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Introduction Block clustering methods

Simultaneous clustering on both dimensions
@ They have attracted much attention in recent years

@ The problem of block clustering had an increasing influence in applied mathematics
(Jennings, 1968)

@ Referred in the literature as bi-clustering, co-clustering, direct clustering,...
@ no-overlapping co-clustering
@ overlapping co-clustering
@ First works in J.A. Hartigan, Direct Clustering of a Data Matrix, J. Am. Statistical
Assoc. (JASA), vol. 67, no. 337, pp. 123-129, 1972.
@ Different approaches are proposed: they differ in the pattern they seek and the types

of data they apply to
@ Organization of the data matrix into homogeneous blocks
Aim
@ To cluster the sets of rows and columns simultaneously

@ To permutate the rows and the columns in order to obtain homogeneous blocks
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Introduction Block clustering methods

Example of block clustering

1234567 1435726

I 1111

H - QY = w@ Q=
H— QO =% DA =

@ (1) : Initial data matrix

@ (2) : Data matrix reorganized according a partition of rows

@ (3) : Data matrix reorganized according partitions of rows and columns
@ (4) : Summary of this matrix
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Notations
Data
@ matrix x = (x;)
@ i €/ set of n rows

@ j € J set of d columns

Partition z of / in g clusters

@ zZ= (21,...,2,,) = (Z,'k)
@ z; cluster number of |
9 zy =1if i € k and zj = 0 otherwise

HNWNW
HOOOOoO
O OO
OO+ OHR

Partition w of J in m clusters

(W17 s 7WP) = (le)
w; cluster number of j
wjp = 1if j € £ and wj, = 0 otherwise

e w

¢ ¢

From z and w

@ block k¢ is defined by the x;'s with zyw;, =1
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Block clustering algorithms (1)

Four algorithms (Govaert, 1977, 1983)
@ CROBIN: binary data
@ CROKI2: contingency data
@ CROEUC: continuous data
@ CROMUL: categorical data

Optimization of criterion W(z,w,a)
@ z and w partitions of / and J

@ a = (ak¢) summary matrix of dimensions K X M having the same structure that the
initial data matrix

@ W depends on the type of data.

Additive model

o x=zaw’ +e
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Introduction Block clustering methods

Block clustering algorithms (2)

General principle

Binary data Contingency table Continuous data
Majority value Sum mean
T T m
TO T0 To
Criteria
Data ETY) Criterion W
Binary Mode Zi,j,k,[ Zik Wje|X,'J' — ak[|
Contingenc Sum 2(z,w) =N (i £0)*
gency X ki f fg

Continuous  Mean 3., ziwje(Xj — ake)® = ||x — zaw " [|?
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Binary data: CROBIN

Algorithm

Alternated minimization of the criterion W(z, w, a)
@ minimization of W(z,alw) = >, , , zik|uic — #weake| where uje = 3 ; wjex;;
9 nuées dynamiques on u
@ minimization of W(w,alz)

D ke WielVie — #2zicake| where vig = 37, Ziex;;

9 nuées dynamiques on v

Data Reorganized matrix
abcdefghij acgh bdefij
1 1010001101 V2 0000 111111
Y2 0101110011 Y6 0001 111101 summary
v3 1000001100 y7 0101 111111
va 1010001100 vs 1010 101111 0 1
vs 0111001100 Yo oooo0 101100
Y6 0101110101 y17 0oo0o0 111111 1 0
y7 0111110111 v1 1111 000001
vs 1100111011 v3 1011 000000
Yo 0100110000 va 1111 000000
y10 1010101101 Vs 0111 110000 .
11 1010001100 Y10 1111 001001 Homogenelty
yi2 1010000100 i1 1111 000000
y13 1010001101 iz 1101 000000
via 0010011100 13 1111 000001 0.80 0.87
yis 0010010100 via 0111 000100
yie 1111001100 y15 0101 000100 0.86 0.84
17 0101110011 Y16 1111 110000
yis 1010011101 vi8 1111 000101
Y19 1010001000 Y19 1110 000000
Y20 1100101100 Y20 1011 101000

Nadif (CRIP5 ) IRAN, December 13-21, 2008 SEMINAIRES 8/ 45



Introduction Block clustering methods

Continuous Data

Minimization of the criterion W(z, w,a) = ||x — zaw" ||?
Two-mode k-means

@ Choose initial z and w
@ repeat the following steps
o update @, akp = 3, ; ZiWjeXij/ 327 j ZikWie
o update z, zjy = 1if cj = miny<i<gcik where ¢y = Zj,z wie(xij — ae)?
@ update a
< update W, Wjp = 1if dj[ = minlgggmdj[ where dj[ = Zi,k Z,'k(X,'j - ak[)z

Alternating Exchanges : Gaul and Schader (1996)

1 For each transfer row object i to row cluster k, we re-calculate a

2 For each transfer column object j to column cluster ¢, we re-calculate a

The Croeuc Algorithm

(a) minimization of W(z,alw) =", , zi(uic — #weake)® where uje = 3, wjexi /#we
(a.1) k-means on u and we obtain z

(b) minimization of W(w,alz) = ijk’l wje(vje — #Zkak[)z where vi; = 3. ziexij [ # 2k
(b.1) k-means on v and we obtain w
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Introduction Block clustering methods

Contingency table

@ Summary of To can be obtained by

Sum

B

T1

TO
@ T1 and To have the same structure x?(To) > x*(T1)
@ Problem: find partitions z and w maximizing x?(z, w).
@ Solution: Alternated maximization of x?(z, J) and x(/,w)

o Croki2: Alternated application of kmeans with the x? metric on intermediate
reduced matrices of size (K x p) and (n x M)
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Introduction Interests

Interests

Complementary methods to factor analysis methods

@ PCA, Correspondence analysis, etc.

Reduction of the size of data

@ They distil the initial data matrix into a simpler one having the same structure
@ High dimensionality

Methods able to handle large data sets

@ Less computation required than for processing the two sets separately

n p K M  separately simultaneously
100 100 5 5 5 x 10° 1.25 x 10°
1000 1000 10 5 7.5x 10° 1.375 x 10°
1000 1000 10 10 100 x 10° 5 x 10°

@ Using (n x M) and (K x p) reduced matrices (good tool in data mining)
@ To treat sparse data
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Applications

@ Text mining: clustering of documents and words simultaneously is better than

@ clustering of documents on basis of words
@ clustering of words on basis of documents

@ Bioinformatics: clustering of genes and tissus simultaneously
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Introduction ~ Defects

Defects of algorithms cited
@ Choice of the criterion not often easily

@ Implicit hypotheses unknown
@ Crobin not able to propose a solution when the clusters are not well-separated and

@ proportions of clusters dramatically different
o degrees of homogeneity of blocks dramatically different

> zuewjelxiy — ak
ikt

@ Croki2 not depending on the proportions of clusters

2 (e — fi.f0)?
z,w) =N s
X" (z,w) %: T,
Aim
Propose a general framework able to formalize the hypotheses of block clustering
algorithms: latent block model
@ to overcome the defects of criteria and therefore to propose other criteria

@ to develop other efficient algorithms
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Introduction ~ Defects

Algorithm of Block clustering

Algorithm of Block clustering

@ Consists to permutate the rows and the columns in order to obtain homogeneous
blocks

Optimisation of criterion W(z,w, a)
@ z and w partitions of / and J

o a = (ake) is a K x M data matrix having the same structure that the initial data
matrix n X p

@ The criterion W depends on the type of data

Why to consider a probabilistic model ?

@ We have seen the limits of a numerical criterion, interpretation not often easy,
depend only the data and the centers

@ Solution = "Block Mixture Model"
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Outline

© Latent block model
@ The model (Govaert and Nadif, 2003)
@ Examples of latent block model
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Latent block model The model

New formulation of the classical mixture model

Traditional formulation

F(x0) =[] D me(xis o)
i k

@ ( a statistical distribution with parameter o

@ my the proportion of the kth component

Alternative formulation

f(x;0) =Y P(2)f(x|z; o)

zeZ

o P(z) =[;m;
o f(x|z; ) = IT; p(xi; az;)
@ Z set of all the partitions of /
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Latent block model The model

Proof
n K
f(x,0) = [[D_ melxi; o)

i=1 k=1

= ]I Z pryp(xi; az;)
i=1z;e{1,...,.K}

= Zsz leaz
zeZ i=1

= > Ipa ] exiias)
z€Zi=1  i=1

= Y p@)f(xlza)
zeZ

where

) P(Z) = H,-ﬂ'z,-
o f(x|z; @) = I1; (xii oz;)
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Latent block model

Generalization on / x J, (Govaert and Nadif, 2003)

f(x,0) = P(u)f(x|u; )

ucU

where U is the set of all the partitions of [ x J

Hypotheses
su=zxXw

@ Hypothesis : f(x|z,w; @) = [[; ; ¢(xj; @tz;,w;) where ¢(., @) are pdf on R

Latent block model

fx0)= > szprHgo(x,,,azw

(z,w)EZXW i

where 0:(71'1,...,7rK,p1,...,pM,au,...,agm)
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Latent block model The model

Interpretation

Given 1 i 8
@ the proportions 71, ..., Tk, P1,- .., PM 189234736
@ the pdf of each pair of clusters, ; —
the randomized data generation process can be ! ; 4
described as follows: )
@ Generate the partition z = (z1,...,2n) y &
according to the multinomial distribution §
(71‘1, e ,7TK) $
@ Generate the partition w = (w1,...,wp) 3 4
according to the multinomial distribution 10 X
(p1,-- -, pm) 1l
@ Generate for i =1,....nand j=1,...,p a real d 141
value x; according to the distribution
o(.; aZin)
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Types of data

Bernoulli latent block model
@ Binary data
@ ¢ Bernoulli distribution B(auke)

More parsimonious than using classical mixture model on / and J
@ Binary data
@ n=1000, p=500, K=4, M =3, mc =1/K, pe =1/M
@ Bernoulli latent block model : 4 x 3 = 12 parameters
@ Two mixture models : (4 x 500 + 3 x 1000) = 5000 parameters

Many versatile or parsimonious models available
As for classical mixture models, it is possible to impose various constraints
@ Fixed proportions
@ Bernoulli latent model : ax; — (ake, exe) where ax, € {0,1} and € €]0,1/2]

@ Different models with €, e, ¢, €xe
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Latent block model Examples of latent block model

Poisson latent block model

Poisson latent block model

@ Contingency table
@ ¢ Poisson distribution P(uivjoe)

o u; and v; the effects of the row i and the column j
o «yy the effect of the block kZ.

@ Constraints for identifiability of the model : p; = (pa,...,un) and v; = (v1,...,vp)
are assumed to be known

Example

@ Text mining
I: set of documents
J: set of words

x;;i frequency of word j in document i

¢ ¢ ¢ ¢

Model : if i is in cluster k and j is in cluster ¢, then

xij ~ P(piviake)
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Outline

e CML and ML approaches
o CML approach
@ ML approach
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CML and ML approaches

Clustering: find optimal (z*, w*)

Maximum Likelihood (ML) approach

@ Estimation of 6 by maximizing the likelihood of data
@ MAP to propose optimal (z*,w")

@ Some problems for the block clustering

@ BEM algorithm

Classification Maximum Likelihood (CML) approach

@ Maximization of the complete data likelihood
@ No problems to propose (z*,w")
o BCEM

Remarks about CML approach
@ To find the classical criteria and to propose the news

@ To find the algorithms used and to propose other variants
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CML and ML approaches CML approach

Classification likelihood

The criterion
@ Complete data: (x,z,w)

@ Complete (or classification) log-likelihood
Lc(0,z,w) = L(6;x,z,w) = log H7Tz pr Hgo(xu, Qzpw;
= Zlogm,—&—Zlogpw Zloggo Xij; Otzpw;)

an |og7rk+ng log pe + Z ziewje log p(xij; ake)

i k.e

@ Find the partitions z and w and the parameter 8 maximizing L¢
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Block CEM algorithm (BCEM)

Various alternated maximization of L¢ using from an initial position (z,w, 8), the three
steps:

a) :argmaxLc(0,z,w) b):argmaxLc(0,z,w) c):argmaxLc(0,z,w)
z w o

Version 1
Repeat the two following steps until convergence

Q Repeat steps a) and b) until convergence
Q Step ¢)

Version 2
Repeat the two following steps until convergence
Q@ Repeat steps a) and c) until convergence

Q Repeat steps b) and c) until convergence
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CML and ML approaches CML approach

Some remarks on BCEM

Version 2

@ Maximization of L¢ by an alternated maximization of
¢ Step 1: maximization of Lc(6,z|w)
¢ Step 2: maximization of Lc(0,w|z)

@ Lc(0,z|w) associated to a classical mixture model on u a (n x M) data matrix
o Lc(0,w|z) associated to a classical mixture model on v a (K X p) data matrix

9 Classical CEM on u
@ Classical CEM on v

@ BCEM is an alternated application of the CEM algorithm on u and v

For Bernoulli and Poisson latent block models
@ Lc(0,zlw) and Lc(0,w|z) associated to a mixture of Binomial distributions

@ Lc(0,zlw) and Lc(0,w]|z) associated to a mixture of multinomial distributions
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Different computes for BCEM: Bernoulli latent block model

Notations

N =2 Zik de=3; wie

Vig = D0 ZikXi die = )5 WieXij

E-step (1,2): computation of s and t

Uie dp—u;
Sik X ﬂkHOék'z (1 — Oék[) e—Hie
L

Vkj n,—vy;
k

C-step (1,2): computation of classification matrices z and w

zie = 1if k = argmax sy and wj, = 1 if £ = argmax tjp
K'=1,...,.K 0=1,...M
M-step (1,2): computation of 6

dy 2 Zik WieXij
= = (6% =
Pe = ke SPER

sl

Tk =
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Links between BCEM and Crobin or Croki2

Crobin

@ Constraints on the (axe)’s and the proportions
o ayy = (ake,e) where ag, € {0,1} and € €]0,1/2[
@ Assumption : T =... =7k and p1 = ... = pm

Le = Iog(lL)W(z,w,a) + cst
-

@ Maximization of L¢ equivalent to minimization of W/(z,w, a)
@ Lc(0,zlw) and Lc(0,w(z) correspond to W(z,a|lw) and W(w, a|z)

Croki2

@ Assumption : T =...=7k and p1 = ... = pm

fre
Le=N E fre log —— t
-~ A tes

I(z,w)/x?(z,w)/ Croki2
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CML and ML approaches ML approach

Maximization of likelihood

@ EM algorithm

@ Complete data : (x,z,w)
@ Iterative maximization of the conditional expectation of Lc(6,z,w)
o given the data x and using the current fit 6/ for the parameter :

Q(6,0') = Z sik log i + Z tie log pe + Z ejjke log p(xij; aie)
ik je ijkt
¥ Sj = P(Z,'k = ].|X7 9/), tjl = P(WJ[ = l\x, 9,)

o ejjke = P(ziwje = 1x,6")

Difficulties
@ Dependence structure among the variables x;;

@ Determination of ej;, not tractable

Approximation

@ Replace the maximization of the likelihood by the maximization of a new criterion

Nadif (CRIP5 ) IRAN, December 13-21, 2008 SEMINAIRES 29 / 45



CML and ML approaches ML approach

The Neal and Hinton interpretation of the EM algorithm

Hathaway interpretation of EM : classical mixture model context
@ EM = alternated maximization of the fuzzy clustering criterion

Fc(s,0) = Lc(s; 0) + H(s)

o s = (sj): fuzzy partition

o Le(s,0) = Zi,k sik log(mre(xi; ag)): fuzzy classification log-likelihood
9 H(s) = =3, j sik log si : entropy function

Algorithm

@ Maximizing Fc w.r. to s yields the E step

@ Maximizing Fc w.r. to 0 yields the M step

Neal and Hinton interpretation of EM: general context
Fc(P,0) = Ep(Lc(2,0)) + H(P)

@ P: distribution over the space of missing data z
@ H: entropy function
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CML and ML approaches ML approach

Fuzzy criterion

By using
@ the Neal and Hinton interpretation of the EM algorithm
& the variational mean field approximation: ejj, = sy X tje

we replace the likelihood criterion by the new criterion (Govaert and Nadif, 2008)
G(0,s,t) = Lc(0,s,t) + H(s) + H(t)

where s = (si), t = (tj¢) and H is the entropy function.

Various alternated maximization of G using, from an initial position (s, t, ), the three
steps:
a) :argmax G(0,s,t) b) :argmax G(O,s,t) c):argmax G(0O,s,t)
s t 7]

Block EM algorithm: version 1
Repeat the two following steps until convergence

Q Repeat steps a) and b) until convergence
Q Step ¢)
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Block EM algorithm

Version 2
Repeat the two following steps until convergence
©Q Repeat steps a) and c) until convergence

©Q Repeat steps b) and c) until convergence

Interpretation of Version 2
@ Step 1: maximization of G(0,s|t), Hathaway — EM
@ Step 2: maximization of G(6,t|s), Hathaway — EM

Alternated maximization by using reduced matrices u and v

o u=(ug,...,u;...,up) where u; = (uj1, ..., Um)
o ujp = f(xj, tje)
o v=(vi,...,Vj,...,Vp) where vj = (vqj,..., vkj)

o v = (x5, Sik)
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Different computes for BEM: Bernoulli latent block model

Notations

Nk =) Sik de =3, tie

Vig = D0 SikXij  Uie = ) tjeXij

E-step (1,2): computation of s and t

u;, dp—u;,
Sike X 7rkH a, (1 — o)
¢

Vkj ng—vp;
k

M-step (1,2): computation of 6

X SikteXi

- —
Tk = pPe = d ke = Eijsiktjl

32
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CML and ML approaches ML approach

Example n x r =200 x 120, fairly-separated

] True Estimations Estimations
values by BEM by BCEM
P1 0.2 0.1979 0.1900
P2 0.3 0.3140 0.3400
P3 0.5 0.4881 0.4700
g1 0.3 0.2929 0.2583
qz2 0.7 0.7071 0.7417
0.60 0.40 0.6067  0.4026 0.6188 0.4063
a 0.40 0.60 0.4089 0.6041 0.3861 0.6000
0.60 0.65 0.5989  0.6565 0.6095 0.6559

|16 — 0° 0 0.0252 0.0824

@ Good estimation by BEM
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Outline

@ Numerical simulations
@ Binary data
@ Contingency table
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Numerical simulations

Some numerical simulations
Parameters

@ Characteristics of the data

9 Bernoulli block mixture model
s g=3and m=2
@ O situations:

9 3 degrees of overlapping:
9 Well-separated (+): 4%
9 Fairly-separated (++): 15%
@ Poorly-separated (+++): 25%

9 3 sizes of data:

@ Small: n x p=50 x 30
@ Medium: n x p =100 x 60
9@ Large: n x p =200 x 120

@ For each situation: simulation of 30 samples

Objective
@ Comparison of BEM and BCEM by looking at the quality of results and the
frequency on 30 that one of the two algorithms outperforms the other
o Clustering (error rate) and estimation contexts (||@ — 6°]|)
@ Only Version 2 because it is slightly better and faster
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Results with well-separated data (True error rate = 0.03)

Sizes (50, 30) (100, 60) (200, 120)
mean for BEM 0.03 0.04 0.02
mean for BCEM 0.04 0.04 0.03
Error #(BEM>BCEM) 1 9 6
rate #(BEM=BCEM) 27 18 23
#(BEM<BCEM) 2 3 1
mean for BEM 0.19 0.13 0.08
mean for BCEM 0.21 0.14 0.08
16 —8° #(BEM>BCEM) 15 20 20
#(BEM=BCEM) 0 0 0
#(BEM<BCEM) 15 10 10
Results with fairly-separated data (True error rate = 0.15)
Sizes (50, 30) (100, 60) (200, 120)
mean for BEM 0.21 0.13 0.13
mean for BCEM 0.31 0.15 0.20
Error #(BEM>BCEM) 17 18 24
rate #(BEM=BCEM) 11 8 1
#(BEM<BCEM) 2 4 5
mean for BEM 0.34 0.16 0.10
mean for BCEM 0.52 0.22 0.21
[l —68° #(BEM>BCEM) 27 25 27
#(BEM=BCEM) 0 0 0
#(BEM<BCEM) 3 5 3
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Numerical simulations Binary data

Results with poorly-separated data (True error rate =0.25)

Sizes (50, 30) (100, 60) (200, 120)
mean for BEM 0.40 0.28 0.29
mean for BCEM 0.52 0.53 Hkx

Error #(BEM>BCEM) 27 30 30

rate #(BEM=BCEM) 0 0 0
#(BEM<BBCEM) 3 0 0
mean for BEM 0.49 0.28 0.17
mean for BCEM 0.78 0.79 Hkx

e — e°| #(BEM>BCEM) 28 30 30
#(BEM=BCEM) 0 0 0
#(BEM<BCEM) 2 0 0

Some remarks drawn from these simulations
@ BEM outperforms BCEM in most of situations

@ Even when the clusters are well separated (favorable situation for BCEM), the
performances of both algorithms are not very different

@ BEM gives error rates closed to the true value when the size is large enough
What one can wonder about the performances of 2BEM, 2CEM ?
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Numerical simulations Contingency table

Clustering

Overlap : 0.05 Overlap : 0.15 Overlap : 0.25

Error rate
Error rate

zo 100760 200x120 Sooxas0 b0 100760 200120 Sosas0 %0 100x60 2005120 300x180
Size Size

Mean error rates for BEM: solid line, BCEM: dashed line: 2CEM: dotted line and 2EM:
dash-dot line

Estimation

Overlap : 0.05 Overlap : 0.15 Overlap : 0.25

Distance

50x30 100x60 200x120 300x180 50x30 100x60 200x120 300x180 50x30 100x60 200x120 300x180
Size Size

Mean distance between true and estimated parameters for the 4 algorithms
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Numerical simulations Contingency table

Run times

Overlap : 0.05 Overlap : 0.15 Overlap : 0.25

Time
Time

200x120 J00x180  S0xa0 100x60 200x120 So0xi80  shxao

o
Size Size

Mean run time (in seconds) according to size and overlap

@ BCEM > 2CEM and BEM > 2EM in all situations where the size > 100 x 60
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Numerical simulations Contingency table

An illustrative example
@ Classic3 data (3893 abstracts, 2000 words) :

@ 1033 abstracts from medical journals,
9 1460 from IR papers,

@ 1400 from aerodynamic systems

Comparison between BEM and BCEM (g = 3, m = 3)
@ Confusion matrices obtained resp. by BEM and BCEM

Med. Cis. Cra. Med. Cis. Cra.
zy 1008 4 2 1007 3 2
z> 25 1451 2 25 1452 15
z3 1 16 1383 1 6 1382

@ BEM > BCEM (52 mis. for BEM and 56 mis. for BCEM)
@ 2BEM (54 mis.) and 2CEM (76 mis.)
@ BEM is more adapted for clustering even if it is not its aim
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Outline

© Conclusion
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Conclusion

Conclusion

Principal points
@ Block clustering methods: BEM and BCEM
@ BEM is interesting in clustering and estimation contexts

@ lllustrations on binary data and contingency table

Other works related to the latent block model
@ Case of continuous data
@ number of blocks
@ missing data
@ speed-up of BEM

T TS 9NN RN 1S BT 6

@ Hierarchical block clustering method
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