
Nonlinear Analysis: Real World Applications 7 (2006) 720–747
www.elsevier.com/locate/na

Evaluation of neural networks and data mining
methods on a credit assessment task for class

imbalance problem

Yueh-Min Huanga, Chun-Min Hunga,∗, Hewijin Christine Jiaub

aDepartment of Engineering Science, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 701,
Taiwan, ROC

bDepartment of Electrical Engineering, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 701,
Taiwan, ROC

Received 28 October 2004; accepted 25 April 2005

Abstract

Most of the real-world data that are analyzed using nonlinear classification techniques are imbal-
anced in terms of the proportion of examples available for each class. This problem of imbalanced
class distributions can lead the algorithms to learn overly complex models that overfit the data and
have little relevance. Our study analyzes different classification algorithms that were employed to
predict the creditworthiness of a bank’s customers based on checking account information. A series
of experiments were conducted to test the different techniques. The objective is to determine a range
of credit scores that could be implemented by a manager for risk management. As a result, by real-
izing the concept of classification with equal quantities, the implicit knowledge can be discovered
successfully. Subsequently, a strategy of data cleaning for handling such a real case with imbalanced
distribution data is then proposed.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Class imbalance; Back-propagation; Data mining; Credit scoring

∗ Corresponding author.
E-mail addresses: huang@mail.ncku.edu.tw (Y.-M. Huang), goodmans@giga.net.tw (C.-M. Hung),

jiauhjc@mail.ncku.edu.tw (H.C. Jiau).

1468-1218/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.nonrwa.2005.04.006

http://www.elsevier.com/locate/na
mailto:huang@mail.ncku.edu.tw
mailto:goodmans@giga.net.tw
mailto:jiauhjc@mail.ncku.edu.tw


Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 721

1. Introduction

Nowadays, digital information is relatively easy to find and fairly inexpensive to store,
and further, several data mining approaches have been implemented to analyze it. These
methods mainly include clustering, classification, association rules, and prediction. Many
algorithms are used to implement the methods such as the well-known neural network
approach (NN) [11], genetic algorithms, data mining tools, and fuzzy logic. However, the
amount of real-world data so far collected are far less than that generated. Especially,
collecting sufficient data under authorization constraints imposed by government’s law
proclaimed for the protection of individuals with regard to the processing of personal data
is difficult. Fortunately, a particular encoded dataset encrypting some sensitive attributes
was collected in a cooperative project involving the local Tainan Business Bank (TNB).
A real case study can be found in [10].

First of all, our study presents many back-propagation algorithms for discovering knowl-
edge of interest useful for TNB, and especially for finding out the optimal network param-
eters. Because the collected raw data have the class imbalance problem, it must be tackled
properly by the known approaches [4–6,17,18,28] before using neural networks. The class
imbalance problem, in which one class is represented by a large number of examples while
the other is represented by only a few, is an important issue since it causes a significant
bottleneck in the performance attainable by standard learning methods which assume a
balanced class distribution. In 2001, Japkowicz and Stephen [14] debate in clarity several
basic re-sampling and cost-modifying methods tackling the class imbalance problem, and
establishing a relationship between concept complexity, size of the training set and class
imbalance level. Most notably, their studies conclude that Multi-Layer Perceptrons (MLP)
seem less affected by the class imbalance problem than the decision tree. Hence, our study
is concerned with the comparison between MLPs and decision tree methods. However, our
intent is to develop a data mining procedure remedying the class imbalance problem so that
the patterns extracted from a relatively small class have a relative performance in the other
classes. By conducting many experiments, only the balanced data cleaning with nearly equal
subclass size clearly affects the performance at classification. In addition, the noise data,
another important factor, are also considered in our study for deciding the tolerant extent of
performance that could be implemented by a manager for risk management. Next, several
typical data mining tools other than the neural networks are employed by applying some
data cleaning procedures to understand the relationship between the noise data and class
imbalance problems. Finally, this paper presents some patterns extracted from a relatively
small class using the learning model, and explains its application on a credit assessment
task.

In fact, the accuracy of a classification of the special or ambiguous classes is more im-
portant than other distinct classes for some business rules. In particular, real-world data
often include some disproportionate subsets within a training dataset while a supervised
learning rule is used to perform the overall classification. The situation will lead to super-
vised learning generating a model of high complexity but low interest for these special or
ambiguous classes and then form a biased learning through that model. Credit scoring plays
a more important role in a slacker economy. Therefore, assessing a customer’s credit in loan
application is a critical work for a bank. Moreover, the credit in a checking account is a



722 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

primary credit check. Consequently, in this work, the datasets would be categorized into
three classes—to be declined, risky, and good whose number of element of the list are class
‘1’, class ‘2’ and class ‘3’, respectively. In particular, the risky class is interesting to analyze
because recognizing patterns is difficult if the classification work is determined by humans.
Finally, the attributes that dominate the accuracy of the classification and the factors that
dominate the accuracy of the classification of interesting classes, especially risky classes,
must be known in advance.

In a classification or prediction problem, neural network techniques are used as a tool
to analyze datasets. A multiplayer feed-forward network is an important class of neural
networks [10]. This paper employs over ten kinds of algorithms to make an adaptive learning
model and thereby predict the credit scores of checking accounts at a local bank in Taiwan.
Experimentally, about sixty thousands records were collected as inputs. For efficiency,
only some of the original data were retrieved to cross-analyze the complex combination of
environmental parameters that affect the neural network. For each epoch, the algorithm of
the neural networks would iterate the computation with same training samples. In fact, it
can be found that use of some sufficient samples can simulate the behavior of the whole
original data. In this study, the following requirements must be met to approach the goal. (a)
The parameters of the neural network used for training in the real case must be known. They
include learning rate, number of epochs, condition of convergence such as the mean square
error, the properties of algorithms, the number of neurons and the time for execution. (b)
The robustness of the constructed model must be tested. It includes outside test, overfitting
problem [27], and tolerable noise. (c) For special purposes, the accuracy of classification
for the risky class must be improved to reach an acceptable standard but not excessively
affecting the accuracy of classification for other classes. The experimental processes must
include basic steps of the knowledge discovery process, such as cleaning data, selecting the
PCA (Principal Components Analysis) [11], pre-processing, mining data interpretation [7],
and determining dominant attributes by removing a variable without affecting the accuracy
of classification. For completeness, many methods of data mining are also used to compare
the experimental results to verify the specific conclusions.

2. Data mining

In this section, the application of data mining used in this work is described. In general,
the process of knowledge discovery, as shown in Fig. 1, is composed of four major parts
of data mining. For credit assessment tasks, each part of this process will be illustrated by
conducting a serial of experimental steps using the real-world bank datasets. Subsequently,
the prior work depicted by a training exercise is described after the definitions of some
terminologies.

2.1. Knowledge discovery process

The process of knowledge discovery via data mining can be generally divided into four
activities—selection, pre-processing, mining data, and interpretation [7].



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 723

Selection
(SQL, Segment)

Pre-processing
(PCA, Value)

Data mining
(NN, Parameter)

In
te

rp
re

ta
ti

on
(M

A
T

L
A

B
, F

ig
ur

e)Directly related

Clean acceptable

Apparently significant

Redesign

Reference

Fig. 1. Process of knowledge discovery.

Fig. 1 depicts the knowledge discovery process in this real case. The first item in paren-
theses shown within the block diagram of Fig. 1 is an abbreviation of the techniques used in
each stage and the second item in parentheses shown within the block diagram of Fig. 1 is a
major aim of the task performed in that stage. First, a Structure Query Language (SQL) tool
is used to select some source data from the bank’s database server. These source data, called
target datasets, are cleaned in a series of pre-processes, including manual and automatic
processes and a technique of PCA [11]. Moreover, MATLAB (MATrix LABoratory) Neural
Network Toolbox 4.0 from MathWorks� Corp. is applied to perform the training exercises.

For selection, a target dataset of about 1000 records, which distributes the ‘1’, ‘2’, and
‘3’ classes to the ratio 19:15:66, is sampled randomly from part of the original dataset of
62,621 records. The number of target records is reasonable, since nearly 1000 checking
accounts are opened annually in this bank. Annually, the bank has applied several data
mining tools for generating some business rules employed by the bank for the change of
credit policy. Because the change influences the customer behaviors only in succeeding
years, the assessment task in that year should use the dataset collected in previous years
close to that year rather than using all datasets accumulated so far. During this phase, the
work focuses on finding out the pattern of risky classes and cleans any inconsistencies from
these selected records. During pre-processing, the configuration of datasets on the 20-field
database is examined. However, some fields including irrelevant fields, private fields and
missing data, are discarded. As a result, there are only six fields left: ‘type of overdraft’,
‘type of account’, ‘number of transactions’, ‘status of recent transactions’, ‘interest over this
year’, and ‘any changes to signature of the specimen seal’. These are marked as variables 1
to 6 in some figures, respectively. For avoiding unnecessary computation, this study chooses
only some essential attributes using the principal component analysis (PCA) method during
the data mining selection phase shown in Fig. 1. Notably, the retained fields may include
skewed fields and outlying data points. Finally, data are converted into a format acceptable
for a neural network. The experimental section describes further cleaning. For data min-
ing, neural network data mining software is chosen. In particular, the types of multiplayer



724 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

Table 1
List of nominal values in nominal attributes

Variable Attribute Possible values of nominal attributes Values of neurons

1 Overdraft None, vouching {0, 1}, {1, 0}
2 Type Chief, sponsor, contribution, others {0, 0, 0, 1}, {0, 0, 1, 0},

{0, 1, 0, 0}, {1, 0, 0, 0}
3 Transactions Very high, high, middle, low, very low > 0.8, > 0.6, > 0.4, 0.2, �0.2
4 Interest Huge, very high, high, middle, low, very low, > 0.5, > 0.4, > 0.3, > 0.2,

none > 0.1, > 0.05, �0.05
5 Activity No, yes {0}, {1}
6 Changed-signature No, yes {0}, {1}

Credit Declined(class 1), Risky(class 2), Good(class 3) {1, 0, 0}, {0, 1, 0},
{0, 0, 1}

feed-forward networks [11] that contain several algorithms are experimentally analyzed. In
the experiments, the R-coefficient [2] is used to measure how the output variable is to the
target variable. Its value is close to unity, implying that the output closely fits the target. The
results are then analyzed and interpreted. This phase depends on the human domain experi-
ence, a work of ‘reference’ that is presented by the double arrowed line of Fig. 1 performed
via a person. Next, the work of the selection phase is redesigned for a data mining cycle
that can refine a final result according to requirements. The experimental section describes
the results of this stage.

2.2. Training exercise

A research project of TNB involves training a data mining system. As part of that training
exercise, a preliminary study was performed, involving the extraction of data from the TNB
data warehouse. The sampling data contain around 1000 records, which only occupy a small
amount of current checking accounts, roughly 2% of the TNB’s current database. Before
training, input variables and output variables must be numerically encoded to enable the
predictive modeling techniques that involve neural networks to be used. A learning model is
constructed from this information and a pattern of the risky class of all checking accounts is
extracted. This descriptive model was then suggested to the bank for risk management. The
denominated variables and their detailed descriptions for this training exercise can be found
in [13]. For clarity, Table 1 lists all of the nominal values used for transforming numeric
attributes into nominal attributes. Notably, all of the numeric values in the original training
dataset have been normalized to the interval between zero and one, inclusively.

In this work, the skewed data imply that the group of good customers is larger than
the other groups. Besides the parameters mentioned above, the experimental process tests
several combinations of parameters including the number of neurons in the hidden layer,
the learning rate, the algorithms with the different principles, execution times, dominant
attributes, noise ratios, the proportion of the number of records for each class over all
training records, the effect of the cleaning of data and others. Consequently, the aim of this
exercise is to establish a predictive model with three classes, whether it is feasible or not.



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 725

There are two kinds of testing that are useful for the training model. One method uses part
of the training dataset as the testing dataset, which refers to the inside test. The other method
uses the dataset as its testing dataset that has not submitted to the training model. For each
class, the accuracy of prediction measured by a percentage is defined as the number of
successful predictions over the number of submitted records. Similarly, the whole accuracy
of prediction measured by a percentage is defined as the number of successful predictions
over all the number of submitted records. Hence, the accuracy of prediction with outside
test is an important measurement for testing the robustness of training model. In this work,
if all percentages of accuracy of prediction exceed 50% for every class it is called a feasible
learning model. In other words, the phenomenon of a skewed training is eliminated if the
learning model is feasible. Although the ‘Risky’ class is a minority class, it brings more
profits to the bank than those of the other two classes. In fact, a high accurate prediction
for the model class ‘Good’ is meaningless in terms of the imbalanced class distribution
since the prediction is probably only a random guess. Therefore, a tradeoff between profits
and accurate predictions should be reconsidered in the real world. Hence, the study aims
at successful skewed training via a feasible learning model for analyzing the nonlinear
classification problem in the real world.

3. Comparison of tools

This section introduces some typical methods for knowledge discovery and data min-
ing. These methods, which differ from the methodologies of neural networks, can extract
interesting information or patterns from a large database. For classification learning, the
training dataset used for this real case must slightly modify the designed schema to make
them suitable for various classification methods. First, the schema of the training dataset
is composed of the seven attributes of variables, including overdraft, type, transactions,
interest, activity, changed-signature, and credit. This study hypothesizes that the training
dataset comprises a unique class attribute and numerous column attributes, and gathers
many instances to describe the universe of credit risk related to this real case. Each instance
of the training dataset is associated with a unique and predefined class value. The values
in the class attribute include ‘Decline’, ‘Risky’, and ‘Good’, and are used to indicate dif-
ferent levels of risk, respectively. Furthermore, the attributes of a numeric type must first
be discretized since some classification algorithms only deal with nominal attributes. Thus,
some nominal values are applied to obtain a small number of distinct ranges. By observ-
ing data distribution, some business rules can determine reasonable ranges of discretizing
values. For example, a ‘huge’ contribution of interest for checking accounts usually comes
from some special customers who deposit considerable money on the very early date and
then draw on the checks on the later date. Thereby, the bank can employ the money with-
out the payment of interests since a checking account is a free-interests account. In fact,
this group of special customers is well known to bank employees, and a simple summary
can easily determine the number of instances. Assume that the training dataset, which
is an information table, is used to describe the universe of knowledge for this real case.
The information table consisting of many instances can be partitioned by dividing the ins-
tances into disjoint classes. Assume that the set of attributes A = F ∪ C constructs the



726 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

information table S, where the set F of attributes is used to describe the instance sj ∈ S

and C is a class attribute. The goal is to find classification rules of the form, � ⇒ C = ci

where � denotes a formula over F and ci is a class value. The formula � can describe the set
�(�)={sj ∈ S|∀sj satisfy �} of all instances with the property expressed by the formula �.
Ordinarily, a subset Â ⊆ Acan define either a partition �A or covering �A of the universe.
To be complete, this real case must use various methods based on both partition �A and cov-
ering �A to verify the experimental results using back-propagation learning. Therefore, this
study briefly compares the algorithms of C4.5, ID3, PRISM, Conjunctive Rule, NNge, IBk,
Naı¨ve Bayes, Complement Naı¨ve Bayes, Bayes NetB, Random Committee, Voted Percep-
tron, and RBF Network, as well as the multiple perceptron of neural networks mentioned
above.

3.1. Back-propagation learning

This section briefly introduces the well-known ten algorithms for back-propagation learn-
ing [25], applied in the experiments. The error back-propagation learning consists of two
passes, one of which propagates the effect from the input layer through the hidden layers to
the output layer, and then the other pass propagates an error signal backward through the
network by an inverse direction of the original pass. The best simple back-propagation al-
gorithm is the gradient steepest descent algorithm. Besides, the transformations of gradient
steepest descent methods are employed to train and test the dataset, including ‘Traingd’,
‘Traingda’, ‘Traingm’ and ‘Traingx’. Moreover, the weight and bias in algorithms like
‘Trainb’ and ‘Trainc’ are modified in batch and online modes, respectively. Besides, a
conjugate gradient method [19] belongs to a class of second-order optimization methods
known collectively as conjugate-direction methods. Thereof, the Fletcher-Reeves formula
and the Powell–Beale Restarts methods are also tested experimentally by the algorithms of
‘Traincgf’and ‘Traincgb’, respectively.Additionally, a quasi-Newton method only estimates
the gradient vector and uses second-order information on the average error energy function
to update the approximated Hessian matrix H′ without any knowledge of the Hessian matrix
H. The method is assured of going downhill on the error surface [8]. A quasi-version of the
Newton method is therefore used and denoted by ‘Trainbfg’ in the experiments. Finally, the
Levenberg–Marquardt algorithm [26] is designed in a class of second-order optimization
methods and is similar to a quasi-Newton method, but it lacks the computation of a Hessian
matrix. ‘Trainlm’ denotes the Levenberg–Marquardt algorithm in the experiments.

For a given training dataset, the average error energy Rav is defined as a function
of the weights and bias denoted by vector w. The vector w is a set of parameters
that describe neurons of this network. The aim of the learning process is to minimize Rav.
Hence,

Rav(w) = 1

2N

N∑
n=1

(t (n) − a(n))2, (1)

where N is the number of records of the entire training dataset.



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 727

The gradient steepest descent method computes the gradient from the first derivative of
Rav with respect to w. Therefore,

r(n) = �Rav

�w
= − 1

N

N∑
n=1

�F(w, p(n))

�w
(t (n) − a(n))2. (2)

The best simple back-propagation algorithm is the gradient steepest descent algorithm. The
chain rule of Calculus is used to provide a mathematic deduction for modifying weight and
bias,

w(n + 1) = w(n) − �(n)r(n). (3)

The transformations of gradient steepest descent methods are employed to train and test
the dataset, including ‘Traingd’, ‘Traingda’, ‘Traingm’ and ‘Traingx’. Moreover, the weight
and bias in algorithms like ‘Trainb’ and ‘Trainc’ are modified in two modes; one is the
increment mode that changes the vector w of weight and bias when one column vectors of
input variables are submitted, while the other is the batch mode that changes the vector w
of weight and bias when the whole input vectors are submitted.

3.1.1. Conjugate gradient
The mentioned methods adjust the weight vector w in the direction of deepest descent.

These methods may not quickly reach convergence for the error function. The conjugate
gradient method [19] belongs to a class of second-order optimization methods known collec-
tively as conjugate-direction methods. Fast convergence is necessary for back-propagation
learning. This method can accelerate the typically slow convergence experienced with the
method of steepest descent and must compute a Hessian matrix H(n) defined as follows.

H(N) = �2Rav

�w2

= 1

N

N∑
n=1

{(
�F(w, p(n))

�w

) (
�F(w, p(n))

�w

)r

− �2F(w, p(n))

�w2 (t (n) − a(n))

}
.

(4)

The conjugate gradient algorithm can avoid using a Hessian matrix H(n), which is plagued
by computational difficulties, to determine the next direction of the search. Therefore,

s(n) = r(n) + �(n)s(n − 1), n = 1, 2, . . . , N − 1, (5)

where s(n) represent a conjugate vector in the direction of the search. Here, two major
ways to evaluate the coefficient �(n) of the conjugate gradient are chosen to determine
the direction of search to minimize the average error energy function Rav without explicit
knowledge of the Hessian matrix H(n). One method is to use the Fletcher–Reeves formula
[21,15] as follows.

�(n) = rT(n)r(n)

rT(n − 1)r(n − 1)
(6)



728 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

where rT is a transpose vector of a gradient vector r.Another way is to use the Powell–Beale
Restarts formula [19] as follows:

|rT(n − 1)r(n)�0.2‖r(n)‖2 (7)

where 0.2 is an orthogonality ratio that is the orthogonal quality between the current gra-
dient vector and the preceding gradient vector. This formula implies that the direction of
search will periodically be reset to a direction of a negative gradient if a certain and tiny
orthogonality exists. The Fletcher–Reeves formula and the Powell–Beale Restarts meth-
ods are tested experimentally by the algorithms of ‘Traincgf’ and ‘Traincgb’, respectively.
Here, another method is introduced for solving a combinatorial optimization problem. This
method is called a Newton method, whose basic formula is

w(n + 1) = w(n) − H−1(n)r(n), (8)

where H−1(n) is the inverse Hessian matrix.
However, the method is impractical because the computation of an inverse Hessian matrix

H−1 is difficult. A quasi-version of the Newton method is therefore used and denoted
by ‘Trainbfg’ in the experiments. The method can avoid the computational requirements
associated with the evaluation, storage and inversion of the Hessian matrix in Newton’s
method. A quasi-Newton method only estimates the gradient vector r and uses second-
order information on the average error energy function to update the approximated Hessian
matrix H′ without any knowledge of the Hessian matrix H. The method is assured of going
downhill on the error surface [8].

3.1.2. Levenberg–Marquardt algorithm
The Levenberg–Marquardt algorithm [26] is designed in a class of second-order opti-

mization methods and is similar to a quasi-Newton method, but it lacks the computation of
a Hessian matrix. A Hessian matrix is approximately computed by the formula H = JTJ
and the gradient r = JTe ifRav is formed by a summation of squares, where J is a Jacobian
matrix which includes the first derivative ofRav with respect to w and e is the error vector
of the network. Eq. (8) is rewritten and combined with the above formula as follows:

w(n + 1) = w(n) − [JTJ + �I]−1JTe, (9)

where � is a tuning parameter and I is an identity matrix. The Levenberg–Marquardt method
switches its equivoque between the quasi-Newton method and the smaller gradient descent
method, by adaptively tuning the �-value from zero to very high or from very high to zero,
while Rav changes from decreasing to increasing or from increasing to decreasing. The
Levenberg–Marquardt algorithm is more efficient in converging a minimum error than oth-
ers. However, the computation of a Jacobian matrix J in the algorithm is more complicated
than the computation of a Hessian matrix H in the quasi-Newton method. Also, the imple-
mentation of the algorithm requires considerable memory for storing the Jacobian matrix
J of size Q × n, where Q is the number of records in the training dataset and n is the
dimensionality of weight vector w. Fortunately, the Jacobian matrix J can be decomposed



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 729

into the following form:

H = JTJ = [JT
1 JT

2 ]
[

J1
J2

]
= JT

1 J1 + JT
2 J2. (10)

The sub-items are summed in this decomposition of the matrix for reducing the memory
requirement. The experiments performed here did not test for tuning the �-value of the
Levenberg–Marquardt method since the memory consumed is not so critical at present.

3.2. RBF network

To achieve a complete comparison, the radial-basis function (RBF) network, which was
surveyed early in 1985 [20], can provide a completely different approach by viewing the
neural network design. The RBF network uses interpolation of the test data in a high-
dimensional space to solve the curve-fitting problem. Generally, the construction of the
RBF network involves three layers with completely different roles. The input layer nodes
connect to the nodes of the only hidden layer in the network via a nonlinear transformation
from the input space to the hidden space. The output layer then supplies the network response
to the signal applied to the input layer. The hidden layer comprises N Green’s functions
G which provide the distinct data points x1, x2, . . . , xN . The multivariate Green function
G(x, xi) is defined as follows:

G(x, xi) = exp

(
− 1

2�i

‖x − xi‖2
)

, (11)

where xj denotes the center of the function and �i represents its width. The one-to-one
correspondence between the training instance xi and the Green function G(x, xi) creates
the need for expensive computation costs. The K-means clustering algorithm may thus
provide fewer basis functions for learning the considerable instances of the training dataset.

3.3. C4.5 and ID3

The C4.5 proposed by Quinlan [22] is a well-known algorithm based on an approach,
which divides and conquers a problem to construct a decision tree recursively. First, the
approach selects and places an attribute at the root node to generate one branch for each
possible value of the attribute. The criterion for attribute selection involves obtaining a
maximum information gain using the information theorem [27]. Next, the branches can
split the instances into numerous partitions, including one for every attribute value. Finally,
each partition recursively repeats the splitting process until all instances at a node share the
same classification. To simplify decision tree size, a pruning strategy is also applied to cut
the nodes with rarely statistical significances throughout all the experiments using the C4.5
algorithm. Similarly, the other partition approach ID3 [27] can construct a similar decision
tree using the instance-based method without pruned nodes.The approach selects an attribute
to split the universe such that the training dataset is divided into many non-empty subsets,
one for each attribute value. Subsequently, the repeating steps are recursively applied to
every branch until all instances in the training set belong to the same class.



730 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

3.4. PRISM

Regarding covering approaches, the PRISM method proposed by Jadia Cendrowska in
1987 [3] is a typical covering algorithm for generating rules. Instead of using the princi-
ple of generating decision trees, which can be converted to decision rules, PRISM gen-
erates rules from training dataset directly. Due to PRISM providing shorter rules than
ID3, and being suitable for non-contradiction cases the method applied to the real case
would be a very interesting method of handling contradiction rules. By combining two
different approaches, partition and covering, the resulting experiments may provide more
information for understanding the behavior of risky customers crediting a class value of
‘Risky’. Conceptually, this approach calculates the probability that class ci will occur for
each attribute-value pair AVj . Depending on the maximum probability of AVj , a sub-
set of the training set is created that comprises all instances selected by the AVj . The
two steps are repeated for this subset until it contains only instances of class ci . Subse-
quently, the conjunction of all the selected AV as creating this subset yields an induced
rule. The next step removes all instances covered by this rule from training dataset. The
steps continuously repeat until all instances of every class ci are removed from the training
dataset.

3.5. Conjunctive rule

For further comparison of rule-based and tree-based classification, the discussion of
performance should involve the conjunctive rule approach since decision trees have dif-
ficulty in expressing the disjunction implied between the different rules in a set. In fact,
a disjunction form of an expression can be rewritten by transforming the logic expres-
sion into the disjunctive normal form that is a disjunction of conjunctive conditions. Thus,
a conjunctive rule learner may also be introduced to predict numeric and nominal class
value. The conjunctive rule approach reads a set of rules directly off a decision tree.
One rule is generated for each leaf on the tree. The path from the root to that leaf in-
cludes the antecedents of the rule and this is consequent of the final leaf node assigned
class value. The antecedents of the rule are conjunctive with logic AND, and the conse-
quents are the available class values in the attribute class. If this rule does not cover a
test instance, the default class serves as a predicted value. Similarly, this approach also
calculates an “Information” gain and thus selects an antecedent. The “Information” of
one antecedent is the weighted average of the entropies of both the data covered and that
not covered by the rule for this classification problem. Furthermore, a simple pre-pruning
strategy based on the number of antecedents can prune the generated rule to produce a
shorter rule.

3.6. NNge and IBk

Additionally, the nearest-neighbor-like algorithm using non-nested generalized exem-
plars (NNge) is one of the instance-based approaches. The generalized exemplar indicates
high-dimensional rectangular regions of the instance space. Most of the instance-based
classifications use Euclidean distance to compare new instances with existing ones, and use



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 731

the nearest existing instance to assign its class value to the new one. In a sense, learning of
instance-based approaches is very easy to carry out, since the approach merely calculates the
distance in a hyper-rectangle when classifying new instances. Then the approach merges
correctly classified instances with the nearest exemplar of the same class, and alters the
boundaries of the hyper-rectangle so that it shrinks away from the new instance if the predic-
tion is incorrect. Besides, the non-nested version can avoid a single rectangle covering most
of the instance space. Another instance-based approach is the K-nearest-neighbor classifier
[1]. This approach selects appropriate K values based on cross-validation, and also con-
ducts distance weighting. The need to scan the entire training dataset when classifying each
test instance makes the classification of large training datasets extremely time-consuming.
Thus, reducing the number of redundant exemplars can improve the time performance.
Moreover, higher K can enable the handling of more noise. Although higher K may simul-
taneously raise the issue of time-consuming computation, it can achieve excellent predictive
performance.

3.7. Naı¨ve Bayes, Complement Naı¨ve Bayes, and BayesNetB

Conventionally, the experimental results must be compared with a well-known Naive
Bayes [16] classifier, as in [10]. The Naı¨ve Bayes method is based on the Bayes rule
of conditional probability, which assumes that attributes are independent and that each
attribute exerts an identical influence on the decision. In fact, the Complement Naı¨ve
Bayes method can tackle the poor assumption of Naive Bayes [23] using heuristic so-
lutions. Moreover, this comparison of prediction accuracy comprises a special model of
the Naı¨ve Bayes method called BayesNetB. The BayesNetB approach is a Bayes net-
work [12] learning algorithm that uses a hill-climbing algorithm with no restrictions on
the order of variables. The Bayes network applies Bayesian analysis without assuming
independence.

3.8. Random committee and voted perceptron

To provide a further comparison, the analysis reports the prediction accuracy for this real
case using an ensemble of randomizable base classifiers and a voting system. In the random
committee classifier, the seeds generating different random numbers build various base clas-
sifiers. The individual base classifier determines the final prediction using a straight average
of the predictions for every base classifier. Additionally, the voted perceptron algorithm is
based on the well-known perceptron algorithm of Rosenblatt [24]. Furthermore, Freund
and Schapire [9] implemented the voted perceptron algorithm in 1998. First, the algorithm
globally replaces all missing values, and transforms nominal attributes into binary ones.
Second, a sophisticated method applies the online perceptron algorithm to batch learning.
The algorithm retains the list of all prediction vectors during training to generate better
predictions on the test data. For each such vector, the algorithm accumulates the votes of
correctly classified predictions until a misclassified prediction occurs. The number of votes
is then used to weight the prediction vector. Eventually, the algorithm determines a final
prediction using the weighted majority votes.



732 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

4. Experimental data

A series of experiments have been conducted for verifying the correctness of the method-
ology described in the previous section, including the setup, interference by noise, the
cleaning of data, and the adjustment of training records.

4.1. Setup and basic experiments

The network was trained and tested in the PC environment of 512 MB RAM, a 1.5G
Pentium IV CPU on the Windows 2000 platform. Now, suppose a target dataset has been
selected from the source database and the input vector has been formatted as a numeric
matrix required by the tools. The performance of these networks is analyzed using various
algorithms by measuring the value of mean square error in the experiment. In the very
beginning, the first step in the experiments is to determine the range of learning rates since
knowledge of these analyzed datasets may be absent.

Experiment 1. Fig. 2 shows that an initial learning rate of nearly 0.2 is preferred, includin-
gas a benchmark for various algorithms. It also shows that the performance diverges at a
rate of over about 0.4. Hence, 0.2 was fixed as the initial learning rate for the remaining
experiments. The x-axis represents the number of the epoch, such that the training processes
repeat 50 times throughout the entire training dataset. The y-axis represents the mean square
error at each epoch.

Experiment 2. The experiment includes a method similar to that mentioned above. Knowl-
edge of the number of hidden neurons that suffices for most algorithms is desired, because
the number of hidden neurons influences the capacity for fitting non-linear curves to those

0 10 20 30 40 50
10-0.8

10-0.6

10-0.4

10-0.2

100

Epoch

M
S

E

0.1
0.2
0.3
0.4
0.5

Fig. 2. Comparison of a convergence speeds at various learning rates.



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 733

0 2 4 6 8 10 12 14 16 18 20

10-0.7

10-0.5

10-0.3

10-0.1

100.1

Epoch

M
S

E

1
6
12
17
23
28
34
39
45
50

Fig. 3. Comparison of convergence speeds for various numbers of hidden neurons.

multi-dimensional variables. Fig. 3 indicates that around 28 is a good number of hidden
neurons for constructing the hidden layer.

Hence, in the following experiments, a fixed 28 hidden neurons are used in all the re-
maining training processes to construct hidden layers. The results reveal that too many
hidden neurons increase the sensitivity of the model, but very few hidden neurons cause the
performance to decline or diverge. Neither situation is appropriate.

Experiments 3 and 4. The following two experiments show the speed of convergence and
the accuracy of classification of classes obtained using ten algorithms. Fig. 4 shows that
Levenberg–Marquardt algorithm converges the fastest and has the gradient steeply descend-
ing gradient. The gradient descent algorithms with momentum-only exhibits a wavelet-style
convergence. Fig. 5 shows that regardless of any algorithm, the accuracy of classification
of classes is almost the same in the circumstances set up without cleaning of data. The
improvement of the accuracy of class ‘2’ is the primary work to overcome. The y-axis
represents the accuracy of classification at each epoch.

4.2. Interference by noise

An experiment is conducted to yield knowledge of a training model with noisy signals.
Two kinds of noisy data are thus defined—interfering with the value of goal attribute by
random noisy data and changing the value of goal attribute by transformed rules. In the
first instance, random noisy data are added to the training dataset to mislead the model
into making a mistake with part of the original dataset. In the second instance, a formula
is designed to transform the targeted classes into other ones according to a set of rules. In
this real case, a more severe credit scoring policy is simulated that shifts good customers



734 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

100 101 102
10-1

100

101

102

Epoch

M
S

E

trainb
trainbfg
trainc
traincgb
traincgf
traingd
traingda
traingdm
traingdx
trainlm

Fig. 4. Comparison of speed of convergence for various algorithms.

0 50 100
0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

trainb

Epoch

A
cc

ur
ac

y 
R

at
e

0 50 100

trainbfg

Epoch
0 50 100

trainc

Epoch
0 50 100

traincgb

Epoch
0 50 100

traincgf

Epoch

0 50 100
Epoch

0 50 100
Epoch

0 50 100
Epoch

0 50 100
Epoch

0 50 100
Epoch

1 subclass
2 subclass
3 subclass
all classes

1 subclass
2 subclass
3 subclass
all classes

1 subclass
2 subclass
3 subclass
all classes

1 subclass
2 subclass
3 subclass
all classes

1 subclass
2 subclass
3 subclass
all classes

1 subclass
2 subclass
3 subclass
all classes

1 subclass
2 subclass
3 subclass
all classes

0

0.8

0.6

0.4

0.2

1
traingd

A
cc

ur
ac

y 
R

at
e

0

0.8

0.6

0.4

0.2

1

A
cc

ur
ac

y 
R

at
e

0

0.8

0.6

0.4

0.2

1

A
cc

ur
ac

y 
R

at
e

0

0.8

0.6

0.4

0.2

1

A
cc

ur
ac

y 
R

at
e

0

0.8

0.6

0.4

0.2

1

A
cc

ur
ac

y 
R

at
e

0

0.8

0.6

0.4

0.2

1

A
cc

ur
ac

y 
R

at
e

0

0.8

0.6

0.4

0.2

1

A
cc

ur
ac

y 
R

at
e

0

0.8

0.6

0.4

0.2

1

A
cc

ur
ac

y 
R

at
e

0

0.8

0.6

0.4

0.2

1

A
cc

ur
ac

y 
R

at
e

traingda traingdm traingdx trainlm

1 subclass
2 subclass
3 subclass
all classes

Fig. 5. Comparison of accuracy of classification for each class using various algorithms.

to risky ones and risky customers to declined ones, while a certain proportion of declined
customers from the original dataset is maintained. Here, an inherently noisy target dataset
needs to be preliminarily processed.



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 735

0 50 100 150 200 250 300
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Epoch

A
cc

ur
ac

y 
R

at
e

0 % randomization
11 % randomization
22 % randomization
33 % randomization
44 % randomization
56 % randomization
67 % randomization
78 % randomization
89 % randomization
100 % randomization

Fig. 6. Comparison of the accuracy of classification with randomization.

Table 2
Prediction performance using various methods of data mining for the classification of three classes

Methods Accuracy % TP rate

‘Declined ‘Risky’ ‘Good’ MSE

Multilayer Perceptron 81.54 0.770 0 0.973 0.1024
C4.5 81.54 0.769 0 0.974 0.1043
Naı¨ve Bayes 81.50 0.768 0.005 0.972 0.1027
Bayes NetB 81.44 0.771 0.007 0.97 0.1021
IBk 81.15 0.774 0.016 0.964 0.1041
ID3 80.99 0.774 0.017 0.964 0.1041
Conjunctive Rule 80.97 0.770 0 0.965 0.1075
Complement Naı¨ve Bayes 80.59 0.770 0.013 0.958 0.1294
RBF 200-clusters 80.42 0.699 0.005 0.974 0.1056
Random Committee 78.68 0.741 0.062 0.929 0.1176
RBF, 30-clusters 78.54 0.592 0 0.974 0.1142
RBF 3-clusters 73.84 0.259 0 0.989 0.1322
RBF 2-clusters 72.43 0.157 0 0.994 0.1359
NNge 70.26 0.629 0.124 0.825 0.1982
PRISM 21.45 0.977 0.055 0.056 0.5236

Experiment 5. Fig. 6 shows that the average accuracy decreases in proportion to the ran-
domization.The accuracy decreases by 5% when data that are 10% random data of original
dataset are added. Generally, different tools applied to this real-world dataset generate vary
differences in accuracy which vary within 10%, as listed in Table 2. Because the generic
neural network without using randomization data yield about 79% classification accuracy



736 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

0 50 100 150 200 250 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

A
cc

ur
ac

y 
R

at
e

0 % transformation
11 % transformation
22 % transformation
33 % transformation
44 % transformation
56 % transformation
67 % transformation
78 % transformation
89 % transformation
100 % transformation

Fig. 7. The comparison of the accuracy rates of classification on transformation.

shown in Fig. 6, this study assumes that the accuracy decreased is tolerable if the training
model still maintains an average classification accuracy over 70%. Correspondingly, this
assumption is true only when the added noise data are less than 15%.

Experiment 6. Fig. 7 shows that 100% transformation by the stated rules slightly increas-
esthe accuracy of classification over that obtained without any transformation. Moreover,
89% and 11% transformation have the same accuracy of classification. It seems to connect
a complementary relationship between the degrees of noise transformation. A moderate
range of transformation from 33% to 56% with an average of 50% produces 50% accuracy
of classification as would be obtained by throwing a coin. The results shown in Fig. 7 con-
clude that the severe credit scoring policy is preferred for this real case when classifying
customers into only two classes and the distribution of good customers is larger than risky
ones.

4.3. Data cleaning

Experiment 7. The following experiment is performed to determine which factors domi-
nate the accuracy of classification of classes in the training model and to understand why
the class of declined customers is associated with a much lower accuracy than other groups.
Hence, the training datasets must be cleaned further and processed again. Fig. 8 shows
that the accuracy of classification apparently decreases when the classification into class
‘1’ of declined customers is made without information on ‘variable 1’, namely type of
overdraft. In each subdiagram of Fig. 8, when the dataset without variable 1 is trained,
the blue dotted lines clearly present a worse prediction accuracy than that of the other
cases. This result is reasonable since the class of ‘Declined’ customers inherently lacks the



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 737

0 50 100
0.3

0.4

0.5

0.6

0.7
1 class 

Epoch

A
cc

ur
ac

y 
R

at
e

0 50 100
0

0.05

0.1

0.15

0.2
2 class

Epoch

EpochEpoch

A
cc

ur
ac

y 
R

at
e

0 50 100
0.7

0.8

0.9

1
3 class

A
cc

ur
ac

y 
R

at
e

Without variables 1
Without variables 2
Without variables 3
Without variables 4
Without variables 5
Without variables 6

0 50 100
0.55

0.6

0.65

0.7

0.75
all classes

A
cc

ur
ac

y 
R

at
e

Fig. 8. Comparison of classification accuracy on removing one of six variables.

risk management intelligence exercising an overdraft right (‘variable 1’). Furthermore, the
average accuracy falls to about 72% since when any one of the six variables is lacking.
Therefore, any one of the six variables also affects the average accuracy of classification
by around 7%. However, lacking the dominant variable ‘1’ will cause 22% bias of original
accuracy.

Experiment 8. In the preceding discussion, the target dataset was cleaned many times.
Fig. 9 shows that the average accuracy rate has somewhat increased to around 85% after
cleaning. Especially, the accuracy of the classification of risky customers into class ‘2’class
is very unstable and can fall to 50%. This result fails to meet requirements.

Experiment 9. Consequently, the sampling segments of the training dataset are selected in
a ratio 1:1:1 for each class and then mixed in random orders with each other. Fig. 10 shows
that the set goals are reached. That is, the accuracy for each class is increased to over 65%.

Experiment 10. Unfortunately, requirement (b) is not met in full to approach the goal of
this work since the feature of risky class is not apparently detected yet. Fig. 11 reveals that
the accuracy of classification using outside test for the risky class falls to about 22%, even



738 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Epoch

A
cc

ur
ac

y 
R

at
e

1 subclass
2 subclass
3 subclass
all classes

Fig. 9. Accuracy of classification after data cleaning with skewed distribution data.

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Epoch

A
cc

ur
ac

y
R

at
e

1 subclass
2 subclass
3 subclass
all classes

Fig. 10. Accuracy of classification after adjusting their distribution and data cleaning.



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 739

0 50 100 150 200 250
0.5

0.55

0.6

0.65

0.7

0.75

Epoch

A
cc

ur
ac

y 
R

at
e

1 subclass
2 subclass
3 subclass
all  classes

Fig. 11. Results for outside test after cleaning data and adjusting distribution of data.

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

Hidden Neurons

E
xe

cu
te

 T
im

e 
(S

ec
.)

trainb
trainbfg
trainc
traincgb
traincgf
traingd
traingda
traingdm
traingdx
trainlm

Fig. 12. Comparison of execution time of algorithms for various numbers of hidden neurons.

if the training datasets have been cleaned by the proposed model and adjusted for their
distribution of data.

Experiment 11. Finally, Fig. 12 shows that the execution times of the three algorithms,
a Levenberg–Marquardt algorithm, a quasi-Newton algorithm and an algorithm marked as
‘Trainc’ are directly related to the number of hidden neurons. In particular, a



740 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

Levenberg–Marquardt algorithm is really not suitable for constructing a large network
although it can yield a high accuracy.

4.4. Comparative analysis

This section reports the accuracy, true positive rate, and mean square error (MSE) of
prediction using many methods of data mining for the real case containing 10,000 instances,
which distributes the ‘1’, ‘2’, and ‘3’ classes to the ratio 70:13:17, rather than the 1000
previously used. The goal is to demonstrate whether the conclusions being consistent.
Simultaneously, the findings of new knowledge can be further inferred using consistent
results.

Experiment 12. The following experiments use the same training dataset and estimate all
of parameters of performance using 10-fold cross-validation. Table 2 summarizes the pre-
diction accuracy using various data mining techniques. From observation of the prediction
accuracy, the Multilayer perceptron with back-propagation algorithm (BPN) and C4.5 have
higher accuracy than the other methods. However, from the perspective of time complex-
ity, C4.5 overwhelms BPN because of each split considered in the entropy method only
taking O(m log m) time, where m denotes the number of instances in the training dataset.
Although IBk and ID3 are slightly less accurate than either C4.5 or BPN, they can identify
some ‘Risky’ classes of interest. In fact, even if one simply uses Bayes-like methods, the
classifiers can attain an acceptable accuracy as well as C4.5 and BPN. Additionally, by
comparing these Bayes-like methods, the TP rate of ‘Risky’ gradually increases from 0.005
to 0.013. This increase indicates that the classification for the risky customers is not so
dependent on attributes due to the Complement Naı¨ve Bayes method modifying the poor
assumption of Naive Bayes. The analytical results indirectly demonstrate that modifications
of the assumptions, all attributes are independent and consistent of affection, are necessary
using Bayes-like methods for this real case. Moreover, the Conjunctive Rule can obtain
the same accuracy as ID3 because it is essentiality induced from decision tree. Besides
the approximation property of RBF networks, more numbers of K-clusters apparently in-
fluence prediction accuracy increasingly. Their prediction accuracy varies from 72.43% to
80.42% with the cluster number from 2 to 200. Experimentally, the Random Committee
method achieves the same prediction accuracy for RBF networks with K values between
30 and 50 clusters. Before data cleaning, most neural networks, including BPN and RBF,
are insensitive to the variations of the resulting TP rate. Basically, predictions using the
above methods can reach an accuracy of up to around 80%. However, the prediction using
the NNge method yields an accuracy of just 70.26% because of excessive noise. Owing to
the sensitivity to noise, the instance-based methods are not suitable for data mining using
raw data. Although the prediction accuracy for NNge is extremely low, the TP rate of the
‘Risky’ class is relatively high compared to the results yielded using the other methods.
Surprisingly, the prediction accuracy for the PRISM method is only 21.45%, but the TP
rate for ‘Declined’ class is up to 0.977. The reason for the phenomenon of extremely low
accuracy is the ‘Declined’class of customers with apparent patterns or consistent character-
istics. This unusual phenomenon raises the issues of identifying the patterns of ‘Declined’
and ‘Risky’ customers using the PRISM method. In fact, the particular algorithms such as



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 741

Table 3
Prediction performances using various methods of data mining for classification of two classes

Methods Accuracy % TP rate of

‘Declined’ ‘Good’ MSE

Multilayer Perceptron 82.88 0.495 0.971 0.1383
Naı¨ve Bayes 82.85 0.493 0.971 0.1386
C4.5 82.80 0.486 0.974 0.1413
Voted Perceptron 82.77 0.49 0.971 0.1723
IBk 82.47 0.507 0.960 0.1400
ID3 82.37 0.509 0.960 0.1396
Conjunctive Rule 81.36 0.492 0.970 0.1504
Random Committee 80.29 0.521 0.521 0.1597
RBF Network 69.26 0.073 0.994 0.1995
PRISM 33.47 0.986 0.057 0.6654

PRISM can used as a filter that filters out specific instances in the training dataset. Induc-
tively, the training dataset includes approximately 20% noise data, including contradiction
and redundant instances, and data cleaning must be performed.

Experiment 13. To further examine data cleaning, this study postulates that the attribute
of credit in the original training dataset only contains the two classes ‘Decline’ and ‘Good’,
by merging the ‘Risky’ class into the ‘Decline’ one. The purpose of reducing the number of
classes is to observe the variation in prediction accuracy. Conventionally, this investigation
only attempts to demonstrate the well-known knowledge regarding which classifiers of
two classes can gain higher prediction accuracy than others. Table 3 lists the performance
parameters for the classification of three classes. By observing the experimental results
in Table 3, the classifiers of two classes can only elevate the increment of accuracy of
1.3% on average except for the PRISM method. However, the PRISM method increases
the prediction accuracy to 12%. This experimental result implies that performance can be
further improved by manipulating data in certain matters. All of the matters are generally
called data cleaning here. The study will focus on the combination of the method PRISM
and the other method for the improvement of prediction accuracy. Incidentally, the Voted
Perceptron may obtain a higher accuracy than IBk and ID3, but it can only be applied
for implementing classifiers of two classes. In fact, regardless of the method applied, the
difference of accuracy is very small, even when the number of predicted classes is reduced.

Experiment 14. From the above discussion, a combination of two methods may provide
more knowledge regarding this real case. Particularly, the combination of a highly effective
algorithm C4.5 (or ID3) and specific algorithm PRISM would be extremely interesting.
Table 4 lists the results of data cleaning using a filter for classifying the prediction accuracy
in advance. At the very beginning, a combination of the classification method C4.5 and the
same filtering method as PRISM is tested. This filtering method is used to perform data
cleaning of the training dataset for either removing or reserving specific instances from



742 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

Table 4
Results of data cleaning with a prior filter of classification for the prediction accuracy

Case Classifier /filter Contents Instance Unclean Clean
TP rate for ‘Declined’, sa accuracy (%) accuracy (%)
‘Risky’, and ‘Good’

(a) C4.5/C4.5 C2 8280 82.8 100
(b) C4.5/C4.5 M2 1720 82.8 100
(c) C4.5/C4.5 C3 8156 81.54 100
(d) C4.5/C4.5 M3 1844 82.8 71.85

(second pass) 515 99.42
(e) ID3/C4.5 C3 8156 81.54 100
(f) ID3/C4.5 M3 1844 81.54 69.03

(second pass) 515 99.61
(g) C4.5/Naı¨veBayes M2 1720 82.85 99.71
(h) Naı¨ve Bayes/ Naı¨ve Bayes M2 1739 82.85 98.73
(i) Naı¨ve Bayes /C4.5 M2 1739 82.8 99.02
(j) Naı¨ve Bayes/ Naı¨ve Bayes C2 8261 82.85 100
(k) PRISM/PRISM C3 2203 21.45 97.78
(l) PRISM/PRISM M3 7797 21.45 23.12
(m) PRISM /C4.5 C3 8156 81.54 99.99
(n) PRISM /C4.5 M3 1844 81.54 30.80
(o) C4.5/PRISM C3 2203 21.45 95.91

0.985, 0.543, 0.946
(p) C4.5/PRISM M3 7797 21.45 85.01

0, 0, 1
(q) ID3/PRISM C3 2203 21.45 97.05

0.987, 0.86, 0.969
(r) ID3/PRISM M3 7797 21.45 84.58

0, 0.02, 0.992

aCorrectly classified for two classes: C2, misclassified for two classes: M2, correctly classified for three classes:
C3, and misclassified for three classes: M3.

that dataset. Subsequently, various combinations of methods, such as C4.5, ID3, Naïve
Bayes, and PRISM, are tested with either two or three classes. To facilitate explanation,
the ‘case’ column in Table 4 uses labels from (a) to (q) to identify different cases. More-
over, the ‘contents’ column notes the type of cleansed content in the training dataset. The
experiments include four different types, C2, M2, C3, and M3, which represent the cor-
rectly and incorrectly classified contents using filtering methods in situations involve two
and three classes. For clarity of comparison, out of 10 000 instances, the resulting training
datasets include the number of instances retained, and the prediction accuracy before the
cleaning process is also listed to provide a cross reference. From observations of (a) and (b)
in Table 4, the combination of the same methods using C4.5 can obtain a completely ac-
curate classification for two classes. Despite correctly classified or misclassified instances,
which respectively denote as prefix ‘C’ or ‘M’ in the column of Table 4, the C4.5 filter
can identify the classification consistency for cases (a) and (b). This consistency is not sur-
prising because of essentiality for decision tree. Notably, the so-called correctly classified



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 743

instances or misclassified instances are gathered from the viewpoint of filtering, and then
the instances are fed as input of the corresponding classifier. In fact, a decision-tree-based
method is very suitable for use as a filter in data cleaning. In case (c), the classification
using three classes using correctly classified instances is also similar to that in case (a).
However, classification involving more than two classes raises the issue of contradiction
between instances in the training dataset. Case (d) in the first pass attains an accuracy of
only 71.85%, and needs to again filter the remaining instances in order to achieve 100%
accuracy for those misclassified instances. The cause of contradiction is the classification
with the three classes involving more noise than two classes. Multiple data cleaning can
be used to eliminate the phenomenon of the classification involving instances of misclas-
sification achieving low prediction accuracy. Correspondingly, cases (e) and (f) with C4.5
filter but ID3 classifier reveal the same situations as cases (c) and (d). Subsequently, cases
(g), (h), and (i) combine the Naı¨ve Bayes method to be either the classifier or filter or even
both. Consequently, the combination involving Naı¨ve Bayes method cannot achieve 100%
accuracy even in two classes, because the essentialities of the decision tree are distinct from
the Bayes rules. Case(j) may show this evidence obviously. Furthermore, because to the
PRISM method prefers to reveal the rules with high regularities depending on the maximum
probability, it can predict the class of ‘Declined’ very well. Therefore, in order to build a
feasible learning model that all percentages of accuracy of prediction exceed 50% for every
class one might need to involve the PRISM method into the combination of classifier/ filter.
Case (k) contrasts with case (l); the misclassified instances by a PRISM filter are apparently
unsuitable for being reclassified by a PRISM classifier. Similarly, cases (m) and (n) further
confirm the other methods such as a filter of C4.5 and obtain the same observation result as
cases (k) and (l). The observation result demonstrates that the instances misclassified using
a filter of either C4.5 or PRISM thus does not conform to the properties modeled by PRISM.
However, cases (o) and (p) reverse the order of combination of cases (m) and (n) to achieve
reasonable accuracy. Particularly, case (q) using ID3 as a classifier achieves slightly better
accuracy than using C4.5, and reaches an accuracy of 97.05%. Notably, the variation of
preferred TP rate for each class transforms from the ‘Declined’ class into the ‘Good’ class
as listed in Table 2. Besides, the most surprising result of data cleaning is shown in the
case (q) marked with a gray background. Case (q) demonstrates a similarly high prediction
accuracy for each class. This case applies the combination of classifier ID3 and filter PRISM
to classification prediction, and achieves a very high TP rate for every class. Even case (r)
using the misclassified instances as input also obtains an acceptable prediction accuracy.
Additionally, the same experiment as case (q) applies to the training dataset that contains
the same amount of instances for each class, and obtains the same conclusion (data not
shown) as well. This analytical result confirms the conclusion explained in Experiment 9.

Experiment 15. Table 5 lists the prediction accuracy results using various treatments.
Allof the cases are tested using the classification method C4.5. Cases (a), (b), and (c) in
Table 5 remove each class once from the training dataset. These cases are equivalent to
building a classifier with two classes. The rapid increase in accuracy after performing case
(b) demonstrates that the ‘Risky’ class is difficult to predict. For each original attribute, the
cases from (d) to (i) add a new attribute whose value is given by performing K-means clus-
tering in advance and involves all attributes except this original attribute in conducting the



744 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

Table 5
Results of prediction accuracy using various treatments of experiments

Case Treatments of experiments Accuracy (%)

(a) Remove instances with value ‘Good’ 82.41
(b) Remove instances with value ‘Risky’ 93.33
(c) Remove instances with value ‘Declined’ 84.74
(d) Add a clustering attribute ‘overdraft’ 83.79
(e) Add a clustering attribute ‘type’ 83.65
(f) Add a clustering attribute ‘transactions’ 83.65
(g) Add a clustering attribute ‘interest’ 83.65
(h) Add a clustering attribute ‘activity’ 83.41
(i) Add a clustering attribute ‘changed-signature’ 83.65
(j) Remove an attribute ‘overdraft’ 72.08
(k) Remove an attribute ‘type’ 81.54
(l) Remove an attribute ‘transactions’ 80.97
(m) Remove an attribute ‘interest’ 81.54
(n) Remove an attribute ‘activity’ 81.54
(o) Remove an attribute ‘changed-signature’ 81.54
(p) Reserve attributes ‘overdraft’, 81.54

‘type’, and ’transactions’
(q) Reserve attributes ‘interest’, 70.14

‘activity’,’ and ‘changed-signature’
(r) Remove with class value of ‘Risky’ and reserve attributes 93.34

‘overdraft’, ‘type’, and ’transactions’
(s) Remove with class value of ‘Risky’ and reserve 80.28

attributes ‘interest’, ‘activity’, and ‘changed-signature’
(t) 10% noise data applying for attribute ‘overdraft’ 75.55
(u) 70% noise data applying for attribute ‘overdraft’ 72.08
(v) 10% noise data applying for attribute ‘interest’ 81.54
(w) 70% noise data applying for attribute ‘interest’ 81.54
(x) 70% noise data applying for class attribute 33.54
(y) Remove attribute ‘interest’, ‘activity’,’ 99.8 (1993 instances)

‘changed-signature’ and using the combination
of ID3/PRISM for correctly classified instances

(z) Remove attribute ‘interest’, ‘activity’,’ ‘changed-signature’ 99.99 (8156 instances)
and using the combination of PRISM/C4.5
for correctly classified instances

classification. Consequently, the increment of accuracy is about 2%. The cases from (j) to
(o) remove an attribute for each case. The decrease in accuracy resembles that in Experiment
7, which shows that the dominating attribute is indeed the attribute variable of ‘overdraft’.
Additionally, cases (p) and (q) only reserve three attributes. The experimental result re-
veals that the set of attributes ‘overdraft’, ‘type’, and ’transactions’ can dominate the entire
training model from the perspective of building a decision tree. Case (r) comprises cases
(b) and (p) to clarify the relationship of instance-based and attribute-based data cleaning.
The increment of accuracy adding case (p) approaches zero after applying case (b). Thus,
the dominating attributes become important when the training dataset has been cleaned by
case (b). However, the difference between cases (r) and (p) exceeds the difference of case



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 745

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise data (%)

A
cc

ur
ac

y 
ra

te

C4.5
Naive Bayes
ID3
IBk
Conjunctive Rule
NNge
PRISM
Bayes NetB

Fig. 13. Comparison of accuracy under noise interference for various methods.

(s) and (q) by around 2.2%. The expansion of differences implies that this class ‘Risky’
might affect the dominating attributes. Furthermore, cases from (t) to (x) apply a random
noise of either 10% or 70% to the dominating, the non-dominating, and the class attribute.
Comparing case (u) with case (x) revealed that the dominating attribute is better than the
class attribute for the issue of noise interference. Fig. 13 displays the variation of accuracy
in detail for various methods under noise interference. The different quantities of noise data
accordingly and consistently affect the prediction accuracy variation in most methods except
NNge and PRISM. Curiously, the addition of noise data gradually increases the prediction
accuracy using the PRISM method. The curious phenomenon in the real case illustrates the
particularity of PRISM, which may treat every class as the consistent training dataset for
the classifier in equal proportion. Finally, cases (y) and (z) in Table 5 are compared with
cases (q) and (m) in Table 4 to illustrate that classification with cleansed data may improve
the prediction accuracy to 99.9%. The improvement of accuracy also simultaneously and
fairly considers the TP rate for every class.

5. Conclusions

In this study, knowledge discovered by comparative analysis can facilitate the manipula-
tion of skewed distribution data specific for the real-world example of checking accounts.
Moreover, a series of classification experiments can supply sufficient evidence to explain
random data behavior in real-world examples. However, regardless of the method used, the
classification involving many contradictions, such as may occur in real cases, consistently
obtains an accuracy of just 80%, and moreover, because to the number of good customers
naturally significantly exceeds the number of bad customers. This study proposes two main
methods of cleaning training datasets containing skewed distribution and contradictory



746 Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747

data. One method involves randomly selecting instances in training dataset according to
the values of class attributes so that the data distribution presents in equal proportion in the
training dataset for each class. The other method involves building a combinative classifier
using the combination of ID3 classifier and PRISM filter. Consequently, the proposed meth-
ods can obtain consistently high TP rates of prediction for each class. In fact, the ‘Risky’
class representing risky customers in a bank is the most interesting for bank managers in
classification prediction. Thus, the study provides a very promising solution to discovering
valuable business knowledge through data mining. Furthermore, this study also provides
further insight into the financial field by determining which factors most influence classifica-
tion accuracy for specific classes. The findings demonstrate that the classification accuracy
for all classes is around 80% without data cleaning, but increases by up to 64 % for each
class after cleaning the data and adjusting the proportion of training datasets. Additionally,
the experiments also show that the ‘overdraft’ attribute dominates the average classification
accuracy. Finally, an error of approximately 15% of the accuracy rate is tolerable. Accord-
ingly, a bank manager can be granted a range of 15% authority to do credit scoring such as
check loan. Moreover, numerous factors may affect customer credit, such as loans and other
transaction information. Thus, such an error rate may be intolerable in other applications.
This study suggests that applying the proposed solutions to the imbalance problem should
be constrained to similar applications in the real-world. Finally, future studies should con-
sider including more information in the preliminary model. However, not all experimental
results were listed owing to space constraints. Future studies will explain the discovered
knowledge from the perspective of risk management.

Acknowledgements

The authors would like to thank the Tainan Business Bank at the Republic of China for
financially supporting this study.

References

[1] D. Aha, D. Kibler, Instance-based learning algorithms, Machine Learn. 6 (1991) 37–66.
[2] R.R. Bates, M. Sun, M.L. Scheuer, R.J. Sclabassi, Detection of seizure foci by recurrent neural networks,

Engineering in Medicine and Biology Society, Proceedings of the 22nd Annual International Conference of
the IEEE, vol. 2, 2000, pp. 1377–1379.

[3] J. Cendrowska, PRISM: an algorithm for inducing modular rules, Int. J. Man-Machine Stud. 27 (1987)
349–370.

[4] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling
technique, J. Artificial Intell. Res. (JAIR) 16 (2002) 321–357.

[5] P. Domingos, Metacost: a general method for making classifiers cost-sensitive, in: Proceedings of the Fifth
International Conference on Knowledge Discovery and Data Mining, 1999, pp. 155–164.

[6] C. Elkan, The foundations of cost-sensitive learning, in: Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI’01), 2001, pp. 973–978.

[7] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, The KDD process for extracting useful knowledge from volumes
of data, Comm. ACM 39 (1996) 27–34.

[8] R. Fletcher, Practical Methods of Optimization, Wiley, New York, 1987.
[9] Y. Freund, R.E. Schapire, Large margin classification using the perceptron algorithm, in: Proceedings of the

11th Annual Conference on Computer Learning Theory, ACM Press, New York, 1998, pp. 209–217.



Y.-M. Huang et al. / Nonlinear Analysis: Real World Applications 7 (2006) 720–747 747

[10] R. Gerritsen, Assessing loan risks: a data mining case study, IEEE IT Professional (1999) 16–21.
[11] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Ontario, Canada, 1999.
[12] D. Heckerman, D. Geiger, D.M. Chickering, Learning Bayesian networks: the combination of knowledge

and statistical data, Machine Learn. 20 (1995) 197–243.
[13] C.M. Hung, Y.M. Huang, T.S. Chen, Assessing Check Credit with Skewed Data: A Knowledge Discovery

Case Study, in: International Computer Symposium Workshop on Artificial Intelligence, Taiwan, December
2002.

[14] N. Japkowicz, S. Stephen, The class imbalance problem: a systematic study, Intell. Data Anal. 6 (5) (2002)
429–450.

[15] M. Jiang, X. Zhu, B.Yuan, X. Tang, B. Lin, Q. Ruan, M. Jiang, A fast hybrid algorithm of global optimization
for feedforward neural networks, WCCC-ICSP International Conference on Signal Processing, vol. 3, 2000,
pp. 1609–1612.

[16] G.H. John, P. Langley, Estimating continuous distributions in Bayesian classifiers, in: Proceedings of the
11th Conference on Uncertainty in Artificial Intelligence, 1995, pp. 338–345.

[17] M. Kubat, S. Matwin, Addressing the Curse of Imbalanced Training Sets: One-Sided Selection, in:
Proceedings of the 14th International Conference on Machine Learning, 1997, pp. 179–186.

[18] C.X. Ling, C. Li, Data mining for direct marketing: problems and solutions, in: Proceedings of the Fourth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-98), ACM,
New York, NY, 1998, pp. 73–79.

[19] M.J.D. Powell, Restart procedures for the conjugate gradient method, Math. Programm. 12 (1977) 241–254.
[20] M.J.D. Powell, Radial basis functions for multivariable interpolation: a review, in: RMCS, IMA Conference

on Algorithms for the Approximation of Functions and Data, 1985, pp. 143–167.
[21] R. Pytlak, A globally convergent conjugate gradient algorithm, Proceedings of the 32nd IEEE Conference

on Decision and Control, vol. 3, 1993, pp. 2890–2895.
[22] J.R. Quinlan, C.45: Programs for Machine Learning, Morgan Kaufmann, 1993.
[23] J.D. Rennie, L. Shih, J. Teevan, D. Karger, Tackling the Poor Assumptions of Naı¨ve Bayes Text Classifiers,

in: ICML-2003, 2003, pp. 616–623.
[24] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain,

Psychol. Rev. 65 (1958) 386–407 (Reprinted in Neurocomputing MIT Press, 1988).
[25] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations of back-propagation errors, Nature

(London) 323 (1986) 533–536.
[26] O. Stan, E.W. Kamen, New block recursive MLP training algorithms using the Levenberg–Marquardt

algorithm, IJCNN ‘99 International Joint Conference on Neural Networks, vol. 3, 1999, pp. 1672–1677.
[27] I.H. Witten, E. Frank, Data Mining practical Machine Learning Tools and Techniques with Java

Implementations, Morgan Kaufmann Publishers, San Francisco, CA, 1999.
[28] B. Zadrozny, C. Elkan, Learning and making decisions when costs and probabilities are both unknown,

in: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, 2001,
pp. 204–213.


	Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem
	Introduction
	Data mining
	Knowledge discovery process
	Training exercise

	Comparison of tools
	Back-propagation learning
	Conjugate gradient
	Levenberg--Marquardt algorithm

	RBF network
	C4.5 and ID3
	PRISM
	Conjunctive rule
	NNge and IBk
	Nai¨ve Bayes, Complement Nai¨ve Bayes, and BayesNetB
	Random committee and voted perceptron

	Experimental data
	Setup and basic experiments
	Interference by noise
	Data cleaning
	Comparative analysis

	Conclusions
	Acknowledgements
	References


