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Preface

The aim of the present work is to describe the early development of approxi-
mation theory. We set as an endpoint the year 1919 when de la Vallée-Poussin
published his lectures [Val19]. With these lectures all fundamental questions,
that is, non-quantitative theorems, series expansions and quantitative prob-
lems, received their first summarized discussion.

The clear priority of the present investigations are the contributions of
Pafnuti Lvovich Chebyshev and of the St Petersburg Mathematical School
founded by him. Although some overviews and historical contributions have
been published on this subject (e. g., [Gon45], [Gus61] and [But92]) we think
that nevertheless it makes sense to go into this topic again for at least five
reasons:

Firstly, you find contradictory statements about the exact efforts of Cheby-
shev and his pupils. So the statement that Chebyshev himself proved the al-
ternation theorem is wrong and the claim that St Petersburg mathematicians
had not been interested in the theory of functions is pure nonsense.

Secondly, the available material of Soviet origin is sometimes tendentious
and exaggerated in its appreciations of the persons involved, both positively
in the almost cultic adulation of Chebyshev and negatively in neglecting the
scientific results of mathematicians like Sochocki and his students who did
not stand in the limelight, or in belittling the work of Felix Klein.

Thirdly, nearly all historical comments are written in Russian or in one
of the languages of the Soviet Union (except for some articles, for example
the contributions of Butzer and Jongmans ([BuJo89], [BuJo91] and [BuJo99])
and some papers of Sheynin. So it was time to explain this era of enormous
importance for the development of mathematics in Russia and the Soviet
Union to those who are not able to read Russian and do not have the time or
opportunity to dig in Russian archives and libraries.

In this regard, we feel that it would be disrespectful and unhelpful to refer
to Russian contributions which nearly no-one could have access to. Therefore
you will find many quotations from the works listed in the References.
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Fourthly you will recognize that we did not want only to describe the
results of the St Petersburg Mathematical School, but also to discuss its
historico-philosophical background, and so its character and how it interacted
with other European schools.

And lastly we present some interesting facts about the rôle played by
Gôttingen in spreading Russian contributions and in their further develop-
ment.

The breadth of this subject made some restrictions necessary. Definitely
you will miss the problems of moments. But we think that also without them
the basic tendency of the development described here would not have changed.
Only the rôle of A. Markov, Sr. then would have been of even higher impor-
tance.

We did not analyse the work of Bernstein as carefully as the contribu-
tions of other authors because the German translation of Akhiezer’s scientific
biography of Bernstein [Akh55] was published in 2000 by R. Kovacheva and
H. Gonska.
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phis, TN) and Heiner Gonska (Duisburg, Germany). Only by their initiative
could this work be published in its present form. Many thanks to Birkhäuser
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Introduction

“All exact science is dominated by the idea of approximation.”

This statement, attributed to Betrand Russell, shows the borders of exact
science, but is also intended to point out how to describe nature by means of
mathematics.

The strength of mathematics is abstraction concentrating on simple and
clear structures which it aims to rule completely.

To make abstract theories useful it is necessary to adopt them to certain
a posteriori assumptions coming from reality: Measured data cannot be more
exact than the instrument which recorded them; numerical computations are
not better than the exactness of the computer.

Whenever one computes, one approximates.
It is therefore not surprising that the problem of approximative determi-

nation of a given quantity is one of the oldest challenges of mathematics. At
least since the discovery of irrationality, considerations of this kind had be-
come necessary. The formula for approximating the square root of a number,
usually attributed to the Babylonians, is a case in point.

However, approximation theory is a relatively young mathematical branch,
for it needed a concept which describes the mutual dependence between quan-
tities exactly, i.e., the concept of a function. As is well-known, the first ap-
proach to defining a function based on this dependence and to abstract from
formulae was developed by Euler.

The first abstract definitions of this concept were followed by reflections
on how to represent functions to render them pratically useful. Thus, formulae
were developed to assist in approximating mainly transcendental functions. At
first these representations relied on Taylor’s formula and some interpolation
formulae based on Newton’s ideas.

Although these formulae gave good approximations in certain special cases,
in general they failed to control the approximation error because the functions
were not approximated uniformly; the error grew beyond the interpolation
points or the expansion point. The least square method developed by Gauß
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provided some improvement, but points might still exist within the interval
considered where the error of approximation becomes arbitrarily large.

It follows that new ideas had to be found to solve problems in those cases
where it was important to control approximating errors over whole intervals.
The present work starts with the first known problems which made such con-
siderations indispensable.

Probably the first work on this subject is attributed to Leonhard Euler who
tried to solve the problem of drawing a map of the Russian empire with exact
latitudes. He gave a best possible approximation of the relationship between
latitudes and altitudes considering all points of one meridian between given
latitudes, i. e., over a whole interval [Eul77].

Because of the enormous size of the Russian empire all known projections
had very large errors near the borders of the map, therefore Euler’s approach
proved helpful.

A problem encountered by Laplace was similar in character. One paragraph
of his famous work [Lap43] (first published in 1799) dealt with the question of
determining the ellipsoid best approximating the surface of the earth. Here,
too, it was important to have the error held small for every point on the
earth’s surface.

Euler solved his problem for a whole interval, whereas Laplace assumed
a finite number of data which was very much larger than the number of
parametres in the problem. This fact alone prevented a solution of the problem
by interpolation.

In 1820 Fourier generalized Laplace’s results in his work ‘Analyse des
équations determinés’ [Fou31], where he approximatively solved linear equa-
tional systems with more equations than parametres by minimizing the max-
imum error of every equation.

In 1853 Pafnuti Lvovich Chebyshev was the first to consolidate these con-
siderations into the ‘Theory of functions deviating the least possible from
zero,’ as he called it.

Starting out from the problem of determining the parameters of the driv-
ing mechanism of steam engines—also called Watts parallelogram—in such
a manner that the conversion of straight into circular movement becomes as
exact as possible everywhere, he was led to the general problem of the uniform
approximation of a real analytic function by polynomials of a given degree.
The first goal he achieved was the determination of the polynomial of nth
degree with given first coefficient which deviates as little as possible from
zero over the interval [−1, 1]. Today this polynomial is called a Chebyshevian
polynomial of the first kind.

Further results were presented by Chebyshev in his work ‘Sur les ques-
tions des minimas’ [Cheb59] (written in 1857), where he stated a very general
problem: that of determining parameters p1, . . . , pn of a real-valued function
F (x, p1, . . . , pn) so that over a given interval [a, b] the maximum error

max
x∈[a,b]

|F (x, p1, . . . , pn)|
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is minimized. Under certain assumptions for the partial derivatives

∂F

∂p1 . . . ∂pn
(x, p1, . . . , pn)

he was able to prove a generally necessary condition for the solution of the
problem.

Using this condition he showed that in special cases (polynomial, weighted
polynomial and rational approximation) it led to the necessary condition that
F has a fixed number of points where it assumes the maximum value. These
points are now known as deviation points. However, the alternation theorem
which clearly follows from this result has never been proved by Chebyshev
himself.

The aim he sought to achieve with this contribution is to find the poly-
nomial uniformly deviating as little as possible from zero for any number of
given coefficients. Later his pupils would work on several problems arising
from this general challenge. This remained the determining element of all
contributions of the early St Petersburg Mathematical School on the subject
of approximation theory.

[Cheb59] was the only work by Chebyshev devoted to a general problem
of uniform approximation theory. But it was followed by a series of more
than 40 publications in which he dealt with the solution of special uniform
approximation problems, mainly from the theory of mechanisms.

Another major part of his work was devoted to least squares approxima-
tion theory with respect to a positive weight function θ. In his contribution
‘About continuous fractions’ [Cheb55/2] he proved that (as we say now) the
orthogonal projection of a function is its best approximation in the space
L2(θ). In a number of subsequent papers he discussed this fact for certain
orthonormal systems and defined general Fourier expansions.

He merged the theoretical results in the publication ‘On functions de-
viating the least possible from zero’ [Cheb73], in which he determined the
monotone polynomial of given degree and the first coefficient which deviates
as little as possible from zero. This was the first contribution to what we know
now as shape preserving approximation theory.

All of Chebyshev’s work was aimed at delivering useful solutions to prac-
tical problems. The above-mentioned contributions all arose from practical
problems, e. g., from the theory of mechanisms or ballistics. A small part of
his work was devoted to problems from geodesy, cartography or other sub-
jects. This ambition pervaded all of Chebyshevs work: to him practice was
the ‘leader’ of mathematics, and he has always demanded from mathematics
that it should be applicable to practical problems. Apparently he did not view
this as being in contradiction to his early theoretical work, which had been
devoted mainly to number theory. So we can speculate about his concept of
application.

On the other hand, he clearly disassociated himself from contemporary at-
tempts, mainly on the part of French and German mathematicians, to define
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the basic concepts of mathematics clearly and without contradictions. Cheby-
shev qualified the discussion about infinitely small quantities as ‘philosophiz-
ing’. It follows that his methods, without exceptions, were of an algebraic
nature; he did not mention limits except where absolutely necessary. A char-
acteristic feature of his work is the fact that, if convergence was intuitively
possible, to him it was self-evident. Thus, he often omitted to point out that
an argument was valid if a function converged (uniformly or pointwise).

Besides his scientific achievements which also extended into probabil-
ity theory, Chebyshev distinguished himself as a founder of a mathematical
school. The first generation of the generally so-called Saint Petersburg Math-
ematical School only consisted of mathematicians who began their studies
during Chebyshev’s lifetime and were completely influenced by his work, but
even more by his opinion about what mathematics should be. In Aleksandr
Nikolaevich Korkin, the eldest of the schools’ members, we have a truly or-
thodox representative of the algebraic orientation. For example he referred to
modern analytic methods of treating partial differential equations as ‘deca-
dency’ because they did not explicitly solve explicit equations. Other members
also disassociated themselves from new mathematical directions, most notably
Aleksandr Mikhajlovich Lyapunov, who sweepingly disqualified Riemannian
function theory as ‘pseudogeometrical’.

However, this radical position was not typical of all students of Chebyshev.
Egor Ivanovich Zolotarev showed an interest in basic mathematical questions,
both in his written work, where we see his deep knowledge of function theory,
and in his lectures, where he endeavoured to define concepts like the con-
tinuous function as early as in the 1870s. Julian Sochocki’s work was even
exclusively devoted to the theory of functions in the manner of Cauchy and
later these results were used by others (e.g., by Posse) to prove Chebyshev’s
results in a new way.

Nevertheless the Saint Petersburg Mathematical School was characterized
by the orientation towards solving concretely posed problems to get an explicit
formula or at least a good algorithm which is suitable for practical purposes.

It is not surprising, then, that the contributions of the members of the Saint
Petersburg Mathematical School were predominantly of a classical nature and
employed almost exclusively algebraic methods.

This is particularly true for the schools’ work on approximation theory.
Outstanding examples include the papers by Zolotarev and the brothers An-
drej Andreevich Markov, Sr. and Vladimir Andreevich Markov, which were
devoted to special problems from the field of uniform approximation theory.

Zolotarev investigated the problem of determining the polynomial of given
degree which deviates as little as possible from zero while having its two high-
est coefficients fixed. Thus he directly followed the objective set by Chebyshev
himself. Andrej Markov’s most important contribution on this subject was
the determination of a polynomial least deviating from zero with respect to
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a special linear condition of its coefficients. Vladimir Markov generalized this
problem and solved his brother’s problem for any linear side condition.

The above-mentioned three contributions were all distinguished by the
fact that they presented a complete theory of their problems. This is most
distinctly illustrated by the work of Vladimir Markov, who proved a special
alternation theorem in this context, as well as another theorem which in fact
can be called a first version of the Kolmogorov criterion of 1948. As the most
important result of Vladimir Markov’s paper we today acknowledge the in-
equality estimating the norm of the kth derivative of a polynomial by the
norm of the polynomial itself. Later Sergej Natanovich Bernstein used this
result to prove one of his quantitative theorems. However, consistent with the
nature of the task, these investigations remained basically algebraic.

The last contribution to early uniform approximation theory coming from
Saint Petersburg were Andrej Markov’s 1906 lectures ‘On Functions Deviat-
ing the Least Possible from Zero’, [MarA06] where he summarized and clearly
surveyed the respective results of Saint Petersburg mathematicians. For the
first time a Petersburg mathematician presented the uniform approximation
problem as a problem of approximating a continuous function by means of
polynomials and proved a more general alternation theorem. Conspicuously,
however, he soon returned to problems of the Chebyshev type. It is somewhat
amazing that he never referred to any of the results achieved by Western Euro-
pean mathematicians in this context. Even the basic Weierstrassian theorem
of 1885, which states the arbitrarily good approximability of any continuous
function by polynomials, was not cited in these lectures.

It thus emerges with particular clarity that, because of its narrow setting of
problems and its rejection of analytical methods, the uniform approximation
theory of functions as developed by the Saint Petersburg Mathematical School
ended in an impasse at the beginning of the twentieth century.

Outside Russia, approximation theory had other roots. A more theoretical
approach had been preferred abroad because of the strong interest in basic
questions of mathematics generated since the end of the 18th century by the
problem of the ‘oscillating string’.

The clarification of what is most likely the most important concept in
modern analysis—the continuous function—generated intense interest in the
consequences resulting from Weierstrass’ approximation theorem. The latter
had defined the aim; one now tried to make use of it, i.e., to find explicit and
simple sequences of algebraic or trigonometric polynomials which converge to a
given polynomial. Secondly it had to be determined how fast these sequences
could converge, how fast the approximation error decreases. Such were the
objectives of the long series of alternative proofs which emerged early after
the original work of Weierstrass.

Natural candidates for such polynomial sequences were the Lagrange in-
terpolation polynomials and the Fourier series.
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It is surprising that a first positive result was found for the Fourier series,
although the existence of continuous functions with a divergent Fourier series
had been known since 1876. Lipót Fejér showed in 1900 that every function
could be approximated by a version of its Fourier series, where the sum was
taken from certain mean values of the classical Fourier summands.

For the case of interpolating polynomials the question likewise seemed to
be negatively answered by the results of Runge [Run04] and Faber [Fab14].
However, it was again Fejér who showed that for every continuous function the
sequence of the ‘Hermite–Fejér Interpolants’ (as we now call them) converges
to the function itself.

Chebyshev’s results became more commonly known in Western Europe
only after the first edition of his collected works in 1899. With the introduction
of analytical methods his findings could be theoretically expanded by the work
of Hilbert’s pupil Paul Kirchberger in 1902 [Kir02], and Émile Borel in 1905
[Bor05].

We call Dunham Jackson the founder of the quantitative approximation
theory which is designed, inter alia, to determine the degree of the approxi-
mation error subject to specific requirements on the approximating function.
Jackson proved a series of direct theorems in his doctoral dissertation of 1911
[Jack11]. Actually it was Hilbert’s pupil Sergej Natanovich Bernstein who, a
little earlier, had proved theorems of this kind—he is today considered the
author of the inverse theorems which laid the foundation of the constructive
function theory that characterizes functions by the order of their approxima-
tion error.

The roots of the constructive function theory lay in a very special-looking
problem to which Lebesgue’s proof of Weierstrass’ theorem had already at-
tracted attention: the approximation of the function |x|. In 1898 Lebesgue
proved Weierstrass’ theorem by initially approximating a continuous func-
tion by polygon lines and subsequently proving that a polygon line can be
arbitrarily well approximated by polynomials [Leb98].

In the years that followed, the question of how fast |x| can be approxi-
mated and the answer given by Bernstein gave rise to investigations which
connected the approaches of Chebyshev and Weierstrass, that is, algebraic
and analytic ideas. Especially the way he used the results of Vladimir Markov
led to the insight that the degree of approximation reveals certain properties
of a function. Thus, approximation theory, born from practical mechanics,
helped to solve important basic mathematical problems.

Bernstein’s results completed the frame of modern approximation theory,
as first described in de la Vallée-Poussin’s lectures from 1919, within which
the theory has remained to this day [Val19].

The following key theses are first presented and substantiated in the
present book:

1. The chief aim of the activities of the Saint Petersburg Mathematical
School around P. L. Chebyshev on the subject of approximation was to
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determine the polynomial of nth degree which deviates as little as possi-
ble from zero while having an arbitrary but fixed number of given leading
coefficients.

2. This aim prevented the application of modern analytical methods to ap-
proximation theory during the early period in Saint Petersburg.

3. A merger of Weierstrass’ and Chebshev’s approaches was first achieved by
Bernstein. Thus, we see that the Göttingen School around David Hilbert
and Felix Klein had a decisive influence on the early development of ap-
proximation theory.

The present book is structured as follows:

1. In the first chapter we discuss the two works that may be considered
forerunners of uniform approximation theory: Euler’s cartographic inves-
tigations and Laplace’s geodetic problem.

2. The second chapter is dedicated to the work of P. L. Chebyshev: His
most important contributions to the uniform approximation problem are
analysed and arranged in historical context. In addition, Chebyshev’s phi-
losophy of mathematics is discussed.

3. The work of Chebyshev’s students founding the Saint Petersburg Mathe-
matical School is reviewed in chapter three. We analyse in what manner
they continue Chebyshev’s work and adopt his aims. It becomes clear
that the ideas of the mathematicians of the Saint Petersburg Mathemati-
cal School are not perfectly homogeneous. We examine their opinion about
basic principles of mathematics, especially the concept of a function.

4. The absolutely different development of approximation theory in Western
Europe is summarized in the fourth chapter. Starting from the problems
connected with Weierstrass’ approximation theorem, I have focused on
questions of approximative representations of functions and their (uni-
form) convergence. The role of the undoubted centre of mathematics of
that time, the Göttingen School around David Hilbert and Felix Klein,
in the development of approximation theory is outlined on the basis of
material from several archives.

5. The fifth chapter addresses the thesis that the framework of the founda-
tion of modern approximation theory was shaped by the contributions of
Bernstein. The content of what he called ‘Constructive Function Theory’
is described. We shall see that he achieved the link between Chebyshev’s
and Weierstrass’ approaches.
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1

Forerunners

1.1 Euler’s Analysis of Delisle’s Map

Cartography arose in the beginning of the 18th century in Russia with the
first map covering the whole Russian empire; it was made by I. K. Kirillov in
1734 and held the scale 1:11,7 Mill. In 1745 it was followed by the “Mappa
Generalis Totius Imperii Russici” (1:8,9 Mill.) developed by the St Petersburg
Academy of Sciences under the main supervision of the astronomer Joseph
Nicolas Delisle (1688-1768), and with co-operation of Leonhard Euler1 (see
[KayoJ]).

1.1.1 The Delislian Projection

S. E. Fel’ [Fel60, p. 187] describes the construction of the maps of this atlas:
“The maps of this atlas are drawn in the cone projection which preserves
distances and is attributed to J. Delisle [...] The main scale is preserved in the
two cutting parallels and all meridians. The map of Russia covers the region
between 40o and 70o of northern latitude, thus the middle parallel lies at 55o,
and the cutting parallels are chosen at 47o30′ and 62o30′. So they have equal
distance to the middle and the outer parallels. The meridians are divided with
preservation of distances.”

This kind of projection is often used when it is necessary to project a big
map like the Russian empire.

Stereographic projection often used to map polar regions have the following
advantages and disadvantages:
1 Leonhard Euler (*Basel 1707, †St Petersburg 1783), 1720–1724 studies of mathe-

matics and physics at Basel university, 1727 move to St Petersburg, 1730 profes-
sorship of physics at the Academy of Sciences, 1733 professorship of mathematics
as successor of Daniel Bernoulli, 1735 co-operation with the department of ge-
ography, 1741 move to Berlin, 1744 director of the department of mathematics
(“mathematische Klasse”) of the Berlin Academy of Sciences, 1766 again profes-
sorship at the St Petersburg Academy of Sciences.
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Figure 1.1. Scheme of the Delislian cone projection with the cutting parallels PP ′

and QQ′

1. Advantages:
a) Parallels and meridians intersect perpendicularly
b) It gives locally good approximation

2. Disadvantages:
a) The latitudes are not equally long because the scale grows from the

center to the border of the map
b) In the case of an equatorial projection (or another non-polar projec-

tion) the meridians curve to the borders of the map. Thus taking
details from such a map does not make much sense

Because of the latter disadvantage one would have to choose polar pro-
jections for an overall map of Russia. But because of the growing scale one
would get a global inaccuracy of the map.
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Figure 1.2. Distance preserving division of meridians

The map of the entire Russian Empire drawn by J. M. Hasius2 is a polar
projection. Euler had it in mind as he compared the different projections.

On the other hand, the Delislian projection meets the following claims:

• All meridians are represented by straight lines
• All parallels have the same size
• Meridians and parallels intersect perpendicularly

In 1777 Euler analysed the local and global accuracy of the Delislian
conic projection in the contribution De proiectione geographica De Lisliana in
mappa generali imperii Russici usitata [Eul77], where he tried to approximate
the proportion of longitudes and latitudes of the map to the real proportion
of the terrestrial globe.

The Delislian conic projection usually has cutting parallels with equal
distance to the center and the borders of the map, as described above. Then
the error of the proportions within the section between the cutting parallels is
smaller then between the borders and the cutting parallels (see [Fel60, p. 187]).

1.1.2 Euler’s Method

Now we want to get into a more exact analysis of Delisle’s conic projection.
Consider a cone with the following properties (see figure 1.1):

2 In 1739 Johann Matthias Hasius (1684–1742) published in Nuremberg the “Im-
perii Russici et Tatariae universae tam majoris et Asiaticam quam minoris et
Europaeae tabula” (cited after [Eul75, p. 583, entry 195]).
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1. It has a common axis with the earth.
2. Its top Z lies above the north pole.
3. It has two common parallels with the earth.

Now take a meridian M of the globe with points P and Q intersecting the
cone.

The map M ′ of M on the cone is now divided preserving distances, that is,
every distance of latitudes on the cone is the same as of the globe with respect
to a constant factor. To illustrate this we can turn the cone into position M ′′

(see figure 1.2) and then unwind the meridian of the globe onto the cone.3

Using this construction it is possible to define a “latitude” for the top of
the cone Z, since the position of Z and the distance |ZP | is determined by P
and Q.

Thus, the projection is exact according to the latitudes.

���
Equator

���
Pole

���
P

���
Q

Figure 1.3. The proportion between longitudes and latitudes from the equator to
the pole is the cosine of the latitude to 1.

To analyse the error of the longitudes on the cone, which is especially obvious
regarding the pole, we will compute the length of one degree of longitude on
the map.

On the surface of the globe the proportion between longitudes is the cosine
of the latitude to 1. (see figure 1.3). One degree of longitude on the parallel
PP ′ has therefore the length δ cos p, if δ is the length of one degree of latitude
on the surface of the globe. On the map the length of one degree of longitude
on the parallel PP ′ is ω|ZP |, if ω is the angle corresponding with one degree
of longitude on the map (see figure 1.4).

Euler constructed a map where the maximal error of longitudes was min-
imized by a suitable selection of intersecting parallels P and Q.

3 Then the cone’s meridian is stretched by a factor which is equal to the quotient
of the geodetic and the Euclidean distance between P and Q.
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Figure 1.4. Construction of one degree of longitude

1.1.3 Determining the Intersecting Parallels P and Q

To construct with the above defined least maximal error we have to derive
assumptions for the positions of the points P and Q.

With this we define p and q as the latitudes of P and Q on the globe.
The length of the distance ZP and thus the position of the conic pole Z is
then

|
︷ ︷

QQ′ | − |
︷ ︷

PP ′ |
|PQ|

=
|
︷ ︷

PP ′ |
|ZP |

,

that is,

|ZP | =
|q − p| cos p

cos q − cos p
. (1.1)

Now we determine the angle ω which corresponds to a degree of longitude
on the map. It is

ω =
|
︷ ︷

PP ′ |
|ZP |

and with (1.1)

ω =
δ(cos q − cos p)

|q − p| , (1.2)

δ being the length of a latitude of the globe.
Let z be the distance between Z and the Earth’s pole on the globe.

The assumption that our projection preserves the latitude allows us to
compute
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|ZP | =
π

2
− p + z.

Using (1.1) we get

z =
|q − p| cos p

cos q − cos p
− π

2
+ p. (1.3)

With the help of the equations (1.1) and (1.3) we will determine the posi-
tions of P and Q. Additionally we will assume that the errors of the projection
at the upper border of the map A and the lower border B will be equal in
value.

1.1.4 Minimization of the Error of the Projection

Firstly we will compute the error in the border parallels A and B. We set a
and b as their latitudes.

Their distances from the Earth’s pole can be computed as above: π
2 −a and

π
2 −b, respectively, similarly we have |ZA| = π

2 −a+z and |ZB| = π
2 −b+z. To

get the arc length of a degree of longitude δa and δb in A and B respectively,
we must multiply these values with ω.

Hence we have:

δa = ω|ZA|
= ω(

π

2
− a + z) (1.4)

=
δ(cos q − cos p)(π

2 − a + z)

|q − p| ,

δb = ω|ZB|
= ω(

π

2
− b + z) (1.5)

=
δ(cos q − cos p)(π

2 − b + z)

|q − p| .

But the exact values would be (see fig. 1.3) δ cos a and δ cos b.
We remember that we wanted to determine P and Q under the assumption

that the errors reach their maximal value in both border parallels A and B.
Therefore we can set

ω(
π

2
− a + z) − δ cos a = ω(

π

2
− b + z) − δ cos b

or

ω = δ
cos a − cos b

b − a
. (1.6)

Thus we have a representation of ω by the known parameters a and b.
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The next is to determine another point X ∈ AB, where the error of the
projection reaches its maximal value, too. With x defining its corresponding
latitude we can define the error function

ε(x) : [b, a] −→ R with

ε(x) := ω(
π

2
− x + z) − δ cos x. (1.7)

We have then:

ε′(x) = δ sin x − ω

ε′′(x) = δ cos x > 0 in [b, a],

so the error function has a local minimum at x̄ := arcsin ω
δ .4

To determine P and Q with the above-mentioned assumptions we set

|ε(x̄) = |ε(a)| = |ε(b)|.

Thus,

ε(x̄) = −ε(a), hence

(
π

2
− x̄ + z)ω − δ cos x̄ = (a − π

2
− z)ω + δ cos a and finally

z =
1

2

(
δ(cos a + cos x̄)

ω
+ a + x̄ − π

)

. (1.8)

Given a and b we now can construct the map by firstly determining the
top of the cone Z with latitude z, then dividing the meridian in equal sections
of latitude δ. The basic meridian has so been drawn. The parallels are now
constructed using ω as the approximation of the angle for one degree of longi-
tude. On the parallel with latitude y one degree of longitude is approximated
by (π

2 − y + z)ω.

With this alternation property Euler constructed a best possible approxi-
mation for a map of the Russian Empire which satisfies the above-mentioned
side-conditions. In the next subsection we show an easy proof for this fact.

Euler himself concluded his contribution remarking that an advantage of
this is the fact that the distances between any two different points is suffi-
ciently well approximated. Therefore he would prefer this map as a suitable
map for all of Russia (see [Eul77, p. 25]).

4 This is the only local minimum within the interval [b, a], since a − b < π
2
. From

ε(p) = ε(q) = 0 and p, q ∈ [b, a] follows: ε(x̄) ≤ 0 ≤ ε(a) = ε(b). This estimate
and the continuity of ε guarantee that x̄ ∈ (b, a].
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1.1.5 Discussion

Euler investigated the problem

min
p∈P1

max
x∈[a,b]

|p(x) − δ cos x|, (1.9)

where δ is the length of one degree of latitude of the globe.
The alternation theorem implies that the error function

ε := p − δ cos

has at least three deviation points, where ε reaches its maximal value with
alternating sign. For the borders of the interval [a, b] there holds the side-
condition

0 ≤ a < b ≤ π

2
,

and therefore ε has only one local minimum x̄ in [a, b], so the points a, b and
x̄ are the only deviation points.

Euler computed ε, got for x ∈ [a, b] the formula

ε(x) = ω(
π

2
+ z) − ωx − δ cos x (1.10)

and computed the local minimum

x̄ = arcsin(
ω

δ
).

With the help of the side-condition

ε(a) = −ε(x̄) = ε(b) (1.11)

he determined ω and z. As we now know, the alternation theorem shows that
exactly this condition characterizes the solution of the so-defined minimax-
problem.

Euler computed this minimal maximal error and got a value of about
0.0098 expressed as a part of a longitude. At the lower border of the map we
have a deviation of 835 metres, at the upper border 372 metres. Euler himself
had to round off and got a slightly different value of about one Russian Versta
(about 1,067 metres).5 Euler determined the intersecting parallels as 65o4′11′′

and 43o59′20′′.
Even nowadays the Delislian projection is used for entire maps of Russia.

Salistshev [Sal67, p. 36] writes: “The usual projection is the conic projection
which preserves distances along the meridians [...] with the intersecting par-
allels 47o and 62o of northern latitude which are chosen by the condition that
the squares of the deviation of longitudes within the mainland of the USSR
should be as little as possible.” With these words he refers to to figure 1.5
taken from the second volume of [Sal67, Abb. 30].
5 [Eul77, p. 295]: ,,et quoniam iste error in partibus unius gradus Meridiani exprim-

itur, 15 milliaria tali gradui tribuendo, iste error valebit 0,14190, hoc est circiter
septimam partem unius milliaris, sive unam Verstam Ruthenicam”.
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Figure 1.5. Map of the entire USSR, drawn with a conic projection

1.2 Laplace’s Approximation of Earth’s Surface

In his main work, the “celestial mechanics,”6 Laplace7 discussed many ques-
tions dealing with shape and orbits of celestial objects. He theoretically
showed, e. g., that planets have to have the shape of an ellipsoid, but was
not able to confirm this empirically.

Therefore he wanted to determine a best ellipsoid for each planet, that is,
to approximate the earth with an ellipsoid by minimizing the error between
the meridians of the ellipsoid and the measured meridians of the earth.

1.2.1 A Formula to Compute a Part of the Arc of an Ellipse

To determine the perimeter of the earth at a fixed meridian it is necessary
to measure the length of an arc between one point with latitude ϕ − ε0 to
another point with latitude ϕ + ε0 (see fig. 1.6).

In the following we want to compute how long this arc should be, if it were
a part of an ellipse.

6 ,,Traité de la mécanique céleste”, [Lap43]. Here the basis source is §39, pp. 126–
154.

7 Pierre Simon Marquis de Laplace (*1749 Beaumont-en-Auge, †1827 Paris), 1765–
1768 student at the Jesuit-college of Cáën, 1768 move to Paris, 1771–1794 teacher
at the military academy of Paris, from 1773 member of the Pais academy of sci-
ences, from 1794 professor of mathematics at the recently founded École Poly-
technique, chairman of the French state commission for weights and measures,
1799 for six weeks Napoleon I’s minister of the interior
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ϕ − ε0

ϕ + ε0

Figure 1.6. Measurement of latitudes on Earth’s surface

1.2.1.1 The arc length of a part of an ellipse

An ellipse with the half axes a and b satisfies the parametric form

x(ϕ) = a cos ϕ

y(ϕ) = b sin ϕ. (1.12)

Setting u(ϕ) := (x(ϕ), y(ϕ)), we get the following formula for the length
of an arc from the angle ϕ − ε0 to ϕ + ε0 :

L(ϕ) =

ϕ+ε0∫

ϕ−ε0

‖u̇(t)‖ dt. (1.13)

With the numerical eccentricity of the ellipse ε :=
√

a2−b2

a , we have after
some transformations

L(ϕ) = a

π
2

−ϕ+ε0∫

π
2

−ϕ−ε0

√

1 − ε2 sin2 t dt = E(
π

2
−ϕ−ε0, ε)−E(

π

2
−ϕ+ε0, ε), (1.14)

where E(ψ, k) is the elliptic integral of second kind. There holds the series
expansion (comp., e. g. [GrHo75])

E(ψ, k) =
∞∑

ν=0

( 1
2

ν

)

(−k2)ν

ψ∫

0

sin2ν u du. (1.15)
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Taking the first two sums of the series (1.15) we get this approximation
for L(ϕ):

L(ϕ) = a

[
π

2
− ϕ + ε0 − ε2

(
1

2

(π

2
− ϕ + ε0

)

− 1

4
sin(π − 2ϕ + 2ε0)

)]

− a

[
π

2
− ϕ − ε0 − ε2

(
1

2

(π

2
− ϕ − ε0

)

− 1

4
sin(π − 2ϕ − 2ε0)

)]

,

hence

L(ϕ) = 2aε0 − 2aε2ε0 +
a

2
sin 2ε0 cos(π − 2ϕ).

So we have

L(ϕ) = 2aε0 − 2aε2ε0 +
a

2
sin 2ε0 + a sin 2ε0 sin2 ϕ. (1.16)

The length of an arc of an ellipse between the angles ϕ − ε0 and ϕ + ε0

can be approximated by a quadratic equation of the form z + y sin2 ϕ, where
z is the equatorial arclength (ϕ = 0).

Laplace used this approximation for his computations.

1.2.2 A Characteristic System of Equations

Let n be the number of measurements on the Earth’s surface with all arcs
representing the length of one degree of the corresponding meridian (ε0 =
0, 5o). Let ai, i = 1, . . . , n be the measured values with the square sinus pi,
of the corresponding latitudes. We set the order pi+1 > pi ∀i = 1, . . . , n − 1.
Now we have the unknown parameters z as the arclength of the ellipse between
−0, 5o and +0, 5o, the increment of the measurement y and the corresponding
errors xi, i = 1, . . . , n.

We showed in the paragraph before that there holds for each degree ai of
a meridian of the ellipse

ai = z + piy (1.17)

(with y = a sin 1o and pi = sin2 ϕi). So the above chosen parametres satisfy
the following linear equation system:

(A)

a1 − z − p1y = x1

a2 − z − p2y = x2

. . . . . . . . . . . . . . . . . .
an − z − pny = xn

.

So we have n equations for the n + 2 unknown quantities z, y and
x1, . . . , xn.8

8 The equation system (A) has the form
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Firstly we eliminate the parameters z and y and get n − 2 equations with
x1, . . . , xn as the only unknown.9

Then we want to determine the equation systems, where maxi=1,...,n |xi|
reaches its minimal value.

The best approximating ellipse is chosen only by considering the maximal
error of the xi and deriving necessary conditions for this minimax problem.
The quantities z and y are then computed using these conditions. Let in the
following x̂ := maxi |xi|.

1.2.3 A First Solving Algorithm

To determine the solution of (A) with the least maximal error x̂ Laplace first
considered cases with a low number of measurements.10

The cases n = 3, 4, 5 were discussed separately.

In the case that we made only three observations we can say that x̂ reaches
the smallest value, if all errors have the same value (neglecting their signs).

It is indeed easy to show that this property is necessary for the minimality of
x̂.11

Without an alternation property this condition is not sufficient, as we will
see later on. Laplace did not mention this, but his formulation suggested that
the equivalence holds. This remark also holds for the following considerations.

Ax = a, with A =

⎛

⎜

⎜

⎜

⎝

1 p1 1 0 · · · 0
1 p2 0 1 · · · 0
...

...
...

...
. . .

...
1 pn 0 0 · · · 1

⎞

⎟

⎟

⎟

⎠

, x = (z, y, x1, . . . , xn)

and a = (a1, . . . , an).

We easily see that the lines of the matrix A are linearly independent. So the
solution space has dimension n + 2 − rg(A) = 2, hence two variables can be
chosen freely.

9 This is a remarkable step, for we want to compute the quantities z and y, which
alone determine the ellipse.

10 Because an ellipse is determined by at least three measurements, we assume that
there holds n ≥ 3. Laplace did not mention this explicitly, but seemed to have
taken it for granted. In all considerations the errors are enumerated at least to
three. (See [Lap43], p. 127).

11 After eliminating the parameters z and y in the first two equations we get the
only equation

a = mx
′
1 + nx

′
2 + px

′
3,

where a, m, n and p can be assumed positive with a suitable choice of the sign
of x′

i = ±xi. If we assumed that there would be a solution with x̂ < a
m+n+p

, we

would get the contradiction a = mx′
1 +nx′

2 +px′
3 < (m+n+p)x̂ < a. So we have

anyway x̂ ≥ a
m+n+p

. Indeed x′
1 = x′

2 = x′
3 = a

m+n+p
satisfies the above-mentioned

condition.
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If we have only two equations determining the errors, the solution with the
smallest maximal error is the one, where three errors have the same value and
the fourth has a lower value than they (neglecting the signs).

Laplace proved this by tracing this case back to the first.
If we assume that x1 is the error reaching another absolute value than

the other ones, we will eliminate it and get for the other three errors the
determining equation

a = mx2 + nx3 + px4,

where a and all other coefficients can be chosen positively.12

The smallest value of the maximal error of this equation is again a/(m+n+
p). Now we compute the value of x1 and check, whether its value is not larger
than the absolute value of x1, x2 and x3. If not, then we have to eliminate x2

and repeat this, until the minimal error will be found.

If we have only three equations determining the errors, the solution with
the smallest maximal error is the one, where three errors have the same value
and the other two have lower values (neglecting the signs).

The arguments are analogous, we eliminate two errors and get a determin-
ing equation for the other three errors which has the same type as above.

This algorithm can be used for any numbers of observations.13

So Laplace could prove that the condition that the three largest errors of a
solution of the equation system (A) have the same absolute value is necessary
for the solution with the smallest maximal error.

He proposed an algorithm to determine the ellipse of best approximation
in the above sense. Set equation system (A) and choose all triples of the errors
xi. One after the other assume that they are the maximal errors (neglecting
their signs) and check the effects on the other errors. If all other errors have
smaller absolute values, then the ellipse is the sought one. Because of the
enormous complexity of this algorithm14 Laplace dismissed it and proposed a
more simple one.

1.2.4 A Second Algorithm and a Necessary Alternation Condition

The largest errors of equation system (A) have even to satisfy an alternation
condition. Laplace showed this proving that such a condition is necessary for
a solution (z, y, x1, . . . , xn), where the xi represent a system of errors with
smallest maximal error.

12 Compare the former consideration with quantities x′
i mit xi = ±xi.

13 Laplace wrote (in [Lap43], p. 128): ,,Il est facile d’étendre cette méthode, au cas
où l’on auroit quatre ou un plus grand nombre d’équation de condition, entre les
erreurs x(1), x(2), x(3), &c”.

14 Since we also have to check all eight combinations of each triple, we must consider
8n3 equation systems in the worst case.
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We note Laplace’s considerations as lemmata to make it more clear.
Laplace himself points out the main arguments without a formal proof.

For the following steps we call x := (z, y, x1, . . . , xn) a solution of (A)
with the smallest maximal error.

Lemma 1.1 Let xi be an error of maximal (absolute) value of x. Then there
is another error xi′ (i′ �= i) which has the same absolute value and opposite
sign.

If we had only one maximal error xi or any number of errors with equal value
and equal sign we could diminish the value of these xi in the corresponding
equation

ai − z − piy = xi,

and they would remain a maximum.15

With the following lemma we find at least a third maximal error:

Lemma 1.2 Between the values xi, i = 1, . . . , n there are at least three values
±x̂. Their signs are not equal.

Here we put together Laplace’s proposition ,,il doit exister une troisième
erreur x(i′′) égale, abstraction faite du signe, à x(i).” ([Lap43], p. 129) with
the result of the last lemma.

We assume that there are only two maximal errors xi and xi′ and look at
the equation which we get after subtracting the equations corresponding to
xi and xi′ from each other:

ai′ − ai − {pi′ − pi}y = xi′ − xi.

The right side of the equation is equal to 2 ± x̂. This sum can be diminished
varying y.16

15 A formal proof could be the following:
1.) If we had only one xj with |xj | = x̂, then we could vary z so that

max
i

|xi| < x̂ :

Replace (A) with the following equation system

(A′)

a1 − z − ε
2

− p1y = x′
1

a2 − z − ε
2

− p2y = x′
2

. . . . . . . . . . . . . . . . . . . . . .
an − z − ε

2
− pny = x′

n

with ε := x̂ − maxi�=j |xi|. Then we have for (A′): maxi=1,...,n |x′
i| < x̂, so we

diminished the maximal error.
2.) If more than one error have the value x̂ and are equal in sign and all other
errors have smaller absolute values, then the procedure of 1.) works equally. �

16 Assume that i′ > i. Then the coefficient of y is positive, since pi′ > pi because
they are squares of sines of the first quadrant.
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Now we can replace x′
i′ and x′

i with the recently computed smaller errors
and set them equal in absolute value by varying z to get an equation system
with smaller maximal error.

Now we know that the (at least three) maximal errors have different signs.
The following shows that the signs are not ordered by chance.

Lemma 1.3 (Alternation) There are three maximal errors xi, xi′ and xi′′

of the solution x of equation system (A) with the following property: If xi and
xi′′ have an equal sign, so the index i′ lies between the indices i and i′′.

So we have a system of errors with alternating signs.

To prove it we assume that for all error triples having different signs we
have that i′ is either larger or smaller than the other two indices i and i′′.
We now regard the equations which we get after subtracting the equations
corresponding to i′ from the equations corresponding to i and i′′ respectively.
Then we have

ai − ai′ − (pi − pi′) y = xi − xi′

ai′′ − ai′ − (pi′′ − pi′) y = xi′′ − xi′ .

Both right sides are equal to 2 x̂ and have the same sign. But then again we can
diminish the error sum and the maximal error itself varying z17 contradicting
the assumption x being a solution of (A) with the smallest maximal error.

In the following Laplace used this result for the explicit determination of
the maximal errors.18

1.2.5 Determination of the Maximal Errors

1.2.5.1 Determination of the Largest Error

To find out which of the errors x1, x2, . . . , xn has the maximal value with
respect to the sign, we consider the equation system

(B)

a2 − a1 − (p2 − p1) y = x2 − x1

a3 − a1 − (p3 − p1) y = x3 − x1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an − a1 − (pn − p1) y = xn − x1

.

17 After simultaneously diminishing the error sum we can vary z so that xi′ keeps its
value and that the values of xi and xi′′ are reduced. Then xi′ is the only maximal
error which contradicts Lemma 1.

18 Laplace in fact did not show the sufficiency of the alternation criterion. But as
we will see later on in this book, it can be shown easily by using similar ‘shifts’
as in the present proofs.



16 1 Forerunners

Since all coefficients of y are positive, for large y all right sides are negative
and x1 is the largest error. We now can diminish y so that some of the right
sides will vanish, that is, some of the xi will assume a value equal to x1. To
determine these xi consider the quotients

a2 − a1

p2 − p1
;

a3 − a1

p3 − p1
; . . . . . . ;

an − a1

pn − p1
.

We set β1 equal to the maximal of these quotients and set r as the first of all
indices relating to all quotients having value β1.

Hence

β1 = max
i>1

ai − a1

pi − p1
=

ar − a1

pr − p1
. (1.18)

If we now replace in (B) y := β1, we will have xr = x1, and by further
reduction of y, xr will get larger than x1 and grow faster than all other errors
with smaller index. This directly follows from the definition of β1.

19

In other words:
With further reduction of y the maximal error in (B) will only grow for

indices larger than r.

After the determination of xr we similarly continue with this procedure and
consider the equation system

ar+1 − ar − (pr+1 − pr) y = xr+1 − xr

ar+2 − ar − (pr+2 − pr) y = xr+2 − xr

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an − ar − (pn − pr) y = xn − xr

.

19 To prove the last proposition we consider the equations

ar−t − a1

pr−t − p1
− y =

xr−t − x1

pr−t − p1

ar − a1

pr − p1
− y =

xr − x1

pr − p1
, 0 < t < r − 1.

For y < β1 the right side of the rth equation is larger than the right side of the
r − tth. Without losing generality we assume xr−t > x1 (otherwise we will have
immediately xr−t ≤ x1 < xr!).

Then:

xr − x1

pr − p1
>

xr−t − x1

pr−t − p1
, from which follows

xr − x1

xr−t − x1
>

pr − p1

pr−t − p1
(> 1), hence

xr − x1 > xr−t − x1 and finally

xr > xr−t.
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Analogously we determine

β2 := max
i = 1, ..., n−r

ar+i − ar

pr+i − pr

and call r2 the first index for which the quotients assume the value β2. Between
y = β1 and y = β2 the error reaches its maximal value at xr. By further
reduction of y, xr2

will become maximal. If y gets smaller than β2, for i < r2

all xi remain smaller than xr2
and for larger indices some xi will exceed it.

Proceeding again we will finally get the sets

X = {x1, xr, xr2
, . . . , xrk

= xn}
B = {∞, β1, β2, . . . , βk, −∞}

containing the maximal errors (respecting the signs) and the corresponding
values of y. When y reaches the value βm, xrm

will be the maximal error and
remains so until y reaches βm+1.

1.2.5.2 Determination of the Smallest Error

Lemma 1.3 shows that between two maximal errors with equal sign there is a
maximal error with opposite sign. We can use the above determined procedure
to determine the smallest error (the maximal error with negative sign), too.
Then we again consider equation system (B). For a fixed and arbitrarily small
y all the right sides are positive and x1 a minimum. Now we determine

γ1 :=
as1

− a1

ps1
− p1

:= min
i = 1, ..., n

ai − a1

pi − p1
.

As a result we will get the two sets

X′ = {x1, xs1
, xs2

, . . . , xsl
= xn}

C = {−∞, γ1, γ2, . . . , γl, ∞}
containing the minimal errors (respecting the signs) and the corresponding
values of y. When y reaches the value γm, xsm

will be the minimal error and
remains so until y reaches γm+1.

1.2.5.3 Determination of the Best Ellipse

We know from the previous paragraphs that the solution of the parameter y
is one of the values β1, . . . , βk or γ1, . . . , γl, since between these values the
maximal error has a constant value.

1.) Furthermore we record the fact that there will hold y ∈ B \ {∞, −∞} in
the case, if two mximum errors have positive sign and the third has negative
sign. Then the positive maximal errors are subsequent elements of X, that is
with xri

being a maximum, xri+1
is a maximum, too.
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2.) The respective statement is valid for y ∈ C \ {∞, −∞}. If two maximal
errors have a negative sign and the third is positive, then xsi+1

will be a
minimum, if xsi

is one.

We can now successively choose for y the possible values from B and C

and determine the right value for y using the following algorithm:

1. For y = βi take xri
and xri+1

maximal errors. Find the value γk lying be-
tween βi and βi+1. If there is no such value, proceed with βi+1. Otherwise,
if this holds for γj , xsj

will be the corresponding minimal error.
2. After choosing all values from B proceed analogously with γµ. For y = γµ

take xsµ
and xsµ+1

as minimal errors and find βν between γµ and γµ+1. If
there is no such value, proceed with γµ+1. Otherwise: If βν is the sought
value, xrν+1

will be the corresponding maximal error.

The size of the extremal errors can be computed subtracting the corre-
sponding lines of the equation system (A). For it is

ar − as − (pr − ps) y = xr − xs = ± 2 x̂, (1.19)

if xr is a maximal error and xs a minimal error.

Finally we can compute z using the known values. With r and s the indices
for the maximal and the minimal error we have using Lemma 2: xs = −xr,
and regarding (A)

ar − z − pr y = xr

as − z − ps y = − xr

we can determine

z =
ar + as

2
− pr + ps

2
y. (1.20)

With this algorithm Laplace could essentially improve the complexity of
the computations. To determine B and C we have to compute n quotients of
type (1.18). Then there follow at most 2n computations of type (1.19) and
finally the computation of z and y. So the algorithm has order O(n) instead
of O(n4) as we had before.

1.2.6 Application to Geodesy

Laplace applied his algorithms in §41 of the ,,Mécanique Celéste” [Lap43] to
determine the ellipsoid best approximating the surface of the earth. There he
used known data from former measurements. Table 1.1 shows these data. The
values are given in double toises (a toise is about 1.9946m).

After computing the quotients

aj − a1

pj − p1
, j = 2, . . . , 7,
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i Place of ai Latitude pi

Measurement

1 Peru 25538.85 0o 0
2 Cape of Good 25666.65 33.3084o 0.30156

Hope
3 Pennsylvania 25599.60 39.2000o 0.39946
4 Italy 25640.55 43.0167o 0.46541
5 France 25658.28 46.1994o 0.52093
6 Austria 25683.30 47.7833o 0.54850
7 Lapland 25832.25 66.3333o 0.83887

Table 1.1. Using measurements of meridianial arclength in seven different places
Laplace applied his formulae. The quantities ai stand for the measured lengths of
one degree of latitude, pi are the square sines of the corresponding latitudes.

we get the maximal value at j = 2. So we have r1 = 2 and β1 = 423.7961.
As a result we get the sets

X = {x1, x2, x7, } and
B = {∞, 423.796, 308.204, −∞}

for the positive maximal errors and

X′ = {x1, x3, x5, x7, } and
C = {−∞, 152.080, 483.097, 547.182, −∞}

for the negative maximal errors.
We proceed comparing the errors: Choose β1 = 423.796. Between β1 and

β2 = 308.204 there is no value from C. Therefore continue with β2 and β3 =
−∞. Between them there is γ1 = 152.080. So we assume x2, x3 and x7 as
maximal, x3 has negative, the others positive sign.

Now we still have to compare the maximal errors with negative sign:
Choose γ1 = 152.080. Between γ1 and γ2 = 483.097 there lies β1. So as
maximal errors we assume x2, x3 and x5. But x3 and x5 have equal sign, and
so we have to reject this choice. The same holds for the alternative β2 corre-
sponding with x7. Since the only suitable values are the outer errors x2 and
x7, no choice for γi will be the correct one.

So we have already got our maximal errors, they are

x2 = −x3 = x7 = 48.612.

1.2.7 A Discrete Approximation Problem

To discuss Laplace’s results we have to remark that he considers a discrete
approximation problem.

Assume that the function

b : [−π

2
,
π

2
] → R
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describes the latitude of one degree of the meridian at a point of the surface
of the earth and let the function be continuous, so we can formulate Laplace’s
problem as the trigonometric approximation problem

min
y,z∈R

max
ϕ∈[− π

2
, π
2
]
|b(ϕ) − (z + y sin2 ϕ)|. (1.21)

Using discrete data (b is unknown) he determines the minimal solution for a
set

{ϕ1, . . . , ϕn}
having observed values

b(ϕi) = ai, i = 1, . . . , n.

For these angles he proves an alternation criterion that is a forerunner of
de la Vallée-Poussin’s theorem about the best approximation on a set of
points[Val19, p. 78ff.].

If we consider only one quadrant, e. g. [0, π
2 ]), the alternation theorem

generally holds for this problem, since (span {1, sin2}) is a Haar space in
C[0, π

2 ].
So for a known b Laplace’s method can be used to determine the best

approximating ellipsoid for the earth.
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Pafnuti Lvovich Chebyshev

Up to now we have only discussed some particular cases of the uniform ap-
proximation problem, which were far from a mathematical theory. Indeed
fifty years would pass, until Pafnuti Lvovich Chebyshev first posed a general
problem of that theory that would then be named after him.

2.1 Chebyshev’s Curriculum Vitae

Pafnuti Lvovich Chebyshev was born May 4 (16)1 1821 in the village of Oka-
tovo, the district of Borovsk, province of Kaluga.2 His father was the wealthy
landowner Lev Pavlovich Chebyshev.3

Pafnuti Lvovich got his first education at home from his mother Agrafena
Ivanovna Chebysheva (reading and writing) and his cousin Avdotya Kvin-
tillianovna Sukhareva (French and arithmetic). Obviously his music-teacher4

1 Until 1917 the Julian calendar was valid, which does not carry out the leap
year correction every 100 years (but does every 400 years), implemented by the
Gregorian calendar. So in the 19th century Russian dates deviate 12 days from
Western dates and 13 days in the 20th century. Therefore we add to Russian
dates the Gregorian dates in brackets.

2 Biographical data were mostly taken from [Pru50] and [Pru76].
3 We often find the note that Chebyshev is noble by descent. This information has

to be treated carefully. Lev Pavlovich (and so his sons) had been awarded the title
of a ‘dvoryanin’ (dvor�nin), but it had been the lowest title of nobility in Russia
and could be awarded for outstanding merits, even in civil life. Nevertheless there
are testimonies that Chebyshev’s family, especially the mother Agrafena Ivanovna
tried to separate itself clearly from commoners (comp. [Pru76, p. 15 ff.]).

4 Prudnikov does not mention her name as also the cited source. The impersonal
name ‘music-teacher’ might imply that it was not A. K. Sukhareva, since she was
a close relative. So one should be cautious in comments on the role of Sukhareva
in the mathematical education of young Pafnuti Lvovich.
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also played an important role in Chebyshev’s education, for she “accustomed
his mind to exactness and analysis,5” as Chebyshev himself mentioned.

Possibly a physical handicap, whose reasons are yet unknown, was im-
portant for Chebyshev’s adolescence and development: He limped since his
childhood and walked with a stick.6 Therefore his parents had to give up the
idea to make an officer’s career possible for him, although he would have fol-
lowed the family’s tradition.7 His complaint excluded him from most of the
usual children’s games, so very soon he devoted himself to a passion which
would determine his whole life: the construction of mechanisms.

In 1832 the family moved to Moscow mainly to attend to the education
of their eldest sons (Pafnuti and Pavel, who would become a lawyer). The
education continued at home, P. N. Pogorelski8 was engaged as a teacher for
mathematics and physics; he was considered as one of the best teachers in
Moscow and, e. g., had educated the writer Ivan Sergeevich Turgenev. For the
other subjects teachers with excellent reputation were invited, too.

In summer 1837 Chebyshev passed the registration examinations and in
September he started the studies of mathematics at the second philosophical
department of Moscow university. Among his teachers were counted N. D.
Brashman,9 N. E. Zernov10 and D. M. Perevoshchikov.11 No doubt that among

5 Cited after the memoirs of D. I. Mendeleev [Men01]: «Pokoĭnyĭ moĭ drug
P. L. Qebyxev [...] vspomina� svoe detstvo, rasskazyval nam, qto svoim
razvitiem obъ�zan byvxeĭ u nego uqitelьnice muzyki, kotora� muzyke-to
ego ne nauqila, a um rebenka priuqila k toqnosti i analizu.»

6 His close friendship with Charles Hermite might also have been caused by this:
Hermite had a similar complaint.

7 During the Napoleonic war his father had taken part in the conquest of Paris as
a cavalry ensign and had been decorated.

8 Platon Nikolaevich Pogorelski (1800–1852), Master of mathematics, established
his reputation mainly by the publication of important textbooks of mathematics,
which he either translated or wrote by himself. These books were considered an
outstanding set. Chebyshev was said to have this opinion about Pogorelski’s text
book on algebra: “It is the best book written in Russian because it is the briefest.”
([Pru76, p. 33]: «зto sama� luqxa� iz vseh knig na russkom �zyke, potomu
qto ona sama� kratka�». Besides this it is interesting to mention that three of
Chebyshev’s five examinations he had to pass to study at Moscow university were
based on Pogorelski’s textbooks.

9 Nikolaj Dmitrievich Brashman (1796–1866), 1825–1834 Assistant (Adjunkt –
adъ�nkt) for mathematics at Kazan university, since 1834 professor at Moscow
university, from 1855 corresponding member of the Russian academy of sciences,
works about mechanics and the theory of mechanisms, co-founder of the Moscow
mathematical society and its journal Matematicheski Sbornik.

10 Nikolaj Efimovich Zernov (1804–1862), studied at Moscow university, master the-
sis 1827. 1827–1834 teacher of mathematics at several schools of Moscow, 1834
Adjunkt, 1835 extraordinary professor at Moscow university. 1837 doctor thesis,
1842 ordinary professor. Papers on differential equations and higher algebra.

11 Dmitrij Matveevich Perevoshchikov (1788–1880), studies in Kazan’. 1818–1826
lecturer, 1826–1851 professor at Moscow university, 1848–1851 rector Moscow
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them Brashman had the greatest influence on Chebyshev. He instructed him
in practical mechanics and probably showed him the work of Poncelet.

In 1841 Chebyshev was awarded the silver medal12 for his work ‘calculation
of the roots of equations’ [Cheb38]which had already been finished in 1838.
In this contribution Chebyshev derived an approximating algorithm for the
solution of algebraic equations of nth degree based on Newton’s algorithm.

In the same year he finished his studies as ‘most outstanding candidate’
(«otliqneĭxim kandidatom».13)

In 1841 Chebyshev’s financial situation drastically changed. In Russia a
famine broke out, Chebyshev’s parents were forced to leave the city and were
not able to support their son anymore.14 Nevertheless he decided to continue
his mathematical studies and prepared the master examinations which spread
over half a year. He passed the final examination in October 1843. In 1846 he
defended his master thesis ‘An Attempt to an Elementary Analysis of Proba-
bilistic Theory’[Cheb45]. The biographer Prudnikov assumes that Chebyshev
was directed to this mathematical branch after getting knowledge about re-
cently published books on probabilistic theory or the revenue of the insurance
industry in Russia.15

In 1847 Chebyshev defended his dissertation pro venia legendi “About
integration with the help of logarithms” [Cheb47] from the St Petersburg
university and so obtained the right to teach there as a lecturer. At that time
some of Leonhard Euler’s works rediscovered by P. N. Fuss were published by
V. Ya. Bunyakovski,16 who encouraged Chebyshev to engage in the studies of
them.

University 1851 move to St Petersburg, 1852 adjunkt, 1855 ordinary member of
the academy of sciences. Works about astronomy and mathematical physics.

12 Prudnikov [Pru76, p. 37] critized the jury’s decision as incompetent because not
Chebyshev, but the student Anton Smolyak had been awarded the gold medal.
Smolyak’s paper disappeared, however, and therefore we should be careful in such
judgements. So the authors (whose names are not mentioned) of the biographical
articles of the fifth volume of Chebyshev’s collected works refrained from making
a comment (comp. [Chebgw2, Bd. 5, S. 193/197]).

13 For explanations of the term ‘candidate’ refer to appendix B.1.
14 Butzer and Jongmans speculate in [BuJo91] by consulting interesting information

from the assets of Eugène Catalan whether Chebyshev had already been on a trip
abroad in 1842. We do not find any clear indications of this in the biographies
about Chebyshev.

But it is possible that his financial circumstances did not allow a journey to
France or Belgium, at all. His well-known trips abroad all were supported by state
authorities or were made when he had already become an ordinary professor and
so had sufficient funds.

15 See [Pru76, S. 64 f.].
16 Viktor Yakovlevich Bunyakovski (1804–1889), doctor thesis 1825 in St Petersburg,

1827–1862 professor at the naval college (morskoĭ korpus), 1830–1846 addition-
ally at the institute of transportation (institut puteĭ soobweni�), 1828–1830
adjunkt at the academy of sciences, from 1830 full member, from 1864 vice presi-
dent, from 1858 official expert for statistics and the insurance industry. His works
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So the basics for his subjects of interest were established. Already in 1848
he had submitted his work ‘theory of congruences’ for his doctorate, which he
defended in May 1849. After one year he was elected to extraordinary professor
at St Petersburg University, in 1860 he became ordinary professor. In 1872,
after 25 years of lectureship, he became “merited professor” (zasluжennyĭ
professor), in 1882 he left the university and completely devoted his life to
research.

Besides his lectureship at the university from 1852 to 1858 Chebyshev
taught practical mechanics at the Alexander Lyceum in Tsarskoe Selo (the
today Pushkin), a southern suburb of St Petersburg.

His scientific achievements, which we will discuss extensively in the fol-
lowing, give the reasons for his election as a junior academician (adjunkt) in
1856. Later on he became an extraordinary (1856) and in 1858 an ordinary
member of the Imperial Academy of Sciences. In the same year he became an
honourable member of Moscow University.

Moreover, he assumed other honourable appointments and was decorated
several times: in 1856 Chebyshev became a member of the scientific committee
of the ministry of national education; in 1859 it was followed by the ordinary
membership of the ordnance department of the academy with the adoption
of the headship of the “commission for mathematical questions according to
ordnance and experiments related to the theory of shooting,”17 the Paris
academy elected him corresponding member in 1860 and full foreign member
in 1874 and in 1893 he was elected honourable member of the St Petersburg
Mathematical Society, recently founded in 1890.

Pafnuti Lvovich Chebyshev died November 26, 1894 in St Petersburg.

2.2 Stimuli for the Development of a Theory

The initial impulses for Chebyshev’s engagement in approximation theory
were set by the theory of mechanisms playing an important role at that time
of arising industrialisation. Mechanisms were used in steam engines which
constituted the heart of the production means, the factories.

2.2.1 Chebyshev’s Trip Abroad

Already in December 1850 as a junior scientist (adjunkt) Chebyshev was ap-
pointed to a trip abroad to visit the exhibition of machines in London18, but
he still had to wait one and a half years.

deal with number and probabilistic theory. Next to Brashman he counted as the
most important teacher of Chebyshev.

17 [Chebgw2, p. 465]: «kommissi� po matematiqeskim artilleriĭskim vo-
prosam i opytam, otnos�wims� do teorii strelьby».

18 This information is taken from a letter written by the dean Emil Lenz to the
‘trustee’ (popeqitelь) of the St Petersburg educational district [LeTr]
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Figure 2.1. Watt’s complete parallelogram (from [ArLe55/2]), a hinge mechanism
used in steam engines to tranform linear into circular movements. Filled circles
mark fixed links. The bars CA, AA1 and A1C1 represent the shortened form of
Watt’s parallelogram.

In summer 1852 Chebyshev visited Belgium, France, England and Ger-
many to interchange ideas about many different mathematical subjects.19

We have already pointed out that mechanisms very early became one of
his favourite subjects, but Chebyshev had not written a paper about this,
although he had even taught practical mechanics. In England and France he
attempted to learn the modern scientific results on that topic.

Therefore contacts with mathematicians who had already dealt with the
theory of mechanisms were of particular importance for him. In his reports
he emphasized the meetings with the English mathematicians Sylvester and
Cayley and the engineer Gregory. He mentioned the French mathematicians
Cauchy, Liouville, Bienaymé and Hermite only in connection with his dis-
sertation pro venia legendi ‘About integration with the help of logarithms’

19 The following explanations are based on Chebyshev’s letters ‘report about [...] the
trip abroad’ [Cheb52/2] and ‘report [...] about the trip to England’ [Cheb52/1].
Additional information is taken from the letters [LeTr], [TrCo] and [ChebTrust].
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[Cheb47]. On the other hand Poncelet was mentioned, but Chebyshev did not
meet him.

Besides mathematical discussions the collection of empirical data about
mechanisms were of importance for a later verification of his own theoretical
results.

Already in July 1852 Chebyshev was convinced that the trip was very suc-
cessful. He noted in a letter to the trustee of the St Petersburg educational
district20 that he had to restrict his research job to be able to work more
carefully. Probably the new discoveries of the theory of mechanisms occupied
him. He wrote according to mechanisms of Watt type (‘parallelograms’): He
realized that the assumptions to derive rules for the construction of paral-
lelograms directly from the properties of these mechanisms led to analytic
questions about which one did not know very much at that time. “All what
has been done until now belongs to the work [...] of Mr Poncelet, the well-
known scientist on the subject of practical mechanics; formulae found by him
are very often used to calculate disturbances in the run of machines. For a
theory of parallelograms of Watt type more general fomulae are necessary, and
their application will not be restricted by the research of these mechanisms.21”

As mentioned above, he obviously did not meet Poncelet himself. It seems
that he only cited his results, well-known in France.

2.2.2 Poncelet’s Approximation Formulae

For Chebyshev the fundamentals of approximation theory were established by
the French mathematician Jean Victor Poncelet22 In his work ,,Sur la valeur
approchée linéaire et rationelle des radicaux de la forme

√
a2 + b2,

√
a2 − b2

etc.”23 [Pon35] he set the problem to approximate roots of the form
√

a2 + b2,√
a2 − b2, and

√
a2 + b2 + c2 uniformly by linear expressions. In the following

we want to explain his consideration of the first case. For a
b ≥ k and k ∈ R

+
0

he determined an approximation

√

a2 + b2 ∼ αa + βb (2.1)

with real numbers α and β.

20 Cited by the trustee in [TrCo].
21 [Cheb52/2, S. 249]«Vse, qto sdelano v зtom otnoxenii, prinadleжit qlenu

Pariжskoĭ Akademii Nauk g. Ponselз, izvestnomu uqenomu v praktiq-
eskoĭ mehanike; formulami, im naĭdennymi, polьzu�ts� oqenь mnogo
pri vyqislenii vrednyh soprotivleniĭ maxin. Dl� teorii parallel-
ogramma Uatta neobhodimy formuly bolee obwie, i priloжenie ih ne
ograniqivaets� issledovaniem зtih mehanizmov.»

22 Jean Victor Poncelet (*Metz 1788, †Paris 1867), studies at the École polytech-
nique (one of his teachers was G. Monge), 1812 participation in Napoleon’s cam-
paign against Russia, arrest, 1814 return to Paris, 1815–1825 military engineer in
Metz, 1825–1835 professor of mechanics at the University of Metz.

23 Comments can be found in [Gon45] and [Gus72].
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Setting x := a
b and r : R

+
0 ∋ x �→ αx+β√

x2+1
− 1 we can formulate Poncelet’s

problem as a minimax-problem:

max
x≥k,k≥0

|r(x)| → min . (2.2)

Such a task was essentially new because it was the first formulation of a
uniform approximation problem posed generally and so abstracting from a
concrete problem (like Euler’s or Laplace’s) and enclosing a set of functions.

To solve these problems Poncelet even proved a necessary alternation con-
dition. He established the fact that the function r is increasing for x < α

β and

decreasing for x > α
β . Therefore the maximum of |r| is taken at the points

k or α
β or reached by x → ∞. Poncelet’s calculations led to the result that

all values of |r| being the best approximating function must be equal. Then
the alternation easily follows from the monotonicity left and right from α

β .
Poncelet proved this using geometric and analytical reflections.

2.2.3 Watt’s Mechanism

At that time planar joint mechanisms based on the ideas of James Watt
were the most important mechanisms to transform linear motion into circular
motion. The mechanisms, however, do not execute this transformation without
mistakes.

Figure 2.2 shows a shortened form of Watt’s parallelogram with the
connecting-rod AA1 and the cranks CA and A1C1. The complete form is
constructed towards the top expanding AA1 to a parallelogram (see fig. 2.1
on page 25). Turning the crank CA round C in the direction of the crank
on the opposite side and afterwards turning in the opposite direction (round
C1A1), M follows a bow-like orbit (‘Watt’s curve’). If this orbit were a straight
line, the transformation would be exact.

2.2.4 Watt’s Curve

Simplifying the following calculations we set the length of both cranks equal,
so:

|CA| = |A1C1|,
furthermore we assume M be the center of the connecting-rod AA1.

This case is often regarded as standard, for instance by authors of
comments about Chebyshev’s work on the theory of mechanisms (comp.
[ArLe55/2]), but also by Chebyshev himself (see, e. g. ,,Sur une modification
du parallélogramme articulé de Watt” [Cheb61]).

We now define the length of a crank as

R := |CA|(= |A1C1|), (2.3)



28 2 Pafnuti Lvovich Chebyshev

�

C

�
�
�
�
�
�

�
�
�
�
�
�
�
A

�

C1

�
�
�
�
�
�

�
�
�
�
�
�

�
A1

M
���

	 
d

	 

l

��

���
���

�
���
R

Figure 2.2. Scheme of Watt’s parallelogram in the shortened form with the movable
connecting-rod AA1

half the length of the supporting bar

l :=
|CC1|

2
(2.4)

and half the length of the connecting-rod

d :=
|AA1|

2
. (2.5)

To work right the mechanism must satisfy the conditions

l − R < d < l + R. (2.6)

Now define for the points A, A1 and M coordinates

A = (ξ, η) A1 = (ξ1, η1) M = (x, y). (2.7)

Moving the mechanism we define as τ the angle the point A has been turned
round and as τ1 the angle the point A1 has been turned round.

Consequently,

ξ = R cos τ − l ξ1 = R cos τ1 + l x =
ξ + ξ1

2
(2.8)

η = R sin τ η1 = R sin τ1 y =
η + η1

2
. (2.9)

With Pythagoras we have

(ξ − ξ1)
2 + (η − η1)

2 = 4d2; (2.10)

after substituting variables and some transformations we get
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Figure 2.3. Two examples of the graph of Watt’s curve. It is easy to see that in the
non-degenerated case where zero is met twice by the curve, the tangent approximates
the curve with high order.

R2 sin2(
τ − τ1

2
) − Rl(cos τ − cos τ1) + l2 = d2. (2.11)

With (2.8) there holds:

x =
R

2
(cos τ + cos τ1) = R cos(

τ + τ1

2
) cos(

τ − τ1

2
) and

y =
R

2
(sin τ + sin τ1) = R sin(

τ + τ1

2
) cos(

τ − τ1

2
),

hence

x2 + y2 = R2 cos2(
τ − τ1

2
). (2.12)

From this there follows

R2(cos τ − cos τ1)
2 = 4 sin2(

τ + τ1

2
)(R2 − x2 − y2). (2.13)

Substituting

sin2(
τ + τ1

2
) =

y2

x2 + y2

from (2.11) we get for x and y the algebraic equation of sixth degree

[(
R2 + l2 − d2

)
−

(
x2 + y2

)]2 (
x2 + y2

)
= 4l2y2

(
R2 − x2 − y2

)
. (2.14)

This equation describes Watt’s curve24 for M.
Two examples of its graph are shown in figure 2.3 on page 29. The curve

lies within the disc x2 + y2 ≤ R2. In the case d = 1 it touches the border.

24 See [Gon47/1] for explanation of the choice of the name.
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Equation (2.14) is of third degree in y2, and so solvable in y2.
In the non-degenerate case (d + l > R) in a neighbourhood of the origin

there hold for y the series expansions

±y =

[
R2 + l2 − d2

pq

]

x +

[

8R2l4
R2 + l2 − d2

p5q5

]

x3 + · · · (2.15)

with

p =
√

(R + l)2 − d2 q =
√

d2 − (R − l)2. (2.16)

In the case d+ l = R this expansion is degenerated. Then we have expand-
ing x

±x =

[

1

R

√

R − l

R

]

y2 + · · · . (2.17)

Comparing (2.15) and (2.17) we see that in the first case the curve is
approximated by the tangent with order O(x2), in the second case with order
O(x). For d2 = l2 − R2 the order will reach even fourth degree in the first
case.

These ideas induced Chebyshev to deal with the following problem: Take
two points P and Q on the curve with their vertical distances from the origin
−h and h. With the above-mentioned considerations the tangent well approx-
imates the curve. Now Chebyshev intends to determine the parameters of the
mechanism so that the maximal error of the approximation of the curve by
the tangent on the whole interval [−h, h] is minimized.

In January 1853 Chebyshev wrote down his first considerations about this
problem in the work ,,Théorie des mécanismes, connus sous le nom de par-
allélogrammes” [Cheb54].

2.3 First Theoretical Approaches

The paper [Cheb54] can be counted as a scientific report about Chebyshev’s
trip abroad.

Stimulated by the new insights gained in England and France, Chebyshev
tried to give mathematical foundations to the theory of mechanisms. As an
introduction he mentioned that practical mechanics had not given suitable
rules to find the mechanism with the smallest deviation from the ideal run.
Until then parameters had been chosen so that the piston rod took a vertical
position at the beginning, the middle and the end of a turn.25 Already here

25 Fig. 2.1 shows this position for the middle of one turn.
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Chebyshev pointed out with the help of concrete examples that this method
was not the best one (p. 112).26

In the second paragraph Chebyshev mentioned another method, the min-
imizing of the error function using Taylor’s formula at the borders and the
center. But this method could not help to solve the posed problem, since it
was exact only in small neighbourhoods of those points, but not in a whole
interval.

With these examples he could give good arguments for his new approach.
He mentioned that it was only Poncelet who gave solutions for approximation
problems of this kind27 and explicitly cited his results on the above-mentioned
approximation of square roots by linear expressions [Pon35]. Nevertheless
Chebyshev then rejected his methods because the equations to determine the
coefficients that Poncelet had found were untypically easy and only valid in
special cases. Chebyshev wanted to solve more general problems.

At the end of the second paragraph he formulated for the first time the
setting of the problem of best approximation (translated from the French
word-by-word):

Problem: To determine the deviations which one has to add to get an
approximated value for a function f, given by its expansion in powers of x−a,
if one wants to minimize the maximum of these errors between x = a−h and
x = a + h, h being an arbitrarily small quantity.28

Of course the quantity h is disturbing. On the other hand it is not less
surprising that Chebyshev assumes that it is analytic for the general case of
a function to be approximated.

Already here we recognized a lack of this pioneering work: It can often be
seen that Chebyshev here followed new paths—the text did not have the ele-
gance of Chebyshev’s later works, it was not smooth and left many questions
open.

In paragraph 3 Chebyshev laid out general assumptions and considera-
tions. The function f to be approximated is defined on the interval [a−h, a+h],
U being a polynomial of nth degree.

Immediately after these preparations Chebyshev stated for the number of
deviation points:

26 The page numbers are taken from volume 1 of the 1899 edition of Chebyshev’s
collected works [Chebgw1] by A. A. Markov and Sonin.

27 [Cheb54], p. 114): ,,Relativement à la méthode d’approximation [...], nous n’avons
que des recherches de M. Poncelet”.

28 [Cheb54], p. 114): ,,Déterminer les modifications qu’on doit apporter dans la
valeur approchée de fx, donnée par son développement suivant les puissances de
x−a, quand on cherche à rendre minimum la limite de ses erreurs entre x = a−h

et x = a + h, h étant une quantité peu considérable.”
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If we choose the coefficients of the polynomial “so that the difference f(x)−
U deviates from zero from x = a−h to x = a+h as little as possible, then the
difference function f(x) − U, as one knows, satisfies the following property:

Between the largest and the smallest value f(x) − U we find at least n + 2
points within the interval [a − h, a + h] with the same values” (p. 114).29

Later in the paper he implicitly assumed that these points of equal value
are also the deviation points. Unfortunately there is neither a proof nor a
citation. Commentators can only guess, where this proposition came from,
whether Chebyshev himself proved it or whether it had been a well-known
fact which he became familiar with during his trip abroad.30 Anyway it seems
that Chebyshev did not want to prove it that time—the nature of this text
was another one. Later Chebyshev caught up with the missing proofs of the
properties of best approximating functions (in [Cheb59], written 1857). Since
we do not know any sources that were written earlier than 1857, the assump-
tion that Chebyshev was the first to find a formal proof for this proposition
is the most probable.

In the following we summarize Chebyshev’s theoretical results from
[Cheb54].

2.3.1 Characteristic Equations

As mentioned above, Chebyshev restricted the problem to real analytic func-
tions approximated by polynomials of nth degree on an interval [a−h, a+h].
Let f be the given function, P the polynomial to be computed and

L := max
a−h≤x≤a+h

|f(x) − P (x)|

the maximal error of approximation.
With f real analytic on [a−h, a+h] and the “well-known” fact that there

are at least n+2 deviation points we can set the following 2n+4 characteristic
equations which hold in the deviation points of f − P :

(x − a + h)(x − a − h)[f ′(x) − P ′(x)] = 0 (2.18)

L2 − [f(x) − P (x)]2 = 0.

Now Chebyshev attempted to solve this problem for some special cases.

29 [Cheb54], S. 114: ,,Si l’on choisit ces coefficients de manière à ce que la différence
fx−U , depuis x = a−h, jusqu’à x=a+h, reste dans les limites les plus rapprochées
de 0, la différence fx−U jouira, comme on le sait, de cette propriété: Parmi les
valeurs les plus grandes et les plus petites de la différence fx−U entre les limites
x = a − h, x = a + h, on trouve au moins n + 2 fois la même valeur numérique”.
[Emphasis by the author].

30 Comp. [Gon45], p. 128.
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2.3.2 Approaches for Real-Analytic Functions

With the definition

ki :=
f (i)(a)

i!
(2.19)

and the transformation z := x−a
h the problem is reformulated for the first

time ([Cheb54], p. 116). With modern words the problem was reduced to that
of determining the polynomial P (h, z) defined on the interval [−1, 1] which
deviates as little as possible from f with

f(h, z) :=

∞∑

i=0

ki(hz)i. (2.20)

Here P is of degree n both in h and in z.
Chebyshev now simplified the problem with the following restrictions:

• Consider the number m of Taylor coefficients of f, vanishing directly after
the nth Taylor coefficient (that is, kn+1 = . . . = kn+m = 0).

• Solve the problem neglecting an error of order O(hn+m+1).

According to these facts he could state:

1. The best approximating polynomial of order O(hn+1) is the nth partial
sum of the Taylor series of f (p. 116).31

2. The problem now is reduced to the determination of the polynomial of
(n + m + 1)th degree with given first coefficient which deviates on the
interval [−1, 1] as little as possible from zero (neglecting an error of order
O(hm+n+1)),32 that means that it is to determine a polynomial Tn+m+1,
with degree n + m + 1 and

31 Chebyshev did not prove this. It can be done easily: Let S :=
n
∑

i=0

kiι
i. Then we

have for S and the best approximating polynomial P (h, .)

max
|z|≤1

|S(hz) − f(hz)| ≤ C1h
n+1 and

max
|z|≤1

|P (h, z) − f(hz)| ≤ C2h
n+1

for real constants C1 and C2 and arbitrarily small h > 0. So we also have

max
|z|≤1

|P (h, z) − S(hz)| = O(hn+1),

and because P and S have the same degree in h, finally

S ≡ P

.
32 With the above-mentioned considerations we can split P (h, z) into



34 2 Pafnuti Lvovich Chebyshev

max
|z|≤1

|σTn+m+1(z)| minimal, σ ∈ R. (2.21)

2.3.3 The Polynomial of (n + 1)thDegree and Given First
Coefficient Least Deviating from Zero

Again Chebyshev restricted the problem. He remarked (p. 121) that only the
case m = 0 has a practical meaning for the theory of mechanisms and for it
he gave a general solution of the (restricted) problem.

The characteristic equations now have the form

(z2 − 1)
d(σzn+m+1 − Q0(z))

dz
= 0 and (2.22)

L2 − [(σzn+m+1 − Q0(z))] = 0.

We abbreviate y(z) := σzn+m+1 − Q0. Using the fact that these equations
have n + 2 common roots, Chebyshev showed that for z ∈ [−1, 1],

[y(z)]2 − L2

[y′(z)]2
=

P (z)(z2 − 1)

[Q(z)]2
, with deg P = 2m and deg Q = m. (2.23)

Finally we get the differential equation

dy
√

[y(z)]2 − L2
=

Q(z)dz
√

P (z)(z2 − 1)
, |z| > 1, (2.24)

which can be solved with methods Chebyshev derived in his dissertation pro
venia legendi “On Integration with the help of logarithms” [Cheb47] based on
calculations developed by Abel.33

P (h, z) = S(hz) + h
n+m+1

Q(z, h),

where Q(., h) is a polynomial of degree n in z. So we split again:

Q(z, h) = Q0(z) + hQ1(x) + . . . + h
l
Ql(z) + O(hl+1)

with deg Qi = n ∀i = 0, . . . , l. Now we compute

max
|z|≤1

|P (h, z) − f(hz)| = max
|z|≤1

|
∞

∑

i=n+m+1

kih
i
x

i − h
n+m+1

Q(z, h)|

= h
n+m+1 max

|z|≤1
|kn+m+1x

n+m+1 − Q0(z) + O(h)|.

Since P (., h) is the best approximating polynomial on [−1, 1] for f, all these
expressions will become as small as possible.

33 Chebyshev cited a letter from Abel to Legendre [Chebgw2, Vol. 5, p. 90].
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2.3.3.1 Determination of Tn. The Case m = 0

For m = 0 the polynomials P and Q become constants.
The differential equation to be solved is

dy
√

[y(z)]2 − L2
= λ

dz
√

(z2 − 1)
with a constant λ. (2.25)

After integration we get

λ log
z +

√
z2 − 1

z −
√

z2 − 1
+ C = log

y +
√

y2 − L2

y −
√

y2 − L2
. (2.26)

It is easy to derive from (2.22) that there must be extremal points at the
borders of the interval (z = ±1). Therefore we have C = 0, and y can be
calculated.

Equation (2.26) implies that

y +
√

y2 − L2

y −
√

y2 − L2
=

(z +
√

z2 − 1)λ

(z −
√

z2 − 1)λ
. (2.27)

With z+ := (z +
√

z2 − 1)λ and respectively z− := (z −
√

z2 − 1)λ we have
z+z− ≡ 1, and equation (2.27) leads to

yz− +
√

y2 − L2z− = yz+ −
√

y2 − L2z+, hence

1 − L2

y2
=

(
z+ − z−

z+ + z−

)2

, and finally

y = ±L

2
[(z +

√

z2 − 1)λ + (z −
√

z2 − 1)λ]. (2.28)

For m = 0 this is the polynomial of degree (n+1) with the (n+1)th coefficient
kn+1 which, fixed on the interval [−1, 1], deviates the least possible from
zero.34

Afterwards Chebyshev calculated the value of the exponent λ and the
maximal error L. Since we assumed m = 0, we have deg y = n+1, so λ = n+1.
With kn+1 given, there holds35

34 This is the function which at least solves equation (2.25) for |z| > 1. It has to
be proved whether this function is defined for z ∈ [−1, 1]. Indeed all expressions
under the roots vanish using the binomial formula, since

(z +
√

z2 − 1)λ + (z −
√

z2 − 1)λ = 2
λ

∑

k=0,k even

(

λ

k

)

z
λ−k(z2 − 1)

k
2 .

35 Since we now know that the use of the root expressions is valid, we calculate
applying the binomial formula:
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L = ±kn+1

2n
.

So Chebyshev solved the approximation problem for f(x) = σxn+1. In the
next paragraphs the solutions for any m are determined recursively and the
problem is solved for f(x) = xn+m+1.

Step by step similar approaches are used there for the polynomials Qi from
equation (32), and the order of the error can be scaled down.

2.3.4 Remarks on ,,Théorie des mécanismes...”

Indeed this paper is not as elegant as Chebyshev’s usual publications mainly
are. It is more a provisionary arrangement which introduced two of Cheby-
shev’s main subjects of interest: mechanism and approximation theory. The
latter did not have its own name at that time. Later it would be called “the-
ory of functions deviating the least possible from zero.” A. A. Markov would
name a whole lecture with this monstrous expression ([MarA06], see also sec-
tion 3.6). Possibly the text had to answer the purpose of a scientific report
about the trip abroad. This might have caused a pressure of time and might
be an explanation for the present style and the missing end of the paper—
Chebyshev finished the text with a reference to supposed following paragraphs,
where he intended to show applications of his calculations to mechanism the-
ory.36 These paragraphs, however, have never existed. Chebyshev decided to
go another way, in fact he would write a large number of papers where he inves-
tigated certain properties of mechanisms or developed and even constructed
them. After four years he would return to the theory with his above-mentioned
voluminous monograph ,,Sur les questions de minima [...]” [Cheb59].

One of the most remarkable passages of ,,Théorie des mécanismes [...]” is
the place where Chebyshev cited the statement about the number of deviation
points, but he neither proved it nor gave a source for another interesting point
to look at. Although Chebyshev aimed to investigate all formulae with respect
to all implications he did not mention the alternation property, although it
easily follows from the characteristic equations (2.22). Substituting y(z) :=
σzn+m+1 − Q0(z) for the case m = 0 they have the form

(z +
√

z2 − 1)λ =

λ
∑

k=0

(

λ

k

)

z
k

(

λ−k
∑

i=0

(

λ − k

i

)

z
2i(−1)λ−k−i

)1/2

.

We state:

• Neglecting the expressions of type (−1)λ−k−i we see that zλ has the coefficient
∑

(

λ
k

)

= 2λ

• To (z+
√

z2 − 1)λ there exists a corresponding expression (z−
√

z2 − 1)λ, multi-
plied with (−1)λ−k−i+1, so then the sum will be zero. So the highest coefficient
of y is ±2λ−1L.

36 [Cheb54], S. 143: ,,Dans les §§ suivants nous montrerons l’usage des formules.”



2.4 First Theoretical Compositions 37

(z2 − 1)
dy

dz
= 0 and

L2 − [y(z)]2 = 0.

Since y is a polynomial of degree n + 1, it can’t have more than n extrema.
Because there are n + 2 deviation points, all inner deviation points are ex-
trema. If they did not alternate in signs, between two of them we had another
extremum!

Although the alternation property directly follows, Chebyshev did not
mention it. But it did not help to calculate the best approximating poly-
nomial, so it had only restricted meaning for the aim he followed with his
pioneering text.

The same statement holds for questions regarding existence and uniqueness
of the problem. These questions were not of an a priori importance for him
since he found a unique solution for a special case.

2.4 First Theoretical Compositions

Four years later Chebyshev presented the monograph ,,Sur les questions des
minima qui se rattachent à la représentation approximative des fonctions”
[Cheb59]37 before the Imperial Academy of Sciences. It reached much farther
than the ,,Théorie des mécanismes ...” discussed in the last paragraph. Here we
find questions of a generally theoretical interest, e. g., a necessary criterion for
best approximating functions, a proof of the proposition about the number
of deviation points and also concrete solutions of three special problems of
approximation.

2.4.1 Questions about Minima

The style of this monograph immediately attracts the attention of the reader.
It is written like a textbook and can be read without any knowledge of the
predecessor ,,Théorie des mécanismes ...”. All results and all problems are
newly arranged.

Again Chebyshev emphasized here that he dealt with a new form of ap-
proximating functions, for instance basically differing from Taylor polynomi-
als.

But the new and wider approach allowed arbitrary intervals and approxi-
mations independent from the quantity h, which stood for the interval length.

The problem he posed is far more general than that of the ‘mechanism
theory’:

37 The page numbers are again taken from [Chebgw1, Vol. 1].
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Let F (x) be an arbitrary but fixed function with certain parameters
p1, p2, . . . , pn. Now determine the values of p1, p2, . . . , pn so that the devia-
tion of F on an interval [−h, h] becomes as small as possible.38

So Chebyshev tried to solve the following minimax-problem:

max
p1,...,pn∈R,x∈[−h,h]

|F (x, p1, . . . , pn)| → min . (2.29)

He extended the problem from the original problem, the approximation by
polynomials to a wider class which included, e. g., trigonometric and rational
functions. The general formulation shows that he did not want to restrict
the problem unnecessarily, although he soon would limit his considerations to
polynomial, weighted and rational approximation.

2.4.2 A General Necessary Criterion

For the following considerations Chebyshev assumed F to be differentiable
according to all variables and parameters and its partial derivatives ∂F

∂pi
to be

bounded [Cheb59, p. 276, §6].
Then he repeated setting the characteristic equations which now are

(x2 − h2)F ′(x) = 0 and (2.30)

F 2(x) − L2 = 0.

With these settings Chebyshev was able to propose an important basic neces-
sary criterion for the solution of the above-described approximation problem
with n parameters:

Theorem 2.1 (Chebyshev’s Theorem) F : [−h, h] × R
n → R is not the

best approximation of the zero function, if the linear system of equations

λ1
∂F

∂p1
(x1) + λ2

∂F

∂p1
(x2) + . . . + λµ

∂F

∂p1
(xµ) = 0

λ1
∂F

∂p2
(x1) + λ2

∂F

∂p2
(x2) + . . . + λµ

∂F

∂p2
(xµ) = 0 (2.31)

...
...

...

λ1
∂F

∂pn
(x1) + λ2

∂F

∂pn
(x2) + . . . + λµ

∂F

∂pn
(xµ) = 0

is only solved by the trivial solution λ1 = . . . = λµ = 0. The points xi, i =
1, . . . , µ here are the (only) deviation points of F (., p1, . . . , pn).

38 [Cheb59, S. 274:] ,,Etant donnée une fonction quelconque F(x) avec n paramètres
arbitraires p1, p2, . . . , pn, il s’agit par un choix convenable des valeurs p1, p2, . . . ,

pn de rendre minimum la limitie de ses écarts de zéro entre x = −h et x = +h.”
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At first we state that Chebyshev did not propose a fixed number of devia-
tion points. But he (theoretically) restricted the problem to the case of having
a finite number of deviation points, as we see both in the formulation and later
in the proof. In fact Chebyshev’s concrete problems would satisfy this con-
dition, so he might have regarded an infinite number of deviation points as
degenerated.

The theorem later would help to compute the number of deviation points,
µ. We note that the linear system of equations (2.31) has only the trivial
solution, if the number of columns is less than or equal to the number of rows,
or if there holds

µ ≤ n.

This implies the following statement, which Chebyshev proved of course with-
out arguments from modern linear algebra.39 He showed that there exists a
non-trivial solution (N1, . . . , Nn) ∈ R

n of the following linear system of equa-
tions:

N1
∂F

∂p1
(x1) + N2

∂F

∂p2
(x1) + . . . + Nn

∂F

∂pn
(x1) = F (x1)

N1
∂F

∂p1
(x2) + N2

∂F

∂p2
(x2) + . . . + Nn

∂F

∂pn
(x2) = F (x2) (2.32)

...
...

...

N1
∂F

∂p1
(xµ) + N2

∂F

∂p2
(xµ) + . . . + Nn

∂F

∂pn
(xµ) = F (xµ).

If there exists a non-trivial solution for (2.32), then the function F (., p1, . . . , pn)
approximating the zero function can be improved. Such an improvement could
be

F0(x) = F (x, p1, . . . , pn) −

⎛

⎝

n∑

j=1

∂F

∂pj
(x)Nj

⎞

⎠ ω + o(ω)ω→0

with a small ω. To illustrate Chebyshev’s arguments we want to translate
them into more modern mathematics:

We have for p = (p1, . . . , pn), N = (N1, . . . , Nn), θ ∈ (0, 1) and a fixed x:

F0(x, p) = F (x, p − ωN)

= F (x, p)− < gradF (x, p − θωN), ωN > +o(θω‖N‖).

For xi the deviation points there holds:

F0(xi, p) = F (xi, p) − ω

n∑

j=1

[Nj
∂F

∂pj
(xi, p) + C1] + o(ω‖N‖)

39 Chebyshev proved the above-mentioned (general) evidence of the rank of a matrix
for this special case. (p. 278 f.).
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with a constant C1. Using the system of equations (2.32) we get

F0(xi, p) = (1 − ω)F (xi, p) − ωC2,

C2 being a constant. So, with a suitable choice of ω we can improve F in the
deviation points and so in small neighbourhoods of them, due to the continuity
of F . Since the partial derivatives ∂F

∂pi
are bounded, the equation determining

F0 shows that ω can be suitably chosen that beyond these neighbourhoods
the function can be improved, too.

This construction is only possible, however, if there exists only a finite
number of deviation points of F (., p1, . . . , pn). Chebyshev did not discuss this
fact, as mentioned above. How to avoid this problem was shown much later
in [Nat49, p. 27 ff.].

This theorem set the foundations for a list of concrete solutions and corol-
laries.

2.4.3 The Number of Deviation Points. Three Cases

Chebyshev introduced the following paragraphs (§§9-12) remarking that the
number of deviation points was generally unknown. He stated that

• in the case µ > n the characteristic equations (2.30) suffice to determine
the unknown variables.

• in the case µ ≤ n we get, after solving (2.31), n − µ + 1 equations of
the parameters p1, . . . , pn and x1, . . . , xµ. Together with the 2µ equations
(2.30) we have again a sufficient number of equations.

• if there is no information about µ, we have to determine µ step by step
using the computed value for L.

The further considerations were restricted to three cases:

1. Approximation by polynomials:

F (x, p) = f(x) −
n∑

i=1

pix
i−1. (2.33)

2. Approximation by polynomials using a polynomial weight:

F (x, p) = f(x) − 1

Q(x)

n∑

i=1

pix
i−1, Q Polynom. (2.34)

3. Rational approximation:

F (x, p) = f(x) −
(

n−l∑

i=1

pix
i−1

) /(
l∑

i=1

pn−l+ix
i−1

)

. (2.35)
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Here each f is differentiable on [−h, h].
We want to show his arguments in the case of the polynomial approxi-

mation. The second case is analogous; in the third case we have to have in
mind the specific discontinuous behaviour of rational approximation where,
for example, the number of equations of (2.32) depends on the degree of the
best approximation after cancellation.

It is interesting to notice that except in this paragraph there is no other
statement on non-linear approximation, either by Chebyshev or by other au-
thors mentioned in the present book. The only exception is Kirchberger’s
thesis [Kir02].

2.4.3.1 Approximation by Polynomials

In this case the matrix of the system of equations (2.31) is Vandermond’s
matrix

Vn,µ(x1, . . . , xµ) =

⎛

⎜
⎜
⎜
⎜
⎝

xn−1
1 xn−1

2 · · · xn−1
µ

xn−2
1 xn−2

2 · · · xn−2
µ

. . . . . . . . . . . . . . . . . . .
x1 x2 · · · xµ

1 1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎠

. (2.36)

This matrix has rank µ for µ ≤ n and so the linear system of equations (2.31)

Vn,µ(x1, . . . , xµ)(λ1, . . . , λµ)T = 0

has only the trivial solution, which would be impossible for the best approxi-
mation. So for the best approximation we have:

µ ≥ n + 1. (2.37)

Thus, we proved the statement Chebyshev cited as ‘well-known’ in the mono-
graph ,,Théorie des mécanismes”.40

Chebyshev formulated this fact in connection with the characteristic equa-
tions (2.30) as a theorem (Théorème 2, p. 284).

In the case of weighted polynomial approximation the theorem was proved
analogously. The weight is not more than a factor before the matrix, having
no influence on the number of deviation points (Théorème 3, p. 287).

Now Chebyshev returned to a well-known problem and started to deter-
mine concrete best approximating functions, to be precise a polynomial, a
weighted polynomial and a rational function of degree n with given first co-
efficient ‘least deviating from zero’.

In the following we will explain his solution for the polynomial case.

40 Note that we reduced the number of parameters from n to (n − 1). Therefore the
number of deviation points had to be reduced, too.
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2.4.4 Determination of Tn

Now the aim was to determine parameters p1, . . . , pn so that the polynomial

F (x) := xn + p1x
n−1 + · · · + pn (x ∈ [−h, h]) (2.38)

is minimal according to the norm ‖.‖∞. Chebyshev mentioned that this was
obviously problem (2.33) for f(x) = xn.

We recently determined that the error function (2.38) has at least n +
1 deviation points x0, . . . , xn, all different from each other and solving the
equations (2.30).

So it is clear that the expression

(x2 − h2)
(
F 2(x) − L2

)

can be divided by all the 2n + 2 factors

(x − x0)
2, (x − x1)

2, . . . , (x − xn)2.

Hence we have

(x2 − h2)
(
F 2(x) − L2

)
= C(x − x0)

2(x − x1)
2, . . . , (x − xn)2 (2.39)

with a positive constant C. Now it is clear that −h and h must be deviation
points, too. Without a restriction we set

x0 := −h, x1 := h

and define

Φ(x) :=
√

C

n∏

i=2

(x − xi). (2.40)

So equation (2.39) becomes

(
F 2(x) − L2

)
= (x2 − h2)Φ2(x). (2.41)

This equation can be written as

(

F (x) − Φ(x)
√

x2 − h2
)(

F (x) + Φ(x)
√

x2 − h2
)

= L2,

and we get

F (x)

Φ(x)
=

√

x2 − h2 +
L2

Φ(x)
(
F (x) + Φ(x)

√
x2 − h2

) . (2.42)

Since F has degree n, Φ is of degree n−1 and they have no common roots,
we see from this representation that the quotient describes the continuous
fraction of nth degree of the expansion of

√
x2 − h2.

If we name it by
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Pn

Qn
,

then we have with (2.42):

F = C0Pn Φ = C0Qn (2.43)

with a constant C0.

2.4.4.1 Expansion of continous fractions

From the equation

h2 = (x −
√

x2 − h2)(x +
√

x2 − h2) (2.44)

we get

√

x2 − h2 − x = − h2

x +
√

x2 − h2

= − h2

2x +
√

x2 − h2 − x
,

and this can be developed furthermore into

√

x2 − h2 − x = − h2

2x −
h2

2x +
√

x2 − h2 − x

.

This leads to the continuous fraction

√

x2 − h2 = x − h2

2x −
h2

2x − h2

2x − h2

2x − h2

2x − . . .

, and (2.45)

using any finite representation we get the denominator x +
√

x2 − h2. If we
name its corresponding fractions by P1

Q1
, P2

Q2
, . . . , Pn

Qn
, we get, using a funda-

mental theorem on continuous fractions41:

√

x2 − h2 =
Pm

(√
x2 − h2 + x

)
− h2Pm−1

Qm

(√
x2 − h2 + x

)
− h2Qm−1

. (2.49)

41 comp. e. g. [MarA48, p. 293 f.]: Let the continuous fraction
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After some transformations using equation (2.44) we get

x −
√

x2 − h2 =
Pm − Qm

√
x2 − h2

Pm−1 − Qm−1

√
x2 − h2

. (2.50)

Successively substituting m by 1, . . . , n we get

Pn − Qn

√
x2 − h2

Pn−1 − Qn−1

√
x2 − h2

= x −
√

x2 − h2

Pn−1 − Qn−1

√
x2 − h2

Pn−2 − Qn−2

√
x2 − h2

= x −
√

x2 − h2

... =
...

P2 − Q2

√
x2 − h2

P1 − Q1

√
x2 − h2

= x −
√

x2 − h2.

Multiplying all equations this leads to

Pn − Qn

√
x2 − h2

P1 − Q1

√
x2 − h2

=
(

x −
√

x2 − h2
)n−1

. (2.51)

For P1 = x and Q1 = 1 the result is

Pn − Qn

√

x2 − h2 =
(

x −
√

x2 − h2
)n

. (2.52)

It is easy to check that the sign did not play a decisive role. The same
calculations hold for −

√
x2 − h2.) Therefore we also have

Pn + Qn

√

x2 − h2 =
(

x +
√

x2 − h2
)n

. (2.53)

Connecting the equations (2.52) and (2.53) we have

a1

b1 +
a2

b2 +
a3

b3 + . . .

be given. Then we have for the first three of the analogous expressions Pi, Qi

immediately

P1 = a1 P2 = a1b2 P3 = a1b2b3 + a1a3 (2.46)

Q1 = b1 Q2 = b1b2 + a2 Q3 = (b1b2 + a2)b3 + b1a3, (2.47)

and there holds the recursion formula

Pk = bkPk−1 + akPk−2; Qk = bkQk−1 + akQk−2 (2.48)
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Pn =

(
x +

√
x2 − h2

)n
+

(
x −

√
x2 − h2

)n

2
and (2.54)

Qn =

(
x +

√
x2 − h2

)n −
(
x −

√
x2 − h2

)n

2
√

x2 − h2
. (2.55)

The validity of these expressions has already been discussed in section
2.3.3.1 on page 35.

With (2.43) we have

F = C0

(
x +

√
x2 − h2

)n
+

(
x −

√
x2 − h2

)n

2
(comp. (2.38)).

Since the leading coefficient of F was set equal to 1 and Pn has the leading
coefficient 2n−142, we get

C0 =
1

2n−1

and

F =
1

2n

[(

x +
√

x2 − h2
)n

+
(

x −
√

x2 − h2
)n]

= Tn. (2.56)

The maximal error is then

L := ‖F‖∞ = F (h) =
hn

2n
. (2.57)

2.4.5 Solvability of Algebraic Equations

Based on these results Chebyshev derived a list of corollaries describing the
places zeros of algebraic equations may take.

At first he stated a tricky, but simple consequence which follows from the
results above:

Corollary 2.2 [Cheb59, Theorem 5] Let p be a polynomial of degree n on
[−h, h] with the following shape:

p(x) := xn +

n−1∑

i=1

aix
i.

Then

‖p‖∞ ≥ 2

(
h

2

)n

. (2.58)

With the help of this he easily showed a necessary condition for the mono-
tonicity of a polynomial of such a shape:

42 comp. the calculation in paragraph 2.3.3.1 on page 35.
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Corollary 2.3 [Cheb59, Theorem 6] Let p be a polynomial of degree n on
[−h, h] with

p(x) := xn +

n−1∑

i=1

aix
i.

If additionally

|p(−h) − p(h)| < 4

(
h

2

)n

,

then p is on [−h, h] neither strictly monotonic decreasing nor strictly mono-
tonic increasing.

Otherwise the polynomial shifted by a respectively chosen constant would
have a norm less than 2

(
h
2

)n
.

It is possible to get information about the points where p changes its sign:

Corollary 2.4 [Cheb59, Theorem 8] Let p be a polynomial of degree n on
[−h, h] with

p(x) := xn +

n−1∑

i=1

aix
i.

Then there holds for all t ∈ [−h, h] :

Between the points t and t − 4 sign p(t)
p′(t)

2n

√
p2(t)
16 there is a point, where p

and p′ have opposite signs.

So we can conclude information about the places of the zeros of monotone
polynomials of this shape, especially for polynomials having only odd non-
vanishing powers. Chebyshev proved the following theorem:

Theorem 2.5 [Cheb59, Theorem 11] The equation

x2l+1 +

l−1∑

i=0

aix
2i+1 = 0 (2.59)

has at least one root within the interval
[

−2 2l+1

√
a0

2
, 2 2l+1

√
a0

2

]

.

Statements of this were of course very important for the approximate so-
lution of non-solvable algebraic equations.

Later he would improve this estimate with respect to monotone polyno-
mials of least deviation from zero. We will return here in section 2.5.4.
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2.4.6 Application to Interpolation Problems

In paragraph VIII Chebyshev described an interesting application of his re-
sults. He was able to improve the error of Lagrange’s interpolation formula
by means of Tn.

Let f ∈ Cn[−h, h] be a function.43 to be interpolated in knots x1, . . . , xn ∈
[−h, h] by a polynomial of degree n − 1,

p(x) :=

n∑

i=0

aix
i,

As well known, the error of interpolation is

f(x) − p(x) =
f (n)(ξ)

n!

n∏

i=1

(x − xi), ξ ∈ (a, b). (2.60)

Consequently Chebyshev noticed that it mainly depends on the choice
of the knots. Using this he now tried to improve the error of interpolation
independently on the shape of f.

He knows the polynomial of least deviation from zero (with fixed first
coefficient). The approach

n∏

i=1

(x − xi) = Tn(x) (2.61)

now leads to the error

‖f − p‖∞ =

∣
∣
∣
∣

f (n)(ξ)

n!

∣
∣
∣
∣
‖Tn‖∞ =

∣
∣
∣
∣

f (n)(ξ)

n!

∣
∣
∣
∣

hn

2n−1
, (2.62)

which is minimal.
So the sought knots are the zeros of Tn,

xi = h cos
(2i − 1)π

2n
, i = 1, . . . , n. (2.63)

With the help of Chebyshev’s result it is clear that the sequence of La-
grange interpolation polynomials converges for any real-analytic function f
defined on an interval of length h < 2, if only the knots are chosen in the
above-described way.

Although obvious, this result was not mentioned by Chebyshev, and so
in 1904 it was Carl Runge, who first published this result (in [Run04, S. 136
ff.].44)

43 Chebyshev demanded that f, f ′, . . . , f (n) should be continuous and bounded on an
interval covering the knots x1, . . . , xn ([Chebgw1, S. 309]: ,,...tant que la fonction
f(x) et ses dérivées f ′(x), f ′′(x), . . . , f (n−1)(x), f (n)(x) ne cessent d’être finies et
continues dans les limites où sont comprises x, x1, . . . , xn [...]”).

44 Cited after [Ric85, S. 163].
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Runge’s biographer Richenhagen [Ric85] points out that Runge obviously
did not know Chebyshev’s results because he had even to calculate the Cheby-
shev polynomials Tn. So it is clear that Runge was not able to mention this
result.45

2.4.7 Evaluation of ‘Questions about Minima’

,,Sur les questions des minimas [...]” [Cheb59] is a theoretical work, where
Chebyshev laid out the foundations of modern approximation theory. He
stated a very general problem (2.29) enormously abstracting from concrete
questions. Especially Théorème 1 giving a necessary criterion for the solution
of (2.29) is a real classic.

Consider the standard case, the approximation of continuous46 functions
by polynomials of fixed degree n.

With x1, . . . , xµ as deviation points of the minimal solution, we get from
Chebyshev’s theorem a non-trivial representation of zero, to be precise

0 =

µ
∑

i=1

λi

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
xi

x2
i
...

xn−1
i

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (2.64)

Multiplying this equation with the values F (xi) of the deviation points, we
get

0 =

µ
∑

i=1

λ̂iF (xi)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
xi

x2
i
...

xn−1
i

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (2.65)

where λ̂i vanish only, if λi vanish. If it is possible to prove that all the λ̂i are
non-negative numbers, then a citerion of the type ‘zero in the convex hull’
(see, e. g. [Che66]) will be found, which is important in optimization theory
and usually cited as a theorem of Kuhn and Tucker. Kirchberger was the first
to prove it [Kir02].

The generality of Chebyshev’s theorem is remarkable. Meinardus and
Schwedt [MeSc64] developed the theory of approximating functions which

45 Since Richenhagen does not mention it, either, it also seems to be unknown to
him. His remarks only regard the definition and properties of the Tn, not Runge’s
theorem on the convergence of the Lagrange interpolation formula.

46 Although Chebyshev demanded F to be differentiable, it is only necessary to have
partial differentiability according to the parameters p1, . . . , pn.
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are differentiable by parameters p1, . . . pn based on Chebyshev’s theorem and
including rational approximation and approximation by exponential sums.
Central for this theory is the concept of a tangential manifold. They are gen-
erated by the gradients

(
∂F

∂p1
(xi), . . . ,

∂F

∂pn
(xi)

)

,

calculated in the points x1, . . . , xµ, that is, the columns of (2.31).
The alternation theorem, often named after Chebyshev, also originates

from this theorem. In addition to the present theorem it states that the values
of the error function of the deviation points alternate in sign. Chebyshev never
mentioned this fact, although sometimes the opposite is stated (e. g. in [Nat49]
and even in the corresponding article in the Soviet mathematical encyclopedia
[Vin77]47).

Historical commentators disagree. For example, V. L. Goncharov [Gon45]
made clear that “indeed in the works of Chebyshev included in the collected
works there are no references to an alternation of the sign of the deviation
points.”48

On the other hand, A. A. Gusak wanted to refute this: he cited a situation
taken from [Cheb88]. In this text Chebyshev determined a simple joint mech-
anism where a certain point makes a symmetric movement around an axis (as
for example for Watt’s parallelogram the center of the connecting-rod).

About the deviation points φ0, . . . , φ3 of the minimal curve, Chebyshev
wrote that this function reaches its maximal value in four points, and in the
outer points φ0, φ1 with another sign than in the inner points φ2 and φ3.
Gusak shows that because of the property

φ2 +
φ0

2
= φ3 +

φ1

2
,

proven before in the same text, the signs of the deviation points alternate. So
we see that the alternation itself is mentioned by Gusak, not by Chebyshev.
So Gusak’s considerations only make probable what Goncharov said before:
“From that it does not follow that the fact of the alternating signs was not
known by him.”49

It would have been surprising, if he had not remarked it, because a short
look at all calculated solutions clearly showed this fact.

But neither of the above-cited corollaries from Theorem 2.1 were important
for Chebyshev, since the alternating signs were not necessary for his aim
47 [Vin77, Vol. 5, p. 845]: «Sformulirovanna� teorema byla dokazana P. L.

Qebyxevym v 1854 [...] v bolee obwem vide.»
48 [Gon45, p. 146]: «Deĭstvitelьno, v rabotah, voxedxih v sobranie soqi-

neniĭ Qebyxeva, net nikakih upominaniĭ o qeredovanii znakov otklo-
neni�.»

49 [Gon45, S. 146]: «iz qego ne sleduet, koneqno, qto samyĭ fakt qeredovani�
znakov ne byl emu izvesten.»
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to compute solutions of special cases (or as he would have said ‘functions
least deviating from zero’). The same statement holds for existence or unicity
theorems: he found solutions, so that’s just pure theory.

At this moment for the first time we want to pay attention to the assump-
tions Chebyshev set for the functions for which Theorem 2.1 holds. It is con-
spicuous that Chebyshev only mentioned ‘functions’. Necessary assumptions
usually were made implicitly. The analyticity of f assumed in the pioneering
,,Théorie des mécanismes ...” [Cheb54] was no longer demanded, but F also
had to be differentiable in x, otherwise the equations (2.30) would not have
been valid. Now we know that this assumption is not necessary.

,,Sur les questions des minimas ...” unfortunately was the last contribution
written by Chebyshev himself which dealt with a general problem of uniform
approximation. But a group of papers would follow which dealt with special
cases or with problems of least squares approximation.

2.4.8 Chebyshev’s Aim

Two years before the monograph ,,Sur les questions des minima ...” was pub-
lished Chebyshev gave an overview of possible further results obtained by the
methods developed there. In a two-page remark for the bulletin of the St Pe-
tersburg Academy [Cheb57] Chebyshev had already summarized the results
he regarded as the most important of the main work.

After describing the three cases Chebyshev wrote that “the same approach
can be used successfully for many other cases”50 and there formulated a prob-
lem going much farther:

“We have to find those changes of a given approximated expression for
f(x), obtained as usual in the form of a polynomial or a fraction, which
the coefficients are subject to, if the maximal error between x = a − h
and x = a+h is made as little as possible, h being a sufficiently small
number.”51

Using the methods of best approximation one should find approximations
of approximating expressions!

The demanded smallness of h which we know well from section 2.3 lets us
presume that the expressions to be approximated are again partial sums of
Taylor expansions.

50 [Chebgw2, Bd.S. 148]: «tot жe priem moжet bytь vygodno upotreblen vo
mnogih drugih sluqa�h.»

51 [Chebgw2, Bd. 2, S. 148]: «dl� dannogo pribliжennogo vyraжeni� f(x), vyve-
dennogo obyknovennymi sposobami v vide mnogoqlena ili v vide drobi,
naĭti izmeneni�, kotorym nado podvergnutь koзfficienty, kogda tre-
buets� sdelatь naimenьxim predel ego pogrexnosteĭ meжdu x = a − h i
x = a + h, priqem h veliqina dovolьno mala�.» (Emphasizes by Chebyshev).
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2.5 Theory of Orthogonal Polynomials

Chebyshev wrote a series of papers dealing with the approximation of func-
tions in the space L2(ρ) with several (discrete and continuous) weights. He
proved a lot of theorems for the representation of functions using orthogonal
polynomials.

2.5.1 On Continuous Fractions

The integration of certain irrational functions led Chebyshev’s studies of con-
tinuous fractions, which became the ruling means in the monograph discussed
in the previous section.

A problem from ballistics by the department of ordnance of the St Peters-
burg commitee of military sciences52 prompted him to investigate least square
approximation problems due to Gauß.

Without using the term “orthogonality” Chebyshev showed in his work
“On Continuous Fractions” [Cheb55/2] which properties orthogonal polyno-
mials satisfy in L2(µ) with a discrete measure µ.

The aim of this work was the solution of the following problem:
Let n+1 points x0, . . . , xn and values F (x0), . . . , F (xn) be given. We have

to determine a polynomial P of degree m (m < n) minimizing the expression

n∑

i=0

θ(xi) [F (xi) − P (xi)]
2

(2.66)

for a weight function θ given in the knots its values x0, . . . , xn.
Chebyshev defined

f(x) :=
n∏

i=0

(x − xi)

and expanded the expression
f ′(x)θ(x)

f(x)
(2.67)

into a continuous fraction. We call its jth member ψj .
So we obtain a sequence of polynomials

ψ0, ψ1, . . . , ψm,

with
deg ψj = j

and for which hold

52 Comp. the respective paragraphs about Chebyshev’s engagement in the commit-
tee of military sciences [Chebgw2, Bd. 5, S. 408 ff.].
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n∑

i=0

θ(xi)ψj(xi)ψk(xi) = 0 forj �= k (2.68)

and
n∑

i=0

θ(xi)ψ
2
j (xi) = 1. (2.69)

These conditions show that the ψj build an orthonormal system in L2(µ).
Then Chebyshev was able to prove that with the properties (2.68) and

(2.69) there holds the following theorem:53

Theorem 2.6 Let θ : [a, b] → R
+ be a discrete measure. Then in L2(θ, [a, b])

there holds for an orthonormal system of polynomials {ψ0, . . . , ψm} with ∀j =
1, . . . , m : deg ψj = j :

1. For all i ∈ {0, . . . , m} there holds: Among all polynomials of degree i with
the same first coefficient, ‖ψi‖L2(θ,[a,b]) is minimal.

2. The orthogonal projection P with

P (x) :=
m∑

i=0

n∑

j=0

θ(xj)ψi(xj)F (xj)

n∑

j=0

θ(xj)ψ2
i (xj)

ψi(x), (2.70)

is the best approximation of F in L2(θ, [a, b]) according to {ψ0, . . . , ψm}.

Proof. [from [Cheb55/2]]
1. Let i ∈ {0, . . . , m} and V a polynomial of degree i, so that the highest

non-vanishing coefficient of V is equal to that of ψi. That means V can be
represented as

V :=
i∑

j=0

Ajψj . (2.71)

Because of the above-defined property of the degrees of ψ0, . . . , ψm we have

Ai = 1,

because the highest coefficients of V and ψi coincide.
We get from (2.71) the following equation for the norm of V

n∑

k=0

V 2(xk)θ(xk) =

n∑

k=0

⎡

⎣

i−1∑

j=0

Ajψj(xk) + ψi(xk)

⎤

⎦

2

θ(xk). (2.72)

The right side of equation (2.72) represents a quadratic function of the coef-
ficients A0, . . . , Ai−1. To solve this minimization problem we have at first set
the corresponding gradients equal to zero. So we get the equations
53 To keep track we divide Chebyshev’s presentation into theorem and proof.
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2

n∑

k=0

⎡

⎣

⎛

⎝

i−1∑

j=0

Ajψj(xk)

⎞

⎠ + ψi(xk)

⎤

⎦ψ0(xk)θ(xk) = 0

2
n∑

k=0

⎡

⎣

⎛

⎝

i−1∑

j=0

Ajψj(xk)

⎞

⎠ + ψi(xk)

⎤

⎦ψ1(xk)θ(xk) = 0

...
...

...

2

n∑

k=0

⎡

⎣

⎛

⎝

i−1∑

j=0

Ajψj(xk)

⎞

⎠ + ψi(xk)

⎤

⎦ψi−1(xk)θ(xk) = 0.

Since {ψ0, . . . , ψm} are orthogonal, there remain the terms:

2A0

n∑

k=0

ψ2
0(xk)θ(xk) = 0

2A1

n∑

k=0

ψ2
1(xk)θ(xk) = 0

...
...

...

2Ai−1

n∑

k=0

ψ2
i−1(xk)θ(xk) = 0.

From i ≤ m < n follows

A1 = A2 = · · · = An−1 = 0.

So indeed there holds:

V ≡ ψi.

2. The proof of this property is analogous. Now we have values F (x0), . . . ,
F (xn) and look for the polynomial

P (x) :=

m∑

j=0

Ajψj(x),

which minimizes the expression (2.66), so here

n∑

i=0

⎡

⎣F (xi) −
m∑

j=0

Ajψj(xi)

⎤

⎦

2

θ(xi). (2.73)

To determine this minimum we again differentiate and get the equations
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−2

n∑

i=0

⎡

⎣F (xi) −
m∑

j=0

Ajψj(xi)

⎤

⎦ψ0(xi)θ(xi) = 0

−2
n∑

i=0

⎡

⎣F (xi) −
m∑

j=0

Ajψj(xi)

⎤

⎦ψ1(xi)θ(xi) = 0

...
...

...

−2

n∑

i=0

⎡

⎣F (xi) −
m∑

j=0

Ajψj(xi)

⎤

⎦ψm(xi)θ(xi) = 0.

Using the orthogonality of {ψ0, . . . , ψm} we are able to simplify:

2

n∑

i=0

F (xi)ψ0(xi)θ(xi) − 2A0

n∑

i=0

ψ2
0(xi)θ(xi) = 0

2

n∑

i=0

F (xi)ψ1(xi)θ(xi) − 2A0

n∑

i=0

ψ2
1(xi)θ(xi) = 0

...
...

...

2

n∑

i=0

F (xi)ψm(xi)θ(xi) − 2A0

n∑

i=0

ψ2
m(xi)θ(xi) = 0.

So the sought coefficients are

A0 =

n∑

i=0

F (xi)ψ0(xi)θ(xi)

n∑

i=0

ψ2
0(xi)θ(xi)

A1 =

n∑

i=0

F (xi)ψ1(xi)θ(xi)

n∑

i=0

ψ2
1(xi)θ(xi)

...
...

...

Am =

n∑

i=0

F (xi)ψm(xi)θ(xi)

n∑

i=0

ψ2
m(xi)θ(xi)

,

and the second part has also been proved. �

So Chebyshev did recognize the importance of orthogonality. It led him to
further investigations about orthogonal function systems.

With the help of Theorem 2.6 we can easily prove a corollary used by
Chebyshev (but not explicitly proved):
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Corollary 2.7 Let θ : [−1, 1] → R
+ be a weight function. We define a scalar

product in L2(θ, [−1, 1]) by

< f, g >L2(θ,[−1,1]):=

1∫

−1

θ(x)f(x)g(x) dx. (2.74)

Now let ψ0, . . . , ψm be polynomials with

• ∀j = 1, . . . , m : gradψj = j
• {ψ0, . . . , ψm} orthonormal with < ., . >L2(θ,[−1,1]).

Then we have:

1. For all i ∈ {0, . . . , m} there holds: Among all polynomials of degree i
having the same highest coefficient αi �= 0, ‖ψi‖L2(θ,[−1,1]) is minimal.

2. The orthogonal projection P defined by

P (x) :=

m∑

i=0

m∑

j=0

1∫

−1

θ(y)F (y)ψj(y)dy

1∫

−1

θ(y)ψ2
j (y)dy

ψi(x) (2.75)

=

m∑

i=0

m∑

j=0

< F, ψj >L2(θ,[−1,1])

< ψj , ψj >L2(θ,[−1,1])
ψi(x) (2.76)

is the best approximation for F in L2(θ, [−1, 1]) according to {ψ0, . . . , ψm}.

Proof. Theorem 2.6 holds for any interval and discrete weight function θ. It
is especially applicable to intervals [a, b] ⊂ (−1, 1). The Riemannian sums of
(2.75) now correspond to expressions of the form (2.70) and converge for any
subdivision sequence of the integral (2.75), iff the integrals are taken between
a and b instead of −1 and 1. By transition to the limits a → −1 and b → 1
we can show this property for the whole interval [−1, 1]. �

We could illustrate that only considerations about limits are necessary
to solve the continuous case. Later we will explain that Chebyshev usually
negelected such reflections, probably because he regarded their results as a
matter of course.

The same holds for the questions which properties F should satisfy so that
such a theorem will be valid. Of course, Chebyshev did not use expressions
like ‘scalar product’ or ‘integrability.’

The method developed by Chebyshev in [Cheb55/2] would later be applied
in mathematical statistics under the name regression analysis. Of special im-
portance (and emphasized by Chebyshev himself in [Cheb55/1]) is the simple
computation of φi representing the ith fraction of the expansion of (2.67) and
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can successively be computed from one to another. So the number of computa-
tions was diminished and additionally we got the advantage that the order of
the algorithm directly depends on the size of the error and is not determined
only by the a priori fixed degree of the interpolation polynomial.

2.5.2 Chebyshev–Fourier Series

Corollary 2.7 gives a series expansion for a function which is L2-integrable
or given by some knots. This expansion depends on the definition of an or-
thonormal system {ψ0, . . . , ψm} and the scalar product < ., . >L2(θ).

Modern theory always calls such series called Fourier series although
Fourier discussed only the classical case in [Fou22]. In [Cheb59/2] Cheby-
shev called these series ‘analogous to Fourier series’ 54 and showed there some
examples:

1. For

θ =
1√

1 − x2

he got the polynomials T1, . . . , Tm, later known as Chebyshev polynomials,
2. for

θ = 1

he computed the classical Fourier series with the orthonormal system

{1, cos kx, sin lx}

and the Legendre-polynomials,55

3. for
θ = e−x2

the Hermite polynomials
4. and, finally, for

θ = e−x

the Laguerre polynomials.

It is remarkable that Chebyshev investigated both Hermite’s and Laguerre’s
polynomials earlier than they (Hermite and Laguerre introduced the polyno-
mials later named after them as solutions of the respective differential equa-
tions in [Her64] and [Lag79]).

54 [Chebgw2, Bd. 2, S. 335]: «analogiqnye r�dam Furьe.»
55 also citing his older paper ‘On a New Series’ [Cheb58], where he first briefly

discussed theoretical corollaries from ‘On Continuous Fractions’[Cheb55/2].
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2.5.3 Theory of Jacobian Polynomials

In his contribution ‘About Functions Similar to Legendre’s [Cheb70] Cheby-
shev proved the fact that polynomials of Jacobi type (those which are similar
to Legendre’s) are orthonormal according to some weight functions.

At first he defined an auxiliary function

F (s, x) =

(
1 + s +

√
1 − 2sx + s2

)λ (
1 − s +

√
1 − 2sx + s2

)µ

√
1 − 2sx + s2

. (2.77)

For x ∈ [−1, 1] and s ∈ (−1, 1) this expression is well defined.56

He got this idea from a property of Legendre polynomials Pn for which
holds:

1√
1 − 2sx + s2

=

∞∑

n=0

Pn(x)sn, x ∈ [−1, 1], (2.78)

and the left expression is equal to F (s, x) for λ = µ = 0. The right side of
equation (2.78) uniformly converges for s, x ∈ (−1, 1).

The property
∫ 1

−1

Pn(x)Pm(x) = 0, (2.79)

well-known since Legendre’s times, can be proved by formally taking

∞∑

n=0

∞∑

m=0

sntm
∫ 1

−1

Pn(x)Pm(x) dx =
1√
st

log
1 +

√
st

1 −
√

st
.

In fact, expanding the right expression into a power series we see that there
will be only powers of (st), but no terms smtn with m �= n. Therefore the

integral
∫ 1

−1
Pn(x)Pm(x) for m �= n will vanish.

Then Chebyshev used the same argument for F .
With lavish calculations using methods from the theory of integration with

the help of logarithms he derived himself,57 he showed that for the integral
expression analogous to (2.79) holds:

∫ 1

−1

F (s, x)F (t, x)

(1 + x)λ(1 − x)µ
=

∫ 1

0

2λ+µ+1(1 − stz)µ

zλ(1 − z)µ(1 − stz)2
dz. (2.80)

As before it is clear that in the respective series expansion no terms of smtn

occur with different degree in s and t.
Using the approach indeed similar to that of Legendre

F (s, x) =

∞∑

n=0

Tn(x)sn

56 As usual Chebyshev computes formally.
57 See [Cheb47].
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it is easy to show the orthogonality of the Jacobian polynomials Tn in the
space58

L2

(
1

(1 + x)λ(1 − x)µ

)

.

2.5.4 Approximation Preserving Monotonicity

The results presented in the previous sections led Chebyshev to an interest-
ing application: the determination of the monotone polynomial least deviating
from zero. As before he considered polynomials of degree n with a given lead-
ing coefficient.

The background of this question again was mechanism theory[Cheb71].
There Chebyshev determined a mechanism, whose movement should be as
uniform as possible.59

The problem was set in the monograph ‘About functions least deviating
from zero’ [Cheb73]. The mathematical setting is formulated as follows: It is
to determine that monotone polynomial n and the form

P (x) = xn +

n−1∑

i=0

Aix
i

for which ‖P‖∞ is minimal.

2.5.4.1 Preconsiderations

At first Chebyshev showed interesting properties beginning with

‖P‖∞ = |P (1)| = |P (−1)|. (2.81)

with P being the polynomial to be determined. Because of its monotonicity
the norm is reached at least in one of the end points of the interval. The already
well-known shift leads to the sought result, since from |P (1)| �= |P (−1)| would
follow that one of the polynomials

P̂ = P ± P (1) + P (−1)

2

had a smaller norm than P .
Also it is obvious because of the monotonicity that there holds

P (1) = −P (−1).

58 To show the validity of these propositions—the integral (2.80) is not defined a
priori—one has again to return to considerations about limits, which Chebyshev
was definitely not interested in. Compare the arguments regarding Corollary 2.7.

59 Compare also [Ger54].
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Now Chebyshev established a simple, but very interesting property of the
solution of the monotone approximation problem.

The main theorem of calculus states that with a constant C there holds:

P (x) =

x∫

−1

P ′(x)dx + C, (2.82)

whence
C = P (−1) = ±‖P‖∞.

Of course there is also

−C = P (1) =

1∫

−1

P ′(x)dx + C,

from which follow

C = −1

2

1∫

−1

P ′(x)dx (2.83)

and

‖P‖∞ =
1

2

∣
∣
∣
∣
∣
∣

1∫

−1

P ′(x)dx

∣
∣
∣
∣
∣
∣

. (2.84)

With these simple considerations Chebyshev observed a connection be-
tween this problem and the approximation in the space L2. Consequently
he would use the results from the theory of orthogonal polynomials in the
following.

2.5.4.2 Calculation of the Minimal Solution

Since P is monotone the derivative P ′ has within the interval only roots with
even multiplicity. We denote these multiplicities by 2λ1, . . . , 2λm and by µ1, µ2

the multiplicities of the zeros of P ′ at the ends of the interval. If there are no
zeros there, choose respectively µ1 = 0 or µ2 = 0.

Now we have

Lemma 2.8 If P is the non-vanishing monotone polynomial of degree n, for
which ‖P‖∞ is minimal, then

µ1 + µ2 + 2λ1 + · · · + 2λm ≥ n − 1. (2.85)

Because P is non-vanishing (and trivially not a constant), we have a finite
number of zeros of P ′. So we have that the number of zeros (counted with
multiplicity) is even equal to n − 1, so all zeros of P ′ are real numbers and lie
within the interval [−1, 1].
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Proof. We assume the opposite, P ′ having less than n − 1 zeros counted
with multiplicity.

Denoting by α1, . . . , αm the zeros of P ′ within (−1, 1) we have that the
function

Q(x) =
P ′(x)

(x − 1)µ1(x + 1)µ2

m∏

i=1

(x − αi)2λi

(2.86)

is non-constant and has by definition no zero in the interval [−1, 1]. Without
losing generality we assume that Q is positive. Set

L0 := min
x∈[−1,1]

|Q(x)|.

So Q − L0 remains non-negative. Hence we have for all x ∈ [−1, 1] :

Q(x) > Q(x) − L0 ≥ 0, and so

P ′(x) > P ′(x) − L0(x − 1)µ1(x + 1)µ2

m∏

i=1

(x − αi)
2λi ≥ 0. (2.87)

Because the integral is a monotone operator we have

∫ 1

−1

P ′(x) dx >

∫ 1

−1

P ′(x) − L0(x − 1)µ1(x + 1)µ2

m∏

i=1

(x − αi)
2λi dx.

By assumption the degree of the function

L0(x − 1)µ1(x + 1)µ2

m∏

i=1

(x − αi)
2λi

is less than n − 1, so there holds with (2.87) and (2.84):

2‖P‖∞ >

∫ 1

−1

P ′(x) − L0(x − 1)µ1(x + 1)µ2

m∏

i=1

(x − αi)
2λi dx > 0.

This shows that P cannot be the monotone polynomial of least deviation from
zero. �

With this result we get a representation of the derivative

P ′(x) = C(x − 1)µ1(x + 1)µ2

m∏

i=1

(x − αi)
2λi (2.88)

with a constant C.
Since P has the form

P (x) = xn +

n−1∑

i=0

xi,
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it follows that

C = n.

Setting

µi = 2κi + νi, i = 1, 2

with
νi ∈ {0, 1}

we can write

P ′(x) = n(x − 1)ν1(x + 1)ν2

[

(x − 1)κ1(x + 1)κ2

m∏

i=1

(x − αi)
λi

]2

, (2.89)

or as an abbreviation

P ′(x) = n(x − 1)ν1(x + 1)ν2U2(x) (2.90)

with a polynomial U of degree

l := κ1 + κ2 +

m∑

i=1

λi.

To minimize the integral

‖P‖∞ =
1

2

∣
∣
∣
∣
∣
∣

1∫

−1

P ′(x) dx

∣
∣
∣
∣
∣
∣

=
n

2

∣
∣
∣
∣
∣
∣

1∫

−1

(x − 1)ν1(x + 1)ν2U2(x) dx

∣
∣
∣
∣
∣
∣

, (2.91)

we can fall back on some results from [Cheb70] cited in previous paragraphs.
For the polynomial of degree l and leading coefficient 1, minimizing expression
(2.91) is just the polynomial Tl of the series expansion

F (s, x) =
∞∑

l=0

Tl(x)sl,

where

F (s, x) =

(
1 + s +

√
1 − 2sx + s2

)−ν1
(
1 − s +

√
1 − 2sx + s2

)−ν2

√
1 − 2sx + s2

. (2.92)

With this compare the considerations directly after equation (2.77) on page
57.

So we can set in our special case
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U = KTl.

Let Kl be the leading coefficient of Tl. Therefore we have with (2.90)

C =
1

Kl
and

U =
1

Kl
Tl. (2.93)

To determine the function Tl we firstly define its coefficients by

Tl =: K0 + K1x + · · · + Klx
l.

Then we get the series expansion of (2.92) as

F (s, x) =

(
1 + s +

√
1 − 2sx + s2

)−ν1
(
1 − s +

√
1 − 2sx + s2

)−ν2

√
1 − 2sx + s2

=

∞∑

l=0

(
l∑

i=0

Kix
i

)

sl. (2.94)

To simplify this expression we take a more careful look at the expansion
round.60 s0 = 0.

With this we set

u(s, x) := 1 + s +
√

1 − 2sx + s2

v(s, x) := 1 − s +
√

1 − 2sx + s2

f(s, x) := 1 − 2sx + s2

and compute

∂u

∂s
(s, x) = 1 − x − s√

1 − 2sx + s2
u(0, x)= 2

∂u

∂s
(0, x) = 1 − x (2.95)

∂v

∂s
(s, x) = −1 − x − s√

1 − 2sx + s2
v(0, x)= 2

∂v

∂s
(0, x) = −1 − x

(2.96)

∂f

∂s
(s, x) = 2s − 2x f(0, x)= 1

∂f

∂s
(0, x) = −2x. (2.97)

Then
F = u−ν1v−ν2f− 1

2 ,

∂F

∂s
= −ν1u

−ν1−1 ∂u

∂s
v−ν2f− 1

2 + −ν2v
−ν2−1 ∂v

∂s
f− 1

2 − −1

2
f− 3

2
∂f

∂s
u−ν1v−ν2

60 Chebyshev had this in mind writing “set s = 0” ([Chebgw3, S. 593]: «polaga�
s = 0.»)
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and

∂F

∂s
(0, x) =

(

(ν1 + ν2)2
−(ν1+ν2)−1 + 2−(ν1+ν2)

)

x − (ν1 + ν2)2
−(ν1+ν2)−1.

To calculate the minimal solution U , only the coefficient of the highest power
is of importance. It can be determined by a significant simplification of F.

Consider

u2(s, x) := 1 +
√

1 − 2sx

f2(s, x) := 1 − 2sx

and calculate

∂u2

∂s
(s, x) = − x√

1 − 2sx
u2(0, x) = 2

∂u2

∂s
(0, x) = −x (2.98)

∂f2

∂s
(s, x) = −2x f2(0, x) = 1

∂f2

∂s
(0, x) = −2x. (2.99)

Now set
F2 := u

−(ν1+ν2)
2 f

− 1
2

2

and compute

∂F2

∂s
= −(ν1 + ν2)u

−(ν1+ν2)−1
2

∂u

∂s
f

− 1
2

2 − 1

2
f

− 3
2

2

∂f

∂s
u

−(ν1+ν2)
2

and
∂F2

∂s
(0, x) =

(

(ν1 + ν2)2
−(ν1+ν2)−1 + 2−(ν1+ν2)

)

x.

This construction shows that the highest coefficients of F and F2 do not differ
from each other continuing the expansion round s0 = 0.

So the sought coefficients Kl in the series expansion (2.94) can also be
taken from the expansion

F2(s, x) =

∞∑

l=0

Klx
lsl.

The numbers ν1 and ν2 are remainders of divisions by 2 and so are equal
to 0 or 1, that is, the sum ν1 + ν2 is equal to 0, 1 or 2.

Case 1: ν1 + ν2 = 0
Then

F2(s, x) = (1 − 2sx)− 1
2

∂lF2

∂sl
(0, x) = 1 · 3 · · · (2l − 1)xl =

(2l − 1)!!

2(l + 2)
xl

Kl =
(2l − 1)!!

l!
.
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Case 2: ν1 + ν2 = 1
Then

F2(s, x) = (1 +
√

1 − 2sx)−1(1 − 2sx)− 1
2

∂lF2

∂sl
(0, x) =

1

2(l + 1)
1 · 3 · · · (2l + 1)xl = (2l − 1)!!xl

Kl =
(2l + 1)!!

2(l + 1)!
.

Case 3: ν1 + ν2 = 2
Then

F2(s, x) = (1 +
√

1 − 2sx)−2(1 − 2sx)− 1
2

∂lF2

∂sl
(0, x) =

1

2(l + 2)
1 · 3 · · · (2l + 1)xl = (2l − 1)!!xl

Kl =
(2l + 1)!!(l + 1)

2(l + 2)!
.

Now it is easy to determine ν1 and ν2 by looking at the four possible
of even or odd n and a monotone decreasing or increasing P and analysing
(2.89).

So l can be determined:

l =
n − ν1 − ν2 − 1

2
,

and by the series expansion of F (s, x) (2.92) one can get Tl. So we achieve

P ′(x) =
n

K2
l

(x − 1)ν1(x + 1)ν2T 2
l ,

and from the equations (2.82) and (2.83) there finally follows

P (x) =
n

K2
l

(∫ x

−1

(x − 1)ν1(x + 1)ν2T 2
l dx − 1

2

∫ 1

−1

(x − 1)ν1(x + 1)ν2T 2
l dx

)

.

2.5.4.3 Calculation of the Minimal Deviation

Equation (2.91) gives the value of the minimal deviation L. So it is

L =
1

2

∣
∣
∣
∣
∣
∣

1∫

−1

P ′(x) dx

∣
∣
∣
∣
∣
∣

.

With (2.90) there follows
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L =
n

2

∣
∣
∣
∣
∣
∣

1∫

−1

(x − 1)ν1(x + 1)ν2U2(x) dx

∣
∣
∣
∣
∣
∣

.

The integrand has degree n−1. Since deg U = l we finally have from (2.93)

L =
2l + ν1 + ν2 + 1

2K2
l

∣
∣
∣
∣
∣
∣

1∫

−1

(x − 1)ν1(x + 1)ν2U2(x) dx

∣
∣
∣
∣
∣
∣

.

The integral

I :=

1∫

−1

(x − 1)ν1(x + 1)ν2U2(x) dx

can be calculated by results from [Cheb70]. Setting for λ and µ the values
−ν1and −ν2, respectively, then from equation (2.80) there follows in this case

∫ 1

−1

∞∑

m=0
Tmsm

∞∑

k=0

Tktk

(1 − x)−ν1(1 + x)−ν2
dx =

∫ 1

0

2−ν1−ν2+1(1 − stz)−ν1

z−ν2(1 − z)−ν1(1 − stz)2
dz =: G(s, t).

We see that I is the coefficient of the lth power in the series expansion of
G(s, t).

Now we have to look at the three well-known cases again.
Case 1: ν1 + ν2 = 0
Then

G(s, t) =
1√
st

log
1 +

√
st

1 −
√

st

I =
2

2l + 1

L =

(
l!

(2l − 1)!!

)2

=

( (
n−1

2

)
!

(n − 2)!!

)2

.

Case 2: ν1 + ν2 = 1
Now

G(s, t) = − 1

2st
log(1 − st)

I =
1

2(l + 1)

L = 2

(
(l + 1)!

(2l + 1)!!

)2

= 2

( (
n
2

)
!

(n − 1)!!

)2

.
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Case 3: ν1 + ν2 = 2
Here

G(s, t) =
1

2

[
1

2(st)− 3
2

log
1 +

√
st

1 −
√

st
− log

1 − st

s2t2

]

I =
l + 1

2(l + 2)(2l + 3)

L =
l + 2

l + 1

(
(l + 1)!

(2l + 1)!!

)2

=
n + 1

n − 1

( (
n−1

2

)
!

(n − 2)!!

)2

.

Chebyshev used these values to give statements about the monotonicity
of polynomials of the form

xn +

n−1∑

i=0

aix
i.

Finally he can show the improvements of approximations of zeros of certain
equations mentioned in section 2.4.5.

Indeed, after similar considerations there is

Corollary 2.9 [Chebgw3, S. 606] Let p be a polynomial of degree n on
[−h, h] and consider the following form:

p(x) := xn
n−1∑

i=1

aix
i.

Then there holds for all t ∈ [−h, h] :

Between the points t and t − 4 sign f(t)
f ′(t)

n

√
f(t)

2(n−1)π there is a point, where

f and f ′ have a different sign.

And furthermore:

Theorem 2.10 [Chebgw3, S. 608] The equation

x2l+1 +

l−1∑

i=0

aix
2i = 0 (2.100)

has at least one zero in the interval
[

−2 2l+1

√
a0

4lπ
, 2 2l+1

√
a0

4lπ

]

.

This result was improved later by A. A. Markov in [MarA03].
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2.6 Other Contributions of P. L. Chebyshev

Besides the above-described works there are some other papers of Chebyshev
dealing with aspects similar to approximation theory. They affect the theory
of mechanisms, investigations about solutions of algebraic equations, applica-
tions to geometry and quadrature formulae.

This enumeration already makes clear his interest in the application of
mathematical results.

2.6.1 Theory of Mechanisms

As we have already seen, the theory of mechanisms had been Chebyshev’s
trigger to deal with the theory of best approximation.

It was born from the search for a good mechanism and was based on his
own theory, developed in his two famous monographs, where he at first only
made tentative attempts to special solutions [Cheb54], until he finally fixed
surprisingly general theoretical foundations [Cheb59].

It is quite a bit suprising that Chebyshev’s first results on mechanism
theory were published only in 1861 [Cheb61], although he had already an-
nounced a second part of the ‘Theory of mechanisms ...’ in 1853. It seems
that he realized that his theoretical results had not been sufficiently good.61

Chebyshev’s work on mechanism theory on the one hand deals with im-
provements of well-known mechanisms like Watt’s parallelogram, on the other
hand with the construction of mechanisms carrying out the same movements
with fewer components.

So he managed to build a mechanism realizing the transformation from
a circular into a linear motion, so replacing Watt’s parallelogram, with only
three joints [Cheb88] and a simplification of Galloway’s mechanism which
transmits a rotation doubling the radius (ibidem).

All the methods he used there were based on results from his investigations
about approximation theory, since all improvements spread over all points of
the curves describing the respective motions.

Chebyshev not only calculated but also physically made new mechanical
constructions, joint mechanisms of all kinds, a machine simulating human run-
ning motions and a calculating machine. Artobolevski and Levitski [ArLe45,
S. 107-109] count 41 inventions constructed by Chebyshev himself.

His constructions can be visited in museums of St Petersburg; his calcula-
tor is even exhibited in the Paris Consérvatoire des arts et métiers.62

61 With this compare the explanations of see S. N. Bernstein in [Bern47, p. 41].
62 There are several detailed comments about Chebyshev’s work on mechanism the-

ory, compare e. g. [Del00], [ArLe45] and [ArLe55/1].
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2.6.2 Geodesy and Cartography

Three of Chebyshev’s contributions are of isolated character and devoted to
applications to geoscience.

The short paper ‘A Rule for an Approximative Determination of Distances
on the Earth’s Surface’ [Cheb69] applied Poncelet’s approximation formulae
to an approximative calculation of the geodetic line between two points given
by their corresponding longitudes and latitudes.

To do this Chebyshev firstly used a variant of Pythagoras’ theorem to
compute the arclength of the grand circle between the two points to get the
premisses to apply Poncelet’s formulae.

The text ‘About the Construction of Geographic Maps’ [Cheb56/1] and
the speech ‘Drawing Geographic Maps,’ [Cheb56/2] which we will talk about
later for other reasons, deal with a problem from cartography, to be precise
the search for a conformal map projection (preserving angles), where the error
of the scale logarithm will be as small as possible.

With Gauß’ ‘Theorema egregium’ there is no conformal projection which
preserves the scale, therefore the problem is well posed.

Without giving a proof Chebyshev stated for a solution of this question
that the scale should remain constant on the border of the map.63

This question led to an approximation with two variables. A proof of the
correctness of Chebyshev’s proposition was made much later by D. A. Grave
[Gra96] and [Gra11].

2.6.3 Approximated Quadrature Formulae

In two of his last papers Chebyshev discussed the approximative representa-
tion of quadrature formulae, mainly for the approximative determination of
elliptic integrals.

In his article ‘About Approximations of a Square Root [...] by Simple Frac-
tions’ [Cheb89] Chebyshev solved the problem to approximate the function
1√
x

by expressions of the form

A +

n∑

i=1

Bi

Ci + x
(2.101)

in the sense of best approximation. With this he got a good approximation
also for certain elliptic integrals.

For example, Chebyshev investigated the integral

∫
tanp−1 x

√

1 − λ2 sin2 x
dx.

63 This follows from Dirichlet’s principle—it is not known whether Dirichlet, who
Chebyshev met before 1856, influenced the solution of this problem.
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The second contribution ‘About Polynomials...’ [Cheb93] was devoted to
the approximation of expressions of type (2.101) by polynomial expressions.

Here he used the approximation

1

H − x
∼ 1

Tn(H
h )

×
(

Tn(
x

h
) − Tn(

H

h
)

)

,

on the interval [−h, h], where h < H.
Again Chebyshev discussed uniform approximations controlling the error

on the whole interval.
These considerations led to the approximation of integral expressions like

∫
f(x)

H − x
dx

by linear combinations of more simple expressions, namely
∫

xkf(x) dx.

2.7 Chebyshev–Euler of the 18th Century?

The contributions discussed here only cover a small part of Chebyshev’s whole
work. Vasilev [Vas00] counted 77 published papers all written by Chebyshev
without any co-authors which spread over many subjects, besides approxima-
tion and mechanism theory also number theory, the studies of elliptic integrals
(often named by Chebyshev as the integration of irrational differentials) and
probability theory.

Especially his early work was devoted to number theory, for example his
doctorate thesis about the theory of congruences (published as [Cheb49]),
which would be translated in several languages, and his fame arose through
this subject because of his proof of the prime number theorem [Cheb48].

As we could see elliptic integrals played a very important methodological
role in his work. He first investigated them in his dissertation pro venia legendi
[Cheb47].

He gave theoretical foundations to probability theory (in his master thesis
[Cheb45]) and opened it to practical applications beyond the casino.

These wider branches of his interest are supplemented by some contribu-
tions to special problems, as we already observed before. Surely his strangest
paper was his talk before the Association Française pour l’avancement des
sciences devoted to the subject ‘About the Cut of Clothes’[Cheb78]. But the
curiosity of his work about mechanisms was not less remarkable.

In spite of the diversity of Chebyshev’s work all of its parts seem to be con-
nected with each other. During his life, full of hard scientific work, Chebyshev
often returned to results which he had developed earlier and applied them to
get new ones.
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The approximation theory is a good example to make this clear. Cheby-
shev used results from his dissertation pro venia legendi [Cheb47] to calculate
Tn in his work ,,Théorie des mécanismes...” [Cheb54] in 1854 , to prove the
orthogonality of Jacobian polynomials in [Cheb70] in 1870 and in connection
with the computations of approximated quadrature formulae (compare sec-
tion 2.6.3). Except for a small remark and a condition for the existence of
closed formulae for elliptic integrals by Abel, which had not been helpful for
practical purposes, there had not been any results of other authors on this
subject before.

Similar facts hold for the theory of continuous fractions, which Chebyshev
had discovered as a helpful instrument in 1855 (,,About Continuous Fractions”
[Cheb55/2]), laid out the foundations of the theory of orthogonal polynomials
and generalized Fourier series and let them work in an unbelievably virtuoso
manner in ,,Sur les questions de minima ...” [Cheb59] to solve the third case
about the best rational approximation.

So Chebyshev’s work was very stringent and it is still astonishing how
many applications it covered and how straight it went from pure mathematics
to concrete solutions of practical problems.

This had a programmatic character in Chebyshev’s scientific life, as he
himself emphasized in his speech ‘Drawing Geographical Maps’ [Cheb56/2]:

“The congregation of theory and practice gives the best results, and
it is not only practice which gains a benefit from this; science itself is
developing under the influence of practice.[...] If the theory gets much
from new applications of an old method [...], then it gains even more
from the discovery of new methods, and in this case science finds itself
a true leader in the practice.”64

It has to be emphasized, however, that the concept ‘practice’ has to in-
clude applications within mathematics themselves—otherwise it would not be
possible to understand Chebyshev’s early work regarding the theory of num-
bers. Without any doubt, for Chebyshev the aim of all mathematical effort
should be a (at least approximative) solution of a practical problem.

According to the memories of Andrey Andreevich Markov junior, the son
of Chebyshev’s pupil Andrey Andreevich Markov, Chebyshev a bit jokingly
regards this as the result of a historical development. He is cited:

64 «Sbliжenie teorii s praktikoĭ daet samye blagotvornye rezulьtaty,
i ne odna tolьko praktika ot зtogo vyigryvaet; sami nauki razviva�ts�
pod vli�niem ee; [...] Esli teori� mnogo vyigryvaet ot novyh priloжeniĭ
staroĭ metody [...], to ona ewe bolee priobretaet otkrytiem novyh metod,
i v зtom sluqae nauka nahodit sebe vernogo rukovoditel� v praktike.»
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“In ancient times mathematical problems were posed by gods, in the
middle ages by czars and kings, and in our times - by need.”65

Despite the extent of his work it is conspicuous that Chebyshev had nearly
no real colleagues he moved around alone in all his favourite subjects, not only
in the approximation theory, where his ideas had almost no forerunner.

Commenting on this his pupil K. A. Posse wrote [Pos04]: “We have to re-
mark that Chebyshev himself preferred working independently to reading oth-
ers’ work. After substantial studies of the work of famous mathematicians—
of Euler, Lagrange, Gauß, Abel and others—Chebyshev did not attach much
importance to reading modern mathematical literature, emphasizing that un-
necessary studies of other authors’ papers would have a harmful effect on the
independence of one’s own work.”66

The versatility and novelty of his ideas, all being classical in style and
often elementary, caused the next generation to regard him with Lobachevski
as the most significant mathematician of the 19th century. For example in 1945
S. N. Bernstein wrote in a contribution for the popular-science journal ‘nature’
(priroda, [Bern45/1]) - not neglecting the patriotic undertone, forced at that
time:

“However remarkable might be the achievements of modern Russian
mathematics growing from day to day, however sparkling they may
be in the future, there are two immortal names in the history of our
sciences which occupy an especially67 honourable place in it forever.
They are—Lobachevski and Chebyshev—two poles of mathematical
thinking, who firstly and nearly simultaneously discovered the spe-
cial power, originality and versatility of the Russian genius for the
world68[...]”

65 Cited after [Gro87, S. 30]: «[...] v drevnie vremena matematiqeskie zadaqi
stavilisь bogami, v srednie veka - car�mi i korol�mi, a v naxi vremena
- nuжdoĭ.»

66 [Chebgw2, Bd. 5, S. 7]: «Nado zametitь, qto sam Qebyxev bolee l�bil
samosto�telьnye issledovani�, qem izuqenie trudov drugih matematikov,
osobenno sovremennyh. Gluboko izuqiv tvoreni� velikih matematikov -
Зĭlera, Langranжa, Gaussa, Abel� i drugih, Qebyxev ne pridaval os-
obogo znaqeni� qteni� tekuweĭ matematiqeskoĭ literatury, utverжda�,
qto izlixnee userdie v izuqenii quжih trudov dolжno neblagopri�tno
otraжatьs� na samosto�telьnosti sobstvennyh rabot.»

67 The emphasis was made by Bernstein in the contribution [Bern47], which is equal
in words.

68 [Bern45/1, S. 78]: «Kak by znaqitelьny ni byli dostiжeni� sovremmennoĭ
russkoĭ matematiki, rastuwie s kaжdym dn�m, kak by blest�wi ni
byli e� buduwie uspehi, estь dva bessmertnyh imeni v istorii naxeĭ
nauki, kotorye vsegda budut zanimatь v neĭ osobo poq�tnoe mesto. Зto -
Lobaqevskiĭ i Qebyxev - dva pol�sa matematiqeskoĭ mysli, kotorye
vpervye otkryli miru iskl�qitelьnu� mowь, originalьnostь i mno-
gogrannostь russkoĭ matematiqeskoĭ geni�, poqti odnovremenno [...]»
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B. N. Delone, a mathematician in the subject of number theory and cor-
responding member of the Soviet academy of sciences of that time,69 tried to
surpass him in the same year during a speech to the 220th anniversary of the
Russian-Soviet academy[Del45]:

“The works of Chebyshev are unusually versatile [...]. In this sense he
resembles the great classics of our time, Euler and Lagrange.”70

In one point, significant at least from today’s point of view, Chebyshev’s
and Euler’s works clearly differ.71 Euler also got an outstanding significance
by his new foundations of modern analysis in the ,,Introductio in analysin
infinitorum” [Eul47].

Especially Euler’s concept of a function was epoch-making because it could
abstract from the identity between function and graph which was due to
Leibniz [Eul47, § 4]:

“A function of a variable quantity is an analytic expression, which is in
some way composed by that variable quantity, numbers and constant
quantities.”72

After that he divided functions into two main classes: algebraic and tran-
scendent,73 and this terminology holds until now. It is remarkable that later
during the peak of the discussion about the solutions of the wave-equation74

he widened the concept of a function and was led to a very modern version

69 By the way, he was not the author of contribution [Del00], N. B. Delone (1856–
1931), but his son.

70 [Del45, S. 4]: «Raboty Qebyxeva neobyknovenno raznoobrazny [...] V зtom
Qebyxev podoben velikim klassikam naxeĭ nauki, Зĭleru i Langranжu.»

71 Besides this we have to remark that the number of Euler’s papers enormously
exceeds that of Chebyshev. His complete collected works are still being edited
and already contain fifty volumes.

72 [Eul47, § 4]: ,,Functio quantitatis variabilis est expressio analytica quomod-
ocunque composita ex illa quantitate variabili et numeris seu quantitatibus con-
stantibus.”

73 [Eul47, § 7]: ,,Functiones dividuntur in algebraicas et transcendentes [...]”
74 The solutions of the wave-equation

∂2y

∂t2
= a

2 ∂2y

∂x2
, x ∈ [0, 1]

caused a very intensive discussion about the concept of a function. The solutions
found by d’Alembert in 1748 were not only defined on the interval [0, 1], and
of course one had not had any information about their properties beyond this
interval. He himself claimed a principle of continuity, which meant that only
those which were solutions for this equation on all intervals were suitable. Euler
rejected this a posteriori condition and its principle of continuity and so set a
milestone for the further formation of mathematical theory (for a more detailed
discussion compare [Vol87, p. 157 ff.]).
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“When quantities depend on other quantities so that these change
themselves, when those also do, then the first are called functions
of the last. This definition is of a very general nature and covers all
methods which help to define one quantity by others. So, if x denotes a
variable quantity, then all quantities depending on x or being defined
by x are called functions of x.”75

The above-cited words of Posse suggest that Chebyshev knew Euler’s work
. Besides this Chebyshev studied Euler’s papers since his time at Moscow uni-
versity, because they had been recommended to the students with those of
Cauchy and Lacroix.76 Initiated by Euler’s great grandson, the academician
P. N. Fuss, he later supported Bunyakovski with the edition of some redis-
covered contributions of Euler to the theory of numbers,77 and so we can
assume that he indeed had a good overview of Euler’s work and knew the
above-mentioned concepts of a function.

By the same reasoning, he probably knew about Cauchy’s attempts to
define the continuity of a function.

But reading Chebyshev’s work regarding this aspect we see that Cheby-
shev’s functions had always implicitly more properties to satisfy than the
more general concept of Euler demanded, although Chebyshev only called
them ‘functions’. If they should satisfy more properties, they do. Shortly (and
slightly polemically) spoken, for Chebyshev a function was something which
had as many derivatives as one needed.

But it is also possible that he firstly thought that a continuous function
is at least piecewise differentiable. This had been a usual opinion at that
time as many attempts to prove it have. Only with Weierstraß’ discovery of a
continuous function that is nowhere differentiable, was this question negatively
answered. We can assume that Chebyshev knew about new developments
within the Weierstraß school, since two of his pupils, A. V. Bessel’ in 1862 and
D. F. Selivanov in 188078 studied at the Berlin university through Chebyshev’s
initiative.

We have already seen that it was not very important for Chebyshev to
check all theoretical implications of his theorems (compare the discussion
about the alternation theorem), since he was firstly interested in solutions
of practical problems.

75 [Eul55, S. 4]: ,,Quae autem quantitatis hoc modo ab aliis pendent, ut his mu-
tatis etiam ipsae mutationes subeant, eae harum functiones appellari solent; quae
denominatio latissime patet atque omnes modos, quibus una quantitas per alias
determinari potest, in se complectitur. Si igitur x denotet quantitatem variabilem,
omnes quantitates, quae utcunque ab x pendent seu per eam determinantur, eius
functiones vocantur [...]”

76 Comp. [Pru76, p. 40].
77 Comp. [Pru76, p. 70].
78 See [Erm97, S. 2].
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There are only a few sources which present his opinions about questions of
the theoretical foundations of mathematics which were actual at that time. He
did not discuss this in his own research papers and at the university he did not
lecture on basics where he should express his thoughts about the foundations
of mathematics.79

Therefore we can only cite one source where Chebyshev himself talks about
these problems, the notes of one listener to his lecture about probability theory
(1876/77), which contain many details and especially statements that Cheby-
shev made in passing to illustrate the results he presented. It was justified that
the re-discovery of these notes by N. S. Ermolaeva [Erm87] caused a certain
stir.

An interesting remark about mathematicians themselves is:

“I divide mathematicians into two categories: the ones who deal with
mathematics to solve new problems from nature and whose results are
clear and the others who love mathematics as a subject to philosophize
about. I think that the second ones should not be called mathemati-
cians, and who falls on this way won’t be a mathematician. According
to the question about the statute of the university I therefore clearly
said that at the faculty of mathematics80 lectures about philosophy
are not desirable.”81

We can only guess who he had concretely in mind (later Lyapunov would
become clearer), but a little later talking about ‘infinitely small quantities’ he
reveals himself:

“You have already recognized that sometimes I come down to phi-
losophizing, but then it is not about the subject, not about what a
quantity, a space are like, but about methods. I do not think about
the origins, but about what should be in mind for the solution of new
problems. For this all kinds of considerations are useful. But philos-
ophizing about what an infinitely small quantity is, does not lead to

79 Compare the surveys in [Chebgw2, Bd. 5] and the lecture timetables of St Pe-
tersburg University [VorSPb], which are available from 1869.

80 Already in 1861 there was a discussion about the introduction of optional subjects
like logic and history of philosophy, since there was the opinion that from these
subjects students could also gain a profit for their own scientific work. October
29, 1876 there was a second meeting on this subject (shortly before the cited
lecture) and Chebyshev spoke against this suggestion. (See [Erm97])

81 Cited after [Erm97]: «	 razdel�� l�deĭ-matematikov na dve kategorii:
odni, zanima�wies� matematiko� dl� rexeni� novyh voprosov iz
prirody, rezulьtaty kotoryh os�zatelьny, ili voprosov geometrii i
proqih; a drugie, kotorye l�b�t matematiku kak predmet filosofstvo-
vani�. Po-moemu, vtorye ne dolжny sqitatьs� i matematikami, i kto
popadet na зtu dorogu, tot ne budet matematikom. Poзtomu pri voprose
o rassmotrenii universitetskogo ustava � pr�mo vyskazals�, qto prepo-
davanie filosofii na matematiqeskom fakulьtete ne жelatelьno.»
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anything. Here we have one of two alternatives: Either we go via phi-
losophizing to the point that conclusions using infinitely small quan-
tities were not strict—and then we would have to reject the infinitely
small—or we come to the fact to prove the correctness of those con-
clusions. The experience shows that all people who dealt with similar
questions explained this only for themselves and did not add anything
for the solution of new problems. In these cases I do not recommend
you to philosophize.”82

Clearly someone who talked about the validity of infinitely small quanti-
ties in such a manner would also doubt the sense of the exact definition of
continuity and the tightly connected question—for which functions his theo-
rems hold. He might object that all the theorems are valid for the respective
functions met in practical cases.

Of course it became clear that Weierstraß’ approximation theorem, proved
in 1885, left no trace in Chebyshev’s work. Presumably he was not surprised
by the result because in some way it confirmed his position to investigate
only functions satisfying certain desired properties—finally all continuous
functions are limits of good-natured analytic ones, even the degenerate non-
differentiable continuous ones.

So a large part of the work of Western European mathematicians passed
by their Russian colleagues without having great influence on them. We will
see in analysing the work of Chebyshev’s pupils that it would take another
generation until the discussion about the foundations of mathematics fell on
fertile ground and was used in approximation theory.

82 Cited after [Erm97]: «Vy zametili, qto na lekci�h � inogda puska�sь v
filosofstvovanie, no зto ne o predmete, ne o tom, qto takoe veliqina,
prostranstvo, a otnositelьno metodov. Duma� ne o tom, qto v osnove,
a o tom, qto dolжno imetь v vidu pri rexenii novyh voprosov. Pri
зtom vs�kogo roda soobraжeni� byva�t polezny. A filosovstvovanie
o tom, qto takoe beskoneqno mala� veliqina, ni k qemu ne vedet. Tut
moжet bytь odno iz dvuh: ili qrez filosofstvovanie doĭti do togo, qto
vyvody s beskoneqno malymi veliqinami nestrogi, i togda prixlosь by
otkazatьs� ot beskoneqno malyh, - ili na dele podtverditь strogostь
зtih vyvodov. Opyt pokazyvaet, qto vse l�di, zanima�wies� podobnymi
voprosami, vse tolьko dl� seb� razъ�sn�li delo i niqego ne pribavili
k tomu, qtoby rexitь novye voprosy. V takih sluqa�h sovetu� vam ne
filosofstvovatь.»
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The Saint Petersburg Mathematical School

Pafnuti Lvovich Chebyshev’s significance has a second basis because of his
role as founder of a mathematical school. Already before him there were fa-
mous Russian mathematicians like Lobachevski or at least mathematicians
who worked in Russia for a long time like Euler, but for the time being their
work hardly had an influence on the scientific surroundings because there had
not been any pupils who continued working on their ideas.

So we meet other circumstances with Chebyshev. His results defined new
scientific directions, his pedagogic jobs, especially at the Imperial St Peters-
burg University from 1847 until 1882, caused interest in these subjects.

We may name as his ‘direct successors’1 Aleksandr Nikolaevich Ko-
rkin2 (1837–1908), A. V. Bessel (1839–1870), Julian Karol Sochocki3 (1842–
1927), Matvej Aleksandrovich Tikhomandritski4 (1844–1921), Egor Ivanovich
Zolotarev5 (1847–1878), Konstantin Aleksandrovich Posse6 (1847–1928), Niko-
lay Yakovlevich Sonin7 (1849–1915), Aleksandr Vasilevich Vasilev8 (1853–
1929), Ivan Lvovich Ptashitski9 (1854–1912), Dmitri Fedorovich Selivanov10

1 We want to name as ‘direct successors’ those mathematicians Chebyshev himself
had an influence on as a teacher or a promoter, so not only his pupils. It is
obvious that Chebyshev had an influence on the work of mathematicians who
were not his pupils—maybe the clearest example is that of E. I. Zolotarev who
almost exclusively worked together with Korkin (see [Ozhi66] and [Ozhi68]), but
nevertheless left defining traces in approximation theory.

2 Comp. section 3.1.
3 Comp. section 3.4.
4 Comp. appendix A.1.
5 Comp. section 3.2.
6 Comp. section 3.5.
7 Comp. appendix A.2.
8 Comp. appendix A.3.
9 Comp. appendix A.4.

10 Comp. appendix A.5.
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(1855-1932), Andrey Andreevich Markov11 (1856–1922), Aleksandr
Michaylovich Lyapunov12 (1857–1918), Ivan Ivanovich Ivanov13 (1862–1939),
Dmitri Aleksandrovich Grave14 (1863–1939), Georgi Feodosevich Voronoy15

(1868–1908) and Vladimir Andreevich Markov16 (1871–1897).
Chebyshev and his pupils even had an influence beyond pure mathe-

matics. Maybe the most famous examples are Aleksey Nikolaevich Krylov17

(1863–1945), shipbuilding engineer and member of the academy, and Dmitri
Konstantinovich Bobylev18 (1842-1917), professor of physics and correspond-
ing member of the academy of sciences. With Bobylev the interaction be-
tween mathematics and physics as an example of the realization of the use of
mathematics for practical purposes is very clear: one of the opponents of his
doctoral thesis was Zolotarev; Bobylev himself was supervisor of Lyapunov’s
candidate-thesis.

We could of course add others to that list, but we want to restrict ourselves
to those scientists who would later be engaged in mathematical research.19

11 Comp. section 3.3.1.
12 Comp. appendix A.6.
13 Comp. appendix A.7.
14 Comp. appendix A.8.
15 Comp. appendix A.9.
16 Comp. section 3.3.3.
17 Aleksey Nikolaevich Krylov (*1863, †1945), 1878–1884 Studies at the naval school

in St Petersburg, 1884–1888 research at the hydrographical institute, 1888-1890
studies at the naval college (here he visited lectures of A. N. Korkin), since 1890
lecturer there. He also lectured at the polytechnic institute and other colleges,
mainly about the theory of shipbuilding. Afterwards Krylov worked (often as their
speaker) in several commissions dealing with the development of shipbuilding in
Russia and the Soviet Union. He also supervised the construction of ships which
were ordered abroad. In 1916 he was elected ordinary member of the academy
of sciences, in 1943 he was awarded one of the highest decorations in the Soviet
Union and became ‘hero of socialistic work.’

18 Dmitrij Konstantinovich Bobylev (*1842, †1917), in 1862 he finished the col-
lege of ordinance, followed by two years of military service, 1864–1870 auditor
at St Petersburg university, 1870 candidate thesis in physics, since 1871 lecturer
of physics at St Petersburg University and the institute of transportation, 1873
master thesis, 1876 deputy professor (for O. I. Somov) at the chair of mechan-
ics, 1878 extraordinary professor at St Petersburg University for physics, 1885
ordinary professor there.

19 Chebyshev’s pupils N. A. Artemev (1855-1904), Latyshev and Vladimir
Vladimirovich Lermantov (1845-?) mentioned in [She94] and [BuJo99] became
well-known more as chroniclers than as researchers, e. g., Artemev was the au-
thor of the above-cited notes on Chebyshev’s lectures on probability theory (see
[Erm87]). Lermantov became a physicist—in [Bio96] he was mentioned as an em-
ployee of the laboratory of physics at the St Petersburg University (at least from
1870 until 1896). The mathematicians Nikolay Sergeevich Budaev, Mikhail Fe-
dorovich Okatov, Orest Danilovich Khvolson, Iosif Andreevich Kleyber, Yevgeni
Vasilevich Borisov, Sergey Yevgenievich Savich, Boris Mikhaylovich Koyalovich
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Still long after his death Chebyshev should have an indirect influence on
the Russian mathematics because of the work of those pupils who were espe-
cially engaged in their common scientific program. A complete list would be
confusing because of the large number of different influences. We only want to
emphasize Antoni-Bonifatsi Pavlovich Psheborski20 (1871–1941) and Sergey
Natanovich Bernstein21 (1880-1968), since they were active on approximation
theory.

In the following we also will present biographical data of those mathemati-
cians whose efforts were outstanding according to the subject of this work.

3.1 Aleksandr Nikolaevich Korkin

After Chebyshev, Aleksandr Nikolaevich Korkin (1837–1908) was the most im-
portant initiator of the formation of the St Petersburg Mathematical School.
On the one hand this was due to the fact that among all professors of math-
ematics he lectured the longest time—22 years—together with Chebyshev at
the St Petersburg university. So all the above-mentioned persons who studied
there visited both Korkin’s and Chebyshev’s lectures. We find several sources
where the students praised Korkin’s efforts as a teacher.

The second reason was the fact that Chebyshev’s and his methods are
similar to each other. Of course the versatility of Chebyshev’s ideas outshone
Korkin’s work. Nevertheless, Korkin became known as but the founder of
Russian mathematical physics.

They agreed with each other in the exclusive use of classical algebraic
methods to solve concrete problems and both strove not to lose the connection
between mathematics and practice.

3.1.1 About Korkin’s Biography

Korkin was born February 19th, 1837 in the village of Zhidovinovo, district of
Totem in the Vologda province. He was the son of the state peasant Nikolay
Ivanovich Korkin.22 By his initiative in 1845 the young Aleksandr got the
possibility to live and to be educated in Vologda in the house of the grammar
school teacher Aleksandr Ivanovich Ivanitski. This was remarkable because at
that time in Russia peasants lived in serfdom, Korkin’s family was committed
to voluntary work for the Russian state («podatnye»)

and Ya. Ya. Tsvetkov might be taken into the list, but either they are known
only as lecturers at the St Petersburg University during the interesting time from
about 1870 until 1905 or their names are seldom mentioned in comments without
any notes about an outstanding connection to the questions discussed here.

20 Comp. section 5.1.
21 Comp. section 5.2.
22 These data are taken from the thorough biography written by E. P. Ožigova

[Ozhi68], if we do not mention other sources.
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After two years Aleksandr was able to attend the second class of the
Vologda grammar school (after his father paid a donation of 200 roubles to
the school and of five silver roubles to the Vologda administration to free the
son from serfdom).

In 1853 Korkin finished grammar school with the gold medal.23 In 1854
he registered at the physico-mathematical faculty of St Petersburg Univer-
sity, where at that time mathematics lectures were given by O. I. Somov,24

Bunyakovski and Chebyshev. Korkin attended Chebyshev’s lectures about
analytic geometry, higher algebra and number theory.

In 1857 for the first time Korkin was paid attention to because of his
contribution ‘About Largest and Smallest Quantities’ («O naibolьxih i
naimenьxih veliqinah»), which was awarded the gold medal in the stu-
dents’ competition. His referee was Bunyakovski. Korkin there investigated
several properties of local extrema of explicit or implicit differentiable func-
tions of one or more variables, but he also discussed problems from variational
calculus. Especially this subject impressed him.

Because of this outstanding work Korkin was freed from writing a candi-
date thesis. In 1858, after the final examinations and being freed from serf-
dom, he could start with his first pedagogical job at the first cadet school
(until 1861).

In 1860 a positive report of his work resulted in an offer of an appointment
as a lecturer for pure mathematics, which he could start after finishing the
master’s examinations. On December 11, 1860 he defended his master’s thesis
‘On the Determination of Abitrary Functions Given by Integrals of Partial
Differential Equations’ («Ob opredelenii proizvolьnyh funkciĭ v in-
tegralah uravneniĭ s qastnymi proizvodnymi»). His supervisor was
Chebyshev.

In 1861 Korkin’s post was confirmed and he became scientific assistant
(adjunkt). After the students’ unrest in the early summer of 1861 the univer-
sity was closed for the winter (officially even until August 1863) and the young
scientists, including Korkin, were sent abroad ‘to prepare the appointment of
a professor.’

At first Korkin went to Paris. After a period of self-study on elliptic func-
tions he attended lectures of different mathematicians, among whom were

23 Until now the most outstanding pupils are awarded the gold medal after finishing
school. Although some of the persons discussed in this book received the gold
medal it was and is a rare decoration and is not awarded in every class.

24 Osip (Iosif) Ivanovich Somov (1815–1876), until 1835 studies at Moscow Univer-
sity, 1847–1862 ordinary professor at St Petersburg University, 1848–1869 also
at the institute of transportation and 1849–1862 at the college of mining, 1857–
1862 corresponding, from 1862 ordinary member of the academy. His scientific
subjects were theoretical mechanics and analysis. With his works on elliptic func-
tions he laid the foundations for the work of some members of the St Petersburg
Mathematical School on this subject.
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Liouville and Bertrand. Bertrands lectures about partial differential equa-
tions were of special interest for Korkin.

After a brief return to Russia in May 1863, Korkin again left home for
Berlin, where he heard Kummer’s lectures on circular polynomials, Weierstraß’
lectures on elliptic functions and Kronecker’s lectures about quadratic forms.

Korkin returned to St Petersburg in September 1864 and again took up
his job as a lecturer.

At the end of 1867 he defended his doctoral thesis ‘About Systems of Par-
tial Differential Equations of First Order and Some Questions from Mechanics’
(«O sovokupnyh uravneni�h s qastnymi proizvodnymi 1-go por�dka
i nekotoryh voprosah mehaniki»), the opponents again were Chebyshev
and Somov.

In May 1868 Korkin became extraordinary professor in the chair of pure
mathematics, in 1873 he was promoted to ordinary professor, and in 1886
to merited professor. At the St Petersburg University he lectured until his
death in 1908. It is an interesting fact that for thirty years he was the only
lecturer to students in advanced courses in partial differential equations and
variational calculus [VorSPb] (from winter 1875/76 until 1908). So the whole
first generation of the St Petersburg Mathematical School learned these im-
portant subjects of mathematical physics only from him and most probably
were influenced by him in their opinion about mathematics.

Besides his professorship from 1864 until 1900, Korkin lectured about cal-
culus at the naval college (as a successor of Bunyakovski). Among his students
was the later academician Aleksey Nikolaevich Krylov.

3.1.2 The Scientific Work of A. N. Korkin

Korkin’s works touch three mathematical branches: the integration of partial
differential equations, integration of systems of ordinary differential equations
and number theory. The latter work, however, consisted only of joint contribu-
tions with his pupil E. I. Zolotarev about quadratic forms.25 There was only
one paper which was connected with approximation theory, ,,Sur un certain
minimum” [KoZo73], written together with Zolotarev in 1873. We will discuss
it later in connection with the other works of Zolotarev.

The settings of his problems were exclusively of algebraic nature. He wrote
in the introduction into his work ,,Sur les équations différentielles ordinaires
du premier ordre” [Kor96]:

“Recently there were attempts to apply the theory of functions of
a complex variable coming itself from investigations about algebraic
functions and their integrals to differential equations. But aside of the
large generality of these theorems it has another essential imperfect-
ness: as we know it is the disadvantage of its methods to calculate

25 A detailed analysis of Korkin’s work would not belong to the aims of the present
work. Here we want to refer again to [Ozhi68].



82 3 The Saint Petersburg Mathematical School

unknown functions. But this calculation is the only true solution of
an equation and the definite aim of its analysis. To advance with the
integration of differential equations the theory of functions does not
suffice; therefore we have to add considerations, which are completely
strange from it.
Therefore I think that we have no other chance to reach the aim
of the calculation of unknown quantities than to follow the way of
the old geometers, that means to restrict oneself to studies of special
equations, to search for new equations to integrate; all the more so,
since very simple special cases, carefully investigated, might lead to
very general conclusions.”26

In this sense E. P. Ozhigova [Ozhi68] judges:

“In his work about differential equations A. N. Korkin remained within
the frames of classical research directions—the search for solutions of
differential equations in closed form. He did not accept new methods
in this subject.”27

Here we established an obvious common feature between him and
Chebyshev. They rejected ‘philosophizing’ about infinitely small quantities
and always aimed to solve the posed problems with a closed formulae or an
algorithm, Korkin was not interested in more theoretical questions about the
foundations of analysis and the concept of a function as they recently came
up in the middle of the 19th century. Only Moscow mathematicians devoted
their work to the analytical theory of differential equations.28

26 [Kor96, P. 317]: ,,Dans ces derniers temps on a essayé d’appliquer aux équations
différentielles la théorie des fonctions d’une variable complexes, résultant elle
même de l’étude des fonctions algébriques et leurs intégrales. Mais, avec la grande
généralité de ses théorèmes, elle a aussi une imperfection essentielle: à savoir, le
défaut des méthodes pour le calcul des fonctions inconnues. Or, ce calcul est
la véritable intégration d’une équation, et le but définitif de son analyse. Pour
avancer dans l’intégration des équations différentielles la seule théorie des fonc-
tions ne suffira donc pas; à cet effet il faut y associer des considérations, qui lui
sont complèment étrangères.

Je pense donc, qu’ayant pour but le calcul des inconnues nous n’avons jusqu’à
présent d’autre moyen que de suivre la marche des ancients géomètres, c’est à
dire, en nous bornant à l’étude attentive des équations particulières, rechercher
des nouvelles équations intégrables; et cela d’autant plus, que des cas particuliers
très simples, traités convenablement, peuvent conduire à des conclusions très
générales.”

27 [Ozhi68, S. 60]: «A. N. Korkin v svoih issledovani�h po teorii differ-
encialьnyh uravneniĭ ostavals� v ramkah klassiqeskogo napravleni� -
otyskani� rexeniĭ differencialьnyh uravneniĭ v koneqnom vide. Novyh
metodov v зtoĭ oblasti on tak i ne prin�l.»

28 Ozhigova mentions Anisimov and Nekrasov.
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3.1.3 Judgments about Korkin

As already mentioned above, Korkin played an outstanding role in the for-
mation of the St Petersburg Mathematical School. Although he made almost
no contributions to approximation theory, his pedagogical job had an indirect
influence on that field. Posse [Pos09] and Krylov [Kry50] emphasized his ob-
viously excellent pedagogical capabilities. Also legendary were the so-called
‘Korkin saturdays’, where St Petersburg mathematicians and interested pupils
met at Korkin’s home and discussed mathematical problems. The topics of
some theses were developed there.29

A conspicuous difference between Korkin and other pupils of Chebyshev
is the fact that there was nearly no intersection between his research interests
and those of Chebyshev. But, as we saw, they had similar opinions about
mathematics.

Korkin, however, seemed to be more rigorous in his rejection of certain
mathematical trends than Chebyshev. Posse wrote in his necrologue about
Korkin [Pos09]:

“Korkin extremely negatively related to the direction that mathemat-
ics in Germany and partially in France followed in the second half
of the 19th century under the influence of Weierstraß and Riemann.
And so he was not interested in the papers of mathematicians of these
schools. As someone who somehow loved exaggerations, in this or that
direction, he called the above-mentioned direction ‘decadency’.”30

In this prejudice E. P. Ozhigova sees the cause why Sergey Natanovich
Bernstein’s work had not been acknowledged in St Petersburg. She writes:

“The academician V. I. Smirnov remembers that after an outstanding
defence of his doctoral thesis31 in Paris S. N. Bernstein returned to
St Petersburg to pass the master examinations. Korkin asked him
about the integration of partial differential equations with methods of
Jacobi and Poisson and was not content with Bernstein’s answer.
Bernstein had trouble to pass the examinations. He defended his mas-
ter thesis not in St Petersburg, but in Kharkiv.”32

29 Zolotarev remembered this.
30 [Pos09, p. 21]: «K napravleni�, prin�tomu matematiko� vo vtoru� polov-

inu XIX stoleti� v Germanii i otqasti vo Francii, pod vli�niem
Veĭerxtrassa i Rimanna, Korkin otnosils� vesьma otricatelьno i rab-
otami matematikov зtoĭ xkoly on ne interesovals�. Sklonnyĭ neskolьko
k preuveliqeni�m, v tu i drugu� storonu, pri ocenke uqenyh rabot, on
nazval vyxeupom�nutoe napravlenie «dekadenstvom».»

31 The French title ‘docteur’ was translated here by the Russian word ‘doktor’ («dok-
tor»). This title, however, rather corresponds to the Russian ‘candidate of sci-
ences’ («kandidat nauk») or the former degree of a ‘master’ («magister»).
Compare also appendix B.1.

32 [Ozhi68, p. 53]: «Akademik V. I. Smirnov vspominaet, qto kogda S. N.
Bernxteĭn, blest�we zawitivxiĭ v Pariжe doktorsku� dissertaci�,
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3.2 Egor Ivanovich Zolotarev

Referring to what we stated before, Egor Ivanovich Zolotarev is a typical
representative of the St Petersburg Mathematical School, that is, someone
who aimed to solve his problems completely to the “receipt of a suitable
formula or a good algorithm being appropriate for practical computations.”33

Regarding approximation theory it is interesting that he developed a new
method to solve extremal problems: he applied methods from the theory of
elliptical functions.

3.2.1 Biographical Data

Egor Ivanovich Zolotarev was born March 31, 1847 as a son of Agafya Izotovna
Zolotareva and the merchant Ivan Vasilevich Zolotarev in St Petersburg.34 In
1857 he began to study at the fifth St Petersburg grammar school, a school
which centered on mathematics and natural science. He finished it with the
silver medal in 1863.35 In the same year he was allowed to be an auditor
(«volьnosluxatelь») at the physico-mathematical faculty of St Petersburg
University. He had not been able to become a student before 1864 because
he was too young. Among his academic teachers were Somov, Chebyshev and
Korkin, with whom he would have a tight scientific friendship.

In November 1867 he defended his candidate thesis ‘About the Integration
of Gyroscope Equations’ and after 10 months there followed his thesis pro
venia legendi ‘About one question on Minima’ [Zol68], which we will discuss
later. With this work he was given the right to teach as a ‘Privat-dotsent’36

at St Petersburg University.
First he lectured on ‘differential calculus’ for students of natural sciences

(until summer 1871), later ‘integral calculus’ and ‘introduction to analysis’for
beginners of mathematics. Except for a short pause he lectured on ‘theory
of elliptic functions’ for students of advanced courses during his whole job as
lecturer and professor [VorSPb].

In December 1869 Zolotarev defended his master thesis ‘About the Solu-
tion of the Indefinite Equation of Third Degree x3+Ay3+A2z3−3Axyz = 1.”

priehal v 1906 g. v Peterburg derжatь magisterskie зkzameny, Korkin
zadal emu vopros ob integrirovanii uravneniĭ v qastnyh proizvodnyh
metodami Puassona i 	kobi i ostals� nedovolen ego otvetom.

Bernxteĭnu s trudom udalosь vyderжatь зtot зkzamen. Magistersku�
dissertaci� on zawiwal ne v Peterburge, a v Harkive.»

33 [Ozhi66, p. 61]: «poluqenie udobnoĭ formuly ili horoxego algoritma,
udobnogo dl� praktiki sposoba vyqisleni�.»

34 These data were taken from Zolotarev’s biography [Ozhi66].
35 According to S. Ya. Grodzenski [Gro87], the biographer of Andrey Andreevich

and Vladimir Andreevich Markov, aside from Zolotarev Chebyshev’s successors
A. V. Vasilev, A. A. and V. A. Markov were pupils of the fifth grammar school,
so we can guess the significance this school had at that time.

36 A lecturer who is not a member of the salaried university staff.
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He started his first trip abroad in 1872, visiting Berlin and Heidelberg. In
Berlin he attended Weierstraß’ “theory of analytic functions,” in Heidelberg
Königsberger’s “theory of functions of a complex variable.”

In 1874 Zolotarev became a member of the university staff as a lecturer and
in the same year he defended his doctoral thesis ‘Theory of Complex Numbers
with an Application to Integral Calculus.’ The problem Zolotarev solved there,
was based on a problem Chebyshev had posed before, the representation of
expressions of the form

∫ b

a

x + A√
x4 + ax3 + bx2 + cx + d

by logarithms. This was a question Chebyshev had been interested in since
the beginning of his research,37 but he was not able to solve it without the
help of elliptic functions.38

With the beginning of the winter semester in 1876, Zolotarev was ap-
pointed extraordinary professor and after the death of academician Somov
he became his successor, but only as an adjunct of the academy of sciences.
Nevertheless this was a remarkable fact. On the one hand there was another
candidate, the ordinary professor Korkin.39

Egor Ivanovich Zolotarev’s steep career ended abruptly with his early
death. On June 26th, 1878, when he was on his way to the dacha he was
run over by a train in the station Tsarskoe Selo (now Pushkin). On July 7th,
1878 he died from blood-poisoning.

3.2.2 Application of the Theory of Elliptic Functions to
Approximation Theory

In his thesis pro venia legendi ‘About one question on Minima’ [Zol68]
Zolotarev discussed Chebyshev’s first problem for two given coefficients, that
is for an arbitrary but fixed σ ∈ R he tried to solve

min
p∈Pn−2

max
x∈[−1,1]

|xn − σxn−1 − p(x)|. (3.1)

This problem was posed to him by Chebyshev, as Zolotarev himself would
mention40 later in his 1877’s work ‘Application of Elliptic Functions ...’
[Zol77/1], published also in French [Zol78]).
37 Compare, e. g. the topic of [Cheb47].
38 Compare the discussion in [Erm94/1].
39 Korkin should then become Zolotarev’s successor after his death, but was not

elected because he was professor of ‘pure mathematics,’ but Zolotarev’s position
was that of ‘applied mathematics.’ That Korkin had not been elected, caused
some excitement (see [Ozhi68, S. 50ff.]).

40 “Ten years ago I was recommended by P. L. Chebyshev to investigate this prob-
lem” [Zol32, Vol. 2, p. 2]: «Des�tь let tomu nazad зtot vopros byl mne
rekomendovan dl� zan�tiĭ P. L. Qebyxevym [...] ».
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To solve this problem he at first proved theorems of Chebyshev type (com-
pare Theorem 2.1 from page 38), where the assumptions were even a little
more general, since Zolotarev demanded that the parameter of the problem,
p1, . . . , pn, should satisfy ν different side-conditions

φ1(p1, . . . , pn) = 0

...

φν(p1, . . . , pn) = 0.

Then, as before with Chebyshev, there follows a theorem about the number
of deviation points of the error function

F (x) = Y (x) −
n−1∑

i=0

pix
i, x ∈ [−h, h].

Here Zolotarev did not assume anything for the choice of the function Y. It is
an ‘arbitrary’ function.

Theorem 3.1 Let L := max
x∈[−h,h]

|F (x)|. If F satisfies

F (a1) = A1

...

F (am) = Am,

then there holds:
If among all functions satisfying the above-described side-conditions F is

the one which deviates the least possible from zero, then the equations

F (x)2 − L2 = 0 and

(x2 − h2)F ′(x) = 0

have at least n + 1 − m common roots.

We remark that the number of deviation points gets smaller with the
number of the side-conditions. We could make such an observation already
according to the other cases Chebyshev discussed (weighted and rational ap-
proximation).

Zolotarev used this theorem to write down the characteristic equations for
his original problem with two given coefficients, that is, for

Y (x) := xn

and
φ1(p1, . . . , pn) = pn + σ.



3.2 Egor Ivanovich Zolotarev 87

To simplify the further calculations he set the borders of the interval equal to
−1 and 1.

In the case that the characteristic equations are solved in only one border,
then the characteristic equations can be written as

F (x)2 − L2 = (x ± 1)(x − α)

n−1∏

i=1

(x − xi)
2 and (3.2)

F ′(x) = n

n−1∏

i=1

x − xi.

x1, . . . , xn−1 are then points within [−1, 1], and α might be a point beyond
the interval.

In the case that the characteristic equations are solved at both borders,
they have the form

F (x)2 − L2 = (x2 − 1)(x − α)(x − β)

n−2∏

i=1

(x − xi)
2 and (3.3)

F ′(x) = ρ(x)

n−1∏

i=1

x − xi,

where ρ is a linear function. Comparing the coefficients with F (x) = xn −
σxn−1 + · · · we get

ρ(x) = n

(

x − α + β

2

)

+ σ.

3.2.2.1 Zolotarev’s solutions

With long and difficult calculations based on the theory of elliptic functions
he was able to determine the solutions of the problem.

In the first case (3.2), which can occur for σ < n tan2 π
2n , the solution is

F (x) =
1

2n

(

x − σ

n
+

√

(x + 1)

(

x − 1 − 2σ

n

))n

(3.4)

+

(

x − σ

n
−

√

(x + 1)

(

x − 1 − 2σ

n

))n

with the maximum error

L =

(
α±1

2

)n

2n−1
. (3.5)
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The sign is equal to the sign of the given quantity σ.
The second case (3.3) has to be divided into the cases of the roots α and

β being real or imaginary numbers.
If there holds σ > n tan2 π

2n , then both of these numbers can be real. Then
the solution is41

F (x)

L
=

1

2

[(

H
(

K
n + u

)

H
(

K
n − u

)

)n

+

(

H
(

K
n − u

)

H
(

K
n + u

)

)n]

; (3.8)

the parameter k of the elliptic function can be determined by

1 +
σ

n
=

2 sn K
n

cn K
n dn K

n

[

1

sn 2K
n

− Θ′ (K
n

)

Θ
(

K
n

)

]

.

The maximum error is

L =
(−1)n

2n−1

[

kΘ2
1(0)

H1

(
K
n

)
Θ1

(
K
n

)

]n

. (3.9)

If σ is even larger than n, then this solution is unique.
If both roots α and β are purely imaginary, then we get the solution

F (x)

L
=

1

2

[(

H
(

K
n + u

)
Θ1

(
K
n + u

)

H
(

K
n − u

)
Θ1

(
K
n − u

)

)n

+

(

H
(

K
n − u

)
Θ1

(
K
n − u

)

H
(

K
n + u

)
Θ1

(
K
n + u

)

)n]

;

(3.10)

41 We want to remember the definition of the elliptic functions which occur in the
following formulae.

The amplitude φ is defined by the integral

x =

∫ φ

0

dα
√

1 − k2 sin2 α

as is attributed by φ = am x. Then the elliptic functions sn, cn and dn are defined
by

sn x := sin am x := sin φ,

cn x := cos am x := cos φ and

dn x := ∆ am x :=

√

1 − k2 sin2 φ.

Today the Jacobian functions H, H1, Θ and Θ1 are denoted as ϑ1, . . . , ϑ4. Here it
is

H(x) = ϑ1

( x

2K

)

, Θ(x) = ϑ2

( x

2K

)

, (3.6)

H1(x) = ϑ3

( x

2K

)

, Θ1(x)= ϑ4

( x

2K

)

. (3.7)
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the parameter k of the elliptic function can be determined by

σ

n
=

sn 2K
n

dn 2K
n

[

k2 sn 2K
n cn2 K

n

dn 2K
n

− 2
Θ′ (K

n

)

Θ
(

K
n

)

]

.

The maximum error is

L =
(−1)n

2n−1

[

Θ1(0)

Θ1

(
2K
n

)

]n

. (3.11)

This case can occur only if σ satisfies the inequality

cn 2K
n

dn2 2K
n

< 1 +
σ

n
.

Looking at the solutions we can guess how complicated Zolotarev’s calcula-
tions were. All the methods of Jacobi and Abel according to elliptic functions
were used by him.

Figure 3.1 shows in the simple case (without elliptic functions), how the
error changes by choosing the second coefficient σ.

Zolotarev could show that

lim
σ→−∞

L(σ) = ∞.

Zolotarev deepened this method in his second work about approximation
theory, ‘Application of Elliptic Functions ...’ [Zol77/1]. There he simplified the
calculations from [Zol68] and solved another interesting extremal problem, the
determination of the fraction
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Figure 3.1. The figure shows Zolotarev’s solution in dependence on σ. It can be
seen clearly that the maximum error enormously grows when σ becomes negative.
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y(x) :=
φ(x)

ψ(x)
, φ ∈ Pn, ψ ∈ Pn

of maximal deviation from zero on the half axis ( 1
k ,∞), k < 1, if additionally:

|y(x)| ≤ 1, |x| < 1.

Similar to this problem is the determination of the fraction

y(x) :=
φ(x)

ψ(x)
, φ ∈ Pn, ψ ∈ Pn

of least deviation from zero in the interval [−1, 1], if there holds beyond this
interval:

y(x) ≤ −1, −1

k
≤ x ≤ −1,

y(x) ≥ 1, 1 ≤ x ≤ 1

k
.

3.2.3 L1-Approximation

The following problem was solved by Korkin and Zolotarev in their joint work
Sur un certain minimum” [KoZo73]:

To determine the coefficients of the polynomial

p(x) := xn + an−1x
n−1 + · · · + a0,

so that ∫ 1

−1

|p(x)| dx

will be minimal.
In other words they wanted to determine the polynomial least deviating

from zero according to the L1-norm.
At first the authors proved some necessary properties of the sought solu-

tion. They showed with Chebyshev’s shift argument, which in the meantime
became classical, that the zeros of the minimal solution are simple and real
and lie within the interval [−1, 1].

Let them be denoted by α1, . . . , αn. Using these properties we can write:42

∫ 1

−1

|f(x)| dx = (−1)n

[∫ α1

−1

f(x) dx −
∫ α2

α1

f(x) dx (3.12)

+ · · · + (−1)n

∫ 1

αn

f(x) dx

]

=: S[f(x)].

42 Later they would show that indeed the sign is (−1)n.
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The function S : A → R as defined above can be regarded as a function
of the unknown coefficients S(f) = S(a0, . . . , an−1), where (A ⊂ Pn[−1, 1]
denotes the polynomials with simple real zeros which lie within the interval
[−1, 1].

A minimum of this function will satisfy the necessary condition

∂S

∂a0
(a0, . . . , an−1) = · · · =

∂S

∂a0
(a0, . . . , an−1) = 0,

so for i = 0, . . . , n − 1 :

0 =
∂S

∂ai
(a0, . . . , an−1)

=
(−1)n

i + 1

[∫ α1

−1

xi+1 dx −
∫ α2

α1

xi+1 dx + · · · + (−1)n

∫ 1

αn

xi+1 dx

]

=
(−1)n

i + 1

[
2αi+1

1 − 2αi+1
2 + · · · + 2(−1)nαi+1

n + [(−1)n + (−1)i+2]
]
.

Thus, the necessary condition for the zeros of the minimal solution will be

αi+1
1 − αi+1

2 + · · · + (−1)nαi+1
n =

(−1)i+1 + (−1)n+1

2
. (3.13)

Before calculating the minimal solution two further properties are shown:
At first the numbers α1, . . . , αn determined by (3.13) and the previous

properties are uniquely determined. So the necessary condition is sufficient as
well.

Secondly the following functional equation holds for the minimal solution
f :

f(x) = (−1)nf(−x). (3.14)

So, f and n are both at the same time either even or odd. Therefore the
sign in (3.12) is correct.

With the equations (3.13) the solutions are determined for n = 1, 2, 3, 4.
They are

f1(x) = x

f2(x) = x2 − 1

4
[= (x +

1

2
)(x − 1

2
)]

f3(x) = x3 − 1

2
x [= (x +

1√
2
)x(x − 1√

2
)]

f4(x) = x4 − 3

4
x2 +

1

16

[= (x +
1 +

√
5

4
)(x − 1 −

√
5

4
)(x +

1 −
√

5

4
)(x − 1 +

√
5

4
)].
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This heuristic approach led Korkin and Zolotarev to the proposition for
the general solution:

fn(x) =
1

2n

sin ((n + 1) arccos x)√
1 − x2

. (3.15)

In the following sections of Korkin’s and Zolotarev’s paper, it is going to
be verified.

Today we know the functions fn as Chebyshev polynomials of second kind,
they are connected with the Chebyshev polynomials of first kind by the prop-
erty

fn(x) =
1

n + 1
T ′

n+1(x),

which also shows that all the fn are polynomials.43

3.2.3.1 An excursion into Laurent coefficients

The aim of this excursion is to have the necessary conditions generally handier.
So a connection between the zeros of a polynomial and the Laurent expansion
of certain rational functions will be established.

Let u be a function given by the main part of a Laurent expansion

u(x) :=

∞∑

i=1

a−ix
−i, a−1 �= 0. (3.16)

The polynomial φ ∈ Pn+1 has to be chosen so that the coefficients
a′

−1, . . . , a
′
−(n+1) of the expansion of uφ vanish, hence:

u(x)φ(x) :=

∞∑

i=n+2

a′
−ix

−i. (3.17)

Then we can find functions ψ and ε with

u(x)φ(x) = ψ(x)(1 + ε(x)) (3.18)

where ψ ∈ Pn and

ε(x) =
∞∑

i=2n+2

b−ix
−i. (3.19)

The function ψ will later be the minimal solution. We assume that its
zeros are all different from each other and real. We denote them by

c1, . . . , cn.

Then we can expand:

43 The polynomials nowadays used differ from the original ones by the factor 1
2n−1 ,

which was used earlier to get 1 as the first coefficient.
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φ(x)

x − ci
= φ̂(x) +

∞∑

j=1

cj−1
i φ(ci)

xj

with φ̂ ∈ Pn or completely:

n∑

i=1

φ(x)

x − ci
= φ(x)

ψ′(x)

ψ(x)
(3.20)

= φ̃

∞∑

j=1

∑n
i=1 cj−1

i φ(ci)

xj
, φ̃ ∈ Pn.

Deriving both sides of (3.18) we get

u′(x)φ(x) + u(x)φ′(x) = ψ′(x)(1 + ε(x)) + ψ(x)ε′(x),

by dividing by (3.18) it becomes

u′(x)

u(x)
+

φ′(x)

φ(x)
=

ψ′(x)

ψ(x)
+

ε′(x)

1 + ε(x)
.

This equation can also be written as

φ′(x) + φ(x)
u′(x)

u(x)
= φ(x)

ψ′(x)

ψ(x)
+ φ(x)

ε′(x)

1 + ε(x)
.

Since all coefficients ≥ −(n + 1) vanish in the Laurent expansion of φ ε′

1+ε ,

the coefficients for x−1, . . . , x−(n+1) of the expansion of

φ(x)
u′(x)

u(x)
and φ(x)

ψ′(x)

ψ(x)

must coincide.
But with (3.20) they are

a−1 :=

n∑

i=1

φ(ci), . . . , a−(n+1) :=

n∑

i=1

cn
i φ(ci).

So it is now possible to choose suitable functions. Set

u(x) :=
1√

x2 − 1
,

φ(x) :=
1

2n
cos[(n + 1) arccos(x)]

(

=
1

2n
Tn+1(x)

)

and

ψ(x) :=
1

2n

sin[(n + 1) arccos(x)]√
1 − x2

(= fn(x)).
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As we have already shown, φ and ψ are polynomials. Obviously their zeros
satisfy the demanded conditions.

Then

φ(x)
u′(x)

u(x)
= − x

x2 − 1
φ(x).

Because (x2 − 1) is not a factor of φ, φ can be represented as

φ(x) = (x2 − 1)F (x) + Ax + B (3.21)

with F ∈ Pn−1 and non-vanishing constants A and B. Putting in 1 and −1
we get

A =
1 − (−1)n+1

2n+1
B=

1 + (−1)n+1

2n+1
. (3.22)

With (3.21) we have then

φ(x)
u′(x)

u(x)
= −xF (x) − A − Bx + A

x2 − 1
(3.23)

= −
(

A + xF (x) +
B

x
+

A

x2
+

B

x3
+ · · ·

)

.

Now we set

αi := cos

(
(n − i + 1)π

n + 1

)

, i = 1, . . . , n,

as zeros of ψ, for which property (3.13) has to be verified. So we reached by
definition:

α1 < α2 < · · · < αn,

and compute

φ(αi) =
1

2n
(−1)n+i+1.

The result of the previous section, the general representation of the Laurent
coefficients (3.20) and the concrete calculation (3.23) now produce for all
i = 1, . . . , n, that the sum

n∑

i=1

αj
i φ(αi) = − 1

2n
(−1)n+1

n∑

i=1

(−1)i−1αj
i

for even j will be equal to B and for odd j will be equal to A.44

So it must be:

− 1

2n
(−1)n+1

n∑

i=1

(−1)i−1αj
i = −1 + (−1)n+1+j

2n+1
,

44 The exponent j corresponds with the Laurent coefficient j + 1.
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for the right expression for even j will assume B and for odd j assume A.
Multiplying both sides with − 1

2n (−1)n+1 will lead to

∂S

∂aj−1

n∑

i=1

(−1)i−1αj
i =

(−1)j + (−1)n+1

2
,

and is equal to condition (3.13), which had to be verified.
So ψ is the minimal solution to be determined.
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Figure 3.2. The figure shows Korkin’s and Zolotarev’s solution for n=6, which is
compared with T7. Especially the right picture presenting their absolute values clearly
shows that

∫ 1

−1
|f6(x)| dx <

∫ 1

−1
|T7(x)| dx.

The application of methods from the theory of functions is remarkable and
could not be found in the work of Chebyshev.

Here the influence of O. I. Somov, who represented the theory of elliptic
functions among the teachers of St Petersburg University, became clear. In
1876 Zolotarev wrote his necrologue [Zol77/2], where he expressed this.

So Zolotarev proved to be ready to use new (Western European) results
to answer questions of determining maxima and minima of concrete practical
problems dominating in St Petersburg.
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3.2.4 Zolotarev’s Conceptional Apparatus

In his contributions to approximation theory Zolotarev usually did not exactly
define what functions he was talking about, although this would have been
an interesting question, e. g., for Theorem 3.1.

His lectures, however, showed that he was interested in questions about
the foundations of analysis.

So already in his first lectures “Differential Calculus for Students of Nat-
ural Science” (since 1868) he discussed the conception of a function in a way
which was quite unusual for St Petersburg mathematics of that time. Firstly
he used Euler’s more general concept (a dependent variable was defined as a
function of an independent one) and then pointed out:45

“A variable quantity is generally called continuous between certain
boundaries, if it reaches all interim values from an initial to a final
value. According to a function we say that it is continuous if with
a continuous variable it goes from the initial value to the final value
passing all interim values.”46

And then, with k := f(x + h) − f(x) :

“If we now diminish h by and by to zero and in this case k tends to
zero, too, so the function y = f(x) is continuous.”47

After this there followed examples of continuous and non-continuous func-
tions, where all non-continuous functions always had a finite number of jumps.
A function nowhere continuous was not presented.

But as we could see this does not contradict the estimation that Zolotarev
was ready to assume new concepts and methods.

And so his biographer E. P. Ozhigova judged the following about Zolotarev’s
work:

Although Zolotarev was a pupil of Chebyshev, his work had a set of
characteristic particularities differing from the usual methods of the
mathematics of the St Petersburg school. [. . . ] He often used the the-
ory of elliptic functions which Chebyshev did not love much. Whereas
for Chebyshev the solution of concrete problems and the formulation

45 The cited transcription was made in 1870.
46 [Zol70, p. 10]: «Peremenna� veliqina nazyvaets� voobwe nepreryvno�

meжdu nekotorymi predelami, esli ona perehodit ot naqalьnogo znaqeni�
k koneqnomu qerez vse promeжutoqnye znaqeni�. Otnositelьno funkt-
sii govor�t, qto ona nepreryvna, esli s nepreryvnym izmeneniem
nezavisimoĭ perehodit ot naqalьnogo znaqeni� k koneqnomu qerez vse
promeжutoqnye veliqiny.»

47 [Zol70, p. 10]: «Esli teperь stanem h posledovatelьno umenьxatь do nul�
i v зtom sluqae k budet toжe stremitьs� k nul�, to funkci� y = f(x)
nepreryvna.»
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of new problems based on certain practical results were charateristic,
for Zolotarev it was the pursuit to abstraction and generalization.”48

This became especially clear when analysing Zolotarev’s notebooks from
his assets where he formulated his future scientific aims. Often we find an
additional aim to the idea of solving a concrete problem: to generalize the
discovered theorems.49 Chebyshev never posed such problems!

Regarding approximation theory, we can confirm that Zolotarev was the
first who applied function theory there, a non-typical subject for St Petersburg
mathematicians.

That Zolotarev did not discuss the more general problem of approximation
of continuous or integrable functions or did not look for generalizations of
Chebyshev’s theorems, is not really a flaw because modern analysis had not
prepared all the basic methods to do this.

Zolotarev had an excellent command of the well developed methods from
algebra and function theory, as his main monographs ‘Theory of integral com-
plex numbers’ (today we say ‘integral algebraic numbers’) and the abundance
of contributions to the theory of quadratic forms (written together with Ko-
rkin) show.

Because of his very early death Zolotarev did not experience the further
development of the foundations of mathematical analysis and so could not take
part in it. His lectures where he discussed the concept of continuity proved
that he obviously would have been interested in it.

3.3 Andrey and Vladimir Andreevich Markov

Among all of Chebyshev’s pupils, Andrey Andreevich Markov is regarded as
the one who is the most similar to Chebyshev with respect to the amount of
mathematical work, aims and methods.

N. I. Akhiezer summarized Markov’s work as reprinted in the “Selected
Works about the Theory of Continuous Fractions and the Theory of Functions
Least Deviating from Zero” [MarA48]:

[...] There starts a whole set of papers devoted to limits of integrals,
interpolation, functions of least deviation from zero and continuous

48 [Ozhi66, p. 121:]«Hot� Zolotarev byl uqenikom Qebyxeva, ego tvorqest-
vo imeet r�d harakternyh osobennosteĭ, otliqa�wih ego ot obyqnyh
metodov matematikov Peterburgskoĭ xkoly. [...] On qasto polьzuets�
teorieĭ зlliptiqeskih funkciĭ, kotoru� ne oqenь l�bil Qebyxev. Esli
dl� Qebyxeva harakterno rexenie konkretnyh zadaq na osnove nekotoryh
praktiqeskih soobraжeniĭ [...], to dl� Zolotareva harakterno stremlenie
k abstrakcii, k obobweni�m.»

49 See [Ozhi66, Chapter 9].
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fractions—works, where Markov turned out to be the successor of his
ingenious teacher P. L. Chebyshev.”50

The same judgement holds for probability theory, since especially the
Markov strings made him famous.

3.3.1 About Andrey Andreevich Markovs Life

Andrey Andreevich Markov was born June 2, 1856 in Ryazan as the son of the
secretretary of the public forest management of Ryazan, Andrey Grigorevich
Markov, and his first wife, Nadezhda Petrovna Markova.51

In the beginning of the 1860s Andrey Grigorevich moved to St Petersburg
to adopt the job as an asset manager of the princess Ekaterina Aleksandrovna
Valvateva.

In 1866 Andrey Andreevich’s school life began with his entrance into St Pe-
tersburg’s fifth grammar school. Already during his school time Andrey was
intensely engaged in higher mathematics. As a 17 years old grammar school
pupil he informed Bunyakovski, Korkin and Zolotarev about an apparently
new method to solve linear ordinary differential equations and was invited to
the Korkin Saturdays. At last in 1874 he finished the school and began his
studies at the physico-mathematical faculty of St Petersburg University.

Among his teachers were52 Sochocki (differential calculus, higher algebra),
Posse (analytic geometry), Zolotarev (integral calculus), Chebyshev (number
theory, probability theory), Korkin (ordinary and partial differential equa-
tions), Okatov (mechanism theory), Somov (mechanics) and Budaev (descrip-
tive and higher geometry).

In 1877 he was awarded the gold medal for his outstanding53 solution
of the problem “About Integration of Differential Equations by Continuous
Fractions with an Application to the Equation (1 + x2) dy

dx = n(1 + y2).” In
the following year he passed the candidate examinations and remained at the
university to prepare for the lecturer’s job.

In April 1880, Andrey Markov defended his master thesis “About Bi-
nary Quadratic Forms with Positive Determinant,” which was encouraged by
Korkin and Zolotarev. It was reported by Chebyshev, Korkin and Sochocki.

Another five years later, in January 1885, there followed his doctoral the-
sis “About Some Applications of Algebraic Continuous Fractions,” where he
discussed the following moment problem: To find a function f satisfying

50 [Akh48, S. 10]: «[...] naqinaets� celyĭ cikl rabot Markova, posv�wen-
nyh predelьnym veliqinam integralov, interpolirovani�, funkci�m,
naimenьxego ukloneni� ot nul� i nepreryvnym drob�m - rabot, v kotoryh
Markov �vils� prodolжatelem svoego genialьnogo uqitel� P. L. Qeby-
xeva.»

51 The biographical data was taken from [Gro87].
52 Comp. [VorSPb].
53 Due to Zolotarev’s judgment.
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∫ b

a

xkf(x) dx = ck, k = 0, . . . , n.

For a given function g Markov solved there the problem to determine an upper
bound for the functional

J(f) :=

∫ b

a

f(x)g(x) dx.

His pedagogical job began after the defence of his master thesis in autumn
1880. As a privat-dotsent he lectured on differential and integral calculus.
Later he lectured alternately “introduction to analysis,” probability theory
(succeeding Chebyshev who had left the university in 1882) and calculus of
differences. From 1895/96 until 1905 he additionally lectured again differential
calculus.54

One year after the defence of the doctoral thesis he was appointed extraor-
dinary professor (1886) and in the same year he was elected adjunct of the
academy of sciences. In 1890, after the death of the academician Bunyakovski,
Markov became extraordinary member of the academy. His promotion to an
ordinary professor of St Petersburg University followed in autumn 1894.

Finally in 1896 he was elected ordinary member of the academy as the suc-
cessor of Chebyshev. In 1905 he was appointed merited professor and got the
right to retire which he immediately used. Until 1910, however, he continued
to lecture on calculus of differences.

Protesting against a decree of the ministry of education Markov rejected a
further teaching activity at the St Petersburg University. In connection with
students’ riots in 1908, professors and lecturers of St Petersburg University
were ordered to maintain observations over their students. Firstly Markov
rejected this decree and after that he wrote an explanation where he expressed
his refusal to be an “agent of the governance.” Finally he saw no recourse other
than full retirement from the university.

In 1913 the council of St Petersburg elected nine scientists honorary mem-
bers of the university. Markov was among them, but his election alone was
not affirmed by the minister of education. The affirmation was done only four
years later, after the February revolution in 1917.

In the following year Markov again resumed his teaching activity. Until his
death in 1922 he lectured on probability theory and calculus of differences.

3.3.2 The Early Work on Approximation Theory

In his work ‘Determination of a Function with Respect to the Condition to
Deviate as Little as Possible from Zero’ [MarA84], Markov discussed a gener-
alization of the second case from ,,Sur les questions de minima [...]” [Cheb59],
the weighted approximation problem. To be precise, he presented the problem

54 See [VorSPb].



100 3 The Saint Petersburg Mathematical School

min
p∈Pn−1

max
x∈[−1,1]

∣
∣
∣
∣
∣

xn − p(x)
√

q(x)

∣
∣
∣
∣
∣
, q ∈ P2n. (3.24)

With respect to methods developed by Zolotarev in [Zol77/1] and his own
trigonometric approach he was able to solve the problem without the use of
the complex continuous fractions Chebyshev needed. Markov introduced the
differential equation55

d(ιn − p) = 0.

Such an approach had already been succesful for Chebyshev’s first case
(approximation by polynomials) in ,,Théorie des mécanismes [...]” [Cheb54].
Here it could be generalized.

3.3.2.1 About a Question by D. I. Mendeleev. An Alternation
Theorem

In the paper [MarA90] A. A. Markov formulated the following problem which
had been posed before by Dmitri Ivanovich Mendeleev for the case n = 2 in his
work ,,Investigation of Aqueous Dilutions according to the Specific Weight.”56

He was looking for the smallest upper bound for the derivative of a polynomial
with given norm. With this we define57

Pn,L = {p ∈ Pn | ‖p‖ = L}. (3.25)

Using this definition we want to get an approach for two problems. Firstly,
for given x ∈ R we have to determine the quantity

max
p∈Pn,L

|p′(x)| (3.26)

and the second problem is the determination of an upper bound for the norm
of the first derivative of a polynomial depending on the norm of the polynomial
itself.

3.3.2.1.1 First Problem

A. Markov’s approach began with the following definitions:

• Let z ∈ R be given. (3.27)
• Let p0 ∈ Pn,L be chosen as follows: |p′

0(z)| ≥ |q′(z)| ∀q ∈ Pn,L. (3.28)

Then he paid attention to the deviation points of p0 and formulated the
following theorem [MarA90, p. 52]:

55 We want to use modern notation.
56 A. Markov wrote in [MarA90, S. 51]: «Takoĭ vopros postavlen D. I.

Mendeleevym pri n = 2 v ego soqinenii «Issledovanie vodnyh rastvorov
po udelьnomu vesu (§86)».

57 The formulation is not due to A. Markov, we use it to abbreviate.
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Theorem 3.2 (Necessary alternation criterion by A. A. Markov)
Let a ≤ α1 < . . . < αs ≤ b be the deviation points of the polynomial p0 defined
in (3.28), that is,

|p0(α1)| = |p0(α2)| = · · · = |p0(αs)|.

Then there holds: At least n − 1 of the quotients

p0(α2)

p0(α1)
,

p0(α3)

p0(α2)
, . . . ,

p0(αs)

p0(αs−1)
(3.29)

are equal to −1.

More clearly, we can say: Among the quotients (3.29) there is a Chebyshev
(n − 1)-alternant.

But because of the special character of Markov’s problem defined by the
side-condition (3.28) he did not formulate an exact alternation theorem. But
with this theorem the existence of an (n − 1)-alternant was proven for a
minimal solution, too. So, only two alternations missed. Markov’s proof was
constructive and used the same arguments which are still used to prove the
alternation theorem elementarily (e. g., in [Nat49]).

Proof Assume that p0 had less alternations, let’s say only k ≤ n − 2.
Then we find a polynomial q ∈ Pn−2, whose zeros lie only between these

alternations and for which holds:

sign q(αi) = − sign p0(αi) ∀i = 1, . . . , s. (3.30)

Now we construct a polynomial P with

P (x) = p0(x) + ε(x − z)2q(x).

Then:

• P ∈ Pn

• ‖P‖ < ‖p0‖ = L for a suitable58 ε > 0
• p′(z) = p′

0(z)

And so there holds for Q := L
‖P‖ :

58 For a suitable choice of ε we imagine a subdivision of [a, b] into segments, where the
variation of p0 does not exceed L. For extremal segments containing an extremal
point then there holds

ε <
L

2‖ι − z‖2 ‖q‖ ,

and beyond them:

ε <
L − ‖p0‖

‖q‖ .
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• Q ∈ Pn,L and
• |Q′(z)| > |p′

0(z)|,
contradicting the assumption.

On the other hand from Chebyshev’s observations ([Cheb54] and [Cheb59])
we know the only two functions which n-times reach L as their maximal value
on [a, b]59— it is ±Tn. Transformed for our interval we get the solution f0 as

f0(x) = ±L cos n arccos

(
2x − a − b

b − a

)

(3.31)

with the derivative

f ′
0(x) = ± nL

√

(z − a)(b − z)
sin n arccos

(
2x − a − b

b − a

)

. (3.32)

The function f0 is the only one which satisfies the necessary condition.
With this result Markov could prove an interesting property of polynomials
of nth degree which we want to denote:

Theorem 3.3 Let P : [a, b] → R be a polynomial of degree n. Then we have
for any x ∈ [a, b] :

|P ′(x)| ≤ n
√

(z − a)(b − z)
‖P‖. (3.33)

As a separate theorem (3.33) was published firstly by S. N. Bernstein
(Corollary 3 v from [Bern12/2]).

Since (z − a)(b − z) reaches its minimum at z = (a + b)/2 the above-
mentioned result shows the validity of the following inequality, now named
after A. Markov:

59 Indeed, Markov’s alternation condition gives n equations for the n+1 coefficients
of the polynomial and because of the restriction to polynomials of one norm we
get the condition we seek.

Formally we show exactly:
The problem (A) posed by A. Markov is equivalent to the following problem

(B) :

Minimize ‖p‖, p ∈ Pn,

under p′(x) = 1 for a fixed x ∈ [a, b].

Proof. Let p be a solution of (A) with p′(x) = M. Then p̃ := p
M

satisfies the side-
condition of (B). Now assume that for p̂ there also holds p̂′(x) = 1. Additionally
let K := ‖p̂‖ < ‖p̃‖ = L

M
. Lp̂

K
surely satisfies the side-condition of (A). Thus,

Lp̂
K

′
(x) = L

K
> M, so p cannot be a solution of (A). The other direction can be

shown in the same way.

It is easier to analyse this minimization problem. We clearly see the formulation
of the side-condition as a linear equation of the coefficients.
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Theorem 3.4 For all polynomials p ∈ Pn there holds:

‖p′‖ ≤ 2n2

b − a
‖p‖, p ∈ Pn. (3.34)

3.3.2.2 Markov Systems

In his work ‘About Extremal Values of Integrals Connected with the Inter-
polation Problem’ [MarA98], A. Markov managed to solve the generalized
problem of Korkin and Zolotarev.

Firstly he defined the today so-called ‘Markov systems.’ These are systems
of functions λ1, λ2, . . . , λn, . . . , satisfying for each n

λ1(z) > 0, (3.35)
∣
∣
∣
∣

λ1(z) λ′
1(z)

λ2(z) λ′
2(z)

∣
∣
∣
∣
> 0,

...
∣
∣
∣
∣
∣
∣
∣
∣

λ1(z) · · · λ
(n)
1 (z)

...
. . .

...

λn+1(z) · · · λ
(n)
n+1(z)

∣
∣
∣
∣
∣
∣
∣
∣

> 0.

From this definition it directly follows that Vandermond’s determinant
evaluated with this function is regular. And so there holds the property which
is used up to now to avoid the n-times differentiability Markov had demanded.

He could solve Korkin’s and Zolotarev’s problem, the determination of
the polynomial least deviating from zero according to the L1-norm, for this
system of functions. To be precise, he proved

Theorem 3.5 Let λ1, λ2, . . . , λn, . . . , be a system of functions on [a, b] satis-
fying (3.35). Let Λk be the set of real linear combinations of the {λ1, . . . , λk}
and f /∈ Λk a function.60

Then:

1. The functions

Fk(x) :=

k∑

i=1

ciλi(x) (3.36)

satisfying

∫ b

a

|λk+1(x) − Fk(x)| dx = min
p∈Λk

∫ b

a

|λk+1(x) − p(x)| dx

are uniquely determined.
60 Markov did not make any special assumptions for f. The following theorem holds

for all L1-integrable functions.
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2. The error of approximation of f by functions Fk(.) is

Ek(f, L1) =

∫ b

a

|f(x) sign[Fk(x)]| dx.

A. Markov used only algebraic methods to prove this theorem, he mainly
made considerations about zeros and solved linear systems of equations. We
could have expected this, since he did not discuss the properties f should
satisfy.

3.3.2.3 The Lecturer Andrey Markov

As we have already mentioned in the section about his biography, Andrey
Andreevich Markov worked 26 years at the university (from 1880 until 1905).
In contrast to Chebyshev, A. Markov also lectured on the foundations of anal-
ysis, namely ‘Introduction to analysis’ (1882–1900) and ‘Differential calculus’
(1880–1882 and 1899–1905).

Traditionally ‘Introduction to analysis’ [MarA88] introduced concrete cal-
culations with numbers and limits, therefore there were nearly no definitions.

The only available notes of the lectures on differential calculus [MarAoJ]
are not dated, but presumably they describe the later cycle because the lec-
tures from 1880–82 had been announced as repetitions—the main course had
been given by Sochocki.

So if we assume that the lectures were given just before the end of the
19th century, we wonder if the definition of continuity was not exact:

“A function f(x) is called continuous for a value x = a, if f(x) is
approaching the limit f(a) if the variable x is approaching the limit
a.”61

Then he restricted the definition arguing that it is necessary to approach
a from both sides to guarantee that the limit is unique. The formulation
‘approach’ might have not included all sequences xn → a.

If we compare it with the definition Zolotarev had used about 30 years
before Markov, we do not see a fundamental difference. There was no reason-
able discussion of the concept of a sequence, and so the concept ‘approach’
remained slightly inconsistent.

Of course we can apologize for this—on his behalf he lectured on dif-
ferential calculus when there had not been a complete clarification (1870),
but these 30 years of intensive discussion among western mathematicians had
passed Andrey Markov without obvious traces.

Another interesting fact is that Markov proved Weierstraß’ theorem about
maxima (continuous functions reach their maxima on closed intervals), but

61 [MarAoJ, S. 16]: «Funkci� f(x) nazyvaets� nepreryvnoĭ dl� znaqeni� x = a,

esli f(x) pribliжaets� k predelu f(a) pri pribliжenii peremennogo x k
predelu a.».
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did not mention the Riemannian and Weierstraß’ian ‘monster,’62 although
they were famous at that time and very important for the discussion of math-
ematical concepts. Markov showed only examples with jumps and gaps to
present examples for non-continuous and non-differentiable functions, respec-
tively. Here we got again ‘examples from practice.’

At the end of this chapter we will return here to a deep analysis A. Markov’s
‘Lectures about Functions the Least Deviating from Zero.’

3.3.3 Vladimir Andreevich Markov

Vladimir Andreevich Markov, Andrej Andreevich’s youngest brother, was the
second character within within St Petersburg Mathematical School who suf-
fered a tragic fate. His early death prevented a hopeful mathematical career,
similar to Zolotarev’s fate.

3.3.3.1 About his Biography

Vladimir Andreevich Markov was born in St Petersburg May 8, 1871 as the
youngest son of Andrey Grigorevich Markov and his second wife, Anna Iosi-
fovna Markova.

Already like Andrey, Vladimir visited the fifth St Petersburg grammar
school, and in 1888 he entered the physico-mathematical faculty of St Peters-
burg University. During his student’s life the teachers who held the chair of
pure mathematics were his brother Andrey Markov (Introduction to analy-
sis, finite differences, probability theory), Posse (differential and integral cal-
culus), Sochocki (integral calculus, higher algebra, number theory), Korkin
(differential equations, variational calculus), Budaev (analytical and higher
geometry), Ptashitski (descriptive geometry, elliptical functions), Selivanov
(special courses about higher algebra and number theory) and Grave (geo-
metrical applications of differential and integral calculus).

Already during his studies he caused a great stir: In 1892, as a student
of the fourth year, he published the paper ‘About Functions Least Deviating
from Zero on a Given Interval’ [MarV92] for which he had been awarded a
prize on the occasion of the first congress of natural scientists and physicians.
The positive report about it had been written by K. A. Posse,63 who would
support V. A. Markov’s further career. We will discuss this work below.

After the end of his studies he remained at the university to prepare the
job of a lecturer and began to write his master thesis about positive quadratic
forms of three variables, stimulated by Korkin. He defended it in 1896.

62 Riemann’s “monster” is a function which is continuous for all irrational values
and discontinuous elsewhere; Weierstraß’ monster is a continuous, but nowhere
differentiable function.

63 Compare [Ser97, p. 43].
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In the academic year 1895/96 he was repetitor (scientific assistant) at the
St Petersburg institute for transportation,64 where he lectured on analytical
geometry. Besides this he taught at the fifth St Petersburg grammar school.

In the academic year 1896/97 he was not able to work, anymore. January
18, 1897, at the age of 26, Vladimir Andreevich Markov died from tuberculosis.

Only after his death was his master thesis published [MarV97].

3.3.3.2 A Student’s Paper

In the above-mentioned work ‘About Functions Least Deviating from Zero
on a Given Interval’ [MarV92] Vladimir Markov investigated the problem
to determine the polynomial of degree n which deviates as little as possible
from zero among all those polynomials whose coefficients satisfy a linear side-
condition.

Such a kind of problem was not new—we already knew the problem
of Zolotarev, who also proved some general theorem for some special side-
conditions in [Zol68], and also A. Markov described a problem of this kind.
One of the most remarkable aspects of V. Markov’s monograph is the way he
solved this problem. He presented a complete theory of the problem. This led
to the fact that, rather than his central idea, some corollaries became famous,
e. g., the exact border for the relation between the norm of the kth derivative
of a polynomial and its norm.65

After this introduction we do not wonder that V. Markov proved another
special alternation condition characterizing the solution of this problem.

3.3.3.3 Vladimir Markov’s Problem

So V. A. Markov formulated the following problem:
Minimize ‖p‖, where

p(x) =

n∑

i=0

aix
i ∈ Pn, x ∈ [a, b]

and its coefficients satisfy a linear side-condition

α =
n∑

i=0

αiai

with given real numbers α, α0, . . . , αn.
Here Chebyshev’s first case was generalized. An arbitrary coefficient is

given, not absolutely the first.
Not exactly following V. Markov’s terminology, we want to abbreviate and

define:
64 Russian name «institut inжenerov puteĭ soobweni�»
65 This Bernstein pointed out in his introduction to the German translation of the

text [MarV16].
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Definition 3.6 Let α1, . . . , αn ∈ R.

For p ∈ Pn with p(x) =
n∑

i=0

aix
i define

ω : Pn → R with

ω(p) :=

n∑

i=0

αiai. (3.37)

For α ∈ R define
P

α
n := {p ∈ Pn | ω(p) = α}. (3.38)

We remark that ω is linear.
Using these definitions we can now formulate the problem like this:

min
p∈Pα

n

max
x∈[a,b]

|p(x)|. (3.39)

A solution of this problem is now called a minimal solution on P
α
n.

To solve this problem V. Markov proved a special alternation theorem.
Preparing this he showed the following lemma which is a special case (and a
real forerunner) of the Kolmogorov criterion:

Lemma 3.7 Let p ∈ P
α
n and x1, . . . , xµ its deviation points.

Then:
p is minimal solution on P

α
n

⇐⇒
There does not exist any polynomial q ∈ Pn with

ω(q) = 0, q(xi)p(xi) < 0 ∀i = 1, . . . , µ. (3.40)

Proof We set L := ‖p‖ and choose q ∈ Pn with ω(q) = 0
Furthermore define for ̺ > 0

p1 := p + ̺q. (3.41)

With this we have because of the linearity of ω :

ω(p1) = ω(p) − ̺ω(q) = ω(p). (3.42)

Now we want to assume that q satisfies (3.40). Then we can choose a ̺ so
that ‖p1‖ < ‖p‖, as we now will show.

Since for all deviation points xi, i = 1, . . . , µ of p we have

p(xi)q(xi) < 0,

this remains valid in small neighbourhoods Uδ(xi), δ > 0 and of course for all
elements of
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U :=

µ
⋃

i=1

Uδ(xi).

Now choose

̺ < min

{

1 , min
x∈U

(−2p(x)q(x)

‖q‖2

)

, min
x/∈U

(
L2 − [p(x)]2

|2p(x)q(x)| + [q(x)]2

)}

. (3.43)

Then we have on the whole interval [a, b]:

L2 − [p1(x)]2 = L2 − [p(x)]2 − 2̺p(x)q(x) − ̺2[q(x)]2 > 0, (3.44)

hence ‖p1‖ < ‖p‖. So, because of (3.42) p is not minimal.
To prove the other direction we firstly state that we can split every r ∈ Pn

into
r := p + σq

with q ∈ Pn, since ω is linear.
If there does not exist any function in Pn satisfying (3.40), then there is a

deviation point xj of p with

p(xj)q(xj) ≥ 0.

The equation analogous to (3.44) for r then leads to

L2 − [r(xj)]
2 < 0, (3.45)

and so p is indeed a minimal solution on P
α
n.

3.3.3.4 An Alternation Theorem by V. A. Markov

The second means to solve V. Markov’s problem was Lagrange’s interpolation
formula. At first we define

Definition 3.8 (Lagrange functions) For p ∈ N and x1, . . . , xp ∈ R define
F, Fl : R → R with

F (x) :=

p
∏

i=1

x − xi

Fl(x) :=

p
∏

i=1,i 	=l

x − xi =
F (x)

x − xl
. (3.46)

And now we can formulate the alternation theorem:

Theorem 3.9 (V. A. Markov’s Alternation Theorem) Let p ∈ P
α
n with

deviation points x1, . . . , xp.
Then:
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p is a minimal solution on P
α
n

⇐⇒

1) sign (−1)ω(F1)p(x1) = sign (−1)2ω(F2)p(x2) = · · · (3.47)

= sign (−1)pω(Fp)p(xp).

2) If p < n + 1, then ∀R ∈ Pn−p : ω(FR) = 0.

Proof With Lagrange’s interpolation formula there holds for an arbitrary
polynomial q ∈ Pn and an x ∈ [a, b]

q(x) = AF (x)R(x) +

p
∑

i=1

q(xi)

F ′(xi)
Fi(x), (3.48)

where A ∈ R and R ∈ Pn−p for p < n + 1, R ≡ 0 else.
The linearity of ω leads to

ω(q) = Aω(FR) +

p
∑

i=1

q(xi)

F ′(xi)
ω(Fi), (3.49)

having in mind that

F ′(xi) = (−1)p−i
i−1∏

l=1

(xi − xl)

p
∏

l=i+1

(xl − xi),

then we can write (3.49) as

ω(q) = Aω(FR) +

p
∑

i=1

q(xi)

|F ′(xi)|
(−1)iω(Fi). (3.50)

If we assume that for p < n+1 there is a function R ∈ Pn−p with ω(FR) �= 0,
then we can define

q(xi) := −p(xi), i. e., q(xi)p(xi) < 0.

Hence the constant A of equation (3.49) can be chosen so that ω(q) will vanish.
From the lemma we know that then p can’t be minimal.

With this remark we can write (3.50) as

ω(q) =

p
∑

i=1

q(xi)p(xi)(−1)iω(Fi)p(xi)

|F ′(xi)|[p(xi)]2
. (3.51)

But then the equations ω(q) = 0 and the condition q(xi)p(xi) < 0 ∀i = 1, . . . , p
can be valid together, only if not all expressions of the form (−1)iω(Fi)p(xi)
are equal in sign. Using the lemma the theorem is proved.
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The proof of this theorem was more complicated than the direct proof
of the general alternation theorem, so it is justified to judge that it was a
historical incidence that it had not been proved before the end of the 19th
century in St Petersburg. We can assume that the general alternation property
had already been known.

After the proof of his special alternation theorem V. Markov stated some
facts about the number of deviation points. They are complicated in general
because without the unicity of the solution there may be fewer deviation
points:

Lemma 3.10 If there is more than one polynomial p ∈ P
α
n solving (3.39),

then among the solutions there is at least one which has not more than µ
deviation points, where

µ =
n + 2

2
, if n is even,

µ =
n + 1

2
, if n is odd.

Therefore he quickly turned to the special case

ω(p) = p(k)(z) (3.52)

for a given z.

3.3.3.5 The Special Side-Condition ω(p) = p(k)

For this case he was able to show the unicity of the solution, because here
the solution has only real roots, which is due to the characteristic equations
(2.22).

But then again we have a sufficiently large number of deviation points
and get a solution equal to the Chebyshev polynomial (neglecting a constant
factor). It is

p(x) =
α

T
(k)
n (z)

Tn(x).

Further considerations of exclusively algebraic nature, which use properties
of zeros, led to the well-known inequality, which gave the exact border for the
relation between the norm of the kth derivative of a polynomial and its norm
and was later named after V. Markov.

Theorem 3.11 (Vladimir Markov’s Inequality) Let p ∈ Pn be a polyno-
mial. Then:

‖p(k)‖ ≤
(

2

b − a

)k
n2(n2 − 12) . . . (n2 − (k − 1)2)

(2k − 1)!!
‖p‖, p ∈ Pn. (3.53)
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3.4 Julian Karol Sochocki

Although Julian Karol Sochocki66 did not publish any contribution to the
approximation theory, he deserves being mentioned at this place because it
was due to him that function theory, widely spread in Western Europe, was
also recognized as a subject of research in St Petersburg. In some way Sochocki
set a counterpart to the mainstream of the St Petersburg Mathematical School
defined by Chebyshev and his work.

3.4.1 About his Biography

Julian Karol Sochocki was born February 5, 1842 in Warsaw as a son of the
public servant Bazyli Sochocki.67 From 1850 until 1860 he visited the physico-
mathematical department of the grammar school of the Warsaw region. Im-
mediately after this he registered at the physico-mathematical department of
St Petersburg University.

His university education, however, was interrupted in March, 1861: Febru-
ary 27, 1861 several Polish nationalists were shot by the police in Warsaw
whereupon some St Petersburg students manifested their solidarity by a re-
quiem. As a counter-measure all students of Polish origin were held to account,
among them Sochocki who indeed took part in the protests. He could avert
the probable punishment only by returning to Warsaw because of “domestic
duties.” During the 1863/64 riots in Poland he rendered logistic assistance to
the revolters, but remained unknown to the the powers. At that time he could
only deal with mathematics by self-studies and returned to St Petersburg only
in 1865 as an auditor.

In the following year he presented his candidate thesis and was allowed
to stay at the university to prepare for a professor’s appointment. In 1868
he defended the master thesis “Theory of residuals with some applications”
(teori� vyqetov s nekotorymi priloжeni�mi), for which his opponents
were Somov and Chebyshev.

An important result of Sochocki’s thesis was a theorem about essential
singularities which he proved independently from F. Casorati (1835–1890)
and which is known now as the Casorati–Weierstraß theorem—Weierstraß’
proved it by other means, but only in 1876.

Probably Sochocki was already encouraged in this subject in Warsaw.
In 1862 the Polish university had been founded there and its physico-

66 Although Sochocki is a Pole, mostly the Russian form of his name, Julian Vasile-
vich Sochotski, is used. This can be justified, since Poland’s Eastern part polit-
ically belonged to the Russian Empire at that time and so the Russian spelling
was the official one. We want to allow for his origin and use the Polish form as
used, e. g. in [Erm98/1].

67 The biographical data were taken from [Erm96] and were supplemented by some
information from [Erm98/1].
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mathematical department was ruled by Augustyn Fra̧czkiewicz (1796–1883),
a pupil of Cauchy.

The possibilities to deal with function theory at the St Petersburg Uni-
versity were not good because Chebyshev himself behaved with indifference
towards it and did not use its results.

In 1873 Sochocki defended his doctoral thesis About definite integrals and
functions used with series expansions” (Ob opredelennyh integralah i
funkci�h, upotreblaemyh pri razloжenii v r�dy) from the opponents
Chebyshev and Korkin.

In this work he proved some formulae for the calculation of limits of inte-
grals of Cauchy type, often named after Josif Plemelj (1873–1967), who did
not prove them until 1908.68

In the doctoral thesis he also showed a connection between function theory,
continuous fractions, orthogonal polynomials and the approximate computa-
tion of integrals of Cauchy. These considerations had a wider basis, but less
concrete results than those by Posse, as he later would present in his master
thesis “About functions similar to Legendre’s” [Pos73].

From 1868 Sochocki lectured at the St Petersburg university, first as
“privat-dotsent,” one year later as an ordinary lecturer, from 1873 as an ex-
traordinary professor, from 1882 as an ordinary and finally since 1893 as a
merited professor. Not before 1923 did he left the university. In parallel he
directed the chair of mathematics at the institute of civil engineering.

In 1894 he was elected corresponding member of the Cracow Academy of
Sciences.

The subjects of his lectures69 were ”Theory of continuous fractions” (1868–
71), “Theory of functions of imaginary quantities” (1868–71), “Analytical
geometry” (1871–73), “Higher algebra” (from 1871), “Differential and integral
calculus” (1873–82), “Introduction to analysis” (1876–80), “Integral calculus”
(from 1882)70 and “Number theory” (1882–92).

He also did represent function theory in his lectures. The integral calculus
lectured over 40 years included its basics and elliptic functions, which had been
taught separately before him (by Somov, Bessel and Zolotarev). His lectures
on higher algebra were published in two volumes.

The end of his life was tragic because of the hard times after the 1917
revolution. He spent his last two years in the old peoples’ home of the house
of Leningrad scientists and died there on December 14, 1927.

68 There are even some other theorems proved first by Sochocki, but named after
other mathematicians (comp. [Erm96, p. 361]).

69 Comp. [VorSPb].
70 This lecture had been presented with several different names, e. g., “Theory of

definite integrals,” “Theory of multiple integrals” and so on.
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3.4.2 Chebyshev’s Supplement

Sochocki’s work and his pedagogical job were apparently not influenced by
Chebyshev, although he had been an opponent at the defence both of So-
chocki’s master’s and doctoral thesis.

Also his subjects had nothing in common with those of Chebyshev. Obvi-
ously Sochocki had been influenced mainly by the Western European Cauchy
school in Warsaw.

This is an indirect proof for the strength of Chebyshev who at times clearly
rejected the “philosophizers” and even attacked Cauchy,71 but recognized the
significance of his theory and supported the first St Petersburg representative
of that mathematical direction. Surely Chebyshev knew about the harmful
effect of any unnecessary constriction of mathematics.

Thus, Sochocki did not differ from other representatives of the St Peters-
burg Mathematical School in his adoration of the mathematical idol Cheby-
shev. At the session of the St Petersburg Mathematical Society on January
14, 1895 he spoke out on his work:

“We study them under all aspects; we will pass them to the next
generation with necessary supplements and condign clarifications as
a pledge of the further independent development of the mathematical
sciences in Russia and as a pledge of the unchanged relatedness to the
scientist and compatriot whose name will live as long as the science
will do.”72

As we will see, Sochocki found an associate in Posse, who also tried to
follow newer developments even from outside Russia.

3.5 Konstantin Aleksandrovich Posse

Konstantin Aleksandrovich Posse played an important role as teacher and
lecturer at St Petersburg University. He lectured more than 40 years with
Chebyshev, Korkin and A. A. Markov and especially cared about the students’
education in calculus. His textbooks on differential calculus (e. g., [Pos03])
were published several times.
71 Comp. [Erm87]. In the notes about Chebyshev’s “Probability Theory” commented

there we find some critical remarks about statements attributed to Cauchy. In
addition Chebyshev’s biographers always emphasize that the personal relationship
between Chebyshev and Cauchy was dry.

72 Protocols of the St Petersburg Mathematical Society, 1899, cited after [Erm96,
p. 364]: «My izuqaem ih vsestoronne; snabdiv neobhodimymi dopol-
neni�mi i nadleжawim osveweniem, svoevremenno my peredadim ih sle-
du�wemu pokoleni� v zalog dalьneĭxego, samosto�telьnogo razviti�
matematiqeskih nauk v Rossii i v zalog neizmennoĭ priznatelьnosti
uqenomu-sooteqesvenniku, im� kotorogo budet жitь stolьko, skolьko
budet жitь sama nauka.»
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3.5.1 His Biography

Konstantin Aleksandrovich Posse was born September 29, 1847 in St Peters-
burg as the son of the railway engineer, Aleksandr Fedorovich Posse, who was
Swedish by descent, and his wife Elizaveta Jakovlevna Posse.73

At first he was educated at home and in 1860 he entered the fourth class
of the second St Petersburg grammar school, a school whose teachers were
supported by university as well and so enjoyed a good reputation. In 1864 he
finished grammar school with the gold medal.

In the same year he was allowed to visit the physico-mathematical faculty
only as an auditor but because of his youth, but after one year he became a
full student when the university took into account his former efforts. Obvious
parallels with the biography of his fellow student Egor Ivanovich Zolotarev,
who came to university one year earlier, can be seen, and we again want to
emphasize that these had been very unusual occurences.

His academic teachers were the same as those of Zolotarev—Somov,
Chebyshev, and Korkin.

In 1868 K. A. Posse finished his studies with a candidate dissertation
about Euler integrals of first and second degree. In 1870, before the oppo-
nents Chebyshev and Sochocki, he passed his master examinations: In 1873
before the opponents Korkin, Somov and Zolotarev, he defended his master
dissertation ‘About Functions Similar to Legendre’s’ [Pos73], which we will
talk about later.

Posse’s doctoral dissertation ‘About θ-functions of two variables and a
problem of Jacobi’ dealt with the theory of elliptic functions, especially with
integrals of the form

∫

f
(

x,
√

R(x)
)

dx, R a polynomial,

and was defended in 1882. Here his opponents were Korkin and Sochocki. In
this work Posse discussed and unified approaches of Rosenhain, Weierstraß
and Riemann.

His university career began in 1874, one year after the defence of the master
dissertation. Until 1883 he read analytical geometry, first as a ‘privat-dotsent’,
in 1880/81 as an ordinary lecturer together with an introduction to analysis. In
1883 he became an extraordinary professor and started to lecture on calculus,
often named as ‘Applications of calculus to analysis and geometry.’ With
different names these lectures were given by Posse until 1899,74 when he left
the St Petersburg University after becoming a merited professor. Again we

73 Biographical data were taken from [Ser97]. In this section political and social
developments are described more carefully, because the biographer Sergeev was
(allowed to be) more objective than the other authors who wrote their contribu-
tions during Soviet times.

74 Comp. [VorSPb].
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see that usually one lecture was given only by one certain lecturer. The 1883’s
change was connected with Chebyshev’s departure from the university.

After his departure Posse was appointed honorary member of the univer-
sity. In the years 1919–1921 he again taught at the university under severe
conditions.

In 1894/95 Posse spent one year abroad to be cured of a slight medical
complaint. To protect him from negative financial consequences, the university
declared this trip as an official scientific trip.

He also lectured at other St Petersburg institutes: From 1871 until 1882
and from 1890 until his retirement at the transportation institute, at the
womens’ university75 since its foundation in 1876 until 1886 and from 1900
until its merger with the Petrograde University in 1919, at the technological
institute from 1891 until 1894 and at the electrotechnical institute from 1899
until 1905.

The subject of all these lectures was calculus, the mathematical basics
for prospective engineers. Thus, over a 30 years time frame a large number of
Russia’s best engineers, who usually studied at the capitol’s institutes, learned
the theoretical foundations of their subjects from Posse.

Posse also took an active part in organizations supporting mathematics
using his excellent reputation as a teacher. He was one of the founding mem-
bers of the St Petersburg Mathematical Society (1890). In the initial years he
was its speaker together with Sochocki, Bobylev and V. I. Shiff. In 1908 Posse
became a member of the Russian subcommission for the reform of mathemat-
ical education; in 1914 he was appointed Russia’s representative in a similar
international commission. On behalf of this commission he was engaged in
questions of education of mathematical analysis at schools and of the function
of mathematics at technical universities. About these activities he reported
at a conference in Paris which took place on the eve of the First World War.
Among its participants there were É. Borel, J. Hadamard, G. Darboux and
H. Lebesgue. In his reports Posse always rejected the claim of a decline of the
theoretical level of technical universities.

In 1913 he undertook, on behalf of the ministry of education, reviewing of
newly published mathematics textbooks for schools and universities. In 1915
(after the death von N. Ya. Sonin he became speaker of the commission for
mathematical education within the committee for the reformation of school
education at the ministry of education.

After the revolution of February 1917 Posse became a member of the “as-
sociation for the development and promulgation of positive sciences,” which
was meant to be a supplementary organization to the academy of sciences, to
deal with publishing, education and some additional scientific jobs. Among
the other members were V. A. Steklov and the writer M. Gorkij. Like most
Russian intellectuals Posse took the new found freedom with enthusiasm. The

75 They were also known as ‘Bestuzhev-courses’ after their patron K. N. Bestuzhev-
Rjumin.
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activities of the association, however, ended with the revolution of October
1917.

Posse also was an active member and patron of several organizations,
within and beyond the sciences. As a member of the fund-raising society of
the women’s university, which also was a steering committee of this university,
he organized syllabuses and the build-up of a library.

The extraordinarily talented pianist K. A. Posse was an active mem-
ber of the St Petersburg society for chamber music consisting of about 60
members most of whom were professional musicians; among them were P. I.
Tchaikovsky, N. A. Rimski-Korsakov, A.G. Rubinstein and others. This soci-
ety organized concerts, where Posse himself played. But he mainly took over
“delicate jobs of fund-raising.”76 Posse had a similar role with the committee
for the promotion of the literary heritage, which supported emerging writers.
The committee was founded by an initiative of A. K. Tolstoy, I. S. Turgenev
and N. G. Chernyshevski.

For the middle-class liberal Posse, the October revolution marked a bitter
turning point.

Because of his illness in 1921 he gave up his lecturer job at the age of 74.
His hopeless financial situation forced him to spend his eventide in a badly
supplied old peoples home.77

Konstantin Aleksandrovich Posse died there on August 24, 1928.

3.5.2 The Scientific Work of K. A. Posse

In some way Posse’s work represented a bridge between the function theo-
retical work of Somov, Sochocki and Zolotarev and the core problems of the
St Petersburg Mathematical School, the extremal problems.

3.5.2.1 Orthogonal Polynomials

Posse’s master thesis ‘About Functions Similar to Legendre’s’ from 1873
[Pos73] tied in with Chebyshev’s former contributions on this subject (e. g.,
[Cheb55/2] and [Cheb70]). The expression similar to Legendre’s obviously can
be understood as “orthogonal.”

Posse regarded orthogonal polynomials as finite fractions of the expansion
of the integral

∫ b

a

f(z)

x − z
dz

into a continuous fraction.

76 As his biographer Sergeev formulated.
77 Actually he spent his last days in a so-called “Internat” «internat», a house for

the poor, but only elder people were there at that time. By coincidence, Sochocki
lived in the same house for the rest of his life.
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A well-known result is that the Legendre polynomials Pn satisfy the fol-
lowing property:

They differ from the nth partial fraction of the expansion of

1

2
log

x + 1

x − 1

only by a constant, and this expression is equal to the integral expression
∫ 1

−1

1

x − z
dz.

So the integral expression investigated by Posse is a possible generalization
of this expression.

Posse now showed that this case includes all orthogonal polynomials dis-
cussed by Chebyshev, if f is replaced by the respective weight function. And
so Posse was able to prove Chebyshev’s results in one step.

It is worth mentioning that sometimes Posse did use Cauchy’s integral
formula

f(z) =
1

2πi

∫

γ

f(x)x − z dz

for a closed path γ. He himself emphasized that the impulse had been given
by Sochocki.78

He deepened his results in several other contributions to this subject. In
1886 he summarized his results and cited well-known theorems of other au-
thors in the monograph ,,Sur quelques applications des fractions continues
algébriques” [Pos86].

3.5.2.2 Other Works

Posse’s scientific heritage is small, if we compare it with the work of other
members of the St Petersburg Mathematical School. His main contributions
dealt with applications of expansions into continuous fractions, where he also
investigated several problems about minima and even moments.

Besides them there are papers with a clear accordance to his pedagogical
work. In 1895 the work ‘About the transcendence of e and π’ was published,
where he presented Lindemann’s results in a way which was easier to read.

He also wrote about applied subjects coming from his jobs at several en-
gineering schools.

However, his main work was the different textbooks on calculus edited by
him. Usually they were re-edited, but Posse always tried to take into account
all new directions. From 1891 until 1939 twelve editions were published and
some of them even were translated, as into German in 1923. There was no
textbook on calculus which was spread wider in Russia than these editions.
78 [Pos73, p. 3]: “I was led this way to the sought expansions by Sochocki’s work

‘theory of residuals’ («Na takoĭ putь poluqeni� iskomyh razloжeniĭ � byl
naveden soqineniem g. Sohockogo ,,Teori� integralьnyh vyqetov”.»).
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3.5.2.3 Posse’s Basic Concepts

We see regarding his scientific work that Posse had no prejudices about new
theories from Western Europe, like function theory. He was also interested in
the foundations of analysis, which was of course a logical consequence of his
pedagogical engagement.

In the non-published notes of a lecture of 1891 [Pos91] he introduced the
concept of a function as another name for a dependent variable, in principle
like Euler did. Analogously he classified functions into explicit and implicit
ones and into algebraic and transcendental ones.

His definition of continuity was still a little awkward using the concept of
infinitely small quantities, but he already used the modern ε − δ-formulation:

“A function f(x) is called continuous for a given value x, if the differ-
ence f(x + h) − f(x) becomes infinitely small with an infinitely small
h, in other words, if there exists a sufficiently small number α, so that
for all values h, whose absolute values are smaller than α, or lying
between −α and +α, the absolute value f(x + h) − f(x) is smaller
than a given number ε, which can be set arbitrarily small.”79

Thus, already in 1891 there was a precise definition of continuity in a
Russian lecture.

In the printed version of these lectures of 1903 the complicated formula-
tions were simplified and continuity was defined by limits of sequences and
was also precise according to the first formulation.

But nevertheless differentiability was introduced in a more old-fashioned
way:

“[...] in general the limit

lim

[
f(x + h) − f(x)

h

]

h=0

is a defined number, but in special cases, at some special values x, this

limit might not exist.”80

79 [Pos91, p.15]: «Funkci� f(x) nazyvaets� nepreryvnoĭ dl� dannogo znaqeni�
x, esli pri h beskoneqno malom i prirawenie funkcii f(x + h) − f(x)
budet beskoneqno malo, inymi slovami, esli suwestvuet takoe, dosta-
toqno maloe qislo α, qtoby dl� vseh znaqeniĭ h qislenno menьxih α,

to estь leжawih v predelah −α i +α, qislennoe (absol�tnoe znaqenie)
raznosti f(x + h) − f(x) bylo menьxe zaranee zadannogo qisla ε, kak by
malo ε ni bylo».

80 [Pos03, p. 38]: «[...] voobwe

pred.

[

f(x + h) − f(x)

h

]

h=0

opredelennoe qislo, a v qastnyh sluqa�h, pri nekotoryh qastnyh
znaqeni�h x, predel зtot moжet i ne suwestvovatь.»



3.6 A. A. Markov’s Lectures 119

Why he spoke about special cases became clearer in the following remark:

“Nowadays some continuous functions are defined, which do not have
a derivative for any value of the independent variable, but these func-
tions do not have any applications, neither theoretical, nor practical,
and we won’t deal with them.”81

Then he pointed out that the sense of these functions is the insight that
continuity does not imply differentiability.

We see that Posse did discuss the foundations of analysis and went much
farther than his predecessors. It is obvious why he was not interested in ‘mon-
sters.’ Indeed there were no applications of them at that time—their most
important sense had been mentioned by Posse!, and secondly maybe he did
not want to overtax his students and readers, mostly engineers, with theoret-
ical niceties.

However there remains a drop of irony, because even Posse emphasized the
relation to applications as an important property of a mathematical concept.

Thus, in this sense Posse was also a typical representative of the St Pe-
tersburg Mathematical School.

3.6 A. A. Markov’s Lectures ‘About Functions Deviating

the Least Possible from Zero”

A. A. Markov did not restrict his work to special problems. His lectures about
functions deviating the least possible from zero (published 1906 [MarA06]
and re-published in [MarA48]) contained the most important contributions of
St Petersburg mathematicians to approximation theory.

Among the references of [MarA06] we only find the above-discussed St Pe-
tersburg contributions by Chebyshev, V. A. Markov and A. A. Markov himself
and a note about Blichfeldt’s remark.82 Hence it is possible that Markov did
not know both Borel’s and Kirchberger’s work when he wrote down his lec-
tures. A. A. Markov’s biographer, S. Ja. Grodzenskij [Gro87] did not give
plausible hints83 about when the lectures were given, but it is possible to find
some evidence.

81 [Pos03, p. 38]: «Zameqanie: V nasto�wee vrem� ukazany nekotorye
nepreryvnye funkcii, kotorye ne ime�t proizvodnoĭ ni pri kakom
znaqenii nezavisimogo peremennogo, no зti funkcii nikakih, ni teo-
retiqeskih, ni praktiqeskih priloжeniĭ ne ime�t, i my imi zanimatьs�
ne budem.»

82 See section 4.2.
83 Grodzenski stated that the lectures were given in 1906 at the university, but this

information cannot be taken from the university calendar [VorSPb]. On the other
hand this fact would be hard to believe, since the subjects of the lectures did not
substantially change between 1869 and 1906.
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3.6.1 Circumstances and Significance

It is clear that the lectures could not be given with this extent before 1892,
since they contain Vladimir Markov’s [MarV92] contributions. The citation of
Blichfeldt’s note from 1901 [Bli01] makes probable that they took place first
in the 20th century. They did not belong to the official university program
which can be shown by the university calendar from 1890 to 1906 [VorSPb].

So there remain two assumptions, where and why they were given. Firstly
we remember that in St Petersburg it was not unusual to offer private courses
and lectures to elder students, especially A. Markov’s academic teachers A. N.
Korkin and E. I. Zolotarev did so.84 On the other hand the form of the litho-
graph gives a hint. The lectures existed together with two other lectures,
the ‘Notes about Mathematics’ by A. N. Krylov (Zapiski po matematike)
and another lecture by A. A. Markov “About Continuous Fractions” (O
nepreryvnyh drob�h). The lithograph was named ‘Free Faculty’ (Volьnyĭ
fakulьtet).

The free faculty was a voluntary offer of lecturers of St Petersburg univer-
sity and other institutes during the 1905/1906 student’s riots, which made it
impossible to teach normally.85. The voluntary lectures were given at a private
grammar school and the mathematical offer was organized by N. M. Gyunter
who was a private lecturer of St Petersburg University at that time.

Evidence for A. Markov’s engagement can be found in Jushkevich’s book
[Jush68] in the section about lectures of A. N. Krylov. Jushkevich writes: “[...]
besides he himself [Gyunter] and Krylov [there] also lectured A. A. Markov,
S. E. Savich and P. A. Shiff.”86

Markov’s biographer S. Ya. Grodzenski states that the lectures were given
only once, which is probable because special lectures like these usually were
not a part of the official calendar as we argued before.

3.6.2 The Posing of the General Problem

The general problem of the ‘theory of functions least deviating from zero’ was
formulated as follows:

84 Compare also [Akh48, p. 9].
85 Also in other regions the studies were made more difficult. In a letter from Febru-

ary 19, 1906 to Hilbert [EgoHil] the Moscow professor D. F. Egorov explained
his request to support his student Mikhail Kovalevski with the registration at
Göttingen with the words: “I am attached to the interests of Mr Kovalevski
because at present it is impossible to study in Russia and it would be a pity
if this eager young man were condemned to idleness” (,,Die Interessen Herrn
Kowalewskys liegen mir am Herzen, da es augenblicklich ganz und gar unmöglich
ist, in Russland zu studieren und es jammerschade wäre, wenn der eifrige junge
Mann zum Nichtstun verurteilt wäre.”)

86 [Jush68, S. 481]: «[...] pomimo ego samogo i Krylova lekcii qitali A. A.
Markov, S. E. Saviq i P. A. Xiff.»



3.6 A. A. Markov’s Lectures 121

Let a function
f : D × R

n → R,

be given with variables (x1, . . . , xm) from the closed bounded domain (Markov
named it ’finite’) Ω ⊂ R

m and parametres (p1, . . . , pn) ∈ R
n. Furthermore we

assume that the partial derivatives

∂f

∂pi

are continuous functions in Ω for all i = 1, . . . , n and that for all i, j = 1, . . . , n
the second partial derivatives

∂2f

∂pipj

are bounded in Ω.
These were the same assumptions which were needed by Chebyshev to

prove Theorem 2.1 from page 38, but Markov formulated them more precisely
(continuity of the partial derivatives) and the scope of them is expanded to
functions of more than one variable. Thus, now to minimize was the quantity

L := L(p1, . . . , pn) := max
(x1,...,xm)∈Ω

|f(x1, . . . , xm, p1, . . . , pn)| (3.54)

for all parametres (p1, . . . , pn) ∈ R
n.

Markov remarked that because of one theorem of Weierstraß the quantity
L exists for all parametres. But there was no remark about the existence of
the minimum

En(f) := min
(p1,...,pn)∈Rn

L(p1, . . . , pn),

neither at this place, nor later.

3.6.3 General Results

In the following sections Markov proved Chebyshev’s theorem (Theorem 2.1)
for the above-described generalized case.

As a means to that end there was a proved theorem from linear algebra,
already used by Chebyshev, but proved only for the special linear system of
equations (2.31), namely the fact that from the only trivially solvability of

Ax = 0

there follows the solvability of
Ax = b

for all b.
After that Markov left the general analysis of the problem, because Cheby-

shev’s theorem only gives a necessary but not sufficient condition for the pa-
rameters of the function of least deviation from zero, as he argued. He wrote:



122 3 The Saint Petersburg Mathematical School

“But that it definitely deviates the least possible from zero with these param-
eter values, this fact has to be proved for any single case separately.”87

This caused the discussion of special cases following now.

3.6.4 Polynomial Approximation

Markov dedicated the fourth section of his lectures to the most important
characterizing theorem for the best Chebyshev approximation of continuous
real-valued functions by polynomials of given degree, the alternation theorem.
Now the functions which should be approximated were no longer defined on
a higher-dimensional domain, but only on a closed interval.

As explained before, in [Cheb59] Chebyshev had only proved a necessary
criterion for the number of deviation points and had not mentioned their alter-
nating property. However, presumably the alternation of the signs of the devia-
tion points was not an unknown fact, since A. Markov himself and his brother
V. Markov proved it for some special cases ([MarA90] and [MarV92]) that
we discussed before. Additionally A. Markov cited Blichfeldt’s note [Bli01]
among the references, which perhaps gave the last impulse to prove the theo-
rem. Markov’s method to prove the alternation theorem was elementary and
looks like a translation of Borel’s proof from [Bor05]. Nevertheless A. Markov
probably himself found the proof, since at first it can be assumed that the
date of the drawing up of the lectures was not later than the edition of Borel’s
1905 lectures and secondly there is an important detail where Markov’s proof
differed from Borel’s proof.88.

In fact, Markov did not use topological arguments as did Borel, who men-
tioned that the set of deviation points must be closed and so assumed only a
finite number of deviation points, which was not necessary in Borel’s proof.
Therefore A. Markov was not able to prove the alternation theorem com-
pletely. This improper assumption might have been caused by the fact that
Markov had in mind only polynomials least deviating from zero. Indeed in
the cases discussed by Zolotarev [Zol68], himself [MarA90] and his brother
Vladimir [MarV92] there were only a finite number of deviation points.

With the help of the alternation theorem A. Markov could prove the unicity
of the best approximating polynomial. But he did not prove its existence.

3.6.5 Extremal Problems: Polynomials Deviating the Least
Possible from Zero

In the next sections Markov discussed the already well-known special cases rul-
ing the St Petersburg Mathematical School: the determination of polynomials
least deviating from zero under certain side-conditions for their coefficients.
87 [MarA48, S. 252]: «No qto pri зtih znaqeni�h parametrov ona

deĭstvitelьno naimenee uklon�ets� ot nul�, – зto v kaжdom otdelьnom
sluqae dolжno bytь dokazano osobo.»

88 See [Stef94] for a more detailed analysis of Markov’s and Borel’s proofs.
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Markov solved Chebyshev’s ‘first case’, which led to the determination of
Tn(x) as the polynomial of degree n of least deviation from zero with given
first coefficient, with the equations

(f(x))
2 − L2 = 0, x ∈ [a, b] and

f ′(x) = 0, x ∈ (a, b)

in the deviation points, as in [MarA84] and already [Cheb54].
Zolotarev’s problem (comp. [Zol68] and [Zol77/1]) was solved only for an

example because of the technical difficulties. Markov even called Zolotarev’s
methods unsuitable for practical purposes because of their difficulty.89

Other subjects of the lectures have also been discussed here, such as

1. approximation in C
(

1√
Ψ

)

where Ψ is a polynomial (see [MarA84]),

2. ‘Mendeleev’s problem’ of determining a smallest higher boundary for the
derivative of a polynomial with a given norm [MarA90] and

3. Vladimir Markov’s problem [MarV92] of determining the polynomial of
least deviation from zero with coefficients satisfying a linear equation.

Besides this A. Markov discussed two other subjects, a modern analysis of
Poncelet’s problem and another approximation problem with side-conditions.

3.6.6 An Interpolatory Side-Condition

The ninth section was dedicated to the following problem. At first we set for
a polynomial p ∈ Pn and a positive polynomial Ψ ∈ P2n:

f :=
p√
Ψ

. (3.55)

For a ξ ∈ R \ [−1, 1] let
f(ξ) := h.

The problem is that of determining the function f which is, among all func-
tions satisfying these side-conditions, the one which deviates as little as pos-
sible from zero on the interval [−1, 1].

In [Cheb80] Chebyshev discussed the same problem for the trigonometric
polynomial

F (ϕ) := A0 +

n∑

i=!

Ai cos iϕ +

n∑

i=1

Bi sin iϕ, φ ∈ [−φ0, φ0].

With the transformation

89 [MarA48, p. 264]: «No rexenie Zolotareva, osnovannoe na primeneni�
зlliptiqeskih funkciĭ, slixkom sloжno dl� togo, qtoby moжno bylo
im polьzovats� na praktike.»
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x =
tan 1

2φ

tan 1
2φ0

we get

F (φ) = f(x) =

2n∑

i=1

Pix
i

(

1 + x2 tan2 φ0

2

)n .

The problem was solved by factorizing numerator and denominator, using
some equations for the coefficients determined in previous paragraphs of the
lectures and applying the alternation condition.

3.6.7 The Main Subject of A. Markov’s Lectures

P. K. Suetin writes about A. Markov’s lectures:90 “The formulations are of a
complete modern character and are even nowadays repeated in monographs
and articles about approximation theory. And besides this there is no doubt
that some formulations belong to A. A. Markov and cannot be found in the
work of other mathematicians.”

However, we should analyse this opinion. Indeed the lectures convince in
their attempt to arrange the different Russian contributions to approximation
theory in a systematic way. But today we have to ask ourselves what the
theoretical frame of these results was about.

Only Chebyshev’s theorem (Theorem 2.1), slightly generalized by Markov,
dealt with the general problem of approximating a continuous function by
families of functions which are determined by a finite number of parameters.

Shortly after the proof of this theorem the problem was restricted to the
approximation of continuous real-valued functions of one variable by polyno-
mials. Here for the first time in the Russian literature the alternation theo-
rem was mentioned and—with restrictions—proved. But also Markov avoided
statements about the existence of solutions.

So we get the impression that both theorems have only been proved
as means for the purpose solving the above-described special problems. He
avoided discussion which theoretical results these theorems might imply.

Markov himself made clear what his aims were in his introductory re-
marks in the sixth section. After the determination of Tn as the solution of
Chebyshev’s first case he wrote to pass over to the other problems:

“Let us assume that a function f(x) is given for all values x ∈ [−h, h]
by the convergent power series

90 [Sue87, p. 210]: «Formulirovki nos�t vpolne sovremennyĭ harakter i
poqti bez izmeneniĭ povtor��ts� i v nasto�wee vrem� v monografi�h i
statь�h po teorii pribliжeni� funkciĭ. V to жe vrem� nekotorye for-
mulirovki nesomnenno prinadleжat A. A. Markovu i ne vstreqa�ts� v
predxestvu�wih rabotah drugih matematikov.»
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f(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 + anxn + an+1x
n+1 + · · · ;

it is demanded to represent it by a polynomial of the form

qn−1x
n−1 + qn−2x

n−2 + · · · + q0,

so that the difference

f(x) − qn−1x
n−1 − qn−2x

n−2 − · · · − q0 (1)

least deviates from zero on the interval [−h, h]. After defining

q0 = a0 + ε0, q1 = a1 + ε1, . . . , qn−1 = an−1 + εn−1,

we now will determine the corrections ε0, ε1, . . . , εn−1 of the coeffi-
cients a0, a1, an−1 under the condition that the function

φ(x) = −ε0 − ε1x − · · · − εn−1x
n−1 + anxn + an+1x

n+1 + · · · (2)

on the interval [−h, h] deviates the least possible from zero.91 Finding
the exact values of these for every given number n and for every func-
tion f(x) satisfying the given condition is a very difficult problem, and
we stand far away from a solution of it. Therefore we restrict ourselves
to the determination of the first approximations for the corrections
ε0, ε1, . . . , εn−1 neglecting the terms an+1x

n+1 + an+2x
n+2 + . . . of

expression (2) under the assumption that the sum of the neglected
terms is sufficiently small.”92

Thus, the circle was closed. We see that this was exactly the same prob-
lem Chebyshev had already posed in his first contribution to this theory,
in ,,Théorie des mécanismes ... [Cheb54]” (comp. section 2.3) and which
again was cited by Chebyshev as an important application of the results of
,,Sur les questions des minima ...” [Cheb59] in the introductory contribution
[Cheb57].93 Obviously the aim was not the determination of a best approxi-
mation for any continuous function, but only for a real-analytic function or
an analytic approximative expression of certain functions. Chebyshev seemed
to pose the problems for more general functions, but immediately restricted
them to real-analytic functions.94

91 We have refrained from citing the original text up to this point.
92 [MarA48, p. 263]: «Nahoжdenie toqnyh veliqin popravok pri vs�kom zadan-

nom n i dl� vs�koĭ funkcii f(x), udovletvor��weĭ postavlennym
uslovi�m, predstavl�et vesьma trudnyĭ vopros, ot razrexeni� kotorogo
my oqenь daleki. Poзtomu my ograniqims� razyskaniem pervyh prib-
liжennyh znaqeniĭ popravok ε0, ε1, . . . , εn−1, kogda v vyraжenii (2) ot-
brosim vse qleny an+1x

n+1 + an+2x
n+2 + . . . , predpolaga�, qto summa ot-

broxennyh qlenov niqtoжno mala.»
93 Compare section 2.4.8 of the present work.
94 Compare ibid.
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Also because of A. A. Markov’s obvious missing knowledge of impor-
tant Western European contributions (in this case especially Kirchberger and
Borel) there was no attempt to lift the lectures to a more general level.

An especially remarkable aspect is the fact that the twenty-years-old
Weierstraß’ approximation theorem (from [Wei85]) was not mentioned by
A. Markov. It is improbable that A. Markov did not know it, because, as
we already know, there was an active interchange between mathematicians
from St Petersburg and Berlin. Borel consequently discussed this, one of
the basic theorems of approximation theory, at the beginning of the chapter
,,Représentation des fonctions continues par des séries de polynomes” [Bor05,
S. 50-61] of his 1905 lectures and presented several proofs!

Markov’s general theorems stand alone at the beginning of his lectures,
isolated from concrete problems. Theory remained incomplete.

So mainly A. Markov’s lectures remained a successful attempt to present
the main results of the St Petersburg Mathematical School in a clear form.

In a certain way they mark the end of the first stage of the origin of approxi-
mation theory which was dominated to that time almost only by St Petersburg
mathematicians.

3.7 Résumé: Practice by Algebraic Methods

With a small number of exceptions (Sochocki and Korkin) it was the work of
Chebyshev which shaped the main subjects of the St Petersburg Mathematical
School. We can show that the orientation to practical problems including
applications within mathematics was the common sense of this school.

After Chebyshev some individual branches came into being and began to
develop independently from each other: number theory (Voronoy, Ivanov),
probability theory (A. Markov, Lyapunov), algebra (Grave), mathematical
physics (Lyapunov) and others.

It is conspicuous that Chebyshev’s inner circle did not share his enthusiasm
for mechanism theory. This might have been caused by the difficulties of the
problems which remained unsolved after Chebyshev’s contributions and made
new mathematical methods necessary.95 Some exact analyses of Chebyshev’s
were only published after WWII.96

The spreading of Chebyshev’s ideas also reached far away from St Pe-
tersburg. The St Petersburg Mathematical School, as the first mathemat-
ical center in Russia ever, shaped the whole of Russian mathematics; its

95 In this sense Tokarenko [Tok87] cited N. B. Delone, who was, for example, the au-
thor of the first comment on Chebyshev’s work about mechanism theory [Del00].
He pointed out that the break-through on this subject was reached only by the
work of the later academician I. I. Artobolevski, who has also commented a lot
on Chebyshev’s contributions.

96 E. g., [Gus57]—here the method of constant corrections (metod popravok), only
roughly presented by Chebyshev in [Cheb54], is described.
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representatives worked and taught in many of the Russian universities: in
Kharkiv (Tikhomandritski, Lyapunov), Kyiv97 (Grave), Warsaw (Sochocki,
Sonin, Voronoy), Kazan (Vasilev) and Moscow (Tsvetkov).

The approximation theory did not flourish in St Petersburg, but later did
through the work of Bernstein and Psheborski in Kharkiv. As we saw, there
were systemic reasons for that.

Bernstein’s pupil V. L. Goncharov98 divided the (uniform) approxima-
tion theory, after methods and subjects, into three directions: an algebraic, a
function-theoretical and a function-analytical one.

The function-analytical one deals with the generalization of classical re-
sults, so clearly it was missing from Chebyshev and began later, for example,
with Bernstein, Akhiezer, Jackson and Haar; a first contribution to this branch
might be J. W. Young’s paper.99

The function-theoretical direction is interested in the properties of the
minimal solution p0 and the quantity

En(f) = min
p∈Pn

‖f − p‖.

Chebyshev himself only showed some inequalities it satisfies [Cheb59], but
neglected questions referring to its convergence for n → ∞. The latter question
was decided by the Weierstraß approximation theorem [Wei85].

The pioneering investigations were those of the Markov brothers into
estimates for the derivatives of polynomials.

The value of this branch of research arose with the quantitative results of
Jackson and Bernstein and became the centre of the ‘Constructive Function
Theory’ as it was called by Bernstein and by the whole Russian school.

The algebraists among the mathematicians with approximation theory in-
vestigated minimax problems with side-conditions for the coefficients of the
approximating polynomials, e. g., Chebyshev’s first case from ,,Sur les ques-
tions de minima ...” [Cheb59], that is, for fixed σ:

min
p∈Pn−1

max
x∈[−1,1]

|σxn − p(x)|. (3.56)

All of the early St Petersburg problems were posed in a similar matter.
Thus we are able to present Chebyshev’s opinion in the debate about the

foundations of analysis. It is clear why all his results fit into the algebraic
direction.

His pupils’ positions were diverse, but obviously more theoretical ap-
proaches were discussed more intensively.

97 The Russian name for the Ukrainian capital is ‘Kiev.’
98 See [Gon47/2].
99 [You07], compare section 4.4.2.
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3.7.1 Decadency and Pseudo-Geometry

As often happened in history, some of the members of the St Petersburg
Mathematical School had a more radical view than Chebyshev. Of course
he clearly separated himself from methods and opinions of certain Western
European schools, but no quotations are known where he criticized concrete
contributions of specific mathematicians or even their work as a whole.

Some of his pupils however made such specific criticisms. Aleksandr
Nikolaevich Korkin called the mathematical interests of Riemann and Poincaré
‘decadency,’100 and we have the following clear citation of Aleksandr
Michailovich Lyapunov, which was even printed in [Lya95], where he pre-
sented his view at the St Petersburg Mathematical School, which he called
the Chebyshev School. He wrote in the 1895 necrologue about the life and
work of Chebyshev:

“One of his [i.e. Chebyshev’s, K.G.S.] main merits as a professor was
the foundation of a mathematical school, known by his name and dis-
tinguished by a special research direction. The pupils of P. L. Cheby-
shev continued and continue to work out the methods discovered by
him. Solving the problems which they were they find new problems
of the same kind. On this way step by step there arise new branches
of research which will be connected forever with the name of P. L.
Chebyshev. Together with this the opinions which the famous scien-
tist was aware of in all his contributions are spreading further and
further through the work of his successors.
At a time, when the admirers of the extremely abstract ideas of Rie-
mann are burying themselves more and more in function-theoretical101

and pseudo-geometrical investigations in spaces of four or more di-
mensions and go sometimes in these works so far that any possibility
vanishes to recognize there any meaning for any application, not only
today, but also in the future—at that time P. L. Chebyshev and his
successors constantly stand on a realistic ground led by the view that
only the investigations originated by applications (scientific or practi-
cal) have a value, and only theories coming from the investigation of
special cases are useful.
The detailed work out of the questions which are especially important
from an applied perspective and simultaneously are of special theo-
retical difficulty, which force the invention of new methods and their
connection to the principles of science, and also the generalization of
the results which we got in this way and the development of a more or

100 Compare section 3.1.
101 The word ,,funkcionalьno-teoretiqeskie” used by Lyapunov is difficult to

translate, because he did not try to name a method, but wanted to disparage a
mathematical direction. Therefore we tried to translate it word-for-word.
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less general theory—of such kind is the direction of most of the work
of P. L. Chebyshev and the scientists who adopted his opinions.”102

Of course it is an open question how this attitude could be harmonized
with an engagement in problems like quadratic forms which did not have
any practical applications at that time, but nevertheless were supported by
Chebyshev and deepened especially by Korkin and Zolotarev.

Why is it unseemly to ask whether a continuous function always can be
represented by a Fourier series, if it is allowed to ask for the number of primes
under a certain boundary?

Obviously common law was valid, for example Euler could not be crit-
icized. Unfortunately it is not recorded, how Petersburg mathematicians
directly discussed these questions with their Western colleagues, especially
the ‘pseudo-geometers’—the contacts had already been established.

Anyway these views contributed to the fact that for the time being St Pe-
tersburg approximation theory ended in an impasse.

102 [Chebgw4, p. 19 f.:] «Glavna� zasluga ego, kak professora, zakl�qaets�
v sozdanii toĭ xkoly matematikov, kotora� izvestna pod ego imenem
i harakterizuets� osobym napravleniem issledovaniĭ. Uqeniki P. L.
Qebyxeva prodolжali i prodolжa�t razrabotku izobret�nnyh im
metodov i pri rexenii postavlennyh im zadaq vydviga�t novye zadaqi
togo жe roda. Takim obrazom, malopomalu sozda�ts� novye otdely v
nauke, s kotorymi vsegda budet sv�zanno im� P. L. Qebyxeva. Vmeste
s tem rabotami ego posledovateleĭ vs� bolee i bolee rasprostran��ts�
te vzgl�dy, kotorym velikiĭ uqenyĭ ostavals� veren vo vseh svoih issle-
dovani�h.

V to vrem�, kak poqitateli vesьma otvleqennyh ideĭ Rimana vs� bolee
i bolee ugl�bl��ts� v funkcionalьno-teoretiqeskie issledovani� i
psevdo-geometriqeskie izyskani� v prostranstvah qetyr�h i bolьxego
qisla izmereniĭ, i v зtih izyskani�h zahod�t inogda tak daleko, qto
teraets� vs�ka� vozmoжnostь videtь ih znaqenie po otnoxeni� k kakim-
libo priloжeni�m ne tolьko v nasto�wem, no i v buduwem — P. L.
Qebyxev i ego posledovateli osta�ts� posto�nno na realьnoĭ poqve,
rukovod�sь vsgl�dom, qto tolьko te izyskani� ime�t cenu, kotorye
vyzyva�ts� priloжeni�mi (nauqnymi ili praktiqeskimi), i tolьko te
teorii deĭstvitelьno polezny, kotorye vyteka�t iz rassmotreni� qast-
nyh sluqaev.

Detalьna� razrabotka voprosov, osobenno vaжnyh s toqki zreni�
priloжeniĭ i v to жe vrem� predstavl��wih osobennye teoretiqeskie
trudnosti, trebu�wie izobreteni� novyh metodov i voshoжdeni� k
principam nauki, zatem obobwenie poluqennyh vyvodov i sozdanie зtim
put�m bolee ili menee obweĭ teorii - takovo napravlenie bolьxinstva
rabot P. L. Qebyxeva i uq�nyh, usvoivxih ego vzgl�dy.»
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Development Outside Russia

4.1 The Mediator: Felix Klein

As we saw in his biography, P. L. Chebyshev loved to travel. His favorite
destination was France, partly because he knew this language excellently.
There his ideas found a big echo. The Chebyshev polynomials introduced
by him in 1853 already were discussed in 1864 in Bertrand’s famous calculus
textbook [Bert64, §§488–491].

Nevertheless the contributions of St Petersburg mathematicians remained
the only papers about uniform approximation theory for a long time. There
is no contribution on this subject published earlier than 1900 and written by
a mathematician who did not work or study in Russia.

One of the reasons for this might be the limited availability of the Russian
papers. In 1901 H. F. Blichfeldt remarked that he had “not access to the origi-
nal memoirs of Tschebycheff” [Bli01, p. 102] and Runge’s scientific biographer
Gottfried Richenhagen judged so after an analysis of Runge’s work from the
beginning of the last century [Ric85].

Felix Klein1 knew this problem. In May 21, 1895 he gave a talk be-
fore the Göttingen Mathematical Society about Chebyshev’s work on L2-
approximation. We present the protocol of this speech in full length, because it
shows very clearly how Klein was also engaged in the effort to get an overview
of mathematics of the time, for himself and for his colleagues.

“In a short overview the signing person talked about the work of
Chebyshev according to the interpolation by polynomials.
Mainly we saw a great series of contributions, where the principle
of least squares was chosen as a starting point. In 1886 Posse put
together the results coming out from here in the book ,,Sur quelques

1 Felix Christian Klein (*Düsseldorf 1849, †Göttingen 1925), student in Bonn,
1871-72 lecturer in Göttingen, 1872–1875 ord. prof. univ. Erlangen, 1875–1880
ord. prof. technical univ. München, 1880-1886 ord. prof. univ. Leipzig, 1886–1913
(emeritus) ord. prof. univ. Göttingen.
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applications des fractions continues algébriques”.2 The polynomial y
does not need to be ordered after increasing powers of x, but after
certain partial polynomials ων(x)

y = c0ω0 + c1ω1 + c2ω2 + . . .

resulting as approximate denominators of a simple expansion into con-
tinuous fractions. The values c0, c1, c2, . . . are determined in a most
simplest way so that the value of cν does not depend whether one
wants to use other polynomials than ων evaluating y. In certain spe-
cial cases the general formula we got so also contains series expansions
the cosinus of the variable, spherical functions and also Taylor’s se-
ries, what gives us a scale for the inner meaning of these series. The
expansion, which shows whether the one or the other series will be
the result, depends on the fact how the weight of the observations is
distributed within the interval where we have to approximate with a
polynomial - constantly, like dx√

1−x2
, and so on. Simultaneously the

ων are useful for other purposes: for Newton’s quadrature and for the

very interesting problem of giving values for the integral
a∫

b

Λ(y)f(y) dy

with given values of
a∫

b

f(y) dy,
a∫

b

yf(y) dy, . . . ,
a∫

b

ynf(y) dy.

But these expansions were not the end of the work of Chebyshev
who always started from immediate practical applications and so was
free from any compulsion of certain methods. Already his first work
is especially remarkable. It was about the most useful dimensions of
the so-called parallelogram mechanisms—mechanisms reaching an ap-
proximately linear motion of steam engines—and Chebyshev made his
debut with it in the St Petersburg Savants étrangers VII in 1853. There
he found the polynomial y = a+ bx+ · · ·+xn, which deviates accord-
ing to its absolute value as little as possible from zero between ±1.

Chebyshev found that this polynomial is
(

x+
√

x2−1
2

)n

+
(

x−
√

x2−1
2

)n

;

its largest deviation from zero is 1
2n−1 .

There is no doubt that all these contributions of Chebyshev are es-
pecially remarkable, both under theoretical and under the aspect of
an immediate numerical application. Unfortunately until now they are
hardly available and nearly unknown in Germany; we want to take all
pains to make a change on this behalf.”3

Klein.4

2 Compare [Pos86] among the references of the present work.
3 Italics set by us, K.G.S.
4 [MathGö, p. 133–136]: ,,Der Unterzeichnende berichtete in Kurzem Überblicke

über die Arbeiten von Tchebyscheff betr. Interpolation durch Polynome.
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Since his Leipzig time Klein had been interested in Russian contributions
to different subjects in mathematics. In his Göttingen assets we find some let-
ters which provide information about that: he corresponded with A. Markov

Wir sahen vor allen Dingen eine grosse Serie von Arbeiten, in denen das Prinzip
der Kleinsten Quadrate als Ausgangspunkt gewählt wird. Die hier entstehenden
Resultate hat Possé 1886 in dem Buche: ,Sur quelques applications des fractions
continues algébriques’ im Zusammenhang dargestellt. Das Polynom y muß nicht
nach ansteigenden Potenzen von x sondern nach gewissen Theilpolynomen ων(x)
geordnet werden:

y = c0ω0 + c1ω1 + c2ω2 + . . . ,

die sich als Näherungsnenner einer einfachen Kettenbruchentwicklung ergeben.
Es bestimmen sich dann die c0, c1, c2, . . . in einfachster Weise, so zwar, dass der
Werth von cν gar nicht davon abhängt, ob man ausser ων noch andere Theilpoly-
nome beim Auswerthen des y benutzen will. In der so entstehenden allgemeinen
Formel sind bei gew. Reihenentwickelungen nach Cosinus der Vielfachen, nach
Kugelfunktionen, auch die Taylor’sche Reihe als besondere Fälle mitenthalten,
was einen Masstab für die innere Bedeutung dieser einzelnen Reihen abgibt. Die
Entwicklung nämlich, ob die eine oder andere Reihe sich einstellt, hängt daran,
wie man sich das Gewicht der Beobachtungen im Intervall, innerhalb dessen mit
einem Polynom approximiert werden soll, vertheilt denkt, ob constant, ob als

dx√
1−x2

, etc. etc. Zugleich sind die ων auch nach anderen Richtungen nützlich:

bei der newtonschen Quadratur und bei der sehr interessanten Aufgabe für

das Integral
a
∫

b

Λ(y)f(y) dy bei gegebenen Werthen der
a
∫

b

f(y) dy,
a
∫

b

yf(y) dy, . . . ,

a
∫

b

ynf(y) dy Grössenwerthe anzugeben.

Mit seinen Entwickelungen sind aber die Untersuchungen von T. [Chebyshev,
K.G.S.], der immer von Fragen der unmittelbaren praktischen Anwendungen aus-
geht und daher in der Wahl seiner Probleme von jedem Zwange irgend welcher
bestimmter Methoden frei ist, keineswegs erschöpft. Besonders bemerkenswert ist
gleich die erste Arbeit, mit der T. 1853 in den Petersburger Savants étrangers VII
debutierte, über die zweckmässigsten Dimensionen der sog. Parallelogrammecha-
nismen (durch welche bei den Dampfmaschinen angenäherte Geradführung erre-
icht wird). Es handelt sich dort um Aufsuchung des Polynoms y = a+bx+· · ·+xn,

welches zwischen ±1 seinem absoluten Betrage nach möglichst wenig von Null

abweicht. T. findet, dass das

(

x+
√

x2−1

2

)n

+

(

x−
√

x2−1

2

)n

ist; seine grösste Ab-

weichung von Null beträgt 1
2n−1 .

Es ist kein Zweifel, dass alle diese Arbeiten von T. sowohl unter theoretischem
Gesichtspunkte als unter dem Gesichtspunkte der unmittelbaren numerischen An-
wendung besonders bemerkenswerth sind. Leider aber sind dieselben bisher wenig
zugänglich und in Deutschland so gut wie unbekannt; wir werden uns alle Mühe
geben wollen, in dieser Hinsicht eine Änderung herbeizuführen.”

Klein.
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[MarAKl], Tikhomandritski [TiKl], Posse [PoKl] and Mlodzeevskij,5 who
spent some time in Göttingen about 18906 [MlKl].

A. Markov reported to him about the content of the work of Chebyshev
and his pupils, in a letter from February 14, 1885 [MarAKl, Nr. 918] he referred
to the application of the theory of continuous fractions to series expansions
of functions and the interpolation by means of least squares and asked Klein
if he was interested in applications to the theory of functions least deviating
from zero, that is, to the best Chebyshev approximation.7

Unfortunately there is no other letter where Markov described the content
of Chebyshev’s work more precisely, but maybe Klein only asked Markov to
send the contributions to him. The constancy of the correspondence suggests
this.

In a letter of nine pages8 from November 14, 1884 [TiKl, Nr. 24] Tikhoman-
dritski informed Klein about the circumstances and prevailing data of Rus-
sian mathematics. He wrote which journals were published in Russia and who
taught at Russian universities and who represented which subject.

Klein’s rôle as a mediator9 would soon bear fruit, as we will see. It was
made easier by the edition of Chebyshev’s collected works by Markov and
Sonin in 1899.

5 Mlodzeevskij, Boleslav Kornelievich (June 28 (July 10) 1858 (1859?)- January
18, 1923), 1892–1911 and from 1917 professor at Moscow university, 1906–1921
vice president of the Moscow Mathematical Society, 1921–1922 its president. His
subjects of interest were algebraic geometry, differential geometry and the theory
of functions of a real variable (about this he lectured since 1900!).

6 This we took from his letter to Felix Klein from October 28 (November 9), 1891,
where he gratefully remembered his time in Göttingen.

7 [MarAKl, Nr. 918, S. 2/3]: ,,Il me parait, que l’application des fractions continues
au calcul approché des intégrales est suffisament connue.

Peut être, leurs applications au développement des fonctions en séries et à
l’interpolation par la méthode des moindres carrés sont moins connues; ce sont
précisement quelques formules de M. Tchébychef. [...]

Vous avez peut-être en vue d’autres fractions continues et rélativement à cela
d’autres questions, par example: des fonctions qui s’écartent le moins possible de
zéro, ou bien de l’intégration sous forme finie. J’aurais pu parler sur la première
chose.”

8 The entry Cod. Ms. F. Klein 12, Nr. 24 also contains a supplement about Polish,
Czech and Hungarian journals, which obviously (by handwriting) was collected
by others.

9 We want to remark that Klein’s engagement was ignored in the Soviet Union.
The Soviet encyclopedia wrote about him: “K[lein] described it [the history of
mathematics] tendentiously exaggerating the merits of German mathematicians.
In particular, he concealed the work of P. L. Chebyshev.” ([VaVv49-57, vol. 21,
p. 403]: «K. izlagal e� tendenciozno, preuveliqiva� zaslugi nemeckih
matematikov. V qastnosti, K. zamalqival raboty P. L. Qebyxeva.»
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4.2 Blichfeldt’s Note

The first work appearing beyond Russia and dealing with approximation the-
ory in the sense of Chebyshev was Blichfeldt’s short note [Bli01] published in
1901 in the USA. Blichfeldt10 noted that he obviously found a proof of the
alternation theorem:

“Let us by the “maxima” of [f(x)]2 in the interval a ≤ x ≤ b under-
stand those only which are equal to L2, the greatest value of [f(x)]2 in
the given interval. If we classify these maxima as positive or negative
according as the corresponding value of f(x) is +L or −L, and plot
the curve y=f(x), we shall find at least n alternations of the two kinds
of maxima in the given interval.”

Here Blichfeldt did not prove the theorem, he only mentioned that a con-
struction is possible presenting a shift argument. It might be that Blichfeldt
did not give a complete proof only because he did not know all of Chebyshev’s
work.11

We will see that there were difficulties in the first attempts of a proof of
the alternation theorem, therefore we are not able to name him as the first
who proved the alternation theorem, since we do not know his proof.

4.3 Kirchberger’s Thesis

We have already reported that Felix Klein tried to make the work of Cheby-
shev and his pupils public in Göttingen.

So it seems to be a consequence of this effort that just there Chebyshev’s
ideas got a new foundation—immediately after the 1899 edition of Cheby-
shev’s collected work by Andrej Andreevich Markov and Nikolay Jakovlevich
Sonin Paul Kirchberger12 finished the thesis ‘About Chebyshevian Approx-
imation Methods’ (,,Ueber Tchebyschefsche Annäherungsmethoden” [Kir02]
which he defended in 1902 under supervision of David Hilbert.

10 Hans Frederick Blichfeldt (*Illar (Denmark) 1873, †Palo Alto (USA) 1945). His
mathematical main interests were group theory and number theory.

11 [Bli01, Footnote on p. 102]: “The writer has not access to the original memoirs
of Tschebycheff, in which this property may have been indicated.”

12 There is not much known about Paul Kirchberger (1878-?). In his curriculum
vitae as part of his thesis he pointed out the following data: Born June 23, 1878
in Niederlahnstein (Germany), grammar school in Weilburg, 1897-1900 studies
in Berlin, 1900-1902 Studies in Göttingen, 1903 assistant teacher in Fulda (this
information was taken from [Beri03/04]), 1907 senior teacher (Oberlehrer) in
Charlottenburg (Berlin) [Beri07]. In Berlin he stayed at least until 1922, as comes
out from a letter he addressed to D. Hilbert on the occasion of his 60th birthday
[KiHi].
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Before we analyse this work more precisely, we want to have a look i nto
the report the supervisor David Hilbert13 wrote about the thesis:

“After the definition of the Chebyshev approximating function for a
finite interval, the proof for the existence of this function is presented,
to be precise, simultaneously for the case of several variables, what
Chebyshev had not done before. Then mainly Chebyshev’s results
according to the properties of the approximating function are pre-
sented in a simplified form (chapter I). Now the candidate considers
the Chebyshev approximating function for a given analytic function in
its dependence on the interval length 2h, states its analytical character
according to h and finally gets to a convergent algorithm to calculate
the approximating function by means of a string of divisions (chap-
ter II). After expanding Chebyshev’s problem in chapter III adding
some remarkable initial and side-conditions, in chapter IV the can-
didate passes to formulate and prove some auxiliary theorems about
convex polyhedra. These theorems are partly equal to some general
theorems Minkowski found quite some time ago but did not publish.
They serve the candidate to develop the theorems of chapter V, which
represent the main result of the investigations of the author and by
which a complete expansion and generalization of Chebyshev’s theory
is reached to the case of approximating functions of several variables.
The work, especially the results of chapter V are of a large scientific
value; the presentation is careful and skillful.”14

13 David Hilbert (*1862 Königsberg, †1943 Göttingen), 1880–1885 studies in
Königsberg, 1886-1892 Privatdozent univ. Königsberg, 1892–1895 extraord. prof.
univ. Königsberg, 1895–1930 (emeritus) ord. prof. U Göttingen.

14 Here we cite the complete report as it can be found in the doctorate’s al-
bum (‘Promotionsalbum’) of the philosophical faculty (Archive of Göttingen uni-
versity, Phil. Fak., Nr. 188b, Nr. 11): ,,Nach Definition der Tchebyschef’schen
Näherungsfunktion bezüglich eines endlichen Intervalles wird der Beweis für die
Existenz dieser Funktion erbracht, und zwar zugleich für den Fall mehrerer
Variablen, was von Tchebyschef noch nicht geschehen war. Sodann werden im
Wesentlichen die Tchebyschef’schen Resultate betreffend die Eigenschaften der
Annäherungsfunktion in vereinfachter Form dargestellt (Kap. I). Nunmehr be-
trachtet der Candidat die Tchebyschef’sche Näherungsfunktion für eine gegebene
analytische Funktion in ihrer Abhängigkeit von der Intervallänge 2h, stellt den
analytischen Charakter derselben in Bezug auf h fest und gelangt schliesslich
zu einem convergenten Verfahren zur Aufstellung der Annäherungsfunktion mit-
telst einer Kette von Divisionen (Kap. II). Nachdem in Kap. III die Tcheby-
schef’sche Fragestellung noch durch Hinzunahme gewisser merkwürdiger Anfangs-
und Nebenbedingungen erweitert wird, geht der Candidat in Kap. IV dazu über,
gewisse Hülfssätze über convexe Polyeder aufzustellen und zu beweisen. Diese
Sätze decken sich zum Teil mit gewissen allgemeinen Theoremen, die Minkowski
schon seit längerer Zeit gefunden, aber noch nicht publicirt hat. Sie dienen dem
Candidaten zur Entwickelung der Sätze in Kap. V, die das Hauptergebnis der
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Of course Kirchberger was allowed to sit at the examination after such a
report. July 17, 1902 he passed it. The examiner of mathematics was Hilbert,
another member of the examination committee was Klein.15

Although Hilbert emphasized the special meaning of the last two chap-
ters—their results would later be published in the ’Mathematische Annalen’
[Kir03]—we want to restrict ourselves to the first three chapters because they
immediately continue Chebyshev’s work.

4.3.1 Existence, Uniqueness and Continuity

As we have already shown several times, existence and uniqueness theorems
are not important for the protagonists of the St Petersburg Mathematical
School— Chebyshev clearly said that he develops a theory to solve con-
crete problems. So questions of existence and uniqueness are automatically
answered because his solutions are concrete polynomials of a given degree.

On the other hand Kirchberger was influenced by the Berlin and Göttingen
schools—he studied both in Berlin and in Göttingen. In his curriculum vitae
in the appendix of [Kir02] he emphasized Frobenius’ influence on him and
besides others he also mentioned Fuchs und H. A. Schwarz. So it is no wonder
that he tried to build secure foundations for the theory of best approximation.

4.3.1.1 Return to Weierstraß’ Fundamental Theorem

To prove the existence of a best approximation Kirchberger stated that it
suffices to show that all coefficients of the minimal sequence are uniformly
bounded, that is if f ∈ C[a, b] is the function to be approximated,

(

p(m)
)

m∈N

⊂ Pn

the minimal sequence and for all m ∈ N :

p(m)(x) =

n∑

i=0

a
(m)
i xi, x ∈ [a, b],

there exists a bound M ∈ R so that

sup
m,i

|a(m)
i | ≤ M.

Untersuchungen des Verfassers darstellen und durch die eine vollkommene Aus-
dehnung und Verallgemeinerung der Tchebyschef’schen Theorie auf den Fall von
Annäherungsfunktionen mehrerer Veränderlicher erreicht wird.

Die Arbeit besonders die Ergebnisse von Kap. V sind von grossem wis-
senschaftlichen Wert; die Darstellung ist sorgfältig und geschickt.”

15 Ibid.
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Kirchberger argued correctly that with this it is clear that the minimal
deviation

L(a0, . . . , an) = inf
x∈[a,b]

|f(x) −
n∑

i=0

aix
i|

is a function of n + 1 variables from the n + 1-dimensional cube [−M, M ]n+1,
and therefore reaches its minimum there according to a theorem of Weierstraß.

4.3.1.2 Proof of the Alternation Theorem

In the following section Kirchberger refined Chebyshev’s theorem (see Theo-
rem 2.1 from page 38).

We again consider the general approximation problem for n+1 parametres
p0, . . . , pn, with the error function F (., p0, . . . , pn) ∈ C[−1, 1]. Let x1, . . . , xµ ∈
[−1, 1] be the deviation points of F.

Then there holds Chebyshev’s following theorem formulated by Kirch-
berger:

Theorem 4.1 If the deviation ‖F (., p0, . . . , pn)‖ is minimal, then the system
of equations

λ0
∂F

∂p0
(x1) + λ1

∂F

∂p1
(x1) + . . . + λn

∂F

∂pn
(x1) = s1

λ0
∂F

∂p0
(x2) + λ1

∂F

∂p1
(x2) + . . . + λn

∂F

∂pn
(x2) = s2 (4.1)

...
...

...

λ0
∂F

∂p0
(xµ) + λ1

∂F

∂p1
(xµ) + . . . + λn

∂F

∂pn
(xµ) = sµ

with sign si = signF (xi) for all i = 1, . . . , µ is not solvable.

This theorem slightly differs from Chebyshev’s theorem because it takes
signs into account. The proof, however, does not become more difficult.

The theorem immediately implies in the case of polynomial approximation
that there must be at least n + 2 deviation points if the error function is
minimal, and so we get Chebyshev’s result. Then the system of equations has
the shape

λ0 + λ1x1 + . . . + λnxn
1 = s1

λ0 + λ1x2 + . . . + λnxn
2 = s2 (4.2)

...
...

...

λ0 + λ1xµ + . . . + λnxn
µ = sµ.
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If we now assume that H :=
n∑

i=0

λiι
i is a polynomial with zeros between

xsj
and xsj+1

, whenever there is a change in sign between sj and sj+1, then
we see that it is possible to construct such a polynomial if we have not more
than n changes of signs of the error function. So Chebyshev’s theorem in the
formulation of Kirchberger implies the existence of n+2 alternating deviation
points.

But the approach via the system of equations has the disadvantage that
we firstly have to assume the finiteness of the number of deviation points. As
Chebyshev already did, so also Kirchberger argued with the (already famous)
shift, namely that, if the systems of equations (4.1) or (4.2) are solvable, a
function ρ from the space of approximating functions can be taken with the
property

‖F (., p1, . . . , pn) − ρ‖ < ‖F (., p1, . . . , pn)‖.

The diminishing of the error is possible in small neighborhoods of the deviation
points. Beyond them the value of the difference |F (x, p1, . . . , pn) − ρ(x)| may
become larger, but will not exceed the maximum error, if x is not a deviation
point not having been taken into account. In the case of the finiteness of
deviation points this won’t be a problem because then all deviation points are
part of the system of equations.

Kirchberger pointed out about this problem that, if we have whole devia-
tion intervals, the respective neighborhoods can be suitably expanded, which
is absolutely correct. But the case of an infinite number of deviations not
covering whole intervals is not sufficiently treated with this remark.

We have such a case when approximating f : [0, 1] → R with

f(x) =

{− 1
2 + 1

sin(1)

∣
∣x sin(x−1)

∣
∣ : x �= 0

− 1
2 : x = 0

(4.3)

by constant functions.16 Its best approximation is the zero function, and the
only positive deviation point will be x = 1, negative deviation points are all
points xk = 1/(kπ), k ∈ N. Figure 4.1 outlines the oscillating behaviour of
the error function f.

The fact that now the signs of the deviation points had also been taken
into account in Theorem 4.1 made possible a complete characterization of
the best approximating polynomials because the alternation of the deviation
points of the error function is also sufficient for the minimality. Kirchberger
was the first to prove this fact, presenting the (now classical) contradictory
proof:

We assume that f ∈ C[a, b] is to be approximated, and let p ∈ Pn be
the polynomial so that f − p has at least n + 2 alternating deviation points
x1, . . . , xn+2, and let q ∈ Pn be a polynomial with

16 For more detailed considerations compare [Stef94]. A respective proof has to avoid
the system of equations and has to be made with topological arguments.
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Figure 4.1. An error function with an infinite number of deviation points not con-
taining a whole interval.

‖f − q‖ < ‖f − p‖.

Then we have in the deviation points:

q(x) − p(x) > 0, iff(x) − p(x) > 0, and

q(x) − p(x) < 0, iff(x) − p(x) < 0.

But because of the alternating order of the deviation points q−p, a polynomial
of degree n would have n + 1 zeros.

And so the question of uniqueness was answered. Also here Kirchberger
was the first to prove it—with the mentioned gap.

4.3.2 Continuity of the Operator of Best Approximation

The fifth paragraph of the first chapter was devoted to the question if the
error of approximation is changing continuously, or, if the operator

En : C[a, b] → R

f �→ En(f)

is continuous in f.
Kirchberger proved this fact with the alternation theorem strictly speak-

ing, only for almost all continuous functions—as we saw, there exist functions
for which Kirchberger’s theorem does not give an answer.

Let f be a function with its best approximation φ and let fε be another
function with best approximation φε, for which there holds

‖f − fε‖ < ε,
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so it is easy to see that within a small neighborhood U(x) of a deviation point
x the difference ‖φ − φε‖U(x) also will become small because otherwise the
polynomial of degree n, φ − φε would have n extrema.

Now we have a partial interval U(x) ⊂ [a, b], where the polynomial φ − φε

becomes arbitrarily small. Thus, its coefficients also become arbitrarily small,
and with them the whole polynomial on the whole interval.

4.3.3 Rational Approximation

Kirchberger’s investigations also cover the approximation of continuous func-
tions by rational functions with a given sum of the degrees of numerator and
denominator (Chebyshev’s third case), but here his considerations did not
convince as much as they did in the linear case.

Trying to prove the existence of the best rational approximation, he made
a mistake.

He argued correctly that the denominator of a completely cancelled best
approximating rational function cannot have zeros in the interval [a, b], but
he did not see that just the rational functions having a cancelled representa-
tion (the non-normal ones) are points of discontinuity of the operator of best
approximation.17 But he explicitly used the continuity of the operator.18

17 see, e. g. the theorem of Cheney and Loeb in [ChLo66].
18 In his considerations Kirchberger restricted the parametric space and considered

only rational functions
m
∑

i=0

qix
i

n
∑

i=0

pixi

,

whose coefficients lie in a bounded domain. He designated by L the operator of
best approximation.

Now he stated “In this domain L can be considered as a continuous function of
p and q, because the only points of infinity are the points of infinity which are not
of importance for our minimal problem. So, L takes its minimum by Weierstraß’
theorem. If for that minimum there holds p0 �= 0, the theorem has been proved.
If, however, p0 = 0, it also must be q0 = 0, because otherwise for x = 0 the
approximating function, and so L would become infinitely large and a minimum
could not take place. So we can now divide numerator and denominator by x and
so diminish the degree of both by 1. So we pass to a space whose dimension is
lower by 2 and consider the analogous cube. Thus, we can continue [...].” ([Kir02,
p. 22:] ,,L kann in diesem Gebiet als stetige Funktion der p und q betrachtet
werden, denn die einzigen Unendlichkeitsstellen sind die Unendlichkeitsstellen,
die für unsere Minimumsfrage nicht in Betracht kommen. L nimmt also sein
Minimum nach dem Weierstraß’schen Satz an. Ist für dieses p0 �= 0, so ist der
Satz bewiesen, ist aber p0 = 0, so muss notwendig auch q0 = 0, weil sonst für
x = 0 die Annäherungsfunktion, also auch L undendlich würde, ein Minimum
also sicher nicht stattfände. Wir können alsdann Zähler und Nenner durch x

teilen und so den Grad beider um 1 erniedrigen. Wir gehen deshalb zu einem um
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Nevertheless the proposition was right, as Walsh showed in 1931 [Wal31].
For the case of a normal (non-cancelled) rational approximation Kirch-

berger then proved the alternation condition.

4.3.4 A Discrete Approximation Problem

At the end of the first chapter Kirchberger presented an interesting applica-
tion.

Given six points on the plain he tried to find the conic section being next
to them.

He then showed a necessary and sufficient condition for this situation,
namely that the distances of the six points to the conic section must be equal
and that the points have to lie alternating left and right from it, where we
have to understand ’alternating’ suitably (e. g., following the arc).

We see that this is a new interpretation of Laplace’s problem from sec-
tion 1.2.

Kirchberger correctly mentioned that only special two-dimensional prob-
lems can be treated in this way, because in general we cannot assume unique-
ness in higher dimensions.19

In a further section he calculated the best approximating polynomial for a
table of values. Of course he was not able to give an algorithm for the general
problem and closed the chapter with the words

“The interpolation problem gives the main results of Chebyshev’s ap-
proximation methods. But the problem is reduced here to the solution
of linear equations.”20

4.3.5 An Algorithm for the Approximate Determination of the
Best Approximation of Real-Analytic Functions

Kirchberger now carefully showed how it is possible to use the Chebyshev
polynomials for the determination of best approximation of analytic functions.
Presumably Chebyshev himself had solved this problem, as his explanations
from ,,Théorie des mécanismes...”[Cheb54] assume, but we do not find such
an algorithm among his published documents.

2 Dimensionen niedrigeren Raum und betrachten in diesem den analogen Würfel.
Auf diese Weise fahren wir fort [...]”)

We clearly see how he followed a wrong track, since the minimum can be
reached beyond a given cube because the cancellation of rational functions is a
discontinuous operation.

19 Compare the theorems of Haar [Haa17] and Mairhuber [Mai56].
20 [Kir02, p. 30:],,Das Interpolationsproblem liefert also die wesentlichen Resultate

der Tchebyschefschen Annäherungsmethoden. Das Problem reduziert sich aber
hier auf die Auflösung linearer Gleichungen.”



4.3 Kirchberger’s Thesis 143

We write (as Chebyshev already did, compare section 2.3.2) the given
analytic function φ ∈ C[−h, h] depending on the boundaries of the interval

φ(z) =

∞∑

i=0

ki(hz)i

=

n∑

i=0

kih
izi + hn+1

∞∑

i=n+1

kih
i−n−1zi

=: p(z) + hn+1ψ(z).

We know,21 that the best approximation for φ then has the form

p + hn+1V,

where V :=
∑n

i=0 piz
i is the best approximation for ψ.

Using the characteristic equations in the deviation points z1, . . . , zn+2

of V − ψ,

V (z2) − ψ(z2) = L

...

V (zn+1) − ψ(zn+1) = (−1)n+1L

V ′(z2) − ψ′(z2) = 0

...

V ′(zn+1) − ψ′(zn+1) = 0

z1 = −1

zn+2 = 1,

Kirchberger saw that their solutions p0, . . . , pn, L, z2, . . . , zn+1 could be ex-
panded by powers of h.

Now he determined successive approximations for V , increasing the or-
der of h step by step, as Chebyshev had already suggested. The closeness
of both texts let us assume that Chebyshev indeed had already found the
algorithm. But he obviously preferred to give closed representations of best
approximations, as his solutions and the solutions of his pupils let us presume.
Therefore it might be that Chebyshev did not think that the algorithm was
of high importance.

4.3.6 Approximation under Side-Conditions

Kirchberger finished his investigations into the best approximation of contin-
uous functions by discussing two special problems; firstly he considered the

21 See equation (32) and the following remarks.
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case of one interpolatory side-condition, secondly he dealt with the determina-
tion of the monotone polynomial of degree n with given first coefficient which
least deviates from zero. This problem we have already carefully investigated,
and since Kirchberger did not add any new results except for an existence
theorem, we don’t want to discuss it here.

The interpolatory side-condition was the following one: The polynomial
of best approximation to f should also interpolate f at the endpoints of the
interval.

Kirchberger proved an alternation theorem for this case: It is necessary
and sufficient for a solution of this problem that the error function has n
alternating deviation points (not n + 2 as in the general problem), because of
the two additional equations the number of deviation points was diminished
by two, as could be expected.

4.3.7 Foundations for Chebyshev’s Methods

Although David Hilbert did not especially praise Kirchberger’s above-men-
tioned results, according to the one-dimensional approximation of continuous
functions they also were of special use. These results added analytic consid-
erations to St Petersburg’s algebraic results, and firstly Kirchberger proved
theorems about the existence, uniqueness and continuity of the occurring so-
lutions.

St Petersburg purists would have denied that Kirchberger’s results gave
new insights. But among them there was an alternation theorem by means
of which he could solve a new discrete approximation problem and an algo-
rithm to determine the best approximation of an analytic function. As we
have already mentioned, presumably Chebyshev had developed a similar one
before, but had never published it in such an explicit form. Kirchberger’s dis-
crete approximation problem had no forerunner in St Petersburg, but could
be easily solved by the characteristic equations Chebyshev had already dis-
cussed in 1853. The alternation theorem itself could also easily be derived
from Chebyshev’s considerations—Kirchberger himself did it in such way.

But in spite of all this scepticism we should make clear again that the
mathematical theory of the best approximation remained an incomplete struc-
ture in St Petersburg because they did not sufficiently pay attention to the
approximation of continuous functions and only were concentrated in special
problems. Therefore Kirchberger’s work was indeed a milestone in the devel-
opment of the theory and would later be recognized by Borel.22

22 In his Leçons [Bor05] Borel wrote about Chebyshev’s approximation method:
[Bor05, Footnote on p. 82]: “La méthode de Tchebicheff a été reprise et ren-
due rigoureuse par M. Paul Kircherberger [!], Inaugural-Dissertation: Ueber
Tchebychefsche Annäherungsmethoden, Göttingen, 1902. Nous avons utilisé dans
ce qui suit cet important travail.”
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4.4 Other Non-Quantitative Contributions

Some of the gaps Kirchberger left would be closed soon.

4.4.1 Borel

Topology entered approximation theory via Émile Borel23 in his 1905 ,,Leçons
sur les Fonctions de Variables Réelles et les Développements en séries de Poly-
nomes.”

This had a special advantage for the alternation theorem. In its proof Borel
could free himself from the deviation points of the error function and so from
Chebyshev’s system of equations (2.31) and thus avoid the trap Kirchberger
ran into.

Borel divided the interval [a, b] into extremal segments containing at least
one deviation point and into parts where the error function remains clearly
smaller than the maximum error.

These extremal segments now contain all points in a neighborhood of a
deviation point where the error function has values which are larger than the
boundary for the other non-extremal intervals.

More exactly: Let L be the maximum error for a given error function f −p
in [a, b] and x1, . . . , xk be a k-alternant, then we define with 0 < ε < L the
following subdivision for [a, b] :

x ∈ A ⇐⇒ |f(x) − p(x)| ≤ ε

x ∈ B ⇐⇒ |f(x) − p(x)| ≥ ε.

Because of the alternation property there are now k disjoint partial inter-
vals in B. If now k < n + 2, then it is possible to determine a polynomial
of degree n, whose zeros lie between these partial intervals. By means of this
polynomial we can now diminish the maximum error as Chebyshev and Kirch-
berger did.

For the construction of a function with smaller norm it is important that
the sets A and B are closed. There topology played its decisive rôle. Borel
discussed this fact carefully.

Because of the skilful construction of the extremal segments, Borel avoided
all pathological cases and did not have to find special arguments for special
cases, as Kirchberger had to do.

But also Borel made a small, but fundamental, mistake in the final es-
timate for the value of the new error function. He correctly showed that in
the extremal segments B the error function can be diminished, let’s say by δ.
Then he stated that also in the remaining intervals A the error function must
remain smaller than L − δ, but this is wrong in general.

23 Félix Édouard Justin Émile Borel (*Saint Affrique (France) 1871, †Paris 1956),
1896–1909 prof. at the École Normale Supérieure in Paris, 1909–1924 prof. at the
Sorbonne in Paris, 1924–1940 naval minister of the French Republic.
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Presumably this was a careless mistake, but nevertheless there remained
a gap, since of course it could be that his special construction caused jumps
beyond the extremal segments B.

Two years later John Wesley Young showed that this was not the fact: the
mistake could easily be repaired.

4.4.2 Young’s Systems

In 1907 Young24 published the contribution “General Theory of Approxi-
mation by Functions Involving a Given Number of Arbitrary Parameters”
[You07]. This work was the first work after Chebyshev’s “Questions about
Minima...” [Cheb59] which abstracted from the uniform approximation by
special families of functions like algebraic, trigonometric polynomials or ra-
tional functions.

Young was the first to define linear systems of continuous functions whose
most important property they have in common with polynomials is: Every
non-trivial function from such an n-dimensional function space has not more
than n − 1 zeros.

Today we call such systems Haar function spaces because only those sys-
tems have the property that any continuous function can be approximated
uniquely in such a function space, as Haar25 could show in 1917 [Haa17].
Often they are also called Chebyshev function spaces.

Young showed the existence and uniqueness of the best approximation by
elements of such a function space. The uniqueness was shown again via an
alternation theorem.

He used there Borel’s arguments and was able to avoid his mistake. But
unfortunately also Young made a mistake. He implicitly stated that there
exists a constant in every one of the function spaces defined by him, but it is
only evident that they contain a strictly positive function (which by the way
is sufficient to use the classical shift argument and to prove the alternation
theorem).

But nevertheless at last we got a valid proof of the alternation theorem
for function spaces containing constant functions like the polynomials.

24 John Wesley Young (*Columbus/Ohio (USA) 1879, †Hanover, New Hampshire
(USA) 1932), studied at the Ohio State University, 1903–1905 prof. Northwestern
univ., 1905–1908 prof. Princeton univ., 1908–1910 prof. Illinois univ., 1910–1911
prof. Kansas univ., 1911–1932 prof. Dartmouth College, 1928–1930 vice president
of the AMS, mainly worked in geometry.

25 Alfréd Haar (*Budapest 1885, †Szeged 1933), 1904–1909 studies in Göttingen,
1909–1912 lecturer in Göttingen, 1912–1917 extraordinary prof. univ. Kolozsvár
(Austria-Hungary, today Cluj-Napoca/Romania), 1917 ord. prof. univ. Kolozsvár,
1918–1933 ord. prof. U Szeged.
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4.4.3 Trigonometric Approximation

Simultaneously with the publication of Young’s text a work of Fréchet26

appeared where the question of approximation of continuous functions by
trigonometric polynomials was discussed [Fre07]. Here he transferred some
of Kirchberger’s results to this case, e. g., an existence theorem and a the-
orem about the continuity of the operator of trigonometric approximation.
Additionally he pointed out that the coefficients of the sequence of best ap-
proximations uniformly converge to the coefficients of the Fourier series of the
function to be approximated.

After another year he generalized these results, taking into account Borel’s
results, and extended them with a uniqueness and an alternation theorem.
As an example he carefully discussed again the trigonometric approximation
[Fre08].

Probably his results were discovered independently from Young’s obser-
vations, but Fréchet was also not able to do without an interpolatory side-
condition similar to that of Young (and Haar) to prove uniqueness and alter-
nation theorems.

Leonida Tonelli27 added an extensive book to these contributions in the
same year [Ton08]. There he carefully collected the known results and added
some new theorems about the approximation of functions of two variables.

Another work written about Chebyshev’s approximation problem for func-
tions of two variables is Sibirani’s work from 1909 [Sib09].

4.5 On Convergence and Series Expansions

Weierstraß’ approximation theorem of 1885 had not been mentioned by St Pe-
tersburg contributors to approximation theory, especially because of their dis-
approval of a deep discussion of the foundations of analysis.

So all the new impulses for approximation theory this fundamental theo-
rem gave were developed beyond Russia.

4.5.1 Weierstraß’ Approximation Theorem

Of course not only Russians were interested in questions for a good approxima-
tion of complicated functions, for example those which cannot be represented
in a closed form.

26 Maurice René Fréchet (*Maligny (France) 1878, †Paris 1973), 1910–1919 ord. prof.
univ. Poitiers, 1920–1927 ord. Prof. univ. Strasbourg, 1928–1948 ord. prof. Sor-
bonne.

27 Leonida Tonelli (*Gallipolli (Italy) 1885, †Pisa 1946), 1913 prof. univ. Cagliari,
1914–1922 univ. Parma, 1922–1930 univ. Bologna, 1930–1939 univ. Pisa, 1939–
1942 univ. Rome, 1942–1946 univ. Pisa, worked on variational calculus and
Fourier Analysis.
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The interpolation formulae by Newton and Lagrange were well-known for
a long time and simple representations like Taylor’s formula and the Fourier
series were often used.

Now Weierstraß’ approximation theorem gave the hope that it would be
possible to show that some of these algorithms converge, that they were able
to approximate continuous functions arbitrarily, exactly because Weierstraß
could show that both any continuous function defined on a closed interval
could be arbitrarily well approximated by algebraic polynomials and any
continuous 2π-periodical function could be arbitrarily well approximated by
trigonometric polynomials.

It was known that Taylor’s formula and the Fourier series could not give
convergent sequences and were not useful in this sense. Cauchy’s 1823 coun-
terexample28 for the Taylor series was the function

f(x) :=

{

e− 1

x2 , x �= 0
0, x = 0

In 1867 Riemann gave an example of an integrable function with a divergent
Fourier series.29 It is the function

f(x) :=
d

dx

(

xt cos
1

x

)

(0 < t <
1

2
, x ∈ (0, 2]).

After another nine years Du Bois-Reymond added a very complicated example
of a continuous function with a divergent Fourier series [DuB76].

Unfortunately also the hope to be able to show the general convergence
of Lagrange’s interpolation formula was disappointed, as Méray [Mér96] and
Runge [Run01] showed that in the case of equidistant knots it is possible to
find continuous functions for which Lagrange’s algorithm does not uniformly
converge. Runge even found a condition which shows that even not every real-
analytic function guarantees the convergence of this interpolation procedure.30

In 1914 Faber [Fab14] even aggravated this result showing that for every
choice of knots {xn

1 , . . . xn
n}, n ∈ N there can be constructed a function for

which Lagrange’s algorithm diverges.
So the aim of Western European mathematicians was at first to get more

handy versions of the proof of Weierstraß’ for a better understanding of it and
to get suitable, convergent sequences of algebraic or trigonometric polynomi-
als.

Weierstraß’31 fundamental idea (from [Wei85]) was the representation of
a continuous function f in the form

28 Cited after [Vol87, p. 209].
29 Cited after [Vol87, S. 211].
30 Runge’s convergence criterion (from [Run01]) explicitly demanded the analyticity

in a special complex domain. Compare with this the discussion in [Ric85].
31 Karl Theodor Wilhelm Weierstraß (*Ostenfelde (Germany) 1815, †Berlin

1897), studies in Bonn (‘Kameralistik’—a Prussian state accounting standard)
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f(x) = lim
k→0

1

k
√

π

∫ ∞

−∞
f(t)e−( t−x

k )
2

dt. (4.4)

Other authors would later use such ideas of representing an arbitrary function
by such an integral expression, but usually in a simpler form.

The first elementary proofs allowing a simple and applicable construction
of sequences of approximating functions were those of Lipót Fejér for the
trigonometric and of Edmund Landau [Lan08] for the algebraic case.32 Fejér’s
work will be discussed in the next section because of its connection with
Fourier series.

Probably the simplest proof of Weierstraß’ theorem was given by Sergey
Natanovich Bernstein [Bern12/1], which we also will comment on later.

4.6 Fejér and Runge

In their work about approximation theory, Chebyshev and his pupils con-
centrated on the computation of closed formulae for solutions of extremal
problems. Their further aim33 was to find a formula which allows us to de-
termine the best approximating algebraic polynomial of given degree for any
real-analytic function. Besides the general problem they discussed problems
adding some side-conditions to the coefficients of the regarded polynomials.

Except for the complicated algorithm already mentioned by Chebyshev
and later carefully discussed by Kirchberger, which determines solutions ap-
proximatively, there could be given only solutions for two given coefficients.

Furthermore we state that questions about convergence had hardly played
an important rôle in their considerations. Maybe the clearest example is
Chebyshev’s remark34 about Lagrange’s interpolation algorithm, from which
Runge’s theorem trivially follows, that for any real-analytic function the se-
quence of Lagrange interpolants converges, if the zeros of Chebyshev polyno-
mials are taken as the knots of the sequence.

Chebyshev’s contributions to representation theory may be pioneering be-
cause of the discovery of orthogonality as the most important property of
approximating algebraic polynomials in L2(ρ), but neither he nor any of his
pupils ever investigated the question whether an arbitrary continuous function

and Münster (mathematics), 1840 state examination, 1842–1848 teacher in
Deutsch-Krone (today Wa�lcz/Poland), 1848–1855 teacher in Braunsberg (today
Braniewo/Poland), 1854 doctorate at Königsberg univ., 1856 prof. commercial in-
stitute Berlin, 1857–1864 extraord. prof. univ. Berlin, 1864-1890 ord. prof. Berlin.

32 For a careful discussion of the early proofs of Weierstraß’ approximation theorem
and related questions compare the beautiful work of Allan Pinkus [Pin99]. Lan-
dau’s work is discussed in the very careful and extensive overview by Butzer and
Stark [BuSt].

33 We remember again the formulations from [Cheb57] and [MarA06].
34 Compare the discussion in section 2.4.6 on page 47.
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can be represented by a series whose members come from these orthogonal
polynomial spaces. This was the determining question of the discussion about
the foundations of mathematics originated by the problem of the solutions of
the wave equation, the ‘swinging-string problem.’

Here the circle is closed, for, as we know, questions about mathematical
concepts were not important for Chebyshev and the St Petersburg Mathe-
matical School.

So the links between these different opinions about mathematics would be
made in the last century, as, for example, did Fejér.

4.6.1 Summable Fourier Series

The pioneering result for the representation of continuous functions by Fourier
series was given by Fejér35 [Fej00].

The question of the general possibility to represent a continuous function
by its Fourier series was negatively answered by the counterexample con-
structed by Bois-Reymond [DuB76] and a one-century-long discussion had
ended.36

Therefore Fejér’s following result was a sensation and theoretically enor-
mously satisfactory: The Fourier series of any continuous 2π-periodical func-
tion is summable. So for the first time it was possible to relate to any function
a sequence of trigonometric polynomials easy to compute and converging to
this function. Weierstraß’ theorem got a proof allowing a practical exploita-
tion:

Definition 4.2 Let f ∈ L2[−π, π]. With Sn(f, x) we want to name the nth
partial sum of its Fourier series in x ∈ [−π, π], so there holds for all n ∈ N :

Sn(f, x) =
a0

2
+

n∑

k=1

ak cos kx + bk sin kx

with the usual coefficients

ak :=
1

π

∫ π

−π

f(x) cos x dx bk :=
1

π

∫ π

−π

f(x) sinx dx,

k = 1, . . . , n. The mean values

35 Lipót Fejér (until 1900 Leopold Weiss) (*Pécs 1880, †1959 Budapest), 1897–1902
studies in Budapest and Berlin, 1901–1905 repetitor univ. Budapest, 1905–1906
Privatdozent univ. Kolozsvár (Austria-Hungary, today Cluj-Napoca/Romania),
1906–1911 senior assistant, 1911 extraord. prof., 1911–1959 prof. univ. Budapest.

36 Comp., e. g., Pál Turán’s introduction to the collected works of Fejér [Fej70,
Bd. 1, p. 21–27].
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σn(f, x) :=

n−1∑

i=0

Si(f, x)

n

are called Fejér sums of f.

Then Fejér’s theorem is

Theorem 4.3 Let f be a continuous 2π-periodic function. Then:

lim
n→∞

‖f − σn(f, .)‖ = 0.

The disadvantage of Fejér’s summation is the fact that its partial sums do
not interpolate the given continuous function and so it is not able to replace
interpolation algorithms in general.

But Fejér could also solve this problem with the help of the today so-called
Hermite–Fejér Interpolation.

In 1878 Hermite [Her78] defined a sequence of interpolating polynomials
for given knots, which interpolated both the function and its derivative. Fejér
studied (in [Fej16/1] and [Fej16/2]) a special case of those polynomials, where
the zeros of the Chebyshev polynomials x1, . . . , xn ∈ [−1, 1] were taken as
knots for all n ∈ N. Then define for x ∈ [−1, 1],

hi(x) = [1 − 2(x − xi)l
′
i(xi)] (li(x))

2
,

where the functions li are Lagrange’s basic polynomials so that with the def-
inition

ω(x) :=

n∏

j=1

(x − xj)

there holds:

li(x) =
ω(x)

ω′(xi)(x − xi)
.

With the polynomials hi it is easily possible to define the interpolation poly-
nomial

Hn(x) :=

n∑

i=1

f(xi)hi(x)

for an arbitrary function f.
Fejér’s [Fej16/2] main result was:

Theorem 4.4 Let f ∈ C[−1, 1]. Then:

lim
n→∞

‖f − Hn‖∞ = 0.
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4.6.2 Runge’s Ideas about Approximation Theory

Gottfried Richenhagen [Ric85] clearly described in the scientific biography of
Carl Runge37 how his numerical mathematics were founded by a “pragmatic
adoption of Weierstraß’ analysis.”

The subject of research in function theory in the sense of Weierstraß is a
complex function which can be represented as a power series. It is well known
that with this setting Weierstraß’ theory differed from the function theory
shaped by Cauchy in which the centre is set by Cauchy’s integral formula.

Runge’s first contribution to approximation theory was [Run85/1], where
he proved the approximation theorem named by him.

The statement of this theorem is that any function which has only
removable singularities or poles in a certain domain can be arbitrarily well
approximated by a uniformly convergent series of rational functions. It has a
similar meaning for complex approximation theory, like Weierstraß’ theorem
for real-valued approximation theory.

Another work from the same year [Run85/2] would have got more at-
tention, if it had not been published nearly simultaneously with Weierstraß’
approximation theorem: Runge showed that any continuous function can be
approximated uniformly by rational functions. The proof was more elemen-
tary than that of Weierstraß –Runge approximated continuous functions by
pieces of polygons, which he approximated then by rational functions, but of
course the statement was weaker!

His concept of approximation theory became evident later, after he had
worked on some of the important problems of interpolation and approximation
theory which we have already talked about [Run01]. In 1904 his textbook
“Theory and practice of series” [Run04] was published.

4.6.2.1 Approximation by Representation

As the title said, in his textbook Runge discussed the representation of func-
tions by series expansions. He introduced it with a section about the ‘concept
of approximation,’ where it became clear that not theoretical questions, but
numerical approximations of functions which were easy to compute were im-
portant for him.

There Runge considered the well-known cases of power and Fourier series
and added to them some of his own observations about interpolating series
and series of Chebyshev polynomials. The characterizing bond of this work
Richenhagen analysed as follows:

“Here a concept is introduced and expanded which can be accurately
characterized by the catch-phrase ‘Approximation by representation’

37 Carl David Tolmé Runge (*Bremen 1856, †Göttingen 1927), Studies in München
and Berlin, 1883–1886 Privatdozent in Berlin, 1886–1904 o. Prof. TH Hannover,
1904–1925 o. Prof. in Göttingen.
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and which not only summarized old, already well-known approxima-
tion algorithms under a common leading aspect, but also made pos-
sible to derive new algorithms.”38

Runge’s concept of representation theoretically followed that of Weierstraß
and extended it.

Weierstraß’ basic concept, the uniform convergence of function series was
also used like a property which also was due to Weierstraß, the decomposition
property.

So a function f (real- or complex-valued) is approximated by a sequence
of functions Rn, for which holds:

• limn→∞ ‖f − Rn‖∞ = 0 (uniform convergence) and

• R(z) :=
n∑

i=1

cn,i(f)Tn,i(z) (Decomposition into parts, which depend on f

or are independent of it).

All series expansions we have already discussed satisfy these conditions.
Theoretically less clear are the other properties Runge demanded for the

basic functions Tn,i and the coefficients cn,i. Richenhagen pointed out that
explicitness and simplicity were the most important features of Runge’s ap-
proximation theory and gave examples like the choice of monomials or simple
fractions like 1

zn,i
with given knots zn,i for Tn,i and e. g., Taylor or Lagrange

coefficients as cn,i.. These claims did not result from theoretical, but from
practical considerations, since the number of computations was a decisive cri-
terion here. So ‘theory and practice of series’ is less a theoretical work, where
for example the problem of approximability of continuous functions by inter-
polatory polynomials, which was still unsolved then, was not discussed.

4.6.2.2 Expansion after Chebyshev Polynomials

An idea to compute approximation formulae often applied by Runge was the
search for an approximation of the expression 1

w−z , which is part of Cauchy’s
integral formula for functions f which are analytic on the disc Kρ(z0) with
radius ρ < |w|

f(z) =
1

2π

∫

Kρ(z0)

f(w)

w − z
dw.

If we now assume that f(t) is analytical on a torus Aa, 1
a
, bounded by the

radius a and 1
a , then we reach by the transformation t �→ t+t−1

2 =: z that f(t)

38 [Ric85, p. 139]: ,,Hier wird ein Konzept vorgestellt und entwickelt, das sich mit
dem Schlagwort ,,Approximation durch Darstellung” treffend charakterisieren
läßt und das nicht nur alte, schon bekannte Approximationsverfahren unter
einem gemeinsamen leitenden Gesichtspunkt zusammenfaßte, sondern auch die
Ableitung neuer Verfahren ermöglichte.”
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is analytical within the ellipse with focus ±1 and with a and 1
a as the radius

of the half-axes.
By expansions into power series Runge showed that within this ellipse for

w =: τ+τ−1

2 there holds

1

w − z
=

1

w − τ

n−1∑

r=0

τ r(tr + t−r) +
τn

w − τ

(
tn

1 − τt
+

t−n

1 − τt−1

)

,

where the error term uniformly converges to zero, if t lies within the torus
Aa, 1

a
, z lies within the above-defined ellipse and w and τ lie beyond the

respective sets.
The approximate representation is also a polynomial in z because replacing

Zr(t) :=
tr + t−r

2

we have after transformation and using the binomial formula:

Zr(z) :=

[ r
2 ]∑

j=0

(
r

2j

)

zr−2j
(
z2 − 1

)j
,

and so 1
w−z can be approximated by a uniformly convergent polynomial series,

whose domain of convergence contains the interval [−1, 1] which is bounded
by the focus of the ellipse.

If we assume that the function to be approximated, f, is real-valued, then
these results can be transferred.

Finally we get after the necessary transformations the functions Zr in the
representation

Zr(x) = cos r arccos(x),

and so we get a representation in series of Chebyshev polynomials!

4.6.2.3 A Special Concept for Applied Mathematics—‘Sensible
Functions’

How Runge regarded the rôle of applied mathematics within the whole of
mathematics, he would later explicitly describe in his book ‘Graphical Meth-
ods’ [Run15]:

“The solution of many, maybe all mathematical problems consists
of the determination of the values of unknown quantities satisfying
certain given conditions. It decays into several steps, whose first is
the investigation whether the searched quantities exist so that it is
possible to satisfy the given conditions or not. If the proof of the
impossibility is made, then we are ready [...].
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In many cases the first step to the solution gives so little difficulties
that we can immediately pass to the second step, the research for a
method to compute the unknown quantities. Or it may be suitable to
begin with the second step even if the first is not so easy, since if it
is possible to find methods to compute the unknown quantities the
proof of their existence is done. But if it is not possible, then there is
still time to return to the firstly mentioned step.”39

Here his constructive approach became clear: The computation of unknown
quantities is more important than the isolated proof of their existence. The
existence proof is an interim solution, which makes sense only if we are not
able to get further results.

What does it mean to compute unknown quantities? Of course this ques-
tion was theoretically answered, if an arithmetic expression, a representation
for the unknown quantity could be found. Runge, however, was not content
with such an answer, since it is possible that such an expression is not suit-
able for practice, the expense to compute it might be too high. That ‘not a
little number’ of mathematicians thought that their task was done with the
solution of the above-described questions, Runge explained as follows:

“I believe that this is caused by the fact that the pure mathematician is
not used to expanding his investigations to the reality. He leaves this
to the astronomer, the physicist, the engineer. But these are inter-
ested only in the real numerical values coming from the mathematical
computations. They are forced to execute the computations and when
they do so they stand before the question if it might not be possible to
reach the results on a shorter way or with less expenses. If we assumed
that a mathematician would give them an absolutely sharp and logical
method demanding 200 years of permanent computations they would

39 The text is cited after the introduction of the second edition of [Run15]. Runge
himself wrote that this edition remained mainly unchanged. Indeed this text is
equal to the text of the first edition cited by Richenhagen [Ric85, p. 136 f.]:
,,Die Lösung vieler, wenn nicht aller, mathematischen Probleme besteht in dem
Ermitteln der Werte unbekannter Größen, die gewissen gegebenen Bedingungen
genügen. Sie zerfällt in verschiedene Schritte, deren erster die Untersuchung ist,
ob die gesuchten Größen wirklich existieren, so daß es möglich ist, den gegebenen
Bedingungen zu genügen, oder nicht. Ist der Beweis der Unmöglichkeit erbracht,
so ist man mit dem Problem fertig [...].

In vielen Fällen kann der erste Schritt zur Lösung so wenig Schwierigkeiten
bieten, daß man sofort zu dem zweiten, dem Aufsuchen der Methode zur Berech-
nung der gesuchten unbekannten Größen, übergehen kann. Oder es kann, selbst
wenn der erste Schritt nicht so leicht ist, zweckmäßig sein mit dem zu zweit genan-
nten anzufangen, denn wenn es gelingt Berechnungsmethoden zu finden, welche
die unbekannten Größen bestimmen, so ist der Beweis ihrer Existenz ja einbegrif-
fen. Gelingt es aber nicht, so ist es immer noch Zeit, zum erstgenannten Schritt
zurückzukehren.”
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be right to regard this as little better than nothing. So there is a third
step to the complete solution of a mathematical problem, namely to
find the method which leads to the solution with the least expense
of time and labor. I think that this step is a chapter of mathematics
and is as good as the first two and that it must not be allowed to
leave it to astronomers, physicists, engineers or others whoever wants
to apply mathematical methods, since these people give their atten-
tion only to their results and tend to neglect the generalization of the
methods they found, whereas in the hand of a mathematician these
methods are developed from a higher point of view and the question of
applicability to other problems, also from other subjects of scientific
research is also taken into account.”40

In his representation theory this opinion could be found in the claim for
explicitness and simplicity of the coefficients and the approximating function.
His pragmatic adoption of Weierstraß’ approximation theory also contained a
theoretical restriction, the demand for the (multiple) differentiability both of
the function to be approximated and the series representing it.

Although analytical functions stand in the centre of Weierstraß’ the-
ory of functions, he explicitly referred to series expansion representing non-
differentiable functions.

An example cited by Runge [Run04, p. 81 f.] was the function

f(x) := 1 +

∞∑

i=2

cos i2x

i2
,

40 [Run15, 2nd edition, p. 2:] ,,Dies beruht, glaube ich, auf der Tatsache, daß der
reine Mathematiker nicht gewohnt ist, seine Untersuchungen auf die Wirklichkeit
auszudehnen. Das überläßt er dem Astronomen, dem Physiker, dem Ingenieur.
Diese wiederum interessieren sich hauptsächlich für die wirklichen numerischen
Werte, die sich aus den mathematischen Berechnungen ergeben. Sie sind gezwun-
gen, die Berechnungen auszuführen, und indem sie dies tun, werden sie vor die
Frage gestellt, ob sich dasselbe Ergebnis nicht auf kürzerem Wege oder mit gerin-
gerer Mühe erreichen liee. Gesetzt der Mathematiker gibt ihnen eine zwar vol-
lkommen scharfe und logische Methode an, die über 200 Jahre unausgesetzter
Rechenarbeit zu ihrer Durchführung erfordert, so wären sie wohl berechtigt, dies
für wenig besser als nichts anzusehen. So ergibt sich also ein dritter Schritt
zur vollständigen Lösung eines mathematischen Problems, nämlich der, diejenige
Methode zu finden, die mit dem geringsten Aufwand von Zeit und Mühe zur
Lösung führt. Ich behaupte, da dieser Schritt gerade so gut ein Kapitel der Math-
ematik bildet, wie die beiden ersten und da es nicht angeht, ihn den Astronomen,
Physikern, Ingenieuren und wer sonst noch mathematische Methoden anwendet,
zu überlassen, weil diese Leute ihr Augenmerk nur auf die Ergebnisse richten,
und daher geneigt sind, die Verallgemeinerung der von ihnen etwa ersonnenen
Methoden zu vernachlässigen, wogegen in der Hand des Mathematikers die Meth-
oden von einem höheren Gesichtspunkte aus entwickelt werden und die Frage
nach ihrer Anwendbarkeit auf andere Probleme, auch solche anderer Gebiete wis-
senschaftlicher Forschung, gehörige Berücksichtigung findet.”
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which is continuous everywhere because this series uniformly converges every-
where. Differentiating it we see that there is no interval where the series of
derivatives uniformly converges. Therefore f is not continuously differentiable.

Runge wrote about this:

“Firstly it was shown by Weierstraß that functions can be represented
by such series which do not have a differential quotient. This might
be very instructive for the development of mathematical concepts,
but we can say that for the practical application of mathematics to
empirical problems such functions and such representations do not
make sense.”41

It is also interesting that by a footnote Runge explicitly mentioned Felix
Klein’s lectures ‘Application of Differential and Integral Calculus to Geome-
try, a Revision of the Principles’ from 1902 and so accepted the concept of
‘sensible’ functions.42

Consequently in the ‘Theory and Practice of Series’ Runge dealt only with
such series expansions.

Clearly we see a similarity of the principles of the St Petersburg Mathe-
matical School and Runge’s conception. For Runge application also took the
leading rôle and he always tried to have specific problems in mind in his later
mathematical work. The aim of solving a problem to the“receipt of a suitable
formula or a good algorithm being appropriate for practical computations”43

matched with Runge’s ideal. We want to remember that Chebyshev and his
pupils did not prove any existence theorem which is not a trivial corollary of
the explicit determination of a solution of the regarded problem.

But Carl Runge’s scientific curriculum vitae showed that he arrived at
his ideas about applied mathematics from a long way off starting from pure
mathematics and a deep knowledge of the methods of Weierstraß’ function
theory. He also was a supporter of Weierstraß’ ‘constructive view to subjects’
[Ric85] and did not attach much value to descriptive theories dealing with
mathematical objects independent from their concrete representations.

41 [Run04, p. 82]: ,,Es ist zuerst von Weierstraß gezeigt worden, da durch solche Rei-
hen Funktionen dargestellt werden können, die gar keinen Differentialquotienten
besitzen. So lehrreich dies nun auch für die Begriffsentwicklung ist, so kann man
doch sagen, da für die praktische Anwendung der Mathematik auf empirische
Probleme solche Funktionen und solche Darstellungen keine Bedeutung haben.”

42 Weierstraß’‘monster’ caused Felix Klein to introduce some claims of differentia-
bility to reach a better handling of empirically given functions. He thought that
the demand for (multiple) differentiability is fundamental for empirical functions.
Without a clear definition he called such functions ‘vernünftig’ (‘sensible’). We
don’t want to discuss this subject extensively because this would lead far beyond
the borders of this work. We only want to refer to [Kle28], the third edition of
the above-mentioned lectures.

43 Compare [Ozhi66, S. 61].
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The approaches of St Petersburg mathematicians mainly dealing with the
solution of extremal problems and searching for functions satisfying certain
side-conditions and not for their representations were more of a descriptive
nature. We saw that their common link was the search for an approximative
expression converging for all analytical functions and having the form

Tn(f) = Tn(σn, σn+1, . . .)

with

f(x) :=

∞∑

i=0

σix
i.

The series expansion coming out now is

f(x) ∼ T0(f) +

∞∑

k=0

Tk+1(f) − Tk(f)

and would not satisfy the decomposition property demanded by Runge (and
Weierstraß), because the Tk just depend also on the coefficients σk, . . . . Obvi-
ously the conception of best approximation contradicted Runge’s conception,
not only by the approach, but also in the aim.

Maybe the St Petersburg mathematicians would agree with the concept of
a ‘sensible’ function,44 but there is not known anything about discussions on
this concept, which is said to be used firstly by Jacobi.45 But in St Petersburg
discussions on such topics were not made very often, as we came to know.

Besides this Runge is not as prejudiced in the choice of mathematical
methods as his St Petersburg colleagues. He accepted both Weierstraß’ and
Cauchy’s approach in function theory and also was interested in Riemann’s
work46—the latter approaches both were more or less clearly rejected by
Chebyshev, Korkin and Lyapunov.

So the bridge between Chebyshev and Runge can be built because of their
orientation to practice and the resulting common opinion about the subject
to be investigated, but according to both methods and aims, their approaches
differed.

4.7 Quantitative Approximation Theory

It has already been emphasized several times that Weierstraß’ approxima-
tion theorem marked a milestone in approximation theory. He gave a positive
answer to the question whether for any function f ∈ C[a, b] the quantity
44 We want to remember Chebyshev’s opinion about ‘philosophizing’ in mathemat-

ics, the implicit assumptions of differentiability and Posse’s lectures [Pos03], where
he rejected Weierstraß’ monster as a subject of his studies.

45 Comp. [Kle28, p. 50].
46 You find more details about Runge’s opinion about function theory in [Ric85,

chapter II].



4.7 Quantitative Approximation Theory 159

En(f) = min
p∈Pn

‖f − p‖∞

converges for for n → ∞ to zero.47

Based on this result other questions suggest themselves:

1. How fast can a given continuous function be approximated?
2. For which functions does nEn(f) converge?
3. Which polynomial sequences allow a fast convergence?

Quantitative approximation theory deals with such questions.
In the overview [Fis78] Stephen D. Fisher summarized its aim in the fol-

lowing way (p. 318):

“Quantitative Approximation Theory attempts to determine as pre-
cisely as possible the size of the error in this approximation given
specific information about the function to be approximated and the
set of functions from which the approximant is to be taken.”

The first contributions to this subject were written by Henri Lebesgue48

and Charles-Jean de La Vallée-Poussin.49 For some special cases they could
determine the order of convergence.

We want to put their results together in the following table:

Citation Assumption Order of Convergence

[Leb08] f ∈ Lip1 O

(√
log n

n

)

[Val08/1] f ∈ Lip1 O
(

1√
n

)

[Val08/2] f ′ ∈ BV O
(

1
n

)

[Leb10/1] f ∈ DL o
(

1
log n

)

[Leb10/2] f ∈ Lip1(2π) O
(

log n
n

)

To explain these results we want to remember some of the assumptions:

• The Lipschitz condition (α > 0):
f ∈ Lipα([a, b]) ⇐⇒ ∃L ∈ R so that for all x, y ∈ [a, b] : |f(x) − f(y)| ≤
L|x − y|α.

47 Weierstraß also showed that for any 2π-periodical function there holds the analo-
gous statement involving trigonometric polynomials. We want to concentrate on
the case of algebraic polynomials, because nearly all results here have an analogy
there.

48 Henri Léon Lebesgue (*Beauvais (France) 1875, †Paris 1941), studies at the École
Normale Supérieure, 1899–1910 in Nancy, 1902 doctorate univ. Nancy, 1910–1941
prof. at the Sorbonne.

49 Charles-Jean Gustave Nicolas de La Vallée-Poussin (*Louvain/Leuven (Belgium)
1866, †Louvain 1962), studies of engineering sciences and mathematics, 1891–
1893 assistant univ. Louvain, 1893–1943 ord. prof. univ. Louvain, 1909–1966 ord.
member of the Belgian academy of sciences.
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• The Dini–Lipschitz condition:
f ∈ DL ⇐⇒ limδ→0 ω(f, δ) log δ = 0, where

ω(f, δ) = max
|x−y|≤δ

|f(x) − f(y)|

is the first modulus of continuity.50

• Functions of bounded variation:
f ∈ BV[a, b] ⇐⇒ ∃M ∈ R so that for all decompositions z : a = t0 <
t1 < · · · < tn = b of the interval [a, b] there holds:

n∑

i=1

|f(ti) − f(ti−1)| ≤ M.

We see in the case of the Lipschitz condition how the results were perma-
nently improved. But we have to remark that Lebesgue’s last result explicitly
only holds for 2π-periodical functions.

The first work which gave a theoretical framework to these results and
could improve them enormously was the doctoral thesis of Dunham Jack-
son51 “About the Exactness of the Approximation of Continuous Functions
by Polynomials of Given Degree and Trigonometric Sums of Given Order” 52

written in 1911 and acknowledged with the prize of the Göttingen faculty.

4.8 Jackson’s Thesis

As a postgraduate supported by Harvard university, Jackson studied for four
semesters in Germany (1909–1911), the first three of them in Gôttingen, the
last in Bonn.53

Presumably Jackson was helped to arrange this trip by his teachers54

50 Lebesgue was the first (in [Leb10/1]) to use the name ω, but not to formulate the
Dini–Lipschitz condition.

51 Dunham Jackson (*Bridgewater, Mass. (USA) 1888, †Minneapolis (USA) 1946),
1904–1909 studies at Harvard univ. in Cambridge (Mass.), 1909–1911 studies in
Göttingen and Bonn, 1911–1916 instructor Harvard univ., 1916 assistant prof.,
1919–1946 full prof. univ. of Minnesota, Minneapolis.

52 The original name was ,,Über die Genauigkeit der Annäherung stetiger Funktio-
nen durch ganze rationale Funktionen gegebenen Grades und trigonometrische
Summen gegebener Ordnung” [Jack11]

53 Compare [Har48] and [Amt10].
54 Jackson mentioned them, amongst other influences, in his curriculum vitae added

to his dissertation.
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Bôcher55 and Osgood,56 who both did postgraduate studies in Gôttingen.
His academic teacher there was Edmund Landau, who presented him with

three different subjects to be chosen among for his thesis—Jackson decided
to write about a topic which had been formulated as a praiseworthy problem
of the faculty as follows:57

“It is well-known that 25 years ago Weierstraß proved firstly that
any function continuous in an interval can be approximated as pre-
cisely as possible by a polynomial. Recently by de la Vallée Poussin
[...] and Lebesgue there have been made first investigations about the
dependence between the necessary smallest possible degree of the ap-
proximating polynomial and the prescribed boundary of exactness.58

Whether these estimates of the degree as a function of the exactness
can be improved is an open set of problems.
The faculty wishes that there will be a fundamental progress in this
direction; such a progress would lie in the answer of the following
question asked by de la Vallée Poussin (p. 403):59 Does the product
of boundary of exactness and respective minimal degree converge to
zero in the case of a fixed given polygonal line?”60

The expectations of the faculty were fulfilled, Jackson’s results gave the
sought answer to some fundamental questions of quantitative approximation
theory. Only a small drop of bitterness remained, since shortly before the
printing of the thesis there was published a contribution by Sergey Natanovich

55 Maxime Bôcher (*Boston 1867, †Cambridge (Mass., USA) 1918), 1889/90 studies
in Gôttingen, taught at Harvard from 1894 until 1918. His subjects of research
were differential equations, series and algebra.

56 William Fogg Osgood (*Boston 1864, †Belmont (Mass., USA) 1943), 1887–1889
studies in Gôttingen and Erlangen, taught at Harvard from 1890 until his retire-
ment. His subjects were function theory and variational calculus.

57 The posed problem is a part of the published thesis [Jack11].
58 Compare the table on page 159.
59 They had in mind [Val08/2].
60 ,,Bekanntlich hat Weierstraß vor 25 Jahren zuerst bewiesen, da jede in einem

Intervall stetige Funktion mit beliebiger Genauigkeit durch eine ganze ratio-
nale Funktion approximiert werden kann. über die Abhängigkeit des hierzu er-
forderlichen kleinstmöglichen Grades dieses Polynoms von der vorgeschriebenen
Genauigkeitsgrenze sind die ersten Untersuchungen in neuerer Zeit gemacht wor-
den, von de la Vallée Poussin [...] und Lebesgue [...] Ob die hierbei erzielten
Abschätzungen des Grades als Funktion der Genauigkeitsgrenze noch übertroffen
werden können, ist ein offener Fragenkomplex.

Die Fakultät wünscht, da in dieser Richtung ein wesentlicher Fortschritt
gemacht werde; ein solcher würde z. B. in der Beantwortung der folgenden von de
la Vallée Poussin (S. 403) gestellten Frage liegen: Konvergiert im Falle eines fes-
ten gegebenen Linienzuges das Produkt von Genauigkeitsgrenze und zugehörigem
Minimalgrad gegen Null?”
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Bernstein, where some very similar results were contained. We will return to
this fact in section 5.3.4.

4.8.1 Jackson’s Theorem

Jackson’s main result did not only improve the results of de la Vallée-Poussin
and Lebesgue, but could also give an upper bound for the speed of polynomial
approximation to continuous functions and in the case of periodic functions
for trigonometric sums. The rôle of the modulus of continuity as a measure
for the approximation speed became clear for the first time.

Theorem 4.5 (Jackson’s Theorem) ∃K ∈ R so that for all continuous
functions f : [a, b] → R and n ∈ N there holds:

En(f) ≤ Kω(f,
b − a

n
). (4.5)

The proof of this theorem is based on an auxiliary theorem which alone
would have already improved some of its preceding results: If f satisfies the
Lipschitz condition f ∈ Lip1[a, b], then:

En(f) ≤ O

(
1

n

)

.

This theorem is to be proved by elementary estimations of the functions

Im(x) =
km

2

∫ b

a

f(u)

[
sin m(u − x)

m(u − x)

]4

du with

1

km
=

∫ b

a

[
sin mu

mu

]4

du.

They are used as first approximations of f and after this they are approx-
imated themselves by polynomials.

De la Vallée-Poussin was able to determine his results with a similar
method, namely he reached an approximation order of O

(
1
n

)
for functions

of bounded variation through the approximation of f by the integrals

Jm(x) =
1

π

∫ b

a

f(u)
sin m(u − x)

m(u − x)
du.

Presumably he so gave the impulse for Jackson’s proof.
With this theorem an immediate derivation of the main result is possible

by a tricky construction:
If the interval [a, b] is divided into equidistant parts, a = x0 < x1 < · · · <

xn = b, and if f̄ is defined as that function which coincides with f in these
knots and is continued linearly else, then f̄ satisfies a Lipschitz condition, to
be precise, then there holds for all x, y ∈ [a, b] :
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|f̄(x) − f̄(x)| ≤ ω
(

b−a
n

)

b−a
n

|x − y|.

Thus, with the auxiliary theorem there holds for an arbitrary polynomial
p ∈ Pn and an arbitrary x ∈ [a, b] :

|f̄(x) − p(x)| ≤ Lω

(
b − a

n

)

with a constant L, and with the definition of f̄ we have

|f(x) − f̄(x)| ≤ 2ω

(
b − a

n

)

,

and so the searched for result has been proved.
Extensions of the auxiliary theorem lead to some interesting results for

functions f ∈ Ck−1[a, b], which additionally satisfy f (k−1) ∈ Lip1 .
For them there holds:

1. En(f) = O
(

1
nk

)
,

2. ∀n ∈ N ∃p ∈ Pn, so that:

‖f − p‖ = O

(
1

nk

)

‖f ′ − p′‖ = O

(
1

nk−1

)

...

‖f (k−1) − p(k−1)‖ = O

(
1

n

)

.

An analogous result for the trigonometric case was also proved by Jackson.

4.8.2 Further Results. An Inverse Theorem

Now the natural question is whether this approximation is the best possible.
Or, if a function ϕ(n) describes the order of approximation (that is, En(f) =
O(ϕ(n))), then one has to show that for any function ψ(n) also satisfying
En(f) = O(ψ(n)) their quotient ψ(n)/ϕ(n) does not converge to zero.

Jackson could not solve this problem completely, but anyhow he managed
to show:

Theorem 4.6 For any positive number η there exist functions f ∈ Lip1[a, b],
for which do not exist a constant K satisfying the inequality

En(f) ≤ K
1

n1+η
.
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He also found analogies for the case of functions with their (k−1)st deriva-
tive being Lipschitz continuous and for the trigonometric approximation.

It should be emphasized that Jackson also proved a so-called inverse the-
orem. Such a theorem is characterized by the problem to get information
about the smoothness of the function to be approximated by its approximation
order.

Theorem 4.7 (Inverse Theorem by Jackson) Let f : [a, b] → R be a
function. If there exist a constant K ∈ R and a number η > 0 so that for all
n ∈ N the inequality

En(f) ≤ K
1

n2k+η

holds, then:
f is 2k-times continuously differentiable on (a, b).

An analogous theorem was also formulated for 2π-periodic functions.
At first he proved the trigonometric version of the theorem, where he used

an auxiliary theorem which states a connection between the approximation
order by general trigonometric sums and partial sums of the Fourier series—a
kind of a quantified version of Fréchet’s theorem. So he got an approximation
which was easier to handle and found a series uniformly converging to the
function f and satisfying the demanded differentiability property.

Looking at this theorem we see how strange the discussion is, led by the
question of who has priority with respect to the fundamental theorems of
quantitative approximation theory. Whereas no-one denies that the direct
theorems are attributed to Jackson, on the other hand no one doubts that
the inverse theorems belong to Bernstein, although both published similar
direct and inverse results in their monographs [Jack11] and [Bern11] which
were published nearly simultaneously in summer 1911 with a difference of
about three weeks. We will return to this question in section 5.3.4, and try
to illuminate it once again because of current events and doubt about the
independence of their contributions.

Jackson’s thesis closes with generalizations of the direct theorems to the
case of higher-dimensional functions. Analogies for functions satisfying certain
Lipschitz conditions are proved.

4.8.3 How the Faculty Judged

Jackson’s thesis was a milestone of the development of modern approximation
theory. It gave the foundations to investigate the quality of approximation al-
gorithms and marked the starting point for a partial subject of approximations
which gives new and ingenious results until modern times.

The philosophical faculty of Göttingen University saw their expectations
fulfilled, It judged:61

61 These words were also included in the published version of Jackson’s thesis.
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“[...]In the main part of his work the author went beyond the former
borders of our knowledge in several aspects. His results should be rated
very high, since Lebesgue and de la Vallée-Poussin, whom we have to
thank for the origin and support of all these sets of problems, have
published several further results in this direction in the meantime,
that is, since the posing of the praiseworthy problem, but without
reaching the results the author could prove.
Because of all these reasons the treatise has to be regarded as a very
good dealing with a praiseworthy question. The author succesfully be-
came familiar with a difficult and extensive subject and enriched sci-
ence with valuable results in competition with mathematicians of the
first rank. [...] Therefore the faculty awards the prize to the work.”62

4.9 A Note About Göttingen’s Rôle

The mathematical ‘Mecca’, as Göttingen university had often been called at
the beginning of the 20th century with respect to outstanding mathematicians
like David Hilbert and Felix Klein, left its traces in approximation theory too.

We saw that in the period from about 1900 (Fejér’s work about the summa-
bility of functions [Fej00]) until 1911 (Jackson’s thesis [Jack11]) an abundance
of pioneering results came to light, theoretically satisfactorily solving several
problems which had been open for a long time, laying the foundations for new
mathematical subjects, underpinning and quantifying theoretical approaches
and putting them in concrete terms.

David Hilbert’s and Felix Klein’s mediator rôle should not be underrated,
since their school was sufficiently attractive for most of the above-mentioned
mathematicians (we might say: for all except the French) to spend there one
or more semesters as Table 4.1 shows.

The next chapter is devoted to the work of Psheborski and much more to
the early contributions of Sergey Natanovich Bernstein. We will then see, how
also Göttingen’s influence was important for the confluence of Weierstraß’ and
Chebyshev’s theoretical approaches to Constructive Function Theory.

62 ,,[...] Im Hauptteil seiner Arbeit ist [der] Verfasser in mehreren Beziehungen über
die bisherigen Grenzen des Wissens hinausgegangen. Seine Ergebnisse sind umso
höher zu bewerten, als Lebesgue und de la Vallée-Poussin, denen die ganzen
Fragestellungen ihre Entstehung und Förderung verdanken, inzwischen d. h. seit
Stellung dieser Preisaufgabe weitere Ergebnisse in dieser Richtung publiziert
haben, ohne einige bestimmte Ziele zu erreichen, zu denen [der] Verfasser gelangt.

Aus allen diesen Gründen ist die Abhandlung als eine sehr gute Bearbeitung der
Preisfrage anzusehen. Der Verfasser hat sich in einen schwierigen und umfangre-
ichen Stoff erfolgreich eingearbeitet und hat im Wettbewerb mit Mathematikern
ersten Ranges die Wissenschaft um wertvolle Ergebnisse bereichert. [...] Daher
erkennt die Fakultät der Arbeit den Preis zu.”
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SS WS SS WS SS WS SS WS SS WS
01 01 02 02 03 03 04 04 05 05

Klein P P P P P P P P P P

Hilbert P P P P P P P P P P

Kirchberger S S S

Fejér S

Bernstein S S S

Psheborski S

Runge P P P

Haar S

SS WS SS WS SS WS SS WS SS WS
06 06 07 07 08 08 09 09 10 10

Klein P P P P P P P P P P

Hilbert P P P P P P P P P P

Bernstein S

Runge P P P P P P P P P P

Haar S S S S S S S S L L

Jackson S S S

Table 4.1. Stays of mathematicians in Göttingen between summer semester (SS)
1901 and winter semester (WS) 1910. We marked studies (S), lecturer’s job (L) and
professor’s job (P).
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Constructive Function Theory: Kharkiv

The development of Russian approximation theory was continued not in St Pe-
tersburg, but in Kharkiv. The theories spread in Western Europe and the
work of the St Petersburg Mathematical School there fell onto a fertile field
because of the activities of Antoni-Bonifatsi Pavlovich Psheborski and Sergey
Natanovich Bernstein.

Kharkiv had already had a very good reputation as the mathematical
centre of the Ukraine: In 1879 there had been founded one of the first mathe-
matical societies of the Russian Empire and some outstanding mathematicians
worked at Kharkiv university, e. g., Tikhomandritski (1883–1904), Lyapunov
(1885–1902), Steklov1 (Lecturer’s job from 1891 until 1906) and Grave (1899–
1901).

5.1 Antoni-Bonifatsi Pavlovich Psheborski

The rôle of the Polish-Ukrainian mathematician Antoni-Bonifatsi Pavlovich
Psheborski was important in three aspects: as a mediator between Western
European and Eastern European ideas, as an author of contributions to ap-
proximation theory and as a supporter of Sergey Bernstein.

1 Vladimir Andreevich Steklov (*Nizhni Novgorod 1864, †Gaspra (Crimea) 1926),
studies in Moscow and Kharkiv, 1887 candidate-thesis (under supervision of
Lyapunov), 1893 master thesis about the motion equations of a solid body in
liquids, joint research with Lyapunov, 1891–1896 privatdotsent univ. Kharkiv,
1896–1902 extraord. prof. univ. Kharkiv, 1902–1906 ord. prof. univ. Kharkiv,
since 1906 ord. prof. univ. St Petersburg, 1910 ordinary member of the academy
of sciences, 1919 its vice president. Steklov had an outstanding reputation as
science organisor.
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5.1.1 His Biography

Antoni-Bonifatsi Pavlovich Psheborski was born May 14, 1871 as a son of
the Polish naval doctor Pavel Antonovich Psheborski and his wife Marina
Milenovskaya in the village of Khoroshee, district of Lipovets in the Kyiv
province (now Vinnitsa province).2

After his school education at the classical Aleksandrovski grammar school
in Nikolaev which he finished with the gold medal in 1889, he registered at the
physico-mathematical faculty of the university of the holy Vladimir in Kyiv.
His teachers there were among others M. E. Vashchenko-Zakharchenko,3 V. P.
Ermakov,4 G. K. Suslov5 and P. M. Pokrovski,6 who would have the largest
influence in Psheborski’s education. In 1894 he finished the university educa-
tion with the ‘diploma of first stage’ and the same year he won the gold medal
in a student’s competition with his work ‘Explanation of Weierstraß’ method
within the theory of elliptic functions and construction of a link between the
concepts of Weierstraß and Jacobis. Afterwards he remained at the university
to prepare for the post of a professor.

With Pokrovski’s supervision he mainly dealt with the theory of higher
transcendental functions based on the work of Legendre, Abel, Jacobi, Rie-
mann und Weierstraß. He was awarded a prize for the work ‘About methods
of Abel, Jacobi, Liouville and Weierstraß in the theory of elliptical functions.’
His Kyiv period of activity exclusively concentrated on this branch of function
theory.

In 1897 he took and passed two oral exams to get the venia legendi at Kyiv
university. But it was rejected because of his Polish origin and his belonging
to the Catholic church, although Pokrovski personally supported his cause
several times.

2 We took the biographical details from [But92].
3 Mikhail Egorovich Vashchenko-Zakharchenko (1825–1912), studies in Kyiv and

Paris (1847–48), he finished his studies in Kazan 1854 (candidate), 1862 master
thesis. 1855-1863 Lecturer at the Kyiv cadet school, 1863–1867 privatdotsent
univ. Kyiv, 1867 extraord., 1868 ord. prof. univ. Kyiv. Contributions to geometry,
function theory and history of mathematics.

4 Vasili Petrovich Ermakov (1845–1922), studies in Kyiv until 1868, 1868–1874
privatdotsent, 1874–1879 lecturer, since 1879 ord. prof. univ. Kyiv, since 1884
corresponding member of the academy of sciences. Worked on variational calculus.

5 Gavril Konstantinovich Suslov (1857-?), studies at St. Petersburg univ. until 1880,
master thesis there 1888. 1888-1891 extraord. prof. univ. Kyiv, since 1891 ord.
prof. univ. Kyiv. Worked on theoretical mechanics.

6 Petr Mikhaylovich Pokrovski (1857–1901), studies in Moscow until 1881, 1883–
1885 teacher of mathematics at Moscow grammar schools, 1885–1889 Privatdot-
sent univ. Moscow, 1889-1890 studies in Berlin at Weierstraß, 1891 extraord.
prof. univ. Kyiv, 1894 ord. prof. univ. Worked on theory of functions, especially
elliptical and ultraelliptical functions.
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Then in 1898 Psheborski moved to Kharkiv, where he became ordinary
lecturer at the technological institute. In 1899 he additionally taught as a
privat-dotsent at Kharkiv university.

In the Kharkiv period his mathematical subjects of interest were extended:
Stimulated by Steklov and Grave he now was mainly engaged in questions from
differential geometry, variational calculus, theoretical mechanics and (later)
from approximation theory.

In October 1902 he defended his master thesis ‘Some applications from
the theory of linear congruences’ before the opponents B. K. Mlodzeevski and
K. A. Andreev7 in Moscow.

5.1.2 Psheborski in Göttingen

His interest in variational calculus led him to Göttingen in summer semester
1904, where he could exchange ideas, especially with Hilbert. Unfortunately
for him, Hilbert was engaged in a fundamental reorganisation of his lectures
so he was unable to attempt all of them.8 And so he only could visit Hilbert’s
lectures about function theory, Klein’s lectures about differential equations
and ‘linear and spherical geometry’ of Minkowski.

So Psheborski used his stay to become familiar with the pedagogical pecu-
liarities of the lecturers, the organization of the mathematical education and
the scientific atmosphere in Göttingen.

Here he was especially impressed by the manner of “such an outstanding
teacher like professor Klein.”9

He was enthusiastic about the enormous scientific freedom in Göttingen,
which he observed was realized in fewer duties for students to pass examina-
tions and in the bureaucracy which was pleasantly less at Göttingen university.
About this he judged summarizing:

“And so we see that the whole education at Göttingen university forms
a slender system, whose aim is to give the possibility to learn to work
independently. All institutions support this aim, all lecturers work in
this direction. And they try to reach this aim without counting caps
or formal registration of the students visiting a lecture, without oblig-
atory controls or examinations; all are working voluntarily, lecturers
and auditors are working together, in the relations between them there
rules complete trust and veneration. No university administration is

7 Konstantin Alekseevich Andreev (*Moscow 1848, †Moscow 1921), studies in
Moscow, since 1873 privatdotsent, 1880-1898 ord. prof. univ. Kharkiv, 1898-1921
ord. prof. univ. Moscow, since 1884 corresponding member of the academy of sci-
ences, 1879 foundation president of the Kharkiv Mathematical Society. He worked
about projective geometry and analysis.

8 For more detailed information about Psheborski’s stay in Göttingen compare his
report printed in 1906 [Psh06].

9 [Psh06, p. 27]: «takogo vyda�wegos� pedagoga, kak prof. Klein ».
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butting in, whose rôle is determined by the observation of the exter-
nal order; for this aim three officials are sufficient who form the whole
staff of employees of the huge auditorial building. How far is that from
our rules!”10

His enthusiasm about Göttingen university led him to the following state-
ment, which was politically incorrect in a triple sense:

“The complete trust and the veneration that the teaching staff enjoys
in the eyes of the students are a consequence of the conviction that
an independent [...] professoriate that stands without pressure from
outside can take between them only a worthy member, a person who
devotes its power to the greatest deity—the science whose veneration
made Germany one of the most cultivated states.”11

After his stay in Göttingen Psheborski visited the third international
congress of mathematicians12 in Heidelberg, where he was especially impressed
by Hilbert’s talk about integral equations and Voronoy’s talk about quadratic
forms. Possibly there he got to know S. N. Bernstein, at least it is probably the
first time that they both were at the same place at the same time. Bernstein
had already left Göttingen when Psheborski arrived there.13

10 [Psh06, p. 31]: «Itak, my vidim, qto vse prepodavanie v Gettingene pred-
stavl�et odnu stroĭnu� sistemu, celь kotoroĭ datь vozmoжnostь vs�komu
жela�wemu nauqitьs� samosto�telьno rabotatь. Vse uqreжdeni� sposob-
stvu�t зtoĭ celi, vse prepodavateli rabota�t v зtom napravlenii. I
postavlenna� celь dostigaets� bez vs�kogo sqeta xapok i zapisyvani�
posewa�wih lekcii studentov, bez obъ�zatelьnyh kontroleĭ i зkzamenov;
vse zanima�ts� dobrovolьno, prepodavateli i sluxateli rabota�t soob-
wa, v otnoxeni�h meжdu temi i drugimi carit polnoe doverie i uvaжe-
nie. V зti otnoxeni� ne vmexivaets� nikaka� universitetska� adminis-
traci�, vs� rolь kotoroĭ svodits� k nabl�deni� za vnexnim por�dkom;
dl� posledneĭ celi dostatoqno treh sluжawih, sostavl��wih vesь xtat
sluжiteleĭ v gromadnom zale auditoriĭ.»

11 [Psh06, p. 31 f.]: «Polnoe doverie i uvaжenie, kotorymi polьzuets� pro-
fessorska� kollegi� v glazah studentov, �vl��ts� sledstviem ubeжdeni�,
qto samosto�telьna� [...] kollegi�, ne nahod�wa�s� ni pod qim davle-
niem izvne, moжet izbratь v svo� sredu tolьko lico dostoĭnoe, lico,
posv�wa�wee svoi sily veliqaĭxemu boжestvu - nauke, uvaжenie k ko-
toroĭ sdelalo Germani� odnim iz kulьturneĭxih gosudarstv mira.» We
want to emphasize that this statement was democratic, antipatriotic and blas-
phemous, and so it is clear the report was printed only after the 1905 revolution.
Psheborski expressed his regret to that in a footnote to the printed report.

12 Compare [Ver04] and again [Psh06].
13 Compare Table 4.1 on page 166, [Amt10] and [Stef99].
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5.1.3 Doctoral Thesis and Lecturer’s Job

In 1905 Psheborski became extraordinary professor at Kharkiv university and
had to give up his paid job at the technological institute, but continued to
give lectures there.

He taught calculus, analytical geometry, variational calculus and numerical
mathematics.

In 1908, again in Moscow, Psheborski defended his doctoral thesis ‘In-
vestigations about the theory of analytical functions and the continuation of
Taylor’s series’. Here his opponents were D. F. Egorov14 and L. K. Lakhtin.15

He then returned to his old subjects of research from Kyiv times.
The Russian revolution of October 1917 firstly had no influence on Pshe-

borskis pedagogical activities; he remained professor at Kharkiv university
and even was elected its rector in 1919. After the reorganisation of the uni-
versity and the creation of the ‘academy of theoretical sciences’ (Akademi�
teoretiqeskih znaniĭ) replacing the university, he became its rector and
at the same time head of the chair of theoretical mechanics. After a short
while Psheborski was arrested because of an alleged espionage for Poland, but
after 20 days of arrest he was freed and returned to the academy as dean of
the physico-mathematical faculty, that is, degraded. In 1921 the academy was
reorganized and renamed ‘Institute for People’s Education’ (insitut naro-
dnogo obrazovani�). Psheborski became rector of this institute.

In July of the same year Psheborski consulted the Polish minister of ed-
ucation and asked for the possibility to move to Poland. Simultaneously he
was offered an appointment as ordinary professor of the chair of mathematics
at the university of Vilnius.16 Because of the cholera and typhoid epidemic,
however, he was not allowed to leave the Ukraine. So he moved to Poland
only in 1922, at first for a short time to Vilnius, afterwards to Warsaw, where
he became head of the chair of mechanics of the university. There he helped
build his own institute for theoretical mechanics, hydrodynamics and ‘motion
of solid bodies and liquids’.

Besides this he taught analytical geometry, calculus and differential equa-
tions at the Warsaw polytechnical institute.

14 Dmitri Fedorovich Egorov (1869–1931), since 1913 ord. prof. univ. Moscow, 1922–
1930 president of the Moscow Mathematical Society, 1929 honorary member of
the Soviet academy of sciences; in 1930 he was suspended from the Moscow Math-
ematical Society, removed from all positions, arrested and exiled to Kazan. To-
gether with his pupil Nikolay Nikolaevich Luzin (1883–1950) Egorov was the
founder of the theory of real-valued functions. For a good overview about the
Moscow Mathematical school of Egorov and Luzin see [Pau97].

15 Leonid Kuzmich Lakhtin (1863–1927), 1892–1896 ord. prof. univ. Tartu (Estonia,
Russian name: Yurev), 1896–1927 ord. prof. univ. Moscow, worked on differential
equations and mathematical statistics.

16 Polish: Wilno.
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In the Warsaw period his main subjects of research were theoretical me-
chanics and variational calculus.

He remained at the university until his death. Antoni-Bonifatsi Pavlovich
Psheborski died in Warsaw May 24, 1941.

5.1.4 An Extension of V. A. Markov’s Problem

Twenty years after the last St Petersburg contribution to the Chebyshev the-
ory, Psheborski’s work ‘About some polynomials least deviating from zero on
a given interval’ was published17 [Psh13/2]. It was a classical contribution,
since it solved a minimization problem of Chebyshev type.

The problem generalized V. A. Markov’s problem. Psheborski considered
this case for two given side-conditions of the coefficients:

Minimize ‖p‖, where

p(x) =

n∑

i=0

aix
i ∈ Pn, x ∈ [a, b]

and the coefficients of p satisfy the linear equations

α =
n∑

i=0

αiai

β =

n∑

i=0

βiai

with given real numbers α, α0, . . . , αn, β and β0, . . . , βn.
We want to use Psheborski’s abbreviations and write for p ∈ Pn :

ω(p) :=

n∑

i=0

αiai

ω1(p) :=

n∑

i=0

βiai.

But he added the following restriction: there should exist two different
indices i and k for which there holds: both determinants

∣
∣
∣
∣

αi αk

βi βk

∣
∣
∣
∣

∣
∣
∣
∣

α αk

β βk

∣
∣
∣
∣

17 The only Russian papers belonging to this subject and being published in the
time in between had very special subjects, as their titles already tell. They are
[Sve01] and [Tra92] (cited after [But92]).
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are not equal to zero. Therefore the problem did not generalize V. A. Markov’s
problem18, because if there is only one side-condition, we have β0 = · · · = βn =
β = 0, and both determinants vanish. But it is a genuine generalization of
Zolotarev’s problem (compare section 3.2.2), since two given coefficients lead
to the equations

an = 1 and an−1 = σ,

and choosing n and n − 1 as the regarded indices the determinants become

∣
∣
∣
∣

1 0
0 1

∣
∣
∣
∣

and

∣
∣
∣
∣

1 0
σ 1

∣
∣
∣
∣
.

Like Psheborski we want to name the class of polynomials satisfying the
above-mentioned conditions as Z.

He began the way to the solution with the proposition that a solution of
this problem exists.

5.1.4.1 Existence of a Solution

Psheborski showed that it suffices to regard only polynomials ∈ Z with a priori
bounded coefficients. Then the existence of a solution follows with Weierstraß’
theorem because of the fact that the error of approximation is a continuous
function of the coefficients.

We see,19 that we can decompose the polynomials p ∈ Z into summands
p =: h1 + h2, where

h1(x) := pix
i + pkxk, (i �= k)

with indices k and i suitably chosen for the additional condition and the rest
h2. Both linear equations can be decomposed into20

pi =
αβk − βαk

αiβk − βiαk
pk =

αiβ − βiα

αiβk − βiαk
(5.1)

and

0 =

n∑

j=0j 	=ij 	=k

pjx
j .

Since zero is that function of type h2 with minimal norm, it suffices to regard
only functions of type h1. But the equations (5.1) show that the norm of all
these functions is bounded by (max{|a|, |b|}) × (max{|pi|, |pk|}) .

So there exists a minimal solution of the problem. We also recognized the
rôle of the additional conditions.

18 Sometimes the opposite is said. In fact Psheborski’s results hold without this
additional assumption, but Psheborski himself did not show this!

19 Here we are a bit more detailed than Psheborski.
20 The fractions are valid because of the additional conditions.
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Obviously Psheborski did not know Kirchberger’s thesis exactly.21 In his
proof of the continuity of the operator of best approximation it had already
been proved22 that a given bound for the norm of a polynomial already im-
plies a bound for the coefficients of the polynomials, without any additional
conditions.

5.1.4.2 Criteria for the Solution

So there exists a minimal solution h ∈ Z. Their deviation points we want to
name as x1 < · · · < xp, p ≤ n + 1.

Then there followed theorems characterizing the minimal solution. They
are similar to those of V. A. Markov:

Theorem 5.1 h ∈ Z is a minimal solution if and only if there does not exist
a polynomial g ∈ Pn with

1. ω(g) = ω1(g) = 0 and
2. the numbers

τi = h(xi)g(xi)

have an equal sign for all i = 1, . . . , p.

This theorem was similarly proved like the respective theorem of V. A.
Markov.

Pheborski also proved generalized alternation theorems which are similar
to Theorem 3.9 on page 108 and use Lagrange’s basic polynomials.

Psheborski’s contribution was especially interesting because of the fact
that he discussed the question of the existence of a solution in a detailed way.
Indeed, this question was not unnecessary, since he was not able to calculate a
minimal solution. V. A. Markov ignored this question, but his main result, the
estimation for the kth derivative of a polynomial, holds independently from
it.

Thus, Psheborski’s approach was more modern, more ‘European,’ but nev-
ertheless he was not able to prove a result which could be compared with that
of V. A. Markov.

He presented his results in the Comptes Rendus [Psh13/3], where he also
remembered the contribution of V. A. Markov, which was hardly available at
that time. Another application of his results Psheborski published in [Psh14]
for the special side-conditions

21 So presumably Psheborski’s interest in questions from approximation theory arose
only after his stay in Göttingen. The stimulus might rather be V. A. Markov’s
work (as Buts has already assumed [But92, p. 123]), since it was re-discovered by
S. N. Bernstein in 1912, who also was engaged in the publication of this work in the
‘Mathematische Annalen’ and introduced it with a comment [MarV16]. Compare
also the following explanations to Bernstein’s doctoral thesis [Bern12/2]).

22 Compare section 4.3.1.1 on page 137.
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p(k)(z) = σ, p(i)(z) = τ for fixed z ∈ R.

It seems that according to approximation theory Psheborski’s main effort
was the support of the scientific career of Sergey Natanovich Bernstein. He
was the main supervisor of his Russian theses, the master thesis [Bern08] and
the doctoral thesis [Bern12/2].

5.2 A Short Biography of Sergey Natanovich Bernstein

Sergey Natanovich Bernstein was born February 22, (March 5) 1880 in Odessa
in the family of the physician Natan Bernstein, who was an extraordinary
professor of the Novorossisk university.23

After grammar school Sergey Natanovich and his elder sister left Odessa
at the request of their mother24 to study in Paris. The sister would become a
well-known biologist, stayed in Paris and worked at the Pasteur institute.

In 1899 Sergey Natanovich finished his studies of mathematics, but re-
jected this profession and decided to begin engineering studies at the Paris
electrotechnical school. After his studies there he nevertheless continued to
deal with mathematics and registered for the winter semester 1902/03 in
Göttingen. There he mainly studied under the supervision of David Hilbert.
He stayed three terms, returned to Paris in spring 1904 and defended there his
thesis for the receipt of the docteur-es-sciences ‘Sur la nature analytique des
solutions des équations aux dérivées partielles du second ordre’ [Bern04/1],
where he gave an important contribution to the solution of the 19th Hilbert
problem.25 The report about the thesis was written by Picard.26 Afterwards
he participated in the international congress of mathematicians in Heidel-
berg27 and stayed in Heidelberg for a while,28 before he returned to Russia
(St. Petersburg) in 1905.

The results of his thesis were published very early ([Bern03]—partial
results—and [Bern04/2]), and so Bernstein became well known very fast. But

23 The biographical data were mainly taken from [Bog91]. Some additions were
made with the help of [Akh55] and sources from Göttingen archives ([Amt10]
and [BernHil]). Sometimes the secondary sources are contradictory. In such a
case we cited the work of Bogolyubov as a main source. The publication of an
extensive biography of Sergey Natanovich Bernstein is planned at ‘Nauka’ by the
authors A. N. Bogolyubov and O. N. Buts-Bondar so most of the indistinctions
should be clarified at some future time.

24 It is not clear when they moved to France.
25 For an exact analysis of Hilbert’s problems concerning Bernstein and Bernstein’s

contributions to them compare A. G. Sigalov’s article in [Ale98, p. 259–274].
26 Compare [Pic04].
27 See [Ver04].
28 At least until January 1905, as follows from the address Bernstein used in the

first two letters to David Hilbert [BernHil, Nr. 1-2]. (Compare [Stef99]).
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this was not of advantage to him in Russia: Foreign grades were not recognized
there, and he had to pass the master exams.29

He passed them with difficulties, especially the exam at Korkin about
differential equations caused trouble because he was forced to solve differential
equations by classical means.30

Nevertheless in 1907 he could work as a professor at the recently founded
polytechnical college for women because there formal requirements were not so
important. Probably because of the non-satisfactory scientific atmosphere for
him he decided to move to Kharkiv where in 1908 he defended his master thesis
‘Investigation and Solution of Elliptic Partial Differential Equations of Second
Degree.’ His opponents were D. M. Sintsov31 and A. P. Psheborski. This thesis
included both a detailed elaboration of his approach to solve Hilbert’s 19th
problem and a contribution to Hilbert’s 20th problem.

In Kharkiv he worked as a privat-dotsent and as a professor at the women’s
college. Nevertheless he was not content with his—as he said—‘hopeless’ sit-
uation.32 He clearly intended to work abroad and obviously he got an offer
from W. F. Osgood who was professor at Harvard University,33 presumably
which is why he went again to Göttingen in spring 1910. Probably he wanted
to meet Jackson, who just then studied there, and to discuss this question
with him. But these plans failed for an unknown reason. Bernstein returned
to Kharkiv and stayed there.

In 1913 he defended his doctoral thesis which he had finished one year be-
fore ‘About the Best Approximation of Continuous Functions by Polynomials
of Given Degree.’ The report was written by Psheborski [Psh13/1]. Already
in 1911 he was awarded the prize of the Belgian academy of sciences for his
results on this subject.

Until 1918 he gave lectures at the women’s college and from 1912 until
1918 he additionally was a lecturer at the Kharkiv commercial university
(«kommerqeskiĭ universitet»). In 1920 he became ordinary professor at
Kharkiv university.

Already in 1910 he had begun to deal with questions of didactics of math-
emtics, also together with Sintsov.

29 Compare the explanations in appendix B.1—the master thesis was more or less
the same as the docteur-es-sciences.

30 Compare [Ozhi68, Chapter 5]. There are rumours that he only passed the second
time.

31 Dmitri Matveevich Sintsov (1867–1946), studium in Kazan, 1899–1903 prof. at the
higher mining institute of Ekaterinoslav (today Dnipropetrivsk/Dnepropetrovsk),
since 1903 ord. prof. at Kharkiv university, since 1906 president of the Kharkiv
Mathematical Society, since 1939 member of the Ukrainian academy of sciences.
He worked on differential equations and differential geometry.

32 Compare the fourth letter to D. Hilbert [BernHil, Nr. 4].
33 Compare the sixth letter to D. Hilbert ([BernHil, Nr. 6]).
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In the 1920s the system of scientific institutes and universities was reor-
ganised34, the institutes were divided into several chairs and the scientific was
separated from the pedagogical work. One of the authors of these ideas had
been Bernstein. At that time he was scientifically active mainly on two sub-
jects: approximation theory (‘Constructive Function Theory’) and probability
theory. Here he was the first to develop an axiomatic basis.

In 1922–24 he visited Germany and France and at the Sorbonne he gave
two semesters of lectures about probability theory.

In 1924 Bernstein was elected corresponding member of the Russian
Academy of Sciences, in 1925 ordinary member of the Ukrainian Academy. In
1928 he became director of the Kharkiv mathematical institute. In the same
year he became corresponding member of the Paris Academy of Sciences, as
a successor of Gösta Mittag-Leffler who died shortly before.

In 1929 he was elected ordinary member of the Academy of Sciences of
the USSR, together with the mathematicians Nikolay Mitrofanovich Krylov,35

Ivan Matveevich Vinogradov and Nikolay Nikolaevich Luzin. Simultaneously
Dmitri Fedorovich Egorov and Dmitri Aleksandrovich Grave were elected hon-
orary members of the academy. It is possible that this election protected him
from prosecution in the following years.

In 1930 the dark time of the ‘Leningrad Mathematical Front’ began. Trig-
gered by the polemic document [AndL31] certain groups began to purge math-
ematics of ‘idealistic elements,’ where they started with the Leningrad Math-
ematical Society.36

During the first All Union Congress of Mathematicians in Kharkiv (June
24–29, 1930) S. N. Bernstein was not spared a political interference into math-
ematics. A problem formulated for the congress was read as ‘Application of
the method of dialectic and historical materialism to the history of mathe-
matics and its underpinning’ and it was also suggested to apply this method
to mathematical research. Bernstein wrote an answering letter in the journal
of the Kharkiv physico-chemico-mathematical institute, which was spread in
a large number of issues, where he proclaimed that dialectic materialism leads
to mathematical illiteracy.37 Consequently he was removed from his post as
director of the mathematical institute, but remained there as a professor until
1932 in spite of all attacks against him.

34 Compare also section 5.1.
35 He should not be taken for Lyapunov’s pupil Aleksey Nikolaevich Krylov, who

had already been elected member of the academy in 1916.
36 Naturally only after the end of the era of stagnation could a first try be made

to reappraise the 1930s in a scientifically satisfactory manner. This cannot be a
subject of the present work, so we only want to mention here Bogolyubov’s short
biography of Bernstein [Bog91] and the more general contributions [Erm98/2],
[Pau97] and [Delo99].

37 Cited after [Bog91, p. 60]: «dialektiqeskiĭ materializm privodit k matem-
atiqeskoĭ bezgramotnosti».
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In 1932 Bernstein left Kharkiv and became head of the department of
probability theory and mathematical statistics of the mathematical institute
of the academy of sciences which was in Leningrad at that time. From 1934
he also taught at the Leningrad university.

As Bogolyubov judges he left Kharkiv in time, for shortly after his leave
the purge of Kharkiv university began. Many lecturers and students were
arrested, some of them were shot.

At that time in Leningrad among others there studied and taught (also
with Bernstein) the Grand Seigneur of modern approximation theory, G. G.
Lorentz,38 who also suffered from prosecution and was forced to leave his home
country. Therefore, however, he could spread Bernstein’s ideas in Western
countries and help to overcome the isolation of Russian mathematics in the
Soviet time.

We should also mention that Bernstein could also hardly be intimidated
in the following years. In 1936, the culminating point of Stalin’s purges at
the affair ‘Luzin’ was tried,39 Bernstein decisively defended Luzin’s position.
This was perilous at that time. On January 1, 1939 Bernstein started his
lecturer job at Moscow university and was removed from being head of the
mathematical institute, but he kept his home in Leningrad. In 1940 he became
honorary member of the Moscow Mathematical Society.

The days of WWII he spent in the Kazakh town of Borovoe. His son
German Sergeevich remained in Leningrad and died when he wanted to leave
the town after the blockade.

His son’s death was the stimulus for Bernstein to leave Leningrad forever,
and he also moved his place of living to Moscow. In 1947 he was dismissed from
the university and became head of the department of constructive function
theory at the Steklov institute. He held this position until 1957.

38 Georg(e) Günter (until 1946 Georgi Rudolfovich) Lorentz (*1910 St Petersburg),
1922–1926 school education in Tiflis, 1926–1928 student at the technological in-
stitute in Tiflis, 1928–1931 at mathematical-mechanical faculty of Leningrade
university, diploma 1931, 1931–1936 teaching assistant univ. Leningrad, 1936
candidate thesis, 1936-1941 lecturer univ. Leningrad, 1941–1942 military service,
1942 escape to Kislovodsk in the Caucasus mountains, 1943 escape to Poland,
1944 invitation to Tübingen, there assistant’s job, doctoral thesis and ‘Habilita-
tion,’ 1946-1948 lecturer univ. Frankfurt/Main, 1948–1949 ‘Honorarprof.’ univ.
Tübingen, 1949 Research scholarship univ. Toronto, there instructor, later assis-
tant prof., 1953–1958 full prof. Wayne State univ. Detroit, 1958–1969 full prof.
univ. Syracuse (USA), 1968–1980 full prof. univ. of Texas in Austin, 1980 emeri-
tus, 1997 edition of selected works by his son Rudolph A. Lorentz [Lor97] (which
also contains an autobiography, where these data were taken from). George G.
Lorentz lives in California.

39 To say it in a few words, Luzin was accused of ‘idealism’ because his theories
were alleged far from applications and was nearly arrested. Compare [Delo99]. A
detailed comment can also be found in [Pau97].
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His work was highly recognized abroad, especially in France: in 1944 he
became honorary doctor of Algiers University,40 in 1945 even of the Sorbonne,
and in 1955 Bernstein was elected foreign member of the French Academy of
Sciences.

In spite of his critical attitude to the ideals of Marixism-Leninism he was
also highly decorated by the Soviet Union: Sergey Natanovich Bernstein was
awarded the Lenin medal twice, once he got the medal of the ‘merited red
standard’ («trudovogo krasnogo znameni») and some of his contributions
were awarded the Stalin prize. A special honour was the edition of his collected
work in his lifetime.

Sergey Natanovich Bernstein died October 26, 1968 from after effects of
an operation.

5.3 First Contributions to Approximation Theory

His biography, his first mathematical papers, but also his warm relation to
Hilbert justify naming Sergey Natanovich Bernstein a pupil of David Hilbert,
which does not contradict the fact that Hilbert was not Bernstein’s official
supervisor.41

Bernstein was a modern mathematician, not caught in classical thoughts
like some representatives of the St Petersburg Mathematical School. His in-
terest in questions from approximation theory had therefore firstly not been
influenced by their ideas. Besides, his mathematical education had completely
taken place abroad, and at first his talent had not adequately been acknowl-
edged in St Petersburg.

And so it was one of the ironies of fate that with Bernstein’s work, ap-
proximation theory again came to life in Russia.

5.3.1 A Proof of Weierstrass’ Theorem

Already very early Bernstein had been interested in finding a simple proof
for Weierstraß’ approximation theorem, and he had also been one of those
mathematicians who tried to prove the convergence of the Lagrange interpo-
lation algorithm, as he himself admitted much later, at the 1930 congress of
mathematicians in Kharkiv:42

40 During the German occupation Algiers University replaced the universities of the
independent French republic.

41 Why Bernstein did not defend his first (French) doctoral thesis in Germany, is
not known. It might have simply been connected with the fact that his German
was not good enough—his statements about his knowledge of languages in the
fourth letter to D. Hilbert [BernHil, Nr. 4] might be an indication for that.

42 His main speech was printed two years later as [Bern32] in the ‘Communications
of the Kharkiv Mathematical Society and the Ukrainian Mathematical Institute’.
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“I remember that one of my first mathematical investigations was to
try to prove this [Weierstraß approximation theorem, K.G.S.] start-
ing from Lagrange’s formulae. But, as we now know, this attempt
could not have been successful because Lagrange’s formula in general
diverges.”43

He did not say exactly when he made this attempt, but presumably it was
before 1904, when in his talk during the Heidelberg congress Borel presented
an example of a non-convergent sequence of Lagrange polynomials—obviously
without any knowledge of Runge’s work [Run01] from 1901. Bernstein partic-
ipated in this congress and so surely got to know Borel’s result. Maybe this
problem generally stimulated him to deal with approximation theory.

In 1916 he returned to the question of convergence of Lagrange’s algorithm
and proved [Bern16]:

Theorem 5.2 If n is an arbitrary natural number and R ∈ Pn Lagrange’s in-
terpolation polynomial of degree n interpolating in the nodes of the Chebyshev
polynomial Tn, then for any continuous function f : [−1, 1] → R there exists
a constant K ∈ R so that there holds:

‖f − R‖∞ ≤ KEn(f) log n.

If f even satisfies the Dini–Lipschitz condition, then with Lebesgue’s result
44 it is clear that Lagrange’s procedure converges with these assumptions.

Essentially more well known is Bernstein’s second and successful attempt
from 1912 to prove Weierstraß’ approximation theorem [Bern12/1], where
also the now so-called ‘Bernstein polynomials’ had been introduced.

For a given continuous function f : [0, 1] → R they are defined by

Bn(f) :=

n∑

i=0

f

(
i

n

)(
n

i

)

xi(1 − x)n−i. (5.2)

With Bernstein then there holds:

Theorem 5.3 For all f ∈ C[0, 1] we have:

lim
n→∞

‖f − Bn(f)‖∞ = 0.

The representation of these polynomials shows a connection between these
polynomials and the expected value of Bernoulli’s distribution. And so Bern-
stein proved this theorem using arguments from probability theory. It is very
difficult to summarize the proof, therefore we want to give it completely:

43 [Bern32, p. 21]: «Zgadu�, wo v odniĭ z möıh perxih naukovih sprob � hotiv
dovesti ce, vihod�qi z interpol�ciĭnöı formuli Lagrange’a. Otжe, takiĭ
proces, �k ce 
mo teper, ne mig mati uspihu, bo Lagrange’eva formula vza-
gali 
 rozbiжna.»

44 Compare Table 4.7.
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Proof Let A be an event which happens with probability x. If a player is paid
the amount of f

(
i
n

)
, when A comes i times in n attempts, then the expected

profit of the player is with Bernoulli just Bn(f).
Let ε > 0 be an arbitrary, but fixed number. Because of the continuity of

f (and the compactness of [0, 1]) theorem exists a number δ so that for all
x, y ∈ [0, 1] there holds:

|x − y| < δ ⇒ |f(x) − f(y)| <
ε

2
.

Let η be the probability that a random number x ∈ [0, 1] does not fall in
one of the intervals [ i

n − δ, i
n + δ], so

η := P

(

∀i ∈ {1, . . . , n} : |x − i

n
| > δ

)

.

Now let x ∈ [0, 1] be arbitrarily chosen. Let us assume that x lies in one of
the intervals [ i

n − δ, i
n + δ], let’s say in I(x). The probability for that is 1 − η.

Let
U(x) := min

y∈I(x)
f(y), V (x) := max

y∈I(x)
f(y).

Then we get the inequalities

U(x)(1 − η) − η‖f‖∞ < Bn(f) < V (x)(1 − η) + η‖f‖∞,

since the maximal loss is −‖f‖∞ and the maximal profit is ‖f‖∞. They can
also be written as:

f(x) + U(x) − f(x)
︸ ︷︷ ︸

< ε
2

−η (‖f‖∞ + U(x)) < Bn(f) and

f(x) + V (x) − f(x)
︸ ︷︷ ︸

< ε
2

−η (‖f‖∞ + V (x)) > Bn(f). (5.3)

With the large number theorem we choose n as sufficiently large so there will
hold:

η <
ε

4‖f‖∞
,

and so (5.3) turns out to be

f(x) − ε < Bn(f) < f(x) + ε.

Since these inequalities hold for all x ∈ [0, 1], the theorem has been proved.



182 5 Constructive Function Theory: Kharkiv

5.3.2 A Prize Competition of the Belgian Academy of Sciences

We have already mentioned that in Western Europe an interest in getting
quantified results of Weierstraß’ approximation theorem arose.

To support this aim the Belgian Academy of Sciences on a suggestion by de
la Vallée-Poussin, had posed the following problem in 1903 as a competition:

“Present investigations into the development of real or analytical func-
tions into power series.”

Then de la Vallée-Poussin had specified, as well:

“Is it possible or not to approximate the ordinate of a polygonal line,
or—what is the same—the function |x| on the interval [−1, 1] by a
polynomial of nth degree with a higher degree of approximation than
1
n?”45

That the approximation of |x| played an important rôle in the approxi-
mation of continuous functions was clear at least since Lebesgue’s proof of
Weierstraß’ approximation theorem [Leb98], for he proved it firstly showing
that an arbitrary function can be approximated by polygonal lines and then
approximating the lines by polynomials.46

Only after seven years did de la Vallée-Poussin show a first result [Val10].
He proved that there holds:

En(|x|) >
k

n log3 n
.

After another year Sergey Natanovich Bernstein gave a first indication
that this question has to be answered with ‘no’ with the following theorem
[Bern11]:

Theorem 5.4 There exists a number k so that there does not hold for any
natural number n :

En(|x|) <
k

n log n
.

He could give a complete answer in [Bern12/4] which then was printed by
the Belgian academy as the prize-winning treatise.

There Bernstein could give an exact order of convergence of En(|x|). Since
|x| is an even function, its best approximation must be an even function, too,
and so the following theorem suffices for the exact order:
45 We had no access to the Belgian original document and cited after [Gon45,

p. 158]: ,,Predstavitь novye issledovani�, kasa�wies� razloжeni� funk-
ciĭ deĭstvitelьnyh ili analitiqeskih v r�dy polinomov. [...] Vozmoжno
ili net predstavitь ordinatu poligonalьnoĭ linii, ili, qto svodits� k
tomu жe, |x| v promeжutke [−1, 1] posredstvom polinoma stepeni n s pri-
bliжeniem bolee vysokogo por�dka, qem 1

n
?”

46 To be precise, this idea was due to Runge, who used it to show the approximation
theorem named after him [Run85/2].
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Theorem 5.5 There exists a natural number n0 so that for arbitrary n ∈ N

there holds:

0.278

2n
< E2n(|x|) <

0.286

2n
.

But his papers on this subject reached farther. The contributions [Bern11],
[Bern12/2], [Bern12/3], [Bern12/4] and [Bern13/2] are partly devoted to ques-
tions of this kind, [Bern12/3] and [Bern13/2] even exclusively.

This made clear that Bernstein regarded this subject as of similar impor-
tance as the Belgians had done with their posing of the competition. He stated
in 1912 in a speech to the international congress in Cambridge (UK):

“The example of the problem of the best approximation of the function
|x|, suggested by de la Vallée-Poussin, again confirmed the fact that
a well-posed single question is able to be the starting point for far
reaching theories”47

Also Bernstein’s first article, where he discussed questions of approxima-
tion theory, had the character of a forerunner for these questions. It is the
contribution ,Sur l’interpolation’ [Bern05] published in 1905.

Here he dealt with the question how well a continuous function could be
approximated by interpolating polygonal lines. In those days the question of
the convergence of interpolating algorithms had not been answered.

Replying to Runge’s result according to the convergence of the Lagrange
algorithm in [Run01], he mentioned that the practical man often wants to
approximate a function by polygonal lines. So regularity assumptions did not
always correspond with the interest of practice.

Bernstein was able to show that such an interpolation process uniformly
converges for twice continuously differentiable functions. He used the repre-
sentation of the interpolant by means of multiple differences.

5.3.3 The Prize-Winning Treatise

The above-cited words about the relevance of the problem of best approxima-
tion of |x| had a concrete background: As the prize-winning treatise Bernstein
not only presented a solution of the posed problem, but the extensive mono-
graph ,Sur l’ordre de la meilleure approximation des fonctions continues par
des polynomes de degré donné’ [Bern12/4], which reached much farther and
counted as the foundation of the later so-called ‘Constructive Function The-
ory’. He submitted it in June 1911;48 after one year the Russian translation

47 [Bern12/2, Russian translation, p. 117]: «Primer zadaqi o nailuqxem prib-
liжenii |x|, predloжenooĭ Valle Pussenom, daet ewe odno podtverжdenie
togo fakta, qto horoxo postavlennyĭ vopros sposoben bytь otpravnoĭ
toqkoĭ dl� daleko iduwih teoriĭ.»

48 Bernstein said this in a footnote to his doctoral dissertation [Bern12/2]. He wrote:
“Except for two additions to the chapter IV and V the present work is a trans-
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was also printed. This treatise served him as a doctoral dissertation, which he
defended on May 19th, 1913.

The fact that the Russian translation played the rôle of a second edition
might have caused it to appear worse than the French version. At least Pshe-
borski had this opinion:

“It seems that the enormous engagement in the publication of his
French edition was the reason for the large carelessness of the present
work which often has the character of a manuscript written ‘for him-
self’.”49

After some inequalities which have the same shape as those of A. Markov
and V. Markov and the explanations about the approximation of |x|, Bern-
stein proved here a series of inverse theorems which had indeed had the fun-
damental character of a new view on the theory of functions. They showed
that differentiability and analyticity properties may follow from the speed of
approximation of a function.

To be precise, we find there the following results for real-valued functions
f ∈ C[a, b] :

Theorem 5.6 If there is

lim
n→∞

En(f) log n = 0,

then f satisfies the Dini–Lipschitz condition.

Using Lebesgue’s result from [Leb10/1] we have then the characterization

Corollary 5.7 (Bernstein 1911–Lebesgue 1910)

fsatisfies the Dini–Lipschitz condition

⇐⇒
lim

n→∞
En(f) log n = 0.

The next two results are the inverse versions of two theorems due to Jack-
son.

lation of the work with the same title which has been awarded the prize of the
Belgian Academy of Sciences, where I had submitted it in June 1911.” ([Bern52,
p. 12] «Nasto�wa� mo� rabota, za iskl�qeniem dvuh ,,Dobavleniĭ” k IV i
V glavam, predstavl�et, s neznaqitelьnymi redakcionnymi izmeneni�mi,
perevod memuara pod tem жe zaglaviem, udostoennogo premii Belьgiĭskoĭ
akademii, kuda on byl napravlen mno� v i�ne 1911 g.»)

49 [Psh13/1, p. 27]: «Bytь moжet, to obsto�telьstvo, qto avtor osobenno
twatelьno zabotils� o redakcii svoeĭ francuzskoĭ raboty, �vilosь
priqinoĭ bolьxoĭ nebreжnosti v redakcii rassmatrivaemogo soqineni�,
nos�wego podqas harakter qernovyh zametok ,,dl� seb�”.»
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Theorem 5.8

1. If the series
∞∑

n=1

En(f)np−1

converges, then f is p times continuously differentiable.
2. If for an α > 0 the series

∞∑

n=1

En(f)np−1+α

converges, then f (p) ∈ Lipα .

Both assumptions are stronger than Jackson’s necessary conditions, so we
don’t have characterizing theorems, but only:

Corollary 5.9 (Bernstein–Jackson 1911)

1. There holds:

∞∑

n=1

En(f)np−1 < ∞

⇒ f ∈ Cp[a, b]

⇒ lim
n→∞

En(f)np = 0.

2. Let α > 0. Then:

∞∑

n=1

En(f)np−1+α < ∞

⇒ f (p) ∈ Lipα[a, b]

⇒ lim
n→∞

En(f)np+α = 0.

The last theorems via n → ∞ led to theorems characterizing infinitely
often differentiable and real-analytic functions which were proved by Bernstein
alone:

Theorem 5.10 (Bernstein 1911)

1. f is infinitely many times differentiable if and only if for all p ∈ N there
holds:

lim
n→∞

En(f)np = 0.
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2. f is a real-analytic function, if and only if there exists a number ρ > 1
with:

lim
n→∞

En(f)ρn = 0.

With these new results approximation theory showed a new character. If
it was called by Chebyshev and his pupils ‘theory of functions deviating the
least possible from zero’ and its aim was only the investigation of extremal
properties of certain polynomials, now it had a new meaning in the theory of
real-valued functions as a whole.

The concepts of Lipschitz continuity, (continuous) differentiability and an-
alyticity, independently introduced, could now be described by the speed of
the operator of best approximation, and partially even characterized.

5.3.4 A Brief Note about the Interrelation between Jackson’s and
Bernstein’s Contributions

We have already established that Bernstein’s main early contributions to ap-
proximation theory, [Bern11] and [Bern12/4], were finished nearly simultane-
ously with Jackson’s thesis [Jack11]. The results of all of these papers were
very similar, but both authors stated that they found their results indepen-
dently.50

The fact that they both stayed in Göttingen during the summer semester
1910, at a time when both had already begun their investigations on the same
subject, makes these statements not very credible. We remember that there
was an objective reason for Bernstein to meet Jackson, namely the question for
a possible lecturer’s job in Harvard. Therefore they probably met. Did they
talk about their research on quantitative approximation theory? Of course
possibly they did not.

50 Jackson wrote [Jack11, p. 12:] “A few weeks before the submission date of the
prize-winning treatise S. Bernstein published a series of theorems, which are par-
tially similar to some of the theorems, which will follow [...] Besides this it con-
tains theorems, which do not occur in this treatise.” (,,Wenige Wochen vor dem
Einlieferungstermin der Preisarbeit hat S. Bernstein in einer kurzen Note ohne
Einzelheiten seiner Beweise eine Reihe von Stzen verffentlicht, die zum Teil eini-
gen derer, die hier folgen sollen, sehr hnlich sind. [...] Auerdem erhlt sie auch Stze,
die in dieser Abhandlung gar nicht vorkommen.”). Bernstein wrote in the speech
defending his doctoral thesis about one of these very similar results (here the de-
termination of the exact constant for the approximation of |x|) [Bern12/2]: “the
same result was reached (independently from me) a little later by Jackson” («tot
жe rezulьtat (nezavisimo ot men�) nemnogo pozdnee poluqen Dжзksonom.»
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5.3.5 Quasianalytic Functions

Unfortunately the gaps between the two statements of Theorem 5.9 cannot be
closed without weakening the assumptions,51 because counterexamples exist
for both directions, as Bernstein himself mentioned [Bern13/1].

This was the reason why the question of the speed of convergence of |x|
was so difficult to answer. After all there holds

0.278

n
< En(|x|) <

0.286

n
,

and so the series ∞∑

n=0

En(|x|)

must diverge, although |x| ∈ Lip1[a, b].
For a better handling with these gaps Bernstein introduced the concept of

quasianalytical functions [Bern14]:

Definition 5.11 A function f ∈ C[a, b] is called quasianalytical, if there exist
a number ρ < 1 and a sequence (αn)n∈N so that ∀n ∈ N :

1. αn ≤ ρn

2. Eαn
(f) ≤ αn.

In fact there are non-differentiable quasianalytic functions, for instance φ :
[−1, 1] → R with:

φ(x) :=

∞∑

n=0

cos (F (n) arccos x)

F (n)
,

where is set
F (0) := 1 F (n + 1) := 2F (n).

Since its summands are Chebyshev polynomials it is well defined, and secondly
there holds

EF (k)(φ) ≤ ‖φ − F (k)TF (k)‖∞ = ‖
∞∑

n=k+1

1

F (n)
TF (n)‖∞

≤ 1

F (k)

∞∑

n=k+1

1

2n+1
<

1

2k
,

51 In 1919 de la Vallée-Poussin (not Bernstein!) could prove a necessary and suffi-
cient condition for 2π-periodical, α-Lipschitz continuous functions [Val19, p. 57f.],
where he regarded the trigonometric case and had to exclude α = 1. His theorem
then read as follows:

f
(p) ∈ Lipα ⇔ lim

n→∞
En(f)np−1+α = 0.
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thus, φ is quasianalytical. Differentiating each summand we get for x = 0 the
divergent series

1 +
∞∑

n=1

sin (F (n) arccos 0) = 1 +

∞∑

n=1

sin
π

2
F (n),

and so φ is not differentiable.
Another possibility to define quasianalytical functions came from the

definition of higher moduli of continuity, which Bernstein introduced52 in
[Bern12/4]. They were defined by

ω2(f, δ) := max
|h|≤δ

|f(x + 2h) − 2f(x + h) + f(x)|,

ω3(f, δ) := max
|h|≤δ

|f(x + 3h) − 3f(x + 2h) + 3f(x + h) − f(x)|,

...
...

...

Then Bernstein defined

Definition 5.12 A function f ∈ C[a, b] satisfies the generalized Lipschitz
condition of degree α and the order i, if there exist a constant K and a null
sequence (εk)k∈N so that

ωi(f, εk) ≤ Kεα
k

for all k ∈ N.

Then an intersecting theorem is

Theorem 5.13 If for a function f ∈ C[a, b] there exist a constant K, a nat-
ural number p and a sequence (nk)k∈N so that for all k ∈ N there holds

En(f) ≤ K

np
k

,

then f satisfies the generalized Lipschitz condition of order i and degree

αi :=
ip

i + p

for all i ∈ N.

52 The definition of higher moduli of continuity is often wrongly attributed to Zyg-
mund [Zyg45].
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5.4 Constructive Function Theory as the Development

of Chebyshev’s Ideas

As we have already seen analysing several European contributions, questions
of quantitative approximation theory could be regarded as a direct conse-
quence of Weierstraß’ theorem. Until Bernstein entered the scene all quan-
titative theorems had been derived without the help of the results of the
St Petersburg Mathematical School. This was no longer true for Bernstein’s
inverse theorems.

Bernstein proved the sufficiency of the conditions of Theorem 5.9 via
V. Markov’s inequality, since the convergence of the series

∞∑

n=1

En(f)np−1

implies the possibility to represent it as an absolutely convergent polynomial
series which can be differentiated in ranks as long as V. Markov’s inequal-
ity allows. So this inequality became one of the most important means of
Bernstein’s work.

Inequalities of this kind were the intial point of Bernstein’s lectures which
he gave in 1926, calling them ,Leçons sur les propriétés extremales et la
meilleure approximation des fonctions analytiques d’une variable réelle’. He
published them in the same year ([Bern26], Russian version and revision
[Bern37]).

So the results of the St. Petersburg Mathematical School and those from
Western European authors originated by Weierstraß were put together in
Bernstein’s work.

No wonder then that in his contribution [Bern32] Bernstein tried to prove
Weierstraß’ approximation theorem only by algebraic means.

There holds the following theorem:

Theorem 5.14 Let f ∈ C[a, b]. If for a n ∈ N and a polynomial pn ∈ Pn

there holds the inequality
‖f − pn‖∞ < 4L,

then there is an n0 > n and a polynomial pn0
∈ Pn0

, for which there holds:

‖f − pn0
‖∞ < 3L.

This theorem can simply be proved by a shift of the difference f −pn with
the help of a polynomial which in certain subintervals does not fall below the
value L and does not exceed 2L.

It is an argument of the type Chebyshev had often used before!
It is clear that this theorem is equivalent to Weierstraß’ approximation

theorem, since it guarantees the existence of a sequence (µn)n∈N, for which
there holds limn µn = ∞, and for which
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‖f − pµn
‖∞ ≤

(
3

4

)µn

L.

And thus, Sergey Natanovich Bernstein described the ‘Constructive Func-
tion Theory’ founded by him as the development of Chebyshev’s ideas. The
speech [Bern45/2] which the following part was taken from, even carried such
a title:

“As constructive function theory we want to call the direction of func-
tion theory which follows the aim to give the simplest and most pleas-
ant basis for the quantitative investigation and calculation both of
empirical and of all other functions occurring as solutions of naturally
posed problems of mathematical analysis (for instance, as solutions of
differential or functional equations). In its spirit this direction is very
near to the mathematical work of Chebyshev; therefore no wonder
that modern constructive function theory uses and develops the ideas
of our deceased famous member.”53 in a high extension54

The development of Chebyshev’s theory was the application of analytical
methods to its problems. In this way it could serve the mathematical analysis
itself developing a deeper understanding of its concepts.

Whereas we partially rejected the comparison between Chebyshev and
Euler in the summarizing section about Chebyshev’s work because he was
not interested in questions about the foundations of mathematics, we now
state that in spite of his scepticism his theory also could enrich them.

From a purely applied problem there arose deep insights into pure math-
ematics; practice created a new theory.

53 The speech was given before the academy whose ordinary member Chebyshev
had been since 1859.

54 [Bern45/2, p. 145]: «Konstruktivnoĭ teorieĭ funkciĭ my nazyvaem
napravlenie teorii funkciĭ, kotoroe stavit sebe celь� datь vozmoжno
bolee prostu� i udobnu� osnovu dl� kaqestvennogo izuqeni� i vy-
qisleni� kak зmpiriqeskih funkciĭ, tak i vs�kih funkciĭ, �vl��wihs�
rexeni�mi estestvenno postavlennyh zadaq matematiqeskogo analiza
(naprimer, rexeniĭ differencialьnyh ili funkcionalьnyh uravneniĭ).
Зto napravlenie vesьma blizko po duhu matematiqeskomu tvorqestvu
Qebyxeva; ne udivitelьno poзtomu, qto sovremenna� konstruktivna�
teori� funkciĭ v bolьxoĭ stepeni ispolьzuet i razvivaet idei naxego
pokoĭnogo soqlena.»



A

Biographies of Other Representatives of the

Saint Petersburg Mathematical School

As we explained at the beginning of the third chapter, here we want to give
some biographical data about the ‘direct successors’ of Chebyshev. Together
with Korkin, Sochocki, Zolotarev, Posse, A. Markov sr. and V. Markov they
formed the first generation of the St Petersburg Mathematical School.1 Their
subjects of interest were far from approximation theory, therefore we did not
take them into consideration in the third chapter.2

A.1 Matvey Aleksandrovich Tikhomandritski

Matvey Aleksandrovich Tikhomandritski was born January 29, 1844 in Kyiv
as a son of Aleksandr Nikitich Tikhomandritski who was professor at the chair
of applied mathematics at the university of the holy Vladimir.3 In 1848 his
father accepted the position of the inspector of the St Petersburg pedagogical
institute.

In 1861 Matvey Tikhomandritski registered at the physico-mathematical
faculty of St Petersburg University; in 1865 he won a gold medal for a trea-
tise about parabolic interpolation (least-square-approximation) in a students’
competition. His paper was accepted then as a candidate thesis.

Form 1867 until 1879 he worked as a grammar school teacher; during
this time in 1876 he defended his master thesis ‘About hypergeometric series’

1 Some of these representatives can be included in the second generation, since
Chebyshev was their scientific ‘grandfather’ as they were pupils of his pupils. So
we want to refer to our discussion of the name ‘pupil’ from the beginning of the
third chapter. Biographical data about A. V. Bessel is missing because of the lack
of sources about his person.

2 We remember that this also holds for the mathematicians Posse and Sochocki. But
these had a formative influence on the school itself: Posse as a teacher, Sochocki
as a representative of function theory. Most of the persons mentioned here did
not stay sufficiently long at St Petersburg to play a similar rôle.

3 Sources: [Bio96], [Ozhi68, p. 125], [VorSPb] and [BoBu87, p. 501 f.].
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under supervision of Korkin. From 1876 until 1879 he also taught at the
institute of transportation. From 1879 until 1883 Tikhomandritski lectured as
a privat-dotsent at the St Petersburg University (about elliptic functions and
descriptive geometry). In 1883 he was appointed ordinary lecturer at Kharkiv
University. There he was promoted to extraordinary professor in 1885 after
the defense of the doctoral thesis ‘Inversion of hyperelliptic integrals’ and in
1888 he was promoted to ordinary professor. He lectured in Kharkiv until
1904.

The subjects of his lectures spread over nearly all subjects of education
in pure mathematics of that time (for instance, ‘higher algebra’, ‘calculus,’
‘variational calculus,’ ‘ theory’ and ‘functions of a complex variable’). His
main subjects of research were higher algebra and elliptic functions and did
not change for his whole life.

Matvey Aleksandrovich Tikhomandritski died in Kyiv in 1921.

A.2 Nikolay Yakovlevich Sonin

Nikolay Yakovlevich Sonin was born February 10 (22), 1849 in Tula4. Soon
after his birth his family moved to Moscow because his father began the job
of a lawyer there.

In 1865 Sonin registered at the physico-mathematical faculty of Moscow
University. In 1869 he was awarded the gold medal for a work about ‘Theory of
functions of an imaginary variable’. This treatise was accepted as a candidate
thesis. In 1871 he defended his master thesis ‘About the Series Expansion of
Functions’; in 1874 there followed his doctoral thesis ‘About the Integration
of Partial Differential Equations of Second Order,’ which would be published
in the ‘Annalen’ later in 1897. His main subject of interest was differential
equations, especially his investigations about Bessel functions were paid great
attention to.5

In 1871 Sonin began his lecturer’s activities at the women’s college, at-
tributed to the third Moscow boy’s grammar school; after one year he was
appointed lecturer in Warsaw. In 1877 he was promoted extraordinary, in
1879 ordinary professor of Warsaw University. He mainly taught mathemati-
cal physics.

In 1891 he became emeritus after a twenty year lecturer job, but continued
to give lectures.

In the same year he was elected corresponding member of the academy of
sciences; by the initiative of Chebyshev he was elected ordinary member in
1893. According to the memories of D. A. Grave (comp. [Dob68, p. 11]) with
this initiative Chebyshev wanted to prevent the election of Korkin.

4 Sources: [Pos15] and [Son54].
5 An overview of Sonin’s work on Bessel functions can be found in [Son54].
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In 1894 Sonin moved to St Petersburg and gave lectures at the women’s
university and at St Petersburg University (as privat-dotsent) about partial
differential equations.

In 1899 he edited the collected works of P. L. Chebyshev [Chebgw1] to-
gether with A. Markov.

Besides these activities Sonin was engaged in science policy. Several times
he was president of research commissions of the universities; in 1901 he became
president of the research committee of the ministry of education.

Nikolay Yakovlevich Sonin died February 14 (27), 1915 in St Petersburg.

A.3 Aleksandr Vasilevich Vasilev

Aleksandr Vasilevich Vasilev was born July 2, 1853 in Kazan.6 In 1870 he
began his studies at the physico-mathematical faculty of St Petersburg Uni-
versity, which he finished in 1874 with a candidate thesis which was awarded
with a gold medal.

Afterwards he left St Petersburg and returned to his home town Kazan.
There he became privat-dotsent in 1875 and since 1887 he gave lectures as an
ordinary, from 1899 as a merited professor.

In 1879 he made a trip abroad to Berlin and Paris, where among others
he met Weierstraß, Kronecker and Hermite.

Vasilev was one of the founders of the Kazan Mathematical-Physical So-
ciety. He was its president from its foundation in 1890 until 1905.

In 1907 he returned to St Petersburg and gave lectures at the women’s uni-
versity. After the revolution in 1923 he became ordinary professor at Moscow
State University.

His mathematical work spread over the subjects of algebra and potential
theory, but Vasilev became famous rather by his work about the history of
mathematics: he was the editor of the collected works of Lobachevski about
geometry and the first biographer of Pafnuti Lvovich Chebyshev [Vas00].

Aleksandr Vasilevich Vasilev died October 9, 1929.7

A.4 Ivan Lvovich Ptashitski

Ivan Lvovich Ptashitski was born in 1854 in the province of Vilna (today
Vilnius/Lithuania).8

6 Sources: [Bazh88] (Biography of his son Nikolay Aleksandrovich Vasilev) and
[BoBu87, p. 97]

7 We could not find out, where Vasilev died. In Russian encyclopedic works there
is often nothing said about the place of death. This remark also holds for some
others persons mentioned here.

8 Sources: [Bio96] und [Ozhi68].
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In 1872 he registered at the physico-mathematical faculty of St Petersburg
University. He defended his candidate thesis in 1876; in 1881 he defended
his master thesis ‘About the integration of irrational differentials in finite
representation’ under supervision of Korkin. His doctoral thesis he defended
under supervision of Sochocki in 1888.

From 1880 until 1890 Ptashitski worked as a grammar school teacher in
Peterhof; since 1882 he taught at the St Petersburg University as a privat-
dotsent. The subjects of his lectures were ‘elliptical functions,’ ‘analytical
geometry’ and ‘descriptive geometry.’

From 1890 he also lectured at the academy of ordnance.
His main subject of research was integration theory, especially elliptical

functions.
Ivan Lvovich Ptashitski died in 1912.

A.5 Dmitri Fedorovich Selivanov

The only mathematician of the first generation of the St Petersburg Mathe-
matical School who had been directly influenced by Weierstraß and his Berlin
school was Dmitri Fedorovich Selivanov. But since he was only engaged in
number theory and algebra, this had no influence on the development of ap-
proximation theory.

Dmitri Fedorovich Selivanov was born in 1855 in a small town in the
province Penza.9

From 1873 until 1877 he studied mathematics at St Petersburg University
and defended his candidate thesis ‘About simply closed curves’ in 1878. Then
he stayed two years at the university to prepare for a lecturer’s job. In 1880
he left the university for studies abroad. One year he spent in Paris at the
chair of Hermite, afterwards he stayed two years in Germany to study function
theory and higher algebra under supervision of Weierstraß and Kronecker.

In 1885 he defended his master thesis ‘Theory of algebraic solutions of
equations.’ His doctoral thesis ‘About Equations of fifth degree with integer
coefficients’ followed in 1889.

Since 1886 he lectured at St Petersburg University, at first as a privat-
dotsent; from 1889 he also gave lectures at the women’s university, since 1891
at the technological institute. Only after 19 years of work as a privat-dotsent
did he become extraordinary professor of the St Petersburg University in 1905.

Dmitri Fedorovich Selivanov died in 1932.

9 Sources: [Andr90-05, vol. 29, p. 352], [Bio96] and [VorSPb]. The dates are often
contradictory. In such a case we cited [Bio96], since this book is based on the
personal information of the lecturers of St Petersburg University. The unreliable
sources caused the fact that our biographical outline after 1891 consists only of
dates from the university calendar [VorSPb].
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A.6 Aleksandr Mikhaylovich Lyapunov

Surely one of the most prominent representatives of the St Petersburg Math-
ematical School was Aleksandr Mikhaylovich Lyapunov. His investigations
about the stability of three-dimensional motions founded a new branch of the
theory of differential equations. The approximation theory, however, did not
play any rôle in his scientific work. Besides this his influence on the centre of
the St Petersburg Mathematical School was restricted because he taught in
Kharkiv for a long time, before he returned to St Petersburg as an academi-
cian.

Aleksandr Mikhaylovich Lyapunov was born May 25 (June 6), 1857 in
Yaroslavl as a son of the head of the Yaroslavl observatory, Mikhail Vasilevich
Lyapunov.10

In 1870, two years after the death of the father, Lyapunov’s mother and
her three sons moved to Nizhni-Novgorod, there in 1876 Aleksandr finished
grammar school with a gold medal. In the same year he registered at the
physico-mathematical faculty of St Petersburg University, at first at the de-
partment of natural sciences, in 1877 at the mathematical department. He was
especially impressed by Chebyshev himself, both as a teacher and as a scien-
tist. But his candidate dissertation he wrote under supervision of the physicist
D. K. Bobylev. For this work he was awarded the gold medal in 1880 and could
finish his studies. These investigations laid down the foundations of his first
two publications ‘About the balance of heavy bodies in heavy liquids which
are located in a fixed vessel’ and ‘About the potential of hydrostatic pressure’
(1881).

After his studies he remained at the university to prepare for a lecturer’s
job. In 1882 he finished the master examinations and started with the work
which he won fame with: ‘About the stability of ellipsoid balance states of a
rotating liquid’. To this work he was stimulated by Chebyshev, but his official
opponent at the defense of 1885 again was D. K. Bobylev. Already shortly
after publication of the work a brief overview was published in the French
‘Bulletin astronomique’. In 1904 the complete French translation ,Sur la sta-
bilité des figures ellipsöıdales d’equilibre d’un liquide animé d’un mouvement
de rotation’ was published in the annals of Toulouse University.

In 1885 he was appointed privat-dotsent of St Petersburg University, but
he moved to Kharkiv in the same year to take the chair of mechanics at the
university there. In 1892 he defended his doctoral thesis ‘The General Problem
of Stability of Motion’. Its meaning even exceeded his master thesis, and so
also this work was completely translated into French (,Problème général de la
stabilité du mouvement’ - Annales Toulouse 1907).

From 1899 until 1902 Lyapunov was president of the Kharkiv Mathemat-
ical Society; in 1900 he was elected corresponding member of the Russian
academy of sciences; in 1901 he was elected ordinary member and took the

10 Source: [Smi53].
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position for applied mathematics as a successor of Chebyshev. This position
had been vacant since Chebyshev’s death. Therefore he returned to St Pe-
tersburg and completely devoted himself to research. Some contributions to
stability theory would then follow.

Firstly during the revolutionary turmoil because of which he moved to the
Ukraine and Southern Russia, he again started to give lectures. In Septem-
ber 1918 he lectured at the university of Novorossiysk ‘about the shape of
celestial bodies.’ This lecture, however, was not finished. November 3, 1918,
three weeks after the death of his wife, Aleksandr Mikhaylovich Lyapunov
committed suicide.

A.7 Ivan Ivanovich Ivanov

Ivan Ivanovich Ivanov was born August 11, 1862 in St Petersburg.11

In 1886 he finished his studies of mathematics at St Petersburg Univer-
sity with his candidate thesis ‘About prime numbers.’ In 1891 there followed
his master thesis ‘integral complex numbers’ and in 1901 his doctoral thesis
‘About some questions in connection with the number of prime numbers.’

Since 1891 Ivanov lectured at the St Petersburg University, since 1896 at
the women’s university and since 1902 at the polytechnical institute.12

In 1924 Ivanov was elected corresponding member of the academy of sci-
ences of the USSR.

After Georgi Feodosevich Voronoy, Ivanov counts as the most important
successor of Chebyshev on the subject of number theory.

Ivan Ivanovich Ivanov died December 17, 1939.

A.8 Dmitri Aleksandrovich Grave

Dmitri Aleksandrovich Grave counts as the founder of the Kyiv algebraic
school, which was the first algebraic school in the Soviet Union (by [Dob68]).
Among his pupils there were two of the most important Soviet representa-
tives of approximation theory, Naum Ilich Akhiezer and Mark Grigorevich
Kreyn. Grave himself, however, did not write much about this subject. The
only exception was his solution of a problem from cartography proposed by
Chebyshev in 1856, which we have already mentioned in section 2.6.2.

Dmitri Aleksandrovich Grave was born August 25 (September 6), 1863
in Kirillov in the province of Vologda.13 After the father’s death the family
moved to St Petersburg, where he finished the grammar school with the gold
medal in 1881.

11 Source: [Kuz40].
12 The sources did not say clearly when he finished his lecturer’s jobs at these places.
13 Source: [Dob68].
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From 1881 until 1885 Grave studied at the St Petersburg University; in
1885 he defended his candidate dissertation ‘About minimal surfaces’. In 1888
there followed his master thesis ‘About the integration of partial differential
equations of first order’ defended before Korkin and Sochocki. In his doc-
toral thesis ‘About Fundamental Problems of the Mathematical Theory of
the Construction of Geographic Maps’ he gave the above-mentioned solution
of a problem of Chebyshev among other results. The official opponents were
here A. Markov und Ptashitski.

Since 1891 Grave gave lectures at the women’s university, since 1893 ad-
ditionally at the military-topographical institute. In 1899 he was appointed
ordinary professor at Kharkiv University by initiative of Tikhomandritski. He
worked there until 1902, when he moved to Kyiv as a successor of Pokrovski,
who had died shortly before. Grave stayed in Kyiv until his death and taught
at several institutes.

In 1920 Grave became the first mathematician who was elected ordinary
member of the academy of sciences of the Ukraine, founded in 1919. In 1924
Grave was elected corresponding member of the academy of sciences of the
USSR, 1929 honorary member.

In 1933 he became foundation rector of the mathematical institute of the
academy of sciences of the Ukraine.

Dmitri Aleksandrovich Grave died December 9, 1939 in Kyiv.

A.9 Georgi Feodosievich Voronoy

In spite of his short life Georgi Feodosevich Voronoy counts as the most im-
portant representative of number theory of the St Petersburg Mathematical
School after Chebyshev. The work ‘Voronöı’s Impact of Modern Science’ pub-
lished in 1998 by the Ukrainian Academy of Sciences is devoted to his work
and life. An interesting fact is that this work is the first work of such a scope
about a representative of the St Petersburg Mathematical School written not
in Russian or another language of the Russian Empire and the Soviet Union,
respectively. Even the Collected Works of Chebyshev, published in French in
1899, contained only uncommented texts.

Georgi Feodosevich Voronoy was born April 28, 1868 in the village of
Zhuravki, district of Ryriatin, in the province of Poltava.14

In 1889 he finished his studies at the St Petersburg University, where in
1894 he defended his master thesis ‘About integral algebraic numbers depend-
ing from the roots of an equation of third degree.’

In the same year Voronoy became professor at Warsaw University, where he
defended his doctoral thesis ‘About a generalization of a continuous fraction’
in 1897.

Georgi Feodosevich Voronoy died after a severe disease in his home village
November 20, 1908.

14 Source: [Syt98].
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Explanations

B.1 Russian Academic Degrees

It is not very simple to understand immediately what we are talking about, if
we speak about a Russian academic degree. Therefore we put together a list
of the most important names we had to use in the present work.

We emphasize that we do not want to judge the possibility of comparing
scientific efforts by comparing degrees. Nowadays Russian degrees also have
adopted the Anglo-American system of Bachelor and Master. So please have
in mind that all such titles are flexible.

But nevertheless we think it becomes clear why Russian officials had dif-
ficulties to acknowledge foreign degrees.

adjunkt In the 19th name ‘Adjunkt’ (adъ�nkt) was used also in the civil
world in the sense of an assistant: at the academy of sciences and at
the university. At the academy the ranking was: Adjunkt, extraordinary
member and ordinary member.

candidate In prerevolutionary Russia the academic degree of the candidate
(kandidat nauk) was reached after the defense of the candidate thesis and
passing the candidate examinations and was the first academic degree. It
can be compared with the modern diploma or M.Sc. After the revolution
of 1917 and the reorganisation of the universities it named the second
academic degree, following the diploma, comparable with the Ph.D.

magister The degree of a magister (magister nauk) only existed before the
revolution. It marked the degree between the candidate and the doctorate,
so it could be compared with the Ph.D. in spite of its name.

magister-examination The magister examination had to be passed to get
the right to write a magister thesis. The degree magister was then awarded
after the defense of the thesis, but not after an additional examination.

pro venia legendi With the thesis pro venia legendi one got the right to
teach at the university. It did not replace the doctoral thesis.
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privat-dotsent A ‘privat-dotsent’ (privat-docent) had the right and the
duty to teach at the university without a salary. Lecturers who got a
salary for their labor, at least had the status of a ‘dotsent’ (docent). In
Germany this system is still actual.

doctorate The degree of a ‘doctor’ (doktor nauk) traditionally is the highest
degree in Russia reached by an examination. It is awarded after the public
defense of the doctoral thesis.
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variable réelle, in: É. Borel (Hg.): Collection de monographies sur la
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1880, in: [Chebgw2, vol. 4].

[Cheb88] Chebyshev, Pafnuti Lvovich About the Simplest Joint Mechanism
for the Creation of a Symmetric Motion round an Axis [O prosteĭxeĭ
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Érteśıtő 34 (1916), 209-229, also in: [Fej70, vol. 2, p. 9-25].
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Birkhäuser, Basel/Stuttgart 1970.

[Fel60] Fel’, Sergej Efimovich Russia’s Cartography in the 18th Century
[Kartografi� Rossii XVIII veka], izd. geografiqeskoĭ liter-
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Matemático di Palermo XXV (1908), 337-345.

[Leb98] Lebesgue, Henri Sur l’approximation des fonctions, Bulletin de la
Soc. Math. de France XXII (1898).

[Leb08] Lebesgue, Henri Sur la représentation approchée des fonctions, Ren-
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by professor K. Posse, St Petersburg, 1903.

[Pos04] Posse, Konstantin Aleksandrovich Pafnuti Lvovich Chebyshev.
A Short Biographical Outline [Pafnutiĭ Lьvoviq Qebyxev.
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sertacii S. N. Bernxteĭna ,,O nailuqxem pribliжenii nepre-
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on Modern Science, vol. 1, NAS Ukraine, Kiev, 1998, 11-24.

[TiKl] Tikhomandritski, Matvey Aleksandrovich 7 Letters to Felix
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Bienaymé, I.-J., 25
Blichfeldt, H.F., 119, 120, 122, 131,

135, 135
Bobylev, D.K., 78, 115, 195
Bogolyubov, A.N., 175, 177, 178
Bois-Reymond, P.du, 148, 150
Borel, É., 115, 119, 122, 126, 145,

144–147, 180
Borisov, E.V., 78
Brashman, N.D., 22, 23, 24
Budaev, N.S., 78, 98, 105
Bunyakovski, V.Ya., 23, 73, 80, 81, 98,

99
Buts-Bondar, O.N., 175
Butzer, P.L., v

Casorati, F., 111

Catalan, E., 23
Cauchy, A., 25, 73, 112, 113, 148, 152,

158
Cayley, A., 25
Chebyshev, L.P., 21
Chebyshev, P.L., 21, 21–75, 77–86,

90, 95–100, 102, 104, 111–117,
119, 121, 123, 125–129, 131–135,
137–139, 142–146, 149, 150, 157,
158, 165, 190–193, 195–197

Chebysheva, A.I., 21
Cheney, E.W., 141
Chernyshevski, N.G., 116

Darboux, G., 115
Delisle, J., 1
Delone, N.B., 126
Dirichlet, P., 68

Egorov, D.F., 120, 171, 177
Ermakov, V.P., 168
Ermolaeva, N.S., 74
Euler, L., 1, 1–190

Faber, G., 148
Fejér, L., 150, 149–151, 165, 166
Fourier, J., 56
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Méray, C., 148
Mairhuber, J.C., 142
Markov, A.A., 31, 36, 66, 78, 84, 98,

97–106, 113, 119–127, 133–135,
184, 191, 193, 197

Markov, A.G., 98, 105
Markov, V.A., 78, 84, 105, 105–110,

119, 120, 122, 123, 127, 172–174,
184, 189, 191

Markova, A.I., 105
Markova, N.P., 98
Meinardus, G., 48
Mendeleev, D.I., 22, 100, 123
Milenovskaya, M., 168
Minkowski, H., 169
Mittag-Leffler, G., 177
Mlodzeevski, B.K., 134, 169
Monge, G., 26

Nekrasov, A.I., 82
Newton, I., 148

Okatov, M.F., 78, 98
Osgood, W.F., 161, 176

Perevoshchikov, D.M., 22
Picard, H., 175
Plemelj, J., 112
Pogorelski, P.N., 22
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