. Thus, from (6)
and (3),

(11)

To show that the algebraic manipulations, in the recursive application
of the above, yield quantities of the form (IO) and (II), we proceed by
induction. Then with i = 0 in the above

el = aoeo - hTI

= AI,oeo - hAI,ITI'

Now we assume (10) to be valid and use (II) to obtain

I

el+1 = ajAI,oeo - h L alAi,jTj - hTI+ I
j= I

I

= Ai+I.oeo - h L Ai+l.jTj - hAi+I,i+ITi+1
j=1

i+ I

= Ai+l,oeo - h L AI+I,jTj .
j = 1

The induction is thus complete and the theorem follows. •
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By restricting h to be sufficiently small the exact error expression (IO)
can be reduced to a simple form which has practical significance. We state
this result as

COROLLARY 1. Under the hypothesis of Theorem 2 let

d == inf.fy(x, y),
s

be finite and restrict h so that

(I 2)

D == sup fy(x, y)
s

I + hd:::: O.

Then for each i = 1,2, .. " N, there exist three numbers PI. qt, and tt in
the intervals

(I 3) d :0::; Pt :0::; D, d:o::; qt :0::; D, min T;:O::; tt:O::; max T;,
1~;~t 1~;~!

such that

(I 4) i = 1,2, .. " N.

Proof We note that from (II) and (I2) it follows that

0:0::; I + hd:o::; (X;:O::; I + hD, j = 0, I" .. , N - 1.
Then

(I + hd)! :0::; At,o = (XO(Xl" '(X!_1 :0::; (I + hDy,

and hence there is a number Pt in the interval [d, D] such that

At,o = (I + hpj)!.

Now define the quantities

(I 5)

The At.; are non-negative as a result of condition (I2). Hence tt> which is
an average with non-negative weights of the T;, must satisfy condition (I3)
(see Lemma l.l of Chapter 7 which can be used to prove this assertion).
We also note, using (II), that

0:0::; (I + hd)!-;:o::; At,; = (Xj(X;+1" '(Xt-1 :0::; (I + hD)l-;,

At.! = 1.

Then from the definition of St

j < i;

I + (I + hd) + ... + (I + hd)! -1 :0::; S!
:0::; I + (I + hD) +." + (I + hD)l-t,
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or by summing the progressions

(I + hd)i - I < S. < (I + hD)l - I.
hd - 1- hD ' i = 1,2, ... , N.

i = 1,2, ... , N.

But the functions [(I + Z)i - I ]/z are continuous functions of z and hence
there exist numbers q;, in the interval [d, D], such that

(I + hqi)i - I .
Sj = hqi '

The corollary now follows by using the expressions for A i • o, Si' and ti

in (10). •
The form of the error given in (14) can be used to derive practical

information in many cases, Clearly, if d and D are known, or can be
estimated, we can obtain upper and lower bounds on the factors which
multiply the two error terms (eo and t i ). A more striking application occurs,
however, when f(x, y) is such that D < 0 (i.e., fy < 0). Now clearly,
Pi < 0, qi < 0, and by the condition (12) imposed on h:

o ~ (I + hpi) < I,

Then by Lemma 0.1'
(I + hp;)i < eihp, = eex • -alP"

or since Pi < 0, this may be written as

(I + hpi)i < e-Ip,ex , -all < I.

Similarly, 0 ~ (I + hqi)l < I, and by taking absolute values in (14), we
find

•i = 1,2, ... , N.

COROLLARY 2. If fy < 0, then the hypotheses of Theorem 2 and its
Corollary I imply

led ~ e-IP,ex,-allleol + I~I'(16)

This result shows that the initial error cannot grow iffy < 0 and further,
that the local truncation errors in this case contribute at most an amount

TIIDI·

1.1. Improving the Accuracy of the Numerical Solution

We now improve upon the corollary to Theorem I by characterizing
the (!)(h) term in the error {ej}'
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THEOREM 3. Let the solution y = y(x) of (0.1) have three continuous
and bounded derivatives: let fyy(x, y) be continuous and bounded, and let
the initial error eo in the difference solution rUt} of(1) be

eo = ~oh,

where ~o is independent ofh. Then

j = 0, 1, ... , N,

where ~(x) is the solutiont of the linear problem

;~ = fix, y(x))~ - !y"(X),

~(a) = ~o.

Proof As in the proof of Theorem 2,

But now in (9) and (11) we use the extra differentiability properties to
obtain

IXt = I + hf,lxh Yt) + hfyy(xt , Yt + <Pt'et)<ptet

Tt+ 1 = ~ y"(Xt) + ~ Y'"(Xt + Ot'h)Oth, 0 < <Ph <Pt', 0h Ot' < 1.

Then from this,

By using the differential equation which defines ~(x), Taylor's expansion
yields

~(Xt + 1) = ~(Xt) + hrcxt) + ~2 ~"(XI + .pth)

= [I + hfy(Xh Yt)]~(Xt) - ~ y"(xt) + @(h2).

We now form the quantities

and find

i = 1,2, ....

t Under the hypothesis, e(x) exists and has a continuous second derivative. In fact,
e(x) can be explicitly represented by quadratures.
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Now we observe, as remarked after the corollary to Theorem I, that
led = G(h). Hence we may delete the term G(e j

2
). But, from the specific

initial conditions chosen for g(x) we have 30 = 0, and hence a recursive
application of the formulae for 3; yields, as in the derivation of (7),

13jl :5 eKCb - a ) [G~2)] = GW)

and the theorem follows. •
To apply Theorem 3, we introduce the notation ulh) to indicate the

dependence of the numerical solution on the net spacing. Then the theorem
states that with, say Xj = z,

ulh) = y(z) + hg(z) + GW).

Similarly, with the net spacing h/2 and x2j = z, we have

Then

and an extra order of magnitude in accuracy is obtained if we use as the
difference approximation, at any point Xj = z of the net with spacing h,
the quantity

This requires computations with two nets of spacings hand h/2 respectively.
It should be observed that the formula for ii j is similar to the formula
which arises in Aitken's 32-process in the iterative solution of arbitrary
equations (see Subsection 2.4 of Chapter 3). In the present context this
procedure is called Richardson's deferred approach to the limit, or extra­
polation to zero mesh width. This extrapolation may be applied, in an
appropriately modified form, to many of the numerical methods to be
considered here.

1.2. Roundoff Errors

In actually performing the calculations required to evaluate (I), round­
off errors will, in general, be introduced. Thus the numbers actually
obtained will not be the set {Uj} but, say, some quantities {Vi}' These num­
bers satisfy equations of the form

(l7a) i = 0, I, ... , N - I;
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where pj + 1 represents the error introduced by inexact evaluation of the
quantity V, + hf(x" VJ The PI are called the local roundoff errors. If we
let Po be the initial roundoff error committed in evaluating Yo, then the
initial condition becomes

(17b) V o = Yo + Po·

Let the errors between the V;, the actual numbers obtained in the compu­
tation, and the U;, the exact solution of the difference equations, be denoted
by

(18) €1=Vj-Uj, i=O,I, ... ,N,

Then from (I) and (17) we obtain

(19)

It is clear that these equations for €j are formally similar to those which
determine the quantities ej. In fact, the previous theorems and corollaries
can be restated in an obvious way to give bounds and representations of
the errors €I' We shall return to the study of the growth of the €I in Section
5. But, we now consider the more important total errors

(20) i = 0, I, ... , N,

between the actual numerical solution, V;, and the exact solution of the
differential equation, y(xt). In an obvious manner, we find that

Eo = Po;
(21)

Et+ 1 = EI + h[f(Xj, Vi) - f(x;, y(xI))] - (hTi +l - PI + 1),
i = 0, I, ... , N - 1.

Again we may prove the analogs of the previous results.

THEOREM 4. Vnder the conditions of the corollary to Theorem I, we find
that the error (20) satisfies

(22a) for j = 0, I, ... , N,

where the roundoff errors PI are defined in (17) and

(22b) P = max Ipt!,
lsi:$N

M 2 = max Id2y(:)I·
a:5x:5b dx •
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Figure 1. Comparison of truncation and roundoff error bounds as functions
of h.

The dependence of this error bound on the net spacing, h, is illustrated
in Figure I.

Clearly, the choice of h for which the bound in (22) is a minimum is
obtained when

(23) h~2 =~, or h = V2p/M2.

For this optimal value of h,

hM2 P ./-­
-2- + h = v2M2P·

In many calculations performed on electronic computers P « M 2 , and so
the "optimal" value for h will be unnecessarily small and need not be
employed. Furthermore, the bound (22) indicates that for fixed h no
greater accuracy is obtained by reducing the roundoff error so that

h2 M
< 2.

P -2-'

in fact, any extra labor required for such computational precISIon is
essentially wasted. If the relation (23) is approximately satisfied there might
be some fortuitous cancellation of local roundoff and truncation error~.

On the other hand, we remark that (22) establishes the convergence as
h -+ 0 of the Euler-Cauchy method (17) if the rounding error satisfies

fori=I,2, ... ,N
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while initially

CENTERED DIFFERENCE METHOD 377

In fact, under these circumstances

j = 0, I, ... , N.

We leave to Problem 2 the proof of the validity of the Richardson extra­
polation to zero mesh width provided p = (!!(h 3

).

1.3. Centered Difference Method

To obtain greater accuracy with a fixed mesh size we seek difference
approximations with smaller local truncation errors. One such modifica­
tion of (I a) is suggested by attempting to approximate the derivative at
Xl by a more accurate expression than the forward difference quotient.
We shall briefly examine here the use of the centered formula

(24a) Ui + I ; U, - I = f(xj, Ul), i = I, 2, ... , N - I.

However, in order to use these difference equations to compute {Uj}, two
starting values are required, say

(24b)

The first value Uo is again the approximation of the exact initial data,
while U I should be determined such that lell is "small." This could be
done by employing the Euler-Cauchy method in the interval 0 ~ X ~ h
with some smaller spacing, say h' = hiN' with N' :::: ), or by developing
the Taylor's series

h ' h
2

"
UI = Yo + Yo + 2" Yo ,

with

However, this problem or similar ones will occur again and shall be
discussed in more detail later.

The truncation error in (24a) is now defined by

(25) Y, + I = Yi -I + 2hf(xj, Y,) + 2hTi+ [, i = ), 2, ... , N - I.

Let us make sure that y(x) has three continuous derivatives by assuming
that f(x, y) has continuous second derivatives. Then by Taylor's theorem

( h) h' h
2

" h
3

m(t) tYi+I=YXi+ =y,+ Y, +2"Yi +3jY Si+l, X,<Si+I<Xi+I;

( h) I ' h
2

" h
3

m( t )Yi-I = Y Xi - = Yi - lYi + 2" Yi - 3! Y Si-I,
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(26)

These equations imply

YI+1 = Yt-1 + 2hyt' + ~ [Y'"(~1+1) + Y'"(~t-1)]'

and since yt' = f(xt> Yt), a comparison with (25) yields

h2
Y'"(~t+1) + Y'"(~1-1)

TI+1 = "6 2 '

i = I, 2, ... , N - I.

i= 1,2, ... ,N- I.

Here we have used the continuity of y'"(x) to replace the average of third
derivatives by an intermediate value at ~j. Hence the local truncation error
of the centered scheme is smaller than the truncation error (9) of the Euler­
Cauchy method as h -+ 0. The present Tt vanish to second order in hand
we thus call the centered scheme (24a) a second order method.

To show that these effects are indeed relevant for the convergence of
the finite difference solution, we again consider the errors et == Ut - y(x j )

and find from (24a) and (25)

et+ 1 = e j -1 + 2h[f(Xj, Ut) - f(x!> y(xj))] - 2hTI+ 1

2h
8f(Xt> Y(Xj) + (Jjej) 2h

= et - 1 + oy et - Tj+1>

To demonstrate convergence, let us introduce the bounds

(27) K ;:.: 21~1' M 3 ;:.: Iy'"(x)[, T = ~ M 3 ;:.: 2hl·

Hence by taking absolute values

(28) i = I, 2, ... , N - I.

To obtain bounds on the let! we introduce a comparison or majorizing
set of quantities {at} defined by

ao == max (leal, led),
(29)

al+ 1 = (I + hK)aj + hT, i = 0, I, ... , N - I.

From the definition it is clear that ao ;:.: leal. We will show by induction
that aj ;:.: lejl, j = 0, I, ... , N. Assume that aj ;:.: lejl, j = 0, 1, ... , i.
Equation (28) yields

let+ll ~ hKaj + aj- 1 + hT

~ (I + hK)at + hT
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Here we have employed (29) and the obvious relation at ~ ai-I' Hence the
induction proof is complete and aj ~ lejf for j = 0, I, ... , N. However,
by the usual recursive application of (29) we now obtain

(30)

:-::; (l + hK)N(ao+ i)

:-::; eK(b-a)[max (Jeol, lell) + h2~].

By comparing (30) with the result in the corollary to Theorem I, we
now find that the error is of order h2 if the initial errors, eo and eh are
proportional to h2

• So in the present centered scheme, the higher order
local truncation error (26) is reflected in faster convergence of rUt} to
{Y(Xt)} as h -+ O. We might naturally expect this to be the case in general,
and so seek difference equations with local truncation errors of arbitrarily
high order in h. However, as is demonstrated in the next subsection, this
expectation is not always realized.

It should be mentioned that roundoff effects can also be included in the
study of the present centered scheme.

THEOREM 5. Let the roundoffs Pt satisfy

va = Yo + Po,
where

Vt+l = VI - l + 2hf(xj, VI) + Pt+h for i = 1,2, ... , N - I,

max Iptf = p.
2~t5:N

Then E t = Vj - Yt can be bounded by

IEtl :-::; eK(b-a){max (IPol, Ipl!) + [h2~ + h~]}

provided (27) holds.

i = 0, I, ... , N,

•
Now the error is at least of order h2

, if the maximum roundoff error
satisfies P = (9(h 3

) as h -+ 0, while Po = (9(h 2
), PI = (9(h 2

).

1.4. A Divergent Method with Higher Order Truncation Error

To demonstrate the care which must be taken in generating difference
schemes, we consider a case with third order local truncation error but
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which is completely unsuitable for computation. The basis for this
scheme is an attempt to approximate better the derivative at Xh and
thus to obtain a local truncation error which is higher order in h. For
this purpose we consider a difference equation of the form

(31) a1Uj + 1 + a2Uj + a3Uj -1 + a4Uj - 2 = f(xh uj ),

i = 2, 3, ... , N - 1;

and seek coefficients aI, ... , a4 such that the local truncation error is of
as high an order, in h, as possible. This is essentially the method of un­
determined coefficients applied to the problem of approximating derivatives
(see Subsection 5.1 of Chapter 6). That is, recalling y'(Xj) = f(xh Y(XI»,
we define 'Tj by

(32) a1Y(Xl+ 1) + a2Y(Xt) + a3Y(Xj-1) + a4Y(Xj-2) - y'(xj) = 'Tj+1'

Then if y(x) has four continuous derivatives, Taylor's theorem yields

Yj + 1 = y(x, + h) = Yj + hy'(xt) + h2y"(xj)/2 + hY'(XI)/3!

+ h4ylV(~1+1)/4!

(33) Yj -1 = Y(Xj - h) = Yt - hy'(xj) + h2y"(xt)/2 - h3Y'"(Xj)/3!

+ h4ylV(~t -1)/4!

Yj _2 = Y(Xi - 2h) = Yi - 2hy'(XI) + 4h2y"(xj)/2 - 8h3Y'"(Xj)/3!

+ 16h4ylV(~j_2)/4!

Forming the sum indicated in (32) and requiring as many terms as possible
to vanish, we find

a1 + a2 + a3 + a4 = 0

(a1 + 0 - a3 - 2a4)h = 1

(a1 + 0 + a3 + 4a4)h2 = 0

(a1 + 0 - a3 - 8a4)h3 = O.

This system of linear equations has the unique solution

(34)

Now (32) can be written as

(35) Y(XI+1) = -h(xt) + 3Y(Xj_1) - -!-y(Xj-2)

+ 3hf(Xh Y(XI» + 3h'Tj + 1

where the local truncation error is from (33) and (34) in (32)

(36) 'T1+1 = ~ [tylV(~j+1) - ylV(~j_1) + tivcgl-2)]'
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The difference equations (31) become

(37a) Ui+l = -tui + 3Ui-1 - 1Ut-2 + 3hf(xj, uJ,

i = 2, 3, ... , N - I;

and to these must be adjoined starting values, say,

(37b) Uo = Yo + eo, UI = YI + el, U2 = Y2 + e2'

As before, the" extra" values Ul and U2 would have to be obtained by
some other procedure. However, we proceed to show that this scheme,
which has third order truncation errors, does not converge in general.

Let us first consider a case in which fy is continuous and

I ~rl < Koy - , T = h3 M 4 ~ max hi.
i

Then with ei = U. - Y(Xt) we obtain, from (35) and (:J7), in the usual way

let+ll ~ G + 3hK)led + 3l et-d + tlei-21 + 3hT.

If we introduce a majorizing set {aJ, analogous to (29), we find that

leNI ~ (5 + 3hK)N[max (Ieoj, lell, le2 1) + 43~4~~l

[
3h4M ]< 5Ne3K(b-a)/5 max (Ie I Ie I Ie I) + 4

- 0, 1, 2 4 + 3hK '

However, as h --70 this bound becomes infinite. While this does not
prove divergence, we strongly suspect it.

To actually show that the third order scheme (37) cannot converge in
general, we apply it to the special case where f(x, y) == - Y; i.e., to the
equation

dy
dx = -y,

whose solution y = yoe-(X-a) satisfies yea) = Yo.
Now (37a) can be written as

(38) i = 2,3, ....

This is a linear difference equation with constant coefficients (see Section 4)
and it can be solved exactly. That is, we seek a solution of the form

j = 0, I, ....
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But then from (38),

[a 3 + G + 3h)a2
- 3a + -!]at

-
2 = 0, i = 2,3, ....

Thus, in addition to the trivial solution, U j == 0, we have three solutions of
the form U j = a/, where avfor v = 1,2, 3 are the roots of

(39) a3 + G + 3h)a2
- 3a + -!- = O.

It is easily verified that, for h sufficiently small, these three roots are
distinct.

It is easy to check that a linear combination

(40)

is also a solution. The coefficients A v are determined from the assumed
known data for j = 0, 1,2, by satisfying

= Uo

Since the coefficient determinant is a Vandermonde determinant and the
a v are distinct, the A v are uniquely determined. Then the U j for j ;:::; 3
are also uniquely determined by (40).

Let us write

pea, h) == a3 + G + 3h)a2
- 3a + -!-,

and denote the roots of pea, h) = 0 by avCh). Since

p(a,O) == (a - 1)(a2 + fa - -!-)

we have, with the ordering al ::;; a2 ::;; a3,

5 + viTI (0) _ viTI - 5
4 ,a2 - 4 '

For h sufficiently small, lavCh) - avCO) I can be made arbitrarily small and
al(h) < - 2. So the solution (40), for large j, behaves like

uj ::::: Ar[a1(h)]f

or in particular for XN = b,

UN ::::: Al[al(h)](b -aJ/h.

Thus as h -+ 0 the difference solution becomes exponentially unbounded
at any point X N = b > a. Furthermore, notice that al(h) is negative, and
hence uj oscillates. This behavior is typical of "unstable" schemes (see
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Section 5). Of course, we have assumed here that the initial data is such
that Al #- O. In fact,

Uo

det UI a2 a3

Al =
U 2 a22 a3 2

I I

det al a2 a3

a 2 a22 a32
1

Hence if
UI = Uo + ch, U2 = Uo + dh,

then in general, it follows that

f3 #- O.

This is based on the fact that at(h) can be developed in the form

aj(h) = alO) + ha/(O) + (!}(h2).

(For example, in the exceptional case

the quantity Al = 0.)
For the actual calculations of the quantities Uj , the local roundoff error

at any net point Xj will set off such an exponentially growing term. Hence
this method is divergent!

PROBLEMS, SECTION 1

1. Iff(x, y) is independent of y, i.e., the Lipschitz constant K = 0, show that
the error estimates of Theorem 1 and its corollary are respectively

(a)

(b)

leil ~ leol + IXi - xol'T,

leil ~ leol + hlxi - xoIM2/2,

j ~ 0;

j ~ O.

2. Carry out the proof of the validity of the Richardson extrapolation to
zero mesh width for the Euler-Cauchy method defined in (17) with rounding
errors po = foh and for i = 1, 2, ... , IpI I ~ p = (!}(h 3

).

3. Find the coefficient at'(O) in the expansion

al(h) = al(O) + hat'(O) + (!}(h 2
)

by formally substituting this expression into (39) and setting the coefficient
of h equal to zero.
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2. MULTISTEP METHODS BASED ON QUADRATURE FORMULAE

The study of the divergent scheme introduced in (1.37) shows that more
accurate approximations of the derivative do not lead to more accurate
numerical methods. But a way to determine convergent schemes with an
arbitrarily high order of accuracy is suggested by converting the original
differential equation into an equivalent integral equation. Thus by
integrating (O.la) over the interval [a, x] and using (0.1 b) we obtain

(1) y(x) = Yo + rJet, yet» dt.

Clearly, any solution of (0.1) satisfies this integral equation and, by
differentiation, we find that any solutiont of (1) also satisfies (O.Ia) and
(O.Ib). With the subscript notation, Yi == Y(Xt), the solution of (0.1) or
(1) also satisfies

(2) IXl+'

Yi+ 1 = Yt - p + lex, y(x» dx.
Xl- JJ

This is obtained by integrating (O.Ia) over [Xt _ p, X t +1] for any i = 0, 1, ...
and any p = 0, 1, ... , i. For a given choice of p a variety of approxi­
mations are suggested by applying quadrature formulae to evaluate the
integral in (2). The number of schemes suggested in this manner is great,
but in practice only relatively few of them are ever used.

We shall limit our study to the case of uniformly spaced net points and
interpolatory quadrature formulae. In order to classify these methods
in a fairly general manner we distinguish two types of quadrature formulae:

TYPE A. Closed on the right, i.e., with n + 1 nodes

or else

TYPE B. Open on the right, i.e., with n + 1 nodes

The difference equations suggested by these two classes of methods can
be written as

(3a)

(3b)

Ui+1 = Ut-p + h i aj!(Xt+l-f> Ut+l-j);
j= 0

Ut+l = Ut - p + h i (3j!(Xt-j, Ut-t>.
j =0

t It is easy to see that any continuous solution y(x) of (I) is differentiable. This follows
since the right-hand side of (I) is differentiable, if !(x, y) and y(x) are continuous.
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We have denoted the coefficients of the quadrature formulae by haj and
h{3j and note that they are independent of i. If the net spacing were not
uniform, the coefficients would depend on i, in general, and the schemes
would require the storage of more than n + I coefficients. This is one of the
main reasons for the choice of uniform spacing in methods based on
quadrature formulae.

When the integers p and n are specified, the coefficients are determined
as in Subsection 1.2 of Chapter 7. We see from (1.15) of Chapter 7 that
the quantities aj and {3j are independent of h, the net spacing. It also follows
from Theorem 1.3 of Chapter 7 that the interpolatory quadrature formulae
in (3) have the maximum degree of precision possible with the specified
nodes; this is reflected in their having the smallest "truncation error,"
defined later in equation (8a and b).

In order to compute with a method of type A (closed on the right) we
must have available the quantities 1Ij, .•. , IIi + 1- n and lit _ p' Thus the points
Xt+l for which (3a) may be used satisfy

(4a) i ~ max(n - I,p) = t,

provided that 110, lib ... , lit are given. Similarly, method B requires
Uj, ... , Ut _ nand Ui _ p, so that the points Xi + 1 for which (3b) can be used
satisfy

(4b) i ~ max (n, p) = r,

provided that 110, lib ... , liT are given. Special procedures are required to
obtain these starting values in either case (see Section 3).

The fundamental difference between the open and closed methods is
the ease with which the difference equations can be solved. There is no
difficulty in solving the equations based on the open formulae. In fact,
since formula (3b) is an explicit expression for IIt+l these are called
explicit methods. But, the closed formulae define implicit methods since
the equation for the determination of IIi + 1 is implicit.t That is, (3a) is
of the form

(Sa)

where

gi(Z) == Ci + hao!(xi + b z),

with

Ct == Ul_ p + h i a j!(xl+1-j, Ut+1-J
j=l

t In the special case thatf(x, y) is linear in y, i.e.,f(x, y) == a(x)y + b(x), the implicit
equation (3a) is easily solved explicitly for II, + 1 if 1 - huoa(x, + 1) '" O.



386

and so

(5b)
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Clearly the method of functional iteration is natural for solving (5a).
By Theorem 1.2 of Chapter 3 we know that, if a "sufficiently close"
initial estimate ula; 1 of the root is given, the iterations

11= 0, I, ... ,

will converge provided h is sufficiently small, e.g.,

(6)
I

h < laoK[' K == max 18f~; Y)I·
On the other hand, we may apply Theorem 1.1 of Chapter 3 to show
existence of a unique root in the interval [c; - p, Ci + pl. That is, by
selecting u~a; 1 = c;, we have

I (1) (0) I < h Mu; + 1 - u; + 1 _ ao

where M == max [f(x, y)l. Hence for any

haoM
p ~ I - haoK

we have an interval in which a unique root of (5) exists. We shall see that
it is not necessary to find the root of (5) in order to preserve the high accuracy
of the method. In fact, the predictor-corrector technique, which we next
study, uses only one iteration of (5) without a loss in accuracy.

The predictor-corrector method is defined by

m

(7a) U~+1 = Ut-q + h L f1tf(Xi-j, Ut-j);
j~O

(7b) U;+1 = U;_p + h i alcf(Xt+l-Ic, Ut+1-1c) + haof(xt+b U~+1);
1c~1

(7c) i ~ s == max [p, q, m, n - I].

Here, an m + I point quadrature formula open on the right has been used
[in the predictor (7a)] to approximate an integral over [x; _q, Xi + 1]. The
closed formula (7b) (called the corrector) is similar to that of (3a) but
U~+ 1 has been used in place of Ut + 1 in the right-hand side. Thus as previously
indicated, the corrector is the first iteration step in solving the implicit
equation (5) with the initial guess furnished by the predictor. Hence only
two evaluations of the function f(x, y) are required for each step of the
predictor-corrector method; i.e., f(x;, ui) and f(x, + b ut+ 1)'
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The procedure (7) can only be employed after the values Uo, U b •.• , Us

have been determined. Here s, defined by (7c), is determined from the
open and closed formulae (7a and b). To compute the Uh i < s, we refer to
the procedures of Section 3.

It is clear, from the analysis given in the remainder of this section, that
the predictor-corrector method (7) has the same order of accuracy as the
implicit method of type A defined by the corrector (3a), provided that
the explicit predictor is sufficiently accurate. In other words, we avoid the
necessity of repeatedly iterating the corrector, as in (5), by using a good
initial approximation. We shall first develop estimates of the error in
solving (1) by the predictor-corrector method (7). Next, we shall show
how to modify the error estimates to cover the case of finite precision
arithmetic, i.e., with rounding errors. Finally, we indicate briefly how the
error estimates may be derived for the methods (3a) or (3b).

The predictor-corrector method has the advantage of permitting the
detection of an isolated numerical error through the comparison of ut+ 1

with uj+ 1 (or ut+ 1 with Uj+ 1 defined later).
The truncation error of (7) is obtained as follows. We define at+ 1

and at + 1 in terms of the exact solution Y = y(x) by

m

(8a) Yt+1 = Yt-q + h L f3tf(Xt-f, Yt-f) + hat+1;
f=O

(8b) Yt+1 = Yt-p + h i a,J(xt+1-k, Yt+1-k) + hat+1'
k=O

Then with the definition

(8c)

the local truncation error, Tt+ b of the predictor-corrector method (7) is
defined by

(9) Yt+1 = Yt-p + h i akf(xf+1-k> Yt+1-k)
k=l

i ~ s.

To obtain a more explicit expression for this error we subtract (9) from
(8b) and use (8c) to get

(10) Tt+1 = at+1 + aO[f(xt+b Yt+1) - f(Xt+b Yt+1 - hat+1)]

- h * of- at + 1 + at +1 ao oy'

Here we have assumed fy to be continuous in Y and used the mean value
theorem; Jy is a value of fy at some intermediate point in the obvious
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interval. The quantities ha~+l and hal + 1 are the errors in the (m + 1)­
and (n + I)-point quadrature formulae, (8a and b). Explicit expressions
for these quadrature errors have been obtained for various cases in Section
1 of Chapter 7. It should be noted from (10) that the order as h --+ 0 of
the truncation error in the predictor-corrector method is the same as the
order for the corresponding closed formula used alone, provided that the
order of ha* is not less than the order of a. Table 1 has a brief listing of
commonly used predictor-corrector schemes.

Table 1

Table 1 Some Common Predictor-Corrector Methods

Associated
Weights

Name
j= 0 2 3 4 a*m,q;n,p a

Modified 0,0;1,0,8}= 1 -r hy(2) -frh2y<3l

Euler a} =-r -r

Milne's 2, 3; 2, 1 ,8} = ! -~ t
Method Hh4y(5) - ,fr,h4y<5l

(3 points) a} = t "- t3

Improved 3,0; 3,0 ,8} = H- 59 37
-i\-24 24

Adams, or Hih 4y(5) -·,J-loh4y(5)

Moulton's af = i!!4
19

-i\
1

24 24

Method
(4 points)

Milne's 4,5; 4,3 ,8f =33 -l-i- 39 21 HTo s- --5-

Method A\h6y<7) -riJ-h6y<7l

(5 points) a} =11 64 it H 14
45 4S

2.1. Error Estimates in Predictor-Corrector Methods

To examine convergence of the scheme (7) we introduce the errors

(11 )

Then subtraction of (9) from (7) yields, if fy is continuous,

n

et+1 = ej_p + h 2: a/<gl+1-/<el+1-/< + haogl+le~+1 - hTt+l'
/<=1
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Here we have used the mean value theorem to introduce

while

However, from (7a) and (8a and c) we obtain

m

e~+1 = et-q + h 2: {1Jgt-Jet-J,
J= 0

and using this in the above implies finally

n

(12) et+1 = et_p + h 2: akgl+l-kel+l-k + haogl+let-q
k=l

m

+ h2aogl+l 2: (1Jgt-Jet-J - hrt+l,
J= 0

To estimate these errors we introduce

i ~ s.

(13)

K == max 10/1.oy'

n

A== 2:lakl;
k=O

B == i I{1JI·
J=O

Then by taking the absolute value of both sides of (12), we have

n

(14) let+l! ::;; let_pi + hK(laollet_ql + 2: lakll et+l-kl)
k=l

+ h2 K 2
1a oi i I{1Jllel -JI + hlrl+1l; i ~ S.

J=O

We again introduce a comparison or majorizing set, {at}, defined by

(15a)

(15b)

and claim that

ao == max (Ieol, led, ... , le.I),

al+l = (I + hKA + h2K2laolB)at + hr;

j = 0, I, ... , N.

The proof of this inequality is easily given by induction. From (15),
{at} is a non-decreasing sequence. Therefore, (15a) establishes the inequality
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for j :<;; s. Now assume the inequality holds for all j :<;; i where i ~ s.
Then (14) implies

le.+ 11:<;; ai-p + hK(laolai_q + k~ laklal+l-k)

+ h2K2
1a oi ~ l,Bjlai-j + hT,

;=0

:<;; [I + hK(laol + k~1 lak !) + h2K2
1aoi j~ l,BjlJal + hT

= (1 + hKA + h2 K 2 faalB)ai + hT

Note that from the recursive expression for er+ b we have the single esti­
mate lei*+ 11 :<;; (1 + hBK)lad· The application of (ISb) recursively, in the
by now familiar manner, yields the final result which can be summarized as

THEOREM 1. Let the predictor-corrector method (7) be applied to solve (0.1)
or (I) in a :<;; x :<;; b with" initial" values, ui, satisfying

(I6a) lUi - Y(Xt) I :<;; ao, i = 0, I, ... , s.

Let fy(x, y) be continuous and bounded in S: {(x, y) I a :<;; x :<;; b; Iyl < oo}.
Then with the definitions (9) and (13) the errors in the numerical solution
satisfy, for a :<;; x; :<;; b,

(I6b) lu; - y(xt>I :<;; [ao + K(A + ~KlaoIB)]

x exp [(Xj - a)K(A + hKlaoIB)],

(I6c) lut* - y*(xj)1 :<;; [ao + K(A + ~KlaoIB)]

x exp [(Xj - a)K(A + hKlaolB) + hBK]. •

From this theorem it follows that uj converges to y(xj ) as h~ 0 if
ao ~ 0 and T ~ O. The order in h of the estimate (16) is the minimum of
the orders in h of ao and T. We say that the methods for selecting the initial
data and method (7) are balanced if ao and T vanish to the same order in h.
If they do not, then some" extra accuracy" has been wasted.

If the exact solution, y(x), has sufficiently many continuous derivatives,t
then the local truncation error, T, can be simply expressed by using the

t If all partial derivatives of order p of [(x, y) are continuous, then y(x) has a con­
tinuous derivative of order p + I. This results by differentiating (I) often enough.
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methods of Section 1, Chapter 7. For instance, from the crude estimates
of the form (1.8) of Chapter 7 and (10) we find

T = (!!(hm + 2 ) + (!!(hn + 1 ).

From these estimates, we see that the predictor and corrector formulae
are balanced if m + 1 = n. The method is said to be of order t == min
(m + 2, n + 1). [In the special case p = n - 1, q = m + 1, with m and n
both even,

which results from the estimate of error in the Newton-Cotes formulae
(1.11) of Chapter 7. Parity makes m = n optimal.]

Of course, roundoff errors are committed when the formulae in (7)
are evaluated. If we call Vj and V;* the numbers actually obtained in these
evaluations, then we can write

(17a) Vt+1 = V t - q + h i f3J(Xt-h V t - i ) + pt+b
i=O

(17b) V t+1 = V t- p + h i a,J(Xl+ 1- k, Vl+ 1- k)
k=l

i 2': s.

Here Pi* and Pi are the roundofferrors introduced into each of the indicated
computations. Now we define the errors

E;* == V/ - y;*;

and obtain from (8), (9), and (17), as in the derivation of (12)

(18) E t +1 = E t - p + h i akgl+l-kEl+1-k + haOgt+lEt-q
k=l

i 2': s,
with

while

By applying the previous method of analysis to this system we find the
total error bound in
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THEOREM 2. Vnder the hypothesis of Theorem I, with the notation (13)
and (17),

(19)

where

IVJ· - y(xJ.)I ~ [b + r + laolKp* + (I/h)p]
o K(A + hKlaolB)

x exp [(Xi - a)K(A + hKlaoIB)],

bo = max IVi - y(xi)l·
0<j<8

(20)

p = max Ipil,
s<j<N

p* = max Ip;*l,
s<j<N

•
It is of interest to note that in the bound (19) the corrector roundoff

enters in the form p/h while that from the predictor has a coefficient
independent of h. However, it is unlikely that any special measures in
actual computation could be adopted to balance these different orders in
h of the roundoff. If in Theorem 2 we know that

bo = (!)(h), p* = (!)(h), r = (!)(h), and p = (!)(h 2),

then (19) yields IEil ~ Vh for a ~ Xi ~ b for a constant V independent
of h.

It should be observed that if ao == 0 in (7), the predictor is never used.
The corrector in this case is an open formula, and the above error analysis
then applies to the method based on the use of a single open formula. The
corresponding result for the method based on the use of a single closed
formula (i.e., the implicit method) is obtained by a slight modification of
the above technique (see Problem I). Now if, in the predictor-corrector
method, more than one iteration is employed, the estimates (16) and
(19) no longer apply. But a comparison of the error bounds of the pre­
dictor-corrector method and the corresponding implicit corrector method
shows that there is no great gain to be expected in using the corrector
more than once, provided hat+ 1 and at + 1 are of the same order in h.

We can remark further that in Theorem 2 the requirement that f(x, y)
and fix, y) be bounded and continuous for Iyl < 00 can be replaced by
the milder restriction that f(x, y) and fy(x, y) be bounded and continuous
in the strip

S': {(x, y) I a ~ x ~ b, Iy - y(x)I ~ d}

provided that:
(a) h is sufficiently small,
(b) bo = (!)(h), p* = (!)(h), r = (!)(h) and,
(c) p = (!)(h2).

for some d > 0,
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To show that the estimate (19) holds, we now could show inductively that
the values Vt*+1 and Vi +1 exist and are in the strip S', and therefore
(19) is satisfied for j = i + 1. The constant K == max fjyl replaces the

s'
previous definition of K in (19).

2.2. Change of Net Spacing

During the course of a computation based on a predictor-corrector
method, we should keep track of the" measure of error,"

That is,

(20)

Hence if 1'7i+ 1/ is large, we know that the actual error is probably large.
An isolated mistake in computation may be responsible for a large

l'7i + 11· But, if the computation is correct, then the obvious way to reduce
rlt + 1 is to reduce the interval size h. In practice, this is usually done by
successively halving h. Alternatively if the estimate (20) becomes very
small, h may be increased, say, by doubling it.

Doubling the interval size offers no difficulty if at least 2s points have
been computed with the net spacing h. We merely discard the data at
every other net point, replace h by 2h, and continue the calculations.

On the other hand, in order to halve h, we require data at sj2 new
intermediate points, say

Xi - hj2, X i - 1 - hj2, ... , Xj+ 1 - (s/2) - hj2.

These values can be determined by the application of an interpolation
procedure which uses the known data at appropriate net points
x j = Xo + jh. However, the accuracy of the interpolation formula must be
consistent with that of the predictor-corrector formula being used. That
is, the interpolation error must be at least oj the same order in h as the
truncation error, r, given in (10). Otherwise, as Theorem I indicates, the
accuracy of the numerical solution will not be greater than that determined
by the interpolation. The caution required in order to reduce the net spacing
without sacrificing accuracy is one of the disadvantages of predictor­
corrector methods when compared to single-step methods of the next
section. Sometimes it is feasible to actually restart the integration at Xi>

by using the method employed at xo, but with the net size hj2.
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PROBLEMS, SECTION 2

1. Verify the entries in Table I labeled Modified Euler and Milne's method
(3 points).

2. Verify the entries in Table I labeled Improved Adams and Milne's Method
(5 points).

3. For each of the methods of Table I, with what interval size h, and how
many decimal places should the equation

y' = y y(O) = I

be solved in 0 :s x :s 5 in order that the error satisfy

IEd == IU, - yd :s 10 - 4?

4. Assume that f(x, y) and fy(x, y) are bounded and continuous in S:

{(x, y) I a :s x :s b, Iyl < co}.

Then if h < l/iaoKI where K == max Ifyl, the implicit scheme (3a) can be
used to find the lUll, given uo, U1, ... , u" with r = max (n, p). [See discussion
after equation (6).] Estimate the total error, E, == Uf - Yh in solving (1) by
the implicit scheme based on (3a).

[Hint: If we stop the iterative process described in (5), when the equation
(3a) is satisfied with the error p, +" we will obtain a sequence {Ut } with Uo = UO,

U1 = U" . .. , Ur = Un that satisfies

n

U'+1 = Ut - v + h L aJ!(Xt+1-1, U'+1-1) + PH1·
1=0

Equation (8b) defines the corresponding truncation error at + 1. Show that E,
satisfies

n

£'+1 = £'-v + h L a,+1-jg,+1- I E,+1-1
j= 1

where gj = fix!> .YI) at some suitable point .YI' Hence show that lEd :s ah
where the sequence {ad is defined by

ao = max (IEol, ... , IE,I)

(
1 + hAK ) (p + ha )

a'+1 = a, 1 _ hlaolK + 1 - hlaolK

where p = max Ipd, a = max lad. Then show that

a'+1 = a,(l + hQ) + R
where

Q = K(A + laol)
I - hlaolK

R = p + ha .]
1 - hlaolK
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The higher accuracy predictor-corrector methods of Section 2 all require
special procedures for starting the calculations. That is, some approximate
solution, Uj> must first be computed for j = 0, 1, ... , s. In addition, if the
interval size, h, is reduced during the course of the calculation, care must
be taken to preserve the accuracy of the method. The single-step methods,
which we now consider, require none of these special measures. In fact,
they can be used to determine the starting values and to change the net
spacing in other methods. The price paid for these advantages is, in general,
the requirement of a greater number of evaluations of the function f(x, y)
(or functions related to it) for each step in the solution.

Again we consider the initial value problem

(I)
dy
dx = f(x, y), y(a) = Yo.

By single-step we mean that only data at x = Xo are to be employed in
obtaining the approximation to y(x) at x = Xl' Obviously such a procedure
could then be employed at Xl> and so forth, to extend the solution with
arbitrary step sizes. However, for convenience in exposition we shall
consider calculations on a uniform net

Xj = a + jh,
b-a

h=lr'

Any single-step method for approximating the solution of (I) in [a, b]
can be indicated by the general form

(2a)

(2b)

Uo = Yo + eo,

j = 0, I, ... , N - 1.

Here we denote by F{h, Xj' uj;.f} some quantity whose value is uniquely
determined by the value of (h, Xj> uJ and the function f For example,
the Euler-Cauchy scheme in (1.1) is a single-step method in which
F{h, x, u;.f} == f(x, u). We shall see that a variety of different choices
for F is determined by using Taylor's theorem or quadrature formulae.

It is a simple matter to obtain estimates for the error in a very general
class of single-step methods. To do this we first define the local truncation
errors, TJ+ l> by writing

(3) y(x j +l ) = y(xj) + hF{h, Xj, y(xj);.f} + hTj+l>

j = 0, I, ... , N - 1;
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where y(x) is the solution of (I). The largest integer p such that hi =

(!!(h P) is called the ordert of the method. As usual, the errors in the numeri­
cal solution are defined by

(4) j = 0, 1, ... , N.

Now in analogy with Theorem 1.1 we have

THEOREM 1. Let U j be the numerical solution defined in (2) where
F{h, x, u;f} satisfies

(5) IF{h, x, u;f} - F{h, x, v;f}1 ~ Klu - v!

j = 0, 1, ... , N;(6)

for all (x, u) and (x, v) in the strip S: {(x, y) I a ~ x ~ b, Iyl < co}.
Then ify(x) is the solution of (1), and h} is defined by (3),

IUj - y(xJI ~ eK(XJ-a>(leol + i)'
where

'T == max hi.
j

Proof Subtract (3) from (2b) and use (5) to find

lej +ll = lej + h[F{h, Xj> lI j ;f} - F{h, xj> y(x});f}] - h'Tf+d

~ (1 + hK)lejl + h'T, j = 0, I, ... , N - 1.

The remainder of the proof follows exactly as in Theorem 1.1. •

If the function f(x, y) and the scheme, determined by F{h, x, u;f},
have special smoothness properties it may be possible to replace (5) by a
type of mean value equality, say,

(7) F{h, x, u;f} - F{h, x, v;f} = G{h, x, u, v;f}(u - v).

Here G is determined by the value of (h, x, u, v) and the function f
Again in the Euler-Cauchy scheme if aflay is continuous, then (7) holds
with

G{h, x, u, v;f} = af(x, 8u ~y(l - 8)v), for some 8 in 0 < 8 < 1.

When this mean value property is satisfied, we can prove exact analogs
of Theorem 1.2 and its corollaries.

The roundoff errors in single-step methods can be treated very much as

t We assume that f(x, y) has enough continuous derivatives so that p may be deter­
mined by a Taylor's series expansion of Y(XI + h) - Y(XI) - hF{h, XI, Y(XI); f} in
powers of h.



[Sec. 3.1] FINITE TAYLOR'S SERIES 397

in Subsection 1.2. Thus the numbers actually obtained, say {VJ}, in trying
to evaluate the set {uJ} from (2) will, in general, have errors due to the
finite precision arithmetic. These numbers will satisfy equations of the
form

(8a) V o = Yo + Po

(8b) Vj +1 = V j + hF{h,xj , Vj;f} + Pj+1> j = 0, I, ... , N - I.

Then, if (5) is satisfied, we deduce in an obvious manner

(9) !U, - Y(x,)1 ~ """"O'(IPol + ': ~) j ~ 0, I"", N,

where P = max IPJ I. Again we see that as h ---+ 0, while X j - a = jh == c
l.'Sj

is fixed, the roundoff error may become arbitrarily large if the computing
accuracy remains unchanged. This effect is due to the fact that infinitely
many computations are required to get to the finite point x = cas h ---+ 0.
If the single-step scheme is of order p, then T can be bounded by a term
of the form Mh". For numerical balance then, IPol = G(hP) and P = G(hP + 1)
are reasonable requirements for the magnitude of the rounding error.

3.1. Finite Taylor's Series

If the solution y(x), of (I) has continuous derivatives of order r + I in
[a, b], then by Taylor's theorem:

hr

(lOa) y(xJ + 1) = y(x j ) + hytl)(x j ) + ... + fj ytr)(x j )

hr+ 1

+ (r + I)! ytr+l)(X j + 0Jh),

°< OJ < I; j = 0, I, ... , N - 1.

From the differential equation it follows that the higher order derivatives
of y(x) can be expressed as

y(1)(x) = f(x, y),

yt2)(X) = f,(x, y) + fy(x, y)ytl)(x),

(lOb) yt3)(X) = fxx(x, y) + 2fx.(x, y)ytl)(x)

+ fy.(x, y)[ytl)(XW + fy(x, y)yt2)(X),

or in general,

(lOb')
d v - 1

ytV)(x) = dxV-1 f(x, y(X)); II = 1,2, ....
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Thus given the value of y(x) at a point, we may determine its derivatives
if we can evaluate the partial derivatives of f(x, y). We use these observa­
tions in the finite Taylor's series method for approximating solutions of (I).

Equation (lOa) suggests the scheme

(l1a) Uj+1 = Uj + huj1) + ... + ~ uT, j = 0, I, ... , N - I,

where in analogy with (lOb) we have defined, for given (x}> Uj),

uj1) = f(x}> u),

uj2) = fAx}> Uj) + fix}, u,)uj1),

(1 Ib) u?) = fxx(x), Uj) + 2fxy(x), u})u;l)

+ fyy(x j , uj)(ujl)2 + fy(x j , u,)uj2),

These formulae are easily deduced from the compact symbolic formula
obtained from (lOb')

(11 b') [(
0 () ) v - 1 ] IujV) = ""8 + f(x, y) -;;- f(x, y) _ _.
x uy x-xJ. y-uJ

The initial value is, allowing for an error in obtaining Yo,

(l1c) Uo = Yo + eo·

The formulation of the method is complete and the approximation {Ui} can
be computed by recursive application of (l1a) through (llc).

To write the Taylor's series method in the form (2) we need only define
the operator

• _ (1) h (2) hT
- 1 (T)

(12) F{h, x}, u j ,!} = Uj + 2f U) + ... + -,-y- II)

where the ujV) are defined in (I I). Then from the expansion (lOa) and the
definition (3) of the truncation error for a one-step method, we obtain

(13) hT (T+1)( + 8h)
Tj+1 = (r+ l)!Y x j j,

o < 8j < 1, j = 0, 1, ... , N - 1.

The method is thus of order r when the first r + 1 terms in the Taylor
expansion are used. To verify condition (5) we use Taylor's theorem in
(lIb), after eliminating all u(v) and v(vl, to get

u(l) - v(l) = (u - v)[fy]

U(2) - V(2) = (u - v)[fxy + fy 2 + fyyf)
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The arguments of f(x, y) and its derivatives which occur in the brackets
are all of the form (x, 8u + (1 - 8)v) with different values of 8, in°< 8 < I, in different brackets. From the representation (11 b') we find
in a straightforward manner that

(14) u(v) - v'v) = (u - v)[: {(: + f(x, y) : )V-1f (X, y)}] I
uy uX uy y=8,u+(1-8,)v

v = 1,2, ....

Hence we can conclude that if f(x, y) has sufficiently many continuous
and bounded partial derivatives for (x, y) E S then F{h, x, u; f} defined
in (12) satisfies (7). Thus (5) is also satisfied, say, for all h :s; ho, where ho
is some fixed spacing. The constant K entering into (5) can be written in
the form

(15)
ho hS- 1

K=M1 +-M2 +· .. +-M2! r! n

k=I,2, ... ,r.

where M k is a bound on the appropriate bracket in the kth equation in
(14); i.e.,

1

0(0 0)k -1 I
M k == s~p oy ox + f(x, y) oy f(x, y) ,

By applying Theorem I and equation (13), we find that for all h :s; ho

(16) [uJ. - Y(Xj) [ < eK(Xf-a)[[e 1+ Mr +1h
r

], J' ° I N
- 0 (r + I)! K = , , ... , ,

where
M r + 1 == sup lir + 1)(x)[.

[a. bl

If we neglect the initial error, i.e., set eo = 0, then the error is at most
@(hr). Thus the Taylor series method can be used to generate starting data
which is consistent with any order predictor-corrector method provided
only that f(x, y) is sufficiently smooth. However, many different function
evaluations, as in (lIb), are required and so this method is not very
efficient.

Let us assume that

for all x E [a, b] and Iy[ < 00.

We show that in this case the bound (16) can be improved upon. Pick ho
such that

, 2 ho h~-1
K =-B +-M2 + .. ·+-M <02! r! r

where

K" = -C 2 - B2 - K'.

and 1 + hoK" > 0,
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(18a)

Now we find, by retracing the proof of Theorem I with a little care that
for all h ~ ho

(17) I ( )[ K'(x -a>[1 I M r + 1h
r

] , 0 I NUj - Y Xj ~ e I eo + (r + I)! jK'I' } = , , ... , .

We note that the exponential here is a decreasing function of xI"

3.2. One-Step Methods Based on Quadrature Formulae

By integrating the differential equation (I) over [xi> xj+d we get

l
XI+h

Y(Xj+l) = Y(xj) + f(x, y(x» dx.
XI

Hence, we see that various forms for hF{h, x, u;f} are naturally suggested
by quadrature formulae. However, as we are considering one-step methods
the appropriate quadrature formulae should only employ nodes in
[Xj, Xj + d, say, for example, the n + I points ~v satisfying

Xj ~ ~o < ~1 < ... < ~n ~ x j + 1 •

But the integrand or an approximation to it must be known at these nodes
and so we require approximations to y(~v), v = 0, I, .. " n. We have for
the exact solution at these points,

(l8b) v = 0, I, ... , n.

Thus we could use a sequence of quadrature formulae to estimate suc­
cessively the values Y(~v) and ultimately y(xj + 1).

A general class of one-step methods based upon these observations is
given by using (2) with

(19a) hF{h, Xj, Uj;f} = h i auf(~u, 7]u);
u=O

(19b)

(19c)

v = 1,2, ... , n.
v-I

7]v = 7]0 + h 2: aVd(~k' 7]k)
k~O

If in (19) we regard U v as an approximation to y(~,.), then the sums in (19a)
and (l9c) can be regarded as approximations to the integrals, respectively,
in (l8a) and (l8b). In fact, these considerations suggest that we require

(20a) 0 = Bo ~ B1 ~ B2 ~ •.• ~ Bn ~ I;

(20b)
n

" a = I'Lv'
v=o

(20c)
v-I

2: avk = Bv,
k=O

v = l, 2, .. "n.
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Condition (20a) requires that all the nodes, gv, lie in [x j , x j + tl and form a
non-decreasing set; condition (20b) implies that the sum in (l9a) has
degree of precision at least 0 as a quadrature formula over [go, gn];
conditions (20c) imply similar results for the sums in (19c) as quadrature
formulae over [go, gv]. If, in addition to (20b), we require that

n I
(21) L avCOvF = --I' P = 1,2, ... , m;

v=o P +
then the basic quadrature scheme in (19a) has degree of precision at
least m.

These considerations suggest many choices for the parameters in (19),
some of which have been examincd in the literature (i.e., Gaussian quadra­
ture, equal coefficient formulae, etc.). In fact, in practice, the parameters
are determined by the reasonable requirement that the local truncation
error for a fixed choice of n, be of as high an order in h as possible. From
(3), we determine the local truncation error, Tj+ l' for the one-step method
defined by (I9) from

(22a) y(x} + h) = y(x j) + h i av/(gv, YVj) + hTj+l,
v=o

where

(22b)
v-I

YOj = y(xJ; YVj = Yo, + h L avd(gle, Ylej),
Ie=O

I' = 1,2, ... , n.

If the parameters are given and lex, y) has sufficiently many continuous
derivatives, thcn y(x j + h) and the /(glco YIeJ can be expanded in powers of
h [about x" y(x j )]. Equation (22) then yields, upon equating coefficients
of like powers of h in (22a), an expression for Tj+ l' Obviously, this pro­
cedure can be used to determine the parameters in (19) such that Tj+1 has
the highest possible order in h. The use of Taylor's theorem here is similar
to its use in Section 5 of Chapter 5 to determine high order approximations
to derivatives, but is now much more complicated. We do not repeat here
any of these lengthy calculations, but present in Table 2 some sets of param­
eter values for one-step methods of indicatcd order. It is found, in fact,
that for n = 0 and I the maximum orders are I and 2, respectively, and
the conditions imposed are just those in (20) and (21) with m = I or 2.
For n = 2 an order of 3 can be obtained, if, in addition to (20) and (21)
with m = 3 one additional relation is satisfied; namely,

(This relation can be explained as the result of requiring the coefficients
av and avle to come from quadrature formulae with respective degrees of
precision 2 and I, at least.)
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Table 2 Some Standard Single-Step Difference Methods

Associated Coefficients and Nodes

Name n Order in h of T

I' or j 0 2 3

Modified Euler a v = t t @(h2)

OJ = 0 1
a1j = 1

Heun 2 a v = i 0 t @(h2)

OJ = 0 1 t3"

a1j = 1-
3

a2j = 0 t

Kutta 2 a v = i t i @(h3)

8j = 0 t 1
a1j = t
a2j = -1 2

Runge-Kutta 3 a v = i 1 1- i @(h4 )3" 3

OJ = 0 t t 1
a1j = t
a2j = 0 t
a3j = 0 0

Runge-Kutta 3 a v = ~ i ~ ~ @(h4 )

OJ = 0 I t 1:r
a1j = I

3"

a2j = -t 1
a3j = 1 -1

We shall now show that all the schemes included in (19) satisfy the mean
value property (7), if fy(x, y) is continuous in S. Let the quantities 'v
be defined as the 7]v are in (19) but with Uj replaced by Vj' Now we introduce
the notation g(x, y) == fy(x, y) and use the continuity of g to deduce

v-1

(23a) (rl v - 'v) = (7]0 - '0) + h 2: aVk[f(~k> 'Y/k) - f(~k' 'k)]
k=O

v-1

= (7]0 - '0) + h 2: aVkgk(7]k - 'k); I' = 1,2, ... , n.
k=O

Here we have used
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By applying the equations in (23) recursively, we can determine expressions
for the (7Jv - 'v) in terms of (7Jo - '0)' However, this procedure is rather
complicated and so we will just present the result and verify it by induction.

Let us define the quantities BVj as follows: BOj == I;

j=O

(24)
v-1

Bvj = 2: aVkgkBk.j-1 j= 1,2, ... ,1'
k= j-1

I' = 1,2, ... , n.

BVj = 0

Then we have

j ~ I' + I

I' = 1,2, ... , n.

To verify (25) by induction, we note that from (23) and (24) with I' = I,

(7J1 - '1) = (7Jo - '0)(1 + ha10go) = (7Jo - '0)(B10 + hEll)'

Thus (25) is valid for I' = 1. We now assume (25) to be valid up to I' - 1
and use it in (23a) to obtain

C7Jv - 'v) = (7Jo - '0)( I + h :%0 aVkgk m~o hmBkm),

= (7Jo - '0)(1 + :%0 h
m

+ 1 :~ aVkgkBkm)'

= (7Jo - '0)(1 + :%0 hm+1Bv.m+1)'

The induction is thus concluded and (25) is established.
We now obtain, from the mean value theorem and (25),

F{h, xi> uj;f} - F{h, Xj, Vj;f} = i avgl7Jv - 'v)
v=o

since (7Jo - '0) = (u j - Vj)' That is, we have established

LEMMA 1. Under the assumption that fix, y) is continuous everyone-step
scheme defined by (I9) satisfies the generalized mean value property (7)
with

(26) •
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and

Here the BVk are defined in (24) and the gv and gk are values of g(x, y) =

fix, y) at appropriate points of the form (x, 1>u + (l - 1»v), 0 < 1> < 1.
Again it should be observed that iffy < 0 in S, then by taking h so small
that a v ;::: 0, (26) implies G < O. Hence in such cases, the initial error in
one-step methods will decay exponentially with distance.

Of course, the indicated class of single-step methods satisfies a Lipschitz
condition of the form (5). To obtain a suitable constant Ko we could use,
from (26),

However, this is not readily calculable and so we shall determine an upper
bound for it in terms of the parameters of the scheme and

M == sup laf(x, y)l·
s ay

We note that Igvl :<;; M for all v. Now define

<D == m~x (~: lavkl )

and from (24) with j in I :<;; j :<;; v

v-I

!Bvil :<;; M L lavkl·!Bk,i-d
k=i-l

v-I

:<;; M· max IBI - l ,i-l!' L lavkl
i:$l:$v k=i-l

Since the right-hand side is independent of v we conclude that

f3i :<;; M<Df3i-l,

and by recursion using f30 = I

j = 0, l, ... ,v.

Since IBvil :<;; f3i for all v we have

(27)

n I _ (h<DM)Y+l
:<;; M t:o lavl 1 - (h<DM) .
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If we require that the coefficients a v be non-negative and satisfy at least
(20b), then

If further, h is chosen such that h ::;; ho, where hoetJM < I, then the above
bound simplifies to

(28)

We also note that if the avk are non-negative for all v and all k = 0, I, ... ,
v - I and if (20) is satisfied, then etJ = en and hence °::;; etJ ::;; I. For
sufficiently small h, in any event, the above bound can be made as close as we
please to M which serves as the Lipschitz constant in the simple Euler
method treated in Section I.

PROBLEMS, SECTION 3

1. Verify the entries in Table 2 under the name Modified Euler.
2. Verify the entries in Table 2 under the names Heun and Kutta with n = 2.
3. Verify the entries in Table 2 for both schemes under the name Runge­

Kutta with n = 3.

4. LINEAR DIFFERENCE EQUATIONS

We recall that linear difference equations with constant coefficients have
appeared previously in our study, for example, in Section 4 of Chapter 3
and in Subsection 1.4 of the present chapter. The theory of such difference
equations will be sketched here because it will be used in the general treat­
ment of difference methods given in the next section. The general linear
difference equation with constant coefficients is a relation of the form

(1) L(uj) ;: i asuj+s = Cj+n,
s= 0

Here the quantities as are the coefficients, the Cj+n are the inhomogeneous
terms, and the sequence {Uj} is to be determined subject in general to addi­
tional conditions. Usually the sequence is desired starting from some initial
index, say as indicated in (I) for j ~ jo. The difference equation in (I)
is said to be of order n, if anao # 0, since then the indices on the Uj vary
over n + I consecutive integers. We shall see that a solution of an nth
order linear difference equation is, in general, determined by specifying n
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initial conditions. That is, if Ja is the initial index then we adjoin to (I)
the conditions

(2)

We now have

THEOREM 1. If the difference equation (I) is of nth order then there is one
and only one solution {Ui} satisfying the initial conditions (2).

Proof The existence of the solution folIows trivially since an #- 0
implies from (I) that

(3) J = Ja,Ja + 1, ....

For uniqueness let there be two solutions, {u/} and {u/'}. Then their
difference {Ui} == {u.' - u/'} satisfies (2) with Va = VI = ... = Vn-I = 0
and (3) with Cj + n == O. Thus we find that {uJ == {O} and the proof is
complete. •

We consider the nth order homogeneous difference equations corre­
sponding to (I), namely:

(4) L(u;) = 0;

If the sequences {u j } and {Vi} are solutions of (4) then, by the linearity of
these equations, the sequence {au, + f3v,} is also a solution. Here a and f3
are arbitrary numbers. Thus we easily find that the set of all solutions of
(4) forms a linear vector space. A set of solutions, say r of them

{U~ll}, {U\2l}, ... , {U\Tl},

are linearly independent if only the trivial combination of the {U~Vl} vanishes
identically; that is, if

for i = Ja,Ja + 1, ... ,

implies that al = a2 = ... = aT = O. This is essentially the same notion
as the linear independence of vectors. A set of n independent solutions of
the nth order equations (4) is called a fundamental set of solutions.

A basic result now can be stated as

THEOREM 2. Let {U\Vl}, v = 1,2, ... , n, be a fundamental set of solutions
of the homogeneous difference equations (4). Then any solution, {Vi}, of
these equations can be expressed uniquely in the form
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Proof Since the set {u\V)} is independent, Theorem I implies that the
n vectors u(V), where u(V) == (u~V») for i = jo, jo + I, ... , jo + n - I, are
linearly independent. That is, according to Theorem I, if the u(v) were
linearly dependent, then the corresponding infinite sequences {u\V)} would
be linearly dependent. Hence the nth order matrix

[~"
u'2J urn)

Jo f o fo

U;~)+ 1 U~~)+ 1 U}~)+ 1

A == :
(1)

U;~\n-1 '"' ]Ujo+n-l UJo +n-1

is non-singular. Thus given any n components, say, v == {Vj} for i = jo,
jo + I, .. . ,jo + n - I, we can uniquely solve the nth order system

Att = v.

The components a v of tt are the coefficients to be used in the theorem.
Since the first n components of any solution {Vj} can be expressed as a
linear combination of the first n components of the fundamental set the
theorem now follows by an application of Theorem I. •

We can, furthermore, find a fundamental set of solutions of (4). We try
as a solution the powers of some scalar, say

Then (4) yields

(anxn + an_1xn-1 + ... + ao)(axf ) = O.

Ifaxf = 0 the corresponding solution is trivial and does not lead to a
fundamental set. Hence, we only consider the roots of

(5)

The nth degree polynomial Pn(x) is called the characteristic polynomial
of the difference equation (4). We easily find that if x is a root of (5) then
{u j } = {Xi} is a solution of the homogeneous difference equations. If the
roots of the characteristic equation are distinct, say Xl> x 2 , •.. , x n, then a
fundamental set of solutions is given by {u\V)} = {xvi}, V = 1,2, ... , n.
Since anao =/= 0, there is no zero root and the independence of the {u\V)}
follows from the independence of the first n components. That is, let us
define the matrix

whose columns are vectors obtained from the first n components of the
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set of solutions defined above. Then clearly, U is non-singular if the XI

are distinct, since

X/o

:.J
If the roots Xl are not distinct, we can still define a fundamental set of

solutions. Let X, be a root of multiplicity m, > I of Pn(x) = O. Then we
use the powers to generate one solution and successive derivativest with
respect to Xl> up to order ml - I to generate ml - I additional solutions.
Specifically, let u}lJ = x/. Now try

d d{U)2J} = -d {U)l)}, ... , {U)m,J} = -d {ujm, -l)}.
X, Xl

However, since any solution can be multiplied by a non-zero constant we
multiply the resulting {U)V)} by xl- l , to retain the original powers of Xl

in corresponding terms, that is, we introduce

{vjV)} = xr-l{u)")}, v = 1,2, ... , m"

The elements of these sequences are found to be

v}l) = x/,
v?) = jx,t,

V~3) = jU - I)x/,

v~m,) = j(j - 1)···U - m , + 2)x,t, for j = jo,jo + 1, ....

We leave the verification that these form m, solutions as Problem I.
By forming linear combinations of the solutions {vjV)} corresponding

to a root, Xl> of multiplicity ml> we find the simpler sequences {wj"J}

w)'J = x/,
wj2J = jx,t,

(6)

t To motivate this procedure, observe that if x, and X2 = x, + Iz are two roots of
(5), then

lim u, = ixi- l

h-O

u, = Iz-'(x, + Iz)' - x,'],

is a solution of (4). But then

i = jo, jo + 1, ... ,

is also a solution.
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These sequences are obviously linearly independent and are solutions
because they can be obtained as linear combinations of the {vj')}.

Let us now consider the inhomogeneous nth order linear difference
equations (I). If {vJ is any particular solution of equation (I) and {Uj}
is a solution of the homogeneous system (4), then {u j + vJ is a solution
of (I). This solution of (I) can be made to satisfy any particular initial
conditions by adjusting the {uj }. We now develop a discrete analog of
what is known as Duhamel's principle in the theory of differential equations
(where integral representations of solutions are obtained).

THEOREM 3. Let {uj")} be the fundamental set of solutions of the nth order
homogeneous difference equation (4) which satisfy the initial conditions

(7) u\') = DiY, i = 0, I, ... , n - I; v = 0, 1, ... , n - 1.

Then the solution of (I) subject to the initial conditions (2) with jo =0,
is given by

(8)
n-1 I j-n

u = " v,u)") +- "
J v~ an k~

j = 0, I, ....

j = 0, 1, ....

(Here we define u~n -1) =°for all i < °and CJ =°for all j < n.)

Proof The first sum in (8) satisfies the initial conditions (2) and the
homogeneous difference equations. Thus we need only show that the second
sum in (8) satisfies homogeneous initial conditions and the inhomogeneous
difference equations (I), with jo = 0. Let us define

I j-n

II' - "c urn -1) .
J = - L..., k+n j-k-l,

an k= 0

Then we have W j = °for j = 0, I, ... , n - 1 by recalling that u\n -1) = °
for i ~ n - 2 and Cj = °for j < n. In fact, for the same reason, we may
write

I 00

'" - "c u(n-1)
r.-] - - L k+n j-k-l,

an k=-oo

since the additional terms vanish. Then

since the terms corresponding to other values of k vanish. Hence,

L(w}) = l. ±ck+nL(uj"---k1~1)'
an k=O
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However, it is easily verified that

L(u~n_-/ll) = anSjk

and so finally,

PROBLEMS, SECTION 4

•
1. Verify that equation (6) defines ml linearly independent solutions of (4).
2. Verify that a fundamental set of solutions of (4) is obtained from (6),

if ml is replaced by ml and Xl by X, for each root Xl of (5) of multiplicity mI'

5. CONSISTENCY, CONVERGENCE, AND STABILITY OF DIFFER­
ENCE METHODS

The numerical procedures which we have introduced in Sections I
through 3 in order to approximate the solutions of differential equations
may be called difference methods. In this section we study the convergence
of a more general class of difference schemes. The analysis constitutes a
uniform development for all of the commonly used methods that were
treated separately in Sections I through 3.

The solution of the difference equations is what we try to compute, and
this may have to be done for very fine meshes, i.e., for many net points.
Thus, as a practical matter, it is important that these solutions should not
be too sensitive to small errors in the computations (for example, roundoff
errors). This sensitivity to errors is related to what is called the stability
of the difference equations. We have already investigated such matters but
without the introduction of this terminology. We shall see that for con­
sistent methods, stability of the difference equations is equivalent to
convergence of the difference equation solution to the solution of the
differential equation problem.

As usual, we consider methods for approximating the solution, y(x), of
the initial value problem

(I)
y' = f(x, y), a:'O: x :'0: b,

yea) = yo.

We assume that f(x, y) is in the class ~ of functions such that fix, y),
fx(x, y), and all partial derivatives of f of some finite order q ~ I are
continuous and uniformly bounded in S: {(x, y) Ia :'0: x :'0: b; Iy[ < oo}.
For any fixed net spacing h = (b - a)/N, we use a uniform net Xj =

a + jh, j = 0, I, ... , N, and seek approximations uj to y(x j ) on this net.
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The approximations are defined as the solution of some difference problem,
say

(2a) anuf +n + ... + aOuf = hF{h, Xf; Uf-m,'··' Uf+n;j} + hPf+n>
j = m, m + 1, ... , N - n;

where {at} are real constants independent of h satisfying anao # 0, and
Pf+n is the local rounding error subject to

IPf+nl ~ p(h),

The initial data are specified as, say

for j ~ m.

(2b) Uo = Yo + Po, Ul = Yl + Ph"" Um+n-l = Ym+n-l + Pm+n-l

where
IPkl ~ r(h), for 0 ~ k ~ m + n - 1.

We shall later require that p(h) ~ 0 and r(h) ~ 0 as h~ O.
By suitably defining F{h, Xf; Uf-m,"" uf+n;f}, we may incorporate in

(2) all of the schemes treated in the previous sections. On the other hand,
the only properties that we need postulate for F, in order to make this
general study ofconvergence, are easily seen to hold for all of the commonly
used difference methods. That is, we require

(3a) F{h, Xf; Uf-m,"" Uf+n; O} == 0;

(3b) IF{h, Xf; Vf-m,"" vf+n;f} - F{h, Xf; Uf-m,···, uf+n;f}!

n

~ C L IVf+k - Uf+kl,
k= -m

where the constant C depends only on the bounds ofjand a finite number
of its partial derivatives in S. The local truncation error, Tf +n, is defined by

n

(4a) L akYf+k - hF{h, Xf; Yf-m,··., Yf+n;j} = hTf+n,
k=O

where y(x) is a solution of (1). We further require that

(4b)

and

for m ~ j ~ N - n

(4c) lim T(h) = 0,
It-O

i.e., the truncation error tends to zero. Condition (4c) implies that the
difference equation (2) is an "approximation" to (1), rather than some
other equation. Strictly speaking, we say that (2) is consistent with (I)
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if r(h) ---+ °and T(h) ---+ °as h ---+ 0. [For example, let m = 0, n = I;
ao = -I; a l = I and

F{h, Xj; Uj- m, •.• , Uj+n;f} ;: f(Xj+h Uj+l) + f(x;, Uj)'

Then (2) is not consistent with the equation (1). That is, by using Taylor
series in (4a), for small h, Tj +l ;;;' - f(x j, Yj). Hence Tj does not approach
zero. In fact, this scheme is consistent with the equation y' = 2f(x, y).]
If, for all h ::; ho,

(5) m::; j::; N - n,

where M depends only on the bounds of f and a finite number of its
derivatives in S, we say that the truncation error of the difference method
is of order p.

We, of course, are interested in characterizing the convergent schemes
and in obtaining an estimate of the error. For a fixed mesh width, h, we
define the pointwise error

ej ;: Uj - yj, where Yj = Y(Xj).

The method (2) is convergent if, for any f(x, y) in~, max lejl ---+ °as
05j5N

h-? 0, provided that the rounding errors p(h) and r(h) tend to zero.
If scheme (2) is convergent for all f in ~, then it is convergent for the

problem (I) with f(x, y) ;: 0, Yo = 0. From this simple observation, we
note that if (2) is convergent and F satisfies (3a), then the solution {Uj} of

(6)

Uo = Po, U1 = Ph"" Un- 1 = Pn-l,

must tend to the solution y(x) ;: 0, for any set of initial errors {Pk} such that
max IPk I ---+ °as h ---+ 0.

k

We say that the difference method (2) satisfies the root condition if

(7a)

has only zeros 'I such that
(7b)

and the multiplicities, rj, of the 'I are such that if

(7c) I'kl = I, then rk = 1.

In other words, scheme (2) satisfies the root condition, if the zeros of
Pc,) lie in the unit circle and only simple zeros may lie on the boundary
of the unit circle. We can now establish a necessary condition that (2)
be convergent; i.e., for the solution of (6) to tend to zero.
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THEOREM 1. If (2) is convergent and F satisfies (3a), then (2) satisfies the
root condition (7).

Proof We show by contradiction that the root condition is necessary.
That is, if I~d > I and ~j is a complex root of pm, define

(8a) } = 0, 1, ... ;

if ~i is a real root set

(8b)

Clearly, (8) is a solution of (6) with Pk = Uk for k = 0, 1, ... , n - 1,
and max Ipkl --+ 0 as h --+ O. On the other hand, for any c in a < c < b
set} = [cjh]. But then IUle/h)I--+oo as h --+ O. Hence such a scheme is not
convergent.

If on the other hand, I~jl = 1 and ~i is a multiple root and complex set

(9a) } = 0, I, ... ;

while if ~i is real, set

(9b)

for 0 ~ k ~ N.

Now if} = [cjh], lure/h)1 does not approach zero as h --+ O. Hence such
a scheme is not convergent. •

The requirement that the solution {uJ of (2) depend Lipschitz contin­
uously on {Pk} is the definition of stability. That is, we say that (2) is stable
if for any f in :F, ther~ is an ha and an M, such that for all 0 < h ~ ha,
and N == N(h) = (b - a)/h

(lOa) lUI - v,1 ~ ME, for 0 ~ i ~ N

whenever {Vj} satisfies

(lOb) anVj+n + ... + aaVj = hF{h, Xj; Vj-m;"" Vj+n;f} + hGj+n,

};::: m,

(IOc) Vo = Yo + Go,···, Vm+n-l = Ym+n-l + Gm+n-l

where

IPk - Gkl ~ E

It is then easy to show

THEOREM 2. If the scheme (2) is stable and F satisfies (3a) then the root
condition (7) is satisfied.

Proof The proof follows by contradiction as did the previous theorem.
Merely verify that in the casef == 0 and Pj+n = 0 for} ;::: 0, the definitions
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(8) or (9) with h replaced by 8 define a solution {u,} of (2). On the other
hand, set ale = °and Vi = 0. Then it follows that

for °~ k ~ n - 1,

where E is proportional to 8. But now, (lOa) cannot be satisfied for any
fixed M as h ---7 0. •

Next we have

THEOREM 3. If (2) is consistent with (I), i.e. satisfies (4) and r(h) ---7 °
as h ---7 0, and F satisfies (3), then (2) is a convergent scheme if and only if
the root condition (7) is satisfied.

Proof In Theorem I we have shown that the root condition is neces­
sary for convergence. We now assume that the root condition holds and
prove that (2) is convergent. By subtracting equation (4a) from equation
(2a), we obtain a difference equation satisfied by the pointwise error

ei = Ui - Yi'

(11)

where

for m ~ j ~ N - n,

Ci+n =h[F{h, Xi; Ui - m,···, Ui+n;.f} - F{h, Xi; Yi-m,"" Yi+n;.f}]

+ hPi+n - hTi+n'

We may solve the inhomogeneous difference equation (II), by using
Theorem 4.3, in the form

(12)

[That is, define

n~l (Ie) 1 j~n (n _ 1)

L... em+leui + - L... CIe+m+nUi-"-b
Ie=o an Ie=O

for j = 0, I, ... , N - m.

Then (II) holds, i.e.,

for j = 0, I, ....

n

2: asE}+s = CJ + n
8=0

for °~ j ~ N - m - n.

Hence equation (4.8) gives a representation for EJ , which reduces to (12).]
But because the root condition is satisfied, we know from Theorem 4.2

and equation (4.6) that the solutions {u~")} satisfy

(13)

for some constant Q independent of k and j.
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(14)

Furthermore, from the definitions of Cj +n, p(h), r(h) that appear after
equations (11), (2a), and (4a) respectively, and from (3b), we find

ICk+m+nl ::; h[C ~~ lek+rl + p(h) + r(h)].

Ifwe use the estimates (13) and (14) in (12), we have

lej+ml ::; Qn max iem+kl
O~k~n -1

+ Q (j - n + l)h[(m + n + I)C max lerl + p(h) + r(h)]
an O$.r5.j,..m

This inequality simplifies, if we introduce

Wj = max lekl,
O$.k$.j

to read

(15)
Q(j - n + l)h

lej+ml ::; Qnwm+n-l + -=-::'----------'­
an

x [(m + n + I)Cwj+m + p(h) + r(h)],

for j = 0, 1, ... , N - m.

Since Wj+m is equal to lekl for some index k ::; j + m and since n 2:: I,
we find from (15) that a fortiori

(16) Wj+m ::; Kjhwj+m + Qnwm+n-l + Qjh [p(h) + r(h)],
an

where
QC(m + n + I)

K= ,
an

for j = 0, I," "", N - m.

If we limit the range of j, as h tends to zero, so that

(17) jhK ::; 1,

then (16) yields

[
p(h) + r(h)]

(18) Wj+m::; 2Q nWm+n-l + 2Ka
n

for 0 ::; j ::; 2~h·

If we now employ the definition of Wj, (18) yields, using r(h) defined
after (2b),

(19) for 0 ::; jh ::; L·
Equation (19) bounds the pointwise error, for a finite interval

(a, a + Ij(2K», in terms of the bound for the initial error, Wm+n-!r and
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the bounds p(h) and T(h) of the rounding and truncation errors. The length
of the interval of convergence, Ij(2K), is independent of h and is defined
after (16).

Hence we may repeat this argument by beginning with the m + n
errors bounded by (19).

e[1/(2lCh)] - m - n + b e[1/(2lCh)]- m - n + 2, ... , e[1/(2lCh)]'

In this way, we may successively establish pointwise convergence as
h ---* 0, in the finite number of intervals

( a + ~, a + ~), (a + ~, a + ~), ... , (a + R, a + (b - a»),
2K 2K 2K 2K 2K

forp=I,2, ... ,R,

where R = [(b - a)j(2K)]. The error estimates for successive intervals
can then be seen to satisfy, in analogy with (19),

Ip +1 ~ 2Q [nIp + p(h)2:a
n

T(h)],(20)

where I p is the pointwise error bound for the interval

(
p-I P)a + --,a + _.

2K 2K

From (20) it is then possible to recursively bound I R + 1 and hence to
bound le;1 for 0 ~ j ~ N by

(21) Ie I ~ (2Qn)R+lr(h) + (2Qn)R+l - I Q(p(h) + T(h»,
; 2Qn - I Kan

if 2Qn # 1;

~ r(h) + (R + I)Q(p(h) + T(h»,
Kan

if 2Qn = 1.

Formula (21) not only establishes convergence of the finite difference
scheme (2), but gives an upper bound for the error e; in terms of the initial
error, the rounding error and the truncation error. This bound is of the
same general character as were the bounds that we derived earlier for the
special methods treated in Sections I through 3. •

By essentially the same arguments we could prove:

THEOREM 4. If the F in (2) satisfies (3) then (2) is a stable scheme iff the
root condition (7) is satisfied.

We have therefore established the important consequence of Theorems
3 and 4;
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THEOREM 5. If the scheme (2) is consistent with (1) and F satisfies condition
(3), then the necessary and sufficient condition that (2) be convergent is
that it be stable. •

It is possible to strengthen Theorem 3 by noting that F need only
satisfy the Lipschitz condition (3b) in a narrow strip about the solution
y(x) given by Sd: {(x, y) I a :s; x :s; b; Iy - y(X) I :s; d} for any fixed
constant d > O. That is, for h sufficiently small, the error estimate (21)
shows that if the solution of the difference equation starts in the strip
Sd/2 then it remains in the strip Sd'

The special case with m = 0 and

n

(22) F{h, Xj; UJ - m,···, uj+n;f} == L bs!(Xj+s, UJ +S )

8=0

has been treated by Dahlquist. He found the surprising result that although
by proper choice of the 2n + I independent parameters {as/an}, {bs/an}, it is
possible to construct a scheme having a truncation error of order 2n;
only schemes with a truncation error of order at most n + 2 may be con­
vergent. (In fact, if n is odd then only schemes for which the truncation
error is of order at most n + I may be convergent.) The implicit scheme of
equation (2.3a) with p = n - 1, based on the Newton-Cotes quadrature
formulae applied to (2.2) with p = n - 1, then has the maximum possible
order of truncation error for convergent schemes of form (2) with F
given by (22). Dahlquist's work finds other schemes having a truncation
error of the same order, but shows that schemes which are both convergent
and of greater accuracy do not exist.

PROBLEMS, SECTION 5

1. Define Ffor the following schemes treated in Sections I through 3 given
by

(a) equation (l.1a)
(b) equation (l.24a)
(c) equation (l.37a)
(d) equation (2.3a)
(e) equation (2.3b)
(f) equation (2.7a and b)
(g) equation (3.lla and b)
(h) equation (3.8) and (3.19a, b, and c)

and verify that conditions (3a and b) are satisfied. Which of these schemes do
not satisfy the root condition?

n

2. If (2) is convergent, show that P(1) = L as = O.
s=o

[Hint: Let [(x, y) == 0; y(a) = Yo #- 0; Pk = 0.]
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n
3. In the scheme (2) with F given by (22), show that with T(O == L bs's,

s=o
r(1) = T(1) implies that the truncation error is of order p ~ 1.

[Hint: Expand the left side of equation (3c) about (Xh YI) in powers of h.
Observe that

n

r(1) = L sa"
8=0

T(1) = ~ bs.]
8=0

6. HIGHER ORDER EQUATIONS AND SYSTEMS

Any rth order ordinary differential equation,

dTz ( dz dT-iz)
dxT = g x, z, dx"'" dxT-i '

can be replaced by an equivalent system of first order equations. There are
a variety of ways in which this reduction can be performed; the most
straightforward introduces the variables

d O)(x) d (T -ll(X)
yCil(X) == z(x), yC2l(X) == Ydx ' ... , yCT)(X) == Y dx .

Then the differential equation can be written as

d yO) = yC2),
dx

d_ yCT-i) = yCT)
dx

d_ y(T) = g(x y(l) y(2) y(T»dx ",...,.

This is, of course, a special case of the general system

(I a)
dy
dx = f(x; y).

Here we have introduced the r-dimensional column vectors y and f with
components

v = 1,2, .. " r.

We will study the difference methods appropriate for solving a system (Ia).
The initial data for such a system are assumed given in the form

(I b) y(a) = Yo,

where we seek a solution of (I) in the interval a ::; x ::; b.



[Sec. 6] HIGHER ORDER EQUATIONS AND SYSTEMS 419

v = 1,2, ... , r;

All of the difference methods previously proposed for a single first
order equation have their direct analogs for the system (1). With (1a)
in component form,

dy<V)
dx = PV)(x, y<l)(x), ... , y<r)(x)),

it does not require much insight to write down the corresponding difference
methods based on quadrature formulae or even the single-step methods.
In fact, the general predictor-corrector becomes, in vector form,

(2a) u1+l = UI_q + h ~ f3lf (xl - i ; UI-i);
1=0

n

(2b) U1+ 1 = UI_p + h 2: akf (XI+1-k; U1+1-k) + haof(xI+1; U1+1).
k=l

Similarly, the general one-step difference methods for the system (1)
can be written as

(3) Uj +1 = Uj + hF{h, xi; Uj; f}.

For the class of methods defined in Subsection 3.2 we take (for systems)

n

(4a) hF{h, xi; Uj; f} = h 2: auf(~u; 1Iu);
u=o

(4b)

(4c)
v-1

1Iv == 110 + h 2: aVkf(gk; 11k),
k~O

v = 1,2, ... , n.

Here the quantities au, ()y, and avk are defined as in (3.20) and (3.21).
As in Section 2 we define the truncation error in predictor-corrector

methods applied to a system. That is, an r-dimensional vector, ~t + b

defined by
n

(5a) YI+1 = Yt-p + h 2: akf (XI+1-k; YI+1-k)
k~l

+ haof(xI+1; y1+1)+h~I+1.

Here Yt*+ 1 == YI + 1 - ha1+ 1 defines a1+ 1, and Yt*+ 1 is defined by the right
side of (2a) with U replaced by y. We find that

(5b) ~ = a + haoJa*,

where a* and a have components a(V)* and a(v) which are respectively the
errors in applying the appropriate quadrature formulae to the integration
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of PV)(x, y(l)(x), ... , y<r)(x». The elements of the matrix J are found by
evaluating the corresponding elements of the Jacobian matrix

(
OPV»)

(5c) J =(a v#) = oy<~)

at appropriate intermediate points. The detailed derivation of (5) is left
as an exercise. By using the matrix (5c) we find that the error vectors

(6)

satisfy the systems

(7a) et+1 = et - q + h ~ f3fJt-fet-f;
f=O

n

(7b) et+ 1 = et - p + h :2 afJt+1- jet+ 1- f
f=1

+ h2aoJl+ 1 ~ f3fJt-fet-f - h'tt+1.
f=O

Here again the matrices Jt have as elements the avo of J evaluated at appro­
priate intermediate points (the elements in each row of Jf can be shown to
be evaluated at the same point). A convergence proof can now be given
exactly as in Subsection 2.1 (see Theorem 2.1) if we employ appropriate
vector and matrix norms.

In fact, if the root condition (5.7) is satisfied, we may copy the proof
of convergence and the error estimates given in Theorem 5.3 by replacing

by the corresponding vector quantities

y, f, u, v, e, F, Pb 'tk , Ck, Ek , Cb II II",
(i.e., absolute value is replaced by maximum absolute component), for
the scheme

(8a) i a.uf +. = hF{h, Xf; Uf-m,···, Uf + n; f} + hPf+n,
f~O

where m ::; j ::; N - n, with

(8b) Uo = Yo + Po, U1 = Y1 + Ph···, Um+n- 1 = Ym+n-1 + Pm+n-1·

PROBLEMS, SECTION 6

1. Verify the error estimate corresponding to equation (5.19), as indicated
in the last sentence of Section 6, for the scheme defined by (8). That is, show that

II ej +m II <X> ::; 2Q[n max IIed <X> + ,-P(.:....h:"')2_+_
T
...;;(h...:..)]

QskSm+n-l KGn
for 0::; jh ::; L,
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where

BOUNDARY VALUE AND EIGENVALUE PROBLEMS

QC(m + n + 1)
K=

421

and C, which appears in the vector analog of (5.3b), is a bound for the vector
norm II II", of f and of all its partial derivatives with respect to x, yO), y(2), ... ,
y<n of some finite order, in the domain S: {(x; y) I a ::; x ::; b, Ilylloo < ro}.

2. Verify that ifu == (dk», v == (V(k», andf(x; y) has a continuous derivative
with respect to all variables, then

f(x; u) - f(x; v) = f (U(k) - V(k» o~) (x; v + O(u - v»

for some 0 such that 0 < 0 < 1.
Hence, if f is replaced by a vector valued function f, each component pj)

of f may have its own OJ satisfying 0 < OJ < 1.
[Hint: Study g(t) == f(x; v + t(u - v». Note that g(t) - g(O) = tg'(Ot)

for some 0 in 0 < 0 < 1. Then evaluate

d ddt g(t) = dt f(x, v + t(u - v»

and set t = I.] This justifies the definition of Jk in (7) and j in (5b).

7. BOUNDARY VALUE AND EIGENVALUE PROBLEMS

A boundary value problem for an ordinary differential equation (or
system) is one in which the dependent variable is required to satisfy
specified conditions at more than one point. Since an equation of nth
order has a general solution depending upon n parameters, the total
number of boundary conditions required to determine a unique solution is,
in general, n. However, when the total of n boundary conditions is given
at more than one point, it is possible for more than one solution to exist
or for no solution to exist. Of course, ifmore than n conditions are imposed,
even for the initial value problem, there will, in general, be no solution.
A detailed study of the existence and uniqueness theory is beyond the scope
of our book. However, for linear problems, the theory is well known
and we shall indicate here the elements of this theory which may be
applicable to non-linear problems and to the analysis of numerical pro­
cedures used to solve such boundary value problems.

The simplest linear boundary value problem is one in which the solution
of a second order equation, say

(Ia) y" - p(x)y' - q(x)y = 0,

is specified at two distinct points, say

(I b) yea) = a, y(b) = fl.
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The solution y(x), is sought in the interval a :::; x :::; b. A formal approach
to the exact solution of the boundary value problem is obtained by con­
sidering the related initial value problem,

(2a)

(2b)

Y" - p(x) Y' - q(x) Y = 0,

yea) = a, Y'(a) = s.

The theory of solutions of such initial value problems is well known and
if, for example, the functions p(x) and q(x) are continuous on [a, b),
the existence of a unique solution of (2) in [a, b1is assured. Let us denote
this solution by

Y = yes; x),

and recall that every solution of (la) or (2a) is a linear combination of two
particular "independent" solutions of (la), y(1J(x) and y<2J(X), which
satisfy, say,

(3a)

(3b)

y(1J(a) = 1,

y<2J(a) = 0,

y<lJ'(a) = 0;

y<2J'(a) = 1.

Then the unique solution of (2a) which satisfies (2b) is

(4) yes; x) = ay(1)(x) + Sy<2J(X).

Now if we take s such that

(5) Y(s;b) == ay(1)(b) + sy<2J(b) = (3,

then y(x) == Y(s;x) is a solution of the boundary value problem (1).
Clearly, there is at most one root of equation (5),

(3 - ay(1J(b)
s = y<2)(b) ,

provided that y<2J(b) i= O. If, on the other hand, y<2J(b) = 0 there may not
be a solution of the boundary value problem (1). A solution would exist
in this case only if (3 = ay<1)(b), but it would not be unique since then
Y(s; x) of (4) is a solution for arbitrary s.

Thus there are two mutually exclusive cases for the linear boundary
value problem, the so-called alternative principle: either a unique solution
exists or else the homogeneous problem (i.e., yea) = y(b) = 0) has a non­
trivial solution (which is Sy<2J(X) in this example).

These observations permit us to study the solution of the inhomogeneous
equation

(6) y" - p(x)y' - q(x)y = rex),

subject to the boundary conditions (lb). This problem can be reduced to
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the previous case if a particular solution of (6), say y<P)(x), can be found.
Then we define

(7) w(x) == y(x) - y<P)(x),

and find that w(x) must satisfy the homogeneous equation (la). The
boundary conditions for w(x) become, from (7) and (1b)

w(a) = a - y<P)(a) == a',

web) = f3 - y<P)(b) == f3'.

Thus, we can find the solution of (6) and (lb) by solving (1) with (a, (3)
replaced by (a', f3'). A definite problem for the determination of y<P)(x)
is obtained by specifying particular initial conditions, say

(8)

which provides a standard type of initial value problem for the equation
(6). Again, the alternative principle holds; see Problem 1.

The formulation of boundary value problems for linear second order
equations can be easily extended to more general nth order equations or
equivalently to nth order systems of first order equations (not necessarily
linear). For example, in the latter case we may consider the system

(9a) y' = f(x; Y),

where we use the row vectors y = (Yl. Y2, . 0 ., Yn), f = (fl. 12' .. 0' In) and
the functions I" == I,,(x; y) = I,,(x; Yl. . 0 ., Yn) are functions of n + 1
variables. The n boundary conditions may be, say,

YI(a) = al. Y2(a) = a2' .. 0, Ym/a) = am"

(9b)
Ym, +2(b) = f32'" 0' Yn(b) = f3m2'

Thus, we specify m 1 quantities at x = a and the remaining n - m , = m2

quantities at x = b.
In analogy with (2) we consider the related initial value problem:

(lOa) Y' = f(x, Y);

(lOb)
i = 1,2, 0'" ml

Ym, +la) = Sf> j = 1,2, ... , m2 •

We indicate the dependence on the m2 arbitrary parameters Sf by writing

k = 1,2, ... , n.
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These parameters are to be determined such that

(II) j = I, 2, ... , m2'

This represents a system of m 2 equations in the m2 unknowns Sj. In the
corresponding linear case (i.e., in which each Ik is linear in all the Yk)

the system (II) becomes a linear system and its solvability is thus reduced
to a study of the non-singularity of a matrix of order m2 •

Note that the alternative principle is again valid. In the general case,
however, the roots of a transcendental system (II) are required and the
existence and uniqueness theory is more complicated (and in fact, is not
as completely developed as it is for the linear case).

We shall examine two different types of numerical methods for approxi­
mating the solutions of boundary value problems, in Subsections 7.1 and
7.2.

7.1. Initial Value or "Shooting" Methods

The initial value or "shooting" methods attempt to carry out numeri­
cally the procedure indicated in equations (2) through (5). That is, roughly,
the initial data are adjusted so that the solution of an initial value problem
satisfies the required boundary condition at some distant (boundary)
point.

We take, for definiteness, a uniform net

(12) X o = a, x j = Xo + jh, j = 0, I, ... , N,
b-a

h=--·
N'

and shall try to approximate thereon the solution of the linear equation (6)
subject to (I b). We first approximate the solutions y(ll(X) and yC2l(X) of the
initial value problems (la) and (3). This can be done, for example, by
replacing (I a) by an equivalent first order system and then using a predictor­
corrector or one-step method as indicated in Section 6. In the same
manner, we can approximate the particular solution yCPl(X) of (6) and (8).
The respective numerical solutions are denoted at each point X j of (12)
by

(13a) ujll, uj2\ ujPl, j = 0, I, ... , N.

These solutions satisfy, at X o = a, the conditions

(13b)

Assume that the same numerical procedure has been used to compute
each of these solutions and that we have

(l4a)

(14b)

(14c)

ejIl == ujll - yCll(Xj) = (!)(hT
),

ej2l == uj2l _ yC2l(Xj) = (!)(hT
),

ejpl == ujPl - yCPl(Xj) = (!)(hT).
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[That is, the truncation error of the integration scheme is (1J(h r), and the
rounding errors are at most (1J(h r + 1

) so that the estimates (14) apply.]
The exact solution of (6) and (I b) is, by the previous analysis, given by

(15a) y(x) = y'Pl(X) + ay'll(x) + Sy'2l(X), a :::.; x :::.; b;

(
15b) (3 - y'Pl(b) - ay'll(b)

S = y'2l(b) .

Of course, we assume that y'2)(b) i= 0. Otherwise the homogeneous prob­
lem has a non-trivial solution and then, in general, the boundary value
problem has no solution. With the use of(l3), we take for the approximate
solution the obvious combination

(l6a)

where

j = 0, I, ... , N;

(16b)

From (l3b) and (l6b) it clearly follows that, as required,

Va = a, V N = (3,

where we have neglected possible roundoff errors in forming Vj and Sh'
Thus, in principle, Vj is an approximate solution of the boundary value
problem (6) and (I b). In practice, we need only calculate the solution of
two initial value problems to evaluate Vj' That is, y'P)(x) + ay'll(x)
satisfies (6) and conditions (3a) so that U;Pl + aujl> can be computed as
the solution of a single initial value problem.

Upon recalling (14), we are led to the obvious, and in fact, correct
conclusion that

ej == V j - y(xj ) = (1J(hr).

However, as we now show, there may still be practical difficulties in
obtaining an accurate approximation. .

Upon subtracting (l5a) with x = Xj from (16a) and using the definitions
(14), we find

(l7a) ej = (ejP) + ae;ll + sej2l) + (Sh - S)U(2)(Xj ), j = 0, I, ... , N.

Since b = xN, (l5b) and (16b) imply eN = °and

e~l + aeiJl + sefJl
(l7b) (Sh - s) = - .ufJ)
Use (17b) in (17a) to find

d·2)
(18) ej = (ejPl + aejll + sej2l) - (e~l + ae}Jl + sefJl) u~)'

From this expression for the error we see that eo = eN = °and thus the
error is, in general. small near the endpoints of the interval. However,
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whenever luj2)jdJ) I becomes large we may expect relatively large errors.
This ratio can be computed and thus a practical assessment of the accuracy
in the present method is possible. In particular, note that u<J) = y<2)(b) +
e<J). Thus, whenever the fixed number y<2)(b) is small and opposite in sign
to the error e~), which depends upon h, we may find a magnification of the
intermediate errors, eJ'

The effect of roundoff errors in the present method can be very pro­
nounced. While performing the calculations (16), significance is frequently
lost when large almost equal quantities are subtracted from each other.
This may be due to the occurrence of a small value of U~2), or to rapidly
growing solutions y(l)(X), y(2)(X) and/or y<P)(x).

By using the estimates (14) in (18) we obtain the error bound

(19) j = 1, 2, ... , N - 1.

Thus (for sufficiently small net spacing) the error behaves as theoretically
expected. In practice, however, it may frequently be necessary to use many
significant figures in the calculations to realize these error estimates.

The method (and its attendant difficulties) treated in this subsection is
easily extended to more general linear boundary value problems.

We can alter the procedure slightly and, with considerably more com­
puting effort, solve non-linear boundary value problems. For example if,
in place of (1), the problem is

(20) y" = f(x, y, y'); y(a) = a, y(b) = /3;

we consider the initial value problem [in place of (2)]

(21) Y" = f(x, Y, Y'); Y(a) = a, Y'(a) = s.

If Y(s; x) is the solution of (21) and s* is such that

(22) Y(s*; b) = /3,

then y(x) = Y(s*; x) is a solution of (20). The equation (22) is, in general,
transcendental, whereas in the linear case the corresponding equation, (5),
is linear in s.

The problem of solving (20) is reduced to the determination of the root
(or roots) of (22). The root s* could be found by applying the iterative
methods of Chapter 3. Of course, in each step of such iteration schemes at
least one evaluation of Y(s; b) is required for some value of s. This
may be found only approximately by integrating (21) numerically on
some net (12). That is, the net function Vis), j = 0, 1, ... , N, may be
constructed by some method described in earlier sections. Then Vj(s) is
an approximation to Y(s; Xj). If the overall error of the integration scheme
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is (I)(hT
) and the function f(x, y, z) is sufficiently smooth, then for each s

we will determine, in fact,

VN(s) = Y(s; b) + (I)(hT
).

If the solutions of (21) are such that (22) has a simple root, s*, and

o < 10Y~:; b)! ~ K,

for Is - s*1 ~ p, then we can show that a functional iteration procedure
will, if So is close enough to s*, produce a sequence So, Sh ... , such that
for some k

Hence
ISk - s* I = (I)(hT

).

By using sufficiently many iterations, we can thus get within (I)(hT
) of a

root of (22) and hence compute a solution of (20) to within an error boun­
ded by Mh T

• In Problems 4 and 5, we indicate some of the details of these
results.

It is convenient for the application of Newton's iterative method in
solving (22) to approximate 0 Y(s; b)jos. By differentiating (21) with
respect to s, we can formally find the differential equation, called the
variational equation, i.e., satisfied by the function W(s; x) == oY(s; x)jos:

W" = of(x, Y, Y') W + of(x, Y, Y') W'.
oy oz'

W(s; a) = 0, W'(s; a) = 1.

A numerical approximation to the solution of the variational equation
may be computed stepwise along with the evaluation of Vis). Hence for
j = N we would have an approximation for both Y(s; b) and 0 Y(s; b)jos.

7.2. Finite Difference Methods

We consider here finite difference methods which are not based on
solving the initial value problem. These are called direct methods. The
truncation error of the particular difference method we use is (I)(h2

) and
the labor required for a given accuracy is comparable to that for the
initial value method of some low order.

Let the boundary value problem be (6) and (1 b) which we write as

(23a)

(23b)

L{y} == y" - p(x)y' - q(x)y = r(x);

y(a) = a, y(b) = f3.
We impose here the restriction that

(24) q(x) ;::>: Q* > 0, a ~ x ~ b.
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j = 1,2, ... , N,

The most simple existence and uniqueness proofs for solutions of boundary
value problems of the form (23) require such a condition but with Q* ;::: o.
We assume a unique solution of (23) to exist with four continuous deriva­
tives in a ::5: x ::5: b. A uniform net will be used with h = (b - a)j(N + 1).

Now rather than seek high order accuracy in a difference approxima­
tion of (23a) we use the simple difference equations

(25a) L { } = Uj-l - 2uj + Uj+l _ ( ) Uj+1 - Uj-l
h Uj - h 2 P Xj 2h

- q(xj)Uj = r(Xj) , j = 1, 2, ... , N.

The boundary conditions are replaced by

(25b) Uo = a, UN+l = f3.
Multiply (25a) by -h2j2 to obtain

h2 h2

-2" Lh{uj } = -b jUj_1 + ajUj - CjUj+l = -2" r(Xj) ,

where

(26)

Cj == ~ [1 - ~ P(Xj )]-

Using this notation the system of difference equations (25a) and boundary
conditions (25b) can be written in the vector form

(27a) Au = r,
where

U1 r1 b1a

U2 r2 0

(27b)
h 2

u== r ==-2" +
0

UN rN cNf3
a1 -C1

0
-b2 a2 -C2

A==

-bN - 1 a N -)

0
-bN aN
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Thus to solve the difference problem (25) we must, in fact, solve the Nth
order linear system (27a) with tridiagonal coefficient matrix, A, given in
(27b).

Let us require that the net spacing h be so small that

(28) j = 1,2, ... , N.

2-:;'j-:;.N-l;

Then from (26) it follows that

Ibjl + ICjl = bj + Cj = 1,

while (24) implies aj > 1. So we deduce that

la11 > IC11;
lajl > Ibjl + [e,I,

laNI > IbNI;
and hence Theorem 3.5 of Chapter 2 applies. The solution of (27a) can
thus be computed by the simple direct factorization of A described in
Section 3 of Chapter 2. Of course, this furnishes a proof of the existence
of a unique solution of the difference equations (27) provided (28) is
satisfied.

Let us now estimate the error in the numerical approximation defined
above. The local truncation errors, T j, are defined by:

(29) j = 1,2, ... , N.

Since y(x) is a solution of (la) we have, assuming ylV(x) to be continuous,

(30) Tj = Lh{y(xj )} - L{y(xj)}

[
Y(X j - h) - 2y(xj) + Y(Xj + h) _ "( )]

h2 Y Xj

_ ( ) [Y(X j + h) - Y(Xj - h) _ '( )]
p Xj 2h Y x,

~ ~; [lV(tj ) - 2p(xj)Y"'(7)j)]; j = 1,2, ... , N.

Here ~j and 7)j are in [Xj-I. Xj+l] and we have used Taylor's theorem.

The basic error estimate can now be stated as

THEOREM 1. If the net spacing, h, satisfies (28) then

(31a) j=O,l, ... ,N+l;
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where y(x) is the solution of(6) and (Ib), {uj} is the solution of(25) and

M 4 == max [y'V(x)l.
[a. bl

(31 b)

p* == max Ip(x)l,
[a. bl

M 3 == max 1y'''(x)l,
[a. bl

Proof Let us define

ej = Uj - y(xJ, j = 0, I, ... , N + I.

j = 1,2, ... , N.(32)

Then subtracting (29) from (25a) yields, with the aid of (26),

h2

ajej = bjej_l + CJej+l + 2" 7'}>

Now with the norms

e == max [ejl,
O'5,j5.N+ 1

7' == max [7'jl,
l$.j$.N

j = 1,2, ... , N.

we obtain by taking absolute values in (32) and using the equation after (28)

h2

[ajejl ~ e + 2" 7',

However, by condition (24), [aJI = aj ~ I + (h 2 /2)Q* and so the above
implies that

j = 1,2, ... , N.

•

From (23b) and (25b) we have eo = eN + 1 = 0 and so the above inequality
is valid for all j in 0 ~ j ~ N + I. Thus we conclude that

I
e ~ Q* 7'.

Finally, by using the quantities (3Ib) in (30) we find that

h2

7' ~ 12 (M4 + 2P*M3 )

and the theorem follows.

From Theorem I we see that the difference solution converges to the
exact solution as h -'; 0 and, in fact, that the error is at most f!J(h 2

). For
equations in which p(x) == 0, error bounds that are f!J(h 4

) are easily obtained
by using a slight modification of(25a) (see Problem 6). Boundary conditions
more general than those in (23b) can be treated with no essential change in
these results (see Problem 7). The condition (24) can be relaxed to q(x) ~ 0
and a somewhat more involved argument yieWs a result analogous to
that of Theorem I. These arguments are based on a so-called maximum
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principle (see Problem 9). The use of this maximum principle is demon­
strated in Problem 10.

The effects of roundoff in computing the solution of (25) can be esti­
mated. In fact, let V j be the computed quantities which, in place of (25),
satisfy

(33a) j = 1,2, ... , N;

and the boundary conditions

(33b) va = a + Po, VN+1 = f3 + PN+l'

The quantities Pi represent the local roundoff errors committed in each
of the indicated computations. Now we define

j = 0, 1, ... , N + 1

j = 1,2, ... , N.

and exactly as in the proof of Theorem I we deduce that

(I + ~ Q*)IEjl ~ E + ~ T + P,

Here
P = max Ipjl and lEal = IPol, IEN+1 1 = IpN+ll,O,;j,;N+l

E = max IEjl.
O<j';N+l

If, in addition to (28), we require that h2 Q*/2 ~ I, then this inequality
is also valid for j = 0, andj= N + I so we finally obtain

E ~ ~* (T + 2 :2)'
Thus for sufficiently small net spacing, h, we have

I I 2(M4 + 2P*M3 ) 1 (2p )
(34) V j - Y(x j ) ~ h 12Q* + h2 Q*'

j = 0, I, ... , N + I.

The roundoff affects this estimate somewhat differently than it did
the corresponding estimates in Subsections 1.2 and 1.3, etc. Now to have an
error bound which is t!J(h2

) we must limit the roundoff by P = t!J(h4
)

as h -+ O. That is, two orders in h improvement over the local truncation
error are required. Previously, only one additional order in h was required,
since our difference equations were then approximations to first order
differential equations (or systems of equations).

Difference methods can also be applied to fairly general non-linear
second order boundary value problems. While such methods accurate to
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()(h2) can be determined, the difference equations are now no longer
linear. Hence iterations are employed to solve these equations. It should
be observed that the iterations are not employed in order to satisfy the
correct boundary conditions, as would be the case in the initial value
methods. The construction of iteration procedures for solving the difference
equations is quite simple.

The non-linear boundary value problems we consider are of the form
(20) where the function f(x, Y, z) is assumed to satisfy the conditions

(35) 0 Q < of(x, Y, z) < Q* 10f(X, Y, z)1 < p*.
< * - oy -, oz - ,

in some sufficiently large region. Furthermore, these partial derivatives
and y1V(x) are assumed to be continuous.

Again we use a uniform net. On this net the difference approximation
of (20) is taken to be

(36a) Uj-l - 2uj + Uj+l _ f( Uj+l - Uj-l)
h2 - XJ> Uj, 2h '

j = 1,2, ... , N;

(36b) Uo = a, UN+l = f3.

The local truncation error, 7'j, of this method is defined in the usual manner
by

(37) Yf-l - 2Yj + Yf+l -f( Yf+l - Yj-l) +
h2 - XJ' Yb 2h 7'J>

j = 1,2, ... , N.

From the assumed continuity properties of of/az and y1V(x) it follows
that

(38) . = h
2

[yIV(/:.) _ 2 af(xj, YJ> y'({f» y"'( )]
7'J 12 <;1 oz 7]f ' j = 1,2, .. " N.

Here, t j and 7]j in [Xj-I> Xj+l] are the appropriate mean values used in
Taylor's theorem.

To examine the convergence of this procedure we introduce ej = U f ­

y(xJ and, for the further applications of Taylor's theorem,

_ of ( (J Y(Xf +1) - Y(Xj-l) (J el+l - ef - 1 ).
pj = oz Xj, Yj + fej, 2h + j 2h '

(39)
_ of ( (J Y(Xj+l) - Y(Xj-l) 8 ej+l - ej - 1 ),

ql = oY xJ> Yj + jej, 2h + j 2h '

o < 8f < 1.
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(41)

Then subtracting (37) from (36a) we get, with the above notation and
appropriate values for the OJ,

(40) (1 + ~qj)ej = ~ (1 + ~pj)ej-1 + ~ (1 - ~PJ)ej+1 + ~2 Tj,

j = 1,2, ... , N.

This system of equations is formally identical to that in (32), with the same
boundary conditions, eo = eN + 1 = O. So we may conclude, by using (35)
in place of (24), exactly as in the proof of Theorem 1 that

I ·1 < h2 M.l + 2P*M3 •

eJ
- 12Q*

Here P* is defined in (35) and M 3 and M 4 are the appropriate bounds on
the derivatives of the solution of (20). Thus the order of convergence for
the non-linear problem is the same as that for the linear case; the constants
in (41) have only slightly different meanings from those in (31). The non­
linear cases for which the difference method is applicable can be generaliled
as are the linear cases in Problems 7 and 8.

If f(x, y, z) is not a linear function of y and z, then the difference equa­
tions (36) constitute a non-linear system of equations. The general methods
of Chapter 3 could be applied in order to solve such systems. In particular,
Newton's method is frequently well suited for this purpose, and in special
cases the convergence proof given in Subsection 3.2 of Chapter 3 can be
applied. However, due to the special structure of this system some other
iteration schemes are naturally suggested, and we shall consider one of
them here. All of these methods proceed from an initial estimate of the
solution, say

A particularly simple iteration scheme for solving (36) is defined by:

(42a) (I + w)ujv+ 1) = !(u?~ 1 + u}vL) + WU}VJ

h
2
f ( (v) Un1 - U?~l)- 2" xj> Uj , 2h '

j = I,2, ... ,N;

(42b)

(42c)

Here w is a parameter to be determined so that the iterates converge.
In fact, we can show, see Problem (11), that if w satisfies

h2

w> - Q*- 2
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then the iterates satisfy

(43) (
I _ h

2
Q* )v max Id 1) _ u(Q)I.

2(1 + w) k k k,

j = 1,2, .. _, N.

From this result we see that the iterates form a Cauchy sequence.
Thus not only do they converge but by the assumed continuity of f(x, Y, z)
we can show, exactly as in the proof of Theorem 1.1 in Chapter 3, that a
unique solution of the difference equations (36) exists.

7.3. Eigenvalue Problems

We have shown previously that a linear boundary value problem may
have non-unique solutions. In fact, this occurs if and only if the corre­
sponding homogeneous boundary value problem has a non-trivial solu­
tion. If the coefficients of the homogeneous equation depend upon some
parameter it is frequently of interest to determine the values of the param­
eter for which such non-trivial solutions exist. These special parameter
values are called eigenvalues and the corresponding non-trivial solutions
are called eigenfunctions. The simplest example is furnished by the
homogeneous problem

y" + Ay = 0;

For each of the parameter values

y(a) = y(b) = o.

there exists a non-trivial solution

n = 1,2, _.. ;

y(x) = Yn(x) == sin A~2(X - a), n = 1,2, ....

A fairly general class of eigen-problems, which includes many of the
cases that occur in applied mathematics, are the Sturm-Liouville problems,

(44a) L{y} + Ar(x)y == [p(x)yT - q(x)y + Ar(x)y = 0,

(44b) f3oy'(b) + f31y(b) = o.

Here p(x) > 0, r(x) > 0, and q(x) 2:': 0; p'(x), q(x), and r(x) are continuous
on [a, b]; and the constants (Xv and f3v are non-negative and at least one of
each pair does not vanish. It is known that for such problems there exists
an infinite sequence of non-negative eigenvalues

(45)
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In addition, there exist corresponding eigenfunctions, Yn(x), which satisfy
the orthogonality relations

f Yn(x)Ym(x)r(x) dx = <\m,

and the nth eigenfunction has n_- I distinct zeros in a < x < b.
We may again relate the solution of (44) to an initial value problem.

For any fixed A we consider

L{Y} + Ar(x)Y = 0;(46a)

(46b) ao Y'(a) - al Yea) = 0, Yo Y'(a) - Yl Yea) = I.

Here Yo and Yl are any constants such that (aIYo - aOYl) #- O. Then the
two initial conditions in (46b) are linearly independent and a unique
non-trivial solution of the initial value problem (46) exists. We denote this
solution by yeA; x). Now we consider the equation

(47) <1>(A) == ,80 Y'(A; b) + ,81 Y{A; b) = O.

Clearly, each eigenvalue An in (45) must satisfy this equation. Also every
zero, A*, of <1>(A) is an eigenvalue of (44) and the corresponding solution
Y(A*; x) of (46) is a corresponding eigenfunction of (44). Note that the
present analysis differs from the corresponding discussion at the beginning
of Section 7. Here, a parameter in the equation must be adjusted while
the adjoined initial condition remains fixed, which reverses the previous
situation. Of course, the present considerations apply to eigenvalue
problems more general than those in (44); say for instance to problems
in which the eigenvalue parameter A enters into all of the coefficients of
the equation and the boundary conditions. Extensions to homogeneous
systems, of, say m second-order equations with m parameters are also
clearly suggested. The initial value procedure can actually be used to
prove the existence of the eigenvalues (45) and the oscillation properties
of the eigenfunctions.

To approximate the eigenvalues and eigenfunctions for problems of the
form (44), and various generalizations of these problems, we may apply
numerical methods which are exactly analogous to those used in sub­
sections 7.1 and 7.2. However, the proofs of convergence and estimates
of the errors are now not always as easy to obtain as they were for those
boundary value problems.

Some approximation methods for eigenvalue problems are based on
variational principles. These have led to the construction of useful numeri­
cal methods. However, we do not treat them here, but refer the reader to
the brief discussion of variational principles in Subsection 1.2 of Chapter 9.



436 ORDINARY DIFFERENTIAL EQUATIONS [Ch.8]

A simple application of the basic error estimate for an eigenvalue of a
symmetric matrix, Theorem 1.5 of Chapter 4, can be used to give an
error estimate for the eigenvalue of a differential equation that is approxi­
mated by a difference method (e.g., the method in Subsection 7.2). Con­
sider the eigenvalue problem

(48) L{y} = Ay; yea) = y(b) = 0,

where L{·} is defined in (44a).
Assume that Ais an eigenvalue and y(x) a corresponding eigenfunction,

with a continuous fourth derivative. Let

(49) u(a) = u(b) = 0,

be a finite difference approximation to (48), on the net (12). Assume that
the matrix form of (49), analogous to (27), is

h2

(50) Au = -2 Au,

where A is a symmetric matrix. Then the truncation error, 't', of the eigen­
solution is defined by

h2 h2

Ay + 2 Ay == - 2 't'.

If 11't'1100 ::; Mh2, when IIYlloo = 1, then 11't'112 ::; MN~'h2. Furthermore,
Theorem 1.5 of Chapter 4 implies

. h
2
I\ A I < It. MNY'

l~~nN 2 1\ - i - 2 '

whence we have shown,

THEOREM 2.
min IA - Ail::; h2MNY' = @(h'h.).

l:5i:5N •
Theorem 2 states that some eigenvalue, Ai> of the discrete problem (49)

is a good approximation to a given eigenvalue A of (48). But as h ---i> 0,
the theorem fails to identify which eigenvalue Ai is the closest approxima­
tion. In Problem 14, we verify that, in a special case, the smallest eigen­
values Ai approximate respectively the lowest eigenvalues Aj .

PROBLEMS, SECTION 7

1. Establish the alternative principle. Either the equations (6) and (l b) have
a unique solution or else the homogeneous problem [i.e., r(x) == 0, a = f3 = 0]
has a non-trivial solution.
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for Is - s*1 s p,

2. Solve by the initial value method

yH = -IOOy; yeO) = I, y(27T + ~-) = 1.
Use

sin lOx
y(l)(x) == cos lOx, y<2J(X) = -1-0-'

For small E, show that s = 50E+ @(E3).Explain why the computational scheme
corresponding to the initial value method would be difficult to apply for
small E.

3. Solve by the initial value method

yH = IOOy; yeO) = I, y(3) = e- 30 •

Use

Explain why the computational scheme of the initial value method would
have to be applied with great care.

4. The chord method for approximating the root s* of (22) is based on the
iteration scheme

where
g(s) == s - m[ yes; b) - fl].

Show that if for some p > 0,

lay Io < L s as (s; b) s K,

then with

2 . (a yes; b»)
m = L + K sign as '

K-L
Ig'(s) I s K + L < 1.

5. Let the approximate solution of (21) be Uj(s) , 0 S j s N; and assume
that, in the notation of Problem 4,

ml UN(s) - yes; b)1 s 8 = @(h') for Is - s*1 s p.

Define,.\ == (K - L)/(K + L) and let h be small enough so that 8 S (l - ,.\)p/2.
Use Theorem 1.3 of Chapter 3 and Problem 4 to show that, with Uk+l =
Uk - m[UN(uk) - fl], then

8 ( 28 )IUk - s*1 s 1 _ ,.\ + ,.\k P - I _ ,.\ ,

if
8

lao - s*1 S p - 1 _ ,.\'
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6. For the boundary value problem: y" - q(x)y = r(x); y(a) = y(b) = °
use a difference scheme of the form:

[Uj+1 - 2uj + uj_d/h 2
- [a1q(Xj+1)Uj+1 + "'oq(xj)Uj

+ a-1q(Xj-1)Uj-d = [a1r(Xj+1) + aor(xj) + "'-lr(Xj-1)],

for j = 1,2, ... , N, with Uo = UN+ 1 = 0 (as usual h = (b - a)/(N + 1».

(a) Determine "'0, al> a-1 such that the truncation error is (f)(h4
). We

assume here that ylV, qlV, and r lv are continuous. Note that for the solution
y(x) we have y!v - [q(x)y]" = r"(x).

(b) If q(x) ::2: Q. > 0, then show that for sufficiently small h:

1 ( )1
h4 2Me + 5N4 + 5R4

Uj - Y Xj :-;; 720 Q.

where Me == max IyVI(X) I, N 4 == max j[q(x)y(x)]'VI, R 4 == max IrIV(x)l.
fa. b] [a, bJ [a, bJ

The proof is just as in Theorem 1.
7. Consider the boundary value problem

y" - p(x)y' - q(x)y = r(x); "'oy'(a) - "'ly(a) = a,

floY'(b) + f11y(b) = fl

where ao, flo, a1 and f31 are all positive. Use the difference equations

Uj+1 - 2uj + Uj - 1 () Uj+1 - Uj-1
h2 - P Xj 2h - q(Xj)Uj = r(xj)

for j = 0, I, ... , N +
and the" boundary" conditions

(
U1 - U-1) (UN+2 - UN) f1 f1"'0 2h - "'lUO = a, f10 2h - 1UN+ 1 = .

[Note: Values at X-1 = a - hand XN+2 = b + h have been introduced
and the difference approximations of the differential equation have been
employed at Xo = a and at XN + 1 = b. Hence the values x -1 and XN + 2 can
be eliminated from the above difference equations.]

(a) Write these difference equations as a system of order N + 2 in the form
(27). If the tridiagonal coefficient matrix is

A==

with j = 0, 1, ... , N + 1, show that from (26),

A j = aJ> Bj = bJ> Cj = Cj for j = 1,2, ... , N
and that

Ao = (ao + 2h :: bo), Co = (co + bo).

Find similar expressions for AN + 1 and BN + l'
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(b) If q(x) 2': Q. > °and the solution y(x) is sufficiently smooth in an
open interval containing [a, b] show that for sufficiently small h

j = 0, 1, ... , N + 1.

8.· Consider the boundary value problem:

[a(x)y']' - p(x)y' - q(x)y = r(x);

and the corresponding difference problem:

y(a) = y(b) = °

[ ( ~)(UI+l - UI) _ ( _ ~)(Uj - UI-l)]
a~+2 ~ a~ 2 ~

j = 1,2, ... , N; Ua = UN+l = 0.

(a) Ify!v and am are continuous, show that the truncation error in this scheme
is (!)(h2).

(b) If q(x) 2': Q. > °and A· 2': a(x) 2': A. > 0, show that

A·lUI - y(xl) I ::s; -- r
A.Q.

provided A. - (hI2llp(x
j
ll ~ °for j = I, 2, ., N

[Hint: Proceed as in the proof of Theorem 1 but now divide by Ibll + lei I
bl + CI 2': 2A. before bounding the coefficients.]

9. We define the difference operator T by

j = 1,2, ... , N,

where:

Prove the

MAXIMUM PRINCIPLE: Let the net function {VI} satisfy TVI ::s; O,j = 1,2, ... , N.
Then

max VI = max {Va, VN+d.
OSj SN+l

Conversely if TVI 2': 0, j = 1, 2, ... , N; then

mm VI = min {Va, VN+d.
OSJ:SN+l

[Hint: Use contradiction; assume max VI ;; M is at Vk for some k in
1 ::s; k ::s; N but that Va #- M and VN+ 1 #- M. Then conclude that VI = M
for all j which is a contradiction. The minimum result follows by changing
sign.]

[Note: The conditions on the coefficients in T are satisfied by the quantities
in (26) provided (28) is satisfied even if we allow q(x) = °(i.e., if condition
(24) is weakened)].
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10. Let T be as in Problem 9 and {ej} satisfy

j = 1,2, ... , N.

Suppose {gj} satisfies gj > 0 and

Then prove that

lejl $ max (levi + agv) + a'g,
v~o. N+l

where a = max lajl, g = max Igjl.
[Hint: Form Wj == ej ± agj and apply the maximum principle.]
11.'" Prove that (43) follows from (42).
[Hint: Subtract (42a) from the corresponding equation with v + 1 replaced

by v; use Taylor's theorem and proceed as in the derivation of (41).]
12.'" Consider, in place of (36), the difference equations Uo = UN+l = 0;

Uf+l - 2uj + Uj-l _ I( Uj+l + Uj -l Uj+l - Uj-l)
h2 - Xj, 2 ' 2h ' j = 1,2, ... ,N.

(a) Show that IUj - Y(Xj) I = ~(h2) where y(x) is the solution of (20);
(28) and (35) hold; and ylV(X), olloy and olloy' are continuous.

(b) Under the above assumptions and h(P'" + hQ"')/2 $ I, prove con­
vergence of the iterations:

"6 +1) = uCJ:t:f> = 0,

h2 ( ",v) + (v) (vl (v) )
"v+l) = 1["V) + "V) ] _ -I X j+l Uj_l Uj +l - Uj_l •

j "2" ,+ 1 ,-1 2 j, 2 • 2h '

j = 1,2, ... , N.

Note that the parameter W is not required here, as it was in (42); Le., we
could employ the value W = O.

13. Solve for the eigenvalues and eigenvectors of the problem yH + Ay = 0,
y'(a) = y'(b) = 0, by using the initial value technique. For example, use the
initial values y'(a) = 0, y(a) = constant #- O.

14. Find the eigenvalues and eigenvectors of the scheme

Uo = UN+l = 0,

1 $ j $ N,

h = _7T_.
N + I

Compare them with the eigenvalues and eigenvectors of

y(O) = Y(7T) = O.

0$ j $ N + 1,

[Hint: Solve the difference equation in the form UI = ai, for an appropriate
a. Show that the eigenfunctions are

U)k) = Ak sin j (N7T; I)'
fork = 1,2, ... ,N.]
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15. (a) Use the results of Problems 6 and 14 to devise a difference
scheme for y" + Ay = 0, y(O) = y(I) = 0 which yields (7)(h4 ) approxima­
tions to the eigenvalues.

(b) Find the eigenvalues of the difference scheme and verify directly,
with a comparison to An = n2

7T?, that they are actually (7)(h 4
). How accurate

are the eigenvectors?
16.* Derive a variational differential equation that is satisfied by 0 Y(A; x)/oA,

where Y is a solution of (46). Describe how Newton's iterative method might
be formulated to solve for an eigenvalue Afrom (47).



9
Difference Methods

for Partial Differential

Equations

O. INTRODUCTION

Although considerable study has been made of partial differential equation
problems, the mathematical theory-existence, uniqueness, or well­
posedness-is not nearly as complete as it is in the case of ordinary differ­
ential equations. Furthermore, except for some problems that are solved
by explicit formulae, the analytical methods developed for the treatment
of partial differential equations are, in general, not suited for the efficient
numerical evaluation of solutions. Hence, as may be expected, the theory
of numerical methods for partial differential equations is somewhat
fragmented. Where the theory of the differential equations is well developed
there has been a corresponding development of numerical methods. But
the difference methods found thus far usually do not permit the construc­
tion of schemes of an arbitrarily high order of accuracy. For certain systems
ofpartial differential equations convergent numerical methods of arbitrarily
high order of accuracy have been devised (for instance, linear first order
hyperbolic systems in two unknowns); while for others (say the simple
case of the Laplace equation on a square) only relatively low order methods
have been proved to converge. Furthermore, in contrast to the case of the
numerical solution of ordinary differential equation problems, the facility
with which one may use difference methods on modern electronic com­
puters to solve problems involving partial differential equations is severely
limited by (a) size of the high speed memory, (b) speed of the arithmetic
unit, and (c) difficulty of programming a problem for and communicating
with the computer.

442
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In view of the limitations of the scope of this book and of the incomplete­
ness of the theory of difference methods, we shall illuminate some of the
highlights of this theory through the treatment of problems for the

(I a)

(lb)

(lc)

Laplace equation;

Wave equation;

Diffusion or heat conduction equation.

The applications of these equations are so varied and well known that we
do not make specific mention of particular cases. Of course, in applied
mathematics other partial differential equations occur; most of these
are non-linear and not covered by a complete mathematical theory of
existence, uniqueness, or well-posedness.

To each of the equations in (I) we must adjoin appropriate subsidiary
relations, called boundary and/or initial conditions, which serve to complete
the formulation of a .. meaningful problem." These conditions are related
to the domain, say D, in which the equation (I) is to be solved. When the
problem arises from a physical application it is usually clear (to anyone
understanding the phenomenon) what these relations must be. Some
familiar examples are, for the respective equations (la, b, and c);

(2a, i) u = j(x, y), for (x, y) on the boundary of D,

or with a/an representing the normal derivative,

(2a, ii)
au

aU + f3 an = j(x, y), for (x, y) on the boundary of D;

(2b, i)
ou(O, x)

u(O, x) = j(x), -o-t- = g(x), -co < x < co,

where D == {(t, x) It?: 0, -co < x < co}, i.e., D == half plane, or

(2b, ii)
{

ou(O, x)
u(O, x) = j(x), a = g(x),

u(t, a) = a(t), U(t,~) = f3(t), t > 0,

where D == {(t, x) It?: 0, a ~ x ~ b}, i.e., D == half strip;

(2c, i) u(O, x) = j(x), -co < x < co,
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(2c, ii)

where D is the half plane, or

{

U(O, x) = I(x), a :::; x :::; b,

u(t, a) = aCt), u(t, b) = (3(t),

where D is the half strip.
If the functions introduced in (2a, b, and c) satisfy appropriate smooth­

ness conditions, then each set of relations (i) or (ii) adjoined to the corre­
sponding equation in (I) yields a problem which has been termed well-posed
or properly-posed by Hadamard. This implies that each such problem
has a bounded solution, that the solution is unique, and that it depends
continuously on the data (i.e., a "small" change inf, g, a, or (3 produces a
"correspondingly small" change in the solution). There are many other
combinations of boundary and/or initial conditions which together with
the equations in (I) (or more general equations) constitute properly posed
problems. It is such problems for which there is a reasonably developed
theory of difference approximations. We shall examine this theory briefly
in Section 5, after first studying some special cases. However, as we shall
see in Section 5, the theory serves mainly to determine whether a given
method yields approximations of reasonable accuracy; but the theory does
not directly suggest how to construct numerical schemes.

0.1. Conventions of Notation

For simplicity, let the domain D have boundary C and lie in the three
dimensional space of variables (x, y, t). Cover this space by a net, grid,
mesh, or lattice of discrete points, with coordinates (Xi> Y1> tk ) given by

Xl = X o + iSx, YI = Yo + jSy, tk = to + kSt;

i, j, k = 0, ± I, ± 2, ....

Here, we have taken the net spacings Sx, Sy, and St to be uniform. The lattice
points may be divided into three disjoint sets: D6, the interior net points;
C6, the boundary net points; and the remainder which are external points.
Here we assume, again for simplicity, that C is composed of sections of
coordinate surfaces. The specific rules for assigning lattice points to a
particular set will be clarified in the subsequent examples and discussion.

At the points of D 6 + C6 the function u(x, y, t) is to be approximated
by a net function, V(x!> Yi> tk ). It is convenient to denote the components
of net functions by appropriate subscripts and/or superscripts. For
instance, we may use

V(x!> YI) == Vi • l ; V(x!> Y1> tk ) == Vl~f> etc.

This notation is frequently cumbersome and at times difficult (if not
unpleasant) to read. Thus, while we shall have occasion to use it, we
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prefer another notation, more in keeping with the usual functional nota­
tion. If V has been defined to be a net function, then we may
write V(x, y, t) and understand the argument point (x, y, t) to be some
general point of the net on which V is defined. Furthermore, if we simply
write V then the argument is understood to be a general point (x, y, t)
of the appropriate net.

We shall make frequent use of various difference quotients of net
functions (of course, in order to approximate partial derivatives). For this
purpose we introduce a subscript notation for difference quotients of net
functions

(3a)

(3b)

(3c)

V ( )
- V(x + ox, y, t) - V(x, y, t)

x x, y, t = Ilx -

V ( )
- V(x, y, t) - V(x - Ilx, y, t)

;; x, y, t = Ilx

Vx(x, y, t) = HVAx, y, t) + Vx(x, y, t)].

Clearly, (3a, b, and c) are just the forward, backward, and centered
difference quotients with respect to x. By our previous convention we might
have written the left-hand sides of (3) as just Vx, Vx, and Vx' This con­
venient notation was introduced by Co'urant, Friedrichs, and Lewy in a
fundamental paper on difference methods for partial differential equations.
The difference quotients with respect to other discrete variables are defined
in analogy with (3), say V y , Vi, etc. It is a simple matter to verify that
these difference operators commute; i.e.,

V XY = V yX , V~i = Vt.~, etc.

A particularly important case is the centered second difference quotient
which can be written as

(4)
I

V YU = V yy = (lly)2 [V(x, Y + Ily, t) - 2V + V(x, Y - Ily, t)].

1. LAPLACE EQUATION IN A RECTANGLE

A standard type of problem which employs the Laplace operator or
Laplacian,

fj2 82

1:1 = 8x2 + 8y 2'

is to determine a function, u(x, y), such that

(I a)

(I b)

-l:1u(x, y) = f(x, y),

u(x, y) = g(x, y),

(x, y) ED;

(x, y) E C.
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Here D is some domain in the x, y-plane and C is its boundary. If the
boundary C and inhomogeneous terms j(x, y) and g(x, y) satisfy mild
regularity conditions, it is well known that the problem (I) is well-posed.
If j == 0 this is called a Dirichlet problem for Laplace's equation while
in its present form (Ia) is called the Poisson equation. For simplicity of
presentation, we take D to be a rectangle

(2a) D == {(x, y) I0 < x < a, 0 < Y < b};

whose boundary C is composed of four line segments

(2b) C == {(x, y) I x = 0, a, 0 ~ y ~ b; y = 0, b, 0 ~ x ~ a}.

To "solve" this problem numerically we introduce the net spacings
Ox = al(J + 1), 8y = bl(K + 1), and the uniformly spaced net points

x j = j8x, Yic = k8y; j, k = 0, ± I, ±2, ....

Those net points interior to D we call Do, i.e.,

(3a)

The net points on C, with the exception of the four corners of C, we call
Co, i.e.,

(3b) Co == {(x;, Yk) Ij = (0, J + I), 1 ~ k ~ K;

k = (0, K + I), I ~ j ~ J}.

At the net points Do + Co we seek quantities U(Xj, Yk) which are to
approximate the solution u(x j , Yic) of (I). The net function will, of course,
be defined as the solution of a system of difference equations that replaces
the partial differential equation (la) and boundary conditions (Ib) on the
net.

An obvious approximation to the Laplacian is obtained by replacing each
second derivative by a centered second difference quotient. Thus at each
point (x, y) E Do we define

(4a) 1).0U(x, y) == UXJ/(x, y) + Uyy(x, y).

In the subscript notation, we could also write for each (Xj, Yk) E Do

(4b) I). U = Uj + 1ok - 2Ujok + Uj - 1ok Ujok + 1 - 2Uf • k + Uf ,k-1,

o fok - (8X)2 + (8y)2

It is frequently convenient with either of these notations to indicate the
net points involved in the definition of 1).0U by means of a diagram as in
Figure I, The set of points marked with crosses is called the star or stencil
associated with the difference operator 1).0'
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y
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• • • • • • •
• • • • • • •
• x • • • • •

Yk x x x • • • •

• x • • • • •
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o a x

Figure 1. Net points for Laplace difference operator ~6'

With the notation (4a), we write the difference problem as

(5a) -tl 6 V(x, y) = f(x, y), (x, y) E D 6 ;

(5b) Vex, y) = g(x, y), (x, y) E C6•

From (3), (4), and (5) we find that the values V at JK + 2(J + K) net
points in D 6 + C6 satisfy JK + 2(J + K) linear equations. Hence, we
may hope to solve (5) for the unknowns Vex, y) in D 6 + C6 • The 2(J + K)
values of Von C6 are specified in (5b) and so the JK equations of (5a)
must determine the remaining JK unknowns. We shall first show that this
system has a unique solution and then we will estimate the error in the
approximation. Finally, we shall consider practical methods for solving
the linear system (5).

To demonstrate that the difference equations have a unique solution
we shall prove that the corresponding homogeneous system has only the
trivial solution. For this purpose and for the error estimates to be obtained,
we first prove a maximum principle for the operator tl 6•

THEOREM 1.

(a) If Vex, y) is a net function defined on D 6 + C6 and satisfies

for all (x, y) E D6,

then
max Vex, y) ::; max Vex, y).

D6 C6

(b) Alternatively, if V satisfies

tl 6 Vex, y) ::; 0
then

for all (x, y) E D 6,

min vex, y) 2': min vex, y).
Dr} Cd
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Proof We prove part (a) by contradiction. Assume that at some point
Po == (x*, y*) of Do, we have V(Po) = M where

M ~ V(P) for all P E Do and M > V(P) for all P E Co'

Let us introduce the notation PI == (x* + Sx, y*), P2 == (x* - Sx, y*),
P3 == (x*, y* + Sy), P4 == (x*, y* - Sy) and then use (4) to write

~oV(Po) == BAV(PI ) + V(P2)] + By[V(P3 ) + V(P4)] - 2(Bx + By)V(Po)

where Bx == Ij(Sx)2 and By == Ij(Sy)2. However, by hypothesis ~oV(Po) ~ 0,

so we have

But M ~ V implies that V(P y ) = M for JJ = 1,2,3,4. We now repeat
this argument for each interior point Py instead of the point Po. By
repetition, each point of Do and Co appears as one of the P y for some
corresponding Po. Thus, we conclude that

V(P) = M for all P in Do + Co,

which contradicts the assumption that V < M on Co' Part (a) of the
theorem follows.t

To prove part (b), we could repeat an argument similar to the above.
However, it is simpler to recall that

max [- V(x, y)] = -min V(x, y); ~o( - V) = -~o(V)'

Hence, if V satisfies the hypothesis of part (b), then - V satisfies the
hypothesis of part (a). But the conclusion of part (a) for - V is identical
to the conclusion of part (b) for v.t •

Let us now consider the homogeneous system corresponding to (5);
i.e., j == g == 0. From Theorem I, it follows that the max and min of the
solution of this homogeneous system vanish; hence, the only solution is the
trivial one. Thus it follows by the alternative principle for linear systems
that (5) has a unique solution for arbitrary j(x, y) and g(x, y).

A bound for the solution of the difference equation (5) can also be
obtained by an appropriate application of the maximum principle. The
result, called an a priori estimate, may be stated as

THEOREM 2. Let V(x, y) be any net junction defined on the sets Do and
Co defined by (3). Then

a2

(6) max IVI ::; max IVI + -2 max l~bVI·
D(} Cd D6

t We have in fact proved more; namely, that if the maximum, in case (a), or the
minimum, in case (b), of V(x, y) occurs in D., then V(x, y) is constant on D. + C•.
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Proof. We introduce the function

.p(x, y) == -tx2

and observe that for all (x, y) E Db + Cb,

Now define the two net functions V +(x, y) and V _(x, y) by

V±(x, y) == ± Vex, y) + N.p(x, y),
where

Clearly for all (x, y) E Db, it follows that

~bV±(X, y) = ±~bV(X, y) + N;::: 0.

Thus we may apply the maximum principle, part (a) of Theorem 1, to
each of V±(x, y) to 0btain for all (x, y) E Db,

V±(x, y) :::; max V±(x, y)
Co

a2

= max [± Vex, y) + N.p] :::; max [± Vex, y)] + N -2'
C(J Cd

But from the definition of V ± and the fact that .p ;::: 0,

± Vex, y) :::; V±(x, y).
Hence,

a2

± vex, y) :::; max [± Vex, y)] + N -2 '
Co

a2

:::; max IVI + -2 N.
Co

Since the right-hand side in the final inequality is independent of (x. y)
in Db the theorem follows. •

Note that we could readily replace a2/2 in (6) by b2/2 since the function
rj;(x, y) = y2/2 can be used in place of .p(x, y) in the proof of the theorem.

It is now a simple matter to estimate the error U - u. We introduce the
local truncation error, r{<I>}, for the difference operator ~o on Do by

(7) r{<I>(x, y)} == ~o<I>(x, y) - ~<I>(x, y), (x, y) in Do,

where <I>(x, y) is any sufficiently smooth function defined on D. Now if
u(x, y) is the solution of the boundary value problem (1) we have from
(1a) at the points of Db

-~bU(X, y) = f(x, y) - r{u(x, y)}.
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Subtracting this from (Sa) at each point of Do yields

(8a) -~o[U(x, y) - u(x, y)] = r{u(x, Y)}, (x, y) in Do.

Also from (lb) and (5b) we obtain

(8b) U(x, y) - u(x, y) = 0, (x, y) in Co'

Now apply Theorem 2 to the net function U(x, y) - u(x, y) and we get
by (8)

a2

max IU(x, y) - u(x, y)1 ::; -2 max Hu}l·
D" D"

Upon introducing the maximum norm defined for any net function
W(x, y) by II WII = max IWI, we have the

D.

COROLLARY. With u, U, and r defined respectively by (1), (5), and (7),
we have

(9)
a2

II U(x, y) - u(x, y)/I ::; "2 IHu}ll· •

(10)

Note that the error bound is proportional to the truncation error!
It is easy to estimate HI. If the solution u(x, y) of (I) has continuous

and bounded fourth order partial derivatives in D, then

ou(x y) (OX)2 iPu(x y)
u(x + ax y) = u(x y) + ax --'- + -- '-, , - ox 2! ox2

Thus we find, as in Chapter 6, that

_( ) _ 02U(X, y) _ (OX)2 04U(X + Box, y)
Uxx x, Y ox2 - 12 iJx4 '

with a similar result for the y derivatives. Hence,

IBI < 1,

r{u(x, y)} = ~6U(X, y) - ~u(x, y)

= ~ [(a )2 04U(X + Box, y) (0)2 04U(X, Y + .pax)].
12 x ox4 + Y oy4

If we denote the bounds of the respective fourth order derivatives by
M14l and M~4), then

(1Ia)
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If u(x, y) has only continuous third order derivatives, we terminate the
expansions in (10) one term earlier and get

_( ) _ iPu(x, y) = 8x [03U(X + 0+ 8x, y) _ 03U(X + 0_ 8x, y)].
uxx x, Y ox2 3! ox3 ox3

If the moduli of continuity in D of the third derivatives iJ3ujox3 and
o3ujoy3 are denoted by w~)(8) and w~3)(8), respectively, we have

(lIb)

Clearly by these procedures, we find that if u(x, y) has only continuous
second derivatives with moduli of continuity w~n(8) and w~2)(S), then

(llc) II 'T{u} II ~ w~2)(Sx) + w~2)(Sy).

With the aid of any of the estimates (I la, b, or c) that may be appropriate,
the corollary establishes convergence of the approximate solution to the
exact solution as Sx --+ 0 and 8y --+ 0 in any manner. We see that the
convergence rate is generally faster for "smoother" solutions u(x, y).
For solutions which have more than four continuous derivatives, we can­
not deduce better truncation error estimates than that given by (lla).
It is possible to construct more accurate difference approximations to
the Laplacian, which then have solutions U of greater accuracy than
@[(Sx)2 + (Sy)2]. But there is no general way of constructing convergence
proofs for similar schemes of arbitrarily high order truncation error. In
fact, it is unlikely that such schemes, which are of maximum order of
accuracy, converge in general.

The effects of roundoff can also be estimated by means of Theorem 2.
Let the numbers actually computed be denoted by Vex, y). Then we can
write

(12a)

(l2b)

- I
-floU(x, y) = j(x, y) + 8x Sy p(x, y), (x, y) E Do;

vex, y) = g(x, y) + p'(x, y), (x, y) E Co'

Here p'(x, y) is the roundoff error in approximating the boundary data.
After noting that the coefficients in flo are proportional to Ij(Sx)2 and
Ij(Sy)2, we have defined the roundoff errors, p(x, y), in the computations
(l2a) to be proportional to a similar factor. This corresponds to the fact
that the actual computations are done with the form of (4) which results
after multiplication by the factor 8x8y. We now obtain from (I), (7)
and (12)

- p(x, y)
-flo[U(x, y) - u(x, y)] = 'T{u(x, y)} + Sx Sy' (x, y) E Do;

Vex, y) - u(x, y) = p'(x, y), (x, y) E Co'
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Thus for the net function V(x, y) - u(x, y), Theorem 2 implies

THEOREM 3. With u, V, and r defined by (1), (12), and (7) respectivtly, we
have

(13) IID(x, y) - u(x, Y)II =:; IIp'll + ;2 [II r{u} II + OXIOY Ilplll
Here

IIp'll = max Ip'(x, Y)I and Ilpll = max Ip(x, y)l· •
c. D.

Thus we find that the boundary roundoff error and the interior roundoff
error have quite different effects on the accuracy as Ox and oY --+ O.
In fact, to be consistent with the truncation error, the interior roundoff
error, p, should be of the same order as ox oyr{u} and the boundary round­
off error, p', should be of the same order as r when ox and oy --+ O. This
result for p is analogous to that in (7.34), of Chapter 8 where simple differ­
ence approximations of an ordinary boundary value problem were
considered.

The maximum principle and its applications given here can be generalized
in various ways (see Problems 1-4). Extensions to rectangular domains in
higher dimensions are straightforward, and non-rectangular domains may
also be treated (with suitable modifications of the difference equations
near the boundary surface).

1.1. Matrix Formulation

The system of linear equations (5) can be written in matrix-vector nota­
tion in various ways. For this purpose, we use the subscript notation
for any net function V(x, y) defined on Db + Cb

o =:; j =:; J + I, 0 =:; k =:; K + 1.

From the values of such a net function, construct the J-dimensional
vector

(14a) k = 0, 1,2, ... , K + 1.

Each vector Vk consists of the elements of the net function V(xj , Yk)
on the coordinate line segment Y = Yk, Xl =:; X =:; XJ' (We note that the
elements on the line segments YI =:; Y =:; YK, X = Xo, and x = XJ+ I are
not included.) We also introduce the Jth order square matrices
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(14b) 0

1 0

o
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and the quantities

2 _ (8X)2(8y)2 _ (8y)2
(14c) 8 = 2[(8x)2 + (8y)2]' Bx = 2[(8x)2 + (8y)2]'

_ (8X)2
By = 2[(8x)2 + (8y)2f

Upon multiplying (Sa) by 82, we can write the result for (x, y) = (xi> Yk),
in subscript notation as

(15) Uik - BiUi - l • k + Ui + l • k ) - By{Ui ,k-l + Ui • k + l ) = 82jjk'

1 ~ j ~ J, 1 ~ k ~ K.

Or with the vector and matrix notation of (14) this system becomes

[/J - BiLJ + L/)]Ul - ByU 2 = 82Fh

(16a) -ByUk - l + [/J - Bx(L J + LJT)]Uk - ByU k + l = 8
2Fk ,

2~k~K-l;

-ByUK - l + [/J - BiLJ + L/)]UK

Here we have introduced

(16b)

1 1
Fl = f l + (8x)2 WI + (8y)2 Uo,

1
Fk = f k + (8X)2 Wb 2 ~ k ~ K - 1,

1 1
F K = f K + (8X)2 W K + (8y)2 UK + l ,
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o

(l7a)

U J + 1 • k

i.e., W 1k = 0 for 2 ~ i ~ 1- 1; W lk = UOk; W Jk = U J + l.k' Of course,
all of the Ujk which enter into (l6b) are known quantities given in (5b).

Further simplification is obtained by introducing lK-dimensional
vectors or K-dimensional compound vectors (i.e., vectors whose components
are I-dimensional vectors)

(
Vl) (U11) (Fl)V 2 U21 F2

V ==. .' F == . ;.. ... .
V K U JK FK

and the square matrices of order lK

(17b) L== B==

H == BAL + F), V == By(B + BT), A == 1- H - V.

Now the system (16), or equivalently (5), can be written as

(18)

The vectors in (17a) associate a component with each net point (x, y) of
Do. In the indicated vectors of dimension N = lK, the rth component
is the value of the net function at the point (xj , Yk) such that r = j +
(k - 1)1. If the assignment of integers, r, to net points of Do is done in
some other order, then the vectors and matrices are changed by some
permutation. (Another ordering of interest would be to list the elements on
lines x = constant of Do)' The previous proof that the system (5) has a



[Sec. 1.1] MATRIX FORMULATION 455

unique solution now implies that A is non-singular. We shall prove this
fact directly by showing that the eigenvalues of A are positive.

Let us consider again the problem of obtaining error estimates for the
approximate solution. Multiply (8a) by ,,2 and employ the present notation
to obtain in place of the system (8)

(19a) A(U - u) = "2"t'.

Here U is as before, u is the vector of the exact solution on Db, and "t'

is the vector of local truncation errors r{u(x, y)} on Db with no adjust­
ments now required as in (l6b) since U - u = 0 on C b • Then as A is
non-singular, we have

(l9b)

which is an exact representation for the error. By using any vector norm
and the corresponding natural matrix norm, we have from (l9b),

(20)

We note from (17b), that A = AT and thus A -1 is symmetric. If we
use the Euclidean norm in (20), i.e., for any vector v,

then
IIA -1112 = max (1/IAvl) = II min IAvl

l~v$JK l$VSJK

where the A v are the eigenvalues of A. The eigenvalues of A satisfy

(21) AW = AW.

However, we see that this is equivalent to the finite difference eigenvalue
problem

(22a) (x, y) in Db

(x, y) in Db'

(22b) W(x, y) = 0, (x, y) in Cb,

since multiplication of (22a) by ,,2 yields (21).
We determine the eigenvalues of problem (21) by using the technique

called separation of variables for (22). Let us try to find a solution of the
form W(x, y) = </J(x).p(y) of (22a), i.e.,

A
-/::'b</J(X).p(y) = -</Jxj/.p(y) - </J(x).pyV = 82 </J(x).p(y).

Now divide by W(x, y) to get

</Jxj/ .pyV A
- </J(x) - .p(y) = 82'
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But the only way that the sum of a function of x and a function of y can
be constant is for each function to be a constant. Hence we may write
A = ~ + TJ and have the two sets of equations

(23a)

(23b) - t/iYD(Y) = i2 t/i(y)

(x, y) in D 6

If ~ and TJ are known, (23) would be ordinary difference equations of second
order with constant coefficients. We solve them as we did the difference
equations in Section 4 of Chapter 8. Thus, let us use the form ,p(x) = aX
in (23a) to get by using (l4c),

(;:)2 [-a - 6x + (2 - tJ -a6X
] = 0, Sx :os; x :os; a - 8x.

If we set w = a 6x, then these equations are satisfied provided

t = 2 - w - w- 1
•

X

Furthermore, it is clear that ,p(x) = a - x yields the same condition, and
hence the general solution of (23a) is of the form

,p(xj ) = caXj + da-Xj = cw j + dw- f •

To satisfy the boundary conditions (22b), we have ,p(x)t/i(y) = ° for
(x, y) in C6• This implies that

(24)

From the condition (24) at j = 0, we have c = -d; hence at j = J + I,

W 2(J+1l = 1.

The 2(J + 1) roots of this equation are the roots of unity
w

p
= el[P1t/u + ll], p = 1,2, ... , 2(J + 1).

However, if we replace w by w- 1, the solution ,p(x) of the difference equa­
tion becomes -,p(x). Hence, we need consider only the first J + 1 such
roots. But the (J + l)st root is w = - 1 which leads to the trivial solution,
,p == o. Thus we have found J non-trivial solutions of (23a) which satisfy
(24) and they are

(25a) ,pp(Xj) = c(w/ - W p-1) = sin VJ7 1)
p = 1,2, ... , J.
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Here we have chosen the arbitrary normalization constant of "'(x) to be
c = - i/2. In an exactly analogous manner, we find K non-trivial solutions
of (23b) which satisfy .p(0) = .p(b) = 0;

(26a) .pq{Yk) = sin (k Kq: I)

(26b) _ 48 . 2 ("" q )7)q - y Sin 2: K + I

q = 1,2, ... , K.

By combining these results, we find the solutions of the eigenvalue
problem (22)

WP.•(x, y) = "'p(x).pq(Y)
(27) I ~ p ~ J, I ~ q ~ K.

Ap.• = gp + 7)q

We have thus found JK different eigenfunctions WP.q{x, y), with corre­
sponding eigenvalues Ap •• (which may not all be distinct). In the vector
representation of the net functions Wp,q{x, y), we have JK distinct eigen­
vectors, W p •• , of the matrix A in (21). [In fact, it can be shown that the
JK eigenvectors in (27) are orthogonal.] Hence, all of the eigenvalues of
A are in the set Ap • q • We observe that all eigenvalues of A are positive and
A is not only non-singular, but is also positive definite.

The norm of A -1 is now found to be

IIIA- 1 112 = [min (gp + 7)q)] -1 = ---
P.. gl + 7)1

= [48x sin2(~ I>x) + 48y sin2 (; l>y)]-l

= 1>2~2 C2a~2b2){l + (!)[(l>x)2 + (l>y)2]).

Thus the error estimate in (20) becomes in this norm,

(28)

This bound is similar to that in (9) but it must be recalled that the norms
are different. We have presented here a convergence proof which is in­
dependent of the maximum principle. There are still other proofs that
could have been given. In particular, if we were to consider the problem
(I) with I(x, y) == 0 on D, then the solution could easily be written in
terms of Fourier series [assuming g(x, y) to have piecewise continuous
derivatives on C]. The solution of the corresponding difference problem
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(5), with f(x, y) == 0, can also be given in terms of (finite) Fourier series.
A comparison of these explicit solutions would then show convergence
as Sx and Sy vanish, and the rate of convergence would depend upon the
smoothness properties of the boundary data, g(x, y). Of course, the
determination of the explicit solutions used in the calculation of II A-1112
cannot be made in most of the applications of the present difference method.
In particular, if the domain is not composed of coordinate lines and/or
if the equation is replaced by one with variable coefficients, then these
special methods must be modified to give analogous results. However, the
maximum principle is readily extended to include many such applications.
Often it may be possible to obtain a bound on II A -111 (in some norm)
without having to determine the eigenvalues of A.

1.2. An Eigenvalue Problem for the Laplacian Operator

In view of the development of the previous subsection, we can readily
find approximations to the eigenfunctions, u(x, y), and eigenvalues, '\, of the
Laplacian operator for a rectangular region. The eigenfunction is not
identically zero, I.e., u '1= 0, and for some constant, '\, (the eigenvalue)
satisfies

(29a) -t:J.u = '\u, (x, y) in D,

(29b) u = 0, (x, y) in C.

We can solve this continuous problem by the separation of variables
technique. Thus we set

u = f(x)g(y),
whence from (29a)

I" gil-7 - g =,\,

while from (29b)
f(O) = f(a) = g(O) = g(b) = o.

But since ,\ is a constant, we find that

f"-7 = constant, 0:::; x :::; a,

- g" = constant, 0 :::; y :::; b.
g

The only possible non-trivial solutions of these differential equations and
boundary conditions are proportional to

(30a) fm(x) = sin ( mTr ~)

(30b) gll(y) = sin (nTr t)·
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Hence the eigenfunctions and eigenvalues of (29) are

(3Ia) Um,n(X, y) = sin (m7T~) sin (n7T~)'

(31 b) m, n = 1,2, ....

[It can be shown that these are all of the independent eigenfunctions and
eigenvalues of (29).] We now exhibit the eigenfunctions U and eigenvalues
p. of the approximating difference equations defined by U :;j; 0,

(32a) -6.6 U = p.U, (x, y) in D6

(32b) U = 0, (x, y) in C6•

That is, from (27), (26), and (25), with p. = Aj82
,

(33a) Up,q(Xj, Yk) = sin (j J7 I) sin (k Kq; I)'

_4[(J + 1)2 sin
2(~J: I)

(33b) p.p,q - 2
a

(K + 1)2 sin
2 (~K"h)]

+ b2 '

I ~p~J, I ~q~K.

From (3Ia) and (33a), we note that

(34a)

This is an exceptional coincidence! On the other hand, if we use (31 b)
and expand (33b) for fixed (p, q) and large (J, K), we find

(34b) p.p,q - Ap,q = {!)[p4(fIx)2 + q4(8y)2].

Equation (34b) expresses the fact, also valid in more general problems,
that the lowest eigenvalues of the difference operator approximate the
respective lowest eigenvalues of the differential operator with an error
proportional to the square of the mesh width. Frequently the error in the
approximation of the corresponding eigenfunctions is also proportional
to the square of the mesh width.

In most cases, where the eigenvalues of the differential operator obey a
variational principle, the practical problem of determining the eigenvalues
of the difference operator is made simpler by characterizing them as the
stationary values of some functional.
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(35)

For example, in the case of (29) the eigenvalues are the stationary values,
,\ = G[u], of

G[u] == LI[(~r + (~n dxd
y

,

LIu2 dxdy

where u(x, y) ranges over the class ~ of non-trivial functions with con­
tinuous first derivatives and such that u == 0 on C. We say G [u] is stationary
at u, if

d
d" G [u + "v] = 0 at " = 0,

(36)

for all functions v in ~. It can be shown that if ,\ = G [u] is stationary at u,
then u has continuous second derivatives and satisfies (29). On the other
hand, the corresponding functional that characterizes the eigenvalues of the
difference operator in (32) is

H[U] = Q[U] = t 2: [(Ux)2 + (Ux)2 + (Uy)2 + (Uy)2].
- L[U] - 2:U2

The sums in (36) are taken over all net points of the infinite lattice that
covers the plane and U is in the class :F of non-trivial net functions which
satisfy

U(x, y) = 0 for (x, y) not in D6.

THEOREM 4. p, = H[U] is stationary at U iff p, and U are an eigenvalue
and eigenfunction that satisfy (32).

Proof. Let

V(xo, Yo) = I,
(37)

V(x, y) = 0

It is easy to calculate

if (x, y) "# (xo, Yo).

~ H[U + "V] 1<=0

by expanding the numerator and denominator of H to first order in ".
That is,

Q[U + "V] ~ Q[U] + "2: UxVx + UxV::x + UyVy + UiiVii

= Q[U] - 2,,!l6 U(XO' Yo);

L[U + "V] ~ L[U] + 2" 2: UV

= L[U] + 2"U(xo, Yo).
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Hence,
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2E
(38) H[U + EV] ~ H[U] - L[U] [~oU(xo, Yo) + fLU(Xo, Yo)].

Therefore, if H[U] is stationary, (32) holds, since we may pick (xo, Yo)
to be any point in Do. On the other hand, in Problem 5 it is shown that
(32) implies H[U] is stationary. •

We remark that the variational principles can be used as a basis for
constructing methods to determine the eigenfunctions and eigenvalues
as in the Rayleigh-Ritz methods, which we do not treat. Another appli­
cation of the related functionals (e.g., H[u] and G[u]) is to determine
estimates for fLp. q - "-P. q in more general cases. But we cannot pursue
this topic further.

The eigenvalue problem (32) corresponds to the matrix eigenvalue
problem, similar to (21),

AU = fL8 2U,

where A is symmetric. Hence we may use the argument of Theorem 7.2
of Chapter 8 to prove a result analogous to that cited therein.

PROBLEMS, SECTION 1

In Problems 1,2, and 3 we indicate how to generalize Theorems 1,2, and 3
for a non-rectangular region. For example, let

D == {(x,y) I x 2 + y2 < a2}, C == {(x,y) I x 2 + y2 = a2};

in the notation of Theorem I, let P be any lattice point and define

Do == {P I P, PI, P2, P3 , P4 ED}.

Now, if P ED but P ~ Do, we set P E Co and note that at least one pair of
its opposite neighbors is separated by C, say

PI ~ D, Pz ED.

Let Pc E C be on the line segment PPI ; let () == distance PPc, therefore,
o < () ~ 8x. Define U(Pc) == u(Pc) for any point Pc on C.

1. Maximum Principle: In the above notation, for P ED but P ~ Do,
define the linear interpolation operator

Show that
(a) If

and

then
max U(P) ~ max U(Pc).
PeD PCEC
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(b) If

then

ildU(P) :::;; 0,

B 6 U(P) :::;; 0,

for P E D d ;

for P E Cd,

min U(P) ~ min U(PC>.
PeD PCEC

(c) The equations

-ildU(P) = f(P),

BdU(P) = g(P),

have a unique solution.
2. With the linear interpolation operator, (i.e., B6 U(P», prove the a priori

estimate, for lattice points in D, and any lattice function U(P),

a2

max IU(P)I :::;; max IU(PC> I + -2 K,
PeD6 PCEC

where

K = max [max lildU(P)I,
PeD6

3. Derive a bound for the error, E = U - u, when U is found with rounding
errors p, P, that satisfy

-ildU(P) = f(P) + 8:8/
BdU(P) = Pr.

If u has continuous derivatives of fourth order and 8x = (!)(h), 8y = (!)(h),
show that

max IE(P)I = (!)(h2),
PED

for sufficiently small p, P"
[Hint: Define the truncation error as in (7) for P E Dd. Otherwise, set

Apply the a priori estimate to E(P), for P ED.]
4. Show how the statements of the maximum principle, the a priori estimate,

and the error bound must be modified for a more general bounded domain D.
5.· With U and V in the class :F of Theorem 4, show that

L UxVx + U;:Vx + UyVy + UyVy = -2 L VildU.
Hence

2€
H[U + €V] ~ H[U] - L[U] L V(ildU + I-'-U).

Therefore if U satisfies (32), H[U] is stationary.
[Hint: Use summation by parts to remove the difference quotients of V.

For example, in L Ux Vx, the value V(P) for a fixed P E Dd occurs only in
VX(P2) and Vx(P). Thus in this sum the coefficient of V(P) is found to be:

- [U(P2 ) - 2U(P) + U(P, )]j8x2
.]
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2. SOLUTION OF LAPLACE DIFFERENCE EQUATIONS

The linear algebraic system of equations determined by the difference
scheme (1.5) is, for the rectangular region, of order JK. For small net
spacings 8x and 8y, this may be extremely large since JK = constant/
(8x 8y). (In practice, JK > 2500 is not at all unusual.) Thus the standard
elimination procedures for the equivalent system (1.18) of order JK require
on the order of (JK)3 operations for solution and are too inefficient.
Now from the definition (1.I7b) of A, we see that many of its elements
are zero and in fact, that it is block tridiagonal. The Gaussian elimination
procedures which take account oflarge blocks of zero elements (in particu­
lar, the methods of Subsection 3.3 in Chapter 2) are then naturally
suggested. This block elimination method requires at most on the order
of j3K operations (for rectangular regions) and is efficiently carried out
on modern digital computers. (The storage requirements are for 2K - I
matrices of order J and one vector of order JK. But this data is used only
in dealing with systems of order J and hence is not all required
at the same time.) In fact, since only tridiagonal systems need to be solved,
efficient organization requires only (!)(J2K) operations!

Nevertheless, iterative methods seem to be the ones most often employed
to solve the Laplace difference equations. Again, the large number of
zero elements in the coefficient matrix greatly reduces the computational
effort required in each iteration. However, some care must be taken to
insure that sufficient accuracy will be obtained in a "reasonable" number of
iterations. We consider such methods for the rectangular region.

The simplest iteration method begins with an initial estimate of the
solution, say U(Q), and then defines the sequence of net functions U(Y) by

(I a) U(Y+ 1)(x, y) = U(Y)(x, y) + 82tl 6 U(Y)(x, y) + 82f(x, y),

(x, y) in D6,

(Ib) U(Y+1)(x, y) = g(x, y), (x, y) in C6, v = 0, I, ....

Here 82 is defined in (1.14c) and the boundary condition (l.1b) is to be
satisfied by U(O). From the other definitions in (1.14c) and (104), we find
that (Ia) is, in subscript notation,

(2) Uj~~l) = 8xCUj"21,k + Unl.k) + 8y(Un-l + U~~)k+l) + 82h.k,

l:O;j:o;J,I:o;k:o;K.

[Note the relation between (2) and (1.15).] The calculations required in
(1) or equivalently (2) can be carried out in any order on the net.

This iteration scheme is easily written in matrix form by using the
notation of the previous subsection. We get that

(3a) UY+l) = (H + V)Uy) + 82F, v = 0, I, ....
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Here the JK-order matrices are defined by (1.I4b) and (1.I7b), F is defined
in (1.I6b) and (1.I7a), and UV) is the vector with components U?!c ordered
as in (1.I7a). From the definition of A in (1.l7b), we see that (3a) can be
written as

(3b)

and thus, this scheme applied to (1.18) is a special case of the general
iterative methods studied in Section 4 of Chapter 2. In fact, this is just the
Jacobi or simultaneous iteration scheme of Subsection 4. I in Chapter 2
applied to the system (I. I8).

From the general theory of iterative methods, we know that the neces­
sary and sufficient condition for the convergence of the sequence {UV)}
to the solution U for an arbitrary initial guess UOJ is that all of the eigen­
values of (H + V) are in magnitude less than unity (see Theorem 4. I of
Chapter 2). The eigenvalues of this matrix are the roots of the charac­
teristic polynomial

(4) 0/(7]) == det 17]1 - (H + V)I = det I'll - (I - A)I·

However, we have determined the eigenvalues of A in the previous sub­
section; they are given in (1.27). Thus the eigenvalues of (I - A), and hence
the roots of tI"(7]) = 0, are

(Sa) 7] = 7]p,. == 1 - Ap , q

= 1 - 48 sin2 (:: _P_) - 48 sin2 (:: -q--),
x 2J+l y 2K+l

1 :::; p :::; J, 1 :::; q :::; K.

Now we easily find that - 1 < 7] < 1 and for small Sx and Sy

(Sb) p(H + V) == max I'Ip,.1 = 7]1.1 = 1 - A1 ,1
P ••

= 1 - 821T2(~ + ~) + 0(84).

Since 0 < A1 ,1 < 1, the method clearly converges and the rate of conver­
gence is by (4.11) of Chapter 2

(6) R J = -log (1 - A1 • 1)

= 821T2(~ + b~) + (1)(84).

We find that the rate of convergence decreases WIth

8x2 8y 2
82 = ,

2[ (8X)2 + (8y)2]
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and thus for difference equations with a small net spacing we may expect
very slow convergence.

The Gauss-Seidel or successive iteration method for the Laplace differ­
ence equations can be written as

(7a) U~~~l) = BX<U~V_\~~ + U;V;I.k) + By(U?~~)1 + U~~~+I) + 82/i.k>

I :$ j :$ J, 1 :$ k :$ K.

In matrix form this becomes, with the use of (1.l7b),

(7b) [I - (BxL + ByB)]VV+ 1) = (BxL + ByBYVV) + 82 F.

In the present application this iteration scheme is frequently called the
Liebmann method. The new iterates cannot be evaluated in a completely
arbitrary order in this method. We first compute Ui~~l) and then,in order,
the other elements on the coordinate lines with j = 1 and k = 1. Next
U~~ ~ 1) is determined, etc. By slight changes in the scheme we could start the
calculations at either of the other three" corners" in Do. However, as we
shall see, all of these methods have the same rate of convergence. This
successive scheme is easier to employ on a digital computer than the
simultaneous scheme since now each new component can immediately
replace the previous value in storage. In addition, we shall find that the
Gauss-Seidel method converges exactly twice as fast as the Jacobi method
(when they are used on the same problem) and thus one should never use
the Jacobi method on such difference problems.

The convergence of the iteration method (7) is determined by the
magnitude of the eigenvalues of the matrix

(8)

The indicated inverse exists since BxL + ByB is a strictly lower triangular
matrix. Thus the eigenvalues, ~, of the matrix SI are the roots of the charac­
teristic polynomial

(9) <1>IW == det [~[I - (BxL + ByB)] - (BxL + ByBYI

= det [U - Bi~L + F) - Bi~B + BT)I.

To examine the roots of this polynomial we shall use the following

THEOREM 1. Let the matrices L, B, and A be defined as in (1.l4b) and
(1.l7b). Then for any non-zero scalars a and f3

(10) det [AI = det 1/- Bx(aL + a-IF) - Oy{f3B + f3-1BT)I.
Proof. Let the elements of A be aT • S where r, s = 1,2, ... , N = JK.

Then each term in the formal expansion of det IA 1 is given by a product
of the form
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Here 'Tr is one of the N! permutations of the first N integers. Let each
point (x" Yk) of the net D <5 be identified with a unique integer (see Figure I)

(xi> Yk) +--t r =j + (k - I)J.

Then any given permutation 'Tr can be represented by N vectors on D<5
by drawing lines from r to 'Tr(r) for I :::; r :::; N [i.e., from the point corre­
sponding to r to the point corresponding to 'Tr(r)]. Now by the definition
of the matrix A it follows that aT.n(T) #- 0 only if r = 'Tr(r) or the point
corresponding to 'Tr(r) is one of the four neighboring net points, (x ± Sx, y)
or (x, y ± Sy), in the star about the point (x, y) corresponding to r.
Thus, the only terms in the expansion of det IA I which may not vanish
correspond to permutations whose geometric representation is composed
entirely of unit vectors in the (± x) and ( ±y) directions and null vectors.

Now every permutation is a product of disjoint cycles and in the above
representation a cycle is a closed path of vectors on D <5 (see Figure I).
Thus for any cycle corresponding to a non-vanishing product of elements,
there must be the same number of unit vectors in the ( + x) direction as in the
( - x) direction and similarly for the ( ±y) directions. Now we recall that
aT.n(T) is an element of L if 'Tr(r) = r - I and is an element of LT if 'Tr(r) =

r + I. Thus there are as many factors from L as from L T in any non-
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vanishing term in the expansion. Similarly, ar,n(r) is an element of B if
1T(r) = r - J and of B T if 1T(r) = r + J. Thus factors from Band BT

also enter pairwise in any non-vanishing term.
These results hold for the expansion of the right-hand determinant in

(10) if elements from L, LT, B, and BT are replaced by those of aL, a -1LT,
f3B, and f3- 1BT respectively. Thus in any non-vanishing term the scalars
a and f3 do not appear and the proof is concluded. •

We note that the proof of Theorem I depends only upon the location
of the zero elements in the matrix A. Hence if the non-zero elements of A
are changed in any manner we have the

COROLLARY. IffL, t, 71, " and v are matrices with zero components wherever
I, L, LT, B, and BT respectively have zero components, then

In particular, we now consider the determinant <I>(t) in (9). The identity
I and the matrices Land B have been multiplied by a scalar t, so no zero
elements of A have been altered. Thus we may apply the corolIary to get

<l>M) = det ItI - Ox(atL + a- 1F) - Oy(f3tB + f3-1BT)I.

Take a = f3 = t-y, and recaJl (4) to find that

<l>M) = det 1~Y,II·det le'l - (H + V)I
= eKI2'F(~Y,).

Thus every non-zero root ~ of <l>1(~) = 0 satisfies 'F(~Y,) = 0 and every
root 71 of 'F(71) = 0 satisfies <1>1(71 2

) = O. So aJl non-zero eigenvalues of the
matrix S1 in (8) are given by

I ~p~J, 1 ~q~K,

(12)

and from (5) we find that the maximum eigenvalue of S1 is

P(S1) = [p(H + V)]2 = (1 - '\1,1)2

= I - 21l21T2(~ + ~) + (1}W).

The rate of convergence for the Gauss-Seidel scheme is thus

Ras = 2821T2(~ + ~) + (1}W),

or twice that for the Jacobi scheme.
The convergence rate of the Gauss-Seidel method (7) may be improved
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by introducing an appropriate acceleration parameter, as discussed in
Section 5 of Chapter 2. That is, set

(13a) V\~~1) = Ox(U?-\~)k + U\Vl1.k) + 0y(U?~~)1 + Uj~Ll) + 'f8j,k

and then, at the point (x;, Yk), take

(l3b)

= U\~)k + w( V\~ ~ 1) - Un).

Here w is the acceleration parameter to be determined. We note that for
w = I this scheme reduces to that in (7a), i,e., to the ordinary Gauss­
Seidel method. The order in which the components of the new iterates
are to be computed is just as in the previous successive scheme.

To examine the convergence of the accelerated Gauss-Seidel method we
first write it in matrix form. Obviously (l3a) implies

(l4a) V(V+ 1) = (OxL + OyB)Uv+ 1) + (OxL + OyB)TUV) + S2F,

and (13b) implies

(14b) UV+l) = wV(v+l) + (1 - w)UV).

Upon eliminating V(v + 1), we obtain

(15) [I - w(OxL + OyB)]UV + 1)

= [(I - w)1 + w(OxL + OyBy]UV) + wS 2F.

The convergence of these iterations is thus determined by the magnitude
of the eigenvalues of the matrix

(16) Sw == [I - w(OxL + OyB)]-I[(1 - w)1 + w(OxL + OyBY].

Note that for w = I the above matrix reduces to the SI defined in (8)
for the ordinary unaccelerated successive iterations. The eigenvalues of
Sw are the roots t of the characteristic polynomial

(17) <I>wW == det 1[1 - w(OxL + OyBm
- [(I - w)1 + w(OxL + OyBY][

= det [(t + w - 1)1 - wt(OxL + OyB)
- w(OxL + OyBY[·

Th~ matrix in (17) has zero elements wherever the matrix A has them
and so the corollary to Theorem I is applicable. If we use the scalars
ex = f3 = t - 'h then we obtain from (17) and (4)

<I>wW = det l<t + w - 1)1 - wt'h(OxL + OyB) - wt'h(OxL + OyBYI

= det Iwt'h/l·det /(t +w~'h- I) 1- (H + V)I

= (wtY')lK\v(t +w~'h- 1).
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From this result we conclude, for each w # 0, that any non-zero root'
of <1\"W = 0 satisfies If'(7J) = 0, and that every root 7J of If'(7J) = 0
satisfies <1>wW = 0 provided (, + w - 1)/(w'Y.) = 7J. Thus the non-zero
eigenvalues of the matrix Sw are the roots' of

(l8a)

where 7J ranges over the roots of If'(7}) = 0 [i.e., the eigenvalues of I - A
given in (Sa)]. Since (18a) is quadratic in ,Y., we find that all' which satisfy
this equation are given by

(l8b) ,= ,± =[(~7J) ± J(W2
7Jf + (I - w)r

We may now determine w such that the iteration scheme (IS) converges.
First observe that since 7J is real it foIlows from (l8b) that 1L 1 ~ 1 for
w ::; O. Thus an eigenvalue of Sw wiIl have magnitude larger than unity
and we conclude that the accelerated Gauss-Seidel method is not conver­
gent for any non-positive w. For fixed w > 0 we see that some eigenvalues
may be complex (only if w > I) but then their magnitude is

(19a) 1'1 = w - I.

For the real eigenvalues it foIlows from (l8b) with w > 0 and 7J > 0 that
'+ is an increasing function of 7J and that I'+1> I' _I. Thus the largest
real eigenvalue of Sw is, since 7J ::; 7Jl.b

(l9b) ,= 'leW) == [W~.l + J(W~l.lf + (1- w)r
From (19) we obtain for w > 0

p(Sw) = max [w - I, 'leW)].

As 0 < 7Jl.l < I it foIlows that p(Sw) < I if 0 < w < 2 since in this
interval, when '1 is real,

'l(W) = [(W~l.l) + J(I-If (If(l-7JL)r

< [(I) + J(I - Iff = I.

On the other hand, if w ;:::: 2 then 'leW) is complex, and by (19a) some
eigenvalue has modulus not less than unity. Thus we have

THEOREM 2. The accelerated Gauss-Seidel iterations converge iff the
acceleration parameter w lies in the interval 0 < w < 2. •
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The optimal value for the acceleration parameter is that value W = w*,
in 0 < W < 2, for which

p(Sw.) = min p(Sw) = min {max [w - I, 'leW)]}.
O<w<2 O<w<2

[We know that the indicated minimum exists since p(Sw) is continuous
in 0 ::; w ::; 2 and satisfies peSo) = P(S2) = I, p(Sw) < I in 0 < w < 2.]
It is clear that the expression in the radical of( 19b) is a decreasing function
of w for 0 < w < 2. Thus 'l(w) becomes complex when this expression
vanishes, i.e., for

2
w = Wb = :-----;::;===:,:;=

I + vi - 1Jr,l
For W ~ Wb we have now p(Sw) = W - I and

min p(Sw) = Wb - I.
Wb::;W < 2

For 0 < W ::; Wb, since '1'(W) < 0, 'leW) is a decreasing function of w,

Hence p(Sw.) occurs for w* = Wb at which Wb - I = 'l(Wb) = p(Sw.)·
Thus, in summary, we have for the optimal application of the accelerated
Gauss-Seidel method

(20a)

(20b)

2
W * = -:------;::;===:,:;='

I + vi - 1Jtl
I - vi - 1Jtl

p(Sw.) = w* - I = -:---~=~=
I + vi - 1Jr.l

From (5), we have

p(Sw.) = I - 287T J2(~ + ;2) + (!)(82)
and so the rate of convergence is now

(21)

By comparing (21) with (6) and (12), we see that the power of 8 in the rate
of convergence for the optimal accelerated Gauss-Seidel method is lower
than the power of 8 appearing in the ordinary Gauss-Seidel or Jacobi
methods. The same result is obtained if the iterations were to proceed
in one of the other orders indicated after (7b). This is suggested by the
form of our results in which the coordinate directions and related dimen­
sions enter symmetrically (see, however, the discussion at the end of the
next subsection).
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2.1. Line or Block Iterations

Since the linear system (I.l8), which we are solving iteratively, has the
simple block structure indicated in (I.l6a) it is rather natural to consider
corresponding block iterations (i.e., Subsection 4.3 of Chapter 2). In the
present application, these are more properly called "line" methods since
the net function is altered by changing the data on a complete coordinate
line of net points in D I> simultaneously. A particularly simple line iteration
for the system in (I.l6) is

[I] - OAL] + L]T)]Uiv+ 1) - OyU~V) = (52F1 ,

(22a) -OyUkV~1 + [I] - Ox(L] + L]T)]Ukv+1) - OyUk"~1 = (52Fk ,

2::; k::; K - I,

-OyU}j''..1 + [I] - OAL] + L/)]U;+1) = (52FK •

The K systems for the Ukv + 1) can be solved in any order. At each of the
K steps in one of these iterations, a linear system of order J must be solved
with the coefficient matrix I] - OAL] + L]T). However, this matrix is
tridiagonal and can easily be factored by the method of Subsection 3.2
in Chapter 2. This is done only once and then each linear system in the
succeeding iterations is solved by evaluating two simple recursions of the
forms (3.12) and (3.13) of Chapter 2. The present scheme is frequently
called a line Jacobi method.

By using the matrices and vectors in (1.l7) we can write the iterative
scheme (22a) as [compare with (3a)]

(22b) (I - H)uv+1) = VUV) + (52F.

The convergence is thus determined by the matrix

(23a)

whose eigenvalues, p, are the roots of the characteristic polynomial

(23b) pep) == det Ipl - pH - VI.
It is not difficult to show that the matrices H and V have common eigen­
vectors (since they are symmetric and commute). In fact, the eigenvalues
and eigenvectors of these matrices are easily computed. Just as the eigen­
value problems (1.21) and (1.22) are equivalent, it follows that the follow­
ing pairs of eigenvalue problems are also equivalent

(24a)

(24b) (20y l - V)W = T)W,

{

- WXg = (tW)W on Do,

W = 0 on Co;

{

- Wyy = (T)j(52)W on Do,

W = 0 on Co'
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[In fact, if we set A = g + TJ and add corresponding equations we obtain
(1.21) and (1.22), by using 8x + 811 = t.] The problems in (24) may be
solved by separating variables and recalling (1.23)-(1.27). We find that
these problems have common eigenvectors W p • q with the components

(25) Wp.q{Xi> Yk) = sin (j J': I) sin (k K q: I)'

1 :::; p :::; J, 1 :::; q :::; K,

and the eigenvalues

(26a) g = gp = 48x sin2 (~J: I) = 28x [1 - cos (1T J: I)]'
1 :::; p :::; J;

_ _ 48 . 2 (1T q )
TJ - TJq - II Sill "2 K + 1(26b) = 28 l1 [1 - cos (1T K: I)]'

I:::; q:::; K.

Each eigenvalue gp of the problem (24a) has multiplicity K and each eigen­
value TJq of (24b) has multiplicity J. The eigenvalues of H and V are easily
obtained from the above and are

respectively.
The vectors W p, q are also eigenvectors of (I - H) -1 Vand multiplication

by this matrix yields the eigenvalues, which are also the roots of P(p) = 0

(27) 1 :::; p :::; J, 1 :::; q :::; K.

The maximum magnitude of the eigenvalues is found by the usual expan­
sions and some simplification to be

(28a) max !pp,q[ = Pi, 1 = 1 - Sr 1T2(~ + ~) + (9(13 4
).

~q a

Hence the rate of convergence for this line Jacobi scheme is

(28b) _ Sy2 2( 1 1 ) ffI(N)RLJ - T 1T £i2 +"jj2 + lY 0 •

Note the similarity between this result and that in (6) for the (point)
Jacobi iterations and that in (12) for the successive iterations. If Sx = Sy,
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then 8y 2 = 482 and the above rate is essentially that of the Gauss-Seidel
method given in (12).

Ofcourse, an analog of the method of successive iterations is also possible
for the line methods. We need only use the latest improved data as soon
as it is obtained. Thus in (22) we replace ULv~ 1 by ULV~1) for k = 2, 3, ... ,
K, to obtain a line Gauss-Seidel scheme. In matrix form this successive-line
method is written as

(29)

However, an accelerated version of these iterations is of interest, and we
directly consider this more general procedure. As before, an intermediate
iterate VlV + 1) is defined by

(30a) (I - H)V(V + 1) = OyBUV + 1) + OyBTUV) + 82F.

Then with an arbitrary parameter w we set

(30b) U(v+1) = wV(v+l) + (1 - w)U(V).

The calculations are performed a line at a time, as in the line Jacobi
method, to determine the VLv + 1) and then the ULv + 1) before going on to
k + 1. However, now they must be done in a fixed order (say increasing
or decreasing k). For w = 1 this scheme reduces to that in (29).

The accelerated successive-line method becomes upon the elimination
of V(V + 1) in (30)

(I - H - wOyB)UV + 1)

= [(1 - w)1 - (I - w)H + wOyBT]UV) + w82 F.

To examine the convergence of the scheme, we must determine the eigen­
values of the matrix

which is determined from the roots r of the characteristic polynomial

We see that the matrix in (3Ib) has zero elements wherever the matrix
A has them and so just as in (17), we can apply the corollary to Theorem I.
With the scalars a = I and f3 = r-l~ we then get from (31b) and (23b)

Qw(r) = det I(r + w - 1)(1 - H) - wr}' VI

= det IwrY'II·det I(r + W,,- 1) (I - H) - vi
wr /2

( U)JKp(r + w - I)= Will. 11·
WT/~
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It follows that T and the roots p of P(p) = 0 are related by

(32) T + W - I = WTY:. p,

by the reasoning that led to (l8a). For W = I, the iterations reduce to the
ordinary successive-line iterations and the non-zero roots T are given by
T = p2. Thus this method converges twice as fast as the line Jacobi
method. Finally, since the eigenvalues p lie in 0 < p < I, the arguments
used in (18)-(21) can be applied to the roots T(W) and the acceleration
parameter w, which satisfy (32). Now the optimal parameter value W*
and minimum value p(Tw.) of p(Tw) become, where p(T) denotes the
spectral radius of T,

(33a)

(33b)

2
W* = I A II 2'

+V - Pl.l

I - VI - PI.l
I = -=------;;::==~=

I + Vi - pL

(34)

By using (28a), we find

p(Tw.) = I - 28Y7TJ(~ + ;2) + (1)(8 2
),

and hence the rate of convergence of the optimum accelerated line Gauss­
Seidel method is

RALGS = 28y;rJ(~ + ;2) + (1)(8 2
).

To compare rates of convergence we note, using (21), that

(35)

= [I + (:~rr + (1)(82).

Thus it follows that for any mesh ratio, 8yf8x, the optimum accelerated
successive-line method has a larger rate of convergence than the corre­
sponding optimum accelerated successive (point) iterations. For equal
net spacing in the x- and y-directions the factor of improvement is,
asymptotically, V2. However, if 8y > 8x, even greater improvement
results. We observe here that the net lines along which the new data are
obtained at each step should be in the direction of the smallest mesh
width; i.e., the "closest" neighbors are grouped together on a line and
improved as a group. All of the above could be repeated with H and V
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interchanged which corresponds to taking lines in the y-direction. The only
change in (35) that would result is the interchange of 8x and 8y. A decision
as to whether the ALGS scheme is more efficient than the AGS scheme
must depend upon the size of

# OPSALGS _

# OPSAGS = a.

a measures the ratio of the amounts of work involved in one iteration
step for each of the two methods. If

a RALGS < I,
RAGS

then the ALGS scheme is more efficient; otherwise, the AGS scheme is
more efficient.

2.2. Alternating Direction Iterations

One of the most effective iteration schemes for solving the system (1.16)
or (1.18) employs a combination of horizontal and vertical line iterations.
In terms of an acceleration parameter w, and recalling that 20x + 20y = 1,
such a scheme due to Peaceman and Rachford can be defined as follows:

(36a) [(w + 20x)! - H]UV+ y, = [(w - 20y)! + V]U' + 82F,

(36b) [(w + 20y )! - V]UV+l = [(w - 20x)! + H]Uv+% + 82F.

The vector UV + \~ is an intermediate quantity used to define the scheme
and of course it is actually computed in carrying out the procedure. The
first step, (36a), is just a horizontal line scheme, similar to line-Jacobi.
(In fact, with w = 20y in (36a), we obtain (22b) with Uv+l replaced by
UV+ Y'.) Clearly then (36b) is essentially a vertical line-Jacobi iteration.
The vector to be found in each of the stages (36a and b) is easily evaluated
by solving a tridiagonal system.

To study the convergence of this scheme, we eliminate U· + % in (36)
and obtain, assuming for the moment that the required inverses exist,

uv+l = QOlUv + C,
where

(37) QOl == [(w + 20y )!- V]-l[(w - 20x)! + H]
x [(w + 20x)! - H]-l[(w - 20y)! + V],

and
(Ol == [(w + 20y)! - V]-l

x {[(w - 20J! + H][(w + 20x)!- H]-l + !WF.

The eigenvalues of QOl are easily obtained since the matrices (20x! - H)
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and (20 y l - V) have common eigenvectors given In (25). We obtain
using (24) and the eigenvalues given in (26)

Thus the eigenvalues, say "\(w), of Qw are

(38) {
p = I, 2,. . , J,
q = 1,2, ... , K.

Since tv > 0 and 7]q > 0 for all p and q, it follows that the alternating
direction scheme (36) converges for any choice of W > o. We also note
that all relevant inverses exist for positive w.

The trick in the proper use of the alternating direction type schemes is
not to use a single acceleration parameter W as above but rather to use a
sequence of them, say WI, W2, ... , W m applied periodically (or cyclically).
That is, the calculations in (36) are to be carried out m times (using each
WI for a complete double sweep of the net) in order to compute UV+ 1 from
U". To actually write this scheme out we should introduce 2m - 1 inter­
mediate quantities U" + 1/(2m>, U" + 2/(2m), ..• , UV+ 1-1/(2m) and successively
use (36a and b) for the pairs Uv+(2i-ll/(2m>, Uv+2i/(2m). As before, we find
that the eigenvalues which determine convergence are now

(39)

{
p = I, 2, , J,
q = 1,2, , K.

If we take m = J and choose Wi = ti for j = 1,2, .. ,J, then it clearly
follows from (39) that

for all p and q. In this case the exact solution is obtained in a finite number
of steps. Of course we could also employ Wi = 7]1 with m = K to get
similar results. However, both J and K are extremely large in general
and we desired to obtain an accurate approximation in only II iterations
where mil « J and mil « K. Thus we consider the problem, with fixed
small m, to find WI such that

max l,.\v.q(Wh W2,···, w m)!
v.q

is minimized with respect to all possible choices of the acceleration
parameters Wi.
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This problem is related to the subject of best approximations, Section 4
of Chapter 5. Specifically let us define the function

(40) F(z) == fr (Wi - z).
1=1 (Wi + z)

Then from (39) we have, recalling (26),

max IAp .,<W), W2,' •• , wm)1 ~ max IF(x)F( y)l·
P.q ~l ~X:5:t;J

111 :$YSTIK

Thus we seek Wi such that the rational function F(x)F(y) is the best
(uniform) approximation to zero on the rectangle f1 ~ x ~ fh "l1 ~

Y ~ "lK' The optimization problem is further simplified by noting that for
all x, y on this rectangle

IF(x)F(y) I ~ max P(z) == II F(z) II;'
a-:S; z-:S; 13

where a == min (f), "l1) and f3 == max (fh "lK)' Thus our problem is
reduced to finding the best approximation to zero of the form (40) on an
interval 0 < a ~ Z ~ f3. The existence and uniqueness of such a best
rational approximation can be proved in a manner analogous to the
treatment in Section 4 of Chapter 5 of best polynomial approximations.
We shall not present the analysis here of how to determine the opti­
mum parameters Wi' Rather, we show how to find a set of parameters
Wi> for which we can estimate IIFII", in order to compare the rate of con­
vergence of the cyclic alternating direction method with the previously
studied iterative methods.

In Problem I, we verify that for m = 1 the choice WI = Vaf3 minimizes

IIFII"" and

Hence we divide the interval [a, f3] by points 0 < ao = a < a1 < ...
< am = f3, such that

(to (Xl == ... == am - 1.

The values a, which have this property are

(41a)

We now set

_ (~)jlm
Ct.) - a a ' j = 0, I, .. . ,m.

(4Ib) Wj = Vaj_l(Xj
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and find that, since the magnitude of each factor of F(z) is bounded by
unity,

j
W. - zlmax IF(z)l:s; max -'--,

aj-l~z:::::af Uj_l-:$Z:::::U, Wi+ Z
i = 1,2, ... , m.

On the other hand, with the choice (41), the result in Problem implies
that _Ja i - 1

max I-w-,--_zl = __-==a,=.
a,_,$z$a, Wi + z 1+ Ja t - 1

at
for all i. Hence

(~) 11(2m)

IIF II '" :s; ----::-(a-7-)"11"7n(2=-<m) •

I + ~

From the definitions of a and fl, and the results (1.25) and (1.26), we note
that a = @(8 2

), fl ~ I. Therefore,

IIFII", :s; I - @(8 1Im).

Hence we have shown that the rate of convergence of the cyclic alternating
direction method is less than @(8 1Im

), for a complete cycle. But the amount
of work required to compute m sweeps as in (36a and b) is equivalent to
the work required for about 2m applications of the line accelerated schemes.
Now, the convergence rate of 2m applications of a line accelerated scheme
is @(2m8). This is much smaller than @(8 1Im), the convergence rate for
one cycle of the alternating direction method for small m. We have thus
shown that the alternating direction method is more efficient than any of
the other iterative schemes, even when parameters that are not necessarily
optimal are employed. For detailed comparisons we refer to the book
of Varga. In practice it is wise to start each cycle with the largest parameter
value, W m , and then successively to use the smaller values.

PROBLEM, SECTION 2

1. Given 0 < a < fl, show that

. { Iw - zl}mm max--
Osw aszsa W + z

and that the minimum value is attained for w = w* == viafl.
[Hint: The function (w - z)j(w + z) is a monotonic function of z for any

fixed w. Hence it attains its extreme values at z = a and z = fl. Equal
extreme values are attained for w = w*.]



[Sec. 3] WAVE EQUATION AND AN EQUIVALENT SYSTEM 479

3. WAVE EQUATION AND AN EQUIVALENT SYSTEM

We consider the initial value or Cauchy problem for the wave
equation: Find a function u(x, t) continuous in the half plane

D == {x, tit 2::: 0, -00 < x < co}

which satisfies, for t > 0,

(I)

and for t = 0,

(2a)

(2b)

[Pu 02U
C2 - o·ot 2 - ox2 - ,

u(x, 0) = f(x),

ou(x,O) _ ()
ot - g x .

This problem may be solved explicitly in terms of quadratures. That is,
by using the change of variables

~ = x + ct, TJ = x - ct, </>(~, TJ) == u(x, t),

we find

whence equation (I) reduces to

02</>
4c

2
o~ oTJ = O.

The general solution of this equation is found, by two integrations, to be
of the form

Thus the general solution of (1) is

(3) u(x, t) = P(x + ct) + Q(x - ct),

where P and Q are arbitrary (twice differentiable) functions. Since
P(x + ct) is constant along lines x + ct = constant, this part of the
solution can be considered as a signal or wave which propagates to the
left with speed c > 0 as time increases. Similarly, Q(x - ct) represents
a wave moving to the right with speed c. The lines in the x, t-plane along
which the signals travel,

x ± ct = constant,

are called the characteristics of equation (I).
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The initial conditions (2), when applied to (3), yield

P(x) + Q(x) = f(x),

I
rex) - Q'(x) = - g(x).

c

Thus by integrating the second relation over [0, x] and using the first,
we may solve the pair of equations for P(x) and Q(x). That is, set
K = -HP(O) - Q(O)] and find

P(x) = tf(x) + dc f gW d' + K,

Q(x) = tf(x) - dc f gW d' - K.

If we replace x in P(x) by x + ct and in Q(x) by x - ct, we get from (3)
the solution of the initial value problem

I Jx+ct
(4) u(x, t) = t[f(x + ct) + f(x - ct)] + 2c x-ct gW d'.

Clearly, the solution at any point (x*, t*) depends upon the initial data
only in the interval [x* - ct*, x* + ct*] on the initial line, t = O. This
interval is cut out by the two characteristics passing through (x*, t*)
shown in Figure I. The shaded triangle in this figure is called the domain
ofdependence of the point (x*, t *) and its base is the interval ofdependence.

The Cauchy problem, (I) and (2), can also be formulated as an initial
value problem for a first order system of partial differential equations.
In particular, introduce the function vex, t) and consider

ou ov
-= c-,
ot ox

(5)
ov ou
-= c-,
ot ox

\
\

\
\

1%* - ct*
I

I
I

(%*, t*)

%+ct=
constant

\%* + ct*
\

\
\

%

Figure 1. Characteristics and domain of dependence for the wave equation.
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subject to the initial values

(6a)

(6b)

u(x, 0) = f(x),

v(x,O) = G(x).

Equation (I) results after the elimination of v(x, t) from equations (5).
With the same change of variables used before, we find that the general
solution of (5) has the form

u(x, t) = p(x + ct) + q(x - ct),

v(x, t) = p(x + ct) - q(x - ct),

where p and q are again arbitrary functions but only required to possess
one derivative. To satisfy the initial conditions (6), we must have

p(x) = -tf(x) + -lG(x),

q(x) = -tf(x) - -lG(x),

and hence the solution of the initial value problem (5) and (6) is

u(x, t) = 1[f(x + ct) + f(x - ct)] + -l[G(x + ct) - G(x - ct)],
(7)

v(x, t) = -l[f(x + ct) - f(x - ct)] + -l[G(x + ct) + G(x - ct)].

A comparison of the solutions u given in (7) and (4) shows that the two
Cauchy problems are equivalent if in (6b) we take

I IXG(x) = - g(O d' + constant.
c 0

This relation could have been derived directly by satisfying the first
equation of (5) at t = 0 and using (2b).

For the system (5), the lines x ± ct = constant are again the character­
istics, and the domain of dependence is still as in Figure I. Of course, as
is clear from (7), the solution at any point (x*, t*) is now determined by
the values of the initial data (6) at the points where the characteristics
through (x*, t *) intersect the initial line, t = O. These properties of the
system (5) become particularly transparent if we first add and then subtract
the equations in this system to get

(fr - c :x)(u + v) = 0,

(~ + c ~)(u - v) = O.ot ox
This is called the characteristicfarm of the system (5) and the combinations
u ± v are the characteristic (dependent) variables. In the (x, t)-plane
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h (
0 0) d' er '" 'fi d't e operators 8t ± c ox represent tuerentlatIOn In two speci c lrec-

tions, the characteristic directions, and each characteristic variable is
differentiated in an appropriate one of these directions. The notions of
characteristic direction, characteristic variable and domain of dependence
are useful in the treatment of more general equations of hyperbolict type
in two independent variables (x, t). For example, consider the simplest
case of a linear system of n first order differential equations for the n
functions {uj } that are the components of u,

o 0
-u + A-u = b.ot ' ox

Suppose that the square matrix A = A(x, t) has n real eigenvalues (at)
and a complete set of eigenvectors. Let P be the matrix whose columns
are the eigenvectors of A. Then define v by u = Pv and insert in the above
system. This yields

o 0
8t (Pv) + A ox (Pv) = b,

or, by differentiation

pi (v) + AP~ (v) = b - (ip)v - A(~P)V.
ot ox ~ ox

If we multiply both sides on the left by P-l, we find

(I~ + P-1AP :x)v = P-1[b - (:tp)v - A(:x P)+
This system is in the simple characteristic form. That is, differentiation
in only a single (characteristic) direction,

dx
dt = aj,

occurs in each equation, since p- 1 AP is a diagonal matrix with the (a,)
on the diagonal. The components of v = p-1u are the characteristic
variables.

We refrain from giving the definition of characteristic surface, which
plays a vital role in the theory of partial differential equations in more
dimensions. It is sufficient to say that the notion of domain of dependence

t A system of partial differential equations is said to be of hyperbolic type if the
Cauchy initial value problem is well posed for this system. For a linear system of
equations, simple algebraic properties of the coefficients have been shown to imply the
hyperbolicity of the system, e.g., the conditions on the matrix A above.
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(8b)

is important for hyperbolic equations in higher dimensions but the notion
of characteristic form of the system does not generalize.

The homogeneous characteristic equation has the form

ow ow
(8a) 8t + a ox = 0.

Now on any curve x = x(t) in the (x, t)-plane, w is a function of t given
by w(x(t), t) and has the total derivative

dw ow ow dx
dt = 8t + ox dt'

Thus if the curve is chosen such that

dx
dt = a,

then any solution w of (8) satisfies dwldt = °and hence, is constant on
such a curve. The curves (8b) are the characteristics and if a is not a
constant, they are not straight lines.

The Cauchy problems previously formulated and solved could have been
solved by the method ofseparation ofvariables. Instead, we shall now apply
this method to a special mixed initial-boundary value problem for the wave
equation. The problem of interest is to solve the wave equation

02U 02U

ot 2 - c
2

ox2 = °
subject to the initial conditions

(9a)

(9b)

u(x, 0) = f(x),

ou
ot (x, 0) = 0, °< x < L,

and the boundary conditions

(lOa) u(O, t) = 0,

(lOb) u(L, t) = 0, t > O.

The solution is to be determined in the strip R == {x, t I0 :<:; x :<:; L, t ;::: O}.
For convenience we have used a homogeneous initial condition in (9b).

Let us seek solutions of the wave equation in the form

u(x, t) = </>(x)t/J(t)

which satisfy the boundary conditions (10). Then we must have

</>"(x) _ I .p(t) _ 2-
</>(x) - c2 t/J(t) - k = constant.

and
</>(0) = </>(L) = 0,
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where two primes indicate d 2/dx2 and two dots indicate d 2/dt 2 • The general
solutions of the differential equations which result from this separation
are

</>(x) = aekx + (3e- kX,

.p(t) = aeCkl + be-ckl.

From the boundary condition </>(0) = 0, we get a = - (3; while </>(L) = °
implies that

or e2kL = I.

Thus the boundary conditions can only be satisfied if k has pure imaginary
values such that 2kL = 2mri, or

k .mr
=zT' n = 1,2, ....

We omit n = °since it leads to the trivial result </>(x) == 0. With a = I
and any coefficients a and b, we have shown that </>(x).p(t) is a solution of
(I) satisfying (10), if

-'-( -'- . n'TTX
'I' x) = 'l'n(x) = Sin L

. mrt mrt
.p(t) = .pn(t) = an Sin C T + bn cos C T' n = 1,2, ....

Thus, formany, a solution of the wave equation which satisfies (l0) is
given by

00

u(x, t) = 2: </>n(x).pn(t)·
n=l

To satisfy the initial conditions (9) with this solution, we require that

(lla) i bn sin n~x = f(x),
11.=1

00

" . mrx °L nan Sin L = .
11.=1

Multiply each of these relations by sin (mTTxIL) and integrate over [0, L],
if the series converge uniformly, to find, since

Ion sin ne sin me de = ~ Smm

(lIb) 2 rL
. nTTX

bn = I Jo f(x) Sin L dx, an = 0, n = I, 2, ....

The coefficients bn are just the Fourier coefficients for the expansion of
f(x) in a sine series. If f'(x) is piecewise continuous, this series converges
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uniformly to f(x). The solution of the mixed problem (I), (9), and (10)
is given by

~ . mrX n1Tf
u(x, f) = L.. bn SIn T cos C T

n=l
(IIc)

= n~1 ~n [sin 7. (x + Cf) + sin 7. (x - ct)].

If the function f(x) has a piecewise continuous third derivative, the
series in (II) defines a function u(x, f) with continuous second derivatives
which can be evaluated by differentiating (Ilc) termwise. Hence, u(x, f)
defined by (II) is a solution of the mixed problem. Equation (llc) again
shows that u(x, f) is the sum of functions of the two variables x ± cf.
In fact, in this special case,

u(x, f) = P(x + Cf) + P(x - Cf),

where

P(x) == i bnsin n1TX = j(x),
n= I 2 L 2

3.1. Difference Approximations and Domains of Dependence

On the half space f 2:: 0, [xl :s; 00, we introduce the uniformly spaced net
points

x j = if).x, fn = nf).f; [il,n = 0, 1,2, ....

The set of net points Df',. is defined by

Df',. == {Xi> fn Ii = 0, ± I, ±2, ... ; n = 1,2, ... }.

A direct approximation of the wave equation (I) is obtained by using
centered difference quotients, as in Section I, to replace derivatives. Thus
if U(x, f) is a net function, we consider the difference equations

(12a) (x, f) EDf',.'

If we take the point (x, f) = (xi> fn) and use the subscript notation
U(Xi> fn) = Uj.n, then (l2a) can be multiplied by f).f2 and the result re­
written as

(12b) Uj • n + 1 = 2[1 - (c ~~r] Uj • n

+ (c ~~r (Uj + l • n + Uj-I,n) - Uj,n-l>

n 2:: I, Iii = 0, I, ....
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The star of net points entering into (12) is the same as that in Figure I
of Section I (withy replaced by t). To calculate Von any time line t = tn + 1>

say, the values of V must be known on the two preceding time lines.
Thus in order to start the computations indicated in (12), we require
data on the two initial time lines t = 0 and t = b.t. This is consistent with
the form of initial data given for the wave equation in (2). A simple
adaptation of these conditions is

(13a)

(13b)

From (13b), we have

V(x, 0) = I(x),

Vt(x, O) = Vt(X, b.t) = g(x).

(13c) Vex, M) = V(x, 0) + b.t Vt(x, 0)

= I(x) + b.tg(x).

More accurate approximations to u(x, b.t) can be obtained if we assume
that I and g are sufficiently differentiable and that the wave equation (I)
is satisfied on the initial line, t = O. That is, by Taylor's theorem

ou(x, 0) M2 02U(X, 0) 3
u(x, M) = u(x, 0) + M ot + 2T ot 2 + (I)(M ).

But since u(x, t) satisfies (I) and (2),

02U(X, 0) _ 2 02U(X, 0) _ 21'''()
ot 2 - C ox2 - C J x,

hence

b.t 2

u(x, b.t) = I(x) + b.tg(x) + 2 c2f"(x) + (I)(b.t 3).

This suggests replacing (13c) by the formula

(14a)

or equivalently the replacement of (13b) by

(14b) Vt(x,O) = Vt(x, b.t) = g(x) + i c2 Vxx(x, 0).

Even more accurate approximations than (14a) can be derived by continu­
ing this procedure. For instance, the next term would involve

03U(X, 0) _ 2 03U(X, 0) _ 2 "( )
ot3 - C ox2 ot - C g x.
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(15)

The difference problem posed by (12b) and (13a and c) [or (12b),
(13a), and (14a)] is called explicit since it is in a form in which the solution
is obtained recursively by evaluating the given formulae. (This was not the
case for the elliptic difference equations of Section I and 2, where a major
part of the task was to solve the difference equations efficiently.) A glance
at (12), (14), and the star in Figure I on p. 447 indicates that the solution
at any fixed net point, (x*, t *), depends only on the values of U at the net
points in the triangle formed by the initial line and the two lines with

slopes ±!:i.t j!:i.x, say x ± ~~ t = constant, which pass through (x*, t *).

This region is shown in Figure 2 and it may be called the numerical
domain of dependence for the difference equations (12).

Clearly, the numerical domain of dependence will be greater than or
equal to the domain of dependence of the wave equation, for the same
point (x*, t *), iff

M I
- <-.!:i.x - c

We refer to Ijc as the characteristic slope and to Mj!:i.x as the net slope.
Therefore, if the characteristic slope is greater than or equal to the net slope,
then the numerical domain of dependence includes the domain of depen­
dence of the wave equation. We introduce the ratio of these slopes as

.\ = net slope = cM
- characteristic slope - !:i.x

and then the above condition becomes .\ ::; I. Note that since c is the
speed of propagation of a signal or wave for the wave equation, .\ is the

• • •
1* • • •

• • •

• • •
u u )0

(%*-~t*) %* (%* +: 1*) %

Figure 2. Net points and numerical domain of dependence for difference
scheme (12).
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ratio of the distance such a signal travels in one time step to the length
of a spacial step of the net. Thus if such signals cannot move more than
the distance ~x in the time ~t, then the numerical domain contains the
analytical domain of dependence.

To understand the significance, for difference schemes, of these domains
of dependence, we consider two Cauchy problems for the wave equation.
The first is that posed by (1) and (2) with the solution u(x, t) given in (4).
In the second problem we retain (2a) and replace g(x) in (2b) by

g*(x) = g(x) + {O
4cm(x - a)

x::; a,

x ?: a;

where x = a is an arbitrary fixed point. By using (4) with the new initial
data, the solution, u*(x, t), of the altered problem is found to be

x + ct ?: a ?: x - ct,

u*(x, t) = u(x, t) + {~ fx+et
- 4cm(' - a) d'
2c max (a, x - etl

(16a)

= u(x, t) + {:(X + ct - a)2
4cmt(x - a)

x + ct ::; a,

x - ct ?: a.

x + ct ::; a,

x + ct ?: a,

Now for each of these problems let us consider the corresponding differ­
ence problem (12) and (13) for a net, chosen such that x = a is a net point
on the initial line. If the difference solutions are denoted by U and U*
respectively, then, since they have identical initial data on x ::; a, it
follows from a consideration of the numerical domains of dependence
that

(l6b) U*(x, t) = U(x, t), 'f ~x
I X + M t ::; a.

If the net spacing is such that A > 1, then there are net points (x, t)

which satisfy

~x
x + ~t t = a and x + ct > a ?: x - ct.

At such points we have from (16)

u*(x, t) - u(x, t) = m(x + ct - a)2
~x

a - ct < x = a - ~t t.

U*(x, t) - U(x, t) = 0
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If we let ~x --+ °and M --+ °while A = constant> 1 and x = a remains
a net point on t = 0, then clearly Vex, t) and V*(x, t) cannot both con­
verge to the corresponding solutions u(x, t) and u*(x, t). Thus we deduce

_HEOREM 1. In general, the difference solution of (12) and (13) cannot
converge to the exact solution of (I) and (2) as ~X --+ °and ~t --+ °for
constant A = c~t/~x > 1. •

The requirement A ~ 1, which by the above observations is seen to
be a necessary condition for convergence in general (i.e., for" all" initial
value problems) is called the Courant-Friedrichs-Lewy condition (or some­
times just the Courant condition for brevity). In other words, the numerical
domain of dependence of a difference scheme should include the domain
of dependence of the differential equation or else convergence is not always
possible. We also call this the domain of dependence condition.

The relationship between the notion of a domain of dependence and the
convergence of a difference method is easily studied for the initial value
problem of the single characteristic equation (8a), in which a > °is a
constant. Then the characteristic curves, determined by (8b), are the lines

x = at + constant.

The solution of (8a) which satisfies the initial condition

w(x, 0) = f(x),

is thus

w(x, t) = f(x - at).

The domain of dependence of the point (x*, t*) is the set of points (x, t)
on the characteristic, x = at + x* - at *.

With the uniform net of spacing ~x and ~t we consider the difference
equations, for a net function W(x, t),

(17a) wtCx, t) + a WxCx, t) = 0.

In subscript notation, with (x, t) = (Xj, tn) and A == a~t/~x, this becomes

For this scheme, W(x, t + ~t) is determined by data to the right of x
or directly below it. However, since a > 0, the exact solution depends upon
data to the left of x. Thus for any A > 0, the numerical domain of depen­
dence cannot contain that of the differential equation. Clearly then, this
procedure is not convergent, in general, as ~x, ~t --+ 0.
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Now, let us replace the forward x-difference by a backward difference
to get

(l7b)

or equivalently

Wlx, t) + aWx(x, t) = 0,

Wi,n+l = (1 - .\)Wi,n + .\Wi-l,n'

Clearly, the actual domain of dependence is contained within the numerical
domain if .\ ~ I. If the exact solution is sufficiently smooth (i.e., say
r(x) is continuous), then we find that the local truncation error, r, is

r(x, t) == wt(x, t) + awix, t) = (!)(tlt + tlx).

With the definition

e(x, t) = W(x, t) - w(x, t)

we obtain

Now let En == I.u.b. lei.nl and take the absolute value of both sides to
i

get, since .\ ~ I,

lei.nd ~ (1 - .\)Iej,nl + .\Iei-l,nl + tlth,nl

~ (I - .\)En + .\En + tlt(!)(tlt + tlx)

~ En + tlt(!)(tlt + tlx),

Thus

En + 1 ~ En + tlt(!)(tlt + tlx)

and a simple recursion yields,

En+l ~ Eo + tn+l(!)(tlt + tlx),

or

IW(x, t) - w(x, t)1 ~ II W(x, 0) - f(x) II 00 + t(!)(tlt + tlx).

Convergence now foHows as tlt and tlx vanish while .\ ~ I, provided the
initial data W(x, 0) approaches f(x).

The second scheme converges for special choices of the mesh ratio,
tlt /tlx, and is therefore said to be conditionally convergent. Of course, the
first scheme never satisfies the domain of dependence condition while
the second converges when it does satisfy this condition. However, there
are schemes which satisfy the domain ofdependence condition, are reasonable
approximations to the differential equation but still do not converge for any
value of the mesh ratio. Consider, for example, the scheme

(l7c) Wt(x, t) + aWx(x, t) = 0,
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which uses the centered x-difference quotient. The truncation error is
now T = (1)(!lt + !lx2

), and is at least as good as in the previous case.
If A ::; 1, the domain of dependence condition is satisfied but this scheme
does not converge, in general, for any mesh ratio (see Problem 1). Thus to
determine convergent schemes it is not sufficient to examine domains of
dependence and truncation error alone. Now the difference scheme (17c)
can be modified in a simple way to yield a convergent scheme. We use

I
~t {W(x, t + !It) - -HW(x + !lx, t) + W(x - !lx, t)]}

+ aWx(x, t) = 0,

in which W(x, t) in the forward difference Wt(x, t) has been replaced by
an average of two adjacent values. In subscript notation this becomes

Wj.n+ 1 = t(1 - A)Wi+l.n + t(1 + A)Wj-l. n,

and the truncation error is again (1)(M + ~X2). If A ::; I, the numerical
domain of dependence includes that of the differential equation (8a);
the coefficients I ± Aare non-negative with sum unity; and convergence
can be proved as above [see also the convergence proof in (31)-(35)].
It should be noted that this difference scheme can be written as

3.2. Convergence of Difference Solutions

The difference solution determined by (12) and (13) converges to the
solution of the initial value problem (1) and (2), provided ~x ~ 0 and
M ~ 0 while A ::; 1. The proof of this fact is somewhat complicated for
A < 1 but is much simpler if the special mesh ratio condition A = 1
holds. Hence we first consider this case in which the characteristic slope
and net slope are equal. It follows that, with the definition

the difference equations (12) can be written, when A = I, as

Dj • n + 1 = D j + 1 • n•

Note that the value Uj • n does not enter into the above difference equation.
In fact, the net points may be divided into two groups, corresponding to
the red and black squares on a checkerboard, and the difference equations
do not couple net points of different groups. Thus we need consider only
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one such group of net points. Application of the above form of the differ­
ence equation recursively yields

D j • n + 1 = D j + 1 • n

= Dj + 2 •n - 1

= D j + n • 1

These relations are equivalent to the fact that the Dc m are constant on the
diagonal x + ct = constant through (Xj, tn+ d. We also observe by sum­
ming the D t • m along the diagonal x - ct = constant through (x j, tn+1)

that
n

V j.n+1 - V j- n- 1 • o = 2: Dj-v.n-v+l'
\1=0

By combining the last two results and recalling the initial conditions
(13a and c), we get

n

(18) V j.n+1 = V j- n- 1 • o + 2: Dj+n-2v.l
\1=0

n n

= ft-n-l + 2: !itgj+n- 2v + 2: (ft+n-2v - ft+n-2V-l)'
v=o v=o

This is an explicit representation of the solution of the difference
problem (12)-(13). To examine convergence we shall let !ix = e!it -+ O.
Since tn = n!it and Xn = n!ix = etn, it follows that Fj+n == F(xj+n) =

F(xj + ctn) for any function F(x). Then if I(x) has a continuous first
derivative

ft+n-2v - ft+n-2v-l = l(xj-2v + ctn) - l(xj-2v + ctn - !ix)

= !iXf'(Xj-2v + ctn + 8v!ix), 0 > 8v > -1.

Now take the limit as !ix -+ 0 and n,j -+00 in (18), while tn+1 = t and
Xj = x, for any fixed (x, t), to get

Vex, t)
1 n

= I(x - ct) + d~~O 2c v~ g(x + ct - [2v + 1]!ix)2!ix

1 n

+ 1~~0"2 v~ f'(x + ct + 8v!ix - [2JJ + I ]!ix)2!ix

1 (2 ct 1 (2 ct

= I(x - ct) + 2cJo g(X + ct - t) dt + "2 Jo f'(X + ct - 0 dt

1 I (x+ct
= "2 [/(x + ct) + I(x - ct)] + 2c Jx-ct g(1)) dTJ

= u(x, t).



[Sec. 3.2] CONVERGENCE OF DIFFERENCE SOLUTIONS 493

p = 1,2, ....

( 71'~X) . ( 71'X)
= 2 cos p L Sin P Y ,

= 2 sin2 (p ~~).

Thus the proof of convergence, when .\ = 1, has been completed by using
the representation of u(x, t) given in (4).

We study the case of.\ < 1, first for the mixed initial-boundary value
problem formulated in (1), (9), and (10) whose solution is given in (11).
The difference problem can be formulated as the difference equations
(12) where now D", are the net points in 0 < x < L, t > 0, and the mesh
is such that, say,

(J + I)~x = L.

The initial conditions (13) or (14) are to be satisfied for 0 < x < L,
where g(x) == 0, and the boundary conditions for the difference problem
are

(19) V(O, tn) == Vo.n = 0, VeL, tn) == VJ+l.n = 0, n = 1,2, ....

We now seek solutions of the difference problem by the method of
separation of variables. In fact, from the experience gained in Subsection
1.1, we try the forms

Vex, t) = 'Y(P)(t) sin (p 7}
From (12)

'Y~f) sin (p ?) = c2'Y(P)(t) sinxx (p ?)
_ c2

'p
2

'Y(p) . ( 71'X)
- - ~X2 Sin Py

where 'P = 2 sin (~J ~ 1) and we have employed the trigonometric

identities

sin [p 71'(x 1~x)] + sin [p 71'(x ~ ~X)]

1 - cos (p 71'~X)

It follows that 'Y(P)(t) must satisfy

M2'Y~f)(t) = - .\2V'Y(P)(t),

and we try the quantities

'Y(P)(t) = sin }Lpt.

By using the same trigonometric identities, we get

4 . 2 }Lp~t . \2Y 2 •
Sin -2- Sin }Lpt = 1\ ~P Sin }Lpt.
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p = 1,2, ... ,

A similar result is obtained if we use '¥(P)(t) = cos !Lpt. Thus the terms

(A p sin !Lpt + Bp cos !Lpt) sin (p ~.~}(20)

will satisfy the difference equations (12) if !Lp is such that

4 . 2 !Lpl:!.t _ \2r 2
sin 2 - I\!.p,

or

(21) . I:!.t \. (7T P )
sm !Lp 2" = ± 1\ sm "2 J + 1 ' p = 1,2, ....

These transcendental equations have real roots, !Lp, for all p, iff
,\ = cl:!.t/I:!.x ::; 1.

A linear combination of the solutions in (20) yields

(22) Vex, t) = P~l (A p sin !Lpt + Bpcos !Lpt) sin (p 7)·
If this series converges, it is a solution of (12) and satisfies the boundary
conditions (19). To satisfy the initial condition (l3a) we must have

(23a) P~l Bp sin (p 7) = I(x);

while condition (l4a) requires

(23b) P~l (A p sin !Lpl:!.t + Bp cos !Lpl:!.t) sin (p 7)
1:!.t2

= I(x) + T c2jxx(X)

= (I - ,\2)/(x) + ,\2 I(x + I:!.x) + I(x - I:!.x).
2

From (11 a) we see that (23a) is satisfied if Bp = bp , p = 1, 2, ... , where the
bp are defined in (lIb). From the identity 1 - 2 sin2 (0/2) = cos 0 and
(21), we have

cos (!Lpl:!.t) sin (p 7) = (I - ,\2) sin (p 7)
,\2 {. [ 7T(X + I:!.X)] . [ 7T(X - I:!.X)]}+ 2 sm p L + sm PL·

hence (23b) and (23a) yield

P~l A p sin !Lpl:!.t sin (p 7) = o.
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Clearly, this is satisfied by the choice Ap = O. Thus (22) is the solution
of the difference problem (12), (l3a), (14), and (19), if A p = 0 and
Bp = bpo The series (22) converges if (1 la) converges absolutely since the
JLp are real (e.g., if f'(x) is continuous).

With the exact solution given by (lIe), we obtain

(24) [V(x, t) - u(x, t)1 ~ Ip~l bp[COSJLpt - cos (Cf7T t)] sin (p ?)I
+ Ip=~+ 1 bpcos JLpt sin (p ?) 1

+ Ip~~+ 1bp cos (Cf7T t) sin (p ?) I·
By taking N sufficiently large, the last two sums can be made arbitrarily
small for all I'lx, I'lt [since the corresponding series converge absolutely
if f'(x) is continuous]. If I'lx ---i> 0 and i'lt ---i> 0 while ,\ = cl'lt jl'lx ~ 1
and (J + I)l'lx = L, we have from (21) for 1 ~ P ~ N,

CP7T
JLp---i>y.

Thus [V(x, t) - u(x, t)1 can be made arbitrarily small. This proves
convergence of the difference scheme, if ,\ ~ 1, for the mixed initial-boun­
dary value problem, when f(x) has two continuous derivatives and
g(x) =o. Convergence for the case g(x) t= 0 can be shown in a similar
way.

Now if ,\ ~ I, convergence can be proved for the pure initial value
problem, by making use of the notion of domain of dependence. That is,
given an interval [a, b] and time T, convergence in S: {(x, t) I a ~ x ~ b,
o ~ t ~ T}, can be shown by modifying the initial data only for x < a ­
(l'lxjl'lt)T, and x > b + (l'lxjl'lt)T. For this modified problem, the solutions
of the differential equation and of the difference equations are unchanged
in S. In fact, if the initial data have been modified so as to be periodic
and odd about [a - (l'lxjl'lt)T - 8, b + (l'lxjl'lt)T + 8], for some 8 > 0,
then the above proof establishes convergence.

The proof of convergence does not generalize to equations with variable
coefficients; furthermore, it does not provide an estimate of the error in
terms of the interval size I'lx or I'lt; neither does it provide a treatment of
the effect of rounding errors. These defects are avoided in the analysis
of the next subsection for the case of a first order system of equations.

3.3. Difference Methods for a First Order Hyperbolic System

We have seen in equations (5) through (7) that the initial value problem
for the wave equation can be replaced by an equivalent first order system.
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(25a)

In fact, such systems arise more naturally in physical theories and applied
mathematics than does the second order wave equation. We shall treat
the simple system (5) which can be written in vector form as

ou = cA ou,
of ox

where

(25b)

(26b)

Most of our methods and results are also applicable to more general
hyperbolic sysfems of first order partial differential equations in two
independent variables. [For example, such systems may be formulated as
in (25a) with the square matrix A of order n having real eigenvalues and
simple elementary divisors, i.e., A is diagonalizable.] The initial conditions
to be imposed can be written as

(26a) u(x, 0) = uo(x),

where for the problem posed in (5) and (6) we take

Uo(x) == (!(x»).
G(x)

The solution of (25) subject to (26) is given in (7).

On the uniform net with spacing !lx and Llt we introduce the net func­
tions U(x. f) and V(x. f), or in vector form the vector net function

U(x, f) == (U(X, f»).
V(x, f)

Then as an approximation to the system (25) with ,\ = c!ll f!lx, we consider

(27a) U(x, f + !If) = -HU(x + !lx, f) + U(x - !lx, f)]

,\
+ 2 A[U(x + !lx, f) - U(x - !l.x, f)].

[It would be tempting to replace the first bracketed term on the right-hand
side above by U(x, f), but as shown in Problem I that scheme is divergent.]
If we subtract U(x, f) from each side and divide by !If, we can write (27)
in the difference quotient notation

(27b)
c

Ulx, f) = cAU-,(x, f) + 2,\ !lxUxx(x, f).

Thus our difference equations are obtained by adding a term of order !lx
to the divergent approximation of (25). The discussion following equation
(l7c) may be considered a motivation for (27a).
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An immediate advantage of the scheme in (27) can be seen by considering
the case ,\ = 1 in which the net diagonals and characteristics have the
same slopes and so the numerical and analytical domains of dependence
coincide. By writing the system in component form and using ~x = c~t,

we get from (27a)

U(x, t + M) = ·HU(x + c~t, t) + U(x - c~t, t)]

+ ![V(x + cM, t) - V(x - cM, t)]

(28)

V(x, t + ~t) = ·HU(x + cM, t) - U(x - c~t, t)]

+ 1[V(x + cM, t) + V(x - c~t, t)]

For the initial conditions

(29) U(x, 0) = f(x), V(x, 0) = G(x);

a comparison of (28) when t = 0 with (7) when t = ~t shows that the
numerical solution and the exact solution are identical on net points for
which t = ~t. By considering the exact solution at this first time step as
initial data, we find that the solution is also exact for net points with
t = 2~t. By induction, we can show that the difference scheme (27) with
,\ = 1 subject to the initial data (29) has a solution which is equal to the
exact solution (7) of (25) and (26) at the points of the net. (However, for
higher order systems and variable coefficients, we do not get the exact
solution for any fixed choice of '\. These results suggest the use of the
largest value of ,\ for which the domain of dependence condition is
satisfied.)

Let us consider the scheme (27) with ,\ arbitrary. From the considera­
tions of domains of dependence we know that for ,\ > I, the diffeience
solution cannot generally converge to the exact solution. Therefore, we
restrict the mesh ratio by 0 < ,\ :'5: 1 and proceed to show that the
approximate solution then converges to the exact solution (which is
assumed sufficiently smooth). By using the exact solution u(x, t) of (25)
at the points of the net, we define the local truncation error -r(x, t),

(30)
c

-r(x, t) == ulx, t) - cAux(x, t) - 2,\ ~xuxx<x, t)

= eJ(~t + ~).
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If we denote the error in the difference solution by

e(x, t) = U(x, t) - u(x, t),

then from (27b) and (30) it follows that

c
et(x, t) = cAex(x, t) + 2" ~xexx(x, t) - -r(x, t),

or as in (27a) this is equivalent to

(31) e(x, t + M) = -t(l + "A)e(x + ~x, t)

+ 1(1 - "A)e(x - ~x, t) - M-r(x, t).

Here we have introduced the identity matrix J.
Since A is symmetric, it can be diagonalized by an orthogonal matrix.

We have, in fact,

(32) PAP* = (1 0),
o -1

(33)

Now let us introduce the vector net function

e(x, t) == (f(X, t») = Pe(x, t)
7J(x, t)

and multiply (31) by P on the left to get

e(x, t + ~t) = -t(l + "PAP*)e(x + ~x, t)

+ -t(l - "PAP*)e(x - ~x, t) - ~tP-r(x, t).

By taking absolute values and using (32), we find in component form

If(x, t + ~t)1 ::; -tIl + "1·lf(x + ~x, t)1 + -tIl - "1·lf(x - ~x, t)1

M
+ V2 h(x, t) + T2(X, t)1

17J(x, t + ~t)1 ::; -tIl - "1·17J(x + ~x, t)1 + til + "1·17J(x - ~x, t)1

~t
+ V2 h(x, t) - T2(X, t)l·

Since 0 < " ::; 1, the absolute value signs can be removed from the
factors 11 ± "I. Then with the definitions

(34) E(t) == sup Ile(x, t)ll, a(t) == sup II-r(x, t)11,
x x

where the norm of a vector is the maximum absolute component, we
deduce

E(t + ~t) ::; E(t) + v2 ~ta(t).
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A recursive application of this inequality yields
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(35)

where

tll'.t

E(t) :s; E(O) + V2~t L a(t - vM)
v= 1

:s; E(O) + V2tlla(t)11

Ila(t)11 = sup a(t') = sup II~(X, t')11.
t'st x

t'5t

Now we recall that, from (32) and (33), e(x, t) = PE(X, t) and so

Ile(x, t)11 :s; IIPII·IIE(x, t)11

:s; V2 IIE(X, t)11

:s; V2 E(t).

Thus it follows from (35) and the definitions of e and E that

(36) IIU(x, t) - u(x, t)11 :s; V2 sup IIU(x, 0) - u(X, 0)11 + 2t Ila(t)ll.
x

Note that the suprema on the right side need be taken only over points
in the domain of dependence of the point (x, t). By using the initial
data (29) and the estimate (30) of the local truncation error, the above
implies

(37) IIU(x, t) - u(x, t)11 :s; t@(~t + ~x).

Thus, as was to be shown, the difference solution oj (27) and (29) converges
to the exact solution of(25) and (26) as ~t ~ 0 and ~x ~ 0 for .\ = c~t/~x

:s; I. The convergence here is at least first order in ~t or ~x. In Problem 2,
the numerical scheme (27c) is shown to be convergent if the rounding
error is of the same order as the truncation error.

We remark that the scheme (27) is convergent for hyperbolic systems
of order n in the form (25a), where A is diagonalizable (see Problems
3 and 4).

PROBLEMS, SECTION 3

1. Show that the difference scheme W t = Wi, with constant .\ = t.r /t1x,
is divergent as an approximation to ow/at = ow/ox.

[Hint: Show that e8telax is a solution of the difference equation, if j2 = - 1
and

8!'.t 1 . t1t. A
e = + I t1x Sin a I..lx.
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Consider now the initial data
00 7r

W(x,O) = L 2- 2 ' cos - 2'x.
,~o 2

Show that W(O, t) -+ 00 if ~x = 2 - nand n -+ 00. That is, set a, = 7r2' -1 and
00

W(x, t) == Re L 2 - 2,eP,lela,x.
r=:;O

Show that the term r = n dominates the sum of all of the other terms as
n -+ 00, in

W(O, t) 2': - '=~+1 2- 2
' + Re Jo 2- 2'(1

2. Show that the difference scheme

7r ) tll1t+ iAsin 2 2,-n .]

(27c) C
U I = cAU.. + 2X ~xUxx + p(x, t),

U(x, 0) = U(x, 0) + p(x)

converges with error

II U(x, t) - u(x, 1) II :s; t@(~t + ~x),

if the rounding errors p(x, 1) and p(x) are at most of magnitude @(~t + ~x).

3. Carry out the proof of convergence of scheme (27) for the case of a
system of n equations (25a), where A is a constant matrix having a complete
set of eigenvectors.

4. If A == A(x, t) has a uniformly bounded matrix of real eigenvectors
P(x, t), with uniformly bounded inverse P-1(X, t), then show that (27) is a
convergent scheme for (25a).

5. Given the difference scheme WI = Wi (shown in Problem 1 to be diver­
gent if A = ~t /~x is constant), prove convergence if A = j1-~X with some
constant j1-, for the periodic initial value problems

00

W(x,O) = f(x) == L ane1nx

00

such that L n[an [ < 00.

[Hint: Verify that the function

W(x, t) == n~~ 00 an( 1
M )11"1+ i-sin n~x etnx

~x

is defined by the series, satisfies the difference equation, and converges to
f(x + t) as ~x -+ 0, if ~t/~x = j1-~x. That is, show by using Lemma 0.1' of
Chapter 8,

11 + i :; sin n~xl II'" :s; (I + j1-2~X2 sin2 n~x)'J(2"t)
.:S; e(/J t/2) sln2 n6x

:s; e"tI2.]

Such a difference scheme is rather inefficient, since too many time steps are
required.
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4. HEAT EQUATION
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The initial value problem for the heat equation is: Find a continuous
function u(x, t) that satisfies

(Ia) OU _ 02
U = 0 t > 0;

ot ox2

(1 b) u(x, 0) = f(x) -00 < x < 00.

The solution of this problem is found to be

f
"" e-(~-X)'/4t

(2) u(x, t) = V fet) d~.
- "" 41Tt

Here we assume f(x) to be bounded and continuous, and then direct
differentiation under the integral sign shows that (1a) is satisfied. Since

f:"" e- Y
' dy = v;

we may write (2) as

f
"" e-(~-X)"4t

u(x, t) = f(x) + V [fet) - f(x)] d~,
- "" 41Tt

and now let t ---+ 0 from above. For alI ~ :I x we have

e-(~ -:<)'{4t

lim = 0
hO V41Tt

and for ~ = x, the remaining factor in the integrand vanishes. Thus it is
plausible that we could prove that the function given by (2) is continuous
and satisfies the initial condition (1 b).

Now from (2), we see that if f(x) > 0 in an open interval (a, b) and
f(x) = 0 outside (a, b), then u(x, t) > 0 for alI x when t > O. Thus we
may say that signals propagate with infinite speed for the heat equation.
Clearly, the form of the solution in (2) shows that the domain ofdependence
of a point (x, t) with t > 0 is the entire x-axis (or initial line).

With the uniform net spacings ~x, M, and net points Dil in the half­
space t > 0 (see Subsection 3.1), we consider the difference equations

(3a) utCx, t) - Uxix, t) = 0, (x, t) E Dil •

In subscript notation with (x, t) = (Xi> tn), this can be written in the form

(3b) Uj,n+I = (1 - 2A)Uj,n + A(Uj+l. n + Ui - I.n), n = 0,1, ....

Here we have introduced the mesh ratio

(3c)
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The net function U(x, t) is also subject to initial conditions which, from
(1 b), we take as

(4) U(x, 0) = j(x).

The net points used in the difference equation (3) have the star or
stencil of Figure 1. The solution is easily evaluated by means of (3b) and
we see that the numerical interval oj dependence of a point (x, t) in the net
is the initial line segment [x - (t:.x/t:.t )t, x + (t:.x/t:.t)t]. Thus in order to
satisfy the domain of dependence condition of Subsection 3. I, which is
again valid, we must have that t:.t /t:.x --+ 0 as t:.t --+ 0 and t:.x --+ O. Other­
wise, the numerical interval of dependence of the difference equation (3)
would not become arbitrarily large, and hence convergence could not
occur in all cases.

If, as the net spacing goes to zero, the mesh ratio ,\ defined in (3c) is
constant, then t:.t /t:.x = ,\ t:.x --+ 0 and the domain of dependence con­
dition is satisfied. We shall show, in fact, that if 0 < ,\ ~ t, then the
difference scheme (3) and (4) is convergent; but if ,\ > t the difference
solution does not generally converge to the exact solution. As usual, the
truncation error r(x, t) on D/1 is defined by writing for the exact solution
u(x, t) of (I)

(Sa) ulx, t) - ux~(x, t) == r(x, t),

By Taylor's theorem the truncation error can be expressed, assuming u
to be sufficiently smooth, as

t:.t 82ii t:.x2 8411
(5b) r(x, t) = 2" 8t2 - 12 8x4'

With the definition

e(x, t) = U(x, t) - u(x, t)

we get from (5) and (3)

In + l-+---tlIE:f---+--

Figure 1. Net points of star for the explicit difference scheme (3).
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V<IX)
t -

If 0 < ,\ :::; 1, then (1 - 2.\) ~ 0 and with the definitions

En == sup lei.nl, T == sup lrionl,
j i. n

the above yields upon taking absolute values

leion+ll :::; (1 - 2.\)leJon l + ,\([ei+1onl + lei-1onl) + I1tlrionl

:::; En + I1tT.

Or since the right-hand side is now independent of j,

En+1 :::; En + I1tT.

Hence, by a recursive application

En :::; Eo + nl1tT = Eo + tnT.

Thus we have deduced that

(6) lu(x, t) - U(x, t)1 :::; sup lu(x, 0) - U(x,O)1 + t(f)(l1t + I1x2).
x

Therefore, by recalling (4), lu(x, t) - U(x, t)1 --+ 0 as I1t --+ 0 and I1x --+ 0,
if ,\ = I1t /l1x2

:::; 1. The convergence demonstrated here is of order
(f)(l1x2 ) since I1t = '\l1x2 •

To demonstrate the divergence of the difference scheme (3) when
,\ > 1, we first construct explicit solutions of the difference equations. We
try net functions of the exponential form

v<a)(x, t) = Re (etax-wt).

Then

[
<a) (e-wtJ.t - I e1allX - 2 + e- tIXllX )]

VW = V (x, t) M - I1x2

= {v<a)(x, t) L{e- wtH - [(1 - 2.\) + '\etIXllx + ,\e-tIXllXn}

= V<IX)(X, t) L[e- Wllt
- (I - 4,\ sin2 a~x)] 0

Now V<IX) is a solution of the difference equations provided that wand
a satisfy

The initial conditions satisfied by V<IX) are

(7a) V<IX)(X, O) = Re etIXx = cos ax

and the solution can be written, since e- wt = (e-wlltYlllt,

(
al1x)tlllt

(7b) V<IX)(X, t) = cos ax 1 - 4,\ sin2 2" .



504 PARTIAL DIFFERENTIAL EQUATIONS [Ch.9]

Clearly, for all ~x and ~t such that A :::; 1 and real a, it follows that the
solution (7) satisfies 1 v(a)(x, t)1 :::; 1. However, if A > 1, then for some a

and ~x we have 11 - 4A sin2 (a~x/2)[ > 1 and so Iv(a)(o, t)1 becomes
arbitrarily large for sufficiently large t /~t. We will capitalize on this
instability (see next section) of the difference scheme (3), if A > 1, to con­
struct a smooth initial condition for which divergence is easily demon­
strated. Since the difference equations are linear and homogeneous, we
may superpose solutions of the form (7) to get other solutions. With
a = a. = 2·1T and coefficients fl. > 0, we form

<Xl

(8a) Vex, t) = 2: fl.v(a,)(x, t)
v=o

<Xl ( 2.1T~X)tltJ.t
= .~ fl. cos (2·1TX) 1 - 4A sin2 -2- .

The corresponding initial function

(8b)
<Xl

Vex, 0) = f(x) = 2: fl. cos (2·1TX),
v= 0

for v = 0, I, .. ", m - 1,

has as many derivatives as we wish provided that fJ. ---?- 0 sufficiently fast.
Now let~ = 2- m and M = A4 - m so that (8a) yields

<Xl [ (1T)]tltJ.tV(O, t) = .~ fJ. 1 - 4A sin2 2v
-

m '2

m [ ()] tltJ.t 00

= .~ fJ. 1 - 4A sin
2 2·-m~ + V=~+1 fJv.

But

sin2 (2.-m~) :::; 1

and so the above yields, for 1 < A :::; 1, with fJ. > 0,

<Xl

IV(O, t)1 ~ - 2: fJ. + fJm(4A - l)tltJ.t
v=o

Now if the fJ. are chosen as fJ. = e- 2', then the initial function f(x) is a
smooth (analytic) function and the estimate yields, for 1 < ,\ :::; 1,

(8c) 1V(O, t)1 ~ - V(O, 0) + e2mWII\)2m 1n (41\ -1)-1).

Thus, as m ---?-oo, it follows that IV(O, t)[ becomes unbounded, for any
finite t > 0, since 4A - 1 > 1. Hence this difference solution cannot
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converge to the solution of the corresponding smooth problem with
initial data given by (8b). Thus, as was to be shown, the scheme (3) and (4)
does not generally converge when A > 1. We say that the difference
scheme (3) is conditionally convergent which means that the scheme is
convergent only if A satisfies some condition, i.e., A :s; 1- In the next sub­
section, we will see that it is possible to construct unconditionally convergent
schemes for the mixed initial-boundary value problem.

4.1. Implicit Methods

To demonstrate implicit difference schemes, we consider mixed initial­
boundary value problems for the inhomogeneous heat equation. That is,

(9a)
ou 02U

0< X < L,ot - ox2 = sex, t)

(9b) u(x, 0) = f(x) O:s; x:s; L;

(9c) u(O, t) = get), u(L, t) = h(t),

t > 0;

t > 0

The net spacing is now chosen such that

L
.:1x=J+1

and the net points in the interior of the half strip

D == {x, t I0 :s; x :s; L, t ?: O}

we denote by Dto.; i.e.,

Dto. == {x, t I x = j.:1x, 1 :s; j :s; J; t = n.:1t, n = 1,2, ... }.

For a net function U(x, t), we define the implicit difference equations

(lOa) Ut(x, t) - Uxx(x, t) = sex, t), (x, t) EDt!..

In subscript notation, again with (x, t) = (x}> tn), these equations can be
written as

(lOb) (1 + 2A)Uj.n = UJ • n- 1 + A(Uj+ l • n + Uj- I • n) + .:1tsj • n;

n = 1,2, ... , I :s; j :s; J.

The only difference between (3a) and (lOa) is the time difference quotient,
which is forward in (3) and backward in (10). The star associated with
(10) is shown in Figure 2. The initial and boundary data are specified in
the obvious way

(lla) U(x}> 0) == Uj,o = f(xj), O:s; Xj :s; L;

(lIb) U(O, tn) == Uo.n = g(tn), U(L, tn) == UJ + I • n = h(tn), tn > O.
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In -1-+--*--+-

[Ch.9]

Figure 2. Net points of star for implicit difference scheme (10).

For each t = tn, the equations in (10) and (11 b) form a system of J + 2
linear equations in the unknowns V j • n , 0 ~ j ~ J + 1. However, since
Vo . n and VJ + 1 . n are specified in (1lb), it can be reduced to a system of
order J. In fact, with the coefficient matrix A of order J defined by

(12) A = I + AB B=

2 -I

-I 2-1

o

o

-I

-I 2

and the J-dimensional vectors Un' bn, Sn, and f defined by

Vl,n
Vo. n gn

0 0

Un =
V 2 • n

bn =
0 0

V J , n
VJ + 1 • n hn

(13)

(
Sl.n) (11)

Sn = :2.n, f = ~2

SJ.n IJ
the systems (10) and (11) can be written as

(14) n= 1,2, ... ; Uo=f.
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For each n, a system with the same tridiagonal coefficient matrix A must
be solved. Since oX > 0, it follows that the lemma of Subsection 3.2 in
Chapter 2 applies. Thus, not only is A non-singular, but the solution of each
system is easily obtained by evaluating two simple two term recursions.
Of course, the factorization A = LV need only be done initially. [See
equations (3.10) through (3.13) of Chapter 2.]

It is clear from (14) that the difference solution V n at any time tn

depends upon all components of the initial data, Vo, for any value of oX.

This is also clear from the form of the star corresponding to the difference
equations (10). Thus for any value of the mesh slope, M j!J.x, the numerical
domain of dependence is the entire initial line segment and hence the
domain of dependence condition is automatically satisfied by the implicit
difference scheme. We shall show that, in addition, the implicit difference
solution converges for all values of oX to the exact solution. In other words,
the scheme is unconditionally convergent.

The truncation error T(X, t) of the solution u(x, t) of (9) is defined for
the difference scheme (10) as

(1 Sa) T(X, t) == ur(x, t) - uxx(x, t) - sex, t), (x, t) ED".

Since u(x, t) satisfies (9a), we obtain by the usual Taylor's series expan­
sions, assuming sufficient differentiability of the solution,

(15b)

Now from (10), (11), and (IS) we get for the error,

e(x, t) == Vex, t) - u(x, t),

the difference problem

eeL, t) = O.

(l6a)

(16b)

(l6c)

et(x, t) - exx(x, t) = - T(X, t),

e(x,O) = 0;

e(O, t) = 0,

In subscript notation (16a) yields

(I + 2oX)ef.n = ef.n- 1 + oX(e f+1.n + ef-1.n) - !J.tTf.n,

n = I, 2, ... , I :::; j :::; J.

By taking absolute values and using En == max lef.nl, T == sup ITf n·l,
f f'

n/$N

and oX > 0, we get

(1 + 2oX)le f.nl :::; En- 1 + 2AEn + !J.tT, I :::; j:::; J, n :::; N.
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Since the right-hand side is independent of j and eO,n = eJ+I,n = 0, we
may replace lej,nl by En to get

En :$ En- l + I::1tT.

Thus by the usual recursion technique

or

(17) [u(x, t) - V(x, t)1 :$ max lu(x, 0) - V(x,O)[ + tT
x

t :$ Nl::1t == T.

From this result we deduce unconditional convergence as I::1t --+ °and
I::1x --+ 0, i.e., .\ is arbitrary.

There are other implicit schemes which converge for arbitrary .\ and
one of them in particular has a local truncation error which is (1)(l::1t 2 + I::1x2

).

We examine the family of schemes defined by

(l8a) Vi"(x, t) - [8Vx ';:(x, t) + (I - 8)Vxx(x, t - I::1t)]

= 8s(x, t) + (1 - 8)s(x, t - I::1t), (x, t) ED/'".

Here 8 is a real parameter such that °:$ 8 :$ 1. For 8 = 1, (l8a) reduces
to (lOa); while for 8 = 0, (18a) is equivalent to (3). For any 8"# 0, the
difference equations (18) are implicit. The boundary and initial data are
as specified in (I I). In subscript notation (l8a) takes the form

(18b) (1 + 28.\)Vj ,n - 8,\(Vj +l .n + Vj-l,n)

= [1 - 2(1 - 8).\]Vj ,n-1 + (1 - 8),\(Vj + l .n- 1 + Vj-l,n-l)

+ M[8sj ,n + (I - 8)sj,n-d,

n = 1, 2, ' .. , 1 :$ j :$ J.

By using the matrices and vectors in (12) and (13), the system (18) and (I 1)
can be written as

V o = f,

(19) (I + 8.\B)Vn = [I - (I - 8).\B]Vn_1 + .\[8bn + (I - 8)bn-d

n = 1,2, ....

These systems can be solved by factoring the tridiagonal matrix I + 8.\B.
Clearly, for 8 "# 0, the domain of dependence condition is satisfied for
arbitrary I::1t jl::1x.

The truncation error T(X, t) now depends upon the parameter 8. The
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usual Taylor's series expansion about (x, t) yields, if the solution u(x, t)
of (9) has enough derivatives and we make use of (9a) to simplify,

(20) rex, t) = ut(x, t) - [8uxx(x, t) + (I - 8)ux ;'(x, t - ~t)]

- [8s(x, t) + (I - 8)s(x, t - ~t)]

iJu iJ2u
= ot - ox2 - sex, t)

- ~t [~;~ _ 2(1 - 8)(O~~:2 + ~)]

+ @[(~t)2 + (~X)2]

= (I - 28)~t 02U @(~ 2 ~ 2)
2 ot2 + t + x .

Thus for the special case 8 = 1, the trunca~ion error is @(M2 + ~X2).

[In this case all the difference quotients in (18) are centered about
(x, t + ~t /2) and the difference method is called the Crank-Nicolson
scheme.] For arbitrary 8, the truncation error is @(~t + ~X2), as in the
explicit and purely implicit cases. With the notation e == U - u we obtain
from (20), (18), (II), and (9b and c)

(2Ia) et(x, t) - [8e>.x(x. t) + (\ - 8)e,x(x, t - ~t)]

= - rex, t), (x, t) EDt:.;

(2Ib)

(2Ic)

e(x, 0) = 0;

e(O, t) = 0, eeL, t) = O.

Let us write (21) in vector form by using the matrix B of (12) and the
vectors

to get eo = 0 and

(22) (l + 8AB)en = [I - (I - 8)AB]en _ 1 - Mtn , n = 1,2, ....

Since A > 0 and I + 8AB is non-singular, we may multiply by the inverse
of this matrix to get

(23a) n = 1,2, ... ,

where we have introduced

(23b)
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A recursive application of (23a) yields

(24)
n

en = Cneo + /).t 2: CY-Iay.
v=l

Upon taking norms of this representation of the error, we get

(25) Ilenll ::; IIClln·lleoll + M i IICIIY-I·llayll
v=l

n 1 - II CIIn
::; IICII '1leoll + /).t 1 _ IICII . I~;,;xn Ilayll·

[This could have been deduced directly from (23a) by first taking the norm
and then applying the recursion.]

Let us use a special norm in (25) for which we are able to compute

IICII, i.e., Ilxll = (~ IXiI2f". Then, since B is symmetric, it follows that

C in (23b) is symmetric and by (1.11) of Chapter I,

IICil = p(C) == max [Yi(C)I,
i

where y,(C) is an eigenvalue of C. That is, the spectral radius of C is the
corresponding natural norm. The eigenvalues of B are easily obtained.
We note that the matrix B is related to the matrix H in (1.17b). Using LJ

of (1.l4b) we have B = 2/ - (LJ + L/) and the calculations in (1.23)­
(1.25) are applicable. Specifically the eigenvalues f3i of B are found to be

(26a) j = 1,2, ... , J;

corresponding to the eigenvectors

(26b)

(

sin [lj7Tj(J +
sin [2j7Tj(J +

yU) = .

sin [Jj7Tj(J +

1)])
1)]

,

1)]

j = 1,2, .. . ,J.

Thus the eigenvalues, Yh of C defined in (23b) are

(27)

In order that

p(C) == max IYil < 1,
i
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(29)

(31)

we must have - 1 < Yj < 1. Since f3j > 0, it follows that Yj < 1 for all
A > 0 and 0 ~ O. Now Yj > -1 is equivalent to

(1 - 20)Af3j < 2,

and this is satisfied for all A > 0 if 0 ~ 1- Thus we have shown that

(28a) II CII < I for all A> 0 if 0 ~ 1-
On the other hand, for 0 ::; 0 < 1, we must have A < 2/[(1 - 20)f3j].
Or since 0 < f3j < 4 for j = I, 2, ... , J, this implies

(28b) IICII < I for A::; 2(1 ~ 20) if 0 ::; 0 < t·

Under either of the conditions (28), we obtain from (25) and (23b), since

1
IIGvl1 ::; 11(1 + OAB)-lll 'Il't"vll ::; I + OAf31 II't"vll ::; II't"vll,

that

tlt
Ilenll ::; Ileoll + I _ IICII ~:; II't"vll

= Ileoll + I _tl~C11 @[(O - t)tlt + tlt 2 + tlx2
].

To examine the convergence properties as tlx -->- 0 and tlt --+ 0, we note
that for small tlx

f31 = (I tlx) 2 + @(tlx4
), f3J = 4 - (I tlx) 2 + @(tlx4

).

It is easily established that I - [x/(1 + Ox)] is a decreasing function of x
and an increasing function of 0 for x > 0 and 0 ~ O. Thus

(30)

and for small tlx

Yl = I - A(I tlxr+ @(,\tlx4
)

17
2

= I - tlt V + @(Atlx4
).

In case (28b), for any 0 in 0 ::; 0 < 1- and A ::; 1/[2(1 - 20)], we get an
upper bound for IYJI by picking the largest value of A,

(32) IYJI ::; II -2(1 - f~) + Of3JI

::; I - G - O)(I tlxr+ @(tlx4
).
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Hence, in case (28b) we find from (30), (31), and (32) that

~ {

(7)(tlt), or
1 - IICfI

(7)(tlx2).

Therefore (29) yields for 0 :0; 8 < t, 0 < .\ :0; 1/2(1 - 28),

(33) Ilenll :0; Ileall + max (I, ,\)(7)[(8 - t)tlt + tlt 2 + tlx2
].

Finally, in case (28a), 8 ~ t and .\ arbitrary, we get an upper bound for
IYJI by picking the smallest value of 8,

I 4.\ .\ (77 )2 41
:0; I - 1 + 2.\ + (I + 2.\)2 I tlx + (7)(.\tlx ) .

The last inequality is most useful in the case of very large .\, i.e.,

.\ » I.

Therefore,

{

(7)(tlt ),
1 - IICfI ~

(7)(1/.\),

Hence (29) becomes for 8 ~ t, .\ arbitrary,

Inequality (35) indicates that with the choice 8 = t, Mt = constant,
the error is bounded by

(36)

Of course, this error bound is of the same magnitude as the error estimate
for the explicit scheme, but for a much larger time step. That is, even
though the number of operations required to solve the implicit equations
for one time step is of the order of tWIce the nurnber of operations required
for one time step of the explicit scheme, there is a tremendous saving in
labor when we choose .\tlt = constant for the Crank-Nicolson scheme.
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PROBLEMS, SECTION 4

1. Given u(x, t) continuous in

15 == D V C1 V C2 ,

where
D == {x, t I 0 < x < L, 0 < t < T},

C1 == {x, t I 0 < x < L, t = n,
C2 == {x, t I 0 ::; x ::; L, t = 0;

0= x, 0 < t < T;

x = L, 0 < t ::; n.

PROBLEMS 513

If, in D v Ch u(x, t) has a continuous second derivative with respect to x
and a continuous first derivative with respect to t, such that

oU 02U

ot = ox2'

then
max u(x, t)
xeD

is attained at some point of C2 • (This is a weak form of the maximum principle
satisfied by the solutions of the heat equation.)

[Hint: For any <' > 0, set

v(x, t) == u(x, t) - <,t.

Clearly, v(x, t) cannot attain its maximum at any point P of D v Ch since
otherwise

ov(P) > 0
ot - ,

hence
02V OV

ox2 == ot + <',

would be positive at P. Therefore, v(x, t) attains its maximum only on C2 •

But since <' > 0 could be arbitrarily small, this implies that u(x, t) must attain
its maximum on C2 .]

(Note: By considering

W(x, t) == - u(x, t),

we can establish the minimum principle,

min u(Y, t)
xeD

is attained at some point in C2 .)

2. Verify that the solution Uj , n of (lOa and b) and (Ila and b) satisfies
the maximum principle
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where
Vn == max j V l • nl,

1

Sn == max js(x, tjl,
O:st $n.1.t
Q-:;;x-S;L

Gn == max Ig(I)I,
o:st:s n6t

Hn == max jh(I)I.
O:s t:s n6.t

n = 0, 1,2, ... ,

[Hint: Modify the argument that estimates En, after equations (l6a, b,
and c).]

3. Formulate and prove a maximum principle for the explicit scheme

Vt(x, t) - Vxx(x, I) = sex, I),
(lOa')

(x, t) E D('o" with,\ :<; 1.

Use the auxiliary conditions (I la and b).
4. Prove convergence of the finite difference solutions Vex, t) to the solution

of the mixed initial-boundary value problem in (9a, b, and c) with sex, I) == 0,
under the weak compatibilily condition

f(O) = g(O); f(L) = h(O),

and withf(x), g(t) and h(t) that are continuous.
[Hint: Uniformly approximate f(x), g(t), and h(t) by polynomials fm(x),

gm(t), and hm(t) satisfying the slrong compalibilily condition,

f~(O) = g~(O),

f~(L) = h~(O),

fm (lV)(O) = g~(O);

fm(lV)(L) = h~(O).

That is, assume there exist corresponding smooth solutIOns um(x, I) and, for
any given (~x, ~t), difference solutions Vm(x, I) as well as the continuous
solution u(x, I) and the difference solution Vex, t). Then estimate

u(x, I) - Vex, t) = [u(x, I) - Um(x, I)]

+ rUmeX, I) - Vm(x, I)]

+ [Vm(x, t) - vex, t)],

by using the maximum principles for the outermost bracketed terms to fix
an m for which they contribute at most E for all (~x, ~t). Next, pick (~x, M)
sufficiently small so that the middle bracketed term IS at most E ]

5. GENERAL THEORY: CONSISTENCY, CONVERGENCE, AND
STABILITY

The apparently scattered results of the preceding sections can be related
by a simple general theory. A more complete and rigorous development
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could be given with the aid of the simplest notions of functional analysis,
which we forego.

A partial differential equation can be represented symbolically as

(Ia) L(u)=f(P), PED;

with the convention that only terms involving the dependent variable u
are included on the left-hand side of (I) and that all inhomogeneous terms
are included in.r [i.e., f is a function only of the independent variables,
P == (t, x, y, ... )]. The domain in which (1 a) is to be satisfied is denoted by
D. The set of points on which boundary and/or initial data are prescribed
is denoted by e. The conditions to be satisfied by u on C can be represented
as

(1 b) B(u) = g(P), PEe.

Here B may not be a differential operator, but (I b) merely represents the
conditions imposed on various parts of e. For example, conditions (4.9b)
and (4.9c) would both be incorporated in (I b) for the mixed initial­
boundary value problem of (4.9). We shall only consider problems (I)
for which a unique and smooth solution u exists for any data in some class
of smooth functions {f, g} (smooth means" sufficiently" differentiable).

Let us consider a net for the independent variables of the problem (1)
with spacing: t!t, t!x, t!y, .... Certain of these net points, say those interior
to D will be denoted by the set Dt,. Similarly, boundary net points, CLl,

will also be defined. There are various ways in which this can be done,
depending upon the difference method employed. Obviously net points
lying on C may be included in Ct" but frequently we may also wish to
include the points of intersection of C with the net lines. (In fact, for some
problems, net points outside of C are included in CLl and points outside
D are included in Dt., but we shall not dwell on these possibilities in the
present discussion.)

At the points of Dt. + Ct, a difference approximation U is defined as
the solution of some set of difference equations. These may be indicated
symbolically as

(2a) Lt.(U) = .r(P),

which is to approximate (la); and the boundary difference approximations
are indicated by

(2b) Bt.(U) = g(P), P E Ct..

Again the notation may imply different relations over different parts of
Ct., say as in (4.11). Of course, it is desired that the difference solution U
of (2) should be a close approximation to the solution u of (1) at corre­
sponding points of Dt. + Ct, for all data that are sufficiently smooth.
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Furthermore, the difference solution should be uniquely defined by (2)
and its numerical evaluation should be possible without significant loss
of accuracy due, say, to roundoff errors. To study these questions the
three notions of consistency, convergence, and stability of the difference
schemes are introduced. It is then easily shown that for consistent schemes,
stability implies convergence. We begin with the definition of

CONSISTENCY. Let ¢>(t, x, y, ... ) be any function with" sufficiently many"
continuous partial derivatives in D + C. For each such function and every
point P EDt!., let

(3a) r{¢>(P)} == L(¢>(P)) - Lt!.(¢>(P));

and for each point P E Ct!. let

(3b) (3{¢>(P)} == B(¢>(P)) - Bt!.(¢>(P)).

Then the difference problem (2) is consistent with problem (I) if

(3c) H¢>} II --+ 0, II {3{¢>} II --+ 0,

when tlt --+ 0, ~x --+ 0, ~y --+ 0, ... , in some manner, and II II represents
norms in the appropriate sets Dt!. and Ct!.. We call r{¢>} and {3{¢>} the local
truncation errors.

If (3c) is satisfied only when some particular relationship between the
tlt, ~x, ~y, ... is maintained (i.e., say provided that ~t/~x --+°as ~t --+°
and ~X --+ 0), then we say that the difference formulation is conditionally
consistent. For example, with the heat equation operator:

aU 02U
L(u) == at - Ox2

the ordinary explicit scheme of (4.3a) can be written in terms of the
difference operator

Lt!.(U) == Ut - Uxx

which is "unconditionally" consistent with L(u). However, the Dufort­
Frankel explicit scheme employs the difference operator

which is consistent with L(u) only if ~t/~x --+°with the net spacing.
In fact, if ~t/~x == c = a fixed constant, then the difference operator
Lt!.'(U) is consistent with the hyperbolic operator

82u aU 02U
L'(u) == c

2 at 2 + at - 8x2 '
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These latter results follow from the simple calculation

T{.p} =L(.p) - Lt.'(.p)

= [~~ - ~ (.pt + .p/)]

In the above consideration, we have neglected to mention that initial
data must also be prescribed at t = b.t for Lt.' to become an explicit
scheme. In many cases, say the mixed problem (4.9) where (Ib) represents
(4.9b and c) and (2b) represents (4.lla and b), we have P{.p} = 0 and so
only the difference approximation to the differential equation determines
consistency. On the other hand, if (l b) represents initial conditions like
(3.2) for the wave equation, then (2b) represents some approximation
like (3.13) or alternatively like (3.13a) and (3.14b). In the first case, we
obtain P{.p} = m(l1t) and in the second case

P{.p} = m[l1t2+ b.tl1x2+ l1t(~:~ - C2::~)].

Here we have an example in which the order of the local truncation error
is increased for special functions (i.e., solutions of the wave equation).

In practice, we will not work with the exact solution of (2a and b),
because of rounding operations. Hence we will consider the solutions W
defined on Dt. + Ct. which satisfy the modified equations

(2c)

(2d)

Lt.( W) = f(P) + pep)

Bt.( W) = g(P) + a(P)

The functions pCP) and a(P) represent the error introduced in solving
(2a and b) approximately. We will refer to pCP) and a(P) as rounding
errors.

We turn now to the definition of

CONVERGENCE. Let u be the solution of problem (I), and let U be the
difference solution of pr<lblem (2). The difference solution is convergent to
the exact solution iff

Ilu(P) - U(P) II ---+ 0

for all P E Dt. + CI\ when l1t ---+ 0, l1x ---+ 0, l1y ---+ 0, ... , in some manner,
and 11·11 represents a norm in Dt. + Ct..
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If the difference solution is convergent for all data in some wide class
of smooth functions {f, g}, we call the corresponding difference scheme
convergent. Notice, however, that this notion is quite distinct from that of
consistency and. in fact, a scheme may readily be consistent but not
convergent. The schemes (3.17a and c) which are consistent approximations
to (3.8a) furnish two such examples.

Care must be taken in observing that a difference scheme may be
convergent for a class, :F, of smooth functions {f, g}, but not convergent
for a larger class '§ :::):F. For example, consider the Cauchy problem
given by

ou ou
L(u) == - - - = 0ot ox '

(4a)
B(u) == u(x, 0) = eiax ;

t > 0,

and the corresponding difference problem

Lt.(V) == Vt - Vx = 0
(4b)

Bt.( V) == Vex, 0) = eiax.

We easily verify that for any real a, the solutions u and V of (4a) and (4b),
respectively, are

(5a)

and

(5b)

u(x, t) = eia(t + Xl,

(
!:1t )t/t.t

Vex, t) = I + i !:1x sin a!:1x efax .

But if la[ :::; M, we have, for 0 :::; t :::; Tand all x, the uniform convergence

(6) lim Vex, t) = e«at+axl = u(x, t).
t.x.t.t-O

In other words, the scheme Lt\( V) = 0 which we have shown to be diver­
gent, in general, in Problem 3. I, is convergent when the initial data are
chosen from the class of finite trigonometric sums, i.e., for any initial data
of the form

N

u(x, 0) = L f3J eIa,x.
J ~ 1

The reader should observe that even if the domain of dependence con­
dition is violated by the difference scheme (4b) (i.e., ,\ = !:1t/!:1x > I),
the solution (5b) will still converge to that in (5a). Thus for this special
class of trigonometric data the difference scheme (4b) is unconditionally
convergent.
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We recall that the actual evaluation of a numerical scheme produces
approximate solutions, say W, which satisfy slight modifications of
(2a and b), say (2c and d). Hence, in practice, we are interested primarily
in schemes for which II W - ull --'>- 0, when Ilpll --'>- 0 and liall --'>- 0, as
!'1t --'>- 0, !'1x --'>- 0, .... (The norms II II are defined respectively for the sets
Dt> + Ct>, Dt> and Ct>, and the data {j, g} are to belong to some wide
class of functions.) We say that such schemes have convergent approximate
solutions.

When a convergent scheme is known, we are assured that difference
solutions of arbitrarily good accuracy exist. When a scheme with con­
vergent approximate solutions is known we are assured that difference
solutions of good accuracy can be computed! But in either case, it is im­
portant that an a priori estimate of the error can be evaluated, preferably
in terms of the data and the mesh spacing. For this and other purposes we
introduce the concept of

STABILITY. A difference scheme determined by linear difference operators
Lt>(·) and Bt>(·) is stable ifthere exists afinite positive quantity K, independent
of the net spacing, such that

(7)

for all net functions U defined on Dt> + Ct>. (The norms 11·11 are, as usual,
defined for net functions on Dt> + Ct>, Dt> and Ct> respectively.) If (7) is
valid for all net spacings, then the linear difference scheme {Lt>, Bt>} is
unconditionally stable,. if (7) holds for some restricted family ofnet spacings
in which !'1t, !'1x, !'1y, ... , may all be made arbitrarily small, then {Lt>, Bt>}
is conditionally stable.

Clearly by this definition, stability of a difference scheme is a property
independent of any differential equation problem. We have restricted this
definition to linear difference schemes as they are the only ones treated in
this chapter. However, a more general definition can be given which
reduces to the above for linear problems. (This is an obvious restatement
of the definition given in Section 5 of Chapter 8 for ordinary differential
equations.) Briefly, if Lt> and Bt> are the difference operators in question,
they are stable iffor every pair ofnet/unctions U and V defined on Dt> + Ct>,
there is a K > 0 independent 0/ the net spacing such that

If Lt> and Bt> are linear, then this reduces to the previous definition applied
to (U - V).

The factor K in the definitions of stability may depend upon the dimen­
sions of the domain D containing Dt>. We have already proved the stability
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of various difference schemes in the previous sections. For example, with
the Laplace difference approximation (1.4), consider the difference
equations (1.5). The corresponding difference operators are Lt, == -ll.
and Bt,V == V. By applying Theorem 1.2 we deduce that, for arbitrary
llx and lly,

IIVII == max IVI ~ K(max IVI + max Illpl)
D{j + Cd Cd D{j

= K(IIBt,VII + IILt,VII),
where K == max (1, a2/2). Thus the difference scheme used in (1.5) is
unconditionally stable.

Next, consider the (hyperbolic) system of difference equations defined
in (3.27). We define Lt, by

and the initial data are to be given by specifying

Bt,(V(x, 0» == Vex, 0).

(The generalization to vectors V, f, and g is taken for granted.) By using
these definitions in (2) we have the difference problem

Lt,(V(x, f» = f(x, f), V(x, 0) = g(x).

However, this is just the problem posed in (3.31) for e(x, f) where 't

replaces f and e(x, 0) replaces g(x). Thus, as in the derivation of (3.35)
and (3.36), we deduce for the above difference problem that if ,\ ==
cllf Illx ~ I, then with the maximum norms over the appropriate sets

where K == max (V2, 2f). Hence, conditional stability is established
(i.e., for cllf ~ llx) and we note that the constant K grows with the time
interval included in D.

Finally, consider the explicit difference equations for the heat equation,
which we write as,

L"P(x, f) == Vlx, f) - Vxx(x, f) = f(x, f).

If, initially, we take

Bt,V(x,O) == V(x,O) = g(x),

then exactly as in the derivation of (4.6) from (4.3) and (4.4) we get,
provided ,\ = Llt Illx2 ~ -t,

II Vex, f)11 == max IVex, f)1 ~ K(llf(x) II + max Ils(x, nil),
x t'~t
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where K == max (I, t). Again we have conditional stability, for l:1t ::;
b.x2/2, and the constant K grows with the time. The special choice
sex, t) == 0 and f(x) == V(x,O) given by (4.8b), for the above difference
problem shows that this explicit difference scheme is unstable for fixed
,\ > 1-- The purely implicit difference equations given in (4.10) with
initial and boundary data specified as in (4.11) are easily shown, by the
methods used in (4.15) through (4.17), to form an unconditionally stable
difference scheme.

The basic result connecting the three concepts which we have intro­
duced in this section may be stated as

THEOREM 1. Let Lt!, and Bt!, be linear difference operators which are stable
and consistent with Land B on some family ofnets in which l:1t, b.x, b.y, ... ,
may be made arbitrarily small. Then the difference solution V of (2) is
convergent to the solution u £?f (I).

Proof For each point P E Dt!, and for any of the above family of nets,
we obtain by subtracting (la) from (2a)

o = Lt!,(V(P)) - L(u(P))

= [Lt!,( V(P)) - Lt!,(u(P))] + [Lt!,(u(P)) - L(u(P))].

From the assumed linearity of Lt!, and the definition of the local truncation
error, r{.p}, we then have

(8a) Lt!,(V - u) = r{u(P)},

In an analogous manner (lb) and (2b) imply

(8b) Bt!,( V - u) = f3{u(P)},

However, the difference operations in (8) have been assumed stable on the
family of nets employed here. Thus it follows that for the net function
(V - u),

(9) IIV - ull ::; K(llr{u}11 + 11f3{u} II)·

Now by the assumed consistency we may let b.t ---* 0, b.x ---* 0, b.y ---* 0, ... ,
in such a manner that HI ---* 0 and 11f311 ---* O. Then, obviously,
II V - ull ---* 0 and convergence is demonstrated. •

It should be recalled, in the above proof, that the solution u of (I) is
to have as many continuous derivatives as are required for the
derivation of consistency. We then see from (9) that the error in the differ­
ence solution is estimated in terms of the local truncation errors. With
little change in the proof, Theorem 1 is applicable if Lt!, and Bt!, are non­
linear stable difference operators. (It should also be observed that the
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linearity of Land B have not been assumed in the above proof. Their
linearity follows from the required consistency with linear difference
operators.)

5.1. Further Consequences of Stability

The stability of a linear difference scheme comes very close to insuring
that computations with the proposed scheme are practical. More precisely,
what we are assured is that stable linear difference equations have a
unique solution and that, at least in principle, the growth of roundoff errors
is bounded. In this case, the scheme has convergent approximate solutions.

Let the difference problem (2a and b) be linear. Then the difference
equations form a linear system whose order is equal to the number of net
points in Dt> + Ct>. Now we assume that the number of unknowns and
equations are equal. Having made this important assumption (which in
particular cases is easily verified) we may, in order to show that (2a and b)
has a solution, either show that some coefficient matrix is non-singular
or, equivalently, show that the corresponding homogeneous problem
has only the trivial solution. However, from the assumed stability of Lt>
and Bt> we get from (2a and b)

11U11 ~ K(llfll + Ilgll)·
It follows that the system has only the trivial solution if f == g == O.
Thus the unique solvability of the linear difference problem is a simple
consequence of stability.

The consideration of the effect of roundoff errors is also quite simple.
If by W(P) we represent the numbers actually obtained in numerically
approximating the solution of (2a and b), then

(lOa)

(lOb)

Lt> W = f(P) + pCP)

Bt> W = g(P) + a(P)

Here pCP) and a(P) represent the effects of rounding, which cause W to
be in error, and hence not quite satisfy the system (2a and b). As in the
proof of Theorem 1, we now derive by means of the linearity of Lt> and Bt>

Lt>( W - u) = r{u(P)} + pCP)

Bt>(W - u) = ,B{u(P)} + a(P)

From the assumed stability of the difference problem it now follows that

(II) II W - ull ~ K(HI + 11,811 + Ilpll + HI)·
Thus we have shown that a stable and consistent linear scheme has con­
vergent approximate solutions.
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To maintain accuracy consistent with the local truncation errors, the
local roundoffs p and a should be of the same order in the net spacing.
The quantities p and a introduced in (10) are usually the actual rounding
errors committed in computing, divided by some multiple of the net
spacing. This is because one does not compute with the equations in the
form (2), but rather with multiples of these equations in which the co­
efficients are bounded as the net spacing vanishes. So the actual rounding
errors should be reduced like the truncation error times a power of the
net spacing.

The definition of stability that we have given is considerably more
restrictive than is required to prove convergence in many cases. In fact,
the" stability constant" K may be allowed to depend upon the net spacing
and be unbounded as, say, 6.t -+ O. But if in this case

(12) lim (6.tyK = 0
"'t-O

for some p > 0, then convergence still follows if HI + Ilfjll = (!!(llt P).
Convergent approximate solutions are also obtained if the norms of the
rounding errors, llpll and 11aII, are required to be at least (!!(llt P). [When
a condition of the form (12) holds for all p ~ Po > 0 but not for p < Po,
the scheme is frequently said to be weakly stable.] In addition, as we have
seen in the examples, many proofs of stability yield inequalities of the
form

(13)

which then yield stability with the constant K = max (Ko, K1). However,
if for example K1 -+ 0 as the net spacing vanishes, then (13) would imply
convergence if only L", were consistent with L but not necessarily B", with B.
Thus it is possible to have convergence without consistency provided a
stronger form of stability holds. In the case of such stronger stability
it is clear that the error bound (1 I) can be replaced by

(14) II W - ull :s; Ko(llrll + Ilpll) + K1(llfjll + Ilall).
Thus a poorer approximation of the boundary conditions need not
affect the overall accuracy if, as the net spacing vanishes,

5.2. The von Neumann Stability Test

There is an important special class of difference schemes for which a
simple algebraic criterion always furnishes a necessary and sometimes
even a sufficient condition for stability. Simply stated the difference schemes
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in question should have constant coefficients and correspond to pure
initial value problems with periodic initial data.

We shall illustrate this theory first by considering rather general explicit
difference schemes of the form

m

(15) U(t + D.t, x) = 2: CjU(t, x + jD.x);
J= -m °~ t ~ T - M, °~ x ~ 27T.

Here U(t, x) is, say, a p-dimensional vector to be determined on some net
with spacing D.x, D.t and the Cj 0= C;(D.x, D.t) are matrices of order p
which are independent of x, t, but, in general, depend upon D.x and D.t.
Initial data are also specified by, say,

(16) U(O, x) = g(x),

where g(x + 27T) = g(x). The difference equations (15) employ data at
2m + 1 net points on level t in order to compute the new vector at one
point on level t + D.t. We use the assumed periodicity of U(t, x) in order
to evaluate (15) for x near°or 27T. With no loss in generality then, assume
that mD.x < 27T, and U (t, x) is defined for all x in °~ x ~ 27T, and
t = 0, M, 2D.t, ... (see Problem 2).

Since U(t, x) is to be periodic in x and the CJ are constants, we can
formally construct Fourier series solutions of (15). That is, U(t, x) is of
the form

(17)
00

U(t, x) = 2: V(t, k)e ikX.
k= - 00

Upon recalling the orthogonality over [0,27T] of eikx and eiqx for k # q,
we find that this series satisfies (15) iff

(l8a)

where

V(t + M, k) = G(k, D.x, D.t)V(t, k)

(l8b) G(k, D.x, M) 0= ~ C;(D.x, M)eiJk.iX,
J= -m

Ikl = 0, 1,2, ....

From (16) and (17), it follows that the V(O, k) are just the Fourier co­
efficients of the initial data, g(x); i.e.,

V(O, k) = 2~ f" g(x)e- tkx dx.

Repeated application of (l8a) now yields

(19) V(t, k) = Gn(k, D.x, M)V(O, k), n = tlD.t.
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The matrices G(k, L1x, L1t), of order p as defined in (18b) are cal1ed the
amplification matrices of the scheme (15), since they determine the growth
of the Fourier coefficients of the solutions of (15).

Because U(t, x) is defined for 0 ::; x ::; 27T, we may introduce as a
norm

(20) {
I r2n }%IIU(t)11 == 27T Jo IU(t, x)[2 dx , t = 0, L1t, 2L1t, ... ,

which for each tis cal1ed the Y2-norrn of U(t, x). (By lUI, we denote the
Euclidean norm of the vector U.) However, by the Parseval equality (see
Theorem 5.3 of Chapter 5), or directly by using (17) in (20), we have

(21)

One of the main reasons for using the y2-norm is that it can be simply
related, as above, to the sum of the squares of the Fourier coefficients.
Then from (19) and (21), we conclude that

(22) IIU(t)ll::; m;x IIGn(k, L1x, M)llt~%", IV(O, k)[2}%

= (max IIGn(k, L1x, L1t)II)IIU(O)II, t = nL1t, n = 1,2, ....
k

The matrix norm II Gn II to be used in (22) is, of course, any norm compat­
ible with the Euclidean vector norm IVI. As previously observed in Section
I of Chapter I the natural norm induced by this vector norm is the smal1est
such compatible matrix norm and so we shal1 employ it here. Thus with
no loss in generality let II Gn II be the spectral norm of Gn [see the definition
in (UI) of Chapter I and the discussion preceding Lemma 1.2 thereof].

Let us say, for the present, that the difference scheme (15) and (16) is
stable (in the Y2-norm) iff there exists a constant K, independent of the
net spacing, such that

(23) IIU(t)11 ::; KIIU(O)II,

for all solutions Vet, x) of (15) and (16) for all g(x) with finite Y2-norm.
But then we see from (22) that stability is a consequence of the uniform
boundedness of the powers of the amplification matrices. To be more
precise we introduce the definition: the family of matrices

{

mL1x::; 27T

O<nM<T

k = 0, ± I, ± 2, ...
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is uniformly bounded if there exists a constant K independent of k, ~x and
~t such that

(24)
{

for m~x ::; 217

°< n~t ::; T

Ikl = 0, 1,2, ....
Now we have the simple

THEOREM 2. The difference equations (15) are stable in the !£,2-norm (If
the amplification matrices (I8b) satisfy the uniform boundedness condition
(24).

Proof As indicated above, (24) and (22) imply (23) thus showing the
sufficiency. On the other hand, if (24) is not satisfied for any finite K, then
(23) cannot be satisfied for any finite K, for all U(O, x). That is, given any
K, a single Fourier term of(17) will be a solution of(15), if(18) is satisfied,
and can be chosen so that (23) is violated. •

Having established the importance of uniform boundedness we now
state a simple necessary condition for stability due to von Neumann.

THEOREM 3. If the scheme (15) is stable (in the !£,2-norm) then there
exists a constant M, independent of the net spacing, such that

(25) p(G(k, ~x, ~t)) ::; I + M~t, for k = 0, ± I, ±2, ....

~t ::; T.

Proof. If (15) is stable, then by Theorem 2 the uniform boundedness
condition (24) holds. But upon recalling Lemma 1.2 of Chapter I, we have

pn(G(k, ~x, M)) = p(Gn(k, ~x, ~t))

::; IIGn(k, ~x, ~t)11

::; K, Ikl = 0, 1,2, ... , °< nM ::; T, m~x ::; 217.

With no loss in generality we may take K ~ I and thus for T = nM,

~t
p(G(k, ~x, ~t)) ::; Kl/n = K!>t/T ::; I + K T'

The last inequality is established in Problem 3 and with M == KjT the
result (25) follows. •

We call (25) the von Neumann condition and Theorem 3 shows that it is
necessary for stability in the !£,2-norm. In some cases it may also be a
sufficient condition. For instance, if the amplification matrices G(k, ~x, M)
are Hermitian. then IIG nil = IIG lin = pn(G) and Theorem 2 implies thatthe
von Neumann condition is sufficient for stability. In any event, one should
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always try to compute the eigenvalues of G(k, ~x, M) to rule out possibly
unstable schemes. If (25) is valid only for special nets, say with ~x = ,p(M),
then the scheme may only be conditionally stable (see Problems 4 and 5).

Difference schemes of the form (15) can be applied to quite general
classes of partial differential equation problems. For example, systems of
the form (3.25a) can be treated provided the matrix cA is constant and a
uniformly spaced net is used. More generally, we can treat systems of the
form

(26)
8u(t, x)

Lu(t, x) == -8-t- - .w'u(t, x) = °
where d is some differential operator with respect to the x variable and
has constant coefficients. Thus the heat equation (4.la) and other higher
order systems are included.

The previous analysis is easily extended to more general difference
schemes. The most obvious such generalization is to implicit schemes which
may be written as

(27) L: BiU(t + ~t, x + j~x) = L: CiU(t, x + j~x),
lils;m IJIS;m °:<;; t :<;; T - ~t.

Here the Bi are matrices of order p, independent of x and t, but dependent,
in general, on ~x and M. We now need only change the definition of the
amplification matrices from (18b) to

(28) G(k, ~x, ~t) == (L: BJeiikAX) -1 (L: cietikAX) ,
lilS;m lils;m

Ikl = 0, 1,2, ...

and of course require that the indicated inverse exists (see Problem 4).
We can treat difference schemes with more than two time levels but then
the amplification matrices are of higher order, say of order pq for q + 1
time levels. Extensions to more independent variables are not difficult.

We recall that the stability definition (23) which has been used in this
subsection is not the same as that in (7), which is employed in the basic
Theorem I. However, for the class of equations, say of the form (26), for
which difference schemes of the form (15) or (27) are appropriate, we can
show that (23) [or (24)] is equivalent to (7). Specifically, we have

THEOREM 4. Let BA == J, the identity operator, and let LA be defined by

(29) ~tLAU(t, x) == U(t + M, x) - L: CiU(t, x + j~x).
lils;m

Then for difference problems of the form (15) and (16) the definition (23)
of f£'2-stability is equivalent to that in (7) with appropriate norms.
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Proof. The appropriate norms to employ in (7) are, in terms of the
2 2-norm (20),

IIUII == sup IIU(tn)ll, IIL~UII == sup IIL~U(tn)ll,
O:5t n :5T O<tn :5T

IIB~UII == IIU(O)II·

Then trivially it follows that (7) implies (23) for all solutions U of (15)
and (16); that is, for all U(t, x) satisfying

L~U = °on D~, i.e., °< t ::; T;

B~U == U(O, x) = g(x) on C~, i.e., t = 0.

Now let U(t, x) be any function with convergent Fourier series (17),
not necessarily a solution of (IS). Insert the series on the right-hand side
of (29), multiply the result by (1/217)e- lkX, and integrate over [0,217].
We obtain with the definition (18b),

t.t (21<
V(t + t.t, k) = G(k, ~x, ~t)V(t, k) + 217 Jo e-jkXL~U(t, x) dx.

By applying this result recursively in t, with the notation G == G(k, ~x, t.t)
and nt.t = t, it follows that

~t n-l (21<

V(t, k) = Gnv(o, k) + 217 v~ GV Jo rlkxL~U(t - JJ~t, x) dx,

°< n~t ::; T, Ikl = 0, 1,2, ....

Upon taking the Euclidean norm of this vector equation, we have

IV(t, k)l ::; max IIGV(k, ~x, ~t)11
v:Sn

{
n - 1 II (21< !}

X IV(O, k)1 + ~t ~o 217 Jo rjkXL~U(t - JJ~t, x) dx .

Finally, by using this result in (21) (see Problem 6), we get with the aid
of the Schwarz inequality, the inequalities

2ab ::; a2 + b2 and a + b ;:: Va2 + b2 ,

the estimate

(30) IIU(t)ll::; v2 sup IIGV(k, ~x, ~t)II{IIU(O)11 + t max IIL~U(T)II},
v:5n l':St

Ikl < 00

for n~t ::; T, Ikl = 0, 1,2, ....

Here we have introduced the 2 2-norm ofL~U(t, x), as in (20), and used the
Parseval equality to deduce that
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Now let the scheme (15) be stable in the sense of (23). Then by Theorem
2 the amplification matrices GV(k, tlx, M) are uniformly bounded, as in
(24), and we find from (30) that

IIUII ::; K'{IIU(O)11 + IIL~UII}

where K' == v'2 K max (I, T). But this holds for all (sufficiently smooth)
functions U(t, x) in 0 ::; x ::; 27T, 0 ::; t ::; T, and so the stability defined
in (7) holds for the difference operator L~ of (29). •

We conclude with the remark that the condition of stability thus far
has only been shown to be sufficient for convergence, But, by using ele­
mentary ideas of functional analysis, Lax has proved that for linear well­
posed initial value problems, the consistent difference schemes (15) or (27)
are stable iff the schemes are convergent!

PROBLEMS, SECTION 5

n

1.* With the notation L:' and Xk of Subsection 5.1 of Chapter 5, set h = Llx
j= -n

and verify that the 27T periodic solution W(x, t) of Wt = W;, with W(Xk'O) =
f(Xk) for k = 0, ± I, ... , ± n, satisfies

where

That is, if we define II II by

II W(tW = 2
1
n k't.-n IW(Xk, t}i2,

we have shown that

II W(t)11 ::; e~t/211 W(O) II

and the difference scheme is stable for Llt = p.Llx2 for any constant p. (see
Problem 3.5).

2. Explain how if U(O, x) is given, (15) may be used to define U(Llt, x),
for 0 ::; x ::; 27T--even though (15) is a difference equation.

3. Verify the inequality, with K ::?: I,

KX::; I + Kx, for 0 ::; x ::; I.

[Hint: Study f(x) =eX In K, show that j'(x) > O,fH(X) > 0.]



530 PARTIAL DIFFERENTIAL EQUATIONS [Ch.9]

4. (a) Show that the amplification matrices for the Crank-Nicolson like
scheme (4.18) are the scalars

G(k ~x M) = I - (1 - 0)2,\(1 - cos k~x),
" I + 02,\(1 - cos k~x)

~t

,\ = ~X2'

(b) Since this is a case where G is Hermitian, determine by means of the
von Neumann condition the restrictions on ,\ for stability for any 0 in
o :s: 0 :s: I. Compare your results with (4.28).

5. (a) Find the amplification matrices of the scheme (3.27). Verify that
the von Neumann condition is satisfied when the Courant condition, ,\ ==
eM /~x < I, is satisfied.

(b) Apply the von Neumann test to the divergent scheme

,\
Vex, t + M) = V(x, t) + 2: A[V(x + ~x, t) - V(x - ~x, t)],

A = (~ ~).
n-l

6. If a(I<, n) = b(k) + e 2: d(l<, v), for real numbers a, b, e, and d, show
v=o

that

laCk, n)]2 :s: 2{ [b(k)]2 + e2 [~: d(k, V)]}
Hence, show that

laCk, n)]2 :s: 2{ [b(k)]2 + ne2 ~~ [d(k, v)F}-
[Hint: Apply Schwarz' inequality: (2: l·d)2 :s: (2: 1)(2: d 2).]
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Index

Acceleration, of iterative methods,
73-81

parameter(s), 122, 468 ff., 476 ff.
optimal, 470

procedure, 120, 151
Adams method, 388

improved, 394
Aitken, 52-method, 102-108, 260

52_process, 109, 152,374
iterative interpolation, 259

Algorithm, 21
convergent, I, 23

Alternative principle, 29, 422, 436
Altman, 83
Analytic(ity), 279

domain of, 279
Anti-symmetric, 266
A posteriori (error) estimate, 26, 46­

49, 140
A posteriori test, 123
A priori (error) estimate, 26, 37-46,

140, 169, 448, 462

Backward error analysis, 38
Bairstow's method, 131 ff.
Balanced method, 390, 397
Bauer, 139
Bernoulli's method, 128 ff., 133, 158
Bernstein polynomials, 183 ff., 192
Bessel's inequality. 197,203,238
Best approximation, 221 ff., 477

trigonometric, 240 ff.
Binomial expansion, 184

Biorthogonal, 137
Biorthogonalization, 154
Bisection method, 128
Boundary conditions, 421 ff., 443, 483
Boundary points, see Net points
Boundary value problem, 421 ff.

linear, 421 ff.

Cauchy, problem, 479 ff.
Schwarz inequality, 5, 146, 219, 220
sequence, 88

Centered difference, approximation,
293

method, 377 ff.
Centroid, 357
Characteristic(s), 479 ff.

directions, 482
equation, 129, 134

homogeneous, 483
form, 481 ff.
polynomial, 2, 407
slope, 487
variables, 481 ff.

Chebyshev, 224, 267
approximations, 211
polynomials, 81, 152, 203, 209 ff.,

214, 219, 221, 226 ff., 236
Chopping, 18
Chord method, 97, 98, 113, 437
Christoffel-Darboux relation, 205, 333
Christoffel numbers, 333, 335
Codiagonal elements, 164
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Compatibility condition, strong, 514
weak,514

Complete linear space, 194
Component, 136
Composite rules, 337 ff.
Computing problem, 21
Comrie, 280
Condition number, 27, 37
Conjugate transpose, 10
Consistent, 365, 368, 411, 514, 516

conditionally, 516
Contracting mapping, 85
Convergence, 517

in the mean, 197, 239
of difference solutions, 491 ff., 514 ff.
properties, 365

Convergence factor, 119
asymptotic, 91

Convergent, approximate solutions, 519
conditionally, 490, 505
method,412
unconditionally, 505, 508

Corrector, 386 ff.
Courant, 445

condition, 489
Friedrichs-Lewy condition, 489

Crank-Nicolson scheme, 509, 530
Crout reduction, 51
Cubature formula, 353 ff.

composite, error, 362
Cyclic, alternating direction method,

477
Jacobi scheme, 163
parameters, 80, 476 ff.

Dahlquist, 417
Deflation methods, 152 ff.
Degree of precision, see Precision
De la Vallee-Poussin, 223
o~-method, 102-108
o~-process, 109, 152, 158
Dependence, domain of, 480, 485 ff.

501
interval of, 480
numerical domain of, 487

Detecting isolated errors, 263
Difference equation (s), 129, 365

homogeneous, 406
linear, 405 ff.

Difference methods, consistency, 410 ff ,
514 ff.

Difference methods, convergence,
4IOff., 514ff.

convergent, 518
stability, 410 ff., 514 ff., 519

Difference quotients, 445
backward, 445
centered, 445
forward, 445

Difference(s), average value of, 274
centered, 272, 283
forward, 260 ff.
modified second, 274
Newton's backward formula, 283
operators, calculus of, 281 ff.

Diffusion equation, 443, 501 ff.
Direct methods, 427 ff.
Dirichlet problem, 446
Discontinuous integrands, 346 ff.
Discrete orthonormality, 215
Discretization error, 368
Distance from a set, 142
Divergent method, 379 ff.
Divided differences, 246 ff., 296
Domain of dependence condition, 489

see also Dependence
Double precision, 52
Dufort-Frankel, 516
Duhamel's principle, 409

Eigenfunctions, 209, 434 ff., 458 ff.
Eigenpairs, 135
Eigen-problems, 434 ff.
Eigenvalue-eigenvector problem, 134-

175
Eigenvalue (s), 134 ff., 209, 434 ff.,

458 ff.
localizing, 135
principal, 147
problems, 421 ff., 434 ff., 455 ff.

Eigenvector( s), 134 ff., 169
left, 137
orthonormal, 11
right, 137
row, 137

Elimination, block, 59-61,463
group, 59-61

Equivalent systems, 29
Error estimates, a posteriori; see A

posteriori
a priori; see A priori

Error factor, 267



Error propagation, 91
Euclidean algorithm, 127
Euler-Cauchy method, 366 If., 383, 395,

405
convergence, 376
modified, 388, 394, 402, 405

Euler-Maclaurin summation formula,
287,288,340

Everett, see Interpolation polyno-
mial(s)

Explicit schemes, 365, 385, 487
Exponent, 18
External points, 444
Extrapolation, 73

to zero mesh width, 374, 383

Factorial polynomial, 265
Factorization methods, 52-61, 171 If
False position, 98, 99-102
Fibonacci sequence, 101
Fike, 139
Finite dilference methods, 427 If.

eigenvalue problem, 455 If.
error estimate, 429

Finite jump discontinuities, 346
First order method, 91
Floating-point arithmetic, 17
Forsythe, 163
Forward dilferences, 260 If.
Fourier, 239

coefficients, 239, 484, 524
series, 237 If.

Francis, 173
Franklin, 143
Friedrichs, 445
Functional, analysis, 1

iteration, 386
Fundamental set of solutions, 406

Gauss-Jordan elimination, 50
Gauss-Seidel, see Iteration; Line
Gerschgorin, 135
Givens, 140, 160, 168

transformation, 164 If.
Goldstine, 49
Gram polynomials, 214
Gram-Schmidt orthonormalization

method, 199,212,218
Grid, 364, 444

Haar property, 240
Hadamard, 21, 444
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Heat conduction equation, 443, 501 If.
Henrici, 163
Hermite, interpolation, 192

polynomials, 221, 351
Hermitian, 70

transpose, 10
Hessenberg form, 160, 170
Heun's method, 402, 405
Higher order equations, 418 If.
Hilbert segments, 196, 217
Homogeneous problem, 422
Householder, 160

method, 165 If.
Hyman, 170
Hyperbolic type, 482

Ideal method, 366
Implicit schemes, 365, 385, 392, 505 If.
Infinite integrand, 346 If.
Infinite integration limits, 350
Initial conditions, 443 If., 483
Initial value methods, 424 If.

problem, 364 If., 422, 443, 479 If.,
501 If.

Inner product, 19, 134, 199,212
Instability, 504 If.
Interior points, ,see Net points
Interpolation formulae, centered,

270 If.
Interpolation polynomial(s), 187 If.,

264 If.
divergence of, 275
error, 189 If., 248, 265 If., 275, 296
Everett's form, 273, 280, 319
Gaussian (forward) form, 271
Hermite, 208
Newton, 246 If.
osculatory. 192 If., 255
remainder, 265

Interpolatory, 302
Inverse iteration, 152 if.
Iteration (s), alternating direction,

475 If.
block, 72, 471 If.
extrapolated, 79
functional, 85 If.
Gauss-Seidel, 66, 71,465 If., 470
Gauss-Seidel, accelerated, 470
higher order, 94
interpolated, 79
inverse, 157
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Iteration (s), Jacobi, 64, 72, 464, 467
line, 471 If.
simultaneous, 64, 464
successive, 66

Iterative interpolation, 102
inverse, 259
linear, 258 If.

Iterative methods, 61-84, 85-133,
463 If.

Jacobian, 113, 420
Jacobi, method, 160 If.

polynomials, 335
Jordan, 50

form, 2

Kantorovich, 119
Kernel, 198,205
Kronecker delta, 27
Kublanovskaja, 173
Kutta's method, 402, 405

Lagrange, interpolation coefficients,
189 If., 218, 264 If.

interpolation polynomial, 189 If.,
218, 246

multipliers, 322
Laguerre polynomials, 221,351
Laplace equation, 443, 445 If.
Laplacian, 445
Lattice, 364, 444
Lax, 529
Least squares approximation, 194 If ,

237 If.
Lebesgue integral, 194
Legendre polynomials, 202, 206, 218 If.
Leibnitz' rule, 106
Lemniscates, 279
Lewy, 445
Liebmann method, 465
Line, accelerated successive, 473

Gauss-Seidel, 473
Gauss-Seidel, accelerated, 474
iterations, 471 If.
Jacobi method, 471 If.

Linear independence, 199
Linearly independent, 406
Lipschitz, condition, 86, 183

constant, 85, 405
continuity, 22
continuous, 364, 413

Lower Hessenberg form, 167

Majorizing set, 378
Mantissa, 18
Matrix, amplification, 525

approximate inverse, 27
augmented, 29
block-tridiagonal, 58
circulant, 175
complex conjugate transpose, 137
convergent, 14, 63
diagonalizable, 496
formulation, 452 If.
Hermitian, 12, 137, 140
Hessenberg, 49,160, 170
Hilbert segment, 196, 217
identity, 27
ill-conditioned, 37
inverse, 27
Jacobi,55
lower triangular, 31
permutation, 33
perturbed, 137
residual, 47
singular, 169
sparse, 156
symmetric, 151,436
transformations, 159 If.
triangular, 31
tridiagonal, 55, 164 If.
uniformly bounded, 526
unitary, 139, 144
upper triangular, 31
well-conditioned, 37
zero, 14

Maximum absolute column sum, 10
Maximum absolute row sum, 9
Maximum norm, 4, 9, 178
Maximum principle, 43 I, 439, 447 If.,

461, 513
Mean convergence, 197, 239
Mean square error, 196
Measure zero, 194
Mesh, 364, 444

ratio, 490, 501
widths, 364

Midpoint rule, 240, 316, 323
composite, 343, 344

Milne's method, 388, 394
Minimizing sequence, 244
Minimum principle, 513
Minkow,ki's inequality, 6



Mixed initial-boundary value problem,
483 If.

Mobius tramformations, 77
Modulus of continuity, 183,343
Moulton's method, 388
Multiple integrals, 352 If.

composite formulae, 361 If.
Multiplier(s), 33, 35
Multipoint methods, 102
Multistep methods, 384 If.
Multivariate interpolation, 294 If.

Nesting procedure, 124
Net, 364, 444

function, 365
points, boundary, 444,515

interior, 444, 515
slope, 487
spacing, 364, 444
spacing change, 393
uniform, 367

Neville's iterated interpolation, 259
Newton-Cotes formula, 308 If., 354,

391
closed, 308 If., 316, 337

error, 310 If., 316
open, 313, 316

Newton-Raphson method, 133
Newton's, identities, 324

interpolation polynomial, 246 If.,
283, 296

method, 84, 97-99, 113, 115-119,
126,131,427,433,441

Nodes, see Quadrature
Normal system, 195, 196, 211
Norm(s), 1-17, 176 If., 211

compatible, 8
essentially strict, 220
Euclidean, 4, 10, 12,525
induced, 8
2 2 , 525
maximum, 4, 9, 178, 221, 240, 450
natural, 8
operator, 8
p,4, 139
semi-, 17, 177 If.
spectral, 12
strict, 181,211
uniform, 4

Notation, 444 If , 448
subscript, 445, 448
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11th order method, 96
Null space, 29, 145
Numerical, dilferentiation, 288 If.

integration formula, 300 If.
quadrature, 300 If.

0(1), 109
One-step methods, 395 If., 419
Open formula, 392
Operational counts, 34
Operations, 35
Operator, centered dilference, 283

derivative, 281
dilference, 281, 439
displacement, 281
identity, 281
Laplace, 445 If.
linear, 301
linear interpolation, 461 If.
method, 281 If.
shift, 282

Ops.,35
Optimal parameter, 74, 470
Optimal (parameter) value, 151
Orthogonal, 137

functions, 196 If.
polynomial" 203 If.

Orthogonality relations, 435
Orthogonalization method, 152 If.
Orthonormal functions, 197 If., 202
Osculating polynomial, 192 If.
Overflow, 18
Over-relaxation, 73

Par,eval's equality, 197, 203, 238, 244,
525

Peaceman and Rachford, 475
Perturbations, 43, 140
Picard iteration, 85
Pivot, element, 32

maximal, 34
maximal column, 34, 169

Pivoting, maximal column, 45
partial, 45

Pointwi,e convergence, 205 If.
Pointwi,e error, 412
Pois,on equation, 446 If.
Polygon method, 367 If.
PO'oitive definite, 17, 49, 457

,ystem" 70
Power method, 147
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Precision, degree of, 30 I, 311, 312,
327 If., 336, 359, 360, 401

Predictor, 86 If.
Predictor-corrector method, 386 If., 419

error estimates, 388 If.
Properly posed, 92, 444
pth order method, 82

QR (factorization) method, 169, 173
Quadratic convergence, 113
Quadrature, coefficients, 300, 353

continuous functions, 341 If.
error, 300 If., 320

interpolatory, 303
formula, composite, 302, 336 If.

composite error, 338
simple, 302, 336, 384 If., 400 If.

Gauss-Chebyshev, 334 If., 350
Gauss-Hermite, 351
Gauss-Laguerre, 352
Gaussian, 327 If.

error, 329
interpolatory, 303 If.
nodes, 300, 331, 353
periodic functions, 340 If.
points, 300
uniform coefficients, 319 If.
weighted, 331 If., 349
weighted interpolatory, 332
weighted Gaussian, 333, 351

Rachford,475
Randomness, 320
Rank,29

column, 29
row, 29

Rate of convergence, 64, 91, 148, 464,
467,470,472

Rational function, 176
Rayleigh quotient, 142
Rayleigh-Ritz, 461
Regula Falsi, 101, 260

classical, 102
Remainder term, 265
Residual, 69

correction, 68
Richardson's deferred approach to the

limit, 374, 383
Rolle's theorem, 190, 289
Romberg's method, 344
Root condition, 412

Roots of unity, 456
Rotations, two dimensional, 160 If.
Rounding, 18, 91

errors, 517
unbiased, 18

Roundolf, 94
average, 321
contamination, 153
error, 38, 264, 319 If., 3741f., 451,

516
accumulated, 320
initial, 375
local, 375

mean-accumulated, 321
mean-square error, 322, 336
root mean-square error, 322
statistical notions, 320
uncorrelated, 321

Runge-Kutta methods, 402, 405
Runge's example, 191,275
Rutishauser, 172

Scale, 46
Schur, 3, 157
Schwarz' inequality, see Cauchy-

Schwarz
Second order method, 94
Semi-norm, 17, 177 If.
Separation of variables, 359, 455 If.,

458, 483 If., 493
Separation property, 168
Shooting methods, 424 If.
Signal, 479 If., 501
Simpson's rule, 287,316,339
Single-step methods, 395 If., 402
Singular, integrals, 346 If.

matrix, 169
Smooth functions, 515
Spectral radius, 10, 63, 510
Splitting(s), 62, 74

family of, 75
Stability, 24, 365, 413, 514 If., 519,

522 If.
test, 523 If.

Stable. conditionally, 519
in the 2'2-norm, 525
unconditionally, 519
weakly, 523

Star. 446, 502
Starring. 137
Stationary values, 459 If.



Stelfensen's method, 103
Stencil, 446, 502
Stirling's formula, 267, 279
Sturm-Liouville problems, 434
Sturm sequencers), 126, 168
Subdivision, 364
Summation by parts, 213
Symmetric, 266
Symmetric functions, 247

elementary, 324
Synthetic division, 125, 131

Taylor's series, finite, 397 If.
Threshold(s),163

scheme, 163
Total error, 375
Trapezoidal rule, 239, 316, 318, 339

end corrections, 343
extrapolation of, 344
periodic functions, 340 If.

Triangle inequality, 4,177,219
Triangular, array, 297

decomposition, 52
Tridiagonal form, 164 If.
Trigonometric. approximation, 229 If.

interpolation, 230 If.
least squares approximation, 237 If.
sum, 229

Trigonometric functions, discrete ortho­
normality, 215

Truncation error, local, 368, 387, 395,
411, 449, 490, 497, 507, 508,
516

order, 412
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Underflow, 18
Undetermined coefficients, method of,

292,315,317,333, 356 If., 380
Unit ball, 7
Unstable, 366,504 If., 521

schemes, 382

Vandermonde determinant, 129, 188,
193,242,291,317

Varga, 478
Variational equation, 427, 441
Variational principles, 435, 459 If.
Vector, compound, 454

orthonormal, 149
residual, 48, 140
zero, 4

Vector space, complex, 2
linear, 406

Volume, 321
von Neumann, 49, 523 If.

condition, 526

Wave, 479 If.
equation, 443, 479 If.

Weierstrass, 7, 180
approximation theorem, 183 If., 230

Weight function, 202, 331
Weighted least squares approximation,

202 If.
Well-posed, computing problem, I, 22

problem, 23, 27, 444
Well-posed (ness), 139 If.
Wilkinson, 27, 44, 49, 140, 172, 174


