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10.3.2 Lévy Portfolio Prepayment Model 158
10.3.3 Normal One-Factor Prepayment Model 158

10.4 Numerical Results 160

Bibliography 167

Index 173





Preface

This book introduces Lévy processes in the world of credit risk modelling. Atten-
tion is paid to all kind of credit derivatives: from single-name vanillas like Credit
Default Swaps (CDSs) to structured credit risk products like Constant Proportion
Portfolio Insurances (CPPIs) and Constant Proportion Debt Obligations (CPDOs).
It brings in high-tech financial engineering models for the detailed modelling of
credit risk instruments. Jumps and extreme events are crucial stylized features
and are essential in the modelling of the very volatile credit markets. The credit
crunch crisis in the financial markets reconfirmed the need for more refined models.
The readers will learn how the classical models (driven by Brownian motions, cf.
Black–Scholes settings) can be improved by considering the more flexible class
of Lévy processes. By doing this, extreme events and jumps are introduced in
the models, leading to a more realistic assessment of the risks present. Besides
the setting up of the theoretical framework, much attention will be paid to practi-
cal issues. Complex credit derivatives structures (CDOs, CPPIs, CPDOs, etc.) are
analysed and illustrated on market data.

Building financial models is very challenging and their application is even more
challenging. However, models are just models and are by no means perfect. Models
are not the world, they must be seen simply as decision-making tools. Blind belief
in any model is extremely dangerous and there is not one right model. A model
serves to transform intuitions about the future into a price for a security today.
However, that price is just a translation of model assumptions and model inputs.

Moreover, mathematical rigorousness is one thing; implementation is often very
time-consuming and asks for many compromises. Getting clean data is another
burden. Therefore, special caution has to be taken when applying models to pric-
ing derivatives and it would not harm the financial society to be very humble in
applying mathematics in this context of financial markets and derivatives.

All this does not mean that we do not need models at all: we do need models
and mathematics, they are just as essential as common sense and experience to
make a decision. However, all decision bare some risks. Getting a clue on this risk
is actually crucial in making the decision. Knowing where a model is wrong, and
how wrong it is, is an essential step in the application of the model itself.
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1
An Introduction to Credit Risk

1.1 CREDIT RISK

In general terms, credit risk refers to the risk that a specified reference entity does
not meet its credit obligations within a specified time horizon T . If this happens,
we say that a default event has occurred.

Credit risk is present in everyday life. For instance, consider a person who goes
to a bank and asks for a loan to buy a house; suppose the loan is granted by the
bank, which agrees with the person that the money will be paid back following
certain criteria and within a predetermined time period. In this situation the credit
institution is exposed to the risk that this person will not be able to repay (part
of) the loan, or will not meet the criteria established. The type of risk the bank
is facing is exactly credit risk: the reference entity is the person who asks for the
loan; default occurs on the day the creditor declares that he is not able to honour
his obligations.

This simple example shows the main characteristics of credit risk. We can see
that two sides are involved: on one hand the bank, which is exposed to the risk;
on the other the reference entity – sometimes called the obligor – who has to fulfil
a series of obligations. Further, there is a set of criteria that defines how these
obligations have to be met, i.e. a set of criteria that identifies the default of the
entity. Finally, the risk is spread over a determined time length [0, T ], where T

is often referred to as the maturity or the time horizon. Moreover, the example
shows that there are various elements that the bank does not know on the day it
grants the loan. First, the bank does not know the probability that the default will
actually occur. Banks try to overcome this problem by collecting information about
the person who is asking for the loan in order to get a flavour of the probability
that the person will not be able to repay the money. Hypothesizing that default
will occur, it is uncertain when this will happen. Also, the severity of the loss is
indefinite.

In finance, life is a bit more complicated, but credit risk can always be character-
ized in terms of these components: the obligor, the set of criteria defining default,
and the time interval over which the risk is spread. Often, instead of dealing with
persons and loans, one deals with companies and bonds. In this case default can
be defined in a variety of ways. Besides the complete financial bankruptcy of the
reference entity, other examples of default can be the failure to pay an obligation
(e.g. the coupon of a bond), a rating downgrade of the company, its restructur-
ing, or a merger with another corporation. It is sufficient to switch on the TV to
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understand that default events are quite rare but have a strong impact on financial
markets. Every day rating agencies such as Moody’s and Standard & Poor evaluate
the creditworthiness of hundreds of companies traded on the market. A change in
the rating of a company will affect the prices of all related financial instruments,
such as spreads of corporate bonds.

Credit risk thus affects the profits and losses of thousands of billions of euros
invested every day by banks in financial portfolios, grouping together baskets of
reference entities that might jointly default within the same time horizon. It is
clear that in this case there is an additional element to be taken into consideration,
which is the joint default probability distribution of portfolio components. Multiple
defaults are extremely rare events that can be driven, for instance, by natural
catastrophes, systemic defaults, political events, terrorist episodes, or caused by
the complex linked-structure of the capital market.

Following the Basel Accord (2004), banks have to set aside a certain amount
of capital to cover the risk inherent in their credit portfolios. Subject to certain
minimum conditions and disclosure requirements, the Basel II Accord allows credit
institutions to rely on their own internal estimates of risk components, which deter-
mine the capital requirements to cover credit risk. The risk components include
measures of the probability of default, the recovery rate and the exposure at default.
This has, of course, encouraged banks to invest in modelling credit risk with more
and more sophisticated approaches. Banks have also a second option to mitigate
their credit risk: they can hedge credit risk by buying credit derivatives. The Basel
II Accord also provides the inclusion of credit risk mitigation techniques to assess
the overall risk of a credit portfolio.

1.1.1 Historical and Risk-Neutral Probabilities

The main objective of the present book is to build advanced models to price
different kinds of financial instruments whose price is related to the probability
that a default event will occur or not between time 0 and time t (0 ≤ t ≤ T , T

being the maturity) for a reference entity or a bunch of reference entities.
In mathematical finance, there are two important probability measures: a histor-

ical and a risk-neutral (or pricing) measure. The historical probability of an event
is the probability that this event happens in reality (in the so-called real world).
The risk-neutral measure is an artificial measure: The risk-neutral probability of an
event is the probability that one uses to value (by so-called risk-neutral valuation
techniques) derivatives contracts depending on the event. Since we are dealing in
this book with the valuation of credit derivatives contracts, the measure of interest
to us will be the risk-neutral measure. More precisely, the risk-neutral valuation
principle states that the price of a derivative is given by the expected value under
the risk-neutral measure of the discounted payoff:

Price = E [Discounted payoff].

In our framework – the valuation of credit derivatives contracts – we are interested
in identifying the proper risk-neutral probability.
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Throughout the book, the risk-neutral probability that a default event will not
occur between time 0 and time t for a single-reference entity will be referred to as
survival probability:

PSurv(t) = Probability that default will not occur in [0, t]. (1.1)

Correspondingly, we will call default probability the risk-neutral probability that
the obligor does actually default between 0 and t :

PDef(t) = Probability that default will occur in [0, t]. (1.2)

Clearly for each 0 ≤ t ≤ T , we will have that PDef(t) = 1 − PSurv(t).
Although, as mentioned above, we will almost always work with risk-neutral

probabilities, one can also get a flavour of the historical default probabilities
observed in the market. Figure 1.1 shows the average 1-year default rates for
the period 1983–2000 by rating classes, following Moody’s classification. Each
bar represents the average over the sample period of the fraction of companies
defaulted in 1 year in each rating class.
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Figure 1.1 Historical average 1-year default rate for 1983–2000 following Moody’s
classification. Source: Moody’s, in Duffie and Singleton (2003)
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In the multivariate setting, the (risk-neutral) probability that more defaults
occur within the time horizon needs to be estimated. Consider, for simplicity, two
obligors, i and j . The joint (risk-neutral) survival and default probabilities are
defined as:

P
ij

Surv(t) = Probability that both obligors i, j will not default in [0, t]

P
ij

Def(t) = Probability that both obligors i, j will default in [0, t].

If the two obligors are independent, we have that

P
ij

Surv(t) = P i
Surv(t) · P

j

Surv(t)

P
ij

Def(t) = P i
Def(t) · P

j

Def(t).

However, market data provides evidence that the hypothesis of independence does
not hold. The dependence structure among obligors relates to the fact that they
live in the same global market, and often financial/commercial relationships exist
among companies.

1.1.2 Bond Prices and Default Probability

Bond traders have developed procedures for taking credit risk into account when
pricing corporate bonds. They collect market data on actively traded bonds to
calculate a generic zero-coupon yield curve for each credit rating category. These
zero-coupon yield curves are then used to value other corporate bonds. For example,
a newly issued A-rated bond will be priced using the zero-coupon yield curve
calculated from other A-rated bonds.

Under specific assumptions, if the yield curve of a risk-free zero-coupon bond
and the yield curve of a corporate bond with the same maturity are known, it is
possible to estimate the default probability of the corporation issuing the corporate
bond. Let us indicate with y∗(T ) and y(T ) respectively the yield on a corporate
zero-coupon bond with maturity T and the yield on a risk-free zero-coupon bond
with the same maturity. Considering a principal F = 100, the values at time t = 0
of these bonds will thus be, respectively:

100 exp(−y(T )T ) = 100B0(T )

100 exp(−y∗(T )T ) = 100B∗
0 (T ).

To estimate risk-neutral default probabilities from these bond prices, we assume
that the present value of the cost of default equals the excess of the price of the
risk-free bond over the price of the corporate bond:

100(B0(T ) − B∗
0 (T )) = 100(exp(−y(T )T ) − exp(−y∗(T )T )).
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This means that the higher yield on a corporate bond is entirely the compensation
for possible losses from default. Note that this is only an approximation, since
other factors, such as liquidity, also influence the spread.

If we assume that there is no recovery in the event of default, the calculation
of the default probability PDef(T ) is relatively easy. In fact there is a probability
PDef(T ) that the corporate bond will be worth zero at maturity and a probability of
(1 − PDef(T )) that it will be worth 100. This means that (by risk-neutral valuation)

100B∗
0 (T ) = B0(T )(PDef(T ) × 0 + (1 − PDef(T )) × 100)

= B0(T )100(1 − PDef(T )).

Hence, we can estimate the risk-neutral default probability as:

PDef(T ) = B0(T ) − B∗
0 (T )

B0(T )

= 1 − exp(−(y∗(T ) − y(T ))T ).

For example, suppose that the spread over the risk-free rate for a 5-year and a
10-year BBB-rated zero-coupon bond are 130 and 170 bps, respectively, and that
there is no recovery in the event of default, then:

PDef(5) = 1 − exp(−0.0130 × 5) = 0.0629;
PDef(10) = 1 − exp(−0.0170 × 10) = 0.1563.

It also follows that the (risk-neutral) probability of default between 5 years and 10
years is 0.0934(= 0.1563 − 0.0629).

This analysis assumes no recovery on bonds in the event of a default. In reality,
when a company goes bankrupt, entities that are owed money by the company file
claims against the assets of the company. The assets are sold by the liquidator and
the proceeds are used to meet the claims as far as possible. Some claims typically
have priorities over others and are met more fully. We define the recovery rate as
the proportion of the claimed amount received in the event of a default. Historical
data on the amounts recovered show that senior secured debtholders received an
average around 50% while junior subordinated debtholders received around 20%
per par value.

If we relax the hypothesis of zero recovery rate and we suppose a positive
expected recovery rate of 0 ≤ R ≤ 1, then, in the event of default the bondholder
receives a proportion R of the bond’s no-default value. Going back to the example
above we will have that:

• If there is no default, the bondholder receives 100. The bond’s no-default present
value is 100B0(T ) and the probability of no-default is PSurv(T ) = (1 − PDef(T )).

• If a default occurs, the bondholder receives 100R. The bond’s default present
value is thus 100RB0(T ) and the probability of default is PDef(T ).
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• The value of the bond is therefore:

100B∗
0 (T ) = B0(T )(PDef(T ) × 100R + (1 − PDef(T )) × 100).

This gives

PDef(T ) = B0(T ) − B∗
0 (T )

(1 − R)B0(T )

= 1 − exp(−(y∗(T ) − y(T ))T )

1 − R
.

For example, going back to the example above, if we suppose that the spread
over the risk-free rate for a 5-year and a 10-year BBB-rated zero-coupon bond are
130 and 170 bps, respectively, and there is a recovery rate of 50%, then:

PDef(5) = 1 − exp(−0.0130 × 5)

1 − 0.5
= 0.1258;

PDef(10) = 1 − exp(−0.0170 × 10)

1 − 0.5
= 0.3126.

It also follows that the probability of default between 5 years and 10 years is
0.1868(= 0.3126 − 0.1258).

1.2 CREDIT RISK MODELLING

Modern finance has put much effort into developing new models for credit risk.
There are a number of reasons related to this growth of interest in credit risk. On
the one hand, the volumes traded on the market of financial instruments related
to credit risk have increased exponentially in recent years (see also Section 1.3);
on the other hand, as already mentioned in Section 1.1, the implementation of the
Basel II Accord has encouraged financial institutions to develop in-house models
to assess their credit exposure. Credit risk models are usually classified into two
categories: structural models and intensity-based models.

Structural models – known also as firm-value models – link an event of default
to the value of the financial assets1 of the firm. In general, the dynamics of the asset
value V = {Vt , 0 ≤ t ≤ T } is given and an event of default is defined in terms of
boundary conditions on this process. For instance, let us introduce the following
simple structural model. We consider a single reference and hypothesize that default
happens if its asset value falls below a fixed level L within the time horizon, as
shown in Figure 1.2. For sake of illustration, it is assumed that the asset value
follows a geometric Brownian motion with drift µ = 0.05 and standard deviation

1 Throughout the book the terms ‘value of the financial assets’ and ‘asset value’ will be used
interchangeably.
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Figure 1.2 Example of structural model (T = 10 years) where the dynamics of the asset
value, Vt is a geometric Brownian motions (µ = 0.05, σ = 0.4). The default barrier level
is represented by the line L = 40. If the scenario represented by the solid line occurs, the
obligor will default; if Vt follows the dotted line, the obligor will survive

σ = 0.4 (for details on how to generate the path, see also Section 2.1 of Chapter 2).
It is furthermore assumed that the asset value at time t = 0 is V0 = 100 and the
level L, represented by the dash-dot line in Figure 1.2, equals 40. The plot shows
that, depending on the evolution of V , the reference asset may survive (dotted line),
or a default event can occur (solid line). Figure 1.2 also shows that if the asset
value follows the solid path, default will occur after around 7 years.

A large number of various firm-value approaches have been developed since the
1970s; Chapter 4 presents a general introduction of the most important structural
approaches, highlighting their advantages and shortcomings. Subsequently it intro-
duces structural models for credit risk where the asset value is assumed to follow
one of the Lévy processes described in Chapter 2.

Intensity-based models, known also as hazard rate or reduced-form models, focus
directly on modelling the default probability. The basic idea lies in the fact that
at any instant there is a probability that an obligor will default, which depends
on its overall health. Default is defined at the first jump of a counting process
N = {Nt, 0 ≤ t ≤ T } with intensity λ = {λt , 0 ≤ t ≤ T }, which thus determines
the price of credit risk. Figure 1.3 shows that the higher the default intensity,
the higher the probability of a default event. In fact, the intensity – which can be
deterministic or stochastic – models the default rate for the reference entity. Let us
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Figure 1.3 Deterministic intensity rate of default. The behaviour of the intensity over time
describes the health of the reference entity

assume that the reference entity has survived up to time t and let us indicate with
τ the default time. The intensity of default is defined as:

λt = lim
h→0

P(t < τ ≤ t + h|τ > t)

h
,

where P is the probability measure. This equation tells us that, roughly speaking,
for a small time interval �t > 0:

P(τ ≤ t + �t |τ > t) ≈ λt�t.

A classical example of counting process is the (homogeneous) Poisson process
with constant default intensity λ > 0 (see Section 2.3.1 of Chapter 2). For this
process, the probability that the counting process N = {Nt, 0 ≤ t ≤ T } equals an
integer n is given by the Poisson distribution:

P(Nt = n) = exp(−λt)
(λt)n

n!
.

A corresponding default model was developed by Jarrow and Turnbull (1995).
Under this model the probability of surviving from 0 to t is given by

PSurv(t) = P(Nt = 0) = exp(−λt).
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Due to the properties of the Poisson distribution, the expected time of the first jump
of N = {Nt, 0 ≤ t ≤ T } – i.e. the expected time of default – is given by2 1/λ. For
example, at a constant default intensity of λ = 0.1, the probability of default in 5
years is around 9.52%, and the expected time of default is 10 years.

Chapter 5 briefly reviews the intensity-based models available in the literature
and focuses on jump-driven default intensity models. The class of Ornstein–
Uhlenbeck (OU) processes driven by Lévy processes is assumed to describe the
dynamics of the default intensity over time.

We will see that, from a fundamental point of view, it is important to have
jumps in the intensity regime or in the firm-value price process because changes in
the creditworthiness (default intensity or firm-value) are often shock driven: sudden
events in reality cause important changes on the view on the company’s probability
of default. Standard examples of such dramatic changes in the regime are discovery
of fraud (e.g. Parmalat), a reviewing of company’s results, default of a competitor,
a terroristic attack, etc.

1.3 CREDIT DERIVATIVES

Credit derivatives are derivatives whose payoffs are affected by the default of a
specified reference entity (or to a basket of reference entities). As introduced in
Section 1.1, in many cases credit derivatives are used to hedge, transfer or manage
credit risk and can be thought of as an insurance against default. The idea is that
credit risk is transferred without reallocating the ownership of the underlying asset.
In general, two counterparties are involved: the protection buyer and the protection
seller, which agree on a contract related to the default of the reference entity(ies).
The market for credit derivatives was created in the early 1990s in London and New
York. Since then, diverse and complex products have been rising, thus stimulating
the development of the credit derivatives market. Figure 1.4 shows the growth of
the volumes of credit derivatives exchanged on the market from 1997, testifying to
the exponential popularity of these products. It also compares the credit derivative
market with the market for cash bonds.

Banks and investments undertakings have contributed in fostering the growth
of the credit derivatives market both for money-making purposes and to mitigate
the capital requirements imposed by the Basel II Accord. Indeed, banks use credit
derivatives to hedge or assume credit risk, to enhance portfolio diversification, and
to improve the management of their portfolios.

A big share of the derivatives market is taken up by Credit Default Swaps
(CDSs), which are designed to isolate the risk of default on credit obligations. A lot
of other types of credit instruments exist, among which the most important are credit
spread products, such as forwards and constant maturity swaps. When considering
multivariate instruments (i.e. instruments based on more than one reference entity),

2 For a Poisson distribution with constant intensity λ, the time between two consecutive jumps is
Gamma(1, λ) distributed (or equivalently Exponential(λ) distributed). The average time between two
consecutive jumps is thus 1/λ.
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Figure 1.4 Global credit derivatives and cash bonds outstandings, in trillions of US dollars.
Source: British Bankers Association, JP Morgan Research

Table 1.1 Shares of the market for different classes of credit derivatives in
2004 and 2006. Source: British Bankers Association, JP Morgan Research

Type 2004 2006

Single-Name CDSs 51.0% 32.9%
Full Index Names 9.0% 30.1%
Synthetic CDOs 16.0% 16.3%
Tranched Index Trades 2.0% 7.6%
Credit-Linked Notes 6.0% 3.1%
Others 16.0% 10.0%

the most famous are Collateralized Loan Obligations (CLOs), and Collateralized
Debt Obligations (CDOs). Recently also instruments based on indices of credit
derivatives have become quite popular. Table 1.1 presents the shares of the market
of the most important classes of credit derivatives for 2004 and 2006. An overview
of credit derivatives and credit-linked notes can be found for instance in Das (2000).

Over the last few years the profiles of market players have evolved and modified
substantially along with the credit derivatives market itself. Table 1.2 shows that
the credit derivatives are mostly used by banks for trading activities and to hedge
loan portfolios. Other important players are hedge funds.
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Table 1.2 Shares of the market market players. Source: British Bankers
Association, JP Morgan Research

Type Protection buyers Protection sellers

Bank’s Trading Activities 35% 39%
Full Index Banks-Loan Portfolio 9% 20%
Hedge Funds 32% 28%
Pension Funds 4% 2%
Corporates 1% 2%
Mono-line Insurers 8% 2%
Re-Insurers 4% 2%
Other Insurers 5% 2%
Mutual Funds 3% 2%
Other 1% 1%

1.4 MODELLING ASSUMPTIONS

1.4.1 Probability Space and Filtrations

We assume a fixed finite planning horizon T . Let us denote by � the set of all
possible outcomes in which we are interested. Next, we will set up a mathematical
system to describe the flow of information. F is a sigma-algebra (a family of
subsets of � closed under any countable collection of set operations) containing
all sets for which we want to make a statement; P gives the probability that an
event in such a set of F will happen.

Moreover, we equip our probability space (�,F, P) with a filtration. A filtration
is a non-decreasing family F = (Ft , 0 ≤ t ≤ T ) of sub-σ -fields of F : Fs ⊂ Ft ⊂
FT ⊂ F for 0 ≤ s < t ≤ T ; here Ft represents the information available at time
t , and the filtration F = (Ft , 0 ≤ t ≤ T ) represents the information flow evolving
with time.

In general, we assume that the filtered probability space (�,F, P, F) satisfies
the ‘usual conditions’:

(a) F is P-complete.
(b) F0 contains all P-null sets of �. This means intuitively that we know which

events are possible and which are not.
(c) F is right-continuous, i.e. Ft = ∩s > tFs ; a technical condition.

In this context, we assume that filtrations we work with are sufficiently rich that
everything we need to measure we can measure, especially functionals of the under-
lying Lévy processes (see also Bingham and Kiesel 1998).

A stochastic process X = {Xt , 0 ≤ t ≤ T } is a family of random variables
defined on a complete probability space (�,F, P). We say X is adapted to the
filtration F or just F-adapted, if Xt is Ft -measurable (we denote this by Xt ∈ Ft )
for each t : thus Xt is known at time t .
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We say that X is F-predictable if Xt ∈ Ft− =⋃s<t Fs (i.e. Xt is Ft−-
measurable) for each t : thus Xt is known strictly before time t .

Starting with a stochastic process X on the probability space (�,F, P), we call
F

X = {FX
t , 0 ≤ t ≤ T } the natural filtration of X, i.e. the ‘smallest’ filtration con-

taining all information that can be observed if we watch X evolving through time.

Learning During the Flow of Time

The ‘filtration’ concept is not very easy to understand. In order to clarify this a
little, we explain the idea of filtration in a very idealized situation. We will consider
a stochastic process X which starts at some value, zero say. It will remain there
until t = 1, at which time it can jump with positive probability to the value a or
to a different value b. The process will stay at that value until t = 2 at which time
it will jump again with positive probability to two different values: c and d, say,
if the process was at time t = 1 at state a, and f and g say if the process was
at time t = 1 at state b. From then on the process will stay in the same value.
The universum of the probability space consists of all possible paths the process
can follow, i.e. all possible outcomes of the experiment. We will denote the path
0 → a → c by ω1; similarly the paths 0 → a → d, 0 → b → f and 0 → b → g

are denoted by ω2, ω3 and ω4 respectively. So we have � = {ω1, ω2, ω3, ω4}. We
set here F = D(�), the set of all subsets of �.

In this situation, the natural filtration of X will be the following flow of infor-
mation:

Ft = {∅, �} 0 ≤ t < 1;
Ft = {∅, �, {ω1, ω2}, {ω3, ω4}} 1 ≤ t < 2;
Ft = D(�) = F 2 ≤ t ≤ T .

To each of the filtrations given above, we associate respectively the following
partitions (i.e. the finest possible one) of �:

P0 = {�} 0 ≤ t < 1;
P1 = {{ω1, ω2}, {ω3, ω4}} 1 ≤ t < 2;
P2 = {{ω1}, {ω2}, {ω3}, {ω4}} 2 ≤ t ≤ T .

At time t = 0 we only know that some event ω ∈ � will happen; at time t = 2
we will know which event ω∗ ∈ � has happened. So at times 0 ≤ t < 1 we only
know that there will be some event ω∗ ∈ �. At time points after t = 1 and strictly
before t = 2, i.e. 1 ≤ t < 2, we know the state to which the process has jumped at
time t = 1: a or b. So at that time we will know the particular set of P1 to which
ω∗ will belong: it will belong to {ω1, ω2} if we jumped at time t = 1 to a and to
{ω3, ω4} if we jumped to b. Finally, at time t = 2, we will know the particular set
of P2 to which ω∗ will belong, in other words we will know then the complete
path of the process.



Modelling Assumptions 15

During the flow of time we thus learn about the partitions. Having the information
Ft revealed is equivalent to knowing the particular set of the partition to which
the event ω∗ belongs that time. The partitions become finer in each step, and thus
information on ω∗ becomes more detailed.

1.4.2 The Risk-Free Asset

Throughout the book, we will make use of the so-called discounting factor to price
the various types of credit derivatives taken into consideration. This section aims
to introduce the notation adopted for this factor.

Definition 1.1 (Risk-Free Asset) The price process B = {Bt , 0 ≤ t ≤ T } is the
price of a risk-free asset if it follows the dynamics

dBt = rtBt dt (1.3)

where r = {rt , 0 ≤ t ≤ T } is called the short rate and can be either an adapted
process or a deterministic function of time.

From now on we will indicate with D(t, T ) the ratio:

D(t, T ) = E

[
Bt

BT

]
, (1.4)

where E is the expected value operator. D(t, T ) is strictly related with the price
of bonds: indeed it can be thought of as the price at time t of a default-free
zero-coupon bond with maturity T and face value 1.

In the case where r = {rt , 0 ≤ t ≤ T } is a stochastic process, the discounting
factor becomes, using Equation (1.3).

D(t, T ) = E

[
exp

(
−
∫ T

t

rs ds

)]
. (1.5)

If we suppose the short rate to be a deterministic function of time, Equation
(1.3) shows that there is no stochastic component in the dynamics of B = {Bt , 0 ≤
t ≤ T }, i.e. there is a complete knowledge of the risk-free asset dynamics by
simply observing the actual short rate rt . It results in this case that the discounting
factor is:

D(t, T ) = exp

(
−
∫ T

t

rs ds

)
. (1.6)

Finally, if we interpret the risk-free asset as a bank account with a short rate of
constant interest r , we have that:

D(t, T ) = exp (−r(T − t)) . (1.7)





2

An Introduction to Lévy Processes

2.1 BROWNIAN MOTION

The Normal distribution, N(µ, σ 2), is one of the most important distributions in
many research areas. It lives on the real line, has mean µ ∈ R and variance σ 2 > 0.
Its density function is given as

fN(x; µ, σ 2) = 1√
2πσ 2

exp

(
− (x − µ)2

2σ 2

)
.

In Figure 2.1, one sees the typical bell-shaped curve of the density of a Standard
Normal density N(0, 1) and of a Normal distribution N(0, 2). As can be seen
in Table 2.1, the Normal (µ, σ 2) distribution is symmetric around its mean, and
always has a kurtosis equal to 3.
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0
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σ2 = 1
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Figure 2.1 Probability density function of a Standard Normal distribution N(0, 1) and of
a Normal distribution N(0, 2)
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Table 2.1 Moments of the
Normal distribution N(µ, σ 2)

N(µ, σ 2)

Mean µ

Variance σ 2

Skewness 0
Kurtosis 3

We will denote by

�(x) =
∫ x

−∞
fN(u; 0, 1) du (2.1)

the distribution function for a random variable X that is Standard Normally dis-
tributed (i.e. X ∼ N(0, 1)).

Definition 2.1 (Brownian Motion) A stochastic process W = {Wt, t ≥ 0} is a
Brownian motion (or Wiener process) if the following conditions hold:

1. W0 = 0.
2. The process has stationary increments, i.e. the distribution of the increment

Wt+s − Wt over the interval [t, t + s] does not depend on t , but only on the
length s of the interval.

3. The process has independent increments, i.e. if l < s ≤ t < u, Wu − Wt and
Ws − Wl are independent random variables. In other words, increments over
non-overlapping time intervals are stochastically independent.

4. For 0 ≤ s < t the random variable Wt − Ws follows a Normal distribution
N(0, t − s).

The paths of a Brownian motion are continuous but very erratic. In fact it can
be demonstrated that they are of infinite variation on any compact time interval.1

Finally, the following scaling property holds: if W = {Wt, t ≥ 0} is a Brownian
motion then for any c �= 0, Ŵ = {Ŵt = cWt/c2 , t ≥ 0} is also a Brownian motion.

A Brownian motion can be easily simulated by discretizing time using a very
small step �t . The value of a Brownian motion at time points {n�t, n = 1, 2, . . .}
is obtained by sampling a series of Standard Normal N(0, 1) random numbers
{νn, n = 1, 2, . . .} and setting:

W0 = 0, Wn�t = W(n−1)�t +
√

�t νn.

Figure 2.2 shows a typical Brownian motion path.

1 For a definition see, for example, Sato (1999)
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Figure 2.2 A sample path of a Brownian motion

Geometric Brownian motion, which is constructed out of a Brownian motion,
is one of the most popular processes in finance, e.g. it is the basis of the
Black–Scholes model for stock price dynamics in continuous time. A stochastic
process S = {St , t ≥ 0} is a geometric Brownian motion if it satisfies the following
stochastic differential equation

dSt = St (µ dt + σ dWt), S0 > 0, (2.2)

where W = {Wt, t ≥ 0} is a standard Brownian motion, µ is the so-called drift
parameter, and σ > 0 is the volatility parameter. Equation (2.2) has the unique
solution (see, for instance, Björk 1998):

St = S0 exp

((
µ − σ 2

2

)
t + σWt

)
.

The related log-returns

log St − log S0 =
(

µ − σ 2

2

)
t + σWt

follow a Normal distribution, N(t (µ − σ 2/2), σ 2t). Thus S has a Lognormal dis-
tribution. Figure 2.3 shows the realization of the geometric Brownian motion based
on the sample path of the standard Brownian motion of Figure 2.2 with S0 = 100,
µ = 0.05 and σ 2 = 0.3.
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Figure 2.3 A sample path of a geometric Brownian motion with S0 = 100, µ = 0.05 and
σ 2 = 0.3. The corresponding Brownian motion is represented in Figure 2.2

2.2 LÉVY PROCESSES

Definition 2.2 (Characteristic Function) The characteristic function φ of a
distribution – or equivalently of a random variable X – is the Fourier–Stieltjes
transform of the distribution function F(x) = P(X ≤ x):

φX(u) = E
[
exp (iuX)

] =
∫ ∞

−∞
exp (iux) dF(x), (2.3)

where i is the imaginary number (i2 = −1).

In almost all cases we will work with a random variable X that has a continuous
distribution with density function, say fX(x). In this case Equation (2.3) becomes:

φX(u) = E[exp(iuX)] =
∫ +∞

−∞
exp(iux)fX(x) dx.

The most important property of the characteristic function is that for any random
variable X, it always exists, it is continuous, and it determines X univocally.
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Moreover, for independent variables X and Y :

φX+Y (u) = φX(u)φY (u). (2.4)

Example The characteristic function of the Normal distribution N(µ, σ 2) is
given by

φN(u) =
∫ +∞

−∞
exp(iux)

1√
2πσ 2

exp

(
− (x − µ)2

2σ 2

)
dx

= exp(iuµ) exp

(
−1

2
σ 2u2

)
. (2.5)

The following are some of the functions, related to the characteristic function,
that often appear in the literature:

• The cumulant function:

k(u) = log E[exp(−uX)] = log φ(iu).

• The moment-generating function:

ϑ(u) = E[exp(uX)] = φ(−iu).

• The cumulant characteristic function, often called the characteristic exponent:

ψ(u) = log E[exp(iuX)] = log φ(u),

or equivalently

φ(u) = exp(ψ(u)). (2.6)

Definition 2.3 (Infinitely Divisible Distribution) Suppose φ(u) is the character-
istic function of a random variable X. If, for every positive integer n, φ(u) is also
the nth power of a characteristic function, we say that the distribution is infinitely
divisible.

In terms of X this means that one could write for any n:

X = Y
(n)
1 + · · · + Y (n)

n ,

where Y
(n)
i , i = 1, . . . , n, are independent identically distributed (i.i.d.) random

variables, all following a law with characteristic function φ(z)1/n.
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Example The Normal distribution N(µ, σ 2) is infinitely divisible. In fact:

φN(u; µ, σ ) =
(

exp

(
iuµ

n

)
exp

(
− 1

2n
σ 2u2

))n

= (φn(u))n,

where φn(u) is the characteristic function of a Normal distribution N(µ/n, σ 2/n).
If Y

(n)
i , i = 1, . . . , n are i.i.d. normal random variables N(µ/n, σ 2/n)

X = Y
(n)
1 + · · · + Y (n)

n ∼ Normal(µ, σ 2).

Definition 2.4 (Lévy Process) A stochastic process X = {Xt , t ≥ 0} is a Lévy
process if the following conditions2 hold:

1. X0 = 0.
2. The process has stationary increments (see Definition 2.1 above).
3. The process has independent increments (see Definition 2.1 above).

The law at time t of a Lévy process is completely determined by the law of X1.
The only degree of freedom we have in specifying a Lévy process is to define its
distribution at a single time. If, for example, the distribution of X1 has as charac-
teristic function φ(u), then the distribution of an increment of X = {Xt, t ≥ 0}
over [s, s + t], s, t ≥ 0, i.e. Xt+s − Xs , has (φ(u))t as characteristic function. To
be precise, the following theorem describes the one-to-one relationship between
Lévy processes and infinitely divisible distributions.

Theorem 2.1 (Infinite Divisibility of Lévy Processes) Let X = {Xt, t ≥ 0} be a
Lévy process. Then X = {Xt, t ≥ 0} has an infinitely divisible distribution F for
every t . Conversely if F is an infinitely divisible distribution there exists a Lévy
process X = {Xt, t ≥ 0} such that the distribution of X1 is given by F .

Further, we can write

φXt (u) = E
[
exp (iuXt)

] = exp (tψ(u))

where ψ(u) = log(φ(u)) is the characteristic exponent as in Equation (2.6).

2 To be mathematically precise we have to also impose a technical condition, namely that Xt is a
stochastically continuous process:

∀ε > 0 lim
h→0

P (|Xt+h − Xt | ≥ ε) = 0.

Note that this condition does not imply that the path of Lévy processes are continuous. It only requires
that for a given time t , the probability of seeing a jump at t is zero, i.e. jumps occur at random times.
A technical discussion on stochastic continuity and cadlag paths can be found in Sato (1999).
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The characteristic exponent ψ(u) of a Lévy process satisfies the following
Lévy–Khintchine formula (Bertoin 1996):

ψ(u) = iγ u − ς2

2
u2 +

∫ +∞

−∞
(exp(iux) − 1 − iux1{|x|<1})ν(dx), (2.7)

where γ ∈ R, ς2 ≥ 0, 1A is the indicator function of A, and ν is a measure on
R\{0} such that∫ +∞

−∞
min{1, x2}ν(dx) =

∫ +∞

−∞
(1 ∧ x2)ν(dx) < ∞.

From the Lévy–Khintchine formula, one sees that, in general, a Lévy process
consists of three independent parts: a linear deterministic part, a Brownian part, and
a pure jump part. We say that the corresponding infinitely divisible distribution has
a Lévy triplet [γ, ς2, ν(dx)]. From Equation (2.7) we can deduce that Brownian
motion is a Lévy process. Recalling Equation (2.5), we see that the Brownian
motion triplet is [µ, σ 2, 0].

The measure ν is called the Lévy measure of X and it dictates how jumps occur:
jumps of sizes in the set A occur according to a Poisson process with parameter
ν(A) = ∫

A
ν(dx). In other words, ν(A) is the expected number of jumps per unit

time, whose size belongs to A.
If σ 2 = 0 and

∫ +1
−1 |x|ν(dx) < ∞, it follows from standard Lévy process theory

(Bertoin 1996, Sato 1999, Kyprianou 2006) that the process is of finite variation.
Moreover, there is a finite number of jumps in any finite interval and the process
is said to be of finite activity.

Because the Brownian motion is of infinite variation, a Lévy process with
a Brownian component is of infinite variation. A pure jump Lévy process, i.e.
with no Brownian component (σ 2 = 0), is of infinite variation if and only if∫ +1
−1 |x|ν(dx) = ∞. In that case, special attention has to be paid to the small jumps.

Basically the sum of all jumps smaller than some ε > 0 does not converge. However
the sum of the jumps compensated by their mean does converge. This peculiarity
leads to the necessity of the compensator term iux1{|x|<1} in (2.7).

2.3 EXAMPLES OF LÉVY PROCESSES

The examples presented in this section cover only the Lévy processes used in this
book. For other examples, see Appelbaum (2004), Schoutens (2003) or Kyprianou
(2006).

2.3.1 Poisson Process

The Poisson process is the most simple pure jump Lévy process we can think of.
It is based on the Poisson distribution, which depends on a single parameter λ and
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Table 2.2 Moments of the Poisson
distribution with intensity λ

Poisson(λ)

Mean λ

Variance λ

Skewness 1/
√

λ

Kurtosis 3 + λ−1

has the following characteristic function:

φPoisson(u; λ) = exp(λ(exp(iu) − 1)).

The Poisson distribution lives on the non-negative integers {0, 1, 2, . . .}; the prob-
ability mass at point j equals

exp(−λ)λj/j !.

The moments of the Poisson distribution are reported in Table 2.2.
Since the Poisson(λ) distribution is infinitely divisible, we can, following

Theorem 2.1, define a Poisson process as follows:

Definition 2.5 (Poisson Process) A stochastic process N = {Nt, t ≥ 0} with inten-
sity parameter λ > 0 is a Poisson process if it fulfils the following conditions:

1. N0 = 0.
2. The process has independent increments.
3. The process has stationary increments.
4. For 0s < t the random variable Nt − Ns has a Poisson distribution with par-

ameter λ(t − s):

P (Nt − Ns = n) = λn (t − s)n

n!
exp(−λ (t − s)).

The Poisson process is an increasing pure jump process, with jump sizes always
equal to 1. The Lévy triplet is given by [0, 0, λδ(1)], where δ(1) denotes the Dirac
measure at point 1, i.e. a measure with only mass 1 in the point 1. The time in
between two consecutive jumps follows an exponential distribution with mean λ−1,
i.e. a Gamma(1, λ) law (see Section 2.3.3).

This latter property can be used to simulate a Poisson process as follows:

1. Generate an uniform random number un.
2. Generate an Exp(λ) random number en by setting en = −log(un)/λ.
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Figure 2.4 A sample path of a Poisson process with parameter λ = 0.5

3. Set s0 = 0, sn = sn−1 + en, n = 1, 2, . . . .
4. A sample path of a Poisson with intensity λ, in the time points {n�t, n =

0, 1, . . .} is given by:

N0 = 0, Nn�t = sup (k : sk ≤ n�t) .

Figure 2.4 shows a typical Poisson path, with intensity parameter λ = 0.5.

2.3.2 Compound Poisson Process

Definition 2.6 (Compound Poisson Process) A compound Poisson process with
intensity λ and jumps size distribution L is a stochastic process X = {Xt, t ≥ 0}
defined as

Xt =
Nt∑
k=1

Zk, t ≥ 0,

where jumps size Zk are i.i.d. with law L and N = {Nt, t ≥ 0} is a Poisson process
with intensity parameter λ, independent of (Zk, k = 1, 2, . . . ).



26 An Introduction to Lévy Processes

The sample paths of X = {Xt, t ≥ 0} are piecewise constant and the value of
the process at time t , Xt , is the sum of Nt random numbers with law L. The jump
times have the same law as those of the Poisson process N = {Nt, t ≥ 0}. The
ordinary Poisson process corresponds to the case where Zk = 1, k = 1, 2, . . . , i.e.
where the law L is degenerate in the point 1.

Let us define (for a Borel set A) the measure ν as follows:

ν(A) = λP(Zi ∈ A).

Note that ν(R) = λ < ∞. We impose that ν({0}) = 0. Then it can be shown that
the characteristic function of X = {Xt, t ≥ 0} is given by

E[exp(iuXt)] = exp

(
t

∫ +∞

−∞
(exp(iux) − 1)ν(dx)

)
= exp (tλ(φZ(u) − 1)) ,

where φZ(u) is the characteristic function of the law L. From this we can easily
obtain the Lévy triplet: [

∫ +1
−1 xν(dx), 0, ν(dx)]. Figure 2.5 shows a compound Pois-

son process with intensity λ = 0.5, jump sizes distributed as a Standard Normal,
and corresponding to the intensity process N = {Nt, t ≥ 0} presented in Figure 2.4.
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Figure 2.5 A sample path of a compound Poisson process with parameter λ = 0.5 and
jumps sizes distributed as a Standard Normal
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2.3.3 The Gamma Process

The Gamma distribution is characterized by two positive parameters, a > 0 and
b > 0. The density function of a Gamma(a, b) distribution is given by

fGamma(x; a, b) = ba

�(a)
xa−1 exp(−xb), x > 0. (2.8)

The moments of the Gamma(a, b) distribution are reported in Table 2.3. Figure 2.6
shows the dependence of the Gamma(a, b) distribution on the ‘shape’ parameter
b. Moreover, the following scaling property holds: if X is a Gamma(a, b) random
variable, then for c > 0, cX is a Gamma(a, b/c) random variable.

Table 2.3 Moments of the
Gamma(a, b) distribution

Gamma(a, b)

Mean a/b

Variance a/b2

Skewness 2a−1/2

Kurtosis 3(1 + 2a−1)
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Figure 2.6 Gamma distributions for various sets of parameters (a, b)
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The density function clearly has a semi-heavy (right) tail.3 The characteristic
function is given by

φGamma(u; a, b) = (1 − iu/b)−a.

This characteristic function is infinitely divisible. On the virtue of Theorem 2.1
one can thus define a Gamma process as follows:

Definition 2.7 (Gamma Process) A stochastic process XGamma = {XGamma
t , t ≥ 0}

with parameters a and b is a Gamma process if it fulfils the following conditions:

1. XGamma
0 = 0.

2. The process has independent increments.
3. The process has stationary increments.
4. For 0s < t the random variable XGamma

t − XGamma
s has a Gamma(a(t − s), b)

distribution.

The Gamma process is a non-decreasing Lévy process and one can show, after
some tedious calculations, that its Lévy triplet is given by

[a(1 − exp(−b))/b, 0, a exp(−bx)x−11(x > 0) dx].

A Gamma process with parameters a and b can be simulated in the time points
{n�t, n = 0, 1, . . .} as:

XGamma
0 = 0, XGamma

n�t = XGamma
(n−1)�t + gn,

where {gn, n ≥ 1} is a sequence of Gamma(a�t, b) random variables. Gamma
random variable generators are available in the most common statistical software
packages, or one can, for instance, refer to Devroye (1986). Figure 2.7 shows a
path for a Gamma process with parameters a = 0.5 and b = 2.

Later on we will sometimes make use of stochastic processes built out of a
Gamma-process XGamma = {XGamma

t , t ≥ 0} with parameters a > 0 and b > 0. A
Shifted Gamma (SG) process, for example, is obtained by subtracting the Gamma
process from a deterministic trend:

XSG
t = µt − XGamma

t , t ≥ 0.

3 We say that a distribution or its density function f (x) has semi-heavy tails, if the tails of the density
function behave as

f (x) ∼ C−|x|ρ− exp(−η−|x|) as x → −∞
f (x) ∼ C+|x|ρ+ exp(−η+|x|) as x → +∞,

for some ρ−, ρ+ ∈ R and C−, C+, η−, η+ ≥ 0. The Normal distribution does not belong to this class,
since log(f (x)) is quadratic in x. The Normal distribution is therefore said to have light-tail behaviour.
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Figure 2.7 Simulated Gamma process with parameters a = 0.5 and b = 2

2.3.4 Inverse Gaussian Process

Let T (a,b) be the first time standard Brownian motion with drift b > 0, i.e. {Ws +
bs, s ≥ 0} reaches the positive level a > 0. This random time follows the so-called
Inverse Gaussian law, IG(a, b), and has as characteristic function

φIG(u; a, b) = exp
(
−a(

√
−2iu + b2 − b)

)
. (2.∗∗)

The density function of the IG(a, b) law is explicitly known:

fIG(x; a, b) = a√
2π

exp(ab)x−3/2 exp(−(a2x−1 + b2x)/2), x > 0. (2.9)

Table 2.4 describes the characteristics of the IG distribution. Moreover, the IG
distribution satisfies the following scaling property: if X is IG(a, b), for any positive
c, cX is IG(

√
ca, b/

√
c).

The IG distribution is infinitely divisible and we can thus define the IG pro-
cess X(IG) = {X(IG)

t , t ≥ 0}, with parameters a, b > 0 as the process which starts at
zero, has independent and stationary increments, and is such that its characteristic
function is given by:

E[exp(iuX
(IG)
t )] = φIG(u; at, b) = exp

(
−at (

√
−2iu + b2 − b)

)
.
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Table 2.4 Moments of the
IG(a, b) distribution

IG(a, b)

Mean a/b

Variance a/b3

Skewness 3(ab)−1/2

Kurtosis 3(1 + 5(ab)−1)

The Lévy measure of the IG(a, b) is given by:

νIG(dx) = (2π)−1/2ax−3/2 exp(−b2x/2)1(x > 0) dx

and the first component of the Lévy triplet equals

γ = a

b
(2�(b) − 1),

where � is the Standard Normal distribution function as in (2.1). Note that the IG
process is a non-decreasing Lévy process.

To simulate an IG process with parameters a and b in the time points {n�t, n =
0, 1, . . .}, we can use the following typical scheme:

XIG
0 = 0, XIG

n�t = XIG
(n−1)�t + in

where {in, n ≥ 1} is a sequence of IG(a�t, b) random variables. To simulate an
IG(a, b) random variable we follow the algorithm proposed by Michael et al.
(1976):

1. Generate a normal random variable ν,
2. Set y = ν2,
3. Set x = a/b + y/(2b2) −

√
4aby + y2/(2b2),

4. Generate a uniform random variable u,
5. If u ≤ a/(a + xb), then return the number x as the IG(a, b) random number;

otherwise return a2/(b2x) as the IG(a, b) random number.

Figure 2.8 shows a path for an Inverse Gaussian process with parameters a = 0.2
and b = 1.

As in the Gamma case, here we will sometimes work with processes built out
of the IG process XIG = {XIG

t , t ≥ 0}. A Shifted IG (SIG) process is for example
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Figure 2.8 Simulated Gamma process with parameters a = 0.2 and b = 0.1

obtained by subtracting XIG from a deterministic trend:

XSIG
t = µt − XIG

t , t ≥ 0.

2.3.5 The CMY Process

The characteristic function of the CMY distribution CMY(C, M, Y ) with par-
ameters C, M > 0 and Y < 1 is given by:

φCMY(u; C, M, Y) = exp(C�(−Y)((M − iu)Y − MY )).

Note that the CMY distribution is sometimes also referred to (with another par-
ameter convention) as a Tempered Stable distribution.

The Lévy measure of the CMY process is given by:

νCMY(x) = C exp(−Mx)x−1−Y dx, x > 0. (2.10)
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Table 2.5 Mean, variance, skewness and
kurtosis of the CMY(C,M, Y ) distribution

CMY(C,M, Y )

Mean CMY−1�(1 − Y)

Variance CMY−2�(2 − Y)

Skewness
CMY−3�(3 − Y)

(CMY−2�(2 − Y))3/2

Kurtosis 3 + CMY−4�(4 − Y)

(CMY−2�(2 − Y))2

Observe from the Gamma and IG Lévy densities that the corresponding Lévy pro-
cesses are special cases of the CMY process; take Y = 0 and Y = 1/2 respectively.

Clearly the characteristic function (2.∗∗) is infinitely divisible. The CMY process
C = {Ct , t ≥ 0} with parameters C, M > 0 and Y < 1 is defined as the stochas-
tic process which starts at zero and has stationary, independent CMY-distributed
increments. More precisely, the time enters in the first parameter: Ct follows a
CMY(Ct, M, Y ) distribution.

The properties of the CMY(C, M, Y ) distribution given in Table 2.5 can easily
be derived from the characteristic function.

A process related to the CMY process is the Shifted CMY. Let us start with a
CMY process C = {Ct, t ≥ 0} with parameters C, M > 0 and Y < 1. The Shifted
CMY (SCMY) is then defined as

Xt = µt − Ct, t ≥ 0.

We hence have a deterministic up-trend and negative jumps from a CMY process.

2.3.6 The Variance Gamma Process

The Variance Gamma (VG) distribution is characterized by a triplet of positive
parameters (C, G, M). It is defined on (−∞, +∞) and its density function is
given by

fVG(z; C, G, M) = (GM)C√
π �(C)

exp

(
(G − M)z

2

)

×
( |z|

G + M

)C−1/2

KC−1/2
(
(G + M) |z|/2

)
,
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where Kν(z) denotes the modified Bessel function of the third kind with index ν

and �(z) denotes the gamma function.
A VG random variable can be constructed as the difference of two gamma

random variables. Suppose that X is a Gamma(a = C, b = M) random variable and
that Y is a Gamma(a = C, b = G) random variable and that they are independent
of each other. Then

Z = X − Y ∼ VG(C, G, M).

To derive the characteristic function of the VG(C, G, M) distribution, we start with
noting that

φX(u) = (1 − iu/M)−C and φY (u) = (1 − iu/G)−C.

By using the property of the characteristic function φ−X(u) = φX(−u), we have

φ−Y (u) = (1 + iu/G)−C.

Summing the two independent random variables X and −Y and using the convo-
lution property (2.4) gives

φZ(u; C, G, M) = φX−Y (u) = (1 − iu/M)−C(1 + iu/G)−C

=
(

GM

GM + (M − G)iu + u2

)C

. (2.11)

Another way of introducing the VG distribution is by mixing a Normal distri-
bution with a Gamma random variate:

1. Take a random variate X ∼ Gamma(a = 1/ν, b = 1/ν).
2. Sample a random variate Z ∼ Normal(θX, σ 2X). Then Z follows a VG distri-

bution.

The distribution of Z is denoted in this case by VG(σ, ν, θ). The parameters ν and
σ are positive, while θ ∈ (−∞, ∞).

One can show, using basic probabilistic techniques, that under this parameter
setting the characteristic function of the VG(σ, ν, θ) law is given by

φVG(u; σ, ν, θ) = E[exp(iuZ)] = (1 − iuθν + σ 2νu2/2)−1/ν. (2.12)

The relation between the two parameterizations (C, G, M) and (σ, ν, θ) is
given by:

C = 1/ν > 0
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Table 2.6 Moments of the VG distribution under the two parameterizations

VG(C,G, M) VG(σ, ν, θ)

Mean C(G − M)/(MG) θ

Variance C(G2 + M2)/(MG)2 σ 2 + νθ2

Skewness 2C−1/2(G3 − M3)/(G2 + M2)3/2 θν(3σ 2 + 2νθ2)/(σ 2 + νθ2)3/2

Kurtosis 3(1 + 2C−1(G4 + M4)/(M2 + G2)2) 3(1 + 2ν − νσ 4(σ 2 + νθ2)−2)

G =
(√

θ2ν2

4
+ σ 2ν

2
− θν

2

)−1

> 0

M =
(√

θ2ν2

4
+ σ 2ν

2
+ θν

2

)−1

> 0.

Vice versa we have:

ν = 1/C

σ 2 = 2C/(MG)

θ = C(G − M)/(MG).

Table 2.6 describes the moments of the VG distribution in terms of the two
parameterizations. As shown in Figure 2.9, the VG distribution is very flexible. The
top plot of Figure 2.9 shows the sensitivity of the VG distribution to the θ parameter.
When θ = 0 the distribution is symmetric. Negative values of θ result in negative
skewness; positive θ ’s give positive skewness. The parameter ν (bottom plot of
Figure 2.9) primarily controls the kurtosis. In terms of the (C, G, M) parameters
G = M give the symmetric case, G < M results in negative skewness and G >M

gives rise to positive skewness. The parameter C controls the kurtosis.
The class of VG distributions was introduced by Madan and Seneta (1987) in

the late 1980s as a model for stock returns. There (and in Madan and Seneta 1990
and Madan and Milne 1991) the symmetric case (θ = 0) was considered. In Madan
et al. (1998), the general case with skewness is treated. For some background on
the early years of the VG process, see Seneta (2007).

The VG distribution is infinitely divisible and thus one can define the VG process.

Definition 2.8 (VG Process) A stochastic process XVG = {XVG
t , t ≥ 0} is a VG

process if it fulfils the following properties:

1. XVG
0 = 0.

2. The process has independent increments.
3. The process has stationary increments.
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4. The increment XVG
s+t − XVG

s over the time interval [s, t + s] follows a
VG(σ

√
t, ν/t, tθ) law given by Equation (2.12).

Under the (C, G, M) parameterization, the third condition can be rephrased as the
increment XVG

s+t − XVG
s over the time interval [s, s + t] follows a VG(Ct, G, M)

law given by Equation (2.11).
In line with the property of the VG(C, G, M) distribution, a VG process can be

expressed as the difference of two independent Gamma processes (Madan et al.
1998) as follows:

XVG
t = G

(1)
t − G

(2)
t ,

where G(1) = {G(1)
t , t ≥ 0} is a Gamma process with parameters a = C and b = M

and G(2) = {G(2)
t , t ≥ 0} is a Gamma process with parameters a = C and b = G.

This characterization allows the Lévy measure to be determined:

νVG(dx) =
{

C exp(Gx)|x|−1 dx x < 0

C exp(−Mx)x−1 dx x > 0
. (2.13)

The Lévy measure has infinite mass, and hence a VG process has infinitely
many jumps in any finite time interval. However, since

∫ +∞
−∞ |x|νVG(dx) < ∞,

a VG-process has paths of finite variation. A VG process has no Brownian
component and its Lévy triplet is given by [γ, 0, νVG(dx)], where

γ = −C(G(exp(−M) − 1) − M(exp(−G) − 1))

MG
.

Another option is to define a VG(σ, ν, θ) process as a Gamma time-changed
Brownian motion with drift:

XVG
t = θXGamma

t + σWXGamma
t

where XGamma = {XGamma
t , t ≥ 0} is a Gamma(1/ν, 1/ν) process and W = {Wt,

t ≥ 0} is a standard Brownian motion.
Applications of stochastic time change to asset pricing go back to Mandelbrot

and Taylor (1967) (see also Clark 1973). Time change corresponds to introducing
a new business time in which the general market operates. This new business
time can also be interpreted as a model for the arrival of information. Taking
into account that the market will not forget information, the amount of information
cannot decrease. Moreover, it seems reasonable that the amount of new information
released should not be affected by the amount already released, in other words, the
information process should have independent increments. Finally, one can also
require that the increment only depends on the length of that period and hence is
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Figure 2.10 A sample path of a VG process

stationary. This leads to modelling the information process by a non-decreasing
process with stationary and independent increments.

Note that in this perspective one can read the variance of Table 2.6 as the sum
of an idiosyncratic component (σ 2), coming from the Brownian motion, and an
exogenous component (νθ2) arising from the time change. When using the VG
process for financial application, e.g. for modelling the behaviour of an asset, this
decomposition allows for very intuitive interpretations. Note also that skewness and
kurtosis are affected by the asset’s own specific settings (θ and σ ) as well as by
the global parameter ν. Figure 2.10 shows a path of a VG process with parameters
σ = 0.5, ν = 1.5 and θ = 0.2.

2.4 ORNSTEIN–UHLENBECK PROCESSES

Ornstein–Uhlenbeck (OU) processes (driven by Lévy processes) were introduced
by Barndorff-Nielsen and Shephard (2001a, 2001b, 2003) to describe volatility
in finance. Further references on the OU processes are Wolfe (1982), Sato and
Yamazato (1982), Sato et al. (1994).

An OU process y = {yt , t ≥ 0} is described by the following stochastic differ-
ential equation:

dyt = −ϑyt dt + dzϑt , y0 > 0, (2.14)
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where ϑ is the arbitrary positive rate parameter and zt is a non-decreasing Lévy
process (often called the Background Driving Lévy Process (BDLP)).4 As z is
an increasing process and y0 > 0, it is clear that the process y is strictly positive.
Moreover, it is bounded from below by the deterministic function y0 exp(−ϑt).

The process y = {yt , t ≥ 0} is strictly stationary on the positive half-line, i.e.
there exists a law D, called the stationary law or the marginal law, such that yt

will follow the law D for every t , if the initial y0 is chosen according to D. The
process y moves up entirely by jumps and then tails off exponentially. The fact
that we have the parameter ϑ in zϑt has to do with the separation of the stationary
law from this decay parameter. In Barndorff-Nielsen and Shephard (2001a) some
stochastic properties of y are studied. Barndorff-Nielsen and Shephard established
the notation that if y is an OU process with marginal law D, then we say that y is
a D-OU process.

In essence, given a one-dimensional distribution D (not necessarily restricted to
the positive half-line) there exists a (stationary) OU process whose marginal law
is D (i.e. a D-OU process) if and only if D is self-decomposable.5 We have by
standard results (Barndorff-Nielsen and Shephard 2001a) that

yt = exp(−ϑt)y0 +
∫ t

0
exp(−ϑ(t − s)) dzϑs

= exp(−ϑt)y0 + exp(−ϑt)

∫ ϑt

0
exp(s) dzs.

In the case of a D-OU process, let us denote by kD(u) the cumulant function
of the self-decomposable law D and by kz(u) the cumulant function of the BDLP
at time t = 1, i.e. kz(u) = log E[exp(−uz1)], then both are related through the
formula (see, for example, Barndorff-Nielsen 2001):

kz(u) = u
dkD(u)

du
.

An important related process will be the integral of y. Barndorff-Nielsen and
Shephard called this the integrated OU process (intOU), and we will denote this
process by Y = {Yt , t ≥ 0}:

Yt =
∫ t

0
ys ds. (2.15)

4 Also OU processes based on a general Lévy process, not necessarily a non-decreasing Lévy process,
can be defined. However, for our analysis we will only need the special case considered above.
5 Let φ be the characteristic function of a random variable X. Then X is self-decomposable if

φ(u) = φ(cu)φc(u),

for all u ∈ R and all c ∈ [0, 1] and for some family of characteristic functions {φc : c ∈ (0, 1)}. For
more details see Sato (1999).
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A major feature of the intOU process Y is

Yt = ϑ−1 (zϑt − yt + y0)

= ϑ−1(1 − exp(−ϑt))y0 + ϑ−1
∫ t

0
(1 − exp(−ϑ(t − s))) dzϑs . (2.16)

One can show (see Barndorff-Nielsen and Shephard 2001a) that, given y0,

log E[exp(iuYt )|y0] = ϑ

∫ t

0
k(uϑ−1(1 − exp(−ϑ(t − s)))) ds

+ iuy0ϑ
−1(1 − exp(−ϑt)),

where k(u) = kz(u) = log E[exp(−uz1)] is the cumulant function of z1.

2.4.1 The Gamma-OU Process

The Gamma(a, b)-OU process has as Background Driving Lévy Process (BDLP),
a compound Poisson process (see Section 2.3.2):

zt =
Nt∑

n=1

xn

where N = {Nt, t ≥ 0} is a Poisson process with intensity aϑ (i.e. E[Nt ] = at) and
{xn, n = 1, 2, . . .} is a sequence of independent identically distributed Exp(b) vari-
ables, i.e. exponentially distributed with mean 1/b. It turns out that the stationary
law is given by a Gamma(a, b) distribution of Equation (2.8), which immediately
explains the name. The Gamma-OU process has a finite number of jumps in every
compact time interval.

If yt is a Gamma-OU process, the characteristic function of the intOU process
Yt = ∫ t

0 ys ds is given by:

φGamma-OU(u, t; ϑ, a, b, y0) = E[exp(iuYt )|y0]

= exp

(
iuy0

ϑ
(1 − e−ϑt ) + ϑa

iu − ϑb

×
(
b log

(
b

b − iuϑ−1(1 − e−ϑt )

)
− iut

))
.

(2.17)

A Gamma(a, b)-OU process {yt , t ≥ 0} can be simulated at time points {t =
n�t, n = 0, 1, 2, . . .} throughout its BDLP as follows:

1. Simulate, at the same time points {t = n�t, n = 0, 1, 2, . . .} a Poisson process
{Nt, t ≥ 0} with intensity parameter aϑ ,

2. Generate {xn, n = 0, 1, . . .} (independent) Exp(b) random numbers;
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Figure 2.11 Gamma-OU simulated sample path

3. Generate {un, n = 0, 1, . . .} (independent) standard uniform random numbers.
4. Set:

yn�t = exp(−ϑ�t)y(n−1)�t +
Nn�t∑

n=N(n−1)�t+1

xn exp(−unϑ�t). (2.18)

Note that the exponential term and the uniform random numbers un in the sum
allows the jumps to happen somewhere in between two time steps. Figure 2.11
shows a path of a Gamma-OU process with parameters ϑ = 4, a = 4, b = 18 and
y0 = 0.08.

2.4.2 The Inverse Gaussian-OU Process

The IG-OU process is based on the IG(a, b) distribution given in Equation (2.9).
This distribution belongs to the class of the self-decomposable distributions and
hence an IG-OU process exists. In the case of the IG(a, b)-OU process the BDLP
is a sum of two independent Lévy processes z = {zt = z

(1)
t + z

(2)
t , t ≥ 0}. z(1) is

an IG-Lévy process with parameters a/2 and b, while z(2) is of the form:

z
(2)
t = b−1

Nt∑
n=1

v2
n,

where N = {Nt, t ≥ 0} is a Poisson process with intensity parameter ab/2, i.e.
E[Nt ] = abt/2. {vn, n = 1, 2, . . .} is a sequence of iid random variables: each vn
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follows a Normal(0, 1) law independent from the Poisson process N . Since the
BDLP (via z(1)) jumps infinitely often in any finite (time) interval, the IG-OU
process also jumps infinitely often in every interval. The cumulant of the BDLP
(at time 1) is given by

k(u) = −uab−1(1 + 2ub−2)−1/2.

In the IG-OU case the characteristic function of the intOU process Yt = ∫ t

0 ys ds

can also be given explicitly. The following expression was independently derived
in Nicolato and Venardos (2003) and Tompkins and Hubalek (2000):

φIG-OU(u, t; ϑ, a, b, y0) = E[exp(iuYt )|y0]

= exp

(
iuy0

ϑ
(1 − exp(−ϑt)) + 2aiu

bϑ
A(u, t)

)
, (2.19)

where

A(u, t) = 1 −√1 + κ(1 − exp(−ϑt))

κ
+ 1√

1 + κ

×
[

arctanh

(√
1 + κ(1 − exp(−ϑt))√

1 + κ

)
− arctanh

(
1√

1 + κ

)]
,

(2.20)

κ = −2b−2iu/ϑ.
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Figure 2.12 Inverse Gaussian-OU simulated sample path
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The IG-OU process can be simulated by first simulating its BDLP and then
applying the Euler’s scheme to Equation (2.14). Fast simulation of the BDLP is
achieved by recalling that the BDLP is the sum of two independent Lévy processes.
Figure 2.12 shows a path of an IG-OU process with parameters ϑ = 2, a = 1.5,
b = 12 and y0 = 0.08.
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3

Single-Name Credit Derivatives

3.1 CREDIT DEFAULT SWAPS

Credit Default Swaps (CDSs) are the simplest and most popular credit derivatives.
A CDS is a bilateral agreement where the protection buyer transfers the credit risk
of a reference entity to the protection seller for a determined amount of time T . The
buyer of this protection makes predetermined payments to the seller. The payments
continue until the maturity date T of the contract, or until default occurs, whichever
is earlier. In the case of default of the reference entity, the contract provides that
the protection buyer pays to the protection seller a determined amount. Figure 3.1
presents schematically the building blocks of a CDS contract.

The CDS spread is the yearly rate paid by the protection buyer to enter a CDS
contract against the default of the reference entity, reflecting the riskiness of the
underlying credit.

Besides being used as insurance-type products, CDSs are also traded on the mar-
ket for speculative purposes. Indeed, as demonstrated by Table 1.1 in Section 1.3,
the market for CDSs is well established and trading is also increasing in related
products like forwards and options on these CDSs.

To understand the essence of a CDS, let us consider the simple case where a
person owns a defaultable bond of a company with face value N = 10,000 euros
and maturity T = 3 years. Suppose this person wants to cover himself against
default of this bond, i.e. the defaultable bond is our reference entity. To cover

CR trasfer

CR trasfer

Protection
Seller

Protection
Buyer

Spread

Spread Protection
Seller

Protection
Buyer

NO DEFAULT

DEFAULT

0

0

T

t

CDS with
maturiy T

Default
Payment

Figure 3.1 Building block of a CDS
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himself, this person can enter a CDS contract of the same maturity as the defaultable
bond. Thus, he becomes the protection buyer. Suppose the CDS contract states that
the protection buyer needs to pay a yearly rate of 400 bps to be protected against
the default of this bond. Suppose, further, that payments are made quarterly. Hence
he will pay quarterly an amount of 400/4 = 100 bps on 10,000 euros, which is 100
euros, i.e. 400 euros is the yearly cost of the risk the protection seller is taking.
Let us have a look at two different scenarios that can happen:

• The bond does not default before maturity. In this case the protection buyer
has paid each year 400 euros to the protection seller. Note that at maturity he
receives the face value of N = 10,000 euros via his bond position.

• The bond defaults at the beginning of the 8th quarter. Thus, the protection buyer
has already paid for seven quarters at 100 euros per quarter. Due to the default,
the protection seller has to settle the protection buyer with the difference between
N and the recovery value after default. Suppose the recovery rate is R = 40%
for our protection buyer (i.e. the recovery value is 4,000 euros). The protection
seller will pay an amount equal to N(1 − R) = 6,000 euros. After default no
further fee is paid by the protection buyer to the protection seller. The cash flows
for this second scenario are presented in Figure 3.2.
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Figure 3.2 Protection buyer cash flow for a CDS with maturity T = 3 years, in case a
default occurs at time τ = 2 years. The reference entity is assumed to be a defaultable bond
with face value N = 10,000 euros at maturity and a recovery value of 4,000 euros (i.e. the
recovery rate is R = 40%). We have quarterly payments. The CDS spread is 400 bps per
annum
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Figure 3.3 CDS pricing in discrete times

3.1.1 Credit Default Swaps Pricing

In order to understand how to price a CDS with maturity T , let us denote by c the
spread of the contract per annum. Let the notional amount be N . Payments occur
at discrete times ti , i = 1, 2, . . . , n with tn = T , as shown in Figure 3.3. We thus
consider a discrete-time setting, e.g. think of quarterly payments. For convenience,
we set t0 = 0.

We assume, for the sake of simplicity, that fee and loss payments are made at
the end of each period; the first time at t1 and the last time at maturity (in case of
no default).

If D(0, ti) is the discounting factor for time ti and �ti the time difference
between two consecutive payments (�ti = ti − ti−1), the present value of the fee
leg (PV Fees in Figure 3.3) paid by the protection buyer is:

PVT −CDS
Fees = cN

n∑
i=1

D(0, ti)PSurv(ti)�ti, (3.1)

where PSurv(ti) indicates the survival probability up to time ti and c the par spread
per annum. Equation (3.1) can be rewritten as:

PVT −CDS
Fees = cN × A(0, T )

where A(0, T ) is the so-called CDS risk annuity, i.e. the present value of the
premium leg of a CDS with maturity T assuming a premium of 1 bp and a unit
notional amount:

A(0, T ) =
n∑

i=1

D(0, ti)PSurv(ti)�ti . (3.2)
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Concerning the amount paid by the protection seller in case of default of the
reference entity (where R denotes the recovery rate), we have that the present value
of the loss leg (PV Loss in Figure 3.3) is

PVT −CDS
Loss = (1 − R)N

n∑
i=1

D(0, ti)(PSurv(ti−1) − PSurv(ti)). (3.3)

Pricing the CDS is equivalent to finding the par spread cT −CDS, which makes
the premium leg equal to the loss leg:

cT −CDS = (1 − R)
∑n

i=1 D(0, ti)(PSurv(ti−1) − PSurv(ti))∑n
i=1 D(0, ti)PSurv(ti)�ti

. (3.4)

Moving to continuous time, the constant yearly continuous par spread is obtained
as:

cT −CDS =
(1 − R)

(
− ∫ T

0 D(0, s) dPSurv(s)
)

∫ T

0 D(0, s)PSurv(s) ds
. (3.5)

Often an accrual on default is also included. This is done to take into account
the fact that if default occurs between some payment dates, fee has to be paid only
for the portion between the last payment date and the time of default since the
insurance buyer has been protected only for that period. An approximation to have
the accrual factored into the fee leg is to assume that on average defaults happen
right in the middle of a payment period and hence

PVT −CDS
Fees = cN

n∑
i=1

D(0, ti)PSurv(ti)�ti + AD, (3.6)

where and AD is the accrual on default

AD = c
1

2
N

n∑
i=1

D(0, ti)(PSurv(ti−1) − PSurv(ti))�ti .

and the fair spread formulas are changed accordingly.

Example Given the recovery rate and the discount factor, it is clear that the CDS
spread is a function of the survival probability. For instance, if we hypothesize that
the default time τ is exponentially distributed with parameter λ (i.e. E[τ ] = 1/λ),
the survival probability is given by:

PSurv(t) = exp(−λt),
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and, by Equation (3.5), we obtain that the par spread is

cT −CDS = (1 − R)λ.

For instance, suppose we consider a CDS traded at 90 bps written on a refer-
ence entity with recovery rate R = 50%. We can estimate the probability that the
reference entity will default in the next 5 years as follows:

λ = 0.0090/(1 − 0.5) = 0.018

PSurv(t) = exp(−λt) ≈ (1 − λt)

PDef(t) = (1 − PSurv(5y)) ≈ λ × 5 = 0.018 × 5 = 9.0%.

Hence a 90-bp spread corresponds to a 9% (risk-neutral) probability of defaulting
within a period of 5 years from time zero.

3.1.2 Calibration Assumptions

Figure 3.4 shows an example of a real market CDS term structure referring to
General Motors as of 26 October 2004. The circles in the figure represent the
values of the par spread for five CDSs related to General Motors with various
times to maturity (1 year, 3 years, 5 years, and 10 years respectively).
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Figure 3.4 CDS term structure for General Motors as of 26 October 2004
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This type of data will be used throughout the book in calibration exercises, and
models will be calibrated in order to match real market spreads as accurately as
possible. Specifically in the calibrations we often minimize the root mean square
error (RMSE) given by:

RMSE =
√√√√ ∑

CDS prices

(Market CDS price − Model CDS price)2

Number of CDS prices
(3.7)

where the sum over CDS prices refers to the fact that, for the same reference entity,
we will consider CDSs with different maturities, as shown in Figure 3.4. Starting
from a set of input parameters, a search algorithm looks for the set of parameters
minimizing the RMSE. At each step, parameters are changed in a ‘clever’ way so
that the output of the calibration exercise is the set of parameters which best fit
market data in RMSE sense.

3.2 CREDIT DEFAULT SWAP FORWARDS

A CDS forward contract is the obligation agreed today to enter a CDS contract on
a determined future date t , for a specific spread, called the forward spread. We will
indicate with c(t,t+T )−Fwd the forward spread, T being the lifetime of the CDS. In
practice, the only difference between a CDS and a CDS forward is that the former
starts immediately and covers the protection buyer up to its maturity, while the
latter starts on a future date t and protects the owner of the contract over the time
period from t to the CDS maturity date (t + T ).

3.2.1 Credit Default Swap Forward Pricing

Similar to the CDS, for a CDS forward we look for the forward spread, i.e. the fair
spread that makes the forward premium leg equal to the forward loss leg. Consider
a discrete time setting ti , i = 0, 1, . . . , n. The forward is struck at time t0 = 0, and
t1 = t is the date at which the CDS starts. The CDS matures at time tn = t + T

and has a number of payment dates ti , i = 2, 3 . . . , n, as shown in Figure 3.5.
The forward par spread c(t,t+T )−Fwd will be such that PV(t,t+T )−Fwd

Fees =
PV(t,t+T )−Fwd

Loss , which means that

c(t,t+T )−Fwd = PV(t,t+T )−Fwd
Loss

A(0, t + T ) − A(0, t)

= PV(t+T )−CDS
Loss − PVt−CDS

Loss

A(0, t + T ) − A(0, t)

= PV(t+T )−CDS
Fee − PVt−CDS

Fee

A(0, t + T ) − A(0, t)

= c(t+T )−CDSA(0, t + T ) − ct−CDSA(0, t)

A(0, t + T ) − A(0, t)
, (3.8)
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Figure 3.5 CDS forward pricing in discrete times

where cu−CDS and A(0, u) indicate, respectively, the current spread and the risky
annuity of a CDS contract with maturity u. The equalities are based on the fact that
over the time interval (t, t + T ) the owner of a CDS forward is protected as the
owner of a standard CDS, thus the premiums/loss legs of the CDS forward can be
seen as the difference between the premium/loss legs of two standard CDSs with
maturities t and (t + T ), respectively.

3.3 CONSTANT MATURITY CREDIT DEFAULT SWAPS

A single-name Constant Maturity Credit Default Swap (CMCDS) has the same
features as a standard single-name CDS. It offers the buyer protection against loss
at the event of a default of a reference entity in exchange for a periodically paid
spread. The difference is that the spread paid is not fixed but it is floating.

Typically, the spread is reset at prespecified reset dates. At each reset date
the CMCDS spread is set to a reference CDS1 market spread times a multiplier,
the so-called participation rate. The reference CDS has a maturity which is not
necessarily the same as the maturity of the CMCDS.

Example Consider a 3-year CMCDS with a 5-year single-name CDS as reference.
To understand the difference between CDS and CMCDS, we assume that one can
now contract a corresponding 3-year CDS for a fixed spread of 84 bps. Assume
also that the CMCDS spread is reset quarterly and that the participation rate is
π = 80%. Table 3.1 shows the CMCDS floating spread (third column) to be paid
at each reset date, considering that the par spreads of the 5-year CDS on the same
dates are those in column 2.

1 Another option is to choose as reference entity a CDS index.
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Table 3.1 Example of computation of a 3-year CMCDS spread (column 3) starting from
the par spread of the 5-year CDS (column 2) and comparison with the fixed contracted
spread of the corresponding 3-year CDS

Reset 5-year CDS CMCDS spread, 3-year CDS
dates par spread (bp) π = 80% (bp) fixed spread (bp)

3 months 100 80 84
6 months 95 76 84
9 months 120 96 84

12 months 105 84 84
15 months 85 68 84
18 months 115 92 84
21 months 125 100 84
24 months 95 76 84
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Figure 3.6 Comparison between the protection buyer cash flows of a 3-year CMCDS (left
plot) and a 3-year CDS (right plot)

Figure 3.6 plots the cash flows of the protection seller using the spreads in
Table 3.1 applied to the case of N = 10,000 euros and maturity T = 3 years. The
left plot refers to the CMCDS, the right one to the case of the standard CDS.
In contrast to the fixed premiums of the CDS, the premiums of the CMCDS are
fluctuating over time.

3.3.1 Constant Maturity Credit Default Swaps Pricing

Next, we value a CMCDS with maturity T̂ and n reset dates ti , i = 1, 2, . . . , n

(where tn = T̂ ) with a reference CDS with maturity T . Pricing the CMCDS corre-
sponds to finding the participation rate π which makes the loss leg of the contract
equal to the premium leg. However, the loss leg of the CMCDS and the loss leg



Constant Maturity Credit Default Swaps 53

of a CDS written on the same reference name, and with the same maturity T̂ ,
are identical since the two contracts provide for the same protection over the time
interval (0, T̂ ). Using Equation (3.1) we get:

PVT̂ −CMCDS
Loss = PVT̂ −CDS

Loss = (1 − R)N

n∑
i=1

D(0, ti)(PSurv(ti−1) − PSurv(ti)),

= NcT̂ −CDS
n∑

i=1

D(0, ti)PSurv(ti)�ti,

where R denotes the recovery rate, N the notional, D(0, ti) the discount factor
at time ti and PSurv(tj ) the survival probability up to the j th reset date. This also

implies that the premium legs of the two contracts must be the same (PVT̂ −CMCDS
Fees =

PVT̂ −CDS
Fees ).

As detailed in Jönsson and Schoutens (2009), a first approximation to the value of
the floating CMCDS premium leg is obtained assuming that the expected reference
spread at each reset date equals the forward spread of the same maturity at the
time the contract is agreed. The present value of the fees CMCDS leg is thus:

PVT̂ −CMCDS
Fees � πN

n∑
i=1

D(0, ti)�tiPSurv(ti)c
(ti ,ti+T )−Fwd, (3.9)

where �ti is the distance between two consecutive payments, expressed in the
appropriate day-count convention, and c(ti ,ti+T )−Fwd is the forward CDS spread
starting at the reset date ti with maturity (ti + T ).

By equating the fees leg of the T̂ − CMCDS and the fees leg of the T̂ − CDS
we obtain, using Equations (3.1) and (3.9), the participation rate which is given
approximately by:

π ≈ cT̂ −CDS∑n
i=1 D(0, ti)PSurv(ti)�ti∑n

i=1 D(0, ti)�tiPSurv(ti)c(ti ,ti+T )−Fwd
. (3.10)

We need, however, to adjust this approximation since the realized spread at the
reset dates are not equal to the forward spreads calculated at the valuation date t0.
The adjustment that has to be added to the premium leg is called the convexity
adjustment (Nomura 2005). The difficulty in the valuation problem of a CMCDS is
exactly this convexity adjustment. This problem is tackled in Jönsson and Schoutens
(2009).
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3.4 OPTIONS ON CDS

The most common options on CDSs are payer and receiver swaptions. They are
the counterparties of the classical European call and put options in other markets.
A receiver option holder (i.e. the owner of a CDS call) on a single-name CDS
has the right, but not the obligation, to buy risk (i.e. sell the CDS and receive
premium) at a predetermined strike spread level at maturity (European option) or
prior to maturity (American option). Alternatively, a payer option holder (i.e. the
owner of a CDS put) on a single-name CDS has the right, but not the obligation,
to sell risk (i.e. buy the CDS and pay premium) at a predetermined strike spread
level at maturity (European option) or prior to maturity (American option).

For instance, a European payer option on General Electrics 5 years CDS with
maturity T̂ = 1 year with a spread c = 25 bps per year gives the holder the right
to buy at maturity protection against the default of General Electrics for 5 years
paying a premium of 25 bps. The option will be exercised if the par spread of the
5-year CDS at maturity will be higher than 25 bps (see Figure 3.7).

Special rules apply for the case when default happens before the option’s ma-
turity. The most common situation on the single-name payer and receiver structures
is a knock-out clause, meaning that, in case of early default, the option is worthless.

Consider a CDS with time to maturity T and a European option on this CDS.
Denote the maturity of this option with T̂ . Denote the fair par spread at time zero
of the CDS by cT −CDS

0 . This fair spread was calculated by equating premium and
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Figure 3.7 Payoff (in bps p.a.) of a CDS swaption with spread c = 25 bps as a function
of the par spread c∗ at maturity
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loss legs. For a different spread y, one could also calculate the premium leg. This
premium leg equals (assume the notional N = 1):

y × A(0, T ).

Let us write CDS0(y; T ) for the price (to be paid up front to the protection seller
when the deal is struck) to enter into a CDS agreement with maturity T and buying
protection at time zero for a contract paying y premium. Then

CDS0(y; T ) = PVT −CDS
Loss − y × A(0, T ).

Note that CDS0(y; T ) can be positive (in the case y < cT −CDS
0 ) as well as negative

(in the case y > cT −CDS
0 (T )). Moreover, we have

CDS0(c
T −CDS
0 ; T ) = 0.

Depending on the evolution of the market, the situation at some time t can
be different and hence at that time the price to enter into a similar agreement is
stochastic. We denote by CDSt (y; T ), its time t price and by cT −CDS

t its time t fair
spread. Note that

CDSt (c
T −CDS
t ; T ) = 0.

For a knock-out receiver (R) and payer (P) with strike spread K and maturity
T , the current price of the option is, by risk-neutral valuation theory, given by the
discounted expected value of the payoff:

�R
0 (T̂ , T , K) = exp(−rT̂ )E[(CDS

T̂
(cT −CDS

T̂
; T ) − CDS

T̂
(K; T ))+1(τ > T̂ )]

= exp(−rT̂ )E[(−CDS
T̂
(K; T ))+ | τ > T̂ ]PSurv(T̂ ), (3.11)

�P
0(T̂ , T , K) = exp(−rT̂ )E[(CDS

T̂
(K; T ) − CDS

T̂
(cT −CDS

T̂
; T ))+1(τ > T̂ )]

= exp(−rT̂ )E[(CDS
T̂
(K; T ))+ | τ > T̂ ]PSurv(T̂ ) (3.12)

where r is the risk-free rate, T̂ is the expiration of the option, τ is the time of
default, and 1(A) is the indicator function, which is equal to 1 if the event A is
true and 0 otherwise.
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Firm-Value Lévy Models

4.1 THE MERTON MODEL

The first firm-value model dates back to Merton (1974) and makes use of a
Black–Scholes type model (Black and Scholes 1973) to estimate the survival
probability of a reference entity. Starting from the idea that the (financial) assets
of a company include equities and liabilities, in this model it is assumed that
the asset value of the entity V = {Vt , 0 ≤ t ≤ T } is the sum of the equity value,
E = {Et, 0 ≤ t ≤ T }, and the value of a zero-coupon bond zT = {zT

t , 0 ≤ t ≤ T }
with maturity T and face value L:

Vt = Et + zT
t .

Default occurs if, at maturity, the asset value is not enough to pay back the face
value L. In this case the bondholders take control of the firm and the shareholders
receive nothing. Conversely, if, at maturity, VT ≥ L, default does not occur and
the shareholders receive VT − L. These assumptions allow us to treat the firm’s
equity as a European call option:

ET = max(VT − L, 0) = (VT − L)+ =
{

VT − L if VT ≥ L (no default)

0 if VT < L (default).

(4.1)

Equation (4.1) clearly shows that the shareholders are long a call option on the
firm’s asset value with strike L and maturity T ; on the other hand, debtholders
are short a put option on the firm’s asset value with strike L and maturity T . This
is also schematically presented in Figure 4.1 for a barrier L = 40 (we often take
V0 = 100).

Following the assumptions of the Black–Scholes model, the dynamics of the
asset value V = {Vt , 0 ≤ t ≤ T } is supposed to follow a geometric Brownian
motion:

Vt = µVt dt + σV Vt dWt V0 > 0, (4.2)

or equivalently

Vt = V0 exp
(
(µ − σ 2

V )t + σV Wt

)
V0 > 0, (4.3)
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Figure 4.1 Assumption of the Merton model: the asset shareholders are long a call option
with strike L = 40 and maturity T ; the debtholders are short a put option with the same
strike and maturity

where µ is the drift parameter, σV > 0 is the asset volatility, and W = {Wt, 0 ≤
t ≤ T } is a standard Brownian motion. This assumption implies that at any time
t the firm asset value is Lognormally distributed: log(Vt ) − log(V0) ∼ N(t (µ −
1
2σ 2), σ 2t).

Figure 4.2 represents two realizations of geometric Brownian motions with drift
µ = 0.05, volatility σV = 0.4, and V0 = 100. The paths represent two different
behaviours of a reference entity. We will refer to the scenario represented by the
dotted line as A; the other realization will be labelled as B. The dashed line is
the face value of the zero-coupon bond, L. In the case where the evolution of the
reference entity follows the solid path, default occurs at maturity since V B

T < L. On
the contrary, if the scenario represented by the dotted path is realized, the reference
entity will survive, since V A

T
>L. Note that V A falls below the barrier L before

maturity. Nevertheless, default happens only at time T if V A
T

> L, no matter if
V A

t < L at any time t < T .
Since the equity can be seen as a call option, then, following the Black–Scholes

model, the dynamics of the equity under the risk-neutral measure are given by:

Et = Vt�(d1) − exp (−r(T − t)) L�(d2)
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Figure 4.2 Exemplification of the Merton model. The default barrier is set at L = 40

where �(·) indicates the distribution function of a Standard Normal random vari-
able and

d1 = log(Vt/D) + (r + σ 2
V /2)(T − t)

σV

√
T − t

d2 = d1 − σV

√
T − t .

At any time 0 ≤ t ≤ T , the (risk-neutral) conditional probability that no default
will occur in (t, T ] corresponds to the (risk-neutral) probability of finishing in the
money for the virtual call option held by the shareholders. Using the results of the
Black–Scholes model, this is given by:

PSurv(T |Ft ) = P (VT >L|Ft ) = � (d2) ,

where F = {Ft }t≥0 is the filtration generated by V = {Vt , t ≥ 0} and represents the
information of the firm’s value process up to time t .

It is clear that the main advantage of the Merton model relies in the direct applic-
ability of the Black–Scholes theory. However, the model has many disadvantages:

• First, default can happen only at maturity, no matter the behaviour of the
asset value before T . To overcome this weakness, the class of the so-called
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first-passage models (e.g. Black and Cox, 1976) have been developed. This class
of model will be treated in Section 4.2.

• Second, the capital structure of a firm is usually much more complicated than
the one assumed by Merton (a simple zero-coupon bond). Geske (1977, 1979)
proposed to treat the firm debts as a coupon bond, where default can occur at
any coupon payment.

• Moreover, the assumption of a constant short rate r has been criticized. Many
extensions of the Merton model aimed at including a stochastic interest rate have
been investigated, among which, for instance, Longstaff and Schwartz (1995).
In our approach we will not consider a stochastic interest rate process.

• Another limitation of the Merton model is the predictability of default. This
is a consequence of the path continuity of geometric Brownian motion which
implies that default can be predicted with increasing precision as time passes.
This weakness is still present in the classic first-passage models based on diffu-
sion processes. A way to introduce a sudden default is the inclusion of jumps in
the dynamics of the asset value. This issue will be investigated in Section 4.3.

4.2 THE BLACK–COX MODEL WITH CONSTANT
BARRIER

As already mentioned in Section 4.1, first-passage models have been introduced in
order to include the possibility of an early default for the reference entity. In fact,
the general hypothesis of first-passage models is that default takes place the first
time the asset value V = {Vt , 0 ≤ t ≤ T } goes below a default barrier L, which
can be given either exogenously or endogenously with respect to the model.

The pioneer first-passage model, developed by Black and Cox (1976), is a natu-
ral extension of the Merton model. The asset value V = {Vt , 0 ≤ t ≤ T } is still
modelled by a geometric Brownian motion (see Equation (4.2)). However, default
occurs the first time V = {Vt , 0 ≤ t ≤ T } hits the barrier L:

τ = inf{t > 0|Vt ≤ L}.

Although the Black and Cox (1976) model assumes the barrier to be time dependent,
we will consider a constant barrier L for the sake of the explanation. As in the
Merton model, we can think of L as the face value of the debts of the company.

Figure 4.3 shows two realizations of geometric Brownian motions with drift
µ = 0.05, volatility σV = 0.4 and V0 = 100. The paths represent two possible
behaviours of the reference entity. As in the previous example, we refer to the
scenario represented by the dotted line as A; the other realization is labelled B. In
the case where the evolution follows the solid path, the barrier is hit after around
2 years and a default event occurs. On the contrary, in the case of scenario A, the
reference entity will survive, since V A

t >L for all 0 ≤ t ≤ T .
Thanks to the properties of Brownian motion, in particular the reflection prin-

ciple, the distribution of the first hitting time is known (see, for instance, Karatzas
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Figure 4.3 Exemplification of a first-passage model

and Shreve 1999). If the underlying asset has survived up to time t , the conditional
survival probability up to maturity in the risk-neutral setting is given by:

PSurv(T |Ft ) = P (τ >T |τ > t) = �(d3) − L

Vt

(2r/σ 2
V )−1

�(d4)

where � is the distribution function of a Standard Normal random variable and

d3 = log(Vt/L) + (r − σ 2
V /2)(T − t)

σV

√
T − t

d4 = d3 − σV

√
T − t .

This result has been subsequently extended to the situation where the default barrier,
say H , is assumed to be lower than the value of the asset’s liabilities L. We
can think of this hypothesis as if the barrier acts as a protection mechanism for
bondholders against an unsatisfactory performance of the company. The asset value
can go below L (the company’s liabilities) before maturity, but needs to be always
higher than this value at maturity. It is said in this situation that the barrier acts as
a safety covenant. Default prior to maturity happens when H is hit.

Numerous other extensions and modifications of the Black–Cox model have
been developed to include, for instance, stochastic interest rates and a stochastic
default barrier (see, e.g., Longstaff and Schwartz 1995, Kim et al. 1993). Other
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generalizations can be found in, for instance, Leland (1994), Leland and Toft (1996)
and Anderson and Sundaresan (1996). An extensive review of first-passage models
can be found in Bielecki and Rutkowski (2002).

4.3 THE LÉVY FIRST-PASSAGE MODEL

Here we focus on Lévy-based first-passage models under which the asset value
process V = {Vt , 0 ≤ t ≤ T } is described by the exponential of a (non-Brownian)
Lévy process. Several models incorporating jumps in the dynamics of the firm
value are described in the literature: Zhou (1996, 2001), Hilberink and Rogers
(2002), Kou and Wang (2003), Lipton (2002), Cariboni and Schoutens (2007),
Kyprianou and Surya (2007), Madan and Schoutens (2008). While Zhou extends
the Longstaff and Schwartz (1995) model by considering a Lognormally distributed
jump component, Hilberink and Rogers opt for an extension of Leland (1994), using
Lévy processes which only allow for downward jumps in the firm’s value. It is
also important to note the work of Kou and Wang (2003, 2004), in which, as in
Lipton (2002), one has shown how to use fluctuation identities from the theory of
Lévy processes to price path-dependent options on assets driven by jump diffusions
with exponentially distributed Poissonian jumps. The price formulas obtained are
also of a relatively simple explicit form when written as functions of the Laplace
variable. As in Lipton (2002), Madan and Schoutens (2008) work with downward
jumps, and hence allow for situations where the default barrier is not just hit but
crossed by a jump. Lipton (2002) considers jump diffusions with finite arrival
rates for the jumps. The unit time distribution for such processes is, however, not a
limit law allowing for a large number of independent effects on the underlying asset
price process. For long-dated contracts Madan and Schoutens (2008) argue that one
should use limit laws and set up the theory for laws that are self-decomposable
at unit time and are thereby limit laws (Sato 1999). Madan and Schoutens (2008)
detail the theory for general spectrally negative Lévy processes and work out in
detail some popular examples. In terms of analytics, this will lead us to a contour
shift in order get the CDS spreads calculated. Cariboni and Schoutens (2007) detail
a general Lévy model and perform the calculations under the VG example. The
numerical calculations are based on solving Partial Differential Integral Equations
(PDIEs). Zhou (2001) offers a theory that explains observed empirical regularities
on default probabilities, recovery rates, and credit spreads by incorporating jump
risk into the default process.

Next, we set up the general Lévy default model and in the following sections
detail some of the above-mentioned special cases.

We describe the asset value of the firm by a stochastic process V ={Vt , 0 ≤ t ≤ T }
of the form

Vt = V0 exp(Xt ). (4.4)

Since, typically, we work in the risk-neutral setting often the drift in the underlying
Lévy process is chosen such that E[Vt ] = V0 exp(rt).
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We define the default event as the first crossing of some predetermined barrier L

(which could be given in terms of, for example, debt-per-share, a global recovery
on the debt, etc.).

For an initial value of the asset value V0 >L, default is defined to occur
when

Vt ≤ L

or, equivalently, if

Xt ≤ log(L/V0). (4.5)

The (risk-neutral) survival probability up to time t is given by:

PSurv(t) = P (Xs > log(L/V0), for all 0 ≤ s ≤ t)

= P

(
inf

0≤s≤t
Xs > log(L/V0)

)
= E

[
1
(

inf
0≤s≤t

Xs > log(L/V0)

)]
= E

[
1
(

inf
0≤s≤t

Vs >L

)]
(4.6)

where 1(A) is the indicator function, equal to 1 if the event A is true and 0
otherwise.

Under the above risk-neutral model we would like to price the CDS par spread
introduced in Equations (3.4) and (3.5).

The next two sections show how to estimate the par spread, hypothesizing that
the underlying Lévy process is either the Variance Gamma process or is based on
a single-sided Lévy process such as the Gamma process.

4.4 THE VARIANCE GAMMA MODEL

Let us consider the model introduced in the previous section and hypothesize that
the Lévy process X = {Xt, t ≥ 0} is based on the Variance Gamma (VG) process
introduced in Section 2.3.6 of Chapter 2. More precisely, we take

Xt = rt + ωt + Zt ,

where Z = {Zt , t ≥ 0} is a VG process with parameters σ , ν and θ . Since

E[exp(Zt )] =
(

1 − θν − 1

2
σ 2ν

)−t/ν

,
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in order to have E[VT ] = exp(rT )V0, we thus have to set:

ω = ν−1 log

(
1 − θν − 1

2
σ 2ν

)
. (4.7)

For the pricing of European equity options under this model, see e.g. Madan et al.
(1998) or Schoutens (2003). The pricing of American options (using the PDIE
approach) for this model is given in Hirsa and Madan (2003).

Following Cariboni and Schoutens (2007), we show how to estimate, under this
VG model, the survival probability by relating it to the price of a binary barrier
option. The price of this option can be obtained by solving a Partial Differential
Integral Equation (PDIE). This technique has been introduced by Hirsa and Madan
(2003) to price American options, but can be readily adapted to price various types
of barrier options.

Here we will work with Binary Down-and-Out Barrier (BDOB) options with
maturity T and barrier level L (BDOB(L, T )); this option pays out a unit currency
at maturity if the asset value remains above the barrier during the lifetime of the
option and zero otherwise:

Payoff of BDOB(L, T ) =
{

1 Vt > L, for all t, 0 ≤ t ≤ T

0 otherwise.

Under the risk-neutral measure, the price at time t = 0 of such an instrument is
given by:

BDOBT = BDOB(L, T ) = exp(−rT )E

[
1
(

min
0≤s≤T

Vs >L

)]
.

Note that, using Equation (4.6), this price becomes:

BDOBT = exp(−rT )PSurv(T ) = D(0, T )PSurv(T ),

and we can thus rewrite the par spread as, for example, in Equation (3.5) in terms
of the binary barrier prices as

cT −CDS =
(1 − R)

(
1 − BDOBT − r

∫ T

0 BDOBs ds
)

∫ T

0 BDOBs ds
, (4.8)

where, for simplicity, we have discarded the dependence of the barrier option on
(L, T ). The problem of calculating the par spread thus reduces to the calculation of
the pricing function of a binary down-and-out barrier for all maturities up to time T .

The price of the BDOB option with barrier L and time to maturity T is obtained
through its link with the price of the corresponding Binary Down-and-In Barrier
(BDIB) option with equal barrier and maturity. This claim pays out, at maturity, a
unit currency if the asset price V = {Vt , 0 ≤ t ≤ T } goes below the barrier during
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the lifetime of the option, and zero otherwise:

Payoff of BDIB(L, T ) =
{

1 Vt ≤ L, 0 ≤ t ≤ T

0 otherwise.

Following the same reasoning presented above for the BDIB option, the price at
time t of such an instrument is:

BDIB(L, T ) = exp(−rT )E

[
1
(

min
0≤s≤T

Vs ≤ L

)]
. (4.9)

In the risk-neutral world, the prices of the BDOB and BDIB options with barrier
L and time to maturity T are linked by the following relationship:

BDIB(L, T ) + BDOB(L, T ) = exp(−rT ).

It is thus possible to estimate the price of the BDOB option once the corresponding
BDIB option is priced.

To show how to price a BDIB option we first discuss how to price a European
Binary Option EBO with maturity T . This is a claim with payoff function 1 if the
asset value at maturity is below the barrier, and 0 otherwise:

Payoff of EBO(L, T ) =
{

1 VT ≤ L

0 otherwise.

The price of this claim at time t ≤ T is given by

EBOt (L, T ) = exp(−r(T − t))E [1(VT ≤ L)|Ft ] ,

where F = {Ft }t≥0 is the filtration generated by the process V = {Vt , 0 ≤ t ≤ T }.
One can show that the EBO price can be seen as a function of the asset value and
the time. For simplicity, we will indicate this function as:

EBOt (L, T ) = F(Vt , t),

thus omitting the dependence on (L, T ). In the remainder of this section we follow
the technique introduced in Hirsa and Madan (2003) to price American options
under the VG model. They exploit the fact that the discounted price of an option is
a martingale, and hence the infinitesimal generator of the underlying Lévy process
(Markov process) applied to this discounted price yields zero. See also Cont and
Tankov (2004).

In our case this comes down to:∫ +∞

−∞

[
F(Vt− exp(z), t) − F(Vt−, t) − ∂F

∂V
(Vt−, t)Vt−(exp(z) − 1)

]
ν(dz)

+ ∂F

∂t
(Vt , t) + rVt

∂F

∂V
(Vt , t) − rF (Vt , t) = 0,

where ν(dz) is the Lévy measure of the underlying Lévy process.
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By making the change of variables x = log(Vt ) and τ = T − t and noting

w(x, τ ) = F(Vt , t)

w(x + y, τ ) = F(Vt exp(y), t)

∂w

∂x
(x, τ ) = Vt

∂F

∂V
(Vt , t)

∂w

∂τ
(x, τ ) = −∂F

∂t
(Vt , t),

we obtain the following PDIE, as a function of w(x, τ ),∫ +∞

−∞

[
w(x + y, τ ) − w(x, τ ) − ∂w

∂x
(x, τ )(exp(y) − 1)

]
ν(dy)

− ∂w

∂τ
(x, τ ) + r

∂w

∂x
(x, τ ) − rw(x, τ ) = 0,

This PDIE must be solved subject to the initial condition w(x, 0) = 1 if
exp(x) < L and zero otherwise.

Noting that −ω = ∫ +∞
−∞ (exp(y) − 1)ν(dy), the PDIE can be rewritten as∫ +∞

−∞

[
w(x + y, τ ) − w(x, τ )

]
ν(dy)

− ∂w

∂τ
(x, τ ) + (r + ω)

∂w

∂x
(x, τ ) − rw(x, τ ) = 0. (4.10)

In the appendix of this chapter, we work out a numerical solution for the PDIE,
following the scheme presented in Hirsa and Madan (2003) under a VG model.
In particular the scheme discretizes the time line and the space of log-asset values
via an N × M grid. To estimate the price of the BDIB option with barrier L and
time to maturity T we proceed along the same lines as was done for the European
binary option. The only difference is that at each time step, after computing the
new values wi,j+1 (by solving the above linear system), we impose:

wi,j+1 = exp(−(j + 1)r�t) if exp(xi) < L.

By this we ensure that if the barrier L has been crossed, the option will always
pay out 1 at maturity.

4.4.1 Sensitivity to the Parameters

This section analyses the sensitivity of the survival probability and the CDS par
spread with respect to the parameters describing the VG process. We first vary the
kurtosis parameter ν keeping all other parameters fixed (see Figure 4.4, top plot).
Next, we vary the skewness parameter θ and keep all other parameters fixed (see
Figure 4.4, bottom plot). The results are completely in line with our intuitions.
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Figure 4.4 Sensitivity of the survival probability to the VG parameters. The top plot refers
to the parameter ν, the bottom one to θ
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Higher kurtosis (i.e. higher ν’s) give rise to higher default probabilities and higher
par spreads (see Figure 4.5, top plot). Also, more negative skewness (i.e. smaller
θ ’s) give the same effect (see Figure 4.5, bottom plot).

4.4.2 Calibration on CDS Term Structure Curve

The performance of the VG Lévy model is tested through a calibration exercise
on a series of CDS term structures taken from the market on 26 October 2004.
The exercise considers a whole range of differently rated (e.g. the Moody’s rating)
companies. The short-term rate r is equal to 2.1%, and the recovery rate is fixed
to R = 40% for all the companies.

In Tables 4.1 and 4.2 we report on the results of this calibration exercise. In the
former, the optimal VG parameters are given, with the values of the RMSE. In the
latter, model estimates are compared with market CDS prices. Figure 4.6 shows
an example of calibration for Allstate, where market quotes (circles) are compared
with the best fit obtained via the PDIE approach.

Table 4.1 Calibration on CDS (in bps) term structure

Company σ ν θ RMSE

Mbna Insurance 0.114 2.251 −0.052 2.335
General Elec. 0.011 1.619 −0.084 3.439
Wells Fargo 0.018 2.251 −0.061 3.762
Citigroup 0.032 3.225 −0.048 3.806
Wal-Mart 0.047 0.420 −0.170 2.134
Merrill Lynch 0.145 2.940 −0.001 2.152
Du Pont 0.018 2.868 −0.048 2.069
American Express 0.083 0.564 −0.122 2.621
Allstate 0.065 2.089 −0.067 1.689
Amgen 0.153 3.170 0.002 1.801
McDonald’s 0.104 1.291 −0.040 2.329
Ford Credit Co. 0.204 0.964 −0.085 2.674
General Motors 0.083 1.449 −0.150 13.490
Kraft Foods 0.011 1.010 −0.117 2.856
Wyeth 0.011 0.771 −0.172 7.224
Norfolk South. 0.101 0.503 −0.114 3.133
Whirlpool 0.043 1.120 −0.124 8.520
Walt Disney 0.140 0.806 −0.045 1.174
Autozone 0.208 1.011 0.006 3.925
Eastman Kodak 0.212 2.429 −0.007 8.049
Bombardier 0.355 2.813 −0.082 10.621
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Table 4.2 Calibration on CDS (in bps) term structure

Company Moody’s 1yr 3yrs 5yrs 7yrs 10yrs

Mbna Insurance Aaa Market 21 36 46 51 61
Mbna Insurance Aaa Model 21 35 46 53 60

General Elec. Aaa Market 5 14 25 29 36
General Elec. Aaa Model 7 14 22 29 37

Wells Fargo Aa1 Market 3 10 20 23 32
Wells Fargo Aa1 Model 5 10 17 24 33

Citigroup Aa1 Market 5 12 22 25 34
Citigroup Aa1 Model 7 12 19 25 35

Wal-Mart Aa2 Market 1 9 17 22 32
Wal-Mart Aa2 Model 1 8 17 24 31

Merrill Lynch Aa3 Market 11 20 31 36 47
Merrill Lynch Aa3 Model 11 20 30 37 47

Du Pont Aa3 Market 3 7 13 18 23
Du Pont Aa3 Model 4 8 12 17 24

American Express A1 Market 2 12 22 26 36
American Express A1 Model 3 12 21 28 35

Allstate A1 Market 12 22 32 37 47
Allstate A1 Model 12 22 31 38 47

Amgen A2 Market 14 20 29 34 39
Amgen A2 Model 13 21 28 34 39

McDonald’s A2 Market 3 10 19 23 34
McDonald’s A2 Model 3 10 18 25 33

Ford Credit Co. A3 Market 75 154 203 225 238
Ford Credit Co. A3 Model 75 155 201 225 239

General Motors A3 Market 86 157 207 229 242
General Motors A3 Model 90 156 199 227 252

Kraft Foods A3 Market 4 19 31 40 51
Kraft Foods A3 Model 6 18 30 40 52

Wyeth Baa1 Market 15 47 75 85 95
Wyeth Baa1 Model 18 47 70 85 99

Norfolk South. Baa1 Market 3 12 28 34 44
Norfolk South. Baa1 Model 3 14 26 35 44

Whirlpool Baa1 Market 16 36 66 73 86
Whirlpool Baa1 Model 17 39 59 74 89

Walt Disney Baa2 Market 6 21 36 45 56
Walt Disney Baa2 Model 6 21 35 46 56

Autozone Baa2 Market 25 65 102 117 127
Autozone Baa2 Model 24 67 99 117 127

Eastman Kodak Baa3 Market 54 86 127 143 157
Eastman Kodak Baa3 Model 51 92 122 142 159

Bombardier Baa3 Market 320 405 425 425 425
Bombardier Baa3 Model 322 398 426 432 422
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Figure 4.6 Calibrations for Allstate. The circles show the market spreads, the solid bold
line is the best fit obtained using the PDIE approach

4.5 ONE-SIDED LÉVY DEFAULT MODEL

4.5.1 Wiener–Hopf Factorization and Default Probabilities

Consider the firm’s value in the Lévy model (4.4):

Vt = V0 exp(Xt), V0 > 0.

where V = {Vt , t ≥ 0} is the asset value process and hypothesize that the process
X = {Xt , t ≥ 0} is a spectrally negative Lévy process (also known as one-sided
negative jump Lévy processes – i.e. a Lévy process with an upward drift and only
negative jumps):

Xt = rt + ωt + Yt , (4.11)

Y = {Yt , t ≥ 0} being a pure jump Lévy process with only negative jumps.
Examples of spectrally negative Lévy processes are the shifted Gamma process,
the shifted CMY process, and the shifted Inverse Gaussian process, introduced
respectively in Section 2.3.3, Section 2.3.5, and Section 2.3.4 of Chapter 2.

As detailed in Madan and Schoutens (2008), under this setting it is possible
to calculate very efficiently the survival probability PSurv(t). In order to work
in the risk-neutral setting, we have to make the growth rate on the exponential
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of X equal to the risk-free interest rate, and thus set, in Equation (4.11), ω =
− log(E[exp(Y1)]). Note that µ = r + ω is positive and the Lévy measure ν(dx)

in our setting satisfies the integrability condition∫ 0

−∞

(|x|2 ∧ 1
)
ν(dx) < ∞.

In order to apply the methodology described below, which estimates the survival
probability via a double inverse Fourier transform, what is needed is that, for
large z,

ϕ(z) − µz

z
→ 0. (4.12)

Equivalently, by using the Lévy–Khintchine representation, this means that

lim
z→∞

1

z

∫ 0

−∞
(exp(zx) − 1 + z (|x| ∧ 1)) ν(dx) = 0.

This condition is verified for the applications considered in the remainder of this
chapter. Since default is triggered by the crossing of a low barrier, or equivalently
by the point where the running minimum will cross that level (see also Equation
(4.6)), the distribution of the running maximum and minimum of the Lévy process
X = {Xt, t ≥ 0} will be essential in the sequel:

Xt = sup
0≤u≤t

Xu and Xt = inf
0≤u≤t

Xu.

Recall that one can write,

E
[
exp (zXt )

] = exp(tϕX(z))

where ϕX(z) is the so-called Lévy exponent.
Let Tλ be an independent exponential random variable with parameter λ. Then

the Laplace transform of the process X taken at an exponential time is given by

E
[
exp

(
zXTλ

)] = λ

λ − ϕX(z)
.

For this expression we have the remarkable Wiener–Hopf factorization (Rogozin
1996), which is valid for general Lévy processes:

λ

λ − ϕX(z)
= ϕ+

λ (z)ϕ−
λ (z)

= E
[
exp

(
zXTλ

)]
E
[
exp

(
zXTλ

)]
.
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In other words, the Laplace transform of the process X at an independent
exponential time factorizes into the Laplace transforms of the running minimum
and the running maximum taken at an exponential time. The factors ϕ−

λ (z) and
ϕ+

λ (z), which are unique, are called the (left and right) Wiener–Hopf factors.
Moreover, classical Lévy process theory (see, for example, Bertoin 1996, Sato

1999, or Kyprianou 2006) shows that for a spectrally negative process the right
Wiener–Hopf factor equals

ϕ+
λ (z) = β∗

β∗ − z
,

where β∗ is a constant depending on λ : β∗ = β∗(λ), and that β∗ is a solution to

ϕX(β) = λ.

In other words, the running maximum at an exponential time (with parameter λ)
is exponentially distributed with parameter β∗ = ϕ

[−1]
X (λ).

It follows that

ϕ−
λ (z) = λ

λ − ϕX(z)

β∗ − z

β∗ .

Now note that by partial integration

ϕ−
λ (z) =

∫ t=∞

t=0

∫ x=0

x=−∞
λ exp(−λt) exp(zx)fXt

(x) dx dt

=
∫ t=∞

t=0

∫ x=0

x=−∞
λ exp(−λt) exp(zx)zP (Xt > x) dx dt

= λz

∫ t=∞

t=0

∫ x=0

x=−∞
exp(−λt) exp(zx)P (Xt > x) dx dt

= λ

λ − ϕX(z)

β∗ − z

β∗

Let us now focus on the time at which the running minimum crosses a barrier
x for the first time, that is,

τx = inf {t : Xt < x}

then we have that f (t, x) – by which we denote the probability that the minimum
stays above negative x in t units of time – is:

f (t, x) = P (τ−x > t) = P
(
Xt >−x

)
.
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Hence, we observe the double Laplace transform of f :

g(λ, z) =
∫ t=∞

t=0

∫ x=∞

x=0
exp(−λt − zx)f (t, x) dx dt

=
∫ t=∞

t=0

∫ x=0

x=−∞
exp(−λt + zx)P

(
Xt >x

)
dx dt

= β∗(λ) − z

(λ − ϕX(z)) β∗(λ)z
.

As shown in Madan and Schoutens (2008) it is possible, starting from this
equation, to show that f (t, x), the probability that the minimum stays above nega-
tive x in t units of time, can be obtained by the following double inverse Fourier
transform:

f (t, x) = − 1

(2π)2

∫
�1

∫
�2

exp(λt + zx)
β∗(λ) − z

(λ − ϕX(z)) β∗(λ)z
dλ dz,

where the contour �1 = {λ1 + iλ2|λ2 = −∞ · · · + ∞)} and the contour �2 = {z1 +
iz2|z2 = −∞ · · · + ∞)}.

This can be solved by making a contour change following Rogers (2000) and
using the so-called Abate and Whitt approximation for fixed t and x:

SN = h1h2

4π2

N∑
n=−N

N∑
m=−N

h′ (a1 + inh1) g(h(a1 + inh1), a2 + imh2)

× exp {h(a1t + inh1) + x(a2 + imh2)} ,

where i is the imaginary unit, h(λ) = ϕ(λ/µ) and h′(λ) its derivative.
In Madan and Schoutens (2008), it is suggested to take

a1 = A1

2t l1
and a2 = A2

2xl2

h1 = π

tl1
and h2 = π

xl2

A1 = A2 = 22

l1 = l2 = 1

N = 12

Finally, it is recommended to take an Euler summation

f (t, x) �
M∑

k=0

2−M

(
M

k

)
SN+k (4.13)

with, for example, M = 15.
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4.5.2 Illustration of the Pricing of Credit Default Swaps

The approach described in the previous section can be used to price CDSs. We focus
on three special cases of spectrally negative Lévy processes given by the shifted
Gamma (SG) process, the shifted CMY (SCMY) process, and the shifted inverse
Gaussian (SIG) process. For these processes the Lévy exponent and the function
h(λ) are reported in Table 4.3. Survival probabilities are obtained by using Equation
(4.13) and corresponding spreads are computed using Equation (4.3).

The models are calibrated on CDS market spreads, minimizing the absolute
error between model CDS quotes and market CDS quotes. As a data set, we use
the weekly data from all the 125 companies on the iTraxx over the year 2005.
So, we have 125 CDS curves for 52 weeks, making in total 6,500 CDS curves
with spread rates of 1, 3, 5, 7 and 10-year maturities. In Table 4.4, one finds a
comparison of the mean error over the 125 components for the different maturities
together with the total error and the average error per quote for the calibration on
the data set of 5 January 2005.

In Figure 4.7, the fit obtained under the different models for Electrolux AB on
that day is presented (◦ signs are market prices and + signs are calibrated model
prices). The SCMY model outperforms the SG and SIG, but also for the two latter
models the fit is very acceptable.

Figure 4.8 focuses on the time-evolution of the fits by showing (see keys to
figures) the average errors per quote over the 52 weeks for the SIG, SCMY model,
and the SG model. As expected, SCMY outperforms SG and SIG. Note that the
peak around week 20 corresponds to the autocorrelation crisis of May 2005. Since

Table 4.3 Lévy exponent and h(λ) for the the shifted gamma, shifted inverse Gaussian,
and shifted CMY processes

Model ϕ(z) h(λ)

SG µz − a log
(
1 + z

b

)
λ − a log

(
1 + λ

µb

)
SIG µz − a(

√
2z + b2 − b) λ − a(

√
2λµ−1 + b2 − b)

SCMY µz + C�(−Y)((M + z)Y − MY ) λ + C�(−Y)((M + λµ−1)Y − MY )

Table 4.4 Mean absolute error (in bps) for calibrations of different models on the 125
CDS in iTraxx on 5 January 2005

Model 1 y 3 y 5 y 7 y 10 y Total Average
per quote

SG 3.2088 0.6302 1.4056 0.0274 2.9150 8.1870 1.6374
SIG 2.8384 0.5689 1.3062 0.0280 2.7926 7.5342 1.5068
SCMY 1.4187 0.2203 0.6710 0.2262 1.4836 4.0199 0.8040
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Figure 4.7 Fit for Electrolux on 5 January 2005 under the SIG (top left plot), SG (top
right plot) and SCMY (bottom plot) models
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Figure 4.8 Evolution over time of the average calibration error per quote of SG, SIG and
SCMY on iTraxx in 2005

we are working with absolute errors, the peak does not necessarily correspond to
a worsening fit since, during that period, the average spread went up dramatically.
For the SCMY model, the evolution of the mean absolute error over time for each
maturity is shown in Figure 4.9.

4.6 DYNAMIC SPREAD GENERATOR

4.6.1 Generating Spread Paths

Having fast CDS pricers based on firm-value models, one can set up a dynamic
credit spread generator. Such a dynamic spread generator can be used to price other
types of credit derivatives like CMSs or options on CDSs.

We illustrate this procedure here for the single-sided models presented in the
previous section, but the procedures can be readily adapted to, for example, the
VG model or other double-sided models. Details of the procedure can be found
in Jönsson and Schoutens (2008 and 2009). In Jönsson and Schoutens (2009), the
dynamic spread generator is used to price Constant Maturity Credit Default Swaps
(CMCDSs).

For example, to generate spreads, we introduce stochasticity in the firm-value
process. Keeping the default barrier fixed, if the firm-value process is increasing,
the distance to the default barrier is bigger and hence the probability of hitting



78 Firm-Value Lévy Models
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Figure 4.9 Evolution over time of the average calibration error per maturity of SCMY on
iTraxx in 2005

it decreases. Recalculating spreads with these lower default probabilities gives a
lower spread. If the firm value decreases, one gets closer to the default barrier. The
default probability hence increases which translates in higher spreads. Fluctuations
in the firm’s value hence translates in fluctuations in the default probabilities, which
in their turn translates in fluctuations in the fair spreads.

To be more precise, the following steps need to be taken:

1. Calibrate the model on a given term structure of market spreads. In this way
the optimal parameters which best fit the market spreads are obtained.

2. Using the default barrier assumed in the calibration, recalculate CDS spread
for different initial firm-values V0. More precisely, take a fine grid of initial
firm asset values {v1, v2, . . . , vk}, precalculate using the optimal parameters
and via Equation (4.13) the corresponding survival probabilities and spreads
{cT −CDS

1 , cT −CDS
2 , . . . , cT −CDS

k }. Note that if the new start value vi < V0, this
will lead to a typically higher spread and default probabilities because, from the
start, one is already closer by the default barrier. When, vi > V0 one has the
opposite situation.

3. Generate a firm’s asset value path on a time grid {t1, t2, . . . , tn}, Ṽ = {Ṽt ,

t = t1, . . . , tn}. For each point in the time grid the corresponding spread is
obtained by interpolating Ṽtj on {v1, v2, . . . , vk} and in its corresponding
{cT −CDS

1 , cT −CDS
2 , . . . , cT −CDS

k } values.
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Note that, going into the implementation details, it turns out that it is often
computationally more efficient to set up a grid for the barriers and think in terms
of percentage distance to default. For example, a situation V0 = 100 and L = 50
has a percentage distance to default of (100 − 50)/100 = 50%. A situation V0 =
150, L = 50 has a percentage distances to default of (150 − 50)/150 = 66.67%.
Increasing the firm’s value hence increase the percentage distance to default. How-
ever the situation V0 = 100 and L = 33.33 has also the same percentage distance
to default of (100 − 33.33)/100 = 66.67%; lowering the barrier increases the dis-
tance. Because actually only this percentage distance to default is determining the
default probabilities (default probabilities only depend on the ratio of V0 and L

as can be seen from Equation (4.5)), one can also just set up a grid of different
barrier values and calculate for these default probabilities and spreads. Then, for
the different barrier values in the grid, one can calculate percentage distances to
default and translate these into a grid of initial values for the firm.

In Figure 4.10, we see a path of a firm’s value process under the Shifted Gamma
model and its corresponding spread evolution. The parameters of the Gamma model
are obtained by a calibration of the spread structure of BAE Systems on 5 January
2005 (a = 1.2028 and b = 5.9720).

Once a fast spread generator is implemented, we are set to price by Monte Carlo
methods all kinds of (exotic) European structures on the evolution of the spread of
a single-name CDS. In the next section we will illustrate this by pricing options
on CDSs.
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Figure 4.10 Spread path – BAE Systems. Underlying model is the Shifted Gamma with
a = 1.2028 and b = 5.9720. Spot par spread C0 = 43
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4.6.2 Pricing of Options on CDSs

Using the dynamic spread generator just introduced, it is possible to price receiver
and payer options on a CDS, using Equations (3.11) and (3.12) in Chapter 3. Let
us rewrite these equations using a notation which makes reference to the fact that
we are working under a firm-value model. Let us denote with

cT −CDS
0 = cT −CDS

0 (V0, R, r, T , θ)

the par spread of a CDS with maturity T at time t = 0. The notation stresses that
the value of the spreads depends upon the firm’s initial value V0, the recovery rate
R, the risk-free rate r , and the vector of parameters θ describing the underlying
Lévy process. Similarly, the price to enter into a CDS agreement at time zero for
a contract paying c premium can be denoted by:

CDST −CDS
0 (c) = CDST −CDS

0 (V0, R, r, T , θ, c).

Note that CDST −CDS
0 (V0, R, r, T , θ, cT −CDS

0 ) = 0.
Consider a European option on a CDS with maturity T ∗. Its payoff depends on

the spread value at T ∗ and, in general, the payoff can depend on the full evolution
of the spread until the option’s maturity. For this reason let us denote the spread
price and the so-called upfront price for a spread c at time t by:

cT −CDS
t = cT −CDS

t (Vt , R, r, T , θ), t ≥ 0

CDST −CDS
t (c) = CDST −CDS

t (Vt , R, r, T , θ, c).

Again, we have CDST −CDS
t (Vt , R, r, T , θ, cT −CDS

t ) = 0. For simplicity of notation,
let us drop the superscript T −CDS for the remainder of this section.

Let us write F({CDSt , 0 ≤ t ≤ T ∗}, (τ < T ∗)) for the payoff function to indi-
cate that it depends on the full path of the upfront (or equivalently the spread) and
on whether default occurred before maturity or not. Following this notation, the
prices of the receiver and payer options with maturity T ∗ and spread K given by
Equations (3.11) and (3.12) become:

�R
0 (T ∗, K) = exp(−rT ∗)E[(CDST ∗(VT ∗ , R, r, T , θ, cT ∗)

− CDST ∗(VT ∗ , R, r, T , θ, K))+ (τ >T ∗)]

= exp(−rT ∗)E[(−CDST ∗(VT ∗, R, r, T , θ, K))+|τ >T ∗]PSurv(T
∗)

�P
0(T

∗, K) = exp(−rT ∗)E[(CDST ∗(VT ∗ , R, r, T , θ, K)

− CDST ∗(VT ∗ , R, r, T , θ, cT ∗))+ (τ >T ∗)]

= exp(−rT ∗)E[(CDST ∗(VT ∗ , R, r, T , θ, K))+|τ >T ∗]PSurv(T
∗).
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Figure 4.11 One-year receiver option prices – Shifted Gamma model – BAE Systems
CDS with 5-year maturity. Underlying model is the Shifted Gamma with a = 1.2028 and
b = 5.9720

The expected values in the above equations can be easily estimated via Monte
Carlo simulation using the dynamic spread generator: the evolution of the asset
value is mapped back into the evolution of the spread.

In Figure 4.11 one finds the prices for 1-year receiver options on the BAE
Systems CDS with 5-year maturity for a whole range of strike spreads calculated
using the Shifted Gamma model with optimal parameters a = 1.2028 and b =
5.9720 given by calibrating the model to the BAE Systems spread term structure
on 5 January 2005. The spot (par) spread and the forward spread was c0 = 43 and
47 basis points, respectively.

4.6.3 Black’s Formulas and Implied Volatility

The market standard for pricing options on CDSs is Black’s model, which is based
on the assumption that the credit spread follows a geometric Brownian motion.
The Black formulas for payer and receiver swaptions with maturity T ∗ (see Hull
and White 2003) are, respectively:

�P
0(T

∗, K)BS = A0(T
∗, T )(c(T ∗,T ∗+T )−Fwd�(d1) − K�(d2))

�R
0 (T ∗, K)BS = A0(T

∗, T )(K�(−d2) − c(T ∗,T ∗+T )−Fwd�(−d1)),
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where T is the CDS maturity, � is the distribution function for a random variable X

that is Standard Normally distributed, c(t,t+T )−Fwd is the present value of a forward
spread given by Equation (3.8), A0(T

∗, T ) is the so-called forward risky annuity
given by A0(T

∗, T ) = (A(0, T ) − A(0, T ∗)) (see Equation (3.2)), and finally

d1 = log(c(T ∗,T ∗+T )−Fwd/K) + σ 2T ∗/2

σ
√

T
∗

d2 = d1 − σ
√

T ∗.

Given the forward spread and risky annuities we can calculate the implied vola-
tilities for payers and receivers written on the same underlying CDS with different
strikes, which are reported in Table 4.5 and Table 4.6, respectively. We have
assumed a flat term structure of interest rates of 3%. The values of the options
are generated using a Shifted Gamma model.

Table 4.5 The estimated values of a European payer with maturity
0.25 year to enter into a single-name CDS (BAE Systems) with a
5-year maturity and the corresponding Black’s implied volatilities.
The forward spread is 47 bps. The parameters of the underlying
Shifted Gamma model are a = 1.2028 and b = 5.9720

Strike (bp) Payer Implied vol (%)

40.0 0.003710 42.4
42.0 0.003414 52.0
44.0 0.003164 59.1
46.0 0.002948 64.8
48.0 0.002758 69.7
50.0 0.002589 73.9

Table 4.6 The estimated values of a European receiver with ma-
turity 0.25 year to enter into a single-name CDS (BAE Systems) with
a 5-year maturity and the corresponding Black’s implied volatilities.
The forward spread is 47 bps. The parameters of the underlying
Shifted Gamma model are a = 1.2028 and b = 5.9720

Strike (bp) Receiver Implied vol (%)

40.0 0.001025 57.9
42.0 0.001636 65.3
44.0 0.002293 71.4
46.0 0.002984 76.6
48.0 0.003702 81.3
50.0 0.004440 85.4
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APPENDIX: SOLUTION OF THE PDIE

This appendix solves the partial integral differential Equation (4.10). In the finite
difference discretization of Equation (4.10), a mixed approach is used. For the
evaluation of the jumps term, the integrand is expanded near its singularity at
zero and this part is treated implicitly. The rest of the integral is instead treated
explicitly, in order for the scheme to be computationally affordable. On the rest of
the PDIE, a fully implicit approach is used.

We consider M equally spaced subintervals in the τ direction. For the x direction
we assume N equally spaced sub intervals on [xmin, xmax]. Denoting by

�x = (xmax − xmin)/N and �τ = T /M,

this leads to the following mesh on [xmin, xmax] × [0, T ]:

D = {(xi, τj ) ∈ R
+ × R

+|xi = xmin + i�x,

i = 0, 1, . . . , N; τj = j�τ, j = 0, 1, . . . , M}.
Let wi,j be the discrete value of w(xi, τj ) on D. Using the first-order finite

difference approximation for ∂w/∂τ and central difference for ∂w/∂x, we obtain
the following discrete equation at point (xi, τj+1):∫ +∞

−∞

[
w(xi + y, τj ) − w(xi, τj )

]
ν(dy) − 1

�τ
(wi,j+1 − wi,j )

+ (r + ω)
1

2�x
(wi+1,j+1 − wi−1,j+1) − rwi,j+1 = 0. (4.14)

Equivalently,

(r + ω)
�τ

2�x
wi−1,j+1 − (r + ω)

�τ

2�x
wi+1,j+1 + (1 + r�τ)wi,j+1

=wi,j + �τ

∫ +∞

−∞

[
w(xi + y, τj ) − w(xi, τj )

]
ν(dy) (4.15)

where wi,0 = 1 if exp(xi) < K , and zero otherwise.
For the evaluation of the jump integral we use an analytical approach to the sin-

gularity at zero combined with an explicit approach. We divide it into six integrals,
respectively, given by A1, A2, A3, A4, A5 and A6:∫ +∞

−∞

[
w(xi + y, τj ) − w(xi, τj )

]
k(dy) =

∫ xmin−xi

−∞

[
w(xi + y, τj ) − w(xi, τj )

]
ν(dy)

+
∫ −�x

xmin−xi

[
w(xi + y, τj ) − w(xi, τj )

]
ν(dy)

+
∫ 0

−�x

[
w(xi + y, τj ) − w(xi, τj )

]
ν(dy)



84 Firm-Value Lévy Models

+
∫ �x

0

[
w(xi + y, τj ) − w(xi, τj )

]
ν(dy)

+
∫ xmax−xi

�x

[
w(xi + y, τj ) − w(xi, τj )

]
ν(dy)

+
∫ ∞

xmax−xi

[
w(xi + y, τj ) − w(xi, τj )

]
ν(dy)

= A1 + A2 + A3 + A4 + A5 + A6 (4.16)

Denoting with

exp int(x) =
∫ ∞

x

exp(−y)

y
dy,

the exponential integral function, we have, by following Hirsa and Madan (2003):

A1
∼= ν−1(exp(−rtj ) − wi,j )exp int(i�xλn)

A2
∼=

i−1∑
k=1

ν−1[wi−k,j − wi,j − k(wi−k−1,j − wi−k,j )][exp int(k�xλn)

− exp int((k + 1)�xλn)] +
i−1∑
k=1

(λnν�x)−1(wi−k−1,j − wi−k,j )

× (exp(−λnk�x) − exp(−λn(k + 1)�x))

A3
∼= (ν�xλn)

−1(1 − exp(−λn�x))(wi−1,j − wi,j )

A4
∼= (ν�xλp)−1(1 − exp(−λp�x))(wi+1,j − wi,j )

A5
∼=

N−i−1∑
k=1

ν−1[wi+k,j − wi,j − k(wi+k+1,j − wi+k,j )][exp int(k�xλp)

− exp int((k + 1)�xλp)] +
N−i−1∑

k=1

(λpν�x)−1(wi+k+1,j − wi+k,j )

× (exp(−λpk�x) − exp(−λp(k + 1)�x))

A6
∼= ν−1wi,j exp int((N − i)�xλp),

since, for y ∈ (−∞, xmin − xi), we have w(xi + y, tj ) ∼= exp(−rt) and for y ∈
(xmax − xi, ∞), we have w(xi + y, tj ) ∼= 0.

Putting all the pieces together, we obtain the following difference equation at
the points (xi, τj+1):

Awi−1,j+1 + Biwi,j+1 − Cwi+1,j+1 = wi,j + ν−1�τRi,j , (4.17)
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where

A = (r + ω)
�τ

2�x
− (1 − exp(−λn�x))

�τ

ν�xλn

Bi = 1 + r�τ + (1 − exp(−λn�x))
�τ

ν�xλn

+ (1 − exp(−λp�x))
�τ

ν�xλp

+ �τ

ν

(
exp int(i�xλn) + exp int((N − i)�xλp)

)
C = (r + ω)

�τ

2�x
+ (1 − exp(−λp�x))

�τ

ν�xλp

Ri,j =
i−1∑
k=1

(wi−k,j − wi,j − k(wi−k−1,j − wi−k,j ))(exp int(k�xλn)

− exp int((k + 1)�xλn)) +
i−1∑
k=1

(λn�x)−1(wi−k−1,j − wi−k,j )

× (exp(−λnk�x) − exp(−λn(k + 1)�x))

+
N−i−1∑

k=1

(wi+k,j − wi,j − k(wi+k+1,j − wi+k,j ))(exp int(k�xλp)

− exp int((k + 1)�xλp)) +
N−i−1∑

k=1

(λp�x)−1(wi+k+1,j − wi+k,j )

× (exp(−λpk�x) − exp(−λp(k + 1)�x)) + exp(−rτj )exp int(i�xλn)

Assuming that at time τj we know the values wi,j , we compute for time τj+1 the
values wi,j+1 by solving the above (tridiagonal) linear system. We always impose
the boundary conditions when i = 1 or i = N .
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Intensity Lévy Models

5.1 INTENSITY MODELS FOR CREDIT RISK

Intensity-based models, known also as hazard rate or reduced-form models, focus
directly on modelling the default probability. The basic idea lies in the fact that at
any instant there is a probability that an obligor will default, which depends on its
overall health. This probability is assumed to be modelled via a counting process
N = {Nt, 0 ≤ t ≤ T } with intensity λ = {λt , 0 ≤ t ≤ T }, which thus determines
the price of credit risk. In fact, default is assumed to occur at the first jump time
of the counting process N = {Nt, 0 ≤ t ≤ T }.

The intensity can be deterministic or stochastic and models the default rate for
the reference entity. Under this setting the time of default τ can be thought of as
a stopping time, i.e. a random variable whose occurrence can be observed at each
point in time. To understand the meaning of the default intensity, assume that the
reference entity has survived up to time t and let us indicate with τ the default
time. The intensity of default is defined as:

λt = lim
h→0

P(t < τ ≤ t + h|τ > t)

h
. (5.1)

This equation tells us that, roughly speaking, for a small time interval �t > 0:

P(τ ≤ t + �t |τ > t) ≈ λt�t.

In the remainder of this section we will present some intensity-based models,
starting with a deterministic default intensity and moving subsequently to stochastic
diffusion models for λ = {λt , 0 ≤ t ≤ T }.

5.1.1 Jarrow–Turnbull Model

Homogeneous Case. A standard example of counting process is the homogeneous
Poisson (HP) process with constant default intensity λ > 0 (for details on the
Poisson process see also Section 2.3.1 of Chapter 2). The corresponding default
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model was developed by Jarrow and Turnbull (1995). Under this model the prob-
ability of surviving from time 0 to time t is given by

P HP
Surv(t) = exp(−λt), (5.2)

which corresponds to an expected time of default τ = 1/λ.
The probability equals the probability that the counting process – in this case

a homogeneous Poisson process N = {Nt, t ≥ 0} with intensity parameter λ – has
not jumped (and hence the company has not defaulted) up to time t :

P(Nt = 0) = exp(−λt).

For example, at a constant default intensity of λ = 0.1, the probability of default
in 5 years is around 9.52%, and the expected time of default is approximatively
10 years. Figure 5.1 shows the evolution of the survival and default probabilities
in this case.

Inhomogeneous Case. Since it is natural to assume that the default intensity varies
over time, some generalizations of the Jarrow–Turnbull allow the default intensities
to be a deterministic function of time, λ = {λt , 0 ≤ t ≤ T }, leading to the so-called
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Figure 5.1 Evolution of the survival (solid line) and default (dotted line) probabilities for
the Poisson model with constant default intensity of λ = 0.1
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inhomogeneous Poisson (IHP) process. The probability of survive from time 0 to
time t is given by:

P IHP
Surv(t) = exp

(
−
∫ t

0
λs ds

)
. (5.3)

As a special case we consider a piecewise constant default intensity:

λt = Kj, Tj−1 ≤ t < Tj , j = 1, 2, . . . , 5. (5.4)

In this case we have that the survival probability is:

P IHP
Surv(t) =



exp (−K1t) 0 ≤ t < T1

exp (−K1T1 − K2(t − T1)) T1 ≤ t < T2

exp (−K1T1 − K2(T2 − T1) − K3(t − T2)) T2 ≤ t < T3

exp

−
3∑

j=1

Kj(Tj − Tj−1) − K4(t − T3)

 T3 ≤ t < T4

exp

−
4∑

j=1

Kj(Tj − Tj−1) − K5(t − T4)

 T4 ≤ t ≤ T5

(5.5)

where we have set T0 = 0 for notational convenience.
Figure 5.2 shows the behaviour of the survival and default probabilities for an

inhomogeneous Poisson model. In particular, we consider a time horizon of T = 10
years and a piecewise constant default intensity of the form (5.5) with the following
parameters:

T1 = 1 year K1 = 0.02

T2 = 3 years K2 = 0.05

T3 = 5 years K3 = 0.07

T4 = 7 years K4 = 0.10

T5 = 10 years K5 = 0.13.

(5.6)

This model is also often used to extract default probabilities out of a given
CDS curve. The idea is simple: assume that we have data for n maturities Ti ,
i = 1, . . . , n. At these maturities one allows the model to switch to a new level Ki :

λt = Kj, Tj−1 ≤ t < Tj , j = 1, 2, . . . , n. (5.7)

Actually one then has as many parameters in the model as data point on the
CDS curve and is able to exactly fit the market data by a so-called bootstrapping
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Figure 5.2 Evolution of the survival (solid line) and default (dotted line) probabilities (top
plot) for the inhomogeneous Poisson model with piecewise constant default intensity of
Equation (5.6). The corresponding default intensity dynamics is shown in the bottom plot
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procedure. Out of the CDS spread of the first maturity one calculates K1. Then
one fixes this and considers the CDS curve up to the second maturity. One then
looks for the K2 that can also match the CDS spread at the second maturity (the
first maturity is already fitted). Once this K2 is found, one moves on to the next
maturity and so on until the last maturity.

5.1.2 Cox Models

Considering a deterministic intensity implies that the only flow of information
available and relevant for default risk is the survival to date (Duffie and Singleton
2003). In order to consider that different information on the creditworthiness of the
reference entity will be accessible as time passes, various approaches have been
developed that, for instance, link the value of the intensity to other state variables.

In general, a well-accepted approach is to allow for stochastic default intensities
λ = {λt , 0 ≤ t ≤ T }, intuitively meaning that there is uncertainty about future stress
periods of the reference entity. These models are often referred to as doubly stochas-
tic to indicate that there are two sources of randomness. On one hand, we have
the stochastic behaviour of the default intensity λ = {λt , 0 ≤ t ≤ T }. On the other
hand, conditional on the process λ = {λt , 0 ≤ t ≤ T }, we have the inhomogeneous
Poisson process with intensity λ, describing the arrival of default. When dealing
with stochastic default intensities, the corresponding counting processes are called
Cox-processes. Duffie and Singleton (1999) developed the theory of basic affine
intensities, which not only cover, for instance, the case of the Cox–Ingersoll–Ross
(CIR) model (Cox et al. 1985) but also allow for jumps in the hazard dynam-
ics. Affine processes and their applications in finance are exhaustively covered by
Duffie et al. (2003). A non-technical summary is included in Duffie and Singleton
(2003).

Under these hypotheses, the survival probability up to time t is given by:

P DS
Surv(t) = P (τ > t) = E

[
exp

(
−
∫ t

0
λs ds

)]
.

This expression can be obtained by using the property of the iterated expectation
(or tower rule), by conditioning on the {λt , 0 ≤ t ≤ T } process and noting that, if
one knows the realization of this intensity process, one is actually working under
the above described inhomogeneous Poisson model for which formula (5.3) holds.

As an example of a Cox model driven by a diffusion process, we consider the
following, based on CIR dynamics (Cox et al. 1985). Assume that the default
intensity λ = {λt , 0 ≤ t ≤ T } is described by the following stochastic differential
equation:

dλt = κ(η − λt) dt + ϑ
√

λt dWt, λ0 > 0

where W = {Wt, 0 ≤ t ≤ T } is a standard Brownian motion, η is the long-run level,
κ is the rate of mean reversion, and ϑ governs the volatility of intensity process.
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Figure 5.3 Left plot: survival (solid line) and default (dotted line) probabilities for a CIR
model with parameterization (κ = 0.1, η = 0.3, ϑ = 0.2, λ0 = 0.02). Right plot: correspond-
ing CIR process

Under this model, the survival probability up to time t is given by:

P CIR
Surv(t) = φCIR(i, t; κ, η, ϑ, λ0) (5.8)

= exp(κ2ηt/ϑ2)exp(−2λ0/(κ + γ coth(γ t/2)))

(coth(γ t/2) + κ sinh(γ t/2)/γ )2κη/ϑ2 ,

where γ = √
κ2 + 2λ2.

This expression for the survival probability is linked to the fact that PSurv(t) can
be expressed in terms of the characteristic function of the integrated process (see
Chapter 2), as also discussed in Section 5.2:

�t =
∫ t

0
λs ds.

A closed-form expression for the characteristic function of the CIR integrated
process is given by Cox et al., (1985):

φCIR(u, t; κ, η, ϑ, λ0) = exp(κ2ηt/ϑ2)exp(2λ0iu/(κ + γ coth(γ t/2)))

(coth(γ t/2) + κ sinh(γ t/2)/γ )2κη/ϑ2 ,

where γ = √
κ2 − 2λ2iu.

Figure 5.3 (left plot) shows the behaviour of the survival (solid line) and default
(dotted line) probabilities under a CIR model; the right plot presents the corre-
sponding CIR process.

5.2 THE INTENSITY-OU MODEL

Consider a reduced-form model with intensity of default λ = {λt , 0 ≤ t ≤ T }.
Assume that λ follows a Gamma-OU or an IG-OU process, as described in
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Section 2.4 of Chapter 2. Hence, the intensity process is modelled by the stochastic
differential equation:

dλt = −ϑλt dt + dzϑt , λ0 > 0,

where ϑ is the arbitrary positive rate parameter and z = {zt , 0 ≤ t ≤ T } is the Back-
ground Driving Lévy Process (BDLP), which we assume to be a non-decreasing
Lévy process in order to force the intensity process to be positive. Note that the
Gamma-OU case can be rephrased as a special case of the basic affine model
introduced by Duffie and Singleton (1999):

dλt = ϑ(κ − λt)dt + σ
√

λt dWt + �Jt ,

where W = {Wt, 0 ≤ t ≤ T } is a standard Brownian motion, and �Jt denotes any
jump of a pure jump process J = {Jt , 0 ≤ t ≤ T } occurring at time t . J = {Jt , 0 ≤
t ≤ T } is independent of W = {Wt, 0 ≤ t ≤ T } and has jump sizes independent
and exponentially distributed with mean µ and arrival rate lϑ . The Gamma-OU
process can be reformulated under this notation by setting σ = 0, κ = 0, l = a and
µ = 1/b.

The time of default τ is defined as the first jump of the jump process N =
{Nt, 0 ≤ t ≤ T } with intensity of default λ = {λt , 0 ≤ t ≤ T }:

τ = inf{t ∈ R
+|Nt > 0}.

The implied survival probability from 0 to t is given by:

P OU
Surv(t) = P(τ > t)

= E

[
exp

(
−
∫ t

0
λsds

)]
(5.9)

= E
[
exp (−Yt )

]
,

where Yt = ∫ t

0 λsds is the intOU process introduced in Chapter 2.
For the Gamma-OU and the IG-OU dynamics, using Equations (2.17) and (2.20),

we obtain the following closed-form solutions for the survival probabilities:

P Gamma-OU
Surv (t) = E

[
exp

(
−
∫ t

0
λs ds

)]
= φGamma-OU(i, t; ϑ, a, b, λ0)

= exp

(−y0

ϑ
(1 − e−ϑt ) − ϑa

1 + ϑb

×
(

b log

(
b

b + ϑ−1(1 − e−ϑt )

)
+ t

))
, (5.10)
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P IG-OU
Surv (t) = E

[
exp

(
−
∫ t

0
λsds

)]
= φIG-OU(i, t; ϑ, a, b, λ0)

= exp

[−y0

λ
(1 − exp(−λt)) − 2a

bλ
A(i, t)

]
, (5.11)

where the function A is given by Equation (2.20).
For the Gamma-OU model, we note that the ratio a/b is the average jump size of

the compound Poisson process of the BDLP. Moreover, the parameter a is related
to the frequency of the jumps of the BDLP: the higher a, the more frequent the
jumps. Increasing the average jump size and frequency results in a decrease in the
survival probabilities.
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Figure 5.4 Left plot: survival (solid line) and default (dotted line) probabilities for the
Gamma-OU model with parameterization (ϑ = 0.2, a = 5, b = 50, λ0 = 0.05). Right plot:
corresponding Gamma-OU processes
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Figure 5.5 Left plot: survival (solid line) and default (dotted line) probabilities for the
IG-OU model with (ϑ = 0.3, a = 0.8, b = 5, λ0 = 0.02). Right plot: corresponding IG-OU
processes
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For the IG-OU model, the dynamics is a bit more involved since the BDLP is a
sum of two processes (see Section 2.4.2 of Chapter 2).

In Figures 5.4 and 5.5 we calculate default and survival probabilities under the
Gamma-OU model and the IG-OU model respectively (left plots); we also plot a
realization of the intensity process under the respective models (right plots).

5.3 CALIBRATION OF THE MODEL ON CDS TERM
STRUCTURES

Under the Gamma-OU and IG-OU dynamics it is possible to estimate the CDS par
spread of Equation (4.3)

cT −CDS = (1 − R)
∑n

i=1 D(0, ti)(PSurv(ti−1) − PSurv(ti))∑n
i=1 D(0, ti)PSurv(ti)�ti

.

using Equations (5.10) and (5.11) for the survival probabilities. We calibrate our
intensity-OU models to the CDS term structures of the iTraxx Europe Index,
as described in Section 3.1.2. Each term structure includes prices of CDSs for
five different times to maturity (respectively T1 = 1, T2 = 3, T3 = 5, T4 = 7, and
T5 = 10 years). In our exercise, we set for convenience T0 = 0. For each component
the database includes the complete weekly time series from 5 January 2005 to
8 February 2006. In the calibrations the discounting factor D ={D(0, t), 0 ≤ t ≤ T }
is taken from the (bond) market on the corresponding day. The recovery rate
for all the iTraxx Europe Index assets is fixed at R = 40%. The Central Pro-
cessing Unit time required to calibrate our OU-model to all the 125 CDS term
structures together for a given point in time (i.e. for a given week) is around
1 minute.

For comparison purposes, the capabilities of the OU model are tested by cali-
brating on the same term structures the following models:

(1) the homogeneous Poisson (HP) model (Jarrow and Turnbull 1995), see
Equation (5.2);

(2) the inhomogeneous Poisson (IHP) model with piecewise constant default inten-
sity, see Equations (5.4) and (5.5);

(3) the Cox–Ingersoll–Ross (CIR) model (Cox et al. 1985), see Equation (5.8).

To discuss the outcomes, we concentrate on two companies of the iTraxx, Zurich
Insurance and Continental, and in Table 5.1 on page 98 present the calibration
results matching market data as of 21 July 2005. Market CDS prices are compared
with the prices obtained using the models. For each calibration the RMSE values
are also given. Figures 5.6 and 5.7 visualize the calibrated term structures (top
plots) and the default probabilities as a function of time (bottom plots) for the five
models. Market data are represented by the circles.
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Figure 5.6 Term structures (top plot) and default probabilities (bottom plots) for Zurich
Insurance for the five models
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Table 5.1 Examples of calibrated CDS term structures versus market data (in bp), with
corresponding RMSE values

Company 1 y 3 y 5 y 7 y 10 y RSME

Zurich Market 19 35 48 56 62
Insurance HP 44 44 44 44 44 15.43

IHP 19 35 48 56 62 –
CIR 22 36 47 55 63 1.61
GOU 22 36 47 55 64 1.79
IG-OU 19 36 48 55 63 0.77

Continental Market 13 26 36 42 47
HP 33 33 33 33 33 12.12
IHP 13 26 36 42 47 –
CIR 17 27 35 41 48 2.00
GOU 17 27 34 41 48 2.14
IG-OU 13 27 36 42 47 0.45

Results highlight the complete failure of the HP model to match market data.
Concerning the IHP case, the model can match perfectly the market quotes; how-
ever, the behaviour of the term structure between two subsequent time horizons
is often rather doubtful, due to the piecewise constant assumption. The CIR,
Gamma-OU and IG-OU models can all be nicely calibrated to market data.



Part III
Multivariate Modelling





6
Multivariate Credit Products

Credit markets have seen an explosive growth over the last decade. New multivari-
ate products, like CDOs, CDO2, CCPIs, CPDOs, have been brought to the market
and some of them have an unprecedented complexity. In this chapter we give an
overview of the most popular multivariate credit derivatives, like credit indices and
CDO structures. In Chapter 9 we go into detail for the more exotic products.

In the modelling of multivariate products, i.e. products that depend on several
underliers, the dependency among the underlying instruments is of crucial impor-
tance. However, as always, a balance needs to be maintained between sophistication
and tractability. Often, therefore, one is looking for quite simple dependency struc-
tures (even often summarized in only one number – correlation). It needs to be
said that clearly the world is much more complex and extreme care must be taken
in the blind belief of such simplistic models.

6.1 CDOs

In this section we describe so-called (Synthetic) Collateralized Credit Obligations
(CDOs). These products are complex multivariate credit risk derivatives. Essen-
tially, a CDO transfers the credit risk of a reference portfolio of assets in a tranched
way. Losses are applied in reverse order of seniority. Hence losses will first affect
the lowest tranche (often referred to as the equity tranche), next the so-called mez-
zanine tranches, and finally the senior tranches. Figure 6.1 shows schematically
how a CDO is built. Each tranche is defined in terms of upper and lower points
representing the percentage of the total notional covered by the tranche itself. The
lower point is usually referred to as the attachment point while the upper one is
known as the detachment point. For instance for the mezzanine tranche in Figure 6.1
the attachment and detachment points are 6% and 9% respectively. Each tranche
receives a periodic payment (the swap premium). Clearly, lower tranches offer
higher coupons (spreads) to compensate for the added default risk.

The first CDO was issued in 1987 by bankers at now-defunct Drexel Burn-
ham Lambert Inc. for Imperial Savings Association, a savings institution that later
became insolvent and was taken over by the Resolution Trust Corporation.

Cash CDOs involve a portfolio of cash assets, such as loans, corporate bonds,
asset-backed securities or mortgage-backed securities. Ownership of the assets is
transferred to a legal entity (known as a special purpose vehicle, or SPV) issuing
the CDO’s tranches. Synthetic CDOs holders do not own cash assets like bonds or
loans. Instead, synthetic CDOs holders gain credit exposure to a portfolio of fixed
income assets without owning those assets through the use of CDSs. Hybrid CDOs
are an intermediate instrument between cash CDOs and synthetic CDOs.
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Figure 6.1 CDO mechanisme and CDO tranches

There exist some standardized synthetic CDOs: the most popular ones are the
CDOs based on the portfolio of CDSs in the iTraxx Europe Main index and the
Dow Jones CDX.NA.IG index. The tranches points are 3, 6, 9, 12 and 22% for
the former and 3, 7, 10, 15 and 30% for the latter. So, unlike ‘bespoke’ tranches,
index tranches have standardized documentation and use standard attachment and
detachment points. Index tranches are quoted on all the maturities of the indices,
which are 3, 5, 7 and 10 years.

A CDO tranche is typically quoted with an upfront and a running spread. The
upfront is the percentage of the notional that one receives upfront (i.e. when the
deal is struck) if one sells protection: the running spread is the yearly spread that
one (additionally) receives during the lifetime of the tranche. It often turns out that
upfront is agreed to be zero for most tranches. This is the case for the standardized
iTraxx and CDX CDOs; for these very popular CDOs only the [0–3%] tranche
has an upfront until end of 2008. Since beginning of 2009, the CDX [3%–7%]
tranche has also an upfront. For all these tranches, for the moment the running
spread is fixed at 500 bp and it is the upfront (in percentage points) that is quoted
and fluctuates over time.

For example, the situation on 16 October 2008 for the iTraxx Europe Main
tranches (Series 10) for the 5-year structure is given in Table 6.1; the situation for
the Dow Jones CDX NA IG is summarized in Table 6.2.

In order to understand the CDO mechanism, it is sometimes useful to think
about it as a bath that can be filled with water. Imagine that we have a CDO of
125 companies and that, in the case of default, each company has a recovery, R of
say 40%. Then each default among the 125 companies fills the ‘100 litre bath’ with
100 × (1 − R)/125 = 0.48 litres of water. If you have sold protection on a certain
tranche, you receive a fee on the amount of your tranche that is not under water.
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Table 6.1 iTraxx Europe Main (5-year) Tranches on
16 October 2008 (Series 10)

Tranche Upfront (%) Running spread (bps)

[0%–3%] 59.57 500
[3%–6%] 0 1086.58
[6%–9%] 0 576.66
[9%–12%] 0 288.12
[12%–22%] 0 115.99
[22%–100%] 0 41.89

Table 6.2 Dow Jones CDX.NA.IG (5-year) Tranches
on 16 October 2008 (Series 11)

Tranche Upfront (%) Running spread (bps)

[0%–3%] 73.12 500
[3%–7%] 0 1389.20
[7%–10%] 0 740.80
[10%–15%] 0 330.60
[15%–30%] 0 80.80
[30%–100%] 0 51.10

So if the [3%–6%] tranche is quoted 1086.58 bps on a 5-year CDO and you
decide to sell protection for 100m EUR, you receive per year 10.8658m EUR
for 5 years or until the 7th default in the list of 125 companies. Indeed, if each
default adds 0.48 litres of water, then your tranche is coming partially under water
after the 7th default. The bath is then filled up to 7 × 0.48 = 3.36 litres and your
tranche starts at the 3-litre level. If the 7th default occurs, you have to pay out
100 × 0.36/3 = 12m EUR, because 0.36 litre of your total 3-litre-thick tranche is
under water, meaning, that 12% is now under water. From then on you receive
a premium of only 0.88 × 10.8658 = 9.5620m EUR per year because only 88%
of the tranche is still above water. For each other default you have to pay out
an additional 16m EUR (100m × 0.48/3) and your yearly fee payment is reduced
by 0.16 × 10.8658 = 1.7385m EUR. You do this until maturity or until the 13th
default. Immediately before the 13th default your tranche is filled up to the 12 ×
0.48 = 5.76-litre level. With the 13th default the full tranche is now under water
and for the final part you have to pay 100 × 0.24/3 = 8m EUR. All your 100m
EUR has then been spent. Your maximum profit over 5 years (ignoring discount
factors) is 54.329m EUR (if there were only 6 defaults or less). Your maximum
loss over 5 years is 100m EUR (if there are 13 or more defaults). To be fully
correct we also have to note that, in the case of a default, the super-senior tranche
is reduced in size with a recovery value (100 × R/125 = 0.32 litres of water) and
that, after a default, a spread is no longer received on that part.
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Figure 6.2 Example of 5-year CDO cash flows for the protection seller of the [3%–6%]
tranche

The timing of the defaults are, of course, also very important. Let us focus
on the previous example of a 5-year CDO and take again the [3%–6%] tranche.
Hypothesize that we have six defaults during the first year: one just at the end of
the second year, none in the third year, two at the end of the fourth year, and one
just before the CDO expires in year 5. We note that the example is constructed in
such a way that no accrued payments are needed. The cash flows for the protection
seller (see also Figure 6.2) are as follows:

• For the first year, the protection seller will receive the complete yearly fee of
10.8658m EUR and will pay out zero, since no loss will affect the tranche.

• For the second year, the protection seller will receive the complete yearly fee
of 10.8658m EUR and pay out 12m EUR at the end of the year when the 7th
default occurred and the tranche is hit for the first time.

• For the third year, the protection seller will receive a lower yearly fee of 9.5620m
EUR and pay out zero, since no additional defaults affect the tranche.

• For the fourth year, the protection seller will receive the same fee as the year
before of 9.5620m EUR and pay out 32m EUR at the end of that year, since at
that time two more defaults occur.

• For the fifth year, the protection seller will receive a decreased fee of 6.085m
EUR and pay out 16m EUR just before expiry, since one more default occurs.

Pricing a CDO tranche is very similar to pricing a CDS. In case of a zero upfront
it comes down to looking for the fair spread sCDO, such that the present expected
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value of the premium leg equals the present expected value of the loss (default)
leg. The present expected value of the premium leg equals

PVCDO
Fee = sCDO

n∑
i=1

N(1 − E[LTr
i ])D(0, ti)�ti,

where ti , i = 1, . . . , n, are the payment dates, �ti is the year fraction, N is the
notional, D(0, ti) is the discounting factor, and LTr

i is the loss of the tranche at
time ti . Similarly,

PVCDO
Loss =

n∑
i=1

N(E[LTr
i ] − E[LTr

i−1])D(0, ti).

Hence

sCDO =
∑n

i=1(E[LTr
i ] − E[LTr

i−1])D(0, ti )∑n
i=1(1 − E[LTr

i ])D(0, ti)�ti
, (6.1)

balances the PV of fee and loss legs.
In the case of an upfront with a fixed spread, s∗ (typically 500 bps) one looks

for Upf, the upfront, such that the PV of the fee (the left-hand side of the equation
below) equals the PV of the losses (the right-hand side)

Upf × N + s∗
n∑

i=1

N(1 − E[LTr
i ])D(0, ti)�ti =

n∑
i=1

N(E[LTr
i ]

− E[LTr
i−1])D(0, ti)

or equivalently

Upf =
n∑

i=1

(E[LTr
i ] − E[LTr

i−1])D(0, ti) − s∗
n∑

i=1

(1 − E[LTr
i ])D(0, ti)�ti .

We note that, as in the CDS case, to be fully accurate the accrual on default also
needs to be taken into account. Further, if we deal with the super-senior tranche,
the reduction in size by recovery values of defaults in the portfolio also needs to
be taken into account in the above formulas (however the effect of this is rather
small.)

6.2 CREDIT INDICES

A credit index swap is one of the most liquid portfolio derivatives. A position
in such a credit index can be seen as a CDO [0%–100%] tranche position. By
taking a position in the index, one actually takes a position in all the constituents.
Investors can be long or short the index, which is equivalent to being protection
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sellers or buyers. Credit default swap indices are often completely standardized and
may therefore be more liquid and traded at a smaller bid–offer spread. Therefore,
they allow an investor to transfer credit risk in a more efficient manner than using
groups of single CDSs. This is one of the main reasons why index positions are
often used to hedge credit risk. Moreover, the introduction of liquid and easily
tradable CDS indices opened the door for a new generation of credit derivatives
products based on these indices (CPPIs, CPDOs, . . .).

There are currently two main families of CDS indices: CDX and iTraxx. CDX
indices contain North American and Emerging Market companies and iTraxx con-
tain companies from the rest of the world. The constituents of the indices are
changed every six months – a process known as ‘rolling’ the index. The roll dates
are 20 March and 20 September each year.

The most popular CDS indices are, at present:

• The Europe Benchmark Index iTraxx Europe Main, containing the 125 most
actively European traded names in the six months prior to the index roll.

• The iTraxx Europe HiVol, which contains the 30 highest spread (riskiest) names
from the iTraxx Europe index.

• The iTraxx Europe Crossover, containing 50 subinvestment European grade
names.

• The Dow Jones CDX.NA.IG, containing 125 North American investment grade
CDSs.

• The Dow Jones CDX.NA.HY, containing 100 North American high-yield CDSs.
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Figure 6.3 Evolution of the iTraxx Europe Main
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• The Dow Jones CDX.NA.IG.HiVol, which contains the 30 highest spread (riskiest)
names from the Dow Jones CDX.NA.IG index.

• The Dow Jones CDX.NA.XO, containing 35 North American high-yield/
investment grade CDSs.

Each index has typically a value (often close to the average value of the underlying
CDSs) for several terms (3, 5, 7, 10 years). The 5- and 7-year indices are in most
cases the most liquid ones.

In Figure 6.3, one sees the evolution of the iTraxx Europe Main (3 and 5 years)
over a period of 1 year, from January 2008 to January 2009. One clearly sees the
credit crunch crises in autumn 2008.





7

Collateralized Debt Obligations

7.1 INTRODUCTION

The advent of standard Collateralized Debt Obligation (CDO) tranches on the
standard CDS index as the reference portfolio has greatly enhanced liquidity and
transparency in the synthetic CDO market. Nowadays, we observe daily pricing
on a range of tranches linked to US, European and Asian investment grades and
high-yield CDS indices.

The price of a CDO tranche is a function of many things: the probability of
default of the underlying of the CDSs in the reference portfolio, their recovery
values in case of default, the current interest rate environment and, most impor-
tantly, the default dependency (correlation) between the assets in the reference port-
folio. Actually, since the introduction of the one-factor Gaussian copula model (also
known as the one-factor Normal model) for pricing synthetic CDO tranches, cor-
relation is seen as an exogenous parameter used to match observed market quotes.
Therefore, a CDO position can also be seen as a correlation trade: an equity tranche
investor can be shown to be long the default correlation between the credits in the
underlying CDS index while a senior tranche investor is short this default corre-
lation. Taken into account that the senior tranche is often rated as AAA quality,
selling protection on this tranche could be seen as being short default correlation.
The credit crunch, which led to a tremendous increase of the default correlation,
has therefore hurt many AAA investors.

Initially, the market focused on compound correlation as the standard conven-
tion. In tandem with the concept of volatility in the Black–Scholes option-pricing
framework, compound correlation was the parameter to be put in the model to
match observed market prices of tranches (see, for instance, O’Kane and Livasey
2004). Under this approach each tranche was priced by a correlation coefficient
independent from those of the other tranches and depending on the attachment and
detachment points. As also discussed in Garcia and Goossens (2007a), the com-
pound correlation approach presents several problems such as the fact that it cannot
be extended to pricing of tranches with non-standard points (such as, for example,
[5%–8%]). Moreover, during some market events non-meaningful values may be
found for implied compound correlation – for example, during the auto crisis of
May 2005. The current widespread market approach is to use the concept of Base
Correlation (BC), first introduced by McGinty et al. (2004). In the base correlation
methodology only base tranches, i.e. tranches with an attachment point 0, are used.
The price of a tranche [K1 –K2] is calculated using the two base tranches with K1

and K2 as detachment points (see Figure 7.1).
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Figure 7.1 Base correlation approach: each tranche is treated as the difference between
two base tranches

Using BC, it is quite straightforward to bootstrap between standard attachment
points, as detailed in Section 7.5. Additionally, the BC concept is quite adapted
to interpolation for non-standard tranches. Hence the [5%–8%] tranche would be
priced by interpolating the BC curve for values at 5% and 8% respectively. The
methodology, however, has some weaknesses. First, it is very sensitive to the inter-
polation technique used. Even worse, the methodology may not be arbitrage-free.
Finally, the methodology does not provide any guidance on how to extrapolate the
curve, especially below the 3% attachment point. Some of these problems have been
addressed in Garcia and Goossens (2007a) – see also Garcia and Goossens (2007b).

In this chapter we discuss how to model and price CDO tranches. Then, we
elaborate on Lévy BC. Lévy BC is actually a straightforward generalization of the
classical Gaussian BC. It differs only in the underlying one-factor model. We make
a comparison of several Lévy models with the classical Gaussian case.

The remainder of this chapter is organized as follows. First we introduce the
one-factor Normal model and discuss how to model and price CDO tranches. Next,
in Section 7.3, we review the generic one-factor Lévy model for the valuation
of CDO tranches. Then, we discuss the concept of a Lévy base correlation and
compare hedge parameters under the different models in Section 7.6. We focus on
the deltas of the tranches with respect to the index.

This chapter is mainly based on Albrecher et al. (2007), Garcia et al. (2008)
and Masol and Schoutens (2007). Related literature is Baxter (2007), Guégan and
Houdain (2005), Hooda (2006), Kalemanova et al. (2007) and Moosbrucker (2006).

7.2 THE GAUSSIAN ONE-FACTOR MODEL

We model over a finite horizon T a portfolio of n obligors such that they all have
equal weights in the portfolio. For simplicity, we will assume that each obligor i, i ∈
{1, 2, . . . , n}, has the same recovery rate R in case of default. One can generalize
the arguments below to a general situation, but for the sake of explanation, we take
equal weights with R the same for each obligor.

We assume also that we know for each obligor the individual default probability
term structure pi(t), 0 ≤ t ≤ T , which is the probability that obligor i will default
before time t . This term structure can be extracted out of a CDS curve, as explained
in Section 5.1.
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The Gaussian one-factor model describes the ‘healthiness’ of an obligor by a
latent variable:

Ai = √
ρ Y +

√
1 − ρ εi, i = 1, . . . , n; (7.1)

where Y and εi , i = 1, . . . , n, are i.i.d. standard Normal distributed. Note that each
Ai , is again standard Normal distributed and hence E[Ai] = 0 and Var[Ai] = 1.

Actually this model assumes that the vector of n latent variables Ai is multivariate
standard Normal distributed and this is the reason one often refers to it as the
‘Gaussian Copula Model’. The correlation matrix is of a very simple form: it is 1
on the diagonal and ρ elsewhere, since we have for i �= j

Corr[Ai, Aj ] = E[AiAj ] − E[Ai]E[Aj ]√
Var[Ai]

√
Var[Aj ]

= E[AiAj ] = E[(
√

ρ Y)2] = ρ.

We say that the ith obligor defaults at time t if the latent value Ai falls below
some preset barrier Ki(t): Ai ≤ Ki(t). In order to match default probabilities under
this model with default probabilities pi(t) observed in the market, we have to
set Ki(t) :=�[−1](pi(t)), where � is the cumulative distribution function of the
standard Normal distribution. Indeed, then

P(Ai ≤ Ki(t)) = P(Ai ≤ �[−1](pi(t))) = �(�[−1](pi(t))) = pi(t).

Note that, the default time τ (i) of the ith obligor then equals:

τ (i) = p
[−1]
i

(
�(Ai)

)
.

The one-factor Gaussian copula model has been very popular and is extensively
used by market participants, often in combination with the so-called recursion
algorithm which was first introduced by Andersen et al. (2003). This recursive
algorithm allows us to compute very efficiently the probability to have a number
of defaults in a group of n firms. We will give the details of this technique after
having set up the generic one-factor Lévy models, because the same technique
can be used in this more general framework. The reason we set up an alternative
model is because the one-factor Gaussian model does not seem to have a realistic
dependency structure. Indeed, under the Gaussian copula it is very unlikely (due
to the light tail behaviour of the Normal distribution) that we will see many joint
defaults. Hence, because the probability of this is extremely small, senior tranches
of the CDO will be underpriced. This is often then compensated by blowing up
correlations to artificially high values.

7.3 GENERIC ONE-FACTOR LÉVY MODEL

The idea is to generate standardized (zero mean, variance 1) multivariate random
non-normal vectors with a prescribed correlation. In order to do this, we generate
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Figure 7.2 Simulation of A1 and A2 for two different correlation values

correlation by letting Lévy processes run some time together and then let them run
freely (see Figure 7.2 for an example with two obligors).

Indeed, one can write the one-factor Gaussian model 7.1 differently:

Ai = Wρ + W
(i)
1−ρ, i = 1, . . . , n;

where W and the W(i)’s are independent standard Brownian motions. Hence, Ai is
the endpoint of the sum of a Brownian motion run for ρ times common to all obli-
gors, and an individual independent Brownian motion for a period of (1 − ρ) times.

Compare this with the following. We will look at the end positions of two
children who run for, say, an hour. First, the children have to give a hand to each
other for some fraction (ρ) of that hour; after that they run independently from
each other (for (1 − ρ) hour). Of course, if they must run together for most of the
time (ρ is close to 1), their endpoints will not be very far away from each other;
there is a high degree of dependency (high correlation). If they are allowed to run
freely from the beginning (ρ is small), their endpoints will be quite independent
of each other (low correlation).

The above construction can be completely generalized to the Lévy setting: let
X = {Xt, 0 ≤ t ≤ 1} be a Lévy process based on an infinitely divisible distribution
L, i.e. X1 follows the law L. Assume that E[X1] = 0 and Var[X1] = 1. Denote by
Ht the cumulative distribution function of Xt , 0 ≤ t ≤ 1:

Ht(x) = P(Xt ≤ x),

and assume that it is continuous. It may be shown that Var[Xt ] = t . Note that
we will only work with Lévy processes with time running over the unit interval.
Let X(i) = {X(i)

t , t ∈ [0, 1]}, i = 1, 2, . . . , n, and let X denote independent and
identically distributed Lévy processes (i.e. all processes are independent of each
other and are based on the same infinitely divisible distribution L).
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Let 0 < ρ < 1 be the correlation; the latent variable of firm i is of the form:

Ai = Xρ + X
(i)
1−ρ, i = 1, . . . , n.

By the stationary and independent increment property of Lévy processes, Ai has
the same distribution as X1, i.e. Ai � L. Hence E[Ai] = 0, Var[Ai] = 1. Moreover,
one can easily show that the following formula for the correlation holds:

Corr
[
Ai, Aj

] = E
[
AiAj

]− E[Ai]E[Aj ]√
Var[Ai]

√
Var[Aj ]

= ρ, i �= j.

So, starting from any mother standardized infinitely divisible law, we can set up a
one-factor model with the required correlation.

Completely similar to the Gaussian case, the ith obligor defaults at time t if
the value Ai falls below some preset barrier Ki(t): Ai ≤ Ki(t). In order to match
default probabilities under this model with default probabilities pi(t) observed in
the market, set Ki(t) :=H

[−1]
1 (pi(t)).

Further, we have that the default time τ (i) of the ith obligor equals:

τ (i) = p
[−1]
i

(
H1(Ai)

)
.

Recursive Loss Algorithm

Let Mt,n be the number of defaults in the portfolio (of n obligors) up to time t .
We calculate, by the so-called recursive loss algorithm (Andersen et al. 2003), the
probability P (Mt,n = k), k = 0, 1, . . . , n, of having k out of n defaults until time
t . We have

�k
n(t) := P(Mt,n = k)

=
∫ +∞

−∞
P(Mt,n = k|Xρ = y) dHρ(y), k = 0, . . . , n.

Denote by pi(t; y) the probability that the firm’s value Ai is below the barrier
Ki(t), given that the systematic factor Xρ takes the value y. Because, conditional
on the common factor Xρ , the default events are independent, we have

pi(t; y) = P(Ai ≤ Ki(t)|Xρ = y)

= P(Xρ + X
(i)
1−ρ ≤ Ki(t)|Xρ = y) = H1−ρ(Ki(t) − y).

Denote by �k
m,y(t) the conditional probability to have k out of a group of

m defaults before time t , given Xρ = y, k = 0, 1, . . . , m. Then �k
n,y(t) can be
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calculated recursively. We start with m = 0 and move on to the next m until
m = n by using:

�0
0,y(t) ≡ 1;

�0
m,y(t) = �0

m−1,y(t) (1 − pm(t; y)) ;
�k

m,y(t) = �k
m−1,y(t) (1 − pm(t; y))

+ �k−1
m−1,y(t)pm(t; y), k = 1, . . . , m − 1;

�m
m,y(t) = �m−1

m−1,y(t)pm(t; y).

The first line is the start of the recursive procedure. The third line can be inter-
preted as follows. To calculate the conditional probability at time t to have k

defaults out of a group of m, we look at obligor m and the previous group (of
size (m − 1)). Because we work recursively, we know the probability of having
(k − 1) or k defaults in this subgroup of size m − 1. These probabilities are given
by �k−1

m−1,y and �k
m−1,y respectively. In order to have k defaults in the big group

of size m, we can have k defaults in the subgroup of size (m − 1) and no default
of the mth obligor, or a default of obligor m together with (k − 1) defaults in the
subgroup. Because of independence (we are working conditionally on the com-
mon factor), the first situation happens with probability �k

m−1,y(t) (1 − pm(t; y))

and the other situation occurs with probability �k−1
m−1,y(t)pm(t; y). The second and

fourth lines are similar but deal with the boundary cases k = 0 and k = m.
The unconditional probability of exactly k defaults out of n firms is

�k
n(t) := P(Mt,n = k) =

∫ ∞

−∞
P(Mt,n = k|Xρ = y) dHρ(y)

=
∫ ∞

−∞
�k

n,y(t) dHρ(y).

The percentage loss Lt,n on the portfolio notional at time t is

Lt,n = (1 − R)Mt,n

n
.

Hence, the expected percentage loss E[Lt,n] on the portfolio notional at time t is

E[Lt,n] = (1 − R)

n

n∑
k=1

k · �k
n(t);

and the expected percentage loss on the CDO tranche [K1%–K2%] is

E

[
L

K1,K2
t,n

]
= E

[
min{Lt,n, K2}

]− E
[
min{Lt,n, K1}

]
K2 − K1

.
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The fair premium for the tranche [K1%–K2%] can then be calculated, recalling
Equation (6.1), as

sCDO =
∑

j

{
E

[
L

K1,K2
tj ,n

]
− E

[
L

K1,K2
tj−1,n

]}
D(0, tj )∑

j

{
1 − E

[
L

K1,K2
tj ,n

]}
(tj − tj−1)D(0, tj )

,

where both summations are taken over the set of payment dates, and D(0, t) is
the discount factor from time t to time 0. As for the other instruments (e.g. see
Equation (3.2) for the CDS), the quantity in the denominator is referred to as the
risky annuity and equals the expected present value of 1 bp paid in premium until
default or maturity, whichever is sooner.

7.4 EXAMPLES OF LÉVY MODELS

Shifted Gamma

Recall that the characteristic function of the Gamma distribution, Gamma(a, b),
a, b > 0, is given by

φGamma(u; a, b) = (1 − iu/b)−a, u ∈ R.

Let us start with a unit-variance Gamma-process G = {Gt, t ≥ 0} with parameters
a > 0 and b = √

a such that µ := E[G1] = √
a, Var[G1] = 1. As a driving Lévy

process, we then take the Shifted Gamma process

Xt = µt − Gt, 0 ≤ t ≤ 1.

The interpretation in terms of latent (firm) value is that there is a deterministic up
trend

√
a t and random downward shocks {Gt }.

The one-factor Shifted Gamma Lévy model is

Ai = Xρ + X
(i)
1−ρ, i = 1, 2, . . . , n,

where Xρ and {X(i)
1−ρ}ni=1 are independent standardized Shifted Gamma processes.

Hereafter we will refer to the Shifted Gamma-Lévy model with parameters a > 0
and b = √

a as Gamma(a).
The unconditional probability of exactly k defaults out of n firms becomes

�k
n(t) =

∫ +∞

0
�k

n,(
√

a ρ−u/b)
(t)

1

�(aρ)
uaρ−1 exp(−u) du,

where the last integral can be calculated by a different method (e.g. by applying
Gauss–Laguerre quadrature); for details we refer to Dobránszky (2008).
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Shifted Inverse Gaussian

The Inverse Gaussian IG(a, b) law with parameters a > 0 and b > 0 has character-
istic function

φIG(u; a, b) = exp
(
−a(

√
−2iu + b2 − b)

)
, u ∈ R.

Here, we start with a unit variance IG process I = {It , t ≥ 0} with parameters
a > 0 and b = a1/3 such that µ := E[I1] = a2/3, Var[I1] = 1. Then, similar to the
Gamma case,

Xt = µt − It , t ∈ [0, 1].

The one-factor shifted IG-Lévy model, hereafter referred to as the IG(a) model, is

Ai = Xρ + X
(i)
1−ρ,

where Xρ, {X(i)
1−ρ}ni=1 are independent shifted IG processes. In order to compute the

unconditional probabilities �k
n(t) one can rely on numerical integration schemes

using the density of the IG processes or apply Laplace transform inversion methods.

Shifted CMY

The CMY(C, M, Y ) distribution with parameters C > 0, M > 0 and Y < 1 has
characteristic function

φCMY(u; C, M, Y) = exp
{
C�(−Y)

[
(M − iu)Y − MY

]}
, u ∈ R.

Let us start here again with a CMY process C = {Ct , t ≥ 0} with parameters

C > 0, Y < 1 and M = (C�(2 − Y))
1

2−Y , so that the mean of the process is µ :=(
C�(1 − Y)(1 − Y)Y−1

) 1
2−Y and the variance is equal to 1. As the driving Lévy

process we take

Xt = µt − Ct, t ∈ [0, 1].

The one-factor shifted CMY-Lévy model, hereafter referred to as the CMY(C; Y )
model, is

Ai = Xρ + X
(i)
1−ρ,

where Xρ, {X(i)
1−ρ}ni=1 are independent shifted CMY processes.

Since neither the cumulative distribution function HCMY(x; C, M, Y) of a CMY
distribution nor its density function can be derived in a closed form, we must rely
on numerical Laplace inversion techniques.
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7.5 LÉVY BASE CORRELATION

7.5.1 The Concept of Base Correlation

The concept of Lévy base correlation (BC) was introduced and illustrated with the
Gamma model in Garcia et al. (2008). The procedure of bootstrapping BCs in the
Lévy case is exactly the same as in the Gaussian, since the only difference relies on
the underlying process. Information on the BC of lower tranches is used to derive
the BC of less risky tranches, as follows:

• We start with the equity tranche ([0%–3%]) and solve for ρ, such that the model
price matches the market quote. The ρ obtained, say ρ[0%–3%], is the so-called
equity Lévy BC.

• Next, we focus on the [3%–6%] tranche. In the fair spread formula of this
tranche, the expected percentage loss of the [3%–6%] tranche is obtained in
terms of the percentage expected loss of the [0%–6%] and the [0%–3%]
tranches. To calculate the percentage expected loss of the [0%–3%] tranche,
we use the value ρ[0%–3%]. Next, we solve for the Lévy BC ρ[0%–6%] in order
to calculate the percentage expected loss of the [0%–6%] tranche, so that the
[3%–6%] tranche spread matches exactly the market spread.

• We proceed in the same manner through the higher tranches.

Note that compared to the Gaussian case, under the Lévy setting for some models
we might have additional distribution parameters. There are two alternative ways to
choose these distribution parameters. One could take the parameters from a global
calibration, or one could just set them equal to some value. The pros and cons of
these two approaches were discussed in Garcia et al. (2008).

Here we study several cases: the Gamma(1), IG(1.5), and CMY(0.5; 0.5) Lévy
BC models. Table 7.1 summarizes the properties of the chosen models.

Typical base correlation curves are shown in Figure 7.3 for the Gaussian and
Gamma processes. Lévy BC curves are typically much flatter than Gaussian curves
(Figure 7.4).

The evolution of the BC over time for [0%–3%] and [12%–22%] tranches is
presented in Figure 7.5 for the Gaussian model and the three Lévy models of
Table 7.1. One can see that the dynamics of the BC is very similar for all the
models. We have also plotted the BC curve for the Gamma(a) model, where the

Table 7.1 Properties of the Gamma(1), IG(1.5), and
CMY(0.5; 0.5) Lévy BC models

Gamma(1) IG(1.5) CMY(0.5; 0.5)

Variance 1 1 1
Skewness 2 2.3 2.6
Kurtosis 9 12 14
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gamma parameter a is taken differently from day to day and comes from a global
calibration. We note that the steepness of the BC curve does not increase very
much: the steepness of the Gamma(1) BC curve is, on average, 1.2 times higher
than that of the Gamma(a) (compared to the steepness of the Gaussian BC curve
which, on average, is 4 times higher than that of the Gamma(a)).
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Figure 7.5 Base correlation of the [0%–3%] and [12%–22%] tranches–iTraxx data
21-03-2005–20-09-2005

7.5.2 Pricing Non-Standard Tranches

The BC construction is quite useful to price non-standard tranches. Suppose we
want to price a [5%–10%] tranche of the iTraxx portfolio. With the base corre-
lation methodology, this requires a BC value for the [0%–10%] tranche and for
the [0%–5%] tranche. However, the market information only gives us the base
correlations for the [0%–3%], [0%–6%], [0%–9%], [0%–12%] and [0%–22%]
tranches (see, for example, the values in Table 7.2).

Using linear interpolation between these values, the Gaussian BC for a [0%–5%]
tranche is

ρ
(Gauss)
[0%−5%] = 1

3
× ρ

(Gauss)
[0%−3%] + 2

3
× ρ

(Gauss)
[0%−6%]

= 1

3
× 0.1388 + 2

3
× 0.2570 = 0.2176.

For the Lévy case we have

ρ
(Lévy)
[0%−5%] = 1

3
× ρ

(Lévy)
[0%−3%] + 2

3
× ρ

(Lévy)
[0%−6%]

= 1

3
× 0.1315 + 2

3
× 0.1326 = 0.1322.

Table 7.2 Base correlation values

Model [0%–3%] [0%–6%] [0%–9%] [0%–12%] [0%–22%]

Gaussian 0.1388 0.2570 0.3428 0.4134 0.5956
Lévy 0.1315 0.1326 0.1447 0.1602 0.2318
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The Gaussian BC for the [0%–10%] tranche is

ρ
(Gauss)
[0%−10%] = 2

3
× ρ

(Gauss)
[0%−9%] + 1

3
× ρ

(Gauss)
[0%−12%]

= 2

3
× 0.3428 + 1

3
× 0.4134 = 0.3663.

For the Lévy case we have

ρ
(Lévy)
[0%−10%] = 2

3
× ρ

(Lévy)
[0%−9%] + 1

3
× ρ

(Lévy)
[0%−12%]

= 2

3
× 0.1447 + 1

3
× 0.1602 = 0.1498.

Using these values one can price the [0%–10%] tranche. The Gaussian case leads
to a price of 12.47 bp whereas the Lévy model price is much higher at 14.74 bp.
Note that the procedure is also sensitive to the interpolation scheme. A spline
interpolation, gives

ρ
(Gauss)
[0%−5%] = 0.2222 vs 0.2176

ρ
(Lévy)
[0%−5%] = 0.1306 vs 0.1322

ρ
(Gauss)
[0%−10%] = 0.3675 vs 0.3663

ρ
(Lévy)
[0%−10%] = 0.1496 vs 0.1498.

This combination leads to a price of 14.00 bps (vs 12.47 bps) and 14.13 bps (vs
14.74 bps) under Gaussian and Lévy, respectively.

Let us also explore tranchlets (i.e. very thin tranches) of width 0.5% and price
them under the four models mentioned above: the Gaussian, the Gamma(1), IG(1.5)
and CMY(0.5; 0.5). We calculate tranchlet prices using two different interpolation
methods: (a) the simplest linear interpolation, and (b) more advanced spline inter-
polation. Results are plotted in Figure 7.6 where we observe that using linear
interpolation in the Gaussian setting, one can, for example, buy protection for the
[5.5%–6%] tranche around 50 bps and sell protection for the [6%–6.5%] tranche
with higher seniority for around 80 bps. This is an arbitrage situation, since the
more senior the tranche, the less risky and hence the lower the fair spread must
be. These kinds of arbitrage situations occur much less frequently in the Lévy
settings.
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7.5.3 Correlation Mapping for Bespoke CDOs

On top of the above described interpolation on the base correlation curve, a current
market approach for the pricing of tranches of so-called bespoke CDOs is based
on the concept of correlation mapping. One extracts out of the base correlation
curve of a liquid standardized CDO (iTraxx, CDX, . . .) the base correlation to
price tranches for the bespoke CDO.

A simple but extremely naive way, is to take the base correlation ρBespoke(A) for
a certain attachment point, A, on the bespoke CDO equal to the base correlation
ρ(A) for the same attachment point in the standardized CDO:

ρBespoke(A) = ρ(A).

There are many more sophisticated mappings. Here we only mention the most
common practice. The mapping takes into account the bespoke portfolio expected
loss E[L[0%–100%]

Bespoke ] and compares this with the available standardized CDO expected
loss E[L[0%–100%]]. The correlation for the attachment point A for the bespoke CDO
is given by:

ρBespoke(A) = ρ

(
A ×

E[L[0%–100%]
Bespoke ]

E[L[0%–100%]]

)
.

If the bespoke and the standardized portfolios have the same expected losses, the
bespoke base correlation curve will be the same as the base correlation of the
standardized CDO. Care has to be taken, because this kind of mapping does not
take into account the dispersion of spreads in the portfolio.
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7.6 DELTA-HEDGING CDO TRANCHES

A tranche investor often hedges its position (dynamically) using a technique called
‘delta-hedging’. Delta-hedging involves offsetting the impact of changing spread
levels on the tranche value by buying protection in a CDS index or single-name
CDSs in an appropriate fraction of the tranche’s notional amount. This specific
fraction is called ‘delta’. As spreads fluctuate, deltas also change, and the hedge
must be frequently adjusted.

There are three common approaches to hedge a CDO tranche. First, to hedge
a tranche with the index; second, to hedge a tranche using a single-name CDS
and finally to hedge a tranche with another tranche (for example, to hedge a long
position in the equity tranche and buy a short position in the junior mezzanine).
Calculation of deltas, and hence implementation of a hedging strategy, is entirely
model-dependent. In this section we study and compare hedge parameters of the
four different base correlation models: Gaussian, Gamma, IG and CMY.

In order to determine these deltas, we need the risky annuity (RA) and mark-to-
market (MTM) concepts. As mentioned before, the risky annuity of a tranche is the
present value of 1 bp of spread paid over the life of the contract. The mark-to-market
for a long-risk tranche trade is expressed as

MTMcurrent = (sinitial − scurrent) · RAcurrent.

7.6.1 Hedging with the CDS Index

In order to delta-hedge a tranche with the CDS index, we need to calculate a
‘delta’ for the tranche. Theoretically, a delta for the tranche determines the size
of the hedge required and is calculated as a ratio of the tranche’s mark-to-market
change to that of the CDS index position, given a 1-bp parallel shift in the average
of all CDS spreads in the reference pool,

�index = MTMTranche
indexShift − MTMTranche

current

MTMindex
indexShift − MTMindex

current

.

Figure 7.7 shows variation of the equity and junior mezzanine deltas over time.
One can see that deltas obtained under the introduced Lévy base correlation models
are completely consistent with Gaussian deltas, i.e. delta curves are roughly moving
in parallel.

7.6.2 Delta-Hedging with a Single-Name CDS

In order to delta-hedge a tranche with a single-name CDS, we need to calculate a
delta for the tranche as the ratio of the tranche’s mark-to-market change to that of
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the single-name CDS, given a 1-bp parallel shift in the underlying spread curve of
the CDS,

�CDS = MTMTranche
CDSshift − MTMTranche

current

MTMCDS
CDSshift − MTMCDS

current

Figure 7.8 illustrates equity and mezzanine deltas with respect to single-name
CDS entering the iTraxx index for all the models under investigation. One can see
that, similar to deltas with respect to an index, deltas with respect to single-name
CDSs under all the Lévy models are almost equal in values.
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7.6.3 Mezz-Equity Hedging

Mezz-equity hedging is a hedging strategy which involves selling protection on the
equity tranche and buying protection on the first mezzanine tranche, or the other
way around. The theoretical hedge ratio between two tranches can be expressed as

HedgeRatiomezz−equity = �
equity
index

�mezzanine
index

,

i.e. the hedge ratio is the ratio of the equity tranche MTM change to that of the
mezzanine, given a 1-bp parallel shift in the underlying spread curve of the index.

Figure 7.9 shows the evolution of the hedge ratios over time. Lévy hedge ratios,
and thus typical trading strategies based on these ratios, can be very different from
the Gaussian ones.
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Multivariate Index Modelling

In this chapter, we will set up some models for index spread dynamics. We will first
start with the traditional Black’s model and then generalize to jump-driven models.
Finally, we arrive at jump-driven multivariate index models. As a working example,
we will model four indices simultaneously (all with a 5-year term), namely iTraxx
Europe Main, iTraxx HiVol, CDX.NA.IG Main and CDX.NA.HiVol.

The spreads of the indices (giving protection to all components) are highly
correlated with each other, as can be seen in Figure 8.1. This correlation is often
important in typically CPPI and CPDO structures (see Chapter 9) based on a
combination of positions in several indices.

The models will be calibrated on the available swaption market and matched with
a historical correlation matrix. To calculate swaption prices under the advanced
jump models, we will make use of characteristic functions and Fast Fourier Trans-
form (FFT) techniques.
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8.1 BLACK’S MODEL

The market standard for modelling credit spreads and pricing swaptions is a modi-
fication of Black’s model for interest rates (see Pederson 2004).

It models spread dynamics in a Black–Scholes fashion:

St (T
∗) = S0(T

∗) exp(−σ 2t/2 + σWt), t ≥ 0, (8.1)

where T ∗ refers to the credit index swap maturity and σ > 0 is the spread volatility.
Let us introduce some notation. Denote by T the (payer or receiver) swaption

maturity (typically 3, 6, or 9 months), which is usually much smaller than T ∗, the
credit index maturity (typically 5, 7 or 10 years). Let us denote with A(0, t) the
risky annuity for maturity t (i.e. the present value of 1 bp of the fee leg), and with
A(T , T ∗) the forward annuity, i.e. A(T , T ∗) = A(0, T ∗) − A(0, T ).

Under the above Black’s spread dynamics, one can price swaptions (Payer,
Receivers, . . .). Black’s formula for a swaption with maturity T and strike K

simplifies to

Payer(T , K) = A(T , T ∗) × (F
(adj)
0 �(d1) − K�(d2))

Receiver(T , K) = A(T , T ∗) × (K�(−d2) − F
(adj)
0 �(−d1)).

where � is the usual standard Normal cumulative distribution function, F
(adj)
0 is

the adjusted for no-knockout forward spread (for details see below) and

d1 =
log
(
F

(adj)
0 /K

)
+ σ 2T /2

σ
√

T
and d2 = d1 − σ

√
T .

The forward spread between T and T ∗ is calculated in the usual fashion:

F0(T , T ∗) = S0(T
∗)A(0, T ∗) − S0(T )A(0, T )

A(0, T ∗) − A(0, T )
.

However, we adjust the forward to account for the ‘No Knockout’ feature of the
swaption: if a name in the index defaults before expiry of the swaption, we will
enter into an index with a defaulted name at expiry of the swaption. We account for
this additional protection by increasing the forward spread by the cost of protection
over that extra period [0, T ]:

F
(adj)
0 (T , T ∗) = F0(T , T ∗) + S0(T )A(0, T )

A(0, T ∗) − A(0, T )

= S0(T
∗)A(0, T ∗)

A(0, T ∗) − A(0, T )

= PVLoss(T ∗)
A(T , T ∗)
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Note that in Black’s formula there is a striking connection with vanilla
option prices in equity. However, the model also has all the deficiencies of the
Black–Scholes model (e.g. Black’s model assumes very light tails for the daily
changes in the spread). As we have witnessed in, for example, the credit crunch,
credit market events are very shock driven. Jumps and heavy tails are therefore
important features to take into account in the modelling. In Figure 8.2, we plot
the empirical density of log-returns of the iTraxx Main (on the run) index together
with a plot of a Normal density (with same mean and variance as the empirical
one) and also the log density, which gives a better view near the tails. We observe
that the empirical density has a rather linear decay of the log density in contrast
to the Normal density where there is a quadratic decay of the log of the density.

8.2 VG CREDIT SPREAD MODEL

Next, we describe a jump-driven Lévy model for index spread dynamics. The model
is based on results published in Garcia et al. (2008). As in the equity setting, we
replace the Black–Scholes dynamics with the better performing jump dynamics of
a Lévy process. We work out the details for the VG process (see Section 2.3.6).
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More precisely, we model the spread dynamics as

St (T
∗) = S0(T

∗) exp(ωt + θGt + σWGt ) = S0(T
∗) exp(ωt + Xt),

where ω = ν−1 log(1 − 1
2σ 2ν − θν) assures that E[St (T

∗)] = S0(T
∗). The pricing

of vanillas (using the Carr–Madan formula in combination with FFT methods) has
already worked out in full detail in equity settings (see Carr and Madan (1999)).
Here the procedure is adapted to credit spread dynamics.

The main ingredient in the pricing formula is the characteristic function of the
logarithm of the adjusted forwards spread at the swaption maturity T .

φ(u; T ) = E
[
exp

(
iu
(

log F
(adj)
0 + ωT + XT

))]
,

which is known analytically in the VG case and for many other Lévy dynamics.
Swaptions are priced using the Carr–Madan formula (see Carr and Madan 1999)

modified for a credit spread setting:

Payer(T , K) = A(T , T ∗) × exp(−α log(K))

π

×
∫ +∞

0
exp(−iv log(K))

φ(v − (α + 1)i; T )

α2 + α − v2 + i(2α + 1)v
dv,

where α is a positive constant such that the αth moment of the spread price exists.
We will comment later on the choice of α.

8.3 PRICING SWAPTIONS USING FFT

In this section we describe how one can price very fast and efficiently swaptions
using the theory of characteristic functions and FFT. The methodology is almost
identical to the valuation problem of vanillas in equity. FFT is an efficient algorithm
for computing the following transformation of a vector (αn, n = 1, . . . , N) into a
vector (βn, n = 1, . . . , N):

βn =
N∑

j=1

exp

(
− i2π(j − 1)(n − 1)

N

)
αj .

Typically, N is a power of 2. The number of operations of the FFT algorithm is
of the order O(N log N) and this in contrast to the straightforward evaluation of
the above sums which give rise to O(N2) numbers of operations.

Denote with k = log(K) and let

�(v) = φ(v − (α + 1)i; T )

α2 + α − v2 + i(2α + 1)v
.
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An approximation for the integral in the Carr–Madan formula

I (k, T ) =
∫ ∞

0
exp(−ivk)�(v) dv

on the N points grid (0, η, 2η, 3η, . . . , (N − 1)η) is

I (k, T ) ≈
N∑

j=1

exp(−ivj k)�(vj )η, vj = η(j − 1).

We will calculate the value of I (kn, T ) for N log-strikes levels kn ranging from,
say, −b to b (note: if S0 = 1, at-the-money corresponds to b = 0):

kn = −b + λ(n − 1), n = 1, . . . , N, where λ = 2b/N.

This gives

I (kn, T ) ≈
N∑

j=1

exp(−ivj (−b + λ(n − 1)))�(vj )η,

=
N∑

j=1

exp(−iηλ(j − 1)(n − 1)) exp(ivjb)�(vj )η.

If we choose λ and η such that λη = 2π/N , then

I (kn, T ) ≈
N∑

j=1

exp

(
− i2π(j − 1)(n − 1)

N

)
exp(ivjb)�(vj )η.

The above summation is an exact application of the FFT on the vector

(exp(ivjb)�(vj )η, j = 1, . . . , N).

Note that by fixing λη = 2π/N , taking a smaller grid size η makes the grid size
λ (for the log-strike grid) larger. Carr and Madan (1999) report that the following
choice gave very satisfactory results:

η = 0.25, N = 4096, α = 1.5,

which implies

λ = 0.0061, b = 12.57.

A more refined weighting (Simpson’s rule) for the integral in the Carr–Madan
formula on the N points grid (0, η, 2η, 3η, . . . , (N − 1)η) leads to the following
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approximation

I (kn, T ) ≈
N∑

j=1

exp(−ivjkn)�(vj )η

(
3 + (−1)j − δj−1

3

)
, vj = η(j − 1)

and gives a more accurate integration.
All the above leads to an approximation for the price of payer swaptions for a

range of log-strikes kn, n = 1, . . . , N carefully chosen in order to make the FFT
work:

Payer(T , exp(kn)) ≈ A(T , T ∗) exp(−αkn)

× 1

π

N∑
j=1

exp(−ivj kn)�(vj )η

(
3 + (−1)j − δj−1

3

)
.

For a given strike K , we can interpolate on the grid {kn, n = 1, . . . , N} to obtain
the value of the payer for the desired log-strike k = log(K).

8.4 MULTIVARIATE VG MODEL

Next, we will extend the above VG model to a multivariate setting. To build such
a Multivariate Variance Gamma (MVG) model, we need several ingredients:

• a common Gamma process G = {Gt, t ≥ 0} with parameters a = b = 1/ν;
• a N -dimensional Brownian motion �W = {(W(1)

t , . . . , W
(N)
t ), t ≥ 0}.

We assume that �W is independent of G and that the Brownian motions have a
correlation matrix:

ρW
ij = E[W(i)

1 W
(j)

1 ] = Corr[W(i)
1 W

(j)

1 ].

The above construction is based on related work by Luciano and Schoutens (2006)
and Leoni and Schoutens (2008).

A multivariate VG process �X = {(X(1)
t , . . . , X

(N)
t ), t ≥ 0} is defined as:

X
(i)
t = θiGt + σiW

(i)
Gt

, t ≥ 0.

There is dependency between the X
(i)
t ’s due to two causes. Firstly, the processes are

all constructed by time-changing with a common Gamma time. Secondly, depen-
dency is also built in via the Brownian motions.
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The correlation between two components is given by:

ρij = E[X(i)
1 X

(j)

1 ] − E[X(i)
1 ]E[X(j)

1 ]√
Var[X(i)

1 ]
√

Var[X(j)

1 ]

= θiθj ν + σiσjρ
W
ij√

σ 2
i + θ2

i ν
√

σ 2
j + θ2

j ν

.

The fact that this correlation is closed form available, makes it possible to match
the model correlation with a given a prescribed correlation.

We use the MVG processes to describe the evolution of N correlated spreads
(all with the same index maturity T ∗ for simplicity):

S
(i)
t (T ∗) = S

(i)
0 (T ∗) exp(ωit + θiGt + σiW

(i)
Gt

), i = 1, . . . , N,

where

ωi = ν−1 log

(
1 − 1

2
σ 2

i ν − θiν

)
.

The parameters ν, θi and σi are coming from a (joint) calibration on swaptions
on the individual spreads. Then ρW

ij is set to match a prespecified (e.g. historical)
correlation ρij between the spreads:

ρW
ij =

ρij

√
σ 2

i + θ2
i ν
√

σ 2
j + θ2

j ν − θiθj ν

σiσj

.

Let us illustrate this and work out the details on a joint model of four indices:
iTraxx Europe Main, iTraxx HiVol, CDX.NA.IG Main and CDX.NA.HiVol. We
assume the following correlated VG dynamics for the spreads:

S
(iTraxx Main)
t (T ∗) = S

(iTraxx Main)
0 (T ∗) exp(ω1t + θ1Gt + σ1W

(1)
Gt

)

S
(iTraxx HiVol)
t (T ∗) = S

(iTraxx HiVol)
0 (T ∗) exp(ω2t + θ2Gt + σ2W

(2)
Gt

)

S
(CDX Main)
t (T ∗) = S

(CDX Main)
0 (T ∗) exp(ω3t + θ3Gt + σ3W

(3)
Gt

)

S
(CDX HiVol)
t (T ∗) = S

(CDX HiVol)
0 (T ∗) exp(ω4t + θ4Gt + σ4W

(4)
Gt

),

where Gt is a common Gamma process, such that Gt ∼ Gamma(t/ν, 1/ν), and
the W

(i)
t ’s are correlated standard Brownian motions with a given correlation

matrix ρW .
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Figure 8.3 Joint calibration on swaptions of credit indices

Table 8.1 Correlation of log-returns: iTraxx (Main and HiVol) and CDX (Main and HiVol)

Correlation iTtraxx Main iTraxx HiVol CDX Main CDX HiVol

iTraxx Main 1.0000 0.9258 0.4719 0.3339
iTraxx HiVol 0.9258 1.0000 0.4398 0.3281
CDX Main 0.4719 0.4398 1.0000 0.8580
CDX HiVol 0.3339 0.3281 0.8580 1.0000

First calibrate (with a common ν parameter) the individual spread dynamics on
a series of swaptions. The resulting fit is given in Figure 8.3 (◦-signs are market
prices, +-signs are the model prices).

Then match with the required correlation. In our working example, we take
the historical correlation of the log-returns over the period from 21 June 2004 to
13 March 2007; the values are given in Table 8.1.

To do that, set the Brownian correlation matrix equal to:

ρW =


1.0000 0.9265 0.4935 0.3352

0.9265 1.0000 0.4470 0.3247

0.4935 0.4470 1.0000 0.8688

0.3352 0.3247 0.8688 1.0000
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Figure 8.4 Multivariate VG paths for the modelling of correlated credit indices

Note that the ρW matrix calculated in the above fashion is not necessary positive-
definite. In such a situation, one can then, as a kind of ad-hoc method, look for
the closed positive-definite matrix and work with that one.

Simulation of Gamma processes and correlated Brownian motions is easy and
opens the way to exotic basket option pricing on credit indices. In Figure 8.4, one
sees a simulation of the four indices modelled above.
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9
Credit CPPIs and CPDOs

9.1 INTRODUCTION

In recent years we have seen a huge growth of structured credit derivatives. One
such innovation is a credit Constant Proportion Portfolio Insurance (CPPI). A credit
CPPI is a capital guaranteed (principal protected) investment strategy and in its
simplest format works just like a capital protected credit-linked note. The invested
capital is put in a risk-free bond and a position is taken on credit derivatives (usually
one is long risk, meaning that protection is sold) in the form of a basket and more
recently using standardized corporate CDO indices (iTraxx/CDX). Intrinsic to the
price of a CPPI is the so-called gap risk, i.e. the risk of spread jumps of the
underlying credit indices on which the short positions are taken and which could
cause losses to the deal structurer. A different structured derivative is represented by
the Constant Proportion Debt Obligation (CPDO). These instruments do not offer
principal protection, but aim for a high rating (typically AAA) and fix a present
return which is sought to be reached. If the target is reached, risky positions are
closed.

In this chapter we use the multivariate VG-based dynamic spread models intro-
duced in the previous chapter to analyze CPPI and CPDO structures. The parameters
of the model come from a two-step calibration procedure. First, by a joint calibra-
tion on swaptions payers and, second, by a correlation matching procedure. In the
joint calibration step we made use of equity-like pricing formulas for payers and
receivers based on characteristic functions and Fast Fourier Transform methods
as described in Chapter 8. To obtain the required correlation, we also employ the
approach described in Chapter 8: we use a closed-form matching procedure such
that the model’s correlation is matched to a prescribed (e.g. historical) correlation.
The model put in place is capable of generating very fast correlated spread dynam-
ics under jump dynamics. We illustrate this by pricing the current popular credit
CPPI structures and analyse and rate a CPDO deal. The built in jump dynamics
makes it possible to have a better assessment of gap risk.

Some other reference on CPPIs and CPDOs in the literature are Bertrand and
Prigent (2002, 2003, 2005) and Cont and Tankov (2007).

9.2 CPPIs

The Constant Proportion Portfolio Insurance (CPPI) was first introduced by Fisher
Black and Robert Jones (1987). Recently, credit-linked CPPIs have become
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popular to create capital protected credit-linked notes. CPPI products are leveraged
investments whose returns depend on the performance of an underlying trading
strategy. Quite often positions are taken into the available credit indices (iTraxx,
CDX, . . .). Credit CPPIs combine dynamic leverage with principal protection.
Specifically, the strategy invests on a safe account in order to guarantee that, at
maturity, the capital can be paid back, and then takes risky positions (short and/or
long) on credit products. Leverage is increased when the strategy performs well
and is reduced when it performs poorly. We illustrate the details of such a product
by an example, where positions will be taken in four highly correlated indices and
a predefined trading strategy is in place.

In our example, we take positions in the following index products:

• iTraxx Europe Main on the run (5 years)
• iTraxx Europe HiVol on the run (5 years)
• DJ CDX.NA.IG Main on the run (5 years)
• DJ CDX.NA.IG HiVol on the run (5 years)

The swap rates for the above products are highly correlated. The strategy is to
sell protection on the 5-year on-the-run Main indices for half of the risky exposure
(defined and calculated below) each, and to buy protection on the 5-year on-the-run
HiVol subsets for ζ 1

2
30
125 of the risky exposure. The parameter ζ can be positive as

well as negative; the fraction 1
2 comes from the fact that we take position in two

HiVol indices; the fraction 30
125 stems from the fact that 30 out of 125 names of the

Main indices are part of the HiVol indices. The corresponding correlation matrix
of the daily log-returns based on observations from 21 June 2004 until 13 March
2007 is given in Table 8.1.

The following factors play a key role in the CPPI investment strategy:

• The initial investment N and the maturity T .
• The current value of the CPPI. The value at time t ∈ [0, T ] will be denoted as

Vt . We have V0 = N .
• The floor is the reference level to which the value of the CPPI is compared.

This level will guarantee the possibility of repaying the fixed amount N at
maturity T . Hence, it could be seen as the present value of N at maturity.
Typically this is a risk-free bank account and its price at time t will be denoted
as Bt = exp(−r(T − t))N .

• The cushion, Ct , is defined as the difference between the price and the floor:
Ct = Vt − Bt .

• The multiplier m is a fixed value which represents the amount of leverage an
investor is willing to take.

• The risky exposure is given by: Et = m × Ct . Note that the dynamic leverage is
related to the fact that Ct fluctuates over time (while m stays constant). Moreover,
note that the leverage increases the more the portfolio performs well, i.e. the
higher is the difference between Vt and Bt .
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The investor will take a non-negative risky exposure at each time t as long as the
value of the CPPI exceeds the floor. For any time t the future investment decision
will be made according to the following rule:

• if Vt ≤ Bt , we will invest the complete portfolio into a risk-free bank account,
• if Vt >Bt , we will take a risky exposure calculated below on the basis of the

amount Et .

Say, we start with a portfolio of N = 100m EUR and have an investment horizon
of T = 6 years and let ζ = 1/10. We want to have the principal of the initial
investment protected. Therefore, we calculate the bond floor as the value of a
risk-free bond that matures at the end of the investment horizon. Suppose we take
r = 4% and use compound interest rates, then the bond floor is initially at B0 =
78.6628m EUR. Suppose we set the leverage at m = 25. We called the cushion the
difference between the portfolio value and the bond floor. Initially, the cushion is
thus at C0 = 21.3372m EUR. Multiplying the cushion with the constant leverage
factor of 25, gives the risky exposure that we are going to take, namely E0 =
533.43m EUR. We then are taking the following positions:

• sell protection on iTraxx Europe Main for half of the risky exposure (266.715m
EUR);

• buy protection on iTraxx Europe HiVol for 1
10

1
2

30
125 of the risky exposure

(6.40116m EUR);
• sell protection on DJ CDX.NA.IG Main for half of the risky exposure (266.715m

EUR);
• buy protection on DJ CDX.NA.IG HiVol for 1

10
1
2

30
125 of the risky exposure

(6.40116m EUR).

We thus sell protection on all the companies in the Main CDX and iTraxx index,
and buy back a fraction (10%) of protection for the ones in the HiVol segment. So
actually our true exposure is, in this example, a bit smaller than Et . To be precise
we have sold protection on a total notional amount of 520.62768m EUR. Of course
other weighting could be possible.

The initial 100m EUR is put on a risk-free bank account at a compound rate
of 4%.

Suppose the current quotes for the four components of our portfolio are those
given in Table 9.1. We normally rebalance each day. However, for the sake of
explanation, assume that we do not change our position for a quarter (and no
defaults occurred). After the first quarter our bank account would have grown to
101.0050m EUR. Further, we then would have received/paid fee income/payments

• on iTraxx Europe Main for the amount: 0.0024625 × 266.7150/4 = 0.1642m
EUR

• on iTraxx Europe HiVol for the amount: −0.004875 × 6.40116/4 =
−0.007800m EUR
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Table 9.1 Quotes used for the four
components of our portfolio in bp

t = 0

iTraxx Main 24.625
iTraxx HiVol 48.75
CDX Main 37.5
CDX HiVol 88.5

• on DJ CDX.NA.IG Main for the amount: 0.00375 × 266.7150/4 = 0.2500m
EUR

• on DJ CDX.NA.IG HiVol for the amount: −0.00885 × 6.401160/4 =
−0.01416m EUR

Leading to a total spread income after 3 months of: 0.39224m EUR.
Suppose that we then rebalance (note that actually one should do this on a daily

basis). Suppose that the spreads for our components have moved as in Table 9.2.
This movements of the spreads has the following mark-to-market effect. We assume
that we always have a risky annuity of 4.5:

• on iTraxx Europe Main: 4.5 × (0.0024625 − 0.0021625) × 266.7150 =
0.3601m EUR;

• on iTraxx Europe HiVol: −4.5 × (0.004875 − 0.003875) × 6.40116 =
−0.02881m EUR;

• on DJ CDX.NA.IG Main: 4.5 × (0.00375 − 0.00325) × 266.7150 = 0.6001m
EUR;

• on DJ CDX.NA.IG HiVol: −4.5 × (0.00885 − 0.00755) × 6.40116 =
−0.03745m EUR.

Hence, the total mark-to-market change is equal to 0.89394m EUR.
This means that after one quarter the CPPI value of the portfolio has grown

to 101.0050 + 0.39224 + 0.89394 = 102.29118m EUR. The bond floor is then at

Table 9.2 Quotes used for the four components of
our portfolio in bp

t = 0 t = 3 months

iTraxx Main 24.625 21.625
iTraxx HiVol 48.75 38.75
CDX Main 37.5 32.5
CDX HiVol 88.5 75.5
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79.4534m EUR and hence the cushion at 102.29118 − 79.4534 = 22.83778m EUR.
The allowed risky exposure is recalculated to be 22.83778 × 25 = 570.9445m EUR
and we rebalance such that the total position is now given by

• sold protection on iTraxx Europe Main for half of the risky exposure, i.e. for
285.47225m EUR;

• bought protection on iTraxx Europe HiVol for 1
10

1
2

30
125 the risky exposure, i.e.

for 6.851334m EUR;
• sold protection on DJ CDX.NA.IG Main for half of the risky exposure, i.e. for

285.47225m EUR;
• bought protection on DJ CDX.NA.IG HiVol for 1

10
1
2

30
125 of the risky exposure,

i.e. for 6.851334m EUR.

We continue doing this until maturity or until we have a negative cushion at a
rebalancing date. In that case all positions are closed. Then, however, we can-
not always pay back the principal amount since the portfolio value is below the
bond-floor. This is called gap risk (see Figure 9.1). The gap at maturity is equal to
(N − VT )+. One of the aims of the model is to calculate the gap risk or, in other
words, the present value of these gaps.

We assume the following correlated VG dynamics for the spreads, as in
Chapter 8:

S
(1)
t = S

(iTraxxMain)
0 exp(ω1t + θ1Gt + σ1W

(1)
Gt

)

S
(2)
t = S

(iTraxxHiVol)
0 exp(ω2t + θ2Gt + σ2W

(2)
Gt

)

S
(3)
t = S

(CDXMain)
0 exp(ω3t + θ3Gt + σ3W

(3)
Gt

)

S
(4)
t = S

(CDXHiVol)
0 exp(ω4t + θ4Gt + σ4W

(4)
Gt

),

where Gt is a common Gamma process, such that Gt ∼ Gamma(t/ν, 1/ν), and
W

(i)
t are correlated standard Brownian motions with a given correlation matrix

ρW = (ρW
ij ).

We first perform a joint calibration on swaptions of the individual indices. This
determines the parameters ν and θi and σi , i = 1, . . . , 4. Next, we match the his-
torical correlations with ρij by setting

ρW
ij =

ρij

√
σ 2

i + θ2
i ν
√

σ 2
j + θ2

j ν − θiθj ν

σiσj

.

Hence we are able to match quite accurately all the individual spread dynamics by
correlated jump processes and, moreover, are able to impose a correlation structure
completely matching the observed historical correlation.
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Figure 9.1 CPPI performance, leveraging, deleveraging and gap risk in a multivariate VG
driven model
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9.3 GAP RISK

Under Black’s model (Equation (8.1)) and hypothesizing continuous rebalancing,
the gap risk is zero. This happens because of the continuous paths of Brownian
motion, which ensures that the bond floor is never crossed but, at worst, is hit, as
in Figure 9.2.

One can introduce the gap risk in a Brownian setup via changing the frequency of
rebalancing. In Table 9.3, we investigate the impact of such rebalancing frequency.
The results are shown for a leveraging factor of m = 25 under, respectively, the
MVG and Brownian alternatives and ζ = 0. For the MVG case, the parameters are
set to the calibrated values; in the Brownian case the volatility σ is set equal for
all indices either to 50% (very close to the impled volatility) or to 75%.

In Table 9.3 we give some indicators of the gap risk. More precisely, for different
rebalancing frequencies (Rebal), we give the present value of the gap (Risk), the
frequency of a gap occurrence (Freq) and the mean size of the gap on condition
that there is a gap (Mean). As expected, increasing the rebalancing frequency,
decreases the gap frequency and also the size of the gap, given there is a gap.
This effect is much more pronounced in the Brownian setting. We further note
that the mean return is hardly changing under different rebalancing frequencies.
Furthermore, in order, under the Brownian model, to generate gap frequencies of
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Figure 9.2 The gap risk is zero under Black’s model
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Table 9.3 Effect of changing the rebalancing frequency of the portfolio under the MVG
model and the Black’s model

MVG BM (σ = 50%) BM (σ = 75%)

Rebal Risk Freq Mean Risk Freq Mean Risk Freq Mean

2 0.1678 2.34 % 7.17 0.0180 0.73 % 2.50 0.2242 4.77 % 4.70
4 0.1673 2.43 % 6.88 0.0068 0.57 % 1.20 0.0849 3.99 % 2.13

12 0.0942 2.10 % 4.49 0.0005 0.18 % 0.27 0.0067 2.47 % 0.27
52 0.0847 2.10 % 4.04 0.0000 0.02 % 0.00 0.0001 1.02 % 0.01

252 0.0694 2.02 % 3.44 0.0000 0.00 % 0.00 0.0000 0.08 % 0.00

the same magnitude as in the MVG model, one has not only to lower dramatically
the rebalancing frequency, but also to increase significantly the volatility used.

The effect of the parameter ζ , or the ‘short’ positions on the CPPI strategy under
MVG is illustrated in Table 9.4. Observe that increasing the amount of shorts from
0% to 100% reduces the return volatility and the portfolio value of the gap risk by
almost 50%, while reducing return by only about 5%.

Finally, we investigate the impact of the leverage factor on the return, its volatil-
ity and the corresponding gap risk. In Table 9.5, we summarize the results for the
MVG model. We observe that increasing the leverage factor, increases significantly
the mean return and its volatility, but also the present value of the gap.

Table 9.4 Effect of the parameter ζ , or the ‘short’ position, on the
portfolio strategy under MVG

ζ Mean of VT Std dev PV gap Gap
(m EUR) (%) (m EUR) (bp p.a.)

0 139.1 11.0 0.0732 1.3720
50% 135.7 8.5 0.0508 0.9531

100% 132.2 6.7 0.0421 0.7892

Table 9.5 Effect of leverage factor under MVG

Leverage Mean of VT Std PV gap Gap
m (m EUR) (%) (m EUR) (bp p.a.)

25 139.1255 11.0203 0.0732 1.3720
30 141.4980 13.8135 0.1249 2.3405
40 146.2898 19.0518 0.2171 4.0699
50 150.9526 25.4147 0.3609 6.7656
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9.4 CPDOs

The Constant Proportion Debt Obligation (CPDO) is another kind of leveraged
investment strategy.

The principle behind CPDO is different from the one of the CPPI. In fact, CPDO
noteholders do not have a guaranteed capital, but hold a high-rated coupon-bearing
note (typically AAA, AA+, . . .). Similar to the CPPI case, the CPDO issuers build
a portfolio composed of the following instruments:

• the majority of cash is put in risk-free account;
• risky positions are taken by selling protection, e.g., on CDS indices.

The aim of the portfolio strategy is to pay preset coupons (e.g. LIBOR plus 200 bps
per annum) during the lifetime of the note; furthermore, at maturity the noteholders
get back the notional invested initially.

Once the above target is guaranteed, the risky positions are closed (cash-in event)
as is the case in Figure 9.3. If one comes close to the target, one deleverages. If
one underperforms, one increases leverage (cfr. a gambler chasing losses). If the
portfolio performs badly and falls below a certain low level, we have a cash-out
event (cfr. default) as depicted in Figure 9.4.

With respect to the CPPI instrument, the capital guaranteed feature creates a buy
at the high and a sell at the low adverse effect. Once losses begin to occur one
has to deleverage, decreasing the impact of possible jumps. On the CPDO side,
the target return feature means that one buys at the low and sells at the high. Once
losses begin to occur one has to leverage more to guarantee the targeted return,
possibly creating a very leveraged position, which may increase significantly the
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risks due to jumps. As a consequence, one may be more exposed to model risk on
a CPDO than on a CPPI.

More precisely, we have the following ingredients and strategy under investi-
gation. We have a prefixed goal, namely an excess return κ , for example, equal
to 200 bps per annum over the risk-free rate. In the mechanism, we also fix a
target loading factor α = 1.05, maximum leverage factor M = 15, a cash-out level
Cout = 15% and a risky income fraction (fudge factor) β = 0.75. The fudge factor
is typically smaller than 1 in order to compensate for possible defaults or to gener-
ate extra margin for the issuer. At each rebalancing date, the CPDO strategy goes
as follows:

• Calculate the portfolio value Vt composed out of the cash account, the fee income
and the MTM of the positions. Initially, V0 = N , the notional (taken equal to
100 in the figures).

• Calculate the target Tt , which is the present value of all future liabilities, namely
the CPDO coupons and the par value of the principal amount.

• If Vt ≥ Tt , i.e. the portfolio value is above the target, all positions are closed
and we have a cash-in.

• If Vt ≤ V0 × Cout, i.e. the portfolio value is below the cash-out level, we have a
cash-out, all positions are closed and we have a gap of V0 × Cout − Vt .

• If V0 × Cout < Vt < Tt , the portfolio needs to be rebalanced, adjusting risky
positions according to the portfolio performance.

In the latter case, the following variables are considered to adjust the leverage:

• The shortfall Ft , i.e. the capital missing to reach the target, is the target-loading
factor multiplied by the target minus the portfolio value: Ft = αTt − Vt .
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• The present value of the risky income is the fudge factor times the index spread
times the risky annuity: It = βst × A(0, t). If we invest in more underliers, the
present value of the risky income is It = β

∑
i wi × s

(i)
t A(i)(0, t), where wi is

the weight of the ith underlier, s
(i)
t is its spread and A(i)(0, t) is its risky annuity.

• The risky exposure is Et = min {Ft/It , MV0}. Note that under this strategy, the
leverage m = Et/V0 is capped at M .

The first CPDO deal, issued in 2006 by ABN–AMRO, was paying LIBOR plus
200 bps per annum and was rated AAA. A few months later, Moody’s released
a comment to the effect that, while still standing by their original rating, they
acknowledged that it was highly volatile compared to other AAA-rated instruments.
This first ever CPDO hit its cash-out trigger in October 2008. Noteholders officially
had 10 cents on the dollar at cash-out.

In the following example we hypothesize that the CPDO synthetic portfolio
takes a risky position by selling protection on the iTraxx Main and the CDX Main
and that w1 = w2 = 1/2. Imagine that the CPDO has a target return of LIBOR
plus 200 bps per annum and that it is rated AAA. Assuming target probabilities for
different rating classes on the 10-year horizon as in Table 9.6, this would mean that
a return of at least LIBOR plus 200 bps per annum (cash-in) should be achieved
in at least 99.27% of the cases.

Under the multivariate VG spread model, calibrated on the index swaptions and
with a correlation structure matching historical correlation, we calculate with a
Monte-Carlo exercise the cash-in and cash-out probabilities of the CPDO. Given
the cash-in probabilities, we can assign a rating to the CPDO by making use
of the ratings of Table 9.6. Results for the multivariate VG model are given in
Table 9.7; we also give the ratings under a multivariate Brownian (MB) motion
setting (which is actually a special case of the MVG setting and corresponds to
ν → 0) for different volatility regimes (σ = 35% and σ = 50%).

One observes that the rating is of course dependent on the target return. More-
over, in all the cases the CPDO rating under MVG is lower or equal than under the
Brownian models. Additionally, cash-in probabilities under MVG are decreasing
faster than under the Brownian models, when one increases the target return. This
is caused by the jumps present in the MVG model in combination with the under-
lying heavier tails incorporated. Also observe that a higher fudge factor implies a
higher rating.

The cash-in-time distribution properties for LIBOR + 150 bps per annum for
fudge factor β = 75% and β = 100% are graphed in Figure 9.5. Although perhaps
at first sight counterintuitive, a lower fudge factor results in a mean cash-in time

Table 9.6 Target probabilities

Rating AAA AA+ AA AA− A+ A A− BBB+

10 years 99.27% 98.99% 98.51% 98.12% 97.71% 97.27% 96.44% 95.22%
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Table 9.7 Cash-in probabilities and corresponding ratings for CPDO
models as a function of the excess rating

β = 1

Excess return MVG B(σ = 35%) B(σ = 50%)

100 99.75% (AAA) 99.96% (AAA) 99.87% (AAA)
150 99.44% (AAA) 99.93% (AAA) 99.47% (AAA)
200 98.86% (AA) 99.65% (AAA) 99.30% (AAA)

β = 0.75

MVG B35 B50

100 99.02% (AA+) 99.79% (AAA) 99.24% (AA+)
150 97.86% (A+) 99.29% (AAA) 98.35% (AA−)
200 97.43% (A) 98.53% (AA) 97.62% (A)
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Figure 9.5 Cash-in time distribution for β = 0.75 and β = 1.00

that is earlier. The explanation is that a lower fudge factor forces one to increase
the leveraged exposure, which often leads to an earlier cash-in time.

Finally, we want to note that the model is not restricted to a credit setting, but
you can pimp the model to a hybrid setting. One can set up multivariate Lévy
dynamics where, for example, equity indices and stock dynamics are combined
with credit dynamics. This is possible where fast vanilla pricers are available for
the underlyers, as is the case for equity vanillas and credit swaptions. Hybrid CPPIs
or other portfolio products, like CPDOs, taking positions in equity, hedge funds,
volatility and credit can be defined and priced.
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Asset-Backed Securities

10.1 INTRODUCTION

Securitization is the process whereby an institution packs and sells a number of
financial assets to a special entity, created specifically for this purpose and therefore
termed the Special Purpose Entity (SPE) or Special Purpose Vehicle (SPV), which
funds this purchase by issuing notes secured by the revenues from the underlying
pool of assets. This form of structured finance was initially developed by the US
banking world in the early 1980s (in Mortgage-Backed-Securities (MBSs) format)
in order to reduce regulatory capital requirements by removing and transferring risk
from the balance sheet to other parties. Over the years, however, the technique has
spread to many other industries (also outside the US), with the incentive shifting
from reducing capital requirements to funding and hedging. Today, virtually any
form of debt obligations and receivables has been securitized, with companies
showing a seemingly infinite creativity in allocating the revenues from the pool to
the noteholders (respecting their seniority).

Unlike the present very popular Credit Default Swaps, Asset-Backed Securities
(ABSs) and MBS contracts are not yet standardized. This lack of uniformity implies
that each deal requires a new model. However, there are certain features that
emerge in virtually any ABS deal, the most important of which are default risk,
amortization of principal value (and thus prepayment risk) and Loss-Given-Default
(LGD). Since defaults, losses and accelerated principal repayments can substantially
alter the projected cash flows and therefore the planned investment horizon, it is of
key importance to adequately describe and model these phenomena when pricing
securitization deals.

In some rudimentary ABS models, the probability of default over time is, for
example, modelled by means of a (deterministic) logistic function or Vasicek’s
one-factor model, whereas the prepayment rate and the LGD rate are assumed
to be constant (or at least deterministic) over time and independent of default.
However, it is intuitively clear that each of these events is coming unexpectedly
and is generally driven by the overall economy, hence infecting many borrowers
at the same time, causing jumps in the default and prepayment term structures.
Therefore it is essential to model the latter by stochastic processes that include
jumps. Furthermore, it is unrealistic to assume that prepayment rates and loss rates
are time independent and uncorrelated, neither with each other, nor with default
rates. For instance, a huge economic downturn will most likely result in a large
number of defaults and a decrease in prepayments. Reality indeed shows a negative
correlation between default and prepayment.
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In this chapter, we propose a number of alternative techniques that can be applied
to stochastic models of default and prepayment. The models we propose are based
on Lévy processes. In the following section we present four models for the default
term structure. In Section 10.3 we discuss three models for the prepayment term
structure. Numerical results are presented in Section 10.4, where the default and
prepayment models are built into a cash flow model in order to determine the rating
and Weighted Average Life (WAL) of two subordinated notes of a simple example
ABS deal.

Some general textbook on the topic as well on basic models are Raynes and
Rutledge (2003) and Nowell (2008).

10.2 DEFAULT MODELS

In this section we will briefly discuss four models for the default term structure,
respectively based on

(1) the Logistic function;
(2) a Lévy portfolio default model;
(3) the Normal one-factor model;
(4) the generic one-factor Lévy model (see, for example, Albrecher et al. 2007),

with an underlying Shifted Gamma process.

We will focus on the time interval between the issue (t = 0) of the ABS notes
and the weighted average time to maturity (t = T ) of the underlying assets. In the
following we will use the term default curve, Pd(t), to refer to the default term
structure, i.e the cumulative default rate at time t . By default distribution, we mean
the distribution of the cumulative default rate at time T . Hence, the endpoint of
the default curve, Pd(t), is a drawing from the default distribution. In this chapter,
time is indicated in months: a 10-year ABS deal thus ends at T = 120.

10.2.1 Generalized Logistic Default Model

Traditional methods sometimes use a sigmoid (S-shaped) function to model the term
structure of defaults, i.e. the default curve. A famous example of such a sigmoid
function is the (generalized) Logistic function (see Richards 1959), defined as

F(t) = a

1 + b e−c(t−t0)
, (10.1)

where F(t) satisfies the following ODE

dF(t)

dt
= c

(
1 − F(t)

a

)
F(t), (10.2)

with b, c, t0 > 0, 0 ≤ a ≤ 1 being constants and t ∈ [0, T ].
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In the context of default curve modelling, Pd(t) := F(t). Note that when b = 1,
t0 corresponds to the inflection point in the loss buildup, i.e. Pd grows at an
increasing rate before time t0 and at a decreasing rate afterwards. Furthermore,
limt→+∞ F(t) = a, thus a controls the right endpoint of the default curve. For
sufficiently large T we can therefore approximate the cumulative default rate at
maturity by a, i.e. Pd(T ) ≈ a. Hence, a can be seen as a random draw from a pre-
determined default distribution (e.g. a truncated Lognormal distribution) and each
different value for a will give rise to a new default curve. This makes the Logistic
function suitable for scenario analysis. The parameter c determines the growth rate
of the Logistic curve, i.e. the proportional increase in one unit of time, as can be
seen from Equation (10.2). Values of c between 0.10 and 0.20 produce realistic
default curves.

The left panel of Figure 10.1 shows five default curves, generated by the Logis-
tic function with parameters b = 1, c = 0.1, t0 = 55, T = 120 and values of a,
drawn from a Lognormal distribution with mean 0.20 and standard deviation 0.10.
Notice the apparent inflection in the default curve at t = 55. The probability den-
sity function of the cumulative default rate at time T is shown on the right. Note
that theoretically (although with very small probability), the Lognormal distribu-
tion with the above given parameters could sample values (for a) above 1. So one
should actually work with a truncated version.

It has also to be mentioned that the Logistic function (10.1) has several other
drawbacks when it comes to modelling a default curve. First of all, assuming real
values for the parameters, the Logistic function does not start at 0, i.e. Pd(0) > 0.
Moreover, a is only an approximation of the cumulative default rate at maturity,
but in general we have that Pd(T ) < a. Hence Pd has to be rescaled, in order
to guarantee that a is indeed the cumulative default rate in the interval [0, T ].
Secondly, the Logistic function is a deterministic function of time (the only source
of randomness is in the choice of the endpoint), whereas defaults generally come
as a surprise. And finally, the Logistic function is continuous and hence unable to
deal with the shock-driven behaviour of defaults.
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In the following subsections, we will describe three default models that (partly)
solve the above-mentioned problems. We will use a stochastic (instead of deter-
ministic) process that starts at 0; the shocks will be captured by introducing jumps
in the model.

10.2.2 Lévy Portfolio Default Model

The logistic default curve of the previous section does not take into account shocks
in the portfolio, i.e. situations where suddenly a significant number of underliers
default. We therefore propose a model where the default curve is stochastic and can
exhibit a jump behaviour over time. We propose a stochastic default curve model
of the form:

Pd(t) = 1 − exp(−λd
t ),

where λd = {λd
t : t ≥ 0}, is a non-decreasing process starting at zero. The model

is based on the classical intensity model framework thinking of Chapter 5 but now
applied to a portfolio level and first described in Jönsson et al. (2009).

Here, we assume that λd follows a non-decreasing Lévy process and work out the
details for the Gamma process G = {Gt : t ≥ 0}, i.e. a Lévy process with Gamma
distributed increments, hence

λd
0 = 0;

λd
t ∼ Gamma(at, b),

with shape parameter a and scale parameter b.
From the previous paragraphs it is clear that the cumulative default rate at

maturity follows the law of 1 − exp(−λd
T ), where λd

T ∼ Gamma(aT , b). For prede-
termined values of the mean µd and standard deviation σd of the default distribution,
one can use this result to find corresponding a and b parameters as the solution to
the following system of equations

E[1 − exp(−λd
T )] =µd;

Var[1 − exp(−λd
T )] = σ 2

d .
(10.3)

Explicit expressions for the left-hand sides of (10.3) can be found by noting that
the expected value and the variance can be written in terms of the characteristic
function of the Gamma distribution.

The left panel of Figure 10.2 shows five default curves, generated by Gamma
processes with parameters a ≈ 0.024914, b ≈ 12.904475 and T = 120, such that
the mean and standard deviation of the default distribution are µd = 0.20 and
σd = 0.10. Note that all curves start at zero, include jumps and are fully stochas-
tic functions of time, in the sense that in order to construct a new default curve,
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Figure 10.2 Lévy portfolio default curve (left) and corresponding default distribution
(right)

one has to rebuild the process λd over [0, T ], instead of just changing its end-
point. The corresponding default probability density function is again shown on
the right. Recall, in this case, that Pd(T ) follows the law 1 − exp(−λd

T ), with
λd

T ∼ Gamma(aT , b).

10.2.3 Normal One-Factor Default Model

As in the CDO model, we apply here the Normal one-factor (structural) model
(Vasicek 1987, Li 1995). Each loan or underlying in the portfolio is described by
a latent variable of the form:

Zi = √
ρ X +

√
1 − ρ Xi, (10.4)

with X and Xi, i = 1, 2, . . . , N , identically and independently distributed (i.i.d.)
standard Normal variables. As demonstrated in Section 7.2, ρ = Corr[Zi, Zj ], for
all i �= j . The latter parameter is calibrated to match a predetermined value for the
standard deviation σd of the default distribution.

A borrower is said to default at time t if its latent variable Zi is below some
(deterministic, but depending on t) barrier Kd

t . The latter default barrier is chosen
such that the probability of default before time t matches a predescribed default
probabilities. Here, we always assume that default will occur after an exponentially
distributed time (cfr. the intensity model driven by a homogeneous Poisson process
as in Section 5.1.1) with intensity λ > 0, i.e. Kd

t satisfies

P(Zi ≤ Kd
t ) = �(Kd

t ) = 1 − exp(−λt), (10.5)

where � denotes, as usual, the standard Normal cumulative distribution function.
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Therefore, λ is set such that P[Zi ≤ Kd
T ] = µd, with µd the predetermined value

for the mean of the default distribution. From (10.5) it then follows that

λ = − log
(

[1 − µd]
1
T

)
(10.6)

and hence

Kd
t = �[−1]

[
1 − (1 − µd)

t
T

]
. (10.7)

Given a sample of (correlated) standard Normal random variables Z = (Z1,

Z2, . . . , ZN), the default curve is then given by

Pd(t; Z) = �{Zi ≤ Kd
t ; i = 1, 2, . . . , N}

N
, t ≥ 0, (10.8)

where � indicates that we are counting the number of obligors defaulted at time t .
In order to simulate default curves, one must thus first generate a sample of

standard Normal random variables Zi satisfying (10.4), and then, at each (discrete)
time t , count the number of Zi’s that are less than or equal to the value of the
default barrier Kd

t at that time.
The left panel of Figure 10.3 shows five default curves, generated by the Normal

one-factor model (10.4) with ρ ≈ 0.121353, such that the mean and standard devi-
ation of the default distribution are µd = 0.20 and σd = 0.10 respectively. All
curves start at zero and are fully stochastic but, unlike the Lévy portfolio default
model, the Normal one-factor default model does not really include any jump
dynamics. The corresponding default probability density function is again shown
in the right panel.
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10.2.4 Generic One-Factor Lévy Default Model

As in Chapter 7, one can extend the Normal one-factor model to a more general
class based on other multivariate latent variables. Under the generic one-factor
Lévy model the latent variable of borrower i is now given by

A(i) = Yρ + Y
(i)
1−ρ, (10.9)

with Y and Y (i), i = 1, 2, . . . , N , i.i.d. Lévy processes, based on the same mother
infinitely divisible distribution L, such that E[Y1] = 0 and Var[Y1] = 1, which
implies that Var[Yt ] = t . From this it is clear that E[A(i)] = 0 and Var[A(i)] = 1,
and that Corr[A(i), A(j)] = ρ, for all i �= j . As with the Normal one-factor model,
the cross-correlation ρ will be calibrated to match a predetermined standard devi-
ation for the default distribution.

Similar to the Normal one-factor model, we again say that a borrower defaults at
time t if A(i) is below a predetermined barrier Kd

t at that time, where Kd
t satisfies

P
(
A(i) ≤ Kd

t

) = 1 − exp(−λt), (10.10)

with λ given by (10.6).
Here, we illustrate the theory by assuming that Y and Y (i), i = 1, 2, . . . , N ,

are i.i.d. Shifted Gamma processes, i.e. Y = {Yt = tµ̃ − Gt, t ≥ 0}, where G is a
Gamma process, with shape parameter a and scale parameter b. From (10.9) and
the fact that a Gamma distribution is infinitely divisible, it follows that

A(i) d= µ̃ − X̃
d= µ̃ − [X + Xi], (10.11)

with X ∼ Gamma(aρ, b) and Xi ∼ Gamma(a(1 − ρ), b) mutually independent and

X̃ ∼ Gamma(a, b). The symbol
d= denotes that the variables are equal in distribu-

tion. If we take µ̃ = a
b

and b = √
a, we ensure that E[A(i)] = 0, Var[A(i)] = 1 and

Corr[A(i), A(j)] = ρ, for all i �= j .
Furthermore, from (10.10), (10.11) and the expression for λ it follows that

Kd
t = µ̃ − �

[−1]
a,b

(
(1 − µd)

t
T

)
, (10.12)

where �
[−1]
a,b denotes the inverse of the cumulative distribution function of a

Gamma(a, b) distribution.
In order to simulate default curves, we first have to generate a sample of random

variables A = (A(1), A(2), . . . , A(N)) satisfying (10.9), with Y, Y (1), Y (2), . . . , Y (N),
i.i.d. Shifted Gamma processes and then, at each (discrete) time t , count the number
of A(i)’s that are lower than or equal to the value of the default barrier Kd

t at that
time. Hence, the default curve is given by

Pd(t; A) = �{A(i) ≤ Kd
t ; i = 1, 2, . . . , N}

N
, t ≥ 0. (10.13)
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The left panel of Figure 10.4 shows five default curves, generated by the Gamma
one-factor model (10.9) with (µ̃, a, b) = (1, 1, 1), and ρ ≈ 0.095408, such that
the mean and standard deviation of the default distribution are 0.20 and 0.10.
Again, all curves start at zero and are fully stochastic. The corresponding default
probability density function is shown in the right panel. Compared to the pre-
vious three default models, the default probability density function generated by
the Shifted Gamma-Lévy model seems to be more peaked around µd and has
a significantly larger kurtosis. The default distribution has a rather heavy right
tail, with a substantial probability mass at the 100% default rate. This can be
explained by looking at the right-hand side of Equation (10.11). Since both terms
between brackets are strictly positive and hence cannot compensate each other
(unlike the Normal one-factor model), A(i) is bounded from above by µ̃. Hence,
starting with a large systematic risk factor X, things can only get worse, i.e.
the term between brackets can only increase and therefore A(i) can only result
in a lower value when adding the idiosyncratic risk factor Xi . This implies that
when we have a substantially large common factor (close to �

[−1]
a,b (1 − µd), cfr.

(10.12)), it is very likely that all borrowers will default, i.e. that A(i) ≤ Kd
T for all

i = 1, 2, . . . , N .

10.3 PREPAYMENT MODELS

In this section we will briefly discuss three models for the prepayment term struc-
ture, respectively based on

(1) constant prepayment;
(2) Lévy portfolio prepayment model;
(3) the Normal one-factor model.
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As before, we will use the terms prepayment curve, Pp(t), 0 ≤ t ≤ T and pre-
payment distribution to refer to the prepayment term structure and the distribution
of the cumulative prepayment rate at maturity T .

10.3.1 Constant Prepayment Model

The idea of constant prepayment stems from the former Public Securities Associ-
ation1 (PSA). The basic assumption is that prepayment intensity begins at 0 and
rises at a constant rate of increase α, until it reaches its characteristic steady-state
rate at time τ0, after which the prepayment rate remains constant until maturity T .
Note that τ0 is generally not the same as the inflection point t0 of the default curve.

Thus the prepayment intensity, cpr, and the cumulative prepayment curves CPR
(the integral of the intensity rate) are given by

cpr(t) =
{

αt; 0 ≤ t ≤ τ0

ατ0; τ0 ≤ t ≤ T
(10.14)

and

CPR(t) =


αt2

2 ; 0 ≤ t ≤ τ0

−ατ2
0

2 + ατ0t; τ0 ≤ t ≤ T

. (10.15)

The constant prepayment model takes Pp(t) = CPR(t).
From (10.14) it is obvious that the prepayment rate increases at a speed of α per

period before time τ0 and remains constant afterwards. Consequently, the cumu-
lative prepayment curve (10.15) increases quadratically on the interval [0, τ0] and
linearly on [τ0, T ]. Given τ0 and Pp(T ) = CPR(T ), i.e. the cumulative prepayment
rate at maturity, the constant rate of increase α equals

α = CPR(T )

T τ0 − τ2
0
2

. (10.16)

Hence, once τ0 and CPR(T ) are fixed, the marginal and cumulative prepayment
curves are completely deterministic. Moreover, the CPR model does not include
jumps. Due to these features, the CPR model is an unrealistic representation of
real-life prepayments, which are shock-driven and typically show some random
effects. In the following sections we will describe two models that (partially) solve
these problems.

Figure 10.5 shows the marginal and cumulative prepayment curve when the
steady state τ0 is reached after 18 months and the cumulative prepayment rate at
maturity equals Pp(5) = CPR(5) = 0.20.

1 In 1997 the PSA changed its name to The Bond Market Association (TBMA), which merged with
the Securities Industry Association on 1 November 2006, to form the Securities Industry and Financial
Markets Association (SIFMA).
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10.3.2 Lévy Portfolio Prepayment Model

The Lévy portfolio prepayment model is completely analogous to the Lévy portfolio
default model described in Section 10.2.2. We propose a stochastic prepayment
curve model of the form:

Pp(t) = 1 − exp(−λ
p
t ),

where λp = {λp
t , t ≥ 0}, is a non-decreasing process starting at zero. The model is

again based on the classical intensity model framework thinking of Chapter 5, but
now applied to a portfolio level. In the example, we again make use of a Gamma
process for λp.

10.3.3 Normal One-Factor Prepayment Model

The Normal one-factor prepayment model starts from the same underlying philos-
ophy as its default equivalent of Section 10.2.3. We again use the latent variable
setting, but now include prepayment. The ith borrower prepays at the time t , the
first time Zi is above a prespecified upper bound K

p
t .

The barrier K
p
t is chosen such that the expected probability of prepayment

before time t equals the (observed) cumulative prepayment curve CPR(t), given
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by (10.15), i.e.

P(Zi ≥ K
p
t ) = 1 − �(K

p
t ) = CPR(t), (10.17)

which implies that

K
p
t = �[−1](1 − CPR(t)), (10.18)

with �[−1], as before, the inverse of the standard Normal cumulative distribution
function.

In order to simulate prepayment curves, we must thus draw a sample standard
Normal random variable Z = (Z1, Z2, . . . , ZN) satisfying (10.1), and then, at each
(discrete) time t , count the number of Zi’s that are greater than or equal to the
value of the prepayment barrier H

p
t at that time. The prepayment curve is then

given by

Pp(t; Z) = �{Zi ≥ K
p
t : i = 1, 2, . . . , N}

N
, t ≥ 0. (10.19)

The left panel of Figure 10.6 shows five prepayment curves, generated by the
Normal one-factor model (10.4) with ρ ≈ 0.121353, such that the mean and stan-
dard deviation of the prepayment distribution are 0.20 and 0.10 (as for the default
model). The fact that the cross-correlation coefficient ρ is the same as the one of
the default model is a direct consequence of the symmetry of the Normal distribu-
tion. The corresponding prepayment probability density function is shown in the
right panel.

We note finally that other one-factor Lévy models can also be set up in the
same spirit. However, in order to have some realism, these should be based upon
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a two-side distribution (the real line). Hence the Shifted Gamma model is not
considered here because of the upper endpoint (µ̃).

10.4 NUMERICAL RESULTS

One can now build these default and prepayment models into any scenario gen-
erator for pricing, rating and determining the Weighted Average Life (WAL) of
notes backed by an underlying asset pool. Any combination of the above described
default and prepayment models is possible, except for the combination of the
generic one-factor Lévy default model with the Normal one-factor prepayment
model. Otherwise the borrower’s cash position would be modelled by two differ-
ent processes: one to obtain his default probability and another for his prepayment
probability, which is neither consistent nor realistic.

Hence, we consider 11 different scenario generators.
We will now apply each of the above-mentioned 11 default–prepayment combi-

nations to derive the expected loss and the corresponding rating and WAL of two
(subordinated) notes backed by a pool of commercial loans. Table 10.1 lists the
specifications of the ABS deal under consideration.

Table 10.1 Specifications of the ABS deal

ASSETS

Initial balance of the asset pool V0 $30,000,000
Number of loans in the asset pool N0 2,000
Weighted Average Maturity of the assets WAM 10 years
Weighted Average Coupon of the assets WAC 12% p.a.
Payment frequency monthly
Reserve target 5%
interest rate on reserve account 3.92% p.a.
Loss-Given-Default LGD 50%

LIABILITIES

Initial balance of the senior note A0 $24,000,000
Premium of the senior note rA 7% p.a.
Initial balance of the subordinated note B0 $6,000,000
Premium of the subordinated note rB 9% p.a.
Servicing fee rsf 1% p.a.
Shortfall fee rsh 20% p.a.
Payment method Pro-rata
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The so-called waterfall structure of this example ABS deal works as follows.
Each month some cash is collected. This cash can come from four sources:
interest payments of the underlying loans, unscheduled prepayment of loans
(modelled by the above prepayment curves), recovery values in case of
defaults (modelled by the above default curves) and the scheduled principle
repayments. The collected amount is then redistributed according to the following
rules:

1. First, a servicing fee of rsf on the outstanding balance of the asset pool, say
Vt , is paid out to the SPV. Note that the initial outstanding balance is V0, but
that this value is decreasing over time because of redemptions, prepayments and
defaults.

2. Next, the interest rA on the outstanding balance of Note A in the beginning of
the collection period (At ) is paid out to the Note A holders. Note that the initial
outstanding balance of Note A is A0, but that this value again is decreasing over
time because of redemptions.

3. Then, the interest rB on the outstanding balance of Note B in the beginning of
the collection period (Bt ) is paid out to the Note B holders. Same remark as
above holds on the initial outstanding balance of Note B, B0 and its decrease
over time.

4. Next, the scheduled principal redemption of Note A is paid out.
5. Finally, the scheduled principal redemption of Note B is paid out.

The amount that is left over is put on a reserve account. The reserve account
has an upper limit which is a fixed percentage (in our example 5% p.a.) of the
outstanding balance of the asset pool at the end of the collection period. Any
excess cash goes to the owners of the SPV. If, for a certain month, in the above
waterfall structure, one has not enough money, one uses the money in the reserve
account to honour its obligations. If there is no longer any money in the reserve
account, payments are postponed to the next month. However, each month the
waterfall sequences is respected. So, if in a certain month, one cannot honour the
third step (and the following ones) in the waterfall, next month’s money is used
first to pay out steps 1 and 2 and then one is paying for steps 3, 4 and 5. One is
then paying last month’s obligations and this month’s obligations. However, on
the servicing fee payments that were not paid out on time, an extra shortfall fee
rsh is added. As the servicing fee is accrued with this shortfall fee, the overdue
interest rate payments are accrued with the respective premiums rA and rB.

In the above waterfall, we have a so-called pro-rata redemption of principal,
which means that in each month part of the outstanding balance of Note A and
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Table 10.2 Some important parameters

Mean of the default distribution µd 20%
Standard deviation of the default distribution σd 10%
Mean of the prepayment distribution µp 20%
Standard deviation of the prepayment distribution σp 10%
Parameters of the Logistic curve b 1

c 0.1
t0 55 months

Steady state of the prepayment curve τ0 45 months

Note B is supposed to be redeemed. Another popular mechanism is the so-called
sequential redemption, where first the total outstanding balance of Note A is paid
back and then one starts with redeeming Note B holders.

It should be noted that this is just an example. Each ABS deal is different. There
can be different notes/tranches, with different outstanding balances, the priority
rules (in the waterfall) of the payments can be different, the existence of and the
functioning of the reserve account can change, other redemption mechanisms can
be in place, etc.

The reserve account can be seen as a credit enhancement instrument, as is illus-
trated in Table 10.5. Other types of insurance are of course possible.

We will use the parameter values mentioned in Table 10.2 to rate the above
described deal under the different models.

Tables 10.3 and 10.4 contain the ratings (based on the Moody’s Idealized Cumu-
lative Expected Loss Rates, cfr. Cifuentes and O’Connor 1996) and the difference
between the promised and the realized return (DIRR) and WALs of the two ABS
notes, obtained with each of the 11 default–prepayment combinations and for sev-
eral choices of µd, and µp. The figures presented in these tables are averages based
on a Monte Carlo simulation with a million scenarios. To be precise, a rating is
determined in the following way. We first look at the WAL and (by interpolation)
calculate for each rating class the corresponding cumulative Expected Loss rates,
then we compare these with the Monte Carlo calculated DIRR.

The WAL is defined as

WAL = 1

P

(
T∑

t=1

t · Pt + T

[
P −

T∑
t=1

Pt

])
, (10.20)

where Pt is the total principal paid at time t and P is the initial balance of the
note.

More specifically, in Table 10.3 we investigate what happens to the ratings if
µd is changed, while holding µp and σp constant,2 whereas Table 10.4 provides
insight in the impact of a change in µp, while keeping µd and σd fixed.

2 In order to keep µp and σp fixed, also the cross-correlation ρ must remain fixed, since there is a unique
parameter ρ for each pair (µp, σp) (or equivalently (µd, σd)). This also explains why σd changes if µd
changes.
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The effect of having no reserve account in the pro-rata case is shown in
Table 10.5. For a full sensitivity analysis, we refer to Jönsson et al. (2009).

Traditional models for the rating and the analysis of ABSs are typically based
on Normal distribution assumptions and Brownian motion-driven dynamics. The
Normal distribution belongs to the class of the so-called light-tailed distributions.
This means that extreme events, shock, jumps, crashes, etc., are not incorporated
in the Normal distribution based models. However looking at empirical data and
certainly in the light of the credit crunch financial crisis, these extreme events can
have a dramatic impact on the product. Hence, in order to do a better assessment,
new models incorporating these features are needed. Having introduced a whole
battery of models based on more flexible distributions incorporating extreme events
and jumps in the sample paths, we observe an important impact of such models on
the (D)IRR and the WAL and consequently on the rating of ABSs.
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Lévy processes 9, 57–85
time changes 36–7

asset-backed securities (ABSs) 101–7,
149–66

see also cash CDOs
concepts 149–66
constant prepayment model 157–8
credit ratings 162–6
critique 149–50
default models 150–6
definition 149–50
DIRRs 162–6
generalized logistic default model

150–2, 160–5
generic one-factor Lévy default model
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Lévy first-passage models, concepts 62–71
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Lévy–Khintchine formula 23, 72–7
LGD see loss-given-default
LIBOR 145–7
light-tail behaviour, concepts 28, 127, 166
linear deterministic part, Lévy processes 23
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Shifted Gamma-Lévy model 115–17,

156–66
Shifted IG process (SIG)

see also Inverse Gaussian. . .

CDS pricing illustration 75–7



184 Index

Shifted IG process (SIG) (continued)
concepts 31, 71–7, 116–17

shock events 11, 151–66
see also extreme events

short positions 57–60, 105–6, 143–4
short rates

definition 15
Merton model critique 60

SIFMA see Securities Industry and
Financial Markets Association

SIG see Shifted IG process
sigma-algebra 13–14
sigmoid functions 150–1
single-name credit derivatives 11–12,

45–55, 57–85, 87–98, 122–4
see also credit default swaps
delta-hedging CDO tranches 122–4

single-name modelling 11–12, 45–55,
57–85, 87–98, 122–4

skewness
see also kurtosis
CMY process 32, 117–24
Gamma distributions 27–9, 117–24
Inverse Gaussian process 30–1, 117–24
normal distributions 17–20
Variance Gamma process 34–7, 66–71

special purpose entities (SPEs) 149
special purpose vehicles (SPVs) 101–7,

149, 160–6
see also collateralized debt obligations

spectrally negative Lévy process 71–7
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