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FLUID-STRUCTURE INTERACTIONS

Structures in contact with fluid flow, whether natural or man-made, are inev-
itably subject to flow-induced forces and flow-induced vibration: from plant
leaves to traffic signs and to more substantial structures, such as bridge decks
and heat exchanger tubes. Under certain conditions the vibration may be
self-excited, and it is usually referred to as an instability. These instabilities
and, more specifically, the conditions under which they arise are of great im-
portance to designers and operators of the systems concerned because of the
significant potential to cause damage in the short term. Such flow-induced
instabilities are the subject of this book. In particular, the flow-induced in-
stabilities treated in this book are associated with cross-flow, that is, flow
normal to the long axis of the structure, although the book does not aim
to cover every possible type. Instead it treats a specific set of problems that
are fundamentally and technologically important: galloping, vortex-shedding
oscillations under lock-in conditions, and rain-and-wind-induced vibrations,
among others. The emphasis throughout is on providing a physical description
of the phenomena that is as clear and up-to-date as possible.
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Preface

Structures in contact with fluid flow, whether natural (e.g. wind and ocean currents) or
man-made, are inevitably subject to flow-induced forces and flow-induced vibration:
from plant leaves to traffic signs, to more substantial structures, such as bridge decks
and heat-exchanger tubes. These vibrations may be of small or large amplitude, and
they may be inconsequential, or of mild or even grave concern.

Consider overhead transmission lines, bridges, tall buildings, and chimneys sub-
jected to wind, offshore risers and umbilicals in ocean currents, cylinders and cyl-
indrical tube arrays in power-generating and chemical plants, for example. Such
structures vibrate to some extent at any flow velocity, e.g. due to turbulence or vor-
tex shedding. If the vibrations are of small amplitude, they may lead to fatigue or
fretting wear in the long term. However, under certain circumstances, the vibration
amplitude is large, and damage may occur in the short term, in hours or weeks.
Moreover, the vibration may be self-excited. Typically, but not universally, such vi-
bration is associated with a threshold of flow velocity: on one side of the threshold,
oscillations due to some perturbation imparted to the system die out; on the other
side, oscillations grow. More generally, we may define self-excited vibration simply
as one that grows exponentially with time until it settles down to a limit-cycle mo-
tion. Clearly, such phenomena, more specifically the conditions under which they
arise, are of great importance to designers and operators of the systems concerned,
because of the great potential to cause damage in the short term. Such flow-induced
instabilities are the subject of this book.

In particular, the flow-induced instabilities treated in this book are associated
with cross-flow, i.e. flow normal to the long axis of the structure(s), presuming the
geometry is such; i.e. we are mostly concerned with more or less slender structures
in cross-flow. These cross-flow-induced instabilities are known to be very severe and
to occur in the range of natural or engineering flow velocities. Axial-flow-induced
instabilities are treated in other books.

Cross-flow about slender structures generally involves flow separation, mak-
ing its modelling quite difficult compared with axial-flow-related analyses. For that
reason, cross-flow-induced instability models inevitably involve some degree of em-
piricism, and progress in their understanding has only been possible via the intimate
interweaving of theory and experiment.

ix



x Preface

It is not the aim of this monograph to cover every possible type of cross-flow-
induced instability. Instead, a specific set of problems is treated which are fundament-
ally and technologically important: galloping, vortex-shedding oscillations (VIV)
under lock-in conditions, rain-and-wind-induced vibrations (RWIV), wake-induced
vibrations of small groups of cylinders and flow-induced instabilities of arrays of cyl-
inders, galloping and flutter of bridge decks, and ovalling oscillations of cylindrical
shells (e.g. chimney stacks). Flutter in aeronautical structures is not treated in this
book.

The emphasis throughout is to provide as clear a physical description of the
phenomena as possible, as well as the state of the art in each topic, both in terms
of physical understanding and means of prediction. Each topic is first treated in a
simplified way, affording an easy grasp of the fundamentals; this is followed by more
sophisticated treatment, ending with the most up-to-date state of the art. Care is
taken to provide a coherent and fair account of the historical aspects of each topic.
An extensive list of references is provided to direct the interested reader to the
primary sources, if desired.

This is a monograph for engineers and applied scientists interested in these
topics – researchers and practicing professionals alike, working in wind and ocean
engineering and in the power-generating industry. It can also serve as a textbook in
a graduate-level course.

We are grateful to the Natural Sciences and Engineering Research Council
(NSERC) of Canada and Fonds Québécois de la Recherche sur la Nature et les
Technologies (FQRNT) of Québec, as well as l’Institut Français du Pétrole, le Centre
National de la Recherche Scientifique (CNRS), École Polytechnique, and McGill
University.

Writing a book involves hard work and necessitates relentless concentration
of effort from time to time, which has meant “disappearances” into our respective
offices. We are very grateful to our respective spouses Vrisseis (Bρισηϊs), Carol, and
Sabine for their forbearance and relentless support.

Finally, we express our unbounded gratitude to Mary Fiorilli for helping in the
overall organization and for typing large tracts of the text with such loving care and
exemplary commitment.

Michael P. Paı̈doussis
Stuart J. Price
Emmanuel de Langre



1 Introduction

1.1 General Overview

Cross-flow-induced vibration of bluff bodies, i.e. bodies whose aspect is not small
compared with the streamwise dimension, are ubiquitous, in nature as well as in
man-made constructions. The wind-induced fluttering of leaves and tree branches
and the waving motions in wheat fields are examples of the former. The Aeolian
harp, going back perhaps 3000 years, is an example of the earliest realization and/or
exploitation of the existence of these vibrations made by man.

Perhaps the first documented and surviving realization of the existence of vortex
shedding as such goes back to two Renaissance paintings in Bologna and a sketch
by Leonardo da Vinci, thus, to the 14th and 15th centuries.∗ The modern study of
vortex shedding began in the late 19th century, with Strouhal (1878), Bénard (1908)
and von Kármán (1912). Studies on vortex-induced vibrations followed soon after;
lock-in, or shedding frequency synchronization, was first documented by Bishop &
Hassan (1964).

With such a venerable and long pedigree, it is not surprising that the topic of
cross-flow-induced vibrations and instabilities of bluff bodies, notably cylinders or
groups of cylinders, is truly vast. To make any headway in this topic, one must first
understand the fluid mechanics of the flow around bluff bodies, while stationary or
in motion, and the forces generated thereon. Because these depend on the Reynolds
number, roughness, flow confinement, aspect ratio, amplitude of motion and many
other factors, the task of documenting, categorizing and making sense of the volu-
minous amount of research done over the past 100 years or so is truly Herculean.
In this regard, one must pay tribute to the excellent work done by Zdravkovich
(1997, 2003); the task is so huge that the work covered in the first two volumes
already published, involving 1264 pages, has not yet reached the point of considering

∗ One painting from the end of the 14th century, attributed to Giovanni da Modena and found in
Bologna, depicts the Christ-bearing (Xριστóφoρos) San Cristoforo crossing a stream and shows an
alternating pattern of vortices downstream of his legs (Tokaty 1971; Sumner 1999). Another, entitled
Madona col Bambino tra i Santo Domenico, Pietro Martire e Cristoforo is a 15th-century mural in
the Basilica de San Domenico in Bologna, again showing vortices from the foot of St. Christopher
crossing a stream (von Kármán 1954; Zdravkovich 2003). The drawing by Leonardo da Vinci from
roughly the same period shows vortices in the wake of a pile in a stream (Lugt 1983; Blevins 1990;
Zdravkovich 1997; Mizota et al. 2000).
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2 Introduction

fluid-coupled, self-excited motions. The difficulty of this task is exacerbated by the
fact that, routinely, for decades now, there is hardly an issue of the Journal of Fluid
Mechanics or the Journal of Fluids and Structures, or indeed the Journal of Sound
and Vibration, the Journal of Wind Engineering and Industrial Aerodynamics or the
Journal of Fluids Engineering, without one or several papers related to cross-flow
about bluff bodies, the forces and motions induced thereby and so on. Thus, it is not
only that the accumulated knowledge is vast, but also that the accretion of knowledge
and experience on the topic continues to grow unabated, perhaps exponentially.∗

Of course, other books exist in which chapters may be found on cross-flow-
induced vibrations and instabilities, published over the past 25 years: by Blevins
(1977, 1990), Sarpkaya & Isaacson (1981), Chen (1987), Naudascher & Rockwell
(1994, 2005), Gibert (1998), Sumer & Fredsøe (1997), Au-Yang (2001), Axisa (2001),
de Langre (2001), Kaneko et al. (2008) and others. However, these books cover
several topics other than cross-flow-induced vibrations and instabilities, and in
Zdravkovich (1997, 2003) and the forthcoming Volume 3 of that work it is attempted
to cover the whole field of cross-flow about bluff bodies. In contrast, the present
book is more modest in scope and its aim more focussed.

In this book, the focus is on the interaction of the cross-flow with motions of
the bluff structure, presuming that the flow field and the forces associated with
prescribed motions of the structure are known a priori. Furthermore, the vista is
further limited by excluding extraneously induced excitation (EIE) and instability-
induced excitation (IIE) in Naudascher & Rockwell’s (1980, 1994) classification of
flow-induced oscillation phenomena. The subject matter in this book is therefore
broadly associated with movement-induced excitation (MIE) phenomena, in which
the excitation is intimately coupled with, indeed caused by, movements of the body.
Hence, the phenomena are self-excited. In the linear sense, these phenomena are
instabilities; i.e., as a parameter is incremented, a system hitherto in a quiescent
state becomes subject to self-excited oscillation – as discussed further in Section 1.2.
Hence, the topic is: self-excited oscillations involving bluff bodies in cross-flow.†

Why so much interest in bluff-body/flow interactions, indeed, in the subject of
this book? The immediate answer is that (i) bluff bodies, in particular, cylinders and
prisms, are ubiquitous in engineering structures, typically as components of larger
systems; (ii) in many cases these bluff bodies are subjected to flow (cross-flow);
and (iii) frequently problems arise, often in the form of self-excited oscillations, the
solution if not prevention of which necessitates understanding the fluid-structure in-
teraction mechanisms involved. Every engineering student learns about the Tacoma
Narrows Bridge disaster and may have seen the spectacular ciné-film of its col-
lapse. However, apart from bridges, cross-flow-induced vibrations occur in (i) heat
exchangers and other power-generation components; (ii) offshore structures, in-
cluding risers and submerged pipelines; (iii) high-rise buildings, silos and chimneys;

∗ In this respect, one has to marvel at Mickey Zdravkovich’s tenacity. As he has told the first author,
the main difficulty in writing his books was that, no sooner was a particular chapter closed and the
writing progressed to the next and subsequent ones, that it had to be reopened because interesting
and pertinent new information had been published in the meantime. And, of course, one cannot cry
“stop!” anymore than one can ignore the new knowledge.

† Here, of course, the definition of “bluff-bodies in cross-flow” is pleonastic, just as “slender body in
axial flow” is; however, the redundancy enhances the clarity of the definition.
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(iv) overhead transmission lines and cables; and within (v) fluid-manipulating ma-
chinery in mechanical and chemical plants, to give but a partial list. Thus, the flows
involved are either contained gas or liquid flows, or generally unconfined flows due
to wind and water currents.

In the long list of engineering applications just mentioned, “problems” arise as-
sociated with self-excited oscillations or cross-flow-induced instabilities. These prob-
lems range from short-term destruction of the structure to unacceptable long-term
wear (fretting) problems and fatigue. Some examples may be found in Paı̈doussis
(1980, 2006), Axisa (1993), Au-Yang (2001) and Kaneko et al. (2008). Many of these
are related to the power-generating industry, in particular, to nuclear plants, where
disclosure of all types of problems, including flow-induced problems, is mandatory
in many states. Other incidents, however, remain hidden from public view, their ex-
istence being surmised only by sudden upsurges in research funding; or, at the very
least, they are incompletely reported,∗ e.g. in the offshore industry.

It is opportune to contrast the research on cross-flow-induced instabilities to
that on axial-flow-induced ones. In the latter, much, though by no means all, of
the research work was curiosity-driven (Paı̈doussis 1998, 2004), with many of the
applications emerging 10 or 20 years later (Paı̈doussis 1993). For cross-flow, on the
other hand, much work was inspired by, or necessitated for, concrete applications.
This reflects the fact that, with the exception of some classes of axial-flow-induced
vibration, notably involving annular and leakage flows, catastrophic failure is rather
rare. For cross-flow situations, however, problems have abounded and are not all that
rare even today. In one subtopic alone, that of fluidelastic instabilities of cylinder
arrays in cross-flow, the cumulative damages incurred over a decade were estimated
at 1000 M$ (Paı̈doussis 2006).

Something that ought to be stressed is that flow-induced vibrations of structures
subject to cross-flow are inevitable and often innocuous. It is only when the amp-
litudes become large enough, as is often the case with flow-induced instabilities, that
they become worrisome. The main task of this book is to elucidate the mechanisms
underlying these instabilities and to provide means for predicting their occurrence.

It should also be pointed out that flow-induced vibrations and instabilities are not
always undesirable. For instance, naturally occurring flow-induced vibrations help in
promoting the dispersion of plant seeds (de Langre 2008). In addition, they can be
exploited for engineering purposes, e.g. in ocean-current-driven energy-harvesting
devices.

As stated in the Preface, it is here emphasized that the treatment in this book
is not exhaustive. Rather, the emphasis is very much on the fundamentals and on a
physical understanding of the mechanisms involved to the extent possible. Beyond
that, a full list of references guides the reader to the available literature in each
subtopic.

1.2 Concepts and Mechanisms

The purpose of this section is to clarify some of the terms and concepts referred to
in the foregoing and used extensively in this book, e.g. the concepts of instability

∗ Mainly to protect the corporate image on a trade mark, or for fear of litigation.
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Figure 1.1. A flexibly supported bluff body of mass
M ≡ ml in cross-flow.

and self-excited vibrations, in the process clarifying also some of the underlying
mechanisms.

1.2.1 Self-excited oscillations and instabilities

The truth about self-excited oscillations is that they are not truly self-excited. That is,
a mechanical system does not by itself spontaneously break into oscillation, unless
the definition of the system includes the source of energy, e.g. a fluid flow, which is
responsible for the oscillation (Den Hartog 1956, chapter 7; Magnus 1965, chapter 3).
As we shall see, however, the governing equation of motion may be written in a way
that the resulting oscillation appears to be self-excited.

Consider, for example, a flexibly supported bluff body which could be modelled
as a mass-dashpot-spring system, as shown in Figure 1.1, free to move in the direction
transverse to the flow; the cross-section of the body is uniform along its length
l (normal to the plane of the paper), so that its total mass M = ml, where m is
the mass per unit length. The bluff body is subjected to a fluid-dynamical force
Ff (ẏ, y), as well as a mechanical force Fm(t), e.g. a base excitation; y is the transverse
displacement and ẏ the corresponding velocity. Thus, we have

mlÿ + cẏ + ky = Ff (ẏ, y) + Fm(t), (1.1)

where the overdot denotes differentiation with respect to t. Here, l is assumed to
be sufficiently large for the flow around the body to be sensibly two-dimensional.
Suppose further that Ff may be expressed as 1

2ρU2hlCf 1 (ẏ, U) + 1
2ρU2hlCf 2 (y, U),

where h is a characteristic length (typically the diameter for a cylindrical body, or
the frontal height of the cross-section vis-à-vis the flow), and Cf 1 and Cf 2 are fluid-
dynamic force coefficients, respectively functions of ẏ and y, and weakly of the mean
flow velocity U. Velocity dependence may arise because the instantaneous angle
of attack of the flow on the body as the body oscillates is θ = tan−1(ẏ/U). Position
dependence may arise through proximity of the bluff body to, say, a wall, so that the
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fluid forces depend on the distance from the wall. In equation (1.1), it is presumed that
m = ms + ma, ms being the structural mass and ma the added or virtual fluid-dynamic
mass per unit length. For an oscillating body, the acceleration-related pressure field
gives rise to a force which may be written as malÿ, thus defining ma; for a dense fluid,
ma/ms is not negligible (e.g., for a circular cross-section, ma = ρ(π/4)D2 according
to potential flow theory, D being the diameter) – see Section 3.4.1. Thus, this could
have been incorporated in (1.2) as a third fluid-dynamical force, linearly dependent
on ÿ and independent of U, while taking m = ms.

Succinctly, the difference between Ff and Fm is that for y = 0 and ẏ = 0, Ff

will be zero (or a constant force that can be eliminated by a change of variable
from y to y∗ = y − y0). Thus, writing the equation in terms of y∗ and suppressing the
asterisk, we have

mlÿ + cẏ + ky = 1
2ρU2hlCf 1 (ẏ, U) + 1

2ρU2hlCf 2 (y, U) + Fm(t), (1.2)

where it is understood that if y = 0, ẏ = 0, the first two forcing functions (represent-
ing Ff (ẏ, y)) vanish; thus, they only arise because of motion, whereas Fm(t) is not
affected by the motion. Having served to clarify the distinction between itself and
Ff , we shall from now on ignore Fm(t).

We can next write equation (1.2) in dimensionless form by defining c/ml = 2ζωn

and k/ml = ω2
n, as well as

η = y/l, τ = ωnt, Ur = U/(ωnh), µr = ρh2/m, (1.3)

where Ur is the so-called reduced flow velocity and µr is a mass ratio, obtaining∗

η̈ + 2ζη̇ + η = 1
2µrU2

r Cf 1 (η̇, Ur) + 1
2µrU2

r Cf 2 (η, Ur), (1.4)

where the overdot is now d( )/dτ. It is assumed next, for simplicity, that Cf 1 may
be expressed as a function of η̇/Ur and Cf 2 as a function of η alone. For the purposes
of this illustrative example, let

1
2µrU2

r Cf 1 (η̇, Ur) = β1(Ur)η̇ − β3(Ur)η̇3, 1
2µrU2

r Cf 2 (η, Ur) = γ1(Ur)η − γ3(Ur)η3,

and hence equation (1.4) is written as

η̈ + [2ζ − β1(Ur) + β3(Ur)η̇2] η̇ + [1 − γ1(Ur) + γ3(Ur)η2] η = 0. (1.5)

Thus, at first glance, considering the quantities in square brackets as an effective
damping and an effective stiffness, the source of energy input in this autonomous
system is “hidden”.

Let us further assume that β1, β3, γ1 and γ3 are positive, monotonically increasing
functions of Ur in view of the weak dependence of Cf 1 and Cf 2 on Ur, and let us
consider the dynamics displayed by equation (1.5).

First, taking γ1 = γ3 = 0 for the moment, it is clear that for arbitrarily small
| η̇ | the dynamics is controlled by the linear terms and hence by the sign of 2ζ − β1:
if it is positive, as it must be for sufficiently small Ur, the damping is positive and
the oscillations will be damped; for higher Ur, however, it becomes negative, which

∗ Equation (1.4) holds true also if equation (1.1) is written in two-dimensional or “sectional” form.
In that case, m would replace ml in equation (1.2); similarly, k and c could represent distributed
quantities per unit length, or the total acting on the bluff body divided by l; also, l would be absent
from the right-hand side of (1.2). Equations (1.3) would be the same.
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means negative damping and self-excited oscillations. Thus, the threshold of linear
instability of the system, Urc, occurs at β1(Urc) = 2ζ; according to linear theory, the
amplitude of the self-excited oscillation will grow indefinitely. However, taking the
β3(Ur)η̇3 term into account, it is clear that for sufficiently large | η̇3 |, the damping
ceases to be negative; indeed, the quantity in square brackets becomes zero on the
average, and one obtains limit-cycle oscillation. Thus, the growth of amplitude is self-
limiting. In this case, the limit cycle is stable, as both positive and negative increments
(perturbations) to η̇ are damped, returning the system to the limit cycle; the case of
an unstable limit cycle is discussed later.

From the nonlinear perspective, the linear threshold of instability is referred to
as a bifurcation, leading in this case from one stable state, the trivial equilibrium, to
another stable state, the limit-cycle oscillation. However, in engineering terms, the
linear threshold of instability at Urc is commonly called the threshold of instability,
regardless.

Bifurcation has a broader meaning than for the situation just discussed: it is
associated with any qualitative change in the state or dynamical behaviour of a
system, e.g. from periodic to quasiperiodic oscillation, or from quasiperiodic to
chaotic.

Let us next consider the statics of the system, clearly governed by the last
term of equation (1.5). For small | η |, the effective linear stiffness, 1 − γ1(Ur), is
positive, provided Ur is sufficiently small; for any small departure from η = 0, the
stiffness force restores the original static equilibrium. For higher Ur, however, we
may have a negative stiffness, 1 − γ1(Ur) < 0, leading to static instability, a static
divergence, implying a nonoscillatory amplification, without limit, of any small de-
parture from the now unstable trivial equilibrium. Taking the nonlinear term into
account, however, it is clear that two new equilibria are born for sufficiently large
| η |: at ηst = ±{[1 − γ1(Ur)]/γ3(Ur)}1/2, which may, in general, be stable or unstable
(in the sense of the equilibria of a pendulum at θ = 0 and π, respectively) – but for
the form of the stiffness term here always unstable.

The dynamics of the system of equation (1.5) could be displayed as a three-
dimensional plot of (η, η̇, Ur). Any “cut” thereof along the Ur-axis would yield a
phase-plane plot (η, η̇). To make things more interesting and instructive, we hence-
forth relax the requirement that β3(Ur) and γ3(Ur) be positive. Thus, consider the
system at Ur = Ur1, such that equation (1.5) becomes

η̈ − 0.02(1 − η̇2)η̇ + (0.95 − 0.018η2)η = 0. (1.6)

In view of the foregoing, this represents a system just beyond the onset of linear
self-excited oscillation; i.e. here 2ζ − β1(Ur1) = −0.02, while β3(Ur1) = 0.02. Also,
1 − γ1(Ur1) = 0.95 and γ3(Ur1) = −0.018.

The dynamics is displayed in Figure 1.2(a). It is seen that the origin (trivial
equilibrium) is unstable, and that a stable limit cycle exists at | η | � 1.1 (the oval
region purposely left blank for clarity). Trajectories for | η | < 1.1 and | η | > 1.1
but not too far away, spiral outwards and inwards, respectively, towards the limit
cycle. There are also two new fixed points, i.e. points of static equilibrium, at | η | =
(0.95/0.018)1/2 � 7.26. They are unstable; specifically, they are saddle points. In this
case, the basin of attraction of the limit cycle is the diagonal swath from the upper left
of the figure to the lower right, within the area delimited by the trajectories going
through the saddle points.
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Figure 1.2. Phase-plane diagrams for the system of equation (1.4) for different system
parameters: (a) for the system η̈ − 0.02(1 − η̇2)η̇ + (0.95 − 0.018η2)η = 0; (b) for the system
η̈ − 0.02(1 − η̇2)η̇ + (0.95 + 0.018η2)η = 0.
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For γ3(Ur1) = +0.018 in equation (1.5), i.e. when the equation of motion is

η̈ − 0.02(1 − η̇2)η̇ + (0.95 + 0.018 η2)η = 0, (1.7)

the saddle points disappear, as shown in Figure 1.2(b), and the basin of attraction
of the limit cycle covers the whole figure. Taking a global view of the dynamics, we
can say that the system is unstable in the small (i.e. in the region within the limit
cycle close to the origin), and stable in the large. In general, “small” and “large” are
suggested by the physics of the system, but may be subjective.

For γ3(Ur1) = 0.018 and β3(Ur1) = −0.02, i.e. for the equation

η̈ − 0.02(1 + η̇2)η̇ + (0.95 + 0.018 η2)η = 0, (1.8)

the stable limit cycle disappears also. This does not imply that the physical system
is unstable at all nonzero amplitudes. It simply means that the nonlinear model of
equation (1.8) is not accurate enough. A more accurate representation, e.g. involving
a positive β5(Ur1)η̇5, could again give rise to a stable limit cycle (see, e.g., Paı̈doussis
(1998, section 2.3)).

Next, consider the system of equation (1.5) at Ur2 < Ur1, such that 2ζ −
β1(Ur2) > 0. The equation of motion is now

η̈ + 0.02(1 + η̇2)η̇ + (0.95 + 0.018η2)η = 0. (1.9)

The limit cycle disappears and the trivial equilibrium becomes a stable fixed point.
Consider next another system, governed by

η̈ + 0.02(1 − η̇2 + 0.05η̇4) η̇ + (0.95 − 0.018η2)η = 0. (1.10)

The phase-plane plot is shown in Figure 1.3. In this case the blank oval at | η | � 1.1
is an unstable limit cycle, nesting within a stable limit cycle going through | η | � 6.2.
Thus, trajectories within the unstable limit cycle spiral towards the origin, and those
on the outside spiral towards the stable limit cycle – as do trajectories outside the
latter. This represents a not-too-rare system in practice: a system stable at the origin
which if lightly perturbed will return to the origin; but, if strongly perturbed to beyond
the unstable limit cycle, it will develop large-amplitude limit-cycle oscillations.

1.2.2 Argand diagrams and bifurcations

For an N-degree-of-freedom system or an N-mode discretization of a distributed
parameter system, let the N dimensionless eigenfrequencies be denoted by ωr and
the eigenvectors by {A}r, r = 1, . . . , N, and let the linear solution of the autonomous
system be expressed as

{q} =
N∑

r=1

{A}r eiωrτ. (1.11)

In general, ωr = Re(ωr) + i Im(ωr). It is clear that if for one of the ωr, say for
ωs, Im(ωs) is negative, the system is linearly unstable, since the solution will then
involve a term exp (αsτ), where Im(ωs) = −αs and αs > 0.

As one of the system parameters is varied, say the dimensionless flow velocity
u, the evolution of the ωr is often displayed as an Argand diagram, in which Im(ωr)
is plotted versus Re(ωr) with u as parameter.
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Figure 1.3. Phase-plane diagram for the version of the system of equation (1.4) described by
η̈ + 0.02(1 − η̇2 + 0.05η̇4)η̇ + (0.95 − 0.018η2)η = 0.

Figure 1.4 shows such diagrams, illustrating several ways in which the frequency
loci may cross from the stable +Im(ωr) half of the frequency plane to the unstable
−Im(ωr) half.

Figure 1.4(a) shows the onset of divergence via a pitchfork bifurcation∗ in the
first mode of a conservative system. As ω1 is purely imaginary for u > uc, this is
clearly a static instability.

Figure 1.4(b) illustrates loss of stability via Hopf bifurcation for a noncon-
servative system with zero structural damping (Im(ω2) = 0 at u = 0). Clearly, as
Re(ω2) �= 0 at u = uc, this is an oscillatory instability, signifying single-mode ampli-
fied oscillations or flutter.

Flutter can also arise through coalescence of two modes in the form of coupled-
mode flutter, as shown in Figure 1.4(c, d), again for systems with zero structural
damping. The fact that the eigenfrequencies are purely real prior to instability is
indicative of the system being conservative. The coupled-mode flutter displayed in
Figure 1.4(c) is via a so-called Hamiltonian Hopf bifurcation.

In Figure 1.4(d) the loci of the modes lie either on the Re(ω) or the Im(ω) axis,
but they are drawn just off the axes for clarity. The coupled-mode flutter in this case
is via a secondary bifurcation, i.e. after the system has lost stability by divergence – in

∗ Strictly speaking, the type of bifurcation involved is defined by the nonlinear terms in the equation
of motion. In this case, the flow-related nonlinearities in the stiffness term are cubic and similar to
those in a softening cubic spring. This is what gives rise to two stable static equilibria for u > uc.
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Figure 1.4. Argand diagrams illustrating loss of stability via (a) a pitchfork bifurcation of a
conservative system, leading to static divergence, (b) a Hopf bifurcation of a nonconservative
system, (c) a Hamiltonian Hopf bifurcation, leading to coupled-mode flutter, (d) a so-called
Paı̈doussis coupled-mode flutter, all for nondissipative systems; uc denotes the critical dimen-
sionless flow velocity.

this case, in both the first and second modes.∗ To distinguish it from the Hamiltonian
coupled-mode flutter, Done & Simpson (1977) christened it as Paı̈doussis coupled-
mode flutter, because it was first documented in a paper by Paı̈doussis & Issid (1974);
its principal characteristic is that, at onset, the frequency of oscillation is zero, but it
becomes finite as u is increased.

It is instructive to consider how these bifurcations are affected by the presence of
dissipative effects and nonlinearities. Figure 1.5 shows the effect of dissipation on the
bifurcations. It is clear that the bifurcations in Figure 1.5(a, b) are not qualitatively
different from those in Figure 1.4(a, b).

Figure 1.5(c) is distinctly different, however. The two modes nearly collide and
then veer away from each other (mode-veering phenomenon), and one of them
crosses the Re(ω)-axis to the unstable domain; thus, the coupled-mode flutter de-
volves to a form of single-mode flutter. In a sense, something similar is shown in
Figure 1.5(d), although the coupled-mode flutter in this case survives, but involves
the coalescence of two branches of the first mode.

∗ Another form involves the coalescence of the two branches of the same mode [see, e.g., Paı̈doussis
(1998, fig. 3.14); also Figure 1.5(d)].



1.2 Concepts and Mechanisms 11

(a) (b)

(c) (d)

uc

0 0

Values of u

Mode 1
Mode 2

2 2

uc

Mode 1

Mode 2

0

Mode 1 Mode 2

0

uc

1

Mode 1
Mode 2

uc

0

2

3

0

2

3

1

12

3

3
4

0
123

11

0 11 2

2
3

3

Im(ω) Im(ω)

Im(ω)Im(ω)

Re(ω) Re(ω)

Re(ω)Re(ω)

Figure 1.5. The corresponding Argand diagrams to those of Figure 1.4 for dissipative systems:
(a) pitchfork bifurcation, (b) Hopf bifurcation, (c) degenerate form of the Hamiltonian Hopf
bifurcation, and (d) Paı̈doussis-type coupled-mode flutter bifurcation.

In terms of nonlinear theory, the evolution of the modes with increasing u is a
little or a great deal different. First, it should be emphasized that linear theory is
reliable only in the prediction of the threshold of the first loss of stability of a system;
beyond that, the dynamics can only be reliably predicted via nonlinear theory. Thus,
subsequent (secondary et seq.) instabilities predicted by linear theory may or may
not materialize;∗ and, if they do, they will not arise in the same way as linear theory
predicts. This is mainly because, once the first instability has occurred, the system
is no longer in its trivial equilibrium state; hence, in general, secondary bifurcations
emanate from the stable state beyond the first instability, whether this is a buckled
state or a limit cycle, and not from the trivial equilibrium (as implicitly presumed
by linear theory). Clearly, this has the greatest effect on the coupled-mode flutter of
Figure 1.5(d).

Of course, linear theory cannot predict the amplitude of divergence or flutter that
emerges from the corresponding bifurcation. Nonlinear theory does. Furthermore,

∗ For the case where linear predictions are contradicted by nonlinear theory, see Paı̈doussis (1998,
sections 3.4.1 and 3.5.2). For the opposite, see Paı̈doussis (2004, section 8.11.2) and Modarres-
Sadeghi (2005); in this case, although the origination of the post-divergence flutter is different, linear
and nonlinear predictions of the critical flow velocity are not too different; the phenomenon also
materializes in experiments.
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U U
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Attracting solution

Repelling solution
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Figure 1.6. Bifurcation diagrams of the amplitude A of static divergence or flutter versus
the flow velocity U: (a) for a supercritical bifurcation, and (b) for a subcritical bifurcation
displaying hysteresis; — , stable solutions; − − − , unstable solutions.

it also finds that the emerging solution may in some cases be unstable, and hence not
observable physically.

Figure 1.6 shows two so-called bifurcation diagrams, displaying the evolution
of the amplitude, A, as a function of the flow velocity U. The system loses stability
at U = Uc, at the same point as predicted by linear theory. Here, the positive and
negative branches may delimit the envelope of the oscillations in flutter, or they may
represent the two possible symmetric static divergence solutions.

Figure 1.6(a) shows what we now define as a supercritical bifurcation. This is
characterized by the fact that, for U = Uc + ε, the amplitude of divergence or flutter,
as the case may be, is vanishingly small; it then grows steadily with increasing U.
Beyond Uc, the trivial equilibrium is unstable; the arrows therefore show that if the
system is perturbed to either higher or lower amplitudes, it will return to the stable
solution (full line). For flutter, the situation corresponds to that of the limit cycle in
Figure 1.2(a, b) which would correspond to a cut of Figure 1.6 at one particular U
(or Ur), specifically at Ur1.

Figure 1.6(b) shows a subcritical bifurcation. Here, the emerging solution is
unstable. For small perturbations about the stable trivial equilibrium at U < Uc,
the system returns to its original state. However, for large enough perturbations,
larger than the unstable (“repelling”) solution, the system may end up on the larger
“attracting solution”. For flutter, this is the situation in Figure 1.3, involving an
unstable (repelling) limit cycle nesting within a stable (attracting) one.

1.2.3 Energy considerations

The conditions of stability/instability may be determined from solutions of the partial
or ordinary differential equations governing free motions of the system. However,
they may sometimes be obtained by calculation of the work done by all fluid-dynamic
forces, Ff (y, ẏ, ÿ) on the system, together with the work done (energy lost) by all
dissipative forces, say Fd(ẏ). Even if the conditions of instability are not determined
thereby, some valuable insights are often gained.
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Consider self-excited oscillations of a one-dimensional system in a spatial do-
main [0, L] subjected to a flow velocity U. The work done in a cycle of putative
oscillation is

�W =
∫ T

0

∫ L

0
[Ff (U, y, ẏ, ÿ) + Fd(ẏ)] ẏ dxdt, (1.12)

where y = y(x, t) and T is the period of oscillation. Clearly, if the system is stable, then
�W < 0; the threshold of instability occurs as �W passes through zero to positive
values. If this cannot be found by inspection or simple manipulation of (1.12), this
expression may nevertheless reveal some essential conditions for �W > 0.∗

For a one-degree-of-freedom system, the integral over x vanishes. For example,
for the system equation (1.5), we have

�W =
∫ T

0
− [(2ζ − β1(Ur)) η̇ + β3(Ur)η̇3] η̇ dt. (1.13)

The terms involving γ1 and γ3 do not contribute, appropriately, as they are conser-
vative.† Rewriting the equation as

�W = −
∫ T

0

[
(2ζ − β1)η̇2 + β3η̇

4]dt.

for convenience, the following insights may be obtained:

(i) For 2ζ − β1 > 0 and β3 > 0, the system is unconditionally stable. If β3 < 0, how-
ever, for sufficiently large η̇2, an unstable limit cycle may arise.

(ii) For 2ζ − β1 < 0 and β3 > 0, one may have a stable limit cycle for sufficiently
large η̇2; e.g. in the case of equation (1.6), one has 2ζ − β1 = −0.02 and β3 = 0.02;
hence, a limit cycle may exist at | η̇ |∼ O [−(2ζ − β1)/β3]1/2, in this case O(1),
which agrees with Figure 1.2(a).

One cannot go much farther in this discussion without considering specific phys-
ical systems, and this is not the appropriate place for that.

1.3 Notation

Because of the wide-ranging subject matter in this book, the notation used differs
from one chapter to the next. In this respect, it was considered preferable to keep
close to the coventional notation firmly embedded in each subject area, thus familiar
to those acquainted with the subject and close to that used in primary references in
each area, rather than enforcing uniformity across the board.

Nevertheless, to help the reader, a glossarial listing is included at the beginning
of each chapter, defining some of the nomenclature and focussing on the symbols
that are different in other chapters.

∗ For a simple example, that of a pipe conveying fluid (axial flow), refer to Paı̈doussis (1998, section 3.2).
† E.g.

∫ T
0 − γ3η

3η̇ dt = − 1
4 γ3
∫ T

0 d(η4)/dt = − 1
4 γ3η

4
∣∣T
0 = 0.
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1.4 Contents of the Book

Apart from the Introduction and Epilogue, there are six chapters in this book. Each
chapter begins with a simplified presentation of the topic, not necessarily the most
modern or sophisticated, but one that helps elucidate the mechanism involved, and,
moreover, one that is easy to understand at the physical level.

Chapter 2 deals with galloping of prismatic bodies, as well as galloping and flutter
of structures with elongated cross-sections. Chapter 3 is on vortex-induced vibrations,
in particular, aspects of lock-in vibration; under lock-in resonance conditions, these
vibrations are fundamentally similar to the rest described in this book.

Chapters 2 and 3 deal with just a single bluff body, while Chapters 4 and 5
deal with small or large groups of cylinders. Specifically, Chapter 4 deals with so-
called wake flutter of pairs or small groups of cylinders, with special application to
electrical transmission lines and multitube offshore risers. Chapter 5 deals with the
so-called fluidelastic instabilities of arrays of cylinders, with particular application to
cylinder arrays in heat exchangers. Chapter 7 deals with a special, intriguing topic:
rain-and-wind-induced vibration of cables (RWIV) and cable-stayed bridges.

In all the foregoing, the bluff body cross-section is nondeformable, but in
Chapter 6 we discuss the case of a deformable cross-section, specifically the ovalling
oscillations of cylindrical shells in cross-flow, with application to the ovalling oscilla-
tion of tall, thin-walled chimney stacks.

Finally, some concluding remarks are presented in the Epilogue.



2 Prisms in Cross-Flow – Galloping

2.1 Introductory Comments

In this chapter, we use the word prism in a general sense to denote a structure
of noncircular, not necessarily polygonal, cross-section. We purposely avoid such
expressions as “rectangular cylinders”, preferring instead “prisms of rectangular
cross-section” or simply “rectangular prisms”.∗

Consider a slender flexible beam or cable, cross-sectionally bluff, submitted
to flow normal to its long axis; or alternatively, a flexibly supported bluff body,
as in Figure ??.† We define galloping as a velocity-dependent, damping-controlled
instability,‡ giving rise to transverse or torsional motions – for the present, consid-
ering it as a one-degree-of-freedom (1-dof) instability. Parkinson (1971) finds the
name “rather appropriate”, “because of the visual impression given” when it oc-
curs in transmission lines: typically a low-frequency (∼1 Hz), high-amplitude (as
much as 3 m) oscillation, reminiscent of a galloping horse – in contrast, on both
counts, to the vortex-shedding related Aeolian vibration.§ For the same reasons pre-
sumably, in the early days, galloping was also referred to as “dancing vibrations”,
e.g. by Davison (1930) who was among the first to describe the phenomenon in
detail.

A circular cylinder in cross-flow is immune to galloping. As illustrated in
Figure 2.1(a), the flow-related force does not change magnitude and is always in
the direction of the flow. Hence, when the body is in motion, the cylinder velocity

∗ A cylinder (κύλινδρos) is something that rolls, from κυλίω = to roll, and the Greeks have known
for quite a while that square wheels do not roll. From that perspective a “square cylinder” is rather
oxymoronic. Nevertheless, thanks to American unbridled optimism, such expressions as “square”
and “rectangular cylinders” are commonplace in the technical literature nowadays, supplanting the
word “prism”.

† In experiments, a flexibly supported rigid prism system is referred to as a sectional model, and the
flexible beam or cable as a full model.

‡ We use the expression velocity-dependent, damping-controlled, in preference to the widely used
negative-damping instability, since (i) ultimately all oscillatory instabilities involve negative damping
and (ii) the expression we use describes more closely the evolution in the dynamics and, hence,
origination of the instability.

§ For transmission-line conductors, the amplitude of galloping oscillations typically ranges from a few
centimeters to 6 m and the frequency from 1

4 to 1 1
4 Hz. Aeolian vibrations are typically of no more

than 2 to 3-cm amplitude and of 10 to 100-Hz frequency (Edwards & Madeyski 1956).
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Figure 2.1. (a) The force on a plain cylinder (electrical wire conductor) due to cross-flow; (b)
the force on an iced conductor. Diagrams on the left are for a stationary conductor, and on
the right for a downwards moving one [after Den Hartog (1956)]. (c) Two equivalent ways of
determining Vrel: the conventional one (left) and a nonstandard one (right) often used in the
literature.

and the component of force in that direction oppose each other, thus negating the
possibility of sustenance of the vibration by the flow.

On the other hand, for certain cross-sectional forms, e.g. as in Figure 2.1(b), it
is possible for the instantaneous ẏ and Fy to be in the same direction and thus for
energy to flow into the structure, as discussed by Den Hartog (1932, 1956).

In this chapter, following the classical work on this topic, y and ẏ are taken
positive downwards, as in Figure 2.1. For the same reason, the nonstandard diagram
for obtaining the relative velocity, Vrel, is used; as illustrated in Figure 2.1(c), it is
wholly equivalent to the conventional one.

Perhaps the description of galloping of a D-section prism with the flat surface
facing the flow by Lanchester (1907) was the first ever. This very same system was
proposed by Den Hartog (1956) as a benchtop experiment to demonstrate galloping
(Figure 2.2(a)).∗ If, instead of mounting the D-section on springs, it is pivoted in
the middle and placed before a fan, then, instead of vibration, we have autorotation
(Riabouchinsky 1935; Lugt 1978); i.e., if the system is given a starting rotation,
it keeps rotating. This is Lanchester’s aerial tourbillion (Figure 2.2(b)), another
effective benchtop teaching aid.

∗ And what an effective teaching aid it is, to demonstrate not only galloping but also the existence of
limit-cycle motion! As we shall see later, however, the D-section is prone to galloping only in highly
turbulent flow or if subjected to substantial perturbation; but this requirement is perfectly satisfied
by the unsteadiness and nonuniformity of the flow in the apparatus shown in Figure 2.2(a).
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(a)

(b)

Wind

Rotation of D-section

Figure 2.2. (a) Benchtop experiment for
demonstrating galloping of a D-section;
left: side view; right: front view [from
Den Hartog (1956)]. (b) The Lanchester
aerial tourbillion [Lanchester (1907)].

A cross-sectional shape as in Figure 2.1(b) may arise because of the accretion of
ice on electric transmission lines due to freezing rain or sleet. Such icing depends on
atmospheric conditions and hence on geography; the ice can be thickest windward
or leeward, towards the top or the bottom of the conductor (Rawlins 1979); some
iced shapes can gallop if the wind is sufficiently strong, while others cannot. Gallop-
ing of transmission lines is a serious problem. Large amplitudes may cause conductor

Notation used in Chapter 2

Frontal height of prism (normal
to flow): h

“Depth” of prism (in flow
direction): d

Free-stream flow velocity: V

Reduced flow velocity: U = V/ωh, ω being the radian frequency
U∗ = V/fh, f being the frequency in Hz
U = (n/ζ)U; U∗ = (n/ζ)U∗

Mass per unit length (span): m ≡ M/l, M being the total mass

Mass parameter: n = ρh2/2m; n = ρh2/4m
defined in equations (2.18) and (2.30)

Lateral displacement of prism: y (positive downwards)

Dimensionless lateral
displacement: Y = y/h; Y = (n/ζ)Y

Angular displacement of prism: θ (positive clockwise)

Other symbols are defined in the Distinct notation is used in Section 2.11,
text. specific to bridge-deck work.
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(a)

(b)

(c)

Figure 2.3. (a) Typical bridge deck section in
cross-wind. (b) Perforated bridge deck sides and
(c) bridge deck fitted with fairings.

clashing, resulting in interruption of service for hours or days, with the costs ranging
from thousands to millions of dollars (Rawlins 1979).

Bridge decks of certain cross-sectional shapes are also prone to galloping (Fig-
ure 2.3), but the mechanism in this case may be more complex (see, e.g., Naudascher
(1974, Session D), Scanlan (1990)) and, almost needless to say, the damage prohib-
itively expensive. Hence, a great deal of effort has gone into developing modified
bridge-deck cross-sectional shapes to elude galloping, e.g. by introducing perfora-
tions for the wind to go straight through or by adding fairings.

Parkinson (1971) recognizes four classes of galloping. First, the transverse or
translational galloping discussed in the foregoing in conjunction with iced electric
conductors. Second, torsional galloping that often arises in bridge decks. A third
type involves essentially translational galloping of stranded conductors when the
wind is directed a few degrees off the normal to the span (sometimes referred
to as a quartering wind (Scruton 1971)) and is associated with different separa-
tion points on the upper and lower surfaces in the helically wound strands. This
phenomenon “occurred spectacularly” circa 1960 on transmission lines crossing
the rivers Severn and Wye in the United Kingdom, and it has been studied thor-
oughly by Davis, Richards & Scriven (1963). A simple remedy was possible here:
to wrap tape around the conductors to give them a fairly smooth cross-section
(Davis et al. 1963; Scruton 1971). A fourth form of galloping may be referred to
as stall flutter, similar to stall flutter of airfoils oscillating about their stalling angle.
Its mechanism involves hysteresis in the separation and reattachment of the flow
during oscillation, e.g. in radio telescope and radar reflector bowls (Scruton 1960,
1971).

The most famous occurrence of galloping was that leading to the catastrophic
oscillation and collapse of the original, elegant Tacoma Narrows Bridge on 7 Novem-
ber 1940 in 68 km/h wind (Figure 2.4), luckily captured for posterity on ciné-film,
thanks to the rather long time it took before catastrophic failure. As glimpsed from
the figure, the torsional motion was quite enormous, the cross-section at the quarter
points twisting with amplitudes of ± 35◦ approximately! More will be said about this,
later in this chapter; see Sections 2.11 and 2.12.
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Figure 2.4. Instantaneous photograph of the galloping Tacoma Narrows bridge in the anti-
symmetric torsional mode before collapse [from Scruton (1971)].

Wind-induced galloping of buildings, bridges, cables and traffic signs, for ex-
ample, has been reported extensively. Less widely known is ocean-current-induced
galloping of marine structures, such as box piles and cables (Bokaian & Geoola
1984c); in this case also, cables or bundles thereof are wrapped in waterproof tape
or encased in cylindrical containers to prevent galloping (Hallam, Heaf & Wootton
1977).

There is a very rich literature on galloping. A fairly extensive treatment is
provided by Blevins (1990), wherein many of the pertinent references on the topic
may be found. Most of the important references may also be found in the excellent
reviews of the topic by one of the pioneers in research on galloping, G. V. Parkinson
(1971, 1972, 1989),∗ as well as in the compendium of papers by another of the
principal researchers in the field, Y. Nakamura (Ohya 1997).

The mechanism of galloping will be elucidated in Section 2.2. This is followed
in subsequent sections by discussion of some of the many complexities of the phe-
nomenon, e.g. due to the effects of turbulence, interference by vortex shedding, and
reattachment of the separated shear layers, as well as the treatment of torsional and
multi-degree-of-freedom galloping.

2.2 The Mechanism of Galloping

In this section, the simplest possible treatment of single-degree-of-freedom galloping
is presented, aiming to convey to the reader an appreciation of the underlying

∗ Appropriately, perhaps, Geoff Parkinson was bluff in aspect, and so, when he presented a superb
General Lecture on “Mathematical models on flow-induced vibration of bluff bodies”, his forte, he
was introduced by the chairman as “the biggest bluff body of them all” (Bearman et al. 2006; p. 993).
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Figure 2.5. A prism, of frontal characteristic dimension (“height”) h and depth d, subjected
to cross-flow of velocity V and undergoing transverse oscillation in the vertical direction, with
downwards velocity v at the instant shown. At that instant, the resultant lift L and drag D are
shown in the diagram on the left, and the vertical component of the fluid-dynamic force, Fy,
in the diagram on the right.

mechanism. The presentation is based overwhelmingly on the seminal work by Den
Hartog (1932, 1956) and Parkinson & Smith (1964).

2.2.1 The linear threshold of galloping

Consider a prismatic bluff body in steady cross-flow of velocity V , as shown in
Figure 2.5. The bluff body is assumed to be flexibly mounted as in Figure ??, such
that only transverse motion, y(t), is possible. It is presumed that the bluff body
(prism) oscillates about its static equilibrium position. At a particular instant, its
velocity is v ≡ ẏ downwards, and hence the effective flow velocity relative to the
prism is Vrel, at an angle

α = tan−1(ẏ/V ), (2.1)

as shown in Figure 2.5. Hence, the instantaneous lift, L, and drag, D, are in the
directions shown in the figure. As motion takes place in the y-direction, we are
clearly most interested in the component of the fluid-dynamic force in that direction,
Fy, which we define to be positive downwards, i.e. in the same direction as +y and
+ẏ; hence, we have −Fy = L cos α + D sin α in Figure 2.5, so that

Fy = −L cos α − D sin α. (2.2)

More specifically, in order to assess stability of the system, we are interested in
dFy/dα. Thus, referring to Figure 2.5, consider an increase in v, �v ≡ �ẏ > 0; this
results in �α > 0. If dFy/dα � �Fy/�α < 0 and �α > 0, then �Fy < 0.∗ From the
figure, a positive �ẏ is downwards, whereas a negative �Fy is upwards, i.e. in the
opposite direction, and hence the oscillation will not grow; it will decay. On the other
hand, the system is unstable if

dFy

dα
> 0; (2.3)

for in this case �ẏ and �Fy will be in the same direction.

∗ This cannot be “seen”, geometrically, from the figure. �Fy being positive (or negative) depends on
how L and D vary with α.
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Utilizing equation (2.2), we may write

dFy

dα
=
(

+L − dD
dα

)
sin α +

(
−dL

dα
− D

)
cos α. (2.4)

For small enough ẏ, hence small enough α, we have sin α ∼ O(ε). Therefore, provided
that L and dD/dα are of a similar order of magnitude as dL/dα and D (in fact, they
are likely to be smaller), equation (2.4) may be written as

dFy

dα
� −

(
dL
dα

+ D
)

. (2.5)

Thus, the criterion for galloping instability, commonly attributed to Den
Hartog, is

dL
dα

+ D < 0. (2.6)

Here, a parenthesis is in order. The same criterion was obtained considerably earlier
by Glauert (1919) in connection with the autorotation of a stalled airfoil about a
fixed axis.∗ It is important to stress that here we have taken both y and Fy to be
positive downwards, whereas in Glauert’s (1919) and Den Hartog’s (1932) work Fy

is taken to be positive upwards, which results in dFy/dα < 0 for galloping; but as
Fy = L cos α + D sin α in that case, one still obtains (dL/dα) + D < 0 for galloping.
In any case, both sign conventions are widely used in the literature; hence, the reader
should beware!

An alternative derivation of inequality (2.6) may be obtained as follows. Re-
writing (2.2) for small α as Fy � −L − Dα and making Taylor expansions L �
L0 + (∂L/∂α)α, D � D0 + (∂D/∂α)α leads to

Fy = −L0 + α

(
−∂L

∂α
− D0

)
+ O(α2); (2.7)

or, dropping the subscript 0 and utilizing (2.1),

Fy � −L − ẏ
V

(
∂L
∂α

+ D
)

.

Now, for the flexibly supported bluff body, recalling that both y and Fy are positive
downwards, the equation of motion is Mÿ + ky = Fy = −L − (ẏ/V ) [(∂L/∂α) + D],
which can be written as

Mÿ +
[(

∂L
∂α

+ D
)(

1
V

)]
ẏ + ky = −L, (2.8)

where the right-hand side would typically be zero for motions about the static equi-
librium. It is seen that the second term is a damping term. It becomes negative,
leading to oscillatory instability, if (∂L/∂α) + D < 0, i.e. if criterion (2.6) is satisfied.

Defining L = 1
2 CLρV 2hl and D = 1

2 CDρV 2hl, and similarly for Fy, ρ being the
fluid density, h a characteristic frontal dimension, and l the length of the prism

∗ It is both curious and significant that Scruton (1960, 1971) never cites Den Hartog’s work, attributing
the galloping criterion to Glauert instead; it is even more curious that Den Hartog does not mention
Glauert’s work, even though he was familiar with the ARC Reports and Memoranda. Parkinson &
Smith (1964) cite both, making it clear that Glauert’s work has precedence.
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Figure 2.6. Lift and drag as a function of
the angle of attack α for a lenticular cross-
section, over the whole possible range for
α [from Den Hartog (1956)].

perpendicular to the plane of the paper (the span), equation (2.6) may be rewritten
in terms of the lift, drag and transverse force coefficients:

∂CFy

∂α
= −∂CL

∂α
− CD > 0 or

∂CL

∂α
+ CD < 0. (2.9)

As was made clear in Section ?? in general terms and as shown in the deriva-
tion leading to equation (2.8), galloping is a velocity-dependent damping-controlled
instability.

To use equation (2.9), one clearly needs to know CL and CD as a function of
α. For a given section shape, this data may be obtained from static wind-tunnel
measurements, in which the orientation of the section is varied relative to the wind,
generating results such as those in Figure 2.6. One then invokes the quasi-steady
assumption, according to which CL and CD in the course of oscillation are the same
at each α as the values measured at the corresponding steady angle of attack α in
wind-tunnel experiments.

Clearly, quasi-steady fluid dynamics is applicable if the motion is “quite slow”.
This is generally true for galloping (see Section 2.1). However, “slow” needs to
be quantified properly. Two different criteria have been proposed concerning the
applicability of quasi-steady fluid dynamics (Price et al. 1988): one by Fung (1955)
and the other by Blevins (1977, 1990).

According to Fung (1955), the criterion is this: any disturbance experienced
by the oscillating body at a certain point in its oscillatory motion must be swept
downstream sufficiently far, by the time the body comes back to that same point
(one period later), for the disturbance to no longer affect the flow around the body.
Assuming that disturbances are carried downstream with a velocity equal to the free-
stream velocity V , then during a period of oscillation they will be swept downstream
a distance V/f n, f n being the frequency of the oscillation. Fung proposes that this
should be at least 10 times the body “diameter” or the characteristic length h (or d),
giving V/f nh ≥ 10.

According to Blevins (1977), the criterion is that the frequency of shed vortices
(the disturbance to the mean flow), that is the Strouhal frequency f S (see Chapter 3),
must be at least twice as large as the oscillation frequency f n. Assuming a Strouhal
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number S = 0.2, it follows that V/f nh ≥ 2(V/f Sh) = 2S−1 � 10. Thus, it is interesting
to note that, although different physical reasoning was employed, the same end result
was obtained by Blevins and Fung for quasi-steady fluid dynamics to be applicable,
namely

V
f nh

> 10. (2.10a)

Later, without further explanation, Blevins (1990) revised the criterion to V/f nh
or V/f nD > 20, D denoting the cylinder diameter – perhaps counting each vortex
shed, rather than pairs, or perhaps because for prisms S is generally rather smaller
than 0.2 (Section 3.2). In any event, this criterion is usually easily satisfied in most
galloping situations. The limits of successful prediction of galloping via equation (2.9)
were studied by Nakamura & Mizota (1975a), finding, for example, that one must
have V/f nh ≥ 2(V/f nh)cr for a square prism, where (V/f nh)cr is the critical reduced
flow velocity for vortex-shedding resonance; otherwise the occurrence of galloping
is disrupted by vortex shedding (refer to Section 2.10).

Bearman, Gartshore, Maull & Parkinson (1989), on the basis of their work with
square prisms and interference by vortex shedding, conclude that it is safe to use the
quasi-steady theory of galloping only if V/ωnh ≥ 4(2πS)−1 � 5, which translates to

V
f nh

> 30. (2.10b)

Hence, caution should be exercised as to which version of the criterion it is safe to
use.

Furthermore, as discussed by van Oudheusden (1995), there is a second require-
ment for the quasi-steady assumption to be applicable, namely that it is necessary to
be able “to define a steady situation (in which the structure is in rest with regard to
some suitably chosen reference frame) which is aerodynamically equivalent to the
unsteady situation”. This innocuous-sounding requirement is sometimes difficult to
satisfy; see, e.g., Section 2.7.1.

A very useful nondimensional form of the linear threshold for galloping may be
obtained by considering the prism as a damped oscillator subjected to cross-flow, the
equation of motion of which is

mÿ + cẏ + ky = Fy ≡ 1
2ρV 2h CFy , (2.11)

where m is the section mass (or mass per unit length of the bluff body), and similarly
c and k are the damping coefficient and spring constant for the section – thus, the
length l, or “span”, of the prism (the dimension normal to the plane of the paper)
does not appear in (2.11); h is the characteristic length, say the frontal height of the
bluff body (Figure 2.5). Expanding CFy in a Taylor series in α, we have

CFy = CFy

∣∣
α=0 + [(∂CFy/∂α)

∣∣
α=0

]
α + · · · (2.12)

Ignoring the equilibrium component, zero for a symmetric section, and recalling that
α � ẏ/V , we can rewrite (2.11) as

mÿ + [c − 1
2ρVh

(
∂CFy/∂α

)]
ẏ + ky = 0, (2.13)
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Fy

Vrel
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V V Figure 2.7. A square prism in cross-flow, on an elastic dis-
sipative support (not shown), free to oscillate in the y-
direction.

where it is understood that the partial derivative is evaluated at α = 0. Further,
expressing c/m = 2ζωn and k/m = ω2

n, equation (2.13) leads to

ÿ + 2ωn

[
ζ − ρVh

4mωn

∂CFy

∂α

]
ẏ + ω2

ny = 0. (2.14)

The threshold of galloping occurs when the quantity in square brackets vanishes,
and so Vcrit = 4mωnζ/

[
ρh(∂CFy/∂α)

]
. This may be written in dimensionless form as

Vcrit

f nh
= 4[

∂CFy/∂α
] mδ

ρh2
= 4

[−(∂CL/∂α) − CD]
mδ

ρh2
, (2.15)

where f n = ωn/2π and, assuming a lightly damped system, δ � 2πζ; the product of
the mass ratio m/ρh2 and the logarithmic decrement δ, i.e. mδ/ρh2, is usually referred
to as the mass-damping parameter. The bracketed expression, in both forms above,
must be positive for galloping to occur.

Variants of this expression recur throughout this book – cf. equations (4.9) and
(5.10) with h = D. They differ from (2.15) because a time delay may exist between the
motion and the fluid-dynamic forces causing it as well as different sign conventions.

2.2.2 Nonlinear aspects

In the foregoing section, the critical flow velocity (wind speed) for galloping has
been predicted according to linear theory. This critical velocity is the same as that
predicted by nonlinear theory, only so long as the bifurcation is supercritical (see
Figure ??); but, as we shall see, in the case of galloping the dynamical behaviour
can be more complex. Nonlinear theory, of course, additionally gives an estimate
of the amplitude and frequency of galloping. Here, we shall illustrate the analysis
and results obtainable by nonlinear considerations, following Parkinson & Smith’s
(1964) seminal work, although a different method of solution is adopted.

Consider a flexibly mounted square prism in cross-flow, as shown in Figure 2.7,
free to oscillate transversally, in the vertical direction. The equation of motion may
be written as

ml
d2y
dt2

+ r
dy
dt

+ ky = 1
2 CFyρ V 2hl, (2.16)

where m is the mass of the prism per unit length, h its height (and depth), l its length
normal to the plane of the paper, k and r are, respectively, the stiffness and damping
of the flexible support (not shown in the figure), and CFy is the coefficient of the
vertical component of the fluid-dynamic force, Fy (see Figure 2.5). It is important
to note that, as in Section 2.2.1, Fy here is taken positive downwards (the same as
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Figure 2.8. Transverse force coefficient CFy as a function of the angle of attack α for a square
prism: •, experimental points (Smith 1962) at Re = 22 300; — , polynomial approximation,
equation (2.20) with A = 2.69, B = 168, C = 6270 and D = 59 900 (Parkinson & Smith 1964).

for y). Thus, invoking (2.12) with CFy |α=0 suppressed and (2.9), we must have

∂CFy

∂α
≡ −∂CL

∂α
− CD > 0 (2.17)

for galloping.
Next, let

y = Yh, τ = ωt, V = Uωh, n = ρh2

2m
, ω2 = k

ml
, 2ζω = r

ml
, (2.18)

where n is dimensionless mass parameter and ζ is the damping ratio. Substituting
these relationships in equation (2.16), we obtain the dimensionless equation

Ÿ + 2ζẎ + Y = n U2 CFy , (2.19)

where the overdot denotes a derivative with respect to τ.
For the square prism, Smith (1962) measured CFy as a function of α in a wind

tunnel, and the results are shown in Figure 2.8. Parkinson & Smith (1964) obtained
a polynomial approximation to these results (again suppressing the CFy |α=0 term,
which changes the static equilibrium but does not affect the dynamics),

CFy = A
(

dy/dt
V

)
− B

(
dy/dt

V

)3

+ C
(

dy/dt
V

)5

− D
(

dy/dt
V

)7

= A
(

Ẏ
U

)
− B

(
Ẏ
U

)3

+ C
(

Ẏ
U

)5

− D
(

Ẏ
U

)7

, (2.20)

also shown in the figure as a continuous line. Equation (2.19) may now be written as

Ÿ + Y = nA
{(

U − 2ζ

nA

)
Ẏ −

(
B

AU

)
Ẏ3 +

(
C

AU3

)
Ẏ5 −

(
D

AU5

)
Ẏ7
}

,

(2.21)
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where the first term on the right-hand side represents the linear damping, both
structural and fluid-dynamic, and the rest are higher-order velocity-dependent
terms.

Parkinson & Smith obtained solutions to this equation by means of the Krylov &
Bogoliubov method (Minorsky 1962). Here, however, we use the method of multiple
scales (see, e.g., Nayfeh (1981)), outlined for a simpler problem in Appendix A. We
rewrite equation (2.21) in the following form:

Ÿ + Y = ε

{[
UA1 − 2ζ

n

]
Ẏ − A3

U
Ẏ3 + A5

U3
Ẏ5 − A7

U5
Ẏ7
}

, (2.22)

where we have replaced the n multiplying the expression in curly brackets by ε; in
view of the definition of n in (2.18), for airflow at least, ε ≡ n is indeed small,∗ and
hence this equation is now in a form that may be analysed by the method adopted.

Defining ordinary (“fast”) time and slow time by

ξ = τ and η = ετ, (2.23)

respectively, we next expand Y in a Lindstedt-type perturbation series

Y = Y0 + ε Y1 + ε2 Y2 + · · · (2.24)

Substituting into (2.22) and collecting terms in powers of ε, we find the generating
solution to be

Y0 = A(η) cos ξ + B(η) sin ξ = R(η) cos(ξ + φ(η)), (2.25)

where the overbar is used to differentiate these quantities from those in (2.21).
Proceeding with the first-order solution as in Appendix A leads to

dR
dη

= 1
2
ε

{[
UA1 − 2ζ

n

]
R − 3

4
A3

U
R3 + 5

8
A5

U3
R5 − 35

64
A7

U5
R7
}

, (2.26)

after elimination of the secular terms. The amplitude and stability of any possible
limit-cycle solutions may be determined from this equation. Specifically, the limit-
cycle amplitude is determined by letting dR/dη = 0, yielding

f (R) =
[

UA1 − 2ζ

n

]
R − 3

4
A3

U
R3 + 5

8
A5

U3
R5 − 35

64
A7

U5
R7 = 0, (2.27)

which has seven roots. However, only finite real roots correspond to limit cycles.
There is also the trivial root R = 0, which governs the linear stability of the system.
Making reference to Section ??, or just looking at equation (2.26), or indeed (2.22),
it is clear that the threshold of galloping corresponds to the point where the linear
damping becomes negative, i.e.

Ucr = 2ζ

nA1
, (2.28)

which corresponds to the result obtainable by linear theory.
However, to relate to the work presented in Section 2.2.1, it is best to

look at equation (2.22) and to consider the mechanically undamped system
(ζ = 0), whereupon it becomes clear that the system is subject to negative damping

∗ In Smith’s (1962) experiments, n = 4.3 × 10−4 (Parkinson & Smith 1964).
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Figure 2.9. Galloping amplitude versus flow velocity, showing the various bifurcations and
the “oscillation hysteresis” [from Parkinson & Smith (1964)]; Uo = Ucr.

provided that A1 > 0; moreover, from (2.20), it is equally clear that A1 =
[dCFy/d(ẏ/V )]ẏ/V=0 ≡ (dCFy/dα) |α=0. Hence, we retrieve the Den Hartog criterion
of equations (2.3) and (2.9) for galloping, as well as the earlier version by Glauert
(1919) for autorotation – the only difference being that, here, Fy is defined positive
downwards, whereas in Den Hartog and Glauert it is defined positive upwards; see
also Parkinson & Smith (1964, p. 231).∗ With mechanical damping included, equation
(2.28) can readily be transformed into the first form of equation (2.15).

Returning now to equation (2.27) and possible real roots, the following was
found by Parkinson & Smith:

(i) for U < Ucr ≡ U0, only the trivial R = 0 solution exists, and the system is stable
(dR/dη < 0);

(ii) for U0 < U < U1 and for U > U2 two roots are found, one of which corresponds
to a stable limit cycle, whereas the trivial solution is now unstable;

(iii) for U1 < U < U2 four roots are found, involving (a) the unstable source at the
origin of the phase plane, (b) a stable limit cycle nesting within (c) an unstable
one, which in turn nests within (d) a larger stable limit cycle.

The overall picture, including the obvious meaning of U1 and U2, is seen in Figure 2.9.
Thus, the bifurcation is supercritical, but one can have (a) a single, “small”, stable
limit cycle; (b) two, one small and the other “large”, with an unstable one in-between;
or (c) only a “large” stable limit cycle.

Phase-plane diagrams for the same parameters as in Parkinson & Smith (1964)
have been constructed, as shown in Figure 2.10(a–c); i.e. for the same values of
A, B, C, D as in the caption of Figure 2.8 and n = 4.3 × 10−4; ζ was arbitrarily taken
as ζ = 4.28 × 10−2, so that nA1/2ζ = 1.35 × 10−2. The values of (nA1/2ζ)U – cf.

∗ It is reiterated that this is an important source of confusion in the literature: whether y is defined
positive upwards or downwards, and similarly for Fy. Both versions are used extensively; hence, care
should be exercised by the reader to ascertain definitions in each paper. The extent of the problem
is illustrated by the fact that different conventions have been used in the first and second editions of
Blevins’ (1977, 1990) book.
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Figure 2.10. Phase-plane diagrams for the dynamical behaviour of the system (a) for U0 <

U < U1, (b) and (d) U1 < U < U2 and (c) U > U2, where U0, U1 and U2 are defined in
Figure 2.9. Specifically the results shown are for a system with A to D as in Figure 2.8, and
ζ = 4.28 × 10−2. In (a) n = 4.3 × 10−4, (nA1/2ζ)U = 1.08; (b) n = 4.3 × 10−4, (nA1/2ζ)U =
1.50; (c) n = 4.3 × 10−4, (nA1/2ζ)U = 2.00. In (d) n = 7.5 × 10−1 and (nA1/2ζ)U = 1.50.

Figure 2.11 – are as follows: in (a) 1.08 (corresponding to U � 80); in (b) 1.50
(U � 111), in (c) 2.00 (U � 148∗). We see in (a) one limit cycle with an amplitude
Y = Ys � 3.19 – the white circle (purposely left blank in the spiralling trajectories
for easy visual identification). In (b) there is a stable limit cycle at Ys � 10.6 (the
inner dark circle), nesting within an unstable one at Ys � 22.3 (the intermediate dark
circle), which in turn is within a larger stable one at Ys � 30 (the outer dark circle);
i.e. we are between U1 and U2 in Figure 2.9. In (c) we once more have but one stable
limit cycle with Ys � 41.2; i.e. we are beyond U2 in Figure 2.9.

∗ For a body with h � 16 cm and galloping at 1 Hz (ω = 2π rad/s), these values of U would be
approximately the same as for V in m/s. If h � 1.6 cm, V (m/s) would be ten times smaller; cf.
equations (2.15).
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Figure 2.11. Collapsed amplitude-velocity characteristics of galloping of a square prism. — ,
Theoretical stable limit cycle; – – – , experimental unstable limit cycle. Experi-
mental data points: ×, ζ = 0.00107; �, ζ = 0.00196; 
, ζ = 0.00364; ∇, ζ = 0.00372; +1,
ζ = 0.0012; +2, ζ = 0.0032; Reynolds number range 4 × 103 − 20 × 103; n = 4.3 × 10−4 [from
Parkinson & Smith (1964)].

In Figure 2.10(d) we use the same parameters, except for n = 7.5 × 10−1,
which might be representative of waterflow rather than airflow (but not so small
in terms of setting n = ε), and nA1/2ζ = 23.57. In this case, the results are sim-
ilar to those in Figure 2.10(b): stable, unstable and larger stable limit cycles at:
Ys � 6.2 × 10−3, 12.7 × 10−3 and 16.8 × 10−3. These amplitudes are much smaller,
three orders of magnitude smaller, than those in (b). Nevertheless, the values of
(nA1/2ζ)Ys in the two cases are sensibly the same – cf. Figure 2.11. It should also
be remarked in conjunction with the “waterflow” results in (d) that, not only the
amplitudes are smaller than for airflow, but the dimensionless critical flow velocities
U are also correspondingly three orders of magnitude smaller; cf. Figure 2.11 again.

Explicit expressions for the amplitude of galloping, both outside and within the
hysteresis region, are given by Novak (1969).

Parkinson & Smith (1964) also conducted experiments for the square prism,
with n = 4.3 × 10−4 and variable ζ. By plotting the results in a (nA1/2ζ) Ys versus
(nA1/2ζ) U plot, where Ys is the galloping amplitude, the results for various ζ collapse
nicely onto effectively a single “universal” curve, as shown in Figure 2.11 – but see also
Section 2.3.2. The experimental results agree remarkably well with the theoretical
curve. It should also be mentioned that all the values of Ys for stable and unstable
limit cycles in the previous two paragraphs related to Figure 2.10, once converted to
(nA1/2ζ)Ys, fall almost exactly on the curve generated by Parkinson & Smith, shown
in Figure 2.11.
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As the flow velocity is increased to beyond U = U2 in Figure 2.9, the galloping
amplitude should jump from point 2 to point 3, and then continue on to point 4;
whereas starting from point 3 and reducing U to less than U2, the galloping follows
the path from 3 to 5, and then jumps down to point 1. Remarkably, even these jumps,
indeed the whole hysteresis phenomenon, are well followed by the experimental
data, as seen in Figure 2.11.

Luo, Chew & Ng (2003) studied numerically the hysteresis phenomenon in the
galloping oscillation of a square prism. They confirmed that the phenomenon is
related to the inflection in the CFy versus α curve (Figures 2.8 and 2.12(b)). Fur-
thermore, they pinpointed the cause of the inflection as due to intermittent flow
reattachment at alternate shedding cycles on one side of the prism. The existence of
intermittent flow reattachment was confirmed by flow visualization in a water tunnel.
Further work on the role of the inflection points was conducted by Barrero-Gil et al.
(2009a).

Barrero-Gil et al. (2009b) studied the possibility of galloping of a square prism
at low enough Reynolds numbers for the flow to be laminar (Re < 200) using
Re-dependent coefficients in equation (2.20), determined from the simulations of
Sohankar et al. (1998). It was found that (i) galloping is indeed possible at such low
Re, but not if Re < 159 and (ii) the hysteresis in the response disappears for 159 ≤
Re ≤ 200.

An important parenthesis should be made here regarding the grouping nA1/2ζ

utilised in Figure 2.11. In view of (2.18), this may be written as A1(ρh2/2m)(1/2ζ) �
A1π(2µδ)−1, where µ = (2n)−1 = m/ρh2 and δ = 2πζ/(1 − ζ2)1/2 � 2πζ for small
damping. At this point we recognize 2µδ as the Scruton number, Sc (Zdravkovich
1982).

Finally, a recent study by Vio, Dimitriadis & Cooper (2007) should be cited, in
which a variety of methods were used to determine the limit-cycle oscillation amp-
litude: (i) cell mapping, (ii) harmonic balance, (iii) higher-order harmonic balance,
(iv) centre manifold linearization, (v) normal form reduction and (vi) numerical
continuation methods; their advantages and disadvantages were discussed.

2.3 Further Work on Translational Galloping

A great deal of work has been done beyond Parkinson & Smith’s (1964) seminal
paper on translational galloping of square prisms and the other work presented in
Section 2.2. Some of it is discussed here, and some in the sections that follow.

2.3.1 The effect of sectional shape

As discussed in the excellent reviews by Parkinson (1974, 1989) and Bearman et al.
(1987), the importance of afterbody length and shape on galloping cannot be over-
emphasised; indeed, as succinctly put by Parkinson, in the absence of an afterbody
there is no galloping. Here by “afterbody” we understand the part of the body down-
stream of the points of separation; thus, for square-section and D-section prisms, it is
the whole of the body behind the front face.

A very useful compilation of data as to which shapes are prone to galloping is
provided by Blevins (1990), based on data from Parkinson & Brooks (1961), Slater
(1969), Nakamura & Mizota (1975a) and Nakamura & Tomonari (1977), reproduced
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in Table 2.1. It gives the values of ∂CFy/∂α, defined in equation (2.9), for various
section shapes and for both smooth and turbulent flow. It is recalled that, according
to (2.17), galloping will occur if ∂CFy/∂α > 0. The section shapes are characterised
by their depth, d, and height, h (cf. Figure 2.5), both expressed in terms of a single
parameter D in the diagrams in the table. Thus, for smooth flow, it is seen that several
sections will not gallop according to this criterion, including the oblong rectangular
sections with small height-to-depth ratio (h/d = 1

4 or less), as well as the D-section
(refer to the fifth footnote of Section 2.1). It is also noted that some sections, which
according to Table 2.1 will not gallop in smooth flow, may do so in turbulent flow,
and vice versa (see Section 2.9).

In the simplified treatment of galloping of Section 2.2.1 it was presumed that
the separated shear layer, typically from the front of the body, does not reattach to
it farther downstream, which could complicate matters. This (no reattachment) is
generally true if the depth d of the section, is not much larger than h. As discussed
in Section 2.3.5, reattachment plays a central role in the characteristics of galloping.

The most important physical parameters for galloping (and, indeed, for vor-
tex shedding) are the size, relative to the height h, and shape of the afterbody
(Parkinson 1974). The pressure loading associated with galloping acts principally on
the afterbody surface. Hence, a very short afterbody will not oscillate from rest∗ (e.g.
for h/d = 4 or 2 in smooth flow), but a square prism will. Under appropriate condi-
tions, a D-section with the flat surface facing the wind will also gallop (Figure 2.2(a)),
as ∂CFy/∂α � 0; significantly though, if the D-section faces the opposite way (no af-
terbody), no galloping is possible. However, reattachment too may negate galloping
(e.g. for h/d = 1

4 or less), though not necessarily. Therefore, in summary, Table 2.1
suggests that d/h must be large enough, but not so large as to permit reattachment.

However, the conclusions above were reached strictly in terms of equation (2.17),
which is a linear criterion and therefore not unequivocally reliable. For instance, the
bifurcation leading to galloping may not be supercritical as in Figures ??(a) and 2.9,
but subcritical as in Figure ??(b). These questions have been studied by Novak (1971,
1972) in terms of the following form of the polynomial expansion for CFy :

CFy =
m∑

i=1

Ai

(
ẏ
V

)i

+
k∑

j=2

Aj

(
ẏ
V

)j ẏ
|ẏ| , (2.29)

where V is the wind velocity; the first sum involves odd integers (i, m), and the
second even integers ( j, k); note the difference in signs vis-à-vis (2.20).

In what follows, the following dimensionless parameters are used, some as be-
fore, some new:

dimensionless amplitude : Y = a/h,

reduced flow velocity : U = V/ωh,

Novak’s mass parameter : n = ρh2/4m = 1
2 n, †

modified dimensionless amplitude : Y = (n/ζ)Y,

“twice reduced” flow velocity : U = (n/ζ)U.

(2.30)

The notation here is different from that in Novak’s papers, to conform with the rest
of this chapter. Here, a is the dimensional galloping amplitude, and the height h is
defined on top of Figure 2.12.

∗ I.e., without perturbation, strictly in terms of equation (2.28); as discussed later in this section.
† Note that in Novak n = ρh2/(4m) = 1

2 n; i.e. half that in Parkinson & Smith.
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Table 2.1. The transverse force coefficienta for various sections in steady smooth or turbulent
flow (after Blevins (1990))

∂CFy /∂α

Section h/d Smooth flow Turbulent flowb Reynolds number

D

D 1 3.0 3.5 105

D2
3

D
3/2 0. −0.7 105

D/ 2

D 2 −0.5 0.2 105

D/4

D
4 −0.15 0. 105

D

D

2
3 2/3 1.3 1.2 6.6 × 104

D/2

D

1/2 2.8 −2.0 3.3 × 104

D/4

D

1/4 −10. – 2 × 103 − 2 × 104

D
(Thin airfoil)

–c −6.3 −6.3 >103

D

– −6.3 −6.3 >103

D
– −0.1 0. 6.6 × 104

– −0.5 2.9 5.1 × 104

D – 0.66 – 7.5 × 104

a α is in radians; flow is left to right. ∂CFy /∂α = −∂CL/∂α − CD, with CFy based on the dimension D,
so that ∂CFy /∂α > 0 for galloping.

b Approximately 10% turbulence.
c Inappropriate to use h/d.
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Figure 2.12. Typical lateral force coefficients and corresponding types of galloping response
for prisms of different height, h, and depth, d; Y = a/h and U = V/ωh; from Novak (1971).

Three cases are considered, as follows, with the aid of Figure 2.12.
(i) Coefficient A1 > 0. This is the case discussed in Section 2.2.2. The instability

is associated with a Hopf bifurcation, beyond which the equilibrium position is no
longer stable. Beyond the critical flow velocity, Uo = ζ/nA1, the same as Ucr in equa-
tion (2.28), a finite flutter amplitude is obtained. The right-hand-side diagrams of
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Figure 2.12 give the dimensionless amplitude, Y = a/h as a function of U = V/ωh.
In Figure 2.12(a, b, c) we see three possibilities for A1 > 0. In (a) the bifurcation is
supercritical, and there is no inflection in the CFy versus α curve, and the amplitude
of galloping increases continuously; in (b) there is an inflection, and hence there
is a portion of the galloping response showing hysteresis. It is of interest that the
hysteresis in the case of a square prism (Figure 2.11) occurring at U > Uo is captured
by the fifth-order polynomial representation of CFy , but it is missed if a third-order
polynomial is used, and the predicted response looks like Figure 2.12(a). (If a cu-
bic approximation is used, CFy = A1(ẏ/V ) + A3(ẏ/V )3, A2 = 0, Novak (1969) shows
that the limit-cycle amplitude is

Y =
[

4(1 − U A1)
U

3A3

]1/2

, (2.31)

with Y and U defined in (2.30); see also Blevins (1990)). Finally, in Figure 2.12(c) we
see a case where galloping is subcritical.

(ii) Coefficient A1 = 0. This is a subclass of Figure 2.12(d) where the slope at α = 0
in the left-hand-side diagram is zero. In this case the Den Hartog/Glauert criterion
predicts no galloping. However, galloping is possible if sufficient perturbation is
supplied (Figure 2.12(d)), yielding amplitudes Y = a/h (Novak 1972)

Y1,2 = 2
3

A2

|A3|

[
8

3π
±
√

64
9π2

− 3
ζ

nU
|A3|
A2

2

]
U, (2.32)

which can only be real when the discriminant is positive, i.e. for

U ≥ Uo = 27π2

64
ζ

n
|A3|
A2

2

; (2.33)

as before, U = V/ωh. Checking for stability (see Appendix A), it is found that
the upper branch is stable, while the lower one is unstable. The minimum stable
solution is

Y0 = 3π

4
ζ

nA2
. (2.34)

This is a classical case of a hard oscillator, as opposed to a soft oscillator in which the
oscillation is self-excited (supercritical or subcritical). The dynamics is essentially as
shown in Figure 2.12(d), on the right.

(iii) Coefficient A1 < 0. This situation is shown in Figure 2.12(d). Steady galloping
is still possible, for

U ≥ Uo = ζ

n

[
64

27π2

A2
2

|A3| − |A1|
]−1

, (2.35)

provided A1, A2, A3 �= 0. The threshold flow velocity is larger than in the previous
case, and a large perturbation is necessary to precipitate galloping. Clearly, this also
is a case of a hard oscillator.

Novak & Tanaka (1974) presented numerical values for the coefficients of poly-
nomial expressions of CFy similar but not identical to equations (2.20) and (2.29),
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Table 2.2. Aerodynamic coefficients of polynomial expansion of the transverse force
coefficient, CFy , as in equation (2.28) – after Novak (1969) and Novak & Tanaka (1974);
here, CFy =∑i Ar(ẏ/V )r, r = 1, 2, 3, . . .

Coefficients D-section Rectangle, h/d = 3
2 Square Rectangle, h/d = 2

3

A1 −0.097431 0 2.69 1.9142
A2 4.2554 −32.736 0 34.789
A3 −28.835 7.4467 × 102 −1.684 × 102 −1.7097 × 102

A4 61.072 −5.5834 × 103 0 −22.074
A5 −48.006 1.4559 × 104 6.27 × 103 –
A6 12.462 8.1990 × 103 0 –
A7 – −5.7367 × 104 −5.99 × 103 –
A8 – −1.2038 × 105 – –
A9 – 3.37363 × 105 – –
A10 – 2.0118 × 105 – –
A11 – −6.7549 × 105 – –

for rectangular prisms with height-to-depth ratio h/d = 3
2 , 1 and 2

3 , as well as for the
D-section, based on which the critical condition and nonlinear post-critical beha-
viour can be assessed. Novak did this for both smooth and turbulent flow, but only
the former data is given in Table 2.2, whereas discussion of the latter is deferred
to Section 2.9. Thus, the D-section is stable in smooth flow but, as discussed in the
foregoing, can gallop if suitably perturbed. The same is true for the h/d = 3

2 rect-
angle. The galloping for the square and h/d = 3

2 prisms is as in Figure 2.12(b) and
(d), respectively.

Two sample cases of subcritical and hard-oscillator behaviour, obtained by
Novak (1972), are shown in Figures 2.13 and 2.14, respectively. To obtain some
of these results, because they represent nonuniform motion along the length (span)
of the prism, and in one case nonuniform wind profile, the work in Section 2.3.2 has
to be used.

In the case of Figure 2.13, h/d = 1
2 . According to Blevins (1990), long rect-

angles (small h/d) gallop with strong hysteresis, provided h/d > 1/3; beyond that
(for smaller h/d), they are stable (Parkinson 1971; Washizu et al. 1978) because of
reattachment of the shear layer. The h/d = 2 prism (Figure 2.14) also “gallops with
difficulty” in the sense that it is a very hard oscillator, but in this case the reason is
that h/d is large; as already stated, as h/d gets larger (shorter afterbody) galloping
becomes harder in both senses.

Several important studies on various aspects of galloping of rectangular prisms
were conducted, including those by Nakamura & Mizota (1975a), Nakamura &
Tomonari (1977, 1981) and Washizu, Ohya, Otsuki & Fujii (1978); also, work
on low-speed galloping (Section 2.4), further work on the effect of turbulence
(Section 2.9), on elongated prisms (Section 2.11) and on many other aspects.

A numerical study of galloping was conducted by Robertson, Sherwin &
Bearman (2003) at Re = 250, using a method developed by Li et al. (2002) for solv-
ing the Navier-Stokes equations in a moving frame on a fixed grid. Time-averaged
values were used to calculate Fy and hence (∂CFy/∂α) |α=0 and thereby to predict
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transverse galloping, essentially via equation (2.15). At the same time, simulations
of the dynamics were conducted and galloping was observed directly. Transverse
galloping was found to be possible for d/h = 1, 1.5 and 2, but not for d/h ≥ 3,
consistently with the quasi-steady calculations. These results are also consistent with
the experimental results of Washizu et al. (1978) for Re � 105, despite the disparity
in Reynolds number.

Most of the foregoing discussion focussed on rectangular prisms, for histor-
ical and practical reasons (e.g. applications to buildings and bridge decks in wind).
However, as pointed out by Luo, Yazdani, Chew & Lee (1994), there is no reason
why trapezoidal prisms or indeed rectangular prisms at a non-zero mean angle of
attack (tilt) should receive less attention; the wind on a building, after all, could come
from any direction! Luo et al. (1994) studied the effects of incidence and afterbody
shape on the flow structure for trapezoidal (trapezium section) and triangular (iso-
sceles triangle section) prisms, undertaking flow visualization as well as transverse
force measurements and obtaining steady and fluctuating pressure distributions. It is
concluded that one cannot generally say that a particular prism shape is absolutely
stable to galloping, because if it is so for one mean angle of incidence, α0, it may be
unstable for another α0.

This work was taken farther by Luo et al. (1998) who conducted forced transverse
oscillation experiments of square, trapezoidal and triangular prisms. For the triangu-
lar prisms, the base faced the wind (when α0 = 0), and similarly the thicker end of the
trapezoidal prisms was windward; the tilt ranged over 0 ≤ α0 ≤ 32◦. The threshold
of galloping predicted quasi-statically (Section 2.2.1) was compared with that in-
volving the measured phase angles between the forced motion and the transverse
force; agreement was found to be excellent. The effect of α0 was quite important. For
small α0, cross-sectional shapes with a substantial afterbody when tilted are prone
to galloping, but not so otherwise; e.g. for the triangular prism, because the sides
taper away sharply (Section 2.3.4). As α0 is increased, the prisms generally become
more unstable because of increased asymmetry. In some cases, “partially unstable”
galloping was found, i.e. galloping is predicted by the phase-angle criterion at low
U, but stability is regained at higher U; thus, this is akin to the “low-speed gallop-
ing” discussed in Section 2.4. For large α0, the prisms become more stable, because
of reattachment of one of the shear layers to the corresponding side of the prism
(Sections 2.3.4 and 2.3.5).

Further work on triangular prisms has been done, e.g. by Alonso et al. (2007), but
with the thin edge windwards; see Figure 2.15(a). They found three zones of α0 over
which galloping is possible, as shown in Figure 2.15(b). Moreover, they found that
these three zones coincide almost exactly with those predicted via the Glauert/Den
Hartog criterion. Extensive work on triangular prisms, on the flow field and other
aspects, was done by Buresti and associates, e.g. Iungo & Buresti (2009).

Prisms of other geometrical shapes, some to be discussed later in this book, have
been studied, by Scruton (1971), Naudascher & Wang (1993), Ruscheweyh et al.
(1996) and Deniz & Staubli (1997), for instance, and on open circular and parabolic
section prisms by Weaver & Veljkovic (2005).

Some very nice results have been obtained by Slater (1969) for an angle section
(“L-section”) at two different orientations to the flow. The experimental results
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Figure 2.15. (a) Definition of the experimental configuration used in galloping experiments
with isosceles triangular prisms. (b) Stability diagram for a triangular prism with β = 30◦,
β being the angle of the main vertex. “S” identifies a zone of stability; “U” a zone of instability;
Ured = V/fh (Alonso et al. 2007).

are compared with those of an analytical model equivalent to that of Section 2.2,
generating the collapsed/universal amplitude-velocity curves of Figure 2.16, similar
to Figure 2.11. The collapse is very successful, especially for α0 = 90◦ when the
horizontal leg is pointing downstream, over a wide range of ζ (from 0.844 × 10−3 to
1.77 × 10−3); as expected, the agreement is less successful for α0 = −45◦ when the
L-section becomes open to the oncoming flow. Nevertheless, it must be concluded
that the basic model works quite well even for sections which are rather different
from the usual rectangular geometry.

Slater(1969; Appendix IV) and Novak et al. (1978) extended the Glauert/Den
Hartog criterion for galloping to bodies at an initial angle of attack α0, by noting that
in this case

CFy = − (CL + CD tan α) sec α, (2.36)

where α is measured from the initial angle α0.
Finally, in all the foregoing it was assumed that the corners of the prisms are

sharp. The effect of chamfering or rounding the corners of a square-section prism on
the aerodynamic forces (and hence on galloping), as well as turbulence and three-
dimensionality of the flow, was studied by Tamura & Miyagi (1999). The effect can be
quite important, both in smooth and turbulent flows. Similarly, the effect of cutting
off a square from each of the four corners of a rectangular prism was investigated by
Shiraishi et al. (1988).

2.3.2 Novak’s “universal response curve” and continuous structures

Novak (1969, 1970, 1972) has extended the Parkinson & Smith nonlinear model to
continuous elastic structures, e.g. cantilevered towers; he also proposed a “universal
response curve” which would permit the prediction of galloping of a given prismatic
body shape from dynamic wind-tunnel tests on a scale model, without the necessity
of static force measurements.
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Novak (1969) obtained expressions for the steady amplitudes outside and within
the interval of oscillation hysteresis (see Figure 2.11). For instance, in the former
range, the dimensionless amplitude Y = a/h, a being the dimensional amplitude, is
given by

Y =
√

2 U

⎧⎨
⎩
(

4
35A7

)1/3
⎡
⎣(A − ζ

nU
+
√(

A − ζ

nU

)2
− B2

)1/3

+
(

A − ζ

nU
−
√(

A − ζ

nU

)2
− B2

)1/3
⎤
⎦+ 4

21
A5

A7

⎫⎬
⎭

1/2

, (2.37)

where

A = A1 + 10
35

A5

A7

(
40
189

A2
5

A7
− A3

)
and B =

√√√√ 4
35A7

(
20
63

A2
5

A7
− A3

)3

, (2.38)

in which the Ais are from a yet different expression for CFy , namely

CFy = A1

(
ẏ
V

)
− A2

(
ẏ
V

)2 ẏ
|ẏ| − A3

(
ẏ
V

)3

+ A5

(
ẏ
V

)5

− A7

(
ẏ
V

)7

; (2.39)

as before, U = V/ωh, n = ρh2/4 m and ζ = r/2mlω, recalling that n here is one-half
of Parkinson & Smith’s n. Moreover, for high enough U the asymptote

Y = kU (2.40)

is reached, where

k =
√√√√2

{(
4

35A7

)1/3 [(
A +

√
A2 − B2

)1/3
+
(

A −
√

A2 − B2
)1/3

]
+ 4

21
A5

A7

}

is a function of aerodynamic constants only. Similar expressions for the three amp-
litudes in the interval of oscillation hysteresis are obtained.

One then obtains the “universal response curve” shown in Figure 2.17, which is
similar to that of Figure 2.11, but with different axes, namely

U = n
ζ

U and Y = n
ζ

Y, (2.41)

cf. equations (2.30), the first of which is the “twice-reduced” flow velocity, i.e. it
is a modified form of the reduced flow velocity. The key features in the galloping
response curve are therefore all obtained in terms of A1, A and B of (2.38) and k
of (2.40).
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Figure 2.17. (a) Universal response curve for a square prism and corresponding lateral
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(b) corresponding CFy versus α curve.

The presentation in Figure 2.17 is very similar to Parkinson & Smith’s (Fig-
ure 2.11), but A1 does not appear explicitly, which is an advantage. Novak’s contri-
bution is the explicit realization that the galloping curve in Figure 2.17(a) is universal
for a given cross-sectional shape of the prism. Thus, let us say that Figure 2.17(a)
was obtained from wind-tunnel tests on a particular square prism. Then, this curve
would be applicable to all square prisms, irrespective of size, mass ratio, stiffness and
damping – provided, of course, that all inherent assumptions are satisfied, notably
the quasi-steady one, and flow conditions are similar.

Equivalent results are obtained for other polynomial forms of CFy , e.g. in the
case where the CF y versus α curve in Figure 2.17(b) has no inflection (Novak 1969).

The important conclusion is that, if plotted as in Figure 2.17(a), there is a single
curve applicable for each prismatic shape and set of flow conditions. The galloping
curves in Figures 2.13 and 2.14 have been plotted in such a fashion and are thus
“universal”. It is noted, nevertheless, that, if the motion is nonuniform along the
body (as in curves 2 and 3 of Figure 2.13, for instance) or the flow velocity over the
length of the prism is variable (curve 3a), a different galloping curve is obtained –
“universal” in that sense also. These effects are considered next.

Consider a slender structure (long with respect to cross-sectional dimensions)
as shown in Figure 2.18(a, b) – modelled as a pinned-pinned or cantilevered beam –
subjected to cross-flow. The cross-sectional shape is presumed to be such that gal-
loping may arise. Motions are assumed to be planar, and the kind of assumptions
usually made for the linear Euler-Bernoulli beam approximation (e.g. neglect of
axial motion and rotation) are presumed to hold. Even so, a rigorous solution of the
problem is difficult, and Novak (1969) developed an approximate galloping theory
by means of energy considerations.

Consider motions in the nth normal mode of the structure,

y(x, t) = yn(x, t) = aφn(x) cos ωnt,
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Figure 2.18. Modal forms for first-mode deformation of (a) a pinned-pinned beam, (b) a can-
tilevered beam; (c) a variable wind profile, V (x), and definition of Vl.

where φn is the nth eigenfunction and a is the amplitude of the motion. Thus, this is
a single-mode analysis. We next express the total damping force per unit length as

F (ẏ) = r
∂y
∂t

− CF y
1
2ρhV 2,

with CFy as in equation (2.39) and r being the equivalent viscous damping coefficient.
The work done by this force over a period of motion T is

W =
∫ T

0

∫ l

0
F (ẏ)ẏ dxdt. (2.42)

Substituting (2.20) into this equation and setting W = 0 for galloping yields
(Novak 1969)
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+ ζ

nU
− A1 c1 = 0, (2.43)

in which the Ai, i = 1 − 7, are as defined in equation (2.39), and

Y = a
h

, U = V
ωnh

, ζ = r
2m ωn

, n = ρh2

4m
, (2.44)

m being the mass per unit length, and

cj =
∫ l

0
| φn(x) |j+1 dx

/∫ l

0
φ2

n(x)dx. (2.45)
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For φn(x) = 1, corresponding to uniform lateral motion, the solution is the same as
that obtained before, as it should be.

We next consider, e.g. for a vertical structure (say, a tower), that the flow velocity
varies as in Figure 2.18(c); thus, expressing V (x) = Vlv(x), with Vl the velocity at
some reference height, and proceeding as before (but now with a variable V ), we
obtain for galloping the same equation (2.43), but with

cj =
∫ l

0
v2−j | φn(x) |j+1

/∫ l

0
φ2

n(x) dx. (2.46)

Moreover, the flow (wind) profile is often expressed in terms of a power law,

v(x) =
(x

l

)α

. (2.47)

The values of cj have been tabulated by Novak (1969), as in Table 2.3, for different
values of α. The effect of a nonuniform amplitude of motion on galloping response
is shown in Figure 2.13. It is seen that the increase in amplitude with U is greater
for flexible structures than for flexibly supported rigid ones. Similar results for a
square prism are shown in Figure 2.19, where it is seen that in the hysteresis range
the response is highly dependent on the mode of vibration. It is also seen that, for a
nonuniform wind profile, the slope is decreased vis-à-vis a uniform wind.

Novak (1969) also conducted some new experiments with a cantilevered square
prism, showing that the universal galloping curve works quite well, except for low U
and high ζ; but still the trend is as predicted.

2.3.3 Unsteady effects and analytical models

Predictions of galloping, as presented so far, are based on quasi-steady theory, thus
effectively presuming that the period of oscillation is long compared with the time
taken for the flow to pass along the prism. Hémon (1999a) offers an improvement for
h/d > 1, involving a time delay between motion and the forces generated, similar in
nature to that considered in Chapter 5. Promising agreement with ad hoc experiments
was achieved.

Grosso modo, most of the foregoing discussion was based on quasi-steady theory
and hence on the statically measured lift and drag forces. As shown by Nakamura
& Matsukawa (1987), however, another kind of galloping, the so-called low-speed
galloping or low-speed flutter, is possible for prisms of large h/d (“short” or “shallow”
prisms). This is a phenomenon that can only be detected via unsteady fluid dynamics.
It is discussed in Section 2.4.

A bold attempt to dispense with the necessity of extensive CFy versus α meas-
urements in order to describe the post-critical galloping behaviour was made by Luo
and Bearman (1990). They used unsteady thin-airfoil theory which, of course, was
conceived for anything but bluff bodies. For an airfoil oscillating transversely in in-
compressible flow, the lift force per unit length induced by the transverse oscillation is

L = −Cmo ρ
( 1

4πD2) ÿ − ∂CL

∂α
ρ V∞

( 1
2 D
)

C(k)ẏ ; (2.48)
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Table 2.3. Coefficients ci with uniform and variable wind speed (Novak 1969)
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Figure 2.19. Universal galloping response of square prisms with different modal deformation
and for different wind profiles, as shown. Curves 1a, 2, 3a and 4a: for V (x) = Vl; curves 1b
and 3b: V (x) = VL (x/l)1/6; from Novak (1969).
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Cmo is the potential flow inertia coefficient, and C(k) = H(2)
1 (k)/{H(2)

1 (k) + i H(2)
0 (k)}

is Theodorsen’s function, with H(2)
0 and H(2)

1 being Hankel functions of the second
kind and orders 0 and 1, respectively; k = π/U∗ with U∗ being the reduced flow
velocity, and ∂CL/∂α is the lift-curve slope. Luo & Bearman “have taken the bold
step of assuming that an equation which is derived for an airfoil oscillating with small
amplitude can be applied to an oscillating cylinder”.

Developing the theory, the following expressions are obtained for the spectral
component of the fluctuating lift coefficient C ′

L(f N) at frequency f N and the phase
angle φ:

C ′
L(f N) =

{
1
2

[
Cmlπ

2 tan αmax

U∗

]2

+
[
∂CL

∂α
F (k) tan αmax

]2
}1/2

,

φ= tan−1
[−(∂CL/∂α)F (k)U∗

Cmlπ2

]
, (2.49)

where Cml = Cmo + Cma, with Cma = (1/πk)(∂CL/∂α)G(k) is the so-called added
inertia coefficient; F (k) and G(k) are related to C(k) by C(k) = F (k) + i G(k), and

∂CL

∂α
= −

(
∂CFy

∂α

) ∣∣∣∣
α=0

, αmax = tan−1
[

2π
a
D

1
U∗

]
, (2.50)

in which U∗ = V/f ND, a is the amplitude of oscillation of the prism, and f N is its
frequency. Thus, the theory takes into account the inertia effect and the influence of
shed vorticity.

Some typical results are shown in Figure 2.20, where the abscissa U∗/(a/D) was
preferred instead of U∗. It is seen that at high values of U∗/(a/D) both theories agree
with experimental measurements (and with each other). For 25 < U∗/(a/D) < 75 ap-
proximately, the unsteady airfoil theory provides better prediction! For U∗/(a/D) ≤
26, corresponding to αmax � 13.5◦, there may be reattachment onto the sides of
the prism, an effect not taken into account by the unsteady theory; as observed in
Figure 2.20, the theory does less well in this range of U∗/(a/D).

It ought to be stressed that this is not a wholly unsteady analytical theory,
because

(
∂CFy/∂α

)
must still be provided as an empirical input. Nevertheless, it is

quite remarkable how well this theory can perform, provided U∗/(a/D) is not too
small.

2.3.4 Some comments on the flow field

The discussion in Sections 2.3.1 and 2.3.2 has been largely phenomenological, without
reference to the underlying fluid mechanics. Several attempts to remedy that have
been made over the years and much insight has been gained thereby. However,
the fluid mechanics is complex and depends on shape, reduced flow velocity range,
Reynolds number, turbulence, and so on. Hence, few clear and universally true
statements can be made. Nevertheless, some general comments are provided here,
drawn mainly from the work of Bearman & Trueman (1972), Parkinson (1974,
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Figure 2.20. (a) The fluctuating lift coefficient C ′
L(f N) as a function of U∗/(a/D), a being

the amplitude of galloping, for a square prism, and (b) the corresponding phase angle φ. Ex-
perimental data: �, a/D = 0.5; �, a/D = 0.675; 
, a/D = 1.0; +, a/D = 1.5; ×, a/D = 2.0.
— — , Quasi-steady theory prediction; – – – , unsteady airfoil theory prediction (Luo &
Bearman 1990).

1989), Bearman et al. (1987) and Nakamura & Hirata (1989). The aim is to sensitize
the reader regarding some of the fluid mechanics associated with galloping (or
nonoccurrence thereof) and, inevitably, vortex shedding.

We first start by stressing again the importance of the afterbody shape and
length (Parkinson 1974, 1989). A convenient shape for a systematic discussion is the
rectangular section – see Figure 2.21. The three curves in that figure summarize a
great deal of data gathered from experiments with stationary or galloping cylinders
for 104 < Re < 105: for the drag coefficient CD = D/( 1

2 ρ V 2 h), the Strouhal number
S = f vh/V , f v being the vortex formation frequency in one shear layer, and Ys = ys/h
the dimensionless transverse galloping amplitude; U = V/ωnh is the reduced flow
velocity.

The curves show that, as d/h increases, flow conditions change gradually,
except in two ranges: 0.5 < d/h < 1.0 and 2.5 < d/h < 3.0. The discussion here
follows closely Parkinson’s (1974, 1989). For the first range, as argued by Bear-
man & Trueman (1971), increasing d reduces the size of the base “cavity” from
which entrainment of fluid takes place by the shear layer forming a discrete vor-
tex, and the base pressure is reduced, with an accompanying increase in CD. As d
becomes sufficiently large, however, it begins to interfere with the inward-curving
shear layer, thus forcing a change in the process. Also, if d is small enough not to
cause interference with the process of vortex formation, the resulting vortex at full
strength will lie closer to the base of the rectangle, again contributing to a lower base
pressure and a higher CD. Thus, CD reaches a maximum at d/h � 0.62 (Figure 2.21).
The interference between the shear layer and the downstream corner of the body
has an important effect on the pressure loading on the sides of the body. As found
by Brooks (1960) and Smith (1962),hard-oscillator galloping prevails for d/h < 0.75,
whereas for 0.75 ≤ d/h ≤ 3.0 prisms gallop as soft oscillators.
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Figure 2.21. The effect of rectangular section afterbody (d/h = depth-to-height ratio) on
the Strouhal number, S, drag coefficient, CD, and amplitude of galloping, (Ys/U)max; from
Parkinson (1974).

The other abrupt changes, for 2.5 < d/h < 3.0, are clearly related to reattach-
ment of the shear layers on the afterbody sides, with final separation occurring at the
downstream corners. Hence, the reason why prisms with d/h > 3.0 are stable with
regard to galloping is that the reattached shear layers provide a pressure loading on
the afterbody that opposes small transverse disturbances.

The effect of chamfering or rounding the corners of a prism causes the separ-
ated shear layers to approach the sides of the prism, thus promoting reattachment
(Tamura & Miyagi 1999).

As stated in the foregoing, the peak in CD in Figure 2.21 is associated with a
decrease in Cpb – in effect a negative peak. Nakamura & Hirata (1989) take this
further by defining the value of d/h for which this negative peak occurs as the
critical depth. This of course varies with the shape of the body. It is also a relatively
weak function of U, as shown in Figure 2.22(b). For rectangular and generalised
D-sections (Figure 2.22(c)), it is seen that, for large enough U – beyond the vortex
resonance zone, where in any case galloping theory needs to be modified – the
critical geometry for rectangular prisms is (d/h)crit � 0.6, and (d/h)crit � 0.8 for D-
sections.

Below the critical depth, i.e. for d/h < (d/h)crit, the decrease in Cpb as d/h is
increased in mainly due to the increased curvature of the shear layers as they roll
up, because of a reduced base cavity. Above (d/h)crit, Cpb increases with increasing
d/h because the vortices are formed further downstream due to the influence of
the rear corners of the body. Nakamura & Tomonari (1981) have studied this latter
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Figure 2.22. (a) Generalised D-section in cross-flow. (b) Base-suction coefficient, −Cpb ,
versus d/h for oscillating rectangular prisms: �, stationary prism; �, U = 8.9; �, Ur;
“hexagon”, U = 5; 
, U = 2.8. Here U = V/f vh, and Ur is the value at vortex-shedding
resonance. (c) Critical geometry as a function of U and d/h; open symbols are for the critical
depth, while filled symbols are for vortex resonance: 
, �, rectangular prism; �, �, D-section
prism; from Nakamura & Hirata (1989).

effect, specifically what was later called the shear-layer/edge direct interaction (s-
l/e interaction, for short). This s-l/e interaction yields a reattachment-type pressure
distribution on the side faces, characterised by a low-pressure plateau, followed by
recovery to a higher pressure. Nakamura & Hirata (1989) argue that, for d/h >

(d/h)crit, a small angle of incidence causes a side load due to the pressure difference
between the upper and lower sides of the prism which is due to this s-l/e interaction.
Moreover, they argue that this is the reason why galloping can occur for d/h >

(d/h)crit.
Parkinson (1989) views this in terms of a secondary flow. Soft galloping is excited

by an unbalanced pressure distribution on the afterbody sides when the section is
subjected to a small transverse velocity. This unbalance requires a secondary flow
between the two shear layers and the body. This secondary flow presumably has
enough strength to trigger soft galloping only when d/h is large enough to cause this
“interference”.

When the prism is oscillating, the flow past the bluff body has two frequency
components: the body oscillation frequency f y and the natural vortex-shedding
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frequency f vs. The flow associated with f y consists of two parts: one is linked to the
acceleration of the body (dominant at low U) and the other is associated with the
continual variation of the angle of incidence. This latter variation produces undula-
tion of the wake, which becomes progressively shorter with decreasing U. As stated
by Nakamura & Hirata (1989), wake undulation can produce motion-generated
vortices when the reduced velocity is small and the amplitude large; but its influence
is present, even when no motion-induced vortices are generated. Motion-generated
vortices are intimately connected with the so-called low-speed galloping discussed
in Section 2.4.

Nakamura & Hirata (1989) showed that, whereas for rectangular prisms with
d/h = 0.3 and 0.4 oscillating at vortex resonance, the side-face pressure distri-
bution is reasonably uniform, for d/h = 0.5 and 0.6 reattachment-type pressure
distributions are observed, with a significant pressure recovery, even though ac-
tual reattachment does not occur. Similar results were obtained for D-section
prisms. Further insights are provided in the work of Nakamura, Hirata & Urabe
(1991) aiming at understanding galloping in the presence of a splitter plate; see
Section 2.5.

2.3.5 Shear-layer reattachment

As surmised from the discussion in Section 2.3.4, shear-layer reattachment onto the
sides of the prism plays an important role on the occurrence, and nonoccurrence, of
galloping.

Parkinson (1971) remarks that, for a square prism, one of the shear layers which
has separated from one of the upstream corners of the prism reattaches to one of
the downstream corners at an angle of attack α � 13◦, and that this corresponds to
the maximum Fy attained (see Figure 2.8). At higher α, thus at higher amplitudes
of oscillation (cf. equation (2.1)), the reattachment point moves upstream and Fy

becomes smaller. It is this phenomenon, related to reattachment, that is responsible
for the self-limiting amplitude feature of galloping.

Parkinson (1989) provides a very useful compilation of data on the maximum
amplitude and range of occurrence of soft galloping as a function of d/h, based
on experimental data from Brooks (1960), Smith (1962), Laneville (1973), Novak
(1974), Nakamura & Tomonari (1977) and Washizu et al. (1978), shown here in
Figure 2.23. It is seen that, in smooth flow, the upper limit of the soft-galloping
range is at d/h � 3.2 due to diminution of the side force Fy as a result of shear-layer
reattachment. As stated by Parkinson (1989), reattachment of the shear layers at
the trailing edge means that “the section no longer has an afterbody, and becomes
immune to transverse galloping”. The decrease in (Ys/U)max with increasing d/h
is also determined by reattachment effects, as may be appreciated with the aid of
the inset sketch. The value of α for reattachment to occur, which determines ẏmax,
decreases as d/h increases; hence, (Ys)max decreases with increasing d/h.

Turbulence causes increased entrainment of the fluid by the separated shear
layers, thickening them; this promotes interference with the trailing-edge corner as
d/h is increased, leading to reattachment. Therefore, as seen in Figure 2.23, with
increasing turbulence intensity, Tu, the maximum d/h at which galloping is possible
becomes smaller.
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amplitude of galloping, for various levels of turbulence intensity, Tu; here U and Ys are as in
Section 2.2.2 (Parkinson 1989).

However, reattachment also engenders a different set of excitations on the prism,
as discussed by Komatsu & Kobayashi (1980), Shiraishi & Matsumoto (1983), Na-
kamura & Nakashima (1986), Schewe (1989), Naudascher & Wang (1993), Deniz &
Staubli (1997) and Matsumoto et al. (2008a), for instance, and as reviewed in Sec-
tion 3.4.3. In this literature, the separated shear layer is considered to be a leading-
edge vortex; indeed, for large enough d/h, sufficient roll-up occurs upstream of the
trailing edge to justify the appellation. Also, reattachment is viewed as impinge-
ment of this vortex on a side of the prism. Moreover, in addition to the “normal”,
stationary-prism vortex shedding, there may be motion-induced vortices. The im-
pingement of the leading-edge vortices on the prism, if it occurs, and possible
coupling with trailing-edge vortex shedding generate a whole new set of excita-
tions (IIE) and motion-induced excitations (MIE) in Naudascher & Rockwell’s
(1980) classification. Specifically, impinging leading-edge vortex (ILEV) excitation
and alternate-edge vortex shedding (AEVS) may arise, as discussed in Section 3.4.3.
The interested reader should also consult Rockwell & Naudascher’s (1979) excellent
review on impinging free shear layers.

2.4 Low-Speed Galloping

As already clarified, galloping is associated with the occurrence of negative fluid-
dynamic damping. Typically, in what has been covered in the foregoing, galloping
occurs at “high speeds”, meaning speeds higher than for vortex-shedding lock-in,
and hence in the range where the quasi-steady assumption is valid – and, incidentally,
without substantial interference from vortex shedding (refer to Section 2.10). How-
ever, negative fluid-dynamic damping may also arise over a range of low reduced
flow velocities, or “low speeds”, below vortex-shedding lock-in. This gives rise to
so-called low-speed galloping or low-speed flutter, as first discovered by Nakamura
& Matsukawa (1987). More precisely, Nakamura & Hirata (1989) classify low-speed
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Nakamura (1990)].

galloping as one occurring below the critical depth (Section 2.3.4), i.e. for “short”
or “shallow” prisms (prisms of small d/h); whereas high-speed galloping, i.e. the
galloping discussed in all of the foregoing, occurs for d/h > (d/h)crit.

Therefore, the generic response for prisms in cross-flow is as shown in the
diagram of Figure 2.24, where it should be stressed that not all three phenomena arise
necessarily for any given system. In addition, the low-speed galloping and vortex-
excitation responses may be close enough to each other for the former to appear as
a “nose” to the vortex lock-in region, as seen, for instance, in Figure 2.25(b).

In the low-speed range, where f y � f vs, variations in the angle of incidence in
the course of oscillation produce an undulation of the wake and “flapping” of the
separated shear layers, which can manifest itself as motion-induced vortices; here,
f y is the transverse oscillation frequency and f vs is the vortex-shedding frequency.
The development of low-speed galloping is intimately related to the undulation and
“flapping” of the separated shear layers and to motion-induced vortices in the near-
wake (Nakamura 1988; Nakamura & Hirata 1989; Tamura & Itoh 1999; Tamura &
Dias 2003; Tamura et al. 2004). Therefore, this is clearly an unsteady phenomenon: to
study it experimentally one must utilize either flexibly supported prisms capable of
reaching a reasonably large amplitude of motion or forced oscillation experiments;
its existence cannot be established from static drag and lift measurements as in
the foregoing. Moreover, unlike high-speed galloping which can persist apparently
without limit as the flow velocity is increased, low-speed galloping occurs over a
limited range of flows.

In fact, low-speed galloping is a very complex phenomenon. Its existence was
established experimentally by Nakamura & Matsukawa (1987) by direct observa-
tion in free-oscillation experiments and from an analysis of forced-oscillation data.
Specifically, in the latter, the phase angle of the lift relative to displacement, φ, was
measured over a range of U∗ = V/f yh.∗ As is well known, a large change in φ occurs
near vortex-shedding resonance, U∗

cr, which in these experiments ranged between
approximately 6.2 and 7 for prisms with d/h = 0.2 − 0.6. However, it is of interest
that φ � 60◦ to 70◦ in the range 2 < U∗ < 6 for the d/h = 0.2 and 0.4 prisms (see Fig-
ure 2.25(a)). Recalling that a positive φ indicates a positive out-of-phase component
of the lift force and amplified oscillation, it is clear that we have flutter, well before
vortex-shedding lock-in, i.e. low-speed galloping.

∗ Here, we use the asterisk to remind us that U∗ is based on f , whereas U is based on ω = 2πf .
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Figure 2.25. (a) The phase of the lift relative to displacement of a rectangular prism with
d/h = 0.2 in forced oscillation, as a function of U∗ = V/f hy; (b) the aerodynamic growth rate,
βa, as a function of U∗ for the same system: �, �, without splitter plate; �, �, with splitter
plate; open symbols, direct measurements from free-vibration experiments; filled symbols,
from forced vibration experiments (Nakamura & Matsukawa 1987).

The rate of growth of the oscillation β = βa − δs has also been studied, where
βa is the aerodynamic growth (the negative aerodynamic damping) and δs is the
logarithmic decrement in still fluid. In Figure 2.25(b), we see clearly a positive βa in
the range 3.5 < U∗ < 5.5, well before the onset of vortex-shedding lock-in.

It should be recalled here that, according to Table 2.1, prisms with d/h = 0.25,
not too different from 0.2, should be immune to galloping, but that is for high-speed
galloping.

Further work on this topic was done by Nakamura & Hirata (1991, 1994) and by
Tamura and his associates. In addition to the phase measurements, which are along
the lines of the foregoing, Nakamura & Hirata (1991) undertook mean and fluctuat-
ing pressure measurements along the sides of the prism. From these, it is clear that, for
a d/h = 0.4 prism, the fluctuating pressures on the side faces do positive work on the
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Figure 2.26. Results from free-oscillation ex-
periments on rectangular prisms, showing re-
gions of low- and high-speed galloping and
vortex excitation; · · · ·, critical geometry; - - - ,
vortex-resonance velocity (Nakamura & Hirata
1991).

prism over a specific range of U∗, thus rendering low-speed galloping possible. Cor-
responding measurements for a d/h = 0.6 prism, however, display a reattachment-
type pressure distribution along the side faces, as well as a decrease in suction at
separation, thus clarifying why low-speed galloping does not occur in this case.

Figure 2.26 presents a map constructed by Nakamura & Hirata (1991) showing
the regions of occurrence of low- and high-speed galloping and of vortex-shedding
excitation for rectangular prisms. A nice summary of the foregoing and a discussion
contrasting low- and high-speed galloping is provided by Nakamura & Hirata (1994).

Tamura & Itoh (1999) conducted the first numerical study of the problem, solv-
ing the continuity and Navier-Stokes equations at Re = Vh/ν = 104 for controlled
transverse motions of d/h = 0.2 − 0.8 prisms, with no turbulence modelling. The
three-dimensional computational grid involved 200000 grid points. A number of
important findings were made, in particular, that the lift and drag time histories dis-
played a two-state characteristic, as shown for example in Figure 2.27(a), intermit-
tently switching from one state to the other. These were tied to different near-wake
flow patterns, as shown by the vorticity contours in Figure 2.27(b, c). Where large
fluctuations in lift and high mean drag occur in Figure 2.27(a), the shear layers roll
up strongly and quickly (Figure 2.27(b)); whereas segments of the time histories with
small fluctuating lift and lower mean drag correspond to weaker roll-up of the shear
layers, farther from the base of the prism (Figure 2.27(c)).

The critical depth ratio in Tamura & Itoh’s calculations, (d/h)crit = 0.5, is a
little lower than the value of ∼0.6 found experimentally, no doubt because of some
weakness in the numerical modelling (perhaps the absence of turbulence modelling).
Because the aerodynamic forces were thereby overestimated, there were niggling
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Figure 2.27. (a) Time histories of the drag and lift coefficients on a stationary rectangular
prism of d/h = 0.2, showing switching between two different states. (b, c) Two distinct wake
patterns, (b) at tV/h = 779, showing strong roll-up of the separated shear layers, and (c) at
tV/h = 767, showing weaker roll-up (Tamura & Itoh 1999).

doubts concerning these results, despite the many useful insights provided. This
was remedied by Tamura et al. (2004) in a computational fluid dynamis (CFD)
study at Re = 2 × 104 using the large eddy simulation (LES) method and a dynamic
Smagorinsky model for subgrid scale turbulence. In this case, the mean drag was
in excellent agreement with the measurements of Bearman & Trueman (1972) and
Nakaguchi et al. (1967), showing a peak at d/h � 0.6. The results obtained are in
broad agreement with those in the earlier study, and will not be further elaborated
here.

An experimental study was conducted by Tamura & Dias (2003), specifically
on a d/h = 0.2 prism for 5.4 × 103 < Re < 32 × 103; the critical reduced velocity
for vortex-shedding resonance was U∗

cr = 7.1. Amplified oscillation was observed,
enveloping the lock-in range. Thus, for ζ = 0.10 (Sc = 15.5), the oscillation range
was 4 < U∗ < 9 approximately, reaching large amplitudes (Y = y/h > 0.5). That
this was not just a wide vortex-induced vibration response was established by (i)
noting that the onset value of U∗ increased as ζ increased, as should be for galloping,
(ii) the presence in the power spectral density (PSD) of the wake, e.g. at U∗ = 5, of a
frequency component corresponding to the oscillation frequency, and (iii) inferring
the pressure loading on the side faces from the visualised streamlines, showing the
existence of a clear fluctuating lift in the appropriate direction, e.g. at U∗ = 5.
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Figure 2.28. The imaginary component of the torsional moment coefficient CMθI = Im(CMθ)
versus U∗ = V/fh for a rectangular prism with depth/height d/h = 1.5 oscillating sinusoid-
ally about its centre with frequency f , where CMθ = M(t)/[ 1

2 ρ V 2 h2 θ(t)]: �, smooth flow;
�, turbulent flow; − − − , with vortex resonance response excised. For galloping, CMθI > 0
(Nakamura & Yoshimura 1982).

Finally, in a comprehensive set of experiments Nakamura & Yoshimura (1982)
studied torsional galloping (see Section 2.7) and vortex shedding of rectangular
prisms, in both smooth and turbulent flows. It is of interest that, as for transverse
galloping, they also observed low-speed torsional galloping; see, e.g., Figure 2.28.

2.5 Prisms and Cylinders with a Splitter Plate

An interesting set of experiments was conducted by Nakamura & Tomonari (1977)
on the effect of mounting a long splitter plate downstream of a rectangular prism,
unconnected to it and immobile. A sketch of the system is shown in the inset of
Figure 2.29.

In Figure 2.29 we see the effect of the gap X between the prism and the split-
ter plate for a prism of variable d and h = 10 cm, such that 0.2 < d/h < 1.45 and
X/h = 0.1 − 2.0. It is seen that, in the absence of a splitter plate, prisms can gal-
lop spontaneously (i.e. the growth rate, or negative overall aerodynamic damping,
βa ≡ −δa > 0), provided that d/h > 0.75. With a splitter plate, however, all prisms
with d/h ≥ 0.2 can gallop spontaneously at high enough flow, for all values of X/h.
Moreover, the closer the splitter plate to the prism, the higher is βa. Nakamura &
Tomonari go on to state that “What is more surprising is that not only a D-section
but also a circular cylinder were susceptible to an instability of this kind”. The reader
is also referred to Nakamura & Matsukawa (1987) and Nakamura & Hirata (1989).
Referring back to Figure 2.25, it is seen (�, �) that the prism with a splitter plate
does gallop, but it is not subject to vortex-shedding excitation.
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a

Figure 2.29. Negative aerodynamic damping, −δa, versus depth-to-height ratio, d/h, for
prisms without and with a splitter plate, at a distance X from the prism trailing edge: − − −,
prism without a splitter plate; �, X/h = 0.1, U∗ = V/fh = 67; �, X/h = 0.5, U∗ = 67;
�, X/h = 2, U∗ = 74; �, X/h = 2, U∗ = 114 (Nakamura & Tomonari 1977).

It is of particular interest that similarly unexpected dynamical behaviour has
been reported for shell ovalling in the presence of a splitter plate by Paı̈doussis
& Helleur (1979), who at the time were unaware of the present work; see
Chapter 6.

A very thorough study of galloping of rectangular prisms in the presence of an
always unattached immobile splitter plate was conducted by Nakamura, Hirata &
Urabe (1991), for systems with d/h = 0.2 − 6.0 and variable X/h. Both free- and
forced-oscillation experiments were conducted, measuring the mean and fluctuating
pressures on the prism, as well as providing flow visualization by using smoke.

Galloping can occur in virtually all cases, as seen in Figure 2.30(a): for d/h � 0
to 5 approximately. Moreover, because of the absence of regular vortex shedding,
the response is much simpler than without the splitter plate. Figure 2.30(b) is for
prisms without a splitter plate, and it is given here for comparison. Two points are of
interest: (i) the similarity in the results for low-speed galloping, with and without a
splitter plate, and (ii) the fact that galloping vanishes for d/h between 5 and 6 with
a splitter plate, whereas without one this occurs for d/h � 3.

Figure 2.31 shows the measured aerodynamic growth rate versus U∗ for a d/h =
0.6 prism. It is clear that the threshold values of U∗ at which βa > 0 with and without
a splitter plate are quite close. Indeed, as already mentioned, the stability bounds
for low-speed galloping, in particular for small d/h, are very close. At low U∗, the
flow patterns with and without a splitter plate are also surprisingly similar, as may
be seen in Figure 2.32.
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Figure 2.30. (a) Stability boundary for galloping of rectangular prisms with a splitter plate
(Nakamura et al. 1991); (b) stability boundary without a splitter plate (Nakamura & Hirata
1994).

Here, it ought to be said that interest in the dynamics of such systems with a
splitter plate derives not from an attempt to suppress galloping, which as we have
seen is worse than futile, but as a means of gaining a deeper understanding of
galloping per se, as was done by Nakamura et al. (1991) and is related below.

The fluctuating pressure on the prism is a function of both the displacement y(t)
and the angle of incidence, tan−1 [ẏ(t)/V ], assuming quasi-steady fluid dynamics and
so neglecting the effect of wake undulation. Thus, we can write for the quasi-steady
pressure coefficient

Cpyeiφ = −α + β

U∗ i. (2.51)
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Figure 2.31. The aerodynamic growth rate βa versus reduced flow velocity U∗ = V/f yh for a
d/h = 0.6 prism in the low-speed range. •, Without splitter plate; other symbols, with splitter
plate of varying length (6.67h, 10h, 15h and 20h); (Nakamura et al. 1991).

For unsteady flow, the effect of wake undulation may be taken into account as a
“circulation lag”, Aexp(iγ), where both A and γ are functions of U∗. Thus, (2.51)
becomes

Cpyeiφ = Ae−iγ [−α + (β/U∗)i] , (2.52)

and its imaginary part, related to galloping, is

Im(Cpyeiφ) = A [α sin γ + (β/U∗) cos γ] . (2.53)

Also, as shown by Nakamura & Mizota (1975a) and Luo & Bearman (1990), for
high enough U∗, the circulation lag is small and A � 1. From measurements of
Cpy and φ on a square prism by Nakamura et al. (1991), it is possible to estimate
α = 0.022, β/U∗ = 0.07 and γ = 17◦ approximately at U∗ = 100. Hence, β/U∗ � α

(a) (b)

Figure 2.32. Flow visualization around a rectangular prism with d/h = 0.6 at U∗ = 2.8:
(a) with a splitter plate; (b) without a splitter plate (Nakamura et al. 1991).
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Figure 2.33. Flow visualization around a square prism with a splitter plate at the instant when
the cylinder is moving downwards through the neutral position (2π f yt = 180◦): (a) U∗ = 12;
(b) U∗ = 7.0; (c) U∗ = 5.0 (Nakamura et al. 1991).

and γ is small at U∗ = 100, and more so for U∗ < 100, and so equation (2.53) may
be written as

Im(Cpyeiφ) � A
β

U∗ cos γ, (2.54)

indicating that the incidence effect, arising from the second component of (2.51), is
dominant.

Then, with the aid of flow visualization (Figure 2.33) and pressure distributions
on the side of the square prism (Figure 2.34), Nakamura et al. proceed to discuss the
basic mechanism of galloping associated with the incidence effect, as U∗ is lowered
from a high value, as related almost verbatim below.

At high U∗, where the shear layers are free from the direct interaction with
the trailing edges (Figure 2.33(a)), the downwards cylinder motion causes the lower
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Figure 2.34. Mean and instantaneous pressure distributions on the lower side of an oscillating
square prism at U∗ = 20, 2πf yt = 180◦; (a) with a splitter plate and (b) without. �, Mean
pressure; �, instantaneous pressure. LE: leading edge; TE: trailing edge (Nakamura et al.
1991).

shear layer to move closer to the side and hence to become more curved, whereas
the upper shear layer moves further away from it and hence becomes less curved.
Correspondingly, both the mean and the instantaneous pressure distributions are
quite flat along the side (Figure 2.34), and the motion-dependent pressure force is
negative (downwards), tending to aid cylinder motion. We should remark that one
of the most important roles played by a splitter plate is to prevent the upper and
lower flows from communicating with each other. That is indeed vital for the present
basic mechanism to work effectively. It should be said here that the reduced speeds
involved in Figures 2.33(a) and 2.34 are quite low, so that the effect of circulation lag
may be large, but not so large as to invalidate the foregoing qualitative discussion.

As U∗ is lowered, the wavelength of the wake undulation is progressively
shortened, and the circulation lag is correspondingly increased. There comes a stage
(Figure 2.33(b)) at which the lower side impedes the shear layer from rolling up
freely, and this is where the shear-layer/edge (s-l/e) direct interaction (Nakamura &
Hirata 1989) occurs. As can be seen in Figure 2.33(b), the curvature of the shear
layer near the trailing edge is reversed and at the same time the vortex B vanishes
at this interaction. With further decrease in U∗, the process progresses steadily (Fig-
ure 2.33(c)). Thus, it is not because the circulation lag becomes more important, but
mainly because of the s-l/e interaction that galloping vanishes as U∗ is diminished.

As U∗ is further decreased, another critical stage is reached, where the shear
layer reattaches intermittently on the prism sides in the course of a cycle of oscillation.
Figure 2.33(c) suggests that this critical U∗ may be just below U∗ = 5.0.

This work was extended to the case of a circular cylinder with an unattached
splitter plate behind it. As reported by Nakamura & Tomonari (1977), the cylinder
with a splitter plate can gallop; this was confirmed by later studies (Matsumoto et al.
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Figure 2.35. Aerodynamic growth rate of oscillation βa versus reduced speed U∗. (a) Low-
speed range, µ = 291, Sc = 6.7, L/D = 15, L being the splitter-plate length and D the cylinder
diameter; �, free oscillation; �, forced oscillation. (b) High-speed range, µ = 2160, Sc = 93;
�, L/D = 4.2; �, L/D = 10.4; �, L/D = 20.8, �, L/D = 31.3 (Nakamura, Hirata & Kashima
1994).

1990; Kawai 1990). The same system was studied more thoroughly by Nakamura,
Hirata & Kashima (1994) who state epigrammatically: “It is well known that a
circular cylinder can be vortex-excited but cannot gallop . . . (but) a circular cylinder
cannot be vortex-excited but can gallop in the presence of a long stationary splitter
plate”.∗

Nakamura et al. (1994) measured the mean and fluctuating pressures on the
cylinder and the static aerodynamic force (by tilting the incident flow relative to the
cylinder-plate combination). Similar experiments as for prisms were carried out with
regard to galloping and flow visualization.

Figure 2.35 shows the aerodynamic growth rate βa = β − δs, where β is the
overall logarithmic growth rate and δs is the logarithmic decrement in still air,
(a) at low speeds and (b) at high speeds. In these experiments, not only δs was
varied, but also the mass ratio µ = m/ρD2; both µ and Sc = 2µδs are quoted. Fig-
ure 2.35(b) shows that the effect of varying the splitter plate length can be very
significant.

The mechanism underlying galloping in this case is similar to that of rectangular
prisms with a splitter plate, as may be appreciated by comparing the sketches of
Figure 2.36 and Figure 2.33. In (a) the downwards cylinder motion causes the lower
shear layer to move closer to the cylinder and to become more curved, while the
opposite happens to the upper shear layer, thus generating a downwards force and

∗ The latter statement that the circular cylinder with a splitter plate cannot be vortex-excited must
be qualified; if the splitter plate is attached to the cylinder, then “impinging leading-edge vortices”,
ILEV (Rockwell & Naudascher 1979) can certainly excite the system; refer to Chapter 3.
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Figure 2.36. Sketches from visualization of the flow around an oscillating circular cylinder
with a splitter plate (L/D = 15), when the cylinder is moving down through the neutral
position: (a) U∗ = 10; (b) U∗ = 5; (c) U∗ = 3 (Nakamura et al. 1994).

hence galloping. As U∗ is lowered, the undulation in the wake is progressively
shortened; thus, in (b) the downwards-moving cylinder now impedes the lower shear
layer from rolling up freely; vortex A has now vanished. As a result, a reversal of the
phase of shear-layer oscillation relative to cylinder oscillation has occurred, leading
to the suppression of galloping.

The flow field around bluff bodies with splitter plates, including cylinders,
and vortex shedding, or absence thereof, have been studied extensively; see, e.g.,
Bearman (1965), Apelt, West & Szewczyk (1973), Apelt & West (1975) and
Nakamura (1996).

2.6 Wake Breathing and Streamwise Oscillation

A momentous review of flow-induced streamwise vibrations of structures is provided
by Naudascher (1987).∗ The review deals with all kinds of instability- and movement-
induced excitations resulting in streamwise vibration of structures: cylinders, prisms,
hydraulic gates and so on. An abbreviated presentation may be found in Naudascher
& Rockwell (1994, 2005).

According to Naudascher (1987), “Any bluff body in cross-flow free to vibrate
in the streamwise direction may become excited on account of movement-induced
displacements of the separating shear layers that make the near wake appear to
breathe”; hence, the term “wake-breathing” related oscillation. Naudascher goes
on to say that a precondition for such excitation is that upstream body movements
(ẋ < 0) involve a reduction in fluid forces, whereas an enhancement of the fluid
forces results from downstream movements. Two distinct types of wake breathing
are recognised, and this classification is retained here.

2.6.1 Wake breathing of the first type

Wake breathing of this type may occur for bodies with a rounded shape, such that
a wide or narrow wake forms behind the bluff body, depending on whether the
boundary layer ahead of separation is laminar or turbulent (Naudascher & Rockwell
1994). Furthermore, Martin, Currie & Naudascher (1981) propose a mechanism
related directly to the sharp change in drag in the critical Reynolds number range
(sometimes referred to as a “drag crisis”) as the boundary layer changes from laminar
to turbulent, as shown in Figure 2.37 for a circular cylinder in a generally confined

∗ The paper, significantly, begins with the Socratic statement: There was a time when I thought that at
some distant day, after dedicating much of my professional work to a small area of Fluid Mechanics,
I would be able to say: this area, at least, I understand. Today I know better.
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Figure 2.37. (a) Mean drag coefficient over critical Reynolds number range for a cylinder
in generally confined flow (Richter & Naudascher 1976; Martin et al. 1981); (b) streamwise
movement of the cylinder.

cross-flow. Specifically, in the half-cycle over which the cylinder is moving upstream,
against the flow, the relative velocity is V − ẋ > V , where V is the free-stream flow
velocity and ẋ the cylinder velocity, with ẋ < 0 here; thus, the effective Reynolds
number is higher than the mean value over the cycle of streamwise oscillation,
resulting in a low CD – in the range 0.25 < CD < 0.50 in the figure, depending on H/D.
Similarly, when the cylinder is moving with the flow, we have V − ẋ < V (as ẋ > 0
now) and thus a lower Reynolds number, and hence a higher CD, 1.2 < CD < 1.8 in
the figure. Therefore, a periodic unsteady component of drag is generated by cylinder
motion, synchronous with it, resulting in net energy transfer from the fluid to the
cylinder.

Clearly, therefore, the condition of instability is

dFD

dV
< 0, (2.55)

where FD = 1
2ρ V 2

relD CD, and Vrel = V − ẋ is the relative velocity between the flow
and the cylinder. We next write FD = 1

2ρ(ν/D)2 Re2 CD, where Re = VrelD/ν is the
instantaneous Reynolds number. Furthermore, we approximate Re = VD/ν and
∂( )/∂V = ∂( )/∂Vrel for small ẋ, and the above criterion leads to

dFD

dV
=
(

D
ν

)
dFD

dRe
= 1

2
ρ
( ν

D

) d(CDRe2)
dRe

;

since CD is a function of Re, criterion (2.55) becomes

dCD

dRe
+ 2

CD

Re
< 0, (2.56)
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whereby the similarity to the Glauert/Den Hartog criterion for transverse galloping
is quite obvious.

Martin et al. then proceed to solve the following nonlinear equation for the
dynamics of a flexibly supported rigid cylinder in a cross-flow, in the critical Reynolds
number range:

mlẍ + rẋ + kx = 1
2ρ V 2

rel Dl C ′
D, (2.57)

where x is the streamwise displacement of the cylinder, m its mass per unit length
including the added mass, l its length and D its diameter; r is the linear mechanical
damping coefficient, k the linear stiffness constant and C ′

D the instantaneous drag
coefficient for a fixed cylinder at the instantaneous Re – thus invoking the quasi-
steady assumption. Now, Vrel is a function of ẋ, and furthermore CD is a function of
Vrel; hence, this is clearly a nonlinear equation.

Defining ξ = x/D, τ = ωnt with ωn = 2πf n = (k/ml)1/2, and writing Vrel =
V [1 − α(dξ/dτ)] with α = ωnD/V , a dimensionless form of equation (2.57) is ob-
tained:

ξ̈ + εξ̇ − (n/α2)� ′(ξ̇) + ξ = 0, (2.58)

where the overdot now denotes d( )/dτ, ε = r/mlωn, n = ρ D2/2m is the mass
ratio, and � ′ = � − �, with � being the constant part of the drag force, not contrib-
uting to the solution. In general,

� ′(ξ̇) = (1 − αξ̇)2 C ′
D(ξ̇, Re, S, H/D),

where S = f n D2/ν is the Stokes number and H/D is the relative channel confinement
as in Figure 2.37. The similarity of equation (2.58) to (2.19) is evident.

This equation was solved by a perturbation scheme, finally yielding limit-cycle
oscillation amplitudes of the type shown in Figure 2.38 for two values of ε/n – which
is similar to the 2ζ/n parameter in Section 2.2.2; e.g. in equation (2.22).

Streamwise oscillations of circular steel piles were observed during construction
of a jetty at Immingham, in England, in the tidal flow of the Humber estuary. The
observations made by Wootton et al. (1974) have been compared with the analytical
amplitude predictions of Martin et al., showing promising agreement. It is of interest
that the predictions always satisfy criterion (2.56).

This phenomenon can only occur in the narrow range at approximately V/fD =
Re∗/S, where Re∗ is the Reynolds number at which the CD versus Re curve in Figure
2.37 has the largest negative slope; for this reason, this phenomenon is often called
a drag-crisis-induced instability. Moreover, the limit-cycle amplitudes obtained are
rather modest. Hence, wake-breathing oscillations of the first type are of limited
interest, even though they have occurred in practice, as mentioned above. Never-
theless, they are of special interest in the context of this chapter because of their
superficial similarity to transverse galloping.

2.6.2 Wake breathing of the second type

This type of wake breathing has nothing to do with the drag crisis, but it also leads to
streamwise oscillation, as seen in Figure 2.39, where the axially sliding splitter plate
was used to suppress vortex-shedding excitation.
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Figure 2.39. Response of a circular cylinder vibrating freely in streamwise direction;
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The mechanism in this case is rather intricate and appears to be related to
reorganization of the streamlines and the wake, in synchronism with streamwise
motions, and attendant changes in CD. This type of wake-breathing oscillation has
been studied extensively by Aguirre (1977) and Naudascher (1987). The interested
reader is referred also to Naudascher & Rockwell (2005).

2.7 Torsional Galloping

2.7.1 General comments

Figure 2.4 shows the Tacoma Narrows Bridge undergoing torsional oscillations.∗

If one takes a sectional view, however, torsion means that sections of the bridge
undergo rotation; and since most theoretical and experimental studies examine the
flow around and dynamics of rigid sections, most of what follows could more accur-
ately be labelled rotational galloping.

A convenient demonstration of rotational galloping is provided by mounting
a triangular prism (wedge), free to rotate about its centre, in cross-flow. An iso-
sceles triangular prism(“wedge”) can be induced to oscillate incessantly, whereas an
equilateral one can either oscillate or rotate; see Nagashima & Hirose (1982). The
mechanisms involved have been studied via flow visualization and PIV by Srigrarom
(2003) and Srigrarom & Koh (2008).

Surprisingly at first glance, torsional galloping is much more difficult to analyze
than the translational “heave” galloping considered in the previous sections. This is
because (i) the fluid forces depend on both the angle and the angular velocity, and
(ii) the relative flow velocity, Vrel, varies from point to point, hence giving rise to a
varying angle of attack along the section. As a result of (ii) above, one cannot define
an equivalent static configuration and hence cannot proceed with the use of the quasi-
steady assumption in the same way as for translational galloping. Another difficulty is
that the phase difference between the fluid-dynamic forces acting on the section and
motion of the section changes with flow velocity. No totally satisfactory solution has
been found to these difficulties, and hence analytical models of torsional galloping
involve approximations going considerably farther than the quasi-steady assumption.

Indeed, as will be shown in Section 2.7.4, the quasi-steady assumption is found
to be generally invalid, or at least of limited applicability, for predicting the onset
of rotational galloping and the ensuing nonlinear dynamics. For this reason, the
notation of torsional flutter is gradually supplanting “torsional galloping”. In this
book, however, we retain the traditional, older nomenclature.

All types of rectangular, triangular, L-shaped (angles) and H-shaped structural
components are susceptible to torsional galloping. They are widely used in open
civil engineering structures; for instance, structural angles are frequently used in
high-voltage transmission towers, antenna masts and bridges, and bridge decks are
essentially H-sections. In addition to the few celebrated disasters (e.g. the Tacoma
Narrows Bridge collapse), some long, slender angle members in transmission towers
have been known to experience large-amplitude oscillations when exposed to normal
atmospheric winds. Advances in metallurgy have encouraged the use of lighter, more

∗ Actually, what is seen could be either pure torsional galloping or flutter involving both torsion and
transverse motions.
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Figure 2.40. A rectangular section in rotational
(“torsional”) motion about a hinge-point, show-
ing that α = α(x), Vrel = Vrel(x) generally.

flexible components, and hence instances of failure due to torsional galloping have
been reported (Slater 1969). These are reasons why a great deal of effort has been
devoted to the subject; but, as we shall see, progress has been rather tortuous.

2.7.2 Linear quasi-steady analysis

Historically, the first batch of studies on this topic attempted to adapt the analysis
used for transverse galloping to torsional galloping. Figure 2.40 shows the major
complication associated with torsional vis-à-vis translational galloping: even for this
very simple system, the effective angle of attack and, hence, Vrel are functions of
location along the section.

Consider a more general situation, as in Figure 2.41, where the hinge is not neces-
sarily at the geometric centre but at the shear centre.∗ One approach to circumvent
the problem of a variable angle of attack is to define a reference radius rr on the
rotating section (Figure 2.41), such that there is a unique value of transverse velocity
rrθ̇ at angle γr, which is supposed to be representative of motion of the whole section
(e.g. Slater (1969), Blevins (1990)). One can therefore obtain a reference angle of at-
tack α induced by θ̇ and a reference relative velocity, much as was done for transverse
galloping. Referring to Figure 2.41(b), one obtains

θ − α = tan−1
[

rrθ̇ sin γr

V − rrθ̇ cos γr

]
, (2.59)

V 2
rel = (rrθ̇ sin γr

)2 + (V − rrθ̇ cos γr
)2

, (2.60)

which for small α (effectively small θ̇) may be approximated by

α � θ − rrθ̇ sin γr

V
≡ θ − Rθ̇

V
, (2.61)

which defines a characteristic radius R = rr sin γr, and

Vrel � V. (2.62)

Even so, the choice of rr is not obvious. Moreover, since γr is a function of θ, as
appreciated from Figure 2.41(b), R = R(θ) and equation (2.61) is nonlinear. For
rectangular sections oscillating about the geometric centre, Nakamura & Mizota

∗ The shear centre, or elastic axis, is the point on the section where an applied force produces no
torsion and a moment produces no lateral motion.
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Figure 2.41. (a) Schematic of a rectangular prism section in torsional oscillation; the torsional
spring of stiffness kθ is attached to the prism at the hinge point. (b) Diagram for determining
α in terms of rr.

(1975b) chose R to be half the depth of the rectangle (R = 1
2 d), thus α corresponds

to the instantaneous angle of attack of the leading edge. For right-angle sections
facing the wind about the apex, Slater (1969) took R to be half the sum of the fore
and aft lengths of the angle section.

This approach, i.e. to utilize a reference rr, has been inspired by the use of the
three-quarter chord point in airfoil flutter analysis (Bisplinghoff & Ashley 1962),
although its applicability to separated flows is tenuous. This approach was also used,
in a more sophisticated framework, by Modi & Slater (1974) for the angle section
and by Blevins & Iwan (1974) for a two-degree-of-freedom analysis of the same
problem.

Proceeding as in Blevins (1990), the equation of torsional motion is

Jθθ̈ + cθθ̇ + kθθ = 1
2ρ V 2 h2 CM, (2.63)
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Table 2.4. Slope of torsional moment coefficient for
various sections rotating about their geometric centre,
extracted from Nakamura & Mizota (1975b) and Blevins
(1990);
α is in radians, and the flow is from the left

Section ∂CM/∂α Reynolds number

D −0.18 104 − 105

1D

2D

−0.64 5 × 103 − 5 × 105

1D

4D

−18. 2 × 103 − 2 × 104

1D

5D

−26. 2 × 103 − 2 × 104

where Jθ is the section mass moment of inertia, cθ and kθ are, respectively, the
torsional damping and stiffness coefficients, and h is a characteristic length; the
moment M is associated with a moment coefficient CM via M = 1

2ρ V 2 h2 CM. As in
Section 2.2.1, equation (2.12), we expand CM in a Taylor series

CM = CM

∣∣∣∣
α=0

+
(

∂CM

∂α

) ∣∣∣∣
α=0

α + · · · (2.64)

Ignoring the static component, utilizing (2.61) for α, and defining cθ/Jθ = 2ζθωθ and
kθ/Jθ = ω2

θ , equation (2.63) may be written as

θ̈ +
[

2ζθωθ + 1
2
ρ

V R h2

Jθ

∂CM

∂α

]
θ̇ +

[
ω2

θ − 1
2
ρ

V 2 h2

Jθ

∂CM

∂α

]
θ = 0. (2.65)

Hence, in principle, this system is susceptible to both static torsional divergence and
torsional galloping.

Divergence would arise if

1
2
ρ V 2 h2 ∂CM

∂α
> kθ, (2.66)

with ∂CM/∂α > 0; refer also to Richardson et al. (1965).
Galloping would arise if ∂CM/∂α < 0 and the total damping vanishes, which

would occur at Vcrit = 4Jθ ζθ ωθ/
[
ρ R h2(∂CM/∂α)

]
, or

Vcrit

f θh
= −4

[R(∂CM/∂α)]

(
Jθ δθ

ρ h3

)
, (2.67)

where f θ = ωθ/2π and δθ � 2π ζθ.
A compilation of values of ∂CM/∂α has been provided by Blevins (1990), extrac-

ted from the work of Nakamura & Mizota (1975b); it is given in Table 2.4 here. It is
seen that the more elongated the prism, the higher is the negative value of ∂CM/∂α.
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Figure 2.42. Cross-sectional view of the
system considered by van Oudheusden;
here the angular velocity is R(dθ/dt); in the
experiments, R/d = 7.5 (van Oudheusden
1996).

The main problem with this type of model is the difficulty in defining an ap-
propriate rr and γr, and hence finding a suitable approximation for R. A simplified
system, shown in Figure 2.42, where this difficulty does not arise (because, strictly, it
is not a torsional system) was studied by van Oudheusden (1995, 1996). It is obvious
that in this case, because the depth, d, of the body is small relative to its distance
from the hinge point, the choice of rr is obvious, and R = rr. Hence, the angle of
attack is simply

α = tan−1
(

V sin θ − Rθ̇

V cos θ

)
� θ − Rθ̇

V
. (2.68)

In fact, this is effectively a degenerate system which could in principle be analysed
in terms of translational galloping theory; refer also to Nakamura (1979).

Some recent numerical work is presented at the end of Section 2.7.4.

2.7.3 Nonlinear quasi-steady analysis

If the linear quasi-steady theory is questionable, as discussed in Section 2.7.4, non-
linear quasi-steady theory is likely more so. However, before the definite disquali-
fication of quasi-steady theory, considerable work was done to generate a nonlinear
quasi-steady theory for torsional galloping by Slater (1969), and was further elabor-
ated by Modi & Slater (1974) and Blevins & Iwan (1974).

In brief, Slater begins with equation (2.63), making use of an effective rr and γr,
as in Section 2.7.2. The moment coefficient CM is measured statically for an angle
section and α0 = −45◦ (see Figure 2.16), and the results are plotted as functions of
θ and θ̇/U. Because the curves are approximately straight lines, a new coordinate
system is introduced (ζ, ξ) for CM, slanted to (θ, θ̇/U) at angle λ = 35◦. In the new
plot, CM does not vary with ζ, and hence CM =∑N

i=1 aiξ
i may be constructed, in

which ξ = (θ̇/U
)

sin λ − θ cos λ. Thereby, equation (2.63) takes the form of the pair
(2.19) and (2.20), and thus can be and was analysed by similar methods. Results may
be found in Slater (1969) and Slater & Modi (1974); in general, an unstable limit cycle
is obtained, nesting within a larger stable one. Unfortunately, in the accompanying
experiments, a high enough U could not be reached to observe torsional flutter
of the angle section, despite the high flow capabilities (V = 60 m/s) of the wind
tunnel.

The degenerate torsional system of Figure 2.42, however, permits simpler, less
controversial analysis, even in the nonlinear domain, as obtained by van Oudheusden
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Figure 2.43. (a) Measured static aerodynamic normal force coefficient and line of best fit
for the system of Figure 2.42. (b) the negative of the total (structural plus aerodynamic)
damping coefficient. (c) Torsional limit-cycle amplitude versus a “scaled” flow velocity,
Usc = (ρ d R3/Jθ)(U/ζ0), where U = V/ωR and ζ0 is the viscous damping factor; from van
Oudheusden (1996).

(1996). Typical theoretical and experimental results are shown in Figure 2.43: (a) the
static normal force coefficient CFN versus α, (b) the negative aerodynamic damping
coefficient and (c) the limit-cycle amplitude versus a scaled flow velocity, Usc. Here,
Usc = µ U/ζ0, with µ = ρdR3/Jθ, U = V/ωR, and ζ0 is the mechanical viscous damp-
ing factor; Jθ is the section torsional mass moment of inertia (i.e. per unit span l). The
dotted line in the figure corresponds to results with an additional frictional damping
modelled by van Oudheusden. It is seen that the required ∂CM/∂α � ∂CFN/∂α < 0
holds for 13◦ < α < 22◦, and that negative aerodynamic damping (positive in the
notation of Figure 2.43(b)) occurs at α ≥ 17◦ approximately.

It is seen that theory and experiment agree fairly well, except for large amplitudes
and low damping. This is discussed by van Oudheusden, and it is concluded that the
validity of the quasi-steady assumption must be questioned, even though Blevins’
criteria that V/f nd > 20 and (transverse amplitude)/h < 0.2, h being the section
height, are amply satisfied. This questioning of quasi-steady theory is interesting
because, as was mentioned earlier, the geometry here does not provide a good test
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for quasi-steady torsional galloping theory. Especially since R/h = 7.5, torsional
and transverse motions and forces are derivable from each other (Nakamura 1979;
section 7); because quasi-steady theory works well for transverse galloping, so it
should for torsional galloping in this case. According to Nakamura & Mizota (1975),
even the criterion ∂CM/∂α < 0 for torsional galloping should only apply to hinge
positions “not far away from the structure”; yet, as seen in Figure 2.43, the theory
does quite well, fortuitously or otherwise.

It must be concluded that, experimental support for the use of quasi-steady
theory for linear and nonlinear characteristics of torsional galloping is rather sparse.
The kind of incontrovertible evidence in support of quasi-steady theory as in the
case of transverse galloping (provided by Parkinson, Novak and their co-workers)
is missing in the case of torsional galloping.

2.7.4 Disqualification of quasi-steady theory

Nakamura & Mizota(1975b) state unequivocally that the use of the approximate
quasi-steady theory as presented so far is rather suspect and its agreement with
experiments rather fortuitous.∗ These statements are preambulatory to showing that
torsional galloping is, in fact, an unsteady rather than quasi-steady phenomenon.
In this section we provide evidence to that effect, before presenting the unsteady
theory in Section 2.7.5. Nakamura & Mizota (1975b) and Nakamura (1979), together
with several co-workers in other papers, consider that a major element in torsional
galloping is what they call the “fluid memory” effect. To appreciate what this is, one
can write the torsional moment in the form

M(θ) = Mθθ + Mθ̇θ̇, (2.69)

where Mθ = ∂M/∂θ is the “steady aerodynamic torsional moment” derivative, and
Mθ̇ = ∂M/∂θ̇ may be called the “quasi-steady aerodynamic damping” derivative.
Assuming phase lags φθ and φθ̇, the phase-correction factors for the quasi-steady
responses to the θ and θ̇ motions are denoted by Cθe−iφθ and Cθ̇e−iφθ ; hence we can
write

M(θ) = Cθe−iφθ Mθθ + Cθ̇e
−iφθ Mθ̇θ̇ (2.70)

with the overbar denoting the quasi-steady value; in view of (2.69), the aerodynamic
damping derivative becomes

−Mθ̇ = −Cθ̇ cos φθ̇ Mθ̇ + (Cθ sin φθ/ω) Mθ.

Further, assuming Cθ, Cθ̇ � 1 and | φθ |, | φθ̇ |� 1, this reduces to

− Mθ̇ = −Mθ̇ + lim
ω→0

(sin φθ/ω) Mθ. (2.71)

The important thing to notice is that a component of the stiffness is now effectively
part of the aerodynamic damping. Here, the reader is referred to Section 5.2 for
a similar development in connection with fluidelastic instability in cylinder arrays.
Thus, the physical nature of this phase-lag-related damping can be supposed to be

∗ In fact, Nakamura & Mizota’s study is a broadside on the ∂CM/∂α < 0 criterion of equation (2.67) for
torsional galloping, as adopted by the American Society of Civil Engineers (ASCE) (Anonymous
1961); they state that they “do not know on what rational grounds (it) was established.”
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similar; i.e. that it is related to the time taken for the viscous flow to adjust to
the changing location/configuration of the torsionally oscillating body, or that the
pressure on the body cannot adjust itself instantaneously because of the shed vorticity
as the body changes position. At present, no means for predicting φθ is available.

Thus, we see that “the fluid memory effect” is really a phase-lag effect which
causes a part of the displacement-dependent force to be transformed into a velocity-
dependent one (the second term in (2.71)). Nakamura & Mizota state that this
second component in (2.71) is not necessarily negligible and that, in fact, it can be
dominant, which means that torsional galloping cannot be analysed via quasi-steady
theory.

Here, we should emphasize that the “fluid-memory effect” and equivalently the
“phase-lag effect” should be interpreted more broadly as evidence that unsteady
effects cannot be ignored. Thus, the discussion above should not be interpreted as
meaning that torsional galloping can be predicted via quasi-steady theory provided
that it is modified to include a phase lag. The shortcomings of quasi-steady theory for
torsional galloping are rather more profound; they are essentially as enumerated in
Section 2.7.1. The work immediately following aims to show that the fluid-dynamic
forces associated with torsional galloping are not only functions of rotational velocity
but also of the angle itself (or “angle-of-attack motion”).

Nakamura & Mizota (1975b) conducted experiments on rectangular prisms with
h/d ratios of 1, 1

2 , 1
4 and 1

5 , also varying the location of the hinge point. Both stable
and unstable limit cycles were found, e.g. for the h/d = 1

2 prism. In the experi-
ments, the damping component of the unsteady aerodynamic torsional moment
was measured by means of free-oscillation experiments, i.e. Mθ̇ in equation (2.69).
From this, one can obtain a nondimensional damping derivative, ka, defined by
ka = −Mθ̇/[ρ f ( 1

2 d)4]. The sign of ka is compared with ∂CM/∂α obtained from the
static measurements in Figure 2.44; both should be negative for galloping to occur. It
is seen that the sign of ∂CM/∂α (quasi-steady theory) agrees with that of ka (unsteady
theory) only for small d/h and over a limited range of the hinge-point location Xp .
Considering all experimental data, it is concluded that the ∂CM/∂α < 0 criterion is
“fairly applicable” for sections with d/h = 1 and 2, but not for the deeper (higher
d/h) prisms – for which in any case reattachment may occur. It is also remarked that,
if the hinge point is far ahead or behind the bluff body, “torsional galloping” is little
different from transverse galloping.

Nakamura (1979) reconsiders the question in a different way. Pure torsion
about the centre of the prism is considered as the superposition of “angle-of-attack
motion”, essentially transverse heaving (plunging), and “angular velocity motion”
about a hinge. It is shown that the former is associated with unsteady, as opposed to
quasi-steady, components in the overall aerodynamic lift and moment coefficients.
Nakamura conducted experiments with prisms of depth-to-height ratios of d/h = 1
and 4, in either torsional or transverse translational oscillation about their centre
(Figure 2.45), such that θ(t) = θ0 cos ωmt and y = y0 sin ωmt. Small angular amplitudes
were used, θ0 = 1◦ and 2◦, and the translational ones were chosen so as to yield the
same effective angle of attack (α = ẏ0/V ). Lift and moment coefficients were meas-
ured in both cases. Analysis of these measurements showed that “the angle-of-attack
motion” is dominant in determining both the lift and moment coefficients, in partic-
ular, for d/h = 4. This shows that unsteady effects are not only important, but can be
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Figure 2.44. Unsteady aerodynamic damping coefficient for torsional motion, ka, and quasi-
steady moment derivative, ∂CM/∂α, for various locations of the hinge point, for (a) d/h = 1,
(b) d/h = 2 and (c) d/h = 4 rectangular prisms: �, ka for U∗ = 50; �, ka for U∗ = 100; — ,
∂CM/∂α. Here X p = xp /d, where xp is location of the hinge measured from the centre of the
prism (Nakamura & Mizota 1975b).

dominant. Hence, for torsional galloping one needs to use unsteady fluid-dynamic
theory.

A considerable number of torsional experiments were conducted by Washizu
et al. (1980); because of the smallness of damping, there was interference by vortex-
shedding lock-in in some cases. Nevertheless, it was possible to compare Blevins’
(1977) quasi-steady theory for torsional galloping with the experimental results. It
was found “that the results from this theory differ from these experimental results
and thus are not applicable for practical purposes”; further it is said, very diplomat-
ically, that “unsteady aerodynamic moments . . . are more complicated than those
predicted by the quasi-steady aerodynamic theory”.
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Figure 2.45. Prismatic bar oscillating in
cross-flow: (a) torsional oscillation; (b)
translational “heaving” oscillation (after
Nakamura (1979)).

Considering all the evidence presented in the foregoing, it must be concluded
that quasi-steady galloping theory is generally invalid. Still, the picture is not totally
black and white. In the numerical study by Robertson et al. (2003), briefly discussed in
Section 2.3.1, torsional galloping also was studied for rectangular sections with d/h =
1 to 5 at Re = 250. Torsional galloping was observed in all cases, and this was found
to be consistent with results obtained by the linear quasi-steady torsional theory of
Section 2.7.2 (using R = 1

2 d) in terms of the sign of (∂CM/∂α)|α=0 in Table 2.5, which
in turn are consistent with those of Table 2.4. So, at least in terms of the onset of
torsional galloping, quasi-steady theory can in some cases perform well, fortuitously
or otherwise!

Table 2.5. Variation of the moment coefficient against angle of attack in
radians about a zero effective angle of attack for rectangular sections of
increasing aspect ratio (Robertson, Li, Sherwin & Bearman 2003)

d/h 1 1.5 2 3 4 5

(∂CM/∂α)|α=0 −0.516 −1.49 −2.46 −3.21 −9.74 −2.06

2.7.5 Unsteady theory

The unsteady theory begins by eschewing the use of a representative radius rr and
corresponding γr as was done in Section 2.7.2. Instead, we start with equation (2.69),
by recognizing that the torsional moment M(θ) is a function of both θ and θ̇; thus, for
small motions, M(θ) = Mθθ + Mθ̇θ̇. An outline of the theory will be given here, fol-
lowing Nakamura’s (1979) presentation. A much more general theory for elongated
and bridge-deck sections, but applicable to both transverse and torsional galloping
of any kind of sectional shape, is given in Section 2.11.

Consider torsional motion of a rectangular prism about a point O ′, generally
off its centre O, as shown in Figure 2.46. For small motions, so that the principle of
superposition is valid, the fluid-dynamic moment M ′

θ(t) per unit length about O ′ may
be expressed as

M ′
θ(t) = Mθ(t) + Lθ(t) xp + Mα(t) + Lα(t) xp , (2.72)

where Lθ(t), Lα(t) and Mθ(t), Mα(t) are the fluid-dynamic lifts and moments about
O, and α(t) = −θ̇(t) xP/V is the induced incidence,∗ so that the α-components cor-
respond to θ̇-components in (2.69).

∗ Note that this is not valid when xp → 0.
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Figure 2.46. A rectangular prism oscillating
in torsion about point O ′ at a distance xp from
its cross-sectional centre O.

Dividing by 1
2ρ V 2 d2, the moments may be converted to moment coefficients,

e.g. CMθ(t) = Mθ/[ 1
2 ρ V 2 d2], and similarly the lifts by dividing by 1

2 ρ V 2d. These
may then be converted to transfer functions in the frequency domain, e.g. CMθ(k),
through CMθ(τ) = Re[CMθ(k) exp(ikτ)], where τ = Vt/h, and k = ωmh/V is the re-
duced frequency, ωm being the frequency of oscillation. Therefore, (2.72) may be
rewritten in dimensionless form as

C ′
Mθ(k) = CMθ(k) + CLθ(k)X p − ik(d/h) CMα(k)X p − ik(d/h) CLα(k)X2

p , (2.73)

where X p = xp/d. As suggested by Nakamura (1979), in some cases it is possible
to use the following approximations: CMθ(k) � CMα(k) and CLθ(k) � CLα(k). There-
fore, the imaginary component of C ′

Mθ, which defines stability, may be written as

C ′
MθI = CMαI + CLαIX p − k(d/h)CMαRX p − k(d/h)CLαRX2

p , (2.74)

where subscripts R and I stand for “real” and “imaginary”. The first two terms in
this equation are associated with unsteady effects, whereas the other two with quasi-
steady fluid dynamics. It is noted that, if X p � 1, then C ′

MθI � CMαI ; hence, for small
X p (including X p = 0), torsional galloping is predominantly or entirely an unsteady
fluid-dynamic phenomenon, as already concluded in the foregoing. On the other
hand, for X p � 1, it is CLαR that is dominant, and torsional galloping, if it occurs, is
quite similar to transverse galloping.

Nakamura compared the theoretically predicted CMθI with the experimental
values for d/h = 1 and 4 prisms and −1 < X p < 1. The latter were obtained by
free-vibration experiments measuring the rate of decay or growth. As shown in
Figure 2.47, agreement between this unsteady theory and experiment is excellent; in
contrast, agreement with quasi-steady theory (CMαI = CLαI = 0 in (2.74)) is generally
rather poor.

Similarly to quasi-steady theory for transverse galloping, the unsteady theory
here is semi-empirical, but clearly more elaborate measurements are needed in this
case. Specifically, CLθ, CMθ, CLα and CMα must be measured over the desired range
of U∗. For instance, in Nakamura & Mizota’s (1975b) experiments, two identical
models were built for each experiment: one was placed within the test-section of a
wind tunnel, whereas the other, used to correct for inertial effects, was positioned
outside; they were oscillated simultaneously by a mechanical shaker. In the first part
of the experiment, the fluid-dynamic lift Lθ(t) and moment Mθ(t) were measured,
for θ(t) = θ0 cos ωmt, with θ0 = 1◦ and 2◦. The frequencies used were f m = ωm/2π =
0.9–3.3 Hz and V = 6–8 m/s, so that U∗ = 20–60, approximately; Re � 105. In the
second part of the experiment, Lα(t) and Mα(t) were measured for yα(t) = y0 sin ωmt,
with y0 chosen so that the effective angle of attack α(t) = ẏα(t)/V would be equal to
θ(t), even though, in general, this need not be so. The signals were then processed
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Figure 2.47. Effect of pivotal position X p = xp /d (see Figure 2.46) on the out-of-phase com-
ponent of the aerodynamic moment coefficient for rectangular prisms in torsion: (a) d/h = 1;
(b) d/h = 4.×. Experiment; — , unsteady theory; − − − , quasi-steady theory (Nakamura
1979).

so as to yield magnitude and phase for each of the four quantities measured, or
equivalently the real and imaginary components as in (2.73).

It is obvious that, to obtain the required input data for this theory, a major
experimental effort is necessitated. The situation is therefore similar to that of the
unsteady models for fluidelastic instability in cylinder arrays (Section 5.3.3), and the
quandary is also the same: might it not be easier to measure the torsional critical
flow velocities directly in model experiments, rather than the Lθ, Mθ, Lα and Mα

data (or at least the last two sets) required as input for the unsteady theory?
Furthermore, this unsteady model probably breaks down for values of U∗ sub-

stantially above the galloping threshold, because, with increasing amplitudes, the
principle of superposition no longer holds true; if tried by the authors concerned,
the results were not published.

Finally, it should be mentioned that torsional galloping is sensitive to the level
of turbulence intensity in the free stream; the reader is referred to Section 2.9.

2.8 Multi-Degree-of-Freedom Galloping

2.8.1 Quasi-steady models

Some early work on two- and three-degree-of-freedom galloping was conducted
by Richardson, Martucelli & Price (1965), both theoretically and experimentally,
related to overhead transmission lines, involving horizontal (“pendular”), vertical
(“radial”) and rotational motions of generally iced conductors. In the limit, the
criteria obtained reduce to the Den Hartog/Glauert criterion. Examples of more
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Figure 2.48. Elastically supported two-degree-of-freedom
angle section, with the springs attached at the elastic axis;
translational and rotational dashpots cy and cθ, not shown,
are also attached there (Blevins 1990).

recent work on the subject may be found in Yu et al. (1993a, b), Yu, Popplewell &
Shah (1995a, b) and Macdonald & Larose (2006, 2008a, b) and the references cited
therein. This work is very particular to overhead transmission lines, and will not be
discussed in detail here.

Systematic studies on two-degree-of-freedom combined torsional and transverse
galloping were conducted by Slater (1969) and Blevins & Iwan (1974); see also Modi
& Slater (1974, 1983). In both, quasi-steady theory was used for the torsional com-
ponent also, which has since been found to be generally inappropriate (Section 2.7.4);
for this reason, the presentation of this work in what follows is rather brief.

The prism considered is an angle section, as shown in Figure 2.48. The supporting
springs are attached on the elastic axis (or shear centre; refer to Section 2.7.2) of the
prism. Since the elastic axis does not coincide with the inertial axis (going through
the centre of mass), the sectional (per unit length) equations of motion in the two
degrees of freedom, y and θ, are coupled inertially:

mÿ + 2mζyωyẏ + sxθ̈ + kyy = Fy = 1
2ρ V 2h Cy,

Jθθ̈ + 2Jθζθωθθ̇ + sxÿ + kθθ = FM = 1
2ρ V 2h2 CM, (2.75)

where sx = ∫S ξρp dξ dη, in which ρp is the density of the section material and ξ and η

are orthogonal coordinates in the section, with ξ going through both the elastic and
inertial axes. The other symbols are self-evident from the foregoing in this chapter;
it is nevertheless recalled that h is the maximum height of the section facing the free
stream.

In accordance with quasi-steady theory, for small motions

α = θ − rrθ̇

V
+ ẏ

V
, (2.76)

where, following Slater (1969), rr is half the sum of the streamwise fore and aft lengths
of the angle section from the support (“hinge”) point. It is therefore clear that, in
addition to inertial coupling, there is aerodynamic coupling in the two degrees of
freedom through (2.76).
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A linear analysis of the coupled equations (2.75) yields

V = minimum

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−4mζyωy − 4b2
2Jθζθωθ

ρh(rrb2 + 1)(b2h∂CM/∂α − ∂Cy/∂α)
,

−4b2
1mζyωy − 4Jθζθωθ

ρh(rr + b1) − (−b1∂Cy/∂α + h∂CM/∂α)
,

(2.77)

where ω2
y = ky/m and ω2

θ = kθ/Jθ, and

b1 = sx

m
ω1

ω2
y − ω2

1

, b2 = sx

Jθ

ω2
2

ω2
θ − ω2

2

,

ω2
1,2 =

ω2
y + ω2

θ ±
{

(ω2
y + ω2

θ)2 − 4ω2
yω

2
θ(1 − s2

x/Jθm)
}1/2

2 (1 − s2
x/Jθm)

. (2.78)

If sx = 0 and hence b1 = b2 = 0, which is not the case for the angle section,
equations (2.77) yield the flow velocities for galloping in the individual degrees of
freedom. For the angle section, fully coupled behaviour was expected, involving both
degrees of freedom, and with the oscillation frequency not coinciding with either
ωθ or ωy.

In Slater’s (1969) experiments with angle sections, despite sx �= 0, the above
expectations did not materialize. Coupling was weak – basically because ms2

x/J0 is
small, J0 being the moment of inertia about the inertial axis – and the observed
coupled motions occurred at the natural frequencies of the individual degrees of
freedom, ωy and ωθ, as illustrated in Figure 2.49. It is recalled that predominantly
torsional galloping could not be obtained in Slater’s experiments.

An important experimental observation was that transverse and torsional dis-
placements of the same frequency were in phase for translational resonant (syn-
chronised or locked-in) oscillations, whereas for torsional resonant oscillations they
were 180◦ out of phase.∗ This suggests the existence of two distinct virtual centres of
rotation, or virtual “hinge” points – cf. Kosko (1968) and Wardlaw (1967). Therefore,
based on the observation that the oscillations occur essentially in one or the other
degree of freedom, in Slater’s analytical models transverse and torsional galloping
were considered separately, the former in the manner of Parkinson & Smith (1964)
and the latter as in Section 2.7.3.

Blevins & Iwan (1974) neglected inertial coupling from the start, and they ap-
proximated Cy � 0.656α − 7.83α3 and CM � −0.105α + 9.34α3 – purposely consid-
ering a low-order polynomial to allow nonlinear analysis to go farther. Taking the
ratio of the magnitude of the structural damping and aerodynamic forces to that
of the inertial and spring forces to be small and characterised by the parameter ε,
the equations of motion were recast as asymptotic expansions to the first order of
ε. Then, assuming amplitudes and phases to be slowly varying functions, a sophistic-
ated analysis was undertaken by a method similar to the method of multiple scales
(Appendix A), but here with two variables, y/h and θ. Two cases were examined:

∗ An interesting aspect of resonant vortex-shedding response is this: in transverse synchronised oscil-
lations, the vortex-shedding frequency is controlled by prism motions, but in torsional lock-in it is
the vortex shedding that controls the oscillation (Modi & Slater 1988).



80 Prisms in Cross-Flow – Galloping

max

max

0.8

0.6

0.4

0.2

0.15

0.10

0.05

0
0 1 2 3 4 5

0

Plunging 
resonance

Torsional 
resonance

Plunging 
galloping

Ay
–

Uy

–
Aθ

Figure 2.49. Displacement measurements Ay = y/h and Aθ versus Uy = V/ωyh for a 3-inch
angle section at α0 = −45◦ with ωθ/ωy = 2.92, nY = ρh2l/2m = 2.98 × 10−3, nθ = ρh4l/2Jθ =
19.52 × 10−3, ζy = cy/2mωy = 4.12 × 10−3, ζθ = cθ/2Jθωθ = 5.13 × 10−3: �,�, motion with fre-
quency ωy; �, motion with ωθ (Slater 1969). The results from the Blevins & Iwan (1974) model
in the vicinity of Uy = 4.5 have been added (—�—�—).

one where there is no internal resonance, and the other when there is, i.e. when
ωθ/ωy � 1

3 , 1 or 3.
In the case of no internal resonance, the solutions are characterised by either a

steady transverse motion and sensibly no torsion, or the inverse. In the case of pre-
dominantly transverse galloping, the predicted amplitude is compared with Slater’s
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experimental data in Figure 2.49. In Slater’s experiments, ωθ/ωy = 2.92, which might
be thought to be sufficiently close to 3 for internal resonance to occur. However, the
difference is greater than the half-power bandwidth of a lightly damped oscillator,
�ω = 2ζωn, with either ζθ and ωθ or ζθ or ωy; and so the results for no internal res-
onance should apply. The onset of galloping is really well predicted in Figure 2.49
(squares), but the S-shape in the experimental results could not be captured, probably
because of the low-order polynomial approximations of the aerodynamic coefficients.
In addition, the amplitude for Uy = V/ωyh > 4.5 diverges substantially from the ex-
perimental values; h is the maximum width of the section, normal to the free stream.

The case of internal resonance has also been studied by Blevins & Iwan, necessit-
ating more nonlinear analysis. Some theoretical results in the vicinity of ωθ/ωy = 1
and Uy = 5.0 are obtained (see Blevins (1990)). In the region ωθ/ωy � 1, there is
strong coupling between transverse and torsional motions; outside that range, the
motion is essentially purely transverse and the amplitude agrees quite well with that
predicted by the uncoupled solution (i.e. with ωθ/ωy �= 1).

Unfortunately, no comparison could be made with experiments, either for pre-
dominantly torsional galloping or for strongly coupled transverse galloping, and
hence the general validity of this model could not be tested. However, in view of the
general disqualification of the torsional quasi-steady component of the model, the
overall model (Section 2.7.4) is suspect.

2.8.2 Unsteady models

There has been very strong impetus for developing unsteady models for combined
transverse-torsional galloping: the galloping of H-section prisms, representing bridge
sections. The famous collapse of the first Tacoma Narrows Bridge served as a power-
ful incentive. In due course, reliable unsteady models of galloping were developed.
They are presented in Section 2.11.

2.9 Turbulence and Shear Effects

We have already come across the effect of turbulence on galloping in Table 2.1 –
at least on soft, self-excited galloping, i.e. according to the Den Hartog/Glauert
criterion: some sections will gallop in smooth flow but not in turbulent flow, and
vice versa. This is not surprising, since turbulence changes both the lift and drag of
the bluff body, the details of separation, as well as reattachment, if any. In short,
turbulence changes the pressure distribution on the afterbody which, as we have
seen (Section 2.3.4), controls the occurrence or otherwise of galloping.

Considerable work on the effect of turbulence on galloping was done in the 1970s
and 1980s by Novak & Davenport (1970), Laneville & Parkinson (1971), Novak
(1972, 1974), Otsuki et al. (1974), Novak & Tanaka (1974), Nakamura & Tomonari
(1977), Kwok & Melbourne (1980), Nakamura & Yoshimura (1982), Bokaian &
Geoola (1982) and Bearman et al. (1987). In addition, a great deal of work was
done on the effect of turbulence specifically on the flow field around bluff bodies;
refer, e.g., to Bearman (1972), Bearman & Morel (1983), Nakamura & Ohya (1984),
Bearman et al. (1987). Some of the salient findings are that small-scale turbulence
increases the growth rate of the separated shear layers via increased mixing, whereas
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Figure 2.50. Universal galloping response of a pivoted rigid (flexibly mounted rigid-
cantilever) square prism in shear flow, showing the effect of turbulence: �, smooth flow;

, Tu = 4.7%, representative of “open country”; �, Tu = 8.6%, representative of “urban
area”; all with ζ = 0.0040–0.0053; half-filled �, Tu = 8.6%, ζ = 0.0084–0.0110 (Novak & Dav-
enport 1970). Here and in the figures that follow, U, Y and n are as defined in equation (2.30).

large-scale turbulence weakens regular vortex shedding by reducing spanwise cor-
relation; both depend on d/h of the prism. In addition, the mean base pressure can
vary significantly with both the scale and intensity of turbulence.

Novak & Davenport (1970) were the first to study the effect of turbulence on
galloping. They developed an analytical model based on the work of Parkinson &
Smith (1964) and Novak (1969), in which the wind velocity is taken to comprise a
mean component and a time-varying, turbulence-related component. The resulting
nonlinear differential equation involves coefficients which are random in time and
is therefore difficult to solve. A more pragmatic, experimental approach was then
pursued. Some typical results for a pivoted rigid (i.e. a flexibly supported rigid-
cantilever) square prism in flow with different levels of turbulence are shown in
Figure 2.50. It is seen that in this case turbulence has an appreciable stabilizing
effect on galloping: the effective critical flow velocity is raised and the galloping
amplitude is diminished. Moreover, it is seen that below the galloping threshold
there is significant turbulence-induced “buffeting” response of the prism, in contrast
to, say, Figure 2.11.

Some very-high-quality measurements by Bearman et al. (1987) confirm the
stabilizing effect of turbulence for square prisms in uniform flow and uniform
transverse motion of the prism. The results for A1 = (∂CFy/∂α) |α=0 were: A1 = 5.4
for Tu = 0.05%; A1 = 3.9 for Tu � 6.5–7.0% and A1 = 3.4 for Tu = 10.5–11.5%;
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Figure 2.51. Universal galloping curves of a pivoted rigid rectangular prism (h/d = 2) show-
ing the effect of turbulence, with Tu = 0, 5%, 8.5% and 11%. In the experiments, Tu = 11%:
�, ζ = 0.006; 
, ζ = 0.012; �, ζ = 0.014 (Novak 1971).

refer to equation (2.28). In contrast, a recent numerical (LES) study by Tamura &
Ono (2003) finds virtually no effect on the threshold of galloping, but, in common
with the results of Figure 2.50, predicts the disappearance of the S-shaped curve for
Tu = 12%; refer also to Lidner (1992).

More extensive studies, along the same lines, were conducted by Novak (1971,
1972) and Laneville & Parkinson (1971). Figure 2.51 shows the results for a h/d = 2
prism. It is seen that at turbulence intensity Tu � 0% we have hard galloping. With
increasing Tu, the galloping becomes softer. Thus, (i) the critical flow velocity Ucr

is reduced, (ii) the minimum amplitude to trigger galloping Ycr is diminished and
(iii) the maximum amplitude is higher. For example, at Tu = 0% we have Ucr � 6
and Ycr � 3, whereas at Tu = 11% we have Ucr = 1.72, a dramatic reduction, with
Ycr � 0.44; moreover, at U = 6, for Tu = 11% we have Y = 3.5, higher than for
smooth flow. Here, U and Y are as defined in (2.30). In other words, in this case
the effect of turbulence is destabilizing. The reason why the system becomes softer
with increasing Tu is appreciated from Figure 2.52: the slope of CFy at the origin,
i.e. A1 ≡ (∂CFy/∂α) |α=0 changes from negative to positive, and becomes increasingly
positive with increasing Tu; see also Novak (1972; figure 10).

Laneville & Parkinson also show that the longitudinal turbulence scale, LTu (for
LTu/h in the range of 1.58 to 5.0) has no appreciable effect on CFy and galloping for
h/d = 1

2 and 1 prisms.
Similar results for a h/d = 1

2 are shown in Figure 2.53, displaying the opposite
trend: the effect of turbulence is stabilizing. Indeed, for a sufficiently high level of
Tu, namely Tu = 8.5%, galloping is prevented altogether, and one obtains turbulent
buffeting alone. For a shear profile α = 1/6, turbulence (Tu = 5%) changes the
response from subcritical to supercritical.
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In a more recent study by Hémon et al. (2001), this stabilizing effect for the
h/d = 1

2 prism is found to be nonmonotonic: i.e. increasing Tu up to 5% decreases
the critical velocity U∗ = V/fh from 65 to 42. Then, for higher, Tu the effect is
stabilizing, and ceases at Tu = 7.5% in accordance with previous findings. This latter
behaviour is reproduced by the LES study of Tamura & Ono (2003).

Further studies of this type were conducted by Novak & Tanaka (1974), for
D-sections, h/d = 2

3 and 3
2 prisms, and cruciform sections. For a pendularly mounted

D-section with variable mean angle of attack due to “blow-back”, it was found
that, for low U (small blow-back angle θ), turbulence has a destabilizing effect (cf.
Table 2.1). It is interesting that as θ increases, galloping eventually ceases, at high U.

Nakamura & Tomonari (1977) conducted similar studies with rectangular prisms
with d/h = 0.2–1.0 (i.e. h/d = 1–5), focussing attention on self-excited, or soft, gal-
loping and the effect of turbulence on the critical depth (Section 2.3.4); soft galloping
commences around the critical depth. It was found that turbulence, by influencing
the position and shape of the shear layers relative to the trailing-edge corners, can
decrease the value of the critical depth, thus affecting the manifestation of shear-
layer/edge direct (s-l/e) interaction, and hence hasten the onset of soft galloping.

Indeed, as shown by Laneville, Gartshore & Parkinson (1975), Nakamura &
Tomonari (1976, 1981) and Courchesne & Laneville (1982), turbulence can signific-
antly reduce the value of the critical depth of both rectangular prisms and D-sections.

The effect of turbulence on low-speed torsional galloping (see Section 2.4) can
be even more pronounced (Nakamura & Yoshimura 1982; Tamura et al. 2004).
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In Figure 2.28 we see that the onset of low-speed galloping is delayed and the
maximum amplitude diminished for a d/h = 1.5 prism. The effect becomes stronger
for d/h = 2, and there is a total eclipse of low-speed torsional galloping for d/h =
3, 4 and 5, although for d/h = 3 and 4 high-speed galloping persists (Nakamura &
Yoshimura 1982).

In summary, then, increasing turbulence intensity causes hard galloping (re-
quiring an initial perturbation) to become soft (self-excited), and soft galloping
to become weaker and eventually vanish. Moreover, this statement holds also for
torsional galloping in the high-speed range, whereas turbulence always weakens
low-speed torsional galloping, eventually suppressing it altogether. Here, we refer
back to Figure 2.23, the data compiled by Parkinson (1989). It is seen that the
range over which soft galloping is possible shifts to lower values of d/h as turbu-
lence intensity is increased – both the low d/h and the high d/h ends of the range.
Moreover, for a given d/h, the maximum galloping amplitude is diminished as Tu is
increased.
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The effect of shear, i.e. of a sheared incident flow profile (see the paragraph
including equations (2.46) and (2.47)), is as one might guess: because most of the
prism is subjected to an average flow velocity smaller than that for a uniform flow
profile, the effect is stabilizing. In Figure 2.19, for uniform transverse motion of
a square prism (curves 1a and 1b), the effect is very strong; for pivoted (rigid-
cantilever) motion (curves 3a and 3b), the effect is considerably weaker, presumably
because the motion near the support is small in any case.

Similar results are shown in Figure 2.53 for a h/d = 1
2 prism: as α is increased

from 0 to 1/6 and 1/3, the system is progressively stabilised, requiring a higher flow
velocity for galloping and resulting in lower galloping amplitudes.

Nevertheless, shear can also generate galloping-type instability in situations
where the system would be stable in uniform flow. This has been shown to occur for
a circular cylinder in a shear layer at high reduced flow velocities (Yu, Yu & Chen
2004). Modelling the effect of turbulence as a parametric stochastic perturbation,
Zhu et al. (2008/9) show via sophisticated analysis that the system can be stabilised
by sufficiently strong turbulence.

2.10 Conjoint Galloping and Vortex Shedding

As outlined in Section 2.2 of this chapter, equation (2.28), the threshold of galloping,
based on quasi-steady theory, occurs at a nondimensional velocity (V/ωnh) given by

Ug = 2ζ

nA1
, (2.79)

where A1 is the slope of Cy as a function of α, ζ is the viscous damping factor and
n = (ρh2)/(2m) is the mass parameter. Furthermore, the velocity at which vortex
shedding in the wake of a stationary cylinder is equal to the cylinder natural frequency
(see Chapter 3 of this book), resulting in a vortex-shedding-induced resonance, may
be expressed as

Uv = 1
2πS

, (2.80)

where S is the Strouhal number. As discussed by Parkinson (1989), for aeroelastic
systems Ug will usually be greater than Uv; however, if either ζ is small (low struc-
tural damping) or n is large (as obtained with low-density structures) then Ug

may be close to or even less than Uv; furthermore, for realistic structural para-
meters in hydroelastic systems, where ρ is of the order of 1000 times greater than
in airflow, Ug will almost always be less than Uv. Hence, there are a significant
number of cases where the potential exists for interaction between galloping- and
vortex-shedding-induced resonance, and they cannot be considered as separate en-
tities. The complexities induced by the simultaneous, or near-simultaneous, occur-
rence of galloping- and vortex-shedding-induced resonance is the subject of this
section.

Possibly the earliest example of an aeroelastic response due to combined vortex-
shedding and galloping was reported by Scruton (1960) who considered the transla-
tional response of a square-section prism in cross-flow. He presented results show-
ing the nondimensional velocity, U, required to initiate instability as a function of
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mδ/ρh2. For mδ/ρh2 ≥ 8, approximately, the vibrational response was of a classical
nature, consisting of a resonance with vortex shedding at low values of U, an in-
stability due to galloping at a higher U and a stable region between the galloping
and vortex-shedding responses. However, for mδ/ρh2 ≤ 8 there were no longer dis-
tinct vortex-shedding and galloping responses as U was increased; instead, there
was one common instability boundary. Novak (1971) also reports some examples
of where there appears to be an aeroelastic response due to combined galloping
and vortex-shedding for a rectangular section with d/h = 0.5 and low values of mass
damping (m/ρh2 = 130 and damping between 0.37 and 2.12% critical).

Parkinson and co-workers (Parkinson & Sullivan 1979; Parkinson & Wawzonek
1981) also reported examples of aeroelastic responses which appeared to be due
to combined vortex shedding and galloping. Considering three-dimensional models
of tall towers with square cross-sections in a boundary layer tunnel, Parkinson &
Sullivan (1979) showed that, for very lightly damped models, galloping occurred
at a velocity lower than that predicted by quasi-steady theory. It was concluded
that this was due to the interaction between the vortex-shedding and galloping
responses. Also, if the velocity required to initiate vortex shedding, Uv, was close to
and lower than that where galloping would occur, Ug , then there was no recovery
in the intermediate velocity range. In addition, when Uv � Ug it was observed that
the vibrational response was greater than that predicted by either mechanism alone,
again indicating significant interaction between the vortex-shedding and galloping
mechanisms. Parkinson & Wawzonek (1981) and Bearman et al. (1987) confirmed
that the behaviour reported by Parkinson & Sullivan (1979) also occurred for two-
dimensional square sections, and demonstrated that, although Ug could be accurately
predicted using quasi-steady theory for high values of damping, for low damping it
could not. Additional results attributed to Wawzonek (1979) by Bearman & Luo
(1988) suggest that when Ug is greater than Uv two distinct peaks occur (as expected),
but when Ug is smaller than Uv no vibration occurs until U = Uv.

Experiments on two-dimensional square sections, with the corners of the squares
being either sharp or rounded with two different radii, mounted such that they could
move in the transverse direction only, in water flow were conducted by Bokaian &
Geoola (1984c). Several different sets of experiments were completed covering a
wide range of mass-damping, with the damping being in the range 0.008 ≤ ζ ≤ 0.288
and the mass parameter varying from 0.0317 ≤ n ≤ 0.0847 (corresponding to 5.9 ≤
m/ρh2 ≤ 15.8). For the sharp-edged square sections (the results obtained with the
rounded corners were similar and will not be discussed here), it was shown that the
dynamic response as a function of nondimensional velocity, U = V/ωnh, could be
categorised by one of three different types of behaviour depending on the value of
the mass-damping parameter. (In fact, Bokaian & Geoola (1984c) categorised the
response in terms of the so-called response parameter, Ks = ζ/(nU2

v), where for their
experiments on the sharp-edged squares Uv = 1.27.)

For all three categories of vibrational response, as U was increased the vibra-
tional response started at velocities just below the vortex resonance speed, Uv; the
difference in behaviour occurring for velocities greater than Uv. For the lowest
range of mass-damping, ζ/n ≤ 1.069 (Ks ≤ 0.66), as U was increased beyond Uv,
there was a continual increase in vibrational amplitude with increasing U, and the
authors noted that “the vortex resonance amplitude is inseparable from galloping”;
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for the intermediate range of mass-damping, 1.183 ≤ ζ/n ≤ 2.27 (0.73 ≤ Ks ≤ 1.4),
there was an initial build-up in amplitude as U was increased beyond Uv, followed
by a small decrease prior to the galloping response, and the authors referred to this
as a “build up-drop off behaviour”; whereas for the highest range of mass-damping,
ζ/n ≥ 2.66 (Ks ≥ 1.64), a complete separation between the vortex-shedding and gal-
loping responses was obtained.

A detailed comparison of the results presented in the preceding paragraphs is
given by Parkinson (1989), but possibly the most significant conclusion coming from
this work (as succinctly expressed by Luo & Bearman (1990)) is that for systems
with only moderate mass (high n) and damping (low ζ), where Ug is predicted to
be only slightly higher or even lower than Uv, experimental observations show that
galloping always commences at U � Uv.

Motivated by the work of Parkinson and co-workers, Bearman & Luo (1988)
conducted a detailed experimental investigation of the unsteady fluid force acting
on a square-section prism forced to oscillate transverse to the flow. Using a scotch-
yoke mechanism, the amplitude of cylinder oscillation was varied over the range
0.25 ≤ a/h ≤ 2.0. The oscillation frequency was held at a constant value of f n = 8 Hz;
however, varying the wind-tunnel velocity enabled values of U up to a maximum of
180 to be obtained, with the Reynolds number being in the range 104 ≤ Re ≤ 8 × 104.
A pressure-averaging technique was used to obtain the fluctuating lift force, C ′

L.
Typical results for C ′

L and φ (the phase angle by which lift leads the displacement)
are presented in Figure 2.54; note that negative φ implies that the fluid damping is
positive. For low values of U there is a high value of C ′

L caused by lock-in of the
vortex shedding with the body oscillation; however, as U is increased, C ′

L decreases
until it reaches a minimum value; then it steadily increases until attaining the value
measured on a stationary cylinder of 1.45. However, it should be noted that when
C ′

L is large, the fluid damping is positive and so galloping is not possible; hence, the
aeroelastic response, resulting from a forced oscillation due to the fluctuating lift
force, will be relatively small. More importantly, at these low values of U where the
flow is controlled by the vortex shedding, the quasi-steady theory (which predicts
a galloping instability for low damping) is not valid. Based on flow visualization by
Luo (1985), it is suggested that the minimum in C ′

L is associated with momentary
reattachment of the flow on the side face. Bearman & Luo (1988) suggest that the flow
may be divided into three distinct regions of U: (i) for U below that where minimum
C ′

L is obtained, where there are multiple lock-in regions between the vortex shedding
and body oscillation; (ii) between the U for minimum C ′

L and that when C ′
L reaches

the quasi-steady value of 1.45; and (iii) for U above this. The quasi-steady theory
will definitely work in region (iii) and will not work in region (i), but is expected to
work in region (ii). Interestingly, conclusions similar to these had previously been
reached by Nakamura & Mizota (1975a) for rectangular sections with d/h = 1, 2 and
4 oscillating transverse to the flow.

Despite the conclusions previously obtained by Bearman & Luo (1988), Corless
& Parkinson (1988) attempted an analysis of combined vortex shedding and galloping
for the transverse motion of a square section in cross-flow using a quasi-steady
model. They employed the Parkinson & Smith (1964) model of galloping (presented
in Section 2.2.2) and the Hartlen & Currie (1970) model for vortex shedding (this is
described in some detail in Section 3.3.4 of this book).
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Figure 2.54. (a) Variation of fluctuating lift coefficient C ′
L and (b) φ (the phase angle by which

lift leads the displacement) as a function of reduced velocity U∗ = V/f nh for a square-section
prism being forced to oscillate transverse to the flow with a/h = 0.675 (reproduced from
Bearman & Luo (1988)).

The equation of motion of the section is given by

Ÿ + Y = nU2
(

CFy + Cv

)
, (2.81)

where Y, τ and n are as given by equation (2.18); CFy is the same as the force
coefficient used in the standard Parkinson & Smith (1964) analysis, equation (2.20),



90 Prisms in Cross-Flow – Galloping

with the addition of the structural damping term, and Cv is the solution to the standard
Hartlen & Currie wake-oscillator model, except that an additional inertial coupling
term is included to account for the effects of the cylinder acceleration on the wake
vortices. The resulting equations were solved using the method of multiple scales,
which gives a series solution for the amplitude of conductor motion (full details
are given by Corless & Parkinson). Unfortunately, the theoretical solutions given
are for individual terms in the series, which are compared with the experimental
results of Bearman et al. (1987), but the final sum of all the terms in the series is
not presented. Hence, although there appears to be qualitative agreement between
theory and experiment, it is not possible to assess quantitative agreement.

In a later paper (Corless & Parkinson 1993) the same authors present an im-
proved solution to the same equations – still using the method of multiple scales.
They concluded that the analysis agrees qualitatively with experimental results; for
example, small vibrational amplitudes are predicted when U is less than Uv, even
if U is greater than Ug ; non-zero amplitudes are predicted in the resonance region,
with the possibility of hysteresis and phase jumps. However, a comparison with the
experimental data of Brika & Laneville (1993) is described by Corless & Parkinson
as being only qualitatively correct. Hence, it appears, not unexpectedly, that quasi-
steady theory is not able to predict the vibrational response due to combined vortex
shedding and galloping.

A similar approach was taken by Bokaian & Geoola (1984c), where in equation
(2.81) the galloping excitation, CFy , and the vortex-shedding excitation, Cv, were
represented by series expressions in terms of α = tan−1( ẏ/V ), with the coefficients
in the series being obtained from experimental observations. The resulting nonlin-
ear equations were solved using the first approximation of Krylov and Bogoliubov.
The results obtained were compared with their own experimental results, discussed
earlier in this section, and, not surprisingly, for those cases where there was in-
teraction between the vortex-shedding and galloping responses the agreement was
relatively poor.

2.11 Elongated and Bridge-Deck Sections

The catastrophic failure of the Tacoma Narrows Bridge in 1940 (see Figure 2.4) indic-
ated very clearly the potential for wind-induced vibrations to cause severe damage
to long-span flexible bridges. Since then, one of the dominant design criteria for all
new suspension and cable-stayed bridges has been the need to avoid wind-induced
instabilities such as flutter and galloping. In addition to these wind-induced instabil-
ities, bridge decks are also susceptible to buffeting and vortex-induced vibrations,
which will not be discussed in this section. It should be emphasised that the aim of
this section is not to give a definitive description of the phenomena and sequence
of events leading to the ultimate failure of the Tacoma Narrows Bridge; this is
something which has been studied extensively, and thus, the relevant literature is
extremely large. However, the reader is cautioned that although the literature does
contain some simple explanations for this failure (such as stating that the vibrations
were due to vortex shedding or galloping) the precise mechanism appears to be much
more complex than this, and is still a subject of considerable controversy; see, for
example Matsumoto et al. (2003a). On the contrary, the main aim of this section is to
give some insight into the procedures required to analyze bridge decks in cross-flow.
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Figure 2.55. Schematic of bridge-deck cross-
section.

Bridge decks have cross-sectional shapes which may often be approximated
as rectangular or H-sections, although the ratio of the deck chord, B, to depth, h
(see Figure 2.55),∗ is typically large; hence, when exposed to wind normal to their
longitudinal axes these sections are potentially susceptible to both translational and
torsional galloping, discussed in the earlier sections of this chapter. However, in
addition to these two types of galloping, which occur predominantly in one degree
of freedom, and are a direct result of negative fluid damping in that degree of freedom
(referred to as damping-controlled instabilities in this book), there is a second type of
instability that is due to a coupled-mode flutter. As Scanlan & Tomko (1971), pointed
out, this phenomenon is very similar to flutter of aircraft wings, and the analytical
methods employed to investigate it follow very closely those used in classical aircraft
aeroelasticity; see, for example, Fung (1955) and Bisplinghoff, Ashley & Halfman
(1955).

Before attempting an analysis of bridge-deck instabilities, it is important to ap-
preciate that even though V/fB for bridge decks, where f is the structural natural
frequency of the mode of interest, is often quite large and may be greater than 10,†

which is usually taken as the limiting value of when quasi-steady aerodynamics is
valid,‡ there are other limiting factors which preclude the use of quasi-steady aero-
dynamics for the analysis of bridge-deck sections. As outlined by van Oudheusden
(1995), a second prerequisite for the use of quasi-steady aerodynamics is the necessity
to be able to “define a steady situation (in which the structure is in rest with regard
to some suitably chosen reference frame) which is aerodynamically equivalent to
the unsteady situation”. Although this is easily achieved for translational galloping
(see Figure 2.1), it is apparent from Figure 2.40 that this is not possible for tor-
sional galloping; hence, the use of quasi-steady aerodynamics is not valid in the ana-
lysis of torsional galloping, and by extension, coupled-mode flutter, of bridge-deck
sections.

The analysis presented in the following follows very closely the work of Scanlan
and co-workers (Scanlan & Tomko 1971; Scanlan, Beliveau & Budlong 1974; Scanlan
1978, 1990; Kumarasena, Scanlan & Ehsan 1992) and considers the flutter of a

∗ Previously in this chapter the width (“depth” in the foregoing) of rectangular sections has been
denoted by d (see Figure 2.12); however, in order to maintain conformity with the majority of the
literature in this area, in this section the width of the bridge deck, or deck chord, is represented by
the symbol B. Similarly, what we call depth (h) here was previously referred to as “height”.

† For example, the natural frequencies of bridge decks are typically small, on the order of 0.5 Hz, and
even though B may be of the order of 20 m, then, using these values, V/fB ≥ 10 is satisfied when
V ≥ 20 m/s.

‡ The rationale for requiring V/fB ≥ 10 for quasi-steady aerodynamics to be applicable is discussed
in Section 4.2.1 of this book.
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two-dimensional section of a bridge deck subject to a steady wind acting normal
to its longitudinal axis, as shown in Figure 2.55. Assuming the deck to be much
stiffer in the in-plane direction compared with the vertical or torsional directions,
and furthermore assuming the centre of mass to be roughly coincident with the
elastic axis (taken as being at the mid-point of the deck width), then the equations
of motion, per unit length, in the vertical and torsional directions are

m
[
ÿ + 2ζy ωy ẏ + ω2

y y
]

= L, (2.82a)

I
[
α̈ + 2ζα ωα α̇ + ω2

α α
] = M, (2.82b)

where m and I are the sectional mass and moment of inertia per unit span, y and α are
the vertical and torsional displacements of the section, ωy and ωα are the vertical and
torsional natural structural frequencies, ζy and ζα are the structural viscous damping
factors and L and M are the aerodynamic “lift” force (note that L is positive in
the downwards direction, the reverse of that normally employed for a lift force) and
torsional moment per unit span acting on the section. If the centre of mass and elastic
axis are not coincident, as is typically the case for aircraft wings, there are additional
structural coupling terms on the left-hand side of equations (2.82a, b) which have
a significant effect on whether or not flutter will occur and, if it does occur, on the
velocity at which it will do so.

Given that quasi-steady aerodynamics is not applicable, then clearly L and M
will depend on the frequency of oscillation of the bridge deck. This, of course, is
exactly the same situation as for oscillating airfoils for which a theoretical solution
(Theodorsen 1935) exists for L and M as functions of the nondimensional frequency
of oscillation, ωc/V , where c is the chord of the airfoil. Given the existence of this
theoretical solution for L and M, and that there is a passing similarity between
the seemingly streamlined cross-sectional shapes of bridge decks and airfoils, it is
not surprising that attempts have been made to use this theoretical solution to
analyze the stability of bridge decks. However, one important difference between
the aerodynamics of bridge decks and airfoils is that the flow will typically separate
from the leading edge of a bridge deck, whereas Theodorsen’s theoretical solution
for an airfoil assumes attached flow. This difference has a significant effect on the
unsteady aerodynamics, and hence, even though Theodorsen aerodynamics may be
a useful tool to investigate certain phenomena, as pointed out by Scanlan (1990) and
Ge & Tanaka (2000), it cannot be used to obtain a reliable estimate of when instability
will occur for bridge decks. Indeed, as will be seen later in this section, the aeroelastic
response of bridge decks is very sensitive to their particular cross-sectional shape;
thus, all new bridge decks have to be investigated individually.

Realizing that the aerodynamic forces on the bridge deck will vary with the
frequency of oscillation, a convenient way of expressing L and M is as follows
(Kumarasena, Scanlan & Ehsan 1992):

L = 1
2
ρV 2(2B)

[
KH∗

1 (K)
ẏ
V

+ KH∗
2 (K)

Bα̇

V
+ K2H∗

3 (K) α + K2H∗
4 (K)

y
B

]
, (2.83a)

M = 1
2
ρV 2(2B2)

[
KA∗

1(K)
ẏ
V

+ KA∗
2(K)

Bα̇

V
+ K2A∗

3(K) α + K2A∗
4(K)

y
B

]
, (2.83b)
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where B is the width of the bridge deck, K = ωB/V is the nondimensional frequency
of oscillation, and H∗

i (K), A∗
i (K), i = 1 − 4, which are functions of K are referred to

as either the flutter or aerodynamic derivatives. In earlier work (Scanlan & Tomko
1971; Scanlan, Beliveau & Budlong 1974; Scanlan 1978) the H∗

4 and A∗
4 terms were

ignored; although written as being multiplied by y they could equally be interpreted
as inertia terms, multiplied by ÿ, and so they are dominated by the added mass
terms and are typically very small. In some references (for example, Matsumoto
et al. (2008a)) and some of the earlier papers by Scanlan and co-workers, the ex-
pressions for L and M given in equations (2.83a, b) are written in a slightly different
form, namely with b = B/2 replacing B and k = ωb/V replacing K; however, the
form used in equations (2.83a, b) seems to be the preferred notation. It should be
appreciated that using b instead of B changes the definition and numerical values of
the aerodynamic derivatives; indeed, if the derivatives based on b and k are written
as H̃

∗
i (K), Ã∗

i (K), i = 1–4, then it is apparent that H̃
∗
1(k) = 4H∗

1 (K), H̃
∗
2(k) =

8H∗
2 (K), H̃

∗
3(k) = 8H∗

3 (K), H̃
∗
4(k) = 4H∗

4 (K), Ã∗
1(k) = 8A∗

1(K), Ã∗
2(k) = 16A∗

2(K),
Ã∗

3(k) = 16A∗
3(K) and Ã∗

4(k) = 8A∗
4(K). Unfortunately, it is not always clearly

indicated in the literature whether the aerodynamic derivatives are based on B
and K or b and k, and thus, there is considerable need for caution when using this
data. Expressions for L and M can be written using complex notation as opposed to
purely real numbers; this was done by Nakamura (1978). Some of these different
notations are discussed by Zasso (1996).

From equations (2.83a, b) it is readily apparent that H∗
1 , H∗

2 , A∗
1 and A∗

2 are
velocity-dependent damping terms, with H∗

1 and A∗
2 being the direct-derivative terms,

and A∗
1 and H∗

2 being the cross-derivative, or coupling terms. Equally H∗
3 , H∗

4 , A∗
3

and A∗
4 are stiffness terms. A necessary condition for pure torsional flutter (usually

referred to as torsional galloping) to occur is that A∗
2 must be positive, and equally

for pure vertical galloping H∗
1 must be positive.

It should be stressed that the aerodynamic derivatives contain all possible wind-
induced excitations, including all vortex-shedding-related phenomena. That is why
the methods described in this section supersede, in a sense, everything else discussed
in this chapter and also some of the things discussed in Chapter 3. This generality is
at once a strength and a weakness. As in CFD analyses of a system, the simulation
is, or can be, very close to reality, almost mimicking the natural behaviour; on the
other side of the coin, the physical mechanisms underlying the physical phenomena
involved are not necessarily elucidated thereby.

As previously mentioned, one of the complications associated with bridge-deck
aerodynamics is that the flow will typically separate from the leading edge; hence,
analytical methods, such as those presented by Theodorsen (1935) for the flow over
airfoils, cannot be employed to determine the aerodynamic derivatives for bridge
decks. Although numerical methods (briefly discussed later in this section) are now
being proposed, at present, resort must be made to experimental techniques to obtain
accurate estimates of the aerodynamic derivatives.

Two distinct experimental techniques are discussed in the literature: (i) the
direct method, involving measuring forces on a sectional model undergoing forced
harmonic oscillation, and (ii) the indirect method, where the bridge-deck motion,
subject to wind-induced effects, is measured and the aerodynamic terms are inferred
from this measured motion. Scanlan & Tomko (1971) employed the indirect method
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using wind-tunnel models; this involved: (i) measuring the vertical motion of the
bridge deck while the torsional motion was prohibited; (ii) measuring the torsional
motion with no vertical motion; and (iii) measuring the unrestricted torsional and
vertical motion simultaneously. In all cases the aeroelastic frequencies and damping
levels were determined as a function of velocity. From (i) and (ii) the direct aerody-
namic derivatives could be obtained, and from (iii) the coupling terms were inferred.
Full details of this approach are given by Scanlan & Tomko (1971) and Scanlan, Be-
liveau & Budlong (1974). To verify their experimental technique, it was first applied
to a NACA 0012 airfoil and the results obtained were compared with Theodorsen’s
analytical expressions. Results are also presented (for H∗

i (K), A∗
i (K), i = 1 − 3) for

a number of different bridge decks including the original Tacoma Narrows and
different-size H-sections. Some of these results, including those for the original Ta-
coma Narrows Bridge, are reproduced in Figure 2.56. It is apparent that for the
Tacoma Narrows Bridge deck, along with truss-stiffened bridge decks 2 and 3, A∗

2
becomes positive as V/fB is increased, indicating the likelihood of pure torsional
flutter (for the airfoil, pure torsional flutter is not possible), the change in sign of A∗

2
with increasing V/fB also demonstrates very clearly that quasi-steady aerodynamics
is not applicable: hence, any models of torsional flutter using quasi-steady aerody-
namics, such as those described in Section 2.7.2, are not applicable for these sections.

The data of Figure 2.56 also indicates the potential for pure vertical galloping,
as indicated by positive H∗

2 , for the original Tacoma Narrows Bridge deck. Scanlan
& Tomko (1971) suggest that the peak in H∗

2 , clearly evident for the Tacoma Nar-
rows section (along with all the other H-sections tested by Scanlan & Tomko), is
due to vortex shedding. Hence, it is apparent that there are a number of distinctly
different potential instability mechanisms affecting the Tacoma Narrows Bridge, and
thus, the controversy over exactly what was the instability mechanism leading to its
destruction; see, for example, Matsumoto et al. (2003a).

Since Scanlan’s original work, a number of other researchers have developed
alternative indirect methods of obtaining the aerodynamic derivatives; a discussion
of these different indirect methods is given by Brownjohn & Bogunovic Jakob-
sen (2001) and Chen, He & Xiang (2002). An alternative approach is the direct
method, where the bridge-deck section is forced to oscillate harmonically, either in
torsional or plunging motion, and the aerodynamic forces and moments, and their
phase with respect to the forced oscillation, measured. The aerodynamic forces can
be measured via force balances, although it is then necessary to subtract the struc-
tural inertial force or moment from the value measured in wind, or obtained from
measured pressure distributions. Examples of using the direct approach are given
by Matsumoto and co-workers. Matsumoto et al. (2005) obtained the aerodynamic
derivatives for rectangular sections using pressure measurements with B/h ranging
from 5 to 20, while Matsumoto et al. (2008a) used force measurements to obtain the
aerodynamic derivatives for H-sections with B/h ranging from 2 to 20. Examples of
the aerodynamic derivatives for H-sections measured by Matsumoto et al. (2008a)
are shown in Figure 2.57 (note that these aerodynamic derivatives are based on b
and k, whereas those of Figure 2.56 are based on B and K), where they are compared
with the analytical solution for an airfoil (thin plate) obtained using Theodorsen’s
analysis. The results presented in Figure 2.57 show that, depending on B/h, there
can be considerable difference between the aerodynamic derivatives for H-sections
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Figure 2.56. Measured aerodynamic derivatives for the original Tacoma Narrows Bridge and
three other truss-stiffened bridge decks, and the theoretical results for an airfoil. (Reproduced
from Scanlan & Tomko 1971), the symbols A and 1-4 refer to the cross-sections shown on the
right-hand side of the figure.

and the Theodorsen solution. It is also apparent that changing B/h can have a sig-
nificant effect on the magnitude of the aerodynamic derivatives; see, for example,
the H̃

∗
1 term. These results, along with those of Figure 2.56, illustrate very clearly the

inapplicability of using Theodorsen aerodynamics to analyze the stability of bridge
decks, and the need to determine the aerodynamic derivatives for the particular
cross-sectional shape of the bridge deck.

Sarkar et al. (2009) recently initiated a research program to compare the various
ways of determining the aerodynamic derivatives. They compared their own experi-
mental results, based on pressure measurements using the direct method, with other
results from both the direct and indirect approaches. This was done for five differ-
ent cross-sections, including three streamlined sections and two rectangular sections
with B/h = 2 and 5. Their results show that values of the damping terms A∗

2 and H∗
2

obtained from measurements on forced oscillation are extremely sensitive to errors
in the phase measurement, while the stiffness terms are not. In general, it was found
that, provided the amplitudes of oscillation are not too different, there is reasonable
agreement between the different approaches; however, their results suggest that
changing the amplitude of oscillation could have a big effect on the estimates of the
aerodynamic derivatives, suggesting considerable nonlinear behaviour.
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Figure 2.57. Measured values of sample aerodynamic derivatives for H-shaped bridge-deck
sections with different B/h compared with the theoretical solution for a thin airfoil obtained
from Theodorsen (1935) (reproduced from Matsumoto et al. 2008a).

Although the data of Figures 2.56 and 2.57 indicate the possibility of single-
degree-of-freedom damping-controlled instabilities in either the torsional or vertical
directions, there is also the possibility of yet another type of instability involving
both the vertical and torsional modes. This is a coupled-mode flutter very similar
to that obtained on aircraft wings. As discussed by Scanlan (1990) this instability is
governed mainly by stiffness effects as opposed to damping terms; other examples
of stiffness-controlled instabilities occurring on overhead transmission lines and in
heat-exchanger tube arrays are discussed in more detail in Chapters 4 and 5 of
this book. The complication associated with this analysis is that the aerodynamic
derivatives are functions of K, but K cannot be determined until the frequency
of oscillation, which is part of the solution, is known; hence, some sort of iterative
solution is required. The method originally proposed by Scanlan and co-workers (see
Simiu & Scanlan (1978)) is to ignore the H∗

4 and A∗
4 terms; then, expressing equations

(2.82a, b) and (2.83a, b) in nondimensional form, the following are obtained:

η ′′ + 2ζy Ky η ′ + K2
yη = ρB2

m

[
KH∗

1 η ′ + KH∗
2 α ′ + K2H∗

3 α
]
, (2.84a)

α ′′ + 2ζα Kα α ′ + K2
αα = ρB4

I

[
KA∗

1 η ′ + KA∗
2 α ′ + K2A∗

3α
]
, (2.84b)
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where the prime indicates differentiation with respect to nondimensional time
s = Vt/B, η = y/B is the nondimensional vertical displacement, Ky = ωyB/V , and
Kα = ωαB/V .

Defining a stability boundary as the point where α and η are purely harmonic,
neither growing nor decaying with time, then it is apparent that on a stability bound-
ary the solutions to equations (2.84a, b) will be of the form η = ηo exp(iKs) and
α = αo exp(iKs), where K is the nondimensional frequency of oscillation. Thus, on a
stability boundary[
−K2 + 2iζy Ky K + K2

y − ρB2

m
iK2 H∗

1

]
ηo − ρB2

m
K2 [iH∗

2 + H∗
3 ] αo = 0, (2.85a)

[
−ρB4

I
iK2 A∗

1

]
ηo +

[
−K2 + 2iζα Kα K + K2

α − ρB4

I
K2 (iA∗

2 + A∗
3)
]

αo = 0, (2.85b)

For a nontrivial solution of equations (2.85a, b) the determinant of the matrix equa-
tion must be equal to zero, yielding an equation which may be expressed in its real
and imaginary parts as a function of X, where X = ω/ωα (see Simiu & Scanlan (1978)
for a full derivation of these equations). Each of these equations is then solved in
terms of X for different values of K, and the value of K at which the two solutions
are consistent is the true solution at the stability boundary.

An alternative approach is to express the equations in matrix form, for example,
as

[M]p̈ + [B]ṗ + [E]p = 0, (2.86)

where

[M] =
[

m 0
0 I

]
,

[B] =
[

2mζyωy − ρVBKH∗
1 −ρVB2KH∗

2
−ρVB2KA∗

1 2Iζαωα − ρUB3KA∗
2

]
,

[E] =
[

mω2
y −ρV 2BK2H∗

3
0 Iω2

α − ρV 2B2K2A∗
3

]

are, respectively, the inertia matrix, the total damping matrix, including both struc-
tural and aerodynamic damping terms, and the total stiffness matrix, including both
structural and aerodynamic stiffness terms (again, the H∗

4 and A∗
4 terms have been

ignored).
These equations can then be solved using any of the standard iterative techniques

employed in classical aeroelasticity, for example the p-k method given by Hodges &
Pierce (2002). This method has the advantage that the H∗

4 and A∗
4 terms can easily

be incorporated; they merely add additional terms to the total stiffness matrix; in
addition, it can be extended to account for the effect of swaying motion, as discussed
later in this section.

An example of using the eigenvalue-based approach is given by Matsumoto et al.
(2008a) who, using the aerodynamic derivatives given in Figure 2.57, obtained results
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Figure 2.58. Variation of aeroelastic logarithmic decrement, δ, (a negative δ implies an un-
stable system) with nondimensional velocity obtained using the data of Figure 2.57 (B = 1.5
m, f y = 4.5 Hz, f α = 6.0 Hz, m = 1.96 kg/m, I = 4.91 × 10−3 kg m2/m): (a) vertical mode, (b)
torsional mode (Matsumoto et al. 2008a).

for the aeroelastic logarithmic decrement of the vertical and torsional modes as a
function of nondimensional velocity; a negative aeroelastic logarithmic decrement
indicating instability. These results, reproduced in Figure 2.58, show very clearly that
the velocity at which instability occurs, and even whether it is the vertical or tor-
sional mode which becomes unstable, depends very strongly on the particular value
of B/h.

The two methods described in the previous paragraphs have the disadvantage
that they are iterative. Although this is not a problem if one is interested only
in the stability of the system, if the combined effects of wind-induced vibrations
and other external forcing (for example, turbulent buffeting, or even control of
the bridge vibrations) are desired, then the iterative nature of these approaches
becomes extremely problematic. One method of eliminating the need for iterative
techniques is to represent the unsteady aerodynamic forces, which are given at
discrete values of K, by so-called approximate rational functions of the aerodynamic
terms in the Laplace domain. The equations can then be solved without recourse to
iteration, and thus, the effects of additional forcing functions can easily be accounted
for. This technique has been used extensively in the aeronautical field to analyze
flutter of aircraft wings, and many different methods are available to determine
appropriate rational functions for the aerodynamic forces; see, for example, Tiffany
& Adams (1988). This technique has also recently been employed to analyze the
stability of bridge decks by Chen, Kareem & Matsumoto (2001) who considered
the effect of buffeting, and Kobayashi & Nagaoka (1992), Wilde & Fujino (1998),
Wilde, Fujino & Kawakami (1999) and Fujino (2002) who attempted to use either
active or passive control to alleviate the effects of wind-induced forces. Although a
detailed description of this method is beyond the scope of this book (the interested
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reader is referred to Tiffany & Adams (1988)), it should be appreciated that removal
of the iterative step in the methodology comes at the cost of increasing the size
of the resulting matrices. Indeed, new eigenvalues appear as part of the solution –
these being associated with the functions describing the aerodynamic forces – and
thus, it is necessary to separate out the eigenvalues which are true characteristics
of the system from those which are associated with the new representation of the
aerodynamics.

No matter which method is used to solve the equations, if the complete form
of the aerodynamics given by equations (2.83a, b) is employed, there are eight
aerodynamic derivatives which must be determined experimentally, and given that
these are functions of the frequency of oscillation, it is apparent that considerable
experimental data is required prior to any theoretical analysis. However, Bartoli
& Mannini (2008) have shown that for structural parameters typical of real bridge
decks the instability is dominated by the aerodynamic derivatives H∗

1 , A∗
2 and A∗

3,
and in some cases by H∗

1 and A∗
2 only. These results are significant in two ways: first,

the amount of experimental data required is reduced considerably; second, these
results suggest that the instability is dominated by the direct aerodynamic derivatives
and that the coupling terms are less important. It is worth noting that it is much
more difficult to make accurate measurements of the coupling terms than the direct
terms.

The initial work of Scanlan considered the bridge to be sufficiently rigid for
in-plane or swaying motion, compared with the vertical and torsional directions,
such that it could be ignored; this, of course, is exactly the same as is typically
done for the analysis of wing sections. However, as bridges have become more
flexible, it has become apparent that, in some cases, the in-plane motion may not
be negligible and can have an effect on the stability of the bridge. An example
showing the importance of in-plane motion is given by Miyata (2003); some results
are reproduced in Figure 2.59 showing considerable in-plane motion of an aeroelastic
wind-tunnel model of the Akashi Kaikyo Bridge. To account for this, an in-plane
equation must be added to equations (2.82a, b); thus, the complete set of equations
is now given by

m
[
ÿ + 2ζy ωy ẏ + ω2

y y
]

= L, (2.87a)

I
[
α̈ + 2ζα ωα α̇ + ω2

αα
]

= M, (2.87b)

m
[

p̈ + 2ζp ωp ṗ + ω2
p p
]

= D, (2.87c)

where p is the in-plane displacement of the section, ωp and ζp are the natural struc-
tural frequency and the structural viscous damping factor in the in-plane direction,
D is the drag force on the section and all other terms are as defined with respect to
equations (2.82a, b). The additional complications when considering the unsteady
aerodynamic forces on the right-hand side of these equations are: first, that it is
necessary to account for the drag, D, and second, that the lift, L, and moment, M,
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Figure 2.59. Motion of the 1/100 scale aeroelastic model of the Akashi Kaikyo Bridge: (a)
motion of bridge at onset of flutter; (b) time history response at mid-point of centre span
(Miyata 2003).

will be functions of the in-plane motion. Hence, in their most complete form the
aerodynamic forces become

L = 1
2
ρV 2B

[
KH∗

1
ẏ
V

+ KH∗
2

Bα̇

V
+ K2H∗

3 α + K2H∗
4

y
B

+ KH∗
5

ṗ
V

+ K2H∗
6

p
B

]
,

(2.88a)

M = 1
2
ρV 2B2

[
KA∗

1
ẏ
V

+ KA∗
2

Bα̇

V
+ K2A∗

3α + K2A∗
4

y
B

+ KA∗
5

ṗ
V

+ K2A∗
6

p
B

]
,

(2.88b)

D = 1
2
ρV 2B

[
KP∗

1
ṗ
V

+ KP∗
2

Bα̇

V
+ K2P∗

3α + K2P∗
4

p
B

+ KP∗
5

ẏ
V

+ K2H∗
6

y
B

]
.

(2.88c)

The lift and moment equations contain two new aerodynamic derivatives each,
and there are six aerodynamic derivatives for the drag equation; hence, in total,
there are now eighteen aerodynamic derivatives which are required for a complete
description of the unsteady aerodynamic forces. (It should be noted that equations
(2.88a, b, c) are not consistent with (2.83a, b), the difference being the factor of 2 in
the expressions for L and M. Hence, the aerodynamic derivatives of equations (2.88a,
b, c) are not the same as either H∗

i (K), A∗
i (K), i = 1–4 used in equation (2.83a, b)

or H̃
∗
i (K), Ãi(K), i = 1–4 as discussed below (2.83a, b); this again indicates the need

for extreme caution when using data from the literature.)
Given this vast amount of required data, it is not surprising that some authors

have used physical reasoning to conclude that some of the aerodynamic derivatives
will be very small and can be neglected. For example, Miyata (2003) considers a
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Figure 2.60. Change of aeroelastic response in the torsional direction of the 1/100 scale
aeroelastic model of the Akashi Kaikyo Bridge with wind-tunnel speed: (a) aeroelastic log-
arithmic decrement, δ, (negative δ implying an unstable system); (b) aeroelastic frequency
(Miyata 2003).

simplified set of equations for the aerodynamic forces, where the effect of in-plane
motion on L and M and the effect of vertical motion on D are ignored; hence,

L = 1
2
ρV 2B

[
KH∗

1
ẏ
V

+ KH∗
2

Bα̇

V
+ K2H∗

3 α + K2H∗
4

y
B

]
, (2.89a)

M = 1
2
ρV 2B2

[
KA∗

1
ẏ
V

+ KA∗
2

Bα̇

V
+ K2A∗

3α + K2A∗
4

y
B

]
, (2.89b)

D = 1
2
ρV 2B

[
KP∗

1
ṗ
V

+ KP∗
2

Bα̇

V
+ K2P∗

3α + K2P∗
4

p
B

]
. (2.89c)

Using expressions of this form for the aerodynamics, some results obtained by Miyata
for the torsional response of a wind-tunnel model of the Akashi Kaikyo Bridge
are reproduced in Figure 2.60. These results, in particular the torsional damping
presented in Figure 2.60(a), show that as wind speed is increased there is a significant
difference between the experimental and theoretical results when only the lift and
moment aerodynamics are accounted for, and that this difference can be reduced
considerably via the addition of the drag terms.

Some recent effort has gone into obtaining the aerodynamic derivatives using
numerical methods. For example, Larsen (1998) uses a discrete vortex method to
obtain the aerodynamic derivatives for two different cross-sections. A comparison
between his results and the experimental data of Scanlan & Tomko (1971) shows
the numerical data to be reasonably good, but probably not good enough to obtain
accurate stability predictions. The coupled fluid-structural problem around a simpli-
fied bridge deck was also considered by Frandsen (2004), assuming the flow to be
laminar.

A number of authors have considered the possibility of using either active or
passive control to raise the flutter speed of bridge sections. For example, Kobayashi &
Nagaoka (1992) considered active control using flat-plate airfoils, with chord lengths
of 10% of the bridge deck, placed close to the leading and trailing edges of the bridge.
Using aerodynamic derivatives obtained via Theodorsen’s analysis (assuming the
flow to remain attached) they predicted that flutter could be eliminated with the
appropriate active control; wind-tunnel experiments using a two-dimensional model
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Figure 2.61. Variation of flutter speed for bridge-deck as a function of control gain: (a) control
pattern 1, (b) control pattern 2 (Fujino 2002).

suggested that, although flutter could not be totally eliminated, the flutter speed
could be doubled compared with when there was no active control. Wilde & Fujino
(1998) also considered a very similar configuration and suggested that active control
is capable of raising the flutter speed to any desired value.

Wilde, Fujino & Kawakami (1999) and Fujino (2002) considered the possibility
of using passive control to raise the flutter speed. Their control system consisted of a
pendulum attached to the centre of gravity of the bridge deck connected to control
surfaces positioned at the leading and trailing edges of the deck. With the aid of aero-
dynamic derivatives based on Theodorsen theory, an appropriate phase difference
between the pendular motion and the control surface displacement was determined.
Two different control patterns were considered, in the first (control pattern 1) the
direction of rotation of the two control surfaces was the same, whereas in the second
(control pattern 2) the two control surfaces rotated in opposite directions. Some
results obtained by Fujino are shown in Figure 2.61, where they are compared with
experimental results; the theoretical results for control pattern 2 indicate that, when
the control gain is greater than approximately 0.5, the instability switches from being
dynamic to static (divergence). Although there is some disagreement between the
experimental and theoretical results, it is apparent that, depending on the control
gain, a significant increase in the flutter speed of the bridge can be achieved.

2.12 Concluding Remarks

As is often the case, different disciplines of engineering owe their existence to
either persistent problems defying solution via conventional means or to spectacular
failures that could not be ignored. The latter provided the impetus for the genesis of
Wind Engineering. Specifically, one can identify the destruction of the old Tacoma
Narrows Bridge in 1940 and the collapse of the cooling towers at Ferrybridge in 1965
(CEGB 1966) as the two major events triggering the systematic study of wind effects
on structures, which eventually blossomed into Wind Engineering.

In fact, again, as is often the case, such mishaps do not come without warning.
A precursor to the Tacoma Narrows Bridge disaster may be considered to be the
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Brighton Chain Pier collapse in 1833 and again in 1836 (Russell 1841; Scott 2001).
The collapse of this bridge also occurred because of large-amplitude wind-induced
torsional oscillation. This bridge too collapsed in broad daylight, and “Lt. Col.
William Reid recorded its last moments in meticulous detail, but the full signific-
ance of his sketches and notes would not be appreciated for more than a century"
(Scott 2001). One of the sketches shows a side-elevation view of the bridge with the
top of the deck showing over half the span and the underside over the other half,
as reproduced in Russell (1841) and Simiu & Scanlan (1996)! The collapse of Ellet’s
Wheeling Bridge in 1854, in a similar torsional oscillation, and other occurrences are
described in Scott (2001).

Some discussion on the Tacoma Narrows Bridge – the Galloping Gertie, as she
was nicknamed by the locals – has already been given in Sections 2.1 and 2.11. It
would have been appropriate to provide somewhere in this chapter an account of
what exactly happened to the bridge on 7 November 1940. However, as mentioned
already in Section 2.11, things are not clear. What seems fairly definite from the
film which recorded the catastrophe,∗ is that the bridge first vibrated transversely
at 0.62 Hz with relatively modest amplitude; then switched to a large-amplitude
torsional mode at 0.23 Hz, in which it failed (Blevins 1990; Scott 2001). The “modest”
transverse amplitude was, in fact, ∼0.6 m, large enough to necessitate closure of the
bridge. Such transverse oscillations, though worrying, occurred several times; they
were responsible for the Galloping Gertie sobriquet, and they were the delight of
adventurous motorists and pedestrians. It was the ∼ ±35◦ torsional oscillation that
was unprecedented, and it was the one that destroyed the bridge.

Tests on a model of the bridge (ASCE 1961) give two ranges of transverse vibra-
tion with vortex-shedding lock-in, before the torsional mode is excited at higher wind
velocity, again with lock-in; see Blevins (1990; figure 4-15). However, even today the
precise mechanism of excitation and the sequence of oscillatory behaviour culmin-
ating in the torsional oscillation (clearly visible in Figure 2.4) leading to collapse
are uncertain, even though different plausible scenaria exist. One of the problems is
the uncertainty in some of the pertinent data, notably the wind speed and direction.
Thus, as recently as 2003, a study on why torsional flutter occurred when it did and
not earlier, as it should have done, appeared (Matsumoto et al. 2003a), suggesting this
was due to “interference” between transverse and torsional motions. So, we shall
content ourselves with citing some of the numerous pertinent references, namely
Farquharson (1949–1954), Smith & Vincent (1950), ASCE (1955, 1961), Steinman
& Watson (1957), Scruton (1981), Scanlan (1980, 1990), Billah & Scanlan (1991),
Kubo, Hirata & Mikawa (1992), Larsen (2000a, b), Scott (2001), Miyata (2003) and
Matsumoto et al. (2003a).

It is of interest that, as in the case of fluidelastic instability of cylinder arrays (Sec-
tion 5.1) and ovalling oscillation of chimney stacks (Chapter 6), early on, vortex shed-
ding was considered to be the culprit for the Tacoma Narrows Bridge disaster (von
Karman & Dunn 1952; Beckett 1969). With the present knowledge on ILEV
and AEVS (Komatsu & Kobayashi 1980; Naudascher & Wang 1993; Deniz &
Staubli 1997) and the observation of vortex-shedding lock-in in the ASCE model

∗ In fact, the bridge was under constant observation by transit and ciné-film camera since its opening
on 1 July 1940, over the whole four months of its life (Farquharson 1949–1954, part I, chapter III).
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experiments, the thinking on the subject may have come full circle: vortex shedding
may have played an essential role after all (Larsen 2000a, b).

In this chapter we have presented a variety of aeroelastic and hydroelastic
phenomena which can conveniently be grouped under the umbrella of galloping.
Yet, several topics have been left out, even though related to galloping, e.g. coupled
galloping conductors and the possibility of chaotic motions (Cook & Simiu 1990).

We shall close the chapter by listing some of the methods proposed for suppress-
ing galloping oscillations. Methods based on modifying the fluid mechanics include
the use of fairings (Wardlaw 1971, 1980, 1990; Nagao et al. 1993), side plates (Nau-
dascher et al. 1981) and oscillating flaps (Mizota & Okajima 1992). Methods based on
increased damping include the use of vibration absorbers (Irwin, Cooper & Wardlaw
1976), tuned mass dampers (Simiu & Scanlan 1996) and nutation dampers (Modi,
Welt & Seto 1995). Alleviation of wind-induced vibration, in general, is discussed,
e.g. in Blevins (1990), Naudascher & Rockwell (1994), and Wardlaw (1990) specific-
ally on bridges. See also discussion in Section 2.11 on active- and passive-control
methods for bridges.



3 Vortex-Induced Vibrations

The presence of a chapter on vortex-induced vibrations (VIV) in a book on cross-
flow-induced instabilities may seem surprising. It fact, it is often emphasized in
books on flow-induced vibrations that VIV fundamentally differs from fluid-elastic
instabilities (Chen 1987; Blevins 1990; Dowell 1995; Simiu & Scanlan 1996). Still,
most reviews have discussed the effect of structural motion on the fluid forces in-
ducing VIV (Griffin 1985; Parkinson 1989; Pantazopoulos 1994; Hori et al. 1997;
Sarpkaya 2004; Williamson & Govardhan 2004; Gabbai & Benaroya 2005); this
brings the topic closer to fluid-elasticity, that is discussed throughout this book.
Moreover, some recent work has explicitly treated VIV as an instability (Cossu &
Morino 2000; de Langre 2006). Literature on vortex-induced vibrations is vast and
continuously growing, both on fundamental issues and on methods for their predic-
tion in engineering, where applications are numerous. Here, we shall focus on the
essential ideas underlying the phenomenology and models of VIV, particularly in
relation to fluidelastic instabilities.

Notation used in Chapter 3

Cylinder diameter : D
Free-stream velocity : U

Reduced flow velocity : Ur = U/fD, f being the frequency in Hz

Lateral displacement of cylinder : y

Mass ratio : m∗ = mS/(ρπD2/4), defined in
equation (3.23), mS being the cylinder mass
per unit length and ρ the fluid density

3.1 Elementary Case

To illustrate first the physics of VIV we consider the experiment described in Khalak
& Williamson (1996). A rigid cylinder is subjected to a uniform cross-flow of water.
It is allowed to vibrate in the cross-flow direction only, through springs, as shown
Figure 3.1.

The characteristics of the cylinder are its diameter D, length L and mass M. In
water but without flow, the frequency of oscillation of the cylinder is f 0

s . As the flow

105
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Force balance

Figure 3.1. Elastically supported rigid cylinder in cross-flow (Khalak & Williamson 1996).

velocity is varied, the motion of the cylinder is analysed in terms of its amplitude A
and the main frequencies in its spectrum.

Two essential dynamical features are observed, as seen in Figure 3.2: a significant
oscillatory motion, of about a diameter in magnitude, in a limited range of velocities,
and simultaneously, a significant change in the frequency. This motion is therefore not
the result of a galloping instability as described in Chapter 2, because of the limited
range of velocities where it occurs. A more detailed analysis shows that one of
the frequencies present in the spectrum is actually that of flow oscillations in the
wake, even in the range of velocities where the cylinder barely moves.

To investigate this phenomenon we may initially use a simple model described
in de Langre (2006). The cylinder motion in the direction transverse to the flow is
assumed to follow that of an oscillator:

Mÿ + Ky = 0, (3.1)

where K is the stiffness of the spring and M is the inertial mass of the system such that
M = K/(2π f 0

s )2. The lift forces acting on a stationary cylinder have been measured
extensively in the literature. Following Norberg (2003), we model it as

FL(t) = 1
2
ρU2DLCL(t), (3.2)

where the dimensionless lift coefficient varies, as a first approximation, as CL(t) =
C0

L sin(2π f vst) with C0
L = 0.3 and f vs = StU/D, where St = 0.2 is the Strouhal num-

ber. Note that this oscillating lift coefficient satisfies an oscillator equation

C̈L + (2π f vs)2CL = 0. (3.3)

This is the central idea of the wake oscillator model, refer for instance to Hartlen &
Currie (1970), discussed at the end of this chapter. The equation of motion for the
cylinder therefore reads

K
(2π f 0

s )2
ÿ + Ky = 1

2
ρU2DLCL(t). (3.4)
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Figure 3.2. Amplitude and frequency of response of an elastically supported cylinder in
cross-flow (Khalak & Williamson 1996).

Because the motion of the cylinder in Figure 3.2 is of the order of a diameter,
it can be expected to significantly modify the vorticity dynamics leading to lift. This
may be taken into account by forcing the equation of lift, equation (3.3), as follows
(Facchinetti et al. 2004a):

C̈L + (2π f vs)2CL = α
ÿ
D

. (3.5)

Here, the coefficient α may be derived by analysing the case where the motion of
the cylinder is prescribed as y(t) = y0 sin(2π f f t). Using equation (3.5), the resulting
amplitude of lift oscillation is then

CF
L = αy0/D

1 − (f f /f vs)2
. (3.6)
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This amplitude becomes larger than that of the existing free lift when CF
L >

C0
L. This defines a range of forcing frequency f f which may be compared with

experimental data, for instance those in Blevins (1990), where the lift frequency
is found to be driven by the forcing frequency. Typical experimental results show
that, for y0/D = 0.1, the range of frequency where this happens is approximately
0.8 < f/f vs < 1.2. Using equation (3.6) this leads to α � 4C0

L.
Using (3.1), (3.2) and (3.3) the set of equations representing the coupled dynam-

ics of the oscillator and of the lift variable read

K
(2π f 0

s )2
ÿ + Ky = 1

2
ρU2DLCL(t), (3.7)

C̈L + (2π f vs)2CL = α
ÿ
D

. (3.8)

A straightforward modal analysis of this set of linear equations leads to the frequen-
cies, shown in Figure 3.3(a), where they are compared with the experimental data.
It is found that in a range near f vs = f 0

s only one frequency exists in the system, as
in the experiments. In this same range, as seen in Figure 3.3(c), there exists a mode
with a negative damping, i.e. a mode which is unstable. This instability is identical in
form to coupled-mode flutter. This can be related to the sudden change of amplitude
found in the experiments; see Figure 3.3(b).

The elementary case presented here suggests that vortex-induced vibrations are
a true case of flow-induced instability, resulting from a coupling between the motion
of the structure and the lift dynamics.

Moreover, these vibrations can be modelled using experimental data obtained
from the lift dynamics on a stationary cylinder and the lift dynamics on a cylinder in
forced oscillation.

3.2 Two-Dimensional VIV Phenomenology

Vortex shedding is the result of a complex three-dimensional fluid-dynamics process;
see for instance Williamson (1996). When the body of interest is slender (Figure 3.4),
considering a cross-section and the two-dimensional fluid dynamics in this section
is a first step in the understanding of vortex shedding and of the coupling with the
motion of the body. This two-dimensional configuration has been analysed by many
authors, as in the previous chapter for galloping. Numerical simulations are often
based on two-dimensional assumptions, for reasons of simplicity; see for instance
Anagnostopoulos (2002), Al Jamal & Dalton (2005) and Mittal & Singh (2005). Sim-
ilarly, experimental data, three-dimensional by nature, are often analysed through
a two-dimensional approach, both in terms of flow visualisation and load analysis.
Finally, the two-dimensional approximation is presently the basis of most models of
vortex-induced vibrations. It is therefore a necessary step in the presentation of VIV.

The fundamental issues of vortex shedding from two-dimensional bluff bodies,
in general, and circular cylinders, in particular, are presented in Sections 3.2.1 and
3.2.2, respectively. The effects of motion of the body on the wake are detailed in
Section 3.2.3. In Section 3.2.4 we show how an elastic body interacts with vortex
shedding.
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Figure 3.5. Flow past a bluff body at low Reynolds number: creeping flow.

3.2.1 Bluff-body wake instability

We consider a flow of uniform velocity U on a bluff body of arbitrary shape (Fig-
ure 3.4(b)). Because of the existence of solid boundaries in the flow, viscous forces
play a role; they are scaled by the Reynolds number

Re = U�

ν
, (3.9)

where ν is the fluid viscosity and � is a length scale still to be defined.
In the limit of small Reynolds numbers, viscous effects are dominant in the flow

dynamics near the solid. This results in streamlines that adapt to the body shape,
referred to as creeping flow (Figure 3.5). Here, vorticity produced at the boundary
is totally dissipated in the vicinity of the body. The flow profile downstream of the
bluff body is again uniform and the flow pattern does not vary with time.

Conversely, at high Reynolds numbers the effect of viscosity is dominant only
at a very small scale near the boundary. The high level of produced vorticity is not
dissipated in the vicinity of the bluff body and the flow profile downstream of the
bluff body shows two shear layers (Figure 3.6).

A shear layer is naturally unstable, via a purely inviscid mechanism (Ho &
Huerre 1984). Such an instability results in the production of vortices, the spacing of
which depends on the transverse scale where shear exists. Here, two shear layers of
opposite vorticity are produced by the two edges of the bluff body. These two unstable
shear layers interact in a coupled instability. This instability has been extensively

(b)

(a)

Figure 3.6. Flow past a bluff body at high Reynolds number:
(a) two shear layers over the flow profile; resulting in (b)
vortex shedding.



3.2 Two-Dimensional VIV Phenomenology 111

U
L

L

L

L

L

0.14

St

0.13

0.20

0.16

0.21

Figure 3.7. Typical values of the Strouhal number St, equation
(3.10), for some sections at large Reynolds number.

analysed theoretically, experimentally and numerically. It results in large alternating
vortices being created, usually referred to as vortex shedding. The first observations
and analysis of this phenomenon were made by Bénard (1908) and von Kármán
(1911), respectively. This is a global instability in the sense that the whole wake is
affected. It is very robust: its source is the vorticity continuously produced by the bluff
body, but detailed analysis of the dynamics of the instability shows that upstream
perturbations have but a small effect (Huerre & Monkewitz 1990). The alternating
vortices define a self-sustained oscillation with a very well defined dominant vortex-
shedding frequency, f vs. If this frequency is assumed to depend on the flow velocity U
and on a typical dimension of the bluff body, say �, elementary dimensional analysis
leads to

f vs = St
U
�

, (3.10)

where St is called the Strouhal number. In the limit of large Reynolds numbers (here
103), typical values of this dimensionless number are given in Figure 3.7 for several
section shapes. These values are naturally related to the particular choice of the
reference length scale � which is generally taken as the cross-flow frontal dimension
of the body. The order of magnitude of the Strouhal number based on this cross-flow
dimension is St � 0.2.

As emphasized above, vortex shedding is not related to the details of the flow
near the bluff body itself, but to the flow profile created by the bluff body: computa-
tions (Pier & Huerre 2001) and even experiments (Afanasyev & Korabel 2006) have
shown that vortex shedding with all its characteristics exists without the presence
of a bluff body, provided an appropriate flow profile is considered! The relation to
the shear-layer instability helps explain why vortex shedding, and therefore vortex-
induced vibrations, can be observed on any shape of bluff body. This also gives
grounds for the simple idea that the shedding frequency should be defined using
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Figure 3.8. Universal Strouhal number St′, equa-
tion (3.11), based on the characteristics of the shear
layer emanating from the bluff body (Roshko 1955).

characteristics of this flow: an alternative definition of the Strouhal number would
be

f vs = St′
U ′

L′ , (3.11)

where U ′ and L′ are a velocity and a dimension, both referring to the flow pro-
file dowstream of the bluff body (Roshko 1955; Anderson & Szewczyk 1996;
Zdravkovich 2003). By doing so, the shedding frequencies of various sections can be
related by means of a universal Strouhal number, St′ (see Figure 3.8).

We have here briefly described two limit cases: that of small Reynolds num-
bers and that of large Reynolds numbers where vortex shedding takes place. The
transition from one regime to the other depends on the body shape, which affects
the Reynolds number above which vortex shedding exists. Similarly, the effect of
Reynolds number on the characteristics of the global wake instability, such as the
Strouhal number, is complex and section-dependent. We shall from now on con-
sider the particular case of a circular cross-section, which is of utmost practical and
theoretical interest.

3.2.2 Wake instability of a fixed cylinder

The much simplified two-dimensional case of uniform flow on a fixed cylinder has
been extensively studied since the work of Bénard (1908) and von Kármán (1911).
Literature on experimental data, numerical studies and theoretical analysis is more
than abundant; it can be found in books and reviews (see for instance Williamson
(1996), Chen (1987), Zdravkovich (2003), Sumer & Fredsøe (1997) and Norberg
(2003)). As noted in the previous section, the dimensionless number that controls
most of the aspects of the wake dynamics is the Reynolds number. We now summar-
ize the main features of the phenomenology of vortex shedding from a stationary
cylinder, with the aim of understanding the coupling with motions of the cylinder, as
will be analysed in the forthcoming sections.
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FL(t)

D

U

Figure 3.9. Fluctuating lift resulting from
vortex shedding on a fixed cylinder in
steady uniform flow.

In this perspective, the load on the cylinder resulting from vortex shedding needs
to be quantified. As fluctuations of vorticity develop in the unstable wake, fluctuating
forces and moments result on the cylinder. We consider here only the component
of the force per unit length transverse to the direction of the flow, which is the lift
force FL(t), as shown in Figure 3.9. We may define its dimensionless form, which is
the time-varying lift coefficient,

CL(t) = FL(t)
1
2ρU2D

, (3.12)

where ρ is the fluid density and D is the diameter of the cylinder. How to define a two-
dimensional fluctuating load F (t) from a three-dimensional experiment or simulation
of vortex shedding is an important issue in relation to correlation effects. Here, again,
the fictitious configuration of two-dimensional vortex shedding is presented first for
the sake of clarity.

The fluctuating lift coefficient CL(t) is the load image of the fluctuating vorticity
in the wake. Because a dominant frequency exists there, which is the shedding
frequency, it can be expected to be observed also in load fluctuations. Following
Norberg (2003), we therefore characterize here the lift coefficient by its dominant
frequency f L and its root mean square (r.m.s.) value Crms

L . Note that it need not be
assumed here that lift is a harmonic function of time, nor that the lift frequency is
identical to the shedding frequency, f vs; see for instance the power spectra of lift
oscillation depending on the Reynolds number in Sumer & Fredsøe (1997). In this
section we use the dimensionless Strouhal number defined as St = f LD/U. The
effect of the Reynolds number on the topology of vortex shedding, on the Strouhal
number and on the r.m.s. lift coefficient is schematically summarized in Figure 3.10.
Several domains may be identified as follows.

(i) For very small Reynolds numbers, Re < 40, no vortex shedding occurs. The
flow pattern ranges from creeping flow to flow with a recirculation bubble. No
Strouhal number can be defined, nor a fluctuating lift.

(ii) Above the critical Reynolds value, when 40 < Re < 300, a laminar state of
vortex shedding develops, with a well-defined von Kármán street of alternating vor-
tices. The resulting Strouhal number increases with Reynolds number (Williamson
1996), as does the lift coefficient.

(iii) In a very wide range, 300 < Re < 106, vortex shedding exists but undergoes
several transitions of topology and dynamics; refer for instance to Zdravkovich
(2003). This results in a complex and not so well-defined evolution of the Strouhal
number and of the lift coefficient.
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Figure 3.10. Effect of the Reynolds number on vor-
tex shedding from a fixed cylinder in uniform flow.
(a) Flow topology; (b) corresponding Strouhal num-
ber; (c) r.m.s. value of the fluctuating lift coefficient;
adapted from Norberg (2003) and Blevins (1990).

(iv) Finally, when Re > 106, a regime of fully turbulent vortex shedding sets in,
with a well-defined Strouhal number and lift coefficient.

These four regimes make a very crude approximation of the succession of two-
dimensional and three-dimensional dynamics. The terminology is not uniformly ac-
cepted among authors; see for instance the summary given in Chen (1987). Other
dimensionless parameters, that scale the effect of the surface roughness of the cyl-
inder or of the turbulence intensity of the upstream flow, influence the properties
of the wake and therefore that of the lift (Sumer & Fredsøe 1997). Suffice it to say
here that vortex shedding, from its onset to very large Reynolds numbers, is not a
uniform process; consequently, the characteristics of fluctuating lift, St and Crms

L , are
strongly Reynolds number dependent.

The effect of vortex shedding is also noticeable on the drag force, in the direction
of the flow, defined by the drag coefficient

CD(t) = FD(t)
1
2ρU2D

. (3.13)

Both the time-averaged value CD and the r.m.s value Crms
D depend on the Reyn-

olds number (Blevins 1990), and the dominant frequency of the fluctuating drag is
typically f D � 2f s. This will be discussed briefly in Section 3.4.2.
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y(t) = A sin(2π ff t)

U
Figure 3.11. Cylinder forced to oscillate trans-
versely to a uniform flow.

3.2.3 Wake of a cylinder forced to move

Considering that displacements in vortex-induced vibrations may be of the order of
one cylinder diameter, the effect of cylinder motion on vortex shedding itself needs
to be assessed. The natural step in that direction is to force the cylinder to move,
following a prescribed law, and to measure the resulting evolution of shedding and
resultant loads (see Figure 3.11). If the prescribed motion is harmonic, say

y(t) = A sin 2π f f t, (3.14)

then two dimensionless numbers can be defined: the reduced amplitude A/D and
the reduced frequency f f /f 0

vs, where f 0
vs is the shedding frequency that would be

observed if there were no motion of the cylinder. Because the Reynolds number also
influences vortex shedding, the presentation of results becomes much more complex.
The frequency of shedding is expected to vary with all three parameters, as will the
lift force, in magnitude and phase.

3.2.3 (a) Pattern of vortex shedding
The dynamics of vortex shedding from a fixed cylinder is further complicated by
the motion of the cylinder. For instance, in the range of 300 < Re < 1000 a detailed
analysis (Williamson & Roshko 1988; Blackburn & Henderson 1999) reveals the
following features, as shown in Figure 3.12.

(i) In a limited range of forcing frequency and amplitude, the shedding pattern
is qualitatively not modified: two vortices of opposite sign are shed in a period of
motion. This is referred to as the “2S” mode (for 2 “single” vortices).

(ii) For higher frequencies and amplitudes, a well-defined distinct mode is ob-
served, whereby two pairs of vortices are shed per period. Because they form in
pairs of opposite vorticity on each side, this is referred to as the “2P” mode (for 2
“pairs” of vortices) (see in Figure 3.12).

(iii) Outside the range of amplitude and frequencies corresponding to these
two regimes, the interaction is much more complex, with for instance nonsymmetric
“P+S” modes; see Williamson & Roshko (1988).

These features certainly depend on the Reynolds number, but they show that the
vortex-shedding process may be significantly altered by the motion of the cylinder,
when the amplitude of motion is of the order of a diameter, and the frequency close
to the original shedding frequency. This is expected to play a role in the coupling
between the wake and a cylinder free to move.
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Figure 3.12. Patterns of vortex shedding depending on the amplitude and frequency of the
forced cylinder motion, adapted from Williamson & Roshko (1988).

3.2.3 (b) Shedding frequency
Even when the pattern of shedding is not modified, the shedding frequency may be
influenced by the motion of the cylinder. At a given Reynolds number, Figure 3.13
shows that this shedding frequency, f vs, may deviate from its nominal value, f 0

vs, when
the forcing frequency, f f , approaches f 0

vs (Sarpkaya 2004). Not only does it leave its
original value, but it also follows closely the frequency of the external forcing. This
phenomenon is referred to as lock-in or wake capture. Note that these terms are also
used in the case of a cylinder free to vibrate, which differs in many aspects, involving
for instance a varying flow velocity instead of varying forcing frequency. The range
of lock-in varies with the amplitude of forcing (see Figure 3.13(a, b)). A summary of
the effect of both dimensionless parameters is shown in Figure 3.14.

1
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0 1
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0

lock-in

f υs =
  f f
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  f f

fυs
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fυs

fυs
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0
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Figure 3.13. Schematic definition of lock-in of the shedding frequency, f vs, on the external
forcing frequency, f f . (a) A/D = 0.05, (b) A/D = 0.25 and Re = 1500; adapted from Sarpkaya
(2004).
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Figure 3.14. Schematic view of the effect of the forcing frequency f f and amplitude A on the
shedding frequency f vs.

3.2.3 (c) Lift force
Knowledge of the lift force acting on a cylinder forced to oscillate in flow is essential
for the prediction of the motion of a freely oscillating cylinder. A large number of
data is available. The two dimensionless numbers A/D and f f /f 0

vs, as well as the
Reynolds number, affect this force. Because this data is commonly used for the
prediction of the effect of flow on a cylinder with a given free frequency, the reduced
velocity is also used as an alternative dimensionless parameter, in place of f f /f 0

vs,

Ur = U
f f D

= 1
St

(
f f

f 0
vs

)−1

. (3.15)

Note that here the frequency is that of a forced motion, not that of a free
motion, as in most applications in which the reduced velocity is utilized. For a
given displacement of the cylinder, y = A sin(2π f f t), the resulting lift force is not
necessarily harmonic. Still, it is possible to define its amplitude F 0

L and phase ϕ at
that same frequency by standard Fourier analysis, so that it is approximated as

FL(t) = F 0
L sin(2π f f t + ϕ). (3.16)

Both amplitude and phase depend on the dimensionless numbers defined above.
There exist in the literature several ways of presenting these dependencies, which
are now summarized.

(i) The simplest presentation refers to the modulus and phase of the lift coefficient
CL(t), as defined in equation (3.2). By stating

CL(t) = CL sin(2π f f t + ϕ), (3.17)
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both coefficients CL and ϕ are expected to depend on the dimensionless parameters,
A/D and f f /f 0

vs (or equivalently Ur). The main features of this dependence are shown
on Figure 3.15, adapted from Carberry et al. (2005). For a given amplitude of motion,
say A/D = 0.5, the magnitude of the lift force CL in Figure 3.15(a) changes abruptly
when the frequency of motion approaches the frequency of natural shedding. Sim-
ultaneously, its phase ϕ jumps from out-of-phase to in-phase (Figure 3.15(b)). Both
features show a profound change in the nature of the force, which will appear more
clearly in other presentations in what follows. When considering a given frequency
of motion equal to that of shedding, f f /f 0

vs = 1, the effect of the amplitude of motion
on the amplitude of lift is also strong: Figure 3.16 shows that the fluctuating lift is
first enhanced by cylinder motion, up to approximately A/D = 0.5; moreover, the
fluctuating lift almost disappears near A/D = 1.5.

(ii) Alternatively, the data on lift may be presented in terms of phased lift coef-
ficients. This formulation, most commonly used, is of interest in understanding the
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Figure 3.16. Effect of the amplitude of motion on the
amplitude of the fluctuating lift coefficient; from Sumer
& Fredsøe (1997).

energy balance that controls vortex-induced vibrations. Here, the same lift coefficient
is written as

CL(t) = (CL cos ϕ) sin(2π f f t) + (CL sin ϕ) cos(2π f f t). (3.18)

The phased coefficients (CL cos ϕ) and (CL sin ϕ) multiply terms that are, respectively,
in phase with the displacement y (or equivalently the inertia −ÿ) and with the velocity
ẏ. The first one is therefore related to conservative fluid forces and the second
one to nonconservative fluid forces that may result in a positive or negative work
over a cycle of motion. The phased coefficients (CL cos ϕ) and (CL sin ϕ) have been
used with various sign definitions and notations. They correspond, for instance,
respectively, to Ca and −Cdh in Sarpkaya (1979), to Cmh and CD in Sarpkaya (2004),
to −Cla and −Clv in Hover et al. (2000) and to CLm and CLD in Molin (2002). In Figure
3.17, from Sarpkaya (1979) at A/D = 0.5, it is shown that most of the evolution
of the amplitude of the lift coefficient comes from the lift in phase with cylinder
displacement. The phase shift near f f /f 0

vs = 1 is also seen to originate from the
change of sign of the velocity-phased lift. When the velocity-phased lift coefficient
is positive, the work of lift over the cycle is positive. The same data may also be

1 10.5 0.5

0

1 1

0

0 0

CLcosϕ

ff /fυsff /fυs

– CLsinϕ–

Figure 3.17. Effect of the frequency of forcing on the phased lift coefficients, equation (3.18);
adapted from Sarpkaya (2004).
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Figure 3.18. Same data as in Figure 3.17, but using Ur = f 0
vs/(Stf f ) on the abscissa.

plotted as a function of the reduced velocity Ur (Figure 3.18). The abrupt changes
are now found near Ur = 1/St � 5. The effect of the amplitude of motion may be
analysed from level plots of the phased coefficients, as in Figure 3.19. Whereas the
conservative effect is not significantly affected by the amplitude of motion, it is the
nonconservative part which will allow a limit cycle to be established.

(iii) Finally, the data may be presented in terms of inertia and drag coefficients,
as in Figure 3.20. Here, the force is expressed in terms of that acting in still fluid by
stating (Sarpkaya 1979; Molin 2002; Sumer & Fredsøe 1997)

CL(t) = −ρ

(
π

D2

4

)
CMÿ − 1

2
ρDCDẏ|ẏ|. (3.19)

By inserting y(t) in the above equation we have (Sarpkaya 1979)

CM = (CL cos ϕ)
Ur2

2π3(y0/D)
. (3.20)

As expected, the limit for small reduced velocity in Figure 3.20(a) is that in still fluid,
namely CM = 1. This is discussed in more detail in Section 3.4.1 on added mass.

3.2.4 Cylinder free to move

3.2.4 (a) Parameters
Instead of forcing the motion of the cylinder, we now consider the case where
the motion is a result of its interaction with the wake. The most common case is
when the dynamical system can be modelled as a linear oscillator throughout the
range of amplitude of interest. It should be noted that this is a constraint made on
laboratory set-ups to make the analysis of data and comparison with models simpler.
In practice, the range of amplitude of motion that may arise from VIV often requires
nonlinear effects to be accounted for in the structural dynamics of the bluff body.
Moreover, as discussed in the last section of this chapter, considering a single degree
of freedom is certainly restrictive for three-dimensional systems where large sets
of modes can contribute to the response. Notwithstanding this, the model where
the cylinder dynamics can be modelled via the system of Figure 3.21 is the basis of
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Figure 3.19. Level of phased lift coefficients, equation (3.18), as a function of both reduced
frequency and reduced amplitude of motion. (a) Coefficient in phase with the displacement,
CL cos ϕ; (b) coefficient in phase with the velocity, CL sin ϕ. Adapted from Hover et al. (1998).

the understanding of the phenomenology of coupled motion of a cylinder and its
oscillating wake since the early work of Feng (1968).

The free dynamics of the cylinder is now assumed to be defined by the cylinder
mass mS, natural frequency in still fluid, f 0

s , and damping in the absence of fluid ηS.
Alternative sets can be used, such as with the stiffness kS instead of the frequency,
or the frequency of free motion in the absence of fluid. The motion of the cylinder,
y(t), that results from the coupling with the oscillating wake is here analysed in its
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Figure 3.20. Inertia and drag coefficients, equation (3.19), adapted from Molin (2002), show-
ing a noticeable effect of the amplitude of forced motion, A/D.

simplest characteristics: the amplitude A and its dominant frequency f s. In addition,
the dominant frequency of vortex shedding, f vs, which can be measured from velocity
fluctuations in the wake, is also discussed, particularly in relation to the cases treated
in the previous sections. At this stage, because of the large number of parameters
involved, some dimensional analysis is necessary. The results, A, f s, f vs, are functions
of the parameters describing the characteristics of the fluid and of the structure. This
reads, in a general form

[A, f s, f vs] = function (U, ρ, ν; D, mS, f 0
s , ηS). (3.21)

Using Buckinham’s π-theorem, a dimensionless form of this same relation reads[
A
D

,
f s

f 0
s
,

f vs

f 0
s

]
= function

(
UD
ν

,
U

f 0
s D

,
mS

ρπD2/4
, ηS

)
. (3.22)

The dimensionless groups on the right-hand side

Re = UD
ν

, Ur = U
f 0

s D
, m∗ = mS

ρπD2/4
, ηS, (3.23)

are, respectively, the Reynolds number, the reduced velocity, the reduced mass and
the damping coefficient in the absence of fluid. Because seven dimensionless groups
are involved here, many alternative choices may be, and have been, used in the
literature for comparison with models or in comparison between experiments. This

csks

D
U

ms

y(t)
Figure 3.21. Cylinder free to move, considered as a linear oscillator.
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results in a large set of possible graphical representations where one parameter is
presented as a function of another. Here, we seek to point out the main features of
the phenomenology by relating these graphs.

3.2.4 (b) Dynamics of a given mechanical system
For a given cylinder with dimensional caracteristics D, mS, f 0

s , ηS in a given fluid
with properties ρ, ν, equation (3.22) shows that the effect of the flow velocity can be
analysed using the Reynolds number and the reduced velocity only. Disregarding first
the effect of Reynolds number, a typical evolution of the dimensionless amplitude
with the reduced velocity is shown in Figure 3.22(a).

The most important feature is the large amplitude of motion in the range of
reduced velocity of approximately 5 to 10. This must be considered with the sim-
ultaneous evolution of the frequency of motion and of shedding (Figure 3.22(b))
A reference line is shown as the frequency of free shedding from a fixed cylinder,
defined by the Strouhal law f 0

vs = StU/D, so that f 0
vs/f 0

s = StUr. Another line shows
the frequency of free motion, f s/f 0

s = 1. Near StUr = 1 the frequency of (free) shed-
ding equals the frequency of (free) motion. The results on shedding and motion
frequencies show that, outside the range 5 to 10 mentioned above, they both follow
the Strouhal law, while inside the range 5 to 10 they deviate from this law, and their
common dynamics seems to be “captured” by the frequency of free motion. This is
akin to lock-in, as defined in the previous section in the case of a forced wake. The
effect of the mass ratio m∗ is essential and will be discussed in the next section in
relation to specific models.
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3.2.4 (c) Effect of the cylinder parameters on the main features of VIV
From the results of Figure 3.22, two key quantities can be extracted in terms of
practical application: the maximum amplitude of motion Amax, presumably reached
near Ur = 1/St, and the range of reduced velocity where lock-in occurs, also in the
vicinity of Ur = 1/St. From the dimensional analysis presented in Section 3.2.4(a),
these are expected to depend on Re, m∗, ηS. Disregarding the effect of Reynolds
number again, the maximum amplitude is often related to both mass and damping
simultaneously by using a combined parameter such as the Scruton number or
equivalently the Skop-Griffin number, defined, respectively, as

Sc = π(1 + m∗)ηS/2; SG = 2π3St2(1 + m∗)ηS = 4π2St2Sc. (3.24)

In Figure 3.23(a) it appears that the maximum amplitude does not exceed one
or two diameters, even for very low mass-damping. Moreover, for heavier or more
heavily damped systems the motion is significantly reduced. Simultaneously, the
range of lock-in shown in Figure 3.23(b) decreases with increasing Skop-Griffin
number. These two essential features of self-limited oscillation amplitude and limited
lock-in range are of practical importance, and they show that VIV is clearly distinct
from galloping instabilities.

Finally, Figure 3.24 shows that Figures 3.22(a) and 3.23(a) and (b) can be under-
stood as the projection of a unique VIV surface on orthogonal planes. This surface
shows that motion can only be expected in a limited region of the set of paramet-
ers characterising the flow and the cylinder, namely the reduced velocity and the
Skop-Griffin number.

The effect of the Reynolds number on these results is complex, as can be expected
from the dependence of the wake dynamics on Reynolds numbers (Figure 3.10).
For instance, the maximum amplitude at low Skop-Griffin number, Figure 3.23(a),
is actually dependent on the Reynolds number (Klamo et al. 2005; Govardhan &
Williamson 2006).

3.3 Modelling Vortex-Induced Vibrations

3.3.1 A classification of models

From the phenomenology of vortex shedding and vortex-induced vibrations sum-
marized in the previous section one can expect a large variety of models to exist.
In fact, because of the practical and theoretical importance of VIV, models have
been developed and used since the 1960s. Reviews show not only a large number of
them, but also significant differences in the fundamental aspects of their formulations
(Dowell 1995; Hori et al. 1997; Gabbai & Benaroya 2005).

We shall therefore focus here on a classification of these models, with particular
attention to their relation with the formulations of fluidelastic effects presented in
other chapters of this book. Following the previous sections, we shall only consider
the simple case of two-dimensional VIV in the cross-flow direction, the motion of the
solid being defined by the displacement y(t). Note that in this section the dynamics
of the solid need not necessarily be modelled as an elastic oscillator, although we
shall only consider this simple case in the following.
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Figure 3.25. A classification of VIV models.

We shall not discuss numerical simulations of the flow, that only use primitive
information on the flow (incoming velocity, viscosity and possibly parameters in
models of turbulence). The possibility of this latter approach is growing fast, as can
be seen from recent computations, even in three-dimensional cases. The reader is
referred to Al Jamal & Dalton (2005), Anagnostopoulos (2002), Lucor et al. (2005),
Mittal & Singh (2005) and Guilmineau & Queutey (2002) as examples of recent
work.

All models to be presented therefore have in common that (i) they are based
on some experimental results such as described in the previous sections, essentially
data on vortex shedding from a stationary or oscillating cylinder, and (ii) they aim
at predicting some other experimental results, namely vortex-induced vibration of
free cylinders, and for more complicated configurations (three-dimensional, etc.).
Hence, they are all empirical, or phenomenological, by nature, although these words
are commonly used only for some of them.

We propose now a simple classification of models, as illustrated on Figure 3.25.
It is based on the formulation of the fluid force applied on the solid in the direction
of lift. More precisely, we consider the part of the fluid force that exceeds the
conventional inviscid added mass effect, following Williamson & Govardhan (2004),

FFluid = −mAÿ + F, (3.25)

where mA = ρπD2/4 (this force decomposition is discussed in detail in Section 3.4.1
on added mass). Hence the proposed classification is as follows.

Type A: Forced system models, where F is independent of y, and therefore only
depends on time, F (t).

Type B: Fluidelastic system models , where F depends on y, denoted as F [y(t), t].
The dependence in y may include all time derivatives, integrals and even time delays.

Type C: Coupled system models, where F depends on another variable related
to the wake dynamics, say q, the evolution of which depends on y. Here, we have
F [q(t), t] and the effect of y on the evolution of q is taken in the most general form
G[y(t), t].

All type A models will therefore be based only on data from experiments with
a fixed cylinder, because the displacement cannot be accounted for. Conversely,
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models of types B and C can incorporate data from experiments with an oscillating
cylinder. Type A is a particularly simple case of types B and C, where the dependence
on y is ignored. Type B is also a particular case of type C, where q is just y.

In the appraisal of the models in the forthcoming sections, several criteria will be
considered: the simplicity of the formulation, its relation to the physical mechanisms
at work, its accuracy in predictions, its generality in predictions, its inherent ability to
be generalized to complex cases, and finally its simplicity of use. The particular weight
to give to each of these criteria is left to the reader, depending on the particular need
for a model.

3.3.2 Type A: Forced system models

Models of this type are based on data from measurements of forces on a stationary
cylinder. In Section 3.2.2 it was shown that the force could be quantified by the
amplitude of the fluctuating lift coefficient C rms

L and the dimensionless quantity
characterising the main frequency of fluctuation, St. A natural model for the force
is therefore

F (t) = 1
2
ρU2DCL sin

(
2πSt

U
D

t
)

, (3.26)

where CL = √
2C rms

L . The motion of the cylinder in the lift direction is then defined
by

(mS + mA)ÿ + 2ηS(mS + mA)
(
2π f 0

s

)
ẏ + (mS + mA)

(
2π f 0

s

)2
y = F (t), (3.27)

where f 0
s is the frequency of oscillation of the cylinder in still fluid, ηS is the corres-

ponding damping coefficient, mA = ρπD2/4 is the added mass, and mS is the mass of
the cylinder. The solution is found from classical linear vibration theory and, using
dimensionless variables, reads

y(t)
D

= 1
2π3

CLUr2

(1 + m∗)[(1 − Ur2St2)2 + 4η2
SUr2St2]1/2

sin
(

2πSt
U
D

t + ϕ

)
, (3.28)

where the phase ϕ is defined by

tan ϕ = 2ηSStUr

1 − St2Ur2 ; (3.29)

the dimensionless numbers are

m∗ = mS

mA
, Ur = U

f 0
s D

. (3.30)

Figure 3.26 shows the evolution of the amplitude and phase, as well as frequency
of the motion of the cylinder, with the flow velocity, according to this model. A
resonance occurs at StUr = 1, corresponding to the frequency of shedding being
equal to that of the structure, as

StUr = St
U

f 0
s D

= StU/D
f 0

s
= f vs

f 0
s

. (3.31)

The amplitude of motion increases up to a maximum which depends on the damping
ηS, as discussed below. The phase between the displacement y(t) and the force F (t)
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Figure 3.26. Response curves of model of Type A, equation (3.28): (a) amplitude, (b) phase,
(c) frequency of motion.

rapidly changes from 0 to π near the resonance. Throughout all the variation of
the flow velocity, the frequency of motion is identical to that of the force, given by
the Strouhal law, f s = f vs = StU/D, so that f/f 0

s = StUr. The maximum A of the
resonance curve, which occurs near StUr = 1 reads

A
D

= CL

4π3(1 + m∗)St2ηS
. (3.32)

In the evolution of this maximum, the mass and damping parameters of the fluid-
structure system are seen to be grouped in a single dimensionless parameter, which is
in fact the Skop-Griffin number defined previously, equation (3.24). Then, equation
(3.32) reads simply

A
D

= CL

2SG
. (3.33)

This result, using CL = 0.35, is compared in Figure 3.27 with the experimental
data shown previously. The decrease of amplitude is well decribed for high values of
SG, but the limitation of amplitude at low mass-damping is not predicted. This could
be expected, as the model does not include any influence of the motion on the fluid
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Figure 3.27. Type A model : amplitude of response at resonance, equation (3.33), and exper-
iments from Williamson & Govardhan (2004).

force. In conclusion, it appears that the simplest type of model where the lift force
is presumed to be independent of cylinder motion is not able to predict essential
aspects such as the lock-in of frequency or an adequate limitation of amplitude. Still,
because it overpredicts the motion in the range of low mass-damping parameters, it
may be used as a first, quite overconservative estimate.

3.3.3 Type B: Fluidelastic system models

This type of model gathers several kinds and even families of models with the com-
mon feature that the fluid force acting on the cylinder is somehow made dependent
on its motion. In that sense, the formulation here bears many similarities to the
modelling of fluidelastic effects analysed in other chapters, such as in galloping of
sections or instabilities in arrays of tubes. The motion of the cylinder, y(t), may be
taken into account in the force by several means. These may be global characteristics
such as the average amplitude of motion, A, and its dominant frequency, f , or the
value of the instantaneous displacement y(t) and its derivatives ẏ(t), ÿ(t).

3.3.3 (a) Modified forcing model
Here, the basic formulation of models of type A is kept, whereby a sinusoidally
varying force is used to simulate the fluid loading, but the characteristics of the
motion of the cylinder are taken into account in the parameters of the forcing.
Following Blevins (1990), the simplest idea to account for the self-limited motion
observed in experiments is to make the amplitude of the force, namely the fluctuating
lift coefficient, dependent on the amplitude CL(A/D). The force then reads

F (A, t) = 1
2
ρU2D CL

(
A
D

)
sin
(

2πSt
U
D

t
)

. (3.34)

In the data from experiments on forced oscillations at coincidence, such as in
Figure 3.16, the lift is found to first increase with the displacement, as the wake
is organised and enhanced by the oscillation; for larger amplitudes, the cylinder
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displacement has a destructive effect on the wake, up to the point where the actual
lift coefficient decreases. A straightforward polynomial fit reads (Blevins 1990)

CL

(
A
D

)
= C0

L + α
A
D

+ β

(
A
D

)2

, (3.35)

where C0
L = 0.35, α = 0.60 and β = −0.93. The effect of a force defined by equation

(3.34) on the maximum amplitude of motion can easily be derived by using equations
(3.35) and (3.34):

A
D

= CL(A/D)
2SG

; (3.36)

so that the amplitude is defined by the polynomial equation

C0
L + (α − 2SG)

A
D

+ β

(
A
D

)2

= 0. (3.37)

Figure 3.28 shows on a Griffin plot the comparison between equation (3.37) and that
of a model of type A, equation (3.33).

Though the modified forcing model still does not simulate the effect of lock-in
of frequencies at all, it avoids one the main limitations of type A models: large
amplitudes at low SG numbers.

3.3.3 (b) Advanced forcing model
The approach in the preceding model may be considerably improved by taking into
account both the amplitude and frequency of the motion, in both the amplitude and
the phase of the force. The most commonly used formulation is based on the phased
lift coefficients previously defined. Experimental data now exists to support such
models, where the phased lift coefficients have been obtained with good consistency
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by many authors (see for instance Sarpkaya (2004), Gopalkrishnan (1993) and Hover
et al. (1998)). Then, the force reads

F
(

A
D

, Ur, t
)

= 1
2
ρU2D

[
Cmy

(
A
D

, Ur
)

sin ωt − Cdy

(
A
D

, Ur
)

cos ωt
]

, (3.38)

in which we have used Sarpkaya’s notation for the displacement- and velocity-phased
coefficients:

Cmy = CL cos ϕ, Cdy = −CL sin ϕ, (3.39)

where CL and ϕ have been defined in equation (3.17). Note that these coefficients
were built to express the evolution of the force created by a given harmonic motion.
To use them in a case where the motion of the cylinder is free requires that the
phase of the displacement be arbitrarily fixed by stating that y = A sin ωt, and that
the reduced velocity Ur be defined using the frequency of free motion,

Ur = U
fD

, f = ω/2π. (3.40)

Note also that the force F in most of these models is assumed to account for all
the flow-induced forces, so that no specific added mass or added damping should be
taken into account in the equation of the oscillator. The equation of motion now
reads

mSÿ + 2ηSmS(2π f )ẏ + mS(2π f )2y = F
(

A
D

, Ur, t
)

, (3.41)

where f is here the natural frequency without added mass. Although equation (3.38)
is also applicable outside the coincidence condition, it may be used (Gopalkrishnan
1993) to estimate the maximum amplitude of motion: this is expected to occur when
the frequency of forcing becomes identical to the frequency of free motion with
added mass, and when the damping is exactly balanced by the velocity-phased fluid
forces. This is achieved at

A
D

= Cdy(A/D, Ur = 1/St)
2SG

, (3.42)

which implicitly defines A/D. This is identical in form to equation (3.36) obtained
for the much simpler model, but several comments need to be made. First, equation
(3.42) allows the accurate computation of the motion at any flow velocity because
it is based on data not only at coincidence. Second, the particular form of the
dependence of Cdy on amplitude needs not be parabolic. Finally, this allows the
relation between SG and A/D to be defined through simple analysis of experimental
data, using a graphical intersection between Cdy(A/D, Ur = 1/St) and 2SGA/D; see
Gopalkrishnan (1993).

3.3.3 (c) Time domain fluidelastic models
An even more general formulation of a force dependent on the motion of the cylinder
requires that the time-dependent displacement function y(t) be explicitly used, and
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not only its amplitude or frequency. This is done in the model of Chen et al. (1995a),
where the force reads formally

F (y, ẏ, ÿ) =
[
−m

(
A
D

, Ur
)

ÿ − ρUc
(

A
D

, Ur
)

ẏ − ρU2k
(

A
D

, Ur
)

y
]

+ 1
2
ρU2CL sin ωvst. (3.43)

Here, the force is assumed to be composed of a classical fluidelastic force, in brackets,
that includes added inertia, added damping and added stiffness as in other sections
of this book, and of a forcing term at the shedding frequency given by the Strouhal
law. The contribution of the fluidelastic force is to modify the frequency (inducing
lock-in) and to induce the initial instability that leads to growth. A normalized form
of the added stiffness and added damping coefficients measured in experiments is
presented in Figure 3.29, as a function of the reduced velocity and of the amplitude
of motion. Note the similarity with phased lift coefficients, Figure 3.18. Because the
coefficient still depends explicitly on the amplitude and frequency of motion, through
the reduced velocity, the force may not be fully expressed in terms of y and its time
derivative.

A similar but more complex model is proposed by Simiu & Scanlan (1996),
where the force reads

F (y, ẏ, ÿ, t) = 1
2
ρU2D

[
c(Ur)

(
1 − ε

y2

D2

)
ẏ
U

+ k(Ur)
y
D

+ CL(Ur) sin ωvst
]

,

(3.44)

the reduced velocity being defined with the frequency of motion. In this formulation
the amplitude effect is accounted for by a nonlinear term y2ẏ; thus, harmonic motion
is not assumed. This is more general in form than equation (3.43).

3.3.4 Type C: Coupled system models

3.3.4 (a) Limitations of type A and B models
In the two previous types of model, A and B, the fluid force is assumed to be either a
given function of time or to be directly related to the displacement, or a combination
of both. This allows accounting for the simple observation that in vortex-induced
vibrations the forcing mechanism is perturbed by the response of the system it excites.
Numerous experimental data therefore have to be included in the model, such as
the dependence of coefficients on the reduced velocity or the amplitude of motion.
This approach bears some conceptual limits which may be summarized as follows.

(i) By their nature these models are limited to harmonic motion of the cylinder,
because coefficients were measured only for such motions. Generalisation to more
complex motion in time gives rise to difficulties, exactly as in galloping or instabilities
of tube arrays: a way to define the equivalent frequency needs to be chosen, and
multifrequency motion may not be taken into account easily. This is not a major
limitation, because vortex-induced vibrations often result in quasi-harmonic motion,
but it complicates the practical use of such models.
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(ii) More fundamentally, the formulation of these models bears no relation to
the physics of wakes as global modes (Chomaz et al. 1988; Huerre & Monkewitz
1990; Zielinska & Wesfreid 1995; Chomaz 2005): forces in vortex-induced vibrations
are the result of wake dynamics that follow specific rules. Hence, all the data used in
models of types A and B are actually the image of a more profound evolution.

3.3.4 (b) General features of Type C models
All these limitations, as well as physical observations of the wake dynamics, have led
to the development of models whereby the fluid force is the result of the wake dy-
namics, itself influenced by the cylinder motion. All models of type C therefore con-
sider VIV as resulting from the coupling of two systems: the cylinder and the wake.
The corresponding formulation may be represented by two equations (Dowell 1995):
one for the cylinder variable y(t),

mÿ + · · · = F (q, ...), (3.45)
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where F defines the effect of the wake on the cylinder, and another for a wake
variable q(t),

W[q(t)] = G(y, ...), (3.46)

where W defines the dynamics of the free wake and G defines the effect of the
cylinder on the wake. The original idea of using a wake oscillator equation was
proposed by Bishop & Hassan (1964). Numerous models have been proposed since
then, starting with the pioneering work of Hartlen & Currie (1970). They differ in
the formulations of F , W and G and the meaning of the variable q. In all cases
the parameters of the model are built on basic experimental data on (i) the wake
dynamics with a fixed cylinder, to derive W ; (ii) the corresponding lift, to derive
F ; (iii) the wake dynamics with a cylinder forced to move, to derive G. Depending
on the experiments chosen for this and on the degree of accuracy required by the
authors in matching this experimental data by their model, these functions may be
quite complex. This has led to some doubts; refer for instance to the reviews by
Sarpkaya (1979, 2004) on the soundness of this approach: if adding new terms or
new coefficients allows any new experiment to be accounted for, where is the limit?
Moreover, why should a particular mathematical form have any relation to the wake
dynamics?

These questions can only be answered in general by stating that wake oscillator
models are no more empirical than models of other types: essentially they have been
designed to understand what may cause the fluid forces that other models take for
granted.

3.3.4 (c) The Hartlen and Currie model
The essential concepts used in type C models were introduced in the seminal paper
by Hartlen & Currie (1970). The first aspect is the choice of the wake variable as
being the lift coefficient, q(t) = CL(t). Therefore, the function F in equation (3.45)
simply reads F (t) = ρU2Dq(t)/2.

Second is the form of the equation governing the dynamics of a free wake,
namely W in equation (3.46). Two essential features of the wake as a global mode
need to be represented: (i) the oscillating wake results from a self-sustained flow
instability, as a linearly unstable global mode, and (ii) this instability is self-limited as
a nonlinear global mode. A Rayleigh equation captures these two features, as

W(q) = q̈ − aq̇ + bq̇3 + ω2q = 0, (3.47)

where a and b are positive coefficients. Here, the term −aq̇ allows for self-sustained
oscillation at the frequency ω, whereas the cubic term limits the amplitude of oscil-
lations (Nayfeh & Mook 1979). Note that using a van der Pol equation, as has been
done by most authors since then, is equivalent to using a Rayleigh equation.

Finally, the effect of the cylinder motion on the wake dynamics, G in equation
(3.46), needs to be defined. As stated by Hartlen and Currie, this was chosen “rather
arbitrarily” as being proportionnal to the cylinder velocity, G = cẏ. This particular
choice has been much discussed since then; refer for instance to Facchinetti et al.
(2004a).
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wake oscillator model of Hartlen & Currie (1970).

By analysing the dynamics of this coupled model in various cases, Hartlen and
Currie showed that lock-in of frequencies and self-limited amplitude of motion could
be reproduced qualitatively by this very simple model (see Figure 3.30).

3.3.4 (d) The model of Facchinetti, de Langre and Biolley
To underline some issues related to all wake oscillator models we summarize some
features of the model discussed in Facchinetti et al. (2004a), with a van der Pol
oscillator, and used in Mathelin & de Langre (2005) and Violette et al. (2007). It
includes most of the evolutions of wake oscillator models since the work of Hartlen
& Currie (1970); see for instance Skop & Griffin (1973), Skop & Balasubramanian
(1997) and the summary in Gabbai & Benaroya (2005), while keeping a simple form.
The equations of motion for the two variables read

(
mS + ρD2 π

4

)
ÿ +

(
cs + 1

2
ρU DStCD

)
ẏ + kSy = 1

4
ρU2DC0

Lq, (3.48)

q̈ + 2πSt
U
D

ε(q2 − 1)q̇ +
(

2πSt
U
D

)2

q = A
D

ÿ. (3.49)

Here, the fluid variable q(t) is interpreted as a dimensionless reduced lift coef-
ficient q(t) = 2CL(t)/C0

L. In equation (3.48) the fluid force is seen to be composed
of three terms: (i) an inertia force, assumed to be obtainable from an inviscid added
mass model; (ii) a flow-induced damping resulting from drag (Skop & Balasub-
ramanian 1997); (iii) a force related to vortex shedding through the variation of the
lift coefficient variable q(t). In parallel, the equation pertaining to the dynamics of
the wake, equation (3.49), shows that the wake variable is controlled by a van der
Pol equation. It produces a self-limited oscillation of amplitude 2 at the frequency of
vortex shedding defined by the Strouhal law, when the forcing term is absent. Finally,
the effect of cylinder motion on the wake dynamics has been derived by a systematic
analysis of possible first-order forms, y, ẏ, ÿ: the coupling function G was found to
be proportionnal to ÿ rather than to ẏ.
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The coefficients of these equations that need to be derived from elementary
experiments are of three kinds. First, those that can be derived from knowledge of
flow forces on a fixed cylinder: the drag coefficient, CD, and the reference fluctuating
lift coefficient, C0

L. Abundant litterature exists on the values of these coefficients
and their dependence on the Reynolds number. Typical values are CD = 1.2 and
C0

L = 0.3. Second are parameters related to the dynamics of a wake on a fixed
cylinder: the Strouhal number St, and the growth rate coefficient ε, which are here
used to define the frequency and damping of the wake variable q. Whereas the
Strouhal number is abundantly documented, the determination of ε is still needed.
Finally, the parameter A which scales the coupling of the cylinder motion to the
wake dynamics also needs to be determined from experiments. A simple method
is proposed in Facchinetti et al. (2004a) to derive A and ε, based on experimental
results with forced cylinder motion. First, the ratio A/ε is adjusted on the amplitude
of the fluid force as a function of the amplitude of the displacement at resonance.
Then, the range of lock-in as a function of the same parameter is used to adjust ε,
leading to ε = 0.3 and A = 12.

The coupled model may now be used to simulate vortex-induced vibrations.
In a Griffin plot, Figure 3.31(a), the model is found to underestimate the structure
oscillation amplitude, when using the values of parameters proposed above. Yet, the
qualitative influence of the Skop-Griffin parameter is recovered. In particular, the
asymptotic self-limited response amplitude at low SG is assured by the fluid damping
CD/(4πSt), using here CD = 1.

The effect of the mass ratio at low SG is also shown in Figure 3.31(b) compared
with the experimental results from Williamson & Govardhan (2004). As m∗ tends
to zero, the widening of the lock-in domain is clearly unbounded and significant
structural oscillations persist at high Ur. This latter phenomenon is quite consistent
with experimental data, where it was coined as “resonance for ever” (Govardhan &
Williamson 2002).

3.3.4 (e) Lock-in as a case of linear coupled-mode flutter
The ability of type C models to represent lock-in of frequencies was recognized in
the original paper by Hartlen & Currie (1970). For the purpose of understanding the
relation between VIV and fluidelastic effects, which are discussed in other chapters
of this book, we explore here the elementary mechanism that enables these models
to simulate this lock-in effect. The approach follows that given in de Langre (2006),
of which some preliminary elements may be found in Nakamura (1969).

The set of coupled wake and cylinder equations (3.48) and (3.49) are now written
in a much simpler form by using dimensionless time, and by neglecting all velocity-
dependent terms and all nonlinear terms. The latter two simplifications are made with
the aim of pointing out the mechanism responsible for the evolution of frequencies
which does not depend much on damping effects or nonlinear effects. The new
system of equations reads

ÿ + y = DM(StUr)2q, (3.50)

q̈ + (StUr)2q = (A/D)ÿ. (3.51)
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Figure 3.31. Results of a Type C model
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where M = C0
L/(4π3St2(1 + m∗)) and Ur = U/f 0

s D. The dynamics corresponding
to this simple system of coupled linear oscillators is fully determined by standard
modal analysis, setting (y, q) = (y0, q0)eiωt. Provided that the product AM is less than
1, which is the case of practical interest, the evolution of modal frequencies, ω1 and
ω2, corresponding to the two modes of the system, can easily be tracked when the
reduced velocity is varied. Here, the frequency may be real (neutrally stable mode),
or complex (damped or unstable mode). The exact solution of this modal problem
is given in de Langre (2006), but suffice it to say that two distinct cases exist in terms
of the reduced velocity, as follows.

(i) In the ranges StUr < (1 + √
AM)−1 or StUr > (1 − √

AM)−1 two modes
are found, with distinct real frequencies, denoted as ωW and ωS. They may be
attributed, respectively, to the wake dynamics, mode “W” in Figure 3.32(a), and
to the solid dynamics, mode “S”, depending on the corresponding modal com-
ponents (y0, q0). In each mode, both components y0 and q0 exist, although one is
clearly dominant. The frequency of the solid mode remains close to that of the free
solid (ωS � 1), whereas the frequency of the wake follows that of the free wake
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Figure 3.32. Effect of the reduced velocity on a coupled linear system representing the cyl-
inder and the wake, equations (3.50) and (3.51). (a) Evolution of frequencies and (b) growth
rates of the two modes of the system (de Langre 2006).

(ωW � StUr). In these ranges of reduced velocity the coupling between the two
oscillators therefore induces only a small alteration of the frequencies and modal
components.

(ii) In the range (1 + √
AM)−1 < StUr < 1 − √

AM)−1 a completely different
solution exists: the two modes differ only by their imaginary part, so that one of
them is unstable, ωI < 0, whereas the other is damped (see Figure 3.32(b)).

This evolution, via which two neutral modes with distinct real frequencies even-
tually merge to bring about two modes, one stable and one damped, is generic of
coupled-mode flutter or binary flutter (Blevins 1990; Dowell 1995; Paı̈doussis 1998;
Schmid & de Langre 2003). This range of coupled-mode flutter combining the wake
dynamics and the cylinder dynamics (CMF in Figure 3.32) may be associated with
lock-in via several features. First, the frequency of oscillation of the system deviates
from the Strouhal law, as can be seen in Figure 3.32(a). Second, the existence of a new
source of instability, distinct from the wake instability is expected to result in larger
motion of the solid. Finally, the phase between the lift, q, and the displacement, y,
shifts progressively from 0 to π (see de Langre (2006) for details).

This linear model does not directly provide predictions of the amplitude of
motion of the cylinder. Yet, the high growth rate that results from coupled-mode
flutter is clearly the energy source needed to cause high-amplitude motion in this
range. The amplification of motion at lock-in, observed in experiments, can there-
fore be understood as the consequence of an amplification of energy input caused
by coupled-mode flutter. This eventually results in a higher saturated amplitude
when nonlinear effects are introduced. This interpretation is consistent with the
analysis of the evolution of phase and modal components in the lock-in range. The
linear coupled-mode flutter model therefore provides an interpretation for both
the frequency evolution and for the amplification of cylinder motion in the range of
lock-in.
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In fact, considering lock-in in VIV as a linear instability is quite natural, when
considering the exponential growth of amplitude from an initial condition, as ob-
served in experiments by Brika & Laneville (1993). A numerical analysis of the
linear stability of coupled modes involving the flow and the cylinder may be found
in Cossu & Morino (2000).

3.4 Advanced Aspects

3.4.1 The issue of added mass

Added mass in vortex-induced vibrations has been the subject of several contro-
versies, resulting in some confusion on its physical meaning, its value and even its
relevance. We focus now on some of the essential technical aspects behind these
controversies to show similarities and differences between approaches, and hope-
fully, to clarify the situation. Several distinct issues have appeared when considering
added mass in relation to VIV. Can added mass still be defined when VIV occurs?
If so, is there any relation to its value in inviscid still fluid? What is the meaning of
a negative added mass? Finally, what must be done in practice when computing the
response of systems to VIV?

3.4.1 (a) The Lighthill decomposition controversy
In Leonard & Roshko (2001) and Sarpkaya (2001), the fundamental issue of the
forces acting on a moving body in flow were discussed. A summary of the discussion
may be found in Williamson & Govardhan (2004). To emphasize the main argument,
let us consider the two-dimensional forced motion of a circular cylinder, as in the
previous sections, with y(t) being its cross-flow displacement and FF (t) the resulting
fluctuating lift. Using the inviscid added mass minv

A = ρπD2/4, one may define the
force

FV = FF + minv
A ÿ, (3.52)

often named the “vortex lift”. The central point of the controversy is whether this
force, FV , is then only dependent on ẏ, as stated by Leonard & Roshko (2001) based
on a general result by Lighthill (1986), or whether it still contains inertia terms, as
stated by Sarpkaya (2001) based on the solution for a moving sphere by Stokes
(1851) and abundant experimental evidence. The decomposition of the lift force FF

as the sum of an inertia term −minv
A ÿ and a remaining force named FV , equation

(3.52), is certainly acceptable, because this is nothing but a change of variables. The
discussions on amplitude and phases of FV compared with those of FF are therefore
legitimate; see for instance Williamson & Govardhan (2004) who consider the case
of jumps between branches of lock-in.

As to whether or not the remaining force FV is only related to the cylinder
velocity, there is certainly experimental evidence that FV cannot be expressed only
as a term proportional to cylinder velocity. Still it must be emphasized that FF has
only been measured for harmonic motions, of finite amplitude, so that the general
form of the dependence of FV on the displacement and its derivatives has not been
established. Hence, the uncertainties that remain vis-à-vis the precise dependence
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of FV on displacement, should not raise any doubt as to the legitimacy of using a
decomposition of forces as in equation (3.52).

One should also note that this decomposition is distinct from the numerical
technique whereby an inviscid added mass is subtracted from both sides of an equi-
librium equation in computational fluid-structure interaction (Bélanger et al. 1995);
this latter is a simple technique to avoid numerical instabilities of explicit numerical
schemes when the added mass is larger than the physical mass of the immersed
system.

3.4.1 (b) Experimental results for added mass
As discussed in Section 3.2.3, there are several ways to decompose the lift force on a
cylinder forced to oscillate in flow. The lift coefficient in phase with the displacement,
CL cos ϕ, may be used to define an added mass coefficient

CM = (CL cos ϕ)
Ur2

2π3(y0/D)
. (3.53)

Figure 3.33(a) illustrates the values of CM as a function of the reduced velocity
Ur = U/f f D, from experiments by Gopalkrishnan (1993) in the case of a cylinder
forced to move with y(t) = y0 sin(2π f f t). We use for this case the terminology of
forced added mass coefficient. These results show that the added mass coefficient
varies significantly with the reduced velocity. As expected, it starts from its value
in still fluid CM = 1 near Ur = 0, where the influence of flow is negligible. It then
strongly increases, before suffering a sudden change in sign near Ur = 6, and then
settles at a nearly constant value of about CM = −0.5. Many other experiments
confirm this evolution, displaying a noticeable effect of the amplitude of motion y0/D
which we shall not discuss here; see Sarpkaya (2004). The existence of a negative
inertia coefficient is indubitable.

In the case of a cylinder free to move, a free added mass coefficient may also
be defined from the lift force and it has been measured (Vikestad et al. 2000). This
free added mass coefficient is shown in Figure 3.33(b) as a function of the reduced
frequency defined here as Ur = U/f 0

s D, where f 0
s is the frequency of oscillation in

still fluid. Here again the added mass coefficient changes sign, but this time near
Ur = 7. The value of free added mass at low reduced velocity does not come close
to unity, as one would expect, and the value for high velocities tends to CM = −1
instead of CM = −0.5.

These two sets of data may first be compared by rescaling the axis of the reduced
velocity. If the velocity for both sets of data is referred to the frequency of actual
motion, which varies with Ur, a good overlap is observed in the range of velocities
near the change in sign in Figure 3.34(a). Alternatively, referring both sets of data
to a constant frequency, independent of Ur, can be made by using now the data of
Figure 3.33(a) to estimate the variation of frequency in the free motion case: the
reduced velocity must be rescaled by a factor [(1 + m∗)/(m∗ + CM)]1/2, using here
m∗ = 1.65 (Vikestad et al. 2000). In this alternative rescaling, the two sets of data are
also found to be consistent (see Figure 3.34(b)).

The consistency between results from free or forced vibration in the range of
velocities near Ur = 1/St shows that the change in sign of the added mass coefficient
is a central feature of VIV. Forces in phase with acceleration do change sign, such
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Figure 3.33. Effect of the reduced ve-
locity on the added mass coefficient.
(a) Forced added mass coefficient, from
Gopalkrishnan (1993), for a cylinder un-
der forced motion; (b) free added mass
coefficient from Vikestad et al. (2000) for
a cylinder in free motion, m∗ = 1.65.

that they act in the same direction as the acceleration. Note that this puzzling effect is
a true change of sign of the coefficient of inertia: it is not a fictitious negative added
mass as is found in fluidelastic formulations when a stiffness force, proportionnal
to the displacement, is expressed in terms of the acceleration in harmonic motion;
in that case, a force F = −kAy becomes F = −(−kA/ω2)ÿ, so that mA = −kA/ω2.
Here, the fluid force does not depend on y because of the invariance of the system
with translation in the cross-flow direction.

As often emphasized, added mass in still fluid is not the mass of a physical system.
It is nevertheless always positive because it is the scaling factor of the kinetic energy
of the fluid in relation with the solid motion (see for instance de Langre (2002)).
Here, in the case of a moving fluid with its own vorticity dynamics there is no a priori
reason that the force in phase with the acceleration should be opposite or in the
same direction as the acceleration. In fact, as discussed below, the change in sign in
added mass can be seen as the result of the dynamics of a wake oscillator.

Considering the evolution of frequencies in VIV (Figure 3.22(b)), it is not surpris-
ing that the apparent added mass varies significantly, whether positive or negative.



142 Vortex-Induced Vibrations

0 5 10 15
−2

−1

0

1

2

3

4

5

Ur

C
M

0 5 10 15
−2

−1

0

1

2

3

4

5

Ur

C
M

(a)

(b)

Figure 3.34. Comparison of added mass
coefficients derived from free and forced
motion. Experimental data from Figure
3.33. (a) Comparison using a reduced ve-
locity based on the frequency of actual
motion, as in Figure 3.33(a). (b) Compar-
ison of both sets of data using a reduced
velocity based on a constant frequency,
as in Figure 3.33(b).

For instance, an increase in the frequency of motion of the solid, as observed in the
lock-in process, necessarily corresponds to a decrease in added mass, because no
fluid-stiffness term exists.

At this stage, added mass, free or forced, appears to have a rather complex
evolution with the reduced velocity. We now examine how models of VIV can help
in understanding this.

3.4.1 (c) Modelling forced added mass
In type A models, the force exerted by the fluid is composed of an inviscid inertia term
and a forcing term, independent of the cylinder motion. Forced added mass, which
is the part of the fluid force related to the acceleration when the latter is prescribed,
is therefore exactly CM = C inv

M = 1. It is independent of the reduced velocity. This
type of model fails to reproduce an essential feature of added mass in VIV, which is
the change in sign of CM (Figure 3.35).

For type B models, the fluid force depends explicitly on the motion of the
cylinder. Experimental data on added mass, or phased lift coefficients, is precisely
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Figure 3.35. Modelling added-mass co-
efficients in vortex induced vibration. (a)
Forced added mass coefficient: . . ., type
A model; —, type C model (wake os-
cillator), equation (3.57). (b) Free added
mass coefficient: . . ., type A model, equa-
tion (3.60); — , type C model (wake os-
cillator), equation (3.61). Experimental
data as in Figure 3.33.

the input to the models, so that the comparison of models and experiments on added
mass for type B models is pointless.

In type C models, where the fluid force results from the wake dynamics, forced
added mass may easily be computed from the response of the wake oscillator to
external forcing. We illustrate this using the much simplified linearized model of
equation (3.51),

q̈ + (StUr)2q = (A/D)ÿ. (3.54)

Under a forced motion y = y0 sin t (here, the timescale has been chosen the same as
that of the forcing), the response of the wake oscillator is

q(t) = − A/D
1 − (StUr)2

ÿ. (3.55)

Using the formulation for the total fluid force,

FF (t) = −minv
A ÿ + 1

4
ρU2DC0

Lq, (3.56)
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the forced added mass coefficient reads

CM = 1 + AC0
L

4π3

Ur2

1 − (StUr)2
. (3.57)

Using the same values as before for the parameters, A = 12, C0
L = 0.3 and St = 0.2,

the evolution of the forced added mass coefficient is shown in Figure 3.35(a). An
important new feature emerges: the change in sign of the added mass coefficient is
reproduced, and clearly results from the resonance curve of the wake oscillator, in
its simplest form. Hence, the sole ingredient that is needed to explain the existence
of a negative added mass is a linear wake oscillator. Further refinements allow the
evolution of CM with Ur and y0/D to be captured (see Violette (2009)), but the
essential feature lies in the oscillating nature of the wake.

3.4.1 (d) Modelling free added mass
In the framework of a type A model, as given in equation (3.26), the response of
the cylinder to the forcing is also straightforward. Using again a very simple case of
negligible damping for the sake of clarity, we have

y(t) =
1
2ρU2DC0

L

kS − (2πStU/D)2(mS + minv
A )

sin(2πStUt/D). (3.58)

Considering that the fluid force is

FF (t) = −minv
A ÿ + 1

2
ρU2DC0

L sin(2πStUt/D), (3.59)

one may derive the added mass coefficient by writing FF (t) = −ρπD2CMÿ/4. This
yields simply

CM = 1 + (1 + m∗)
1 − St2Ur2

St2Ur2 . (3.60)

The variation of this free added mass coefficient with Ur in type A models is shown
in Figure 3.35(b), in comparison with the data of Vikestad et al. (2000). Note that the
frequency of motion of the cylinder is, by the nature of the model, set to follow that
given by the Strouhal law. Hence, the deviation from its original value is not, strictly
speaking, due to a change in added mass but to the forcing by the Strouhal law.

Finally, free added mass may be easily computed from the linearized version of
the type C model, presented in Section 3.3.4. In the range of coupled mode flutter
(i.e. lock-in) the added mass coefficient may be derived from the evolution of the
real part of the complex frequency,

CM = 1 + (1 + m∗)
1 − ω2

R

St2Ur2 . (3.61)
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Figure 3.36. Relation between free and
forced added mass. Experimental data
correpond to Figure 3.33(a) and (b):
full circles come from forced mo-
tion experiments and open circles from
free motion experiments. Model using
a linearized wake oscillator, equation
(3.61): — (thin line), unstable mode,
which models free added mass; - -, cyl-
inder mode which models forced added
mass; — (thick line), common mode in
the range of lock-in. The reduced velo-
city is based on a constant frequency, as
in Figure 3.34(b).

Figure 3.35(b) shows that the experimental data from Vikestad et al. (2000) is well
represented by this. It may therefore be stated that the evolution of free added mass
may be seen as resulting from the coupled dynamics of a wake oscillator and a solid
oscillator.

3.4.1 (e) Modelling the differences between forced and free added
mass in VIV
As shown in Figure 3.34(b), free and forced added mass may be compared when the
reduced velocity is referred to the same frequency. Even though the values of added
mass near Ur = 1/St coincide, a significant difference is found for lower reduced
velocities. For higher reduced velocities there is a difference between the data here
also, although it is less apparent.

This may be understood by using again the wake oscillator approach, in its
simplest linear form (Section 3.3.4 (e)). Outside the range of lock-in, modal analysis
yields two modes with two distinct frequencies, ωS and ωW . Two values of the added
mass may therefore be defined, corresponding to these two values of frequencies
(see Figure 3.36). One of them corresponds to the wake mode, marked W, which
will dominate in the free motion, as discussed by de Langre (2006). The other one is
associated with the solid mode, marked S, which only contributes to the motion when
the solid is forced. This explains why forced added mass tends to the inviscid value
of CM = 1 for low reduced velocities, whereas the free added mass does not. Free
and forced added mass are therefore both included in the dynamics of the coupled
wake and cylinder oscillators.

3.4.1 (f) Concluding remarks on added mass
As seen in the foregoing, using the added mass concept in the context of vortex-
induced vibration certainly encompasses some ambiguities. Even in simple config-
urations, the added mass then depends on the reduced velocity and on the type of
motion, free or forced.
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The dependence on reduced velocity bears some relation to that of fluidelastic
stiffness or damping coefficients in several other chapters of this book. It results
from the existence of two distinct timescales, convection and oscillation, the ratio
of which defines the reduced velocity. Because vortex shedding occurs at a times-
cale proportional to convection, through the Strouhal number, the dependence on
reduced velocity is also found (actually the dependence is on StUr, as found in all
models). It may be understood through the dynamics of a wake oscillator, which has
its own frequency and transfer function.

The dependence on the type of motion found here is even more specific: forced
or free motions are associated with different modes of the coupled system, and
therefore different relations between cylinder and wake oscillation.

Therefore, whereas use of the concept of added mass is certainly legitimate in
representing fluid forces in vortex-induced vibrations, it may not be appropriate for
understanding the dynamics involved in vortex-induced vibrations: behind its rather
complex evolution is hidden the dynamics of a global wake mode, which can be
represented, in some aspects, by a simple wake oscillator.

3.4.2 From sectional to three-dimensional VIV

From the start of the present chapter we have focussed on the much idealized case
of sectional VIV with cross-flow motion only. The phenomenology of the wake
dynamics and of its coupling with motion of the section, as well as models thereof,
have been developed in the literature using that framework. Yet, vortex shedding
is essentially a three-dimensional phenomenon. In practice, structures in industrial
applications are of many types of geometry and the flow is not always uniform;
refer for instance to Furnes (2000) and Le Cunff et al. (2002). Some extensions
of the concepts developed in the two-dimensional sectional case to more realistic
configurations are certainly needed.

In Figure 3.37(a) the idealized sectional model is recalled, where motion is lim-
ited to the cross-flow direction. Still, in the two-dimensional sectional approximation,
Figure 3.37(b) shows the case where the motion of the cylinder is unrestricted. The
reader is referred to Jauvtis & Williamson (2003) and to references therein for a
thorough discussion of the similarities and differences with the case of restricted
motion; refer also to Kim & Perkins (2002) and Chaplin et al. (2005) for pratical ap-
plications. We emphasize here that two-dimensional unrestricted VIV (which is often
referred to as XY-VIV) is a mechanism totally different from cylinder wake galloping
discussed previously in Chapter 2. This is evident in both the wake phenomenology
and the motion of the cylinder.

Figure 3.37(c) illustrates the case of the three-dimensional VIV of compact bluff
bodies, here a sphere. In that case the wake dynamics itself is multidirectional, and
the motion of the sphere in the plane transverse to the flow is much richer that for
the two-dimensional case (Thompson et al. 2001; Provansal et al. 2004; Govardhan
& Williamson 2005).

The most important case of a slender flexible body is illustrated in Figures 3.37(d)
and (e). In the first, all characteristics of the impinging flow and of the flexible
structure are supposed to be independent of the z-axis, which is that of the structure.
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Figure 3.37. Two-dimensional and three-dimensional VIV. (a) Idealized 2-D sectional case.
(b) 2-D unrestricted VIV, with motion in the lift and drag directions. (c) 3-D VIV of a
compact bluff body. (d) 3-D VIV of a uniform slender body in uniform flow. (e) 3-D VIV of
a nonuniform slender body in nonuniform flow.

Although this seems to be a pure extension of the sectional case, several new aspects
must be taken into account. First, the wake dynamics with uniform flow on a rigid
uniform cylinder is not uniform: secondary instabilities of the flow result in phase
shifts and decreasing correlation of the lift force along the z-axis (see Williamson
(1996)). Second, this z-dependence of the wake dynamics is modified by the motion
of the cylinder. Finally, the flexible cylinder is a continuous system and therefore
its dynamics cannot be reduced to a few degrees of freedom. Depending on the
boundary conditions that apply at the end of the cylinder, this dynamics is better
represented in a modal framework or in a wave framework.

The application of the models presented in the previous sections to this con-
figuration of a slender flexible body raises a few questions. First, for all models
the issue of spatial correlation needs somehow to be taken into account. Hope-
fully, when significant cylinder motion occurs, correlation is essentially the result
of cylinder motion, not of the wake dynamics itself, and decorrelating the loading
along the structure is not needed. Second, when several modes contribute to the
motion of the cylinder, the interplay of the frequency of motion and of the wake
frequency in the lock-in process becomes even more complex: two modal frequen-
cies may exist in the range of lock-in (Willden & Graham 2004; Huera Huarte
et al. 2006). In that case, defining a reduced frequency to use in type B models raises
practical difficulties. These difficulties, and possible corresponding solutions, are con-
ceptually indentical to those encountered in the use of fluidelastic coefficients when
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Figure 3.38. Stationary and propagating vortex-induced waves along an infinite tensionned
cable in uniform flow. Evolution with time of the displacement along the cable. A transition
is observed from stationary to propagating waves. (a) Motion derived from Direct Numerical
Simulation (DNS) of the flow coupled with the dynamics of the cable (Newman & Karniadakis
1997). (b) Motion derived using a series of a wake oscillators coupled with the dynamics of
the cable (Violette et al. 2007).

predicting the post-instability motion of tubes with nonlinear supports (Hadj-Sadok
et al. 1997). Finally, when the flexible system is long (see the discussion in Van-
diver (1993) for the meaning of “long”) propagating waves may dominate instead of
stationary waves. Computational results (Newman & Karniadakis 1997) and exper-
imental results (Alexander 1981; Facchinetti et al. 2004b) have shown the existence
of such vortex-induded waves (VIW). Type C models have been used to model this
(Facchinetti et al. 2004b; Mathelin & de Langre 2005; ,Violette et al. 2010). Figure
3.38 shows the comparison between a full DNS computation by Newman & Karni-
adakis (1997) and a wake oscillator approach in the case of a uniform flow across an
infinitely long flexible cable. The cable motion is seen to progressively switch from
stationary to propagating waves. Here again, a wake oscillator approach clearly
captures the essential features of the vortex-induced waves.

The most general case of nonuniform flow over a nonuniform flexible structure
is illustrated Figure 3.37(e). Note that the case of uniform flow over a cylinder
of a nonuniform section, such as a cone, falls in that category. Then, the wake
dynamics itself is again further complicated, so that even the local frequency of
vortex shedding from a fixed cylinder may significantly differ from that given by the
Strouhal law (Griffin 1985; Papangelou 1992; Piccirillo & Van Atta 1993). This results
from complex diffusion processes between sections of the wake; see for instance the
models in Noack et al. (1991), Balasubramanian & Skop (1996) and Facchinetti
et al. (2002). The resulting pattern of motion is certainly complex. In the case of
systems with fixed boundary conditions where modes are well defined, a systematic
comparison of computational methods with a set of experimental results may be
found in Chaplin et al. (2005). A case where stationary and nonstationary waves
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Figure 3.39. (a) Inclined rectangular cross-section; (b) vortex dynamics patterns when the
angle of attack is varied; (c) vortex dynamics patterns when the aspect ratio is varied. LEVS:
leading-edge vortex shedding; ILEV: impinging leading-edge vortices; TEVS : trailing-edge
vortex shedding; AEVS: alternate-edge vortex shedding (Naudascher & Wang 1993; Nau-
dascher & Rockwell 1994; Deniz & Staubli 1997).

coexist in shear flow has been computed by Lucor et al. (2006) and modelled by
Violette et al. (2007, 2010).

3.4.3 VIV of noncircular cross-sections

We have limited the presentation so far to the case of circular cross-sections, because
of its simplicity and its wide range of applications. Yet, as noted in Section 3.2, vortex
shedding may occur in the wake of any bluff body, as it results from the instability
of the flow profile created by the presence of the body itself. Hence vortex-induced
vibrations can be expected in flexible slender bodies of any cross-section, and more
generally for a deformable bluff body of any shape.

We only give here some of the essential differences between VIV of circular
cross-sections and VIV of noncircular cross-sections. This is illustrated for the case
of the rectangular cross-section, Figure 3.39(a), defined by its aspect ratio e/d and
the angle of attack of the free-stream flow, α. The presentation here is based on the
approach adopted by Naudascher & Wang (1993), Naudascher & Rockwell (1994)
and Deniz & Staubli (1997) where a complete description of the issue is presented.
References therein are not cited here for the sake of brevity, but one should recall
that the work in Naudascher & Wang (1993), Naudascher & Rockwell (1994) and
Deniz & Staubli (1997) is itself based on a large body of anterior work, by these
authors and others.

Before exploring the issue of vortex shedding, one must keep in mind that non-
circular cross-sections are prone to other types of cross-flow-induced instabilities,
such as galloping described in Chapter 2. In the case of the rectangular cross-section,
the aspect ratio and the angle of attack have an essential role on the possibility of in-
stability. Even below the instability threshold, damping induced by these fluidelastic
effects may be negative so that the response of the structure to vortex-induced
forces may be indirectly enhanced. We shall not explore coupling between VIV and
galloping in more detail: this was done in Section 2.10.
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From a purely descriptive point of view, the vorticity dynamics created by a
noncircular cross-section is more complex than the simple alternate vortex shedding
resulting in the Bénard-Kármán vortex street as described Section 3.2. From obser-
vations, four types of vorticity dynamics have been identified (Figure 3.39(b, c)); see
Naudascher & Wang (1993). They are now described in relation to their influence
on the Strouhal number.

3.4.3 (a) Evolution of the Strouhal number
Let us first consider the effect of the angle of attack α, on the Strouhal number
St = fD/U, here for the aspect ratio e/D = 2, Figure 3.40(a), following Deniz &
Staubli (1997). For a small angle of attack, the vorticity dynamics is classically
referred to as leading-edge vortex shedding (LEVS) as the vortices are shed in
fact from the leading edge, Figure 3.39(b). The Strouhal number is nearly constant
with α.

A change in regime is found in terms of the Strouhal number, near α = 6◦, when
separation occurs at the upper edge. A new pattern of vortex shedding is observed,
referred to as alternate-edge vortex shedding, or AEVS (Figure 3.39(b)). Actually,
AEVS belongs to the same class of mechanism as LEVS, directly related to the wake
instability. It can therefore be described in the same framework, provided the correct
scaling parameters are used. For instance, in AEVS, the dependence of the Strouhal
number on the angle of attack may be easily accounted for by considering that
the scale of the transverse flow gradient which controls the wake instability is no
longer D, but is now the cross-flow distance between the two shedding edges, H =
D cos α + e sin α: the Strouhal number in AEVS in Figure 3.40(a) does decrease as
1/[cos α + (e/D) sin α].

Figure 3.40(b) shows a simplified view of the effect of the aspect ratio e/D on
the Strouhal number. Several domains can be defined. First, at low aspect ratio
values, e/D < 3, the Strouhal number is close to 0.2, consistently with what was
described at the beginning of this chapter. Leading-edge vortex shedding (LEVS)
is observed. At high aspect ratios, e/D > 10, the value is also close to 0.2, and
weakly dependent on the aspect ratio. The vortices are now shed from the trailing
edge, so that this is referred to as trailing-edge vortex shedding (TEVS). In these
two limiting cases, the pattern of vortex shedding is essentially the same: alternate
vortices resulting from the wake instability. As the wake flow profile is scaled by
the transverse dimension, D, the frequency is properly described by the Strouhal
number based on this dimension, fD/U, as expected. Its dependence on e/D is weak
and mainly related to the corresponding modifications of the width of the wake;
refer to the discussion on the universal Strouhal number in Section 3.2.1. We shall
not describe these cases of LEVS, AEVS and TEVS in more detail, because they
belong to the same class of vortex-shedding and VIV as the circular cross-section. Of
course, the data on the fluctuating lift coefficients, fluctuating moment coefficients,
limit amplitude and other parameters relevant to modelling VIV differ from the
circular case; refer for instance to Deniz & Staubli (1997).

3.4.3 (b) Impinging leading-edge vortices
For intermediate values of the aspect ratio, the evolution of the Strouhal number is
much more complex (see Figure 3.40(b)): discontinuities appear and even multiple
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Figure 3.40. (a) Effect of the angle of attack on the Strouhal number. (b) Effect of the
aspect ratio on the Strouhal number. LEVS, AEVS, ILEV and TEVS are the vorticity modes
described in Figure 3.39.

values of St can be found for some aspect ratios. This suggests that a new kind of
vorticity dynamics is involved, which differs from classical Bénard-Kármán vortex
shedding. The vorticity dynamics is then referred to as impinging leading-edge vor-
tices (ILEV). This may be described qualitatively as interactions between vortices
created by the shear layer at the leading edge and the downstream part of the bluff
body: this has led to the use of the term “impinging”. It is actually a particular case
of amplification of shear-layer instability through a fluid-dynamic feedback loop; see
Naudascher & Rockwell (1994). This is similar in principle to the instability of a jet
impacting on a wedge. The unstable hydrodynamic mode selected by this feedback
loop is such that there must be an integer ratio between the distance from emission
(the leading edge) to reception (the trailing edge), here e, and the wavelength of
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n = 1

n = 2

Figure 3.41. Vorticity dynamics in ILEV modes.

the mode, λ, so that e = nλ. This is illustrated Figure 3.41. Assuming that the phase
velocity of the mode is U, the frequency of oscillation is f = Uλ. By combining these
two equations we have

f = Ue
n

, (3.62)

so that the Strouhal number reads

St = fD
U

= n
e/D

. (3.63)

In Figure 3.40(b) this behaviour corresponds to curves of decreasing St for n =
1, 2, .... Only a portion of these materialize. Note that in ILEV the relevant length
scale is no longer that of transverse flow gradients, D, but that of a specific feedback
mechanism in the direction of the flow, e. This leads to a strong dependence of the
Strouhal number fD/U on the e/D ratio.

Considering the mechanism involved in ILEV, it is now clear that (a) it is not
expected at low aspect ratio, because it would then involve very high frequencies,
(b) at large aspect ratio the number of wavelengths n involved renders the feedback
loop sensitive to pertubations and is therefore unlikely to occur in practice, and (c)
because the shedding of vortices is not decorrelated between the two leading edges,
an alternating load can be expected. Note that ILEV is not affected by the presence
of a splitter plate (Naudascher & Wang 1993), because it does not involve the wake
instability, contrary to LEVS, TEVS and AEVS.

In terms of vortex-induced vibrations, the fluctuating pressure field associated
with the travelling vortices on the two sides of the bluff body results in a fluctuating lift
and fluctuating moment. Transverse and torsional degrees of freedom may therefore
be excited. Yet, as the motion of the rectangular section affects the shedding, a
more detailed analysis shows that the resulting phase between moment and angular
velocity renders torsional VIV more unlikely to happen (Naudascher & Wang 1993).

3.4.3 (c) Possibilities of lock-in
Considering all these mechanisms, a chart may be drawn concerning the risk of
lock-in (Figure 3.42). We only give it here for transverse vibrations. We consider, for
the sake of simplicity, that lock-in occurs when the condition StUr = 1 is satisfied.
Of course, as emphasized throughout this chapter, lock-in is not a resonance, and
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Figure 3.42. Possibilities of lock-
in on a rectangular cylinder, as a
function of the reduced velocity
Ur = U/fD and the aspect ratio
e/D; Adapted from Naudascher &
Wang (1993).

significant amplitude can occur outside this strict condition. For a given aspect ratio,
several successive lock-ins may clearly occur as the flow velocity is increased, in the
range of e/d where ILEV is possible.

More generally, LEVS, TEVS and AEVS are true Bénard-Kármán vortex-
shedding patterns and can be modelled in the same framework as for circular cylin-
ders: all models presented in this chapter could in some way be used to predict VIV,
provided the correct coefficients are used. Conversely, ILEV does not belong to the
same group of vorticity dynamics. It involves the dynamics of two shear layers, each
of them being influenced by the motion of a leading and a trailing edge.

3.4.4 Summary and concluding remarks

The physics of vortex-induced vibrations is rich in complexity, and modelling of VIV
is not a trivial task. Yet, engineering applications, as well as fundamental issues,
sustain continuing work in this field.

Whereas more and more experimental data are produced, with detailed flow
measurements, more information is now also gained from computations. This con-
tinuous increase of available information on what happens in vortex-induced vi-
brations (i.e. the phenomenology) allows and requires a corresponding increase in
depth of the models addressing why all this happens! Simply incorporating new data
in models through new coefficients or new fitted functions is an endless task. As an
example, one may consider the effect of the Reynolds number on the extent of lock-
in: if a database of force coefficients is used, such as in type B fluidelastic models, this
can only be taken into account by incorporating data at various levels of Reynolds
numbers. Conversely, if the extent of lock-in can be related to more general para-
meters where the Reynolds number effect is known, such as the Strouhal number or
the lift coefficient, as was done in Section 3.3.4, the consistency of data is ensured, as
well as simplicity.
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Similar issues are, in fact, present when discussing models of other mechan-
isms presented in this book, for instance in the case of fluidelastic instabilities of
tube arrays in cross-flow: models such as those of Price & Paı̈doussis (1984a) and
Lever & Weaver (1986) are based on some physics of the fluid dynamics that gen-
erate the pertinent forces, and are therefore more general in application than those
only based on interpolating data.



4 Wake-Induced Instabilities of Pairs
and Small Groups of Cylinders

4.1 The Mechanisms

The mechanisms of wake-induced instabilities of pairs and small groups of cylinders,
on the one hand, and cylinder arrays involving perhaps hundreds of cylinders, on
the other, are fundamentally similar. Therefore, in principle, one could conceive of
a common introduction for both Chapters 4 and 5; in practice, however, there are
sufficient peculiarities in both, in particular with regard to sign conventions, to make
it desirable to have different introductory sections in the two chapters, despite the
repetitiousness in terms of the basic ideas involved. Wake-induced flutter is discussed
in Section 4.2.

As in the introductory sections for other chapters, what is presented here is
highly simplified, leaving most of the complexities and refinements to the sections
that follow. Specifically, following Paı̈doussis & Price (1988), in Section 4.1.1, a
modified form of quasi-steady theory is presented, suitable for the subject matter of
Chapters 4 and 5. In Section 4.1.2, the damping-controlled instability mechanism is
revisited in the context of this modified quasi-steady theory.

In terms of systems to which this work can be related, the main ones are overhead
transmission lines subjected to wind and clustered offshore oil and gas production
risers subjected to ocean currents.

Notation used in Chapter 4
Cylinder diameter: D
Free-stream flow velocity: U
Relative flow velocity: Ur

Local wake velocity: U, defined in equation (4.2)
Reduced flow velocity: V = U/ωD
Streamwise displacement x (positive upstream), see Figure 4.1
Transverse displacement: y (positive downwards), see Figure 4.1
Streamwise separation between
cylinders:

X, see Figure 4.5

Transverse separation between
cylinders:

Y , see Figure 4.5

Mass per unit length: m
Flow-retardation parameter µ, see equation (4.5)
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Figure 4.1. (a) Cross-sectional view of a small group of cylinders in cross-flow; (b) velocity
vector diagram.

4.1.1 Modified quasi-steady theory

Consider a small group of cylinders subjected to cross-flow, as shown in Figure 4.1.
For simplicity, consider for the moment that all the cylinders are rigid, except the
central one, which is flexibly mounted; its motions are defined by the nondimensional
displacements x and y, as shown (x = x∗/D, where x∗ is the dimensional displacement
and D the conductor diameter, and similarly for y). Conventionally, y is taken positive
downwards, as in Chapter 2, and x positive in the countercurrent direction, but the
fluid forces on the cylinder are positive upwards and to the right.

Hence, assuming no mechanical coupling between x- and y-direction motions,
the equation of motion of the cylinder in the y-direction may be written as

(mlÿ + cẏ + ky) D = Fy, (4.1)

where Fy is the fluid-dynamic force, l is the length of the cylinder, and c and k are
the effective mechanical damping and stiffness of the cylinder, respectively.

According to quasi-steady theory, the forces acting on the oscillating cylinder are
approximately the same as the static forces at each point of the cylinder undergoing
oscillation, provided that the approach velocity is properly adjusted to take into
account the velocity of the cylinder, in the manner shown in Figure 4.1(b), where U
is the local wake velocity. Thus, Fy may be written as

Fy = − 1
2ρU2

r lD (CL cos α + CD sin α) , (4.2)

where Ur and α are defined in Figure 4.1(b) and given by

Ur = [(U + D ẋ)2 + (Dẏ)2]1/2, α = sin−1(Dẏ/Ur);

CL and CD are the static lift and drag coefficients, respectively, which for small
motions about the equilibrium position may be expressed in linearised form as

CL = CL0 + (∂CL/∂x)x + (∂CL/∂y)y,

and similarly for CD. Then, equation (4.2) may be linearised to give

Fy = − 1
2ρ U 2 lD

[
CL0 + 2CL0 (D ẋ/U) + (∂CL/∂x)x + (∂CL/∂y)y + CD0 (Dẏ/U)

]
.

(4.3)
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For a regular symmetric geometrical pattern of the cylinders, as shown in Fig-
ure 4.1(a), CLo = 0 and ∂CL/∂x = 0. Hence, equation (4.3) simplifies to

Fy = − 1
2ρ U 2 lD

[
(∂CL/∂y)y + CD0 (Dẏ/U)

]
. (4.4)

This simplification is, indeed, the main reason for choosing the symmetric system of
Figure 4.1(a) in this discussion. Nevertheless, as will be seen in the sections that follow,
this simplification is not generally possible, e.g. for a staggered pair of cylinders.

The discussion so far has been in terms of traditional quasi-steady fluid dynam-
ics. It is known, however, that there is a time lag between cylinder displacement and
the fluid-dynamic forces generated thereby. This may be thought to be related to the
delay in the two fluid streams on either side of the cylinder readjusting to the chan-
ging configuration as the cylinder oscillates (Lever & Weaver 1982); alternatively,
it may be thought to be associated with the retardation that the fluid experiences
as it nears the cylinder, notably in the vicinity of a stagnation point, in conjunc-
tion with intercylinder positions having meanwhile changed as a result of cylinder
motions (Simpson & Flower 1977; Price & Paı̈doussis 1984a, 1986a, b). As a first
approximation, this time delay may be expressed as (Price & Paı̈doussis 1984a)

τ = µD/U, (4.5)

where µ ∼ O(1) and µ should not be confused with the dynamic viscosity. Per-
haps this time lag may most easily be conceived as a delay in the viscous wake
adjusting continuously to the changing conditions imposed by the vibrating cylinder
(Paı̈doussis et al. 1984; Granger & Paı̈doussis 1996); thus, it is associated with local
viscous effects related to cylinder motion and their convection downstream, related
to the time D/U. Hence, taking this effect into account, and assuming harmonic
motions, such that y = y0 exp (iω t), equation (4.1) may be written as

Fy = − 1
2ρ U 2lD

[
e−iωτ(∂CL/∂y)y + CD0 (D ẏ/U)

]
. (4.6)

4.1.2 The damping-controlled mechanism∗

Equations (4.1) and (4.6) may be combined and written in the form

ÿ +
[(

δ

π

)
ωn + 1

2

(
ρUD

m

)
CD0

]
ẏ +

[
ω2

n + 1
2

(
ρU 2

m

)(
∂CL

∂y

)
e−iωτ

]
y = 0, (4.7)

where ωn is the in vacuo radian natural frequency of the mechanical system and δ

the logarithmic decrement. For harmonic motions, y ∝ exp (iω t), utilizing (4.5) the
damping term is found to be[(

δ

π

)
ωnω + 1

2

(
ρUD

m

)
CD0ω − 1

2

(
ρU 2

m

)(
∂CL

∂y

)
sin(µωD/U)

]
. (4.8)

When this damping term becomes negative, amplified oscillatory motion will ensue,
i.e. an oscillatory instability (in the linear sense) will arise. At the threshold of

∗ Originally (Paı̈doussis & Price 1988), this was referred to as the negative damping mechanism to
indicate that it was a velocity-dependent, damping-controlled mechanism, in contrast to the stiffness-
controlled one. However, the present description is more unambiguous.
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instability, U = Uc, the damping will be zero. Hence, presuming that µω D/U is
sufficiently small for sin (µω D/U) � µω D/U, one obtains

Uc

ωnD
=
{

2/π

−CD0 + µ(∂CL/∂y)

}
mδ

ρD2
, (4.9)

which means that the critical reduced flow velocity is linearly dependent on the
mass-damping parameter, mδ/ρD2, or half the Scruton number.

Clearly, flutter can only arise if the quantity in brackets is positive, i.e. if

−CD0 + µ(∂CL/∂y) > 0, (4.10)

i.e. if ∂CL/∂y is positive (noting that �CL and �y are in opposite directions) and
sufficiently large. Thus, an expression similar to the criterion for galloping in Sec-
tion 2.2, namely the inequality (2.9) of Glauert and Den Hartog, is obtained. In fact,
it can be shown that the two are identical, as follows. Starting with (2.9),

CD0 + ∂CL

∂α
< 0,

we first modify it for the presence of a time delay into

CD0 + Re [e−iωτ(∂CL/∂α)] < 0. (4.11)

Next, from the definition of α , we can express y as a function of α for har-
monic motions as y = (U/iω D)α; hence, we can write ∂CL/∂α = (U/iωD) (∂CL/∂y).
Assuming ωτ to be small and making use of (4.5), inequality (4.11) may be written
as

CD0 − µ(∂CL/∂y) < 0, (4.12)

which is identical to (4.10). Hence, the negative damping instability found here is
indeed a form of galloping.

The important point should be made that if there were no time delay, i.e. if
µ = 0, no oscillatory instability could arise; as CD > 0 generally, inequality (4.10)
could never be satisfied. However, there is another mechanism via which flutter can
arise, which does not depend on either a time delay or negative damping, namely
the wake-flutter mechanism which is discussed next.

4.1.3 The wake-flutter mechanism

This mechanism has been studied extensively in connection with bundles of overhead
transmission lines, typically involving two or four conductors (“cylinders”) subjected
to crosswind, often referred to as sub-span oscillations; refer to Simpson (1971b),
Price (1975a, b), Simpson & Flower (1977) and many other references cited in the
sections that follow.

In the spirit of obtaining a simple physical explanation for wake-induced flutter,
a mechanism leading to instability is proposed by use of a simple two-conductor
model; furthermore, the windward conductor is taken to be fixed and only the
leeward conductor is free to oscillate (as shown later in Section 4.2, it is the leeward
of the two conductors which extracts energy from the flow). As shown schematically
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Figure 4.2. Wake flutter of a leeward conductor in the wake of another, showing a typical
trajectory during flutter.

in Figure 4.2, the velocity distribution in the wake of the windward conductor is
approximately parabolic, with a minimum on the wake centreline.

Considering the equilibrium position of the leeward conductor to be above the
wake centreline∗ and supposing that it is given a small clockwise elliptical perturb-
ation, then, as shown in Figure 4.2, the leeward conductor moves downstream in a
region of flow with a greater velocity than it opposes when it moves back upstream.
Assuming that the flow pattern around the leeward conductor remains roughly con-
stant as it traverses this elliptical path implies that the conductor’s drag coefficient
will also remain constant, and so the variation in the leeward conductor’s drag force
will be governed by the wake-velocity distribution. Hence, the leeward conductor
experiences a higher drag force when it moves downstream than it opposes when it
moves back upstream, and so it extracts energy from the flow, causing the motion to
increase in amplitude – i.e. the conductor motion is unstable. It is also apparent that,
again considering the leeward conductor to be positioned above the wake centreline,
an initial anticlockwise perturbation results in energy being dissipated by the con-
ductor, resulting in a stable motion. So, the direction of the perturbation plays a
critical role in determining whether or not instability occurs. Following the same
argument, if the leeward conductor is positioned below the wake centreline, then an
anticlockwise motion is required to produce instability. Finally, the wake centreline
represents a position where instability cannot occur. All of these conclusions are
consistent with both experimental investigations and more sophisticated analytical
models; however, what is not explained by this simple model is the origin of the
elliptical perturbation – this requires a more complete analysis which is presented
in the next section. The most important conclusion from this simple analysis, how-
ever, is that the phenomenon producing this wake-induced instability, in its simplest
form, is a displacement-dependent or stiffness-controlled mechanism, in contrast to
that presented in Section 4.1.2 which is a velocity-dependent (damping-controlled)
mechanism.

∗ Ideally, for a full-scale transmission line the two conductors are aligned in the horizontal plane,
with the leeward conductor positioned on the wake centreline. However, in practice, the individual
conductors have slightly different lengths (this may occur either in the installation of the transmission
line, or due to differential creep of the conductors) and the leeward conductor may be at any
transverse position in the wake of the windward conductor.
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4.2 Wake-Induced Flutter of Transmission Lines

Wake-induced flutter, or sub-span oscillation as it is more usually referred to among
power-line engineers, is an aeroelastic instability which occurs on “bundles” of over-
head power conductors; specifically, when one or more of the conductors are posi-
tioned in the wake of an upstream conductor. In principle this type of instability,
and variants thereof, can occur whenever a bluff body is positioned in the wake
of another. Examples of this phenomenon producing severe vibration problems in-
clude flexible risers of offshore structures (as will be discussed in Section 4.3) and
heat-exchanger tube arrays in coolant cross-flow to be discussed in Chapter 5.

The terminology “wake-induced galloping” is also sometimes used to describe
this instability; however, this nomenclature is confusing, because the physical mech-
anisms leading to galloping and wake-induced flutter are very different. Galloping in
its simplest form requires only one degree of freedom (Den Hartog 1932), and is the
result of negative fluid damping; whereas, as will be shown later, wake-induced flut-
ter requires at least two degrees of freedom and can occur despite the aerodynamic
damping being positive.

Before embarking on a description of wake-induced flutter, it is worth noting
that this is but one of at least four different aeroelastic phenomena which can cause
vibration problems on overhead transmission lines. A summary of these phenomena
is given by Simpson (1983), but briefly their characteristics are as follows. Aeolian,
or vortex-induced, vibration is due to a frequency resonance between the oscillatory
aerodynamic force, arising via the alternate shedding of vortices from the conductors,
with one of the conductor structural natural frequencies; it can occur on single con-
ductors. (A comprehensive review of vortex shedding is given in Chapter 3.) Because
transmission lines have a large number of natural frequencies and harmonics, given
approximately by their stretched-string equivalents, a resonance will exist for almost
the entire practical range of wind speeds, and thus, this vibration is observed over a
very wide range of frequencies – typically from 8 to 60 Hz. The maximum amplitude
of vibration for Aeolian vibration is relatively small, on the order of one conductor
diameter, but its omnipresent nature often leads to rapid fatigue problems for con-
ductors. A related problem is buffeting, where a conductor is subject to periodic force
excitation via vortices shed from an upstream conductor; although the amplitude of
oscillation due to buffeting is typically smaller than for vortex-induced oscillations,
the frequency range over which it can occur is greater, 0.1 to 60 Hz, and once again
it can lead to fatigue problems. A far more dramatic aeroelastically induced vibra-
tion problem is galloping, which occurs on ice-coated conductors. This instability
usually occurs in the fundamental mode of vibration of the transmission line, in the
frequency range 0.1 to 0.5 Hz, and can have extremely large amplitudes of up to
10 m peak-to-peak – leading to clashing and “trip-outs” between individual conduct-
ors. In its most severe form, galloping is so violent that it can cause structural damage
to the conductor towers. The mechanism leading to this instability was first identified
by Den Hartog (1932) who showed that the ice coating on the conductors converts
the symmetric circular cross-section, which does not produce a steady lift force, into
an asymmetric cross-section which does. Den Hartog demonstrated that for vertical
conductor motion the steady lift force induces a negative fluid-damping leading to
the instability. For further information, the reader is referred to Section 2.2.
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Unlike vortex-induced vibrations or galloping, sub-span oscillation (wake-
induced flutter) can only occur on bundles of conductors, and specifically when one
conductor lies in the wake of another (a sub-span is the length of conductor between
either two spacers, used to physically separate the conductors, or a spacer and a tower
end point). In the United Kingdom, “twin-conductor” bundles were first introduced
in the early 1950s when transmission line voltages began to exceed 200 kV. At these
voltages, power losses due to Corona discharge, and the resulting radio interference,
become sufficiently severe to merit their reduction by the use of two or more con-
ductors rather than one larger diameter conductor; further increases in transmission
line voltage saw the advent of “quad” conductor bundles in the early 1960s. The first
recorded incidents of sub-span oscillation were observed in the United Kingdom
very soon after the introduction of bundled conductors (Rissone et al. 1968), and
there are reports of sub-span oscillation first being observed in the U.S.S.R. as early
as the early 1950s (Liberman 1974). In terms of vibrational amplitude and range
of frequency over which it occurs, sub-span oscillation is intermediate to galloping
and vortex-induced vibrations. It usually occurs in the fundamental mode, or first
harmonic, of one of the sub-spans, typically 0.5 to 2.5 Hz; hence, the terminology sub-
span oscillation. In its most common form, the oscillation consists of near-horizontal
pairs of conductors performing antiphase motion, the locus of each conductor de-
scribing a shallow ellipse with the major axis, on the order of 10 conductor diameters
peak-to-peak, inclined at a small angle to the horizontal; and so impacting between
conductors is possible (Rowbottom & Aldam-Hughes 1972). Although the vibra-
tional amplitude is not as large as for galloping, it is sufficient to cause structural
damage to either the conductors themselves or to the spacers separating the conduct-
ors; in addition, although not as omnipresent as vortex-induced oscillation, sub-span
oscillation can occur for sufficiently long periods to be responsible for fatigue prob-
lems on conductor bundles.

When attempting to provide a comprehensive and accurate model of wake-
induced flutter there are two significant complexities which must be accounted for.
The first is the unsteady nature of the aerodynamic forces acting on the individual
conductors making up the bundle, the unsteadiness arising from the oscillation of the
conductors. Here, it should be realised that although conductor bundles may consist
of groups of two, three, four or more individual conductors, as far as the aerodynamics
is concerned all bundles may be broken down into more basic configurations of single
conductors, aerodynamically isolated from other conductors in the bundle, and pairs
of conductors with the leeward conductor positioned in the wake of a windward
one. Furthermore, the spacing between the conductors is sufficient to ensure that,
except when undergoing the most severe vibrations, the windward conductor is
aerodynamically isolated from the motion of the leeward one. Hence, the most basic
configuration required to obtain an understanding of wake-induced flutter is a twin-
conductor bundle with one of the conductors in the wake of the other (see Figure 4.2).
Furthermore, although the stranding of the conductors affects their aerodynamics,
as a first approximation the conductors may be considered as being “rough” circular
cylinders.

The aerodynamic forces acting on the leeward of the two conductors are influ-
enced by its own motion as well as that of the windward conductor. Although the
aerodynamic forces acting on the windward conductor are not influenced by the
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motion of the leeward conductor, the windward conductor is coupled structurally
to the leeward one via both the spacers separating the conductors and the towers
supporting the conductor bundles. Hence, the windward conductor oscillates with
an amplitude of motion approximately equal to the leeward one. However, it is the
leeward of the two conductors which initiates the instability and extracts energy
from the airflow. Consequently, as a first step towards understanding the mech-
anism leading to wake-induced flutter it is reasonable to consider the windward
of the two conductors as fixed; this is the scenario analysed in Section 4.2.1. The
complications arising from the motion of the windward conductor are discussed in
Section 4.2.2.

A second significant complication in the analysis of wake-induced flutter of
transmission line bundles is the three-dimensionality of the structural modes. Again,
in the spirit of attempting to obtain a physical understanding of the mechanism
leading to wake-induced flutter, the complexities of the three-dimensional structural
dynamics can be ignored, and a two-dimensional analysis considered. In this two-
dimensional analysis the two conductors are considered as rigid elements flexibly
mounted so that each conductor is free to move independently in both the in-flow
and transverse directions. This is the assumption made in Sections 4.2.1 and 4.2.2,
and the complexities associated with the three-dimensional structural dynamics are
discussed in Section 4.2.3.

4.2.1 Analysis for a fixed windward conductor

The definitive work for the analysis of wake-induced flutter of two conductors with
the windward conductor fixed is due to Simpson (1970, 1971a, b). A summary of the
aerodynamic aspects of this work is given first, and the structural components are
reviewed later.

4.2.1 (a) Aerodynamic model for an oscillating conductor in the wake
of a fixed conductor

Using a quasi-steady analysis, Simpson (1971a) obtained expressions for the aero-
dynamic forces acting on an oscillating conductor in the wake of a fixed windward
one. The essence of Simpson’s aerodynamic analysis can be seen from Figure 4.1
where, in this case, the velocity diagram is applied to the leeward conductor of Fig-
ure 4.2. The leeward conductor, located at a position where the local wake velocity
(assumed to be in the same direction as the free-stream velocity) is U, is given a
small perturbation. The main thrust of the stability analysis is to determine whether
this perturbation grows or decays, indicating instability or stability, respectively.

Expressing the conductor motion in nondimensional form, then x = x∗/D and
y = y∗/D, where x∗ and y∗ are the dimensional perturbation displacements in the
in-flow and transverse directions, respectively, and D is the conductor diameter; the
perturbation velocities of the conductor are ẋ∗ = ẋD and ẏ∗ = ẏD. Accounting for
its own motion, the resultant velocity acting on the oscillating leeward conductor is
Ur, inclined at angle α to wake velocity U (see Figure 4.1(b)), where

Ur = [(U + Dẋ)2 + (Dẏ)2]1/2, (4.13)
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and

α = sin−1 (Dẏ/Ur) = cos−1((U + Dẋ)/Ur). (4.14)

The expression for Ur is nonlinear in ẋ and ẏ; however, realizing that the initial
perturbation can be made very small, equation (4.13) can be linearised by neglecting
second-order terms in ẋ and ẏ, giving

Ur = U(1 + Dẋ/U). (4.15)

At this point the quasi-steady assumption is invoked. In its most general form this
states that the lift and drag coefficients acting on an oscillating body are unaffected by
its motion, and consequently the magnitude and direction of the aerodynamic forces
may be calculated using the resultant velocity vector, accounting for the motion of
the body, and force coefficients measured on a static body. As discussed by both
Fung (1955) and Blevins (1977b), this assumption is reasonable provided the motion
of the body is not too violent; using different arguments, they both suggest that
quasi-steady aerodynamics is valid provided

U/fD > 10, (4.16)

where f is the frequency of oscillation, D is a characteristic length of the body (in this
case, the conductor diameter) and U is the local velocity. For sub-span oscillation,
where typical frequencies of oscillation are quite low, this is always easily satisfied.

Accounting for its motion, and making use of the quasi-steady assumption, it is
shown that the lift and drag forces acting on the leeward conductor are rotated
through angle α with respect to their alignment when it is stationary (see Fig-
ure 4.1). An additional assumption used here is that the lift force is always per-
pendicular to the resultant velocity vector; as will be discussed later, this may not
necessarily be correct and the orientation of the lift force can change. This has a small
effect on the final expressions for the aerodynamic forces acting on the oscillating
leeward conductor. However, maintaining the assumption of the lift force being nor-
mal to the resultant velocity vector, and using the force and velocity diagram shown
in Figure 4.1(b), the two-dimensional aerodynamic forces acting on a length l of the
oscillating leeward conductor are given by

Fx = 1
2ρU2

r Dl (CL sin α − CD cos a), (4.17a)

Fy = 1
2ρU2

r Dl (−CL cos α − CD sin α), (4.17b)

where ρ is the air density, and CL and CD are the lift and drag coefficients based
on the local wake velocity U (not the free-stream velocity U). Making use of the
expressions for sin α, cos α and Ur given previously, the force expressions may be
rewritten as{

Fx

Fy

}
= 1

2
ρDlU 2(1 + Dẋ/U )

{
CLDẏ/U − CD(1 + Dẋ/U )

−CL(1 + Dẋ/U ) − CDDẏ/U

}
. (4.18)

Before equations (4.18) can be utilised in a stability analysis, a number of prob-
lems must be overcome. First, the aerodynamic force coefficients CL and CD are not
known. Although possibly these could now be calculated via CFD calculations, the
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more usual practice, and certainly the only possibility in the early 1970s, is to ob-
tain these coefficients experimentally; see for example Counihan (1963), Ko (1973),
Cooper (1974), Price (1975a, b) and Wardlaw et al. (1975).∗ In all of these exper-
imental investigations the force coefficients are given in terms of the free-stream
velocity, U, and not the local-wake velocity U as required. However, considering for
example the lift force, it can be written as either 1

2ρDlU 2CL or 1
2ρDlU2CL, where

CL is the lift coefficient based on the free-stream velocity U, and CL is based on the
local wake velocity U; then, it is apparent that

U 2CL = U2CL, (4.19)

and similarly for the drag coefficient.
The second problem is that, as the leeward conductor moves, the relative separ-

ation between conductors changes, and CL and CD are strong functions of conductor
separation. In fact, CL and CD vary in a nonlinear manner with conductor separation;
but, realizing that the ultimate objective is to perform a linearised stability analysis,
the conductor motion can be restricted to small displacements, and the expressions
for CL and CD linearised, giving

CL = CL0 + xCLx + yCLy,

CD = CD0 + xCDx + yCDy,
(4.20)

where CL0 and CD0 are the equilibrium values of CL and CD, and CLx = ∂CL/∂x
represents the variation of CL with x, and similarly for CLy, CDx and CDy. The terms
CLx, CLy, CDx and CDy are aerodynamic stiffness coefficients; they indicate that a
static displacement of the conductor induces changes in the static forces acting on
it, and consequently they are responsible for changing the total stiffness, and hence
natural frequency, of the conductor as the wind speed is increased.

Making use of equations (4.19) and (4.20), the aerodynamic force expressions
given by equation (4.18) can be rewritten as{

Fx

Fy

}
= −1

2
ρDlU2

({
CD0

CL0

}
+ D

U

[
2CD0 −CL0

2CL0 CD0

]{
ẋ
ẏ

}
+
[

CDx CDy

CLx CLy

]{
x
y

})
.

(4.21)

One final complication is that the value of U, the local wake velocity, is generally
not known. One way of estimating U is to assume that the static drag coefficient
acting on the leeward conductor is constant for all positions throughout the wake
(this effectively implies that the flow pattern around the conductor does not change
with wake position), and that the variation of the leeward conductor’s static drag is
purely due to the variation in local velocity; then

U 2CD∞ = U2CD0, (4.22)

where CD∞ is the leeward conductor’s drag coefficient measured outside of the wake.
For convenience this is written as

U = bU, (4.23)

∗ Recent attempts by Wu et al. (1999, 2002) using a free-streamline model to predict the aerodynamic
forces for a smooth circular cylinder in the wake of another show considerable promise.
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where b = (CD0/CD∞)1/2. Finally, the aerodynamic forces acting on an oscillating
leeward conductor may be written as{

Fx

Fy

}
= −1

2
ρDlU2

({
CD0

CL0

}
+ D

bU

[
2CD0 −CL0

2CL0 CD0

]{
ẋ
ẏ

}
+
[

CDx CDy

CLx CLy

]{
x
y

})
.

(4.24)

It should be emphasised that three significant assumptions were employed in the de-
rivation of equation (4.24). First, quasi-steady aerodynamics were employed; second,
small conductor motion was assumed so that the expressions could be linearised; and
finally, it was assumed that the static lift force acting on the leeward conductor is
always normal to the resultant velocity vector.

The terms − 1
2ρDlU2{CD0, CL0}T in equation (4.24) represent the static aero-

dynamic forces acting on the conductor, and they are responsible for establishing
its static equilibrium position. The matrix terms proportional to ẋ and ẏ are aero-
dynamic damping terms, which change the overall damping of the system and are
linearly proportional to the free-stream velocity U. The matrix terms proportional
to x and y are aerodynamic stiffness terms, which change the overall stiffness and
hence natural frequencies of the system; they are proportional to U2. Neither the
static aerodynamic forces nor the aerodynamic stiffness terms depend on b, hence,
only the damping terms require that the local wake velocity, U, be known.

The aerodynamic forces given in equation (4.24) can be used in a full stability
analysis of twin-conductor bundles, and this is done later in this section; however,
useful information concerning possible instability mechanisms can be obtained by
examining the damping matrix. In particular, if the damping matrix is positive defin-
ite, then a damping-initiated instability is not possible. To determine whether or not
the damping matrix is positive definite it is first decomposed into its symmetric and
skew-symmetric components as shown below:

[
2CD0 −CL0

2CL0 CD0

]
=
[

2CD0 CL0/2
CL0/2 CD0

]
+
[

0 −3CL0/2
3CL0/2 0

]
. (4.25)

The skew-symmetric components play no role in determining whether or not the
matrix is positive definite; hence, they can be ignored. The test for positive definite-
ness is that all minor determinants of the symmetric components should be positive.
Hence, the damping matrix is positive definite provided that:

CD0 > 0 and 2C2
D0 − C2

L0/4 > 0. (4.26)

These conditions are satisfied for all practical spacings of twin-conductor bundles,
indicating that a damping-controlled instability is not possible. (However, as shown
by Zdravkovich (1977), Price & Paı̈doussis (1984b) and Bokaian & Geoola (1984a),
for very small values of in-line separation between pairs of circular cylinders, typically
less than approximately 3 cylinder diameters, CD0 can be very small and even negative
and CL0 can be very large; hence, a damping-controlled instability is possible. But
the small value of in-line separation required to produce this is well below what
is normally encountered in overhead transmission lines.) Hence, if instability is to
occur it must be from sources other than aerodynamic damping. Using a slightly
different explanation, exactly the same conclusion was obtained by Rawlins (1976).
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Origin of the lift force and its effect on the damping matrix. The aerodynamic forces acting
on a leeward conductor oscillating in the wake of a fixed windward conductor, as
given by equation (4.24), rely on the assumption that the static lift force always acts
perpendicular to the resultant velocity vector. In fact, even for a fixed leeward con-
ductor the origin of its static lift is uncertain, and a number of different mechanisms
have been proposed.

Maekawa (1964) was the first to observe that the lift force on the leeward of
two cylinders acts towards the wake centreline. As pointed out by Maekawa, this is
the opposite of what is expected from a simple application of inviscid flow theory
and the velocity distribution across the wake. Maekawa suggested that the lift was
due to “buoyancy” resulting from the variation of static pressure across the wake.
Using Taylor’s (1947) analysis for a body in a shear flow, Savkar (1970) developed
an expression for the lift force on a cylinder in the wake of another, but, similarly
to the inviscid analysis of Maekawa, it acted in the wrong direction, i.e. away from
the wake centreline. Mair & Maull (1971) suggested that the lift force was in fact
nothing more than a resolved component of the drag force, which they concluded was
directed towards the centreline. Rawlins (1974a) resorted to the use of inviscid flow
theory but, accounting for the different vorticity shed by the two boundary layers
separating from the leeward cylinder, obtained an expression which was exactly the
negative of Savkar’s – so acting in the right direction. Price (1975b, 1976) conducted
a series of experiments to evaluate the relative contributions from these different
mechanisms; he found that, although all of them had some contribution, none of
them could be said to be dominant.

The uncertainty in specifying exactly what is the mechanism leading to the lift
force does have an effect on the expressions for the aerodynamic forces acting on
an oscillating leeward conductor. The expressions given in equation (4.24) are based
on the assumption that the static lift force always acts perpendicular to the resultant
velocity vector. Simpson & Price (1974) and Price (1975b) derived alternative ex-
pressions for these aerodynamic forces based on other hypotheses. If it is assumed
that the lift force is purely due to buoyancy and, hence, always normal to the wake
centreline, the following expressions are obtained:

{
Fx

Fy

}
= −1

2
ρDlU2

({
CD0

CL0

}
+ D

bU

[
2CD0 0

0 CD0

]{
ẋ
ẏ

}
+
[

CDx CDy

CLx CLy

]{
x
y

})
.

(4.27)

The only difference between these new expressions for the aerodynamic forces and
those given by equation (4.24) is in the off-diagonal terms of the damping matrix.
Simpson & Price (1974) and Price (1975b) also developed the following expressions
for the aerodynamic forces based on the assumption that the lift force is purely due
to resolved drag:

{
Fx

Fy

}
= −1

2
ρDlU2

({
CD0

CL0

}
+ (CDCD∞)1/2 D

(1 + r2)3/4 U

[
2 + r2 r

r 1 + 2r2

]{
ẋ
ẏ

}

+
[

CDx CDy

CLx CLy

]{
x
y

})
, (4.28)
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where r = CL0/CD0 and CD∞ is the free-stream drag coefficient. There is consider-
able modification of the aerodynamic damping matrix vis-à-vis that given by either
equation (4.24) or (4.27), but once again there is no difference in the stiffness matrix.

Although the uncertainty in the origin of the lift force results in different forms
for the aerodynamic damping matrix, the instability is not due to negative aerody-
namic damping. As will be shown later, it is governed by the aerodynamic stiffness
matrix, which is unaffected by the choice of mechanism leading to the lift force, and
so this uncertainty in the origin of the lift force is not particularly serious. (Provided
CD0 is positive, both the resolved drag and buoyancy assumptions lead to damping
matrices which are positive definite.)

4.2.1 (b) Structural model
In addition to the aerodynamic forces, as derived in Section 4.2.1(a), a structural
model is required for the leeward conductor before a stability analysis can be per-
formed. The structural dynamics of transmission lines, accounting for the inertial
and stiffness properties of the conductors and spacers making up the bundles, plus
possibly the stiffness properties of the transmission line towers, is an extremely com-
plex problem, which is discussed in Section 4.2.3. In the analysis presented here, and
in the papers cited in the remainder of this section, the objective is not to develop
an analytical model which accurately predicts the natural frequencies and stability
of transmission lines, but instead to develop a structural model which mimics the
relevant parameters which are important vis-à-vis wake-induced flutter. As shown
previously, an elliptical motion is required for the leeward conductor to extract en-
ergy from the wake. However, this elliptical motion is not a natural structural mode
for a transmission line; it occurs as a result of an aeroelastically induced coalescence
of two modes.

The simplest case of wake-induced flutter occurs on horizontal twin-conductor
bundles where the two structural modes which coalesce to produce the unstable
mode are so-called in-plane and out-of-plane modes, which oscillate in or out of
the plane, respectively, of the catenary in which the transmission line hangs (see
Figure 4.3). Because of the static drag force acting on it as it hangs as a catenary,
the transmission line is swept back and inclined to the vertical by an amount known
as the “blow-back” angle. This is important because the in-plane and out-of-plane
modes are now no longer in the vertical and horizontal directions, respectively (see
Figure 4.3).

In a full-span mode the conductor bundle oscillates with no relative motion
between conductors (Figure 4.4(a)). To a first-order approximation its natural fre-
quencies are given by the stretched string frequencies of the conductor length
between end supports. As there is no relative motion between conductors, the effect
of spacer stiffness and damping on this type of mode is negligible. In addition, al-
though a spacer may move in a full-span oscillation, its mass is typically less than 1%
of the total conductor mass, and so it may also be neglected. Thus, it can be said that
spacers have little or no effect on the natural frequencies, mode shapes or damping
levels of full-span modes.

For a sub-span mode the conductors oscillate out of phase with each other
(Figure 4.4(b)). To a first-order approximation, the natural frequency is given by
the stretched string frequency of the sub-span length between conductor spacers. If
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Figure 4.3. Cross-sectional view of the
in-plane and out-of-plane directions of
oscillation of a transmission line when
subject to a static drag force.

the spacers are rigid, then no conductor motion is propagated to adjacent sub-span
lengths, and the spacers effectively force nodes at their locations. Flexible spacers,
however, allow conductor motion to permeate over a number of sub-spans and
their locations no longer dictate the nodal positions. In addition, if the spacers are
constructed using dissipative elements, then they may introduce mechanical damping
into the sub-span modes. Thus, the construction and positioning of spacers has a very
strong effect on the frequency, damping and shape of sub-span modes.

For quad- (i.e. four-conductor) or other multiconductor bundles the situation is
more complex. Because of the larger number of conductors, there is an increase in
the number of sub-span modes and, because of the spacer geometry, both in-plane
and out-of-plane modes may be sub-span modes. Thus, there are a far greater number
of modes which may coalesce to become unstable and the effect of spacers is not as
straightforward as for twin-conductor bundles.

Figure 4.4. Schematic of modes of oscillation of a twin-conductor transmission line with three
sub-spans: (a) a full-span mode; (b) a sub-span mode.



4.2 Wake-Induced Flutter of Transmission Lines 169

U

Y

X

x

p y

s

Windward
cylinder

Leeward
cylinder

Damper

Spring

θ

Figure 4.5. Schematic for the mechanical supports of the leeward conductor.

One thing which is common to both twin and quad bundles is that the two struc-
tural modes which coalesce to become unstable will almost certainly have different
natural frequencies, and their coalescence is a direct result of the aerodynamic stiff-
ness terms acting on the leeward conductor given in equations (4.24), (4.27) or (4.28).
The manner in which these modes coalesce is very similar to that of the wing bending
and torsional mode coalescence in classical aircraft wing flutter (Fung 1955); thus,
the use of the terminology wake-induced flutter.

The first derivation of a simple but representative two-dimensional structural
model for wake-induced flutter was given by Simpson (1971b) who did not account
for mechanical damping. For completeness, the equations developed here do include
the mechanical damping terms. The analytical model used to represent the structural
support of the leeward conductor is shown schematically in Figure 4.5. The conductor
is mounted via an orthogonal spring-damper system, with principal axes represent-
ing the in- and out-of-plane directions; furthermore, the mounting system may be
inclined at any angle θ to the vertical, representing the conductor blow-back.

If f p and δp are, respectively, the cylinder natural frequency and logarithmic
decrement in the p-direction, then the equation of motion in that direction may be
written as

(mlp̈ + cp ṗ + kp p) D = F p , (4.29)

where m is the conductor mass per unit length, cp = 2δp [kp ml/(4π2 + δ2
p )]1/2 is the

viscous damping coefficient∗, kp = 4π2mlf 2
p is the effective stiffness of the conductor-

mounting system, F p is the external force in the p-direction arising from the aero-
dynamics and p is the nondimensional displacement of the conductor. A similar
expression may also be obtained in the s-direction.

∗ Recall that δp = ζp (4π2 + δ2
p )1/2, where 2ζp ωn = cp /ml and ωn = (kp /ml)1/2

.
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The p- and s-equations may easily be transformed into the (x, y)-coordinate
system by use of a transformation matrix [T ], where

{p, s}T = [T ] {x, y}T ,

and

[T ] =
[

cos θ sin θ

− sin θ cos θ

]
, (4.30a)

giving {
[M]

{
ẍ
ÿ

}
+ [C]

{
ẋ
ẏ

}
+ [K]

{
x
y

}}
D =

{
Fx

Fy

}
, (4.30b)

where [M] = ml
[

1 0
0 1

]
is the structural mass matrix,

[C] = [T ]−1

[
cp 0
0 cs

]
[T ] is the structural damping matrix,

[K] = [T ]−1

[
kp 0
0 ks

]
[T ] is the structural stiffness matrix, and

{Fx, Fy}T is the vector of external aerodynamic forces given by equations (4.24),
(4.27) or (4.28).

It should be stressed that this structural simulation is strictly limited to situations
where there is no structural coupling between the in-plane and out-of-plane modes;
this is a reasonable assumption for twin-conductor bundles, but is unlikely to be
correct for quad bundles. If structural coupling does exist between these modes,
then the form of the structural equations will be significantly more complex than
those presented in equation (4.30b).

Simpson (1971b) used an alternative, and more general, method to determine
the structural stiffness matrix (he did not consider structural damping). If ω1 and ω2

are the two natural frequencies of the structural system with mode shapes given by
{1, g} and {−g, 1}∗, respectively, then as shown by Simpson (1971b) the stiffness
matrix is [

Kxx Kxy

Kyx Kyy

]
,

where

Kxx = ml
(
ω2

1+g2ω2
2

)
1+g2

,
Kyy

Kxx
= k2 = ω2

2+g2ω2
1

ω2
1+g2ω2

2

and
Kxy

Kxx
= Kyx

Kxx
= ε = g

(
ω2

1−ω2
2

)
ω2

1 + g2ω2
2

.

(4.31)

The advantage of this method is that it enables the structural stiffness matrix to be
formulated no matter what the source of coupling between the x- and y-directions,
provided g, which is effectively a measure of this structural coupling, is known. If

∗ Hence, modes ω1 and ω2 are sensibly the x- and y-direction modes.
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Figure 4.6. Static force coefficients for
a smooth circular cylinder in the wake
of another with free-stream Re = 2.97 ×
104 (Price 1975a): �, X = 19.5 and 1.5%
free-stream turbulence intensity; �, X =
19.5 and 11% free-stream turbulence in-
tensity; �, X = 5.8 and 1.5% free-stream
turbulence intensity; �, X = 5.8 and
11% free-stream turbulence intensity.

we restrict the analysis to those cases where the in-plane and out-of-plane modes
are uncoupled – hence, coupling between the x- and y-directions is purely due to
conductor blow-back – then it is possible to relate g to θ, with positive θ corresponding
to positive g (and negative θ corresponding to negative g). The reader is reminded
that physically only a positive θ can exist.

4.2.1 (c) Typical results
A number of authors have presented analytical and numerical solutions for the dy-
namic stability of one flexibly mounted conductor in the wake of a fixed windward
one. An essential prerequisite for all of these solutions is that extensive aerody-
namic data be available, in particular, the static lift and drag coefficients for the
leeward conductor and how they vary with the conductor’s wake position. This
type of data has been measured by a number of different researchers, for example
Counihan (1963), Ko (1973), Cooper (1974), Price (1975a, b) and Wardlaw et al.
(1975).

Price (1975a, b) measured the aerodynamic data for a number of different cross-
sectional shapes, including smooth circular cylinders (at Re = 3.6 × 104 with free-
stream turbulence intensities of 1.5% and 10%) and for two standard CEGB (the
U.K. Central Electricity Generating Board) “conductors” with outer layers of either
24 or 18 strands. (The conductors were constructed from rigid cores to maintain the
straightness of the two-dimensional models, with strands wrapped around the cores
to mimic real conductors.) Some sample data from Price (1975a, b) are shown in
Figures 4.6 and 4.7. In all cases there is a significant variation of CL and CD with Y ,
with the CD curves being symmetric about the wake centreline and the CL curves
being antisymmetric. Using the complete data-set given by Price (1975a, b) the static
aerodynamic force coefficients (CL0 and CD0) and the aerodynamic stiffness terms
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Figure 4.7. Static force coefficients for an 18-strand con-
ductor in the wake of a similar conductor (Price 1975a):
�, X = 8.4, Re = 2.1 × 104 and 10% free-stream turbu-
lence intensity; �, X = 25.4, Re = 2.1 × 104 and 10%
free-stream turbulence intensity; �, X = 8.4, Re = 2.5 ×
104 and 2% free-stream turbulence intensity; �, X =
25.4, Re = 2.5 × 104 and 2% free-stream turbulence
intensity.

(CLx, CLy, CDx and CDy) can be obtained at any position in the wake; hence, the
aerodynamic forces acting on a leeward conductor, given by equations (4.24), (4.27)
or (4.28), can be evaluated.

Price (1975a) used two different methods of solution to evaluate the dynamic
stability of the leeward conductor; in both of these methods, the structural damping
was ignored. (Unless external damping devices are added to a transmission line its
structural damping is very small, and so this is a reasonable approximation.) Hence,
using the form of the aerodynamics given by equation (4.24), equation (4.30b) may
be rewritten as

[I]
{

ẍ
ÿ

}
+

1
2ρDU

mb

[
2CD0 −CL0

2CL0 CD0

]{
ẋ
ẏ

}
+ 1

ml

[
Kxx Kxy

Kyx Kyy

]{
x
y

}

+
1
2ρU2

m

[
CDx CDy

CLx CLy

]{
x
y

}
= −

1
2ρU2

m

{
CD0

CL0

}
. (4.32)

Considering only the homogeneous part of the equations, which determines the
stability of the system, and assuming solutions of the form

x = xo exp(λUt/D) and y = yo exp(λUt/D), (4.33)

the following expressions are obtained:[
λ2 + 2λnCD0/b + χ + nCDx −λnCL0/b + εχ + nCDy

2λnCL0/b + εχ + nCLx λ2 + λnCD0/b + k2χ + nCLy

]{
xo

yo

}
= 0, (4.34)
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where

n = ρD2

2m
, χ = Kxx

D2

U2ml
, k2 = Kyy

Kxx
and ε = Kxy

Kxx
= Kyx

Kxx
.

For a nontrivial solution of equation (4.34) the determinant of the matrix must be
zero, which gives the following characteristic equation for the eigenvalues λ:

λ4 + h3λ
3 + h2λ

2 + h1λ + h0 = 0, (4.35)

where

h3 = 3nCDo/b,

h2 = χ(1 + k2) + n(CLy + CDx) + 2n2 (C2
L0 + C2

D0

)
/b2,

h1 = nCD0(2k2χ + 2nCLy + χ + nCDx)/b + nCL0(nCLx − 2nCDy − εχ)/b,

h0 = (χ + nCDx) (k2χ + nCLy) − (εχ + nCDy) (εχ + nCLx) .

The stability of the system may now be determined using Routh’s stability criteria,
which indicate that dynamic instability will occur if

T3 = h1h2h3 − h2
1 − h0h2

3 ≤ 0. (4.36)

Although equation (4.36) can easily be solved numerically, an alternative method
of solution proposed by Simpson (1971a) was to ignore the aerodynamic damping
terms (the structural damping had already been ignored). If this is done, because
all the damping terms have now been set to zero, the Routh test determinant T3 is
automatically zero and, hence, it no longer gives a useful measure of stability. An
alternative approach is to realise that a stability boundary will occur when there is a
frequency coalescence of the solutions of the revised characteristic equation

λ4 + h2λ
2 + h0 = 0, (4.37)

where

h2 = χ(1 + k2) + n(CLy + CDx),

h0 = (χ + nCDx) (k2χ + nCLy) − (εχ + nCDy) (εχ + nCLx) .

Frequency coalescence is obtained when

(h2)2 − 4h0 = 0, (4.38)

which gives the following quadratic in χ = Kxx [D2/U2ml]:

χ2((1 − k2)2 + 4ε2) + 2χn((1 − k2)(CDx − CLy) + 2ε(CLx + CDy))

+ n2(CDx − CLy)2 + 4n2CLxCDy = 0. (4.39)

Equation (4.39) gives two values ofχ, and hence airspeed, corresponding to the sta-
bility boundaries; the system being stable for all airspeeds below the lower boundary
and above the upper boundary, and unstable for airspeeds between these two values.

There are two advantages to evaluating the stability of the system by use of equa-
tion (4.39) rather than equation (4.36). First, equation (4.39) is a simple quadratic
in χ, and so the stability boundaries may be obtained very easily without recourse
to computationally intensive methods. However, the most significant advantage is
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Figure 4.8. General representation of the aerodynamic force coefficients for one cylinder in
the wake of another.

realised when it is recognised that physically meaningful solutions to equation (4.39)
require that its roots be real and positive. This leads to the condition that instability
will only occur provided the following condition is satisfied:

ε2((CLx − CDy)2 − (CDx − CLy)2) + (1 − k2)(ε(CDx − CLy)(CLx + CDy)

− (1 − k2)CLxCDy) ≥ 0. (4.40)

Making use of equation (4.40), it is possible to draw a number of conclusions
concerning the requirements for flutter to occur on different mechanical systems.
Price (1975a, b) presents three examples, two of which are discussed in the fol-
lowing. To help in the interpretation of these results it should be realised that, as
indicated in Figure 4.8, the wake may be divided into six distinct regions, each of
which has different combinations of sign for the aerodynamic stiffness coefficients
CLx, CLy, CDx and CDy

∗.

(i ) First example: an uncoupled mechanical system. If the in-plane and out-of-plane modes
are structurally uncoupled, as would be obtained with zero blow-back on a twin-
conductor bundle, then g = 0 and from equation (4.31) ε = 0 and k2 = ω2

y/ω
2
x. Hence,

equation (4.40) reduces to

CLxCDy ≤ 0.

Furthermore, the solution to equation (4.39) is given by

χ = n

[(
CLy − CDx

)± 2
√−CLxCDy

(1 − k2)

]
. (4.41)

In the positive Y half of the wake, CDy is positive everywhere (see Figure 4.8), and
so flutter can only occur when the conductor is positioned in the outer region of
the wake, beyond the lift cross-over point where CLx is negative and, in general, of

∗ When considering Figure 4.8 it should be remembered that a forward movement of the leeward
conductor, +ve x, results in a decrease in separation between conductors, −ve �X; whereas a
downward movement , +ve y, results in a +ve �Y .
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Wake boundary

Lift cross-over

Max. Lift

Centreline

Min. Lift

Lift cross-over

Wake boundary

CDx, CDy +ve, CLx, CLy  –ve 

g > 0, k2 > 1,  fy > fx, θ +ve

CDy, CLx, CDx +ve, CLy  –ve 

g > 0, k2 > 1,  fy > fx, θ +ve

CDy, CLy, CLx +ve, CDx –ve 

g < 0, k2 < 1,  fy < fx, θ –ve

CDy, CLx, CDx –ve, CLx +ve 

g > 0, k2 < 1,  fy < fx, θ +ve

CLx, CDy, CLy –ve, CDx +ve 

g < 0, k2 > 1,  fy > fx, θ –ve

CDy, CLy –ve, CLx, CDx +ve 

g < 0, k2 > 1,  fy > fx, θ –ve

Y

Figure 4.9. Undamped flutter prediction for a typical transmission line simulation.

small magnitude; furthermore, in this region CDx is positive and CLy negative, and
so flutter is only possible if k2 > 1 or ωy > ωx. For the negative Y half of the wake
using similar arguments it can be shown that flutter is again possible only beyond
the lift cross-over point, but in this case the requirement is that ωy < ωx.

(i i ) Second example: transmission line simulation. Assuming that the blow-back angle θ

is small, which implies that g is also small, then equation (4.31) may be written to
order g as

Kxx ≈ mlω2
1, k2 = Kyy

Kxx
≈ ω2

2

ω2
1

and ε = Kxy

Kxx
= Kyx

Kxx
≈ g(1 − k2); (4.42)

hence, the ω1 mode is predominantly in the x-direction, and ω2 is in the y-direction.
The condition for flutter, equation (4.40), then reduces to

g (CDx − CLy) (CLx + CDy) − CLxCDy ≥ 0, (4.43)

and the critical flutter speeds are given by

χ= n
1−k2

[CLy−CDx−2g (CLx+CDy) ± 2 (g (CDx−CLy) (CLx+CDy)−CLxCDy)1/2].

(4.44)
To clarify the different possible solutions available from equation (4.44) the wake
is divided into seven different regions (see Figure 4.9), which are discussed in the
following.

a. On the wake centreline CDy = CLx = 0, and so there is no possibility of flutter.
b. Between the centreline and the lift peak on the positive Y side of the wake,

CDy, CLy and CLx are positive, whereas CDx is negative. Hence, equation (4.43)
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can be satisfied only if g is negative; switching to the negative Y side of the wake
results in a change of sign for CLx and CDy, and so flutter is possible only when
g is positive. The greater the magnitude of g (greater blow-back, or coupling
between the x- and y-directions), the more likely it is that the magnitude of
g(CDx − CLy)(CLx + CDy) will be greater than CLxCDy (which is negative); hence,
the greater the mechanical coupling between the modes, the more likely it is that
flutter will occur.

c. Between the lift peak and the lift cross-over point on the positive Y side of
the wake, CDy, CDx and CLx are positive and CLy is negative and small. Hence,
equation (4.43) can only be satisfied if g > 0. Changing sides of the wake results
in a change in sign for CDy and CLx, so now g < 0 is required for flutter to
occur.

d. Between the lift cross-over point and the wake boundary the x-aerodynamic
stiffness terms, CLx and CDx, are very small, and so the dominating term in
equation (4.43) is −gCLyCDy. With positive Y , CLy is negative and CDy positive,
and so flutter is possible only when g > 0. Switching to the negative Y side of the
wake causes CDy to become negative, and so flutter is now possible only when
g < 0.

Recalling that for all examples in case (ii) g is small, and taking into account typ-
ical values of the aerodynamic stiffness terms, it is evident that equation (4.44) is
dominated by the term

χ = nCLy

1 − k2
. (4.45)

Hence, in addition to specifying whether positive or negative g is required for flutter
to occur it is also possible to specify whether k2 = (ωy/ωx)2 must be greater or less
than one. Thus, the frequency ratios required for flutter to occur can be obtained,
and are also indicated on Figure 4.9, as is the required sign of θ when the structural
coupling is purely due to blow-back.

The discussion presented in the preceding paragraph has shown that, with the
exception of the region very close to the wake centreline, wake-induced flutter can
occur for all transverse positions of the leeward conductor provided the correct
combination exists for the coupling, g (or blow-back angle, θ) and frequency ratio,
k2 = (ω2/ω1)2, between the two structural modes. Essentially the same conclusions
were also obtained by Tsui (1977, 1978), who rederived Simpson’s (1971a, b) analyt-
ical model. However, Tsui retained the aerodynamic damping terms and obtained
stability boundaries via the Routh stability criteria in essentially the same manner
as that given by equation (4.36).

Making use of the measured force coefficient data, solutions to equation (4.39)
were obtained by Price (1975a, b) for a variety of different structural parameters,
and the solutions compared with experimental results obtained using a specially
designed apparatus where the leeward of the two conductors was supported on a
pantograph spring system. By altering the initial lengths of the springs, different
natural frequencies could be obtained; in addition, by rotating the pantograph, dif-
ferent values of blow-back angle could be simulated. A very similar experimental
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Figure 4.10. Flutter boundaries for a
smooth circular cylinder with ω1 = 26.4
rad/s and ω2 = 25.3 rad/s (Price 1975a): �,

self-starting experimental boundary; �,
hard-oscillating experimental boundary;
——, theoretical boundary. (a) U = 20
m/s, g = 0.268; (b) U = 25 m/s, g = 0.268;
(c) U = 30 m/s, g = 0.268; (d) U = 30
m/s, g = −0.268.

facility was developed, and an experimental research program pursued, by a team of
researchers at the National Research Council of Canada (Watts & Ko 1973; Wardlaw
et al. 1975).

Some typical comparisons between experimental and theoretical results are
shown in Figures 4.10 and 4.11, where for a specific set of structural parameters the
unstable wake regions are given for fixed airspeeds. Two sets of experimental results
are presented in each figure: one for self-starting flutter where instability was initiated
without any external disturbance, whereas the second, “hard-oscillation” boundary
was obtained when the conductor was given a relatively large initial perturbation
of at least 3 conductor diameters. It is apparent that for all the results presented in
Figures 4.10 and 4.11 the areas of the wake in which hard-oscillation flutter occurred

Figure 4.11. Flutter boundaries for a
smooth circular cylinder with two in-
tensities of free-stream turbulence for
U = 20 m/s and g = 0.268 (Price 1975a):
�, self-starting experimental boundary;
——, theoretical boundary. (a) and (b)
ω1 = 16.6 rad/s, ω2 = 16.0 rad/s; (a)
11% turbulence; (b) 2% turbulence;
(c) and (d) ω1 = 15.9 rad/s, ω2 = 16.6
rad/s; (c) 11% turbulence; (d) 2%
turbulence.
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are larger than for self-starting flutter; this was the case for all of the results presented
by Price (1975a, b). Although not excellent, there is reasonable agreement between
the theoretical and experimental results, with the agreement being better for the
hard-oscillation experimental values. It should be remembered that the theoretical
values are obtained using the “undamped” solutions and so no account was taken of
either structural or aerodynamic damping.

The results shown in Figures 4.10 (a–c) are all for positive g and ω1 > ω2 (the
reader is reminded that the ω1 mode is predominantly in the x-direction and the
ω2 mode is in the y-direction). In agreement with the argument summarised in Fig-
ure 4.9, flutter occurs in the region between the wake centreline and the lift peak for
the negative Y side of the wake. Comparing Figures 4.10 (a–c) shows very clearly
that increasing the airspeed causes an increase in the area where instability occurs.
It is also apparent from a comparison of Figures 4.10 (c) and (d) that changing
the sign of g causes the region where instability occurs to switch to the other side
of the wake, and that the instability regions obtained with positive and negative g
are approximately mirror images (the theoretical curves are exactly mirror images),
which is also in agreement with the arguments summarised in Figure 4.9.

The results presented in Figure 4.11 show that changing the frequency ratio of
the structural modes from ω1 > ω2 to ω2 > ω1, while maintaining a positive g, causes
the unstable region of the wake to switch from the negative Y to the positive Y side
of the wake and also moves the unstable region outside the lift peak; again, this is in
agreement with the results indicated in Figure 4.9.

One final observation from the results of Figure 4.11 is the stabilizing effect
of increased free-stream turbulence; this can be seen by comparing the unstable
areas in Figures 4.11(a) and (b) which are for 11% and 2% turbulence intensities,
respectively; similarly for Figures 4.11(c) and (d). As shown in Figures 4.6 and 4.7, the
effect of increased turbulence, for a fixed value of X, is to reduce the maximum CL

and to increase the minimum CD; hence, there is a general reduction in magnitude of
the aerodynamic stiffness terms, leading to an overall stabilizing effect. These results
are consistent with field trials on transmission lines reported by Rawlins (1974b)
and Wardlaw et al. (1975), who both independently noted that wake-induced flutter
was mostly a problem for transmission lines situated in flat open terrain (where
the turbulence intensities are typically low) and that its severity was reduced by an
increase in atmospheric turbulence intensity.

The theoretical results presented in Figures 4.10 and 4.11 were obtained using
undamped theory, where the effects of both structural and aerodynamic damp-
ing are ignored. Although this gives good agreement with experimental results for
the majority of cases, there are some examples where the agreement is not good.
The reason for this can be illustrated via the theoretical results shown in Figure
4.12. Here, the range of airspeed where instability will occur is given as a func-
tion of frequency ratio for one particular wake position; two sets of results are
presented, one where there is no damping and the second where the aerodynamic
damping is accounted for. Over most of the frequency range there is virtually no
difference between the two solutions. However, one substantial difference is that
the damped theory predicts a minimum frequency ratio below which instability
will not occur, whereas the undamped theory suggests that instability will occur
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Figure 4.12. Variation of critical velo-
city range with frequency ratio for the
damped and undamped solutions with
g = 0.268 (Price 1975a): ——, accounting
for the aerodynamic damping; - -, neg-
lecting the aerodynamic damping. (a)
X = 6.0, Y = −0.8, ω1 = 26.4 → 25.9
rad/s, ω2 = 25.3 → 25.9 rad/s; (b) X =
6.0, Y = 2.0, ω1 = 25.2 → 25.9 rad/s,
ω2 = 26.4 → 25.9 rad/s.

at zero velocity when ω2 = ω1. Obviously the undamped results for ω2 ≈ ω1 are
physically unreasonable, and this represents a severe weakness of the undamped
theory.

Accounting for both the aerodynamic and structural damping, Price & Piperni
(1988) showed that the main effect of increasing the structural damping is to move
the critical frequency ratio below which instability will not occur away from unity.
An example of this is shown in Figure 4.13 for four different levels of structural
damping.

A similar validation of theoretical results for wake-induced flutter, accounting
for the aerodynamic damping terms, but not the structural damping terms, is also
given by Tsui (1977, 1978) who used aerodynamic data from Ko (1973) and compared
the theoretical stability boundaries with the experimental results of Watts & Ko
(1973); the agreement was generally very good.

4.2.1 (d) Nonlinear analysis
The analyses and results summarised in the previous section are based on linear
theory, and consequently they give no indication of the system behaviour once
instability has occurred; to do so requires that nonlinear effects be accounted for.
Because transmission lines are so flexible, and typical amplitudes of oscillation for
sub-span oscillation are small compared with the length of a transmission line, it
is reasonable to consider the structural terms as being linear. However, as can be
seen from Figures 4.6 and 4.7, the aerodynamic lift and drag coefficients acting
on the leeward conductor are strongly nonlinear with respect to its displacement;
hence, nonlinear analyses of sub-span oscillation have typically concentrated on the
aerodynamic nonlinearities.
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U/ωD

ωp/ωs

Figure 4.13. Variation of critical velo-
city range with frequency ratio for differ-
ent levels of mechanical damping, with
equal damping in the two modes (Price
& Piperni 1988): X = 10.7, Y = −0.8,
m/ρD2 = 1706, θ = 20◦; ——, δp = δs =
0.0; – –, δp = δs = 0.1; ——·——, δp =
δs = 0.3; -·-·-, δp = δs = 0.5.

An initial attempt at a nonlinear analysis of wake-induced flutter was undertaken
by Simpson (1971a) who employed a Runge-Kutta method to predict the amplitude
of oscillation for the leeward conductor; the aerodynamic coefficients were approx-
imated using simple analytic functions and no account was taken of the aerodynamic
damping. Some preliminary calculations including the effect of both mechanical and
aerodynamic damping were performed by Allnutt et al. (1980). The methodology
employed by Allnutt was to consider a position in the wake where instability was
predicted using linearised theory, and then assume that a stable limit cycle exis-
ted and that it could be represented by sinusoidal motion in both the in-plane and
out-of-plane directions; in common with the analysis presented by Simpson (1971a),
the approximation of the nonlinear aerodynamic terms was very simplistic. Oli-
veira & Mansour (1983) used simple analytical approximations for the aerodynamic
coefficients measured by Cooper (1974) and solved the resulting equations via a
Krylov & Bogoliubov method of averaging. However, no account was taken of the
structural coupling between the in- and out-of-plane modes (interestingly, linearised
analyses indicate that this case should be stable, but no discussion of this appar-
ent contradiction is given by Oliveira & Mansour) and structural damping was also
ignored.

A more complete analysis accounting for structural damping as well as the non-
linearities associated with the aerodynamic terms is given by Price & Piperni (1988).
The complete nonlinear form of the resultant wake velocity acting on the leeward
conductor, as given by equation (4.13), was employed, and so the aerodynamic forces
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Figure 4.14. Locus of oscillation for the leeward conductor when given an initial dis-
placement in the y-direction of one conductor diameter (Price & Piperni 1988): X = 10.7,

Y = −0.8, m/ρD2 = 1706, θ = 20◦, ωp /ωs = 1.1, U/ωsD = 83.5, δp = δs = 0.05.

acting on the oscillating leeward conductor are simply

Fx = 1
2ρU2

r Dl (CL sin α − CD cos α) , (4.46a)

Fy = 1
2ρU2

r Dl (−CL cos α − CD sin α) . (4.46b)

To account for the nonlinear variation of CL and CD with wake position, the pre-
viously measured force coefficient data was interpolated in polynomial form. The
resulting equations were solved using a standard Runge-Kutta numerical integration
procedure; the leeward conductor was given a small initial displacement, and the nu-
merical integration was allowed to proceed until either the conductor converged
back on to its equilibrium position, indicating stability, or achieved a steady-state
limit cycle. It should be appreciated that this procedure was extremely computation-
ally intensive, and typically it was necessary to allow the integration to run for over
50 cycles of oscillation before a steady limit cycle was obtained; a typical example of
this is shown in Figure 4.14.

Using simulations similar to that shown in Figure 4.14, the effect of structural
damping on the amplitude of the final limit-cycle oscillation was investigated. An
example of the results obtained is shown in Figure 4.15, where the half peak-to-peak
magnitudes of the major and minor axes of the limit-cycle ellipses are presented.
For structural logarithmic decrements of less than approximately 0.18, increasing
the structural damping has very little effect on the amplitude of the major axis;
what is even more surprising is that the amplitude of the minor axis increases. It
is this increase in the amplitude of the minor axis which suggests why increasing
structural damping is so ineffective in reducing the overall amplitude of oscillation.
If the oscillation were a simple one-degree-of-freedom motion, then increasing the
structural damping would cause a reduction in the vibrational amplitude. However,
because this is a coupled two-degree-of-freedom oscillation, the effect of an increase
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Figure 4.15. Variation of the leeward conductor limit-cycle amplitudes with mechanical
damping when there is equal mechanical damping in both modes of vibration (Price & Pi-
perni 1988): X = 10.7, Y = −0.8, m/ρD2 = 1706, θ = 20◦, ωp /ωs = 1.1, U/ωsD = 64.0; �,
major axis; �, minor axis.

in structural damping is more complex. Not only does additional damping increase
the energy absorption of the conductor, it also causes a change in the conductor
modal pattern. In particular, the ellipse is now much “broader”, and thus, because of
the increased differential in drag across the ellipse, more energy is absorbed by the
conductor. Hence, additional damping not only causes increased energy dissipation,
but also, albeit indirectly, an increase in energy absorption. This process continues
until the trajectory becomes approximately circular, at which point the maximum
possible energy is absorbed, and it is only then that increasing the structural damping
has a significant effect on the amplitude of the major axis.

The results presented in Figure 4.15 are for equal structural damping in the two
wind-off modes of vibration. Although this may be achievable for quad bundles,
where the two modes of oscillation may be sub-span modes, it is unlikely to be so
for twin bundles where the in-plane mode will be a full-span mode which will be
lightly damped. To investigate the efficacy of mechanical damping for twin bundles,
increasing the mechanical damping only in the out-of-plane mode was investigated,
and some typical results are presented in Figure 4.16. For a logarithmic decrement
of 0.7, which is far in excess of that obtainable on transmission lines, the conductor
is still unstable and the amplitude of the major axis is reduced by 35% only vis-à-vis
when the structural damping is zero, whereas a 100% increase in the minor axis
amplitude is obtained. Thus, for twin-conductor bundles, or for any situation where
only the out-of-plane mode is damped, damping is very ineffective in reducing the
amplitude of oscillation.

Experimental support for the above conclusion concerning mechanical damping
comes from the work of Claren, Diana & Nicoline (1974), Hardy & Bourdon (1979)

Figure 4.16. Variation of the leeward conductor limit-cycle amplitudes with mechanical
damping when there mechanical damping in the out-of-plane mode only (Price & Pi-
perni 1988): X = 10.7, Y = −0.8, m/ρD2 = 1706, θ = 20◦, ωp /ωs = 1.1, U/ωsD = 64.0; �, ma-
jor axis; �, minor axis.
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and Hardy & Van Dyke (1995). Claren et al. conducted experiments on a triple
bundle fitted with spacer dampers with a hysteretic loss coefficient of 0.15; they
observed very little reduction in the amplitude of oscillation of the conductors vis-à-
vis the same bundle fitted with rigid spacers. However, increasing the hysteretic loss
coefficient to 0.35 produced a reduction in conductor amplitude of approximately
one third. Unfortunately, the modal logarithmic decrements were not measured in
these experiments. Hardy & Bourdon (1979) reported that, for transmission lines
fitted with spacer dampers having a hysteretic loss coefficient of 0.28, no reduction in
conductor amplitude could be observed; once again, no values of modal logarithmic
decrements were reported for these experiments. The ineffectiveness of increased
structural damping to alleviate the effects of wake-induced flutter has also been
observed in field tests of full-scale quad transmission lines (Hardy & Van Dyke 1995).

One of the major disadvantages of the analysis proposed by Price & Piperni
(1988) is that the computational time required to obtain a solution is significant.
Price & Maciel (1990) showed that the same results could effectively be obtained
using the Krylov & Bogoliubov method of averaging instead of the Runge-Kutta
numerical integration, but with considerable saving in computational effort.

4.2.2 Analysis for a moving windward conductor

The analysis given in the previous section is strictly for a flexibly mounted leeward
conductor in the wake of a fixed windward conductor. In a transmission line bundle,
although it is the leeward conductor, or conductors, which extract energy from
the airflow and are primarily responsible for the instability, the structural coupling
between conductors causes the windward conductors to oscillate. Hence, although
analyses based on a fixed windward conductor are useful in explaining the physics
of wake-induced flutter, a complete analysis must account for the motion of the
windward conductor – in particular, if an attempt is being made to calculate the
amplitude of oscillation of the conductors.

Allowing the windward conductor to move introduces several complexities in
the modelling of the aerodynamic forces. First, the aerodynamic forces acting on a
leeward conductor are strongly dependent on its position in the wake, and this wake
position is affected by the motion of both conductors. Consequently, motion of the
windward conductor has a direct and significant influence on the aerodynamic forces
acting on the leeward conductor; in contrast, motion of the leeward conductor has
no direct effect on the aerodynamic forces acting on the windward conductor.

The simplest approach accounting for the windward conductor motion is
probably that employed by Tsui & Tsui (1980). They considered the effective
wake displacement of the leeward conductor to be the instantaneous sum of the
displacements of the two conductors, and thus, the linearised expressions for the
force coefficients on the leeward conductor are

CLl = CL0l + (xw − xl)CLxl + (yw − yl)CLyl ,

CDl = CD0l + (xw − xl)CDxl + (yw − yl)CDyl ,
(4.47)

where the subscripts l and w indicate the leeward and windward conductors, respect-
ively. Using essentially the same procedure as that employed for the fixed windward
conductor, and realizing that the lift coefficient for the windward conductor is zero,
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the aerodynamic forces acting on the two conductors may then be written as
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Unfortunately, despite its very attractive simplicity, this analysis has a number of
significant weaknesses. First, there is a time delay between when the windward
conductor moves and when its effect is transmitted via the wake to the leeward
conductor. Second, and more importantly, the Tsui & Tsui model takes no account
of the windward conductor’s vibrational velocity on the formation of its wake. As
demonstrated by Simpson & Flower (1977) these effects have a profound influence
on the aerodynamic forces acting on the leeward conductor. It is interesting to note
that Tsui & Tsui (1980) were aware of the earlier work by Simpson & Flower (1977),
but incorrectly judged that the added complexities in the aerodynamic modelling
would not lead to any significant change in the stability of the conductors.

The most comprehensive treatment of the wake dynamics and aerodynamic
modelling for a moving windward conductor is that of Simpson & Flower (1977), and
this is the analysis which is summarised in the following paragraphs. However, prior
to this, an interesting development was proposed by Rawlins (1976), who did account
for the windward conductor vibrational velocity. In particular, he showed that this
results in an inclination of the wake velocity vis-à-vis the free-stream direction,
as well as a change in its magnitude. These effects resulted in a modification of the
aerodynamic damping matrix compared with that shown in equation (4.48), although
the stiffness matrix was unchanged. Rawlins, however, did not account for the time
delay between the motion of the windward conductor and its effect being felt by the
leeward conductor.

The complete analysis presented by Simpson & Flower (1977) is too detailed to
be reproduced here, but some of the more important salient points are outlined in
the following. One significant aspect of the aerodynamic modelling introduced by
Simpson & Flower was to consider the effect of the time delay between motion of
the windward conductor and its effect being felt by the leeward one. Considering,
for example, purely the x-motion of the conductors, then if τ is the time taken for the
wake to convect from the windward conductor at time t − τ to the leeward conductor
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at time t, it is apparent that

Uτ/D = X + xwτ − xl, (4.49)

where xwτ indicates the value of xw at time t − τ; it is referred to as a “retarded
variable”. Had the windward conductor retained its velocity ẋwτ throughout the
time interval τ then the apparent nondimensional separation between conductors,
as viewed from the leeward conductor, is

ξ = Uτ/D + τẋwτ ≈ X + xwτ − xl + (XD/U) ẋwτ. (4.50)

The main effect of the transverse motion of the windward conductor is that the
wake is shed at an inclination to the free-stream velocity, which to first order may be
approximated as

ατ = Dẏwτ/U. (4.51)

And so the streamwise and transverse separations between conductors become
(again neglecting all second-order terms)

ξ = Uτ/D + τẋwτ ≈ X + xwτ − xl + (XD/U) ẋwτ − (YD/U) ẏwτ,

η = Y − ywτ + yl.
(4.52)

Unfortunately, accounting for motion of the windward conductor in the manner
described above takes no account of the windward conductor’s acceleration. The
acceleration in the transverse direction has a relatively minor effect. However,
Simpson & Flower (1977) show that the oscillatory streamwise acceleration can
result in a successive accumulation and deficit of fluid in the wake, causing the wake
to “bunch” and so change its width as a function of time. Hence, streamwise accel-
eration of the windward conductor results in a change in the “effective” transverse
wake position of the leeward conductor.

One further complication is that the wake position of the leeward conductor,
given by equation (4.52), contains retarded variables for the windward conductor;
these may be accounted for via the following procedure. Considering, for example,
the x-motion of the windward conductor, which can be written as

xw(t) = Aexp(kt) sin(ωt), (4.53)

where A is the amplitude of the motion, ω is the frequency of oscillation and k is the
imaginary part of the eigenvalue. Then, the position of the windward conductor at
time t − τ may be written as

xw(t − τ) = x(t)f − τgẋ(t), (4.54)

where

f = exp(−kτ) cos(ωτ) + kτg and g = exp(−kτ) sin(ωτ)/ωτ.

Similar expressions can be obtained for the other retarded variables. Some indication
of the complexity that this introduces may be gained by rewriting the expression for
streamwise separation between conductors, given by equation (4.52), which becomes

ξ = X + fxw − xl + {XD (( f − g)/U)
}

ẋw

− (YDf/U) ẏw − g (XD/U)2 ẍw + gXYD2/U2ÿw. (4.55)
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The wake position and, consequently, the aerodynamic forces acting on the leeward
conductor are now frequency-dependent (via the f and g terms) and are functions
of both the velocity and acceleration of the windward conductor.

One final aspect of the aerodynamic modelling for the leeward conductor aero-
dynamics introduced by Simpson & Flower (1977) relates to the retardation of flow
as it approaches the stagnation region of a bluff body. Because the flow is slowed
down, it arrives at a time �t later than it would have arrived if the flow velocity had
remained constant; Simpson & Flower (1977) showed that �t could be expressed
approximately as µD/bU, where µ is of order 1 (experiments reported by Simpson
& Flower indicated that µ appeared to be a function of both wake position and
Reynolds number). This introduces an effective displacement (with respect to the
position evaluated based on a constant approach velocity) of the body in the y-
direction of −µD/(bU)ẏ. Although this has no effect on the windward conductor, it
is very significant for the leeward conductor where the aerodynamic force coefficients
strongly depend on its y-position.

This retardation effect is not restricted to when the windward conductor is oscil-
lating; it applies equally to a fixed windward conductor. To illustrate how important
this can be, we will revisit the case of a fixed windward conductor, where the aero-
dynamic forces on the leeward conductor, as given by equation (4.24), are

{
Fx

Fy

}
= −1

2
ρDlU2

({
CD0

CL0

}
+ D

bU

[
2CD0 −CL0

2CL0 CD0

]{
ẋ
ẏ

}
+
[

CDx CDy

CLx CLy

]{
x
y

})
.

Accounting for the flow retardation introduces new terms into the final column of
the damping matrix, which now becomes

D
bU

[
2CD0 −CL0 − µCDy

2CL0 CD0 − µCLy

]{
ẋ
ẏ

}
. (4.56)

If CLy is positive and large, then the damping term CD0 − µCLy may be small, or even
negative – indicating the possibility of a damping-controlled instability. For example,
the data presented in Figure 4.6 shows that at X = 5.8 and Y = 0.5, CD0 = 0.4 and
CLy = 0.3; hence, a value of µ = 1.33 would lead to zero aerodynamic damping
in the y-direction. As shown in Chapter 5, this flow retardation can easily lead to
a damping-controlled instability in heat-exchanger tube arrays subject to coolant
cross-flow (Price & Paı̈doussis 1986b; Paı̈doussis & Price 1988).

Accounting for all of the effects described in the preceding paragraphs,
Simpson & Flower (1977) developed expressions for the aerodynamic forces on

a pair of conductors. These expressions, given in terms of aerodynamic stiffness,
damping and inertia matrices, are extremely long and are not reproduced here. Part
of the reason for this complexity is that the lift force was divided into contributions
from circulation, buoyancy and resolved drag; hence, the damping matrix contains
all of the different terms shown in equations (4.24), (4.27) and (4.28). It is worth
noting, however, that the aerodynamic forces are frequency dependent, as exempli-
fied via equation (4.55), and so solution of the resulting stability problem requires
an iterative approach of the type found in many aeroelastic problems.
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Figure 4.17. Schematic representation of the twin-conductor model.

It is unfortunate that, despite the tour de force by Simpson & Flower (1977) in
deriving the expressions for the aerodynamic forces, they give very few examples of
their application, and the limited examples they do give are for a complete three-
dimensional transmission line. Simpson (1977) did employ the Simpson & Flower
(1977) theoretical model to show that both static and dynamic instabilities are pos-
sible for pure in-flow motion of a conductor pair. The dynamic instability was a
coupled-mode flutter and was dominated by the CDx term of the leeward conductor,
which must be negative for instability to occur. The instability mode, at the lower
critical velocity, was such that both conductors had approximately the same mag-
nitude of oscillation and moved in-phase with each other; Simpson (1977) concluded
that this instability could possibly explain horizontal “snaking” motions observed on
some multiconductor power lines.

Price & Abdallah (1990), however, did conduct a comprehensive investigation
of system parameters on the stability of a flexibly mounted pair of conductors.
In fact, they extended the analysis of Simpson & Flower to include the nonlinear
aerodynamic terms, allowing them to investigate the effect of system parameters on
the conductor’s amplitude of oscillation. In order to perform the nonlinear analysis
it was necessary to remove the frequency dependence of the aerodynamics – and
so terms f and g were set to 1 and 0, respectively. In addition, Price & Abdallah
(1990) considered the lift force as being purely due to circulation, neglecting any
contributions due to buoyancy or resolved drag. All of the other effects introduced
by Simpson & Flower were retained in both the linear and nonlinear forms of the
aerodynamics.

The structural model employed by Price & Abdallah (1990) is shown schematic-
ally in Figure 4.17. Both the windward and leeward conductors are now mounted via
orthogonal spring systems, but, in addition, to simulate the spacers the two conduct-
ors are coupled in the in-plane and out-of-plane directions via springs, with stiffnesses
µ1k1 and µ2k2, respectively, as well as linear mechanical dampers with damping coef-
ficients c1 and c2. Price & Abdallah (1990) found that this tandem model exhibited
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an elliptical motion similar to that observed on full-scale transmission lines when the
structural coupling terms between the two conductors were set with µ1 = µ2 = 0.1,
and thus, these values were used for all the results they presented.

A typical set of linearised stability results for X = 11.0 and Y = −0.5, is presen-
ted in Figure 4.18. For any particular frequency ratio above a certain critical minimum
there is a range of velocity where the system is unstable and outside of which it is
stable. The results also show that instability is confined to frequency ratios greater
than 1.0, in agreement with the fixed-windward-conductor analysis.

For the wake position X = 11.0 and Y = 0.5 (the mirror image about the wake
centreline of the position discussed in the previous paragraph), no instability was
obtained for frequency ratios between 0.7 and 1.3. This also is in agreement with the
fixed-windward-conductor analysis.

For the two other wake positions investigated by Price & Abdallah (1990) (X =
11.0 and Y = 1.4 or −1.4 ), however, there was a significant difference between their
results and those obtained assuming a fixed windward conductor; this is illustrated
in Figure 4.19. What is so surprising about these results is that instability is possible
over the complete range of frequency ratios from 0.7 to 1.3, not just for f p/f s < 1
as predicted by the fixed-windward-conductor analysis. This somewhat puzzling be-
haviour was explained by an examination of the root locus plots of the system
eigenvalues. These showed that for the cases presented in Figure 4.18 the instabil-
ities were due to a frequency coalescence of the structural modes, as predicted for
a fixed windward conductor. However, for some of the results presented in Figure
4.19 this was not so, and the instability was confined to one mode and appeared to be
damping-controlled (as opposed to the stiffness-controlled binary flutter obtained
in all previous examples discussed in this section). Price & Abdallah (1990) showed
that this new wake-induced instability is caused by a combination of movement of
the windward conductor wake relative to the leeward conductor (hence, inducing
a changing force field on the leeward conductor) and the time delay in this force
field being felt by the leeward conductor. The time delay is essential: it produces
a phase difference between the leeward conductor displacement and the changing
force field, so enabling a finite amount of energy to be extracted by the leeward
conductor (or dissipated) per cycle of oscillation.

Price & Abdallah (1990) also employed their nonlinear analysis to investigate
the effect of system parameters on the amplitude of oscillation. A typical set of
results is presented in Figure 4.20, showing the variation of the limit-cycle major
axis with increasing wind speed. For low values of wind speed the amplitude of the
major axis is zero, indicating that the system is stable. At a certain critical wind
speed the amplitude ceases to be zero, indicating instability. As wind speed is further
increased, the limit-cycle amplitudes also increase until a nondimensional wind speed
of approximately 80, where the amplitudes suddenly drop to zero, indicating that
the system has restabilised – in agreement with the results obtained from the linear
analysis shown in Figure 4.18.

The effect of mechanical damping on the system stability can also be observed
from the results of Figures 4.18 and 4.19. The results presented in Figure 4.18, rep-
resenting a frequency coalescence instability, show that although increased damping
can raise the minimum wind speed for frequency ratios close to 1, as soon as the fre-
quency ratio moves away from 1 the effect of increased damping becomes negligible.
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Figure 4.18. Nondimensional flutter boundaries as a function of “wind-off” frequency ratio
for different levels of mechanical damping (Price & Abdallah 1990): X = 11.0, Y = −0.5, θ =
20◦, µ1 = µ2 = 0.1. (a) δs = 0.001; (b) δp = 0.001; and (c) δs = δp ; other values of in-plane and
out-of-plane logarithmic decrements, δs, and δp , respectively, are given in the figure.
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Figure 4.19. Nondimensional flutter boundaries as a function of “wind-off” frequency ratio
for different levels of mechanical damping (Price & Abdallah 1990): X = 11.0, Y = 1.4, θ =
20◦, µ1 = µ2 = 0.1. (a) δs = 0.001; (b) δp = 0.001; and (c) δs = δp ; other values of in-plane and
out-of-plane logarithmic decrements, δs, and δp , respectively, are given in the figure.
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Figure 4.20. Variation of the limit-cycle major axis amplitude with nondimensional velo-
city for two flexibly mounted conductors (Price & Abdallah 1990): X = 11.0, Y = −0.5,
θ = 20◦, µ1 = µ2 = 0.1, δs = δp = 0.05, ωp /ωs = 1.09.

This is in agreement with the results obtained when the windward conductor was
held fixed. What is even more surprising is that, even when the instability is damping-
controlled, as shown in Figure 4.19, increasing the damping still has very little ef-
fect on the minimum wind speed for instability to occur. Increasing the mechanical
damping can reduce the amplitude of oscillation once the conductors have become
unstable, but Price & Abdallah (1990) demonstrated that this is most effective when
the damping is introduced in both the in-plane and out-of-plane modes.

Possibly one of the most interesting results to emerge from the analysis conduc-
ted with a flexibly mounted windward conductor is related to the effect of frequency
detuning on the instability. The analysis based on a fixed windward conductor shows
that detuning the modes causes an increase in the wind speed required to initiate in-
stability. However, the results obtained with a flexibly mounted windward conductor
suggest that this is only partially correct. Not surprisingly, for the damping-controlled
instability mechanism at X = 11.0 and Y = 1.4 (see Figure 4.19), detuning the modes
is ineffective in increasing the velocity threshold of instability. Also, as can be ob-
served from the results of Figure 4.21, when the instability is damping-controlled,
frequency detuning also has a minimal effect on the amplitude of oscillation. In
fact, the minimum limit-cycle amplitudes are obtained in the approximate range
0.98 ≤ ω2/ω1 ≤ 1.02, although there is a very rapid increase in limit-cycle amplitude
as the frequency ratio moves outside this range.

The damping-controlled instability obtained by freeing the windward of a pair of
conductors is due to aerodynamic forces resulting from wake effects, and not from the
cross-sectional shape of the conductor as is the case for classical galloping discussed
in Chapter 2. However, galloping instabilities can also be induced by aerodynamic
forces acting on the complete bundle, as opposed to the individual conductors. This
has been demonstrated by a number of authors (Brzozowski & Hawks 1976; Hoover
& Hawks 1977; Gawronski & Hawks 1977; Nakamura 1980; Zhang, Popplewell &
Shah 2000) who have shown that the full-span modes of a conductor bundle (where
there is no relative motion between individual conductors) have the potential to
develop classical Den Hartog galloping, but where the negative CLα is a consequence
of the “bulk-bundle” aerodynamics and does not require the presence of icing.
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ωp/ωs

Figure 4.21. Variation of the limit-cycle major axis amplitude with wind-off frequency ra-
tio for two flexibly mounted conductors (Price & Abdallah 1990): X = 11.0, Y = 1.4, θ =
20◦, µ1 = µ2 = 0.1, δs = δp = 0.001, U/(Dωs) = 47.3.

4.2.3 Three-dimensional effects and application to real transmission lines

The analytical models discussed in the preceding sections are so-called semi-rigid
models, where the conductors are rigid but flexibly mounted. These models are
strictly two-dimensional, and do not account for any of the three-dimensional effects
of real transmission lines.

The first stage in the analysis of real transmission lines is to accurately obtain
the natural frequencies and mode shapes of the conductor bundle. This in itself is a
difficult problem which must account for effects such as: the conductor weight causing
bundles to hang in a catenary shape, the inertia and stiffness properties of the spacers
used to separate individual conductors in a bundle, the tower and insulator flexibility
at the ends of each conductor and the possible structural coupling between adjacent
spans (a span being the length of conductors between two towers) – the degree of
this coupling strongly depends on the manner in which the conductors are supported
at the towers. Different methods of solution are available in the literature for the
structural analysis of transmission lines: these include transfer matrix (Simpson 1966,
1972; Claren et al. 1971, 1974) and finite-element methods (Hrudey, Cowper &
Lindberg 1973; Allnutt, Price & Tunstall 1980), and some evidence exists showing
that accurate estimates of the structural values can be obtained in the absence of any
wind effects (Price 1982).

Once accurate structural information is available, coupling the aerodynamic and
structural elements is reasonably straightforward, and thus, in principle, estimates
of the wind speed at which a transmission line will become unstable can be ob-
tained. However, in reality the magnitude and direction of the local atmospheric
wind and turbulence conditions vary significantly along a transmission line (with
lengths sometimes exceeding 500 m). In addition, because of the differential creep
of conductors, even the “wind-off” position of conductors relative to each other in a
bundle is unknown. Hence, it is not surprising that no detailed comparisons between
theoretical and experimental stability boundaries for transmission lines are available
in the literature; consequently, the type of verification of theoretical analyses that
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one would normally expect to see does not exist∗. A number of three-dimensional
analyses, however, do exist, as do results from field trials on real transmission lines.
Thus, it is possible to obtain at least a qualitative appreciation of the application of
analytical methods to real transmission lines.

One of the earliest attempts to analyse the stability of a three-dimensional
transmission line was by Rawlins (1976, 1977) who used a transfer matrix approach.
Considering a twin-conductor bundle with fixed ends, Rawlins showed that four dif-
ferent propagation modes exist for the travelling waves in a bundle. Three of these
modes are dissipative, with energy being transferred from the conductors back to
the airflow, and only one of the modes extracts energy from the wind leading to the
instability. Considering, for example, the equilibrium position of the leeward con-
ductor to be above the wake centreline, this “unstable” mode consists of clockwise
elliptical motion of the leeward conductor (as exemplified in Figure 4.2), with no
motion of the windward conductor. It is these three dissipative modes which induce
the windward conductor motion. Rawlins also demonstrates that one of the import-
ant functions of the spacers separating the conductors is to transfer energy from
the unstable mode to the dissipative modes. Furthermore, Rawlins concluded that
the use of unequal sub-span lengths (the length of conductors between two spacers)
will enhance this energy transfer and so suppress the occurrence of wake-induced
flutter in conductor bundles. This represents the first suggestion in the literature of
the beneficial effect of using unequal sub-span lengths, a theme that will be revis-
ited later in this section. The initial analysis presented by Rawlins (1976) was for
a simple twin bundle with no catenarity and rigidly supported at its ends; Rawlins
(1977) extended this to account for a number of effects including tower mobility at
the ends of the conductors, catenary effects and unequal tension in the individual
conductors. Simpson & Flower (1977) extended Rawlins’ transfer matrix method to
include their own aerodynamic modelling, as described in the previous section, and
sample stability results are given for one twin- and one quad-conductor bundle.

As an alternative to the transfer matrix approach, Tsui (1986) developed a
finite-element analysis of a three-dimensional transmission line. He used a simpli-
fied version of the Hrudey et al. (1973) structural elements, neglecting the effects
of torsion and conductor motion along the span; in addition, only one element was
used for each sub-span. Tsui used two different aerodynamic models: one where the
windward conductor was held fixed, and a second accounting for the windward con-
ductor motion using the simple Tsui & Tsui (1980) model. Results are presented for
a span with three sub-spans of equal length; however, rather than determining the
critical wind velocity required to cause the bundle to become unstable, he indicates
whether the bundle is stable or unstable at a wind velocity of 21 m/s for certain com-
binations of structural parameters (including spacer stiffness, spacer mass, conductor
separation and inclination of the wind to conductor bundle – effectively simulating
conductor blow-back).

∗ Wardlaw et al. (1975) do report some qualitative three-dimensional experiments on a small-scale
experimental three-sub-span system in the Canadian National Research Council’s 30-ft-wide wind
tunnel. However, no quantitative results are given and, hence, it is not possible to perform any
detailed comparison between experimental and theoretical stability boundaries.
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Aerodynamic finite elements have also been developed by Lilien & Snegovski
(2004) based on Simpson’s (1971a, b) aerodynamic model; however, no stability
results are presented.

A simple attempt at analyzing the stability of full-scale transmission lines was
undertaken by the U.K. Central Electricity Generating Board (CEGB) and reported
by Price, Allnutt & Tunstall (1979) and Allnutt et al. (1980). The transmission line fre-
quencies, damping levels and mode shapes were first calculated via a finite-element
analysis and then applied in a two-dimensional aeroelastic stability calculation. Al-
though crude, this approach overestimates the effect of the aerodynamic forces and
so gives a conservative estimate (in terms of design criteria) of the aeroelastic effects.
It was estimated that for a standard CEGB twin bundle (span 366 m, six sub-spans
of equal length with “rigid” spacers, conductor diameter 28.6 mm and separation
between conductors of 10.7 diameters) the minimum wind speed required to cause
instability was 7.9 m/s. In addition, using meteorological data, giving hourly mean
wind speeds and directions, recorded in an area where transmission lines were known
to be susceptible to wake-induced flutter, it was estimated that this standard bundle
may execute up to 6 × 106 oscillations per annum. This was an upper bound, but
it demonstrated the potential for wake-induced flutter to cause fatigue damage in
transmission lines in a very short lifespan.

It was also suggested that the minimum wind speed required to cause instability
could be increased substantially by using unequal sub-span lengths, with the spacer
positions being chosen to optimise the frequency difference in all modal combina-
tions which may potentially coalesce and become unstable. For example, considering
the same standard CEGB twin bundle, it was estimated that using unequal sub-span
lengths of 37.0, 83.1, 83.4, 68.1, 59.7 and 34.8 m, as opposed to six equal sub-spans,
the minimum wind speed required to cause instability could be raised from 7.9 m/s
to 11.9 m/s∗. In addition, using a very crude nonlinear model (the aerodynamic force
coefficients were assumed not to change as the amplitude of oscillation varied) it
was shown that adding damping elements to the spacers, and so increasing the con-
ductor modal damping, was not particularly effective in either raising the wind speed
required to cause instability or reducing the amplitude of oscillation once instability
had occurred – this, of course, is in agreement with results later obtained by Price
and co-workers (Price & Piperni 1988, Price & Abdallah 1990, Price & Maciel 1990).
This appeared to contradict results previously reported by Hearnshaw (1974) who
presented experimental evidence suggesting that “spacer dampers” were beneficial.
However, to increase the transmission line modal damping requires that the spacer
dampers be positioned at unequal lengths, and thus, Price et al. (1979) and Allnutt
et al. (1980) hypothesised that the beneficial effect of the spacer dampers came from
frequency detuning and not from the increase in structural damping.

The most extensive set of field trials available in the literature related to wake-
induced flutter comes from Hardy & Van Dyke (1995). They report experiments
from a specially designed test-line built in a windy location on the shore of the
Îles-de-la-Madeleine in the Gulf of St Lawrence, Canada. The test line consists of
five spans, with a total length of approximately 1.5 km, of which the central span,

∗ Although it was reported that field trials had been initiated to test this hypothesis, the authors are
not aware of any published results.
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366 m long, is extensively instrumented; in addition, instantaneous values of wind
speed and direction are monitored via anemometers located on the towers at both
ends of this span. A number of significant conclusions were obtained by Hardy &
Van Dyke and are summarised in the following.

� When experiencing wake-induced flutter, all sub-spans had frequency peaks at
both their own fundamental frequency as well as the fundamental frequencies of
the other sub-spans; this is indicative of the considerable coupling between sub-
spans. In addition, full-span snaking occurred concurrently with wake-induced
flutter.

� Equal velocity magnitudes normal to the conductors, but arising from different
combinations of total velocity and yaw angle, did not yield the same instability
conditions for wake-induced flutter (either minimum speed required to cause
instability or amplitude of oscillation), indicating that the yaw angle is an im-
portant independent parameter (for Aeolian vibration this was not the case).
As far as the authors are aware, yaw angle has never been investigated under
laboratory conditions.

� Twin and quad bundles were more susceptible to wake-induced flutter than
triple bundles (three conductors per bundle); this is consistent with the leeward
conductors extracting energy from the wind and the windward conductors being
dissipative.

� The effect of spacer positions along the span length, and hence sub-span lengths,
was shown to have a significant effect on the instability. Mismatching the sub-
span lengths increased the minimum wind speed necessary to cause wake-
induced flutter vis-à-vis when the spacers equally divided the span. The unequal
sub-span lengths also reduced the severity of the oscillation once it had occurred;
no attempt was made to determine the “optimum” spacer positions.

� The vibration amplitude for spans fitted with either “spacer dampers” or just
“spacers” were approximately equal when the sub-span lengths were kept the
same, indicating that increased damping has little beneficial effect in alleviating
wake-induced flutter.

4.3 Fluidelastic Instability of Offshore Risers

Oil and gas exploration in deep waters has necessitated the use of very long and
flexible multitube risers, where it is common to have one large-diameter central tube
surrounded by a number of smaller diameter peripheral or satellite tubes; see Fig-
ure 4.22. For example, Overvik, Moe & Hjort-Hansen (1983) show riser configura-
tions where up to 12 satellite tubes, with diameters 1

5 of that of the central tube, are
positioned circumferentially on a radius of 1 or 1.5 times the central tube diameter.

In addition to vibrations resulting from wave actions, risers are sometimes subject
to a steady current or cross-flow normal to their longitudinal axes. One consequence
of this cross-flow is the possibility of vortex-induced vibrations. The basic physics
of this is discussed in Chapter 3; however, it should be appreciated that the close
spacing between the riser tubes, as well as the extremely large length-to-diameter
ratio typically found in deep-water risers, does produce some unique problems: see,
for example, Mittal & Kumar (2001), Trim et al. (2005) and Lucor, Mukundan &
Triantafyllou (2006). The main topic of interest in this section, however, is the
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Figure 4.22. Schematic sketch of the cross-section of a five-tube riser; Dc/D = 1.6,
R/D = 2.95.

possibility of multitube risers suffering from fluidelastic instability, with a mechanism
similar to wake-induced flutter discussed in Section 4.2. The mechanism producing
this fluidelastic instability has considerable commonality with other examples of
clustered groups of cylinders in cross-flow: for example heat-exchanger tube banks,
discussed in Chapter 5∗, and overhead transmission lines, discussed in the previous
section. Some experimental evidence for the occurrence of fluidelastic instability
in riser bundles is reviewed in Section 4.3.1 and a number of different analytical
approaches are considered in Section 4.3.2.

4.3.1 Experimental evidence for the existence of fluidelastic
instability in riser bundles

The first study to examine the possibility of fluidelastic instability for multitube
risers was performed by Moe & Overvik (1982) and Overvik et al. (1983) who
investigated experimentally the bulk motion of a number of riser configurations
subject to a steady current. Their experimental models were constructed such that
no relative motion was allowed between the individual tubes in the riser bundle. In
almost all their experiments, vortex-induced vibrations were obtained, but for a more
limited set of configurations large-amplitude, single-degree-of-freedom instabilities
occurred which could not be attributed to vortex shedding. Although no theoretical
analysis was conducted, they concluded that this large-amplitude instability was due
to “galloping” of the “bulk” riser bundle – as previously mentioned, the individual
tubes in the riser bundle were not allowed to move relative to each other.

In a series of papers, Bokaian & Geoola (l984a, 1984b, 1987, 1989) performed
experimental investigations on the fluidelastic instability of a pair of closely spaced
circular cylinders in cross-flow. Only one of the two cylinders was free to oscillate
and this was restricted to the direction transverse to the flow. Initially Bokaian &
Geoola (l984a, b) considered cylinders of equal diameter, and the longitudinal and

∗ A discussion of the similarities and differences between fluidelastic instabilities in multitube risers
and heat-exchanger arrays is given by Zdravkovich (1991).
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transverse spacing between the cylinders was limited to the range 1.09 ≤ X ≤ 5.0 and
0.0 ≤ Y ≤ 3.0, respectively. Vortex-induced vibrations were obtained over the whole
range of cylinder separation, irrespective of whether the flexibly mounted cylinder
was in the upstream or downstream position. In addition, for a limited set of cylin-
der spacings they also obtained a fluidelastic instability, which they called galloping,
for both upstream (X ≤ 1.75 and Y ≤ 0.5) and downstream (X ≤ 3.0 and Y ≤ 1.0)
flexibly mounted cylinders. In most cases the galloping instability was independ-
ent of the vortex-induced vibrations; however, in some cases, the two vibration
mechanisms were coupled. In two later papers Bokaian & Geoola considered the
cases where the flexibly mounted of the two cylinders had a diameter of either half
(Bokaian & Geoola 1987) or twice (Bokaian & Geoola 1989) that of the fixed cylin-
der; qualitatively the results were very similar to those obtained with equal-diameter
cylinders.

Paı̈doussis, Price & Mark (1988b) and Price et al. (1989) accounted for the
relative motion between tubes in a multitube riser and considered the stability of one
of the peripheral tubes. Initially, experiments were conducted in airflow (Paı̈doussis
et al. 1988b) and later in waterflow (Price et al. 1989). In both sets of experiments
the central and three of the peripheral tubes were “rigid”, while the fourth so-called
flexible tube was flexibly mounted (see Figure 4.22). The riser bundle could be rotated
and, hence, the flexible tube positioned at any desired orientation, φ, to the free-
stream flow. Figure 4.23(a) shows a set of results for φ = 258◦, where vibrations due to
vortex shedding are obtained at U ≈ 6 m/s. The vibrations abate as U is increased past
the vortex-shedding resonance, and the vibrational acceleration remains relatively
low for velocities up to the maximum velocity of the wind tunnel. In fact, depending
on the value of φ, the peripheral tube displayed two and sometimes three resonances,
corresponding to three different Strouhal numbers, as the velocity was increased.
(The origin of the three different Strouhal numbers is discussed in Paı̈doussis et al.
(1988b) and Price & Serdula (1995).) In contrast, the results of Figure 4.23(b) for φ =
231◦, show that as U is increased beyond the point of recovery from vortex-shedding
resonance, large-amplitude vibrations occur at U = 18.5 m/s. It was concluded that
these large-amplitude vibrations, which did not subside as U was increased, were
due to fluidelastic instability. Whether or not fluidelastic instability occurred strongly
depended on the orientation of the riser to the flow and was limited to the incidence
ranges of φ = 194–199◦ and φ = 225–241◦.

The experiments exemplified by Figure 4.23 were done in air- rather than wa-
terflow, and the nondimensional mass, m/ρD2 = 295, was much higher than for
real risers – where it is typically of order 1. To obtain more realistic values of
m/ρD2, experiments were conducted in waterflow, with m/ρD2 = 5.8 (Price et al.
1989). Unfortunately, two troublesome problems were encountered during the wa-
terflow experiments. First, the vibrational response from vortex shedding was so
great that clashing occurred between the flexible tube and its supporting mechan-
ism; thus, it was not possible to make measurements within the lock-on range (see Fig-
ure 4.24(a)). The second problem was that if fluidelastic instability did occur, then it
did so within, or close to, the velocity range for amplified vortex-shedding response.
Thus, it was not possible to separate the two mechanisms (see Figure 4.24(b));
consequently, it was very difficult to say definitively whether or not fluidelastic in-
stability occurred and, if so, at what value of U. However, and most importantly, the
fact that, at φ = 236◦, the vibration did not abate as U was increased well beyond the
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Figure 4.23. The acceleration amplitude of vibration for the flexible riser versus the upstream
airflow velocity U (Paı̈doussis et al. 1988b); δ = 0.011, m/ρD2 = 295, f n = 40 Hz. (a) φ = 258◦,
(b) φ = 231◦.

flow-velocity range of expected vortex-shedding lock-on, in contrast to the vibration
response shown in Figure 4.24(a), and that this value of φ was within the range where
fluidelastic instability occurred for airflow, suggests strongly that the riser suffered
from fluidelastic instability in this case also.

Other examples of combined fluidelastic instability and vortex-induced vibra-
tions for one cylinder in the wake of another (both cylinders having the same dia-
meter) have also been observed by King & Johns (1976), Ruscheweyh (1983) and
Brika & Laneville (1999); for the experiments of King & Johns and Ruscheweyh,
both the upstream and downstream cylinders were free to vibrate, whereas in the
experiments reported by Brika & Laneville only the downstream cylinder vibrated.

Huse (1996) also conducted experiments on a multitube riser consisting of 12
tubes as shown in Figure 4.25. The experiments were performed at the entrance to a
Norwegian fjord on a 1/30th scale model of a prototype riser with a proposed length
of 1333 m. The drilling pipe of the model riser, denoted by R5 in Figure 4.25, had
a diameter of 0.03 m, whereas the other eleven pipes had diameters of 0.01 m; the
centre-to-centre separation between pipes at the ends of the riser bundle was 0.3 m in
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Figure 4.24. The amplitude of vibrational velocity for the flexible riser versus the non-
dimensional upstream waterflow velocity U (Price et al. 1989); δ = 0.025, m/ρD2 = 5.8. (a)
f n = 38.6 Hz, φ = 180◦, (b) f n = 28.3 Hz, φ = 236◦.

both the longitudinal and transverse directions. It was observed that at low currents
the risers exhibited a “high-frequency” vibrational response which was attributed
to vortex-induced vibrations. However, as the magnitude of the current increased,
“collisions” occurred between the individual risers; for example, R2 and R5 or R1
and R4 collided when the surface current was less than 0.75 m/s. As stated by Huse
(1996), “in addition to the high-frequency VIV response of amplitudes up to one
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Figure 4.25. Schematic sketch of the 12-
tube riser bundle (Huse 1996).

half diameter, there occurred low-frequency, in-line oscillations of an apparently
very irregular or chaotic type. The peak-to-peak stroke of these oscillations could
be 30 to 40 diameters or more”. Almost certainly these low-frequency oscillations
were due to fluidelastic instability – albeit, as will be discussed in Section 4.3.2(b),
possibly a static instability.

Clashing between risers was also reported in some experiments described by
Sagatun, Herfjord & Holmås (2002). In these experiments, conducted in an 85-m-
long towing tank, five 10.0-m-long stainless steel pipes of outer diameter 0.01 m and
wall thickness 1.0 mm were mounted in a straight line with a fixed centre-to-centre
separation of 15 D at their ends. Clashing of the pipes was observed to occur at towing
velocities of between 0.43 and 0.48 m/s when the incidence of the five-pipe riser with
respect to the towing direction was varied between 0◦ and 10◦. In agreement with
Huse (1996), Sagatun et al. (2002) also concluded that the occurrence of clashing
was determined by “wake-induced oscillations” although the accompanying vortex-
induced oscillations accounted for most of the energy in the collisions.

4.3.2 Analytical models

4.3.2 (a) Dynamic instabilities
An analytical model was developed by Price, Paı̈doussis & Al-Jabir (1993) with the
aim of predicting the current velocity at which fluidelastic instability would occur for
the peripheral tube in a compact multitube riser; “bulk” motion of the riser bundle
was not considered. The central tube was assumed to be considerably stiffer than
the peripheral ones, and thus was taken as being rigid. Furthermore, because of the
separation between peripheral tubes, it was assumed that they could be analysed
independently. Hence, a single flexible peripheral tube in a cluster of otherwise rigid
tubes was considered, as in Figure 4.22. The analytical model borrowed heavily from
previous work on sub-span oscillation, as discussed in the Section 4.2 of this book,
and is summarised in the following.

The “flexible” riser was, in fact, a rigid tube with the system flexibility being
provided by an orthogonal spring system supporting it. The equations of motion
may easily be written as

D ([M] z̈ + [C] ż + [K] z) = F, (4.57)

where D is the diameter of the flexible riser, [M] = ml [I2] is the mass matrix, m
being the modal mass per unit length; [C ] = cs [I2] is the structural damping matrix,
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cs being the structural damping constant (assumed to be equal in the x- and y-
directions); [K] = ks [I2] is the structural stiffness matrix, ks being the structural
stiffness (again, assumed to be equal in the x- and y-directions); z = {x, y}T is the
vector of nondimensional tube displacements; and F represents the fluid forces
acting on the riser.

The fluid forces acting on the flexible tube were determined using a quasi-steady
analysis in a manner very similar to that used for bundled conductors in overhead
transmission lines (see Section 4.2) or for tubes in a heat-exchanger array (see
Chapter 5). However, one complication which does arise for riser bundles is that
neither the magnitude nor direction of the local approach flow velocity on the tube
are known. (For bundled conductors, the intercylinder distances are too large for
this uncertainty to arise. In the case of heat-exchanger tubes, it is the closeness of
the tubes to one another, and especially the geometric repeatability (symmetry),
which removes this uncertainty – at least for tubes in the central region of a tube
array.) Thus, the magnitude of the local velocity was written as bU at angle β to the
free-stream direction (see Figure 4.22) where b and β are functions of φ. (Clearly,
b may be substantially different from 1 for |φ| > 30◦. approximately.) The resultant
velocity vector is then obtained using a modified form of equation (4.13), giving
(note that, to be consistent with the rest of this chapter, the sign convention for x
and y employed here is different than that given by Price et al. (1993))

Ur = bU{1 + (Dẋ/Ub) cos β − (Dẏ/Ub) sin β}, (4.58a)

and

α = sin−1{(Dẏ − bU sin β)/Ur}. (4.58b)

The fluid forces on the flexible tube may now be written in exactly the same manner
as for an overhead transmission line, and are given by equations (4.17). The lift and
drag coefficients, CL and CD, which are based on the local wake velocity U = bU,
can be transformed into CL and CD, based on the free-stream velocity, U, using
equation (4.19).

Realizing that the ultimate objective is a linearised stability analysis, the riser
motion can be restricted to small displacements; hence, CL and CD may be expressed
in a linearised form, as given by equations (4.20). However, recognizing that at
low values of U/f nD, as typically obtained in offshore applications, there will be
a phase lag between the tube motion and resulting fluid forces, it is necessary to
modify equations (4.20). In a similar manner to that employed in the analysis of
overhead transmission lines, the phase lag was accounted for via consideration of
the flow retardation as it approaches a tube. Thus, a time delay of µ (D/bU) was
introduced between tube motion and the fluid forces generated thereby; using the
same arguments as presented in Section 4.2.2, µ was taken to be of order 1. Price
& Paı̈doussis (1984a, 1986b) showed that this time delay may be accounted for by
multiplying the x- and y-displacements by g = exp(−λµDω/bU), where λ is the
nondimensional eigenvalue of the tube motion. Thus, equations (4.20) become

CL = CL0 + g(xCLx + yCLy),

CD = CD0 + g(xCDx + yCDy).
(4.59)
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The principal effect of g, and hence the phase lag, is to transform the fluid stiffness
terms CLx, CLy, CDx and CDy into combined damping and stiffness terms.

Making use of equations (4.59) and neglecting all second-order terms in ẋ and
ẏ, the fluid forces acting on the flexible tube in the rise bundle may be written as

F = {Fx, Fy}T = − 1
2ρU2Dl(Fo + g [E]z + D/(bU)[B]ż), (4.60)

where Fo, is the static fluid-force vector, [E] is the fluid stiffness matrix, and [B] is
the fluid damping matrix, given in full as follows:

Fo = {CDo cos β + CLo sin β, CLo cos β − CDo sin β}T ,

[E] =
[

CDx cos β + CLx sin β CDy cos β + CLy sin β

CLx cos β − CDx sin β CLy cos β − CDy sin β

]
,

[B] =
[

CDo(1 + cos2 β) + CLo cos β sin β −CL0(1 + sin2 β) − CD0 cos β sin β

CL0(1 + cos2 β) − CD0 cos β sin β CD0(1 + sin2 β) − CL0 cos β sin β

]
.

In addition to the terms given in equation (4.60), the so-called added mass terms
must be included; thus, the final expression for the fluid forces is

Fo = {Fx, Fz}T = − 1
2ρU2Dl(Fo + g [E]z + D/(bU)[B]żo + (πD2/2U2)[A]z̈o),

(4.61)
where [A ] is the added mass matrix. The added mass matrix could be evaluated using
potential flow theory; however, because of the relatively large separation between
risers, and realizing that the added mass is typically small compared with the true
mass of a riser, the added mass matrix was taken to be that in unconfined fluid,
and [A] = [I2].

Combining equations (4.57) and (4.61), the final equations of motion of the riser
are obtained, which written in nondimensional form are{
(1+π/4m)[I2]

}
z′′ +{(δ/π)[I2]+ (V/2bm)[B]

}
z′ +{[I2] + (V 2/2m)g [E]

}
z = −Fo,

(4.62)

where m = m/ρD2 is the nondimensional mass, δ � csπ/mlωn is the structural log-
arithmic decrement, ωn = (ks/ml)1/2 is the undamped natural frequency in vacuum,
( )′ = ∂/∂τ, τ = ωnt being the nondimensional time, and V = U/ωnD is the nondi-
mensional velocity. The stability of the system described by equation (4.62) may
be assessed by ignoring the right-hand side, which merely changes the equilibrium
position; a standard eigenvalue analysis is performed for increasing values of the
flow velocity, until a stability boundary, given by an eigenvalue with a positive real
part, is crossed. However, it should be noted that an iterative technique is required,
because g cannot be determined until λ is known.

Before the analytical model can be employed, certain experimental inputs are
required: the force coefficients, their derivatives with respect to the in- and cross-flow
displacements and the direction and magnitude of the local approach velocity. This
data was obtained from static experiments by Price et al. (1993) on a riser bundle in
airflow, with geometry as shown in Figure 4.22.

To obtain the fluid-force coefficients, a two-dimensional model of the riser, very
similar to that employed in the dynamic experiments was used. However, in these
experiments the flexibly mounted tube was replaced by another, rigidly attached
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to a force balance, which enabled the in-flow (drag) and cross-flow (lift) forces
to be measured simultaneously. In addition, the force balance was mounted on a
mechanism which enabled the instrumented tube to be displaced from its equilibrium
position in either the in-flow or cross-flow direction. Thus, the variation CL and
CD with x- and y-displacement could be obtained giving the fluid stiffness terms
CLx, CLy, CDx and CDy; numerical values of these stiffness terms are given in Price
et al. (1993) for several values of φ.

The angle of the local approach velocity in the riser bundle with respect to the
free-stream velocity, β, was assumed to be given approximately by the incidence
of the stagnation point. The instrumented riser was equipped with a pressure tap,
the orientation of which could be measured. The pressure was measured over a
reasonable incidence range, and the orientation of maximum pressure, indicating
stagnation, obtained. These results are also summarised in Price et al. (1993). An
estimate of the magnitude of the approach velocity was obtained by assuming that the
“true” drag coefficient of the peripheral tube remained constant as the orientation
of the bundle was changed, and that the variation in CD with φ is due to a variation in
the local approach velocity. Thus, taking the true drag coefficient as CD∞ = 1.2 one
can write(bU)2 CD∞ = U2CD; hence, using the measured CD, b can be evaluated.

Using the analytical model and the experimental data, it was determined that for
the riser positioned at an orientation of φ = 196◦, with m = 295 and δ = 0.011 (the
same values as in some of the wind-tunnel experiments (Paı̈doussis et al. 1988b)), the
stability boundary is given by Uc/ωnD = 1.33 compared with the experimental result
of Uc/ωnD = 2.6; thus, although the comparison cannot be said to be good, it was
encouraging that at this orientation the theoretical model predicted instability – in
agreement with the experiments. The imaginary part of the eigenvalue showed very
little variation with velocity, indicating that instability would occur at the riser natural
frequency, in agreement with the experimental results (Paı̈doussis et al. 1988b).

For φ = 235◦(m = 295 and δ = 0.011), Uc/ωnD = 2.92 was obtained; again, when
compared with the experimental result of Uc/ωnD = 0.8, the agreement, although
not good, was encouraging. Even more encouraging was that theoretical results
for φ = 235, 270 and 315◦ all indicated that instability would never occur, again in
agreement with the experimental results.

The results presented in the preceding paragraph suggest that there is qualitat-
ive, but not quantitative, agreement between theory and experiment. Thus, although
it cannot be concluded that this analysis can be used to give predictions of the actual
flow velocity at which a riser will become unstable, it does appear that it is able to pre-
dict the orientations at which the riser bundle is likely to suffer fluidelastic instability.
Furthermore, the reasonable success of this analysis demonstrates that the analyt-
ical model adequately represents the phenomena producing fluidelastic instability
in riser bundles. In an attempt to determine which were the critical parameters in
the analytical model, and so possibly improve the model, the effect of changing their
magnitude on Uc/ωnD was investigated; this was done for both φ = 196 and 235◦.
Because the two sets of results were very similar, only the results for φ = 196◦ will
be discussed here.

First, the effect of b and β was investigated; it was found that for a reasonably
wide variation in either of these parameters there was little change in Uc/ωnD (see
Price et al. (1993) for detailed results), indicating that the difference between theory
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m/ρD2

Uc /ωn D

Figure 4.26. Variation of nondimen-
sional critical flow velocity Uc/ωD for
fluidelastic instability with nondimen-
sional mass (Price et al. 1993); φ = 196◦;
�, experimental data point (m/ρD2 =
295, δ = 0.011).

and experiment was likely not due to inaccuracies in their estimation. The effect of
inaccuracies in the measurement of the various force coefficients was also examined;
this was done by individually varying the force coefficients by ± 50% of their nominal
values (CDx, which was zero, was varied between −0.5 and +0.5 ). It was found that
varying these force coefficients had little effect on the magnitude of Uc/ωnD, with
the exception of CLy; even for CLy, however, a 50% increase or decrease caused only
a 13% decrease or 37% increase, respectively, in Uc/ωnD.

The most sensitive parameter was the phase lag between the tube motion and
the resulting fluid forces, accounted for by the term µ; this is in agreement with pre-
vious studies on heat-exchanger tube arrays (Price & Paı̈doussis 1986b), as discussed
in Chapter 5. This shows that the unsteady nature of the fluid flow around the riser
bundle has a dominant effect on the fluidelastic stability of the bundle. Price et al.
(1993) showed that µ = 1 gives almost the minimum value of Uc/ωnD and, further-
more, a relatively small change in µ can produce a large increase in Uc/ωnD. Thus,
it is suggested that the differences between the theoretical and experimental values
of Uc/ωnD are due to the uncertainty in the estimation of the phase lag, demon-
strating its importance in the phenomena producing this instability. Unfortunately,
it is still not possible to determine this phase lag exactly, indicating the continuing
need to obtain a better understanding of the unsteady nature of the flow around an
oscillating bluff body.

Although the agreement between theory and experiment can only be described
as being qualitatively good, it is still of interest to study the theoretically predicted
effect of varying either the structural mass or damping on Uc/ωnD. Detailed results
are presented in Price et al. (1993); however, sample results showing the effect of
m/ρD2 and δ are shown in Figure 4.26. Possibly the most significant observation from
these results is that for low values of nondimensional mass, typical of those expected
on a production riser, increasing the structural damping has little effect on Uc/ωnD.

Prior to the development of the analytical model of Price et al., Bokaian &
Geoola (l984b) had considered the stability of two circular cylinders in close proxim-
ity to each other and subject to cross-flow, which is representative of a “bundle” of
two riser tubes. The model developed by Bokaian & Geoola (l984b) was restricted to
transverse motion of one of the risers, and in their original paper it was the dynamic
instability of the upstream riser which was considered. The ultimate objective of
Bokaian & Geoola was to predict not only the velocity required to initiate instability
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Figure 4.27. Schematic showing “effective” in-flow and transverse displacement used by
Bokaian & Geoola (1984b).

but also the amplitude of oscillation of the ensuing instability; hence, they retained
nonlinear terms in the derivation of the fluid forces acting on the riser and the equa-
tions of motion were solved using the first approximation of Krylov & Bogoliubov.
A summary of the analytical model developed by Bokaian & Geoola (l984b) is given
in the following.

The equation of motion for transverse vibration of the riser is given by equation
(4.1), where the mass term, m, now includes the effect of the added mass. Using a
standard quasi-steady approach, the fluid force acting on the oscillating riser is given
by equation (4.2). However, realizing that only transverse vibration is allowed, the
expressions for Ur and α become

Ur = [U2 + (Dẏ)2]1/2
and α = sin−1(Dẏ/Ur),

where it is recalled that y is a nondimensional displacement. Bokaian & Geoola
(l984b) restricted their analysis to small α and neglected the ẏ2 terms; hence, Ur = U.
Then, equations (4.1) and (4.2) can be combined to yield

ÿ + 2ωnζẏ + ω2
ny = − (nU/D) [CLU/D + CDẏ] , (4.63)

where n = ρD2/2m, ω2
n = k/ml and ζ = c/(2mlωn).

Bokaian & Geoola (l984b) linearised the CL and CD terms, but instead of linear-
izing by making use of the displacements of the oscillating riser, they did so using the
change in effective wake position: furthermore, they linearised about the displaced
position of the oscillating riser. Hence, the linearised terms for CL and CD can be
expressed as

CD = CDo + CDx0δX + CDy0δ (y + Y) ,

CL = CLo + CLx0δX + CLy0δ (y + Y) ,
(4.64)

where CDx0 = ∂CD/∂X (and similarly CDy0 , CLx0 and CLy0 ), X and Y are the original
nondimensional in-flow and transverse separations between the risers, y is the dis-
placement of the upstream riser in the transverse direction and δX and δ (y + Y)
are the changes in “effective” separation of the risers accounting for both the dis-
placement of the upstream riser and the inclination of the wake. As previously
mentioned, the linearisation is about the displaced position of the riser; hence, the
term δ (y + Y) rather than δY . This approach is rather unusual and requires that
the values of CDo, CLo, CDx0 , CDy0 , CLx0 and CLy0 be evaluated about this displaced
position.

As shown in Figure 4.27, neglecting ẏ2 terms and assuming that the wake behind
the oscillating upstream riser is shed at an inclination of α = sin−1(Dẏ/U) with re-
spect to the free-stream velocity, then δX, which is the “effective in-flow separation”
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minus the original separation (X), may be expressed as

δX = α (Y + y) = ẏD
U

(Y + y), (4.65a)

and similarly

δ (y + Y) = −αX = − ẏD
U

X. (4.65b)

Using equations (4.64) and (4.65) the equation of motion for transverse vibration
of the riser (equation (4.63)) may now be written as

ÿ + ω2
ny = −nVωn

[
VωnCLo + (Y + y)ẏCLx0 − XẏCLy0 + ẏCDo + 2ςẏ

Vn

]
, (4.66)

where again ẏ2 terms have been ignored, and V = U/(ωnD). It should be noted that
although ẏ2 terms have been ignored, the nonlinear yẏ terms have been retained in
equation (4.66) – this is somewhat surprising considering that for realistic values of
ω the ẏ2 terms will be larger than the yẏ terms.

From equation (4.66) it is apparent that the total damping (structural plus fluid)
for the oscillating riser is equal to

nVωn

[
(Y + y)CLx0 − XCLy0 + CDo + 2ς

Vn

]
ẏ, (4.67)

and instability will occur when this is negative.
The method of solution employed by Bokaian & Geoola (l984b) was to first

express CL and CD in terms of power series of X and Y + y, which were of the form

CL =
5∑

i=0

4∑
j=0

A(2i+1,j)Xj (y + Y)2i+1 and CD =
6∑

i=0

3∑
j=0

C(2i+1,j)Xj (y + Y)2i
.

The coefficients Aand Cwere obtained from their own experimental force-coefficient
measurements. Then, after considerable algebra, equation (4.66) is expressed as

z̈ + ω2
nz = −nωnVf (z, ż), (4.68)

where z(t) is purely the time-varying component of y about its new static position,
accounting for the static fluid forces acting on the riser, and the function f (z, ż)
includes all terms associated with the fluid forces as well as the structural damping.

Equation (4.68) was solved using the first approximation of Krylov &
Bogoliubov, assuming the solution to be of the form

z = a cos(ωnt + φ),

where

da
dt

= K(a) = nV
2π

∫ 2π

0
f (a cos ψ,− aωn sin ψ) sin ψdψ (4.69)

and ψ = ωnt + φ. A limit-cycle oscillation (LCO) occurs when da/dt = 0, and thus
solving for K(a) = 0 gives the magnitude of a as a function of V ; whether the LCO is
stable or not can be determined from dK (a)/da which is negative for a stable LCO
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Figure 4.28. Variation of limit-cycle amplitude, a, and frequency of oscillation, ωc/ωn , with
nondimensional velocity V = U/ωnD for the upstream of two risers with X = 1.25, Y = 0.0
and mδ/(ρD2) = 3.723 (Bokaian & Geoola l984b): �, experimental data; ——, stable LCO; - -,
unstable LCO.

and positive for an unstable one. Furthermore, the frequency of oscillation for the
limit cycle is

ωc =
(

ω2
n + nVωn

πa

∫ 2π

0
f (a cos ψ,− aωn sin ψ) sin ψdψ

)1/2

. (4.70)

A typical set of results for X = 1.25, Y = 0.0 and ζ/n = 1.185 [mδ/(ρD2) =
3.723] is presented in Figure 4.28, where a comparison is shown with their own exper-
imental results. The riser loses stability at V = 3.0 via a subcritical Hopf bifurcation;
the lower branch of the LCO curve is unstable for 2.75 ≤ V ≤ 3.0 approximately,
and a stable LCO exists for V ≥ 2.75 approximately. It is evident that although there
is reasonable agreement for the critical velocity required to initiate instability, the
agreement in terms of magnitude of the LCO is not so good. Two potential sources
of error in the magnitude of the LCO are: first, that all ẏ2 terms were neglected, and
second, that CL and CD have been linearised, via equation (4.64).

As stated earlier in this section the instability is damping-controlled, and the
instability boundary can be obtained by setting the total damping, given by equation
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(4.67), equal to zero. To gain further insight into the mechanism producing this
instability, it is useful to consider a linearised form of this expression (which involves
setting y = 0) and also considering the specific case where the downstream riser is
initially on the wake centreline of the upstream one, or Y = 0. The total damping
may then be written as

nVωn

[
−XCLy0 + CDo + 2ς

Vn

]
ẏ.

Hence, the critical velocity required to initiate instability is given by

Uc

ωnD
=
{

2/π

−CDo + XCLyo

}
mδ

ρD2
. (4.71)

This expression is very similar to that given at the beginning of this chapter in
equation (4.9). In both cases Uc/ωnD is proportional to the mass-damping parameter,
mδ/(ρD2); also, assuming CDo to be positive, it is evident that instability can only
occur when CLy is positive (when Y = 0, CLyo is identical to CLy). As noted earlier
in this section, Bokaian & Geoola (l984b) obtained dynamic instabilities only for
small values of X and Y , where CLyo is positive and large, which is consistent with
this conclusion.

One significant difference between equations (4.9) and (4.71), however, relates
to the CLy term. In equation (4.9) the reason why CLy, which is a fluid stiffness term,
contributes to the damping is due to the assumed phase lag between the cylinder
displacement and the resulting fluid forces, accounted for via the flow-retardation
term µ. In Bokaian & Geoola’s analysis flow retardation is not considered. How-
ever, it is assumed that the oscillating upstream riser sheds its wake at inclination
α ≈ ẏD/U with respect to the upstream direction. Hence, the apparent transverse
location of the downstream riser depends on ẏ and X, and the contribution to the
fluid damping from the CLy term is proportional to XCLyo .

One weakness of the analysis presented by Bokaian & Geoola (l984b) is that it
cannot explain the origin of dynamic instabilities experienced by the downstream of
a pair of risers (Bokaian & Geoola l984a), where there is no wake inclination to be
accounted for. In a later paper, Bokaian (l989) considered this case and concluded
that “self-excited galloping motion occurs only in the region where the static drag
force on the downstream cylinder is negative”. This is in agreement with equation
(4.71), but as shown at the beginning of this chapter (equation (4.9)) and earlier in
this section, retardation of the flow as it approaches the riser can cause negative fluid
damping, even when the riser is restricted to purely transverse motion.

4.3.2 (b) Riser clashing
Apparently motivated by the clashing observed on multitube flexible risers in a
steady current, Huse (1996), Sagatun et al. (2002), Wu, Huang & Barltrop (2002,
2003) and Blevins (2005) examined the stability of one flexible riser tube in the wake
of another.

In the analyses presented by Wu et al. (2002, 2003) and Blevins (2005) the
hydrodynamic forces acting on an oscillating downstream tube are written using
Simpson’s (1971a) quasi-steady analysis for overhead transmission lines; thus, the
fluid forces are given by equation (4.24). In addition, it was assumed that there is
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no structural coupling either between the in-flow and cross-flow directions of the
tubes or between individual tubes in a riser bundle; hence, the structural equations
for each tube are given by equation (4.30b) with all off-diagonal terms set to zero.
The equations of motion for the downstream tube can then easily be obtained from
a modified form of equation (4.32), and are given by the following:

[I]
{

ẍ
ÿ

}
+ 1

ml

[
cx 0
0 cy

]{
ẋ
ẏ

}
+

1
2ρDU

mb

[
2CD0 −CL0

2CL0 CD0

]{
ẋ
ẏ

}
+ 1

ml

[
kx 0
0 ky

]{
x
y

}

+
1
2ρU2

m

[
CDx CDy

CLx CLy

]{
x
y

}
= −

1
2ρU2

m

{
CD0

CL0

}
. (4.72)

In fact, Wu et al. (2002, 2003) neglected the structural damping terms, whereas
Blevins (2005) included them but neglected the fluid damping.

Because it is assumed that there is no structural coupling between the down-
stream and upstream tubes, the upstream tube will not oscillate; hence, the stability
of the two tubes can be evaluated by considering purely motions of the downstream
one using equation (4.72). However, the upstream tube is subject to a steady drag
force, the effect of which must be accounted for when determining the equilibrium
positions of the two tubes and the relative separation between them.

One significant problem which arises in the analysis of flexible risers vis-à-
vis overhead transmission lines is that the equilibrium wake position of the tubes
strongly depends on the current velocity. In particular, the downstream tube is sub-
ject to a reduced drag force compared with the upstream one, as well as a force in the
transverse direction. Although this is also the case for overhead transmission lines,
the extremely flexible nature of very long risers exacerbates this effect, resulting in
a significantly reduced separation, and possible clashing, between individual risers.
Consequentially, there is a need to evaluate CL and CD, as well as the fluid-stiffness
terms CLx, CLy, CDx and CDy, as continuous functions of the downstream tube posi-
tion over a wide range of tube separation. In addition, the upstream and downstream
tubes can have different diameters.

In general, the CL and CD data available in the literature is given only at discrete
values of wake position and is restricted to the upstream and downstream cylinders
having the same diameter (Counihan 1963; Ko 1973; Cooper 1974; Price 1975a,
b; Wardlaw et al. 1975). To overcome these difficulties, both Wu et al. (2002) and
Blevins (2005) obtained approximate expressions for CL and CD as a function of
wake position.

Blevins (2005) started from Schlichting’s (1968) analysis of fully developed
wakes for nonlifting sections and obtained the following expression for the mean
velocity at any position in the wake of the upstream tube:

U(X, Y) = U(1 − 1.2(CDu∞/X)1/2) exp(−13Y2/(CDu∞X)), (4.73)

where CDu∞ is the drag coefficient of the upstream tube and X and Y are the nondi-
mensional in-flow and transverse wake positions (the nondimensionalisation being
done using the upstream tube diameter, Du). Then, assuming that the downstream
tube has a constant drag coefficient of CDd∞ based on the local velocity (this would
be the value of drag coefficient measured for that tube in a uniform flow), and that
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the reduction in drag for the downstream tube is purely due to the reduction in wake
velocity, an approximate expression for the drag coefficient of the downstream tube,
CDd, can be obtained. In fact, Blevins replaced the constants 1.2 and 13 in equation
(4.73) by values obtained by fitting his predictions of CDd to the experimental data
of Price (1975a, b) and Price & Paı̈doussis (1984b), giving the following expression:

CDd(X, Y) = CDd∞[1 − (CDu∞/X)1/2 exp(−4.5Y2/(CDu∞X))]2, (4.74)

(Blevins used CDu∞ = CDd∞ = 1.15). For the lift coefficient, Blevins started from
Rawlins’ (1974a) assumption that the lift is proportional to the transverse gradient
of the drag, then making use of equation (4.74), and again adjusting the constants to
best fit the data of Price (1975a, b) and Price & Paı̈doussis (1984b), he obtained the
following for the lift coefficient on the downstream tube:

CLd(X, Y) = −10.6
(

YCDd∞Dd

XCDu∞Du

)(
CDu∞

X

)1/2

×
[
1−
(

CDu∞
X

)1/2

exp
(−4.5Y2

CDu∞X

)]
exp

(−4.5Y2

CDu∞X

)
, for Y ≥ 0.(4.75)

Blevins (2005) presented comparisons between the values of CL and CD given
by equations (4.74) and (4.75) and the experimental data of Price (1975a, 1976)
and Price & Paı̈doussis (1984b). In general, the agreement is excellent, even when
the upstream and downstream tubes have different diameters; however, equation
(4.74) does not capture the negative values of CD known to exist close to the wake
centreline for X < 3 (see, for example, Price & Paı̈doussis (1984b) or Zdravkovich
(1977)). In addition, as shown by Price & Paı̈doussis (1984b) the variation of CL with
Y can be very complex for X ≤ 3, with double peaks in CL occurring on each side of
the wake; this is not captured by equation (4.75).

Wu et al. (2002) also used Schlichting’s (1968) analysis of fully developed wakes
to predict the magnitude of the velocity in the wake of the upstream tube; however,
they then employed a free-streamline approach to model the wake boundary for the
downstream tube, with this separating streamline being represented by a number
of vortex elements. There are a number of simplifying assumptions required in the
methodology employed by Wu et al. (2002) which are fully described in their paper;
however, comparisons shown between the results obtained using their model for
X ≥ 6 and the experimental data of Price (1976) are very impressive.

Using their own individual models for the fluid-dynamic forces on the down-
stream of two tubes, both Wu et al. (2002, 2003) and Blevins (2005) investigate the
stability of the downstream tube. Although both sets of authors show that dynamic
instability is possible, they both conclude that the most serious problem is a static in-
stability of the downstream tube, and that the clashing observed by Huse (1996) may
be due to this static instability. Both Wu et al. and Blevins show that, as the current
velocity increases, the equilibrium position of the downstream tube moves closer to
the upstream one; this, of course, is because the downstream of the two tubes exper-
iences a smaller static drag force than the upstream tube. What is more surprising is
that at a critical value of current the static equilibrium position of the downstream
tube bifurcates into two equilibrium positions, only one of which is stable. This is
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Figure 4.29. Variation of drag coefficient, CD, for the downstream riser as a function of wake
position, X: �, experimental data from Zdravkovich & Pridden (1977) at Re = 3.1 × 104; ——,
equation (4.77); - -, equation (4.76).

then followed, at a slightly higher magnitude of current, by the nonexistence of any
equilibrium position for the downstream tube.

The reason for the behaviour of the equilibrium position of the downstream
tube can be explained by considering the simple case where the two tubes have
the same diameter and the downstream tube is positioned on the centreline of the
upstream one (in fact, because of the extremely flexible nature of the risers, as the
current increases the transverse fluid force acting on the downstream tube will tend
to push it very close to the wake centreline). With the downstream tube on the wake
centreline, its drag coefficient as predicted by equation (4.74) becomes

CDd = CDd∞
(
1 − (CDu∞/X)1/2)2, (4.76)

and the lift coefficient is zero. As mentioned previously this expression does not
capture the negative values of the drag coefficient for small values of separation
between the two tubes. As an alternative to using this expression, starting from the
drag coefficient data given by Zdravkovich & Pridden (1977) for Re = 3.1 × 104 and
using a simple curve fit to this data, a crude approximation of the drag coefficient on
the wake centreline is given by

CDd = −0.5941 + 1.2097 [1 − exp (−0.3461X)] . (4.77)

A comparison between these two expressions for CDd and the experimental data
of Zdravkovich & Pridden (1977) is given in Figure 4.29 showing that (4.77) does
capture the negative values of CDd and gives a reasonable representation of its
variation with X.
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Figure 4.30. Locus of positions of the upstream (−xu), ——, and downstream (Xo − xd), - -,
risers, as measured from the no-current position of the upstream riser, as a function of V :
Xo = 9, a = 0.2.

Given the drag coefficients for the two tubes, their static displacements may be
obtained as a function of the current velocity and written as

xu = −aV 2CDu and xd = −aV 2CDd, (4.78)

where V = U/ωnD and a = ρD2/ (2m).
Taking CDu = 1.15 and CDd as a function of X = Xo − xd + xu (as given by equa-

tion (4.77)), where Xo is the initial no-current separation between the two tubes, then
for a = 0.2 and Xo = 9 the static positions of the upstream (−xu) and downstream
tubes (X0 − xd) – as measured from the no-current position of the upstream tube –
are shown in Figure 4.30 as a function of V ; the separation between the tubes, X,
is simply the distance between the two curves. For V < 5.4, approximately, both
tubes have one equilibrium position only – which in both cases is stable. However,
when V is increased beyond 5.4 the variation of the structural restoring force and
drag force with tube displacement for the downstream tube is as exemplified by the
results of Figure 4.31 for V = 5.5 (the forces presented are normalised with respect
to the structural stiffness, hence, the slope of the structural restoring force variation
with riser displacement is unity). It is apparent that there are now two positions
of the downstream tube (approximately 1.76D and −0.35D) where the drag force
is just balanced by the structural restoring force; hence, there are two equilibrium
positions. For the equilibrium position at 1.76D (i.e. 1.76D downstream of the no-
current equilibrium position), a positive increment in the tube displacement results
in the restoring force being greater than the drag force; hence, the tube returns to its
equilibrium position which is stable. However, for the second equilibrium position
(−0.35D) corresponding to a forward movement of the downstream riser, a further
movement upstream results in the magnitude of the negative drag force being greater
than the structural restoring force, and hence this position is unstable. As shown in
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Figure 4.31. Variation of normalised forces acting on the riser as a function of downstream
displacement, −xd, from its no-flow equilibrium position for V = 5.5: Xo = 9, a = 0.2: - -,
structural restoring force; ——, drag force.

Figure 4.31, two equilibrium positions can only exist when the slope of the drag curve
changes from being less than 45◦ to greater than 45◦ over the range of displacement
of the tube. The locus of the stable equilibrium position for the downstream tube is
as given by the upper branch of the curve in Figure 4.30, whereas the locus of the
unstable equilibrium is given by the lower branch – extending from 5.4 ≤ V ≤ 5.6
approximately.

Once V is increased above approximately 5.6, the downstream tube is close
enough to the upstream one to cause its drag coefficient to be sufficiently large and
negative to result in it being “sucked” onto the upstream one – inducing “clashing” –
and, hence, no equilibrium positions exist for the downstream tube.

As shown by both Wu et al. (2002, 2003) and Blevins (2005), if the downstream
tube is positioned off the wake centreline then the resulting lift force acting on the
downstream riser complicates matters and there is the possibility of more than two
equilibrium positions existing.

The instability scenario presented in the preceding is based purely on a static
analysis. In addition, there is the possibility of dynamic instability occurring. Wu et al.
(2002, 2003) and Blevins (2005) consider this, and Wu et al. (2003) present dynamic
stability boundaries as a function of wake position for zero structural damping. As
previously mentioned, the occurrence of dynamic instability can be investigated
using equation (4.63) – assuming that the tube equilibrium position has first been
evaluated. However, as indicated in Section 4.2.1, “undamped” theory (ignoring both
the structural and fluid damping) indicates that a necessary condition for instability
to occur is given by equation (4.40); for no structural coupling between the two
directions (ε = 0) this reduces to

CLxCDy ≤ 0,
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which is only satisfied on the edge of the wake. The undamped theory also indicates
that, when ωx = ωy or k2 = 1, instability will occur at zero velocity, but as shown
by the results of Figure 4.12 the presence of damping, either structural or fluid,
will eliminate this instability – at least for values of a typically found in overhead
transmission lines (of order 2 × 10−4).

Sagatun et al. (2002) used an “in-house” CFD code (with the Reynolds number
being held constant at Re = 200) to predict the static fluid forces acting on the
two tubes. These were then used in two different quasi-static analyses of the riser
motion (the effect of riser motion on the fluid forces was not accounted for); one
analysis being based on two-dimensional strip theory and the other employed a three-
dimensional finite-element approach. Results presented by Sagatun et al. indicate
that clashing will occur and that the agreement, in terms of current required to
cause clashing, between either of their analytical models and their own experimental
results is remarkably good; unfortunately, no indication is given whether the clashing
is due to a static or dynamic instability.



5 Fluidelastic Instabilities in Cylinder Arrays

5.1 Description, Background, Repercussions

A cylinder array is an agglomeration of cylinders parallel to one another in a geo-
metrically repeated pattern. Typical examples are tube arrays in heat exchangers,
involving hundreds or thousands of tubes; one fluid flows within the tubes, while an-
other flows around them, partly normal to their long axis (cross-flow). Here, by heat
exchangers we understand also steam generators and boilers, where the outer fluid
boils and produces steam, and condensers, where the reverse process is involved.
Figure 5.1 shows sectional views of two different types of steam generators. In both
cases, the outer fluid flows axially in some regions and transversely as a cross-flow
in others (Paı̈doussis 1981, 1983, 2004). It is well known that cross-flow promotes
heat transfer, but at the expense of higher vibration levels and the possibility of
cross-flow-induced instabilities, the subject matter of this chapter. Figure 5.2 shows
the winding pattern of the outer flow in another kind of heat exchanger, involving
cross-flow nearly everywhere.

What distinguishes heat-exchanger arrays compared with the groups of cylinders
discussed in Chapter 4 is that (i) we have many more cylinders here and (ii) they are
more closely spaced. The significance of (i) is that, other than the cylinders cross-
sectionally on the periphery, the flow around any given cylinder is confined by the
presence of adjacent cylinders, rather than being unconfined at least on one side. The
repercussions of (ii) are that the fluid-dynamic forces can be quite large and the flow
structure quite distinct. In heat exchangers, the centre-to-centre distance between
tubes, or pitch, is typically 1.25 to 2.00 diameters, whereas for overhead transmission
lines it is typically 12 to 20 conductor diameters.

Cylinder arrays are also found in nuclear reactor fuel channels; see for example
Figure 5.3. In some designs, e.g. the CANDU design, the fuel rods (containing
uranium oxide) are even more closely spaced, with a pitch of ∼1.1 diameters. In this
case, to avoid excessive vibration the flow is mainly axial, but some cross-flow near
the inlet and outlet of the fuel channel is almost unavoidable.

Typical geometric patterns of heat-exchanger tube (cylinder) arrays are shown in
Figure 5.4, namely (a) normal triangular, (b) rotated triangular, (c) in-line square and
(d) rotated square arrays. If the flow in (a) were from the left, then this would become
a rotated triangular array. There are surprisingly important differences in dynamical

215
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Figure 5.1. Sectioned views of (a) a U-tube type steam generator and (b) a ‘once-through’
type steam generator (Paı̈doussis 1980, 2004).

behaviour between these types of array, even between the normal triangular and
the rotated square ones – which only differ by the layout angle being 30o or 45o.
More obvious differences are expected between (i) the rotated triangular and in-
line square arrays where there is a virtually unimpeded straightthrough flow path
around the tubes, no matter how close they are, and (ii) the normal triangular
and rotated-square patterns where the flow path must be sinuous, in particular for
small pitch, P/D. However, other geometrical patterns are sometimes used, not

Inlet
impingement plate

Outlet Tube bundle
12 spaces at 64.1 cm + 12 baffles = 788.7 cm

Figure 5.2. Cross-sectional view of a water-water heat exchanger of unusual design; the tubes
in this shell-in-tube heat exchanger are not shown for clarity (Paı̈doussis 1980).
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Figure 5.3. (a) A BWR (boiling-water reactor) fuel bundle in a fuel channel; (b) part of the
core of the BWR, showing four fuel bundles in their fuel channel boxes (Paı̈doussis 1980,
2006).

involving equilateral triangles or squares, e.g. rectangular patterns in boilers where
the longitudinal and lateral pitches are different.

The dynamical behaviour of individual cylinders in an array in cross-flow may
be summarised, in idealised form, as in Figure 5.5 (Paı̈doussis 1981, 1983). At all flow
velocities the cylinders are subject to turbulence-induced vibration or “buffeting”.
The amplitudes are generally small, leading to long-term problems only, e.g. when
impacting with supports promotes fretting wear or because of fatigue. Vortex shed-
ding occurs in arrays in a modified form of vortex shedding from a single cylinder.
Hence, resonance is possible in this case also (Chapter 3), leading to vibration of
considerable amplitude and possible short-term failures. At generally higher flow
velocities, so-called fluidelastic instability may occur, with large-amplitude vibration

Figure 5.4. The basic geometrical patterns for tube layout (cross-sectional patterns of tube
geometry) in heat exchangers: (a) normal-triangular, (b) rotated-triangular (or “parallel-
triangular”), (c) normal or in-line square, and (d) rotated-square.



218 Fluidelastic Instabilities in Cylinder Arrays
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Figure 5.5. Idealised diagram of the response
of a cylinder in an array subjected to cross-flow
(Paı̈doussis 1981).

causing impact with supports and adjacent cylinders and short-term failure (in days
rather than years); see Paı̈doussis (1980, 1983, 2006).∗

Notation used in Chapter 5
Cylinder diameter: D

Free-stream flow velocity: U

Relative flow velocity: Ur, see equation (5.3)

Pitch velocity: Up , see equation (5.25)

Reduced flow velocity: U/fD, f being the frequency in Hz
U/ωD, ω being the radian frequency

Dimensionless streamwise
displacement:

x (positive downstream), see Figure 5.7

Dimensionless transverse
displacement:

y (positive upwards), see Figure 5.7

Pitch between cylinders: P, see Figure 5.4

Mass per unit length: m

Mass ratio: m/ρD2 = m, ρ being the fluid density

The existence of fluidelastic instability in cylinder arrays was not discovered till
the 1960s, although failures because of it occurred before but were erroneously at-
tributed to “vortex shedding” (Paı̈doussis 1980, 2006). Moreover, insufficient know-
ledge, at a time when new designs of nuclear steam generators were being built,
with even higher flow velocities, caused a proliferation of failures worldwide. In
approximately a decade, the cumulative damages to the power-generating industry

∗ In Naudascher & Rockwell’s (1994, 2005) classification, buffeting is an extraneously induced excit-
ation (EIE), and vortex-shedding resonance is an instability-induced excitation (IIE); fluidelastic
instability involves a movement-induced excitation (MIE), which is the very subject of this book.
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(a)

(b)

(c)

(d)

Figure 5.6. A compendium of damage in (a) a Na-H2O steam generator, (b) a steam con-
denser, (c) a heat exchanger due to fretting at the location of supports, and (d) a heavy-to-light
water heat exchanger. In (a), (b) and (d) the cause was likely or definitely due to fluidelastic
instability (Shin & Wambsganss 1977; Pettigrew 1977; Pettigrew et al. 1978; Paı̈doussis 1980).

(including power replacement costs) are estimated at 1000 M$. A compendium of
practical cases of flow-induced vibration in nuclear reactors and heat exchangers
may be found in Paı̈doussis (1980); in many of the cases analysed (14 of 33 involving
cross-flow) the likely or definite cause of the problem was fluidelastic instability.
The reader is also referred to Shin & Wambsganss (1977), Pettigrew, Sylvestre &
Campagna (1978), Axisa (1993) and Au-Yang (2001).

The damages to heat exchangers caused by fluidelastic instability may sometimes
involve a few tubes; but in other cases they can be devastating and even spectacular,
as seen in Figure 5.6(a, b). Those in (a) involved a Na-H2O steam generator; hence,
when the tubes were sufficiently thinned out by fretting, the explosive Na-H2O
reaction virtually destroyed the system.

Another serious problem that may arise in tube arrays of heat exchangers with
gaseous outer flow is that of acoustic resonance, involving very strong sound (160–
176 dB in the heat exchanger, according to Blevins (1990), and only 20–40 dB
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(b)(a)

Figure 5.7. (a) Cross-sectional view of a kernel of an array of cylinders in cross-flow. (b)
Velocity vector diagram and forces acting on the central cylinder, which is flexibly supported,
while the others are immobile.

less outside). Such acoustic pressure levels are sufficiently high to damage the heat
exchanger and harm personnel working in the vicinity.

In this chapter, we are concerned with fluidelastic instability exclusively, starting
with a simplified discussion of the mechanisms involved, in the following section.

5.2 The Mechanisms

This section is based on a simplified analysis of the mechanisms of fluidelastic in-
stability in cylinder arrays by Paı̈doussis & Price (1988); its main virtue is simplicity
and therefore clarity, although to achieve the best possible predictions of the phe-
nomenon, several refinements (different ones in different theories) are necessary, as
described in the sections that follow.

5.2.1 The damping-controlled one-degree-of-freedom mechanism

Consider the system of Figure 5.7, showing a kernel of a much larger array of
cylinders. For simplicity, consider all the cylinders to be immobile, except the central
one which is also rigid, but flexibly mounted. Conventionally, in contrast to the work
in Chapters 2 and 4, its displacements x and y are positive upwards and to the right,
as shown.

Assuming no mechanical coupling between the x- and y-directions, the equation
of motion of the cylinder in the y-direction is

(mlÿ + cẏ + ky) D = Fy, (5.1)

where l is the length of the cylinder of mass m per unit length, D is the cylinder
diameter, c and k are the effective mechanical damping and stiffness, Fy is the fluid-
dynamic force and y the nondimensional displacement of the cylinder.∗ In terms of
the lift and drag forces shown in Figure 5.7(b), where CL and CD are the lift and drag
coefficients, using a quasi-steady approach we can write

Fy = 1
2ρ U2

r lD{CL cos(−α) − CD sin(−α)}, (5.2)

∗ Equation (5.1), involving both dimensional and dimensionless quantities (and hence D), may appear
awkward, but it will prove to be very convenient in what follows.
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where Ur and α are defined in Figure 5.7(b), such that

Ur = [(U − Dẋ)2 + (Dẏ)2]1/2, −α = sin−1(Dẏ/Ur). (5.3)

For small motions, we can write CL = CL0 + (∂CL/∂x) x + (∂CL/∂y) y, and similarly
for CD. Then equation (5.2) may be linearised to give

Fy = 1
2
ρU2 lD

[
CL0 − 2CL0

(
ẋD
U

)
+
(

∂CL

∂x

)
x +

(
∂CL

∂y

)
y − CD0

(
ẏD
U

)]
. (5.4)

For symmetric geometrical patterns of the cylinders, CL0 = 0 and ∂CL/∂x = 0 and
equation (5.4) simplifies to

Fy = 1
2
ρU2lD

[(
∂CL

∂y

)
y − CD0

(
ẏD
U

)]
. (5.5)

Now, as discussed in Section 4.1, a time lag exists between cylinder displacement
and the fluid-dynamic forces generated thereby. This, like the discussion relating to
the limits of quasi-steady fluid-dynamic theory, has been introduced via differing
physical reasoning by different researchers. Simpson & Flower (1977) associate this
time delay with the retardation experienced by the fluid as it nears the cylinder, par-
ticularly in the vicinity of the stagnation point, whereas intercylinder positions have
changed meanwhile as a result of cylinder motions. This explanation was adapted for
cylinder arrays by Price & Paı̈doussis (1984a, 1986a, b). On the other hand, Lever &
Weaver (1982) associate this time delay with the time taken for the two fluid streams
on either side of the cylinder to readjust to the changing flow-channel configuration as
a cylinder oscillates. Paı̈doussis, Mavriplis & Price (1984) more generally conceived
this time lag as a delay in the viscous wake adjusting continuously to the changing
conditions due to cylinder motions. Last, Granger & Paı̈doussis (1996) related this
time lag to the necessary reorganisation of the flow, driven by diffusion-convection
of the vorticity layer generated on the surface of the body, following each and every
change in its velocity. Whatever the explanation, in particular because a simplified
first-order model will be used here, the time delay τ, may be expressed as (Price &
Paı̈doussis 1984a)

τ = µD/U, (5.6)

where µ ∼ O(1), and D/U is the time taken for the fluid to travel a distance equal
to one cylinder diameter.

Hence, with time delay taken into account, equation (5.5) may be written as

Fy = 1
2
ρU2 lD

[
e−iωτ

(
∂CL

∂y

)
y − CD0

(
ẏD
U

)]
. (5.7)

Substituting in the equation of motion, we obtain

ÿ +
[(

δ

π

)
ωn + 1

2

(
ρUD

m

)
CD0

]
ẏ +

[
ω2

n − 1
2

(
ρU2

m

) (
∂CL

∂y

)
e−iωτ

]
y = 0, (5.8)

where ωn is the natural frequency of the cylinder and δ is the logarithmic decre-
ment, both in vacuo. For harmonic motions, y = y0 exp(iωt), the total damping is
proportional to[(

δ

π

)
ωωn + 1

2

(
ρUD

m

)
ωCD0 + 1

2

(
ρU2

m

)(
∂CL

∂y

)
sin (µωD/U)

]
ẏ (5.9)
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and instability is associated with [ ] = 0; if µωD/U is small, sin( ) � ( ), and

Uc

f nD
=
{

4
−CD0 − µ(∂CL/∂y)

}
mδ

ρD2
, (5.10)

where f n = ωn/2π. Hence, instability is possible only if

−CD0 − µ(∂CL/∂y) > 0, (5.11)

i.e. if ∂CL/∂y < 0 and large.
For staggered arrays of cylinders, it is normal to have CD0 > 0; therefore, if there

were no time delay (µ = 0), it would be impossible to have fluidelastic instability
via this mechanism, because the bracketed quantity should be positive. The same
conclusion was reached via the analytical model of Paı̈doussis et al. (1984), where
the fluid-dynamic forces are derived via potential flow theory; oscillatory instability
was found to be possible only when a phase lag between cylinder motions and
fluid-dynamic forces is heuristically introduced.

Three further items of interest are the following.
(i) For small values of U/ωD, the approximation of the sine function by its

argument is no longer valid; setting the transcendental expression (5.9) to zero
admits an infinite set of solutions for neutral stability, as the sine oscillates between
−1 and 1. Some of the solutions represent the threshold from stability to instability,
and some the reverse. Thus, this leads to a spectrum of stable and unstable zones
as U/f nD decreases, as obtained by Lever & Weaver (1982, 1986a, b), Chen (1983a,
b) and Price & Paı̈doussis (1984a, 1986a, b). It is of interest that in such cases
instabilities may arise not only for ∂CL/∂y negative, but also positive and large.
Typical solutions from the full form of expression (5.9) are presented in region 1 of
Figure 5.8 (mechanism I).

(ii) The threshold of instability according to the approximations leading to (5.10)
is insensitive to the frequency of oscillation in the fluid medium concerned, ω, de-
pending only on the in vacuo frequency, ωn (and hence f n) – something that has
perplexed researchers in the past (see discussion by Paı̈doussis (1980, 1983), for
example).

(iii) As in Section 4.1, criterion (5.11) may be compared with the Glauert and
Den Hartog inequality for galloping, CD0 + ∂CL/∂α < 0, which, accounting for the
time lag, may be written as

CD0 + Re[e−iωτ (∂CL/∂α)] < 0. (5.12)

If y is expressed as a function of α, namely y = −(U/iωD)α, then ∂CL/∂α may be
rewritten as −(U/iωD)(∂CL/∂y); further, assuming ωτ to be small and τ to be given
by (5.6), inequality (5.12) may be expressed as

CD0 + µ (∂CL/∂y) < 0,

which is identical to inequality (5.11).
In the foregoing, motions in the y-direction were considered. Proceeding in a

similar manner, for x-direction motions, it is found that for small ωD/U,

Uc

f nD
=
{

4
−2CD0 − µ (∂CD/∂x)

}
mδ

ρD2
, (5.13)
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mδ/ρD2

Uc

fnD

Figure 5.8. Stability diagram for a rotated triangular array with pitch-to-diameter ratio 1.375
(see elemental part of the array on the upper left-hand corner). Mechanism I refers to the
damping-controlled one-degree-of-freedom mechanism (Section 5.2.1); mechanism II refers
to the two-degree-of-freedom “wake-flutter” mechanism (Sections 5.2.3 and 5.2.5). Region 1 is
where U/ωD is small enough for sin(ωD/U) �= ωD/U; region 2 is where sin(ωD/U) � ωD/U;
region 3, for larger U/ωD, is where both mechanisms I and II contribute to the instability.

so that for instability

−2CD0 − µ (∂CD/∂x) > 0 (5.14)

must be satisfied. Although ∂CD/∂x < 0 often arises in several array configurations
(Price & Paı̈doussis 1986b), it is generally smaller in magnitude than |∂CL/∂y|, im-
plying that the threshold of instability is more likely to be associated with y-direction
motions, as observed experimentally. For larger ωD/U, as for y-direction motions,
multiple zones of instability may arise; furthermore, the instability may also be as-
sociated with ∂CD/∂x positive and large.

According to relationships (5.10) and (5.13), Uc/f nD is proportional to mδ/ρD2,
or mδ. This appears to be correct in terms of experimental observations, in the
middle range of mδ (region 2 of Figure 5.8). For sufficiently high mδ, however,
characteristic of gaseous flows, experimental evidence suggests that either Uc/f nD ∝
(mδ)1/2 or maδb, where a �= b and a, b ≤ 1/2, but certainly not ∝ mδ. This is related
to the increasing importance of the second mechanism associated with fluidelastic
instability, to be discussed in Section 5.2.3.

5.2.2 Static divergence instability

Examining equation (5.8), it may be verified that a single flexible cylinder in
the array may become unstable by divergence (nonoscillatory static instability) if
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Figure 5.9. Cross-sectional view of the same kernel of an array of
cylinders as in Figure 5.7(a) in cross-flow, for the analysis of wake
flutter.

the stiffness term vanishes, which, for ωD/U sufficiently small, occurs at U = Ucd

given by

Ucd

f nD
=
{

8π2

(∂CL/∂y)

}1/2 {
m

ρD2

}1/2

(5.15)

in the y-direction;∗ similarly for the x-direction, with ∂CD/∂x replacing ∂CL/∂y. This
implies that for divergence, either ∂CL/∂y or ∂CD/∂x must be positive, which is op-
posite to the normal requirement for oscillatory instability. Hence, arrays subject
to the usual, oscillatory fluidelastic instability will not be prone to divergence. Be-
cause most types of cylinder arrays are subject to oscillatory fluidelastic instability,
it is perhaps not surprising that divergence has rarely been reported. Nevertheless,
for an array resistant to oscillatory instability, divergence has in fact been observed
(Paı̈doussis et al. 1989).

The mechanism of divergence is the same as that of buckling of a column subjec-
ted to axial load; if, when the column is flexed, the load-related lateral force exceeds
the flexural restoring force, then the system behaves as if it had a negative net stiff-
ness. For the problem at hand, writing ω2

n = keff/m, the restoring force is clearly
proportional to keffy, whereas the lift-related force (for cos ωτ � 1) is proportional
to 1

2ρU2 l (∂CL/∂y) y; hence, if ∂CL/∂y is positive, i.e. if the lift increases with lateral
displacement, then, for sufficiently large U, the latter term will become larger than
the restoring term, precipitating divergence.

5.2.3 The stiffness-controlled wake-flutter mechanism

There is another mechanism capable of causing (oscillatory) fluidelastic instability,
namely the wake-flutter mechanism, introduced for pairs and small groups of cylin-
ders in Section 4.2. This is a displacement-dependent, stiffness-controlled mechan-
ism, a characteristic of which is that at least two degrees of freedom must be involved
in the motion.

In general, both mechanisms will be at work for a given array, although one or the
other may be dominant, depending on geometry and other system parameters. Here,
however, we shall discuss wake flutter in isolation, as if it were the only mechanism
at play.

Consider again the kernel of a large array, in Figure 5.9. We can consider two
of the cylinders to be flexible, e.g. cylinder i and cylinder j , and in the interest of

∗ This expression is really independent of the mass of the cylinder, as may easily be verified and as it
should be. The way it is written, however, in terms of the “standard” nondimensional groups, makes
it appear otherwise.
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keeping things simple only two degrees of freedom: motions xj and yi; alternatively,
one could consider motions in the y-direction only, yj and yi. Thus, the coupled
equations of motion may be written as

([M] + [M]f ){η̈} + ([C] + [C]f ){η̇} + ([K] + [K]f ){η} = {0}, (5.16)

where the unsubscripted matrices are associated with the mechanical system and
those with suffix f are associated with the fluid-dynamic terms; {η} is the displace-
ment vector, so that for motion of two cylinders in the y-direction, for instance,
{η} = {yi, yj }T.

Concerning the mechanical system itself, the following set of demonstrably reas-
onable and, for heat-exchanger arrays, realistic assumptions are made:∗ the modal
masses, as well as the mechanical and damping terms, are equal in the two de-
grees of freedom concerned; also, there is no mechanical coupling between the two
degrees of freedom. Thus, M11 = M22 = ml, C11 = C22 = c, K11 = K22 = k; and all
off-diagonal terms in the mechanical matrices are zero.

Concerning the fluid-dynamic matrices, a set of at first sight more tenuous as-
sumptions are made, which are nevertheless justifiable a posteriori, some by numer-
ical computations, as will be discussed in the next paragraph: (i) the flow-retardation
terms are entirely removed; (ii) the virtual (added) mass terms are neglected; (iii) the
fluid-dynamic damping terms are neglected, compared with the mechanical damping
terms. Thus, equation (5.16) is simplified to[

ml 0
0 ml

]
{η̈} +

[
c 0
0 c

]
{η̇} +

[
k 0
0 k

]
{η} + 1

2
ρ U2 l

[
κ11 κ12

κ21 κ22

]
{η} = {0}, (5.17)

where the κij are of the form −∂CF /∂ηj , in which CF stands for either CD or CL

accordingly as η = x or y.
The removal of the flow-retardation terms (µ = 0) ensures that the generator

of the negative-damping mechanism discussed in Section 5.2.1 is removed, so that
instability, if it can arise at all, will have to be due to some other mechanism. As-
sumption (ii) above is justified partly for simplicity and partly because the mechanism
under discussion is dominant for gaseous flows, where virtual mass effects are neg-
ligible. The ratio of the fluid-dynamic to the mechanical damping terms (with flow
retardation removed) may be shown to be (CD0/4mδ)(fD/U) and (CD0/2mδ)(fD/U),
respectively, for motions in the y- and x-direction (Price & Paı̈doussis 1984a, 1986a).
Clearly, if instability occurs at sufficiently large values of U/fD, these ratios become
small, typically 1/40 and 1/20, respectively, and the fluid-dynamic damping may be
neglected; hence, assumption (iii) is also reasonable.

Let us now consider the dynamical implications of the form of the simplified
equation of motion (5.17). Introducing the notation t = ωnt, the equation of motion
may be written in dimensionless form as follows:{

η′′
1

η′′
2

}
+ δ

π

[
1 0
0 1

]{
η′

1

η′
2

}
+
[

1 0
0 1

]{
η1

η2

}
+ U

2

2m

[
κ11 κ12

κ21 κ22

]{
η1

η2

}
= {0}, (5.18)

where U = U/ωnD, m = m/ρD2 and ( )′ = d/dt.

∗ Excluding the U-bend region in heat exchangers.
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Assuming harmonic solutions of the form {η} = {η0} exp(λt), the characteristic
equation, a quartic in λ, is obtained. The condition of zero total damping, i.e. the
boundary of an oscillatory instability, may be obtained by application of the Routh
criterion, or p1 p2 p3 − p4 p 2

1 − p0 p 2
3 = 0, where the pi are the coefficients of λi. This

leads to the following quadratic expression for U
2
/2m:

(U
2
/2m)2[(κ11 − κ22)2 + 4κ12κ21] + 2(U

2
/2m)[(δ/π)2(κ11 + κ22)] + 4(δ/π)2 = 0.

(5.19)

In general, the solution to this equation is cumbersome, but, if (2π/δ)[(κ11 − κ22)2 +
4κ12κ21]1/2/(κ11 + κ22) is sufficiently large compared with unity (which is the case for
small enough δ), then an approximate solution of relatively simple form may be
obtained, namely,

Uc �
{ −16/π2

(κ11 − κ22)2 + 4κ12κ21

}1/4

(mδ)1/2, (5.20a)

where it was assumed that a real Uc exists; in more conventional terms, this equation
may be written as

Uc

f nD
=
{ −256π2

(κ11 − κ22)2 + 4κ12κ21

}1/4 (
mδ

ρD2

)1/2

. (5.20b)

Furthermore, for cylinders deep enough in the array (i.e. away from the first or last
few rows) κ11 = κ22, and equation (5.20b) may be simplified further to

Uc

f nD
=
{−64π2

κ12κ21

}1/4 (
mδ

ρD2

)1/2

. (5.20c)

Despite the simplifying assumptions leading to (5.20c), this expression does
give results in excellent agreement with those obtained from the complete set
of equations. Three important conclusions may be drawn directly from equations
(5.20a, b, c):

(i) for instability to occur, the stiffness matrix should not only be asymmetric (κ12 �=
κ21), but the signs of the off-diagonal terms must be opposite;

(ii) the dependence of Uc/f nD on the mass-damping parameter is that of a square-
root relationship, rather than a linear one as was the case for the one-degree-of-
freedom damping-controlled mechanism discussed in Section 5.2.1;

(iii) if the diagonal terms κ11 and κ12 are unequal, this leads to an increase of Uc/f nD;
hence, (5.20c) is conservative vis-à-vis (5.20b).

The requirement in (i) above is often met in practice. Thus, for a rotated triangu-
lar array with pitch-to-diameter ratio P/D = 1.375 (see Figure 5.10), measurements
have given κ12 = −(∂CL1/∂y2) = 16.7 and κ21 = −(∂CL2/∂y1) = −26.6, where cylin-
der 1 is in one row and cylinder 2 is diagonally adjacent to it in the row immediately
upstream, as shown in Figure 5.10.

Physically, the nonequality of κ12 and κ21 is an attribute of the nonconservative-
ness of the system. Thus, if instead of fluid-dynamic coupling there were mechanical
coupling involving springs, then the forces could be derived from a potential function
and clearly k12 = k21 would have been obtained: the force on cylinder 1 due to the
motion of cylinder 2 would be equal to the force on cylinder 2 due to the motion



5.2 The Mechanisms 227

U

D

P

Figure 5.10. Part of a rotated triangular array, showing
representative cylinders 1 and 2, as well as the pattern of
motions during flutter; motions of neighbouring rows are
90o out of phase.

of cylinder 1, in the same directions. This is the well known reciprocity principle in
solid mechanics. Significantly, if the flow field is modelled as a purely potential flow
(Paı̈doussis et al. 1984), then the fluid-dynamic stiffness matrix obtained analytically
is symmetric and, hence, this instability cannot materialize. In reality, of course, the
flow field is rotational, with separated viscous flow regions (the existence of the
wakes cannot be overlooked), and it is because of this that κ12 �= κ21 and, indeed,
that κ12 κ21 < 0.

Another attribute of the viscous, rotational nature of the flow field and the non-
conservativeness (asymmetry) of the stiffness matrix is that the energy derived from
the flow is path-dependent; i.e. the phase between the motion of the two cylinders
is of importance, as in the scenario proposed by Connors (1970), which is funda-
mentally the same as that described above. Indeed, comparing equations (5.20b, c)
with Connors’ expression, Uc/f nD = K(mδ/ρD2)1/2, where K is an experimentally
determined constant, the similarity becomes self-evident. Also, the expression ob-
tained by Blevins (1977b), who generalised Connors’ model, is in fact identical to the
simplified expression derived here, equation (5.20c), although the notations differ.
More will be said about these other theories in the following sections.

5.2.4 Dependence of the wake-flutter mechanism on mechanical damping

An apparent paradox in the results obtained for the wake-flutter mechanism is that
the critical flow velocity is proportional to the square root of the logarithmic decre-
ment of mechanical damping, δ. This contrasts to the results normally obtained for
classical coupled-mode flutter instabilities, where the effect of mechanical damping
is so insignificant that it is usually ignored; see for example Bisplinghoff, Ashley
& Halfman (1955) for the flutter analysis of aircraft wings, and Simpson (1971),
Price (1975a) and Price & Piperni (1988) for analysis of overhead transmission
bundles.

To resolve this paradox it should first be realised that, in the aforementioned
classical aeroelastic analysis, the two modes, associated with the two degrees of
freedom involved, have distinct (non-equal) natural frequencies under “wind-off”
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Figure 5.11. The effect of differences in the in vacuo modal stiffnesses, h, in the two-degree-
of-freedom system of Sections 5.2.3 and 5.2.4 on the functional relationship between Uc/f nD
and δ; for a rotated triangular array (pitch-to-diameter ratio P/D = 1.375, m = 105).

(or in vacuo) conditions. Thus, the mechanical stiffness in equation (5.17) may in this
case be written as

k
[

1 0
0 1 + h

]
, (5.21)

where h represents the difference in modal stiffness in the two degrees of freedom.
The second point to realise is that even small values of h can have a profound effect
on the relationship between Uc/f nD and δ, as will presently be shown.

Consider the same rotated triangular array, associated with Figures 5.8 and 5.10.
Solutions of equation (5.17), but with the mechanical stiffness as given by equation
(5.21), were obtained for various values of h and are shown in Figure 5.11. It is seen
that for h = 0, i.e. when the two modes have equal frequency, Uc/f nD is sensibly
proportional to δ1/2 – and the solution is very closely approximated by equation
(5.20c). However, even for h = 0.05, which corresponds to a 2.5% difference in
natural frequencies, the functional dependence of Uc/f nD on δ is entirely different:
for δ ≤ 0.02, Uc/f nD is insensitive to δ. For h = 0.2, this effect extends to δ ≤ 0.10.

This resolves the apparent paradox referred to at the beginning of this section
and, in this respect, reconciles the difference in dynamical behaviour of cylinder
arrays and overhead transmission lines. However, this is also of direct interest to the
dynamics of arrays in heat exchangers, for example in the so-called U-bend region
where there exist substantial differences in natural frequency of adjacent cylinders.
It is important to be aware that this “detuning” of adjacent cylinders leads to a con-
siderable reduction in the efficacy of raising the threshold for fluidelastic instability
by means of increased mechanical damping. There are also many examples in the
literature illustrating how increased structural damping can be destabilising; see, for
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Table 5.1. Comparison between the critical flow velocities for
fluidelastic instability obtained via (i) the full, constrained-mode
solution and (ii) the simplified solution of (5.20a, b, c) and (5.22),
for a rotated triangular array with P/D = 1.375, and δ = 0.01
throughout

mδ/ρD2 105 104 103 102

Uc/f nD, ‘full solution’ 236 70.4 17.3 2.91
Uc/f nD, ‘simplified solution’ 244 77.9 24.7 7.79

example, the work of Broadbent & Williams (1956), Done (1963) and Benjamin
(1963).

5.2.5 Wake-flutter stability boundaries for cylinder rows

Of course, the results of Section 5.2.3 may be applied directly, by considering a
system of two flexible cylinders in an array of otherwise rigid ones. Numerical results
were obtained in this manner and were found to be similar to those to be discussed
below, which were obtained by a generalisation of the foregoing, whereby the results
are more representative of the stability of a fully flexible array. This is done by
considering an infinitely long double row of flexible cylinders, within a larger array
of rigid cylinders.

It is realised at the outset that, realistically, all the cylinders in the array are
fluid-dynamically coupled in a chain-like manner, so that the correct choice of a two-
cylinder kernel representative of the array should take this fact into consideration,
as well as the relative phase in the motions of cylinders in the same row; this leads to
the so-called “constrained-mode solution” described by Price & Paı̈doussis (1986a),
whereby the analysis of the two-cylinder kernel becomes representative of an infinite
array of flexible cylinders. It is shown that this results in

κ12 = −(∂CL1/∂y2)(1 + δ1) and κ21 = −(∂CL2/∂y1)(1 + δ2), (5.22)

where the δs can take on the values of 1, 0 or −1; similarly, if the κs involve CD and x.
If δ1 = δ2 = 1, this signifies that cylinders in the same row are presumed to move in
phase; if they are equal to −1, then in antiphase. All possible δs are utilised, and the
minimum U/fD obtained thereby is considered to be the critical one; significantly,
the same set of δs is found to give the best agreement with the full, unconstrained ana-
lysis of multi-degree-of-freedom long rows of flexible cylinders (Price & Paı̈doussis
1984a). In the results presented in what follows, this is achieved with δ1 = δ2 = 1.

Solutions obtained by equations (5.18) and (5.22) are represented in region 3 of
Figure 5.8, marked as due to mechanism II. Of course, in general, both mechanisms
I and II are at work, i.e. both the single-degree-of-freedom negative-damping mech-
anism of Section 5.2.1 and the stiffness-controlled mechanism discussed here. The
results obtained by the full solution of the equations of motion, without the intro-
duction of the simplifications leading to equation (5.17), are also shown in region 3
of Figure 5.8, marked as due to both mechanisms I and II.

The results shown in Table 5.1 give numerical comparisons of the critical
flow velocities obtained by the full constrained-mode solution of the equations of
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motion to the “simplified solution” according to equations (5.20a, b, c) and (5.22).
It is clear that, for large values of m (and hence mδ), there is not much differ-
ence between the two; this signifies that the instability is predominantly due to the
position-dependent “wake-flutter” mechanism discussed here. As m is diminished,
however, the differences become more pronounced, indicating the increasing contri-
bution of the damping-controlled one-degree-of-freedom mechanism (mechanism I)
to the destabilisation of the system.

The instability in Table 5.1 involves y-direction motions (see Figure 5.10), where
motions in adjacent rows are 90◦ out of phase. If, instead, an array of only two
rows is considered, then the instability is found to involve predominantly x-direction
motions. Indeed, in principle, there is no a priori reason why wake-flutter instabilities
in some arrays should not involve only one flexible cylinder in the array, instead of
two, the two requisite degrees of freedom being associated with x- and y-motions of
the cylinder.

5.2.6 Concluding remarks

The foregoing represents an attempt to elucidate the mechanisms underlying flu-
idelastic instability of cylinder arrays in cross-flow, as well as providing links to the
well known classical galloping and two-degree-of-freedom wake-flutter mechanisms.

It is shown that, provided the mass-damping parameter mδ is sufficiently small,
the instability is a modified form of the galloping mechanism proposed by Den
Hartog for the limit-cycle motions of iced transmission lines. The essence of the
difference between this “classical” galloping and what occurs in cylinder arrays is
that, in the latter case, the mechanism is intimately connected to a time delay, which
is associated with the time taken for the wake flow to adjust to cylinder motions.

This is the mechanism of instability predominating in regions 1 and 2 of Fig-
ure 5.8. Stability boundaries may be obtained by satisfying expression (5.9) set to
zero for y-motions, or the equivalent one for x-motions. If U/ωD is sufficiently large,
then stability boundaries may be obtained by the even simpler relation (5.10) – or
the equivalent one for x-motions.

The main objective of this introductory section (Section 5.2) was to elucidate,
rather than predict, the instability. In this respect, it should be stressed that setting
expression (5.9) to zero is not sufficient for predicting instability, in that CD0 and
∂CL/∂y cannot at present be predicted analytically but must rather be obtained
empirically.

In the higher range of mδ, region 3 of Figure 5.8, a second destabilising mechan-
ism comes into play; for sufficiently high mδ this mechanism becomes predominant,
while the damping-controlled one contributes less. This is a position-dependent,
fluid-dynamic stiffness-controlled mechanism, similar to that long known to be re-
sponsible for wake flutter of bundled electrical transmission lines. This mechanism
requires at least two degrees of freedom, and has been demonstrated here in terms
of y- or x-motions of two adjacent cylinders in the array. It is intimately related
to the fluid-dynamic coupling between motions in these two degrees of freedom,
which, because of the rotational and viscous nature of the flow field, does not exhibit
reciprocity, as would be the case if coupling were of a mechanical nature. In matrix
notation the coupling manifests itself in nonzero off-diagonal fluid-dynamic terms,
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Figure 5.12. The stability chart according to the simplified theory of Paı̈doussis & Price
(1988) presented in this section and the more elaborate model of Price & Paı̈doussis (1984a),
compared to experimental data from several sources.

which are not equal because of the nonconservative nature of the flow field and
hence of the system as a whole.

Based on a set of reasonable assumptions, the problem was simplified and it
was possible to obtain simple relationships for the onset of instability according to
this second mechanism, equations (5.20a, b, c). It was found, a posteriori that these
relationships are similar to that obtained previously by Connors (1970) and, in their
simplest form, identical to that obtained by Blevins (1977b). The dominance of this
mechanism for high mδ was recognised in Chen’s (1983a, b) and later in Price and
Paı̈doussis’s (1984a, 1986a, b) work.

Significantly, the dependence of Uc/f nD on mδ is found to be different in dif-
ferent ranges of the latter parameter, as shown in Figure 5.8, and in agreement with
experimental observations (see Price & Paı̈doussis (1986a, b), for example). For low
values of mδ the principal instability boundary is insensitive to mδ (region 1 of Fig-
ure 5.8), although a set of secondary instability zones exist below that boundary. In
the middle range of mδ, Uc/f nD depends more or less linearly on that parameter
(region 2). Finally, for sufficiently high mδ, Uc/f nD depends on the square root of
mδ (region 3) – an attribute of the wake-flutter mechanism. These are of course
generalisations; quantitatively, the extent of these three regions depends on the geo-
metry of the array and, for regions 1 and 2, not only on the product mδ, but also on
the specific values of m and δ – two independent dimensionless parameters which
are only combined by convention and sometimes for convenience.

A final question is this: just how good are the predictions of the simplified theory
presented in this section? The answer is that they are very good qualitatively; but, as
seen in Figure 5.12, not very good quantitatively. Not surprisingly, one of the more



232 Fluidelastic Instabilities in Cylinder Arrays

Figure 5.13. Idealised model of the jet-flow between two cylinders in a staggered row of
cylinders (Roberts 1962).

elaborate and sophisticated theories, to be discussed in the sections that follow,
achieves much better agreement. Nevertheless, it can be said that the foregoing
elucidate fairly well the physics of fluidelastic instabilities in cylinder arrays.

5.3 Fluidelastic Instability Models

A review of all models of fluidelastic instability in cylinder arrays known to the
authors is presented in this section; this represents an updated version of a sum-
mary previously given by Price (1995). Comparisons with experimental data and a
review of the state of the art are given in Section 5.4. As discussed in Section 5.2,
an essential component of any model attempting to predict the critical velocity at
which fluidelastic instability will occur is that the mutual interaction between the
structural displacement and resulting fluid forces must be accounted for. It is not
sufficient to determine, either theoretically or experimentally, the fluid forces on an
individual cylinder when it is statically mounted at its equilibrium position; instead,
the effect of cylinder motion must be taken into account. This is one of the big
challenges associated with modelling fluidelastic instability in cylinder arrays, the
magnitude of this challenge becomes apparent when one considers the complex-
ities and apparent paradoxes of the interstitial flow, as reviewed by Zdravkovich
(1993).

5.3.1 Jet-switch model

The first semi-analytical model purporting to analyse the fluidelastic stability of cyl-
inder arrays subject to cross-flow was by Roberts (1962, 1966), who considered both
single and double rows of cylinders normal to the flow. Roberts’ preliminary exper-
iments indicated that instability was purely in the in-flow direction, with adjacent
cylinders moving out of phase with each other; hence, his analysis was limited to
in-flow motion. Furthermore, based on photographic evidence, it was assumed that
the flow downstream of two adjacent cylinders could be represented by two wake
regions, one large and the other small, and a jet flow between them (see Figure 5.13).
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Figure 5.14. Variation of the theoretical base pressure coefficients for two adjacent cylinders
in a row with P/D = 1.5 as a function of nondimensional in-flow displacement (Roberts 1962).

Further photographic evidence of this has since been supplied by Bradshaw (1965)
and Ishigai & Nishikawa (1975).

Because only in-flow motion was allowed, Roberts suggested that a hypothetical
channel flow involving two half cylinders and imaginary boundaries, as shown in
Figure 5.13, was representative of the flow through a row of cylinders. Roberts
considered this as being similar to a jet issuing close to a parallel flat plate. This jet
flow had previously been analysed by both Sawyer (1960) and Bourque & Newman
(1960) who had shown that fluid entrained by the jet from the wake region produces a
pressure difference across the jet, causing it to curve and strike the plate; whereupon
a portion of the jet flows upstream resupplying the wake region and so maintaining
the jet entrainment. In Roberts’ analysis there are two wake regions supplied from
the two sides of the spreading jet.

The main assumptions employed by Roberts are as follows. First, flow separa-
tion from the cylinders occurs at the minimum gap between their centres. Second,
the cylinder wakes are regions of constant pressure; hence, the pressure difference
across the jet does not vary in the flow direction. Finally, the flow upstream of the
separation points and in the jet region is inviscid. Employing basic fluid dynamics and
geometrical considerations Roberts obtained the base pressure coefficient for both
cylinders as a function of in-flow cylinder displacement, x, and a typical variation is
presented in Figure 5.14, showing hysteresis around x = 0. Roberts also gave some
experimental results showing excellent agreement with the theory.

The hysteresis shown in Figure 5.14 is of considerable importance and can be
explained as follows. Consider a downstream cylinder moving upstream; as the two
cylinders cross, insufficient fluid flows into the larger of the two wake regions to
maintain the entrainment, causing the wake to shrink and the jet to switch directions.
However, a finite pressure difference is required to initiate this jet switch and, if
the cylinder moves in the opposite direction, the jet switch will not occur at the
same position; thus, around x = 0 the flow has two stable configurations. A detailed
analysis of these configurations was later given by Zdravkovich & Stonebanks (1990).
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It is apparent that this phenomenon, and thus the resulting fluidelastic instability
mechanism, is inherently nonlinear.

Roberts also determined the shape of the separating streamlines emanating from
the cylinders. The flow upstream of the separation points and between the separating
streamlines was assumed to be inviscid and the Laplace equation was solved, giving
the pressure distribution around the surface of the cylinders upstream of the separ-
ation points; hence, the pressure distribution around the complete cylinder surface
was known.

The drag force, obtained by integrating the pressure distribution, is dominated
by the base pressure, and the variation of drag coefficient, CD, with x is remarkably
similar in shape to the curve shown in Figure 5.14. It is apparent that, for a cylinder
oscillating with sufficient amplitude to cause the jet switch, the drag force aiding
the downstream motion is greater than that opposing the upstream motion; hence,
energy is extracted from the flow, resulting in fluidelastic instability.

Another significant contribution by Roberts was that he accounted for the un-
steady nature of the jet-switch process. Realising that a finite time is required for
the wake to shrink and cause the jet to switch directions, Roberts suggested that jet
switching is possible only if this required time is less than half the period of cylinder
motion. For a row of cylinders with P/D = 1.5 it was concluded that the requirement
for jet reversal to occur is approximately U/ωD ≥ 2.

Accounting for all of the above phenomena, Roberts obtained the following
equation of motion for a cylinder in a row:

d2x
dτ2

+ 2ζ
dx
dτ

+ x = ρU2

2mω2
n

{
0.717 [1 − Cpb(x, τ)] − 2

(
ωnD

U

)
(1 − Cpb)mean

dx
dτ

}
,

(5.23)

where τ is nondimensional time (tωn). The first expression on the right-hand side is
effectively a fluid stiffness term (Cpb varies with x) due to the jet-switch mechanism –
it is also unsteady (Cpb varies with τ). The second expression is an aerodynamic
damping term due to the average drag coefficient.

Equation (5.23) was solved using the method of Krylov & Bogoliubov giving
for any mδ/ρD2 the velocity, U/ωnD, required to initiate a limit-cycle motion. In
fact, three theoretical solutions were given, which are reproduced in Figure 5.15.
The first is the exact solution of equation (5.23); in the second and third solutions
the jet reversal is assumed to take place instantaneously; for the third solution, fluid
damping is ignored. When both the unsteady terms and fluid damping are neglected,
the solution reduces to

Uc/ωnεD = K(mδ/ρD2)1/2, (5.24)

where ε is the ratio of fluidelastic frequency to structural frequency, which is ap-
proximately 1. Also presented in Figure 5.15 are Roberts own experimental data,
showing good agreement with this theoretical model.

The above discussion indicates that this instability is stiffness-controlled with
the energy input arising from the hysteretic drag variation caused by jet reversal.
Furthermore, the importance of the unsteady fluid terms is demonstrated; for ex-
ample, it is shown that instability cannot occur for Uc/ωnεD ≤ 2. Later Chen (1980)
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Figure 5.15. Theoretical stability boundary obtained by Roberts (1962) for a single flexible
cylinder in a row of cylinders with P/D = 1.5: ——, solution including time for jet reversal and
aerodynamic damping; - - -, solution assuming instantaneous jet reversal but still including
aerodynamic damping; · · · · · · , solution assuming instantaneous jet reversal and neglecting
aerodynamic damping. �, Roberts’ experimental results.

also concluded that jet switching was the mechanism responsible for initiating this
instability.

The theoretical variations of Uc/f nD obtained by Roberts are compared with
all available experimental data for cylinder rows subject to cross-flow in Section 5.4,
where it shown that, in general, the agreement is poor. Most probably this is because
Roberts assumed that the cylinder motion was in the in-flow direction, whereas
most experimental results indicate that it is predominantly normal to the flow. Also,
Roberts’ solution is for a single flexible cylinder, whereas all the experimental data
except his own are for multiple flexible cylinders. In addition, there are a number of
factors which limit the applicability of this analysis. First, it is suitable for analysing
the stability of a downstream row only; second, it is only capable of predicting in-flow
instabilities.

A somewhat similar approach was taken by Nakamura et al. (1992a) who con-
sidered pure cross-flow motion. However, instead of attempting to predict the fluid
forces and unsteady effects, these are given in terms of a number of unknown con-
stants which are then inferred from matching predicted instability velocities with
experimental ones.

5.3.2 Quasi-static models

Possibly the most famous expression predicting fluidelastic instability for cylinder
arrays subject to cross-flow is the one usually attributed to Connors (1970), who
derived it using a quasi-static analysis. However, as shown in the preceding section
this expression had previously been obtained by Roberts (1962). Similarly to Roberts,
Connors also considered a single row of cylinders normal to the flow.

Connors did not attempt to determine the fluid forces analytically, but instead
measured them. Having observed that many different unstable intercylinder modal
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(a) (b)

UU

Figure 5.16. Cylinder motion of neighbouring cylinders employed by Connors (1970) during
force measurements on the central cylinder: (a) symmetric motion, (b) antisymmetric motion.

patterns exist, Connors suggested that the most dominant was when the cylinders
executed thin elliptical motions (whirling), with alternate cylinders moving predom-
inantly in either the in- or cross-flow directions. This was simulated experimentally
for a cylinder in a row with P/D = 1.41, and its lift and drag forces were measured
while statically displacing its two neighbouring cylinders in either a symmetric or
antisymmetric manner, as illustrated in Figure 5.16.

For the symmetric motion there was no change in the lift force on the central
cylinder. The drag force, however, did vary, executing a hysteretic jump caused by a
jet-switching mechanism similar to that observed by Roberts (1962). Realising that
this jet switch cannot occur for low U/fD, Connors concluded that jet switch was not
the dominant mechanism leading to instability. Thus, he subtracted the jet-switch-
induced drag from the total measured drag. The work done by the airflow on the
cylinder per cycle of motion (minus any contribution form the jet-switching process)
is then equal to the area enclosed by this new drag curve; measurements made at
different ratios of x/y enabled Connors to conclude that the work done depended
only on the magnitude of y, giving an in-flow directional fluid-force coefficient which
is linearly dependent on the transverse displacement, Cx = 0.202y.

During the antisymmetric motion, Connors measured the lift force only, ap-
parently assuming the drag to be constant – this is a little surprising because this
motion will almost certainly introduce a change in the drag. He again subtracted the
jet-switch contribution from the original lift and obtained a fluid-force coefficient
in the cross-flow direction which in linearly dependent on the in-flow displacement,
Ky = 0.330x.

Using the measured fluid stiffnesses, Connors obtained energy balances in the
in- and cross-flow directions, which must be satisfied simultaneously. Solving these
equations gave x/y = 0.78, and more importantly

Upc

f nD
= K

(
mδ

ρD2

)1/2

, (5.25)

where K is what later became known as the Connors constant. The magnitude
of K is a function of Cx and Ky and, for this particular geometry, K = 9.9∗. In

∗ In general, the velocity used to compare theory and experiments in this chapter is the so-called pitch
velocity Up , where Up = UP/(P − D), P being the centre-to-centre intercylinder pitch.
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general, Connors’ equation is used very loosely, with different definitions being
employed for how the mass, damping and frequency are measured (in vacuum, in
stagnant fluid or in flowing fluid)∗. However, strictly these should be purely the
structural values, or values measured in vacuum. It is also clear that equation (5.25)
is identical to that obtained by Roberts (equation (5.24)) when the unsteady terms
and fluid damping are neglected and the fluidelastic frequency is assumed equal to
the structural frequency. Despite this, possibly because Roberts’ work is somewhat
obscure, equation (5.25) is usually attributed to Connors.

Blevins (1974) rederived equation (5.25) by assuming that the fluid forces on a
cylinder are purely due to the relative displacements between itself and its neigh-
bouring cylinders†. The analysis for a row of N cylinders resulted in a set of 2N
coupled equations; to decouple the cylinder motions, and so reduce the size of the
resulting equations from 2N to 4, Blevins assumed a specific intercylinder modal
pattern, with the cylinders adjacent to any other cylinder moving antiphase to each
other. Based on Connors’ measurements Blevins also assumed that relative motion
in the in-flow direction produces no change in the drag force, and relative motion
in the cross-flow direction similarly produces no change in the lift force. Using the
Routh stability criteria the resulting equations yielded

Upc

f nD
= 2 (2π)0.5

(CxKy)0.25

(
mδ

ρD2

)1/2

, (5.26)

where Cx = ∂Cx/∂y and Ky = ∂Ky/∂x are the fluid-stiffness terms. If the values of
Cx and Ky given by Connors are employed, then equations (5.26) and (5.25) are
identical. In a later paper, Blevins (1977a) attempted to predict the magnitude of the
fluid-force coefficients, Cx and Ky, for both arrays and rows of cylinders.

Savkar (1977) criticised Blevins’ analysis, claiming that it gave a static instability
as opposed to a dynamic one; however, as pointed out by Gibson et al. (1979, 1980)
this criticism is not correct; the instability predicted by Blevins is dynamic and the
frequency of oscillation at instability is f n.

Blevins (1979) modified his original analysis to account for flow-dependent fluid
damping. Using a quasi-steady approach, the total damping factors in the in- and
cross-flow directions are

ζx = ζo + ρD2

4πm
Up

f nD
CD and ζy = ζo + ρD2

8πm
Up

f nD
CD, (5.27)

where ζo is the purely structural component. Using these damping factors leads to

Upc

f nD
= K

[
m

ρD2
2π(ζxζy)0.5

]0.5

. (5.28)

Blevins’ analysis was later generalised by Whiston & Thomas (1982) who used
a more general form of intercylinder modal pattern, allowing any value of phase

∗ The authors recall at least one tongue-in-cheek, but very accurate, presentation where it was sug-
gested that none of f n , m, ρ and δ are unambiguously defined in (5.25); indeed the only one that is
definitely known is the cylinder diameter D; refer to Section 5.4.2.

† As demonstrated by the fluid-force measurements of Price & Paı̈doussis (1986a), in general, this
assumption is not correct and it is the motion of the individual cylinders, rather than the relative
motion between the cylinders, which is important.
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angle, φ, between the motion of adjacent cylinders (the specific intercylinder modal
pattern assumed by Blevins (1974) is obtained with φ = π/2). Following essentially
the same procedure as Blevins, Whiston & Thomas obtained

Upc

f nD
= Kc (φ)

(
mδ

ρD2

)1/2

, (5.29)

where Kc (φ) is a function of the phase angle.
Whiston & Thomas also extended Blevins’ analysis to account for full arrays

of cylinders. They considered a cylinder array to be made up of “effective rows”
normal to the local velocity (these included diagonal rows not at 90◦ to the upstream
flow). To decouple a small group of cylinders from the rest of the array, and thus
make the analysis computationally practical, it was necessary to relate via a phase
difference the motion between cylinders in different rows and columns. This enabled
the stability of an array of flexible cylinders to be considered by use of a kernel of
two cylinders.

Using the force coefficients given by Blevins (1979), the minimum value of
Connors’ constant, K, for a normal triangular array with P/D = 1.41 was shown to
be 8.6. Whiston & Thomas concluded that this was too high, giving Upc well above
that observed in practice, and suggested that the analysis should be modified to take
account of the wake regions behind the cylinders, so increasing the gap velocity in
the diagonal rows. They then obtained K = 3.4 and 8.2 for sub- and supercritical
Reynolds numbers, respectively, corresponding to large and small wake regions.

For in-line arrays the diagonal rows are less important, and the value obtained
for K was approximately the same as for a row of cylinders, which is far too high.
Whiston & Thomas suggested that for these arrays the instability is a combina-
tion of Connors’ mechanism and a wake-induced effect from upstream cylinders.
An analysis was presented accounting for this wake-induced effect in terms of an
unknown fluid-stiffness term ∂CL/∂y. They chose appropriate values of ∂CL/∂y, to
match Upc/f nD with the results of Gibert et al. (1978). Unfortunately, when this was
done, the comparison with other experimental results was not good.

The main criticism of the Whiston & Thomas analytical model relates to the
manner in which the fluid-dynamic forces are accounted for, and is basically the
same as that raised in connection with Blevins’ model. However, this analysis made
significant contributions in a number of ways. It was the first model to account for
a general intercylinder modal pattern between cylinders, and it was also the first to
attempt to deal with some of the intricacies of the interstitial flow through an array
of cylinders.

Since Connors’ original analysis, which was for a row of cylinders, the use of
equation (5.25), or variations thereof, to predict the fluidelastic instability velocity in
cylinder arrays has become ubiquitous. The implicit assumption is that this equation
models the “physics” of fluidelastic instability, and all that is required to predict
Upc for cylinder arrays is to find the “correct” value of K or possibly to modify
the exponent of mδ/ρD2. Indeed, based on experimental results, Connors (1978)
suggested that for cylinder arrays the constant K is given by K = [0.37 + 1.76(T/D)]
for 1.41 < T/D < 2.12, where T is the separation between cylinders in a row. Since
then, there have been a series of “practical” design guidelines based on then current
data, with different values of K. For example, Paı̈doussis (1980), Au-Yang et al. (1991)
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Figure 5.17. Schematic of the cylinder-numbering system employed by Tanaka & Takahara
(1980, 1981).

and Pettigrew & Taylor∗ (1991) suggested K = 0.8, 2.4 and 3.0, respectively; whereas
more complex correlations, with some account being taken of array geometry, were
given by Chen (1984, 1987), Weaver & Fitzpatrick (1988) and Schröder & Gelbe
(1999b). The appropriateness of using “Connors’ equation” for design guides was
discussed by Price (2001), and is summarised in Section 5.4 of this book.

5.3.3 Unsteady models

In the models presented in this section the unsteady forces on the oscillating cylinder
are obtained directly from experiments. Tanaka & Takahara (1980, 1981) measured
the unsteady forces on an in-line square array with P/D = 1.33, and Tanaka et al.
(1982) made similar measurements for P/D = 2.0; results were also presented for a
single row of cylinders with P/D = 1.33 by Tanaka (1980).† For the array measure-
ments it was assumed that the fluid forces on cylinder O (see Figure 5.17) are affected
by its own motion and that of cylinders U, R, L and D only, but not by cylinders
1–4. Hence, assuming that the fluid dynamics is linear and using arguments based
on the assumed symmetry of the flow, the change in the lift and drag coefficient for
cylinder O due to its own motion as well as that of the neighbouring cylinders was
written as

�CL = CLyo yo + CLyL (yL + yR) + CLxL (xL − xR) + CLyU yU + CLyDyD,

�CD = CDxo xo + CDyL (yL − yR) + CDxL (xL + xR) + CDxU xU + CDxDxD,
(5.30)

where, for example, CLyU ≡ ∂CL/∂yU is a coefficient relating the lift force on cylinder
O to the y-directional displacement of cylinder U, and similarly for the other terms‡;
to determine CLyU the oscillatory force on cylinder O was measured while cylinder U
was subject to a harmonic oscillation of frequency f and amplitude 0.1D, with f being

∗ More recent papers by Pettigrew and co-workers still indicate that the appropriate value of Connors’
constant is K = 3.0; see, for example, Pettigrew & Taylor (2003).

† The unsteady force coefficient data of Tanaka & Takahara for P/D = 1.33 was later presented in
tabular form by Tanaka et al. (2002).

‡ Tanaka & Takahara use x to signify transverse displacement of the cylinders and y for in-flow
displacements, which is the reverse of that used here. To be consistent with the rest of this book,
Tanaka & Takahara’s definitions of x and y have been changed.
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Figure 5.18. Variation of the fluid force coefficient CLyo with nondimensional flow velocity
Ur = Up /fD measured by Tanaka & Takahara (1980) for an in-line square array with P/D =
1.33 [reproduced using the tabulated data of Tanaka et al. (2002)]: (a) magnitude; (b) phase
lead with respect to cylinder displacement.

varied over a wide range of frequencies. The force measurements were conducted in
waterflow with cylinder U in the upstream row of the array.

Considering, for example, the coefficient CLyO (the lift force coefficient on cyl-
inder O due its own y-direction displacement) the force per unit length, F , was
measured as Up/fD was varied and it was expressed as

F = 1
2ρU2

p CLyOyoD sin(2πf t + ϕ), (5.31)

where yo is the magnitude of the imposed oscillation, CLyO is the magnitude of the
nondimensional force coefficient, and φ is the phase lead of the fluid force with
respect to the cylinder displacement. The variation of CLyO and φ with Ur = Up/fD
for an in-line square array with P/D = 1.33 is presented in Figure 5.18 (it should be
remembered that the coefficient is based on the gap velocity Up = 4.03 U, and so
the coefficients are approximately 16 times smaller than if they were based on U).
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In common with the other coefficients, CLyO and φ are strongly dependent on Ur;
although they do tend asymptotically to values which are independent of Ur as Ur is
increased, this is not the case for many of the other coefficients.

As an alternative to presenting the unsteady data in terms of a magnitude, CLyO ,
and phase angle, φ, they can be presented in terms of added mass, damping and
stiffness coefficients, cm, cd and ck, respectively, giving

F = −πρD3

4
cmÿ − 1

2
ρUp D2cdẏ − 1

2
ρU2

p Dcky; (5.32)

the negative signs in equation (5.32) imply that positive values of cm,cd andck cause
an increase in the total (structural plus fluid) mass, damping and stiffness terms. At
this point it is worth emphasising that the concept of added mass employed here,
and generally in the fluidelastic-instability community, is much simpler than that
discussed in Section 3.4.1 of this book with respect to vortex-induced vibrations.
Here, the added mass coefficient, cm, is a positive constant independent of Ur,
whereas, as discussed in Chapter 3, in some models of vortex-induced vibrations
the added mass coefficient is considered to be a function of Ur and, indeed, it may
be negative∗. Using the present understanding of cm it may either be calculated or
measured in quiescent fluid, and the value given by Tanaka et al. (2002) for an in-line
square array with P/D = 1.33 is cm = 1.28. Using equations (5.31) and (5.32) the
following expressions are obtained for the damping and stiffness coefficients

cd = −CLyO

Ur

2π
sin φ and ck = −CLyO cos φ + cm

2π3

U2
r

. (5.33)

The variation of cd and ck with Ur obtained using the data of Figure 5.18 is shown
in Figure 5.19. Quasi-steady fluid mechanics suggests that cd and ck should be inde-
pendent of Ur, or at least that they should tend to constant values as Ur becomes
large. It is evident from Figure 5.19 that this is so for the stiffness term ck which tends
to a value of approximately 1.1; however, this is not true for cd, even when Ur ap-
proaches 100. At first sight this implies that for this case the quasi-steady assumption
is not applicable; however, as will be discussed later in this section, this conclusion
is not necessarily correct.

Using their measured unsteady force coefficient data, Tanaka & Takahara (1981)
investigated the stability of an array of flexible cylinders consisting of three rows and
four columns. They employed a standard eigenvalue analysis to investigate stability,
although this was somewhat complicated because the fluid coefficients are functions
of f , which in turn is part of the solution of the final equations. However, standard
iterative methods are available to solve this type of problem, and a flow chart showing
a typical procedure is given by Ohta et al. (1982).

The variation in Upc/f nD with m/ρD2 obtained by Tanaka & Takahara is presen-
ted in Figure 5.20, showing a discontinuity in the stability curves at 50 ≤ m/ρD2 ≤ 500
depending on the value of δ. For m/ρD2 below the discontinuity, the intercylinder
modal pattern at instability is almost pure cross-flow, whereas for m/ρD2 above
the discontinuity there is also considerable in-flow motion. This suggests that the

∗ To some extent this is just a matter of convenience, the component of fluidelastic force in-phase with
displacement can be represented as either a stiffness or inertia term, and thus, any influence of Ur

on the total fluidelastic force can always be represented via the fluidelastic stiffness term ck.
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Figure 5.19. Variation of the fluid stiffness and damping coefficients with nondimensional
flow velocity Ur = Up /fD for an in-line square array with P/D = 1.33 obtained using the data
of Tanaka et al. (2002): (a) stiffness coefficient, ck; (b) damping coefficient, cd.

instabilities on either side of the discontinuity are due to different phenomena; this
was pursued further by Chen (1983b), as is discussed later in this section.

Tanaka et al. (1982) also considered a single flexible cylinder in an array of rigid
cylinders free to oscillate in the cross-flow direction only. Instability occurred at
a slightly higher Upc/f nD than when there were 12 flexible cylinders; however, the
difference was much less for P/D = 2.0 than for P/D = 1.33. The results obtained for
P/D = 1.3 are presented in Figure 5.21 (these results were obtained by Price (1995)
using the data of Tanaka & Takahara). For mδ/ρD2 ≈ 2 there is a discontinuity in
the stability curve, similar to that observed in Figure 5.20; because these results
are for a single flexible cylinder the instability is always damping-controlled (as
shown in Figure 5.19(b), for approximately Ur ≥ 4 the fluid-damping coefficient, cd,
is destabilising), and thus, the discontinuity is not necessarily due to a change from a
damping- to a stiffness-controlled instability as suggested by Chen (1983b). A more
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m/ρD2

Figure 5.20. Theoretical stability boundary for an in-line square array, P/D = 1.33, obtained
by Tanaka & Takahara (1980, 1981): ———, δ = 0.01; - - -, δ = 0.03, · · · · · · , δ = 0.1.

likely explanation for the discontinuities in the stability curves is the rapid shift in
phase angle between the cylinder motion and resulting fluid forces, as illustrated in
Figure 5.18(b).

The fluid-force coefficients measured by Tanaka et al. were also employed by
Chen (1983a, b) as empirical input in previously derived equations of motion for a
cylinder array in cross-flow (Chen 1978).

Chen (1983a) first obtained analytical expressions, in terms of these coefficients,
for the stability of a number of simple cases: these included a single flexible cylinder
with freedom to move in one direction only and a row of cylinders oscillating in
the mode shape prescribed by Connors (1970). For the single flexible cylinder it
was demonstrated that the instability is damping-controlled, whereas for the row of
cylinders the instability is stiffness-controlled and will occur even if the fluid damping
is positive. Thus, Chen (1983a) demonstrated the existence of two distinct instability
mechanisms in cylinder arrays.

In general, instability is due to a combination of these two mechanisms. How-
ever, as shown by Chen (1983a), for high Up the cylinder vibrational velocity, ẏD,
is negligible compared with Up ; hence, the velocity-dependent damping will also
be negligible. For low Up , on the other hand, the cylinder vibrational velocity may
be comparable with Up , and thus, the velocity-dependent damping terms dom-
inate. However, it is known from experimental investigations (Price et al. 1987;
Price & Kuran 1991) that for some arrays the damping-controlled terms are never
destabilising, and thus, if instability does occur, it is due to stiffness effects over the
complete range of Up/f nD.

Chen (1983b) also conducted an unconstrained analysis (the mode shape at
instability was not specified a priori) for the stability of a row and an in-line square
array of cylinders. For a row of cylinders with mδ/ρD2 ≤ 4 (see Figure 5.22) there are
three stability boundaries. The cylinders lose stability at the lower boundary, regain it
at the second and finally remain unstable for all Up above the third. This was the first
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mδ/ρD2

Figure 5.21. Theoretical stability boundary for a single flexible cylinder in an in-line square
array with P/D = 1.33 obtained by Price (1995) using the unsteady force coefficient data of
Tanaka & Takahara (1980, 1981): (a) critical flow velocity; (b) phase angle between cylinder
motion and fluid force.

time that the existence of multiple stability boundaries had been suggested. Because
of nonlinear effects it is unlikely that the restabilisation indicated in Figure 5.22 will
occur in practice; thus, a practical stability boundary is as shown by the solid line in
the figure. For the in-line array of cylinders, the solution is almost identical to that
obtained by Tanaka & Takahara (1981) (see Figure 5.20); (this is to be expected,
because the same unsteady data were used as input).

Chen suggested that discontinuities in the stability curve, similar to that shown
in Figure 5.22, demarcate the boundary between damping- and stiffness-controlled
instabilities for velocities less and greater than the discontinuity, respectively. How-
ever, as shown in Figure 5.21, a discontinuity, although not as significant, also exists
for a single flexible cylinder, where the instability is necessarily damping-controlled;
thus, it is questionable whether it is associated with a change in stability mechanism
or just a rapid change in the phase angle between cylinder motion and resulting fluid
forces.
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mδ/ρD2

Figure 5.22. Theoretical stability boundary for fluidelastic instability predicted by Chen
(1983b) for a row of cylinders with P/D = 1.33: - - -, theoretical solution showing multiple
instability boundaries; ——, practical stability boundary.

Chen & Jendrzejczyk (1983) further pursued the analysis of Chen (1983b) and
showed that at low values of Up/f nD, where the instability is dominated by damping-
controlled effects, it is not permissible to combine the two nondimensional paramet-
ers δ and m/ρD2 into one parameter as is done traditionally. Chen & Jendrzejczyk
(1983) also showed that, for those cases where instability is dominated by stiffness
effects, detuning the natural frequencies of adjacent cylinders can have a significant
stabilising effect on a row of cylinders; it is not surprising that frequency detuning
had sensibly no effect when the instability was primarily damping-controlled.

A finite-element analysis of Chen’s model was developed by Eisinger et al. (1991)
for the U-bend region of a heat-exchanger tube array, showing good agreement with
experimental results.

Eisinger & Rao (1998) used Tanaka & Takahara’s unsteady force coefficient
data to investigate the effect of tying together flexible cylinders in both cylinder
rows and in-line arrays, in both cases for P/D = 1.33. For cylinder rows, tying either
two or three flexible cylinders together caused a small increase in Upc/f nD for values
of mδ/ρD2 below the discontinuity in the stability curve shown in Figure 5.20. For
values of mδ/ρD2 above the discontinuity, however, they predicted that tying the
cylinders together, in groups of either two or three, would prevent instability from
occurring. For the cylinder arrays, the effect of tying cylinders together in either the
streamwise or transverse directions was investigated. Tying the cylinders together in
the transverse direction had a relatively modest stabilising effect on the fluidelastic
instability of the array, but if the cylinders were tied together in the streamwise
direction a significant stabilising effect of up to an order of magnitude was predicted.
The effect of tying cylinders together in the streamwise direction was qualitatively
verified experimentally for arrays of cylinders by Weaver et al. (2000).

As mentioned earlier, the unsteady data of Tanaka & Takahara seems to imply
that quasi-steady fluid mechanics is not applicable in cylinder arrays. With the use of
quasi-steady fluid mechanics the fluid forces on an oscillating body can be written as
in equation (5.32); furthermore, both cd and ck should tend to constant values as Ur



246 Fluidelastic Instabilities in Cylinder Arrays

Ur

c d

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

–0.5 

–1.0
0 20 40 60 80 100

Figure 5.23. Variation of the hysteretic fluid damping coefficient, c′
d, with nondimensional

flow velocity Ur = Up /fD for an in-line square array with P/D = 1.33 obtained using the data
of Tanaka & Takahara (1980).

becomes large. The results shown in Figure 5.19(b) suggest that this is not the case
for cd. This was noted by Chen & Jendrzejczyk (1983), who observed that a more
convenient way of writing the fluid force is of the form

F = −πρD3

4
cmÿ − ρU2

p D

2ω
c′

dẏ − 1
2
ρU2

p Dcky, (5.34)

where c′
d is now a hysteretic damping coefficient, as opposed to a viscous damping

coefficient traditionally used in quasi-steady analysis, and is given by

c′
d = −CLyO sin φ. (5.35)

If this is done, then, as shown in Figure 5.23, c′
d tends to a constant value for large

values of Ur; however, Chen & Jendrzejczyk gave no explanation why the fluid
damping should be hysteretic rather than viscous, and it is difficult to think of any
physical reason for this.

At this point it should be realised that as Ur goes from small to large values
(which may be interpreted as the frequency of the system going from large to small
values for a constant velocity) the fluid system switches from being dominated by
inertia to stiffness forces, with a corresponding change in phase between the cylinder
motion and fluid force of approximately 180◦, as shown in Figure 5.18(b); hence, as
Ur becomes large, sin φ will tend to a small value. However, as shown in equation
(5.33) the estimate of cd obtained is proportional to both sin φ and Ur; and hence,
for large values of Ur, estimates of cd will be extremely sensitive to errors in the
phase angle φ. More importantly, if there is a systematic constant error in the phase,
φe, as opposed to a random error, then no matter how small this systematic error
is, the estimate of cd will vary linearly with Ur with a slope of approximately sin φe.
It should be noted that estimates of the stiffness term ck do not suffer from this
magnification of errors in the phase measurement, and indeed, neither will estimates
of c′

d. This does not imply that the fluid damping is hysteretic; it merely shows that,
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using the unsteady data measured in this way, it is not possible to check on the
applicability of the quasi-steady assumption. Furthermore, it should be appreciated
that estimates of Upc are relatively insensitive to errors in the phase measurements.
As long as the true measured value of the unsteady fluid force is used at any value
of Ur, no matter whether it is expressed in terms of CLyO and φ, cd and ck or c′

d
and ck, then the error in fluid damping, and corresponding error in the instability
velocity, will be proportional to sin φe, and thus typically very small; the error in
phase measurements only becomes overwhelming when attempting to interpret the
unsteady data in terms of a quasi-steady approach.

Although the analysis presented in this section gives excellent agreement with
experimental results (see Section 5.4), extensive experimental effort is required to
obtain the unsteady force coefficients. Since the initial pioneering work of Tanaka &
Takahara (1980, 1981), a number of researchers have contributed to the data-base
of unsteady force coefficient data.

Goyder & Teh (1984) used a slightly different approach from that employed
by Tanaka & Takahara to measure the fluid-force coefficients on one cylinder in
a normal triangular array with P/D = 1.375. They measured the force required to
oscillate a flexibly mounted cylinder with a specified amplitude as a function of
Up/f nD; this was done in either the in-flow or transverse directions, but the cylinder
was restricted to oscillate in one direction only. To evaluate the effect of Reynolds
number, Re, Goyder & Teh employed two cylinders with natural frequencies of
10 and 30 Hz; thus, the same Up/f nD was obtained at different Re. Virtually no
difference was observed between the two sets of results suggesting that the Reynolds
number is not an important parameter for this array; however, this range of Re is
much smaller than typically found in heat-exchanger tube arrays.

An attempt to extend this method to fully flexible arrays is described by Goyder
(1990). Rather than measure the individual force coefficients directly, Goyder con-
sidered a global coefficient which can be obtained from traditional plots of Upc/f nD
versus mδ/ρD2. As it stands this is not particularly useful, because one needs the
stability boundary before it can be predicted! However, the main usefulness of this
method becomes apparent when considering nonuniform flow over heat-exchanger
spans.

A similar approach to that of Goyder (1990) was taken by Granger (1991) and
Granger et al. (1993), who attempted to construct a “global model” with a single
degree of freedom for the analysis of an array of cylinders. Granger showed that
each cylinder in the array responds predominantly in one mode of vibration, and
that an equation of motion for this global mode may be written which approxim-
ates the array in terms of global fluid inertia, damping and stiffness coefficients.
These global coefficients were estimated from the measured vibrational response
of a flexibly mounted cylinder using multi-degree-of-freedom modal identification
techniques (Granger & Campistron 1988; Granger 1988). Although this method re-
duces the equations to one degree of freedom, it does take account of the motion
of neighbouring cylinders – the coefficients are determined from the response of
one cylinder in a group of flexible cylinders. The vibrational response of a cylinder
in an array was estimated using the global equation, and found to agree very well
with the measured vibrational response. However, if this model is to be employed
to predict the vibrational response of a different array, it is necessary to first do the
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vibrational experiment so that the force coefficient can be estimated! Thus, although
this analysis represents an interesting development, and may possibly lead to a better
understanding of fluidelastic instability, it cannot be regarded as a predictive tool.

Thothadri & Moon (1998) also attempted to measure the unsteady fluid forces
for a row of flexible cylinders with P/D = 1.35. They measured the direct coupling
terms (those relating either x- or y-motion between neighbouring cylinders) directly
via a transfer-function approach, and then inferred heuristically the cross-coupling
terms (those coupling the x and y motion between neighbouring cylinders) so that
their analytical model gave the correct Upc/f nD.

Chen and co-workers (Chen et al. 1998; Chen & Srikantiah 2001) measured
the unsteady force coefficients for a number of different configurations; including
cylinder rows with P/D = 1.35 and 2.7, normal triangular arrays with P/D = 1.35,
and square arrays with P/D = 1.35, 1.42 and 1.46. Measurements were made on the
oscillating cylinder only (hence, the effect of cylinder motion on the fluid forces
acting on neighbouring cylinders was not determined); however, the effects of posi-
tion in the array, changing the amplitude of oscillation and Reynolds number were
investigated. It was demonstrated that, for almost all of these configurations, a single
flexible cylinder, with freedom to oscillate only in the transverse direction, could go
unstable at low values of Up/f nD (hence, the instability was damping-controlled).
Because the effect of a neighbouring oscillating cylinder was not considered, it was
not possible to investigate the possibility of stiffness-controlled instabilities. One im-
portant conclusion from these results was that the Reynolds number is an important
parameter, with the region of Ur where the fluid exhibited negative damping in the
transverse direction being extremely strongly dependent on Re.

In addition to the measurements presented in the preceding paragraphs, a num-
ber of research teams have attempted to measure the unsteady force coefficients
in two-phase flows. Inada et al. (1996) measured the unsteady fluid forces in the
transverse direction for one flexible cylinder in a square array, P/D = 1.42, in an
air-water mixture. They showed that if the homogeneous model was employed there
was considerable scatter in the results as the void fraction was changed, but that this
scatter could be eliminated using the drift-flux model of velocity. In a later paper
Inada et al. (1997) oscillated the central cylinder in both the transverse and in-flow
directions, and also measured the forces on the surrounding cylinders as well as on
the central cylinder itself. Restricting the cylinder motion to the transverse direction
and considering only the forces acting on the oscillating cylinder, Inada et al. (2002)
investigated the effect of amplitude of oscillation on the fluidelastic forces. They
found that for amplitudes of oscillation less than 0.136D the fluidelastic forces were
linear with cylinder amplitude, but that for amplitudes above this value nonlinear
effects became apparent.

The unsteady fluid forces were also measured in a two-phase water-freon mixture
by Delenne et al. (1997) for a square array with P/D = 1.44. Only one flexible cylinder
was employed, and the unsteady fluid-force coefficients, obtained via an inverse
approach from the cylinder vibrational response, showed considerable variation with
void fraction. Furthermore, this variation depended on whether the flow velocity was
defined using a homogeneous model, a slip model or a drift-flux model.

Mureithi et al. (2002) measured the unsteady fluid forces on a square array, with
P/D = 1.46, in a two-phase steam-water mixture. They showed that the variation
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of the force coefficients with Up/f nD depended on the specific values of Up and
f n; hence, Upc/f nD no longer appears to be the only relevant criterion of similarity,
and void fraction and flow pattern seem to be important independent parameters.
The results obtained did indicate, however, that the fluidelastic forces acting on a
tube were relatively insensitive to the motion of neighbouring tubes; thus suggesting
that, in this case, only damping-controlled instabilities are possible. This data was
used by Hirota et al. (2002) in a stability analysis, although only forces induced
by the cylinders’ own motion were accounted for. The methodology employed to
overcome the dual values of fluid-force coefficients as a function of Up/f nD was to
select the force coefficients which gave the least stable configuration. A comparison
between the theoretical instability boundary and experimental data was remarkably
good.

As previously mentioned, although the “unsteady method” of Tanaka & Taka-
hara and Chen gives excellent agreement with experimental results (see Section 5.4),
extensive experimental effort is required to obtain the unsteady force coefficients.
It is not surprising that a full set of force coefficients, accounting for the motion
of adjacent cylinders, has been measured for two arrays only (Tanaka & Takahara
1980, 1981; Tanaka et al. 1982). Moreover, it should also be appreciated that, in some
arrays, Upc/f nD varies dramatically from row to row (Price & Zahn 1991); thus,
the unsteady fluid forces should be measured for all rows of the array. Hence, the
experimental effort required for these methods is probably too great for them to be
considered as practical design tools. There is no doubt, however, that these analyses
have added greatly to the present understanding of fluidelastic instability in cylinder
arrays.

5.3.4 Semi-analytical models

A more analytical approach to modelling fluidelastic instability is given in a series
of papers by Lever & Weaver (1982, 1986a, b) and Yetisir & Weaver (1988), where a
single flexible cylinder in an array of rigid cylinders is considered.∗ The justification
for using a single flexible cylinder comes from experiments by Lever & Weaver
(1982) who obtained virtually the same Upc for a single flexible cylinder in an array
of rigid cylinders as for an array of 19 flexible cylinders. In its original form (Lever &
Weaver 1982) the analysis was limited to cross-flow motion only. It was later modified
to account for in-flow motion (Lever & Weaver 1986a, b), although the in- and cross-
flow motions were analysed independently of each other. This was justified via the
results of Weaver & Koroyannakis (1983) who showed that Upc in one direction is
only slightly affected by changes in cylinder frequency in the other.

In fact, Lever & Weaver (1986a) present three different stability analyses, one
each for dynamic and static instabilities in the cross-flow direction, and a third
for both dynamic and static instability in the in-flow direction. In the following
paragraphs the dynamic analysis for cross-flow motion is discussed.

Based on experimental observations, Lever & Weaver concluded that the stabil-
ity of an array of cylinders could be analysed via a single flexible cylinder positioned

∗ As discussed later in this section, Yetisir & Weaver (1992, 1993a, b) extended this model to include
multiple flexible cylinders.
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Figure 5.24. Schematic of the “unit cell” for the Lever & Weaver model [reproduced from
Lever & Weaver (1982)].

in a so-called unit cell; see Figure 5.24.∗ The flow through the array is divided into
“wake” and “channel” regions. The channel flow is assumed to be inviscid and one-
dimensional, and its separation and reattachment positions are calculated approx-
imately from the array geometry. The equilibrium cross-sectional areas of the two
channel-flow streamtubes are taken as being constant and equal to the inlet areas.
This should give constant pressure through the channels; however, a resistance term
is included to account for frictional losses in the flow.

It is assumed that cylinder motion causes a redistribution of the streamtube
area, proportional to its magnitude. For attached flow this redistribution is in-phase
with the cylinder motion; however, because of fluid inertia, the flow upstream of the
cylinder lags behind the cylinder motion, producing a phase lag between cylinder
motion and the resulting pressure forces on the cylinder. As yet, no exact solution
is available for the phase lag, and resort must be made to a simplified analysis.
Lever & Weaver used the analogy of a flat plate in a channel aligned with the flow
and oscillating normal to its plane, and obtained an approximate expression for the
phase lag in terms of one empirical constant. The expression they arrived at had the
physically reasonable property that the phase lag is zero at the attachment point and
decreases as the distance from the oscillating cylinder increases. Then, making use
of the unsteady continuity and momentum equations, a rather complex expression
for pressure as a function of circumferential position on the cylinder was obtained.
In fact, the fluid force in the cross-flow direction was approximated by integrating
the pressure over the attached region only.

Assuming harmonic motion of the cylinder, the fluid force was decomposed into
stiffness and damping terms, and the equation of motion for the cylinder is given by

lmÿ + [c + 1
2 CDρDlUg − Fo sin θ0/(ωyo)]ẏ + [k − Fo cos θ0/yo]y = 0, (5.36)

where Ug is the “gap velocity”; m and c represent the mass per unit length and
structural damping – those measured in stagnant fluid; the CD term accounts for the
flow-induced damping forces; and Fo sin θ0/(ωyo) and Fo cos θ0/yo are, respectively,
the fluid-damping and -stiffness terms.

∗ Although the analytical models presented in 1982 and 1986 are basically the same, there are some
differences. The model discussed here is the 1986 version.
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Figure 5.25. Theoretical stability boundary for fluidelastic instability obtained by Lever &
Weaver (1986b) for a single flexible cylinder in a parallel triangular array with P/D = 1.375:
- - -, theoretical solution showing multiple instability boundaries; ——, practical stability
boundary.

The condition for dynamic stability is simply that the total damping is zero; this
leads to the following criteria for instability:

mδ

ρD2
= C1V 2 sin(1/V ) + C2V cos(1/V ) + C3V 3[cos(1/V ) − 1] + C4V (5.37a)

and

Upc

f nD
= C5V, (5.37b)

where C1 to C5 are constants which depend on the array geometry and on a number
of other terms, including the following: the flow-resistance coefficient through the
array; the drag coefficient, CD; the positions of flow attachment and separation; and
the unknown constant in the expression for the phase lag. Relating the pressure drop
through the array to the flow-resistance coefficient, a relationship was given between
CD and this coefficient, and values of the coefficient were obtained from the data of
Pierson (1937).

It should be noted that no account is taken of the fluid-stiffness terms; Lever &
Weaver assume that instability occurs at the no-flow natural frequency, and thus, do
not consider the effect of the fluid-dynamic stiffness. Interestingly, one of the conclu-
sions obtained from this analytical model is that m/ρD2 and δ may be combined into
one nondimensional parameter mδ/ρD2. However, in a later paper, Rzentkowski &
Lever (1992) showed that if the “true” fluidelastic frequency of oscillation (account-
ing for the fluid-stiffness terms) is used to predict the fluid forces, then m/ρD2 and δ

must be considered as independent nondimensional parameters.
A typical stability boundary obtained by Lever & Weaver (for a parallel triangu-

lar array with P/D = 1.375) is reproduced in Figure 5.25. For low values of mδ/ρD2,
bands of instability exist, similar to those obtained by Chen (1983b); indeed, these
do not cease to exist at the lowest band given by Lever & Weaver, but continue
until much lower values of Upc/f nD. The reason for these bands can be understood
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from equation (5.37a), where the flow-induced damping is seen to be harmonically
dependent on 1/V = C5 (f nD/Upc); thus, for low Upc/f nD the damping oscillates
between negative and positive values as Upc/f nD is reduced. However, it should be
appreciated that as Up/f nD tends to smaller values the phase lag between cylinder
motion and streamtube area becomes extremely large – in fact, it can exceed several
periods of oscillation. Lever & Weaver concluded that minor flow perturbations,
for example due to turbulence, will disrupt the pressure variations associated with
these very long phase lags, making them physically unreasonable. Thus, in practice,
probably only the upper and next two instability regions will exist. Furthermore, in
a manner similar to Chen, they concluded that, once a cylinder has gone unstable,
nonlinear effects will prevent it from restabilising as velocity is increased. Thus, a
practical stability boundary as presented in Figure 5.25 is suggested.

Although this theory is mainly analytical, a number of empirical terms are re-
quired. Lever & Weaver (1986b) investigated the effect of these parameters and
concluded that most of them have very little effect on the stability boundary. One
exception to this was the empirical constant in the phase-lag expression; changing
this by ±50% at low values of mδ/ρD2causes a change in Upc/f nD of approxim-
ately ±50%. This indicates that it is the unsteady fluid terms, associated with the
phase lag, which dominate the instability mechanism, and that to obtain accurate
stability boundaries the phase lag must be known to a corresponding accuracy. This
is in agreement with the conclusions obtained by Chen (1983b). Romberg & Popp
(1998a) demonstrated experimentally that changing the separation points for the
flow channel, accomplished by positioning trip wires on the cylinders, can have a
very large effect on the stability of the array, suggesting, in contradiction to the
conclusion of Lever & Weaver, that these parameters are also important.

In principle, it should be possible to analyse the static stability of a cylinder
using equation (5.36); however, as the frequency of oscillation tends to zero, the
phase lag between cylinder motion and fluid forces also tends to zero. To avoid
this complication Lever & Weaver (1986a) developed a separate analytical model
for cross-flow static instability. The need to have two analyses for static and dy-
namic instability represents one of the weaknesses of the model produced by Lever
& Weaver; ideally, one model should predict both the fluid-damping and stiffness
forces.

An attempt to refine the model of Lever & Weaver was made by Yetisir &
Weaver (1988) who noted the inadequacies mentioned above, and also that at high
mδ/ρD2 the Lever & Weaver model predicts Upc/f nD to be proportional to mδ/ρD2

rather than [mδ/ρD2]0.5 as suggested by most experimental results. Although there
are a number of minor differences between this later analysis and the original one,
the main difference is the addition of a decay function in the area perturbation. In its
original form, flow perturbations induced by cylinder motion were assumed to extend
two cylinder rows upstream and downstream of the oscillating cylinder, and the
magnitude of these perturbations was assumed constant over this distance. In the new
analysis, the area perturbation gradually decreases as the distance from the oscillating
cylinder increases. Unfortunately, the results presented suggest that by introducing
this decay function agreement between theory and experiment deteriorates. Thus,
at the present time, the original Lever & Weaver form of this model seems the most
suitable.
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Almost exactly the same approach as that taken by Yetisir & Weaver (1988)
was also employed in a later paper by Marn & Catton (1992). As an extension of
this approach Marn & Catton (1991) considered a column of flexible cylinders in
an array of rigid cylinders. The flow through the array was still represented by a
series of unit cells; however, the flow within the cells was considered to be two-
dimensional. The variables, such as pressure and in- and cross-flow velocities, were
split into mean and time-varying components. Furthermore, it was assumed that the
time-varying terms arose solely because of the cylinder motion, and the mean terms
were constant throughout the array. The fluid forces, obtained from integrating the
pressure around the cylinder circumference, were then introduced into the in- and
cross-flow vibrational equations of motion, giving five equations and five unknowns.
To solve these equations it was assumed that “the mean direction in which informa-
tion travels” is “parallel with the incoming flow” or x-direction. The variables were
then written in terms of normal modes and a wavenumber associated with motion
of adjacent cylinders in the column. Their representation implies that the pressure,
velocities and cylinder displacements are all in-phase with one another. To obtain the
stability boundary it was necessary to assume a specific modal pattern, or wavenum-
ber, between cylinders; however, results presented by Marn & Catton suggest that
the stability boundary is not sensitive to the particular intercylinder modal pattern
chosen. A typical stability boundary was given by Marn & Catton for a rotated
square array with P/D = 1.5. Although there was good agreement with experiments
for mδ/ρD2 ≥ 5, the agreement was very poor for mδ/ρD2 < 5; furthermore, the
instability predicted by Marn & Catton is in the in-flow direction, as opposed to the
cross-flow motion which is observed experimentally. Instability was predicted in
the cross-flow direction, but at much higher Upc/f nD. Most likely, the reason why
the theory overestimates Upc/f nD for low mδ/ρD2 is that the cylinder motion and
resulting velocity and pressure terms are assumed to be in-phase with each other.

Marn & Catton (1993) also used the unit cell approach to analyse the stability of
a full array of flexible cylinders, but in this case the flow within the cell was analysed
using the vorticity transport equation, and the final equations were solved via a
finite-difference scheme. It was found that there was a considerable difference in
Upc/f nD between when the first and last cylinders in the array went unstable. Marn
& Catton suggest that, for design purposes, the stability boundary should be given by
an average of these two extremes. Also, Upc/f nD was approximately proportional to
mδ/ρD2, rather than to the power 0.5 as is more characteristic of experiment results.

Marn & Catton (1996) attempted to extend this vorticity-transport approach
to include two-phase flow. To the authors’ knowledge, this was the first theoretical
attempt to obtain fluidelastic instability boundaries in two-phase flow; however,
bearing in mind the extremely complex behaviour of cylinder arrays in two-phase
flow, see for example Pettigrew & Taylor (1994, 2003), this analysis may be too
simplistic to be of any practical use.

Yetisir & Weaver (1992, 1993a, b) extended their original analytical model
(Yetisir & Weaver 1988) to account for the effect of multiple flexible cylinders
in the array. The method is essentially the same as that described earlier, except that
the effect of neighbouring cylinder motion on the area and pressure perturbations
is accounted for. For example, considering an in-line array and using the Tanaka &
Takahara cylinder numbering scheme, as shown in Figure 5.17, motion of cylinder
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U will induce a change in the pressure distribution around cylinder O in exactly the
same manner as it induces a change in the pressure distribution around itself. Thus,
the effect of the combined motion of cylinders U, D, L and R on the fluid force
acting on cylinder O can be obtained using the principle of superposition; similarly,
the effect of the motion of cylinder O on the fluid force acting on cylinders U, D,
L and R can also be obtained. Hence, for pure cross-flow motion, as considered by
Yetisir & Weaver, a coupled 5 × 5 matrix equation is obtained for the stability of the
five-flexible-cylinder group (O, U, D, L and R), which may easily be solved.

Yetisir & Weaver considered both in-line and staggered arrays, assuming a group
of five flexible cylinders to be representative of a complete flexible array. For in-
line arrays, the flexible cylinders are as shown in Figure 5.17 and are reasonably
representative of a fully flexible array. However, for staggered arrays using only
five flexible cylinders means that the motion of cylinders directly upstream and
downstream of the central cylinder are not accounted for. Bearing in mind that the
fluid forces acting on a cylinder in an array are typically strongly affected by the
motion of an upstream cylinder, this would seem to represent a potential error in
the analysis, but, as subsequently shown by Li & Weaver (1997), accounting for
the flexibility of these two cylinders had a negligible effect on the array stability.
Numerical results presented by Yetisir & Weaver for parallel triangular and in-line
square arrays with P/D = 1.375 show that for mδ/ρD2 < 200 there is very little
difference between Upc/f nD for an array with either one or multiple cylinders.
However, when mδ/ρD2 ≥ 200, the variation of Upc/f nD with mδ/ρD2 for multiple
flexible cylinders is such that the exponent on mδ/ρD2 tends to 0.5 as mδ/ρD2

becomes large, rather than tending to 1 as obtained with the original Lever & Weaver
(1982, 1986a, b) model. This is in agreement with the models proposed by Chen
(1983a, b) and Price & Paı̈doussis (1984a), (presented in the next section). A very
similar analysis accounting for multiple flexible cylinders was proposed by Parrondo
et al. (1993) who reached essentially the same conclusions as those outlined above.

5.3.5 Quasi-steady models

As discussed earlier in this book, the quasi-steady assumption states that, for an
oscillating body, such as a cylinder, the effect of its motion on the resulting fluid
forces is solely to modify the velocity vector relative to the body, with the resultant
lift and drag forces being normal and parallel, respectively, to this relative velocity
vector. Furthermore, it is assumed that CL and CD are unaltered by the oscillation
and can be obtained from measurements, or calculations, made on a stationary body.
This implies that the flow distribution around the body follows immediately, with no
attenuation, the motion of the relative velocity vector. For motion of the cylinder
which is slow compared with the free-stream velocity this is reasonable; however,
when the cylinder velocity becomes comparable with the flow velocity, this assump-
tion breaks down. Based on different physical arguments, Fung (1955) and Blevins
(1977b) concluded that, for an isolated bluff body, quasi-steady fluid dynamics is
valid provided Upc/f nD ≥ 10; however, whether or not this limitation needs to be
modified for cylinders in an array is open to question. Motivated by the success
of quasi-steady aerodynamics in applications such as galloping and wake-induced
flutter of overhead transmission lines, a number of researchers have attempted to
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use the quasi-steady assumption to analyse the stability of heat-exchanger tube
arrays.

The first quasi-steady analysis of cylinder arrays subject to cross-flow was by
Gross (1975), who concluded that instability in cylinder arrays is due to two distinct
mechanisms, damping- and stiffness-controlled. Gross developed a quasi-steady ana-
lysis for the cross-flow motion of a single cylinder, considering only the damping-
controlled mechanism. He assumed a linear variation of Cy with α; then, taking
α ≈ ẏD/Up he obtained an aerodynamic damping force proportional to ∂CL/∂α.
Instability occurs when the sum of the fluid and structural damping is zero, giving

Upc

f nD
= mδ

ρD2(−∂CL/∂α)
. (5.38)

This is similar to the classical Den Hartog (1932) expression, except that the fluid
drag is incorporated in the coefficient ∂CL/∂α. This analysis predicts Upc to be
linearly proportional to mδ/ρD2, in contrast to experiments (Chen 1984; Weaver
& Fitzpatrick 1988) where the exponent on mδ/ρD2 is much less than 1. However,
Gross suggested that, if fluidelastic stiffness effects were accounted for, then the
exponent may be less than 1.0.

The next attempt at a quasi-steady analysis was by Price & Paı̈doussis (1982,
1983) who considered a double row of cylinders in cross-flow. The transverse fluid
force on a cylinder was written as

Fy = 1
2
ρDlU2

g

(
CL − ẋD

Ug
2CL − ẏD

Ug
CD

)
, (5.39)

where Ug is the gap velocity, and CL and CD are based on the local gap velocity,
Ug , and not the free-stream velocity; a similar expression was also given for the in-
flow direction; it is recalled that, as in the foregoing, x and y are dimensionless with
respect to D. Price & Paı̈doussis assumed the force coefficients to vary linearly with
displacement of the cylinder itself as well as that of its two neighbouring cylinders.
Thus, the analysis of a row of flexible cylinders results in a fully coupled system,
which was analysed using a constrained-mode approach. Price & Paı̈doussis also
assumed the fluid-force coefficients to be functions of the incidence, α, of the resultant
velocity vector vis-à-vis the free-stream direction. However, rather than measuring
the stiffness terms ∂CL/∂α and ∂CD/∂α, an attempt was made to relate them to the
coefficients ∂CL/∂y and ∂CD/∂y. The authors later realised that the manner in which
this had been done was incorrect and attempted to refine this analysis in a series
of papers (Price & Paı̈doussis 1984a, 1985, 1986a, b; Price et al. 1990). The main
differences between the latter analysis and the earlier work are as follows.

Considering either in-line or staggered arrays, then for any cylinder, C (see
Figure 5.26), it is assumed that the fluid forces acting on it are directly affected by its
own motion and the motion of eight adjacent cylinders only. Then, the drag coefficient
on cylinder C, CDc, may be expressed as a linear function of the displacements of
cylinders C and 1 to 8 as follows:

CDc = CDco +
8∑

j=c,1

[
∂CDc

∂ξi
ξi + ∂CDc

∂ηi
ηi

]
, (5.40)

and similarly for CLc. In the above equation, ξi and ηi are the “apparent” cross- and
in-flow displacements of the cylinders, taking into account the time delay between
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Figure 5.26. Schematic of the cylinder array numbering system for the Price et al. (1990)
constrained-mode analysis; (a) a staggered array, (b) an in-line array.

motion of any cylinder and its effect being felt by cylinder C, and also the inclination
of the wake shed from a cylinder due to its transverse motion. Expressions for the
apparent displacements of the neighbouring cylinders are given by Price & Paı̈doussis
(1984a).

One final effect accounted for by Price & Paı̈doussis, following the work of
Simpson & Flower (1977), was that of retardation of the flow approaching a cylinder.
Because flow slows down as it approaches a bluff body, it arrives at a later time than
it would have done in a constant velocity flow. This effect is important in cylinder
arrays where large changes in fluid force occur as a result of small displacements
of a cylinder. Price & Paı̈doussis showed that flow retardation could be accounted
for by multiplying the cylinder displacements by a factor exp (−λµD/Ug), where
µ was referred to as the flow-retardation parameter and λ is the eigenvalue. As
yet, µ cannot be determined exactly, but, based on reasonable assumptions and
consideration of the flow around a bluff body, Price & Paı̈doussis suggested µ of
O(1). The importance of such an unsteady effect had previously been suggested by
Ruscheweyh (1983).
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It should be appreciated that even though the effect of only the eight immedi-
ate neighbouring cylinders is accounted for in the expressions for the lift and drag
coefficients acting on cylinder C, there is fluid coupling between all of the flexible
cylinders in the array. For example, considering a staggered array as shown in Fig-
ure 5.26(a), motion of cylinder 9 will induce changes in the fluid forces on cylinders
4, 6 and 10, and thus, although indirectly, the fluid forces on cylinder C. Hence, sig-
nificant computational effort is required to analyse the stability of a large array of
flexible cylinders. To minimise this, Price et al. (1990) employed a constrained-mode
analysis using essentially the method of Whiston & Thomas (1982). This was done
by expressing the motion of any cylinder in row q and column p , see Figure 5.26(a),
as

xp,q = x0 exp(λt + ipφx + iqθx),

yp,q = y0 exp(λt + ipφy + iqθy),
(5.41)

where i = √−1, φx and θx are the phase differences between the x-motion of adjacent
cylinders in any row and column, respectively, and φy and θy are the corresponding y-
motion phase differences; these phase differences are assumed constant throughout
the array. Then, for example, the x-displacement of cylinder 1 of Figure 5.26(a) may
be expressed as

x1 = xc
p,q−1 (5.42)

where superscript c and subscripts p , q − 1 denote that cylinder 1 is at position p ,
q − 1 relative to cylinder C. Hence,

x1 = xc
p,q−1 = xc

0 exp [λt + ipφx + i (q − 1) θx] ,

= xc
0 exp [λt + ipφx + iqθx] exp(−iθx), (5.43)

= xc
p,q exp(−iθx).

Similar procedures can be employed for cylinders 4, 5, 8 and 10; however, for cylinders
2, 3, 7, 9 and 11, the displacements must be written in terms of cylinder B (where the
(p , q)-axis system is now centred on cylinder B and not cylinder C), giving

xB
11 = xB

p,q exp(iθx). (5.44)

Hence, the x- and y-displacements of cylinders 1 to 11 may be written in terms of
the displacements of cylinders C and B and the two-cylinder kernel B – C is totally
decoupled from the rest of the array. In a similar manner, for an in-line array, the
displacements of cylinders 1 to 15 in Figure 5.26(b) may be written in terms of the
displacements of cylinders A, B, C and D, decoupling the four-cylinder kernel from
the rest of the array. It was later shown by Price et al. (1992a) that for an in-line array
the kernel could be reduced further to one cylinder.

One problem with this analysis is that 38 fluid-force coefficients are required
before the lift and drag coefficients for cylinder C can be evaluated. However,
because of the geometric symmetry of the array, a number of equalities exist which
reduce the number of required force coefficients from 38 to 21. Measured force
coefficients are presented by Price et al. (1990) for three different arrays, and the
stability of these arrays investigated.
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For each array, it was first necessary to determine the specific intercylinder
modal pattern in the constrained mode analysis which gave the minimum Upc. This
was characterised by the four phase angles (φx, θx, φy and θy) between the motion,
either in-flow or cross-flow, of adjacent cylinders in a row or column. The two phase
angles relating the in-flow motion (φx and θx), had no effect on Upc/f nD, the most
important phase angle being θy which relates the cross-flow motion between adjacent
cylinders. The value of this phase angle which produced the minimum Upc/f nD was
not constant but depended on mδ/ρD2. It was suggested that this is because the
instability mechanism changes from being predominantly stiffness-controlled at high
mδ/ρD2 to damping-controlled at low mδ/ρD2.

A specific analysis for a single flexible cylinder in an array of otherwise rigid
cylinders was also developed (Price & Paı̈doussis 1984a, 1986b) where only damping-
controlled instabilities are possible. The analysis showed that instability is possible
in the cross-flow direction, and that it is primarily due to the phase lag, caused
by flow retardation, between the cylinder motion and resulting fluid force. Indeed,
for sufficiently large values of Up/f nD, such that sin (−ωµD/Up ) may be taken as
−ωµD/Up , the following was obtained (where, CLand CD are based on the pitch
velocity, Up ):

Upc

f nD
= 4mδ

ρD2(−CD − µ∂CL/∂y)
. (5.45)

This shows the importance of the flow-retardation parameter µ, and also that (assum-
ing the drag coefficient CD to be positive) ∂CL/∂y must be negative for a damping-
controlled instability to occur. It is also apparent that, as mδ/ρD2 becomes large,
Upc/f nD is proportional to mδ/ρD2; this, of course, is the same result as that ob-
tained by the single-flexible-cylinder analyses of Chen, Lever & Weaver and Gross.

At low mδ/ρD2, both the single-flexible-cylinder and multiple-flexible-cylinder
analyses give multiple instability regions similar to those obtained by Lever &
Weaver (see Figure 5.25). These are a consequence of the very large phase lags
between cylinder motion and resulting fluid forces (possibly several periods long)
which occur for low Up/f nD, causing the fluid damping to oscillate between negative
and positive values. For exactly the same reasons proposed by Lever & Weaver it
is very doubtful whether these long phase lags can exist in practice. Hence, Price &
Paı̈doussis recommended that only two of the lower unstable regions be accounted
for in a practical stability boundary. Also, again similarly to Lever & Weaver, they
suggest that the cylinder will not restabilize for increasing flow velocity once it has
gone unstable.

Of the three different phenomena which lead to the unsteady fluid terms in this
analysis, by far the most important is the flow retardation. Its importance was invest-
igated by varying the flow-retardation parameter, µ, for a single flexible cylinder;
typical results presented in Figure 5.27 show it has a significant effect on Upc/f nD,
particularly at low mδ/ρD2. This clearly indicates the need to obtain a better un-
derstanding of the unsteady fluid dynamics in cylinder arrays so that more accurate
predictions of Upc/f nD can be made.

One of the disadvantages of this analysis, compared with that of Lever & Weaver
(1986a, b) is the amount of experimental data required as input – although this is
considerably less than that required in the analysis of Tanaka & Takahara (1981)
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Figure 5.27. Effect of flow retardation parameter µ on the fluidelastic stability boundaries
obtained via the analysis of Price & Paı̈doussis (1984a) for a single flexible cylinder in a parallel
triangular array with P/D = 1.375: (a) µ = 0.5, 1.0 and 2.0; (b) expanded view for µ = 0.5;
(c) expanded view for µ = 2.0.

or Chen (1983a, b). From a sensitivity analysis, it was determined that the two
coefficients which have the most effect on Upc/f nD are ∂CL/∂y terms, with the y-
displacement being either that of the cylinder itself or the cylinder directly upstream.
Indeed, it was found that fluid coupling between adjacent cylinders in a row could
be ignored with little loss in accuracy, but that if the fluid coupling between cylinders
in a column was ignored there was a large change in Upc/f nD.

Granger & Paı̈doussis (1996) proposed an improvement to the quasi-steady
model, referred to as a quasi-unsteady analysis, which uses the continuity and Navier-
Stokes equations to model the unsteady fluid-dynamic forces. These unsteady terms
are due to memory effects, more specifically the diffusion of vorticity generated on
the surface of the cylinder, as opposed to a time lag as suggested by Price & Paı̈doussis.
The memory effect is modelled as a combination of decaying exponentials via the
following function:

1 −
N∑

i=1

αi exp(−δit), (5.46)
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Figure 5.28. Stability boundaries for a single flexible cylinder in in-line square arrays [repro-
duced from Granger & Paı̈doussis (1996)]: – –, Price & Paı̈doussis quasi-steady model; ——,
quasi-unsteady model (N = 1); – · –, quasi-unsteady model (N = 2). For experimental data
see Granger & Paı̈doussis (1996).

with N being either 1 or 2 (for N = 2 this is of exactly the same form as the commonly
used approximation of Wagner’s function for oscillating airfoils; see Fung (1955)).
The constants αi and δi were obtained by matching the response to experimental
data over the required range of Up/f nD. Fullana & Beaud (1999) pointed out that
this procedure is ill-conditioned but proposed a numerical scheme to overcome it.

The advantages of the quasi-unsteady analysis, compared with the quasi-steady
one, are that, provided accurate values of the constants are known, it gives superior
predictions for the variation of fluidelastic damping and frequencies with Up . Also,
whereas for a single flexible cylinder the quasi-steady model predicts Upc to be
proportional to mδ/ρD2 at high mδ/ρD2, the quasi-unsteady analysis predicts Upc to
be proportional to (mδ/ρD2)1/2, which, as shown in Figure 5.28, agrees much better
with experimental data.

There are, however, several disadvantages to the quasi-unsteady analysis. First,
there are four new constants to be determined, which are array dependent – as pre-
viously mentioned, to obtain these constants requires that the vibrational response
of the array be known. Second, the analysis is restricted to a single flexible cylinder;
hence, it cannot account for stiffness-controlled instabilities. It should be appreciated
that, for some arrays, damping-controlled instabilities do not exist, whereas stiffness-
controlled instabilities do; for example, Price & Kuran (1991) and Paı̈doussis et al.
(1989) show that a single flexible cylinder in a rotated square array, with either P/D =
1.5 or 2.12, is always stable, whereas, for the same arrays, multiple flexible cylinders
do become unstable. A final weakness of the quasi-unsteady model is that multiple
instability regions are never obtained, whereas for low mδ/ρD2 experimental evid-
ence (see Section 5.4.2) strongly suggests that they do exist. Granger & Paı̈doussis
(1996) suggest that the multiple instability regions may be due to vortex shedding, as
opposed to fluidelastic instability, but again experimental evidence contradicts this.

Meskell (2005) used a simple wake model in an attempt to predict analytically
the memory function (equation (5.46)) proposed by Granger & Paı̈doussis (1996).
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It was assumed that the memory function could be represented by the normalised
instantaneous bound circulation on a vibrating cylinder due to a sudden change in
its transverse position; effectively the indicial response of the circulation. Hence, the
instantaneous flow field in the array was modelled as a circular cylinder with a bound
circulation, giving the static lift and drag forces, and a trailing vortex sheet which
represented the transient nature of the fluidelastic forces. Pursuing an analysis very
similar to that of an airfoil impulsively set into motion, estimates of the coefficients
in equation (5.46), assuming N = 1, were obtained for a normal triangular array with
P/D = 1.375, and a stability analysis performed. It should be appreciated that this
analysis gives the memory effect only; thus, in common with the analysis of Granger
& Paı̈doussis, the static force coefficients CD and ∂CL/∂y must still be supplied
as empirical inputs. However, the stability boundary obtained by Meskell (2005)
compares very favourably with both experimental data and the second-order model
of Granger & Paı̈doussis (1996).

Hémon (1999b) also developed a quasi-steady model very similar to that of Price
& Paı̈doussis, except that the time delay between cylinder motion and resulting fluid
forces is written as L/Vc, instead of µD/Up , where Vc is the array convection
velocity. Unfortunately, Vc is unknown, and Hémon approximates Vc by matching
static force coefficients measured in an array of cylinders with those for an isolated
cylinder. This amounts to assuming that the pressure distribution around a cylinder
in an array has the same shape as for an isolated cylinder; almost certainly this is not
correct.

Recently, Mureithi and co-workers (Shahriary et al. 2007; Mureithi et al. 2008)
used the quasi-steady analysis of Price & Paı̈doussis (1984a) to investigate the sta-
bility of an array of cylinders in two-phase flow. The quasi-static force coefficients
were measured for a rotated triangular array with P/D = 1.5 in an air-water flow for
a series of void fractions between 0% (single-phase waterflow) to 95%, and also for
a number of different flow rates. The array consisted of 13 rows and 3 columns of
cylinders surrounded by columns of 1

2 cylinders on the walls of the tunnel. The central
cylinder in the array could be statically displaced in either the in-flow or transverse
directions, while the static lift and drag forces on itself and the surrounding cylinders
were measured. One extremely surprising result from this work was the degree to
which the force coefficients depended on void fraction; in particular, ∂CL/∂y for the
cylinder being displaced was extremely sensitive and varied from positive values for
void fractions of 0, 21 and 31% to being negative for void fractions of between 40 and
95%. In addition, it was shown that some of the coefficients, most notably those as-
sociated with the drag of the displaced cylinder, varied significantly with Re. Using
the measured force coefficients in the quasi-steady analysis, reasonable agreement
was obtained between theoretical predictions of Upc and the previously measured
experimental values of Violette et al. (2006) for the same array. However, it was
shown that the theoretical predictions depended strongly on the flow-retardation
parameter, µ, as well as the void fraction and Reynolds number.

5.3.6 Computational fluid-dynamic models

Although simulation of the interstitial fluid flow in oscillating cylinder arrays seems
formidable, especially bearing in mind its unsteady and highly turbulent nature, there
have been considerable recent advances in computational fluid dynamics (CFD),
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and several groups of researchers have used CFD in an attempt to simulate the
vibrational response of arrays subject to cross-flow. A brief review of some of this
work is given in the following. However, it should be appreciated that because the
emphasis of this book is on fluidelastic instability, only those analyses which account
for cylinder motion in arrays are discussed. There are a number of other analyses of
cross-flow over statically fixed arrays of cylinders (for example, Liang & Papadakis
(2007)); although these analysis are capable of predicting the steady flow field as well
as the turbulent buffeting and vortex-induced forces, because no account is taken
of cylinder motion, they are not directly applicable to the prediction of fluidelastic
instability.

Despite the obviously viscous nature of the interstitial flow through arrays of
cylinders, the compactness of some arrays suggests that the cylinder wake regions
are small, especially for normal triangular arrays with small P/D – see, for example,
the flow visualisation of Wallis (1939) and Mavriplis (1982). Based on this type of
reasoning, a number of researchers have neglected the wake regions in the array
and treated the flow as being inviscid. The methodology of all the inviscid analyses
is similar. The velocity potential is approximated, typically in series form, and the
unknown coefficients obtained from the known boundary conditions – the most
important of which is impermeability at the cylinder surface. Once the velocity
potential is known, Bernoulli’s equation can be used to obtain the unsteady pressure
distribution around the cylinders, leading to the unsteady fluid forces.

The first example of an inviscid analysis for a cylinder array in cross-flow was by
Balsa (1977) who employed a matched-asymptotic-expansion technique. For each
cylinder, the velocity potential was written as the sum of two terms – one in the
vicinity of the cylinder and a second far away. The velocity potentials were written as
series expansions of D/P including terms up to (D/P)3, and the stability of an infinite
array of cylinders in cross-flow considered. Unfortunately, the analysis predicts that
only static instabilities will occur.

Chen (1975, 1978) assumed that the velocity potential associated with the motion
of each cylinder could be expressed as a Fourier series. The calculated added mass
coefficients compared well with experiments, but the comparison for the damping
and stiffness terms was poor. Paı̈doussis et al. (1984) pursued a method very similar
to this, except that care was taken to apply the impermeability condition on the
moving cylinder surface. Extensive comparisons were presented between their own
results and the previous ones of Chen and Balsa, and it was concluded that the
numerical differences between the various methods were either due to the boundary
conditions not being applied on the moving cylinder surface or, in the case of Balsa’s
analysis, ignoring higher order terms in the asymptotic expansion. In an attempt to
account for the viscous nature of the flow, a phase lag between the cylinder motion
and resulting fluid forces was incorporated heuristically. Dynamic instabilities were
obtained only for nonzero phase lags, and Upc was very sensitive to the value of the
phase lag.

Following on from their previous work, Paı̈doussis et al. (1985) developed a
semi-potential model where the velocity potential was determined from the linear
superposition of two potentials. The first, from the steady viscous flow around a
cylinder at its equilibrium position, was inferred from Bernoulli’s equation and the
measured pressure distribution around a cylinder in an array. The flow associated
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Figure 5.29. Comparison of the stability boundaries with and without fluid stiffness terms for
a normal triangular array with P/D = 1.375 and δ = 0.01 obtained using the semi-potential
flow analysis of Paı̈doussis et al. (1985); experimental data identified therein.

with the cylinder motion, taken as being small, was considered to be inviscid, and
hence, the second velocity potential was obtained in a similar manner to that of
Paı̈doussis et al. (1977). However, because the effect of cylinder motion on the
steady viscous flow was not accounted for, no fluid-stiffness terms were obtained.
Realising their importance, measured fluid-stiffness terms were included in the ana-
lysis. Results for normal and parallel triangular arrays with P/D = 1.375, both with
and without the measured fluid-stiffness terms, were presented and compared with
experimental data; the results for normal triangular arrays are shown in Figure 5.29.
At sufficiently high mδ/ρD2 there is considerable difference between Upc/f nD ob-
tained with and without the fluid-stiffness terms, and much better agreement with
experiments is obtained when the stiffness terms are included. This suggests that the
instability is dominated by stiffness effects; however, it is important to realise that no
account was taken of the phase lag between cylinder displacement and the resulting
fluid forces.

Van der Hoogt & van Campen (1984) divided the fluid forces into two groups,
one due to the flow through the undeformed array, and a second due to deformation
caused by the cylinder displacements. A stability analysis was undertaken for two
identical cylinders in cross-flow, but only static instability was obtained. However,
if the symmetry of the cylinders was in any way destroyed, for example by having
different diameters or different natural frequencies, then dynamic instability was
predicted.

Delaigue & Planchard (1986) transformed the heterogeneous flow through an
array of cylinders into the flow through a homogeneous medium. They assumed the
array pitch to be periodic, the distance between cylinders to be small compared with
the overall dimension of the array, and that neighbouring cylinders move in almost
the same pattern. The velocity potential was then written as an asymptotic expansion
in terms of P/D, the first term corresponding to the homogenised solution, whereas
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the remaining terms were correctors to this solution. Unfortunately, no results are
presented; however, as stated by Delaigue & Planchard, this method is suitable for
predicting tube response to transient motion only and not for predicting instabilities.

The results obtained from potential flow analysis are somewhat discouraging
and, in general, do not give good predictions for dynamic instability. Also, it should
be noted that more recent flow visualisation by Weaver & Abd-Rabbo (1985), Abd-
Rabbo & Weaver (1986), Cheng & Moretti (1989) and Price and co-workers (Price
et al. 1991, 1992b, 1995) suggests that, even though the wake regions are small, the
interstitial flow is more complex than that accounted for in these analyses. Thus, it
seems that, no matter what method is employed, inviscid flow theory is inadequate
for a stability analysis of cylinder arrays in cross-flow. Hence, any realistic solution for
fluidelastic instability in cylinder arrays must take into account the viscous nature of
this flow. In its most general form this involves solving the Navier-Stokes equations
subject to moving boundary conditions: some examples of this approach are reviewed
in brief in the following paragraphs.

Direct numerical simulation of the Navier-Stokes equations for the flow through
a row of cylinders was employed by Singh et al. (1989), who investigated the static
stability of cylinders free to move in the transverse direction only. However, this
simulation was limited to Re ≤ 100. Ichioka et al. (1994) presented a solution for
the flow-induced vibration of a row of cylinders via a finite-difference analysis of the
two-dimensional Navier-Stokes equations. The critical flow velocity for instability is
presented for one value of mδ/ρD2 for a row of cylinders with P/D = 1.35, showing
excellent agreement with the experimental results of Chen (1984).

Kassera & Strohmeier (1997) used a finite-volume method to solve the two-
dimensional Navier-Stokes equations with a k-ω turbulence model. The model was
verified using a comparison of pressure distributions and wake velocities behind
a stationary cylinder for Re ≤ 2 × 105. Simulations of the vibrational response for
square and triangular arrays with P/D = 2.4, 1.6 and 1.2 are presented along with
experimental data. Although the agreement between simulation and experiment for
subcritical response is excellent, it is not clear that the numerical simulation correctly
predicts the onset of fluidelastic instability.

Schröder & Gelbe (1999a) used a finite-element method to solve both the
two- and three-dimensional Navier-Stokes equations with three different turbulence
models. They also compared their results with experimental data from stationary
circular cylinders, and concluded that the k-ω turbulence model gave the best agree-
ment. However, they also concluded that the k-ω model could not be used when the
cylinders were flexible, and hence, employed a two-layer k-ε model in their simula-
tions for flexible cylinders – even though this model had been found unsatisfactory
for a single stationary cylinder. Simulations were done for a row of five flexible
cylinders, P/D = 1.42, and an excellent comparison, in terms of Upc, was obtained
with experimental results. Simulations are also presented, along with experimental
results, for a flexible triangular array with P/D = 1.25; although the agreement is
very good, it does not include any examples of fluidelastic instability.

Longatte et al. (2003) performed a numerical study for a single flexible cylinder
in an in-line array of cylinders with the cylinder being free to oscillate in the cross-
flow direction only. They accounted for the coupling between the structural motion
and resulting fluid forces using an Arbitrary Lagrange Euler (ALE) formulation,



5.3 Fluidelastic Instability Models 265

which enables the computational mesh to remain regular even in the presence of
large structural displacements. The computational mesh was limited to the intersti-
tial flow between the oscillating cylinder and the eight surrounding static cylinders,
with periodic boundary conditions being assumed for the inlet and outlet flows. A
limited comparison is given with the experimental data of Granger et al. (1993) who
considered an experimental array with 7 rows and 7 columns. The comparison is
restricted to frequency measurements (no comparison of damping or instability ve-
locities is given) for gap velocities of between 0 and 3.1 m/s. Both experimental and
numerical results show a decreasing trend of frequency with increasing gap velocity,
with reasonable agreement in the magnitude of the frequencies; however, the de-
crease in fluidelastic frequency over this small range of velocity is only 3%, so this
does not provide a very severe test of the computational approach. Huvelin et al.
(2008) extended this approach to include larger groups of cylinders, although only
one of them was flexible, and also considered higher flow velocities such that instabil-
ity was induced for the flexible cylinder; however, no comparison with experimental
results is given.

Gillen & Meskell (2008) used a finite-element approach to solve the Reynolds
averaged Navier-Stokes equations with a k-ε turbulence model for a normal triangu-
lar array with P/D = 1.32. They did not attempt to account for motion of cylinders
in the array, but instead statically displaced transversely a cylinder in the third row
of the array and then calculated the static fluid forces acting on it. Hence, it was
possible to determine CD and ∂CL/∂y which can then be employed in a quasi-steady
analysis. Very favourable comparisons are given with experimental data for the pres-
sure distribution around the cylinder as well as the pressure drop through the array.
The effect of changing Reynolds number in the range 13 × 103 ≤ Re ≤ 52 × 103 was
investigated, and both CD and ∂CL/∂y were shown to be Re-dependent, although
the effect on CD is minor. Using this data and a previously developed quasi-unsteady
model (Meskell 2005) stability boundaries were calculated and compared with ex-
perimental data. Re is shown to be an important parameter; it is also demonstrated
that m/ρD2 and δ need to be considered as independent parameters. This approach is
interesting, because it avoids the complications in the CFD analysis associated with
moving boundary conditions on the cylinder surface and it provides an alternative to
experiments for determining the fluid-force and stiffness coefficients. However, once
the coefficients are employed in a quasi-steady or unsteady analysis, all of the un-
certainties associated with the phase lag between the cylinder motion and resulting
fluid forces are automatically included in the analysis.

Although CFD analyses show considerable promise, it must be concluded that,
as yet, they are not capable of giving accurate predictions of Upc/f nD in cylinder
arrays.

5.3.7 Nonlinear models

Numerous researchers have investigated the post-instability behaviour of cylinder
arrays in cross-flow. The motivation for this research was twofold. First, because
of manufacturing tolerances and thermal constraints there are likely to be small
clearances between heat-exchanger tubes and tube supports, antivibration bars or
baffle plates, resulting in “inactive”, i.e. ineffectual supports. Hence, large lengths of
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unintentionally unsupported tubes may exist, having very low natural frequencies.
These low-frequency modes may suffer from fluidelastic instability at relatively low
Upc (Weaver & Schneider 1983). Once the tubes go unstable, they will impact at the
initially inactive supports, exciting higher modes of vibration, which are positively
damped, and so limit the amplitude of vibration. An important practical consequence
of this intermittent contact at the supports is the resulting impact/sliding which
can produce a more severe wear mechanism than the pure fretting associated with
permanent contact (Frick et al. 1984; Goyder & Teh 1989; Chen 1991a). A second,
and more academic motivation for these nonlinear analyses has been to investigate
the post-instability dynamics, and, in particular, the possibility of chaos.

The first nonlinear analytical model of fluidelastic instability was that of Roberts
(1962, 1966), who employed the Krylov & Bogoliubov method of averaging to solve
the nonlinear equations associated with the jump in CD on an oscillating cylinder.
However, from that time until approximately the mid 1980s all the analyses were
essentially linear.

The more recent nonlinear investigations initially concentrated on impacting
(e.g. with baffle plates). A typical example of this is given by Axisa et al. (1988),
where the impacting is represented via an equivalent bilinear spring stiffness. For
tube motion less than the clearance the spring stiffness is zero, but for amplitudes
greater than the clearance a nonzero value of spring stiffness is taken. Appropriate
values of spring stiffness are given by Axisa et al. based on the tube deformation, and
experimental values of impact stiffness between tubes and flat antivibration bars are
reported by Yetisir & Weaver (1985). To represent fluidelastic instability Axisa et al.
extended Connors’ quasi-static analysis, assuming the destabilising fluid damping to
be proportional to U2

p . Hence, the modal damping at any velocity, Up , was replaced
by

ζ∗
n = ζn[1 − (Up/Upc)2], (5.47)

where ζn is the damping in stagnant liquid and Upc is the critical velocity at instability.
Thus, for Up ≤ Upc the damping is positive, but for Up ≥ Upc the damping is negat-
ive, supplying energy to the system. The equations of motion were written in terms
of assumed modes and then solved numerically using a time-marching numerical
integration. Estimates of the wear rate, associated with the impacting, were made
using a modified form of Archard’s wear rate equation (Archard & Hirst 1956).

A specific example of this analysis was given for a pinned-pinned tube with one
inactive support at midspan. For a range of Up , time histories were computed and
FFTs of the vibrational response obtained. For Up/Upc ≤ 2 the tube motion was es-
sentially harmonic, with frequency close to the tube fundamental natural frequency.
However, for Up/Upc ≥ 2 the motion became what appeared to be chaotic, char-
acterised by a broadening of the frequency-response spectra and a nonrepeatable
phase-plane locus of the vibrational response. Of most significance from a practical
point of view was a 350% increase in the calculated wear rate associated with this
chaotic behaviour. Antunes et al. (1992b) showed that very similar results can be
obtained when only a few modes are considered.

An experimental verification of the numerical methods discussed above was
undertaken by Antunes et al. (1990, 1992a). However, rather than subject a
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heat-exchanger tube to “true” fluid-dynamic excitation, they employed an elec-
tromechanical shaker with a feedback mechanism which simulated the negative
fluid damping suggested by equation (5.47). This excitation was applied at the free
end of a cantilever beam which passed through a clearance hole midway along its
length; furthermore, only planar motion was considered. The main motivation of
these experiments was to investigate the impact dynamics rather than the fluid-
dynamic excitation. The results obtained agreed reasonably well with the theoretical
model. This experimental verification was later extended to include motion in two
directions (Vento et al. 1992). Similar experimental investigations have also been
undertaken by France & Connors (1991), Langford & Connors (1991) and Connors
& Kramer (1991).

An analysis similar to that of Axisa et al. was developed by Fricker (1991, 1992),
who obtained the following expression for the total fluid damping:

ζ∗
n = ζn

[
1 − ωn

ω

(
Up

Upc

)2
]

. (5.48)

This is similar to the expression given by Axisa et al., except that it allows for a
variation in the frequency of vibration. The validity of this model was evaluated
by comparing theoretical and experimental results for a cantilever beam in cross-
flow. The agreement was excellent, showing very similar increases in vibrational
frequency as Up was increased past Upc. To the authors’ knowledge, this was the
first time that a comparison between theoretical and “true” experimental post-critical
results has been given. Having verified the theoretical model, Fricker analysed the
U-bend region of a steam generator with a number of loose antivibration bars. As
Up increased past Upc a number of jumps in the frequency of vibration occurred
which were coincident with large increases in the impact force.

Cai et al. (1992) and Cai & Chen (1993a, b) attempted a theoretical investiga-
tion of a two-span tube using the unsteady fluid-dynamic analysis of Chen (1983a).
The tubes were pinned at two supports and had a clearance hole at the third. For
velocities less than that required to cause impacting at the clearance hole the tube
was considered as being pinned-pinned. However, as Up increased, the tube-support-
inactive modes became unstable and impacting occurred; the tube was then treated as
being pinned-pinned-spring mounted and the natural modes of vibration and modal
damping altered accordingly. For one particular value of clearance, at Up/Upc = 1.2
chaotic motion occurred, as verified via the use of bifurcation diagrams, fractal di-
mensions and Lyapunov exponents. The predicted behaviour agrees very well with
both previous and subsequent experiments on the same system (Chen et al. 1984,
1995b). However, once the tube-support-active modes become unstable there is no
other dissipation mechanism and the theory predicts that the amplitude increases
indefinitely.

One of the problems with the above methods is that it is necessary to account for
several modes to represent the real system adequately; this precludes an analytical
solution. To enable analytical methods to be employed, de Langre et al. (1990)
considered a simplified model of a flexibly mounted rigid cylinder free to oscillate in
the cross-flow direction only. The impact dynamics and fluid-dynamic excitation were
modelled in a manner similar to that of Axisa et al. (1988). As expected, because
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this system had two degrees of freedom only, the calculated response was purely
periodic. However, adding a forced harmonic excitation, representative of vortex
shedding or narrow-band turbulent buffeting, produced a chaotic response as the
magnitude of the forcing function was increased.

Chen & Chen (1993) considered the chaotic response of three flexibly mounted
rigid tubes in an otherwise rigid tube row, each impacting against rigid support
plates. The fluid forces were modelled using Chen’s (1983a) unsteady model. Chaotic
motion, implied from bifurcation diagrams and Lyapunov exponents, was predicted
for velocities somewhat higher than that required for fluidelastic instability.

In the analysis given above the fluid dynamics was linear; thus, if the impact
forces were removed, the vibrational amplitude would become infinitely large. The
first analysis after Roberts (1962, 1966) which attempted to account for nonlinearities
in the fluid dynamics was by Price & Valerio (1990). Price & Valerio considered a
single flexibly mounted cylinder free to oscillate in the transverse direction only; thus,
only damping-controlled instabilities were considered. The analysis employed was
an extension of the Price & Paı̈doussis (1986b) model, accounting for two types of
nonlinearity. Second-order terms in the resultant velocity were considered, and more
importantly, measured nonlinear variations in CL and CD were included which were
approximated using fifth-order polynomials. The resulting equations were solved
using the Krylov & Bogoliubov method of averaging.

Austermann et al. (1992) attempted to combine the nonlinear elements of the
Price & Valerio model with the linear unsteady terms of Lever & Weaver’s analysis
(1986a). However, given the very different physical assumptions on which these two
analyses are based, there seems to be little justification in doing this.

Paı̈doussis & Li (1992) attempted a three-dimensional analysis of a clamped-
clamped beam, with an inactive support at its midspan and free to oscillate in the
transverse direction only, and employed the linear fluidelastic instability model of
Price & Paı̈doussis (1986b). The effect of impacting was modelled by use of either
the bilinear stiffness proposed by Axisa et al. (1988) or a cubic spring stiffness. The
cubic spring is less representative of the true behaviour but has the advantage of
being analytic, so enabling analytical solutions to be obtained for the Lyapunov
exponents – which give a quantitative measure of the onset of chaos. For the cubic
spring, Paı̈doussis & Li presented results in terms of a bifurcation diagram as shown
in Figure 5.30. As U is increased, instability is lost at a Hopf bifurcation, leading to
a limit-cycle oscillation. This is followed by a post-Hopf bifurcation period-doubling
sequence and eventually chaos.

A two-dimensional model accounting for nonlinearities in both the fluid and
structural dynamics was presented by Paı̈doussis et al. (1991a, 1993) for a single
flexible cylinder in the third row of a rotated triangular array with P/D = 1.375. The
fluid dynamics was accounted for via a nonlinear quasi-steady analysis similar to that
employed by Price & Valerio, with the exception that cylinder motion was allowed in
both the in- and cross-flow directions. The cylinder impacting was modelled assuming
that the cylinder vibrated in a circular clearance hole, and values of the coefficient of
restitution and Coulomb friction were employed to relate the vibrational velocities
before and after the impact. Impacting occurred for Up slightly greater than Upc,
and as Up was further increased a series of bifurcations were obtained, eventually
leading to chaos.
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Figure 5.30. Bifurcation diagram, based
on dimensionless flow velocity, for a single
flexible cylinder in an in-line square ar-
ray of cylinders (Paı̈doussis & Li 1992);
P/D = 1.5, m/ρD2 = 3.0, δ = 0.06.

A detailed analysis of a cantilevered flexible cylinder and comparison with ex-
periments was presented by the same authors (Mureithi et al. 1994a, b; Paı̈doussis
et al. 1992), showing that not only did the experiments and theory yield the same
series of bifurcations but that they occurred at virtually the same flow velocities.
The transition mechanisms leading to chaos were also investigated by Mureithi et al.
(1995).

Rzentkowski & Lever (1992) maintained the nonlinear terms in the continuity
equation of the original Lever & Weaver (1982) model. The resulting equations were
solved using both the Krylov & Bogoliubov method of averaging and numerical
integration – both methods yielded essentially the same results. Unfortunately, for
the two arrays examined (parallel triangular with P/D = 1.375 and in-line square
with P/D = 1.433) only unstable limit cycles were obtained, in contrast to their own
experimental results (Lever & Rzentkowski 1989). In an attempt to change this
behaviour they considered the time lag to be linearly dependent on the cylinder
displacement. This resulted in stable limit-cycle oscillations for high mδ/ρD2 (50 and
100 for the parallel triangular and in-line arrays, respectively), but for lower values
of mδ/ρD2 they still obtained unstable limit cycles. These results demonstrate that
changes in the unsteady fluid dynamics in cylinder arrays may have a profound effect
on the post-instability response.

Rzentkowski & Lever (1998) extended their earlier nonlinear analysis
(Rzentkowski & Lever 1992) to account for the effect of upstream turbulence. They
show that for those cases where there is a hysteretic tube response, accounting for
free-stream turbulence can cause a reduction in Upc/fD.

An interesting study by de Langre et al. (1992) considered the effect of us-
ing three different fluidelastic instability models: the negative-fluid-damping model
given by equation (5.48), the Blevins (1974) coupled mode analysis and the Price
& Paı̈doussis (1984a) quasi-steady mode – all three of which consider linear fluid-
dynamic effects only. The most interesting conclusion from this study is that all three
analyses yield the same types of bifurcation as the flow velocity is increased past
its critical value; however, the bifurcations occur at different velocities for the three
different models. This suggests that the sequence of bifurcations obtained in the
nonlinear post-instability response is governed by the impacting of the tube with
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the loose supports, rather than by the fluid dynamics. However, it also shows that to
predict accurately the velocity at which the bifurcations occur or the work rate on
the tubes, it is necessary to have a good estimate of the energy input to the system –
requiring an accurate model of the nonlinear fluid dynamics. Furthermore, it illus-
trates that when comparing experiment and theory it is not sufficient to obtain the
same series of bifurcations, but the velocity at which these bifurcations occur is also
of importance.

Meskell & Fitzpatrick (2003) performed an experimental study on normal tri-
angular tube arrays with P/D = 1.32 and 1.58 with a single flexible cylinder free
to vibrate in the transverse direction only. Based on detailed measurements of the
free-vibrational response as a function of flow velocity, an empirical model for the
nonlinear fluidelastic damping and stiffness forces was proposed. It was assumed
that the fluidelastic force, f (y, ẏ, U), could be decomposed into three functions: one
of which depends on tube displacement; a second on tube vibrational velocity; and a
third which depends on both the tube displacement and velocity (all three functions
depend on flow velocity); thus,

f (y, ẏ, U) = −N1(y, U) − N2(y, ẏ, U) − N3(ẏ, U). (5.49)

Using measured free-response data for the tube at different flow velocities along
with the force-state mapping technique (Masri & Caughey 1979; Meskell et al. 2001)
it was proposed that functions N1 and N3 could be represented by cubic polynomials,
N1 = ηy3 + kf y and N3 = βẏ3 + cf ẏ, while N2 ≈ 0; kf and cf being, respectively, the
linear fluid-stiffness and damping terms. Considering the variation with flow velocity
it was shown that kf , cf and η were linear functions of U, whereas the cubic fluid-
damping term β was represented by a third-order polynomial in U. The fact that the
fluid-stiffness term, kf , is a function of U, as opposed to U2, is a little unexpected,
and unfortunately, Meskell & Fitzpatrick do not comment on this. Using the inferred
functions N1 to N3, Meskell & Fitzpatrick then predict the vibrational amplitude
of the flexible cylinder as a function of flow velocity. Although reasonably good
estimates of the critical velocity were obtained, the predicted limit-cycle amplitudes
for the post-instability behaviour were of an order 100% greater than those observed
experimentally. Given that the functions N1 to N3 were evaluated from this same
post-instability data, this overestimate in the limit-cycle amplitudes is somewhat
disappointing.

5.3.8 Nonuniform flow

Application of the two-dimensional theoretical models, presented in the preceding
sections, to three-dimensional heat-exchanger tubes requires a little care. If the flow
over the tubes is uniform, then the models can be used with the equivalent modal
terms. However, there are many applications where the flow velocity is not uniform,
and it is necessary to modify the stability analysis to account for this. Also, if an
attempt is made to use experimental correlations of Upc/f nD versus mδ/ρD2, such as
those given by Chen (1984), Weaver & Fitzpatrick (1988), Pettigrew & Taylor (1991)
or Schröder & Gelbe (1999b), a similar problem is encountered. The experiments
on which these correlations are based were, in general, conducted in uniform flow,
and it is necessary to know how to modify these results to account for nonuniform
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flows. The method suggested in several design guides is to employ the concept of
a so-called effective velocity (Au-Yang 1984; Blevins 1984; Wambsganss et al. 1984;
Au-Yang et al. 1991; Pettigrew & Taylor 1991), which enables a two-dimensional
stability analysis or experimental correlation to be employed to predict the stability
boundary in three-dimensional nonuniform flow. The “effective velocity” is defined
as follows:

Ueff =
(∫ l

0 U2(z)φ2dz∫ l
0 φ2dz

)0.5

, (5.50)

where U(z) is the velocity distribution along the span and φ the vibrational mode
shape. A number of authors have evaluated experimentally the use of this ef-
fective velocity, and these results are discussed later in this section. However,
first, this concept is given a more firm theoretical basis via the application of the
two-dimensional quasi-steady model for the analysis of a three-dimensional heat
exchanger. A similar methodology can also be employed for the other theoret-
ical models – see, for example, Ohta et al. (1982) and Chen & Chandra (1991)
who developed three-dimensional versions of the unsteady analysis of, respectively,
Tanaka & Takahara (1981) and Chen (1983a).

Assuming all tubes in the array to be of the same length and have the same
boundary conditions, and modelling each tube as an Euler-Bernoulli beam gives the
following equations of motion in the in- and cross-flow directions for tube j :

EIj
∂4ξj

∂z4
+ cj

∂ξj

∂t
+ mj

∂2ξj

∂t2
= Hj ,

EIj
∂4ηj

∂z4
+ cj

∂ηj

∂t
+ mj

∂2ηj

∂t2
= Gj ,

(5.51)

where EIj , cj and mj are the flexural rigidity, damping coefficient and mass per unit
length, respectively; ξi(z, t) and ηi(z, t) are the displacements in the in- and cross-flow
directions; and Hi(z, t) and Gi(z, t) are the fluid forces per unit length acting on the
tubes in the in- and cross-flow directions. In general, Hi(z, t) and Gi(z, t) depend on
the fluid velocity, density and viscosity, and on the motion of both the cylinder itself
and its neighbours. Using a linearised quasi-steady analysis, the fluid forces per unit
length may be written in terms of the added mass, damping and stiffness coefficients
(ignoring the time-averaged fluid forces). Thus, for example

Hj (z, t) = − 1
2ρ
[
D2{Aj }χ̈ + DU{Bj }χ̇ + U2{Ej }χ

]
, (5.52)

where χ is the vector of both the in- and cross-flow dimensional displacements of
the cylinder itself and the surrounding cylinders; similarly for Gi(z, t).

To illustrate the procedure necessary to reduce equations (5.51) and (5.52) to
two dimensions, a simplified problem of a single flexible cylinder, with freedom to
move in the cross-flow direction only, is considered. Hence, in equation (5.52), χ may
be replaced by η, and the matrices {Aj }, {Bj } and {Ej } by scalar quantities a, b and e,
respectively; also, the subscript j may be dropped.
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The equations may be solved via the modal-analysis method (Bishop & Johnson
1960) where η(z, t) is expressed as

η(z, t) = D
N∑

q=1

φq(z)yq(t), (5.53)

in which yq is the dimensionless generalised displacement, and φq is a set of as-
sumed mode shapes which must satisfy the geometric boundary conditions and be
orthogonal, such that ∫ l

0
φf φgdz = l if f = g

= 0 if f �= g, (5.54)

where it has been assumed that m does not vary along the tube length. We consider
a tube subject to a nonuniform velocity U(z) = Upψ (z), and assume constant c
and EI along the tube span. Then, equations (5.51) and (5.52) may be simplified,
via the use of assumed modes (equation (5.53)) and the orthogonality condition
(equation (5.54)), after multiplying all terms by φi and integrating over the length of
the span, to give for the ith mode of vibration

[mlÿi + cẏi + kyi] D = −1
2
ρD

⎡
⎣D2laÿi + DbUp

∫ l

0
ψ

N∑
q=1

(φiφqẏq)dz

+ eU2
p

∫ l

0
ψ2

N∑
q=1

(φiφqyq)dz

⎤
⎦ , (5.55)

where m, c and k are the modal mass per unit length, damping and stiffness, respect-
ively; similarly for the x-direction. It is apparent that the damping and stiffness terms
on the right-hand side of (5.55) introduce coupling between the various modes of
the heat-exchanger span; thus, it is not possible to consider the ith mode in isolation,
and the equation cannot be solved analytically. Only if the velocity is constant over
the span can the right-hand side be simplified to yield

− 1
2ρDl

[
D2aÿi + DbUp ẏi + eU2

p yi
]
, (5.56)

which is of a more convenient form. It should be remembered that this simplified
analysis considered a single flexible cylinder with one degree of freedom only; in
the more general case, the scalar terms in (5.55) will be matrices. Thus, it is not
surprising that many authors have taken a simpler approach and resorted to the use
of an “effective velocity” as outlined below.

The concept of an effective velocity was originally developed by Franklin &
Soper (1977), Connors (1978) and Pettigrew et al. (1978), who reconsidered Connors’
original analysis (1970). Goyder (1990) also arrived at a similar idea from the point
of view of a global fluid coefficient. Various degrees of complexity were considered,
but if the tube mass is constant over the span length, then

Upc

f nD
= K

(
δml

D2
∫ l

0 ρψ2φ2dz

)1/2

, (5.57)
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where ψ is the velocity shape function and φ is the structural mode shape. The
denominator of (5.57) is similar to the fluid-stiffness term in equation (5.55). Hence, it
should be noted that an effective velocity is strictly applicable to Connors’ instability
model only – or, at least, instability models where the excitation mechanism is due
to fluid-stiffness effects and is proportional to both the dynamic head of the flow and
the cylinder displacement.

Numerous authors have evaluated experimentally the effectiveness of using
equation (5.57). For example, Connors (1978) tested a U-bend model in airflow with
half the span subject to flow; he obtained a deviation in Upc from experimental
results of less than 15%. Franklin & Soper (1977) did experiments on a normal
triangular array with 1.25 ≤ P/D ≤ 1.78 in airflow. They found that equation (5.57)
could either underestimate or overestimate Upc by as much as 21% (in both of these
cases the factor K had been adjusted to be correct for uniform flow). Eisinger et al.
(1989) used the effective velocity in a finite-element analysis to predict Upc for a
multispan tube array and found reasonable agreement with experimental data in the
literature.

A series of experimental verifications of equation (5.57) has also been conducted
by Weaver and co-workers. Waring and Weaver (1988) did experiments in airflow
on a parallel triangular array with P/D = 1.47. Experiments were conducted with
uniform flow over one of the spans of one-, two- and three-span tubes, as well as
uniform flow over a portion of a single-span tube. They found that the theory could
be substantially nonconservative in some cases; moreover, in some circumstances
the theory predicted incorrectly which was the unstable mode.

Weaver & Goyder (1990) modified the theory to account for different modes of
vibration for a multispan tube. For the ith mode of an N-span array with velocity
distribution Upψn, the critical velocity, Upci was given by

Upci

N∑
n=1

(
ψn

fDi

)
S 0.5

in = K
(

mδi

ρD2

)0.5

, (5.58)

where Sin is the so-called energy fraction given by

Sin =
∫ l2

l1
φ2dx

/∫ l

0
φ2dx, (5.59)

and l2 − l1 represents the length of the nth span. Experiments were done on a
normal triangular array, P/D = 1.4, with airflow over either one, two or three spans
of a three-span tube. Provided K was first corrected for uniform flow, equation (5.58)
gave a maximum error of 11% in Upc compared with experimental results. The reason
why the effective velocity worked well in the present case, but not for the experiments
of Waring & Weaver on parallel triangular arrays, was that the empirical relationship
relating Upc/f nD with mδ/ρD2 for normal triangular arrays has an exponent closer
to 0.5 than for parallel triangular arrays.

The energy fraction idea was taken further by Weaver & Parrondo (1991), who
suggested that the expression for the critical velocity be modified to

Upci

N∑
n=1

(
ψn

fDi

)
= K

(
m

ρD2Sin

)α

δ
β

i , (5.60)

with the exponents α and β to be determined from experiments.
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Weaver & Parrondo did seven different sets of experiments with airflow over
one span of a three-span parallel triangular array with P/D = 1.47. They compared
experimental results with equation (5.60) for K = 3.3 and α = β = 0.5 (suggested
by Pettigrew et al. (1978)), K = 4.8 and α = β = 0.3 (suggested by the experimental
correlation of Weaver & Fitzpatrick (1988)), and K = 4.6, α = 0.29 and β = 0.21
(suggested by the experimental correlation of Weaver & El-Kashlan (1981)). For
all seven cases, using either the Weaver & Fitzpatrick or Weaver & El-Kashlan
correlations the theory was conservative and it predicted correctly which mode
went unstable. The error in Upc was less than 37% for the Weaver & El-Kashlan
correlation, but it was as much as 77% for the Weaver & Fitzpatrick correlation.
Using the Pettigrew correlation, the error was less than 57%, but the theory could
either underestimate or overestimate Upc; more importantly, the mode that went
unstable was sometimes not predicted correctly. Based on these results, Weaver &
Parrondo suggested that equation (5.60) should be used with α = β = 0.30, 0.40,
0.48 and 0.48, and K = 4.8, 3.2, 2.5 and 4.0 for parallel triangular, normal triangular,
in-line square and rotated square arrays, respectively.

A different approach was taken by Chen & Chandra (1991) who conducted a
numerical investigation on the use of an effective velocity based on Chen’s (1983a)
unsteady analysis. For high values of Upc/f nD (where fluid-inertia effects can be ig-
nored and the fluidelastic frequency taken as the no-flow natural frequency), Chen &
Chandra showed that the instability boundary is well approximated by equation
(5.57), justifying the use of the effective velocity. Considering the complete range
of Upc/f nD, however, things are a little more complex. Chen & Chandra suggest
that the effective velocity may be employed provided the in-vacuum frequency and
damping are used. However, even if this is done, the results presented by Chen &
Chandra suggest that the value of mδ/ρD2 at which the “jump” in stability boundary
occurs is not accurately predicted. Furthermore, for low mδ/ρD2, δ may be dominated
by fluid effects, and it is not convenient to use in-vacuum values of damping.

The results presented in this section suggest that although the effective velocity
concept may be a quick way of accounting for a nonuniform flow, it should be used
with some caution, and preferably a more exact modal analysis should be employed.

5.4 Comparison of the Models

Although equation (5.25), “Connors’ equation”, was derived for a single row of cyl-
inders with P/D = 1.41, it is often used as the basis for correlations of experimental
Upc as a function of mδ/ρD2 for complete arrays of cylinders, the assumption being
that it is merely necessary to obtain the correct value of “K”. For example, using
experimental correlations with various categories of data being excluded, the fol-
lowing values of K have been suggested: for in-line square arrays, Connors (1978)
obtained K = (0.37 + 1.67T/D) provided 1.41 ≤ T/D ≤ 2.12; for all array geomet-
ries, K = 3.3, 3.3, 0.8, 2.4 and 3.0 (independent of P/D) have been suggested by
Gorman (1978), Pettigrew et al. (1978), Paı̈doussis (1980), Au-Yang et al. (1991) and
Pettigrew & Taylor (1991), respectively; in addition, more complex correlations for
individual array geometries have been suggested by Chen (1984) and Weaver &
Fitzpatrick (1988), where both K and the exponent on mδ/ρD2 are functions of
mδ/ρD2.
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A discussion of the experimental support for and against the use of Connors’
equation is given in Section 5.4.1; this is followed by an evaluation of other models
of fluidelastic instability in Section 5.4.2. Finally, some concluding comments on
the present “state of the art” for prediction of fluidelastic instability are given in
Section 5.4.3.

5.4.1 Experimental support for and against Connors’ equation

At this point it is worthwhile mentioning that there are at least two different prevalent
motivations for researchers investigating fluidelastic instability in cylinder arrays. On
the one hand stands the practitioner with the pragmatic need to produce as simple a
design guide as possible, while on the other hand are those more concerned with the
physics causing this instability. Although it may appear that these motivations are
mutually exclusive, they need not be so. If the physics of the instability mechanism
is not sufficiently understood, then it is very unlikely that a safe, but not overly
conservative, design guide can be achieved. Hence, a complete understanding of the
physics is an essential prerequisite for a good design guide.

When assessing the validity of Connors-type equations, it should be appreciated
that these expressions imply a number of basic physical phenomena for fluidelastic in-
stability. First, Connors’ equation states that Upc/f nD is proportional to (mδ/ρD2)1/2;
implicit in this statement is that the nondimensional mass, m/ρD2, and damping, δ,
may be combined into one parameter and are totally interchangeable. Finally, Con-
nors’ equation gives one stability boundary only; hence, there is no possibility of
multiple stability boundaries. As discussed in the previous section, most of the other
models of fluidelastic instability contradict these statements. The majority of the
other theoretical models predict multiple instability boundaries, and most of them
suggest that m/ρD2 and δ should be treated as independent parameters, and that,
in general, Upc/f nD is not proportional to (mδ/ρD2)1/2 over the complete range of
mδ/ρD2.

With respect to the existence of multiple instability regions there is conflict-
ing experimental evidence. Chen & Jendrzejczyk (1983) and Popp and co-workers
(Andjelić et al. 1990; Austermann & Popp 1995; Andjelić & Popp 1989; Romberg &
Popp 1998a, b; Rottmann & Popp 2003) show very clearly that multiple instability
regions do exist for a single flexible cylinder in a variety of different arrays. Further-
more, Andjelić et al. and Rottmann & Popp show that multiple instability boundaries
can also exist when there are multiple flexible cylinders in the array.

Despite the clear evidence that multiple instability regions can be detected in
carefully controlled experiments it is apparent that they have not been observed in
operating heat exchangers. Possible reasons for this apparent contradiction are as
follows. To obtain experimentally the stable regions for velocities greater than the
lowest critical velocity usually requires some care. First, nonlinear effects may pre-
vent the cylinders from restabilising, and thus, to obtain the interleaved stable regions
it is necessary to restrain the cylinders while increasing the velocity through an un-
stable region. In addition, based on extensive fluid-force measurements, Paı̈doussis
et al. (1996) showed, in agreement with the work of Austermann & Popp, that whether
or not multiple instability regions will occur is extremely sensitive to small misalign-
ments of cylinders in the array. For example, for a parallel triangular array with
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P/D = 1.375 a misalignment of as little as 0.02D is sufficient to quench the multiple
instability regions, but leave the main instability boundary intact. Also, Romberg
& Popp (1998b), Rzentkowski & Lever (1998) and Rottmann & Popp (2003) show
that the multiple instability regions can be stabilised by the presence of elevated tur-
bulence levels upstream of the array, as is likely to be found in real heat-exchanger
arrays. A final possible explanation why the multiple instability regions are rarely
observed in practice comes from the work of Nakamura et al. (1997), who showed
that their existence requires near-perfect correlation of the fluidelastic forces along
the cylinder span; this analysis was specific to two-phase flow, but there is no reason
why it should not be correct for single-phase flow.

With respect to the independence of m/ρD2 and δ there are two types of experi-
mental evidence. A number of authors have conducted carefully controlled laborat-
ory experiments where the effect of varying either m/ρD2 or δ on Upc/f nD has been
investigated. For example, using their own data as well as that of Weaver & Grover
(1978) and Weaver & El-Kashlan (1981), Weaver & Koroyannakis (1982) show that
for a single flexible cylinder in a rotated triangular array with P/D = 1.375, Upc/f nD
is proportional to (m/ρD2)0.29δ0.21. For a rotated square array, with four flexible cyl-
inders and P/D = 2.12, Price & Kuran (1991) showed Upc/f nD to be approximately
proportional to δ0.06 for m/ρD2 = 280 and 490. For one flexible cylinder in a square
array, P/D = 1.5, Price & Paı̈doussis (1989) suggest Upc/f nD is proportional to δ0.05

for m/ρD2 = 3.79, and δ0.24 for 280 < m/ρD2 < 2380.
The second type of experimental evidence comes from a number of different

authors who have correlated all existing data – including that from operating heat
exchangers as well as laboratory experiments – in the form of plots of Upc/f nD
as a function of m/ρD2 and δ. It is not surprising that different conclusions have
been obtained from these correlations when it is realised that different definitions
of mass (with or without the added mass), frequency (values determined in vacuum
(practically this implies experiments done in air), or in stagnant fluid)), and damping
(in vacuum, in stagnant fluid or in flowing fluid) have been employed.

The first of these correlations was developed by Paı̈doussis (1980) who, us-
ing all existing data, presented correlations of Upc/f nD as functions of (m/ρD2)0.5,
(m/ρD2)0.5δ0.25 and (mδ/ρD2)0.5. Paı̈doussis showed that the least scatter was ob-
tained for the second of these correlations (δ0.25), but that the first (δ0) and third
(δ0.5) contained approximately the same amount of scatter.

Chen (1984) correlated the critical flow velocity as a function of mδ/ρD2 for the
four different array geometries (in vacuum structural values were used if available;
if not, stagnant-fluid values). Furthermore, for each array geometry the correlation
was based on a velocity, which was pitch dependent, the functional dependence
being such as to minimise the scatter of the experimental data. For example, for the
triangular array the appropriate velocity was (U/f nD) (2.105(P/D) − 0.9). Although
Chen chose to combine m/ρD2 and δ into one parameter, he showed very clearly that
there was a discontinuity in the slope of the stability boundary, and that the velocity
was only proportional to (mδ/ρD2)1/2 for velocities above this discontinuity. For
example, again considering the triangular array, Upc was proportional to (mδ/ρD2)0.1

for 0.1 < mδ/ρD2 < 2, and (mδ/ρD2)0.5 for 2 < mδ/ρD2 < 300.
Using additional data to that employed by Chen (1984), Weaver & Fitzpatrick

(1988) correlated the pitch velocity, Upc, as a function of mass-damping for the
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four different array geometries. No account was taken of different pitch ratios,
and they employed structural damping and frequencies measured in air. For all
four array geometries a discontinuity in the slope of the stability boundary was
obtained. For example, considering the triangular array, they found Upc to be inde-
pendent of (mδ/ρD2) for mδ/ρD2 < 0.3, and to be proportional to (mδ/ρD2)1/2 for
mδ/ρD2 > 0.3.

Pettigrew & Taylor (1991) presented a global correlation for all four array geo-
metries. They restricted their database to exclude experimental results with single
flexible cylinders. In addition, they employed damping values measured in the ap-
propriate fluid; if these values were not available, the in-fluid damping was estimated
using the methodology of Pettigrew et al. (1986). They found that a reasonable lower
limit for the stability boundary of this particular data set was given by Connors’ equa-
tion with an exponent of 0.5. However, it is interesting to note that using the same
data set they also presented a second correlation between Upc/f nD and (m/ρD2)δ0.5,
and they concluded that for this second correlation “the agreement with the data is
no better than for the simpler model”; however, as shown in Figure 5.31, neither is
it any worse!

The most recent attempt to correlate experimental stability data comes from
Schröder & Gelbe (1999b). They used the same data sets as Chen (1984), Weaver &
Fitzpatrick (1988) and Pettigrew & Taylor (1991), but their correlations account for
the effect of pitch ratio. Although they found the minimum error between correlation
and actual data to be when m/ρD2 and δ were combined into one parameter, they
also predicted discontinuities in the slope of critical velocity as a function of mδ/ρD2.

Although there is no general consensus from the presently available experi-
mental data and the correlations obtained from this data, it is clear that, in general,
experimental evidence does not support the use of Connors’ equation. In particular,
it appears that m/ρD2 and δ should be treated as independent parameters. There is
also considerable experimental evidence implying that the dependence of Upc/f nD
on δ is less than δ1/2, and that the manner in which Upc/f nD varies with m/ρD2 and
δ strongly depends on array geometry and the individual values of m/ρD2 and δ.

5.4.2 Comparison of theoretical models with experimental data

In this section a number of the theoretical models presented in Section 5.3 are
compared with each other and with available experimental data. The comparisons
are not only in terms of Upc, but also in terms of the pre-instability fluidelastic
damping as a function of Up .

Comparisons of the stability boundaries obtained from the theoretical analysis
with available experimental data are presented in Figure 5.32 for rows of cylinders
and in Figures 5.33 to 5.36 for four different array geometries. As discussed by
Pettigrew & Taylor (1991, 2003), there are many problems in making this type of
comparison. There is still no universally accepted definition of what values of m, δ and
f n should be employed; different experimenters use purely structural values (prac-
tically speaking, this means values measured in still air) or those values measured in
either stagnant or flowing fluid. This lack of uniformity is particularly important for
liquid or two-phase flows where there may be considerable differences in m, δ and f n,
depending on the conditions under which these structural parameters are measured.
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Figure 5.31. Correlations of critical flow velocity for fluidelastic instability as function of
mass and damping, reproduced from Pettigrew & Taylor (1991), with the experimental data
identified therein: (a) Upc/f nD as a function of (m/ρD2)δ0.5; (b) Upc/f nD as a function of
mδ/ρD2.

This problem is not only confined to the experimental results; the theoretical models
also have different definitions of what values of m, δ and f n should be used.

Pettigrew & Taylor (1991) give some very convincing arguments for using values
measured in stagnant fluid for those experiments conducted in liquid or two-phase
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Figure 5.32. Theoretical stability boundaries for fluidelastic instability and comparison with
experiments for a row of cylinders: �, multiple flexible cylinders in liquid flow; �, multiple
flexible cylinders in gaseous flow; �, single flexible cylinder in gaseous flow [experimental
data from Blevins et al. (1981), Chen & Jendrzejczyk (1981), Connors (1970, 1978). Gross
(1975), Halle & Lawrence (1977), Hartlen (1974), Heilker & Vincent (1981), Roberts (1962),
Southworth & Zdravkovich (1975) and Tanaka (1980)]. (a) ——, Roberts’ (1962) solution
accounting for time taken by jet reversal and fluid damping, P/D = 1.5; – · – ·, Roberts’ (1962)
solution ignoring time taken for jet reversal and fluid damping, P/D = 1.5; - - -, Connors’ (1970)
solution, P/D = 1.41; · · · · · · , Blevins’ (1979) solution including fluid damping; P/D = 1.41.
(b) - - -, Chen’s (1983b) and Tanaka & Takahara’s (1980, 1981) theoretical solution showing
multiple instability boundaries; ——, practical stability boundary.

flow. However, in the comparisons given here this has not been done. If the the-
oretical model correctly predicts all the fluid-dynamic effects, then the change in
frequency and damping caused by the fluid will be accounted for automatically, and
modificaton of the experimental data would result in a double accounting of these
effects.

Other difficulties encountered in making these comparisons are that the ex-
perimental data (i) are for a wide range of P/D, (ii) come from experiments with
different numbers of flexible cylinders in the array and (iii) come from a mixture of
single- and two-phase flows.∗ Thus, it should not be expected that perfect agreement

∗ The figures do indicate which data points come from single-flexible- or multiple-flexible-cylinder
experiments, and whether they come from liquid, gaseous or two-phase flows.
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Figure 5.33. Comparison of theoretical stability boundaries for fluidelastic instability with
experimental data for normal triangular arrays: �, multiple flexible cylinders in liquid flow; �,
multiple flexible cylinders in gaseous flow; �, single flexible cylinder in gaseous flow; �, single
flexible cylinder in liquid flow; �, multiple flexible cylinders in two-phase flow [experimental
data from Andjelić & Popp (1989), Chen & Jendrzejczyk (1981), Connors (1978, 1980), Gay
et al. (1988), Gibert et al. (1981), Gorman (1978), Granger et al. (1991), Gross (1975), Halle
& Lawrence (1977), Halle et al. (1988), Hartlen (1974). Heilker & Vincent (1981), Minakami
& Ohtomi (1987), Pettigrew et al. (1978, 1985, 1989), Price & Zahn (1991), Soper (1980),
Teh & Goyder (1988), Yeung & Weaver (1983), Weaver & Yeung (1984) and Žukauskas &
Katinas (1980)]; - - -, theoretical solution from Lever & Weaver (1986b) for P/D = 1.2; ——,
theoretical solution from Lever & Weaver (1986b) for P/D = 2.0; · · · · · · , theoretical solution
from Teh & Goyder (1988) for P/D = 1.35. (a) Includes all experimental data, (b) contains
data from multiple-flexible-cylinder experiments only.

will be obtained between theory and experiment. However, despite this, it is felt that
the comparisons do give some indication of the validity of the theoretical models.

The theoretical variations of Upc/f nD obtained from two of Roberts’ solutions
(1962, 1966), assuming the frequency of oscillation at instability to be equal to
the natural frequency (ε = 1), are compared with the available experimental data
for rows of cylinders in Figure 5.32(a). Except for mδ/ρD2 ≥ 200 (which includes
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Figure 5.34. Comparison of theoretical stability boundaries for fluidelastic instability with
experimental data for rotated square arrays: �, multiple flexible cylinders in liquid flow; �,
multiple flexible cylinders in gaseous flow; �, single flexible cylinder in gaseous flow; �, single
flexible cylinder in liquid flow [experimental data from Abd-Rabbo & Weaver (1986), Gorman
(1978), Hartlen (1974), Halle et al. (1988), Heilker & Vincent (1981), Paı̈doussis et al. (1989),
Price & Kuran (1991), Soper (1980) and Weaver & Yeung (1984)]; - - -, theoretical solution
from Lever & Weaver (1986b) for P/D = 1.2; ——, theoretical solution from Lever & Weaver
(1986b) for P/D = 2.0; · · · · · · , theoretical solution from Price et al. (1990) for P/D = 2.12. (a)
Includes all experimental data, (b) contains data from multiple-flexible-cylinder experiments
only.

Roberts’ own experimental data), Roberts’ full solution, including jet reversal and
fluid damping, overestimates Upc/f nD, especially for mδ/ρD2 ≤ 2. This is probably
because Roberts assumed that the cylinder motion is in the in-flow direction, whereas
most experimental results indicate that the motion is predominantly normal to the
flow.

Also presented in Figure 5.32(a) is the traditional Connors (1970) equation,
and the modified Blevins (1979) expression accounting for fluid damping (a value of
CD = 0.7 was assumed to obtain this curve). For mδ/ρD2 ≥ 5, the agreement between
either the Connors solution or the modified Blevins solution and the experimental
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Figure 5.35. Comparison of theoretical stability boundaries for fluidelastic instability with
experimental data for rotated triangular arrays: �, multiple flexible cylinders in liquid flow;
�, multiple flexible cylinders in gaseous flow; �, single flexible cylinder in gaseous flow;
�, multiple flexible cylinders in two-phase flow [experimental data from Connors (1980),
Gorman (1978), Hartlen (1974), Halle et al. (1988), Heilker & Vincent (1981), Johnson &
Schneider (1984), Minakami & Ohtomi (1987), Pettigrew et al. (1978, 1989), Soper (1980),
Teh & Goyder (1988), Weaver & El-Kashlan (1981), Weaver & Grover (1978), Weaver &
Koroyannakis (1983), Weaver & Yeung (1984) and Yeung & Weaver (1983)]; – –, theoretical
solution from Lever & Weaver (1986b) for P/D = 1.2; ——, theoretical solution from Lever &
Weaver (1986b) for P/D = 2.0; - - -, theoretical solution from Price et al. (1990) for P/D = 2.12;
- · - · , theoretical solution from Teh & Goyder (1988) for P/D = 1.52.

data is good; however, for mδ/ρD2 ≤ 5 both expressions overestimate Upc/f nD, this
being particularly so for the modified Blevins expression accounting for the fluid
damping.

It is evident that none of the models represented in Figure 5.32(a) can adequately
predict the discontinuity in Upc/f nD between low and high values of mδ/ρD2 which
is apparent in the experimental results. This is not the case for the unsteady analysis
of Tanaka & Takahara (1980, 1981) and Chen (1983a)∗, which are compared in
Figure 5.32(b) with the same data-set as that presented in Figure 5.32(a). Clearly,
the unsteady models give excellent agreement with experimental data, and they are
able to predict the discontinuity at mδ/ρD2 ≈ 4. This indicates the importance of
the unsteady fluid forces, and shows that to model fluidelastic instability in rows of
cylinders properly, and by extension in cylinder arrays, it is necessary to be able to
predict these unsteady fluid forces accurately.

For cylinder arrays the situation is less clear. Indeed, it should be noted that
for normal triangular (Figure 5.33) and rotated square (Figure 5.34) arrays the ex-
perimental results themselves exhibit considerable scatter in Upc/f nD. If the single-
flexible-cylinder experiments are removed, there is less scatter for the normal trian-
gular array (Figure 5.33b).

∗ It is recalled that the solutions given by Chen (1983a) and Tanaka & Takahara (1980, 1981) are
identical.
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Figure 5.36. Comparison of theoretical stability boundaries for fluidelastic instability with
experimental data for in-line square arrays: �, multiple flexible cylinders in liquid flow; �,
multiple flexible cylinders in gaseous flow; �, single flexible cylinder in gaseous flow; �, single
flexible cylinder in liquid flow; �, multiple flexible cylinders in two-phase flow [experimental
data from Axisa et al. (1984), Blevins et al. (1981), Connors (1978), Gorman (1978), Granger
et al. (1991), Gross (1975), Hartlen (1974), Halle et al. (1988), Heilker & Vincent (1981), Lubin
et al. (1986), Nakamura et al. (1991), Pettigrew et al. (1978, 1985, 1989), Price & Paı̈doussis
(1989), Soper (1980), Tanaka & Takahara (1981), Teh & Goyder (1988), Weaver & Abd-
Rabbo (1985), Weaver & Yeung (1984) and Žukauskas & Katinas (1980)]; ——, theoretical
solution from Lever & Weaver (1986b) for P/D = 1.2; - - -, theoretical solution from Chen
(1983b) for P/D = 1.33; · · · · · · , theoretical solution from Price et al. (1990) for P/D = 1.5;
- · - · -, theoretical solution from Teh & Goyder (1988) for P/D = 1.26. (a) Includes all
experimental data, (b) contains data from multiple-flexible-cylinder experiments only.

The theoretical models of Lever & Weaver (1986a, b)∗, Price et al. (1990), Chen
(1983a, b) and Tanaka & Takahara (1980, 1981) all exhibit jumps in the stability

∗ Strictly speaking, it would be better if the theoretical predictions of Yetisir & Weaver (1992), which
account for multiple flexible cylinders, were used as opposed to those of Lever & Weaver (1986a, b)
which only account for a single flexible cylinder. However, as pointed out by Yetisir & Weaver, the
difference in Upc/f nD is very small for mδ/ρD2 ≤ 200, and so the comparisons are given in terms
of the Lever & Weaver results.
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boundary. These jumps are due to the multiple instability regions occurring at low
mδ/ρD2. Following the reasoning given in Section 5.3, only the envelopes of these
boundaries are given. The models of Lever & Weaver and Price & Paı̈doussis pre-
dict many more instability regions than shown in the figures, but as discussed in
Section 5.3, only the upper three of these instability regions are included.

For the normal triangular array, see Figure 5.33, the theoretical model of Lever &
Weaver with P/D = 1.2 tends to underestimate the experimental results. The theor-
etical curve for P/D = 2.0 does provide a reasonable lower limit to the experimental
data, but this value of P/D is much larger than the experimental pitch values. The sta-
bility boundary given by Teh & Goyder (1988) provides a reasonable lower boundary
to the experimental data for high mδ/ρD2; however, this model does not predict the
jump in Upc/f nD which the experimental data exhibits. Comparing Figures 5.33(a)
and (b) it is clear that many of the experimental data points with a single flexible
cylinder tend to overestimate Upc/f nD vis-à-vis the multiple-flexible-cylinder data
points.

A comparison similar to that discussed above is also obtained for the rotated
square array (see Figure 5.34). The theoretical stability curve from Lever & Weaver’s
model for P/D = 2.0 is very similar to the curve obtained by Price & Paı̈doussis (with
multiple flexible cylinders) for P/D = 2.12; this, despite the fact that Lever and
Weaver’s results are for a single flexible cylinder, whereas the Price & Paı̈doussis
model suggests that a single flexible cylinder will not go unstable in this array
with P/D = 2.12. As can be seen by comparing Figures 5.34(a) and (b), very little
of the experimental scatter is eliminated by removing the single-flexible-cylinder
experiments.

In addition to their experimental dynamic instability results, shown in Fig-
ure 5.34, Paı̈doussis et al. (1989) also obtained a divergence instability for cylinders
in a rotated square array with P/D = 1.5. The mechanism responsible for this type of
instability is described in Section 5.2.2. The divergence was predominantly in the in-
flow direction; but for cylinders in the second row of the array, cross-flow divergence
was also observed. Although previously discussed theoretically this was the first time
that the phenomenon was actually observed. In addition, to being of considerable
academic interest, this instability is also of concern from a practical point of view.
Once one, or more, of the cylinders diverge, they lodge themselves close to others
that have not, or have done so in other directions; the cylinders then chatter and
rattle against one another in this post-critical state, thus being subject to fretting and
wear. Indeed, it should be noted that unless particular care is taken, as described in
Paı̈doussis et al. (1989), it is very easy to confuse this static instability with a dynamic
one, and it is possible that some of the “dynamic” instabilities indicated in Figure 5.34
may, in fact, be static ones.

For the rotated triangular array, see Figure 5.35, the comparison is similar to
those discussed in the foregoing. For this array the results obtained from single-
and multiple-flexible-cylinder experiments are very similar to each other, and thus,
only one data set including all the experimental points is presented. The stability
boundaries predicted by either Price & Paı̈doussis or Lever & Weaver with P/D =
1.2 tend to underestimate the experimental stability boundary, especially at high
mδ/ρD2, although reasonable agreement is obtained at low mδ/ρD2. Interestingly,
for this array, Teh and Goyder predict a lower and upper stability boundary for
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Figure 5.37. Variation of normalised fluidelastic damping for a single flexible cylinder in an
in-line square array with flow velocity for m/ρD2 = 6000 and δ = 0.01: ——, solution using
Tanaka & Takahara’s (1980) data, P/D = 1.33; · · · · · · , solution using Price & Paı̈doussis’
(1984a) model, P/D = 1.5; - - -, solution using Lever & Weaver’s model (1986a), P/D = 1.33.

P/D = 1.52; this is similar to the multiple stability boundaries predicted by the other
theoretical models.

For the in-line square array, excellent agreement is obtained between the exper-
imental results and the theoretical predictions of Chen, Lever & Weaver and Price
& Paı̈doussis (see Figure 5.36), especially when only the experimental data from
multiple-flexible-cylinder experiments are considered (see Figure 5.36(b)). The sta-
bility boundary predicted by Teh & Goyder also agrees well with experiments, but
does not extend to sufficiently low mδ/ρD2 for a full comparison to be made.

The comparison of Upc given in the previous paragraphs tests the “end result”
of the theoretical stability models. However, it is possible to compare the models
in other ways; for example, by comparing fluidelastic damping in the pre-instability
range. This is done in the following for the theoretical models of Tanaka & Takahara
(1980, 1981), Chen (1983a),∗ Lever & Weaver (1986a) and Price & Paı̈doussis
(1984a). The specific array chosen is an in-line square array with P/D = 1.33 (for
the Price & Paı̈doussis model P/D = 1.5 is used), and for the sake of simplicity one
flexible cylinder only is considered.

Typical results for the variation of fluidelastic damping with flow velocity for
high mδ/ρD2 are shown in Figure 5.37. To make the comparison less dependent
on the actual value of Upc, the velocities are normalised with respect to Upc. The
fluidelastic damping predicted by the unsteady model varies in an approximately
parabolic manner with velocity. The variations predicted by the Lever & Weaver and
Price & Paı̈doussis models, however, are more complex. The Lever & Weaver model
shows several oscillations in fluidelastic damping before it eventually decreases in a
reasonably linear manner to the point of instability; the results predicted by Price
& Paı̈doussis show only one small hump. Bearing in mind that the results obtained
from the unsteady model come from the measured unsteady force coefficient data, it
is to be expected that this variation will be the most accurate, and the results shown

∗ The models of Tanaka & Takahara and Chen are essentially the same, and for the sake of brevity
will be referred to jointly as the “unsteady model”.
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Figure 5.38. Variation of normalised fluidelastic damping for a single flexible cylinder in an
in-line square array with flow velocity for m/ρD2 = 10 and δ = 0.01. (a) ——, Solution using
Tanaka & Takahara’s model (1980), P/D = 1.33; · · · · · · , solution using Price & Paı̈doussis’
(1984a) model, P/D = 1.5; - - -, solution using Lever & Weaver’s model (1986a), P/D = 1.33;
(b) expanded view of Tanaka & Takahara’s results.

in Figure 5.37 suggest that the variations predicted by either the Lever & Weaver or
Price & Paı̈doussis models follow this behaviour in a reasonable manner.

Unfortunately, the comparison of fluidelastic damping with velocity for low
mδ/ρD2 is not nearly as good, as seen in Figure 5.38. The fluidelastic damping
predicted by both the Lever & Weaver and Price & Paı̈doussis models oscillates
much more than that given by the unsteady model (Figure 5.38(a)); this is particularly
so for the Lever & Weaver model. An expanded view of the damping variation given
by the unsteady model is presented in Figure 5.38(b), showing that, although the
damping does oscillate with increasing velocity, the magnitude of these oscillations
is not nearly as large as suggested by either the Lever & Weaver or Price & Paı̈doussis
models.

Measurements of modal damping as a function of Up for in-line arrays with
mδ/ρD2 ≈ 0.4 have been reported by Chen & Jendrzejczyk (1981) and Granger
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et al. (1993). Both sets of experiments show oscillations of the modal damping in the
transverse direction before instability is obtained; however, qualitative comparison
with Figure 5.38 suggests that both the Lever & Weaver and Price & Paı̈doussis
models severely overestimate the magnitude of these oscillations. The reason for the
large oscillations in damping predicted by Lever & Weaver and Price & Paı̈doussis
lies in the estimation of the phase lag between cylinder motion and resulting fluid
forces. These results suggest that both of these theoretical models considerably
overestimate the phase lag at low values of velocity. This does not have such a
significant effect on Upc, but it does produce this unrealistic behaviour for the pre-
instability response of the cylinders. Thus, it is apparent that to better predict not only
Up , but also the pre-instability behaviour of cylinder arrays, a better understanding
of the unsteady fluid forces is required. Granger et al. (1993) compared the variation
of pre-instability damping with Up obtained from the Lever & Weaver model with
their own experimental results and showed that the agreement could be improved
significantly if some of the parameters in the Lever & Weaver model (such as the
phase lag, drag coefficient Cd or the positions of the separation and reattachment
positions in the unit cell) were adjusted; however, no physical justification was given
for these new values.

5.4.3 State of the art

In the previous section all known theoretical models of fluidelastic instability have
been compared with one another and with available experimental data. Bearing in
mind the complexity of the problem, the comparison between theory and experiment
is encouraging. However, there is considerable room for improvement, and there
are a number of issues which none of the models address.

Probably the most accurate of the theoretical models are those of Tanaka &
Takahara (1981) and Chen (1983a), which employ measured unsteady fluid-force
coefficient data. Unfortunately, this data is extremely difficult to obtain, and is
presently available for one type of array and two values of P/D only. Thus, there is a
need for more approximate analytical models, requiring less experimental data, such
as those of Lever & Weaver (1982, 1986a, b), Price & Paı̈doussis (1984a, 1986a, b)
and Yetisir & Weaver (1992, 1993a, b).

The theoretical models differ considerably, not only in the amount of exper-
imental data required as input, but also in the assumptions employed. However,
despite these differences, a number of similarities do exist, and it is possible to draw
some broad conclusions concerning the models. It is apparent that, for most types
of array, there is a distinct difference between the mechanism producing instability
at high mδ/ρD2 compared with that at low mδ/ρD2; the boundary between high
and low mδ/ρD2 is somewhat ill defined, but is approximately 30. Chen (1983a) and
Paı̈doussis & Price (1988) explain this difference in terms of a stiffness-controlled
instability at high mδ/ρD2 and a damping-controlled instability at low mδ/ρD2. The
most important difference from the practical viewpoint resulting from the distinction
of these two mechanisms is the dependence of Upc on damping. For low mδ/ρD2,
as typically found in liquid shell-side flows, Upc is relatively insensitive to δ, a res-
ult which is commensurate with the experimental correlations of Chen (1984) and
Weaver & Fitzpatrick (1988); whereas, for high mδ/ρD2, typical of gaseous flows,
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increasing δ has a significant effect on Upc. It should be noted that this conclusion
is somewhat contradictory to the suggested nomenclature for the mechanisms. For
example, at low mδ/ρD2 the instability is referred to as being damping-controlled,
which suggests that an increase in δ should have a significant effect on Upc/f nD;
however, as stated above, this is not the case. Conversely, for high mδ/ρD2, where
the instability is referred to as being stiffness-controlled, the name suggests that an
increase in δ should have much less effect on Upc/f nD; again, this is the reverse of
what happens.

A second common theme of the theoretical models is the importance of the
phase lag between cylinder motion and the resulting fluid forces on the cylinder
itself and on its neighbouring cylinders. It is this phase lag which enables a single
flexible cylinder in an array of rigid cylinders to become unstable, and for low
mδ/ρD2 it is the dominant destabilising mechanism in fully flexible cylinder arrays.
The phase lag is also responsible for producing multiple regions of instability at low
mδ/ρD2. In retrospect, it should not be surprising that the phase difference between
structural motion and resulting fluid forces is so important – this has been recog-
nised in the aeronautical area since the time of Theodorsen (1935). Undoubtedly,
the key to obtaining good simulations of the vibrational behaviour of cylinder ar-
rays lies in the ability to predict these unsteady fluid forces. Almost certainly the
reason for the greater success of the unsteady models given by Tanaka & Takahara
or Chen is that this phase lag is measured rather than approximated analytically.
Unfortunately, because of the viscous nature of the flow and the mutual interaction
between cylinders in an array, obtaining reliable values of the unsteady fluid forces
on an oscillating cylinder is extremely difficult. Hence, the predictions developed by
Lever & Weaver and Price & Paı̈doussis should be regarded as approximations only.
Hopefully, some of the CFD techniques discussed in Section 5.3.6 will eventually
lead to more accurate predictions.

The possibility of using two-dimensional models for the analysis of three-
dimensional heat-exchanger tubes subject to nonuniform flow has also been re-
viewed. It was shown that although approximate methods, such as the so-called
“effective velocity” or “energy fraction”, may yield reasonable results in most cases,
they should be used with some care.

Finally, theoretical models of the post-instability response of cylinder arrays
in cross-flow have been considered. It is shown that extremely complex dynamics,
possibly leading to chaotic motion, can occur. Apart from the obvious academic
challenges associated with the nonlinear dynamics, this has considerable practical
importance associated with wear-rate predictions. Although there are many differ-
ences in the fluid-dynamic models used in these post-instability investigations, there
is remarkable agreement in the type of behaviour obtained. This suggests that it is the
nonlinear impacting forces which are dominant in producing the complex dynamical
behaviour rather than the fluid dynamics, which essentially just provides a source of
energy to drive the system. However, it is also apparent that, to be able to predict
the flow velocity at which a particular type of behaviour occurs, a good estimate
of the energy input is required, necessitating a good nonlinear model of the fluid
dynamics. It should be noted that, if the stiffness-controlled mechanism plays a sig-
nificant role in the instability, then obtaining a nonlinear model of the fluid dynamics
will be extremely difficult. All of the existing instability models which account for
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the stiffness-controlled mechanism employ the principle of superposition, which is
not valid if the fluid dynamics is nonlinear. Furthermore, it is not obvious how this
superposition principle can be replaced in these models.

An aspect of predicting the onset of fluidelastic instability not discussed in this
book relates to its interaction with vortex shedding. Fluidelastic instability and vortex
shedding are typically assumed to be distinct. However, it is important to realise that
this may not always be so, and resonance with a flow periodicity and fluidelastic
instability may sometimes occur almost simultaneously; in which case, instead of
there being two distinct vibration phenomena, there may be a complex interaction of
the two mechanisms. An example of an combined fluidelastic instability and vortex-
shedding instability for a parallel triangular array, P/D = 1.375 with low mδ/ρD2,
was suggested by the flow-visualisation results of Price et al. (1992b).

To analyse combined instabilities of the type discussed above is much more
difficult than analysing either mechanism individually – the interaction between them
will almost certainly be nonlinear. The only such analysis known to the authors is that
of Corless & Parkinson (1988, 1992) who attempted to analyse a combined vortex
shedding and galloping instability. A combined analysis of fluidelastic instability
and vortex shedding in cylinder arrays was undertaken by Sandstrom (1987) who
developed a finite-element analysis of a group of cylinders in cross-flow; however,
both the fluidelastic instability and vortex-shedding models were linear.

Another effect not addressed significantly by any of the theoretical models is
that of the Reynolds number. There is now considerable evidence from the unsteady
force-coefficient measurements of Chen et al. (1998) and Chen & Srikantiah (2001),
from the quasi-static force measurements in two-phase flow by Shahriary et al. (2007)
and Mureithi et al. (2008), as well as from the CFD calculations of Gillen & Meskell
(2008), that the Reynolds number has a significant effect. In addition, direct evidence
of the effect of Re is given by Mewes & Stockmeier (1991), who made measurements
of Upc in liquid flows of different viscosities in the range 0.7 ≤ ν/νwater ≤ 87.3; this was
achieved by using mixtures of water and organic substances (results are presented for
the range 0.7 to 2.52 only). For a normal triangular array with P/D = 1.28 significant
differences were obtained as ν was varied. In particular, fluidelastic instability was
obtained for ν/νwater = 2.52 but not for 0.7. All of this suggests that the Reynolds
number is an important parameter which needs to be accounted for properly in the
theoretical models.

Most of the theoretical models presently available, with the exception of Marn’s
(1996), implicitly assume a single-phase flow; however, in a large number of practical
situations the flow is two-phase. The effect of two-phase cross-flow on the fluidelastic
instability of cylinder arrays has been reviewed by Pettigrew et al. (1989), Chen
(1991b), Nakamura et al. (1992a, 1995), Pettigrew & Taylor (1994, 2003) and Feenstra
et al. (2000). From these reviews it is clear that attempting to account for two-
phase flows will considerably complicate the theoretical analysis. One approach, as
discussed by Pettigrew & Taylor (2003, 2004), is to obtain the appropriate value of
damping to use in a Connors-type expression. However, it should be appreciated
that this damping value will “mask” the complex fluid dynamics associated with
the two-phase flow, as the damping value employed is inherently due to the fluid
dynamics – it is not possible to maintain a stagnant two-phase flow and so the
damping must be measured at some flow rate. An alternative to this approach is
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suggested by Baj & de Langre (2003) who define a normalised fluid damping based
on the density of the two-phase mixture, as opposed to the liquid density normally
employed. They show that for “bubbly flows” with void fractions varying from 20%
to 80% the normalised damping tends to the value measured in liquid as Up/fD
tends to zero. They also show that the damping strongly depends on Up/fD, with
increasing Up/fD initially causing an increase in damping for low values of Up/fD
before reaching a maximum beyond which the damping decreases with increasing
Up/fD. The variation in damping with Up/fD being so significant that the maximum
damping can be twice as large as the zero-Up/fD value – indicating the danger of
using damping values measured in cross-flow as being representative of those found
at low values of Up/fD.

Attempts have been made to measure the unsteady force coefficients in two-
phase flows by Inada et al. (1996, 1997, 2002), Delenne et al. (1997) and Mureithi et al.
(2002), but the experiments proved to be very difficult and, in general, there was an
unacceptable degree of scatter in the results. An alternative to this is the approach
taken by Shahriary et al. (2007) and Mureithi et al. (2008) who have measured
the quasi-static forces in two-phase flows. However, the remaining question is then
whether or not the quasi-steady analysis of Price & Paı̈doussis (1984a, 1986a) is
applicable to two-phase flows.



6 Ovalling Instabilities of Shells in Cross-Flow

6.1 A Historical Perspective

Ovalling oscillation, or simply “ovalling”, of chimney stacks refers to the wind-
induced shell-mode oscillation of thin metal stacks, involving deformation of the
cross-section – strictly in the second circumferential mode (hence, the name) but,
by common usage, in higher circumferential modes also. In a cross-section of the
chimney the radial component of shell vibration varies proportionately to cos nθ,
where n is the circumferential wavenumber (see Figure 6.1). Thus, for ovalling
oscillations, n ≥ 2; whereas n = 1 for conventional beam-like lateral, or “swaying”,
vibrations of the stack which are discussed only parenthetically here.

Ovalling as a technological problem first arose with the construction of thin-
walled, tall and metallic chimney stacks; thin enough to easily deform as shells, tall
enough to be unprotected by the earth’s boundary layer near the top and with low
internal damping in the metal construction. Dickey & Woodruff (1956) and Dockst-
ader et al. (1956) describe some full-scale ovalling experiences: e.g. at Moss Landing
Harbor, California, where a tall chimney (L = 68 m; D = 3.44 m, h = 7.9 mm at the
top) developed ovalling in a U = 40 km/h wind with a frequency of about 1.47 Hz.
Johns & Allwood (1968) describe a case of large-amplitude ovalling, which eventu-
ally led to a collapse of the chimney during a typhoon.

A number of experimental studies followed, notably by Heki & Hawara (1965)
and Langhaar & Miller (1967). In the latter of these two studies it was found that
ovalling oscillation precedes buckling collapse of the shell in a strong cross-wind.
Wind-induced buckling will not be discussed here; the reader is referred to Kundurpi
et al. (1975) and Johns (1983). But what causes the ovalling oscillation? That is the
question that has exercised the Civil Engineering community since ovalling was first
reported.

Based on the observations of the Moss Landing case, which is one of the few
reasonably well documented ones, Dockstader et al. (1956) noted that (i) ovalling
occurred at, or near, the natural frequency of the stack, involving the n = 2 mode,
and (ii) the ovalling frequency corresponded to approximately twice the vortex-
shedding frequency. Because the vortices are shed alternately from the two sides of
the cylinder, and one cycle of vortex shedding involves the shedding of two vortices, it
was proposed that, unlike the case of vortex-induced swaying, the chimney would go
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n = 0 n = 1 n = 2 n = 3

m = 3m = 2m = 1

(a)

(b)

Figure 6.1. Modes of vibration of circular cylindrical shells, involving n circumferential waves
and m axial half-waves in the case of a clamped-clamped shell. For a cantilevered shell, only
the axial beam-like mode shape is different.

through one cycle of oscillation for each vortex shed. This explanation was sufficiently
plausible for the matter not to be looked at again till fourteen years later, when
Sharma and Johns (1970) conducted the first extensive experimental study of this
problem. Sharma & Johns’ results suggested modification to the Dockstader et al.
explanation, but the “vortex-shedding hypothesis” was retained.

In what follows, the development of an alternative explanation for ovalling will
be documented, leading to the demise of the vortex-shedding hypothesis. From a
historical perspective, it is interesting that vortex shedding was suspected to be the
cause of ovalling, just as it was in the case of fluidelastic instability of cylinder arrays
in cross-flow (see Chapter 5 and refer to Paı̈doussis (1980, 2006)). Because vor-
tex shedding was virtually the only fluid-elastic mechanism known to excite large-
amplitude vibration of slender structures in cross-flow (effectively until 1970 for
arrays of cylinders, and until 1982 for chimney stacks), it was the obvious candid-
ate – even if considerable massaging was necessary to make the vortex-shedding
hypothesis fit the observations. In this regard, a singularly Procrustean attitude
to forcing data to fit a favourite hypothesis, not totally unknown in Science, was
displayed.∗

Before closing these introductory comments, it should be mentioned that some
later work on ovalling was inspired by the anticipation of its occurrence, not in
chimneys, but in liquid-storage tanks and silos, as construction of the latter becomes
ever lighter, with the use of high-strength steel plate. Refer, e.g., to Katsura (1985),
Uematsu & Uchiyama (1985) and Uchiyama et al. (1986).

∗ Prokrustes (�ρoκρoύστηs), an infamous brigand on the route to Megara in Attica, arrested travellers
and tortured them to death by making them fit the size of his bed: the tall ones by cutting off their
feet, and the short ones by “stretching them” to fit. He was finally slain by the classical hero Theseus,
by Procrustes’ own methods; this latter treatment is also not unknown to Science.
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Notation used in Chapter 6
Shell radius: a
Shell diameter: D
Shell-wall thickness: h
Free-stream flow velocity: U
Dimensionless flow velocity: u, defined in equation (6.21)
Ovalling frequency: f n,m; n and m defined in Figure 6.1
Vortex-shedding frequency: f vs

6.2 The Vortex-Shedding Hypothesis

As stated already, Dockstader et al. (1956) observed that in the Moss Landing in-
cident the shell-ovalling frequency, f o, was close to its natural frequency f n,m, in the
n = 2, m = 1 mode (second circumferential wavenumber and first axial wavenum-
ber; see Figure 6.1), and that this corresponded to approximately twice the estimated
vortex-shedding frequency, f vs; so that r ≡ f o/f vs � 2. Because vortices are shed al-
ternately from the two sides of the shell, it was supposed that the chimney executed
one complete cycle of oscillation for each vortex shed (i.e. one oscillation cycle per
half-cycle of vortex shedding), rather than the more usual case where r = 1. The
explanation was sufficiently plausible for the matter not to be looked at again, till
twelve years later, when Johns, Allwood and Sharma undertook an extensive exper-
imental study of the problem (Johns & Allwood 1968; Sharma & Johns 1970; Johns
& Sharma 1974).

Johns and his co-workers experimented with cantilevered metallic cylindrical
shells, the upper portion of which was subjected to cross-wind in an open-working-
section wind tunnel. They measured f n,m and the threshold flow velocity for ovalling,
Uthr, and observed the modal form (n, m) of the oscillating cylinder; they did not
measure f vs, but inferred it by assuming a constant Strouhal number: either S = 0.2
or 0.166.

Here, it is recalled that S = 0.2 applies to long cylinders in two-dimensional cross-
flow in the subcritical Reynolds number range (approximately 40 < Re < 2 × 105).
In the transitional Reynolds number range (1.5 × 105 < Re < 3.5 × 106 approxim-
ately), vortex shedding becomes less regular and the Strouhal number varies, de-
pending on the surface roughness for instance (see Blevins (1990)). For a chim-
ney, the situation is further complicated by nonnegligible three-dimensional effects
about the free end of the chimney, and so deviations from S = 0.2 are inevitable.
Nevertheless, some data for model chimney stacks, obtained by Wootton (1968)
for 105 < Re < 3 × 106, suggest an “effective” S = 0.16 in this Re range. Johns
and his co-workers presumed that the real value of S for the chimneys in their
experiments was somewhere between 0.16 and 0.20. Also for chimneys, values
of S = 0.165 to 0.173 are reported by Paı̈doussis & Helleur (1979) for lower Re:
8 × 104 < Re < 1.6 × 105.

The main findings of this research (Sharma & Johns 1970; Johns & Sharma 1974)
were that
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1:1

3:1

Vortex

Figure 6.2. Alternative relationships between bending (swaying) oscillations and vortex
shedding [after Johns & Sharma (1974)]; r = f n,m/f vs.

(i) cylinders vibrated at or near one of their natural frequencies, f n,m,
(ii) at ovalling an integral relationship existed between f n,m and f vs, namely r ≡

f n,m/f vs = 1 to 6, depending on the experiment.

The experimental results will be discussed further shortly. However, presently,
more needs to be said about finding (ii) above, because it implies a subharmonic
sustenance of the oscillations. How this could work according to Johns & Sharma
(1974) for swaying (n = 1) oscillations is illustrated in Figure 6.2. In (a), a complete
cycle of vortex shedding corresponds to a full cycle of oscillation (r = 1), whereas the
situation for r = 3 is illustrated in (b). The same is ingeniously extended to ovalling
oscillations with n = 2 in Figure 6.3, illustrating possible scenarios for sustaining
r = 1, 2, 3 and 4 ovalling.

Obviously, if both f n,m and f vs are measured in any given experiment, then
r = f n,m/f vs could be determined and, according to finding (ii) above, it should be an
integer. If, however, as in the work by Sharma and Johns, f vs was not measured, then
r could be determined via (a) calculating the threshold flow velocity with r = 1, thus
Ucalc

thr = f n,m D/S, presuming S = 0.16 (or 1/6) or 0.20, and then (b) comparing with

r = 2

r = 4

r = 1

r = 3

Vortex

Flow

Figure 6.3. Alternative relationships between ovalling and vortex-shedding frequencies for
inducing/sustaining ovalling according to Johns et al. [after Johns & Sharma (1974)]; r =
f n,m/f vs.
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Table 6.1. Measured and predicted data of the natural frequencies f n,m (with m = 1 in all
cases), and critical (threshold) flow velocities for ovalling, Uthr; from table 2 in Johns &
Sharma (1974). The Reynolds number range in these results is 5 × 104 < Re < 2.5 × 105

Ucalc
thr (m/s) with r = 1

Shell Predicted f n,m Ovalling f n,m Umeas
thr Deduced

number n (Hz) (Hz) For S = 1
5 For S = 1

6 (m/s) r

2 1 136.0 – 82.9 99.5 – –
2 62.0 60 37.8 45.4 12.2–14.9 3
3 126.3 – 77.0 92.4 – –

3 1 49.5 50 30.2 36.2 18.0 2
2 46.8 45 28.5 34.2 11.9 3
3 124.7 119 76.0 91.2 19.5 4 or 5
4 238.6 – 145.5 174.5 – –

6 1 137.3 – 139.5 167.4 – –
2 47.2 46 47.9 57.5 18.0 (19.8) 3
3 49.6 48 50.4 60.5 11.6 (13.4) 5
4 86.7 – 88.2 105.7 – –

7 1 58.5 – 59.5 71.3 – –
2 24.5 23 24.9 29.9 9.1 3
3 45.7 43 46.4 55.7 15.8 3
4 86.1 – 87.4 104.8 – –

8 1 89.0 – 135.7 162.8 – –
2 29.6 29 45.1 54.1 10.7 4
3 24.2 22 (19) 36.8 44.3 7.9 (13.7) 5(3)
4 39.0 36 59.5 71.3 11.6 6
5 62.0 – 94.5 113.4 – –

the measured value Umeas
thr , which is supposed to satisfy ( f n,m/r) D/S, presuming a

subharmonic relationship; then,

r = int
[
Ucalc

thr /Umeas
thr

]
, (6.1)

where int [ ] denotes the closest integer value.
In Sharma & Johns’ (1970) experiments, one steel and eight aluminium shells

were tested, varying in length L from 20 to 71 inches (50.8–180 cm) and radius a
from 2.4 to 6.0 inches (6.10–15.2 cm); the thickness was h = 0.01 inch, in all cases; so
that 8.3 ≤ L/a ≤ 29.6 and 240 ≤ a/h ≤ 600. Typical results, excerpted from Johns &
Sharma (1974, table 2) are given in Table 6.1.

The interpretation of the information in Table 6.1 is made clear by discussing
some of it in detail following Johns & Sharma (1974).

We start with shell 3, which was designed such that the frequencies in the n =
1 and n = 2 modes be nearly equal. Ovalling commenced in the n = 2 mode at
Umeas

thr = 11.9 m/s. The calculated values Ucalc
thr based on the calculated f n,m = 46.8 Hz

and S = 1/5 and 1/6 (� 0.16) are 28.5 and 34.2 m/s, respectively. Clearly, therefore,
r �= 1, and the value of r can be estimated via equation (6.1): Ucalc

thr /Umeas
thr is 2.39

and 2.87 for the two Strouhal numbers. So, by (6.1), the closest integer is 3, and
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hence r = 3. At higher wind speed, the n = 1 mode was excited, at Umeas
thr = 18.0 m/s,

but with some evidence of ovalling; in this case, r = 2 is estimated. Finally, at Umeas
thr =

19.5 m/s, the n = 3 mode was excited, alone, and in this case r = 4 or 5.
Surveying some of the other data in Table 6.1, we note that r as high as 5 or 6

can be found. The quantities in parentheses indicate results with some change in the
experimental set-up. For example, for shell 6 the seams in the plate-formed shell were
initially along the windward and leeward generators of the shell, and subsequently
(the figures in parentheses) the seams were at 90o to the wind direction; there was
sensibly no change in the measured frequencies, but the critical speeds increased
slightly. In both sets of tests the n = 3 mode was excited well before the n = 2 mode
even though the latter had the lower predicted critical speed, but this cannot be
explained.

In retrospect, the main weakness in the vortex-shedding hypothesis (as described
thus far) is that it was based on an analysis of experimental data in which f vs was
not measured but inferred. Moreover, the open wind tunnel introduced a number of
uncertainties concerning the flow field and vortex shedding. Nevertheless, this model
for the mechanism of ovalling remained unchallenged until Paı̈doussis & Helleur’s
(1979) work.

6.3 Ovalling with No Periodic Vortex Shedding

6.3.1 Paı̈doussis and Helleur’s 1979 experiments

Johns & Sharma’s physical explanation essentially claims that the ovalling oscillation
of the shell was sustained by a helpful “push” by the shedding of a vortex; the shell
would then undergo one, two or three full cycles of oscillation (for r = 2, 4 and 6,
respectively) or a number of half-cycles (for r odd), before receiving another push
from the next vortex shed. This is conceptually easy to accept for r = 1 and 2, but it
becomes a little contrived for r = 5 and 6. Paı̈doussis & Helleur’s (1979) study was
motivated in part by lingering doubts about this explanation. The main motivation,
however, had been to investigate the effect on ovalling of high-speed internal flow,
exiting as a jet from the free end – as would be the case for tall metal chimneys. The
first step was to validate the vortex-shedding hypothesis, without internal flow. The
results obtained were so interesting that the second step (with internal flow) was
never taken!

6.3.1 (a) First-phase experiments
The experiments were conducted in a low-speed, open-return, suck-through wind
tunnel with a 0.9 m × 0.61 m closed working section. The cylindrical shell was moun-
ted as in Figure 6.4. The shell was clamped at its base to a rigid cylindrical pipe
support which was normally sealed; the upper end of the shell was free. In most
experiments a 0.95-cm-thick plexiglas edge plate was placed over the free end of the
shell in an attempt to reduce entrainment from above into the wake, for reasons to
be explained shortly. The plate was mounted such that a gap of 0.64 cm (1/4 inch)
was left between it and the top of the cylindrical shell. The supporting posts (1.27 cm
in diameter) were sufficiently distant from the test shell so as to cause min-
imal disturbance to the flow about it. It is clear, therefore, that the aim of these



6.3 Ovalling with No Periodic Vortex Shedding 297

50 cm

40 cm
Flow
direction

TOP VIEW

Probe
mounts

Fotonic
probe

Hot wire
probe

Plexiglas
edge-plate

Test shell

Supports

Wind tunnel
floor

Shell mount
Anemometer

SIDE VIEW

Fotonic pickup
to to

Figure 6.4. Top and side view of the cyl-
indrical shell mounted in the wind tunnel
test-section, showing also some of the meas-
uring apparatus (after Paı̈doussis & Helleur
(1979)).

experiments was to study the mechanism of ovalling, rather than to model ovalling
in real chimney stacks.

Some preliminary tests were done with brass shells machined from stock (typ-
ically L = 160 mm, radius a = 25 mm and h = 0.8 mm), but their wall thickness was
unacceptably nonuniform. Hence, subsequent experiments were conducted with
low-viscosity epoxy cylindrical shells which were spin cast and possessed excellent
uniformity (3% or less variations in wall thickness); what follows henceforth relates
to the epoxy shells (typically, 65 mm in diameter, 230 mm long and 0.50 mm in wall
thickness). Due to manufacturing difficulties the length-to-diameter ratio did not
exceed 4. There is a disadvantage in this, because flow over the top of the cylindrical
shell was found to be entrained into the wake, and to result in distortion or dispersal
of the vortex street in the wake, rendering the measurement of periodicity therein
difficult; indeed, this was the main reason for installing the edge plate over the free
end of the shell. A photograph of one of the shells ovalling in the n = 3, m = 1 mode
is shown in Figure 6.5.

The frequency of oscillation of the shell was measured by fibre optics. A “Fo-
tonic” probe was mounted on the tunnel floor, behind and close to the base of the
cylindrical shell. The modal shape when the shell was subject to ovalling oscillation
could be determined visually and photographically by viewing from above, where
there was a transparent observation port, with the aid of a synchronizable strobo-
scopic system. To further help identify the modes excited, the natural frequencies
were calculated by a finite-element method based on SAPIV (Bathe et al. 1973).
The frequencies of the visually identified modes in the wind tunnel were found to be
in good agreement with the calculated values. The vortex-shedding frequency was
determined by a hot-wire anemometer placed typically 200 mm behind the shell,
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Flow

direction

Figure 6.5. Photograph, taken from above of Shell 7 (L = 246 mm, D = 76.2 mm, h =
0.38 mm) undergoing ovalling in the (n, m) = (3, 1) mode at U = 21 m/s. Aluminium paint
was applied to the free end of the epoxy shell to make it visible; the photograph was taken
with stroboscopic light on, to show two positions of the shell (the thin white lines) with 180o

phase difference (after Paı̈doussis & Helleur (1979)).

170 mm above the base of the shell. The signals of both the fibre-optic probe and
the hot-wire anemometer were digitised via a high-speed A/D converter; then the
frequency spectra were obtained via a FFT program.

Typical results for (a) the shell vibration and (b) the wake-velocity spectrum at
the onset of ovalling are shown in Figure 6.6.

The vortex-shedding frequency is recognised as the dominant peak in the wake
signal (Figure 6.6(b)), so that f vs = 60.5 Hz; vortices on the other side of the wake are
also sensed to some extent, giving rise to the peak at 2f vs = 120 Hz. The dominant
component of shell response is at 242 Hz, which corresponds to the n = 2, m = 1
mode. The other important components of the response occur at 60.5 and 121 Hz
and are clearly associated with direct excitation of the shell by the vortex-shedding
process∗. The visually observable ovalling was clearly in the third circumferential
mode. Hence, taking f o = f 2,1 = 242 Hz one obtains r = f o/f vs = 4 in this case. So
far, the results agree with others reported previously.

∗ It is of interest to notice the small peak at 242 Hz in the wake spectrum, corresponding to 4f vs. It
would be reasonable to suppose that this is the aeroelastic influence of the ovalling oscillation on
the flow.
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Figure 6.6. Frequency spectra for Shell 4 (L = 230 mm, D = 65 mm, h = 0.51 mm) at the
onset of ovalling, at a wind speed of 22.6 m/s. (a) The shell vibration spectrum; (b) the wake
velocity spectrum, 20 cm behind the shell (Paı̈doussis & Helleur 1979).

Upon increasing the flow velocity, even by substantial amount (10 to 20%) it was
found that ovalling oscillation continued in the same mode and that its amplitude
increased. Because one would expect that f vs would normally be linearly proportional
to the flow velocity, two plausible explanations could be proposed, consistent with
the requirements of existing theory: (i) vortex shedding could have locked on the
ovalling oscillation, such that f vs and f o remained constant and, of course, their ratio
remained at r = 4; (ii) the vortex-shedding frequency could have increased with flow
in the normal way, while the cylinder continued to be harmonically excited, not at
one of its natural frequencies, but at a frequency always equal to f vs (a less likely
possibility).

In fact, neither of these occurred: the shell continued to oscillate at 242 Hz
predominantly, whereas the vortex shedding frequency continued to increase with
flow. As summarised in Figure 6.7,∗ the ovalling reached a maximum amplitude at
U � 30 m/s and then subsided at U � 34.5 m/s, always at f o = f 3,1 = 242 Hz, while

∗ The nondimensional amplitude in this figure is equal to 104 times the amplitude measured by the
Fotonic sensor (at the base of the shell) divided by the radius.
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Figure 6.7. The vortex-shedding fre-
quency (on top) and the amplitude of
third-mode (n = 3) ovalling (below) as
a function of the flow velocity U for
Shell 4 – see Figure 6.6 (after Paı̈doussis
& Helleur (1979)).

f vs varied from about 60 to 90 Hz. Clearly, an integral relationship between f o and
f vs did not appear to be necessary for the sustenance of ovalling!

Similar results were obtained for other shells (Paı̈doussis & Helleur 1979); some
are shown here in Figure 6.8.∗ In this figure the nondimensional flow velocity u is
utilised defined by u = U/{E/[ρs(1 − ν2)]} 1

2 , where E is Young’s modulus for the
shell, ν is the Poisson ratio and ρs is its density. In both cases shown, ovalling begins
in the n = 3 mode, such that r = 4; in the case of Figure 6.6(a), second-mode (n = 2)
ovalling succeeds third-mode ovalling, in the high u range. In all cases, however,
with increasing flow the shell continues to oscillate in one (or more) of its natural
frequencies, whereas the vortex-shedding frequency increases essentially linearly
with flow velocity.

It was at this point that it was decided that vortex shedding might not be the
underlying mechanism of ovalling oscillation after all. Although at the onset of
ovalling there is a simple relationship between f o and f vs, the phenomenon persists
to higher flows, where such a relationship no longer holds.

∗ It should be remarked that the Strouhal numbers obtained in the experiments (S = 0.165 to 0.173)
may at first sight appear to be oddly low compared with the “conventional” figure of S = 0.20 for
this Re range. This matter was considered carefully, but it was found that the values obtained are
indeed correct, to within 5%, and, furthermore, that they are not unlike values obtained by others
in the same range of Reynolds numbers (Paı̈doussis & Helleur 1979, appendix 1).
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Figure 6.8. The vortex-shedding frequency (on top) and the amplitude of ovalling (below) as
a function of the dimensionless flow velocity u: (a) for Shell 5 (L = 210 mm, D = 65 mm, h =
0.51 mm); (b) for Shell 7 (L = 246 mm, D = 76.2 mm, h = 0.38 mm); (after Paı̈doussis &
Helleur (1979)).

6.3.1 (b) Second-phase experiments
To determine whether vortex shedding has any effect at all on the onset and susten-
ance of ovalling oscillation, the apparatus was modified by mounting a splitter plate
behind the cylinder, parallel to the flow, as shown in Figure 6.9(a). Regular, periodic
vortex shedding was indeed suppressed, as may be seen in Figure 6.9(c), with the
probe mounted in its usual position (“position 1” of Figure 6.9(a)); yet ovalling was
not suppressed as may be seen in the corresponding vibration spectrum of Figure
6.9(b).

The full results for this and for another shell are shown in Figure 6.10. It is seen
that ovalling develops close to the flow velocity where it began with the splitter plate
absent. With increasing flow, the amplitude increases more precipitously∗. In both
cases the test was discontinued for fear of damaging the shells; it is, therefore, not
known if at yet higher flows the oscillation subsides.

At this point it was concluded that this constituted the demise of periodic vortex
shedding as a credible underlying mechanism for ovalling, and the search was on for
the true cause – prematurely, according to some; see Section 6.5.

∗ Compare with similar observations with regard to galloping by Nakamura & Tomonari (1977).
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Figure 6.9. (a) Top view of the shell with the splitter plate behind it; (b) the shell vibration
spectrum for Shell 4 at a flow velocity of 32 m/s; (c) the corresponding wake velocity spectrum
at position 1 (Paı̈doussis & Helleur 1979).

6.3.2 In search of a new cause

One mechanism that was considered was that motion of the point of separation,
caused by small flow-induced motions of the cylindrical shell, could result in energy
being fed into the cylinder from the flow, in phase with the oscillation, eventually
leading to the observed limit cycle. To test this hypothesis it was decided to force
separation at a point well ahead of the natural point of separation by gluing flexible
plastic tubes, 0.32 cm in diameter, on either side of the shell.

Initially the tubes were placed at 75o from the front stagnation point on one of the
shells. These tests were, of course, conducted with the splitter plate removed. Upon
following the same test procedure it was found that ovalling occurred as before, but
with increased amplitude. With the tubes attached even further ahead, at 65o from
the stagnation point, the amplitude of ovalling was greater still.
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Figure 6.10. (a) Dominant-mode ovalling (third-mode response) amplitude versus flow ve-
locity for Shell 4: �, with splitter plate; �, without the splitter plate; (b) the same for Shell 7
(after Paı̈doussis & Helleur (1979)).

At this point, because all results were contrary to expectations, it was decided
to rotate the cylinder 180o so that the tubes would now be at the back of the cylinder
in the wake, where their effect was expected to be minimal. In this arrangement,
with the tubes at either 105o or 115o from the stagnation point, no ovalling could be
induced over the flow-velocity range available! In case attachment of the tubes had
altered the structural characteristics of the system significantly enough to cause this
peculiar phenomenon, the tubes were next attached on the interior surface of the
cylinder. It was verified that in this arrangement the behaviour of the cylinder was
essentially the same as when the tubes were entirely absent.

At this point the importance of the overall character of flow in the wake became
evident, and it was decided to take a closer look at the effect of the flow between
the edge plate and the shell. It is recognised that at its normal position the edge plate
is insufficiently close to the shell to prevent a streaming flow over the top of the
shell. A cylinder insert was utilised, which could be moved up and down; the radial
clearance between the top of the insert and the cylindrical shell was 6.4 mm (1/4 in).

When the top of the insert was 50 mm below the free end of the shell, its effect
on ovalling was insignificant; when it was flush with the top of the shell, the only
effect was that the onset of ovalling occurred at slightly higher flow velocity. With
the insert extending above the shell, halfway to the edge plate, this effect was more
pronounced. Finally, when the insert was extended further, so that it pressed against
the edge plate, ovalling could not be observed at all, over the range of flows where it
had appeared heretofore. Clearly, therefore, the flow over the top of the shell plays
an important role in the mechanism involved in ovalling.
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Obviously, the above, although offering useful clues on the nature of the mech-
anism underlying ovalling oscillation, have not clarified the mechanism itself.

6.4 Further Evidence Contradicting Vortex-Shedding Hypothesis

The experiments by Helleur and Paı̈doussis described in Section 6.3 have established
that there appears to exist an integral relationship between f n,m and f vs at the onset
of ovalling (r = f n,m/f vs = integer). This is clearly in support of the hypothesis that
periodic vortex shedding is the driving mechanism for ovalling. However, some
other, disquieting observations were made at the same time, namely: (i) beyond the
onset of ovalling r = integer ceases to hold, f n,m remaining constant with increasing
speed, whereas f vs increases in conformity with a sensibly constant Strouhal number;
(ii) ovalling oscillations could be excited even when a long splitter plate was mounted
behind the cylindrical shell, albeit at a slightly higher flow velocity than without the
splitter plate, despite the fact that periodic vortex shedding had been suppressed.

Obviously, (i) above signifies that lock-in does not occur, which is in disagreement
with the vortex-shedding hypothesis. More importantly, observation (ii) suggests that
the ovalling mechanism has nothing to do with periodic vortex shedding, because
the phenomenon can equally occur in its absence. On the other hand, it should not
be forgotten that when there is periodic vortex shedding, then, at the onset ovalling,
there exists an integral relationship between f n,m and f vs. Thus, on the one hand,
periodic vortex shedding appears to have nothing to do with the phenomenon and,
on the other, it appears to have some organic relationship with it. Furthermore, it
was demonstrated that the flow in the wake and over the top of the shell is important
in determining the onset of ovalling and, indeed, whether it occurs or not.

To further explore ovalling, some new experiments were undertaken at McGill
University in the 1980s (Paı̈doussis & Suen 1982a), which will be discussed next.
However, it should be mentioned that, at the same time, a new theoretical model
for ovalling was proposed by Paı̈doussis & Wong (1982) and refined by Paı̈doussis,
Price & Suen (1982b); these will be discussed in Sections 6.6, 6.7 et seq.

The experiments were conducted in the same wind tunnel described in Sec-
tion 6.3. However, the fibre-optic sensor was mounted inside the shell (Figure
6.11(a)), so as to be even less obtrusive, also allowing the measurement of the modal
shapes. Moreover, to eliminate uncertainties associated with the flow field over the
top of the shell (and between it and the edge or top plate, experiments were also done
with the shell spanning the height of the wind tunnel, with both ends clamped (Fig-
ure 6.11(b)) – thus approximating two-dimensional flow conditions over the shell.

The shells used were again spin-cast epoxy shells, but were generally larger
(D = 76.2 and 147.3 mm). Again, for some of the tests, a 500 mm × 400 mm “top
plate” was mounted over the free (top) end of cantilevered shells, 0.05 to 0.35
diameters above their upper lip.

6.4.1 Further experiments with cantilevered shells

Some preliminary experiments, to verify those of Section 6.3, were done for four
different cantilevered shells, without and with a splitter plate. The results are sum-
marised in Table 6.2.
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Table 6.2. Critical threshold flow velocities for ovalling of four shells of different lengths
(D = 76.2 mm), without and with a splitter plate; f n,m is the measured ovalling frequency; in
these experiments, no top plate was used

Without splitter plate With splitter plate
Critical

Length mode Ucr f n,m f n,m/f vs Ucr f n,m

Shell (mm) n, m (m/s) (Hz) (–) (m/s) (Hz)

E 290 3, 1 27.2 213 4.0 27.6 213
F 290 3, 1 25.7 207 4.3 24.0 207
C 479 2, 1 20.8 76 1.7–1.8 21.5 76
D 479 2, 1 20.8 76 1.8 21.4 76

It is seen that ovalling occurs in the third circumferential mode for the shorter
shells, but in the second circumferential mode for the longer ones. It was confirmed
that ovalling oscillation does occur, even with a splitter plate behind the shell, when
periodicity in the wake was found to have been suppressed. However, the most
perplexing finding in the results of Table 6.2 is that, for the first time, in some cases
f n,m/f vs appreciably deviates from an integral value.

Figure 6.11. Schematic of the cylindrical shell mounted in the wind tunnel. (a) Clamped-free
(cantilevered) shell showing the internally mounted Fotonic sensor and the sometimes used
“top” plate; (b) clamped-clamped shell (Paı̈doussis, Price & Suen 1982a).
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Figure 6.12. Measured vibration and wake characteristics of a 76.2 mm diameter cantilevered
shell, showing the Strouhal number, the ratio r and the vibration amplitude of the shell
(arbitrary scale), as functions of the wind velocity. (a) L = 479 mm, no top plate; (b) L = 311
mm, no top plate; (c) L = 479 mm, gap to top plate 24.4 mm; (d) L = 479 mm, gap to top
plate 3.2 mm [after Paı̈doussis, Price, Fekete & Newman (1983)].

To investigate this observation further, it was decided to conduct additional
experiments with one of the shells, varying systematically one parameter, namely
the length, and determining the ratio f n,m/f vs in each case. The results presented
and discussed in detail in Paı̈doussis et al. (1982a), but not here for brevity, showed
that: (i) the modal characteristics of ovalling oscillation change with length, as does
the nodal orientation of the modes concerned vis-à-vis the free-stream vector; (ii)
the Strouhal number varies with flow in each case, in general being higher at higher
vibration amplitudes, which, in view of the attendant widening of the wake, may
be said to be consistent with the concept of a universal Strouhal number (Roshko
1955); (iii) at the onset of second-mode ovalling with a node facing the free stream
(as well as for third-mode ovalling), one obtains r close to 4, while at the onset of
second-mode ovalling with an antinode facing the free stream one obtains r in the
vicinity of, but substantially below, 2.

Similar experiments were conducted with the same shell (D = 76.2 mm, L =
311.2 mm), but now using the top plate and varying the gap, g, between it and
the free end of the shell (see Figure 6.11(a)). Typical results may be seen in Fig-
ure 6.12(c, d), for g = 25.4 mm and 3.2 mm; the results in Figure 6.12(a), with no top
plate, may be considered to correspond to the “top plate” actually being the roof of
the wind tunnel. Once again, one may observe considerable differences in vibrational
behaviour for different values of g; this indicates a strong three-dimensional flow
effect on ovalling. Significantly, in both Figures 6.12(c) and (d), r at U = Ucr is not
close to an integer.



6.4 Further Evidence Contradicting Vortex-Shedding Hypothesis 307

N
um

be
r 

of
 o

cc
ur

re
nc

es

Figure 6.13. Histogram of all f n,m/f vs measured at the threshold for onset of ovalling in all
tests with clamped-free shells: (a) for the mode first encountered, at U = Ucr; (b) for all the
modes excited, at various U = Uthr (Paı̈doussis, Price & Suen 1982a).

Collecting all available results for cantilevered shells, similar to those shown in
Figure 6.12, it is first noted that more than one circumferential mode may be excited
concurrently and that the orientation of some modes vis-à-vis the wind can change
with wind speed. However, the crucial point is that, whereas in many cases r is close
to an integer, observations have been made for the first time where r at onset is quite
far from an integer, e.g. Figure 6.12(c) and (d).

Figure 6.13 shows a histogram of frequency of occurrence of ovalling versus r,
for all the tests conducted, where it is seen that, whereas in most cases r is close to
an integral value, there are cases where it clearly is not. (It should be mentioned that
in this figure the distinction is made between a threshold flow velocity, Uthr, for the
onset of ovalling at any one mode, and the critical flow velocity, Ucr, which is the
particular Uthr for the mode first encountered with increasing flow.)

6.4.2 Experiments with clamped-clamped shells

Ovalling, very similar to that for cantilevered shells, was observed for shells with
clamped ends (“clamped-clamped” for short), some experimental observations for
76.2-mm-diameter shells are shown in Figure 6.14.

One important observation made in all such tests is that the second (circumfer-
ential) mode always occurred with a node facing the free stream, whereas the third
mode was with an antinode facing the free stream.

Another important observation is that at the onset of ovalling oscillation the
ratio r was quite distinctly a noninteger. Thus, in Figure 6.14(a) Ucr is associated with
r � 3.3 to 3.4, whereas in Figure 6.14(b) r � 3.3 to 3.5, the uncertainty in r arising
from the corresponding difficulty in pin-pointing Ucr.

The behaviour of the larger diameter shells (147.3 mm) was considerably more
complex, as may be seen in Figure 6.15, where one may observe that several modes
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Figure 6.14. Measured vibration and wake characteristics for two nominally identical
76.2 mm diameter clamped-clamped shells for (a) Shell B and (b) Shell A: ◦, second mode,
f 2,1; �, third mode, f 3,1 (Paı̈doussis, Price & Suen 1982a).

Figure 6.15. Measured vibration and wake char-
acteristics of the 147.3 mm clamped-clamped
shell G. o, f 4,1; �, f 5,1; ∇, f 5,2; �, most likely f 3,1

(Paı̈doussis, Price & Suen 1982a).
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Figure 6.16. Frequency spectra of shell vibration of the clamped-clamped shell of Figure
6.15 at different flow velocities. (a) Sub-critical vibration, U = 9.7 m/s; (b)–(f) post-critical
vibration of flow velocities: (b) U = 13.3 m/s, (c) U = 15.8 m/s, (d) U = 17.9 m/s, (e) U = 19.1
m/s, (f) U = 21.3 m/s (Paı̈doussis, Price & Suen 1982a).

are excited. Typically, the system first develops ovalling in the fourth circumferential
mode, the frequency of which slightly increases with flow and amplitude of vibration
( f 4,1 = 131–139 Hz). At higher flow, ovalling in this mode subsides, while usually the
fifth circumferential mode becomes predominant ( f 5,1 = 188–191 Hz), but several
other modes could also be picked up, with frequencies, e.g. of 216–217 Hz ( f 5,2)∗

and 166 Hz (most likely, f 3,1). Some of these lesser amplitude components of the
vibration were not always excited, presumably because of the differences from test
to test of the precise manner of clamping and mounting the shell, as well as variations
in temperature and humidity.

The intricacy of shell behaviour with increasing flow for the results shown in
Figure 6.15 may best be appreciated by examining the power-spectral-density plots,
at some selected flow velocities, shown in Figure 6.16.† Unlike those in previous
figures, these results were taken at the same setting of the Fotonic sensor, so that
comparison in relative amplitude between Figures 6.16(a) to (f) is possible. Such
complex response of shells in cross-wind has previously been noted by Nataraja and
Johns (1977).

A number of clamped-clamped shell experiments without and with a splitter
plate were conducted, similar to those with cantilevered shells. A summary of the
results is given in Table 6.3. Where more than one entry appears for the same

∗ It may be of interest to note that, for the clamped-clamped shells, the frequencies increased with
amplitude and flow – hence the frequency ranges for the different modes, as given above – indicating
what appears to be a nonlinear hardening; on the other hand, the oscillation frequencies of canti-
levered shells generally displayed softening nonlinear characteristics (as measured by K. M. Aaron
at McGill University).

† The results displayed in Figures 6.15 and 6.16 were taken at different times. Therefore, the amplitudes,
in mV, do not correspond. There were also some differences, albeit small, in the Uthr between the
two experimental runs.



310 Ovalling Instabilities of Shells in Cross-Flow

Table 6.3. Threshold flow velocities for ovalling of three nominally identical
76.2-mm-diameter clamped-clamped shells without and with a splitter plate

Without splitter plate With splitter plate

Mode Mode Mode Mode
(n, m) = (2, 1) (n, m) = (3, 1) (n, m) = (2, 1) (n, m) = (3, 1)

Ucr f n,m Uthr f n,m Ucr f n,m Uthr f n,m

Shell (m/s) (Hz) (m/s) (Hz) (m/s) (Hz) (m/s) (Hz)

O 17.9 155 21.4 225 20.3a 154 – – b

O 17.3 154 21.4 227c 20.5 154 – – d

O 17.9 154 20.8 221 20.0 155 24.5 219
B 18.4 156 20.5 235 – – 25.7 235
B 16.8 155 21.1 235 19.3 156 – – e

A 18.1 158 21.0 229 19.4 158 24.4 229

a Amplitude of ovalling with splitter plate is much higher than without.
b The f 3,1 signal is totally absent, but a frequency twice as high could be observed.
c A small component at 309 Hz could also be observed, but the mode involved could not be identified.
d The (3,1)-mode is absent but the 309-Hz frequency component is present.
e The 309-Hz signal could be observed throughout.

shell, this indicates a different test, in which the shell, having been dismounted,
was remounted in the wind tunnel, usually on a different date. The repeatability of
the results is reasonable, with the exception of those involving shell B; differences
in clamping, possibly involving inadvertent axial compression of the shell while
mounting it, are thought to be responsible.∗

The most noteworthy feature of the results in Table 6.3 is that, as in the case
of cantilevered shells, ovalling oscillation does occur even when periodic vortex
shedding has been suppressed in the wake, but at slightly higher threshold flow
velocities. Other important observations are that, with a splitter plate, the behaviour
of the shell becomes more changeable from one test run to the other. Thus, in the
first two runs with shell O, second-mode ovalling only is excited, whereas in the third
run both second- and third-mode ovalling arise; similarly, for shell B, in the first run
only third-mode ovalling occurs, whereas in the second only second-mode ovalling
is observed. There are other, lesser differences noted in the footnotes to the table.

Finally, the possibility of synchronous, symmetric vortex shedding from the two
sides of the shell was looked into, as yet another excitation mechanism via which
ovalling oscillations could be induced by vortex shedding.† This type of vortex shed-
ding has been found to occur in conjunction with in-line oscillation of cylinders in
cross-flow. A special set of experiments was conducted in which two hot-wire anem-
ometers were placed close to the separation points on either side of the shell. The
phase difference in cross-spectral-density analysis of the two signals was found to
be close to 180o, both before and after the onset of ovalling, indicating that vortex
shedding is of the normal, antisymmetric type. When a splitter plate was used, no
periodicity whatever could be found anywhere in the wake, except with the hot-wire

∗ It should also be noted that, because the wind tunnel used was a suction tunnel, as the flow increased
there was a tendency for the steel-reinforced plywood wall of the tunnel to be “sucked in” slightly;
although the mounting arrangement was designed to minimise this effect, this problem may not have
been dealt with entirely successfully.

† This possibility was suggested by an anonymous referee to the paper by Paı̈doussis & Wong (1982).
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Figure 6.17. Histogram of f n,m/f vs at the threshold of various types of ovalling oscillation of
clamped-clamped shells. The symbols with an “o” in the middle are associated with the critical
flow velocities for onset of ovalling (Paı̈doussis, Price & Suen 1982a).

sensor very close to the shell, when the perturbation to the flow generated by shell
vibration could be picked up, at frequency f n,m.

Additional tests were conducted in which damping was added to the shell by
painting its inner surface with a damping compound called “Aquaplas”, sometimes
used to damp vibrations and sound emission from thin-walled ducts conveying air-
flow. The procedure was to apply a certain maximum coating of the material, allow
it to dry, and then conduct the usual tests in the wind tunnel. Then a certain amount
of the material was washed off – the compound being a water-soluble suspension –
and the tests repeated with progressively less and less of the material. In general,
with more Aquaplas the critical flow velocity was higher, thus supporting the nascent
belief that ovalling may be a flutter phenomenon. For that reason, these results will
be discussed in Section 6.6.

Collecting all available ovalling data, as was done for cantilevered shells (Fig-
ure 6.13), a histogram of r = f n,m/f vs was constructed for clamped-clamped shells, in
Figure 6.17. it is seen that, even more so than for cantilevered shells, r is not always
an integer; indeed, for all cases except two, where r = 4 and 7, respectively, r is not
an integer.

6.5 Counterattack by the Vortex-Shedding Proponents and Rebuttal

Panesar & Johns (1985) countered the findings described in Section 6.4 with a two-
pronged attack, as described in what follows.

6.5.1 The “peak of resonance” argument

Panesar and Johns modified the original vortex-shedding hypothesis, by asserting that
the phenomenon is one of subharmonic resonance (Panesar & Johns 1985); hence,
r = integer should apply not at the onset (as had hitherto been contended) but at
the peak of ovalling oscillation – which could not be reached with the maximum
available U in their experiments, but sometimes was in those of Paı̈doussis et al.
(1982a). Of course, whether this “peak” corresponds to resonance or simply to a
limit cycle is another question.

As may be seen in Figure 6.14, for instance, this would alter r from ∼3.3 to 3,
which goes along with Panesar and Johns’ argument. However, in cases where
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r � integer at onset, the integral relationship is destroyed at resonance, i.e. r �=
integer “at resonance”; e.g. in the case of Figures 6.12(a) and (b). Furthermore, for
some cases, as in Figures 6.12(c) and (d), r �= integer, either at resonance or at onset.
Indeed, applying this argument collectively to the results of Figures 6.13 and 6.17
amounts to shifting, in varying degrees, the data points to the left, which, if anything,
makes matters worse for the vortex-shedding hypothesis: more ovalling occurrences
would then not satisfy the r = integer criterion.

Further evidence was provided by Katsura (1985) from experiments with poly-
ester film shells, where ovalling occurred in high circumferential modes (n = 5 to
8). Although f vs was unfortunately not measured, Katsura assumed 0.16 < S < 0.20
and found that at the ovalling peak, for subharmonic “resonance” to exist, r � 8
to 13 would have to be imagined! Moreover, from measurements of the fluctuating
pressure on the shell, it was found that the frequency component corresponding to
vortex shedding is “negligibly small”. Hence, Katsura concluded that “it is hard to
think that this small component of vortex shedding induces a resonant vibration at
a frequency ratio of more than seven”; quite so!

6.5.2 Have splitter plates been ineffectual?

One of the strongest pieces of evidence against the vortex-shedding hypothesis is
that ovalling can occur even when periodic vortex shedding is absent. The question
of whether vortex shedding is really suppressed by a splitter plate had already been
raised by Johns (1979). Now, Panesar and Johns (1985) provided surprising evidence
that, even with a long splitter plate (Lsp/D = 5.36, Lsp/hsp = 240, gsp/D ≥ 0.027),
periodic vortex shedding actually occurred in their experiments! It was implicitly
suggested that this failure of the plate to suppress vortex shedding was related to
the small gap, gsp , between the shell and the splitter plate – necessary to allow
oscillation.

These results contradict those obtained previously (Paı̈doussis & Helleur 1979;
Paı̈doussis, Price & Suen 1982; Ang 1981; Paı̈doussis, Price & Ang 1988a). In these
authors’ experiments the splitter plate was slightly shorter, but sturdier (Lsp/D =
4.67, Lsp/hsp = 55.6, gsp/D = 0.032).

Careful experiments were done (Paı̈doussis, Price & Ang 1988a) to test this
question, with the hot wire in all the positions shown in Figure 6.18(a), as well
as around the shell circumference, both with and without the splitter plate. How-
ever, no periodicity was found anywhere when the splitter plate was in place – for
gsp/D = 0.032, and also 0.083 and 0.167. Typical results are shown in Figures 6.18(b,
c) without and with the splitter plate, respectively; the only visible peak in Figure
6.18(c) corresponds to 60-Hz electrical noise, its height exaggerated because of the
changed ordinate scale, while the f vs peak of Figure 6.18(b) is totally inconspicuous.

The authors also conducted experiments with a thinner splitter plate (Lsp/hsp =
224) and otherwise the same dimensions. Interestingly, in some cases it was found
that a weak periodic vortex-shedding signal could be picked up. However, it was
discovered that this was due to sympathetic vibration of the splitter plate! Once the
plate was stiffened, periodic vortex shedding disappeared. Evidently, a sufficiently
flexible splitter plate, in conjunction with a small gap, cannot totally isolate the two
halves of the wake, allowing periodic vortex shedding to be established.
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Figure 6.18. (a) Hot-wire locations to detect periodicity in the wake; (b) power spectrum of
a hot-wire measurement of velocity fluctuations at location 13 without splitter plate; (c) same
location and U, with splitter plate (Paı̈doussis, Price & Ang 1988a).

Now, Panesar and Johns’ splitter plate was even more compliant (longer and
slightly thinner). Hence, the foregoing offers the most likely explanation to their
paradoxial observations. Additional contributing factors could be that the experi-
ments were conducted in an open-section wind tunnel, where a part of the shell
is “unprotected” by the splitter place, but still subject to some flow, albeit smaller
than U, as well as being subject to flow over the open top, making the flow very
three-dimensional. In contrast, in the Paı̈doussis, Price & Ang experiments with
clamped-clamped shells, both the shells and the splitter plate spanned the wind-
tunnel working section; for cantilevered shells, an edge plate near the free top was
used in most cases to reduce three-dimensional effects.

In conclusion, a properly designed, stiff splitter plate, even when placed gsp

downstream of the shell, is capable of wholly suppressing periodic vortex shedding –
but, as stated previously, ovalling occurs just the same.

The authors also investigated the possibility of acoustic effects destroying or
altering any r = integer relationship; but this was also negative.

6.5.3 Dénouement

Summarizing all of the foregoing, it may be stated that (i) the initiation of ovalling
can be very abrupt, i.e. a small increment in U results in a steep rise in amplitude
(Paı̈doussis et al. 1982a; Katsura 1985); (ii) if the amplitude in a particular mode is
eventually decreased, giving rise to a resonance-like hump in the amplitude versus
U curve, this hump can be uncharacteristically broad for this to be a true resonance
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in structures of such low internal damping – unless there were lock-in; (iii) there is
no lock-in. Even if one still imagined this to be a resonance phenomenon, it would
have to be a positive act of faith to accept that it is a subharmonic resonance with
r anywhere between 2 and 13! In any case, r is not necessarily an integer either at
onset or at “peak” amplitude of ovalling. Finally, the phenomenon can also occur in
the total absence of the purported driving mechanism.

At this point, circa 1988, it may be said that the evidence against vortex shedding
being the underlying case of ovalling was overwhelming.

The only question that remains to be answered is why at the onset of ovalling
r � integer so frequently. Two plausible explanations may be offered, and both
mechanisms involved are probably operative; they are described below.

The first proceeds as follows. Suppose that the ovalling threshold for a particular
system is at U = U1. Suppose also that at U ′

1 = U1 − ε, where ε is small, there should
exist a relationship r f vs = f n,m in the mode concerned. Then, it is possible that
ovalling is triggered at U ′

1 by subharmonic reinforcement of the mechanism causing
ovalling.

The second hypothesis suggests that ovalling occurs at its “natural” Uthr by
some mechanism, but its onset may entrain f vs, if sufficiently close to f n,m/r, to yield
f n,m/f vs = integer by organizing the wake subharmonically; some evidence, albeit
not conclusive, exists for this explanation (Paı̈doussis, Price & Suen 1982a).

In any case, an alternative explanation, based on another and more plausible
mechanism for ovalling, has been available as of 1982, as described in Section 6.6.

6.6 Simple Aeroelastic-Flutter Model

As an alternative to the vortex-shedding hypothesis, an aeroelastic-flutter model
was proposed by Paı̈doussis & Wong (1982). More refined versions of the model are
presented in Sections 6.7 and 6.9. Here, the simplest form of this model is developed,
so that the reader can easily grasp the essentials.

In this analysis, the shell is initially idealised to be infinitely long, so that the
problem may be treated as two-dimensional. The cross-flow is further simplified by
regarding the entire field as quasi-irrotational. The wake is separated from the outer
flow by a dividing streamline. Within the wake, the von Kármán vortex street is
totally ignored, giving a zero flow velocity in this region. Hence, the flow field is
assumed to be steady, except for the disturbances arising from the vibration of the
shell. Moreover, it is assumed that the time-averaged positions of separation of the
mean flow from the body surface are unaffected by the small vibrations of the shell.
The effect of turbulence is ignored throughout.

The shell is considered to be purely elastic, homogeneous and isotropic. To study
its stability, a small-amplitude vibration in a given circumferential mode is imposed
on the shell. As this study is principally concerned with the onset of ovalling, the
vibration amplitude is taken to be sufficiently small to allow linear shell theory and
linearised fluid mechanics to be utilised. In the same spirit, the boundary conditions
on the shell surface will be applied at the equilibrium position.

In its essence, the analysis determines the perturbation flow field associated with
shell motions, and then the resultant pressure fluctuations on the shell surface, the
effect of which would indicate whether the initial vibration is attenuated or amplified.
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Figure 6.19. (a) Cross-sectional view of the third circumferential mode of oscillation, showing
the two extreme positions of the middle surface of the shell in the course of a cycle of oscillation;
(b) the system under consideration, defining various quantities used in the analytical model.

6.6.1 Equations of motion and boundary conditions

Consider a uniform, thin cylindrical shell of infinite length, mean radius a and thick-
ness h, subjected to a uniform cross-flow of incident velocity U, as shown in Fig-
ure 6.19(b); the shell is filled with stationary fluid of the same density as the outer
flow. Because the problem is two-dimensional, only planar displacements of the
middle surface of the shell, in the plane of Figure 6.19, are considered: v(θ, t) and
w(θ, t), in the circumferential and radial directions, respectively, measured from the
equilibrium (circular) configuration.

In this case, the equations of motion of a shell of density ρs, Young’s modulus E,
and Poisson ratio ν, according to Flügge (1957) reduce to

∂2v

∂θ2
+ ∂w

∂θ
= γ

∂2v

∂t2
, (6.2)

∂v

∂θ
+ w + κ

{
∂4w

∂θ4
+ 2

∂2w

∂θ2
+ w

}
= −γ

{
∂2w

∂t2
− qr

ρsh

}
, (6.3)

where κ = h2/12a2, γ = ρsa2(1 − ν2)/E and qr = pi − pe, with pi and pe being, re-
spectively, the internal and external pressure on the shell surface.

These equations being linear, the pressure difference qr may be separated into
two components: qr0 (θ), which is due to the static loading of the mean flow, and
q∗

r (θ, t), which is due to perturbations associated with shell deformations character-
ised by v∗(θ, t) and w∗(θ, t). Considering deformations associated with qr0 (θ) to be
negligible,∗ (6.2) and (6.3) may be viewed as relationships among q∗

r , v∗ and w∗, from
which the static components have been filtered out.

Since the flow field is assumed to be irrotational outside the wake, a velocity
potential �(r, θ, t) may be defined by

vr = ∂�

∂r
, vθ = 1

r
∂�

∂θ
,

∗ For the shells used in the experiments, this may be considered to be supported by experimental
evidence: the natural frequencies of oscillation of the shell with and without flow are essentially the
same.
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where vr(r, θ, t) and vθ(r, θ, t) are, respectively, the radial and tangential velocities
at position (r, θ). Because � must satisfy the Laplace equation, which is linear, one
may further let

�(r, θ, t) = φ0(r, θ) + φ∗(r, θ, t),

where φ0(r, θ) is associated with the mean flow, and φ∗(r, θ, t) with the perturbation
flow field due to oscillations of the shell. Once �(r, θ, t) is known, the pressure may
be determined from Bernoulli’s equation for unsteady flow,

∂�

∂t
+ 1

2
V 2 + p

ρ
= 0, (6.4)

where p is the static pressure measured relative to the stagnation pressure of the free
stream, ρ is the fluid density, and V 2 = v2

r + v2
θ ; the F (t) term normally appearing on

the right-hand side of (6.4) may be suppressed for incompressible flow (Lamb 1957) –
or alternatively may be considered to have been absorbed in ∂�/∂t.

It is noted that φ0 is associated entirely with the external flow, and may be defined
in terms of the radial and tangential velocities on the surface of a stationary cylinder,
i.e.

∂φ0

∂r

∣∣∣∣∣
r=a

= 0,
1
a

∂φ0

∂θ

∣∣∣∣∣
r=a

= U f (θ), (6.5)

where f (θ) may be determined empirically, or by semi-empirical methods such as
that developed by Parkinson & Jandali (1969). Because all ovalling experiences
have occurred in the Reynolds-number range Re = 104 to 106, the boundary-layer
thickness on the shell prior to separation is sufficiently thin for the pressure change
across it to be negligible. The local steady-state velocity just outside the boundary
layer may then be related to the surface static pressure p by Bernoulli’s equation
for the steady flow, so that

f (θ) ≡ {vθ

∣∣
r=a/U

} = (1 − Cp )
1
2 for |θ| ≤ βs, (6.6)

where Cp is the pressure coefficient defined by

Cp = (p − p∞)/ 1
2ρ U2,

in terms of the free-stream static pressure p∞; βs is the angular position of the point
of separation. In the wake, the surface flow may be considered to be negligible, so that

f (θ) = 0 for π ≥ |θ| > βs. (6.7)

Here, f (θ) was determined empirically in terms of the measured Cp for a rigid
cylinder in cross-flow. For example, using Roshko’s (1954) data for Re = 1.45 × 104

and employing a least-squares-fit technique, f (θ) may be approximated by the fourth-
order polynomials

f (θ) = 1.6073|θ| + 0.5700|θ|2 − 0.9394|θ|3 + 0.1714|θ|4

for |θ| ≤ 1.484 rad (85o), (6.8)

f (θ) = 1.5137|θ| + 0.5128|θ|2 − 0.9418|θ|3 + 0.1733|θ|4

for |θ| ≤ 1.396 rad (80o), (6.9)
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for a cylinder without and with a splitter plate, respectively. The flow is symmetric
relative to the stagnation point (θ = 0).

Turning next to the perturbation velocity potential φ∗, it is noted that it has
components associated with both internal and external fluids, φ∗

i and φ∗
e respectively.

In view of (6.4), they give rise to pressure fluctuations

p∗
i = −ρ

∂φ∗
i

∂t

∣∣∣∣∣
r=a

and p∗
e = −ρ

{
∂φ∗

e

∂t
+ U f (θ)

a
∂φ∗

e

∂θ

} ∣∣∣∣∣
r=a

, (6.10)

correct to first order of small quantities, having introduced the approximation V 2 �
U2 f 2(θ) + 2 U f (θ)a−1(∂φ∗

e/∂θ)|r=a.∗

Finally, φ∗
i and φ∗

e may be related to the shell deformation. For a fluid particle on
the outer surface of the shell, the radial velocity is given by

∂φ∗
e

∂r

∣∣∣∣∣
r=a

= Dw∗

Dt
� ∂w∗

∂t
+ 1

a
vθ

∣∣∣∣∣
r=a

∂w∗

∂θ
;

assuming that U f (θ) � (∂φ∗
e/a∂θ)|r=a, this may be simplified further to

∂φ∗
e

∂r

∣∣∣∣∣
r=a

= ∂w∗

∂t
+ U f (θ)

a
∂w∗

∂θ
. (6.11)

Similarly, for the internal fluid

∂φ∗
i

∂r

∣∣∣∣∣
r=a

= ∂w∗

∂t
. (6.12)

6.6.2 Solution of the equations

For harmonic shell motions, it may be assumed that

φ∗ = R(r) T (θ)eiωt,

which substituted into the Laplace equation, in cylindrical coordinates, gives

r2

R
d2R
dr2

+ r
R

dR
dr

= − 1
T

d2T
∂θ2

= λ2,

where λ2 has to be a positive integer in order to satisfy the condition φ∗(θ) = φ∗(θ +
2π). Hence

T (θ) = A1 cos λθ + A2 sin λθ,

for some constants A1 and A2, to be determined.
So far, all observations on the ovalling process have revealed that, independently

of the circumferential mode excited, either a node or an antinode faces the free
stream. Therefore the analysis will be restricted to conform to either of these two

∗ Of course, it is realised that the mean-flow component of (6.4), after (6.6) and (6.7) have been
substituted in it, is incorrect, because it corresponds to a mean pressure distribution such that the
pressure in the wake is effectively equal to the stagnation pressure. This relation, however, is not
used (nor is it useful) in this analysis, the assumption having been made that the steady pressure
field induces no appreciable deformation of, or stresses in, the shell.
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observed conditions. For the type of oscillation with an antinode facing the free stream,
the symmetry of the flow field would render

vθ

∣∣∣∣∣
θ=0

= U f (0) + 1
a

∂φ∗
e

∂θ

∣∣∣∣∣
r=a,θ=0

= 0,

and, in view of the symmetry of the steady cross-flow, f (0) = 0, leading to

(∂φ∗
e/∂θ)

∣∣r=a,θ=0 = 0 .

This clearly implies that T (θ) = A1 cos λθ for such configurations. The cases with a
node facing the free stream may be tackled in very similar fashion (Paı̈doussis &
Wong 1982).

Now, it may easily be seen that

R(r) = Dr−λ + Erλ,

for some constants D and E. Physically, one would expect φ∗
e → 0 as r → ∞ and φ∗

i
to be finite at r = 0. Hence, the perturbation potential, external and internal to the
shell, must take the form

φ∗
e = eiωt

∞∑
λ=0

D(λ)r−λ cos λθ, φ∗
i = eiωt

∞∑
λ=0

E(λ)r−λ cos λθ. (6.13)

To proceed with determining D(λ) and E(λ), w∗ is expanded in series form

w∗ = eiωt
∞∑

l=0

Bl cos(2l + 1)nθ, (6.14)

so chosen that the number of nodal points for the nth mode be 2n, as required.
Consequently, v∗ must have the similar form∗

v∗ = eiωt
∞∑

l=0

Al sin(2l + 1)nθ. (6.15)

Now, substitution of (6.14) and (6.13) into (6.11) yields
∞∑

l=1

λD(λ)a−λ−1 cos λθ = Un
a

f (θ)
∞∑

l=0

Bl(2l + 1)sin(2l + 1)nθ − iω
∞∑

l=0

Bl cos(2l + 1)nθ.

For a particular λ = λj , one may solve for D(λj ) by multiplying both sides by cos λjθ

and integrating over θ from 0 to π, whereby it may be shown that

D(λ) = −2
π

aλ+1

λ

{
1
2

iωπ

∞∑
l=0

Bl δλb − U
a

∞∑
l=0

Blb
∫ π

0
sin bθ cos λθ f (θ)dθ

}
, (6.16)

for λ = 1, 2, 3, . . . , where b = (2l + 1)n and δλb is the Kronecker delta. D(0) is arbit-
rary, because only the derivative of φ∗

e is specified at the boundary.
By similar means one may obtain

E(λ) = iω
λ

a1−λBl δλb, (6.17)

for λ = 1, 2, 3, . . ..

∗ For a node facing the free stream φ∗
i and φ∗

e in (6.13) involve sin λθ instead of cos λθ, and cos(2l + 1)nθ

is replaced by sin(2l + 1)nθ in (6.14) and vice versa in (6.15).
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From (6.13) and (6.16) it is obvious that p∗
e will be specified in terms of a

double series, and some simplification is desirable before proceeding further with
the analysis. Fortunately, the modal shapes are adequately described by the leading
terms in the series of (6.14) and (6.15), suggesting

w∗ = eiωtB0 cos nθ, v∗ = eiωtA0 sin nθ ; (6.18)

the validity of this approximation was tested a posteriori by repeating the analysis
with a three-term approximation; the difference in the results was found to be
negligible. Then, letting p∗ = P∗eiωt, one obtains

P∗
e =ρB0

{
2
π

U2n
a

f (θ)
∞∑

λ=1

F1(λ) sin λθ − Uiω f (θ) sin nθ

− 2
π

iω Un
∞∑

λ=1

F1(λ)
λ

cos λθ − ω2a
n

cos nθ

}
− ρ iω D(0), (6.19)

P∗
i = ρ B0 ω2 a

n
cos nθ − ρ iω E(0), (6.20)

where F1(λ) = ∫ π

0 f (ξ) sin nξ cos λξ dξ.
Finally, substituting (6.18) to (6.20) into (6.2) and (6.3) yields two equations of

the form

a11 A0 + a12 B0 = 0, a21 A0 + a22 B0 = 0,

where

a11 = n2 − γω2, a12 = n, a21 = 1
2 nπ,

a22 = 1
2π{1 + κ(n2 − 1)2 − γω2}

+ γ

ρsh

{
−ρ

aπ

n
ω2 − 2ρU F1(n) iω + ρU2 2n

πa

∞∑
λ=1

F1(λ) F2(λ)

}
,

and F2(λ) = ∫ π

0 f (ξ) sin λξ cos nξ dξ. For nontrivial solutions of A0 and B0, the asso-
ciated determinant must vanish, giving the characteristic equation for the frequency
ω – which will generally be complex.

The foregoing analysis applies to shell deformations such that an antinode faces
the free stream. Using a similar approach, the case of a node facing the stream has
also been investigated; the reader is referred to Paı̈doussis & Wong (1982).

6.6.3 Theoretical results and comparison with experiment

Calculations were conducted for an infinitely long shell of radius, thickness and
material properties identical with one of the shells tested in the experiments to
be discussed next, namely, a = 38.1 mm, h = 0.51 mm, E = 0.28 × 1010 N/m2, ρs =
1.29 × 103 kg/m3 and ν = 0.4. The complex frequencies f (≡ ω/2π) (in Hz) of the
second and third circumferential modes are shown in Figure 6.20 in the form of an
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Figure 6.20. Argand diagram of the complex frequencies f of the second and third modes of
an infinitely long shell in cross-flow, as functions of the dimensionless flow velocity u. �, 2nd
mode, no splitter plate; �, 2nd mode, with splitter plate; �, 3rd mode, no splitter plate; �, 3rd
mode, with splitter plate (Paı̈doussis & Wong 1982).

Argand diagram, for increasing dimensionless flow velocity u, defined by

u = U
{
ρs(1 − ν2)/E

} 1
2 . (6.21)

As internal dissipation (material damping) has not been included in the theoretical
model, the frequencies in Figure 6.20 at u = 0 are wholly real. For u > 0, however, it is
seen that second-mode oscillation (n = 2) with a node facing the stream is associated
with a negative aerodynamic damping, i.e. Im( f ) < 0; if, on the other hand, an
antinode faces the stream, the motion is aerodynamically positively damped. The
opposite is true for third-mode (n = 3) oscillations. It is also seen that similar results
are obtained in the presense of a splitter plate, except that in this case |Im( f )| is
generally smaller.

These results may be interpreted as follows. With increasing flow velocity the
vibration frequencies remain almost constant, as the values of Re( f ) for u > 0
are only slightly lower than the corresponding ones for u = 0. The aerodynamic
damping, however, conveniently characterised by the logarithmic decrement δad =
2πIm( f )/Re( f ) decreases almost linearly with u, as shown in Figure 6.21. For
sufficiently high flow velocity, the negative aerodynamic damping associated with
each of the two modes will eventually exceed the corresponding dissipative-modal-
damping logarithmic decrement, δmd; at that point the net energy transfer from the
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Figure 6.21. Variation of the negative aerodynamic damping −δad with dimensionless flow
velocity u for the n = 2 and n = 3 modes of an infinitely long shell in cross-flow. Symbols are
as in Figure 6.20 (Paı̈doussis & Wong 1982).

fluid to the shell exceeds the energy lost through dissipation, and oscillations will be
amplified, i.e. this is the threshold of instability in the mode concerned.

Thus, the mechanism of instability is recognised as being that of single-degree-
of-freedom flutter, rather than the so-called classical two-degree, or coupled-mode
flutter.

As an illustration of how Figure 6.21 may be utilised, consider the case of a
shell without a splitter plate and with modal damping δmd = 0.02 for both n = 2 and
n = 3. Then, as the threshold of flutter occurs when δmd = −δad, with the aid of Fig-
ure 6.21 one obtains the critical flow velocities associated with second- and third-
mode flutter, namely, u(2)

c = 2.50 × 10−3 and u(3)
c = 11.75 × 10−3.

These theoretical results were compared with some experimental ones for
clamped-clamped shells from Suen (1981), similar to those described in Sec-
tion 6.4.2. It is obvious that measurements of δmd are necessary to be able to com-
pare with −δad. The manner in which these measurements were made is described
in Appendix B.
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Table 6.4. The natural frequencies and modal damping of the
shell tested. The natural frequencies given here are those
associated with the first axial mode of the shell

Circumferential Natural frequency Damping logarithmic
mode number n Re( f ) [Hz] decrement δmd

2 155 0.031
3 225 0.034

For a typical clamped-clamped shell and ovalling behaviour similar to that shown
in Figure 6.14, the measured modal damping and natural frequency in the n = 2 and
n = 3 nodes are given in Table 6.4. With the aid of Figure 6.21, the experimental
critical flow velocities u(2)

c and u(3)
c for second- and third-mode ovalling could be

determined. Theory and experiment are compared in Table 6.5.
Agreement between theory and experiment, at least for n = 2, superficially

appears to be good. However, the theoretical and experimental third-mode frequen-
cies, Re( f ), are in gross disagreement: 193 versus 225 Hz, casting doubt on the
above results. This of course reflects the difference between the theoretical (infin-
ite length, two-dimensional) and experimental (finite length, three-dimensional)
systems. Moreover, a discrepancy was discovered between dimensional and di-
mensionless quantities at the time of this writing; thus, although the results in
Table 6.5 are believed to be self-consistent, no further discussion will be given
here.

In summary, the results obtained so far indicate that:

(i) shell flutter is possible in the absence of any periodicity in the wake of the
shell;

(ii) for the two modes involved, second-mode flutter should develop with a node
facing upstream, whereas third-mode flutter should develop with an antinode
facing upstream;

(iii) the critical flow velocities, u(2)
c and u(3)

c , are raised somewhat by the presence of
a splitter plate in the wake.

6.7 A Three-Dimensional Flutter Model

An outline of a three-dimensional aeroelastic flutter model is given here, mainly
differing from that in Section 6.6 in that, here, a finite-length shell is considered, with
clamped ends. Details may be found in Paı̈doussis, Price & Suen (1982b).

Table 6.5. Comparison of the negative aerodynamic damping −δmd with
modal damping δmd at the measured critical-flow velocities

n uc δmd (expt) −δad (theory)

Without splitter plate 2 5.5 × 10−3 0.031 0.044
3 6.6 × 10−3 0.034 0.011

With splitter plate 2 6.3 × 10−3 0.031 0.033
3 7.6 × 10−3 0.034 0.005
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6.7.1 The model and methods of solution

Flügge’s (1957) equations of motion for a thin circular cylindrical shell are used,
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+ a4 ∂4w

∂x4
+ 2a2 ∂4w
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∂θ2
+ w
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− qr

ρsh

}
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where

qr = pi − pe; (6.23)

u, v and w are the displacements of the middle surface of the shell, respectively, in
the axial, circumferential and radial directions.

It is assumed that shell deformation in the course of vibration is small, and
variations along x are sufficiently gradual, for the induced flow in the x-direction to
be negligible. This allows the aerodynamic forces at each location x to be determined
by strip theory. Hence, because it has been assumed that the flow field is irrotational
outside the wake, a two-dimensional velocity potential may be defined, such that

vr = ∂�/∂r, vθ = (1/r)(∂�/∂θ), vx � 0, (6.24)

where vr(x, r, θ, t), vθ(x, r, θ, t) and vx(x, r, θ, t) are, respectively, the radial-
tangential- and axial-flow velocities at each position (x, r, θ). Thus, the flow field
is effectively modelled as being two-dimensional; hence, that part of the analysis
given in Section 6.6 may be used here also. Specifically, equations (6.4) to (6.12)
apply here too. Therefore, proceeding as in Section 6.6, the velocity potential, which
must satisfy the Laplace equation, has internal and external components of the form

φ∗
e = eiωt

∞∑
λ=0

D(λ)r−λ cos λθ, φ∗
i = eiωt

∞∑
λ=0

E(λ)rλ cos λθ, (6.25)

where the oscillations are of radian frequency ω and symmetrically disposed about
the (θ = 0, θ = π)-plane; i.e. for shell vibrations with an antinode facing the free
stream.
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The shell displacements may be expressed as follows:

u∗ = eiωt
∞∑

n=0

∞∑
m=1

Anm cos nθ φ′
m, v∗ = eiωt

∞∑
n=0

∞∑
m=1

Bnm sin nθ φm,

w∗ = eiωt
∞∑

n=0

∞∑
m=1

Cnm cos nθ φm, (6.26)

where φm(x) are comparison functions for the axial mode shape of the shell; the
prime denotes differentiation with respect to x. Applying now equation (6.11), in
conjunction with (6.26), gives

−
∞∑

λ=0

λD(λ)a−λ−1 cos λθ =
∞∑

n=0

∞∑
m=1

Cnm {iω cos nθ − (Un/a)f (θ) sin nθ}φm.

Multiplying both sides by cos jθ and integrating from 0 to π yields

D( j) =
(

aj+1

j

) ∞∑
m=1

{
−iω Cjm + 2

π

U
a

∞∑
n=0

nF (n, j)Cnm

}
φm, (6.27)

for j = 1, 2, 3, . . ., where

F (n, j) =
∫ π

0
f (θ) sin nθ cos jθ dθ. (6.28)

In a similar manner, we obtain

E( j) =
(

a1−j

j

) ∞∑
m=1

iω Cjm φm. (6.29)

As mentioned above, these expressions apply to modal configurations with an
antinode facing the free stream. (It is recalled that it was found experimentally that
ovalling occurs with either an antinode or a node facing the free stream.) Similar
expressions for the latter case may easily be obtained; indeed, the expressions for φ∗

e

and φ∗
i are identical to those of equations (6.25), except that sin λθ replaces cos λθ.

With D( j) and E( j) determined, φ∗
e and φ∗

i are now expressed in terms of shell
displacements. Substitution of equations (6.27) and (6.29) into (6.10) yields

p∗
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− ρ eiωtiω D(0),

(6.30)

p∗
i = −ρ eiωt

∞∑
j=1

{
a cos jθ

j

∞∑
m=1

{−ω2 Cjm
}
φm

}
− ρ eiωtiω E(0). (6.31)

Hence, q∗
r ≡ p∗

i − p∗
e has now been determined.
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It is recalled that φ∗
e and φ∗

i have been determined by two-dimensional analysis –
in the (r, θ)-plane; yet, q∗

r = q∗
r (x, θ, t) in the expression above, as φm ≡ φm(x). Thus,

strip theory has implicitly been used to obtain an approximate three-dimensional
expression for q∗

r ; clearly, it remains valid only so long as changes in shell deformation
with x are sufficiently gradual for the induced flow in the x-direction to be negligible.

Substituting now equations (6.30) and (6.31) into (6.23), and the resulting equa-
tion together with (6.26) into (6.22) yields the following set of equations:
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+ {−φm − a4 κφiv
m + 2a2n2 κφ′′

m − (n2 − 1)2κφm
}
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ρsh
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+ ρω i{D(0) − E(0)} = 0.

The prime denotes differentiation with respect to x, and “iv” is the fourth derivative.
To solve these equations, a variant of Galerkin’s method is used. The first and

third equations are multiplied by cos pθ and the second by sin pθ and integrated
from 0 to π. Then the first equation is multiplied by φ′

k and the other two by φk and
integrated from x = 0 to x = L. The eigenfunctions of a clamped-clamped beam are
used as a suitable set of comparison functions φk. Eventually one obtains three sets
of algebraic equations, which may be written in matrix form as

(−ω2[M] + iω[C] + [K]
)⎧⎨⎩

A
B
C

⎫⎬
⎭ = {0}, (6.33)

where A = {A11, A12, . . . , A1M; . . . ; AN1, AN2, . . . , ANM}, with N being the limit of
n and M the limit of m in the summations of equations (6.32), and similarly for
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B and C. It should be noted that the aerodynamic forces contribute terms to all
[M], [C] and [K], and will give rise to, respectively, the virtual mass effect, and
aerodynamic damping and stiffness effects. Indeed, as in the equations of motion
internal dissipation in the shell material is not taken into account, [C] contains only
aerodynamic terms: i.e. it is the aerodynamic damping matrix.

Now, equation (6.33) may easily be transformed into a standard eigenvalue
problem, from which eigenfrequencies of the system may be obtained by the usual
methods.

Three types of solutions were tried, as follows: (i) fully coupled solutions to the
general set of equations, as described in this section; (ii) partially simplified solutions,
where circumferential coupling between modes is considered to be inconsequential;
(iii) simplified solutions where both axial and circumferential mode coupling is
neglected.

In method of solution (ii), u∗, v∗ and w∗ of equations (6.26) reduce to

u∗ = eiωt
M∑

m=1

Am cos nθ φ′
m, v∗ = eiωt

M∑
m=1

Bm sin nθ φm,

w∗ = eiωt
M∑

m=1

Cm cos nθ φm, (6.34)

and all subsequent equations are simplified accordingly. Then, one may choose n
for each calculation and obtain the eigenfrequencies associated with that value of n
only; i.e. f n,1, f n,2, . . . , f n,M. In this case the theory is much simplified.

Even greater simplification is achieved by method of solution (iii), where the
series of equations (6.34) are truncated at M = 1. The elements of [M], [C] and [K],
which now become 3 × 3 matrices, are given by

M11 = −γ f 11, M22 = −γa11, M33 = − {γ + [2(ργ)/(ρsh)](a/n)
}

a11,

Mij = 0 for i �= j ;

C33 = [(ργ)/(ρsh)]
{
(4/π)UF (n, n)

}
a11, all other Cij = 0 ;

K11 = a2g11 − 1
2 n2(1 − ν)(1 + κ)f 11, K12 = K21 = 1

2 an(1 + ν)f 11,

K13 = K31 = aν f 11 − a3κg11 − 1
2 an2κ(1 − ν)f 11,

K22 = −n2a11 + 1
2 a2(1 + 3κ)(1 − ν)c11, K23 = K32 = −na11 + 1

2 a2nκ(3 − ν)c11,

K33 = −a11 − a4κe11 + 2a2n2κc11 − (n2 − 1)2κa11

− {(ργ)/(ρsh)
}{(

4/π2
) (

U2n/a
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λ=1

F (λ, n)F (n, λ)a11

}
,

(6.35)

where

ajm =
∫ L

0
φj φm dx = Lδjm , cjm =
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m dx ,

ejm =
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m dx f jm =
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m dx gjm =

∫ L

0
φ′

j φ′′′
m dx.
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Figure 6.22. Argand diagram of the complex frequencies f 2,1, f 3,1, f 4,1 and f 5,1 of a clamped-
clamped cylindrical shell, as functions of the flow velocity U. Shell parameters: L =
565 mm, h = 0.508 mm, E = 0.28 × 1010 N/m2

ρs = 1.29 × 103 kg/m3
, ν = 0.4; fluid dens-

ity: ρ = 1.204 kg/m3. Both orientations of the (2,1)-mode are shown; in all other cases only one
is arbitrarily given, where the missing ones are the mirror images of those shown (Paı̈doussis,
Price & Suen 1982b).

As was stated at the outset, the specific expressions obtained here pertain to
the case of oscillations with an antinode facing the free stream. The equivalent
expressions may easily be found for the case of a node facing the free stream. One
significant observation that may be made is that, in the latter case, [C] changes sign,
but is otherwise identical to the one given here, while [K] and [M] remain exactly
the same.

6.7.2 Theoretical results

Calculations were made for parameters close to those corresponding to the
Paı̈doussis, Price & Suen (1982a) experiments, so that theory and experiments could
be compared.

Typical results for one such case, with f (θ) as given by equation (6.8), and us-
ing the simplest method of solution (iii) just described, are shown in Figure 6.22.
The results are similar to those in Figure 6.20. More specifically, we stress the
following.
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Figure 6.23. Argand diagram of the complex frequencies f 2,1, f 3,1, f 4,1 and f 5,1 of a clamped-
clamped cylindrical shell, as functions of the flow velocity U. Shell parameters: as in Fig-
ure 6.22, except D = 147.3 mm. The modes shown are oriented with an antinode facing the
free stream (Paı̈doussis et al. 1982b).

(i) For U > 0 (recall no dissipation is taken into account in the model), even-
numbered modes are associated with negative (aerodynamic) damping – i.e.
Im( f ) < 0 – if a node faces the free stream.∗ In the opposite case, where an
antinode faces the free stream, free-shell motions are aerodynamically damped
positively (Im( f ) > 0); i.e. the aerodynamic forces act in the same way as dis-
sipative forces. This is consistent with the observations on the sign of [C] made
in the last paragraph of Section 6.7.1.

(ii) The opposite is true for odd-numbered modes, which are negatively damped –
i.e. they could give rise to instabilities only if the orientation of the ovalling
oscillation is such that an antinode faces the free stream.

(iii) The aerodynamic damping, positive or negative, increases almost linearly with
U, while the oscillation frequencies, Re( f ), are almost constant.

Similar results to those of Figures 6.22 are shown in Figure 6.23 for a shell of
larger diameter, but the same wall thickness, so that h/a is considerably smaller.

∗ In all cases, except for the (2, 1)-mode locus, only results for one orientation of the mode are shown,
to avoid cluttering the figure. The locus of the mode orientation omitted is, in each case, the mirror
image, about the Re( f )-axis, of the one shown.
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Table 6.6. Typical results obtained by the three methods of analysis (fully coupled,
partly coupled and uncoupled) showing the effect of various approximations, for the
system of Figure 6.22. n = N is the number of circumferential modes considered, and
m = M is the number of axial modes

f 2,1(U = 0) f 2,1(U = 18 m/s) f 3,1(U = 18 m/s)
Type of solution N M (Hz) (Hz) (Hz)

Fully coupled 3 3 149.6 148.8-0.461i 203.6-0.284i
Partly coupled 4 1 152.5 151.4-0.462i 204.0-0.290i
Partly coupled 2 1 152.2 151.4-0.468i –
Simplified (uncoupled) 1 1 152.2 151.4-0.468i 204.0-0.295i

In this case the lowest frequency at zero flow velocity is that of the fourth mode,
followed in ascending order by that of the third, the fifth, and the second modes. As
before, negative aerodynamic damping is associated with (i) an antinode facing the
free stream for odd-numbered modes, and (ii) a node facing the free stream for even-
numbered modes. Also, as in Figure 6.22, only some of the results are shown; e.g.
only the locus of the (4, 1)-mode with an antinode facing the free stream is shown,
whereas that with a node facing the stream, which is the mirror image about the
Re( f )-axis of that shown, is omitted. Without further elaboration, it may be stated
that the dynamical behaviour of the systems of Figures 6.22 and 6.23 is qualitatively
similar.

The results shown in Figures 6.22 and 6.23 were obtained with the so-called
simplified method of solution (iii) of the previous section, where both axial and
circumferential mode coupling are not taken into account: i.e. the calculations were
done with equations (6.35). The effect of this rather drastic simplification was found,
a posteriori, to be rather insignificant, as may be seen in Table 6.6. Comparing
typical results obtained by the most general method of solution – method (i) – with
N = 3, M = 3 and those of Figure 6.22 (method (iii): N = 1, M = 1), differences
were found to be of the order of less than 2%.

The results of Table 6.6 effectively indicate that both circumferential- and axial-
mode coupling are rather weak and quite negligible. It should be remarked, never-
theless, that this conclusion cannot be considered to be general; it has been reached
on the basis of a limited set of calculations, with parameters expressly close to those
pertaining in the experimental systems tested previously (Paı̈doussis & Helleur 1979;
Paı̈doussis et al. 1982a), involving low-viscosity epoxy shells in airflow. Thus, this con-
clusion may not be valid, for instance, for shells in liquid cross-flow.

6.7.3 Comparison with experiment

As described in Paı̈doussis et al. (1982a), experiments were conducted with two sizes
of shells: 76.2 and 147.3 mm in diameter.

The 76.2-mm-diameter shells developed ovalling in their second circumferential
mode, with a node facing the free stream. At higher flow velocity, third-mode ovalling
developed, with an antinode facing the free stream (cf. Figure 6.14). In terms of
orientation of the modes, these observations are in qualitative agreement with the
results of Figure 6.22.
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Table 6.7. Theory and experiment compared in terms of predicted and measured ovalling
frequencies and the corresponding threshold flow velocities; the figures in parentheses, for
Uthr, correspond to the case where a splitter plate has been used; the theoretical Uthr were
computed on the basis of the minimum δn,m measured (i.e. δ2,1 = 0.031, δ3,1 = 0.034;
δ4,1 = 0.035, δ5,1 = 0.024)

f n,m (Hz) Uthr (m/s)

Type of shell Mode number Theory Experiments Theory Experiment

76.2-mm-diameter (2,1) 151 155 28.5 16.8–18.4
shells (36.0) (19.3–20.5)

(3,1) 204 225 67.5 21.0–22.5
(87.2) (24.4–25.7)

147.3-mm-diameter (4,1) 122 131 62 13.2–14.2
shells (5,1) 165 190 87 17.2–20.2

The 147.3-mm-diameter shells developed ovalling first in their fourth circumfer-
ential mode, followed by fifth-mode ovalling (cf. Figure 6.15), but other modes were
also excited, although the fourth and fifth were the dominant ones. The orientation
of the modes to the free stream in this case also was as predicted by theory (cf. Fig-
ure 6.23).

Comparison between theoretical and experimental threshold flow velocities,
Uthr, for the onset of ovalling in the various modes observed in the experiments
is made in Table 6.7 – the theoretical results having been obtained as described
in the previous section. The corresponding ovalling frequencies, f n,m, are also
compared.

As may been seen in Table 6.7, agreement between theory and experiment, in
terms of ovalling frequencies, is within 3 and 13%, which is reasonably good. The
principal reasons for discrepancy are thought to be (i) inaccuracy in the value of E
used in the calculations (which was the value supplied by the shell manufacturers),
and (ii) lack of perfect uniformity, e.g. in the wall thickness of the shells.

Discrepancies in the values of Uthr are far greater. Thus, for the first instability
encountered with increasing flow, the theoretical Uthr differ from the experimental
values by 55% at best, for the 76.2-mm shells, and by a factor of 4 for the 147.3-mm
shells. The higher ovalling modes, in each case, differ by correspondingly higher
margins. Here, it should be noted that the experimental ranges of Uthr correspond
to different experimental runs with nominally identical shells. The theoretical Uthr

were determined with the lowest δn,m which was measured, because experimental
errors generally result in overestimating the damping values. (In this connection,
it should be noted that, although great care was exercised in determining δn,m, the
values of δn,m obtained could not be said to be more reliable than ± 20%.)

Clearly, agreement between theoretical and experimental Uthr is not good. Nev-
ertheless, it should be noted that (i) the sequence of modes in which the system
is predicted to flutter, with increasing flow, is the same as in the experiments; (ii)
when a splitter plate is used, both theory and experiments indicate higher threshold
flow velocities for flutter, and (iii) as indicated previously, theory and experiment
agree that ovalling in even- and odd-numbered circumferential modes occurs with,
respectively, a node and an antinode facing the free stream.
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Figure 6.24. Experimental results for a clamped-clamped shell (a) without and (b) with rigid
insert glued in (Paı̈doussis, Price & Ang 1988a).

6.7.4 Improvements to the theory

Some attempts at improvement of the aeroelastic model were made, with the aim of
bringing the theoretical predictions closer to the measured ones. These attempts were
largely successful, as seen in what follows, but equally interesting are the physical
insights gained.

Before describing these improvements, the perplexing findings described in Sec-
tion 6.3.2 are recalled, which suggest that “disrupting the flow” in the wake can have
a major effect on ovalling – indeed, to the extent of suppressing it. The inevitable
conclusion is that the near-flow in the wake plays an important role on ovalling.

Further experiments in this direction were performed (Paı̈doussis, Price & Ang
1988a, 1991), involving a shell clamped at both ends (D = 76.2 mm, h = 0.495 mm,
L = 533 mm, E = 2.8 × 109 N/m2, ρs = 1.29 × 103 kg/m3, ν = 0.4). A rigid (alu-
minium) insert was glued onto the whole length of a segment of the inner surface of
the shell, as shown in the inset of Figure 6.24(b), immobilizing that segment of the
shell (the edges of the insert subtended an angle θ = 74o). By rotating the shell with
respect to the wind, the rigid portion of the shell could be (i) in the front, where it
was expected to have maximum effect, (ii) in the wake, where according to theory it
should have no effect, or (iii) at an intermediate position.

The results without and with the insert are given in Figure 6.24. For this shell,
without the insert, the thresholds of ovalling in the n = 2 and n = 3 modes are very
close (the corresponding measured δmd are: δ21 = 0.049, δ31 = 0.052). The results
with the insert (Figure 6.24(b)) are, as nearly always, somewhat unexpected. When
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the rigid portion is in the forward part of the cylinder, the system is slightly stabilised:
Uthr = 27.8 to 28.7 m/s, as opposed to 21.2 m/s with no insert. This effect is less
pronounced when the centre of the rigid portion is at θ = 90o. (Here, it should be
mentioned that, with the insert glued on, the δmd were increased: δ21 = 0.053, δ31 =
0.11). Finally, when the insert was totally in the wake, the effect was strongest and
no ovalling took place at all – at least up to U = 45 m/s.

Hence, it would appear yet again that not only is the wake important, but near-
wake effects may have a profound influence on ovalling. This has resulted in a
reassessment of wake effects, as in Section 6.7.4(b).

We now present the improvements introduced by Paı̈doussis, Price & Ang
(1988a, 1991) to the model described in Section 6.7.1.

6.7.4 (a) Moving boundary effects
The pressure on the shell may be obtained via the Bernoulli equation for unsteady
flow more systematically, also applying the boundary condition on the moving bound-
ary. Thus, the velocity components on the moving boundary may be expressed ap-
proximately as

Vr |r=a+w∗ � Vr|r=a + ∂Vr

∂r

∣∣∣∣
r=a

w∗ � ∂φ∗

∂r

∣∣∣∣
r=a

+ ∂2 φ0

∂r2

∣∣∣∣
r=a

w∗, (6.36)

Vθ|r=a+w∗ � Vθ|r=a + ∂Vθ

∂r

∣∣∣∣
r=a

w∗ � U f (θ) + 1
a

∂φ∗

∂θ

∣∣∣∣
r=a

+
[

1
a

∂2 φ0

∂r∂θ
− 1

a2

∂φ0

∂θ

] ∣∣∣∣
r=a

w∗.

(6.37)

The Bernoulli equation for unsteady flow is

p
ρ

+ 1
2

V 2 + ∂�

∂t
− (v + ω × r) · ∇� = p0

ρ
, (6.38)

in which ω = 0 because of the assumption of irrotational flow and v � (∂w∗/∂t)êr +
(∂v∗/∂t)êθ, êr and êθ being the unit vectors in the radial and tangential directions,
leading to

p � p0 − ρ

{
∂φ∗

∂t
+ 1

2
U2f 2(θ) + U f (θ)

a
∂φ∗

∂θ

+ U f (θ)
a

∂2φ0

∂r∂θ
w∗ − U f (θ)

a2

∂φ0

∂θ
w∗ − U f (θ)

∂v∗

∂t

} ∣∣∣∣
r=a

. (6.39)

The perturbation potential may be related to shell displacement by the im-
permeability boundary relationship, Vr|r=a+w∗ = Dw∗/Dt, where D/Dt denotes the
substantial derivative. By utilizing equation (6.36) this leads to

∂φ∗

∂r

∣∣∣∣
r=a

= ∂w∗

∂t
+ U f (θ)

a
∂w∗

∂θ
− ∂2φ0

∂r2

∣∣∣∣
r=a

w∗. (6.40)

6.7.4 (b) Wake pressure and pressure fluctuations
The wake has hitherto been assumed to be a stagnant region, where vθ(θ) = 0. As a
result, in the analysis the wake pressure becomes equal to the stagnation pressure.
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To correct for this, it is assumed that

f (θ) = −f (θs) for |θ| > θs, (6.41)

which effectively suggests that there is a quasi-coherent reverse flow on the surface
of the shell in the wake – without supporting physical evidence.

The pressure fluctuations p∗
e on the shell ahead of the separation point may be

determined from equation (6.39) after the static components are filtered out:

p∗
e = − ρ

[
∂φ∗

e

∂t
+ U f (θ)

a
∂φ∗

e

∂θ
+ U f (θ)

a
∂2φ0

∂r∂θ
w∗

− U f (θ)
a2

∂φ0

∂θ
w∗ − U f (θ)

∂v∗

∂t

] ∣∣∣∣
r=a

, for 0 ≤ |θ| ≤ θs. (6.42)

Up to now, the wake was considered to be a “dead zone”; but, as shown in
Section 6.3.2, it is not. It is presumed that shell motions would cause variations of
flow pattern around the body and consequently changes in base pressure. Hence,
equation (6.38) may be written as

p
ρ

+ 1
2

V 2 + ∂�

∂t
− (v + ω × r) · ∇� = 1

ρ

[
pb + ∂pb

∂(w∗/a)

(
w∗

a

)
e−iψ

]
, for |θ| > θs,

(6.43)

where the term [∂pb/∂(w∗/a)](w∗/a)e−iψ has been introduced to account for changes
in the base pressure associated with shell motions in a given mode. Because analyt-
ical expressions for ∂pb/∂(w∗/a) are not available, this quantity was obtained quasi-
statically by measurements on permanently deformed shells for different w∗/a, as
described in Paı̈doussis et al. (1991b). Moreover, because it was found that these
pressure changes lagged substantially behind deformation in the course of shell
oscillations, the phase angle between the two, ψ , was measured as well; these meas-
urements are also described in Paı̈doussis et al. (1991b).

To simplify the analysis, the shape-related base-pressure variations and ψ are
assumed to be independent of θ within the wake, and in the calculations they are taken
equal to the values measured at θ = 180o. The measured base-pressure coefficients
may be approximated by

Cpb = pb − p∞
1
2ρ U2

= H0 + H
w∗

a
,

where H0 and H are constants; it was found that, approximately,

Cpb = −1.37 + 3.79(w/a) for n = 2,

Cpb = −1.47 − 2.38(w/a) for n = 3,
(6.44)

for a node and an antinode facing the free stream, respectively. Thus,

∂pb

∂(w∗/a)
= 1

2 Hρ U2, (6.45)

needed in (6.43) can be determined, with H as given in (6.44).
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Table 6.8. Theoretical (improved theory) and
experimental (weighted average of all tests) values of
Uthr (m/s)

Mode (n, m) Experiment Theory

(2,1) 21.5 24
(3,1) 23.5 19

The experimentally determined phase ψ was found to be quite substantial:

ψ = 40o for n = 2; ψ = 270o for n = 3, (6.46)

for a node and an antinode facing the free stream.

6.7.4 (c) Comparison with experiments
New experiments were conducted with clamped-clamped epoxy shells (D =
76.2 mm, h = 0.490 and 0.495 mm). The results (see Figure 6.24) were quite similar
to those reported heretofore and will not be elaborated upon; the main difference is
that second- and third-mode ovalling thresholds were closer together.

A comparison between the improved theory and the experimental results is given
in Table 6.8. It is obvious that theory now performs much better than heretofore.

Also agreement between theoretical and experimental frequencies, at zero flow
and with flow, including the ovalling frequencies, is very good – being better than
6% for n = 2 ovalling and 11% for n = 3 ovalling.

It is of interest to identify which one of the improvements was mostly responsible
for enhanced agreement between theory and experiment. Without a doubt, this was
found to be the taking into account of base-pressure variations (equation (6.43)
et seq.). Taking this effect into account alone would change the n = 2 and n = 3
entries in Table 6.8 to 26 and 28 m/s, respectively, not too far from the values with all
improvements taken into account.

6.8 An Energy-Transfer Analysis

As a result of the improved agreement between theory and experiment, as in Sec-
tion 6.7.4, it is now more evident than heretofore that ovalling is a flutter phe-
nomenon, which may be adequately predicted by considering it to involve but one
degree of freedom. According to that model, if the energy gained from the fluid
by the aerodynamic force exceeds the energy lost by dissipation in the one mode
considered, then flutter will ensue. This suggests the possibility of a more direct ap-
proach to the determination of the threshold of instability (Paı̈doussis, Price & Ang
1991b).

Thus, suppose that the dynamic pressure around the shell vibrating in the (n, m)-
mode, and hence the work done by these forces, may be determined over a cycle of
oscillation as a function of the flow velocity; this work would represent the energy
input that would go towards sustaining oscillation. If, for a given flow velocity U, this
work were to be just greater than the energy lost by dissipation, this U would clearly
correspond to the threshold of flutter.
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Figure 6.25. The “statically deformed”
shapes (a) for n = 2 and (b) for n = 3 ovalling,
tested in conjuction with the energy transfer
analysis (Paı̈doussis, Price & Ang 1988a,
1991b).

An attempt was first made to obtain the fluctuating pressure on a vibrating
shell via a surface-mounted miniature pressure transducer; however, although this
transducer is very small, weighing only 0.3 g, it was found that the mode shape of
the ovalling shell was substantially distorted by its presence. As a result, a more
circuitous route had to be adopted for finding the same information.

Suppose that the static-pressure difference across the surface of the shell is
known as a function of stationary deformation: pi(θ, w/a) − pe(θ, w/a). Then, the
force on an element of the shell may be expressed as

F = [pi(θ, w/a) − pe(θ, w/a)] (a + w)δθ e−iψ (6.47)

per unit length. For a given amplitude of oscillation, because the oscillation is har-
monic, this is equivalent to the force as a function to time:

F = [pi(θ, t) − pe(θ, t)] (a + w)δθ e−iψ. (6.48)

Hence, the energy input per cycle of oscillation may be expressed as

Wi =
∫ 2π/ω0

0

∫ 2π

0
Re
[
(pi − pe)(a + w)e−iψ]Re (∂w/∂t) dθ dt. (6.49)

The energy dissipated, where damping is modelled via an equivalent viscoelastic
damping coefficient, is given by

Wd =
∫ 2π/ω0

0

∫ 2π

0
Re
[
ρsa h

δmd

π
ω0

∂w

∂t

]
Re (∂w/∂t) dθ dt. (6.50)

It is noted that quasi-static aerodynamics cannot be applied here, because the di-
mensionless ovalling frequencies (reduced frequencies), ω/2aU, are large, typically
O(800); this makes the introduction of the phase angle ψ imperative.

The quantity [pi(θ, w/a) − pe(θ, w/a)] was obtained by measuring the pressure
distribution around stationary deformed two-dimensional shapes of the shell in
the n = 2 and n = 3 modes, the cross-sections of which are shown in Figure 6.25.
They were made of aluminium, approximately 300 mm long and equivalent radius
of 76 mm. They were produced with a NC-milling machine. For the n = 2 mode,
“frozen” amplitudes of 1.80 and 3.10 mm were obtained; for the n = 3 mode, the
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frozen amplitudes were of 2.54 and 3.30 mm. A circular cylinder of the correct radius
was also available as a reference shape.

Each of the cylinders had 19 static pressure taps, spirally located around its
circumference, and was mounted in the wind tunnel with appropriate boundary
layer guards and dummy cylinders of the same blockage so as to span the wind-
tunnel height. Measurements were taken in the case of n = 2 with the long axes of
the ellipses (Figure 6.25(a)) either at 45o or at −45o to the free stream, to simulate
ovalling in that orientation. For the n = 3 modes the cylinders were orientated
with a protruding or receding antinode facing the free stream. The experiments
were done for Re = 3.80 × 104 and 1.18 × 105. Including the circular cylinder, for
each θ there were therefore five measurements of Cp as a function of w/a available
for −0.10 < w/a < 0.10 approximately. For each θ, linear relationships of Cp (θ, w/a)
were obtained, similar to those of equation (6.44), which could be used in conjunction
with equation (6.49).

The phase angle ψ was determined as follows. In the wake, ψ was measured
directly as the phase difference between the displacement of the ovalling cylinder
(measured by an internally mounted fibre-optic probe) and the pressure close to
the shell surface (measured by a miniature pressure transducer 9.5 mm away from
the shell in the wake); it was found possible to do these measurements only for
120o < |θ| < 180o. Ahead of the separation point, 0 < |θ| < 85o, ψ was determined
analytically, essentially by the method of Section 6.7.4 (see also Ang (1983) and
Paı̈doussis et al. (1991b)).

By approximating pi − pe in (6.49) by

pi(θ, t) − pe(θ, t) � 1
2 ρU2 [1 − Cp (θ,w∗/a)] , (6.51)

and approximating Cp as a first-order polynomial, Cp � H0 + H(w∗/a), and invoking
the quasi-static assumption, one obtains

pi(θ, t) − pe(θ, t) � 1
2 ρ U2 [1 − H0(θ) − H(θ,w∗/a)] ; (6.52)

then, considering shell oscillations with an antinode facing the free stream, w∗ �
B0 cos nθ exp(iω0t), the energy gained over a small segment of the shell subtending
an angle θ2 − θ1 may be obtained via equation (6.49),

Wi(θ2 − θ1) = − 1
4 B2

0(1 − H − H0)ρU2 π sin ψ

[
(θ2 − θ1) + 1

2n
(sin 2nθ2 − sin 2nθ1)

]
,

(6.53)

with all parameters evaluated at θ = 1
2 (θ1 + θ2). A table listing H(θ), H0(θ) and ψ(θ)

as a function of U may be found in Paı̈doussis et al. (1991b). By summing over
the circumference, the total energy gained, Wi, per unit length of the shell may be
obtained.

Proceeding similarly, the energy dissipated per unit length is found to be

Wd = B2
0 ρs a h δmd πω2

0. (6.54)

This is clearly a single-mode analysis. However, previous work has shown that
the effect of coupling – both circumferential and axial – is quite negligible (Paı̈doussis
et al. 1982b), at least in airflow.
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Figure 6.26. Energy extracted from the free stream, per cycle of oscillation and unit length,
for the n = 2 mode with a node facing the free stream. At the instability threshold the energy
lost by mechanical dissipation in the experimental shell is equal to the energy gained from the
flow. The experimental critical flow velocity is 21.5 m/s, whereas the theoretical one is 22 m/s
(Paı̈doussis et al. 1991b).

The results for the critical mode (n = 2) of the shell used in the experiments
are shown in Figure 6.26. It is seen that energy balance, in terms of energy gained
and lost, is achieved at approximately U = 22 m/s. This compares favourably with
the measured value of 21.5 m/s, in fact, better than expected; i.e., although good
agreement had been anticipated, the degree of agreement (being better than 1%)
may well be fortuitous. The discrepancy for the n = 3 mode is considerably larger,
with a predicted value of Uthr = 35 m/s compared with the experimental one of
23.5 m/s. Once again, however, it should be recalled that the shell is already oscillating
in the n = 2 mode when the n = 3 mode begins to appear; hence, the predictions
here, which are based on the assumption of pure single-mode ovalling and oscillations
about the undisturbed equilibrium could not be expected to work well in the case
of n = 3.
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Table 6.9. Critical flow velocity, Ucr (m/s), for onset of ovalling:
comparison of the experimental threshold with the theory developed
in this paper

Improved flutter Energy-transfer
Critical mode analysis Experiment analysis

n = 2, m = 1 24 21.5 22

Table 6.9 summarizes the comparison between the flutter analysis via the im-
proved analytical model, the present energy-transfer analysis (of Section 6.7.4) and
experiment; it is judged to be satisfactorily good.

6.9 Another Variant of the Aeroelastic-Flutter Model

This model, in its essence, is a variant of the models of Paı̈doussis & Wong (1982)
and Paı̈doussis, Price & Suen (1982b). It was developed by Mazouzi, Laneville &
Vittecoq (1991) and Laneville and Mazouzi (1996); in the second of these papers,
the mode in which the shell flutters is also predicted.

6.9.1 The flutter model

In Mazouzi et al. (1991), shell motions are described by the Donnell (1933) equations,
which for thin shells are fully equivalent to Flügge’s (Leissa 1993; Amabili 2008).
Hence, the equivalent of equations (6.22) and (6.23) hold true. Also, the fundamental
relations in (6.4) to (6.6) are the same, leading to the same φ∗

e and φ∗
i as in equations

(6.13). Further, taking advantage of the comments leading to (6.18), the simplified
expressions

φ∗
e = eiωtDnr−n cos nθ and φ∗

i = eiωtEnrn cos nθ (6.55)

are adopted directly.
As in Sections 6.6 and 6.7, the flow field is presented to be two-dimensional; thus

v(r, θ, t) = vo(r, θ) + ∇φ∗(r, θ, t). (6.56)

On the surface of the cylinder,

vo
r (a, θ) = 0, vo

θ (a, θ) = 1
a

∂φo

∂θ
, vo

x(a, θ) = 0, (6.57)

where φo is the steady flow-velocity potential. Furthermore, utilizing (6.6) we can
write

vo
θ (a, θ) = U [1 − Cp (θ)]1/2 for |θ| < θs, (6.58)

θs being the angle, from the front, where separation occurs; it is also assumed that

vo
θ (a, θ) = 0 for |θ| > θs. (6.59)

The first divergence from the previous theoretical model is that, instead of using
Roshko’s measurements to determine vo

θ (a, θ) – i.e. f (θ) as in (6.8) – it is obtained
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Figure 6.27. The base pressure coefficient as a function of the Reynolds number according to
Roshko (1954, 1961), Bearman (1969) and Chen (1972); from Mazouzi, Laneville & Vittecoq
(1991).

directly from Parkinson & Jandali (1969), namely

vo
θ

U
= sin β(1 − 2 cos α cos β + cos2 α)

cos δ − cos β
, 0 ≤ |θ| ≤ θs, (6.60)

where

α = 1
2

(π − θs) and cos δ = cos α + sin3 α

K(Re)
,

in which

K(Re) = [1 − Cpb(Re)]1/2
. (6.61)

The azimuthal angle, θ, corresponding to vo
θ is obtained from

sin θ = cos α

[
sec α − cos β

1
2 (sec α + cos α) − cos β

]
sin β. (6.62)

Mazouzi et al. (1991) proceed as follows. By conformal transformation and by sym-
metry, the domain 0 ≤ θ ≤ θs is mapped in the domain 0 ≤ β ≤ π. As expected, this
potential flow model requires two experimental inputs: the mean base-pressure coef-
ficient, Cpb, and the separation angle, θs, both functions of the Reynolds number, as
observed by Roshko (1954, 1961), Bearman (1969) and Chen (1972). Figures 6.27
and 6.28 show a polynomial curve fitting their data. As recommended by Bearman
(1969), Chen (1972) and Parkinson & Jandali (1969), θs should have a value between
80o and 83o for the Reynolds number range 103 ≤ Re ≤ 1.6 × 105. The great ad-
vantage in this model of knowing vo

θ (or f (θ)) as a function of Re must be stressed,
because very high Re may obtain in real ovalling experiences.
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Figure 6.28. The separation angle, θs, as a function of the Reynolds number according to
Parkinson & Jandali (1969), Bearman (1969) and Chen (1972); from Mazouzi et al. (1991).

Next, p∗
i − p∗

e is determined, as in Section 6.6.1, leading to equations (6.10) to
(6.12), and then to (6.19) and (6.20). Hence, so far, the main difference lies in the
determination of vo

θ (a, θ), i.e. f (θ), and the simplification
∑∞

λ=1 F1(λ) � F1(n).
Another difference is that here a dimensional definition of F1(n) is used; there-

fore, in view of the above simplification, we have

F1(n) =
∫ π

0
vo

θ cos nθ sin nθ dθ. (6.63)

Invoking the experimental finding (Paı̈doussis et al. 1988a) that over half of the total
work done by the pressure forces on the shell occurs in the wake, and noting that vo

θ

in (6.63) would be zero therein, the work done by the pressure forces is empirically
taken to be symmetrical with respect to θ = 1

2π, and thus

F1(n) = 2F ∗
1 (n), F ∗

1 (n) =
∫ π/2

0
vo

θ cos nθ sin nθ dθ. (6.64)

The analysis then proceeds as in Section 6.6.

6.9.2 Typical results

Typical results for a cantilevered shell are shown in Figure 6.29. They are quite similar
in nature to those obtained by Paı̈doussis et al. (1982a, 1988a).

However, agreement with Mazouzi’s (1989) own experiments is much better
than anything achieved heretofore, as can be seen in Tables 6.10 and 6.11 (excerpted
from Mazouzi et al. (1991), where more results are given).

The question immediately springs to mind as to the source(s) for the improve-
ment in this variant of the model. This was discussed by Mazouzi et al. (1991). The use
of the Parkinson & Jandali model is discounted because, in the Re range concerned,
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Table 6.10. Comparison of experimental results with theory for clamped-clamped shells from
Mazouzi et al. (1991)

f n,m (Hz) Uthr (m/s)

Test no. Mode (n, m) Theoretical Experimental Theoretical Experimental

S1 (2,1) 152 155 12 16.8–18.4
S2 (3,1) 205 225 21.5 21.0–22.5
S3 (4,1) 122 131 15.6 13.2–14.2
S4 (5,1) 167 190 16.8 17.2–20.2
S5 (5,1) 167 190 20.4 19.3
S6 (2,1) 155 158 18.1 17.9
S7 (3,1) 202 223 21.4 22.5
S8 (2,1) 151 156 15.0 18.4
S9 (3,1) 196 235 19.6 20.5
S10 (3,1) 196 235 22.4 21.1
S11 (3,1) 196 223 21.9 22.5
S12 (2,1) 166 166 20.5 21.5
S13 (3,1) 203 223 27.9 23.5

Reynolds number effects are weak. The question of the “single-mode” approxima-
tion, referred to in the paragraph above the one involving equation (6.63), is credited
with “matching of the solid boundary condition with the flow boundary condition”.
Here, we note that, by removing other modal components, which are damped, the
negative damping associated with any given mode is enhanced. Finally, the assump-
tion leading to (6.64) is considered to be important. Indeed it is; we should say here

Figure 6.29. Predicted threshold flow
velocity, frequency and aerodynamic
damping for Shell L4 (L = 410 mm, a =
60 mm, h = 0.127 mm, ρs = 2.64 × 103

kg/m3, E = 68.96 GPa); from Mazouzi
et al. (1991).
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Table 6.11. Comparison with experimental results for the clamped-free cylindrical shells (tests
with false ceiling), from Mazouzi et al. (1991)

f n,m (Hz) Uthr (m/s)

Shell no. Test no. Mode (n, m) Theoretical Experimental Theoretical Experimental

L1 1 (2,1) 50 47 7 7.8
2 (3,1) 65.5 64.5 4.5 5

L2 3 (2,1) 62 – 7.5 –
4 (3,1) 67.7 66.5 4.6 5.1
5 (4,1) 121 118 9.1 12.6

L3 6 (2,1) 107 – 12 –
7 (3,1) 78.7 76.5 6.5 6.6
8 (4,1) 123 120.5 6.3 9.5

L4 9 (3,1) 127 122 17.5 18
10 (4,1) 136 132 10.6 10.75

L5 11 (5,1) 203 195 – 18

that this empirical and not-too-closely metered modification is mostly responsible
for the improvement; it is capable of almost doubling the negative aerodynamic
damping, thus greatly reducing the theoretical Uthr – e.g. in the results of Table 6.7.

6.9.3 An empirical relationship for Uthr

A very useful semi-empirical collapse of much of the available data on ovalling was
proposed by Laneville & Mazouzi (1996). Starting with a simplified form of the radial
equation of motion while neglecting terms involving κ (see the third of equations
(6.22)), one has

aν
∂u
∂x

+ ∂v

∂θ
+ w = a2 1 − ν2

E

(
−ρs

∂2w

∂t2
+ pi − pe

h

)
. (6.65)

Then, proceeding as in the foregoing, one obtains[
− ω2

(
ρsπ

D
2

L h + ρ
π

2
D2 L

n

)
+ (−1)ζiω(4ρ DULe F1(n))

+
(

2π
hL
D

E
1 − ν2

+ 16
ρn
π

U2F 2
1 (n) Le

)]
Cn,m = 0, (6.66)

where ζ = 1 for an antinode facing the flow and ζ = 2 for a node facing the flow, and
Le is the length of the shell exposed to flow; Cn,m is the maximum shell deformation in
the radial direction in the (n, m) mode. Then F1(n) is calculated, and it is found that
it can be approximated by (−1)n−1/2n for 104 < Re < 105. Thus, the aerodynamic
damping is determined as

(CA)n,1 = (−1)ζ+n−14ρ Le DU|F1(n)|, (6.67)

with F1(n) as above. The next step is to express the structural damping coefficient as
an equivalent viscoelastic-damping coefficient,

(Ceq)n,m = DhLρs δn,m ωn,m. (6.68)
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flow velocity determined by using the flow velocity of the tests (Laneville & Mazouzi 1996).

Then, the rather tenuous approximation is introduced that F1(n) � F1(1) � 0.5 for
all n, since the shell is circular prior to the onset of ovalling. Collecting all results,
one finds (L/Le)Sn,m = 1.22 (Uthr/f n,mD), where

Sn,m = 2
µ

ρD2
δn,m = 2π

ρs

ρ

h
D

δn,m (6.69)

is the Scruton number. This corresponds to the dotted line in Figure 6.30. This
is modified to (L/Le)Sn,m = 1.55 (Uthr/f n,mD) − 0.48, giving a better fit. Thus, the
following semi-empirical relationship is obtained for the threshold of ovalling:

Uthr = f n,mD [0.65(L/Le)Sn,m + 0.3] . (6.70)

The next significant contribution by Laneville & Mazouzi (1996) is the prediction
of the critical mode (n, m)crit for ovalling, and modal sequence thereafter.

Starting with equation (6.50) from Paı̈doussis et al. (1991b) and evaluating the
integral for harmonic oscillations in a given mode, one obtains

Wd = απ2 Dρs h3 δn,m f 2
n,m, (6.71)

αh being a “critical amplitude”. For a given shell, the work due to structural damping
is proportional to

En,m = δn,m f 2
n,m. (6.72)

Now, it is recalled that the work done by the aerodynamic forces is proportional
to U. Because that work and the work dissipated by the structural damping have
to balance at the onset of ovalling, it follows that the order of occurrence of the
different ovalling modes will range from the lowest En,m towards the highest as the
flow velocity is increased. This allows, in a very simple manner, the determination
of the critical mode and the sequence of ovalling modes that follow. This was tested
against experimental data and excellent agreement was obtained.
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6.10 Concluding Remarks

The reader will have realised that, by following a chronological accounting of the
work on ovalling oscillation, the purpose has partly been tutorial, and partly to tell
an interesting tale interestingly.

It was shown that the early hypothesis that ovalling is caused by regular vor-
tex shedding is untenable, although the “battle” towards convincing the vortex-
shedding proponents was long and hard. In the process, an alternative explanation
emerged, namely that ovalling is an aeroelastic-flutter phenomenon. In its initial form
(Paı̈doussis & Wong 1982), the aeroelastic flutter model was found to be in excellent
qualitative, but unsatisfactory quantitative agreement with experiment. The model
was subsequently improved by Paı̈doussis, Price & Suen (1982b) and Paı̈doussis,
Price & Ang (1991). It was found that, to predict the threshold of ovalling satisfact-
orily, empirical input was necessary,∗ regarding the base-pressure variations and the
phase difference in the rear of the shell relative to shell motion (Paı̈doussis et al.
1988a, 1991b). Excellent predictions were thereby possible. The key in this appears
to be the phase difference just described, measured, as it cannot be predicted ana-
lytically. The same holds true in the good agreement achieved by an energy transfer
analysis (Section 6.8); again, the empirical input of phase-difference information
between the pressure acting on the shell and shell motion is essential.

A different approach was adopted by Mazouzi, Laneville & Vittecoq (1991) and
Laneville & Mazouzi (1996), introducing what amount to helpful but sometimes ar-
bitrary “simplifications” which aid in achieving a better agreement with experiment;
this transforms the model to a semi-empirical one. The achievement, however, was
in obtaining a model that (i) is in excellent agreement with experiments; (ii) leads
to a very simple algebraic expression for predicting the ovalling threshold flow ve-
locity Uthr; and (iii) identifies the critical mode (n, m)crit for ovalling, as well as the
sequence of ovalling modes that follow.

In the process of invalidating the vortex-shedding hypothesis, it was found that
a splitter plate in the wake of the shell, far from suppressing ovalling, it energizes it.
This is similar to what was found for another aeroelastic phenomenon: the galloping
of prisms (Section 2.5).

∗ Here, the surprising experimental findings described in Sections 6.3.2 and 6.7.4 are of interest for
their own sake.



7 Rain-and-Wind-Induced Vibrations

Of all cross-flow induced instabilities, rain-and-wind-induced vibrations, referred
to as RWIV, are a special case. They have been identified quite recently and are
certainly a challenge to understand. For the purposes of this book, they somehow
gather together several of the issues that have been presented: hence, they deserve
some treatment, even if the relentless evolution of knowledge on the subject makes
any review soon obsolete.

7.1 Experimental Evidence

7.1.1 Field cases

This surprising case of cross-flow-induced motion was identified in the 1970s on
cables of cable-stayed bridges. First reported by Wianecki (1979), it was described
in detail by Hikami & Shiraishi (1988) as follows. Large-amplitude motion of some
cables occurred in the presence of wind with rain but disappeared when the rain
stopped. This is illustrated in Figure 7.1, where the existence of motion of the cables,
as recorded in situ, is clearly correlated to the occurrence of rain. Similar occurrences
have been reported in various bridges over the years; see for instance Ruscheweyh
& Verwiebe (1995), Matsumoto et al. (1989), Zuo et al. (2008), Ni et al. (2007) and
Main & Jones (1999). Although the cables undergoing such vibrations differed from
one bridge to another, some common features were identified. First, the motion
was specific to the concurrent existence of significant rain and wind, but it stopped
if the wind velocity exceeded some value. Second, only inclined cables (neither
horizontal nor vertical) moved, and only when descending in the direction of wind,
and preferably with the wind slightly skewed. Third, the amplitude of motion, in
the vertical plane usually, was as large as 10 diameters. Finally, in some cases, an
oscillating rivulet of rainwater was observed under the cable.

The practical consequences of these so-called rain-wind-induced vibrations, or
RWIV, are obvious in terms of fatigue of cables and cable anchorage. Avoiding them
is now a design concern in most large projects of cable-stayed bridges, in particular
in regions subject to simultaneous rain and wind risks, which is the case in South-
east Asia. The use of damping systems is efficient but costly, and understanding the
mechanism causing such motion is certainly a requirement to finding a proper cure.

345
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Figure 7.1. (a) Rain-and-wind-induced vibrations of cables in cable-stayed bridges. (b) Evid-
ence that motion is correlated with the presence of rain, from field experiments by Hikami
& Shiraishi (1988). For a given wind velocity, motion of the cable occurs only when rain is
present.

Classical mechanisms such as VIV, wake galloping, galloping, or others have
readily been discarded: the reduced velocity is generally above 20 (no VIV), the
distance between cables is large (no wake galloping) and the cross-section of a cable
with running water is almost identical to that of a dry cable (no section galloping).

7.1.2 Wind-tunnel experiments

A large set of wind-tunnel experiments has been conducted over the years to try to
reproduce the phenomenon observed in situ; see for instance Hikami & Shiraishi
(1988), Matsumoto et al. (1995), Bosdogianni & Olivari (1996), Verwiebe & Rus-
cheweyh (1998), Gu & Du (2005), Flamand (1995), Wang et al. (2005), Alam & Zhou
(2007), Cosentino et al. (2003a), and Matsumoto et al. (2003b). These experiments
differed principally from one another by the way the rain or its assumed effect was
reproduced: this was done either by introducing water droplets in the airflow (using
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Figure 7.2. An inclined cable, with respect to gravity
and to wind.

an upstream shower in the tunnel), by directly creating a running-water rivulet on
the cable by pouring water at its upper end, or by adding an artificial fixed or moving
rivulet-like system on the cable surface. In some tests the rainwater was replaced by
oil to facilitate rivulet formation (Flamand 1995; Bosdogianni & Olivari 1996). They
also differed by the cable model utilised: a straight rigid cylinder has usually been
considered, either fixed or free to move through a spring support. Its position with
respect to the airflow direction is then defined by the yaw angle, β, and with respect
to gravity by the inclination angle α (see Figure 7.2). The cable surface was carefully
controlled, being either PE (Polyethylene) or PP (Polypropylene), which are typ-
ical cable casings. Even the effect of atmospheric pollution has been explored using
soot on the cylinder surface. To avoid scaling effects, most experiments have been
done with cable diameters identical or close to those in situ, typically D = 150 mm.
This led to most experiments being undertaken in large wind tunnels, capable of
withstanding a rain environment.

With all these experiments, a general agreement has been reached over the years
on the following points, showing that there is definitely a wind-and-rain-induced
vibration issue. First, motions of large amplitude, that do not exist without ‘rain’, are
in fact found in a limited range of wind velocity U and direction (defined by angles α

and β). These values are similar to those observed on bridges in natural conditions,
typically U = 10 m/s, β = 35◦, α = 45◦. Second, the magnitude of reduced velocities
involved is more that 20. Third, it was observed that under the effect of rain in
the wind, water drops impact the cable and then flow downwards on its surface.
Depending on the flow velocity and angular disposition of the cable, the flow may
take the form of one or two rivulets, as seen in Figure 7.3. These rivulets are flat,
typically 1 mm high and 20 mm wide on a D = 150 mm cable. When two rivulets
exist, the one on the windward side is higher than that on the leeward side. If the
rivulets are artificially created by pouring water on top of the cable, their geometry
is not significantly different from the rivulets resulting from impacting drops. Finally,
RWIV occur only when an upper rivulet exists, and when it is able to move: an
artificial rigid rivulet generally does not cause motion; and if it does, this is over a
more limited range of parameters. These conclusions lead to questions of two kinds,
some related to the rivulets, which seem to play an important role, and some related
to the possible interactions between the flow, the rivulets and the cable: How do
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Figure 7.3. (a) Rivulets of rainwater on a cable.
Left: a single gravitational rivulet, at low wind speed.
Right: two wind-induced rivulets positioned near the
separation points at higher wind speed. (b) A two-
dimensional section of the cable with flow, gravity
and the liquid film (Lemaitre et al. 2006, 2007).

rivulets form, and what is their position, shape and dynamics, depending on the
parameters of the system? How does the triple system consisting of the cable, the
rivulet and the flow couple in such a way as to produce motions of large amplitude?

7.2 Modelling Rainwater Rivulets

7.2.1 Development of rivulets

As rivulets have been found to be essential in the mechanism of RWIV, the first issue
is to understand how they develop. The problem at hand consists of a film of water
flowing on the surface of a cylinder which is inclined with respect to gravity and
with respect to the airflow. Experimental evidence shows the existence of one rivulet
or two, or none, at various positions around the cylinder. Moreover, the angular
position of the rivulet may fluctuate along the cylinder, in a sort of meandering path
(Wang et al. 2005). Rivulets have been found to be either simple bumps on a flat
liquid film covering most of the cylinder (Cosentino et al. 2003a) or well defined with
contact angles (Wang et al. 2005).

Three types of forces are at work on the liquid film: gravity, capillary forces, and
pressure and friction forces due to the external airflow. The dimensionless numbers
that govern their relative contributions are the Froude number Fr = U/

√
gR and

the Weber number We = ρU2R2/γ, where ρ is the air density, U is its velocity, R
is the diameter of the cable, and γ is the surface tension. The Bond number may
alternatively be used as a combination of these two. In the range of relevant values
of these quantities, U = 10 m/s, R = 0.1 m, γ = 0.1 N/m, we have We = 100 and
Fr = 10, so that the airflow is expected to play a significant role on the equilibrium of
the film. To derive criteria for the existence and positions of rivulets, a simple two-
dimensional configuration has been analysed by Lemaitre et al. (2006, 2007), then
extended to more complex situations by Lemaitre et al. (2010). A similar approach
may be found in Peil et al. (2003), and some further refinements in Robertson et al.
(2008, 2010). Let us consider the case of a cylinder descending in the direction of flow
only, β = π/2, with a uniform liquid film of thickness h0 = εR. Only a cross-section
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is analysed; see Figure 7.3(b). The film thickness h(θ, t) is expected to evolve in time
under the effect of gravity and of airflow loading. By using standard lubrication
theory applied to the case of a film on a cylinder (Reisfeld & Bankoff 1992) the
linearised evolution of the film thickness is given by (Lemaitre et al. 2007)

H,τ = cos θ + 1
2

M Fr2 sin2 α

cos α

(
CP,θθ − 3

2ε
CF,θ

)
, (7.1)

where H = h/h0 and τ = t(gh2
0 sin α/3ν2R) are the dimensionless film thickness and

time, respectively, t being the time, M = ρair/ρwater is a mass ratio and CP, CF are
pressure and friction coefficients around the cylinder; here, the f ,x notation is used
for partial derivative ∂ f/∂x. Equation (7.1) is not sufficient to give the characteristics
of the rivulet that will form, in terms of height and width, because only linear terms
are considered. Yet, it is expected that the rivulet will saturate at the location of
its initial growth. The evolution of the film thickness in equation (7.1) is seen to be
controlled by two terms. The first one, which will dominate at low wind velocities
(Fr � 1), represents the effect of gravity. It is maximum at θ = 0, and leads to
the formation of a single rivulet in the lower part of the cable section. This is the
classical dripping rivulet, Figure 7.3(a) left, referred to hereafter as the gravitational
rivulet. Alternatively, in the limit of large Froude numbers, Fr � 1, the second term
will dominate and rivulets will grow at positions defined by the derivatives of the
pressure and friction coefficients with respect to the angle θ. Two maxima are found,
corresponding to two rivulets, Figure 7.3(a) right, referred to as the wind-induced
rivulets. A transition between these two regimes exists at an intermediate Froude
number which can be computed easily from the parameters: Figure 7.4(a) shows
a comparison between measured positions of rivulets and those predicted using
equation (7.1), as obtained by Lemaitre et al. (2006). The gravitational rivulet, at
θ = 0, is seen to split into two wind-induced rivulets near Fr sin2 α/ cos α = 0.1 for
supercritical values of the pressure and friction coefficients. The two rivulets are then
located near the separation points.

This approach can easily be extended to the general case of arbitrary angles to
derive the lower limit for the existence of rivulets, in terms of the Froude number,
and the position where the wind-induced rivulets will grow (Lemaitre et al. 2010).

7.2.2 Tearing of rivulets

As emphasised by many authors, there is an upper limit in terms of wind velocity
for the existence of RWIV. One of the issues is whether this limit is related to the
destruction of rivulets or to another mechanism. At high wind velocities one may
observe that rivulets are ejected by the wind forces as soon as they start to materialize.
This can be modelled in the simple cross-sectional framework (Lemaitre et al. 2006,
2010). It is assumed that a rivulet on the cylinder surface is limited by triple points,
so that the cylinder is dry outside the rivulet. The evolution with time between the
initial uniform film and this limit state is certainly complex, but only the equilibrium
condition is analysed now. The rivulet will exist as long as capillary forces can resist
shear forces. The former are proportional to the surface tension γ, whereas the later
are proportional to ρU2� , where � is the width of the rivulet. The ratio of the two
scales is ρU2�/γ = Weλ, where λ = �/R. At large Weber numbers it is expected that
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Figure 7.4. (a) Position of the rivulets
on a cylinder inclined in the leeward
direction, as a function of the Froude
number, from Lemaitre et al. (2006).
Data points are experimental; the lines
correspond to the model of equation
(7.1). (b) Domains of existence of rivu-
lets in the space of cable inclination
angle and Weber number, equation (7.3)
(Lemaitre et al. 2010).

the rivulet will be torn off by the wind. A simple force balance yields

1
2ρU2�CF sin2 α = γ(cos φR − cos φA), (7.2)

where CF is an average friction coefficient over the rivulet, and φR and φA are the
receding and advancing angles of the water/air/cable capillary interaction. These
angles correspond to the limit shape of the rivulet before it starts moving in the
windward direction. This limit may be expressed in terms of the Weber number
based on the normal cross-section velocity UN = U sin α , WeN = ρU2

NR/γ, so that
rivulets are expected to exist only when

WeN < 2(cos φR − cos φA)
R

�CF
. (7.3)

Expressing the criteria for rivulet splitting and the criteria for rivulet tearing in
terms of this Weber number, one may define in the Weber-α plane three regions, as
in Figure 7.4(b) (Lemaitre et al. 2010). For low Weber numbers and thereby low wind
velocities, and low inclination angles, only one gravitational rivulet exists. For high
Weber numbers, rivulets do not exist. In between, two wind-induced rivulets exist.



7.3 VIV, Galloping and Drag Crisis 351

This is the region where RWIV is expected. Existing experiments on wind-induced
rivulets are shown on the same graph: they all fall in the domain predicted by the
model. Although these simple models are based on strong assumptions on the two-
dimensional aspect of rivulet formation and flow dynamics, as well as on neglecting
the effect of axial flow of the rivulet, they give a first answer to the questions of how
rivulets appear, locate themselves and possibly disappear. This does not give any
interpretation on the mechanism of RWIV, but, because these vibrations require the
existence of a wind-induced rivulet, this gives some hints on the effect of geometrical
and physical parameters on the possibility of RWIV.

7.3 VIV, Galloping and Drag Crisis

Several interpretations of RWIV, and in some cases quantitative models, are based
on known mechanisms of cross-flow-induced instabilities. The main issue in these
interpretations is, of course, why a rainwater rivulet plays a role in the mechanisms.

Matsumoto et al. (1995, 2003b) proposed that RWIV are actually a special case of
vortex-induced vibrations, VIV. By experiments on yawed cylinders with or without
artificial rivulets they showed that (a) the unsteady lift force had a low-frequency
component, corresponding to a Strouhal number based on the cable diameter as low
as 0.02, (b) this low-frequency component was enhanced by the presence of a rivulet
near the separation point, and (c) with a significant level of upstream turbulence,
this low-frequency force disappeared, except when a rivulet existed. These features
also appeared on the velocity fluctuations behind the cylinder, as illustrated in Fig-
ure 7.5(b). The existence of a low-frequency component is attributed to axial vortices
that are generated by the component of the flow along the cylinder axis, as shown
in Figure 7.5(a). These vortices interact with Kármán vortices and amplify them
periodically, leading to a subharmonic vortex-induced lift on the cylinder. Refer also
to Honda et al. (1995) for related experiments. The corresponding Strouhal number
would therefore be of the form St = St0/N, N being an integer as high as 10, and
St0 the Strouhal number relevant to Kármán wake shedding. This leads to possible
VIV at reduced velocities equal to UR = N/St0. Values of N = 10 and St0 = 0.2 lead
to UR = 50, which is consistent with practical observations of RWIV. In those ap-
proaches, the effect of the orientation angle β is then directly related to the existence
of the axial flow. Yet, the reason why a rivulet would enhance the vortex-induced
vibration phenomenon remains unclear.

To answer this, a first model of the interaction between a rivulet and the oscil-
lating wake exists in the case of classical Kármán shedding: tests on a rigid cylinder
with a true rivulet (Alam & Zhou 2007) showed a significant effect of the presence
of the rivulet on the characteristics of lift. The unsteady lift coefficient increased in
a limited range of velocities, and the frequency of vortex shedding then deviated
from the Strouhal law, as seen in Figure 7.6. It was further observed in a similar
experiment that, in the range of increased lift, the rivulets did in fact move at a
frequency close to that of vortex shedding, when that frequency was close to that of
the capillary mode of the rivulet (Lemaitre 2006). This suggests a mechanism very
similar to lock-in in VIV, as described in Chapter 3, but here between the wake
and the rivulet. Preliminary models showed the possibility of significantly increased
fluctuating lift, even for a small rivulet (Lemaitre 2006). This strong effect is related
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Figure 7.5. Mechanism of RWIV as described by Matsumoto et al. (2003b). (a) In vortex
shedding from a yawed cylinder, axial flow results in amplified Kármán vortices, occurring at
a low frequency. (b) Measurements of the fluctuating lift force show that the presence of a
rivulet near the separation point increases this low-frequency shedding.

to the location of the rivulet at the separation point, which is the most sensitive point
of the wake to external forcing. Such a coupling would generate forces in a range of
frequencies corresponding to Kármán vortex shedding, and is therefore probably not
the cause of what is described as RWIV. Yet, this might be an interpretation of how
low-frequency shedding in relation to axial-flow effects, as described by Matsumoto
et al. (2003b), may be enhanced by the presence of a rivulet.

A quite different interpretation is proposed by Macdonald & Larose (2008); see
also some related work in Cosentino et al. (2003b) and Seidel & Dinkier (2006).
Here again, the flow specificity of a yawed cylinder is the main cause of its motion,
and the presence of rainwater rivulets is just supposed to enhance it. In the general
case of inclination of the cylinder with respect to the wind (arbitrary β angle), the
cross-section of the cable in the wind plane is elliptical, and its axis is not along
the wind direction. A systematic experimental and analytical exploration shows
that galloping of a dry yawed cylinder is in fact possible (Macdonald & Larose
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2006). This is consistent with the concepts presented in Chapter 2 of this book,
but in a rather elaborate form in terms of geometry (see Figure 7.2). Moreover,
in the range of critical Reynolds number, typically Re = 2 × 105, sudden jumps in
force coefficients enhance the phenomenon, consistently with the drag-crisis-induced
instability presented in Section 2.6.1, but again in a more elaborate form. This defines
a scenario for galloping of dry inclined cables (Macdonald & Larose 2006). There is
a possible relation to RWIV, as suggested by Macdonald & Larose (2008), as follows.
In the presence of water rivulets the cylinder roughness is actually modified, and
consequently the critical Reynolds number, so that the possibility of the instability
being enhanced by drag crisis may occur at velocities as low as 10 m/s on a real
cable. This is consistent with field observations. Moreover, Flamand et al. (2001) did
find a transitional flow behaviour caused by a rivulet, and the rivulet motion may
trigger the transition. Note that if the drag crisis effect is a key feature of RWIV, then
the reduced wind velocity is not a relevant parameter; Hikami & Shiraishi (1988)
did in fact notice that the range of wind velocity for occurrence of RWIV did not
depend much on the cable frequency. There is some evidence that part of the motion
observed in RWIV is linked to galloping and Reynolds number transition, as in dry
cables, but enhanced by the presence of rivulets (Macdonald & Larose 2008).

These two approaches, relating RWIV to VIV and to galloping with drag crisis,
respectively, show that some of the excitation causing RWIV may not be so specific,
the rain only enhancing classical phenomena. Yet, they do not allow the emergence
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of a satisfactory picture of the phenomenon, as the role of rainwater in all field-
or wind-tunnel experiments was found to be more crucial in the existence of the
instability than these two approaches suggest.

7.4 Yamaguchi’s Model: A Cylinder-Rivulet-Coupled Instability

The essential, simplest and most widely used model of RWIV, at present, is that
of Yamaguchi (1990). A large number of models, see for instance Van der Burgh
(2004) and Cao et al. (2003), are based on similar basic assumptions with many
refinements. The main originality of this approach is that the rivulet motion is now
considered as a new degree of freedom in the system. In the simple two-dimensional
case of vertical motion of a cross section of the cable, the position of the rivulet is
defined by an angle φ(t), as in Figure 7.7(a). Using the quasi-steady assumption, all
the forces acting on the cylinder and on the rivulet are derived from the lift and
moment coefficients of a cylindrical section together with the small added cylinder.
The derivation of the equations follows the standard pattern used for obtaining
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plunge and torsion galloping equations given in Chapter 2, but some specificities
must be taken into account. First, because the rivulet is free to glide on the cylinder
surface, it is assumed to have a zero stiffness. This is questionable in the case of a
rivulet on a dry cylinder, where capillary forces add a stiffness, as discussed in the
foregoing. Second, it is assumed that the flow-induced moment is only caused by
forces acting on the rivulet. This is certainly the case for a protuberant rivulet, but
less so for a flat rivulet as observed by several authors. Under these assumptions the
coupled linear system reads

ÿ + ω2
yy = aUẏ + bUφ̇ + cU2φ, (7.4)

φ̈ = dUφ̇ + eU2φ + fUẏ, (7.5)

where ωy is the natural frequency of the cable, and the dimensional coefficients
a, b, c, d, e, f depend on the drag, lift and moment coefficients, and on the geometry
and masses of the system (Yamaguchi 1990).

From these equations it appears that the frequency of displacement in the y dir-
ection is independent of the flow velocity (no fluid stiffness in the first equation), but
the frequency of the rivulet motion is entirely flow-dependent: it is even proportional
to the flow velocity. Figure 7.7(b) illustrates the resulting evolution of these two fre-
quencies with the flow velocity. With typical values of the parameters for a cable and
a rivulet (Yamaguchi 1990), these frequencies become comparable near U = 10 m/s.
A straightforward modal analysis of these two equations shows that, at this coin-
cidence of frequencies, the aerodynamic damping of the coupled mode becomes
negative, corresponding to an instability, as shown in Figure 7.7(c). According to this
model, RWIV is therefore a classical plunge-torsion-coupled instability, although the
torsion is not that of the cable but the motion of the rivulet around the cable. Hence,
although the model is simple in its formulation and relies on classical aeroelasticity
theory, it is able to capture two important features of RWIV: the essential role of the
rivulet and the limited range of instability. Yet, there are some strong limitations.
First, the model is two-dimensional, ignoring all effects of the angle β, and of three-
dimensional flow effects discussed in the previous subsection. Then, representing the
rivulet by a small cylinder gliding on a larger one is a crude approximation in terms
of geometry. Moreover, the interaction of the rivulet with the cylinder is affected
by capillary forces and by friction. This model can therefore be considered as a first
step to understanding RWIV, and many improvements have been introduced over of
the years. For instance, Cosentino et al. (2003b) improved the model by taking into
account the effect of the angle β on the geometry, by using a finer approximation
of the load on the rivulet, based on experiments, and by adding some randomness
in the load, to take into account the possibility of switching between laminar and
turbulent states. The model allowed the derivation of the effect of β on the range of
RWIV.

7.5 Concluding Remarks

Although the phenomenon of RWIV is now identified and experimentally docu-
mented, the question of the underlying mechanism is not fully clarified. All the mod-
els presented in this chapter reproduce or clarifiy some aspects of the phenomenon,
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and they probably contribute in some combination to the true mechanism. It should
be emphasised that understanding RWIV poses a real challenge, because of the
presence of a flowing liquid on the bluff body, and because of the three-dimensional
geometry. Experiments and models are recent. Most of them have been published
since the late 1990s and the field remains quite active. The dynamics of rivulet form-
ation is now clearer, and one can expect similar progress on modelling the instability
in the forthcoming years.



Epilogue

Here are some closing remarks on the topics covered, some on what is not covered
and some on what remains to be done to reach “perfect understanding”, fully
realizing, of course, that this is an unattainable goal.∗

Transverse galloping may be said to be well understood and that it can be well
predicted. The same cannot be said of torsional galloping or of mixed transverse-
torsional galloping/flutter, e.g. of bridge decks, or in situations involving substantial
intertwining with vortex shedding. In this regard, the advent of models based on
measured force and moment coefficients as in aeroelasticity has resulted in adequate
predictive ability. However, this has had a deterious effect on the desire for enhanced
physical understanding and on the funding opportunities towards achieving it.

Vortex-induced vibrations under lock-in conditions have received a great deal
of attention over the years. Although understanding and modelling such vibrations
has come a long way over the years, including the past decade, we still have a lot of
ground to cover. Indeed, predictive tools are largely semi-empirical or they depend
on CFD (which bypasses the need to understand physically). Thus, a great deal
remains to be done.

Motivated in the 1970s and 1980s by wind-induced vibration problems on over-
head transmission lines, and more recently by current-induced instabilities on off-
shore structures, wake-induced flutter of small groups of cylinders has received
considerable attention. For wind-induced instabilities, which typically occur at rel-
atively high nondimensional velocities, quasi-steady theory is sufficient to give good
predictions for the onset of instability. However, for cases where unsteady effects
are more dominant, such as in waterflows, the aerodynamic modelling of the wake-
induced forces is still an open question requiring a better understanding of the wake
flow.

Fluidelastic instability of cylinder arrays in cross-flow received a lot of attention
from the 1970s to the 1990s, culminating in fairly reliable design guidelines, at least
for systems not radically different from those already studied. However, the basic
physics requires further work, in particular, the study of near-wake dynamics and
how this is related to the phase lag between cylinder motion and the forces generated
thereby. Also needed is a deeper physical understanding as to fluidelastic instabilities
in two-phase flows. Research in this topic has flagged over the past decade, mainly

∗ Refer, for instance, to the first footnote in Section 2.6.
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because funding has become scarcer, and this because power plants of unusual design,
requiring deeper understanding of possible dynamical behaviour and providing an
impetus for further research, have simply not been commissioned.

The state of knowledge on ovalling instabilities of shells in cross-flow has reached
a reasonable level of maturity, with a remarkable saga of the work leading to the
discovery of their cause and of the battle for convincing others of its correctness.
Still, some questions remain open, but because designers now know how to prevent
ovalling instabilities, this area of research has been dormant over the past decade.

The opposite is true for rain-and-wind-induced vibrations (RWIV), the newest
of all the phenomena covered, with serious study beginning a mere 20 years ago;
ever since, this has been a hotbed of research activity, with several competing models
and explanations, all with valuable facets, yet none totally satisfactory. More work
remains to be done, indeed it is being done, to reach the level of maturity and
understanding already achieved in the other topics covered in this book.

As mentioned in the Preface, several topics, which could have been included in
this book, in fact have not been. An obvious example is wing aeroelasticity. Another
relates to “lumpy” three-dimensional structures for which “cross-flow” is an inap-
propriate designation because there is no obvious long axis. Moreover, for the type
of structures considered, only cross-flow-induced instabilities are treated, whereas
other phenomena, such as turbulence-induced vibrations and vortex-induced vibra-
tions with no lock-in, are left to more general textbooks on flow-induced vibrations.

It has been both interesting and rewarding to write this book. A particularly
interesting aspect has been tracking the historical development of work on each
topic and sorting out contributions and precedence of important ideas. Examples
are contributions made by Roberts and Connors on the fluidelastic instability of
cylinder arrays (Chapter 5), and those by Glauert and Den Hartog on galloping
(Chapter 2).∗ Also important was deciphering what was really new, if anything, in
some theories and what was fundamentally similar, even though appearing different.

∗ It is interesting that, conventionally, we talk about Connors’ equation and the Den Hartog criterion,
although a fairer notation would be the Roberts-Connors equation and the Glauert-Den Hartog
criterion. But then we say America, and not Columbia-America! History and conventional usage
do not always agree.



APPENDIX A

The Multiple Scales Method

This is not meant to be a formal treatment of the method, but rather an illustration
of its use on a simple problem, that of the Van der Pol oscillator, the equation of
motion of which may be written as

d2x
dt2

+ x = ε(1 − x2)
dx
dt

, (A.1)

where ε � 1; refer, e.g., to Nayfeh (1981).
Defining two timescales, that is an ordinary (fast) time and a slow time,

ξ = t and η = εt , (A.2)

and expressing x = x(ξ, η), we can write

dx
dt

= ∂x
∂ξ

dξ

dt
+ ∂x

∂η

dη

dt
= ∂x

∂ξ
+ ε

∂x
∂η

,

d2x
dt2

= ∂2x
∂ξ2

+ 2ε
∂2x
∂ξ∂η

+ ε2 ∂2x
∂η2

. (A.3)

Expanding x in a Lindstedt-type perturbation series,

x = x0 + ε x1 + ε2 x2 + · · · (A.4)

and substituting into equation (A.1), we obtain

∂2x0

∂ξ2
+ 2ε

∂2x0

∂ξ∂η
+ ε2 ∂2x0

∂η2
+ ε

∂2x1

∂ξ2
+ 2ε2 ∂2x1

∂ξ∂η
+ ε3 ∂2x1

∂η3

+ · · · + x0 + ε x1 + ε2 x2 + · · ·

= ε
(
1 − x2

0 − 2x0 x1ε−x2
1ε

2 + · · · ) [∂x0

∂ξ
+ ε

∂x0

∂η
+ · · · ε∂x1

∂ξ
+ ε2 ∂2x1

∂ξ∂η
+ · · ·

]
.
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Collecting terms in ε0 and ε1, we obtain

∂2x0

∂ξ2
+ x0 = 0 , (A.5)

∂2x1

∂ξ2
+ x1 = −2

∂2x0

∂ξ∂η
+ (1 − x2

0

)∂2x0

∂ξ2
, (A.6)

and similar equations for ε2, involving only x2 on the left-hand side, et seq.
Equation (A.5) yields the generating solution

x0 = A(η) cos ξ + B(η) sin ξ . (A.7)

This solution embodies the fundamental character of the motion: it is not simple
harmonic in time but one whose amplitude changes slowly with time.

Substituting into (A.6), we obtain, after expanding powers of trigonometric
functions into simpler forms (e.g. cos3 ξ = 1

4 (cos 3ξ + 3 cos ξ)), we obtain

∂2x1

∂ξ2
+ x1 = [

2Ȧ − A + 1
4 A(A2 + B2)

]
sin ξ

+ [−2Ḃ + B − 1
4 B(A2 + B2)

]
cos ξ

+ 1
4 A(A2 − 3B2) sin 3ξ + 1

4 B(B2 − 3A2) cos 3ξ . (A.8)

Eliminating the secular terms yields

Ȧ = 1
2 A − 1

8 A(A2 + B2), Ḃ = 1
2 B − 1

8 B(A2 + B2) . (A.9)

Introducing polar coordinates,

A = R cos θ and B = R sin θ , (A.10)

both of equations (A.9) become

Ṙ = 1
2R − 1

8 R3 , θ̇ = 0 . (A.11)

To obtain the amplitude of a putative limit cycle we set Ṙ = 0, and we obtain

R = ±2 . (A.12)

To study the stability of the limit cycle, we examine equation (A.11) and put
R = 2 + r. Linearizing about the limit cycle, we have ṙ = [R − 3

8 R2r]r=2 = − 1
2 r,

indicating a diminishing perturbation. Hence, the limit cycle is stable.
In the foregoing the analysis was carried out to only first order; the procedure is

similar if one pursues it toO(ε2) and higher, but it would yield more precise estimates
of the limit-cycle amplitude, as well as corrections to the frequency.
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Measurement of Modal Damping for the Shells
Used in Ovalling Experiments

These measurements were made in situ, with the shell mounted in the wind tunnel
as in Figure 6.11(b), but with the wind turned off. A small shaker excited the shell,
as close to one of its supports as possible, i.e. at a high-impedance point, so as
to minimize coupling between it and the shell. Measurement of the input force was
made via a force transducer attached to the shaker driving rod, and the shell vibration
was picked up by the internally mounted fibre-optic Fotonic sensor. The resonant
frequencies and modal logarithmic decrements were determined by obtaining the
complex impedance of the system at different frequencies and plotting the results
in the form of Nyquist plots (Ewins 1975; Ray et al. 1969; Ewins 1984). Sample
results are shown in Figure B.1. It should be noted that this method is considered
to be precise, so long as the data points fall sensibly on a circle, or a fairly large
arc thereof, which may be seen to be the case in the results of Figure B.1. Once the
resonant frequency, f ∗

n,m, has been determined (which lies at the absolute maximum
of the circle, parallel to the imaginary axis), then, given f 1 and f 2 of any of two other
data points lying on the circle and the corresponding angles φ1 and φ2, the modal
logarithmic decrement is found to be (Ewins 1975)

δn,m = 2π( f 2 − f 1)/
[
f ∗

n,m(tan φ1 + tan φ2)
]

.

To interpret these measurements fully, one must also determine the values of n
and m associated with each f n,m. For cantilevered shells, this could be done visually by
observation from above, through the transparent ceiling of the tunnel. For clamped-
clamped shells, however, this was not a trivial task. The value of n was determined by
mounting the Fotonic sensor on a rotating platform and taking readings at different
azimuthal locations at the same cross-sectional plane. For the dominant ovalling
modes, these measurements were taken with the shell excited by the wind; for
secondary modes, however, the shell was excited by the shaker at the appropriate
frequencies. Typical results for the fourth and fifth mode of one shell are shown
in Figure B.2. The Fotonic sensor system was not recalibrated at each azimuthal
location, a very time-consuming task; as a result – as the centres of the rotating
platform and the shell were probably not perfectly coincident, nor the reflectivity of
the shell surface perfectly uniform – these measurements should be considered as
identifying the mode concerned, rather than giving the precise modal shape.
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Im  (Impedance)

Re (Impedance)

Figure B.1. Typical Nyquist plots obtained for the measurement of the natural frequen-
cies and modal damping of clamped-clamped shells. (a) For shell B, (2,1)-mode: f 2,1 =
154.4 Hz, δ2,1 = 0.042; (b) for shell O (with damping material applied), (3,1)-mode: f 3,1 =
223.0 Hz, δ3,1 = 0.071; (c) for shell G, (4,1)-mode: f 4,1 = 130.2 Hz, δ4,1 = 0.043; (d) for shell
G, (5,1)-mode: f 5,1 = 182.6 Hz, δ5,1 = 0.037.

Figure B.2. Measurements of the circumferential mode shape corresponding to different
resonant frequencies, obtained by rotating the Fotonic sensor inside the shell ovalling in the
wind; (a) (4,1)-mode and (b) (5,1)-mode of a 147.3 mm diameter shell (shell G).
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The axial modal shape was determined by traversing a Fotonic sensor along a
vertical line on the surface of the shell. In some cases two Fotonic sensors were used,
one trained on the upper part and the other on the lower part of the shell, so that the
phase difference in cross-spectral-density analysis of their signals revealed whether
the mode in question corresponded, say, to m = 1 or m = 2.
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Hopf, 9
pitchfork, 9
secondary, 9
subcritical, supercritical, 12

Bluff body, 2, 4, 19
Bond number, 348
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Ellet’s Wheeling, 103
Tacoma Narrows; see Tacoma Narrows Bridge

Bridge decks, 90–102
aerodynamic derivatives, 92–94
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coupled-mode flutter, 91, 96
eigenvalue-based approach, 97
equations, aeroelastic, 92

Miyata, 99–100
Scanlan et al., 92, 96

experimental methods
direct, 93
indirect, 93

flutter derivatives; see aerodynamic derivatives
galloping; see also Galloping, translational;

Galloping, torsional
torsional, 18, 66–77, 91
translational, 18, 30–54, 91

in-plane motion, effect of, 99–100
iterative techniques, 98
notation, 90, 93
numerical methods, 101
Scanlan and co-workers, equations, 92,
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single-degree-of-freedom flutter, 96
stability boundary, 97

approximate rational functions, 98
eigenvalue-based approach, 97–98
iterative techniques, 97, 98
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cylinder arrays, 217
transmission lines, 160

Bundle galloping, 191
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Combined galloping and vortex-induced

vibrations, 86–90, 197
risers, 197

Control
of galloping, 101–102

Corona discharge, 161
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Cylinder arrays
acoustic resonance, 219
active/inactive supports, 265, 266,

268
fluidelastic instability, 215–290
geometry, layout, 215
heat-exchanger, 215–219
in-line square, 217, 274–285
multiple-span tubes, 266, 267, 271–273
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rotated square, 215, 284
rotated triangular, 215, 284
tube-support impact, 267–269
wear, 217, 266

Damping
aeroelastic, in ovalling, 322
structural, measurement of, 321, 361–363

Divergence, static, 6, 9
in cylinder arrays, 223, 224, 252, 284
torsional, 69

Drag crisis, 62, 64, 351
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dimensionless, 8
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Energy transfer, 12, 335
Energy transfer analysis, ovalling, 334–338

comparison with experiment, 338
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Lever & Weaver models, 249–252
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detuning, 228, 245
flow retardation, 221
galloping, similarity to, 222, 230, 254
quasi-steady assumption, 221, 255
static divergence, 223, 224
stiffness-controlled wake flutter, 224–230
time delay, 221

memory function, 260
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CFD, 262, 265
comparison with experiment, 277–285
constrained mode, 229, 255–257
inviscid, 262–264
jet-switch, 232–235
kernel of flexible cylinders, 224, 249, 251
nonlinear, 265–270
nonuniform flow, 270–274
quasi-static, 235–239
quasi-steady, 254–261
quasi-unsteady, 259, 260
semi-analytical, 249–254
semi-potential, 262, 263
single-flexible-cylinder, 258
two-degree-of-freedom, 225, 227

phase lag; see time delay
Price & Paı̈doussis models, 255, 258, 262,
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quasi-steady assumption, 220, 247, 255
Reynolds number, effect of, 289
Roberts’ jet-switch model, 232–235
stability curves
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multiple instability regions, 222, 252,
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stability maps

Chen’s, 276
Paı̈doussis’, 276
Pettigrew & Taylor’s, 277, 278
Price’s, 279–283

state of the art, 287–290
stiffness-controlled, 224–230, 255
Tanaka & Takahara’ model, 239–244
time delay, 221, 256, 261
two-phase flows effects, 248, 253, 261, 289
Whiston & Thomas work, 237, 238
Yetisir & Weaver model, 249–254

Fluidelastic instability, risers
Blevin’s model, 208–210
Bokaian & Geoola model, 204–208
bulk motion, 196
clashing, 213, 214
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experimental results, 196–200
field tests, 198–200
fluid-force coefficients, 203
Price, Paı̈doussis & Al-Jabir model,

200–204
static instability, 200
Wu, Huang & Barltrop model, 208, 209

Fluidelastic instability, transmission lines, see
wake-induced flutter 183

Flutter
coupled-mode, 9, 10

Paı̈doussis coupled mode, 10
single mode, 9

Frequency
integral relationship, 294, 298, 300, 304,

311–312, 314
of oscillation, 105, 127, 138, 140
of vortex shedding, 111, 113, 116, 122, 132, 135,

148, 293, 296, 297, 298, 304, 313
ovalling, 292, 295, 305, 310, 330, 341, 342

Froude number, 348

Galloping, 15, 18, 106, 149, 346, 351
bridge decks, 18, 90–102
criterion

Den Hartog/Glauert, 21
initial angle of attack, effect of, 38
Slater’s extended, 38

definition, 15–16
heave; see Galloping, translational
low-speed, 43, 50–55
multi-degree-of-freedom

quasi-steady models, 77–81
unsteady models, 72, 81, 90–102

ocean-current-induced, 19, 64
risers, 196–197
rotational; see Galloping, torsional
streamwise; see Wake breathing
torsional; see Galloping, torsional
translational; see Galloping, translational
transmission line, 160
transmission lines bulk motion, 191
turbulence, effect of, 81–86
vortex-shedding, conjoint with, 86–90
wind-induced, 18, 19, 103–104

Galloping, torsional, 18, 66–77, 91
experiments, 72–75
fluid-memory effect, 72–73
H-shaped components, 66, 90–102
L-shaped components, 66
low-speed, 55, 84–85
moment-coefficient derivative, 55, 69–70, 75
numerical study, 75
quasi-steady analysis linear, 67–70

Blevins’ model, 68–69
critical flow velocity, 69
degenerate, long-arm system, 70
moment coefficient derivative, 69, 75
reference angle of attack, 67
reference relative velocity, 67

quasi-steady analysis, nonlinear, 70–72
Blevins & Iwan model, 70
degenerate, long-arm system, 70–72
Modi & Slater model, 70
van Oudheusden’s work, 70–71

quasi-steady theory, disqualification, 72–75
contrary findings, 73–75
Nakamura & Mizota’s work, 72–75
Washizu et al. work, 75

rectangular prisms, 66–70, 73
triangular prisms, 66
unsteady theory, 75–77, 90–102
wedge oscillation, 66

Galloping, translational, 18, 19–62, 91
afterbody, effect of, 30–33, 37, 46–49, 81
analytical model, 43–45, 82
beam galloping, 41–43, 44
characteristic length, 22, 23, 69
corner shape, 38, 47
criterion for; see Galloping, criterion
critical depth, 47, 51, 53, 84
critical flow velocity, 24, 26, 27, 29

low-Re limit, 30
with Scruton number, 30

dimensionless parameters
Novak’s, 33
Parkinson & Smith’s, 25

experiments
nonrectangular, 36–38
square and rectangular, 25, 29, 30, 35,

44–55
turbulence studies, 81–86
vortex-shedding, conjoint, 86–88
with splitter plate, 55–62

flexible structures, 41–44
flow field, effect of, 45–50, 59–62
flow profile nonuniformity, 35–36, 42–44
force-coefficient derivative

definition, values, 23, 32
hard-oscillator galloping, 34, 35, 47
hysteresis, 18, 27, 30, 34–36, 40, 43
low-speed galloping, 50–55

definition, 50–51
experiments, 51–53
map of occurrence, 53, 57
numerical studies, 53–54
torsional, 55

Luo-Bearman model, 43, 45
map of occurrence, 53, 57
mass ratio, 25, 33, 64
mass-damping parameter, 24
mechanism, 19–22, 45–50, 57–59
nonlinear aspects

amplitude of galloping, 15, 26, 34, 38–43
critical flow velocity, 26, 33–35, 38–43
hysteresis, 30, 34, 35
laminar flow, 30
limit cycle, 26–29
limit-cycle amplitude, 26, 34, 40–45
limit-cycle stability, 26–27
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Method of Multiple Scales, 26, 79, 90, 359–360
Novak’s model, 31, 33–35, 38–43
Parkinson & Smith model, 24–27
phase-plane diagrams, 27–29

Novak’s model, 31, 33–35, 38–43
numerical (CFD) models, 35–37
Parkinson & Smith model, 24–27
quasi-steady assumption, 22–23, 50
rectangular prism

section shape effect, 30–37
section shape effect of, 31–40

D-section, 16, 31–32, 35, 47, 55, 84
elongated; see Bridge decks
H-section; see Bridge decks
L-section, 32, 37, 39
rectangular section, 32, 33–37, 46–49
square section, 30, 35, 38, 44, 86, 88
trapezoidal section, 37
triangular and other sections, 37–38

shear-layer/edge direct interaction, 48, 60
shear-layer reattachment, 19, 35, 47, 49–50, 88
soft oscillator galloping, 34, 47
splitter plate, galloping with

cylinders, 55, 60–61
prisms, 55–60

subcritical Hopf bifurcation, 34–36
supercritical Hopf bifurcation, 34
suppression, 62, 101–102, 104
threshold, linear, 23–24, 26, 33–34
threshold, nonlinear, 34–37
transmission lines, 18, 77–78
turbulence, effect of, 81–85
universal response curves, 29, 38–41
unsteady effects, 43, 51–55, 75–77
vortex impingement, 50
vortex shedding, conjoint with, 86–90

Bokaian & Geoola model, 90
Corless & Parkinson model, 88–90

wake undulation, 49, 51, 58, 60, 62

Heat exchangers, steam generators, 215–219
Hysteresis

cylinder arrays, 233
galloping, 30, 34, 35, 90

ILEV, 50, 150, 152, 153
Impinging leading edge vortices; see ILEV
in-plane motion, effect of, 99
Instability

drag-crisis-induced, 64, 351
energy considerations, 12, 41
induced excitation (IIE), 2

Jet-switch model, fluidelastic instability, 232–235

LEVS, 50, 150, 153
Lift force on leeward of two cylinders

origin of lift force, 166, 167
buoyancy mechanism, 166

circulation mechanism, 166
resolved drag mechanism, 166

Lift, fluctuating
coefficients, 106
coefficients (phased), 118, 130, 132, 143
force, 117, 118, 120

Limit cycle
galloping, 26–27, 34, 64, 71, 73
oscillation, 6
stable, 6–8, 9
unstable, 8

Lock-in, 116, 123, 124, 129, 130, 132, 135, 136, 138,
139, 142, 144, 145, 147, 152, 153

Low-speed flutter, 43, 50–55

Mass parameter, 17
Mass ratio, 5, 24, 61, 64, 105, 218, 349
Mass-damping parameter, 24, 87, 124, 129

cylinder arrays, 221–224
Mode veering, 10
Moss Landing Harbor, 291
Motion-induced vortices, 49, 50, 51
Movement-induced excitation (MIE), 2

Negative damping, 6
Negative stiffness, 6
Notation, 13

cylinder arrays, 218
galloping, 17, 31, 91–93
ovalling, 293
vortex-induced vibrations, 105
wake-induced instabilities, 155

Numerical simulations, 53–54, 101, 108, 262–265

Oscillation
limit-cycle, 6
self-excited, 2, 4, 6

Ovalling
aeroelastic model; see Aeroelastic model,

ovalling
chimney stacks, 291
definition, 291
energy transfer analysis, 334–338
experiments, 293–295, 296–302, 304–311,

312–313, 319–322, 330, 331, 334, 340–342
clamped-clamped shells, 307, 311, 321,

329–331, 334, 341–342
damping aeroelastic, 321, 322
damping, effect of, 311
damping, measurement of, 321, 361–363
edge plate, effect of, 296, 303, 305–306
mode identification, 297, 304, 361–363
rigid shapes, 335–336
separation point, effect of, 302
splitter plate, effect of, 301, 304, 309, 312–313
Strouhal number, 293, 300, 301, 306, 308,

331
top plate, 304; see edge plate

integral frequency relationship, 294, 296, 299,
304, 312, 314
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node/antinode orientation, 306, 307, 317, 319,
320, 322, 327, 328, 329

pressure coefficient, 316, 333, 336, 339
shell equations

Donnell’s, 338
Flügge’s, 315, 323

silos, storage tanks, 292
splitter plate

effect on ovalling, 301, 304, 312–313
subharmonic resonance, ovalling, 295
threshold

analytical, 321, 322, 327–328, 330, 341, 342
empirical relationship, 342–344
experimental, 295, 305, 310, 330, 334, 341, 342

vortex-shedding hypotthesis
demise, 301, 304–311
hypothesis, modified, 311–312
hypothesis, original, 291–292, 293–296
rebuttal, 311–314
synchronous vortex shedding, 310

wavenumber
axial, definition, 292
circumferential, definition, 292

Positive definite aerodynamic damping matrix,
test for, 165, 166

Prism
definition, 15
galloping, 15–90

Quasi-steady assumption, 22–23, 71, 91, 94
cylinder arrays, 220–221, 245, 254

Rain and-wind-induced vibrations, 345
Alam & Zhou model, 351
field cases, 345
galloping and drag crisis type model, 353
Lemaitre et al. model, 348, 349, 351
MacDonald & Larose model, 352–353
Matsumoto et al. model, 351
VIV-type model, 351
wind-tunnel experiments, 346
Yamaguchi model, 354, 355
yawed cylinder, 351, 352, 353

Reduced flow velocity, 5, 17, 105, 131, 155, 218, 347
Repelling solution, 12
Reynolds number, 110, 112, 113, 114, 116, 122,

124, 136, 153, 293, 351, 353
critical, 112

Risers
fluidelastic instability; see Fluidelastic instability

risers
geometric configurations, 195

Rivulet, 345, 346, 348, 351
development of, 348, 349
tearing of, 349, 350

Routh stability criteria, 173

Saddle point, 6
Scanlan et al. work on galloping, 96

Scruton number, 30, 124, 158
Sectional form, equation, 5
Self-excited oscillation, 2, 4, 6
Shear layer, 110, 111, 151
Shear-layer reattachment, 19, 33, 35, 37, 46–48,

49–50, 88
Shear-layer/edge direct interaction, 48, 60
Shell equations

Flügge’s, 315, 323
Donnell’s, 338

Skop-Griffin number, 124, 128, 136
Splitter plate

effect on ovalling, 301, 304, 309, 312–313
galloping, 50–60

Stall flutter, 18
Streamwise oscillation; see Wake breathing
Strouhal

law, 123, 128, 132, 135, 138, 144, 148, 351, 352
number, 106, 111, 113, 114, 136, 146, 150, 153,

351
universal, 112, 150

Subharmonic resonance, ovalling, 295
Sub-span oscillations, 158; (see wake-induced

flutter)

Tacoma Narrows Bridge, 2, 18–19, 81, 90, 94,
102–103

Torsional flutter; see Galloping, torsional
TEVS, 150, 153
Tourbillion, aerial, 16
Trajectories (in phase plane), 6
Transmission line dynamics

blow-back angle, 167–169, 176
catenary effects, 192
full-span modes, 167
in-plane modes, 167
out-of-plane modes, 167
quad bundles, 161, 169, 170
spacers, 161, 167
spacers dampers, 182
structural damping matrix, 170
structural mass matrix, 170
structural stiffness matrix, 170
sub-span modes, 161, 167
triple bundles, 182
twin-bundle, 161, 167–170

Trip-outs, 160

Unstable
in the large, 8
in the small, 8

Vibration
flow-induced, 3

Virtual fluid-dynamic mass, 5; see also Added mass
VIV

advanced aspects of, 139
models, 124

classification of, 124
coupled system, 132
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fluidelastic system, 129
forced system, 127
Hartlen and Currie, 134

noncircular cross-sections, 149
impinging leading edge vortices, 150
lock-in, 152
Strouhal number evolution, 150

phenomenology, 108
risers, 196–199
three-dimensional, 146
transmission lines, 160
two-dimensionnal, 108

Vortex shedding, 1, 111
frequency, 116
patterns, 115

Vortex-induced vibration; see VIV
Vorticity, 107, 110, 113, 115, 141, 151

Wake
capture, 116
cylinder forced to move, 115, 116, 120
cylinder free to move, 120, 123, 124
dynamics, 147
fixed cylinder, 112, 113
instability, 110, 111, 138
oscillator, 106, 134, 135, 141, 143, 144, 145, 146,

148
Wake breathing, 62–66

drag crisis, 62, 64
first kind, 62–64
second kind, 64–66

Wake-induced flutter, transmission lines
aerodynamics

aerodynamic data, 171–175
free-streamline model, 164
lift crossover point, 174
lift peak, 175

field trials, 178, 194, 195
frequency detuning, effect of, 194
spacer dampers, effect of, 195
turbulence effect of, 178
yaw angle, effect of, 195

mechanisms, 155–162
model with fixed windward conductor,

158
aerodynamic damping matrix, 165, 166
aerodynamic stiffness matrix, 165, 166

comparison between theory and experiments,
177–179

damped theory, 179
damping-controlled mechanism, 157
frequency coalescence, 173
frequency detuning, effect of, 191
hard-oscillating flutter, 177
nonlinear results, 179–183
self-starting flutter, 177
structural damping, effect of, 181–183, 188
structural parameters, effect of, 174–176
time lag, time delay, 157
undamped theory, 173
wake velocity, 156, 162, 163

model with three-dimensional effects, 192
finite-element methods, 192
frequency detuning, effect of, 194
insulators effect of, 192
Price, Allnutt & Tunstall model, 194
Rawlins’ model, 193
Simpson & Flower model, 184–187
spacer dampers, effect of, 194
transfer matrix, 192
Tsui model, 193

models with moving windward conductor, 183
Rawlins’ model, 184
Simpson & Flower model, 184–187

effective wake position, 185
flow retardation, 186
retarded variables, 185
windward conductor acceleration, effect of,
185
wake-bunching, 185

Tsui & Tsui model, 183, 184
Wake-induced galloping, 160
Wavenumber

axial, definition, 292
circumferential, definition, 291, 292

Wear, 217, 266
Weber number, 348, 349, 350
Wind

bridge-deck, 90–102
engineering, 102
-induced oscillation

galloping, 15–90
bridge decks, 90–102

quartering, 18
Work done, 12, 335
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