Block Clustering models and algorithms

Mohamed Nadif

Université Paris Descartes, France

Outline

- Introduction
 - Block clustering methods
 - Interests
 - Defects
- Latent block model
 - The model (Govaert and Nadif, 2003)
 - Examples of latent block model
- CML and ML approaches
 - CML approach
 - ML approach
- Mumerical simulations
 - Binary data
 - Contingency table
- Conclusion
- References

Simultaneous clustering on both dimensions

- They have attracted much attention in recent years
- The problem of block clustering had an increasing influence in applied mathematics (Jennings, 1968)
- Referred in the literature as bi-clustering, co-clustering, direct clustering,...
 - no-overlapping co-clustering
 - overlapping co-clustering
- First works in J.A. Hartigan, Direct Clustering of a Data Matrix, J. Am. Statistical Assoc. (JASA), vol. 67, no. 337, pp. 123-129, 1972.
- Different approaches are proposed: they differ in the pattern they seek and the types of data they apply to
- Organization of the data matrix into homogeneous blocks

Aim

- To cluster the sets of rows and columns simultaneously
- To permutate the rows and the columns in order to obtain homogeneous blocks

(ロ) (固) (重) (重) (重) の(で

Example of block clustering

- (1) : Initial data matrix
- (2): Data matrix reorganized according a partition of rows
- (3): Data matrix reorganized according partitions of rows and columns
- (4) : Summary of this matrix

Notations

Data

- matrix $\mathbf{x} = (x_{ii})$
- $i \in I$ set of n rows
- $j \in J$ set of d columns

Partition z of I in g clusters

•
$$\mathbf{z} = (\mathbf{z}_1, \dots, \mathbf{z}_n) = (z_{ik})$$

• \mathbf{z}_i cluster number of i
• $\mathbf{z}_{ik} = 1$ if $i \in k$ and $z_{ik} = 0$ otherwise

3	0	0	1
2	0 0 0	1	0
	0	Ō	1
2	0	1	0
	1	Λ	Λ

SEMINAIRES

Partition w of J in m clusters

•
$$\mathbf{w} = (\mathbf{w}_1, \dots, \mathbf{w}_p) = (\mathbf{w}_{j\ell})$$

w_i cluster number of j

• $w_{i\ell} = 1$ if $j \in \ell$ and $w_{i\ell} = 0$ otherwise

From z and w

• block $k\ell$ is defined by the x_{ij} 's with $z_{ik}w_{i\ell}=1$

Block clustering algorithms (1)

Four algorithms (Govaert, 1977, 1983)

- CROBIN: binary data
- CROKI2: contingency data
- CROEUC: continuous data
- CROMUL: categorical data

Optimization of criterion W(z, w, a)

- z and w partitions of I and J
- $\mathbf{a} = (a_{k\ell})$ summary matrix of dimensions $K \times M$ having the same structure that the initial data matrix
- W depends on the type of data.

Additive model

$$\mathbf{x} = \mathbf{z} \mathbf{a} \mathbf{w}^T + \mathbf{e}$$

Block clustering algorithms (2)

General principle

Criteria

Data	$a_{k\ell}$	Criterion W
Binary	Mode	$\sum_{i,j,k,\ell} z_{ik} w_{j\ell} x_{ij} - a_{k\ell} $
Contingency	Sum	$\chi^2(\mathbf{z}, \mathbf{w}) = N \sum_{k,\ell} \frac{(f_{k\ell} - f_k, f_{-\ell})^2}{f_{k,f,\ell}}$
Continuous	Mean	$\sum_{i,j,k,\ell} z_{ik} w_{j\ell} (x_{ij} - a_{k\ell})^2 = \mathbf{x} - \mathbf{zaw}^T ^2$

Binary data: CROBIN

Algorithm

Alternated minimization of the criterion $W(\mathbf{z}, \mathbf{w}, \mathbf{a})$

- ullet minimization of $W(\mathbf{z}, \mathbf{a} | \mathbf{w}) = \sum_{i,k,\ell} z_{ik} |u_{i\ell} \# w_\ell a_{k\ell}|$ where $u_{i\ell} = \sum_j w_{j\ell} x_{ij}$
 - nuées dynamiques on u
- minimization of $W(\mathbf{w}, \mathbf{a}|\mathbf{z}) = \sum_{j,k,\ell} w_{j\ell} |v_{j\ell} \#z_k a_{k\ell}|$ where $v_{kj} = \sum_i z_{ik} x_{ij}$
 - nuées dynamiques on v

Data

	abcdefghij
<i>y</i> ₁	1010001101
<i>y</i> ₂	0101110011
У3	1000001100
У4	1010001100
<i>y</i> ₅	0111001100
У6	0101110101
<i>y</i> 7	0111110111
<i>y</i> 8	1100111011
<i>y</i> 9	0100110000
<i>y</i> 10	1010101101
y ₁₁	1010001100
<i>y</i> 12	1010000100
<i>y</i> 13	1010001101
<i>y</i> 14	0010011100
y ₁₅	0010010100
y ₁₆	1111001100
y ₁₇	0101110011
y ₁₈	1010011101
<i>y</i> 19	1010001000
Vac	1100101100

Reorganized matrix

	acgh	bdefij
у2	0000	111111
У6	0001	111101
У7	0101	111111
У8	1010	101111
У9	0000	101100
y ₁₇	0000	111111
<i>y</i> ₁	1111	000001
У3	1011	000000
У4	1111	000000
<i>y</i> ₅	0111	110000
<i>y</i> 10	1111	001001
y ₁₁	1111	000000
<i>y</i> 12	1101	000000
<i>y</i> 13	1111	000001
<i>y</i> 14	0111	000100
<i>y</i> 15	0101	000100
<i>y</i> 16	1111	110000
<i>y</i> 18	1111	000101
<i>y</i> 19	1110	000000
<i>y</i> 20	1011	101000

Summary

0	1
1	0

Homogeneity

0.80	0.87
0.86	0.84

Continuous Data

Minimization of the criterion $W(\mathbf{z}, \mathbf{w}, \mathbf{a}) = ||\mathbf{x} - \mathbf{z}\mathbf{a}\mathbf{w}^T||^2$

Two-mode k-means

- Choose initial z and w
- repeat the following steps
 - update **a**, $a_{k\ell} = \sum_{i,j} z_{ik} w_{j\ell} x_{ij} / \sum_{i,j} z_{ik} w_{j\ell}$
 - update **z**, $z_{ik}=1$ if $c_{ik}=\min_{1\leq k\leq g}c_{ik}$ where $c_{ik}=\sum_{j,\ell}w_{j\ell}(x_{ij}-a_{k\ell})^2$
 - update a
 - update **w**, $w_{j\ell}=1$ if $d_{j\ell}=min_{1\leq \ell\leq m}d_{j\ell}$ where $d_{j\ell}=\sum_{i,k}z_{ik}(x_{ij}-a_{k\ell})^2$

Alternating Exchanges: Gaul and Schader (1996)

- 1 For each transfer row object i to row cluster k, we re-calculate **a**
- **2** For each transfer column object j to column cluster ℓ , we re-calculate **a**

The Croeuc Algorithm

- (a) minimization of $W(\mathbf{z}, \mathbf{a}|\mathbf{w}) = \sum_{i,k,\ell} z_{ik} (u_{i\ell} \# w_\ell a_{k\ell})^2$ where $u_{i\ell} = \sum_j w_{j\ell} x_{ij} / \# w_\ell$
 - (a.1) k-means on u and we obtain z
- (b) minimization of $W(\mathbf{w}, \mathbf{a}|\mathbf{z}) = \sum_{j,k,\ell} w_{j\ell} (v_{j\ell} \#z_k a_{k\ell})^2$ where $v_{kj} = \sum_i z_{ik} x_{ij} / \#z_k$
 - (b.1) k-means on \mathbf{v} and we obtain \mathbf{w}

Contingency table

• Summary of T_0 can be obtained by

- T_1 and T_0 have the same structure $\chi^2(T_0) \geq \chi^2(T_1)$
- Problem: find partitions **z** and **w** maximizing $\chi^2(\mathbf{z}, \mathbf{w})$.
- Solution: Alternated maximization of $\chi^2(\mathbf{z}, J)$ and $\chi^2(I, \mathbf{w})$
- Croki2: Alternated application of kmeans with the χ^2 metric on intermediate reduced matrices of size ($K \times p$) and ($n \times M$)

4□ > 4□ > 4 = > 4 = > = 90

Interests

Complementary methods to factor analysis methods

PCA, Correspondence analysis, etc.

Reduction of the size of data

- They distil the initial data matrix into a simpler one having the same structure
- High dimensionality

Methods able to handle large data sets

• Less computation required than for processing the two sets separately

n	р	K	М	separately	simultaneously
100	100	5	5	5×10^5	1.25×10^{5}
1000	1000	10	5	$7.5 imes 10^{6}$	1.375×10^{6}
1000	1000	10	10	100×10^6	$5 imes 10^6$

- Using $(n \times M)$ and $(K \times p)$ reduced matrices (good tool in data mining)
- To treat sparse data

Applications

- Text mining: clustering of documents and words simultaneously is better than
 - clustering of documents on basis of words
 - clustering of words on basis of documents
- Bioinformatics: clustering of genes and tissus simultaneously

Defects of algorithms cited

- Choice of the criterion not often easily
- Implicit hypotheses unknown
- Crobin not able to propose a solution when the clusters are not well-separated and
 - proportions of clusters dramatically different
 - degrees of homogeneity of blocks dramatically different

$$\sum_{i,j,k,\ell} z_{ik} w_{j\ell} |x_{ij} - a_{k\ell}|$$

Croki2 not depending on the proportions of clusters

$$\chi^{2}(\mathbf{z}, \mathbf{w}) = N \sum_{k,\ell} \frac{(f_{k\ell} - f_{k.} f_{.\ell})^{2}}{f_{k.} f_{.\ell}}$$

Aim

Propose a general framework able to formalize the hypotheses of block clustering algorithms: latent block model

- to overcome the defects of criteria and therefore to propose other criteria
- to develop other efficient algorithms

Algorithm of Block clustering

Algorithm of Block clustering

 Consists to permutate the rows and the columns in order to obtain homogeneous blocks

Optimisation of criterion W(z, w, a)

- z and w partitions of I and J
- $\alpha = (\alpha_{k\ell})$ is a $K \times M$ data matrix having the same structure that the initial data matrix $n \times p$
- \bullet The criterion W depends on the type of data

Why to consider a probabilistic model ?

- We have seen the limits of a numerical criterion, interpretation not often easy, depend only the data and the centers
- Solution = "Block Mixture Model"

Outline

- Introduction
 - Block clustering methods
 - Interests
 - Defects
- 2 Latent block model
 - The model (Govaert and Nadif, 2003)
 - Examples of latent block model
- CML and ML approaches
 - CML approach
 - ML approach
- Mumerical simulations
 - Binary data
 - Contingency table
- Conclusion
- References

New formulation of the classical mixture model

Traditional formulation

$$f(\mathbf{x};\theta) = \prod_{i} \sum_{k} \pi_{k} \varphi(\mathbf{x}_{i}; \alpha_{k})$$

- ullet φ a statistical distribution with parameter α_k
- π_k the proportion of the kth component

Alternative formulation

$$f(\mathbf{x}; \boldsymbol{\theta}) = \sum_{\mathbf{z} \in \mathcal{Z}} P(\mathbf{z}) f(\mathbf{x}|\mathbf{z}; \boldsymbol{\alpha})$$

- $P(\mathbf{z}) = \prod_{i} \pi_{\mathbf{z}_{i}}$
- $f(\mathbf{x}|\mathbf{z};\alpha) = \prod_i \varphi(\mathbf{x}_i;\alpha_{\mathbf{z}_i})$
- ullet z set of all the partitions of I

Proof

$$f(\mathbf{x}, \boldsymbol{\theta}) = \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_{k} \varphi(\mathbf{x}_{i}; \boldsymbol{\alpha}_{k})$$

$$= \prod_{i=1}^{n} \sum_{\mathbf{z}_{i} \in \{1, \dots, K\}} p_{\mathbf{z}_{i}} \varphi(\mathbf{x}_{i}; \boldsymbol{\alpha}_{\mathbf{z}_{i}})$$

$$= \sum_{\mathbf{z} \in \mathcal{Z}} \prod_{i=1}^{n} p_{\mathbf{z}_{i}} \varphi(\mathbf{x}_{i}; \boldsymbol{\alpha}_{\mathbf{z}_{i}})$$

$$= \sum_{\mathbf{z} \in \mathcal{Z}} \prod_{i=1}^{n} p_{\mathbf{z}_{i}} \prod_{i=1}^{n} \varphi(\mathbf{x}_{i}; \boldsymbol{\alpha}_{\mathbf{z}_{i}})$$

$$= \sum_{\mathbf{z} \in \mathcal{Z}} p(\mathbf{z}) f(\mathbf{x}|\mathbf{z}; \boldsymbol{\alpha})$$

where

•
$$P(\mathbf{z}) = \prod_{i} \pi_{\mathbf{z}_{i}}$$

• $f(\mathbf{x}|\mathbf{z}; \alpha) = \prod_{i} \varphi(\mathbf{x}_{i}; \alpha_{\mathbf{z}_{i}})$

Latent block model

Generalization on $I \times J$, (Govaert and Nadif, 2003)

$$f(\mathbf{x}, \boldsymbol{\theta}) = \sum_{\mathbf{u} \in U} P(\mathbf{u}) f(\mathbf{x} | \mathbf{u}; \boldsymbol{\alpha})$$

where U is the set of all the partitions of $I \times J$

Hypotheses

- $\mathbf{u} = \mathbf{z} \times \mathbf{w}$
- Hypothesis : $f(\mathbf{x}|\mathbf{z},\mathbf{w};\alpha) = \prod_{i,j} \varphi(x_{ij};\alpha_{z_i,w_i})$ where $\varphi(.,\alpha)$ are pdf on \mathbb{R}

Latent block model

$$f(\mathbf{x}; \boldsymbol{\theta}) = \sum_{(\mathbf{z}, \mathbf{w}) \in \mathcal{Z} \times \mathcal{W}} \prod_{i} \pi_{z_{i}} \prod_{j} \rho_{w_{j}} \prod_{i,j} \varphi(\mathbf{x}_{ij}; \boldsymbol{\alpha}_{z_{i}w_{j}})$$

where $\theta = (\pi_1, \dots, \pi_K, \rho_1, \dots, \rho_M, \alpha_{11}, \dots, \alpha_{gm})$

Interpretation

Given

- the proportions $\pi_1, \ldots, \pi_K, \rho_1, \ldots, \rho_M$
- the pdf of each pair of clusters,

the randomized data generation process can be described as follows:

- Generate the partition $\mathbf{z} = (\mathbf{z}_1, \dots, \mathbf{z}_n)$ according to the multinomial distribution (π_1, \dots, π_K)
- Generate the partition $\mathbf{w} = (\mathbf{w}_1, \dots, \mathbf{w}_p)$ according to the multinomial distribution (ρ_1, \dots, ρ_M)
- Generate for i = 1, ..., n and j = 1, ..., p a real value x_{ij} according to the distribution $\varphi(.; \alpha_{z_i w_i})$

Types of data

Bernoulli latent block model

- Binary data
- φ Bernoulli distribution $\mathcal{B}(\alpha_{k\ell})$

More parsimonious than using classical mixture model on I and J

- Binary data
- n = 1000, p = 500, K = 4, M = 3, $\pi_k = 1/K$, $\rho_\ell = 1/M$
- Bernoulli latent block model : $4 \times 3 = 12$ parameters
- Two mixture models : $(4 \times 500 + 3 \times 1000) = 5000$ parameters

Many versatile or parsimonious models available

As for classical mixture models, it is possible to impose various constraints

- Fixed proportions
- Bernoulli latent model : $\alpha_{k\ell} \to (a_{k\ell}, \varepsilon_{k\ell})$ where $a_{k\ell} \in \{0, 1\}$ and $\varepsilon \in]0, 1/2[$
- Different models with ε , ε_k , ε_ℓ , $\varepsilon_{k\ell}$

◆ロト ◆部 → ◆恵 → 恵 → りへで

Nadif (CRIP5) IRAN, December 13-21, 2008 SEMINAIRES 20 / 45

Poisson latent block model

Poisson latent block model

- Contingency table
- φ Poisson distribution $\mathcal{P}(\mu_i \nu_j \alpha_{k\ell})$
 - μ_i and ν_i the effects of the row i and the column j
 - $\alpha_{k\ell}$ the effect of the block $k\ell$.
- Constraints for identifiability of the model : $\mu_i = (\mu_1, \dots, \mu_n)$ and $\nu_j = (\nu_1, \dots, \nu_p)$ are assumed to be known

Example

- Text mining
- I: set of documents
- J: set of words
- x_{ii} frequency of word j in document i
- Model : if i is in cluster k and j is in cluster ℓ , then

$$x_{ij} \sim \mathcal{P}(\mu_i \nu_j \alpha_{k\ell})$$

Nadif (CRIP5)

Outline

- Introduction
 - Block clustering methods
 - Interests
 - Defects
- 2 Latent block model
 - The model (Govaert and Nadif, 2003)
 - Examples of latent block model
- CML and ML approaches
 - CML approach
 - ML approach
- Mumerical simulations
 - Binary data
 - Contingency table
- Conclusion
- References

Clustering: find optimal (z^*, w^*)

Maximum Likelihood (ML) approach

- ullet Estimation of heta by maximizing the likelihood of data
- MAP to propose optimal (z*, w*)
- Some problems for the block clustering
- BEM algorithm

Classification Maximum Likelihood (CML) approach

- Maximization of the complete data likelihood
- No problems to propose (z*, w*)
- BCFM

Remarks about CML approach

- To find the classical criteria and to propose the news
- To find the algorithms used and to propose other variants

Classification likelihood

The criterion

- Complete data: (x, z, w)
- Complete (or classification) log-likelihood

$$L_{C}(\theta, \mathbf{z}, \mathbf{w}) = L(\theta; \mathbf{x}, \mathbf{z}, \mathbf{w}) = \log \left(\prod_{i} \pi_{z_{i}} \prod_{j} \rho_{\mathbf{w}_{j}} \prod_{i,j} \varphi(x_{ij}; \alpha_{z_{i}\mathbf{w}_{j}}) \right)$$

$$= \sum_{i} \log \pi_{z_{i}} + \sum_{j} \log \rho_{\mathbf{w}_{j}} + \sum_{i,j} \log \varphi(x_{ij}; \alpha_{z_{i}\mathbf{w}_{j}})$$

$$= \sum_{k} n_{k} \log \pi_{k} + \sum_{\ell} d_{\ell} \log \rho_{\ell} + \sum_{i,j,k,\ell} z_{ik} w_{j\ell} \log \varphi(x_{ij}; \alpha_{k\ell})$$

• Find the partitions **z** and **w** and the parameter θ maximizing L_C

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ · ≧ · かへぐ

Nadif (CRIP5)

Block CEM algorithm (BCEM)

Various alternated maximization of L_C using from an initial position $(\mathbf{z}, \mathbf{w}, \boldsymbol{\theta})$, the three steps:

a) :
$$\underset{\mathbf{z}}{\operatorname{argmax}} L_{C}(\theta, \mathbf{z}, \mathbf{w})$$
 b) : $\underset{\mathbf{w}}{\operatorname{argmax}} L_{C}(\theta, \mathbf{z}, \mathbf{w})$ c) : $\underset{\theta}{\operatorname{argmax}} L_{C}(\theta, \mathbf{z}, \mathbf{w})$

Version 1

Repeat the two following steps until convergence

- Repeat steps a) and b) until convergence
- ② Step c)

Version 2

Repeat the two following steps until convergence

- Repeat steps a) and c) until convergence
- Repeat steps b) and c) until convergence

Some remarks on BCEM

Version 2

- Maximization of L_C by an alternated maximization of
 - Step 1: maximization of $L_C(\theta, \mathbf{z}|\mathbf{w})$
 - Step 2: maximization of $L_C(\theta, \mathbf{w}|\mathbf{z})$
 - $L_C(\theta, \mathbf{z}|\mathbf{w})$ associated to a classical mixture model on \mathbf{u} a $(n \times M)$ data matrix
 - $L_C(\theta, \mathbf{w}|\mathbf{z})$ associated to a classical mixture model on \mathbf{v} a $(K \times p)$ data matrix
 - Classical CEM on u
 - Classical CFM on v
- BCEM is an alternated application of the CEM algorithm on u and v

For Bernoulli and Poisson latent block models

- $L_C(\theta, \mathbf{z}|\mathbf{w})$ and $L_C(\theta, \mathbf{w}|\mathbf{z})$ associated to a mixture of Binomial distributions
- $L_C(\theta, \mathbf{z}|\mathbf{w})$ and $L_C(\theta, \mathbf{w}|\mathbf{z})$ associated to a mixture of multinomial distributions

◆ロ → ◆ 個 → ◆ 重 → ● ・ り へ ○

Different computes for BCEM: Bernoulli latent block model

Notations

$$\begin{array}{ll} n_k = \sum_i z_{ik} & d_\ell = \sum_j w_{j\ell} \\ v_{kj} = \sum_i z_{ik} x_{ij} & u_{i\ell} = \sum_j w_{j\ell} x_{ij} \end{array}$$

E-step (1,2): computation of s and t

$$egin{aligned} \mathsf{s}_{ik} & \propto \pi_k \prod_\ell lpha_{k\ell}^{u_{i\ell}} (1-lpha_{k\ell})^{d_\ell-u_{i\ell}} \ \\ t_{j\ell} & \propto
ho_\ell \prod_k lpha_{k\ell}^{\mathsf{v}_{kj}} (1-lpha_{k\ell})^{n_k-\mathsf{v}_{kj}} \end{aligned}$$

C-step (1,2): computation of classification matrices z and w

$$z_{ik}=1$$
 if $k=\operatorname*{argmax}_{k'=1,\ldots,K}s_{ik'}$ and $w_{j\ell}=1$ if $\ell=\operatorname*{argmax}_{\ell'=1,\ldots,M}t_{j\ell'}$

M-step (1,2): computation of θ

$$\pi_{\mathbf{k}} = \frac{n_{\mathbf{k}}}{n}$$
 $\rho_{\ell} = \frac{d_{\ell}}{d}$ $\alpha_{\mathbf{k}\ell} = \frac{\sum_{\mathbf{ij}} \mathbf{z}_{\mathbf{ik}} \mathbf{w}_{\mathbf{j}\ell} \mathbf{x}_{\mathbf{ij}}}{\sum_{\mathbf{ij}} \mathbf{z}_{\mathbf{ik}} \mathbf{w}_{\mathbf{j}\ell}}$

Links between BCEM and Crobin or Croki2

Crobin

- Constraints on the $(\alpha_{k\ell})$'s and the proportions
 - $\alpha_{k\ell} = (a_{k\ell}, \varepsilon)$ where $a_{k\ell} \in \{0, 1\}$ and $\varepsilon \in]0, 1/2[$
 - Assumption : $\pi_1 = \ldots = \pi_K$ and $\rho_1 = \ldots = \rho_M$

$$L_c = \log(rac{arepsilon}{1-arepsilon})W(\mathbf{z},\mathbf{w},\mathbf{a}) + cst$$

- Maximization of L_C equivalent to minimization of $W(\mathbf{z}, \mathbf{w}, \mathbf{a})$
- $L_C(\theta, \mathbf{z}|\mathbf{w})$ and $L_C(\theta, \mathbf{w}|\mathbf{z})$ correspond to $W(\mathbf{z}, \mathbf{a}|\mathbf{w})$ and $W(\mathbf{w}, \mathbf{a}|\mathbf{z})$

Croki2

• Assumption : $\pi_1 = \ldots = \pi_K$ and $\rho_1 = \ldots = \rho_M$

$$L_{c} = N \sum_{\substack{k,\ell \\ I(\mathbf{z},\mathbf{w})/\chi^{2}(\mathbf{z},\mathbf{w})/Croki2}} f_{k,\ell} + cst$$

Maximization of likelihood

- EM algorithm
- Complete data : (x, z, w)
- Iterative maximization of the conditional expectation of $L_C(\theta, \mathbf{z}, \mathbf{w})$
 - ullet given the data ${f x}$ and using the current fit heta' for the parameter :

$$Q(\theta, \theta') = \sum_{ik} s_{ik} \log \pi_k + \sum_{j\ell} t_{j\ell} \log \rho_\ell + \sum_{ijk\ell} e_{ijk\ell} \log \varphi(x_{ij}; \alpha_{k\ell})$$

- $s_{ik} = P(z_{ik} = 1 | \mathbf{x}, \theta'), \ t_{j\ell} = P(w_{j\ell} = 1 | \mathbf{x}, \theta')$
- $e_{ijk\ell} = P(z_{ik}w_{j\ell} = 1|\mathbf{x}, \boldsymbol{\theta}')$

Difficulties

- Dependence structure among the variables x_{ij}
- Determination of $e_{ikj\ell}$ not tractable

Approximation

• Replace the maximization of the likelihood by the maximization of a new criterion

Nadif (CRIP5) IRAN, December 13-21, 2008 SEMINAIRES 29 / 45

The Neal and Hinton interpretation of the EM algorithm

Hathaway interpretation of EM: classical mixture model context

• EM = alternated maximization of the fuzzy clustering criterion

$$F_C(s,\theta) = L_C(s;\theta) + H(s)$$

- $\mathbf{s} = (s_{ik})$: fuzzy partition
- $L_C(\mathbf{s}, \theta) = \sum_{i,k} s_{ik} \log(\pi_k \varphi(\mathbf{x}_i; \alpha_k))$: fuzzy classification log-likelihood
- $H(\mathbf{s}) = -\sum_{i,k} s_{ik} \log s_{ik}$: entropy function

Algorithm

- Maximizing F_C w.r. to s yields the E step
- Maximizing F_C w.r. to θ yields the M step

Neal and Hinton interpretation of EM: general context

$$F_C(P, \theta) = E_P(L_C(\mathbf{z}, \theta)) + H(P)$$

- P: distribution over the space of missing data z
- H: entropy function

Nadif (CRIP5)

Fuzzy criterion

By using

- the Neal and Hinton interpretation of the EM algorithm
- the variational mean field approximation: $e_{iki\ell} = s_{ik} \times t_{i\ell}$

we replace the likelihood criterion by the new criterion (Govaert and Nadif, 2008)

$$G(\theta, s, t) = L_C(\theta, s, t) + H(s) + H(t)$$

where $\mathbf{s} = (s_{ik})$, $\mathbf{t} = (t_{j\ell})$ and H is the entropy function.

Various alternated maximization of G using, from an initial position (s, t, θ) , the three steps:

a) :
$$\underset{\mathbf{s}}{\operatorname{argmax}} G(\theta, \mathbf{s}, \mathbf{t})$$
 b) : $\underset{\mathbf{t}}{\operatorname{argmax}} G(\theta, \mathbf{s}, \mathbf{t})$ c) : $\underset{\theta}{\operatorname{argmax}} G(\theta, \mathbf{s}, \mathbf{t})$

Block EM algorithm: version 1

Repeat the two following steps until convergence

- Repeat steps a) and b) until convergence
- Step c)

Nadif (CRIP5) IRAN, December 13-21, 2008 31 / 45 **SEMINAIRES**

Block EM algorithm

Version 2

Repeat the two following steps until convergence

- Repeat steps a) and c) until convergence
- Repeat steps b) and c) until convergence

Interpretation of Version 2

- Step 1: maximization of $G(\theta, \mathbf{s}|\mathbf{t})$, Hathaway $\to EM$
- Step 2: maximization of $G(\theta, \mathbf{t}|\mathbf{s})$, Hathaway \to EM

Alternated maximization by using reduced matrices u and v

- $\mathbf{u} = (\mathbf{u}_1, \dots, \mathbf{u}_i, \dots, \mathbf{u}_n)$ where $\mathbf{u}_i = (u_{i1}, \dots, u_{iM})$
 - $\mathbf{u}_{i\ell} = f(x_{ii}, t_{i\ell})$
- $\mathbf{v} = (\mathbf{v}_1, \dots, \mathbf{v}_i, \dots, \mathbf{v}_p)$ where $\mathbf{v}_i = (v_{1i}, \dots, v_{Ki})$
 - $\mathbf{v}_{ki} = f(x_{ii}, s_{ik})$

Different computes for BEM: Bernoulli latent block model

Notations

$$n_k = \sum_i s_{ik}$$
 $d_\ell = \sum_j t_{j\ell}$ $v_{kj} = \sum_i s_{ik} x_{ij}$ $u_{i\ell} = \sum_j t_{j\ell} x_{ij}$

E-step (1,2): computation of s and t

$$egin{aligned} s_{ik} & \propto \pi_k \prod_{\ell} lpha_{k\ell}^{oldsymbol{u}_{i\ell}} (1-lpha_{k\ell})^{oldsymbol{d}_{\ell}-oldsymbol{u}_{i\ell}} \ t_{j\ell} & \propto
ho_{\ell} \prod_{k} lpha_{k\ell}^{oldsymbol{v}_{kj}} (1-lpha_{k\ell})^{oldsymbol{n}_{k}-oldsymbol{v}_{kj}} \end{aligned}$$

M-step (1,2): computation of θ

$$\pi_k = \frac{n_k}{n}$$
 $\rho_\ell = \frac{d_\ell}{d}$ $\alpha_{k\ell} = \frac{\sum_{ij} s_{ik} t_{j\ell} x_{ij}}{\sum_{ij} s_{il} t_{i\ell}}$

Nadif (CRIP5)

Example $n \times r = 200 \times 120$, fairly-separated

θ	True	Estimations	Estimations	
	values	by BEM	by BCEM	
<i>p</i> ₁	0.2	0.1979	0.1900	
p_2	0.3	0.3140	0.3400	
<i>p</i> ₃	0.5	0.4881	0.4700	
91	0.3	0.2929	0.2583	
q_2	0.7	0.7071	0.7417	
lpha	$ \left(\begin{array}{ccc} 0.60 & 0.40 \\ 0.40 & 0.60 \\ 0.60 & 0.65 \end{array}\right) $	$ \left(\begin{array}{ccc} 0.6067 & 0.4026 \\ 0.4089 & 0.6041 \\ 0.5989 & 0.6565 \end{array}\right) $	$ \left(\begin{array}{ccc} 0.6188 & 0.4063 \\ 0.3861 & 0.6000 \\ 0.6095 & 0.6559 \end{array}\right) $	
$\ oldsymbol{ heta} - oldsymbol{ heta^{ extsf{o}}}\ $	` 0 ′	0.0252	0.0824	

Good estimation by BEM

Nadif (CRIP5)

Outline

- Introduction
 - Block clustering methods
 - Interests
 - Defects
- 2 Latent block model
 - The model (Govaert and Nadif, 2003)
 - Examples of latent block model
- CML and ML approaches
 - CML approach
 - ML approach
- Numerical simulations
 - Binary data
 - Contingency table
- Conclusion
- References

Some numerical simulations

Parameters

- Characteristics of the data
 - Bernoulli block mixture model
 - g = 3 and m = 2
- 9 situations:
 - 3 degrees of overlapping:
 - Well-separated (+): 4%
 - Fairly-separated (++): 15%
 - Poorly-separated (+++): 25%
 - 3 sizes of data:
 - Small: $n \times p = 50 \times 30$
 - Medium: $n \times p = 100 \times 60$
 - Large: $n \times p = 200 \times 120$
- For each situation: simulation of 30 samples

Objective

- Comparison of BEM and BCEM by looking at the quality of results and the frequency on 30 that one of the two algorithms outperforms the other
- ullet Clustering (error rate) and estimation contexts $(\| heta- heta^0\|)$
- Only Version 2 because it is slightly better and faster

Results with well-separated data (True error rate = 0.03)

Sizes		(50, 30)	(100, 60)	(200, 120)
	mean for BEM	0.03	0.04	0.02
	mean for BCEM	0.04	0.04	0.03
Error	#(BEM>BCEM)	1	9	6
rate	#(BEM=BCEM)	27	18	23
	#(BEM <bcem)< td=""><td>2</td><td>3</td><td>1</td></bcem)<>	2	3	1
	mean for BEM	0.19	0.13	0.08
	mean for BCEM	0.21	0.14	0.08
$\ oldsymbol{ heta} - oldsymbol{ heta^{ extsf{0}}}\ $	#(BEM>BCEM)	15	20	20
	#(BEM=BCEM)	0	0	0
	#(BEM <bcem)< td=""><td>15</td><td>10</td><td>10</td></bcem)<>	15	10	10

Results with fairly-separated data (True error rate = 0.15)

Sizes		(50, 30)	(100, 60)	(200, 120)
	mean for BEM	0.21	0.13	0.13
	mean for BCEM	0.31	0.15	0.20
Error	#(BEM>BCEM)	17	18	24
rate	#(BEM=BCEM)	11	8	1
	#(BEM <bcem)< td=""><td>2</td><td>4</td><td>5</td></bcem)<>	2	4	5
	mean for BEM	0.34	0.16	0.10
	mean for BCEM	0.52	0.22	0.21
$\ oldsymbol{ heta} - oldsymbol{ heta^{f 0}}\ $	#(BEM>BCEM)	27	25	27
	#(BEM=BCEM)	0	0	0
	#(BEM <bcem)< td=""><td>3</td><td>5</td><td>3</td></bcem)<>	3	5	3

Nadif (CRIP5) IRAN, December 13-21, 2008 SEMINAIRES 37 / 45

Results with poorly-separated data (True error rate =0.25)

Sizes		(50, 30)	(100, 60)	(200, 120)
	mean for BEM	0.40	0.28	0.29
	mean for BCEM	0.52	0.53	***
Error	#(BEM>BCEM)	27	30	30
rate	#(BEM=BCEM)	0	0	0
	#(BEM <bbcem)< td=""><td>3</td><td>0</td><td>0</td></bbcem)<>	3	0	0
	mean for BEM	0.49	0.28	0.17
	mean for BCEM	0.78	0.79	***
$\ oldsymbol{ heta} - oldsymbol{ heta^{ extsf{0}}}\ $	#(BEM>BCEM)	28	30	30
	#(BEM=BCEM)	0	0	0
	#(BEM <bcem)< td=""><td>2</td><td>0</td><td>0</td></bcem)<>	2	0	0

Some remarks drawn from these simulations

- BEM outperforms BCEM in most of situations
- Even when the clusters are well separated (favorable situation for BCEM), the performances of both algorithms are not very different
- BEM gives error rates closed to the true value when the size is large enough

What one can wonder about the performances of 2BEM, 2CEM?

Nadif (CRIP5) IRAN, December 13-21, 2008 SEMINAIRES 38 / 45

Clustering

Mean error rates for BEM: solid line, BCEM: dashed line: 2CEM: dotted line and 2EM: dash-dot line

Estimation

Mean distance between true and estimated parameters for the 4 algorithms

Run times

Mean run time (in seconds) according to size and overlap

 \bullet BCEM > 2CEM and BEM > 2EM in all situations where the size > 100 \times 60

An illustrative example

- Classic3 data (3893 abstracts, 2000 words) :
- 1033 abstracts from medical journals,
- 1460 from IR papers,
- 1400 from aerodynamic systems

Comparison between BEM and BCEM (g = 3, m = 3)

• Confusion matrices obtained resp. by BEM and BCEM

	Med.	Cis.	Cra.
Z 1	1008	4	2
<i>z</i> ₂	25	1451	2
Z3	1	16	1383

Med.	Cis.	Cra.
1007	3	2
25	1452	15
1	6	1382

- BEM > BCEM (52 mis. for BEM and 56 mis. for BCEM)
- 2BEM (54 mis.) and 2CEM (76 mis.)
- BEM is more adapted for clustering even if it is not its aim

Outline

- Introduction
 - Block clustering methods
 - Interests
 - Defects
- 2 Latent block mode
 - The model (Govaert and Nadif, 2003)
 - Examples of latent block model
- CML and ML approaches
 - CML approach
 - ML approach
- Mumerical simulations
 - Binary data
 - Contingency table
- Conclusion
- References

Conclusion

Principal points

- Block clustering methods: BEM and BCEM
- BEM is interesting in clustering and estimation contexts
- Illustrations on binary data and contingency table

Other works related to the latent block model

- Case of continuous data
- number of blocks
- missing data
- speed-up of BEM

Hierarchical block clustering method

SEMINAIRES

Outline

- Introduction
 - Block clustering methods
 - Interests
 - Defects
- 2 Latent block mode
 - The model (Govaert and Nadif, 2003)
 - Examples of latent block model
- CML and ML approaches
 - CML approach
 - ML approach
- Mumerical simulations
 - Binary data
 - Contingency table
- Conclusion
- 6 References

References

Principal references

- Govaert, G. and Nadif, M., Block clustering with Bernoulli mixture models: Comparison of different approaches, Computational Statistics and Data Analysis, 52, 3233-3245, 2008
- Jollois, F-X. and Nadif, M., Speed up EM algorithm for categorical data, Journal of Global Optimization, 37, 513-525, 2007
- Govaert, G. and Nadif, M., Clustering of contingency table and mixture model, European Journal of Operational Research, 183, 1055-1066, 2007
- Govaert, G. and Nadif, M., An EM algorithm for the Block Mixture Model, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27, 4, pp. 643-647, 2005.
- Govaert, G. and Nadif, M., Fuzzy Clustering to estimate the parameters of block mixture models, Soft Computing, 10, 5, 415-422, 2005
- Govaert, G. and Nadif, M., Clustering with block mixture models, models, Pattern Recognition, 36(2), 5, 463-473, 2003
- Govaert, G., Classification croisée, Thèse d'état, Université Paris Dauphine, 1983