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Abstract—Level set methods have been widely used in image
processing and computer vision. In conventional level set formula-
tions, the level set function typically develops irregularities during
its evolution, which may cause numerical errors and eventually de-
stroy the stability of the evolution. Therefore, a numerical remedy,
called reinitialization, is typically applied to periodically replace
the degraded level set function with a signed distance function.
However, the practice of reinitialization not only raises serious
problems as when and how it should be performed, but also affects
numerical accuracy in an undesirable way. This paper proposes
a new variational level set formulation in which the regularity of
the level set function is intrinsically maintained during the level
set evolution. The level set evolution is derived as the gradient flow
that minimizes an energy functional with a distance regularization
term and an external energy that drives the motion of the zero
level set toward desired locations. The distance regularization
term is defined with a potential function such that the derived
level set evolution has a unique forward-and-backward (FAB)
diffusion effect, which is able to maintain a desired shape of the
level set function, particularly a signed distance profile near the
zero level set. This yields a new type of level set evolution called
distance regularized level set evolution (DRLSE). The distance
regularization effect eliminates the need for reinitialization and
thereby avoids its induced numerical errors. In contrast to com-
plicated implementations of conventional level set formulations, a
simpler and more efficient finite difference scheme can be used to
implement the DRLSE formulation. DRLSE also allows the use of
more general and efficient initialization of the level set function.
In its numerical implementation, relatively large time steps can
be used in the finite difference scheme to reduce the number
of iterations, while ensuring sufficient numerical accuracy. To
demonstrate the effectiveness of the DRLSE formulation, we apply
it to an edge-based active contour model for image segmentation,
and provide a simple narrowband implementation to greatly
reduce computational cost.

Index Terms—Forward and backward diffusion, image segmen-
tation, level set method, narrowband, reinitialization.

I. INTRODUCTION

T HE LEVEL set method for capturing dynamic interfaces
and shapes was introduced by Osher and Sethian [1] in

1987. The basic idea of the level set method is to represent a
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contour as the zero level set of a higher dimensional function,
called a level set function (LSF), and formulate the motion of
the contour as the evolution of the level set function. Some key
ideas in the level set method were proposed earlier by Dervieux
and Thomasset [2], [3] in the late 1970s, but their work did
not draw much attention. It was only after the work by Osher
and Sethian in [1], the level set method became well known
and since then has had far-reaching impact in various applica-
tions, such as computational geometry, fluid dynamics, image
processing, and computer vision.

In image processing and computer vision applications, the
level set method was introduced independently by Caselles et al.
[4] and Malladi et al. [5] in the context of active contour (or
snake) models [6] for image segmentation. Early active contour
models are formulated in terms of a dynamic parametric contour

with a spatial parameter in [0,1],
which parameterizes the points in the contour, and a temporal
variable . The curve evolution can be expressed as

(1)

where is the speed function that controls the motion of the
contour, and is the inward normal vector to the curve .
The curve evolution in (1) in terms of a parameterized con-
tour can be converted to a level set formulation by embedding
the dynamic contour as the zero level set of a time de-
pendent LSF . Assuming that the embedding LSF
takes negative values inside the zero level contour and positive
values outside, the inward normal vector can be expressed as

, where is the gradient operator. Then, the
curve evolution equation (1) is converted to the following par-
tial differential equation (PDE):

(2)

which is referred to as a level set evolution equation. The ac-
tive contour model given in a level set formulation is called an
implicit active contour or geometric active contour model. For
specific active contours in parametric and their corresponding
level set formulations, the readers are referred to [7].

A desirable advantage of level set methods is that they can
represent contours of complex topology and are able to handle
topological changes, such as splitting and merging, in a natural
and efficient way, which is not allowed in parametric active con-
tour models [6], [8], [9] unless extra indirect procedures are in-
troduced in the implementations. Another desirable feature of
level set methods is that numerical computations can be per-
formed on a fixed Cartesian grid without having to parameterize
the points on a contour as in parametric active contour models.

1057-7149/$26.00 © 2010 IEEE
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These desirable features, among others, have greatly promoted
further development of level set methods and their applications
in image segmentation [10]–[12], [7], [13]–[16], tracking [14],
[17], and stereo reconstruction [18], etc.

Although level set methods have been used to solve a wide
range of scientific and engineering problems, their applications
have been plagued with the irregularities of the LSF that are
developed during the level set evolution. In conventional level
set methods, the LSF typically develops irregularities during its
evolution (see the lower row of Fig. 3 for an example), which
cause numerical errors and eventually destroy the stability of
the level set evolution. To overcome this difficulty, a numerical
remedy, commonly known as reinitialization [19], [20], was in-
troduced to restore the regularity of the LSF and maintain stable
level set evolution. Reinitialization is performed by periodically
stopping the evolution and reshaping the degraded LSF as a
signed distance function [21], [20].

A standard method for reinitialization is to solve the fol-
lowing evolution equation to steady state:

(3)

where is the LSF to be reinitialized, and is the sign
function. Ideally, the steady state solution of this equation is a
signed distance function. This reinitialization method has been
widely used in level set methods [21], [22]. Another method for
reinitialization is the fast marching algorithm [19]. Although
reinitialization as a numerical remedy is able to maintain the
regularity of the LSF, it may incorrectly move the zero level
set away from the expected position [20], [23], [19]. There-
fore, reinitialization should be avoided as much as possible
[19, p. 140].

Moreover, there are serious theoretical and practical problems
in conventional level set formulations regarding the practice of
reinitialization. Level set evolution equations in conventional
level set formulations can be written in the form of (2) with a
speed function . The speed function , which is defined to
guide the motion of the zero level set, does not have a compo-
nent for preserving the LSF as a signed distance function. In
theory, it has been proven by Barles et al. [24] that the solutions
to such Hamilton-Jacobi equations is not a signed distance func-
tion. However, the LSF is forced to be a signed distance func-
tion as a result of reinitialization. This is obviously a disagree-
ment between theory and its implementation, as pointed out by
Gomes and Faugeras [25]. From a practical viewpoint, the use of
reinitialization introduces some fundamental problems yet to be
solved, such as when and how to apply the reinitialization [25].
There are no general answers to these problems so far [23] and,
therefore, reinitialization is often applied in an ad hoc manner.

Due to the previously mentioned theoretical and practical
problems associated with reinitialization, it is necessary to
pursue a level set method that does not require reinitialization.
Gomes and Faugeras [25] proposed a level set formulation that
consists of three PDEs, one of which is introduced to restrict
the LSF to be a signed distance function, and the other two of
which describe the motion of the zero level contour. However,
it is not clear whether there exists a solution to this system of
three PDEs in theory. Moreover, the numerical implementation

of this formulation still causes errors that may destroy the
signed distance property and eventually destabilize the level
set evolution, which renders it necessary to introduce separate
reinitialization procedures, as reported in [26]. Weber et al. [26]
proposed an implementation strategy to avoid separate reinitial-
ization procedures in their implementation of the well-known
geodesic active contour (GAC) model in [11]. The updating of
the LSF at each time step is performed by a complex procedure
of solving an optimization problem, instead of an iteration
scheme derived from the underlying evolution equation, which
is a disagreement between the theory and its implementation.
In our preliminary work [27], we proposed a variational level
set formulation with an intrinsic mechanism of maintaining
the signed distance property of the LSF. This mechanism is
associated with a penalty term in the variational formulation
that penalizes the deviation of the LSF from a signed distance
function. The penalty term not only eliminates the need for
reinitialization, but also allows the use of a simpler and more
efficient numerical scheme in the implementation than those
used for conventional level set formulations. However, this
penalty term may cause an undesirable side effect on the LSF in
some circumstances, which may affect the numerical accuracy.

This paper proposes a more general variational level set for-
mulation with a distance regularization term and an external en-
ergy term that drives the motion of the zero level contour toward
desired locations. The distance regularization term is defined
with a potential function such that it forces the gradient mag-
nitude of the level set function to one of its minimum points,
thereby maintaining a desired shape of the level set function,
particularly a signed distance profile near its zero level set. In
particular, we provide a double-well potential for the distance
regularization term. The level set evolution is derived as a gra-
dient flow that minimizes this energy functional. In the level
set evolution, the regularity of the LSF is maintained by a for-
ward-and-backward (FAB) diffusion derived from the distance
regularization term. As a result, the distance regularization com-
pletely eliminates the need for reinitialization in a principled
way, and avoids the undesirable side effect introduced by the
penalty term in our preliminary work [27]. We call the level
set evolution in our formulation a distance regularized level
set evolution (DRLSE). To demonstrate the effectiveness of the
DRLSE formulation, we apply it to an edge-based active con-
tour model for image segmentation. We provide a simple and ef-
ficient narrowband implementation to further improve the com-
putational efficiency. Due to the distance regularization term,
the DRLSE can be implemented with a simpler and more effi-
cient numerical scheme in both full domain and narrowband im-
plementations than conventional level set formulations. More-
over, relatively large time steps can be used to significantly re-
duce the number of iterations and computation time, while en-
suring sufficient numerical accuracy.

This paper is organized as follows. In Section II, we first pro-
pose a general variational level set formulation with a distance
regularization term. In Section III, we apply the proposed gen-
eral formulation to an edge-based model for image segmenta-
tion, and describe its implementations in full domain and nar-
rowband. Experimental results are shown in Section IV. Our
work is summarized in Section V.
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II. DRLSE

In level set methods, a contour (or more generally a hyper-
surface) of interest is embedded as the zero level set of an LSF.
Although the final result of a level set method is the zero level
set of the LSF, it is necessary to maintain the LSF in a good con-
dition, so that the level set evolution is stable and the numerical
computation is accurate. This requires that the LSF is smooth
and not too steep or too flat (at least in a vicinity of its zero level
set) during the level set evolution. This condition is well satisfied
by signed distance functions for their unique property ,
which is referred to as the signed distance property. For the
2-D case as an example, we consider a signed distance func-
tion as a surface. Then, its tangent plane makes an
equal angle of 45 with both the -plane and the -axis, which
can be easily verified by the signed distance property .
For this desirable property, signed distance functions have been
widely used as level set functions in level set methods. In con-
ventional level set formulations, the LSF is typically initialized
and periodically reinitialized as a signed distance function. In
this section, we propose a level set formulation that has an in-
trinsic mechanism of maintaining this desirable property of the
LSF.

A. Energy Formulation With Distance Regularization

Let be a LSF defined on a domain . We define
an energy functional by

(4)

where is the level set regularization term defined in the
following, is a constant, and is the external en-
ergy that depends upon the data of interest (e.g., an image for
image segmentation applications). The level set regularization
term is defined by

(5)

where is a potential (or energy density) function
. The energy is designed such that it achieves a min-

imum when the zero level set of the LSF is located at desired
position (e.g., an object boundary for image segmentation ap-
plications). An external energy will be defined in Section III in
an application of the general formulation (4) to image segmen-
tation. The minimization of the energy can be achieved by
solving a level set evolution equation, which will be given in
Section II-B.

A naive choice of the potential function is for the
regularization term , which forces to be zero. Such a
level set regularization term has a strong smoothing effect, but
it tends to flatten the LSF and finally make the zero level con-
tour disappear. In fact, the purpose of imposing the level set
regularization term is not only to smooth the LSF , but also
to maintain the signed distance property , at least in a
vicinity of the zero level set, in order to ensure accurate compu-
tation for curve evolution. This goal can be achieved by using
a potential function with a minimum point , such
that the level set regularization term is minimized when

. Therefore, the potential function should have a

minimum point at (it may have other minimum points).
We will use such a potential in the proposed variational level
set formulation (4). The corresponding level set regularization
term is referred to as a distance regularization term for
its role of maintaining the signed distance property of the LSF.
A simple and straightforward definition of the potential for
distance regularization is

(6)

which has as the unique minimum point. With this poten-
tial , the level set regularization term can be
explicitly expressed as

(7)

which characterizes the deviation of from a signed distance
function.

The energy functional was proposed as a penalty term
in our preliminary work [27] in an attempt to maintain the signed
distance property in the entire domain. However, the derived
level set evolution for energy minimization has an undesirable
side effect on the LSF in some circumstances, which will be
described in Section II-D. To avoid this side effect, we introduce
a new potential function in the distance regularization term

. This new potential function is aimed to maintain the signed
distance property only in a vicinity of the zero level
set, while keeping the LSF as a constant, with , at lo-
cations far away from the zero level set. To maintain such a pro-
file of the LSF, the potential function must have minimum
points at and . Such a potential is a double-well
potential as it has two minimum points (wells). A double-well
potential will be explicitly defined in Section II-C. Using
this double-well potential not only avoids the side effect
that occurs in the case of , but also offers some appealing
theoretical and numerical properties of the level set evolution,
as will be seen in the rest of this paper.

B. Gradient Flow for Energy Minimization

In calculus of variations [28], a standard method to minimize
an energy functional is to find the steady state solution of
the gradient flow equation

(8)

where is the Gâteaux derivative of the functional .
This is an evolution equation of a time-dependent function

with a spatial variable in the domain and a temporal
variable , and the evolution starts with a given initial
function . The evolution of the time-dependent
function is in the opposite direction of the Gâteaux
derivative, i.e., , which is the steepest descent direc-
tion of the functional . Therefore, the gradient flow is also
called steepest descent flow or gradient descent flow.

The Gâteaux derivative of the functional in (5) is

(9)
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where is the divergence operator and is a function
defined by

(10)

From (4) and the linearity of Gâteaux derivative, we have

(11)

where is the Gâteaux derivative of the external energy
functional with respect to . Then, the gradient flow of the
energy is

(12)

which, combined with (9), can be further expressed as

(13)

This PDE is the level set evolution equation derived from the
proposed variational formulation (4). We solve this PDE with
the Neumann boundary condition [29] and a given initial func-
tion . We call the level set evolution (13) a DRLSE for its
intrinsic capability of preserving the signed distance property
of the LSF, which is associated with the distance regularization
term in (4). Reinitialization is not needed in the implemen-
tation of DRLSE due to the intrinsic distance regularization ef-
fect embedded in the level set evolution, as described in the fol-
lowing. The level set evolution without reinitialization in our
preliminary work [27] is a special case of the DRLSE in (13).

The distance regularization effect in DRLSE can be seen from
the gradient flow of the energy

(14)

This flow can be expressed in standard form of a diffusion
equation

with diffusion rate . Therefore, the flows in (13)
and (14) have a diffusion effect on the level set function . This
diffusion is not a usual diffusion, as the diffusion rate
can be positive or negative for the potential used in DRLSE.
When is positive, the diffusion is forward diffusion,
which decreases . When is negative, the diffusion
is backward diffusion, which increases . Such diffusion is
called a forward-and-backward (FAB) diffusion. This FAB dif-
fusion adaptively increases or decreases to force it to be
close to one of the minimum points of the potential function

, thereby maintaining the desired shape of the function .
For the potential defined in (6), we have

. In this case, the PDE in (13) can be expressed as

(15)

where is the Laplace operator. Note that the term
computes the mean curvature of the level

contours of the function .
The sign of the function indicates the

property of the FAB diffusion term in the following two cases:
• for , the diffusion rate is positive, and

the diffusion (14) is forward, which decreases ;
• for , the diffusion rate is negative, and

the diffusion becomes backward, which increases .
Therefore, the FAB diffusion with potential forces
to 1 to maintain the signed distance property. However, this FAB
diffusion has an unbounded diffusion rate

, which goes to negative infinity as approaches
0. This may cause an undesirable side effect on the LSF when

is close to 0, as will be described in Section II-D. This side
effect can be avoided by using a double-well potential
defined next, for which the diffusion rate is bounded
by a constant.

C. Double-Well Potential for Distance Regularization

As mentioned in Section II-A, a preferable potential function
for the distance regularization term is a double-well poten-

tial. Here, we provide a specific construction of the double-well
potential as

if

if
(16)

This potential has two minimum points at and
.

It is easy to verify that is twice differentiable in ,
with the first and second derivatives given by

if
if

and
if
if

The function , its derivatives and , and the cor-
responding function , are plotted in Fig. 1. It is easy to
verify that the function satisfies

for all (17)

and

(18)

Therefore, we have

which verifies the boundedness of the diffusion rate for the po-
tential .

The sign of the function for , as plotted in
Fig. 1(d), indicates the property of the FAB diffusion in the fol-
lowing three cases:
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Fig. 1. Double-well potential � � � ��� and its first derivative � and second
derivative � , and corresponding function � ��� are shown in (a), (b), (c), and
(d), respectively.

• for , the diffusion rate is positive, and
the diffusion (14) is forward, which decreases ;

• for , the diffusion rate is
negative, and the diffusion becomes backward, which in-
creases ;

• for , the diffusion rate is positive,
and the diffusion (14) is forward, which further decrease

down to zero.
The key differences between the FAB diffusions with potentials

and are the boundedness of the corresponding diffusion
rate and the diffusion behavior for the case , as
can be seen from the previous descriptions for both cases.

D. Distance Regularization Effect

We demonstrate the distance regularization effect of DRLSE
by simulating the FAB diffusion (14) with the initial function

being a binary step function. The binary step function is
defined by

if
otherwise

(19)

where is a constant, and is a region in the domain
. Despite the irregularity of the binary step function, the FAB

diffusion (14) is able to evolve the LSF into a function with de-
sired regularity. It is worth noting that a binary step function
can be generated extremely efficiently. Such initialization is de-
sirable in many practical applications for its computational effi-
ciency and simplicity, as will be demonstrated in an application
of DRLSE for image segmentation in Section III.

The effect of the distance regularization with the double-well
potential can be seen from the following numerical
simulation of the FAB diffusion (14). We used a binary step
function on a 100 100 grid, as defined by (19), with the
region being a rectangle. To test the regularization effect of
the FAB diffusion in DRLSE, we used a large in (19)
to create a particularly steep shape of at the zero crossing, as

Fig. 2. Distance regularization effect on binary step function with the double-
well potential � � � ���. (a) Initial LSF � . (b) Final LSF � after the evolu-
tion. (c) and (d) Show a cross section of � and ���� for the final function �,
respectively.

shown in Fig. 2(a). The final function of the diffusion is shown
in Fig. 2(b), which exhibits the shape of a signed distance func-
tion in a band around the zero level set and a flat shape outside
the band. We call this band a signed distance band (SDB). The
width of the SDB is controlled by the constant . This is be-
cause, when the function becomes a signed distance function
in the SDB, its values vary from to across the band at
a rate of . This implies that the width of the SDB is
approximately .

The evolution from a binary step function to the function
of the previously described profile is described as follows. At
the zero crossing of the binary step function , the values of

are larger than 1 due to a sharp jump from to .
As a result, the diffusion rate is positive and, there-
fore, the diffusion (14) is forward, which keeps decreasing the
gradient magnitude until it approaches 1. The decreasing
of is stopped when it reaches 1, otherwise, the FAB dif-
fusion (14) would become backward and, therefore, increases

back to 1, because the diffusion rate is negative
for . As a result, the function converges to a
signed distance in a band around its zero level set, i.e., the previ-
ously mentioned SDB. On the two sides of the SDB, is ini-
tially 0, which indicates that the diffusion rate .
Therefore, the diffusion (14) is forward, which keeps the func-
tion flat on the two sides of the SDB. The signed distance
property of the final function near the zero level set can be seen
more clearly from 1-D cross sections of the and its gra-
dient magnitude . Fig. 2(c) and (d) shows 1-D cross
sections of and , respectively, for . In
the SDB, the values of are sufficiently close to 1, as shown
in Fig. 2(d).

The advantage of the double-well potential over the simple
potential can be clearly seen when a binary step function is
used as the initial function. For the binary initial function, we
have in the interior of the regions and

. Thus, the FAB diffusion with is backward
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diffusion with an arbitrarily large diffusion rate. In this case, the
strong backward diffusion drastically increases and cause
oscillation in , which finally appears as periodic “peaks” and
“valleys” in the converged LSF. Although these “peaks” and
“valleys” appear at a certain distance to the zero level set, they
may slightly distort the zero level contour. This undesirable side
effect can be avoided by using the double-well potential ,
as described previously.

E. Finite Difference Scheme

The DRLSE in (13) can be implemented with a simple fi-
nite difference scheme as follows. We consider the 2-D case
with a time dependent LSF . The spatial derivatives

and in our model are approximated by the cen-
tral difference. We use fixed space steps for
computing spatial derivatives. The temporal partial derivative

is approximated by the forward difference. The time de-
pendent LSF is given in discretized form with
spatial index and temporal index . Then, the level set evo-
lution equation is discretized as the following finite difference
equation , where is the ap-
proximation of the right hand side in the evolution equations.
This equation can be expressed as

(20)

which is an iteration process used in the numerical implemen-
tation of DRLSE.

Given spacial steps , the choice of the time
step for this finite difference scheme must satisfy the Courant-
Friedrichs-Lewy (CFL) condition for numerical
stability (see Appendix A). In practice, one can use a relatively
large time step to speed up the curve evolution, in which
case the parameter must be relatively small to meet the CFL
condition.

It is worth noting that, although the FAB diffusion term in
DRLSE is derived from the proposed variational level set for-
mulation in (4), we believe that it can be incorporated into more
general level set evolution equations that are not necessarily
derived from a variational formulation. For example, consider
a typical level set evolution equation in conventional level set
formulation

(21)

where is a scalar function and is a vector valued function. In
standard numerical solution to this PDE, spatial derivatives are
discretized by upwind scheme [20]. Central difference scheme
is not stable for this PDE.

Adding the distance regularization term into the PDE, the
level set evolution in (21) becomes a DRLSE formulation

(22)

Due to the added distance regularization term, all the spatial
derivatives in (22) can be descretized by central difference
scheme, and the corresponding numerical scheme is stable
without the need for reinitialization. It is well known that

the central difference scheme is more accurate and efficient
than the first-order upwind scheme that is commonly used in
conventional level set formulations.

III. APPLICATION TO IMAGE SEGMENTATION

The general DRLSE formulation in (4) can be used in var-
ious applications with different definitions of the external en-
ergy . For image segmentation applications, a variety of
image information, including region-based or edge-based image
formation, can be used to define the external energy. In this sec-
tion, we only provide an application of DRLSE to an active con-
tour model using edge-based information in the external energy,
as a demonstration of the effectiveness of the general DRLSE
formulation.

A. Edge-Based Active Contour Model in Distance Regularized
Level Set Formulation

Let be an image on a domain , we define an edge indicator
function by

(23)

where is a Gaussian kernel with a standard deviation . The
convolution in (23) is used to smooth the image to reduce the
noise. This function usually takes smaller values at object
boundaries than at other locations.

For an LSF , we define an energy functional
by

(24)

where and are the coefficients of the energy
functionals and , which are defined by

(25)

and

(26)

where and are the Dirac delta function and the Heaviside
function, respectively.

With the Dirac delta function , the energy computes
the line integral of the function along the zero level contour
of . By parameterizing the zero level set of as a contour

, the energy can be expressed as a line integral
. The energy is minimized when the

zero level contour of is located at the object boundaries. Note
that the line integral was first introduced
by Caselles et al. as an energy of an parameterized contour in
their proposed geodesic active contour (GAC) model [11].

The energy functional computes a weighted area of
the region . For the special case ,
this energy is exactly the area of the region . This energy

is introduced to speed up the motion of the zero level
contour in the level set evolution process, which is necessary
when the initial contour is placed far away from the desired
object boundaries. In this paper, we use LSFs that take negative
values inside the zero level contour and positive values outside.
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In this case, if the initial contour is placed outside the object, the
coefficient in the weighted area term should be positive, so
that the zero level contour can shrink in the level set evolution.
If the initial contour is placed inside the object, the coefficient
should take negative value to expand the contour. From the level
set evolution given in (30), we can see that the role of in this
energy term is to slow down the shrinking or expanding of
the zero level contour when it arrives at object boundaries where

takes smaller values.1

In practice, the Dirac delta function and Heaviside function
in the functionals and are approximated by the fol-

lowing smooth functions and as in many level set methods
[20], [30], defined by

(27)

and

(28)

Note that is the derivative of , i.e., . The parameter
is usually set to 1.5.
With the Dirac delta function and Heaviside function in

(25) and (26) being replaced by and , the energy functional
is then approximated by

(29)

This energy functional (29) can be minimized by solving the
following gradient flow:

(30)

given an initial LSF . The first term on the right
hand side in (30) is associated with the distance regularization
energy , while the second and third terms are associated
with the energy terms and , respectively. Equation
(30) is an edge-based geometric active contour model, which
is an application of the general DRLSE formulation (13). For
simplicity, we refer to this active contour model as a DRLSE
model in this section and Section IV.

B. Narrowband Implementation

The computational cost of a level set method can be greatly
reduced by confining the computation to a narrowband around
the zero level set. For conventional level set formulations,
the narrowband implementation requires even more frequent
reinitialization [31] or an additional step of velocity extension
[32], adding further sophistication in the implementation. For

1The function � in the energy � can be replaced by a different function �

defined by other types of image information, such as region-based information,
which can take positive and negative values, thereby allowing bidirectional mo-
tion (i.e., shrinking or expanding at different locations) of the contour in a single
process of curve evolution.

the DRLSE formulation, neither reinitialization nor velocity
extension procedures are needed in the narrowband implemen-
tation due to the intrinsic distance regularization effect in the
level set evolution. The narrowband implementation of DRLSE
is simple and straightforward, in which the iteration process
only consists of updating the LSF according to the difference
equation (20) and constructing the narrowband, as described
in the following. Moreover, the narrowband implementation
of the DRLSE model (30) allows the use of a large time step
in the finite difference scheme to significantly reduce the
number of iterations and computation time, as in its full domain
implementation.

We denote by an LSF defined on a grid. A grid point
is called a zero crossing point, if either and are of
opposite signs or and are of opposite signs. The
set of all the zero crossing points of the LSF is denoted by .
Then, we construct the narrowband as

(31)

where is a square block centered at the
point . We can set to be the smallest value , in which
case the narrowband is the union of the 3 3 neighborhoods
of the zero crossing points.

The narrowband implementation of the DRLSE consists of
the following steps:
Step 1) Initialization. Initialize an LSF to a func-

tion . Then, construct the initial narrowband
, where is the set of the

zero crossing points of .
Step 2) Update the LSF. Update

on the narrowband as in (20).
Step 3) Update the narrowband. Determine the set of all

the zero crossing pixels of on , denoted
by . Then, update the narrowband by setting

.
Step 4) Assign values to new pixels on the narrowband.

For every point in but not in , set
to if , or else set to , where

is a constant, which can be set to as a default
value.

Step 5) Determine the termination of iteration. If either
the zero crossing points stop varying for consec-
utive iterations or exceeds a prescribed maximum
number of iterations, then stop the iteration, other-
wise, go to Step 2.

The readers are referred to our conference paper [33] for more
details in the narrowband implementation of the level set for-
mulation in our preliminary work [27].

C. Initialization of Level Set Function

The DRLSE not only eliminates the need for reinitialization,
but also allows the use of more general functions as the initial
LSFs. We propose to use a binary step function in (19) as the ini-
tial LSF, as it can be generated extremely efficiently. Moreover,
the region in (19) can sometimes be obtained by a simple and
efficient preliminary segmentation step, such as thresholding,
such that is close to the region to be segmented. Thus, only
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Fig. 3. Behavior of level set evolution in the DRLSE model (upper row) and GAC model (lower row). The LSF in the DRLSE model evolves from a binary step
function � to a function � with desirable regularity, as shown in (b); the LSF in the GAC model evolves from a signed distance function � to an
LSF � with irregularities, as shown in (f). (a) Isocontours of the initial LSF � (a binary step function). (b) Converged LSF � of the DRLSE model.
(c) Isocontours of � at levels �����, 0, 1, and 2. (d) Zero level contour of the LSF � overlaid on the image. (e) Isocontours of the initial LSF � (a
signed distance function). (f) LSF � after 50 iterations in the GAC model. (g) Isocontours of � at levels�����, 0, 1, and 2. (h) Zero level contour of �
overlaid on the image.

a small number of iterations are needed to move the zero level
set from the boundary of to the desired object boundary.

As explained in Section II-D, the LSF evolves from a binary
step function to an approximate signed distance function on an
SDB around the zero level set, and the width of the SDB is
about . In practice, the image domain is a discrete grid, and
the SDB should have at least one grid point on each side of the
zero level contour. Therefore, we suggest that be chosen from
the range . In this paper, we usually set for the
definition of the binary step function in (19) as the initial LSF,
unless otherwise specified.

IV. EXPERIMENTAL RESULTS

This section shows the results of the DRLSE model (30) for
both synthetic and real images. There are parameters , and

in this model, and the time step for the implementation.
The model is not sensitive to the choice of and , which can
be fixed for most of applications. The choice of the parameter
is subject to the CFL condition described in Section II-E. Unless
otherwise specified, these parameters are fixed as

, and in this paper.
The parameter needs to be tuned for different images. A

nonzero gives additional external force to drive the motion of
the contour, but the resulting final contour may slightly deviate
from the true object boundary due to the shrinking or expanding
effect of the weighted area term. To avoid such deviation, one
can refine the final contour by further evolving the contour for
a few iterations with the parameter . For images with
weak object boundaries, a large value of may cause boundary
leakage, i.e., the active contour may easily pass through the ob-
ject boundary. Therefore, for images with weak object bound-

aries, the value of should be chosen relatively small to avoid
boundary leakage.

We first demonstrate the level set regularization effect of the
distance regularization term by applying the DRLSE model (30)
to a synthetic image shown in Fig. 3. To show the advantage of
the DRLSE formulation, we also applied the well-known GAC
model [11] to this image, and compared the behaviors of the
level set evolution in the two formulations. The level set evolu-
tion in the GAC model is

(32)

where is a constant, which plays a similar role as the parameter
in the DRLSE model (30), and is the edge indicator function

defined by (23).
In this experiment, we set , and

for the DRLSE model, and the time step
and for the GAC model. We generated a signed
distance function as the initial LSF for the GAC model.
To see the behavior of the level set evolution (32) in the GAC
model, we applied it without using reinitialization in this exper-
iment. To demonstrate the regularization effect of the DRLSE
formulation, we used a binary step function defined by

, with , as the initial LSF for the DRLSE
model, which has discontinuity at the zero crossing. The isocon-
tours of these two initial LSFs and at levels ,
0, 1, and 2 are overlaid on the image, as shown in Fig. 3(a) and
(e).

Despite the discontinuity of the binary step function as
the initial LSF, the DRLSE model is able to regularize the LSF,
and thereby maintain stable level set evolution and ensure accu-
rate computation. Fig. 3(b) shows the LSF of the DRLSE model
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after 240 iterations. This LSF exhibits the shape of a signed dis-
tance function in a vicinity of the zero level set, and a flat shape
outside the vicinity. The regularity of the LSF can be also seen
from its isocontours. Fig. 3(c) shows five isocontours at levels

, 0, 1, and 2 of the LSF given by the DRLSE model, with
the white contour being the zero level contour and the black con-
tours being the other four isocontours. The signed distance prop-
erty of this LSF can be seen from the uniform distances between
isocontours, as shown in Fig. 3(c). With an intrinsic capability
of distance regularization, the DRLSE model is able to evolve
the LSF stably, while moving the zero level set toward the de-
sired object boundary, as shown in Fig. 3(d).

By contrast, the level set evolution in the GAC model con-
stantly degrades the LSF, from a nice signed distance function
to a function with undesirable irregularities. Fig. 3(f) shows the
LSF after 50 iterations of the GAC model, denoted by ,
which exhibits very steep shape in some regions and very flat
shape in other regions. The irregularities of the LSF can
be clearly seen from its isocontours at levels of , 0, 1,
and 2, as shown in Fig. 3(g). The isocontours are densely dis-
tributed in regions where the LSF is too steep, and are sparsely
distributed in regions where the LSF is too flat. Such irregu-
larities of the LSF causes numerical errors in the computation
involving the derivatives of the LSF, and further iteration of the
LSF will further degrade the LSF, which would finally destroy
the stability of the level set evolution. The degraded LSF has
to be “repaired” by replacing it with a signed distance function
for further computation. This is why reinitialization is required
in conventional level set formulations as a numerical remedy to
maintain the regularity of the LSF. In all the experiments in the
following, reinitialization is applied periodically when the GAC
model is used for comparison with the DRLSE model.

While reinitialization can be used as a numerical remedy
to maintain the regularity of the LSF in conventional level
set formulations, it inevitably introduces additional numerical
errors, which can be quite considerable if it is used inappro-
priately. This is shown in the following experiment. We apply
the DRLSE model in (30) and the GAC model on synthetic
images and compare the accuracy of the segmentation results.
The true object boundaries are known for the synthetic images,
which can be used to quantitatively evaluate the accuracy
of the segmentation results. A metric to evaluate the accu-
racy of a segmentation result is the mean error defined by

, where is a contour as the
segmentation result, is the true object contour,
are the points on the contour , and is the distance
from the point to the contour .

We applied the DRLSE model and the GAC model to the
synthetic images in Fig. 4(a)–(c), each with a star-shaped object,
whose boundary is known and used as the ground truth. We used
the same initial contour for both models. In this experiment, we
use and a large time step in our model
(30). It is worth noting that our method is not sensitive to the
choice of the parameter . This is demonstrated by applying
the DRLSE model with two different values of and

. The mean errors of the corresponding results for
the three images are shown as the lighter bars in Fig. 4(d). For
each image, the two results of the DRLSE model with the two

Fig. 4. Comparison of the DRLSE model and the GAC model on three syn-
thetic images in (a), (b), and (c). For each images, the mean errors of the DRLSE
model with � � ���� and ����� are shown as the two lighter bars in (d), and
the GAC model with reinitialization at every five iterations and at every ten it-
erations are shown as the two darker bars in (d).

different values of are quite close to each other, with very
similar mean errors. All the mean errors for the three images
are below 0.5 pixels, as shown in Fig. 4(d).

For the GAC model, we use the time step . The co-
efficients of the balloon force in the GAC model (32) is set to

. We obtained two results for each image by applying
the GAC model: one is obtained with reinitializations at every
five iterations, and the other with reinitializations at every ten
iterations. In this experiment, the reinitialization for the GAC
model is performed by solving the PDE (3) with 20 iterations
(more iterations may cause larger displacement of the zero level
contour). The mean errors of the corresponding results for the
three images are shown as the darker bars in Fig. 4(d). For each
image, the two result of the GAC model with the two frequencies
of applying reinitialization are somewhat different, with the cor-
responding mean errors larger than those of the DRLSE model.
From this experiment, we can see that the errors of the GAC
model become larger when reinitialization is applied more fre-
quently. The mean error for the image in Fig. 4(c) is larger than
one pixel when reinitialization is applied at every five iterations.
This reveals a difficulty in applying reinitialization in conven-
tional level set formulations: while reinitialization is required to
reshape the degraded LSF periodically, too frequently applying
it may cause considerable error. There is no general answer to
the problem of choosing an appropriate frequency of applying
reinitialization. Therefore, reinitialization is often applied in an
ad-hoc manner in the implementation of conventional level set
methods. There is no such issue in the implementation of the
proposed DRLSE formulation, and the numerical accuracy is
ensured by the intrinsic distance regularization on the LSF.

The DRLSE model (30) has been applied to real images. For
examples, Fig. 5 shows the results of the DRLSE model for five
real images: a CT image with a tumor (the dark area) in human
liver, an image of a pot, a microscope image of cells, an image
of a T-shaped object, and an MR image of a human bladder. For
this experiment, we used the narrowband implementation of the
DRLSE model as described in Section III-B, with the smallest
parameter in the construction of the narrowband as in
(31). We recorded the CPU times consumed for the five images.
In this experiment, the narrowband algorithm is implemented
by a C program in MEX format, which was compiled and run in
Matlab. The CPU times were obtained by running the program
on a Lenovo ThinkPad notebook with Intel (R) Core (TM) 2
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Fig. 5. Results of narrowband implementation of the DRLSE model for five real images, with CPU times 0.12, 0.36, 0.09, 0.92, and 0.23 s consumed for the
images from left to right. Upper row: Input images and initial contours. Lower row: segmentation results.

Fig. 6. Curve evolution in the narrowband implementation of the DRLSE
model for an MR image of bladder. The initial contour, and the contours at
iterations 50, 140, and 220 are shown from left to right.

Duo CPU, 2.40 GHz, 2 GB RAM, with Matlab 7.4 on Windows
Vista. The upper row of Fig. 5 shows the initial contours overlaid
on the five images. We used the same time step and
chose the parameter as 2.5, , 1.5, for these
images (from left to right). The corresponding results of the
DRLSE model are shown in the lower row. The sizes of the five
images, from left to right, are 110 112, 148 202, 65 83,
192 254, and 107 180 pixels, and the corresponding CPU
times consumed by our algorithm are 0.12, 0.36, 0.09, 0.92, and
0.23 s, respectively. To show the curve evolution process of the
DRLSE model, we display the zero level contours at the itera-
tions 50, 140, and 220 for the MR image in Fig. 6.

To compare the computation speeds of the DRLSE model and
the GAC model, we applied them to the same images, with the
same initial contours in Fig. 5. For simplicity and fair compar-
ison, we use the full domain implementation of both models in
pure Matlab. The results of the full domain implementation of
the DRLSE model are sufficiently close to those of the narrow-
band implementation shown in Fig. 5. By choosing appropriate
parameters for the GAC model and applying fast marching al-
gorithm for reinitialization, we obtained similar results as those
of the DELSE model shown in Fig. 5. The CPU times consumed
by the DRLSE model for the five images, from left to right: 3.41,
15.25, 1.48, 32.67, and 8.54 s, and the corresponding CPU time
consumed by the GAC model are 22.98, 173.71, 11.34, 215.42,
and 80.22 s, respectively. Obviously, the DRLSE model is sig-
nificantly faster than the GAC model. This is mainly due to the
fact that the DRLSE model does not need reinitialization and
allows the use of a larger time step, which significantly reduces
the number of iterations and computation time. It is worth noting
that computational efficiency advantage of the DRLSE formu-
lation over conventional level set formulations would be even
more obvious in narrowband implementations, as the latter typ-

Fig. 7. Results of the DRLSE model in narrowband implementation using ini-
tialization from thresholding. Column 1: the input images. Column 2: the initial
contours obtained by thresholding on the input image. Column 3: intermediate
contours, after ten iterations for the upper image and one iteration for the lower
image. Column 4: the final contours, after 110 iterations for the upper image
and five iterations for the lower image.

ically require even more frequent reinitializations or additional
numerical tricks, such as velocity extension.

As mentioned in Section III-C, the binary initial LSF can be
obtained efficiently by applying thresholding or other simple
and efficient methods as preliminary segmentation on the input
image. Fig. 7 shows the results of the DRLSE model in narrow-
band implementation for an MR image of a human brain (the
corpus callosum is the object to be segmented) in the upper row
and a synthetic noisy image in the lower row. We apply thresh-
olding on the input image to obtain the region for the defi-
nition of the initial LSF in (19). Column 2 of Fig. 7 shows
the zero level contours of the initial level set function , and
Columns 3 and 4 show intermediate contours and the final con-
tours, respectively. In this experiment, the parameter is set to

and 0 for the images in the upper and lower rows, respec-
tively. It is worth noting that binary initial LSF for the syn-
thetic noisy image is highly irregular, and so are the zero level
contours, as shown in Column 2. Despite the initial severe irreg-
ularity, the LSF is quickly regularized in the level set evolution
due to the distance regularization term in the DRLSE model.
The regularity of the LSF is significantly improved after only
one iteration, with more regular zero level contours as shown in
Column 3. After five iterations, the LSF exhibits desirable reg-
ularity and zero level contour converges to the desired object
boundary, as shown in Column 4. The whole iteration process
only took 0.02 s for this image with 128 128 pixels.
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V. CONCLUSION

We have presented a new level set formulation, which we
call DRLSE. The proposed DRLSE formulation has an intrinsic
capability of maintaining regularity of the level set function,
particularly the desirable signed distance property in a vicinity
of the zero level set, which ensures accurate computation and
stable level set evolution. DRLSE can be implemented by a
simpler and more efficient numerical scheme than conventional
level set methods. DRLSE also allows more flexible and effi-
cient initialization than generating a signed distance function
as the initial LSF. As an application example, we have applied
DRLSE to an edge-based active contour model for image
segmentation, and provided a simple and efficient narrowband
implementation of this model. This active contour model in
DRLSE formulation allows the use of relatively large time steps
to significantly reduce iteration numbers and computation time,
while maintaining sufficient numerical accuracy in both full
domain and narrowband implementations, due to the intrinsic
distance regularization embedded in the level set evolution.
Given its efficiency and accuracy, we expect that the proposed
distance regularized level set evolution will find its utility in
more applications in the area of image segmentation, as well
as other areas where level set method has been and could be
applied.

APPENDIX A
FURTHER ANALYSIS OF THE FAB DIFFUSION

To further understand the property of the diffusion (14), we
decompose the divergence on the right hand as a weighted sum
of the second derivatives of in the tangential and normal di-
rections to the isophote lines (i.e., isocontours). The readers are
referred to [28, p.65] for such a decomposition formula. We de-
note by and the tangential direction and normal direction,
respectively. The second derivatives of in the -direction and
the -direction are denoted by and , respectively.
Thus, the diffusion (14) can be rewritten as

(33)

where and . The signs of
the coefficients and determine whether the
diffusion in the tangential and normal directions is forward or
backward.

In particular, for the potential , both coefficients
and are positive for or and,
therefore, the diffusion (14) is forward. In the case of

, either or is negative and, therefore, the dif-
fusion (14) is backward in the tangential or normal direction.
Moreover, we have the following important properties:

and (34)

Furthermore, by L’Hospital’s rule, we have

The boundedness of the coefficients and al-
lows the use of a fixed and relatively large time step in
an finite difference scheme. This can be seen from the
Courant–Friedrichs–Lewy (CFL) condition for the finite differ-
ence schemes. From the decomposition (33), we have the CFL
condition as for fixed space
steps . Note that this CFL condition appeared in
[34] in the context of image denoising using a FAB diffusion.
This CFL condition and the boundedness of and in (34)
imply that a fixed time step can be used in the finite difference
scheme for the diffusion equation (14) with , as long
as . If the coefficients and are not bounded,
then the time step (inversely proportional to and ) has to
be sufficiently small to satisfy the CFL condition and, therefore,
more iterations are needed to obtain converged result. This will
make the algorithm more time-consuming.
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