
WiFlock: Collaborative Group Discovery and Maintenance
in Mobile Sensor Networks

Aveek Purohit
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

apurohit@ece.cmu.edu

Bodhi Priyantha and Jie Liu
Microsoft Research
One Microsoft Way

Redmond, WA
{bodhip, liuj}@microsoft.com

ABSTRACT
Low energy neighbor discovery, group formation, and group
maintenance is a fundamental service in mobile sensor net-
works. Traditional solutions consider these protocols sep-
arately. In this paper, we introduce WiFlock, an energy-
efficient protocol that combines discovery and maintenance
using a collaborative beaconing mechanism. WiFlock com-
bines a coordinated synchronized listening and evenly-
spaced transmission (SLEST) schedule effectively with one-
way discovery beacons to fulfill both purposes. We show that
shorter listening duration implies smaller discovery latency
and faster group information propagation. Using a novel
carrier sensing technique, we achieve a fast wakeup and
listen duration of 80μs on a low-power radio. With this
listening duration, we evaluate WiFlock on a 50-node test
bed with nodes running at 0.2% duty cycles. We show that
WiFlock has shorter discovery latency and better scalability
than previous approaches.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communications

General Terms
Algorithms, Design, Wireless Sensor Networks

Keywords
Mobile, Neighbor Discovery, Group Management, Wireless,
Sensor Networks, Flocking

1. INTRODUCTION
Mobile sensors are becoming increasingly important in

networked sensing systems with applications such as scien-
tific discovery, asset management, and smart environments.
These sensors can either be autonomous or be attached
to moving entities [1, 10, 12, 19]. These sensor networks
must accommodate node mobility. That is, as sensors come
and go, a group of nodes needs to discover each other and
new neighbors, maintain group membership, and be aware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’11, April 12–14, 2011, Chicago, Illinois.
Copyright 2011 ACM 978-1-4503-0512-9/11/04 ...$10.00.

of nodes departure, typically under stringent latency and
energy constraints.

Neighbor discovery and group maintenance are not unique
to mobile sensor networks. In any ad hoc sensor deployment,
the network needs to initiate neighborhood tables and repair
link connectivity over time. To encourage nodes to sleep
for energy saving, a neighbor discovery protocol usually
incorporates long preambles sent by the to-be-discovered
node, and periodic waking up and listening by the discovery
nodes. These same protocols can be applicable to networks
with slow mobility or high energy budgets, where the nodes
can afford to communicate frequently.

The challenge comes when the network exhibits “oppor-
tunistic flocking” behavior, where scattered mobile nodes
occasionally come together for a period of time and then
the groups disaggregate again. This phenomena naturally
occurs in habitat monitoring [1, 19], where scientists are
interested in the encountering of tagged migrating animals.
It is also common in asset tracking, smart environments, and
search and rescue. When the system is expected to have a
long lifetime with a constrained energy budget, the nodes
need to carefully trade off between duty cycling and latency.

To motivate the challenges of this flock discovery and
maintenance problem, we consider an asset tracking scenario
with wireless tags that we call MeshIDs. The assets can be
servers in data centers, equipment’s in hospitals, or products
in warehouses. MeshIDs are wireless sensor nodes attached
to the assets, and they use multi-hop communication and
group formation capabilities to detect encountering. That
is, when certain assets are used or shipped together.

Consider a typical logistics workflow. A number of items
are picked from different locations to fulfill orders. They are
loaded on to trucks driving to various stations such as ware-
houses or hubs. At each station, some goods are unloaded,
and others are added to the truck. The MeshID tags on the
items aggregate and propagate neighborhood information so
the truck-mount receivers can reliably collect all tag data on-
board. In this scenario, each tag needs a low duty cycle to
save its battery life since it may spend long periods without
any neighbor. However, when they have neighbors, the tags
need to quickly discover and propagate the information to
the truck reader, so the truck can leave the station as soon
as all the required objects are confirmed. Thus, in flocking
mobile sensor networks, a group discovery and maintenance
protocol should be energy efficient, reactive (i.e. of low
discovery latency), and adaptive to scales.

Traditionally, group discovery and maintenance are done
in two separate phases: first, a neighbor discovery phase
where each node builds its neighborhood table, and then
a group maintenance protocol for propagating and aggre-
gating neighborhood tables into a group table. Disco [4]
and U-Connect [6] studied low energy neighbor discovery
in mobile sensor networks. Under both approaches, nodes

37

asynchronously beacon for advertising their existence, and
listen for receiving beacons, although they differ in beacon
and listen schedule. Group maintenance, when the network
cannot afford time synchronization, is usually built on top of
low power listening such as BMAC. In BMAC, a node sends
long preambles to ensure that the targeted neighbor wakes
up, and establishes a point-to-point communication link.

In this paper, we argue that in flocking sensor networks,
we have an opportunity to design neighbor discovery and
group maintenance protocols jointly. Since these protocols
must be executed all the time, a combined protocol can
achieve high energy efficiency and low latency. We describe
WiFlock that uses a unified and collaborative beaconing
mechanism to achieve both discovery and group mainte-
nance goals. The collaborative nature differentiates WiFlock
from previous asynchronous neighbor discovery protocols,
which mainly considered pair-wise discovery between two
nodes. In fact, since group formation is the ultimate goal,
we show that it is efficient to perform one-way discovery
and then use collaborative broadcasting for propagating the
information.

The WiFlock protocol uses several techniques for perfor-
mance improvement.

• When a node is alone, it needs to periodically wake up
and check if it has any neighbors. If the node spends
majority of its life in the alone mode, then reducing the
wake up duty cycle directly translates to increasing node
lifetime. We show that WiFlock can achieve 80μS carrier
sense duration in practical environments with moderate
interference. This is ∼ 3× less than the state of the art
250μS reported by U-Connect and leads to much lower
node duty cycles.

• When nodes are in a flock, their activities can be syn-
chronized to speed up the propagation of neighborhood
and group membership information. The whole network
can quickly react to changes in terms of nodes joining and
leaving the group. To achieve this, we use a distributed
coordination to achieve synchronized listening and evenly
spaced transmitting (SLEST) among groups of nodes. We
show that it is a lightweight yet scalable technique for joint
discovery and group management.

• When nodes within a flock exchange messages for main-
taining group membership, WiFlock embeds data mes-
sages such as neighbor tables in the long beacon itself, so
receivers do not need to keep waiting for the end of the
long preambles to establish two way communication.

As a result, WiFlock easily accommodates frequent node
mobility by combining the neighbor discovery and group
maintenance in to a single long running service, rather than
treating them as two distinct and sequential phases. Wi-
Flock is a highly efficient and scalable protocol that can
achieve node duty cycles as low as 0.2%. Unlike some of the
existing solutions, where the performance degrades quickly
as the group size increases, the proposed solution can easily
accommodate large groups. We evaluate WiFlock on a test
bed of 50 sensor nodes and show that a group can be formed
within 3 minutes with 0.2% total duty cycle by using a 80μs
listening duration under moderate WiFi interference.

The rest of the paper is organized as follows. Section 2
introduces the basic primitive of two node neighbor dis-
covery on which the group management protocol is built.
Section 3 describes our system architecture and collaborative
techniques for group management that allow for scalable
low-latency continuous group management at very low duty
cycles. Section 4 details our hardware platform and the im-
plementation of the various layers of our protocol. Section 5
presents an evaluation of the protocol at scale on a 50 node
test bed. We discuss related work in Section 6, and Section 7

summarizes our contributions and concludes the paper.

2. NEIGHBOR DISCOVERY
To accommodate node mobility, the basic operation in

neighbor discovery and group management is advertising
the node’s existence and listening to discover neighbors.
However, when to perform these operations greatly impacts
the node’s energy expense and the network’s reactiveness
to changes. Therefore, we derive the optimal beaconing
duration for advertisement and wakeup period for listening.
In this section, we assume that the nodes do not belong to
any groups. For many applications, a node spends majority
of its time in such a mode.

Nodes use low-power sleep state to reduce energy con-
sumption. The basic operations of a neighbor discovery
protocol consists of two parts:
• beaconing: In order to advertise its existence, a node

wakes up periodically, every q seconds, and transmits a
beacon of duration B.

• listening: For detecting other nodes’ beacons, the node
also wakes up periodically, at the period p, and listen to
the RF channel for a duration D to detect any beacons
from neighboring nodes.
In addition to periodic listening, discovering unknown

neighbors involves periodic beaconing. Thus it is advanta-
geous to seek ways to minimize idle transmit. We carefully
pick the optimal length and period of the transmit beacon
to reduce our average power consumption.

Our neighbor discovery protocol builds on the previous
work by Kandhalu et al. [6], where they introduced the U-
connect neighbor discovery protocol. Similar to U-connect,
we choose the beacon duration B as:

B =
p

2
,

which is the minimum length of the beacon that guarantees
that at least one node from a pair of nodes will detect the
presence of the other. We call this one-way discovery, in
contrast to pair-wise discovery where both parties discover
their counterparts.

Fig. 1 shows the intuition behind this choice. Consider
two nodes x and y transmitting the beacons at times tx and
ty. The time difference is td = ty − tx. Here we consider the
case where td < p; due to periodicity, the same argument
applies when t′d = n · p + td, where n is an integer. We
assume that D is arbitrary small.

In Fig. 1(a), if B = p
2

then td = p
2
. Here the beacons of

each node barely overlap with the listening so that one (or
both) of nodes can hear each other. If 0 ≤ td < p

2
, then node

x can hear node y’s beacon, while for p
2

< td ≤ p, node y
can hear node x’s beacon. Thus B = p

2
guarantees one-way

discovery.
As shown in Fig. 1(b), when B < p

2
none of the nodes

can hear the other. On the other hand, as in Fig. 1(c),
if B > p

2
, either one of the nodes or both of the nodes

can hear each other depending on value of td. Although
this still guarantees discovery, energy is wasted on the extra
overlapping. Of course, in practice, the B can be slighter
longer than p/2 to accommodate uneven clock drifts in the
two nodes.

Note that, when B = p, the node behavior degenerates
to low power listening (LPL) [9], which guarantees pair-wise
discovery and that the listener can discover the advertiser
within one beacon period. However the energy expense
is significantly higher. The flip side of one-way discovery
is that the nodes cannot establish two-way communication
immediately. This asymmetry has ramifications on efficient

38

Beacon x

Listen x

Beacon y

Listen y

2pBtd �� 2p

Beacon x

Listen x

Listen y

2ptd � 2pB �

Beacon y

Beacon x

Listen x

Beacon y

Listen y

2ptd � 2PB �

(a) (b) (c)

Figure 1: Impact of different beacon durations B vs. beacon period P on ability to discover neighbors and the average
energy when two node beacons are separated by td = p/2. (a) B = p/2 (b) B < p/2, and (d) B > p/2.

group maintenance mechanisms, which we will elaborate in
section 3.

Having decided on the beaconing length, we examine how
to select the node beaconing period q to minimize detection
latency given an energy budget.

Assuming that transmit and receive energy consumptions
of a node are approximately the same [13], we analyze the
energy consumption of the node using the its transmit and
receive duty cycles. We define:
• receive duty cycle: crx = D

p
;

• transmit duty cycle: ctx = B
q

= p
2q

;

• total duty cycle: c = crx + ctx; and
• receive duty cycle ratio: r = crx

c
.

Then we can show that the worst-case discovery latency,
which is equal to the beaconing period q, can be expressed
as:

q =
D

2c2r(1 − r)
(1)

From the first and second derivatives of q w.r.t. r, we
obtain that when r = 1/2, q takes its minimum. Thus, for a
given duty cycle (or energy budget), the minimum discovery
latency is archived when transmit and receive duty cycles are
equal. In this case, the beaconing period q is given by;

q =
p2

2D
(2)

This result establishes two principles. First, it gives the
optimal beaconing period that must be chosen. Under the
optimal beaconing period, the node spends half the energy
listening and half the energy advertising. Second, it shows
that the smaller we can make the listening period D the
better. Small D means less energy consumed for each wake
up for listening and more frequently a node can wake up,
and therefore the less often an advertiser needs to beacon.

Figure 2 shows a comparison of the theoretical neighbor
discovery latency, vs. the duty cycle, for different wakeup
durations D, with r = 1/2. We observe, that for total
duty cycles c < 0.5%, the discovery latency quickly grows as
the wakeup duration increases. We compare the minimum
wakeup durations supported by prior neighbor discovery
protocols Disco (5ms) and U-Connect (250μs) to that sup-
ported by WiFlock (80μs). This confirms that to achieve
very small duty cycles, the focus must be to reduce the wake
up duration D, to attain reasonable discovery latencies.
Hence, when implementing WiFlock, we seek practical ways
to shorten D by reducing carrier sensing time (section 4.2).

Supporting Multiple Duty cycles
Although the above discussion assumes nodes with the same
energy budget and the same duty cycle, WiFlock can be
easily extended to nodes with different energy capacity. A

0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Duty Cycle (Percent)

L
at

en
cy

 (
S

ec
s)

D = 5ms
D = 250us
D = 80us

Figure 2: The figure shows the theoretical discovery
latency for 2 nodes, with 5ms(minimum in Disco),
250μs (minimum in U-Connect) and 80μs(in WiFlock)
wakeup duration, to discover each other as a function
of their percentage duty cycle of operation.

moving vehicle or a robot is likely to be willing to use higher
duty cycles, while comparatively energy constrained nodes,
such as an energy scavenging sensor node, is likely to tolerate
long discovery latencies to preserve energy.

Nodes that are willing to spend more energy can transmit
longer beacons and listen more often. For example, a node
can double the length of its beacon duration to p, which
causes the node power consumption to increase by 50%.
Since their energy constrained neighbors would sample the
channel at frequency p, this may make some of the neighbor
discovers bidirectional, reducing the overall discovery time.
Similarly, doubling the wake up frequency also increases the
power by 50%, which can also decrease discovery time due to
removal of some unidirectional discoveries. If a node doubles
both beacon length and removal frequency, all its neighbor
discoveries will become bidirectional, which will reduce the
discovery time further. If a node wants to have finer-grained
control over the power consumption, it can selectively in-
crease the beacon length or sampling frequency only for some
of the beacons and sample intervals. If the node can afford
to more than double its minimum energy consumption, it
may increase the beacon frequency, while paying attention
to the possibility of increased beacon collisions.

A node running WiFlock may reduce energy consumption
by reducing the beaconing frequency and selectively turning
off some of the sampling events. However, persistently re-
ducing the beaconing frequency, and specially the sampling
rate, may make neighbor discovery time arbitrarily long. In
the rest of the discussion we assume that all nodes involved
in group formation and maintenance agree with the same
minimum duty cycle (such as 0.2% duty cycle in our evalu-
ation).

39

3. GROUP-WIDE COORDINATION
While the standalone beaconing discussed above is a natu-

ral extension of U-connect, it does not solve the group main-
tenance problem completely. First, the one-way neighbor
discovery guarantees only one of the nodes in a neighboring
pair to discover the neighboring relationship. This unidi-
rectional nature of discovery does not allow even adjacent
nodes to discover all their neighbors. One way to overcome
this is to implement explicit handshake mechanisms, where
a node must schedule a special acknowledgment frame after
every beacon where listeners can register their presence, as
employed in [4, 6]. The downside is that this approach is
not efficient for large group formation. Point-to-point com-
munication between all group nodes gives rise to collisions
and high message overhead for larger groups.

Second, a group may span more than one communication
hop. The node-to-node neighbor discovery does not provide
a mechanism to propagate neighbor information over mul-
tiple hops. Traditional solutions typically employ another
group management layer after neighbors are discovered. The
group management layer may flood the network of known
nodes periodically to keep the membership information fresh
and deal with nodes that move away from the group. How-
ever, at the same time, since the network is mobile, all nodes
still need to run the discovery protocol for new nodes to join
the group.

In WiFlock, the continuous group maintenance and neigh-
bor discovery is combined into a single beacon schedule
to achieve high energy-efficiency and scalability. To take
advantage that multiple nodes are within a small neighbor-
hood as in the flocking configuration, we exploit a collabora-
tive technique for performance improvement: Synchronized
Listening and Evenly-Spaced Transmitting (or SLEST for
short). Throughout this section, our analysis assumes per-
fect radio channels. We consider realistic radio channels in
our implementation and real test bed evaluation.

3.1 Synchronized Listening
Nodes participating in neighbor discovery transmit peri-

odic beacons of duration p/2. These beacons are typically
large enough to accommodate more than an entire packet.
For example, in our implementation with 0.2% duty cycling,
the beacon lasts for 40ms, which can accommodate twenty
128Byte long RF packets at a 256kbps data rate. WiFlock
takes this as an advantage and re-use these beacons to prop-
agate group membership information as well.

To achieve high propagation speed of membership infor-
mation, WiFlock efficiently synchronizes node listen times.
As an illustration, Fig. 3(a) shows three neighboring nodes
whose listen instances are not synchronized. Here node A
can hear the beacons of nodes B and C. Node C can hear the
beacons of B. However, node B does not hear the beacons
of both A and C, while node C does not hear the beacons of
A. Hence, with unsynchronized listening, only unidirectional
neighbor discovery is possible among neighboring nodes. In
contrast, Fig. 3(b) show the three nodes with their listen
instances synchronized. Assuming the listen duration is
arbitrarily small and assuming that no two neighboring bea-
cons attempt to beacon at the same time, with synchronized
listening, each pair of nodes can hear each other’s beacons
(Section 4 describes how we deal with finite listen durations,
as well as possible simultaneous beacon transmissions).

To realize efficient listen time synchronization, WiFlock
uses an approach similar to XMAC [2], where each beacon
is transmitted as a sequence of data frames. Each frame
acts as a self-contained packet, so that if a node wakes up
in the middle of a beacon, it can decode the next frame.
Each frame within a beacon includes a frame offset n from

(a) Unsynchronized Listening (b) Synchronized Listening

A

B

C

Figure 3: An example showing the difference between
unsynchronized vs. synchronized listening among three
nodes. The rectangles represent the periodic beacons
while the impulses are the listening instances.

������� ������	
� ������	 �������

lt st
����

Ft

�����	��������	� 2P�

Figure 4: An example of computing the listen offset
using multi-frame beacon.

the start of the beacon, thus, by measuring the time interval
between its current listen time tl, the start of the next frame
ts, and using the frame offset n, the receiving node can
compute the offset between its current listen time and the
start of the beacon by (n − 1)tF − (ts − tl), where tF is
the frame duration (Figure 4). Since a beacon transmission
starts at the listen time of a node, this offset is equal to the
offset between the listen times of the two nodes.

Nodes use these offsets to achieve group-wide time syn-
chronization and adjust their activities. Given time off-
sets between neighboring nodes, Werner-Allen et al. have
shown that it is possible for an uncoordinated group of nodes
to achieve time synchronization using only peer-to-peer in-
teractions, rather than through a group-wide coordinated
effort [17]. However, this way of time synchronization can
take a long time to converge. For example, Werner-Allen et
al. [17] report that the convergence time for a group of 24
nodes is 284 seconds.

To speed up convergence rate, we use a more coordinated
approach. Specifically, a node will synchronize towards the
smallest ID it hears. Of course, this has an issue due to
the one-way discovery mechanism. Since only one of a pair
of nodes can discover the other, a group can bifurcate to
two synchronized groups: each occupies one half of listening
period p and none can hear the other group. To overcome
this problem, we take advantage of the data frames in the
beacons and perform on-demand beacon extensions. Each
data frame contains the group membership information, i.e.
a list of sorted node IDs. While each node always synchro-
nize its listening time towards the smallest ID it can hear,
it also monitors the other IDs it receives that are not in
the group. If any nodes with a higher ID is discovered, the
node will temporarily extends the beaconing to a full period
p. The receiving node can then synchronize to this node,
and through that, synchronize to the node with the smallest
ID. The implementation details, including establishing on-
demand bidirectional links, are described in Section 4

3.2 Evenly-Spaced Transmitting
The primary purpose of evenly spaced transmission is to

collaboratively improve the group formation latency of a
new node joining an already established group or a transient
group. As an illustration, take an example of an established
2-node group, with each beacon having a beacon period of

40

100 time“slots” (each time slot refer to a listening duration).
If the nodes are allowed to beacon randomly in the 100 slots,
a new node wishing to join the node may have to wait for
anywhere between 0 slots to 98 slots before it hears a beacon.
However, if the two beacons are evenly spaced, i.e. each is
50-slots apart, an incoming node will now have to wait only
between 0 and 50 slots to hear a beacon. Thus, a group can
reduce discovery latency through collaboratively spacing out
beacons.

Additionally, if a dense group with large number of nodes
transmits beacons in an uncoordinated fashion, there can be
packet collisions. Evenly spaced transmissions can minimize
the number of collisions and hence allow the protocol to scale
well to large number of nodes.

The mechanism for collaboratively spacing out beaconing
times is as follows. The node with the smallest ID picks an
arbitrary time slot as slot number zero. Each node maintains
the group membership table, sorted by the node ID. Each
node maintains a current slot counter, which is computed
based on the information it has received so far. Using this
current slot counter, the node transmits the slot number
of the beaconing slot with its beacon message. It also
updates the current slot counter based on the slot counter
information received with a beacon containing a node id that
is equal or less than the smallest node id it has received so
far.

Since there are 2q/p beacon slots in each beaconing period
q, each node i uses its position within the sorted group
membership table li and the size of the membership table s
to compute its transmit slot sT (i) as follows:

sT (i) =
p × li

2s
.

The node transmits its beacon when its current slot counter
reaches this transmit slot value. However, transmitting on
a fixed slot can cause collisions, especially during the early
stages of building the membership tables. This is because
each node computes transmit slots assuming there are only
a small number of nodes in the group.

To overcome such persistent collisions, we introduce jit-
ters in the node transmission schedule. Instead of selecting
the its computed slot number, the node selects a random
slot number uniformly distributed within a small range of
slot numbers centered around its computed transmit slot
number. The range for random jitter is computed from the
number of nodes in the group and the beaconing period.
The slot number transmitted with the beacon is the slot
number of the actual beacon slot, rather than the computed
slot number.

As group membership tables are propagated using bea-
cons, each node merges tables from its neighbors with its
own table while keeping the table sorted. Under stable group
membership, the membership tables at the nodes rapidly
converge. The current slot counter value also converge to a
consistent value across nodes, since this is always computed
with respect to the smallest ID node in the group. Hence,
under steady membership, the beacon transmission schedule
converges such that node beacons are evenly spaced.

We note that, since a group can span over multiple com-
munication hops, the transmission schedule computed by
WiFlock is more relaxed compared to schedule computed
by graph coloring using two-hop connectivity [11]. However,
when the diameter of the group is small, the evenly spaced
schedule would be close to a schedule computed by graph
coloring.

We need to be careful again here with the short beacon size
of p/2. Due to one-way node discovery, if all nodes beacon in
the first half of their p length beacon slot, the entire group

acts as a single phase node. Thus, a new node joining in
either would be able to hear all nodes or would rely on its
own beacon to make its presence known to the group. While,
subsequent discovery still takes place with synchronization,
the advantage of evenly spacing out beacons is reduced.

Thus, we allow nodes part of a synchronized group to
randomly pick whether they transmit in the first half of
their p length beacon slot or the second. Due to listen
time synchronization and slight overlap between beacons,
nodes within the group can still all hear each other. This
mechanism was shown to improve the average latency of
incoming nodes to discover the group in our experiments.

3.3 Handling Node Departure
To handle nodes leaving the group, each node entry in

the group membership table contains a time-to-live (TTL)
value. Each node initializes this value when advertising
itself in the beacon message. The initial TTL value is set
based on the freshness requirements (how quickly the node
departure should be detected), and the maximum number
of hops expected in a group.

The TTL value at each node is updated as follows. When-
ever a node receives a membership table from a neighbor, it
decrements the received TTL value of each node, and then
compares these with the values stored locally. If the local
neighbor table does not contain a received node ID, the new
ID is added to the table with the updated TTL. If the node
already exists, and the received TTL is greater than that in
the local table, the local TTL is updated. After every beacon
transmit, the node decrements all the local TTL values by
1. Any entry with a TTL equal to 0 is removed from the
group table. For example, if we use a value of 7, then with a
3 hop network and a persistence time of the node is 3 time
periods at the last hop.

Since the TTL value of a node is decremented at each hop,
the initial TTL value determines how far a given node ID
is propagated within the group. Since all the nodes need a
uniform view of the minimum node ID, it is important that
the initial TTL correctly reflects the maximum hop count
within the group for correct operation of the synchronized
listening and evenly spaced transmissions. On the other
hand, a large initial TTL will require a longer time for the
node information to be removed once the node leaves the
group.

4. IMPLEMENTATION
In this section we present several implementation details

of WiFlock, focusing on the hardware platform, the tech-
niques to reduce wakeup and listening period, and the im-
plementation of SLEST.

4.1 Hardware Platform

CC2500MSP430F2274 Clock chipCut traces

Figure 5: The modified EZ430-RF2500 development
platform used for evaluating WiFlock. The figure shows
the HW modifications for attaching the 32kHz clock
chip.

We use the TI EZ430-RF2500 development tool as our

41

Mode Time Frequency Current
Idle-to-Rx 88.4μs 1 7.4mA

Carrier Sense ∼80μs 1 18.8mA
Rx-to-Idle 0.1μs 1 7.4mA
Calibration 721μs Variable 7.4mA

Table 1: Breakdown of radio current consumption on
every wakeup.

HW platform [15] (Figure 5). This module has a CC2500
radio and an MSP430F2274 microcontroller with 32kB Flash
memory and 1kB RAM. It can be interfaced to a PC using
a USB connector, which provides both a RS232 communi-
cation link and the firmware programming support.

Nodes running WiFlock use low power sleep to save en-
ergy. However, the TI evaluation module does not have a
real time clock crystal that enables low power sleep with
a relatively accurate wakeup timer. To overcome this, we
added a 32kHz clock chip [5]. This clock chip consumes
� 2μA current, which is similar to the power overhead of
the MSP430F2274 when driving a 32kHz clock crystal. The
clock chip is introduced because it is difficult to modify the
hardware module to properly attach a crystal.

4.2 Minimizing Discovery Latency
In Section 2, we observe that reducing the wakeup du-

ration D is the most effective way to achieve a reasonable
latency under a low duty cycle. The purpose of this wakeup
duration is for a node to periodically wake up and detect
any ongoing beacon transmissions by detecting the presence
of a busy RF carrier. So our aim is to minimize D, without
adversely affecting the node’s carrier sensing performance.

Radio listen time refers to the duration for which the
radio is in receive mode for either carrier sensing or packet
receptions, as opposed to the low power SLEEP mode. Ta-
ble 1 gives the current consumption and time for operations
that must be performed by the radio for every wake up.
The VCO characteristics of the radio vary with temperature
and supply voltage changes. Frequency synthesizer self-
calibration can be performed manually when node operating
conditions change. The current consumption for the radio
Rx-mode, which includes carrier sense and radio packet
reception states, is 18.8 mA for the CC2500 [13]. Thus,
apart from beacon transmissions, the Rx-mode dominates
the power budget of the radio.

Parameters Affecting Carrier Sense Times
Carrier sensing is done by measuring the Receive Signal
Strength Indicator (RSSI) value, and comparing it against
a threshold to determine the presence of the RF carrier.
The duration to perform a valid carrier sense depends on
the time required by the radio to provide a valid value for
RSSI, i.e. the RSSI response time. The time to obtain
a valid RSSI value depends on a number of configurable
parameters of the radio. For example, in CC2500, the RSSI
response time depends on receiver filter bandwidth, data
rate, modulation format, and AGC(Analog Gain Control)
module parameters [14]. Specifically, the following factors
impose the lower bound on the RSSI measurement time:

AGC Filter Length. The RSSI value is a byproduct of
the AGC module, which uses the estimated RSSI to keep the
signal level input at the demodulator constant, regardless of
the signal level at the antenna. Since the RSSI signal is used
to set the gain of an internal amplifier, it is generated by low-
pass filtering the input signal to prevent frequent AGC gain
switching. The length of this low pass filter affects the time
required for the AGC to report a valid RSSI value.

AGC Wait Time. The AGC module has a configurable
wait time after each gain adjustment to stabilize the control

loop. A very short wait time may cause the AGC module
to report unstable gain values, prolonging the final settling
time. While a long wait time takes longer to generate a
valid RSSI signal since the AGC ignores all samples during
the wait time.

Signal Power. AGC settling time and hence RSSI re-
sponse time depends on the power of the input signal. A
stronger input signal can lead to a longer AGC settling time
than a weaker input signal, since a strong signal may require
multiple gain changes. While the theoretical minimum re-
sponse time can be computed from the equations in [14],
the stochastic nature of received power makes empirical
evaluations necessary.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

AGC Filter Length (samples)
M

ea
su

re
d

R
S

S
 R

es
po

ns
e

T
im

e
(m

ic
ro

se
c)

Filter BW − 812 KHz
Filter BW − 325 KHz
Filter BW − 58 KHz
Theoretical Minimum

Figure 6: Measured RSSI response time as a function
of filter length and filter bandwidth. A higher filter
bandwidth reduces the RSSI response time. A lower
filter length corresponds to lower RSSI response times.

In general, the larger filter bandwidth, the higher the
data rate, and lower the AGC filter length, the lower is the
theoretical minimum RSSI response time. Figure 6 shows
the measured RSSI response time as a function of the AGC
filter length and filter bandwidth.

Empirical Evaluation
We empirically evaluate the effect of RSSI response time set-
ting, obtained by varying AGC parameters, on the accuracy
of carrier sensing. Carrier sensing is performed through com-
paring the detected energy (RSSI value) to a fixed threshold.
We establish this threshold as the 95th percentile RSSI
value observed by a node in a quite environment with no
valid transmissions. Carrier sensing accuracy is measured
in terms of percentage error, defined as the number of valid
transmissions missed by a receiver node to the total number
of transmissions by the sender.

Figures 8 & 7, show the percentage carrier sensing error
for nodes with different RSSI response time settings. The
experimental setup included a pair of nodes, configured as
a receiver and a sender. The sender was set to continuously
transmit data at maximum power of 0dBm. The receiver
was programmed to wakeup every 0.5 seconds and stay
awake until a valid RSSI reading was obtained, i.e. the
radio was on for the RSSI response time. The receiver
node logged the RSSI value to the PC through a USB port.
The distance between the sender and receiver was varied
in order to change the signal strength at the receiver node.
The experiment was repeated with 12 different combinations
of AGC filter length and wait time. 1000 readings were
obtained for each setting and distance. The carrier sense
threshold was established by obtaining the 95%tile value of
1000 RSSI readings obtained at the particular settings, with
the sender node turned off.

42

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Distance (ft)

C
ar

ri
er

 S
en

se
 E

rr
o

r
%

Filter BW − 812 KHz (69.72us)
325 KHz (107.72us)
58 KHz (472.22us)

Figure 7: Error rate in detecting a transmitting carrier
at different filter bandwidths as a function of distance,
with a filter length of 8 samples with CS threshold of
95%tile. Filter bandwidth does not show a clear effect
on carrier sensing error rates.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Distance (ft)

C
ar

ri
er

 S
en

se
 E

rr
o

r
%

Filter Length − 8 Samples (69.72us)
32 Samples (99.22us)
64 Samples (138.72us)

Figure 8: Error rate in detecting a transmitting carrier
at different filter lengths as a function of distance, with
filter bandwidth 812kHz and CS threshold 95%tile. 8
sample filter length provides very short carrier sense
times of < 70μs, but can cause more errors as signal
strength drops.

Every RSSI value below the threshold was considered as
correctly detected carrier, while the number of missed de-
tection contributed to the percentage carrier sensing error.
We observed that selecting a wider bandwidth did not have
a pronounced effect on carrier sense errors, all other factors
being constant. However, a smaller filter length (8 samples)
caused about 10% missed detections when the sender was
moved 25 feet away resulting in a weak signal at the receiver.
Thus, there is a trade-off between energy consumption cost
due to a higher CS time vs. the latency cost of not reliably
detecting some valid transmissions.

Our experiments show that with a AGC filter bandwidth
of 812kHz and filter length of 8 samples, a carrier sense
time of 70μs is achievable. This allows us to use small listen
slots of 80μs duration, with some guard against interference
sources. This is a 3X improvement over prior neighbor dis-
covery protocols [6], providing the corresponding improve-
ment in latency for similar duty cycles. This allows us to
achieve reasonable discovery latencies even with very low
duty cycles such as 0.2%. We note that these parameter
settings should only be used for carrier sensing. They may
not be optimal for data communication. WiFlock nodes
update these parameters with a different set of values when
transmitting or receiving data.

Node Listen-Wakeup Scheme
Energy detection based carrier sensing suffers from the pos-
sibility of false wake ups, due to interference from other
sources such as WiFi, which may occupy overlapping chan-
nels. Depending on the nature of interference, the radio may
detect energy and stay in receive mode for a long time in the
absence of valid transmissions. Thus, we employ a tiered
scheme for countering this effect and minimizing node listen
durations.

First, each node uses the short duration energy detection
(80μs) to detect the presence of an ongoing transmission.
Second, if an ongoing transmission is detected, the node
keeps the radio in the receive mode for the duration of a
single frame, while continuously searching for the sync word;
if the carrier becomes free during this search, the radio and
the node goes back to sleep. Third, if a sync word is detected
the radio remains in the receive mode until an entire packet
is received or until the carrier becomes free.

In Section 5, we evaluate the robustness of this tiered
scheme against overlapping WiFi interference, and obtain a
typical carrier sensing duration of 80μs under WiFi interfer-
ence.

4.3 Multi-Frame Beacons

Frame 1 Frame 2 ... Frame N

Preamble
Sync
Word

Payload
Length

crc
mac
id

nbor
no.

rnd
offset

nbors

8 Bytes 4 Bytes 1 Byte Variable Length Packet

ti tr
Receiver
detects
energy

Receiver
detects
preamble and
receives packet

seq
id

Figure 9: Format of the WiFlock beacon with multi-
ple contiguous frames with their contained fields. A
receiver waking up at time ti tracks the beacon frame
until the next frame boundary at time tr, after which
it can detect the preamble and eventually receive the
packet.

At very low duty cycle (for example,∼0.2%) operation,
which is desired by the WiFlock protocol, the advertising
beacon needs a very long preamble of length (P/2 or 40ms).
A listening node using a busy carrier preamble such as in
U-Connect [6], on average, would track (radio remains in
receive mode) the preamble for 20ms for every packet recep-
tion. This is equivalent to receiving 20 128-byte packets at a
baud rate of 256Kbps. With special preamble architecture,
consisting of back-to-back frames with group advertisement
packets, we reduce radio on times as well as provide a
mechanism for implicit listen phase synchronization.

The problem of long preambles has been mentioned and
solutions proposed in MAC schemes like X-MAC [2]. X-
MAC takes the approach of sending a strobed preamble with
encoded destination addresses. The strobed preamble allows
nodes to minimize the preamble tracking time while the
encoded destination addresses allow nodes to avoid receiving
unintended packets.

In contrast, WiFlock beacon architecture addresses differ-
ent objectives and has following features –
• It has a predictable data transmission requirement, where

nodes advertise group information, that are contained in

43

relatively short frames, periodically. It operates at a very
low duty cycle, which allows sending multiple data packets
(frames) instead of just packet header information. This
reduces the maximum preamble tracking time of listening
nodes to the length of a single frame.

• The WiFlock beacon consists of multiple frames with no
gap between them. This enables the nodes to use a short
listening period to detect an on going transmission, since
there is no danger of the listening interval falling in to a
carrier free gap.
The beacon is implemented as a very long continuous

transmission that includes multiple frames, where each
frame is a qualified CC2500 packet preceded by a preamble
(hence, a receiver waking up in the middle of this transmis-
sion can receive the next frame). The beacon is 10% longer
than the required p/2 beacon length. The additional length
ensures that a node that wakes up at the very end of the p/2
period can still receive a valid frame. The additional length
also helps mitigate effects due to clock drift.

The long gap-less beacon is realized through the ra-
dio’s [13] infinite length packet mode, which allows arbitrary
length packets. The infinite length packet mode is a feature
of a range of newer Texas Instrument’s RF transceiver chips
including CC1100, CC1100E, CC1101, CC1150, CC2500,
and CC2550. Infinite packet length mode can be used to
transmit and/or receive until TX or RX mode is turned off
manually.

The nodes employ a random back-off mechanism before
beginning transmission if another transmission is detected.
In addition, a random jitter is introduced in beacon trans-
missions to account for exposed terminal and hidden node
issues. The back off and jitter moves the beacon transmis-
sion by multiples of p long beacon slots.

Figure 9, shows the structure of a WiFlock beacon. Each
beacon consists of multiple frames. Each frame, similar
to a single CC2500 packet transmission, has a preamble, a
sync word and payload length field, followed by the variable
length packet, with a frame sequence id and group infor-
mation. Since each frame acts as a fully qualified CC2500
packet, a receiver node radio can detect and receive the
packet embedded in the frame as per its normal link layer
protocol. The sequence id field in each packet, embedded
in each frame, specifies the corresponding frame’s position
in the beacon. The receiver uses this sequence id for listen
synchronization. The length of the fields in each frame can
be configured by the user as per application requirements.
The experimental setup used for this paper was configured
to use a 1-byte sequence id, 2-byte CRC, 1-byte random
offset, 1-byte neighbor number, and 1-byte neighbor mac-id
fields.

For large groups where the group information does not fit
in one frame length (256 Bytes), the nodes encode frames
with portions of the group information in a cyclical fashion.
For example, the first 243 bytes of a 486-byte group table is
encoded in frame-1 of the beacon, the second half is encoded
in frame-2, frame-3 encodes the first half again, and so on.
A receiver after receiving a particular frame figures out that
it has received a part of the group table and must stay on to
receive subsequent frames. The receiver may need multiple
beacons to obtain the entire group table from a node.

4.4 Propagating Group Information
WiFlock uses synchronized listening to enable fast group

information propagation. Listing 1 shows the pseudo code
the nodes use for propagating the neighbor table and achiev-
ing synchronized listening. The synchronized listening at-
tempts to synchronize to the smallest id node. However, the
unidirectional discovery may prevent the smallest beacon

Listing 1: Pseudocode for phase sync algorithm

// Synchronize i f hear a sending node tha t
i s sync ’d to a lower id node

i f (urSyncNeighbor < mySyncNeighbor) {
syncL i s ten (rxFrameSequenceId) ;

} else {
// Extend beacon i f the sender

must sync
ExtendBeaconFlag = TRUE;

}
// Compute o f f s e t and advance next wakeup
void syncL i s ten (rxFrameSequenceId) {

de l = rxFrameSequenceId ∗
BEACON FRAME TIME;

i f (de l >= BEACON OFFSET TIME &&
de l <= BEACON TIME)

de l = de l −
BEACON OFFSET TIME;

else
de l = 0 ;

i f (de l == 0)
return ;

advanceNextWakeup (de l) ;
}

information to propagate from node to node. The top half
of the code shows the logic used to get around this. If a node
i receives a beacon form a node j with a smallest id (the first
node of the frame) that is large than its own smallest id, the
node i sets its ExtendBeaconFlag. The next time the node
i beacons, it uses a beacon of duration p, which lets node
j hear that beacon, hence receive the current smallest node
information at i. The bottom half of the code shows how
nodes use listen time offset to synchronize to the smallest
ID node.

0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

70

80

90

100

Time (No. of Beacon Periods)

P
ha

se
 S

pr
ea

d
(%

 o
f m

ax
im

um
)

All−to−all Connectivity
Grid Topology
Chain Topology

Figure 10: Percentage time spread achieved vs. bea-
con periods for group of 6 nodes under three network
topologies - all-to-all connectivity, grid and chain.

We used a 6 node test bed to evaluate the synchroniza-
tion performance under 3 network topologies - all-to-all
connected topology, a grid topology where a node could
communicate with 2 or 3 other nodes depending on its
position, and a chain topology. Each node was programmed
to set a GPIO pin to high when its radio was in receiving
mode. Using a logic analyzer connected to all 6 nodes, we
observed the timing of node listen intervals. We determine
the degree of synchronization within the group through
time spread, which is defined as the ratio of the maximum
phase difference between any two nodes in the group, to the
listen period. As WiFlock has a 10% overlap in transmit
beacons, we assume that nodes are synchronized when the
time spread is <10%. From Figure 10, synchronization was
achieved within 1 beacon period for the all-connected case,

44

while around 3 beacon periods were required for the chain
topology.

4.5 Sorted Group Tables

6

654

4

3

1,2,3,
4,5,6

21,3,5

21

0 1 2 3 4 5 6

3

2

1

Time - Slots in 6 Node Group

Ti
m

e
N

o
. o

f
B

ea
co

n
 P

er
io

d
s

i i th Node BeaconsNo Beacon

Figure 11: Example of nodes assuming evenly spaced
beacon positions from a 6 node experiment with all-to-
all topology.

WiFlock uses the ranking based on node mac-id’s to
evenly spread the node beaconing within the node beacon
period. To minimize the processing overhead, nodes main-
tain a sorted group table locally as well as in the beacons.
Starting from the node’s own ID, whenever a node obtains
a group table from an advertised beacon, it performs a
computationally inexpensive (O(n)) merge operation to keep
the table sorted. The number of comparisons performed is
nearly optimal in this algorithm, thereby minimizing pro-
cessing overhead on receiving every group table update.

Figure 11 visualizes how the sorted tables progress among
a group of 6 nodes. The nodes were instrumented with a
logic analyzer to obtain the timing. Here, the beacon period
is divided to 6 equal sized slots for easy visualization (each
slot shown contains multiple beacon slots). Initially, with no
information about the other nodes, all the nodes transmit
in the first slot. The random jitter introduced during the
beacon transmissions prevent persistent collisions and allows
the group information to propagate. Nodes 5 and 3 beacon
before node 1 in the second period, and therefore do not
shift to their respective slots. Nodes 2 hears three other
nodes beaconing ,including the lowest-id node 1. As node 4
has not beaconed yet, node 2 computes its position relative
to a group membership of five nodes only. Eventually, node
4 beacons in its correct position since it has heard beacons
from all other nodes in the group. By the third beacon
period, the group table is consistent among all nodes and
the beacons are evenly spread out.

5. PERFORMANCE EVALUATION
In this section, we empirically evaluate the performance

our WiFlock implementation. Through a series of experi-
ments, we study the energy consumption, group formation
latencies, and scalability of our solution in realistic deploy-
ment conditions.

5.1 Radio Listen Time
Radio listen time duration D is a critical parameter in

WiFlock, which not only determines the energy spent on the
listening model, but also affects the beacon length. While
in Section 4.2 we show that the carrier sensing time can
be made as low as 70μs, we must evaluate the choice in
realistic environments, especially with WiFi interference.
WiFi transmissions can cause the radio to detect energy and
stay awake unnecessarily.

To assess the effect we setup a 802.11 network consisting
of a802.11 b/g access point and a laptop equipped with an
802.11 wireless radio in infrastructure mode. This laptop

was used to generate a constant stream of 1,500-byte UDP
packets using the iperf tool. The iperf tool was used to vary
the bandwidth utilized by the 802.11 transmissions. Another
laptop, connected to the access point through an Ethernet
cable, acted as the traffic sink for the WiFi network.

A WiFlock node was placed adjacent to the transmitting
laptop. The node radio was set to the same frequency band
as that of the 802.11 channel to force maximum interference.
The node was instrumented with a logic analyzer to obtain
accurate timing when the radio changed modes. The listen
time was averaged over 1000 wake up’s of the radio. Each
experiment was performed 10 times at different times over
the course of a day.

Figure 12 shows the average time the radio spent in receive
mode for idle listening, i.e. with no valid WiFlock beacons,
as 802.11 traffic is increased for 0 to 10 Mbytes/second.
We observe that the radio idle listening time increases with
increasing 802.11 traffic.

0 2 4 6 8 10
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

A
ve

ra
g

e
R

ad
io

 O
N

/C
S

 T
im

e
(M

ic
ro

se
co

n
d

s)

Generated 802.11 UDP Traffic (MBytes/s)

Figure 12: The effect of interfering WiFi traffic on
energy-detection based carrier sensing scheme. The
average radio idle listen times increase as generated
802.11 UDP traffic is increased.

Atrium Lab Office
0

10

20

30

40

50

60

70

80

90
CS based RX Termination Time with no transmissions

Location

A
ve

ra
ge

 R
ad

io
 O

N
/C

S
 T

im
e

(m
ic

ro
se

co
nd

s)

Wifi−Free Channel 2450Mhz
Wifi−Overlap Channel 2432Mhz

Figure 13: The energy detection based carrier sensing
performance in common interfering environments. The
presence of WiFi in real environments increases the
average idle listen time by 10-20%.

However, Figure 13 shows the average radio idle listening
time in typical environments where 802.11 traffic is not gen-
erally constant. We perform the experiment at 3 different
location and in 2 channels with and without overlapping
WiFi channels.

The channel without Wi-Fi overlap had nearly constant
average ON times of 70μs, the ON time increased to 84μs
at the location with maximum activity. Based on these
observations, we select 80μs duration as the expected listen

45

slot size to accommodate possible WiFi interference. The
80μs is �3X smaller than U-Connect, the previous state-of-
art neighbor discovery protocol[6].

Figure 14: Oscilloscope trace showing current con-
sumption (in mV using a 10.3 Ω resistor in series with
power supply) during every node wakeup for listening.

Figure 14 shows the current consumption during every
node wakeup. The MSP430 micro-controller consumes ∼2.8
mA when operating at 8 MHz. The CC2500 radio consumes
1.5 mA when in idle mode. The radio transition from idle
mode to Rx mode takes about 100 μs drawing ∼8 mA of
current. Carrier sensing takes ∼80 μs drawing 19 mA of
current.

We also measure the average radio listen time for a packet
reception to evaluate the benefit of including data frames
in the advertisement beacons. The time is averaged over
1000 periodically received packets by a listening node from
a corresponding number of transmitted beacons by a trans-
mitter. Each advertisement beacon contains 20 packets, and
each packet is 128 bytes long. The packets are transmitted
at a baud rate of 250Kbps. Compared against the average
theoretical radio listen time for LPL-like beacons employed
by U-Connect, the WiFlock beacon structure reduces the
time for which the radio must track the beacon before suc-
cessfully receiving data contents. Average beacon decoding
time is about 7.4ms, a 5X improvement over LPL.

5.2 Group Discovery Latencies
To evaluate group discovery and formation latency, we

setup 50 nodes with listening duty cycle of 0.2% and listen
slot durations of 80μs. All the nodes were located within a
single hop from each other. Of these 50 nodes, 20 nodes
were connected to a PC via USB. The PC can turn on
and off a group of selected size from the twenty nodes (the
remaining 30 nodes were manually switched for the 50 node
experiment). Each active node logs updates to its group
table to the PC, where they are time stamped. Node groups
of different sizes are turned on with random offsets over a
40 second period. The one beacon period interval for nodes
joining is to ensure nodes are not synchronized in the begin-
ning. The experiment provides a snapshot of every node’s
group table at any given time. We repeat the experiment 20
times for each group size.

Table 2 shows average and standard deviation for group
formation latencies, i.e. the time for the group information
to be propagated to every node in the group, with various
group sizes. Since, every member of the group must discover
every other member of the group, this corresponds to the
worst latency observed by any node during an instance of
the experiment.

Figure 15 shows the average rate of discovery, i.e. time
nodes to discover a fraction of the entire group.

Group Size Avg. Latency Std. Dev.
5 113s 35s
10 114s 30s
15 119s 12s
20 120s 22s
50 168s 16s

Table 2: Group formation latencies for groups of vary-
ing sizes, with nodes operating at 0.2% duty cycle.

00:00 00:30 01:00 01:30 02:00 02:30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(Minutes)

F
ra

ct
io

n
 o

f
D

is
co

ve
re

d
 N

o
d

es

5 Nodes
10 Nodes
15 Nodes
20 Nodes
50 Nodes

Figure 15: The average time for a number of nodes,
operating at 0.2% duty cycle, to discover a fraction of
the group. The evenly spaced beaconing reduces packet
collisions and scales well with increased group sizes.

From Figure 15 we can see that the average time it takes
for a set of nodes to discover and form a group stays rather
constant when the group size increases. For less than 20
nodes, at 0.2% duty cycle nodes consistently discovered the
entire group within an average of 120 seconds. Even with 50
nodes, the average discovery latency is less than 3 minutes.
The results show that the synchronized listening and evenly
spaced beaconing allows the protocol to scale to a large
number of nodes without affecting latencies.

Neighbor discovery protocols such as U-Connect and
Disco provide theoretical worst-case bounds on discovery
latencies for a pair of nodes. While they support discovery in
clusters of nodes, they do not optimize for or address prob-
lems of group maintenance such as absence of all-to-all con-
nectivity or the high probability of collisions as group sizes
become large. In contrast, WiFlock goes beyond neighbor
discovery to provide a service for discovery and maintenance
of groups of mobile wireless nodes. It uses synchronization
and sharing of neighbor tables to make continuous neighbor
discovery efficient and scalable to large clusters of nodes.

Nevertheless, for pair-wise discovery, WiFlock provides a
3X improvement in theoretical worst-case latency over U-
Connect due to shorter carrier sense times. For example, at
0.2% duty cycle the theoretical worst-case latency for a pair
of U-Connect nodes to discover each other is 250 seconds,
while that for WiFlock nodes is 80 seconds. U-connect
experimental results suggest the latencies may exceed the
theoretical maximum when the number of nodes in the same
collision domain is high. In practice, in a large group of
50 nodes with collisions and varying network topologies,
WiFlock achieves performance well within the worst-case
for U-Connect.

5.3 Group Maintenance Latencies
An already established group can collaborate on their

beaconing to improve the efficiency for the group to react to
changes such as discovering new nodes.

A new coming node, depending on its distance from the

46

group and location, may have connectivity with only a
fraction of the established group. In static networks, the
network topology may be known and can be used by the
network to predict the connectivity of an incoming node[3].
However, no such link quality assumptions can be made in
flocking sensor networks where all nodes are mobile. There-
fore, we empirically evaluate the average case and worst
case latencies for a node approaching a group when only
a fraction of the group nodes are in communication range of
the new node.

0 5 10 15 20 25
0

10

20

30

40

50

60

No. of Visible Nodes

T
im

e
to

 D
is

co
ve

r
G

ro
u

p
 (

s)

Figure 16: Average discovery latencies when a mobile
node joins an established group of 20 nodes, when only
a fraction of the group has connectivity to the incoming
node. The error bars show the maximum and minimum
latency observed.

Figure 16, shows the average latency for an incoming
node to discover an established 20 node group, when it
has connectivity with only a fraction of group nodes. The
experimental setup is similar to the one used in section 5.2.
A group of 20 nodes is given enough time to to form an
established group. A new node is then turned on and the
radio connectivity is simulated by a ID filter. That is, the
exact node id’s that the new node is “supposed” to hear is
provided to the node by the PC before each experiment. For
example, to simulate a situation that the new coming node
can hear n nodes in the group, a random n id’s is picked and
sent to the new coming node. The time for the new node to
discover the group is logged. We repeat 1000 runs for each
n. Obviously, greater exposure to the group shortens the
latency of new discovery.

6. RELATED WORK
Continuous neighborhood management for devices not

subject to energy constraints can be attained simply by
periodic transmission of advertisement beacons. Neighbor-
ing devices with always-on receivers can periodically update
their neighborhood tables to the presence of co-located de-
vices.

If an out-of-band time synchronization mechanism exists
such as GPS[19], FM transmitters [11], neighbor discovery
can be achieved with higher efficiency. However, for appli-
cations such as in asset tracking, where tags are constrained
due to both cost and energy, such out-of-band mechanism
lose their appeal.

For energy constrained but static networks neighborhood
management can be attained as two-phase process, where
larger latency and energy consumption may be tolerated for
initial neighbor discovery while switching to a more energy
efficient common mode of maintaining neighborhood infor-
mation. In some cases, for mobile nodes the initial neighbor
discovery phase can be periodically repeated. Its relatively
higher latency and energy consumption may be acceptable

if node lifetime requirements are relatively less strict. As
an illustration, neighborhood maintenance in mobile ad hoc
networks is generally a function of the routing protocol such
as AODV [8]. Nodes usually operate in the always listening
mode. When a node needs to communicate with another
node, a RREQ (route request) packet is flooded to other
nodes. This causes high control traffic overhead and delay
when initiating communication for the first time. An estab-
lished route maintenance procedure is subsequently adopted
using the RERR (route error) message to notify other nodes
of the loss of neighbors. In mobile networks with highly
transient neighborhoods such protocols have a high energy
cost, having to constantly initiate route requests.

Quorum-based protocols [16] or variants there-of such as
BMAC [9], SMAC [18] provide useful primitives for commu-
nication between a pair of devices. In Quorum, a sequence
of beacon intervals is divided into sets starting from the
first interval such the each continuous n2 is called a group,
where n is a global parameter. In each group, intervals are
arranged in a n × n array in a row-major manner. Nodes
arbitrarily pick a row and a column, and any pair of nodes
will have two intersections allowing them to discover each
other. While these protocols address the basic primitive
behind discovery they do not concern themselves with the
very low-energy operation as desired by our motivating ap-
plication. Also, for a given duty cycle their implementations
tend to provide order of magnitude higher latencies than our
proposed solution. As they are essentially based on nodes
beaconing at random times, they do not address network
effects like collisions which intensify in large groups. This
is also the case for ”birthday protocols” for static ad-hoc
networks, proposed in [7], which also have long tails on
discovery probabilities.

Dutta et. al. propose Disco, a low-power asynchronous
neighbor discovery protocol [4]. The authors address the
rendezvous of two mobile nodes with support for nodes
operating at dissimilar duty cycles. Nodes select a pair of
primes such that the sum of their reciprocals is equal to
their desired duty cycle. Nodes wakeup at multiples of the
prime numbers. The worst case latency is the product of
the minimum of the primes picked by the nodes in opera-
tion. Disco also analyzes discovery latencies in clusters and
suggests extending the work by using gossip. We adopt some
of these ideas in our protocol. However, Disco requires large
wake-up slots in the order of milliseconds due to the need
for bidirectional communication and susceptibility to clock
drift. This results in large latencies for our desired duty
cycle of operation.

Kandhalu et al. propose U-Connect, a protocol for asyn-
chronous neighbor discovery for both symmetric as well as
asymmetric duty cycle nodes [6]. They establish that U-
Connect is an 1.5-approximation algorithm for the symmet-
ric asynchronous neighbor discovery problem, whereas ex-
isting protocols like Quorum and Disco are 2-approximation
algorithms. We use a modification of U-Connect as the basic
neighbor discovery primitive. The flip side to the U-Connect
protocol is the creation of asymmetric links where only one
node can hear the other depending on the phase of its bea-
con. To discover each other, nodes must perform a pair-wise
id exchange every time a node hears another node, creating
message traffic in O(n2). This must be frequently repeated
to maintain a continuously up-to-date neighborhood group.
Disco also uses a pair-wise message exchange for discovery
making it less attractive for scalable, low-latency and energy
efficient neighborhood management.

Continuous neighbor discovery is mentioned in [3], in the
context of maintaining node connectivity information in face
of disruptions in wireless communication, synchronization or

47

change in transmission power for established static networks.
The authors propose an algorithm for continuous neighbor
discovery after an initial neighborhood has been established
using a broadcast SYNC message which is heard by all
nodes. This assumption of all nodes being either synchro-
nized or awake at the same time when initially deployed, is
not applicable to a network of mobile nodes with transient
neighborhoods.

7. CONCLUSION
This paper presents WiFlock, a collaborative group for-

mation, and group maintenance protocol for mobile sensor
networks. It is a fundamental yet challenging building block
for applications such as asset tracking, habitat monitoring,
and smart environments. In this paper, we show that the
neighbor discovery process and the group maintenance pro-
cess must be designed together to achieve better energy-
efficiency, reactiveness, and scalability. Since a sensor node
can spend most of its time alone, optimizing beaconing and
listening periods and durations is critical. Through analysis
and implementation, we show how to achieve ultra low duty
cycles (∼0.2%) without sacrificing discovery latency.

The one-way discovery mechanism, although optimizing
energy efficiency for neighbor discovery, brings challenges
in group membership propagation and maintenance. We
designed a synchronized listening and evenly spaced trans-
mitting (SLEST) mechanism to archive group-level coor-
dination by reusing neighbor discovery beacons. Our ex-
periments show that the protocol scales well with network
density. Several extensions can be built on top of WiFlock
and possibly improve its performance.

Accommodating Large Groups. WiFlock as pre-
sented in this paper assumes that all the group information
can fit into a single frame, which in our case has a maximum
size of 128 bytes, limiting the group size to a about 50 nodes
(assuming 4 bytes information per node plus frame header).
However, WiFlock can accommodate larger group sizes by
splitting the group table across multiple frames and mul-
tiple beacons. Since correct operation of the synchronized
listening and evenly spaced transmissions only depend on
the smallest node ID that a node has received so far, it not
necessary to repeat the smallest node ID across multiple
frames and beacons. However, to prevent premature timeout
of node information, a larger initial node TTL value needs
to be used with large groups. For large groups spanning
multiple beacons, the mapping of nodes rank to the beacon
slot should be done with proper attention to the number of
slots within a given beacon period.

Dedicated RSSI Measurements. Currently, we use
the RSSI value reported by the AGC module of the radio to
detect the presence of an on going beacon. This RSSI value
is a byproduct of the AGC module, where the primary func-
tion is to use the RSSI value to maintain a constant amplified
signal inside the radio. Because of this, the carrier detection
time is limited by how the AGC module is designed. In
contrast, a dedicated carrier sensing module optimized for
faster carrier detection might be able to reduce the wakeup
duration, hence the duty cycle, below what is reported in
this paper.

8. ACKNOWLEDGEMENTS
Special thanks to our shepherd Dr. Prabal Dutta and the

anonymous reviewers for their constructive comments.

9. REFERENCES
[1] N. Banerjee, M. D. Corner, D. Towsley, and B. N.

Levine. Relays, Base Stations, and Meshes: Enhancing
Mobile Networks with Infrastructure. In MobiCom
’08. ACM.

[2] M. Buettner, G. V. Yee, E. Anderson, and R. Han.
X-mac: a short preamble mac protocol for duty-cycled
wireless sensor networks. In SenSys ’06. ACM.

[3] R. Cohen and B. Kapchits. Continuous Neighbor
Discovery in Asynchronous Sensor Networks.
IEEE/ACM Transactions on Networking, (99):1–1,
2010.

[4] P. Dutta and D. Culler. Practical asynchronous
neighbor discovery and rendezvous for mobile sensing
applications. In SenSys ’08. ACM, 2008.

[5] Epson Toyocom Corporation. SG-3030 Crystal
Oscillator. http://www.eea.epson.com/portal/pls/
portal/docs/1/1219458.PDF.

[6] A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar.
U-connect: a low-latency energy-efficient asynchronous
neighbor discovery protocol. In IPSN ’10. ACM, 2010.

[7] M. J. McGlynn and S. A. Borbash. Birthday protocols
for low energy deployment and flexible neighbor
discovery in ad hoc wireless networks. In MobiHoc ’01.
ACM, 2001.

[8] C. Perkins, E. Belding-Royer, and S. Das. RFC3561:
Ad hoc On-Demand Distance Vector (AODV)
Routing. Internet RFCs, 2003.

[9] J. Polastre, J. Hill, and D. Culler. Versatile low power
media access for wireless sensor networks. In SenSys
’04, pages 95–107. ACM, 2004.

[10] A. Purohit and P. Zhang. Demo: SensorFly - A
Controlled-mobile Aerial Sensor Network. In SenSys
’09, pages 327–328. ACM, 2009.

[11] A. Rowe, R. Mangharam, and R. Rajkumar. Rt-link:
A global time-synchronized link protocol for sensor
networks. Ad Hoc Netw., 6(8):1201–1220, 2008.

[12] A. A. Syed, W. Ye, and J. Heidemann. T-Lohi: A new
class of MAC protocols for underwater acoustic sensor
networks. In INFOCOM 2008, Phoenix, Arizona,
USA, April 2008. IEEE.

[13] Texas Instruments Corporation. CC2500 Low-Cost
Low-Power 2.4 GHz RF Transceiver. http:
//focus.ti.com/lit/ds/swrs040c/swrs040c.pdf.

[14] Texas Instruments Corporation. Design Note DN505 :
RSSI Interpretation and Timing. http:
//focus.ti.com/lit/an/swra114d/swra114d.pdf.

[15] Texas Instruments Corporation. eZ430-RF2500
Development Tool User’s Guide. http:
//focus.ti.com/lit/ug/slau227e/slau227e.pdf.

[16] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh.
Power-saving protocols for ieee 802.11-based multi-hop
ad hoc networks. Comput. Netw., 43(3):317–337, 2003.

[17] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and
R. Nagpal. Firefly-inspired sensor network
synchronicity with realistic radio effects. In SenSys
’05, pages 142–153. ACM, 2005.

[18] W. Ye, J. Heidemann, and D. Estrin. An
energy-efficient MAC protocol for wireless sensor
networks. INFOCOM 2002, pages 1567–1576, 2002.

[19] P. Zhang, C. M. Sadler, S. A. Lyon, and
M. Martonosi. Hardware design experiences in
zebranet. In SenSys ’04, pages 227–238. ACM, 2004.

48

