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PREFACE
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required every graduate student to pass a comprehensive examination in
the fundamentals of classical and modern physics before allowing the
student to begin his thesis research for the Ph.D. This examination, called

the ‘‘Basic” in the early days, and now known officially as the “Car d idacy

Exam,” is given i 8 eommities of

auu, 10 1V UTIl1L

members 1s assigne

We present here a selection of problems from these exams, together with

solutions. It is our hope that the collection will be useful to students as a
in

e
g and improving their underqtanqu of the subject
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student; only after honest effort should he consuit the solutions.
We have trled to make each solution self-contained and coherent, and
we have strived to avoid reproducing material found in standard textbooks.

(o9

expected of a second-year graduate student at the University of Chicago.
The solutions were prepared by two of the authors, Jeremiah A. Cronin
and Dav1d F Greenberz The thlrd author, Professor Valentlne L.
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particular, they would like to thank Dr. Sol Krasner of the Physics Depart-
ment for his numerous contributions. They are grateful to the Department

for its support and encouragement, and to the secretarial staff of the
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The names of those faculty members of the University of Chicago Physics
Department who have served on the Candidacy Examination Committees

over the vears appear below:
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EDWARD ADAMS, II
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RICHARD H. DALITZ
RUSSELL J. DONNELLY

PETER G. O. FREUND

HELLMUT FRITZSCHE
RICHARD L. GARWIN

aAva adeo v aaN

NORMAN M. GELFAND
MURRAY GELL-MANN
CLAYTON GIESE

MARVIN L. GOLDBERGER

. KRUSE
ANDREW W. LAWSON
RICCARDO LEVI-SETTI
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MARIA G. MAYER

PETER MEYER

ROBERT 8. MULLIKEN
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PETER D. NOERDLINGER
REINHARD OEHME
EUGENE N. PARKER

JOHN R. PLATT

MICHAEL PRIESTLEY
FREDERICK REIF

CLEMENS C. J. ROOTHAAN
J. J. SAKURAI
MARCEL SCHEIN

JOHN A. SIMPSON

EDWARD T
ROBERT W. THOMPSON
DEREK A. TIDMAN

WILLIAM ZACHARIASEN
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Problems

Mathematical Physics
Mechanics
Electromaznetlsm
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Quantum Mechanics
Thermodynamics
Statistical Physws
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Nuclear Physics .
or the Experimentalist
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Solutions

Mathematical Physics
Mechanics
Electromagnetism
Electronics
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Quantum Mechanics
Thermodynamics
Statlstlcal Physws
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1. A community practices birth control in the following peculiar fashion.

Each set of parents continues having children until a son is  born; then hey

atann What ia tha ratina nf havae +n airla in thiag anmmiimity if in tha ahaaneca

DUUP. YV 1lQvV 10 ViIV 1a/ViV Vil UVUYyYyPD vuU BIIID 411 V111D vvilliiiliuiinv ddy 111 VIIV @yWOwvViIVVY
o RSV | ~ 1 ~10/ £ o _ 1 ) I 1 _ 1_0

OI DIrtn contvroi, 917/, Ol tne pables DOrn are Mmale:

2. A die consists of a cube which has a different color on each of 6 faces.
(a) How many dlstlngulshablv different kinds of dice can be made?
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5. A certain process has the property that, regardiess of what has transpired
in an interval [0 to t], the probability that an event will take place in the

mterva,l (¢, (¢ —I— k)] is Ah. Assume that the probability of more than one
babi llfv that at a time ¢,
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for the distribution
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6. There are about 6500 stars visible to the naked e Sometlmes two

stars appear very close together, th
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(a) Assuming the stars to be distributed at random on the celestial sphere,
compute the expectation value of the number of optical double stars with

a separation of no more than 1’ of arc.

i had axrssa sal\’/ ass s v va



2 MATHEMATICAL PHYSICS—PROBLEMS

(b) What is the probability that there are precisely two optical double

™

(c) Estimate roughly the probability of an optical triple star.

7. Find eigenvalues and normalized eigenvectors of the matrix

[0 0 0 l\
o 0o 1 ol
M= _ |

[0 1 0 Of
\1 0 0 of

8. Let A (¢ = 1,2,3) be the eigenvalues of the matrix
[ 2 —1 —3\
\—3 2 3/

Calculate the sums

3 3
(a) “_fl, A and (b) “é";'.

10. Consider a symmetric second-rank tensor T with components 7'y (z,
k=1.23).

{2l Show that there axiat three invarianta sav 7. I. I. with reanect to
(&) Show that there exist three invariants, say 1o, 1, f5, with respect to
At adas tnanmnafimmnadlicing accnntatad =24l M

cCoorainave transiormavions, a8sociatea wit

i1 A.

(b) Associate a surface 1 = 3 . T X; X, (X; = Cartesian coordinates) with
T. Give interpretations of the three invariants in terms of properties of
the surface.

11 MM hat ana 4ha nacidwnrnag ~AF tha FfANlAwing Frrmnndianag ot +4ha nAatnéas 1Al
j 9 YVIIAV 4l VLVIIU 1UOSLIUUTCS Ul VIIC 1ULIUWILIL p 1VVIUIIDS av VUIIC PUIIIUB 11141~
a 1n
cated?
2
1\ ea o d 5 o N 1.\ l ad 5~ o N
() — at z2=0, (D) == atz=20
2 sind 2
160 MNalnslada
P V1Y wvailivuiavo
+ oo
lim J 5 dzk 3 with a>0.
00 J - (K — a@* — 1€)
13. Evaluate
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MATHEMATICAL PHYSICS—LI’ROBLEMS

7

i)

cos (z?) in a Fourier integral.

(z)

4

Calculate
Develop [

14.
15.

1t

-
7

P
b

"3

[

a® + b® + 2ab cos ¢

The gamma function is defined by

Show that

20.
21.

‘m

valuate by contour integration

E



4 MATHEMATICAL PHYSICS—PROBLEMS

23. Evaluate the series —_— ——

o v
(=) _ 7= s
=t 720 __,_/

0 —+

l
1 2
4

o+

3

by contour integral techniques. [Hint: Use the fact that the function
1/(sin zz) has poles along the real axis at 2z =0, 41, 42, ... Consider the
contour above.]

24. Consider the analytic function

s I' 2z
Fz) =p@)In|1 —=—(1 — P(z))l
[ w
with p(z) = A/(2 — a)/z. Here a is real and positive. Choose the branch lines
for p(z) along the real axis from —oo to 0 and from a to oco.
(a) Discuss the Riemann surface of F(z)
(b) Show that there is one sheet where F(z) may be represented in the form
' Ws)
F(Z) —F(20)+(z_20) | /o ‘Ao JUIEY
J \§ — 2)\S — =0)
and determine W(s)
25. Evaluate
. — [t  dx
lima/'n | 70w
N—soo v —oo\d T W
where 7 is a positive integer.
. L e~ i
26. Compute f(a,b) = | (dz/z) (e7** — e™=).
v
27. Find the sum of the following infinite series
S=1+42x 4 32 +42* +--- for|z] <]1.

28. A generating function F(z, t) of the Hermite polynomial H,(z) is
F(z,t) = e~¢" = 3, Hy(z)t*/k!
k=0

(a) Express H,(x) as a contour integral.
(b) Prove that H,(x) satisfies Hermite’s differential equation

M—zx‘t—-}-ZnH:Oi
dz? dx
4 A\ MNoadeena 4hn caladdaa
‘b’ AJCUULUC LIIC 1TC1auvlvIl
dH,

T (z’ = lnﬂn |(z)



MATHEMATICAL PHYSICS—PROBLEMS 5

29. A generating function for the Legendre. polynomials P,(x) is
(z,7) = = 3 riPyz)
(1 —2zr 4+ 7Yz i=0

Q

x=cosb,|r|<1.
Prove that xPj(x) = P;_,(z) + [P,(x) where Pj(z) = dP,(z)/dx.

30. Given the Laurent series for e*/¢-12) a8 31> _A,2" where 4, = J,(u),
obtain an expression for the Bessel function J,(u) as an integral from —=

1AV

.
to w of a trigonometric function

31. The function ¢(z, y) is given on the plane z = 0. Find, for z > 0, a
solution 4r(z, y, z) of Laplace’s equation that reduces to ¢(z, y) on the plane

z2=0.

32. Show that

oo
—»ooghd 7 1

K,y(z) = | eT=end
satisfies Bessel’s equation of zeroth order and imaginary argument, that is
Ko(z) = Jo(iz). Show that K,o(z) has the asymptotic form De~%/+/ z for very
large z; give the value of the constant D.

33. Calculate jr-iA over the surface of a torus
34. Calculate the volume V of a four-dimensional unit sphere:
x, = r sin ¢, sin ¢, cos P,
x, = r 8in ¢, s8in ¢, sin ¢,
xy = r 8in ¢, cos ¢,,
x, = r Cos q>,.
35. Gaseous helium is flowing without turbulence at a velocity v down
a pipe and into the atmosphere. Within a very short distance from the end
of the pipe, the helium is rapidly diluted to essentially zero concentration.
A
— | |
\ /
N/
x<0 x=0 x>0
Set up and solve the differential equation for the concentration of air in the
pipe a8 a function of distance from the end of the pipe. Assume equilibrium

conditions, neglect wall friction and end effects, assume no temperature
difference, and assume that the coefficients of diffusion of O, and N, into
Ho aro the same and equal to D.



6 MATHEMATICAL PHYSICS—PROBLEMS

. The equ a,tlon describing the neutron density in a chain reacting pile
Vin 1+ K?

bl o
7] g

n —

(a) Wlth the Dounaa.ry COII(llDlOIl Dn&l) the neutron aensmy be finite a,na
positive everywhere, and that it vanish outside the pile, find the radius of

a spherical pile for a given value of K.

E‘

(b) Now suppose that a thin layer of material of thickness ¢ is added to the
arrnfo nn and 4had +ha nazsdnan Aancrder 2w +ha Taseran ey Aacnnmihad her
Bul.l.dibc, allu viia v VIlC 1CUvV1IUI1l UcILILS Uy 111 VI1C 1 ycl. i ) ucosviipyou v
o2 2

Vin — u’n =

Assume the boundary conditions at the interface are that n and grad n
are continuous. Demanding that n vanish outside the pile and material

layer, find for fixed values of K, 1 and ¢, an expression for the radius of th

ﬂ] "n"‘.f\“ A ﬂﬂl‘m;ﬂn Y // s I]ﬂ"‘."n [ % 21 ﬂ““"f\v‘mn*ﬂ "ﬂlﬂ“.l\“ nmrm +1\A
111V aiovl 1L Uslullo ﬂﬂﬁumlllé F 3 RS "l’ Uuviivvuv il ayt.u Vallllavyu 1vuiovivil 1vul viiv
difference between the radii without and with the layer.

37. A point source of neutrons on the axis of a long square column of graph-
ite 150 cm on a side emits 10® neutrons per sec. Calculate the flux of neutrons
at a Domt on the axis 1 m f, the source if the diffusion coefﬁc1ent of the

o n n {‘rnn
\ ) divww



N

e

>

)
)

1. Derive the form of Stokes’ law by dimensional analysis. Assume that
i t P of the luid. What hnnnpnﬂ when

2. A gas bubble from a deep explosion under water oscillates with a period
T ~ p°dPet where p is the static pressure, d the water density, and e the total
energy of the explosion. Find «, b, and c.

that this results in a rate of change in the radial distance r given by
dr/dt = —C, where ositive constant, sufficiently small so that the
loss of energy per orblt is small compared to the total kinetic energy. Obtain

Q
w SD
\E -

~ 1 4 _ 2 AN _

4. A pOan mass m unuer no exwrnal IOI‘CES lS &UU&CIHCU 10 a we1g‘nuess COI‘(l
fixed to a cylinder of radius R. Initially the cord is completely wound up so
that the mass touches the cylinder. A radially-directed impulse is now given
to the mass, which starts unwinding.

—o
|

(a) Find the equation of motion in terms of some suitable generalized coor-
dinate,



8 MECHANICS—PROBLEMS

5. Consider a lawn sprayer consisting of a spherica

rFy v (=]
with a larce numher of eaual holea t ater ia elecnted wit
VY A VAL - A 6v AAGALRLA RS A A v\iuwl AANS AWAI YaAA. ua‘l AAA AR VY WVWA ALY VJ WV VWA YV AWVAA
alonlier 2n Mo losin o mmd cicifmsmmnler cmmacrad 3£ dlboce LoTleoc oon acaclan
\A-(0 HLY Uo. LIX 1a 1 I8 11OV UuIlllol 1 1 ycu 11 VIICSE 11018 a4l Evell

spaced. How must p(a), the number of holes per unit area, be chosen to
achieve uniform spraying of a circular area? Assume the radius of the sprin-

kling cap is very much less than the radius of the area to be sprayed, and
the surface of the cap is at the level of the lawn.

VAAT Diea AtV Vil VSSpe

o

6. Find the differential equation for the contour of a constraining surface

nint maass un" nacillate with e 'nnrlnr] ﬂnnonr] t of the am.
\JALA WV vl‘l“vv ¥V AVAA r NIA lll“ l‘uvllv \JA VAAW QVALL

7. Three masses (m,, m,, m,), forming the corners of an equilateral triangle,
attract each other according to Newton’s Law. Determine the rotational
motion which will leave the relative position of these masses unchanged.

a circular orbit of radius r, under the influence of

is _lvm/r" Show that the circular or

9. Two particles move about each other in circular orbits under the influence
of gravitational forces, with a period . The motion is suddenly stopped
at a given instant of time, and the particles are then released and allowed

S 111 11C/ 1

mm T a na
AV. 11 Ie alllu lJe alT ViIIU Talvil o 1a

responding quantities for the moon are 0.275r, and 0.604p,. A man standing
on earth bends his knees, lowering his center of mass 50 cm. Exerting his

maximum strength he jumps straight up, raising his center of mass 60 cm

above its height at his normal erect posture. How much higher can he jump,
111 VilID 111ailiivli, VUll viiv aivvil s

rl

11. A uniform thin rigid r o
vertical props at its ends. At ¢t = 0 one of these supports is kicked out. Find
the force on the other support immediately thereafter.

AN AN

e e

]




MECHANICS—PROBLEMS 9

12. Three identical cylinders with parallel axes are N\
in contact with each other on a rough plane, with two ( )
arrlizndang lerinmna A 4ha larma and ¢ha ¢hind nacdinma AN /
byll 1UCILS lyl 15 VIl ULI1C PI.U; 1C allu VIlIT uvililiu lcauug Il

top of them, as in the figure. What is the minimum ( Y )
angle which the direction of the force acting between NEA 4
the cylinders and the plane makes with the vertical?

192 A r~ wr

~ antl

13. A yo-yo rests on a level surface. A gentle hori-
zontal puil (see figure) is exerted on the cord so that {77~
\

the yo-yo rolls without slipping. Which way does it \ N .
roll and why? P '

. 8 once arouna Bne
rim, show that the disk turns through an angle given by the expression
m

E."
'y
El

) ©
EI

4]
r-o-, =

s approximately (5hd/RED) of a day, where R is the radius of the earth,
and D and d the densities of earth and dust, respectively. Use a notation
in which the initial quantities carry subscript zero, final quantities a sub-

seript 1. The moment of inertia of a sphere about an axis through its center
g 19/ AAD2 4l 4 ~f - 4l 112 d LMl cmbama AF coon g amd o diaao
13 \AIU’ a1y, uvilav U1 & vuillil-walicu, 1101V BPIIUIU Ul 11asSs 77¢v allu 1aulud
L o 3] 2% Tann o
Ris (2/3) mR®.

S a =

16. A simple gyrocompass consists of a gyroscope spinning about its axis
ith a v to

with angular velocity @. The moment of inertia about this axis is C, that

ahnit a tnanawvanan awvia 3a A Mha avrmAagnAna grrananatnn HAAacta An & nnanl AF

avuvuv a vialisyvolov aaAld 10 /1. 41190 5 1 D\JUPU (-1 ¢ PUIIBIU 1 1va v vVll PUUI Ul
'R )

mercury so that the only torque acting on the gyroscope is one constraining
its axis to remain in a horizontal plane. If the gyro is placed at the earth’s
equator, the angular velocity of the earth being (2, show that the axis of

the gyro will oscillate about the north-south direction; and for small ampli-
tndaa nf nacnillatinn nd thig nariod amoamhar that -2 > ig an axoallant
VUAUUD VUil UoViiilvvivily 1111\ viiio Pvllvuo AVWILIVIII UV ViV W 27 Wwe 10 1l vavwviiviiv

17. The surface of a sphere is vibrating slowly in such a way that the prin-
cipal moments of inertia are harmonic functions of time:

2mr? I =1, 2mr (+ cosmt\

)




where € < 1. The sphere is simultaneously rotating with angular velocity

Q(t). Show that the z-component of Q remains approximately constant

Qhnsxr alon thaodt O nmnancana araingd » with o nnmanncainn fraciianass __

o1V aldv viiav u\b’ PIUDUEBUB alvuliu & wiuvll a PIUUUBBIU 1 ucqucuby wp —_—
2) cos

18. Three rigid spheres are connected by light, flexible rods with relative
masses as shown below:

O—O—0O  mmgmg=12a
LA A

Describe all the normal modes of the system and state whatever you can
about the relative frequencies.

L .
The springs have the same force constant k. The motion of the center of
gravity is constrained to move parallel to the vertical X axis. Find the
normal modes and frequencies of vibration of the system, if the motion is
constrained to the X Z-plane.

20. A particle of mass M hangs from one end of a uniform string of mass
m and length L; the other end of the string is fixed. The particle is given
a small lateral displacement & and released from rest. Set up the differential
e

Aqug_.t_.igng and bou p_d_ary conditions to determine the motion of ﬂfnnu and

mandiala Qad ::v o tmamanandantal anratinan thaoat Aabamenminaas +ha ...-.4......-.1
Pull vivic [ lel 7] uP a4 viallpuciiuciival Uli aViVIl vilaV UTLCLILIILIICD LVIITC llavulal
~ o~ 1 kv 4

21. Set up a variational principle for the frequency @ of a membrane with
surface tension 7', of mass ¢ per unit area, and with fixed edges; that is, find
an integral over the area of the membrane, of which the extreme value is

the freauencvy nf the mnmhrnne

VaLU daTyqravaavy VALY ALAN/ALL RJA WAL

length L, cross section
S, and tensile strength 7. The mass is suddenly released from a point near
the fixed end of the strmg. How small should the Young’s modulus, Y, of
the string be, in order that it not break?



. A train of mass M, moving with velocity v, is to be stopped with a

1 nring buffer of uncompressed length I, and sn-lncr constant k; wh!c-h
coil-spring buffer o omp gth [, pring %

............ e wmmmdil bl ccmim o 2o f=lle Aansaen g it z

>
>~
o+
r

remains constant until the spri g 18 1uu
the spring constant k suddenly becomes very much grea.ter than k,.
Assuming a free choice of k,, what is the minimum value of [, if the absolute
value of the maximum deceleration is not to exceed @,,ox?

25, (a) ovlindar af radime lanoth and danaitv » flnata nmmmoht in a
e \w’ 4AdA W ARAANAVAL VUL LWALwWAD ", Aval.evu ¥ WAA\A “VLIDIVJ rl AAUWN VD W llallv 444 W
a__*1 0 2 ____°4 TL2 2 0 _ _____ 1 32 ____________. 3 A°__V_ _______ 4 _ £ _____124__1_
nuia o1 a 1LY Po- 11 1L 18 Z1VEDN & Sinall aowinwailu aispiac €nv 01 ampivvuuae
z, find the circular frequency o of the resulting (undamped) harmonic mo-
tion.

(b) Show that for small oscillations, the motion of the fluid near the oscil-

P

cylinder. The maximum gradient of velocity near the cylinder is thus
dV/dr =~ wz[d. Neglecting the friction at the bottom of the cylinder, show
that the maximum viscous retarding force on the g

cylinder is

)__
|

F = Zn Rhp(nw®jp,)’*x.

26. A liquid film of surface tension 7 is stretched
between two circular loops of radius a as shown.

\_.//

Find the atinn of»\ Fnr what ratin (dla) 1

\1““ VA AL I \b" A UL AANY LWNVAV \wl W, AW VAAW /
o ___ 4 2 _ 2 __a_. 3 °__ 4L _ O£ ______ _1_11_0
SOIIL auloll 1INnaicaveda in uvie re suvaplet PRl

|—-—-—-%-— e |
T
&

™
|
|

square cross section with side a, is firmly fixed to

grov und. Show that the maximum weight it can carrv on the

27. A straight vertical strut, having length ! and
th

5 2
>
~
@
e
&
-2
-
L ]
g
8
. B
3.
o
:"
-
(]
@
&
&
(>4
(]
(=}
S
Q

29. A thin uniform chimney is pivoted at its low end. Show that a section

through the chimnev at any point undergoes a flexion stress, and calculate

the moat probable point of rupture as the chimney falls.

an ML £ __r S L, T, Y R R,
&. 1116 Irec suriace OI a aquia is one of constant pressure. if an ll(‘rOIIl-

pressible fluid is placed in a cylindrical vessel and the whole rotated with

oonstant angular veloocity w, show that the free surface becomes a paraboloid
of revolution.
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MECHANICS—PROBLEMS

[a—

31. An aircraft hangar of semicylindrical shape (with length L and radius
R) is exposed to wind directly perpendicular to its axis at infinity with

v

a velocity v_. What force is exerted on this hancar if the door. located at
a velecity v, vwhat iorce 18 exerted 118 hangar 11 the Coor, Iocated at
A 26 Amann? ML o o1 nld o o d 421 2. ..:..-_ ..
L1, 1IN UPU“‘ LI V lUblby PU‘JU vial IS g veil Uy

L=70m; R = 10m; v = 72 km/hr; air density = 1.2 kg/m?®.

32. An air mass of T = 280° is separated by a horizontal plane from an
air mass at T' = 300°K, lying above it. Assume the presence of gravitational

waves of wnvplvnot.h A and small amp plitude, causing a sinusoidal wave on

elength A and small amplitude, causin, g a sinuso on
4hn tndanfona THnd tha valasitr AfFtha woawn ag o Fiinatinn AFf4ha wawvalanot

VILIT 11I1VC11aUC. L'l1l1u vi1TC vTluvulv Ul VIITC Wa vl ad & 1Ulluvivlil Ul ViIT wa vV CICl], BU
assuming the interface is far from other horizontal interfaces. Treat the

oscillations of the air masses as incompressible.
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33. Two perpendicular semi-infinite walls, OA an
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respective distances from the earth.
by these two bodies at the equator?

35. Find the fundamental period of oscillation of an isolated mass of in-
compressible water, having the radius of the earth (6300 km) and vibrating
under its own gravitational attraction. Assume the velocity flow is irrota-
tional

36. The coordinate systems S, and S, move along the z-axis of a reference
coordinate frame S, with velocities v, and v, respectively, referred to S.
The time measured in S for the hand of a clock in S, to go around once, is t.
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interstellar space. Except for

A

AN VEAT Vy Wi asals

of ,he rocket, as measured
A

distance from the earth, and moves on a straight line. According to clocks
inside the rocket, how long will it take to get to the star? Denote the con-
stant distance and acceleration by D and a’ respectively.

38. A particle of rest mass m moves on the z-axis of a Galilean frame of

rafaranaon and g atérantad +4 tha Aaniain ) her o0 farna ($imma rata AFf changa oF

ATITITIIVTC allu IS avuiauvuvu vvu viio Ullsl 1 v Uy a 1ULUC \uu..uc 1auvC Ul viia 150 Ul
LY ‘, Ta ~r b} h ] h ol

momentum) me*r. It performs oscillations of amplitude a. Express the
period of this relativistic oscillator in terms of a definite integral, and obtain
an approximate value for this integral.

39. Antiprotons are captured at rest in deuterium, giving rise to the reac-
tinnn L MN__.n | w20 (Tn thia nrahlam wa ionara athar naaathilitiaoa Y\ Natan,
vivili t’ T & [ T B {1 \.l.ll. viiio yl. UiV LLL VYWWU ISIIUID wvwviivli PUDDIUIIIVIDD-’- A0Vl
a1 ,0 4 1 m 4 ___ _ b ¥ g g BE s\ N O ArF_ Y7
mine tne 7 uvoval energ 10ne restv masses are M(p) = M(p) = Y05.5 Mey,
N 01

40. A positron (energy E,, momentum p.) and an electron (energy E_,

momentum p_) are produced in a pair-creation process.

(a) What is the velocity of the frame in which the pair has zero momentum
Y A L ____\0

(parycenuric iraine):

(b) Deduce the energy either particle has in this frame, and

(c) give an expression for the magnitude of the relative velocity between
the particles, i.e. the velocity of one particle as seen by an observer attached
4~ 4l 4l

LU U1t OULIICL

41. A fast (extremely relativistic) electron enters a condenser at an angie
a as shown in the sketch. V is the voltage across the condenser and d is
the distance between plates. Give an equation for the path of the electron

in the condenser

vaalw vv aaSla .

le— 0. —>

ons. The

£ 4+ha =0
1 VIIC 7T .

f in the laboratory th th
is the probability P(6)d{) that a photon is emitted in the solid angle d{2 about
, when the meson decays in flight? Here 6 is the angle as measured in the

lnlmrnlnrv with respect to the z-axis, and » may be onmnnrnhlo to the nnond



43. (a) If neutrons from a cosmic-ray interaction one light-year from the
earth were to reach here with a probability of 1/e or greater, what must
P R . S, ene ha?2 /LY TE thner 4h s Annaer wwhat 12 4h o cn o lomnsran
LIICIL LIUILINuIn ©lice 5y (01541 (V) 11 IJqu L1l ucbay, WIla L 15 LIl 1LnaAlinuin

1
angle to the flight path at which their decay electrons could be produced?
(c) What is the maximum angle for the decay neutrinos? (d) At the angle
calculated in (c), what is the maximum energy of the neutrino?

44, A precession of the perihelion of planetary trajectories has been derived
rom the general n.,m.... of ..nlnhwu-“ However even the anecial theorv of
il viic 50“51 A VIITU y Ul I.U.I.UIUIVIUJ ALUWTYVTL, TVYUTL uviliU dpoulalr viivul 92§

relativity predicts such an effect because of the dependence of inertial mass
on velocity. Derive a formula for the special-relativistic precession for a
planet of given angular momentum L, rest mass m, and energy E, moving
int: Use polar coordinatesu = 1/r

avl U sun. {11 I,
and A and ind a diffarantial annatinn invalving 22 and 4 hut nat invalving
anfu v, ant uniu o Wnciciiviar CuauiVil iivOoiviig w @il v, vuv 10v uiviiyv
R | LS N, LV I |
ne vime e 11C1 ]y._l

45. A helium-filled balloon floats inside a closed container filled with air
at STP, in interstellar space. The container accelerates in a given direction,
with acceleration equal to that due to gravity at the surface of the earth.

Which wav does the halloon move relative to the acceleration?
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1. The edges of a tube consist of equal resistors of resistance R, which are
. . or

joined at the corners. Let a battery be connected to two opposite corners
nf a fana nf tho c11tha What ia tha affantiva roagiatanan?
O1 @ 1a0C U1 wit CUUC. Vvildv 1S wil CiiClulVvVe I'CliSvalile:

Z. A rectangular wire mesh of infinite
extent in a plane has 1 A of current fed

(2

into it at a pomt A as he dlagram C A

®
=

=
P

3. Given two iron bars, identical in ap-

pearance, one magnetized, the other not.
Tell how to distinguish them without using external magnetic fields. (You

are allowed to measure forces.)

owed to meas es.)
4. A conductor is charged by repeated contacts with a metal plate which,
after each contact, is recharged to a quantity of charge . If ¢ is the charge

of the conductor after the first operation, what is the ultimate charge on
the conductor?

5. A variable capacitor is connected to a battery

of emf E. The capacitor initially has a capacitance 1y

C, and charge ¢,. The capacitance is caused to e

change with time so that the current I is constant. )
Calculate the power supplied by the battery, and E
compare it Wlth the time rate-of-change of the +% |

onergy stored in the capacitor. Account for any

difference.

6. When a capacitor is immersed in a medium having conductivity g, a
rosistance R is measured botween the -v.!n.-ma-l... Show that, regardless of

[0
=]
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v ?

the geometry of the plates, RC = ¢/g, where ¢ is the dielectric constant of

c-r"

-he canacitance in the medium
apacltance 1n the medium,

P 4 i a -

.
; 19
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7. An eccentric hole of radius a is bored paraliel

to the axis of a right circular cylinder of radius / g [ oY\
b (b > a). The two axes are at a distance d [ A
apart. A current of I amperes flows in the ( 4 |
,::I:“A.“. Whaot 30 +ha .....:...\4.:.! €£ald o4 4o \ / /
by 11111 YV iliav viic© l.uasucub 1uciu av viic \ /

symmetry (z-axis of diagram), show that a small R\ N
compass needle placed at the origin will swing / |

freely. // N //
n A al.i . il . 41 ALY, 1. A o=

ivV. A Ulllll ullllUl II1 ImMhevair QiSK 1iées Oom an | — /
infinite conducting plane. A uniform gravi- L—

tational field is oriented normal to the plane.
Initially the disk and plane are uncharged; charge is slowly added.

What value of charge density is required to cause the disk to leave the
nladén?
PIWUU'{

11. Calculate the capacity C of a spherical condenser of inner radius R,
and outer radius R,, which is filled with a dielectric varying as

€ =€) + € cos? f,

12. A long straight wire carrying current I is placed a distance a above

a semi-infinite magnetic medium of permeability u. Calculate the force
per unit length acting on the wire: be sure to specifvy the direction of the

~a aviipvas WLVVILEe VA VWasly AV DAl Spvvaay Vaal Je2ITL AL Vaals

13. The cloctrical self-inductance of a circular loop of thin wire (such that
the flux within the wire itself can be neglected) is measured in two different



surroundings:
(A 'P e nlana Af tha oirola ia nlacsad in tha Y V.nlana and all eanaca
\ﬂ’ 4 Liv l}lallb Vi viiv wiiwviv 10 ylavuu 111 ViI1I©U LA 4 Plalllb viild il DPW\JD
below this p ane is filled with a medium of permeability u = 2. All space
above the X Y-plane is evacuated;
(B) p =1 everywhere.
"x'rhaf ia tha ratin 0{" +tha aal =|nr]nnf.anne L in cenﬁnnrof:;nn (A tn that Iin
4L V AW Viiv AwWwWwviwv £ VAAV LUDUViATiililNAMAVVWILV llué“lmvlvll \L-‘-’ Vs ViAWV 111
L ____42__ (OO
configuration (B)?
L 7,\\ \l
/S A [
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la' [ ]
1 [ \
N4 \
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14 ML c 2 crmall b2 0 o J.___4 vi . inside a UV I g R
i4. 11iere IS a Smaiil INcCiIusior 01 ¢ornauc l y ll IUC a Hiewal 01 colluauc-

lu
tivity g,. The inclusion perturbs an otherwise consta,nt electric .field. Find
the distance dependence of this perturbation far away from the inclusion.
(Treat the problem only in the steady state.)

/4
1 conduct, adius 74
by a plane through th v
axis, and the parts are separated by a small /M
interval. If the two parts are kept at potentials \
that the potential at any point \ ‘// 24 /
T

)n l/r\znl

L. o\’ 1 :‘ g 1©
2 Eea—l\a) @

where r is the distance from the axis of the cylinder, as shown in the figure.

16. Determine the manner i
1side a conductor will decreas

(
<

i

17. A small sphere of polarizability @ and radius a is placed at a great
distance from a conducting sphere of radius b, which is maintained at a

18. Derive the Clausius-Mosotti relation connecting the dielectric constant
e with the polarizability a of a medium.



19. In a simple cubic lattice, the lattice constant is 2.00 A and the refractive
index (say for sodium light) is n = 2.07. Suppose that the medium is sub-
\ J B 7 rr
4~ o atrnce laadinnae 4 D0/ aAl~mnavatian alamae Ana nmirtha adon and o 10/
JU\J\JUU vO & Sureéss IUWIUE W a & /o ClUIL sﬂlUlUll alVll UIIC CUuCe cugc allu a 1 /0

contraction along the other two cube edges.
Calculate the refractive index of the strained medium when the electric
vector E is (a) parallel to and (b) normal to the principal strain axis. Consider
larizabili ity a to be a constant scalar quantity.
am d

in f‘\n mad
A

1Mo A an H N
llls Uil Quil vuillil 111 vilvu 1iviul
1 4

can be found as follows. Imagine a spherical cavity about the atom, enclosing
the six nearest neighbor atoms. Outside the cavity, the medium may be
regarded as continuous and isotropic. The local field at the center of the

cavity may be expressed as

tMa

E—-ELE}

) DA
] E =

y ]
1

-
U

where E is the applied field, E’ is the contribution from the polarized con-
tinuum outside the spherical cavity, and E} is the contribution from the
dipole induced in the jth atom within the cavity. In an anisotropic medium,

F" does not vanish; moreover it dpnpnds unon the direction of the ap-

;
iJ= =TT Rt Bty Y

xXri

20. What is the critical angle for total external reflection for high-energy
x-rays of wave length A, falling on a metal plate in which all N electrons
per unit volume are essentially “free”?

ve propagates in the iono
umtorm magnetic field H produced by the earth, its plane of polarization
will be rotated through an angle proportional to the distance traveled by
the wave. Calculate the constant of proportionality.

929 Qhow that it ia noseihle r alectromaonetic waves to he nronacated
e _r K] ANJAANS ¥V VAAWW WV AW Ak rvuu‘ AT AN ANTA VAN VA vlllwennv AN/ VY W ¥V W LA d LS A~ rl vrwsw LA SA
[ U | PRy D Ry LY I PR RpIpTpIpy S, | Y Ry | [N P 1. SR
111 110O110OW I1Iicuval PIPU Ul I 1 lal ClUSS SCCULIVIL WLl PUI IUUUly colluucvul lg
walls. What are the phase and group velocities? Show that there is a cutoff

frequency below which no waves are propagated.

23. Inside a su perconductor instead of Ohm’s Law (J = ¢E), we assume
London’s equations to be valid for the current density J:

_ o ____1 /N T n a AN AY ) nl

courl(M) = —B, (M) =E

(in Gaussian units), and regard A\ as a constant. Otherwise, Maxwell’s equa-

tions (with e = 1, # = 1) and the corresponding boundary conditions are
;.nﬂ"‘ noad

nar e &%,V iy
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Consider an infinite superconducting slab of thickness 2d (—d < z < d),
outside of which there is a given constant magnetic field parallel to the
surface:

H,=H,=0,H,=H, (same value for z > d and z < —d),

with E = D = 0 everywhere. If surface currents and charges are absent,
compute H and J inside the slab.

24. Polarized light is passed parallel to the axis through a solid glass cyl-
inder of length L which is rotating with an angular velocity {2 around its
axis. Find the rotation of the plane of polarization. (Assume constant index
of refraction » and permeability 1.)

25. The slit lens in the figure above, containing an aperture long in compari-
son with its width y,, separates a region in which the electric field is E, from
a region in which the electric field is E,. A beam of charged particles focus-
ing at a distance z, to the left of the aperture is refocused at a distance z,
to the right of the aperture. If ¥V, is the voltage through which the particles
were accelerated before reaching the lens, show that

1,1 _(B—E)

T, X, 2V,
Use the approximations V, > E z, and E,x,, and z, and z, > y,.

26. An ion moves in a helical path around the axis of a long solenoid wound
8o that the ion encounters a region in which the field intensity increases
gradually from B, to B,. Under what circumstances will the ion be reflected?

27. The accompanying figure shows a section
through the cylindrical plate (radius b) and filament

(radius @) of a magnetron. The filament is grounded,

the plate is at V volts positive, and a uniform mag-

ncetic field H is directed along the axis of the cylinder.

Electrons leave the filament with zero velocity and 2a

travel in curved paths toward the plate. Below what

level of ¥V will the current be suppressed by the field H? +-—— 2 ————
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“poles” which focuses, in a similar Yy, =
way, uncharged particles with a mag- K &

netic moment u polarized parallel (or K N

antiparallel) to the z-axis. . ////,% N 7
Z MEN

29. A well-collimated beam of protons moves through space in the form
of a cylinder of radius R. The velocity of the protons is v and the number
per unit volume is p. Find the forces on a proton at a radius r from the beam

axig. Discuss qualitatively the stabilitv of the beam.

Lt aa VN VAL SVRRA222Y) vaae &AL

30. Set up the nonrelativistic equation of motion of an electrically charged
particle about a fixed magnetic monopole of strength I'. Find the constants
of motion.

21 A gtandard mathana
oi. A Svallualra IMcully

9

11 A 2 |

momentum p in static magnetic fields is to empirically determine the con-
figuration in those fields assumed by a perfectly flexible wire carrying current
I and under tension 7. Derive the physwa,l basis of this method. [Hint:

Derive the general differential equations for: (a) a particle orbit, d*r/ds* = ?,
and (h) tha aanilihrium annficnratinon af a snirrant carrvinge wira 1
aniG (0) uwit equniohnuim CoNnnguravilil 01 & CUIlTeliv CaITyINg Wile. j

32. Given an atom with spherically symmetrical charge distribution in an
external magnetic field H, show that the field at the nucleus caused by the
dlamaqnetlc current is AH = — (eH/3mc?) ¢(0) where ¢(0) is the electrostatlc

33. A spherically symmetric charge distribution of finite extent
with some f equency . How could one detect. these ra

2
2
.=t
73
®

34. A flywheel of radius R, with charge @ uniformly distributed along the
rim, rotates with angular velocity w. What is the rate at which energy is
radiated by the system?
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<

the emission of electric and ---agnet@c dipole ra.-dza.-tzon d oes not occur, ac-
nnnd i +m nlacainel madiadinm +hannr
CuUlulll LU vlassival 1aulauvivull uviicul

theory, what is the electric field of the scatter Pd wave at large dlsta--vm?
Mhaot 3a tha $tntal gradbaning annaa anntian?
Yvyliiav 15 vilT Vv 1 Uy LUl 1 15 ViUDSS STCUVIVILY

37. A thin copper ring rotates about an axis perpendicular to a uniform

magnetic field H,. (See figure.) Its initial frequency of rotation is w,. Cal-
culate the time it takes the frequency

to decrease to 1/e of its original value Fo

under the assumption tha,? the energy A 4 4

goes Into Joule heat. (Copper has R . R
conductivity ¢ = 5 X 10'7 cgs, and —U—('\'__—l/\_\_

density p =8.9 gm/cm?®. H,=200G.)

S/ vl wle

Axis of rotation

e

38. A pa,rt-lme OI mass m and cna,rge eis suspenuea on a snrlng OI lenan .lJ
At a distance d under the point of suspension there is an infinite plane con-
ductor. Compute the frequency of the pendulum if the amplitude is suffi-
ciently small that Hooke’s Law is valid. Compute how much energy the

mass noint will lose }-nr radiation per gecond if it oscillates wit,

mall
ALV VA av wik

Q
VY AVAAL JAAL

39. Seven antennas, radiating as electric dipoles polarized along the z-

direction are placed along the z-axis, in the zy- plane, at coordinates x = 0,
402, 4N, +30/2. The antennas all radiate at wave length A and are all

lv’ -y 1L_*vy _| s vl e e BAANS VANAAVN/ARAAARNN A TNvARALY VL WV VY WV .vAlB vaa IV WWAANA W

(a) Calculate the angular distribution of the radiated power as a function
of the polar angle 6 and the azimuthal angle ¢ (neglect constant multiplying
factors).

(hY Malra o naniah diasgrarm Af nadiatad navean va anala A2
(D) Dhiaxe & ro ugii aiagraii O1 rauiav

(c) Consider the direction in which the radiated intensity is a maximum
for (1) this array, and (2) for a single antenna by itself. How do these inten-
sitics compare?

40. Show that the energy
due to radiation is proportional t

=
-
O

where R is the radius of the orbit and r, = e?/m,c?.



41. A light beam of intensity I, and frequency v, directed along the posi-

tive 2-axis is reflected normally by a perfect mirror moving along the nositive

tive z ormally by a p mirror moving along the positive

awito wridbhh o alAaalécs .. IAThad 2o 4bhin 2nbnemcatdee T and Lanmiacocmmcr - ~L 4l

~~WAIS WILIl & VClUULV Vo. VYViiav Id LT 111vCIIsiv 4 allua ucquc 1 V Ul LUl
h ] 1 ~ 2

42, Two thin, parallel, infinitely long, nonconducting rods, a distance

apart, with identical constant charge density A per unit length in their
regt. frame. move with a velocitv ». not necessarilv amall co

e, move with a velocity », n 1 comnared to the

J J a e halihAdii i

anand Af licht (blanlata tha farna nar 11mit langth hatonnn thame i a frarna
DPUCU vl usuu wvaivuia vt vil 1U1UC0 PU]. uiliv 1< lsuu UOCUVWCOCCIL VIICILIL 111 O 1141110
of reference that is at rest, and in a frame of reference moving with the rods,

and compare the results.

'f v
a —
2. C(Consider an electron ovineg in a time.denendent axially avmmetrie
4. onsider an electron moving 1n g time-depencent axially symmetric
bt £_1] 4L D N N ernen 4h o T amea s et a =
mwgucblb HEIU Wil Dyg = V. Ulvcoll VIt L) lallgl&u
2\1
ofi _ VY ev o ™ — o As
=-—-m\l— =) +—-A B=vV X A)

what conditions must be satisfied in order to have a circular orbit whose
position and radius are constant in time? What is the angular frequency and
energy of the electron in this orbit? Investigate the stability of the circular

S 4

orhita Aaciime that the chana of the icld near the arhit mav ha ranracsented
A NAVD: 4ADDULLIY ViAWY Viiv Dllwt’v Vi ViILV LLIUVAVA MAUVWNVL VgLV Vi VLIV mw‘y | S Ay § Vt’l VIOV ALA VUL
1L__. D /- —\n __L 1 _ 11 4 a4l _

equiIi'bfium orbit r = r,; the z-axis is the axis of symmetry, n is positive,
and B(r, z,t) = B(r, z) T'(t). Assume that the time variations of the external

field are small in the time required for a single revolution.

{al Qhaw that 3£ 1 tha arhi
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\&) oW ulav i w > L, uwi® Oroi as
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(b) Show that the sum of the squares of the radial and vertical oscillation
frequencies is equal to the square of the equilibrium orbit frequency.

44. Find a covariant generalization for (a) the Lorentz force equation
F=¢R Lv 'R'I and lh\ the eauation of motion for a purhn]p with q-mn S,

CL— 1 Travvalsan L2 oaaal VvalJaa avsa

d8 &ﬂvn
m”/\”
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1. A vacuum tube is used in a conventional manner in combination with
an LC circuit as an rf generator. If the distances between the electrodes

are of the order of maqnltude of 1 mm and the plate voltage is 200 V, what
r above which the circuit will fail

(J

2. Show that the infinite chain of inductances L and capacitors C indi-
cated in the figure below acts as a low-pass filter. Calculate the cutoff
frequency @, in terms of w, = 1/o/ LC.

4 < ¢ 4
2 wavaform nroduced hv an alacstronie cirenit ia to he attennated wnt
. AR VY QW V VAL ALL yl AYAS A A VA A UJ WiIL WVIAVVVAVILIV Vil ViV AV v AV WUVVLWLLWW VUa vV AVAA
______ czrem = A4t ot . L __ .3 ___°>Jal\ TY..:._. 4L _ L= 1
mllllm um wav cl()rlll uisuvrvion  (maximuriil  vana 1A UII} . UBSII uvIie Illgll‘

impedance attenuation circuit shown below, draw in any additional com-
ponents required to fulfill the above requirements, and determine the values
of the required components.
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4. The triode in the tuned plate oscillator shown below has plate amplifi-
cation factor p and plate resistance R, At what frequency is oscillation
avrnantad? TTndar what aanditiang w=ill $ha atnamid foil ¢4 Aqnillaén? TIT0..28
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5. The dlode circuit shown in part (a) of the accompanying figure is sub-
: t ' i t e

Assuming that the capacitors are initially uncharged, plot the voltage at

g the dxnﬂm are perfect switches.

points B and D over three cycles, assuming the diodes are perfect
TMMIhat 2o 4hn Nl idimne wrnldan o d Alemd DI
yvyiia v IS uIlO 111u1u1115 YUl 50 av PUI iv D7
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1. A thin lens with index of refraction » and radii of curvature R; and R,
is located at the interface between two media with indices of refraction
n, and n,, as shown in the figure below. If S, and S, are the object and

image distance respectively, and f, and f, the respective focal lengths, show
that (f1/8,) + (f2/S,) =1

Y m—
Y .

and 2, resp..ctl. ly A wave nf it amplitude in medium 1, in 1t on
the interface, is found to have reflected and transmitted amﬂhtudes rand ¢
1 1 ' h | 4 41 1

respectively. Similarly when the wave is incident in medium 2, the reflected
and transmitted amplitudes are found to be ' and ¢'. Using the superposi-
tion principle and time-reversal invariance, derive the Stokes’ relations
r? +it' =1and r = —r'.

e .
Assume that g = 1 for both media, and that the film and substrate have
indices of refraction n, and »n,. Find an expression for the wave reflected

into the vacuum in terms of n,, n, and the vacuum wavelength A. Under
what conditions will the reflected wave vanish?

AT A TAATUUVLUNE VYWV o SNARANIEA o
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The photographic plate consists of an extremely fine-grain emulsion on
a glass plate which is covered on the emulsion side with a layer of mercury

to form a reflecting surface. It is exposed in a camera with the glass side
toward the licht. After dnve!opm
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nent and with the lnvor of mercury in p!anp
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26 OPTICS—PROBLEMS

Glass

Emulsion

» L1 o . 4Ll _
9. J.Il a Plll 1101€ callccra uile ul

plate is 10 cm. You want to take plctur e ol the sun
(A = 5000 A). What diameter of the pin hole should you use i
obtain the sharpest resolution?
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to resoive the sodium D doublet at 5890
first order. In these conditions, wha
two members of the doublet?
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7. A microwave detector is located at the shore of a lake 0.5 m above the
RS 50> "l\" ]A"A‘ o o "o A 3 +‘ .“ ,1\ +': N PTMINTBNAIIIAO TITNAO f\‘. ‘)l N
Wwauvll 10V Cl. A0 O Lau Viv 111IVIVVWOVUOD VUl &1 il

wavelength rises slowly above the horizon, the detector indicates successive
maxima and minima of signal intensity. At what angle 6§ above the horizon
is the radio star when the first maximum is received?
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A colored-glass filter placed in front of the screen transmits light of wave-
length A. The transmitted light is made to interfere on an observing screen
placed a large distance behind the opaque screen. As the distance d between
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one. The slits are separated by a distance d.
of the intensity for light of wavelength A?

10. Consider a
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to some small vaiue much less than 1.

11. A black screen with a circular opening of radius a is located in the xy-
plane, with center at the origin. It is irradiated by a plane wave

B ) YV I A | . S R,
UUW[ 1INC Ve approxunale 4

12. Light is passed through an array of perfect polarizers. The polariza-

tion planes are approximately lined up in a fixed direction, but there is a
random error between two nmahhnnncr planes with a Gaunsgsian distribution

amaaias Ja ATV VY vvaa AR AL dddgm pratvaLS VY IFITATVAL Al VA AR e

D A 202\ el nn O o .
CLP \_W ) wWiltico UV 1D v€ reiavive uus ial U

v v
attenuation coefficient of the system per polarizer for a beam of light after
passing the first polarizer. Assume a >> 1.
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13. A plane monochromatlc wave is mcldent upon an 1mperfect linear
rtures. The im

parallel to the grating. The equilibrium positions of the apertures correspond
to a perfect linear grating with gratmg spacing d
The time needed to photograph the diffraction pattern is ve

ry c
iods of oscillation involved. The probability distribution
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the root-mean-square displacement being the same for all apertures

T
Show that the intensity distribution (i.e. intensity as a function of angle
between direction of incidence and direction of observation) in the
Fraunhofer diffraction pattern of such an imperfect grating can be expressed

|7\Tl
JJL

'y PRy,
= 4 — PJto-
I, is the intensity distribution for the corresponding perfect grating formed
by the apertures when they are in their equilibrium positions; ¢, is the in-
tensity distribution in the diffraction pattern for a single aperture. Express

¢ in terms of the rms displacement.
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14. Light from a source of frequency f is led through the system shown.
If the upper conduit carries a liquid having index of refraction n moving with
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Fig. 1
15. In order to observe the sun in monochromatic OpfiC_ axis T _
light, the French astronomer B. Lyot invented the croetale | 45°
birefringent filter, consisting of a series of bire- I
fringent crystals (C). Each element, after the first, is I,,A\
twice as thick as the previous one. Polarizing films Plane of m'ggflgﬁ ;
(P) are mounted between the crystals and at each Fig. 2 °

end. (See diagram 1.) All the crystals are mounted
with thelr optical axes parallel and at right angles to

t. The polarizatio

he dlrectlon of

(2

Only certain bands of light are able to penetrate th .
containing s elements, calculate the transmission as a functlon of wavelength
A. Also find the width AN of the bands that can pass the filter, and the

Wavelpng'th separation between such bands.



1. Let B and C be two anticommuting quantum-mechanical operators, i.e.

Let 4r be an eigenstate of both B and C. What can be said about the corre-
sponding eigenvalues? For B = baryon number and C = charge conjugation,
the relations {B,C}, = 0 and C? = 1 hold. What does your result imply

in this case?

2. Three matrices M,, M,, M, each with 256 rows and columns, are known
L __ 1 _ PR S . S ~ FAX nr b V7 A SRNLYE PO [ R .
ﬁo obey f.ne mmut&twu ruies [ g, ll'ly 1= uuz (witn beuu pcrulut&tw

each 8 tlmes, +1, each 28 times; 44, each 56 times; 0,70 tlmes. Sta,te the
256 eigenvalues of the matrix M* = M%: + M, + M:.

4. If one considers systems capable of emitting particles of half-integral
spin, one encounters operators U obeying the commutation relations
1
1) [U,J.)=5U
&
oy 77 F21 JF21 | R §277 3U
(2) LU, d%),d) = 5 (U + I°U) + 55>
where J is the angular momentum of the emitting system. Find selection
rules following from (1) and (2), in a mat.lx representa.,lon which makes
J . and §* diagonal (eigenvalues m and j(j + 1), respectively). In other words,
what matrix elements (m’j’| U |mj) can be nonzero? [Hent: Let X; = j(j + 1).]

5. Prove that all the wave functions belonging to the maximum eigenvalue
of the square of the total spin operator of a system of N clectrons are sym-

metric in the spin coordinates of the individual electrons.

29
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6. Prove the Thomas-Reiche-Kuhn sum rule

did >z N v
n h
o anm 1a nvar tha comnlate aat of aicdangtatoa ala Af anarav B of a nartiola
d.-AdV WWALLL AW VY WA WViiw Vvu—lt’l\/vv NVV VA V‘b‘/mwm V” WA wviivai 6., ‘-‘n \JA W t’ul viawvaiwv
Py of . ) ALy Y PO PRy L' l __________ ____ 1 _a_a_
1 -3 una ve.

7. Show that the source-free Maxwell equations may be put into the “Dirac
form”

and

SwaANA

through the introduction of the Kramers vector F = E + «H, F* = E — iH,
the definition of suitable matrices S. Use this representation
alaadn 430 £.13 4. b~ 4ot 4L, L2
electromagnetic field to show that th

above, p is a8 momentum operator.

8. Use the Bohr-Sommerfeld quantization rule to calculate the allowed
energy levels of a ball which is bouncing elastically in a vertical direction.

9. A three-dimensional isotropic harmonic oscillator has the energy eigen-
walinaa B./m T A " n 1 9 MThat 1a tha Adaswan AFf Aamwanaranc
7 Vy, 1y & . « VYWV 1D VIIU U LOUC Ul ucsc 1CL avvv

10. Three mass points of mass m are confined to move on a circle of radius r.
Their mutual distances are fixed and equal so that they form an equilateral

triangle. The three mass points obey Bose statistics and have no spin. Discuss

11. Derive the uipone (l.lpOle ma.g‘nemc interaction energy: of a pI'OIoOll and
an antiproton at a fixed distance a, in eigenstates of total spin, in terms of
the proton magnetic moment u,. Two magnetic dipoles have the interaction
energy

_ (M T)(MsT)]

3 p ‘
12. Solve and classify the eigenvalues of the Hamiltonian
H = AP + @) + BoV-0'?,
e Pa

'\:“ Mna nna
UII.U 4 O l..l Pll.l. ALLGVVL AVUD
4

li principle is not considered.)

t:.‘ d

13. A system consists of two distinguishable particles, each with intrinsic
spin {. The spin-spin interaction of the particles is J&,-@,, where J is a oon-
stant. An external magnetic field H is applied. The magnetic moments of
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articles are @, and S,. Find the exact energy eigenvalues of

S state? (b) the lowest P state?

15. A particle of mass m moves
t

=
5
o ®
% o

and V(r) = 0 when r > a. Find th t valu Vo such that there is a
‘\A““A n+n+n l\“ AT ATMMANOrEey n'\A L/ 4% ey ﬂ‘l‘lm"]ﬂ" mr\mnn“!im
VUuUullu DValve Ul 4TL1V il 5 il LTLv qllls Uidvl 1ivuaicilivuiil

. An electron in free space moves under the influence of a uniform mag-
matin BAlA D T 4ha ananaer lavralsa TE4ha Ankhit 0 lanean chinvwr $had 4hhn enna~
1CVIV 1LIT1IU b, 1'111Uu uiIT cuclsy 1CVOId. 41 VIITU VI V1V 1D 1al SU, SIIVUW vilav LIl l.uu;s-

. Vsl 1

netic flux through the electron orbit is quantized. Negiect electron spin.
Show also how knowledge of the energy levels found here nonrelativistically
may be used to determine the relativistic corrections to the energies.

18. A quantum-mechanical system in the absence of perturbations can

nv;ﬂf ':ﬂ Q;*‘\Q" f\r +1‘7f\ ﬂ*ﬂ no l N ‘) "IY‘I* oanaroaiIaa p F Ql‘lf\“f\ﬂﬂ + ﬂ+ ;* 19

TAlIDV 111 TlViiUl Vi VWU DUVIVUD 4 VUl & VWivil CIIVI RIUD 441 V1 LJdy. UUPPUEG viiavv 1V 10
4 1

/ O Vlg\
V= )’
7 n
\V 2 v/
where V,, = V. If at time ¢ = 0, the system is in state 1, determine the am-
plitudes for finding the system in either state at any later time.
18 TTga tha wvariatinan nirinoinla $46 agtimata tha gnaiind gdata ananger of o
A&, UDT il valiavivil Pll lblPlC VU Oouiilliauvc vilc LUUuIIu-sva v chls UL a
particle in the potential
V =o0 for z < 0,
Ty n~r -~ n
=cx for x > 0.
Take ze %= as the trial function
"9 ¥, m n]nnf‘rnn ‘l’;*l\ n aron o ﬂﬂlq maaa m 19 nnn‘ﬂnnr‘ {'n MmN NmMm a l\‘l‘l‘nll)
- . All LvivVvwVviUii YYavii \Jll“lsu C Wil LLLWo0 v A0 VVUV11111AUV\A VU 11U Y LV Vil v viivivu
e 3. T o a___1_3YO0rL___ ___°*€ ____ _1__a_°*_ £ 131 % ______10 1 o _ ____ _ a1
olraaius r. iv 18 pc r'veda Dy a uniiorm eljecuric neia r paraiiel Lo one o1 vne
diameters of the circle. Find the perturbation of the energy levels up to

terms of the order of F?. Notice in particular the anomalous behavior of
tho first excitod state.
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the polarizability of the atom. Obtain an expression for the polarizability
of the hydrogen atom in its ground state by using perturbation theory.
Evaluate the expression in an approximate way which gives an upper and
lower limit to the bpolariz blhtv thus showing that 44! < o < (161‘2\ ad,

| i vil SLAUW e
tha Rahr radin
4L 1

where a is the Bohr radius.

ZZ. Two identical particles of spin 4 obey Fermi statistics. They are confined
in a cubical box whose sides are 1072 cm in length. There exists an attractive
potential between pairs of particles of strength 1072 eV, acting whenever the

distance between the two particles is less than 10~'® em. Using nonrelativistic
nartnrhatinn thanrv calennlate tha nrnnnﬂ;afnfn anaroyr nnﬂ wawva fiimatinn
t’bl VWAL Jwvivil UIIUULJ ’ VWiV uiiwWwvY viiv 61\1“11\4 DVwWwvyw wiiuvil oviina YWY U AUWllVVIViL,.
o1 _ a)L _ i) _ o _ A __°*3___101 ___ _4° 1___ 4 __ L _ o)L _ ___ _ ____ _La) _ _V__a_____ \
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23. Consider an atom with one 2p electron placed in an electric field with
orthorhombic symmetry. The potential V of the field is V = Ax* + By* —
(A 4+ B)z®. Show that the expectation value of L, is zero. Neglect electron

in. You mav assume that V is small commnared to the strencth of the atomic

y wanoss A0 DALIWAL VULLL WA VA VU VAAU DVA Vadg Vi Ui VaLU wivuviiiav

24. Two identical plane rotators with coordinates 6,, §, are coupled accord-
ing to the Hamiltonian

a2

= A(psl + pgl) - B CoS8 (61 - 62)’

Wnere A and D are posmlve constants. UV oie: !74 -|— 27 is equlvalent to (7; )
From the Schrodinger equation determine the energy eigenvalues and eigen-
functions when the following conditions hold:

(a) In the case B < AAh?, discussing only terms linear

LT LA =R RS=2s V23 ]

n B. Watch out

b) In the case B > A#%, by reducing the problem to an oscillator problem
(small oscillations).

—

25. A particle of mass m moves in a two-dimensional potential well

r~ 1

o

stants) is applied. Consider terms oniy to first order in F, and F,. You need
not compute the final matrix clements. It is sufficient to express them in
integral form and state explicitly which ones are not zero.
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26. Consider two identical linear oscillators with spring constant k. The

interaction notential iga ociven hv H' — e 2. where 2. and 2. are the nacillator
interaction potential 1s given by [ cx,x, where x; and z, are the oscillator
waniablloo
valilapnles

in zeroth order.)
oy A a____ X ___ ____°*____1 ___°*10_4_ L __ a1l _ TW____°Ta___°_
&d. A LWO-UdllIeinsional osCliiavor nas vie riailivoiniai

1 2 1 S 2

H = §(P: + py) + g(l + oxzy)(«* + v°),

where i = 1 and 8§ < 1. Give the wave functions for the three lowest energy
1ACVYCl1ID 1Vl v —-_— U’ Tvaluawvl viliU 1110v=Uluvl PUI. VUl yoarvivil vVl villDU 1TV VYUl1o 1Vl
[\ s N
06#£0

28. Consider an electron in a uniform magnetic field in the positive z-direc-
tion. The result of a measurement has shown that the electron spin is along

the positive z-direction at ¢t = 0. For ¢ > 0 compute quantum-mechanically

the nrahahilitvy far indine tha alantran in tha atata (aY Q — 1 (WYQ — __ 1
t’lvu“ulllv.’ AL lul“llla VIAU UViAUVUVVAUVLL 111 ViiUV DVvwvy \W’ Ny '2', \I.I’ [ 4 A '2',

and 1AAQ 1

ana (c) o; = 3.

29. Tritium (the isotope H®) undergoes spontaneous beta decay, emitting
an electron of maximum energy about 17 keV. The nucleus remaining is He®.
Calculate the probability that an electron of this ion is left in a quantum state

Qf nrinecinal cauantum numhar 2 Neaglect nuclear recnil and assume that the
1 Pricipal quanium numpber 4. INeglieCt nudciear recoll, ana assume vnay vie

dotdioconn adsen wrrac semcdialles o 4o memmceemd dod o

vriviuiil avu as liliviall 111 1US 51 ouliiu svave.

30. An atom with J = §, m, = { is in a uniform magnetic fieild. Suddenly
the field is rotated by ¢ = 60°. Find the probability that the atom is in the

sublevels m; = +4 or m;, = —1, relative to the new field, immediately
after the change in field.

21 Wha

hera
Oi. VViia

piiy sica
one state of angular momentum zero to another state of angular momentum
zero by emitting a photon, is forbidden? Is there any way in which a zero-

zero transition could be made by the emission of light? What is the physical
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basis for the fact that a radiative transition requiring a large spin change
nnr\nnnl‘n ‘I]f\‘lll"?
Pl Vv TvUuuD Ooi1v Yl

3Z2. Show that the photoelectric absorption cross section of an atom, for
the ejection of an electron from the K-shell, goes like Z* for photon energies
large compared with the binding energy of a K electron. Use simple per-
turbation theory, and neglect recoil.
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34. A quantum-mechanical system is initially in a state of angular momen-
tum L, = 0. It decays by electric dipole emission of light, to a lower state of

= 1. This state in turn decays by an electric dipole

>

h »}

momentum L, = 0. Both quanta are observed with suitable detectors.
Calculate the probability, W(¢), that the directions of propagation of the

two quanta form an angle ¢. Does the result depend on whether the system
is an atom or nucleus? [ H'm.t Use second-order pertu rbation fhpm-v ]

gg r‘n“ﬂ;l‘a“ * o nhn“‘n"!“n Ar a “nﬁ;n‘n ‘\" o n;mv\ln nli‘\;n ox m‘n+‘.‘l"ﬂ “r:"
uiioiuvl viiv Dvathlué Vi v Pal viviv v @ Ollll AU VUuVivV Oviuuvvul v vwilivil
lattice spacing d. The interaction with the lattice points is
- —-Zmzh
Vv ="="""_ z, 3(r —ry).

Treat the scattering in Born approximation. Show from your result that
the condition for nonvanishing scattering is that the Bragg law be satisfied.

gives the probability that one particle per sec
area normal to the direction of J. A beam of particles with uniform velocity
v enters a region where some of them are absorbed. This absorption may be

represented by the introduction of a constant complex potential V, — 1V,

to the wave equation. q}\nw that the cross section per atom for absorntion
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37. A particle is scattered by a completely absorptive (“black”) sphere of
radius a which is large compared to the de Broglie wavelength A\[27x = 1/k.
How do the 7, and §, in the scattering amplitude

38. Calculate the differential and total cross sections for scattering of a
spinless particle of mass m incident on an infinitely massive, infinitely hard
sphore of radius a. Troat the case for which the particle moves sufficiently
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slowly that the D-wave phase shift is negligible. Give the answer in the
form of a polynomial in (ka) and retain only terms in the cross sections which

are of lower order than a? (l'n\" You may use the fgl]_gup_p_g recursion relation,
walid £Aam Ladl, manealam n‘,J -:-—!-'--'ln_ anlizdinemane T TV ~ndiL. .
vaiid 10T 0OoUn reguiar ana IITeguiar SO1UtIONS: 11 £ 8avisiies
T N ) 2 s N ) g 4\r'l _ l(l I l)-l _
Fi(2) + - Fi(z) + Fi(z)|1 — | =0,
x L z?
al ___
1en
Fr(@) = —o 3 (F (z)2") ‘
dz
39. Consider the scattering of a beam of spinless particles by a hard sphere
I\r “ﬂ’]':'l‘lﬂ Vs }
Vi 1LOUu1IUuUd w
h 9 d n~r -
= 00 Iorr << a,
V=0 for r >a

(a) Find the total cross section where a < A, if A = 1/k.
(b) Consider the case a > A. Show that in the forward direction the various

nartial wave ecantributions to the sc

== COLILIIDULIVAAE VWO A

; .t.enn mnhfndp f(ﬂ\ add up nnhprpnﬂv

4~ nmndarinn o Ao adian = o a rnhAfan
P UUuuUuvL a uiliiavvivil P VO1L 11 U 110 L'1aUullilvicTlL UJPU
Useful formulas
P,(cos ) = Jy(n ) for large n, small 4
\ 4 VA 7 o b

A Tind tha hannd atatas AFf a Aana_dimanainnal
EUe A'AXAA VIIU JUULLU DUGhVUD VUl v VILUTUWILILIVILADAV 1WA

potential. Suppose a stream of particies is incident from the left. Find the
relative intensities of reflected and transmitted beams.
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THERMODYNAMICS

1. Derive the following relations (the Maxwell equations):
(3T\ _  (9P) (9T\ _ (37 (0P\ _ (28 -
\a7 /s \35)»> \op)s— \38/)> \om), ~ \ov)s’ A
and
(oV\ _ _ (98)
\oT/): — \oP/y’
748 = c, a7 + 7(2E) av, (@)
\aoT/)v °’ N
and

(2UN _ p(2P\ _ p
\oV/)r — “\av/y

2. Calculate the Joule-Thomson coefficient (9U [0V ), for a van der Waals
gas, where

Thanoana 3 o~
VIl To 111 Tll

with respect to temperature. Derive the two thermodynamic re
which supplant the Clapeyron equation. Let the subscripts 1 and 2 refer

to the two phases.
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5. Consider a pressure-volume diagram for a given mass of a substance,
on which there is a family of adiabatic curves. Prove that no two of these
adiabatic curves can intersect.

8. One mole of H.O is cooled from 28°C to 0°C and frozen. All the heat
. BN SESNI/EN’ 7 'v AR YA ANAY 1} a8 \Jass asr A L aTd A Y s s aua - NI adN’'S TR X r] VaAW AS e Vv
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8. A gas-tight, frictionless piston of small thermal conductivity slides in
a thermally insulated cylinder. Both compartments 4 and B contain equal
amounts of a ‘1 I su initia ature

3
bto
s Lo
[¢]

of the ga A, and 3T, in B. The system is to be considered

as in mechanical equilibrium at all times, and eventually it will be in thermal
equilibrium as well.

(a) What will be the ratio of the volume of 4 to that of B initially, and

at { = ool

(b) What will be the total change in the entropy of the entire system per
mole of the gas in it between ¢t = 0 and ¢t = oo?

(¢} How much useful work could have been done by the system (via a
giridba bl donmafam mmnnbhaicen) ;nm smnla AF s 1€ 4hn b afan AL Lond L
SUILa I uvialisicl 'uuumm; PUI. o1 Ul 5&5 11 VUI1C Lallsiel . 1ca v 110111

9. If one mole of a monatomic gas undergoes a free expansion, what is the
change in temperature in terms of the initial and final volumes and the

co 1 der W&&!S agua ion of the ccoa? What ia the annrovimatae
AR \1““‘1 NJAL JA4A Viiw 6““ YV AAWWV IV Viiwv wryl. JAOAldlililWwve
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10. One gram of water at 20°C is forced through an insulated porous plug
under a pressure of 10* atm into a lab where the pressure is 1 atm. Find the
state of the water emerging from the plug. Assume that the densitv at 104

ave 01 walel emer Irom uvie piug. o m
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11. A vessel contains helium gas at 10°K (above critical point). The vessel

is thermally isolated and the gas is allowed to escape slowly through a capil-
lary tube until the pressure within the vessel is 1 atm and the temperature is
4.2°K (normal boiling point of helium). If the gas is perfect, find the initial
pressure P, for the vessel to be entirely filled with liquid at the end of the
process. Data: Latent heat of He at 4.2°K = 20 cal/mole; C, of helium gas =

3 cal/mole deg.
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12. A long thin metal bar vibrates in its fundamental mode of longitudinal

oscillation. In what range of frequency does the oscillation tend to be iso-
dh awer 21?2 Mol n Vntemae?da snndealize Vacs 1N12 A Jaen 4ha Aneatdber ~acs 10 neen Jan
LILICL i AL © .Luu.u.g S 1IUUUWIUPD 1 ad 1V uyl.llbl.l.l y VIIG UTLIDIV IJUB .I.Us I\Jb,
the heat conductivity & as 1 cal/cm-deg-sec, and the specific heat C as

0.1 cal/gm-deg.

18. Two vessels, each of volume V, are connected with a tube of length

L and small cross section 4 (LA < V). Initially, one vessel contains a mix-
tur

of carbon monoxide at a partial pressure P; and nitrogen at a partial

(s

P.I.UDﬂu.l.U i s o, VYWIAl1AU V11U UV1lIUL VYV UDDUL

2 . _ *a L D M ] 1
contains nitrogen at a pressure P. The

. -.-g;- . p.ﬁ-; - /\I4—L—>I/—\
coefhicient ot diffusion ot CO mto Ny or / A\ vd \
N, into CO is D. Calculate the partial { Vv Y
pressure of CO in the first vessel as a \ / \ /
function of time ~ ~—
14, An iron sphere of radius 20 cm is heated to a temperature of 100°C
AL L4 A M o 2 4Ll bl od o mohood A e d e N0 TN 4L
UL ugno U, 1US BUriale 18 uiicn L auv consvainuv il AaLvuIe v u. r u uviie

temperature of the center 16 min after the cooling has begun. The ratio of
thermal conductivity to specific heat per unit volume is K/Cp = 0.185 in
cgs units.

15. A sphere of radius R is immersed in an infinite liquid at temperature T,
timaot — 0N tha anhara ia hronoht +4 a tamnaratnra S~ T and ia main.
4AV ViliiUL VY V’ ViiLv D piiviv 10 uluubuv VU W vVviilpuLWwvuLY & l -~ 4 () Wil 1D 11iWviis
a_2 1 _a AL a4 oa_____ ____ a____ AL __ my . 1___4°__°*1 L AL N __° 1
Inea av UMU wmperabure Bnerealve ine conaucuvivty 01 tne uguia 18

K, its specific heat C, and its density p.

(a) Express the tempera.ture at any point outside the sphere, and at any
time £ > 0 as a definit. tnm'n.]

16. Find the temperature dependence of the electromagnetic energy density
E within a cavity with perfectly reflecting walls, using thermodynamic
arguments.

17. A spherical satellite of radius r, painted black, travels around the sun

in a circular orbit at a distance D from its center (r < D). The sun, a sphere

Al madicra D madiados as o2 hlaalbhade ad a éarmasvanadrena m — QfnNnNnN V and

Ul 1auiud 1y, Louia ad o viavaAappul v o IPUI. VUl 4 0 — UUUVU i1\ oliu
~ - ’ ~ 'S e e

subtends an arc 2a = 32’ as seen from the satellite. What is the equilibrium
temperature T of the satellite?

18. The Helmholts free energy A of a ferromagnet can be assumed to depend
on the magnetization for no external field as follows:

A=A+ T — T)M* + BM* (1

f -

for temperature T' near the Curie temperature 7',; a and S are positive and
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magnetized state, and may e regarded as approximately temperature
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tion M T) which foliows from Eq. (1) if fiuctuations are neglected. What is
(T')? Obtain also the magnetic suscepti-
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conducting state. Show that this viewpoint L
is correct by finding the difference in Gibbs |
free energies of the normal and supercon-

At i = 0, compute N n
the latent heat of tramsition L from the \
normal to the superconducting state, and the s \

discontinuity in the specific heat. Is the phase \
trangition firgt or second order? The Gibbs S T
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21. From thermodynamic principles, determine the vapor pressure P, for
a very small droplet of liquid of radius 7, in terms of the vapor pressure P,
of a large body of the same liquid having a negligible surface-to-volume ratio.

o'/nf' Fnr 'ﬁnnlv itn'r]nﬂ mattar fl\n o ‘ln f\{" araa r.n vn]nmn MOraa ana n’rnnf]v
v . L) § A v vav\u. VALV AWVIV Vi VAU VU 7 ViWLILIU LIVIVWOUD )il VWUl y o
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22. A rocket weighing 1000 kg is shot into space. Under the assumption that
all stellar bodies have an average mass of 10*° kg and move about with a
random velocity averaging 10 kg/sec, what is the average velocity the rocket

will tend to assume after a verv lono time? ana'lpnf the nosgihilitv of the

vv saa aANa VS W viay aVilm VailiT e AITURATVVYY Vial pwSlansiiavy wa vaao

l t - 2 d
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23. Consider hydrogen gas at temperature 7' (around liquid nitrogen tem-
perature) and pressure P (about 1 cm Hg), with a concentration of ortho-
hydrogen equal to x. Derive an expression for (a) the molar specific heat of
this gas, dnd (b) the thermal conductivity K of this gas.
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ules in rotational states (J > 2) is negligibly small.

24. Compute the ratio of thermal conductivity of helium gas at P = 0.1 atm
and 300°K to that at P = 0.5 atm and 300°K. Compute also the ratio of
w:onnaif:na ﬂ* * 0o +‘I7n MPEPASOITITNO
ViIDUUOILIVIUD vy VilU vyvywwy lll- TCUOOWUulL VD.

25. Obtain the mean vector velocity of gas molecules escaping through
a small hole in an enclosure kept at temperature 7. Let N be the number of
particles per unit volume of the gas.

«—— 7 —

Hole

26. A small circular opening of radius @, which is small compared to the
mean free path of mercury, is cut in the wall of a very thin-walled rectangular

tank c,ntammg mercr..-y V&pOl‘ at a ’mmpprn’mre T d very lOW p"PﬂQ'"'P P
Ad o Aictbanna b ok hahala annd an 4~ tha seall Af4hn 4anls anllan
avaa U v0 une wail O1 uié vaik, a bUllUbU-

ove tne uOlc ana p 1allel
ing sheet of metal is placed and cooled so that when any of the mercury atoms
strike it, the vapor condenses at once. Derive an expression for the distribu-
tion of mercury in gm/cm on the collecting sheet at time ¢ in terms of polar
angle # between the normal to the hole and the point of collection. See the

B 11UVIG LANA Uil Uil U1 Lvulicuwuiuil LG

[



Susm A mmEsemma s A B Y IL\Y 2P YV . T
TAITIDIIVCAL P |
1. A voung man, who lives at location 1B
J (=) ’ l
A ~AF dhin nlder chrant nlan chrwrn in 4ha y
L1 VUl VIl CUlv DR oie]l] Pl 11 SI1UWIL 111 VIIT
r .1 /R 1 PR ) A .
figure, walks daily to the home of his >
fiancee, who lives m blocks east and =»
blocks north of 4, at location B. Because "=4
he is always anxious to see his fiancee, his A
"l'\"l*ﬂ ﬁl‘l'ﬂ"ﬂ O TMTA\NAON N no p ; VY N MATrnm
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doubles back. In how many different ways
can he go from A4 to B? Al—> "
m=3

2. According to the Stefan-Boltzmann law, the energy of Hohlraum (black-
body) radiation depends on the temperature 7' as T with K = 4. Replace
t e ord;n&rtr f-hron_r]:mnnninnol Hahlrainim hv ana af N dimanginne (N in_
AL s AL J s AL U TCAl AVALOAVVAAWIL A AJALLLOUALLL UJ Viiv Vi Fal NALALAVAA0OAIVILDO \L' AALR
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8. If the sun behaves as a blackbody at 6000°K with diameter 10® km,

what is its total microwave-emitted power per megacycle bandwidth at
2 em?

U wviaiie
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ee p t
quantum-mechanical spin

List the energy levels of this spin system, giving their total spin values and
degeneracies. Deduce the partition function, Z.

E (Oangider a oag containad in voluime V at temnerature 77 The cag is
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I
E and momentum p of the particle are related by £ = pc. The number of
single-particle energy states in the range p to (p + dp) is 4= Vpidp/h®.
Find the equation of state and the internal energy of the gas and compare

unfh an ordinarv oan,
J B
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electron, ..,-zca! in &ppe&-ance b.lf n‘wv claggical statistics. They are
Y . SR | sxhiaal Lo srhhinl 20 1N—-68 fncs A am;m adan Eanlhh maméinlag sz;mda
conniiea lll & CupiCai DOX WiICIl I8 1V ClIl V1l ail cugc 14aVil Pﬂl LivIC Uuliucel -

goes a potential interaction with the box which is of two sorts. One is at-
tractive and leads to a bound state well localized near the center of the

box and having an energy of —1 eV. The other interaction is a strong re-
pa_.rtlgle from escaping throu h the walls of the

the surface are found to be 99% ionized when they evaporate. Atoms of
chlorine are found to be ionized negatively by one part in 10° when they

evaporate from the same surface. What is the electron affinity of chlorine?
The ionization 'nnfnnhn] of Na is n‘\ =5.1YV.

alinim a a nan ha o anirfana nf a mata an amanannt nf
O. xaCilulll QUOIIis Call UC aGS8OI'0 vl 8urialCl Ci & mcuvaa, anl aImouiiv C1
1 £ 41 1 4 £ 4L 4 _ Y J

WOrK L wnen Delng necessa.ry to remove a heuum tom irom the IIleDad suriace
to infinity. The helium atoms are completely free to move, without mutual
interaction, on the two-dimensional metal surface. If such a metal surface
is in contact with helium gas at a pressure P, and the whole system is in

aconilihrinm at temner
A% A, AJA A

ature ”' what ia the mean numher of atome adsorhed
CAALL WV ‘lv“‘r‘/‘ WV LAL vV AL V. 2 9 /WAL AR LS A2 A W AT AN,

\lu e = Y AAW AR ALE SALLRE WNSAAAI & AT
per unit area of the metal sur-face? Express your answer in terms of quan-
tities given in the problem, and fundamental constants

9. An LC circuit is used as a thermometer by measuring the noise voltage
across an inductor and capacitor in parallel. Find the relation between the
rms noise voltage and the absolute temperature 7.

10. A solid contains N mutually noninteracting nuclei of spin 1. Each

nuolana aoamn thanafana ha in any of theaa antantinm gtatos labhala he tha

11uUuvicus vall vIICITIlULITC VT 111 all Ul il TCT \luauuum S v 1avucicu Uy viic
1 - -

=ty
p—

quantum number m, where m = 0, 4 1. Because of electric interactions
with internal fields in the solid, a nucleus in the state m = 1 or in the state

m = —1 has the same energy e > 0, while its energy in the state m = 0
is zero.
nﬂ";“n AT AVTVIMPAOAINT nmr *l\ﬂ ﬂ“""f\“" r\"" fl’\n M “11“]‘!] a0 o “li“n*;n“ ey "l\n
A/TLIVTO Qval DAPI TUOOo1Vil 1Vl vilT Tillvi UP Ul ViI1IU 4V 1lUuvivlil 0o v LuUulivvivil VUl viiv
~

temperature 7', and an expression for the heat capaci
11. Consider a system of three-dimensional rotators (with two degrees of
freedom and no translational motion) in thermal equilibrium according to

Boltzmann statistics; take account of the quantization of energy. Calculate
the free energv, entropy, energy and heat o.a.nn.mfv (per rotator) in the case

= et TTTOJ Y TTTYT Y rJ Y N~ i 7 T TEET TETEE
n‘. l\:n‘\ ‘Am'\n'ﬂ‘l‘ mwno mﬂl’l L 2 Ve d Ilﬂn l\“ n‘llln"ﬂ nn'\nnv:mn‘:nn 'pr\-mrlln
O1 1igi WINPpOravures, maxing u U1 LUICT 8 appioXiiliavioll 10TiMmuie
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12. The average energy of a system in thermal equilibrium is {(£). Prove
that the mean sanare deviation of the energy from (B, {{E — {(ED)? is

SYwsiT © am 22 V2 AT CA%le 2208 &)y \\& \~=/] /

where C, is the heat capacity of the entire system at constant volume. Use

this result to show that the energy of a macroscopic system may ordinarily
be consgidered constant when the svstem is in thermal equilibrium.

MPIISAATA NSNS PSSRl W ATAD AL D R YTASs 25 222 VAL Sl Ty eaas
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Only nearest neighbors interact. When the spins of the neighbors are both
up or both down, their interaction is J. When one is up and one is down,

the interaction energy is —J. (In quantum-mechanical language, the energy

is Jo} o] between a neighboring pair ¢ and 7.) What is the partition function
7 ~f tho acgamhly at tamnaratnire T2
&4 JA V1LV GWUU-IUIJ v Wu..l.tlwl.avu.l.v £

14. A highly simplified theory for the temperature dependence of the molar
specific heat ¢ associated with the transition from paramagnetism to fer-
romagnetism of ions with spin s = 4, gives a curve of the type shown in the
accompanying diagram; i.e., ¢ = Cpex (2T/Ty — 1) for T2 < T < T,, and

e — 0O othorwiage What ia ¢ in toerma of fa nmnnfnl nnnnfnnfn?
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15. Show how a consideration of the appropriate partition functions leads
to F‘prmn'n;rnc and Bose- T!‘lnntmn statigtics. Find also the distribution

VS Vanr Vavnr PAR ¥ 3LV
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characterized Dy a glven set of qua.m;um numbers.
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16. How would Debye’s theory of the specific heat of solids be altered if

the phonons (sound quanta) obeyed Fermi-Dirac (instead of Bose-Einstein)
atatistica? Find. under this agsumntion. the temperature dpmndpnop of the

istics d, under this assumption, the temperature dependence of the

n‘nﬂ ‘\nn" “f\" ‘-nm“onn‘-:wnﬂ h v =% 0 o d lnm ﬂ“f] Y AMEY ‘\‘Inl\ Qr\m“ﬂ"ﬂl‘ “T;“l\ fl’\n
'!’U\Ilu\l 4ATaVv 1VU1 W.I.LIPUI.OUuI.UD VULJ 11UV oviiu VUI.J u.lsll. \JU.I.LIP“I.U“ ywivili vilvU
Debye temperature. (Constant factors need not be evaluated.)

17. Assume that the inside of a metal represents a square potential well for
electrons. Starting from Pauli’s principle, derive the velocity distribution
of the electrons as a functlon of temperature. Derive the formula for the

DUUWLIULLD ) D S
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18. Show that a neutrino star, if sufficiently dense, may be treated as a
degenerate gas of relativistic fermions. Derive a condition relating the mass

19. Derive an expression for the magnetic susceptibility of a dilute solution
of permanent dipoles, each of magnetic moment M, if the dipole can assume
(a) any position, and (b) only two positions, with respect to a weak magnetic

£
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spin 4+ and magnetic moment u, and obeying Fermi-Dirac statistics, the
lining up of the spins produces a magnetic moment/volume. Set up general
expressions for the magnetic moment/volume at arbitrary 7' and H.

Then for low enough temperature, determine the magnetic susceptlblhtv

of the oaga in the limit of zern mnrrnofln ﬂnlr] corract to tarms of ardar T
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21. Consider an oil drop of radius 0.0001 cm, in a gas of viscosity 180 mi-
cropoise and temperature 27°C. What is the rms displacement of this drop

after 10 sec? Neglect gra v_tw.f.i onal effects

wavia AV U AU Y VANJAANA TAAU WV ViJe
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Although the ions have long-range forces due to Coulomb interactions,
macroscopically the plasma is electrically neutral. This suggests that the
Coulomb 1nteract10ns are screened, and so become short-range. Estimate
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1. Give a labeled energy-level diagram of the hydrogen atom for principal

P I, 1T 0 9 Mok T a2 sy b oannd cgarrmning +tha
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proton to be a point charge. Give a similar energy-level diagram for those
levels of the helium atom which correspond to the excitation of one electron
only out of the ground state. Point out and explain the similarities and

differences between the two dmgrnmﬂ
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3. Find the three lowest terms of the nitrogen atom.

4. Give the electromc configurations for zirconium and for hafnium, and
e i separation of these two elements is difficult. The

5. Assume the lowest-term values in sodium (expressed in cm™') to be
3s 8., 41,448; 3p i PP 24,484 ;
3d *Dyso 5/ 12,274;
4f Fyp s 6,858;
48 *Sin 15,705; 4ip Py, s 11,180;
4d Dy 50 6,897;
5¢ *Sie 8,246; 5p *Pijoss 6,407 ;
Indicate what transitions would be observed when excited by
(a) illumination with light at 4123 A,
(b) bombardment by 3.3 eV electrons, if the sodium is initially in 3S.
6. Obtain an approximate expression for the energy shift of the ground
state of the hydrogen atom due to the finite size of the proton, assuming
that the proton is a uniformly charged sphere of radms R=10""cm
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7. An electron is placed in a potential

8. In a hydrogen-like atom, the 2S and 2P levels are separated by a small
energy difference A, due to a small effect which has a negligible 1nﬂuence
on the wave functions of these states. 'l“hP atom is placed in

E. [Note: Neglect electron spin in this problem. T)o not evaluate explicitly
any nonzero integrals which may occur in your discussion.]

9. The spectral line of mercury (Hg) at 1849 A splits under the influence of

a mafmnffin fald of 1000 (3 into thraa comnnanante canarat hyvy O ON1AKR
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10. The electron and positron have the same (absolute) magnetic moment,
but opposite g-factors. Show that the “ground state” of the e*e” atom
(positroniiim), a 'S,, *S; doublet, cannot have a linear Zeeman effect if this

)s
ie true. Arcue in terms of the total mngnafln-mnmpnf npnrntnr
11 QA wnadtle fan 4l oo ot
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H=28.L + po(L + 28)-B,

where € is the fine-structure splitting when B = 0.

12. Calculate the hyperfine splitting of energyv levels of the hydrogen atom.
~ v r D OoJ J et =~ ]
LAOOUILLIT VIIT TITUVIVIL 1D 111 all VU dvoy ’ il AVT vilT al YWCL 111l TITUV1IVI1l YULWVD.

13. The ground state of the hydrogen atom is split into two hyperfine states
separated by an interval AE = 1.42 X 10° cps. What is the hyperfine split-
ting in the deuterium atom? The respective magnetic moments are
1, = 2.8u, and ug = 0.86u,, where u, is the nuclear magneton.
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16. (a) Find the magnitude of the Doppler broadening for an argon glow-
tube of temperature 300°K. Assume a Wave]ength of 0.5 u for the radiation
d nd Donnler broad

(b\ At whnf aanre shonld eollision hroadenine anino
) AT what pressure should collision proacening ang 1Llopplier proacenn ;5
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17. Find the alteration of intensity (ratio of intensities of succeeding lines

in an electronic band spectrum) of the following molecules, which are as-
aumed to be in nprfpof thermal ea _lll!bl'!.l

@ @) ) @) () He), (@ (He,
Assume kT so large that one may ignore the variation of intensity due to
the Boltzmann factor.

18. The potential of a diatomic molecule with nuclei of masses M, and
M,, can be approximated by

i i
V(r) = —21’0{— — 2\,
\p 2p%)
where o = rla (a4 hainoe a scharantariatie lanaoth)l Rind tha ratatinnal wvihra_
AV QW) rl ',W \w U\Jllls oW wVviiwiwwvvwuilivoviv I\Jllsvll’o A AARANA Vil IUWVIUIIW‘, VAL W
tiona and otational-vibrational er v levels for small oscillations by a

19. The far-infrared spectrum of HBr consists of a series of lines spaced
17 ecm~! apart. Find the internuclear distance of HBr.

20, The dissociation enercv of the H, molecule igs 4,48 eV, while that of the
P4 e qisseclation energy of the X,; molecule 18 4.40 eV, while that of the
T cdanila lo A BEA X7 T2ad dlc cosem cumiod cmanmcs ~fdbho IT o o lon--1.
479 11101IC0UIC IS X. 92 €V O 11U UI1C 4l U‘PUIIIU | &) lclg Ul VIIC 119 11I10ICCUIC

21. The muon has electric charge equal to that of the electron and a mass
roughly two hundred times that of the electron. It is known that a u-mesic
hydrogen atom may exist. This atom is known to combine with a proton

to form a “mulecule” H, consisting of p*p*p~. Assuming that the muon
anta 3mn o faahinn analAacsnizg $A 4ha alandnan v T+ snmalra a nlaniaihla aaticmadan
avuvd 1l a 1a5ilivil a. laxusuus VU Vil TITULLVUIL 111 119 4 L1anT o PIQUEIUIU Toviliiavo
o~

for the internuclear equilibrium distance r, the zero-point energy of the
molecule, and the binding energy of the mulecule. The following data are
given: internuclear distance in Hy is 1 A, the zero-point energy is 0.14 eV,
and the bindi ing energy is 2.7 eV.



-‘
o

ing no volume change, find the ratio D./D,, where D and D, are the
closest distances of approach of metal atoms in the two structures.
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11eav U1 1011avivll = i b’ O
(c) ionization potential of lithium atom = 5.29V = C;
(d) heat of sublimation of lithium = 38 kcal/mole = D;
{a) aat af diganciation of chlarina maolaonla — AR keal/mala — B
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and this transforms at 910°C into a face-centered cubic (fcc) modification;
the heat of transformation L is 253 cal/mole. The addition of a small amount

of carbon lowers the transition temperature. Estimate the change in the

transition temperature induced by the addition of 0.19, atomic carbon.

IMha anlizhiilider AF nanbhAan 1o wraner mrnh cmnacdan 17 dha fan 4ham t:m 4ha Lan

\.LIIU SUIU V1LY Ul valiull Id VOl HIUVIL BIWUUI 111 LilIT 11UV viiall 111 vil©€ DUV
h Kl P 1N

modification.)

6. A crystalline body in a state of thermally excited elastic vibrations may
be trcated as a system of N distinguishable indopendont quantum-harmonic

oscillators of the same angular frequency o (Einstein’s model). Give the
e PNty €Covn tha lllu.l‘ll\!l.lll.\ law «of ¢tha wrrat nrmnm vt tha avaraoen
A A.'l(“l\'ll (A%} ] VIIU WIDVI IUVUVIUIL 1 W Ul vV nyﬂm 113 \/JLII UV ViU u":lusu
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cases

7. The lattice specific heat of a certain form of carbon has a temperature
dependence 7%, instead of the more common 7'* dependence for solids.
What can you infer about the structure of this particular phase of carbon?

J = Vil OUl A $ 3

5 A. When the diffraction pattern formed by the electron passing through
ab b a4 . _ L a4 _____ 1L _ .1 & . O ____ .3 a4l 4 a2l _____1__a _°__ __ L.__ ___ ______1__
e sicev 18 pnovograpiiea, 1v 1S 10ula uviav uvio sijaliesv ring Il all anguiar
diameter of 120°. What is the depth of the potential well for the metal?

10. A crystalline insulator is placed in an electric field E. Show that an
electron in the crystal will oscillate according to

where ¢ and k are the energy and momentum of the electron. Estimate a
typical amplitude for the oscillation, and a typical period.

11. Positrons annihilate electrons in condensed media with the cross section
o¢/v, where v is the relative velocity between the annihilating par-

3 11TITC ¢ 10 viiU 101lavuvliyv o VYUIUULVIVY UUCuWwUOoUTI1l viil allliiiiiiaviil

I
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aaunme that moat
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ectron and positron.

annihilation photons are emitted in opposite directions within a cone of
lla’lf-an"]‘! x "ﬂf];ﬂ“ﬂ h Y t4 nron x ~ ] Il Qq

BID, v l.aulau.l.o, WIILUL U U l’lulo
(b) Predict the distribution W (8) for a metal, knowing the number of con-

cffect?

12. Consider the propagation of a sound wave with frequency @ and wave
-\I‘m‘\n“ " 1Ty O mn"nl f\‘. N n+l‘\mﬂ b 2YaY ] I"'\I.+ "nl‘,ml\ bk 2 +1\ﬂ “'!nn nlnﬁ‘ﬂl\“ MI\AAI

1Ulil Tl ﬂl, 111 @ 111 VOVl VUl AV QvvVI1L1ID PUI. Ulllv YU1IUIL1IT 111 Vi1 11 00-TI1TUV V1 V1l 111VUUC1.
™ 0~ 4 h | 4 TN a4

Derive an expression for the velocity of sound in the metal. Estimate nu-
merically for aluminum, which has atomic number 27 and Z = 3 valence
clectrons. [Hint: Consider the lattice as a “heavy” plasma with screening
by the electrons.] ’
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1. Pions and muons each of 140 MeV/c momentum pass through a trans-
parent material. Find the range of the index of refraction of this material

over which the ,’..LS alone glvn Cerenkov llrrhf Assume m r2 =140 MeV;
22 __ 108 M7
m,C~ — 1U0 MeYV

2. The existence of a massive meson was suggested by Yukawa to explain
the nuclear forces. From the uncertainty principle, derive a relation between
the range of the force and the mass of the meson. Estimate the mass of
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chamber of length be the cross section for elastic scattering and
o be the total cross section' assume both are independent of energy. Derive
an expression Pz(l) for the probability that an incident p undergoes double
elastic scattering, i.e. is elastically scattered twice and leaves the chamber

v Y] A el Re 1LC 4lill ICavios vilh Lvilda

4. The lifetime of an unstable nucleus is determined by the interval be-
tween two events representing its creation and decay. The mean life of such
nuclei may be determined in the following way: Each pulse from detection
of creatlon events is put into a coincidence circuit after passing through
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0
diﬁerent delays, ¢, and t,. Assume that, in a certain measurement, the decay
rate A is approximately known, and that 1/A is much larger than the resolv-

ing time of the coincidence circuit. Assume no background or accidental
coincidence nroblems.

VARAVARAT ALV AV RsAvALS

AT ~zr =zrnis 1A <rnaa LA Y fornen 4ha Al onceend ani;nal tdamnn ratag 1 and N
nIoOw wouia yUU. IINna A 1Irom IJl C vpustlivou Ulllbluc IVC laltts U allu U
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corresponding to delay times ¢, and ¢,? If you have a total time T for the
experiments, how would you divide your time between observing C, and

C,? (Assume you cannot observe the two rates simultancously.) What delays
¢, and ¢, would you uso?

5O



NUCLEAR PHYSICS—PROBLEMS bl

5. Experiments (deuteron “stripping”) show that the ground state of O'7

<

i8 formed from that of Q1% on ly by accentance of a neutron of orbital angul lar

orm. viizm CopPv

devenn 7T __ O ML, Buaéd awnitad “‘t 2 Favennad he +4ha ...,.,.-..\4-.“\.,.-. ~f

momenvum ¢ = 4. 110é 1nrsv exdcivea &
a neutron with angular momentum 7 = 0. at can you conclude about
spin and parity of (a) the ground state, (b) the first excited state of O!"?

8
um {

6. Which of the following particles may undergo two-pion decay? Give your
reasoning for each of the three cases.

£ (51 =20)
o  (J®,I)=(1",0)
7°  (JF,I) = (0, 0).

oAl - _ a4

nere J and P are une lnunnslc spm a.na p&l‘lt'y, 118 the lBOBpl Assume strict
isospin and parity conservation.

7. Particle 4 decays by strong or electromagnetic interactions to particle
B and particle C. If A4 has spin }, prove that the decay products must come

out 180 otronically avan if 4 1a nolarmzad

AN VA vrlku vV VAl AL LA AW rvaw&muu.
T o et o Al 4 AL __ . LAl . = . . .0 AL . ___24__ ~LCal.. Acdnenne
Oo. AL lug LvilaLv LIl 111 Ol VIIC 7T I8 Z€ro anu uiie Plll.'lb 1 LIIC ucuuveloi
18 even, show how the existence of the reaction

“(atrest) +d —n +n

N

9. The elementary particies A, p, n, 7%, n°, #~ have the following (internal)
quantum numbers (I = isospin, I, = third component of isospin, 8 =
strangeness).

Multiplet Particle S I I,
A A . 1 n n
FAS FAN —1 v v
P +4
N 0 3
n —3%
nt +1
4 n° 0 1 0
o —1

The weak nonleptonic decays

A —> .
Pe [ B | La

P
~—

obey the selection ruies

ISlnl tial state — Sﬂn. atate | = lg |I|nm.1 state Iﬂn-l -uul = 'é‘
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(the so-called “AI = } rule”), and of course charge conservation. Calculate

the branchine ratio

AAWALVALLALG AT VA

. ate(A — )
A = =50V r~ 7,

Dn AIA —_— “‘-,O\

LWW\L‘." pe /Y ’
rone interactions conserve T Q@ and 4ha alandnin chanea To oo
411 JuLVig INveracCviOns GOoMServe 4, 13, O, AllU VUIIT TICTULLIU viialge. 11 P&l'

ticular, the prqcess

7+ N—K+ A (2)

proceeds via strong interactions. The ratio of the cross sections is

Show how this determines the isospin of the K°.

V(r)
R

\

|~
10. The nuclear shell model describes the nucleons in the nucleus as moving
2 o AT an mitnalace mndarmdial o A acadad 2. 4 o X o L —al 2
111 & CVUILIIIVIL 11udlical PUIJUHU 1 ad Iepresceliveu 11l vl uiaglialll apove, wiuil HPI 1
and angular momentum coupled by an interaction —2aS-L, where a is a

positive constant. Use this model to predict the spins and parity of the
following nuclei:

(a) ,H® (b) ,Li" (¢) sBY (d) N*.

aw o rw o ad
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12. The radiations emitted by a certain radioactive species were studied
in a B -ray Bpectrom(‘t(‘r Tho B BD(‘Ctrum was l‘esolved into two components
of 0.61 MeV and 1.43¢6 MoV maximum npnrmna The hlahnr energy com.
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ponent was about four times as abundant as the low-energy one. When the

y-rays accompanying the B-spectrum were allowed to strike a thin silver
foil placed in the source position of the spectrometer, the following five
photoelectron energies were measured :
Photoelectron E (MeV) Intensity

A 0.216 strong

B 0.237 weak

c 0.801 weak

D 0.822 very weak

E 1.042 very weak
The K and L binding energies in silver are 25 and 4 KeV, respectively.
Draw a plausible decay scheme for the radioactive species under investiga-
tion

13. Show that the conversion of a high-energy photon into an electron-
positron pair can occur only in the presence of matter.

14. Pions are produced in nuclear explosions (stars) and registered in photo-
mmanihian amiilatAane Té 30 Ahcancad dhad 32 4~ o Limadin amancsers AL amoinAws
L Pl 1 ClLLIUISIVIIS, 1U IS0 UPYSTLl vou uviiav UP v a 1110UVIVU ©l101 By Ul GPPI. VUAl-

negative mesons emerge from siiver nuclei which are

nly
in the emulsuon. Why are positive pions not observed below this energy?

15. ,Si*” decays to its “mirror” nucleus A?’ bv positron emission. The
maximum positron energy i 348 MeV. Assuming that the nuclear radii
l.ua‘y V9o SIV Io[]. ’ WIIULU L1 10 vl piit.N-N] I.UIJ.IUUI., oUduiililiavo

i
&
Z
o

lecays to an excited state of O'" with 8~ emission of maximum

energy 3.72 MeV. This excited O'’-state decays by neutron emission. F'’

decays by positron emission of maximum energy 1.72 MeV; no radiation
NONIITrAa f\]]f\‘ll‘l“n "l\;ﬂ Annotr 'T‘ O TMmaaga AI. OTOMNNng arn
\VAVIVAP S QS J.Ull\l"llls Viiio uvwvw o A lAUVU AILIGVDLD UL111VLVILIVUD VLUV .

n — H!' = 0.78 MeV, (1)

AT17 17 O ONn AL _XT o

— U = 0.0V ey, y4

p—
oo .
N

O'* - H! — F'" = 0.59 MeV.
O'® has excited levels at 6.05, 6.13, 6.9, 7.1 MeV and higher.
(a) Using only the above data, calculate the energy of the emitted neutrons
he laboratorv system.

)
(c) Which qualitative features of the level diagram follow from charge
independence? Add the further levels which can be predicted from charge
independence.
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Element Halflife Observed alpha energy
X 10%° gec 5.0 MeV
Y 1 sec not measured
Z 103 sec 10.0 MeV

Would you expect any N*? to be formed by the reaction N*4 («, an)N*3?

18. A certain nucleus may be considered to be a sphere of charge Z and
radius a, which will undergo a nuclear reaction when hit by either a neutron

L4
r nroton. (‘nmpnfn the ratio of the reaction cross sections (g

VAAL AW v vaaw A Z Y2 Y A NSO DUV VAV AA

la )\ according

‘A oo

19. A charged particie is slowed down in a photographic emulsion from
a velocity of 10° cm/sec to thermal velocities. Does the grain density increase
or decrease if the particle is

(a) an electron? (b) a nucleus of charge Z = 117

N MNMalnslata nlacginallery ammd nAanmaladivriatinallsy 4ha Aiffanantial anctdanines

&Ue wvaluvulavo viassivall aiiu AUL UIGUIVIBUIUUI“.Y VIO Wilioloilvial DUUJUWI.LLIS
.

cross section at smali angles, for fast magnetic monopoies of strength g
scattering from fixed nuclei of charge Ze. Estimate the energy loss dE/dx

of a monopole traversing a nonmagnetic sample of these nuclei, having
N nuclei per unit volume.

91 MNariva a farmunla far +tha law_anargy diffarantial anattarmineg arnaa aantinn
mie. As0LIVO @ IULHIUIG 1UL ullU 10W-CLICIEy QULICITIIvia: SUauvLoL CIroSs S5O0CuIVIL
from a potential which is capable of producing one weakly bound state

with the sca.ttered particle.

22. A neutron is bound to a force center by an attractive force of range
1072 cm. The ground state of the system has a binding energy of 1 KeV.

What ia the nantron acatterino ecross section at zaro enerov fnr fl'nq 'Fnrno
VYV AAWW AN WVAAN/ AANUA VLA VAR WV YV VWA Jua WA WIAT WN/V VANV AL WV &dvaA BJ

PRy Py, B W | IRy Ry B-on [ (Y .. puppey | [ QU S |

CoHLel ¢ ASSULLIe LIIC PUlJﬁ vial 1uiecuvion I8 weul oeliavoeu.

23. A beam of 100-KeV neutrons is attenuated to 509, of its initial intensity
in passing through 10 gm/cm? of carbon. What can you say about the s-wave
phase shift for the scattering of neutrons from carbon nuclei?

y )
a ..Q
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g

LY d:
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B

e elastically
scattered (over all angies) from a sheet of lead 2 cm thick (of density 11
gm/cm?®) placed in a 14-MeV neutron beam. Make your best guess, listing
your assumptions.



25. A thick target of Mn®*® is bombarded during a time ¢ with a deuteron
beam (current ¢) in order to produce Mn®®, which decays with a half-life
T,y Calculate the number of active nuclei present at the end of the irradia-
tion, assuming a range R of the deuterons and an average cross section

over the range of the deuterons.
Numerical example:

. 40 (, 1IN-—Q A m o n P -3 1
1t =48 X 107°A T.,=26hr t=52hr
R = 110 mg/cm? o = 107%% cm?.
28. Show, by explicit calculation of the scattering cross section of ortho-
and para-hydrogen for thermal neutrons, how the relative sign of the triplet

.—-

and singlet scattering lengt

B-
B
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27. Suppose that the differential cross section do/d€2 in the center-of-mass

frame for the reactionp + p — 7* 4+ D is A + B cos® 6 at energy E. What
a the do ’/JQ for the i

£ oo ananger? Mh
I-IMiaSsS CIICIgy : 1

=
)
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7]

reaction 7* 4+ D — p + p at the same center-
a |

o

28. Neutrons can be scattered in the Coulomb field of a nucleus because
of their magnetic moment. Write down the Hamiltonian of the interaction,

and calculate the spin-averaged differential cross section in the Born ap-
proximation. (Treat nonrelativistically.)

0 Aaanimna +that an 1
=141 LADDUIIY viiavv vl 1

per unit volume given by ji;g(r), where ji; is the magnetic moment of the
iron atom. Thermal neutrons of momentum k,, polarized along the direction
of u,, with k, perpendicular to p;, are scattered in iron. Note that the scat-

tering has two sources; that due to the nuclear force between neutrons and

H

and that due fn mnnnnf:n forcaa hatwaan nantrone and
AL VUD AUV VY WUV WA\, o w A
i

-

1 1
i1y <wiiva ViiWV \awuwv wsuvvnv

4 . £ ___ __ _ ___ -~ A _ L __ 42 __

atoms. Compare these contributions to the scatteri aiculat
total spin and nonspin flip cross sections. Treat the scattering as though
due to a single iron atom. [The vector potential A(r) due to a magnetic dipole
U is given by A = (4 X r)/rd.]

20. The dominant decay mode of the neutral sigma hyperon (spin 1) is
S_a4ct___ 2 <o AO =L — 1. 1 2 A b
radiative, i.e. 2°— A + P Y

forbidden because 2° has no charge, the decay
dipole radiation, through an effective interaction

. aeh
geh

H - - TzAa’V X A.

Here 75, denotes the operator that converts 2 into A, and geh a[(Ms + Mx)c

may be interpreted as a transition magnetic moment, which interacts with
the magnetic ficld B — V % A of the radiation field. Takmg the amnlltude

vaall assmeaT Ve 2:2%iaRs R L Q] S LA LAY Lo
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for emitting a photon to be the plane wave*

= i/
A= c(2 nV) €exp(t-k.-x — 1et),
@
a4 oal _ 0 10 _a°___ _ Y WJ 1 e _ £ a1 _ PRV [N
esuvimate ne & 1leuime, 1or g = 1. 116e masSses Ol uNne paruicies are
M) — 1180 MeV and M(A) — 1115 MeV
\ <) AAUV AU ¥V wiila AVE \ix) AAAU AVAU YV »

1 ___ 4 . P, - - |

31. ﬂll element OI lOW EDOID.]C numDer a uecays WlUIl PO r'O’n ana nel.IfTiI_lO
emission ; the maximum kinetic energy of the positron is W KeV
the probability per second of the decay process is I',. Using Fermi’s 8- decay

(for an allowed transition), calculate the probability I', for K-capture by
t

I
(@)
C
E
<
®
=
[

be regarded as having infinite mass emits spon-
taneously two nonidentical particles with relativistic energies. Assuming
the partition of energy among the two particles to be governed entirely by

phase-space considerations (energy-independent matrix element), obtain

b O PO RSO, T
D 7“5 A syawum Wil 1ay

1 expression for the energy spectrum of the particles in terms of E, the
armanmer 11ha - 4+ ac PO A ha nmnact mracs A b hn avnitddad
jyg e LODL 1LIADYS Ul VI1O Clllivvou

33. (a) Assume that the muon decays into an electron and two distinct
neutrinos with a transition rate

- ppip | - PR

P — 17 A2 - PRSP
WIlere y lB a coupiiig ooIl L

tant, V a normalization volume, w' the en 16rgy O
the three emitted particies, and p the momentum of the electron. By cal-
culating the number of neutrino states per unit energy interval, dn/dw,

obtain an expression for the momentum spectrum of the electron. (Assume

i V. a a DJ ~ ]
hY Malniladtn ~2 Founenn tha ennacn 1364 AL 4hhn avnzzem
U’ wvalvulavt ¢y 11ulll uilo Laivall 1119 vl uvlv muvoll,
T, = 2.2 X 107% sec (m, = 207 m,).
M aaima tha nviu anNoon r\‘r a (>} .Inlﬂ (\f n]nnf‘rnnln nhnrn‘n 0 a‘r\in L n*nr]
Wxe AAMINIALIANYY VALV VAOAILDVWVILAVY Vi W WA VIWVAVY Vi ViAUVUVVALUVLLIV Viiwis 6‘1 U, Ut’lll _2” Wiia

:l
s gh_

and a pnoton T ifetime of the particle is 7' (in its rest system).
Conversely, these partlcles can be created by irradiated electrons with light
of appropriate frequency. What is the frequency w, required if the electrons

are (nrnnhna"v\ at rest? And what is the nrobabilitv of the process mer

LT \pLwvvivaly Anzale ANV AT VALY AV REwALIYy  Va VALY praUuUos P

* In these units, e?/hc = 4x/137. In units where e!/Ac = 1/137, weo have
A = c(2xh/wV) e oxp (+ k-x — 1wt).



second (per electron) if the incident photons have an energy U(w) dw per unit
volume and per frequency interval dew? What is the answer to the second
necmcdh i LA A hnacnerer cnandinala hao aomton 3 tcnndaad £ 19
quuauu 1 11 VLIl 11oayVv Ptu uiUl10 11ad BPI 1 b3 HHISvoau Ul '2".‘

35. In a chain-reacting device consisting of a homogeneous mixture of
uranium and carbon, neutrons emitted by the uranium move about with
an average velocity » and mean free path A = 10 cm. They will, on the

average, be captured after N = 100 collisions. For each neutron captured,
1. — 1T DA naww natnanag arna amittbad An tha avarnaca (liva tha AifFarnantial

L. 11IOW 110Uvivullo alv Ollll1uvuvou vll vilio GVUI.CISU. \A1VUO wilU uliivdivilivioal
equation for the time rate of increase in the neutron density. If the device

e
orm of a cube, find the critical size.
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is built in the

36. Neutrons are slowed down in hydrogen.

) After n collisions what is their average en
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scattering of a neutron by a proton is spherica
of-mass frame of reference.

(b) If neutrons of energy E, are produced at the rate of g/cm?® sec™! and the
total scattering and absorption cross sections are known functions of the

o @il @bLBULl JuLiUil L1USS SOLLIL

P

<
w

E
&
]
i o
Q
|-
'~"Z.
=
(e
Q
@
=
ct
@
V

37. Slow positive and negative u-mesons (u*, #~) have, in a vacuum, a mean
life 7, for decaying into an electron and two neutrinos. Negative u’s can
also be captured into atomic orbits and very rapidly fall into the K-shell,

where fhny are close enouch to the nucleus to be absorbed bv it

AV AEmid VS VAL 22 ~ L5 W oRsaINsa J

~

(a) Making the plausible assumption that the probability of this nuclear
absorption is proportional to the fraction of time the yu-meson spends inside
the nucleus, how does the probability depend on the atomic number of the
material in which the meson is stopped?

WY TEf4ha Lifadiena in 4ha  dhall Af herdnansan g - whaot ana tha maan Lovaas
\U} A1 UIi© 1118viIll® Il vii® 1 -81iéu 01 uyuluscl 10 1 gy, WHOQV Q10 V11U 111011 11VUODd
7., T- of positive and negative muons in zinc (Z = 30)?

To = 2.10 X 107% sec T = 2.075 X 107° sec

Noie: Neglect time required for transition from outer sheiis to K sheil.

38. A cyclotron produces a beam of deuterons of 200 MeV energy. When
incident on a Be target, a narrow neutron beam is produced by the process
of stripping (i.e. the proton is removed by a nuclear collision, allowing the

______ iU 135 =35 11

m
v-,
I
c:G
r-|

uvi 1011 G
the distribution in angular spread of this neutron beam due to the internal
motion in the deuteron. Use an approximate form for the deuteron wave
function (limit of zero range) and take the binding energy of the deuteron

to be 2.18 MeV.
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39. Study the vibrational excitations of a nucleus of atomic weight 4 and
i -dro mndnl Include the effects of Coulomb rnnnlmnn
£.

- o andta

~ 2~ fAn Ing
UP a LUl1l1uvoi1vil 1Vl 111D

he semi- emplrlcal mass formula with Uy, = 14 MeV. [Hnt:
Use the methods of Problem (2-35).]
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We inciude here a set of problems concerning experimental physics. Most
of these problems have no unique answer, with solutions of varying degrees
of sophistication possible. Furthermore, because of technical developments,

the apnronriate resnonse to some guestions mav denend stronclv on time
the appropriate response o some questions may aepe strongly on tim
W hawa 4hcacafiocn —wnd adbacadad o T2 4 4bh o o bl o

¥YVY U llavyo, LIITIO1IULIO, 11UV v l.l.lPUUu 1UVLVIVILS LU LIIOSO PlUUlUmB

1. Design an efficient furnace and accurate temperature-measuring equip-
ment for studying the electrical properties of solid materials in the tem-
perature range 1800-2300°C. The volume of the furnace is to be 10 cm?®.
Include methods for end-effect corrections for electrical connections to

2 TMeasion a anactronhotometer for usa in the ranca 15009000 A Tha dasion
do .IJUDISLI. o PU\JUI. UPIIUUULI.I. VOl 1Vl UdyU 11l vilo 1 150 AJUVTLUUV L1, 4110 UODIEZIL
is to include a source or sources of light, dispersive agent, and method or

methods of detection.

3. Devise a set of experiments that will measure the mechanical properties
of so-called “Bouncing Putty” or “Krazy Klay”, a silicon compound which

bounces when it strikeg a hard surface guﬂﬂnnhr but flowe under its own

AAN AL AW VA AR AAUWA LA iJlad AW VL ralalavass vy NAZAlATA AW VY aa

"v'v’eig‘uu.

4. Design a strong focusing synchrotron to produce 50-BeV protons, paying
special attention to size of magnet, gradients, ratio of straight sectors to
curved sectors, energy storage in the magnetic field, radio-frequency system,
and orbital stability.

6. Design a magnet to produce a field whose homogeneity and stability are
+.019, over a range of 1000-20,000 G. The region where B is to be constant

i8 b in. in diameter and 1 in. high. Include measuring equipment to deter-
mine B to 4+ .059%,.
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7. Given the problem of measuring minute normal displacements of a
surface, describe three of the most sensitive methods you can devise, and
e non medlonada AL AL et Al lannemaméd eehtnlh acanahh naem Aadand

1VE all ©3Lllilauvt Ul viie mlllllllul UIBPI CUCILLITCIIUV WIIlIVI1 ©aVll vall ucuvduu.

8. Discuss the relative merits of a quartz prism and a vacuum refiection-
grating spectrograph for the following applications:

(a) The observation of the fine structure due to the Lamb-Retherford effect.

[y MA bz der ¢ha TTT7 handa &f OO l\n#mnnn 190N annd 1EEN R

\ ’ 4V Buuuy vilo U Dallus VUl UV UTLVLWLCIL 19UV allu 1UuVv 3.

(¢) To study the Doppler effect in the aurora due to particles coming from
the sun.

(d) Measuring spectral intensities by the rotating-sector disk method
QI'I'\“A(IA +‘\ﬁ *XPMNIT cn'nnnnnfnr] “l\ﬂ nvin"nﬂnn n"‘ COTNIINAO _Tasra f\“ ﬂ‘\l\“l+ n K
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MeV energy in the radiation from the sun. Assume a flux of about 5 per cm
per sec at the earth’s orbit. Assume that the absorption coefficient of air
for gamma-rays is 0.1 cm?/gm. Devise an experiment to prove that such
radiation exists, that it is not corpuscular, and that it really comes from

3 v

the a1nn alrza tha avynarimant a nractical one What wonld he tha aonreces
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10. Describe any set of experiments from which the fundamental constants

e, m, ¢, h can be determined, and estimate the accuracy obtainable with
these experiments
11, What techniques would you use for measuring
(a) Magnetic fields in the ranges: (b) Temperatures in the ranges:
(1) 10*t0 107! G, (1) 1072 to 1° K,
(2) 1G to 10 kG, (2) 1°to4° K,
(3) 100 to 250 kG (1 kG = 10° G). (3) 1000° to 5000° K.
In case you can think of several methods suitable for a given range, state
the experimental circumstances on which you would base your choice of

any one method.

12. Discuss a method for determining Avogadro’s number with better
than 59, accuracy.

13. The “classical” experiment for the determination of the neutron half-
| ¥ VO SR Y PRy gk [y . I ) PR [ | Y R o
111 185 WO PI&UU alil evacualtu Cullvalilcl 111 a PIIU allu 111 urce uiit r1ave Ul
accumulation of hydrogen. List three factors that make this a difficuit ex-

periment to perform.

14. Discuss nuclear reactions which are observed when lithium is bom-

barded by protons and when it is bombarded by neutrons. How are these
—m AL l‘n._‘ 1‘n‘Aﬂ.Ml1,
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15. Discuss methods suitabl

tance. In what rance of resi
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16. Discuss the theory of operation of the high-energy machines which are
now being built throughout the United States. What do you consider the

main difficulties in constructing each of these machines? To what kind of
experiment is each best adapnted? q"o'o'pnf brief programs of research for
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Elaborate in detail one such program. What in your opinion will be the
probable effect of these machines on our knowledge in physics? (This problem
was given in 1948.)

17. How do you measure the wavelength of electromagnetic radiation
in all different frequency ranges? Describe briefly the type of equipment
required in each region

18. Design an audio oscillator and power supply to operate at a nominal
frequency of 50 ke which does not contain any inductances. The oscillator

is to provide 3.0 W of power to a 200-ohm load.

asure
of a magnet to as high a degree of absolute accuracy as possible. Propose
a means for carrying out such a determination for a field of the order of
10,000 G and discuss the limits of accuracy. Take the diameter of the poles

ag B8 in and the can as 1lin

UV dilie WWiLlA VAAU B W & ARRe

aon T camr ccmomtcncncmd ~m bl cnmncnamadliacn ~F 12Ahd 2k 4 cnm~wrten e smradizsesa
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it is desired to have water moving as fast as possibie in a pipe of at least

1 in. inside diameter and of length 5 ft. The pipe is to be provided with end
windows for observation. Design the pipe and the subsidiary equipment and

estimate the velocity that may be achieved.
. PO . S, 1 _ 2 -G PR .Y o ) RPN
21. Design an experiment for measuring the lifetime of an artificial beta-

active substance produced by slow neutron bombardment, assuming a
lifetime of the order of - sec, and allowing for the possibility that fairly
intensive longer lives are also excited. Estimate the accuracy.

AN VY

pose of exploration of the ocean depths. Design a bathysphere for a depth
of 1000 m, giving particular attention to mechanical details such as the
observation windows, illumination facilities, devices for renewing the air,

ote. Givo as comnlete a (lmuan an pnmuhln
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23. Design a seismograph for detecting three-dimensional seilsmic motion
of maximum amphitude 1 mm and maximum period 30 sec

24 Starting with a 2-nhage 440 (15 mercent)-volt e, snecifv a nower
Z4. otarting with Pphase, (1 percent)-volt line, specily a power
RN, - A P T bnnllimcr 4ha smacnatin £a11 ~F
sup y ana aesign a servomecnanism ior control g tne magnevic neia o1

a 40-mn cyclotron Assume an ambient temperature of 30°C 4 10°C, a maxi-
mum magnetic-field intensity of 18,000 G and a mimnimum field intensity
of 15,000 G Specify soft iron for the magnet The controller should keep

the field distribution constant as a function of time to within 0 1 percent
&J. J.l.l. Dy 11V111IVV1IVI1l TITUVLVIVIID Ol1T auuTlivliavou vV all T I.Ul.sy Vi A 1AV T©TVY

Devise an apparatus for measuring the shape of the y-ray spectrum originat-
mng from an mternal thin target of tungsten struck by the electron beam

28. Construct a spectrometer for measuring the diffraction, refraction and
reflection of z-rays of a wavelength of 40 A

. °%

1 Yo T o ______ ___a_ 4 4L _ 4 4

of nuclear photo-emulsions It 1s important that the properties of these
particles be determined experimentally using methods other than photo-
graphic emulsions It 1s further important to design the experiments in such

a way as to indicate the origin of these particles Develop an experimental
mnfhn{] which can successfully attack this nroblem and devise f}\o methods

ALLUVAANUNA VYV AiAVal DU VvV ) WAL A AU
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28. Design a practical experiment to detect the neutral mesons which are
supposed to emerge from a beryllhum target which 18 bombarded with 1 zA
M MIMIMITM ArNaa nn far tha nrt\l‘iin{nr\n
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how you would distinguish these mesons from neutrons and gamma-rays
which would be present

30. A high-impedance pulse generator produces periodic pulses of the shape

shown 1n the diagram on p 63 The pulse rate 1s 10*/sec and the pulse height
1201V Work out the basiec d

VYV WAAR WAV VAL AN \.e
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The defiection sensitivity of the cathode ray tube 18 20 Vjin Basic circuit
diagrams and schematic drawings should be used to designate electronic

oomponents The properties of each circuit shown should be caloulated or
nanafully elfim;tg_l _



2
"}

FoR THE EXPERIMENTALIST—PROBLEMS

06 |
LAY
secC I
< 105 J
LAV bl
sec
21 Mha nantran raganannaa in +h 1NN AUV fan wnia nialar ana
Dhe 4 110 11TUuvivil 100VHIOILIVOD 111 V. AUV TV 1UlL LIVUD 11UuviTl alT

to be measured. A nuclear reactor is available as a source of neutrons. The
neutrons may be brought through the reactor shielding by means of a cylin-
drical pipe measuring @ cm in diameter, so that neutrons ranging from
to over 10* eV, are present at the end of the pipe. The resonances
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of light to an accuracy
agation of microwave

can be used for frequency standardization.

(a) Give the overall design and show what measurements are to be made.
(b) Give details and precautions necessary to obtain the required accu

84. A few rough measurements have been made of the decay of the neutron
giving a half-life of 9-18 min. What difficulties may arise in the Chalk
River experiment, whose description follows? Show how a coincidence
measurement would improve the experimental evidence for the decay process.

. . .
.‘hl\\l} h yw ’hlll nvr\nrlmnnf 18 "l\lllfj\ll tn nontrinn nmlnﬂinn
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THE RADIOACTIVE DECAY OF THE NEUTRON
J. H. Robson, Chalk River Laboratory.

The positive particle from the radioactive decay of the neutron
has been identified as a proton from a measurement of charge-to-mass.
A collimated beam of neutrons emerging from the Chalk River nile

paer-A0 Oslill LIVIIN ©QLIII0 O
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spectrometer, the axis of which is perpendicular to the beam of neutrons.
The positive decay particles can be focused on the first electrode of
an electron multiplier. The background counting rate is 60 cpm. A peak
of 80 cpm is observed above background when the magnetic field is
adjusted for protons of energy expected from the electrostatic field.
When a thin boron shutter is placed in the neutron beam, the proton
peak disappears. Preliminary estimates of the collecting and focusing
ux indicate a minimum half-life of 9 min

L2- a v L8t r=

35. Individual particles of single charge and unknown mass with ene
£ 1 v 1N9 H
v

O1 1 X 1 t
determining their mass—with a precision of 5 percent—by defiecting them
in an electric and magnetic field. Discuss sources of error. The mass is assumed

to be around 200 electron masses.

36. A penetrating shower of 10'° eV total energy consists of 5 charged
mesons, 5 neutral mesons and 2 protons. Describe in detail apparatus by
which (a) each individual particle can be identified, and (b) its energy can be
determined.

37. ﬂ new pnonoconuucmve mater l&l I' Dle nas a lOIlg wavelenglsn UIlI' esnom
for light absorption near 6 u. Describe the expected photo-response signal
and the noise as a function of wavelength and temperature. Compare the
highest expected signal-to-noise ratio at room temperature with that of

a thermoconn a at rv ice tammnerature: and at lignid air teamneratnra
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conductivity is intrinsic or due to an impurity; whether it is a bulk
surface effect, or contact effect; to determine the sign of the charge carri-
ers, number/cm®, mean free path, and other important parameters?

: i
ould be the activation enerov and other nr operties of this material

a; i used
would be the vation energy other pr ties of this mat used
.......... O
ads a BUmlbUl QucCuvor«

20 A Locon ~AF O MMAY —necdbmncice AF Bizee A amn =2 ann=—1 3a matdant manmaallss
Q0. A VTCalll VUl 4-1iTCyY ATUVIVUIID Ul 1IUA ALY 1l STU 1D 11IVIUuCILIL 11vlliall
on a 100 ug cm~2 film of glycerol tristearate (Cs;H,,00s) (density 0.862 g/cm?)

producing hydrogen recoils which enter a gas. Develop the theory for and
design a detector and recording system utilizing the ionization from the
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recoils to measure the incident neutron flux N and the maximum ener
E___. Call the bias energy of the detector system E, and the incident nex

maxe® »~wwes RIAWES WERAVED e v bt ViiARA Vaal - el * “1
PR n
(o] 8 L&) By Ldpe.

Describe the properties of the detector selected for the measurements.
Calculate the expected response of the detector for recoil protons. Draw
a cross-section view of the detector, indicating all components with suitable

specifications such as dimensions, materials, etc.
TMNraw hlanly Aiaon h Avrie 1 Framntinnag +n ha nanfarmad her alanénAanin
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circuits. Tabulate the estimated specifications for each of these circuits.
What is the efficiency E of the film? What is the energy of a proton recoiling

at an angle of zero degrees with respect to the incident neutron in the detec-

tor? What the pulse size distribution in the detector?

spurious bac

ments.

39. Consider the reaction Au'®” 4+ n® —> Au'®® £, Hg'®* —> Hg'®®. The
half-life for the decay of the excited state of mercury is 1078 sec. Qutline ex-

Y

nerimental eauninment with which it wonld ha naosaihla ta mesanre thia half.
t’\.ll. ALLANAA VWA v\iulr‘.uullv VYV AVAA VY AAAVAL AV VY UWINA VUV IIVDDI ARAV VW ALLVUWIOUWA Vv ViLAIWD ALAWiA
100 ot 1 el oo PRy LI & PR §
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40. Given the reaction I'*” 4 n’— I'?®* — ? The latter decay, for which
the daughter nuclei are unknown, occurs with a half-life 25 min. Outline

experimental procedures by which you could obtain the complete decay
DUIiILITI1ICU VUl viiUv 4 t’l. Uu.uucu., 1111 uu.xu.s 111111 VQVVIVILID Guilll Cl1VI1ID Ul Vi1V 1o viivu

41. Discuss critically at least three pieces of evidence for a finite age of the
visible universe.

43. Design a cryostat for making measurements of specific heat at liquid
helium temperatures.

45. Oxygen is paramagnetic, a property which is unique among the common
gases in the atmosphere. Design an apparatus using this property for ana-
lyzing the oxygen consumption in human respiration.



46. The velocity of light is known, at present, only to within a few parts
in one million. Devise an experiment to measure the velocity of light to
nn mand o TNT Tcniiaa tha aniricemandt mandad and 4ha manascs ntr anerandlana
UI1C P 1V 111 IV L7150 UDS Ul.l. Uli IPLLIUI.IU I1TCUCU ailu VI 1I1CUCDhSO. y COUL1ICUUILVILDS
to be made. Try to make the experiment feasibie.

47. Suppose that the neutron has a permanent electric-dipole moment.
Design an experiment to detect such a moment if it is larger than that pro-
duced by two elementarv charges (4 and —) separated by 10~'* cm. Why

o>
r
c:i

1 an ir S.S.R.
said, “Since World War II there have been six funaamental experiments
done in physics; one in Italy, one in England, and four in the United
States.” If you were to select six such experiments with the boundary condi-

tions as SDPC]ﬁPd which six would you select? Tell the suzmﬁcance of each

exXperimenne.
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50. State, and discuss in a few sentences, one good method for detecting
beams of each of the following entities:

(a) Electrons of 100 eV energy (h) Positrons of 10® eV energy
(b)Y Photons of 10-7 &V enerov (1)  Free radicals

\u’ e BANT V. JA AV vy \JII\JLGJ ‘l’ i AN A CNALINANYD

£ DL 4. L I1N-3 X7 _ . £\ AT 12 4 .

\C) rnovons o1 1V CV CHeigy \J) AlKkall avOIns

(d) Photons of 107 eV energy (k) Phonons

(e) Metastable atoms (I) Neutrons of 10" eV energy
(f) Thermal neutrons (m) A particles

£eol Asndion nzad i ~oe £nYy Qeoiton i erao

\g) Lallvliicuviiius \11) DP]II. waves
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Estimate the total rms noise generated in A

the grid circuit of this high-impedance DC [ WA ———
amplifier at 300°K. Assume usual values for | A/

the characteristics of a suitable tube. What
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What precautions are necessary in the use q

of such a circuit? List other possible sources |

of noise in the first stage.

52. Design a coincidence-anticoincidence circuit with the following pro-

(a) There is one output channel.
(b) There aro four input channels I, IT, III, 1V.
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(c) An output signal results when there is input to either channel I or channel
0 8

IT, or both; but no output pulse results if there is input to either channel III
~Ar ahaoamemal TV o L4
Ul vllalllicli 1 v, UL Duvll.

53. The rotor of a Beams-type ultracentrifuge is spinning at 150,000 rpm.
The speed is expected to be constant to within 0.19, over any 5-min interval.
Describe how you would design, construct, and use an apparatus to check
the speed regulation to this precision.

L 8 Le ol %8 piil 0O LIS PRl
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tromagnet powered by a single flashlight cell. After making some estimates
of what is needed to perform this stunt, comment on whether this is a string-
ent test of such a cell. Note that the circumstances allow the presence of

a supplementary piece of soft iron concealed in the roof of the car.

55. What type of detector would you use for each of the following purposes?
(a) Detection of protons and S-rays with equali efficiency and puise height.
(b) Efficient detection of 20 MeV B-rays with zero efficiency for 50-MeV
protons.

(c) Efficient detection of 50-MeV protons with zero efficiency for 20-MeV
B-rays.

(d) Efficient detection of 5-MeV ry-rays with zero efficiency for detecting
5-MeV a- pa.rtlcles

56. Design a permanent magnet for use in cosmic-ray research. The magnet
is to produce a field of 10,000 G over a 1 in. gap. The pole pieces are to be
circular with a diameter of 10 in. The basic form of the magnet is to be as

shown in the fn“nmnn diaoram -
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v 5 0% 7 24,000
% U //'/ / 20,000
g R U ) i o
] R 10,000—~# T 16,000
() [ I 12,000 78
[ [ 77
5,000 , 8,000 //
' /i
’ 4, 000H-
/ i1
4
600 300 0 2000 4000 0 i 2
H H
Ainico V Soft iron
Note change of scole ot zero
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The particular shape and dimension of each piece, with the exception of the

nole face itself are comnletelv variable. The thter%;g ]nnpq for Alnico and
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Discuss the feasibility of constructing each item. Note: Cost of Alnico =
$4.00/1b; cost of soft iron = §0.05/1b; cost of copper = $0.50/1b.
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1. This particular method of birth control does not affect the ratio of the
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2. (a) Choose a specific color, say color 4, and use it for the upper surface
of the die. Choose any color B for the lower surface. There are five choices
he cube may now be rotated so that some color C is facing us. Now
ini

gides are fixed with respect to these three. We can distr
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This exhausts all degeneracies and gives 6!/(6 X 4) = 30 ways. In general

for a figure with N faces and painted with N different colors the number

of possibilities is N!/R, where R is the number of discrete rotations which
leave the figure invariant.

b

(b) Here one must take account of the fact that the individual dice are
indistinguishable. Thus if each die may be colored in N different ways [from
part (a), N = 30] the number of distinguishable pairs of dice is

3. We treat the regular octahedron as we did the die in the previous problem.
The symmetry viewpoint is particularly useful. If we take one of the six
corners pointing up, we get 6 possibilities; there is still

: 8 n
space, the octahedron will still entertain a three-fold
rotational degeneracy. Either way, there are 24 dege-
nerate positions. We obtain therefore, 8!/24 = 7!/3

pnnﬂihil itien

a four-fold rotation generacy, giving 24 possibili-
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-J

Another way of counting requires more care. We draw the octahedron
ned; the dashed lines

flatt the dashed line 8 join when the figure is folded into 3D. Color

amer ot -J'.. an wrth gnsaa Alam Fobhad.d 300 dhy Lomenn) and fana +4had 313, un

all Su. CE€ Wiunl 8SOImée COior \Bll ©u 111 Ll us IU’, ana iaceé uvriav siae P
.

Th ere are now only 2 lndependent choices for 4, B, C. For if a given color
is chosen for any of these, a rotation will bring these surfaces into one anoth.
ar Mhiiga +ha Grat AFf tha thran +8 ha Bllad givag na avére nagaihiliting whila
(o] § 4 11UuS, VI1T lIDV Ul vilT Lil1ITU w VT 1uIcu SIVUD iU cauvia PUDDIUIIIUIUD’ 1111C
the remaining two leave 2 possibilities. So the answer here is
7-6-5-4.2 =713
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fea} 1 o 1 1 4 Y 1 14

The total number of ways a particular team may be dealt two pariicular
complete suits is @ = (26!) X (26!). The number of ways they may be dealt
one particular suit regardless of whether they have another complete suit

is b = (39!) X (261)/(131).
Mhug tha niimhar af wave thav mav ha daalt anly ana nartionlar aamnlata
A 1iud viiC fiuliiuci Ui ays uily IMay OC Glaiv OILiy CIi8 paluviluial COIMpieue
11 0 __\ my _ . _____ ©O_ °*_ oy _ _______1__ _0r o4y a1 Al ___ -4
Slll(« lS (0 — Ja) 111€ Lerm o 18 uile numpoper o1 w yS e Oull viiree suius

r
may be obtained in addition and must be subtracted out. If we are not in-
terested in which suit they may have, the probability of being dealt one
and only one complete sult is P, = 4(b — 3a)/52!.

(Y
Tha nrohahi lifv n‘f nhf ine anv twa ecomnlata anita 1a P. — Ra /RO
A AA tll\luulu AL W AT VW, & ‘16 wl&J L ALA~4 \Jvmt’lv s A LA LA VWD AN - 2 le \> 7]
ML _ £ 4 _ 0 4l._ O .J:.ﬂ'._ [ T ~L de —mmcemael 1\
\.I.Ilc acuvor v &IIBUH llum uvilé O aileremnv Ptuls 01 Bu.lll PUBBIU]U ,

1 .

he probability of obtaining at least one complete suit and possibly two
is Pl + P, = (4b — 6a)/52!. Note that it is a very good approximation
to neglect the probability, a, of obtaining two suits in the latter probability.

8. The probability that in n specified intervals of length A an event has
dolones mlana xhila v 4ha mammaindar an avant hag nnad 1o N E\R/] 2 L\N -
LVAVACI1 Plubc, WILIIC 111 LIIT 1ClIalllutl all ©Vvoellv 11ad 11Uy, IS \/\JG’ \1 - Nl/’ ,

B

where N = t/h is the total number of intervals. The number of ways we
can specify n intervals out of N is N!/n!{(N — n)! and therefore the pro-
bability of n events is
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and
2 a o (A" At 0 AL
—_— p— _ - + —_— 2
D =eMy - = e M(M) = [MetM] = (M) + M
n=0 N O(Af)
Lhis digtrihntinn friinetinn 1a rafarrad +n aa a Pnicann digtrihnntinn Far
WAIODVLI IV WUVIVIL Lullvvivil 1 n A0 AVIAVILIUVUL VU 0 O 4L ViDODUVilI uUuipviivwuvivii.,. A’V
At > 1 this distribution becomes (Gaussian in z, where
n=M+4z and lz| < M,
. 11
ior wnicn
a2
aP = dz exp [==*]
2\ YR
6 fal Twn atara whnaa anaonlar canaratinn 1a 4 — 1/ lia within a anlid ancola
\w’ e VNI ODOVWA WD W AAVJOW wn;sulw& D\Jrul WVAIVAL A0 V A Al YV AVAAIAL W LODWVilNA w;lsxu
. N2 ML ___ 2L _ __ b _ L °1%a__ £ oL a2 o at_ VL __ *al c
o = 7@*. Thus the probability of the rs in a particular pair being within
1’ of each other is p = w/4mr =~ 2.1 X 107%. If a double star is defined as

a pair which is isolated, i.e. is not part of a triplet, quartet, etc., then the
probability that some particular two stars form a doublet is

p(l — p)¥-? where N = 6500.

The factor (I — p)¥~? represents the probability of the remaining stars
not combining with the pair to form a triplet, quartet, etc. If, however, one
includes as double stars those which are also part of a triplet, quartet, etc.,

the probability is simply ». In this problem Np < 1, and thus both defini-
........ 1d & vrobabilitv »
IJlUllB lelu a P uvavillv P.

The number of independent pairs one can form from the N stars is
N(N — 1)/2. Thus the number of double stars expected is

NN — 1) N?
5 pk2pE)\,=O.45.
Ly ML b L% Al ol o hecrn ot L A £~ O\ an PR\ L W I
U) 111 Pl‘UU&Ulllb Lvila L S0IIE LWO P&HB Ol Suvals, C. g ’ \(/Lp} al u \")’ } wiere

a,B, v, 90, ... label the stars, form two distinct double stars, while the
remaining stars do not form multiple stars, is

Py, = p*(1 — p)(1 — 2p) --- [1 — (N — 3)p].
This is because, when adding the nth star to the celestial sphere where n > 4,
the fraction of the sphere which it may occupy without combining with
a, B,v,0, or the other stars, is 1 — (n — 3)p. Note that, if (N — 3)p>1,
the above probability is zero. This is because in this case the stars are so

dense that 1t. ig 1mnnoqih]n to kean them genarated an aa tao form onlv two

rvuul RITAN WS I‘U\Jr VAANSAAL Wrul WUVLLA UV W VNS ANJA AAL \.IALIJ VYV I
ALV o T oal_ 1022 AT 27 0 o o LA o S A 2
aouplie svars. 111 uviie 11I1I1iv J.Vp N 1, Oone ll&y puvalil 11 IUUIUSUIIIg CKPIUSSIUII

S
©
-

=(—p)1—2p)---[1 —(N—3)p]

X
Form log X XV .*log(l - jp). Then, since jp K 1 for all j < N, one
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may expand log (1 — jp) = —)p. Hence
] Yﬁ— 'I)I'%-‘30=—M(N_3)(N_2)&—p_ﬂ-i=—)
<~ = L ed J r ~ ¥y
AL a4 LAt A LT o4 0ol 1 __ AT® .9 _ ___ ____1° _°1L1_
SO voatv one oouvalins wihaen TS OI Ul raer LN°p © Neglgibi

€
1.2 x 107%).

X =
(for this problem N3p* =~
independent ways two pairs may be formed from the

The number of i

N stars is
V4 1 . N= 1 1172\ 2
D=3)smrm—ami=3\3)
\2/2'2! (N — 4)! \2/)
Thus the probability of seeing any two double stars and no more is the
) b PR PP, Al b e baad s
T OUIBSUIL UIBLIriIpuvivuil
DP,, = -I_(N_’p)zx D I 0.063
2\ 2 2 A

(c) Consider three definite stars labeled «, 8, ry. The probability that stars
B, v lie within 1’ of arc of « is p?. If a triplet is defined only when it is isolated
from the other stars, i.e. is not part of some larger multiplet, then the prob-
ahilitv of ¢ thres formine a trinlat ig »2(1 ?)N—{

uumv‘y AV 2N vuese VA@LA VUV AVA mmb Vi lt’luv a0 -t’ ‘-I.

e —d o L 4Ll a_c_ v 4 L. _ __ . e ol

.I.f uowever one uoes nov care wi ther Dﬂe Bl'lple(v LIH:PPGIIB w De parv
of a larger multiplet, then the probability is simply p*. Since in this problem
Np < 1, both these probabilities are p* for all practical purposes.

The number of independent triplets one may form from the N stars is

N! N 3
31 (N — 3)!
Thus the probability of observing some triplet is N*p?*/3! =2 X 10-%.

7. (@) M = M* and M* = M}, ie. M is both Hermitian and unitary.
Hence eigenvalues u, are -1 only. Further, Tr M = Y, M, = 0, so that
Y u = 0. Hence the four possible u’s are +1, +1, —1, —1. Write, for

any ;1gen'mc*m' xt ’_7 -
[z,\
()
x(l‘)=| 2I, foryu = 4+1. 2. = 24. and 2. = 2z,
|x I ) &y &1 Wy WAL L3 <25
\\xd’
hence

<
3

"
I
Y —
)
p——————

- O
e ——
®
B
a
v
S
p

[
™~}
————
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are two convenient choices. Similarly, for 4 = —1, the corresponding choices

arn
wa v

—

e e s

x(3) —

’_—_\

:’
and —;? i
\

[} )—l

0 =det | M — ,ull=,u—‘/bi+1=(‘#i—1‘)i=0-
8. As H and H? are diagonalized simultaneously, (b) is the su
e

values of H?. The traces of H and H*? can be computed without diagonaliza-
tion, as traces are invariants. Thus
3 o 3
(a) 2 M = Tr H(diag) = 3 Hy = 6,
t=] t=]
and
3 3 3
LY Y N2 ., TT2/33__\ __ SV IT IY __ X\ IT2 __ 4O
\U) ‘L‘l Ny — AT 11 \umg) —_ tz‘ ﬂuﬂjg = ‘z‘, HU = %4
ml\n ]nﬂ“ eu"n-r\ 10 ““'IA ‘\nrgnrlnn “1\(\ n:rrnn ” ‘:G ﬂ'mmf\*ﬁln
4110 1a0v DUUP A0 Vi UuU UTuUUuoY il SIVUIL A4 10 OyiLI11iiCviiv.
o~ YT h | VA TR 4 » IR [N N b nl
9. We use the properties (a) ot = 1, and (b) Tr (00%) = 28;x. From the
first of these, expanding the exponential
Ia_,. _\
e“"'=cosa+z{—\sin a, where a = | a|,
\a/
we have
et %e'® — cos a cos b — w sin a@ sin b
ab
. da.a) o (a-b\ . .
+ 1 ( )osbsma—l—z‘ T ,smbcosa.
\ ur Vi \N N 7

Because of (b), we drop terms linear in @. Further,

Tr[(a‘-a)(a’-b)] = Tr[a,o;a;b,] = 28¢,a;b, = 2a-b.

Therefore, T = 2 cos a cos b — (2a-b/ab) sin a sin b.

10. (a) From the property of determinants, det (4B) = det (4)-det (B)
where A and B are arbitrary square matrices, it follows that the determinant
Vi @ Ooluwvllu~ioalin vlliouvl 10 111 Vvoliduilv Uliuvl vuvi1liullilove viailioliviiuaaviviio 4l
Al Y ATIT 1 A 12 I TT h IR E & & 4N - | a1 A a4 4 Al Vaa 1 AN
A = " where det (U) = det (U") = 41, then det(d4’) = det(4).

U
Xi=3, U“X, The cubic form in A, det (' — AJ), is invariant in view
of the above discussion. What is more, each coefficient of the various powers



of A is invariant because these powers are linearly independent. The coef-
ficients are

Io = det (T)

T __mm m \ Mmoo m M m m m m m m \

41 — \L 22433 T £ 33411 T L 28411 — 412490 — 4L 13431 — 42341 32)

I, =Tr (T) =T+ T, + Tss-
(b) The geometrical significance of I, is best determined in the coordinate
system where 7' is diagonal. Denoting these diagonal elements by

1 1

P 9 P 9
! ? T,, == —12 b T33 —_ —‘_2 ?

7] C

allingnid ia
UMIPDUI\A o
i 1 Ji/2
3 3 LTu'Tzz'Tsa_|
Hence I, = (47[3Q)*
A nlana whinh liag in tha ¥V ¥V alana dafnas an allinea thranah ¢ha anita
L Pld/ 10 WILIVI1 11008 111 LI1O Al, Az ANI1C0 UCLI1I0S all UIPEU uuuusu VILO Uqua-
tion
- - Ve al r9 N Ve al 172 om -r Yr 2 X7 —
1 =T1,4A] + T'99dy 4 a1"194, &, (43 = V).

o1

This ellipse has an area A, where n*/ A3
of 1

where 4, and 4, have been defined correspondingly. The geometrical signi-
ficance is that if an ellipsoid is cut by an orthogonal trihedron (an open surface
formed by the intersection of three planes) whose apex coincides with the

AL 11T UL ULILIL 111 AL 11T A .

a anim nf fl'\n
U Sulll Ul wii¥

sll’

T-Yel b oY

vwuvi P

out is independent of the orientation of the trihedron.
Similarly the invariance of I, is equivalent to the statement that for an

orthogonal triad whose origin coincides with the center of the ellipse, the

sum of the reciprocal squares of the lengths of the intercepts with the surface

18 }ndnpnnr]nnt nf tl\n nr}entat]nn nf fl'\n fnnﬂ

b B | A L£___ ~
11. A1l
may be expande

where




no other ginoul rlfv nn]v the term in 1/{z — 2.) survives and the inteoral
no other singularivty, only the te n 1f{ o) su ves and the integral
Lag 4hnn —alian
Nas vné vaiusé
(n __ l)!dz""” L\ 0] J\*J)lz2=2¢"
The residue is defined to be
1 d"
14, n-D [(z — 20)"f(2)]: -z,
\7 1):az
(a) The residue is 114 e‘"’z—l ~&
4! Ldz‘ _!z=o !
S T2/ .3 A7 -
(b) The residue is 1] dz{ .z3 Y| =21
2! |dz%\sin®* 2/ .0 2!

12. The integrand has poles as indicated in the diagram, and the path of
integration may be deformed as shown, because no singularities are crossed
in making such a deformation. As e — 0 the poles appear at ¥ = ta
In closing the contour at infinity in the

upper half-plane, only the poleat k = +-a is -

enclosed and the integral becomes - o\ > +\ * y

mi L O 113w >
21dk? | (k + a)’lr-a  8a®

integration to that shown
. 3 =
I = [ s 2dz where C = > o —
J (4 Za \P/

....... g the contot mic of infinite radius, while those
writh nacativa imaginary avnanant ara agalhiatad alang tha anantanr alaaad

1vil IUS vivVo lmasllla‘l UAPUIIUI]. vV alU vyvaiuavou arl.Ul.ls VilU uLUViluvvul uvivovu
1 1 rmmn A h | a1 h | 1 .

below. Those terms evaluated along the contour closed below give zero
contribution because they enclose no singularities. Those evaluated above
have a residue at z = 0 and I becomes

[ (£ =3¢y, — 273 6()" _ 3w

I = 1 el 2 28
TR \T F )T Ry e T 1

(a) Consider the integral of z/(e? — 1) over the contour shown below.
The contour is closed at oo, and since it encloses no singularities of z/(e? — 1)
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we obtain
[2ox_ | ["Ermg, [T ¥ __o
Joer—1 Jo e* + Joe? —1
TV m 4 Al Y o cd LAl b i e ~ba_
UPU“ w.uuug UVILIC 1oal Al U Ul LIS Uqu ViIUIl WO obualill
~ z2zdr > zdzx . ", .
Je e"’—l+.'o e"'—.l-l_.lo-zy Y

(Note: The fact that the real part of f y dy/(et* — 1) is a simple integral
s contour.) One should now prove the

I

serves as motivation for choosing thi

aiTnnia Il\'\cl‘\‘;n

Dlu—lt’lu wviv lU.l.I.Dl.l.ltl
T2z _ 1oy [ 42, Lo
N 'Jo e —1 ’

ins <
I \ Closed at
Y 'T infinity
0 L > o

(b) Using the same contour and identical arguments together with the

results of I,, one obtains I, = n*/15. It is worthwhile to remark that the
- ig‘pnnr]n{] to nnlcnlnte thea eanarov danaitv nf hlnn]zhnr]v rnﬂ!nfin*n

AUVAULE VW v (o3 1] VALY ViiVigy \AUIIOLV Y AWV ER MU CWRAAWW VASEL e

15. The Fourier inversion of the equation /A\
fl@)=| _F(kje*=dk A \
e 11 — I/ > )
yields / o

Fk) = — flz)dz
o7 J /
o B o ) N\
Writing f(z) = (¢** + e~*2")/2, we have for F(k):
To—tk?/4 | T*,ik%/4 rtoo o
F(k) = — — where J = | e dy.
‘N J —oo

through the substitution y = (1 + 4)s/a’ 2 . The original path of integration
is deformed to the one shown in the accompanying diagram. The circular

ares give zero contribution in the limit of la ge 3. Finallv we have

WAVD A VY &TLY VULiVAIVAY - a - =Sy aawy
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16. The function F(p) = a?/(p* + a?) is analytic except for poles at p =
+ta. This allows us to write

Y~ sl f” -(a+¢lc)uu\.h wridlh o~ . N

rFy \U '.'Il — Jo J\b’u":, wivil O -~ V.

L =4

contour with a large semicircle in the upper halﬂplane. The funct—ion
) n VS AN NI PO A IPEE I § ¢ SR | R
.l"(f -+ 'lvlC) nas P 1 av K = 40 -+ wW. YVYO ulvil 1ave
e "f(t) — _a’2 . 2'1!"[eiul+wu — etit u-rqu
27 2a ’
or f(t) = a sin (af).
17. Let z = e'*; then
r2x J L o P
I=| &Y L b—=
Jo & + cos ¢ 1 J2°+2dz+ 1
where the integral is to be taken over the unit circle, | 2] = 1, in the complex
> St = v i =rici ) 0 VAT LOIRpEtA
wemdama Mha mmacmdes ~Lédhn Anmmmentemadim ana ad ~ ~ | [ ~r2 1
L‘Plﬁllu 4110 10UULS Ul vlo uciiouniiawi alvave — —u - avaua@ — 1.
iy T8 3 i ; S R s s s 3 i - s 3 L |
(a) For ¢ > 1 the root (—ad + a/a* — 1) 18 1nside the unit circle while
the other lies exterior to the unit circle. Thus the only contribution to the

integral comes from the pole at (—a + a/a?® — 1). The residue of the in-

ntegras
toaovand at thia nnla ig (Enlﬂz —_ 1\_1/2\ Hinally thon
VWVELWILIINA WV ViDL y\ll\J 40 \ '\“ -l.’ ’. F S ‘u“l‘." Viiwvii
I =2n(a? — 1)1,
(b) For |a| <1 we write the roots as z, = —a 4+ 14/1 — a’. Now for

a=a, } te, where 0 < a, <1 and ¢ > 0, one has, as e — 0,

2. = —(ay + te) +1a/]1 — af + . 5
«/l—aﬁ
and to first order in e,
[ 7%
|2+ [P = 1 F — ey -
v/l — ay

Tl‘“ Ov + =4 i ; - A~ VA & A 1 le.
mL... ~-%__ 4L . ___3¥_. _4 . mmendesbhcada. 4~ 4Ll S dme] ML —wntdeca 1o
nus o y vl PUIU av <4 LUHLUIIDULGS LU Lo 11Huvoglial. 1110 1o3iluuv I
—(1—aj) 2and I = —27i (1 — aj)™ /.
(c) For @ = —1 we may write —1 + cos ¢ = —2 sin? (¢/2). Thus ,

Azllz . -

I=—2 (48,
Jo sIn*¢
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18. Making the substitution « = sinh z, the integrals become

I=f+°° du ad I=f+°° du
')l T F o T+ )

o
all

This form is much easier to handle by the methods of complex integration.
Both integrals may be closed in the upper half-plane with the integrand
of I, having a pole at u = -1 of residue 1/2i, while the integrand of I; has

1

a donnhla nola nl-'fu — 1.2 and thua o racidua
v uvuwviv PUIU v w T vilud viluo v 1voiuuv
df 1 1 _ .1
Julle ¥ o)lue &
Thus we finaily obtain
- 2m . ; _ 2m v 4
11—23.—7‘ and .13— 4]5_——?'
a4 dd . 2L ___ 4l _ o _a______ Y L. ______ o __a_____ *_a___1 . il _ ____2%2
19 1.6V 2 — €7, ue uIle 1 meg al DeCoINes & conuvour 1 lbﬂgl'&.l. OIl ULI1® uIlv
circle:
_fdz __a(z>+1) +2bz
Y % (z + bja)(z + a/b)(2ad)
There are poles at z = 0, 2, = —a/b and 2, = —b/a.
(a) Takelnl > Ibl Inside the contour there are poles at z = 0, z, = —b/c
I 22 1 ada’® + 1) + 2b(— b/a) N o
2ab| " (b/a) (—bja + a/b) L B
(b) Take|b| > |a|. Inside the contour there are poles at z = 0, z, = —a/b:
7 — 2z 1 a(@®®* + 1)+ 2b(— a/o)_|_ 'i
~ 2abl (a/b) (b/a — a/b) -
2 27
2,..1. (a + a) ?
20. Integrate z*~'e™¢ around the contour shown.
£ i
¢z*"'e"*dz =10
because no singularities are enclosed. But f,, =0 as the radius of indentation
goes to zero. I-- addition, fr —0 as R— 0. On T';, we have f t=-le~t dt;
A~ TV 4ha tmdamwnal g !
Ull L 3 LIi10 lllUUsl 1 1D
0 e 1 e | _
| (y)=ievidy = —e™i=2 | y=~le i dy. T~
Hence -\_'4 \
~ [ R

r ,l. r = . .. - h A ¥l EN
| t:-le fdt = et T yteay  1(2). =
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Multiply by exp (—=iz/2) and take real and imaginary parts to get the

~mcemn dhhina cand o ala oofal. 2 .. NN L. 1 m— | D eeefal.
&l YY© CIlI10OUSC ULIIY 10 D&IIBIU WI1ULIl S31U0S y = Vv, y == 1, & = III:, Wiuvll 11l-
dentations as shown below:
ry g s
N
Ts N L4
7\
Ly T2 T3
{ dze* —o={ — I, + -1
Prasmhmz U Jrﬁmn‘i - 8
r ("¢ e**dx _ (" e%**dx _ (" e*®dx
41 — 1 1
' J_gsinh 7z J. sinh 7z ~— ). sinh nz’
Fl ea{R+iv) o e {R-iy)
14+13=|- — —— dy‘!_‘- s - = =,_’O&SR—’OOQ
Josinh w(R + uy) Jisinh #(— K + 1y) .
re ea(zﬂ) r—-R ea(z+£)
Is + I7 = | _atnnh el 1 AN x + | ctemh awlae | AN\ dx
J R Sl lllllv\sb_r— ﬁ’ J —¢ 1 llll(v\-b_r" ll’
_ R eiaea:c d“ _ rR eate—azdx
J. sinh z(z + 7) Jg sinh w(—z + ?)
Near z = 0, e**[sinh #z = 1/nz, and near z =1, e*[sinh nz = —e*[n(z — 1);
therefore
(° dz {* dze*
Iz=| —_— = 1, Ig=—| - ~ = ge?t
Jx 2 Jex (z — 1)
Now
sinh (¢ + ) = —sinh (xz) = —sinh 7 (¢ — z);
80
R jtapaz /. R ,aip—azx
I, 41, = [Feesdn [ eterer o
Je sinhzwx J. sinh 7z
and

aa D s ~m amAd N MhavnafAna

as 4y — 7 VXU ailu € — 7”7 V. 1110101VU1O
[~ (e2= — e~a2) R sinh ax dz
-Je 2 gsinh 72 Jo ginh >

22. Thero are poles of first order at z = +¢; the square root branch cut
is taken ffom O to oo on the real axis. The contour shown encloses the pole
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at z = 1, and never crosses the cut. One has

§ 2%z _ m(l +4) P e
JZF 1 A2 yd N\
. / \\

poo l/= -
=14+ B /
' "Jo (* + 1) [/ | Pole at \
L e
from which t+
Poleat Y
(= z'%de =«
Lo @ +1) /2
We have used the fact that A/ ¢+ = (1 + $)//
23. The function 1l/sin (zz) has poles at z =n (n is an integer), the
I \ 1 r \ Dl 2 bl
I"“‘:’J“““ AF wwhinakh ana . I\R o Tandoonadines tha fHiamadinn 1/05.4 S3an  fom)
CTBlUuUuYgi Ul wilvll © ‘ l.’ IIL A1I1VOCE L& VI ULL 1Uuiiouvivil 1/4&9 Siil \6/‘}
around a counterclockwise contour enclosing a singularity only at the point

z2=mn (rn % 0) yields

The sum over » yields

where C is the contour shown in the problem. This contour may be closed by
adding semicircular contours above and below the real axis. These arcs add
nothing to the integral. Hence

where C' is the clockwise contour enclosing only the singularity at z = 0.
The function 1/(z* sin 7z) has a residue 142*/720 at the point z = 0. There-
fore

oo —_an\ 74
— ) i
z A P ON °
n=1 14V

(a) Possible multivaluedness of F(z) arises from two sources:

(1) The multivaluedness in the definition of the logarithm, i.e. we
efine

{2

lnad s — lno layl L A L Dwem
e @ 0 W] T W o ey,
where = |w|e¥ with —n < 6§ < 7 and p is an integer.
(2) Having made a definite choice for the branch of log w, there is still
a two-valuedness in F(z) due to the two-valuedneess of p(z).
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We define p,(2) = A/(z — a)/z, where
rmavTy vy A\ 7i~3
Tavran Afae | anY — _L /x_a £ D and e .
Fesing IJI\‘I_[_ (‘C’— T,v iU, A NV allu & S W,
e +0* x
then on the second sheet of p(z) we take py(2) = —pi(2). For a fixed value

of p, F(z) is a two-sheeted function with

alog o_(2)

”d

z —
z) = ,V/

on the first sheet, and

w.(2)o-(2) =1,

—q
—~
[~
S’

—

]w+\z) and w_(x) <0 for x > a,
lw.(z) and o_(z) > 0 for z < 0.)
Since the logarithmic branch cut is superimposed on that of p(z), the
only branch cuts of F(z) are for z < 0 and a < z < oo. The discontinuity
of F'; across the left-hand cut is

D\(z) = lim [Fy(x + te) — Fi(x — t¢)] (for x < 0)

e Y .t __ata__Cc 1Y O a4l Lo a0 B oar e 3 _________1° __ 2__ | W 4l _
1€ 1ast 1aentity 1oiows Irom tine nrst ana uvaoira properuies in ( ) & I1E
definition of the logarithm for fixed p. The discontinuity across the ight-
hand cut is

D,(z) = lim [Fy(z + t€) — Fi(x — ve€)] forx > a
e—=0
—
[/ —a . .
s = . [log w_(z + ©0) + log w_(z — ?0)].
x
Nawr far 2> a o {z) 1qa magativa and Aana mugt aslanlatn tha qgion Af tha
4NUYVW 1UL &~ W, w_\nb’ 15 lcs vlivl allu VIIT 11lusv vaivuia v uviico Dlé i1 Ul vilT
imaginary part of w_(z + 10) to decide whether the imaginary part of the

logarithm is (iw + 2nip) or (—imw + 2mip). A simple calculation proves
that the imaginary parts of both @_(z — 70) and @_(z + t0) are positive.
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Thus one finds
F—a
D, (x) = (277 + 47rzp)Av/ p for x > a.
Tu.e A;snont{nu;{';ns o'r K _ ara caailvy shown to ha tha nacativa af thosa far
WAiovvuiiviii 4 VAU 4 K II Vi v uvvoid DIAV YV IL VU VU ViiUu ddupgorviv e UL viivoyv avil
F,
(b) The function
TN _ Ta )
G(z) = 28 — “\%)
— — — ‘/—\
. . . ( oz )
is analytic everywhere in the finite plane
except at the branch cuts of F(z). Hence > <
for a point z not on the branch cut we ' N
have \L /
1 {6 d ~— 7
G(z)=t\,'¢l_l \’
2y J (2 — 2)
I R | Ry i IR G | I Y I R « LAY | Ay Y S Y 4 7 PN W
WILIEIE ULIIE oliuvoul IS SI1UOWIL v unae l.lgl.ll.l PDOUVE. DI1IIUC LIIC 1Uullvulull U\" gUCB
to zero as |[z| — oo, the circular portion of the contour may be expanded

to z — oo and gives zero contribution in this limit. Because of this, the

contour reduces to

Y (CC
< J/ - <
and
F(z) — F(zo) _ 1 i' f” D(s)ds [ D,(s)a's |
2— 2 21|J - (8 —20)(8 —2) ' Ja (8 — 2Z)(s —2)]
Vo SR W S 1 4 £ __L°* 1L T s_\ n £ Y _ ad. e __* _ 11 _ _ 1 £~ AN
U1l UIle One siieev 10or wilicil u,(s ) =V \namel uiie pI'lIlCl al Drancii o1 log @ )
we have
- p(s)
F(z) = F(ZO) + (z - z0) l 7o ~ Mo -\ ds.
Ja \6_60’\6_4)

25. We make the substitution ¥ = /7 2, and the integral then becomes

(*~___ dy

Tim _ oy ,
n o0 J - 00 (l + yzln)n
which, since
lim 1 -
N—o0 (l + yz’/n)n ’
becomes
f“' -wl 7 . /__\1/2
J et ay=(=)"
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A more difficult procedure is to evaluate [ . dz/(1 + 2*)" first by contour
integral methods, and then take the limit.
26. We note f(a, b) = f(bja) = —f(ajb). Let y = bja, and take the deri-
vative:
r”dx 1. -—x S—ax\ s\
J — & = —¢€ ") =]JY)
Jo I
o0 1
fly) =| evvde=—.
A Y
Integrate, to get f(y) = In () 4+ C. Evaluating when ¥y =1, ora = b, we
t =} ’ =] J\IT/ \J7 I (=] Jd b
have
fA)=0=In(1)=0+C, orC =0,
an flee AN — T (hlre)
DUJ\W, U’ - All \U,w’-
(d d <« af _
\dz/ X n=0 z\1 /

(a) Dividing the generating equation F(z, t) = X .o He(z)t*/k! by t»+!

and inteqratinq over a closed contour in the complex ¢-plane enclosing the

oricin, we obtai

i apmainy R V. 1N

i fexpjz!— (I — =z
Hozy = 2L §exple — ¢ =)y,
7 J gn+i
(h\ na farma tha anantity
\ I.” NSAACV AVAILLID viiv \1““1] vawv
2
z? ot ox
20 20 al a4 o2 o2 2 A___ a4t M . TY_.: . . 4Ll _ 0 __ L. . I
ainua eu.suy veriiues uiiav 1uv 18 1aeinuvicaii Zrv. uUsl lg LIl CLP&IIHIUII 10 I
terms of H,, this identity takes the form
TH (%Y — O2%H (2 L. OnH (21" ) _ -
sy em) | el =) for all t.
n n!
Hence H; (z) — 2zH,(x) + 2nH,(x) = 0.
(c) Differentiating the integral representation for H,(x) we obtain
JET ol JATT Tael 123
dH, _ 2n[(n — 1)!] fexp[* — (¢t — 2)*] 5,
dx 27t J "
which is immediately recognized as
dHy, _ ,, ()
dx H'V‘-‘n_l\w’.
0 Thiffarantiating £ with naagnant ¢4~ » Ana nhtainag
& A7111C1L Cliviovy vl 16 U wWwilvil 1COpTOuLUv v I, UL1T U uvanlllo
(x —1) S -1 P (f)
I—2zr + )y 4 e

—

in

-



86 MATHEMATICAL PHYSICS—SOLUTIONS

differentiating G with respect to z gives

r =3
(1 —2zr + 72 ¢

TN e ac ra | o ' e

HEiminaung (1 — 2xr +r

by 2**!, and integrating along the unit circle in the z-plane, we obtain

- [y D S P
Jﬂ(/”) 2-";?2 n leU‘/'IUlz (1/2)) dz.

On this circle however, z = ¢ which, when substituted in the above ex-
yl. CDio1uU1ll, AT AAD
X
r Ill\ —_— l r nno rll ninﬂ-mﬂ] l’a
v ‘n\ ’ J wvuUo l,‘l ol v I'IUJ W/
v 27 J -«
31. The Green’s function for the problem is foynd from

with G(r, r') = 0 for z = 0. The solution to VZjr = 0, with 4 given on the
plane z = 0, is
r

Yz, y,2) = 1 | do’ dy’ $(=', y)

T J

It can be checked that
G=[x—2)+ y—¥y)V+ (z—2)]""?

— Tl — 2/\2 L (2 — o ’\2 1 (o 41 »\21-1/2
1\~ w) I \g g | [ A | ’

which is found using the method of images, common in electrostatics. Thus

ddae ar oY e B (3t 2ot (ol S INFe N2 | e a2 | ,21-3/2
YL, Y, <) — J"’ @y P, g IIN\v L) TN\Y ) T ~]
(27)
B0 A DPaccal Finetinn of méh andar T 1) asticafag
O, LA DDUSSTCL 1Uullvuivlil Ul ¢vLil viuvl, Un\l/’, B VISLITDS
20 (x) 4 J (x) 4+ (22 — 2. (2) = 0.
n\~7 I n\"~/J I \ 4 "/

Therefore Ky(z) = Jo(1x) satisfies 2*Kq' -+ xKo — 2K, = 0. By hypothesis
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ArY — [* ayn (—» cosh AYdh whanee
Ko(z) Jo €XP (—=z cosh ¢)d¢, whence
o0
o Jo wvuUo11 \V CAP \ s VWUDLL \‘J’W\‘J
and
. re . . L
By = —| cosh¢ exp (—z cosh ¢) do.
v i

When Kj is integrated by parts, the relation 2’Ky + zK; — 2K, = 0 is
easﬂv verified. To find the asymptotic form K, = De *[z'”, make the sub-
stitution & = w/a/ z in the integral for K and obtain

et Y IIN =12 A0 2AAWeiss Ay S0 Ol

and for large x make the expansion
2

x cosh —5"1: =z + 17;— + O(yt/x).
N <

Therefore for z >> 1 we have

K, =~ £ [Tevrrdy and D=| evidy=(Z)

x Jo v J \2/
e divergence theorem, fr dA f

he volume of the torus. Lot the inner and outer
h

espectivel" We find V by usmg a theo
of revolution. Consider a circle on the zy-plane, with center at
(R, + R,)/2, and radius (R, — R,)/2. The volume enclosed, when this
is rotated about the y-axis, is, by Pappus’ theorem, the area of the surface

times the distance traveled by the center-of-mass of the surface, or

<
@

I
=

]

I

R — R \2 Y \ 2z
x (T3 x 2w () = T (B + Ry)(R, — Ry’

Tannn tha intacnal 3o (292/AV D L. PDYD _ P\ Alnds. Tha naadar ahannld
I1€Nle v ifivOgTaL I8 \oT"[xj\1v) T Lvg)iLtg Ly )7, 4VOVE; 1€ TeaGer Snouia
verify Pappus’ theorem.

y

t x
_ | N——r
— Ri—
<+ R2

34. The volume is given by V = [ dz, dz, dz, dz, over the interior of the
unit sphere. We know from three-dimensional spherical coordinates that



o
®
o
(]
BB
®
3
< &
I
[
|

d
ks

T AT ST O PPN 4 .

two-dimensional geomelry
V = [ dr dnr® | d, sin® @,.
The only problem now is to find the limits of the integration over ¢,.

(by convention p > 0) so that the transformation between the z’s and the
¢’s is single-valued. The limits are 0 < ¢, < =. Therefore
T L s ' 5 m?
= 4n JG do, sin ¢2J6r" r =75

[T o~z gy — [T -2 a7 Y
| e d =] e e z, dz, = 7®
= [ e®AR1dR,
Jo
with A to be determined
T fnd 2: —— D2 A 4lhin 2ndbnmnal 2o
1L/OU y = iy, allu uviv 1 luvgltu 1S5
= fm e Vy(n=10/2,-1/2 g, — £ = e~ Uy(m/2=1) — _—_4_-—1/1'-'_\
S| ety Ty Ay = o | ey dy = S0 )
v o VU ol \ & /

(=
‘l
I
Q
-1
>

Special case: n = 2N (i.e. n even). Then I'(N) = (N — 1)! an
This has the amusing property of going to zero as N — oo.

35. We take the density of air and helium at a point z in the pipe to be
nq(z) and n,(z) respectively. From the assumed equilibrium conditions and
lack of temperature gradients, we deduce that
Ng\¥) T Tip\w) — 4v = COIISv,

otherwise a pressure gradient would exist in the pipe. The flux of air in the
b aYhave) ;ﬂ MPIITOT ‘\‘7
PIPU 10 slVUll [ 9]

£ o— ndne |,

Jz

The term — D(dn,/dz) i8 due to diffusion of the air in He while the latter
term represents the convection of air by He. In the steady state, the con-
tinuity equation becomes Ve f 0 (i.c. (8f./0x) 0 in our casc) and the
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solution for n,(x), which goes to zero as x — — oo, is

We have taken n.(0) = N since we are told n,(0) = 0
ARNAA a‘v’ -V AAAANN VY W WAA N NS AL "In‘v, 7
ML... 4lin o nncmdamadicme AL qatee £ace e - N I
4I1ud il voliloiiviauvivil U1 all 1Vl &4 <\ VU, Id
ng(z) we/D
\ 7/ — eu.l./u
n (Y 4+ n.(x)
Na(Z) +— Np(T)

ro ~

36. (a) V2n 4+ K?» = 0. The lowest solution is obtained by setting
n = (sin kr)[r. But n(R) = 0, so kR = =n'p (p an integer). Therefore R = = |k.
Solutions with p > 1 lead to negative densities, and must be ruled out.

Ib\ The neutron densitv in the surface laver. n.(r), satisfving n.,(R -+ ) = 0
Lllv llvuvl AL \AN/AAMLDE VJ ALAL ViAW LWL AWV le vl’ "/2\' ’, DWVJULJ 1116 'Vz\‘w I V’ V’
is
no(r) = é sinh lu(r — R — 1.
\" 7 r L \ 71
T 4L _ a4 L ol . 1. .. L.____ (R G DEPERPIY.Y RIEUUUY DL U N FPRY
A1I1 VIIE 1I1LErivl U1 ULUIio PllU WU 11aVe a I1tuuvlioll uUIlHlUy, ({ 1\7), WIICI'© '”/1\"') ==
(B|r) sin (kr). The boundary conditions
m P\ — [P\ and Amn { P\ de — Adan { P\ [ds
l(ll\.‘.l" —_— ”/2\‘.!’ avli\a w’”l\‘t”w' _— wtvz\.l.lo”ud
require:
(1) B sin (kR) = — A sinh ut,
\~7 \ 7 r
(9" RL nne (LP\ — 1 nNa 177,
\H’ Arv VUD \WJ..I’ —_— ‘.l"l vuUolL Ve
(4 o | Y JE i N _ A _ n L o)t a0 L1 0~
i1nereiore uvne raaius, i, Ol une Inierior region 18 1ouna Iirom

which for p >> k allows the approximation kR ~ n — (k/u) tanh (ut). Thus
the new radius is shorter by the amount tanh (ut)/ .

i

37. Choosing a Cartesian coordinate system with z Comciding with the
of symmetry, the solution to the steady-state diffu

Qo(r) is

Q g ~!z] [(2] + )mx] [(2k + D)y
n(z,y,2) = %5 3, —— cos | =L T | cos | == l;
2Da® 5% by L 2a ] L 2a ]
here
7
Q = 10°%/sec; a = 175cm; b = :2_5[2'2 + 1) + (2k + 1)?
ﬂ'\l'] * o "\niTI\An‘I'Ir nn“f]‘.+‘.n“ m n AT A NAT AL — l Vs ) ‘.ﬂ "Iﬂﬂl]
vilul viiv uuullual._y vuUiluiilviviL TV — V’ AVl & VL —_— Iw, 10 WUuovuu.
ey a1 . Vi I s | mnin [ o YO L . U |
Ul tie 2-8Xi18 e I1ux .72 =S —U(an/OZ) 18 glven Dy
. Q N\NY e—wklu
vE 92 Z
LW  j K

It is interesting to note that if 2 < a, then the sum may be replaced by an
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90

integral and one finds

=

2

for z < a.

2

Yy 7

z e—b;.lzl —_

R

J ek

d o

e expects the spherical symmetry of

a o

4

nn

oefficient

term in the sum. Notice that the answer does not depend on

A

al S 4 .

4

of diffusion.
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1. We want to calculate the force on a sphere of radius r, with velocity

v, in a fluid of viscosity 7. The dimensions of the various quantities con-
cerned are

[F] =

[ ]

d
r—|
L—I

a'l 3
-
P
<
d
L | Sy
r—
<
| S—
S

A formula for the force which involves only these quantities must be of
the form F = C5*r®v” where C is dimensionless. The dimensional equation
[F] = [p) 1)
yields the solution @ = 8 = ¢ = 1 upon equating exponents of m, [, and ¢.
Therefore F = Cnrv (actually C = 6x). If the density of the fluid is included
as a parameter, then one can form the dimensionless number R = rvp/[y,
d in this case one can only argue that I
R

an ) 1 only argue that F = C(R)nrv where C is a function
of R. However, for streamline flow one expects the density of the fluid to be
unimportant in calculating the force on the sphere. When R reaches a cer-

tain critical value, turbulent flow begins and Stokes’ law is no longer valid.
R is referred to as the Reynolds number. These considerations illustrate
lmltatlon on the dimensional analvsus procedure; i.e. when one has enough

[T1=t; [pl=g [@=5; [

@ﬂ
N>

emee LA 2 ’
WO Obuvalll

a+b+c=0, a + 3b—2c=0, 20 + 2¢ = —1,
or which the solution is a = —5/6; b = 3/6; c = 2/6
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3. Consider

- e -we ¥ -y Inla V4 b § VRV AU ENAY,]
r v u m \&+1i)/a
W_F.V=Ayn =90 _ oo _ o2 4(%2)
t dr dt dr L 2r° | \ /]
Tx;is lden iti? n » can kn]d onlvifo — 2 lan Y m O\ — A(QM)\2
LA V. 411 7 Vil 11VA UIIAJ 44 A W LL.IDV’ U\U.Lu "vlu’ P¥s \\J.L'.l.’ .
Al U T T T A, I T SRR S G, o _ae
Altern w.ly we coula nave proceeaca Iirom tuiae vorque equauion
rx F =%
S dt

which leads to F, = m(2# + rf). But § = (GM/r*)'2 and RE = 3C6/2.
Thus substituting F, = 4v* leads to the same conditions on a and 4.

4. To find the equations of motion, one may proceed via a Lagrangian,
an aa +~ alitninatn annartdaratinn Af +tha tanacinan an +ha rAnn A nAnsraniant
PU asS VU UVlll111110V0 UUVLID1IUuVLI rvivll Ul vilV vliidlvil 111 vy LUPU LA vullyvyvoliiliviiv
coordinate is the length of cord unwound; then
L __ 1 mg__ 1 ng-g__mLsz
B R R iy -
(a) The equation of motion
d /0.2 A
Iz?( a'L\; A
aT
\ at/
reduces to (dydt)(LL) = 0.
(hY Mha ogoeneral anlition aatiafyvrine . — 0 and » — » at + —0 1q
\ ~ ’ A LA sulxul i O\JAWVIViA DWW VIODA 1115 rF > g v 9 CVAANA v Vo 9 wv v AvJ 9 a
L2 — 2.Rvnt

(c) At any time the angular momentum about the axis of the cylinder is

[
|
)
—
i
-

Take torques about the center of the disk.

7
w
di
But T is always normal to the particle trajectory, so dv/dt = 0. Hence,
alienrmadtinme T Lhadwran m A 11\ and IO\ A;a Rndas
Uuu.uuu;wug 4 UDULVWUCIL J.‘J\l. \1’ alll \‘I’, UILU 1111Ud
dL _ v R L = 2v,Ri
— T 1] —_ .
dt L o

Alternate solution: Because the tension T is normal to the velooity, the speed
is constant. The rest is kinomatics. Imagine that, after a length L of rope
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has unwound, an additional length dL unwinds. Then

T Y sk L
Hence
Tr 2T o P Y Tr2 Q.. D
L AL = YAV — L5 =— 4LVolU

5. The range of a droplet sprayed from an angle « is B = v} sin (2)/g, and
its variation with « is given by d R = 2¢} cos (2a’) dat/g. The amount of water

falling on an annulus of radius R and thickness dR is proportional to p(c)
n Yy l"ﬂ — I‘p I‘JP Whp'l‘p IG Q nn‘ncd'an‘l' Tf fl’\lﬂ ‘IQ fn ]’\ﬁ lnﬂo‘nonﬂnnf nf N

LJ AL WV WLV T VAW W-l-v, YV AANVA W v TAAL VWAL Ve L 4% .u“vrvu“vuv \JA
sin (4
pler) o BB (AQ) g -y g5,

8in (@)

6. The equation of motion for a particle on the surface is

ms——masm0=—ma—='! (1)
as
where ¢ is the path length traveled and y is the height. If this motion is to
be periodic, then one has /
§ = —wls, (2) P
. \ Y/
which implies N\
SN o4
IJII‘ 4/
2 - w
0’8 =g==- 7\ 8
as z 1
The solution is y = (@?/2g)s* and a useful alternate equation obtained direct-
Ter fomnenn TV 1) ond 70) 2,
1 11 l.l.l]!lq \1;&1(1 \‘l’ j B
c— 9 o
g — ‘——’ S111L v
)

Note that these equations imply that the curve has a maximum height
Y = g/20*. That a maximum height exists is obvious without solving any

equations, since a ball on the surface released at a given height cannot reach
the bottom before a ball dropped vertically.

7. Let the positions of the particles be r,, r, and r; in the center-of-mass
frame. The force on particie 1 is
- Gmmy(r; —r)) |, Gmm,(r; — r))
Fl —_— 73 -|- 73 ’
w w

onstant separation of the particles and is q ual to a sjde of
t

co
uilateral triangle. The force F, may be group d
r _ GmMR Gm,Mr,
Ly, — d’ -_ d’ ’
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where R = 0 is the center-of-mass position, which is chosen as the origin,
and M = m. 4+ m, - m.. Therefore

'lv'i 1 uvﬁ 1 FIVJe A LA AN

—
-

—_

-

1

with identical expressions for r, and r,;. In addition, for rigid rotation about
the center of mass, one has

it _ g X r
dt ¢
and
dzl‘g_n\, 7 o WYY o Y7 ¢ JUNEY o 100
—7 — a8 X (M8 X ;) = ds(déer;) — iL°1y. (<)

For Eq. (2) to be consistent with the equation of motion, Eq. (1), one must
choose Q+r, = 0 and Q? = GM/d*. In conclusion, the axis of rotation must

pass through the center of mass and be perpendicular to the plane of the
trnianala Mha maonitinda AF tha ananlar valaniésr ontiat ha O (D AM113\1/2
vl la:uslc. L ILC u.laasu.luuu.c Ul VIIU il uiov vV ClUvVv1vV LLIUDV VO \wy — \u.l.u/w ’ .

8. For a particle moving under the influence of a central force, the effective
potential is:

Li
Vor = V) + 5z
mr
A circular orbit is possible at that value of r for which 9V /or = 0; and
the orbit is stable if 3*V,;/9r? is positive. For this problem,
}7 _km 1 L2 ’ aVe“_kmn_ L2’
elf ™ 7 Omr? or ™l
PR |
alll
Ve _ _kmn(n +1) 3L
orr rn+?) " omrt
Q. ddinrn AT Q. _ N Arman Remds +had 21T 0.2 ~_. N £ 9 A 1Y~ N
OEUUING OV oy/0T — U, O6€ 1iIaS UNaU O " Vefgof" >V 11 o i T 1) >V,
ieen <2

9. From energy conservation, one has, in terms of the relative coordinate
r and the reduced mass u = m,m,/(m, + m,),

- 7.\2
(L)(dr) _ Gmomy _ _ Gmym, )
\2[1;} \ tl r 7o

(1 1) R WY S S B UR B JUSUNY AP RIL Y St [ PRI

4I11€ CONSWAIIL 79 IS Obuwalneu 1rom uie ceiiuvliiugal eguauvivil

Py |
I
7
o]

=3

o]
-
- -]
-3
=
2.

Ef

S
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From (1) the time ¢ at which the particles collide is

t=0 (" dr where € = ,/~—E—-
Jo r —1]r,)” vV 2Gm,m,
Let r = r,sin®* 6. Then
ik T x [ wr
t=2C | sin*0dd=20%r=Z%,/ LN __.
Jo 2 p (Z‘m17ng

Using Eq. (2), this is 7/4/ 2
Alternate solution: The “fall to the center” is regarded as the limiting case of
elliptical motion. As the eccentricity of the orblt approaches unity, the

orbit appears as shown. The collision point is marked by X, so the collision
tima # 1a nna_ half tha Arhit +imma Dna naw 1naaa tha nrananty AF anlaman
VIO ¢ 15 O6O-1naad uid® Orolv uliiio. VIO IIOW uUsssS ulid PIopoivy 01 xopidiiaill
-1 %4 a1 _aoar . ____°*°_ 1 1 a 4 ﬂ\—i  n} m 1 Ty a1

oroi vnav vile Pe 10 lS proport,lonal o (—4) Wﬂere Dn=— I +V ls ne

total energy. This may be verified from Eq. (2) of the preceding solution.
In addition, when the particle is stopped in circular motion and allowed

A vav VU pRA, Xinevic e Vigy 45 2T AL vig J
) R, Y | ) 7 A - mi._. O .4 ad 4L . I__.L1_.. £.11___._
4 oanes. 100 1acu udal uilo onoeigy aoupies 10110ows

1/r dependence of the potential. Thus E; = V,/2 for a circle, and
when the particle is stopped the energy is all potential, and £, = V; = 2E;.
Finally, then,

b,
[ }
@]
B
g !

10. Assume that the man exerts constant force on the ground, until he
leaves the ground. Assume also that when jumping from the surface of the
moon he exerts the same constant force. Conmdenng that the gravitational

annalaration on tha moon ie
WVVUVIAVL WVAVAL Vil VIiAV A3aVUViLL A

then, since the force is the same on earth as on the moon, the work done
is the same, and Mg, (k,, + 50) = Mg.(60 + 50). Hence &, = 6.1 m.

11. Let the center of mass of the rod have downward acceleration #. Then

W — F = mé. (1)



where I = moment of inertia about an end = 4mL?. One has § = &/(L/2),
arelation that is true for small 4, i.e., short times. From (1) and (2), F = W/4
12. The vertical force F, exerted by the N
plane on one of the cylinders is fixed at . . TN
the value 3W/2 where W is the weight of Fh/ \{F, AN
one of the cylinders. Since we wish to / \ \
minimize the angle which the total force (_}60}_/\\; \\
makes with the vertical, we should mini- \ F |
mize the horizontal force, F,, which the \ /
plane exerts on the cylinder. \ AF.. /
From the force diagram we see that we Fr \& I N
must have: < ]
Vertical equilibrium: W + F,cos 30° 4+ F, sin 30° = 3W |2
Horizontal equilibrium: F, 4+ F, cos 60° = F, + F, cos 30°.
F, has a minimum when F; = 0, for which we find F, = W/(4 + 2./3),
and the tangent of the minimum angle is given by tan 8 = (2 + A/ 3)

13. It rolls in the direction of the pull. When rolling without slipping, the
bottom point P of the yo-yo has zero instantaneous velocity. Rotation

around a fixed axis passing through P is determined by torque about that
awvia hitt Anley ' hog a manvania hinoe tAan~ia Mharafara natatian 1g nlanlrurian

aaAld, vuv v l.ly ' 11aS o llUllV@lllDllllls UU quc. 4 1ITITILULT 1UWaViV11 1D vivuLvnA WIS,
and the center of mass moves to the right

14. Denote by B the point fixed on the disk; 8 is the angle through which
the dog travels on the disk, and « the angle the disk travels. At t = 0 the
nnm'llnr mr\mnr\"lrrv‘i ':ﬂ O * 1Q “I‘ﬂ“*;*"" 1Q nf\“ﬂﬂ""ﬂl’] rl‘ = ﬂ“"l‘lﬂ" ™M ATNOAT

alliguliol liiviiiviivuiil 1o aviv, viiuio \._luaru.vlu 10 VU110V 1I Y OWU. 111V ﬂlllsulal 411911111~

L, | ar 'ng o mn *a -

tum of the disk is (35 R*/2)a (use the paraliel axis theorem.), with respect
to an axis through B, but fixed in space. The angular momentum of the dog
is [@ — (B/2)][4mR? sin? (B/2)]. Setting the sum equal to zero we get

da _dB  4msin’ (/9/2)
dt — 2dt 3M|2 + 4m sin’ (B/2) 1

=

(]
=
\

:
1 (> 4m sin’ (B]2) / i \

2 Jo B3HE T amem? @) [ | \

/™ |

We can write this in terms of y = 8/2. Then \ ol o~/
the angle is given by the expression \ /~—B__FDog

~, 4m cos? N | Rsin (B/2)

Jo wy3Ml2 | 4m cos? fy |

Note that the angle depends only on the mass ratio of the disk and dog.
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Lar}

15. Conservation o
oM P2 /Rnnr] T — (2

angular momentum implies I,w, = I® with I

(-]

and AVA AV CWAANA A VA \¥ 4 I -"ll’v"-v FS AV 8l
M _8Tpsp  and 2 _8Tapy
5 1 3 3

Therefore

T _oo_ 1 _,  5dhk

T T T  I. DR’
e Lo 4TV myim __ e JLIND
ana nence (I — 1g)jio = o anjn y

16. Since the earth is rotating with angular < 5
velocity {2, the angular momentum expressed in a
coordinate system on earth satisfies

iL
dt x
where N ig the total annlied toraue, Lookineg down on the gvroscone at the
here N is the total applied to que. Looking down on the gyroscope at the
..... 40 wwrhava () ig alane +ha 2: avica and +ha » awia o vartinal Ara Tiosr
Uqu&bul, WIITCIC a4 13 alv lg LILC y-u I3 allu VI <~aAld I¥ voeluval, Ul lu&y
write the following expression for L
L, = Cwsin ¢ = Caw)
L for|p|<k1
L,=Cwcosd =Co |
T —— __ AL
L, = aAP.
In this expression terms of order /{2 < 1 have been dropped. Since there
are no forces in the zy-plane, N, = 0, and the equation for L, becomes
_Ad — N OA Thia A agoillatag with anonlar fracaney » whara 22
ﬂ\P — Uw‘ﬂ\{.’. AL ILUD \P UDVI1IIa VoD WwWilvil o lsuuu. u.c\.luc lby V, I1IC1C VYV —_—
Coll/A

17. When the total angular momentum is expressed in an inertial frame
of reference it satlsﬁes (dL/dt),,,em,,l = 0. However, the principal moments

of inertia are given in the body-fixed frame of reference, rotating with an
anoular valaocity with roaanant to an inartial frame ha annnantian ha
uulsulau Y vivwviv LY ) YWivii 1 \JBP VWV VU Wil 1iivi vivyl 1L Oviiavwv 411V vwvililiiivvuvvivil vo-
4L _ 4 30 | Tan PR | IJ"I FAY 2
vween (@ Ljal)ipertial 211A (@ L/O )body 18
(AL/dE) jnertiar = (AL[dt)poay; + 2 X L = 0.
In the body frame we then have the equations:
d . . _
';’7(122 zz) = o, (1)
i/’ K \—l—i’_ ) e ona ot — 0 DAY
d 3
< (Iyy Qu) — —_2— Ioﬂ:ﬂze cos ot = O, (3)
where I, 2mr?/5. Equation (1) has the solution , = £,./(1 + € cos wt)



98 MECHANICS—SOLUTIONS

and (2, varies little with time since ¢ < 1. From (2) and (3) we see that
Q.2 + Q. i rotates with an angular frequency o, = 22, cos ot when dI . /dt
4 (=] he § J =P 2 < had E2 7 hadd
and AT 118 are naclantdad :a whan - 2 0O
J9LV R w.t.y.y/wb alo IIUBIUUWLI., 1.0y WIIULL W) Q| W&

i8. For sufficiently small displacements, motion along the direction of the
rods is decoupled from motion normal to the rods. Denoting displacements
along the rod by (z,, z,, ;) and those normal to the rod by (y,, ¥, ¥,), we
find that the Lagrangian is

22422 1 &ipit 38

ro=m1,.-.2 I 022 | 22 1 22 1 9s2 1 o2y krl.. A \2 L M L \21
-z —7\-'?1‘1'4-5:‘1'-53‘1‘ 1T &Y T Y3) gl\-ﬁ o) T (L3 Zo) |
kl
2
— 5[(!& —¥Ys) — (y2 — ¥s)]
lagt $armm 10 annatmintd an aa +~ wania whan all tha nartinlag lia An
AGVOV VUULllll 10D VVI1IDoVWI Uuvvvu DU 0 VU Y101l YWwalvll il viav t’ﬂll. vivivuo 11U vil
1

Motion in the z-direction is governed by the equations
m&, + k(z, — z,) = 0, mi; + k(xs — z5) =
2mjz - k(2xg — X — $3) = 0.

Conservation of momentum requires that # + 2%, + #, = 0. This condition
implies that there are only two normal modes for vibration in the z-direc-
tion. The normal modes are

z, — z, with frequency (k/m)"

and
[5) [P etal O 100 1. 1___\1/2
x, — 2z, + x; with frequency (2 k/m)"”.
Matinon in tha . dirantion 1a congtrainad hv consarvatinn of anonlar ma.
AVANS VANJLL ALL VAL y NALL WUWVAN/LL AN WNTAANW VA WALALUA VJ WNJAANN/A ¥V WVANJLL T A wllb CAALAWWA . ALANS
SIS SN | TUIEE LAY VAN o JRSRUSPIS SURY RSN S P
meIiuil, as wel as 1111cal noinioiivuii. vuUIING lll.lly LI 18 only oI1e 11oue

the accompanying figure.

|
\4 \4

19. Let the vertical displacements from the equilibrium positions be X,,
X,. For the motion of the center of mass C, F = ma yields

Mg L ¥)y= —kX. - X.) — ma (1)
2 \ 11 z) \ I S z) J) \*J
and the torque condition gives (for small X,, X,)
I_A_IL A4 —L-.— — P
7 (&y — X)) = ——Kk(X, — X)) (2)

and /, = moment of inertia about C = M L!/12.
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The gravity term, which merely determines the unextended spring lengths,
n d (2

- iy AaNs ~ alide LA 4 vaza

; does not affect the modes. From (1) an

o~
~—

29 Lhis nrohlam waa rat atnndiad hy Danial Rarmonlli DNananta hey 0 —
. PLUULUI.LI. WO 11i0V ovuuiuilivu [ Y] A/7u111V1 AJVi11V UL AUV VU IJJ "I
1T al e e LS _ PUVR IR R I S A__ 12 __4° L OANY___ a2 _ ) O__
m|L, e Inass per umniv iengun Ol uvne Sring. Appilication 01 iNewuon S. oec-
ond Law to a small element dz of the string gives the equation
32:‘(!‘ 10 ot
57 =—=|T@)Z| (1)
ot M 0T L Ox |
where T is the tension in the string. Because the rope is in equilibrium with
nnnnnn 4 4~ sn~tbinn alance ta lancath Mo —— Awlanl1 _ Al TN 1 M1 Mha an
I.UEPUUU VU 111ivuvivil alv ls auvo 1 1150!1, i \-b’ -_ yl Ib\l. -D,.l.l’ T .Luj 4 110 CIIP'
propriate boundary conditions for y(z, t) are
%
y(L,0) = 9, = (2,0) =0,
(% 4
I 2\ N azylr 2 _ N
y\w, ) =y, 22V TV

The second of these is satisfied by putting y(z, t) = y(x) cos wt. Then y(z)
satisfies an ordinary differential equation

’I'h-\iﬂ‘ 4 2y =0 (N
4\%) T . \=/
TETeLL a1 A VYA . TP R 1 . a1 . i P 2
with the ansavz ¥y = j(«~/ 1'(Z)), this reauces vo tne bessel equation O1 oraer
Zero:

1 .,  (2Le\?,
"t 7=t p\——) =0,
A 1(x) \ G /

where N, is the zeroth Neumann function (i.e., Bessel function “of the second
kind”, having a logarithmic singularity at the origin). The first and third
boundary conditions yield the coefficients:

y:

[ (20 (g 3r0 .\ (20 [1 ()\_; (20 [q ) (22 [T(z)\ ]
| Fol oy L @ +m) Ja( /=5 ) =T ) LU m) N2 =2 |
I 20 [Ma) (20 [ ~ \ (2w | \ 20 My'\ )
| Jo[ =/ =2 )No| =4/ £ (M +m) ) —To =4/ Z-(M+m) )No| =—,/ =) |
L \gy p/ \gV¥pu /7 NGV p 7 NgY p/ ]
The fourth boundary condition then gives a transcendental equation for .
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In the case that m < M, the arguments of the Bessel function are large,

<
ne mav a n'n'nhr the asvmntotic exnangio
N VAN A AT

and o Q
Jo(z) —> 1 (cos z + sin z)
ol ’
N (5 —> 1 {ong 2 — ain 2)

as z increases without limit. In that limit, y = &(z/L) cos wt.
In place of the fourth boundary condition, which is satisfied identically,
we use the equivalent condition

aﬁl:—nay at xr = L

ot ¥ ox
+I\ f\l\"ﬂ'l“ I\2 — n’ r
VU vUwvvuvoiii w -_— ylu
2i. Waves on a stretched membrane obey the differential equation
2241 2
o5 = TV.
v

Letting ¥y = u(z, y) cos wt gives —w?ocu = TV:u. Consequently,

T [ uViudA

o [udAd

This may be computed for various trial functions to obtain an approximate

eigenfrequency. The trial functions » must be chosen so as to satisfy the
boundary conditions, in this case # = 0 on the boundary.

n? —
W —

29 nn the surface Gf the earth tha momaent of inertia of thae lvwhael ia
[ ] 7 v ’ VAIAUV AIAVAIRVILIAV VA 111Vii VAWV VA ViAW AL YV ALV AL
s ___ 1 L. 12 b . a4 Lo __ . *a_ ___0___ °*_ _ ___ ______._. b________ £ 4L

111Creasea Uy a sugull amouinvu Dey()nu IS value In vacuum Debause 01 une

small viscosity of air; the fiywheel tends to drag air around with it. A watch
made to run on the earth’s surface is adjusted to compensate for this effect.
When removed to a high altitude, the moment of inertia is decreased

alichtlvy and the watech rung slichtlv faat coeordine to Profesanor Allicon thia
shghtly, ang the watch rung shightly Iast. According to rofessor Allison, this
L d e ndfand Lar Donfacone T Dol ol o o crnmer svmmined A oo awdnaseala
Cl1OUL was I1ULVICCU VDY IL10U1oS301 1. hval, wilO as vel P].Uuu Ul &all CALICIIC]

accurate watch, which ran slightly fast when he went to a mountain top
for cosmic-ray experiments. Rabi proposed the problem to Professor Fermi
while they were riding a train during the war, as a diversion for Fermi,

who hated train rides. (For security reasons, they could not discuss project

harginaaa An $ha $nain e HM“. an1ild nat Aer FAar anntiniter rnaanna )\ Hanmi o

UUEIIIUDB Vil vilU viailll, uucy vuvuulu 11vv lly 1U1 BT Ullv 1L0a3V. I.B.’ L' Cl1lll TA~
.

plained the effect immediately, and in about an hour’s time had worked
out a complete quantitative theory of the phenomenon.

28. Young’'s Law requires AF/S = Y((AL)/L), where AL is the extension
of ing, an AF is the foroe felt by the string as the mass decelerates.
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The maximum AL is determined by conservation of energy:

- L
from which
AL g [(mg \* , 2mg
T —sr tV\sz) + 57
In order to prevent breaking, we must have AF/S < T'; therefore

[
}
¢
l
>'15
. -i5

nwernon

e
this point the energy equation tells us that }k.(l, — 1)* =
ing k, we obtain

98  (a) Wa 1sae Archimades’ nrincinle to nut o7 R2A% — —n.ar R2» are-
aEre \w’ vV W CBAINW AAA VALARBRNINANIING r&lllvlrlv La—d r\-‘l rlv AWV TV rualv _— e Bl NS B
p JE 2 _ . ~]-L
10I¢ W — Poylplb.
(b) Consider a slab of fluid of thickness dr and of
area A parallel to the cylinder. The net force on this |
slab due to viscosity is fe \!r A frade
s I
f=AanS3dr,
or
whinh gt aciie 1 (a A AN Bar o2 gaintanidal $ima danandanaa otHiel
NiVv4dl 1LILusv Uliuu;l \Poﬂ wi ’\UU’U'I’ AUL a Slllusvliual uviiiago uUl.’U 1UvI11VU ©
one has
a*v
N 7= = 1PV
ar*

with solution v = v,e~™*) where the damping length is given by
O = A/2n/pow. The total viscous force acting on the cylinder is thus

F=pA% = p(2xRL )| - |

r \ po /L o |
me_ ot LB DL /3 _\1/21]_.1
ine magnitude o1 I 18 | L | = aA [P (7@ [Po) '~ | Z .

26. Consider a section of the surface between the planes Z = Z, and
Z = Z,. In order to have equilibrium in the vertical direction we must
have (27 cos 6,)(2xr,) = (27 cos 6,)(27r,) or simply r cos § = const, where
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[
<

a = r, cosh (d/r,).

Define 2 = (d/r,); then z satisfies the equation (a/d)xr = cosh z, which has
a solution for z only if (a/d) is greater than some minimum value. This can
be seen bv mnklna a oraph of cosh x and (n./d\:r In addition. at the min

| = niand wlis TTREES S - FEWSEE) Y FESEY /==

wvaliia Af (2]1dY o anlat T
vaiue 01 \Gj@), a d01uv It

and cosh z have only a single intersection. Therefore the z corresponding to
this value of (a/d) is found from x = coth z, for which we find x = 1.2, and
(a/d) is calculated from (a/d)’(z* — 1) = 1. Therefore the maximum value

of {dla.\ allnwed for stahlllt.v 18 (.66.

iata anlyy i€ wld — qinh » 1 0 tha gran
v vlll 11 ,w -— 11111 .b, 1.U. V11U 51 P

UD
(=]

i v ~
Ll— L l / ~
n A 1 3 3
Consider a plane section of the strut at a distance Z from the mid
1

The length of this section, when the cylinder is bent through an angle 6,
is

(R + 2)8. The strain is therefore (R 4 z)/R, and the restoring moment

V. pra2 V4

F | ! iw
N==2| (R + 2)2dz = -

R J_ap ’ i2R



We shall consider only infinitesimal deformations for which we may neglect
(dy/dx)* as compared to 1. Thus the restoring moment at height 2 becomes

N— Ya'dy
12 dz’
In order to have equilibrium of the portion of the strut above this height,
the moment must equal the torque of the weight about this point, W(e — y),
where € = y(I). We therefore have the equation

Ya'dy' € — )
12 d2*
£ L L a4l 1 . Toa 2 _ _ _ U
for which the general solution is y = A sin (wz) + B cos (wx) + €, where
®* = (12W|[Ya*). The boundary conditions give conditions on 4, B, and
DY\ — N R _—
y\u) -_— Vv 7 AP = Cy
y'(0) =0—>4 =0,

A ° 7 ' 7 ~

y(l) = e —> A sin ®! + B cos ol = 0.

y=¢€e(l —coswzr) withecos wl =0.

For ol < m/[2, the condition e cos ! = 0 can only be satisfied by e = 0,
i.e. the vertical position is stable. However, when W increases to the point
where ol = 7#/2, an infinitesimal deformation is possible. Hence

B o .
(] A AL Ak v ARLL a s L e \JALL o Al
om0 X o L3 o _ a4 _ £ _____ /T .\ ___ 2 ¥____a1l 7_ L‘_.____-: ___ . |
requirea vO pena a segmeuu Ol alrea a(aw) ana 1 Il az U ugn an angle
(d6) is Yau(df) dujdz, and the total
moment about & point P of those . o
. . : 23 ] ¥
forces acting across the 4 B-plane is / e ———————— S A
(=4 i // /
, | AT~/ ha
_ (Y av'(df)du _ (Ya’\db a._____ R <
—_ Z -—— N " ) i
=) dz —\12/dz % FR=eN
™ 171 s N ke SR,V RV YN XN / .I P \7\\\ \
For small bending, (d6) = dz(3*h[02*), 7 T e—/ T~
80 % ey L X
Z ! o / N\
Ya' (9°h) 7 YN\
M= "\
12 \oz*/
In order to have rotational equilibrium for the section of the beam to the
lmeld o o e fead o A maazaod Lo
llgllb 1 0 P 1V £, UIIU 1IIUSL 11avo



hence
o’h _ 6pg
7 = w2 (L — 2Lz + 2*)
0z Ya
The boundary conditions are h(0) = A'(0) = 0. Therefore h(z) = (pg/2Ya)
TRT2.2 _ ATA~3 1 ~41 and (TN — (277 T4/19V ) nta that tha mamant and
lUJ.J ~ X LI~ T~ _I (<2249} "I\.'_l’ \UH £ ’H.l w’ AVNUUU VILGVWVU VILU 111VI111VLLV drxd Giilrua
force oM [0z vanish at the free end.
5 s 3 3 ¢ 3 3 A
29. Imagine the chimney separated at a distance 1A /D
x above the ground. The rotation of the chimney y \ £ /
- N ‘ L—Xx
as a whole about O satisfies the equation ‘>@§3’/
— = =2 - - [N \
4 AN
MLO; g gin 6, or 3g sin 6 (1) o /3 \FF
3 2 2L yd
/S
Ty o _ al _ 1 _ e A At O Lt
LIJKew]lse tie iower p roion satlsiies vne equauion //
M0 _ Mrgsinb o o O
where F is the shear force and «y the internal flexion torque at the point x
Similarly, the rotation of the upper portion about its center of mass satisfies
4hn an~nvradian
UILIT Uquawu 1
3
M(L—2);_(L—x)F | _ (3)
12L 2
Equations (1) through (3) may be soived to yield
Maarim AT _ AT A2 1
I J.'.ly [~77 98 U\u cll’l\.‘.l ob’ _ 2|
- T2/ T 1+ _.\ A x ’
L(L+z) L 4 J
and
).V i 4 A\2 - o2 A
_ MxL —x)ygsinou
Y= =72
4L
Qimen tha ahimnaviathin 1 a 202 T whara 2 1g 14g width tha fAarnaa ragQTnAN
VIV TO VILIT Vil lc‘y ID Uiliil, J.©. W _J 4/, Vil W 1D 1UD Wwiuvull, UI1IU 1UV1IUVOD IUBPUII
sible for ¢y are very much greater than F. That is to say, y/w > F. Thus the
breaking is dominated by the maximum of ry. This occurs at x = L/3.

30. Consider a small volume element of liquid near the surface. The potential

nnpr(rvlvnlnmp 19

...........
V = pgy — 3pa’2’.

The equation of the surface is obtained \ [~
by setting the potential energy equal to \ /

a constant (in 1 this case zero because of \ /

A aaiVevaa vV
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31. From the expression for ¢ one finds the components of the velocity
v, = v.(1 — R?*[r?) cos
ve = —v.(1 + R?/r*)siné.

Because the door is open, the pressure P inside and outside must be equal,
with value P,. From Bernoulli’s equation for streamline flow, at any other
point on the exterior surface,

P + 5pv*(f) = Po == (P — Po) = —po'(6)
gives the pressure at any angle 6. Then

o~

The force is upward.

z

|

! I

1

! /7’,\ y

IR V4 N, .- x

7 PN e

Il_/ | S

|
oo T ot 4hn 1iv;man maadinzem hawa dangidsr A amd 4ha laseran Anma Annaider ~

140U UIICT UPPUI mouiuinl 1nave UUIIBlby IJl allu ULI1T 1UWCL UIIC UcIlIisiv I.)g.

Since the oscillations are incompressible, the pressure satisfies VP = 0

everywhere. For a boundary oscillation of the form » = « exp [¢(kxz — wt)],
the oscillations cause slight changes in the pressure from its static value
which damn out as one travels awav from the interface. Thus

232022 &2 =g -2Y==

P, = —pigz + By exp [—kz + i(kx — ot]

and

Py = —pagz + B exp [kz + i(kz — oi)],
where 83, and 8, are small constants which go to zero as n goes to zero. The
boundary conditions are
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Note that if p, > p, the frequency is imaginary, and thus the oscillations
are unstable. This is expected, since in this case the heavier air should fall.
mL. . L )t L. _: 1L 2q ~teram her
111 PH&HU VEI1LLILVY UV — (DIKF IS givel v
[0y — 0:)g "2 [(py — p;)gA ]2
v = | L /g | — I LY e £i/g I .
(o, L+ n\k OQw(n, 1+ n.)
L\F2Z 7T pFijva L&/e M2 T Mijd
To relate p to the temperature one may use the ideal gas law, i.e. p = K/T,
hence
Cr+sm moy N 711792
v=| A —2¥%|".
Lem (1, + 1'1)]
33. The velocity will be taken as irrotational, for which we have v = V¢
and V-v = K&((x — a), (¥ — b)). Due to the presence of the walls the flow
must be such that ».(0, ) = 0 and »,(2, 0) = 0. This bo_md..-y condition
will be satisfied if we consider the flow in the region of interest to be due
to the original source and image sources of strength K located at (z, y) =
(—a, b), (—a, —b) and (a, —b). For a source of strength K the solution to
V¢ = Kd((x — a), (y — b)) is
2£ log »/(z — a)® + (y — b)*.
7.4
mL . 1 .t —a_ a1 £ 2L _ O __ 2L v._.____ JI__°__ /s__.L2_.L Lo__. - _1_._.°2__
1I11€ veEl0ll1u P eiivial 101 uiie 110w wiull bounuaries {wilcii nas a veiuliy
which goes to zero as the distance from (a, b) increases) is
II 2 2 2 T XY
¢ =5_(log~/(z —a)’ + (y — b)* + log~/(z — @) + (y + })
+10g«/(x + a)® + (y — b)? + log A/ (x + a)’ + (y + b)?)
Use Bernoulli’s equation to relate the velocity to pressure; that is,
‘%(Vﬁb)i + P = P,
where P, is the pressure as v — 0. Thus the pressure is given by
VAR 72AN z LY / 1 [N ]
P=P—4p(E)[ 2=, @+a T 5 0p
\nw/ LO* + (x — a) 0° + (x + a)“]
P—pP, —3o(EY[_¥—=0) y+b )4
£= P, P(:, |n2 1 1,,=A\2+n24_1,..¢k\2| on O4.
\7 / LW T\ vj) w T T vy d
%- \Jonsmer a DO(]y Su@h as Bne moon, locabe(l as SHOWD in Une accompa,ny-
ing figure. The shape of the water surface is defined by the spherical coor-
dinates (p, §). In the center-of-mass coordinate system, which is rotating
with anqular velocnty ®, a unit mass of water on the surface is acted upon
and inertial forces obtainable from the potential
Vip,0) =Ve+ Vo + V,,
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\
-
%

T !
I of mass : \ \ ! A /
: | \N_/
il !: ; ;:: rﬁ_ﬁ;‘}
I ! | I
[P ol
I r g
whana
111 C
7 —G-Mn fooo ot _a Y a a0 X oa o _al\
Vo= ——" (gravitational potential due to earth),
'
Gm
Ve = —— —a —— (gravitational potential due to moon),
(r" + p* + 2rp cos )"/
on? . .
Ve= — 3 (centrifugal force potential),
with 9 = p* + #* + 2%p cos 6. In order to obtain ® in terms of the given
constants, note that
M % = GMm and R —
r? M,+m
Tae L 13 L a3 .2 a2l a2 a2l L .l __ . L _a_s4 . Ll ___1Ll
41U Sl10uiu pe poliited ouv uiav 111 uvile above, uie axis 01 10w uoll Ul vile caruil-
moon system and the axis of the earth 24-hour rotation are taken per-

tter choice is made so that

e la
in a 24-hour perlod as deﬁned by the
ancle A, The tides are algn calculated at the e t

Agnats ¥V - ia v Ao Viwaw WV NA WY a

Vi = “"'|1—-§cosa+ 2(3cos 6—1)+ -

L__l

In order to calculate p(6), one notes that the surface must be an equipotential.
Thus,

A (O A P Yom 2 Al aj
V(p,@) — _Gm(ZM, + 3m) . Gmf (3 cos? § — 1) — G(M, j‘ m)Pz __GM,
2r(M, + m) 2r 2r P
e namnat An +tha arrnfana
— UVUI1IDU VIl Vi1 dsuliLiavco
Setting p = r, + h and neglecting terms quadratic and higher in 2 and terms
of ordar [( L m\/ 1{r3/3Y one ohtaina the eauation for A
A A AV L\A" o I "V,I s 8 .J " UI 1 4 ’, N ARANS N RS VAN A LAV VAANS vuuwvlvAl & NS A v
2 2
_Gmro ot 1y O M, +m)rs | GMA — onnat
ﬂ_ \U vl v a ’ 3 'T— ! vVJV11lDv.
2r 2r s



Hence
3mirs cos® §
h=ho + —F%—
2. r
The tidal variation is given by Ah = h(0) — h(x/2) = 3mry/2M r°. The
natin nf tha 41dag Arsra 44 +4ha g11r and smAann ja $hiia
1aUIVU Ul UIIT VIUTS uUuc UVIIT SuUull allu 111VvVll 1S viiup

The presence of the cos® § in h(f) shows that there are two tides in a 24-
hour period.

35. A small but otherwise arbitrary deformation of the surface from a
ammbhasa w2211 Lo cncmsencamdad Lo LAY e chnea— 20 2l L. ML £ 22 _ L/A\
BPIIUIU 111 D IUPI escliveu Uy lb\l.l) as SIIUWIL 111 LI ug Ic. 111 1Uujlvuvioll Ib\u)
may be expanded in spherical harmonics to A(fi)) = R 3} ,n A; mY ;m(). The
gravitational energy is

1 , Qp(r)p(r’)

—_ — _l;
U=—= | avdyv’ s

& r |
We write p(r) = po(r) + dp(r), where p, is the density for a homogeneous
anhara of rading and the anerov hacomaga
UIII.I\JLU NJA A WNALWAWD .lII’ CWAANA Viiw UIIUISJ RIN/NINTALL VD

is independent of %, an N Py
U, = —G rdVdV’-Do 8-0(1-') — —r8 'r.'\ nlr!‘ di’/" \>4/
1 | R Py— } op(r)ep(r)av’,

where ¢(r’') represents the gravitational potential produced by a homoge-
neous sphere

~ 4.\ TTY
! rjav
('i)(l' ) =@ I EM—)%
Jr—r|
and
A 2 AT AT Nl S At/
U _W |wr wr U’J\”EH\’ ’.
2 — iy T 7]
zJ [T — |
At this point note that 8p(r) is nonzero only in the shaded regions, and that
;“ “ NoONn THariNnAmMa Rn — I ~ r]nnnnrl;nn rnnnnn#;wn]vv nm 1"1\‘\" VoY oJ 10 “f\ﬂ;";“ﬂ
111 UV11UODU 1O 1VILIID U’.I -_— IHO uotlcl.lulu.s, AUUD U1y i ) Wil VW1IT U1l1ITLlL v 10 PUDIUJVU
or negative. Thus, for instance, the expression for U, is
. G (R+h@) _  CR+R@) r dOd4dQ’
__ @G 2 ne g7 3 I 482d)
U,= 2.!“ rear | (r') dr po | T——
R v it v | L

By a Taylor expansion of the integral, keeping terms up to second order
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A

v

Similarly the expression for U, to second order in % is

in A, U, becomes

o~

T

o BAR(A')

A
& s

;
J

lr —r'

—_—

S’

dQdrr* = 0,

r(R+R)

R

which, to second order in A, becomes

Since the water is incompressible, one also has the equation

is used, one finally obtains

U

order in smallness. In addition, for the mode with [ = 1, corresponding
to uniform displacement of the sphere, there is no change in the gravitational

e note that

(B),

PSS

oﬁ='

v

h(d, t)

Y, bim(r/ R)' Y () one finds

and expanding ¢
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The total Hamiltonian for small oscillations is the kinetic plus potential

nnergles,
H <~ ’/n-R5\A* A r‘:lgp%GRs(l —_ 1)-'A* A )
=z \\For JAimdim + | —amr 1y | Aimding
Lm \\ &av / L O\&v T 1) J J
[4 ) TR SR R T 2y 4l
i111€ Irequency o1 une moade 4; , 18 uius

87, Gl — 1)
320 +1)

or, in terms of the acceleration of gravity,

36. From the relativistic transformation of coordinates, one may write

CI..
-2.
~N

—
Y
~N

g

. 4 1 ;e o2 Vo PO SN 1 .. & \. o -
\\y +—414%,), L= Yi\L T Vi), an

=M
But z, = 0 since the clock is at rest in S,. These equations are easily solved

AL Llin sdam 1ad 2l wnnlond a<rn
1 UIIC Sual, ICU UIIU 1UVAKCU 11aVe

a velocity v. Consider the Lorentz transformation from this frame to
inertial frame moving with velocity v: z = (2’ 4 ') and ¢ = (¢’ 4 vz ).

Then

Ane PO Y 0% PO 5 FLAN A2 e A2, [ 152
w.o__u—r\w ’uw’ d u«.o_ wolllm .
% — T /d-_/\ 1 an d‘g - T (dz’\ 13
3
11+ o(>7) ] |1+ o(=)]
L \at /| L \ar /|
For (dz'/dt') = 0 we have the transformation law for accelerations along the
Aivantinn nf mmatinn a» — /a3 Wa alan ava tha tranafarmatian law fan
uiidvvuivii vi aivwuvily, w — w'y . YYOU aioV 11V U U1V vilioiviiliguvivil 1ayw 1Vl
time intervals di’ = dify. The total time elapsed as seen by the moving
clock is
Iy it rl It r1 I 1 ¢ dv
— — —t — —_— — 9
-J .' v .ln,la.- a .' { 1 »? \
(1-%)
or
i (1 + vefc
T’=‘.—-,:10°(._+ f/)
a " ° (1 — ve)
where v, is the final velocity as seen by the star and @’ is the constant ac-
PRy PRESINJE INIE I, Y 4 ) PR P DR ey mmmd i al a2 2l a_a_1
ceieravivlil as sSeell Uy Uil TOCKEL. 10 dalvuiate vy € I10OLICE UuUlla v LIl vouval
distance traveled is given by
D= {vd fodv 1 ¢  ody p=21 r1 17
=|vdt=|—=—|73—273m O =7l 7— 1]
w w v (1 v w A/ 1L Ur J

Elimination of v, between these two equation gives 7" in terms of D and a’
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390. 1ne perioa 718 given by T — ‘]:J arx|v, wiiere vne velocCity v 18 Ca.

from the energy equation

' 2\ -1/2 2,2 2,2
»,mc,z(l __’0_\ 4 e’z me? + @a”

-\ et) 2 2
In this manner the expression for the period becomes
4 i‘“ [1 + w?(a® — 2?)/2c*
T — —
2 1
G"U(i_xil/zrl_l_&’(az_le
A R )|
20 J
We expand the integrand in powers of w’a?/c?, and get, as the leading terms
i tha avnracainn farn tha nanind = — (D /..) T 1 9..242/1R5+2 _) . b
111 vii1T UAPI. TUodivil 1vl vl PUI. v, 1+ — \Hlblw’ LJ. T ow w ILW T J

39. Define the four-vector p = p, + p, = D, + pp, where, in the lab
frame, p = (m, 4+ my, 0) = (M, 0). Solving for p, = p — p, and squaring,
one finds ’

my = pi = (p — p.)' = (M — E.)* —p; = M* — 2E.M + m}.

'n__-M2+m2:_'—m3;A _XT
x 2M ev.

o
TN
oe)

h |
= 1.

The lab frame was chosen to evaluate the scalar product p-p,; since it is
a Lorentz invariant quantity, any convenient inertial frame may be chosen.

wv(n. — Ev): ', = »,. Choosing v parallel to n. we see '’ = 0 when v — n/E.
INL 77 &L L L L (=] r r’ I X
Trn A1nir nacn tha ragnlt g v — m L. w VB | ) 7Y

A4dll UUl VOOU ViILIU 1LUDuUuilvV 10 v — \l’.', | l’_” \‘.V+ | u_’.

(b) The total energy and momentum constitute a Lorentz four-vector;
hence the quantity [(E, + E_)* — (p, + p-)] is an invariant. The bary-
centric frame is the one in which p, + p. = 0; as m, = m_, one also has
E'. = E’ in this frame. Thus

a4 . 222 vidd a < -_ad s

4(E.) = (E, + E_)’ — (p. +p-)

. £L_ _11_
or unaliy

E. =E _‘\/(E++E—)2—(P++P-)2
T 2

(c) Consider the invariant I = (p, — p.)? — (E, — E_)?. In the rest frame
of the electron, p. = 0, E_. = m, we find that E, = m/+/T — vl where
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v, i8 the relative velocity. Thus

2m?® ri -1 _ 1"
I= — — 2m?, and we have vy = | T ad
A1 — vig | \! t3,) |
41. Choose a coordinate system with z-axis to the right and y-axis vertical.
The force equations are
d d . —eV
d=t(p cosf) =0 and %(p sin ) = 7
Thus p cos § = p, cos & is a constant of motion, while the second equation
p p Y
gives (d/dt) (p, cos  tan §) = —eV [d. We use tan § = dy/dz and the approxi-

mation d/dt = c(d/ds) where c is the speed of light. This is a good approxima-
tion for a relativistic electron since its speed is approximately ¢ throughout

its motion. Thus we obtain

d(dy\ _ __—eV dy ___—eV [y, ( d;’lqm,
ds\dz) — dp.ccosa dz?  cpidcosal” ' \dz/ ]

Q

The general solution to this differential equation is

1
y=A — C OShB(x—a)
B
where R — eV/en,d cos . The constants 4 and a are calculated from #(0) =
r~ I JN\N"J
N aemA dackN\ [ e __ bae 7

42. Let one photon have momentum p in the lab, and p’ in the pion rest
frame. For a photon | p| = E. The Lorentz transformation connects p and p':

m! ot A7 ~Mm gim ﬂ
P sSiiv = Ppsiiiv,
p’' cos @ = p(cos 0 — v),

By division,

1 aim A ona A a
tan @' = ———— and cos ) = ————.-
¥ COSU — v 1 — UCO8vV
Probability is conserved, so P(#) d) = P’(f) dQ'. Then
P@) = P28 Y) _pgy___ - -
N " d(cos 0) Viy*(l —wvcosl) 4my* (1l — vcos )
is the normalized probability density

43. (a) One year contains 3.15 X 107 sec. Consequently fesrtn = Ylneutron =
10° «y sec = 3.15 X 107 sec =—> ¢y = 3.15 x 10%*. As seen from the earth,
the neutron energy is 3.15 X 10* times the neutron rest mass, or about

eIV, U
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earth frame be unprim 1e angles made by the decay product with
nnnnnn 4+ 4 4ha natidnan walantder IAaciconatad aa alanas 4ha o awvial ana O oA
I.UBPUDU U VI1U 110UuvivVlil VUIUVU1LV \uomg 1avou as ﬂlUlls LIlO k'u;AlB) alv vV allu

where %' is the velocity of the decay product in question, is derived in the
preceding problem. This relation can also be found from the Einstein addi-

tion law for velocities.
Mal b n mmecd ol o Vb e e lb VA3 0 a2 2 4L ] L
DOUI1 LI1C 110UV &llu BI1CULIVI1 a1t ulvrarciavivisuviv 111 uvIlv pumeu 1raiie
For the electron, d(tan 6)/d6’ = 0 implies cos §’ = —u’jv. Then

~ Velectron .

o /1 PPN -~

‘fem.v 1 — (\u v) Yeu.

Now cm = 3.15 x 10¢, while ,,, (electron) =~ 2.6. We see 0,., =~
1074 rad

AN e

tan 6,,.x =

VN ¢ 1 | IS | My Y 3 __1___ 7./ h N a4l e 1,11 h |
(C) 11e meuIl (1 (D) Dreéaks aowi wnen (¢« = 1) > v, 8lnce uil1s woulia 1eaa
to cos ' << —1. The largest angle 6 is 7 ; we obtain this for backward motion

in the neutron rest frame.
(d) In the neutron frame, the neutrino has maximum energy

And fo

Anxa

]
]
(=]

44. We begin with a crude order-of-magnitude estimate. From Kepler’s
Laws, v ~ E*? where E is the energy excluding the rest mass. The first-

order change in v due to relativistic effects is
dv _ 3dE _ 3 3(v'/c’) (9 \(GM|R)
v ~ 2 E 2 GM2R  \16c’)(GM|2R)
_ 9GM _ 36, 56 ~ 2nGM
"~ 8 R* 2« ° ERc*

anandina :3m dlhn mamdiala fon 4hn el diiidia Anbhidt oo eall oo 4l sl
a Bl)bbulllg UP uvilo P 1 VIU1OU 111 LI1O 110111 01aulVISuVIU Ul Vly, ad Cll as uu.ngu
a rotation of the perihelion. In fact, this is just what happens for a circular

orbit. For an orbit with eccentricity, the perihelion does precess, the rate

of precession being roughly that given above. A more exact treatment fol-
lows.
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The radial part of the force law is

F, = Z(myf) — myrf* = — .
e

2

The time is eliminated through the angular momentum equation L = myr*g,
with L a constant of motion, from which

g T A
w F v w
- = —— 35"
di  myr*df
In terms of the variable u = 1/r, the force law becomes
L*ud*vw L ,0V
—_— —_—w -
my d6®  my u
., Ty e
WIICIL 18
d’u , (E—V)oV.
=07 U = — ’
g " ¢t} ou

when the energy equation £ = mc*y + V is used. In a gravitational field
(neglecting general relativity), V = —GMm|r = —ku, and the force equa-
tion becomes

-7 k2 Ek
u” +u|1 — | =2,
c‘-bl_l c‘ &
with solution
h=— = %kfl + e cos a(f — 6,)],
r cllelL \ vsay
..... 1.2 1.2 T2\1/2 _ 1.2 10.2 T2
WllUlUu——\l—lgleJ’ "\—1—’0/‘401./

In one revolution 6 increases by 27 ; thus the perihelion advances through
an angle 8 = 27(1 — ) = =k?/c*L? per revolution. For a nearly circular
orbit of radius R this becomes

nGM
O==+-
Rc*
This is one-sixth the amount predicted in the general theory of relativity.
Alternate solution: In the nonrela.tlwstlc Kepler problem there are two well-
known constants of t} energy and the angular momen-

1 A A
A ALL A AAVA WV A H A4 wu ’ AL LAWY, AAAD WV AL J4i WViiaw Va ll’ 44 J
A—py LXP,
km
Mhia maxw ha varmifiad fenm tha idantiéwr A\ IAE — T, v/ vl and tha faraan
41110 1Ly VU VUO11110U 11Vl vilU 1uvllviv W\I ”uw — M N Illllll @il vilU 1U1UVO
law, from which p= —-l'cf'/r The necessmy for an additional constant of the

motion follows from the “accidental” degeneracy of the Coulomb potential;
the Hamilton-Jacobi equation (in quantum mechanics, the Schrédinger
equation) is separable in both spherical and parabolic coordinates. A has the
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property of pointing always to the perihelion of the orbit; its length is the
eccentricity e of the orbit; A is called the Runge-Lenz vector.*
T armomnial malodl 4. A 2. o N e anmcamerad TL I 2. o focemnan oAzri; o
111 Spodllal 1roeiauvivivy, A I8 11V lU].lg 1 CULISCIVOU. 11 N IS o 114110 LiUVviig
with the angular velocity d@ of the precessing perihelion, then
/dA\ /dA\ 5 A
W) e =\ ) s — 0@ XA
\NwWw /7 A \ Wv / nertial
Since
{dr\ Lx¢
— ot bl
\ @t ) sertint meyr?
(dA) _LXE(1 4\ _ 50 xp_ 0@ X(LXp),
\dt)e ™ mr* \oy ) m
or
= X:,B” =S x ¢ —plo® -1 (494) .
2mr km \dt/x
YVU 11V U VUVi11VUDU1l UwWw VU b VU 111onv vilo GIVUI.GIBU Vi \wn/wv’x U\iuall VU 4viVJe.
When averaged over the nonrelativistic orbit, the term in p vanishes.
Hence
o L{BrY>
o) = A—’—-’—")m

T 02 m362
dw = o D2 — — o
smin &

and the precession is given by Af = 2xdw/ew = 7nB*. But v* = GM/R; thus
A8 — =GM|RC.

© A LA [ AV

~ L PR U & R R . o I MO [P PPN P
16 DAIVUIL HIOVES 111 LII©® ulrecuioil 01 uie accolor 116 aclvlioia-

tion of the frame, by the equivalence principle, has the same physical con-
sequences as a uniform gravitational field in the opposite direction. Hence

we may imagine the container stationary on the earth’s surface. Then the

balloon rises.

* W. Lenz, Z. Physik 24, 197 (1924); W. Pauli, Z. Phys:k 36, 336 (1926); D. F.
Greenberg, Am. J. Phys. 34, 1101 (1966).
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iI. From the symmetry of the cube the currents in the resistors must be
as shown in the figure. Conservation of current at the corners requires:

I=2x+y, and y = 22, S TO—

7

v

where I is the input current. The requirement // lz /7
that the voltage between 4 and B be indepen- [~ ] 5~ |,
dent of path yields the additional equation | 4
2xR = 2(y + 2)R. These three equations have xa s
the solution z = 31/8; y = I/4; and 2z = 1I/8 /M ,\/
1he resistance between A and B 18 (ZxK[l); / pA
therefore R,; = 3R/4. AT~ ya

x ~J
2. If 1 A is fed into 4 and taken out at infinity, then from symmetry, 1 A
will flow in AC. Likewise if 1 A is taken from C and fed in at infinity, 1 A
will flow in AC. By the superposition of the two btai

8
solution to the given problem with the current in AC

3. Place the bars as shown at the right: If 1

is magnetized and 2 is not, there will be

B> a vaali

ot addnandi~an hadsrana 4ha ;moccnate her ger -—
10V avuviavlvivil VOLwooll Lilo u.lusuc s, lJy Ey I~ 1 2
metry. If 2 is magnetized and 1 is not, the bars

will attract one another, because of the poles
induced in 1 by the field of 2.

4. Due to the linearity of the equations of electrostatics, one has g, = C,V,
oA - T/ £~ 4L - L .. __ VR IR IV R [ DR SRRy ., (R
ainu qp = UgqV¥ 10I UG Ull&lgﬂﬂ OI1 Uit conuuccuwr aiu pw,w © PGDUIV ly WwIltIl
they are in contact, and V is their common voltage. Thus

Yec/qYp — V1L — CUIISL.

After the first contact ¢. = q and ¢, = Q@ — ¢, and ultimately ¢, — @Q;

hence a. — OallO — ).
yc wiiNyv 1)

aavaavw
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5. The battery supplies the constant power, P = EI. The electrostatic
enerav of the cavacitor, I — aE/2, is chancing at the rate
sy v r ’ L[ &y 25 LVRSIGIIE Sy VAT ISV

Thus the battery is doing twice as much work as is being stored in the capaci-
tor. The difference appears as work done by the capacitor on the external

o Tat ) Lo 4hn shanan A Ane nlatar 1ad — Lo 4lho Aloman daaolde, ~m 4L
V. L/MOV Y DT VU bllalgU ol VIl PI&UU, 18L U DUU Uull© bllﬂlgu ucvli lby ol vl
plate surface; let I, J be the interplate current and current density respec-
tively; let V be the voltage between the plates.

2 —I=|3.dA=g|E-dA =9 |od4 (Gauss’ Law)

R J J e J !

7 T a ] -
Ve i LA AL . VJ vy vy “a AR 6uvv
£L.13 e o4 ___ a4 A____*4°___
Helua as arisi lg 1ro LWO CUurreilu aensiuies

(1) A current density j = I/n(b* — a?), carried by the cylinder of radius

b, and

(2) a current density —j carried by a cylinder of radius a.
mL .. . Lol . Y & 1 WSS (Y 7'y ) WP & My S LY . B Wi o P
AL I1© sSuIlll 1 vle bullellb uﬂllBlblﬂB \1’ ana \‘4) IS LII® CUIllTeIiluv uisuvriopuvioin 01 vile

i
bored-out cylinder. From Ampére’s circuital law § H-dl = (47jc) | j-dA,
one finds that (1) produces a magnetic field H = 2Id[c(b* — a?) at the center

of the hole, while (2) produces no magnetic field at the center of the hole.
The resultant magnetic field, H, is thus given by H = ’l”l‘(’)z — n2\

44T LTUCUMAVRILY LLGRIAT VIV aiVilay 44 -u vaa u SEVAL Wy 48 — ‘w'

I
[ o~ |
— ~ ¥ |
\ /
\'\ — qle Il
\ X4
,\\\ ‘,,,
T~ -

8. The solution is by the method of images. We choose image charges inside
the conductor, with location and strength so as to make the conductor an
equipotential. To make the surface of the boss equipotential, we must place
an image ¢' = —qa/p at distance a!/p from the origin, on the line joining

=22 2235 pH, oty wae bvadl o SAL1810 O



sary to add a.-dditzonal images —q’ , —-q at distances —02 o and —p inside
4hia arndiindan Mha fanna ~n ~ ic $han
VI1C Uulluulvuul, 1110 10100 VIl q 15 uIlOIl
F_qgr —ap alp 11__q2r 4a®p® 4 17
|(;p—a,2 p)? ' (p + a?/p)? 4p? l(p* — a* ) T 4p? |
bl 14 7 \N&L ' 14 7 A - -—\4a L =
9 ‘Lt the Orinin tha maonatio fiald ia
[ Blll’ ViAW u.lursuuvnu AAV AL 1D

r

where py = —V-M = 0 and doy = M-dA act as magnetic volume and
surface densities. On each surface, |r| is constant, and

—%9%| _%%u| _ _ M cos6sin6dOds.
2 b r la

10. From Gauss’ Law, E = 4no, where o is the surface charge density.
E is normal to the plane. When the disk rises an infinitesimal amount dz,
the energy of the field is decreased by an amount equal to the volume of the

excluded snace times the electrostatic enerov densitv: dlU — _/F2 [Rr)
exclude pace Um the eleclirostatic energy aensity [S7T)
I AT\ el A S 4l o L 4L A2 Y. M. . PR WS maemzzlatera Lacan
\ We ), WIIOIU A I3 LI alta Ul LIlY UISA. 111010 15, UIIUI 101 U, IUPUISIVU 10I'CC

The disk rises when this exceeds the weight of the disk.

ATa

Aliernate soluiton: The field has two sources—the charge on the disk and the
charge on the plane. The former cannot give rise to a net force on the disk.
We calculate the field due to the charge on the disk, and subtract from the
total field, as given by Gauss’ Law. The potential at a distance 2 above the

3 11T

nlana on tha dig k

1 0 ‘IQ
PAWAIU,y Vil viiv uln:; {54

a
WAI y 20

Vi) (2 2z ordr

(%) = ———ﬁ = 27 o[(R? + 2%)'* — x]
-
Jo —|— xz)' ’

where R is the disk radius. Then

d}fl r :.c_ |

E(O)=—,| = — 270 e '_—1| = 2o

dz|z~0 L/ R 4 22 Jz=0
4110 AY YWIilluvil QUuvw vVll VIilU wuion 10 VilvU101U1 O HILU’ AL VilU 1VU1UVU vUll 1V
. v = o
is F=o0 | E-dA= 27 o%A.

11. The electrostatic potential ¢(r) is a function of the radius alone. This is
because ¢(R,, 8, d) = V, independent of § and ¢, and the continuation
of this funetion into the dielectric must also be independent of § and ¢.

(- o
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D _~- D
v < Ay,

~
A
(.

+1
2
_4nR po.
== Li\o€y T €y,
3
1 N 1160 1 (N 513 m A2 ) | A a1
Irom whnich £ — oy[/(J€p + €,)N° ne ponenmal aimrerence petween une
plates is
v (Mg dR — SQ(R. — R,) _ @
=), ~Be. Te R R._ O
R \PT0 T Sij=aviasg ~
Thus
C _ R1R2(3€g + G!)
3(R, — )
19 Wo writa H — __VUdh hen gince an infinita wire in amntyv anacae wit
e X I 'y W VWALV AA v YO Lllvll’ DALAAVY Wil 1i13k1iAA VUV VY AA N AL UA.I.IIJV Drwvv VY AVid
e d T L. £_ 11 D ort 1A . __ A\ ’ T - = o o d
Curronv 14 nas 1ueila Dy — 41/1’ \ U

to within a constant. Putting an image current I, inside the magnetic me-
dium at distance a from the interface, we get

¢ =—2lIn[(z—a)+iy] — 2L In @ + a) + ig]
$1=—2LIn [ — o) +iy],

where ¢ and ¢, are the potentials in vacuum and in the medium respectively.

i T '

] i
m/, J—— z
/I/II//I//rI////////////I////////////I//I////

a . /

l I, /

.~ )4

The tangential component of H is continuous.

()
(2) The normal component of B = pH is continuous. This gives two
equations, from which
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at the wire which carries current I is

1 u
M where M is the magnetization/cm?,
However, M is proportional to H and V x H vanishes everywhere except

Now 6 H.dl = I, .. around anv loop, where I 2 y
J irue ' o 14
1o +ha annlAacad Amrmmnand Tn
IS VI1U UlluviudTu LvullJolilv 4.

i CasS n, /_7&
. 1 -

)
/
/

o /
o R iy &
B:=pu H =2H, a4 x
whereas in case B, l\é{///p =2
. |
BP=H, and BE=H. /s l

Choose a line of constant | B | as the contour for performing the line integral
in Ampeére’s Law. We have

I=émra=[ Br.ai+ [ Br.ad
J+ F;J—
3 r ‘\‘_A‘ e r“B 2% ‘\r -sP' e
=?J*B+'dl=Jﬂ 'dl_—‘l.',lli.pdl

E—E — A\vA 4 mhnre E. is the constant electric field. T e

p a5 wia® COLISWRIAV CiCCOUVILC GG, 11

In this spherical harmonic expansion, the origin is taken in the interior
of the inclusion. The problem now is to find the first nonzero term in this



xpansion. It is easily shown that the term with ! = 0 vanishes. This is
i c

use the integral of f E.dA over a surface enclosing the inclusion is
equal to 4mwA,. If this did not vanish, then charge would be leaving the
inclusion at the rate | j-dA = ¢, [ E-dA = 4n,4,. This violates the steady-
state nature of the problem. Thus 4, = 0, and the leading term in the

perturbation is

nus
|E — E,| o ;.
r
15. Begin with the equation
V2V=O=az +_1.3___ng‘ .
or’ r or ' r* 96*
We separate variables and find
L 4 \m
V=13 (<) [A, cos (m8) + B, sin (mf)].
m=0\ W /
Now
v \I w, V’ a L[.lm vuUo \"W’ T 4Py Ol1i1d \IIW’_I
m=0
B,, = 0 by symmetry since V(f) = V(—6). A, may be calculated when
V(a, 6) is multiplied by cos (n ), and integrated over § from zero to 2x;
then
rr/2 r3x/2 2(}71 _ Vz) . /'nT\
| Vicosnfdl + | V,cosnbdf = 23" — "2lgin(—) = 74,,
J-x/2 J x/ n \&/
and z(V, + V,) = 27 4,. Thus
V= (V.4 V,) 4+ 2V, — V) & (=D)*"'(r\** lcos [(2n — 1)6].
2 = Z@m—D\a) ’

Finally, it is worthwhile to note that the series expansion may be summed.
This is accomplished by writing

A2n-1

oo 1 . / 2\ oo
(=)t ———cos[(2n — 1)§] = Re | dy( ——)3T (iye**)*!
n=1 ’ (em — 1) o T Jo A\ Y /n=1"
Il'l‘l:ﬂ‘\ nr‘l\“ mnlr:nn 1100 l\“ fl'\n V-2 2% %21°27a%2}
"lllbll, [« TRV o)) Luaunlus Uuouv vl Vil UAPGIIID]UI.I
1l __ S jzf <1
(1—x)"_.2;c” or Ed| ,
becomes
Jo I\ 2y /11 — sye?® 1 -+ sye®
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Upon completing the integration, we obtain

oo 1\n-1 1 (1 1 2a..if)
P> L:L,\-xz" Leos[(2n — 1)6] = =1 log{f T ,g,_,}
as1(2n — 1) 2 (1 — 2ze)
Lo (2z cos 6)

B Tl | g |

'T‘ 1719
Vir,8) = et Yy (T = Vi) - o cosf).
2 2 la® — 1]

This closed-form expression can also be obtained through the use of Green’s-

function techniques.

18 (ammbhin “". Nariaq’? Taw
49. VOUILNDILINE wauss waw,

continuity equation dp/dt + div d = 0, we find an equation for the time
dependence of p:

p = poe 47,
The characteristic time for a charge to disappear is therefore (47ag)~!; for
copper this is 1.5 X 107'® sec. This time is so short that a charge carrier

would have to exceed the speed of light to travel even a very short distance.
This indicates that the solution must be invalid. This may be attributed

a. a ~ a a - Y

as a surface charge density.

17. The conducting sphere is the source of an electric field £ = bV/r?,

which polarizes the dielectric. An induced dipole p has energy U = —1 p-E
l 1 ol ayyuuu 11014 R4, JLUWUVU]., P — A4A4d Ouilul Vi1V 1V1LI VU V1l vilivu uivildvuuviiv 1S
. 1 N rry rm
given by F = —VU. Thus
o oU 2ab*V?
r _ e—— = - .
T or rs
18. P=N a E,., = Na|[E,,. + 4= P/3], where E,_,. is the macroscopic
electric field
| NP —n L A—D on
INOW € Kipge = By T 27TK, 80
P—4rNal €L 2P
Le—T1)]3
MNamaiatbannsr naniimag $hat o 1\ L O\ __ A— AT /9
VVUILSISVOILILIV l.U\iu 100 uviianv \C l’l\c T ‘l’ — ‘XJ/L AV u./o.

19. The field of the atoms outside the cavity is caiculated from the average
macroscopic polarization density P by assigning surface charge densities

o = P-fi and a volume charge density p = —V-P to the medium. Thus
- (CRACEIA g g
JCu|Ity r



The first term is the contribution of the surface charge density (—P-i) on
the cavity wall (i is taken outward from the cavity). The term E, represents
the contribution from the other surface boundaries of the dielectric, and
E, is the contribution from the volume density p = —V -P. The essential

point now is to consider P as constant in the immediate neighborhood of

the cavity. Then one may identify E + E, 4+ E, with the average macrosopic
field E,,,.; in addition

( (—P-f)(—n)dA __ 4P
r? - )

Cavity
Thus E + E' = E,,,. + (47/3) P. The electric field due to nearest neighbors
located at x;, with electric dipoie moment p,, is
E’ — i 3(Pi'xi)xi — 273?:
o -5

In case (a), two atoms have |x;| = z,, while the other four have

|x; | = z,. All dipoles have the same magnitude and direction along E; thus
B — 12p($, — :L'g) or (. — 2\ & 2.
E . for (2; — z,) L z,.
Zs
T adAibinm m A oA D ATALD . hacmna
411 auuulivivll, p — iy allua £ — 4V u,nt, 1101100
) nl Emnn
!“ = —_— .
(- 4aNa .,(z.— z))a)
(1— — 122
2 rt
N\ w ~3 ’
The index of refraction n is found from
r’é‘ _ 1\’1 .
P=NaqE, = |’ |E,.. with e=n’
L 47T |
From the given lattice constant, one finds N == 1.25 x 10**/em? and from
+ha rrnlrn r\r an rn #1\ 11'-\11. Ln'v‘-nl] la+é ~” — N QD 1“‘24 nms "1 on ;n
viiv™w vV aviul vl VUL vOu I W — V.Ovu A 1V vl 4 119011 111

-1}

<

c
.

1 . 1 e | h | h s _

case (a) one has n = 2, which is lower than the undistorted value. In case
(b) E” = 6p(x; — z,)/x5, and is of half the magnitude of and opposite in
sign to the contribution in (a); thus n = 2.1.

20. The critical angle is determined from Snell’s Law. This requires the
calculatinn af tha indavy Af rafrantian »i)) hia nranaada ag fallawa .
Ol Oi ui® INGOX Oi Ieiraluilii My/vy. a1ilS ProCedaGs a8 iOulws.
mx = +eE = eE, e *' = —mx,0’e ",

a4 ___ 2 - h [ R ) P I R I
ULOI1 IS asSsuimea uvOo OSClliate wiull uile Salne

mum dipole moment induced, assuming stationary ions, is

- 1)

exO = — 9
mw-

ingle ion.electron pair. In the presence of binding,



frequency of the electron bound to the ion
Mha w~lanieadinem ~Af 4ha smabal 3D To2XD Jamr o2 amd 4ha vAlanteahiliée.
4 I1T PUlu:l.lL VIUI1 VUl LI1U0 110wl IS A — —J4V D ﬂo,l"/w ’ JELVEREL PUIU;I. 1Laavi111v
= P/E = —Ne!/meo®. Now D =¢E =E + 472P = E(I + 47a), from
which
. 4n Ne?
n=e=1-— > (less than 1!)
me
From Snell’s Law n, cos §, = n, cos §, (angles measured with respect to the
anrfaca) ha oritical ancola A for whie A. — 0 ia foraind ta ha aoivan hvy
[SA5 3 8 J.uv\.l’, VAANS WA AVAVWA wllslv v l, ANJA YV AAANV AL A" 4 2 V’ AN AN ALAA NI LY A%} 6‘ VvV \J AL IIJ
___9n 9 1 47rNe2
CO8“ U, =1 =1 — 5
me
or
2\ 1/2
sin 6, = (4”Nf V' = @,
\mae? / ®

where w, is the plasma frequency. For ® < ®, the index of refraction is
pure imaginary, and one obtains total reflection at all angles.

e vy Vi1lVUDU LUULULLIaVUDS ad 111 vilv us 1U. VV U lsu\.u U vil1U u.la:suo viv uviu
of the tra.veung wave, in comparison with that of the earth’s field. The iono-

spheric electrons have the equation of motion

m{\av) = eEe t*¢ 4 ev X

A ¥ S SR | o o ciieanemcedla— L 2 Ll 4 a—msA 101 ‘l.__ Gy PIGNS. Jpiph I IR
VWO logaiu o as o SUPUI' 0OS1ui0Il 01 llgl.ll.l- allua 1eliv-ilialiua P 1ariZzoua Dorlls,
E(X + iy)et. Motlon of the electrons is in the z = pla,ne and must

[%
- AATAa X

and

vo(—tme F teH|[c) = eK,, H )
hence V4

1ekE, eH /

Vo = ——2—, where  w, = —. /
m(®—+ @) mc y
Tha nnrnant danacitsr 3aa T — ANaone AN 2201 | PO AN | s Y Raaé
A LLCU LUULLIULILIVU uUllDluy 10 Uo —_— A4V OUO —_— V4V T uol’lb\ I o’ AU
—_ == T - = —_——P
cur ”n p27 ] + ”» - ”» | l P | PIUR Y |E’
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hand, in the absence of a current, but in a dielectric medium,

cul H— £ 9E _ _ (ioe\g
Vuii aa C 3t - \c }u.

By comparison, €; = n} = 1 — o}jo(w + ®o). Right- and left-hand po-
larized beams travel with different phase velocities ¢/n, and ¢/n_, rotating
E.If at z=0, E= E, + E_ is in the z-direction, then after propagating a

distance 2
digtance

v ~
E.,, _|_ E = Eo{i[eia((noz/’c)-i) + eiw((n-z/c)—i]

1 aefetel(nez/c) =) __ plo((n-z/c) -t])

LI S - 5

427

which implies a rotation through an angle 6 such that

A | or —_— RM n o X o n — AN
1115 vy v — VUlilvy Ui1lU 111 L UV —

&)
~—
(@]

Fa | L | 1 ae o ar 119 _ 4 : L | a1 24 £ o4l
22. Consider a solution of a Maxwell’s equation inside the cavity of the
form (known as transverse electric)

n
Xy
E, = E,(z, y)et*s~*,

From the wave equation

/%ﬂx\ /mﬂ:m\
E, = E,, cos | — ) sin { =2 ),
\ w / \ U /
with nEy Ja + mE,;/b —= 0 in order to guarantee
4hn hanAsas
UI1CIl1l DCUOLILLICS
".:)2 7.2 2 /{ "5—2 m-2\ ; . 3 3 3
==k +7\=+ 57) (n, m are integers, and we take a > b).
c \a v V4
Since k* > 0 for transmission, there is a minimum frequency given by
_— b p 8 o o Y
FAY — A ’I" rl-‘ o mn aan "Q]f\ﬂ‘*’" 1Q nl"vnn l’\"
wo —_— UI.-IW. A LAC PIIWDD Y vivwviv a0 5]'(.4].1 | ¥
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while the group velocity is given by
] { 7 9\ 79 2\ ) 1/2
v, =2 =il + ()% + 5
ak \ \k*/\a? 6°/)

ry

Similar results are obtained for transverse magnetic modes; i.e., H, = 0;
however, the cutoff frequency is higher. One notices also that v,v, = c*.

23. J is constant in time, since E = 0 every-
where. Because the slab is infinite, H and J

C, A1 all
b

can be functions of z onl". From Maxwell’s
equation
A A
. 47d Wl Tw
c‘lrl B p=—— 9 ] 1

where we have used the identity curl curl = g—ran div —
must be foun bou
desired is

.
o
cl
(¢}
S,
=
oQ
[
:—n
o

£ kz 1 _—k2\ SRR Y S JRY
Bz) = H,\¢_ T¢ ) __ g ooshi¥z)
(e*® + e~*%) “cosh (kd)
where k? = 4x/\c®. The current density is determined from
47d _ curt B— _39B _ _ g4, Sinh (k2)
c 0 cosh (kd)
mL._ £ 11 1 __«L_ __ & .. 1 .. .._____2_ ___ ®a_________ ___1L__ __ WF
4111€ 1icla 1 148 OIlly uIle exielriial Curreits as 18 sources aia nernce n = iy
everywhere. This is no contradiction since B = H + 47M, where M is the
the magnetization per unit volume, and should satisfy ¢V X M = J. This is
easily checked in this problem since V X H = 0. Then VX M = (1/4=)
V X B = (1/4x) (47 3/c) = d/c, and everything is consistent. One sees that
D o mnm B b o et AL Al cecefllomnn ~L 12 A al 1/ - 4l b o iz
Iy IS5 CUILUIICU VLU & 1CZIVI1 Ul LIIE SUriace Ol SAldll UUPDII 1/’0 allu viiav BUPUI-
conductor does not allow B to penetrate the interior.
24. Consider Maxwell’s equations
V-D =0, (1)
V:B =0, (2)
VxE-198B (3)
c ot
1D
VXH=—=. (4)
c oi !

If P is the polarization in the rest frame of the cylinder, then to first order
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in v/c, one has

P_afE+YXB)_(e-1\(g ¥YXB) 4 mM=EXV
\ ¢c /] \ 4x /\ c / - ¢
with
D =E + 4P and H—=B — 47M.
Thus to first order in v/c, one may write
(a)D=eE+(e—l)v>§B, (b)H=B+(e—l)v;E~,

Media. Reading, Mass: Addison—Wesley, 1960).
We now look for circularly polarized solutions of the type

D = Dy(& & i§)et*==»  with D, =0,

- m 1A A dlL = caf) 21 n (5)
D = Do(X 4 1y)er' = ™’ with D, =0V
N o 4l TN /31N /oy . 4t O QL _acta__act . TN s ___ 1
UIle Sees ual Ly4s: (1) allu (4) are savisucua. osupsuivuuing ngs. (a ) alna
(b’) into Eqgs. (3) and (4), we make use of the property that
S v (v AY — 0O A
¥V A \V in) — w8 A Lin

leD=_(e_l)QxB=_l@, (3"
€ ec c ot e
and
(e — 1) q 12D
vxB+l—lgyp-12. (@)
(4 ¥ C ol

el 14 3 U
N EDO 4 e —1) B, — @ p, (3")
€ ec c ’
and
k B 'fmu(e —_— 1) .D 'c'n'.i)D 17}
+ ke Bo + —— o = ——D,. (47)
cU ¢

i yst 1omogen C 18 f ynd B, is to have a'solu-
t:nn tha datarminant nf tha ocnaffinianta Af D and R mnat vania Thuna
‘Ull, L\ YAVERVIVAL W FITFINI-J VT Ry ViAVU VUvuillilviviivo Ul uo oviia Uo Al1UuPO vV VOVALIDAL < AAAD
2 2
P €w
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A wave, which at z = 0 is polarized along the z-axis (i.e. E(0) = E,X),
becomes at z = L

NS AR

3 U e
Hanono tha nlana nfnalarizatinan ig rntatad thranch an analal — (L __ L \T,/9
AATCILIIVU ViiVL ylaxlu L t’\llall. ALICUVIVLL 10D LUVOVYVUAA Viil Uusll vil Quil v v — \ﬂl_ m+’ulu
in the same sense of rotation as the cylinder. Using Eq. (6), we find
6 — (n* — 1)/ LO\
n \ ¢ )
where n = A/ € is the index of refraction of the dielectric.
ThlS problem was ﬁrst treated (incorrectly) by J. J. Thomson; then (cor-
y) by E. Fermi in Rend. Linces. 32 (I) (1923). Professor Fermi put the
'\-‘ALIAM A +tha 104AQ “Pacin’ aa a hhrare nnahlam Nornn cbsvdandéd lanadad
JIVUDICIIL UVUll LVIITC 1900 .IJCIBI\J, aD o uul.au.y PLUUIU.LLI. \WjiLle] UucIiiv 1uvauvcu

7
o
o
[}
o
(oW
®
=]
o]
H
o
ol
bt o
B
> &
=
[ K3
O
e.-r
o
I
®
w
o
-
[=n
o
l: s;_
©
et
IS
Qe

o
v

4 4 ml 0 . 1 ~
D

bends the trajectory. This transverse electric field ma,
the equation V-E = 0 at the center of the slit. There, (6E;/dx), ==
(E, — E))[t, where t is the thickness of the lens. Expanding £, in the neigh-
borhood of y =0, we write E,~ay. Thus V-E=0 implies

n~ _ (KR _ KB\
W — \.l.l p iy llllr'o
A
8¢
— 1 -
!: X) :!: X2 —>|
I I
VA 9,=50-6
_ — Y R o _ q ____ _
A pa,r O a,rge e ennerlng nne SllB at nelgnb Yy is Bnerelore acted upon

by a 1orce —e(lfJ — KE,)y/t. This force acts for a time t/v, where v is the velo-
city of the particle. The net impulse given is then Ap = —e(E; — E,)y/v.

This deflects the trajectory by the angle ¢ = —Ap/p. The particle will
therefore intersect the r-axis at a point
) or 1 6,
9 — = Orf _—= —
6 2 Yy
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agnetic intensity changes gradually, it will be assumed
n

that the motion in the plane perpendicular to the axis is approximately
Almnelaw MLha ssmcrelaw Founnenmarsr AF macaliadiae o 4ha AasrnlAadmnc fonceamner
viroulial 41 I1C &a. 15 1arl 11 qutzuby Ul ICVUIULIVIL 1D ULUI1C belUUlU 1 11 UliuUll y,
__eB PN
W= ——: (1)

me

In addition, the cylindrical symmetry of the solenoid guarantees that the

component of angular momentum along the axis (taken to be the z- ax1s)
is conserved. Thus

~ <= -
Z.(r X p) = Z- Ir X (m.v + iA_\l = mrlew + & L. const,
L \ c /] 2¢
and using Eq. (1) we obtain
(=] ° \*%J
___ 9 _ 1O\
nr @ — mmrw,, (<)

where imriw, is the angular momentum for B = B,. In addition, for motion
in a magnetic field, the kinetic energy is constant; thus

1 2 1 1 2 .2 1 2 1 2 2 {92\
MYV, + s Mr'w° = MY + sMriw (3)
If the point of reflection (where v, = Q) occurs at field strength B, then
TV /7)Y a2l ...l /03 __2_ 11
LJgs. (1) varougn (o) yieia
9 9 {.B ‘l) 1 N
Y — vui B — li, whnere V¢ = rw;.

Since B < B,, the condition that reflection occur somewhere is

o (B _ 1)
g :

27. Choosing a cylindrical coordinate system, the §-component of the for

Ql

i(mrzé) = —rfH,
di’

Q |(!:

and conservation of energy requires that

im(#* 4 r26%) — eV (r) = 0.
The z-coordinate does not change.
Equation (1) has the solution mr* %0 = (eH|2c)(r* — a®). When this expres-
sion for 6 is substltuted in the energy equation, we have

1 2 I..2 { eH \21,..2 _ ,..2\21
270 " \2mer) Y T

Threshold is obtained when # = 0 at » = b; therefore

V. - oeH2(b? — a®)?/8 me?h?
Ve H?( 12)?/8 mc?b?.
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28. Consider first the quadrupole lens The magnetic field H 1s derivable

from a potential, H = —grad U Since

divH =0, (1)
TT +niad ha o ha anie Fhanatian 1 a o Fiinmatian AF 4 1 222 hazd nad ~F
v HOUSyY 0O¢ & narmoinic 1 11VLViVil, 1 U @ 1ullvuvlvil VL ¢ — & T by Uuv 11vv vl
2¥ = x — 1y or vice versa Now any poiynomiai 1n 2 1s a solution of Lapiace’s

equ a.tlon mn two dimensions The correct exponent 1s chosen on the basis

th pot.en.,laul ch-se__ must reﬂ_ect this symmotrv Honoo we choose U = .l.cz"’
DA+I\ 41\[\ "Aﬂ] ﬂ‘l‘\l] ™YYy MO "*ﬂ f\r ’.T (20 472 ﬁf\]i‘l+'ll\“ﬁ I\r (‘I \ 1\1‘.* f\“l“' +1\A
AJIUVIL VILU 1LUOl aiiu L Pal U UL U alvU DduUlLluvivild Vi \.l. ’, vuv viil viiv

1magnary part embodies the boundary conditions given 1n the figure, name-

ly, that the lines (zy = const) represent equipotentials
The forces are determined from the Lorentz equation F = ¢(v/c) X B

Positively charged particles are focused in the yz-plane, an 8

p o C i elil

tho »_diroantinn thao oDnD qita annlhaoag far nnnnf:vn nart a Nn tha athor
V1AV W IL\I\JUIUII’ Ul.l. v (ﬂt’t’ll\/ﬂ AL ll\/s(‘lvl'\/ t’(ﬂl vi D \J 14 viiwv Uviivi
hand, a parti cle with no cha arge but magnetic moment 4 1n a nonuniform
magnetic field experiences a force given by F = —V(—M-B) = (4-V)B
To maintain focusing analogous to that for charged particles in a quadru-
pole lens, one must have

n2TT nNYTT

F o U o uU
2_—M1n2~_x or n2~yg

ox ox

when . = p. ¥ This suggests taking U = k2z®, and choosing the real part
— < D0 (=] ’ (=] r

’Fl\‘ “I\+A“+Iﬂl 10 a‘rmmn"'“n 1MIMm FaY oJ rn"n"!nv\n r\"‘ ‘)~ IQ "ﬂA r l\l\ ONNT™
A 111 PUUUIIUI“I A0 Py1L1111U VI IV Uliluuvuvil LJvuvavviviio vl HILIU 1 Ak UUY Duvll

8
by writing 1n polar coordinates, z = re’* The sextupole lens, shown 1n the
figure, embodies this symmetry (Such lenses
are actually used for focusing neutrons and v/
neutral atoms A beam composed of some

[
rI
\

s

the z-axis, and of some others with anti-
parallel magnetic moments, may be polarized
by such a lens, because one of the components
18 focused while the other 1s defocused )

&
=]

L]
[«]
o
Q
=

J
yielding E = 2xper Thus there 18 a net outward force, making the beam
jnn.f_ﬂl\ln m v



30. Magnetic monopoles are imtroduced into electromagnetic theory by
modifying one of the Maxwell equations to read div B = 47p; An 1solated
monopole will produce a B field which can be written down in analogy with
electrostatics
n I',
D = —21'
r

An electrically charged particle of mass m and charge g then has the equation
of motion

m

Sy

qll’
=qv X B=%v Xt

The kinetic energy 1s conserved, as are the components of the Fierz vector

31. (a) The equation of motion of a charge 1s dp/dt = (e/c) v X B Since
v-F = 0, | v |18 constant, we shall write

dr dr d d
P = "’),—’ v = "”_i a.nd _— _)_—,
ds 8 dt ds
where ds 18 an element of the path Under these conditions the force equa-

(b) For the equilibrium of a current-carrying wire we must have

I [dr {dr
—dlxB+T\—) —T(5) =0
(7 \wos /2 \us /1
Upon expanding (d’r/ds?), = (dr/ds), + (d’r/ds®), ds + , we obtan
j2 T Ad T
ax_ _ldr o g v
ds* Tcds 2
mey__ oL _ 4 o ___a4 L_ 1 _ _____ _ _____ X___ _ 4_ [df/
1uUs ne currenv musyv pe <nosein accoraing vo /
. Te v
I=—=5. |

weak magnetic field the system o
motion over that in no magnetic field This motion 1s a rotation about the
nucleus of angular velocity {2 = —eH/2mc (known as Larmor precession)

2 18 determined by transforming to a rotating frame where the magnetic

v

ae T .
d&L. 111 A

force 18 canceled by a Coriolis force
ML . e denene L doe ol ndene L. o tanmdzal L o b adine fonen o nn
111C bquubluua 1 LI allsiurniiavivulil 11011 all 1iicivial vV a 1vvaul 15 11raliic alc
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and
/d2r\ /d2r\ / \
(=)  =(%73) + . + O x (2 x r).
\dt?/inerttat  \ @t/ rot \ @i / inertial

The force (ev/c) X H may be canceled by the Coriolis force if one chooses

§) = —eH/[2mc. Thus the electron cloud rotates. (Terms of magnitude )2

PR [Py R | AN Y« b I YT Y

are negiecieq, 1.6. weak 1eia 1imiv.)

These rotating electrons produce a magnetic field at the origin given by
1 (ix(=r) ; Q

AH=?J—7—dV where j=pv=p2 X r;

hence

But p(r) is spherically symmetric, which means that the integral of
pr (r-Q)/r® equals that of £ (Q pr?)/r®. Finally

eH \ ( pd " eH
AH = — (2 ) [ 22X — (22 )o(0)
\3mc*/J r \3mc?)
T attina AN ~ Z+/ P wo hava AIIH — (702lmpn2PY — _ 7w | R whora
LOINE P\V) =< L€/Lv, WO 1laVC il ii \LE|TRC " 4y = LiTgjiv, WiICTC
LR T 1 1.1 1. 9y 9 TN ” A 1 D 1Nn-8 ...
To 1S TNE CIaSSlcal electron raaius, € jmc ror 4 =9ov ana n ~ 1v - i,
AH o
—_— A~ —
' H
6 Nazdaida 4ha ahanaea Aigémihirdian +ha alantnia Bald o lanattndinal her
DD, VULSIuUC il Viial U uilduiivuuvivil, il ClUULV1I1VUV 1UoI1Iu Id I lsu;uu.l il \U
'¥al b ] ~

symmetry) and constant (Gauss’ Law). Hence no experiment performed
outside the charge radius will detect the pulsations. The apparatus must

probe inside the cha.rge dlstrlbutlon The apparatus required will depend
i equency . For a very lamre

it might be necessary to use a charged orbiting particle, whose interactions
with the electric structure of the nucleus could b
detector.

Adigtrihntinng ara annatant in fima

GISVIIUUUVIUILS @iC COIISvaiiv 111 viiliT

O v TV _ A . T/ T2 12 o

Dd. .Iblect;l'lc alp()le raalablon lS pI'OpOI'IJlona,l UO |aU/ | ere u ls Bne

electric dipole moment. But D = e(r, + r;), and this has zero time deriva-
tive because it is proportional to the center-of-mass vector. The magnetic
moment is
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is constant. Magnetic-dipole radiation is proportional to |dM/d¢t|*, and so
18 eanal to zero

is equal to zero.

on T ot 4hinn 1nnldamt madicdbiaem ha svmmmanhomAarmmadia. ' I —lat ML Aen 4L~
SV, L,V ULIIC 1LUIUCLIV 1aulavlVll DT LHIVIIVLILILIVILIaVIV . LI i L] 4 11O UILC
induced dipole moment is P = a E, e~***. If 1i is a unit vector in the direc-
tion of the observer at large distance R, then the electric field is

(P % f)
E(R, 1) = - 2

The total time-averaged power radiated by the scatterer is |P|?/3c
a’wt Ejj3c3.

Let the ratio (energy scattered per unit time)/(incident energy flux) be o

{ v 2, 4 2\
( (0] .l.lo)
\ 3¢ / 8na’fow)*
T =" —(—) -
(Ecc) 3 \c/
\8x /
Note that for free electrons, a@ = e?/mw?, and one obtains the Thomson
cross section
_ 87,
G = "o
3
whaora » — 02/mn2 ja tha alagainal alastran rading
ywiiviv 719 — © IIIW A0 V11V Viooliuvoanl vivvuvvvivil iauiluo
37. The voltage developed in the wire while rotating with angular frequency
o is
o 1 d
6 = — — - (magnetic flux).
v wv
Thus )
2
lg —_— Hoﬂ'a a) Q1M ’I.\f\ [ ,
w Viii \Wwvy A LV,
c
-l Tt oal . V__a_° 1 __ . _*_ a_____ .3 Tl _ ____ . __a2 °__ 1) _ _° . ML ._ _ ____ _ __
WIICIC Ly 18 UIIE €leCLuriCal IesIiSuallCe allu 4 LIlC CUrreIlu 1ii uve rii 111€ avelage
power loss to Joule heating per cycle is
s __37!2114(-)2
F=Wdh)=

The only source for this heating is the kinetic energy of the ring, I?/2

where I is the moment of inertia about the axis of rotation, I =
Conservation of energy requires that

ion, I = ma?/2.
d ma’e? Hir’a'o’
dt 4 2¢*R
The solution to this equation is @ = wee ™", 'w"ith 7 = mRc*|(wHa)?
But m = 2Znrad p and R = 2majod; h

= 1.6 sec.



134 ELECTROMAGNETISM—SOLUTIONS

38. The potential energy of the charge and 1ts 1mage 1s

2 2 2742
- _ €& . _ e + e
4h 4d— L) " 8d— L)
ey o nmn]] nnn;l]n+1r\hn "‘ o l"l“ﬂ 1N OAOTMMAmPIrY 19 — AW r.2 ”2 I‘) "‘ ma 4' o o 29
4dUL oOllluil vdvililianviviio 4 11U Allivvviv viiuvl A0 AN —/ Jivaid VUV IH A I1UD VIIU 119U
quency 18 given by o’ = e*/dmL{d — L)*

When calculating the energy loss due to radiation, one must include the
radiation field of the image so that the electric field will be normal to the
conducting plane. Choosing the origin of a spherical coordinate system to be

on the conducting plane midway between the source and 1its 1mage, we find
that tha radiatad alantma fiald in tha 11mnaer alf nlana M tha dirantinn n
VilGyV V11U 1L OuLIG/VUVUL ViIVUV VLI LIV AAViANA 1L ViAV ut’t’UL Advia t’lwll\/’ 444 ViiIV uiivvvivilir u’
propormona.l to
eth
h nl < _—-ik x, (A . 4~ ., A\ 2 RY
L~ 2¢ m X \py X n)J—R ’ (1)

the sum bemng over both the source and 1ts 1mage (note p(source) =
—p(image) = ea). After squaring and integrating over ¢, we find that the
average power 18 proportional to

| ea [? sin 12 (kh cos 6)
1 1 ' \ 4
2
TT'\I\“ hl‘\ﬂ“"l\ I\“ "ﬂ"‘ﬂl\]l\ﬂ A e NNO n A“A 110N n‘p ‘-l\n ‘IAI\“"I""
UlN 1 vilall A Vallavlld 4 — UVUD V allu Udv vVl viiv 1uviiviv
sin? z = (1 — cos 22)/2,
+ha nAawar 1a oigan hyy
viIlT PUWUI i 5IVU11 [ 9
1
L NIC“I Jowdl\l. T A ’L.l. vuUo \HW’M’J.
Tanor 4l Aconcacccsnes <zra Tmaccr ot mwrr o ad o T dhnn mmcmcdacmd AL e d
LIOII LIS CAPICSSIOIL WO Hlay 1IUOW ucue Tine vne€ comnsvanv .I. pPropor UIUII'
ality K, since 1if the interference term proportional to cos (2khx) 18 omitted,
this expression must reduce to the power radiated b smgle dipole, 1€
w462a2
P— —
3c?

t:n“nnfnyn faotare given hyv radiation thoaorv o 1d ha

y.lv“v. Vv AWwwvvUUl O b. VvV \u'AB VJ A GUNSACWVIN/AL WARAN U.J ] Wil a “ USSA\A iAWY , a8
FY WY X 78 IS TS T SN RS SURIERE JRPUEE S IR T I Y
TR aame. AILNOUYNn e iImuweral may now ne compicuwea, we snall po Conventu
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with the approximation 1 — cos (2khz) ~ 2k*h*z?, valid for kA <1 When

<«

6/7

47

cos ¢

27

<= b Ajisuayu)
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i
€

k
f
D
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a
the antenna add coherently

A
n
1]

The sum of the phases 1s

5/2-¢
e zy-plane,

/
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In the radiation zone,
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c) The ratio is 49: 1. For the array of 7 antennas, the greatest power is

A
radiated along the y-axis: for a single antenna, anv direction in the zu-
1 ng the y-axis; Ior a single antenna, any darrection In the zy
alo o
Pplailc.

40. In order to calculate the power radiated by a relativistic particle, one
may make use of the fact that the power radiated is an invariant;
P = dE|dt, and after transforming from rest frame to a moving frame,
dE' — ~vdE and dt’ — fvr]f Hence JF”/IH' = HF/JI Nonrelativis vivally, the

aavaavy Wad assiar Tavva v

P— 2¢? (dp)\?
3mi\dt )’

where p represents the momentum. The Lorentz-invariant generalization
reducing to this in the nonrelativistic limit is

2¢2 (do. \{dp.
P - Y t)( r] “)( ¥ F\’
3m’\ dv/\dt )
where dT = di/ry is the proper time, and p, is the four-momentum. Since
AR — Rdm +hig ig
wid — ,uw 9 VUILID 1D
210 /d Z A 27
2¢ | (9B) _ ge(92Y|.
3m* L \d~/ \dr/ |
TV atmnrilam bt Tonl T _ N 2 k21,
I'UI Jlidulal 1HOuIVIL W IU'T — VU, wWili©
dp dp ® X B
dr 'y v,t 'y p ’
80
0,2 .2 2.9 0,2 404
p_zleywop 290
3m? 3R?
The energy radiated per revolution is
oJ r
P. (27 _4x ﬁ"’r\,"{ To) in units of myc?.
\ow )/ 3 \R)
41. The mirror sees a smaller frequency (longer wavelength) given by
' — v (1l — »Y Theore i@ no chanaoe af freanencv nnaon reflectin The oh-
yvo{l — »). There is no change of frequency upon reflection. The ob
saroar cong 6 b1l e Mo Lo e s
SCLI VeI SCECS &4 Sulll SINAallCr 11 Uunllby
V=gl —v)=v (1 — v)
1 + »)

The intensity of the beam is the energy crossing unit area in unit time.

7
7
:

|
I —

(O o I Y
!

Photons Mirror
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Method A views the light beam as a free electromagnetic wave, with
|E| = |H|. If E is the electric field in the source frame, then the mirror sees
) NS » BTN TSNy % | M1 1L AR Dtk TV 2 srmnbhorcoad A malan
0L — ry‘.l.'l TV X D) — AN \J. - U’/\.I. T )I.'l. DuUuv Lo Is uiilna Lgcu UIl ICLCG-
tion, whereas B’ is reversed in direction. The observer sees

—_
E' =, /r—p=L—Y
1+ (14 9v)

The energy density is proportional to the intensity; it depends quadratijcally
on E. Hence I = I, [(1 — v)/(1 + v)}.

Method B regards the light beam as a bea. of photons, each having energ

e n

=

]
o
fye—
Q

b ]

the next photon reaches. the mirror at a time i determined by i = 2, + i,
ort =z/(1 — 'v) The distance separating the two photons is now ¢ 4 vt = 2,

(1 4 v)/(1 — v). The rate at which photons reach the observer is inversely
proportional to their spaci

~
I
(

and therefore dep snds on the velocitv accord-

C s Ol vy Lol

'I'\" +n 11 ny

R \’l] ,L Il‘\ 'T‘l\ﬂ AMNITTIOATM NTT Il‘\“"] Lnﬂnn ﬂ“n""‘f\ I'\"‘ "1\(\ '\1\!\+I\“ﬂ
ls v \ i U’I \.l. T U’ « 411U 11 U\iuUII\J \allu I1UVI1I1VYU vlluvl 5 ’ vl VILIU Pllu VU110
transforms in the same way, so that the intensity is reduced according to
T __ Trn 2\2 171 1 2.\21
4 = dg|\1 — V) I\l. T v) ]

42. In the rest frame the force per unit length F is
E is the electric field at one wire produced by the other. This is easily

r -e - A a
| E-dA = dx (charge enciosed).
Thus E = 2\/a, and the force F = 2\*/a (repulsive).

In a frame in which the rods are seen to move with velocity v, there is
a maacnatin BaldA R —— 4 v W /ia i adAditinn +a +tha alantmia Bald WY Mha 4~é4a1
a mas ACVvViIV 11lV1IuU A — UV A L4 /U, 11 Uulivivll v VILU CIUUVVI1IV 11IUIU I . 111U vuval
force per unit length ¥’ is then

/ v x B’\ / vZ\
F=X\N(E + ) =A(1 - 5 )E
\ c ] \ c°)

AAAAAAAA WV . Yo sl Y? 2 amren as monem cem 4l . O
nUWUVUl, o~ = "A'I WIICIC A\ 15 l/l.lU bl.l.ﬂ.rl C abd BCCI1l 1I1 LIIC UCW I1rallce
(A = A because of the Lorentz contraction of lengths). Thus

YA RAY YA ] 21 .2\ o 2
o 2)A =) 2N _ g
a a
The fact that F' = F may be seen easily by an alternate argument. If ik its

rest frame, one of the rods is allowed to move under the action of the force
FL on it, it would gain momentum dp = FL dt, while in the frame in which
the rods move, the gain is dp’ = F'L’dl’. But dp = dp’ because momenta
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normal to the direction of a Lorentz transformation are invariant under
such a transformation. and dt’ — ~dft. Hence LF — NF'T' In additio

Wve aAAAUY wialaa va a.

e hnnn B TV
I .

|
B

43. If we choose a cylindrical coordinate system, the Lagrangian equations
of motion for r and 6 are

d { / vZ\—lﬂ\ . _,ij2\—l/2 l‘l‘ a
—imi(l — =) | =mt? (1 — =)  =(rdy), (1)
ar \ \ cJ/ ) \ c/ ar
d ‘mrzﬁli v\ erd,) 0 o
™\ @) T = =)

Since By, = 0, only 4, has been taken nonzero with

1 2 04,
B, = ——(rd,) and B, = ——*.
T oT - oz

If #+ = 0, then Eq. (1) reduces to

262\ —1/2 3
m(1— ) "+ S 2 (rd) =0, ()
C c or
“I’Y"\;lﬂ Fn (‘)\ l'\ﬂﬂ +I‘\n nf\]'l'l*‘f\ﬂ
YWIiLI1©U u\i- \H’ 110 VI1IU DuUliuvivil
mﬂ‘zi{l _ PN — 24, (3)
\ c? } c

3_1*(“1”) = A,. (4)

From § A-dl = J. B-dA, it follows that

Ao = T ,(f)dr
o97R Jo

allu J.'lli. \'I’ UoLvuULLLICOo

B (r) — Bz (5)

*F2Z\' V) 2 7 \v¥)
wsrhnmas /D N\ 2. dhn caranama ~F D dhn amnn ~AF4h o ~Anlid oo e o dhn Amblid
WIICILC \.l)z/ 18 LIIC uvclugc Ul Dz over IJLI.U alca VUl LU U1 U1V, allu 79 18 uilU UL U1V
radius. In addition to this condition, one must also have B, = 0 in the

plane of orbit to guarantee z = 0.
The angular frequency 6 is found from Eq. (1') to be

1
. a/
6=—w(14+72) ", (6)
\ c ]
where m ia the cvelotro reanencyvy m — o R.Ime The kinetic enerov of the
VY AAVA WV W aAwv VALV vJ NVANS VA \JAA 4L U\luvlle bl A7 U.‘Ju, IV e i AAN ARAALAV VANV VAAVA 6J S A VaAAN
particle is given by
T SR L WA RN VAN o YA
TN T ) o B A L Y A
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In order to calculate the radial oscillations, assume a solution for r(t) de-

npﬂ }\‘7

fined by
r(t) = ro[l + e(t)] with le| < 1.
AT r alhall bnnen ~emler dncmene AL Vaverna 4 ~rmdam tem e dlhn 1AL Lnend o2 s ~F VA 710N\
YY © Blldil © P Ul.l..ly LVOILLBd VU1 IUWUBU uIucl 111 ¢ ’ LVILIC 1C1LV-11allu BIUucC Ul .Dli. \l.)
is then
mr 4':5/1 + 72"’(02\1/2’
“\ ¢ )

while the right-hand side becomes
e +fd \
—9( :(T.Ao) —_— Ao ) ’
\uv7 /

v

when Eq. (2) is used. This is to be expanded in e. Now 4, (r) is calculated
from

hence

ra (fao) — Ao—l = v
I_af _|1’=1'o
my ) 74 n .2 s NS oy TTY_ _
1nus . = Doy (N — 1)/( — 4). Upon expanalng in €,

J ,
a—( Ag} — Ag = —-—.Uoro(n — .|.)€

Y 9 o\ 1/9 L o) N
row“\"'* eDorov
mro(1 + 09 ) &= 2200, _ )¢
\ ct ] c
TTaing a (R far B and the dafnitinn f the avelatran franiteney thic oamniiadinn
UBllls .I.'Jli. \U’ dUL UV alilu vilU Uuvllllivivil vl uvi1T by vivvuvivull 11 Uqucuby, viiip U\iuaﬂl Ull
becomes
?
+ (1 —m)e 0
(l + ri®/c?) ’

which has bounded sinusoidal solutions only if n < 1. For this case the radial
frequency is given by o, where

@*(1 — n)

2 —

@Or = 37 2 3.0 (7)
(1 + rie?jc?)

Car amall ageillatinng in tha »_ dircotion wao hava the aanatinn
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obtained from the force equation

c\v 22jz.

dt o
m Vad h | mn 7.\ 4 21 4 W=y . T no* ‘I I 1 a1
To find B,(z) we note that V X B = 0 in the vicinity of the orbit and thus
V A3 VBT aBz
(VxXB)y=—-——===0.
Ve v
T
Hence
3Br _ aBz _ nBo
0z or To
rm n .1 a1 °_ -1 _i1°% 4 h | ™ 10O\
Thus B, = —mB,z/r, and when this is substituted in Eq. (8), one obtains
P —Om
(1 4+ Pw?/c?)
\ ' v i/ ’
) & PSR
ALLCILIUC
nw’ :
P S — and o: + ol = 6.

T 1 F retc)

44. (a) Let p, be the four-momentum, with the property

S R S
PuPp =P = m-.
The force dol/dt zeneralizes naturallv to the four-vector do./d+ where T is
AL ILIT 1V wl’lw s AL 11400 laluul.aﬂ.].y VU VILIU 1 L1 =-VYOUuLuUIL wP“[w [] ’ WII.ULU [] 15
'

o
the proper time. This is to be set equal to a four-vector function of the
electromagnetic field tensor F,, = 0,4, — 9,4, and p,. One also wants an
expression linear in the electromagnetic field. This is guaranteed by setting

APy _ uF p 1+ BT F
d'T “~ porv i r’v ~vprnve
Here €**7 is the completely antisymmetric tensor with e'?** = 1. The spatial

part of this equation becomes

&.
'1!

df—am(E—i—va\—l—%Bm(B—vxE\

noa_ LL_ al T

lnus one musn CﬂOOSB a = e/m ana 6 U U0 Oopvaln vne J.;OI'BIIUZ IOI'CG equa.-
tion. The term proportional to 8 would be the force on a magnetic monopole,
if one existed. Since, under parity, or space inversion p— —p, E — —E,
B — B, @ must be a scalar, even under parity, and 8 a nseudosca.lar in

a parity-preserving theory. Finally the covariant gen n he
T omeimcmdee Lo o2 2
1JOICILIVZ 10UICP Ul.lu. UIOIL 1S

d-l. 8 e fal

dr _ m = wPr

(b) We invent a four-vector S,, with nonrelativistic limit (0, S). Note that
S, p, = 0in the rest frame, and therefore is zero in any frame. The covariant
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generalization of dS/dt is dS,/d7. Thus, in analogy to the procedure of part

(a). one sets

\Fjy 2t

T ¢ m (244 [
Thao toarm lincar in m 19 nacagaary tn eonarantoa m 8 — 0 Thina fraom
A AAV VUL ALAL L11AVOVA 113 .‘I“ an llUVVUU(ﬂlJ v 6““1(‘!]&0\/\/ 1’””“ Ve A LAUAN AL VLA
i(Sp)=pd‘g"—}-Sdp“=0 and dp"=in
- - - vr’v
dr' ** “dr “dr dr poiove
one finds b = e(g — 2)(p,F .., 8,)/2m’.
The covariant equation for the spin is thus
ds, e | (g —2) ]
= _ = o {gF,quv + —5— Pa FaﬁSﬁpu} :
aT &\ (] )

It is of interest to write explicitly the equation for the component

IQ. — ').q —_— igcﬂlm- ] ’;gov ’I'n f"\ﬂ 0o Qe F n II‘ID
~4 Ao 0 “wo o o ® vV, aii vial woT A ZATAR
d(s.v) e) {r ‘)\n=lir v Q)

The helicity S-v is conserved when g = 2. This is indicated in the figure,
where the double arrow indicates spin direction. For both the electron and
the muon, the g value differs from 2 by a small amount. As a result, the
helicity is not quite conserved. This fact was used in the CERN experiment

v S - T -
{-n ™MaaaliIra anNi1Ira fn] i + O ™TMMITNN 7 vo]nn
VU L11IViouUulL v avvvuiLwvwi Viiv i1iiwuvis u VAvilWUve

|11
’ LI
T 120 want natino thaot oivan tha saamnananto aAf+ha anin in tha ract frama
4V 1D yYwuUli vil llUUllls viiav, slVUll VIV LVLLL PJUILLUILLIVD Ul V11U DPlll 111 Vi1l 1OUDV 11011110
ac 1 h Y 4 ol

of a particle, (0, S), one may determine the components in a frame movmg
with velocity v = p/E by using the two Lorentz-invariant relations p,S, = 0
and 8,8, = — 8% Note that in any frame, the number of independent com-
ponents of the spin is three, due to the subsidiary condition p,S, = 0, which

wy

mie umie
=r

1
number of independent component;
observer.



4

1 Mha aAtrareid w23ll Fail 4 Anmanada & gener .-.4-.-. w=rhhn -y ia an ovact that
1. 110€ Tirduiv wiu 1aii vO Gpfrave as & Eeneravor wiic i @ IS SO gréav uviav
an electron cannot respond to the changes in grid voltage, i.e. o7 > 1 where

w
7 is the electron’s transit time in the tube. This corresponds to @ > 3000 Mc.

2. We solve the more general problem, in which L and C are replaced by
Z, and Z,, arbitrary impedances. Let Z be the impedance of the network
Then, using the translational symmetry of the network, we have
Z 1+ Zzz =2 ’
Zy,+ Z
with solution

After passing through n stages, an input voltage is reduced to
Vo= V(1 — Z,/Z)" = a™V, where

. I AR , P . I-.——— . - 7 5 3o
o= (1_ %) _ (=2t NETILE) _ —jol + VIO =o'L
*=NTZ) T\ Z FVZFT42.2, )~ oL+ ~VALC — o' F

T 2. ~tler o dbhiad vl 1 20 .. .. Lesdt l Al -~ 1 20 . N Mh... 4L~
1L IS Elly S vulav || — 1 11 W ~ 4o VULV || N 1 i1~ ﬁwo 1 1nus viie

en
s a low pass filter without attenuation for o < 20, = w..

3. The presence of C, introduces frequency dependence in the amplification
(= Vout/Via); this frequency dependence is to be eliminated. This can be

: A

done hv n]nmn(r capacitors C,, C,, and C; across resistors R;, R,, and R;, pro-
done by placin g capacl i C; i, It3, and 5, pro
rida LLA waliog ~f tha nomnanitannea are nhrcan nennanle Mha Smnedanne 7
vVIiue LVIIC valuos Ul LuIlT Pal\llual y alC UllusToll Pl PUI. ly. A1 11T lmpcu 1UC 44



when the circuit is purely resistive. In other words, the effect of C, on the
amplification is nullified by the introduction of the other capacitors.

A
‘Xe
1 . 1 n

a
triode, is shown in the figure. Because of the hint, the grid
capacitor have been omitted.
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c
two equations:

exp (j o t), one obtains exploding solutions (i.e.,oscillations are possible) if
®; < 0. Substituting this expression for » in Eq. (1), one solves for w,,

- 2R, LC
ml... — NI MM~ (DD N 1 T\/ ML A ntmnizid 2:211 £23]1 44 Acatlladn whan
1INus W, S vii i = (nnpl 1T ). 110€ CIrcliv wil 1ai1 v0 08C1uave wiilii
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VB—°2V° geometrically; that is, 2V, —VB-'3/2V0, 3/4v,, 3/8V,, 3/]6V°, etc.

5. The operation falls into three phases, which we label &, 3, ¢v. During the
first quarter-cycle, V, increases. V> Vp, > 0. The diode D, is hence open
and Vp, > O allows the diode D, to remain closed. In thls phase V
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same reason. This phase contlnues until ¥V, reaches 0. But Vp O
possible, so ¥V, = 0. The first half-cycle has been completed. Now V , again

increases from —V, and again V,, is constant at —V; (wp are again in the

€/\

........... 0 aga Y 45 18 CONSL
D = V_ stavs at V./2 until V, rises tomeet V Whan 7/
Puaw,, ana V B / YD buay av y o/‘l uiivil LIDUD vV LITTV v g. YYiiClL ¥ p —

1

h |

YD
Vs, the S-phase has conciuded, and a new c-phase begins.
Each cycle goes through the phases @ — 8 — ¢ — B, in that order; the
circuit is not periodic in time, however, as may be seen from inspecting the
m-anh Vg annmaohpq 2V, geometrically; the circuit is known as a voltage
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Call the object distance for the first iens surface S,.
distance for the second lens surface is —Sj, where S; is given by Snell’s

law at small angles:
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be considered as the sum of Figs. 3 and 4. Equating the incoming and out-

coing waves of this sum to those of Fig. 2 vields the Stokeg’ relations

going waves of thi h g.2y ! relations

No)

3. If the amplitude of the incident light is denoted by E, the amplitude
of the light upon the first reflection from A4 is defined to be Er,, and that

4l o trmanngriddad 1iL4 I ML, 4mangriddad 1isbkhd v doncenns e 143114
Ul UIIC Ulally. 1VLoUu 115110, 140 4 4 I1C uvlallyiiiivvou 11gIiv IUUIBUUB LU.U.IDIPIU

reflections, and some fraction emerges again into the vacuum, the amount
being governed by the reflection and transmission coefficients r,, 7}, 75, ¢, £}
defined in the figure. The total amplitude reflected into the vacuum is

]

\ 0 .

Er = ETA + EtAtATBeszd[i _i_ (r;‘rBerﬁ') + (T'ATBC%""’G)‘ +

. Et !"rantkd
= ETA + —_ r"ir —3ikd
[TA + Tﬂeukd(tAtA i 'rATA)]
1 — 7’ rﬂeztlcd

|

In this expression for E,, k = 27n,/A and A is the vacuum wavelength.

. ErA/ EfArBfA/ EfArA,rthA/f
N a4

A y4

. N A
NACY

Et,s /Ee rard
AB A'A''B
B
n2
The factor e?!*¢ is the change in phase for the light traveling a distance
Dd in tha dialantria m Tlaine tho Qénlrac’ ralatinng dorivad in +ha nravinnag
&W 111 ViIlIU ulvivvuvvvliliv lUl \JD.II.I.E vViiv ovunuvo AVIiIVVIVIIOD UuvlilvvUou 111 viiv PLUVIUU.D
_ s a2l ' 9 h
problem, ry = —r, and i, + 3 = 1, one finds
B, _ [ra+ re™]

We wish now to relate the coefficients r, and 75 to the indices of refraction,

n, and n,. For this it is necessary to use the boundary conditions required
by Maxwell’s equations. Thus at the interface 4 the tangential components
Af tha alandnia and maonatin Balda mirat ha anantininng anarnnag tha intanfana
Ul VILU UTITUUV1IV allu u.laasucuu; LIUIUD 111UdDUV UU UVUILLVIIILUUUD aviudd VILIU 111uLTl1iavuv'y,

E + ETA = EtA or 1 +r.=1t, (l)
rr r __ Ir 100\
-+ r = I ( )
Now for a plane wave H = E, H. = —E, (the change of sign is due to a
reversal of the direction of motion for the reflected wave), and H, = n,E.,.
my__ __ Y _ 100\ b I o 1 2 Jh |
1nus nqg. (4) opecomes 1
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Similarly
rg = (n, — Na)[/(ny + 7m,).
4 ) MO ORI LV Ry | Ry TV I « PRy Iigh . i .
1 11€ CUIIUIVIVIL LUi1a v LIIC I'ClICCLCU wave vallisil IS
ITA——TB] ‘ TA.=’B ]
M) ... .t o (2 3, -t
le‘l(ﬂ — +1J le“l‘:ﬂ — _1]
In torma nf tha indincog nf rafrantinn thaoaca annditiang hanama
VUL 11D Ul VIlIU 111UWIVU0 V1l 1viilavuivll, VilUudUy uvviliiuilviviio vuvvuvuvuaiv
([ n,=1 ) [ ny = ni )
My e @l
\ajA = P|4) (a/A = (2P + 1)[4]
where p is an integer. It should be mentioned that E,./E may also be cal-
nirlatad her rncdizladimoe ctandine wawa alantrnmmaamnotin a1 0 dho Ainla
vuliavcu v PUEUUJ. Ul a Svallullil wave UlUbUlUl.Llﬂis 1CULIV 11C1IU 111 LUIIT UICITU-
tric n,, and solving the system of equations required by matching boundary
conditions at the interfaces 4 and B. Thus for the electric field these equa-
tions are
at A, E,+ E =E, + E,; at B, Eet*® 4 E,e**¢ = F,.
The continuity of the magnetic field requires (when one substitutes H = nE),

When E,, E, and E, are eliminated between these four equations, one finds
the above expression for E./E.
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188
a particular layer of silver, a small amount is refiected; most is trans-
mltted Light of a given wavelength A will be reflected coherently only
from the layers with spacing A/2, 1ncoherentlv from all other layers, thus

renroducing the initial colors

BVARAAVIILE VALY AZ VY

-Al,\_‘ ,:I:_LA.._L:-.. PPN
COI0OI uIsSvuIruvivIl dauso

" CLI
- o

effects. A quantum field theoretic treatment of the Lippmann process may
be found in E. Fermi, Revs. Mod. Phys. 4, 87 (1932).

] Film []
—————————— Ib_————-——-—_— T
PO===zZI7 ¥
_______ e
l—— | —»
- 1

5. Consider a source of light P on the sun. The image of this source is spread
over a region of linear dimension dz = D + I(A/D), where D is the pin-hole
diameter. The first term in 8z i8 due to the anrnad of rays over the nln holo
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g. ue to diffraction, there is a spread in angle of approx-
zmately A/D upon pa..ssing through the rmnmng and hence a further increase
2 D A ALleed Y I ML 4-dal Dl lhae 2 srt;mtsaze Lrm N2 _ Y7 hiinlh £anm
111 O U1 apuuv \I\all.l"/. 4 11T vuval OL 11ad a uuuuuuux 1 47 — N WILIUVIL 1UL
~ —n 2 L ] - L a8 ~
A = 5000 A and [ = 10 cm gives D = .22 mm

6. The Rayleigh criterion asserts that two lines are barely resolvable if
the maximum intensity of one coincides with the minimum of the other.

Principle maxima in the mth order occur for d sin § = m\. Here, m\ re-

nmaananta tha Aiffarvannan 3 nath lanatha fan licht tnavaling $4 MITATY Mo e

PI.UBU AU VLVI1IU WUi1llTL VT 111 Palllll. I.Ullsllll.ﬂ dUL usuv viavyvoll ls vU a EIVU 1 11l Al-
~ e h W d b %4 o~

mum from two adjacent slits. If the grating has N slits, the difference in
path length is NmA between rays from opposite ends of the grating. Suppose
the angle 6 is 1ncreased slightly, until the path lengths from the opposite
g differ by NmA + A. The pattern then ha.s zero intensitv

DD oK

from other pairs of slits cancel, giving zero mtensﬂ;y.

To satisfy Rayleigh’s criterion, these minima n
must occur for the same angle as the maxima in
tlla‘t o dar for licht of wavalanath ,_L AX Hence - J__/__\E__
\.LUI., AVUL 115110 . "ul'\.ll.\.lllsul]. Al B iVe AALVAAVV ————mll T 1
mNA + A =mN(\+A\) or N=—2_. P
m(AN) —_— : Z__\V__
A grating requires at least 982 slits to separate :'
the sodium doublet in first order (m = 1). Note _— R N
that the result is independent of the grating Light
spac_no‘a The cgrrpsmnndmo' ano‘nlar qpnara.tlon is U Grating
10-5 pad
v iLau.

7. Ray 1 changes its phase when it reflects from the surface of the lake.
Therefore the difference in phases between the two rays arriving at the
detector is

When the star first appears over the horizon, the difference is 7 ; the waves
are out of phase, and the intensity at the detector is minimum. As 6 increases,
the intensity increases; a maximum is reached when sin# = A/4d; this

s @ lllaoaliliuiill 1o ludvuvilivuk wiltil sl vV — /AW . LIS

hannena for n — R° ahove the haorizon
llwtlllvllla AL v u” v W Ullv AANJL B&AJLL .
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. Each atom of the ribbon radiates

s in
ibbon. Hence each vpoint nroduce

ndependently of the other atoms of
Q n p

the ribbon. Hence each point produces its own diffraction pattern, and
dlhncn ~wramlazm A~ 2l camans ML b nelnnn s madd e Awonndad £ Al
UIITSC UVOliap UIll ulC 3CICCIL. 1110 1IVCLICITIIVEC pauldlil U.ILPUUDUU v UIH&P'
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pear when the first maximum from the pattern due
first minimum from the pattern due to B (the Ra.ylelgh criterion).
Light from A has interference pattern centered on the observation screen

at 6, = —W/QL, the first minimum is at 6, 4 A /941 T.m'ht from B has
notbann anmbanad o+t A _ TI1OT Mha natdann “...‘:..l..,m whan 4 L )x/0o1 -~ 0O
Pauuc 11 vTlivoicvu avvyg — 1rr /au. 4 I10 Puuuclll VallidilUd WlCIL V4 T I\l/‘lw ~VUg
or W > LAj2d. If, as d is increased, the pattern vamshes at d = d,, then
T
~ AN
— o7
LW

9. Let a be the amplitude of light coming from a single slit, and let & =
(27/A)d sin @ be the phase difference between rays of light from adjacent
slits. The total amplitude is

vl oas 1 uw-ns)
i 4 € "'2(N—'1)“

- - 1~ A 4 arp
_ (L= 127"
1 — 1)2¢9)
The intensity is
1412 — 2(1 +1/47 — cos N§/2(W—D)
[l B
(3 — cos d)
16. A=all4+a)+ (1 —a)e®+ (1 + a)e” + (1 — a)e*®
+ o (1 — a)ehy,
wwrhana 4hn mrtadinm o ¢had AL tha manadine wrnhlame amed o hawowa 4alran
1101 LI1C 11VLwauvivil I viiav Ul uvil1o PI. UUUIIIE Pl vioill, all C 11avl LVAKCIl
N even. The series is finite; we may rearrange terms:

A =af3 e + a3 (—1)ye]

n=0

s | sin (N3/2) _ 8D (NJ/2)]
L sin (6/2) cos (8/2) |

= ae!

The intensity is proportional to

-

AA* — |sm (IVO/&) pe sin? (NO{A”
o L sin® (8/2) ° = cos®(0/2) |
which may be written as
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11. The amplitude of the wave on the positive z-axis which is transmitted

fhrnuo’h the onening is given bv

vill QpOILlilp ° pa Vol By

4, [doe
‘_.I.OJ r ’

nd
—
-]

where do is an element of surface area of the opening and 7 i

from do to the observation point. This expression follows from the simple
version of Huygen-Fresnel theory where the
obliquity factor is taken constant (valid for |,

w
-~
:-l
[¢]
® g
@
(i
gr
=
(e
(¢"]

(s 2 1) Taina dor — Q9wndn — Qwrdr wo I-I

\W’H’ \\ l’. vu“ls ww Hl.'l w" adio ¥V W , Y v i

o gt RRVR ISR RS IR, §.5 Bk (SR N RPN RPN R N

1HI1U uiIlalu LUIIC alllplivuuc lIwegraves v uu~\‘\‘\ r

aln = — 2 AN foxn (2ha/a2 L »2\ — awn (221 T~

\r V‘LU’V l\/“r \V'II v w I ~ ’ \I“r \VIVH’J’ ———————— Z ——————————————

which has zeros for A/a? 4 22 =2z 4 nA;

n is a positive integer, thus z = (a® —

222} /D) N

[ A") ’I‘llbl\n I'

12. After passing through a polarizer whose relative angle of deviation
from the preceding polarizer is 6, the intensity is decreased by the factor
cos? . The attenuation of this polarlzer is thus (1 — cos? §). The probability

that the relative angle is between 6 and 6 + df is Be=*% df, where B is chosen
an that +tha tatal nrahahility 1g 1nity Tha avaraca attannnatinn nar nalarican
DV vViivWVv viiv vuvwi t’l VUNWN11A Y A0 wuiiiv A LAV W 'vlws\/ wwvvwviiuwviviil t"./l yulal A&4TL
is thus
ri rm s 2 A\ =a9! N
4= (1— cos’§)Be =" df.

Actually the limits of integration are from —=z to +=, but @ > 1 and one
may extend the limits to infinity to a good approximation. In addition,
the integrand is large only in the neighborhood of 0 0, allowing the ap-

<

proximation cos?§ =~ 1 — 02, The average attenu then hecomes
proximation cos* ¢ ~ 1 1he average attenu ation then becomes
+ oo oo
A f 1002 D_-aft _ _ D d f _—-af? 10
A = J av oD = —D —J
oo dal)_»

As a function of a, [>.e %" d§ = Ca~'/%, where C is some constant, (C =
{*.df e®). Thus B = a'”2/C, and

ra 1 /0 - -
a”‘\ a - 1
_A =—{ =~ __(',a l/2)=_
\C /da 2a
ML, owcraracn attonitatinm moer nnlarigor ta +hica 1/94
10€ average avieiiuavion per poiarizer is vnus 1/«a

13. For a perfect grating with grating spacing a, the ampiitude of the dif-
fracted wave is

A — AT1 1L 18 1 28 1 .. I LiN-18]
A =«&|L T7¢€ T€¢€ T- T € IR

where « is the amplitude of the wave diffracted by a single slit opening, and



lit is displaced by an amount z from equilibrium, the

Ve

o~

A

tksin @ (’5-—3-)3_

AN
) glkzsind
/

[

UPTICS—SOLUTIONS

~

B

st 0D
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dxmdx" e—:&ﬂcr! e—z,’./zqi etk 8in 0 (T u—Ty)

\ o —k2o? 8in? 8
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/%", where o is the root-mean-square displacement, one
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en a given s
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h
amplitude from that slit is

<elk(z.-z.) sin 0>

The average intensity observed over a time long compared to the period
tribution e

d = (2nd/\) sin @ = k d sin 6. The intensity is
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15. In a birefringent crystal, the electromagnetic waves polarized parallel
and perpendicular to the optical axis travel with different phase velocities
ML o lnaan mnlanioad wawon IS 1 8\ /O afbnr lanertcmme ~omna smnmlaslean
1Nnus a liiical PUI L1ZCU wavl Lig\A T J’/N & 5, Al 1Cavill 1€ PUlua 14C1
and traveling a distance z, becomes
_ B, (X einekz _|_ vln.kz]p-imt
E="o )
. )]
A
Here § has been chosen parallel to the opti , X perpendicular to § and
the direction of pr-pagn'rmn A wave polarized alo_-g X has been taken to
1navvo PIIQDU v olvuuliv UI o4 WILITU QliUll J, UI v_. ALI1I1T Plallc A VILT PUlﬂllthlB 1
L DR 1D v I o A £ 1 e 3
parallel to B = (X + §)// 2. After traveling the complete length, 27°d,
of a crystal, the amplitude which is transmitted through a polarizer is E-A,
where

E.-n = %[exp (tn.k2"d) 4+ exp (¢n_k2"d)]
= E, exp [tkd2" ' (n, + n_)] cos (2"¢p),

and L =— f.. VLI ML awafann afban smacaima dhaodl QO 1o ondo 4L o
alll (l) = \ty — Ib_”cw/é. 4 11C1C1VU1IT, allvl Pﬂ:BBI 1 uuuusn Ao CIOLICIILS, LIIC
intensity is reduced by the factor
T — lcos (). cos (2d) cos (25-14)1?
L \¥r7/ \=7r7 \ Y74
Using the identity cos § = (sin 26/2 sin ) repeatedly, we find the transmis-

sion factor to be

fain (OS L\\2
T=(mn\a \p,) .
o8 1
\ & Sl (P /7
Examination shows that 7'(¢) = T(¢ + =), and that transmission occurs
nrimarilv for A — m7» where n — intacer he width 3 =~ 9#/9% Tn terma
rl AALAWNA ‘lJ ANTA Y rl. b VY AAN/A .t’ ll;vv&vs - AANS VY ANA VAL VY XA I L VN/A ALAI



QUANTUM MECHANICS

1. If the operators B and C anticommute, the corresponding eigenvalues
c

b and ¢ must have zero as their product: b¢c = 0. Since C* = 1, we have
¢ = 41; hence b = 0. Thus a state may be an eigenstate of charge con-
jugation only if the baryon number is zero.

2. The matrix M = (M., M,, M,) represents an angular momentum matrix,

because of the commutation rules. It is evident that the matrices do not
renresent irreducible represen ntations; rather H\py renresent several irredu-

Cpswetaly [ 4=10 L7 L 2 2CprtsStlly otlc 211¢

If a state with spin J is represented, M, has (2J -+ 1) eigenvalues, ranging
in integral steps from +J to —J, each appearing once. Hence there are
no states of spin grea,ter than 2, only one of spin 2, and eight of spin §. One of
the 28 entries of +1i ounted for by the J = 2 state; there are, therefore

________________ H LU LI U 115 e QU UL

H
AR _ Q)Y — A8 ra
(3¢ o) = x5 IT

]

Each eigenvalue oi M? corresponding to spin J has value J(J + 1); to
each representation there are (2J + 1) such values. We then construct the
following table:

- . or 1 Number of Number of
J J 1+ 1) e/ + 1) representations | entries in M?2
2 6 5 1 5

2 2 4 8 32

1 2 3 27 81

! 3 2 48 96 °

0 0 1 42 42

[
(@ ]
[
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3. Repeated use of the commutator [L,, z,] = te.,,x, and the identities
AR (1 — ATR (" r‘4 CIR. and ¢ =8, 8. — 8.8, vields
L sy ] ARLE=Y V) ] L JE=Ty W "lJlC"lmn vimvKn VIinvYEem J*v =~
A = 2{r8u — 2}, where r? = Y 2,z,.
i

4. Taking matrix elements of Eq. (1) between states of different m, one
obtains

S i LTT 1 s\ fama!  pn 1Y — 0
(W | U | gm . — m — 3) =V,
orm' =m 4+ L if (4m|U|4m"> is to be nonzero.
Y4 \J ] 1J /
T ilrawian Frarm T O a2 [ TT 1 alan!\ 16 mancann anly 3 $ /(Y YV 2
AJINT DT 11U ].'J\i- \‘l’, \Jll(l I v IJ ne / 10 11V11401 9V 1L 11 \JLJ AJ" _—
+(X; + X;) 4+ +%. This is equivalent to
Fala L0y __ aAlfal 1 IN12 — 1 Tafa 0N L alta? 1Y 1 31
WU T —JU T =0T 1) 1TI)\J T 1) T38h

A1l /0 0Y

5. All (28,..x + 1) of the wave functions belonging to S,,,x have the same
symmetry, since the raising and lowering operators, S, + #S,, of S, are
symmetric functions of the individual particle operators (e.g. S; =

Sz + -+ + Syz, which is symmetric under particle exchange).
‘OIIT S 0++0‘;“G ;"B mav;mnm xrainno I‘) NnNixr xxrzr oan oaan .Q. ;ﬁ I\"’;Dﬂ DI‘
PFe vy z WUUVWILID 1VLD 1ivAallliuaiia vyoviwuwv L',H \Jiid VY AAUVIAL LVWvwvii M‘z A VildvViivlunia
along the z-direction; i.e., if
aln — aln. (1, 1\ aln (1, 1) ala (1, 1),
b d Y1\2’ 2)Y2\2"2) - YN\2" 2/’
where the argument of the single-electron wave function gives the spin and
ita nraolectinn an the 2_.avia ow s 18 ecomnletely svymmetriec nnder inter.
a4 VN t’& VJUVVJVIL \JALA VAA A TWNLAAN . AN \S VY Y AN varlvVVlJ UJ ALAALAN/ VA AWV CAALANVAVA ALAVVA
Al Lt . ALl L iz omm nmd AL AL Ld nn e rema 1N
J1aIIgEe Ol Bpl 1018, uveIeiore, Uy bllU ar g meIlv U1 LIl 11USuLV P&l&gl Pll, 11
wave functio question are symmetric
6. From the operator identities
z =&; and = i\[H, x], and [z, p,] = ik,
m \%n/

Fo TIF A1 _ 32/an
L&, |42, T = i/°[i.
Exnandine the commutators and taking the exnectation value for the state
KExpanding the commutators and taking P
L s Ahda i
yro We obtain
h2
/010 I A2 1T rr.21 0\ __
V22 — x°11 — 11x" |U) = ;
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We now introduce a complete set of intermediate states:
0|zHz|0) = T <0|2|ny<n|2|0) By = T |2n0 B,
n
(O] Ha?[0) = 0|2*H |05 = X 0|z |n)<n|z|0>Eo = 3 |0 B,
n
and +tha idantit
viiui viiv 1uviiwviv
2
2 v
Z |Zno [(En — Eo) = 5—
/()
ia dadirand
IS ucuuvocu
7. In the absence of sources, the Maxwell equations take the form
1 0E 1 oH
VXH _—— VXE=——T’ V‘E=O=V'B.
c ot c a
T 4amrna Af RN and TR /xrhinh ana llnaanler indanandant) 4haca hanama o
411 VWOILLID VUl &' allu X \Wlll\lll @l 11110al l.y 1 luUPU luUIIU}, vilTST UCUULILT
—ca T e a
and div F = 0 = div F*. Noting that
(VX F)og = €ap,0pF, = —0pg€pay -’1’

N T M B 1 R I IR, | — Ala_. P IR B (R 7 I F
WIICI WE I1lave uscu uvile nvvauvll vg — 0/0-53, vie cquauvil 10r r pecomes

The momentum operator is pg = —19g; this therefore becomes
—_ p B-ie F = L. aF" .
Bar ™y ™ ot

Now for fixed 8, —teg,, is @ 3 X 3 matrix, Sg(,, ,). The equation for F then
takes the form

same form. Using the st s_md rd definition of €;;, in which
t‘}k - 1 3k ¥y vl U il \ Odd } P(7l 1liuvavivii UL viivu IIIWEUIQ 1,

0 otherwise,
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we obtain a representation for the matrices,

/00 o0\ / 001\ /0 —1 0\
S, —iloo—1) s, =il oool ana s =:il1 ool
\ / ] \ /
\o1 of \—1 0 0 \o 00/

XX Aas wroacidcr nocilesr ¢hadt 2o Q5 ALasr 4ha avirlam A Aamdrzs;n ATt mrizd o b e
Yy € Call vcluy U&BII)’ vilav vIiC O S UUUy UVILIC all lal-1110L1cIiivulll culiaiuvavioll
relations S X § = 8, and furthermore, that

Q2 _ Q2 | Q2 | Q2 _ 9 idontityv matrmy

AT ”l T Uz —r Ua & N\ IAviivViIV ALICUVVL 1A,

spin 1, for which

(¢
Q
L}

This shows that the equation describes a particl

b

S:z:p = S(S + 1)I°

8. From the rule § pdx = nh and the energy equation (p?/2m) 4+ mgx = E,

we obtain

9. A state of the three-dimensional oscillator is uniquely specified by the

set of three numbers (n,, n,, n;) with n,, n,,n; > 0 and n, 4+ n, + n, = n.
The numbers 2, n;, »; are the harmonic-oscillator quantum numbers for
excitations along the z-, y-, and z-axes respectively. For fixed n; and =, the
number of pairs (n,, n,) for which n, + n, = n — n,, is

j;:l — (n—ny +1).

Finally summing over n; we obtain the total degeneracy, d,:

b =Y matl—n)=(mar1p_Mrtl) @+2)®+1)
S e ] N . - S N L Y 4 6} 2

ny=0 2
10. The Hamiltonian of this system is given by H = L%/2I, where I = 3mr?
and L, is the angular momentum perpendicular to the plane of the three
masses. The eigenfunctions are ¢''® with ! an integer; thus the energy levels
are E = h*l*/2]. However, the three particies are bosons, and the wave

function must be invariant under rotations of 120°. Hence I = 3n with
n an integer, and E, = 9n*h?/21.

11 The nroton and antinroton maonetic moments are oiven hv 12. — 9., Q.
aemsd a8 Q Q Vo) PRI ) I JEL .. AN | I Ry Ny PRPERY JRRY 1 F U S
allu e — _‘l,‘robzc A\ 11010 )] lg VIIC aAlS Jullllllg LVILE ULWO Pﬂll LICICS 101 LI Z-&AIS,
one has
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Now

—

The eigenstatesare S = 0,8, = 0andS = 1,8, = 1,0, —1. The correspond-

ing energies are
(=4 (=]
4 2 5,2
Voo =0, V:,e = 3#0’ Vi = -'3&
, a ) - a
19 ML, ~Atal ol Amargbang O (1) | (/O mnd Q2 __ (= | = \2/A4
12, The total Spifi Operavors o, — \uz T 0;7)j« a&ana O =\, 1T 73) /%

commute with the Hamiltonian, as is easily checked. In terms of these
operators, the Hamiltonian may be rewritten

where g2 =

Hx
[t
o~
s
N

while for the triplet states 8* = 2 and E; = 248, + B, with S, = +1,

13. Choosing the magnetic field B along the z-axis, we may write the Hamil-
tonian

no o o e renresentation where | and 82 are diaconal wit
A d rvn& 6 11.6 AN/ & Vr& NNV AAVW VANIAL VY AAVA V Mz CWAANS AS WA Vv “lwevllw‘. YY AVAA
Q _ 1/ [P AN N " & RN VIR I
D = '2'\(’1 T Uz}, LIIC I1al llbUlllﬂ:ll DECULIES
— Y I 735 (a - ,8) - .
H=—(a+ B)BS. + ) (48% — 6) — 5 D01 — 03,).
The first two terms are diagonal in this basis, and in addition the triplet,
S =1, and singlet, § = 0, both have definite parity under exchange of
nartinlae (1) Dhl] O\ (ovvan and AndAd roagnontivalyyl Mhiae tha Aanly naneara
yau viviuw \.I.’ viiui \H’ \UVUII villi vVvuul 1LuvDpuvuvvuvivyvul I- A LILlUD viiv Vil LAVLLLVUL Y
matrii element of the last term (which is odd under exchange) is between
e singlet and triplet states. One calculates directly

L Arf 1) DION _ DI\ IO\ L0\ DION D11\ IO\
(0’ — 0 )(u\lfl*-’\“) I*-’\‘-lu'\“I) — 2( C\1)P\«) T P\‘-lu\“))
12 22 7 - -l
\ A Z / \ A 2 /
The onlv nonzaro matriv alamant of tha lagt tarm in H ie thne
F Lo \JIII.J AAVIALUVA VYV 111WWVL LA VIAVALLIVALAY UL VIV LVWWOV VUL 1ill 111 4Ax A0 vViiwup

)
o
-

E. - F(a +
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while for those states with S, = 0, the Hamiltonian may be represented

_( 7 —@—BB
\—-@—BB  —3J )

e Q n
O v

2

where the off-diagonal elements are due to triplet-singlet mixing. The eigen-
values of this matrix are

14. By solving Schrodinger’s equation, one finds the energy E(R). Now
suppose the sphere expands uniformly by a small amount. The work done is

J TV O\
dW = PdV = 4xR*PdR = —dE(R) = —“‘t"i‘fg’ dR.
Hence P = —(dE/dR)/4=x R?. For the lowest s-state,
o~ sin (kr)
kr
The hanndary onndition alodl PY — 0 imnliee LR — o The
A LAV U WUWLILGAWL NNJLAAL ViIAL ? \.LII, v lmt’ll\lu L ie i AAN/ALR
2452 252
E— ) S 4 ,
2m  2mR?
from which P = #a*/4mR®. The lowest p-state is
cos (kr) sin(kr) _ di
Wi kr  (kr)? T d(kr)

N

N
AN
)
NI
N

d
7/ /
/ /
/ [

Here, the condition Yr(R) = O implies kR cot (kR) = 1. It is ea 8

this numerically, obtaining ¥R =~ 4.5, and P = (4.5)’h’/4wmR°. The nu-
merical solution is managed by determining the smallest nonzero, positive
value of y for which ¥ = tan y. This is the intersection of the two graphs,

%4 (74
a8 seen in the ficure, We firat oness v — 272/2 — 4.71 and then “zara in”’
6“!\4 Yy AlAl VOV 6“‘.}0“ y UII—IH Xe# A CWVAANA VALV AL &dN A \J AAA
~— Al ot _at . L V. . . o4 . o__I/o £ . . .1 a___a°__. Ny
OI1 LIl 1HI1ILErSECLI0I Uy S0O1v1 lg wail y = 9 /4 101 y ana juweravi lg. VIIC UI

St

T
two iterations are sufficient if the initial guess is good, and the functions

vary smoothly near the intersection.
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15. Since there is no angular momentum, the Schrodinger equation reduces

to
2 2
_Bfo + 201y _ Eq (outside the well)
omlort " r orf* b

___ 1
ana

hzla2_ 2 9), o oo T

_'9—”;12—"2 —2—?’\{/'— (Vo ‘i“ﬂ)’l}l‘ (Insiae the well).

With the introduction of U = rr, the wave equation is

U'—a’U=0 (r > a), T
and V()
U’ + U = 0<r<a), ot _
where v
Yo
r o rg'llllz ro s TY 1 ﬂ\'l!llg < a ‘ I
o= [22mE]" a4 g = [2m(Vs + B)) ¢
L »* L h J r—y

I € .
of 4r and its derivative at r = a (equivalently, and easier, continuity of
U and its derivative) requires that S cot Ba = —a. As E — 0, a — 0;
hence cot (Ba) — 0. This happens when Ba = = /2, or V, = =*A*/8ma’.

168. In the region z > 0, AJr obevs the same differential equation as the two-
) | in the region z > U, ¢y obeys the same diiferential equation as the two
artdad hanmsnnina ~cnilladan. haserneran Armler annnmballla cnlicdlnamme ama 4L aon
siaea narmonic oscillator; nowever, tnhe only acceptable solutions are those
3 e

that vanish at the origin. Therefore, the eigenvalues are those of the ordinary
harmonic oscillator belonging to wave functions of odd parity. Now the

parity of the S.H.O. wave functions alternates with increasing n, starting
with an pvpn-nanfv m‘mlnd state. Hence,

xry — N 1
= 9 wiuld 1 = v, 1, .
17. Choosing the z-axis along the magnetic field B, the Hamiltonian is
"—l”P —iA\z—i-/P—eA\z-i—P'"‘ with 4, =0
g\ T o) T\ T o) Ty ="
Defining new variables
12 [ o \172/ \
o=(L)(P.—£4,), P=(L)(P,—24,),
\eB/) \ c °) \eB/ \ c )



one finds [Q, P] = th; i.e. P and Q are canonically conjugate variables.
In terms of P and @, the Hamiltonian becomes
-8B [P? + Q'] 4 P
2me 2m

The term in brackets represents a harmonic oscillator in @ P-space. Motion
in the z2-direction is not quantized. Thus the energy levels are

=20y 4 o) 4 2
me \ 2/ 2m
If the orbit is large, we may use the semiclassical approach. We assume
a closed orbit, and the Bohr-Sommerfeid quantization rule gives (with
n = integer)
. r dr = r/ eA\ d
MEppdr =gt )
Now the integral § A-dr = [ B-dA = ®, represents the magnetic flux enclosed
by the orbit. The integral
bmvede =mvidt = —§ mr-d—vdt,
J J J ¢

b mv-d fr-(Ldr xB)=—§ 2B xr)d
mvedr = —@¢r- r =—¢— r)-dr
? ? (\ ] /, ? <
— —° [v % (B xr-dA
c J v \ 7

Foara conctaent PR anchaoe ¥ o (M vy 2 — OP Tinaellvy thon £don.de — _ o0B/A
L'Vl & vUILIdLal1l1V b, V11T 11ad ¥V A \” A l’ — &b, J.‘llluilly, L1111, 3’ P'wl —_ C\P[b,
and one finds that the fiux is quantized in units of Acje.

The prediction of flux quantization by F. London received confirmation
through experiments in superconductors; however the unit of flux quantiza-

tion was found to be hc/2e, half the unit predicted by London. This is ex-
plained on the basis of two electron correlations in spin space and momentum

space, for the superconducting state.
Whereas in nonrelativistic quantum mechanics the energies are given by

(Px — eds[0)* | (py —edy)’ | P
- x
5 4 2 _——¥ 4 X2 = FEyp,
m m m
they are given in relativistic quantum mechanics by
2 2
m o {,.. _ ed;\? | {,... _ ed,\? | 2 L a2 (D T\ | 2.4
4R — \Pz c } T \Py _‘c } T Mz T e U — \&nviyp) T e v,

from which
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18. Let the amplitudes for states 1 and 2 be C, and C,.

A ALAAR

z&=r_r +H,C,=EC, +V

e - ia= 1 . - 12(1
dt

o
a7

AN
w;2 H2lCl + H2202 = V Cl + E202

IfC, = A,e”**t and C, = A,e ', one has

‘ Y

Al( — E,) — Visd, =0, A\ VH + (B, — W)A, = 0.

w _ (& + E,) 4 (B, — B + 4|V, |12

W —E, ) 2 2
Then, one may write
NN — A ,—lwed | P ,—iw-t 1 — A ,—-iwet | D ,—iwt
v = 4,¢€ T- )€ ’ Ug = L19€ T D9 .

The coefficients obey the constraints (not all of them independent):

4, _ 2V )
A, Ez —El) +'\/(E1 _E2)2+4!V12!2
& _ _ 2?’121 i —
B, (E,—E\)—A~(E,—E,)*"+ 4|V
and
4, + B, =1, A4,+B,=0, Ai+Bi+4:+ Bi=1,
A=B= —'— Ang == 0
The solutions are
Al —_ : : ] — ’
(E. — EN L 4lV.. L (B, — EM/(E. —EN L4V 12
\+~1 +42) P E] V12 I \442 441)°V \~“1] 442) [ LA & 4 |
B, = 2' V12I 4_ "
(E _Eo)z+4IV|9I2 (.Eo—E)'\/(En _E)! V-g!z
_A_n = e Vl*é —B-
(Z, — B, + 4| Vsl
19. For a trial function of the type {r = 0 for x < 0 and +» = ze™** for
z > 0, the exnec.-..-tlon value for the energy is given by
~ ’ | of BJ B J
(B> = [ degeoa |2 4~ + ezl zeo2 [ [ dazte=tas
N Jo l 2m dz? I /JO
3 , Ala?
~ 22 T 2m

This expectation value has a minimum for a = (3¢m/2A*)!”*. Thus the
ground-state energy is greater than eaqual to 2(2A%c*/3m)! .

T T T T T T T - - -

=]
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20. The unperturbed eigenfunctions and energies are given by A, =

(D \~ l/2,,tn0 with F — '52 2/‘)mr2 — n2la where n i@ an intecer Note that
‘- ’ , a-~dyEv "w lw, VY AAN/A v AW WAL .lluvsvl . ANVVY ViAWV
cdoadas wridl 1 . oA ar e A d s ML LSt 2t __
SLaLeS WILIl 70 a1l — 7! al' ucg 11erave. 1110 PU[ vurpimng 1Iveracuioll

V = eFrcosf

] v

Since (k|[V|k) =0 and V has no matrix elements connecting degenerate
states, the first-order perturbation correction to the energy levels vanishes.
The second-order shift in energy is given by

Az, — 3 lVIDAVInY  op
u#l E _Et m

N

However, from the rules of degenerate perturbation theory, one must dia-
gonalize

-~ &
[«
e
"

Q

Trr

the only nonzero H,, with E, = E, and n % n’ occurs for n = +1, and
n' = —1,orn = —1 and »n’ = +1. Therefore to (correctly) obtain the shift
in the energy of the states with n = 41, one must diagonalize the matrix

(Voo Vod) | aetFr? (1 '3'\

\ v v |~ 6 3
\vrg, -1 1,17/ \Z L/
The eigenvalues are 5ae?F?r?[/12 and —ae?F*r?[12
Tan thacn gtatng |\ Farn whish lam ]l 2 1 4ha arnanceer ahifd 10 otoan her
41'UL uvi1lUDdST dDuauvod | fl/ 1UL 111VI11 | ll' - .l., VIlC ClLl 5‘y SILILVU ID 51VU ' U.y
- nlVin4+ 1 11V nlVin—1D—11VInd
AE — QD | | i VAN ! 1 1 / + \ 1 1 PARN | | /
n 7. — &K E. — K
=g =“n4i ~n ~<n-1
_ aelFir?
3[@n* — 1)

21. Taking the electric field to be along the z-axis, the perturbing interac-
tion V is given by V = eFz. The first-order correction to the energy vanishes,
i.e.,{18|z]| 18> = 0, and one must go to second order;

AE — — L g — _ o [KIS| V[nlm) [
2 & (B.—E)

where | nlm) is an eigenstate of the hydrogen atom with principal quantum
n, angular momentum [, and !, = m. The enerszv levels of the hydrogen
atom, E,, are given by = —me'/2h2n2, |/IRI | %4 |‘nl'm\ |2 is alwavs

SIT v M) LZn TG &I e . 222V N2 Y TR = RIWESS
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positive, and E, is monotonically increasing, it follows that

e2 a e’
J— 11 slmdlm\I12 -~ 2% ~_ % @ X118 mlm\ |2
1\ 2] vv"u I < 2 ~ (E2 E) 2d \10 |2 (wuu/| .
\ 1)

_@

In setting the lower limit, the contribution from the continuum states is
assumed negligible. Since the states |nlm) form a complete set (neglecting
the continuum),

Y AA8|z|nlm>{nlm|2z|18> = {18]22|18).

Expressing the state |18 in spherical coordinates it follows that:

1 ~ A

a7 -
1812*|18) = —rle trlady = q?.
wa®J) 3
Writing E, = —e?/2a and E, — E, = 3¢?/8a, one finally obtains 42’ < a <
1 iy 32 M LI a1 a4 = 3
(16/3)a’. The experimental value is @ = 4.5a°

22. The total spin of the system commutes with the Hamiltonian of the
system, thus allowing the total wave function, 4r, to be written

whore 4 ig a function of the anace variahlea ». » a 1a tha anin wava
YV AAVA U \F AN W 4AWILAVVIVLIL VA ViV gt’w\lv ¥V VA AV AV ll lz, Wiina 40 wviiwv Dt’ll& wwyw
Lo _ac . £ 2L oa__ o _ _a°* V1 _ _ Y¥r_.________ a1 _ a_a_1 ___ _ ___ £ ___ _a°_ __ [} [}
IUuIlCuloIl Ol e LWo P&I'Ul(.;l S. r1owever, uie uvotal wave 1uIiicul Il, 'ly‘ Imnusvu
be antisymmetric; thus by choosing the total spin to be § =1, x(1, 2) is

totally symmetric, and hence ¢ (r,,7,) must be totally a,ntlsymmetrlc.
Similarly for § = 0, x(1, 2) is antisymmetric, and ¢s(r,, r,;) must be sym-

Va2 it 7 SN b4
metric. Therefore, for the erposes of energy calculation, there are two types
..... —=ra o l‘-_- VRN -1 1L
Ul BP&UIU’I wave 1 SUIONS © (Ps ana (PA.

In the absence of interaction between the particles, the wave function

@(ry, rs) is given by symmetrized products, ¢n(r))Pa(rs) £ Pa(ry)Pm(rs),
where

/ 2 \ 3/2 . /..le_z\ . /‘742'/—"“\ . /.%372’\
¢a(r) = (%) sin (=5=)sin (=2 ) sin (2=),
\a/ \a / \a J \a /
with energy equal to z*A*(n* + m?)/2Md*? where d = 1078 cm and m,, n; are
st namana w — (i an an ) nd ml\n :'\‘-nmnrg‘-inn 1\"\4’1""\!\“ 4wwr “nn‘v‘qlnn e
b § I.WEUI.D, il — \l(ll, '/2, 03” CTUuUU. 411U 111U01avuvivill UTuvwovuoll v v Pau.wuxcu )t ]
(0 for |[r;, — r,| > a a=10""cm
Vie, —r) =4 . and . o
|—V,forjr, —r,j<a Vo =10"%eV
Hence
Vv 43 —4xa*¥V,
| (ry, — ry)d’r, = o
3
'l‘!-nn imaniraa tha neaful annravimatinn that
A 110 IIIDPII vo ViAwv UDViAwiL (ﬂt’t’l NJAILAAAWVIVLL VARV VYV
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The first-order perturbation correction to the energy is given by

Since the interaction is nonzero only when r, = r,, and an antisymmetrical
function of r,, r, vanishes when r, = r,, the energies of the § = 1 states
are unshifted. However, the symmetrical states have their energy shifted

A1s513 LRl JSLALCS 11A VD LIIGIL ©IICL oJ
\vd 1\ a TN N
UII.U iivuiiv

CJ"

For any set of quantum numbers (n, m) the § = 0 state will always have
a smaller energy than the S = 1 state. The energy of the ground state (n; =
s = 1)isthen £y, = 3#x*h*/Md* — (9ma®/2d°)V,.

I~ 1)} my _ . _a___ 1 _a* __ T - L. o _____®s4___ * _ ¥______*___ __A1__ _ £ ______
&L, 111C pel't,u paulon v Illay D€ TEWTIIULLCIL 111 AEC eaSIIlg oraer o1 Symmem‘y,
(41 + B)fz 3(4; + B)Zz (4; - B} 9 2
V = [5) - 5) + [3) (x - Y )
& & &
Ror V = Q one haa threo decgoenerate levelawith I. — 1 7. — 0 1.1 Tn arder
JA ISR NJAAV AAWW Viii VUV \A\Jsvllvl.wvv AN/ ¥V VAN VY AViAL A4 ‘., uz v, _L i A AL ULAVL
4 Lo__. aL 2 a1 . ______2_a*_._ __1.._. LT e e ==L T ot oa.-_ .1 _ __ i
L0 SIIOW ullau LuIle © PUDIJ UIVI1 value Ul L/, I8 ZCIO WIICI1 ¥ IS uurnca 11, WE
will show that the eigenfunctions are of the form
\]
Y S | 1 T __ 0N\
0o — | =1, L; =V,

<
+
u
& b
u

]-; Lz=+l>i!L=l- Lz=_l>s

/

and that they are nondegenerate. (States with principal quantum number

n # 2 are neglected). Since L, = +1 and —1 occur with equal probability
for these states, the expectation value

AATOT BWIVLUE, VaiT Vapv aSsaa = .

is zero. It is imnortant to show

) av =220

<:
Q
Qo
B
B
=
&
[}
w
z
o+
=
o
S
=

re

from L, = +1. Note L, = +1 and L, = —1 are degenerate because V is
an even function of z. Finally, the last term, having the form (2 — y*) =
r?sin’? 6 cos 2¢, in spherical coordinates, is seen to have nonvanishing ma-

trix elements only between L, = +1 and L, = —1. (This is because of
the cos 2 dependence an nd | T. — am \ ~_ imé\ Thug the la tarm in

\P uUt’UlluU AV U wiila luz (114 / A LLULD vViiv I.WIJU VA AlX  BAA 14
has eigenfunctions +r, =|L, = +1> +|L, = —1). The two eigen-

functions +Jr, are separated by an energy difference proportional to (4 — B).
Hence, in the general case, i.e. 4 # B, the functions 4+, and +r_ are non-
degenerate and one may conclude that {L,> =
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24. Defining new variables z =6, + 6, and y = 6, — 6,, one finds that

the Hamiltonian separates:
2 2
H=—24n(Z, - i Bcos y.
\oz2 " 3y?)
Unperturbed eigenfunctions (corresponding t = 0) are
1 (il (imu\ 1
\plm_ctexp(n)exp( [5) )’ ()
&7 \ &/ \ & /
with energy eigenvalues
AR® 1o 2
Elm = 5 (l + m )7
V4
where | and m are integers which are either both even or both odd to guaran-
tnn tha gainclavaliiadnnsaacaa AF 2lae ¢4had 1o
LVOUU Vi1U SI1IIEICY aludullond Ul \’l sy UllAU ID
with j and k arbitrary integers.
(a) Here we treat ¥ = — B cosy as a perturbation, the matrix elements
of which a
_ 2x Zx
A | VImS = —8 (a8 [ 46, cos (8, — 6.)
\ v I r IV"(I/ (2”)2)0 wvl Jo wv‘ NI \vl V"
[tAl 6. 16 t1Am 9. — 0
exp {5 (61 + 6:) + —=— (6, — 6,)¢>
12 2
where
Am — m — m' and Al —=1_10
Iy — IIv nv aviliu -y — Vv UV .

LI |V ImD = _folfm’ — m — 2 1+ S(m' — m 1+ 2)] (2)

qm | YV im) 5 Lom m 2) + olm n -+ 2)j (2)

AAAAAA A Lccd b wertdl £ el as cnncd sl ad i Ll nncier e snsrad Aia a1
To proceca rurvner witn irst-Oraer perturoation tneory, one must aiagonalize

{Im' |V |lm)> with respect to degenerate states, with m’' = m but E,,. = E,,,.
From Eq. (1) one finds that E,, = E,, with m' %= m implies m’

while {I, —m |V |l, m) is nonzero only if m = +1 as seen from Eq. (2). Thus
for m £ 41, the shift AF,, A_<l/,m|V|lm\—ﬂ while for [m| =1 i

...... he t AR, |2
1 1\ i 1\1/, Ara e~ Ona alimas A
|b,.l./:|:|b, 1// aiagonaiizes v a
with AE,, = + B/2. Finally then, to first order in

and energy levels are given by

N n..
bo|

4+Lh magman 4+
v

it respecu

ii

and
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for |m| % 1, while for |[m| = 1 we have

. , i 2N _ ~ Y .
7 (27) |isin 4(6, — 6,)] 12 J
[} Z\71 277

with energies E,., = § B/2 4 (4#*/2)(I* + 1).
(b) For small oscillations |6, — 6,| <1, we expand cosy =~ 1 — y?/2
The Schrédinnnw annatinn wag n +n ho ganarahla: thnig tha anlntian

5\/1 V\iuau‘ull YWD Di1AV YV AL v LY A BUYWI. AV 9 viiuvw viiv ouviwuvivii
is

where [ is an integer. Note that since the oscillations are small (i.e. §, ~ 6,),
it is required that the wave function be singlevalued and take the form

3y2+2y —\FT Ak

which is the equation for a harmonic oscillator of frequency w = (44 B)'/%,
of which the energy eigenvalues are hw(n + %), with » =0,1,... Thus

03272 )
BE.,——B+A"Y | naapype(n+ L),
' 2 \ 2)
‘."+l\ “f\"mﬂ];"n’] A‘"n“:““ﬂ+:n“ﬁ
YWivil 11Ul 111v114Lucsu Ulsclu uiivuviviio
[] — 1 e ‘ﬂ 16 + 6 \\ rr 16 _ 6 N
‘P‘t.n »‘y/2... XP i 2 (U1 2)! (U1 2),

where the 4, are the unperturbed wave functions of a particle in a box.
Here Vo = Fi2wo + F:yxo is the matrix element of V between +Jr, and .
Thus the expectation value of z is given by

[4ro) = 0, which follows from the fact that the ground state

itv. i.e. drg = (1/a) cos (rx/2a) cos (ru/2a).
TV AT/ 7 \ i 7 \ JI 7
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(2) Matrix elements 2y, = (Y |2 |4r,) are real. This follows from choos-

ino real eicenfunctions

iy 1032 CIgC 23S,

Now if z,,7# 0, then Yro =0, and vice versa. This must be true, for if z;, 7% 0,
then the y-dependence of 1Jr, must be cos (wy/2a), and hence y,, = 0. Finally
then (' |z 4> = CF, and (' |y |[4')> = CF; where

=23 Zom

Here

and

- Y.] TTr

26. (a) The total Hamiltonian is

- h? ( 9*
H

? \ . k o
) + 5 (2 + 23) + ez,

~3Z/

. 0
2m\m+a

OV \wvej

Defining new variables &, by

&Lt L _E—=7
A2 T A2

we express the Hamiltonian as

H A2t 2t\ , 1. .., 1.
um(\a VI’2)+?(IC+C)§ +-§(k_6)q )

The exact energy levels are thus given by

E = nho, + nho, + (i\)(wl + w,)
\Z2/

where n; and n, are nositive integers, and
1 & r (=] b
2 (k—c¢) o — (k+c)
w] — ’ wz —
m m

LN M _ac__ X _ o o __a___1 _a°___  __. . .2 _ Ll _ ____ __ __a___1 1 _° O ___ _1°___
\U) llUﬂ:blﬂg 1 asS a pe wurpavioll, we rive uviie UIIPU vurpeua UlgemullbblUI
as

where the U’s are simple harmonic-oscillator wave functions, the energy
levels of which are

Enm. = ho(n, + ns + 1), where w? =

The first cxcited state of energy 2hw is two-fold degenerate, the states cor-
responding to (n,, ny) = (1,0) or (0, 1). The Hamiltonian matrix of the
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perturbation, taken with respect to the unperturbed states, is

'I / a\ ==e
\a

e o~ — 1N TT
,9 WIICIC W —\.I.U|11

Rather than calculate @ by doing an integral (I zU,U,dx), we may write

ML2. 2. cn atmnn Zasla O\ 2 0 Acler 302 1 Mhaeafaceas 4y accaload o e a1
10iS IS SO 1€ (M| |V) F VU Oniy il v = 1. 1NC€reiore uvné Compieveness reia-
i e -— ! N [ - 1
tion L |n)§n| =1 y101 S
01210\ — XN /Dl N\NZa o — /01 11N /1 110\
WV[ZL |V, ld \VI|Z|TL)\TV | X |V, WL |11 |Z |V,
n
Mo smadnie alarant AF 22 snasr ha Aadssnnd i 1. [T Ry s | Rppy 1
10€ MmMauvriX €1iifiiv O1 acaucea iIiI 1

version of the virial theorem, which in this case yields that the expectation
value of the potential energy is one-half the total energy. Thus

1 r 1 A
1 1
Yoo = —pmexp | — = (@* + %) |>
AT L 2
[2 1 . ]
11"10—4/ yePI —=(x —|—_y)|:
L & J
LI
1l’*)l—«/—""""PI 5 @+ ¥y
L L |
with corresponding energies E,, =1, E, , = E,, = 2. The perturbation
Hamiltonian is H' — (822:/9Y(2»2 L 22 The (0 0)level ig shifted hv an amount
A ANALLLAL UNJALAWAL AN A A \v-v Iﬂl\w I y ’. i AN/ \V’ v’ AN/ ¥V VA AW WJidldA VVNA VJ WAL WilLANJAaLA VYV
0 NLININ NN\ N Ller corammncan adoo. o Ao oA 22 . ML /1N o= /AN 1510
\U, v | 11 |U, U/ Y Uy syuuucuy I1Ucr reiiccouioll. 111 \I.U) 1U \Ul.) 1€evels
are degenerate; therefore the 2 X 2 matrix

must be diagonalized. The diagonal elements vanish by symmetry under
reflection ; the off-diagonal elements are each equal to 36/4. After diagonali-
zation, H' has as diagonal elements, 35/4 and —33/4. The perturbation,
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therefore, splits the degenerate levels, whose energies are now

—9 4 39,

E 4 39,
)

o

with corresponding wave functions vr, = (1/a/ 2 )(vro,1 & VYr1,0)-

28. We take as the Hamiltonian of the electron, H = u,Bo,, where pu,
represents the magnetic moment of the electron, and B the magnetic field
strength. In addition, we choose the representation

—
<

-

—

—

(=)

o,

—
—
[_—

o)

S ——

The spin wave function satisfies the equation,

ot ‘M2\1) Ve \— 1/
A and C are to be determined subject to the constraint 4(0) = e, U(U) = 0.
This guarantees that for ¢ = 0 the spin is in the eigenstate S, = 4. The
equatlons of motlon give iA(t) = woBC and iC(t) = w,BA, and the appro-

O = —32e¥ gin (4. B

\V’ L 4% (S22 e \ 0.‘-"[’

(a) (Probability that S, = +-3) = | A(t) |* = cos? (uoBt) = P,,

(hY (Probahilitv that §. — — 1) — ()12 — qin? (4. Rt =

\u’ \‘. lv”w”lllUJ vViiwvwv ”z 7’ I\J\V’ I MALAR \ ouv’ i -9

(c) (Probability that S, = +4) = §

Alternate solution: We know that expectation values of quantum-mechanical
_____ L . a4l . V.1 a2t O ____a° . /L. 1) 4l . ___\
OI)elaaUUIB opcy uvielr ClassiCal cquaulons Ol [ouvon (LAIenioesv s bllUUIUl.Ll)
We therefore have the equation d{S>/dt = {u)> X B, where g = 2u,8 is

the electron magnetic moment. Subject to the initial conditions that
{S.> =1, {8,> =0, and {8,> =0 at time ¢t = 0, this equation has the
3 n

[
i
o
-
N
[~
2 Q
/ .-’

pr es,
P, + P_ =1 with similar expressions for {(S,> and <{S,)>. The solution
obtained in this manner agrees with the previous result.

N
®©
>
=
L m
@
Q
(=
Lo |
(=]
=
E
(=5
=
)
=
@
-
o
<
(=
D"
3 &,
S
<4
=]
—
[
~
@
0,
Q
=
=)
]
&
@
w
)
g
o
=K
Q
8
(=
=
o

~

“sudden approximation” is valid, and t ave function of the bound ‘eiec-
tron remains unchanged during the transformation. If the initial state is
1, Z = 1, the amplitude for finding the clectron in the state n =2,
2 immediately after decay i8 A =dn == 2, Z = 2|n -1, Z = 1).

7/

N
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The normalized states are

In=1,2Z=1) = (ma®)"exp(=T),
\a/
and
. 1 2 o 12l + '\ /e
In=124=2)=@a) "1 —_)e

1 poo Y
4=—| 47!'T2dr(l—L)e—27/a__%
ma’ Jo \ .

The probability is given by P = |
30. Let the initial B field define the z-axis; the final B field, the z’-axis.
In the approximation that the change in field occurs in negligible time,
the wave functions just before and just after the change must be equal.

Tn;f;a“‘r aln — (1Y wit roanant tn tha 7_.avia nwaovar in tha haciea with T |
AlLiiAViViL \F \0” YYyavia IVQPUVU VU vViiv ~Twwaaw AAVJIYVUV VAL 111 ViIIUVU NJOIDIAD YYavid vz',
diagonal
. { cos ($[2)
Y= sin a2y
\ o111 \\l},‘l’l
This result is obtained by requiring that +r be an eigenstate of &-fi, where
i points in the 2-direction; i.e., one solves
[ cos ¢ _Sln¢\1if — v
\\—si.. ¢ —cos 4)}
The probabilities for finding mj = § or m; = —} are, respectively, cos? (¢/2)
nd sin? (¢/2); i.e., 2 and }.
TIi=77 7 4 a
A leso forma} approac ia +n malra 11aa Af tha fant that immadiatalyr aféan
PPIUG‘\JII A0 VU 111NV Uuov vl vilv 10uvv viioav 1Lniiavuiavuol aiuvvl
the field is applied, the expectation value of §-2Z’ is unchanged, and is given
by
J atw Apt e N n/.nrl.\_l I_P+_P_
Yld-2 |y =cospy|d:|y) =5 89 = ———
with P, + P_ = 1. Here P,, P_ are the probabilities of finding m; = 44

along the z’-axis. Thus:

.csl [
P, =2TC%8®_ 22,
+ Z )
1 —cos¢ . s P
P_= ) = Sin F'
&~ d

31. Conservation of angular momentum wouild require that the emitted
photon have total angular momentum zero. Now a photon has spin 1 (des-
cribed by the polarization vector e) and therefore must be in an (L = 1)-
state (described by its momentum vector k) in order to form a J = O state.
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of at least two photons. A well-known example of a forbidden zero-zero
transition occurs in the hydrogen-like atom. The transition from the 28-state

to the grvl__nd state is forbidden via sin gle phgt.gn emission ; however, the

Aanaxsr mmaxsr nnanaad wia $vwa mnhatanma Mha $4ora nhAadAana ann antisalley lhann

uc\lay l..l.la;y Pl VOUU viaa VWU Plluuum. 411U vwuU PIIUUUI 11a VO abuually VCTCTI1
' ) 'R ) o0y

seen in coincidence in the decay of the 2S-state of singly ionized helium
[M. Lipeles, et al., Phys. Rev. Letters 15, 690 (1965)].

Another example of a zero-zero transition proceeding, with the emission
of two h_ tons, is the decay n° — o 4+ o
“'hic is larg
element goes to zero at least as fast as (B/A)
wavelength of the emitted radiation and R is a typical radlus oi the emitting
system. This can be seen from a multipole expansion of the transition matrix

element { f| etker Je(r)- €|1>, where j.(r) is the electromagnetic current of the

CICIICILY, 199 188 JIS QW

Qo my. _ a___ ___*a2°___ ___2_ *__ ____a_ __1 _a°___ a2 _____ °*_ __°_____ 1 __
o9&, 1I1€ LraIliSivioll rauve 11l pe vuropavlioll Uﬂe()ly 18 1VEIl Dy
I' = 2x | H, |*? X (phase space)
] J i (Y o r 44

where H' is the perturbation Hamiltonian. For electromagnetic processes,

the perturbing Hamiltonian is obtained by the principle of minimal elec-
trgw_-_n_a,.gqe,,lc coupling {Amnére s annfhean\ p—p— pA/r Then the

t T uplir 1e8is) the
Uﬂmll‘ﬂ“:ﬂ'\ 1Q
4l 11vuilliall 1D
e
= S — — (n . A 4 «mn)
H = H, p-A+A.p)
2
don Laocd el 2m Ton 4hhn A~ ..,-'.I'-..-.LA mammacantadioan m i tha ana diamd Ao dan
vO II'SU Oraer imn €. in vné © LUlIla Lo L PI. STllvavivil, 1S UILC 51 WUICI1U UPU[U&UUI.
One may choose a gauge for A in which div A = 0; hence the perturbing

@ '-‘: C>

potential may be taken a
initial state

H' = —(e/mc)(A - p). ThlS is taken between the
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of H;; is H ., ~ Z%?, In addition

33. The spherical square well may be treated as a one-dimensional square
well, provided the potential is replaced by the effective potential V(r) =

— Vo + (B?*/2mr?) L(L 4 1) inside the well, and V(r) = (k*/2mr®) L(L 4 1)
Arrtarida Mha $4mancmicoinn fantn 4ha matin ~AF 4ha Ao Anrdeida oamd ot da
vuuvsiuc. 1110 ulalldlilidsi iavuvul, VIIU 1auvlv Ul uviIC 11uaAa ouuvsiuc aliilu 1isiuc

' 04 rdd

1
the well, is given, in WKB-approximation, as

/ "n \ 172 2 [ k(z)d %212
_ pi - z)dx o _ .
T=\sv7—7) ¢! , where -— =V — E;
\Ls T~ Vo/ T
thus,
pe(_ B\ o g [LL+1) _ 2mE)"
=\zx7v,) P\ )Y T —wm | |
N\ A 1 v o/ \ v W | . 4 LAd J ’
Here, b is the point at which the radicand vanishes. Each time the particle,
which may be pictured as bouncing back and forth inside the well, strikes
""\n 1"0]] +"\A '\nnl\nl\;l;"tv I\r Aﬂnﬂ“;'\n 1Q m r"l‘ln “ﬂ"+;ﬂln k;*ﬂ +l‘\l\ 'l"ﬂ]] Inl")ﬂ —_—
viiv yvyvoii, ViU PLUUQUIIIUJ Vi TUduvay llls a0 L 4 11T Pal viviv 111Ud VIIU vyYZwail \Ul‘lw
[(2/m)(E + V,)]'/*/2a) times/sec, so
1 NE + Vo)I'2
=" omar | T
i L &Iiw ]

Upon change of variables the integral in the expression for 7' becomes

""/m ri wz(.—lg — 1\%, where y = 22"1,—1170,2"“/2.

The exact integration is somewhat involved; however, in the case v < 1,
one has

/D 2\1/2(52T 1T | W\\VI(L+D)
—_— & ) {IO AN\ T J.’ } t ’ .
T = ( ol .. 21
\ B/ \ 2ma’E )
34. The second-order perturbation amplitude for the transition is
Mo S fle cnl T —1 o N/T — 1 am le .mld\
i X 2, JI€1 P =1, ) s = 1,TM;|€°P|?)
m,
Mha intanantian Hamilbanian g +talran aga H — __ oA .mYlans and +tha Ainala
4 11T uluvdiavvivil dAavilliivulliall 1S vancilii as 41 — \cn l"l Hnmw, allua viio ulPUlU
a1 1 h Il 4 ) & n 1 a1

approximation is used. Both initial and final states have L = 0, while the
only intermediate state contributing has L = 1. As the matrix clements
{L|p|0> are zero unless L = 1, the sum may be extended over a complete
set of intermediate states. That is, M o (f| (€, - p)(€,-p)|+>. However the
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initial and final states (L = 0) are 2.0)

q‘nhpnnn"v qvmmpfrln S0

prAACRAVGEAL Y Sy 2212230 01IY, X
.

The rate I'is obtained by summing 4
| Asr192 S T . S T A4 YR | / T
|44 | Oover tne nnal Spln sStates OI une / J - L’
- > » "2
photons:
| V]
F'ece Y le-6l 2
Polarizations
By referring to the figure, one sees that I' oc 1 + cos® ¢.
Annthan uwrarr Af Ahtaining tha anin atrrn 1a ¢4 natan ¢hat
DALV VILNTL way Ul vuvaiill ls vIlCO DPI 1 OWUuill I VU 11UUuVT viiav
2 k
< _(a) _(a) o MUy 12 2 1 O o\
blei = 0Oyj kz ¢, = 1,4,9)
a=1

That this is so may be seen from the fact that the sum transforms like a
second-rank tensor and is therefore equal to

A D 1 DI1. 1.
A0y + DKK;.

The coefficients 4 and B are determined by the transversality condition

k.e/® = 0, and the normalization of €, that is | €|* = 1. The spin sum is thus
P 3 ¥ @@ 0.8 — 5 (8 _ kb s kaikss)
L d Lud T11 T1j ©2i ©2j d \VU —kf—}\ul,} —kﬁ_/
1) aB 7] 1 2
(kl ° '-'-2)2 2
=1+ L2 =14 cos’ ¢
LILT]
) b PN T4\ __ (DD N\ 11 1 nanc?2 AV s han W71 AN ia manmaliead an +hat
d14CI11UC 1 44 \l{)’ _—_ \a/o G’\.l T VUD l{)’ WI1CI11 144 \l‘)’ n 1UI 111vi 1 LTU [~10) viia v
X wxys 2y 22 -
JoW(@)ap =1
35. The first-order Born-approximation scattering amplitude is
f(as “;’)) = _2mh2J (!.)eiK rd.'i!.,
.4
£10 A\ — ~ O rkl- ™ \AtK°rlJ3- — ~ ¢ nix'r'
J\V’w’_lﬂ?‘,u\l lt’c wn—w?c
Y o VORI, I TSN SRR 1 RS, I 1 IR R R . R (I Py S DI I R
UVIIC ODLAIlILS 1A XIINuIIl SCauvucril WIICI1 LIIC COILLIIDUuLvIons 110111 eacllil 1auvuvice
point are in phase. We choose a lattice point r; = d(n,X + n,§ + n;2) where
the n, are integers, and this condition becomes
Jw £ _ o_1. AW & _ Dennn s am JIW & _ Denn
WIL*A — 4y, u,n°y — &ani, allu un“aoa — ani,
where (I, m, n) are integers (the so-called Miller indices). Thus K is normal
to t-he set of !att ce planes defined by (Imn) (see the figure on p. 174). The
...... An AFf L ¢hhnn cadiafina
UuvT Ul 1y UIICI11I savidiicd

Kd — 2x(1* + m?® | a?)'2 (1)
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Eq. (1) becomes ¥d sin § = #(l* + m* + n’
set

, wnl
for reflection from a set of planes of spacing d(i* + m? + n?)~1/2

36.
)
= G WV — PVt (1)
and
vV.J— P vy N 2a[p* ] ¢
V-J—2mz.|_1p' Vip — AV~ |, (2)
but
_h_zvz [} _i_ I}T _ i'l&f) ] — i% l3a\
and
_h_z\'IZ,_l-* LAV L s \al %k — _;a"_l"*i {91\
2mv L4 \Vr T oryyy — ] T \00)
Mulitiply (3a) by 4* and (3b) by 4r, and subtract. Then (2) becomes

2 ) + V-3 = =2V

Thus particles are being absorbed at the rate (2/A)Vyr*yr per unit volume.
By definition of the absorption cross section, this must equal Novyr*4,

where N is the ﬂpnmf\r of absorbers. Thus ¢ = _‘)_V‘/ﬁNv
o  Qoialacainal ammas derations show that the incident varticle interacts
Dé. ODOCLHILILIASIICAl UVLUIISIUCLIAVIVILY SIIUW uilau LuIlC 11101uci) P l JAC 111LCravuvd

with the sphere for I << I, = Zma/\; higher partial waves do not interact
with the sphere. Thus 8, = 0 when! > I,, and for these partial waves, 5, = 1;
i.e. there is no scattering because there is no interaction. However, for

I < l;, the partial waves are simply removed from the beam. This means
ar — N Fanl -1 Mha gnattaning amnlitinda a0 +than
ll — VUV 1UlL ! ~ '/0. 4 I1T duauvuvl l 15 aAllplivuuvg 1D uilvll
1 &
£10N €Y /07 1 W\AD /___ D\
JWw) = oL L \& 1) (COBU).
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The cross section for elastic scattering is

_ (g4

LS

(A
\v

A

for large l,. The total cross section is obtained from the optical theorem:

Im f(0) = kot

4n
analling that Planc A — 1\ — 1 wo nhtain + — Dwa2 Mha roantinn nrnaa
HECaNINE widv £ (OB U = 1 = i1, WO O0valll ¢y =— 4@ A€ réaciion Cross
section 1is then
0, = 0, — 0, = ma’.
20 MLa agermmnadnery AF dha smnahlame crireavnctes tha avmanginns  alafae O
g90. 4 11T Byuuut;ul vl VIl PlUUlUm aus TIUDS LVI1C UAPU)IIEIUII l*"\" U} _
-\ FTY s AT 2 Ny 1
3 U,(r)P,(cos §), where
1
oy o 2 ey 4 e _ WL D]
Ultr) + =Uir) + |8 — 25| Uy(r) = (r > a),
r L T J
and 2 — ‘)mml 2 Tho mnat adanaral anliitinn ia
CWAANA WV -l ¥y u,'v A LAV ALAVUOV évllvlwl OUVAWM VAVAL 1V

Ui(r) = A,[cos 8,j,(kr) — sin 8,n,(kr)],

S

where the spherical Bessel functions are all obtained from the recursion
relation and from the solutions for ! = 0:

y _ Sin (kr) y_ _ cos (kr)
¢ kr ! kr

Since U,(a) = 0, tan 8, = j,(ka)/n.(ka) gives the phase shifts. As we are told
to neglect D-waves, only two phase shifts need be computed:

Lea
7

a {
JOo\

Oy = tan &, = —tan (ka)

: ka — tan (ka) (ka)®
o) ~ tan 8, = T 1 Tt (s~ =
1 T ”w vall \W’ 9

]
)
p—r— e
e
—

a=j'a’.ﬁd0=47ra’(1———!—(ka)’—i— )
, d 3
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case (a) we are dealing with low-energy scattering for which the S-
inates. The radial wave function I — sin ”M' -+ S )/ s
1.

aNsaa Daza

| cnatdan -——

)

)

)
> Fhy o

S t 5 thus 80 — ka. The scatter i"g alup
educes to f(§) = —a, and the total cross section ¢ = | d{}|f
In case (b) we are dealing with high-energy scattering and all partial

waves contribute. Since classically all particles having impact parameter

greater than a are unaffected, one expects §; = 0 for Ih > hka. However,
dh~Acn o Alaa £Aam smrhinlh 132 - 3w wrnld ha alisninmadad Fnarm +dha Lasensemnd
VI1USC Pul Ul\/lcﬂ 1UL ILIUIL VIV =~ b w 11 VT Tlllliliilauvou 11vulll vIlIO JU' wwirw

direction (classically speaking). This intuitive classical argument suggests
that one take

)
£ (1)
)

for purposes of calculation in the forward direciton (only). Actually these
arguments can be made more rigorous, and in so doing we show that for
scattering on a hard (totally reflecting) sphere, we obtain a diffraction peak
in both the forward and backward directions, while for a black (totally ab-

anrhina) anhara a naalr 16 nhtainad Anly in +h ~ 1rantiAn
DUL Ullls’ DPIIULU, (7] Pvan A0 UNuvviiivu UIAIJ 11k vil A4AUVUL YV QU AUV ViIUVLL.
Using the results of the last section, we calculate the phase shifts §, from
the condition
U,a) = cos §,j,(ka) — sin §,n,(ka) = 0 (2)
For ka >> 1 we make use of asymptotic expansions; thus
(a) forl>> ka > 1, one has j,(ka) ~ 0 and n,(ka) > 1, and Eq. (2) is solved
\*@¥7 VAN 4 { XAN ] 77 ’ M \*=) ~ e
her dalricne & _ N in +thiga ncan
Uy Lvanil Ul — VU 111 VI1ID uvadT
(b) for ka > I, one has
( I H ( I
ju~-—sin(ka — =) and g ~ —+=cos(ka — )
\ 2/ ! a \ 2/

-D'n (O\ 1a than anlvad hyy talrinag _ L 11 l©
]_J\.i- \‘l’ 1D VIlUll dulivvou UJ ua:nuls v —~ nw T v , d
Thus a somewhat more rigorous approach than our original one yields

o~
»
N

-2i8 Jl}'
[(—1)te2tka for ka >>1

This expression for ¢** is to be substituted in the formula for the scattering
amplitude,

] co

f6) = o 3 (21 + 1)(e — 1)Py(cos )
LUK =0

— ]- g ? ' 1\1 218, \ D s \

= 555 & (2 + 1) — 1) Py(cos 6)

Near the forward direction P,(cos @) ~ 1 for all /, and it makes little dif-
ference whether onc uses €% = 0 or (—1)e~**2  hecause the latter choice
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alternates in sign, thus making its contribution neglible compared to the
sum V"“ l‘)l + l\ Thus, for either choice

o

f(6) ~ ,Lf xdx P, (cos 6§),
kJ

and when one uses the annroximation. P.(cos A) = J.(nf). becomes
and when one uses the approximation, £ ,(cos (/) Jo(nl), becomes
> ka
proyn ~ ¥ [ a1 oy Y110y
J\w) = T.’o TaxJo\2V) = 7"1\"”’"}

Thus do/dS2 = | f|* has the approximate value a*k* in the forward direction
and decreases rapidly in the angular region 0 < 6 < 1/ka.
Consider now the backward direction. For a black sphere, ¢** ~ 0 for

] < < L and the qeatterine amnlitnnde ig
v w W’ WAA\A ViiV vauuvl.lls wmt’l‘uuuv an
l ka
£ ION <Y /07 1 AINTD s O\
Jol0) — _7‘: lz‘o (&t + 1)L,(COS V)

However, for 6 ~ w one has P/(—1) = (—1)!, and alternate terms in the
sum tend to cancel, giving no peak in the backward direction. However,
for a hard sphere we have shown that % ~ (— 1\10‘2”‘“ thus, in the back-

‘R

“In"l] AI"A’I : Va2l ey ey [2 Yl
walu uiivvuvvivli, Vil 11ad
e-—ztka ka
N 1NN A ul 0% ‘l [ 1 \ TN 1 J & - N
wo) = — YA ’Z,n( +— 1 1 COS P), where ¢ = T — U.

Hence for a hard sphere one obtains a diffraction pattern of the same size
and shape in both the forward and backward directions.

40, The wave equation inside the well is
2 2

_ h* d "1" LAV . a\Sla\als — Fala {1\
om dzz | \TOIONIY = &Y, 1)

1 1 11

Willl€e ouusSiae tne well,
R? d*r (0
“om da:2 ”‘f" <)

We use the parameter (V,a) with dimensions energy-times-length to de-
scribe the strength of the potential. Because the introduction of a delta-
function in the wave equation makes a direct solution of (1) difficult, we

4

rat nliminnvo the Aelfa rom (1) hyv an inteoration Weae inteorate (1) aver
84UV ViAlAiililriWVUWV a A ? A% AL A3 \l, ”J Wil JIIUUELWUIVII- Yy v ll.vvsl wvw \l’ AV B A V) §
£ _ oA 1 e Al 1_a N YRy Lo ___
z, from —e to +e¢, and then let e — 0. We have
WY =] o o B[ wmds 0. (@)
—_— V]
5 m! r d; I 0 “I J e ‘\P\
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Outside the well, the wave function is

P(r) = a'?e** forz >0

_— ~1/2 _+azx A Y

=a Iorz < v,
normalized to Jf+°° |4fr|* dz = 1. Substituting this solution in (1') relates

—o0

VR Y Y RN Y Ry s IR anal X7 NI1E2 Mlines O\ e 4L L1 _dd
L0 ULUILC PUUU ivldal Sul 115011, —_ Ib\ 4 o(l;}llb 4I11CI1 (&) EIVUB UIIC DOUILlU-Svauve
energy (for ¥V, attractive)

—_— — Ty — —m YY) .

V<y/(] &Y

o
I
|
[\
§
3
a
C

drogen atom (radial part).
To solve the scattering problem, we introduce, for x < 0, an incident

wave and a reflected wave, while for z > 0 we have a transmitted wave.
Mhao
A ILUD
Y(xz < 0) = e*= 4 Re =,
,’.;Im ~ N\ — Myikx
l'l\;b ~ U’ — AL T B
Substituting into (1’), with the condition 4wz — 07) = sz — 0*) which
naArITITAG 1 | D _m wa nhtain _ 2,1 D\ Inna I (T _~\1 L PY — N fonm
l.U\.lull.UB i T AV — L ’ wwv U vaviili \lll UW.I.U’I"(J —|— \' ow,\.l. T.l!” — U’ RV ing
which
D _ _].
i — 0 >
(1 — Rh*k/mV qa)
PR |
allu
_ 1 .
3 - 0 ;
(1 + vmV ja/kh?)
my. . 0 _ 21 °__a____°a__ °* a1 ___ L ___
111€ reliiecilea mwnsmy IS unerei1ore
1 D12 l
| £v ]

~ 1+ (kmVoa)

while the transmitted intensity is

Ed
FS

As the strength of the potential well increases relative to the energ:
h i

E = h*k?|2m of the incident beam, the intensity of the reflected beam ap-
i 4 J r

Pl Uavilud uliiivy. UVldl vilv vvilvl l1lioiia, an ‘ | 4 ow’ T 7 U,y VIIU Ui alidllliddivill vuvuildll-

cient approaches unity, i.e. the potential has no effect, as expected. It is

interesting to note that | R| and | T'| do not depend on the sign of ¥V, and
that the pole in R or T at k = —imV,a/h® yields the bound-state energy
E = KK*|2m = —m(V.a)?/2h*. Also sec Problem (11-21).
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ace. The wave e

Q
e §

“om dzf

Upon multiplying by e*?*/* and integrating over all , we obtain, assuming
that Jr(z) and dir(z)/dx — 0 as | 2| — oo in the integration by parts for the
first term, the wave equation in momentum space

2m~r [hadh o = ’
where
dp)= | A(x)er**de
J-o
Thus
Doy U alafne — OV Do T pualafne — N
¢(p) — _HII(I' ow:‘: \d/ U’ p— _HII'I' OWlP \ub U,,
an2 0. TV - A2 1 0. TIV
P — &L P T &Iy
where W = —E = |E| > 0. We now obtain
1 ~ oo _ F +oo 7, e—iﬁi/h
Yr(z) = -— ( d(p)e ipz/n dp = — Vearnlr(z = 0) ( (zp .
2nh J - nh Jowp? + 2mW
X
Complex p plane
X
The integration may be performed in the complex plane, closing the contour
T ____ __ 1 ___ ~ n -1 _1____ __1 ___ - N X7 L a_°__
Cl1I0OW whnein r ~ v, ana aoove Nne1n £ << V. vve opualil
in(x) = _mvea”‘!’(z — O) e—zZVImWe(z)/h
w( ) ”» o ‘)ml‘-fr ’
v iv N &rivvy

where e(x) = 1(—1) when 2 > 0 (< 0). The requirement that {Jr(z — 0*) =
Yr(z — 07) = 4o(x = 0) gives a self-consistency condition
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In a reversible, infinitesimal change of state,

using (1). To establish (3),

2.
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5. If the two adiabats intersect, they may be joined by an 1sotherm Now
consider a cycle along the closed curve The work done 18 equal to the enclosed
A haat 20 ahonnhad alaeme ¢4ha condhames Moo ¢4 n Aeral Loam~nelc Lasd
u 1ica v Id aiudulL vcu alu 5 LILICT 1IDdULIICLIIL 1L 1I1IUd uilo DyUl USOUI DS 11Icav

g1

e
and does work, without giving off any heat The efficiency o
18 one hundred percent 1n violation of the Second Law of Thermodynamics

<

6. (a) We have

(273 A (373 aA
S=Cpln|z5z) — 55 +CpIn (5 ) 4+ 55 = 0,
\&LJI0/ Lo \&LJI0/ BY D]
from which n = 0 1 mole
\U’ 4 11T 110GV LTIV YVYCOWU 11Vlll viLUD 1110V 11V10 1D

~)(25 deg) + 14382 — 1888 cal,

mole

\._,/

Q. = Cp AT, 4+ n\ = 2320 cal

=
=

e work done by the refrigerator 1s @, — @, = 430 cal

7. Since the final entropy does not depend on how the final state 1s reached

1t will be calculated as if 1t were reached 1sobarically This 18 possible because

the final nressure 18 P — P Than for cach aide gsonaratelv
PI.UDDU.I.U a0 4 f L -l-u\/u, 4AVULI vvvii Diwuav DUPWIWWIJ,
TdS = CpdT
Upx
aenee
Tf Tf
A8, = Cplog £ and AS; = Cplog =t -
i 42
But T, = (T, + T,)/2 and Cp = (5/2) Nk Therefore

AS = AS, + A8, = 3 Nk log (2L
4 \AL 14 9/

which vanishes if 7', = T, as 1t should

8. (a) Mechamcal equilibrium requires V,/V;=1/3att =0and V,/V;=1
att = oo

Il\\ 'T‘ o v\n] +amnaratiinra 1a m ’I‘ — ‘)m Tl\n mMmrAaANnacg 19 lanl\nwln fl'\nrn;
\U’ 4 11V 111iovl UUI.I..I.PUI.G!U“I.U 10 L 4 — 4A B — &4i A LAV leV\/DD AUV IDV WL IVy viivi v
o~ m 10 Y /m _1 _ A __a T__a_ Y PR I R,
ore T dS = Upal ior each compartment Integrating, one obtains
AS, = Cplog (2Le) and AS;=C,lo (21.)
«=Crig\T,) 2= "r%8\3T,)
The total entropy change 18 thus
o . Ollog(8) - BR log (&),
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(¢) If the transfer had been reversible, we would have had

fCVdT (dV 0

AS=0, or J .l.le
or
oot TN o (Vo) o
FEN\T, T,/ \V, Vi)

Plugging in V,= (V,+ V5)/2, Vo= V,[2, V5= 3V,/2, one obtams
m2 __ 9m2/4\-R/Cv __ /mM274\-2/3 _
Ly = olo\z) = odol3)
The amount of useful work possible would have been
W=U—U,=C,4T, — 2T,) = 3R2T, — Ty).

9. In a free expansion, there is no heat exchange with the outside universe,
and no work is done. Hence dU = 0. But

av = (2YY ar + (2Y) v = ¢, a1 + %4V
\ol')v \odV/r &
l[aco Praohlem (7-9\1 Hance
LOUT L SURATAL T &) . 2ATALT
dr=—(2), @r<o, o T,=T74+(L-Ll)e.
\o,v¢): ! ’ \7,  7V,)C,

A free expansion is not a reversible process; to compute the change in en-
tropy, one must find a reversible process connecting the initial and final
states. Then one computes AS for this process; the result is mdependent
of the process, as dS is an exact differential. A convenie

of {a) axnanginn af tha cas at aongtant tammnaratnra ho fina alhime
Vi \al’ UAtlaluDlUll. Vi viiv 5“’0 v vviiovwiiv U\/LLI.PUL avuirv v v ALl viuuiyv )
then (b) cooling at constant volume, to the final temperature.

v {(9U)aV), + PV | (™ CydT
- T ), T

1 hd i -

the first term contributing only during the expansion, the second only dur-
ing the cooling.

Inserting P= RT/(V — b) — a/V? and (2U[2V); = a/V? in the first
term, we have
a8=c,n Ty R {Ve=bl < R,
H=U-+ PV and AH = AU + A(PV)
However, AU = 0; hence
AJL=1271—P|V|'-"§»’R(T2—Tl)=(i_l_\ a
\v, V./C,

0. The process described is throttling, in which the enthalpy,
!
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is H, = U, + P,V. If, in the final state, a fraction, z, is converted to steam
at the boiling noint of water 7. — 100°C, then the final pnﬂmlnv g given bv

a amaa - a
g pomnt of water 1, then tnhe al envnal s given by

H=[U +C(T,— T) + PV] + zL.

«r ~f 'I AF swratoan at P — 1 atm

ne inrs rm in brackets is the enth Py Of 1 gm OI WaIer av £ ¢ — 1 avil
and T; = 100°C. The last term is the enthalpy change upon a change of
phase of x gm. Here L is the latent heat of vaporization. Thus

which, combined with the ideal gas equation, yields

T, P,
AS; = (Cy + R)log 7= — Rlog ‘T)L
The entropy change upon liquefving is AS, = —L|T, However,

(AS), + (AS\ =0 hv h chps is; thus

\N=—"7IC \NT— 7

(Cv+R)/R
Pl;Pf(ﬁ\ exp( L \=lvv9v-um.
\T,) \RT,)

12. Suppose that the center of the compression at any time has a higher
temperature by AT than the center of dilation. These points are separated
Ler o Aigdarmnan ) /O <2/ ) RPN 1g +ha srrawralamadl AL ALl o Acai bl ML nn 3n d3aan
Uy a uIsSvallvo I"I" WIICLCO I\a N LIIC WaVvVCOICIIE U1l Ul UIITU UBU11IaLVIVIL. 4 11TI1 111 U1
7/2 (where 7 is the period) one has approximately

[Heat flow f ¢ to valley] — K(2T)4(Z)

[ ow from crest to valley] = K| )4(5-)»

Nivj/ \ & 7
MTant Anwur moannaanryr +n matan fomnanatiinae her AT 4 A/ A‘ \I'Y AMmM
L.l.anl 11V ATVUDDdaVL i\v) aidT UULI..IPUI.GIU | § Uy H..l] _— ﬂ\?}U L .

LY R | 1

Oscillations tend to be isothermal if the heat flow is sufficient to equalize
the temperature in time 7/2. Thus

KA’T >> A pMJ (isothermal condition)
or in terms of the frequency f=1 /'r,
2K
f < 2
PUI\:

However, the frequency and wavelength are related by fA = Yo /p. Thus



(=]
Q0
o

THERMODYNAMICS—SOLUTIONS

the above relation may be written, after eliminating A,

3> Y0 _ 5 101 gec.
2k
13. Let n, and n, be the concentration of CO in the first and second vessels,
respectively. The current of CO from the first to the second vessel is then
7 — D — n,)A :
L

which must equal — V(dn,/dt). However, n, 4+ n, = n is constant, since the
total amount of CO is conserved. Thus,

(22, 4 24
dt \LV ) LYy
ML~ calecdine 4~ 2l Arsradiam wridbh 0 N _ a2 a1l WD) 2nkd:alley 500 4 £anad
4 I1C SJuluuvivIil VLU LIS Uquauuu wilvuil Il/]\U’ — I \ai1 vv llllblﬂrlly 111 VUI1T 1113V
vessel) is ’
_ My  _oaDT/IV7
n, = ?11 + € j,
and since the partial pressure is proportional to the concentration,
P= &{l + e—urn‘/z;—r}
= )
14. The heat flow equation V-H + Cp (dT'/ot) = 0, with H = —KVT, has
the spherically symmetric solution for ¢ > 0,
—atriq: Sin (n77 [ R) . — (°
T(r,t) = 2 Age — 7, with T(R,t) = 0°C,
T

T(r,0) =T, = 100°C forr < R.

Thus 3, 4, sin (exr/R) = Tyr, and from the orthogonality relations

(B nrr . jur Osn
| drsin = sin{s- = 2,
Jo In Iy V4
one finds
2T0 rR . %72’?’ +]2T0‘.v
A, ==\ drrsin & = (—1)"""'—=
i Jo in V%
Therefore
T(r,t) = 2TR 5 (=)™ X nirlat) sin TF
(r,8) = r -Z! n exp (—n'r’al) R

and T(0,¢t) =2T, 5., (—1)"*' exp (—n’x? at). When ¢ = 15 min, x’at =
2.85 x (900)/(20)* 4.18. It is th(-rcforc a good approximation to keep
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v

only the first term in the sum

3 8 = % 8§ 8 < § ¢
| 2 > @
Y - w
o 'l , -
mf B = = (<
! m(
. ® ..m s Q
- S @® 2
g & N =
= == » O
: el S =8
(&) . & & = ¢ ~°
- NS o & = = D o 2
! ) S |
o ___C s £ T = TSR ) o
@ -~ -~ N 2 —~ -~ -~
I o & - = = . 3 FES 3 ¢ 3 Y
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Thus we have

Go — 6_20“ _ t’) i‘dke—k'a’(t—t')ﬂk(r—r')
T -y

o
<

aﬂ(t _ tl)e—(r—r')’ﬂa'(t—t') !

Aar(t —t')

and if G is given by (method of images in electrostatics)

o tEt'\EfJ,l‘)p=m_m' i __ ¥
’ ’ Uo\ﬂ.l.v I "v v

)
’» .
Eqgs. (2) through (4) will be satisfied in the region 7, ¥ > R. Finally then

oG (r — R)6(t —t') [ (r— R}
Fw(r t R ) = —= Lexp { — 721,
oR 2a~/ 7 (8 —t')** L 4a’(¢ —1t))
and tha tamnerature 14 oiven hv
WiA\A Viiv vvmru&wvmv AN 6‘ ¥V VAL UJ
1,-(r—R)/dat(t—t’
Tir,t) = Ty + BT = To)(r — R) tdt'e T7HV00
2ara/ ® Jo T =" :
which can be simplified by a change of variables to read
2R(T;, — T) r~ —z?
T(r,t)=T, + — | dre™*.
™~ 7T J (r—R)2ati

(b) In the limit as ¢ — oo, the integral approaches

‘-mdxe_x, — /\/7t .

Jo 2
4. M . m . /m M A D\ o wzirmizld L nocemandad Lonn o 42 L1
viius 4 —> 4 g T \4 1 — 4 Q)KRIT), a3 wouilu v ULPUUUUU 11011 & SvaulC PIUUIULLI
with the boundary conditions T'(R) = T, and T (o0) = T,.

/3(1'/7\ /3P\
( nrr) = T(ﬁ) - P
\oV/r \oT /v
The pressure is given by P = E/3. Hence
(2E)
A —— R
(o) M1y ana (22) —F
\oT /v 3 \oV/r
Substituting these relations in the above equation yields 4E/T = 9E/[2T
mL-:_ L__ __.1_.°__ TN 1./M4
LIS 11asS So1uuvlVIl &y =— K1~

Alternate solution: Consider an infinitesimal Carnot cycle operating on t
infinitesi i dP = dE|[3. The work do
w

e

©
o]
ot
o]
o]
o
<
=
©
o
2
w
3
©
)
[}
i
[}
e
[

nhoton cag. T , g C ne
t’llvvvll SWU A AA & ALLLA. e ~aa t’ & ’ - AL AANS
e dlin wrmliiins mcmalocod o dbha DY clasma e 4 ADNITN _ IT 179
I3 Ll oluaIc clciuscu 111 v 4y -plailc, Ul = \uL p\ay ) — uno . ayjo.
The heat adsorbed is Q = EdV + PdV = (4E/3) dV. The efficiency of the
engine is
_ W _dE_dT
T=Q 3™ T



This has solution E = k7T". The equating of » to d7T'/T follows, since all
reversible heat engines have efficiency d7'/T. The constant cannot be ob-
dotonnd Lforan s T st T4 o hn aalacladad o oo o d oA at ]
valilcu 110UIIl vIcImmou ylialinivos. 1v 1 D Calvulaiu 110iIiI11 quu. lvulll-svavisvical

. It ca
mechanics; alternatively, it can be related to
the Stefan-Boltzmann constant o. Imagine

¢

a small hole in the cavitv, from which
energy is emitted. The energy flux is — T
P—dP T—dT
(cE) _ (ckT*) _ W=oT
4 4
from which k = 40/c. Y

17. The power absorbed by the satellite is (47 R*cT5)(nr*/47 D?). The power
it radiates is ¢7"-4xr®. This gives an equilibrium temperature determined
by T = TiR*/4D* = a’Ti/4. The data in the problem give 7' = 288°K.

18. The probability of observing a magnetic-moment density between
M and (M 4 dM) is proportional to dM e~4**. Thus the most probable
magnetization M, is the one for which 4(M, T') has a minimum as a function

of M. In addition, when one neglects the effects of fluctuations, the average
w\ﬁ““l\‘l"ﬂ‘;’\“
NnagicviZavioil,
7 f°° IAL AN _4_/@/{'“ ImL  —AkT 2R
M= dM Me ™ [| dM e ™, (1)
J 0 J 0

is equal to M,. This is because the distribution function e~4*7 is large only

in the vicinity of M,. From the condition that A(M, T') be a minimum,

ong ﬁnﬂﬂ

NJAAU Aaiilass

Z@r.—m| for T<T,
M 0 — !L2B J
I 1) far m-m
[} v aVvL L 7 A ¢.
To obtain an estimate of the effect fluctuations have on the calculation
f M, we consider the difference ¥ — M, for the two cases (a) T < T,
-1 LN M - m
and (b) 1. < 1

r kT 12 ~ 172
M=Mo+x|m| ’ where Mo—inn(T——T)l
Lea(L'e — 1) ]
ml\f\"\ I\v'\ﬂ“l]"\” A ’ M m\ nl\n“" + o "n]l‘n M NnmMao “Aﬂ
inen, expanaing A\, 4 ) aoouv ule vaiue. iy, Oone inas

with
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With this new variable, one finds from Eq. (1),
. e r“”7 rdx e—(z’+z'/8+z‘/48')
M — M, _ J-p
MO R rw |y o—(Z2+23/B+x4/4B?)
J_n
Rvaoct avalnatinn nf thocoe intaorala aa a fiimnatinn nf R ia nnt nnacihla nur_
AdOAWVUY UVV WLIWUWWVIVLIL VUl ViiUVOVU Jxxvusxuuc WD W AWULLIVVUVIVIAL VLl 4 1D 11UV PUDBI AV AALUIYY
o _ 4l _ 1 ___°*s D~ 1 - L oY ___ a2 1 * L VA » JIVE IR
ever, 111 e 11miv o 2> 1, one nas, vo 1o0wesu oraer 1n I/D, nav
f°° xax e_(:’!+:lllg+zdll‘gg) ~ 1 r°° x.‘.e,I!dx ~ l rm x,ge,z! 1x-
~ — - .
J _B B J _B R -.l —e
Thus, in this limit B > 1, one finds
f*e 4,-x*
7_ M — | dzzie 9 2QLT
ATR AL O o =00 — v —_— UpIiv i
73 -~ F¥oo = AR — A2 me *
412 Bz | dxe_z! ‘LD L \..lc -_— l’
J —0co
(b) Define a new variable ¥ by
r kT 12
M=yl |
La(1 — 1)
then
A=A, + k(s + 2
S AT EY TR)
ana
1 rw y d.‘u e—(ll""ll‘./ﬂ')
g_[_ kT T2), ,
l a(T -_— TC)—l j‘” 'ly e—(y’._;q.ll’/_l'“)
J 0

In the presence of a magnetic field, one adds a term —M - H to 4. Thus
above the Curie temperature, the average magnetization is given by

T '“’ZJ y dy o~ (W +VH /KTa(T-Te)}t )
M(H) = | Ty T ~ | 9 - oo ?
(4= L)l [ dyer
Jo ¢
where terms of order 1/ B < 1 have been neglected. Thus to first order in H,
M(H) = H (Curie-Weiss law)
2a(T — T,)
L ALttt . L._.
1ne BUSDCPUIUl"by 18 glVUll Uy
oM 1
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Note that this result could also have been obtained from the thermody-
namic relation H = 24/oM = 2a(T — T )M + 48M3. Thus

a A2 L2/7

1 =MPa(T T\ L vorun9M
which implies
oM\ 1
p) | “9a(T — T

19. The sound velocity is calculated from the adiabatic bulk modulus
at constant magnetic field H:

) /
v(H) = ——|
M\

We begin by showing that the familiar relation

(0P\ _ Cpr(0P)
\oV/)s,g Cy g\oT)/v

is true even in the presence of a magnetic field, the specific heats being cal-
culated at constant H. Of course these specific heats will be a function of
H, and it is because of this fact that the sound velocity is changed.

From the identities:

VAAT aARATAAVAVAIUN o

(a) {9 P\ . /Q\ ) /3_1:\ I@\
\8) \V)se = \aV)ew T \57)r e\oV)s »
(OP\ | (OVN [OP\ (3T\ )
- (\3 V)T,Eil - (\3?)1-. E(\a—T)V, a'lxa V)s.a':? ’
/3}7\ /3P\ /31",7\
(b) (ﬁ) (m) =—(m) ’
\OL/)r,a\oT /v, n \o07T/p, u
(c) (0T (28 _ _(28) |
\9V/)s,g\o1l)v,u \odV/)rr
one finds by substituting (b) and (c) into (a) that

/31_‘)\ ,3P\ 1 T /a'l",r\ /38\ \

(=) =(%) 14+ (%) (£)},

\oV /s nu \oV/rm\ CUp,g\odl'/p,a\0V /1)
where we have in addition used the result that C, g = T(0S/0T )y u- In
addition, the definitions

Crr=TI(22) =m(22) 4+ 17(22) (91)
! \d1l'/p,u \o1')v, u \oV/)r,u\o1l'/p, r

and

C
I
q
Il
N
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\I_/
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yield the relation

a8\  [aV) . ,
T(av,_ _‘ﬁ,_ =Cp,u —Cy, 5.
\OVY /T, H\U4L P,
Thus
(3P\) . (3P\) i_l + Cpn—Cy H-i Cpr H(«‘)P‘)
\3}’/»117 _ \3}’/ L CV.H i o CV H\a.{"/T,H.

Cp,_;! = T(@S_/@T)P,g and CV = T(@S/@T)v o.

From the T dS relation,

mJQ __ JT7 T JAX 1+ D
4 WO — WU — i il T 4

one finds that the thermodynamic potential ¢ = U — T'S — HM satisfies

dp = —MdH — SdT — PdV. (1)
In addition, we are given M = yH[T; thus, integrating the above equation
at constant temperature and volume, one finds

(T, V,Hy = ¢(T, V) — Lore,

Sy

wrthana A (M I\ 15 tndanandant AF IT Mha andnaner 1o thaom facamd Oonons
WIICIL O (Po\.l. s ¥ ’ 1 IIIUUPUIIUU VUL 11i. 1110 © UlUPy 15 LIICIL 10UuIllu 1190111
s=—(2) —sur, ) —1E
- _(arn,._ =81, V) — om
\Cax /V, H 4
Finally, then,
's) (0 _L a2 2)
] = 70 1 _Ir2imay’
UV'H \UVT'YIJ. I.l ’
where C%, C}, are the specific heats in the absence of a magnetic field. As-
gty that dhn cmaagnatia 21 Anne nnt affantd thn nnratioan AF cbadn maladic;
buu.uus Vila U LUILIT L1afgliTulv 11C1U UVUCsS 11VUuV 11TUU UILIT U\.iu vivul Lo Vo I.Ulallllls
P,V,and T (e.g. PV = RT for an ideal gas), then (6 P[dV ) is independent
of H, and one has

o 1y — PONL + VH[CST?)
vi(H) = 1 L ITZ/0 mzy 2
\l. T 'rl-l IUV.l ’
which, to lowest order in yH?/CT?, yields

v(H) — v(0) _ —oH*(C% —C5%)
2(0) T Tt (% '

) Rocanco ~ 0 for the naormal atate the (Gihhe fiinetion in the naormal

e A NN U AVA T \J AL VAAN AAVUJL ARAWA WVW V\J, VAAV NAALANNMLD AVMILAVVAVAL ALL VALV ALAJA AAANA
4 _4_ —__-- L_ ____._.____.1 a2 L_ _21__ ___1._41 LT ML.___
Buale lluy PDC assuInea v pe luucpmluc 1LV OI 1. 1L11UuS

G (T I - Q. (T H) (1)

N\4 )y &85 M N\4& )y &84¢) \*/
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Furthermore, there is no discontinuity in G' across the phase boundary:

Gy(T, H.) = Gn(T, H,). (2)
Tomvaidas 4hn crsevnna~— Pa [ D __ N __ IT | A_MF Lo L2 L. AX _ IT A __
1NSIa€ une BUWIDUIIUUDUUI, D = VU — il 1+ xndua, 110111 wWilOIL i = _ﬂ/‘tn
Therefore, at constant temperature, dG;, = H dH [47. This may be integrated
from H < H, to H,, holding the temperature constant at T' < T',, to give
G(T, H) — G(T,H,) = {i — :
8t 8«
& £ 71\ PR | 160\ Y 1M OTIT 7Y /M XM my e
nowever, irom (1) ana (2), G,(71,0.,) = Gy(1,1). This gives
G(T,H) — Gy(T, H) = H%*|8%x — H:/8x. This is negative below the critical

field, and positive above it. This shows that the superconductor is energeti-
cally favored, when H < H,, and the normal state is favored when H > H,.

<

nn]y fl'\n state lnrther norm n] or nnmrnnndiu n ) w]fl\ fl‘\n lnwnr C ””s
Lonn mm e _L _____ —~ _-___L_-_.. PR | ..._,.._-A.-- L£.13 2. 411
11I'et CIICI y auv glVUll IJU Pclﬂob I'C alu ula.gut:u 11€1U 1S Suable.
In order to compute the latent heat of transition, the analog to Clapey-
ron’s equation is derived. For a change of H and T along the phase boundary,
the changes in the Gibbs function for the normal and superconducting states
must be the same, ie., dGy = dG, with dG@ = —S8dT — M dH. Thus
AIr |12m __ (Q QNI AN AM \ alacme 4ha mhaoaca e damey Daad 4L 142
WIJCIU.I —_— \DN b U,)/\m, - .lllN’ ulUllB VIO PlluBU vouliual JDUUuv uiic 1auLciIlv
heat is given by L = (Sy — §,)T', and hence
/d‘lI H?)IT\ZF /T\27
— c)\ —
L=TM,— My)(=E)=32+) |1 —-(5) |
\al / 2w\1.] L \1./ ]
The discontinuity in the specific heat is given by
J r (=} J
ITE’HiIC' QY d (L)
Uy — VUg — 1 dT\UN _U,” Ean il § dT\'?'—}
hrz T r Vs T \ 271
0
= 2ml1—3(=) |
Ntn that fan IT N +that 30 T tha latant haat ganiahag whila ¢4ha
ANUULVUO viiav 11Ul dipy — U’ viiav 1d 1 — 1 i3] VIIU 1auTI1lV 11UV VYallidllUd WwWIlllU VuVIIUD

discontinuity in the specific heat is nonzero. This indicates that the phase
transition is second order at H = 0.

21. Any difference between P, and P.. must

rocess in which P and 7 are given, the

H
.o
=1
- @\,
O

Here g,, g, are the Gibbs functions per unit mass. The last term represents
the surface effects; it arises because the energy of a droplet is

TY 1 A .9
Vo + &mT,

the first term giving the energy when surface effects can be ignored.
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Setting 8@ = 0 and insisting that mass be conserved, one has
r a.. 7] r e ]
8G =0 = |3M (g, — g:) + 8nyr .o~ | = SM|g, —g. + =L,
L oM, | L prl

where p is the mass density of the droplet. Hence g, — g, = 2v/pr in equili-
brium. Now for a given phase:

(2
\d
so (dg/oP)r = 1/p. Hence, differentiating with respect to P at constant

temnvperature vields

Iq:

) V [see Solution (7-1)],

"cs

temperature yields
I 1 _ _ 2yor
Pvapor  Pdrop priopP
On the assumptions that (1) prepery K Prarepys and (2) the vapor is a perfect
gas,
p(2r) — _(ET)er
- \oP)r \M ]2y
When integrated,
P = P.exp(210), 1)
\PprRL7T/

where M is the mass of a single molecule of the substance. At a given tem-
perature and pressure, only drops of radius r given by (1), are in equilibrium.

r’ i
nrof\]ofe that are ton amall will avannrate and dicannear In an attemnt to
AL t’l\/ VD ViAWV WiV VUV DiiiWwwii YV AalddA VY (ﬂtlul. WUV wiiwa uluwrt’th 9 AAL Wii wuvvmt’u v
LRI 5 JP [N R ) RSN » JUIU NS MCHNN JRY NN M. SR « IR PR T
1Nerease  ailu reacil cqulu priumnl. puv uiis Ullly LUruvIler aecreases 7 Du.uua.rly,
large drops tend to become larger.

22. The universe is regarded as a gas of stars; in the long run, the average
energy for each species of “molecule” will be approximately the same. Hence

the kinetic energy of the rocket will approach the average kinetic energy
P V' I
Ul UIITC Suvals
2
(Mv*\ (nr __ 1V2
\ 2 } — 'I(lrocket\ l.’v .
star
Thus
ar T~ I_Al= 1\~ K w 1017
— \ .l., —_— ) /\ F AV, 9
= -1 __ —_ -
ana Vrgcket =~ C.

23. Statistical arguments show that ortho-hydrogen may have J =1,
3,5, ... ;and para-hydrogen may haveJ = 0, 2, 4, . . . . The relative popu-
lation of (J = 2)- to (J = 0)-levels is

!(2J—!— l)exn| A G i L 1
l A L mﬂalcr T _IJJ=2
or
5expi- m—ﬁfl,ﬂ—] 1 =mng: n where m:%’-
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If we consider 1 mole of gas, the total number of molecules is N,. Then
= N_(1 — 'r\ and

=2 VO\= Waala

No(l — 2)
1 + 1 exp [6R2/mR*kT]

(a) Take E,_o = 0. Then E, = 2 #*/mR? and E, = 6 h?/mR?, and the total
rotational energy is given by

~m pr—
g —

AT %2 —_—
E; =~ =2 [2x + 30(1 — x)e~o/mR%T] / / T+dT
mER ) ] VA
A
C, = o, _ iS0R(1 (B \* - 8ht/mR%T XT / / T
1= = R = 2N RnT) ¢ ’ | ——
where R = Nyk. To this rotational specific heat, / / T-dT
. = e/
one must add the specific heat due to kinetic
anaroyr — 2R/9
\Jll\JlsJ’ Ukln U-I.UIH

(b) A simple one-dimensional model is used to estimate the thermal con-
ductivity. Let A be the mean free path. The number of molecules crossing
a given plane in one direction, per unit time and area, is 1 pv, where p is

the particle density, and » the mean velocity. The net energy transport is
1 BN — E(—\) — PAGE P_”)“@d_T
g PV = AN T T e T 2 dT dx
By definition, K = (pvAj2)(dE[dT) is the conductivity. The contribution
due to kinetic energy is 3 pvAk. Since A = 1/ps and v = A/3kT|M, we have
K, = 3[BT
’ oV M
The contribution from the rotational levels is K, = (A/2)pv dE,[dT, which

c T
is negligible because C; < Cyy,, as shown in part (a).

Note that we have held pv constant, because in equilibrium there must
be no net transport of matter.

( an ( dE\( dT\
(nv)( —AZ2) = (non ,,,,\( — .,,\-
\ asZ) \ alr/\ a4
T e first factor. nv. is the fin f maolecnles in either direction across the
A AL A, i 9 wwv ’ av viawv A ALAVIAVVWUAVNY 14k VAViAVA VALLA VVVANVAL WA WO ViAw

the heat conductivity, K. Thus K ~ nv AC where C is the molecular specific
heat.
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>
F

viscosity may be calculated by considering the net transverse mo-
mentum transferred across a unit area of a plane Z = const, in unit time.
In the same notation, this is proportional to — (nv)(mA dU/dZ), where m is

the molecular mass and u is the transverse velocity. By definition, the coeffi-
atlamd ~AF A lA7 3o thn vicnngitsy 22 Mhecne oo wog tha noce FAarm 4ha hoand an—

VIiTI11u L (.ll(l:/!l/ﬂ 15 ULI1T VlﬂbUDlUy, (/ 411ud, ad wad vl vadt 1Vl vil® 1ncay UUIl-
h | g .

ductivity,

n~AT (independent of pressure),

and the desired ratio is 1. It can also be seen from the above considerations
that 7/K = const, independent of both temperature and pressure, for an
ideal gas.

25. The particles obey a Maxwell-Boltzmann distribution. The mumber of
nantinlaa writh valanidiaca hatwrann wv and w 1 Ader 10
Pall VIVIUD WI1VIl YUIULVIUIUCUD UUULVWUUIL11L VvV allu Vv -]_ wyY 1D
3 2
diva(v) = M) exp | mo lasw
\27kT) L™ 2kT ]
Note that ] d*vn(v) = N. The mean vector velocity is
1 poo / m \ 372 r m 9 9 1
> ==| dvdvo,N(555) exp|— 50 + %)
IV J e \ZTTK1L) L K1 J
oo 2 ,
Jo TP\ TRT) T N 2m
26 Tu.e distributlcn Gf Ho atama 1in valanity 1@ oivoan hy Irimatin thanry
L] s AAVUVULLID 111 'ULUVIUJ a0 5]'\/“ | ¥ Dallvviv viiuv vVl
£, ] 2
AN(¥) = Nop(v)d®v,  with  p(v) = ( m ) exp (=_”;C" )
27k 2

A 'I R |

iV 0 is the aenswy OI mercury avoms, ana is IOllIl(l II'OIIl e 1(1631 gas
of state, N, = P[kT. At time ¢, the number of atoms with speed
have escaped into the solid angle d(2 at an angle 6 is

v mu atisfv ¢ > r or none of these un" ave atruelr the nn"pnf.nr T—Tnnnp
J vv & A, AANS JA VAAVINIV VY AAA AAW V UV NVA WUVAR VALYV VNJAAVN VNIA .l.‘.valvv’
LI LR T & I iy iy RS Ry L) ML R | PV I | NP Lok Raipusy Pt Y o TSN
1I1 LI |, LIIC LoLal 1uULipeoer Sullnl lg LIIC€ CUILICCLUL 111 Li1C BNLULIU allgZlC uarL 1S
-]
T2\ a2 . ONAT T f Joe 22 M\ ..8 PRY
an(f) = (wa® cos O)Noall | avvp(v){vi— 1)
r/t
Afs . - 1224l 2 1_a2 0 2l 2l ]l 25 SLhhneeen 4~ L
AIler & litvie manipuiation, vne invegrai is SNOwWi o 0e
oo ah |
fir, )y = ( dvv’p(vi(vt — 1) = v cxp/ —,—,4r ) ! E{—n2r \.
, = = = —_ _—— -
Jon n \ " xt) T ax " \ox™)



where 5 = 4x [ v*p(v) dv = (8 kT|xm)'? is the mean speed, and E(z) is
*‘\A DWW “11“1\,4‘11\“ AA “AA [2 Y]
VIIU U111Vl 1Ulluvvivil uviiiivu ao
©co
E@) =2 [ dyev with E@©) =1
z7 )

Note that in the limit vt > r, the expression for f(r, f) reduces to (vt — r)/4n,
which is what one would expect. Finally, the solid angle d{2 is related to
an element of surface area, da, on the collector, through d) = do cos 6/r*.

Thus the mass collected per uni it area in time ¢ is givep by

dM _ mwmPa*cos'f . h )\
do RET 7\ ya




1. At each corner the man may go either up or to the right. Therefore a

particular path is specified by a sequence (u, u, r, u, . .., r) where the total
number of u’s and r’s are n and m respectively. For e Ya.-mple, the path shown
in the figure has the sequence (r, u, u, u, r, r, u). The number of distinguish-
able ways of writing such a sequence and hence the total number of paths is
(m + n)!/nim!

N
. B
w
w
=
.8
(¢"]
(=5
s
o
(52

the radiation consists of standing waves enclosed in an
N-d_lr_nens!r)n&l cube of side a. Then the field vectors have the spatial varia.-

1 ctors have the spatial vari
*‘:l\“
vivill

N N N 2

1T sin (k;z;) = T sin ECLLAN with SE=%2.

=1 =1 \a / =1 c?
“A"n +l‘\ﬂ 7] [ % Y I“+A~A"ﬁ Tmnn;r\n am N_A‘lmn“ﬁ‘ln“ﬁ] l\l\,ﬂ‘l‘“ﬂ+‘lf\“ QN ':"'I
LI.UI.U, viiv I(«t i v llleUlB Lllla’slllo vil 4V "Ull11T1101Vi1ial Uuuut)avluxl DPG‘\IU, 111
which each mode is assigned a point with coordinates n,, ..., ny. The den-

sity of points in this space is unity. The number of states with frequencies
between w and dw, regardless of direction, is then the differential element
of volume in occupation space, integrated over angle. This must be doubled,

because Of tue t\'nvro -nn]nr- atinn ode lan tha manda ahtai
tl\llwl.l w \Ji4 ll A A XAOV viiwv ai1iuvuwaav R UVWWALAL v "3 93
S S 4t A V. __ 41 £ a1l _1 £ _ ... __1._1/aoN ¢ _ __ 1 __°*__1
'ﬂ‘ - —n; 18 I1 111 penuenv 1 vllav 10r 7n;, neince OIlly 1/4 Ol a spnerlcal

dV = 2-¥+1 AR¥-1{R,

where A is a constant, determined in Problem 1. 34,

and
o N olal
B =3 (n) = 25
Then dV = 24(a/27c)” o” ' dw. The energy is
- (. 2+, 24a™h [ o¥do
=), BlelV =507 ], demm _
v \=*¥)
. 2Aa""'(icT)(@‘\“" (~ x¥dx
T @)Y\ k) Joes — 1
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3. The number of states per unit volume, in bandwidth df, at frequency
f

f,is

E _ M
c ¢’

o m —
A% _l.l—

and the extra factor of 2 comes from the two possible polarizations of the
such that Af K kT (well satisfied for 3-em radia-

r o T o - o v T \ - T h—

4+inn at thoaco tamnaratnrac) tha avaraca anaroy 1a ocivan huy B — LT MThara_
vivili awv viivov WmPULwUuLUD’, viiv a"\/la‘s\/ viivi J 0 BIVUII M iAd — Wi . AllULIV

fore, the energy density of the radiation field in the bandwidth df with
hf L kT is

The power radiated from unit area is dU(f )(6/4), and so the total power

radiated is
Qo £2 £ A\
dP = ==L kT df( — )(47 R?)
c? “\4/

=185 X 10°'W for df = 1 Mc.

A T tanma of tha 44040l gt anornatan @ __ 1/ | o | 2\ tha anangy ig
‘X A4ll LOLLIID VUl Ll vvuval Spilil PUI. wiL v — ‘2’\"1 T v T U3’, vil¥ CUlI101 j b
given by H = (A/6)(48* — 9)

For § = §, E = A, degeneracy = 4;

for S = 4, E = —A\, degeneracy = 4.
The reason the latter degeneracy is 4 rather than 2 is because there are 2
1 lucpcuuouu wva vu il a DPI 1'2‘ PUA LT 11VUlll VILLITU DPIII"’ Pal vivioo

The partition function Z = 3 e **7 = 8 cosh (A/kT)

5. The equation of state an
o e

d all other thermodynamic quantities may be
m the partition fur

btained i'_o n function. We assume the particles do 11_"(, in-
teract. Then
Z= (e errgy, ...qv, 801 d’px
-~ J - =T som h3¥
(/47 V\ r= _pe/kT 2 v
=[l-=5)]| e pidp|
L\ v J v J
[(ET\ (82 V"
Ne/\ R /]
Connection with thermodynamics is through the expression F = —kT
log ZanddF = —PdV — 8dT, from which
P = (oF\ ’.ch'aln Z]1 _NKT
B 17 e ) 2 i



[a—
<©
[Je]

STATISTICAL PHYSICS—SOLUTIONS
The internal energy is expressed as
__d(ln Z)
a(L)
\kT

The pressure is the same as that of an ordinary gas; however, for an or-
dinary gas the energy is U, = 3NkT/2.

Q)
| o

] — 2ANLT
v = diVIV L.

4LV

(\M)

\._/

n AT poo AN
. 7 = Ie+U/kT + LYy | e—p'ﬂmlcrpzd I ,
72
L n Jo -
where U is 1 eV. Thus
r (S mmle T\/21¥
7 = [erome 4 y(ZEmETV]
L \ »h ]
and
o NkT| hletU/AT -1
P=kT 2 (log2)="|14 ool ,
0 L V(2nemkT)*” ]
whinh 1a laca thamn that fAan a foan vraa Mha nmaadan mmasr nanner An Frnarne hana
111VI1 1D 1UDD viialdl viianv 1VUlL o 1100 san 4 I1T 1 TauTl may vall Ull 11V111 1101 O

7. If an electron leaves a sodium atom and enters the metal, the gain in
energy is (¢ — W) where W is the work-function of the metal. Thus

n(Na. ) s W-$MT _ 102
n(Na) — T

Py
-
-

Likewise for an electron leaving the metal and joining a neutral chiorine
atom to form Cl-, the gain in energy is (W — V) where V is the electron
affinity of Cl. Thus

MC) _ o-wnr — 19-0, @)
n(Cl)
We eliminate W between these two expressions and obtain
(V —-d) /T 1Nn—-4 - / 7 2\ noLm
e’ P =10"" or (¥ — @)= —92kK1.
Substituting 7' = 1073°K, we find V =425V,

8. For processes where the number of particles is not constant, it is useful
ntroduce the chemical potential u, defined as follows: If, in a process at

in
nstant 7', V, the number of particles of a given system is increased by dN,

b
+ha ahanoa in fran A
viio Ulla‘llsw 111 1190C U110

‘quilibrium is roached when this vanishes. However, dN, -- -dN,, and so
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the condition for equilibrium is

v p o OE _OF
ON, 0N,
F is obtained from the partition function, which we now calculate.
- 1 [rd?pdir _pjmr |V [V(2emkT|h?)¥2)Ns
Z8=7\T| l lz'.s e v/.Tl = 1\7’|’J )
iVgily 1 J ivg!
7 — 1 re¢/kr "dZPdZ re_m@./sz-IN' _ [(27(Aka/h2)e+¢/kT]N' .
ST NS ) TR ] N,

The total Z = Z,Z,.
Note that we have used “correct Boltzmann counting” to avoid paradoxi-

cal results. (That is, we have treated the particles as indis t‘ingulsh&blea)
rl.‘ FaY TNHANH ATMATOPLY I.ﬂ
4 11U 11UV vilvl ‘y 10

F=—kTInZ

|
|
o
N
=
5
i
N
]
K
~
p ——

\ v (2 AmkT J./_lr’l'\ “.
+ N, 1n\— } In (N,!

N, ~ \V /)\ezmkT kT
Tl‘e numl\nr of atama adanrhad nar 11mit aroca 1g tharafare
MUl Ul QiVVLLLILD GlADVL v t’\Jl WUillV WWiVW 1V viivivaiavi v
C_RP( 1 NP,
kT\27zka}

Had we not counted states correctly, the condition for equilibrium would
not have involved N, or N,; we would have obtained a condition involving
rameters of the pr oblem. This is obviouslv wrong: the naradox

SRS 235 VAT pPRIGOX

':“ ﬂl!* I\ﬂ“l‘“ﬂ]l\“* "I\ ﬂ:l\l\ﬂ '\ﬂ'lﬂl]l‘\v Dl\ [ % (.Y I\‘I‘I“":'\” Felay o
iS5, 111 1avy, U\iulvalcuu VU UJ1uvuud Pall. UUVA. DUVIL alUT 1UdulvTUu U.y uuuxu.uus vl -
rectly. The reader should think about why similar paradoxes fail to appear
in many of the calculations performed with the partition function (calcu-

lation of pressures, etc.).

o T *
o. all VTS OI wii® Chnarge  oOn uwie onaenser, m 2 1
a1 Tr LY - *11_ 4 \"} | C
ne amiitonian gove rnlng 0osclilauions 18 \I'/ = ‘ -T
g L(dey 1., o1 [
=35\ z) Tag%
& \NGv / y4 92

It is easily scen tha.t H represents a harmonic oscillator of frequency
= (LC)~'2. Thus the

energy mm'nvnl cs are K, - hmln 4-1 /2\ and the
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average energy in the circuit is

U=/.E\;M=—“’, ho
N D e EwAT 2 " exp (ho/kT)— 1"
In addition, the energy U is given by
U /0V:  /LI?\
5 ={(5)=(5")
~ \ & / \ & [
my __
Thus
<V2>= _a)cgt__ (_CO\ and <Iz> =_wc,gth {_&)_\
2C \2rkT) 2L \2kT)
In the classical limit, ¥7T" >> hw, these expressions reduce to
RSN kT /o kT
FH=-—and [I)=—

2C ) 21’
VA 14 AN VR IR JIPIR, Vg
\r / I3 e 'S 10I18C vOI1Lage
10 Z — z e—n/n.J —_ (l + ze—c/ux)u’
F=—kTInZ = —NEkTIn(1 4+ 2¢™ /),
—-e/kT
S= % _ Nkl 420y 2Ne e |
3 T 1+ 2¢7)
and
U 2N ee_'/kr 2N € /l € \
T 71 L O.—e/kTy ~ T a ( _01,m)
(L T <€ ) o \ oK1/

11. The partition function is given by
ol ] J
Z =7 (2J + 1)e 4V H+DAT — Qo /T (] | 1)g~ (47D +1/2)?

where 4% = h?/21, and I is the moment of inertia of the rotator.
Using Euler’s formula we have

L__I
um| =

The desired Bnermoayna.mlc quan‘)lﬁles may be calculated Irom
_ o . (U—F oF
L (7~ §
by U =412 102z, (@ ¢ =9Y
o7 " < 2
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N N

12. From {(E — {E>)*> = (E* — 2E{E)> +<E>*>, we have(E — {(E))*> =
(E*> — {E>. In addition

/E\ . Z E e—E./kT l %
\&, = ZC-E'/kT = Z o0’
where K, are the energy states of the system,
/ 1\
Z = 3, e EniT and (—=)==kT.
\0/
Similarly
, 2 =ZE2 —E,./kT_ lazz
B =S =z W
thus
0 (1 o2\ 0
(B — B = 5 55) = —5<E,
' ’ 00\ Z 06/ 06>
but
2 _ 2 aa XEB2_g,
o0 oT 0 ?

Finally one obtains {(E — {E))*> = kT*C,.
Now consider a macroscopic system with mean energy {E>; then the

fractional deviation in energy of the system is

(@D By _ [

@y ) T @
To estimate the size of this number, one expects the energy {E) to be of the
magnitude NkT (especially at high temperatures); then C, = N. 70, and
we have

[<ED — B yowm
g | =N
L &) J
which is very small for systems of macroscopic size, i.c., N =~ 10?

I} ey ° . a1 2 1 1 T _°__ N [ Y S o N A 4L ____
1. 1118 1S n€ one-aimensional 1sing maodael 10r ierromagneusin. As nere
are N spins, there are (N — 1) interacting pairs. Of these, N, is the number
of parallel spins and N, the number of antiparallel spins. Since

The partition function is defined a
7 — X ,—FE/kT
L — ld © .

All
atatos

There arc (N — 1)! permutations of N — 1 pairs, but only (N — 1)!/N,! N,!
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are distinguishable. Hence
N-i (N —_ 1\ C 7(ON N\
Z—=2'S (N 1).el‘p|_J(2Np+l N)|
Ne=o NI N,! L kT ]
747 I\ N-1 { AT 1\ r orarn
J4YV — 1 4y — 1) &LdJ LV
=2eXPI \Im ’|Zr:17 \1\ 1)*r1|17|ex_l_ 1mp|
L kT  J&z(N —1)— N, JIN,! L kT ]
The overall factor of 2 arises because reversing the direction of all spins
Annc mad ahacnan AT 0 AT Lot Ao wa wian $a o ;o anmBasinadl o T 4L
uuvry 11UV vliallgc J.Vp UL iVg DUuuv u ©C 1LIDC a 110 CUILLIZ UL a vl J.. 1 LI1C

4

U
above, the sum is the expansion of [1 4 exp (—2J/kT)]}"
function then becomes

I‘J(Iv*r_i)‘!l' 7/ 2J\‘|N-l
Z=2exp| s ||1+exP‘—f-,H ’
L k1 JL \ k1]
o7 / J \1¥-1
Z = 2%|cosh | 77 ) |
L \rvi /|
14. The entropy is related to the specific heat by
S
C=Tars
thus the entrony change on going from 7T = 0°K to a temperature T > T,
rJ O o (=4 r - v
is
=T 77
AS = Jf ‘J‘;;’ — Coun(l — In 2)
0
Tom oot mes o ;D mae ot Ve e d oVl LA S 1.1 ML
111 Oracr vo calc UI&W Umax, all 11 [)U 1UCIIU CalCulaviVll U1 Q&v I8 1necacua. 11118
is furnished by the Boltzmann formula for entropy, S = k In W, where W is
the number of distinguishable states of the system. Because of the ferro-
magnetic property, all the spins are lined up at 7' = 0°K. Hence W(0°K) =
1. However, for a temperature greater than 7T'; we see that the system has
mn o wrimrzran Ammbdmaner cizaan 24 Aa e Jammarna abhoanl L4 Mlhoac all ot & nn
IlaAllllUul CIlliul Py, S1IICC 1V Call 11 1011 CL auUSLUL D 11cau 4 I1udS all BPI 18 alc
uncorrelated and W(T > T,) = 2%, where N is the number of spins (Avo-

gadro’s number for one mole). Finally, then, one has AS = Nk1ln2 = R In
2, which, when combined with the previous expression for AS, yields
c —_fn2
max (l _ ln 2)

15, Consider a state described by a complete set of quantum numbers,
with energy eigenvalue ¢. If the state is occumed by » --oni--t.e-a.c.-mo par-
ov (= r J o I
tinlnag ¢tha anarayr 1a mea Qinnna Tanmi gtatiating allhawa at maact Anlsey Ann nawn_
vILVIUD, VI1U Ullvl y j (] PC MIilIVTO LUl i1l DSuyviduiud alluvwo av 111Udvy Ullly vll1T Pal
ticic having a given set of quantum numbers, the partition function for this

state is Z, = 1 4 e “*7,
On the other hand, Bose statistics allows an unlimited number of particles
in a given state. Hence, Zy = 35 e ™* = 1/(1 — e **7). That form of
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para-statistics which allows two particles to a given state has

Zp = 1 4 e~**T | g~2/T
The enercev ia found bv comnutine
r — (pmy29Uog Z)
0n
une nnas
LTF = & l -I,
| T + 1]
- i 3
Ug=ce /KT 1J| ’
| € -
T 1 2e T T
UP = €|k T 71 L —e/kT
| € T1iTe J

The bracketed factor in each case is the statistical factor. (One should em-
ize

pha.-s;z » that no exa.mpl es of para-stat tistics have as yet been discovered;
11auvul T DU 1al OdUTLlIDd v Pl CiU1l VI1IU VWU TAVUVIULLIU vadoo ’

16. Assume, to simplify the argument, that longitudinal and transverse
modes of vibration propagate with the same speed ¢, and neglect dispersion
(i.e., ¢ does not depend on frequency). In the Debye theory with boson-

nhonaons
r
AV (= oldo
E= nnI . /LM ‘-’ (l)
Tee’ JO eu /KT .I. \ "7
The unner limit is found from % — where ® is the Debve temmnera,-
1he upper l1miv 18 found Irom A, KO, where O 18 the Debye tempera
disman T AL A sshnsmnng wwans Fammntang wsro wzrass 1A hawa
ture. 11 the pnonons were 1ermions, we wouia nave
__ AV (% oo ()
7(263 Jo [enu/kr _|_ l]

At high temperatures (1) gives a constant specific heat, whereas (2) gives
a specific heat going to zero. At low temperatures, the simple transformation
x = hw/kT shows ¢ ~ T? in both cases.

17. The number of particles per unit volume in the velocity interval d3v is
2m? 1
Mllll‘l’s'7 — l]s“’
Il/\ v)w v - w

where E is the Fermi energy.
The current density leaving the cathode and entering the plate is

, . /m\?- fro° roo 'b‘,d’b‘,
J=env,) =2¢(5) | dv.dv. | n —3on 0 1L L 11’
NI /] J —o0 Ju I‘l’ L'JF_II"/.’. T .I.J

(= d)
b
g
~——
—=
—
-y
&
Qb

eV is the tota
n]afn Here d) is

have in order to reach

where mu?/2 = E, 4 ¢
th

0+

kinetic energy an electron must
8 the work-function and V is the
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retarding voltage. Assuming e(¢ + V) > kT, the current density becomes:

J = 2e ™) eEeir | v e MU 2kTdy [ dv, dv, e-mb+ob/er
\h/ Ju 7 e T
o IM\3 B LM o~ /kT\2 e 2. ® /O Y
— ¢ e Pkl euF/uz [5 T v == e= U /a1
\%) \'m ) ’
k2T2 r 4 2 2 e" A
= 47 em —5— exy @ tl_,_, A
h \ k )

The reader should compare this result with that obtained by assuming
DV a2 _a° 4 o __a*___V1__V__ AL . oa____ ____a____ X ___ ___I___ _
DOllziallil 3LalisStiCs, NIOLe paruiculari e vemperature aepenacice
18. The Fermi energy, computed from the equation

18
( 9Nc® \\3
\327 &%) °’

Y
Lp =

where R is the radius of the star. If the star is sufficiently dense, the Fermi
energy will be much larger than the average thermal energy, and few elec-
trons will be excited above the Fermi level. Thus the star may be treated

ag a AD(TA'I‘\D"Q"D oaQ

W W \‘-\Ja\lll\/& wvw swu
The ground-state energy is
1‘7_87tV fE"/c 2 \ 7 _ 3 AY 7Y
V==3), Ppoap=-pNEr,

0
But P can also be obtained by requiring hydrostatic equilibrium: if the
the decrease in gravitational potent, tial energy must, be the

and the pressure is P = —(0E[/0V) = NEg[/4V.
y r

star expands, 1 grav on ial ener
r ; (=4
work done by the pressure. Hence
P.4xR* ~ GM*|R? (order of magnitude).
Here M is the gravitational mass; it is different from zero because the neu-

trinos have a total kinetic energy Mc? = U = 3NE[4.
For equilibrium, the two expressions for pressure must be equal, and this
leads to the condition 3GNE /4 Rc* = 1, or, in terms of the mass,

> = L.
Re

The considerations developed here may be extended to the case in which
the leptons have a rest mass (Chandrasekhar’s theory of white dwarf stars),

e
and it may be shown that there is an upper limit to the mass o
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19. For case (a), the net magnetic moment is

M ( cOS § X 98 UKT g(cog f)
(M cos 6> = —

[ exp {MH cos 8/kT)d(cos §)

J J ol § I I ’
_arlooin (MEN _(RTN] _MH o o on
=M\ xr) \ywm)| T T <

Hence
L= (M) _
\0H/x=0 k

M “\eMH/kT _ e—MH/kT) N M:H
< > — T/ MH/KT | -MH/KTy - LM
\€ T € ) nvi

20 'The enerav of a narticle whnose maonetic moment ie narallel (enti.
A4} - AAN/ /AAA 6" Ja w II“L VAWVANV Y AAVIWDIV l.l..l.l.ﬂsl.l.v vaw ALANJALAN/AAV AN t’wl CWAAN/A \wllv‘
v 1IN 4 X 2 o . Ll._.
Pﬂl&llcl’ w i1, 18 g VeIl D
2
TrY p - ll’"
=2 + pd
2m

Since the energy levels of the system are populated according to the dis-
tribution 'function

f(U) = 77T —_ &Lm L1
UAP \v g’llb.l T 1
and the density of levels is given by (47 V/h*) p’dp, the total number of
mna Iﬂ]nﬁ N ‘;G n';vn'n }\‘7
yuu. VAVAVLD 4V 2D EJV\JIL UJ
AT 47(V r 7. - 2r £+ TT © 1 L4TT \1 A BY
N=y )PP U)W 1)
and the magnetization/volume is
M 4mp (
2
7 =7 ) pU(U-) — fU.)). (2)
V n
.I.J\.iuawu.ul \1’ pe sty VT DULYTWU 1VUL § 111 WliLlID VL 4V, 4 4, il 11, allu § L1Oa viivil
1 1 Py 4 h 4 A 4 | Ar!Yry i £ AY m 1 7Ty

be substituted in Eq. (2) to determine M/V as a function of N, T, and H.
Upon defining a new variable of integration E = p?/2m and using the
low-temperature expansion formula given, we find that Eq. (2) becomes

M _ 8xp@md) [ e o pyay o ®Z(_RT )
V 3 | L 8\&E+ pH/ |
e x2( kT 1
— (€ —pE)?|1 + Fg—5) |}’
L O \¢ i1/ )

Vaal aviwNeaas



becomes
(M) _ 8xp@m) P en prfy 26TV ) Lo of order B
\V) I A l 24\ &) J
u\iuauuuxl \1’ \I.Ul. AL U’ MUOUVULLLIUD
,.zi£=_l6_7r/2.na\l/253/2‘1+7t_2/k_11\2+ ]
1720y SR | s\E) |

Solving for &, one obtains

E=t£{1-Z
\

M (3um\[,  m(RT\
A=vHE\28 /1" 12\E) T
21. Consider the force equation for the particle in one dimension,
uEE = —p% 1 F@ (1)
£ t ’

where 8 = 6zx Ry (Stokes’ law) and F(t) is the force due to fluctuations
of the molecular collisions.
Equation (1) may be rewritten as

|
Y
~N

1d/d .\ ¥ (B\/d .,
5 3(52) — 5 = — (5 (5=2°)» (2)
2 at\at / Y/ \2M/\at /

/d N\ 2T | . g .
(F22)=—F+Ce (3)
\Gv ~
Neglecting the transient term, we find that Eq. (3) has the solution
(z*> = 2kTt|6x Ry. Since {(a*> = (y*> = (2*> because of symmetry, the
total mean square displacement {r*> = {(a?) 4 {y*> + {2?) is given by
(r*> = kTijm Ry

Substituting 7' = 300°K; ¢t = 10sec; n = 189 x 10 *P; and R = 10°*
cm, ,
<r2>l/2 —- 27 %
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22. The plasma is electrically neutral, as a whole. Nevertheless local dev1a-
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ions in density appear. Conside
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n(r) = ne-¢#(r)/kT (1)
\7} . i)

The constant n must be the average density of the plasma, because the

influence of the potential energy is expected to disappear as the thermal
energy kT increases indefinitely. Each species of ion obeys an

+h -"A-.m (1) xridhh r]n'\n: tx7r an [\
LIlT 1uUlill \ ’ YWilvlil Uvl1Idi1v .y ’ba\,’
1

Another relation between ¢(r) and n, is provided by Poisson’s equation

relating the potential to the charge density:
X2 Ah(inY\ — —Aw S o m DA
v \IJ\I’ -_— X/ g Oa"la \H’
4
N Ll o occrrmitimnnm dhad 4hhn lacrmna 30 wramsr had wxrn 2vawr sxrmidan £ TV /1)
Ull LIl UaBHULUPblUl.l viia v LIlCO Plﬁﬂluu i VUly 110V, WO luu_y WwIiiuvg, 101 ]!Jli \.I.’,
£\ I_I Cg_(_b-l
Hall) = Ra| 2 T 2|
We substitute in Eq. (2) and obtain the Helmholtz equation
2 f naei\ — 2
Vigp(r) = 4m{ X 55519 = ko,
\a L)

which has the solution:
¢(T) = eioni'r—

The effects of the electromagnetic interaction are therefore limited to a
gnhere of rading k! (Debve-Hiickel rading)

Aasa A A \ RV Yy

Y
.
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tive effect of thls is seen by ta,klng the expectation value of e /r,z between
unperturbed wave functions. The effects of spin are taken into account only

]S ]P ]D 3S 3P 3D
ol — = h=3—
-1.5| —n=3 ——n=2| -
-3.4 —n=2
E,ev
-183.6| —n=1 -24,47|—n=1
Hydrogen atom Parahelium  Orthohelium
mu _ Ay 1 1 ral a0 1 a4 c__ 4 1 R |
1ne \n == é l/ U)-level Lvnav 18, OIe CIeCLIOIl 111 UI1C \t — 1, | = V)-1eV¢el,
the other in the (n = 2, [ = 0)-level] has, 1n the absence of Coulomb repul-

sion, two degenerate spin states: § =1 and 8§ = 0 The Coulomb repulsion
lifts the degeneracy, giving the energy shifts (J + K), (J — K), where

J = d’r,d:’r.‘.uw(ri)u%(r.‘.){ a \|'L=G(T=)uea(72)
J \7,,/
and
Vi 9 \
K= d37' dzTQum(V )umfra){— \u!o("z)uzo(ﬁ);
J ‘\riq/
the former corresponds to the spatially symmetric, (S - 0)-state and the
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high probability for being found close to one another.
The P levels split similarly, as do the (n = 3)-levels, etc. In addition, the
radiation interaction commutes with the total spin of the electrons; hence,

radiative transitions between singlet and triplet levels are absolutely for-
1\:'][]1\“ b 2 “'\I\ ﬂl\ﬂl\“ﬁl\ I\r ﬂ'\:'\ f\'.l\:* n’\“"\]‘“” ml\'l‘lﬂ 4“'\1\"’\ 2% 1 JaY ‘IIYI\ 'I“l]l\‘.\l\“l]l\“‘
u1uucu, 111 VI1TU avUDT11VC VUl DPIII'UL Viv vuuPuu o AILUD VIIULIUTU V1T VVYWU 111U PUlluU 147

2. Carbon has six electrons. The Pauli Principle requires a ground-state
configuration 15*’2s?2p® . The two electrons in the p shell may combine

toform S = 0,1and L = 0, 1, 2. The spin-zero state is anﬁiﬁyflmetmc under
=n+n'-nl\nnnrn tho anin_ona atato 1a symmatric: 7. — 0 9 are symmatrie 7, — 1
vuil vllallsv, viiv Bylll ViILV DVVVV 10 O 4111110 Vi1V ’ Ld U’ - VLAV O mm‘/vl‘v, zd i
a4 I L ay 11 a4 a Im __ T o n ky Y LY N
anuiSymineuric; vne allowea Svales are 1J, willlh L» = 4, O = U, "Iy, 1,2 Wil

L=1,8=1,and 'S, with L=8 = 0.
The lowest terms are given by Hund’s Rules:
maximize S,

.
mnvim'lwn J,
ALRCVLRLA

" e’ e’

1
2

o

\9) Illllllllllbe J

The first two rules serve to minimize the Coulomb repuision of the electrons,
while the last minimizes the energy due to spin-orbit coupling. We ignore
the latter; this amounts to neglecting the energy differences among the P

states. In order of increasing energy, the lowest terms are P, 'D,, 'S,
. In order of 1ncreasing energy, the lowest terms ar D, 'S,
T4+ rema fone 4 £ Lo 2zravxra Firmndtiang Tingd 4hn ~Anbhidal cnamd AL 4L 4 carcern
It remains to find the wave functions. First the orbital part of the wave
» b} - e ] XYY

function willi be constructed. Consider the D state. We have to combine
two (L = 1)-states to get L = 2. There will be five wave functions, one
for each of the possible values of m, = 0, +1, 4-2. In general

s My = , C(2, my[my, mg)p(1, m)yr(1, m,),

where the coefficients C must be determined, and where ¢ and +r are single-
particle wave functions. Some of the coefficients can be written by inspec-
tion. The (L = 2) wave function must be symmetric, so

12, 2> = ¢(1, D)1, 1),

19 0N\ — A1 __M\alf1 1
1< /s T WY\h A At +)
o l ] ' ]

12, —15> = ——{b(1, Malr(1, —1) 4+ (1, 1)ar(1, 0)}
1 7 I V 2 CTr N\ 7 7 T N 7 7 I\ 7 7 7T N 7 r7J
M. _Ydao2m 4l mmcnatnln e cdada Ammanadas A [ TN wrldh b lacianinag mnnrnd e
10 Opuvallil LIIC I1Cillallll 15 BUUAUU, UPU[ v VIl |G, l/ Wivll UIiC 1I0WTe llllg \Jl'l lul/Ul
LN M- 1D>=/JJ+1)--MM | H)|J M,



The sinclet anin wave function. whice nline simnlvy
1he singlet spin wave Inunction, which 1 th 1 upiing simply
(U PRI LYY R Y1 Ry Sy o 1 R Oy NN
 d ulUlPllUl uilC orovival Pull‘ 1 LIIC ave Luilovuiolil, 13

L1 = —1= ($(L 0L 1) — $(1, (1, 0},
/ 2
|11,0) = —={(L, D1, —1) — $(1, =191, 1)},
|1, —1> = —={$(L, 0)9(L, —1) — $(1, —1)4(1, 0)]

NY _ 2 a2l a4 i)l . /Y NN a4 o__ .1 *__ o ___a____1°*___ |1 N\ o
ANOUE thav vhe @1, V) States are notv usea in consvrucuing |1, v, pecausec
there is no way of using ¢(1, 0)yr(1, 0) in the construction and, at the s
time, maintaining the antisymmetric character of the state.

The | 0, 0> state must be symmetric: we may write

Also |0, 0> must be orthogonal to |2, 0); this shows b = —a. Therefore

10,05 = ——{(L, DYr(1, —1) — (L, 0)4(1, 0) + (L, —1)4x(1, 1)},

A/ 3
mML_ 1IN N\ _ dodn mreabhlions 2204l 4l o Q0 . N\ qonlon cdada 4o —alo o 1Q
111© |U, U/ = Jlal CULLDVIIIUS wiluil UIIC (O == VU)-DJpilil Jval LW L1akht a Vg
state. The three P states must be combined properly with the three triplet-
amplitudes
1T 1Y — (1Y V(D)
1%y ) had Sl Aad Sl 2
17 N\ __ l € 2t 2\ NDION 1 4O\ DTN\
11 V)= =5 ld) Ple) = dl2)BiL)s,
and
11, —1) = R(1)R(2)
1= 7 AN=J =\
to make the correct J states. This is again the addition of 1 plus 1 to get
0, 1, 2. For example, the *P, state with M, = 2 is just |1,1>]1,1) and

e A

85U VUIl.

8. Nitrogen has the ground-state configuration 1s*2s*2p®. The various terms
arise from the three p electrons, each havingl =1, (m; =0, 4+-1)and s = }
(m, 1 4. |
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Each electron may be in one of six states, labeled by (m,, m,). These are

= (1’ ’2’)’ b= (l’ _'é')’ c= (O’ 'il.")’
Ad _ IN 1\ PO | 1 1\ £ ___ /1 1 1)\
@ =\ —z) €c=\"112) J \—1, —32)
A particular state is obtained by combining three of th form a state
w=rith ~mrantizrmm nmrmmhanas __ IO A Y AMf Mha avanlizazAan swmin
vl uaiivuill NUMOoSIS (g, Mg) — (2, 4y, 2, g 1€ €XCiusioil Prif-
ciple is satisfied by choosing no two states having identical quantum num-
bers. One obtains
~ 1 L 1 oA __ 4O 1\ TP R L T £~ 1 o~ | 2\ 40 3\
a+06+c¢c=1(2,3) a+c+d=(1,3) (@ +c¢c+¢)=(0,3)
a+b+e=(1,3), (@ +d+e)=(0,3)
(b+c+e=(0,3)
(a Le-Lf)=(0 1)
\w v i J \Vsy 27°

ith ne atlve values of M; or M have been omitted as uninformative
no new

)]
H

4 4

D verm. ASSOC]&UGQ with 1t 1s one state navmg
quantum numbers (1, 4) and one with (0, §). The other state (1, §) implies
the existence of a 2P term, which accounts for another (0, §) state. Remain-
ing are the levels (0, 3), (0, 4), explained by a %S state. Hund’s Rules imply

2P\ ~ 2D\ - F(4Q)
Ly 4 J X\ ) ~ \ AJe

‘.l

Q
[
~
Ny
~
Q
=
S
i
5
(@}
Dol
&
&®
-
@
7]
&

A o 1 1 oY tum RGN MU R I PN PN PR i e |
%, ©LacCl Iev l 1a.ueleu Uy Pll P 1 qu ntum number 7 nas subievels labeled
by I, which takes on values from 0 to n — 1. Each sublevel is allowed

2(21 + 1) electrons by the exclusion prlnclple. This information is sufficient
to build up the atoms specified. The configurations are

Zr: 4s*4p°4dt
and
T—Tf- Roa2 Emnb 5d4

ALd. vo -‘.l

Each has four electrons in an unfilled d shell; chemically the two elements

are very similar because these levels are so similar.

5. (a) The energv of a 4123 R bhndne (exporessed in cm™!) is 24.300 cm~!
9. (&) 1né€ ener Ol & 4iZo-A PnovoN (eXpressea in ¢ ) I8 Z&,ovucm .
e KJ . h |

Since a photon must be absorbed in its entirety, there will be no excitation
of the atom.

(b) The energy of a 3.3-eV electron (expressed in em™!) is
E[hc = 28,000 cm™!.

However, the electron may give up only part of its energy, and the transi-
tions 3s — 3p, and 3s — 4s will take place. There is not enough energy to
excite the atom to higher levels.
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6. The electrostatlc Dotentlal energy of a point electron and a uniform

< when r > R
TY YY7_.\ l r ’
= € V-)=—e|‘2a/ PN
|55\l — 55:) when r < R.
L& Iv \ oL’/
To calculate the approximate energy shift, we use first-order perturbation

theory:

AE = {4|8U|+y> and 0U = U — (interaction of electron with
point nuclear charge),

'e—z—ie—z/i —Lr—z\ when r < R
3"_1|.r 2R\ 3 F) =4
0 when r > R
Hence
e? B _ufl 1 72 3 1)
AE = -.l e /a{—+7ﬁ—7w}47ﬂ'2df
zad Jo L r 2 R® 2 R)
— 232 rR =-27/a ’c‘ T‘ 3-"2] 7.
—FELeTVT T E ORI

Also, since R=10""cm < 4 X 1078 cm = a, we may take e /% x~ 1.
Therefore

7. In spherical coordinates,

V(r) = —%2 + r*[a + (B — a) cos? 6],

where @ is the polar angle. The inequalities 0 < @ < — B K €*/aj permit
treatment of the harmonic term as a small perturbation, with the unper-
$ramhind ITamildanian that AFf tha hadmasan atnarmm Mha sannvamdiznhad swaoa
vul pcu 11ai1111lvuiliall viiav vl uvilo uyul. EUL A vUlll. 4 ILT lPUlUul Uou wavyo
functions u,;, are
1 (7ta3)i72 ’
Ugge = { 1 3\:/4(2 . L\-‘—r/'za7
\327na’] \ al
/ l \1/2 —r/2a/ r \
Uno = (55—=) ¢ = ) cos 6,
\QL7tWw / \w /
%y _ (1 \lﬂ/_r\e-r/zg gin fet'®
o = \ggxa’) o) )
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The perturbation will not connect levels of different m since ¥V commutes
with

w

L.=" 0.
1 09
In first order,
AE, = (2a + B)a?, AE 4 = 14(2a + B)a’,
AE... = 8(2a - 3R)a? A — (4 - Bla?
—-ai1i9]e U\ate 77 opdjw , a9 ], +] U\xW 7 ojw .
The levels are therefore split as shown:
Z == 1, m;, = :tl]
Il = I, m;, = 0 )
—n=1101=0.

When the magnetic field is along the z-axis, it splits the (m; = 1)- from the
(m, = —1)-level. This splitting is determined by adding the term E,,, =
(eBh/2mc)m, to the above energy levels. When B is parallel to z, the

magnetic interaction is given by E___ = (eBh/2mc)L_. Since matrix ele-
O =] J mag \ I 7 T
LAITI1I1UVD Ul uz UUUVYYUUILL DUVGQhVUD Ul uvilliiivy Ilbz QlU 11V11401V VUlll 11 &RATIV — I
1 . a1 a h |

previous states, nor does it
his case there is no linear

e
mix the (m, = 41) degenerate level Thus in
Zeeman effect.

-

8. If we neglect all states other than the 2S and 2P, the complete Hamil-
tanian 1in tha annliad fald e
VUUVULi11CQuvil 111 viiv W t’ll\./u AAVAWA 1D
H— ro —akn
l_—aE A _!
where the energy of the 2P state has been taken as 0 for convenience, and
a = {28 !ez |2P, m, = 0). This expression for a follows from the perturba-
43am imbanmantdian IV —— 20a Ndlhnn mmatnmie alamanta Af I/ ganich ai4hanm honasign
UViUI1L 11101 avul 1L ¥y — CL4is. ULIITL AVUL1A UCIUILICIILW UL ¥ vall ll, CIl1UIITL DTLuausno
of parity or because of conservation of J,. As a consequence, the Ievelis

p
|2P, m, = +1) are unshifted.
Up dia.gonalizing this matrix, one finds that the 2P level is shifted by

A — (A? + 4a°E?)'*
2 ’
while the shift of the 2S level is [(A? + 4a’E?)'? — A}/2
Note that for strong fields, af > A, one obtains a lincar Stark effect,
i.e. shifts proportional to £. However, for weak fields, aE < A, the shifts

are quadratic in K.



magnetic field is found from the p-i--cipl » of minima electromagnetzc cou-
G RPN TN I PPy Rty DR s ! A Ay 2en 2L o TX. o ld 2 m_ . £_..41
Pllll ’ 111011 Pl VIUUS vliC 11Ul p /> \p — Unlb} 111 VIIC I14lllllv ll.la:ll. 10 IrsSv
order in the fieid, the additional energy is (e/mc)A-P. But for a uniform
field, one may take
A—BXr
S0
AE = (B X 1)p = 5—B:(r X p) = 5. Bm,,
me c
‘IIYLI\"I\ D 1 “‘\A N w1 I\r n'l‘ll'\“‘:!'ﬂ‘:l\“ :I\'D T
WIIULC 1) 1D VIIU aAld Ul Liuaauwaaawu 1 UL 443
T qe 1 i a4 1 1

Electric dipole transitions obey the selection rule Am, = 0, 41, according
to which the components of the normal Zeeman effect are separated by

Aw = eB[2mc = 8.8 X 10° sec™'. This is, in fact, the separation observed
here. The argument given above must be augmented for transitions in which
anin nlava a rala Tn that nnca tha Zoaaman affant ig frallad anamalang
Qi1 PIGIJD @ 1LVUI1IV,. Aill Vi1IGWV VAIDV V11V 4UuvVllidril VilUUVV 1D valiivu alivuiwivuo
10. The interaction with the magnetic field responsible for the linear Zeeman
effect is

H=—u-B, where g = 2u,(D" — 87);

S* and S~ are spin operators for the positron and electron respectively.
The spin wave functions of the unperturbed state are:

24

Ca(+)a(-),
riolet: | ) B(E) + a(—)B(+)
picv. 2

LB(+)B(—);
[eH)B(—) — a(—)B(H)]

| I—

Singlet : |

L 2 J
MTho ahift in anarcoy diie t0 a2 linecar Zooman affant ia Falal lalaN hut thic van_
4 11C Silliv 11 CICK Gul VO & 1carl 4cliiail CLiClU IS \y'[ 41 [/, OUU UlIS Vail
1 ~r 1n 4 1 b Y | | SRR RS « I - s 13 ____1__
lsnes I0r ail Spln states a ove, pecause utne Opel' vOr @ — D 1S 0aa unuaer

B

interchange. Alternatively, one may compute the expectation value of
H directly, using
S,a=1}a, SZﬁz_é'B’

where the z axis has been taken along B. Needless to say, this explicit com-
putation also gives zero for all ({r| H |r).

11, In terms of the raising and lawerine onerators | — 1. 28 and
. A LA CUN/A ARAW Ja VaAw L“‘ul.‘s WaANA AT VY USB ‘l.& vrvl W VUNIA D %4 : ”1 VA v’ CWAANS
) 4 T 1 ST R I & PR VU DR . LY I R
IJI = Lz j: "r.lJy, LIIC I1alllllvoIlllall lllﬂry De Wrivven



ages m, — -
vV ases m =+
on

is
S, We will de-no.-e by m; 'th eig -m.m-lI

J
1 -4 £ thn cnnnnm A nich . reterag
1 1L U g i} BIVUB

4 —Tamia and 4L,
neé secona verm Vﬂrlllﬂll, allu uIlv
: ] 1

€/3 + 2p,B. For the cases | m ,| = %, there are two states,

(s forymei
() =" ) for each m,.
\’le/ \ﬁy’l'l"'rl/‘/

Here L, and S, are chosen diagonal and y{* is the orbital wave function

for a P state.
In the basis

ALA VaaT rrvRIaAR

LA
b
()
\Wry/
matrlx elements of the first term are purely diagonal while the last term has
L \A vll A ALACW VUL AOn \JAL ul(ﬂsvll(ﬂl WVAVALLAVLAAVLD Wi v slv\lll UJ

which, upon using the matrix elements of the raising and lowering operators,

I,my £ 1T |, mpy =A/J(J + 1) — my(m; + 1),

ields

| H o) = o /2 — (m — .
We indicate briefly how this result is obtained. In a basis with J, J, dia-
gonal, the commutation relation

I.Ji’ JZJ =
ahAarcsae 4Lad T /T \ PRy P cd o d o T AL\ pupy 4~ 4L odad o
SIIUWYS UL J i \v_) LOILICULS bllU Svave |d ix ), Oy [0 UIIE JSuauve
I r bV 4 - - -

av
, M +1)(|J, M — 1)). All other matrix elements of J. vanish. The value
of the nonvanishing matrix element is determined by taking the matrix
element (JM |J*|J M) and using the relations

7+ J-1— 9.7 p_J S +JT I | p

LU 7, v —_— 2 T vz

‘/:;;( J_‘E)+ILOB(mr+'5') %N 2 \‘
H = .
‘ € /5 €, I 1. D 1\’
\ ?'V & _3\"".! T %) T oD\, — 1!}/
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Carrying through the diagonalization, one finds the eigenvalues
€ | 5 /{ 2¢ -\ 8
. —3 T 2pobm,; 4'/\\57”1 T FvoB) T o€
B, = 2 ) (1

In the case of a weak field u,B < €, these energies reduce to

(weak) ~ - € -+ ”()Bm + 1 {‘_ L’\
' ’ 6 T2\ /
While for the strong fieid case, K, (strong) =~ p,B(m;, 4 ). One might
further check that these limits are also obtained by a perturbative calcula-

tion. The appropriate basis in the weak field case is one in which J* and
. are diagonal while in the strong field case the basis with L., and S,

o 1

12. Consider the proton in the magnetic field produced by the electron.
The interaction energy is

H=—n.[dro(r)B(r)

i1 ~p J @ rpir)mnir;,
where 14 18 +tho tntal maconatin mamant nf tha nratan and Afw) 16 tha dia_
Fp AN Viiv VU vwi l.l..lwsll.v ViV L11Vi1L1V1AV Vi viiwv tll.UUUl.l, viia rl\‘ ’ 40D VvViiv uai1v
A_ L __a°_ __ £ oy a4 __________ 4 X___ __°*2__ a1 ______ 1 ___2 a1 _ _____a_ __ YR
LripuvlioIn 1 U m&gn ULIC-INNOICIIL Q€IS y nrougnouv uiie pI'OBOIl WwIlIl

I
| d°rp(r) = 1. The distribution function p will be taken to be spherically
symmetric. The magnetic field produced by the electron has as sources
the orbital motion of the electron and its intrinsic magnetic moment. The

former is the current J oc r*Valr — 2/Valr* which vanishes for an S state
an Al oy PPN Iy R L.\ — __-I__ . |
1 'l‘l‘ ma y U CI1USCI1L LV PO PUIUI real.
However, a point magnetic dipole produces a vector potential
111
7\

XF— —p x V(L) with Bar) = V x Aqr).
\NT /

Thus a magnetic dipole density M(r') produces a vector potential

Afr) = —Jf d*rM(r') X v( — )

III'AI"\ I2 R
A(r) = —p. X V | dr 000 = —p, X Vo(r)
with | |
[ 30 | alfa') |2
d)(l’)EJw 'Y\t 71
ARENTEY

T'he expression for the energy then becomes

17 TR ; . _— ( 330 ivrss ©v2 4 ) - L
I s | 47Tp(r) VX (e X V) = [ys | a7TP(F) 1KMoV P — (K V) V.



Note at this point that, since | Jr(r’) |* is spherically symmetric, one finds that
A(r) ig anherically symmetrie. Then takine ofr) to }\n anherically symmetric
Y\l’ AN Ur&lvh IVWIAJ IJJ ALAARAN/ VA AN e AAN/AL WWNARAAA 6 r’\. VWV WV Ut’ll\ll lvw‘.J UJ ALRARAN/ VA lv,
wzrn tomdncecndn o £ e
WEe 111U gl Lve ads 1UIIVWDS
73 PR 32(’) 85}‘ 73 fAT2 2
J d rp(r)—Lawiawj =3 | a°r p(r)Vp
rl-‘l\'l'lﬂ
A 11U
H=3up, | d’r p(r) V¢,
and when one uses V3¢ = —4r [4(r) [?, this reduces to
_ _ 8= f 3 2
H = — g Ml | d’r p(r) [r(r) .

In addition, |{yr(r) |’ is slowly varying over the dimensions of the proton and
8z U 12 - o e .
H=— ?up-uelw,b(O) | (Ferm1’s formula)

e 87[ [‘l'l’#’“ V, Y, i
B aatnd P ®

where n is the principal quantum number, and a is the Bohr radius
(= h*/me?), with p, = 2.79 py, and

Et —_ Es = M(%)ﬂ‘yn_cz_ whe e O =e_‘ ~ L

13. Due to the interaction of the spin angular momentum 8§ = } (L = 0)
with the nuclear spin I = 4, the total spin state of the hydrogen atom ground

state is shifted by 44u,pu.S,-S;, while AE(D)= 24ppp.S;-S.. The
ﬂ“];**‘“ﬂ ‘l“ L‘YA"I\”A“ 19 4]’\11(\ A FI u\ — A ] 'y n“l‘ 1“ I]AI'I*A":II“\ A F —
Dpiivvuill 111 IlyUlvUgvll 1D viiuo uu\.l.l’ _— 'Iﬂ’.bpfl/e aliu 111l uvuvviiullly eArd —
34 pupp.. Taking the ratio gives, for the hyperfine splitting in deuterium,

i4. The electronic angular momentum is J = §. If I is the nuclear spin,
the multiplicity is (2J 4+ 1) or (2I + 1), whichever is smaller. But
2J + 1 = 6, and since only four terms are found, 27 4+ 1 =4, and I = 3.

The energy shift in hyperfine structure arises because the nucleus inter-
anta thronch ite maonatic momaeant with the maconatie ficld created hv the
WVUD’ ViILAUWUE 1l 1UD 111 AAV VAV AIIUAIIULI.U’ YV AViL ViiVv l.l..l.(llsll.\lvlv AAV/A\A VLUWV\J\A LY viiwv
1 4 mw_°_ 4
elecuron. 11niS suggesus

AE~21-3=F(F+1)—I(I +1)—J(J +1),
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where F = I + J takes on integral values from 1 to 4. One finds

AE(F =1)=2 +C,
AE(F =2)=6+C,
AE(F =3)=12 4+ C
AE(F = 4) = 20 + C.

The differences are 4, 6, 8; this suggests the interval ratios 2:3:4 in the
hyperfine quadruplet.

15. The Hamiltonian for the electron in the presence of both the external
mannnf;n ald and tha Canlamh ficnld Af tha niinlang ia
SILUUI\J AIVIAU Vil V11V UVUWULIVLILIVY ALlVIAINA Ul Vi1V 11ilUuvivuw 10
_(p—-cAfe)®* €
2m r
M ontemnre o marrren arnalh dhhad A _ 1D v e wxrhhama I 25 4hn mnsmcdbamd o e ndda
UI1IVUUSIIL a EGUBU SuvlIlL viiav LA — ‘2’” AL ICILC b 15 UILIT U iSva. I.l mugut}ub
field, and defining H, = p*/Zm — e*jr, the Hamiltonian 'becomes H=
H, 4+ H,, where 7
g _ _eL-B) (B Xr)*
! 2mc ' 8mc?
and L = r X p. Treating H, as a perturbation, the shift in the ground-state
energy is given by
oJ o J
A siQi 1o e8| (B x r)?|18)
AE = 18| H,|18) = s ’
whaon neo i@ made nf the relatinn 1.11 Q\En Tnon ngine | 1.9 — (wa3)-1/2,-1/a
VY AAVAL VANV AW ARAWNAY VUL VAAV AVAWVANAL AL I -I-N/ v vrv;l “Ullls I ‘.M/ \llﬂw ’
. h » P TN IR
\ = DUVIll 1raulus),
eZBZ eZBZaZ
AE = — — | dnrte o dr =222
127nmc*a’ dmc?

16. (a) The Doppler shift in the limit of small velocities is v’ = v (1 + B);
hence AN/A = 2. The average value of 8 is determined from kinetic theory:

aLm
9 _ Ohd
B - —3"
mc-
At room temperatures 8 = 1.4 X 107%; thus A\ = 0.7 x 1072A
(h\ 'ram tha mnaartainty nrinainla (AZLAVARY ~ 1 Thiia $n anllicinng in tho
\u’ 4 AVl ViIIV ulilvwuvili vwiiiv Pllllvlrl\/’ \_w’\_l ’ T A AUV VU VUVL11IDLIVLILALD A4 ViiV
e A T s nen T o o4y o £ __ a1 T _ 1la_ n2 an AY N2 __
ga8, QAT = LV, where L 1S the mealn Irec pavll L = 1/2wphni ; SO QAN =
2PR*B[kT. This equals the Doppler broadening when P = kT [R*A

17. Each molecule is homonuclear; those which have nuclei with integral
(half-integral) apin obey Bose (Fermi) statistics, and must have total nuclear
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wave functions which are symmetric (antisymmetric) under exchange of

nuclei. Hence the nroduct of rotational and snin wave functions must be

AN ALALVY vVial praUte vv VN VARJA A Ale DpJAL ANV Ai L4

symmetric (antisymmetric). The vibrational part of the wave function is
symmetric in all cases, since it is a function of the magnitude of the nuclear
separation only.

We treat the integral spin case first. Nuclear sta.tes with total nuclear

tion. Likewise states with N = 1,3,5...are antisymmetric and require
J=1,3,5....0f the (2I 4+ 1)’ nuclear spin states, (2I + 1)( 4+ 1) are
symmetric whlle I(2I 4 1) are antisymmetric. Remembering that a rota-

tional state of angular momentum .J has degeneracy (2J + 1), and that the
"\‘A“ﬂ:*" 1Q “"A“A"*;f\“ﬂ] +f\ +‘\l\ Annnnnnn Fed ¥4 l‘: o _E.',/kT ~ l \ ARrH lnnrrn
J11UT1101V i PI.U UL viviiavl v vIiiYv uUsUllUl ayv \l U C ~ l.’, WU 11lavyo

Intensity (2J —2J —2) (I +1)4J + 1)
Intensity 2J—1—2J — 3)  I4J —1)

For the half-integer case exactly similar arguments yield

Intensity (2J — 1 —> 2J — ‘2) I(4J +1)
Trteonaity (97 — > 9T — O (T L 1)4 r_n°
ALAULULLOLIV \HU L ~17 4 HI L T \ (74 i ’

For large J values, which are abundant at high temperatures, these ratios
reduce to (I + 1)/I and I/(I + 1) respectively.

N o
{0\ {IT1N\ Danbrmmo haowa T —— 1 Mha natia 1o 1.9
\a) \.l.]. ’l L TOvUI 1iayv L — T 4110 1aviv Id 1.9
(b) (H?), Deuterons have I = 1. The ratio is 2:1
(c) (He?), I = }. The ratio is 1: 3.
() Hao Db manlore 1@ an o« narticla: T — 0
\u’ \...J.\/ ’2 ALWUVIV TVWWVVLU T A0 Wil t’wl Ulvlv, &

Here there are no antisymmetric nuciear wave functions and only J = 0,2,4,
are allowed. Thus every other line in the spectrum is absent.

18. Wlth the introduction of the auxiliary function u(r) = r+r(r), the wave

REd®u | | (1 i) L(L + 1)A?]
LAY |2V (- — ) + 2T |y = Bu
par T\ T2 T Tt
where 11 is the reduced mass (u = M. M. /(M. -~ M.\
vhere p 1S the reauce ass (& M Maf(My +— Ms3)).
ML . 0 i —mdaadial 2o 4l dnccas 3:n huaalbado. 34 Lo o i fomaasman wxrl ace
111€ €l11CCulvVe PUUUllbluﬂl IS LIIC wWollll 111 DIaUCKOLS, 1LV 11ad a Lliiliiiuln wiicil
vy L(L )h? |

R - 1)
P—Po—l’f‘—2lmzy
Expanding about this point,
V(p) = —Vg(l + B)™' + Vo(l 4+ B)*(p — po)’.

The wave equation then takes the f

dzu ' 2u'r‘m 11 1 D\ -1 1 ] D\
777 T RFLE T Voll -+ B)7 — Voll - D)
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This has the form of the one-dimensional harmonic oscillator equation;

&

Iﬁ/ / \
E+ Vil + B)y'=h,/ —(1 + B3 (n + = );
v ua \ /

and for small B,

oy, LR 1Y B RLL A Dt}
& Vo D112 ﬁwo(n 5) , 5} PPN
L \ &/ V4 B W Wy
wwhana -v . SOV T.. -2
nere wog = A/ 4V of i@

i9. The far-infrared spectrum is rotational. The rotational energies are
E,=—]F——-5— where p is the proton mass.

The lines are then separated by an amount 4%/ ur? = 2zxhicA(1/N) which gives
r=14 % 1078 cm.

920 The enerov nf a diatamie maolecenle mav he annraximated hv
L A'ZX] A LAV vll\llsJ WVJid W AW VUVALLIV AdlLVvivviaav me LS A wrrlvnlmwvvu ”J
E=—4+4ho(n + ) -|— BJ(J + 1) + higher order terms
. . - 1 1!‘ ...... | I

mL . 1t at_ PR
4 11C UIBBUUI&‘GIUII CIICIE U gr Uuuu-

state molecule (n = 0, J = U) and the energy of the two nomnteractlng
atomic systems. Thus the dissociation energy is given by E' = +4 — }iho.
The coefficient 4 depends only on the internuclear separation and the respec-

tive nhargpg of the two nuclei. he adiabatic npprnvlmahnn one
nnnnnnnn 4L o ~Ff 4L :
may neglect the motion of th

of the nuclei are irrelevant. As that i
of the two nuclei, it follows that A(H) = A(D). Therefore

i€

(D) — B'(H) = — 4 A[o(D) — o(H)]
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trons. Using the Bohr model to estimate this, we have

rp) _me) 1
re) m(p) 200

Thus the dimensions of the mulecule are extremely small compared to the
tl(‘ll.v“ vV viiwv
P P AR A 1 __1_ Qs___*1__1_ al a4t Y R 1 a4 __*_
aimensions Ol an oraimary moiecuie DlIDll&fly, UIle ravio O1 uile €el1eCuroilic
energies (for identical quantum numbers) is
Ey(p) _ m{g)
— o~
T (o afa) 200
ﬂel\U’ IIG\U’

stant,” whose ude is given by simple arguments as approximately
’ o J r o rr J
L — nzlms Thoarafara Ll N Dlo — (2 | \3 — v 1n6 n“l] ) 5 {"\IF.' {n) —
v — C© I' . A4 11IVITVAUVL U W\'D’IW\UI -_— \,el'“’ _— U AN\ 1V viils uo\'b”uo\v, -_—
Vs IR NIRY o004 . 1N .4
A k(p)/k(e) = 2.84 X w3 is the ratio of zero-point energies.
Thus r(u) =5 X 107" cm and E,(u) = 400 eV. The data given for Hy
allow the energy spectrum for H; to be written

TrT A1 _\ 1 4 N1 1 1\ 1Y a4
U= —A(e) + Eo(e)(2n + 1) + smaller terms,
with A(e) = 2.84 eV and E,(e) = 0.14 eV. Since A arises from electroni
energies and includes a contribution from the energy of the electron in the
X AAVA A AL A AL AAN/ VAAUVA J WA ViiV VAIVVVUVLA VAL 111 VirV
.12 £y o oa___ o _____1_°* _ _ ____11 _ _ _a_cl__ac___ £ _ ___ .y _ o ____ ___ A___ a__ 2L _
I11€1a 01 une vwo ucwl, a8 well as8 a CoIuriounion 1101 ue energy aue vo une

spectrum for the mulecule is then

Ty AN | n N1 1

_ Al { .. . 1\
U= —A(p) + Eo(p)(2n + 1),

with A(u) = 568 eV. The binding energy is therefore D(u) = A(u) — Eqo(p) =
168 eV

AV UV .
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i. Let A, and A4, represent the lattice distances for the two cases From
simple geometry,

- 2, B} _ 3 .,
'ch - TAfc and .Dbc == ) Abc
~d d
Now, the face-centered crystal has four molecules per unit cell, while the
body-centered crystal has only two Since there 18 no volume change, we
awvo ar tha volime mer maloeonla 143 1 A3 MThna
LAV Y Uy AL viiv vyVviuiiiv tl\/l. lllul\/\lul\/, T‘L fc z'ﬂbc A LLUD
1D _ Qo 10\1/3 1 NOOQ
Dl Uphe = A 4jO (&) = 1 V4o
Qizvmncn o gaarnla ~AF 4 4 2n L-l ..... hLonnt 4+ annanlarnadzan IF.,.‘... 4+ A
o DuPPUDU a Salllplc Ul LILIC 11Icual IS BU.UJUDU DU an acceieravion & L1Vl uvil©

viewpoint of the metal, the electrons experience a backward acceleration
a, and hence an equivalent electric field E = ma/e This produces a current

density J = moa/e which can be measured Since ¢ 18 known from electrical
. one obtains a value for p/m

1 U
gas, giving rise to hithium chioride The reaction may be broken down nto
several steps (Born-Haber cycle)

anron 19 Atrnﬁnr‘wn’n mMmirm O T ‘ Tﬂ ﬂAA
AAULY 4V ID LA VUREQUWUILIY U 11Ul vuUl v v auu
{l\{"l [ A | lYﬂl/l\D \Tﬂl ATy | A
Ldgolia T \—2-)b12 T L T YU \—2—}1'4 T 7 LVl T 4V L A
Also,
{1\ n
Liytia ! \'3)\ Io » LaClg 1 B
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Subtraction yields NF = B — A + D 4 NC + E/2. The addition can be
fis . A .

performed only when all the
with N = 6 x 10%, one finds F = 4.07

4. Consider current flowing in the y-direction with a magnetic field along
the z-axis. The fact that germanium shows no Hall effect means that the
r

current in the z-direction is zero. Consider an electric field E along the y-axis.
ML o valaniter AF alantnang and halag in $ha 20 Ainaadion 1o givan he —
4L I1C VUIU\JIU.Y Ul TIUULIVIID allu 11U1UD 111 vi1TO y'ull vul 11D 51\' 1 8 8 Uy Ue _ _I.bel.'l
and v, = u,E. Because of the magnetic field these charges experience a force,
on electrons and holes respectively, of
— DAY n“l] — A u -
L'e = CVeil alila L'y = €unpii z
along the z-direction, thus inducing transverse
velocities o
n

and producing a current, I’ along the z-axis,
equal to: V% I ’
! 2
I' = enhvh enove = eHE(nhF‘h ne/"e)’ /
'T‘ ;n ‘Tﬂ'\;ﬁl\ﬂﬁ ‘IY‘\D"I )4 /
A LLID VUL11D11VD vriivii ~
2 __ 2

nhth = ne,l;e. (].)
my i I Ly N, - a a1l Lo s
The total current in the y-direction is I = e\p,hnh —+ ;Len , ana tne iraction

of this current which is due to electrons is

_ Metve h?Yh
= = (1 +t==
\Melte T~ fPhith) \ [Hete /

5. Imagine the two phases in equilibrium at temperature 7'. For equilibrium.
the chemical potentials of the two phases must be equal, i.e.
F’solution == I-"bcc
We assume that carbon is perfectly soluble
a

e in
11 in the bee nhase. We assume also that the ca

a a | ambadatdd D el ZaSs a

Ahaminallsy Tvané ..,:u.. waannnt 41 Ana annthan Mhan s la nhtaimad
vilollljvall 1HHITCL UV WwWlull lvbPUUU VU VUIIU alluullTl 4 I1T11 I.bb(.c IS vlvuvalliicvu 11vuill
the Gibbs function for pure bce iron, but gy has an additional term

due to the presence of carbon.
In order to compute this extra term, it is first nccessary to find the entropy
increase due to the carbon. If the total number of iron atoms is N, and n is
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d is

the number of carbon atoms, then the number of ways in which the carbon

for N > n.

=

=

kinP =~ k[(N + »n)log (N + n) — N log N]

S =

-

Mbee; 8t equilibrium. However,

~

Now, in the absence of impurities, g,

-y

=

(T + AT), changing the chemical potentials from p to [ + (op/0T) AT].

introducing the impurity shifts the equilibrium temperature from 7' to

Therefore

mixing

amn

S =
QI

~—"

1nus

—

e’

In addition,

o) =
® Il

A

T B
Sl

N—
N s
=

)

I
3|&

o
QI

numper, we

But the latent heat is defined by

= 1073,

where ¢

The transition temperature is therefore lowered by 11°C.

h |

a given level » to be occupied is

e MRw/KT

-

e—luo/kf'(l _ e—nw/k]‘)—z

-

(1 _ e—flw/kT)—l

o—NNw/kT
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Each molecule has three modes of vibration; hence

\" / Rw/kT '
e —1
Ad Ll doononnmadosmas ATL./M . DM Lo . o4l -l O 1
LAV l.l.lsl WLU.PUI&UUI!‘JE, Iy = 94V L — Oonivi , WiIICI ¢ IS UIIC 11Ulll PDCI Ul 1110ICES

/B \2
¢ = 3R(M2Y’ ¢-nonr
./m
\K1l/

+ hich temneratures the anecific heat ie in aorecement with the amnirical
oAV ll‘ell Uvmt’vl WvwaL wUw ’ ViAW Urvvlllv ALY AN AALr wsl INVALAVAAV YY AViA VAANY Vu—lt’ll AVNva
Tacer ~L TH1___ . ___.1 D422 ad Vo A _4______ L) LN S .4 __.*al
law 0Ol ulong ainu rceuiv, auv 10w wmpela,UUISB v /v, ll ugleemenb Wil

dicted here, is not in agreement with experiment. A more sophisticated
calculation (Debye model) gives better agreement.

) exp (heo/kT) — 1

e’

where g(w) is the density of states for phonons. At low temperatures the
low frequency dependence of g(w) is all that is needed to calculate the energy
ag a finatinn nf tamnaratnrea Far a thraa_ dimanginnal lattinca
Wi W/ AwiiVVIVLIL VA UUI—I-IB\/I.WU“I.\/- A VUL U V111 VUVUTURILLLIVILIDIVALAOVL Aauvlvu,

(o) do — dk  4nkidk 4rno’do

= = ’
gie) @ry ~ @xF | @)
\ 7 \ ’ \ 7

where ¢ is the speed of sound. Thus g(®) ~ ®?, yielding an energy proportional
to 7' and a specific heat proportional to 7. However, if the solid is composed
Af tvwra Aivnanainnal ansratala faa onanhita 30 $han ~0-.) _~ wrinldienae o M2
Ul LVwWwU-ullivlisiviial v .y vaio \GJD 51 PIIIUU 15’, LI1TIL \w} ~ W, lelulll.s a 4L

dependence for specific heat. Thus the 7

8. The conductivity is given by o = e(n.pe + nnm,), where no, fo (ny,, pn)
are the density and mobility of the electrons (holes). Moreover, in a pure
semiconductor, n, = =), with
o=t (B
b r’ J exXp{(A -+ p*/2dm, — &E)[KT'} + 1

The probability p,(E) for a hole to occupy a state of energy E is equal to
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the probability that an electron does not occupy that state; i.e. ,

Q
=]
('D
s..
@
[
:n
'7'
||
|

where
where

_1 p ,
~ %) exp{(p72m, + E)ET] + 1

In the above expressions A is the energy gap (0.1 eV) and £ is the Fermi
energy. If (A — E)/kT > 1 and £ > kT, as is the case in this problem, the

above expressions simplify to

r_ (A + p2/2me — g)}

TR Pl T
and
n, — l ‘-d/nfnz exn i__ (p2/2mh + E)-i .
n h3 J f o o r L kT J
The equation n, = n, implies
& _ A ' 7 m /m!=\3’4
§=%5 +kTlog(—)

4 T3/2,—A/KT
Ng — L7 %e =y
where 4 i1s g constant lnr:lenn'nﬂnnf of tamneratnure Rinally the conduetivity
A. AL ALANA rvll“v‘lu A4 Uvmrvlwuulv . ‘l‘-w‘lJ 9 ViIAV VViAANA WUV VA VAV

e oo Lot At /mMm3/2 ./ Alorm ___1
as a 1uIcCuioIl o1 Uclllw avure I8 0 = 0ogd UKP \—AQajinid ), anu

a(T,) { T, \*" FA(T:': — Tiﬂ

= ex
ST —\7) XP|—gpmm |

Converting A to a temperature, one finds A/k = 1160°K. Hence
a(T,)|a(T,) = 6.5.

9. In vacuum, the electron velocity is determined by 4mvs = 25 eV, while
n the crvsta.l the velocity is mcrea.sed according to 4mvi = 25 + ¢. Thus

t.h_e quantity /(25 4+ ¢)/25 acts as an index of refraction for the electrons.
TTnan amaroine fram tha arvetal tha alactrang are diffrastad according +a
L %) AL Umolslll 4A1Uiil viiv Vi PUdily Vi1V VIUVUUVLIVILID V1V UllI1l1lauUuvvu avuuvl uill v
Sneli’s Law, which gives

sin @, = 25 sin (60°)

and 6, = 20 from the geometry.
Diffraction from a set of crystalline planes with Miller indices (&, &, 1) is

v
.
nnnatrinn

Yuwvivia,
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A\

/ 60°\i

However, the appropriate wavelength is not that of the electrons in vacuum.
Rather

LvRLILL ’

. M. / 95

Qe Lo /=2 |
A, 0w \/ 9K L A
v Pe vV 4o T Y

Trnaarting tha nimimanriaal valniag Af tha nrenhlam van ana’a annatinn hannamaa

AL11IOUL Vi1 VilU 1iluiliviival voailiuuow vl viiv tu.uuxox.u, Y UllL Advuav o U\.iuall.llull uuvuaive
.2 N 1~ Al 1 £y AT

sin® ¢ = 1.04/(20 + ¢). Now

cosfy =1—2sin’f=1— 4
25 4+ ¢
Then the restriction cos® §, 4 sin*§, = 1 gives the condition
25 | 12A4*

Since ¢ is positive, we must have 84 > 25, or 4 > 3. Further, the condition
10 A2 QE/IO A QEN n PR SO [ [ Y 100 A QEN/IO A AN ~ N
12A" — 20(6A4 — 29) > U, or (equivaienty), (0A — 20j(cA — 20) > U,

gives rise to the conditions 4 < 2% or 4 > 12.5. Thus the smallest ring

occurs for an 4 which represents reflection from the (200) plane. The cor-

______ A A dl LAl s o d 2T A1 2 L 1M X7 ML, £o a4 4L 4 /10NN

IUEPUIIU] 12 W Pbll Ol uI1e P veilvial wdell 18 (P == 1 l/ { V. 111€ 1aCu uliav ‘.I.W}

Y X

if the crystal is face-centered cubic; then the maximum separation between
adjacent planes is half the lattice constant.

10. Conservation of energy implies de = ¢E-dx. Thus

€(t) — €(0) = eE-(x — xo)
Naw o0 — (ke N\  and  of8\ _ ~fL{a\A Alen #h — o1 fornmn  xwhinkh
ANU W C\U’ —_— C\ 0’, all\u C\b’ _ C\ﬂ/\b” L2180V VA — Ul-‘l, 11VUL111 111V11
k = (eEi/a) 4+ k,. Thus

Note that the functional dependence of ¢ on k need not be that of a free
particle; it depends on the band structure. A typical dispersion curve is



shown in the accompanying figure. Consider an electron, which, at time
t = 0, is at the center of the Brillouin zone, i.e. k; = 0. As ¢ increases, so
does k and e; hence Ax = x — X, increases. Ax attains its maximum value
when the electron reaches the end of the Briliouin zone, i.e. k = kg. The
electron then suffers Bragg reflection; its momentum is k = —kz. As k

increases from this value, ¢ decreases and so does Ax. The amplitude of

oscillation is Az = e(kg)/eE, while the period 7 satisfies eEr/h = 2k;; i.e.
- OL 1, TAan an m..,lm.. AfF macmnitirnda aatimnatn Ana mmawr dalra L\ _
i — AIIDBIOICLJ L'UL all ULlUuvlil-vl-I1il 11L1VUuWUYC UEUImaUU, UILT l.ua;y [T, .S v] C\KIB’ T~
h*/ma®, with k= mja. Here a = lattice

constant = 10" 8ecm and m = electron

mass. Then e(kg) ~ 107" erg ~ 6eV. If \ /7
E is measured in V/om one then finds \ /

6)em
E]"

/\
o ——Pp
—

N

)
P
[=

&{4\,\1 ~T gec -k 0 k
\E) B s B

The above discussion of the oscillations is legitimate only when the length
of the crystal is very much larger than Az. For a crystal of length 6 cm,
this means £ > 1 V/cm.

11. (a) Let one of the photons [call it photon (1)] e
make an angle § with respect to the velocity of the o
electron being annihilated, assuming the positron to T \e

be at rest (see figure). If the velocity v of the electron e- :

were zero, conservation of momentum would require ‘,J‘r’
@

et
the two phot
having a momentum p = mc. For v #*
sin 6, perpendicular to photon (1), which must be carried by the other

photon. Thus to first order in v/c, the photons deviate from collinearity by
the angle

One must now estimate the magnitude of v/c to be expected. An electron
bound in an atom has a mean kinetic energy of {(3mv*> equal to the binding
energy, Z*a*mc?|2n® where a@ = e*[/hc = 1/137 and = is the principal quan-

tum number. Taking Z = 1, since we are assuming that the outer shell
Alantmanag darminatan tha anmihiladinm wra ~Ahdasen D 1/379"
CICCUI OIS QOMiINaTe une aniiniiavion, wé Oovalil O),zx — ulo ~ u,/ T~ 1[10‘

h 1

alternative method is to calculate the Fermi velocity, vy, in terms of
the densnty of conduction electrons, with &,,.x ~ vr/c. Since this calculation
of v, i8s necded later, it will be done here. For a free-electron gas at 7 = 0°K,
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the density of electrons is given by

n = -—l— f“ dén = {ﬂ\o f“ 4dmvidy = 4”(""”"\3,
J \ ] J \ /]

(27h)*Jo — © 2nh) Jo ) 3 \2zh

nr altarmnativoly
VL, WAVVAL LAWWVLA Y Vi 9

[5 P f ) i/3

vy = (2Z1)(37) (1)

\m /\4m/
A __ . _a* __i1i_ £ _ _ [ I 143 __»____ 297 2. 11 _a *_ L
£2A8 all CSUINate 10r v we Cnoose n = 1/a wnere a = in /me , unav 18, @ 18
the Bohr radius. Then vyjc = (67?%)*a ~ a = 1/137.
(b) The transition rate in a metal, I'| is given by the product
I' = ¢ X flux x phase-space density. The product (¢ X flux) does not
A n el n alanitsr an TV dananda Aanlsr An +h nh Qin +h oy
Ul AUV A WUUT LAAD Ull.l..y vll Vi « D V.

(]
3
[¢)

5

¢
O

£

!

[«

. h | 1 4 ~

bility of a given angular separation depends only on the probability of an
electron having the appropriate velocity in the direction bisecting the angle
between the photon momenta, the direction of Ap makes a convenient
choice for the z-axis. Then W(8) depends only on the prol

r
.
2 |
i,

tinn Aaln Y\ Hanca wa writa 22 — a2 I a2 whara »
viUil (V7). 11CIICC WO WU = V) T Yz, CLY

to v,. Note that we have assumed implicitly that all measurements are made
in a plane. This is in fact necessary for accurate measurements, as & is small.
The phase-space factor is

- 3
[ L
=

- - = [ T . .
av.p(v;) = av, | v, 80, dPp(v,, P, V). C,, C, are counters

At T = 0°K, p is constant inside the Fermi surface. Therefore p(v,) is pro-
portional to the area of a section of the Fermi surface normal to the direc-

n 0, he anonlar correlation. which meaaures n(2».) aives informa.
.. +01U8 the angular correiation, wnich measures pv;), gives 1niormsa
L20nn aLld Al Tncenn ! ccccflamn TV o fcmd vt n cmand ]
LI0I1 &apDO0Uvu LIl reoriill suriace. ror all 1souvl PIU mceual,
Y L[ . .
pv:)) = A4 | v,dv;, = 4 | vav = A(vy — 03).
J J o,
m
1nus
. v
W(8) — const (v2, — 282) with & < ZF.
wie) const X Vs c°0%), 1N O <
C
o mall tamnaratnre affont hocance at nanmarn tammnaoratnra tha
A4 U\Illll’bl aovuiLv VilvvVvwv MUV uowv wy AAVJLALIVA VY UV‘IIPUI aovuiL v viiwv

At ordinary temperatures this differs from the previous distribution
only at velocities v = v,. One thus expects the following qualitative be-
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havior for W(8) as a function of temperature:

| T=0% L T=0%
N |

wo | N\ we |\

EAW

r, thermal motion of the positron is the dominant factor.

12. Consider the long-wavelength plasma oscillations of the lattice. The
motion of an individual ion satisfies Mv = Ze¢E, which, in terms of the
current density of the ions j = ZeNv, reads

d ._ Z%‘N

dj_ZeNg W

dt M
Trn additian +tha matian mnagt aatiafyy tha sharnoa annanncatinn aniatinn
411 auul Ulull’ VILU 111VUViVil 111Udv oo l.llb.l.y viiT wviial v UUILIDUL vyaviull Vl.l uavivili

V-i+p=0 (2)
Combining Eqgs. (1) and (2), we obtain

Z%*N o = | . .
(V- E)+p= (3)

To proceed further, we must represent the screening effect of the electrons
in the dielectric constant. Thus, for a plane wave E = E(k, w)e!***~%" and
lattice charge density p = p(k, w)e!®**~*" we have V-E = (4x/e(k, ))p,

***** v | i S
whinh whaon an}\cfﬁ'nfnﬂ in Ba (2) vnolde
VWIAlLIVIA VWILAVIAL DWUNVOvViAvUuvUul 111 .u\i. \u, J‘vl“o
. O with 02 — 4w Z*e*N
w e a— WIUVIL ALy T/ e
ek, o) M

For a heavy ion, we expect the electrons to follow the ion motion adiabati-
cally, and thus o® =~ Q?/e(k, 0).
The sound velocity is defined as the limit

).
)

3

1] —
vs —

( »
%

C—0

—t
Lol =n
[

Thus
" ?
U T e Be(k, 0)

One must now calculate the dielectric constant e(k O) Consnder a static

extern arge density po(z) = po
<) VA s Sl o o" S°
tho tntal sharoo doangityv ie n.le and the 'l'\l]l'lhﬂl] alantran charcao Anna“‘xr 1Q
Viiv vuUuvwi ‘Jllalsv AL lm‘u.y av Holc, CVLAAGA ViAIV liilWiuUuvuyvwu vavwuvvviwvis \/ll(ﬂl.s\./ uvllDlVJ a0
_ 11 A my. o Y a4 _ 4% __ a4 __a°*_ 1 __a1° £ °*° _ __ ©T2Y7
CXpressea as pe = Poll — €)/€. 1NE €lecurostaviC polenuial sausiying v-rv =
—47 pofe i8 then given by
v 470,
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In order to solve for ¢, we need another relation between ¥V and p,. This can
be obtained 'hv the Fermi-Thomas method where the densitv of electrons

SRS Vi aaAUNa VALY & TLLLI2T A VAW LLITVIAURA WV AAVARS VaaTr Ravaavavy vavvva Jaag

17 /711 [ 1 ‘
(T} + 1
T 41 h [P Rt (LY B /) | . L/ _ 1 a_ e
In the degenerate gas limit £ > kT, we obtain

3 2
(8) n(x) < [Er + eV ()]
while in the classical limit, appropriate for a hot plasma,

LY ol axn (o1 LM
(b) n(z) < CAp \‘”'\“’ll"’-‘l

Expression (b) is not appropriate for electrons in a metal, which behave
like a degenerate gas; it was discussed in Problem (8-22) in connection
with the Debye-Hiickel radius.

[

From expression (a) one obtains, to first order in V,
2
pux) = —ebn(z) = — 2L
2E,

X7

When this equation is combined with Eq. (1), we obtain

/2ZE \ 172 IZ,.T\I/Z
— F —
v = | a AT ) =vel532) -
\ 3M / \3 M/
(Note » = ZN.) Since m/M < 1, the sound velocity will in general be
mirnh laaa than +tha Farmi: valanitxr
LIUvVIl 1U00 viliouil vilv 1'vlllil vuivuwiv
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1. Cerenkov radiation appears when the velocity of the particle exceeds
the phase velocity of light in the material, c/n, when = is the index of refrac-
’

tion. Therefore the u’s alone will give Cerenkov radiation for those x such

that cfv, > n > c/ v,. The velocity pc(p* + m?c?)™"/2 of the = and u are
c/~/ 2 and ¢/[1 + (106/140)%]'/? respectively. Therefore the desired range
of nis

1414 = /2 >n>[1 + (128)?)]2 = 1.26
2. According to the uncertaint

of a par rticle are
is emitted by one nucleon and absorbed by another, its position during
transit is uncertain by an amount equal to the range of the force. Thus for

an order-of-magnitude estimate,
Arx =~ r and Ap = me,

where r is the range. Hence r = 7i/mc.

3. Let N = number of protons/cm?®; then in terms of A = 1/No and A, =
1/Ng,, the probability that the antiproton is elastically scattered in the

intervals dz, and dz. is

] @iill Lo 10

dp — e—lzn(xedxl)e—l(za—xl)(Ledxz)e—l(l—:n),

where 0 < z;, < land z, < z, < l. Integrating over z,, z,, one obtains

Py(l) = (2e)e-n
\21)
T ganmaral DN _ AR ,-A 22 e DN __ ,—~(A=A)l ananmacanta +ha
1l general i p\tj — (NeTtij € 7, 1Q 2Zyn=0 L alt) = represenvs une
probability that the antiproton will not be absorbed.

4. C = Ae *, 80 A =1In (C,/Cy)[(t; — t,). If time T, (T,) is spent counting
!y (Cy), then the total number of counts is N, = C,T, (N, = C,T,), and the

mean square deviation of N, {N ) I8 n'2 N, (r,rf N,).

quar
233
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Now the error in a function f(z, ) due to the errors in # and y is deter-

AR J
2 2
e = (L) @0 + (L) v
z Y
Hence
2/C|\ 2/T2ilv7l\
g (W‘) =0 ‘?F)
\Ug/ \1d'y INyg/
and
20V 1Y 1 1 1
\UI!UQ’ _ & + L _ 1 + 8
1Y 1Y N2 T A — T m N m
(C1/0%) iv, iV, O,1, Co1,
This is minimized subject to the constraint 7', + 7', = const. Hence
mim — () IONW2 Thia chows that more time shanld ha anant maeaanring
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ButC, ~ e * and C, ~ e *", thus ¢*(\) is smallest when ¢, = 0. Then o?(\)
has a minimum when [(Af,/2) —1]e**? = 1. This has solution

Mglz 28 or tz = “.56/‘

5. The ground state of O'® has no spin, whereas the neutron has spin 4.
A neutron with ! = 2 must, therefore, carry angular momentum J = §
or §. The spin of O'" must be one of these. The first excited state is made
from s-wave neutrons, from which J = . This is the s °p in of O'™,

m 1 a1

The nucieons have even parity, as does the ground state of oxygen. The
parity of the initial state (free neutron + O'®) is therefore the parity of the
angular part of the neutron wave function. Since Y,,(—cos ) = (—1)!

Y n(cos ), the parity in both cases is even. Because the strong and elec-
tromagnetic interactions conserve maritv. this ig also the maritv of the N7

6. Pions have isospin I = 1; two pions may exist in an I = 0, 1 or 2 state.
Therefore none of the decays is forbidden by isospin conservation alone.
Because of Bose statistics, the total wave function must be symmetric

under interchange of the two pions. The (I = 0)-state is symmetric under
Lemd e PN P} RN JY | IS . Y IR o 1 e, et £ 2l
lllbUl buu,ugt: s UIITITIUIL LI1C Bpwuul Pual. [ 7] 1 UIIC wa 1CL1VI1 I UIlIC PIU"

system must be symmetric. (There is no spin w
are spinless.) This allows states with L =0, 2,4 ...
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The parity of these states is (—1)*, because all pions have the same in-
trinsic parity. Therefore two-pion decay may result from particles with
r J r J J =
mrroamdiznn marmmbhane T IO+ [O+Y  ada Mhaee d+ha ~nley Aonacr allacrnd o
quuuuuul AUIIl UOL v — \V ), (& ), Tuw. i11us v Ully u bﬂly alluvowou 1

If we drop the assumption of isospin conservation, the decay «®* — 7 + =

is allowed ; it may proceed via the electromagnetic interactions which don’t

conserve isospin, while the decay 9 — = + = is forbidden merely by con-

7. Describing the initial spin-} state by a spinor, 4» = (§), the most general
expression for the probability (summed over the final spin projections of
B and C) that a given particle is emitted in the direction 1 is

A + Bo-n, where A and B
are real consta.nts independent of & so as to guarantee rotational invariance.
If the initial state were polarized along the z-axis, then P(n) = A + B cos 6.
However, since the decay proceeds via electromagnetic or strong inter-
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&ct}ens naritv ia enoneerved and Pin) mmnat he aven nnder naritvy MThne
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D = VU SInCc Yy o-°n IS Oaa unaer pariy (n— —nana o — o, nence

o-1 — —o-i), and the decay is isotropic. In weak decays, where parity
is not conserved, the coefficient B will not vanish, and asymmetry in the
decay will be observed. A typical example is the weak decay A — pz~

R The relative naritv of the (wr—d)svetemis Plor—d) —m (—1\Pr (_1\Pa (_1\!
e - AAN/ lvlwv"vrwl.v" A& WVAAN/ \lv w’ UJUVV“‘ AN A ‘l. w’ ‘ ‘-’ ‘ ‘-’ \ " .
TX meceneene 1 N Smmn Al 2t o cadocemn) o d mncd T XX AL D d

IOwever, v+ — VU, 311100 LuIlo PI.U 113 U&Pbu U av Ie3u. 111 auuluvivlil, LvIiic uUubUlUll
has positive parity; hence P(x~ d) = P(n~). The total angular momentum

an
of the initial state is J(#~ d) = S, + S; + 1, from which J( “d) =

Since the reaction conserves angular momentum, J(nn) = 1. The resultant
spin of the two neutrons may be § = 0, or 1, and when combined with the
malatica Anhital amanlan mmanantizmm T ommrgd magnald i o T 1 géata Mh..o
1ITlavivtc vlvliuval a 15u1a.1 miviivliivuiil,y 44y 111Udvu 1CUlvV 111 & v — 1 duvauvv, 111us

In addition the two neutrons, being fermions, must be in a state antisym-
metric under 1ntercha.nge of the neutrons. The spin states (S = 0) and

esppot!vplv under excha nge.
Thus, of the above possibilities only *P, is allowed on the basis of Fermi
statistics. The parity of this final state is (—1), since the product of the
intrinsic parities of two identical particles is even. The parity of the allowed
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final state P, is odd, and since parity is conserved in this reaction (as in

all strong interaction pro ocesses). one concludes that the paritv of the nion

SOUSyy el DRSNS AT AlT | bttt vast pesoss

9. The isospin of A is 0, while the pz~ and n#® states are linear combinations
of states with definite isospin; that is, they are not themselves eigenstates
of the operator I*. The nucleons have isospin 4, while the pions have isospin

1. The pion-nucleon system may have those values of isospin resulting from
the combination of I = 1 with I = 1‘;, ccording to the rules of combining

isospin (or angular momentum): 1 ® 4 =3®
rule, the A decays only to the (I = ) state.

We may expand
|3, —3> =al|px™) + b|nx®),

|4, —%> =b|px™) — a|nx®),

where a and b are the amplitudes for the px~ and nn® states in the (I = 3)-
combination. The coefficients in the expansion of the (I = 1)-state have

_ Rate(A—pzx~) |b]

~ Rate(A —nz°  |af?

The coefficients a and b depend not on the detailed properties of the ele-
mentary particles, but only on the isospin properties. We emphasize this
by introducing the notation

1 -\, 11 l\ 12 1\

pT ) =lz35/’|L, —1)
and

naewO\ |1 __1

In this notation,

|'2” '2'/_ai'2'"2'>i1,_1/_rui’iﬁ _'E'/All’0>°
Now the coefficients, depending only on the transformation properties of
isospin, cannot depend on whether the basis states are “elementary” or

t}\n nnnmc}ents cannot ﬂnmnﬂ on whether we

h oY 'I'\]D

t’ A V. t’l\l’ AANS NINIVALAR AR ALAL \‘\Jt’ AR VY AAN/VAAVA
describe a state by writing |1, —1) or |4, —%>|4, —3>. We therefore
write each state with 7 = 1 as the appropriate linear com'bination of (I = 1)-

states:

10> = =4 Dlh —H + 14 —HI5 D)
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In this decomposition,

12 2/ v

total spin n/2, then all ( 2n + 1) ququ are symmetric undvr interchange of
anzr ~nf+ha gt 1 .....J..AIA.. Mha coama racild