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Preface to the Dover Edition

This edition contains minor corrections to the original edition. In the 28 years
that have elapsed between these two editions, there have been great changes in
computing equipment and in the development of numerical methods. However,
the analysis required to understand and to devise new methods has not changed,
and, thus, this somewhat mature text is still relevant. To the list of important
topics omitted in the original edition (namely, linear programming, rational
approximatton and Monte Carlo) we must now add fast transforms, finite
elements, wavelets, complexity theory, multigrid methods, adaptive gridding,
path following and parallel algorithms. Hopefully, some energetic young
numerical analyst will incorporate all these missing topics into an updated
version to aid the burgeoning field of scientific computing.

We thank the many people who have pointed out errors and misprints in the
original edition. In particular, Mr. Carsten Elsner suggested an elegant
improvement in our demonstration of the Runge phenomenon, which we have
adopted in Problem 8 on page 280.

EUGENE ISAACSON AND HERBERT B KELLER

New York and Pasadena
July 1993







Preface to the First Edition

Digital computers, though mass produced for no more than fifteen years,
have become indispensable for much current scientific research. One basic
reason for this 1s that by implementing numerical methods, computers
form a universal tool for *“solving” broad classes of problems. While
numerical methods have always been useful it is clear that their role in
scientific research is now of fundamental importance. No modern applied
mathematician, physical scientist, or engineer can be properly trained
without some understanding of numerical methods.

We attempt, in this book, to supply some of the required knowledge. In
presenting the material we stress techniques for the development of new
methods. This requires knowing why a particular method is effective on
some problems but not on others. Hence we are led to the analysis of
numerical methods rather than merely their description and listing,

Certainly the solving of scientific problems should not be and is not
the sole motivation for studying numerical methods. Our opinion is that
the analysis of numerical methods is a broad and challenging mathematical
activity whose central theme is the effective constructibility of various
kinds of approximations.

Many numerical methods have been neglected in this book since we do
not attempt to be exhaustive. Procedures treated are either quite good and
efficient by present standards or else their study is considered instructive
(while their use may not be advocated). Unfortunately the limitations of
space and our own experience have resulted in the omission of many
important topics that we would have liked to include (for example, linear
programming, rational approximation, Monte Carlo methods).

The present work, it turns out, could be considered a mathematics
text in selected areas of analysis and matrix theory. Essentially no
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viil PREFACE TO THE FIRST EDITION

mathematical preparation beyond advanced calculus and elementary linear
algebra (or matrix theory) is assumed. Relatively important material on
norms in finite-dimensional spaces, not taught in most elementary courses,
is included in Chapter 1. Some familiarity with the existence theory for
differential equations would be useful, but is not necessary. A cursory
knowledge of the classical partial differential equations of mathematical
physics would help in Chapter 9. No significant use is made of the theory
of functions of a complex variable and our book is elementary in that
sense. Deeper studies of numerical methods would also rely heavily on
functional analysis, which we avoid here.

The listing of algorithms to concretely describe a method is avoided.
Hence some practical experience in using numerical methods is assumed
or should be obtained. Examples and problems are given which extend
or amplify the analysis in many cases (starred problems are more difficult).
It is assumed that the instructor will supplement these with computational
problems, according to the availability of computing facilities.

References have been kept minimal and are usually to one of the general
texts we have found most useful and compiled into a brief bibliography.
Lists of additional, more specialized references are given for the four
different areas covered by Chapters 1-4, Chapters 5-7, Chapter 8, and
Chapter 9. A few outstanding journal articles have been included here.
Complete bibliographies can be found in several of the general texts.

Key equations (and all theorems, problems, and figures) are numbered
consecutively by integers within each section. Equations, etc., in other
sections are referred to by a decimal notation with explicit mention of the
chapter if it is not the current one [that is, equation (3.15) of Chapter 5].
Yielding to customary usage we have not sought historical accuracy in
associating names with theorems, methods, etc.

Several different one-semester and two-semester courses have been
based on the material in this book. Not all of the subject matter can be
covered in the usual one-year course. As examples of some plans that have
worked well, we suggest:

Two-semester courses:

(A) Prerequisite—Advanced Calculus and Linear Algebra, Chapters 1-9;

(B) Prerequisite—Advanced Calculus (with Linear Algebra required only
for the second semester), Chapters 3, 5-7, 8 (through Section 3),
1,2,4,8,09.

One-semester courses:

(A) Chapters 3, 5-7, 8 (through Section 3);
(B) Chapters 1-5;
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(C) Chapters 8, 9 (plus some material from Chapter 2 on iterative
methods).

This book benefits from our experience in trying to teach such courses
at New York University for over fifteen years and from our students’
reactions. Many of our former and present colleagues at the Courant
Institute of Mathematical Sciences are responsible for our education in
this field. We acknowledge our indebtedness to them, and to the stimulat-
ing environment of the Courant Institute. Help was given to us by our
friends who have read and used preliminary versions of the text. In this
connection we are happy to thank Prof. T. E. Hull, who carefully read
our entire manuscript and offered much constructive criticism; Dr.
William Morton, who gave valuable suggestions for Chapters 5-7; Pro-
fessor Gene Golub, who helped us to improve Chapters 1, 2, and 4. We
are grateful for the advice given us by Professors H. O. Kreiss, Beresford
Parlett, Alan Solomon, Peter Ungar, Richard Varga, and Bernard Levinger,
and Dr. Olof Widlund. Thanks are also due to Mr. Julius Rosenthal and
Dr. Eva Swenson who helped in the preparation of mimeographed lecture
notes for some of our courses. This book grew from two sets of these
notes upon the suggestion of Mr. Earle Brach. We are most grateful to
Miss Connie Engle who carefully typed our manuscript and to Mr.
Richard Swenson who helped in reading galleys. Finally, we must thank
Miss Sallyanne Riggione, who as copy editor made many helpful sug-
gestions to improve the book.

New York and Pasadena E. IsaacsoN AND H. B. KELLER
April, 1966
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1

Norms, Arithmetic, and

Well-Posed Computations

0. INTRODUCTION

In this chapter, we treat three topics that are generally useful for the
analysis of the various numerical methods studied throughout the book.
In Section 1, we give the elements of the theory of norms of finite dimen-
sional vectors and matrices. This subject properly belongs to the field of
linear algebra. In later chapters, we may occasionally employ the notion
of the norm of a function. This is a straightforward extension of the
notion of a vector norm to the infinite-dimensional case. On the other
hand, we shall not introduce the corresponding natural generalization,
i.e., the notion of the norm of a linear transformation that acts on a
space of functions. Such ideas are dealt with in functional analysis, and
might profitably be used in a more sophisticated study of numerical
methods.

We study briefly, in Section 2, the practical problem of the effect of
rounding errors on the basic operations of arithmetic. Except for calcula-
lations involving only exact-integer arithmetic, rounding errors are in-
variably present in any computation. A most important feature of the
later analysis of numerical methods is the incorporation of a treatment
of the effects of such rounding errors.

Finally, in Section 3, we describe the computational problems that are
“reasonable” in some general sense. In effect, a numerical method which
produces a solution insensitive to small changes in data or to rounding
errors is said to yield a well-posed computation. How to determine the
sensitivity of a numerical procedure is dealt with in special cases through-
out the book. We indicate heuristically that any convergent algorithm is a
well-posed computation.




2 NORMS, ARITHMETIC, AND WELL-POSED COMPUTATIONS [Ch. 1]

1. NORMS OF VECTORS AND MATRICES

We assume that the reader is familiar with the basic theory of linear
algebra, not necessarily in its abstract setting, but at least with specific
reference to finite-dimensional linear vector spaces over the field of com-
plex scalars. By *“basic theory” we of course include: the theory of linear
systems of equations, some elementary theory of determinants, and the
theory of matrices or linear transformations to about the Jordan normal
form. We hardly employ the Jordan form in the present study. In fact
a much weaker result can frequently be used in its place (when the divisor
theory or invariant subspaces are not actually involved). This result is all
too frequently skipped in basic linear algebra courses, so we present it as

THEOREM 1. For any square matrix A of order n there exists a non-
singular matrix P, of order n, such that

B = P-14P
is upper triangular and has the eigenvalues of A, say A, = A(A), j = 1,
2,..., n, on the principal diagonal (i.e., any square matrix is equivalent to a

triangular matrix).

Proof. We sketch the proof of this result. The reader should have no
difficulty in completing the proof in detail.

Let A, be an eigenvalue of 4 with corresponding eigenvector u;.} Then
pick a basis for the n-dimensional complex vector space, C,, with u; as
the first such vector. Let the independent basis vectors be the columns of a
non-singular matrix P,, which then determines the transformation to the
new basis. In this new basis the transformation determined by A is given
by B, = P,"14P, and since Au, = Auy,

R P A

0
Bl = Pl—lApl =
Az
0
where A, is some matrix of order n — 1.
The characteristic polynomial of B, is clearly
det (A\I, — By) = (A — A det (AL,_; — Ap),

1 Unless otherwise indicated, boldface type denotes column vectors. For example, an
n-dimensional vector u, has the components u,,; i.e.,
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where I, is the identity matrix of order n. Now pick some eigenvalue A,
of A, and corresponding (n — 1)-dimensional eigenvector, v,; i.e.,

AV, = AV,

With this vector we define the independent n-dimensional vectors

=
[y
il
(=4
=
N
!
—
o
S ——

0
Note that with the scalar @ = ayv;; + ag0gp + -+ 5 1051, 2
By, = Ay, B, = Ali, + oy,
and thus if we set u; = Pii;, u, = Piil,, then
Au; = Ay, Augy = Auy + ony.

Now we introduce a new basis of C, with the first two vectors being u,
and u,. The non-singular matrix P, which determines this change of basis
has u, and u,, as its first two columns ; and the original linear transformation
in the new basis has the representation

A X x - X

0 A x -+ x
B, =P,7'4P, = 0 O >

. A,

0 0

where A4, is some matrix of order n — 2.
The theorem clearly follows by the above procedure; a formal inductive
proof could be given. |

It is easy to prove the related stronger result of Schur stated in Theorem
2.4 of Chapter 4 (see Problem 2.13(b) of Chapter 4). We turn now to the
basic content of this section, which is concerned with the generalization
of the concept of distance in n-dimensional linear vector spaces.

The “distance” between a vector and the null vector, i.e., the origin,
is a measure of the “size” or “length” of the vector. This generalized
notion of distance or size is called a norm. In particular, all such general-
izations are required to have the following properties:

(0) To each vector x in the linear space, ¥7, say, a unique real number is
assigned; this number, denoted by |x| or N(x), is called the norm of
x iff:
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(@) |x| = O0forall xe ¥ and |x| = 0iff x = o;
where o denotes the zero vector (if ¥~ = C,, then o, = C);

(ii) |ex| = |e|-[|x] for all scalars « and all x e ¥";

(i) [x + y[f < x| + {lyll, the triangle inequality,t for all x, y e ¥".

Some examples of norms in the complex n-dimensional space C, are

(1a) ||x][1 = Ni(x) = é; |xfl9
n Y
(1b) Ixls = Na®) = (z llez) ,
n 1/p
(1) Ixly = Ny(x) = (2 lx,l") . ops
(1d) Il = Na) = max fx,|

It is an easy exercise for the reader to justify the use of the notation in
(1d) by verifying that

lim N, (x) = N,(x).
po o

The norm, ||- ||z, is frequently called the Euclidean norm as it is just the
formula for distance in ordinary three-dimensional Euclidean space
extended to dimension n. The norm, ||, is called the maximum norm
or occasionally the uniform norm. In general, |||, for p = 1 is termed
the p-norm.

To verify that (1) actually defines norms, we observe that conditions
(0), (1), and (ii) are trivially satisfied. Only the triangle inequality, (iii),
offers any difficulty. However,

n
Z x; + 4l

Ni(x +y)

IA
e

n n
; !xil + |y = Z ;] + Z [yl
i=1 j=1

Nl(X) + Ni(y);

t For complex numbers x and y the elementary inequality |x + y| < [x] + ||
expresses the fact that the length of any side of a triangle is not greater than the sum
of the lengths of the other two sides.
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and

No(x +y) = max [x; + ¥yl

IA

m;fix (%] + 1y < m?lx x| + max | ¥l

No(X) + No(y),

so (1a) and (1d) define norms.
The proof of (iii) for (1b), the Euclidean norm, is based on the well-
known Cauchy-Schwarz inequality which states that

3] < (3 )" (3 10)" = momin

To prove this basic result, let |x| and |y| be the n-dimensional vectors
with components |x,| and |y,|, j = 1, 2, ..., n, respectively. Then for any
real scalar, ¢,

@

n

< N2Ex| + [yh) = € Zl [x, 2 + 2¢ ;Zl [x5 [ y5] + Z | ysl2.

But since the real quadratic polynomial in ¢ above does not change sign
its discriminant must be non-positive; i.e.,

(3 i) = (2 1) (3 00%)

However, we note that

< (3 1)

ji=1

Z ny!

and (2) follows from the above pair of inequalities.
Now we form

Nax + ) = ( X+ i )/ N (i (s + y)(& + y,.))%

J=1

2|
n Y
= (i + 3w mm+ 3 nk)

< (e +2 3 Il lnl + Nz"’(y)) :

An application of the Cauchy-Schwarz inequality yields finally
No(x +y) < Ny(x) + Na(y)

and so the Euclidean norm also satisfies the triangle inequality.
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The statement that
3 No(x +y) < Ny(x) + N(y), p=1,

is know as Minkowski’s inequality. We do not derive it here as general
p-norms will not be employed further. (A proof of (3) can be found in
most advanced calculus texts.)

We can show quite generally that all vector norms are continuous
functions in C,. That is,

LEMMA 1. FEvery vector norm, N(X), is a continuous function of xy, Xg, . . .,
X,, the components of X.

Proof. For any vectors x and § we have by (iii)

N + 8) < N(x) + N(5),
so that
N + 8) — N(x) < N(5).

On the other hand, by (ii) and (iii),
N(X)=Nx+d-19)
< N(x + 8) + N(5),
so that
—N(@B) < N(x + 8) — N(x).
Thus, in general
[N(x + 8 — N(x)| < N(d).

With the unit vectorst {e,}, any & has the representation
8 = Z 8kek.
k=1
Using (ii) and (iii) repeatedly implies

(4a) NE) < S N

IA

> [N e

IA

max |3 z N(e)
k j=1
= MN,(5),

t e, has the components e, where e, = 0, i # k; ey = 1.
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where
n

(4b) M= 3 Ne).

=1
Using this result in the previous inequality yields, for any ¢ > 0 and all §
with N,(8) < ¢/M,

IN(x + 8) — N(x)| < e

This is essentially the definition of continuity for a function of the »
variables x;, xg, . .., X,. |

See Problem 6 for a mild generalization.
Now we can show that all vector norms are equivalent in the sense of

THEOREM 2. For each pair of vector norms, say N(x) and N'(x), there exist
positive constants m and M such that for all x € C,,:

mN'(x) < N(x) < MN'(x).

Proof. The proof need only be given when one of the norms is N,
since N and N’ are equivalent if they are each equivalent to N,. Let
S C C, be defined by

S={x]|N,(x)=1,xeCp}

(this is frequently called the surface of the unit ball in C,). S is a closed
bounded set of points. Then since N(x) is a continuous function (see
Lemma 1), we conclude by a theorem of Weierstrass that N(x) attains its
minimum and its maximum on S at some points of S. That is, for some
x°eSand x'e S

NEO = mirsl N(x), N(ixY) = max N(x)

or
0 < N(x°) < N(x) < N(x!) <o

forallxe S.
For any y # o we see that y/N,(y) is in .S and so

NXO) < N( wa(y)) < N(xY)

or
N(x°)Nx(y) < N(y) < N(x)No(y).
The last two inequalities yield
mNo(y) < N(y) < MNL(y),

where m = N(x°) and M = N(x%). n
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A matrix of order n could be treated as a vector in a space of dimension
n? (with some fixed convention as to the manner of listing its elements).
Then matrix norms satisfying the conditions (0)-(iii) could be defined as in
(1). However, since the product of two matrices of order »n is also such a
matrix, we impose an additional condition on matrix norms, namely that

(iv) |4B] < [4]-]B].

With this requirement the vector norms (1) do not all become matrix
norms (see Problem 2). However, there is a more natural, geometric,
way in which the norm of a matrix can be defined. Thus, if xe C, and ||- |
is some vector norm on C,, then |x| is the “length™ of x, |Ax]| is the
“length” of Ax, and we define a norm of A, written as | A|| or N(A4), by
the maximum relative ‘““stretching,”

Ax||

5 Al = su ” .

( ) ” ” x#?) “x”

Note that we use the same notation, ||, to denote vector and matrix
norms; the context will always clarify which is implied. We call (5) a
natural norm or the matrix norm induced by the vector norm, |-|. This is
also known as the operator norm in functional analysis. Since for any
x # o we can define u = x/||x| so that |u| =1, the definition (5) is
equivalent to

(6) |4 = max |Au] = [4y], [y} = 1.

That is, by Problems 6 and 7, || 4u|| is a continuous function of u and hence
the maximum is attained for some y, with Jly| = L.

Before verifying the fact that (5) or (6) defines a matrix norm, we note
that they imply, for any vector x, that

™ lax] < 4] -lIx].

There are many other ways in which matrix norms may be defined.
But if (7) holds for some such norm then it is said to be compatible with
the vector norm employed in (7). The natural norm (5) is essentially the
“smallest” matrix norm compatible with a given vector norm.

To see that (5) yields a norm, we first note that conditions (i) and (ii)
are trivially verified. For checking the triangle inequality, let y be such
that |y| = 1 and from (6),

It4 + B)| = [(4 + By|.
But then, upon recalling (7),
l4 + B|

A

4yl + Byl
4l + [B].

IA
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Finally, to verify (iv), let y with ||ly] = [ now be such that

I(4B)| = [(4B)y].
Again by (7), we have

IA

4B < [4]-[By|

I41-1Bl,

IA

so that (5) and (6) do define a matrix norm.

We shall now determine the natural matrix norms induced by some of
the vector p-norms (p = 1, 2, o) defined in (1). Let the nth order matrix
A have elements a,, j, k = 1,2,..., n.

(A) The matrix norm induced by the maximum norm (1d) is

(8) l4llo = max > |al,
7 k=1

i.e., the maximum absolute row sum. To prove (8), let y be such that
Iylo = 1 and

l4lle = [4y]e.

n n
Z QY| = max (Z ;| U'kl)
k=1 i k=1

n n
max | y|-max > |au| = [y]o-max > |
k 7 k=1 1 k=1

Then,

4]

max
i

IA

n
= max Z |l
7ok=1

so the right-hand side of (8) is an upper bound of |Al.. Now if the
maximum row sum occurs for, say, j = J then let x have the components

. = 5Jk/]ajk|a an #0
o0, a, =0, k=12,...n.

Clearly ||x||», = 1, if 4 is non-trivial, and

| Ax].. = Z land < |4l

so (8) holds. [If 4 = O, property (ii) implies |A4] = O for any natural
norm.] [ |

(B) Next, we claim that

® |4]; = max > |agl,
ko =1
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i.e., the maximum absolute column sum. Now let ||ly|, = I and be such
that

4] = | 4y]:.
Then,
n n
4], = z Qi Y| = Z z las| - |yl
k=1 i=1k

n

1

n n

z [Jﬁcl(ma" z [a1'n|)
=1 mo =3

k

Z
i=1
Z (|J’k| Z Iajk|) =
k=1 i=1

n n
[yl max > |aml = max > [am],
m i m 7

and the right-hand side of (9) is an upper bound of ||A|};. If the maximum
is attained for m = K, then this bound is actually attained for x = ey,
the Kth unit vector, since |ex]|; = 1 and

n
z 538k

[ Aex|, =

!
] M;

Thus (9) is established. |

(O) Finally, we consider the Euclidean norm, for which case we recall
the notation for the Hermitian transpose or conjugate transpose of any
rectangular matrix 4 = (ay,),

A* = ZT’

re., if 4A* = (b)), then b;; = a;;. Further, the spectral radius of any square
matrix A4 is defined by

(10) p(4) = max |\(4)],

where A(4) denotes the sth eigenvalue of 4. Now we can state that
(11) |4l = Vo(A%A).

To prove (11), we again pick y such that ||y|, = ! and
41z = | Ay[2

From (1b) it is clear that |x[,%2 = x*x, since x* = (X, X, ..., X,).
Therefore, from the identity (Ay)* = y*A*, we find

(12) 4122 = [|Ayls® = (4y)*(4y)

= y*A*Ay.
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But since 4*4 is Hermitian it has a complete set of n orthonormal eigen-
vectors, say uy, W, ..., U,, such that

(13a) utu, = §,,

(13b) A*Au, = A\u,.

The multiplication of (13b) by u.* on the left yields further
A, = u*A*Au, > 0.

Every vector has a unique expansion in the basis {u;}. Say in particular

that
n
y= Z gllg,
s=1

and then (12) becomes, upon recalling (13),

14[22 = Z au*A*A Z o,
s=1

t=1

I

n n n
1 * — 2
all, Z a A, = Z ’\s|us|

=1 s=1

t= s=1

IA

max A, D |oy|? = max A, = p(4*A).
s t=1 s

Thus p*(A4*A4) is an upper bound of | 4||,. However, using y = u,, where
A = p(A*A), we get
”Aus“2 = (“s*/“*A“s)l/2
= pH(4*4),
and so (11) follows. |

We have observed that a matrix of order » can be considered as a vector
of dimension n?. But since every matrix norm satisfies the conditions
(0)—(iii) of a vector norm the results of Lemma 1 and Theorem 2 also
apply to matrix norms. Thus we have

LEMMA 1'.  Every matrix norm, | A|, is a continuous function of the n?
elements a;, of A. n

THEOREM 2'. For each pair of matrix norms, say |A| and |A|’, there
exist positive constants m and M such that for all nth order matrices A

mA|" < 4] < M|A]". u

The proofs of these results follow exactly the corresponding proofs for
vector norms so we leave their detailed exposition to the reader.
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There is frequently confusion between the spectral radius (10) of a
matrix and the Euclidean norm (11) of a matrix. (To add to this confusion,
| All; is sometimes called the spectral norm of A.) It should be observed
that if 4 is Hermitian, i.e., A* = A, then A(A4*4) = A%(A) and so the
spectral radius is equal to the Euclidean norm for Hermitian matrices.
However, in general this is not true, but we have
LEMMA 2. For any natural norm, ||-|, and square matrix, A,

p(4) < |4].

Proof. For each eigenvalue A(A) there is a corresponding eigenvector,
say ug, which can be chosen to be normalized for any particular vector
norm, |juy| = 1. But then for the corresponding natural matrix norm

[4] = max [dy| > |Au ] = [Au] = 1Al
As this holds for all s = 1, 2, - - -, n, the result follows. [ ]

On the other hand, for each matrix some natural norm is arbitrarily
close to the spectral radius. More precisely we have

THEOREM 3.  For each nth order matrix A and each arbitrary € > 0
a natural norm, ||A|, can be found such that

p(4) < A} < p(4) + e

Proof. The left-hand inequality has been verified above. We shall show
how to construct a norm satisfying the right-hand inequality, By Theorem
1 we can find a non-singular matrix P such that

PAP-'=B=A+U

where A = (A(A4)8,;) and U = (u;;) has zeros on and below the diagonal.
With & > 0, a “sufficiently small” positive number, we form the diagonal
matrix of order n

1 0

D = (81778, =

Now consider
C=DBD'=A+E,
where E = (e;) = DUD™! has elements

0, Jj<i
e, =
7 u; 8~ j > i=1,2...,n
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Note that the elements e;; can be made arbitrarily small in magnitude by
choosing 8 appropriately. Also we have that

A =P 'D-'CDP.
Since DP is non-singular, a vector norm can be defined by
[x]| = Ny(DPx) = (x*P*D* DPx)".

The proof of this fact is left to the reader in Problem 5. The natural
matrix norm induced by this vector norm is of course

|4} = max | 4y]|.
iyl=1

However, from the above form for 4, we have, for any y,
Ayl = No(DPAy) = N5(CDPy).
If we let z = DPy, this becomes
lAy| = Nu(Cz) = (z*C*Cz)*.
Now observe that
C*C = (A* + E*)(A + E)
= A*A + A(3).

Here the term .#(8) represents an nth order matrix each of whose terms is
@(8).1 Thus, we can conclude that

2*C*Cz < max [AXA)| z*z + |z* A4 (8)z]

A

[P*(4) + 6(d)]z*z,
since
|z*.4(8)z| < n?2*20(8) = z*z0(8).

Recalling |y = Ny(z), we find from |y]| =1 that z*z = [. Then it
follows that

A

14l < [p*(4) + O(8)]*
p(A) + O().

For & sufficiently small @(8) < e. [}

1 A quantity, say £, is said to be 0(38), or briefly f = 0(3) iff for some constants K > 0
and &, > 0,

[/l = K|8], for 8] < 8.
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It should be observed that the natural norm employed in Theorem 3
depends upon the matrix 4 as well as the arbitrary small parameter e.
However, this result leads to an interesting characterization of the spectral
radius of any matrix; namely,

COROLLARY. For any square matrix A

p(A) = inf (max N(Ax))

{NOY NI =1
where the inf is taken over all vector norms, N(-), or equivalently

o(4) = inf | 4]
o

where the inf is taken over all natural norms, ||-|.

Proof. By using Lemma 2 and Theorem 3, since ¢ > 0 is arbitrary and
the natural norm there depends upon e, the result follows from the
definition of inf. [ ]

1.1. Convergent Matrices

To study the convergence of various iteration procedures as well as
for many other purposes, we investigate matrices 4 for which

(14) lim A™ = 0,

m—

where O denotes the zero matrix all of whose entries are 0. Any square
matrix satisfying condition (14) is said to be convergent. Equivalent
conditions are contained in

THEOREM 4. The following three statements are equivalent:

(a) A is convergent;

(b) lim [A™| = O, for some matrix norm;
(©) p(4) < 1.
Proof. We first show that (a) and (b) are equivalent. Since ||-|[ is

continuous, by Lemma 1’, and |O]| = 0, then (a) implies (b). But if (b)
holds for some norm, then Theorem 2’ implies there exists an M such that

l4™o < M| 4™ — 0.

Hence, (a) holds.

Next we show that (b) and (c) are equivalent. Note that by Theorem 2’
there is no loss in generality if we assume the norm to be a natural norm.
But then, by Lemma 2 and the fact that A(4™) = A™(A4), we have

[4™] = p(A™) = p™(4),
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so that (b) implies (c). On the other hand, if (c) holds, then by Theorem 3
we can find an € > 0 and a natural norm, say N(-), such that

NA) € p(A) + e=8 < 1.
Now use the property (iv) of matrix norms to get
NA™ < [N(AD]™ < 6™
so that lim N(A™) = 0 and hence (b) holds. [ ]

m— o

A test for convergent matrices which is frequently easy to apply is the
content of the

COROLLARY. A is convergent if for some matrix norm

Al < 1.
Proof. Again by (iv) we have
4™ < 4"
so that condition (b) of Theorem 4 holds. ]

Another important characterization and property of convergent
matrices is contained in
THEOREM 5. (a) The geometric series
T+ A+ A2+ 42+,
converges iff A is convergent.
(b) If A is convergent, then I — A is non-singular and
I—-—A'=I+A+ A2+ 42+

Proof. A necessary condition for the series in part (a) to converge is
that lim A™ = O, i.e., that 4 be convergent. The sufficiency will follow

from part (b).

Let 4 be convergent, whence by Theorem 4 we know that p(4) < 1.
Since the eigenvalues of I — 4 are 1 — M(A), it follows thatdet (/ — 4) #£ 0
and hence this matrix is non-singular. Now consider the identity

I— AT+ A+ A2+ 4 A™) = [ — A™+1

which is valid for all integers m. Since A4 is convergent, the limit as m — o
of the right-hand side exists. The limit, after multiplying both sides on the
left by (I — A)~1, yields

T+ A+A42+ - )=U-AD!
and part (b) follows. [ ]
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A useful corollary to this theorem is

COROLLARY. If'in some natural norm, ||A|| < 1, then I — A is non-singular
and

1 1
I— Y € —M——
T4 = 0= D70 = 7=

Proof. By the corollary to Theorem 4 and part (b) of Theorem 5 it
follows that / — A4 is non-singular. For a natural norm we note that
| 7] = 1 and so taking the norm of the identity

I=(—- A~ A"
yields
< (= DU — A7
<+ [4DId = 7).
Thus the left-hand inequality is established.
Now write the identity as
(I—A) =1+ AU — A)!
and take the norm to get
I = 7 < 1+ 4]0 - )71,
Since || 4| < 1 this yields
1
Ir— A < T=14] u

It should be observed that if A is convergent, so is (—A), and |A4]| =
| — A]|. Thus Theorem 5 and its corollary are immediately applicable to
matrices of the form I + A. That is, if in some natural norm, |4] < I,
then

1 1

< |+ A <
T = 10+ D7 = gy

PROBLEMS, SECTION 1

1. (a) Verify that (1b) defines a norm in the linear space of square matrices
of order n; i.e., check properties (i)-(iv), for [[4]:® = z la;]2.

17
(b) Similarly, verify that (la) defines a matrix norm, ie., [A] =
Z |a|.
2. Show by example that the maximum vector norm, 7(4) = max lagl,

when applied to a matrix, does not satisfy condition (iv) that we lmpose ona
matrix norm.
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3. Show that if A4 is non-singular, then B = 4*A4 is Hermitian and positive
definite. That is, x*Bx > 0if x # 0. Hence the eigenvalues of B are all positive.
4. Show for any non-singular matrix 4 and any matrix norm that

1
] =1 and 47| = Tal
[Hint: 7] = |1 < [T]% |47*4] < |4~ 4].]
5. Show that if 7(x) is a norm and A4 is any non-singular matrix, then N(x)
defined by
N(x) = n(4x),
is a (vector) norm.
6. We call n(x) a semi-norm iff n(x) satisfies all of the conditions, (0)—(iii),
for a norm with condition (i) replaced by the weaker condition
(i): n(x) = O for all xe¥".

We say that %(x) is non-trivial iff 7(x) > 0 for some x € ¥". Prove the follow-
ing generalization of Lemma 1:

LEMMA 17, Every non-trivial semi-norm, n(X), is a continuous function of
X1, X2, . . .5 Xn, the components of X. Hence every semi-norm is continuous.

7. Show that if 7(x) is a semi-norm and A any square matrix, then N(x) =
n(Ax) defines a semi-norm.

2. FLOATING-POINT ARITHMETIC AND ROUNDING ERRORS

In the following chapters we will have to refer, on occasion, to the errors
due to “rounding” in the basic arithmetic operations. Such errors are
inherent in all computations in which only a fixed number of digits are
retained. This is, of course, the case with all modern digital computers and
we consider here an example of one way in which many of them do or
can do arithmetic; so-called floating-point arithmetic. Although most
electronic computers operate with numbers in some kind of binary
representation, most humans still think in terms of a decimal representation
and so we shall employ the latter here.

Suppose the number a # 0 has the exact decimal representation

(1) a==x10(.dd; )

where g is an integer and the d,, d,, ..., are digits with d; # 0. Then
the “z-digit floating-decimal representation of a,” or for brevity the
“floating a” used in the machine, is of the form

¥) fi(@) = £10%(.8,8,---3y)
where 8, # 0 and §,, 8,,..., 8, are digits. The number (.8,8;---8,) is
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called the mantissa and q is called the exponent of fi(a). There is usually a
restriction on the exponent, of the form

3 ~N<qg< M,

for some large positive integers N, M. If a number a # 0 has an exponent
outside of this range it cannot be represented in the form (2), (3). If,
during the course of a calculation, some computed quantity has an ex-
ponent g > M (called overflow) or ¢ < — N (called underflow), meaningless
results usually follow. However, special precautions can be taken on most
computers to at least detect the occurrence of such over- or underflows.
We do not consider these practical difficulties further; rather, we shall
assume that they do not occur or are somehow taken into account.

There are two popular ways in which the floating digits 8, are obtained
from the exact digits, d,. The obvious chopping representation takes

) 8, = d, ji=12,...,t

Thus the exact mantissa is chopped off after the rth decimal digit to get the
floating mantissa. The other and preferable procedure is to round, in
which caset

(5) 8,8;-- -8, = [dvdy- - -d;.dy iy + 0.5]

and the brackets on the right-hand side indicate the integral part. The
error in either of these procedures can be bounded as in

LEMMA 1.  The error in t-digit floating-decimal representation of a number
a # 0 is bounded by
1, rounded,

p =
— fl 5|lal10-¢
la @] < Slaf107p {p = 2, chopped.

Proof. From (1), (2), and (4) we have

la — fi@)] = 10°7'(.d, 11,15 +)
10 ) ]

- (-dt+1dt+2"')
=10t Lndea ),
gy )

+ For simplicity we are neglecting the special case that occurs whend, = d, =--- =
d; = 9 and d,,, = 5. Here we would increase the exponent ¢ in (2) by unity and set
8; =1, 8 =0, j> 1. Note that when d,,, = 5, if we were to round up iff 4, is odd,
then an unbiased rounding procedure would result. Some electronic computers
employ an unbiased rounding procedure (in a binary system).
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Butsince | < d; <9and0.d,,,d,,,- - < | this implies

la — fi(a)] < 10'~4aq],
which is the bound for the chopped representation. For the case of round-

ing we have, similarly,

la — fi@)] < 4100 — 4 107" I]%Il < 5|al10 -

We shall assume that our idealized computer performs each basic

arithmetic operation correctly to 2¢ digits and then either rounds or chops

the result to a t-digit floating number. With such operations it clearly
follows from Lemma 1 that

(6a) fl(a + b) = (a £ b)(1 + 41079
(6b) fll@d) =a-b(1 + $10-9 0

IA

|| <5 rounding,
|#l

A
IA

10 chopping.
(6¢) ﬂ(g) = 201+ 41079 P

In many calculations, particularly those concerned with linear systems,
the accumulation of products is required (e.g., the inner product of two
vectors). We assume that rounding (or chopping) is done after each
multiplication and after each successive addition. That is,

(7a) fl(a16, + axbs) = [a,b:(1 + 6,107
+ azb (1 + ¢,1079)](1 + 6107%)

and in general
n n-1
(7b) ﬂ(z aibi) = ﬂ[ﬂ( > a,bi) + ﬂ(a,,b,,)}.
i=1 i=1
The result of such computations can be represented as an exact inner

product with, say, the g, slightly altered. We state this as

LEMMA 2. Let the floating-point inner product (7) be computed with round-
ing. Then if n and t satisfy

® nl0*t < 1
it follows that
©92) 12 ab) = > @+ sapt
=1 =1
where
(9b) |8a;} < nla,|10* 7Y, 18a;| < (n — i + 2)la;f10' -,

i=2,3...,n
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Proof. By (6b) we can write
fl(acby) = abi(l + ¢,107Y), gl <5,

since rounding is assumed. Similarly from (6a) and (7b) with n = k we
have

ﬂ(i a,-b,) = [ﬂ(kil a,»bi) + (ab )1 + ¢k10-t)](1 + 6,107

i=1

0, =0; |6<5 k=23,...

Now a simple recursive application of the above yields

ﬂ(é; aib,-) = él [akbk(l + ¢k10_t),~ljc (1 + 0,10“)]

Z ab (1 + Ep),

k=1

where we have introduced E, by
1+ E. =1+ ¢>,L.10“)jln1k (1 + 6,1079).
A formal verification of this result is easily obtained by induction.
Since §; = 0, it follows that
(I =510 %2 < | + E,. <(1+5107H %2  k=23,...,n
and
=510 <1+4+E <+ 51079
Hence, with e = 5-107¢,
IEf) < (1 +e"—1,
IE < (1 + e k2 — |, k=23,...,n
But, for p < n, (8) implies that pe < 4, so that

(l+e)”—l£pe(l+p_le+p_1p—252+-~-)

2 2 3
<p(l+3+@*+--)
< 2pe = p 101~

Therefore,
|E.| < (n — k + 2)101¢, k=23,...,n
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Clearly for kK = [ we find, as above with k = 2, that
|E\| < n-101-%
The result now follows upon setting
da, = a.E,.
(Note that we could just as well have set 8b, = b.E,.) ]

Obviously a similar result can be obtained for the error due to chopping
if condition (B) is strengthened slightly; see Problem 1.

PROBLEMS, SECTION 2

1. Determine the result analogous to Lemma 2, when “chopping” replaces
“rounding”’ in the statement.

[Hint: The factor 10* ~¢ need only be replaced by 210!~ ¢, throughout.}

2. (a) Find a representation for ﬂ( > c,).

i=1

® Ifey>cy>---> ¢, >0, in what order should ﬂ( > c,) be cal-
=1
culated to minimize the effect of rounding?
3. What are the analogues of equations (6a, b, c) in the binary representation:
fila) = £2%.8,8,---8)

where 6, = 1and §, =0or1?

3. WELL-POSED COMPUTATIONS

Hadamard introduced the notion of well-posed or properly posed
problems in the theory of partial differential equations (see Section 0 of
Chapter 9). However, it seems that a related concept is quite useful in
discussing computational problems of almost all kinds. We refer to this
as the notion of a well-posed computing problem.

First, we must clarify what is meant by a ‘“computing problem” in
general. Here we shall take it to mean an algorithm or equivalently: a set
of rules specifying the order and kind of arithmetic operations (i.e., rounding
rules) to be used on specified data. Such a computing problem may have
as its object, for example, the determination of the roots of a quadratic
equation or of an approximation to the solution of a nonlinear partial
differential equation. How any such rules are determined for a particular
purpose need not concern us at present (this is, in fact, what much of the
rest of this book is about).
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Suppose the specified data for some particular computing problem are

the quantities ay, 4, . . ., a,, Which we denote as the m-dimensional vector
a. Then if the quantities to be computed are x,, x, ..., X,, We can write
0)) x = f(a),

where of course the n-dimensional function f(-) is determined by the rules.

Now we will define a computing problem to be well-posed iff the al-
gorithm meets three requirements. The first requirement is that a ““solution,”
x, should exist for the given data, a. This is implied by the notation (1).
However, if we recall that (1) represents the evaluation of some algorithm
it would seem that a solution (i.e., a result of using the algorithm) must
always exist. But this is not true, a trivial example being given by data
that lead to a division by zero in the algorithm. (The algorithm in this
case is not properly specified since it should have provided for such a
possibility. If it did not, then the corresponding computing problem is
not well-posed for data that lead to this difficulty.) There are other, more
subtle situations that result in algorithms which cannot be evaluated and
it is by no means easy, a priori, to determine that x is indeed defined by (1).

The second requirement is that the computation be wunigue. That is,
when performed several times (with the same data) identical results are
obtained. This is quite invariably true of algorithms which can be evaluated.
If in actual practice it seems to be violated, the trouble usually lies with
faulty calculations (i.e., machine errors). The functions f(a) must be
single valued to insure uniqueness.

The third requirement is that the result of the computation should
depend Lipschitz continuously on the data with a constant that is not too
large. That is, “small” changes in the data, a, should result in only
“small” changes in the computed x. For example, let the computation
represented by (1) satisfy the first two requirements for all data a in some
set, say a€ D. If we change the data a by a small amount 8a so that
(a + 8a) e D, then we can write the result of the computation with the
altered data as

2) x + 8x = f(a + ba).
Now if there exists a constant M such that for any $a,
3 I8x| < M|dal,

we say that the computation depends Lipschitz continuously on the data.
Finally, we say (1) is well-posed iff the three requirements are satisfied and
(3) holds with a not too large constant, M = M(a, n), for some not too
small » > 0 and all 8a such that |8a] < 7. Since the Lipschitz constant
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M depends on (a, n) we see that a computing problem or algorithm may
be well-posed for some data, a, but not for all data.

Let Z(a) denote the original problem which the algorithm (1) was devised
to “solve.” This problem is also said to be well-posed if it has a unique
solution, say

y = g(a),

which depends Lipschitz continuously on the data. That is, Z(a) is well-
posed if for all 8a satisfying ||8a]| < {, there is a constant N = N(a, {)
such that

€] lg(a + 8a) — g(a)] < N|dal.

We call the algorithm (1) convergent iff f depends on a parameter, say e
(e.g., €« may determine the size of the rounding errors), so that for any
small e > 0,

&) [f(a + 8a) — g(a + Ba)| < ¢,

for all &a such that ||8a| < 8. Now, if #(a) is well-posed and (1) is con-
vergent, then (4) and () yield

6) If@ — f(a + da)| < [f(a) — g(a)| + [g@@) — g(a + 8a)
+ lg(a + 8a) — f(a + Sa)|
< e+ N|da]| +
Thus, recalling (3), we are led to the heuristic

OBSERVATION 1. If P(a) is a well-posed problem, then a necessary condition
that (1) be a convergent algorithm is that (1) be a well-posed computation.

Therefore we are interested in determining whether a given algorithm
(1) is a well-posed computation simply because only such an algorithm
is sure to be convergent for all problems of the form #(a + 8a), when
P(a) is well-posed and ||8a] < &

Similarly, by interchanging f and g in (6), we may justify

OBSERVATION 2. [fZ is a not well-posed problem, then anecessary condition
that (1) be an accurate algorithm is that (1) be a not well-posed computation.

In fact, for certain problems of linear algebra (see Subsection 1.2 of
Chapter 2), it has been possible to prove that the commonly used al-
gorithms, (1), produce approximations, x, which are exact solutions of
slightly perturbed original mathematical problems. In these algebraic
cases, the accuracy of the solution x, as measured in (5), is seen to depend
on the well-posedness of the original mathematical problem. In algorithms,
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(1), that arise from differential equation problems, other techniques are
developed to estimate the accuracy of the approximation. For differential
equation problems the well-posedness of the resulting algorithms (1) is
referred to as the stability of the finite difference schemes (see Chapters 8
and 9).

We now consider two elementary examples to illustrate some of the
previous notions.

The most overworked example of how a simple change in the algorithm
can affect the accuracy of a single precision calculation is the case of
determining the smallest root of a quadratic equation. If in

x2 + 2bx + ¢,

b < 0 and c are given to t digits, but |c|/b? < 10~¢, then the smallest

root, x,, should be found from x, = ¢/x,, after findingx, = —b + Vb2 — ¢
in single precision arithmetic. Using

X, =—b - Vb —¢

in single precision arithmetic would be disastrous!

A more sophisticated well-posedness discussion, without reference to
the type of arithmetic, is afforded by the problem of determining the zeros
of a polynomial

P =z"+a,_ 2" '+ -+ a,z+ a,

If Q.(z) = z" + b,_12"" ' +---+ b,z + by, then the zeros of P,(z;¢) =
P,(2) + €Q,.(2) are “close” to the zeros of P,(z). That is, in the theory of
functions of a complex variable it is shown that

LEMMA. Ifz = z, is a simple zero of P,(z), then for |€| sufficiently small
P,(z; €) has a zero z,(¢), such that

Qn(zl)
P,(z)

If z, is a zero of multiplicity r of P,(z), there are r neighboring zeros of P,(z; €)
with

z2(e) —zy + €

= 0O(¢?).

= 0(e2).

] 1/r
2 — 2 — [—’1',%((2211))] ar

Now it is clear that in the case of a simple zero, z,, the computing prob-
lem, to determine the zero, might be well-posed if P,’'(z;) were not too
small and Q,(z,) not too large, since then |z,(¢) —z,|/|¢] would not be
large for small . On the other hand, the determination of the multiple
root would most likely lead to a not well-posed computing problem.
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The latter example illustrates Observation (2), that is, a computing
problem is not well-posed if the original mathematical problem is not
well-posed. On the other hand, the example of the quadratic equation
indicates how an ill-chosen formulation of an algorithm may be well-posed
but yet inaccurate in single precision.

Given an € > 0 and a problem %(a) we do not, in general, know how
to determine an algorithm, (1), that requires the least amount of work
to find x so that |x — y|| < e This is an important aspect of algorithms
for which there is no general mathematical theory. For most of the al-
gorithms that are described in later chapters, we estimate the number of
arithmetic operations required to find x.

PROBLEM, SECTION 3

1. For the quadratic equation
x2 + 2bx + ¢ =0,
find the small root by using single precision arithmetic in the iterative schemes

c X2
(@) Xned = T 35 T Sp

and
x,2 + 2bx, + c
2x, + 2b

If your computer has a mantissa with approximately r = 2p digits, use
c=1, b=-—10°

(b) Xn+1 = Xp —

for the two initial values
@ x =05 (i) xo =}
Which scheme gives the smaller root to approximately ¢ digits with the smaller

number of iterations? Which scheme requires less work ?




2

Numerical Solution of

Linear Systems and Matrix Inversion

0. INTRODUCTION

Finding the solution of a linear algebraic equation system of “large”
order and calculating the inverse of a matrix of “large” order can be
difficult numerical tasks. While in principle there are standard methods
for solving such problems, the difficulties are practical and stem from

(a) the labor required in a lengthy sequence of calculations,
and
(b) the possible loss of accuracy in such lengthy calculations performed
with a fixed number of decimal places.

The first difficulty renders manual computation impractical and the second
limits the applicability of high speed digital computers with fixed ““word”
length. Thus to determine the feasibility of solving a particular problem
with given equipment, several questions should be answered:

(i) How many arithmetic operations are required to apply a proposed
method ?
(i) What will be the accuracy of a solution to be found by the proposed
method (a priori estimate)?
(iii) How can the accuracy of the computed answer be checked (a
posteriori estimate)?

The first question can frequentlyt be answered in a straightforward
manner and this is done, by means of an “operational count,” for most

1 For “direct” methods, the operational count is easily made; while for ““indirect”

or iterative methods, the operational count is made by multiplying the estimated
number of iterations by the operational count per iteration.

26
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of the methods in this chapter. The third question can be easily answered
if we have a bound for the norm of the inverse matrix. We therefore indi-
cate, in Subsection 1.3, how such a bound may be obtained if we have an
approximate inverse. However, the second question has only been recently
answered for some methods. After discussing the notions of “‘ well-posed
problem” and ‘“‘condition number” of a matrix, we give an account of
Wilkinson’s a priori estimate for the Gaussian elimination method in
Subsection 1.2. This treatment, in Section 1, of the Gaussian elimination
method is foliowed, in Section 2, by a discussion of some modifications
of the procedure. Direct factorization methods, which include Gaussian
elimination as a special case, are described in Section 3. Iterative methods
and techniques for accelerating them are studied in the remaining three
sections.

The matrix inversion problem may be formulated as follows: Given a
square matrix of order n,

a1y Qi din

Az Qoo - Qgq
(I) A = (a“') =

Apny QApz " Ay,

find its inverse, i.e., a square matrix of order n, say A~1, such that
) A4 = A4 =T = (3.

Here 1 is the nth order identity matrix whose elements are given by the
Kronecker delta:

0, if i # J;
3 &y =
) ’ {1, if i =j.

It is well known that this problem has one and only one solution iff the
determinant of A4 is non-zero (det 4 # 0), i.e., iff 4 is non-singular.

The problem of solving a general linear system is formulated as follows:
Given a square matrix 4 and an arbitrary n-component column vector
f, find a vector x which satisfies

(4a) Ax = f,
or, in component form,

a;x; + @xo + 0+ A1aXy, = 1,
(4b) ‘.121)‘1 + Ggoxy + -+ AanXy = fo

A X1 + GpaXp + -0+ AuaXy = fn'
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Again it is known that this problem has a solution which is unique for
every inhomogeneous term f, iff 4 is non-singular. [If 4 is singular the
system (4) will have a solution only for special vectors f and such a solution
is not unique. The numerical solution of such *singular” problems is
briefly touched on in Section 1 and in Problems 1.3, 1.4 of Chapter 4.]

It is easy to see that the problem of matrix inversion is equivalent to
that of solving linear systems. For, let the inverse of 4, assumed non-
singular, be known and have elements ¢;;, that is,

A7 = (¢
Then multiplication of (4a) on the left by 4~ yields, since Ix = x,
(5a) x = A",

or componentwise,

n

(5b) X = Zlci,.f,», i=1,2...,n
i=

Thus when the ¢;; are known it requires, at most, » multiplications and
(n — 1) additions to evaluate each component of the solution, or, for the
complete solution, a total of »? multiplications and n(n — 1) additions.

On the other hand, assume a procedure is known for solving the non-
singular system (4) with an arbitrary inhomogeneous term f. We then
consider the » special systems

6) Ax = e, j=12,...,n,

where e is the jth column of the identity matrix; that is, the elements
of e are e’ = &, i = 1,2,..., n. The solutions of these systems are n
vectors which we call x?, j =1, 2,..., n; the components of x? are
denoted by x{. With these vectors we form the square matrix

@) X = (x),

in which the jth column is the solution x? of the jth system in (6). Then
it follows from the row by column rule for matrix multiplication that

) AX = (8) = I
Since 4 was assumed to be non-singular, we find upon multiplying both
sides of (8) on the left by 4~! that

X=A4"1

Thus, by solving the » special systems (6) the inverse may be computed;
this is the procedure generally used in practice. The number of operations
required is, at most, n times that required to solve a single system. However,
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this number can be reduced by efficiently organizing the computations
and by taking account of the special form of the inhomogeneous terms,
e, as we shall explain later in Subsection 1.1.

PROBLEMS, SECTION 0

1. If the columns of 4 form a set of vectors such that at most ¢ of the columns
are linearly independent, then we say that the column rank of Ais c. (Similarly
define the row rank of A to be r by replacing ‘““columns’ by *‘rows’ and
“¢” by ““r.””) Prove that the row rank of A equals the column rank of 4.

[Hint: Let row rank (4) = r; and use a set of r rows of 4 to define a sub-
matrix B with row rank (B) = r. Then show that ¢ = column rank (4) =
column rank (B). Hence, since B has r rows, ¢ < r. Similarly show that
r < c¢.] Hence define rank of A by rank (4) = r = ¢.

2. (Alternative Principle) If A is of order n, then either

Ax = o iff x =o,
or else
r =rank (4) < n

and there exist a finite number, p, of linearly independent solutions {x}
that span the null space of A4, i.e.,

Ax? = o, i=12...,p,

P
and if Ax = o there exist constants {a,} such that x = > «;x%. Show that
=1
p=n-—r.
3. Observe that
) Ax = f
has a solution iff fis a linear combination of the columns of 4. Hence show that:
(9) has a solution x iff rank (4) = rank (4, f); (9) has a solution x iff y'f = 0
for all vectors y # o such that y"4 = o. (In this problem, 4 may be rect-
angular; (A4, f) is the augmented matrix).

1. GAUSSIAN ELIMINATION

The best known and most widely used method for solving linear systems
of algebraic equations and for inverting matrices is attributed to Gauss.
It is, basically, the elementary procedure in which the “first” equation is
used to eliminate the “first™ variable from the last n — 1 equations, then
the new *‘second” equation is used to eliminate the *“second” variable
from the last n — 2 equations, etc. If n — | such eliminations can be
performed, then the resulting linear system which is equivalentt to the

t Two linear systems are equivalent iff every solution of one is a solution of the
other.
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original system is triangular and is easily solved. Of course, the ordering
of the equations in the system and of the unknowns in the equations is
arbitrary and so there is no unique order in which the procedure must be
employed. As we shall see, the ordering is important since some orderings
may not permit n — 1 eliminations, while among the permissible orderings,
some are to be preferred since they yield more accurate results.

In order to describe the specific sequence of arithmetic operations used
in Gaussian elimination, we will first use the natural order in which the
system is given, say

(1a) Ax = f,
where
X1 h
x
(15) a=@). x=|") ="
Xy, Ja
Before the variable x, is eliminated, we denote the equivalent system (i.e.,
the reduced system), from which x,, x,, . . ., x,_; have been eliminated, by
(2a) A®x = {0 k=12,...,n
where
1
(k)
@ab) av =@, o=’
1

For k = 1 we have AV = 4, fY = f, and the elements in (2b) for & =
2,3,...,n, are computed recursively by

ak-Dv fori <k —1,
(3a) a = 0 forizk, j<k -1,
17
, al'c .
(k—-1) __ P (k—1) ; H .
ai o fori>k,j>k;
k—1,k—1
fE-D fori<k -1,
(3b) ft(k) = agkk— 1)1
k-1) _ k- (k- 1) ;
¥A ZF-D e fori = k.
k-1, k-1

These formulae represent the result of multiplying the (kK — 1)st equation
in A% Dx = f%-1 by the ratio (af*; Y /a¥ P._,) and subtracting the




[Sec. 1] GAUSSIAN ELIMINATION 31

result from the ith equation for all i > k. In this way, the variable x,_;
is eliminated from the last n — k + 1 equations. The resulting coefficient
matrix and inhomogeneous term have the forms

1) D L) 1y (1) (1 1
aiy aiy aiy - aileos azk MR 45 T Sy
2) (2 (2) @) L.og@ (2)
0 a¥ aff T agik-1 Az . Aazn fé
@) .
0 0 a
0 . . . .
@) AP = L0 =
- 1) (k~1) G~ 1) 4 (k= 1)
Q-1 k-1 Qk-1x 700 Ge-1n fEA
) iy ()
0 (2577 tc Qgn fi
73} Gy (k)
Y Acv1,x * 0 Aeian k+1
. ) R ) )
0 0 0 o 0 Ani Apy J Lfn J

It has been assumed above that the elements a2 # Ofork =1,2,..., n.
When this is the case we have

THEOREM 1. Ler the martrix A be such that the Gaussian elimination
procedure defined in (2)-(3) (i.e., in the natural order) yields non-zero
diagonal elements a¥), k = 1,2,...,n. Then A is non-singular and in fact,

(5a) det 4 = a0 a3 -- - a®.

The final matrix A™ = U is upper triangular and A has the factorization

(5b) LU = 4,

where L = (my,) is lower triangular with the elements
0 fori < k,

(5¢) my,, =<1 for i = k,
allak) fori > k.

The final vector ™ = g is
(5d) g=L"1

Proof. Once (5b)is established, we have that det A = (det L) (det U) =
det U and so (5a) follows. To verify (5b), let us set LU = (¢;;). Then,
since L and U are triangular and (4) is satisfied for & = n,

n

— (n)
Cij = Z My iy,
=1

'

n, 5
— ()
= Z m,-kak, .

min ¢
k=1
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We recall that a’ = a;, and note from (3a) and (5c) that
My e1aESY; = alfb — g for2 <k <i k<j

Thus, if i < j we get from the above
o= 3 mual) + )

— (K) (k+ 1) (i)
- (aif — 4y ) + aj

This holds also for i > j since aJ*® = 0 and so (5b) is verified.
Define h = Lg so that

i i

= Z my8x = Z My [0

k=1 k=1
Now from (3b) and (5¢)
MafE = [ ~ fE0 fork < i,

and f = fi. Thus, we find A, = f;, and since L is non-singular (5d)
follows. [

Under the conditions of this theorem, the system (1) can be written as
LUx = Lg.

Multiplication on the left by L-! yields the equivalent upper triangular
system

(63) Ux = g
If we write U = (u,;), then (5) is easily solved in the order x,, x,_,, ..., x;
to get
oo L
n Upn gna
(6b)

n
X; = ( Z ul,x), i=n-1,n-2,..., 1L
Ui i+1

=

We recall that the elements of U = A™ and g = f™ are computed by the
Gaussian elimination procedure (3), without the explicit evaluation of L1,

We now consider the generalization in which the order of elimination
is arbitrary. Again we set AV = 4 and f© = f. Then we select an arbitrary
non-zero element a{!) called the 1st pivot element. (If this cannot be done

171
then 4 = O and the system is degenerate, but also trivially in triangular
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form.) Since a{}), # 0 is the coefficient of the jst variable, x;,, in the i;st
equation we can eliminate this variable from all of the other equations.
To do this, we subtract an appropriate unique multiple of the i;st equation
from each of the other equations; i.e., to eliminate x; from the kth
equation the multiplier must be m,;, = (&3 /ail}).

The reduced system is written as 4@x = @ and it is such that omitting
the i;st equation yields n — 1 equations in the n — 1 unknowns x,,
k # j,. We now proceed with this reduced system and eliminate a second
unknown, say x;,. To do this we must find some element aﬁf}z # 0 with
iy # iy and j, # jj, called the 2nd pivot element. If ¢!2 = O for all r # i,
and s # j; the process is terminated as the remaining equations are
degenerate. After this second elimination the resulting system, say,
A®x = f®, is composed of the i;st equation of APx = f1 the i,nd
equation of A@x = f® and » — 2 remaining equations in only n — 2
variables, x, with k # j;, j.. The general process is now clear and can be

used to prove

THEOREM 2. Let the matrix A have rank r. Then we can find a sequence
of distinct row and column indices (iy, j,), (is, J2), - - -» iy, J;) Such that the
corresponding pivot elements in AV, A?, ..., AV are non-zero and ap = 0
if i # iy, 0y, ..., 0. Let us define the permutation matrices, whose columns
are unit vectors,

P = (e, e%), . .. el .. et)),
Q = (eV2, V2, ..., eV, .. eln),

where iy, ji, for 1 < k < r, are the above pivotal indices and the sets
{ix} and {j,} are permutations of 1,2, ..., n.
Then the system

By =g,

B=P4Q0, y=Q'% g=PT,

is equivalent to the system (1) and can be reduced to triangular form by
using Gaussian elimination with the natural order of pivots (1, 1), (2,2), ...,
(r, r).

Proof. The generalized elimination alters the matrix 4 = AY by
forming successive linear combinations of the rows. Thus, whenever no
non-zero pivot elements can be found the null rows must have been linearly
dependent upon the rows containing non-zero pivots. The permutations
by P and Q simply arrange the order of the equations and unknowns,
respectively, so that b,, = a;,,, v = 1,2, ..., n. By the first part of the
theorem, the reduced matrix B is triangular since all rows after the rth
one vanish. |

where
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If the matrix A is non-singular, then r = n and Theorem 2 implies that,
after the indicated rearrangement of the data, Theorem 1 becomes applic-
able. This is only useful for purposes of analysis. In actual computations
on digital computers it is a simple matter to record the order of the pivot
indices (i,, j,) for v = 1,2,...,n, and to do the arithmetic accordingly.
Of course, the important problem is to determine some order for the
pivots so that the elimination can be completed.

One way to pick the pivots is to require that (i, j,) be the indices of a
maximal coefficient in the system of n — & + 1 equations that remain at
the kth step. This method of selecting maximal pivots is recommended as
being likely to introduce the least loss of accuracy in the arithmetical
operations that are based on working with a finite number of digits.
We shall return to this feature in Subsection 1.2. Another commonly used
pivotal selection method eliminates the variables x;, x5, ..., X,.; In
succession by requiring that (i,, k) be the indices of the maximal coefficient
of x, in the remaining system of n — k& + 1 equations. (This method of
maximal column pivots is particularly convenient for use on an electronic
computer if the large matrix of coefficients is stored by columns since the
search for a maximal column element is then quicker than the maximal
matrix element search.)

1.1. Operational Counts

If the nth order matrix is non-singular, Gaussian elimination might be
employed to solve the n special linear systems (0.6) and thus to obtain
A~ Then to solve any number, say m, of systems with the same co-
efficient matrix A, we need only perform m multiplications of vectors by
A 1. However, we shall show here that for any value of m this procedure
is less efficient than an appropriate application of Gaussian elimination to
the m systems in question. In order to show this, we must count the number
of arithmetic operations required in the procedures to be compared.
The current convention is to count only multiplications and divisions.
This custom arose because the first modern digital computers performed
additions and subtractions much faster than they did multiplications and
divisions which were done in comparable lengths of time. This variation
in the execution time of the arithmetic operations is at present being
reduced, but it should be noted that additions and subtractions are about
as numerous as multiplications for most methods of this chapter. On
the other hand, for some computers, as in the case of a desk calculator, it
is possible to accumulate a sequence of multiplications (scalar product
of two vectors) in the same time that it takes to perform the multiplications.
Hence one is justified in neglecting to count these additions since they do
not contribute to the total time of performing the calculation.
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Let us consider first the m systems, with arbitrary (),
Q) Ax =1(j), j=12,...,m

We assume, for the operational count, that the elimination proceeds in
the natural order. The most efficient application then performs the opera-
tions in (3a) only once and those in (3b) once for each j; that is, m times.
On digital computers, not all of the vectors f(j) may be available at the
same time, and thus the calculations in (3b) may be done later than those
in (3a). However, since the final reduced matrix 4 is upper triangular,
we may store the “multipliers”

aifi
My k-1 = - ’ 2<kc<i

af Py
in the lower triangular part of the original matrix, 4. (That is, m;_ ,_; is put
in the location of a{¥;1}). Thus, no operations in (3a) ever need to be
repeated.

From (3) and (4) we see that in eliminating x,_;, a square submatrix
of order » — k£ + 1 is determined and the last » — & + 1 components
of each right-hand side are modified. Each element of the new submatrix
and subvectors is obtained by performing a multiplication (and an addition
which we ignore), but the quotients which appear as factors in (3) are
computed only once. Thus, we find that it requires

m—k+12+@m—~k+1 ops. for (3a),
n—-—k+1 ops. for (3b).

These operations must be done for k = 2, 3,...,n and hence with the
aid of the formulae,

S, =nnr D, St Dont )

2 6
the total number of operations is found to be:
2 _
(8a) {1_(_n3_1) ops. to triangularize A4,
nin — 1) . . ,
(8b) — ops. to modify one inhomogeneous vector, ().

To solve the resulting triangular system we use (6). Thus, to compute x;
requires (n — i) multiplications and one division. By summing this over
i=12,...,n we get

(8c) ?(L;—l) ops. to solve one triangular system.
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Finally, to solve the m systems in (7) we must do the operations in (8b)
and (8¢) m times while those in (8a) are done only once. Thus, we have

LEMMA 1.
n® , N
)] 3 + mn® — 3 ops.
are required to solve the m systems (1) by Gaussian elimination. [ |

To compute 41, we could solve the n systems (0.6) so the above count
would yield, upon setting m = n,

4n?

" -1
3 3 ops. to compute 4.

However, the n inhomogeneous vectors e are quite special, each having
only one non-zero component which is unity. If we take account of this
fact, the above operational count can be reduced. That is, for any fixed
J» 1 < j < n, the calculations to be counted in (3b) when f = e start
for k = j + 2. This follows, since f{" =0 for v=1,2,...,j — 1 and
/¥ = 1. Thus, if j = n — 1 or j = n, no multiplications are involved and
in place of (8b), we have

n n—j-1
D n—k+D= > v
k=j+2 v=1
=1[j2 — 2n — 1)j + n® — n] ops.
to modify the inhomogeneous vector ¢’ forj =1,2,...,n — 2.

By summing this over the indicated values of j, we find
+(n® — 3n? + 2n) ops. to modify all e, i=12...,n

The count in (8c) is unchanged and thus to solve the » resulting triangular
systems takes

3(n® + n?) ops.
Upon combining the above with (8a) we find
LEMMA 2. It need only require
(10) n® ops. to compute A1, [ ]

Now let us find the operational count for solving the m systems in (7)
by employing the inverse. Since 4~ ! and f(j) need not have any zero
or unit elements, it requires in general

n? ops. to compute 4~ H(j).
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Thus, to solve m systems requires mn? ops. and if we include the »®
operations to compute A ~1, we get the result:

(11 n® + mn? ops.

are required to solve the m systems (7), when using the inverse matrix.
Upon comparing (9) and (11) it follows that for any value of m the use
of the inverse matrix is less efficient than using direct elimination.

1.2. A Priori Error Estimates; Condition Number
In the course of actually carrying out the arithmetic required to solve

(12) Ax = f

by any procedure, roundoff errors will in general be introduced. But if the
numerical procedure is ‘““stable,” or if the problem is “well-posed” in
the sense of Section 3 of Chapter 1, these errors can be kept within reason-
able bounds. We shall investigate these matters for the Gaussian elimina-
tion method of solving (12).

We recall that a computation is said to be well-posed if “small’’ changes
in the data cause “small”’ changes in the solution. For the linear system
(12) the data are 4 and f while x is the solution. The matrix A is said to be
“well-conditioned” or “ill-conditioned” if the computation is or is not,
respectively, well-posed. We shall make these notions somewhat more
precise here and introduce a condition number for A which serves as a
measure of ill-conditioning. Then we will show that the Gaussian elimina-
tion procedure yields accurate answers, even for very large order systems,
if A is well-conditioned, and single precision arithmetic is used.

Suppose first that the data 4 and fin (12) are perturbed by the quantities
84 and 8f. Then if the perturbation in the solution x of (12) is 8x we have

(13) (4 + 8A)x + 8x) = f + of.

Now an estimate of the relative change in the solution can be given in
terms of the relative changes in 4 and f by means of

THEOREM 3. Let A be non-singular and the perturbation 84 be so small
that

(14) 84| < 1/]4-|.
Then if x and 8x satisfy (12) and (13) we have

x| . Ist] 4]
{13) wl < T A U+ )

where the condition number v is defined as
(16) p=pu(d) = |47 |4l
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Proof. Since |47 184 < |47 84| < ! by (14) it follows from the
Corollary to Theorem 1.5 of Chapter 1 that the matrix 7 + 47184 is
non-singular, and further, that

' & T < T
= T=TaTd] = T= T4 T 141

I+ A-184)"

If we multiply (13) by 4! on the left, recall (12) and solve for 8x, we get
8x = (I + A18A4) 1A 1(8f — 8Ax).

Now take norms of both sides, use the above bound on the inverse, and

divide by ||x| to obtain

23] 4~ (Ilﬁf\l

< — — + |64 )
I = T a7 o] (g + 1841

But from (12) it is clear that we may replace ||x| on the right, since
It = /141,
and (15) now easily follows by using the definition (16). n

The estimate (15) shows that small relative changes in f and A cause
small relative changes in the solution if the factor

Y S
L= ulad]/l4]
is not too large. Of course the condition (14) is equivalent to

134
o < 1.
4]
Thus, it is clear that when the condition number u(4) is not too large,
the system (12) is well-conditioned. Note that we cannot expect u(A) to be

small compared to unity since
Ml = 147 4] < (4).

We can apply Theorem 3 to estimate the effects of roundoff errors
committed in solving linear systems by Gaussian elimination and other
direct methods. Given any non-singular matrix A4, the condition number
u(A) is determined independently of the numerical procedure. But it is
possible to view the computed solution as the exact solution, say x + 8x,
of a perturbed system of the form (13). The basic problem now is to deter-
mine the magnitude of the perturbations, 84 and 8f. This type of approach
is called a backward error analysis. 1t is rather clear that there are many
perturbations 84 and 8f which yield the same solution, x + 8x, in (13).
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Our analysis for the Gaussian elimination method will define 84 and &f
so that

of = 0.
Then the error estimate (15) becomes simply

[8x _ _ plsA]/]4]
an Ixl = 1~ ul4]/]4]

and it is clear that only ||84] in this error bound depends upon the round-
off errors and method of computation.

In the case of Gaussian elimination we have seen in Theorem 1, that
exact calculations yield the factorization (5b),

LU = A.

Here L and U are, respectively, lower and upper triangular matrices
determined by (5¢) and (3a). However, with finite precision arithmetic in
these evaluations, we do not obtain L and U exactly, but say some tri-
angular matrices ¥ and %. We define the perturbation E due to these
inexact calculations by

(18) PU =A+ E.
There are additional rounding errors committed in computing g defined
by (3b) or (5d), and in the final back substitution (6b) in attempting to

compute the solution x. With exact calculations, these vectors are defined
from (5d) and (6a) as the solutions of

Lg =f, Ux = g.

The vectors actually obtained can be written as g + 8g and x + 8x
which are the exact solutions of, say,

(192) (£ + 8L)g + 8g) = 1,
(19b) (U + 8U)x + 8x) = (g + Bg).

Here £ and # account for the fact that the matrices L and U are not
determined exactly, as in (18). The perturbations 8. and 8% arise from
the finite precision arithmetic performed in solving the triangular systems
with the coefficients .# and %. Upon multiplying (19b) by £ + 8. and
using (19a) we have, from (13) with 8f = 0,

(A + 84) = (£ + 8L)NU + &%).
From (18), it follows then that
(20) 84 = E+ Z(8U) + 3LYU + (8L)(3%).
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Thus, to apply our error bound (17) we must estimate ||E|, | 8%||, and
|821. Since ¥ and % are explicitly determined by the computations,
their norms can also, in principle, be obtained.

We shall assume that floating-point arithmetic operations are performed
with a ¢-digit decimal mantissa (see Section 2 of Chapter 1) and that the
system has been ordered so that the natural order of pivots is used [i.e., as
in eq. (3)]. In place of the matrices 4 = (¢{¥) defined in (2) and (3a),
we shall consider the computed matrices B® = (b{¥) with the final such
matrix B™ = % = (u,), the upper triangular matrix introduced above.
Similarly, the lower triangular matrix of computed multipliers £ = (s;)
will replace the matrix L = (m,;) of (5¢). For simplicity, we assume that the
given matrix elements 4 = (g;;) can be represented exactly with our
floating-decimal numbers.

Now in place of (3a) and (5c), the floating-point calculations yield
b% and s;; which by (2.6) of Chapter 1 can be written as:

fork =1,

(21a) by = ay, Lj=1,2,...,n;
fork=12,...,n—1,

b, i <k,

0, izk+1,j<k,

ib)  bfED =
(657 — subi(1 + 65°1079](1 + ¢71079),

izk+1,j=2k+1;

and finally
0, i<j,
@10) 5o =40 =
by

5 (1 + $;;1079), i>J.
Here the quantities, 8, ¢, ¢ satisfy
6Pl <5, 1Pl <5 Il <5

and they account for the rounding procedures in floating-point arithmetic.
Of course, the above calculations can be carried out iff the 5} # 0 for
j < n — 1. However, this can be assured from

LEMMA 1. [If A is non-singular and t sufficiently large, then the Gaussian
elimination method, with maximal pivots and floating-point arithmetic
(with t-digit mantissas), yields multipliers s, with |s;| < 1 and pivots
b #£ 0

17 N

Proof. See Problem 8. [ ]
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It turns out that we require a bound on the growth of the pivot elements
for our error estimates. That is, we seek a quantity G = G(n), independent
of the a;, such that

(222) 69| < Gwa,  j=1,2,...,n;
where
(22b) a = max |ayl.

9

Under the conditions of Lemma 1, it is not difficult to see, by induction
in (21b), that
(22¢c) G <1+ +5x 10791 = 2"~ 4 O((n — )10},

This establishes the existence of a bound of the form (22), but it is a
tremendous overestimate for large n. In fact for exact elimination (i.e.,
no roundoff errors) using maximal pivots it can be shown that

(23a) la?| < g(ia,
where
(23b) g(j) < yhranmd,

The quantity g(n) would be a reasonable estimate for G(#) if the maximal
pivots in the sequence {B™®} were located in the same positions as the
maximal pivots in {4®}. We know that if 4 is non-singular and ¢ is suffi-
ciently large, then the indices of the maximal pivotal elements used to find
{B®} are also indices of maximal pivots in an exact Gaussian elimination
procedure for 4. For two special classes of matrices it is established in
Problems 6 and 7 that g(n) < 1 and g(») < n. The best (i.e., lowest)
bound for G(n) [or for g(n)] is not known at present.

We now turn to estimates of the terms in 84. Our first result is a bound
on the elements of £ which we state as

THEOREM 4. Under the hypothesis of Lemma [ the Gaussian elimination
calculations (21) are such that

LU = A+ E
where E = (e,,) satisfies
(i — D2aG(n)10* ¢, fori < j;
(24) leg| < 4. ) 1(—t) . j.
Jj2aG(n)10' ¢, fori > j.

Here G(n) is any bound satisfying (22).
Proof. We write the last line of (21b) as
(25a)  BEFY = b — 5,6 + €D, izk+1,j=2k+1,
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where from Lemma 1 and (22) it follows that
(25b) |ek* V| < 2aG(n)10* ¢, izk+1,j=k+1.

Similarly, multlplymg the last line of (2lc) by 5%} and dividing by
1 + ¢4,;,107", we can write the result as

(26a) 0= b — s, + 5*7, i>J;

where again we find that

(26b) [+ D] < 2aG(n)10* i> ]
Upon recalling (21) we have
L = (si), = (b
so that
LUy = D subf
k=1
mind,5)
= Z sikbsckj)'
k=1

Now let i > j and sum (25a) over k = 1,2,...,j — 1 and then add (26a)
to get, with the aid of (21),

0=bY — Z sub + Z e+ D) i>J
K=

From the last two equations above and the fact that
b =a

we sec that the elements e;; with i > jof £ = %% — A are
/
(272) ey = D 4V, i)
k=1

For the elements with i < j, we just sum (25a) over k = 1,2,...,i — 1,
recalling that s;; = 1, and obtain as before

i-1

(27b) e; = > ¥tV i<

k=1
But now (24) follows from (27) by using the bounds (25b) and (26b). W

As a simple corollary of this theorem, we note that since |e,| <
2(n — DaGm)10'~, it follows that

(28) [E]o < 2an(n — 1)G(n)10' .
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The elements in . and 8% can be estimated from a single analysis of
the error in solving any triangular system (with the same arithmetic and
rounding). Thus we consider, say,

(29a) Tu=nh
where T = () is lower triangular and non-singular, i.e.,
(29b) ty #0; t; =0, j > i=1,2,...,n

The exact solution of (29) is easily obtained by recursion and is

(30a) uy = ti'hy
i-1

(30b) u, = tgl(hi - Z t“cuk), I = 2, 3, [ (B
k=1

For numerical solutions, we have

THEOREM 5. Let the ‘“‘solution” of (29) be computed by using t-digit
floating-point arithmetic to evaluate (30). Then the computed solution, say v,
satisfies

(31a) (T + 8T)v=h
where the perturbations are bounded by
(3ib) |81, < max [2, i — j + 1{]]1,;]10* "¢ < n|t,| 1014

Here t is required to be so large that n10' 7t < 1.

Proof. In the notation of Section 2 of Chapter | the floating-decimal
evaluations, v;, of the formulas (30) are

v, = fl

=fl , i=23...,n
Then by using (2.6¢c) of Chapter 1, we must have from the above
(32a) v, = tthl(l + ¢,1079), lé1] < 5;
i—-1
ﬂ(h, —- z tikvk)
k

(320) o= ——EE 1+ 4107, gl <S5 i=23...n

ii
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If, in the floating-point evaluation of the numerator in (32b) the sum is
first accumulated and then subtracted from A;, we can write, with the use
of (2.6a) and Lemma 2.2 of Chapter I,

i-1 i—1
ﬂ(h,» - > tikvk) = [hi - > (e + Bt,k)uk](l + 6,107Y),
k=1 k=1
i=23,...,n
Here |6,] < S and

51| < {(i—k+ D)tg10t-,  2<k<i-—1,
=21, 10t k=1, i=23,...,n

From the above and (32) we now obtain, solving for the h,,

to(1 + 6,107 71 = hy,

i-1

vl + 1079711 + 64,1079~ + i (tye + Styv, = hy,
= i=23...,n

However, if we write

ty + 8ty = ti(1 + ¢,107H) 72

ty + 8ty = ty(1 + 107971 + 6,10-H~?
then it follows from |¢;| < 5, |6, < 5, and n10*~* < 1 that
[8t3,] < [t14]101 78,
|82, < 2|ef101 7, i>1 n

We are now able to obtain estimates of the elements in 8.% and 3%
or more importantly those in 64. These results are contained in the
basic

THEOREM 6 (WILKINSON). Let the nth order matrix A be non-singular and
employ Gaussian elimination with maximal pivots and t-digit floating-point
arithmetic to solve (12). Let t be so large that Lemma | applies and that

ni0*-t < 1.
Then the computed solution, say X + 8x, satisfies

(A + 84)(x + &x) =1
where

(33) [8ayl < 2n + 3n?)G(n)al0*
and G(n) is any bound satisfying (22).
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Proof. We have already shown that 84 is given by (20) where the ele-
ments of E are estimated in (24). Since 8.% is the perturbation (19a) in
solving the lower triangular system %g = f, we can apply Theorem 5.
We note that the elements of & = (s;;) are given by (21c). Since maximal
pivots are used |6)] > 6] so that |s,,] < 1 and we easily get from (31b)
in this case

|(8$)£J| = |Ssij| < nl0' %

The elements of 8% are the perturbations in solving a system of the
form %y = z with % = (u;;) = (b}Y) where the b{? are defined by (21b).
This system is, of course, upper triangular but the estimates of Theorem $
still apply. Since maximal pivots are used we have, recalling (22),

luyl = 167 < 16| < Gma,  i<j, i=12,...,n;
and now (31b) yields
|(8%);,} = |8uy,;| < nG(n)al0* L.

From (20) we have
mind, 5
da;; = ey + z (Sixbup; + Bsiytty; + 8s5.8uy;).
k=1
By taking absolute values and using the above bounds on [8uf, |8s;],
[ul, |51, as well as (24), we easily obtain

|8a;,] < 2n + 2n% 4 n®10'~9)G (n)al0 -,

However, since it was required that nl10'~! < 1, the result in (33)
follows. [ ]

From this theorem, it follows that the computed solution is the exact
solution of a system only slightly perturbed from the original if enough
figures are used, i.e., ¢ sufficiently large. Appropriate values for ¢ depend
upon n and the bound G (n). If, as indicated in (22c), G (n) were of the order
2"~1 only relatively small order systems could be treated effectively.
On the other hand, if G(n) = g(n) < 3n%*%'" as in (23), then quite
large order systems can be treated with the number of digits used on
modern digital computers (say ¢ = 8). It is generally believed, however,
that even this latter estimate for G(n) is a generous overestimate, when
using maximal pivots. It should be observed that essentially all of the
previous analysis is valid if only partial pivoting, say maximal column
pivoting, is employed since then |s;| < 1 is maintained. However, the
growth factor G(n) for this procedure cannot be estimated well in general.
In fact, it is possible that the upper bound (22c) which still applies may be
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attained. In spite of this, partial pivoting is found to be effective in practice
but the absence of any type of maximal pivoting strategy frequently leads to
catastrophic growth of rounding errors.t

From (33) we easily find that

(34) 184 < (202 + 3n®)G(m)al0*t,

and this can be employed in (17) to obtain maximum norm bounds on
the relative error. It is clear that this relative error in x may not be small
even though the relative perturbation, [84]|/| 4], is small. In such a case,
A would be ill-conditioned. By (17), the relative error [8x]|/|[x|| is small
if |47 |84] is small. For a given G(n) and pu(4) equation (34) may
be used to find the value of ¢ that assures a solution with a prescribed
accuracy.

Finally, we recall that a computed inverse of 4 can be obtained by sol-
ving the n systems (0.6). If we denote the matrix obtained as 4A=! + F,
then as above we can show that each column vector of 47! + F, ie.,
(A~1 + F),, satisfies an equation of the form, for some perturbation
matrix 849,

(35a) (A + 8APYA  + F), =P,  j=1,2,...,n

Under the assumptions of Theorem 6, the estimates (33) and (34) also
apply to the current perturbations, 84. Then, if [847] < /|47
we have, almost as in the proof of Theorem 3,

1F o w3471/ 4]
1451~ 1 = w(A)[[847] /] 4]

(35b)

Thus, as was to be expected, the columns of the inverse matrix are obtained
to within the same relative error [i.e., compare (17)] as is the solution of
any particular system.

1.3. A Posteriori Error Estimates

Although we do not advocate inverting a matrix to solve linear systems,
it is of interest to consider error estimates related to computed inverses.

t Experience indicates that we usually achieve greater accuracy in the single precision
solution, if we first scale the matrix A, That is, if with B = D, A4 D,, we solve

By = D.\f

for y; and then determine x from D,y = x. Here D; and D, are some diagonal
matrices chosen so that the # columns and the » rows of the matrix B have approxi-
mately equal norms. A complete mathematical explanation of this phenomenon 1s
not available.
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Let A be the matrix to be inverted and let C be the computed or alleged
inverse. The error in the inverse is defined by

(36a) F=C- 471

we also use another measure of error called the residual matrix:
(36b) R=AC - I

We have first

THEOREM 7. If |R| < 1 then:

(37a) A and C are non-singular;
(37b) 4= < JClAL = [RI;
(37¢) El < [Cl- IR/ = [R]).
Proof. We write (36b) as
AC =1 + R,

and use the corollary to Theorem 1.5 of Chapter 1 and | R|| < 1 to deduce
that AC is non-singular. Part (37a) then follows. Take the inverse of both
sides in the above equation and multiply on the left by C to find

A1 =C(U + R

Now (37b) follows by taking norms and by again using the corollary to
Theorem 1.5 of Chapter 1. From (36) we see that F = A"!R and so,
IF| < |4~} | R], and (c) follows by an application of (b). ]

Note that we may just as well consider A to be an approximation to the
inverse of C. Thus we obtain the

COROLLARY. Under the hypothesis of Theorem 7,
(37d) IC=* < J4ll/(t — |[R]),
(37¢) |4 — =t < 4] [RI/(X — | R]). |

Since 4 and C are presumed known, we could actually compute |C|,
|4, and [R] in the estimates (37). This, of course, is what is meant by
a posteriori estimates. In general, #»® multiplications are required to form
AC and this computation, as well as that of the norms, is subject to simply
estimated roundoff errors. In contrast, the quantity 84 entering the a
priori estimates (17) and (34) cannot be computed. It is hardly necessary
to point out that G(n) is determined easily after the elimination process
has been completed.

IA

IA
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It is of interest to note that, under the hypothesis of Theorem 7, with
C an approximate inverse of 4 we can find the perturbation 84, so that C
is the exact inverse of A + 8A4. That is, set

(A4 + 384)C = 1.
Hence,
~84 = (AC - DNC™!
= RC™1,

Upon taking norms and using (37d), we then have

LRI (4]
38 SA| < L2l
(38%) || ” 1 — ”R”

Finally, we observe that the computed inverse can also be used to
estimate the error in solving a linear system. We state this result as

THEOREM 8. Let an approximate solution 'y of
Ax =f

have the residual vector

(39) = Ay — f.

Then, if an approximate inverse C of A satisfies |R| = |AC —I| < 1,
we have

Irl-1Cl
40 - x| € +¥—4—=7
(40) ly [ 1= [R]
Proof. From Theorem 7 it follows that A4 is non-singular and so from
(39
y =AY + 1)

Subtract x = 4~ !f from this to find, after taking norms,
ly — x| < |47 ]r].
The result (40) then follows from (37b). n

The determination of the residual vector r is the first step in an iterative
procedure to improve upon the accuracy of the solution (see Subsection
4.3).

It should be noted that the result in this theorem is independent of the
manner in which the approximate solution, y, is obtained. Thus, it was
not assumed that y = Cf. This suggests, in fact, that the sole purpose for
computing C and R might be to use them in error estimates of the form
(40). That is, once the constant M = |C[|/(1 — | R]) is known, it requires
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only n? multiplications to compute r for each approximate solution y
of a system with coefficient matrix 4. If one wished to use (40), after
finding y by Gaussian elimination, then an approximate inverse C could
be obtained by using the approximate factorization of A4. This, by (8a)
and (10), would require twice as much labor as was already expended to
find y.

PROBLEMS, SECTION 1

1. Show that 4% is non-singular iff 4 is non-singular, for the Gaussian
elimination method.

2. Describe how the maximal pivot scheme permits the completion of the
elimination method, when A4 is singular.

3. Prove the following corollary to Theorem 2: If interchanges of rows and
of columns are made and r = n, then

det A = (- 1)'ai}},ai3),. . .af.,
where aff), are the successive pivotal elements in the Gaussian elimination
scheme and (—1)’ = det P det Q.
4. If A is symmetric and positive definite (that is, x*4x > 0 and

‘ ?_“ ayxix; = 0 only if x, = 0 for all /; a,; and x, real), show that
si=1

(a) ay > 0
(b) max ay = rr‘lzix lai;|. [Hint: For (b), if |a,s] = max |a,], then with
. 1.4

x;=0fori#r,s
n

auXxiX; = QX + 2a,,0,%, + assx:2 = 0
t,i=1

for non-trivial x,, x; if a,,ass < a,s2.]

5. If A4 is symmetric, positive definite, then the submatrices (a) for
k < i,j < n are symmetric, positive definite. [Hint: Use mathematical in-
duction on k. Symmetry from

(2) — (1 (1
aif = aif — —g5at¥y.

Positive definiteness from Problem (4a) and
n n n a(_l) 2
S oaPxx; = 3 aPxx; — af¥ [xl + > %xx] .
f.j=2 =1 1=2 41y
That is, if (a{?) is not positive definite, then (a{}’) is not.]

6. (Von Neumann-Goldstine.) 1If A is symmetric, positive definite, then
aP < af v for k<i<n k=23,...,n (Hence by Problem (4b),
max [a’] < max |a,|.)

7. (Wilkinson.) If A is a Hessenberg matrix (i.e., ay; = 0 for i > j + 2),

max [aP] < n max lasl,

if maximal column pivots are used. [Hint: Only one row is changed in passing
from A%~V to 4@ ]
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8. Prove Lemma 1.

9. If A is symmetric, use the first part of Problem 5 to show: the number of
operations to solve (1) by Gaussian elimination, with diagonal pivots, is
/6 + O(n?).

10. If in (1), A and f are complex, show that (1) may be converted to the
solution of a real system of order 2n.

2. VARIANTS OF GAUSSIAN ELIMINATION

There are many methods for solving linear systems that are slight varia-
tions of the Gaussian elimination method. None of these methods has
succeeded in reducing the number of operations required, but some have
eliminated much of the intermediate storage or recording requirements.
Caution should be taken in applying any variation that does not allow
for the selection of some sort of maximal pivots, which is generally neces-
sary to prevent the growth of rounding errors.

The modification due to Jordan circumvents the final back substitution.
This is accomplished by additional computations which serve to eliminate
the variable x, from the first & — 1 equations as well as from the lastn» — &
equations at the kth stage of the reduction. In other words, the coefficients
above the diagonal are also reduced to zero and the final coefficient matrix
which results is a diagonal matrix. The obvious modifications which are
required for this Gauss-Jordan elimination are contained in

n
(1a) ay = ay
a1y
(1b) al =gV — gk foristk—1,j2k— 1
Q-1 %-1
(loy a®2,,; =af b, forj>k — 1
(1d) ay = aff~v forj <k — 1.
@) =
K 1 as 2 k-1
(2b) z()szk_)—(k'_—l) Ue -1 fori#k —1
Qe _1k-1
(2¢) 2y =D fork =2,...,n.
The solution 1s then
f L0 1
'Tap Ty

It is clear that pivoting on the maximal element in the remaining square
submatrix may be retained in this procedure. Hence, multipliers for
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i < k — 1 may exceed unity. Furthermore, the number of operations is
somewhat greater than in the ordinary Gaussian elimination with back
substitution; it is now

3 - +n —Eops.

Thus, there does not seem to be any great advantage in using the Gauss-
Jordan elimination in actual calculations with automatic computing
equipment.

Another variation is the so-called Crout reduction. This method is
applicable if the rows and coluinns are so arranged that no column inter-
changes are required in the Gaussian elimination (as in the case of sym-
metric, positive definite matrices; see Theorem 3.3). Thus, in general, the
pivots will not be the maximal elements. Hence, errors may grow very
rapidly in the Crout method and it is not recommended unless the system
is of relatively small order or if it can be determined that the error growth
will not be catastrophic. (In practice one may apply the method and test
the accuracy of the solution a posteriori.) On the other hand, the Crout
method is specifically designed to reduce the number of intermediate
quantities which must be retained. Thus, for hand computations and
digital computers with small storage capacities it may be of great value.
The Crout method may be modified to use maximal column pivots, by
incorporating row interchanges as described in Theorem 3.1 (or see
Theorem 1.2).

This “compact” elimination procedure is based on the fact that only
those elements a’, in the Gaussian elimination, for which j > i and
i < k, are required for the final back substitution.

Thus, we seek a recursive method of defining the columns of L (lower
triangular matrix of multipliers) and rows of U (upper triangular matrix).
From Theorem 1.1, we know that

LU = A.

Hence, let us write the formula for a,; from the rule for matrix multipli-
cation, after a simple algebraic transformation, in the form

k-1
“ Uy = Qg — z Myl s if k < j;
p=1

and the formula for a, in the form

k-1
(5) nmy = ;4_1_ I:aik - mipup;c:|, ifi > k.
kk

p=1
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We now may use (4) and (5) for k& > 2 to find first the elements of the
kth row of U and then the elements of the kth column of L, provided
that we know the previous rows and columns, respectively, of U and L.
Hence, we need only define the first row

(4, U, = a; forl <

A
=

and first column

(5h my = au for2 < i
a1

A

n.

If we define u; .1 = fi; @i, n+1 = f; and use (4) for j = n + 1, we find
a column (u, ,.,) which is the vector g of Theorem 1.1.

We then use the back substitution to solve Ux = g as before [where U
represents the first #» columns of (u;,)]. The operational count, for producing
L, U, and g, is easily found to be (2n® + 3n% — 5n)/6. It is not surprising
that this is the same as the number of operations required by the conven-
tional Gaussian elimination scheme to produce L, U, and g (since we
merely avoid writing down the intermediate elements but have ultimately
to do the same multiplications and divisions).

We could show now, if the inner products in (4) and (5) are accumulated
in double precision before the sum is rounded, that the effect of rounding
errors is appreciably diminished. In fact, the estimate in place of (1.34)
becomes

184l = OR2G(n)al0~?).

PROBLEM, SECTION 2

1. Verify the operational count for the Crout method: 2n® + 3n%2 — 5n)/6.

3. DIRECT FACTORIZATION METHODS

The final forms, (2.4) and (2.5), that are used in the Crout method,
suggest a more general study of the direct triangular decomposition

¢)) LU = 4,
in which the diagonal elements of L are not necessarily unity. In fact,

if we consider L = (J;;) then (1) implies

k-1
(2a) Lty = Qe — Z Lieptpics fork > 2
p=1
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(2b) U, = (ak, 2 1kpup,) forj>k > 2

20 Ly = — (a”c - Z l‘,,u,,k), fori>k >

[Equations (2a, b, ¢) hold for £ = 1, if we remove the 3 term.] Equation
(2a) determines the product /,,u,, in terms of data in previous rows of U
and columns of L. Once /,;, and u,, are chosen to satisfy (2a), we then
use (2b) and (2¢) to determine the remaining elements in the Ath row
and column.

If l,.u,,. = 0O, the factorization is not possible, unless all of the brackets
vanish in (2b), for j > k, or all of the brackets vanish in (2c), for i > k.
If A is non-singular, then the use of maximal column pivots results in the
sequence (iy, 1), (iy, 2), - . -, (iy, 1) as pivotal elements. Hence, the Gaussian
elimination process shows that the triangular decomposition

LU = P74,

is possible, where P is defined in Theorem 1.2. In fact, if A4 is non-singular,
one of the bracketed expressions in (2¢) does not vanish, for some i > k.
Therefore, one of the bracketed expressions in (2¢) is of maximum ab-
solute value for i > k, say fori = i, = k. We may then move the elements
of the row i, in both A4 and in the part of L that has already been found
up to row k. (The rows &k, k + 1,...,i, — 1 are moved down in both
L and A to fill the gap.) Hence, if 4 is non-singular we may, with row
interchanges, employ (2a, b, and ¢) to achieve a triangular factorization.

We summarize these facts in

THEOREM 1. If A is non-singular, a triangular decomposition, LU = A,
may not be possible. But a permutation of the rows of A can be found such
that B = PTA = LU, where P = (p,;) and

{0, r#
Prs = .
1, r =i,
In fact, the P may be found so that
el =2 [l fori>k; k=12,...,n-1 ]

Note that in this result, in contrast to that in Theorem 1.2, we have only
employed row interchanges.

A symmetric choice I, = u,, may lead to imaginary numbers, if the
right-hand side of (2a) is negative; a less symmetric choice /; = [uy
keeps the arithmetic real if 4 is real (see Problem 1).
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As in the Crout method, we may consider f as an additional column
of A4 (ie., a;, ,+1 = f) and use (2b) for j = n + 1 to define the elements
& = U; 41 such that

Ux =L 'f=g

In Subsections 3.1, 3.2, and 3.3, we consider special applications of this
procedure.

3.1. Symmetric Matrices (Cholesky Method)

We begin with

THEOREM 2. Let A be symmetric. If the factorization LU = A is possible,
then the choice I, = . implies I, = u,,, that is, LLT = A.

Proof. Use (2) and induction on k. ]

A simple, non-singular, symmetric matrix for which the factorization is

l 0

On the other hand, if the symmetric matrix A4 is positive definite (i.e.,
x*Ax > 0 if x*x > 0), then the factorization is possible. We have

THEOREM 3. Let A be symmetric, positive definite. Then, A can be factored
in the form
LLT = A.

Proof. Problems 4 and 5 of Section | show that the Gaussian elimina-
tion method can be carried out, without any interchanges, to give the
factorization (m,)(b;;) = A, where b; > 0. But if we define

L = Uy = \/b_kk,

then by Problem [, we will obtain from (2b, ¢) the elements in the factoriza-
tion

LU = 4,
where

lye = uy ]

A count of the arithmetic operations can be made if we remark that only
the elements /;, defined by (2a, ¢) are involved. If we count the square
root operations separately, we have

n® , N

— +n 3

3 ops. + n square roots = no. of ops. to find L and g.
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In addition, to find x we must solve a triangular system which requires
(n® + n)/2 operations. Thus, 1o solve one system using the Cholesky method
requires n/6 + 3n?/2 + n/3 operation plus n square roots.

To apply our previous error analysis, we deduce from

i i
a; = z Lty = Z Ly,
k=1 k=1
the bounds
|lik[2 <a; <a= max Iai,»|.
L)
For single precision square roots and G(n) = 1, we could prove (as we do

in Theorem 1.6)

THEOREM 4. [If A is symmetric and positive definite, then the approximate
solution of Ax = f obtained by factorization and floating-point arithmetic
with t digits satisfies

(4 + 84y =1,
where for t sufficiently large
[84]o < @l0*~i(2n% + 3n%). |

COROLLARY. Under the hypothesis of Theorem 4, if inner products are
accumulated exactly, prior to a final rounding, then for t sufficiently large

184 = O(n2al0-?). [

3.2. Tridiagonal or Jacobi Matrices

A coefficient matrix which frequently occurs is the tridiagonal or Jacobi
form, in which a;; = 0if |/ — j| > 1. That is,

r S

a C

by ay Cy

€)) A=
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Assume this matrix can be factored in the bidiagonal form

(a, V(1
b, o« 1y
by oy 1
A=LU=
Yn-1
| by an) | 1
Then we find,
(4a) o = a, y1 = Cifey;
(4b) o =a; — by, -, i=23,..,n;
(4c) 7 = cfa, i=23..,n—1

Thus, if none of the «; vanish, the factorization is accomplished by
evaluating the recursions in (4). The “intermediate” solution g of Lg = f
becomes

(5a) &1 = fifou;

(5b) g = (fi — bgi- e, i=2,...,n
and the final solution x of Ux = g is given by

(6a) Xn = &n

(6b) X; = g5 — ViXs41 j=n-=1,n-=-2..,1

In many of the applications of this procedure, the elements (3) of A
satisfy

(7a) las| > |ey| > 0;
(7b) Iagl > Ibil + |ci|, b‘C( # 0, i= 2, 3,. A 1;
I lal > It > 0.

In such cases, the quantities «; and y; can be shown to be nicely bounded
and in fact A4 is non-singular. We state this as

THEOREM 5. If the elements of A in (3) satisfy (7) then det A # O and the
quantities in (4) are bounded by

@ (vl <15 (b) laf = [ < || < |a] + [b].
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Proof. From (4a) and (7a), it follows that |y;| < 1. Assume |y| < 1
fori=1,2,...,j — 1. Then by (4b, ¢)

Cy
= e
Vi a; — by,
and thus o
|C/[ Cy
< < s
Wl = =T, ol < Tl = 15

by the inductive assumption. Finally, by using (7b, ¢) in the above, it
follows that |y,| < 1 and hence (a) is proved. Using this result and (4b)
it follows that

la| + |6 > || > [a] — |b:] (= ed))s
which concludes the proof of the inequalities (a) and (b). But then

det 4 = (det L)-(det U) = [ [ ; # 0. n
=1

It should be noted that, when the conditions (7) hold, the procedure
defined in (4) must be valid. Further if b,c; = 0 for some i # 1, n, then the
system can be reduced to two systems which are essentially uncoupled.
Similarly, if ¢; = 0 or b, = 0 then x; or x,, respectively, can be eliminated
to get a reduced system.

The operational count for this procedure is somewhat striking:

(4) requires 2(n — 1) ops.
(5) requires 1 + 2(n — 1) ops.
(6) requires n — 1 ops.
or a total of
® 5n — 4 ops.
to solve a single system. If there are m such systems to be solved, the

quantities e, 9; in (4) need be computed only once and (S) and (6) are then
each done m times for a total of

)] (Bn — 2)m + 2n — 2 ops.

to solve m systems. Consequently, the inverse can be obtained, although
it should never be used in such circumstances to solve the system, in not
more than

3n* — 2 ops.

The low operational counts in (8) and (9) are due to the fact that the zero
elements of 4 have been accounted for in performing the calculations.
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It should be observed that the factorization computed in (4) is not unique.
Thus, for instance, we could try the form

1 (e ¢ A
B 1 oy Cp

Bs 1

Cn-1
Bn 14 n

The reader should derive the recursions analogous to (4)—(6) for this case
and prove the corresponding version of Theorem 5. We give the reader
leave to develop a treatment and operational count for the general band
matrix. A matrix (¢;;) of order » is called a band matrix of width (b, a) iff

J

¢; =0 for j—iz=a or i—j=bh

3.3. Block-Tridiagonal Matrices

Another form which is encountered frequently, especially in the numeri-
cal solution of partial differential equations and integral equations, is the
so-called block-tridiagonal matrix

Al Cl
B2 A2 C2

(10) A= B, 4, C

B’l Aﬂ

\

Here, each of the A; represents a square matrix, of order m,, and each
of the B; and C; are rectangular matrices which just “fit” the indicated
pattern. That is, B; must have m; rows and m;_; columns, and C; must
have m, rows and m;,; columns. Note that if all m, = m, then all
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the submatrices are square and of order m. The order of the matrix 4 is
n

Z my, or again if all m; = m then the order is (mn).

i=1

A system with coefficient matrix of the form (10) may be solved by a
procedure formally analogous to the previous factorization of a Jacobi
matrix. Thus, let the system be

ay Ax =f
where now
XD f
(12) X =|: s f=1: ,
x(n) f(n)

and each x*” and f> are m-component column vectors. That is, the com-
ponents of the vector x are grouped into subsets, x®, and these subsets
are to be “eliminated,” as in the Gaussian procedure, a group at a time.
Thus, the method to be described is a special case of more general methods
known as group- or block-elimination.

Exactly as in Subsection 3.2 we seck a factorization of the form

(13) A=LU=

B, A,

I

Iy
I,

Iy
Iy

Fn—l
I,

J

where the /; are identity matrices of order m;, the A, are square matrices of
order m;, and the T'; are rectangular matrices with m; rows and m,,,
columns. Proceeding formally, we find that

(14a) A = A, Iy = 4,71Cy;
(14b) Al = A4; - BiFi—l’
(14¢) Iy = A,

From the definitions of the matrices involved, it is clear that each [} is
rectangular of the indicated order and that the product B;T';_; and hence
A, is square of order m;. The system (11) is now equivalent to

(15) Ly = 1,

i=23...,n;

i=23...,n—1

Ux =y
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where y also has the compound form indicated in (12). We thus obtain
formally, from (13) in (15),

yO = A, "W

(16)
y“) = Al_l(f“) - Biy('_l))s i= 2’ 39 ey Ny
d
an x™ = y(n)
17
) x® =y» — I'x*D j=n—-1,n-2,..,L

This method requires (or rather seems to require) the inversion of the
n matrices A; and the formation of the 2(n — 1) matrix products A;~1C,,
BT, _;. To estimate the total number of operations used, we consider the
cases where all m; = m. Then with Gaussian elimination to obtain the
inverses, we require from (1.10) (see discussion below on improving
efficiency by not computing inverses explicitly),

nm? ops. for all A;~1.

The product of two square matrices of order m requires m3 operations,
hence, we have

2(n — 1)m?® ops. for all A;='C; and B,I',_,.
Thus, the evaluation of (14) involves not more than
(18) (3n — 2)m? ops.

The evaluation of (16) and (17) involves only products of m-component
vectors by square matrices and we find

(16) requires (2n — 1)m? ops.;
(17) requires (n — 1)m? ops.
The total for (14), (16), and (17) is thus
(19) Bn — 2)(m® + m2) ops.,

to solve the system (11) with coefficient matrix (10).

Notice that this number is much superior to estimates of the form
4(nm)® which are appropriate for direct elimination methods applied to
arbitrary systems of order (nm). In fact, if n = m the block-elimination
scheme requires about 3m* operations, while from (1.9) straightforward
Gaussian elimination uses on the order of 4m® operations. The great
gain in economy of operations is again due to the careful account taken
of the large number of zero elements in 4. In fact, even greater efficiency
is attained if each T’y is computed by solving the m linear systems, A,T', =
C;, and not by computing 4, ?; and if similarly (15) is solved for y®.
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The count in (19) is then reduced from the order of 3nm® operations
to the order of $nm® operations when we do not compute inverses.
The justification of the block-factorization method is given in

THEOREM 6. If the leading diagonal submatrices
(A, C;
B, A,

A® =

Ce-1
L B, A, |

of the original matrix (10) are non-singular, then the block-factorization
in (14) may be carried out (i.e., the A, are non-singular).

Proof. This is left to Problem 2. [ |

PROBLEMS, SECTION 3

1. If LU = A is a factorization of A satisfying (2), show that /;u; is in-
dependent of the choice of /.. and uy,. that satisfy (2a).

2. Prove Theorem 6.

4. ITERATIVE METHODS

The previous direct methods for solving general systems of order n
require about n%/3 operations. In addition, it has been indicated that, in
practical computations with these methods, the errors which are neces-
sarily introduced through rounding may become quite large for large n.
Now we consider iterative methods in which an approximate solution is
sought by using fewer operations per iteration. In general, these may be
described as methods which proceed from some initial ““guess,” x®, and
define a sequence of successive approximations x‘¥, x? ... which, in
principle, converge to the exact solution. If the convergence is sufficiently
rapid, the procedure may be terminated at an early stage in the sequence
and will yield a good approximation. One of the intrinsic advantages of
such methods is the fact that errors, due to roundoff or even blunders,
may be damped out as the procedure continues. In fact, special iterative
methods are frequently used to improve “solutions’ obtained by direct
methods (see Subsection 4.3).
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A large class of iterative methods may be defined as follows: Let the

system to be solved be

¢)) Ax = f

where det |4] # 0. Then the coefficient matrix can be split, in an infinite
number of ways, into the form

2) A=N-P

where N and P are matrices of the same order as 4. The system (1) is then
written as

3) Nx = Px + f.

Starting with some arbitrary vector x'®, we define a sequence of vectors
{x™}, by the recursion

G Nx® = Px-1 4 f v=12 ...

It is now clear that one of the restrictions to be placed on the splitting
(2) is that
%) det N # 0,

in which case the recursions (4) define a unique sequence of vectors for
all x» and f. As a practical matter, it is also clear that N should be chosen
such that a system of the form

(6) Ny =z

can be ‘“easily’ solved. Furthermore, if greater accuracy is desired, it
would be better to calculate with (4) in the equivalent form

N(x(v) — x(v—l)) =f — Ax"V-D,

This point will be discussed further in Subsection 4.3.
The convergence of the sequence {x} to the solution x of (1) is studied
by introducing the matrix

N M= N-'P
and the error vectors
® eM = x™ _ x, v=0,1,2,....

Subtract (3) from (4) to obtain, upon multiplication by N1,
eM = Mev-D
= M2ev-2

)

= Mve®, v=12, ...,
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where €© is the arbitrary initial error. Thus, it is clear that a sufficient
condition for convergence, i.c., that lim e = o, is that lim M' = O,

Vo oo p o
and this is also necessary if the method is to converge for all ¢,

A matrix, M, that satisfies this condition is called a convergent matrix.
The basic results characteristizing convergent matrices have been estab-
lished in Chapter 1, Theorem 1.4 and its Corollary, which we restate here
as

THEOREM 1. The matrix M is convergent, i.e.,

lim MY = 0,

v— oo

iff all eigenvalues of M are less than one in absolute value. |

(This condition is frequently stated as p(M) < 1 where p(M) is the
spectral radius of M defined by

(M) = max [A
where the A, are the eigenvalues of M.)

COROLLARY 1. The matrix M is convergent if, for any matrix norm,
M| < 1. n

It is, in general, difficult to verify the conditions of Theorem 1. However,
Corollary 1 may frequently be used to show that p(M) < 1. We have
(see Chapter 1, Section 1, for the notation)

COROLLARY 2. The matrix M = (my,) is convergent if either

n

(10a) IM . = max > |my| < 1;
[

or

(10b) IM|, = max > |my| < I

Jooi=1

Proof. We have shown in Chapter [, Section I, that | M|, and | M|,
are matrix norms. [ ]

Let us return to the iteration scheme (4)-(9) and assume it to be a
convergent one. We introduce the notion of the rate of convergence, R,
of the iterative scheme by setting

)] R = —~log p(M).
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The significance of this quantity is most easily seen if we recall

the corollary to Theorem 1.3 of Chapter 1, which states that: p(M) =

g.1.b. |[M| (here {|| [} is the set of natural norms). Given the initial
Ly

error, €@, (9) permits the estimate in terms of any natural norm
le™ < [ M*[e*].

Then for a given € > 0, there is some norm such that

(12) le™l < [p(M) + €]’[e©}.

On the other hand, again from (9), if ¢/© is an eigenvector of M correspond-
ing to the largest eigenvalue, [|e™] = [p(M)]'[e|. Let it be required to
reduce the amplitude of the error by a factor of at least 10~™, m > O.
From (12), we see that, in some norm, the error amplitude is reduced by
a factor close to [p(M)]'. The number of iterations required is the least
value of v for which

[(M)]) < 107™

By taking logs and recalling that 0 < p(M) < 1, we obtain

m m
(13) vE D = R

Thus, the number of iterations required to reduce the initial error by the
factor 10~ ™ is inversely proportional to R, the rate of convergence.

4.1. Jacobi or Simultaneous Iterations

A special case (attributed to Jacobi) of the previous general theory is
(14) N = (aydy,), P=N-— 4= (a,d; — a,).

From (14) in (4), it is seen that the components x{" of the vth iterate are
simply computed with x‘® arbitrary by

v l < v -
(15) x‘,-’:a—“(fi - Z ayx$ 1))
( )

i=1
J#EL

i=12...,n; v=12....

Thus, this procedure may be employed provided only that a, # O for all
i=1,2, ..., n. However, for the convergence of these iterations, Theorem
1 requires that all roots of det |Al — N™'P| = 0 satisfy [A| < 1. This
equation can be written as, assuming det |N| # 0,
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Aay, A - Qyp
a Aa :
(16)  det |AN — P| =det | -+ " °° =0.
: te Qn_1,n
any Ana ’\ann

In general, the roots of such an equation, for large n, are not easily
obtained and so we seek simpler sufficient conditions for convergence, as
given in Corollary 2. The relevant matrix M is easily obtained since N~! =
(a;~18;,) and thus

a1 M=nN-P= (a,, - ‘—’*-f)
Ay
Now conditions (10a) and (10b) of Corollary 2 become
(18a) [M]., = max <1,
[ N (11
G#b
(18b) IM], = max > & < 1.
i =1 [Qu
A#7)

These tests are easily applied in practice. Since p(M) < | M || we obtain a
lower bound on the rate of convergence

1
R =log O
(19)
1
min (M|, [M].)

> log
The operational count for the Jacobi iteration is simply obtained from
(15); it is
(20 n? ops. per iteration.
Thus by (13), if these iterations converge they require a total of about

mxn20S
R oPs-

to reduce the initial error by at least 10~™. We see that if such an iterative
method is to be at least as efficient as the direct elimination method it
should have a rate of convergence and required accuracy factor, say 10~™,
satisfying

IA

ol 3
Wl
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(We assume here that m has been so chosen that the iterative solution will
have an accuracy comparable to the accuracy obtained by the direct
elimination method using the same number of digits in the arithmetic.)

4.2. Gauss-Seidel or Successive Iterations

It is clear from (15) that in the ordinary Jacobi iterations some com-
ponents of X are known, but not used, while computing the remaining
components. The Gauss-Seidel method is a modification of the Jacobi
method in which all of the latest known components are used. The term
““successive” which is frequently applied to this method refers to the
fact that “new” components are successively used as they are obtained.
(In contrast, the previous scheme was called *“‘simultaneous” since new
components were not employed as found, i.e., the “new’ components
were introduced simultaneously at the end of the iterative cycle.)

The obvious modification of (15) suggested by the above remarks is,
with x@ arbitrary,

1 i-1 _
(2 W =—=\fi- Z ayx ~ ayxs* =),
Ay =1

i=12,...,n; v=12....

n
j=1

i=t+1

The splitting of A that yields this iterative scheme is

ay;
Qg1 Qag

(22) N=|. . , P=N-4A
Ldn1 Ano et ann,

Since N is triangular, det [N| s 0 is assured again ifa, # 0;i=1,2,...,
n. The characteristic equation, whose roots must be in absolute value
less than unity for convergence, is now of the form

Adyy, Gy o Qg
Adsy  Adgs
(23) det | : : = 0.
An-1,n
Adyy My -0 Ay,
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The roots of this equation are just as difficult to find as are those of
(16), but the sufficient conditions of Corollary 2 are now much more com-
plicated than those for the Jacobi iteration. However, a simple sufficient
condition for convergence of the Gauss-Seidel method can be obtained.
To derive this condition, we introduce the error vectors defined in (8)
and find from (1) and (21) that the components of these vectors must
satisfy

i— n
(24) & = — Z a; & — Z ay e(v n,

1 A jo1+1 Qi

i=12,...,n; v=12....

The result to be proved may now be stated as

LEMMA 1. Let the vectors e, v = 1,2,..., be defined by (24) with ¢
arbitrary. Define the maximum norm, ||, and factors, r,, by
(252) [e”] = max |&”],
= a
(25b) ZJ‘ 2k
and let the matrix A satisfy
(26) r=maxr < Il
Then i
@n le”le < r*le®]|,

and & —> 0 as v — 0.
Proof. The lemma clearly follows from the inequalities
(28) leVllo < rle” Ve, v=1,2,...5

which we shall prove by induction (on the components of ). From (24)
with i = 1 we obtain, using (25) and (26),

alj

n
|e(1v)] < Z | (v — 1)|
& la
S R N e e S e
o |d11
< rle=Y|,.
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Now assume |e{”] < rlfe®~Vfl, fork = 1,2,...,i — 1. Then again from
(24), recalling that r < 1
iy

Z ay
i=1
[e¥=Y) o {Z

j=1

n

|(v)| + Z

1=t+1

+i

f=i+1

e o

l/\

'e(v 1)|

)

— r'"e(v-l)”w

4y Ay

i

IA

n

le =2 >,

a‘j

[0

A

IA

r”e(v—l)”w_

Thus, the induction argument is complete and since the above inequality
is valid for all i = 1, 2, ..., n, it follows by (25) that (28) is valid. [ ]

The convergence test of this lemma is easily applied and is formally
identical to that of (18a) for the Jacobi method. However, it is not generally
true that if the Gauss-Seidel method converges then the Jacobi method
will converge, nor is the converse generally true.

See Subsection 4.4 for other convergence tests.

4.3. Method of Residual Correction

This iterative scheme improves upon the accuracy of the approximate
solution of (1) (obtained for example by the Gaussian elimination method),
by using the approximate numerical triangular factorization of 4. That
is, the triangularization of (1), performed with ¢ digits, produces &
(lower), % (upper), and x®. Now define

N = 2%, P=N-— A4,
(29)
0 = f — Ax©,

Observe that N is easily invertible, or rather that the equation
LUy =z

may be readily ““solved,” since £ and % are triangular, by using n(n + 1)
operations. [If & = (s;,) has s; = 1 for all i, then the number of operations
used to solve £w = zis n(n — 1)/2, while the number for solving %y = w
is n(n + 1)/2. Hence, in this case n? is the operational count for solving
Ny = z.]

Now, the iteration scheme given by (4) is convergent if M, defined by
(7), satisfies

M| = [1- N4] < 1.
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This inequality is satisfied if |P]|- |4~ < 4 (see Problem 5). In practice,
(4) is not solved in the form

(30) LUK = (LU — AxVV 4+ f,
Rather, we introduce the change in the iterate by

§xVD = x™ _ -1

and the .esidual of the iterate by

31 D = f — gx®-D.
Then (30) can be written simply as

(32) LUBKE-D] = 1o,

and the computations are done with these equations.

The evaluation of r involves n? operations; hence each iteration step,
(31) and (32), requires #(2n + 1) operations (only 2n? operations if s, = 1
for all i). By using (1) and (31) the error satisfies

(33) [x” = x|} = A= < |47 =]
But from (32), the definition of M, and the corollary to Theorem 1.5 of
Chapter 1,
| 475) = 4= VX = |7 - M)~6x]
_ I,
1 —gq
provided ¢ = [M| = |[N'(N - )| < 1.

As described in Subsection 1.2, the numerical solution of (32) produces
a vector 8x~1 that satisfies

34 L, U, 8xOD = gD,
where
Lo1=F +82,_,, Uy =U+ U,_,.
The perturbations 8.%, and 8%, are small relative to £ and % respectively

if the number of digits carried in the arithmetic calculations is large enough.
Set

N, =2%, P,=N,- A4
and
M, = N,7'P,.
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Then the error
e(v) = x(v) - X,
satisfies
e = Mv_le(v-l)

= Mv_le_ze(v—2)

— 0
= V_le_z"'MOe( ).

If [M,] <q <1 for all i, then |e™] < ¢*le®|, and the scheme is con-
vergent for any .

As a practical matter, from equations (31) and (32), we see that r’ — o
may occur only if the right-hand side of (31) is calculated to ever higher
precision as v increases. On the other hand, equation (32) or equation (34)
requires only single precision accuracy for r’~%, in order to determine
§x -1 by using single precision arithmetic.

4.4. Positive Definite Systems

Many of the large order linear systems that arise in practice have
real symmetric matrices which are positive definite. In such cases we can
show that a quite general class of iteration methods converges. We state
this result as

THEOREM 2. Let A be Hermitian (of order n) and N be any non-singular
matrix (of order n) for which

(35) Q=N+ N*—-4
is positive definite. Then the matrix

M=1- N4
is convergent iff A is positive definite.

Proof. For any eigenvalue, A, and corresponding eigenvector, u, of
M we have

Mu = Au.
But since N is non-singular this implies
(36) Au = (1 — )Nu,

and so A = 1 iff Au = o.
Now let A be positive definite (i.e., v*4Av > 0 if v # o) and u be any
eigenvector of M. Then Au # o so that the corresponding eigenvalue A
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of M satisfies A # 1. By taking the complex inner product of each side of
(36) with u we then obtain
| u*Nu-
1 — A u*4u
The complex conjugate of this expression is, since u*A4u is real,
1 _ wN*u
1 -3 u*Adu
If we add these two equations we get

1 u*(N+ N*%u
- u* Au

?.Re1

Now set A = o + B and recall (35) to write this as

20—« .,  wQu
-+ *

u*Au > 1

since by hypothesis Q is positive definite. Hence, we have the inequality
A2 =0a% + B2 < 1.

The sufficiency is thus demonstrated. The necessity part of the proof is
indicated in Problems 1 and 2. n

As an immediate corollary of this theorem, we have a result on the
convergence of the Gauss-Seidel method for Hermitian matrices.

COROLLARY 1. Let A be Hermitian with positive diagonal elements. Then
the Gauss-Seidel method for this matrix converges iff A is positive definite.

Proof. By the hypothesis on A it can be written as

A=D + E + E*

where D is a diagonal matrix of positive diagonal elements and E is strictly
lower triangular (i.e., zeros on and above the diagonal). The Gauss-Seidel
method applied to A, see (22), is equivalent to the splitting

N=D+ E, P =—FE*
However, with this choice for N we have
Q=N+ N*—4=0D

which is clearly positive definite. Thus the hypothesis of Theorem 2
applies and the proof is concluded. [ |
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Similarly, we obtain a result on the convergence of the Jacobi iterations
as a special case of

COROLLARY 2. Let D = D* be non-singular and
D — (E+ E*
be positive definite. Then
D-YE + E¥)
is convergent iff A = D + (E + E*) is positive definite.
Proof. Use N = D in the theorem. [ ]

In the special case that D is a diagonal matrix, Corollary 2 yields the
convergence of the Jacobi method for the matrix A.

4.5. Block Iterations

There are other splittings of A which in many important cases yield
rapidly convergent iterations. In particular, since tridiagonal and block-
tridiagonal systems are easily solved, it is natural to consider iterations in
which N has either of these forms. Many of the large order systems which
arise in the finite difference methods for partial differential equations
suggest such block iterations. More generally, if the elements “close” to
the diagonal of a matrix are large compared to the other elements, it is
usually advantageous to include all of these large elements in N (assuming,
of course, that the resulting systems which determine the iterates are still
easily solved). Of course, in all applications of these block methods,
attempts should be made to prove the convergence of the method and,
if possible, to estimate the rate of convergence.

PROBLEMS, SECTION 4

1. Let the sequence {v,} be defined, with v, arbitrary, by
Vv+1=Mvv, V=0, 1,...,

where M = I — N-'4 and A is Hermitian. Then
(a) Verify the identity

VAV, — VAV = (Y — )P OV — Visy)

where Q = N + N* — A4;
(b) If Q is positive definite show that {v,*4v,} is a non-increasing sequence.
(In fact, the sequence is strictly decreasing if 1 is not an eigenvalue of M.)

2. Use part (b) of Problem 1 to show that if M is convergent then A is
positive definite.
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[Hint: Use proof by contradiction; assume vo*Avy, < 0 for some v, # 0.
Then, since M is convergent, v, # v,. Therefore,

v,*Av, < v1*Av, < vg*Avy < 0.

This is a contradiction, since the convergence of M implies v, — o.]
3. Analyze the convergence of the Jacobi and the Gauss-Seidel iterative
methods for the second order matrix

1
AE( P), fp] < 1, x¢ # o.
p 1

4. Determine when the Jacobi iterative method converges for the com-
pound matrix

I S
A= ),with Iand S
ST I

Xy

Yv

) =C)-C)
g \w v/’
Find a recursion formula for {e,} that doesn’t involve {g,}.]

5. The convergence of the residual correction scheme defined by (30) is
assured if |[7 — N 14| < 1. Verify that this inequality holds if

of order n.
[Hint: Work with the compound vectors ( ) Define the compound error

vectors

1Pf-l4=) < &
[Hint: Let B = A~!'N. Then
I - N4

I-B'=BYB-1I

B~1(A4-'P).

Note that B = 4~ 'P + I and therefore, by the remark following the corollary
to Theorem 1.5 of Chapter 1, we have B~ 1| < 2.]

5. THE ACCELERATION OF ITERATIVE METHODS

Given any iteration procedure, for a specific system of equations, it
may be possible to improve its rate of convergence by a simple device.
Such modifications, which we call acceleration, are frequently termed
“extrapolation,” *‘ over-relaxation,” or various other names depending upon
the problem to which they are applied or perhaps upon the particular
form of device which is used. In any event, the general principle common
to almost all acceleration procedures is the introduction of a splitting,
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similar to (4.2), which depends upon some real parameter, say «, in an
“‘appropriate” manner. The splitting may be denoted by

A = N(a) — P(a)
and is still subject to the requirement that
det |N(e)| 5 O.

(This will place some restriction on the permissible values of «.) Now,
as has been shown in Section 4, an iteration scheme based on the above
splitting will converge, for arbitrary initial vectors, iff all eigenvalues of

M(a) = N~ (a)P(a),

are in absolute value less than unity.
Let these eigenvalues be denoted by

)\i(a), i= 1,2,...,’1;

where, as indicated, their values may depend upon the choice of the
parameter . Now if a value of « can be determined such that

p[M(e)] = max [A(e)] < 1,

the scheme will converge. Furthermore, since the rate of convergence is

R(e) = log Z[T;Gﬁ

the convergence is “best” for the value « = «, such that
plM(ay)] = min p[M («)).

The selection of an optimal «, is the most important feature of acceleration
procedures.

Some acceleration procedures that are commonly used are described
as follows: Let some definite splitting, (4.2), be given by

(1) A=N0_P07

where N, and P, are fixed matrices with det |[N,| # 0. Let the relevant
eigenvalues of this scheme, i.e., those of

(2a) My = Ny~ 'P,,
be
(2b) A, i=12...,n
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Then we introduce the one-parameter family of splittings
N@ = (1 + )N,
Pla) = (1 + a)No — A = Py + aN,.

In order that det |[N(«)| # 0, we need only require « # —1. Then if the
eigenvalues of M(«¢) = N ~(a)P(c) are denoted by pe), i = 1,2,...,n,
we claim that

4 ple) =

The verification of (4) requires only a simple application of the defini-
tions of eigenvalue and eigenvector. Specifically from (2) and (3) we have

©)

At e

1+ o i=1.2,...,n

I
M(a) = N‘l(a)P(a) = mNo_l(Po + (XNO)
a 1
—l+a1+_1+aM°'

Thus, if u is any eigenvector of M, belonging to the eigenvalue A, that is
Myu = Au, we obtain from the above

* u + A u= At u
| l+ae l4+e
That is, u must also be an eigenvector of M(«) belonging to the eigenvalue

(A + ®)/(1 + ). Conversely, if M(a)v = uv we obtain

M(e)u =

o 1
py = M(a)v —I—HV +mM0V,

or, since | + « # 0 by assumption,
My = [l + &) — «]v.
Thus every eigenvector of M («)is an eigenvector of M, and (4) is established
for all @ # —1.
In order to determine convergent schemes of the form (3), we must
study the relation (4). This is done first for a very important class of

special cases in which the ‘“best” such scheme can be obtained. These
results may be stated as

THEOREM 1. Let N, and P, be such that the eigenvalues A of Ny~ 1P, are
all real and satisfy

%) ASAL <A < L
Then the scheme (3) will converge for any o such that
1+ A

6) o« > 3 > —1
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Furthermore, the largest rate of convergence for these schemes is obtained
when

AL+ A,
@) o= ap = —— 3
Sfor which value
. _(on A — A
8) p[M(ea,)] = min p[M(«)] = min (max lp,(a)|) = ————:l—- <1
« « \i=1 2= — A

Proof. A scheme of the form (3) will converge if [u(e)| < 1,i=
1,2, ..., n. Let us introduce

) x =

m, =X —1, j=1L2,..,n

Figure 1

Then (4) can be written as
(10) Fi=mix+1, i=1’2)"-’n,

where by (5), all m; < 0. The equations (10), for the y,; as functions of x,
represent n straight lines with negative slopes. Let us assume that the
A; have been ordered as in (5). Then by (9) we have

m <mg<---<m, <0,

and all the lines (10) are bounded by those for i = 1 and i = n (see Figure
1). Thus, we have for

x>0 u=mx+1

IA

mEmx + 1 =p,;

(1D

IA

x<0:p,=mx+ 1<y <mx+1=py, i=1,2,...,n
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Clearly then, all p; < 1 iff x > 0. Similarly, all g; > —1 iff &, > —1 or
equivalently x < —2/m;. Thus, |w| < 1 iff 0 < x < —2/m,, and using
(9) we obtain (6).

For x > 0 we have by (11)

n
p = max [] = max (|myx + 1], |mx + 1]).
From Figure 1 it is then clear that
. my; ~ m
_ Il = _ M n
min p [mixy, + 1] = [maxe + 1] e,

where x, = —2/(m; + m,). Upon applying (9) again, we obtain (7) and

(8) and the proof is complete. |
YA X-plane YA A-plane YA u-plane
(a>=1) (a<-1)
-
1 x -1 1 x
(a) (b) (c)

Figure 2

By an exactly analogous proof similar results can be obtained for the
case where all A; > 1 (see Problem 1).

In the general case, the A, and hence also the p;(e) will be complex.
Then the schemes (3) will be convergent if the complex numbers u,(«) =
£[«) + infa) all lie in the interior of the unit circle

(12) > =€ +9* =1,
of the (¢, n)-plane. The relations (4) can now be considered as special
points of the mapping of the A = x + iy plane into the u-plane

A+«

13 M=1+a’ a # —1.

This is a special case of the well-known Mobius transformations studied
in function theory. If « is real, we can easily verify directly that the unit
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circle (12) in the p-plane corresponds to a circle in the A-plane given by
(14) (x + @) + 2 = (1 + o).

It can also be shown that any interior point of the circle (14) is mapped by
(13) into an interior point of (12). The transformation (13) is illustrated in
Figure 2 for« > —l and @ < —1.

From this figure it can be seen that convergent schemes can be found
if the eigenvalues A, satisfy either

(15a) Re (A) < 1, i=1,2,...,n
or
(15b) Re (A) > 1, i=12,...,n

That is, a “convergent” value of « can be obtained corresponding to any
circle in the A-plane which has the properties:

(i) the center is on the real axis;
(ii) it passes through the point (1, 0);
(iii) all eigenvalues A; are interior to it.
If such a circle exists, then we call the coordinates of its center (—«, 0)
and this value of « yields a convergent scheme. However, now it is not a
simple matter to determine the best value of «.

5.1. Practical Application of Acceleration Methods

It is assumed that the basic scheme determined by (1) can be efficiently
computed. That is, to solve

Ax =f
we consider the iterates, with X arbitrary, given by
(16) Nox® = Pox®¥-1D 4 f, v=12,....

We assume that such systems can be solved in an efficient manner. Now
the iterates, X, satisfy the system of equations

amn XV = Mox®~D 4+ g, v=12,...,
where g = N, f and M, is defined in (2a).

The acceleration (3) corresponding to this procedure yields with y®©
arbitrary

18) YO =M@Y+ prog v=12,

since N Y(«)f = 1/(1 + )Ny~ . In terms of M, these iterates can be
written as

y(v—1>+L(M0y<V—1>+g), v=12....

) —
19 ¥ =15 [+«
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A comparison of (17) and (19) yields some insight into the relationship
between the basic scheme and its accelerated version:

If « = 0 the basic scheme results. If « > 0 then for any real numbers
a and b,

min (g, b) < b < max (a, b).

« 1
1 + « a+ l + «
So in this case, the acceleration scheme yields a vector on the line segment
joining the previous iterate and what would have been the next iterate of
the basic scheme. The term “interpolated iteration” is frequently employed
to describe this type of acceleration. If —1 < « < 0 then

« + 1 <b ifb <
T+ T+a’\2b ifb>

and the acceleration scheme yields vectors with components whose values
are definitely not between those of y* -1 and Myy®~? + g. The scheme is
now termed an ‘“extrapolated iteration.” Similarly, the remaining case
« < —1 is such an extrapolation method.

To compute using the scheme (19), we define the vectors z by

(20a) Nz = Py =1 + f, v=12 ...,
and then write (18) as

[+4

T+ z.
o

(20b) y» =

y(v—l) +

1+«

Thus, as in the basic scheme, the calculations only require the solution of
systems of the form (20a). [Note that in (20), z** is defined by a recursion
which is similar, but not identical, to (16).]

In general, the eigenvalues A,, or in particular A; and A,, of the basic
scheme will not be known. But it may be possible to approximate the
value ¢ = a, which yields the fastest convergence. This is accomplished
by some test calculations that are easily performed:

Since the rate of convergence is independent of the inhomogeneous
term, f, we seek the best scheme for solving

@n Ay = o.

Since it is assumed that det | 4| 5 0, this system has the unique solution
y = o. Apply the scheme (18) with some fixed value of « = «, to (21) and
compute [actually use (20)]

22 Yy (a) = M¥(e)y®,  v=12,..,
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where y® is an arbitrary but fixed initial vector. If the value «; yields a
convergent iteration, compute until

[y¥(e)| = mjix [¥$(ay)| < 1077,

where m is a fixed positive number. This requires some minimum number
of iterations which we may call v(e,). Repeat this procedure with the same
y@ and m, for a sequence of values of « = «,, aj, . . ., to obtain the corres-
ponding sequence {¥(«,)}. The approximate value for «, can be obtained
by plotting the points ((e;), «;) and choosing that « which seems to mini-
mize the ““function” v(a).

An obvious alternative is to compute the sequence {|y*(«)|} using a
fixed number, say N, of iterations. Then an approximation to «, is that
value which minimizes [y®(a)|.

5.2. Generalizations of the Acceleration Method

There are numerous generalizations of the acceleration method which in
fact are more powerful than the scheme described by (3). The simplest type
of generalization proceeds from a single basic splitting of the form (1)-(2)
but employs cyclically a fixed sequence of acceleration parameters, say
o, ag, . . ., . Specifically fori = 1, 2, .. ., r, define N(e,) and P(e;) asin (3)
and the corresponding matrices M (e;) by
o 1

I

(23) M) = N N a)P(e) = 1+ o + I+ o

MQ, i=1,2,...,r.

The iterations are defined as follows, with x@ arbitrary, forv = 1,2,...:
(248.) y(v. 0) — x(v—l);

(24b) YOO = M(e)y™ L + N~ Yea)f, s=12,...,r;

(24¢) X" = yo 0,

Again, each of the r vectors of (24b) can be obtained by solving a linear
system of the form

N(a)y™® = Play® "D + f.

With this notation, one iteration of this generalized acceleration
scheme requires the same number of computations as r iterations in the
ordinary acceleration scheme. The convergence of this method can be
analyzed by means of the equivalent formulation

25) X = M(ay, agy ..., 0)x" D+ g  v=12...
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where by (24) we find that
M(ey, ag, ..., ) = M(a)- - M(a)M(ey);
(26)
g = [N_l(ar) + M(ar)N_l(ar—1)+ tt
+ M(a,)- - - M(az)N ~ e
As in the proof of (4), the eigenvalues of M(ay, «,, ..., a,) can be deter-

mined, by using (23), in terms of the eigenvalues A; of M,. We find in
fact, that

A+ o

27 y((al,az,...,a,)=;[:11 [ T a, i=12,...,n

are the relevant eigenvalues. Now if we define the rth degree polynomial

_ Aty
(28) POy = [

then convergence is implied by {P,(A)| < 1 fori =1, 2,..., n. In particu-
lar, if all the eigenvalues of M, are real and lie in the interval
a<i<hb,
then convergence is implied by
[P < 1, a<i<h

In this case, the fastest convergence can be expected for that polynomial
which has the smallest absolute magnitude in the indicated interval.
Such problems are considered in Chapter 5, Section 4, and it is found that
the Chebyshev polynomials can be used to find the polynomials of ‘“least
deviation from zero.” Hence, in principle, if a and b are known, the best
acceleration parameters «,, a,, . . ., «, can be determined (see Problem 2).

Another type of generalization of the acceleration method is obtained
by employing a sequence of different basic splittings, say

A=N£—P5, i=1,2,...,r;
and their corresponding accelerated forms
Ni(ew), Pyey).

An application of this technique is contained in subsection 2.2 of
Chapter 9.

PROBLEMS, SECTION 5

1. State and prove a theorem analogous to Theorem 1, for the case that
(5) is replaced by

l <A <A< o-< A,
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2. If (5) is replaced by
—-1<)M=<b<l,

compare the efficiency of

(a) the method using three acceleration parameters {«;} such that {—«} are
the zeros of the Chebyshev polynomial of third degree for the interval [— 1, b],
with

(b) the method using the single parameter &« = (1 — b)/2.

6. MATRIX INVERSION BY HIGHER ORDER ITERATIONS

The previous methods of this chapter have been primarily concerned
with solving linear systems. Of course, as demonstrated in Section 0,
they can all be employed to determine the inverse of any given non-
singular matrix, 4. We consider now an iterative method for directly
computing 4. This method is a means for improving the accuracy of an
approximate inverse, say R,, obtained by other procedures. However,
in many cases the present method is feasible when the initial approximate
inverse is assumed to have the simple form R, = wl. Because of the large
number of operations involved in matrix multiplication, these schemes are
not generally used.

Assume that R, is any approximation to 4 ~! and define the error in this
approximation by

ey Ey, =1 — AR,.

Clearly, if R, = A~! then E, = 0. Now with R, as the initial approxima-
tion, we define a sequence of approximate inverses by

() R, =R,_,(I+E,_+ EZ_,+---+ E?Z]), v=12,...,
(2b) E,=1— AR, v=12....

Here, p is an arbitrary fixed integer not less than two. (This method is
usually described for the case p = 2 but, as will be shown, the *“best”
value for this integer is p = 3.) From (2) we obtain

E,=1— AR,
=]~ AR, I+ E,_; +---+ E2=}
=]-~{U—-E_)I+E,_;+ -+ E2’}
= E¥_,, v=12....

Thus, in one iteration, the error matrix is raised to the pth power and the
method is consequently called a pth order method. Apply (3) recursively,
to find that

4 E, =E”, v=12,....

3)
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Also from (2b) and the above we have
A"l — R, = A"'E,
) = A7E/
= Ro(I ~ Eo)™'Ey™;
where we have used (1) and the assumption that det [I — E,| # 0. It is
now clear that the iterations converge when E, is a convergent matrix
(see Section 4).

Let us assume that E, is a convergent matrix. Then its eigenvalues
M(Ey) satisfy [A| < 1,i=1,2,..., n, from Theorem 4.1. Let

p = pEo) = m‘ax Il
Then, since the eigenvalues of Ey? are AP, the error E, of (4) vanishes
like p*".t

We now pose the problem of determining the “best” value of p to be
used for any convergent E,. By “best” we shall mean that procedure
which for the least amount of computation yields an approximate inverse
of desired accuracy. Alternatively, the best scheme could be defined as
the one for which a given amount of computation yields the most accurate
inverse. Adopting our usual convention we find from (2), since the product
of two matrices requires n® operations, that v iterations of a pth order
scheme require

vpn® ops.

If only K operations are to be permitted the number of iterations allowed

18
K

V= 0
pn°

where we assume K/(pn®) is an integer. Thus, the principal eigenvalue is

reduced to
va - P(p)l(l(pna) - P(pllp)K/uC‘.

Since K, n, and p < 1 are independent of p, we find that the error is
minimized when p!® is a maximum. Now it is easily shown that the
maximum of x*isat x = e = 2.718. .., But a simple calculation (pointed
out by M. Altman) shows that for integers p the maximum is at p = 3.

In order to apply the procedure (2), we must have an initial estimate R,
such that E, = I — AR, is convergent. For a very important class of

t This is only rigorously true if the elementary divisors of E, are simple. But, by the
corollary to Theorem 1.3 of Chapter 1, the statement isn’t very wrong.
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matrices such an estimate is easily found. This result is contained in
THEOREM 1. Let A have real eigenvalues in the interval
O<m< )\ <M, j=12,...,n

Then if Ry(w) = wl and Ey(w) = [ — wA, Ey(w) will be convergent for
all w in

) 0<w< 1T24

Further if p(w) is the spectral radius of Ey(w), i.e., p(w) =p{Eo(w)}, then
. M—-—m 2

™ plog) = min p(0) =30 = I vm

Proof. This theorem is essentially a restatement of Theorem S5.1.
If we make the association (x, m;) <> (w, —A,) in the proof of that theorem,
the above follows. [ |

PROBLEMS, SECTION 6

1. Newton’s method for improving R,, the approximate inverse of A4, is
formally obtained by setting
A= (Ro + 8Ry)~!
= [RolI + Ro"18Rp)] !
= (1 + Ro_laRo)_lRo_l.
Therefore,
ARy = (I + Ry~ '86Rp)™* =~ I — Ro™'8R,.

Solve for §R,. Does this formula fit into the iteration scheme (2) for p = 2?
2. Show that if 4 is non-singular, the choice Ry = aA* witha = 1/tr(4A4*)
produces a convergent matrix E, in (1).




3

Iterative Solution of

Non-Linear Equations

0. INTRODUCTION

In this chapter, we consider iterative methods for determining the roots
of equations
f(x) =0

where f and x are vectors of the same dimension k: i.e., if kK = 1 we have a
single equation; if k¥ = n we have a system of n equations. Most of the
iterative methods can be written in the form x, . ; = g(x,) for some suitable
function g and initial approximation x,. The convergence of this iteration
process is assured if the mapping g(x) carries a closed and bounded set
S C Cinto itself and if the mapping is contracting, i.e., if |g(x) — g(y)| <
M{x — y|| for some norm, “Lipschitz” constant M < 1, and all x, y € S.
Such an iteration scheme is sometimes referred to as the Picard iteration
method, or as a functional iteration method. It can be easily shown under
these conditions that g(x) has a unique fixed point a in S satisfying

a = g(a).
We shall study this contracting mapping theorem in one or more dimen-
sions and the related results which are basic to many of the iterative
methods of this chapter.

Usually the iterative methods are valid for real and complex roots.
However, in the latter case complex arithmetic must be incorporated
into the appropriate digital computer codes and the initial estimate of
the root must usually be complex (see Subsection 4.4 for an exception).
The iterative methods require at least one initial estimate or guess at the
location of the root being sought. If this initial estimate, say x,, is ““suf-
ficiently close™ to a root, then, in general, the procedures will converge.

85
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The problem of how to obtain such a “good” X, is unresolved in
general. Frequently, a good estimate of the root is known to the problem
formulator (i.e., the engineer, physicist, mathematician, or other scientist
who is interested in the solution) or can be found by an analytical study.
For many purposes merely graphical accuracy (about two decimal figures)
is needed for the initial value. In these cases, one may tabulate the func-
tion and plot the data in one or two variables or “fit” linear forms

k

a, + Z a;;x; to fi(x) to find the approximate starting values. If a digital
i=1

computer is to be employed, this plotting method is quite convenient since

all of the required function evaluations will be contained in the eventual

machine code for the problem.

As a general empirical rule, the schemes which converge more rapidly
(i.e., higher order methods) require closer initial estimates. In practice,
these higher order schemes may require the use of more significant digits
in order that they converge as theoretically predicted. Thus, it is frequently
a good idea to use a simple method to start with and then, when fairly
close to the root, to use some higher order method for just a few iterations.

For polynomial equations in one variable we know much about the
roots. While the general iteration schemes apply to them there are also
special methods which can be used to obtain the zeros of polynomials.
Such considerations are to be found in Section 4.

1. FUNCTIONAL ITERATION FOR A SINGLE EQUATION

Let us consider a scalar equation of the special form
)] x—gx)=0, or x=gx).
[It is clear that any equation f(x) = 0 can be written equivalently in this
form by defining g(x) = x — f(x).] If x, is some initial estimate of a
root of (1), a scheme naturally suggested is to form the sequence
(2) Xy+1 =g(xv)’ V=05 l,""
An important result concerning the convergence of this procedure and a
proof of the existence of a unique root is contained in

THEOREM 1. Let g(x) satisfy the Lipschitz condition

(32) g(x) — g(x)] < Alx — x|,

for all values x, x' in the closedt interval I = [xy — p, Xo + p] where the
+ Unless otherwise specified: [a, b] denotes the closed interval, a < x < b; (a, b)

denotes the open interval, a < x < b; (a, b] and [a, b) denote respectively the half-
open intervals a < x < banda < x < b.
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Lipschitz constant, A, satisfies

(3b) 0<A<l.

Let the initial estimate, x,, be such that

@ %o — glxo)| < (1 = Xp.
Then

(i) all the iterates x,, defined by (2), lie within the interval I; i.e.,
5) Xo—p <X, < X9+ p,
(ii) (existence) the iterates converge to some point, say,

lim x, = «, (in fact, |x, — | < Xp)

vy

which is a root of (1), and
(1)) (uniqueness) « is the only root in [xy — p, Xo + p].

Proof. We prove (i) by induction. Since x; = g(x,), we have by (3b)
and (4)

(6) [xo = xa} < (1 = Ap < p

and hence x; is in the interval (5). Assume this true for the iterates
Xy, Xgy ..., X,. Then from (2)

|xv+1 - xv| = |g(xv) - g(xv—1)|

and by the inductive assumption x, and x,_, are in the interval (5).
Thus, by (3a), the Lipschitz condition yields

|01 — x| < Alx, — x4

< ’\2|xv—1 - xv—2l
(M :

< XM|x; — X

< X(1 = Np.

Here we have used (2) and (3a) recursively and then applied (6). However,
|xv+l - xo[ = |(Xv+1 —x)+ 0, —x )+ (X — xo)|
< lxv+1 - xv[ + [xv - xv—1| +---+ |x1 - xol
(/\v + -1 + -4 1)(1 - )‘)P — (1 — )‘VH)P

Ps

IA

IA

which completes the proof of (i).
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To prove part (ii), we first show that the sequence {x,} is a Cauchy
sequence. Thus, for arbitrary positive integers m and p, we consider

lxm - xm+p| = l(xm ~ Xms1) + ms1 = Xme2)+ -
+ Xmip-1 = Xmsp)l
< |xm - xm+1| + [xm+1 - xm+2|+‘ tT
3 + [ Xmap-1 = Xmesl
< (W 4 AmEL gL ymEe-1y(] — Np
< (1 — A%)pAm.
Here we have used the inequalities (7) which are valid since (i) has been
proved. Now given any € > 0, since Ain 0 < A < 1 is fixed, we can find
an integer N(e) such that [x, — Xnsp| < € for all m > N(¢) and p > 0
(we need only take N such that A\¥Y < ¢/p). Hence the sequence {x,} is a
Cauchy sequence and has a limit, say «, in 1. Since the function g(x) is
continuous in the interval I, the sequence {g(x,)} has the limit g(«) and
by (2) this limit must also be «; that is, « = g(«). Now |x, — «| =
lg(x,_1) — g(&)] < Alx,_; — «|; hence |x, — | < X’|x, — a| < pA".
For part (iii), the uniqueness, let 8 be another root in [x, — p, xo + p].
Then, since « and B are both in this interval, (3) holds and we have, if
|« — B] # 0,
le ~ Bl = |g(e) — (B < A|e = B| < |a — B].
This contradiction implies that « = 8 and the proof of the theorem is
concluded. B

COROLLARY. If |g'(X)| < A < 1 for |x — xo| < pand (8) is satisfied, then
the conclusion of Theorem 1 is valid.

dy _
Yy E—A
D)
g(‘o)\é o 1
i
n
~ ! !
|
1 | dy _
I ! ] E“')‘
| | |
I | 1
| | |
| | |
— N A
Xo= P X0 X+ p x

Figure 1
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Proof. The mean value theorem implies g(x;) — g(x,) = g'(&)(x; — xz).
Whence X may serve as the Lipschitz constant in (3a and b). B

A geometric interpretation of Theorem 1 is suggested by Figure 1. This
illustrates the case with g(x,) — x, = 7 > 0 and the triangles I and II, deter-
mined by lines with slope + A through (x,, g(x,)), are the regions in which
the values of g(x) lie for xo, — p < x < x, + p. It is easy to verify that

(a) if A = 1, the line y = x will not intersect the upper boundary of
triangle I or if

(b) A < 1 and 5 > (1 — A)p that the line y = x will not intersect the
upper boundary of triangle I and hence may not intersect an ad-
missible function g(x) in the interval [x, — p, xo + p].

In other words, the conditions A < 1, [y < (1 — A)p are necessary to

insure the existence of a root for every function g(x) satisfying conditions
(3a and b).

X =N
¥
glxg) f————— oo oo | y = g{x)
A l
- |
| |
A |
! |
e — - |
|
A !
| |
| |
|
| |
& L
X0 0 X o« x
(a)
y=x
Yy
e ——
y=gx)" | ¥
A =
: i
| !
|
l |
| l
| {
| |
) |
| |
| |
N OO O
X0 xa x X
(b)

Figure 2
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Figures 2a and 2b illustrate convergent iterative sequences for functions
g(x) with positive and negative slope, respectively. Note that the sequence
{x,} converges to « monotonically for g(x) of positive slope and converges
with values alternately above and below « for g(x) of negative slope.

Another convergence theorem is

THEOREM 2. If x = g(x) has a root at x = « and in the interval

(9a) |x — el <p
g(x) satisfies
(9b) lg(x) — g(e)] < Alx — qf,

with A < 1, then for any x, in (9a):

(1) all the iterates x, of (2) lie in the interval (9a),
(ii) the iterates x, converge 1o «,
(iil) the root « is unique in this interval.

Proof. Part (i) is again proved by induction. By hypothesis x, is in

(9a) and we assume x;, X, . . ., X, _, are also. Then since « = g(«) we have
from (2)
le — x,| = |g(e) ~ g(x,-1)|
(10a)
< Ae — x, 4|,

whence A < 1 implies (i). Furthermore,

le — x,| < Ae - x,_4,

A

(10b)

Ale ~ x,_q,

A

Na = xo.

By letting v — o0, we see that x, — «, since A < 1. The uniqueness follows
as in Theorem 1. [}

Notice that condition (9b) is weaker than the general Lipschitz condition
for the interval (9a), since the one point « is fixed. This feature is applicable
in Problem (1).

We can now prove a corollary (with a hypothesis which is oftentimes
more readily verifiable).

COROLLARY. If we replace (9b) by
(9b)’ lg'(x)| < A< 1,

then the conclusions (1), (i), and (iii) follow.
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Proof. From the mean value theorem and (2)

(10a)’ a— x, = gla) — glx,-1) = g'(§,-1)(e — xy_1).
Hence (10a) follows from (9b)’. Therefore (10b) and the rest of the proof
of Theorem 2 apply. |

It is clear from (10a)’ that, if the iterations converge, £, — « and thus
“asymptotically” (as v —o0)

(11) [a - xk+v| ~ [g,(a)lvla - xkl’
for large enough k. The quantity

(12) A =gl

is frequently called the (asymptotic) convergence factor and in analogy
with the iterative solution of linear systems

(13) R = log%

may be called the rate of convergence (if A < 1). The number of additional
iterations required to reduce the error at the kth step by the factor 10~ ™
is then, asymptotically,

We assume, in these definitions, that { = [g'(«)| # 0 and define such an
iteration scheme (2) to be a first order method; higher order methods are
considered in Subsection 1.2.

1.1. Error Propagation

In actual computations it may not be possible, or practical, to evaluate
the function g(x) exactly (i.e., only a finite number of decimals may be
retained after rounding or g(x) may be given as the numerical solution
of a differential equation, etc.). For any value x we may then represent
our approximation to g(x) by G(x) = g(x) + 8(x) where 8(x) is the error
committed in evaluating g(x). Frequently we may know a bound for
8(x), i.e., |8(x)| < 8. Thus the actual iteration scheme which is used may
be represented as

(15) Xoor=g(X) +8,, »=012...,

where the X, are the numbers obtained from the calculations and the
8, = 8(X,) satisfy

(16) 18] <8, v=0,1,....
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We cannot expect the computed iterates X, of (15) to converge. However,
under proper conditions, it should be possible to approximate a root to
an accuracy determined essentially by the accuracy of the computations, 6.

For example, from Figure 3 it is easy to see that for the special case
of g(x) = « + Mx — «), the uncertainty in the root « is bounded by
+38/(1 — A). We note that, if the slope A is close to unity the problem is
not ‘“‘properly posed.” We now establish Theorem 3 which states quite
generally that when the functional iteration scheme is convergent, the
presence of errors in computing g(x), of magnitudes bounded by 3,
causes the scheme to estimate the root « with an uncertainty bounded by
+8/(1 = A).

THEOREM 3. Let x = g(x) satisfy the conditions of Theorem 2. Let X, be
any point in the interval

(173) |a - xl < Pos
where

é
(17b) 0<poﬁp—m'

Then the iterates X, of (15), with the errors bounded by (16), lie in the
interval

|Ot - le =p
and

(18) o — Xi| <

5 . 5
1—A+"(P°‘1—A)’

where X — 0 as k — co.

Y y=x
y=g(x)+6\ ,,,,,,,,, |
- : : y=g8(x)=a+Ax~a)
— Aot
-
y=g(x)-6\ ”//’1 I |
-1 I
| | |
| I I
| I I
I | I
| | |
A A A
8 a [} x
x=1_3 atr
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Proof. 1t is clear that [« — X,| < po < po + 8/(1 — X) < p. Then for
an inductive proof assume X,, Xi, -+, X,_; are in |¢ — x| < p. By (15)
and (16)

le — X,| < |(g(e) — g(X,-1)] — 84| < |g(e) — g(X,_1)| + 8.
From (9b), we then have

e ~ X,| < AMe — X,_4| + 8

< Nla—~ Xy_o| + A8+ 8

S Na— Xy_g] + A28+ X8+ 8

SNe—~Xo| + X718+ 4+ A8+ 8
, 1 -
v 8 v 8

SR e S

SPot Ty

< p.

Thus all iterates lie in |« — x| < p and the iteration process is defined.
Moreover, from the last inequality involving » we find the estimate (18)
which completes the proof. n

Theorem 3 shows that the method is ‘““as convergent as possible,”
that is, the computational errors which arise from the evaluations of g(x)
may cumulatively produce an error of magnitude at most §/(1 — A). It
is also clear that such errors limit the size of the error bound independently
of the number of iterations. Thus in actual calculations, it is not worth-
while to iterate until A'p, < 8/(1 — A). In fact, if reasonable estimates of
A, 8, and p, are known, it is an efficient procedure to have the two types of
error term in (18) of the same magnitude; i.e.,

T

Npg & ——.

1—2
The number of iterations required is then about

v ~ log [ﬁ]/log A

~ log [(1 —SA)PO]/log %

t =~ reads ‘“‘approximately equals” and we have tacitly assumed that 3/(1 — ) < p,.

(19)
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Of course, if the acceptable error is much greater than §/(1 — A) the
number of iterations given by (13) and (14) is the relevant estimate. It is
essential to estimate 8 from the arithmetic calculations involved in evaluat-
ing g(x). Also, note that since the X, need not converge any tests for the
termination of the iterations should allow for this roundoff effect.

1.2. Second and Higher Order Iteration Methods
It is clear from the corollary to Theorem 2, that if at the root x = «,

(20) g'() =0,

then the convergence should be quite rapid. Let this be the case and
assume further that g”(x) exists and is bounded in some interval,
|e — x| < p, in which (9) is satisfied. Then for any x in this interval we
have by Taylor’s theorem:

g0 = 5@ + 0 + TP grg)

= at B L,

Here £ is some value between x and «. By using this result we obtain

for any iterate (2) (assuming |« — xo| < p and 3pig"(x)] < A < I):

QD x, — o = lglx 1) — gl@)] = [3g"(6- 1) [xy -1 — e,
v=123,....

Thus, the error in any iterate is proportional to the square of the previous
error and if g"(e) # O the procedure (2) is now called a second order method.
Let the bound on g"(x) be denoted by

(22) lg"(x)] < 2M, [ ~ x| < p.
Then from (21)

Mix, | — «|?

M- M?%x,_, — aft
M-M? M%x,_5 — «f®

lxv - °‘|

A A

- A

(23)

IA

M@ =Y)x, — af®
< (M|xp ~ a)” ~1|xo — a.

Thus, if M]x, — «| < 1, the second order method converges and reduces
the initial error by at least 10~™ when

(M|xo ~ o)1 = 10-™,
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The number of iterations required is now obtained from

p A L
= log (M[xo — «f)’
(29)
o | lo m )
¥ = Tog2 B log [[(MIxo—a])

A comparison with first order schemes is possible, i.e., the estimates in
(12)-(14), if we assume A = M|x, — «|. That is, by letting vy, and v,
represent the exponents v in (10b) and (23), respectively, we have equal
reduction of the error if

(25) 2 = 1 + v,

For instance, 130 iterations of the first order scheme are equivalent, under
the above assumptions, to about 7 iterations of a second order scheme!
A further striking property of second order schemes can be obtained by
assuming for all v > v, that

lxv - al = lo_pva Dy > 09

i.e., p, is essentially the number of correct decimals in the »th iterate.
Then from the first line of (23):

1077 < M10727v-1,
and upon taking the logarithm of both sides
(26) Py = 2p,_y — log M.

Thus, if M < 1, then —log M > 0 and the number of correct decimals
more than doubles on each iteration. (If M > 1 the number does not quite
double but, since p, > log M for large v, this doubling is at least asymp-
totically true.)

Schemes which are more quickly convergent than second order ones are
now easily described. Let us assume that at a root x = « of (1):

@27a)  g'(e) =g"(e) =+ = g" V(o) = 0;
(27b) g™(e) # 0; g™ ()| < n!M in |x - «] < p.
Then by Taylor’s theorem,

gx) = + (x—;!a—)ng‘"’(f), [x —«f <p
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where £ is between x and «. Again from (2) and the above
|xv+1 . | lg (Ev)| lxv |n
(28)
< M-|x, — o™

The method (2) under conditions (27) is now called an nth order procedure
and one can easily deduce the results corresponding to (23)—(26) for such
methods. In the event that g(x) is calculated with an error of magnitude &

as in (15), the root « may be determined only to within an uncertainty
of at best + 8. This conclusion follows by letting A — 0 in (18).

PROBLEMS, SECTION 1

1. Given g(x) = x? — 2x + 2. For what values x, does (2) converge?
[Hint: Use Theorem 2.] What is the order of the convergence? Sketch a

graph analogous to Figures 2a and b.
2. For g(x) = cos x, show that x,,, = g(x,) defines a convergent sequence

for arbitrary x,. Calculate the root @ = cos « to three decimal places.

2. SOME EXPLICIT ITERATION PROCEDURES

The general problem to which the previous iteration methods are to
be applied is that of finding the root (or roots) of

0y f(x) =0
in some interval, say a < x < b. Let ¢(x) be any function such that
@) 0 < [g(x)) <o, ax<x<b

Then the equation
3) x = gx) = x — $(x)f(x),

has roots which coincide with those of (1) in the interval [a, b] and no
others. Many of the standard iterative methods are obtained for special
choices of ¢(x).

Another procedure for defining the function g(x) is to use

@ g(x) = x — F(f(x)),
where F(y) is a function such that
FO=0; F(»#0, y#0.

Such methods more naturally describe many higher order schemes.
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2.1. The Simple Iteration or Chord Method (First Order)
The simplest choice for ¢(x) in (3) is to take

5 d(x) =m#£0.
If fix) is differentiable, we note that
(6) gx) =1~ mf'(x),

and the scheme will be convergent, by the corollary to Theorem 1.2, in
some interval about « provided that m is chosen such that

) 0 < mf'(a) < 2.

Thus m must have the same sign as f’(e), while if f'(«) = 0, (7) cannot be
satisfied.
The choice (5) yields the iteration equations

Xye1 = X, ~ mf(x,).

These iterates have a geometric realization in which the value x,,, is the
x intercept of the line with slope 1/m through (x,,f(x,)). (See Figure 1.)
The inequality (7) implies that this slope should be between oo (i.e.,
vertical) and 4 f'(«) [i.e., half the slope of the tangent to the curve y = f(x)
at the root]. It is from this geometric description that the name chord
method is derived—the next iterate is determined by a chord of constant
slope joining a point on the curve to the x-axis.

2.2, Newton’s Method (Second Order)

If the slope of the chord is changed at each iteration so that

@® gx) =1-mf'(x) =0,

Figure 1
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then a second order procedure may be obtained. From (8) we find

1

&) my, :fl_xv)’
which suggests the choice in (3) of
1 S(x)
10 X) = — or X) =X — 5=
(10) 49 = 75 8 = x - 525
The resulting iteration procedure is now
(1n Xyi1 = Xy —ff(();))
and it is at least of second order if f'(«) # 0 and f"(x) exists, since
. S f"(«)
12 = T = 0.
(12) g' () [F@F

The geometrical interpretation of the scheme (11) simply replaces the
chord in Figure 1 by the tangent line to y = f(x) at (x,, f(x,)).

In applying Newton’s method, we are required to evaluate f'(x,) as
well as f(x,) at each step of the procedure. For sufficiently simple functions,
which are given explicitly, this may offer no serious difficulty. (This is
especially true for polynomials whose derivatives are easily evaluated by
synthetic division; see Subsection 4.1.) However, if f(x) is known only
implicitly (say as the solution of some differential equation in which x
is a parameter in the initial data), it may be impractical to evaluate f’(x,)
at each iteration. In such cases the derivative may be approximated by
various methods, the most obvious approximation being

(13) Fy = f0) =S,

Xy — Xy_1

If this approximation is used, the procedure is no longer Newton’s method
but is the method of false position discussed in the next subsection.

A useful observation on the application of Newton’s method, or the
false position variation of it, is based on the fact that as the iterations
converge, f'(x,) or its approximations converge to f'(«). Thus, for all
iterates v > vy, say, it may suffice to use f'(x, ) in place of f'(x,) in (11).
The iteration method from this point on is then just the chord method
with 1/m = f'(x,,).

It should be noted that Newton’s method may be undefined and con-
dition (2) violated if f'(x) = 0 for some x in [a, b]. In particular, if at the
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root x = «, f'(«) = 0, the procedure may no longer be of second order
since (12) is not satisfied. To examine this case we assume that

(14a) f(x) = (x — &)*h(x), p>1
where the function A(x) has a second derivative and
(14b) h(e) # 0.

From (14) in (10) we find that

I W (x) )
(‘ ‘;) @) s = e s
h(x)]

[‘ MRS e

Thus for x, sufficiently close to « we have [g'(x)| < 1 for x € [x,, ] and
the iterations (11) will converge. The asymptotic convergence factor is
now

gx) =

1
") = 1 — -
lg'()| 5
So only in the case of a linear root, i.e., p = 1, is Newton’s method second
order, but it will converge as a first order method in the general case (14).
If the order of the root, p, is known (or can be closely estimated) quadratic
convergence can be retained or approximated by the modification

e, @
80 =x — PGy

The details of this procedure are left to the reader. A convergence proof
for Newton’s method which does not require f'(¢) # 0 is contained in
Theorem 3.3 [see also Problems (3)-(6) of Section 3].

2.3. Method of False Position (Fractional Order)

If the difference quotient approximation to the derivative, given by (13),
is employed in (11) we obtain the iterative procedure:

Xy-1

(15) Xys1 = Xy — f(xv)m v = 1,2,...

It should be noted that two successive iterates, x, and x,, must be esti-
mated before the recursion formula can be used. However, only one func-
tion evaluation, f(x,), is required at each step since the previous value,
f(x,-1), may be retained. [This is an advantage over Newton’s method
where two evaluations, f(x,) and f'(x,), are required.] The order of this
procedure cannot be deduced by the analysis of Section 1 since (15)
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cannot be written in the scalar form x, ., = g(x,). To examine this question
let x = a be a root of f(x) = 0. Then we may write, by subtracting each
side of (15) from «,

Xy — Xy_3

o= Xy41 = (¢ — x) +f(x")m

_ f[xv—l, xv] — f[xw a]
= ) )
where we define fla, b] = [f(b) — f(@)]/(b — a). This can be further
simplified to the form

(16) @~ Xy4p = (@ — X,)(a — xv_l){—%[%)‘;;j—?“‘;v‘id},

a] = f[xv—la xv] _f[xv, a]

Xy_1 — @

by introducing

f[xv—l’ Xy

Here we have anticipated the divided difference notation to be studied in
Chapter 6 and in Problems 2 and 3 of this section. If the function f(x)
has a continuous second derivative in an interval including the points
x,, X,_1, and «, then it is shown in Theorem 1.1 of Chapter 6 that

f[xv—ly x] = fl(fv)
f[xv—l’ Xy, a] = %f”(")v)

for some points £, and %, in the obvious intervals. (See also Problem 3.)
Thus we deduce that

(17

_ L) e - .=
(18) o4 xv+1 - 2f,(§v) ( xv)( xv—l)’ ls 21 A

Let us assume that all the iterates are confined to some interval about the
root « and that for all £, % in this interval

S ()
19 === < M.
19 27
Then by setting M|« — x,| = e, we obtain the inequalities
(20 e,v1<ee,_y; v=12..,

upon multiplication of (18) with M and the use of (19). If we define
max (ey, €;) = & the inequalities (20) imply

e, < 82
83
85

IA

€3

€4

<A

8™

IA

€y
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where my =m; = landm,,, =m, + my,_;,v = 1,2, .... The numbers
m, form what is known as a Fibonacci sequence. It may be shown (see
Problem 1) that

1 1+ V5
2D m, = 75("3,“ —r*h, o, = S
Thus for large v:
m, % %(u)”l ~ 0.447(1.618)"+1.

If 8 < 1, then the initial error is reduced by 10~™ when 8™ -V ~ 10-™
and we may compare this number, », of iterations with the corresponding
numbers v, for the second order method and vy, for the first order method
(see equation 1.25) in the case § = M|x, — «| by noting that

22) m, — 1 =2 — 1 =y,
or

1 v+1 v,

Wi (ra)"*t = 2%,
Hence
23) v =2+ dygy
where
g VS gem and  d—=A82 o 440
logr., logr,

We see that somewhat more of the current iterations are needed for a
given accuracy than is the case for the second order methods (but it
should be recalled that only one function evaluation per iteration is
used).

If we were to postulate that as v —>0o0: |@ — x,4;| & K|e — x,|7, then
(18), with the coefficient | f"/(2f")] = M, would yield K = MV, r = r,.
In other words, we might say that the false position method is of order
~1.618. Hence, two steps of Regula Falsi have an order ~(1.6)2 > 2.5
and require only two evaluations of f(x).

A geometric interpretation of the scheme (15) is easily given as follows:
in the x, f(x) plane let the line through (x,, f(x,)) and (x,.;, f(x,-1))
intersect the x-axis at a point called x, .. In other words f(x) is approxi-
mated by a linear function through the indicated pair of points and the
zero of this linear function is taken as the next approximation to the desired
root. Depending upon the location of the points in question this procedure
may be an interpolation or an extrapolation at each iteration.
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In the classical Regula Falsi method, the point (x,, f(x,)) is used in (15)
in place of (x,_y, f(x,_;)) forallv = 1, 2, .... The geometric interpretation
of this scheme is quite clear, i.e., all lines pass through the original estimate,
which is a poor strategy in general. Again either interpolation or extra-
polation may occur.

Finally, we may use in (15), in place of (x,_,, f(x,_;)), the latest point
for which the function value has sign opposite that of f(x,). In this latter
method, only interpolation occurs, and furthermore, upper and lower
bounds for the root are obtained, which is ideal for estimating the error.
However, to start this scheme we must initially obtain such upper and
fower estimates of the root and, of course, it is only applicable if f(x)
changes sign at the root in question. This latter variation requires some
additional testing and storage of data and hence is slightly more compli-
cated to employ on a digital computer.

From the geometric description of the method of false position a natural
generalization is suggested. That is, we set

Xy41 = Py (0), v=kk+1,....

where P, ,(f) is the polynomial in f of degree k which passes through the
k + 1 points (f(x,), x,), (f{xy_1), Xxy_1), . .., (J(Xy_k), Xy _x). Clearly, for
k = 1, this is just the scheme (15). The construction of such interpolation
polynomials is, in general, treated in Chapter 6, and Section 2 of that
chapter is particularly suited for the present purpose. [We must inter-
change x and f or else use inverse interpolation. Also, it is assumed that
the function values f(x;) are distinct.] It can be shown that these ‘“multi-
point” methods have orders 7, which increase monotonically with k
and that gim 7. = 2. We have seen that n; >~ 1.618 so that no great

improvement over the method of false position can be obtained. For
k = 2 or 3, the orders are close to 2.
Another possibility along the above lines is to use

xv+1=Pv.v(0)’ v=12...;

that is a vth degree polynomial in f through all the previous iterates
(f(x), x), j=0,1,...,v is used to determine the (v + l)st iterate.
Again, the iterative linear interpolation scheme of Chapter 6, Section 2,
can be used for this purpose and it can be shown that the order of con-
vergence is now 2 (for simple roots).

2.4. Aitken’s §*-Method (Arbitrary Order)

This procedure is frequently presented as a means for accelerating the
convergence of the functional iteration method based on (3). The method
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can be described and motivated as follows: If x, is any number approxi-
mating a root of (1) or (3), let X, be defined by

(24) £ye1 = glx).

Then a measure of the ““errors” in these two approximations, x, and
’ v
X,+1, can be defined by

e, = g(xv) - X, =X — Xy,
(25)

€yi1 =88 11) — X1

Since for a root this error should vanish, i.e., e(a) = glo) — « =
— () f(e) = 0, we may seek x,,, by “extrapolating the errors to zero.”
That is, the line segment joining the points (x,, e,) and (%,,,,é,.,) is
extended to intersect the x-axis and the point of intersection is taken as
X,.+1. This yields the expression

(262) Xy, = 281 T 2vn1l oy,

For actual calculations (26a) is usually written as

26b &
(26b) Xy+1 = Xy — m’
and the evaluations proceed by using (24), (25), and (26b).
From (24)—(26) we see that the 8%-method can be viewed as functional
iteration applied to

(27a) x = G(x),
where
(27b) G(x) = xg(g(x)) — g%(x)

g(g(x)) — 2g(x) + x

[That is, from x, we obtain the same sequence of iterates x, by the pro-
cedure described in (24)-(26) as is obtained from x,,;, = G(x,).]

The functional iteration scheme applied to (27) is sometimes known as
Steffensen’s method. In fact, Aitken’s 82-methodt was originally proposed
to convert any convergent sequence (no matter how generated), {x,},
into a more rapidly convergent sequence, {x,’}, by using

2
78 X, = x, — (Xne1 — Xn)
( ) i Xpta =~ 2xn+1 + X,

t The denominator in (28) suggests the second difference notation 82. See equation
(3.16a) of Chapter 6.
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Several general applications of the 82-process are illustrated in Problems
6and 7.

The function (27b) is indeterminate at the root x = « since g(e) = «.
However, its value there is easily found by an application of L’Hospital’s
rule, assuming g(x) to be differentiable at the root and g'(«) # 1:

G(a) = 8(8(@) + og'(gle))g() — 2g(e)e'(«)
g'(g(x))g'(e) — 2g'(e) + 1
_ o+ g (@) — 20g'(a)
[g' (@] ~ 2¢'(e) + 1

= .

The case g'(«) = 1 corresponds to a multiple root of (1) at x = «. How-
ever, in this case too, it can be shown from (33d) that « = G(«). Thus,
it follows that (27a) has roots wherever (3) has them. To show further
that all roots of (27) are also roots of (3), assume that x is any finite root
of (27). Then there are two cases, either g(g(x)) — 2g(x) + x vanishes or
not. If not, then clearing fractions in (27) is legitimate and yields

[¢() — x]* = o.

Thus, x is also a root of (3). If the denominator in (27b) vanishes, the
numerator must also vanish (since x was assumed finite). Now observe
that since the denominator vanishes, we may use

xg(g(x) = 2xg(x) — x*

and substitute in the numerator to find that again [g(x) — x]* = 0. In
other words (27) has the same roots as (3).

The order of the 82-method is simply related to the order of the functional
iteration applied to x = g(x). To derive this result, we assume that x = «
is a root and that:

(292) g = g'@) =+ = g*a) = 0;
(29b) gP(a) = plA # 0;
(29¢) gP*(x) exists in |x — a| < p.

These conditions imply that g(x) determines a pth order method. By
Taylor’s theorem and (29) for every e such that |e| < p:

2% e + 8¢) pt1 0<8<1:
o+ ’

(30a) = o + Ae® + Ber*?!

gle + ) = g(e) + A +

= a + 8.
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Here we have introduced

_ g(p+1)(a + 05)
(31a) B= B e T

Since 4 and B are bounded, we can pick e sufficiently small such that
|8] < p and then as in (30a)

s 8= (4 + Bee.

(30b) gle + 8) =« + A8° + B'é7+!
where

;87 (e + 49)

From (30) in (27b) we obtain, with x = « + eand € # 0,

) 0<¢<l.

(¢ + 9gle + 8) — (¢ + 3)°
gla+8) —2(c + 8) + (« + ¢€)
8% — Aed® — B'edP*?!
€ — 28 + A8 + B'oPH!

G+ =

(32)

= o —

There are two cases, p > 2 and p = 1, to be considered. First, with
p = 2 equation (32) can be written as

G + €) = a« — €??71(4 + Be)?

. I A4 + BP =217 — B4 + Bep-ier-1+s |
1 — 2(4 + Be)eP~! + A(A + Be)*”*~! + B'(A + Be)P*1eP+p-1

It is clear that the bracketed expression approaches 1 as € approaches 0,
and so the above may be written as

(33a) Gla + € = a — A%~ 1 + O(e?P), p =2
For the case p = 1, (32) becomes
(33b) G(x + €) = ¢ — €A + Be)

. { (B ~ B'A) ~ B'Be .
(0 = A — B — BA — B A% + 2B BA® + BB

Now in general, if 4 # 1, the bracketed expression approaches B*/(1 — A)
as e approaches 0 since B’ and B approach B* = g"(«)/2 and so (33b) can
be written as

x
€+ 0e); p=1 g=4#1

(%) Gla+9=a- 77—
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But, if A = g'(«) = 1 and « has multiplicityt m , then by Problem 4:

(33d) Gla+e¢ =adt (1 - '%)e + 0),
for '
p=1 gl=1,
g'e)=--=g""Na) =0, g™(a)+#0;
for m=23,....

We now invoke a lemma which shall enable us to determine the orders
and convergence properties in the cases represented in (33a-d).

LEMMA 1. Let G(x) be a function, with g + 1 derivatives in a neighborhood
of x = «, such that

G(2) = o,
and for any e sufficiently small
34) Gla+ e =a+ Ce + O&*).
Then
G'()=G"a) =---= G Va) =0, G9a) = q!C.

Proof. By Taylor’s theorem we have, for sufficiently small e,

Gl + € =a+%G"(a) +-~-+§G“’)(a)
(35) ) :

€q+1

G

The lemma follows by comparing, in the order k = 1,2,...,¢4, the
values obtained from (34) and (35) of:

lim [g.(."‘_i'?_f_).___ﬁ kg]. u

€—=0

GO V(e + fe), 0<8<]l.

By applying this lemma in (33a~d) we deduce the following
THEOREM 2. (i) If functional iteration applied to (3) is of order p = 2

t If the functions in (1), (2), and (3) have m derivatives, we may verify the equivalence
of the statements:

(i) « is a root of f(x) of multiplicity m > 2;

(i) f(e) =f(@) =---=f""Da) = 0, f™(a) # 0,

(iii) go) = o, g'(a) = 1, g'(a) =- - = g™~ o) = 0, g(a) # 0.
Statements (i) and (ii) are equivalent by definition. The equivalence of (ii) and (iii)
follows from Leibnitz’ rule,

(¢f)(k) — ¢(k)f‘+ k¢(k-l)/" + P + k¢'f(k—1) + ¢f(k),
and the fact that ¢ # 0, by inductiononk =1,2,..., m.
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Jor some root o of (1), then the 8*-method (24)—(26) is of order 2p — 1 for
this root.

(1) If functional iteration in (3) is of first order (but not
necessarily convergent) for a simple root a of (1), then the 82-method is of
second order for this root.

(i) If as in (i1), the root « of (1) has multiplicity m = 2,
then the 8°-method is first order with asymptotic convergence factor 1 — 1/m.

Proof. Part (i) follows from (29), Lemma 1, and (33a). Part (ii) follows
from Lemma 1 and (33c) since g'(a) # 1 is equivalent to f'(«) # O (i.e.,
that the root is simple). Finally, (iti) follows from Lemma 1 and (33d)
since an m-foldt root of f(x) = 0 at x = « implies g'(e) = 1, g"(a) =-- - =
g™ Ya) = 0 and g™(e) # 0. (This proof has assumed that f(x), g(x) and
G(x) have as many derivatives as required.) [ |

From this theorem, it follows that in all cases Aitken’s §2-method con-
verges if |a — xo| is sufficiently small. Furthermore, it is always at least
of second order for simple roots. It is clear that this method can be quite
effective and it, or generalizations of it described below, may be very
profitably used in practice.

Iterations which converge even faster than the 82-method are naturally
suggested by the above “derivation™ of (26). One such generalization is to
consider the set of more than two errors associated with x,, £,,4,...,
X, , as defined in (24) and (25), say

(36) ewév+l7'~~,év+u’ It > 1;

and then determining x,,; such that this set of errors is “extrapolated”
to zero. The details of such a procedure require a knowledge of poly-
nomial interpolation which is discussed in Chapter 6 (see Section 2 in
particular). The main point in the correct application of this procedure
is to consider the x, as functions of the e, (i.e., inverse interpolation) in
which case the approximation x,, ; can be computed directly by evaluating
at e = 0 the polynomial of uth degree in e that takes on the values x,
at e, and %,,, at é,,, for 1 < k < u. Other generalizations of these
procedures can be obtained by successively increasing the value of pu.
These considerations are, in fact, the same as those in Subsection 2.3
where generalizations of false position were discussed. Another ob-
vious type of modification is described by introducing G O(x) = g(x),
GP(x) = G(x) and then forming G W(x) by recursive application of (27).

It should be noted that the correction in (26b), —e,%/(é,,; — e,), Is
the quotient of very small quantities. The denominator, being a difference

T See previous footnote.
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of small quantities, may require muitiple precision evaluation of g(g(x,))
and g(x,), in order not to lose too many significant figures, especially if
g'(e) = 1 (i.e., if the root is multiple or nearly so). For these reasons it is
important to determine an appropriate 8 which can be used in Theorem
1.3 in estimating the effect of errors in the 8>-method.

PROBLEMS, SECTION 2

1. Solve the recursion my.y = m, + my_1, v = 1,2,..., where my = my
= I. (Try a solution of the form m, = r® which leads to a quadratic with roots
r+. Then set m, = ar.” + br_" and determine a and b fromv = 0, 1.)

2. The second divided difference of a function f(x) is defined by:

fGa) — flxg) Sflx2) ~ f(xa)
X1 — Xg X2 — X3
X1 — X3

f[-xly X2y xa] =

The first divided difference is just the difference quotient. Use these definitions
to verify the derivation of (16).

3. Verify (17).

[Hint: If f“(x) is continuous in an interval containing x,, xz, and x;, then
the second result in (17) can be derived by the expansion, via Taylor’s formula
with remainder, of f(x,) and f(xs;) about x, plus the fact that a continuous
function takes on all values between any two of its values. (Assume, with no
loss in generality, that x; < x; < x5 in the definition above. That is, it is
easy to verify f[xy, xq, x3] = f[xi, x4, x,] where (i, j, k) is any permutation of
(1, 2, 3). This is a special case of a property established in Chapter 6, Section 1,
namely that the divided difference is a symmetric function of its arguments.)]

4. Let gloy=e, gl@)=1, g()=g"() =---=g""Ya) =0, and
g™()# 0. Then if we assume g has derivatives of order 2m, g(a + €) =
o« + € + Be? where m = 2 and

(m), (m+ 1),
B - E0@ o £7@
mn.

m—1
mrne T

and similarly, with § = € + Be? then g(e + 8) = ¢ + 8 + B’82, where

, &™) o g (a) o
B(8)= ! 8 2+m8 L.,

Now observe that

{m)
8=€+Bez=e+g—('a)e"‘+---
m:

and therefore
(m)( )] 2
BB - [5_m(+x)] am-t ...
()oY 2
B —B=(m- 2)[3_('“2] €2m=3 4 ...
m!

Hence, show that formula (33b) yields the results of (33d) form = 1,2,3,....
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5. Verify that the functional iteration scheme is divergent for (a) g(x) =
x + x®and (b) g(x) = 2x + x°. Nevertheless, as stated in part (ii) of Theorem
2, the Aitken 82-method is convergent and

x
3432+ 20 I+ 0

(b) G(x) = 6x° + O(x°).

6. (Aitken’s 8%-process). Let {x,}, n = 0,1,2,..., converge to «; so that,
for some constant b,

(a) G(x) = x —

m=x,—a#0, n=z=N;
rnv1 = (b + €)ry, |b| < 1, e = o(1).1
Show that (28) is meaningful for » > N, i.e.,

Xnt2 — 2Xns1 + Xp # 0 for n = N,
and that

’
. Xy —a
lim =2 =0,
nao X — O

[Hint: Verify that
Xniz — 2Xn41 + Xn = Fnyz — 2re1 + 1y
= rl(b — 1)2 + o(1)].

Also show from (28) that

. b — 1 + oI
T TET TG =P+ o)

r»0(1).]
7. Apply Aitken’s 82-process (28) to the sequence

Xn = a + bpi" + cp2”, n=0,12,...,
where |ps| < |p1| < 1. Show that
Xo' = a + O(p™) + O(ps®™).

What improvement results by applying the 52-process to the sequence {x,}?

3. FUNCTIONAL ITERATION FOR A SYSTEM OF EQUATIONS

Let x be an n-dimensional column vector with components x;, x5, . . ., X,
and g(x) an n-dimensional vector valued function, i.e., a column vector
with components g,(x), g2(X), . - ., g,(X). Then the system to be solved is

M x = g(x).

t We write 3, = o(1) iff there is some number N such that 8, is defined foralln > N
and lim &, = 0. In the text, we also use o(1) as a generic symbol to represent the

ne o

members of any sequence which tends to zero.
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The solution (or root) is some vector, say a, with components «,, a,, . . .,
«, which is, of course, some point in the n-dimensional space. Starting with

a point x@ = [x{?, xi?, ..., x{?]7, the exact analog of the functional
iteration of Section 1 is
) XD = g(xW), v=20,1,2,....

The first result is analogous to Theorem 1.1. But where absolute values
were used previously, we must now use some vector norm (see Chapter 1,
Section 1). For example, we may choose any one of the norms

Ixle = max |x|,

1<isn
3 Ix: = > [xl,
i=1
x|, = A/Z |x:]?

THEOREM 1. Let g(x) satisfy
(4a) lex) — e < Alx — yl|

for all vectors x, y such that |x — x| < p, |ly — x| < p with the
Lipschitz constant, A, satisfying

(4b) 0<A<l
Let the initial iterate, X, satisfy
&) le(x®) — x| < (1 = Xp.
Then: (i) all iterates, (2), satisfy
Ix” — x@| < p;
(ii) the iterates converge to some vector, say
lim x¥ = a,

y— o

which is a root of (1)
(iii) a is the only root of (1) in [|x — x@|| < p.

Proof. Duplicate the proof of Theorem 1.1 with the replacement of
absolute value signs by norm symbols. ]

As a consequence of this proof, it is also seen that the iterates converge
geometrically, and at least as fast as XY — 0. Of course, it is more difficult
to verify (4), the Lipschitz continuity of a vector valued function, than
it is in the case of a scalar function.
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However, again as in Section 1, a more useful result can be obtained
if we are willing to place more restrictions on g(x) and assume the existence
of a root. We immediately see that Theorem 1.2 and its proof hold if
absolute value signs are replaced by norms. Furthermore, the corollary
to Theorem 1.2 becomes

THEOREM 2. Let (1) have a root x = a. Let the components g(x) have
continuous first partial derivatives and satisfy

ogx)| _ A )
(6) 3—x, < ;'17 A< 1,
forall x in
™ [x ~alo < p.

Then: (1) For any X satisfying (7) all the iterates X’ of (2) also satisfy (7).
(if) For any x'© satisfying (7) the iterates (2) converge to the root a
of (1) which is unique in (7).

Proof. For any two points x, y in (7) we have by Taylor’s theorem:
n a f (1) .
®  a0-am=2> By =12 n
i=1 7

where E® is a point on the open line segment joining x and y. Thus,
E® is in (7), and using (3) and (6) yields

n o iy
800 — gl = 2 [BEY 15—y,
j=1
< |0g(8Y)
< x = ylo Zl =
i=
< AX = ¥]w-
Since the inequality holds for each i, we have
©) lgx) — gWllo < Alx = yw

and thus we have proven that g(x) is Lipschitz continuous in the domain
(7), with respect to the indicated norm. Now note that for any x® in (7),

lg(x) — gla)]

Ax — alfe

XV — all

A

IA

Ap,
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and so xV is also in (7). By an obvious induction we have then

I — al. = [gx®~ ~ g(@].
< Nxo=0 — af,
(10)
< ¥|x - al,
< Xp

and hence all x™ lie in (7). The convergence immediately follows from
(10) since A < 1. The uniqueness follows as before. n

The crucial point in the preceding proof is the derivation of (9). It is
clear from this derivation that (6) could be replaced by a number of
conditions which are perhaps less restrictive and the theorem would still
remain valid. One such condition is

(11 max z [gs(x)| < A < 1, forall [x — al|o < p,
t

where we have introduced the elements g;(x) = dg,(x)/dx,. If we define
the matrix G(x) = (g,(x)) then (11) may be written as |[G(x)|l < A < 1
in which case we mean the natural matrix norm induced by the maximum
vector norm (see Chapter 1, Section 1).

If the function g(x) is such that at a root

(12) G()_(a%i“))=o, Li=1,2...n

and these derivatives are continuous near the root, then (6) as well as (11)

can be satisfied for some p > 0. If, in addition, the second derivatives

0°g(X)
Ox; Ox,

all exist in a neighborhood of the root, then again by Taylor’s theorem

gi(x) — g(a) = %é: 2 4 g’(g)(x, — o)X — ).

Now in the iteration, (2), we find
X — @l < Mx®~ — af2,
where M is chosen such that

2M

n2

628«(")
3x, axk -

m
i,
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Thus, quadratic convergence can occur in solving systems of equations by
iteration.

3.1. Some Explicit Iteration Schemes for Systems
In the general case, the system to be solved is of the form

(13) f(x) = o

where f(x) = [f1(x), fo(X), . . ., /2(X)]7 is an n-component column vector.
Such a system can be written in the form (1) in a variety of ways; we
examine here the choice

(14) g(x) = x — A(f(x),

where A(x) is an nth order square matrix with components «;,(x). The
equations (1) and (13) will have the same set of solutions if 4(x) is non-
singular [since in that case A(x)f(x) = o implies f(x) = o].

The simplest choice for A(x) is

(15) AX) = 4,

a constant non-singular matrix. If we introduce the matrix
af(x
16) s = (42),

whose determinant is the Jacobian of the functions fi(x), then from (14)-(16)
we have

(17) G(x) = (ag‘—ij")) = I~ AJX).

Thus by Theorem 2, or its modification in which (11) replaces (6), the
iterations determined by using

x(v+ 1) x(v) —_ Af(x(v))

will converge, for x‘@ sufficiently close to a, if the elements in the matrix
(17) are sufficiently small, for example, as in the case that J(a) is non-
singular and A is approximately the inverse of J(a). This procedure is the
analog of the chord method and it naturally suggests a modification which
is again called Newton’s method.

In Newton’s method (15) is replaced by the choice

(18) A(x) = J ~X(x),

with the assumption of course that det |/(x)| # O for x in ||x — & < p.
In actually using the above procedure, an inverse need not be computed
at each iteration; instead, a linear system of order » has to be solved. To
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see this, and at the same time gain some insight into the method, we
note that by using (18) in (14) the iterations for Newton’s method are:

X0+ = g(x‘”’),
(19a)
= x® — J1(x"(xY).
From this we obtain
(lgb) J(x(v))(x(v) — x(v+1)) = f(X(V)),

which is the system to be solved for the vector (x — x®* D),

To show that this method is of second order we must verify that (12)
is satisfied when (18) is used in (14). The jth column of G(x) is then given
by

B j—;‘ - 2 0010
_x -1 8f(x) o (%)
)

By setting X = a in the above and recalling that f(a) = o and J = (8f;/ox;)
we get

Gl@)=1-J Ya)J(a) — O = 0.
To determine 8J ~1(x)/dx;, note that

O N ) ) B
ox; =7 5)_:;+ 8xjj—6x,»-o

and hence

aJ ~{(x) _ aJ(x)

ox;

JHx) == TH(X).

Thus, we need only require that f(x) have two derivatives and J(x) be
non-singular at the root, and then the convergence of Newton’s method is

quadratic.
For a geometric interpretation of Newton’s method we consider a
system of two equations and drop subscripts by using

=0 CGaa)=Can)
Sx fy)

8x 8y
and the system (19) can be written as:

(203.) (xv+1 - xv)fx(xv’ yv) + (yv+1 - yv)fy(xw yv) +f(xv’ yv) = 0
(20b) (xya1 — x)gx(xy, py) + (o1 — yv)gy(xw ») +glx, p) =0

Then
J(x) = (
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In the (x, y, z)-space the equations
(218) z = (X - xv)fx(xv’ yv) + (y - yv)f;_/(xv, yv) + f(xv’ yv),

(2lb) zZ= (x - xv)gx(xv’ yv) + (y - yv)gy(xw yv) + g(xv’ J’v),

each represent planes. The plane (21a) is tangent to the surface z = f(x, y)
at the point (x,, y,, f(x,, y,)), and the plane (21b) is tangent to z = g(x, »)
at the point (x,, y,, g(x,, »,)). Clearly, the point (x,.,, y,.,) determined
from (20) is the point of intersection of these two planes with the plane
z = 0, i.e., the (x, y)-plane. Thus, in passing from one dimension (Section
2.2) to two dimensions, Newton’s method is generalized by replacing
tangent lines with tangent planes. In the more general case of n dimensions
the obvious interpretation, using tangent hyperplanes, is valid. Each of the
equations

Z=i(xk— ‘”’)af(x )+f( M), i=L4L2...,n

represents a hyperplane in the (x,, x, . . ., X5, 2) space of n + | dimensions
which is tangent at the point (x{”, x%°, ..., x{) to the corresponding
hypersurface

4 :f;(-xly x29 RRAR) xn)‘

The difficulties which may arise in the solution of systems using Newton’s
method can be interpreted by means of these geometric considerations.

3.2. Convergence of Newton’s Method

If the initial iterate x' is sufficiently close to the root a of f(x) = o,
then Theorem 2 can be used to prove that the Newton iterates, x”,
defined in (19) converge to the root. In addition, if the Jacobian J(x)
is non-singular at the root, x = a, and differentiable there, then the
convergence is second order. However, we do not know from these results
if a given initial iterate x© is close enough to the unknown root, a. We
shall develop a sufficient condition, under which Newton’s scheme con-
verges, with the property that this condition may be explicitly checked
without a knowledge of a. In fact, the theorem to be established also
proves the existence of a unique root of f(x) in an appropriate interval
about the initial iterate, x®. Thus, we have an alternative to Theorem 1
which we state as

THEOREM 3. Let the initial iterate x'© be such that the Jacobian matrix
J(x®) defined in (16) has an inverse with norm bounded by

(22a) I x)] < a
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Let the difference of the first two Newton iterates be bounded by
(22b) XD = xO = |- x| < b.

Let the components of {(x) have continuous second derivatives which satisfy

< | 23(x)
(22¢) Z el
forall x in |x — x9f < 2b; i j=1,2,...,n. If the constants a, b, and
¢ are such that
(224d) abc < %

then: (i) the Newton iterates (19) are uniquely defined and lie in the
““2b-sphere” about x©:

”x(v) — x(O)“ < 2b,

(ii) the iterates converge to some vector, say lim x = a, for which

V—
f(a) = 0 and
2b
(23) Ix» - af < 5
[All vector norms in the statement and proof of this theorem are maximum
norms, i.e., x| = max;|x,], and matrix norms are the corresponding

induced natural norm, i.e., |A4] = max (Z la,j|).]
t i=1
Proof. The proof proceeds by a somewhat lengthy induction. For
convenience, we use the notation J, = J(x) for the Jacobian matrices
(16) and show for allv = 0, 1, 2,.. .that with A,,., = 1— J," ' J,.1,

(24a) [x¢+D — x| < fb;’
(24b) [xC+D — x©@| < 25,
(24¢) Myl = 470 =)l < 4

(24d) Wikl = [0 = Ao ~Y, Y < 2%,

From the hypothesis (22b) it trivially follows that (24a, b) are satisfied
for v = 0. Now when (24b) is established up to and including any value v
then x®¥*V and x* are in the 2b-sphere about x‘ in which we are assured
that the second derivatives of the f(x) are continuous. Then we can apply
Taylor’s theorem to the components of J,,, to obtain

aﬁ(x(v+ 1)) aﬁ(x(v)) n N - aZﬁ [x(v) + ex(x(v+ n _ x(v))]’
ox;  ox * Zl (i X) ox; 0%,

0<4 <.
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Since x®*D and x® are in |x — x@| < 2b, so is the point
x4+ o(x¥+ 1 — x™), and (22c) applies. This gives from the above

(25) Wyer = Ll < efx®+D — xV.

At the present stage in the proof this is valid only for v = 0. But then using
this and (22a, b, d) in (24¢) with v = 0 yields

4] < 6= - [V = Jo
< acfx® — x|
< abc
< 4.

Now (24a, b, ¢) have been established for v = 0.
If for any v the matrix J, is non-singular, then we have the identity

Jys1 = Jv(l - Av+1),

where, as in (24¢), 4,,, = J,"}(J, — J,+1). But from the Corollary to

Theorem 1.5 of Chapter 1 it follows that if |A4,,,]| < 1 then J,,, is

non-singular and

26) il < bl
R Tl B

Since (24c¢) is valid for v = 0 we can use this in (26) to get
/71 < 2a.

Thus (24) has been verified for v = 0.

Let us now make the inductive assumption that (24) is valid for all
v < k — | and proceed to show that it is also valid for v = k. Since J,
is non-singular, the (k + 1)st Newton iterate, xX**1, is uniquely defined
and we have from (19a):

(27) "x(k+l) — x(k)”

[~ x|
1 - )]

IA

However, since (24b) is valid for » = k — 1, the point x® is in the
2b-sphere about x‘®, Then by Taylor’s theorem, with remainder term
R, and (19b) with v = k — 1:

F(x) = F(x D) + J,_y[x® — x*~] 4 R(x, D)

= R(x®, x*~1),
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Using (22c¢), we can bound the above remainder term to yield

”f(x(k))” = max |R1(X(k), x(k—l))[
1
e B G = 0 — )
= max | D Z 21
%, *k-1) ) *k-1)
B Ny <1,
L xS+ g - X 0 <y
(28) < £ [x% — xte-D2,

Again, we have used the fact that x*~1D 4 4(x* — x*~1) is in the
2b-sphere about x@ since x* and x*~1 are in it. Now using (28) in
(27) and recalling that (24) is assumed valid for all v < k — 1 we get

29) [x+D — x®| < g Y| [[x% — xtk-D|2
c b \?  ab%
= 2 (2ka)(2k—1) = %1

Thus (24a) is established for v = k. Then since

3
Z KD x(l))H
1=0

k

Hx(k+1) — x(O)” _

< Z X4+ x)
)

I
<531
< 2b,

we have also established (24b) for v = k. But then x**V is in the 2b-sphere
about x® and so (25) is valid with v = k. This gives
||Ak+1“ = ”']kNI(Jk - ‘,k+1)|l
e - Ik e — el
c"Jk—IH . ||x(k+1) — x(k)“
abc

1.

'\’I

A A A

IA
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Thus (24c) is valid with v = k and implies that J.,, is non-singular.
Then using (26) with v = k yields (24d), and the inductive proof of (24)
is complete.

Part (i) of the theorem follows from (24b, d). The convergence of the
x™ follows from (24a) since they form a Cauchy sequence: i.e.,

vtm-—-1
]lx““’ —x?| <b Z lz
I=v 2

v+tm-—1
(+1) __ 1y
(x x®)

l=v

(30) [xm — x| =

v+m=-1

IA
M

i=v

b
2v—1’

<

Calling the limit vector a, we use (24a), (28) and the continuity of f(x)

to deduce that

2b%c
4%

1

If(x®)] <

and lim f(x*) = f(a) = o. Letting m — 0, (30) implies
k= o

y 2b
o ~ x| < 25
and so, part (ii) is established, concluding the proof of the theorem. W
This theorem is valid if » = 1. The hypothesis permits the case that
J(a) is singular. Hence, it is reasonable that the conclusion (ii) shows at
most linear convergence. But (ii), moreover