Algorithmic Game Theory

Over the last few years, there has been explosive growth in the research done at the in-
terface of computer science, game theory, and economic theory, largely motivated by the
emergence of the Internet. Algorithmic Game Theory develops the central ideas and results
of this new and exciting area.

More than 40 of the top researchers in this field have written chapters whose topics
range from the foundations to the state of the art. This book contains an extensive treatment
of algorithms for equilibria in games and markets, computational auctions and mechanism
design, and the “price of anarchy,” as well as applications in networks, peer-to-peer systems,
security, information markets, and more.

This book will be of interest to students, researchers, and practitioners in theoretical
computer science, economics, networking, artificial intelligence, operations research, and
discrete mathematics.

Noam Nisan is a Professor in the Department of Computer Science at The Hebrew Univer-
sity of Jerusalem. His other books include Communication Complexity.

Tim Roughgarden is an Assistant Professor in the Department of Computer Science at
Stanford University. His other books include Selfish Routing and the Price of Anarchy.

Eva Tardos is a Professor in the Department of Computer Science at Cornell University.
Her other books include Algorithm Design.

Vijay V. Vazirani is a Professor in the College of Computing at the Georgia Institute of
Technology. His other books include Approximation Algorithms.

Algorithmic Game Theory

Edited by
Noam Nisan

Hebrew University of Jerusalem

Tim Roughgarden

Stanford University

Eva Tardos

Cornell University

Vijay V. Vazirani

Georgia Institute of Technology

7l CAMBRIDGE
&) UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sdo Paulo, Delhi

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521872829

© Noam Nisan, Tim Roughgarden, Eva Tardos, Vijay V. Vazirani 2007

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2007
Printed in the United States of America
A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Algorithmic game theory / edited by Noam Nisan. . . [et al.]; foreword
by Christos Papadimitriou.
p. cm.
Includes index.
ISBN-13: 978-0-521-87282-9 (hardback)
ISBN-10: 0-521-87282-0 (hardback)
1. Game theory. 2. Algorithms. I. Nisan, Noam. II Title.
QA269.A43 2007
519.3-dc22 2007014231

ISBN 978-0-521-87282-9 hardback

Cambridge University Press has no responsibility for

the persistence or accuracy of URLS for external or
third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such

Web sites is, or will remain, accurate or appropriate.

Contents

Foreword page xiii
Preface Xvii
Contributors XIiX

I Computing in Games

1 Basic Solution Concepts and Computational Issues 3
Eva Tardos and Vijay V. Vazirani
1.1 Games, Old and New 3
1.2 Games, Strategies, Costs, and Payoffs 9
1.3 Basic Solution Concepts 10
1.4 Finding Equilibria and Learning in Games 16
1.5 Refinement of Nash: Games with Turns and Subgame Perfect Equilibrium 18
1.6 Nash Equilibrium without Full Information: Bayesian Games 20
1.7 Cooperative Games 20
1.8 Markets and Their Algorithmic Issues 22
Acknowledgments 26
Bibliography 26
Exercises 26

2 The Complexity of Finding Nash Equilibria 29
Christos H. Papadimitriou
2.1 Introduction 29
2.2 Is the NasH Equilibrium Problem NP-Complete? 31
2.3 The Lemke-Howson Algorithm 33
2.4 The Class PPAD 36
2.5 Succinct Representations of Games 39
2.6 The Reduction 41
2.7 Correlated Equilibria 45
2.8 Concluding Remarks 49
Acknowledgment 50
Bibliography 50

vi

CONTENTS

3 Equilibrium Computation for Two-Player Games in Strategic
and Extensive Form
Bernhard von Stengel

3.1 Introduction
3.2 Bimatrix Games and the Best Response Condition
3.3 Equilibria via Labeled Polytopes
3.4 The Lemke—Howson Algorithm
3.5 Integer Pivoting
3.6 Degenerate Games
3.7 Extensive Games and Their Strategic Form
3.8 Subgame Perfect Equilibria
3.9 Reduced Strategic Form
3.10 The Sequence Form
3.11 Computing Equilibria with the Sequence Form
3.12 Further Reading
3.13 Discussion and Open Problems
Bibliography
Exercises

4 Learning, Regret Minimization, and Equilibria
Avrim Blum and Yishay Mansour

4.1 Introduction
4.2 Model and Preliminaries
4.3 External Regret Minimization
4.4 Regret Minimization and Game Theory
4.5 Generic Reduction from External to Swap Regret
4.6 The Partial Information Model
4.7 On Convergence of Regret-Minimizing Strategies to Nash
Equilibrium in Routing Games
4.8 Notes
Bibliography
Exercises

S Combinatorial Algorithms for Market Equilibria
Vijay V. Vazirani

51
5.2
53
54
5.5
5.6
5.7
5.8
5.9
5.10
511
5.12
513

Introduction

Fisher’s Linear Case and the Eisenberg—Gale Convex Program
Checking If Given Prices Are Equilibrium Prices
Two Crucial Ingredients of the Algorithm

The Primal-Dual Schema in the Enhanced Setting
Tight Sets and the Invariant

Balanced Flows

The Main Algorithm

Finding Tight Sets

Running Time of the Algorithm

The Linear Case of the Arrow—Debreu Model

An Auction-Based Algorithm

Resource Allocation Markets

53

53
54
57
61
63
65
66
68
69
70
73
75
75
76
71

79

79
81
82
88
92
94

96
99
99
101

103

103
105
108
109
109
111
111
115
117
118
121
122
124

5.14
5.15

CONTENTS

Algorithm for Single-Source Multiple-Sink Markets
Discussion and Open Problems

Bibliography
Exercises

Computation of Market Equilibria by Convex Programming

Bruno Codenotti and Kasturi Varadarajan

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Introduction

Fisher Model with Homogeneous Consumers
Exchange Economies Satisfying WGS
Specific Utility Functions

Limitations

Models with Production

Bibliographic Notes

Bibliography
Exercises

Graphical Games
Michael Kearns

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Introduction

Preliminaries

Computing Nash Equilibria in Tree Graphical Games
Graphical Games and Correlated Equilibria
Graphical Exchange Economies

Open Problems and Future Research

Bibliographic Notes

Acknowledgments
Bibliography

Cryptography and Game Theory
Yevgeniy Dodis and Tal Rabin

8.1 Cryptographic Notions and Settings
8.2 Game Theory Notions and Settings
8.3 Contrasting MPC and Games
8.4 Cryptographic Influences on Game Theory
8.5 Game Theoretic Influences on Cryptography
8.6 Conclusions
8.7 Notes
Acknowledgments
Bibliography

Introduction to Mechanism Design (for Computer Scientists)

II Algorithmic Mechanism Design

Noam Nisan

9.1
9.2
9.3
94

Introduction

Social Choice

Mechanisms with Money
Implementation in Dominant Strategies

vii

126
131
132
133

135

135
141
142
148
150
152
155
156
158

159

159
161
164
169
176
177
177
179
179

181

181
187
189
191
197
202
203
204
204

209

209
211
216
222

viii

10

11

12

13

CONTENTS

9.5 Characterizations of Incentive Compatible Mechanisms
9.6 Bayesian—Nash Implementation
9.7 Further Models
9.8 Notes
Acknowledgments
Bibliography

Mechanism Design without Money

James Schummer and Rakesh V. Vohra

10.1 Introduction

10.2 Single-Peaked Preferences over Policies
10.3 House Allocation Problem

10.4 Stable Matchings

10.5 Future Directions

10.6 Notes and References

Bibliography

Exercises

Combinatorial Auctions

Liad Blumrosen and Noam Nisan

11.1 Introduction

11.2 The Single-Minded Case

11.3 Walrasian Equilibrium and the LP Relaxation
11.4 Bidding Languages

11.5 Tterative Auctions: The Query Model
11.6 Communication Complexity

11.7 Ascending Auctions

11.8 Bibliographic Notes
Acknowledgments

Bibliography

Exercises

Computationally Efficient Approximation Mechanisms
Ron Lavi

12.1 Introduction

12.2 Single-Dimensional Domains: Job Scheduling

12.3 Multidimensional Domains: Combinatorial Auctions
12.4 Impossibilities of Dominant Strategy Implementability
12.5 Alternative Solution Concepts

12.6 Bibliographic Notes

Bibliography

Exercises

Profit Maximization in Mechanism Design

Jason D. Hartline and Anna R. Karlin

13.1 Introduction

13.2 Bayesian Optimal Mechanism Design

13.3 Prior-Free Approximations to the Optimal Mechanism
13.4 Prior-Free Optimal Mechanism Design

225
233
238
239
240
241

243

243
244
253
255
262
263
264
264

267

267
270
275
279
283
287
289
295
296
296
298

301

301
303
310
317
321
327
327
328

331

331
335
339
344

14

15

16

17

CONTENTS

13.5 Frugality

13.6 Conclusions and Other Research Directions
13.7 Notes

Bibliography

Exercises

Distributed Algorithmic Mechanism Design

Joan Feigenbaum, Michael Schapira, and Scott Shenker
14.1 Introduction

14.2 Two Examples of DAMD

14.3 Interdomain Routing

14.4 Conclusion and Open Problems

14.5 Notes

Acknowledgments

Bibliography

Exercises

Cost Sharing

Kamal Jain and Mohammad Mahdian

15.1 Cooperative Games and Cost Sharing

15.2 Core of Cost-Sharing Games

15.3 Group-Strategyproof Mechanisms and Cross-Monotonic
Cost-Sharing Schemes

15.4 Cost Sharing via the Primal-Dual Schema

15.5 Limitations of Cross-Monotonic Cost-Sharing Schemes

15.6 The Shapley Value and the Nash Bargaining Solution

15.7 Conclusion

15.8 Notes

Acknowledgments

Bibliography

Exercises

Online Mechanisms

David C. Parkes

16.1 Introduction

16.2 Dynamic Environments and Online MD
16.3 Single-Valued Online Domains

16.4 Bayesian Implementation in Online Domains
16.5 Conclusions

16.6 Notes

Acknowledgments

Bibliography

Exercises

III Quantifying the Inefficiency of Equilibria

Introduction to the Inefficiency of Equilibria
Tim Roughgarden and Eva Tardos
17.1 Introduction

ix

350
354
357
358
360

363

363
366
370
379
380
381
381
383

385

385
387

391
394
400
402
405
406
408
408
410

411

411
413
417
431
435
436
437
437
439

443

443

18

19

20

21

CONTENTS

17.2 Fundamental Network Examples

17.3 Inefficiency of Equilibria as a Design Metric
17.4 Notes

Bibliography

Exercises

Routing Games

Tim Roughgarden

18.1 Introduction

18.2 Models and Examples

18.3 Existence, Uniqueness, and Potential Functions
18.4 The Price of Anarchy of Selfish Routing

18.5 Reducing the Price of Anarchy

18.6 Notes

Bibliography

Exercises

Network Formation Games and the Potential Function Method
Eva Tardos and Tom Wexler

19.1 Introduction

19.2 The Local Connection Game

19.3 Potential Games and a Global Connection Game

19.4 Facility Location

19.5 Notes

Acknowledgments

Bibliography

Exercises

Selfish Load Balancing

Berthold Vicking

20.1 Introduction

20.2 Pure Equilibria for Identical Machines

20.3 Pure Equilibria for Uniformly Related Machines
20.4 Mixed Equilibria on Identical Machines

20.5 Mixed Equilibria on Uniformly Related Machines
20.6 Summary and Discussion

20.7 Bibliographic Notes

Bibliography

Exercises

The Price of Anarchy and the Design of Scalable Resource
Allocation Mechanisms

Ramesh Johari

21.1 Introduction

21.2 The Proportional Allocation Mechanism

21.3 A Characterization Theorem

21.4 The Vickrey—Clarke—Groves Approach

21.5 Chapter Summary and Further Directions

446
454
456
457
459

461

461
462
468
472
478
480
483
484

487

487
489
494
502
506
511
511
513

517

517
522
524
529
533
537
538
540
542

543

543
544
551
559
564

22

23

24

25

CONTENTS

21.6 Notes
Bibliography
Exercises

IV Additional Topics

Incentives and Pricing in Communications Networks
Asuman Ozdaglar and R. Srikant

22.1 Large Networks — Competitive Models

22.2 Pricing and Resource Allocation — Game Theoretic Models
22.3 Alternative Pricing and Incentive Approaches
Bibliography

Incentives in Peer-to-Peer Systems
Moshe Babaioff, John Chuang, and Michal Feldman
23.1 Introduction

23.2 The p2p File-Sharing Game

23.3 Reputation

23.4 A Barter-Based System: BitTorrent
23.5 Currency

23.6 Hidden Actions in p2p Systems
23.7 Conclusion

23.8 Bibliographic Notes

Bibliography

Exercises

Cascading Behavior in Networks: Algorithmic and Economic Issues
Jon Kleinberg

24.1 Introduction

24.2 A First Model: Networked Coordination Games

24.3 More General Models of Social Contagion

24.4 Finding Influential Sets of Nodes

24.5 Empirical Studies of Cascades in Online Data

24.6 Notes and Further Reading

Bibliography

Exercises

Incentives and Information Security

Ross Anderson, Tyler Moore, Shishir Nagaraja, and Andy Ozment
25.1 Introduction

25.2 Misaligned Incentives

25.3 Informational Asymmetries

25.4 The Economics of Censorship Resistance

25.5 Complex Networks and Topology

25.6 Conclusion

25.7 Notes

Bibliography

xi

565
566
567

571

572
578
587
590

593

593
594
596
600
601
602
608
608
609
610

613

613
614
618
622
627
630
631
632

633

633
634
636
640
643
646
647
648

xii

CONTENTS

26 Computational Aspects of Prediction Markets
David M. Pennock and Rahul Sami

26.1
26.2
26.3
264
26.5
26.6
26.7

Introduction: What Is a Prediction Market?
Background

Combinatorial Prediction Markets
Automated Market Makers

Distributed Computation through Markets
Open Questions

Bibliographic Notes

Acknowledgments
Bibliography
Exercises

27 Manipulation-Resistant Reputation Systems
Eric Friedman, Paul Resnick, and Rahul Sami

271
27.2
27.3
274
27.5
27.6
27.7

Introduction: Why Are Reputation Systems Important?
The Effect of Reputations

Whitewashing

Eliciting Effort and Honest Feedback

Reputations Based on Transitive Trust

Conclusion and Extensions

Bibliographic Notes

Bibliography
Exercises

28 Sponsored Search Auctions
Sébastien Lahaie, David M. Pennock, Amin Saberi, and Rakesh V. Vohra

28.1
28.2
28.3
284
28.5
28.6

Introduction

Existing Models and Mechanisms
A Static Model

Dynamic Aspects

Open Questions

Bibliographic Notes

Bibliography
Exercises

29 Computational Evolutionary Game Theory
Siddharth Suri

29.1
29.2
29.3
294
29.5
29.6

Evolutionary Game Theory

The Computational Complexity of Evolutionarily Stable Strategies
Evolutionary Dynamics Applied to Selfish Routing

Evolutionary Game Theory over Graphs

Future Work

Notes

Acknowledgments
Bibliography
Exercises

Index

651

651
652
657
662
665
670
671
672
672
674

677

677
680
682
683
689
693
694
695
696

699

699
701
702
707
711
712
713
715

717

717
720
723
728
733
733
734
734
735

737

Foreword

As the Second World War was coming to its end, John von Neumann, arguably the
foremost mathematician of that time, was busy initiating two intellectual currents that
would shape the rest of the twentieth century: game theory and algorithms. In 1944 (16
years after the minmax theorem) he published, with Oscar Morgenstern, his Games
and Economic Behavior, thus founding not only game theory but also utility theory and
microeconomics. Two years later he wrote his draft report on the EDVAC, inaugurating
the era of the digital computer and its software and its algorithms. Von Neumann wrote
in 1952 the first paper in which a polynomial algorithm was hailed as a meaningful
advance. And, he was the recipient, shortly before his early death four years later, of
Godel’s letter in which the P vs. NP question was first discussed.

Could von Neumann have anticipated that his twin creations would converge half
a century later? He was certainly far ahead of his contemporaries in his conception
of computation as something dynamic, ubiquitous, and enmeshed in society, almost
organic — witness his self-reproducing automata, his fault-tolerant network design, and
his prediction that computing technology will advance in lock-step with the economy
(for which he had already postulated exponential growth in his 1937 Vienna Colloquium
paper). But I doubt that von Neumann could have dreamed anything close to the Internet,
the ubiquitous and quintessentially organic computational artifact that emerged after
the end of the Cold War (a war, incidentally, of which von Neumann was an early
soldier and possible casualty, and that was, fortunately, fought mostly with game
theory and decided by technological superiority — essentially by algorithms — instead
of the thermonuclear devices that were von Neumann'’s parting gift to humanity).

The Internet turned the tables on students of both markets and computation. It
transformed, informed, and accelerated markets, while creating new and theretofore
unimaginable kinds of markets —in addition to being itself, in important ways, a market.
Algorithms became the natural environment and default platform of strategic decision
making. On the other hand, the Internet was the first computational artifact that was not
created by a single entity (engineer, design team, or company), but emerged from the
strategic interaction of many. Computer scientists were for the first time faced with an
object that they had to feel with the same bewildered awe with which economists have

xiii

xiv FOREWORD

always approached the market. And, quite predictably, they turned to game theory for
inspiration — in the words of Scott Shenker, a pioneer of this way of thinking who has
contributed to this volume, “the Internet is an equilibrium, we just have to identify the
game.” A fascinating fusion of ideas from both fields — game theory and algorithms —
came into being and was used productively in the effort to illuminate the mysteries of
the Internet. It has come to be called algorithmic game theory.

The chapters of this book, a snapshot of algorithmic game theory at the approximate
age of ten written by a galaxy of its leading researchers, succeed brilliantly, I think, in
capturing the field’s excitement, breadth, accomplishment, and promise. The first few
chapters recount the ways in which the new field has come to grips with perhaps the
most fundamental cultural incongruity between algorithms and game theory: the latter
predicts the agents’ equilibrium behavior typically with no regard to the ways in which
such a state will be reached — a consideration that would be a computer scientist’s
foremost concern. Hence, algorithms for computing equilibria (Nash and correlated
equilibria in games, price equilibria for markets) have been one of algorithmic game
theory’s earliest research goals. This body of work has become a valuable contribu-
tion to the debate in economics about the validity of behavior predictions: Efficient
computability has emerged as a very desirable feature of such predictions, while com-
putational intractability sheds a shadow of implausibility on a proposed equilibrium
concept. Computational models that reflect the realities of the market and the Internet
better than the von Neumann machine are of course at a premium — there are chapters
in this book on learning algorithms as well as on distributed algorithmic mechanism
design.

The algorithmic nature of mechanism design is even more immediate: This elegant
and well-developed subarea of game theory deals with the design of games, with players
who have unknown and private utilities, such that at the equilibrium of the designed
game the designer’s goals are attained independently of the agents’ utilities (auctions
are an important example here). This is obviously a computational problem, and in
fact some of the classical results in this area had been subtly algorithmic, albeit with
little regard to complexity considerations. Explicitly algorithmic work on mechanism
design has, in recent years, transformed the field, especially in the case of auctions
and cost sharing (for example, how to recover the cost of an Internet service from
customers who value the service by amounts known only to them) and has become the
arena of especially intense and productive cross-fertilization between game theory and
algorithms; these problems and accomplishments are recounted in the book’s second
part.

The third part of the book is dedicated to a line of investigation that has come
to be called “the price of anarchy.” Selfish rational agents reach an equilibrium. The
question arises: exactly how inefficient is this equilibrium in comparison to an idealized
situation in which the agents would strive to collaborate selflessly with the common
goal of minimizing total cost? The ratio of these quantities (the cost of an equilibrium
over the optimum cost) has been estimated successfully in various Internet-related
setups, and it is often found that “anarchy” is not nearly as expensive as one might have
feared. For example, in one celebrated case related to routing with linear delays and
explained in the “routing games” chapter, the overhead of anarchy is at most 33% over
the optimum solution — in the context of the Internet such a ratio is rather insignificant

FOREWORD XV

and quickly absorbed by its rapid growth. Viewed in the context of the historical
development of research in algorithms, this line of investigation could be called “the
third compromise.” The realization that optimization problems are intractable led us to
approximation algorithms; the unavailability of information about the future, or the lack
of coordination between distributed decision makers, brought us online algorithms; the
price of anarchy is the result of one further obstacle: now the distributed decision makers
have different objective functions. Incidentally, it is rather surprising that economists
had not studied this aspect of strategic behavior before the advent of the Internet. One
explanation may be that, for economists, the ideal optimum was never an available
option; in contrast, computer scientists are still looking back with nostalgia to the
good old days when artifacts and processes could be optimized exactly. Finally, the
chapters on “additional topics” that conclude the book (e.g., on peer-to-peer systems
and information markets) amply demonstrate the young area’s impressive breadth,
reach, diversity, and scope.

Books — a glorious human tradition apparently spared by the advent of the Internet —
have a way of marking and focusing a field, of accelerating its development. Seven
years after the publication of The Theory of Games, Nash was proving his theorem on
the existence of equilibria; only time will tell how this volume will sway the path of
algorithmic game theory.

Paris, February 2007 Christos H. Papadimitriou

Preface

This book covers an area that straddles two fields, algorithms and game theory, and
has applications in several others, including networking and artificial intelligence. Its
text is pitched at a beginning graduate student in computer science — we hope that this
makes the book accessible to readers across a wide range of areas.

We started this project with the belief that the time was ripe for a book that clearly
develops some of the central ideas and results of algorithmic game theory — a book that
can be used as a textbook for the variety of courses that were already being offered
at many universities. We felt that the only way to produce a book of such breadth in
a reasonable amount of time was to invite many experts from this area to contribute
chapters to a comprehensive volume on the topic.

This book is partitioned into four parts: the first three parts are devoted to core areas,
while the fourth covers a range of topics mostly focusing on applications. Chapter 1
serves as a preliminary chapter and it introduces basic game-theoretic definitions that
are used throughout the book. The first chapters of Parts IT and III provide introductions
and preliminaries for the respective parts. The other chapters are largely independent
of one another. The authors were requested to focus on a few results highlighting
the main issues and techniques, rather than provide comprehensive surveys. Most
of the chapters conclude with exercises suitable for classroom use and also identify
promising directions for further research. We hope these features give the book the feel
of a textbook and make it suitable for a wide range of courses.

You can view the entire book online at
www.cambridge.org/us/9780521872829
username: agtluser
password: camb2agt

Many people’s efforts went into producing this book within a year and a half
of its first conception. First and foremost, we thank the authors for their dedi-
cation and timeliness in writing their own chapters and for providing important

xvii

xviii PREFACE

feedback on preliminary drafts of other chapters. Thanks to Christos Papadimitriou
for his inspiring Foreword. We gratefully acknowledge the efforts of outside review-
ers: Elliot Anshelevich, Nikhil Devanur, Matthew Jackson, Vahab Mirrokni, Herve
Moulin, Neil Olver, Adrian Vetta, and several anonymous referees. Thanks to Cindy
Robinson for her invaluable help with correcting the galley proofs. Finally, a big
thanks to Lauren Cowles for her stellar advice throughout the production of this
volume.

Noam Nisan

Tim Roughgarden
Eva Tardos

Vijay V. Vazirani

Contributors

Ross Anderson
Computer Laboratory
University of Cambridge

Moshe Babaioff
School of Information
University of California, Berkeley

Avrim Blum
Department of Computer Science
Carnegie Mellon University

Liad Blumrosen
Microsoft Research
Silicon Valley

John Chuang
School of Information
University of California, Berkeley

Bruno Codenotti
Istituto di Informatica e
Telematica, Consiglio
Nazionale delle Ricerche

Yevgeniy Dodis

Department of Computer Science
Courant Institute of Mathematical
Sciences, New York University

Joan Feigenbaum
Computer Science Department
Yale University

Michal Feldman

School of Business Administration

and the Center for the Study of Rationality
Hebrew University of Jerusalem

Eric Friedman

School of Operations Research
and Information Engineering
Cornell University

Jason D. Hartline
Microsoft Research
Silicon Valley

Kamal Jain
Microsoft Research
Redmond

Ramesh Johari

Department of Management Science
and Engineering

Stanford University

Anna R. Karlin

Department of Computer Science
and Engineering

University of Washington

Xix

XX

Michael Kearns
Department of Computer
and Information Science
University of Pennsylvania

Jon Kleinberg
Department of Computer Science
Cornell University

Sébastien Lahaie
School of Engineering
and Applied Sciences
Harvard University

Ron Lavi

Faculty of Industrial Engineering
and Management, The Technion
Israel Institute of Technology

Mohammad Mahdian
Yahoo! Research
Silicon Valley

Yishay Mansour
School of Computer Science
Tel Aviv University

Tyler Moore
Computer Laboratory
University of Cambridge

Shishir Nagaraja
Computer Laboratory
University of Cambridge

Noam Nisan

School of Computer Science
and Engineering

Hebrew University of Jerusalem

Asuman Ozdaglar
Department of Electrical
Engineering and Computer
Science, MIT

Andy Ozment
Computer Laboratory
University of Cambridge

CONTRIBUTORS

Christos H. Papadimitriou
Computer Science Division
University of California, Berkeley

David C. Parkes
School of Engineering
and Applied Sciences
Harvard University

David M. Pennock
Yahoo! Research
New York

Tal Rabin
T. J. Watson Research Center
IBM

Paul Resnick
School of Information
University of Michigan

Tim Roughgarden
Department of Computer Science
Stanford University

Amin Saberi

Department of Management
Science and Engineering
Stanford University

Rahul Sami
School of Information
University of Michigan

Michael Schapira
School of Computer Science
and Engineering

The Hebrew University of Jerusalem

James Schummer

M.E.D.S.

Kellogg School of Management
Northwestern University

CONTRIBUTORS xxi

Scott Shenker
EECS Department
University of California, Berkeley

R. Srikant

Department of Electrical and Computer
Engineering and Coordinated Science
Laboratory, University of Illinois at
Urbana-Champaign

Siddharth Suri
Department of Computer Science
Cornell University

Eva Tardos
Department of Computer Science
Cornell University

Kasturi Varadarajan
Department of Computer Science
University of Iowa

Vijay V. Vazirani
College of Computing
Georgia Institute of Technology

Berthold Vocking
Department of Computer Science
RWTH Aachen University

Rakesh V. Vohra

M.E.D.S.

Kellogg School of Management
Northwestern University

Bernhard von Stengel
Department of Mathematics
London School of Economics

Tom Wexler
Department of Computer Science
Cornell University

PART ONE

Computing in Games

CHAPTER 1

Basic Solution Concepts and
Computational Issues

Eva Tardos and Vijay V. Vazirani

Abstract

We consider some classical games and show how they can arise in the context of the Internet. We also
introduce some of the basic solution concepts of game theory for studying such games, and some
computational issues that arise for these concepts.

1.1 Games, Old and New

The Foreword talks about the usefulness of game theory in situations arising on the
Internet. We start the present chapter by giving some classical games and showing
how they can arise in the context of the Internet. At first, we appeal to the reader’s
intuitive notion of a “game”; this notion is formally defined in Section 1.2. For a more
in-depth discussion of game theory we refer the readers to books on game theory such
as Fudenberg and Tirole (1991), Mas-Colell, Whinston, and Green (1995), or Osborne
and Rubinstein (1994).

1.1.1 The Prisoner’s Dilemma

Game theory aims to model situations in which multiple participants interact or affect
each other’s outcomes. We start by describing what is perhaps the most well-known
and well-studied game.

Example 1.1 (Prisoners’ dilemma) Two prisoners are on trial for a crime and
each one faces a choice of confessing to the crime or remaining silent. If they
both remain silent, the authorities will not be able to prove charges against them
and they will both serve a short prison term, say 2 years, for minor offenses. If
only one of them confesses, his term will be reduced to 1 year and he will be used
as a witness against the other, who in turn will get a sentence of 5 years. Finally

3

4 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

if they both confess, they both will get a small break for cooperating with the
authorities and will have to serve prison sentences of 4 years each (rather than 5).

Clearly, there are four total outcomes depending on the choices made by each
of the two prisoners. We can succinctly summarize the costs incurred in these
four outcomes via the following two-by-two matrix.

P2
Pl Confess Silent
4 5
Confess
4 1
1 2
Silent
5 2

Each of the two prisoners “P1” and “P2” has two possible strategies (choices)
to “confess” or to remain “silent.” The two strategies of prisoner P1 correspond to
the two rows and the two strategies of prisoner P2 correspond to the two columns
of the matrix. The entries of the matrix are the costs incurred by the players in
each situation (left entry for the row player and the right entry for the column
player). Such a matrix is called a cost matrix because it contains the cost incurred
by the players for each choice of their strategies.

The only stable solution in this game is that both prisoners confess; in each
of the other three cases, at least one of the players can switch from “silent” to
“confess” and improve his own payoff. On the other hand, a much better outcome
for both players happens when neither of them confesses. However, this is not
a stable solution — even if it is carefully planned out — since each of the players
would be tempted to defect and thereby serve less time.

The situation modeled by the Prisoner’s Dilemma arises naturally in a lot of different
situations; we give below an ISP routing context.

Example 1.2 (ISP routing game) Consider Internet Service Providers (ISPs)
that need to send traffic to each other. In routing traffic that originates in one ISP
with destination in a different ISP, the routing choice made by the originating ISP
also affects the load at the destination ISP. We will see here how this situation
gives rise to exactly the Prisoner’s dilemma described above.

Consider two ISPs (Internet Service Providers), as depicted in Figure 1.1, each
having its own separate network. The two networks can exchange traffic via two
transit points, called peering points, which we will call C and S.

In the figure we also have two origin—destination pairs s; and #; each crossing
between the domains. Suppose that ISP 1 needs to send traffic from point s; in his
own domain to point #; in 2nd ISP’s domain. ISP 1 has two choices for sending its
traffic, corresponding to the two peering points. ISPs typically behave selfishly
and try to minimize their own costs, and send traffic to the closest peering point,

GAMES, OLD AND NEW 5

Figure 1.1. The ISP routing problem.

as the ISP with the destination node must route the traffic, no matter where it
enters its domain. Peering point C is closer, using this peering point ISP 1 incurs
a cost of 1 unit (in sending traffic along 1 edge), whereas if it uses the farther
peering point S, it incurs a cost of 2.

Note that the farther peering point S is more directly on route to the destination
11, and hence routing through S results in shorter overall path. The length of the
path through C is 4 while through S is 2, as the destination is very close to S.

The situation described for ISP 1 routing traffic from s; to #; is in a way
analogous to a prisoner’s choices in the Prisoner’s Dilemma: there are two choices,
one is better from a selfish perspective (“confess” or route through peering point
(), but hurts the other player. To make our routing game identical to the Prisoner’s
Dilemma, assume that symmetrically the 2nd ISP needs to send traffic from point
s> in his domain to point #, in the 1st ISP’s domain. The two choices of the
two ISPs lead to a game with cost matrix identical to the matrix above with C
corresponding to “confess” and S corresponding to remaining “silent.”

1.1.2 The Tragedy of the Commons

In this book we will be most concerned with situations where many participants interact,
and such situations are naturally modeled by games that involve many players: there
are thousands of ISPs, and many millions of traffic streams to be routed. We will give
two examples of such games, first a multiplayer version of the Prisoner’s Dilemma
that we will phrase in terms of a pollution game. Then we will discuss the well-known
game of Tragedy of the Commons.

Example 1.3 (Pollution game) This game is the extension of Prisoner’s
Dilemma to the case of many players. The issues modeled by this game arise
in many contexts; here we will discuss it in the context of pollution control. As-
sume that there are n countries in this game. For a simple model of this situation,
assume that each country faces the choice of either passing legislation to control
pollution or not. Assume that pollution control has a cost of 3 for the country, but
each country that pollutes adds 1 to the cost of all countries (in terms of added

6 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

health costs, etc.). The cost of controlling pollution (which is 3) is considerably
larger than the cost of 1 a country pays for being socially irresponsible.

Suppose that k countries choose not to control pollution. Clearly, the cost
incurred by each of these countries is k. On the other hand, the cost incurred by
the remaining n — k countries is k + 3 each, since they have to pay the added
cost for their own pollution control. The only stable solution is the one in which
no country controls pollution, having a cost of n for each country. In contrast,
if they all had controlled pollution, the cost would have been only 3 for each
country.

The games we have seen so far share the feature that there is a unique optimal
“selfish” strategy for each player, independent of what other players do. No matter
what strategy the opponent plays, each player is better off playing his or her selfish
strategy. Next, we will see a game where the players’ optimal selfish strategies depend
on what the other players play.

Example 1.4 (Tragedy of the commons) We will describe this game in the
context of sharing bandwidth. Suppose that n players each would like to have part
of a shared resource. For example, each player wants to send information along
a shared channel of known maximum capacity, say 1. In this game each player
will have an infinite set of strategies, player i’s strategy is to send x; units of flow
along the channel for some value x; € [0, 1].

Assume that each player would like to have a large fraction of the bandwidth,
but assume also that the quality of the channel deteriorates with the total bandwidth
used. We will describe this game by a simple model, using a benefit or payoff
function for each set of strategies. If the total bandwidth) _ ; x; exceeds the channel
capacity, no player gets any benefit. If) ;Xj < 1 then the value for player i is
x;i(1 =3, x;). This models exactly the kind of trade-off we had in mind: the
benefit for a player deteriorates as the total assigned bandwidth increases, but it
increases with his own share (up to a point).

To understand what stable strategies are for a player, let us concentrate on player
i, and assume that t =) j2ixj <1 flow is sent by all other players. Now player i
faces a simple optimization problem for selecting his flow amount: sending x flow
results in a benefit of x(1 — ¢ — x). Using elementary calculus, we get that the optimal
solution for player i is x = (1 — ¢)/2. A set of strategies is stable if all players are
playing their optimal selfish strategy, given the strategies of all other players. For this
case, this means that x; = (1 — }_,_; x;)/2 for all i, which has a unique solution in
xi =1/(n+ 1) foralli.

Why is this solution a tragedy? The total value of the solution is extremely low.
The value for player i is x;(1 — Z#i xj))=1/(n+ 1)%, and the sum of the values
over all payers is then n/(n + 1)*> ~ 1/n. In contrast, if the total bandwidth used is
> _; x; = 1/2 then the total value is 1/4, approximately n/4 times bigger. In this game
the n users sharing the common resource overuse it so that the total value of the shared
resource decreases quite dramatically. The pollution game above has a similar effect,

GAMES, OLD AND NEW 7

where the common resource of the environment is overused by the n players increasing
the cost from 3 to n for each players.

1.1.3 Coordination Games

In our next example, there will be multiple outcomes that can be stable. This game is
an example of a so-called “coordination game.” A simple coordination game involves
two players choosing between two options, wanting to choose the same.

Example 1.5 (Battle of the sexes) Consider that two players, a boy and a girl,
are deciding on how to spend their evening. They both consider two possibilities:
going to a baseball game or going to a softball game. The boy prefers baseball and
the girl prefers softball, but they both would like to spend the evening together
rather than separately. Here we express the players’ preferences again via payoffs
(benefits) as follows.

Boy
Girl B S
6 1
B
5 1
2 5
S
2 6

Clearly, the two solutions where the two players choose different games are
not stable — in each case, either of the two players can improve their payoff by
switching their action. On the other hand, the two remaining options, both attend-
ing the same game, whether it is softball or baseball, are both stable solutions; the
girl prefers the first and the boy prefers the second.

Coordination games also arise naturally in many contexts. Here we give an example
of a coordination game in the context of routing to avoid congestion. The good outcomes
in the Battle of the Sexes were to attend the same game. In contrast, in the routing game,
good outcomes will require routing on different paths to avoid congestion. Hence, this
will be an “anticoordination” game.

Example 1.6 (Routing congestion game) Suppose that two traffic streams ori-
ginate at proxy node O, and need to be routed to the rest of the network, as
shown in Figure 1.2. Suppose that node O is connected to the rest of the network
via connection points A and B, where A is a little closer than B. However, both
connection points get easily congested, so sending both streams through the same
connection point causes extra delay. Good outcomes in this game will be for the
two players to “coordinate” and send their traffic through different connection
points.

8 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

Traffic 1
A B
Traffic 2
5 2
A
5 1
1 6
B
2 6

Figure 1.2. Routing to avoid congestion and the corresponding cost matrix.

We model this situation via a game with the two streams as players. Each
player has two available strategies — routing through A or routing through
B — leading to four total possibilities. The matrix of Figure 1.2 expresses the
costs to the players in terms of delays depending on their routing choices.

1.1.4 Randomized (Mixed) Strategies

In the games we considered so far, there were outcomes that were stable in the sense
that none of players would want to individually deviate from such an outcome. Not all
games have such stable solutions, as illustrated by the following example.

Example 1.7 (Matching pennies) Two payers, each having a penny, are asked
to choose from among two strategies — heads (H) and tails (7). The row player
wins if the two pennies match, while the column player wins if they do not match,
as shown by the following payoff matrix, where 1 indicates win and —1 indicated
loss.

One can view this game as a variant of the routing congestion game in which the
column player is interested in getting good service, hence would like the two players to
choose different routes, while the row player is interested only in disrupting the column
player’s service by trying to choose the same route. It is easy to see that this game has

GAMES, STRATEGIES, COSTS, AND PAYOFFS 9

no stable solution. Instead, it seems best for the players to randomize in order to thwart
the strategy of the other player.

1.2 Games, Strategies, Costs, and Payoffs

We have given examples of games and discussed costs, payoffs, and strategies in an
informal way. Next we will define such a game more formally. The games we considered
above were all one-shot simultaneous move games, in that all players simultaneously
chose an action from their set of possible strategies.

1.2.1 Defining a Simultaneous Move Game

Formally, such a game consists of a set n of players, {1, 2, ..., n}. Each player i has his
own set of possible strategies, say S;. To play the game, each player i selects a strategy
s; € S;. We will use s = (s1, .. ., $,) to denote the vector of strategies selected by the
players and S = Xx;S; to denote the set of all possible ways in which players can pick
strategies.

The vector of strategies s € S selected by the players determine the outcome for
each player; in general, the outcome will be different for different players. To specify
the game, we need to give, for each player, a preference ordering on these outcomes by
giving a complete, transitive, reflexive binary relation on the set of all strategy vectors
S; given two elements of S, the relation for player i says which of these two outcomes
i weakly prefers; we say that i weakly prefers S| to S, if i either prefers S; to S, or
considers them as equally good outcomes. For example, in the matching pennies game
the row player prefers strategy vectors in which the two pennies match and the column
player prefers those in which the pennies do not match.

The simplest way to specify preferences is by assigning, for each player, a value to
each outcome. In some games it will be natural to think of the values as the payoffs to
players and in others as the costs incurred by players. We will denote these functions
by u; : S — Rand ¢; : § — R, respectively. Clearly, costs and payoffs can be used
interchangeably, since u;(s) = —c;(s).

If we had defined, for each player i, u; to be simply a function of s;, the strategy
chosen by player i, rather than s, the strategies chosen by all n players, then we would
have obtained n independent optimization problems. Observe the crucial difference
between this and a game — in a game, the payoff of each player depends not only on
his own strategy but also on the strategies chosen by all other players.

1.2.2 Standard Form Games and Compactly Represented Games

To develop an algorithmic theory of games, we need to discuss how a game is specified.
One option is to explicitly list all possible strategies, and the preferences or utilities
of all players. Expressing games in this form with a cost or utility function is called
the standard form or matrix form of a game. It is very convenient to define games in
this way when there are only 2 players and the players have only a few strategies. We

10 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

have used this form in the previous section for defining the Prisoner’s Dilemma and
the Battle of the Sexes.

However, for most games we want to consider, this explicit representation is expo-
nential sized in the natural description of the game (possibly bigger or even infinite).
Most games we want to consider have many players, e.g., the many traffic streams or
the many ISPs controlling such streams. (In fact, in Part III of this book, we will even
encounter games with infinitely many players, modeling the limiting behavior as the
number of players gets very large.) For an example, consider the pollution game from
Subsection 1.1.2, where we have n players, each with two possible strategies. There
are 2" possible strategy vectors, so the explicit representation of the game requires
assigning values to each of these 2" strategies. The size of the input needed to describe
the game is much smaller than 2", and so this explicit representation is exponentially
larger than the description of the game.

Another reason that explicit representation of the payoffs can be exponentially large
is that players can have exponentially many strategies in the natural size of the game.
This happens in routing games, since the strategy space of each player consists of all
possible paths from source to destination in the network. In the version of the Tragedy
of the Commons, we discussed in Section 1.1.2 players have infinite strategy sets, since
any bandwidth x € [0, 1] is a possible strategy.

Such exponential (and superexponential) descriptions can sometimes be avoided. For
example, the payoff may depend on the number of players selecting a given strategy,
rather than the exact subset (as was the case for the pollution game). The routing
congestion game discussed in Chapter 18 provides another example, where the cost
of a chosen path depends on the total traffic routed on each edge of the path. Another
possibility for compact representation is when the payoff of a player may depend on
the strategies chosen by only a few other players, not all participants. Games with such
locality properties are discussed in detail in Chapter 7.

1.3 Basic Solution Concepts

In this section we will introduce basic solution concepts that can be used to study the
kinds of games we described in the previous section. In particular, we will formalize
the notion of stability that we informally used in discussing solutions to some of the
games.

1.3.1 Dominant Strategy Solution

The Prisoner’s Dilemma and the Pollution Game share a very special property: in each
of these games, each player has a unique best strategy, independent of the strategies
played by the other players. We say that a game has a dominant strategy solution if it
has this property.

More formally, for a strategy vector s € S we use s; to denote the strategy played by
player i and s_; to denote the (n — 1)-dimensional vector of the strategies played by all
other players. Recall that we used u;(s) to denote the utility incurred by player i. We
will also use the notation u;(s;, s—;) when it is more convenient. Using this notation,

BASIC SOLUTION CONCEPTS 11

a strategy vector s € S is a dominant strategy solution, if for each player i, and each
alternate strategy vector s’ € S, we have that

u[(sia S/_l) 2 ui(S;7 S/_i)'

It is important to notice that a dominant strategy solution may not give an opti-
mal payoff to any of the players. This was the case in both the Prisoner’s Dilemma
and the Pollution Game, where it is possible to improve the payoffs of all players
simultaneously.

Having a single dominant strategy for each player is an extremely stringent require-
ment for a game and very few games satisfy it. On the other hand, mechanism design,
the topic of Part II of this book, aims to design games that have dominant strategy so-
lutions, and where this solution leads to a desirable outcome (either socially desirable,
or desirable for the mechanism designer). We illustrate this, using the simple example
of Vickrey auction.

1.3.2 Vickrey Auction: Designing Games with Dominant
Strategy Solutions

Perhaps the most common situation in which we need to design a game is an auction.
Suppose that we are faced with designing an auction to sell a valuable painting. To
model this situation as a game, assume that each player (bidder) i has a value v; for
the painting. His value or payoff for not winning it is 0, and his payoff for winning it
at a price of p is v; — p. The strategy of each player is simply his bid. What is a good
mechanism (or game) for selling this painting? Here we are considering single-shot
games, so assume that each player is asked to state his bid for the painting in a sealed
envelope, and we will decide who to award the painting to and for what price, based
on the bids in the envelopes.

Perhaps the most straightforward auction would be to award the painting to the
highest bidder and charge him his bid. This game does not have a dominant strategy
solution. A player’s best strategy (bid) depends on what he knows or assumes about the
strategies of the other players. Deciding what value to bid seems like a hard problem,
and may result in unpredictable behavior. See Section 1.6 for more discussion of a
possible solution concept for this game.

Vickrey’s mechanism, called second price auction, avoids these bidding problems.
As before, the painting is awarded to the bidder with highest bid; however, the amount
he is required to pay is the value of the second highest bid. This second price auction
has the remarkable property that each player’s dominant strategy is to report his true
value as bid, independent of the strategies of the rest of the players! Observe that even
if his true value happens to be very high, he is in no danger of overpaying if he reports
it — if he wins, he will pay no more than the second highest bid.

Let us observe two more properties of the Vickrey auction. First, it leads to the
desirable outcome of the painting being awarded to the bidder who values it most.
Indeed, the larger goal of mechanism design is often to design mechanisms in which
the selfish behavior of players leads to such a socially optimal outcome. For example,
when the government auctions off goods, such as the wireless spectrum auctions, their

12 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

goal is typically not to make as large a profit as possible, but rather to get the spectrum
in the hands of companies that have the best technology to offer to customers.

Another nice feature of a dominant strategy game, such as Vickrey auction, is
that it is extremely simple for the players to play such a game, since each player’s
optimal strategy is independent of other players’ choices. In fact, one can implement
all dominant strategy games by simply asking all players for their valuation functions
and letting the game designer “play” the game for them. This is called the revelation
principle (see Chapter 9). (In this book, we will not consider the complex issue of how
players arrive at their own valuation function.) Unfortunately, in many contexts the
valuation function of a player can be very complex and direct revelation may lead to
extensive, maybe even exponential, communication (see Chapter 11). Another problem
with direct revelation mechanisms is that they assume the presence of a central trusted
party. Chapter 8 shows how cryptographic techniques can help a group of players
implement such a mechanism or game without a trusted party.

1.3.3 Pure Strategy Nash Equilibrium

Since games rarely possess dominant strategy solutions, we need to seek a less stringent
and more widely applicable solution concept. A desirable game-theoretic solution is
one in which individual players act in accordance with their incentives, maximizing
their own payoff. This idea is best captured by the notion of a Nash equilibrium, which,
despite its shortcomings (mentioned below), has emerged as the central solution concept
in game theory, with extremely diverse applications. The Nash equilibrium captures
the notion of a stable solution, discussed in Section 1.1 and used in the Tragedy of the
Commons and the Battle of the Sexes — a solution from which no single player can
individually improve his or her welfare by deviating.

A strategy vector s € S is said to be a Nash equilibrium if for all players i and each
alternate strategy s, € S;, we have that

ui(si, s—i) > ui(s), s_;).

In other words, no player i can change his chosen strategy from s; to s; and thereby
improve his payoff, assuming that all other players stick to the strategies they have
chosen in s. Observe that such a solution is self-enforcing in the sense that once the
players are playing such a solution, it is in every player’s best interest to stick to his or
her strategy.

Clearly, a dominant strategy solution is a Nash equilibrium. Moreover, if the solution
is strictly dominating (i.e., switching to it always strictly improves the outcome), it is
also the unique Nash equilibrium. However, Nash equilibria may not be unique. For
example, coordination games have multiple equilibria.

We already know that Nash equilibria may not be optimal for the players, since dom-
inant strategy solutions are Nash equilibria. For games with multiple Nash equilibria,
different equilibria can have (widely) different payoffs for the players. For example, by
a small change to the payoff matrix, we can modify the Battle of the Sexes game so that
it still has two stable solutions (the ones in which both players go to the same activity);
however, both players derive a much higher utility from one of these solutions. In

BASIC SOLUTION CONCEPTS 13

Part III of this book we will look more carefully at the quality of the best and worst
equilibria in different games.

The existence of multiple Nash equilibria makes this solution concept less convinc-
ing as a prediction of what players will do: which equilibrium should we expect them
to play? And with independent play, how will they know which equilibrium they are
supposed to coordinate on? But at least a Nash equilibrium is stable — once proposed,
the players do not want to individually deviate.

1.3.4 Mixed Strategy Nash Equilibria

The Nash equilibria we have considered so far are called pure strategy equilibria, since
each player deterministically plays his chosen strategy. As illustrated by the Matching
Pennies game, a game need not possess any pure strategy Nash equilibria. However, if
in the matching pennies game, the players are allowed to randomize and each player
picks each of his two strategies with probability 1/2, then we obtain a stable solution
in a sense. The reason is that the expected payoff of each player now is 0 and neither
player can improve on this by choosing a different randomization.

When players select strategies at random, we need to understand how they evaluate
the random outcome. Would a player prefer a choice that leads to a small positive utility
with high probability, but with a small probability leads to a large negative utility? Or,
is it better to have a small loss with high probability, and a large gain with small
probability? For the notion of mixed Nash equilibrium, we will assume that players are
risk-neutral; that is, they act to maximize the expected payoff.

To define such randomized strategies formally, let us enhance the choices of players
so each one can pick a probability distribution over his set of possible strategies; such a
choice is called a mixed strategy. We assume that players independently select strategies
using the probability distribution. The independent random choices of players leads
to a probability distribution of strategy vectors s. Nash (1951) proved that under this
extension, every game with a finite number of players, each having a finite set of
strategies, has a Nash equilibrium.

Theorem 1.8 Any game with a finite set of players and finite set of strategies
has a Nash equilibrium of mixed strategies.

This theorem will be further discussed and proved for the two player case in Chapter 2.
An important special case of 2 player games is zero-sum games, games in which the
gain of one player is exactly the loss of the other player. Nash equilibria for these
games will be further discussed in Section 1.4.

1.3.5 Games with No Nash Equilibria

Both assumptions in the theorem about the finite set of players and finite strategy sets
are important: games with an infinite number of players, or games with a finite number
of players who have access to an infinite strategy set may not have Nash equilibria. A
simple example of this arises in the following pricing game.

14 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

Buyer A

Seller 1
Buyer B

Seller 2
Buyer C

Figure 1.3. Sellers 1 and 2 are selling identical products to buyers A, B, and C.

Example 1.9 (Pricing game) Suppose two players sell a product to three pos-
sible buyers, as shown in Figure 1.3. Each buyer wants to buy one unit of the
product.

Buyers A and C have access to one seller only, namely 1 and 2, respectively.
However, buyer B can buy the product from any of the two sellers. All three
buyers have a budget of 1, or have maximum value 1 for the item, i.e., will not
buy the product if the price is above 1. The sellers play a pricing game — they
each name a price p; in the interval [0, 1]. Buyers A and C buy from sellers 1
and 2, respectively. On the other hand, B buys from the cheaper seller. To fully
specify the game, we have to set a rule for breaking ties. Let us say that if both
sellers have the same price, B buys from seller 1. For simplicity, we assume no
production costs, so the income of a seller is the sum of the prices at which they
sold goods.

Now, one strategy for each seller is to set a price of p; = 1, and guarantee an
income of 1 from the buyer who does not have a choice. Alternatively, they can
also try to compete for buyer B. However, by the rules of this game they are not
allowed to price-discriminate; i.e., they cannot sell the product to the two buyers
at different prices. In this game, each player has uncountably many available
strategies, i.e., all numbers in the interval [0, 1]. It turns out that this game does
not have a Nash equilibrium, even if players are allowed to use mixed strategies.

To see that no pure strategy equilibrium exists, note that if p; > 1/2, player 2
will slightly undercut the price, setitat 1/2 < p, < p;, and have income of more
than 1, and then in turn player 1 will undercut player 2, etc. So we cannot have
p1 > 1/2 in an equilibrium. If p; < 1/2, the unique best response for player 2
is to set pp = 1. But then player 1 will increase his price, so p; < 1/2 also does
not lead to an equilibrium. It is a bit harder to argue that there is also no mixed
strategy equilibrium in this game.

1.3.6 Correlated Equilibrium

A further relaxation of the Nash equilibrium notion was introduced by Aumann (1959),
called correlated equilibrium. The following simple example nicely illustrates this
notion.

Example 1.10 (Traffic light) The game we consider is when two players drive
up to the same intersection at the same time. If both attempt to cross, the result

BASIC SOLUTION CONCEPTS 15

is a fatal traffic accident. The game can be modeled by a payoff matrix where
crossing successfully has a payoff of 1, not crossing pays 0, while an accident
costs —100.

| Cross Stop
-100 0
Cross
-100 1
1 0
Stop
0 0

This game has three Nash equilibria: two correspond to letting only one
car cross, the third is a mixed equilibrium where both players cross with an
extremely small probability € = 1/101, and with €2 probability they crash.
The first two equilibria have a payoff of 1. The last one is more fair, but
has low expected payoff (=0.0001), and also has a positive chance of a car
crash.

In a Nash equilibrium, players choose their strategies independently. In con-
trast, in a correlated equilibrium a coordinator can choose strategies for both
players; however, the chosen strategies have to be stable: we require that the
each player find it in his or her interest to follow the recommended strat-
egy. For example, in a correlated equilibrium the coordinator can randomly let
one of the two players cross with any probability. The player who is told to
stop has O payoff, but he knows that attempting to cross will cause a traffic
accident.

Correlated equilibria will be discussed in detail in Section 2.7. Formally, this notion
assumes an external correlation device, such as a trusted game coordinator, or some
other physical source. A correlated equilibrium is a probability distribution over strategy
vectors s € x;S;. Let p(s) denote the probability of strategy vector s, where we will
also use the notation p(s) = p(s;, s—;) when talking about a player i. The distribution
is a correlated equilibrium if for all players i and all strategies s;, s; € S;, we have the
inequality

Z p(siy s_pui(si, s—;) > Z p(si, s—)ui(s;, s—;).

S_i S—i

In words, if player i receives a suggested strategy s;, the expected profit of the player
cannot be increased by switching to a different strategy s/ € S;. Nash equilibria are
special cases of correlated equilibria, where the distribution over S is the product of
independent distributions for each player. However, correlation allows a richer set of
equilibria as we will see in Section 2.7.

16 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES
1.4 Finding Equilibria and Learning in Games

In this section we consider two closely related issues: how easy is it to find an equi-
librium, and does “natural game play” lead the players to an equilibrium? Ideally, a
perfect solution concept is one which is computationally easy to find, and also easy to
find by players playing independently.

1.4.1 Complexity of Finding Equilibria

The complexity of finding Nash and correlated equilibria will be discussed in detail in
Chapters 2 and 3. Here we give a short overview. We then discuss two-player zero-sum
games in more detail and show that for such games a Nash equilibrium can be found
efficiently using linear programming. It turns out that even general two-player games
have a character different from that of games with three or more players. For example,
two-player games where payoffs are rational numbers always admit a solution with
rational probabilities, and this is not true for games with three or more players. Games
with two players will be discussed in greater detail in Chapter 3.

We will discuss the complexity of finding Nash equilibrium in Chapter 2. NP-
completeness, the “standard” way of establishing intractability of individual problems,
does not seem to be the right tool for studying the complexity of Nash equilibria.
Instead, we will use PPAD-completeness (see Chapter 2 for the definition). The problem
of finding a Nash equilibrium is PPAD-complete even for two-player games in standard
form.

In contrast, we will see in Section 2.7 that correlated equilibria are computationally
easier. Correlated equilibria form a convex set and hence can be found in polynomial
time for games defined explicitly via their payoff matrices, and finding a correlated
equilibrium is polynomially solvable even in many compactly represented games.
However, finding an “optimal” correlated equilibrium is computationally hard in many
natural classes of compactly represented games.

1.4.2 Two-Person Zero-Sum Games

Here we consider two-player zero-sum games in more detail. A two-player game is a
zero-sum game if the sum of the payoffs of the two players is zero for any choice of
strategies. For such games it is enough to give the payoffs of the row player. Let A be
the matrix of these payoffs, representing the winnings of the row player and the loss of
the column player.

Recall from Theorem 1.8 that a Nash equilibrium of mixed strategies always exists.
We will use this fact to show that an equilibrium can be found using linear programming.
Consider a pair of probability distributions p* and ¢* for the row and column players
that form a Nash equilibrium. The expected value paid by the column player to the row
player can be expressed as v* = p*Aqg* (if we think of p* as a row vector and ¢* as a
column vector).

A Nash equilibrium has the property that even if the players know the strategies
played by the other players (the probability distribution they are using), they cannot
be better off by deviating. With this in mind, consider a strategy p for the row player.
The expected payoffs for different strategies of the column player will be pA. Once

FINDING EQUILIBRIA AND LEARNING IN GAMES 17

p is known, the column player will want to minimize his loss, and play strategies that
correspond to the minimum entries in p A. So the best publicly announced strategy for
the row player is to maximize this minimum value. This best public strategy can be
found by solving the following linear program:

v, = maxuv

>0

p =
ZP:‘ =1
(pA); > vforall j,

where we use (pA); to denote the jth entry of the vector pA. The optimum value v,
is the row player’s maximum safe value, the maximum value he or she can guarantee
to win by playing a mixed strategy p that will be known to the column player.

How does v, and the Nash value v* compare? Clearly v, < v*, since the row player,
can guarantee to win v,, so must win at least this much in any equilibrium. On the other
hand, an equilibrium is a strategy that is stable even if known to the opponent, so it
must be the case that the column player is in fact selecting the columns with minimum
value p*A, so we must have v* < v,, and hence v, = v*.

Similarly, we can set up the analogous linear program to get the value v, the column
player’s minimum safe value, the minimum loss the column player can guarantee by
playing a mixed strategy ¢ that will be known to the row player:

V. = minv
>0

q=
2 4=
J
(Ag); < v foralli.

where we use (Aq); to denote the ith entry of the vector Ag. We can argue that v* = v,
also holds. Hence we get that v, = v,, the row players’ maximum guaranteed win is
the same as the column players’ minimum guaranteed loss. This will imply that the
optimal solutions to this pair of linear programs form a Nash equilibrium.

Theorem 1.11 Optimum solutions for the above pair of linear programs give
probability distributions that form a Nash equilibrium of the two-person zero-sum
game.

PROOF Let p and g denote optimum solutions to the two linear programs. We
argued above that v, = v,. If the players play this pair of strategies, then the row
player cannot increase his win, as the column player is guaranteed by his strategy
not to lose more than v,. Similarly, the column player cannot decrease his loss, as
the row player is guaranteed to win v, by his strategy. So the pair of strategies is
at equilibrium. O

Readers more familiar with linear programming will notice that the two linear
programs above are duals of each other. We established that v, = v, using the existence

18 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

of a Nash equilibrium from Theorem 1.8. Linear programming duality also implies
that the two values v, and v, are equal. Once we know the values are equal, the proof
of Theorem 1.4.2 shows that the optimal solutions form a Nash equilibrium, so linear
programming duality yields a proof that a Nash equilibrium exists in the special case
of zero-sum two-person games.

1.4.3 Best Response and Learning in Games

It would be desirable for a solution concept to satisfy a stronger condition than simply
being polynomial computable: it should be the case that natural game playing strategies
quickly lead players to either find the equilibrium or at least converge to an equilibrium
in the limit.

Maybe the most natural “game playing” strategy is the following “best response.”
Consider a strategy vector s, and a player i. Using the strategy vector s player i gets
the value or utility u;(s). Changing the strategy s; to some other strategy s; € S; the
player can change his utility to u;(s;, s_;), assuming that all other players stick to their
strategies in s_;. We say that a change from strategy s; to s; is an improving response
for player i if u;(s!, s_;) > u;(s) and best response if 5| maximizes the players’ utility
maxyes, u;(s;, s—;). Playing a game by repeatedly allowing some player to make an
improving or a best response move is perhaps the most natural game play.

In some games, such as the Prisoner’s Dilemma or the Coordination Game, this
dynamic leads the players to a Nash equilibrium in a few steps. In the Tragedy of
the Commons the players will not reach the equilibrium in a finite number of steps,
but the strategy vector will converge to the equilibrium. In other games, the play may
cycle, and not converge. A simple example is matching pennies, where the payers will
cycle through the 4 possible strategy vectors if they alternate making best response
moves. While this game play does not find a pure equilibrium (as none exists) in some
sense we can still say that best response converges to the equilibrium: the average
payoff for the two players converges to 0, which is the payoff at equilibrium; and even
the frequencies at which the 4 possible strategy vectors are played converge to the
probabilities in equilibrium (1/4 each).

Results about the outcome of such game playing strategies will be discussed in
Chapter 4. We will see that best response behavior is not strong enough to guarantee
convergence in most games. Instead, we will consider improving response type “learn-
ing” strategies that react to the frequencies played so far, rather than just to the current
game play. We will show that in the special case of 2-player zero-sum games such
natural game playing does converge to a Nash equilibrium. In general, even learning
strategies do not converge to Nash equilibria, instead they converge to the larger region
of correlated equilibria.

1.5 Refinement of Nash: Games with Turns and Subgame
Perfect Equilibrium

Nash equilibria has become the central solution concept in game theory, despite its
shortcomings, such as the existence of multiple equilibria. Since the emergence of this

REFINEMENT OF NASH 19

concept in the 1950s, there have been many refinements considered that address the
selection of the “right” equilibrium concept. Here we will consider one such refinement
for games with turns.

Many games have multiple turns of moves. Card games or board games all have
turns, but games modeling many economic situations also have this form: a service
provider sets up a basic service (turn 1) and then users decide to use the service or
decide not to (turn 2).

How does Nash equilibrium extend to games with turns? We can reduce such games
to simultaneous move games by having each player select a “full strategy” up front,
rather than having them select moves one at a time. By a “full strategy” we mean a
strategy for each turn, as a function of the state of the game. One issue with such
strategies is that they tend to become rather large: a full strategy for chess would state
the next move for any possible sequence of previous moves. This is a huge set in the
natural description of the game in terms of the rules of chess. Games with turns is
another example of a compactly represented game. We will see more on how to work
with this type of compactly represented games in Chapter 3.

Here our focus is to point out that in this context the notion of Nash equilibrium
seems a bit weak. To see why, consider the following simple game.

Example 1.12 (Ultimatum game) Assume that a seller S is trying to sell a good
to buyer B. Assume that the interaction has two steps: first seller S offers a price
p, and then buyer B reacts to the price. We assume the seller has no value for the
good, his payoff is p if the sale occurs, and 0 otherwise. The buyer has a value
v for the good, so his payoff is v — p if he buys, and O if he does not. Here we
are considering a full information game in which seller S is aware of the buyer’s
value v, and hence we expect that the seller offers price p just under v, and the
buyer buys. (Ignore for now the issue of what happens if the price is exactly v.)
This game allows the first player to lead, and collect (almost) all the profit.
This game is known as the ultimatum game when two players S and B need to
divide up v amount of money. The game allows the first player S to make an
“ultimatum” (in the form of a price in our context) on how to divide up the money.

To think about this game as a one-shot simultaneous move game, we need to think
of the buyer’s strategy as a function or the offered price. A natural strategy is to “buy if
the price is under v.” This is indeed an equilibrium of the game, but the game has many
other equilibria. The buyer can also have the strategy that he will buy only if the price
p is at most some smaller value m < v. This seems bad at first (why leave the v — p
profit on the table if the price is in the range m < p < v), but assuming that the buyer
uses this alternate strategy, the seller’s best move is to offer price p = m, as otherwise
he makes no profit. This pair of strategies is also a Nash equilibrium for any value m.

The notion of subgame perfect equilibrium formalizes the idea that the alternate
buyer strategy of buying only at p < m is unnatural. By thinking of the game as a
simultaneous move game, the difference between the two players in terms of the order
of moves, is diminished. The notion of subgame perfect Nash equilibrium has been
introduced to strengthen the concept of Nash, and make the order of turns part of the
definition. The idea is to require that the strategy played is Nash, even after any prefix

20 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

of the game is already played. We will see more about subgame perfect equilibrium as
well as games with turns in Chapters 3 and 19.

1.6 Nash Equilibrium without Full Information:
Bayesian Games

So far we talked about equilibrium concepts in full information games, where all play-
ers know the utilities and strategies of all other players. When players have limited
information, we need to consider strategies that are only based on the available informa-
tion, and find the best strategy for the player, given all his or her available information.
Such games will be discussed in more detail in Section 9.6.

One source of limited information can come from not knowing properties and
preferences of other players, and hence not knowing what strategies they will select.
It is easiest to understand this issue by considering a game of cards, such as bridge. In
such a game the players have information about the probability distribution of the other
players’ cards, but do not know exactly what cards they have. A similar information
model can also be used to model many other situations. We illustrate this by the
Bayesian first price auction game.

Example 1.13 (Bayesian First Price Auction) Recall the first price auction:
all players state a bid, and the winner is the player with maximum bid, and has
to pay his bid value as the price. What are optimal strategies for players in this
auction? If the valuations of all players are common knowledge, then the player
with maximum valuation would state the second valuation as his bid, and win the
auction at the same (or slightly bigger) price as in the second price auction. But
how should players bid if they do not know all other players’ valuations? Naturally,
their bids will now depend on their beliefs about the values and knowledge of all
other players.

Here we consider the simple setup where players get their valuations from in-
dependent probability distributions, and these distributions are public knowledge.
How should player i bid knowing his own valuation v;, and the distribution of
the valuation of the other players? Such games are referred to as Bayesian games,
and are discussed in Section 9.6. For example, it is shown there that the unique
Nash equilibrium in the case when player valuations come from independent and
identical distributions is a nice analog of the second price auction: player i, whose
own valuation is v;, should bid the expected second valuation conditioned on v;
being the maximum valuation.

1.7 Cooperative Games

The games we talked about so far are all non-cooperative games — we assumed that
individual players act selfishly, deviate alone from a proposed solution, if it is in their
interest, and do not themselves coordinate their moves in groups. Cooperative game
theory is concerned with situations when groups of players coordinate their actions.

COOPERATIVE GAMES 21

First, in Section 1.7.1 we define the concept of strong Nash equilibrium, a notion
extending the Nash equilibrium concept to cooperative situations.

Then we consider games with transferable utility, i.e., games where a player with
increased utility has the ability to compensate some other player with decreased utility.
When considering games with transferable utility the main concern is to develop
solution concepts for formalizing fair ways of sharing a value or dividing up a cost in a
cooperative environment. There have been many different notions of fairness proposed.
In Section 1.7.2 we will briefly review two of them. We refer the reader to Chapter 15
for a more in-depth discussion of these two and other concepts.

1.7.1 Strong Nash Equilibrium

The closest notion from cooperative game theory to our discussion thus far is the
concept of strong Nash equilibrium introduced by Aumann (1974). Consider a game
and a proposed solution, a strategy for each player. In a cooperative game we assume
that some group A of players can change their strategies jointly, assuming that they all
benefit. Here we are assuming that the game has nontransferable utility, which means
that in order for a coalition to be happy, we need to make sure that the utility of each
member is increasing (or at least is not decreasing).

We say that a vector of strategies forms a strong Nash equilibrium if no subset A
of players has a way to simultaneously change their strategies, improving each of the
participant’s welfare. More formally, for a strategy vector s and a set of players A let
s denote the vector of strategies of the players in A and let s_4 denote the vector of
strategies of the players not in A. We will also use u;(s4, s_4) for the utility for player
i in the strategy s. We say that in a strategy vector s a subset A of players has a joint
deviation if there are alternate strategies s; € S; for i € A forming a vector s’;, such
that u;(s) < u;(s);,s_4) forall i € A, and for at least one player in A the inequality is
strict. A strategy vector s is strong Nash if no subset A has a joint deviation.

The concept of strong Nash is very appealing, for strong Nash equilibria have a
very strong reinforcing property. One problem with this concept is that very few games
have such equilibria. A nice example of a game with strong Nash equilibria is the
game version of the stable marriage problem where boys and girls form pairs based
on preference lists for the other sex. For a proposed matching, the natural notion of
deviation for this game is a pair deviating (a couple who prefer each other to their
current partners). This game will be reviewed in detail in Chapter 10. Chapter 19
considers network formation games, and will discuss another class of games where
coalitions of size 2 (pairs) are the natural units causing instability of a solution.

1.7.2 Fair Division and Costsharing: Transferable Utility Games

When utility is transferable, we can think of the game as dividing some value or sharing
a cost between a set of players. The goal of this branch of game theory is to understand
what is a fair way to divide value or cost between a set of participants. We assume that
there is a set N of n participants, or players, and each subset A of players is associated
with a cost c(A) (or value v(A)). We think of c¢(A) as a cost associated with serving
the group A of players, so c¢(N) is the cost of serving all N players. The problem is to

22 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

divide this cost ¢(N) among the n players in a “fair” way. (In case of dividing a value
v(A), we think of v(A) as the value that the set A can generate by itself.)

A cost-sharing for the total cost ¢(N) is a set of cost-shares x; for each player
i € N. We assume that cost-sharing needs to be budget balanced; i.e., we require that
Y iy Xi = c(N). One of the key solution concepts in this area is that of a core. We say
that the cost-sharing is in the core if no subset of players would decrease their shares
by breaking away from the whole set. More formally, we say that the cost-share vector
cisinthe coreif), , x; < c(A) for all sets A. A violation of this inequality precisely
corresponds to a set A of players who can benefit by breaking away.

Given a notion of fair sharing, such as the core, there are a number of important
questions one can ask. Given a cost function ¢, we want to know whether there is a
cost-sharing x that is in the core. In Chapter 15 we will see that there are nice ways
of characterizing problems that have a nonempty core. We will also be concerned with
the complexity of finding a cost-sharing in the core, and deciding whether the core is
nonempty. The computational complexity of determining whether the core is empty has
been extensively studied for many fundamental games. If the core is empty or finding
a solution in the core is an intractable problem, one can consider a relaxed version of
this notion in which subsets of players secede only if they make substantial gains over
being in the whole set N. We will discuss these ideas in Chapter 15.

Here we briefly review a very different proposal for what is a “fair” way to share
cost, the Shapley value. One advantage of the Shapley value is that it always exists.
However, it may not be in the core, even for games that have nonempty core.

Example 1.14 (Shapley Value) Shapley value is based on evaluating the
marginal cost of each player. If we order the player set N as 1, ..., n and use the
notation that N; = {1, ..., i} then the marginal cost of playeri is c(N;) — c¢(N;—_1).
Of course, this marginal cost depends on the order the players are considered.
The Shapley value assigns cost-share x; to player i that is the expected value of
this marginal cost over a random order of the players.

In Chapter 15 we will show that the Shapley value can be characterized as the unique
cost-sharing scheme satisfying a number of different sets of axioms.

1.8 Markets and Their Algorithmic Issues

Some of the most crucial regulatory functions within a capitalistic economy, such as
ensuring stability, efficiency, and fairness, are relegated to pricing mechanisms, with
very little intervention. It is for this reason that general equilibrium theory, which
studied equilibrium pricing, occupied a central place within mathematical economics.

From our viewpoint, a shortcoming of this theory is that it is mostly a nonalgo-
rithmic theory. With the emergence of numerous new markets on the Internet and the
availability of massive computational power for running these markets in a centralized
or distributed manner, there is a need for a new, inherently algorithmic theory of mar-
ket equilibria. Such algorithms can also help understand the repercussions to existing

MARKETS AND THEIR ALGORITHMIC ISSUES 23

prices, production, and consumption caused by technological advances, introduction
of new goods, or changes to the tax structure. Chapters 5 and 6 summarize recent work
along these lines.

Central to ensuring stability of prices is that there be parity between the demand and
supply of goods. When there is only one good in the market, such an equilibrium price
is easy to determine — it is simply the price at which the demand and supply curves
intersect. If the price deviates from the equilibrium price, either demand exceeds
supply or vice versa, and the resulting market forces tend to push the price back to the
equilibrium point. Perhaps the most celebrated result in general equilibrium theory,
due to Arrow and Debreu (1954), shows the existence of equilibrium prices in a very
general model of the economy with multiple goods and agents.

It turns out that equilibria for several fundamental market models can be captured
as optimal solutions to certain nonlinear convex programs. As a result, two algorithmic
approaches present themselves — combinatorial algorithms for solving these convex
programs and convex programming based approaches. These are covered in Chapters
5 and 6, respectively.

1.8.1 An Algorithm for a Simple Market

In this section, we will give a gist of the models and algorithms studied using a very
simple market model. Consider a market consisting of a set A of divisible goods and a
set B of buyers. We are specified for each buyer i, the amount m; € Z* of money she
possesses, and for each good j, the amount a; € Z* of this good. Each buyer i has
access to only a subset, say S; € A of the goods. She is indifferent between goods in
S;, but is interested in maximizing the total amount of goods obtained. An example of
such a situation is when identical goods are sold in different markets and each buyer has
access to only a subset of the markets; such a model is studied in Chapter 7. Without
loss of generality we may assume that m; # 0, a; # 0, for each buyer i, S; # @, and
for each good j, there is a buyer i such that j € ;.

Once the prices py, ..., p, of the goods are fixed, a buyer i is only interested in the
cheapest goods in S;, say S, C ;. Any allocation of goods from S that exhausts her
money will constitute her optimal basket of goods at these prices.

Prices are said to be market clearing or equilibrium prices if there is a way to assign
to each buyer an optimal basket of goods so that there is no surplus or deficiency of any
of the goods i.e., demand equals supply. It turns out that equilibrium prices are unique
for this market; see Chapter 5 for a proof in a more general setting.

We will need the following notations and definitions. Define a bipartite graph G =
(A, B, E) on vertex sets A and B as shown on Figure 1.4. The edge (j, i) connects a
good j to a buyer i such that j € S;. Because of the assumptions made, each vertex in
G has non zero degree. For § € A of goods, let a(S) denote the total amount of goods
in S,ie., a(s) = ZjeS a;. Forasubset T C B of buyers, let m(T) =) _,_; m; denote
the total money possessed by buyers in 7'.

The algorithm given below is iterative and always assigns uniform prices to all
goods currently under consideration. For a set S of goods, let I'(S) denote the set of
buyers who are interested in goods in S; ['(S) ={i € B | S; NS # 0}. This is the

24 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

Buyer 1
Good 1
Buyer 2
Good 2
Buyer 3

Figure 1.4. The graph C on the left and the corresponding max-flow network N.

neighborhood of § in G. We say that a uniform price x is feasible if
VS C A, x-a(S) <m(I'(S)),

i.e., the total cost of § is at most the total money possessed by buyers interested in
goods in S. With respect to a feasible x, we will say thatset S € A is tightif x - a(S) =
m(I"(S)). The importance of feasibility is established by the following lemma.

Lemma 1.15 A uniform price of x on all goods is feasible if and only if all
goods can be sold in such a way that each buyer gets goods that she is interested
in.

PROOF One direction is straightforward. If there is a subset S € A such that
x - a(S) > m(I'(S)) then goods in S cannot all be sold at price x since buyers
interested in these goods simply do not have enough money.

To prove the other direction, we will use network N (see Figure 1.4) obtained
from the bipartite graph G for computing allocations of goods to buyers. Direct
the edges of G from A to B and assign a capacity of infinity to all these edges.
Introduce source vertex s and a directed edge from s to each vertex j € A with
a capacity of x - a;. Introduce sink vertex ¢ and a directed edge from each vertex
i € B tot with a capacity of m;.

Clearly, a way of selling all goods corresponds to a feasible flow in N that
saturates all edges going out of s. We will show that if x is feasible, then such
a flow exists in N. By the max-flow min-cut theorem, if no such flow exists,
then the minimum cut must have capacity smaller than x - a(A). Let S be the
set of goods on the s-side of a minimum cut. Since edges (j, i) for goods j € §
have infinite capacity, ['(S) must also be on the s-side of this cut. Therefore, the
capacity of this cut is at least x - a(A — S) + m(I'(S)). If this is less than x - a(A)
then x - a(S) > m(I'(S)), thereby contradicting the feasibility of x. O

If with respect to a feasible x, a set § is tight, then on selling all goods in S, the
money of buyers in I'(S) will be fully spent. Therefore, x constitutes market clearing
prices for goods in S. The idea is to look for such a set S, allocate goods in S to I'(S),
and recurse on the remaining goods and buyers.

The algorithm starts with x = 0, which is clearly feasible, and raises x continuously,
always maintaining its feasibility. It stops when a nonempty set goes tight. Let x* be

MARKETS AND THEIR ALGORITHMIC ISSUES 25

the smallest value of x at which this happens and let $* be the maximal tight set (it is
easy to see that S* must be unique).

We need to give procedures for finding x* and $*. Observe that x* is the largest value
of x at which (s, A U B Ut) remains a min-cut in N. Therefore, x* can be computed
via a binary search. After computing x*, compute the set of nodes that can reach ¢ in
the residual graph of this flow. This set, say W, is the ¢-side of the (unique) maximal
min-cut in N at x = x*. Then, §* = A — W, the set of goods on the s side of this cut.

At prices x*, buyers in I'($*) will have no surplus money left and increasing x any
more will lead to infeasibility. At this point, the algorithm fixes the prices of goods
in S* at x*. It computes a max-flow in N for x = x*, as suggested by Lemma 1.15.
This flow gives an allocation of goods in S* to buyers in I'(S*), which fully spends all
the money m(I"(S*)). The same flow also shows that x* is feasible for the problem for
goods A — §* and buyers B — I'(S%).

In the next iteration, the algorithm removes S* and I"(S*), initializes the prices of
the goods in A — S§* to x*, and raises prices until a new set goes tight. The algorithm
continues in this manner, iteratively finding prices of sets of goods as they go tight. It
terminates when all goods have been assigned prices.

Lemma 1.16 The value x* is feasible for the problem restricted to goods in
A — S* and buyers in B — I'(S*). Furthermore, in the subgraph of G induced on
A — S* and B — T'(S*), all vertices have nonzero degree.

PROOF In the max-flow computed in N for x = x*, the flow going through
nodes in S* completely uses up the capacity of edges from I'($*) to ¢. Therefore,
all the flow going through nodesin A — S* must exit vianodes in B — I'(S*). Now,
the first claim follows from Lemma 1.15. Furthermore, a good j € A — S* must
have nonzero degree to B — I'(S*). Finally, since each buyer i € (B — I'(5%))
has nonzero degree in G and has no edges to S*, it must have nonzero degree to
A—S* O

Theorem 1.17 The above-stated algorithm computes equilibrium prices and
allocations in polynomial time.

PROOF Attermination, all goods are assigned prices and are therefore fully sold.
By the second claim in Lemma 1.16, when the algorithm terminates, each buyer
must be in the neighborhood of one of the tight sets found and therefore must be
allocated goods in return for her money. We need to show that each buyer gets
her optimal bundle of goods. Let S$* be the first tight set found by the algorithm.
Since S* was a maximal tight set at x*, prices must strictly rise before a new
set goes tight in the second iteration. Therefore, prices are monotone increasing
across iterations and all goods in A — S* are assigned higher prices than x*. Since
each buyer i € I'(S*) is allocated goods from S* only, she was given an optimal
bundle. Now, the claim follows by induction.

Clearly, the algorithm will execute at most |A]| iterations. The time taken for
one iteration is dominated by the time required for computing x* and S*. Observe
that x* = m(I'(S*))/a(S*), i.e., its numerator and denominator are polynomial

26 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

sized integers. Therefore binary search for finding x* will take polynomial
time. O

Acknowledgments

We would like to thank Christos Papadimitriou, Bernhard von Stengel, Tim Rough-
garden, and Rakesh Vohra for their extremely valuable critiques and suggestions on
an early draft of this chapter. We also thank Ramesh Johari and Tim Roughgarden for
suggesting the ISP routing version of the Prisoners’ Dilemma in Section 1.1.

Bibliography

K.K. Arrow and G. Debreu. Existence of an equilibrium for competitive economy. Econometrica,
22:265-290, 1954.

R.J. Aumann. Acceptable points in general cooperative n-person games. In: Contributions to the
Theory of Games 1V, Princeton University Press, 1959.

R.J. Aumann. Subjectivity an correlation in randomized strategies. J. Math. Econ., 1:67-96,
1974.

D. Fudenberg and J. Tirole. Game Theory, MIT Press, 1991.

D. Gale and L.S. Shapley. College admissions and the stability of marriage. American Mathematical
Monthly, 69:9-15, 1962.

A. Mas-Colell, M. Whinston, and J. Green. Microeconomic Theory, Oxford Press, 1995.

D. Monderer and L. Shapley. Potential games. Games and Economic Behavior 14:124-143, 1996.

J. Nash. Noncooperative games. Annals of Mathematics, 54:289-295, 1951.

M. Osborne and A. Rubinstein. A Course in Game Theory, MIT Press, 1994.

Exercises

1.1 Give a finite algorithm for finding a Nash equilibrium for a game with two players
defined by a game matrix. Your algorithm may run in exponential time.

1.2 Consider a two-player game given in matrix form where each player has n strategies.
Assume that the payoffs for each player are in the range [0, 1] and are selected
independently and uniformly at random. Show that the probability that this random
game has a pure (deterministic) Nash equilibrium approaches 1 — 1/e as n goes to
infinity. You may use the fact that lim(1 — 1/n)” = 1/e as n goes to infinity.

1.3 We have seen that finding a Nash in a two-person zero-sum game is significantly
easier than general two-person games. Now consider a three-person zero-sum game,
that is, a game in which the rewards of the three players always sums to zero. Show
that finding a Nash equilibrium in such games is at least as hard as that in general
two-person games.

1.4 Consider an n person game in which each player has only two strategies. This game
has 2" possible outcomes (for the 2" ways the n players can play), therefore the
game in matrix form is exponentially large. To circumvent this, in Chapter 7 we
will consider a special class of games called graphical games. The idea is that the

1.5

1.6

1.7

EXERCISES 27

value (or payoff) of a player can depend only on a subset of players. We will define
a dependence graph G, whose nodes are the players, and an edge between two
players i and j represents the fact that the payoff of player i depends on the strategy
of player j or vice versa. Thus, if node i has k neighbors, then its payoff depends
only on its own strategy and the strategies of its k neighbors.

Consider a game where the players have 2 pure strategies each and assume that
the graph G is a tree with maximum degree 3. Give a polynomial time algorithm to
decide if such a game has a pure Nash equilibrium. (Recall that there are 2" possible
pure strategy vectors, yet your algorithm must run in time polynomial in n.)

Consider an n player game in which each player has 2 strategies. For this problem,
think of the strategies as “on” and “off.” For example, the strategy can be either to
participate or not to participate in some event. Further more, assume that the game
is symmetric, in that all players have the same payoff functions, and that the payoff
for a player depends only on the strategy of the player and the number of people
playing strategy “on.” So the game is defined by 2n values: u,,(k) and ue ¢ (k), which
denote the payoff for playing the “on” and “off” strategies, assuming that k of the
other players chose to play “on” fork =0, ..., n—1.

Give a polynomial time algorithm to find a correlated equilibrium for such a
game. Note that the input to this problem consists of the 2n numbers above. As
usual, polynomial means polynomial in this input length. You may use the fact that
linear programming is solvable in polynomial time.

Consider a 2-person game in matrix form. Assume that both players have n pure
strategies. In a Nash equilibrium a player may be required to play a mixed strategy
that gives nonzero probability to all (or almost all) of his pure strategies. Strategies
that mix between so many pure options are hard to play, and also hard to understand.
The goal of this problem is to show that one can reach an almost perfect Nash
equilibrium by playing strategies that only choose between a few of the options.

We will use p/ to be the probability distribution for player j, so p! is the proba-
bility that player j will use his ith pure strategy. The support of a mixed strategy p/
for player j is the set S/ = {i : p/ > 0}, i.e., the set of different pure strategies that
are used with nonzero probability. We will be interested in solutions where each
player has a strategy with small support.

For a given € > 0, we will say that a set of mixed strategies p', p? is e-approximate
Nash if for both players j =1 or 2, and all other strategies p/ for this player, the
expected payoff for player j using strategy p/ is at most e M more than his expected
payoff using strategy p/, where M is the maximum payoff.

Show that for any fixed € > 0 and any 2-player game with all nonnegative payoffs,
there is an e-approximate Nash equilibrium such that both players play the following
simple kind of mixed strategy. For each player j, the strategy selects a subset §; of at
most O(log n) of player ;s pure strategies, and makes player j select one of the strate-
gies in §; uniformly at random. The set §; may be a multiset, i.e., may contain the
same pure strategy more than once such a strategy is more likely to be selected by the
random choice). The constant in the O(.) notation may depend on the parameter .

Hint: Consider any mixed Nash strategy with possibly large support, and try to
simplify the support by selecting the subsets $; for the two players based on this
Nash equilibrium.

The classical Bertrand game is the following. Assume that n companies, which
produce the same product, are competing for customers. If each company i has a
production level of g;, there will be g =Y, g; units of the product on the market.

28

1.8

BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

Now, demand for this product depends on the price and if g units are on the
market, price will settle so that all g units are sold. Assume that we are given a
“demand-price curve” p(d), which gives the price at which all d units can be sold.
Assume that p(d) is a monotone decreasing, differentiable function of d. With this
definition, the income of the firm i will be g; p(g). Assume that production is very
cheap and each firm will produce to maximize its income.

(a) Show that the total income for a monopolistic firm, can be arbitrarily higher
than the total income of many different firms sharing the same market. Hint: this is
true for almost all price curves; you may want to use, e.g., p(d) =1 —d.

(b) Assume that p(d) is twice differentiable, monotone decreasing, and p”(d) < 0.
Show that the monopolistic income is at most n times the total income of the n
competing companies.

Let V denote a set of n agents, labeled 1, 2, ..., n. Let 0 denote the root node and
for any subset S € V, ST denote the set SU {0}. Let G = (V*, E) be a complete,
undirected graph with edge costs ¢ : E — Z* which satisfy the triangle inequality.
For a subset S C V, let c(S) denote the cost of a minimum spanning tree in the
subgraph of G induced on S*. The spanning tree game asks for a budget balanced
cost-sharing method for minimum spanning tree that lies on the core.

Consider the following cost-sharing method for sharing the cost of building a
minimum spanning tree in G among the n agents. Find any minimum spanning
tree, say T, and root it at vertex 0. Define the cost of agent i to be the cost of the
first edge on the unique path from i to 0 in T. Clearly, this cost-sharing method
is budget balanced; i.e., the total cost retrieved from the n agents is precisely the
cost of a minimum spanning tree in G. Show that this cost-sharing method is in the
core, i.e., for any subset S C V, the total cost charged to agents in S is at most the
cost they would incur if they were to directly connect to the root, i.e., c(S).

CHAPTER 2

The Complexity of Finding
Nash Equilibria

Christos H. Papadimitriou

Abstract

Computing a NAsH equilibrium, given a game in normal form, is a fundamental problem for Algo-
rithmic Game Theory. The problem is essentially combinatorial, and in the case of two players it
can be solved by a pivoting technique called the Lemke—Howson algorithm, which however is ex-
ponential in the worst case. We outline the recent proof that finding a NAsH equilibrium is complete
for the complexity class PPAD, even in the case of two players; this is evidence that the problem is
intractable. We also introduce several variants of succinctly representable games, a genre important
in terms of both applications and computational considerations, and discuss algorithms for correlated
equilibria, a more relaxed equilibrium concept.

2.1 Introduction

NasH’s theorem — stating that every finite game has a mixed NAsH equilibrium (Nash,
1951) —is a very reassuring fact: Any game can, in principle, reach a quiescent state,
one in which no player has an incentive to change his or her behavior. One question
arises immediately: Can this state be reached in practice? Is there an efficient algorithm
for finding the equilibrium that is guaranteed to exist? This is the question explored in
this chapter.

But why should we be interested in the issue of computational complexity in con-
nection to NASH equilibria? After all, a NASH equilibrium is above all a conceptual
tool, a prediction about rational strategic behavior by agents in situations of conflict —
a context that is completely devoid of computation.

We believe that this matter of computational complexity is one of central importance
here, and indeed that the algorithmic point of view has much to contribute to the debate
of economists about solution concepts. The reason is simple: If an equilibrium concept
is not efficiently computable, much of its credibility as a prediction of the behavior
of rational agents is lost — after all, there is no clear reason why a group of agents
cannot be simulated by a machine. Efficient computability is an important modeling

29

30 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

perequisite for solution concepts. In the words of Kamal Jain, “If your laptop cannot
find it, neither can the market.”!

2.1.1 Best Responses and Supports

Let us thus define NAsH to be the following computational problem: Given a game
in strategic form, find a NASH equilibrium. Since NAsH calls for the computation
of a real-valued distribution for each player, it seems primae facie to be a quest in
continuous mathematics. However, a little thought reveals that the task is essentially
combinatorial.

Recall that a mixed strategy profile is a NASH equilibrium if the mixed strategy
of each player is a best response to the mixed strategies of the rest; that is, it attains
the maximum possibly utility among all possible mixed strategies of this player. The
following observation is useful here (recall that the support of a mixed strategy is the
set of all pure strategies that have nonzero probability in it).

Theorem 2.1 A mixed strategy is a best response if and only if all pure strategies
in its support are best responses.

To see why, assume for the sake of contradiction that a best response mixed strategy
contains in its support a pure strategy that is not itself a best response. Then the utility of
the player would be improved by decreasing the probability of the worst such strategy
(increasing proportionally the remaining nonzero probabilities to fill the gap); this
contradicts the assumption that the mixed strategy was a best response. Conversely, if
all strategies in all supports are best responses, then the strategy profile combination
must be a NASH equilibrium.

This simple fact reveals the subtle nature of a mixed NASH equilibrium: Players
combine pure best response strategies (instead of using, for the same utility, a single
pure best response) in order to create for other players a range of best responses that
will sustain the equilibrium!

Example 2.2 Consider the symmetric game with two players captured by the

matrix

030
A=1003
222
A game with two players can be represented by two matrices (A, B) (hence the
term bimatrix game often used to describe such games), where the rows of A are
the strategies of Player 1 and the columns of A are the strategies of Player 2,
while the entries are the utilities of Player 1; the opposite holds for matrix B. A
bimatrix game is called symmetric if B = AT i.e., the two players have the same
set of strategies, and their utilities remain the same if their roles are reversed.

In the above symmetric game, consider the equilibrium in which both play-
ers play the mixed strategy (0, 1/3,2/3). This is a symmetric NASH equilibrium,

! One may object to this aphorism on the basis that in markets agents work in parallel, and are therefore more
powerful than ordinary algorithms; however, a little thought reveals that parallelism cannot be the cure for
exponential worst case.

IS THE Nash EQUILIBRIUM PROBLEM NP-COMPLETE? 31

because both players play the same mixed strategy. (A variant of NASH’S proof
establishes that every symmetric game, with any number of players, has a sym-
metric equilibrium — it may also have nonsymmetric ones.) We can check whether
it is indeed an equilibrium, by calculating the utility of each strategy, assuming
the opponent plays (0, 1/3, 2/3): The utilities are 1 for the first strategy, and 2
for the other two. Thus, every strategy in the support (i.e., either of strategies 2
and 3) is a best response, and the mixed strategy is indeed a NASH equilibrium.
Note that, from Player 1’s point of view, playing just strategy 2, or just strategy 3,
or any mixture of the two, is equally beneficial to the equilibrium mixed strategy
(0, 1/3,2/3). The only advantage of following the precise mix suggested by the
equilibrium is that it motivates the other player to do the same.

Incidentally, in our discussion of NASH equilibria in this chapter, we shall often
use the simpler two-player case to illustrate the ideas. Unfortunately, the main
result of this section says that two-player games are not, in any significant sense,
easier than the general problem.

It also follows from these considerations that finding a mixed NASH equilibrium
means finding the right supports: Once one support for each player has been identified,
the precise mixed strategies can be computed by solving a system of algebraic equations
(in the case of two players, linear equations): For each player i we have a number of
variables equal to the size of the support, call it k;, one equation stating that these
variables add to 1, and k; — 1 others stating that the k; expected utilities are equal.
Solving this system of) ; k; equations in) ; k; unknowns yields k; numbers for
each player. If these numbers are real and nonnegative, and the utility expectation is
maximized at the support, then we have discovered a mixed NASH equilibrium.

In fact, if in the two-player case the utilities are integers (as it makes sense to assume
in the context of computation), then the probabilities in the mixed NASH equilibrium
will necessarily be rational numbers, since they constitute the solution of a system of
linear equations with integer coefficients. This is not true in general: NASH’S original
paper (1951) includes a beautiful example of a three-player poker game whose only
NAsH equilibrium involves irrational numbers.

The bottom line is that finding a Nasu equilibrium is a combinatorial problem: It
entails identifying an appropriate support for each player. Indeed, most algorithms
proposed over the past half century for finding NASH equilibria are combinatorial in
nature, and work by seeking supports. Unfortunately, none of them are known to be
efficient — to always succeed after only a polynomial number of steps.

2.2 Is the Nasu Equilibrium Problem NP-Complete?

Computer scientists have developed over the years notions of complexity, chief among
them NP-completeness (Garey and Johnson, 1979), to characterize computational prob-
lems which, just like NasH and SATISFIABILITY,? seem to resist efficient solution. Should
we then try to apply this theory and prove that NAsH is NP-complete?

2 Recall that SATISFIABILITY is the problem that asks, given a Boolean formula in conjunctive normal form, to
find a satisfying truth assignment.

32 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

It turns out that NAsH is a very different kind of intractable problem, one for which
NP-completeness is not an appropriate concept of complexity. The basic reason is
that every game is guaranteed to have a NAsH equilibrium. In contrast, in a typical
NP-complete problem such as SATISFIABILITY, the sought solution may or may not
exist. NP-complete problems owe much of their difficulty, and their susceptibility to
NP-completeness reductions, to precisely this dichotomy.? For, suppose that NAsH is
NP-complete, and there is a reduction from SATISFIABILITY to NASH. This would entail
an efficiently computable function f mapping Boolean formulae to games, and such
that, for every formula ¢, ¢ is satisfiable if and only if any NASH equilibrium of f(¢)
satisfies some easy-to-check property I1. But now, given any unsatisfiable formula ¢,
we could guess a NasH equilibrium of f(¢), and check that it does not satisfy IT: This
implies NP = coNP!

Problems such as NasH for which a solution is guaranteed to exist require much
more specialized and subtle complexity analysis — and the end diagnosis is necessar-
ily less severe than NP-completeness (see Beame et al., 1998; Johnson et al., 1988;
Papadimitriou, 1994 for more on this subject).

2.2.1 NaSsH vs Brouwer

In contemplating the complexity of NAsH, a natural first reaction is to look into NASH’S
proof (1951) and see precisely how existence is established — with an eye towards
making this existence proof “constructive.” Unfortunately this does not get us very
far, because NASH’s proof relies on Brouwer’s fixpoint theorem, stating that every
continuous function f from the n-dimensional unit ball to itself has a fixpoint: a point
x such that f(x) = x. NAsH’s proof is a clever reduction of the existence of a mixed
equilibrium to the existence of such a fixpoint. Unfortunately, Brouwer’s theorem is
well-known for its nonconstructive nature, and finding a Brouwer fixpoint is known to
be a hard problem (Hirsch et al., 1989; Papadimitriou, 1994) — again, in the specialized
sense alluded to above, since a solution is guaranteed to exist here also.

Natural next question: Is there a reduction in the opposite direction, one establishing
that NAsH is precisely as hard as the known difficult problem of finding a Brouwer fix-
point? The answer is “yes,” and this is in fact a useful alternative way of understanding
the main result explained in this chapter.*

2.2.2 NP-Completeness of Generalizations

As we have discussed, what makes NP-completeness inappropriate for NAsH is the
fact that NASH equilibria always exist. If the computational problem NAsH is twisted

3 But how about the traveling salesman problem? Does it not always have a solution? It does, but this solution
(the optimum tour) is hard to verify, and so the TSP is not an appropriate comparison here. To be brought into
the realm of NP-completeness, optimization problems such as the TSP must be first transformed into decision
problems of the form “given a TSP instance and a bound B, does a tour of length B or smaller exist?” This
problem is much closer to SATISFIABILITY.

4 This may seem puzzling, as it seems to suggest that Brouwer’s theorem is also of a combinatorial nature. As
we shall see, in a certain sense indeed it is.

THE LEMKE—HOWSON ALGORITHM 33

in any one of several simple ways that deprive it from its existence guarantee, NP-
completeness comes into play almost immediately.

Theorem 2.3 (Gilboa and Zemel, 1989) The following are NP-complete prob-
lems, even for symmetric games: Given a two-player game in strategic form, does
it have

e at least two Nasu equilibria?
e a Nasu equilibrium in which player 1 has utility at least a given amount?

e a Nasu equilibrium in which the two players have total utility at least a given
amount?

e a Nasu equilibrium with support of size greater than a given number?
e a Nasu equilibrium whose support contains strategy s?
e a Nasu equilibrium whose support does not contain strategy s?

e elc., etc.

A simple proof, due to (Conitzer and Sandholm, 2003), goes roughly as follows:
Reduction from SATISFIABILITY. It is not hard to construct a symmetric game whose
strategies are all literals (variables and their negations) and whose NASH equilibria are
all truth assignments. In other words, if we choose, for each of the n variables, either the
variable itself or its negation, and play it with probability % then we get a symmetric
NasH equilibrium, and all NAsH equilibria of the game are of this sort. It is also easy to
add to this game a new pure NAsH equilibrium (d, d), with lower utility, where d (for
“default”) is a new strategy. Then you add new strategies, one for each clause, such
that the strategy for clause C is attractive, when a particular truth assignment is played
by the opponent, only if all three literals of C are contradicted by the truth assignment.
Once a clause becomes attractive, it destroys the assignment equilibrium (via other
strategies not detailed here) and makes it drift to (d, d). It is then easy to establish that
the NAsH equilibria of the resulting game are precisely (d, d) plus all satisfying truth
assignments. All the results enumerated in the statement of the theorem, and more,
follow very easily.

2.3 The Lemke-Howson Algorithm

We now sketch the Lemke—Howson algorithm, the best known among the combinatorial
algorithms for finding a NAsH equilibrium (this algorithm is explained in much more
detail in the next chapter). It works in the case of two-player games, by exploiting
the elegant combinatorial structure of supports. It constitutes an alternative proof of
NAsH’s theorem, and brings out in a rather striking way the complexity issues involved
in solving NAsH. Its presentation is much simpler in the case of symmetric games. We
therefore start by proving a basic complexity result for games: looking at symmetric
games is no loss of generality.

34 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

2.3.1 Reduction to Symmetric Games

Define SYMMETRIC NASH to be the following problem: Given a symmetric game, find
a symmetric NASH equilibrium. As noted above, NAsH proved in his original paper
that such equilibrium always exists. Here we establish the following fact, which was
actually first pointed out before NASH’S paper, in Gale et al., 1950 essentially with the
same proof, for the case of two-player zero-sum games:

Theorem 2.4 There is a polynomial reduction from NASH t0 SYMMETRIC NASH.

Thus the symmetric case of NASH is as hard as the general one.

We shall describe the reduction for the two-player case, the proof for any fixed
number of players being a straightforward generalization. Suppose that we are given
a two-player game described by matrices A and B; without loss of generality, assume
that all entries of these matrices are positive (adding the same number to all entries of
A or B changes nothing). Consider now the symmetric game consisting of this matrix:

C = < I;) T 13) and let (x, y) be a symmetric equilibrium of this game (by x we denote

the first m components of the vector, where m is the number of rows of A, and by y
the rest). It is easy to see that, for (x, y) to be a best response to itself, y must be a best
response to x, and x must be a best response to y. Hence, x and y constitute a NASH
equilibrium of the original game, completing the proof.

Incidentally, it is not known how hard it is to find any NASH equilibrium in a
symmetric game (it could be easier than NASH), or to find a nonsymmetric equilibrium
in a symmetric game (it could be easier or harder than NASH).

2.3.2 Pivoting on Supports

So, let us concentrate on finding a NASH equilibrium in a symmetric two-player game
with n x n utility matrix A, assumed with no loss of generality to have nonnegative
entries and in addition no column that is totally zero. Consider the convex polytope
P defined by the 2n inequalities Az < 1,z > 0 (it turns out that these inequalities
are important in identifying mixed NASH equilibria, because, intuitively, when an
inequality from A;x < 1 is tight, the corresponding strategy is a best response). It is
a nonempty, bounded polytope (since z = 0 is a solution, and all coefficients of A are
nonnegative while no column is zero). Let us assume for simplicity that the polytope P
is also nondegenerate, that is, every vertex lies on precisely n constraints (every linear
program can be made nondegenerate by a slight perturbation of its coefficients, so this
is little loss of generality). We say that a strategy i is represented at a vertex z if at that
vertex either z; = 0 or A;z = 1 or both — that is, if at least one of the two inequalities
of the polytope associated with strategy i is tight at z.

Suppose that at a vertex z all strategies are represented. This of course could happen
if z is the all-zero vertex — but suppose it is not. Then for all strategies i with z; > 0 it
must be the case that A;z = 1. Define now a vector x as follows:

Zi

D i1 T .

Xi =

THE LEMKE—HOWSON ALGORITHM 35

X1
232
223
132
123
123 122
X 123 123 X3

Figure 2.1. The Lemke—Howson algorithm can be thought of as following a directed path in a
graph.

Since we assume z # 0, the x;’s are well defined, and they are nonnegative numbers

adding to 1, thus constituting a mixed strategy. We claim that x is a symmetric NASH

equilibrium. In proof, just notice that x satisfies the necessary and sufficient condition

of a NAsH equilibrium (recall Theorem): Every strategy in its support is a best response.
Let us apply this to the symmetric game of Example 2.2, with utility matrix

030
A=1]1003
222

The polytope P is shown in Figure 2.1; it is nondegenerate because every vertex
lies on three planes, and has three adjacent vertices. The vertices are labeled by the
strategies that are represented there (ignore the exponents > for a moment). The only
vertices where all strategies are represented are the vertex z = (0, 0, 0) and the vertex
z =10, 1/6, 1/3) — notice that the latter vertex corresponds to the NASH equilibrium
x =(0,1/3,2/3).

So, any vertex of P (other than (0, 0, 0)) at which all strategies are represented is a
NasH equilibrium. But how do we know that such a vertex exists in general? After all,
not all choices of n tight constraints result in vertices of a polytope. We shall develop
a pivoting method for looking for such a vertex.

Fix a strategy, say strategy n, and consider the set V of all vertices of P at which all
strategies are represented except possibly for strategy n. This set of vertices is nonempty,
because it contains vertex (0, 0, 0), so let us start there a path (vg = 0, vy, vp,...) of
vertices in the set V. Since we assume that P is nondegenerate, there are n vertices
adjacent to every vertex, and each is obtainable by relaxing one of the tight inequalities
at the vertex and making some other inequality tight. So consider the n vertices adjacent
to vy = (0, 0, 0). In one of these vertices, z, is nonzero and all other variables are zero,
so this new vertex is also in V; call it v;.

36 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

Y

Figure 2.2. The path cannot cross itself.

At vp all strategies are represented except for strategy n, and in fact one strategy
i < n is “represented twice,” in that we have both z; = 0 and C;z = 1. (We represent
this by i?). By relaxing either of these two inequalities we can obtain two new vertices
in V adjacent to v;. One of them is vy, the vertex we came from, and the other is bound
to be some new vertex v, € V.

If at v, all strategies are represented, then it is a NASH equilibrium and we are done.
Otherwise, there is a strategy j that is represented twice at v, and there are two vertices
in V that are adjacent to v, and correspond to these two inequalities. One of these two
vertices is v; and the other is our new vertex vz, and so on. The path for the example
of Figure 2.1 where strategy n = 3 is the one that may not be represented, is shown as
a sequence of bold arrows.

How can this path end? No vertex v; can be repeated, because repeating v; (see
Figure 2.2) would mean that there are three vertices adjacent to v; that are obtainable
by relaxing a constraint associated with its doubly represented strategy, and this is
impossible (it is also easy to see that it cannot return to 0). And it cannot go on forever,
since P is a finite polytope. The only place where the process can stop is at a vertex in
V, other than 0 (a moment’s thought tells us it has to be different from 0) that has no
doubly represented strategy — that is to say, at a symmetric Nasu equilibrium!

This completes our description of the Lemke—Howson algorithm, as well as our
proof of NAsH’s theorem for two-player, nondegenerate games.

2.4 The Class PPAD

Let us dissect the existence proof in the previous section. It works by creating a graph.
The set of vertices of this graph, V, is a finite set of combinatorial objects (vertices of P,
or sets of inequalities, where all strategies are represented, with the possible exception
of strategy n). This graph has a very simple “path-like” structure: All vertices have
either one or two edges incident upon them — because every vertex v € V has either
one or two adjacent vertices (depending on whether or not strategy n is represented in
v). The overall graph may be richer than a path — it will be, in general, a set of paths
and cycles (see Figure 2.3). The important point is that there is definitely at least one
known endpoint of a path: the all-zero vertex. We must conclude that there is another
endpoint, and this endpoint is necessarily a NAsH equilibrium of the game.

We must now mention a subtle point: the paths are directed. Looking at a vertex in
V', we can assign a direction to its incident edge(s), at most one coming in and at most

THE CLASS PPAD 37

Standard
source Q

Figure 2.3. A typical problem in PPAD.

one going out, and do this in a way that is consistent from one vertex to another. In
our three-dimensional example of Figure 2.1 the rule for asigning directions is simple:
Going in the direction of the arrow, we should have a face all vertices of which are
labeled 3 on our right, and a face all vertices of which are labeled 1 on our left. In games
with more strategies, and thus a polytope of a higher dimension, there is a similar but
more complicated (and more algebraic) “orientation rule.” So, the graph in the proof
of NasH’s Theorem is a directed graph with all outdegrees and indegrees at most one.

What we mean to say here is that the existence proof of NAsH’s theorem (for the two-
player symmetric, nondegenerate case, even though something similar holds for the
general case as well) has the following abstract structure: A directed graph is defined on
a set of nodes that are easily recognizable combinatorial objects (in our case, vertices
of the polytope where all strategies, with the possible exception of strategy n, are repre-
sented). Each one of these vertices has indegree and outdegree at most one; therefore, the
graph is a set of paths and cycles (see Figure 2.3). By necessity there is one vertex with
no incoming edges and one outgoing edge, called a standard source (in the case of two-
player NASH, the all-zero vertex). We must conclude that there must be a sink: a NASH
equilibrium. In fact, not just a sink: notice that a source other than the standard (all-zero)
one is also a NASH equilibrium, since all strategies are represented there as well. An-
other important point is that there is an efficient way, given a vertex in the graph to find
its two adjacent vertices (or decide that there is only one). This can be done by simplex
pivoting on the doubly represented variable (or on variable n, if it is represented).

Any such proof suggests a simple algorithm for finding a solution: start from the
standard source, and follow the path until you find a sink (in the case of two-player
NasH this is called the Lemke—Howson algorithm). Unfortunately, this is not an efficient
algorithm because the number of vertices in the graph is exponentially large. Actually,
in the case of two-player NASH there are examples of games in which such paths are
exponentially long (Savani and von Stengel, 2004).

38 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

It turns out that, besides NASH, there is a host of other computational problems with
guaranteed existence of solutions, for which existence follows from precisely this type
of argument:

¢ A directed graph is defined on a finite but exponentially large set of vertices.

¢ Each vertex has indegree and outdegree at most one.

¢ Given a string, it is a computationally easy problem to (a) tell if it is indeed a vertex of
the graph, and if so to (b) find its neighbors (one or two of them), and to (c) tell which
one is the predecessor and/or which one is the successor (i.e., identify the direction of
each edge).

¢ There is one known source (vertex with no incoming edges) called the “standard source.”

¢ Any sink of the graph (a vertex with no outgoing edges), or any source other than the
standard one, is a solution of the problem.

One problem whose existence proof has this form is finding an approximate Brouwer
fixpoint of a function. We omit the precise definition and representation details here;
a stylized version of this problem is defined in Section 2.6. Another is the following
problem called HAM SANDWITCH: Given n sets of 2n points each in n dimensions, find
a hyperplane which, for each of the n sets, leaves n points on each side. There are
many other such problems (see Papadimitriou, 1994). For none of these problems do
we know a polynomial algorithm for finding a solution.

All these problems comprise the complexity class called PPAD. In other words,
PPAD is the class of all problems, whose solution space can be set up as the set of
all sinks and all nonstandard sources in a directed graph with the properties displayed
above.

Solving a problem in PPAD is to telescope the long path and arrive at a sink (or
a nonstandard source), fast and without rote traversal — just as solving a problem in
NP means narrowing down to a solution among the exponentially many candidates
without exhaustive search. We do not know whether either of these feats is possi-
ble in general. But we do know that achieving the latter would imply managing the
former too. That is, P = NP implies PPAD = P (proof: PPAD is essentially a sub-
set of NP, since a solution, such as a NasH equilibrium, can be certified quickly if
found).

In the case of NP, we have a useful notion of difficulty — NP-completeness — that
helps characterize the complexity of difficult problems in NP, even in the absence of
a proof that P # NP. A similar manoeuvre is possible and useful in the case of PPAD
as well. We can advance our understanding of the complexity of a problem such as
NasH by proving it PPAD-complete — meaning that all other problems in PPAD reduce
to it. Such a result implies that we could solve the particular problem efficiently if
and only if all problems in PPAD (many of which, like BROUWER, are well-known
hard nuts that have resisted decades of efforts at an efficient solution) can be thus
solved.

Indeed, the main result explained in the balance of this chapter is a proof that NAsH
is PPAD-complete.

3 The name, introduced in Papadimitriou (1994), stands for “polynomial parity argument (directed case).” See
that paper, as well as Beame et al. (1998) and Daskalakis et al. (2006), for a more formal definition.

SUCCINCT REPRESENTATIONS OF GAMES 39

2.4.1 Are PPAD-Complete Problems Hard?

But why do we think that PPAD-complete problems are indeed hard? PPAD-
completeness is weaker evidence of intractability than NP-completeness: it could
very well be that PPAD = P # NP. Yet it is a rather compelling argument for in-
tractability. If a PPAD-complete problem could be solved in polynomial time, then all
problems in PPAD (finding Brouwer and Borsuk-Ulam fixpoints, cutting ham sand-
wiches, finding Arrow-Debreu equilibria in markets, etc., many of which have resisted
decades of scrutiny, see Papadimitriou (1994) for a more complete list) would also
be solved. It would mean that any local combinatorial description of a deterministic
simplex pivoting rule would lead to a novel polynomial algorithm for linear pro-
gramming. Besides, since it is known (Hirsch et al., 1989) that any algorithm for
finding Brouwer fixpoints that treats the function as a black box must be exponential,
PPAD = P would mean that there is a way to find Brouwer fixpoints by delving into
the detailed properties of the function — a possibility that seems quite counterintu-
itive. Also, an efficient algorithm for a PPAD-complete problem would have to defeat
the oracles constructed in Beame et al. (1998) — computational universes in which
PPAD # P — and so it would have to be extremely sophisticated in a very specific
sense.

In mathematics we must accept as a possibility anything whose negation remains
unproved. PPAD could very well be equal to P, despite the compelling evidence to the
contrary outlined above. For all we know, it might even be the case that P = NP —
in which case PPAD, lying “between” P and NP, would immediately be squeezed
down to P as well. But it seems a reasonable working hypothesis that neither of these
eventualities will actually hold, and that by proving a problem PPAD-complete we
indeed establish it as an intractable problem.

2.5 Succinct Representations of Games

Computational problems have inputs, and the input to NASH is a description of the
game for which we need to find an equilibrium. How long is such a description?

Describing a game in strategic form entails listing all utilities for all players and
strategy combinations. In the case of two players, with m and n strategies respectively,
this amounts to describing 2mn numbers. This makes the two-player case of NASH
such a very neat and interesting computational problem.

But we are interested in games because we think that they can model the Internet,
markets, auctions — and these have far more than two players. Suppose that we have a
game with n players, and think of n as being in the hundreds or thousands — a rather
modest range for the contexts and applications outlined above. Suppose for simplicity
that they all have the same number of strategies, call it s — in any nontrivial game s will
be at least two. Representing the game now requires ns" numbers!

This is a huge input. No user can be expected to supply it, and no algorithm to handle
it. Furthermore, the astronomical input trivializes complexity: If s is a small number
such as 2 or 5, a trivial efficient algorithm exists: try all combinations of supports.
But this algorithm is “efficient” only because the input is so huge: For fixed s, (2°)" is
polynomial in the length of the input, ns” . ..

40 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

Conclusion: In our study of the complexity of computational problems for games
such as NAsSH we must be especially interested in games with many players; however,
only succinctly representable multiplayer games can be of relevance and computational
interest.

And there are many such games in the literature; we start by describing one of the
latest arrivals (Kearns et al., 2001) that happens to play a central role in our story.

2.5.1 Graphical Games

Suppose that many players are engaged in a complex game; yet, the utility of each
player depends on the actions of very few other players. That is, there is a directed
graph ({1, 2, ..., n}, E), with vertices the set of players, and (i, j) € E only if the
utility of j depends on the strategy chosen by i (j’s utility depends, of course, on the
strategy chosen by j). More formally, for any two strategy profiles s and s” if s; = s;,
and, for all (i, j) € E we have s; = s/, then u;(s) = u;(s"). A graphical game, as these
are called, played on a graph with n nodes and indegree at most d, and s choices per
player, requires only ns%*! numbers for its description — a huge savings over ns" when
d is modest. (For more on graphical games, see Chapter 7.)

For a simple example, consider a directed cycle on 20 players, where the utilities are
captured by the game matrix A of example 2.2. That is, if a player chooses a strategy
i € {1, 2,3} and his predecessor in the cycle chooses another strategy j, then the utility
of the first player is C;; (the utility of the predecessor will depend on the strategy
played by his predecessor). Ordinarily, this game would require 20 x 3?° numbers to
be described; its graph structure reduces this to just a few bytes.

Can you find a NAsH equilibrium in this game?

2.5.2 Other Succinct Games

There are many other computationally meaningful ways of representing some interest-
ing games succinctly. Here are some of the most important ones.

(i) Sparse games. If very few of the ns" utilities are nonzero, then the input can be
meaningfully small. Graphical games can be seen as a special case of sparse games,
in which the sparsity pattern is captured by a graph whose vertices are the players.

(ii) Symmetric games. In a symmetric game the players are all identical. So, in evaluating

the utility of a combination of strategies, what matters is how many of the n players
n+sfl)

play each of the s strategies. Thus, to describe such a game we need only s(1

numbers.

(iii) Anonymous games. This is a generalization of symmetric games, in which each player
is different, but cannot distinguish between the others, and so again his or her utility
depends on the partition of the other players into strategies. sn (":r: 1) numbers suffice
here.

(iv) Extensive form games. These are given as explicit game trees (see the next chapter).
A strategy for a player is a combination of strategies, one for each vertex in the
game tree (information set, more accurately, see the next chapter for details) in which
the player has the initiative. The utility of a strategy combination is that of the leaf
reached if the strategies are followed.

THE REDUCTION 41

(v) Congestion games. These games abstract the network congestion games studied in
Chapters 18 and 19. Suppose that there are n players, and a set of edges E. The set of
strategies for each player is a set of subsets of E, called paths. For each edge e € E
we have a congestion function c, mapping {0, 1, ..., n} to the nonnegative integers.
If the n players choose strategies/paths P = (P;, ..., P,), letthe load of edge e, £(P)
be the size of the set {i : e € P;}. Then the utility of the ith player is Zeepi c.(L(P)).

(vi) There is the even more succinct form of network congestion games, where E is the
set of edges of an actual graph, and we are given two vertices for each player. The
strategies available to a player are all simple paths between these two nodes.

(vii) Local effect games. These are generalizations of the congestion games, see Leyton-
Brown and Tennenholtz 2003.
(viii) Facility location games. See Chapter 19.

(ix) Multimatrix games. Suppose that we have n players with m strategies each, and for
each pair (i, j) of players an m x m utility matrix A"/, The utility of player i for the
strategy combination sy, . .., §,) is Z_,' 4i A’“’ e That is, each player receives the total
sum of his or her interactions with all other players.

2.6 The Reduction

In this section we give a brief sketch of the reduction, recently discovered in Daskalakis
et al. (2006) and Goldberg and Papadimitriou (2006) and extended to two-player games
in Chen and Deng (2005b), which establishes that NAsH is PPAD-complete.

2.6.1 A PPAD-Complete Problem

The departure point of the reduction is BROUWER, a stylized discrete version of the
Brouwer fixpoint problem. It is presented in terms of a function ¢ from the three-
dimensional unit cube to itself. Imagine that the unit cube is subdivided into 2*" equal
cubelets, each of side ¢ = 27", and that the function need only be described at all
cubelet centers. At a cubelet center x, ¢(x) can take four values: x +6;,i =0, ..., 3,
where the §;s are the following tiny displacements mapping the center of the cubelet to
the center of a nearby cubelet: 6; = (¢, 0, 0) 6, = (0, €, 0), §3 = (0, 0, €), and finally
8o = (—€, —e, —e€). If x is the center of a boundary cubelet, then we must make sure
that ¢(x) does not fall outside the cube — but this is easy to check. We are seeking
a “fixpoint,” which is defined here to be any internal cubelet corner point such that,
among its eight adjacent cubelets, all four possible displacements §;,i =0, ..., 3, are
present.

But how is the function ¢ represented? We assume that ¢ is given in terms of a
Boolean circuit, a directed acyclic graph of AND, OR, and NOT gates, with 3n bits as
inputs (enough to describe the cublet in question) and two bits as outputs (enough to
specify which one of the four displacements is to be applied). This is a computationally
meaningful way of representing functions that is quite common in the complexity theory
literature; any function ¢ of the sort described above (including the boundary checks)
can be captured by such a circuit. And this completes the description of BROUWER, our
starting PPAD-complete problem: Given a Boolean circuit describing ¢, find a fixpoint

42 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

of ¢. We omit the challenging proof that it is indeed PPAD-complete (see Daskalakis
et al., 2006).

2.6.2 The Plan

But how should we go about reducing this problem to NasH? We shall start by reduc-
ing BROUWER to an intermediate graphical game with many players. All these players
have just two strategies, 0 and 1; therefore, we can think of any mixed strategy of a
player as a number in [0, 1] (the probability he or she assigns to strategy 1). Three
of these players will be thought of as choosing three numbers that are the coordi-
nates of a point in the cube. Others will respond by analyzing these coordinates to
identify the cubelet wherein this point lies, and by computing (by a simulation of the
circuit) the displacements §; at the cubelet and adjacent cubelets. The resulting choices
by the players will incentivize the three original players to change their mixed strategy
— unless the point is a fixpoint of ¢, in which case the three players will not change
strategies, and the graphical game will be at a NASH equilibrium!

2.6.3 The Gadgets

To carry out this plan, we need certain devices — commonly called “gadgets” in the
reduction business — for performing basic arithmetic and logical operations. That is, we
need to define certain small graphical games with players that are considered as inputs
and another player as output, such that in any NAsH equilibrium the mixed strategy of
the output player (thought of as a real number between 0 and 1) stands in a particular
arithmetical or logical relation with the inputs (again, thought of as numbers).

Consider, for example, the multiplication game. It has four players, two input players
a and b, an output player ¢, and a middle player d. The underlying directed graph has
edges (a, d), (b,d), (c,d), (d, ¢); i.e., one of these four players affects the utility of
another if and only if there is an edge in this list from the former to the latter. The players
have two strategies each, called 0 and 1, so that any mixed strategy profile for a player
is in fact a real number in [0, 1] (the probability with which the player plays strategy 1).
The utilities are so constructed that in any NASH equilibrium of this game, the output is
always the product of the two inputs — all seen as numbers, of course: ¢ = a - b (here
we use a to represent not just player a, but also its value, i.e., the probability with
which he plays strategy 1). To specify the game, we need to describe the utilities of
the output and middle player (the utilities of the inputs are irrelevant since they have
no incoming edges; this is crucial, because it allows the inputs to be “reused” in many
gadgets, without one use influencing the others). If the middle player d plays 1 (recall
that all nodes have two strategies, 1 and 0), then its utility is 1 if both inputs play 1,
and it is O zero otherwise. Thus, if the two input players play 1 with probabilities a and
b (recall that these are the “values” of the two inputs), and the middle player plays 1,
then his utility is exactly a - b. If on the other hand the middle player plays 0, then its
utility is 1 if the output player plays 1, and it is O otherwise. Finally, the output player
gets utility 1 if the middle player plays 1, and —1 if he plays O.

Thus, the output player is motivated to play 1 with probability ¢, which is as high as
possible, in order to maximize the utility from the middle player’s playing 1 — but not

THE REDUCTION 43

so high that the middle player is tempted to play 0, as he would whenever ¢ > a - b.
Thus, at equilibrium, ¢ must be exactly a - b, and the multiplication gadget works!

In a similar manner we can construct gadgets that add and subtract their inputs
(always within the range [0, 1], of course), or perform certain logical operations. For
example, it is a trivial exercise to design a gadget with two nodes, an input x and
an output y, such that y =1 if x > % and y=0if x < % (notice that, importantly,
the output of this comparator is undetermined is x = %). It is also easy to design
gadgets that perform AND, OR, and NOT operations on their inputs (the inputs here
are assumed to be Boolean, that is to say, pure strategies).

2.6.4 The Graphical Game

Using these devices, we can put together a graphical game whose NASH equilibria
reflect accurately the Brouwer fixpoints of the given function ¢.

The graphical game is huge, but has a simple structure: There are three players, called
the leaders, whose mixed strategies identify a point (x, y, z) in the unit cube. These
leaders are inputs to a series of comparators and subtractors which extract one by one
the n most significant bits of the binary representation of x, y, and z, thus identifying
the cubelet within which the point (x, y, z) lies. A system of logical gadgets could
then compute the outputs of the given circuit that describes ¢, when the inputs are the
3n extracted bits, repeat for the neighboring cubelets, and decide whether we are at a
fixpoint.

But there is a catch: As we pointed out above, our comparators are “brittle” in that
they are indeterminate when their input is exactly half. This is of necessity: It can
be shown (see Daskalakis et al., 2006) that nonbrittle comparators (ones that behave
deterministically at half) cannot exist! (It turns out that, with such comparators, we
could construct a graphical game with no NAsH equilibrium . ..) This has the effect
that the computation described above is imprecise (and, in fact, in an unpredictable
manner) when the point (x, y, z) lies exactly on the boundary of a cubelet, and this can
create spurious equilibria. We must somehow “smoothen” this discontinuity.

This is accomplished by a more complicated construction, in which the calculation
of ¢ is carried out not for the single point (x, y, z) but for a large and very fine grid of
points around it, with all results averaged.

Once the average displacement (Ax, Ay, Az) near (x, y, z) has been calculated, its
components are added to the three leaders, completing the construction of the graphical
game. This way the loop is closed, and the leaders (who had heretofore no incoming
edges) are finally affected — very indirectly, of course — by their own choices. We
must now prove that the NASH equilibria of this game correspond precisely to those
points in the unit cube for which the average displacement is the zero vector. And
from this, establish that the average displacement is zero if and only if we are near a
fixpoint.

2.6.5 Simulating the Graphical Game by Few Players

We have already established an interesting result: Finding a NAsH equilibrium in a
graphical game is PPAD-complete. It is even more interesting because the underlying

44 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

directed graph of the game, despite its size and complexity, has a rather simple
structure: It is bipartite, and all vertices have indegree three or less. It is bipartite
because all gadgets are bipartite (the inputs and the outputs are on one side, the middle
nodes on the other; the logical gadgets can be redesigned to have a middle node as
well); and the way the gadgets are put together maintains the bipartite property. Finally,
the middle nodes of the gadget are the ones of maximum indegree — three.

The challenge now is to simulate this graphical game by one with finitely many
players. Already in Goldberg and Papadimitriou (2006) and Daskalakis et al. (2006), a
simulation by four players was shown, establishing that NAsH is PPAD-complete even
in the four-player case. The idea in the simulation is this: Each of the four players
“represents” many nodes of the graphical game. How players are represented is best
understood in terms of a particular undirected graph associated with the graphical
game, called the conflict graph. This graph is defined on the vertices of the graphical
game, and has an edge between two nodes u and v if in the graphical game either (a)
there is an edge between u and v, in either direction, or (b) there are edges from both u
and v to the same node w. This is the conflict graph of the game; it should be intuitively
clear that eventualities (a) and (b) make it difficult for the same player to represent both
u and v, and so coloring the conflict graph and assigning its color classes to different
players makes sense. The crucial observation is that the conflict graph of the graphical
game constructed in the reduction is four-colorable.

So, we can assign to each of four players (think of them as “lawyers”) all nodes
(call them “clients”) in a color class. A lawyer’s strategy set if the union of the strategy
sets of his clients, and so the clients can be represented fairly if the lawyer plays the
average of their mixed strategies. Since the clients come from a color class of the
conflict graph, the lawyer can represent them all with no conflict of interest (he or she
should not represent two players that play against one another, or two players who
both play against a third one). But there is a problem: A lawyer may neglect some
clients with small payoffs and favor (in terms of weights in his mixed strategy) the
more lucrative ones. This is taken care of by having the four lawyers play, on the side, a
generalization of the “rock-paper-scissors game,” at very high stakes. Since this game
is known to force the players to distribute their probabilities evenly, all clients will
now be represented fairly in the lawyer’s mixed strategy; the four-player simulation is
complete.

These results, up to the four player simulation, first appeared in the beginning of
October 2005 (Goldberg and Papadimitriou, 2006; Daskalakis et al., 2006). It was
conjectured in Daskalakis et al. (2006) that the 3-player case of NAsH is also PPAD-
complete, whereas the 2-player case is in P. Indeed, a few weeks later, two independent
and very different simulations of the graphical game by three players appeared (Chen
and Deng, 2005b; Daskalakis and Papadimitriou, 2005) thus proving the first part
of this conjecture. The proof in Daskalakis and Papadimitriou (2005) was local, and
worked by modifying the gadgets so that the conflict graph became three-colorable;
this approach had therefore reached its limit, because for the graphical game to work
the conflict graph must contain triangles. It was again conjectured in Daskalakis and
Papadimitriou (2005) that the two-player case can be solved in polynomial time. In
contrast, the proof in Chen and Deng (2005b) was more ad hoc and nonlocal, and was
therefore in a sense more open-ended and promising.

CORRELATED EQUILIBRIA 45

A month later, a surprisingly simple two-player simulation was discovered (Chen
and Deng, 2005a), thus establishing that even the two-player case of NAsH is PPAD-
complete! The intuitive idea behind this new construction is that many of the “conflicts
of interest” captured in the conflict graph (in particular, the (b) case of its definition) hap-
pen to be unproblematic in this particular game: The two input nodes of a gadget cannot
effectively “conspire” to improve their lot — and thus they could, in principle, be repre-
sented by the same (carefully programmed) lawyer. Thus, only two players are needed,
corresponding to the two sides of the bipartite graphical game. The construction is now
in fact a little more direct: there is no graph game, and the two players are constructed
ab initio, with the gadgets, as well as the side game of rock—paper—scissors, built in.

2.6.6 Approximate Equilibria

Incidentally, this side game of rock—paper—scissors is the source of another difficulty
that permeates all these proofs, and which we have not yet discussed: It only guarantees
that the lawyers approximately balance the interests of their clients; as a result, the
whole reduction, and the argument at each stage of the construction, must be carried
out in terms of e-approximate Nasn equilibria. An e-approximate NASH equilibrium is a
mixed strategy profile such that no other strategy can improve the payoff by more than
an additive €. (Notice that an e-approximate NASH equilibrium may or may not be near
a true NAsH equilibrium.) It is easy to see, in retrospect, that this use of approximation
is inherently needed: Two-player games always have rational NAsH equilibria, whereas
games with more players may have only irrational ones. Any simulation of the latter
by the former must involve some kind of approximation.

Now that we know that computing NASH equilibria is an intractable problem, com-
puting approximate equilibria emerges as a very attractive compromise. But can it
be done in polynomial time? The reduction described so far shows that it is PPAD-
complete to compute e-approximate NAsH equilibria when € is exponentially small
(smaller than the side of the cubelet in the initial BROUWER problem, or 27" for some
¢ > 0, where n is the number of strategies). Starting from an n-dimensional version
of BROUWER, the result can be strengthened up to an € that is an inverse polynomial,
(n~°) (Chen et al., 20006).

There are some positive algorithmic results known for approximate NASH equilib-
ria: %—approximate NasH equilibria are very easy to compute in two-player games

(Daskalakis et al., in press) and an e-approximate NASH equilibrium can be found in
logn

less than exponential time (more specifically, in time n <) in arbitrary games (see
Lipton et al., 2003). Discovering polynomial algorithms for computing e-approximate
NasH equilibria for € between these values — possibly for arbitrarily small constant
€ > 0 —remains an important open problem.

2.7 Correlated Equilibria

Consider the symmetric game (often called chicken) with payoffs

(50)

46 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

The payoffs are supposed to capture the situation in which two very macho drivers
speed toward an intersection. Each has two options: Stop or go. There are two pure
equilibria (me and you) and the symmetric mixed equilibrium (1/2, 1/2). These three
NasH equilibria create the following three probability distributions on the pure strategy

0 1\ /0 0)\/[(} 1
proﬁles:(>()(‘1‘)
00){1o){l1 1

Consider however the following distribution: <(l) 5) It is not a NASH equilibrium;
in fact, it is easy to see that there are no two mixe%i strategies for the two players that
generate this distribution (in algebraic terms, the matrix is not of rank one). However, it
is a rational outcome of the game, in the following more sophisticated sense: Suppose
that a trusted third party draws from this distribution, and recommends to each player
to play according to the outcome. (Coming back to the drivers story, this solution,
randomizing between (stop, go) and (go, stop) is tantamount to a traffic signal.) If
the lower left box is chosen, e.g., the recommendation is that Player 1 go and Player
2 stop (i.e., green light for Player 1). What is remarkable about this distribution of
recommendations is that it is self-enforcing: If either player assumes that the other will
follow the recommendation, his best bet is to actually follow the recommendation!

This motivates the following definition (Aumann, 1974): A correlated equilibrium is
a probability distribution { p,} on the space of strategy profiles that obeys the following
conditions: For each player i, and every two different strategies j, j’ of i, conditioned
on the event that a strategy profile with j as is strategy was drawn from the distribution,
the expected utility of playing j is no smaller than that of playing j’:

—al

> " (uy — ug)ps; = 0. (CE)

seS_;

(Naturally, we also require that p; > 0 and) p; = 1.) Here by S_; we denote the
strategy profiles of all players except for i; if s € S_;, sj denotes the strategy profile
in which player i plays j and the others play s. Notice that the inequalities express
exactly the requirement that, if a strategy profile is drawn from the distribution {p;}
and each player is told, privately, his or her own component of the outcome, and if
furthermore all players assume that the others will follow the recommendation, then
the recommendation is self-enforcing.

Notice also the following: If p',i =1,...,n, is a set of mixed strategies of the
players, and we consider the distribution p, induced by it (p; =[], péi) then the
inequalities (CE) state that these mixed strategies constitute a mixed NASH equilibrium!
Indeed, for each i, j, j’, equation (CE) states in this case that, if j is in i’s support, then
it is a best response. (If strategy j is not in the support, then the inequality becomes a
tautology, 0 > 0; if it is in the support, then we can divide by its probability the whole
inequality, and the resulting inequality says that j is best response.) We conclude
that any NASH equilibrium is a correlated equilibrium. In other words, the correlated
equilibrium is a generalization of the NASH equilibrium, allowing the probabilities on
the space of strategy profiles to be correlated arbitrarily. Conversely, NASH equilibrium
is the special case of correlated equilibrium in which p;’s are restricted to come from
a product (uncorrelated) distribution.

CORRELATED EQUILIBRIA 47

For example, in the drivers game, the (CE) inequalities are as follows:

@4 —=5pu+1-0p>0
5=4pu+O0—1)pn=>0
4 —=35pn+0—-0)pn >0
S=—DHpn2+O0—1ppr=>0

A crucial observation now is that the (CE) inequalities are linear in the unknown
variables {p;}, and thus the system (CE) can always be solved efficiently by linear
programming. In fact, we know that these inequalities always have at least one a
solution: The NAsH equilibrium that is guaranteed to exist by NASH’s theorem.

To restate the situation in terms of our concerns in this chapter, the correlated
equilibrium is a computationally benign generalization of the intractable NASH equi-
librium. We can find in polynomial time a correlated equilibrium for any game. In
fact, we can find the correlated equilibrium that optimizes any linear function of the
{ps}’s, such as the expected sum of utilities. For example, in the drivers game, we can
optimize the sum of the players’ expected utilities by maximizing the linear objective

8p11 + 6p12 + 6py; over the polytope defined by the inequalities above. The optimum
1

correlated equilibrium is this: 8) — a traffic light that is red for both one third of

W= W=

the time.

2.7.1 Correlated Equilibria vs NasH Equilibria: The Whole Picture

The polytope defined by the (CE) inequalities in the case of the drivers game is shown
in Figure 2.4 (the fourth dimension, py; = 1 — p1; — p12 — p21, is suppressed in the
geometric depiction). Every point in this polytope is a correlated equilibrium. There

are two pure NASH equilibria (N1 and N2) and one symmetric mied one (N3). The
1 1

1 11
“traffic light” correlated equilibrium C1 = <(l) 6) and the optimum one C2 = { { (3)
2 3
are also shown. Notice that the three NASH equilibria are vertices of the polytope. This
is no coincidence.

Theorem 2.5 In any nondegenerate two-player game, the NASH equilibria are
vertices of the (CE) polytope.

Naturally, not all vertices of the (CE) polytope will be NAsH equilibria, but at
least one will be. In other words, in two-player games every NASH equilibrium is the
optimum correlated equilibrium for some linear function — unfortunately, guessing this
function is apparently not easy.

To recapitulate, NASH equilibria are correlated equilibria satisfying the further con-
straint that they are the product distribution of some pair of mixed strategies. It is
this single additional constraint that makes the problem of finding a NASH equilibrium
so much harder. It is apparently a very nonconvex constraint (think of it as a curved
surface in Figure 2.4, “touching” the (CE) polytope at three of its vertices). In contrast,
for three or more players there are games in which the NASH equilibria are not vertices

48 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

Cl

N2
Py

Figure 2.4. The three NasH equilibria (N1, N2, N3) of the drivers’ game are vertices of the
polytope of the correlated equilibria. Two other correlated equilibra are shown (C1, C2).

of the (CE) polytope; e.g., it is easy to see that any game with integer utilities that has
only irrational NASH equilibria must be of this sort.

2.7.2 Correlated Equilibria in Succinct Games

But as we observed in Section 2.5, polynomial-time algorithms whose input is a
game, such as the linear programming algorithm for finding correlated equilibria,
make a mockery of complexity theory when the number of players is reasonably high.
This brings us to the following important question: Can we find correlated equilibria
efficiently when the game is represented succinctly?

There are some very interesting — and very natural — “learning” algorithms for ap-
proximating correlated equilibria, reviewed in Chapter 4 of this book. These algorithms
work by simulating repeated play of the game, in which the various players change
their strategies according to how much they “regret” previous decisions. Certain so-
phisticated ways of doing this are guaranteed to reach a point that is quite close to
the (CE) polytope. To arrive at a distance €, from the (CE) polytope, e% iterations are
required, where ¢ is some small constant depending on the particular method. But the
question remains, can we find a point of the (CE) polytope in polynomial time?

Recently, there have been some interesting results on this question; to state them we
need to introduce some definitions. We say that a succinctly representable game is of
polynomial type if the number of players, as well as the number of strategies of each
player, in a game represented by a string of length # is always bounded by a polynomial
in n. For such a game, the expected utility problem is this: Calculate the expected utility
of each player, if for each player i the given mixed strategy p' played. It turns out

CONCLUDING REMARKS 49

that solving this problem is enough for the correlated equilibrium problem to be
solved:

Theorem 2.6 (Papadimitriou, 2005) [n any succinctly representable game of
polynomial type for which the expected utility problem can be solved in polynomial
time, the problem of finding a correlated equilibrium can be solved in polynomial
time as well. Consequently, there is a polynomial-time algorithm (polynomial in
the length of the description of the game) for finding a correlated equilibrium
in sparse, symmetric, anonymous, graphical, congestion, local effect, facility
location, and multimatrix games (among many others, recall the definitions in
Section 2.5).

But how about the slightly more demanding problem of finding, not just any corre-
lated equilibrium, but the one that optimizes a given linear objective of the probabilities?
A much less sweeping result is available here.

Theorem 2.7 (Papadimitriou and Roughgarden, 2005) The problem of opti-
mizing a linear function over correlated equilibria can be solved in polynomial
time for symmetric games, anonymous games, and graphical games for which the
underlying graph is of bounded treewidth.

In contrast, it is NP-hard to find the optimum-correlated equilibrium in gen-
eral graphical games and congestion games, among others (Papadimitriou and
Roughgarden, 2005).

2.8 Concluding Remarks

The computational complexity of equilibrium concepts deserves a central place in
game theoretic discourse. The proof, outlined in this chapter, that finding a mixed
NasH equilibrium is PPAD-complete raises some interesting questions regarding the
usefulness of the NAsH equilibrium, and helps focus our interest in alternative notions
(most interesting among them the approximate NAsH equilibrium discussed in the end
of Section 2.6).

But there are many counterarguments to the importance of such a negative com-
plexity result. It only shows that it is hard to find a NaSH equilibrium in some very
far-fetched, artificial games that happen to encode Brouwer functions. Of what rele-
vance can such a result be to economic practice?

The same can be said (and has been said, in the early days) about the NP-
completeness of the traveling salesman problem, for example. And the answer remains
the same: The PPAD-completeness of NASH suggests that any approach to finding
NAsH equibria that aspires to be efficient, as well as any proposal for using the concept
in an applied setting, should explicitly take advantage of computationally beneficial
special properties of the games in hand, by proving positive algorithmic results for
interesting classes of games. On the other hand (as has often been the case with NP-
completeness, and as it has started to happen here as well; Abbott et al., 2005; Codenotti

50 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

et al., 2006), PPAD-completeness proofs will be eventually refined to cover simpler
and more realistic-looking classes of games. And then researchers will strive to identify
even simpler classes.

An intractability result such as the one outlined in this chapter should be most
usefully seen as the opening move in an interesting game.

Acknowledgment

Many thanks to Bernhard von Stengel for several useful suggestions.

Bibliography

T. Abbott, D. Kane, and P. Valiant. On the complexity of two-player win-lose games. Proc. 2005
FOCS.

R.J. Aumann. Subjectivity and correlation in randomized strategies. J. Math. Econ., 1:67-96, 1974.

P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The relative complexity of NP search
problems. J. Comput. Syst. Sci., 57(1):13—-19, 1998.

X. Chen and X. Deng. 3-NASH is PPAD-Complete. Electronic Colloquium on Computational Com-
plexity, 134, 2005a.

X. Chen and X. Deng. Settling the complexity of 2-player Nash-equilibrium. Electronic Colloquium
on Computational Complexity, 134, 2005b; Fdns. Comp. 2006, to appear.

X. Chen, X. Deng, and S. Teng. Computing Nash equilibria: Aprroximation and smoothed complexity.
FOCS 2006, pp. 603-612, 2006.

B. Codenotti, M. Leoncini, and G. Resta. Efficient computation of Nash equilibria for very sparse
win-lose games. Electronic Colloquium on Computational Complexity, 12, 2006.

V. Conitzer and T. Sandholm. Complexity results about Nash equilibria. In: Proc. 18th Int. Joint Conf.
Artificial Intelligence, pp. 765-771, 2003.

C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou. The complexity of computing a Nash equi-
librium. Symp. on Theory of Computing, 2006, pp. 71-78.

C. Daskalakis, A. Mehta, and C.H. Papadimitriou. A note on approximate Nash equilibria. In:
Proc. 2006 Workshop on Internet Network Economics, in press.

C. Daskalakis and C.H. Papadimitriou. Three-player Games are Hard. Electronic Colloquium on
Computational Complexity, 139, 2005.

F.S. Evangelista and T.E.S. Raghavan. A note on correlated equilibrium. Intl. J. Game Theory,
25(1):35-41, 2005.

D. Gale, H-W. Kuhn, and A.W. Tucker. On symmetric games. In: H.-W. Kuhn and A.W. Tucker,
editors, Contributions to the Theory Games, 1:81-87. Princeton University Press, 1950.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, 1979.

I. Gilboa and E. Zemel. Nash and correlated equilibria: Some complexity considerations. Games
Econ. Behav., 1989.

P.W. Goldberg and C.H. Papadimitriou. Reducibility between equilibrium problems. Symp. on Theory
of Computing, 2006, pp. 62-70.

S. Hart and D. Schmeidler. Existence of correlated equilibria. Math. Operat. Res., 14(1):18-25, 1989.

M. Hirsch, C.H. Papadimitriou, and S. Vavasis. Exponential lower bounds for finding brouwer
fixpoints. J. Complexity, 5:379-416, 1989.

D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. How easy is local search? J. Comput. Syst.
Sci., 37(1):79-100, 1988.

BIBLIOGRAPHY 51

M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. In: Proc. Conf. on Uncer-
tainty in Artificial Intelligence, 2001, pp. 253-260.

K. Leyton-Brown and M. Tennenholtz. Local-effect games. Intl. Joint Conf. Artificial Intelligence,
2003, pp. 772-780.

R.J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. ACM Electronic
Commerce, 2003, pp. 36-41.

J. Nash. Noncooperative games. Ann. Math., 54:289-295, 1951.

C.H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence.
J. Comput. Syst. Sci., 48(3):498-532, 1994.

C.H. Papadimitriou. Computing correlated equilibria in multi-player games. Symp. on Theory of
Computing, 2005, pp. 49-56.

C.H. Papadimitriou and T. Roughgarden. Computing equilibria in multi-player games. Symp. on
Discrete Algorithms, 2005, pp. 82-91.

R. Savani and B. von Stengel. Exponentially many steps for finding a Nash equilibrium in a Bimatrix
Game. Proc. of 45th Fdns. on Comp. Science, pp. 258-267, 2004.

B. von Stengel. Computing equilibria for two-person games. Handbook of Game Theory with Eco-
nomic Applications, Vol. 3, R. J. Aumann and S. Hart, eds. Elsevier, Amsterdam, pp. 1723-1759,
2002.

CHAPTER 3

Equilibrium Computation for
Two-Player Games in Strategic
and Extensive Form

Bernhard von Stengel

Abstract

We explain algorithms for computing Nash equilibria of two-player games given in strategic form or
extensive form. The strategic form is a table that lists the players’ strategies and resulting payofts.
The “best response” condition states that in equilibrium, all pure strategies in the support of a
mixed strategy must get maximal, and hence equal, payoff. The resulting equations and inequalities
define polytopes, whose “completely labeled” vertex pairs are the Nash equilibria of the game. The
Lemke—Howson algorithm follows a path of edges of the polytope pair that leads to one equilibrium.
Extensive games are game trees, with information sets that model imperfect information of the players.
Strategies in an extensive game are combinations of moves, so the strategic form has exponential
size. In contrast, the linear-sized sequence form of the extensive game describes sequences of moves
and how to randomize between them.

3.1 Introduction

A basic model in noncooperative game theory is the strategic form that defines a game
by a set of strategies for each player and a payoff to each player for any strategy profile
(which is a combination of strategies, one for each player). The central solution concept
for such games is the Nash equilibrium, a strategy profile where each strategy is a best
response to the fixed strategies of the other players. In general, equilibria exist only
in mixed (randomized) strategies, with probabilities that fulfill certain equations and
inequalities. Solving these constraints is an algorithmic problem. Its computational
complexity is discussed in Chapter 2.

In this chapter, we describe methods for finding equilibria in sufficient detail to
show how they could be implemented. We restrict ourselves to games with two players.
These can be studied using polyhedra, because a player’s expected payoffs are linear
in the mixed strategy probabilities of the other player. Nash equilibria of games with
more than two players involve expected payoffs that are products of the other players’
probabilities. The resulting polynomial equations and inequalities require different
approaches.

53

54 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

For games in strategic form, we give the basic “best response condition” (Prop. 3.1,
see Section 3.2), explain the use of polyhedra (Section 3.3), and describe the Lemke—
Howson algorithm that finds one Nash equilibrium (Section 3.4). An implementation
without numerical errors uses integer pivoting (Section 3.5). “Generic” games (i.e.,
“almost all” games with real payoffs) are nondegenerate (see Definition 3.2); degenerate
games are considered in Section 3.5.

An extensive game (defined in Section 3.7) is a fundamental model of dynamic
interactions. A game tree models in detail the moves available to the players and
their information over time. The nodes of the tree represent game states. An in-
formation set is a set of states in which a player has the same moves, and does
not know which state he is in. A player’s strategy in an extensive game specifies a
move for each information set, so a player may have exponentially many strategies.
This complexity can be reduced: Subgames (see Section 3.8) are subtrees so that all
players know they are in the subgame. Finding equilibria inductively for subgames
leads to subgame perfect equilibria, but this reduces the complexity only if play-
ers are sufficiently often (e.g., always) informed about the game state. The reduced
strategic form applies to general games (see Section 3.9), but may still be expo-
nential. A player has perfect recall if his information sets reflect that he remembers
his earlier moves. Players can then randomize locally with behavior strategies. This
classic theorem (Corollary 3.12) is turned into an algorithm with the sequence form
(Sections 3.10 and 3.11) which is a strategic description that has the same size as the
game tree.

We give in this chapter an exposition of the main ideas, not of all earliest or latest
developments of the subject. Section 3.12 summarizes the main references. Further
research is outlined in Section 3.13.

3.2 Bimatrix Games and the Best Response Condition

We use the following notation throughout. Let (A, B) be a bimatrix game, where A and
B are m x n matrices of payoffs to the row player 1 and column player 2, respectively.
This is a two-player game in strategic form (also called “normal form”), which is
played by a simultaneous choice of a row i by player 1 and column j by player 2, who
then receive payoff a;; and b;;, respectively. The payoffs represent risk-neutral utilities,
so when facing a probability distribution, the players want to maximize their expected
payoff. These preferences do not depend on positive-affine transformations, so that A
and B can be assumed to have nonnegative entries, which are rationals, or more simply
integers, when A and B define the input to an algorithm.

All vectors are column vectors, so an m-vector x is treated as an m X 1 matrix.
A mixed strategy x for player 1 is a probability distribution on rows, written as an
m-vector of probabilities. Similarly, a mixed strategy y for player 2 is an n-vector of
probabilities for playing columns. The support of a mixed strategy is the set of pure
strategies that have positive probability. A vector or matrix with all components zero
is denoted by 0, a vector of all ones by 1. Inequalities like x > 0 between two vectors
hold for all components. B is the matrix B transposed.

BIMATRIX GAMES AND THE BEST RESPONSE CONDITION 55

Let M be the set of the m pure strategies of player 1 and let N be the set of the n
pure strategies of player 2. It is useful to assume that these sets are disjoint, as in

M={,...,m}, N={m+1,....,m+n) (3.1)

Then x € RY and y € R", which means, in particular, that the components of y are
y; for j € N. Similarly, the payoff matrices A and B belong to RM*V.

A best response to the mixed strategy y of player 2 is a mixed strategy x of player 1
that maximizes his expected payoff x " Ay. Similarly, a best response y of player 2 to
x maximizes her expected payoff x ' By. A Nash equilibrium is a pair (x, y) of mixed
strategies that are best responses to each other. The following proposition states that
a mixed strategy x is a best response to an opponent strategy y if and only if all pure
strategies in its support are pure best responses to y. The same holds with the roles of
the players exchanged.

Proposition 3.1 (Best response condition) Let x and y be mixed strategies of
player 1 and 2, respectively. Then x is a best response to y if and only if for all
ieM,

xi >0 = (Ay); =u =max{(Ay) | k € M}. (3.2)

PROOF (Ay); is the ith component of Ay, which is the expected payoff to
player 1 when playing row i. Then

xTAY =) "xi(Ay)i = xi(u— @ —(Ay)) =u— Y x; (W — (Ay)).
ieM ieM ieM
Sox"Ay < ubecause x; > 0and u — (Ay); > Oforalli € M,and x " Ay = u if
and only if x; > 0 implies (Ay); = u, as claimed. O

Proposition 3.1 has the following intuition: Player 1’s payoff x " Ay is linear in x,
so if it is maximized on a face of the simplex of mixed strategies of player 1, then it is
also maximized on any vertex (i.e., pure strategy) of that face, and if it is maximized
on a set of vertices then it is also maximized on any convex combination of them.
The proposition is useful because it states a finite condition, which is easily checked,
about all pure strategies of the player, rather than about the infinite set of all mixed
strategies. It can also be used algorithmically to find Nash equilibria, by trying out
the different possible supports of mixed strategies. All pure strategies in the support
must have maximum, and hence equal, expected payoff to that player. This leads to
equations for the probabilities of the opponent’s mixed strategy.

As an example, consider the 3 x 2 bimatrix game (A, B) with

33 32
A=1{2 5], B=1|2 6|. (3.3)
0 6 31

This game has only one pure-strategy Nash equilibrium, namely the top row (numbered
1 in the pure strategy set M = {1, 2, 3} of player 1), together with the left column (which
by (3.1) has number 4 in the pure strategy set N = {4, 5} of player 2). A pure strategy

56 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

equilibrium is given by mixed strategies of support size 1 each, so here it is the mixed
strategy pair ((1,0,0)7, (1,0)7).

The game in (3.3) has also some mixed equilibria. Any pure strategy of a player
has a unique pure best response of the other player, so in any other equilibrium, each
player must mix at least two pure strategies to fulfill condition (3.2). In particular,
player 2 must be indifferent between her two columns. If the support of player 1’s
mixed strategy x is {1, 2}, then player 1 can make player 2 indifferent by x; = 4/5,
x = 1/5, which is the unique solution to the equations x; + x, = 1 and (for the two
columns of B) 3x; 4+ 2x, = 2x; + 6x;. In turn, (3.2) requires that player 2 plays with
probabilities y, and ys so that player 1 is indifferent between rows 1 and 2, i.e.,
3y4 4+ 3ys = 2y4 + Sys or (y4, y5) = (2/3, 1/3). The vector of expected payoffs to
player 1 is then Ay = (3, 3,2)" so that (3.2) holds.

A second mixed equilibrium is (x, y) = ((0, 1/3,2/3)T, (1/3,2/3)T) with expected
payoft vectors x ' B = (8/3, 8/3)and Ay = (3,4, 4)". Again, the support of x contains
only pure strategies i where the corresponding expected payoff (Ay); is maximal.

A third support pair, {1, 3}, for player 1, does not lead to an equilibrium, for two
reasons. First, player 2 would have to play y = (1/2, 1/2)T to make player 1 indifferent
between row 1 and row 3. But then Ay = (3, 7/2, 3)T, so that rows 1 and 3 give the
same payoff to player 1 but not the maximum payoff for all rows. Secondly, making
player 2 indifferent via 3x; 4+ 3x3 = 2x; + x3 has the solution x; =2, x3 = —1 in
order to have x; + x3 = 1, so x is not a vector of probabilities.

In this “support testing” method, it normally suffices to consider supports of equal
size for the two players. For example, in (3.3) it is not necessary to consider a mixed
strategy x of player 1 where all three pure strategies have positive probability, because
player 1 would then have to be indifferent between all these. However, a mixed strategy
y of player 1 is already uniquely determined by equalizing the expected payoffs for
two rows, and then the payoff for the remaining row is already different. This is the
typical, “nondegenerate” case, according to the following definition.

Definition 3.2 A two-player game is called nondegenerate if no mixed strategy
of support size k has more than k pure best responses.

In a degenerate game, Definition 3.2 is violated, for example, if there is a pure strat-
egy that has two pure best responses. For the moment, we consider only nondegenerate
games, where the player’s equilibrium strategies have equal sized support, which is
immediate from Proposition 3.1:

Proposition 3.3 In any Nash equilibrium (x, y) of a nondegenerate bimatrix
game, x and y have supports of equal size.

The “support testing” algorithm for finding equilibria of a nondegenerate bimatrix
game then works as follows.

Algorithm 3.4 (Equilibria by support enumeration) Input: A nondegenerate
bimatrix game. Output: All Nash equilibria of the game. Method: For each k =
1, ..., min{m, n} and each pair (I, J) of k-sized subsets of M and N, respectively,

EQUILIBRIA VIA LABELED POLYTOPES 57

solve the equations) ,_, x;b;j =vforje J, >, xi =1, Zjej a;jy; = u, for
iel, Zje] v; = 1, and check that x > 0, y > 0, and that (3.2) holds for x and
analogously y.

The linear equations considered in this algorithm may not have solutions, which then
mean no equilibrium for that support pair. Nonunique solutions occur only for degen-
erate games, because a linear dependency allows to reduce the support of a mixed
strategy. Degenerate games are discussed in Section 3.6 below.

3.3 Equilibria via Labeled Polytopes

To identify the possible supports of equilibrium strategies, one can use “best response
polytopes” that express directly the inequalities of best responses and nonnegative
probabilities.

We first recall some notions from the theory of (convex) polyhedra. An affine
combination of points 71, ..., z; in some Euclidean space is of the form Zle ZiMhi,
where A, ..., A arereals with Zf‘: | Ai = 1.1tis called a convex combination if A; > 0
for all i. A set of points is convex if it is closed under forming convex combinations.
Given points are daffinely independent if none of these points are an affine combination
of the others. A convex set has dimension d if and only if it has d + 1, but no more,
affinely independent points.

A polyhedron P in R? isaset {z € R? | Cz < g} for some matrix C and vector g. It
is called full-dimensional if it has dimension d. It is called a polytope if it is bounded.
Afaceof Pisaset{z € P |c'z = qo} for some c € R, gy € R so that the inequality
¢z < goholds forall z in P. A vertex of P is the unique element of a zero-dimensional
face of P. An edge of P is a one-dimensional face of P. A facet of a d-dimensional
polyhedron P is a face of dimension d — 1. It can be shown that any nonempty face
F of P can be obtained by turning some of the inequalities defining P into equalities,
which are then called binding inequalities. That is, F ={z € P | c;z=g¢q;, i € I},
where ¢;z < g; for i € I are some of the rows in Cz < g. A facet is characterized by
a single binding inequality which is irredundant; i.e., the inequality cannot be omitted
without changing the polyhedron. A d-dimensional polyhedron P is called simple if
no point belongs to more than d facets of P, which is true if there are no special
dependencies between the facet-defining inequalities.

The “best response polyhedron” of a player is the set of that player’s mixed strategies
together with the “upper envelope” of expected payoffs (and any larger payoffs) to the
other player. For player 2 in the example (3.3), it is the set Q of triples (v4, ys, u) that
fulfill 3y, +3ys < u,2ys +5ys < u,0y4 +6ys < u,ys > 0,ys > 0,and ys + y5 = 1.
The first three inequalities, in matrix notation Ay < 1u, say that u is at least as large
as the expected payoff for each pure strategy of player 1. The other constraints y > 0
and 17y = 1 state that y is a vector of probabilities. The best response polyhedron P
for player 1 is defined analogously. Generally,

={x,v)eRY" xR |x>0,1"x=1, B'x < 1v},

P
— 3.4
Q={0.u)eR" xR | Ay <1u, y>0, 1Ty =1}. G4

58 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

0 I =Y
0 1 RO

Figure 3.1. Best reponse polyhedron Q for strategies of player 2, and corresponding poly-
tope Q, which has vertices 0, p, g, r, s.

The left picture in Figure 3.1 shows Q for our example, for 0 < y; < 1, which uniquely
determines ys as 1 — y,. The circled numbers indicate the facets of Q, which are either
the strategies i € M of the other player 1 or the own strategies j € N. Facets 1, 2, 3 of
player 1 indicate his best responses together with his expected payoff u. For example,
1 is a best response when y4 > 2/3. Facets 4 and 5 of player 2 tell when the respective
own strategy has probability zero, namely y; = 0 or ys = 0.

We say a point (y, u) of Q has label k € M U N if the kth inequality in the definition
of Q is binding, which for k =i € M is the ith binding inequality Zje Naijyj=u
(meaning i is a best response to y), or for k = j € N the binding inequality y; = 0.
In the example, (y4, ys, u) = (2/3, 1/3, 3) has labels 1 and 2, so rows 1 and 2 are
best responses to y with expected payoff 3 to player 1. The labels of a point (x, v)
of P are defined correspondingly: It has label i € M if x; = 0, and label j € N if
Y iem bijxi = v. With these labels, an equilibrium is a pair (x, y) of mixed strategies
so that with the corresponding expected payoffs v and u, the pair ((x, v), (y, #)) in
P x Q is completely labeled, which means that every label k € M U N appears as a
label either of (x, v) or of (v, u). This is equivalent to the best response condition (3.2):
A missing label would mean a pure strategy of a player, e.g., i of player 1, that does not
have probability zero, so x; > 0, and is also not a best response, since »_ jen Gijyj < U,
because the respective inequality i is not binding in P or Q. But this is exactly when
the best response condition is violated. Conversely, if every label appears in P or Q,
then each pure strategy is a best response or has probability zero, so x and y are mutual
best responses.

The constraints (3.4) that define P and Q can be simplified by eliminating the payoff
variables 1 and v, which works if these are always positive. For that purpose, assume
that

A and BT are nonnegative and have no zero column. 3.5

EQUILIBRIA VIA LABELED POLYTOPES 59

Figure 3.2. The best response polytopes P (with vertices 0, a, b, ¢, d, e) and Q for the game
in (3.3). The arrows describe the Lemke-Howson algorithm (see Section 3.4).

We could simply assume A > 0 and B > 0, but it is useful to admit zero matrix entries
(e.g., as in the identity matrix); even negative entries are possible as long as the upper
envelope remains positive, e.g., for as4 (currently zero) in (3.3), as Figure 3.1 shows.

For P, we divide each inequality Y iembijxi <v by v, which gives
Zie u bij(xi/v) <1, treat x; /v as a new variable that we call again x;, and call the
resulting polyhedron P. Similarly, Q is replaced by Q by dividing each inequality in
Ay < 1u by u. Then

P={xeRM| x>0, BTx <1},
(3.6)
0={yeRV|Ay=<1 y=0}.
It is easy to see that (3.5) implies that P and Q are full-dimensional polytopes, unlike
P and Q. In effect, we have normalized the expected payoffs to be 1, and dropped the
conditions 1 "x = 1 and 17y = 1. Nonzero vectors x € P and y € Q are multiplied by
v=1/1"x and u = 1/1"y to turn them into probability vectors. The scaling factors v
and u are the expected payoffs to the other player.

The set P is in one-to-one correspondence with P — {0} with the map (x, v) — x -
(1/v). Similarly, (y, u) — y - (1/u) defines a bijection Q — Q — {0}. These bijections
are not linear, but are known as “projective transformations” (for a visualization see von
Stengel, 2002, Fig. 2.5). They preserve the face incidences since a binding inequality in
P (respectively, Q) corresponds to a binding inequality in P (respectively, Q) and vice
versa. In particular, points have the same /abels defined by the binding inequalities,
which are some of the m + n inequalities defining P and Q in (3.6). An equilibrium
is then a completely labeled pair (x, y) € P x Q — {(0, 0)}, which has for each label
i € M the respective binding inequality in x > 0 or Ay < 1, and for each j € N the
respective binding inequality in BTx < 1 or y > 0.

For the example (3.3), the polytope Q is shown on the right in Figure 3.1 and in
Figure 3.2. The vertices y of Q, written as y ', are (0, 0) with labels 4, 5, vertex p =
(0, 1/6) with labels 3, 4, vertex g = (1/12, 1/6) with labels 2, 3, vertex r = (1/6, 1/9)
with labels 1, 2, and s = (1/3, 0) with labels 1, 5. The polytope P is shown on the
left in Figure 3.2. Its vertices x are 0 with labels 1, 2, 3, and (written as xT) vertex
a = (1/3,0, 0) with labels 2, 3, 4, vertex b = (2/7, 1/14, 0) with labels 3, 4, 5, vertex
¢ = (0, 1/6,0) with labels 1, 3,5, vertex d = (0, 1/8, 1/4) with labels 1, 4, 5, and

60 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

e = (0,0, 1/3) with labels 1, 2, 4. Note that the vectors alone show only the “own”
labels as the unplayed own strategies; the information about the other player’s best
responses is important as well. The following three completely labeled vertex pairs
define the Nash equilibria of the game, which we already found earlier: the pure
strategy equilibrium (a, s), and the mixed equilibria (b, r) and (d, ¢g). The vertices ¢
and e of P, and p of Q, are not part of an equilibrium.

Nondegeneracy of a bimatrix game (A, B) can be stated in terms of the polytopes
P and Q in (3.6) as follows: no point in P has more than m labels, and no point in Q
has more than » labels. (If x € P and x has support of size k and L is the set of labels
of x, then |L N M| =m — k, so |L| > m implies x has more than k best responses in
L N N.)Then P and Q are simple polytopes, because a point of P, say, that is on more
than m facets would have more than m labels. Even if P and Q are simple polytopes, the
game can be degenerate if the description of a polytope is redundant in the sense that
some inequality can be omitted, but nevertheless is sometimes binding. This occurs
if a player has a pure strategy that is weakly dominated by or payoff equivalent to
some other mixed strategy. Nonsimple polytopes or redundant inequalities of this kind
do not occur for “generic” payoffs; this illustrates the assumption of nondegeneracy
from a geometric viewpoint. (A strictly dominated strategy may occur generically,
but it defines a redundant inequality that is never binding, so this does not lead to a
degenerate game.)

Because the game is nondegenerate, only vertices of P can have m labels, and only
vertices of Q can have n labels. Otherwise, a point of P with m labels that is not a
vertex would be on a higher dimensional face, and a vertex of that face, which is a
vertex of P, would have additional labels. Consequently, only vertices of P and Q
have to be inspected as possible equilibrium strategies.

Algorithm 3.5 (Equilibria by vertex enumeration) /nput: A nondegenerate
bimatrix game. Output: All Nash equilibria of the game. Method: For each vertex
x of P — {0}, and each vertex y of Q — {0}, if (x, y) is completely labeled, output
the Nash equilibrium (x - 1/17x, y - 1/17y).

Algorithm 3.5 is superior to the support enumeration Algorithm 3.4 because there are
more supports than vertices. For example, if m = n, then approximately 4" possible
support pairs have to be tested, but P and Q have less than 2.6" many vertices,
by the “upper bound theorem” for polytopes. This entails less work, assuming that
complementary vertex pairs (x, y) are found efficiently.

Enumerating all vertices of a polytope P, say, is a standard problem in computional
geometry. The elegant /rs (lexicographic reverse search) algorithm considers a known
vertex, like 0 for P in (3.6), and a linear objective function that, over P, is maximized
at that vertex, like the function x +> —1" x. For any vertex of P, the simplex algorithm
with a unique pivoting rule (e.g., Bland’s least-index rule for choosing the entering
and leaving variable) then generates a unique path to 0, defining a directed tree on the
vertices of P with root 0. The algorithm explores that tree by a depth-first search from
0 which “reverts” the simplex steps by considering recursively for each vertex x of P
the edges to vertices x’ so that the simplex algorithm pivots from x’ to x.

THE LEMKE—HOWSON ALGORITHM 61
3.4 The Lemke-Howson Algorithm

Algorithms 3.4 and 3.5 find all Nash equilibria of a nondegenerate bimatrix game
(A, B). In contrast, the Lemke-Howson (for short LH) algorithm finds one Nash
equilibrium, and provides an elementary proof that Nash equilibria exist. The LH
algorithm follows a path (called LH path) of vertex pairs (x, y) of P x Q, for the
polytopes P and Q defined in (3.6), that starts at (0, 0) and ends at a Nash equilibrium.

An LH path alternately follows edges of P and Q, keeping the vertex in the other
polytope fixed. Because the game is nondegenerate, a vertex of P is given by m labels,
and a vertex of Q is given by n labels. An edge of P is defined by m — 1 labels. For
example, in Figure 3.2 the edge defined by labels 1 and 3 joins the vertices 0 and c.
Dropping a label [of a vertex x of P, say, means traversing the unique edge that has
all the labels of x except for /. For example, dropping label 2 of the vertex 0 of P
in Figure 3.2 gives the edge, defined by labels 1 and 3, that joins 0 to vertex c. The
endpoint of the edge has a new label, which is said to be picked up, so in the example
label 5 is picked up at vertex c.

The LH algorithm starts from (0, 0) in P x Q. This is called the artificial equi-
librium, which is a completely labeled vertex pair because every pure strategy has
probability zero. It does not represent a Nash equilibrium of the game because the zero
vector cannot be rescaled to a mixed strategy vector. An initial free choice of the LH
algorithm is a pure strategy k of a player (any label in M U N), called the missing label.
Starting with (x, y) = (0, 0), label k is dropped. At the endpoint of the corresponding
edge (of P if k € M, of Q if k € N), the new label that is picked up is duplicate
because it was present in the other polytope. That duplicate label is then dropped in the
other polytope, picking up a new label. If the newly picked label is the missing label,
the algorithm terminates and has found a Nash equilibrium. Otherwise, the algorithm
repeats by dropping the duplicate label in the other polytope, and continues in this
fashion.

In the example (3.3), suppose that the missing label is k = 2. The polytopes P and
Q are shown in Figure 3.2. Starting from 0 in P, label 2 is dropped, traversing the edge
from 0 to vertex ¢, which is the set of points x of P that have labels 1 and 3, shown
by an arrow in Figure 3.2. The endpoint c of that edge has label 5 which is picked up.
At the vertex pair (¢, 0) of P x Q, all labels except for the missing label 2 are present,
so label 5 is now duplicate because it is both a label of ¢ and of 0. The next step is
therefore to drop the duplicate label 5 in Q, traversing the edge from 0 to vertex p
while keeping ¢ in P fixed. The label that is picked up at vertex p is 3, which is now
duplicate. Dropping label 3 in P defines the unique edge defined by labels 1 and 5,
which joins vertex ¢ to vertex d. At vertex d, label 4 is picked up. Dropping label 4
in Q means traversing the edge of Q from p to g. At vertex ¢, label 2 is picked up.
Because 2 is the missing label, the current vertex pair (d, q) is completely labeled, and
it is the Nash equilibrium found by the algorithm.

In terms of the game, the first two LH steps amount to taking a pure strategy (given
by the missing label &, say of player 1) and considering its best response, say j, which
defines a pure strategy pair (k, j). If this is not already an equilibrium, the best response
i to j is not k, so that i is a duplicate label, and is now given positive probability in

62 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

addition to k. In general, one possibility is that a duplicate label is a new best response
which in the next step gets positive probability, as in this case. Alternatively, the
duplicate label is a pure strategy whose probability has just become zero, so that it no
longer needs to be maintained as a best response in the other polytope and the path
moves away from the best response facet.

Algorithm 3.6 (Lemke-Howson) [nput: Nondegenerate bimatrix game. Out-
put: One Nash equilibrium of the game. Method: Choose k € M U N, called the
missing label. Let (x, y) = (0,0) € P x Q. Drop label k (from x in P if k € M,
from y in Q if kK € N). Loop: Call the new vertex pair (x, y). Let / be the label
that is picked up. If [= k, terminate with Nash equilibrium (x, y) (rescaled as
mixed strategy pair). Otherwise, drop [in the other polytope and repeat.

The LH algorithm terminates, and finds a Nash equilibrium, because P x Q has
only finitely many vertex pairs. The next vertex pair on the path is always unique.
Hence, a given vertex pair cannot be revisited because that would provide an additional
possibility to proceed in the first place.

We have described the LH path for missing label k by means of alternating edges
between two polytopes. In fact, it is a path on the product polytope P x Q, given by
the set of pairs (x, y) of P x Q that are k-almost completely labeled, meaning that
every label in M U N — {k} appears as a label of either x or y. In Figure 3.2 for k = 2,
the vertex pairs on the path are (0, 0), (c, 0), (¢, p), (d, p), (d, g).

For a fixed missing label k, the k-almost completely labeled vertices and edges of the
product polytope P x Q form a graph of degree 1 or 2. Clearly, such a graph consists of
disjoints paths and cycles. The endpoints of the paths are completely labeled. They are
the Nash equilibria of the game and the artificial equilibrium (0, 0). Since the number
of endpoints of the paths is even, we obtain the following.

Corollary 3.7 A nondegenerate bimatrix game has an odd number of Nash
equilibria.

The LH algorithm can start at any Nash equilibrium, not just the artificial equilib-
rium. In Figure 3.2 with missing label 2, starting the algorithm at the Nash equilibrium
(d, g) would just generate the known LH path backward to (0, 0). When started at the
Nash equilibrium (a, s), the LH path for the missing label 2 gives the vertex pair (b, s),
where label 5 is duplicate, and then the equilibrium (b, r). This path cannot go back
to (0, 0) because the path leading to (0, 0) starts at (d, g). This gives the three Nash
equilibria of the game as endpoints of the two LH paths for missing label 2.

These three equilibria can also be found by the LH algorithm by varying the missing
label. For example, the LH path for missing label 1 in Figure 3.2 leads to (a, s), from
which (b, r) is subsequently found via missing label 2.

However, some Nash equilibria can remain elusive to the LH algorithm. An example
is the following symmetric 3 x 3 game with

3 30
A=B" =14 0 1]. (3.7)
0 4 5

INTEGER PIVOTING 63

Every Nash equilibrium (x, y) of this game is symmetric, i.e., x = y, where xT is

0,0,1), (1/2,1/4,1/4), or (3/4,1/4, 0). Only the first of these is found by the LH
algorithm, for any missing label; because the game is symmetric, it suffices to consider
the missing labels 1, 2, 3. (A symmetric game remains unchanged when the players
are exchanged; a symmetric game has always a symmetric equilibrium, but may also
have nonsymmetric equilibria, which obviously come in pairs.)

3.5 Integer Pivoting

The LH algorithm follows the edges of a polyhedron, which is implemented alge-
braically by pivoting as used by the simplex algorithm for solving a linear program. We
describe an efficient implementation that has no numerical errors by storing integers of
arbitrary precision. The constraints defining the polyhedron are thereby represented as
linear equations with nonnegative slack variables. For the polytopes P and Q in (3.6),
these slack variables are nonnegative vectors s € RY and r € RM so that x € P and
y € Q if and only if

B'x+s=1, r+ Ay =1, (3.8)
and
x>0, s>0, r>0, y=>0. 3.9

A binding inequality corresponds to a zero slack variable. The pair (x, y) is completely
labeled if and only if x;#; = O foralli € M and y;s; = Oforall j € N, which by (3.9)
can be written as the orthogonality condition

x'r=0, yTs =0. (3.10)

A basic solution to (3.8) is given by n basic (linearly independent) columns of
BTx + s =1 and m basic columns of r + Ay = 1, where the nonbasic variables that
correspond to the m respectively n other (nonbasic) columns are set to zero, so that the
basic variables are uniquely determined. A basic feasible solution also fulfills (3.9),
and defines a vertex x of P and y of Q. The labels of such a vertex are given by the
respective nonbasic columns.

Pivoting is a change of the basis where a nonbasic variable enters and a basic variable
leaves the set of basic variables, while preserving feasibility (3.9). We illustrate this for
the edges of the polytope P in Figure 3.2 shown as arrows, which are the edges that
connect 0 to vertex ¢, and c to d. The system B'x 4+ s = 1 is here

3)6] + 2)62 + 3)63 + S4 =1
2x1+@x2+ X3 + 55 =1

and the basic variables in (3.11) are s4 and s5, defining the basic feasible solution s, = 1
and ss = 1, which is simply the right-hand side of (3.11) because the basic columns
form the identity matrix. Dropping label 2 means that x; is no longer a nonbasic
variable, so x; enters the basis. Increasing x, while maintaining (3.11) changes the
current basic variables as s4 = 1 — 2x3, s5s = 1 — 6x,, and these stay nonnegative as
long as x; < 1/6. The term 1/6 is the minimum ratio, over all rows in (3.11) with

@3.11)

64 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

positive coefficients of the entering variable x,, of the right-hand side divided by the
coefficient. (Only positive coefficients bound the increase of x;, which applies to at
least one row since the polyhedron P is bounded.) The minimum ratio test determines
uniquely ss as the variable that leaves the basis, giving the label 5 that is picked up in
that step. The respective coefficient 6 of x; is indicated by a box in (3.11), and is called
the pivot element; its row is the pivot row and its column is the pivot column.

Algebraically, pivoting is done by applying row operations to (3.11) so that the new
basic variable x, has a unit column, so that the basic solution is again given by the
right-hand side. Integer pivoting is a way to achieve this while keeping all coefficients
of the system as integers; the basic columns then form an identity matrix multiplied by
an integer. To that end, all rows (which in (3.11) is only the first row) except for the
pivot row are multiplied with the pivot element, giving the intermediate system

18)61 + 12)62 + 18)63 + 6S4 =6

2)61 + 6)62 + X3 + 55 = 1 (312)

Then, suitable multiples of the pivot row are subtracted from the other rows to obtain
zero entries in the pivot column, giving the new system

14)61 —|— X3 —I— 6S4 — 2S5 = 4 (313)
2X1 —|— 6XQ —|— X3 —|— §5 = 1

In (3.13), the basic columns for the basic variables s4 and x; form the identity matrix,
multiplied by 6 (which is pivot element that has just been used). Clearly, all matrix
entries are integers. The next step of the LH algorithm in the example is to let ys be the
entering variable in the system r + Ay = 1, which we do not show. There, the leaving
variable is r3 (giving the duplicate label 3) so that the next entering variable in (3.13)
is x3. The minimum ratio test (which can be performed using only multiplications,
not divisions) shows that among the nonnegativity constraints 6s4, = 4 — 16x3 > 0 and
6x, = 1 — x3 > 0, the former is tighter so that s4 is the leaving variable. The pivot
element, shown by a box in (3.13), is 16, with the first row as pivot row.

The integer pivoting step is to multiply the other rows with the pivot element, giving

14x4 + 16x3 + 654 — 255 = 4

32x; + 96x; + 16x3 + 1655 = 16. (3.14)

Subsequently, a suitable multiple of the pivot row is subtracted from each other row,
giving the new system

14x; + 16x3 + 654 — 255 = 4

18)61 + 96)62 — 6S4 + 18S5 =12 (315)

with x3 and x;, as basic variables. However, except for the pivot row, the unchanged
basic variables have larger coefficients than before, because they have been multiplied
with the new pivot element 16. The second row in (3.15) can now be divided by the
previous pivot element 6, and this division is integral for all coefficients in that row;
this is the key feature of integer pivoting, explained shortly. The new system is

14)6] + 16)63 + 6S4 - 2S5 =1

3X1 + 16x2 — 84 + 3S5 = 2. (316)

DEGENERATE GAMES 65

This is the final system because the duplicate label 4 (given by the variable s4 that has
just left) is dropped in Q, where the missing label 2 is picked up. The basic solution in
(3.16) is vertex d of P with x3 = 4/16, x, = 2/16, and labels (given by the nonbasic
columns) 1, 4, and 5.

Integer pivoting, as illustrated in this example, always maintains an integer matrix
(or “tableau”) of coefficients of a system of linear equations that is equivalent to the
original system B'x + s = 1, in the form

CB'x+Cs=C1. (3.17)

In (3.17), C is the inverse of the basis matrix given by the basic columns of the original
system, multiplied by the determinant of the basis matrix (which is 6 in (3.13), and
16 in (3.16)). The matrix C is given by the (integer) cofactors of the basis matrix; the
cofactor of a matrix entry is the determinant of the matrix when the row and column
of that element are deleted. Each entry in (3.17) has a bounded number of digits (by at
most a factor of n log n compared to the original matrix entries), so integer pivoting is
a polynomial-time algorithm. It is also superior to using fractions of integers (rational
numbers) because their cancelation requires greatest common divisor computations
that take the bulk of computation time. Only the final fractions defining the solution,
like x3 = 4/16 and x, = 2/16 in (3.16), may have to be canceled.

3.6 Degenerate Games

The uniqueness of an LH path requires a nondegenerate game. In a degenerate game, a
vertex of P, for example, may have more than m labels. When that vertex is represented
as a basic feasible solution as in (3.17) this means that not only the m nonbasic variables
are zero, but also at least one basic variable. Such a degenerate basic feasible solution
results from a pivoting step where the leaving variable (representing the label that is
picked up) is not unique.

As an example, consider the 3 x 2 game

3 3 3 3
A=1|2 5], B={(2 6], (3.18)
0 6 3 1

which agrees with (3.3) except that b;5 = 3. The polytope Q for this game is the same
as before, shown on the right in Figure 3.2. The polytope P is the convex hull of the
original vertices 0, a, ¢, d, e shown on the left in Figure 3.2, so vertex b has merged
with a. The new facets of P with labels 4 and 5 are triangles with vertices a, d, e and
a, c, d, respectively.

In this example (3.18), the first step of the LH path for missing label 1 would be
from (0, 0) to (a, 0), where the two labels 4 and 5 are picked up, because vertex a
has the four labels 2, 3, 4, 5 due to the degeneracy. If then label 4 is dropped in Q,
the algorithm finds the equilibrium (a, s) and no problem occurs. However, dropping
label 5 in Q would mean a move to (a, p) where label 3 is picked up, and none of the
two edges of P that move away from the facet with label 3 (which are the edges from

66 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

a to d and from a to e) would, together with p, be 1-almost completely labeled, so the
algorithm fails at this point.

Degeneracy can be resolved by perturbing the linear system lexicographically,
which is well known from linear programming. Assume that the system B'x + s =
1, say, is changed to the perturbed system B'x +s =1+ (¢!,...,&")". After any
number of pivoting steps, this system has the form

CB'x+Cs=C1+CE",....,eMT (3.19)

for some invertible matrix C. The corresponding unperturbed basic feasible solution
may have a zero basic variable, which is a row of C1, but for sufficiently small ¢ > 0 it
is positive if and only if in that row the first nonzero entry of the matrix C is positive; this
is the invariant maintained by the algorithm, using a more general “lexico-minimum”
ratio test. No actual perturbance is required, and C is already stored in the system as
the matrix of coefficients of s, as seen from (3.19).

Degenerate games may have infinite sets of equilibria. In the example (3.18), vertex
a of P, which represents the pure strategy (1,0,0)" of player 1, together with the
entire edge that joins vertices r and s of Q, defines a component of Nash equilibria,
where player 2 plays some mixed strategy (ys, | — y4) for2/3 < y4 < 1. However, this
equilibrium component is a convex combination of the “extreme” equilibria (a, r) and
(a, s). In general, even in a degenerate game, the Nash equilibria can be described in
terms of pairs of vertices of P and Q. We write conv U for the convex hull of a set U.

Proposition 3.8 Let (A, B) be a bimatrix game, and (x,y) € P x Q. Then
(x, y) (rescaled) is a Nash equilibrium if and only if there is a set U of vertices of
P — {0} and a set V of vertices of Q — {0} so that x € convU and y € convV,
and every (u, v) € U x V is completely labeled.

Proposition 3.8 holds because labels are preserved under convex combinations, and
because every face of P or Q has the labels of its vertices, which are vertices of the
entire polytope; for details see von Stengel (2002, Thm. 2.14).

The following algorithm, which extends Algorithm 3.5, outputs a complete descrip-
tion of all Nash equilibria of a bimatrix game: Define a bipartite graph on the vertices
of P — {0} and Q — {0}, whose edges are the completely labeled vertex pairs (x, y).
The “cliques” (maximal complete bipartite subgraphs) of this graph of the form U x V
then define sets of Nash equilibria conv U x conv V whose union is the set of all Nash
equilibria. These sets are called “maximal Nash subsets.” They may be nondisjoint,
if they contain common points (x, y). The connected unions of these sets are usually
called the (topological) components of Nash equilibria.

3.7 Extensive Games and Their Strategic Form

A game in strategic form is a “static” description of an interactive situation, where play-
ers act simultaneously. A detailed “dynamic” description is an extensive game where
players act sequentially, where some moves can be made by a chance player, and where
each player’s information about earlier moves is modeled in detail. Extensive games are

EXTENSIVE GAMES AND THEIR STRATEGIC FORM 67

L r L r
2 5]|(L,S) 2 6](L,S)
0 6((L,T) 3 1T
A= 3 3|(R,S) b= 3 3|(R,S)
3 3|(R,T) 3 3 |(R,T)
01 r 01
0 0
L L
A= |3 R B=|3 R

(2) <0) (5) (6) 2 5|LS 2 6|LS
2) \3) \6/ \1 0 6|LT 3 1|LT
Figure 3.3. Left: A game in extensive form. Top right: Its strategic form payoff matrices A and B.
Bottom right: Its sequence form payoff matrices A and B, where rows and columns correspond

to the sequences of the players which are marked at the side. Any sequence pair not leading
to a leaf has matrix entry zero, which is left blank.

a fundamental representation of dynamic interactions which generalizes other models
like repeated and multistage games, or games with incomplete information.

The basic structure of an extensive game is a directed tree. The nodes of the tree
represent game states. Trees (rather than general graphs) are used because then a game
state encodes the full history of play. Only one player moves at any one state along
a tree edge. The game starts at the root (initial node) of the tree and ends at a leaf
(terminal node), where each player receives a payoff. The nonterminal nodes are called
decision nodes. A player’s possible moves are assigned to the outgoing edges of the
decision node.

The decision nodes are partitioned into information sets. All nodes in an information
set belong to the same player, and have the same moves. The interpretation is that when
a player makes a move, he only knows the information set but not the particular node
he is at. In a game with perfect information, all information sets are singletons (and
can therefore be omitted). We denote the set of information sets of player i by H;,
information sets by #, and the set of moves at & by Cj,.

Figure 3.3 shows an example of an extensive game. Moves are marked by upper-case
letters for player 1 and by lowercase letters for player 2. Information sets are indicated
by ovals. The two information sets of player 1 have move sets {L, R} and {S, T'}, and
the information set of player 2 has move set {/, r}. A play of the game may proceed
by player 1 choosing L, player 2 choosing r, and player 1 choosing S, after which the
game terminates with payoffs 5 and 6 to players 1 and 2. By definition, move S of
player 1 is the same, no matter whether player 2 has chosen [or r, because player 1
does not know the game state in his second information set.

At some decision nodes, the next move may be a chance move. Chance is here
treated as an additional player O, who receives no payoff and who plays according to
a known behavior strategy. A behavior strategy of player i is given by a probability
distribution on Cj, for all 4 in H;. (The information sets belonging to the chance player
are singletons.) A pure strategy is a behavior strategy where each move is picked

68 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

deterministically. A pure strategy of player i can be regarded as an element (c;,) e, of
]_[he,_,,_ Cj, that is, as a tuple of moves, like (L, S) for player 1 in Figure 3.3.

Tabulating all pure strategies of the players and recording the resulting expected
payoffs defines the strategic form of the game. In Figure 3.3, the strategic form of the
extensive game is shown at the top right, with payoff matrices A and B to player 1 and
player 2.

Given the strategic form, a player can play according to a mixed strategy, which is
a probability distribution on pure strategies. The player chooses a pure strategy, which
is a complete plan of action, according to this distribution, and plays it in the game.
In contrast, a behavior strategy can be played by “delaying” the random move until
the player reaches the respective information set. It can be considered as a special
mixed strategy since it defines a probability for every pure strategy, where the moves
at information sets are chosen independently.

We consider algorithms for finding Nash equilibria of an extensive game, with the
tree together with the described game data as input. The strategic form is bad for this
purpose because it is typically exponentially large in the game tree. As described in
the subsequent sections, this complexity can be reduced, in some cases by considering
subgames and corresponding subgame perfect equilibria. The reduced strategic form of
the game is smaller but may still be exponentially large. A reduction from exponential
to linear size is provided by the sequence form, which allows one to compute directly
behavior strategies rather than mixed strategies.

3.8 Subgame Perfect Equilibria

A subgame of an extensive game is a subtree of the game tree that includes all infor-
mation sets containing a node of the subtree. Figure 3.3 has a subgame starting at the
decision node of player 2; the nodes in the second information set of player 1 are not
roots of subgames because player 1 does not know that he is in the respective subtree.
In the subgame, player 2 moves first, but player 1 does not get to know that move.
So this subgame is equivalent to a 2 x 2 game in strategic form where the players act
simultaneously. (In this way, every game in strategic form can be represented as a game
in extensive form.)

The subgame in Figure 3.3 has a unique mixed equilibrium with probability 2/3 for
the moves T and r, respectively, and expected payoff 4 to player 1 and 8/3 to player 2.
Replacing the subgame by the payoff pair (4, 8/3), one obtains a very simple game
with moves L and R for player 1, where L is optimal. So player 1’s mixed strategy
with probabilities 1/3 and 2/3 for (L, S) and (L, T') and player 2’s mixed strategy
(1/3,2/3) for I, r define a Nash equilibrium of the game. This is the, here unique,
subgame perfect equilibrium of the game, defined by the property that it induces a
Nash equilibrium in every subgame.

Algorithm 3.9 (Subgame perfect equilibrium) /nput: An extensive game.
Output: A subgame perfect Nash equilibrium of the game. Method: Consider,
in increasing order of inclusion, each subgame of the game, find a Nash equilib-
rium of the subgame, and replace the subgame by a new terminal node that has
the equilibrium payoffs.

REDUCED STRATEGIC FORM 69

In a game with perfect information, every node is the root of a subgame. Then Algo-
rithm 3.9 is the well-known, linear time backward induction method, also sometimes
known as “Zermelo’s algorithm.” Because the subgame involves only one player in
each iteration, a deterministic move is optimal, which shows that any game with perfect
information has a (subgame perfect) Nash equilibrium where every player uses a pure
strategy.

In games with imperfect information, a subgame perfect equilibrium may require
mixed strategies, as Figure 3.3 demonstrates.

3.9 Reduced Strategic Form

Not all extensive games have nontrivial subgames, and one may also be interested
in equilibria that are not subgame perfect. In Figure 3.3, such an equilibrium is the
pure strategy pair ({(R, S), [). Here, player 2 is indifferent between her moves [/ and r
because the initial move R of player 1 means that player 2 never has to make move /
or r, so player 2 receives the constant payoff 3 after move R. If play actually reached
player 2’s information set, move / would not be optimal against S, which is why this is
not a subgame perfect equilibrium. Player 2 can, in fact, randomize between [/ and r,
and as long as [is played with probability at least 2/3, (R, S) remains a best response
of player 1, as required in equilibrium.

In this game, the pure strategies (R, S) and (R, T) of player 1 are overspecific
as “plans of action”: the initial move R of player 1 makes the subsequent choice
of S or T irrelevant since player 1’s second information set cannot be reached after
move R. Consequently, the two payoff rows for (R, S) and (R, T') are identical for both
players. In the reduced strategic form, moves at information sets that cannot be reached
because of an earlier own move are identified. In Figure 3.3, this reduction yields the
pure strategy (more precisely, equivalence class of pure strategies) (R,), where *
denotes an arbitrary move. The two (reduced as well as unreduced) pure strategies of
player 2 are her moves / and r.

The reduced strategic form of Figure 3.3 corresponds to the bimatrix game (3.18) if
(R, %) is taken as the first strategy (top row) of player 1. This game is degenerate even
if the payoffs in the extensive game are generic, because player 2, irrespective of her
own move, receives constant payoff 3 when player 1 chooses (R, *).

Once a two-player extensive game has been converted to its reduced strategic form,
it can be considered as a bimatrix game, where we refer to its rows and columns as the
“pure strategies” of player 1 and 2, even if they leave moves at unreachable information
sets unspecified.

The concept of subgame perfect equilibrium requires fully specified strategies,
rather than reduced strategies. For example, it is not possible to say whether the Nash
equilibrium ({R, x),[) of the reduced strategic form of the game in Figure 3.3 is
subgame perfect or not, because player 1’s behavior at his second information set is
unspecified. This could be said for a Nash equilibrium of the full strategic form with
two rows (R, S) and (R, T'). However, these identical two rows are indistinguishable
computationally, so there is no point in applying an algorithm to the full rather than the
reduced strategic form, because any splitting of probabilities between payoff-identical

70 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

strategies would be arbitrary. If one is interested in finding subgame perfect equilibria,
one should use Algorithm 3.9. At each stage of that algorithm, the considered games
have by definition no further subgames, and equilibria of these games can be found
using the reduced strategic form or the sequence form.

A player may have parallel information sets that are not distinguished by own
earlier moves. These arise when a player receives information about an earlier move by
another player. Combinations of moves at parallel information sets cannot be reduced,
which causes a multiplicative growth of the number of reduced strategies. In general,
the reduced strategic form can therefore still be exponential in the size of the game tree.

3.10 The Sequence Form

In the reduced strategic form, pure strategies are only partially specified, by omitting
moves at information sets that cannot be reached because of an own earlier move. In
the sequence form, pure strategies are replaced by an even more partial description
of sequences which specify a player’s moves only along a path in the game tree. The
number of these paths, and therefore of these sequences, is bounded by the number
of nodes of the tree. However, randomizing between such sequences can no longer be
described by a single probability distribution, but requires a system of linear equations.

A sequence of moves of player i is the sequence of his moves (disregarding the
moves of other players) on the unique path from the root to some node ¢ of the tree, and
is denoted o;(t). For example, for the leftmost leaf ¢ in Figure 3.3 this sequence is LS
for player 1 and [for player 2. The empty sequence is denoted @. Player i has perfect
recall if and only if 0;(s) = o;(t) for any nodes s, ¢ € h and h € H;. Then the unique
sequence o;(¢) leading to any node ¢ in & will be denoted o;,. Perfect recall means that
the player cannot get additional information about his position in an information set
by remembering his earlier moves. We assume all players have perfect recall.

Let B; be a behavior strategy of player i. The move probabilities S;(c) fulfill

Y B@=1. pic)=0 forheH, ceCy. (3.20)

ceCy,

The realization probability of a sequence o of player i under §; is

pilol= [] i) (3.21)
cmo
Aninformation set 4 in H; is called relevant under §; if 8;[0},] > 0, otherwise irrelevant,
in agreement with irrelevant information sets as considered in the reduced strategic
form.
Let S; be the set of sequences of moves for player i. Then any o in S; is either the
empty sequence ¢ or uniquely given by its last move c at the information set / in H;,
that is, 0 = oy,¢. Hence,

Si={0} U {opc|heH, ceCp}

This implies that the number of sequences of player i, apart from the empty sequence,
is equal to his total number of moves, that is, |S;| = 1 + ZheH,» |C|. This number is
linear in the size of the game tree.

THE SEQUENCE FORM 71

Let 1 and B, denote behavior strategies of the two players, and let 8y be the known
behavior of the chance player. Let a(¢) and b(¢) denote the payoffs to player 1 and
player 2, respectively, at a leaf ¢ of the tree. The probability of reaching ¢ is the product
of move probabilities on the path to 7. The expected payoff to player 1 is therefore

Y a() Boloo(d)] Bilor()] Baloa(1)] (3.22)

leaves

and the expected payoff to player 2 is the same expression with b(¢) instead of a(t).
However, the expected payoff is nonlinear in terms of behavior strategy probabilities
Bi(c) since the terms S;[o;(¢)] are products by (3.21).

Therefore, we consider directly the realization probabilities B;[o] as functions of
sequences o in S;. They can also be defined for mixed strategies w; of player i,
which choose each pure strategy ; of player i with probability w,(;r;). Under 7;, the
realization probability of o in §; is m;[o’], which is equal to 1 if 7r; prescribes all the
moves in o and zero otherwise. Under p;, the realization probability of o is

uilol =Y wirmlo]l. (3.23)

Ti

For player 1, this defines a map x from S; to R by x(0) = u[o] for o € S;. We call
x the realization plan of w, or a realization plan for player 1. A realization plan for
player 2, similarly defined on S, by a mixed strategy u,, is denoted y. Realization
plans have two important properties.

Proposition 3.10 A realization plan x of a mixed strategy of player 1 fulfills
x(c) > O0foralloc € Sy and

x(@) =1, Z x(opc) = x(oy) forallh € Hy. (3.24)

ceCy

Conversely, any x: Sy — R with these properties is the realization plan of a
behavior strategy of player 1, which is unique except at irrelevant information
sets. A realization plan y of player 2 is characterized analogously.

For the second property, two mixed strategies are called realization equivalent if
they reach any node of the tree with the same probabilities, given any strategy of the
other player. We can assume that all chance probabilities Sy(c) are positive, by pruning
any tree branches that are unreached by chance.

Proposition 3.11 Two mixed strategies |; and |, of player i are realization
equivalent if and only if they have the same realization plan, that is, pu;[o] = (o]
forallo € S;.

These two propositions (to be proved in Exercise 3.13) imply the well-known
result by Kuhn (1953) that behavior strategies are strategically as expressive as mixed
strategies.

Corollary 3.12 (Kuhn’s theorem) For a player with perfect recall, any mixed
strategy is realization equivalent to a behavior strategy.

72 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

Proposition 3.10 characterizes realization plans by nonnegativity and the equations
(3.11). A realization plan describes a behavior strategy uniquely except for the moves
at irrelevant information sets. In particular, the realization plan of a pure strategy (that
is, a realization plan with values 0 or 1) is as specific as a reduced pure strategy.

A realization plan represents all the relevant strategic information of a mixed strategy
by Proposition 3.11. This compact information is obtained with the linear map in (3.23).
This map assigns to any mixed strategy wu;, regarded as a tuple of mixed strategy
probabilities p;(7;), its realization plan, regarded as a tuple of realization probabilities
wilo]for o in S;. The simplex of mixed strategies is thereby mapped to the polytope of
realization plans defined by the linear constraints in Proposition 3.10. The vertices of
this polytope are the realization plans of pure strategies. The number of these vertices
may be exponential. However, the number of defining inequalities and the dimension
of the polytope is linear in the tree size. For player i, this dimension is the number
|S;| of variables minus the number 1 + | H;| of equations (3.24) (which are linearly
independent), so itis), ., (ICy| — 1).

We consider realization plans as vectors in x € RISl and y e RI%2!| that is,
X = (X5)ses, Where x, = x(0), and similarly y = (y;)res,. The linear constraints in
Proposition 3.10 are denoted by

Ex=e, x>0 and Fy=f y=>0, (3.25)

using the constraint matrices E and F and vectors e and f. The matrix E and right-
hand side e have 1 + |H;| rows, and E has |S;| columns. The first row denotes the
equation x(¥J) = 1 in (3.24). The other rows for 4 € H; are the equations —x (o) +
> cec, X(ane) = 0.

In Figure 3.3, the sets of sequences are S; = {#, L, R, LS, LT}and S, = {0, 1, r},
and in (3.25),

1 1
E=|-1 1 1 . e=|0], F=[} f=H,
I U 0 11 1 0

Each sequence appears exactly once on the left-hand side of the equations (3.24),
accounting for the entry 1 in each column of E and F'. The number of information sets
and therefore the number of rows of E and F' is at most linear in the size of the game
tree.

Define the sequence form payoff matrices A and B, each of dimension |S1| x |S,],
as follows. For o0 € S| and T € S, let the matrix entry a,, of A be defined by

gr = > a(t) Boloo(®)]. (3.26)

leaves t : o1(t)=0, 02(t)=1

The matrix entry of B is this term with b instead of a. An example is shown on the
bottom right in Figure 3.3. These two matrices are sparse, since the matrix entry for a
pair o, T of sequences is zero (the empty sum) whenever these sequences do not lead
to a leaf. If they do, the matrix entry is the payoff at the leaf (or leaves, weighted with
chance probabilities of reaching the leaves, if there are chance moves). Then by (3.22),
the expected payoffs to players 1 and 2 are x ' Ay and x| By, respectively, which is

COMPUTING EQUILIBRIA WITH THE SEQUENCE FORM 73

just another way of writing the weighted sum over all leaves. The constraint and payoff
matrices define the sequence form of the game.

3.11 Computing Equilibria with the Sequence Form

Realization plans in the sequence form take the role of mixed strategies in the strategic
form. In fact, mixed strategies x and y are a special case, by letting E and F in (3.25)
be single rows 1" and ¢ = f = 1. The computation of equilibria with the sequence
form uses linear programming duality, which is also of interest for the strategic form.

Consider a fixed realization plan y of player 2. A best response x of player 1 is a
realization plan that maximizes his expected payoff x " (Ay). That is, x is a solution to
the linear program (LP)

maximize xT(Ay) subjectto Ex =e, x > 0. 3.27)

This LP has a dual LP with a vector u of unconstrained variables whose dimension is
1 + | Hy|, the number of rows of E. This dual LP states

minimize e 'u subjectto E'u > Ay. (3.28)

Both LPs have feasible solutions, so by the strong duality theorem of linear program-
ming, they have the same optimal value.

Consider now a zero-sum game, where B = —A. Player 2, when choosing y, has
to assume that her opponent plays rationally and maximizes x ' Ay. This maximum
payoff to player 1 is the optimal value of the LP (3.27), which is equal to the optimal
value e " u of the dual LP (3.28). Player 2 is interested in minimizing e u by her choice
of y. The constraints of (3.28) are linear in u and y even if y is treated as a variable.
So a minmax realization plan y of player 2 (minimizing the maximum amount she has
to pay) is a solution to the LP

mirbirilize e'u subjectto Fy = f, ETu— Ay >0, y=>0. (3.29)
The dual of this LP has variables v and x corresponding to the primal constraints
Fy = fand ETu — Ay > 0, respectively. It has the form

maximize f'v subjectto Ex =e, Flv—A'x <0, x>0. (3.30)
v, x

It is easy to verify that this LP describes the problem of finding a maxmin realization
plan x (with maxmin payoff fv) for player 1.

This implies, first, that any zero-sum game has an equilibrium (x, y). More impor-
tantly, given an extensive game, the number of nonzero entries in the sparse matrices
E, F, A, and the number of variables, is linear in the size of the game tree. Hence, we
have shown the following.

Theorem 3.13 The equilibria of a two-person zero-sum game in extensive form
with perfect recall are the solutions to the LP (3.29) with sparse payoff matrix A
in (3.26) and constraint matrices E and F in (3.25) defined by Prop. 3.10. The
size of this LP is linear in the size of the game tree.

74 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

A best response x of player 1 against the mixed strategy y of player 2 is a solution
to the LP (3.27). This is also useful for games that are not zero-sum. By strong duality,
a feasible solution x is optimal if and only if there is a dual solution u fulfilling
E'u> Ay and x " (Ay) = e'u, thatis, x " (Ay) = (x " E ")u or equivalently

x (E'u—Ay)=0. (3.31)

Because the vectors x and E'u — Ay are nonnegative, (3.31) states that they are
complementary in the sense that they cannot both have positive components in the same
position. This characterization of an optimal primal-dual pair of feasible solutions is
known as complementary slackness in linear programming. For the strategic form, this
condition is equivalent to the best response condition (3.2).

For player 2, the realization plan y is a best response to x if and only if it maximizes
(x"B)y subjectto Fy = f,y > 0. The dual of this LP has the vector v of variables and
says: minimize f'v subject to F'v > Bx. Here, a primal-dual pair y, v of feasible
solutions is optimal if and only if, analogous to (3.31),

y' (Flv—BTx)=0. (3.32)

Considering these conditions for both players, this shows the following.

Theorem 3.14 Consider the two-person extensive game with sequence form
payoff matrices A, B and constraint matrices E, F. Then the pair (x, y) of re-
alization plans defines an equilibrium if and only if there are vectors u,v so
that

Ex=e, x>0, Fy=f y=>0,
E'u—Ay>0, Flv—B'x>0 (3.33)
and (3.31), (3.32) hold. The size of the matrices E, F, A, B is linear in the size
of the game tree.

The conditions (3.33) define a linear complementarity problem (LCP). For a game
in strategic from, (3.8), (3.9), and (3.10) define also an LCP, to which the LH algorithm
finds one solution. For a general extensive game, the LH algorithm cannot be applied
to the LCP in Theorem 3.14, because u and v are not scalar dual variables that
are easily eliminated from the system. Instead, it is possible to use a variant called
Lemke’s algorithm. Similar to the LH algorithm, it introduces a degree of freedom
to the system, by considering an additional column for the linear equations and a
corresponding variable zo which is initially nonzero, and which allows for an initial
feasible solution where x = 0 and y = 0. Then a binding inequality in r = E "u —
Ay > 0(ors = F'v — BTx > 0) means that a basic slack variable r,, (or s;) can leave
the basis, with x, (respectively, y;) entering, while keeping (3.10). Like in the LH
algorithm, this “complementary pivoting rule” continues until an equilibrium is found,
here when the auxiliary variable z leaves the basis.

DISCUSSION AND OPEN PROBLEMS 75
3.12 Further Reading

A scholarly and more comprehensive account of the results of this chapter is von
Stengel (2002). The best response condition (Proposition 3.1) is due to Nash (1951).
Algorithm 3.4 is folklore, and has been used by Dickhaut and Kaplan (1991). Polyhedra
are explained in Ziegler (1995). Shapley (1974) introduced distinct labels as in (3.1)
to visualize the LH algorithm. He labels subdivisions of the mixed strategy simplices,
ignoring the payoff components in P and Q in (3.4). We prefer the polytope view using
P and Q in (3.6), which simplifies the LH algorithm. Moreover, this view is useful for
constructing games with many equilibria (von Stengel, 1999) that come close to the
upper bound theorem for polytopes (Keiding, 1997; McMullen, 1970) , and for games
with exponentially long LH paths (Savani and von Stengel, 2006).

Algorithm 3.5 is suggested in (Kuhn, 1961; Mangasarian, 1964; Vorob’ev, 1958).
The Irs method for vertex enumeration is due to (Avis, 2005; Avis and Fukuda, 1992).
An equilibrium enumeration that (implicitly) alternates between P and Q is Audet
et al. (2001). It has been implemented with integer pivoting (like /rs) by Rosenberg
(2004).

The LH algorithm is due to Lemke and Howson (1964). Shapley (1974) also shows
that the endpoints of an LH path are equilibria of different index, which is an orientation
defined by determinants, explored further in von Schemde (2005). A recent account of
integer pivoting is Azulay and Pique (2001). Proposition 3.8 is due to Winkels (1979)
and Jansen (1981).

Extensive games with information sets are due to Kuhn (1953). Subgame perfection
(Selten, 1975) is one of many refinements of Nash equilibria (von Damme, 1987).
Main ideas of the sequence form have been discovered independently by (Koller and
Megiddo, 1992; Romanovskii, 1962; von Stengel, 1996). Lemke’s algorithm (Lemke,
1965) is applied to the sequence form in Koller et al. (1996); von Stengel et al. (2002).

A recent paper, with further references, on algorithms for finding equilibria of games
with more than two players, is Datta (2003).

3.13 Discussion and Open Problems

We have described the basic mathematical structure of Nash equilibria for two-player
games, namely polyhedra and the complementarity condition of best responses. The
resulting algorithms should simplify the analysis of larger games as used by applied
game theorists. At present, existing software packages (Avis, 2005; Canty, 2003; McK-
elvey et al., 2006) are prototypes that are not easy to use. Improved implementations
should lead to more widespread use of the algorithms, and reveal which kinds of
games practitioners are interested in. If the games are discretized versions of games
in economic settings, enumerating all equilibria will soon hit the size barriers of these
exponential algorithms. Then the LH algorithm may possibly be used to give an indi-
cation if the game has only one Nash equilibrium, or Lemke’s method with varying
starting point as in von Stengel et al. (2002). This should give practical evidence if
these algorithms have usually good running times, as is widely believed, in contrast to

76 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

the extremal examples in Savani and Stengel (2006). An open theoretical question is if
LH, or Lemke’s algorithm, has expected polynomial running time, as it is known for
the simplex method, for suitable probabilistic assumptions on the instance data.

The computational complexity of finding one Nash equilibrium of a two-player
game, as discussed in Chapter 2, is open in the sense that not even a subexponential
algorithm is known. Incremental or divide-and-conquer approaches, perhaps using the
polyhedral structure, require a generalization of the equilibrium condition, because
equilibria typically do not result from equilibria of games with fewer strategies. At
the same time, such an approach must not maintain the entire set of Nash equilibria,
because questions about that set (such as uniqueness, see Theorem 2.3) are typically
NP-hard.

Extensive games are a general model of dynamic games. The condition of perfect
recall leads to canonical representations and algorithms, as described. Special types of
extensive games, like repeated games and Bayesian games, are widely used in applied
game theory. Finding equilibria of these models — where that task is difficult — should
give a focus for further research.

Bibliography

C. Audet, P. Hansen, B. Jaumard, and G. Savard. Enumeration of all extreme equilibria of bimatrix
games. SIAM J. Sci. Comput. 23, 323-338, 2001.

D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements
and polyhedra. Disc. Comp. Geometry 8, 295-313, 1992.

D. Avis. User’s Guide for Irs. Available at: http://cgm.cs.mcgill.ca/~avis, 2005.

D.-O. Azulay and J.-F. Pique. A revised simplex method with integer Q-matrices. ACM Trans. Math.
Software 27, 350-360, 2001.

C. Bron and J. Kerbosch. Finding all cliques of an undirectred graph. Comm. ACM 16, 575-577,
1973.

M.J. Canty. Resolving Conflict with Mathematica: Algorithms for Two-Person Games. Academic
Press, Amsterdam, 2003.

R.S. Datta. Using computer algebra to compute Nash equilibria. Proc. 2003 Int. Symp. Symbolic and
Algebraic Computation, ACM, 74-79, 2003.

J. Dickhaut and T. Kaplan. A program for finding Nash equilibria. Math. J. 1:4, 87-93, 1991.

M.J.M. Jansen. Maximal Nash subsets for bimatrix games. Naval Res. Logistics Q. 28, 147-152,
1981.

H. Keiding. On the maximal number of Nash equilibria in an n x n bimatrix game. Games Econ.
Behav. 21, 148-160, 1997.

D. Koller and N. Megiddo. The complexity of two-person zero-sum games in extensive form. Games
Econ. Behav. 4, 528-552, 1992.

D. Koller, N. Megiddo, and B. von Stengel. Efficient computation of equilibria for extensive two-
person games. Games Econ. Behav. 14, 247-259, 1996.

H.W. Kuhn. Extensive games and the problem of information. In: Contributions to the Theory of
Games 11, eds. H. W. Kuhn and A. W. Tucker, Ann. Math. Studies 28, Princeton Univ. Press,
Princeton, 193-216, 1953.

H.W. Kuhn. An algorithm for equilibrium points in bimatrix games. Proc. National Academy of
Sciences of the U.S.A. 47, 1657-1662, 1961.

C.E. Lemke. Bimatrix equilibrium points and mathematical programming. Manag. Sci. 11, 681-689,
1965.

EXERCISES 77

C.E. Lemke and J.T. Howson, Jr. Equilibrium points of bimatrix games. J. SIAM 12, 413-423, 1964.

O.L. Mangasarian. Equilibrium points in bimatrix games. J. STAM 12, 778-780, 1964.

R.D. McKelvey, A. McLennan, and T.L. Turocy. Gambit: Software Tools for Game Theory. Available
at: http://econweb.tamu.edu/gambit, 2006.

P. McMullen. The maximum number of faces of a convex polytope. Mathematika 17, 179—184, 1970.

J.E. Nash. Non-cooperative games. Ann. Math. 54, 286-295, 1951.

I.V. Romanovskii. Reduction of a game with complete memory to a matrix game. Soviet Math. 3,
678-681, 1962.

G.D. Rosenberg. Enumeration of all extreme equilibria of bimatrix games with integer pivoting
and improved degeneracy check. CDAM Res. Rep. LSE-CDAM-2005-18, London School of
Economics, 2004.

R. Savani and B. von Stengel. Hard-to-solve bimatrix games. Econometrica 74, 397-429, 2006.

R. Selten. Reexamination of the perfectness concept for equilibrium points in extensive games. /nt.
J. Game Theory 4, 22-55, 1975.

L.S. Shapley. A note on the Lemke—Howson algorithm. Mathematical Programming Study 1 : Pivoting
and Extensions, 175189, 1974.

E. van Damme. Stability and Perfection of Nash Equilibria. Springer, Berlin, 1987.

A. von Schemde. Index and Stability in Bimatrix Games. Springer, Berlin, 2005.

B. von Stengel. Efficient computation of behavior strategies. Games Econ. Behav. 14,220-246, 1996.

B. von Stengel. New maximal numbers of equilibria in bimatrix games. Disc. Comp. Geometry 21,
557-568, 1999.

B. von Stengel. Computing equilibria for two-person games. In: Handbook of Game Theory with
Economic Applications, eds. R.J. Aumann and S. Hart, Elsevier, Amsterdam, 3, 1723-1759, 2002.

B. von Stengel, A.H. van den Elzen, and A.J.J. Talman. Computing normal form perfect equilibria
for extensive two-person games. Econometrica 70, 693-715, 2002.

N.N. Vorob’ev. Equilibrium points in bimatrix games. Theory of Probability and its Applications 3,
297-309, 1958.

H.-M. Winkels. An algorithm to determine all equilibrium points of a bimatrix game. In: Game
Theory and Related Topics, eds. O. Moeschlin and D. Pallaschke, North-Holland, Amsterdam,
137-148, 1979.

G.M. Ziegler. Lectures on Polytopes. Springer, New York, 1995.

Exercises

3.1 Prove the claim made after Algorithm 3.4 that nonunique solutions to the equations
in that algorithm occur only for degenerate games.

3.2 Show that in an equilibrium of a nondegenerate game, all pure best responses are
played with positive probability.

3.3 Give further details of the argument made after Algorithm 3.6 that LH terminates.
A duplicate label of a vertex pair (x, y) can be dropped in either polytope. Interpret
these two possibilities.

3.4 Why is every pure strategy equilibrium found by LH for a suitable missing label?

3.5 Show that the “projection” to polytope P, say, of a LH path from (x, y) to (x’, V)
in P x Qis also a path in P from x to x’. Hence, if (x, y) is an equilibrium, where
can x be on that projected path?

3.6 Verify the LH paths for the example (3.7).

78

3.7

3.8

3.9

3.10

3.12

3.13
3.14

EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

Apply integer pivoting to the system r + Ay =1 in the example, omitted after
(3.13).

After (3.14), what is the multiplier in the “suitable multiple of the pivot row”? Give
formulas for the update rules of the tableau.

Draw the polytope P for the game (3.18), and verify that the described naive use
of LH fails.

Implement the lexico-minimum ratio test for the system (3.19) using the data in
(3.17); you need a suitable array to identify the order of the basic variables.

Adapt a clique enumeration algorithm for graphs such as (Bron and Kerbosch,
1973) to find all maximal Nash subsets (see at the end of Section 3.6).

Consider an extensive game with a binary game tree of depth L (and thus 2t
leaves), where the two players alternate and are informed about all past moves
except for the last move of the other player (see von Stengel et al., 2002). How
many reduced strategies do the players have?

Prove Proposition 3.10, using (3.20), (3.21), and (3.23). Prove Proposition 3.11.

Write down the LCP of Theorem 3.14 for the game in Figure 3.3. Find all its
solutions, for example with a variant of Algorithm 3.4.

CHAPTER 4

Learning, Regret Minimization,
and Equilibria

Avrim Blum and Yishay Mansour

Abstract

Many situations involve repeatedly making decisions in an uncertain environment: for instance,
deciding what route to drive to work each day, or repeated play of a game against an opponent with an
unknown strategy. In this chapter we describe learning algorithms with strong guarantees for settings
of this type, along with connections to game-theoretic equilibria when all players in a system are
simultaneously adapting in such a manner.

We begin by presenting algorithms for repeated play of a matrix game with the guarantee that
against any opponent, they will perform nearly as well as the best fixed action in hindsight (also called
the problem of combining expert advice or minimizing external regret). In a zero-sum game, such
algorithms are guaranteed to approach or exceed the minimax value of the game, and even provide
a simple proof of the minimax theorem. We then turn to algorithms that minimize an even stronger
form of regret, known as internal or swap regret. We present a general reduction showing how to
convert any algorithm for minimizing external regret to one that minimizes this stronger form of
regret as well. Internal regret is important because when all players in a game minimize this stronger
type of regret, the empirical distribution of play is known to converge to correlated equilibrium.

The third part of this chapter explains a different reduction: how to convert from the full information
setting in which the action chosen by the opponent is revealed after each time step, to the partial
information (bandit) setting, where at each time step only the payoff of the selected action is observed
(such as in routing), and still maintain a small external regret.

Finally, we end by discussing routing games in the Wardrop model, where one can show that if
all participants minimize their own external regret, then overall traffic is guaranteed to converge to
an approximate Nash Equilibrium. This further motivates price-of-anarchy results.

4.1 Introduction

In this chapter we consider the problem of repeatedly making decisions in an uncertain
environment. The basic setting is we have a space of N actions, such as what route to
use to drive to work, or the rows of a matrix game like {rock, paper, scissors}. At each
time step, the algorithm probabilistically chooses an action (say, selecting what route
to take), the environment makes its “move” (setting the road congestions on that day),

79

80 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

and the algorithm then incurs the loss for its action chosen (how long its route took).
The process then repeats the next day. What we would like are adaptive algorithms that
can perform well in such settings, as well as to understand the dynamics of the system
when there are multiple players, all adjusting their behavior in such a way.

A key technique for analyzing problems of this sort is known as regret analysis.
The motivation behind regret analysis can be viewed as the following: we design
a sophisticated online algorithm that deals with various issues of uncertainty and
decision making, and sell it to a client. Our algorithm runs for some time and incurs a
certain loss. We would like to avoid the embarrassment that our client will come back
to us and claim that in retrospect we could have incurred a much lower loss if we used
his simple alternative policy m. The regret of our online algorithm is the difference
between the loss of our algorithm and the loss using .

Different notions of regret quantify differently what is considered to be a “simple”
alternative policy. External regret, also called the problem of combining expert advice,
compares performance to the best single action in retrospect. This implies that the
simple alternative policy performs the same action in all time steps, which indeed is
quite simple. Nonetheless, external regret provides a general methodology for devel-
oping online algorithms whose performance matches that of an optimal static offline
algorithm by modeling the possible static solutions as different actions. In the context
of machine learning, algorithms with good external regret bounds can be powerful
tools for achieving performance comparable to the optimal prediction rule from some
large class of hypotheses.

In Section 4.3 we describe several algorithms with particularly strong external regret
bounds. We start with the very weak greedy algorithm, and build up to an algorithm
whose loss is at most O(+/T log N) greater than that of the best action, where T is
the number of time steps. That is, the regret per time step drops as O(y/(log N)/T).
In Section 4.4 we show that in a zero-sum game, such algorithms are guaranteed to
approach or exceed the value of the game, and even yield a simple proof of the minimax
theorem.

A second category of alternative policies are those that consider the online sequence
of actions and suggest a simple modification to it, such as “every time you bought IBM,
you should have bought Microsoft instead.” While one can study very general classes
of modification rules, the most common form, known as internal or swap regret, allows
one to modify the online action sequence by changing every occurrence of a given
action i by an alternative action j. (The distinction between internal and swap regret
is that internal regret allows only one action to be replaced by another, whereas swap
regret allows any mapping from {1, ..., N} to {l,..., N} and can be up to a factor N
larger). In Section 4.5 we present a simple way to efficiently convert any external regret
minimizing algorithm into one that minimizes swap regret with only a factor N increase
in the regret term. Using the results for external regret this achieves a swap regret bound
of O(y/TNlog N). (Algorithms for swap regret have also been developed from first
principles—see the Notes section of this chapter for references—but this procedure
gives the best bounds known for efficient algorithms.)

The importance of swap regret is due to its tight connection to correlated equilibria,
defined in Chapter 1. In fact, one way to think of a correlated equilibrium is that it
is a distribution Q over the joint action space such that every player would have zero

MODEL AND PRELIMINARIES 81

internal (or swap) regret when playing it. As we point out in Section 4.4, if each player
can achieve swap regret €T, then the empirical distribution of the joint actions of the
players will be an e-correlated equilibrium.

We also describe how external regret results can be extended to the partial infor-
mation model, also called the multiarmed bandit (MAB) problem. In this model, the
online algorithm only gets to observe the loss of the action actually selected, and does
not see the losses of the actions not chosen. For example, in the case of driving to
work, you may only observe the travel time on the route you actually drive, and do not
get to find out how long it would have taken had you chosen some alternative route.
In Section 4.6 we present a general reduction, showing how to convert an algorithm
with low external regret in the full information model to one for the partial information
model (though the bounds produced are not the best known bounds for this problem).

Notice that the route-choosing problem can be viewed as a general-sum game: your
travel time depends on the choices of the other drivers as well. In Section 4.7 we
discuss results showing that in the Wardrop model of infinitesimal agents (considered
in Chapter 18), if each driver acts to minimize external regret, then traffic flow over
time can be shown to approach an approximate Nash equilibrium. This serves to further
motivate price-of-anarchy results in this context, since it means they apply to the case
that participants are using well-motivated self-interested adaptive behavior.

We remark that the results we present in this chapter are not always the strongest
known, and the interested reader is referred to the recent book (Cesa-Bianchi and
Lugosi, 2006) that gives a thorough coverage of many of the the topics in this chapter.
See also the Notes section for further references.

4.2 Model and Preliminaries

We assume an adversarial online model where there are N available actions X =
{1, ..., N}. Ateach time step 7, an online algorithm H selects a distribution p’ over the
N actions. After that, the adversary selects aloss vector £/ € [0, 1]V, where E§ e [0, 1]is
the loss of the i-th action at time ¢. In the full information model, the online algorithm H
receives the loss vector £/ and experiences a loss £/, = Y% | p!¢’. (This can be viewed
as an expected loss when the online algorithm selects action i € X with probability
pi.) In the partial information model, the online algorithm receives (¢, , k'), where k'
is distributed according to p’, and E’H = 22, is its loss. The loss of the i-th action during
the first T time steps is LT = Y ¢!, and the loss of H is LT, = Y"1, ¢,

The aim for the external regret setting is to design an online algorithm that will
be able to approach the performance of the best algorithm from a given class of
algorithms G; namely, to have a loss close to LT,min = min,eg L;. Formally we would
like to minimize the external regret Rg = L, — Lg’min, and § is called the comparison
class. The most studied comparison class G is the one that consists of all the single
actions, i.e., G = X. In this chapter we concentrate on this important comparison class,
namely, we want the online algorithm’s loss to be close to LT, = min; L, and let the
external regretbe R = LT, — LT, .

External regret uses a fixed comparison class G, but one can also envision a compar-
ison class that depends on the online algorithm’s actions. We can consider modification

82 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

rules that modify the actions selected by the online algorithm, producing an alternative
strategy which we will want to compete against. A modification rule F has as input the
history and the current action selected by the online procedure and outputs a (possibly
different) action. (We denote by F’ the function F at time ¢, including any dependency
on the history.) Given a sequence of probability distributions p’ used by an online
algorithm H, and a modification rule F', we define a new sequence of probability dis-
tributions f' = F'(p'), where f/ = >, p(;_; P} The loss of the modified sequence
isLy =7, f/€. Notethatat time ¢ the modification rule F shifts the probability
that H assigned to action j to action F’(j). This implies that the modification rule F

generates a different distribution, as a function of the online algorithm’s distribution
t

p'.

We will focus on the case of a finite set 7 of memoryless modification rules (they
do not depend on history). Given a sequence of loss vectors, the regret of an online
algorithm H with respect to the modification rules F is

Rp =max {Ly — Ly, p}.

Note that the external regret setting is equivalent to having a set F** of N mod-
ification rules F;, where F; always outputs action i. For internal regret, the set F™"
consists of N(N — 1) modification rules F; ;, where F; j(i) = j and F; ;(i") =i’ for
i’ # i. That is, the internal regret of H is

T
T T _ t{pt t
IQ;E}X {LH - LH,F} = l“}g {Z Di (ﬁi - gj)} .
A more general class of memoryless modification rules is swap regret defined by the
class F%, which includes all NV functions F : {1,..., N} — {1, ..., N}, where the
function F swaps the current online action i with F(i) (which can be the same or a
different action). That is, the swap regret of H is

max {Ly — Ly r} = r}lg{Zp, (¢ —¢) }

Note that since F* C F5¥ and Fi* C F SW, both external and internal regret are upper-
bounded by swap regret. (See also Exercises 4.1 and 4.2.)

4.3 External Regret Minimization

Before describing the external regret results, we begin by pointing out that it is not
possible to guarantee low regret with respect to the overall optimal sequence of de-
cisions in hindsight, as is done in competitive analysis (Borodin and El-Yaniv, 1998;
Sleator and Tarjan, 1985). This will motivate why we will be concentrating on more
restricted comparison classes. In particular, let G, be the set of all functions mapping
times {1, ..., T} toactions X = {1,..., N}.

Theorem 4.1 For any online algorithm H there exists a sequence of T loss
vectors such that regret Rg,, is at least T(1 — 1/N).

EXTERNAL REGRET MINIMIZATION 83

PROOF The sequence is simply as follows: at each time ¢, the action i, of lowest
probability p! gets a loss of 0, and all the other actions get a loss of 1. Since
min;{p]} < 1/N, this means the loss of H in T time steps is at least (1 — 1/N).
On the other hand, there exists g € G,;, namely g(¢) = i,, with a total loss of 0.

O

The above proof shows that if we consider all possible functions, we have a very large
regret. For the rest of the section we will use the comparison class G, = {g; : i € X},
where g; always selects action i. Namely, we compare the online algorithm to the best
single action.

4.3.1 Warmup: Greedy and Randomized-Greedy Algorithms

In this section, for simplicity we will assume that all losses are either O or 1 (rather than
a real number in [0, 1]), which will simplify notation and proofs, although everything
presented can be easily extended to the general case.

Our first attempt to develop a good regret minimization algorithm will be to consider
the greedy algorithm. Recall that L} = Zi:l £, namely the cumulative loss up to time
t of action i. The Greedy algorithm at each time ¢ selects action x’ = arg min;cy Lf_l
(if there are multiple actions with the same cumulative loss, it prefers the action with
the lowest index). Formally:

Greedy Algorithm

Initially: xl=1.

Attimer: Let L=l = min;ex L' and 8! = (i : LI7' = LIZ1).
Let x’ = min '~ 1.

Theorem 4.2 The Greedy algorithm, for any sequence of losses has

LT <N-LT +(N—-1).

Greedy — min

PROOF At each time 7 such that Greedy incurs a loss of 1 and L., does
not increase, at least one action is removed from S’. This can occur at most
N times before L!; increases by 1. Therefore, Greedy incurs loss at most N
between successive increments in L’ . . More formally, this shows inductively

that L/, <N-—|S|+N- L]

Greedy — min*

The above guarantee on Greedy is quite weak, stating only that its loss is at most
a factor of N larger than the loss of the best action. The following theorem shows
that this weakness is shared by any deterministic online algorithm. (A deterministic
algorithm concentrates its entire weight on a single action at each time step.)

Theorem 4.3 For any deterministic algorithm D there exists a loss sequence
for which LT = T and LT, = |T/N].

min

84 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

Note that the above theorem implies that LT > N - LT. + (T mod N), which almost
matches the upper bound for Greedy (Theorem 4.2).

PROOF Fix a deterministic online algorithm D and let x’ be the action it selects
at time t. We will generate the loss sequence in the following way. At time ¢, let
the loss of x” be 1 and the loss of any other action be 0. This ensures that D incurs
loss 1 at each time step, so Lg =T.

Since there are N different actions, there is some action that algorithm D has
selected at most |7/ N | times. By construction, only the actions selected by D
ever have a loss, so this implies that LT, < |T/N]. O
Theorem 4.3 motivates considering randomized algorithms. In particular, one weak-

ness of the greedy algorithm was that it had a deterministic tie breaker. One can hope
that if the online algorithm splits its weight between all the currently best actions,
better performance could be achieved. Specifically, let Randomized Greedy (RG) be
the procedure that assigns a uniform distribution over all those actions with minimum
total loss so far. We now will show that this algorithm achieves a significant perfor-
mance improvement: its loss is at most an O(log N) factor from the best action, rather
than O(N). (This is similar to the analysis of the randomized marking algorithm in
competitive analysis.)

Randomized Greedy (RG) Algorithm
Initially: pl =1/Nfori € X.
Attime r: Let L7 = minjex L™ and 81 = (i : L7 = L2

Let p! = 1/|S""!| fori € $"~" and p! = 0 otherwise.

Theorem 4.4 The Randomized Greedy (RG) algorithm, for any loss se-
quence, has

L, < (nN)+(1+InN)L], .
PROOF The proof follows from showing that the loss incurred by Randomized
Greedy between successive increases in L], is at most 1 + In N. Specifically, let
tj denote the time step at which L! ; first reaches a loss of j, so we are interested
in the loss of Randomized Greedy between time steps f; and ¢; . At time any ¢
we have 1 < |§'| < N. Furthermore, if at time ¢ € (¢;, ;4] the size of S’ shrinks
by k from some size n’ down to n’ — k, then the loss of the online algorithm
RG is k/n’, since each such action has weight 1/n’. Finally, notice that we can
upper bound k/n" by 1/n" +1/(n" — 1)+ ---+ 1/(n’ — k + 1). Therefore, over
the entire time-interval (¢}, ¢; 1], the loss of Randomized Greedy is at most:

IUN+1/N—D+1/(N=2)+---+1/1<1+InN.

More formally, this shows inductively that L, < (1/N +1/(N —1)+---+
/(8" + 1)+ A +1InN)- L m|

min*

EXTERNAL REGRET MINIMIZATION 85

4.3.2 Randomized Weighted Majority Algorithm

Although Randomized Greedy achieved a significant performance gain compared
to the Greedy algorithm, we still have a logarithmic ratio to the best action. Looking
more closely at the proof, one can see that the losses are greatest when the sets S’
are small, since the online loss can be viewed as proportional to 1/|S’|. One way to
overcome this weakness is to give some weight to actions which are currently “near
best.” That is, we would like the probability mass on some action to decay gracefully
with its distance to optimality. This is the idea of the Randomized Weighted Majority
algorithm of Littlestone and Warmuth.

Specifically, in the Randomized Weighted Majority algorithm, we give an action i
whose total loss so far is L; a weight w; = (1 —)™, and then choose probabilities
proportional to the weights: p; = w;/ Z;V:l w ;. The parameter n will be set to optimize
certain trade-offs but conceptually think of it as a small constant, say 0.01. In this
section we will again assume losses in {0, 1} rather than [0, 1] because it allows for
an especially intuitive interpretation of the proof (Theorem 4.5). We then relax this
assumption in the next section (Theorem 4.6).

Randomized Weighted Majority (RWM) Algorithm

Initially: u)l.1 =1 and pl-1 =1/N,fori € X.

Attimer: If e = 1 letw! = w/™'(1 —p);else (€)' = 0) let w! = wi™".
Let p! = w; /W', where W' =", _, w!.

Algorithm RWM and Theorem 4.5 can be generalized to losses in [0, 1] by replacing the
update rule with w! = w!~'(1 — m& " (see Exercise 4.3).

Theorem 4.5 For n < 1/2, the loss of Randomized Weighted Majority
(RWM) on any sequence of binary {0, 1} losses satisfies

T T InN
Legy = (T 4+)Ly, + T

Setting n = min{/(In N)/T, 1/2} yields LL, < LT. +2+/TInN.

(Note: The second part of the theorem assumes 7 is known in advance. If T is unknown,
then a “guess and double” approach can be used to set with just a constant-factor loss in
regret. In fact, one can achieve the potentially better bound LI, < LI +2/LyinIn N

by setting n = min{/(In N)/Lin, 1/2}.)

PROOF The key to the proof is to consider the total weight W’. What we will
show is that anytime the online algorithm has significant expected loss, the total
weight must drop substantially. We will then combine this with the fact that
W > max; w/ = (1 - n)Lmin to achieve the desired bound.

Specifically, let F* = (3 ,.,,_,; wi)/ W' denote the fraction of the weight W’
that is on actions that experiené:e a loss of 1 at time ¢; so, F' equals the expected
loss of algorithm RWM at time ¢. Now, each of the actions experiencing a loss
of 1 has its weight multiplied by (1 — n) while the rest are unchanged. There-
fore, Witl = W' — nF'W' = W'(1 — nF"). In other words, the proportion of

86 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

the weight removed from the system at each time ¢ is exactly proportional to the
expected loss of the online algorithm. Now, using the fact that W! = N and using
our lower bound on W7*! we have

T T
(1 —mhmn < W = W] —nF) = NT](—nF".
=1 1=1
Taking logarithms,

T
LinIn(l =) < (nN) +) " In(l —nF")

t=1

T
<(nN)—) nF'
t=1
(Using the inequality In(1 — z) < —z)

= (InN)—nLL,

(by definition of F")

Therefore,
—L;in In(1 — n) n In(N)

n n

In(N)
< (Lt Ly + ==

T
Lpyy =

(Using the inequality —In(1 —z) < z +z%> for0 < z < %)

which completes the proof. O

4.3.3 Polynomial Weights Algorithm

The Polynomial Weights (PW) algorithm is a natural extension of the RWM algo-
rithm to losses in [0, 1] (or even to the case of both losses and gains, see Exercise 4.4)
that maintains the same proof structure as that used for RWM and in addition performs
especially well in the case of small losses.

Polynomial Weights (PW) Algorithm
Initially: wl.1 = 1and pi1 =1/N,fori € X.
Attime r: Letw! = w!~'(1 —ne!™").

Let p! = w;/ W', where W' =) "._, w!.

Notice that the only difference between PW and RWM is in the update step. In particular,
it is no longer necessarily the case that an action of total loss L has weight (1 — n)£.
However, what is maintained is the property that if the algorithm’s loss at time ¢ is
F’, then exactly an nF' fraction of the total weight is removed from the system.
Specifically, from the update rule we have W't = W' — 3" pw!e! = W'(1 — nF")
where F' = (), witl)/ W' is the loss of PW at time 7. We can use this fact to prove the
following.

EXTERNAL REGRET MINIMIZATION 87

Theorem 4.6 ThePolynomial Weights (PW) algorithm,usingn < 1/2,for
any [0, 1]-valued loss sequence and for any k has,

In(N)
Ly, <L{ +n0 + s

where QkT = ZtT:l(ch)z.Setting n =min{/(In N)/T, 1/2} and noting that Q,Z <
T,wehave LI, < LT. +2J/TInN.!

PROOF As noted above, we have W't! = W/(1 — nF"), where F' is PW’s loss
at time 7. So, as with the analysis of RWM, we have W7*! = N]_[,TZI(I —nF")
and therefore

T T
W™ = IN+) In(l-nF) < InN—yY F' = InN—nL,

=1 =1

Now for the lower bound, we have

In Wt > Inw/ ™!

T
= Zln (1—nt)
=1

(using the recursive definition of weights)
T T
2
t t
z —Z’?fk - E :(nﬁk)
t=1 t=1

(using the inequality In(1 — z) > —z — z2 for0 < z < %)
= —nL; —n*Qy.
Combining the upper and lower bounds on In W7 *! we have:
—nLg —1°Qf <InN —nLg,

which yields the theorem. O

4.3.4 Lower Bounds

An obvious question is whether one can significantly improve the bound in Theorem
4.6. We will show two simple results that imply that the regret bound is near optimal
(see Exercise 4.5 for a better lower bound). The first result shows that one cannot hope
to get sublinear regret when 7T is small compared to log NV, and the second shows that
one cannot hope to achieve regret o(v/T) even when N = 2.

Theorem 4.7 Consider T < log, N. There exists a stochastic generation of
losses such that, for any online algorithm R1, we have E[L%L,1= T/2 and yet
LI{liH =0.

! Again, for simplicity we assume that the number of time steps T is given as a parameter to the algorithm;
otherwise, one can use a “guess and double” method to set 7.

88 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

PROOF Consider the following sequence of losses. At time ¢+ = 1, a random
subset of NV /2 actions gets a loss of 0 and the rest gets a loss of 1. At time ¢ = 2,
a random subset of N /4 of the actions that had loss O at time ¢ = 1 gets a loss of
0, and the rest (including actions that had a loss of 1 at time 1) gets a loss of 1.
This process repeats: at each time step, a random subset of half of the actions that
have received loss 0 so far gets a loss of 0, while all the rest gets a loss of 1. Any
online algorithm incurs an expected loss of 1/2 at each time step, because at each
time step ¢ the expected fraction of probability mass p; on actions that receive
a loss of 0 is at most 1/2. Yet, for T < log, N there will always be some action
with total loss of 0. DO

Theorem 4.8 Consider N = 2. There exists a stochastic generation of losses
such that, for any online algorithm R2, we have E[L%, — LT. 1= Q(/T).

PROOF Attime ¢, we flip a fair coinand set £ = z; = (0, 1) with probability 1/2
and ¢' = z; = (1, 0) with probability 1/2. For any distribution p’ the expected
loss at time ¢ is exactly 1/2. Therefore any online algorithm R2 has expected loss
of T/2.

Given a sequence of T such losses, with T /2 + y losses z; and T /2 — y losses
72, we have T/2 — LT. = |y|. It remains to lower bound E[|y|]. Note that the

T/§+y)/2T, which is upper bounded by 0(1/T) (using a

Sterling approximation). This implies that with a constant probability we have
ly| = Q(+/T), which completes the proof. [

probability of y is (

4.4 Regret Minimization and Game Theory

In this section we outline the connection between regret minimization and central
concepts in game theory. We start by showing that in a two-player constant sum game,
a player with external regret sublinear in 7" will have an average payoff that is at least
the value of the game, minus a vanishing error term. For a general game, we will see that
if all the players use procedures with sublinear swap-regret, then they will converge to
an approximate correlated equilibrium. We also show that for a player who minimizes
swap-regret, the frequency of playing dominated actions is vanishing.

4.4.1 Game Theoretic Model

We start with the standard definitions of a game (see also Chapter 1). A game G =
(M, (X;), (s;)) has a finite set M of m players. Player i has a set X; of N actions and
a loss function s; : X; x (X« X;) — [0, 1] that maps the action of player i and the
actions of the other players to a real number. (We have scaled losses to [0, 1].) The
joint action space is X = x X;.

We consider a player i that plays a game G for T time steps using an online procedure
ON. Attime step ¢, player i plays a distribution (mixed action) P/, while the other players
play the joint distribution P’,. We denote by £f the loss of player i at time ¢, i.e.,

REGRET MINIMIZATION AND GAME THEORY 89

E.pi[s;(x")], and its cumulative loss is LgN = Zthl EBN.z It is natural to define, for
playeri attimez, the loss vectoras ' = (¢}, ..., £,), where E’ =E, ~pt, [sl(xi, xt)]
Namely, E’ is the loss player i would have observed if at tlme tit had played action
x;. The cumulatlve loss of action x; € X; of player i is LT Zt U and LT =
min; LT.

4.4.2 Constant Sum Games and External Regret Minimization

A two-player constant sum game G = ({1, 2}, (X;), (s;)) has the property that for some
constant ¢, forevery x; € X and x, € X, we have s;(xy, x3) + s2(x1, x2) = c. Itis well
known that any constant sum game has a well-defined value (v, v,) for the game, and
playeri € {1, 2} has a mixed strategy which guarantees that its expected loss is at most
v;, regardless of the other player’s strategy. (See Owen, 1982, for more details.) In such
games, external regret-minimization procedures provide the following guarantee.

Theorem 4.9 Let G be a constant sum game with game value (v, vy). If player
iefl,2} plays for T steps using a procedure ON with external regret R, then its
average loss * 7Ly is at most v; + R/T.

PROOF Let g be the mixed strategy corresponding to the observed frequencies
of the actions player 2 has played; that is, g; = Zth 1 Py /T, where P, ; is the
weight player 2 gives to action j at time ¢. By the theory of constant sum games,
for any mixed strategy g of player 2, player 1 has some action x; € X such
that Ey,~,[s1(xr, x2)] < vy (see Owen, 1982). This implies, in our setting, that if
player 1 has always played action x;, then its loss would be at most v; T'. Therefore
LT < LI < v T. Now, using the fact that player 1 is playing a procedure ON
with external regret R, we have that LU <LT +R<uyT+R. O

min

Thus, using a procedure with regret R = O(4/T log N) as in Theorem 4.6 will

guarantee average loss at most v; + O(y/(log N)/T).
In fact, we can use the existence of external regret minimization algo-

rithms to prove the minimax theorem of two-player zero-sum games. For

player 1, let vrlnin = MiNy, cx, MaXzea(x,) Ex,~z[S1(x1,x2)] and vrlnax = maXy,ex,
mingeax,) Ex,~z[51(x1, x2)]. That is, vrlmn is the best loss that player 1 can guaran-
tee for itself if it is told the mixed action of player 2 in advance. Similarly, v is the

best loss that player 1 can guarantee to itself if it has to go first in selecting a mixed

action, and player 2’s action may then depend on it. The minimax theorem states that

véﬁn = max Since s1(x1, X) = —s2(x1, x2) we can similarly define v, = —v! and
2

v = U

max min*
In the following we give a proof of the minimax theorem based on the existence

of external regret algorithms. Assume for contradiction that v}, = vl. + y for some
y > 0 (it is easy to see that v} >). Consider both players playing a regret

mm

2 Alternatively, we could consider x! as a random variable distributed according to P/, and similarly discuss the
expected loss. We prefer the above presentation for consistency with the rest of the chapter.

90 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

minimization algorithm for 7 steps having external regret of at most R, such that
R/T < y/2.Let Loy be the loss of player 1 and note that — Loy is the loss of player
2. Let Li . be the cumulative loss of the best action of player i € {1, 2}. As before,
let ¢; be the mixed strategy corresponding to the observed frequencies of actions of
player i € {1,2}. Then, L., /T <vl.. since for L., we select the best action with
respect to a specific mixed action, namely ¢,. Similarly, ernin /T < vfnin. The regret
minimization algorithms guarantee for player 1 that Loy < L., + R, and for player

2 that —Lon < L2, + R. Combining the inequalities we have:

Tv. —R=-Tvl —R<-L) —R<Lon<L. +R<Tvl +R.

max max min min

1 1

This implies that v, — vy, <2R/T <y, which is a contradiction. Therefore,
1 1

Upmax = Umin» Which establishes the minimax theorem.

4.4.3 Correlated Equilibrium and Swap Regret Minimization

We first define the relevant modification rules and establish the connection between
them and equilibrium notions. For x1, b1, by € X;, let switch;(x1, by, by) be the follow-
ing modification function of the action x; of player i:

b2 ifx1 = bl

switch; (xg, by, by) = .
i(x1, b1, bo) {x1 otherwise

Given a modification function f for player i, we can measure the regret of player i
with respect to f as the decrease in its loss, 1.e.,

regret; (x, f) = 5;(x) — 5;(f(x;), x_;).

For example, when we consider f(x;) = switch;(xy, by, by), for a fixed by, b, € X;,
then regret; (x, f) is measuring the regret player i has for playing action b; rather than
b,, when the other players play x_;.

A correlated equilibrium is a distribution P over the joint action space with the
following property. Imagine a correlating device draws a vector of actions x € X using
distribution P over X, and gives player i the action x; from x. (Player i is not given
any other information regarding x.) The probability distribution P is a correlated
equilibrium if, for each player, it is a best response to play the suggested action,
provided that the other players also do not deviate. (For a more detailed discussion of
correlated equilibrium, see Chapter 1.)

Definition 4.10 A joint probability distribution P over X is a correlated equi-
librium if for every player i, and any actions by, b, € X;, we have that

E.~plregret,(x, switch; (-, b1, b;))] < 0.

An equivalent definition that extends more naturally to the case of approximate
equilibria is to say that rather than only switching between a pair of actions, we allow
simultaneously replacing every action in X; with another action in X; (possibly the same
action). A distribution P is a correlated equilibrium iff for any function F : X; — X;
we have E, p[regret;(x, F')] < 0.

REGRET MINIMIZATION AND GAME THEORY 91

We now define an e-correlated equilibrium. An e-correlated equilibrium is a distri-
bution P such that each player has in expectation at most an € incentive to deviate.
Formally,

Definition 4.11 A joint probability distribution P over X is an e-correlated
equilibria if for every player i and for any function F; : X; — X;, we have
E,~plregret;(x, F;)] < e.

The following theorem relates the empirical distribution of the actions performed
by each player, their swap regret, and the distance to correlated equilibrium.

Theorem 4.12 Let G = (M, (X)), (s;)) be a game and assume that for T time
steps every player follows a strategy that has swap regret of at most R. Then,
the empirical distribution Q of the joint actions played by the players is an
(R/T)-correlated equilibrium.

PROOF The empirical distribution Q assigns to every P’ a probability of 1/T.
Fix a function F : X; — X; for player i. Since player i has swap regret at most

R, we have LI < LgN » + R, where L is the loss of player i. By definition of
the regret function, we therefore have

Ll = Z Eyepilsi(x")] — Z Eqp[si(F(x), x")]
t=1

Ep[regret;(x', F)] = T - E ~g[regret;(x, F)).

HMNI

Therefore, for any function F; : X; — X; we have E,p[regret;(x, F;)] < R/T.
O

The above theorem states that the payoff of each player is its payoff in some
approximate correlated equilibrium. In addition, it relates the swap regret to the distance
from equilibrium. Note that if the average swap regret vanishes then the procedure
converges, in the limit, to the set of correlated equilibria.

4.4.4 Dominated Strategies

We say that an action x; € X; is e-dominated by action x; € X; ifforany x_; € X_; we
have s;(x;, x_;) > € + s;(xx, x_;). Similarly, action x; € X; is e-dominated by a mixed
action y € A(X;) if for any x_; € X_; we have 5;(x;, x_;) > € + E,,~y[si(xq, x_;)].
Intuitively, a good learning algorithm ought to be able to learn not to play actions
that are e-dominated by others, and in this section we show that indeed if player i plays
a procedure with sublinear swap regret, then it will very rarely play dominated actions.
More precisely, let action x; be e-dominated by action x; € X;. Using our notation,
this implies that for any x_; we have that regret; (x, switch; (-, x;, xx)) > €. Let D, be
the set of e-dominated actions of player i, and let w be the weight that player i puts on

92 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

actions in D., averaged over time, i.e., w = % Z[T: 1 2_jep, Pi ;- Playeri’s swap regret
isatleastewT (since we could replace each action in D, with the action that dominates
it). So, if the player’s swap regret is R, then ewT < R. Therefore, the time-average
weight that player i puts on the set of e-dominated actions is at most R/(eT), which
tends to O if R is sublinear in 7. That is:

Theorem 4.13 Consider a game G and a player i that uses a procedure of swap
regret R for T time steps. Then the average weight that player i puts on the set of
e-dominated actions is at most R/(eT).

We remark that in general the property of having low external regret is not sufficient
by itself to give such a guarantee, though the algorithms RWM and PW do indeed have
such a guarantee (see Exercise 4.8).

4.5 Generic Reduction from External to Swap Regret

In this section we give a black-box reduction showing how any procedure A achieving
good external regret can be used as a subroutine to achieve good swap regret as well.
The high-level idea is as follows (see also Figure 4.1). We will instantiate N copies
Ay, ..., Ay of the external-regret procedure. At each time step, these procedures will
each give us a probability vector, which we will combine in a particular way to produce
our own probability vector p. When we receive a loss vector £, we will partition it
among the N procedures, giving procedure A; a fraction p; (p; is our probability mass
on action 7), so that A;’s belief about the loss of action j is D, p;¢’;, and matches the
cost we would incur putting i ’s probability mass on j. In the proof, procedure A; will,
in some sense, be responsible for ensuring low regret of the i — j variety. The key to
making this work is that we will be able to define the p’s so that the sum of the losses
of the procedures A; on their own loss vectors matches our overall true loss. Recall the
definition of an R external regret procedure.

ai
4 < ' p"
pilt —
O
O H
O P
ay
Ay < ”
p et

Figure 4.1. The structure of the swap regret reduction.

GENERIC REDUCTION FROM EXTERNAL TO SWAP REGRET 93

Definition 4.14 An R external regret procedure A guarantees that for any se-
quence of T losses ¢’ and for any action j € {1, ..., N}, we have

T T
L§=Z£;‘5253+R=LJT+R.
=1

t=1

We assume we have N copies Aq, ..., Ay of an R external regret procedure. We
combine the N procedures to one master procedure H as follows. At each time step ¢,
each procedure A; outputs a distribution ¢/, where ql.”j is the fraction it assigns action
Jj. We compute a single distribution p' such that p’ = 3, piq; ;. Thatis, p' = p' 0,
where p' is our distribution and Q' is the matrix of ‘L‘t, ;- (We can view p' as a stationary
distribution of the Markov Process defined by Q, and it is well known that such a
p' exists and is efficiently computable.) For intuition into this choice of p’, notice
that it implies we can consider action selection in two equivalent ways. The first is
simply using the distribution p’ to select action j with probability p?. The second is to
select procedure A; with probability p! and then to use A; to select the action (which
produces distribution p’ Q").

When the adversary returns the loss vector £/, we return to each A; the loss vector
pit'. So, procedure A; experiences loss (pi€') - g/ = pi(g} - €").

Since A; is an R external regret procedure, for any action j, we have,

T T
D opi(gl) =) piti+ R @.1)
t=1 t=1

If we sum the losses of the N procedures at a given time 7, we get) ; pi(q} - €') =
p'Q'', where p' is the row vector of our distribution, Q" is the matrix of g] j-and '
is viewed as a column vector. By design of p’, we have p’ Q" = p’. So, the sum of the
perceived losses of the N procedures is equal to our actual loss p'¢’.

Therefore, summing equation (4.1) over all N procedures, the left-hand side sums
to L1, where H is our master online procedure. Since the right-hand side of equation
(4.1) holds for any j, we have that for any function F : {1,..., N} - {1,..., N},

N T
L, <3 pilhey+ NR=L} , + NR
i=1 t=1
Therefore we have proven the following theorem.

Theorem 4.15 Given an R external regret procedure, the master online pro-
cedure H has the following guarantee. For every function F :{1,..., N} —
{17 L) N}y

Ly <Luyr+ NR,

i.e., the swap regret of H is at most NR.

Using Theorem 4.6, we can immediately derive the following corollary.

94 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

Corollary 4.16 There exists an online algorithm H such that for every function
F:{l,...,N} = {1,..., N}, we have that

Ly <Lyr+ ONTlogN),
i.e., the swap regret of H is at most O(N+/T log N).

Remark. See Exercise 4.6 for an improvement to O(,/NT log N).

4.6 The Partial Information Model

In this section we show, for external regret, a simple reduction from the partial infor-
mation to the full information model.> The main difference between the two models is
that in the full information model, the online procedure has access to the loss of every
action. In the partial information model the online procedure receives as feedback only
the loss of a single action, the action it performed. This very naturally leads to an ex-
ploration versus exploitation trade-off in the partial information model, and essentially
any online procedure will have to somehow explore the various actions and estimate
their loss.

The high-level idea of the reduction is as follows. Assume that the number of time
steps T is given as a parameter. We will partition the 7' time steps into K blocks. The
procedure will use the same distribution over actions in all the time steps of any given
block, except it will also randomly sample each action once (the exploration part).
The partial information procedure MAB will pass to the full information procedure FIB
the vector of losses received from its exploration steps. The full information procedure
FIB will then return a new distribution over actions. The main part of the proof will be
to relate the loss of the full information procedure FIB on the loss sequence it observes
to the loss of the partial information procedure MAB on the real loss sequence.

We start by considering a full information procedure FIB that partitions the T time
steps into K blocks, B!, ..., BX where B/ = {(i — 1)(T/K)+1,...,i(T/K)}, and
uses the same distribution in all the time steps of a block. (For simplicity we assume
that K divides T.) Consider an Ry external regret minimization procedure FIB (over
K time steps), which at the end of block i updates the distribution using the average
loss vector, i.e., c™ = Y, 5. £'/|B7|. Let CK = "X ¢ and CK,, = min; CK. Since
FIB has external regret at most Ry, this implies that the loss of FIB, over the loss
sequence c7, is at most CK, + Rg. Since in every block B” the procedure FIB uses a
single distribution p°, its loss on the entire loss sequence is:

K T & T
LIZIB = Zzpf.ﬁt = Epr.cT < E[Crlrfm-i_RK]
t=1teB" =1

At this point it is worth noting that if Rx = O(/K log N) the overall regret is
O((T/~K)/Tog N), which is minimized at K = T, namely by having each block

3 This reduction does not produce the best-known bounds for the partial information model (see, e.g., Auer et al.,
2002 for better bounds) but is particularly simple and generic.

THE PARTIAL INFORMATION MODEL 95

be a single time step. However, we will have an additional loss associated with each
block (due to the sampling) which will cause the optimization to require that K < T.

The next step in developing the partial information procedure MAB is to use loss
vectors that are not the “true average” but whose expectation is the same. More formally,
the feedback to the full information procedure FIB will be a random variable vector
¢* such that for any action i we have E[¢]] = ¢]. Similarly, let C‘iK = Zf:l ¢} and
C’Ifin = min; C lK . (Intuitively, we will generate the vector ¢* using sampling within a

block.) This implies that for any block B* and any distribution p® we have

N N

1 R

YH Z piol = ptoct = prcf = pr[cf] 4.2)
teB" i=1 i=1

That is, the loss of p® in BT is equal to its expected loss with respect to ¢*.

The full information procedure FIB observes the losses ¢*, for 7 € {1,..., K}.
However, since ¢* are random variables, the distribution p* is also a random variable
that depends on the previous losses, i.e., ¢!, ..., 7!, Still, with respect to any sequence
of losses ¢*, we have that

K

~K T AT ~ K

Cerp = § iP ¢ = Chyin + Ri
=1

Since E[CX] = CK, this implies that

E[Cfs] = E[Coin] + Rk < Cpyin + Ry,
where we used the fact that E[min; C‘iK] < min; E[C lK] and the expectation is over the
choices of ¢*.

Note that for any sequence of losses ¢!, ..., ¢K, both FIB and MAB will use the
same sequence of distributions p!, ..., pX. From (4.2) we have that in any block B?
the expected loss of FIB and the loss of MAB are the same, assuming they both use the
same distribution p*. This implies that

E[Cfs] = E[CXs].

We now need to show how to derive random variables ¢ with the desired property.
This will be done by choosing randomly, for each action i and block B*, an exploration
time #; € B*. (These do not need to be independent over the different actions, so can
easily be done without collisions.) At time #; the procedure MAB will play action i (i.e.,
the probability vector with all probability mass on). This implies that the feedback that
it receives will be E;f , and we will then set ¢} to be Elt.". This guarantees that E[¢]] = c].

So far we have ignored the loss in the exploration steps. Since the maximum loss is
1, and there are N exploration steps in each of the K blocks, the total loss in all the
exploration steps is at most N K. Therefore we have

E[Lys] = NK + (T/K)E[Cyys]
< NK +(T/K)[CX,, + Rk]

min
=Ll +NK +(T/K)Rk.

96 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

By Theorem 4.6, there are external regret procedures that have regret Ry =
O(J/KIogN). By setting K = (T/N)*3, for T > N, we have the following
theorem.

Theorem 4.17 Given an O(/K log N) external regret procedure FIB (for K
time steps), there is a partial information procedure MAB that guarantees

Llg < LI + O**N'3logN),

min

where T > N.

4.7 On Convergence of Regret-Minimizing Strategies to Nash
Equilibrium in Routing Games

As mentioned earlier, one natural setting for regret-minimizing algorithms is online
routing. For example, a person could use such algorithms to select which of N available
routes to use to drive to work each morning in such a way that his performance will
be nearly as good as the best fixed route in hindsight, even if traffic changes arbitrarily
from day to day. In fact, even though in a graph G, the number of paths N between
two nodes may be exponential in the size of G, there are a number of external-regret
minimizing algorithms whose running time and regret bounds are polynomial in the
graph size. Moreover, a number of extensions have shown how these algorithms can be
applied even to the partial-information setting where only the cost of the path traversed
is revealed to the algorithm.

In this section we consider the game-theoretic properties of such algorithms in the
Wardrop model of traffic flow. In this model, we have a directed network G = (V, E),
and one unit flow of traffic (a large population of infinitesimal users that we view as
having one unit of volume) wanting to travel between two distinguished nodes vgar
and vepg. (For simplicity, we are considering just the single-commodity version of the
model.) We assume each edge e has a cost given by a latency function £, that is some
nondecreasing function of the amount of traffic flowing on edge e. In other words, the
time to traverse each edge e is a function of the amount of congestion on that edge. In
particular, given some flow f, where we use f, to denote the amount of flow on a given
edge e, the cost of some path P is) _,_p £.(f,) and the average travel time of all users
in the population can be written as) ,_, €.(f.) f.. A flow f is at Nash equilibrium if
all flow-carrying paths P from vgg tO venq are minimum-latency paths given the flow
I

Chapter 18 considers this model in much more detail, analyzing the relationship
between latencies in Nash equilibrium flows and those in globally optimum flows
(flows that minimize the total travel time averaged over all users). In this section we
describe results showing that if the users in such a setting are adapting their paths
from day to day using external-regret minimizing algorithms (or even if they just
happen to experience low-regret, regardless of the specific algorithms used) then flow
will approach Nash equilibrium. Note that a Nash equilibrium is precisely a set of
static strategies that are all no-regret with respect to each other, so such a result seems
natural; however, there are many simple games for which regret-minimizing algorithms

ON CONVERGENCE OF REGRET-MINIMIZING STRATEGIES 97

do not approach Nash equilibrium and can even perform much worse than any Nash
equilibrium.

Specifically, one can show that if each user has regret o(T'), or even if just the average
regret (averaged over the users) is o(T), then flow approaches Nash equilibrium in the
sense that a 1 — € fraction of days ¢ have the property that a 1 — € fraction of the
users that day experience travel time at most € larger than the best path for that day,
where € approaches O at a rate that depends polynomially on the size of the graph,
the regret-bounds of the algorithms, and the maximum slope of any latency function.
Note that this is a somewhat nonstandard notion of convergence to equilibrium: usually
for an “e-approximate equilibrium” one requires that all participants have at most €
incentive to deviate. However, since low-regret algorithms are allowed to occasionally
take long paths, and in fact algorithms in the MAB model must occasionally explore
paths they have not tried in a long time (to avoid regret if the paths have become much
better in the meantime), the multiple levels of hedging are actually necessary for a
result of this kind.

In this section we present just a special case of this result. Let P denote the set of
all simple paths from vy t0 veng and let f7 denote the flow on day ¢. Let C(f) =
Y ek Le(fe) fe denote the cost of a flow f. Note that C(f) is a weighted average of
costs of paths in P and in fact is equal to the average cost of all users in the flow f.
Define a flow f to be e-Nash if C(f) < € + minpep), p L(fe); that is, the average
incentive to deviate over all users is at most €. Let R(T) denote the average regret
(averaged over users) up through day T, so

R(T) = ZZZ —mmZZE

t=1 ecE t=1 ecP

Finally, let T, denote the number of time steps T needed so that R(T) < €T for all
T > T. For example the RWM and PW algorithms discussed in Section 4.3 achieve
T, = 0(}2 log N) if we set n = €/2. Then we will show the following.

Theorem 4.18 Suppose the latency functions £, are linear. Then for T > T,
the average flow j‘ = %(f1 + .-+ fT)is e-Nash.

PROOF From the linearity of the latency functions, we have for all e, Ee(ﬂ) =
% Zthl L.(f!). Since £.(f]) f! is a convex function of the flow, this implies

N A
tef e = 7 3 te(£)
=1

Summing over all e, we have

N
cms—Zaﬁ

<e+ mm — Z Z E (by definition of T,)

t=1 ecP
=€+ ml}n Z £.(fe). (by linearity)

ecP

98 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

This result shows the time-average flow is an approximate Nash equilibrium. This can
then be used to prove that most of the f must in fact be approximate Nash. The key idea
here is that if the cost of any edge were to fluctuate wildly over time, then that would
imply that most of the users of that edge experienced latency substantially greater than
the edge’s average cost (because more users are using the edge when it is congested
than when it is not congested), which in turn implies they experience substantial regret.
These arguments can then be carried over to the case of general (nonlinear) latency
functions.

4.7.1 Current Research Directions

In this section we sketch some current research directions with respect to regret mini-
mization.

Refined regret bounds: The regret bounds that we presented depend on the number of
time steps 7', and are independent of the performance of the best action. Such bounds
are also called zero-order bounds. More refined first-order bounds depend on the loss
of the best action, and second-order bounds depend on the sum of squares of the losses
(such as Q7 in Theorem 4.6). An interesting open problem is to get an external regret
that is proportional to the empirical variance of the best action. Another challenge is
to reduce the prior information needed by the regret minimization algorithm. Ideally,
it should be able to learn and adapt to parameters such as the maximum and minimum
loss. See Cesa-Bianchi et al. (2005) for a detailed discussion of those issues.

Large actions spaces: In this chapter we assumed the number of actions N is small
enough to be able to list them all, and our algorithms work in time proportional to N.
However, in many settings N is exponential in the natural parameters of the problem.
For example, the N actions might be all simple paths between two nodes s and ¢ in
an n-node graph, or all binary search trees on {1, ..., n}. Since the full information
external regret bounds are only logarithmic in N, from the point of view of information,
we can derive polynomial regret bounds. The challenge is whether in such settings we
can produce computationally efficient algorithms.

There have recently been several results able to handle broad classes of problems
of this type. Kalai and Vempala (2003) give an efficient algorithm for any problem
in which (a) the set X of actions can be viewed as a subset of R", (b) the loss
vectors £ are linear functions over R" (so the loss of action x is £ - x), and (c) we
can efficiently solve the offline optimization problem argmin,s[x - £] for any given
loss vector £. For instance, this setting can model the path and search-tree examples
above.* Zinkevich (2003) extends this to convex loss functions with a projection oracle,
and there is substantial interest in trying to broaden the class of settings that efficient
regret-minimization algorithms can be applied to.

4 The case of search trees has the additional issue that there is a rotation cost associated with using a different
action (tree) at time ¢ + 1 than that used at time ¢. This is addressed in Kalai and Vempala (2003) as well.

BIBLIOGRAPHY 99

Dynamics: It is also very interesting to analyze the dynamics of regret minimization
algorithms. The classical example is that of swap regret: when all the players play
swap regret-minimization algorithms, the empirical distribution converges to the set
of correlated equilibria (Section 4.4). We also saw convergence in two-player zero-
sum games to the minimax value of the game (Section 4.4), and convergence to
Nash equilibrium in a Wardrop-model routing game (Section 4.7). Further results on
convergence to equilibria in other settings would be of substantial interest. At a high
level, understanding the dynamics of regret-minimization algorithms would allow us
to better understand the strengths and weaknesses of using such procedures. For more
information on learning in games, see the book by Fudenberg and Levine (1998).

4.8 Notes

Hannan (1957) was the first to develop algorithms with external regret sublinear in
T. Later, motivated by machine learning settings in which N can be quite large,
algorithms that furthermore have only a logarithmic dependence on N were developed
by Littlestone and Warmuth (1994), and extended by a number of researchers (Cesa-
Bianchi et al., 1997; Freund and Schapire, 1997, 1999). In particular, the Randomized
Weighted Majority algorithm and Theorem 4.5 are from Littlestone and Warmuth
(1994) and the Polynomial Weights algorithm and Theorem 4.6 is from Cesa-Bianchi
et al. (2005). Computationally efficient algorithms for generic frameworks that model
many settings in which N may be exponential in the natural problem description (such
as considering all s-¢ paths in a graph or all binary search trees on n elements) were
developed in Kalai and Vempala (2000) and Zinkevich (2003).

The notion of internal regret and its connection to correlated equilibrium appear in
Foster and Vohra (1998) and Hart and Mas-Colell (2000) and more general modification
rules were considered in Lehrer (2003). A number of specific low internal regret
algorithms were developed by a number of researcher (Blum and Mansour, 2005;
Cesa-Bianchi and Lugosi, 2003; Foster and Vohra, 1997, 1998, 1999; Hart and Mas-
Colell, 2003; Stoltz and Lugosi, 2005). The reduction in Section 4.5 from external to
swap regret is from Blum and Mansour (2005).

Algorithms with strong external regret bounds for the partial information model are
given in Auer et al. (2002) , and algorithms with low internal regret appear in Blum and
Mansour (2005) and Cesa-Bianchi et al. (2006). The reduction from full information
to partial information in Section 4.6 is in the spirit of algorithms of Awerbuch and
Mansour (2003) and Awerbuch and Kleinberg (2004). Extensions of the algorithm of
Kalai and Vempala (2003) to the partial information setting appear in Awerbuch and
Kleinberg (2004), Dani and Hayes (2006) and McMahan and Blum (2004). The results
in Section 4.7 on approaching Nash equilibria in routing games are from Blum et al.
(20006).

Bibliography

P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The nonstochastic multiarmed bandit prob-
lem. SIAM J. Comp., 32(1):48-77, 2002.

100 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

B. Awerbuch and R.D. Kleinberg. Adaptive routing with end-to-end feedback: Distributed learning
and geometric approaches. In Symp. on Theory of Computing, pp. 45-53, 2004.

B. Awerbuch and Y. Mansour. Adapting to a reliable network path. In PODC, pp. 360-367, 2003.

A. Blum, E. Even-Dar, and K. Ligett. Routing without regret: On convergence to nash equilibria of
regret-minimizing algorithms in routing games. In Princ. Distributed Comp., 2006.

A. Blum and Y. Mansour. From external to internal regret. In Conf. on Learning Theory, 2005.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University
Press, 1998.

N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, D. Haussler, R.E. Schapire, and M.K. Warmuth. How to
use expert advice. J. ACM, 44(3):427-485, 1997.

N. Cesa-Bianchi and G. Lugosi. Potential-based algorithms in on-line prediction and game theory.
Mach. Learn., 51(3):239-261, 2003.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning and Games. Cambridge University Press, 2006.

N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Regret minimization under partial monitoring. Math. of
O.R. (to appear), 2006.

N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for prediction with expert
advice. In Conf. on Learning Theory, 2005.

V. Dani and T.P. Hayes. Robbing the bandit: Less regret in online geometric optimization against an
adaptive adversary. In Symp. on Descrete Algorithms, pp. 937-943, 2006.

D. Foster and R. Vohra. Calibrated learning and correlated equilibrium. Games Econ. Behav., 21:40—
55, 1997.

D. Foster and R. Vohra. Asymptotic calibration. Biometrika, 85:379-390, 1998.

D. Foster and R. Vohra. Regret in the on-line decision problem. Games Econ. Behav.,29:7-36, 1999.

Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an application
to boosting. J. Comp. System Sci., 55(1):119-139, 1997.

Y. Freund and R.E. Schapire. Adaptive game playing using multiplicative weights. Games Econ.
Behav., 29:79-103, 1999.

D. Fudenberg and D.K. Levine. The Theory of Learning in Games. MIT Press, 1998.

J. Hannan. Approximation to bayes risk in repeated plays. In M. Dresher, A. Tucker, and P. Wolfe,
editors, Contributions to the Theory of Games, 3:97—-139, Princeton University Press, 1957.

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econo-
metrica, 68:1127-1150, 2000.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. In Conf. on Learning
Theory, pp. 26-40, 2003.

E. Lehrer. A wide range no-regret theorem. Games Econ. Behav., 42:101-115, 2003.

N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Informat. Comput., 108:212—
261, 1994.

H.B. McMahan and A. Blum. Online geometric optimization in the bandit setting against an adaptive
adversary. In Proc. 17th Annual Conference on Learning Theory, pp. 109—123, 2004.

G. Stoltz and G. Lugosi. Internal regret in on-line portfolio selection. Mach. Learn. J., 59:125-159,
2005.

G. Owen. Game Theory. Academic Press, 1982.

D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules. Comm. ACM,
28:202-208, 1985.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proc. Intl.
Conf. Machine Learning, 928-936, 2003.

EXERCISES 101

Exercises

4.1
4.2

4.3

4.4

4.5
4.6

4.7
4.8

Show that swap regret is at most N times larger than internal regret.

Show an example (even with N = 3) where the ratio between the external and swap
regret is unbounded.

Show that the RwM algorithm with update rule w! = w'='(1 —)% achieves the same
external regret bound as given in Theorem 4.6 for the PW algorithm, for losses in
[0, 1].

Consider a setting where the payoffs are in the range [—1, 411, and the goal of the
algorithm is to maximize its payoff. Derive a modified Pw algorithm whose external
regret is O(,/QL,, log N + log N), where QI > Q] for k € X;.

Show a Q(,/T log N) lower bound on external regret, for the case that T > N.
Improve the swap regret bound to O(,/NT log N). Hint: Use the observation that
the sum of the losses of all the A; is bounded by T.

(Open Problem) Does there exist an Q(,/T N log N) lower bound for swap regret?

Show that if a player plays algorithm RWM (or PW) then it gives e-dominated actions
small weight. Also, show that there are cases in which the external regret of a player
can be small, yet it gives e-dominated actions high weight.

CHAPTER 5

Combinatorial Algorithms
for Market Equilibria

Vijay V. Vazirani

Abstract

Combinatorial polynomial time algorithms are presented for finding equilibrium prices and allocations
for the linear utilities case of the Fisher and Arrow—Debreu models using the primal-dual schema and
an auction-based approach, respectively. An intersting feature of the first algorithm is that it finds an
optimal solution to a nonlinear convex program, the Eisenberg-Gale program.

Resource allocation markets in Kelly’s model are also discussed and a strongly polynomial
combinatorial algorithm is presented for one of them.

5.1 Introduction

Thinkers and philosophers have pondered over the notions of markets and money
through the ages. The credit for initiating formal mathematical modeling and study
of these notions is generally attributed to nineteenth-century economist Leon Walras
(1874). The fact that Western economies are capitalistic had a lot to do with the over-
whelming importance given to this study within mathematical economics — essentially,
our most critical decision-making is relegated to pricing mechanisms. They largely de-
termine the relative prices of goods and services, ensure that the economy is efficient,
in that goods and services are made available to entities that produce items that are
most in demand, and ensure a stable operation of the economy.

A central tenet in pricing mechanisms is that prices be such that demand equals
supply; that is, the economy should operate at equilibrium. It is not surprising therefore
that perhaps the most celebrated theorem within general equilibrium theory, the Arrow—
Debreu Theorem, establishes precisely the existence of such prices under a very general
model of the economy. The First Welfare Theorem, which shows Pareto optimality of
allocations obtained at equilibrium prices, provides important social justification for
this theory.

Although general equilibrium theory enjoyed the status of crown jewel within math-
ematical economics, it suffers from a serious shortcoming — other than a few isolated
results, some of which were real gems, e.g., Eisenberg and Gale (1959) and Scarf

103

104 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

(1973), it was essentially a nonalgorithmic theory. With the emergence of new markets
on the Internet, which already form an important part of today’s economy and are pro-
jected to grow considerably in the future, and the availability of massive computational
power for running these markets in a distributed or centralized manner, the need for
developing an algorithmic theory of markets and market equilibria is apparent. Such
algorithms can also provide a valuable tool for understanding the repercussions of
technological advances, new goods or changes to the tax structure on existing prices,
production, and consumption.

A good beginning has been made over the last 5 years within algorithmic game
theory, starting with the work of Deng et al. (2002). However, considering the fact that
markets were an active area of study for over a century within mathematical economics,
it is safe to say that we have only scratched the surface of what should be a rich theory.

Irving Fisher (see Brainard and Scarf, 2000) and Walras (1874) gave two fundamen-
tal market models that were studied extensively within mathematical economics. The
latter model is also called the exchange model or the Arrow—Debreu model (Arrow and
Debreu, 1954). In this chapter we will present combinatorial algorithms for both these
models for the case of linear utility functions. A second approach that has emerged for
computing equilibria for these models is the efficient solution of convex programs, since
equilibrium alloctions for both these models can be captured via convex programs; see
Chapter 6 for this approach.

Two techniques have been primarily used for obtaining combinatorial algorithms
for these models — the primal-dual schema (Devanur et al. 2002) and an auction-based
approach (Garg and Kapoor, 2004). We will present algorithms for the Fisher and
Arrow—Debreu models, using the first and second techniques, respectively.

An interesting aspect of the first algorithm was the extension of the primal-dual
schema from its usual setting of combinatorially solving, either exactly or ap-
proximately, linear programs, to exactly solving a nonlinear convex program (see
Section 5.5). The latter program, due to Eisenberg and Gale (1959), captures
equilibrium allocations for the linear case of Fisher’s model. Unlike complementary
slackness conditions for linear programs, which involve either primal or dual variables,
but not both, KKT conditions for a nonlinear convex program simultaneously involve
both types of variables. The repercussions of this are apparent in the way the algorithm
is structured.

In a different context, that of modeling and understanding TCP congestion control,’
Kelly (1997) defined a class of resource allocation markets and gave a convex pro-
gram that captures equilibrium allocations for his model. Interestingly enough, Kelly’s
program has the same structure as the Eisenberg—Gale program (see also Chapter 22).

! In particular, Kelly’s object was to explain the unprecedented success of TCP, and its congestion avoidance
protocol due to Jacobson (1988), which played a crucial role in the phenomenal growth of the Internet and the
deployment of a myriad of diverse applications on it. Fairness is a key property desired of a congestion avoidance
protocol and Jacobson’s protocol does seem to ensure fairness. Recent results show that if Jacobson’s protocol
is run on the end-nodes and the Floyd—Jacobson protocol (Floyd and Jacobson, 1993) is run at buffer queues,
in the limit, traffic flows converge to an optimal solution of Kelly’s convex program, i.e., they are equilibrium
allocations, see Low and Lapsley (1999). Furthermore, Kelly used his convex programming formulation to
prove that equilibrium allocations in his model satisfy proportional fairness (see Section 5.13), thereby giving
a formal ratification of Jacobson’s protocol.

FISHER’S LINEAR CASE AND THE EISENBERG—GALE CONVEX PROGRAM 105

The flow market is of special significance within this framework. It consists of a
network, with link capacities specified, and source — sink pairs of nodes, each with an
initial endowment of money; allocations in this market are flows from each source to
the corresponding sink. The problem is to find equilibrium flows and prices of edges
(in the context of TCP, the latter can be viewed as drop rates at links).

Kelly’s model attracted much theoretical study, partly with a view to designing
next-generation protocols. Continuous time algorithms (though not having polynomial
running time), for finding equilibrium flows in the flow market, were given by Kelly
et al. (1998) (see also Wang et al., 2005, for more recent work along these lines). Soon
after the appearance of Devanur et al. (2002), Kelly and Vazirani (2002) observed that
Kelly’s model esentially generalizes Fisher’s linear case and stated, “Continuous time
algorithms similar to TCP are known, but insights from discrete algorithms may be
provocative.”

With a view to answering this question, a systematic study of markets whose equilib-
ria are captured by Eisenberg-Gale-type programs was undertaken by Jain and Vazirani
(2006). In Section 5.14 we present, from this paper, a strongly polynomial algorithm
for the special case of the flow market when there is one source and multiple sinks.

5.2 Fisher’s Linear Case and the Eisenberg—Gale
Convex Program

Fisher’s linear case? is the following. Consider a market consisting of a set B of buyers
and a set A of divisible goods. Assume |A| = n and |B| = n’. We are given for each
buyer i the amount ¢; of money she possesses and for each good j the amount b; of
this good. In addition, we are given the utility functions of the buyers. Our critical
assumption is that these functions are linear. Let u;; denote the utility derived by i on
obtaining a unit amount of good j. Thus if the buyer i is given x;; units of good j, for
1 < j < n, then the happiness she derives is

n
E uijxij.
j=1

Prices py, ..., p, of the goods are said to be market clearing prices if, after each buyer
is assigned an optimal basket of goods relative to these prices, there is no surplus or
deficiency of any of the goods. Our problem is to compute such prices in polynomial
time.

First observe that w.l.o.g. we may assume that each b; is unit — by scaling the u;;’s
appropriately. The u;;’s and e;’s are in general rational; by scaling appropriately, they
may be assumed to be integral. We will make the mild assumption that each good has
a potential buyer; i.e., a buyer who derives nonzero utility from this good. Under this
assumption, market clearing prices do exist.

It turns out that equilibrium allocations for Fisher’s linear case are captured as op-
timal solutions to a remarkable convex program, the Eisenberg—Gale convex program.

2 See Section 5.13 for a special case of this market and a simple polynomial time algorithm for it.

106 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Before stating the program, it will be instructive to list considerations that would be
useful in deriving such a program.

Clearly, a convex program whose optimal solution is an equilibrium allocation must
have as constraints the packing constraints on the x;;’s. Furthermore, its objective
function, which attempts to maximize utilities derived, should satisfy the following:

¢ If the utilities of any buyer are scaled by a constant, the optimal allocation remains
unchanged.

¢ [f the money of a buyer b is split among two new buyers whose utility functions are the
same as that of b then sum of the optimal allocations of the new buyers should be an
optimal allocation for b.

The money weighted geometric mean of buyers’ utilities satisfies both these

conditions:
/3 e
max <1_[u;’) .

ieA

Clearly, the following objective function is equivalent:
max l_[u;'.

Its log is used in the Eisenberg—Gale convex program:

n
maximize E e logu;

i=1
n
subjectto u; = u;ix;; YieB
! Z Y (5.1)
j=1
inj <1 VjieA
i=1
X,‘jZO ViEB,VjEA
where x;; is the amount of good j allocated to buyer i. Interpret Lagrangian variables,
say p;’s, corresponding to the second set of conditions as prices of goods. By the

Karush, Kuhn, Tucker (KKT) conditions, optimal solutions to x;;’s and p;’s must
satisfy the following:

Q) YjeA: p;=>0.
(i) VjeA: p;>0= >, x;=1

(ili) Vi e B,YjeA: p— < -Z.feAe?f.f_’“f.
’ ,
(iv) VieBVjeAix; >0 =" = Tt
’ ,

From these conditions, one can derive that an optimal solution to convex program (5.1)
must satisfy the market clearing conditions.

The Eisenberg and Gale program also helps prove, in a very simple manner, the
following basic properties of equilibria for the linear case of Fisher’s model.

FISHER’S LINEAR CASE AND THE EISENBERG—GALE CONVEX PROGRAM 107

Theorem 5.1 For the linear case of Fisher's model:

e [feach good has a potential buyer, equilibrium exists.

o The set of equilibrium allocations is convex.

* Equilibrium utilities and prices are unique.

* Ifall u;j’s and e;’s are rational, then equilibrium allocations and prices are also

rational. Moreover, they can be written using polynomially many bits in the length
of the instance.

PROOF Corresponding to good j there is a buyer i such that u;; > 0. By the
third KKT condition,

el-u,-j

Pz
D UijXij

Now, by the second KKT condition,) ,_, x;; = 1. Hence, prices of all goods are
positive and all goods are fully sold.

The third and fourth conditions imply that if buyer i gets good j then j must
be among the goods that give buyer i maximum utility per unit money spent at
current prices. Hence each buyer gets only a bundle consisting of her most desired
goods, i.e., an optimal bundle.

The fourth condition is equivalent to

> 0.

€illijXij

VieBVjeA: —atutii
D jea ijXij

= PjXij-
Summing over all j gives

. €) WijXij

VieB: —:E PjXij.

o
DjeattijXij S

This implies

Vi € B : e,~=ijx,~j.
J

Hence the money of each buyer is fully spent. This completes the proof that
market equilibrium exists.

Since each equilibrium allocation is an optimal solution to the Eisenberg-Gale
convex program, the set of equilibrium allocations must form a convex set.

Since log is a strictly concave function, if there is more than one equilibrium,
the utility derived by each buyer must be the same in all equilibria. This fact,
together with the fourth condition, gives that the equilibrium prices are unique.

Finally, we prove the fourth claim by showing that equilibrium allocations
and prices are solutions to a system of linear equations. Let g; = 1/p; be a new
variable corresponding to each good j and let k be the number of nonzero x;;’s in
an equilibrium allocation. The system will consist of k + [equations over k + [
unknowns, the latter being the n g ;’s and the k the nonzero x;;’s. The equations are
corresponding to each good j, the equality given by the second KKT condition,

108 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

and corresponding to each nonzero x;;, the equality given by the fourth KKT
condition. O

5.3 Checking If Given Prices Are Equilibrium Prices

Let p=(p1,..., pn) denote a vector of prices. Let us first devise an algorithm for
answering the following question: Is p the equilibrium price vector, and if so, find
equilibrium allocations for the buyers.

Atprices p, buyer i derives u;; / p; amount of utility per unit money spent on good ;.
Clearly, she will be happiest with goods that maximize this ratio. Define her bang per
buck to be o; = max;{u;;/p;}. For each i € B, j € A, a; > u;;/p;, with equality
holding only if j is i’s bang per buck good. If there are several goods maximizing
this ratio, she is equally happy with any combination of these goods. This motivates
defining the following bipartite graph, G. Its bipartition is (A, B) and fori € B, j € A,
(i, j)isanedge in G iff &; = u;;/p;. We will call this graph the equality subgraph and
its edges the equality edges.

5.3.1 The Network N(p)

Any goods sold along the edges of the equality subgraph will make buyers happiest,
relative to prices p. Computing the largest amount of goods that can be sold in this
manner, without exceeding the budgets of buyers or the amount of goods available
(assumed unit for each good), can be accomplished by computing max-flow in the
following network (see Figure 5.1). Direct edges of G from A to B and assign a
capacity of infinity to all these edges. Introduce source vertex s and a directed edge
from s to each vertex j € A with a capacity of p;. Introduce sink vertex t and a directed
edge from each vertex i € B to ¢ with a capacity of e;. The network is clearly a function
of the prices p and will be denoted by N(p).

A: goods B: buyers

P m

4 T 3
infinite capacity edges

Figure 5.1. The network N(p).

THE PRIMAL-DUAL SCHEMA IN THE ENHANCED SETTING 109

Corresponding to a feasible flow f in network N(p), let us define the allocation of
goods to the buyers to be the following. If edge (j, i) from good j to buyer i carries
flow f(j, i), then buyer i receives f(j,i)/p; units of good j.

The question posed above can be answered via one max-flow computation, as
asserted in the following lemma. Its proof is straightforward and is omitted.

Lemma 5.2 Prices p are equilibrium prices iff in the network N (p) the two cuts
(s, AUBUt)and (s UAU B, t) are min-cuts. If so, allocations corresponding
to any max-flow in N are equilibrium allocations.

5.4 Two Crucial Ingredients of the Algorithm

The algorithm starts with very low prices that are guaranteed to be below the equilibrium
prices for each good. The algorithm always works on the network N (p) w.r.t. the current
prices p. W.r.t. the starting prices, buyers have surplus money left. The algorithm raises
prices iteratively and reduces the surplus. When the surplus vanishes, it terminates;
these prices are equilibrium prices.

This algorithmic outline immediately raises two questions:

* How do we ensure that the equilibrium price of no good is exceeded?
* How do we ensure that the surplus money of buyers reduces fast enough that the
algorithm terminates in polynomial time?

The answers to these two questions lead to two crucial ingredients of the algorithm:
tight sets and balanced flows.

5.5 The Primal-Dual Schema in the Enhanced Setting

We will use the notation setup in the previous sections to describe at a high level the
new difficulties presented by the enhanced setting of convex programs and the manner
in which the primal-dual schema is modified to obtain a combinatorial algorithm for
solving the Eisenberg—Gale convex program.

The fundamental difference between complementary slackness conditions for linear
programs and KKT conditions for nonlinear convex programs is that whereas the
former do not involve both primal and dual variables simultaneously in an equality
constraint (obtained by assuming that one of the variables takes a nonzero value), the
latter do.

As described in the previous section, the algorithm will start with very low prices and
keep increasing them greedily, i.e., the dual growth process is greedy. Indeed, all known
primal-dual algorithms use a greedy dual growth process — with one exception, namely
Edmonds’ algorithm for maximum weight matching in general graphs (Edmonds,
1965).

Now, the disadvantage of a greedy dual growth process is obvious — the fact that a
raised dual is “bad,” in the sense that it “obstructs’ other duals that could have led to a
larger overall dual solution, may become clear only later in the run of the algorithm. In

110 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

view of this, the issue of using more sophisticated dual growth processes has received
a lot of attention, especially in the context of approximation algorithms. The problem
with such a process is that it will make primal objects go tight and loose and the
number of such reversals will have to be upper bounded in the running time analysis.
The impeccable combinatorial structure of matching supports such an accounting and
in fact this leads to a strongly polynomial algorithm. However, thus far, all attempts at
making such a scheme work out for other problems have failed.

In our case, even though the dual growth process is greedy, because of the more
complex nature of KKT conditions, edges in the equality subgraph appear and disappear
as the algorithm proceeds. Hence, we are forced to carry out the difficult accounting
process alluded to above for bounding the running time.

We next point out which KKT conditions the algorithm enforces and which ones
it relaxes, as well as the exact mechanism by which it satisfies the latter. Throughout
the algorithm, we enforce the first two conditions listed in Section 5.2. As mentioned
in Section 5.4, at any point in the algorithm, via a max-flow in the network N(p), all
goods can be sold; however, buyers may have surplus money left over. W.r.t. a balanced
flow in network N(p) (see Section 5.7 for a definition of such a flow), let m; be the
money spent by buyer i. Thus, buyer i’s surplus money is y; = e; — m;. We will relax
the third and fourth KKT conditions to the following:

. . Wij D jea WijXij
« VieBVjeA: U o =AU
Pj m;
Wij D jeaUijXij

o ViEB,VjGA:xij>O = — =
pPj m;

Consider the following potential function:
S=yi+yi+-+rm

We will give a process by which this potential function decreases by an inverse poly-
nomial fraction in polynomial time (in each phase, as detailed in Lemma 5.21). When
@ drops all the way to zero, all KKT conditions are exactly satisfied.

Finally, there is a marked difference between the way this algorithm will satisfy
KKT conditions and the way primal-dual algorithms for LP’s do. The latter satisfy
complementary conditions in discrete steps, i.e., in each iteration, the algorithm sat-
isfies at least one new condition. So, if each iteration can be implemented in strongly
polynomial time, the entire algorithm has a similar running time. On the other hand,
the algorithm for Fisher’s linear case satisfies KKT conditions continuously — as the
algorithm proceeds, the KKT conditions corresponding to each buyer get satisfied to a
greater extent.

Observe that at the start of the algorithm, the value of ¢ is a function not just of
the number of buyers and goods but of the length of the input (since it depends on
the money possessed by buyers). Therefore, even though a phase of the algorithm can
be implemented in strongly polynomial time, the running time of the entire algorithm
is polynomial and not strongly polynomial. Indeed, obtaining a strongly polynomial
algorithm for this problem remains a tantalizing open problem (see Section 5.15).

BALANCED FLOWS 111
5.6 Tight Sets and the Invariant

Let p denote the current prices within the run of the algorithm. Foraset S € A of goods,
let p(S) denote the total value of goods in S; this is simply the sum of current prices of
goods in S. For aset T C B of buyers, let m(T) denote the total money possessed by
the buyers in T; i.e., m(T) =),y ;. For § C A, define its neighborhood in N(p),

I'S)={jeB|3i € Swith(i, j) € N(p)}.

Clearly, I'(S) is the set of buyers who are interested in goods in S at current prices.

We will say that S is a tight set if the current value of S exactly equals the money
possessed by buyers who are interested in goods in S; i.e., p(S) = m(I'(S)). Under this
circumstance, increasing prices of goods in S may lead to exceeding the equilibrium
price of some good. Therefore, when a set of goods goes tight, the algorithm freezes
the prices of all goods in S. As described in Section 5.7, when new edges enter the
equality subgraph, the algorithm may unfreeze certain frozen goods and again start
increasing their prices.

A systematic way of ensuring that the equilibrium price of no good is exceeded is
to ensure the following Invariant.

Invariant: The prices p are such that the cut (s, A U B U t) is a min-cut in N(p).

Lemma 5.3 For given prices p, network N(p) satisfies the Invariant iff

VS S A p(S) = m(I'(S)).

PROOF The forward direction is trivial, since under max-flow (of value p(A))
every set S € A must be sending p(S) amount of flow to its neighborhood.

Let us prove the reverse direction. Assume that (s U A; U B, A, U B, Ut)isa
min-cutin N(p), with A}, A» € A and By, B, C B (see Figure 5.2). The capacity
of this cut is p(A;) + m(B;). Now, ['(A) C By, since otherwise the cut will have
infinite capacity. Moving A; and I'(A;) to the ¢ side also results in a cut. By
the condition stated in the Lemma, p(A;) < m(I'(A})). Therefore, the capacity
of this cut is no larger than the previous one and this is also a min-cut in N(p).
Hence the Invariant holds. O

The Invariant ensures that, at current prices, all goods can be sold. The only even-
tuality is that buyers may be left with surplus money. The algorithm raises prices
systematically, thereby decreasing buyers’ surplus money. When (s U A U B, t) is also
a min-cut in N(p), by Lemma 5.2, equilibrium has been attained.

5.7 Balanced Flows

Denote the current network, N(p), by simply N. We will assume that network N
satisfies the Invariant; i.e., (s, A U B U ¢) is a min-cut in N. Given a feasible flow f in
N, let R(f) denote the residual graph w.r.t. f. Define the surplus of buyer i, y;(N, f),
to be the residual capacity of the edge (i,) with respect to flow f in network N,

112 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Ay B

7

o

4, B,
Figure 5.2. Min-cut in N(p). There are no edges from A; to B,.

i.e., ¢; minus the flow sent through the edge (i, t). The surplus vector is defined to be
y(N, f):= 1N,), (N, f),..., va(N,). Let ||v|| denote the I, norm of vector
v. A balanced flow in network N is a flow that minimizes ||y (N, f)]|. A balanced flow
must be a max-flow in N because augmenting a given flow can only lead to a decrease
in the [, norm of the surplus vector.

Lemma 5.4 All balanced flows in N have the same surplus vector.

PROOF It is easy to see that if y; and y, are the surplus vectors w.r.t flows f;
and f>, then (y; + y»)/2 is the surplus vector w.r.t the flow (f; + f>)/2. Since the
set of feasible flows in NV is a convex region, so is the set of all feasible surplus
vectors. Since a balanced flow minimizes a strictly concave function of the surplus
vector, the optimal surplus vector must be unique. O

The following property of balanced flows will be used critically in the algorithm. 3

Property 1: If y (N, f) < y;(N, f) then there is no path from node j to node i
in R(f) —{s, 1}.

Theorem 5.5 A maximum-flow in N is balanced iff it satisfies Property 1.

PROOF Let f beabalanced flow andlety;(N, f) > y;(N, f)forsomei, j € B.
Suppose, for the sake of contradiction, there is a path from j toi in R(f) — {s, t}.

In N, the only edge out of j is the edge (J, ¢). Since the path in R(f) from j to i
must start with a positive capacity edge which is different from edge (j, ¢), by flow
conservation, the capacity of (¢, j) must be positive in R(f). Since y;(N, f) > 0,
the edge (i, #) has a positive capacity in R(f). Now, the edges (¢, j) and (i, t)

3 Unlike the previous sections, in Section 5.7, j will denote a buyer.

BALANCED FLOWS 113

Figure 5.3. The circulation in R(f) if Property 1 does not hold.

concatenated with the path from j to i gives us a cycle with positive residual
capacity in R(f) (see Figure 5.3). Sending a circulation of positive value along
this cycle will result in another max-flow in which the residual capacity of j is
slightly larger and that of i is slightly smaller; i.e., the flow is more balanced. This
contradicts the fact that f is a balanced flow.

To prove the other direction, first observe that the /; norm of the surplus vector
of a max-flow f satisfying Property 1 is locally optimum w.r.t. changes in pairs
of components of the surplus vector. This is so because any circulation in R(f)
can only send flow from a high surplus buyer to a low surplus buyer resulting
in a less balanced flow. Now, since /; norm is a strictly concave function, any
locally optimal solution is also globally optimal. Hence, a max-flow f satisfying
Property 1 must be a balanced flow. O

5.7.1 Finding a Balanced Flow

We will show that the following algorithm, which uses a divide and conquer strategy,
finds a balanced flow in the given network N in polynomial time. As stated above, we
will assume that this network satisfies the Invariant, i.e., (s, A U B Ut) is a min-cut
in N.

Continuously reduce the capacities of all edges that go from B to ¢, other than those
edges whose capacity becomes zero, until the capacity of the cut ({s} U A U B, {t})
becomes the same as the capacity of the cut ({s}, A U B U {t}). Let the resulting network
be N’ and let f’ be a max-flow in N'. Find a maximal s — ¢ min-cut in N’, say (S, T),
withs € Sandt € T.

Case 1: If T = {¢} then find a max-flow in N’ and output it — this will be a balanced
flow in N.

Case 2: Otherwise, let Ny and N, be the subnetworks of N induced by S U {¢}
and T U {s}, respectively. (Observe that N; and N, inherit original capacities from
N and not the reduced capacities from N’.) Let A; and B; be the subsets of A and
B, respectively, induced by N;. Similarly, let A, and B, be the subsets of A and B,
respectively, induced by N,. Recursively find balanced flows, fi and f>, in N; and N,,
respectively. Output the flow f = f; U f, — this will be a balanced flow in N.

114 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Lemma 5.6 f is a max-flow in N.

PROOF In the first case, i.e., T = {t}, the algorithm outputs a max-flow in N’'.
This flow must saturate the cut ({s} U A U B, {t}). However, since the capacity
of this cut in N’ is the same as the capacity of the cut ({s}, A U B U {¢}), by the
Invariant, this is also a max-flow in N.

Next let us consider the second case. Since N; and N, are edge-disjoint net-
works, f = f; U f> will be a feasible flow in N. We will show that f must saturate
all edges from s to A and therefore by the Invariant, it is a max-flow.

Let g be amax-flow in N. Observe that N’, and hence N, cannot have any edges
from A; to B;. Therefore, all flow of g going to A; must flow via B;. Therefore,
the restriction of g to N; saturates all edges from s to A; in N;. Therefore, so
must f; since it is a max-flow in Nj.

Let f/ be a max-flow in N’. Since (S, T') is a min-cut in N’, f’ must saturate
all edges from s to A,. Furthermore, all flow of f’ going to A, must flow via B,
i.e., the restriction of f” to flow going through A, is a feasible flow in N,. Since
Jf» 1s a max-flow in N,, it must also saturate all edges from s to A,. Hence f
saturates all edges from s to A in N, and is therefore a max-flow. O

Lemma 5.7 f is a balanced flow in network N.

PROOF We will show, by induction on the depth of recursion, that the max-flow
output by the algorithm is a balanced flow in N. In the base case, the algorithm
terminates in the first case; i.e., T = {t}, the surplus vector is precisely the amounts
subtracted from capacities of edges from B to ¢ in going from N to N’. Clearly,
this surplus vector makes components as equal as possible, thus minimizing its /,
norm.

Next assume that the algorithm terminates in the second case. By Lemma 5.6, f
is a max-flow; we will show that it satisfies Property 1 and is therefore a balanced
flow. By the induction hypothesis, f; and f, are balanced flows in N; and N,
respectively, and therefore Property 1 cannot be violated in these two networks.

Let R be the residual graph of N w.r.t. flow f; we only need to show that
paths in R that go from one part to the other do not violate Property 1. As already
observed in the proof of Lemma 5.6, there are no edges from A to B, in N, and
therefore there are no residual paths from j € B to i € B,. There may however
be paths going from j € B, toi € B; in R. We will show that for any two nodes
i € Biand j € By, yi(N, f) < y;(N, f), thereby establishing Property 1.

First observe that by the maximality of the min-cut found in N, all nodes in B,
have surplus capacity > 0 w.r.t. flow f” in N’ (all nodes having surplus zero must
be in B}). Therefore, the same amount, say X, was subtracted from the capac ity
of each edge (i, t),i € By, in going from network N to N’. We will show that
¥;(N, f) > X foreachi € B,. A similar proof shows that y;(N, f) < X for each
i € By, thereby establishing Property 1.

Let L be the set of vertices in B, having minimum surplus w.r.t. f. Let K be
the set of vertices in A, that are reachable via an edge from L in R. We claim

THE MAIN ALGORITHM 115

that ['(K') = L, because otherwise, there will be a residual path from i € L to
J € By — L, thereby violating Property 1.

Let c(K) denote the sum of capacities of all edges from s to vertices of K.
Observe that all these edges are saturated in f’ and this flow must leave via
vertices of L. Let E; denote the set of edges going from L to t. Let ¢(L) and
¢/(L) denote the sum of capacities of all edges in Ej in networks N and N’,
respectively. By the argument given above, ¢/(L) > ¢(K).

Since X is subtracted from all edges in E; in going from network N to N’,
¢(L) = (L) + |L|X. The total surplus of the edges in E; w.r.t. flow f is

e(L) — c(K) = (L) + |L|X — c(K) > |L|X.

Finally, since all edges in E;, have the same surplus, each has surplus > X. The
lemma follows. O

Theorem 5.8 The above-stated algorithm computes a balanced flow in network
N using at most n max-flow computations.

PROOF Clearly, the number of goods in the biggest piece drops by at least 1 in
each iteration. Therefore, the depth of recursion is at most n. Next, observe that
N and N, are vertex disjoint, other than s and ¢, and therefore, the time needed
to compute max-flows in them is bounded by the time needed to compute a max-
flow in N. Hence, the total computational overhead is » max-flow computations.
Finally, as shown in Lemma 5.7, the flow output by the algorithm is a balanced
flowin N. O

5.8 The Main Algorithm

First we show how to initialize prices so the Invariant holds. The following two
conditions guarantee this.

¢ The initial prices are low enough prices that each buyer can afford all the goods. Fixing
prices at 1/n suffices, since the goods together cost one unit and all ¢;’s are integral.

¢ Each good j has an interested buyer, i.e., has an edge incident at it in the equality
subgraph. Compute «; for each buyer i at the prices fixed in the previous step and
compute the equality subgraph. If good j has no edge incident, reduce its price to

o)
pj =maxy—- .
i o

If the Invariant holds, it is easy to see that there is a unique maximal tight set S C A.
Clearly, the prices of goods in the tight set cannot be increased without violating the
Invariant. On the other hand, the algorithm can raise prices of all goods in A — S.
However, we do not know any way of bounding the running time of any algorithm
based on such an approach. In fact, it seems that any such algorithm can be forced
to take a large number of steps in which it makes only very small progress toward
decreasing the surplus of the buyers, thereby taking super polynomial time.

116 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Instead, we will show how to use the notion of balanced flow to give a polynomial
time algorithm. The idea is to always raise prices of those goods which are desired by
buyers having a lot of surplus money. Eventually, when a subset of these goods goes
tight, the surplus of some of these buyers vanishes, thus leading to substantial progress.
Property 1 of balanced flows provides us with a powerful condition to ensure that even
as the network N(p) changes because of changes in p, the algorithm can still keep
working with a set of buyers having a large surplus.

The iterative improvement steps follow the spirit of the primal-dual schema: The
“primal” variables are the flows in the edges of N(p) and the “dual” variables are
the current prices. The current flow suggests how to improve the prices and vice
versa.

A run of the algorithm is partitioned into phases, each phase ends with a new set
going tight. Each phase is partitioned into iterations that are defined below.

A phase starts with computation of a balanced flow, say f, in the current network,
N(p). If the algorithm of Section 5.7 for finding a balanced flow terminates in
Case 1, then by Lemma 5.2 the current prices and allocations are equilibrium prices
and allocations and the algorithm halts. Otherwise, let § be the maximum surplus of
buyers w.r.t. f. Initialize to be the set of buyers having surplus §. Let J be the set of
goods that have edges to I in N(p). The network induced by 7 U J is called the active
subgraph.

At this point, we are ready to raise prices of goods in J. However, we would like to
do this in such a way that for each buyer i € I, the set of goods she likes best, which
are all in J, remains unchanged as prices increase. This can be accomplished by raising
prices of goods in J in such a way that the ratio of any two prices remains unchanged.
The rest of the algorithm for a phase is as follows.

Step ¢: Multiply the current prices of all goods in J by variable x, initialize x to 1
and raise x continuously until one of the following two events happens. Observe that
as soon as x > 1, buyers in B — I are no longer interested in goods in J and all such
edges can be dropped from the equality subgraph and N.

e Event 1: If a subset S C J goes tight, the current phase terminates and the algorithm
starts with the next phase.

¢ Event 2: As prices of goods in J keep increasing, goods in A — J become more and
more desirable for buyers in /. If as a result an edge (i, j), withi e I and j € A — J,
enters the equality subgraph (see Figure 5.4). add directed edge (j, i) to network N(p)
and compute a balanced flow, say f, in the current network, N(p). If the balanced
flow algorithm terminates in Case 1, halt and output the current prices and allocations.
Otherwise, let R be the residual graph corresponding to f. Determine the set of all
buyers that have residual paths to buyers in the current set I (clearly, this set will contain
all buyers in 7). Update the new set I to be this set. Update J to be the set of goods that
have edges to I in N(p). Go to Step .

To complete the algorithm, we simply need to compute the smallest values of x at
which Event 1 and Event 2 happen, and consider only the smaller of these. For Event
2, this is straightforward. We give an algorithm for Event 1 in the next section.

FINDING TIGHT SETS 117

A-J B-1

of

active
subgraph

J !

Figure 5.4. If Event 2 happens, edge (j, i) is added to N(p).

5.9 Finding Tight Sets

Let p denote the current price vector (i.e., at x = 1). We first present a lemma that
describes how the min-cut changes in N(x - p) as x increases. Throughout this section,
we will use the function m to denote money w.r.t. prices p. W.L.o.g. assume that w.r.t.
prices p the tight set in G is empty (since we can always restrict attention to the active
subgraph, for the purposes of finding the next tight set). Define

. mT(S)
x*= min ———,
p£scA m(S)
the value of x at which a nonempty set goes tight. Let S* denote the tight set at
prices x* - p. If (s U A; U By, A, U B, Ut) is a cut in the network, we will assume that

A],Az - Aal’ldB],Bz C B.

Lemma 5.9 W..t. prices x - p:
o ifx <x*then (s, AU B Ut)isamin-cut.

* if x > x* then (s, AU B Ut) is not a min-cut. Moreover, if (s UA; U By, A, U
By Ut) is a min-cut in N(x - p) then S* C A;.

PROOF Suppose x < x*. By definition of x*,
VS C A:x-m(S) <m([(9)).

Therefore by Lemma 5.3, w.r.t. prices x - p, the Invariant holds. Hence (s, A U
B Ut) is a min-cut.

Next suppose that x > x*. Since x - m(S*) > x* - m(S*) = m(['(§*)), w.r.t.
prices x - p, the cut (s U S* U I'(8*), 1) has strictly smaller capacity than the cut
(s U AU B, 1). Therefore the latter cannot be a min-cut.

Now consider the min-cut (s UA; U B;, A,UB, Ut). Let S*N A, = S, and
S* — 8, = S;. Suppose S, # @. Clearly I'(S;) € B; (otherwise the cut will have
infinite capacity). If m(I'(S;) N By) < x - m(S3), then by moving S> and I'(S$,) to

118 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

the s side of this cut, we can get a smaller cut, contradicting the minimality of the
cut picked. In particular, m(I'(S*) N By) < m(I'(S*)) = x* - m(S*) < x - m(S™).
Therefore S, # S*, and hence, S; # @. Furthermore,

m(T'(S2) N By) > x - m(S2) > x*m(Sy).
On the other hand,
m(I'($2) N By) +m(I'(S1)) < x*(m(S2) + m(S1)).
The two imply that
m(I'(S)))
m(S1)

contradicting the definition of x*. Hence S = Jand S* C A;. O

*
I

Lemma 5.10 Let x = m(B)/m(A) and suppose that x > x*. If (s UA; U
By, Ay U B, Ut) be a min-cut in N(x - p) then Ay must be a proper subset of
A.

PROOF If A = A, then B| = B (otherwise this cut has oo capacity), and (s U
A U B, t)is amin-cut. But for the chosen value of x, this cut has the same capacity
as (s, AU B Ur). Since x > x*, the latter is not a min-cut by Lemma 5.9. Hence,
Aj is a proper subset of A. O

Lemma 5.11 x* and S* can be found using n max-flow computations.

PROOF Letx = m(B)/m(A). Clearly, x > x*. If (s, AU B Ut) is a min-cut in
N(x - p), then by Lemma 5.9, x* = x. If so, §* = A.

Otherwise, let (s U A} U By, A, U B, Ut) be a min-cut in N(x - p). By Lem-
mas 5.9and 5.10, S* € A; C A. Therefore, it is sufficient to recurse on the smaller
graph (A, '(Ay)). O

5.10 Running Time of the Algorithm
LetU = max,-eg,jeA{uij} and let A = nU".

Lemma 5.12 At the termination of a phase, the prices of goods in the newly
tight set must be rational numbers with denominator < A.

PROOF Let S be the newly tight set and consider the equality subgraph induced
on the bipartition (S, I'(S)). Assume w.l.0.g. that this graph is connected (other-
wise we prove the lemma for each connected component of this graph). Let j € S.
Pick a subgraph in which j can reach all other vertices j' € S. Clearly, at most
2|S| < 2n edges suffice. If j reaches j’ with a path of length 2/, then p;; = ap;/b
where a and b are products of [utility parameters (u;;’s) each. Since alternate
edges of this path contribute to @ and b, we can partition the u;;’s in this subgraph

RUNNING TIME OF THE ALGORITHM 119

into two sets such that a and b use u;;’s from distinct sets. These considerations
lead easily to showing that m(S) = p;c/d where ¢ < A. Now,

pj=mI(S)d/c,

hence proving the lemma. O

Lemma 5.13 Consider two phases P and P’, not necessarily consecutive, such
that good j lies in the newly tight sets at the end of P as well as P'. Then the
increase in the price of j, going from P to P',is > 1/A>.

PROOF Let the prices of j at the end of P and P’ be p/q and r/s, respectively.
Clearly, /s > p/q. By Lemma 5.12, g < A and r < A. Therefore the increase
in price of j,

1
> —.
Z 0

v | N
SRS

Within a phase, we will call each occurrence of Events 1 and 2 an iteration.
Lemma 5.14 The total number of iterations in a phase is bounded by n.

PROOF After an iteration due to Event 2, at least one new good must move into
the active subgraph. Since there is at least one good in the active subgraph at the
start of a phase, the total number of iterations in a phase due to Event 2 is at
most n — 1. Finally, the last iteration in each phase is due to Event 1. The lemma
follows. O

Lemma 5.15 If f and f* are respectively a feasible and a balanced flow
in N(p) such that y;(p, f*) = vy;(p, f) =6, for some i € B and § > 0, then
ly (e,)1 < ly(p, HI — 8%

PROOF Suppose we start with f and get anew flow f’ by decreasing the surplus
of i by §, and increasing the surpluses of some other buyers in the process. We
show that this already decreases the /> norm of the surplus vector by 52 and so the
lemma follows.

Consider the flow f* — f. Decompose this flow into flow paths and circula-
tions. Among these, augment f with only those that go through the edge (i, 7), to
get f’. These are either paths that go from s to i to ¢, or circulations that go from
i to t to some i; and back to i. Then y;(f) = y:(f*) = y:(f) — § and for a set
of vertices i, i2, . . ., ix, we have y;,(f") = y;,(f) + 81, 8.t. 81, 82, ..., 8 > O and
Z;‘zl 8; < 8. Moreover, for all [, there is a path from i to i; in R(p, f*). Since f*
is balanced, and satisfies Property 1, y:(f') = y;(f*) = v, (f*) = yi,(f').

By Lemma 5.16, ||y (p, f)I?> < lly(p, f)II*> — 8% and since f* is a balanced
flow in N(p), ly(p, fI2 < lly(p, fHI% O

120 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Lemma5.16 Ifa>b;>0,i=1,2,...,n andSZZ';:ltsj where §,8; >
0,j=1,2,...,n,then

(@, b1, ba, ..., b)I* < (@ +8,by — 81, bs — 82, ..., by — 8,)|1* — 82

PROOF

(@+87 +) (b —8) —a’> =) b =8 +2a (5—2&-) 2 8
i=1

i=1

Let Ny denote the network at the beginning of a phase. Assume that the phase
consists of k iterations, and that N, denotes the network at the end of iteration 7. Let f;
be a balanced flow in N;,0 <t < k.

Lemma 5.17 f; is a feasible flow in N, 1, for 0 <t < k.

PROOF The lemma follows from the fact that each of the two actions, raising
the prices of goods in J or adding an edge as required in Event 2, can only lead
to a network that supports an augmented max-flow. O

Corollary 5.18 ||y (N,)|| is monotonically decreasing with t.

Let §; denote the minimum surplus of a buyer in the active subgraph in network N;,
for 0 <t < k; clearly, §g = $.

Lemma 5.19 [f 6,_1 — &; > O then there exists an i € H such that y;(p,_,) —
vi(p;) = 81— 4.

PROOF Consider the residual network R(p,, f) corresponding to the balanced
flow computed at the end of iteration ¢. By definition of H,, every vertex v €
H, \ H,_; canreachavertexi € H,_; in R(p,, f) and therefore, by Theorem 5.5,
vo(P;) = vi(p,). This means that minimum surplus §, is achieved by a vertex i
in H,_,. Hence, the surplus of vertex i is decreased by at least §,_; — §; during
iteration t. O

Lemma 5.20 [f8,1 <8, then |ly(N)I? — Iy (NI = (8 — 8i11)2, for 0 <
t <k

PROOF ByLemma5.19,if §,;; < &, then there is a buyer i whose surplus drops
by &; — 8,41 in going from f; to f;;;. By Lemmas 5.15 and 5.17, we get the
desired conclusion. O

THE LINEAR CASE OF THE ARROW—DEBREU MODEL 121

Lemma 5.21 [n a phase, the square of the I, norm of the surplus vector drops
by a factor of

PROOF We will first prove that

82
ly (No)II> = Iy (NoII? > —.

Observe that the left-hand side can be written as a telescoping sum in which
each term is of the form ||y (N,)||> — || ¥ (N,+1)||>. By Corollary 5.18, each of these
terms is positive. Consider only those terms in which the difference §; — 6,41 >
0. Their sum is minimized when all these differences are equal. Now using
Lemma 5.20 and the fact that §o = § and &; = 0, we get that

2

I}
ly (No)IZ = Iy (NoII* > -

By Lemma 5.14, k < n, giving the desired inequality.
The above-stated inequality and the fact that ||y (No)||> < né* gives us

2 2 1
Iy(NOI” = ly(NolI" | 1 — = |-
n

The lemma follows. O

Theorem 5.22 The algorithm finds equilibrium prices and allocations for linear
utility functions in Fisher’s model using

O(n*(logn + nlog U + log M))

max-flow computations.

PROOF ByLemma5.21, the square of the surplus vector drops by a factor of half
after O(n?) phases. At the start of the algorithm, the square of the surplus vector is
at most M?. Once its value drops below 1/A*, the algorithm achieves equilibrium
prices. This follows from Lemmas 5.12 and 5.13 Therefore the number of phases
is

O(n*log(A*M?) = On*(logn + nlogU + log M)).

By Lemma 5.14 each phase consists of n iterations and by Lemma 5.11 each
iteration requires n max-flow computations. The theorem follows. O

5.11 The Linear Case of the Arrow—Debreu Model

The Arrow—Debreu model is also known as the Walrasian model or the exchange
model, and it generalizes Fisher’s model. Consider a market consisting of a set A of
agents and a set G of goods; assume |G| = n and |A| = m. Each agent i comes to the

122 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

market with an initial endowment of goods, ¢; = (¢;1, €2, - - ., €;,). We may assume
w.l.o.g. that the total amount of each good is unit, i.e., for 1 < j <n, Z:"zl ejj=1.
Each agent has linear utilities for these goods. The utility of agent i on deriving x;;
amount of good j, for 1 < j <n,is 3 _, uijxi;.

The problem is to find prices p = (py, ..., pn) for the goods so that if each agent
sells her initial endowment at these prices and buys her optimal bundle, the market
clears; i.e., there is no deficiency or surplus of any good. An agent may have more than
one optimal bundle; we will assume that we are free to give each agent any optiaml
bundle to meet the market clearing condition.

Observe that a Fisher market with linear utilities, n goods, and m buyers reduces
to an Arrow—Debreu market with linear utilities, n + 1 goods and m + 1 agents as
follows. In the Arrow—Debreu market, we will assume that money is the n + 1’st good,
the first m agents correspond to the m buyers whose initial endowment is the money
they come to the market with and the m 4 1’st agent’s initial endowment is all n goods.
The first m agents have utilities for goods, as given by the Fisher market and no utility
for money, whereas the m 4 1’st agent has utility for money only.

We define the following terms for the algorithm below. For agent i, leta; = Z;”zl eij.
Let ani, be the minimum among a;, | <i < m. Denote by pn.x the maximum price
assigned to a good by the algorithm. Denote by upy, and upn,x the minimum and
maximum values of u;; over all agents i and goods j.

5.12 An Auction-Based Algorithm

We will present an auction-based algorithm for the linear case of the Arrow—Debreu
model. It will find an approximate equilibrium in the following sense. For any fixed
€ > 0, it will find prices p for the goods such that the market clears and each agent
gets a bundle of goods that provides her utility at least (1 — €)? times the utility of her
optimal bundle.

The algorithm initializes the price of each good to be unit, computes the worth of
the initial endowment of each agent, and gives this money to each agent. All goods are
initially fully unsold.

We will denote by p = (p1, p2, ..., pu) the vector of prices of goods at any point in
the algorithm. As p changes, the algorithm recomputes the value of each agent’s initial
endowment and updates her money accordingly. Clearly, at the start of the algorithm,
the total surplus (unspent) money of all agents is .

At any point in the algorithm, a part of good j is sold at price p; and part of it is
sold at (1 + €)p;. The run of the algorithm is partitioned into iterations. Each iteration
terminates when the price of some good is raised by a factor of (1 + €). Each iteration
is further partitioned into rounds. In a round, the algorithm considers agents one by one
in some arbitrary but fixed order, say 1, 2, ..., m. If the agent being considered, i, has
no surplus money, the algorithm moves to the next agent. Otherwise, it finds i ’s optimal
good, in terms of bang per buck, at current prices; say, it is good j. It then proceeds
to execute the operation of outbid. This entails buying back good j from agents who
have it at price p; and selling it to i at price p;(1 + €). This process can end in one of
two ways:

AN AUCTION-BASED ALGORITHM 123

* Agent i’s surplus money is exhausted. If so, the algorithm moves on to the next agent.

* No agent has good j at price p; anymore. If so, it raises the price of good j to p;(1 + ¢€)
by setting p; to p;(1+ €). The current iteration terminates and agents’ moneys are
updated because of this price rise.

When the current round comes to an end, the algorithm checks if the total surplus
money with the buyers is at most €an;,. If so, the algorithm terminates. Otherwise, it
goes to the next round.

At termination, the algorithm gives the unsold goods to an arbitrary agent to en-
sure that the market clears. It outputs the allocations received by all agents and the
terminating prices p. Observe, however, that some of good j may have been sold at
price (1 4+ €)p; even though the equilibrium price of good j is p;. Because of this
descrepancy, agents will only get approximately optimal bundles. Lemma 5.25 will
establish a bound on the approximation factor.

Lemma 5.23 The number of rounds executed in an iteration is bounded by
1 x
0 (— log APma) .
€ €Amin

PROOF Observe that if outbid buys a good at price p;, it sells it at price (1 +
€)p;, thereby decreasing the overall surplus. Therefore, in each round that is fully
completed (i.e., does not terminate mid-way because of a price increase), the
total surplus of agents is reduced by a factor of (1 4 €). The total surplus at the
beginning of the iteration is at most the total money possessed by all agents, i.e.,
NPmax- The iteration terminates (and in fact the algorithm terminates) as soon as
the total surplus is at most €ap;,. Therefore, a bound on the number of rounds in
an iteration is

1 npmax
0814 —
min

Lemma 5.24 The total number of iterations is bounded by

n
(0] (— log pmax).
€

PROOF Each iteration raises the price of a good by a factor of (1 + €). Therefore
the number of iterations is bounded by

n 10g1+e Pmax-

124 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Lemma 5.25 Relative to terminating prices, each agent gets a bundle of goods
that provides her utility at least (1 — €)* times the utility of her optimal bundle.

PROOF The algorithm always sells an agent her optimal goods relative to current
prices p (recall, however, that at the time of the sale, an agent is charged a price
of (1 + €)p; for good j). There are two reasons why an agent i may end up with a
suboptimal bundle in the end. First, at termination, part of her money may remain
unspent. Let M denote the total worth of i’s initial endowment at terminating
prices. Assume that she spent M, of this. Since the total surplus money left at
termination is at most €y, M1 > (1 — e)M.

The second reason is that some part of good j may have been sold at price (1 +
€)p; to agent i, even though the equilibrium price announced is p;. Equivalently,
we may assume that i gets her optimal goods at prices p for a fraction of her
money. The latter is at least

M, 1—-eM 5
> >0 —e)M
1+¢€ 1+¢€

money. The lemma follows. O

Theorem 5.26 The algorithm given above finds an approximate equilibrium for
the linear case of the Arrow—Debreu model in time

mn NVUmax Umax
(0] (— log log) .

62 €dminVUmin Umin

PROOF Observe that each good whose price is raised beyond 1 is fully sold.
Since the total money of agents is the total worth of all goods at prices p, the
condition that the total surplus money of agents is at most €ay,;, must be reached
before the price of all goods increases beyond 1. Hence at termination, the price
of at least one good is 1.

Clearly, at termination, the ratio of maximum to minimum price of a good is
bounded by viax/Vmin. Therefore, pnax is bounded by viax/Vmin- Each round is
executed in O(m) time. Now the bound on the total running time follows from
Lemmas 5.23 and 5.24. O

5.13 Resource Allocation Markets

Kelly considered the following general setup for modeling resource allocation. Let R
be a set of resources and ¢: R — Z™ be the function specifying the available capacity
of each resource r € R. Let A = {ay, ..., a,} be a set of agents and m; € Z™" be the
money available with agent a;.

Each agent wants to build as many objects as possible using resources in R. An
agent may be able to use several different subsets of R to make one object. Let
Si1, Sizs - - -, Sit, be subsets of R usable by agent a;, k; € Z. Denote by x;j the number
of objects a; makes using the subset S;;, 1 < j < k;; x;; is not rquired to be integral.
Let f; = ZI;: | Xij be the total number of objects made by agent a;. We will say that

RESOURCE ALLOCATION MARKETS 125

fi» 1 <i < nis feasible if simultaneously each agent a; can make f; objects without
violating capacity constraints on R.

Kelly gave the following convex program and showed that an optimal solution to it
satisfies proportional fairness; i.e., if f;* is an optimal solution and f; is any feasible
solution, then

n fl_fl*
,;—fi* <0.

Intuitively, the only way of making an agent happier by 5% is to make other agents
unhappy by at least a total of 5%.

Maximize Z m; log f;

a;€A
ki
Subject to P = Xii Va; € A
] fi]2_1: J (5.2)
Z x,-jfc(r) Vr € R
(ij):res;;
.X,'jZO ‘v’aieA,lfjfk,»

This general setup can be used to model many situations. The following are examples
of situations of a combinatorial nature.

(i) Market 1 (flow market): Given a directed or undirected graph G = (V, E), E is

the set of resources, with capacities specified. Agents are source-sink pairs of nodes,
(1, t1), - -+, (Sk, tx), with money my, ..., my, respectively. Each s; —#; path is an
object for agent (s;, t;).

(ii) Market 2: Given a directed graph G = (V, E), E is the set of resources, with
capacities specified. Agents are A C V, each with specified money. For s € A objects
are branchings rooted at s and spanning all V.

(iii) Market 3: Same as above, except the graph is undirected and the objects are spanning
trees.

Using KKT conditions, one can show that an optimal solution to this convex program
is an equilibrium solution. Let p,, r € R be Lagrangian variables corresponding to the
second set of conditions; we will interpret these as prices of resources. By the KKT
conditions optimal solutions to x;;’s and p,’s must satisfy the following equilibrium
conditions:

(i) Resource r € R has positive price only if it is used to capacity.
(i) Each agent uses only the cheapest sets to make objects.
(iii) The money of each agent is fully used up.

Since the objective function of convex program (5.2) is strictly concave, one can
see that at optimality, the vector f, ..., f, is unique. Clearly, this also holds for every
equilibrium allocation.

126 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA
5.14 Algorithm for Single-Source Multiple-Sink Markets

In this section, we consider the special case of a flow market, Market 1, with a single
source and multiple sinks. We will assume that the underlying graph is directed. In case
it is undirected, one can use the standard reduction from undirected graphs to directed
graphs — replace each undirected edge (u, v) with the two edges (u, v) and (v, u) of the
same capacity.

Formally, let G = (V, E) be a directed graph with capacities on edges. Let s € V
be the source node and T = {11, ..., t.} be the set of sink nodes, also called terminals.
Let m; be the money possessed by sink ;. The problem is to determine equilibrium
flow and edge prices. The following example may help appreciate better some of the
intricacies of this problem.

Example 5.27 Consider graph G = (V, E) with V = {s, a, b, ¢, d} and sinks
b and d with $120 and $10, respectively. The edges are (s, a), (s, ¢) having
capacity 2, (a, b) having capacity 1, and (a, d), (c, d), (c, b) having capacity
10 (see Figure 5.5). The unique equilibrium prices are p;.q) = $10, pup =
$30, ps.e) = $40, and the rest of the edges have zero price. At equilibrium, flow
on path s,a,d is 1, on s,a, b is 1, and on s, ¢, b is 2. Simulating the algorithm
below on this example will reveal the complex sequence of cuts it needs to find
in order to compute the equilibrium. Computing equilibrium for other values of
money is left as an intersting exercise.

We will present a strongly polynomial algorithm for this problem which is based
on the primal-dual schema; i.e., it alternately adjusts flows and prices, attempting to
satisfy all KKT conditions. Often, primal-dual algorithms can naturally be viewed as
executing an auction. This viewpoint is leads to a particularly simple way of presenting
the current algorithm. We will describe it as an ascending price auction in which the
buyers are sinks and sellers are edges. The buyers have fixed budgets and are trying to
maximize the flow they receive and the sellers are trying to extract as high a price as
possible from the buyers. One important deviation from the usual auction situation is

a 1 b

$120

$10

c 10 d

Figure 5.5. The network for Example 5.27.

ALGORITHM FOR SINGLE-SOURCE MULTIPLE-SINK MARKETS 127

that the sellers act in a highly coordinated manner — at any point in the algorithm, all
edges in a particular cut, say (S, S), raise their prices simultaneously while prices of
the remaining edges remain unchanged. The prices of all edges are initialized to zero.
The first cut considered by the algorithm is the (unique) maximal min-cut separating
all sinks from s, say (Sp, S0).

Denote by rate(t;) the cost of the cheapest s — #; path w.r.t. current prices. The flow
demanded by sink ¢#; at this point is m; /rate(t;). At the start of the algorithm, when all
edge prices are zero, each sink is demanding infinite flow. Therefore, the algorithm
will not be able to find a feasible flow that satisfies all demands. Indeed, this will be
the case all the way until termination; at any intermediate point, some cuts will need
to be oversaturated in order to meet all the demand.

The price of edges in cut (S, S) is raised as long as the demand across it exceeds
supply; i.e., the cut is oversaturated because of flow demanded by sinks in S. At the
moment that demand exactly equals supply, the edges in this cut stop raising prices and
declare themselves sold at current prices. This makes sense from the viewpoint of the
edges in the cut — if they raise prices any more, demand will be less than supply; i.e.,
the cut will be under-saturated, and then these edges will have to be priced at zero!

The crucial question is: when does the cut (S, S) realize that it needs to sell itself?
This point is reached as soon as there is a cut, say (U, ﬁ), with S C U, such that the
difference in the capacities of the two cuts is precisely equal to the flow demanded by
sinks in S — U (see Figure 5.6). Let (U, U) be the maximal such cut (it is easy to see
that it will be unique). If U = V, the algorithm halts. Otherwise, cut (U, ﬁ) must be
oversaturated — it assumes the role of (S, S) and the algorithm goes to the next iteration.

Note that an edge may be present in more than one cut whose price is raised by the
algorithm. If so, its price will be simply the sum of the prices assigned to these cuts.

Suppose that the algorithm executes k iterations. Let (S;, S;) be the cut it finds in
iteration i, 1 <i < k, with Sy = V. Clearly, we have S C S; C --- C Sy = V. Let T;
be the set of terminals in S; — S;_y, for 1 <i < k. Let ¢; be the set of edges of G in
the cut (S;, S;), for 0 < i < k and p; be the price assigned to edges in c;. Clearly, for
each terminal t € T;, rate(t) = po+ --- + pi—1, for 1 <i <k.

Se

Cut(S, S) Cut(U, U)

Figure 5.6. The total flow demanded by &, and t; equals the difference in capacities of cut
(S, S) and cut (U, U).

128 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Let G’ denote the graph obtained by adding a new sink node ¢ to G and edges (¢;,)
from each of the original sinks to ¢. Let the capacity of edge (t;, t) be m; /rate(t;). For
convenience, even in G/, we will denote V — S by S. It is easy to see that each of the
cuts (S;, E U {¢}) in G’ has the same capacity, for 0 < i < k, and each of these k + 1
cuts is a mininimum s — ¢ cut in G'.

Let f’ denote a maximum s — ¢ flow in G’. Obtain flow f from f’ by ignoring flow
on the edges into ¢. Then f is a feasible flow in G that sends m; /rate(t;) flow to each
sink #;.

Lemma 5.28 Flow f and the prices found by the algorithm constitute an
equilibrium flow and prices.

PROOF We will show that flow f and the prices found satisfy all KKT condi-
tions.

* Since each of the cuts (S;, S; U {r}), for 0 < i < k is saturated in G’ by flow f’,
each of the cuts ¢y, ¢, . .., cx—1 is saturated by f. Hence, all edges having nonzero
prices must be saturated.

* The cost of the cheapest path to terminal ' € T is rate(t’). Clearly, every flow to ¢’
uses a path of this cost.

* Since the flow sent to t' € T is m; /rate(¢), the money of each terminal is fully
spent. O

Below we give a strongly polynomial time subroutine for computing the next cut in
each iteration.

5.14.1 Finding the Next Cut

Let (S, S) be the cut in G, whose price is being raised in the current iteration and let ¢
be the set of edges in this cut and f its capacity. Let T’ denote the set of sinks in S. Let
p’ denote the sum of the prices assigned to all cuts found so far in the algorithm (this
is a constant for the purposes of this subroutine) and let p denote the price assigned to
edges in c. The cut (S, S) satisfies the following conditions:

e It is a maximal minimum cut separating 7’ from s.
e At p=0,everycut (U, U), with § C U, is oversaturated.

Let p* be the smallest value of p at which there is a cut (U, U),withScU,inG
such that the difference in the capacities of (S, S) and (U, U) is precisely equal to the
flow demanded by sinks in U — S at prices p*; moreover, (U, U) is the maximal such
cut. Below we give a strongly polynomial algorithm for finding p* and (U, U).

Define graph G’ by adding a new sink node ¢ to G and edges (¢;, t) for each sink
t; € S. Define the capacity of edge (#;, t) to be m; /(p’ + p) where m; is the money of
sink #; (see Figure 5.7). As in Section 5.14 we will denote V — S by S even in G'. The
proof of the following lemma is obvious.

ALGORITHM FOR SINGLE-SOURCE MULTIPLE-SINK MARKETS 129

ts 153 13 t7 t;

Cut(S, S) Cut(U, U)
priced at p

Figure 5.7. Graph C'.

Lemma 5.29 At the start of the current iteration, (S, S U {t}) is a maximal
minimum s — t cut in G'. p* is the smallest value of p at which a new minimum
s —t cut appears in G'. (U, U U {t}) is the maximal minimum s — t cut in G at
price p*.

For any cut C in G', let cap ,(C) denote its capacity, assuming that the prices of edges
in ¢ is p. For p > 0, define cut(p) to be the maximal s — ¢ min-cut in G’ assuming
that the price assigned to edges in c is p. For cut (A, A U {t}), A C V, let price(A, A U
{t}) denote the smallest price that needs to be assigned to edges in ¢ to ensure that
cap,(A, AU{t) = fiie., (A, AU{t}) is also a min s — ¢ cut in G'; if (A, A U {t})
cannot be made a minimum s — ¢ cut for any price p then price(A, AU {t)) = oo.
Clearly, price(A, A U {t}) > p*. Observe that determining price(4, A U {t}) involves
simply solving an equation in which p is unknown.

Lemma 5.30 Suppose p > p*. Let cut(p) = (A, A U {t}), where A # U. Let
price(A, AU {t}) = q and cut(q) = (B, BU {t}). Then B C A.

PROOF Since we have assumed that A % U, it must be the case that
cap (A, AUt) > f. Thezefore, q = priceiA, AU{t}) < p.Let cs and cp de-
note the capacities of (A, AU {t}) and (B, B U {t}) at price p = 0. Let m, and
mp denote the money possessed by sinks in (A — §) and (B — §), respectively.
Since (A, A U {t}) is a maximal s — ¢ mincut at price p,
mp

ma
Ca+— <cp+—.
p p

130 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Subroutine
Inputs: Cut (S, S) in G whose price is being raised in the current iteration.
Output: Price p* and next cut (U, U).

G C <~ (V,1D
(i) p < price(C)
iii) While cut(p) # C do:
(@) C <« cut(p)
(b) p < price(C)
(iv) Output (C, p)

Figure 5.8. Subroutine for finding next cut.

Since (B, B U {t}) is a maximal s — ¢ mincut at price ¢,

mp my
cp+— <ca+—.
q

The two together imply

nmp —my mp —my
—— <Cp—Cp < ———.
q

First suppose that A C B. Clearly m4 < mpg. But this contradicts the last
inequality since ¢ < p.

Next, suppose that A and B cross. By the last inequality above, there must be a
price, r, such that g < r < p at which cap, (A, AU{t) = cap, (B, BU{t) =g,
say. By the submodularity of cuts, one of the following must hold:

(i) cap,((AN B), (AN B)U {t}) < g. Since the money possessed by sinks in (A N
B) — S is at most m, at price g, cap,((A N B), (A N B){t}) < cap,(B, BU{)).
This contradicts the fact that (B, B U {t}) is a min-cut at price q.

(ii) cap,((AU B), (AU B) U {t}) < g. Since the money possessed by sinks in (A U
B) — § is at least my, at price p, cap,((AU B), (AU B) U {r}) < cap,(A, AU
{t}). This contradicts the fact that (A, A U {r}) is a min-cut at price p.

Hence we getthat B C A. O

Lemma 5.31 Subroutine 5.8 terminates with the cut (U, U U {t}) and price p*
in at most r max-flow computations, where r is the number of sinks.

PROOF Aslongas p > p* by Lemma 5.30, the algorithm keeps finding smaller
and smaller cuts, containing fewer sinks on the s side. Therefore, in at most r
iterations, it must arrive at a cut such that p = p*. Since cut(p*) = (U, U U),
the next cut it considers is (U, U U {t}). Since price(U, U U {t}) = p*, at this
point the algorithm terminates. O

DISCUSSION AND OPEN PROBLEMS 131

Theorem 5.32 The algorithm given in Section 5.14 finds equilibrium edge
prices and flows using O(r*) max-flow computations, where r is the number of
sinks.

PROOF Clearly, the number of sinks trapped in the sets Sy C S; C --- C S
keeps increasing and therefore, the number of iterations k < r. The running time
for each iteration is dominated by the time taken by subroutine (5.8), which
by Lemma 5.31 is r max-flow computations. Hence the total time taken by the
algorithm is O(r?) max-flow computations. By Lemma 5.28 the flow and prices
found by the algorithm are equilibrium flow and prices. O

5.15 Discussion and Open Problems

Linear utility functions provided us with perhaps the easiest algorithmic questions that
helped us commence our algorithmic study of market equilibria. However, such func-
tions are much too restrictive to be useful. Concave utility functions are considered
especially useful in economics because they model the important condition of decreas-
ing marginal utilities as a function of the amount of good obtained. Furthermore, if
the utility functions are strictly concave, at any given prices, there is a unique optimal
bundle of goods for each agent. This leads to the following remarkable communication
complexity fact: In such a market, it suffices to simply announce equilibrium prices —
then, all agents can individually compute and buy their optimal bundles and the market
clears!

On the other hand, concave utility functions, even if they are additively separable
over the goods, are not easy to deal with algorithmically. In fact, obtaining a polynomial
time algorithm for such functions is a premier open problem today. For the case of
linear functions, the approach used in Section 5.8 — of starting with very low prices and
gradually raising them until the equilibrium is reached — is made possible by the prop-
erty of weak gross substitutability. This property holds for a utility function if on raising
the price of one good, the demand of another good cannot go down. As a consequence
of this property, the need to decrease the price of the second good does not arise.

Concave utility functions do not satisfy weak gross substitutability. Exercises 5.5
and 5.6 outline an approach that attempts to finesse this difficulty for the case of
piecewise-linear, concave functions. Does this approach lead to an efficient algorithm
for computing, either exactly or approximately, equilibrium prices for such functions?
If so, one can handle a concave function by approximating it with a piecewise-linear,
concave function. Alternatively, can one show that finding an equilibrium for such
utility functions is PPAD-hard?

Considering the properties of the linear case of Fisher’s model established in
Theorem 5.1, one wonders whether its equilibrium allocations can be captured via
a linear program. Resolving this, positively or negatively, seems an exciting problem.
Another question remaining open is whether there is a strongly polynomial algorithm
for computing equilibrium prices for this case. Finally, we would like to point to the
numerous questions remaining open for gaining a deeper algorithmic understanding of
Eisenberg—Gale markets (Jain and Vazirani, 2006).

132 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA
Acknowledgments

I wish to thank Deeparnab Chakrabarty, Nikhil Devanur, Sergei Izmalkov, Kamal Jain
and Kasturi Vardarajan for valuable discussions and comments on the writeup.

Bibliography

K. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy. Econometrica,
22:265-290, 1954.

W.C. Brainard and H.E. Scarf. How to compute equilibrium prices in 1891. Cowles Foundation
Discussion Paper, (1270) 2000.

X. Deng, C. Papadimitriou, and S. Safra. On the complexity of equilibria. In Proc. ACM Symp. on
Theor. Comp., 2002.

N. Devanur, C.H. Papadimitriou, A. Saberi, and V.V. Vazirani. Market equilibrium via a primal-dual-
type algorithm. In Proc. IEEE Annual Symp. Fdns. of Comp. Sci., 2002. To appear in J. ACM.
Journal version available at: http://www-static.cc.gatech.edu/vazirani/market.ps.

N. Devanur and V.V. Vazirani. The spending constraint model for market equilibrium: Algorithmic,
existence and uniqueness results. In Proc. 36th Symp. on Theory of Computing, 2004.

J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bur. Standards,
69:125-130, 1965.

J. Edmonds. Optimum branchings. J. Res. Natl. Bur. Standards, Section B, 71:233-240, 1967.

E. Eisenberg and D. Gale. Consensus of subjective probabilities: The Pari-Mutuel method. Annals
Math. Stat., 30:165-168, 1959.

S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. /[EEE/ACM
Trans. Networking, 1(1):397-413, 1993.

R. Garg and S. Kapoor. Auction algorithms for market equilibrium. In Proc. 36th Symp. on Theory
of Computing, 2004.

V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM, pp. 314-329, 1988.

K. Jain and V.V. Vazirani. Eisenberg-gale markets: Algorithms and structural properties. In Proc.
39th Symp. on Theory of Computing, 2007.

E.P. Kelly. Charging and rate control for elastic traffic. Euro. Trans. on Telecomm., 8:33-37, 1997.

F.P. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate control in communication networks. J. Oper. Res.
Soc., 49:237-252, 1998.

F.P. Kelly and V.V. Vazirani. Rate control as a market equilibrium. Unpublished manuscript 2002.
Available at: http://www-static.cc.gatech.edu/vazirani/KV.pdf.

S. Low and D. Lapsley. Optimization flow control, 1: basic algorithm and convergence. IEEE/ACM
Trans. Networking, 7(6):861-874, 1999.

C.S.J.A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., 36:445—
450, 1961.

H. Scarf. The Computation of Economic Equilibria (with collaboration of T. Hansen). Cowles Foun-
dation Monograph No. 24., New Haven: Yale University Press, 1973.

W.T. Tutte. On the problem of decomposing a graph into n connected factors. J. London Math. Soc-.,
36:221-230, 1961.

V.V. Vazirani. Spending constraint utilities, with applications to the Adwords market. Submitted to
Math. of Operations Research, 2006.

L. Walras. Eléments d’ économie politique pure ou théorie de la richesse sociale (Elements of Pure
Economics, or the theory of social wealth). Lausanne, Paris, 1874. (1899, 4th ed.; 1926, rev ed.,
1954, Engl. transl.).

EXERCISES 133

J. Wang, L. Li, S.H. Low, and J.C. Doyle. Cross-layer optimization in TCP/IP networks. IEEE/ACM
Trans. Networking, 13:582-268, 2005.

5.1

5.2

5.3

5.4
5.5

Exercises

Give a strongly polynomial algorithm for Fisher’s linear case under the assumption
that all u;;’s are 0/1 (the algorithm given in Section 5.8 is not strongly polynomial).

Let us extend Fisher’s linear model to assume that buyers have utility for money
(Vazirani, 2006). Let u;o denote the utility accrued by buyer i for one unit of money.
Now, each buyer’s optimal bundle can also include money—effectively this is part
of their own money which they prefer not to spend at current prices. The notion of
equilibrium also generalizes—all goods need to be sold and all money needs to be
either spent or returned as part of optimal bundles. Extend the algorithm given in
Section 5.8 to this situation, still maintaining its polynomial running time.

Let us define a new class of utility functions, spending constraint utility functions
for Fisher’s model (Vazirani, 2006). As before, let A and B be the set of goods and
buyers, respectively. Fori € B and j € A, let rj- : [0, e(i)] — R, be the rate function
of buyer i for good j; it specifies the rate at which i derives utility per unit of j
received, as a function of the amount of her budget spent on j. If the price of j is
fixed at p; per unit amount of j, then the function r;-/p,- gives the rate at which i
derives utility per dollar spent, as a function of the amount of her budget spent on
j.
Relative to prices p for the goods, give efficient algorithms for

(@) computing buyer i’s optimal bundle,
(b) determining if p are equilibrium prices, and
(c) computing equilibrium allocations if p are equilibrium prices.

Prove that equilibrium prices are unique for the model of Exercise 5.3.

It turns out that there is a polynomial time algorithm for computing equilibrium
prices and allocations for the utility functions defined in Exercise 5.3 (Devanur and
Vazirani, 2004; Vazirani, 2006). The following is an attempt to use this algorithm
to derive an algorithm for computing equilibrium prices for the case of piecewise-
linear, concave utility functions for Fisher’s model.

Let fj; be the piecewise-linear, concave utility function of buyer i for good j; f;;
is a function of x;;, the allocation of good j to buyer i. Let p be any prices of goods
that sum up to the total money possessed by buyers (as before, we will assume that
there is a unit amount of each good in the market).

Let us obtain spending constraint utility functions from the f;;’s as follows. Let
gij be the derivative of fj;; clearly, g;; is a decreasing step function. Define

n =g (21,
s =5 (2
where y;; denotes the amount of money spent by i on good j. Observe that function
hij gives the rate at which i derives utility per unit of j received as a function of the
amount of money spent on j. Hence h;; is precisely a spending constraint utility
function. Let us run the algorithm mentioned above on these functions h;;’s to obtain
equilibrium prices, say p’.

134

5.6

5.7

5.8

5.9

COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Show that p = p’ iff prices p are equilibrium prices for the piecewise-linear, con-
cave utility functions f;;’s (equilibrium prices for piecewise-linear, concave utility
functions need not be unique).

Open problem (Devanur and Vazirani, 2004): Consider the process given in Exercise
5.3, which, given starting prices p, finds new prices p’. By the assertion made in
Exercise 5.3, the fixed points of this process are precisely equilibrium prices for the
piecewise-linear, concave utility functions f;;’s.

Does this procedure converge to a fixed point, and if so, how fast? If it does
not converge fast enough, does it converge quickly to an approximate fixed point,
which may be used to obtain approximate equilibrium prices?

Consider the single-source multiple-sink market for which a strongly polynomial
algorithm is given in Section 5.14. Obtain simpler algorithms for the case that the
underlying graph is a path or a tree.

Observe that the algorithm given in Section 5.14 for Market 1 defined in Section
5.13 uses the max-flow min-cut theorem critically (Jain and Vazirani, 2006). Obtain
a strongly polynomial algorithm for Market 3 using the following max-min theorem.

For a partition Vi, ..., Vi, k > 2 of the vertices of an undirected graph G, let C
be the capacity of edges whose end points are in different parts. Let us define the
edge-tenacity of this partition to be C/(k — 1), and let us define the edge-tenacity
of G to be the minimum edge-tenacity over all partitions. Nash-William (1961) and
Tutte (1961) proved that the maximum fractional packing of spanning trees in G is
exactly equal to its edge-tenacity.

Next consider Market 2 defined in Section 5.13. For the case |A| = 1, a polynomial
time algorithm follows from the following max—min theorem due to Edmonds (1967).

Let G = (V, E) be a directed graph with edge capacities specified and source
s € V. The maximum number of branchings rooted out of s that can be packed in
G equals min,cy c(v), where c(v) is the capacity of a minimum s — v cut.

Next assume that there are two agents, s1, s, € V. Derive a strongly polynomial
algorithm for this market using the following fact from Jain and Vazirani (2006). Let
F1 and F, be capacities of a minimum s; — s, and s, — 57 cut, respectively. Let F be
Minyev_(, 5} f'(v), where f’(v) is the capacity of a minimum cut separating v from
s1 and s,. Then:

(@) The maximum number of branchings, rooted at s; and s,, that can be packed in
G is exactly min{Fy + F3, F}.

(b) Let f; and f, be two nonnegative real numbers such that f; < Fy, f, < F;, and
fi + fo < F. Then there exists a packing of branchings in G with f; of them
rooted at s; and 1, of them rooted at s,.

CHAPTER 6

Computation of Market
Equilibria by Convex
Programming

Bruno Codenotti and Kasturi Varadarajan

Abstract

We introduce convex programming techniques to compute market equilibria in general equilibrium
models. We show that this approach provides an effective arsenal of tools for several restricted, yet
important, classes of markets. We also point out its intrinsic limitations.

6.1 Introduction

The market equilibrium problem consists of finding a set of prices and allocations of
goods to economic agents such that each agent maximizes her utility, subject to her
budget constraints, and the market clears. Since the nineteenth century, economists
have introduced models that capture the notion of market equilibrium. In 1874, Walras
published the “Elements of Pure Economics,” in which he describes a model for the state
of an economic system in terms of demand and supply, and expresses the supply equal
demand equilibrium conditions (Walras, 1954). In 1936, Wald gave the first proof of the
existence of an equilibrium for the Walrasian system, albeit under severe restrictions
(Wald, 1951). In 1954, Nobel laureates Arrow and Debreu proved the existence of an
equilibrium under much milder assumptions (Arrow and Debreu, 1954).

The market equilibrium problem can be stated as a fixed point problem, and indeed
the proofs of existence of a market equilibrium are based on either Brouwer’s or Kaku-
tani’s fixed point theorem, depending on the setting (see, e.g., the beautiful monograph
(Border, 1985) for a friendly exposition of the main results in this vein).

Under a capitalistic economic system, the prices and production of all goods are
interrelated, so that the equilibrium price of one good may depend on all the different
markets of goods that are available. Equilibrium models must therefore take into
account a multitude of different markets of goods. This intrinsic large-scale nature of the
problem calls for algorithmic investigations and shows the central role of computation.

Starting from the 60°’s, the intimate connection between the notions of fixed-point and
market equilibrium was exploited for computational goals by Scarf and some coauthors,

135

136 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

who employed path-following techniques to compute approximate equilibrium prices
(Eaves and Scarf, 1976; Hansen and Scarf, 1973; Scarf, 1967, 1982). In their simplest
form these methods are based upon a decomposition of the price simplex into a large
number of small regions and on the use of information about the problem instance
to construct a path that can be shown to terminate close to a fixed point. While the
appropriate termination is guaranteed by the fixpoint theorems, the worst case running
time of these algorithms turns out to be exponential.

Over the last few years, the problem of computing market equilibria has re-
ceived significant attention within the theoretical computer science community. In-
spired by Papadimitriou (2001), and starting with the work of Deng, Papadim-
itriou, and Safra (2003), theoretical computer scientists have developed polyno-
mial time algorithms for several restricted versions of the market equilibrium
problem.

In this chapter we focus on algorithms based on convex programming techniques.
Elsewhere in this book (Vazirani, 2007), algorithms of a combinatorial nature are
presented.

6.1.1 Definitions: Models and Equilibrium

We start by describing a model of the so-called exchange economy, an important special
case of the model considered by Arrow and Debreu (1954). The more general one,
which we will call the Arrow-Debreu model, includes the production of goods. We will
deal with models with production in Section 6.6.

Let us consider m economic agents that represent traders of n goods. Let R’, denote
the subset of R"” with all nonnegative coordinates. The j-th coordinate in R" will
stand for good j. Each trader i has a concave utility function u; : R}, — R, which
represents her preferences for the different bundles of goods, and an initial endowment
of goods w; = (w1, ..., wi,) € RY,. We make the standard assumption that u; is non-
satiable, that is, for any x € R}, there is a y € R, such that u;(y) > u;(x). We also
assume that u; is monotone, that is, u;(y) > u;(x) if y > x. For the initial endowment
of trader i, we assume that w;; > O for at least one j. At given prices 7 € R’,, trader
i will sell her endowment, and ask for the bundle of goods x; = (x;1, ..., x;,) € R},
which maximizes u;(x) subject to the budget constraint' 77 - x < 7 - w;. The budget
constraint simply says that the bundles of goods that are available to trader i are the
ones that cost no more than her income 7 - w;.

An equilibrium is a vector of prices 7 = (7, ..., m,) € R at which, for each
trader i, there is a bundle X; = (X;1, ..., X;,) € R, of goods such that the following
two conditions hold:

(i) Foreachtraderi,the vector xX; maximizes u;(x) subject to the constraints 7 - x < 7w - w;
and x € RY}..
(ii) For each good j, >, X;j <Y, w;j.

! Given two vectors x and y, x - y denotes their inner product.

INTRODUCTION 137

Let R, , be the set of vectors in R", whose components are strictly positive. For
purposes of exposition, we will generally restrict our attention to price vectors in R’} | .
When we violate this convention, we will be explicit about it.

For any price vector 7, a vector x; (57), which maximizes u;(x) subject to the budget
constraint 7 - x <7 -w; and x € R, is called a demand of trader i at prices 7.
Observe that there is at least one demand vector, and that there can be multiple demand
vectors. We will usually assume that there is exactly one demand vector at price 7;
that is, we have a demand function. This assumption holds if the utility function
satisfies a condition known as strict quasi-concavity. Once again, we will be explicit
when we will deal with exceptions, since for some common utility functions such as
the linear ones, the demand is not a function but a correspondence or a set valued
function.

The vector z;(w) = x;(;r) — w; is called the individual excess demand of trader
i. Then X*(7) = > Xix(mw) denotes the market demand of good k at prices 7, and
ZK(r) = X*(w) — Y, wix the market excess demand of good k at prices 7. The vec-
tors X() = (X (), ..., X"(n)) and Z(w) = (Z' (%), ..., Z"(7)) are called market
demand (or aggregate demand) and market excess demand, respectively. Observe that
the economy satisfies positive homogeneity, i.e., for any price vector 7 and any A > 0,
we have Z(mr) = Z(Ax). The assumptions on the utility functions imply that for any
price m, we have 7 - x;(;r) = 7 - w;. Thus the economy satisfies Walras’ Law: for any
price 7, we have w - Z() = 0.

In terms of the aggregate excess demand function, the equilibrium can be equiva-
lently defined as a vector of prices m = (71, ..., m,) € R such that ZJi(m) <0 for
each j.

6.1.2 The Tatonnement Process

The model of an economy and the definition of the market equilibrium fail to predict
any kind of dynamics leading to an equilibrium, although they convey the intuition that,
in any process leading to a stable state where demand equals supply, a disequilibrium
price of a good will have to increase if the demand for such a good exceeds its supply,
and vice versa.

Walras (1954) introduced a price-adjustment mechanism, which he called taron-
nement. He took inspiration from the workings of the stock-exchange in Paris, and
suggested a trial-and-error process run by a fictitious auctioneer. The economic agents
receive a price signal, and report their demands at these prices to the auctioneer. The
auctioneer then adjusts the prices in proportion to the magnitude of the aggregate de-
mands, and announces the new prices. In each round, agents recalculate their demands
upon receiving the newly adjusted price signal and report these new demands to the
auctioneer. The process continues until prices converge to an equilibrium. In its contin-
uous version, as formalized by Samuelson (1947), the tAtonnement process is governed
by the differential equation system:

dﬂk
- = 0Z), k=1,2,....n, (6.1)

138 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

where G () denotes some continuous and differentiable, sign-preserving function, and
Z,() is the market excess demand function for good k.

6.1.3 Approximate Equilibria

Since a price equilibrium vector that is rational exists only in very special cases, most
algorithms actually compute an approximate equilibrium.

Definition 6.1 A bundle x; € R, is a p-approximate demand, for p > 1,
of trader i at prices 7w if u;(x;) > iu* and 7 - x; < umw - w;, where u* =
max{u;(x)|x e R, 7w -x <7 - w;}.

A price vector 7 is a strong [-approximate equilibrium (u > 1) if there are bundles
x; such that (1) for each trader i, x; is the demand of trader i at prices r,and (2)), x;; <
nY_; w;; for each good j. A price vector 7 is a weak p-approximate equilibrium
(u > 1) if there are bundles x; such that (1) for each trader i, x; is a p-approximate
demand of trader i at prices 7, and (2)), x;; <), w;; for each good ;.

Definition 6.2 An algorithm that computes an approximate equilibrium, for any
& > 0, in time that is polynomial in the input size and 1/& (resp., log 1/¢) is called
polynomial time approximation scheme (resp., polynomial time algorithm).

6.1.4 Gross Substitutability

In general, not only equilibria are not unique, but the set of equilibrium points may be
disconnected. Yet many real markets do work, and economists have struggled to capture
realistic restrictions on markets, where the equilibrium problem exhibits some structure,
like uniqueness or convexity. The general approach has been to impose restrictions
either at the level of individuals (by restricting the utility functions considered and/or
by making assumptions on the initial endowments) or at the level of the aggregate
market (by assuming that the composition of the individual actions is particularly well
behaved).

The property of gross substitutability (GS) plays a significant role in the theory of
equilibrium and in related computational results based on convex programming.

The market excess demand is said to satisfy gross substitutability (resp., weak
gross substitutability [WGS]) if for any two sets of prices 7 and 7’ such
that 0 < m; <z}, for each j, and 7; <} for some j, we have that my = m;
for any good k implies Z¥(w) < Z¥(n') (resp., Z¥(w) < Z¥(x')). In words, GS
means that increasing the price of some of the goods while keeping some oth-
ers fixed can only cause an increase in the demand for the goods whose price is
fixed.

Itis easy to see that WGS implies that the equilibrium prices are unique up to scaling
(Varian, 1992, p. 395) and that the market excess demand satisfies WGS when each
individual excess demand does.

INTRODUCTION 139

6.1.5 Special Forms of the Utility Functions

A utility function u(-) is homogeneous (of degree 1) if it satisfies u(ax) = au(x), for
all ¢ > 0.

A utility function u(-) is log-homogeneous if it satisfies u(ax) = loga + u(x), for
all @ > 0.

Three popular examples of homogeneous utility functions are as follows.

* The linear utility function, which has the form u;(x) =) j @ijXij-

¢ The Cobb-Douglas function, which has the form u; (x) = [;j(xij)®1, where > jaij =1

e The Leontief (or fixed-proportions) utility function, which has the form u;(x) =
minj ajjXij.

We now define the constant elasticity of substitution functional form (CES, for
short), which is a family of homogeneous utility functions of particular importance in
applications. A CES function is a concave function defined as

1

n »
UXT, ey Xp) = <Zaixf> :
i=1

where the ¢;’s are the utility parameters, and —oo < p < 1, p # 0, is a parameter
representing the elasticity of substitution 1/1 — p (see Varian, 1992, p. 13).

CES functions have been thoroughly analyzed in Arrow et al. (1961), where it has
also been shown how to derive, in the limit, their special cases, i.e., linear, Cobb—
Douglas, and Leontief functions (see Arrow et al., 1961, p. 231). For p — 1, CES
take the linear form, and the goods are perfect substitutes, so that there is no pref-
erence for variety. For p > 0, the goods are partial substitutes, and different values
of o in this range allow us to express different levels of preference for variety. For
p — 0, CES become Cobb-Douglas functions, and express a perfect balance be-
tween substitution and complementarity effects. Indeed it is not difficult to show that
a trader with a Cobb-Douglas utility spends a fixed fraction of her income on each
good.

For p < 0, CES functions model markets with significant complementarity effects
between goods. This feature reaches its extreme (perfect complementarity) as p —
—00, 1.e., when CES take the form of Leontief functions.

6.1.6 Equilibrium vs Optimization

In 1960, Negishi showed that equilibrium allocations of goods for an exchange economy
can be determined by solving a convex program where the weights of the function to
be maximized are unknown (Negishi, 1960).

Negishi proved the following theorem.

Theorem 6.3 Suppose that the initial endowment of each trader includes a
positive amount of each good.

140 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

Given positive welfare weights «;, i = 1, ..., m, consider the convex program

Maximize Z oui(x;)
;
Subjectto Y x;; <Y wyj.for 1 < j <n.

There exist a; > 0, i =1,...,m, such that the optimal solutions X; to the
program above with these «; are equilibrium allocations. That is, for some price
vector 7w, X; = x;(7r) for each i.

In the proof of Negishi’s theorem, the price vector r for a given set of welfare weights
o; is obtained from the dual variables in the Karush—-Kuhn—Tucker characterization of
the optimal solution to the convex program. Whenever the utility functions are log-
homogeneous, the Karush—-Kuhn—Tucker characterization implies that ¢; is always
equal to - X;. For the welfare weights that correspond to equilibrium, we must then
have o; = 7 - w;.

Negishi’s characterization of the equilibrium has inspired certain algorithmic ap-
proaches to compute it (Rutherford, 1999). It is also connected to some recent theoret-
ical computer science work (Jain et al., 2003; Ye, in press).

6.1.7 The Fisher Model

A special case of the exchange model occurs when the initial endowments are pro-
portional; i.e., when w; = §;w, §; > 0, so that the relative incomes of the traders
are independent of the prices. This special case is equivalent to Fisher model, which
is a market of n goods desired by m utility maximizing buyers with fixed incomes.
In the standard account of Fisher model, each buyer has a concave utility function
u; : R — Ry and an endowment ¢; > 0 of money. There is a seller with an amount
gj > 0 of good j. An equilibrium in this setting is a nonnegative vector of prices
7= (my,...,T,) € Rf at which there is a bundle X; = (x;1, ..., Xin) € Ri of goods
for each trader i such that the following two conditions hold:

(i) The vector X; maximizes u;(x) subject to the constraints - x < ¢; and x € R’,..
(i) For each good j, >, X;; = g;.

6.1.8 Overview

The rest of this chapter is organized as follows.

In Section 6.2, we analyze the Fisher model under the assumption that the traders are
endowed with homogeneous utility functions, and present Eisenberg’s convex program
for computing an equilibrium in such models.

In Section 6.3, we consider exchange economies that satisfy weak gross substi-
tutability, and show that, under such conditions, an important inequality holds, which
implicitly gives a convex feasibility formulation for the equilibrium. We discuss algo-
rithmic work that exploits this formulation.

FISHER MODEL WITH HOMOGENEOUS CONSUMERS 141

In Section 6.4, we discuss convex feasibility formulations for exchange economies
with some special and widely used utility functions, more precisely, linear and CES
functions.

In Section 6.5, we expose the limitations of convex programming techniques, by
presenting examples where convexity is violated (the equilibria are multiple and dis-
connected), and relating some of these examples to other equilibrium problems and to
recently proven hardness results.

In Section 6.6, we discuss convex feasibility formulations for economies that gen-
eralize the exchange model by including production technologies.

Finally, in Section 6.7, we guide the reader through the bibliography.

6.2 Fisher Model with Homogeneous Consumers

Whenever the traders have homogeneous utility functions, the equilibrium conditions
for Fisher model can be rewritten as the solution to the following convex program
(Eisenberg’s program), on nonnegative variables x;;:

Maximize Z e; logu;(x;)

1

Subject to inj <g; foreach j.

4

Recall that u; is the i-th trader’s utility function, e; is the i-th trader’s endowment of
money, and g; is the amount of the j-th good.

Notice that the program does not have variables corresponding to prices. The optimal
solution to this program yields allocations for each trader that, at prices given by
the Lagrangian dual variables corresponding to the optimal solution, are exactly the
individual demands of the traders. We present a proof of this result for the case where
the utility functions are differentiable.

Let ¥ be an optimal solution to Eisenberg’s program. Observe that u;(x;) > O for
each i. The Karush—Kuhn—Tucker necessary optimality theorem (Mangasarian, 1969,
Chapter 7.7) says that there exist 7; > 0, for each good j, and A;; > 0, for each trader
i and good j, such that

T ((ZX’Y) - qj) =0 foreach good j, (6.2)

Aijxij =0 foreachi, j, (6.3)

and

e; du;(x;)

— X =m; —A;; foreachi, j. (6.4)
u;(X;) 0x;j ! !

142 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

For trader 7, let us multiply the j-th equality in (6.4) by X;;, and add the resulting
equalities. We obtain

€; _ Bui()"c,-) —
ZXUT = Z(ﬁj — Aij)Xij.
17)]

u;(X;) I

Using 6.3 and Euler’s identity u; (x;) =) j Xij % for the homogeneous u;, this equality
ij
becomes
e = Z 7Tj)_Cij.
J

At the price vector 7, the bundle X; thus exhausts the budget of trader i. Let y; € R’}
be any bundle such that 7 - y; < e;. We proceed along the lines of the Karush—Kuhn—
Tucker sufficient optimality theorem (Mangasarian, 1969, Chapter 7.2) to show that
u;(%;) > u;(y;). Using the concavity of u;,

wi(y;) — ui(x;) < Vu(x;) - (yi — X;)

u;i(X;) _
= E(ﬂj—)wj)(yl'j—xij)
i N
j
u;i(X;)
= E(Tijij—)\ijyij)_ei
1 .
J

IA

ui(x;)
l .l Zﬂj)’ij—ei
J

=

e

We have shown that that X; is a demand of trader i at price 7. Turning now to market
clearance, observe that (6.2) implies that) . X;; = ¢; for any good j such that 77; > 0.
For each good j such that 77; = 0, feasibility tells us that), X;; < g;; let us allocate
the excess of any such good to trader 1. Slightly abusing notation, let x; still denote
the first trader’s allocation. The bundle X, continues to be a demand of trader 1 at price
7, since the newly allocated goods have price zero and adding positive quantities of
a certain good cannot decrease u. We have now satisfied all the requirements of an
equilibrium.

6.3 Exchange Economies Satisfying WGS

‘We now consider exchange economies that satisfy WGS. In this scenario the following
important Lemma holds.

Lemma 6.4 Let 7 be an equilibrium price vector for an exchange economy
that satisfies gross substitutability, and 7 be any nonequilibrium price vector. We
then have t - Z(m) > 0.

EXCHANGE ECONOMIES SATISFYING WGS 143

This lemma implies that the set of equilibrium prices forms a convex set by providing
for any positive price vector & that is not an equilibrium price vector, a separating
hyperplane, i.e., a hyperplane that separates v from the set of equilibrium prices. This
is the hyperplane {x € W" | x - Z(;r) = 0}: indeed we have 7 - Z(;r) > 0, whereas
- Z(w) =0, by Walras’ law. To compute this separating hyperplane, we need to
compute the demands Z;(;r) at the prices 7.

6.3.1 Computational Results

Lemma 6.4 tells us that if we start at price 7, and move in the direction Z(7), the
Euclidean distance to the equilibrium 77 decreases. This observation is in fact the crux
of the proof that a certain titonnement process converges to the equilibrium.

We now present a simple algorithm, which is a discrete version of the titonnement
process, and prove that it converges to an approximate equilibrium in polynomial time
for exchange markets satisfying WGS. For this, however, we will need to work with a
transformed market.

Two Useful Transformations

We now describe a transformation that, given the exchange market M, produces a new
market M’ in which the total amount of each good is 1. The new utility function of
the i-th trader is given by u}(xy, ..., x,) = u;(Wixy, ..., W,x,), where W; denotes
> w;j. It can be verified that, if u;() is concave, then u;() is concave. The new initial
endowment of the j-th good held by the i-th trader is w;; = w;;/ W;. Let w; denote
Wiy, ..., wj,) € R} Clearly, Wi = >, w;, = 1.

The following lemma summarizes some key properties of the transformation.

Lemma 6.5

(i) For any u > 1, (xj1, ..., Xiy) IS a p-approximate demand at prices (i, ..., m,)
for trader i in M' if and only if the vector (Wix;1, ..., Wyx;,,) is a p-approximate
demand at prices (;’V—‘l, e, %)for trader i in M.

(@) For any u > 1, (my, ..., m,) is a weak w-approximate equilibrium for M' if and
only if(g,—‘], .. s 3) is a weak p-approximate equilibrium for M.

(iii) The excess demand of M’ satisfies WGS if the excess demand of M does.

We transform M’ into another market M as follows. Let 0 < n < 1 be a parameter.
For each trader i, the new utility function and initial endowments are the same, i.e.,
i;() = u}(), and W; = w;. The new market M has one extra trader, whose initial
endowment is given by W, +; = (1, ..., n), and whose utility function is the Cobb—
Douglas function iy, +1(Xu+1) = [; X,/ ;- A trader with this Cobb-Douglas utility
function spends 1/n-th of her budget on each good. Stated precisely, 7 ;x,,41 ;(7) =

- ﬁ)m+l/n- R R
Note that the total amount of good j in the market M is W; = Z:":J“ll Wij =1+n.

144 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

Lemma 6.6 (1) The market M has an equilibrium. (2) Every equilibrium 7 of
'S . o, max; 7 ;

M satisfies the condition W,/n,j <2n/n.(3) For any u > 1, a weak p-approx
equilibrium for M is a weak (1 + n)-approx equilibrium for M'. (4) M satisfies
WGS if M’ does.

PROOF Statement (1) follows from arguments that are standard in microeco-
nomic theory. Briefly, a quasi-equilibrium 7 € R’, with ;7 = 1 always exists
(Mas-Colell et al., 1995, Chapter 17, Proposition 17.BB.2). At price 7 the income
7T - W41 of the (m + 1)-th trader is strictly positive. This ensures that that 7; > 0
for each good j. But this implies (Mas-Colell et al., 1995, Chapter 17, Proposition
17.BB.1) that 7 is an equilibrium.

The proofs of the remaining statements are left as Exercise 6.4. The proof of
(2) illustrates one crucial role that the extra trader plays. O

We define A = {7 € R [§/2n < 7; < 1 for each j}. Note that Lemma 6.6 implies
that M has an equilibrium price in A. We define A* = {7 e R} |n/4n <m; <1+
n/4n for each j}. For any 7 € A*, we have % < H”‘{:" <2 5"

Abusing notation slightly, we henceforth let Z () and X(m) denote respectlvely,

the excess demand vector and the aggregate demand vector in the market M.

The Discrete Tatonnement Process

We now state an algorithm for computing a weak (1 + ¢)-approximate equilibrium for
M. From Lemma 6.5 and Lemma 6.6 (applied with n = ¢), this (1 4 &)-approximate
equilibrium for M will then be a (1 + O(e))-approximate equilibrium for M. The
algorlthm assumes access to an oracle that can compute the excess demand vector of
M at any given price vector in A*. Such an oracle is readily constructed from an oracle
for computing the excess demand for M.

Let 7°, the initial price, be any point in A. Suppose that we have computed a
sequence of prices 7%, ..., w'~!. We compute 7’ as follows. If 7'~! ¢ A*, we let
7! be the point in A closest to 77:~!. In other words, n}: = n;_l if n/2n < n;_l <1;
i—1

n}:lifjr > L) =n/2nif 7~ <n/2n.
If7i=! € AT, we let
. 8 Z(r
(12n%/n)? .

Analysis of Convergence

Lemma 6.4 is the building block upon which the proof of convergence of the (con-
tinuous) taitonnement process is based. To prove the (fast) convergence of the discrete
process just described, we need a more general result (Lemma 6.7 below). Together
with Lemma 6.8, it says that if a vector 7 € A™ is not a weak (1 + ¢)-approx equilib-
rium for M, then the hyperplane normal to Z(rr) and passing through 7 separates
from all points within a certain distance of any equilibrium of M in A.

EXCHANGE ECONOMIES SATISFYING WGS 145

Lemma 6.7 Let w € AT be a price vector that is not a weak (1+ ¢)-
approximate equilibrium for M, for some & > 0. Then for any equilibrium & € A,
we have 7t - Z(mw) > & > 0, where 1/6 is bounded by a polynomial in n, é and %

PROOF We can assume that the goods are ordered so that ;—i < Z—; <...< %
Let oy denote the quantity % For 1 <s <n, let g° denote the price vector

min{a,7T, 7}, i.e., the componentwise minimum of «;# and 7. Note that
N A A A
q :(nla--"ns—l,ns:asn57as7rs+la---,05s7rn)'

The first price g, in the sequence is an equilibrium price vector, being a scaling
of 7 by w1, and the last price vector g, is 7. For 1 <s <n — 1, let Gf,’ denote
the set of goods {1,...,s} and G} denote the set of goods {s + 1, ..., n}. If
Oy < gyt Gf is the subset of goods whose prices remain fixed during the s-th
step, where we move from ¢* to ¢**!, and G is the complement set.

Focusing on the s-th step, we have

0 — qs+1 . Z(qs+1) _ qs . Z(qr)
= > 7 (Z;@) = Zi(g)) + Y (e Zi(q") — 7, Z,(g"))

jeGh jeGy
= a1 Y7 (2@ = Zi(@)) + Y (a1 —)R Zi(q")
J JjeGy
= > (ot —) (Z;(@") = Z;(g") -
JjeGt

Applying weak GS to the price vectors ¢* and o7, we see that Z;(¢*) <0
for j € G'. Applying weak GS to the price vectors ¢° and g**!, we see that
Zj(q”l) > Zi(g®)for j € Gf. Noting that 7; < a,#; < a7 for j € Gﬁ', we
have

a1 Y75 (g = Z,(4")

J

=Y (et — 1) (Z(q") — Z,(g")

JjeGt
— Y (1 —)7 Zi(q")
JeG;
> Y (@t —7) (2@ — Z,(@")
JjeGh
> (g1 —) Y 75 (2i(q") = Zi(qY)).

Jj€Gy

That is,

®(Zi(q) = Z(¢") = (1 -5) Y #(2i@H - 2,(4") (65)

O
s+1 jeGh

146 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

Since the right-hand side is nonnegative, we have, foreach 1 <s <n — 1,
£ (Zi(q") = Zi(g") = 0. (6.6)

Because 7 = ¢" is not a weak g-approximate equilibrium for 4/, we must have
g—’l’ > 1+ &/3. (See Exercise 6.5.) So there is some value 1 < k <n — 1 so that
O‘;—:‘ > 1+ ¢/6n. We will show that the right-hand side of equation (6.5) is large
for k.

We have 1 — a‘% > li{f/'én > 5

We can lower bound that the increase in income of the (m + 1)-th trader when

we move from ¢* to g**:

k+1 ko~ k+1 ko _ PN
g W1 — @ W1 = (g, — @) Wimt1,0 = (@1 —)T Wit 1,0

107NN
= — T Wm1,n-
6n

Recall that the (m + 1)-th trader is a Cobb—Douglas trader with a utility func-
tion that ensures that she spends rllth of her income on each good. As a result, we
have

k+1 k. n
k+1 kN q +h. Win+1 q - Wntt
xm+l,l(q) - xm+l,1(‘]) - k-1 - k
ng, nqg,
_ 1 k+1 A k A
=—(q"" - Wmt1 —q" - Wnt1)
ni

S(Xkﬁ'n wm{»l,n
61’127'[1
Since the market M’ (the one without the (m + 1)-th trader) satisfies weak GS
and 1 € G”, we have

m m
k+1 k
in,l(q - in,l(q) = 0.
i=1 i=1
ety Wint1,n

Adding the two inequalities, we get Z1(g*™") — Z1(¢*) > o Plugging
this into equation (6.5), and recalling that Zj(qk+1) —-Z; (g") > 0forj e G", we
have

£ (Ziq") = Zj(¢") = <1 — —) > 7 (Ziq" = Z;(¢)
jeGh
82(1](7%,1 wm—&-],n
72)137'[1
Adding this inequality and the inequalities (6.6) for each s # k, we get

2 A A
ETOQ T Wi +1,n

=34.
12n3m,

- Z(w) =7 - (Z(g") ~ Z(g") =
It is easily verified that 1/§ is bounded by a polynomial in n, 1/¢,and 1/5. O

Lemma 6.8 Foranym € A™, ||Z(m)|]> < 12n%/7.

EXCHANGE ECONOMIES SATISFYING WGS 147

PROOF
NZEll2 <) 125l
J
=D Xm+ Y W
J J
maxy 7Ty ~ A
< W; W
~ ming Z J+; /

2 Wir W

j

S

+2n

n2
n

where the third inequality follows from a simple calculation, the fourth inequal-
ity holds because m € A", and the fifth inequality holds because Wj <2 for
each j. D

1

IA

’

We are now ready for the proof of correctness of the discrete titonnement process.

Theorem 6.9 Let i denote min{ﬁ, (n/4n)?}. Within n/u iterations, the
algorithm computes a price in A which is a weak (1 + €)-approximate equi-
librium for M. (Note that the bound on w is polynomial in the input size of the
original market M, 1/e, and 1/n.)

PROOF Let us fix an equilibrium 7* of M in A. We argue that in each iteration,
the distance to v * falls significantly so long as we do not encounter an approximate
equilibrium in A*. If 7'~! & AT, we have |7'rjifl — 7y - |71j- — 77| > 0 for each
J, while |7T;- — n*| - |n;. — n}“| > n/4n for some j. From this it follows that

7% — 712 = |I* = 7P > (n/4n)*.

Now suppose that 7/~! € A* and that 7/~! is not a weak (1 + &)-approx
equilibrium for M. By Lemma 6.7, 7* - Z(w'~") > 8. Since 7'~! - Z(z'~1) =0
by Walras’ Law, we have (7* — iy Z(n.i—l) > 5.

Let ¢ denote the vector 7/ — '~ = (12112/”)2 Z(w'~1). We have

(=7 —q)q

=(*-7"Yq9-qq

8 * i—1 i—1 8 i—1y\112
= W22/ ((ﬂ -) L) — WHZ@T)||2>
>__ % (5 — Lmﬂm) >0
~ (12n2/n)? (12n%/n)* -

148 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

Thus,
| — 71 = |l = =)

=|lz* =2 P = lr* =2 —ql?
=@ -1 gq+@ - —q)¢q
> —n"".q

) . .
— W(n* _— 1) . Z(T[l 1)

82
> —7
~ (12n2/n)?

0

Suppose that every vector in the sequence 7°, ..., 7¥ is either not in A or
not a weak (1 + €)-approx equilibrium. We then have

2
=7 P = In* = 7'? > min{ —————, (n/4n)*} = u,
I 12— 1] P2 min | o (4 | =
for 1 <i < k. Adding these inequalities, we get
kp < |im* = 2| = |ln* = 7*)P < n.

Putting everything together, we can state the main result of this section.

Theorem 6.10 Let M be an exchange market whose excess demand function
satisfies WGS, and suppose that M is equipped with an oracle for computing the
excess demand at any given price vector. For any ¢ > 0, the tdtonnement-based
algorithm computes, in time polynomial in the input size of M and 1 /¢, a sequence
of prices one of which is a weak (1 + €)-approx equilibrium for M.

In order to actually pick the approximate equilibrium price from the sequence of
prices, we need an efficient algorithm that recognizes an approximate equilibrium of M.
In fact, it is sufficient for this algorithm to assert that a given price 7 is a weak (1 + 2¢)-
approximate equilibrium provided 7 is a weak (1 + &)-approximate equilibrium. Since
the problem of recognizing an approximate equilibrium is an explicitly presented
convex programming problem, such an algorithm is generally quite easy to construct.

6.4 Specific Utility Functions

In many economic scenarios, the market is modeled by consumers having some specific
utility functions. While in some cases this does not lead to a simplified computational
problem, in other instances, the specific utility functions might expose a computation-
ally useful structure. This turns out to be the case for linear utility functions, as well as
for certain CES utility functions.

SPECIFIC UTILITY FUNCTIONS 149

6.4.1 Convex Programs for Linear Exchange Economies

The equilibrium conditions for an exchange economy with linear utilities can be written
as a finite convex feasibility problem. Suppose that the linear utility function of the i-th
trader is Z/ a;;jx;j, and suppose that w;; > 0 for each i, j.

Consider now the problem of finding v/; and nonnegative x;; such that

E QikXik > ajj E wie?* Vi, foreach1 <i <m, 1< j <n.
k k

E X = E w;.

i i

Any solution to this program corresponds to an equilibrium obtained by setting
wj= eVi. The converse also holds, i.c., any equilibrium corresponds to a solution to
this program.

We will discuss the ideas behind the derivation of the convex program above in the
context of economies with production (Section 6.6).

6.4.2 Convex Programs for CES Exchange Economies

Demand of CES Consumers. We start by characterizing the demand function of
traders with CES utility functions. Consider a setting where trader i has an ini-
tial endowment w; = (w1, ..., w;,) € R, of goods, and the CES utility function
ui(xi1, ..., xXip) = (23;1 aijxfj" f’%’, where o;; > 0, w;; > 0, and —co0 < p; < 1, but
pi #0.1f p; < 0, we define u;(x;1, ..., x;,) = O if there is a j such that x;; = 0. Note
that this ensures that ; is continuous over R’,..

The demand vector for the i-th consumer is unique and is given by the expression

1/1=p;i
o y Dk Tk Wik

1/1—p; Vl—pi _—pi/1=p;i "
7; Dk % Ty

xij(m) = (6.7)

The formula above can be derived using the Karush—Kuhn—Tucker conditions.

Efficient Computation by Convex Programming. Consider an economy in which
each trader i has a CES utility function with —1 < p; < 0. We show that the equilibria
of such an economy can be characterized as the solutions of a convex feasibility
problem.

Since the demand of every trader is well-defined and unique at any price, we may

write the equilibria as the set 7 € R such that for each good j, we have) . x;; () <

1/(1—p)
1/a g

oj =17, /079 1n terms of the 0;’s, we obtain the setof o = (01, ..., 0,) € Ry such

that for each good j,

> ;wij.Let p = —1, and note that p < p;, foreachi.Let f;;(7) =7 x;j(m), and

Z fij(o) < o (Z wij) .

150 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

We now show that these inequalities give rise to a convex feasibility program. Since
the right-hand side of each inequality is a linear function, it suffices to argue that the
left-hand side is a convex function. The latter claim is established by the following
proposition.

Proposition 6.11 The function f;;j(o) is a convex function over R .

PROOF Clearly, it suffices to show that the constraint f;; < ¢ defines a convex
set for positive ¢. Using formula (6.7) for the demand, this constraint can be
written as

1

T=p; 1—p
% a0 Wik _
pi=P 1 —pil=p) — °°

1=pj 1-p; 1-p;
gj Dok % Oy

Rewriting, and raising both sides to the power 1/(1 — p), we obtain

1
1=p -p —pi

Pi
(1)(1 7 1 T T
p=en E ak Pwik <tvrg; "y " (6.8)

J ! ’

where

1-p;
—pi(1=p) \ —Pi(l=p)

Za‘k"f o, 0 . (6.9)

The left-hand side of inequality 6.8 is a convex function, and the right-hand
side is a concave function that is nondecreasing in each argument when viewed as
a function of ¢, o}, and v;, since the exponents are nonnegative and add up to one.
Since 0 < % < 1, the right-hand side of equality 6.9 is a concave function,
in fact a CES function. It follows that the right-hand side of inequality 6.8 remains
a concave function when v; is replaced by the right-hand side of equality 6.9. This
completes the proof. O

It is not hard to verify that the demand generated by an economy with CES util-
ities as above need not satisfy WGS. Indeed, the connectedness of the equilibria
that is a corollary of the above convex feasibility formulation is an interesting new
consequence.

6.5 Limitations

So far, we have presented efficient algorithms for restricted versions of the market
equilibrium problem, which take advantage of the convexity of the set of equilibria.
However, the set of equilibria in a general exchange economy does not even need to be
connected. This implies that it is not possible to characterize the set of equilibria by a
convex formulation.

LIMITATIONS 151

In Section 6.5.1 we report an example that shows that CES exchange economies
may present multiple disconnected equilibria, whenever p < —1. This suggests that
it is unlikely that the results shown in Section 6.4.2 can be extended to encompass
markets where some traders have CES utility functions with p < —1.

In Section 6.5.2 we outline some more general obstacles to the efficient solvabil-
ity of the market equilibrium problem. More precisely, we give a tour of a num-
ber of recent computational complexity results which imply that Leontief exchange
economies are hard for PPAD, a complexity class that contains a wealth of equi-
librium problems. This shows that it is unlikely that the market equilibrium problem,
even when restricted to exchange economies with Leontief consumers, can be solved in
polynomial time.

6.5.1 Multiple Disconnected Equilibria

We describe a simple market with two traders and two goods that has multiple dis-
connected equilibria. The first trader has an initial bundle w; = (1, 0) and the CES
utility function u;(x, y) = ((ax)” + y?)!/?, where a > 0. The second trader has an
initial bundle w, = (0, 1) and the CES utility function u>(x, y) = ((x/a)” + y*)!/*. It
is possible to show that for each p < —1 there is a sufficiently small value of a for
which

(i) the vector (1/2, 1/2) is an equilibrium price and
(ii) the vector (p, 1 — p) is an equilibrium price for some p < 1/2, and the vector (g, 1 —
q) is not an equilibrium price for any p < g < 1/2.

This economy therefore does not admit a convex programming formulation in terms of
some “relative” of the prices (such as the one given in Section 6.4.2 in terms of the oy)
that captures all the price equilibria. Such a formulation implies that if (p;, 1 — p;)
is a price equilibrium and (p,, 1 — py) is a price equilibrium for some p; < p,, then
(p3, 1 — p3) is also a price equilibrium for every p; < p3 < ps.

This example suggests that it may not be possible to extend convex programming
techniques to encompass markets where some traders have a CES utility function with
p < —1.

6.5.2 Hardness for the Class PPA D

The context of computation of equilibria calls for a complexity analysis conducted
within the class TF'NP of total search problems, i.e., problems whose set of solutions
is guaranteed to be non empty. Nash Theorem guarantees that the problem of finding a
Nash equilibrium in a noncooperative game in normal form is a total search problem.
Arrow and Debreu Theorem gives sufficient conditions under which an exchange econ-
omy has an equilibrium. Therefore, under suitable sufficient conditions, the problem
of finding a market equilibrium is a total search problem.

An important subclass of TEFNP is the class PPAD, which is the class of total
functions whose totality is proven by the following simple combinatorial argument: if a
directed graph whose nodes have in-degree and out-degree at most one has a source, it
must have a sink (see Chapter 2 of this book for more background, Papadimitriou, 2007).

152 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

This class captures a wealth of equilibrium problems, e.g., the market equilibrium
problem as well as Nash equilibria for n-player games. Problems complete for this
class include a (suitably defined) computational version of the Brouwer Fixed Point
Theorem.

Consider exchange economies where m, the number of traders, is equal to the
number of goods, and the i-th trader has an initial endowment given by one unit of
the i-th good. The traders have a Leontief (or fixed-proportion) utility function, which
describes their goal of getting a bundle of goods in proportions determined by m given
parameters.

Given an arbitrary bimatrix game, specified by a pair of n x m matrices A and
B, with positive entries, one can construct a Leontief exchange economy with n + m
traders and n + m goods as follows.

Trader i has an initial endowment consisting of one unit of good i, fori = 1,...,n +
m. Traders indexed by any j € {1, ..., n} receive some utility only from goods j €
{n+1,...,n 4+ m}, and this utility is specified by parameters corresponding to the
entries of the matrix B. More precisely the proportions in which the j-th trader wants
the goods are specified by the entries on the jth row of B. Vice versa, traders indexed
by any j € {n + 1, ..., n 4+ m} receive some utility only from goods j € {1, ..., n}.
In this case, the proportions in which the j-th trader wants the goods are specified by
the entries on the jth column of A.

In the economy above, one can partition the traders in two groups, which bring to
the market disjoint sets of goods, and are interested only in the goods brought by the
group they do not belong to.

It is possible to show that the Nash equilibria of any bimatrix game (A, B) are in
one-to-one correspondence with the market equilibria of such an economy, and that
the correspondence can be computed in polynomial time. (For the Leontief economies
under consideration, we need to get rid of the assumption — see the Introduction —
that we will be concerned only with positive price equilibria. It is only then that they
capture the complexity of bimatrix games.)

The problem of computing a Nash equilibrium for two-player nonzero sum games
have been proven PPA D-complete. Combined with the game-market correspondence
mentioned above, these hardness results imply that the problem of computing a market
equilibrium, even when confined to the restrictive scenario of a special family of
Leontief economies, is PPA D-complete.

6.6 Models with Production

In this section, we derive convex programs for certain economies that generalize the
exchange model by including constant returns to scale technologies. The ideas for
deriving these convex programs build on the ones developed for exchange economies
with special utility functions. In a constant returns economy M, there are £ producers,
as well as the m consumers and n goods of the exchange model. The k-th producer is
equipped with a technology that is capable of producing some good, say oy, using the n
goods as input. The technology is specified by a concave function f; : R, — R, that
is assumed to be homogeneous of degree 1. The interpretation is that given quantity

MODELS WITH PRODUCTION 153

z; > 0of good j,for 1 < j < n, the technology can produce up to fi(z1, ..., Z,) units
of good oy.

At a given price vector 7 = (71, ..., 7,) € R, the producer will choose a techno-
logically feasible production plan that maximizes her profit. That is, she will choose
21, ..., 2y = 0 that maximizes the profit 7, fi(z1, ..., 2,) — Z?:l 7;z;. Now if there
is a choice of nonnegative zi, ..., z, such that 7, fi(z1,...,z,) — ijl mizj >0,
then using inputs «zy, ..., ®z,, for @ > 1, she can obtain a profit of

n n
Mo felazy, .. az) = Y miazj =a |7 filzr, ... 2) — Y75z
j=

j=1

Thus a profit-maximizing plan is not defined in this case. A profit-maximizing plan is
defined if and only if no feasible plan can make a strictly positive profit. In such a case,
a profit-maximizing plan is one that makes zero profit. In particular, the trivial choice
z; =0, for 1 < j <n, for which fi(zi,...,z,) =0 is always a profit-maximizing
plan whenever profit maximization is well defined.

It is useful to restate the above in terms of the unit cost function ¢; : R, — R;.
This is defined, at any given price vector (71, ..., 7,) € R, to be the minimum cost
for producing one unit of good oy. That is,

n
) =min{ Y " mwzjlz; = 0, fizr, oo za) = 1
j=1

If m,, > cx(;r), then profit maximization is undefined. If m, < ci(s7), then the only
profit-maximizing plan is the trivial plan. If r,, = c4(7r), the trivial plan, as well as any
(x1, ..., xy)suchthat fi(zy, ..., zy)c(T) = Z?zl 7z, 1s a profit-maximizing plan.

Each consumer is identical to the one in the exchange model: she has an initial
endowment w; € R’} and a utility function u;, which we now assume to be homoge-
neous. An equilibrium is a price vector 7 = (7, ..., 7,) at which there is a bundle
x; = (X1, ..., Xip) € R, of goods for each trader i and a bundle z; = (zx1, ..., Zkn) €
R’ for each producer k such that the following three conditions hold: (i) For each
firm k, profit maximization is well-defined at 7 and the inputs zx = (z1, - - - , Zk) and
output gk, = fx(Zk1, - - -, Zkn) 1S a profit-maximizing plan; (ii) for each consumer i,
the vector x; is her demand at price 7; and (iii) for each good j, the total demand is no
more than the total supply; i.e., the market clears:

inj +Zij =< Zwij + Z qkj-
i k i

k:j=0k

Note that requirement (i) means that there is no feasible plan that makes positive
profit. This rules out the trivial approach of ignoring the production units and computing
an equilibrium for the resulting exchange model.

We now derive a convex program for certain kinds of utility and production functions.
We first transform the economy M into an economy M’ with m consumers, n + m
goods, and [4+ m producers. For each consumer i, an additional good, which will
be the (n + i)-th good, is added. The new utility function of the i-th consumer is
w;(X1, ..., Xngm) = Xn4; that is, the i-th consumer wants only good n + i. The new

154 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

initial endowment wy is the same as the old one; that is u)lfj = w;; if j < n,and w; = 0
if j > n. The first [producers stay the same. That is, for k <[, the k-th producer
outputs good o, using the technology described by the function f/(zi, ..., Zp4m) =
Jx(z1, ..., zn). For 1 <i < m, the (I + i)-th producer outputs good n + i using the
technology described by the function f/ ;(z1, ..., Zy4m) = ui(z1, ..., z,). It can be
shown that there is a one-to-one correspondence between the equilibria of M and M.
We will therefore focus on characterizing the equilibria of M’ — the simplicity of its
consumption side will be of considerable help in this task.

6.6.1 Inequalities Characterizing Equilibrium

We begin by characterizing the equilibria for the market M’ in terms of a system
G of inequalities, in the following sets of nonnegative variables: (1) w1, ..., Tytm,
for the prices; (2) x; i, for the demand of consumer i for the (n 4 i)-th good; (3)
Zr = (21, - - - » Zkn) € R, standing for the inputs used by the k-th production sector;
and (4) gx,, , for the output of the good oy by the k-th producer.

n

TniXinti = anwij, forl <i<m (6.10)
Jj=1
Gro, < fi(zp), forl <k <l +m (6.11)
T < Cp(my, ..., my), forl <k <l+4+m (6.12)
Youp =Yy wi+) qy, forl<j<n (6.13)
k i k:ox=j
Xinti < qQryinti forl <i <m (6.14)

Here, ci() denotes the k-th producer’s unit cost function, which depends only on
the prices of the first n goods. Evidently, any equilibrium is a feasible solution to the
system of inequalities G. What is not so evident is that any feasible solution of G is
an equilibrium. To see this, we first note that the sets of inequalities (6.12) and (6.13)
imply that no producer can make positive profit: we have) j<n TjZkj = ToiGkoy for
each producer k. Adding up these inequalities, as well as the inequalities (6.10), we
get a certain inequality that says that the cost of the consumer and producer demands
is greater than or equal to the cost of the initial endowments and producer outputs.
Whereas by multiplying each inequality in (6.13) and (6.14) by the corresponding price
and adding up these inequalities, we get that the cost of the consumer and producer
demands is less than or equal to the cost of the initial endowments and producer
outputs.

This implies that the two costs must be equal. From this it follows that } ., _, 7;z¢; =
o, qko, for each producer k. Each production plan makes zero profit. Since (6.12)
ensures that profit maximization is well defined, these are optimal production plans.
Furthermore, we must have equality in (6.10): x; ,; is the demand of good n + i at
price . Since conservation of goods is guaranteed by (6.13) and (6.14), we conclude
that any solution of G is an equilibrium.

BIBLIOGRAPHIC NOTES 155

6.6.2 Convex Programs for Specific Functions

Let us make the substitution 77; = ¥ in the system of inequalities above. This makes
all the constraints convex, except possibly for the ones in (6.12). Whenever each
inequality in the set (6.13) also becomes a convex constraint, we get a convex feasibility
characterization of the equilibrium prices.

Let us first consider what happens to the constraint in (6.12) corresponding to
a CES production function fi(z1,...,2,) = (Zj aij;?)l//’, where 0 < p < 1. The

corresponding constraint is w,, < cx(7) = (Zj a,‘jjn}_”)l/l’”, where 0 = 1/(1 — p)
(we use a standard expression for the cost function corresponding to the CES production
function f}). Raising both sides to the power (1 — o), and noting that 1 — o < 0, this

constraint becomes

1—0o o__l—o
> LTT -
To = Z yj 7t
J

It is now easy to see that the substitution 77; = eV’ turns this inequality into a convex
constraint.

It is also easy to verify, using standard formulas for the cost functions, that the
constraint in (6.12) corresponding to a linear or a Cobb—Douglas production function
also becomes convex after the substitution 77; = e¥i.

Thus, we obtain convex programs characterizing the equilibria in constant returns
economies where the utility and production functions are linear, Cobb—Douglas, or CES
with p > 0. The approach also works for a certain family of nested CES functions.
Interestingly, the use of production technologies to simplifying the consumption side
plays a key role in obtaining convex programs for pure exchange economies with nested
CES utility functions.

6.7 Bibliographic Notes

The convex program of Section 6.2 is due to Eisenberg (1961). Generalizing an ap-
proach due to Eisenberg and Gale (1959) and Gale (1960) for linear utilities, Eisenberg
(1961) shows how to write the equilibrium conditions for the Fisher model as the so-
lution to a convex program whenever the traders have homogeneous utility functions.
Eisenberg’s program can also be seen as following from Negishi’s theorem. However

Eisenberg establishes an arguably stronger result. Without loss of generality, assume
>, ei = 1. Consider the social utility functionu : R’, — R thatassigns toeachs € R’}
the value

m

max l_[u;(x;) | x; € R, Zx,- <s¢.

i=1 i
Eisenberg shows that u is homogeneous and concave, and that at any price vector
the market demand generated by the Fisher economy with m traders is identical to the
demand of a single trader with utility function # and income 1.

156 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

Polterovich (1973) extends Eisenberg’s program to a generalization of the Fisher
model that includes production. Jain et al. (2005) generalize this result to quasi-concave,
homothetic, utilities, and also consider economies of scale in production.

Lemma 6.4 of Section 6.3 has been proven by Arrow et al. (1959) under the stronger
assumption of GS. It was later shown to generalize to markets which satisfy only WGS
(Arrow and Hurwicz, 1960a, 1960b).

Polterovich and Spivak (1983) extended the characterization of Lemma 6.4 to sce-
narios where the demand is a set-valued function of the prices, which includes in
particular the exchange model with linear utilities. This extension says that for any
equilibrium price 7, and nonequilibrium price 7, and any vector z € R” that is chosen
from the set of aggregate excess demands of the market at 7, we have & - z > 0.

The simple algorithm of Section 6.3.1, which is a discrete version of the titonnement
process, is introduced and analyzed in Codenotti et al. (2005). Lemma 6.7 can also
be used with the Ellipsoid method, as shown by Codenotti et al. (2005), to compute a
weak (1 + ¢)-approximate equilibrium in polynomial time. That is, the dependence of
the running time on é can be made polynomial in log é

The simple algorithm of Section 6.3.1, which is a discrete version of the titonnement
process, is introduced and analyzed in Codenotti et al. (2005).

The convex feasibility program of Section 6.4.1 is due to Nenakov and Primak (1983)
and Jain (2004). For linear utilities, an equilibrium price vector whose components are
small rational numbers exists. Jain (2004) proposes a variant of the Ellipsoid algorithm
that, exploiting this, uses the separation hyperplane implied by the convex program to
compute the equilibrium exactly in polynomial time. Ye (in press) presents an efficient
interior-point algorithm that computes the exact equilibrium in polynomial time. The
convex program of Section 6.4.2 has been introduced in Codenotti et al. (2005).

Section 6.5.1 describes a market with two traders and two goods that has multiple
disconnected equilibria. Such example has been proposed by Gjerstad (1996).

The class PPAD introduced in Section 6.5.2 was defined by Papadimitriou (1994).
The game-market correspondence was shown in Codenotti et al. (2006). The PPAD
completeness of the computation of a Nash equilibrium for a bimatrix game is due
to Chen and Deng (2005b). Chen and Deng’s result came after a sequence of works,
where first the PPA D-completeness of 4-player games (Daskalakis et al., 2005), and
then of 3-player games (Chen and Deng, 2005a; Daskalakis and Papadimitriou, 2005)
were proven.

The convex program of Section 6.6 has been introduced in Jain and Varadarajan
(2006). We have not mentioned several other results on convex programs for production
models. We refer the interested reader to Jain and Varadarajan (2006) and the references
therein.

Bibliography

K.J. Arrow, H.D. Block, and L. Hurwicz. On the stability of the competitive equilibrium, ii. Econo-
metrica, 27(1):82—-109, 1959.

K.J. Arrow, H.B. Chenery, B.S. Minhas, and R.M. Solow. Capital-labor substitution and economic
efficiency. Rev. Econ. Stat., 43(3):225-250, 1961.

BIBLIOGRAPHY 157

K.J. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy. Econometrica,
22(3):265-290, 1954.

K.J. Arrow and L. Hurwicz. Competitive stability under weak gross substitutability: The euclidean
distance approach. Intl. Econ. Rev., 1:38—49, 1960a.

K.J. Arrow and L. Hurwicz. Some remarks on the equilibria of economic systems. Econometrica,
28:640-646, 1960b.

K.C. Border. Fixed point Theorems with Applications to Economics and Game Theory. Cambridge
University Press, 1985.

X. Chen and X. Deng. 3-NASH is PPAD-complete. Electronic Collog. Computational Complexity,
2005a.

X. Chen and X. Deng. Settling the complexity of 2-player Nash-Equilibrium. Electronic Collog.
Computational Complexity, 2005b.

B. Codenotti, B. McCune, S. Penumatcha, and K. Varadarajan. Market equilibrium for CES exchange
economies: Existence, multiplicity, and computation. In Proc. 25th Intl. Conf. Fdns. Software Tech.
Theoretical Comp. Sci., pp. 505-516, 2005.

B. Codenotti, B. McCune, and K. Varadarajan. Market equilibrium via the excess demand function.
In Proc. 37th Annual ACM Symp. Theo. Comp., pp. 74-83, 2005.

B. Codenotti, S. Pemmaraju, and K. Varadarajan. On the polynomial time computation of equilibria
for certain exchange economies. In Proc. 16th Annual ACM-SIAM Symp. Disc. Algo., pp. 72-81,
2005.

B. Codenotti, A. Saberi, K. Varadarajan, and Y. Ye. Leontief economies encode nonzero sum two-
player games. In Proc. 17th Annual ACM-SIAM Symp. Disc. Algo., pp. 659-667, 2006.

C. Daskalakis, P. Goldberg, and C. Papadimitriou. The complexity of computing a Nash equilibrium.
Electronic Collog. Computational Complexity, 2005.

C. Daskalakis and C. Papadimitriou. Three-player games are hard. Electronic Collog. Computational
Complexity, 2005.

X. Deng, C. Papadimitriou, and S. Safra. On the complexity of price equilibrium. J. Comp. Syst. Sci.,
67(2):311-324, 2003. (Special Issue on Symp. Theory of Computing, 2002).

B.C. Eaves and H. Scarf. The solution of systems of piecewise linear equations. Math. Oper. Res.,
1(1):1-27, 1976.

E. Eisenberg. Aggregation of utility functions. Mgmt. Sci., 7(4):337-350, 1961.

E. Eisenberg and D. Gale. Consensus of subjective probabilities: The pari-mutuel method. Annals
Math. Stat., 30:165-168, 1959.

D. Gale. The Theory of Linear Economic Models. McGraw Hill, 1960.

S. Gjerstad. Multiple equilibria in exchange economies with homothetic, nearly identical preference.
University of Minnesota, Center for Economic Research, Discussion Paper 288, 1996.

T. Hansen and H. Scarf. The Computation of Economic Equilibria. Cowles Foundation Monograph
No. 24., New Haven: Yale University Press, 1973.

K. Jain. A polynomial time algorithm for computing the Arrow—Debreu market equilibrium for linear
utilities. In Proc. 45th Annual Symp. Fdns. Comp. Sci., pp. 286-294, 2004.

K. Jain, M. Mahdian, and A. Saberi. Approximating market equilibria. In Proc. RANDOM-APPROX,
pp. 98-108, 2003.

K. Jain and K. Varadarajan. Equilibria for economies with production: Constant-returns technologies
and production planning constraints. In SODA 06: Proc. 17th Annual ACM-SIAM Symp. Disc.
Algo., pp. 688-697, 2006.

K. Jain, V.V. Vazirani, and Y. Ye. Market equilibria for homothetic, quasi-concave utilities and
economies of scale in production. In SODA 05: Proc. 16th Annual ACM-SIAM Symp. on Discrete
Algorithms, pp. 63-71, 2005.

O.L. Mangasarian. Nonlinear Programming. McGraw-Hill, 1969.

158 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

A. Mas-Colell, M.D. Whinston, and J.R. Green. Microeconomic Theory. Oxford University Press,
1995.

T. Negishi. Welfare economics and existence of an equilibrium for a competitive economy. Metroe-
conomica, 12:92-97, 1960.

E.I. Nenakov and M.E. Primak. One algorithm for finding solutions of the Arrow-Debreu model.
Kibernetica, 3:127-128, 1983.

C.H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence.
J. Comp. Syst. Sci., 48:498-532, 1994.

C.H. Papadimitriou. Algorithms, games, and the Internet. In Proc. 33rd Annual ACM Symp. Theo.
Comp., pp. 749753, 2001.

C.H. Papadimitriou. Algorithms for equilibria. In Algorithmic Game Theory, Chapter 2. Cambridge
University Press, 2007.

V.M. Polterovich. Economic equilibrium and the optimum. Matekon, 5:3-20, 1973.

V.M. Polterovich and V.A. Spivak. Gross substitutability of point to set correspondences. J. Math.
Econ., 11(2):117-140, 1983.

T. Rutherford. Sequential joint maximization. In J. Weyant Ed. Energy and Environmental Policy
Modeling. Intl. Series Oper. Res. Mgmt. Sci., 18, 1999.

P.A. Samuelson. Foundations of Economic Analysis. Harvard University Press, 1947.

H. Scarf. The approximation of fixed points of a continuous mapping. SIAM J. Appl. Math.,
15(1):1328-1343, 1967.

H. Scarf. The computation of equilibrium prices: An exposition. In Handbook of Mathematical
Economics, Volume 11, pp. 1008—1061, 1982.

H. Varian. Microeconomic Analysis. W.W. Norton, 1992.

V. Vazirani. Combinatorial algorithms for market equilibria. In Algorithmic Game Theory, Chapter
5. Cambridge University Press, 2007.

A. Wald. On some systems of equations of mathematical economics. Econometrica, 19(4):368-403,
1951. Original version: Zeitschrift fiir Nationalokonomie, Vol. 7 (1936).

L. Walras. Elements of Pure Economics, or the Theory of Social Wealth. Richard Irwin, 1954. (Original
version published in French in 1874).

Y. Ye. A path to the Arrow—Debreu competitive market equilibrium. Math Progr.. In press.

Exercises

6.1 Use the Karush-Kuhn-Tucker conditions to derive an explicit expression for the de-
mand of a consumer with a Cobb—Douglas utility function. Also derive formula 6.7,
the expression for the demand with a CES function.

6.2 Show that for an exchange economy with Cobb-Douglas utility functions, the pos-
itive equilirbium prices can be characterized as solutions to a linear feasibility
program with variables for the prices. The number of constraints of the program
must be polynomial in the number of traders and goods.

6.3 Prove that Lemma 6.4 implies that the set of equilibrium prices is convex.
6.4 Prove parts (2), (3), and (4) of Lemma 6.5.

6.5 Suppose that 7 and 7 are two price vectors such that max; Z- < (1 +¢/3) min; Z-,
J J
and 7 is an equilibrium. Show that 7 is a weak (1 + ¢)-approximate equilibrium.

CHAPTER 7

Graphical Games

Michael Kearns

Abstract

In this chapter we examine the representational and algorithmic aspects of a class of graph-theoretic
models for multiplayer games. Known broadly as graphical games, these models specify restric-
tions on the direct payoff influences among the player population. In addition to a number of nice
computational properties, these models have close connections to well-studied graphical models for
probabilistic inference in machine learning and statistics.

7.1 Introduction

Representing multiplayer games with large player populations in the normal form
is undesirable for both practical and conceptual reasons. On the practical side, the
number of parameters that must be specified grows exponentially with the size of the
population. On the conceptual side, the normal form may fail to capture structure that
is present in the strategic interaction, and which can aid understanding of the game
and computation of its equilibria. For this reason, there have been many proposals for
parametric multiplayer game representations that are more succinct than the normal
form, and attempt to model naturally arising structural properties. Examples include
congestion and potential games and related models (Monderer and Shapley, 1996;
Rosenthal, 1973).

Graphical games are a representation of multiplayer games meant to capture and
exploit locality or sparsity of direct influences. They are most appropriate for large
population games in which the payoffs of each player are determined by the actions
of only a small subpopulation. As such, they form a natural counterpart to earlier
parametric models. Whereas congestion games and related models implicitly assume
a large number of weak influences on each player, graphical games are suitable when
there is a small number of strong influences.

Graphical games adopt a simple graph-theoretic model. A graphical game is de-
scribed at the first level by an undirected graph G in which players are identified with

159

160 GRAPHICAL GAMES

vertices. The semantics of the graph are that a player or vertex i has payoffs that are
entirely specified by the actions of i and those of its neighbor set in G. Thus G alone
may already specify strong qualitative constraints or structure over the direct strategic
influences in the game. To fully describe a graphical game, we must additionally spec-
ify the numerical payoff functions to each player — but now the payoff to player i is a
function only of the actions of i and its neighbors, rather than the actions of the entire
population. In the many natural settings where such local neighborhoods are much
smaller than the overall population size, the benefits of this parametric specification
over the normal form are already considerable.

But several years of research on graphical games has demonstrated that the advan-
tages of this model extend well beyond simple parsimony — rather, they are compu-
tational, structural, and interdisciplinary as well. We now overview each of these in
turn.

Computational. Theoretical computer science has repeatedly established that strong
but naturally occurring constraints on optimization and other problems can be exploited
algorithmically, and game theory is no exception. Graphical games provide a rich
language in which to state and explore the computational benefits of various restrictions
on the interactions in a large-population game. As we shall see, one fruitful line of
research has investigated topological restrictions on the underlying graph G that yield
efficient algorithms for various equilibrium computations.

Structural. In addition to algorithmic insights, graphical games also provide a pow-
erful framework in which to examine the relationships between the network structure
and strategic outcomes. Of particular interest is whether and when the local interactions
specified by the graph G alone (i.e., the topology of G, regardless of the numerical
specifications of the payoffs) imply nontrivial structural properties of equilibria. We
will examine an instance of this phenomenon in some detail.

Interdisciplinary. Part of the original motivation for graphical games came from
earlier models familiar to the machine learning, Al and statistics communities — collec-
tively known as graphical models for probabilistic inference, which include Bayesian
networks, Markov networks, and their variants. Broadly speaking, both graphical mod-
els for inference and graphical games represent complex interactions between a large
number of variables (random variables in one case, the actions of players in a game in
the other) by a graph combined with numerical specification of the interaction details.
In probabilistic inference the interactions are stochastic, whereas in graphical games
they are strategic (best response). As we shall discuss, the connections to probabilis-
tic inference have led to a number of algorithmic and representational benefits for
graphical games.

In this chapter we will overview graphical games and the research on them to
date. We will center our discussion around two main technical results that will be
examined in some detail, and are chosen to illustrate the computational, structural, and
interdisciplinary benefits discussed above. These two case studies will also serve as
natural vehicles to survey the broader body of literature on graphical games.

The first problem we shall examine is the computation of Nash equilibria in graphical
games in which the underlying graph G is a tree (or certain generalizations of trees).
Here we will discuss a natural two-pass algorithm for computing Nash equilibria
requiring only the local exchange of “conditional equilibrium” information over the

PRELIMINARIES 161

edges of G. This algorithm comes in two variations — one that runs in time polynomial
in the representation size of the graphical game and computes (a compact representation
of) approximations of all Nash equilibria, and another that runs in exponential time but
computes (a compact representation of) all Nash equilibria exactly. We will discuss
a number of generalizations of this algorithm, including one known as NashProp,
which has close ties to the well-known belief propagation algorithm in probabilistic
inference. Together these algorithms provide examples of the algorithmic exploitation
of structural restrictions on the graph.

The second problem we shall examine is the representation and computation of the
correlated equilibria of a graphical game. Here we will see that there is a satisfying
and natural connection between graphical games and the probabilistic models known
as Markov networks, which can succinctly represent high-dimensional multivariate
probability distributions. More specifically, we shall show that any graphical game with
graph G can have all of its correlated equilibria (up to payoff equivalence) represented
by a Markov network with the same network structure. If we adopt the common view of
correlated equilibria as permitting “shared” or “public” randomization (the source of the
correlations) — whereas Nash equilibria permit only “private” randomization or mixed
strategies — this result implies that the shared randomization can actually be distributed
locally throughout the graph, and that distant parties need not be (directly) correlated.
From the rich tools developed for independence analysis in Markov networks, it also
provides a compact representation of a large number of independence relationships
between player actions that may be assumed at (correlated) equilibrium. The result
thus provides a good example of a direct connection between graph structure and
equilibrium properties, as well as establishing further ties to probabilistic inference.
We shall also discuss the algorithmic benefits of this result.

After studying these two problems in some detail, we will briefly overview recent
research incorporating network structure into other game-theoretic and economic set-
tings, such as exchange economies (Arrow-Debreu, Fischer and related models). Again
the emphasis will be on computational aspects of these models, and on the relationship
between graph structure and equilibrium properties.

7.2 Preliminaries

In this section we shall provide formal definitions for graphical games, along with
other needed definitions, terminology, and notation. We begin with notions standard to
classical multiplayer game theory.

A multiplayer game consists of n players, each with a finite set of pure strategies
or actions available to them, along with a specification of the payoffs to each player.
Throughout the chapter, we use a; to denote the action chosen by player i. For simplicity
we will assume a binary action space, so a; € {0, 1}. (The generalization of the results
examined here to the multiaction setting is straightforward.) The payoffs to player i
are given by a table or matrix M;, indexed by the joint action @ € {0, 1}"". The value
M;(a), which we assume without loss of generality to lie in the interval [0, 1], is the
payoff to player i resulting from the joint action . Multiplayer games described in this
way are referred to as normal form games.

162 GRAPHICAL GAMES

The actions 0 and 1 are the pure strategies of each player, while a mixed strategy
for player i is given by the probability p; € [0, 1] that the player will play 0. For
any joint mixed strategy, given by a product distribution p, we define the expected
payoff to player i as M;(p) = E;~3[M;(a)], where a ~ p indicates that each a; is 0
with probability p; and 1 with probability 1 — p; independently. When we introduce
correlated equilibria below, we shall allow the possibility that the distribution over a is
not a product distribution, but has correlations between the a;.

We use p[i : p/] to denote the vector (product distribution) which is the same as
p except in the ith component, where the value has been changed to p!. A Nash
equilibrium (NE) for the game is a mixed strategy p such that for any player i, and for
any value p! € [0, 11, M;(p) > M;(pli : p/1). (We say that p; is a best response to the
rest of p.) In other words, no player can improve their expected payoff by deviating
unilaterally from an NE. The classic theorem of Nash (1951) states that for any game,
there exists an NE in the space of joint mixed strategies.

We will also use a straightforward (additive) definition for approximate Nash equi-
libria. An e-Nash equilibrium is a mixed strategy p such that for any player i, and for
any value p! € [0, 1], M;(p) + € > M;(pli : p}]). (We say that p; is an e-best response
to the rest of p.) Thus, no player can improve their expected payoff by more than € by
deviating unilaterally from an approximate NE.

We are now ready to introduce the graphical game model. In a graphical game, each
player i is represented by a vertex in an undirected graph G. Weuse N(i) € {1, ..., n}
to denote the neighborhood of player i in G — that is, those vertices j such that the
edge (i, j) appears in G. By convention N (i) always includes i itself as well. If @ is a
joint action, we use @ ' to denote the projection of @ onto just the players in N(i).

Definition 7.1 A graphical game is a pair (G, M), where G is an undirected
graph over the vertices {1, ..., n}, and M is a set of n local game matrices. For
any joint action @, the local game matrix M; € M specifies the payoff M, (a’) for
player i, which depends only on the actions taken by the players in N(i).

Remarks. Graphical games are a (potentially) more compact way of representing
games than standard normal form. In particular, rather than requiring a number of
parameters that is exponential in the number of players n, a graphical game requires
a number of parameters that is exponential only in the size d of the largest local
neighborhood. Thus if d « n — that is, the number of direct influences on any player
is much smaller than the overall population size — the graphical game representation is
dramatically smaller than the normal form. Note that we can represent any normal form
game as a graphical game by letting G be the complete graph, but the representation
is only useful when a considerably sparser graph can be found. It is also worth noting
that although the payoffs to player i are determined only by the actions of the players
in N (i), equilibrium still requires global coordination across the player population — if
player i is connected to player j who is in turn connected to player k, then i and
k indirectly influence each other via their mutual influence on the payoff of j. How
local influences propagate to determine global equilibrium outcomes is one of the
computational challenges posed by graphical games.

In addition to Nash equilibrium, we will also examine graphical games in the context
of correlated equilibria (CE). CE (Aumann, 1974) generalize NE, and can be viewed as

PRELIMINARIES 163

(possibly arbitrary) distributions P (a) over joint actions satisfying a certain conditional
expectation property.

The intuition behind CE can be described as follows. Imagine that there is a trusted
party that faithfully draws a joint action a according to distribution P, and distributes
to each player i only their private component a;. If P is a product distribution, as in
the NE case, then due to the independence between all players the revelation of a; does
not condition player i’s beliefs over the play of others. For general P, however, this is
not true. The CE condition asks that the expected payoff to i if he is “obedient” and
plays a; be at least as great the amount i could earn by “cheating” and deviating to
play a different action. In other words, in Bayesian terms, despite the observation of g;
updating the posterior distribution over the other player actions from i’s perspective,
it is still payoff-optimal for i to play a;. This leads to the formal definition below, in
which for any given joint distribution P(a) over player actions and b € {0, 1}, we let
P,,—p denote the distribution on a conditioned on the event that a; = b.

Definition 7.2 A correlated equilibrium (CE) for a two-action normal form
game is a distribution P(a) over actions satisfying

Vi€ {1,...n},Vb € {0, 1} : Egup, ,[M;(@)] = Egp, ,[Mi(@li : =b))]

The expectation anpai:b [M;(a)] is over those cases in which the value a; = b is
revealed to player i, who proceeds to “honestly” play a; = b. The expectation
E;- pﬂi:h[M,- (ali : —b])] is over the same cases, but now player i unilaterally devi-
ates to play a; = —b, whereas the other players faithfully play from the conditional
distribution P,,—p. It is straightforward to generalize this definition to the multiaction
case — again, we demand that it be optimal for each player to take the action provided
by the trusted party, despite the conditioning information revealed by this action.

Remarks. CE offers a number of conceptual and computational advantages over
NE, including the facts that new and sometimes more “fair” payoffs can be achieved,
that CE can be computed efficiently for games in standard normal form (though recall
that “efficiently” here means exponential in the number of players, an issue we shall
address), and that CE are the convergence notion for several natural “no-regret” learning
algorithms (Foster and Vohra, 1999). Furthermore, it has been argued that CE is the
natural equilibrium concept consistent with the Bayesian perspective (Aumann, 1987,
Foster and Vohra, 1997). One of the most interesting aspects of CE is that they broaden
the set of “rational” solutions for normal form games without the need to address often
difficult issues such as stability of coalitions and payoff imputations (Aumann, 1987).
The traffic signal is often cited as an informal everyday example of CE, in which a
single bit of shared information allows a fair split of waiting times (Owen, 1995). In
this example, no player stands to gain greater payoff by unilaterally deviating from
the correlated play, for instance by “running a light.” This example also illustrates a
common alternative view of CE, in which correlations arise as a result of “public” or
“shared” random bits (in addition to the “private” random bits allowed in the standard
mixed strategies or product distributions of NE). Here the state of the traffic light itself
(which can be viewed as a binary random variable, alternately displayed as red and
green to orthogonal streets) provides the shared randomization.

164 GRAPHICAL GAMES
7.3 Computing Nash Equilibria in Tree Graphical Games

In this section, we describe the first and perhaps most basic algorithm exploiting the ad-
vantages of graphical game representation for the purposes of equilibrium computation.
The case considered is that in which the underlying graph G is a tree. While obviously a
strong restriction on the topology, we shall see that this case already presents nontrivial
computational challenges, which in turn force the development of algorithmic tools
that can be generalized beyond trees to obtain a more general heuristic known as.

NashProp. We first describe the algorithm TreeNash at a high level, leaving certain
important implementation details unspecified, because it is conceptually advantageous
to do so. We then describe two instantiations of the missing details — yielding one
algorithm that runs in polynomial time and provably computes approximations of all
equilibria, and another algorithm that runs in exponential time and provably computes
all exact equilibria.

We begin with some notation and concepts needed for the description of TreeNash.
In order to distinguish parents from children in the tree, it will be convenient to treat
players/vertices symbolically (such as U, V, and W) rather than by integer indices, so
we use My to denote the local game matrix for the player identified with player/vertex
V. We use capital letters to denote vertex/players to distinguish them from their chosen
actions, for which we shall use lower case. If G is a tree, we choose an arbitrary vertex
as the root (which we visualize as being at the bottom, with the leaves at the top). Any
vertex on the path from a vertex V to the root will be called downstream from V, and
any vertex on a path from V to any leaf will be called upstream from V. Thus, each
vertex other than the root has exactly one downstream neighbor (or child), and perhaps
many upstream neighbors (or parents). We use UP (V) to denote the set of all vertices
in G that are upstream from V, including V' by definition.

Suppose that V is the child of U in G. We let GY denote the subgraph induced by
the vertices in UP5(U) — that is, the subtree of G rooted at U. If v € [0, 1] is a mixed
strategy for player (vertex) V, MY_ will denote the subset of payoff matrices in M
corresponding to the vertices in UPg(U), with the modification that the game matrix
My is collapsed by one index by fixing V = v. We can think of an NE for the graphical
game (GY, Mgzv) as a conditional equilibrium “upstream” from U (inclusive) — that
is, an equilibrium for GY given that V plays v. Here we are simply exploiting the fact
that since G is a tree, fixing a mixed strategy v for the play of V isolates GV from the
rest of G.

Now suppose that vertex V has k parents U, ..., U, and the single child W. We
now describe the data structures sent from each U; to V, and in turn from V to W,
on the downstream pass of TreeNash. Each parent U; will send to V a binary-valued
“table” T (v, u;). The table is indexed by the continuum of possible values for the
mixed strategies v € [0, 1] of V and u; € [0, 1] of U;, i =1, ..., k. The semantics
of this table will be as follows: for any pair (v, u;), T (v, u;) will be 1 if and only if
there exists an NE for (GY, Ml‘f":v) in which U; = u;. Note that we will slightly abuse
notation by letting 7' (v, u;) refer to both the entire table sent from U; to V, and the
particular value associated with the pair (v, u;), but the meaning will be clear from the
context.

COMPUTING NASH EQUILIBRIA IN TREE GRAPHICAL GAMES 165

Algorithm TreeNash
Inputs: Graphical game (G, M) in which G is a tree.
Output: A Nash equilibrium for (G, M).

(i) Compute a depth-first ordering of the vertices of G.
(ii) (Downstream Pass) For each vertex V in depth-first order:
(a) Let vertex W be the child of V (or nil if V is the root).
(b) For all w, v € [0, 1], initialize T (w, v) to be 0 and the witness list for
T (w, v) to be empty.
(¢) If V is a leaf (base case):
1. For all w, v € [0, 1], set T(w, v) to be 1 if and only if V = v is a best
response to W = w (as determined by the local game matrix My).

(d) Else (inductive case, V is an internal vertex):

1. Let U = Uy, ..., Uy) be the parents of V; let T(v, u;) be the table
passed from U; to V on the downstream pass.

2. For all w, v € [0, 1] and for all joint mixed strategles u=uy,...,u
for U: If V = v is a best response to W = w, U=i (as determlned
by the local game matrix My), and T (v, u;) =1fori =1,--- ,k, set

T (w, v) to be 1 and add # to the witness list for T (w, v).
(e) Pass the table T'(w, v) from V to W.

(iii) (Upstream Pass) For each vertex V in reverse depth-first ordering (starting at
the root):

(a) Let U= (Uy, ..., Uy) be the parents of V (or the empty list if V is a leaf);
let W be the child of V (or nil if V is the root), and (w, v) the values passed
from W to V on the upstream pass.

(b) Label V with the value v.

(¢) (Non-deterministically) Choose any witness u to T'(w, v) = 1.

(d) Fori =1,...,k,pass (v, u;) from V to U;.

Figure 7.1. Algorithm TreeNash for computing NE of tree graphical games.

Since v and u; are continuous variables, it is not obvious that the table 7 (v, u;) can
be represented compactly, or even finitely, for arbitrary vertices in a tree. For now we
will simply assume a finite representation, and shortly discuss how this assumption can
be met in two different ways.

The initialization of the downstream pass of the algorithm begins at the leaves of
the tree, where the computation of the tables is straightforward. If U is a leaf and V its
only child, then T'(v, u) = 1 if and only if U = u is a best response to V = v (Step (ii)
(c) of Figure 7.1).

Assuming for induction that each U; sends the table 7' (v, u;) to V, we now describe
how V can compute the table 7' (w, v) to pass to its child W (Step (ii) (d)2 of Figure 7.1).
For each pair (w, v), T (w, v) is set to 1 if and only if there exists a vector of mixed strate-
giesii = (uy, ..., uy) (called awitness) for the parents U= (Ui, ..., Up)of V suchthat

166 GRAPHICAL GAMES

(i) T(,u;)=1forall1 <i < k;and
(ii) V =visabestresponseto U =i, W = w.

Note that there may be more than one witness for T(w,v) = 1. In addition to
computing the value 7'(w, v) on the downstream pass of the algorithm, V will also
keep a list of the witnesses u for each pair (w, v) for which T(w, v) = 1 (Step ii(d)2
of Figure 7.1). These witness lists will be used on the upstream pass.

To see that the semantics of the tables are preserved by the computation just de-
scribed, suppose that this computation yields 7' (w, v) = 1 for some pair (w, v), and let u
be a witness for 7'(w, v) = 1. The fact that T' (v, u;) = 1 for all i (condition (7.3) above)
ensures by induction that if V plays v, there are upstream NE in which each U; = u;.
Furthermore, v is a best response to the local settings Uy = uy, ..., Uy = ux, W = w’
(condition (7.3) above). Therefore, we are in equilibrium upstream from V. On the
other hand, if T(w, v) =0, it is easy to see there can be no equilibrium in which
W = w, V = v. Note that the existence of an NE guarantees that 7' (w, v) = 1 for at
least one (w, v) pair.

The downstream pass of the algorithm terminates at the root Z, which receives
tables T'(z, y;) from each parent Y;. Z simply computes a one-dimensional table 7'(z)
such that T'(z) = 1 if and only if for some witness y, T(z, y;) = 1 for all i, and z is a
best response to y.

The upstream pass begins by Z choosing any z for which 7'(z) = 1, choosing any
witness (yi, ..., ¥x) to T(z) = 1, and then passing both z and y; to each parent Y;.
The interpretation is that Z will play z, and is “instructing” Y; to play y;. Inductively,
if a vertex V receives a value v to play from its downstream neighbor W, and the
value w that W will play, then it must be that T (w, v) = 1. So V chooses a witness
u to T(w, v) = 1, and passes each parent U; their value u; as well as v (Step (iii)
of Figure 7.1). Note that the semantics of T (w, v) = 1 ensure that V = v is a best
response to U=i,W=uw.

We have left the choices of each witness in the upstream pass unspecified or non-
deterministic to emphasize that the tables and witness lists computed represent all the
NE. The upstream pass can be specialized to find a number of specific NE of interest,
including player optimum (NE maximizing expected reward to a chosen player), social
optimum (NE maximizing total expected reward, summed over all players), and wel-
fare optimum (NE maximizing expected reward to the player whose expected reward
is smallest).

Modulo the important details regarding the representation of the tables T'(w, v),
which we discuss next, the arguments provided above establish the following formal
result.

Theorem 7.3 Let (G, M) be any graphical game in which G is a tree. Algorithm
TreeNash computes a Nash equilibrium for (G, M). Furthermore, the tables and
witness lists computed by the algorithm represent all Nash equilibria of (G, M).

7.3.1 An Approximation Algorithm

In this section, we sketch one instantiation of the missing details of algorithm TreeNash
that yields a polynomial-time algorithm for computing approximate NE for the tree

COMPUTING NASH EQUILIBRIA IN TREE GRAPHICAL GAMES 167

game (G, M). The approximation can be made arbitrarily precise with greater compu-
tational effort.

Rather than playing an arbitrary mixed strategy in [0, 1], each player will be con-
strained to play a discretized mixed strategy that is a multiple of 7, for some 7 to be
determined by the analysis. Thus, player i plays ¢; € {0, 7, 27, ..., 1}, and the joint
strategy ¢ falls on the discretized t-grid {0, 7, 27, ..., 1}". In algorithm TreeNash,
this will allow each table T'(v, u) (passed from vertex U to child V) to be represented
in discretized form as well: only the 1/7? entries corresponding to the possible 7-grid
choices for U and V are stored, and all computations of best responses in the algorithm
are modified to be approximate best responses.

To quantify how the choice of t will influence the quality of the approximate
equilibria found (which in turn will determine the computational efficiency of the
approximation algorithm), we appeal to the following lemma. We note that this result
holds for arbitrary graphical games, not only trees.

Lemma 7.4 Let G be a graph of maximum degree d, and let (G, M) be a
graphical game. Let p be a Nash equilibrium for (G, M), and let q be the nearest
(in Ly metric) mixed strategy on the t-grid. Then q is a dt-NE for (G, M).

The proof of Lemma 7.4, which we omit, follows from a bound on the L, distance
for product distributions along with an argument that the strategic properties of the
NE are preserved by the approximation. We note that the original paper (Kearns et al.,
2001) used a considerably worse L; bound that was exponential in d. However, the
algorithm remains exponential in d simply due to the representational complexity of
the local product distributions. The important point is that T needs to depend only on
the local neighborhood size d, not the total number of players 7.

It is now straightforward to describe ApproximateTreeNash. This algorithm is
identical to algorithm TreeNash with the following exceptions:

¢ The algorithm now takes an additional input €.

¢ For any vertex U with child V, the table T (u, v) will contain only entries for ¥ and v
multiples of 7.

¢ All computations of best responses in algorithm TreeNash become computations of
€-best responses in algorithm ApproximateTreeNash.

For the running time analysis, we simply note that each table has (1/7)? entries,
and that the computation is dominated by the downstream calculation of the tables
(Step (ii)(d) of algorithm TreeNash). This requires ranging over all table entries for all
k parents, a computation of order ((1/7)?)*. By appropriately choosing the value of 7
in order to obtain the required e-approximations, we obtain the following theorem.

Theorem 7.5 Let (G, M) be a graphical game in which G is a tree with n
vertices, and in which every vertex has at most d parents. For any € > 0, let
7 = O(e/d). Then ApproximateTreeNash computes an e-Nash equilibrium for
(G, M). Furthermore, for every exact Nash equilibrium, the tables and witness
lists computed by the algorithm contain an €-Nash equilibrium that is within
T of this exact equilibrium (in Ly norm). The running time of the algorithm is

168 GRAPHICAL GAMES

polynomial in 1/€, n and 2%, which is polynomial in the size of the representation

(G, M).

7.3.2 An Exact Algorithm

By approximating the continuously indexed tables T (u,v) in discretized form,
the algorithm developed in Section 7.3.1 side-stepped not only the exact com-
putation but also a fundamental question about the 7(u#,v) — namely, do the
regions {(u, v) € [0, 11> : T(u, v) = 1} have any interesting geometric structure?
It turns out the answer in the case of trees is affirmative, and can be used
in developing an alternate instantiation of the general TreeNash algorithm of
Section 7.3 — one that yields an algorithm for computing (all) exact equilibria, but
in time that is exponential in the number of players n rather than only the degree d.

Although the details are beyond our scope, it is possible to show via an inductive
argument (where again the leaves of G serve as the base cases) that in any tree graphical
game, for any of the tables T (u, v) defined by TreeNash, the region {(u, v) € [0, 1]*:
T (u, v) = 1} can be represented by a finite union of (axis-aligned) rectangular regions
in[0, 1]% (i.e., regions that are defined as products of closed intervals [a, a’] x [b, b'] for
some 0 <a<a <1,0<b <b <1). The induction shows that the number of such
regions multiplies at each level as we progress downstream toward the root, yielding a
worst-case bound on the number of rectangular regions that is exponential in .

This simple (if exponential in n) geometric representation of the tables T (u, v)
permits the development of an alternative algorithm ExactTreeNash, which is simply
the abstract algorithm TreeNash with the tables represented by unions of rectangles
(and with associated implementations of the necessary upstream and downstream
computations).

Theorem 7.6 There is an algorithm ExactTreeNash that computes an exact
Nash equilibrium for any tree graphical game (G, M). Furthermore, the tables
computed by the algorithm represent all Nash equilibria of (G, M). The algorithm
runs in time exponential in the number of vertices of G.

7.3.3 Extensions: NashProp and Beyond

At this point it is of course natural to ask what can be done when the underlying graph of
a graphical game is not a tree. Remaining close to the development so far, it is possible
to give an heuristic generalization of algorithm ApproximateTreeNash to the setting
in which the graph G is arbitrary. This algorithm is known as NashProp, which we will
now briefly sketch. By heuristic we mean that the algorithm is well-defined and will
terminate on any graphical game; but unlike ApproximateTreeNash, the running time
is not guaranteed to be polynomial in the size of the input graphical game. (In general,
we should expect provably efficient algorithms for equilibrium computation to require
some topological restriction, since allowing G to be the complete graph reduces to the
classical normal form representation.)

Recall that the main computation at vertex V in ApproximateTreeNash was the
computation of the downstream table 7'(w, v) from the upstream tables 7'(v, u;). This

GRAPHICAL GAMES AND CORRELATED EQUILIBRIA 169

assumed an underlying orientation to the tree that allowed V to know which of its neigh-
bors were in the direction of the leaves (identified as the U;) and which single neighbor
was in the direction of the root (identified as W). The easiest way to describe NashProp
informally is to say that each V does this computation once for each of its neighbors,
each time “pretending” that this neighbor plays the role of the downstream neighbor W
in ApproximateTreeNash, and the remaining neighbors play the roles of the upstream
U;. If all discretized table entries are initialized to the value of 1,! it easy to show that
the only possible effect of these local computations is to change table values from 1
to 0, which in effect refutes conditional NE assertions when they violate best-response
conditions. In other words, the tables will all converge (and in fact, in time polynomial
in the size of the graphical game) — however, unlike in ApproximateTreeNash, the
tables do not represent the set of all approximate NE, but a superset. This necessitates a
second phase to the algorithm that employs more traditional search heuristics in order
to find a true equilibrium, and it is this second phase that may be computationally
expensive.

One of the merits of NashProp is that the first (table computation) phase can be
viewed as an instance of constraint satisfaction programming (CSP), which in turn
plays an important role in many algorithms for probabilistic inference in Bayesian
networks, Markov networks, and related models. The NashProp algorithm was also
inspired by, and bears a fair similarity to, the well-known belief propagation algorithm
for Bayesian network inference. We shall see other connections to these models arise
in our examination of correlated equilibria in graphical games, which we turn to now.

7.4 Graphical Games and Correlated Equilibria

Our second case study is an examination of graphical games and correlated equilibrium.
As has already been noted, if we are fortunate enough to be able to accurately represent
a multiplayer game we are interested in as a graphical game with small degree, the
representational benefits purely in terms of parameter reduction may be significant.
But this is still a rather cosmetic kind of parsimony. We shall see a much deeper variety
in the context of correlated equilibrium.

The first issue that arises in this investigation is the problem of representing corre-
lated equilibria. Recall that NE may be viewed as a special case of CE in which the
distribution P(a) is a product distribution. Thus, however computationally difficult it
may be to find an NE, at least the object itself can be succinctly represented — it is simply
a mixed strategy profile p, whose length equals the number of players n. Despite their
aforementioned advantages, in moving to CE we open a representational Pandora’s
Box, since even in very simple graphical games there may be correlated equilibria of
essentially arbitrary complexity. For example, the CE of a game always include all
mixture distributions of NE, so any game with an exponential number of NE can yield
extremely complex CE. Such games can be easily constructed with very simple graphs.

'Note that in the description of TreeNash in Figure 7.1 it was more convenient to initialize the table values to 0,
but the change is cosmetic.

170 GRAPHICAL GAMES

More generally, whereas by definition in an NE all players are independent, in a CE
there may be arbitrary high-order correlations.

In order to maintain the succinctness of graphical games, some way of addressing
this distributional complexity is required. For this we turn to another, older graph-
theoretic formalism — namely, undirected graphical models for probabilistic inference,
also known as Markov networks (Lauritzen, 1996). We will establish a natural and
powerful relationship between a graphical game and a certain associated Markov
network. Like the graphical game, the associated Markov network is a graph over the
players. While the interactions between vertices in the graphical game are entirely
strategic and given by local payoff matrices, the interactions in the associated Markov
network are entirely probabilistic and given by local potential functions. The graph of
the associated Markov network retains the parsimony of the graphical game.

We will show that the associated Markov network is sufficient for representing
any correlated equilibria of the graphical game (up to expected payoff equivalence).
In other words, the fact that a multiplayer game can be succinctly represented by a
graph implies that its entire space of CE outcomes can be represented graphically
with comparable succinctness. This result establishes a natural relationship between
graphical games and modern probabilistic modeling. We will also briefly discuss the
computational benefits of this relationship.

7.4.1 Expected Payoff and Local Neighborhood Equivalence

Our effort to succinctly model the CE of a graphical game consists of two steps.
In the first step, we argue that it is not necessary to model a// the correlations that
might arise in a CE, but only those required to represent all of the possible (expected
payoff) outcomes for the players. In the second step, we show that the remaining
correlations can be represented by a Markov network. For these two steps we re-
spectively require two equivalence notions for distributions — expected payoff equiv-
alence and local neighborhood equivalence. We shall show that there is a natural
subclass of the set of all CE of a graphical game, based on expected payoff equiv-
alence, whose representation size is linearly related to the representation size of the
graphical game.

Definition 7.7 Two distributions P and Q over joint actions d are expected
payoff equivalent, denoted P =gp Q, if P and Q yield the same expected payoff
vector: for each i, Ez~p[M;(a)] = Ea~o[M;(a)].

Note that merely finding distributions giving the same payoffs as the CE is not espe-
cially interesting unless those distributions are themselves CE — we want to preserve the
strategic properties of the CE, not only its payoffs. Our primary tool for accomplishing
this goal will be the notion of local neighborhood equivalence, or the preservation of
local marginal distributions. Below we establish that local neighborhood equivalence
both implies payoff equivalence and preserves the CE property. In the following sub-
section, we describe how to represent this natural subclass in a certain Markov network
whose structure is closely related to the structure of the graphical game.

GRAPHICAL GAMES AND CORRELATED EQUILIBRIA 171

Expected payoff equivalence of two distributions is, in general, dependent upon the
reward matrices of a graphical game. Let us consider the following (more stringent)
equivalence notion, which is based only on the graph G of a game.

Definition 7.8 For a graph G, two distributions P and Q over joint actions a
are local neighborhood equivalent with respect to G, denoted P =1y Q, if for all
players i, and for all settings @ ' of N(i), P(a ') = Q(a").

In other words, the marginal distributions over all local neighborhoods defined by
G are identical. Since the graph is always clear from context, we shall just write
P =n Q. The following lemma establishes that local neighborhood equivalence is
indeed a stronger notion of equivalence than expected payoff.

Lemma 7.9 Forall graphs G, for all joint distributions P and Q on actions, and
for all graphical games with graph G, if P =ry Q then P =gp Q. Furthermore,
for any graph G and joint distributions P and Q, there exist payoff matrices M
such that for the graphical game (G, M), if P %y QO then P #gp Q.

PROOF The first statement follows from the observation that the expected payoff
to player i depends only on the marginal distribution of actions in N(i). To prove
the second statement, if P #;n O, then there must exist a player i and a joint
action a ’ for its local neighborhood which has a different probability under P and
Q. Simply set M;(a ") = 1 and M; = 0 elsewhere. Then i has a different payoff
under P and Q,andso P #gp Q. O

Thus local neighborhood equivalence implies payoff equivalence, but the converse
is not true in general (although there exists some payoff matrices where the converse
is correct). We now establish that local neighborhood equivalence also preserves CE.
It is important to note that this result does not hold for expected payoff equivalence.

Lemma 7.10 For any graphical game (G, M), if P is a CE for (G, M) and
P =iy Q then Q is a CE for (G, M).

PROOF The lemma follows by noting that the CE expectation equations are
dependent only upon the marginal distributions of local neighborhoods, which
are preserved in Q. O

While explicitly representing a// CE is infeasible even in simple graphical games,
we next show that we can concisely represent, in a single model, all CE up to
local neighborhood (and therefore payoff) equivalence. The amount of space re-
quired is comparable to that required to represent the graphical game itself, and al-

lows us to explore or enumerate the different outcomes achievable in the space of
CE.

172 GRAPHICAL GAMES

7.4.2 Correlated Equilibria and Markov Nets

In the same way that graphical games provide a concise language for expressing local
interaction in game theory, Markov networks exploit undirected graphs for expressing
local interaction in probability distributions. It turns out that (a special case of) Markov
networks are a natural and powerful language for expressing the CE of a graphical
game, and that there is a close relationship between the graph of the game and its
associated Markov network graph. We begin with the necessary definitions.

Definition 7.11 A local Markov network is a pair M = (G, V), where
* G is an undirected graph on vertices {1, ..., n};

* W is a set of potential functions, one for each local neighborhood N (i), mapping
binary assignments of values of N (i) to the range [0, c0) :

U={y;:i=1,....n9; :{a'} — [0, 00)},

where {a '} is the set of all 2V @I settings to N ().

A local Markov network M defines a probability distribution Py, as follows. For
any binary assignment a to the vertices, we define

R Y
Pu@) = — (]"[Vi@ l)) :
i=1

where Z = Y . []'_, ¥:(@") > 0 is the normalization factor.

Note that any joint distribution can be represented as a local Markov network on
a sufficiently dense graph: if we let G be the complete graph then we simply have a
single potential function over the entire joint action space a. However, if d is the size
of the maximal neighborhood in G, then the representation size of a distribution in this
network is O(n24), a considerable savings over a tabular representation if d < n.

Local Markov networks are a special case of Markov networks, a well-studied
probabilistic model in Al and statistics (Lauritzen, 1996; Pearl, 1988). A Markov
network is typically defined with potential functions ranging over settings of maximal
cliques in the graph, rather than local neighborhoods. Another approach we could have
taken is to transform the graph G to a graph G’, which forms cliques of the local
neighborhoods N (i), and then used standard Markov networks over G’ as opposed to
local Markov networks over G. However, this can sometimes result in an unnecessary
exponential blow-up of the size of the model when the resulting maximal cliques are
much larger than the original neighborhoods. For our purposes, it is sufficient to define
the potential functions over just local neighborhoods (as in our definition) rather than
maximal cliques in G’, which avoids this potential blow-up.

The following technical lemma establishes that a local Markov network always
suffices to represent a distribution up to local neighborhood equivalence.

Lemma 7.12 For all graphs G, and for all joint distributions P over joint
actions, there exists a distribution Q that is representable as a local Markov
network with graph G such that Q =;n P with respect to G.

GRAPHICAL GAMES AND CORRELATED EQUILIBRIA 173

PROOF The objective is to find a single distribution Q that is consistent with
the players’ local neighborhood marginals under P and is also a Markov net-
work with graph G. For this we shall sketch the application of methods from
probabilistic inference and maximum entropy models to show that the maximum
entropy distribution Q*, subject to P =N QF, is a local Markov network. The
sketch below follows the classical treatment of this topic (Berger et al., 1996;
Lauritzen and Spiegelhalter, 1998; Dawid and Lauritzen, 1993) and is included
for completeness.

Formally, we wish to show that the solution to the following constrained
maximum entropy problem is representable in G:

0 = argmax, H(Q) = argmax, Z Q(a)log(1/Q(a))

subject to
(i) Q@)= P@"),foralli,a’.
(ii) Q is a proper probability distribution.

Note first that this problem always has a unique answer since H(Q) is strictly
concave and all constraints are linear. In addition, the feasible set is nonempty, as
it contains P itself.

To get the form of Q*, we solve the optimization problem by introducing
Lagrange multipliers A;; (for all i and a ') for the neighborhood marginal
constraints (Condition 7.4.2 above); let us call A the resulting vector of multipliers.
We also introduce a single Lagrange multiplier § for the normalization constraint
(Condition (ii) above). The optimization then becomes

Q" = argmax 5 4{L(Q. %, B)}

= argmax,; , 1 HQ) + Y Y ha(Q@")— P@h)

i€ln] at

+/3(Xan(a’)—1)},

where Q(a) is constrained to be positive. Here, L is the Lagrangian function.

A necessary condition for Q* is that dL /9 Q(d)|g=o+ = 0, for all a such that
P(a) > 0. After taking derivatives and some algebra, this condition implies, for
all a,

n
Q@) =1/ [[11P@") # 0lexp(ria),
v=1

where I[P(a ') # 0] is an indicator function that evaluates to 1 iff P(a ') # 0. We
use the subscript A on Q7 and Z; to explicitly denote that they are parameterized
by the Lagrange multipliers.

It is important to note at this point that regardless of the value of the Lagrange
multlphers each A, ;i is only a function of the @ ‘. Let the dual function F (A)
L(Q (a), A 0), and let A* maximize this function. Note that those Ajg i that

174 GRAPHICAL GAMES

correspond to P(a) = 0 are irrelevant parameters since F (X) is independent of
them. So for all /i and @ ' such that P(d ') = 0, we set A*., = 0. Foralli,a‘, we
define the functions ¥ (a Hh=I[P@") # 0]exp(A*

-). Hence, we can express
the maximum entropy distribution Q* as, for all a,

0:@ = (1/Z;) [[vi@",

i=1

which completes the proof. O

The main result of this section follows, and shows that we can represent any cor-
related equilibria of a graphical game (G, M), up to payoff equivalence, with a local
Markov network (G, V). The proof follows from Lemmas 7.9, 7.10, and 7.12.

Theorem 7.13 For all graphical games (G, M), and for any correlated equi-
librium P of (G, M), there exists a distribution Q such that

(i) Q is also correlated equilibrium for (G, M),
(ii) Q gives all players the same expected payoffs as P: Q =gp P, and
(iii) Q can be represented as a local Markov network with graph G.

Note that the representation size for any local Markov network with graph G is
linear in the representation size of the graphical game, and thus we can represent the
CE of the game parsimoniously.

Remarks. Aside from simple parsimony, Theorem 7.13 allows us to import a rich
set of tools from the probabilistic inference literature (Pearl, 1988; Lauritzen, 1996).
For example, it is well known that for any vertices i and j and vertex set S in a (local)
Markov network, i and j are conditionally independent given values for the variables
in S if and only if S separates i and j — that is, the removal of S from G leaves i and j
in disconnected components. This, together with Theorem 7.13, immediately implies
a large number of conditional independences that must hold in any CE outcome. Also,
as mentioned in the Introduction, Theorem 7.13 can be interpreted as strongly limiting
the nature of the public randomization needed to implement any given CE outcome —
namely, only “local” sources of random bits (as defined by G) are required.

7.4.3 Algorithms for Correlated Equilibria in Graphical Games

Having established in Theorem 7.13 that a concise graphical game yields an equally
concise representation of its CE up to payoff equivalence, we now turn our attention to
algorithms for computing CE. In the spirit of our results thus far, we are interested in
algorithms that can efficiently exploit the compactness of graphical games.

It is well known that it is possible to compute CE via linear programming in time
polynomial in the standard noncompact normal form. In this approach, one variable
is introduced for every possible joint action probability P(a), and the constraints
enforce both the CE condition and the fact that the variables must define a probability
distribution. It is not hard to verify that the constraints are all linear and there are
0(2") variables and constraints in the binary action case. By introducing any linear

GRAPHICAL GAMES AND CORRELATED EQUILIBRIA 175

optimization function, one can get an algorithm based on linear programming for
computing a single exact CE that runs in time polynomial in the size of the normal-
form representation of the game (i.e., polynomial in 2").

For graphical games this solution is clearly unsatisfying, since it may require time
exponential in the size of the graphical game. What is needed is a more concise way
to express the CE and distributional constraints — ideally, linearly in the size of the
graphical game representation. As we shall now sketch, this is indeed possible for tree
graphical games. The basic idea is to express both the CE and distributional constraints
entirely in terms of the local marginals, rather than the global probabilities of joint
actions.

For the case in which the game graph is a tree, it suffices to introduce linear distri-
butional constraints over only the local marginals, along with consistency constraints
on the intersections of local marginals. We thus define the following three categories
of local constraints defining a linear program:

Variables: For every player i and assignment a ’, there is a variable P(a °).
LP Constraints:

(i) CE Constraints: For all players i and actions a, a’,
Y. P@HYM@H = Y P@HM((a'fi: .
(ii) Neighborhood Marginal Constraints: For all players i,
va': P@h=0; Y P@’=1.

(iii) [Intersection Consistency Constraints: For all players i and j, and for any assignment
y i to the intersection neighborhood N (i) N N(j),
P@'y= Y P@"

ajaii=yi
= Pj(ZZ 7).

Note that if d is the size of the largest neighborhood, this system involves O (n24)
variables and O(n2%) linear inequalities, which is linear in the representation size of
the original graphical game, as desired. This leads to the following algorithmic result.

Theorem 7.14 For all tree graphical games (G, M), any solution to the linear
constraints given above is a correlated equilibrium for (G, M).

Thus, for instance, we may choose any linear objective function F({P(a ')}) and
apply standard efficient linear programming algorithms in order to find a CE maximiz-
ing F in time polynomial in the size of the graphical game. One natural choice for F
is the social welfare, or the total expected payoff over all players:

FAP@HY) =Y > P@"Mi@'.

1

176 GRAPHICAL GAMES
7.5 Graphical Exchange Economies

In the same way that the graph of a graphical game represents restrictions on which
pairs of players directly influence each other’s payoffs, it is natural to examine similar
restrictions in classical exchange economies and other market models. In such models,
there is typically some number k of goods available for trade, and n players or consumers
in the economy. Each consumer has a utility function mapping bundles or amounts of
the k£ goods to a subjective utility. (Settings in which the utility functions obey certain
constraints, such as concavity or linearity, are often assumed.) Each consumer also
has an endowment — a particular bundle of goods that they are free to trade. It is
assumed that if prices p € (R*)* are posted for the k goods, each consumer will
attempt to sell their initial endowment at the posted prices, and then attempt to buy
from other consumers that bundle of goods which maximizes their utility, subject to the
amount of cash received in the sale of their endowment. A celebrated result of Arrow
and Debreu (1954) established very general conditions under which an equilibrium
price vector exists — prices at which all consumers are able to sell all of their intial
endowments (no excess supply) and simultaneously able to purchase their utility-
maximizing bundles (no excess demand). The result depends crucially on the fact that
the model permits exchange of goods between any pair of consumers in the economy.

A natural graph- or network-based variant of such models again introduces an
undirected graph G over the n consumers, with the interpretation that trade is permitted
between consumers i and j if and only if the edge (i, j) is present in G.? The classical
equilibrium existence result can be recovered — but only if we now allow for the
possibility of local prices, that is, prices for each good—consumer pair. In other words,
at equilibrium in such a graphical economy, the price per unit of wheat may differ
when purchased from different consumers, due to the effects of network topology. In
this model, rationality means that consumers must always purchase goods from the
neighboring consumers offering the lowest prices.

As with graphical games, there are at least two compelling lines of research to
pursue in such models. The first is computational: What graph topologies permit
efficient algorithms for computing price equilibria? The second is structural: What
can we say about how network structure influences properties of the price equilibria,
such as the amount of price variation? Here we briefly summarize results in these two
directions.

On the computational side, as with the TreeNash algorithm for computing NE in
graphical games, it is possible to develop a provably correct and efficient algorithm for
computing approximate price equilibria in tree graphical economies with fairly general
utility functions. Like ApproxTreeNash, this algorithm is a two-pass algorithm in
which information regarding conditional price equilibria is exchanged between neigh-
boring nodes, and a discrete approximation scheme is introduced. It is complementary
to other recent algorithms for computing price equilibria in the classical non-graphical
(fully connected) setting under linearity restrictions on the utility functions (discussed
in detail in Chapter 5.

2 In the models considered to date, resale of purchased goods is not permitted — rather, we have “one-shot”
economies.

BIBLIOGRAPHIC NOTES 177

On the structural side, it can be shown that different stochastic models of network
formation can result in radically different price equilibrium properties. For example,
consider the simplified setting in which the graph G is a bipartite graph between two
types of parties, buyers and sellers. Buyers have an endowment of 1 unit of an abstract
good called cash, but have utility only for wheat; sellers have an endowment of 1 unit
of wheat but utility only for cash. Thus the only source of asymmetry in the economy
is the structure of G. If G is a random bipartite graph (i.e., generated via a bipartite
generalization of the classical Erdos—Renyi model), then as n becomes large there will
be essentially no price variation at equilibrium (as measured, for instance, by the ratio
of the highest to lowest prices for wheat over the entire graph). Thus random graphs
behave “almost” like the fully connected case. In contrast, if G is generated according
to a stochastic process such as preferential attachment (Barabasi and Albert, 1999), the
price variation at equilibrium is unbounded, growing as a root of the economy size n.

7.6 Open Problems and Future Research

There are a number of intriguing open areas for further research in the broad topics
discussed in this chapter, including the following.

¢ Efficient Algorithms for Exact Nash Computation in Trees. Perhaps the most notable
technical problem left unresolved by the developments described here is that of efficiently
(i.e., in time polynomial in the graphical game description) computing exact Nash
equilibria for trees. This class falls between the positive results of Elkind et al. (2006)
for unions of paths and cycles, and the recent PPAD-completeness results for bounded
treewidth graphs (see Chapter 2).

¢ Strategy-Proof Algorithms for Distributed Nash Computation. The NashProp al-
gorithm described here and its variants are clearly not strategy-proof, in the sense that
players may have incentive to deviate from the algorithm if they are to actually realize
the Nash equilibrium they collectively compute. It would be interesting to explore the
possibilities for strategy-proof algorithms for graphical games.

¢ Cooperative, Behavioral, and Other Equilibrium Notions. Here we have described
algorithms and structural results for graphical games under noncooperative equilibrium
notions. It would be interesting to develop analogous theory for cooperative equilibria,
such as how the coalitions that might form depend on graph topology. The recent explo-
sion of work in behavioral game theory and economics (Camerer, 2003) is also ripe for
integration with graphical games (and many other aspects of algorithmic game theory as
well). For instance, one could investigate how the behavioral phenomenon of inequality
aversion might alter the relationship between network structure and equilibrium
outcomes.

7.7 Bibliographic Notes

Graphical games were introduced by Kearns et al. (2001) (abbreviated KLS hence-
forth). Related models were introduced at approximately the same time by Koller and
Milch (2003) and La Mura (2000). Graph-theoretic or network models of interaction

178 GRAPHICAL GAMES

have a long history in economics and game theory, as surveyed by Jackson (2005);
these models tend to be less general than graphical games, and there is naturally less
explicit emphasis on computational issues.

The original KLS paper contained the algorithm and analyses of the tree-based
algorithms examined in Section 7.1. The NashProp generalization of these algo-
rithms is due to Ortiz and Kearns (2003). A follow-up to the KLS paper by the
same authors (Littman et al., 2002) erroneously claimed an efficient algorithm for
computing an exact NE in tree graphical games (recall that the KLS paper gave an
efficient algorithm only for approximate NE in trees). The error was recently dis-
covered and discussed by Elkind et al. (2006), who proved that in fact no two-pass
algorithm can compute an exact equilibrium. The problem of efficiently computing
an exact equilibrium in time polynomial in the size of a tree graphical game remains
open.

The study of correlated equilibria in graphical games given in Section 7.4 is adapted
from Kakade et al. (2003). Roughgarden and Papadimitriou (2005) and Papadim-
itriou (2005) gave more general algorithms for computing correlated equilibria in
graphical games and other compact representations. It is interesting to note that while
the Kakade et al. results show how all correlated equilibria (up to payoff equivalance)
can be succinctly represented as a Markov networks, Papadimitriou’s algorithm (2005)
computes correlated equilibria that are mixtures of Nash equilibria and thus can be ef-
ficiently sampled. Intractability results for certain correlated equilibrium computations
are given by Gilboa and Zemel (1989), as well as by Roughgarden and Papadim-
itriou (2005).

Other papers providing algorithms for equilibrium computation in graphical games
include those of Vickrey and Koller (2002), who examine hill-climbing algorithms
for approximate NE, as well as constraint satisfaction generalizations of NashProp;
and Daskalakis and Papadimitriou (2006), who show close connections between the
computation of pure NE and probabilistic inference on the Markov network models
discussed in the context of correlated equilibria in Section 7.4.

Graphical games have also played a central role in striking recent developments
establishing the intractability of NE computations in general multiplayer games, in-
cluding the work by Daskalakis et al. (2006) and Goldberg and Papadimitriou (2006);
these developments are discussed in detail in Chapter 29. Daskalakis and Papadim-
itriou also proved intractability results for computing NE in graphical games on highly
regular graphs (Daskalakis and Papadimitriou, 2005), while Schoenebeck and Vadhan
(2006) systematically characterize the complexity of a variety of equilibrium-related
computations, including NE verification and existence of pure equilibria.

The formulation of the graphical exchange economy model summarized in Sec-
tion 7.5, as well as the price equilibrium proof and algorithms mentioned, is due
to Kakade et al. (2004). The result on price variation in different stochastic graph
generation models is due to Kakade et al. (2005).

Recently a graph-theoretic generalization of classical evolutionary game theory
has been introduced, and it has been shown that random graphs generally preserve
the classical evolutionary stable strategies (Kearns and Suri, 2006); these results are
discussed in some detail in Chapter 29.

BIBLIOGRAPHY 179
Acknowledgments

I would like to give warm thanks to Michael Littman, Satinder Singh, Sham Kakade,
John Langford, and Luis Ortiz for their permission to adapt material from our joint
publications (Kakade et al., 2003; Kearns et al., 2001) for presentation in this chapter.

Bibliography

K. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy. Econometrica,
22(3):265-290, 1954.

R.J. Aumann. Subjectivity and correlation in randomized strategies. J. Math. Econ., 1, 1974.

R.J. Aumann. Correlated equilibrium as an expression of Bayesian rationality. Econometrica, 55,
1987.

A. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286:509-512, 1999.

A. Berger, S.D. Pietra, and V.D. Pietra. A maximum entropy approach to natural language processing.
Comp. Ling., 22(1), March 1996.

C. Camerer. Behavioral Game Theory. Princeton University Press, 2003.

C. Daskalakis, P. Goldberg, and C. Papadimitriou. The complexity of computing a Nash equilibrium.
In Proc. 38th ACM Symp. Theory of Computing, pp. 71-78. ACM Press, 2006.

C. Daskalakis and C. Papadimitriou. The complexity of games on highly regular graphs. In Proc.
13th Annual Euro. Symp. Algo., p. 71. Springer, Berlin, 2005.

C. Daskalakis and C. Papadimitriou. Computing pure Nash equilibria in graphical games via Markov
random fields. In Proc. 7th ACM Conf. on Electronic Commerce, pp. 91-99. ACM Press, 2006.
A.P. Dawid and S.L. Lauritzen. Hyper Markov laws in the statistical analysis of decomposable

graphical models. Ann. Stat., 21(3):1271-1317, September 1993.

E. Elkind, L. Goldberg, and P. Goldberg. Graphical games on trees revisited. In Proc. 7th ACM Conf.
on Electronic Commerce, pp. 100—109. ACM Press, 2006.

D. Foster and R. Vohra. Calibrated learning and correlated equilibrium. Games Economic Behav.,
1997.

D. Foster and R. Vohra. Regret in the on-line decision problem. Games Econ. Behav.,
pp- 7-36, 1999.

I. Gilboa and E. Zemel. Nash and correlated equilibria: Some complexity considerations. Games
Econ. Behav., 1:80-93, 1989.

P. Goldberg and C. Papadimitriou. Reducibility among equilibrium problems. In Proc. 38th ACM
Symp. Theo. Comp., pp. 61-70. ACM Press, 2006.

M. Jackson. The economics of social networks. In Adv. Economics and Econometrics, Theo. Appl.:
Ninth World Congr. Econo. Soc. Cambridge University Press, 2005.

S. Kakade, M. Kearns, J. Langford, and L. Ortiz. Correlated equilibria in graphical games. In Proc.
4th ACM Conf. on Electronic Commerce, pp. 42—47. ACM Press, 2003.

S. Kakade, M. Kearns, and L. Ortiz. Graphical economics. In Proc. 17th Annual Conf. on Learning
Theo., pp. 17-32. Springer, Berlin, 2004.

S. Kakade, M. Kearns, L. Ortiz, R. Pemantle, and S. Suri. Economic properties of social networks.
In L. Saul, Y. Weiss, and L. Bottou, editors, Adv. Neural Infor. Proc. Syst., 17, pp. 633-640. MIT
Press, 2005.

M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. In Proc. 17th Annual Conf.
on Uncertainty in Artificial Intelligence, pp. 253-260. Morgan Kaufmann, 2001.

M. Kearns and S. Suri. Networks preserving evolutionary equilibria and the power of randomization.
In Proc. 7th ACM Conf. Electronic Commerce, pp. 200-207. ACM Press, 2006.

180 GRAPHICAL GAMES

D. Koller and B. Milch. Multi-agent influence diagrams for representing and solving games. Games
Econ. Behav., 45(1):181-221, 2003.

P. La Mura. Game networks. In Proc. 16th Conf. Uncertainty in Artificial Intelligence, pp. 335-342.
Morgan Kaufmann, 2000.

S. Lauritzen. Graphical Models. Oxford University Press, 1996.

S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical structures and
their application to expert systems. J. Royal Stat. Soc. B, 50(2):157-224, 1988.

M. Littman, M. Kearns, and S. Singh. An efficient exact algorithm for singly connected graphical
games. In Adv. in Neural Inf. Proc. Syst. 14. MIT Press, 2002.

D. Monderer and L. Shapley. Potential games. Games Econ. Behav., 14:124—143, 1996.

J.F. Nash. Non-cooperative games. Ann. Math., 54:286-295, 1951.

L. Ortiz and M. Kearns. Nash propagation for loopy graphical games. In S. Becker, S. Thrun, and
K. Obermayer, editors, Adv. Neural Inf. Proc. Syst. 15, pp. 793-800. MIT Press, 2003.

G. Owen. Game Theory. Academic Press, UK, 1995.

C. Papadimitriou. Computing correlated equilibria in multi-player games. In Proc. 37th ACM Symp.
Theo. Comp., pp. 49-56. ACM Press, 2005.

C. Papadimitriou and T. Roughgarden. Computing equilibria in multi-player multi-player games. In
Proc. 16th ACM-SIAM Symp. Disc. Algo., pp. 82-91. SIAM, 2005.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

R. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Intl. J. Game Theory,
2:65-67, 1973.

G. Schoenebeck and S. Vadhan. The computational complexity of Nash equilibria in concisely
represented games. In Proc. 7th ACM Conf. Electronic Commerce, pp. 270-279. ACM Press,
2006.

D. Vickrey and D. Koller. Multi-agent algorithms for solving graphical games. In Proc. 18th Ntl.
Conf. on Artificial Intelligence, pp. 345-351. AAAI Press, 2002.

CHAPTER 8

Cryptography and Game Theory

Yevgeniy Dodis and Tal Rabin

Abstract

The Cryptographic and Game Theory worlds seem to have an intersection in that they both deal with
an interaction between mutually distrustful parties which has some end result. In the cryptographic
setting the multiparty interaction takes the shape of a set of parties communicating for the purpose
of evaluating a function on their inputs, where each party receives at the end some output of the
computation. In the game theoretic setting, parties interact in a game that guarantees some payoff for
the participants according to the joint actions of all the parties, while the parties wish to maximize
their own payoff. In the past few years the relationship between these two areas has been investigated
with the hope of having cross fertilization and synergy. In this chapter we describe the two areas, the
similarities and differences, and some of the new results stemming from their interaction.

The first and second section will describe the cryptographic and the game theory settings (respec-
tively). In the third section we contrast the two settings, and in the last sections we detail some of the
existing results.

8.1 Cryptographic Notions and Settings

Cryptography is a vast subject requiring its own book. Therefore, in the following
we will give only a high-level overview of the problem of Multi-Party Computation
(MPC), ignoring most of the lower-level details and concentrating only on aspects
relevant to Game Theory.

MPC deals with the following problem. There are n > 2 parties Py, ..., P, where
party P; holds input #;, 1 <i <n, and they wish to compute together a function
s = f(t1,...,t,) on their inputs. The goal is that each party will learn the output of
the function, s, yet with the restriction that P; will not learn any additional information
about the input of the other parties aside from what can be deduced from the pair
(t;, 5). Clearly it is the secrecy restriction that adds complexity to the problem, as
without it each party could announce its input to all other parties, and each party would
locally compute the value of the function. Thus, the goal of MPC is to achieve the

181

182 CRYPTOGRAPHY AND GAME THEORY

following two properties at the same time: correctness of the computation and privacy
preservation of the inputs.

Two generalizations. The following two generalizations of the above scenario are often
useful.

(i) Probabilistic functions. Here the value of the function depends on some random string
r chosen according to some distribution: s = f(¢#1, ..., t,;7). An example of this is
the coin-flipping functionality, which takes no inputs, and outputs an unbiased random
bit. Notice, it is crucial that the value r is not controlled by any of the parties, but is
somehow jointly generated during the computation.

(ii) Multioutput functions. It is not mandatory that there be a single output of the function.
More generally there could be a unique output for each party, i.e., (s1,...,S,) =
f(t, ..., t,). In this case, only party P; learns the output s;, and no other party learns
any information about the other parties input and outputs aside from what can be
derived from its own input and output.

The parties. One of the most interesting aspects of MPC is to reach the objective of
computing the function value, but under the assumption that some of the parties may
deviate from the protocol. In cryptography, the parties are usually divided into two
types: honest and faulty. An honest party follows the protocol without any deviation.
Otherwise, the party is considered to be faulty. The faulty behavior can exemplify itself
in a wide range of possibilities. The most benign faulty behavior is where the parties
follow the protocol, yet try to learn as much as possible about the inputs of the other
parties. These parties are called honest-but-curious (or semihonest). At the other end
of the spectrum, the parties may deviate from the prescribed protocol in any way that
they desire, with the goal of either influencing the computed output value in some way,
or of learning as much as possible about the inputs of the other parties. These parties
are called malicious.

We envision an adversary .4, who controls all the faulty parties and can coordinate
their actions. Thus, in a sense we assume that the faulty parties are working together and
can exert the most knowledge and influence over the computation out of this collusion.
The adversary can corrupt any number of parties out of the n participating parties. Yet,
in order to be able to achieve a solution to the problem, in many cases we would need
to limit the number of corrupted parties. We call this limit a threshold k, indicating that
the protocol remains secure as long as the number of corrupted parties is at most k.

8.1.1 Security of Multiparty Computations

We are ready to formulate the idea of what it means to securely compute a given
function f. Assume that there exists a trusted party who privately receives the inputs
of all the participating parties, calculates the output value s, and then transmits this
value to each one of the parties.! This process clearly computes the correct output of
[, and also does not enable the participating parties to learn any additional information

! Note that in the case of a probabilistic function the trusted party will choose r according to the specified
distribution and use it in the computation. Similarly, for multioutput functions the trusted party will only give
each party its own output.

CRYPTOGRAPHIC NOTIONS AND SETTINGS 183

about the inputs of others. We call this model the ideal model. The security of MPC
then states that a protocol is secure if its execution satisfies the following: (1) the
honest parties compute the same (correct) outputs as they would in the ideal model;
and (2) the protocol does not expose more information than a comparable execution
with the trusted party, in the ideal model.

Intuitively, this is explained in the following way. The adversary’s interaction with
the parties (on a vector of inputs) in the protocol generates a transcript. This transcript
is a random variable that includes the outputs of all the honest parties, which is needed
to ensure correctness as explained below, and the output of the adversary A. The
latter output, without loss of generality, includes all the information that the adversary
learned, including its inputs, private state, all the messages sent by the honest parties
to A, and, depending on the model (see later discussion on the communication model),
maybe even include more information, such as public messages that the honest parties
exchanged. If we show that exactly the same transcript distribution” can be generated
when interacting with the trusted party in the ideal model, then we are guaranteed that
no information is leaked from the computation via the execution of the protocol, as we
know that the ideal process does not expose any information about the inputs. More
formally,

Definition 8.1 Let f be a function on n inputs and let 7 be a protocol that
computes the function f. Given an adversary .4, which controls some set of
parties, we define REAL 4 ,(¢) to be the sequence of outputs of honest parties
resulting from the execution of 7 on input vector ¢ under the attack of A, in
addition to the output of 4. Similarly, given an adversary .A’ which controls a set
of parties, we define IDEAL 4 r(¢) to be the sequence of outputs of honest parties
computed by the trusted party in the ideal model on input vector ¢, in addition
to the output of A'. We say that 7w securely computes f if, for every adversary
A as above, there exists an adversary .A’, which controls the same parties in the
ideal model, such that, on any input vector ¢, we have that the distribution of
REAL 4 ,(¢) is “indistinguishable” from the distribution of IDEAL 4 ¢(¢) (where
the term “indistinguishable will be explained later).

Intuitively, the task of the ideal adversary A’ is to generate (almost) the same output
as A generates in the real execution (referred to also as the real model). Thus, the
attacker A’ is often called the simulator (of A). Also note that the above definition
guarantees correctness of the protocol. Indeed, the transcript value generated in the ideal
model, IDEAL 4 ((¢), also includes the outputs of the honest parties (even though we
do not give these outputs to .A’), which we know were correctly computed by the trusted
party. Thus, the real transcript REAL 4 - (¢) should also include correct outputs of the
honest parties in the real model.

The inputs of the faulty parties. We assumed that every party P; has an input ¢;, which
it enters into the computation. However, if P; is faulty, nothing stops P; from changing
t; into some ¢#/. Thus, the notion of a “correct” input is defined only for honest parties.

2 The requirement that the transcript distribution be exactly the same will be relaxed later on.

184 CRYPTOGRAPHY AND GAME THEORY

However, the “effective” input of a faulty party P; could be defined as the value #/ that
the simulator .4’ (which we assume exists for any real model A) gives to the trusted
party in the ideal model. Indeed, since the outputs of honest parties look the same in
both models, for all effective purposes P; must have “contributed” the same input #; in
the real model.

Another possible misbehavior of P;, even in the ideal model, might be a refusal to
give any input at all to the trusted party. This can be handled in a variety of ways,
ranging from aborting the entire computation to simply assigning #; some “default
value.” For concreteness, we assume that the domain of f includes a special symbol
1 indicating this refusal to give the input, so that it is well defined how f should be
computed on such missing inputs. What this requires is that in any real protocol we
detect when a party does not enter its input and deal with it exactly in the same manner
as if the party would input _L in the ideal model.

Variations on output delivery. In the above definition of security it is implicitly assumed
that all honest parties receive the output of the computation. This is achieved by stating
that IDEAL 4 ((t) includes the outputs of all honest parties. We therefore say that our
current definition guarantees output delivery.

A more relaxed property than output delivery is fairness. If fairness is achieved, then
this means that if at least one (even faulty!) party learns its outputs, then all (honest)
parties eventually do too. A bit more formally, we allow the ideal model adversary
A’ to instruct the trusted party not to compute any of the outputs. In this case, in the
ideal model either all the parties learn the output, or none do. Since A’s transcript is
indistinguishable from .A"’s this guarantees that the same fairness guarantee must hold
in the real model as well.

Yet, a further relaxation of the definition of security is to provide only correct-
ness and privacy. This means that faulty parties can learn their outputs, and pre-
vent the honest parties from learning theirs. Yet, at the same time the protocol will
still guarantee that (1) if an honest party receives an output, then this is the cor-
rect value, and (2) the privacy of the inputs and outputs of the honest parties is
preserved.

Variations on the model. The basic security notions introduced above are universal and
model-independent. However, specific implementations crucially depend on spelling
out precisely the model where the computation will be carried out. In particular, the
following issues must be specified:

(i) The parties. As mentioned above, the faulty parties could be honest-but-curious or
malicious, and there is usually an upper bound k on the number of parties that the
adversary can corrupt.

(ii) Computational assumptions. We distinguish between the computational setting and
the information theoretic setting. In the information theoretic model we assume that
the adversary is unlimited in its computing powers. In this case the term “indistin-
guishable” in Definition 8.1 is formalized by requiring the two transcript distributions
to be either identical (so-called perfect security) or, at least, statistically close in their
variation distance (so-called statistical security). On the other hand, in the compu-
tational setting we restrict the power of the adversary (as well as that of the honest

CRYPTOGRAPHIC NOTIONS AND SETTINGS 185

parties). A bit more precisely, we assume that the corresponding MPC problem is
parameterized by the security parameter X, in which case (a) all the computation
and communication shall be done in time polynomial in A; and (b) the misbehavior
strategies of the faulty parties are also restricted to be run in time polynomial in A.
Furthermore, the term “indistinguishability” in Definition 8.1 is formalized by com-
putational indistinguishability: two distribution ensembles { X }, and {Y}}, are said to
be computationally indistinguishable, if for any polynomial-time distinguisher D, the
quantity €, defined as |Pr[D(X;) = 1] — Pr[D(Y;) = 1]|, is a “negligible” function
of A. This means that for any j > 0 and all sufficiently large A, € eventually becomes
smaller than A/,

This modeling of computationally bounded parties enables us to build secure MPC
protocols depending on plausible computational assumptions, such as the hardness of
factoring large integers, etc.

(iili) Communication assumptions. The two common communication assumptions are the
existence of a secure channel and the existence of a broadcast channel. Secure chan-
nels assume that every pair of parties P; and P; are connected via an authenticated,
private channel. A broadcast channel is a channel with the following properties:
if a party P; (honest or faulty) broadcasts a message m, then m is correctly re-
ceived by all the parties (who are also sure the message came from P;). In partic-
ular, if an honest party receives m, then it knows that every other honest party also
received m.

A different communication assumption is the existence of envelopes. An envelope
(in its most general definition) guarantees the following properties: a value m can
be stored inside the envelope, it will be held without exposure for a given period of
time, and then the value m will be revealed without modification. A ballot box is an
enhancement of the envelope setting that also provides a random shuffling mechanism
of the envelopes.

These are, of course, idealized assumptions that allow for a clean description of
a protocol, as they separate the communication issues from the computational ones.
These idealized assumptions may be realized by a physical mechanisms, but in some
settings such mechanisms may not be available. Then it is important to address the
question if and under what circumstances we can remove a given communication
assumption. For example, we know that the assumption of a secure channel can be
substituted with a protocol, but under the introduction of a computational assumption
and a public key infrastructure. In general, the details of these substitutions are delicate
and need to be done with care.

8.1.2 Existing Results for Multiparty Computation

Since the introduction of the MPC problem in the beginning of the 1980s, the work in
this area has been extensive. We will only state, without proofs, a few representative
results from the huge literature in this area.

Theorem 8.2 Secure MPC protocols withstanding coalitions of up to k mali-
cious parties (controlled by an attacker A) exist in the following cases:

186 CRYPTOGRAPHY AND GAME THEORY

(i) Assuming that A is computationally bounded, secure channels, and a broadcast
channel (and a certain cryptographic assumption, implied for example, by the
hardness of factoring, is true), then:

(a) for k < n/2 with output delivery.
(b) for k < n with correctness and privacy.
(¢) additionally assuming envelopes, for k < n with fairness.

(ii) Assuming that A is computationally unbounded:
(a) assuming secure channels, then for k < n/3 with output delivery.
(b) assuming secure and broadcast channels, then for k < n/2 with output de-
livery (but with an arbitrarily small probability of error).
(¢) assuming envelopes, ballot-box and a broadcast channel, then for k < n with
output delivery.

Structure of MPC protocols. A common design structure of many MPC protocols
proceeds in three stages: commitment to the inputs, computation of the function on the
committed inputs, revealing of the output. Below we describe these stages at a high
level, assuming for simplicity that the faulty parties are honest-but-curious.

In the first stage the parties commit to their inputs, this is done by utilizing the
first phase of a two-phased primitive called secret-sharing. The first phase of a (k, n)-
secret-sharing scheme is the sharing phase. A dealer, D, who holds some secret z,
computes n shares zj,...,z, of z and gives the share z; to party P;. The second
phase is the reconstruction phase, which we describe here and utilize later. For the
reconstruction, the parties broadcast their shares to recover z. Informally, such secret-
sharing schemes satisfy the following two properties: (1) k, or fewer, shares do not
reveal any information about z; but (2) any k + 1 or more shares enable one to recover
z. Thus, up to k colluding parties learn no information about z after the sharing stage,
while the presence of at least k 4 1 honest parties allows one to recover the secret in
the reconstruction phase (assuming, for now, that no incorrect shares are given).

The classical secret-sharing scheme satisfying these properties is the Shamir secret-
sharing scheme. Here we assume that the value z lies in some finite field F' of cardinality
greater than n (such as the field of integers modulo a prime p > n). The dealer D
chooses a random polynomial g of degree k with the only constraint that the free
coefficient of g is z. Thus, z = g(0). Then, if «y, ..., «, are arbitrary but agreed in
advance nonzero elements of F', the shares of party P; is computed as z; = g(o;). Itis
now easy to observe that any k + 1 shares z; are enough to interpolate the polynomial
g and compute g(0) = z. Furthermore, any set of k shares is independent of z. This
is easy to see as for any value 7’ € F there exists a (k + 1)st share such that with the
given set of k shares they interpolate a polynomial g’, where g’(0) = z/, in a sense
making any value of the secret equally likely. Thus, properties (1) and (2) stated above
are satisfied.

To summarize, the first stage of the MPC is achieved by having each party P; invoke
the first part of the secret-sharing process as the dealer D with its input #; as the secret,
and distribute the correct shares of #; to each party P;. If f is probabilistic, the players
additionally run a special protocol at the end of which a (k, n)-secret-sharing of a
random and secret value r is computed.

GAME THEORY NOTIONS AND SETTINGS 187

In the second stage the parties compute the function f. This is done by evaluating
the pre—agreed-upon arithmetic circuit representing f over F, which is composed of
addition, scalar-multiplication and multiplication gates. The computation proceeds by
evaluating the gates one by one. We inductively assume that the inputs to the gates are
shared in the manner described above in the secret-sharing scheme, and we guarantee
that the output of the gate will preserve the same representation. This step forms the
heart of most MPC protocols. The computation of the addition and scalar-multiplication
gates are typically pretty straightforward and does not require communication (e.g.,
for the Shamir secret-sharing scheme the parties locally simply add or multiply by
the scalar their input shares), but is considerably more involved for the multiplication
gate and requires communication. For our purposes we will not need the details of the
computation mechanism, simply assuming that this computation on shares is possible
will suffice. Therefore, we can assume that at the end of the second stage the parties
have a valid secret-sharing of the required output(s) of the function f. The most crucial
observation is that no additional information is leaked throughout this stage, since all
the values are always shared through a (k, n)-secret-sharing scheme.

Finally, in the last stage the parties need to compute their individual outputs of the
function. As we have inductively maintained the property that the output of each gate
is in the secret-sharing representation, then the same it true for the output gate of f.
Thus, to let the parties learn the output s, which is the value of the function, the parties
simply run the reconstruction phase of the secret-sharing scheme (as described above),
by having each party broadcast its share of s.

8.2 Game Theory Notions and Settings

Strategic games. We assume that the reader is familiar with the basic concepts
of strategic (or “one-shot simultaneous move”) games, including the notions of
Nash Equilibrium (NE) and Correlated Equilibrium (CE). In particular, recall from
Chapter 1 that the class of NE corresponds to independent strategies of all the parties,
while the class of CE —to arbitrary correlated strategies. However, in order to implement
a given CE one generally needs a special “correlation device” — so-called mediator M —
which will sample the prescribed strategy profile s = (sy, ..., s,) for all the parties, and
disclose privately only action s; to each player P;. In particular, it is very important that
P; does not learn anything about the recommended actions of the other parties, beyond
what could be implied by its own action s;. Finally, recall that one can achieve consider-
ably higher payoffs by playing a well-selected CE than what is possible using any given
NE, or even what can be achieved by taking any convex combination of NE payoffs.

Games with incomplete information. In games with incomplete information, each party
has a private type ; € T;, where the joint vector ¢t = (¢, ..., t,) is assumed to be drawn
from some publicly known distribution. The point of such type, ¢;, is that it affects
the utility function of party P;: namely, the utility #; depends not only on the actions
S1, ..., Sy, but also on the private type #; of party P;, or, in even more general games,
on the entire type vector ¢ of all the parties. With this in mind, generalizing the notion
of Nash equilibrium to such games is straightforward. (The resulting Nash equilibrium
is also called Bayesian.)

188 CRYPTOGRAPHY AND GAME THEORY

Mediated games generalize to the typed setting, in which parties have to send their
types to the mediator M before receiving the joint recommendation. Depending on
the received type vector ¢, the mediator samples a correlated strategy profile s and
gives each party its recommended action s;, as before. We remark that the expected
canonical strategy of party P; is to honestly report its type ¢; to M, and then follow the
recommended action s;. However, P; can deviate from the protocol in two ways: (1)
send a wrong type #/ or not send a type at all to M, as well as (2) decide to change
the recommended action from s; to some s;. As a mediator may receive faulty types, a
fully defined sampling strategy for the mediator should specify the joint distribution x
for every type t = (¢, ..., t,), even outside the support of the joint type distribution.
Formally, x’ should be defined for every ¢ € [[,(7; U{L}), where L is a special
symbol indicating an invalid type. (In particular, games of complete information can
be seen as a special case where all ; = | and each party “refused” to report its type.)
With this in mind, the generalization of CE to games with incomplete information is
straightforward.

Aborting the game. We assume that the parties will always play the game by choosing an
action s; € S; and getting an appropriate payoff u;(s). Of course, we can always model
refusal to play by introducing a special action L into the strategy space, and defining
the explicit utilities corresponding to such actions. Indeed, many games effectively
guarantee participation by assigning very low payoff to actions equivalent to aborting
the computation. However, this is not a requirement; in fact, many games do not even
have the abort action as parts of their action spaces. To summarize, aborting is not
something which is inherent to games, although it could be modeled within the game,
if required.

Extended games. So far we considered only strategic games, where parties move
in “one-shot” (possibly with the help of the mediator). Of course, these games are
special cases of much more general extensive form games (with complete or incomplete
information), where a party can move in many rounds and whose payoffs depend on
the entire run of the game. In our setting we will be interested only in a special class of
such extensive form games, which we call (strategic) games extended by cheap-talk,
or, in brief, extended games.

An extended game G* is always induced by a basic strategic game G (of either
complete or incomplete information), and has the following form. In the cheap-talk
(or preamble) phase, parties follow some protocol by exchanging messages in some
appropriate communication model. This communication model can vary depending on
the exact setting we consider. But once the setting is agreed upon, the format of the
cheap talk phase is well defined. After the preamble, the game phase will start and the
parties simply play the original game G. In particular, the payoffs of the extended game
are exactly the payoff that the parties get in G (and this explains why the preamble
phase is called “cheap talk”™).

Correspondingly, the strategy x; of party P; in the extended game consists of its
strategy in the cheap talk phase, followed by the choice of an action s; that P; will
play in G. Just like in strategic games, we assume that the game phase must always go
on. Namely, aborting the game phase will be modeled inside G, but only if necessary.
However, the parties can always abort the preamble phase of the extended game, and

CONTRASTING MPC AND GAMES 189

prematurely decide to move on to the game phase. Thus, a valid strategy profile for the
extended game must include instructions of which action to play if some other party
refuses to follow its strategy, or, more generally, deviates from the protocol instructions
during the cheap talk phase (with abort being a special case of such misbehavior).

Nash equilibrium of extended games. With this in mind, (Bayesian) Nash equilibrium
for extended games is defined as before. We remark, however, that Nash equilibrium
is known to be too liberal for extensive form games, as it allows for “unreasonable”
strategy profiles to satisfy the definition of NE. For example, it allows for equilibrium
strategies containing so-called “empty threats” and has other subtle deficiencies. Nev-
ertheless, in order to keep our presentation simple, we will primarily restrict ourselves
to the basic concept of NE when talking about extended games.

Collusions. All the discussion so far assumed the traditional noncooperative setting,
where agents are assumed not to form collusions. In contrast, cooperative game theory
tries to model reasonable equilibrium concepts arising in scenarios where agents are
allowed to form collusions. However, traditional game-theoretic treatment of such
equilibria are fairly weak. We will come back to this issue in Section 8.4.1, where we
provide the definition of an equilibrium that we think is the most appropriate for our
setting and has been influenced by the MPC setting.

8.3 Contrasting MPC and Games

As we can see, MPC and games share several common characteristics. In both cases
an important problem is to compute some function (sy...s,) = f(f;,...,t,;r) ina
private manner. However, there are some key differences summarized in Figure 8.1,
making the translation from MPC to Games and vice versa a promising but nonobvious
task.

Incentives and rationality. Game theory is critically built on incentives. Although it
may not necessarily explain why parties participate in a game, once they do, they have
a very well defined incentive. Specifically, players are assumed to be rational and
only care about maximizing their utility. Moreover, rationality is common knowledge:
parties are not only rational, but know that other parties are rational and utilize this
knowledge when making their strategic decisions. In contrast, the incentives in the

Issue Cryptography Game Theory
Incentive Outside the model Payoff

Players Totally honest or malicious Always rational
Solution drivers Secure protocol Equilibrium
Privacy Goal Means

Trusted party In the ideal model In the actual game
Punishing cheaters ~ Outside the model Central part

Early stopping Possible The game goes on!
Deviations Usually efficient Usually unbounded
k-collusions Tolerate “large” k Usually only k =1

Figure 8.1. Differences between Crytography and game theory.

190 CRYPTOGRAPHY AND GAME THEORY

MPC setting remain external to the computation, and the reason the computation
actually ends with a correct and meaningful output comes from the assumption on the
parties. Specifically, in the MPC setting one assumes that there exist two diametrically
opposite kinds of parties: fotally honest and arbitrarily malicious. Thus, the settings are
somewhat incomparable in general. On the one hand, the MPC setting may be harder as
it has to protect against completely unexplained behavior of the malicious parties (even
if such behaviors would be irrational had the parties had the utilities defined). On the
other hand, the Game Theory setting could be harder as it does not have the benefit of
assuming that some of the parties (i.e., the honest parties) blindly follow the protocol.
However, we remark that this latter benefit disappears for the basic notions of Nash
and correlated equilibria, since there one always assumes that the other parties follow
the protocol when considering whether or not to deviate. For such basic concepts, we
will indeed see in Section 8.4.2 that the MPC setting is more powerful.

Privacy and solution drivers. In the cryptographic setting the objective is to achieve a
secure protocol, as defined in Definition 8.1. In particular, the main task is to eliminate
the trusted party in a private and resilient way. While in the game theory setting the goal
is to achieve “stability” by means of some appropriate equilibrium. In particular, the
existence of the mediator is just another “parameter setting” resulting in a more desir-
able, but harder to implement equilibrium concept. Moreover, the privacy constraint on
the mediator is merely a technical way to justify a much richer class of “explainable”
rational behaviors. Thus, in the MPC setting privacy is the goal/ while in the game
theory setting it is a means to an end.

“Crime and punishment” . We also notice that studying deviations from the prescribed
strategy is an important part of both the cryptographic and the game-theoretic setting.
However, there are several key differences.

In cryptography, the goal is to compute the function, while achieving some security
guarantees in spite of the deviations of the faulty parties. Most protocols also enable
the participating parties to detect which party has deviated from the protocol. Yet, even
when exposed, in many instances no action is taken against the faulty party. Yet, when
an action, such as removal from the computation, is taken, this is not in an attempt to
punish the party, but rather to enable the protocol to reach its final goal of computing
the function. In contrast, in the game-theoretic setting it is crucial to specify exactly
how the misbehavior will be dealt with by the other parties. In particular, one typical
approach is to design reaction strategies that will negatively affect the payoffs of the
misbehaving party(s). By rationality, this ensures that it is in no player’s self-interest
to deviate from the prescribed strategy.

We already commented on a particular misbehavior when a party refuses to partic-
ipate in a given protocol/strategy. This is called early stopping. In the MPC setting,
there is nothing one can do about this problem, since it is possible in the ideal model
as well. In the Game Theory setting, however, we already pointed out that one always
assumes that “the game goes on.” That is, if one wishes, it is possible to model stopping
by an explicit action with explicit payoffs, but the formal game is always assumed to be
played. Thus, if we use MPC inside a game-theoretic protocol, we will have to argue —
from the game-theoretic point of view — what should happen when a given party aborts
the MPC.

CRYPTOGRAPHIC INFLUENCES ON GAME THEORY 191

Efficiency. Most game-theoretic literature places no computational limitations on the
efficiency of a party when deciding whether or not to deviate. In contrast, a significant
part of cryptographic protocol literature is designed to only withstand computationally
bounded adversaries.

Collusions. Finally, we comment again on the issue of collusions. Most game-theoretic
literature considers noncooperative setting, which corresponds to collusions of size
k = 1. In contrast, in the MPC setting the case k = 1 is usually straightforward, and
a lot of effort is made to make the maximum collusion threshold as high as possible.
Indeed, in most MPC settings one can tolerate at least a linear fraction of colluding
parties, and sometimes even a collusion of all but one party.

8.4 Cryptographic Influences on Game Theory

In this section we discuss how the techniques and notions from MPC and cryptography
can be used in Game Theory. We start by presenting the notions of computational
and k-resilient equilibria, which were directly influenced by cryptography. We then
proceed by describing how to use appropriate MPC protocols and replace the mediator
implementing a given CE by a “payoff-equivalent” cheap-talk phase in a variety of
contexts.

8.4.1 New Notions

Computational equilibrium. Drawing from the cryptographic world, we consider set-
tings where parties participating in the extended game are computationally bounded
and we define the notion of computational equilibriums. In this case we only have to
protect against efficient misbehavior strategies x;. A bit more precisely, we will assume
that the basic game G has constant size. However, when designing the preamble phase
of the extended game, we can parameterize it by the security parameter A, in which
case (a) all the computation and communication shall be done in time polynomial in
A; and (b) the misbehavior strategies x; are also restricted to be run in time polynomial
in A.

The preamble phase will be designed under the assumption of the existence of a
computationally hard problem. However, this introduces a negligible probability (see
Section 8.1.1) that within x; the attacker might break (say, by luck) the underlying
hard problem, and thus might get considerably higher payoff than by following the
equilibrium strategy x;. Of course, this can improve this party’s expected payoff by at
most a negligible amount (since the parameters of G, including the highest payoff, are
assumed constant with respect to 1), so we must make an assumption that the party will
not bother to deviate if its payoffs will increase only by a negligible amount. This gives
rise to the notion of computational Nash equilibrium: a tuple of independent strategies
x{,...,x; where each strategy is efficient in A such that for every P; and for every
alternative efficient in A strategy x;, we have u;(x, x*,) > u;(x;, x*;) — €, where € is
a negligible function of A.

k-Resiliency. As we mentioned, the Game Theory world introduced several flavors of
cooperative equilibria concepts. Yet, for our purposes here, we define a stronger type

192 CRYPTOGRAPHY AND GAME THEORY

of such an equilibrium, called a resilient (Nash or Correlated) equilibrium. Being a
very strong notion of an equilibrium, it may not exist in most games. Yet, we choose to
present it since it will exist in the “Game Theory-MPC” setting, where we will use MPC
protocols in several game-theoretic scenarios. The possibility of realizing such strong
equilibria using MPC shows the strength of the cryptographic techniques. Furthermore,
with minor modifications, most of the results we present later in the chapter extend to
weaker kinds of cooperative equilibria, such as various flavors of a more well known
coalition-proof equilibrium.>

Informally, resilient equilibrium requires protection against all coalitional deviations
that strictly benefit even one of its colluding parties. Thus, no such deviation will be
justifiable to any member of the coalition, meaning that the equilibrium strategies
are very stable. A bit more formally, an independent strategy profile (x{, ..., x;)isa
k-resilient Nash Equilibrium of G, if for all coalitions C of cardinality at most &, all
correlated deviation strategies x¢ of the members of C, and all members P; € C, we
have u; (x{, x*) > u;(x¢c, x*). Thus, no coalition member benefits by xc.

The notion of k-resilient correlated equilibrium is defined similarly, although here
we can have two variants. In the ex ante variant, members of C are allowed to collude
only before receiving their actions from the mediator: namely, a deviation strategy
will tell each member of the coalition how to change its recommended action, but this
would be done without knowledge of the recommendations to the other members of
the coalition. In the more powerful interim variant, the members of the coalition will
see the entire recommended action vector s and then can attempt to jointly change
it to some s¢. Clearly, ex ante correlated equilibria are more abundant than interim
equilibria. For example, it is easy to construct games where already 2-resilient ex ante
CEs achieve higher payoffs than 2-resilient interim equilibria, and even games where
the former correlated equilibria exist and the latter do not! This is true because the ex
ante setting makes a strong restriction that coalitions cannot form after the mediator
gave its recommended actions. Thus, unless stated otherwise, k-resilient CE will refer
to the interim scenario.

Finally, we mention that one can naturally generalize the above notions to games
with incomplete information, and also define (usual or computational) k-resilient Nash
equilibria of extended games.

8.4.2 Removing the Mediator in Correlated Equilibrium

The natural question that can be asked is whether the mediator can be removed in the
game theory setting, by simulating it with a multiparty computation. The motivation
for this is clear, as the presence of the mediator significantly expands the number of
equilibria in strategic form games; yet, the existence of such a mediator is a very strong
and often unrealizable assumption.

Recall that in any correlated equilibrium x of a strategic game G (with imperfect
information, for the sake of generality), the mediator samples a tuple of recommended
action (sy,...,s,) according to the appropriate distribution based on the types of

3 Informally, these equilibria prevent only deviations benefiting a/l members of the coalition, while resilient
equilibria also prevent deviations benefiting even a single member.

CRYPTOGRAPHIC INFLUENCES ON GAME THEORY 193

the parties. This can be considered as the mediator computing some probabilistic
function (s1, ..., s,) = f(t, ..., t,;r). We define the following extended game G* of
G by substituting the mediator with an MPC and ask whether the extended game is a
(potentially computational) Nash equilibrium.

(i) In the preamble stage, the parties run an “appropriate” MPC protocol* to compute the
profile (s, . .., s,). Some additional actions may be needed (see below).

(i) Once the preamble stage is finished, party P; holds a recommended action s;, which it
uses in the game G.

Meta-Theorem. Under “appropriate” conditions, the above strategies form a (poten-
tially computational) Nash equilibrium of the extended game G*, which achieves the
same expected payoffs for all the parties as the corresponding correlated equilibrium
of the original game G.’

As we discussed in Section 8.3, there are several differences between the MPC and
the game theory settings. Not surprisingly, we will have to resolve these differences
before validating the meta-theorem above. To make matters a bit more precise, we
assume that

 x is an interim k-resilient correlated equilibrium® of G that we are trying to simulate.
k =1 (i.e., no collusions) will be the main special case.

* the MPC protocol computing x is cryptographically secure against coalitions of up to
k malicious parties. This means the protocol is at least correct and private, and we will
comment about its “output delivery” guarantees later.

* The objective is to achieve a (possibly computational) k-resilient Nash equilibrium x*
of G* with the same payoffs as x.

Now the only indeterminant in the definition of G* is to specify the behavior of the
parties in case the MPC computation fails for some reason.

Using MPC with guaranteed output delivery. Recall that there exist MPC protocols (in
various models) that guarantee output delivery for various resiliencies k. Namely, the
malicious parties cannot cause the honest parties not to receive their output. The only
thing they can do is to choose their inputs arbitrarily (where a special input L indicates
they refuse to provide the input). But since this is allowed in the mediated game as
well, and k-resilient equilibrium ensures the irrationality of such behavior (assuming
the remaining (n — k) parties follow the protocol), we know the parties will contribute
their proper types and our meta-theorem is validated.

Theorem 8.3 If x is a k-resilient CE of G specified by a function f, and 7w is
an MPC protocol (with output delivery) securely computing f against a coalition
of up to k computationally unbounded/bounded parties, then running w in the
preamble step (and using any strategy to select a move in case some misbehavior

4 Where the type of the protocol depends on the particular communication model and the capabilities of the
parties.

3 Note that the converse (every NE of G* can be achieved by a CE of G) is true as well.

6 As we already remarked, the techniques presented here easily extend to weaker coalitional equilibria concepts.

194 CRYPTOGRAPHY AND GAME THEORY

occurs) yields a k-resilient regular/computational NE of the extended game G*,
achieving the same payoffs as x.

Using fair MPC. In some instances (e.g., part i.c of Theorem 8.2) we cannot guarantee
output delivery, but can still achieve fairness. Recall, this means that if at least one
party P; obtains its correct output s;, then all parties do. However, it might be possible
for misbehaving parties to cause everybody to abort or complete the protocol without
an output.

In the case where the protocol terminates successfully, we are exactly in the same
situation as if the protocol had output delivery, and the same analysis applies. In the
other case, we assume that the protocol enables detection of faulty behavior and that it
is observed that one of the parties (for simplicity, assume that it is P,) deviated from
the protocol. As the protocol is fair, the aborting deviation must have occurred before
any party has any information about their output. The simplest solution is to restart
the computation of x from scratch with all parties. The technical problem with this
solution is that it effectively allows (a coalition containing) P, to mount a denial of
service attack, by misbehaving in every MPC iteration causing the preamble to run
forever.

Instead, to make the extended game always finite, we follow a slightly more so-
phisticated punishment strategy. We restart the preamble without P,, and let the
(n — 1) remaining parties run a new MPC to compute the (n — 1)-input function f’
on the remaining parties’ inputs and a default value L for P,: f'(t;, ..., t,—1;r) =
f(, ..., t,—1, L;r). Notice that in this new MPC # is replaced by n — 1 and k re-
placed by k — 1 (as P, is faulty), which means that the ratio H < f and, thus, f’
can still be securely computed in the same setting as f. Also notice that P, does not
participate in this MPC, and will have to decide by itself (or with the help of other
colluding members) which action to play in the actual game phase. In contrast, parties
Py, ..., P,_; are instructed to follow the recommendations they get when computing
f',if f’ completes. If not, then another party (say, P,_1) must have aborted this MPC,
in which case we reiterate the same process of excluding P,_;, and so on. Thus, at
some point we have that the process will end, as there is a finite number n of parties
and we eliminate (at least) one in each iteration.

Next, we argue that the resulting strategy profile x* forms a k-resilient Nash equi-
librium of G*. To see this, the fairness of the MPC step clearly ensures that the only
effective misbehavior of a coalition of size |C]| is to declare invalid types L for some of
its members, while changing the real type for others. In this case, their reluctance to do
so follows from the fact that such misbehavior is allowed in the mediated game as well.
And since we assumed that the strategy profile x is a k-resilient correlated equilibrium
of G, it is irrational for the members of the coalition to deviate in this way.

Using correct and private MPC: Case k = 1. We can see that the previous argument
crucially relied on the fairness of the MPC. In contrast, if the MPC used only provides
correctness and privacy, then the members of C might find their vector of outputs
s before the remaining parties, and can choose to abort the computation precisely
when one of their expected payoffs p; = Exp(u;(s) | sc = s;) when playing s is
less than the a priori value p; = Exp(u;(s)). In fact, even for two-players games of

CRYPTOGRAPHIC INFLUENCES ON GAME THEORY 195

complete information, it is easy to construct a game G (e.g., the “Game of Chicken” in
Chapter 1) where the above aborting strategy of the player who learns the output
first will be strictly profitable for this player, even if the other player will play its
“conditional” strategy suggested in the previous paragraph.

Nevertheless, we show that one can still use unfair (yet private and correct) MPC
protocols in an important special case of the problem. Specifically, we concentrate
on the usual coalition-free case k = 1, and also restrict our attention to games with
complete information (i.e., no types). In this case, we show that if some party P; deviates
in the MPC stage (perhaps by aborting the computation based on its recommended
action), the remaining parties P_; can sufficiently punish P; to discourage such an
action. Let the min—max value v; for party P; denote the worst payoff that players P_;
can jointly enforce on P;: namely, v; = min,_,ea(s ;) MaXy,es, Ui (Si, 2—i).

Claim 8.4 For any correlated equilibrium x of G, any P; and any action s, for
P; in the support of x;, Exp(u;(s) | s; = s!) > v;.

PROOF Notice that since x is a CE, s/ is the best response of P; to the profile
X_; defined as x_; conditioned on s; = s;. Thus, the payoff P; gets in this case is
what others would force on P; by playing x_;, which is at least as large as what
others could have selected by choosing the worst profile z_;. O

Now, in case P; would (unfairly) abort the MPC step, we will instruct the other
parties P_; to punish P; to its min—max value v;. More specifically, parties P_; should
play the correlated strategy z_;, which would force P; into getting at most v;. Notice,
however, since this strategy is correlated, they would need to run another MPC protocol
to implement z_;,” By the above claim, irrespective of the recommendation s; that P;
learned, the corresponding payoff of P; can only go down by aborting the MPC.
Therefore, it is in P;’s interests not to abort the computation after learning s;.

We notice that the above punishment strategy does not straightforwardly generalize
to more advanced settings. For example, in case of coalitions it could be that the min—
max punishment for P; tremendously benefits another colluding party P, (who poses
as honest and instructs P; to abort the computation to get high benefits for itself). Also,
in the case of incomplete information, it is not clear how to even define the min—max
punishment, since the parties do not even know the precise utility of P;!

8.4.3 Stronger Equilibria

So far we talked only about plain Nash equilibria of the extended game G*. As we
already commented briefly, Nash equilibria are usually too weak to capture extensive-
form games. Therefore, an interesting (and still developing!) direction in recent research
is to ensure much stronger and more stable equilibria that would simulate correlated
equilibria of the original game.

Eliminating empty threats. One weakness of the Nash equilibrium is that it allows for
the so-called empty threats. Consider, for example, the min—max punishment strategy

7 Notice that there are no dishonest parties left, so any MPC protocol for the honest-but-curious case would work.

196 CRYPTOGRAPHY AND GAME THEORY

used above. In some games, punishing a misbehaving party to its min—-max value
is actually very damaging for the punishers as well. Thus, the threat to punish the
misbehaving party to the min—max value is not credible in such cases, despite being
an NE. In this case, eliminating such an empty threat could be done by modifying the
punishment strategy to playing the worst Nash equilibrium of G for P; (in terms of P;’s
payoff) when P; is caught cheating. Unlike the min—max punishment, this is no longer
an empty threat because it is an equilibrium of G. However, it does limit (although
slightly) the class of correlated equilibria one can simulate, as one can achieve only a
payoff vector which is at least as large as the worst Nash equilibrium for each player.
In addition, formally defining such so-called subgame-perfect or sequential equilibria
has not yet been done in the computational setting, where most MPC protocols are
analyzed.

Ex ante correlated equilibria. So far we only talked about simulating interim corre-
lated equilibria, where colluding parties can base their actions after seeing all their
recommendations. Another interesting direction is that of simulating ex ante corre-
lated equilibria, where colluding parties can only communicate prior to contacting
the mediator. To implement this physical restriction in real life, we need to design
collusion-free protocols, where one has to ensure that no subliminal communication
(ak.a. steganography) is possible. This is a very difficult problem. Indeed, most cryp-
tographic protocols need randomness (or entropy), and it is known that entropy almost
always implies steganography. In fact, it turns out that, in order to build such protocols,
one needs some physical assumptions in the real model as well. On a positive side, it
is known that envelopes (and a broadcast channel) are enough for building a class of
collusion-free protocols sufficient to simulate ex ante correlated equilibria without the
mediator.

Iterated deletion of weakly dominated strategies. In Section 8.5.2 we will study
a pretty general class of “function evaluation games,” where the objective is to
achieve Nash equilibrium that survives so-called iterated deletion of weakly dominated
strategies.

Strategic and privacy equivalence. The strongest recent results regarding removing
the mediator is to ensure (polynomially efficient) “real-life” simulation that guaran-
tees an extremely strong property called strategic and privacy equivalence. Intuitively,
it implies that our simulation gives exactly the same power in the real model as in
the ideal model. As such, it precisely preserves all different types of equilibria of
the original game (e.g., without introducing new, unexpected equilibria in the ex-
tended game, which we allowed so far), does not require the knowledge of the utility
functions or an a priori-type distribution (which most of the other results above do),
does not give any extra power to arbitrary coalitions, preserves privacy of the play-
ers types as much as in the ideal model, and has other attractive properties. Not
surprisingly, strategic and privacy equivalence is very difficult to achieve, and re-
quires some physical assumptions in the real model as well. The best known result
is an extension of the MPC result ii.c in Theorem 8.2, and shows how to imple-
ment strategic and privacy equivalence assuming a broadcast channel, envelopes and a
ballot box.

GAME THEORETIC INFLUENCES ON CRYPTOGRAPHY 197

To summarize, MPC techniques are promising in replacing the mediator by cheap
talk in a variety of situations. However, more work has to be done in trying to achieve
stronger kinds of equilibria using weaker assumptions.

8.5 Game Theoretic Influences on Cryptography

The influence of Game Theory on Multiparty Computation has exemplified itself in
modeling multiparty computation with a game-theoretic flavor by introducing rational
parties with some natural utility functions into the computation. Once this is done,
two main areas of investigation are as follows. First, we try to characterize the class
of functions where it is in the parties’ selfish interest to report their true inputs to the
computation. We call such functions noncooperatively computable (NCC). Second, we
can ask to what extent the existing MPC protocols (used to compute NCC functions)
form an appropriate equilibrium for the extended game, where we remove the trusted
mediator by cheap talk computing the same function. As we see, the answer will depend
on the strength of the equilibrium we desire (and, of course, on the natural utilities we
assign to the “function evaluation game” defined below). Furthermore, issues arising
in the MPC “honest vs. malicious” setting also hold in the Game Theory “rational”
setting, further providing a synergy between these two fields.

8.5.1 Noncooperatively Computable Functions

In order to “rationalize” the process of securely evaluating a given function f, we first
need to define an appropriate function evaluation game. For concreteness, we concen-
trate on single-output functions f(¢y, ..., t,), although the results easily generalize to
the n-output case. We also assume that each input #; matters (i.e., for some ¢_; the value
of f is not yet determined without ¢;).

Function evaluation game. We assume that the parties’ types ¢; are their inputs to f
(which are selected according to some probability distribution D having full support).
The action of each party P; is its guess about the output s* of f. The key question,
however, is how to define the utilities of the parties. Now, there are several natural
cryptographic considerations that might weight into the definition of party P;’s utility.

¢ Correctness. Each P; wishes to compute f correctly.

* Exclusivity. Each P; prefers others parties P; not to learn the value of f correctly.

* Privacy. Each P; wishes to leak as little as possible about its input #; to the other parties.
* Voyeurism. Each P; wishes to learn as much as possible about the other parties’ inputs.

Not surprisingly, one can have many different definitions for a cryptographically
motivated utility function of party P;. In turn, different definitions would lead to
different results. For concreteness, we will restrict ourselves to one of the simplest and,
arguably, most natural choices. Specifically, we will consider only correctness and ex-
clusivity, and value correctness over exclusivity. However, other choices might also be
interesting in various situations, so our choice here is certainly with a loss of generality.

A bit more formally, recall that the utility u; of party P; depends on the true type
vector ¢ of all the parties, and the parties’ actions sy, . . ., s,. Notice that the true type

198 CRYPTOGRAPHY AND GAME THEORY

vector ¢ determines the correct function value s* = f(¢), and parties’ actions determine
the boolean vector correct = (correcty, ..., correct,), where correct; = 1 if an only
if s; = s*. In our specific choice of the utility function, we will assume that the utilities
of each party depend only on the boolean vector correct: namely, which of the parties
learned the output and which did not. Therefore, we will write u;(correct) to denote
the utility of party P;. Now, rather than assigning somewhat arbitrary numbers to
capture correctness and exclusivity, we state only the minimal constraints that imply
these properties. Then, the correctness constraint states that u; (correct) > u;(correct’),
whenever correct; = 1 and correct; = 0. Similarly, exclusivity constraint states that
if (a) correct; = correct;, (b) for all j # i we have correct; < correct’j, while (¢)
for some j actually correct; = 0 and Correct’j = 1, then u;(correct) > u;(correct’).
Namely, provided P; has the same success in learning the output, it prefers as few
parties as possible to be successful.

Noncooperatively computable functions. Having defined the function evaluation game,
we can now ask what are the equilibria of this game. In this case, Nash equilibria are not
very interesting, since parties typically have too little information to be successful with
any nontrivial probability. On the other hand, it is very interesting to study correlated
equilibria of this game. Namely, parties give their inputs #; to the mediator M, who then
recommends an action s for each party. Given that each party is trying to compute
the value of the function f, it is natural to consider “canonical” mediator strategy:
namely, that of evaluating the function f on the reported type vector ¢, and simply
recommending each party to “guess” the resulting function value s* = f(¢). Now, we
can ask the question of characterizing the class of functions f for which this canonical
strategy is indeed a correlated equilibrium of the function evaluation game. To make
this precise, though, we also need to define the actions of the mediator if some party
gives a wrong type to the mediator. Although several options are possible, here we
will assume that the mediator will send an error message to all the parties and let them
decide by themselves what to play.

Definition 8.5 We say that a function f is noncooperatively computable (NCC)
with respect to utility functions {u;} (and a specific input distribution D) if the
above canonical mediated strategy is a correlated equilibrium of the function
evaluation game. Namely, it is in the parties’ selfish interest to honestly report
their true inputs to the mediator.

We illustrate this definition by giving two classes of functions that are never NCC.
Let us say that a function f is dominated if there exists an index i and an input
t;, which determine the value of f irrespective of the other inputs 7_;. Clearly, for
such an input ¢ it is not in the interest of P; to submit #; to the mediator, as P,
is assured of correct; = 1 even without the help of M, while every other party is
not (for at least some of its inputs). Thus, dominated functions cannot be NCC. For
another example, a function f is reversible if for some index i and some input ¢;,
there exists another input #/ and a function g, such that (a) for all other parties’ inputs
t_; we have g(f(t/,t_;),t;) = f(t;,t-;), and (b) for some other parties’ inputs 7_;
we have f(t/,t_;) # f(t;,t_;). Namely, property (a) states that there is no risk in
terms of correctness for P; to report ¢/ instead of #;, while property (b) states that

GAME THEORETIC INFLUENCES ON CRYPTOGRAPHY 199

at least sometimes P; will be rewarded by higher exclusivity. A simple example of
such (boolean) function is the parity function: negating one’s input always negates the
outcome, but still in a manner easily correctable by negating the output back. Clearly,
reversible functions are also not NCC.

In general, depending on the exact utilities and the input distribution D, other
functions might also be non-NCC. However, if we assume that the risk of losing
correctness is always too great to be tempted by higher exclusivity, it turns out that these
two classes are the only non-NCC functions. (And, thus, most functions, like majority,
are NCC.) More precisely, assume that the utilities and the input distribution D are
such that for all vectors correct, correct’, correct” satisfying correct; = correct; = 1,
correct! = 0, we have u;(correct) > (1 — €)u;(correct’) + eu;(correct”), where € is
the smallest probability in D. Namely, if by deviating from the canonical strategy
there is even a minuscule chance of P; not learning the value of f correctly, this loss
will always exceed any potential gain caused by many other parties not learning the
outcome as well. In this case we can show the following:

Theorem 8.6 Under the above assumption, a function f is NCC if and only if
it is not dominated and not reversible

Collusions. So far we concentrated on the case of no collusions; i.e., k = 1. However,
one can also define (a much smaller class of) k-Non-Cooperatively Computable (k-
NCC) functions, for which no coalition of up to k parties has any incentive to deviate
from the canonical strategy of reporting their true types. One can also characterize
k-NCC functions under appropriate assumptions regarding the utilities and the input
distribution D.

8.5.2 Rational Multiparty Computation

Assume that a given function f is k-NCC, so it is in the parties’ own interest to
contribute their inputs in the ideal model. We now ask the same question as in Section
8.4: can we replace the mediator computing f by a corresponding MPC protocol for
f? Notice, by doing so the parties effectively run the cryptographic MPC protocol
for computing f. Thus, a positive answer would imply that a given MPC protocol
7 securely computes f not only from a cryptographic point of view but also from a
game-theoretic, rational point of view! Fortunately, since the function evaluation game
is just a particular game, Theorem 8.3 immediately implies

Theorem 8.7 If f is a k-NCC function (w.r.t. to some utilities and input dis-
tribution) and w is an MPC protocol securely computing f against a coalition
of up to k computationally unbounded/bounded parties, then 7 is a k-resilient
regular/computational Nash equilibrium for computing f in the corresponding
extended game.

From a positive perspective, this result shows that for the goal of achieving just a
Nash equilibrium, current MPC protocols can be explained in rational terms, as long

8 In fact, under our assumption that each party’s input matters in some cases and D has full support, it is easy to
see that every dominated function is also reversible.

200 CRYPTOGRAPHY AND GAME THEORY

as the parties are willing to compute f in the ideal model. From a negative perspective,
the latter constraint nontrivially limits the class of functions f, which can be rationally
explained, and it is an interesting open problem how to rationalize MPC even for
non-NCC functions, for which the cryptographic definition still makes perfect sense.

Stronger equilibria. As another drawback, we already mentioned that the notion of
Nash equilibrium is really too weak to capture the rationality of extensive-form pro-
cesses, such as multiparty computation protocols. Thus, an important direction is to
try achieving stronger kinds of equilibria explaining current MPC protocols, or, alter-
natively, design robust enough MPC protocols which would achieve such equilibria.
In Section 8.4.3, we briefly touched on several general results in this direction (which
clearly still apply to the special case of the function evaluation games). Here we will
instead concentrate on the specifics of computing the function under the correctness
and exclusivity preferences defined in the previous section, and will study a specific
refinement of the Nash equilibrium natural for these utility functions.

To motivate our choice, let us see a particular problem with current MPC protocols.
Recall, such protocols typically consist of three stages; in the first two stages the parties
enter their inputs and compute the secret-sharing of the output of f, while the last stage
consists of the opening of the appropriate output shares. Now we claim that the strategy
of not sending out the output shares is always at least as good as, and sometimes better
than, the strategy of sending the output shares. Indeed, consider any party P;. The
correctness of output recovery for P; is not affected by whether or not P; sent his own
share, irrespective of the behavior of the other parties. Yet, not sending the share to
others might, in some cases, prevent others from reconstructing their outputs, resulting
in higher exclusivity for P;. True, along the Nash equilibrium path of Theorem 8.7,
such cases where the share of P; was critical did not exhibit themselves. Still, in reality
it seems that there is no incentive for any party to send out their shares, since this
is never better, and sometimes worse than not sending the shares. This motivates the
following definition.

Definition 8.8 We say that a strategy s € S; is weakly dominated by s’ € S;
with respect to S_; if (a) there exists s_; € S_; such that u;(s, s_;) < u;(s’, 5_;)
and (b) for all strategies s’ ; € S_; we have that u; (s, s";) < u;(s’, s;). We define
iterated deletion of weakly dominated strategies (IDoWDS) as the following
process. Let DOM; (S, . . ., §,) denote the set of strategies in S; that are weakly
dominated with respect to S—_;. Let S? = §; and for j > 1 define S/ inductively as
Sl.j = Sij_l\DOMi(S{_l, e S,{_l) and let §7° = ﬂjzl Slj Finally, we say that
a Nash equilibrium (xy, ..., x,) survives IDoWDS, if each x; is fully supported
within 57°.

k-resilient Nash equilibria surviving IDOWDS are defined similarly.’
Now, the above discussion implies that the k-resilient Nash equilibrium from Theo-
rem 8.7 does not survive IDoWDS. On a positive side, the only reason for that was that

 We notice that, in general, it matters in which order 1 removes the weakly dominated strategies. The specific
order chosen above seems natural, however, and will not affect the results we present below.

GAME THEORETIC INFLUENCES ON CRYPTOGRAPHY 201

the basic secret-sharing scheme where the parties are instructed to blindly open their
shares does not survive IDoWDS. It turns out that the moment we fix the secret-sharing
scheme to survive IDoWDS, the resulting Nash equilibrium for the function evaluation
game will survive IDoOWDS too, and Theorem 8.7 can be extended to Nash equilibrium
surviving IDoWDS. Therefore, we will treat only the latter, more concise problem. We
remark, however, that although a Nash equilibrium surviving IDoWDS is better than
plain Nash equilibrium, it is still a rather weak concept. For example, it still allows for
“empty threats,” and has other undesirable properties. Thus, stronger equilibria are still
very desirable to achieve.

Rational secret-sharing. Recall, in the (k, n)-secret-sharing problem the parties are
given (random valid) shares zy, ..., z, of some secret z, such that any k shares leak
no information about z, while any k 4+ 1 or more shares reveal z. We can define the
secret-sharing game, where the objective of each party is to guess the value of z, and
where we assume that parties’ utilities satisfy the correctness and exclusivity constraints
defined earlier. In the extended game corresponding to the secret-sharing game, the
parties can perform some computation before guessing the value of the secret. For our
communication model, we assume that it is strong enough to perform generic multiparty
computation, since this will be the case in the application to the function evaluation
game. (On the other hand, we will need only MPC with correctness and privacy, and not
necessarily fairness.) In addition, if not already present, we also assume the existence of
a simultaneous broadcast channel, where at each round all parties can simultaneously
announce some message, after which they atomically receive the messages of all the
other parties. Our goal is to build a preamble protocol for which the outcome of all
the parties learning the secret z will be a k-resilient Nash equilibrium for the extended
game that survives IDoWDS.

As we observed already, the natural 1-round preamble protocol where each party
is supposed to simply broadcast its share does not survive IDoWDS. In fact, a simple
backward induction argument shows that any preamble protocol having an a priori fixed
number of simultaneous broadcast rounds (and no other physical assumptions, such as
envelopes and ballot boxes) cannot enable the parties to rationally learn the secret and
survive IDoWDS. Luckily, it turns out that we can have probabilistic protocols with no
fixed upper bound on the number of rounds, but which have a constant expected number
of rounds until each party learns the secret. We sketch the simplest such protocol below.
W.l.o.g. we assume that the domain of the secret-sharing scheme is large enough to
deter random guessing of z, and also includes a special value denoted _L, such that z is
guaranteed to be different from L.

Let o € (0, 1) be a number specified shortly. At each iteration r > 1, the parties do
the following two steps:

(i) Run an MPC protocol on inputs z; which computes the following probabilistic
functionality. With probability «, compute fresh and random (k, n)-secret-sharing
Z}, ..., z, of z, where party P; learns z;. Otherwise, with probability 1 — o compute
arandom (k, n)-secret-sharing z1, ..., z,, of L, where party P; learns z;.'(’

10 This protocol is typically pretty efficient for the popular Shamir’s secret-sharing scheme.

202 CRYPTOGRAPHY AND GAME THEORY

(ii) All parties P; simultaneously broadcast z; to other parties.

(iii) If either the MPC protocol fails for even one party, or even one party fails to broadcast
the value z;, all parties are instructed to abort.

(iv) Each party tries to recover some value z' from the shares received from the other
parties. If the recovery fails, or at least one share is inconsistent with the final value
7/, the party aborts the preamble. Otherwise, if z = L the parties proceed to the next
iteration, while in case 7’ # L the parties stop the preamble and output 7" as their
guess for z.

Notice, by the privacy of the MPC step, no coalition C of up to k parties knows if
the value 7’ is equal to z or L. Thus, in case this coalition chooses not to broadcast
their shares, they will learn only the value z (while punishing all the other parties) with
probability ¢, and not learn the value z forever with probability 1 — . Thus, if « is
small enough (depending on the particular utilities), the risk of not learning the secret
will outweigh the gain of achieving higher exclusivity. Also, it is easy to see that no
strategy of the above protocol is weakly dominated by another strategy, so the above
Nash equilibrium survives IDoWDS.

The above protocol works for any k. However, it runs in expected O(1/«) iterations,
which is constant, but depends on the specific utilities of the parties (and the value
k). Somewhat more sophisticated protocols are known to work for not too large &, but
have expected number of iterations which is independent of the utilities. These results
are summarized without further details below.

Theorem 8.9 Assume that the parties utilities satisfy correctness over exclu-
sivity properties for the (k, n)-secret-sharing game. Then there exists k-resilient
Nash equilibria for the extended game that survive IDoWDS and run in expected
constant number of iterations r, where

* k < n, but r depends on the specific utilities.

* k < n/2,risfixed, but the parties still need to know a certain parameter depending
on the specific utilities.

* k <n/3,r is fixed, and no other information about the utilities is needed.

8.6 Conclusions

As we have seen, the settings of MPC in cryptography and correlated equilibrium
in game theory have many similarities, as well as many differences. Existing results
so far started to explore these connections, but much work remains to be done. For
example, can we use some flavors of MPC to remove the mediator, while achiev-
ing very strong types of Nash equilibria, but with more realistic physical and other
setup assumptions? Or, can we use game theory to “rationalize” MPC protocols for
non-NCC functions (such as parity), or to explain other popular cryptographic tasks
such as commitment or zero-knowledge proofs? In addition, so far “rationalizing”
MPC using game theory resulted only in more sophisticated protocols. Are there nat-
ural instances where assuming rationality will simplify the design of cryptographic
tasks?

NOTES 203
8.7 Notes

The multiparty computation problem (Section 8.1) was introduced in Yao (1982).
The basic definitional and construction approaches were introduced by Goldreich
et al. (1987), in particular the paradigm of a real/ideal execution. In Section 8.1.1
we follow the definitional framework of Canetti (2000), which is based on the works
of Goldwasser and Levin (1990), Micali and Rogaway (1991), and Beaver (1991).
The results mentioned in Theorem 8.2 are from the following: parts i.a and i.b from
Goldreich et al. (1987), part i.c from Lepinski et al. (2004), part ii.a from Ben-Or et al.
(1988) and Chaum et al. (1988), part ii.b from Rabin and Ben-Or (1989) and Beaver
(1991), part ii.c from Izmalkov et al. (2005). The secret-Sharing protocol presented is
Shamir’s Secret-Sharing (1979). The notion of indistinguishability was introduced in
Goldwasser and Micali (1984). For a more formal and in-depth discussion on multiparty
computations see Goldreich (2004).

In Section 8.2 we present the classical results of Nash (1951) and Aumann (1974) for
Nash and correlated equilibrium (respectively). The extension of correlated equilibrium
to games with incomplete information is due to Forges (1986). The notion of extended
games is from Barany (1992). For a broader game theory background, see the book by
Osborne and Rubinstein (1999).

The comparison discussion between Game Theory and Cryptography, as it appears
in Section 8.3, was initiated by Dodis et al. (2000) and later expanded by Feigebaum
and Shenker (2002); yet here we further expand on these points. The related discussion
was also carried out in many other works (Abraham et al., 2006; Barany, 1992; Lepinski
et al., 2004; Izmalkov et al., 2005).

The notion of computational equilibrium which appears in Section 8.4.1 was intro-
duced in Dodis et al. (2000). The work of Urbano and Vila (2002, 2004) also deals
with the computational model, but does not explicitly define this notion. The impor-
tance of tolerating collusions was first addressed in our setting by Feigenbaum and
Shanker (2002). For the k-resilient equilibrium we chose the formulation of Abraham
et al. (2006), as we felt it best suited our presentation. For other related formulations,
see the references in Abraham et al. (2006), and also a recent work of Lysyanskaya
and Triandopoulos (2006). The results which appear in Section 8.4.2 appear in the
following. Theorem 8.3 follows by combining results such as Dodis et al. (2000),
Barany (1992), Ben-Porath (1998), Gerardi (2004), Urbano and Vila (2002, 2004) and
Abraham et al. (2006). The result for using fair MPC appears in Lepinski et al. (2004).
The introduction of a min-max punishment to deal with unfair MPC in the attempt to
remove the mediator appears in Dodis et al. (2000). For some efficiency improvements
to the protocol of Dodis et al. (2000), see the works of Teague (2004) and Attalah
et al. (2006). The results which appear in Section 8.4.2 appear in the following. The
worst equilibrium punishment technique was first applied to unmediated games by
Ben-Porath (1998). The notion of collusion free protocols which is used to implement
ex ante equilibria is from the work of Lepinski et al. (2005). The result of achieving
strategic and privacy equivalence under physical assumptions is from Izmalkov et al.
(2005).

204 CRYPTOGRAPHY AND GAME THEORY

The noncooperative computation formulation and some discussion used in Section
8.5.1 are introduced (for k = 1) by Shoham and Tennenholtz (2005), and expanded
by McGrew et al. (2003). Theorem 8.6 is also from Shoham and Tennenholtz (2005),
while the formulation of “correctness followed by exclusivity” utilities is from Halpern
and Teague (2004). The results in Section 8.5.2 appear as follows: the introduction of
rational secret-sharing surviving IDowDS and the impossibility result of reaching itin a
fixed number of rounds are from Halpern and Teague (2004). The protocol for rational
secret-sharing we present appears in Abraham et al. (2006) and (for k = 1) by Gordon
and Katz (2006). Yet, a more complicated and less general solution along these lines
appeared first (for k = 1) in Halpern and Teague (2004). Theorem 8.9 is from Abraham
et al. (2006). For a different, but related “mixed MPC” model, see Lysyanskaya and
Triandopoulos (2006).

Acknowledgments

We thank the following people for extensive discussions, explanations, and general ad-
vice: Ittai Abraham, Ran Canetti, Hugo Krawczyk, Matt Lepinski, Anna Lysyanskaya,
Silvio Micali, abhi shelat, and Nikos Triandopoulos, and give special thanks to our
coauthor Shai Halevi.

Bibliography

I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets game theory: Ro-
bust mechanisms for rational secret-sharing and multiparty computation. In Princ. of Distributed
Computing ’ 06, pp. 53-62. ACM Press, 2006.

M. Atallah, M. Blanton, K. Frikken, and J. Li. Efficient Correlated Action Selection. In Financial
Crypt., LNCS 4107:296-310. Springer, 2006.

R. Aumann. Subjectivity and correlation in randomized strategies. J. Math. Econ., 1:67-96, 1974.

I. Barany. Fair Distribution Protocols or How the Players Replace Fortune. Math. Oper. Res.,
17(2):327-341, 1992.

D. Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty minority.
J. Cryptology, 4(2):75-122, 1991.

M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncryptographic fault-
tolerant distributed Computations. In Proc. 20th Symp. on Theory of Computing 88, pp. 1-10.

E. Ben-Porath. Correlation without mediation: Expanding the set of equilibrium outcomes by “cheap”
pre-play procedures. J. Econ. Theo., 80(1):108-122, 1998.

R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143—
202, 2000. Available at eprint.iacr.org/1998/018.

D. Chaum, C. Crepeau, and I. Damgard. Multiparty unconditionally secure protocols. In Proc. 20th
Symp. on Theory of Computing 88, pp. 11-19.

Y. Dodis, S. Halevi, and T. Rabin. A cryptographic solution to a game theoretic problem. In Crypto
2000, pp. 112-130, 2000. LNCS No. 1880.

F.M. Forges. An approach to communication equilibria. Econometrica, 54(6):1375-85, 1986.

J. Feigenbaum and S. Shenker. Distributed algorithmic mechanism design: Recent results and future
directions. In Proc. 6th Intl. Wkshp. Disc. Algo. Meth. Mobile Comp. Comm., pp. 1-13. ACM
Press, 2002.

BIBLIOGRAPHY 205

D. Gerardi. Unmediated communication in games with complete and incomplete information. J.
Econ. Theo., 114:104,131, 2004.

O. Goldreich. Foundations of Cryptography: Volume 2. Cambridge University Press, 2004. Prelimi-
nary version http://philby.ucsd.edu/cryptolib.html/.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proc. 19th STOC, pp.
218-229. ACM, 1987.

S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral majority.
In Crypto ’90, LNCS 537:77-93.

S. Goldwasser and S. Micali. Probabilistic encryption. J. Comp. Syst. Sci., 28(2):270-299, April
1984.

S.D. Gordon and J. Katz. Rational secret-sharing, revisited. In 5th Conf. Sec. Crypto. Networks, 2006.
Updated version available at http://eprint.iacr.org/2006/142.

J. Halpern and V. Teague. Rational secret-sharing and multiparty computation. In Proc. of 36th STOC,
pp- 623-632. ACM Press, 2004.

S. Izmalkov, M. Lepinski, and S. Micali. Rational secure computation and ideal mechanism design.
In Proc. of 46th Fdns. of Computer Science, pp. 585-595, 2005.

M. Lepinksi, S. Micali, and A. Shelat. Collusion-free protocols. In Proc. 37th Ann. ACM Symp. Theo.
Comp., pp. 543-552. ACM Press, 2005.
M. Lepinski, S. Micali, C. Peikert, and A. Shelat. Completely fair sfe and coalition-safe cheap talk.
In PODC ’04: Proc. 23rd Annual ACM Symp. Princ. Dist. Comp., pp. 1-10. ACM Press, 2004.
A. Lysyanskaya and N. Triandopoulos. Rationality and adversarial Behavior in Multi-Party Compu-
tation. In Crypto 2006, 2006.

R. McGrew, R. Porter, and Y. Shoham. Towards a general theory of non-cooperative computation
(extended abstract). In Theo. Aspects of Rationality and Knowledge IX, 2003.

S. Micali and P. Rogaway. Secure computation. In Crypro 91, LNCS 576:392-404, 1991.

J. Nash. Non-cooperative games. Annals of Math., 54:286-295, 1951.

M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1999.

T. Rabin and M. Ben-Or. Verifiable secret-sharing and multiparty protocols with honest majority. In
Proc. 21st Symp. on Theory of Computing, pp. 73—-85. ACM, 1989.

A. Shamir. How to share a secret. Comm. ACM, 22:612-613, 1979.

Y. Shoham and M. Tennenholtz. Non-cooperative computation: Boolean functions with correctness
and exclusivity. Theor. Comput. Sci., 343(1-2):97-113, 2005.

V. Teague. Selecting correlated random actions. In Financial Cryptography, LNCS 3110:181-195.
Springer, 2004.

A. Urbano and J.E. Vila. Computational complexity and communication: Coordination in two-player
games. Econometrica, 70(5):1893-1927, 2002.

A. Urbano and J.E. Vila. Computationally restricted unmediated talk under incomplete information.
Econ. Theory, 23:283-320, 2004.

A.C. Yao. Protocols for secure computations. In Proc. Fdns. of Computer Science 82, pp. 160—-164,
1EEE, 1982.

PART TWO

Algorithmic Mechanism
Design

CHAPTER 9

Introduction to Mechanism
Design (for Computer Scientists)

Noam Nisan

Abstract

We give an introduction to the micro-economic field of Mechanism Design slightly biased toward a
computer-scientist’s point of view.

9.1 Introduction

Mechanism Design is a subfield of economic theory that is rather unique within eco-
nomics in having an engineering perspective. It is interested in designing economic
mechanisms, just like computer scientists are interested in designing algorithms, pro-
tocols, or systems. It is best to view the goals of the designed mechanisms in the
very abstract terms of social choice. A social choice is simply an aggregation of the
preferences of the different participants toward a single joint decision. Mechanism
Design attempts implementing desired social choices in a strategic setting — assuming
that the different members of society each act rationally in a game theoretic sense.
Such strategic design is necessary since usually the preferences of the participants are
private.

This high-level abstraction of aggregation of preferences may be seen as a common
generalization of a multitude of scenarios in economics as well as in other social
settings such as political science. Here are some basic classic examples:

¢ Elections: In political elections each voter has his own preferences between the different
candidates, and the outcome of the elections is a single social choice.

¢ Markets: Classical economic theory usually assumes the existence and functioning of
a “perfect market.” In reality, of course, we have only interactions between people, gov-
erned by some protocols. Each participant in such an interaction has his own preferences,
but the outcome is a single social choice: the reallocation of goods and money.

* Auctions: Generally speaking, the more buyers and sellers there are in a market, the
more the situation becomes close to the perfect market scenario. An extreme opposite

209

210 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

case is where there is only a single seller — an auction. The auction rules define the social
choice: the identity of the winner.

* Government policy: Governments routinely have to make decisions that affect a multi-
tude of people in different ways: Should a certain bridge be built? How much pollution
should we allow? How should we regulate some sector? Clearly each citizen has a
different set of preferences but a single social choice is made by the government.

As the influence of the Internet grew, it became clear that many scenarios happening
there can also be viewed as instances of social choice in strategic settings. The main
new ingredient found in the Internet is that it is owned and operated by different
parties with different goals and preferences. These preferences, and the behavior they
induce, must then be taken into account by every protocol in such an environment. The
protocol should thus be viewed as taking the preferences of the different participants
and aggregating them into a social choice: the outcome of the run of the protocol.

Conceptually, one can look at two different types of motivations: those that use
economics to solve computer science issues and those that use computer science to
solve economic issues:

¢ Economics for CS: Consider your favorite algorithmic challenge in a computer network
environment: routing of messages, scheduling of tasks, allocation of memory, etc. When
running in an environment with multiple owners of resources or requests, this algorithm
must take into account the different preferences of the different owners. The algorithm
should function well assuming strategic selfish behavior of each participant. Thus we
desire a Mechanism Design approach for a multitude of algorithmic challenges —leading
to a field that has been termed Algorithmic Mechanism Design.

¢ CS for economics: Consider your favorite economic interaction: some type of market,
an auction, a supply chain, etc. As the Internet becomes ubiquitous, this interaction will
often be implemented over some computerized platform. Such an implementation en-
ables unprecedented sophistication and complexity, handled by hyperrationally designed
software. Designing these is often termed Electronic Market Design.

Thus, both Algorithmic Mechanism Design and Electronic Market Design can be
based upon the field of Mechanism Design applied in complex algorithmic settings.

This chapter provides an introduction to classical Mechanism Design, intended for
computer scientists. While the presentation is not very different from the standard
economic approach, it is somewhat biased toward a worst-case (non-Bayesian) point
of view common in computer science.

Section 9.2 starts with the general formulation of the social choice problem, points
out the basic difficulties formulated by Arrow’s famous impossibility results, and
deduces the impossibility of a general strategic treatment, i.e. of Mechanism Design in
the general setting. Section 9.3 then considers the important special case where “money”
exists, and describes a very general positive result, the incentive-compatible Vickrey—
Clarke—Grove mechanism. Section 9.4 puts everything in a wider formal context of
implementation in dominant strategies. Section 9.5 provides several characterizations
of dominant strategy mechanisms. All the sections up to this point have considered
dominant strategies, but the prevailing economic point of view is a Bayesian one that
assumes a priori known distributions over private information. Section 9.6 introduces

SOCIAL CHOICE 211

this setting and the notion of Bayesian-Nash equilibrium that fits it. All the treatment
in this chapter is in the very basic “private value” model, and Section 9.7 shortly points
out several extensions to the model. Finally, Section 9.8 provides bibliographic notes
and references.

9.2 Social Choice

This section starts with the general social choice problem and continues with the
strategic approach to it. The main message conveyed is that there are unavoidable
underlying difficulties. We phrase things in the commonly used terms of political
elections, but the reader should keep in mind that the issues are abstract and apply to
general social choice.

9.2.1 Condorcet’s Paradox

Consider an election with two candidates, where each voter has a preference for one
of them. If society needs to jointly choose one of the candidates, intuitively it is clear
that taking a majority vote would be a good idea. But what happens if there are three
candidates? In 1785, The Marquis de Condorcet pointed out that the natural application
of majority is problematic: consider three candidates — a, b, and ¢ — and three voters
with the following preferences:

() a>=1b>=1c
(i) b>rc>ra
(iii) ¢ =3a >3 b

(The notation a >; b means that voter i prefers candidate a to candidate b.) Now,
notice that a majority of voters (1 and 3) prefer candidate a to candidate b. Similarly,
a majority (1 and 2) prefers b to ¢, and, finally, a majority (2 and 3) prefers ¢ to a. The
joint majority choice is thus a > b > ¢ > a which is not consistent. In particular for
any candidate that is jointly chosen, there will be a majority of voters who would want
to change the chosen outcome.

This immediately tells us that in general a social choice cannot be taken simply
by the natural system of taking a majority vote. Whenever there are more than two
alternatives, we must design some more complex “voting method” to undertake a social
choice.

9.2.2 Voting Methods

A large number of different voting methods — ways of determining the outcome of such
multicandidate elections — have been suggested. Two of the simpler ones are plurality
(the candidate that was placed first by the largest number of voters wins) and Borda
count (each candidate among the n candidates gets n — i points for every voter who
ranked him in place i, and the candidate with most points wins). Each of the suggested
voting methods has some “nice” properties but also some problematic ones.

One of the main difficulties encountered by voting methods is that they may encour-
age strategic voting. Suppose that a certain voter’s preferences are a >; b >; c, but he
knows that candidate a will not win (as other voters hate him). Such a voter may be

212 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

motivated to strategically vote for b instead of a, so that b is chosen which he prefers
to ¢. Such strategic voting is problematic as it is not transparent, depends closely on
the votes of the other voters, and the interaction of many strategic voters is complex.
The main result of this section is the Gibbard—Satterthwaite theorem that states that
this strategic vulnerability is unavoidable. We will prove the theorem as a corollary of
Arrow’s impossibility theorem that highlights the general impossibility of designing
voting methods with certain natural good desired properties.

Formally, we will consider a set of alternatives A (the candidates) and a set of n
voters [. Let us denote by L the set of linear orders on A (L is isomorphic to the set
of permutations on A). Thus for every < € L, < is a total order on A (antisymmetric
and transitive). The preferences of each voter i are formally given by >; € L, where
a >; b means that i prefers alternative a to alternative b.

Definition 9.1
* A function F : L" — L is called a social welfare function.

* A function f : L™ — A is called a social choice function.

Thus a social welfare function aggregates the preferences of all voters into a common
preference, i.e., into a total social order on the candidates, while a social choice function
aggregates the preferences of all voters into a social choice of a single candidate.
Arrow’s theorem states that social welfare functions with “nice” properties must be
trivial in a certain sense.

9.2.3 Arrow’s Theorem

Here are some natural properties desired from a social welfare function.

Definition 9.2

* A social welfare function F satisfies unanimity if forevery < € L, F(<, ..., <) =
<. That is, if all voters have identical preferences then the social preference is the
same.

e Voter i is a dictator in social welfare function F if for all <; ... <, €L,
F(<1,...,=<;) = <;. The social preference in a dictatorship is simply that of the

dictator, ignoring all other voters. F is not a dictatorship if no i is a dictator in it.

* A social welfare function satisfies independence of irrelevant alternatives if the
social preference between any two alternatives a and b depends only on the voters’
preferences between a and b. Formally, for every a,b € A and every <y,...,
<n, <],..., < € L,if wedenote < = F(<y,...,<,)and <' = F(<],..., <))
thena <; b < a <! b forall i implies thata < b < a <’ b.

The first two conditions are quite simple to understand, and we would certainly want
any good voting method to satisfy the unanimity condition and not to be a dictatorship.
The third condition is trickier. Intuitively, indeed, independence of irrelevant alterna-
tives seems quite natural: why should my preferences about ¢ have anything to do with

SOCIAL CHOICE

213

the social ranking of @ and b? More careful inspection will reveal that this condition in
some sense captures some consistency property of the voting system. As we will see,

lack of such consistency enables strategic manipulation.

Theorem 9.3 (Arrow) Every social welfare function over a set of more than
2 candidates (|A| > 3) that satisfies unanimity and independence of irrelevant
alternatives is a dictatorship.

Over the years a large number of proofs have been found for Arrow’s theorem. Here
is a short one.

PROOF For the rest of the proof, fix F that satisfies unanimity and independence
of irrelevant alternatives. We start with a claim showing that the same social
ranking rule is taken within any pair of alternatives.

Claim (pairwise neutrality) Let >;,...,>, and >}, ..., > be two player
profiles such that for every player i, a >; b < ¢ >/ d. Thena > b & ¢ >'d,
where > = F(>1,...,>,)and >" = F(>|,...,>)).

By renaming, we can assume without loss of generality that @ > b and that
¢ # b. Now we merge each >; and > into a single preference >; by putting c
just above a (unless ¢ = a) and d just below b (unless d = b) and preserving the
internal order within each of the pairs (a, b) and (c, d). Now using unanimity, we
have that ¢ > a and b > d, and by transitivity ¢ > d. This concludes the proof of
the claim.

We now continue with the proof of the theorem. Take any a # b € A, and
for every 0 < i < n define a preference profile 7' in which exactly the first i
players rank a above b, i.e., in 7t a >; b & j < (the exact ranking of the other
alternatives does not matter). By unanimity, in F (7‘[0), we have b > a, while in
F(m") we have a > b. By looking at 7%, 7!, ... 7", at some point the ranking
between a and b flips, so for some i* we have that in F(x" '), b > a, while in
F(r™), a > b. We conclude the proof by showing that i* is a dictator.

Claim Takeanyc #d € A.If ¢ >;« d then ¢ > d where == F(>1, ..., >,).

Take some alternative e which is different from ¢ and d. For i < i* move e
to the top in >;, for i > i* move e to the bottom in >;, and for i* move e so
that ¢ >;« e >;» d — using independence of irrelevant alternatives we have not
changed the social ranking between ¢ and d. Now notice that players’ preferences
for the ordered pair (c, e) are identical to their preferences for (a, b) in 7", but
the preferences for (e, d) are identical to the preferences for (a, b) in 771 and
thus using the pairwise neutrality claim, socially ¢ > e and e > d, and thus by
transitivity ¢ > d. O

9.2.4 The Gibbard-Satterthwaite Theorem

It turns out that Arrow’s theorem has devastating strategic implications. We will study
this issue in the context of social choice functions (rather than social welfare functions

as we have considered until now). Let us start by defining strategic manipulations.

214 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

Definition 9.4 A social choice function f can be strategically manipulated by
voter i if for some <, ..., <, € L and some < € L we have that a <; a’ where
a= f(<1,...,<iy...,=<p) and @’ = f(<q,...,<},...,<,). That is, voter i
that prefers a’ to a can ensure that a’ gets socially chosen rather than a by
strategically misrepresenting his preferences to be < rather than <;. f is called
incentive compatible if it cannot be manipulated.

The following is a more combinatorial point of view of the same notion.

Definition 9.5 A social choice function f is monotone if f(<y,..., <;,...,
<p)=a#a = f(<i1,...,<},...,<,) implies that a’ <; a and a <] a’. That
is, if the social choice changed from a to @’ when a single voter i changed his
vote from <; to < then it must be because he switched his preference between a
and a’.

Proposition 9.6 A social choice function is incentive compatible if and only if
it is monotone.

PROOF Take <q,..., <;_1, <i+1, - .., <, out of the quantification. Now, logi-
cally, “NOT monotone between <; and <;” is equivalent to “A voter with pref-
erence < can strategically manipulate f by declaring < OR “A voter with
preference <’ can strategically manipulate f by declaring <”. O

The obvious example of an incentive compatible social choice function over two
alternatives is taking the majority vote between them. The main point of this section
is, however, that when the number of alternatives is larger than 2, only trivial social
choice functions are incentive compatible.

Definition 9.7 Voter i is a dictator in social choice function f if for all <y,
,=<n €L, Vb#a, a> b= f(<1,...,<,)=a. [is called a dictatorship
if some i is a dictator in it.

Theorem 9.8 (Gibbard—Satterthwaite) Let f be an incentive compatible so-
cial choice function onto A, where |A| > 3, then f is a dictatorship.

Note the requirement that f is onto, as otherwise the bound on the size of A has
no bite. To derive the theorem as a corollary of Arrow’s theorem, we will construct a
social welfare function F from the social choice function f. The idea is that in order
to decide whether a < b, we will “move” a and b to the top of all voters’ preferences,
and then see whether f chooses a or b. Formally,

Definition 9.9

* Notation: Let S C A and < € L. Denote by < the order obtained by moving
all alternatives in S to the top in <. Formally, fora, b € S, a <5 b < a < b; for
a,b¢gS,alsoa <5b << a<b;butforag Sandb € S,a <5 b.

SOCIAL CHOICE 215

¢ The social welfare function F' that extends the social choice function f is defined
by F(<1, ..., <) =<, where a < b iff f(<§a’h}, =y = b,

We first have to show that F is indeed a social welfare function, i.e., that it is
antisymmetric and transitive.

Lemma 9.10 If f is an incentive compatible social choice function onto A then
the extension F is a social welfare function.

To conclude the proof of the theorem as a corollary of Arrow’s, it then suffices to
show:

Lemma 9.11 If f is an incentive compatible social choice function onto A,
which is not a dictatorship then the extension F satisfies unanimity and indepen-
dence of irrelevant alternatives and is not a dictatorship.

PROOF OF LEMMAS 9.10 AND 9.IT We start with a general claim which holds
under the conditions on f:

Claim: For any <, ..., <, and any S, f(<5,...,<5) € S.
Take some a € S and since f is onto, for some </, ..., <), f(<],..., <)) =
a.Now, sequentially, fori = 1, ..., n, change <] to <f . We claim that at no point

during this sequence of changes will f output any outcome b ¢ S. At every stage
this is simply due to monotonicity since b <iS a’ for a’ € S being the previous
outcome. This concludes the proof of the claim.

We can now prove all properties needed for the two lemmas:

* Antisymmetry is implied by the claim since f(<'“", ..., <i") e {a, b}.

¢ Transitivity: assume for contradiction that a < b < ¢ < a (where < = F(<\,
...y, <p)). Take S = {a, b, ¢} and using the claim assume without loss of gen-
erality that f(<},..., <5) = a. Sequentially changing <} to <l{”’b} for each i,

monotonicity of f implies that also f(<{1a'b}, e, <il“’b}) = a, and thus a > b.
abhyla) = la

* Unanimity: If for all i, b <; a, then (<} <;) and thus by the claim

a,b a,b
f(<[1 }’ ey <n{ }) _— a.
{a.b}

¢ Independence of irrelevant alternatives: If foralli,b <; a < b <; a,then f(< ",

, <lably — f(<’l{”‘b}, oo, <MaPhy gince when we, sequentially for all i, flip

<l{“’b} into <;{”‘b}, the outcome does not change because of monotonicity and the
claim.

* Nondictatorship: obvious.

The Gibbard—Satterthwaite theorem seems to quash any hope of designing incentive
compatible social choice functions. The whole field of Mechanism Design attempts
escaping from this impossibility result using various modifications in the model. The
next section describes how the addition of “money” offers an escape route. Chapter 10
offers other escape routes that do not rely on money.

216 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

9.3 Mechanisms with Money

In the previous section, we modeled a voter’s preference as an order on the alternatives.
a >; b implies that i prefers a to b, but we did not model “by how much” is a
preferred to b. “Money” is a yardstick that allows measuring this. Moreover, money
can be transferred between players. The existence of money with these properties is an
assumption, but a fairly reasonable one in many circumstances, and will allow us to do
things that we could not do otherwise.

Formally, in this section we redefine our setting. We will still have a set of alternatives
A and a set of n players I (which we will no longer call voters). The preference of
a player i is now given by a valuation function v; : A — R, where v;(a) denotes the
“value” that i assigns to alternative a being chosen. This value is in terms of some
currency; i.e., we assume that if a is chosen and then player i is additionally given
some quantity m of money, then i’s utility is u; = v;(a) + m, this utility being the
abstraction of what the player desires and aims to maximize. Utilities of this form
are called quasilinear preferences, denoting the separable and linear dependence on
money.

9.3.1 Vickrey’s Second Price Auction

Before we proceed to the general setting, in this subsection we study a basic example:
a simple auction. Consider a single item that is auctioned for sale among n players.
Each player i has a scalar value w; that he is “willing to pay” for this item. More
specifically, if he wins the item, but has to pay some price p for it, then his utility is
w; — p, while if someone else wins the item then i’s utility is 0. Putting this scenario
into the terms of our general setting, the set of alternatives here is the set of possible
winners, A = {i—wins|i € I}, and the valuation of each bidder i is v;(i—wins) = w;
and v; (j—wins) = O for all j # i. A natural social choice would be to allocate the item
to the player who values it highest: choose i—wins, where i = argmax;w;. However,
the challenge is that we do not know the values w; but rather each player knows his
own value, and we want to make sure that our mechanism decides on the allocation —
the social choice — in a way that cannot be strategically manipulated. Our degree of
freedom is the definition of the payment by the winner.

Let us first consider the two most natural choices of payment and see why they do
not work as intended:

* No payment: In this version we give the item for free to the player with highest w;.
Clearly, this method is easily manipulated: every player will benefit by exaggerating his
w;, reporting a much larger w; > w; that can cause him to win the item, even though
his real w; is not the highest.

¢ Pay your bid: An attempt of correction will be to have the winner pay the declared bid.
However, this system is also open to manipulation: a player with value w; who wins
and pays w; gets a total utility of 0. Thus it is clear that he should attempt declaring
a somewhat lower value w; < w; that still wins. In this case he can still win the item
getting a value of w; (his real value) but paying only the smaller w; (his declared value),
obtaining a net positive utility u; = w; — w; > 0. What value w; should i bid then?

MECHANISMS WITH MONEY 217

Well, if i knows the value of the second highest bid, then he should declare just above
it. But what if he does not know?

Here is the solution.

Definition 9.12 Vickrey’s second price auction: Let the winner be the player
i with the highest declared value of w;, and let i pay the second highest declared
bid p* =maX;x; W;.

Now it turns out that manipulation never can increase any players’ utility. Formally,

Proposition 9.13 (Vickrey) For every wy, ..., w, and every w;, Let u; be i’s
utility if he bids w; and u his utility if he bids w;. Then, u; > u.

PROOF Assume that by saying w; he wins, and that the second highest (reported)
valueis p*,thenu; = w; — p* > 0. Now, for an attempted manipulation w; > p*,
i would still win if he bids w; and would still pay p*, thus u; = u;. On the other
hand, for w; < p*, i would lose so u; = 0 < u;.

If i loses by bidding w;, then u; = 0. Let j be the winner in this case, and
thus w; > w;. For w; < w;, i would still lose and so u; =0 = u;. For w; >
w;, i would win, but would pay w;, thus his utility would be u; = w; — w; <
O=u;. O

This very simple and elegant idea achieves something that is quite remarkable:
it reliably computes a function (argmax) of n numbers (the w;’s) that are each
held secretly by a different self-interested player! Taking a philosophical point of
view, this may be seen as the mechanics for the implementation of Adam Smith’s
invisible hand: despite private information and pure selfish behavior, social wel-
fare is achieved. All the field of Mechanism Design is just a generalization of this
possibility.

9.3.2 Incentive Compatible Mechanisms

In a world with money, our mechanisms will not only choose a social alternative but will
also determine monetary payments to be made by the different players. The complete
social choice is then composed of the alternative chosen as well as of the transfer
of money. Nevertheless, we will refer to each of these parts separately, calling the
alternative chosen the social choice, not including in this term the monetary payments.

Formally, a mechanism needs to socially choose some alternative from A, as well
as to decide on payments. The preference of each player i is modeled by a valuation
function v; : A — N, where v; € V;. Throughout the rest of this chapter, V; C R4 isa
commonly known set of possible valuation functions for playeri.

Starting at this point and for the rest of this chapter, it will be convenient to use the
following standard notation.

218 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

Notation Let v = (vy,...,v,) be an n-dimensional vector. We will denote
the (n — 1)-dimensional vector in which the i’th coordinate is removed by
v_; = (U1, ..., Vi_1, Vit1, - - - » Uy). Thus we have three equivalent notations: v =
(v1, ..., v,) = (v;, v_;). Similarly, for V. = V| x --- x V,, we will denote V_; =
Vix---xVi_; x Vigg x -+ x V,. Similarly we will use _;, x_;, X_;, etc.

Definition 9.14 A (direct revelation) mechanism is a social choice function
f:Vix---xV,— A and a vector of payment functions py, ..., p,, where
pi : Vi x -+ x V, — 9N is the amount that player i pays.

The qualification “direct revelation” will become clear in Section 9.4, where we will
generalize the notion of a mechanism further. We are now ready for the key definition
in this area, incentive compatibility also called strategy-proofness or truthfulness.

Definition 9.15 A mechanism (f, pi, ..., p,) is called incentive compatible if
for every playeri,everyv; € Vi,...,v, € V, andevery v; € V;,if wedenotea =
f(ui,v_p)and a’ = f(v], v_;), then v;(a) — pi(v;, v—;) > vi(a@') — pi(vj, v;).

Intuitively this means that player i whose valuation is v; would prefer “telling the
truth” v; to the mechanism rather than any possible “lie” v;, since this gives him higher
(in the weak sense) utility.

9.3.3 Vickrey-Clarke-Groves Mechanisms

While in the general setting without money, as we have seen, nothing nontrivial is
incentive compatible, the main result in this setting is positive and provides an incentive
compatible mechanism for the most natural social choice function: optimizing the social
welfare. The social welfare of an alternative a € A is the sum of the valuations of all
players for this alternative,). v;(a).

Definition 9.16 A mechanism (f, py,..., p,) is called a Vickrey—Clarke—

Groves (VCG) mechanism if

e f(ui,...,v,) € argmax, Zi v;(a); that is, f maximizes the social welfare, and

e for some functions Ay, ..., h,, where h; : V_; — R (i.e., h; does not depend
on v;), we have that for all v € Vy,...,v, € V,.: pi(vy,...,v,) = hi(v_;) —

Z_/;&i vi(f(v1, ..., v0)).

The main idea lies in the term — Z#i v;(f(v1, ..., vy)), which means that each
player is paid an amount equal to the sum of the values of all other players. When this
term is added to his own value v;(f(vy, ..., v,)), the sum becomes exactly the total
social welfare of f(vy,...,v,). Thus this mechanism aligns all players’ incentives
with the social goal of maximizing social welfare, which is exactly archived by telling
the truth. The other term in the payment #4;(v;) has no strategic implications for player
i since it does not depend, in any way, on what he says, and thus from player i ’s point
of view it is just a constant. Of course, the choice of i; does change significantly how

MECHANISMS WITH MONEY 219

much money is paid and in which direction, but we will postpone this discussion. What
we have just intuitively explained is as follows.

Theorem 9.17 (Vickrey—Clarke—Groves) Every VCG mechanism is incentive
compatible.

Let us prove it formally.

PROOF Fix i, v_;, v;, and v]. We need to show that for player i with valuation
v;, the utility when declaring v; is not less than the utility when declaring v;.
Denote a = f(v;, v_;) and a’ = f (v, v_;). The utility of i, when declaring v;,
isvi(a) + 3 ;; vi(a) — hi(v_;), but when declaring v; is v;(a') + 3 ;; v;(a’) —
h;(v_;). But since a = f(v;, v_;) maximizes social welfare over all alternatives,
vi(a) + Z#i vj(a) > vi(a') + Z#i vj(a’) and thus the same inequality holds
when subtracting the same term /;(v_;) from both sides. O

9.3.4 Clarke Pivot Rule

Let us now return to the question of choosing the “right” /;’s. One possibility is
certainly choosing #; = 0. This has the advantage of simplicity but usually does not
make sense since the mechanism pays here a great amount of money to the players.
Intuitively we would prefer that players pay money to the mechanism, but not more
than the gain that they get. Here are two conditions that seem to make sense, at least in
a setting where all valuations are nonnegative.

Definition 9.18
* A mechanism is (ex-post) individually rational if players always get nonneg-
ative utility. Formally if for every vy, ..., v, we have that v;(f(vy, ..., v,)) —

pi(vr, ..., v,) > 0.
* A mechanism has no positive transfers if no player is ever paid money. Formally
if for every vy, ..., v, and every i, p;(vy, ..., v,) > 0.

The following choice of 4;’s provides the following two properties.

Definition 9.19 (Clarke pivot rule) The choice 4;(v_;) = maXpea Y. ki v;(b)
is called the Clarke pivot payment. Under this rule the payment of player i is
pi(vy, ..., v,) = max, Z#i v; (b) — Z#i vi(a), where a = f(vy, ..., vy).

Intuitively, i pays an amount equal to the total damage that he causes the other
players — the difference between the social welfare of the others with and without i’s
participation. In other words, the payments make each player internalize the externali-
ties that he causes.

Lemma 9.20 A VCG mechanism with Clarke pivot payments makes no positive
transfers. If vi(a) > 0 for every v; € V; and a € A then it is also individually
rational.

220 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

PROOF Leta = f(vy,...,v,) be the alternative maximizing Zj vj(a) and b
be the alternative maximizing) iV (D). To show individual rationality, the
utility of playeri is v;(a) + Z#i v(a) — Z#i v(b) > Zj vj(a) — Zj vj(b) >
0, where the first inequality is since v; (b) > 0 and the second is since a was chosen
as to maximize) i Vi (a). To show no positive transfers, note that p;(vy, ..., v,) =
> Vih) = 3 vi(a) > 0,since b was chosen as to maximize) _,_; v;(b). O

As stated, the Clarke pivot rule does not fit many situations where valuations are
negative; i.e., when alternatives have costs to the players. Indeed, with the Clarke pivot
rule, players always pay money to the mechanism, while the natural interpretation in
case of costs would be the opposite. The spirit of the Clarke pivot rule in such cases
can be captured by a modified rule that chooses b as to maximize the social welfare
“when i does not participate” where the exact meaning of this turns out to be quite
natural in most applications.

9.3.5 Examples
9.3.5.1 Auction of a Single Item

The Vickrey auction that we started our discussion with is a special case of a VCG
mechanism with the Clarke pivot rule. Here A = {i—wins|i € I}. Each player has
value 0 if he does not get the item, and may have any positive value if he does win the
item, thus V; = {v;|v;(i—wins) > 0 and Vj # i, v;(j—wins) = 0}. Notice that finding
the player with highest value is exactly equivalent to maximizing) _; v;(i) since only
a single player gets nonzero value. VCG payments using the Clarke pivot rule give
exactly Vickrey’s second price auction.

9.3.5.2 Reverse Auction

In a reverse auction (procurement auction) the bidder wants to procure an item
from the bidder with lowest cost. In this case the valuation spaces are given by
Vi = {v;|v;(i—wins) < 0and Vj # i v;(j—wins) = 0}, and indeed procuring the item
from the lowest cost bidder is equivalent to maximizing the social welfare. The natural
VCG payment rule would be for the mechanism to pay to the lowest bidder an amount
equal to the second lowest bid, and pay nothing to the others. This may be viewed as
capturing the spirit of the pivot rule since the second lowest bid is what would happen
“without i.”

9.3.5.3 Bilateral Trade

In the bilateral trade problem a seller holds an item and values it at some 0 < v; < 1
and a potential buyer values it at some 0 < v, < 1. (The constants 0 and 1 are ar-
bitrary and may be replaced with any commonly known constants 0 < v; < vy.)
The possible outcomes are A = {no-trade, trade} and social efficiency implies that
trade is chosen if v, > v; and no-trade if vy > v,. Using VCG payments and de-
creeing that no payments be made in case of no-trade, implies that in case of trade
the buyer pays v, and the seller is paid v,. Notice that since in this case v, > vy,

MECHANISMS WITH MONEY 221

the mechanism subsidizes the trade. As we will see below in Section 9.5.5, this is
unavoidable.

9.3.5.4 Multiunit Auctions

In a multiunit auction, k identical units of some good are sold in an auction (where
k < n). In the simple case each bidder is interested in only a single unit. In this case
A = {S-wins|S C I, |S| = k}, and a bidder’s valuation v; gives some fixed value v*
if i gets an item, i.e. v;(S) = v* if i € S and v;(S) = 0 otherwise. Maximizing social
welfare means allocating the items to the k highest bidders, and in the VCG mecha-
nism with the pivot rule, each of them should pay the k + 1°st highest offered price.
(Losers pay 0.)

In a more general case, bidders may be interested in more than a single unit and have
a different value for each number of units obtained. The next level of sophistication
comes when the items in the auction are heterogeneous, and valuations can give a
different value to each combination of items. This is called a combinatorial auction
and is studied at length in Chapter 11.

9.3.5.5 Public Project

The government is considering undertaking a public project (e.g., building a bridge).
The project has a commonly known cost C, and is valued by each citizen i at (a privately
known) value v;. (We usually think that v; > 0, but the case of allowing v; < 0, i.e.,
citizens who are hurt by the project is also covered.) Social efficiency means that
the government will undertake this project iff), v; > C. (This is not technically a
subcase of our definition of maximizing the social welfare, since our definition did
not assume any costs or values for the designer, but becomes so by adding an extra
player “government” whose valuation space is the singleton valuation, giving cost C
to undertaking the project and 0 otherwise.) The VCG mechanism with the Clarke
pivot rule means that a player i with v; > 0 will pay a nonzero amount only if he is
pivotal: 3, v; < Cbut} ;v; > Cinwhichcasehe willpay p; = C — >, v;. (A
player with v; < 0 will make a nonzero payment only if) j2i Vi >C but) juvi=C
in which case he will pay p; = Z#i v; — C.) One may verify that) ", p; < C (unless
> ;vi = C), and thus the payments collected do not cover the project’s costs. As we
will see in Section 9.5.5, this is unavoidable.

9.3.5.6 Buying a Path in a Network

Consider a communication network, modeled as a directed graph G = (V, E), where
each link e € E is owned by a different player, and has a cost ¢, > 0 if his link is
used for carrying some message. Suppose that we wish to procure a communication
path between two specified vertices s, t € V; i.e., the set of alternatives is the set of
all possible s — ¢ paths in G, and player e has value O if the path chosen does not
contain e and value —c, if the path chosen does contain e. Maximizing social welfare
means finding the shortest path p (in terms of Zeep ¢.). A VCG mechanism that
makes no payments to edges that are not in p, will pay to each ep € p the quantity
D cep Ce = Deep—(ey) Ce» Where p is the shortest s — ¢ path in G and p' is the shortest

222 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

s — t path in G that does not contain the edge e (for simplicity, assume that G is 2-edge
connected so such a p’ always exists). This corresponds to the spirit of the pivot rule
since “without e” the mechanism can simply not use paths that contain e.

9.4 Implementation in Dominant Strategies

In this section our aim is to put the issue of incentive compatibility in a wider context.
The mechanisms considered so far extract information from the different players by
motivating them to “tell the truth.” More generally, one may think of other, indirect,
methods of extracting sufficient information from the participants. Perhaps one may
devise some complex protocol that achieves the required social choice when players
act strategically. This section will formalize these more general mechanisms, and the
associated notions describing what happens when “players act strategically.”

Deviating from the common treatment in economics, in this section we will describe
a model that does not involve any distributional assumptions. Many of the classical
results of Mechanism Design are captured in this framework, including most of the ex-
isting applications in computational settings. In Section 9.6 we will add this ingredient
of distributional assumptions reaching the general “Bayesian” models.

9.4.1 Games with Strict Incomplete Information

How do we model strategic behavior of the players when they are missing some of
the information that specifies the game? Specifically in our setting a player does not
know the private information of the other players, information that determines their
preferences. The standard setting in Game Theory supposes on the other hand that the
“rules” of the game, including the utilities of all players, are public knowledge.

We will use a model of games with independent private values and strict incomplete
information. Let us explain the terms: “independent private values” means that the
utility of a player depends fully on his private information and not on any information
of others as it is independent from his own information. Strict incomplete information
is a (not completely standard) term that means that we will have no probabilistic
information in the model. An alternative term sometimes used is “pre-Bayesian.” From
a CS perspective, it means that we will use a worst case analysis over unknown
information. So here is the model.

Definition 9.21 A game with (independent private values and) strict incomplete
information for a set of n players is given by the following ingredients:
(i) For every player i, a set of actions X;.

(ii) For every player i, a set of types T;. A value ; € T; is the private information

that i has.

(iii) For every player i, a wutility function u; : T; x X| x --- x X,, = 9, where
u;(t;, x1,...,x,) is the utility achieved by player i, if his type (private infor-
mation) is #;, and the profile of actions taken by all players is x1, ..., X;,.

The main idea that we wish to capture with this definition is that each player i must
choose his action x; when knowing #; but not the other ¢;’s. Note that the #;’s do not

IMPLEMENTATION IN DOMINANT STRATEGIES 223

affect his utility, but they do affect how the other players behave. Thus the interplay
between the different x;’s is more delicate than in “regular” games. The total behavior
of player i in such a setting is captured by a function that specifies which action x; is
taken for every possible type ¢; — this is termed a strategy. It is these strategies that we
want to be in equilibrium.

Definition 9.22

* A strategy of a player i is a function s; : T; — X;.

* A profile of strategies si,...,s, iS an ex-post-Nash equilibrium if for every
ti,...,t, we have that the actions s,(¢1), ..., s,(¢,) are in Nash equilibrium in
the full information game defined by the #;’s. Formally: For all i, all 4, ..., f,, and
all xi’ we have that u;(t;, s;(t;), s_; (t_;)) > u;(t;,)Ci/, s_i(t_).

* A strategy s; is a (weakly) dominant strategy if for every #; we have that the action
s;(t;) is a dominant strategy in the full information game defined by ¢;. Formally:
for all #;, all x_; and all x/ we have that u; (#;, s; (#;), x_;) > u;(;, x/, x_;). A profile
S1, ..., Sy iscalled adominant strategy equilibrium if each s; is a dominant strategy.

Thus the notion of ex-post Nash requires that s;(¢;) is a best response to s;(f_;)
for every possible value of 7_;, i.e., without knowing anything about 7_; but rather
only knowing the forms of the other players’ strategies s_; as functions. The notion
of dominant strategy requires that s;(#;) is a best response to any x_; possible, i.e.,
without knowing anything about 7_; or about s_;. Both of these definitions seem too
good to be true: how likely is it that a player has a single action that is a best response
to all x_; or even to all s_;(¢_;)? Indeed in usual cases one does not expect games with
strict incomplete information to have any of these equilibria. However, in the context
of Mechanism Design — where we get to design the game — we can sometimes make
sure that they do exist.

While at first sight the notion of dominant strategy equilibrium seems much stronger
than ex-post Nash, this is only due to actions that are never used.

Proposition 9.23 Let 51, ...,s, be an ex-post-Nash equilibrium of a game
Xi,.... X3 T, ..., Tysuy, ..., uy). Define X = {s;(t)|t; € T;} (i.e. X| is the
actual range of s; in X;), then sy, ..., s, is a dominant strategy equilibrium in the

game (X}, ..., X Ty, ..., Tysuy, ..., uy).

n’

!/

PROOF Letx; = 5;(1;) € X[, x] € X, andforevery j # i x; € X/;. By definition
of X; for every j # i, there exists t} € T such that s;(¢;) = x;. Since s1, ..., 8,
is an ex-post-Nash equilibrium, u; (#;, s;(#;), s—;(t_;)) > u;(t;, x{, s_;(t_;)), and as
x_;j = s_i(t_;) we get exactly u;(t;, s;(t;), x_;) > u;(t;, x/, x_;) as required in the
definition of dominant strategies. O

9.4.2 Mechanisms

We are now ready to formalize the notion of a general — nondirect revelation — mecha-
nism. The idea is that each player has some private information #; € T; that captures his

224 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

preference over a set of alternatives A; i.e., v;(#;, a) is the value that player i assigns to a
when his private information is ¢;. We wish to “implement” some social choice function
F: Ty x---x T, — A that aggregates these preferences. We design a “mechanism”
for this purpose: this will be some protocol for interaction with the players, specifying
what each can “say” and what is done in each case. Formally, we can specify a set
of possible actions X; for each player, an outcome functiona : X; x --- x X,, > A
that chooses an alternative in A for each profile of actions, and payment functions
p: X X x X, — N that specify the payment of each player for every profile of
actions. Now the players are put in a game with strict incomplete information and we
may expect them to reach an equilibrium point (if such exists).

Definition 9.24

* A mechanism for n players is given by (a) players’ type spaces T, ..., T, (b)
players’ action spaces X1, ..., X,, (c) an alternative set A, (d) players’ valuations
functions v; : T; x A :— N, (e) an outcome function a : X| x --- x X,, — A,
and (f) payment functions py, ..., p,, where p; : X; x --- x X,, = R. The game
with strict incomplete information induced by the mechanism is given by using
the types spaces T;, the action spaces X;, and the utilities u;(t;, x1, ..., X,) =
vi(ti,alxy, ..., X)) — pi(X1, ..., Xp).

¢ The mechanism implements a social choice function f : 77 X --- x T, - A in
dominant strategies if for some dominant strategy equilibrium s, ..., s, of the
induced game, where s; : T; — X;, we have that for all 71, ..., ¢, f(t1, ..., 1) =

a(si(ty), - - - $p(tn))-
¢ Similarly we say that the mechanism implements f in ex-post-equilibrium if for

some ex-post equilibrium sy, ..., s, of the induced game we have that for all
Hyoounty, f(t1, ..., 1) = al(si(ty), ..., su(tn)).

Clearly every dominant strategy implementation is also an ex-post-Nash implemen-
tation. Note that our definition only requires that for some equilibrium f(¢(,...,t,) =
a(s(ty), ..., sy(t,)) and allows other equilibria to exist. A stronger requirement would
be that all equilibria have this property, or stronger still, that only a unique equilibrium
point exists.

9.4.3 The Revelation Principle

At first sight it seems that the more general definition of mechanisms will allow us
to do more than is possible using incentive compatible direct revelation mechanisms
introduced in Section 9.3. This turns out to be false: any general mechanism that imple-
ments a function in dominant strategies can be converted into an incentive compatible
one.

Proposition 9.25 (Revelation principle) [f there exists an arbitrary mecha-
nism that implements f in dominant strategies, then there exists an incentive
compatible mechanism that implements f. The payments of the players in the
incentive compatible mechanism are identical to those, obtained at equilibrium,
of the original mechanism.

CHARACTERIZATIONS OF INCENTIVE COMPATIBLE MECHANISMS 225

PROOF The proof is very simple: the new mechanism will simply simulate
the equilibrium strategies of the players. That is, Let si,...,s, be a domi-
nant strategy equilibrium of the original mechanism, we define a new direct
revelation mechanism: f(1, ..., t,) = a(si(t1), ..., sx(t,)) and pi(t, ..., 1,) =
pi(si(ty), ..., su(t,)). Now, since each s; is a dominant strategy for player i,
then for every #;, x_;, x; we have that v;(t;, a(s;(t;), x_;)) — pi(si(t;), x_;) >
vi(t;, a(x], x_;)) — pi(x, x_;). Thus in particular this is true for all x_; = s_;(t_;)
and any x; = s;(#/), which gives the definition of incentive compatibility of the
mechanism (f, pj,..., p,). O

Corollary 9.26 If there exists an arbitrary mechanism that ex-post-Nash imple-
ments f, then there exists an incentive compatible mechanism that implements
f. Moreover, the payments of the players in the incentive compatible mechanism
are identical to those, obtained in equilibrium, of the original mechanism.

PROOF We take the ex-post implementation and restrict the action space of
each player, as in Proposition 9.23, to those that are taken, for some input type,
in the ex-post equilibrium sy, . . ., s,. Proposition 9.23 states that now sy, ..., s,
is a dominant strategy equilibrium of the game with the restricted spaces, and
thus the mechanism with the restricted action spaces is an implementation in
dominant strategies. We can now invoke the revelation principle to get an incentive
compatible mechanism. O

The revelation principle does not mean that indirect mechanisms are useless. In
particular, general mechanisms may be adaptive (multiround), significantly reducing
the communication (or computation) burden of the players or of the auctioneer relative
to a nonadaptive direct mechanism. An example is the case of combinatorial auctions
studied in Chapter 11.

9.5 Characterizations of Incentive Compatible Mechanisms

In Section 9.3 we saw how to implement the most natural social choice function: maxi-
mization of the social welfare. The question that drives this section is: What other social
choice functions can we implement? In economic settings, the main reasons for at-
tempting implementations of other social choice functions are increasing the revenue or
introducing some kind of fairness. In computerized settings there are many natural opti-
mization goals and we would like to be able to implement each of them. For example, in
scheduling applications, a common optimization goal is that of the “makespan” — com-
pletion time of the last job. This is certainly a social choice function that is very different
than maximizing the total social welfare — how can it be implemented? Another major
motivation for social choice functions that do not maximize social welfare comes from
computational considerations. In many applications the set of alternatives A is com-
plex, and maximizing social welfare is a hard computational problem (NP-complete).
In many of these cases there are computationally efficient algorithms that approximate
the maximum social welfare. Such an algorithm in effect gives a social choice function

226 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

that approximates social welfare maximization, but is different from it. Can it be
implemented?

Chapter 12 and parts of Chapter 11 address these issues specifically. This section
limits itself to laying the foundations by providing basic characterizations of imple-
mentable social choice functions and their associated payments.

Because of the revelation principle, we can restrict ourselves again to look at in-
centive compatible mechanisms. Thus, in this section we revert to the notation used
in Subsection 9.3.3: A mechanism M = (f, pi, ..., p,) over domain of preferences
Vi x -+ x V, (V; € R4 is composed of a social choice function f : Vi x -+ x V,, —
A and payment functions py, ..., p,,where p; : V| x --- x V,;, — i isthe amount that
player i pays. In the rest of the section we will provide characterizations of when such
mechanisms are incentive compatible.

9.5.1 Direct Characterization

We start by stating explicitly the required properties from an incentive compatible
mechanism.

Proposition 9.27 A mechanism is incentive compatible if and only if it satisfies
the following conditions for every i and every v_;:

(i) The payment p; does not depend on v;, but only on the alternative chosen
f(ui, v_;). That is, for every v_;, there exist prices p, € N, for every a € A,
such that for all v; with f(v;, v_;) = a we have that p(v;, v_;) = pq.

(ii) The mechanism optimizes for each player. That is, for every v;, we have that
S i, v_;) € argmax,(vi(a) — pg), where the quantification is over all alterna-
tives in the range of f(-, v_;).

PROOF (if part) Denote a = f(v;, v_;), a' = f(v},v_;), pa = p(v;, v_;), and
pa = p(v., v_;). The utility of i, when telling the truth, is v;(a) — p,, which
is not less than the utility when declaring v!, v;(a@’) — pn, since the mechanism
optimizes for i, i.e., a = f(v;, v_;) € argmax,(v;(a) — pq).

(Only-if part; first condition) If for some v;, v!, f(v;i,v—;) = f(v;, v_;) but
pi(vi, v_;) > p;(v}, v_;) then a player with type v; will increase his utility by
declaring v;.

(Only-if part; second condition) If f(v;, v_;) & argmax,(vi(a) — p,), fix
a’ € argmax,(vi(a) — p,) in the range of f(-,v_;), and thus for some v,
a’ = f(v;,v_;). Now a player with type v; will increase his utility by declar-
ingv,. O

9.5.2 Weak Monotonicity

The previous characterization involves both the social choice function and the payment
functions. We now provide a partial characterization that only involves the social choice
function. In Section 9.5.5 we will see that the social choice function usually determines
the payments essentially uniquely.

CHARACTERIZATIONS OF INCENTIVE COMPATIBLE MECHANISMS 227

Definition 9.28 A social choice function f satisfies Weak Monotonicity
(WMON) if for all i, all v_; we have that f(v;, v_;) = a # b = f(v}, v_;) implies
that v;(a) — v;i(b) > vi(a) — vi(b).

That is, WMON means that if the social choice changes when a single player changes
his valuation, then it must be because the player increased his value of the new choice
relative to his value of the old choice.

Theorem 9.29 [If a mechanism (f, p1, ..., pn) is incentive compatible, then f
satisfies WMON. If all domains of preferences V; are convex sets (as subsets of
an Euclidean space) then for every social choice function that satisfies WMON
there exists payment functions py, ..., p, such that (f, p1, ..., pn) IS incentive
compatible.

The first part of the theorem is easy and we will bring it completely, the second part
is quite involved, and will not be given here. It is known that WMON is not a sufficient
condition for incentive compatibility in general nonconvex (more precisely, nonsimply
connected) domains.

PROOF (First part) Assume first that (f, p;, ..., p,) is incentive compatible,
and fix i/ and v_; in an arbitrary manner. Proposition 9.27 implies the existence
of fixed prices p, for all a € A (that do not depend on v;) such that whenever the
outcome is a then bidder i pays exactly p,. Now assume f(v;,v_;) =a # b =
f (], v_;). Since a player with valuation v; does not prefer declaring v; we have
that v;(a) — p, > v;(b) — py. Similarly since a player with valuation v. does not
prefer declaring v; we have that v/(a) — p, < vi(b) — pj. Subtracting the second
inequality from the first, we get v;(a) — v;(b) > vi(a) — v/(b), as required. O

While WMON gives a pretty tight characterization of implementable social choice
functions, it still leaves something to be desired as it is not intuitively clear what exactly
the WMON functions are. The problem is that the WMON condition is a local condition
for each player separately and for each v_; separately. Is there a global characterization?
This turns out to depend intimately on the domains of preferences V;. For two extreme
cases there are good global characterizations: when V; is “unrestricted” i.e. V; = R4,
and when V; is severely restricted as to be essentially single dimensional. These two
cases are treated in the next two subsections below. The intermediate range where
the V;’s are somewhat restricted, a range in which most computationally interesting
problems lie is still wide open. More on this appears in Chapter 12.

9.5.3 Weighted VCG

It turns out that when the domain of preferences is unrestricted, then the only incentive
compatible mechanisms are simple variations of the VCG mechanism. These variations
allow giving weights to the players, weights to the alternatives, and allow restricting
the range. The resulting social choice function is an “affine maximizer”:

228 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

Definition 9.30 A social choice function f is called an affine maximizer if
for some subrange A’ C A, for some player weights wy, ..., w, € W and for
some outcome weights ¢, € R for every a € A’, we have that f(vy,...,v,) €

argmax .4 (cqs + Y _; wivi(a)).
It is easy to see that VCG mechanisms can be generalized to affine maximizers:

Proposition 9.31 Let f be an affine maximizer. Define for every i,
pi(vy, ..., v,) = h;(v_;) — Zj#i(wj/wi)vj(a) — ¢q/w;, where h; is an arbitrary
function that does not depend on v;. Then, (f, p1, ..., pn) IS incentive compatible.

PROOF First, we can assume wlog that #; = 0. The utility of player i if al-
ternative a is chosen is v;(a) + Zj#i(wj/wi)vj(a) + ¢,/w;. By multiplying by
w; > 0, this expression is maximized whenc, + > _ j WiV (a) is maximized which
is what happens when i reports v; truthfully. O

Roberts’ theorem states that for unrestricted domains with at least 3 possible out-
comes, these are the only incentive compatible mechanisms.

Theorem 9.32 (Roberts) If |A| >3, f is onto A, V; =R for every i, and
(f, p1, .-, pn) is incentive compatible then f is an affine maximizer.

The proof of this theorem is not trivial and is given in Chapter 12. It is easy to see
that the restriction |A| > 3 is crucial (as in Arrow’s theorem), since the case |A| = 2
falls into the category of “single parameter”” domains discussed below, for which there
do exist incentive compatible mechanisms beyond weighted VCG. It remains open to
what extent can the restriction of V; = %4 be relaxed.

9.5.4 Single-Parameter Domains

The unrestricted case V; = R* basically means that the valuation space has full dimen-
sionality. The opposite case is when the space V; is single-dimensional; i.e., there is
a single real parameter that directly determines the whole vector v;. There are several
possible levels of generality in which to formalize this, and we will consider one of
intermediate generality that is simple and yet suffices for most applications. In our set-
ting each bidder has a private scalar value for “winning,” with “losing” having value of
0. This is modeled by some commonly known subset of winning alternatives W; C A.
The main point is that all winning alternatives are equivalent to each other for player
i; and similarly all losing outcomes are equivalent to each other. All the examples in
Section 9.3.5 fall into this category. A simple example is an auction of one item where
W; is the single outcome where i wins. A more complex example is the setting of
buying a path in a network (Subsection 9.3.5.6), where W; is the set of all paths that
contain edge i.

Definition 9.33 A single parameter domain V; is defined by a (publicly known)
W; C A and a range of values [°,1']. V; is the set of v; such that for some

CHARACTERIZATIONS OF INCENTIVE COMPATIBLE MECHANISMS 229

1" <t <t'vi(a) =t,foralla € W; and v;(a) = Oforalla ¢ W;.In such settings
we will abuse notation and use v; as the scalar ¢.

For this setting it is quite easy to completely characterize incentive compatible
mechanisms.

Definition 9.34 A social choice function f on a single parameter domain is
called monotone in v; if for every v_; and every v; < v; € i we have that
f(i,v_;) € W; implies that f (v}, v_;) € W;. That is, if valuation v; makes i
win, then so will every higher valuation v; > v;.

For a monotone function f, for every v_; for which player i can both win and lose,
there is always a critical value below which i loses and above which he wins. For
example, in a second price auction the critical value for each player is highest declared
value among the other players.

Definition 9.35 The critical value of a monotone social choice function f on a
single parameter domain is ¢;(v—;) = Sup,,. ,, »_,)e¢w, Vi- The critical value at v_;
is undefined if {v;| f(v;, v_;) & W;} is empty.

We will call a mechanism on a single parameter domain “normalized” if the payment
for losing is always 0, i.e., for every v;, v_; such that f(v;, v_;) ¢ W; we have that
pi(v;, v—_;) = 0. It is not difficult to see that every incentive compatible mechanism
may be easily turned into a normalized one, so it suffices to characterize normalized
mechanisms.

Theorem 9.36 A normalized mechanism (f, py, ..., p,) on a single parameter
domain is incentive compatible if and only if the following conditions hold:

(i) f is monotone in every v;.

(ii) Every winning bid pays the critical value. (Recall that losing bids pay 0.) For-
mally, For every i, v;, v_; such that f(v;,v_;) € W;, we have that p;(v;, v_;) =
ci(v_y). (If ci(v_;) is undefined we require instead that for every v_;, there exists
some value c;, such that p;(v;, v_;) = c; for all v; such that f(v;,v_;) € W;.)

PROOF (If part) Fix i, v_;, v;. For every declaration made by i, if he wins his
utility is v; — ¢;(v—;) and if he loses his utility is 0. Thus he prefers winning if
v; > ¢;(v_;) and losing if v; < ¢;(v_;), which is exactly what happens when he
declares the truth.

(Only-if part, first condition) If f is not monotone then for some v; > v;
we have that f(v], v_;) loses while f(v;, v_;) wins and pays some amount p =
pi(vi, v_;). Since a bidder with value v; is not better off bidding v; and losing we
have that v; — p > 0. Since a bidder with value v; is not better off bidding v; and
winning we have that v, — p < 0. Contradiction.

(Only-if part, second condition) Assume that some winning v; pays p > ¢;(v—;)
then, using Proposition 9.27, all winning bids will make the same payment,

230 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

including a winning v; with ¢;(v_;) < v; < p.Butsuch abidder is better off losing
which he can do by bidding some value v'*¢ < c(v_;). In the other direction if
v; pays p < c(v—;) then a losing v; with c(v_;) > v > p is better of wining and
paying p, which will happen if he bids v;. O

Notice that this characterization leaves ample space for non-affine-maximization.
For example we can implement social functions such as maximizing the euclidean norm
argmax, y ; v; (a)? or maximizing the minimum value argmax, min; v;(a). Indeed in
many cases this flexibility allows the design of computationally efficient approximation
mechanisms for problems whose exact optimization is computationally intractable —
an example is given in Chapter 12.

9.5.5 Uniqueness of Prices

This section has so far focused on characterizing the implementable social choice
functions. What about the payment functions? It turns out that the payment function
is essentially uniquely determined by the social choice function. “Essentially” means
that if we take an incentive compatible mechanisms with payments p; and modify the
payments to p;(vi, ..., v,) = p;i(vi, ..., v,) + h;(v_;) for an arbitrary function /; that
does not depend on v;, then incentive compatibility remains. It turns out that this is the
only leeway in the payment.

Theorem 9.37 Assume that the domains of preference V; are connected sets
in the usual metric in the Euclidean space. Let (f, p1, ..., pn) be an incentive
compatible mechanism. The mechanism with modified payments (f, p}, ..., p;)
is incentive compatible if and only if for some functions h; : V_; — R we have
that pi(vi, ..., v,) = pi(Vi, ..., vy) + hi(v_y) forall vy, ..., v,.

PROOF The “if” part is clear since &; has no strategic implications for player i,
so we need only prove the only-if part. Assume that (f, p{, ..., p,) is incentive
compatible, and for the rest of the proof fix some i and some v_;.

For every a € A denote V¢ = {v; € V;| f(v;, v_;) = a}. Using Proposition
9.27, the payment p(v;, v_;) is identical for all v; € V¢ and will be denoted
by p,. Similarly we denote p, = p’(v;, v_;) for some v; € V. It now suffices to
show that for every a, b € A, p, — pp, = p,, — D).

For a, b € A we will say that @ and b are close if for every € > 0 there exist
vy, vf’ € V; such that ||v{ — vf’|| = maxcea|vi(c) — vf’(c)l <e,and f(v{,v_;) =
a and f(vf, v_;) = b. We will first prove the required p, — p, = p, — p,, for
close a, b. Fix v¢, v? € V; as in the definition of closeness. Since a bidder with
type v{ does not gain by declaring vf’ with payments p, we have that v{'(a) — p, >
v{(b) — p», and since a bidder with vf’ does not gain by declaring v{’ we have that
vf’ (@) — ps < vf’ (b) — py. Putting together and rearranging we have that v{(b) —
vi(a) < pp — pa < vl.b(b) — vl.b(a). Similarly, by considering the mechanism with
payments p’ we have v(b) — vé(a) < pj, — p, < v’(b) — v’(a). But now recall
that |[v{ — vfll < € and thus the upper bound and the lower bound for p, — p,

CHARACTERIZATIONS OF INCENTIVE COMPATIBLE MECHANISMS 231

and for p) — p/ are at most 2¢ apart and thus |(pp, — p.) — (p, — pi)| < 2e.
Since € was arbitrary p, — p, = p, — p.,.

To show p, — p, = p), — p, for general (not necessarily close) a and
b, consider B = {b € A|py, — p. = p), — p,}. Since p, — p, = p, — p, and
Pe — Pb = p. — p), implies p. — p, = p. — p, we have that no alternative in
A — B can be close to any alternative in B. Thus V& = J,_p V? has positive
distance from its complement VA~8 = Ub¢ » V? contradicting the connectedness

of V. O

It is not difficult to see that the assumption that V; is connected is essential, as for
example, if the valuations are restricted to be integral, then modifying p; by any small
constants € < 1/2 will not modify incentive compatibility.

From this, and using the revelation principle, we can directly get many corollaries:

()

(ii)

(iii)

The only incentive compatible mechanisms that maximize social welfare are those
with VCG payments.

In the bilateral trade problem (Section 9.3.5.3) the only incentive compatible mech-
anism that maximizes social welfare and makes no payments in case of no-trade
is the one shown there which subsidizes the trade. More generally, if a mecha-
nism for bilateral trade satisfies ex-post individual rationality, then it cannot dictate
positive payments from the players in case of no-trade and thus it must subsidize
trade.

In the public project problem (Section 9.3.5.5) no ex-post individually rational mecha-
nism that maximizes social welfare can recover the cost of the project. Again, the
uniqueness of payments implies that if players with value O pay O (which is as
much as they can pay maintaining individual rationality) then their payments in case
of building the project must be identical to those obtained using the Clarke pivot
rule.

In Section 9.6.3 we will see a similar theorem in the Bayesian setting, a theorem
that will strengthen all of these corollaries as well to that setting.

9.5.6 Randomized Mechanisms

All of our discussion so far considered only deterministic mechanisms. It is quite
natural to allow also randomized mechanisms. Such mechanisms would be allowed to
produce a distribution over alternatives and a distribution over payments. Alternatively,
but specifying slightly more structure, we can allow distributions over deterministic
mechanisms. This will allow us to distinguish between two notions of incentive com-
patibility.

Definition 9.38

A randomized mechanism is a distribution over deterministic mechanisms (all with
the same players, types spaces V;, and outcome space A).

A randomized mechanism is incentive compatible in the universal sense if every
deterministic mechanism in the support is incentive compatible.

232 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

* A randomized mechanism is incentive compatible in expectation if truth is a
dominant strategy in the game induced by expectation. That is, if for all i, all
v;, v—;, and v;, we have that E[v;(a) — p;] > E[v;(a") — p!], where (a, p;), and
(@', p;) are random variables denoting the outcome and payment when i bids,
respectively, v; and v}, and E[-] denotes expectation over the randomization of the
mechanism.

It is clear that incentive compatibility in the universal sense implies incentive com-
patibility in expectation. For most purposes incentive compatibility in expectation
seems to be the more natural requirement. The universal definition is important if play-
ers are not risk neutral (which we do not consider in this chapter) or if the mechanism’s
internal randomization is not completely hidden from the players. As we will see in
Chapters 12 and 13 randomized mechanisms can often be useful and achieve more than
deterministic ones.

We will now characterize randomized incentive compatible mechanisms over single
parameter domains. Recall the single parameter setting and notations from Section
9.5.4. We will denote the probability that i wins by w; (v;, v_;) = Pr[f(v;, v_;) € W;]
(probability taken over the randomization of the mechanism) and will use p;(v;, v_;)
to directly denote the expected payment of . In this notation the utility of player i with
valuation v; when declaring v; is v; - w(v;, v—;) — p; (v, v_;). For ease of notation we
will focus on normalized mechanisms in which the lowest bid v? = 1% loses completely
wi(v?, v_;) = 0 and pays nothing pi(v?, v_;)=0.

Theorem 9.39 A normalized randomized mechanism in a single parameter do-
main is incentive compatible in expectation if and only if for every i and every
fixed v_; we have that

(i) the function w;(v;, v_;) is monotonically non decreasing in v; and

(i) pi(vi,v—i) = v; - w(vi, v—;) — [i0 w(t, v_;)dr.

PROOF In the proof we will simplify notation by removing the index i and the
fixed argument v_; everywhere. In this notation, to show incentive compatibility
we need to establish that vw(v) — p(v) > vw(v’) — p(v’) forevery v’. Plugging in
the formula for p we get [, w(t)dt > fvvol w(t)dt — (v — v)w (). For v’ > v this
is equivalent to (v — v)w(v’) > fvv/ w(t)dt, which is true due to the monotonicity
of w. For v’ < v we get (v — v)w(®’) < fvv w(t)dt, which again is true due to the
monotonicity of w.

In the other direction, combining the incentive constraint at v, vw(v) — p(v) >
vw(v') — p(v’), with the incentive constraint at v/, v'w(v) — p(v) < vVw(’) —
p(v'), and subtracting the inequalities, we get (v — v)w(v) < (v — v)w(v") which
implies monotonicity of w.

To derive the formula for p, we can rearrange the two incentive constraints as

v (w@) —w) < p) — p) <v" - (W) — w®)).

Now by letting v’ = v + ¢, dividing throughout by ¢, and taking the limit, both
sides approach the same value, v -dw/dv, and we get dp/dv =v -dw/dv.

BAYESIAN-NASH IMPLEMENTATION 233

Thus, taking into account the normalization condition p(v°) = 0, we have that
pv) = f U'i,’ v - w'(v)dv, and integrating by parts completes the proof. (This seems
to require the differentiability of w, but as w is monotone this holds almost ev-
erywhere, which suffices since we immediately integrate.) O

We should point out explicitly that the randomization in a randomized mechanism is
completely controlled by the mechanism designer and has nothing to do with any dis-
tributional assumptions on players’ valuations as will be discussed in the next section.

9.6 Bayesian—Nash Implementation

So far in this chapter we have considered only implementation in dominant strategies
(and the very similar ex-post-Nash). As mentioned in Section 9.4 this is usually consid-
ered too strict a definition in economic theory. It models situations where each player
has no information at all about the private information of the others — not even a prior
distribution — and must operate under a “worst case” assumption. The usual working
definition in economic theory takes a Bayesian approach, assumes some commonly
known prior distribution, and assumes that a player that lacks some information will
optimize in a Bayesian sense according to the information that he does have. The
formalization of these notions, mostly by Harsanyi, was a major development in eco-
nomic theory in the 1960s and 1970s, and is certainly still the dominant approach to
handling lack of information in economic theory. In this section we will give these
basic notions in the context of mechanism design, again limiting ourselves to settings
with independent private values.

9.6.1 Bayesian—Nash Equilibrium

Definition 9.40 A game with (independent private values and) incomplete in-
formation on a set of n players is given by the following ingredients:

(i) For every player i, a set of actions X;.

(ii) For every player i, a set of types T;, and a prior distribution D; on T;. A value
t; € T; is the private information that i has, and D;(#;) is the a priori probability
that i gets type ¢;.

(iii) For every player i, a wtility function u; : T; x X| x --- x X,, = 9, where
ui(t;, x1, ..., xy) is the utility achieved by player i, if his type (private infor-
mation) is #;, and the profile of actions taken by all players is xi, ..., x,.

The main idea that we wish to capture with this definition is that each player i must
choose his action x; when knowing # but not the other ¢;’s but rather only knowing
the prior distribution D; on each other ¢;. The behavior of player i in such a setting is
captured by a function that specifies which action x; is taken for every possible type t;
— this is termed a strategy. It is these strategies that we would want to be in equilibrium.

Definition 9.41 A strategy of a player i is a function s; : T; — X;. A profile of
strategies 51, . . ., S, is a Bayesian-Nash equilibrium if for every player i and every

234 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

t; we have that s;(z;) is the best response that i has to s_;() when his type is #;, in
expectation over the types of the other players. Formally: For all i, all #;, and all x/:
Ep_ [ui(ti, si(t;), s—i(t_)] = Ep_ [u;i(t;, x;, s_i(t_;))] (Where Ep_,[] denotes the
expectation over the other types 7_; being chosen according to distribution D_;).

This now allows us to define implementation in the Bayesian sense.

Definition 9.42 A Bayesian mechanism for n players is given by (a) players’
type spaces T, ..., T, and prior distributions on them Dy, ..., D,, (b) players’
action spaces X1, ..., X,, (c) an alternative set A, (d) players’ valuations func-
tionsv; : T; x A :— N, (e) an outcome functiona : X; X --- x X,, —> A, and (f)
payment functions py, ..., p,, where p; : X1 x -+ x X,, > N.

The game with incomplete information induced by the mechanism is given by
using the type spaces 7; with prior distributions D;, the action spaces X;, and the

utilities u; (¢;, X1, ..., X,) = Vi (t;, a(xy, ..., X,)) — pi(X1, ..., Xp).

The mechanism implements a social choice function f : 7} X --- x T, —
A in the Bayesian sense if for some Bayesian—Nash equilibrium sy, ..., s, of
the induced game (s; : 7; — X;) we have that for all #;,...,¢,, f(t1,..., 1) =

a(si(t1), ..., sa(tn)).

In particular it should be clear that every ex-post-Nash implementation is by defi-
nition also a Bayesian implementation for any distributions D;. In general, however,
being a Bayesian implementation depends on the distributions D; and there are many
cases where a Bayesian—Nash equilibrium exists even though no dominant-strategy
one does. A simple example — a first price auction — is shown in the next subsection.
Just like in the case of dominant-strategy implementations, Bayesian implementations
can also be turned into ones that are truthful in a Bayesian sense.

Definition 9.43 A mechanism is truthful in the Bayesian sense if (a) it is “direct
revelation”; i.e., the type spaces are equal to the action spaces 7; = X;, and (b)
the truthful strategies s;(¢;) = ¢; are a Bayesian—Nash equilibrium.

Proposition 9.44 (Revelation principle) If there exists an arbitrary mecha-
nism that implements f in the Bayesian sense, then there exists a truthful
mechanism that implements f in the Bayesian sense. Moreover, the expected
payments of the players in the truthful mechanism are identical to those, obtained
in equilibrium, in the original mechanism.

The proof is similar to the proof of the same principle in the dominant-strategy
setting given in Proposition 9.25.

9.6.2 First Price Auction

As an example of Bayesian analysis we study the standard first price auction in a
simple setting: a single item is auctioned between two players, Alice and Bob. Each
has a private value for the item: a is Alice’s value and b is Bob’s value. While we

BAYESIAN-NASH IMPLEMENTATION 235

already saw that a second price auction will allocate the item to the one with higher
value, here we ask what would happen if the auction rules are the usual first-price ones:
the highest bidder pays his bid. Certainly Alice will not bid a since if she does even
if she wins her utility will be 0. She will thus need to bid some x < a, but how much
lower? If she knew that Bob would bid y, she would certainly bid x = y + € (as long
as x < a). But she does not know y or even b which y would depend on — she only
knows the distribution Dg,, over b.

Let us now see how this situation falls in the Bayesian—Nash setting described
above: The type space Tajice of Alice and T,y of Bob is the nonnegative real numbers,
with 7ajice denoted by a and o, denoted by b. The distributions over the type space
are Dajice and Dg,p. The action spaces X zjice and Xp,p, are also the non-negative real
numbers, with x4jice denoted by x and xgo, denoted by y. The possible outcomes are
{Alice-wins, Bob-wins}, with vajice(Bob-wins) = 0 and vaj;ce(Alice-wins) = a (and
similarly for Bob). The outcome function is that Alice-wins if x > y and Bob-wins
otherwise (we arbitrarily assume here that ties are broken in favor of Alice). Finally,
the payment functions are pajice = 0 whenever Bob-wins and pajice = x whenever
Alice-wins , while pgo, = y whenever Bob-wins and pgo, = 0 whenever Alice-wins.
Our question translates into finding the Bayesian—Nash equilibrium of this game.
Specifically we wish to find a strategy sajice for Alice, given by a function x(a), and a
strategy spop for Bob, given by the function y(b), that are in Bayesian equilibrium, i.e.,
are best-replies to each other.

In general, finding Bayesian—Nash equilibria is not an easy thing. Even for this very
simple first price auction the answer is not clear for general distributions Dajice and
Dgob. However, for the symmetric case where Dajice = Dpop, the situation is simpler
and a closed form expression for the equilibrium strategies may be found. We will
prove it for the special case of uniform distributions on the interval [0, 1]. Similar
arguments work for arbitrary nonatomic distributions over the valuations as well as for
any number of bidders.

Lemma 9.45 [n afirst price auction among two players with prior distributions
of the private values a, b uniform over the interval [0, 1], the strategies x(a) = a/2
and y(b) = b/2 are in Bayesian—-Nash equilibrium.

Note that in particular x < y if and only if a < b thus the winner is also the player
with highest private value. This means that the first price auction also maximizes social
welfare, just like a second-price auction.

PROOF Letus consider which bid x is Alice’s optimal response to Bob’s strategy
y = b/2, when Alice has value a. The utility for Alice is 0 if she loses and
a — x if she wins and pays x, thus her expected utility from bid x is given by
Uplice = Pr[Alice wins with bid x] - (@ — x), where the probability is over the
prior distribution over . Now Alice wins if x > y, and given Bob’s strategy
y = b/2, this is exactly when x > b/2. Since b is distributed uniformly in [0, 1]
we can readily calculate this probability: 2x for 0 < x < 1/2, 1 forx > 1/2, and
0 for x < 0. It is easy to verify that the optimal value of x is indeed in the range
0 <x <1/2 (since x = 1/2 is clearly better than any x > 1/2, and since any

236 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

x < 0 will give utility 0). Thus, to optimize the value of x, we need to find the
maximum of the function 2x(a — x) over the range 0 < x < 1/2. The maximum
may be found by taking the derivative with respect to x and equating it to 0, which
gives 2a — 4x = 0, whose solution is x = a/2 as required. O

9.6.3 Revenue Equivalence

Let us now attempt comparing the first price auction and the second price auction. The
social choice function implemented is exactly the same: giving the item to the player
with highest private value. How about the payments? Where does the auctioneer get
higher revenue? One can readily express the revenue of the second-price auction as
min(a, b) and the revenue of the first-price auction as max(a/2, b/2), and it is clear
that each of these expressions is higher for certain values of a and b.

But which is better on the average — in expectation over the prior distributions of
a and b? Simple calculations will reveal that the expected value of min(a, b) when
a and b are chosen uniformly in [0, 1] is exactly 1/3. Similarly the expected value of
max(a/2,b/2) when a and b are chosen uniformly in [0, 1] is also exactly 1/3. Thus
both auctions generate equivalent revenue in expectation! This is no coincidence. It
turns out that in quite general circumstances every two Bayesian—Nash implementations
of the same social choice function generate the same expected revenue.

Theorem 9.46 (The Revenue Equivalence Principle) Under certain weak as-
sumptions (to be detailed in the proof body), for every two Bayesian—Nash imple-
mentations of the same social choice function f, we have that if for some type tio
of player i, the expected (over the types of the other players) payment of player i
is the same in the two mechanisms, then it is the same for every value of t;. In par-
ticular, if for each player i there exists a type tl-o where the two mechanisms have
the same expected payment for player i, then the two mechanisms have the same
expected payments from each player and their expected revenues are the same.

Thus, for example, all single-item auctions that allocate (in equilibrium) the item to
the player with highest value and in which losers pay 0, will have identical expected
revenue.

The similarity to Theorem 9.37 should be noted: in both cases it is shown that the
allocation rule determines the payments, up to a normalization. In the case of dominant
strategy implementation, this is true for every fixed type of the other players, while in
the case of Bayesian—Nash implementation, this is true in expectation over that types
of the others. The proofs of the two theorems look quite different due to technical
reasons. The underlying idea is the same: take two “close” types, then the equations
specifying that for neither type does a player gain by misrepresenting himself as the
other type, put together, determine the difference in payments in terms of the social
choice function.

PROOF Using the revelation principle, we can first limit ourselves to mecha-
nisms that are truthful in the Bayesian—Nash sense. Let us denote by V; the space
of valuation functions v;(¢;, -) over all ¢;.

BAYESIAN-NASH IMPLEMENTATION 237

Assumption 1 Each V; is convex. (Note that this holds for essentially every
example we had so far. This condition can be replaced by path-connectedness,
and the proof becomes just slightly messier.)

Take any type tl.l € T;. We will derive a formula for the expected payment
for this type that depends only on the expected payment for type t? and on
the social choice function f. Thus any two mechanisms that implement the
same social choice function and have identical expected payments at tio will
also have identical expected payments at tl.l. For this, let us now introduce some
notations:

 Visthe valuation v(z, -). v! is the valuation v(#}, -). We will look at these as vectors
(in V; € M), and look at their convex combinations v* = v° + A(v; — vg). The
convexity of V; implies that v* € V; and thus there exists some type 7 such that
vt =},).

* p*is the expected payment of player i at type £}': p* = E, , pi(t;, 1_;).

* w* is the probability distribution of f(t},-), i.e., for every a € A w'(a) =
Pr [f(t}, 1—) = al.

Assumption 2 w” is continuously differentiable in A. (This assumption is not
really needed, but allows us to simply take derivatives and integrals as convenient.)

Once we have this notation in place, the proof is easy. Note that under these
notations the expected utility of player i with type #* that declares tl-’\’ is given
by the expression v* - w* — p*". Since a player with type ¢/ prefers reporting the
truth rather than £ we have that v* - w* — p* > v* . w**< — p**€_ Similarly,
a player with type tl.HE prefers reporting the truth rather than 7, so we have
Ve wt — ph < vt whte — pPte Re-arranging and putting together, we get

U)»(w)rf»e _ w)\) S p)r‘re _ p)\ S ,U)L+€(w}\+6 _ w}»)

Ate e

Now divide throughout by € and let € approach 0. v**¢ approaches v*, (w
w*)/e approaches the vector dw”/di = w’(A) and thus we get that (p*T¢ —
p*)/€) approaches v* - w'(1), and thus the derivative of p” is defined and is
continuous. Integrating, we get p! = p® + fol v w'(Wda. O

Thus the revenue equivalence theorem tells us that we cannot increase revenue
without changing appropriately the allocation rule (social choice function) itself. In
particular, all the corollaries in Section 9.5.5 apply, in the sense of expectation, to
all Bayesian—Nash implementations. However, if we are willing to modify the social
choice function, then we can certainly increase revenue. Here is an example for the
case of an auction with two bidders with valuations distributed uniformly in [0, 1]:
Put a reservation price of 1/2, and then sell to the highest bidder for a price that is the
maximum of the low bid and the reservation price, 1/2. If both bidders bid below the
reservation price, then none of them wins. First, it is easy to verify that this rule is
incentive compatible. Then a quick calculation will reveal that the expected revenue of
this auction is 5/12 which is more than the 1/3 obtained by the regular second price
or first price auctions. Chapter 13 discusses revenue maximization further.

238 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)
9.7 Further Models

This chapter has concentrated on basic models. Here we shortly mention several model
extensions that address issues ignored by the basic models and have received attention
in economic theory.

9.7.1 Risk Aversion

All of our discussion in the Bayesian model assumed that players are risk-neutral:
obtaining a utility of 2 with probability 1/2 is equivalent to obtaining a utility of 1 with
probability 1. This is why we could just compute players’ utilities by taking expectation.
In reality, players are often risk-averse, preferring a somewhat lower utilities if they are
more certain. A significant body of work in economic theory deals with formalizing and
analyzing strategic behavior of such players. In our context, a particularly interesting
observation is that the revenue equivalence principle fails and that with risk-averse
bidders different mechanisms that implement the same social choice function may
have different revenue. As an example it is known that first price auctions generate
more revenue than second price auctions if the bidders are risk-averse.

9.7.2 Interdependent Values

We have considered only independent private value models: the types of the players
are chosen independently of each other and each players’ valuation depends only on
his own private information. In a completely general setting, there would be some joint
distribution over “states of the world” where such a state determines the valuations of all
players. Players would not necessarily get as private information their own valuation,
but rather each would get some “signal” — partial information about the state of the
world — that provide some information about his own valuation and some about the
valuations of others. Most of the results in this chapter cease holding for general models
with interdependent values.

A case that is in the extreme opposite to the private value model is the “common
value” model. In an auction of a single item under this model, we assume that the
object in question has exactly the same value for all bidders. The problem is that
none of them know exactly what this value is and each player’s signal only provides
some partial information. An example is an auction for financial instruments such as
bonds. Their exact value is not completely known as it depends on future interest
rates, the probability of default, etc. What is clear though is that whatever value the
bonds will turn out to have, it will be the same for everyone. In such settings, an
auction really serves as an information aggregation vehicle, reaching a joint estimate
of the value by combining all players’ signals. A common pitfall in such cases is
the “winner’s curse”: if each bidder bids their own estimate of the object’s common
value, as determined from their own signal, then the winner will likely regret winning
— the fact that a certain bidder won means that other signals implied a lower value,
which likely means that the real value is lower than the estimate of the winner. Thus
in equilibrium bidders must bid an estimate that is also conditioned on the fact that
they win.

NOTES 239

A commonly considered formalization that takes into account both a private value
component and a common value component is that of affiliated signals. Roughly speak-
ing, in such models each player gets a signal that is positively correlated (in a strong
technical sense called affiliation) not only with his own value but also with the values
of other players. In such settings, ascending English auctions are “better” (generate
more revenue) than the non-adaptive second price auction (which is equivalent to an
English auction in private value models): as the bidding progresses, each bidder gets
information from the other bidders that increases his estimate of his value.

9.7.3 Complete Information Models

Our main point of view was that each player has its own private information. Some
models consider a situation where all players have complete information about the
game; it is only the mechanism designer who is lacking such information. A prototypical
instance is that of King Solomon: two women, each claiming that the baby is hers. The
women both know who the real mother is, but not King Solomon — he must design
a mechanism that elicits this information from their different preferences. Several
notions of implementation in such setting exists, and in general, mechanism design
is much easier in this setting. In particular, many implementations without money are
possible.

9.7.4 Hidden Actions

All of the theory of Mechanism Design attempts overcoming the problem that players
have private information that is not known to the mechanism designer. In many settings
a different stumbling block occurs: players may perform hidden actions that are not
visible to the “mechanism.” This complementary difficulty to the private information
difficulty has been widely studied in economics and has recently started to be considered
in computer science settings.

9.8 Notes

Most of the material in this chapter can be found in graduate textbooks on micro-
economics such as Mas-Collel et al. (1995). The books (Krishna, 2002; Klemperer,
2004) on Auction theory contain more detail. As the Internet gained influence, during
the 1990s, researchers in Al, computer networks, and economics started noticing that
mechanism design can be applied in computational settings. This was put forward
in a general way in Nisan and Ronen (2001) who also coined the term Algorithmic
Mechanism Design.

The earliest work on voting methods including that of Condorcet and Borda goes
back to the late 18th century, appropriately around the time of the French Revolution.
The modern treatment of social choice theory originates with the seminal work of Arrow
(1951), where Arrow’s theorem also appears. Over the years many proofs for Arrow’s
theorem have been put forward; we bring one of those in Geanakopolos (2005). The
Gibbard-Satterthwaite theorem is due to Gibbard (1973) and Satterthwaite (1975). The

240 INTRODUCTION TO MECHANISM DESIGN (FOR COMPUTER SCIENTISTS)

computational difficulty of manipulation of voting rules was first studied in Bartholdi
et al. (1989).

The positive results in Mechanism Design in the quasi-linear setting originate with
the seminal work of Vickrey (1961), who, in particular, studied single-item auctions
and multiunit auctions with downward sloping valuations. The public project problem
was studied by Clarke (1971), who also suggested the pivot rule, and the general
formulation of what is now called VCG mechanisms appears in Groves (1973). The
Bilateral Trade problem was studied in Myerson and Satterthwaite (1983), and the
application of buying a path in a network was put forward in Nisan and Ronen (2001).

The general framework of Mechanism Design and its basic notions have evolved
in microeconomic theory mostly in the 1970s, and mostly in the general Bayesian
setting that we only get to in Section 9.6. Among the influential papers in laying out the
foundations are Vickrey (1961), Clarke (1971), Groves (1973), Satterthwaite (1975),
Green and Laffont (1977), Dasgupta et al. (1979), and Myerson (1981).

Early papers in algorithmic Mechanism Design, such as Nisan and Ronen (2001) and
Lehmann et al. (2002), pointed out the necessity and difficulty of implementing social
choice functions other than welfare maximization, due to other optimization goals or
due to computational hardness. Characterizations of incentive compatible mechanisms
have been previously obtained in economic theory as intermediate steps on the way to
theorems with clear economic motivation. The discussion here tries to put it all together
independently of particular intended applications. The weak monotonicity condition is
from Bikhchandani et al. (2006) and the sufficiency of this condition in convex domains
is from Saks and Yu (2005). The affine-maximization characterization in complete
domains is from Roberts (1979), and Lavi et al. (2003) attempts generalization to other
domains. The uniqueness of pricing is the analog of the revenue equivalence theorem in
the Bayesian setting which is due to Myerson (1981); Green and Laffont (1977) showed
it in the dominant strategy setting for welfare maximizing social choice functions. The
corollary of the impossibility of budget-balanced bilateral trade appears in Myerson
and Satterthwaite (1983) in the Bayesian setting.

The Bayesian setting is currently the main vehicle of addressing lack of information
in economic theory, and this development has mostly happened during the 1960s,
with the main influence being the seminal work of Harsanyi (1968). As mentioned
previously, most of development of the field of Mechanism Design noted above was
in this setting. The revenue equivalence theorem, the form of the expected payment in
single-parameter domains, as well as an analysis of revenue-maximizing auctions is
from Myerson (1981).

Risk-averse bidders in (reverse) auctions are analyzed by Holt (1980). Auctions
in the common value model are analyzed in Wilson (1977) and Milgrom (1981).
The general model of interdependent valuations with affiliated signals was studied in
Milgrom and Weber (1982). Mechanism Design in complete information models is
discussed in Maskin (1985) and Moore and Repullo (1988).

Acknowledgments

I thank Shahar Dobzinski, Dana Fisman, Jason Hartline, Orna Kupferman, Ron Lavi,
Ariel Procaccia, and James Schummer for comments on earlier drafts of this chapter.

BIBLIOGRAPHY 241

Bibliography

K. Arrow. Social Choice and Individual Values. Yale University Press, 1951.

J. Bartholdi, III, C. Tovey, and M. Trick. Computational difficulty of manipulating an election. Soc.
Choice Welfare, 6(3):227-241, 1989.

S. Bikhchandani, S. Chatterji, R. Lavi, A. Mu’alem, N. Nisan, and A. Sen. Weak monotonicity
characterizes deterministic dominant strategy implementation. Econometrica, 74(4), 2006.

E.H. Clarke. Multipart pricing of public goods. Public Choice, 17-33, 1971.

P. Dasgupta, P. Hammond, and E. Maskin. The implementation of social choice rules: Some general
results on incentive compatibility. Rev. Econ. Stud., (46):185-216, 1979.

J. Geanakopolos. Three brief proofs of arrow’s impossibility theorem. Econ. Theor., 26(1):211-215,
2005.

A. Gibbard. Manipulation of voting schemes: a general result. Econometrica, 41:587-601, 1973.

J. Green and J.J. Laffont. Characterization of satisfactory mechanism for the revelation of preferences
for public goods. Econometrica, 427-438, 1977.

T. Groves. Incentives in teams. Econometrica, 617-631, 1973.

J.C. Harsanyi. Games with incomplete information played by ‘bayesian’ players, parts i ii and iii.
Mgmt. Sci., 14, 1967-68.

C. Holt. Competitive bidding for contracts under alternative auction procedures. J. Political Econ.,
88:433-445, 1980.

P. Klemperer. Auctions: Theory and Practice. Princeton University Press, 2004.

V. Krishna. Auction Theory. Academic Press, 2002.

R. Lavi, A. Mu’alem, and N. Nisan. Towards a characterization of truthful combinatorial auctions. In
FOCS, 2003.

D. Lehmann, L.I. O’Callaghan, and Y. Shoham. Truth revelation in approximately efficient combi-
natorial auctions. JACM 49(5), 577-602, Sept. 2002.

A. Mas-Collel, W. Whinston, and J. Green. Microeconomic Theory. Oxford University Press, 1995.

E. Maskin. The theory of implementation in nash equilibrium. In Soc. Goals and Soc. Org.: Essays
in Honor of Elisha Pazner, 1985.

P. Milgrom. Rational expectations, information acquisition, and competitive bidding. Econometrica,
49:921-943, 1981.

PR. Milgrom and R.J. Weber. A theory of auctions and competitive bidding. Econometrica,
50(5):1089-1122, 1982.

J. Moore and R. Repullo. Subgame perfect implementation. Econometrica, 56:1191-1220, 1988.

R. B. Myerson. Optimal auction design. Math. Oper. Res., 6(1):58-73, 1981.

R.B. Myerson and M. Satterthwaite. Efficient mechanisms for bilateral trading. J. Economic Theory,
(28):265-281, 1983.

N. Nisan and A. Ronen. Algorithmic mechanism design. Games Econ. Behav., 35:166—-196, 2001.

K. Roberts. The characterization of implementable choice rules. In Aggregation and Revelation of
Preferences, J-J. Laffont (ed.), North Holland Publishing Company, 1979.

M. Saks and L. Yu. Weak monotonicity suffices for truthfulness. In EC, 2005.

M.A. Satterthwaite. Strategy-proofness and arrow’s condition: Existence and correspondence theo-
rems for voting procedures and social welfare functions. J. Economic Theory, 187-217, 1975.

W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. J. Finance, 8-37, 1961.

R. Wilson. A bidding model of perfect competition. Rev. Econ. Stud., 44:511-518, 1977.

CHAPTER 10

Mechanism Design without
Money

James Schummer and Rakesh V. Vohra

Abstract

Despite impossibility results on general domains, there are some classes of situations in which there
exist interesting dominant-strategy mechanisms. While some of these situations (and the resulting
mechanisms) involve the transfer of money, we examine some that do not. Specifically, we analyze
problems where agents have single-peaked preferences over a one-dimensional “public” policy space;
and problems where agents must match with each other.

10.1 Introduction

The Gibbard—Satterthwaite Theorem (Theorem 9.8) is a Procrustean bed! that is es-
caped only by relaxing its assumptions. In conjunction with the Revelation Principle
(Proposition 9.25), it states that on the general domain of preferences, only dictatorial
rules can be implemented in dominant strategies (if the range contains at least three
alternatives). In this chapter we escape Procrustes by examining dominant strategy
implementation on restricted domains of preferences.’

In most applications it is clearly unreasonable to assume that agents’ preferences
are completely unrestricted, as was assumed in the voting context of Section 9.2.4.
For instance, in situations involving the allocation of goods, including money, one can
safely assume that each agent prefers to receive more money (or other goods). As can
be seen in the following chapters, the ability for agents to make monetary transfers
allows for a rich class of strategy-proof rules.

Nevertheless there are many important environments where money cannot be used as
a medium of compensation. This constraint can arise from ethical and/or institutional

! Procrustes was a giant that lived by one of the roads that led to Attica. He boasted of a bed whose length exactly
matched the size of its occupant. What he neglected to mention was that this remarkable feature was obtained
by either stretching or butchering his guest to fit the bed.

2 Other avenues of escape not discussed here include randomization, making preferences common knowledge,
and using weaker notions of implementation.

243

244 MECHANISM DESIGN WITHOUT MONEY

considerations: many political decisions must be made without monetary transfers;
organ donations can be arranged by “trade” involving multiple needy patients and
their relatives, yet monetary compensation is illegal. In this chapter we focus on a few
examples of just this kind.

Before proceeding with the examples, we formalize the idea that dominant-
strategy implementation is a weaker concept on restricted domains of preferences.
In general, a decision problem can be described by these parameters: a set of
agents N = {1,2, ..., n}, asetof alternatives A, and for each agent i € N a set of po-
tential preference relations R; over the alternatives in A.> The Gibbard—Satterthwaite
Theorem (Theorem 9.8) applies, for example, when each R; is the entire set of linear
orders on A.

An allocation rule is a function f: x R; — A, mapping preferences of the agents
into alternatives. It is strategy-proof if its use makes it a weakly dominant strategy
for agents to truthfully report their preferences. (See Section 9.4). We observe the
following principle.

Consider two decision problems (N, A,Ry,...,R,) and (N, A, R|,...,R,),
where R; C R; for each i € N. Suppose f: x R; — A is a strategy-proof rule for
the former problem. Then the restriction of the function f to (xR}), namely f| xR}»
defines a strategy-proof rule for the latter problem.

The proof of this is straightforward: on a smaller domain of preferences, strategy-
proofness is easier to satisfy because it imposes strictly fewer constraints. This simple
observation justifies the search for reasonable (or at least nondictatorial) rules for
decision problems involving “smaller” domains of preferences than those that yield the
Gibbard—Satterthwaite Theorem.

In Section 10.2 we analyze a problem involving a natural domain restriction when
agents vote over one-dimensional policies. It is one of the canonical “public good”
settings (R; = R; for all i, j € N) in which interesting, strategy-proof rules can
be obtained. The analysis here is illustrative of the approach used to characterize
such rules in other environments. In Sections 10.3 and 10.4 we analyze matching
problems. As opposed to the previous setting, these problems have the feature that
each agent cares only about his own private consumption; that is, each R; con-
tains only preference relations that are sensitive only to certain dimensions of the
alternative space A; hence R; # R; whenever i # j. These are examples of what
are called “private good” problems. Two kinds of matching problems are analyzed,
demonstrating the limits of what can be implemented in dominant strategies in such
environments.

10.2 Single-Peaked Preferences over Policies
A simple but elegant class of domains involves single-peaked preferences over one-

dimensional policy spaces. This domain can be used to model political policies, eco-
nomic decisions, location problems, or any allocation problem where a single point

3 A preference relation is a weak order on A.

SINGLE-PEAKED PREFERENCES OVER POLICIES 245

must be chosen in an interval. The key assumption we make is that agents’ preferences
are assumed to have a single most-preferred point in the interval, and that preferences
are “decreasing” as one moves away from that peak.

Formally, the allocation space (or policy space) is the unit interval A = [0, 1]. An
outcome in this model is a single point x € A. Each agent i € N has a preference
ordering >; (i.e., a weak order) over the outcomes in [0, 1]. The preference relation
>; is single-peaked if there exists a point p; € A (the peak of >;) such that for all
x € A\ {p;i} and all » €0, 1), (Ax + (1 — A)p;) >; x.* Let R denote the class of
single-peaked preferences.

We denote the peaks of preference relations >;, >/, >, etc., respectively by p;, p;,
pj, etc. Denote a profile (n-tuple) of preferences as > € R".

One can imagine this model as representing a political decision such as an income
tax rate, another political issue with conservative/liberal extremes, the location of a
public facility on a road, or even something as simple as a group of people deciding
on the temperature setting for a shared office. In these and many other examples, the
agents have an ideal preferred policy in mind, and would prefer that a decision be made
as close as possible to this “peak.”

Arule f: R" — A assigns an outcome f(>) to any preference profile >. As before,
arule is strategy-proof if itis a dominant strategy for each agent to report his preferences
truthfully when the rule is being used to choose a point.

In contrast to the impossibility result of Gibbard (1973) and Satterthwaite (1975),
that obtain on the universal domain of preferences, we shall see that this class of
problems admits a rich family of strategy-proof rules whose ranges include more than
two alternatives. In fact, the family of such rules remains rich even when one restricts
attention (as we do in this chapter) to rules that satisfy the following condition.

We say that arule f is onto if for all x € A there exists > € R" such that f(>) = x.
An onto rule cannot preclude an outcome from being chosen ex ante. It is not without
loss of generality to impose this condition. For instance, fix two points x, y € [0, 1] and
consider a rule that chooses whichever of the two points is preferred to the other by a
majority of agents (and where x is chosen in case of a tie). Such a rule is strategy-proof,
but not onto. Similar strategy-proof rules can even break ties between x and y by using
preference information about other points x’, y/, .. ., in [0, 1], even though x’, etc., are
not in the range of the rule.

The onto condition is even weaker than what is called unanimity, which requires
that whenever all agents’ preferences have the same peak (p; = p; forall i, j), the rule
must choose that location as the outcome. In turn, unanimity is weaker than Pareto-
optimality: for all > € R", there exists no point x € [0, 1] such that x >; f(>) for all
i €N.

As it turns out, these three requirements are all equivalent among strategy-proof
rules.

Lemma 10.1 Suppose f is strategy-proof. Then f is onto if and only if it is
unanimous if and only if it is Pareto-optimal.

4 The binary relation >; is the strict (asymmetric) part of >;. Under a single-peaked preference relation, preference
is strictly decreasing as one moves away from p;.

246 MECHANISM DESIGN WITHOUT MONEY

PROOF It is clear that Pareto-optimality implies the other two conditions. Sup-
pose f is strategy-proof and onto. Fix x € [0, 1] and let > € R" be such that
f(>) = x. Consider any “unanimous” profile =" € R" such that p; = x for
each i € N. By strategy-proofness, f(=!,>,,...,>,) = x, otherwise agent 1
could manipulate f. Repeating this argument, f(>|, >}, >3,...,>,) =x, ...,
f(=") = x. That is, f is unanimous.

Finally, to derive a contradiction, suppose that f is not Pareto-optimal at some
profile > € R". This implies that either (i) f(>) < p; foralli € N or (ii) f(>) >
p; foralli € N. Without loss of generality, assume (i) holds. Furthermore, assume
that the agents are labeled so that p; < py < --- < p,.

If p; = p, then unanimity is violated, completing the proof. Otherwise, let
Jj € N be such that p; = p; < pj41; that is, j < n agents have the minimum
peak. For all i > j, let >} be a preference relation such that both p. = p; and
f(=) =} pi.

Letx, = f(=1,..., =n—1, =},). By strategy-proofness, x, € [f(>), p.], other-
wise agent n (with preference >/) could manipulate f by reporting preference >,.
Similarly, x,, & (f(>), p.], otherwise agent n (with preference >,) could manip-
ulate f by reporting preference >/ . Therefore x, = f(>).

Repeating this argument as each i > j replaces >; with >}, we have

f(zls"‘7zjvi;‘+1""9z:1):f(i)

which contradicts unanimity. Since a strategy-proof, onto rule must be unanimous,
this is a contradiction. O

10.2.1 Rules

The central strategy-proof rule on this domain is the simple median-voter rule. Suppose
that the number of agents n is odd. Then the rule that picks the median of the agents’
peaks (p;’s) is a strategy-proof rule.

It is straightforward to see why this rule is strategy-proof: If an agent’s peak p; lies
below the median peak, then he can change the median only by reporting a preference
relation whose peak lies above the true median. The effect of this misreport is for
the rule to choose a point even further away from p;, making the agent worse off. A
symmetric argument handles the case in which the peak is above the median. Finally,
an agent cannot profitably misreport his preferences if his peak is the median one to
begin with.

More generally, for any number of agents n and any positive integer k < n, the
rule that picks the kth highest peak is strategy-proof for precisely the same reasons as
above. An agent can only move the kth peak further from his own. The median happens
to be the case where k = (n + 1)/2.

The strategy-proofness of such rules stands in contrast to the incentives properties
of rules that choose average-type statistics. Consider the rule that chooses the average
of the n agents’ peaks. Any agent with peak p; € (0, 1) that is not equal to the average
can manipulate the rule by reporting preferences with a more extreme peak (closer to
0 or 1) than his true peak.

SINGLE-PEAKED PREFERENCES OVER POLICIES 247

This would also hold for any weighted average of the agents’ peaks, with one
exception. If a rule allocated all of the weight to one agent, then the resulting rule
simply picks that agent’s peak always. Such a dictatorial rule is strategy-proof and
onto.

In addition to favorable incentives properties, rules based on order statistics have
the property that they require little information to be computed. Technically a rule
requires agents to report an entire preference ordering over [0, 1]. The rules we have
discussed so far, however, only require agents to report their most preferred point, i.e.,
a single number. In fact, under the onto assumption, this informational property is a
consequence of the strategy-proofness requirement; that is, all strategy-proof and onto
rules have the property that they can be computed solely from information about the
agents’ peaks.

To begin showing this, we first observe that the class of “kth-statistic rules” can
be further generalized as follows. Consider a fixed set of points yi, yz, ..., y,—1 € A.
Consider the rule that, for any profile of preferences >, chooses the median of the
2n — 1 points consisting of the n agents’ peaks and the n — 1 points of y. This kind of
rule differs from the previous ones in that, for some choices of y and some profiles of
preferences, the rule may choose a point that is not the peak of any agent’s preferences.
Yet, for the same reasons as above, such a rule is strategy-proof.

It turns out that such rules compose the entire class of strategy-proof and onto
rules that treat agents symmetrically. To formalize this latter requirement, we call a
rule anonymous if for any > € R" and any permutation >’ of >, f(>’) = f(>). This
requirement captures the idea that the agents’ names play no role in the behavior of
a rule. Dictatorial rules mentioned above are examples of rules that are strategy-proof
and onto, but not anonymous.

Theorem 10.2 A rule f is strategy-proof, onto, and anonymous if and only if
there exist yi, Y2, ..., Yu—1 € [0, 1] such that for all = € R",

f(=)=med{p1, p2, ..., Pu, Y1, Y2, - oy Yn—1}- (10.1)

PROOF We leave it as an exercise to verify that such a rule satisfies the three
axioms in the Theorem. To prove the converse, suppose f is strategy-proof, onto,
and anonymous.

We make extensive use of the two (extreme) preference relations that have
peaks at 0 and 1 respectively. Since preferences relations are ordinal, there is only
one preference relation with a peak at O and only one with a peak at 1. Denote
these two preference relations by z? and z} respectively.

(Construct the y,,’s.) Forany 1 <m < n — 1, let y,, denote the outcome of f
when m agents have preference relation >! and the remainder have >9:

0 0 1 1
Y= (= 2 s Zhmats e 2)

Recall that by anonymity the order of the arguments of f is irrelevant; if pre-

cisely m agents have preference relation >! and the rest have >? then the out-

come is y,,. In addition, we leave it to the reader to verify that stragegy proofness

248 MECHANISM DESIGN WITHOUT MONEY

implies monotonicity of the y,,’s: y,, < yn41 foreach 1 <m < n — 2. We prove
the theorem by showing that f satisfies Eq. (10.1) with respect to this list of y,,’s.

Consider a profile of preferences > € R" with peaks py, ..., p,. Without loss
of generality (by anonymity) assume that p; < p;;; foreachi <n — 1. We wish
to show f(>) =x* =med{p1, ..., Pn, Y1s -+ +» Yn—1}-

(Case 1: the median is some y,,.) Suppose x* = y,, for some m. By mono-
tonicity of the peaks and y,,’s, since x* is the median of 2n — 1 points this implies
Pn-m < X* = Ym < Pn—m+1. By assumption,

* _ 0 0 1 1
X =y = (= m s Zmts 0 2) (10.2)
_ 0 0 1 1 iy . s
Letx; = f(>=1, 25, o s Zpoms Zpempts + - - » 2=p)- Strategy-proofness implies x;

> x*, otherwise agent 1 with preference 5(1’ could manipulate f. Similarly, since
p1 < Ym, we cannot have x; > x*, otherwise agent 1 with preference >; could
manipulate f. Hence x; = x*. Repeating this argument for all i <n —m, x* =
F(=10 o Znems =it - - - » =5)- The symmetric argument for all i > n —m
implies

fCr, oo =) = X" (10.3)

(Case 2: the median is an agent’s peak.) The remaining case is that y,, < x* <
Vm+1 for some m. (The cases where x* < y; and x* > y,_; are similar, denoting
yo = 0 and y, = 1.) In this case, since the agents’ peaks are in increasing order,
we have x* = p,_,.

It

(= s = nems Zhmgts e 20) =X = puew (10.4)
then, analogous to the way Eq. (10.2) implied Eq. (10.3), repeated applications
of strategy-proofness (to the n — 1 agents other than i = n — m) would imply
fC=1,...,=,) = x*, and the proof would be finished. The remainder of the
proof is devoted to showing that indeed Eq. (10.4) must hold.

Suppose to the contrary that

0 0 1 1
f(513 L] in_m_17 in—rru in_m+17 L) zn) = x/ < X*' (105)

(The case x” > x* can be proven symmetrically.) If agent (n — m) were to report
preference ig—m instead, f would choose outcome y,,; hence strategy-proofness
implies y,, < x’ < x*. See Figure 10.1.

Denote the outcomes that agent (n — m) can obtain by varying his preferences,
fixing the others, as’

O0={x:3%,_,stx=f(=}....= S s = =))

s n—m—1°> Z—n—m> —_p—m+1> > n

By definition, x” € O; Case 1 implies y,,, yn+1 € O. Strategy proofness implies
that x’ = max{x € O : x < x*}, otherwise by reporting some other preference,
agent (n — m) could obtain some x € (x’, x*), violating strategy proofness.

3 The literature on strategy proofness refers to this as an option set.

SINGLE-PEAKED PREFERENCES OVER POLICIES 249

L H
Pn—m Pi p;

PN

| |
== T 7 N N [
Ym x x* x Ym+1

Figure 10.1. Proof of Theorem 10.2. If a strategy-proof, onto rule does not pick x* when it is
the median of peaks and y,,’s, then a contradiction is reached using preferences with peaks at
pf and pf’.

Letting x” = inf{x € O : x > x*}, strategy proofness implies x”" € 0.° To
see this, let =/ be a preference relation with peak p, , = x” and such
that (x”" +¢€) >/, x' for some small € > 0. Then strategy proofness implies
FC = e it e = =% € [x7, x” 4 €]. Butif & # x”,
then there would exist a misreport resulting in an outcome arbitrarily closer to
x”, making agent (n — m) (with preference >/,_) better off. Hence ¥ = x" =
min{x € O : x > x*}. With Eq. (10.5), we have x” > x*.

We have shown that O N (x', x”) = . Let p- be a symmetric preference
relation with peak at p’ = (x’ 4+ x”)/2 — &, where ¢ > 0 is sufficiently small;
see Figure 10.1. Similarly let p/ be a symmetric preference relation with peak at
(x" 4+ x")/2 + €. Then strategy-proofness implies

f(E(l)’ >0 >H >1 >l)}:x”,

s n—m—1> —n—m> —n—m—+1> "> n
By repeated application of strategy-proofness (along the lines used in proving
Eq. (10.3)), this implies

L L H 1 1 4
f(z1’ tee Enfmfl’ znfm’ zn7m+1’ e in)} =X

Lemma 10.1 (Pareto-optimality) implies

f(SL oL oL o1 o1)} > piL‘

~1> s n—m—1> —n—m> —n—m+1°> > —n

Therefore, strategy-proofness implies

f(=r....=k L1 =)= (10.6)

0 —n—m—1> —n—m> —n—m+1° > —n

otherwise agent n — m could manipulate at one of the two profiles (since ¢ is
small).
On the other hand, strategy-proofness implies

SO s 2 Zptts o 2) = X
by the definition of ziL. Strategy-proofness implies that if agent (n —m — 1)
instead reports preference =L a point must be chosen that is in the interval
[x', x" — 2&], otherwise, he could report > to gain. By repeated application of
this argument, this continues to hold as each agent 1 <i <n —m — 1 changes
his report from >? to >£, so

L L L 1 1
f(i] y et znfmfla in,m, En,er], ey in) € [-x/’ x” - 28]

6 More generally, strategy-proofness alone implies O is closed. For brevity we prove only x” € O.

250 MECHANISM DESIGN WITHOUT MONEY

This contradicts Eq. (10.6). Hence Eq. (10.5) cannot hold, so x’ > x*; the
symmetric argument implies x" = x*, resulting in Eq. (10.4). Thus f chooses the
median of these 2n — 1 points for profile >. O

The parameters (y,,’s) in Theorem 10.2 can be thought of as the rule’s degree of
compromise when agents have extremist preferences. If m agents prefer the highest
possible outcome (1), while n — m prefer the lowest (0), then which point should
be chosen? A true median rule would pick whichever extreme (0 or 1) contains
the most peaks. On the other hand, the other rules described in the Theorem may
choose intermediate points (y,,) as a compromise. The degree of compromise (which
V) can depend on the degree to which the agents’ opinions are divided (the size
of m).

The anonymity requirement is a natural one in situations where agents are to be
treated as equals. If one does not require this, however, the class of strategy-proof
rules becomes even larger. We have already mentioned dictatorial rules, which always
chooses a predetermined agent’s peak. There are less extreme violations of anonymity:
The full class of strategy-proof, onto rules, which we now define, allows agents to be
treated with varying degrees of asymmetry.

Definition 10.3 A rule f is a generalized median voter scheme (g.m.v.s.) if
there exist 2" points in [0, 1], {as}scw, such that

(i) S €T C N implies ag < a7,
(ii) ay =0,y = 1, and

(iii) for all = € R", f(>) = maxscy minf{ag, p;: i € S}.

An example is given below. It is worth making two observations regarding Defi-
nition 10.3. First, the monotonicity condition (i) is actually redundant. If parameters
{os}scw fail this condition, they still define some strategy-proof rule via condition (iii).
However, the resulting rule could also be defined by an alternate set of parameters
{as}scn that do satisfy condition (i). Second, condition (ii) is present merely to guar-
antee the rule to be onto. Parameters that fail this condition still define a strategy-proof
rule whose range is [o, ay].’

Consider the rule described by the parameters («s’s) in Figure 10.2, for the 3-agent
case. The reader should first verify the following. If each agent in some set S C N
were to have a preference peak at 1, while each remaining agent (in N \ §) were to have
a preference peak at 0, then the rule would choose «g as the outcome. In this sense, the
ag parameters reflect a (nonanonymous) degree of compromise at extreme preference
profiles, analogous to the y,, parameters of Theorem 10.2.

Without the anonymity condition, some agents — more generally some coalitions of
agents — are more powerful than others. To see this, consider the profile of preferences
represented in Figure 10.2 with peaks pi, p», p3. Following condition (iii) of Defi-
nition 10.3, calculate min{ayg, p; : i € S} for each § € N. Beginning with the three

7 To avoid potential confusion, we point out that, in some of the literature, the term generalized median voter
scheme also refers to such rules.

SINGLE-PEAKED PREFERENCES OVER POLICIES 251

p2 p1 p3
| | | | | | |
f I I I & [S 1
Qg o Qp Q12 Qg Qp.3 Qg 3 an

Figure 10.2. An example of a generalized median voter scheme for n = 3.

singleton coalitions of the form S = {i}, these values are «, o, and o3, because each
pi is above that agent’s corresponding oy;;. (For peak pj, the third value would have
been pj instead.) Since the g.m.v.s. eventually chooses the maximum of these kinds of
values (after we also check larger coalitions), agent 3 can be said to have more power
than the other two agents, as a singleton. A large a3 corresponds to more instances
in which agent 3’s peak is a candidate outcome for this rule. A small «; corresponds
to more instances in which agent 1 has no impact on the outcome (i.e., whenever
D1 > agqy).

On the other hand, we also need to calculate these minimum-values for larger
coalitions. For the pairs of agents {1, 2}, {1, 3}, and {2, 3}, these values are ay; 9}, p1,
and p, respectively. Coalition {1, 2} is the weakest two-agent coalition in the sense that
they have the lowest ag. After checking S = ¥ (which yields 0) and S = N (yielding a
repetition of the value p,), we calculate the rule’s outcome to be the maximum of the
2" values {0, o1, a2, @3, 0tq1,23, P1, P2, p2} we have obtained, which is o3;.

We close by stating the main result of this section. We omit its proof, which has
much in common with the proof of Theorem 10.2.

Theorem 10.4 A rule f is strategy-proof and onto if and only if it is a general-
ized median voter scheme.

10.2.2 Application to Public Good Cost Sharing

Consider a group of n agents who have access to a machine that can convert their labor
into some public good. Specifically, suppose that the machine requires the simultaneous
labor of all n agents in order to work. The agents are free to jointly decide how many
hours of labor, ¢, to work. Implicit is the requirement that each agent work for £ hours,
however, since the machine requires all n agents’ labor simultaneously. After £ hours of
labor, the machine outputs y = Y (£) units of some public good, where the production
function Y is assumed to be an increasing and strictly concave function, with Y (0) = 0.

Different agents may have different preferences over how much labor they should
provide, in exchange for the public good. Let us suppose that we know nothing about
their preferences, other than the fact that they are represented by some utility function
u; (£, y) which is strictly increasing in y, strictly decreasing in £, and is quasi-concave.®
See Figure 10.3.

In this environment, a rule takes as input the reported utility functions of the agents,
subject only to the assumptions we have made. It then gives as output a single labor
requirement £ = f(uq, ..., u,). Each agent is then required to provide £ units of labor,

8 The function u() is quasi-concave if, at each (£, y), the upper contour set {(£/, y'): u(€’, y') > u(£, y)} is convex.

252 MECHANISM DESIGN WITHOUT MONEY

yl

i .
[—f

(Y =

(,9)

(¢,y) ,5/,’/

/’/ /U'

0 ¢

Figure 10.3. An agent with utility function u most prefers the outcome (y, £); one with '
prefers (y', £').

and they enjoy Y (£) units of output as a reward. What rules are strategy-proof and
onto?

By assumption, outcomes may only be attained along the graph of Y. Because of
the assumptions on Y and on preferences, it is clear that agents have single-peaked
preferences over this consumption space. It follows that any strategy-proof, onto rule
for this environment is a generalized median voter schemes operating along the graph
of Y.

Proving this is not difficult, but involves some technical details that we omit. First
the outcome space is not bounded as we assumed before, although it would certainly be
reasonable to bound it by assumption. Second, the preference domain here should be
verified to yield all the single-peaked preferences necessary to characterize generalized
median voter schemes; e.g., we used symmetric single-peaked preferences to construct
the proof of Theorem 10.2. Third, one should demonstrate that a strategy-proof rule in
this environment is invariant to utility information away from the graph of Y. We leave
it to the interested reader to verify our claim despite these technicalities.

In this kind of problem, it may be reasonable to add additional requirements to
a rule. One that we address is the requirement that an agent should be better off as
part of this decision-making group than if he were simply to walk away. Formally, if
this public good technology did not exist, each agent would provide no labor (¢ = 0),
and would enjoy none of the public good (y = 0). We say a rule is individually
rational if for all U = (uy,...,u,) and 1 >i > n, we have u;(f(U), Y(f(U))) >
u;(0, 0).

What strategy-proof and onto rules satisfy individual rationality? In terms of our
earlier model, where agents have single-peaked preferences on [0, 1], that question
translates as follows: What g.m.v.s. has the property that, for any preference profile,
each agent (weakly) prefers the chosen outcome to the outcome x = 0?

The answer is that there is a unique such rule. As an exercise, we leave it to the
reader to show that the rule that chooses the minimum peak is the unique strategy-proof,
onto rule that satisfies this individual rationality condition. In terms of this public good
model, this corresponds to asking each agent their most preferred labor level ¢, and
choosing the minimum.

HOUSE ALLOCATION PROBLEM 253

10.3 House Allocation Problem

The House allocation problem is a model for understanding the allocation of indivisible
goods. Itinvolves aset N of n agents, each owning a unique house and a strict preference
ordering over all n houses. The objective is to reallocate the houses among the agents
in an appropriate way. A modern version of the same would replace houses by kidneys.

While any possible (strict) preference ordering over the homes is permitted, the set of
preferences over allocations is restricted. In particular, an agent is indifferent between
all allocations that give her the same house. Therefore the Gibbard—Satterthwaite
Theorem does not apply in this setting.

One could select an allocation of homes in a variety of ways, perhaps so as to optimize
some function of the preferences and then investigate if the resulting allocation rule
is strategy-proof. However, this ignores an important feature not present in earlier
examples. In this environment, agents control the resources to be allocated. Therefore
an allocation can be subverted by a subset of agents who might choose to break away
and trade among themselves. For this reason it is natural to focus on allocations that
are invulnerable to agents opting out.

Number each house by the number of the agent who owns that house. An allocation
is an n vector a whose ith component, a;, is the number of the house assigned to agent
i. If a is the initial allocation then a; = i. For an allocation to be feasible, we require
that a; # a; for all i # j. The preference ordering of an agent i will be denoted >;
and x >; y will mean that agent i ranks house x above house y. Denote by A the set
of all feasible allocations. For every S € N let A(S) ={z € A: z; € S Vi € S} denote
the set of allocations that can be achieved by the agents in S trading among themselves
alone. Given an allocation a € A, a set S of agents is called a blocking coalition (for
a) if there exists a z € A(S) such that for all i € § either z; >; a; or z; = a; and for
at least one j € S we have that z; >; a;. A blocking coalition can, by trading among
themselves, receive homes that each strictly prefers (or is equivalent) to the home she
receives under a, with at least one agent being strictly better off. The set of allocations
that is not blocked by any subset of agents is called the core.

The reader will be introduced to the notion of the core in Chapter 15 (Section 15.2)
where it will be defined for a cooperative game in which utility is transferable via
money (a TU game). The house allocation problem we consider is an example of a
cooperative game with nontransferable utility (an NTU game). The definition of the
core offered here is the natural modification of the notion of TU core to the present
setting.

The theorem below shows the core to be nonempty. The proof is by construction
using the top trading cycle algorithm (TTCA).

Definition 10.5 (Top Trading Cycle Algorithm) Construct a directed graph
using one vertex for each agent. If house j is agent i’s kth ranked choice, in-
sert a directed edge from i to j and color the edge with color k. An edge of
the form (i, i) will be called a loop. First, identify all directed cycles and loops
consisting only of edges colored 1. The strict preference ordering implies that the
set of such cycles and loops is node disjoint. Let N; be the set of vertices (agents)
incident to these cycles. Each cycle implies a sequence of swaps. For example,

254 MECHANISM DESIGN WITHOUT MONEY

suppose iy — i, — i3 — --- — i, is one such cycle. Give house i; to agent i,,
house i, to agent i,_;, and so on. After all such swaps are performed, delete all
edges colored 1. Repeat with the edges colored 2 and call the corresponding set
of vertices incident to these edges N,, and so on. The TTCA yields the resulting
matching.

This algorithm is used to prove the following result.

Theorem 10.6 The core of the house allocation problem consists of exactly one
matching.

PROOF We prove that if a matching is in the core, it must be the one returned
by the TTCA.

Under the TTCA, each agent in N; receives his favorite house, i.e., the house
ranked first in his preference ordering. Therefore, N; would form a blocking
coalition to any allocation that does not assign to all of those agents the houses
they would receive under the TTCA. That is, any core allocation must assign N,
to houses just as the TTCA assigns them.

Given this fact, the same argument applies to N,: Under the TTCA, each agent
in N, receives his favorite house not including those houses originally endowed
by agents in N;. Therefore, if an allocation is in the core and the agents in N,
are assigned each other’s houses, then agents in N, must receive the same houses
they receive under the TTCA.

Continuing the argument for each N proves that if an allocation is in the core,
then it is the one determined by the TTCA. This proves that there is at most one
core allocation.

To prove that the TTCA allocation is in the core, it remains to be shown that
there is no other blocking coalition S € N. This is left to the reader. O

To apply the TTCA, one must know the preferences of agents over homes. Do
they have an incentive to truthfully report these? To give a strongly positive answer
to this question, we first associate the TTCA with its corresponding direct revelation
mechanism. Define the Top Trading Cycle (TTC) Mechanism to be the function
(mechanism) that, for each profile of preferences, returns the allocation computed by
the TTCA.

Theorem 10.7 The TTC mechanism is strategy-proof.

PROOF Let 7 be a profile of preference orderings and a the allocation returned
by TTCA when applied to 7. Suppose that agent j € N; for some k misreports
her preference ordering. Denote by 7’ the new profile of preference orderings.
Let a’ the allocation returned by TTCA when applied to n’. If the TTCA is
not strategy-proof aj >' a;. Observe that @; = a] for all i € U]:;ll N,. Therefore,
a, e N\ {Ulr:} N, }. However, the TTCA chooses a; to be agent i’s top ranked

choice from N \ {Uf;: N, } contradicting the fact that a; >ig;. O

If we relax the requirement that preferences be strict, what we had previously called
a blocking set is now called a weakly blocking set. What we had previously called the

STABLE MATCHINGS 255

core is now called the strict core. With indifference, a blocking set S is one where al/
agents in S are strictly better off by trading among themselves. Note the requirement
that all agents be strictly better off. The core is the set of allocations not blocked by
any set S.

When preferences are strict, every minimal weakly blocking set is a blocking set. To
see this, fix a weakly blocking set S. An agent in S who is not made strictly better off
by trade among agents in S must have been assigned their own home. Remove them
from S. Repeat. The remaining agents must all be allocated houses that make them
strictly better off. Hence, when preferences are strict the core and strict core coincide.
With indifference permitted, the strict core can be different from the core. In fact, there
are examples where the strict core is empty and others where it is not unique. Deciding
emptiness of the strict core is polynomial in |N|.

Another possible extension of the model is to endow the agents with more than
one good. For example, a home and a car. Clearly, if preferences over pairs of goods
are sufficiently rich, the core can be empty. It turns out that even under very severe
restrictions the core can still be empty. For example, when preferences are separable,
i.e., one’s ranking over homes does not depend on which car one has.

10.4 Stable Matchings

The stable matching problem was introduced as a model of how to assign students to
colleges. Since its introduction, it has been the object of intensive study by both com-
puter scientists and economists. In computer science it used as vehicle for illustrating
basic ideas in the analysis of algorithms. In economics it is used as a stylized model
of labor markets. It has a direct real-world counterpart in the procedure for matching
medical students to residencies in the United States.

The simplest version of the problem involves a set M of men and a set W of women.
Each m € M has a strict preference ordering over the elements of W and each w € W
has a strict preference ordering over the men. As before the preference ordering of
agent { will be denoted >; and x >; y will mean that agent i ranks x above y. A
matching is an assignment of men to women such that each man is assigned to at most
one woman and vice versa. We can accommodate the possibility of an agent choosing
to remain single as well. This is done by including for each man (woman) a dummy
woman (man) in the set W (M) that corresponds to being single (or matched with
oneself). With this construction we can always assume that |M| = |W|.

As in the house allocation problem a group of agents can subvert a prescribed
matching by opting out. In a manner analogous to the house allocation problem, we
can define a blocking set. A matching is called unstable if there are two men m, m’
and two women w, w’ such that

(i) m is matched to w,
(ii) m’ is matched to w’, and
(iii) w’ >, wand m >, m’

The pair (m, w’) is called a blocking pair. A matching that has no blocking pairs is
called stable.

256 MECHANISM DESIGN WITHOUT MONEY

Example 10.8 The preference orderings for the men and women are shown in
the table below

>m >my >m; >w; >w, >w;3
wo w1 w1 mi ms ny
Wi w3 w2 m3 mi ms

w3 wro w3 mp nmoy noy

Consider the matching {(m1, wy), (m3, wy), (m3, w3)}. This is an unstable match-
ing since (m1, wy)is a blocking pair. The matching {(m, w1), (m3, wy), (my, ws)},
however, is stable.

Given the preferences of the men and women, is it always possible to find a sta-
ble matching? Remarkably, yes, using what is now called the deferred acceptance
algorithm. We describe the male-proposal version of the algorithm.

Definition 10.9 (Deferred Acceptance Algorithm, male-proposals) First, each
man proposes to his top-ranked choice. Next, each woman who has received at
least two proposals keeps (tentatively) her top-ranked proposal and rejects the rest.
Then, each man who has been rejected proposes to his top-ranked choice among
the women who have not rejected him. Again each woman who has at least two
proposals (including ones from previous rounds) keeps her top-ranked proposal
and rejects the rest. The process repeats until no man has a woman to propose to
or each woman has at most one proposal. At this point the algorithm terminates
and each man is assigned to a woman who has not rejected his proposal. Notice
that no man is assigned to more than one woman. Since each woman is allowed
to keep only one proposal at any stage, no woman is assigned to more than one
man. Therefore the algorithm terminates in a matching.

We illustrate how the (male-proposal) algorithm operates using Example 10.8 above.
In the first round, m | proposes to w,, m; to wy, and m3 to w;. At the end of this round
w is the only woman to have received two proposals. One from m3 and the other from
m;. Since she ranks m3 above m,, she keeps m3 and rejects mj,. Since m3 is the only
man to have been rejected, he is the only one to propose again in the second round. This
time he proposes to w3. Now each woman has only one proposal and the algorithm
terminates with the matching {(m, w,), (m,, ws), (m3, wy)}. It is easy to verify that
the matching is stable and that it is different from the one presented earlier.

Theorem 10.10 The male propose algorithm terminates in a stable matching.

PROOF Suppose not. Then there exists a blocking pair (m, w;) with m| matched
to w, say, and w; matched to m,. Since (m, w;) is blocking and w; >,,, w, in
the proposal algorithm, m; would have proposed to w; before w;. Since m; was
not matched with w; by the algorithm, it must be because w; received a proposal
from a man that she ranked higher than m,. Since the algorithm matches her to
my, it follows that m, >, m. This contradicts the fact that (m;, w;) is a blocking
pair. D

STABLE MATCHINGS 257

One could just as well have described an algorithm where the women propose and
the outcome would also be a stable matching. Applied to the example above, this would
produce a stable matching different from the one generated when the men propose.
Thus, not only is a stable matching guaranteed to exist but there can be more than 1. If
there can be more than one stable matching, is there a reason to prefer one to another?
Yes. To explain why, some notation.

Denote a matching by x. the woman assigned to man m in the matching u is denoted
w(m). Similarly, p(w) is the man assigned to woman w. A matching p is male-optimal
if there is no stable matching v such that v(m) >,, w(m) or v(m) = pu(m) for all m with
v(j) >; u(j) for at least one j € M. Similarly define female-optimal.

Theorem 10.11 The stable matching produced by the (male-proposal) Deferred
Acceptance Algorithm is male-optimal.

PROOF Let i be the matching returned by the male-propose algorithm. Suppose
1 is not male optimal. Then, there is a stable matching v such that v(m) >,, u(m)
or v(m) = p(m) for all m with v(j) >; u(j) for atleast one j € M. Therefore, in
the application of the proposal algorithm, there must be an iteration where some
man j proposes to v(j) before p(j) since v(j) >; u(j) and is rejected by woman
v(j). Consider the first such iteration. Since woman v(j) rejects j she must have
received a proposal from a man i she prefers to man j. Since this is the first
iteration at which a male is rejected by his partner under v it follows that man
i ranks woman v(j) higher than v(i). Summarizing, i >,¢;y j and v(j) >; v(i)
implying that v is not stable, a contradiction. O

Clearly one can replace the word “male” by the word “female” in the statement
of the theorem above. It is natural to ask if there is a stable matching that would be
optimal with respect to both men and women. Alas, no. The example above has two
stable matchings: one male optimal and the other female optimal. At least one female
is strictly better off under the female optimal matching than the male optimal one and
no female is worse off. A similar relationship holds when comparing the two stable
matchings from the point of view of the men.

A stable matching is immune to a pair of agents opting out of the matching. We
could be more demanding and ask that no subset of agents should have an incentive
to opt out of the matching. Formally, a matching " dominates a matching u if there
is a set S C M UW such that for all m, w € S, both (i) u'(m), W' (w) € S and (ii)
w(m) >, u(m) and u'(w) >, w(w). Stability is a special case of this dominance
condition when we restrict attention to sets S consisting of a single couple. The set
of undominated matchings is called the core of the matching game. The next result is
straightforward.

Theorem 10.12 The core of the matching game is the set of all stable matchings.

Thus far we have assumed that the preference orderings of the agents is known to
the planner. Now suppose that they are private information to the agent. As before
we can associate a direct revelation mechanism with an algorithm for finding a stable
matching.

258 MECHANISM DESIGN WITHOUT MONEY

Theorem 10.13 The direct mechanism associated with the male propose algo-
rithm is strategy-proof for the males.

PROOF Suppose not. Then there is a profile of preferences m = (>, >m,,
..., >m,) for the men, such that man m, say, can misreport his preferences and
obtain a better match. To express this formally, let @ be the stable matching
obtained by applying the male proposal algorithm to the profile 7. Suppose that
m reports the preference ordering >, instead. Let v be the stable matching that
results when the male-proposal algorithm is applied to the profile 7! = (>,
>my» - - -» >m,). FOI a contradiction, suppose v(m) >,,, w(m;). For notational
convenience we will write a >,, b to mean thata >,, bora = b.

First we show that m; can achieve the same effect by choosing an ordering >
where woman v(m) is ranked first. Let 72 = (=, >mys - - -5 >m,). Knowing that
v is stable with respect to the profile 7! we show that it is stable with respect to
the profile 2. Suppose not. Then under the profile 772 there must be a pair (m, w)
that blocks v. Since v assigns to m; its top choice with respect to 72, m; cannot
be part of this blocking pair. Now the preferences of all agents other than m are
the same in 7! and 72, Therefore, if (m, w) blocks v with respect to the profile
72, it must block v with respect to the profile ', contradicting the fact that v is
a stable matching under 7'

Let A be the male propose stable matching for the profile 2. Since v is a stable
matching with respect to the profile 2. As A is male optimal with respect to the
profile 772, it follows that A(m) = v(m).

Thus we can assume that v(m) is the top-ranked woman in the ordering >,.
Next we show that the set B = {m;: u(m;) >, v(m;)}is empty. This means that
all men, not just m;, are no worse off under v compared to w. Since v is stable
with respect to the original profile, 7 this contradicts the male optimality of u
and completes the proof.

Suppose B # . Therefore, when the male proposal algorithm is applied to the
profile 7!, each m j € Bisrejected by their match under w, i.e., u(m ;). Consider
the first iteration of the proposal algorithm where some m is rejected by pu(m;).
This means that woman ((m ;) has a proposal from man m,, that she ranks higher,
L.e., mg > ym,) m;. Since my was not matched to wu(m;) under p it must be that
u(my) >, p(m;). Hence my; € B, otherwise

wm;) >= mpv(mg) >, wlmg) >, plm;),

which is a contradiction.

Since my € B and my has proposed to p(m;) at the time man m; proposes,
it means that m; must have been rejected by w(my) prior to m; being rejected,
contradicting our choice of m;. O

The mechanism associated with the male propose algorithm is not strategy-proof for
the females. To see why, it is enough to consider example. The male propose algorithm
returns the matching {(m, wy), (mz, ws), (m3, wi)}. In the course of the algorithm the
only woman who receives at least two proposals is w;. She received proposals from
m, and m3. She rejects m, who goes on to propose to w3 and the algorithm terminates.

STABLE MATCHINGS 259

Notice that w; is matched with her second choice. Suppose now that she had rejected
ms instead. Then m3 would have gone on to proposes to w,. Woman w; now has a
choice between m and m3. She would keep m3 and reject m;, who would go on to
propose to w;. Woman w; would keep m; over m, and in the final matching be paired
with a her first-rank choice.

It is interesting to draw an analogy between the existence of stable matchings and
that of Walrasian equilibrium. We know (Chapter 6) that Walrasian equilibria exist.
Furthermore, they are the solutions of a fixed point problem. In the cases when they can
be computed efficiently it is because the set of Walrasian equilibria can be described
by a set of convex inequalities. The same can be said of stable matchings. The set of
stable matchings is fixed points of a nondecreasing function defined on a lattice. In
addition, one can describe the set of stable matchings as the solutions to a set of linear
inequalities.

10.4.1 A Lattice Formulation

We describe a proof of the existence of stable matchings using Tarski’s fixed point
theorem. It will be useful to relax the notion of a matching. Call an assignment of
women to men such that each man is assigned to at most one woman (but a woman
may be assigned to more than one man) a male semimatching. The analogous object
for women will be called a female semimatching. For example, assigning each man
his first choice would be a male semimatching. Assigning each woman her third choice
would be an example of a female semimatching.

A pair of male and female semimatchings will be called a semimatching which we
will denote by u, v, etc. An example of a semi-matching would consist of each man
being assigned his first choice and each woman being assigned her last choice.

The woman assigned to the man m under the semi-matching n will be denoted
w(m). If man m is assigned to no woman under u, then p(m) = m. Similarly for pu(w).
Next we define a partial order over the set of semimatchings. Write p > v if

(i) w@m) >, vim) or u(m) = u(m) for allm € M and
(i) w(w) <y v(w) or w(w) = v(w) forall w € W.

Therefore 1« > v if all the men are better off under u than in v and all the women are
worse off under y than in v.

Next we define the meet and join operations. Given two semimatchings @ and v
define A = u Vv v as follows:

(i) A(m) = u(m) if w(m) >,, v(m) otherwise A(m) = v(m),
(i) A(w) = p(w) if w(w) <, v(w) otherwise A(w) = v(w).

Define A = u A v as follows:

(i) A'(m) = u@m) if w(m) <,, v(m) otherwise A(m) = v(m),
(i) M(w) = pu(w) if w(w) >, v(w) otherwise AM(w) = v(w).

With these definitions it is easy to check that the set of semimatchings forms a compact
lattice.

260 MECHANISM DESIGN WITHOUT MONEY

Now define a function f on the set of semi-matchings that is nondecreasing. Given
a semi-matching p define f(w) to be the following semi-matching:

(i) f(u)(@m)is man m’s most preferred woman from the set {w: m >, w(w), m = pu(w)}.
If this set is empty set f(u)(m) = m.

(ii)) f(u)(w)is woman w’s most preferred man from the set {m: w >,, u(m), w = u(m)}.
If this set is empty set f(u)(w) = w.

It is clear that f maps semi-matchings into semi-matchings.

Theorem 10.14 There is a semi-matching such that f(u) = w and that (i is
a stable matching.

PROOF We use Tarski’s theorem. It suffices to check that f is nondecreasing.
Suppose @ > v. Pick any m € M. From the definition of >, the women are worse
off under w than in v. Thus

{wim >, v(w)} S {w:m >, p(w)}

and so f(u)(m) >, f(v)(m)or f(u)(m)= f(v)(m). A similar argument applies
for each w € W. Thus f is nondecreasing.

Since the conditions of Tarski’s theorem hold, it follows that there is a semi-
matching pu such that f(u) = pn. We show that the semi-matching is a stable
matching.

By the definition of a semi-matching we have for every m € M, u(m) single
valued as is p(w) for all w € W. To show that y is a matching, suppose not. Then
there is a pairm, my € M, say, such that u(m;) = pu(m,) = w*. Since f(u) = u
it follows that w* is m’s top-ranked choice in {w: m| >, u(w), m; = u(w)} and
m>’s top ranked choice in {w: m; >, w(w), m, = w(w)}. From this we deduce
that w(w*) = m3 where m;, my >~ ms. However, m3 = u(w*) = FuH)(w™),
which is woman w*’s top-ranked choice in {m : w* >,, u(m), u(m) = w*}. Since
my, my are members of this set, we get a contradiction.

To show that the matching u is stable suppose not. Then there must be a
blocking pair (m*, w*). Let w' = u(m*) and m" = u(w*), m’ # m* and w* #
w'. Since (m*, w*) is blocking, m* >« m’ and w* >« w’. Now w’ = u(m*) =
f(u)(@m™), which is man m*’s top-ranked choice from {w : m* >, w(w), m* =
u(w)}. But this set contains w*, which is ranked higher by man m* than w’, a
contradiction. O

10.4.2 The LP Formulation

One can formulate the problem of finding a stable matching as the solution to a set of
linear inequalities. For each man m and woman w let x,,,, = 1 if man m is matched
with woman w and zero otherwise. Then, every stable matching must satisfy the

STABLE MATCHINGS 261

following.

mew=1 Vm e M

weW

mewzl Yw e W

meM
me.i+zxiw+xmu1§l VmeM,weW

Xmw >0 VmeM,weW

Let P be the polyhedron defined by these inequalities.

The first two constraints of P ensure that each agent is matched with exactly one
other agent of the opposite sex. The third constraint ensures stability. To see why,
suppose Y j<pw¥mj = land > i<,m Xiw = 1. Then man m is matched to a woman, j
that he ranks below w. Similarly, woman w is matched to a man she ranks below m.
This would make the pair (m, w) a blocking pair.

Theorem 10.15 P is the convex hull of all stable matchings.

10.4.3 Extensions

We have been careful to specify that preferences are strict. If we allow for indifference,
Theorem 10.7 becomes false. This is because there are instances of the stable matching
problem in which no male or female optimal stable matching exists. The other theorems
stated above continue to hold in the presence of indifferences.

We also limited ourselves to one-to-one matchings. There are situations where one
side of the market wishes to match with more than one agent. The college admissions
market is the classic example. Each student can be assigned to at most one college
but each college can be assigned to many students. In this more general setup colleges
will have preferences over subsets of students. In the absence of any restrictions on
these preferences a stable matching need not exist. One restriction on preferences for
which the results above carry over with no change in statement or proof is the quota
model. Each college has a strict preference ordering over the students and a quota r
of students it wishes to admit. Consider two subsets, S and 7', of students of size r
that differ in exactly one student. The college prefers the subset containing the more
preferred student.

A third extension is to relax the bipartite nature of the stable matching problem.
The nonbipartite version is called the stable roommates problem. Suppose that a set
of N individuals such that |N| is even. A matching in this setting is a partition of N
into disjoint pairs of individuals (roommates). Each individual has a strict preference
ordering over the other individuals that they would like to be paired with. As before,
a matching is unstable if there exists a pair who prefer each other to the person they
are matched with. Such a pair is called blocking. Unlike the stable matching problem,
stable roommates need not exist as the following four person example illustrates.

262 MECHANISM DESIGN WITHOUT MONEY

A o=olY
N N

-lkw»—‘l

>
3
2
4

Each column lists the preference ordering that one agent has over the others. A
matching that pairs agent 1 with agent 4 will always be blocked by the pair (1, 2). A
matching that pairs 2 with 4 will be blocked by (2, 3). A matching that pairs 3 and 4
will be blocked by (3, 1).

An O(|N|?) algorithm to determine if a stable matching exists is known. One
can also associate a collection of linear inequalities with the stable roommates prob-
lem such that the system is feasible if and only if a stable roommates solution
exists.

10.5 Future Directions

While the models in this chapter have been studied and extended in a variety of ways,
there are plenty of open questions for the creative researcher.

One direction of future research on the single-peaked preference model of
Section 10.2 would be to consider choosing multiple alternatives (locations) on an
interval (or more general graph) when agents’ preferences are single-peaked with
respect to the one location that is closest to his peak. As an idealized example,
when downloading files on the Internet one cares only about the location (dis-
tance) of the closest “mirror” site. If a planner can elicit preferences to choose
the location of k mirrors on a network, how can this be done in a strategy-proof
way?

As for the house allocation model of Section 10.3 and the stable matching model of
Section 10.4, observe that both models are static in nature. Yet, there are a variety of
dynamic environments that resemble these models in important ways. As an example,
take the problem of allocating kidneys. Until quite recently those needing a kidney
transplant would have to wait in a queue (the wait list) for an available kidney that
would be an appropriate “fit” or else find a donor fulfilling the appropriate medical
conditions.

More recently, however, exchange systems have been implemented which al-
low kidney patients to “swap” their incompatible (but willing) friends and rela-
tives who are willing to donate a kidney. (Suppose that Alice needs a kidney,
and her incompatible friend Bob is willing to donate; also suppose that Carmina
and Dijen are in a similar situation. If Alice and Dijen are compatible, and if
Carmina and Bob are compatible, then a compatible “swap” can be arranged.)
Static versions of such a model have been analyzed by Roth, Sénmez, and Unver
(2004).

Those authors and others have developed a substantial literature around this impor-
tant problem. If donors and recipients arrive dynamically to such a setting, how should
swaps be arranged?

NOTES AND REFERENCES 263

10.6 Notes and References

The canonical results for the single-peaked preference model are provided by
Moulin (1980), who proved Theorems 10.2 and 10.4 with the additional requirement
that rules take agents’ peaks as their only input. Ching (1997) subsequently showed
that this requirement is redundant when a rule is strategy-proof and onto.

Border and Jordan (1983) generalize these conclusions to multidimensional models
where the outcome space is R¥. They restrict attention to separable preferences, i.e.,
under the assumption that an agent’s (relative) preferences over any one dimension
are fixed, as we vary any other dimensions of the altnerative. For example with k = 3,
if (x1, x2, x3) >=; (x], x2, x3) then separability would imply (x;, y2, y3) >; (x], y2, ¥3).
Border and Jordan show that a strategy-proof, onto rule for separable preferences
must be decomposable into k (possibly different) one-dimensional rules. Of course,
these one-dimensional rules must be generalized median voter schemes. For fur-
ther reference on such generalizations, one should consult the survey of Barbera
(2001).

Another direction in which these results have been generalized pertains to situations
in which agents have single-peaked preferences on graphs. Schummer and Vohra (2004)
obtain two types of result, depending on whether the graph contains any cycle. Finally,
the book of Austen-Smith and Banks (2005). contains more details on the key results
of this literature, and a proof of Theorem 10.4.

The house allocation problem was introduced by Herbert Scarf and Lloyd Shapley
(1974). The TTCA is attributed by these authors to David Gale. The idea that the house
allocation problem can be used as a model for kidney exchanges is discussed in Roth
et al. (2004).

The stable matching problem was introduced by David Gale and Lloyd Shapley
(1962). The first algorithm for finding a stable matching was developed a decade
earlier in 1951 to match interns to hospitals (Stalnaker, 1953). The intrinsic appeal of
the model has inspired three books. The first, by Donald Knuth (1976) uses the stable
matching problem as a vehicle to illustrate some of the basic ideas in the analysis of
algorithms. The book by Gusfield and Irving (1989) is devoted to algorithmic aspects
of the stable matching problem and some of its relatives. On the economics side, the
book by Roth and Sotomayor (1991) gives a complete game theoretic treatment of the
stable matching problem as well as some of its relatives.

The lattice theoretic treatment of the stable matching problem goes back to Knuth
(1976). The proof of existence based on Tarski’s fixed point theorem is due to Adachi
(2000). In fact, the proposal algorithm is exactly one of the algorithms for finding a
fixed point when specialized to the case of stable matchings.

The linear programming formulation of the stable matching problem is due to Vande
Vate (1989). The extension of it to the stable room mates problem can be found in Teo
and Sethuraman (1998). Gusfield and Irving (1989) give a full algorithmic account of
the stable roommates problem.

In parallel, studies have been made of matching models where monetary transfers
are allowed. This has inspired models that unify both the stable matching problem as
well as matching problems where monetary transfers are allowed. Descriptions can be
found in Fleiner (2003) and Hatfield and Milgrom (2005).

264 MECHANISM DESIGN WITHOUT MONEY

Bibliography

H. Adachi. On a characterization of stable matchings. Economics Letters, 68:43—49, 2000.

D. Austen-Smith and J. Banks. Positive Political Theory II: Strategy and Structure. University of
Michigan Press, 2005.

S. Barbera. An introduction of strategy-proof social choice functions. Soc. Choice Welfare, 18(4):619—
653, 2001.

K. Border and J. Jordan. Straightforward elections, unanimity and phantom voters. Rev. Econ. Stud.,
50(1):153-170, 1983.

S. Ching. Strategy-proofness and Amedian voters. Intl. J. Game Theor., 26(4):473-490, 1997.

T. Fleiner. Some results on stable matchings and fixed points. Math. Oper. Res., 28(1):103-126, 2003.

D. Gale and L.S. Shapley. College admissions and the stability of marriage. Amer. Math. Monthly,
69(1):9-15, 1962.

A. Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41(4):587-601,
1973.

D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT Press,
1989.

J.W. Hatfield and P.R. Milgrom. Matching with contracts. Amer. Econ. Rev., 95(4):913-935, 2005.

D. Knuth. Marriages Stables. Les Presses de 1’Universite de Montreal, 1976.

H. Moulin. On strategy proofness and single peakedness. Public Choice, 35(4):437-455, 1980.

A. E. Roth and M. Sotomayor. Two-Sided Matching: A Study in Game-Theoretic Modelling and
Analysis. Cambridge University Press, 1991.

A. E. Roth, T. S6nmez, and M. U. Unver. Kidney exchange. Q. J. Econ., 119(2):457-488, 2004.

M. Satterthwaite. Strategy-proofness and arrow’s conditions. J. Econ. Theor., 10(2):187-217, 1975.

J. Schummer and R.V. Vohra. Strategy-proof location on a network. J. Economic Theory, 104(2):405—
428, 2004.

L.S. Shapley and H. Scarf. On cores and indivisibility. J. Math. Econ., 1(1):23-28, 1974.

J. M. Stalnaker. The matching program for intern placement: The second year of operation. J. Med.
Educ.,28(1):13-19, 1953.

C. P. Teo and J. Sethuraman. Geometry of fractional stable matchings and its applications. Math.
Oper. Res., 23(4):874-891, 1998.

J. H. VandeVate. Linear programming brings marital bliss. Oper. Res. Lett., 8(3):147-153, 1989.

Exercises

10.1 To what extent is Lemma 10.1 sensitive to the richness of the preference domain?
For example, does the result hold if the preference domain is even smaller, e.g.,
containing only symmetric single-peaked preferences?

10.2 Suppose that an anonymous rule described in Theorem 10.2 has parameters
(ym)™—" . Express this rule as a generalized median voter scheme with parameters
(aes)sen.

10.3 Suppose that a rule f is strategy-proof and onto, but not necessarily anonymous.
Fix the preferences of agents 2 through n, (>,,...,=,), and denote the outcomes
obtainable by agent 1 as

O=f(-,=,....,=p)={xel01]T=1eRs.t. f(>1,>2,...,=n)}

10.4
10.5

10.6
10.7

10.8

EXERCISES 265

Show that O = [a, b] for some a, b € [0, 1] (without appealing directly to Theo-
rem 10.4).

Prove Theorem 10.4.

For the case of three agents, generalize Theorem 10.2 to a 3-leaved tree. Specifi-
cally, consider a connected noncyclic graph (i.e., a tree) with exactly three leaves,
£1, €5, £5. Preferences over such a graph are single-peaked if there is a peak p; such
that for any x in the graph, and any y in the (unique shortest) path from x to p;,
y =i X. The concepts of strategy-proofness, onto, and anonymity generalize in the
straightforward way to this setting. Describe all the rules that satisfy these condi-
tions for the case n = 3. (Hint: first show that when all agents’ peaks are restricted
to the interval [¢1, £,], the rule must behave like one described in Theorem 10.2.)
For the nonanonymous case with n > 3, see Schummer and Vohra (2004).

Prove that the TTCA returns an outcome in the core of the house allocation game.

The TTC mechanism is immune to agents misreporting their preferences. Is it
immune to agents misreporting the identity of their houses? Specifically, suppose
a subset of agents trade among themselves first before participating in the TTC
mechanism. Can all of them be strictly better off by doing so?

Consider an instance of the stable matching problem. Let v be a matching (not
necessarily stable) and u the male optimal stable matching. Let B = {m: v(m) >™
w(m)}. Show that if B # @ then there isa m" ¢ B and woman w such that (m, w) is
a blocking pair for v.

CHAPTER 11

Combinatorial Auctions

Liad Blumrosen and Noam Nisan

Abstract

In combinatorial auctions, a large number of items are auctioned concurrently and bidders are allowed
to express preferences on bundles of items. This is preferable to selling each item separately when
there are dependencies between the different items. This problem has direct applications, may be
viewed as a general abstraction of complex resource allocation, and is the paradigmatic problem on
the interface of economics and computer science. We give a brief survey of this field, concentrating
on theoretical treatment.

11.1 Introduction

A large part of computer science as well as a large part of economics may be viewed as
addressing the “allocation problem”: how should we allocate “resources” among the
different possible uses of these resources. An auction of a single item may be viewed
as a simple abstraction of this question: we have a single indivisible resource, and two
(or more) players desire using it — who should get it? Being such a simple and general
abstraction explains the pivotal role of simple auctions in mechanism design theory.

From a similar point of view, “combinatorial auctions” abstract this issue when mul-
tiple resources are involved: how do I allocate a collection of interrelated resources?
In general, the “interrelations” of the different resources may be combinatorially com-
plex, and thus handling them requires effective handling of this complexity. It should
thus come as no surprise that the field of “combinatorial auctions” — the subject of
this chapter — is gaining a central place in the interface between computer science and
economics.

11.1.1 Problem Statement

The combinatorial auction setting is formalized as follows: There is a set of m indivisible
items that are concurrently auctioned among » bidders. For the rest of this chapter we

267

268 COMBINATORIAL AUCTIONS

will use n and m in this way. The combinatorial character of the auction comes from
the fact that bidders have preferences regarding subsets — bundles — of items. Formally,
every bidder i has a valuation function v; that describes his preferences in monetary
terms:

Definition 11.1 A valuation v is a real-valued function that for each subset S of
items, v(S) is the value that bidder i obtains if he receives this bundle of items.
A valuation must have “free disposal,” i.e., be monotone: for S C 7 we have that
v(S) < v(T), and it should be “normalized”: v(?) = 0.

The whole point of defining a valuation function is that the value of a bundle of items
need not be equal to the sum of the values of the items in it. Specifically for sets S and
T,SNT =@, wesay that S and T are complements to each other (in v) if v(SUT) >
v(S) + v(T), and we say that S and T are substitutes if v(SUT) < v(S) + v(T).

Note that implicit in this definition are two assumptions about bidder preferences:
first, we assume that they are “quasi-linear” in the moneys; i.e., if bidder i wins bundle
S and pays a price of p for it then his utility is v;(S) — p. Second, we assume that there
are “no externalities”; i.e., a bidder only cares about the item that he receives and not
about how the other items are allocated among the other bidders.

Definition 11.2 An allocation of the items among the bidders is Sy, ..., S,
where S; N'S; =0 for every i # j. The social welfare obtained by an alloca-
tion is), v;(S;). A socially efficient allocation (among bidders with valuations
V1, ..., Uy) is an allocation with maximum social welfare among all allocations.

In our usual setting the valuation function v; of bidder i is private information —
unknown to the auctioneer or to the other bidders. Our usual goal will be to design a
mechanism that will find the socially efficient allocation. What we really desire is a
mechanism where this is found in equilibrium, but we will also consider the partial goal
of just finding the optimal allocation regardless of strategic behavior of the bidders.
One may certainly also attempt designing combinatorial auctions that maximize the
auctioneer’s revenue, but much less is known about this goal.

There are multiple difficulties that we need to address:

* Computational complexity: The allocation problem is computationally hard (NP-
complete) even for simple special cases. How do we handle this?

* Representation and communication: The valuation functions are exponential size objects
since they specify a value for each bundle. How can we even represent them? How do
we transfer enough information to the auctioneer so that a reasonable allocation can be
found?

e Strategies: How can we analyze the strategic behavior of the bidders? Can we design
for such strategic behavior?

INTRODUCTION 269

The combination of these difficulties, and the subtle interplay between them is what
gives this problem its generic flavor, in some sense encompassing many of the issues
found in algorithmic mechanism design in general.

11.1.2 Some Applications

In this chapter we will undertake a theoretical study and will hardly mention spe-
cific applications. More information about various applications can be found in the
references mentioned in Section 11.8. Here we will shortly mention a few.

“Spectrum auctions,” held worldwide and, in particular, in the united states, have
received the most attention. In such auctions a large number of licenses are sold, each
license being for the use of a certain band of the electromagnetic spectrum in a certain
geographic area. These licenses are needed, for example, by cell-phone companies.
To give a concrete example, let us look at the next scheduled auction of the FCC at
the time of writing (number 66), scheduled for August 2006. This auction is intended
for “advanced wireless services” and includes 1,122 licenses, each covering a 10- or
20-MHz spectrum band (somewhere in the 1.7-GHz or 2.1-GHz frequency range) over
a geographic area that contains a population of between 0.5 million to 50 million. The
total of the minimum bids for all licenses is over 1 billion dollars. Generally speaking,
in such auctions bidders desire licenses covering the geographic area that they wish to
operate in, with sufficient bandwidth. Most of the spectrum auctions held so far escaped
the full complexity of the combinatorial nature of the auction by essentially holding
a separate auction for each item (but usually in a clever simultaneous way). In such
a format, bidders could not fully express their preferences, thus leading, presumably,
to suboptimal allocation of the licenses. In the case of FCC auctions, it has thus been
decided to move to a format that will allow “combinatorial bidding,” but the details are
still under debate.

Another common application area is in transportation. In this setting the auction
is often “reversed” — a procurement auction — where the auctioneer needs to buy
the set of items from many bidding suppliers. A common scenario is a company
that needs to buy transportation services for a large number of “routes” from various
transportation providers (e.g., trucking or shipping companies). For each supplier, the
cost of providing a bundle of routes depends on the structure of the bundle as the cost of
moving the transportation vehicles between the routes in the bundle needs to be taken
into account. Several commercial companies are operating complex combinatorial
auctions for transportation services, and commonly report savings of many millions of
dollars.

The next application we wish to mention is conceptual, an example demonstrat-
ing that various types of problems may be viewed as special cases of combinatorial
auctions. Consider a communication network that needs to supply multiple “con-
nection requests” — each requesting a path between two specified nodes in the net-
work, and offering a price for such a path. In the simplest case, each network edge
must be fully allocated to one of the requests, so the paths allocated to the requests
must be edge-disjoint. Which requests should we fulfill, and which paths should we
allocate for it? We can view this as a combinatorial auction: the items sold are the
edges of the network. The players are the different requests, and the valuation of a

270 COMBINATORIAL AUCTIONS

request gives the offered price for any bundle of edges that contains a path between the
required nodes, and O for all other bundles.

11.1.3 Structure of This Chapter

We start our treatment of combinatorial auctions, in Section 11.2, by leaving aside
the issue of representation and concentrating on bidders with simple “single-minded”
valuations. For these bidders we address the twin questions of the computational com-
plexity of allocation and strategic incentive compatibility. The rest of the chapter then
addresses general valuations. Section 11.3 lays out mathematical foundations and in-
troduces the notion of Walrasian equilibrium and its relation to the linear programming
relaxation of the problem. Section 11.4 describes a first approach for computation-
ally handling general valuations: representing them in various “bidding languages.”
Section 11.5 describes a second approach, that of using iterative auctions which re-
peatedly query bidders about their valuations. In Section 11.6 we show the limitations
of the second approach, pointing out an underlying communication bottleneck. Section
11.7 studies a natural widely used family of iterative auctions — those with ascend-
ing prices. Bibliographic notes appear in Section 11.8, followed by a collection of
exercises.

11.2 The Single-Minded Case

This section focuses on the twin goals of computational complexity and strategic
behavior, while leaving out completely the third issue of the representational complexity
of the valuation functions. For this, we restrict ourselves to players with very simple
valuation functions which we call “single-minded bidders.” Such bidders are interested
only in a single specified bundle of items, and get a specified scalar value if they get
this whole bundle (or any superset) and get zero value for any other bundle.

Definition 11.3 A valuation v is called single minded if there exists a bundle of
items S* and a value v* € R such that v(S) = v* for all S D S*, and v(S) =0
for all other S. A single-minded bid is the pair (S*, v*).

Single-minded valuations are thus very simply represented. The rest of this section
assumes as common knowledge that all bidders are single minded.

11.2.1 Computational Complexity of Allocation

Let us first consider just the algorithmic allocation problem among single-minded
bidders. Recall that in general, an allocation gives disjoint sets of items §; to each
bidder i, and aims to maximize the social welfare) . v;(S;). In the case of single-
minded bidders whose bids are given by (S}, v}"), it is clear that an optimal allocation
can allocate to every bidder either exactly the bundle he desires S; = S} or nothing at
all S; = . The algorithmic allocation problem among such bidders is thus given by
the following definition.

THE SINGLE-MINDED CASE 271

Definition 11.4 The allocation problem among single-minded bidders is the
following:

INPUT: (S7, v}) for each bidderi =1, ..., n.

OUTPUT: A subset of winning bids W C {1, ..., n} such that for every i # j €
W, SN S;‘ = () (i.e., the winners are compatible with each other) with maximum
social welfare) ., v/".

This problem is a “weighted-packing” problem and is NP-complete, which we will
show by reduction from the INDEPENDENT-SET problem.

Proposition 11.5 The allocation problem among single-minded bidders is NP-
hard. More precisely, the decision problem of whether the optimal allocation
has social welfare of at least k (where k is an additional part of the input) is
NP-complete.

PROOF We will make a reduction from the NP-complete “INDEPENDENT-
SET” problem: given an undirected graph G = (V, E) and a number k, does G
have an independent set of size k? An independent set is a subset of the vertices
that have no edge between any two of them. Given such an INDEPENDENT-SET
instance, we will build an allocation problem from it as follows:

¢ The set of items will be E, the set of edges in the graph.

e We will have a player for each vertex in the graph. For vertex i € V we will have
the desired bundle of i be the set of adjacent edges S’ = {e € E|i € e}, and the
value be v} = 1.

Now notice thata set W of winners in the allocation problem satisfies S} N §7 =
for every i # j € W if and only if the set of vertices corresponding to W is an
independent set in the original graph G. The social welfare obtained by W is
exactly the size of this set, i.e., the size of the independent set. It follows that an
independent set of size at least k exists if and only if the social welfare of the
optimal allocation is at least k. This concludes the NP-hardness proof. The fact
that the problem (of whether the optimal allocation has social welfare at least k)
is in NP is trivial as the optimal allocation can be guessed and then the social
welfare can be calculated routinely. O

As usual when a computational problem is shown to be NP-complete, there are
three approaches for the next step: approximation, special cases, and heuristics. We
will discuss each in turn.

First, we may attempt finding an allocation that is approximately optimal. Formally,
we say that an allocation Sy, . . ., S, is a c-approximation of the optimal one if for every
other allocation 77, .. ., T, (and specifically for the socially optimal one), we have that
% Z!g‘; < c. Perhaps a computationally efficient algorithm will always be able to find
an approximately optimal allocation? Unfortunately, the NP-completeness reduction
above also shows that this will not be possible. Not only is it known that the finding
the maximum independent set is NP-complete, but it is known that approximating it to
within a factor of n! =€ (for any fixed € > 0) is NP-complete. Since in our reduction the

272 COMBINATORIAL AUCTIONS

social welfare was exactly equal to the independent-set size, we get the same hardness
here. Often this is stated as a function of the number of items m rather than the number
of players n. Since m < n? (m is the number of edges, 7 is the number of vertices), we
get:

Proposition 11.6 Approximating the optimal allocation among single-minded
bidders to within a factor better than m'/>~¢ is NP-hard.

As we will see in the next subsection, this level of approximation can be reached in
polynomial time, even in an incentive-compatible way (which is the topic of the next
subsection).

Second, we can focus on special cases that can be solved efficiently. Several such
cases are known. The first one is when each bidder desires a bundle of at most two items
|S7| < 2. This case is seen to be an instance of the weighted matching problem (in
general nonbipartite graphs) which is known to be efficiently solvable. The second case
is the “linear order” case. Assume that the items are arranged in a linear order and each
desired bundle is for a continuous segment of items, i.e., each S* = Ui ji+1, . k)
for some 1 < j' < k' < m (think of the items as lots along the sea shore, and assume
that each bidder wants a connected strip of seashore). It turns out that this case can be
solved efficiently using dynamic programming, which we leave as an exercise to the
reader (see Exercise 11.1).

Third, an NP-completeness result only says that one cannot write an algorithm that is
guaranteed to run in polynomial time and obtain optimal outputs on all input instances.
It may be possible to have algorithms that run reasonably fast and produce optimal (or
near-optimal) results on most natural input instances. Indeed, it seems to be the case
here: the allocation problem can be stated as an “integer programming” problem, and
then the large number of known heuristics for solving integer programs can be applied.
In particular, many of these heuristics rely on the linear programming relaxation of the
problem, which we will study in Section 11.3 in a general setting. It is probably safe
to say that most allocation problems with up to hundreds of items can be practically
solved optimally, and that even problems with thousands or tens of thousands of items
can be practically approximately solved quite well.

11.2.2 An Incentive-Compatible Approximation Mechanism

After dealing with the purely algorithmic aspect in the last subsection, we now return to
handling also strategic issues. Again, we still avoid all representation difficulties, i.e.,
focusing on single-minded bidders. That is, we now wish to take into account the fact
that the true bids are private information of the players, and not simply available to the
algorithm. We still would like to optimize the social welfare as much as possible. The
approach we take is the standard one of mechanism design: incentive compatibility.
We refer the reader to Chapter 9 for background, but in general what we desire is
an allocation algorithm and payment functions such that each player always prefers
reporting his private information truthfully to the auctioneer rather than any potential lie.
This would ensure that the allocation algorithm at least works with the true information.
We also wish everything to be efficiently computable, of course.

THE SINGLE-MINDED CASE 273

Definition 11.7 Let V;,, denote the set of all single-minded bids on m items, and
let A be the set of all allocations of the m items between n players. A mechanism
for single-minded bidders is composed of an allocation mechanism f : (V)" —
A and payment functions p; : (V)" — N fori =1, ..., n. The mechanism is
computationally efficient if f and all p; can be computed in polynomial time.
The mechanism is incentive compatible (in dominant strategies) if for every i, and
eVery vy, ..., Un, V; € Vim, we have that v;(a) — p;(vi, v—;) > vi(a’) — p;(v;, v_;),
where a = f(vi,v_;), a’ = f(v},v_;) and v;(a) = v; if i wins in a and zero
otherwise.

The main difficulty here is the clash between the requirements of incentive com-
patibility and that of computational efficiency. If we leave aside the requirement of
computational efficiency then the solution to our problem is simple: take the socially
efficient allocation and let the payments be the VCG payments defined in Chapter 9.
These payments essentially charge each bidder his “externality’: the amount by which
his allocated bundle reduced the total reported value of the bundles allocated to others.
As shown in Chapter 9, this would be incentive compatible, and would give the exactly
optimal allocation. However, as shown above, exact optimization of the social welfare is
computationally intractable. Thus, when we return to the requirement of computational
efficiency, exact optimization is impossible. Now, one may attempt using “VCG-like”
mechanisms: take the best approximation algorithm you can find for the problem —
which can have a theoretical guarantee of no better than O(,/m) approximation but
may be practically much better — and attempt using the same idea of charging each
bidder his externality according to the allocation algorithm used. Unfortunately, this
would not be incentive compatible! VCG-like payments lead to incentive compatibility
if but only if the social welfare is exactly optimized by the allocation rule (at least over
some subrange of allocations).

We thus need to find another type of mechanisms — non-VCG. While in general
settings almost no incentive compatible mechanisms are known beyond VCG, our
single-minded setting is “almost single-dimensional” — in the since that the private
values are composed of a single scalar and the desired bundle —and for such settings this
is easier. Indeed, the mechanism in Figure 11.1 is computationally efficient, incentive
compatible, and provides a ,/m approximation guarantee, as good as theoretically
possible in polynomial time.

This mechanism greedily takes winners in an order determined by the value of the
expression vy / \/@ . This expression was taken as to optimize the approximation ratio
obtained theoretically, but as we will see, the incentive compatibility result would apply
to any other expression that is monotone increasing in v} and decreasing in |S}|. The
intuition behind the choice of j for defining the payments is that this is the bidder who
lost exactly because of i — if Bidder i had not participated in the auction, Bidder j
would have won.

Theorem 11.8 The greedy mechanism is efficiently computable, incentive com-
patible, and produces a /m approximation of the optimal social welfare.

274 COMBINATORIAL AUCTIONS

The Greedy Mechanism for Single-Minded Bidders:

Initialization:

e Reorder the bids such that vj/+/|ST| > v3//|S5| > ... > v} /\/IS%|.
o W — 0.

For i=1.ndo: if SfN (Ujew S7) =0 then W — W U {i}.
Output:

Allocation: The set of winners is W.

Payments: For each i € W, p; = v}/,/|S7|/|S}|, where j is the

smallest index such that S NS} # (0, and for all k < j,k # 1,
Sg N S; =0 (if no such j exists then p; = 0).

Figure 11.1. The mechanism achieves a /m approximation for combinatorial auctions with
single-minded bidders.

Computational efficiency is obvious; we will show incentive compatibility and the
approximation performance in two separate lemmas. The incentive compatibility of
this mechanism follows directly from the following lemma.

Lemma 11.9 A mechanism for single-minded bidders in which losers pay 0 is

incentive compatible if and only if it satisfies the following two conditions:

(i) Monotonicity: A bidder who wins with bid (S}, v}') keeps winning for any v} > v}
and for any S; C S} (for any fixed settings of the other bids).

(i) Critical Payment: A bidder who wins pays the minimum value needed for win-
ning: the infimum of all values v; such that (S}, v}) still wins.

Before we prove the lemma — or actually just the side that we need — let us just
verify that our mechanism satisfies these two properties. Monotonicity is implied since
increasing v} or decreasing S/ can only move bidder i up in the greedy order, making
it easier to win. The critical payment condition is met since notice that i wins as long
as he appears in the greedy order before j. The payment computed is exactly the value
at which the transition between i being before and after j in the greedy order happens.

Note that this characterization is different from the characterization given in Chapter
9 for general single-parameter agents, since single-minded bidders are not considered
to have a single parameter, as their private data consists of both their value and their
desired bundle.

PROOF We first observe that under the given conditions, a truthful bidder will
never receive negative utility: his utility is zero while losing (losers pay zero),
and for winning, his value must be at least the critical value, which exactly equals
his payment. We will now show that a bidder can never improve his utility by
reporting some bid (§’, v’) instead of his true values (S, v). If (§’, v’) is a losing bid
or if §’ does not contain S, then clearly reporting (S, v) can only help. Therefore
we will assume that (S’, v’) is a winning bid and that §’ 2 S.

WALRASIAN EQUILIBRIUM AND THE LP RELAXATION 275

We next show that the bidder will never be worse off by reporting (S, v) rather
than (', v’). Denote the bidder’s payment for the bid (S’, v") by p’, and for the bid
(S, v") by p. For every x < p, bidding (S, x) will lose since p is a critical value.
By monotonicity, (S’, x) will also be a losing bid for every x < p, and therefore
the critical value p’is at least p. It follows that by bidding (S, v’) instead of (', v')
the bidder still wins and his payment will not increase.

It is left to show that bidding (S, v) is no worse than the winning bid (S, v'):
Assume first that (S, v) is a winning bid with a payment (critical value) p. As
long as v’ is greater than p, the bidder still wins with the same payment, thus
misreporting his value would not be beneficial. When v" < P the bidder will lose,
gaining zero utility, and he will not be better off.

If (S, v) is a losing bid, v must be smaller than the corresponding critical value,
so the payment for any winning bid (S, v") will be greater than v, making this
deviation nonprofitable. O

The approximation guarantee is ensured by the following lemma.

Lemma 11.10 Let OPT be an allocation (i.e., set of winners) with maximum
value of Y ;.o pr Vi, and let W be the output of the algorithm, then) ;_, py Vi <

MYy i

PROOF For eachi € W let OPT, ={j € OPT,j =i | S NS} # 0} be the
set of elements in O PT that did not enter W because of i (in addltlon to i itself).
Clearly OPT < |J;.yy O PT; and thus the lemma will follow once we prove the
claim that for every i € W, 3" pp v} < /mv}.
Note that every j € OPT; appeared after i in the greedy order and thus v
\/‘_*
NSl

.Summing over all j € O PT;, we can now estimate

2 v

jE€OPT, /EOPT

|S%]. aL1)

Using the Cauchy—Schwarz inequality, we can bound

Y /IS =VIOPTL [3 Is)l. (11.2)
JEOPT; JEOPT;

Every S;.* for j € O PT; intersects S. Since O PT is an allocation, these intersec-
tions must all be disjoint, and thus |O PT;| < |S/|. Since O PT is an allocation

> jcopr, 1Sjl < m. We thus get 3, pr, . /IS7] < /IS [/m, and plugging into
Inequality 11.1 gives the claim }°;_, py, V] < /mv}.

11.3 Walrasian Equilibrium and the LP Relaxation
In this section we return to discuss combinatorial auctions with general valuations, and

we will study the linear-programming relaxation of the winner-determination problem
in such auctions. We will also define the economic notion of a competitive equilibrium

276 COMBINATORIAL AUCTIONS

with item prices (or “Walrasian equilibrium”). Although these notions appear to be
independent at a first glance, we will describe a strong connection between them. In
particular, we will prove that the existence of a Walrasian equilibrium is a sufficient and
necessary condition for having an integer optimal solution for the linear programming
relaxation (i.e., no integrality gap). One immediate conclusion is that in environments
where Walrasian Equilibria exist, the efficient allocation can be computed in polynomial
time.

11.3.1 The Linear Programming Relaxation and Its Dual

The winner determination problem in combinatorial auctions can be formulated by an
integer program. We present the linear programming relaxation of this integer program,
and denote it by LPR (in the integer program Constraint (11.6) would be replaced with
“xi,s €{0, 1}7).

The Linear Programming Relaxation (LPR):

Maximize) x;5v;(5) (11.3)
ieN,SCM
s.t. > xms<1 VieM (11.4)
ieN, S|jeS
> xis <1 VieN (11.5)
SCM
Xis >0 VieN,SCM (11.6)

In the integer program, each variable x; s equals 1 if bidder i receives the bundle
S, and zero otherwise. The objective function is therefore maximizing social welfare.
Condition 11.4 ensures that each item is allocated to at most one bidder, and Condition
11.5 implies that each player is allocated at most one bundle. Solutions to the linear
program can be intuitively viewed as fractional allocations: allocations that would be
allowed if items were divisible. While the LP has exponentially (in m) many variables,
it still has algorithmic implications. For example, in the case of single-minded bidders
only a single variable X; s+ for each bidder i is required, enabling direct efficient
solution of the LP. In Section 11.5.2 we will see that, assuming reasonable access to
the valuations, the general LP can be solved efficiently as well.

We will also consider the dual linear program.

The Dual Linear Programming Relaxation (DLPR)

Minimize Y u; +) p; (11.7)
ieN jeM
st ui+ Y p;=vi(S) VieN, SCM (11.8)
jes

u; >0, p;=0 VieN, jeM (11.9)

WALRASIAN EQUILIBRIUM AND THE LP RELAXATION 277

The usage of the notations p; and u; is intentional, since we will later see that at the
optimal solution, these dual variables can be interpreted as the prices of the items and
the utilities of the bidders.

11.3.2 Walrasian Equilibrium

A fundamental notion in economic theory is the notion of a competitive equilibrium: a
set of prices where the market clears, i.e., the demand equals the supply. We will now
formalize this concept, that will be generalized later in Section 11.7.

Given a set of prices, the demand of each bidder is the bundle that maximizes her
utility. (There may be more than one such bundle, in which case each of them is called
a demand.) In this section we will consider a linear pricing rule, where a price per each
item is available, and the price of each bundle is the sum of the prices of the items in
this bundle.

Definition 11.11 For a given bidder valuation v; and given item prices
Pi, .-, Pm, abundle T is called a demand of bidder i if for every other bundle
S C M we have that v;(S) — ZjeS pj <v(T)— Zjd pj-

A Walrasian equilibrium! is a set of “market-clearing” prices where every bidder

receives a bundle in his demand set, and unallocated items have zero prices.

Definition 11.12 A set of nonnegative prices pj,..., p;, and an allocation

{s..., Sy of the items is a Walrasian equilibrium if for every player i, S7 is
a demand of bidder i at prices pJ, ..., p;, and for any item j that is not allocated

(ie., j ¢ U'_,S") we have p;f =0.

The following result shows that Walrasian equilibria, if they exist, are econom-
ically efficient; i.e., they necessarily obtain the optimal welfare. This is a variant
of the classic economic result known as the First Welfare Theorem but for environ-
ments with indivisible items. Here we actually prove a stronger statement: the welfare
in a Walrasian equilibrium is maximal even if the items were divisible. In particular, if a
Walrasian equilibrium exists, then the optimal solution to the linear program relaxation
will be integral.

Theorem 11.13 (The First Welfare Theorem) Let pi, ..., p; and
ST, ..., Sy be aWalrasian equilibrium, then the allocation ST, ..., S; maximizes
social welfare. Moreover, it even maximizes social welfare over all fractional

allocations, i.e., let {X[¢}i s be a feasible solution to the linear programming
relaxation. Then, Y [vi(S}) = Y ey scu X svi(S).

! Walras was an economist who published in the 19th century one of the first comprehensive mathematical
analyses of general equilibria in markets.

278 COMBINATORIAL AUCTIONS

PROOF In a Walrasian equilibrium, each bidder receives his demand. Therefore,
for every bidder i and every bundle S, we have v;(S}) — ZjES-* p;f > v;(S) —

> jes p;’f. Since the fractional solution is feasible to the LPR, we have that for
every bidder i, > X 1* s < 1 (Constraint 11.5), and therefore

v(SH =D P = in’is(vi(S)—ij). (11.10)

JjeSs;t ScM jes

The theorem will follow from summing Inequality 11.10 over all bidders, and
showing that 3.y > icse P7 = 2 ien, sem Xis 2_jes Pj- Indeed, the left-hand
side equals ZTZI p;f since ST, ..., Sy is an allocation and the prices of unallocated
items in a Walrasian equilibrium are zero, and the right-hand side is at most
ZT:1 p;f, since the coefficient of every price pj is at most 1 (by Constraint 11.4
inthe LPR). O

Following is a simple class of valuations for which no Walrasian equilibrium exist.

Example 11.14 Consider two players, Alice and Bob, and two items {a, b}.
Alice has a value of 2 for every nonempty set of items, and Bob has a value of 3
for the whole bundle {a, b}, and O for any of the singletons. The optimal allocation
will clearly allocate both items to Bob. Therefore, Alice must demand the empty
set in any Walrasian equilibrium. Both prices will be at least 2; otherwise, Alice
will demand a singleton. Hence, the price of the whole bundle will be at least
4, Bob will not demand this bundle, and consequently, no Walrasian equilibrium
exists for these players.

To complete the picture, the next theorem shows that the existence of an integral
optimum to the linear programming relaxation is also a sufficient condition for the
existence of a Walrasian equilibrium. This is a variant of a classic theorem, known as
“The Second Welfare Theorem,” that provided sufficient conditions for the existence
of Walrasian equilibria in economies with divisible commodities.

Theorem 11.15 (The Second Welfare Theorem) If an integral optimal solu-
tion exists for LPR, then a Walrasian equilibrium whose allocation is the given
solution also exists.

PROOF An optimal integral solution for LPR defines a feasible efficient allo-
cation SY, ..., Sy. Consider also an optimal solution pf, ..., pr, uj, ..., u} to
DLPR. We will show that S}, ..., S, p}, ..., p} is a Walrasian equilibrium.

Complementary-slackness conditions are necessary and sufficient conditions
for the optimality of solutions to the primal linear program and its dual. Because
of the complementary-slackness conditions, for every player i for which x; s- > 0
(i.e., x; s+ = 1), we have that Constraint (11.8) is binding for the optimal dual
solution, i.e.,

uf =vi(SH— > p;

jes:

BIDDING LANGUAGES 279

Constraint 11.8 thus also shows that for any other bundle S we get

w(SH =Y pr =) - > p}

JjeS;t jes

Finally, the complementary-slackness conditions also imply that for every item j
for which Constraint (11.4) is strict, i.e., ZieN’ sljes Xi,s < 1 — which for integral
solutions means that item j is unallocated — then necessarily p; = 0. O

The two welfare theorems show that the existence of a Walrasian equilibrium is
equivalent to having a zero integrality gap:

Corollary 11.16 A Walrasian equilibrium exists in a combinatorial-auction en-
vironment if and only if the corresponding linear programming relaxation admits
an integral optimal solution.

11.4 Bidding Languages

This section concerns the issue of the representation of bids in combinatorial auctions.
Namely, we are looking for representations of valuations that will allow bidders to
simply encode their valuation and send it to the auctioneer. The auctioneer must
then take the valuations (bids) received from all bidders and determine the allocation.
Following sections will consider indirect, iterative ways of transferring information to
the auctioneer.

Specifying a valuation in a combinatorial auction of m items requires providing a
value for each of the possible 2" — 1 nonempty subsets. A naive representation would
thus require 2” — 1 real numbers to represent each possible valuation. It is clear that
this would be completely impractical for more than about two or three dozen items.
The computational complexity can be effectively handled for much larger auctions,
and thus the representation problem seems to be the bottleneck in practice.

We will thus be looking for languages that allow succinct representations of val-
uations. We will call these bidding languages reflecting their intended usage rather
than the more precise “valuations languages.” From the outset it is clear that due to
information theoretic reasons it will never be possible to encode all possible valua-
tions succinctly. Our interest would thus be in succinctly representing interesting or
important ones.

When attempting to choose or design a bidding language, we are faced with the same
types of trade-offs common to all language design tasks: expressiveness vs. simplicity.
On one hand, we would like our language to express succinctly as many “naturally
occurring” valuations as possible. On the other hand, we would like it to be as simple
as possible, both for humans to express and for programs to work with. A well-chosen
bidding language should aim to strike a good balance between these two goals.

The bottom line of this section will be the identification of a simple langauge that
is rather powerful and yet as easily handled by allocation algorithms as are the single
minded bids studied in Section 11.2.

280 COMBINATORIAL AUCTIONS

11.4.1 Elements of Representation: Atoms, OR, and XOR

The common bidding languages construct their bids from combinations of simple
atomic bids. The usual atoms in such schemes are the single-minded bids addressed in
Section 11.2: (S, p) meaning an offer of p monetary units for the bundle S of items.
Formally, the valuation represented by (S, p) is one where v(T) = p forevery T 2 S,
and v(T') = O for all other T'.

Intuitively, bids can be combined by simply offering them together. Still informally,
there are two possible semantics for an offer of several bids. One considers the bids as
totally independent, allowing any subset of them to be fulfilled, and the other considers
them to be mutually exclusive and allows only one of them to be fulfilled. The first
semantics is called an OR bid, and the second is called (somewhat misleadingly) a
XOR bid.

Take, for example, the valuations represented by “({a, b}, 3) XOR ({c, d}, 5)” and
“({a, b}, 3) OR ({c, d}, 5).” Each of them values the bundle {a, c} at O (since no atomic
bid is satisfied) and values the bundle {a, b} at 3. The difference is in the bundle
{a, b, c, d}, which is valued at 5 by the XOR bid (according to the best atomic bid
satisfied), but is valued at 8 by the OR bid. For another example, look at the bid
“({a, b}, 3) OR ({a, c}, 5).” Here, the bundle {a, b, ¢} is valued at 5 since both atomic
bids cannot be satisfied together.

More formally, both OR and XOR bids are composed of a collection of pairs
(S;, pi), where each S; is a subset of the items, and p; is the maximum price that he
is willing to pay for that subset. For the valuation v = (S, p;) XOR, ..., XOR
(Sk, pr), the value of v(S) is defined to be max;s,cs p;. For the valuation v =
(S1, p1) OR, ..., OR (S, pr), one must be a little careful and the value of v(S) is
defined to be the maximum over all possible “valid collections” W, of the value of
Y icw Pi» Where W is a valid collection of pairs if foralli # j € W, 5N S; = 0.

It is not difficult to see that XOR bids can represent every valuation v: just XOR, the
atomic bids (S, v(S)) for all bundles S. On the other hand, OR bids can represent only
superadditive bids (for any two disjoint sets S, T, v(S U T) > v(S) 4 v(T)), since the
atoms giving the value v(S) are disjoint from those giving the value v(7), and they
will be added together for v(S U T). It is not difficult to see that all superadditive
valuations can indeed be represented by OR bids by ORing the atomic bids (S, v(S))
for all bundles S.

We will be more interested in the size of the representation, defined to be simply the
number of atomic bids in it. The following basic types of valuations are good examples
for the power and limitations of these two bidding languages.

Definition 11.17 A valuation is called additive if v(S) = ZjeS v({j}) for all
S. A valuation is called unit demand if v(S) = max;cs v({j}) for all §.

An additive valuation is directly represented by an OR bid:

while a unit-demand valuation is directly represented by an XOR bid:

({1}, p1) XOR ({2}, p2) XOR --- XOR ({m}, pm)

BIDDING LANGUAGES 281

where for each item j, p; = v({j}). Additive valuations can be represented by XOR
bids, but this may take exponential size: atomic bids for all 2" — 1 possible bundles
will be needed whenever p; > 0 for all j. (Since an atomic bid is required for every
bundle § with v(S) strictly larger than that of all its strict subsets, which is the case here
for all S.) On the other hand, nontrivial unit-demand valuations are never superadditive
and thus cannot be represented at all by OR bids.

11.4.2 Combinations of OR and XOR

While both the OR and XOR bidding languages are appealing in their simplicity,
none of them are expressive enough to succinctly represent many desirable simple
valuations. A natural attempt is to combine the power of OR bids and XOR bids. The
most general way to allow this general form of combinations is to define OR and XOR
as operations on valuations.

Definition 11.18 Let v and u be valuations, then (v XOR u) and (v OR u) are
valuations and are defined as follows:

e (v XOR u)(S) = max(v(S), u(S)).
* (v ORu)(S) = maxg rcs, pnr=p V(R) +u(T)

Thus a general “OR/XOR formula” bid will be given by an arbitrary expres-
sion involving the OR and XOR operations over atomic bids. For instance, the bid
({a, b},3) XOR ({c},2)) OR ({d}, 5) values the bundle {a, b, c} at 3, but the bundle
{a, b, d} at 8. The following example demonstrates the added power we can get from
such combinations just using the restricted structure of an OR of XORs of atomic bids.

Definition 11.19 A valuation is called symmetric if v(S) depends only on |S].
A symmetric valuation is called downward sloping if it can be represented as

v(S) = Zj:l..|S| pj,With pL>p2>--->py >0.

It is easy to verify that every downward sloping valuations with p; > p, > --- >
Pm > 0requires XOR bids of size 2" — 1, and cannot be represented at all by OR bids.

Lemma 11.20 OR-of-XORs bids can express any downward sloping symmetric

valuation on m items in size m>.

PROOF For each j=1,...,m we will have a clause that offers p; for any
single item. Such a clause is a simple XOR-bid, and the m different clauses are
all connected by an OR. Since the p;’s are decreasing, we are assured that the
first allocated item will be taken from the first clause, the second item from the
second clause, etc. O

282 COMBINATORIAL AUCTIONS

11.4.3 Dummy Items

General OR/XOR formulae seem very complicated and dealing with them algorithmi-
cally would appear to be quite difficult. Luckily, this is not the case and a generalization
of the langauge makes things simple again. The main idea is to allow XORs to be rep-
resented by ORs. This is done by allowing the bidders to introduce dummy items
into the bids. These items will have no intrinsic value to any of the participants, but
they will be indirectly used to express XOR constraints. The idea is that an XOR bid
(S1, p1) XOR (S,, p2) can be represented as (S} U {d}, p1) OR (S, U {d}, p»), where
d is a dummy item.

Formally, we let each bidder i have its own set of dummy items D;, which only
he can bid on. An OR* bid by bidder i is an OR bid on the augmented set of items
M U D;. The value that an OR* bid gives to a bundle S C M is the value given by
the OR bid to S U D;. Thus, for example, for the set of items M = {a, b, c}, the OR*
bid ({a,d}, 1) OR ({b,d}, 1) OR ({c}, 1), where d is a dummy item, is equivalent to
((fa},) XOR ({0}, 1)) OR ({c}, 1).

An equivalent but more appealing “user interface” is to let bidders report a set of
atomic bids together with “constraints” that signify which bids are mutually exclusive.
Each constraint can then be converted into a dummy item that is added to the con-
flicting atomic bids. Despite its apparent simplicity, this language can simulate general
OR/XOR formulae.

Theorem 11.21 Any valuation that can be represented by OR/XOR formula of
size s can be represented by OR* bids of size s, using at most s* dummy items.

PROOF We prove by induction on the formula structure that a formula of size
s can be represented by an OR* bid with s atomic bids. We then show that each
atomic bid in the final resulting OR* bid can be modified as to not to include
more than s dummy items in it.

Induction: The basis of the induction is an atomic bid, which is clearly an OR*
bid with a single atomic bid. The induction step requires handling the two separate
cases: OR and XOR. To represent the OR of several OR* bids as a single OR*
bid, we simply merge the set of clauses of the different OR* bids. To represent
the XOR of several OR* bids as a single OR* bid, we introduce a new dummy
item xg7 for each pair of atomic bids (S, v) and (T, v’) that are in two different
original OR* bids. For each bid (S, v) in any of the original OR* bids, we add to
the generated OR* bid an atomic bid (S U {xs7|T}, v), where T ranges over all
atomic bids in all of the other original OR* bids.

It is clear that the inductive construction constructs an OR* bid with exactly s
clauses in it, where s is the number of clauses in the original OR/XOR formula.
The number of dummy items in it, however, may be large. However, we can
remove most of these dummy items. One can see that the only significance of a
dummy item in an OR* bid is to disallow some two (or more) atomic bids to be
taken concurrently. Thus we may replace all the existing dummy items with at
most (;) new dummy items, one for each pair of atomic bids that cannot be taken

ITERATIVE AUCTIONS: THE QUERY MODEL 283

together (according to the current set of dummy items). This dummy item will be
added to both of the atomic bids in this pair. O

This simulation can be directly turned into a “compiler” that translates OR/XOR
formulae into OR* bids. This has an extremely appealing implication for allocation
algorithms: to any winner determination (allocation) algorithm, an OR* bid looks just
like a regular OR-bid on a larger set of items. But an OR bid looks to an allocation
algorithm just like a collection of atomic bids from different players. It follows that
any allocation algorithm that can handle single-minded bids (i.e., atomic bids) can
immediately also handle general valuations represented as OR* bids or as general
OR/XOR formulae. In particular, the various heuristics mentioned in Section 11.2 can
all be applied for general valuations represented in these languages.

11.5 Iterative Auctions: The Query Model

The last section presented ways of encoding valuations in bidding languages as to
enable the bidders to directly send their valuation to the auctioneer. In this section we
consider indirect ways of sending information about the valuation: iferative auctions.
In these, the auction protocol repeatedly interacts with the different bidders, aiming to
adaptively elicit enough information about the bidders’ preferences as to be able to find
a good (optimal or close to optimal) allocation. The idea is that the adaptivity of the
interaction with the bidders may allow pinpointing the information that is relevant to the
current auction and not requiring full disclosure of bidders’ valuations. This may not
only reduce the amount of information transferred and all associated complexities but
also preserve some privacy about the valuations, only disclosing the information that is
really required. In addition, in many real-life settings, bidders may need to exert efforts
even for determining their own valuation (like collecting data, hiring consultants, etc.);
such iterative mechanisms may assist the bidders with realizing their valuations by
guiding their attention only to the data that is relevant to the mechanism.

Such iterative auctions can be modeled by considering the bidders as “black-boxes,”
represented by oracles, where the auctioneer repeatedly queries these oracles. In such
models, we should specify the types of queries that are allowed by the auctioneer.
These oracles may not be truthful, of course, and we will discuss the incentive issues in
the final part of this section (see also Chapter 12). The auctioneer would be required to
be computationally efficient in two senses: the number of queries made to the bidders
and the internal computations. Efficiency would mean polynomial running time in m
(the number of items) even though each valuation is represented by 2™ numbers. The
running time should also be polynomial in n (the number of bidders) and in the number
of bits of precision of the real numbers involved in the valuations.

11.5.1 Types of Queries

Our first step is to define the types of queries that we allow our auctioneer to make
to the bidders. Probably the most straightforward query one could imagine is where a
bidder reports his value for a specific bundle.

284 COMBINATORIAL AUCTIONS

Value query: The auctioneer presents a bundle S, the bidder reports his value v(S) for
this bundle.

It turns out that value queries are pretty weak and are not expressive enough in
many settings. Another natural and widely used type of queries is the demand query, in
which a set of prices is presented to the bidder, and the bidder responds with his most
valuable bundle under the published prices.

Demand query (with item prices®): The auctioneer presents a vector of item prices
Pls ..., Pm, the bidder reports a demand bundle under these prices, i.e., some set S
that maximizes v(S) —) ;¢ Di-

How difficult it is for a bidder to answer such a demand query or a value query de-
pends on his internal representation of his valuation. For some internal representations
this may be computationally intractable, while for others it may be computationally
trivial. It does seem though that in many realistic situations the bidders will not really
have an explicit internal representation, but rather “know” their valuation only in the
sense of being able to answer such queries.

The first observation that we should make is that demand queries are strictly more
powerful than value queries.

Lemma 11.22 A value query may be simulated by mt demand queries, where t
is the number of bits of precision in the representation of a bundle’s value.

PROOF We first show how to answer “marginal value” queries using demand
queries: given a bundle S and an item j ¢ S, compute the marginal value of j
relative to S: v(S U {j}) — v(S) (the items are denoted, w.l.o.g., by 1,...,m).
For all i € S we set p; =0, for all i € SU {j}, we set p; = 0o, and then run
a binary search on p;. The highest value p; for which the demand under these
prices contains j is the marginal value of j relative to S.

Once we can solve marginal value queries, any value query can be solved by

v(S) =2 jesw{i € Sli = jH —v({i € Sli < j}. O

Lemma 11.23 An exponential number of value queries may be required for
simulating a single demand query.

The proof of Lemma 11.23 is left for Exercise 11.3.

11.5.2 Solving the Linear Program

Many algorithms for handling combinatorial auctions or special cases of combinatorial
auctions start by solving the linear programming relaxation of the problem, shown
in Section 11.3.1. A very useful and surprising property of demand queries is that
they allow solving the linear-programming relaxation efficiently. This is surprising
since the linear program has an exponential number of variables. The basic idea is

2 In Section 11.7 we consider more general demand queries where a price of a bundle is not necessarily the sum
of the prices of its items.

ITERATIVE AUCTIONS: THE QUERY MODEL 285

to solve the dual linear program using the Ellipsoid method. The dual program has
a polynomial number of variables, but an exponential number of constraints. The
Ellipsoid algorithm runs in polynomial time even on such programs, provided that a
“separation oracle” is given for the set of constraints. Surprisingly, such a separation
oracle can be implemented by presenting a single demand query to each of the bidders.

Consider the linear-programming relaxation (LPR) for the winner determination
problem in combinatorial auctions, presented in Section 11.3.

Theorem 11.24 LPR can be solved in polynomial time (in n, m, and the number
of bits of precision t) using only demand queries with item prices.>

PROOF Consider the dual linear program, DLPR, presented in Section 11.3
(Equations 11.8-11.9). Notice that the dual problem has exactly n + m variables
but an exponential number of constraints.

Recall that a separation oracle for the Ellipsoid method, when given a possible
solution, either confirms that it is a feasible solution, or responds with a constraint
that is violated by the possible solution. Consider a possible solution (, 77))
for the dual program. We can rewrite Constraint 11.8 of the dual program as
u; > v;i(S) — Zje s Pj- Now, a demand query to bidder i with prices p; reveals
exactly the set S that maximizes the RHS of the previous inequality. Thus, in order
to check whether (7, 73) is feasible it suffices to (1) query each bidder i for his
demand D; under the prices p;; (2) check only the n constraints u; + ., pj >
v;(D;) (where v;(D;) can be simulated using a polynomial sequence of demand
queries as was previously observed). If none of these are violated then we are
assured that (7, _p>) is feasible; otherwise, we get a violated constraint.

What is left to be shown is how the primal program can be solved. (Recall that
the primal program has an exponential number of variables.) Since the Ellipsoid
algorithm runs in polynomial time, it encounters only a polynomial number of
constraints during its operation. Clearly, if all other constraints were removed
from the dual program, it would still have the same solution (adding constraints
can only decrease the space of feasible solutions). Now take the “reduced dual”
where only the constraints encountered exist, and look at its dual. It will have the
same solution as the original dual and hence of the original primal, but with a
polynomial number of variables. Thus, it can be solved in polynomial time, and
this solution clearly solves the original primal program, setting all other variables
to zero. O

11.5.3 Approximating the Social Welfare

The final part of this section will highlight some of the prominent algorithmic results for
combinatorial auctions. Some of these results are obtained by solving the LP relaxation.
Figure 11.5.2 lists state-of-the-art results for the point in time in which this chapter

3 The solution will have a polynomial-size support (nonzero values for x;), and thus we will be able to describe
it in polynomial time.

286

COMBINATORIAL AUCTIONS

Class Queries Approx IC approx Lower bound
1.
G A m m2
en w vm logm Section 1.6, [NS06]
v/m (rand)
Value e 2 [HKDMT04] - [BNO5a, DS05]
Demand /m [BNO5a] \/b";_m m3 e
vm (rand)
[LS05, DNS06]
SubA Value vm Vm [DNS05] mi
Demand 2 (rand) [Fei06] vm 2 [DNS05]
XOS Value Jm N mi [DS06]
Demand 2 [DNSO05] vm , —5 [DNS05]
e . log® m (rand)
%5 (rand) [Fei06] [DNS06]
SubM Value 2 [LLN06] N ¢ [KLMMO3]
Demand 2 vm % [FV06]
¢--10~* (rand
el () log? m (rand)
[FV06]
Subs Value 1 [Ber05] 1
Demand 1 [GS99, BM97] 1
o 1 e
kDup Demand mht k-mF=2 [BGNO3] mh+
[BKV05, DS05] [BGNO03, DS05]
Proc Any Inn [NS06] - logn [Nis02]

Figure 11.2. It describes the best algorithmic results, incentives compatible approximation
results and lower bounds which are currently known for different classes of combinatorial-
auction valuations. All results apply for a polynomial number of queries of the specified
type. Results without references can be trivially derived from other entries in this table. The
word “rand” implies that the result is achieved by a randomized algorithm; otherwise, the
results correspond to deterministic algorithms only. Results that use € hold for any ¢ > 0.
For the simplicity of the presentation, we ignore the constants of the asymptotic results (i.e.,
we drop the big-Oh and Q notations). [NS06]: Nisan and Segal, 2006; [BNO5a]: Blumrosen
and Nisan, 2005; [DS05]: Dobzinski and Schapira, 2005; [LSO5]: Lavi and Swamy, 2005;
[DNSO06]: Dobzinski et al., 2006; [Fei06]: Feige, 2006; [DNSO5]: Dobzinski et al., 2005;
[DSO06]: Dobzinski and Schapira, 2006; [LLNO6]: Lehmann et al., 2006; [KLMMO5]: Khot et al.,
2005; [FV06]: Feige and Vondrak, 2006; [Ber05]: Bertelsen, 2005; [GS99]: Gul and Stacchetti,
1999; [BM971:Bikhchandani and Mamer, 1997; [BKVO5]: Briest et al., 2005; [BGNO3]: Bartal
et al., 2003; [Nis02]: Nisan, 2002.

was written. For each class of bidder valuations, we mention the best currently known
polynomial-time approximation ratio, the optimal ratio that is currently achievable
by ex-post Nash incentive-compatible mechanisms that run in polynomial time, and
the best computational hardness result for the algorithmic problem (under standard
computational assumptions). We also classify the results according to the queries they

COMMUNICATION COMPLEXITY 287

use: unrestricted, value queries, or demand queries. In the figure, we refer the reader
to the papers that established these results for more details. In particular, a randomized
incentive-compatible mechanism that achieves a O(/m)-approximation for general
combinatorial auctions is discussed in Chapter 12. Below are the classes of valuations
that we consider and their abbreviations:

Gen — General (unrestricted) valuations.

SubA - Subadditive valuations, i.e., where v(SUT) < v(S) + v(T) forall S, T.

XOS — All valuations that can be represented by XOR-of-ORs bids with singleton
atomic bundles (see Section 11.4).

SubM - Submodular valuations, i.e., where for every two bundles S and T we have
that v(S) + v(T) > v(SUT)+v(SNT).

Subs — (Gross-) substitutes valuations, see Definition 11.28 in Section 11.7.

kDup — Combinatorial auctions with k duplicates of each good. Each bidder desires
at most a single item of each good.

Proc — Procurement auctions, where a single buyer needs to buy a set of m items
from n suppliers. The suppliers have privately known costs for bundles of items. The
buyer aims to minimize the total cost paid.

It is known that Gen D SubA D XOS D SubM D Subs.

11.6 Communication Complexity

We already saw in Section 11.2.1 that solving the optimal allocation problem is NP-
complete even for single-minded bidders and thus certainly for more general types
of bidders. However, as mentioned, in practice one can usually solve problems with
thousands or tens-of-thousands of items and bids optimally of near-optimally. Will it be
possible to do the same for general valuations using some type of queries to the bidders?
In other words: is the problem of representing the valuations an obstacle beyond the
computational hardness? In this section we provide an affirmative answer: even if the
auctioneer had unlimited computational power, then eliciting sufficient information
from the bidders as to determine the optimal allocation would require an exponential
amount of queries to the bidders — for any query type. We present this lower bound in
a very general model — Yao’s two-party communication complexity model — and thus
it holds for essentially any model of iterative combinatorial auctions with any type of
queries. Let us first introduce this model formally.

11.6.1 The Model and Statement of Lower Bound

The lower bound is obtained in Yao’s standard model of two-player communication
complexity. In this model we consider two players, Alice and Bob, each holding a
valuation function. We can restrict ourselves to the special case where the value of
each set is either O or 1. Thus, the inputs are monotone functions vy, v, : 2" — {0, 1}.
Alice and Bob must embark on a communication protocol whose final outcome is
the declaration of an allocation (S, §¢) that maximizes v;(S) + v2(S¢). The protocol
specifies rules for exchanging bits of information, where Alice’s message at each point

288 COMBINATORIAL AUCTIONS

may depend only on v; and on previous messages received from Bob, while Bob’s
message at each point may depend only on v, and on previous messages received from
Alice. No computational constraints are put on Alice and Bob — only communication
is measured. The main result shows that:

Theorem 11.25 Every protocol that finds the optimal allocation for every pair
of 0/1 valuations vy, v, must use at least (r:;Z) bits of total communication in the
worst case.

Note that (m"}z) is exponential in m.* Since Yao’s communication model is very
powerful, the lower bound immediately applies to essentially all settings where v; and
vy reside in “different places.” In particular, to the case where the bidders reply to
queries of the auctioneer (since a protocol with an auctioneer can be converted into one
without an auctioneer, by sending all replies directly to each other and having Alice
and Bob simulate the auctioneer’s queries) and to any larger number of bidders (since
the 2-bidder case is a special case where all bidders but two have null valuations.)

11.6.2 The Proof

Fix a communication protocol that for every input valuation pair (v;, v;) finds an
optimal allocation S, S°. We will construct a “fooling set”: a set of valuation pairs
with the property that the communication patterns produced by the protocol must be
different for different valuation pairs. Specifically, for every 0/1 valuation v, we define
the dual valuation v* to be v*(S) = 1 — v(5°). Note that (i) v* is indeed a monotone 0/1
valuation, and (ii) for every partition (S, S¢), S € M, we have that v(S) + v*(5°) = 1.

Lemma 11.26 Let v # u be arbitrary 0/1 valuations. Then, in a welfare maxi-
mizing combinatorial auction, the sequence of bits transmitted on inputs (v, v*)
is not identical to the sequence of bits transmitted on inputs (u, u™).

Before we prove the lemma, let us see how the main theorem is implied. Since
different input valuation pairs lead to different communication sequences, we see that
the total possible number of communication sequences produced by the protocol is
at least the number of valuation pairs (v, v*), which is exactly the number of distinct
0/1 valuations v. The number of 0/1 valuations can be easily bounded from below by

2672) by counting only valuations such that v(S) = 0 for all |S| < m/2, v(S) =1 for
all | S| > m/2, and allowing v(S) to be either O or 1 for | S| = m/2; there are (mn;Z) sets
of size m /2, so the total number of such valuations is exponential in this number. The
protocol must thus be able to produce 207) different communication sequences. Since
these are binary sequences, at least one of the sequences must be of length at least

(7o)

4 More precisely, by Stirling’s formula, (m";z) ~ 2/ -m)-2".

ASCENDING AUCTIONS 289

PROOF (of lemma) Assume, by way of contradiction, that the communication
sequence on (v, v*) is the same as on (u, u*). We first show that the same commu-
nication sequence would also be produced for (v, #*) and for (u, v*). Consider the
case of (v, u*); i.e., Alice has valuation v and Bob has valuation u#*. Alice does not
see u™ so she behaves and communicates exactly as she would in the (v, v*) case.
Similarly, Bob behaves as he would in the (1, u*) case. Since the communication
sequences in the (v, v*) and the (u, u™*) cases are the same, neither Alice nor Bob
ever notices a deviation from this common sequence, and thus never deviates
themselves. In particular, this common sequence is followed also on the (v, u*)
case. Thus, the same allocation (S, §¢) is produced by the protocol in all four
cases: (v, v*), (u, u™), (v, u™), (u, v*). We will show that this is impossible, since
a single allocation cannot be optimal for all four cases.

Since u # v, we have that for some set 7, v(T) # u(T). Without loss of
generality, v(T) = 1 and u(T) = 0, and so v(T) + u*(T¢) = 2. The allocation
(S, §° produced by the protocol must be optimal on the valuation pair (v, u*),
thus v(S) + u*(S°) > 2. However, since (v(S) + v*(S9)) + u(S) + u*(S)) =
14+ 1=2, we get that u(S) + v*(5°) < 0. Thus (S, S°) is not an optimal al-
location for the input pair (4, v*) — contradiction to the fact that the protocol
produces it as the output in this case as well. O

More complex lower bounds on communication allow us to prove tight lower bounds
for iterative auctions in various setting. The above lower bound on communication can
be extended to even approximating the social welfare.

Theorem 11.27 For every € > 0, approximating the social welfare in a combi-
natorial auction to within a factor strictly smaller than min{n, m'/>=¢} requires
exponential communication.

Note that this is tight: achieving a factor of n is always trivial (by bundling all items
together and selling them in a simple single-item auction), and for n > \/m there exists
an O(y/m) approximation (see Figure 11.5.2). Actually, most of the lower bounds
described in Figure 11.5.2 are communication-complexity results.

11.7 Ascending Auctions

This section concerns a large class of combinatorial auction designs which contains
the vast majority of implemented or suggested ones: ascending auctions. These are a
subclass of iterative auctions with demand queries in which the prices can only increase.
In this class of auctions, the auctioneer publishes prices, initially set to zero (or some
other minimum prices), and the bidders repeatedly respond to the current prices by
bidding on their most desired bundle of goods under the current prices. The auctioneer
then repeatedly updates the prices by increasing some of them in some manner, until
a level of prices is reached where the auctioneer can declare an allocation. There are
several reasons for the popularity of ascending auctions, including their intuitiveness,

290 COMBINATORIAL AUCTIONS

An item-price ascending auction for substitutes valuations:

Initialization:
For every item j € M, set p; < 0.
For every bidder i let S; « 0.

Repeat
For each ¢, let D; be the demand of ¢ at the following prices:
p; for j € S; and p; + € for j € S;.

If for all 4 S; = D;, exit the loop;

Find a bidder ¢ with S; # D; and update:
e For every item j € D; \ S;, set pj < p; + ¢
o S, — D,
e For every bidder k # i, Sk <+ S \ D;

Finally: Output the allocation 51, ..., Sy.

Figure 11.3. An item-price ascending auction that ends up with a nearly optimal allocation
when bidders’ valuations have the (gross) substitutes property.

the fact that private information is only partially revealed, that it is clear that they will
terminate, and that they may increase the seller’s revenue in some settings.

We will describe auctions that belong to two families of ascending auctions. One
family uses a simple pricing scheme (item prices), and guarantees economic efficiency
for a restricted class of bidder valuations. The second family is socially efficient for
every profile of valuations, but uses a more complex pricing scheme — prices for bundles
— extending the demand queries defined in Section 11.5.

11.7.1 Ascending Item-Price Auctions

Figure 11.3 describes an auction that is very natural from an economic point of view:
increase prices gradually, maintaining a tentative allocation, until no item that is ten-
tatively held by one bidder is demanded by another. Intuitively, at this point de-
mand equals supply and we are close to a Walrasian equilibrium discussed earlier in
Section 11.3, which, by the first welfare theorem, is socially efficient.

Of course, we know that a Walrasian equilibrium does not always exist in a com-
binatorial auction, so this cannot always be true. The problem is that the auction does
not ensure that items are not underdemanded: it may happen that an item that was
previously demanded by a bidder is no longer so. The following class of valuations are
those in which this cannot happen.

Definition 11.28 A valuation v; satisfies the substitutes (or gross-substitutes)
property if for every pair of item-price vectors ¢ > p (coordinate-wise com-
parison), we have that the demand at prices g contains all items in the de-
mand at prices p whose price remained constant. Formally, for every A €
argmaxs{v(S) — ZjeS pj}, there exists D € argmaxs{v(S) — ZjeS q;}, such
that D O {j € A|p; = q,}.

ASCENDING AUCTIONS 291

That is, the only items that could drop from the demand when prices change from
7)) to 7 are those whose price has strictly increased. The substitutes property rules out
any form of complementarities. For example, a single-minded bidder who is willing to
pay 10 for the complete bundle {a, b} will demand both items at prices (3, 3), but if the
price of b is raised to 8, this bidder will no longer demand any item — contrarily to the
requirement of a substitutes valuation. Exercise 11.6 shows that, in general, substitutes
valuations must be submodular. It is not difficult to see that this class of valuations
contains the classes of additive valuations, unit-demand valuations, and downward-
sloping valuations (see Definitions 11.17 and 11.19). With such valuations, the auction
maintains the property that every item is demanded by some bidder. The auction
terminates when all the bidders receive their demanded bundles, and consequently, the
auction converges to a (nearly) Walrasian equilibrium.

Definition 11.29 An allocation Si,...,S, and a prices py,..., p,, are an
e-Walrasian equilibrium if (J; S; 2 {j|p; > 0} and for each i, S; is a demand
of i at prices p; for j € §; and p; + € for j & S;.

Theorem 11.30 For bidders with substitutes valuations, the auction described
in Figure 11.3 ends with an e-Walrasian equilibrium. In particular, the allocation
achieves welfare that is within ne from the optimal social welfare.

PROOF The theorem will follow from the following key claim:
Claim 11.31 At every stage of the auction, for every bidder i, S; € D;.

First notice that this claim is certainly true at the beginning. Now let us see what
an update step for some bidder i causes. For i itself, S; after the step is exactly
equal to D; (note that the changes in prices of items just added to S; exactly
matches those defining D;). For k # i, two changes may occur at this step: first,
items may have been taken from S; by i, and second the prices of items outside
of S; may have increased. The first type of change makes S; smaller while not
affecting Dy. The second type of change does not affect S; and the substitutes
property directly implies that the only items that can be removed from Dj are
those whose price strictly increased and are thus not in .

Once we have this claim, it is directly clear that no item that was ever demanded
by any player is ever left unallocated; i.e., | J; S; always contains all items whose
price is strictly positive. Since the auction terminates only when all D; = S; we
get an e-Walrasian equilibrium. The fact that an e-Walrasian equilibrium is close
to socially optimal is obtained just as in the proof of the first welfare theorem
(Theorem 11.13). O

Since prices are only going up, the algorithm terminates after at most m - vyax /€
stages, where vy, is the maximum valuation. It may also be useful to view this auction

5 For simplicity of presentation, the algorithm assumes that D; is unique. In the general case, the claim is that S;
is contained in some demand bundle D;, and the auction is required to pick such a D;.

292 COMBINATORIAL AUCTIONS

as implementing a primal-dual algorithm. The auction starts with a feasible solution to
the dual linear program (here, zero prices), and as long as the complementary-slackness
conditions are unsatisfied proceeds by improving the solution of the dual program (i.e.,
increasing some prices).

Finally, we will address the strategic behavior of the bidders in such ascending
auctions. Will strategic bidders act myopically and truthfully reveal their demand in
these auctions? If the valuation functions have complementarities, then bidders will
clearly have strong incentives not to report their true preferences, due to a problem
known as the exposure problem: Bidders who bid for a complementary bundle (e.g.,
a pair of shoes), are exposed to the risk that part of the bundle (the left shoe) may be
taken from them later, and they are left liable for the price of the rest of the bundle (the
right shoe) that is worthless for them.

However, even for substitutes preferences the incentive issues are not solved. The
prices in Walrasian equilibria are not necessarily VCG prices, and therefore truthful
bidding is not an ex-post equilibrium.® The strategic weakness of Walrasian equilibria
is that bidders may have the incentive to demand smaller bundles of items (demand
reduction), in order to lower their payments. The following example illustrates such a
scenario.

Example 11.32 Consider two items a and b and two players, Alice and Bob,
with the following substitutes valuations:

v(a) | v(b) | v(ab)
Alice 4 4 4
Bob 5 5 10

For these valuations, the auction in Figure 11.3 will terminate at the Walrasian
equilibrium prices p, = 4, p», = 4, where Bob receives both items, and earning
him a payoff of 2. If Bob placed bids only on a during the auction, then the auction
would stop at zero prices, allocating a to Bob and b to Alice. With this demand
reduction, Bob improves his payoff to 5.

11.7.2 Ascending Bundle-Price Auctions

As we saw, not every profile of valuations has a Walrasian equilibrium. The next type
of auction that we describe will reach an equilibrium that involves a more complex
pricing scheme. We start by describing this extended notion of equilibrium, allowing
personalized bundle prices — a distinct price per each possible bundle and for each
bidder. That is, personalized bundle prices specify a price p;(S) per each bidder i and
every bundle S. We can naturally generalize the notion of the demand of bidder i under
such prices to argmaxgs(v;(S) — p;(S)).

6 When we further restrict the class of substitutes valuations such that each bidder desires at most one item
(“unit-demand” valuations, see Definition 11.17), then it is known that a similar auction reaches the lowest
possible Walrasian-equilibrium prices that are also VCG prices, and hence these auctions are ex-post Nash
incentive compatible (see Chapter 9).

ASCENDING AUCTIONS 293

A bundle Price auction:

Initialization: For every player ¢ and bundle S, let p;(S) « 0.
Repeat

e Find an allocation T, ..., T, that maximizes revenue at current prices,

Le, > pi(Ti) > >, pi(Y;) for any other allocation Y7, ..., Y.

(Bundles with zero prices will not be allocated, i.e., p;(T;) > 0 for eve ry i.)
Let L be the set of losing bidders, i.e., L = {i|T; = 0}.

For every i € L let D; be a demand bundle of i under the prices p;.

If for all 4 € L, D; = () then terminate.

For all i € L with D; # 0, let p;(D;) « pi(D;) + €.

Figure 11.4. A bundle price auction which terminates with the socially efficient allocation for
any profile of bidders.

Definition 11.33 Personalized bundle prices ? = {p;(S)} and an allocation
S =(S1,...,Sy) are called a competitive equilibrium if:

¢ For every bidder i, S; is a demand bundle, i.e., for any other bundle 7; € M,
v;(8;) — pi(S;) = vi(Th) — pi(Ty).

¢ The allocation S maximizes seller’s revenue under the current prices, i.e., for any
other allocation (71, ..., T,), Y i_; pi(S) = Y pi(T)).

It is easy to see that with personalized bundle prices, competitive equilibria always
exist: any welfare-maximizing allocation with the prices p;(S) = v;(S) gives a compet-
itive equilibrium. This may be viewed as the Second Welfare Theorem (see Theorem
11.15) for this setting. Even this weak notion of equilibrium, however, guarantees
optimal social welfare:

Proposition 11.34 In any competitive equilibrium (_p), S) the allocation max-
imizes social welfare.

PROOF Let (77, S) be a competitive equilibrium, and consider some allocation
T =(Ty,...,T,). Since S; is a demand bundle under the prices ﬁ for every
bidder i, we have that v;(S;) — p;(S;) > v;(T;) — p;(T;). Summing over all the
bidders, together with > ", p;(S;) > Y i_, pi(T;), we get that the welfare in the
allocation S exceeds the welfare in 7. O

Several iterative auctions are designed to end up with competitive equilibria.
Figure 11.4 describes a typical one. At each stage the auctioneer computes a ten-
tative allocation that maximizes his revenue at current prices — which we view as the
current bids. All the losing bidders then “raise their bids” on their currently demanded
bundle. When no losing bidder is willing to do so, we terminate with an approximately
competitive equilibrium.

Definition 11.35 A bundle S is an e-demand for a player i under the bun-
dle prices ﬁ if for any other bundle T, v;(S) — p;(S) = vi(T) — p;(T) — €. An

294 COMBINATORIAL AUCTIONS

e-competitive equilibrium is similar to a competitive equilibrium (Definition
11.33), except each bidder receives an e-demand under the equilibrium prices.

Theorem 11.36 For any profile of valuations, the bundle-price auction de-
scribed in Figure 11.4 terminates with an e-competitive equilibrium. In particular,
the welfare obtained is within ne from the optimal social welfare.

PROOF Ateach step of the auction at least one price will be raised. Since a bundle
price will clearly never exceed its value, the auction will terminate eventually
(although this may take exponentially many steps). Since the allocation at each
step is clearly revenue maximizing, it suffices to show that, upon termination,
each bidder receives an e-demand.

Losing bidders will clearly receive their demand, the empty set, since this is
the condition of termination. A winning bidder i gets an e-demand bundle since
the auction maintains the property that every bundle 7; with p;(T;) > 0 is an
e-demand. To see this notice that p;(7;) > 0 implies that at some previous round
T; was the demand of bidder i. At that point, 7; was the exact demand, and thus,
an e-demand bundle after the price increment. Since the last time that the bidder
demanded (the current) 7;, only prices of other bundles have increased, clearly
maintaining the property.

Finally, the near optimality of the social welfare in an approximate competitive
equilibrium follows the same arguments as in Proposition 11.34. O

Notice that while the auction always terminates with a (near) optimal allocation,
this may require exponential time in two respects: first, the number of stages may
be exponential, and, second, each stage requires the auctioneer to solve an NP-hard
optimization problem. Of course, we know that this is unavoidable and that, indeed,
exponential communication and computation are required in the worst case. Variants
of this auction may be practically faster by allowing bidders to report a collection of
demand bundles at each stage and increase the prices of all of them (in particular, prices
of supersets of a reported demand bundle can be, w.l.0.g., maintained to be at least as
high as that of the bundle itself.).

The prices generated by this auction are not VCG prices and thus players are not
strategically motivated to act myopically and truthfully report their true demand at
each stage.” One weak positive equilibrium property is achieved when each bidder is
committed in advance to act according to a fixed valuation (“proxy bidding”). Then,
the auction admits ex-post Nash equilibria, but these equilibria require the participants
to possess considerable knowledge of the preferences of the other bidders.

More complex variants of the auction may charge VCG prices from the bidders
rather then the equilibrium prices obtained. While this will have the obvious advantage
that truthful bidding will be an ex-post Nash equilibrium, it turns out that this will lose
some nice properties possessed by the equilibrium prices reached (like resistance to
bidder collusion and to false-name bids in some settings).

7 When bidders have substitutes valuations (Definition 11.28); however, the auction does terminate at VCG prices.

BIBLIOGRAPHIC NOTES 295
11.8 Bibliographic Notes

This chapter gives only the very basics of the theoretical treatment of combinatorial
auctions. Much more information appears in the recently published books (Cramton
et al., 2006; Milgrom, 2004). Information about spectrum auctions can be found, for
example, in (FCC auctions home page; Cramton, 2002, 2006), and a nice description
of industrial applications can be found in (Sandholm, 2006a).

The earliest work on the computational complexity of the winner determination
problem in combinatorial auctions is Rothkhof et al. (1998),which contains algorithms
for various special cases. Other early work on algorithms for winner determination is
due to Sandholm (2002),who also noted the NP-hardness of the problem and of its
approximation. The hardness of approximation is based on the hardness of approx-
imation of clique size of Héstad (1999), with the strong version as stated appearing
in Zuckerman (2006). Recent surveys on winner determination algorithms appear in
(Lehmann et al., 2006b, Muller, 2006; Sandholm, 2006b). The single-minded case was
studied in Lehmann et al. (2002) on which Section 11.2.2 is based. Additional results
for the single-minded case and generalizations of it can be found in Babaioff et al.
(2005) and the references within.

The LP formulation of the problem and the relation of its integrality gap to Walrasian
equilibria were studied in Bikhchandani and Mamer (1997) and Bikhchandani and
Ostroy (2002).

Bidding languages were studied in a general and formal way in Nisan (2000) on
which Section 11.4 is based. Dummy items were suggested in Fujishima et al. (1999).
A detailed survey of bidding languages appears in Nisan (2006).

A systematic study of the query model can be found in Blumrasen and Nisan (2005a).
The fact that the linear program can be solved in polynomial time using demand queries
appears in Nisan and Segal (2006) and Blumfosen and Nisan (2005a). Applications of
this fact for various approximation algorithms can be found in Dobzinski et al. (2005),
Lavi and Swamy (2000), and Feige and Vondrak (2006). Relations of the query model
to machine-learning theory is described in Blum et al. (2004) and Lehaie and Parkes
(2004) and the references within.

The analysis of the communication complexity of combinatorial auctions was initi-
ated in Nisan and Segal (2006) on which Section 11.6 is based. A more comprehensive
treatment of this subject can be found in the survey (Segal, 2006). A detailed exposi-
tion of the theory of communication complexity can be found in Kushilevitz and Nisan
(1997).

Ascending item-price combinatorial auctions for the (gross)-substitutes case were
first suggested by Demange et al. (1986), extending their use for matching Kelso and
Crawford (1982). These were further studied in Bikhchandani and Mamer (1997),
Gul and Stacchetti (1999, 2000), Milgrom (2004), and Ausubel (2006). Socially-
efficient ascending bundle-price auctions were suggested in Parkes and Ungar (2000)
and Ausubel and Milgrom (2002), and hybrid designs that use both item- and bundle
prices appear in Kelly and Steinberg (2000) and Cramton et al. (2006). Ausubel and
Milgrom (2002) also discussed connections to coalitional games and their core. A
detailed study of ascending auctions and their limitations may be found in Blumrosen
and Nisan (2005b). A comprehensive survey can be found in Parkes (2006).

296 COMBINATORIAL AUCTIONS

Exercise 11.1 is from Rothkhof et al. (1998). A proof for Exercise 11.2 can be found
in Muller (2006). Exercise 11.3 is from Blumrosen and Nisan (2005a). Exercise 11.4
is from Dobzinski et al. (2005). Exercise 11.5 is from Nisan (2000). Exercise 11.6 is
from Gul and Stacchetti (1999). Exercise 11.7 is from Parkes (2001) and Blumrosen
and Nisan (2005b). Exercise 11.8 is from Blumrosen and Nisan (2005b). The algorithm
in exercise 11.9 is the classic one for SET-COVER by Lovasz (1975), see also Nisan
(2002).

Acknowledgments

The authors thank Shahar Dobzinki, Jason Hartline, and David Parkes for their valuable
comments on an earlier draft of this chapter.

Bibliography

L.M. Ausubel. An efficient dynamic auction for heterogeneous commodities. Amer. Econ. Rev.,
96(3):602-629, 2006.

L.M. Ausubel and PR. Milgrom. Ascending auctions with package bidding. Front. Theor. Econ.,
1:1-42, 2002.

M. Babaioff, R. Lavi, and E. Pavlov. Mechanism design for single-value domains. In 20th Ntl. Conf.
Artificial Intelligence, pp. 241-247, 2005.

Y. Bartal, R. Gonen, and N. Nisan. Incentive compatible multi unit combinatorial auctions. In 9th
Conf. Theor. Aspects of Rationality and Knowledge, pp. 72-87, 2003.

A. Bertelsen. Substitutes Valuations and m*-Concavity. M.Sc. Thesis, The Hebrew University of
Jerusalem, 2005.

S. Bikhchandani and J.W. Mamer. Competitive equilibrium in an exchange economy with indivisi-
bilities. J. Economic Theory, 74:385-413, 1997.

S. Bikhchandani and J.M. Ostroy. The package assignment model. J. Economic Theory, 107:377-406,
2002.

A. Blum, J.C. Jackson, T. Sandholm, and M.A. Zinkevich. Preference elicitation and query learning.
J. Mach. Learn. Res., 5:649-667, 2004.

L. Blumrosen and N. Nisan. On the computational power of iterative auctions I: demand queries.
Discussion paper no. 381, The Center for the Study of Rationality, The Hebrew University, 2005a.
An extended abstract in EC’05 contained preliminary results.

L. Blumrosen and N. Nisan. On the computational power of iterative auctions II: Ascending auctions.
Discussion paper no. 382, The Center for the Study of Rationality, The Hebrew University, 2005b.
An extended abstract in EC’05 contained preliminary results.

P. Briest, P. Krysta, and B. Vocking. Approximation techniques for utilitarian mechanism design. In
the 37th ACM Symp. Theor. Comp., pp. 3948, 2005.

P. Cramton. In Martin Cave, Sumit Majumdar, and Ingo Vogelsang, eds., Handbook of Telecommu-
nications Economics. Chapter 14: Spectrum auctions. Elsevier Science B.V., 2002.

P. Cramton. In P. Cramton, Y. Shoham, and R. Steinberg, eds., Combinatorial Auctions. Chapter 5.
Simultaneous Ascending Auctions. MIT Press, 2006.

P. Cramton, L.M. Ausubel, and P.R. Milgrom. In P. Cramton, Y. Shoham, and R. Steinberg, eds.,
Combinatorial Auctions. Chapter 5. The Clock-Proxy Auction: A Practical Combinatorial Auction
Design. MIT Press, 2006.

P. Cramton, Y. Shoham, and R. Steinberg (Editors). Combinatorial Auctions. MIT Press, 2006.

G. Demange, D. Gale, and M. Sotomayor. Multi-item auctions. J. Political Econ., 94:863-872, 1986.

BIBLIOGRAPHY 297

S. Dobzinski, N. Nisan, and M. Schapira. Approximation algorithms for combinatorial auctions with
complement-free bidders. In 37th ACM Symp. Theory Computing, pp. 610618, 2005.

S. Dobzinski, N. Nisan, and M. Schapira. Truthful randomized mechanisms for combinatorial auc-
tions. In 38th Annual ACM Symp. Theory of Computing, pp. 644—652, 2006.

S. Dobzinski and M. Schapira. Optimal upper and lower approximation bounds for
k-duplicates combinatorial auctions. Working paper, the Hebrew University, 2005.

S. Dobzinski and M. Schapira. An improved approximation algorithm for combinatorial auctions
with submodular bidders. In Proc. 17th Annual ACM-SIAM Symp. Disc. Algo., pp. 1064-1073,
2006.

FCC auctions home page. http://wireless.fcc.gov/auctions.

U. Feige. On maximizing welfare where the utility functions are subadditive. In 38th ACM Symp.
Theory of Computing, pp. 41-50, 2006.

U. Feige and J. Vondrak. Approximation algorithms for allocation problems: Improving the factor of
1-1/e. In 47th Annual IEEE Symp. Foundations of Computer Science, pp. 667-676, 2006.

Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computational complexity of combinato-
rial auctions: Optimal and approximate approaches. In /6th Intl. Joint Conf. Artificial Intelligence,
Stockholm, Sweden, 1999.

F. Gul and E. Stacchetti. Walrasian equilibrium with gross substitutes. J. Econ. Theor., 87:95-124,
1999.

F. Gul and E. Stacchetti. The English auction with differentiated commodities. J. Econ. Theor.,
92(3):66-95, 2000.

J. Hastad. Clique is hard to approximate to within n'~¢. Acta Mathematica, 182, 1999.

R. Holzman, N. Kfir-Dahav, D. Monderer, and M. Tennenholtz. Bundling equilibrium in combinatrial
auctions. Games Econ. Behav., 47:104—123, 2004.

F. Kelly and R. Steinberg. A combinatorial auction with multiple winners for universal service.
Management Sci., 46:586-596, 2000.

A.S. Kelso and V.P. Crawford. Job matching, coalition formation, and gross substitutes. Econometrica,
50:1483-1504, 1982.

S. Khot, R.J. Lipton, E. Markakis, and A. Mehta. Inapproximability results for combinatorial auctions
with submodular utility functions. In /st Workshop on Internet and Network Economics, pp. 92—
101, 2005.

E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

S. Lahaie and D.C. Parkes. Applying learning algorithms to preference elicitation. In 5th ACM Conf.
Elect. Commerce, pp. 180-188, 2004.

R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear programming. In 46¢h
Annual IEEE Symp. Fdns. of Computer Science, pp. 595-604, 2005.

B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal utilities.
Games Econ. Behav., 55(2):270-296, 2006a.

D. Lehmann, R. Miiller, and T. Sandholm. In P. Cramton, Y. Shoham, and R. Steinberg, eds.,
Combinatorial Auctions. Chapter 12. The Winner Determination Problem. MIT Press, 2006b.

D. Lehmann, L.I. O’Callaghan, and Y. Shoham. Truth revelation in approximately efficient combi-
natorial auctions. J. ACM, 49(5):577-602, 2002.

L. Lovasz. On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13:383-390,
1975.

P. Milgrom. Putting Auction Theory to Work: the simultaneous ascending auction. J. Political Econ.,
018(2):245-272, 2000.

P. Milgrom. Putting Auction Theory to Work. Cambridge University Press, 2004.

R. Muller. In P. Cramton, Y. Shoham, and R. Steinberg, eds., Combinatorial Auctions. Chapter 13.
Tractable Cases of the Winner Determination Problem. MIT Press, 2006.

N. Nisan. Bidding and allocation in combinatorial auctions. In ACM Conf. on Elect. Commerce, 2000.

298 COMBINATORIAL AUCTIONS

N. Nisan. The communication complexity of approximate set packing and covering. In 29th Intl.
Collog. Auto., Langs. Progr., pp. 868-875, 2002.

N. Nisan. In P. Cramton, Y. Shoham, and R. Steinberg, eds., Combinatorial Auctions. Chapter 1.
Bidding Languages. MIT Press, 2006.

N. Nisan and I. Segal. The communication requirements of efficient allocations and supporting prices.
J. Econ. Theor., 129(1):192-224, 2006.

D.C. Parkes. Iterative Combinatorial Auctions: Achieving Economic and Computational Efficiency.
PhD Thesis, Department of Computer and Information Science, University of Pennsylvania, 2001.

D.C. Parkes. In P. Cramton, Y. Shoham, and R. Steinberg, eds., Combinatorial Auctions. Chapter 3.
Iterative Combinatorial Auctions. MIT Press, 2006.

D.C. Parkes and L.H. Ungar. Iterative combinatorial auctions: Theory and practice. In /7th Ntl. Conf.
on Artificial Intelligence, pp. 74-81, 2000.

M.H. Rothkhof, A. Pekec, and R.M. Harstad. Computationally manageable combinatorial auctions.
Management Sci., 44(8):1131-1147, 1998.

T. Sandholm. Algorithm for optimal winner determination in combinatorial auctions. Artif. Intellig.,
135:1-54, 2002.

T. Sandholm. Expressive commerce and its application to sourcing. In Innovative Applications of
Artificial Intelligence, 2006.

T. Sandholm. In P. Cramton, Y. Shoham, and R. Steinberg, eds., Combinatorial Auctions. Chapter
14. Optimal Winner Determination Algorithms. MIT Press, 2006.

I. Segal. In P. Cramton, Y. Shoham, and R. Steinberg, eds., Combinatorial Auctions. Chapter 11. The
Communication Requirements of Combinatorial Allocation Problems. MIT Press, 2006.

D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic
number. In 38th Annual ACM Symp. Theory of Computing, pp. 681-690, 2006.

Exercises

11.1 Consider an auction for items 1,...,m where each bidder is single minded and
desires an interval of consecutive items, i.e., S; = {jlki < j </;) where 1 <k <
Ii < m. Prove that in this case the socially efficient allocation can be determined
in polynomial time.

11.2 Consider combinatorial auctions for m items among n bidders, where each val-
uation is represented simply as a vector of 2™ — 1 numbers (a value for each
subset of items). Prove that the optimal allocation can be computed in time that is
polynomial in the input length: n(2™ — 1). (An immediate conclusion is that when
m=0O(log n) then the optimal allocation can be computed in polynomial time in n.)
Hint: Use dynamic programming

11.3 Show a class of valuations for bidders in combinatorial auctions for which a single
demand query can reveal enough information for determining the optimal alloca-
tion, but this task may require an exponential number (in the number of items) of
value queries. (This actually proves Lemma 11.23 from Section 11.5.1.)

Hint: Use the fact that the number of distinct bundles of size %, out of m items, is
exponential in m.

11.4 Avaluation v is called subadditive if for every two bundles S, T, v(S) + v(T) > v(S U
T). Prove that for any € > 0, achieving a 2 — ¢ approximation in a combinatorial
auction with sub additive bidders requires exponential communication.

Hint: Construct a reduction from Theorem 11.27 in Section 11.6.

11.5

11.6
11.7

EXERCISES 299

The majority valuation assigns a value of 1 to any bundle of at least 7 items, and O
to all other bundles. Prove that representing this valuation using an OR* formula
requires size of at least (7).

2

Prove that every (gross) substitutes valuation is submodular.

Consider an anonymous-price variant of the bundle-price ascending auctions de-
scribed in Figure 11.4): The same ascending-price process is performed, except
that at every stage, all bidders observe the same bundle prices {p(S)}scm. At each
stage, the prices of bundles that are demanded by at least one losing bidder are
raised by €.

Show that when all the valuations are super additive such an auction terminates
with the socially efficient allocation. (A valuation is super additive if for every two
bundles S, T, v(S) +v(T) <v(SUT).)

Hint: First show that if bidder i receives the bundle T; in the optimal allocation,
then vi(T;) = v;(T;) for every bidder ;.

Consider a pair of valuations with the following form (where 0 < «,8 < 1 are
unknown to the seller):

v(ab) | v(a) | v(b)
Alice 2 o B
Bob 2 2 2

Prove that no item-price ascending auction can reveal enough information for
determining the socially efficient allocation for such valuations.

In a procurement auction with single-minded bidders, a single buyer needs to buy
a set of m items from n possible suppliers. Each supplier i can provide a single set
of items S; for a privately known price v;. The buyer needs to buy all items, and
aims to minimize the total price paid.

(@) Prove that the following greedy algorithm finds a (1 + In m)-approximation to

the optimal procurement:

e Initialize R to contain all m items, and W <« (.

e Repeat until R = §): Choose | € argmaxiizasy, and let
W=WuU{j}and R =R\S;.

(b) Deduce an incentive-compatible polynomial-time (1+Inm)-approximation
mechanism for procurement auctions among single-minded bidders. Show
first that the allocation scheme defined by the algorithm is monotone, and
identify the “critical values” to be paid by the winning suppliers.

CHAPTER 12

Computationally Efficient
Approximation Mechanisms

Ron Lavi

Abstract

We study the integration of game theoretic and computational considerations. In particular, we study
the design of computationally efficient and incentive compatible mechanisms, for several different
problem domains. Issues like the dimensionality of the domain, and the goal of the algorithm designer,
are examined by providing a technical discussion on four results: (i) approximation mechanisms
for single-dimensional scheduling, where truthfulness reduces to a simple monotonicity condition;
(ii) randomness as a tool to resolve the computational vs. incentives clash for Combinatorial Auctions,
a central multidimensional domain where this clash is notable; (iii) the impossibilities of determin-
istic dominant-strategy implementability in multidimensional domains; and (iv) alternative solution
concepts that fit worst-case analysis, and aim to resolve the above impossibilities.

12.1 Introduction

Algorithms in computer science, and Mechanisms in game theory, are very close in
nature. Both disciplines aim to implement desirable properties, drawn from “real-life”
needs and limitations, but the resulting two sets of properties are completely different.
A natural need is then to merge them — to simultaneously exhibit “good” game theoretic
properties as well as “good” computational properties. The growing importance of the
Internet as a platform for computational interactions only strengthens the motivation
for this.

However, this integration task poses many difficult challenges. The two disciplines
clash and contradict in several different ways, and new understandings must be ob-
tained to achieve this hybridization. The classic Mechanism Design literature is rich
and contains many technical solutions when incentive issues are the key goal. Quite
interestingly, most of these are not computationally efficient. In parallel, most existing
algorithmic techniques, answering the computational questions at hand, do not yield
the game theoretic needs. There seems to be a certain clash between classic algorith-
mic techniques and classic mechanism design techniques. This raises many intriguing

301

302 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

questions: In what cases this clash is fundamental — a mathematical impossibility?
Alternatively, can we “fix” this clash by applying new techniques? We will try to give
a feel for these issues.

The possibility of constructing mechanisms with desirable computational proper-
ties turns out to be strongly related to the dimensionality of the problem domain.
In single-dimensional domains, the requirement for game-theoretic truthfulness re-
duces to a convenient algorithmic monotonicity condition that leaves ample flexibility
for the algorithm designer. We demonstrate this in Section 12.2, were we study the
construction of computationally efficient approximation mechanisms for the classic
machine scheduling problem. Although there exists a rich literature on approximation
algorithms for this problem domain, quite remarkably none of these classic results
satisfy the desired game-theoretic properties. We show that when the scheduling prob-
lem is single-dimensional, then this clash is not fundamental, and can be successfully
resolved.

The problem domain of job scheduling has one additional interesting aspect that
makes it worth studying: it demonstrates a key difference between economics and
computer science, namely the goals of algorithms vs. the goals of classic mechanisms.
While the economics literature mainly studies welfare and/or revenue maximization,
computational models raise the need for completely different objectives. In scheduling
problems, a common objective is to minimize the load on the most loaded machine. As
is usually the case, existing techniques for incentive-compatible mechanism design do
not fit such an objective (and, on the other hand, most existing algorithmic solutions do
not yield the desired incentives). The resolution of these clashes has led to insightful
techniques, and the technical exploration of Section 12.2 serves as an example.

As opposed to single-dimensional domains, multi-dimensionality seems to pose
much harder obstacles. In Chapter 9, the monotonicity conditions that characterize
truthfulness for multidimensional domains were discussed, but it seems that these
conditions do not translate well to algorithmic constructions. This issue will be handled
in the rest of the chapter, and will be approached in three different ways: we will
explore the inherent impossibilities that the required monotonicity conditions cast
on deterministic algorithmic constructions, we will introduce randomness to solve
these difficulties, and we will consider alternative notions to the solution concept of
truthfulness.

Our main example for a multidimensional domain will be the domain of combina-
torial auctions (CAs). Chapter 11 studies CAs mostly from a computational point of
view, and in contrast our focus is on designing computationally efficient and incentive
compatible CAs. This demonstrates a second key difference between economics and
computer science, namely the requirement for computational efficiency. Even if our
goal is the classic economic goal of welfare maximization, we cannot use Vickrey—
Clarke—Groves mechanisms (which classically implement this goal) since in many
cases they are computationally inefficient. The domain of CAs captures exactly this
point, and the need for computationally efficient techniques that translate algorithms to
mechanisms is central. In Section 12.3 we will see how randomness can help. We de-
scribe arather general technique that uses randomness and linear programming in order
to convert algorithms to truthful-in-expectation mechanisms. Thus we get a positive
answer to the computational clash, by introducing randomness.

SINGLE-DIMENSIONAL DOMAINS: JOB SCHEDULING 303

In Section 12.4 we return to deterministic settings and to the classic definition
of deterministic truthfulness, and study the impossibilities associated with it. Our
motivating question is whether the three requirements (i) deterministic truthfulness,
(i) computational efficiency, and (iii) nontrivial approximation guarantees, clash in a
fundamental and well-defined way. We already know that single dimensionality does
not exhibit such a clash, and in this section we describe the other extreme. If a domain
has full dimensionality (in a certain formal sense, to be discussed in the section body),
then any truthful mechanism must be VCG. It is important to remark that this result fur-
ther emphasizes our lack of knowledge about the state of affairs for all the intermediate
range of multidimensional domains, to which CAs and its different variants belong.

As was motivated in previous chapters, the game-theoretic quest should start with the
solution concept of “implementation in dominant strategies,” and indeed most of this
chapter follows this line of thought. However, to avoid the impossibilities mentioned
earlier, we have to deepen our understandings about the alternatives at hand. Studies
in economics usually turn to the solution concept of Bayesian—Nash that requires
strong distributional assumptions, namely that the input distributions are known, and,
furthermore, that they are commonly known, and agreed upon. Such assumptions seem
too strong for CS settings, and criticism about these assumptions have been also raised
by economists (e.g., “Wilson’s doctrine”). We have already seen that randomization,
and truthful-in-expectation in particular, can provide a good alternative. We conclude
the chapter by providing an additional example, of a deterministic alternative solution
concept, and describe a deterministic CA that uses this notion to provide nontrivial
approximation guarantees.

Let us mention two other types of GT-versus-CS clashes, not studied in this chap-
ter, to complete the picture. Different models: Some CS models have a significantly
different structure, which causes the above-mentioned clash even when traditional ob-
jectives are considered. In online computation, for example, players atrive over time,
a fundamentally different assumption than classic mechanism design. The difficulties
that emerge, and the novel solutions proposed, are discussed in Chapter 16. Differ-
ent analysis conventions: CS usually employs worst-case analysis, avoiding strong
distributional assumptions, while in economics, the underlying distribution is usually
assumed. This greatly affects the character of results, and the reader is referred to, e.g.,
Chapter 13 for a broader discussion.

12.2 Single-Dimensional Domains: Job Scheduling

As a first example for the interaction between game theory and algorithmic theory, we
consider single-dimensional domains. Simple single-dimensional domains were intro-
duced in Chapter 9, where every alternative is either a winning or a losing alternative
for each player. Here we discuss a more general case. Intuitively, single dimensionality
implies that a single parameter determines the player’s valuation vector. In Chapter 9,
this was simply the value for winning, but less straight-forward cases also make sense:

Scheduling related machines. In this domain, # jobs are to be assigned to m machines,
where job j consumes p; time-units, and machine i has speed s;. Thus machine i

requires p;/s; time-units to complete job j. Let [; = Zﬂ jisassignedto i P be the load

304 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

on machine i. Our schedule aims to minimizes the term max; [; /s;, (the makespan).
Each machine is a selfish entity, incurring a constant cost for every consumed time unit
(and w.l.o.g. assume this cost is 1). Thus the utility of a machine from a load /; and
a payment P; is —I;/s; — P;. The mechanism designer knows the processing times of
the jobs and constructs a scheduling mechanism.

Although here the set of alternatives cannot be partitioned to “wins” and “loses,”
this is clearly a single-dimensional domain.

Definition 12.1 (single-dimensional linear domains) A domain V; of player
i is single-dimensional and linear if there exist nonnegative real constants (the
“loads”) {gi.a}aca such that, for any v; € V;, there exists ¢ € R_ (the “cost”) such
that v;(a) = giq - C.

In other words, the type of a player is simply her cost c, as disclosing it gives us the
entire valuation vector. Note that the scheduling domain is indeed single-dimensional
and linear: the parameter c is equal to 1/s;, and the constant g; , for alternative a is the
load assigned to i according to a.

A natural symmetric definition exists for value-maximization (as opposed to cost-
minimization) problems, where the types are nonnegative.

We aim to design a computationally efficient approximation algorithm, that is also
implementable. As the social goal is a certain min—max criterion, and not to minimize
the sum of costs, we cannot use the general VCG technique. Since we have a convex
domain, Chapter 9 tells us that we need a “weakly monotone” algorithm. But what
exactly does this mean? Luckily, the formulation of weak monotonicity can be much
simplified for single-dimensional domains.

If we fix the costs c_; declared by the other players, an algorithm for a single-
dimensional linear domain determines the load g;(c) of player i as a function of her
reported cost c. Take two possible types ¢ and ¢’, and suppose ¢’ > ¢. Then the weak
monotonicity condition from Chapter 9 reduces to —¢;(c')(c¢’ — ¢) > —gi(c)(c’ — ¢),
which holds iff ¢;(¢’) < g;(c). Hence from Chapter 9 we know that such an algorithm is
implementable if and only if its load functions are monotone nonincreasing. Figure 12.1
describes this, and will help us figure out the required prices for implementability.

q(x) A

2\

q(c") Z > B
q(c)

q(c)

»
»
X

Figure 12.1. A monotone load curve.

SINGLE-DIMENSIONAL DOMAINS: JOB SCHEDULING 305

Suppose that we charge a payment of P;(c) = foC [gi(x) — gi(c)] dx from player i
if he declares a cost of c. Using Figure 12.1, we can easily verify that these prices
lead to incentive compatibility: Suppose that player i’s true cost is c. If he reports the
truth, his utility is the entire area below the load curve up to c¢. Now if he declares
some ¢’ > c, his utility will decrease by exactly the area marked by A: his cost from
the resulting load will indeed decrease to ¢ - g;(c’), but his payment will increase to be
the area between the line g;(c¢’) and the load curve. On the other hand, if the player
will report ¢” < c, his utility will decrease by exactly the area marked by B, since his
cost from the resulting load will increase to ¢ - ¢;(c”). Thus these prices satisfy the
incentive-compatibility inequalities, and in fact this is a simple direct proof for the
sufficiency of load monotonicity for this case.

The above prices do not satisfy individual rationality, since a player always incurs
a negative utility if we use these prices. To overcome this, the usual exercise is to add
a large enough constant to the prices, which in our case can be fooo gi(x) dx. Note that
if we add this to the above prices we get that a player that does not receive any load
(i.e., declares a cost of infinity) will have a zero utility, and in general the utility of a
truthful player will be nonnegative, exactly fcoo qi(x) dx. From all the above we get the
following theorem.

Theorem 12.2 An algorithm for a single-dimensional linear domain is imple-
mentable if and only if its load functions are nonincreasing. Furthermore, if this
is the case then charging from every player i a price

c o0
Pi(c) = / [gi(x) — gi(c)]dx — / qi(x)dx
0 c
will result in an individually rational dominant strategy implementation.

In the application to scheduling, we will construct a randomized mechanism, as well
as a deterministic one. In the randomized case, we will employ truthfulness in expec-
tation (see Chapter 9, Definition 9.27). One should observe that, from the discussion
above, it follows that truthfulness in expectation is equivalent to the monotonicity of
the expected load.

12.2.1 A Monotone Algorithm for the Job Scheduling Problem

Now that we understand the exact form of an implementable algorithm, we can con-
struct one that approximates the optimal outcome. In fact, the optimum itself is imple-
mentable, since it can satisfy weak monotonicity (see the exercises for more details),
but the computation of the optimal outcome is NP-hard. We wish to construct effi-
ciently computable mechanisms, and hence design a monotone and polynomial-time
approximation algorithm. Note that we face a “classic” algorithmic problem — no
game-theoretic issues are left for us to handle.

Before we start, let us assume that jobs and machines are reordered so that s; >
§p > --->s,and p; > pp > --- > p,. For the algorithmic construction, we first need
to estimate the optimal makespan of a given instance.

Estimating the optimal makespan. Fix a job-index j, and some target makespan 7.
If a schedule has makespan at most 7', then it must assign any joboutof 1,..., jtoa

306 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

machine i such that T > p;/s;. Leti(j, T) = max{i | T > p;/s; }. Thus any schedule
with makespan at most 7" assigns jobs 1, ..., j tomachines 1, ..., i(j, T). From space
considerations, it immediately follows that

J
Zk 1Pk
= i
=1 i

(12.1)
Now define

T, = m1n max { (12.2)

Dj Zk 1Pk}
Zl 151

Lemma 12.3 For any job-index j, the optimal makespan is at least T;.

PROOF Fix any T < T;. We prove that T violates 12.1, hence cannot be any
feasible makespan, and the claim follows. Let i; be the index that determines 7.
The left expression in the max term is increasing with i, while the right term is
decreasing. Thus i; is either the last i where the right term is larger than the left
one, or the first i for which the left term is larger than the right one. We prove that
T violates 12.1 for each case separately.

Case 1 (Zk 1 P ﬂ): For i;

11Y1
is the min-max, we get T; < sp/ Since T < T;, we have z(], T) <ij, and
./

T<T_Zk117k Zkﬂ’k

>0, S YNy . Hence T violates 12.1, as claimed.
=151 S

Case 2 (Z" L2 < Py < é" =12 gince T is the min-max, and the max for

;. J
Lyt J =1 S
i; — lisreceived at the right. In addition, i(j, T') < i; since T; = Sp—’ and T < T;.
i

Thus 7 < T; < éﬁ._‘lm < %"(,})pk as we need. O
=1 St §

With this, we get a good lower bound estimate of the optimal makespan:
TLB = man Tj (123)

The optimal makespan is at least T for any j, hence it is at least Ty p.

A fractional algorithm. We start with a fractional schedule. If machine i gets an «
fraction of job j then the resulting load is assumed to be (« - p;)/s;. This is of course
not a valid schedule, and we later round it to an integral one.

Definition 12.4 (The fractional allocation) Let j be the first job such that
Z,’czl pr > Tip - s;. Assign to machine 1 jobs 1,...,j — 1, plus a fraction of
Jj in order to equate [; = Tip - s1. Continue recursively with the unassigned frac-
tions of jobs and with machines 2, ..., m.

SINGLE-DIMENSIONAL DOMAINS: JOB SCHEDULING 307

Lemma 12.5 There is enough space to fractionally assign all jobs, and if job
J is fractionally assigned to machine i then p;/s; < Tis.

J

PROOF Let i; be the index that determines 7. Since Ty > T} > M, we
=151

can fractionally assign jobs 1, .., j up to machine i;. Since T; > p;/s;, we get

the second part of the claim, and setting j = n gives the first part. O
Lemma 12.6 The fractional load function is monotone.

PROOF We show that if s; increases to s, = « - 5; (for @ > 1) then [/ < [;. Let
T{ i denote the new estimate of the optimal makespan. We first claim that 7} <
o - Tig. Foraninstance sy, ..., s;, suchthats,’ = « - s; for all machines / we have
that 7|y = « - T since both terms in the max expression of 7; were multiplied
by «. Since s; < s; for all [we have that 7}, < T{;. Now, if [; = Ty - s;, i.e. i
was full, then I < T/ - s/ < Tig - s; = ;. Otherwise [; < Tip - s;, hence i is the
last nonempty machine. Since TL/B > T, all previous machines now get at least
the same load as before, hence machine i cannot get more load. O

We now round to an integral schedule. The natural rounding, of integrally placing
each job on one of the machines that got some fraction of it, provides a 2-approximation,
but violates the required monotonicity (see the exercises). We offer two types of
rounding, a randomized rounding and a deterministic one. The former is simpler,
and results in a better approximation ratio, but uses the weaker solution concept of
truthfulness in expectation. The latter is slightly more involved, and uses deterministic
truthfulness, but results in an inferior approximation ratio.

Definition 12.7 (A randomized rounding) Choose « € [0, 1] uniformly at
random. For every job j that was fractionally assigned to i and i + 1, if j’s
fraction on i is at least «, assign j to i in full, otherwise assign j toi + 1.

Theorem 12.8 The randomized scheduling algorithm is truthful in expectation,
and obtains a 2-approx. to the optimal makespan in polynomial-time.

PROOF Let us check the approximation first. A machine i may get, in addition
to its full jobs, two more jobs. One, j, is shared with machine i — 1, and the
other, k, is shared with machine i + 1. If j was rounded to i then i initially has
at least 1 — « fraction of j, hence the additional load caused by j is at most
a - p;. Similarly, If k£ was rounded to i then i initially has at least « fraction of k,
hence the additional load caused by k is at most (1 — «) - py. Thus the maximal
total additional load that i getsis « - p; + (1 — @) - px. By Lemma 12.5 we have
that max{p;, px} < Tip and since Tip is not larger than the optimal maximal
makespan, the approximation claim follows.

For truthfulness, we only need that the expected load is monotone. Note that
machine i — 1 gets job j with probability «, so i gets it with probability 1 — «,

308 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

and i gets k with probability «. So the expected load of machine i is exactly its
fractional load. The claim now follows from Lemma 12.6. O

An integral deterministic algorithm. To be accurate, what follows is not exactly
a rounding of the fractional assignment we obtained above, but a similar-in-spirit
deterministic assignment. We set virtual speeds, where the fastest machine is set to
be slightly faster, and the others are set to be slightly slower, we find a fractional
assignment according to these virtual speeds, and then use the “natural” rounding of
placing each job fully on the first machine it is fractionally assigned to. With these
virtual speeds, the rounding that previously failed to be monotone, now succeeds:

Definition 12.9 (A deterministic algorithm) Given the bids sy, ..., s,, per-
form:

(i) Set new (virtual) speeds d, ..., d,, as follows. Let d; = %sl, and fori > 2, let
d; be the the closest value of the “breakpoints” % (fori =1,2,...) such that
d; <s;.

(ii) Compute 7 g according to the virtual speeds, i.e. T g = T p(d;, d_;).
(iii) Assign jobs to machines, starting from the largest job and the fastest machine.

Move to the next machine when the current machine, i, holds jobs with total
processing time larger or equal to Tip - d;.

Note that if the fastest machine changes its speed, then all the d;’s may change. Also
note that step 3 manages to assign all jobs, since what we are doing is exactly the
deterministic natural rounding described above for the fractional assignment, using the
d;’s instead of the s;’s. As we shall see, this crucial difference enables monotonicity,
in the cost of a certain loss in the approximation.

To exactly see the approximation loss, first note that 7y g(d) < 2.5T.g(s), since
speeds are made slower by at most this factor. For the fastest machine, since s is
lower than d,, the actual load up to 7y g(d) may be 1.6T15(d) < 4T.g(s). As we may
integrally place on machine 1 one job that is partially assigned also to machine 2,
observe (i) that d; > 4d,, and (ii) by the fractional rules the added job has load at most
Tis(d)d,. Thus get that the load on machine 1 is at most %1.6T 1(d) < 5T1g(s). For
any other machine, d; < s;, and so after we integrally place the one extra partial job
the load can be at most 271 g(d)d; < 2 -2.5T1g(s)s; = 5T g(s)s;. Since Ty g(s) lower
bounds the optimal makespan for s the approximation follows.

To understand why monotonicity holds, we first need few observations that easily
follow from our knowledge on the fractional assignment.

Foranyi > land B < d;, Tyg(B,d_;) < %TLB(d,-, d_;). Consider the following mod-
ification to the fractional assignment for (d;, d—;): machine i does not get any job, and
each machine 1 < i’ < i gets the jobs that were previously assigned to machine i’ + 1.
Since i’ is faster than i’ + 1, any machine 2 < i’ < i does not cross the Tyg(d;, d_;)
limit. As for machine 1, note that it is always the case that d; > 4d,, hence the new load
on machine 1 is at most %TLB(di, d_;).

SINGLE-DIMENSIONAL DOMAINS: JOB SCHEDULING 309

If a machine i > 1 slows down then the total work assigned to the faster machines does
not decrease, which follows immediately from the fact that Ty g(d;, d—;) > Tig(d;, d—;),
ford! > d.

If the fastest machine slows down, yet remains the fastest, then its assigned work does
not increase. Let s; = c¢ - 51 for some ¢ < 1. Therefore all breakpoints shift by a factor
of c¢. If no speed s; moves to a new breakpoint then all d’s move by a factor of c, the
resulting 71 g will therefore also move by a factor of ¢, meaning that machine 1 will
get the same set of jobs as before. If additionally some s;’s move to a new breakpoint
this implies that the respective d;’s decrease, and by the monotonicity of Tip it also
decreases, which means that machine 1 will not get more work.

Lemma 12.10 The deterministic algorithm is monotone.

PROOF Suppose that machine i slows down from s; to s; < s;. We need to show
that it does not get more work. Assume that the vector d has indeed changed
because of i’s change.

If i is the fastest machine and it remains the fastest then the above observation
is what we need. If the fastest machine changes to i’, then we add an artificial
breakpoint to the slowdown decrease, where i and i’’s speeds are identical, and the
title of the “fastest machine” moves from i to i’. Note that the same threshold, T, is
computed when the title goes from i toi’. i’s work when it is the “fastest machine”
is at least %si - T, while i’s work when i’ is the fastest is at most Z%T < gsi - T,
hence decreases.

If i is not the fastest, but still full, then d] < d; (since the breakpoints remain
fixed), and therefore Tig(d;,d_;) < %TLB(d,», d_;). With s;, i’s work is at least
T -d; (where T = Ty g(d;, d—;)), and with s/ its work is at most 2 - %T% =T-d,
hence i’s load does not increase.

Finally, note that if i’s is not full then by the third observation, since the work
of the previous machines does not decrease, then i’s work does not increase. 0O

By the above arguments we immediately get the following theorem.

Theorem 12.11 There exists a truthful deterministic mechanism for scheduling
related machines, that approximates the makespan by a factor of 5.

A note about price computation is in place. A polynomial-time mechanism must
compute the prices in polynomial time. To compute the prices for both the randomized
and the deterministic mechanisms, we need to integrate over the load function of a
player, fixing the others’ speeds. In both cases this is a step function, with polynomial
number of steps (when a player declares a large enough speed she will get all jobs, and
as she decreases her speed more and more jobs will be assigned elsewhere, where the set
of assigned jobs will decrease monotonically). Thus we can see that price computation
is polynomial-time.

Without the monotonicity requirement, a PTAS for related machines exists. The
question whether one can incorporate truthfulness is still open.

310 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

Open Question Does there exist a truthful PTAS for related machines?

The technical discussion of this section aims to demonstrate that, for single-
dimensional domains, the algorithmic implications of the game-theoretic requirement
are “manageable,” and leave ample flexibility for the algorithmic designer. Multi-
dimensionality, on the other hand, does not exhibit this easy structure, and the rest of
this chapter is concerned with exactly this issue.

12.3 Multidimensional Domains: Combinatorial Auctions

As opposed to single-dimensional domains, the monotonicity conditions that charac-
terize implementability in multidimensional domains are far more complex (see the
discussion in Chapter 9), hence designing implementable approximation algorithms is
harder. As discussed in the Introduction, this chapter examines three aspects of this
issue, and in this section we will utilize randomness to overcome the difficulties of
implementability in multidimensional domains. We study this for the representative
and central problem domain of Combinatorial Auctions.

Combinatorial Auctions (CAs) are a central model with theoretical importance
and practical relevance. It generalizes many theoretical algorithmic settings, like job
scheduling and network routing, and is evident in many real-life situations. Chapter 11
is exclusively devoted to CAs, providing a comprehensive discussion on the model and
its various computational aspects. Our focus here is different: how to design CAs that
are, simultaneously, computationally efficient and incentive-compatible. While each
aspect is important on its own, obviously only the integration of the two provides an
acceptable solution.

Let us shortly restate the essentials. In a CA, we allocate m items (£2) to n play-
ers. Players value subsets of items, and v;(S) denotes i’s value of a bundle S C Q.
Valuations additionally satisfy (i) monotonicity, i.e., v;(S) < v;(T') for S C T, and (ii)
normalization, i.e., v;(J) = 0. In this section we consider the goal of maximizing the
social welfare: find an allocation (S, ..., S,) that maximizes) _; v;:(S;).

Since a general valuation has size exponential in n and m, the representation issue
must be taken into account. Chapter 11 examines two models. In the bidding languages
model, the bid of a player represents his valuation in a concise way. For this model it is
NP-hard to approximate the social welfare within a ratio of Q(m'/>~¢), forany € > 0 (if
single-minded bids are allowed). In the query access model, the mechanism iteratively
queries the players in the course of computation. For this model, any algorithm with
polynomial communication cannot obtain an approximation ratio of Q(m'/>~) for
any € > 0. These bounds are tight, as there exists a deterministic 1/m-approximation
with polynomial computation and communication. Thus, for the general case, the
computational status by itself is well-understood.

The basic incentives issue is again well-understood: with VCG (which requires the
exact optimum) we can obtain truthfulness. The two considerations therefore clash if
we attempt to use classic techniques, and our aim is to develop a new technique that will
combine the two desirable aspects of efficient computation and incentive compatibility.

We describe a rather general LP-based technique to convert approximation algo-
rithms to truthful mechanisms, by using randomization: given any algorithm to the

MULTIDIMENSIONAL DOMAINS: COMBINATORIAL AUCTIONS 311

general CA problem that outputs a c-approximation to the optimal fractional social
welfare, one can construct a randomized c-approximation mechanism that is truthful in
expectation. Thus, the same approximation guarantee is maintained. The construction
and proof are described in three steps. We first discuss the fractional domain, where
we allocate fractions of items. We then show how to move back to the original do-
main while maintaining truthfulness, by using randomization. This uses an interesting
decomposition technique, which we then describe.

The fractional domain. Let x; g denote the fraction of subset S that player i receives
in allocation x. Assume that her value for that fraction is x; s - v;(S). The welfare
maximization becomes an LP:

max Y x;5vi(S) (CA-P)
i, S

subject to Z xi.s <1 for each player i (12.4)
S

Z Z xis <1 foreachitem j (12.5)
i S:jeS

Xi. s >0 VZ,S#Q

By constraint 12.4, a player receives at most one integral subset, and constraint 12.5
ensures that each item is not overallocated. The empty set is excluded for technical
reasons that will become clear below. This LP is solvable in time polynomial in its size
by using, e.g., the ellipsoid method. Its size is related to our representation assumption.
If we assume the bidding languages model, where the LP has size polynomial in the
size of the bid (e.g., k-minded players), then we have a polynomial-time algorithm. If
we assume general valuations and a query-access, this LP is solvable with a polynomial
number of demand queries (see Chapter 11). Note that, in either case, the number of
nonzero x; g coordinates is polynomial, since we obtain x in polynomial-time (this will
become important below). In addition, since we obtain the optimal allocation, we can
use VCG (see Chapter 9) to get:

Proposition 12.12 In the fractional case, there exists a truthful optimal mech-
anism with efficient computation and communication, for both the bidding lan-
guages model and the query-access model.

The transition to the integral case. The following technical lemma allows for an
elegant transition, by using randomization.

Definition 12.13 Algorithm A “verifies a c-integrality-gap” (for the linear pro-
gram CA-P) if it receives as input real numbers w; s, and outputs an integral point
X which is feasible for CA-P, and

C - E w; s -)’Z,',S > max Wi s+ Xi.§
feasible x's 4
i,S i,S

312 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

Lemma 12.14 (The decomposition lemma) Suppose that A verifies a c-
integrality-gap for CA-P (in polynomial time), and x is any feasible point of
CA-P. Then one can decompose x /c to a convex combination of integral feasible
points. Furthermore, this can be done in polynomial-time.

Let {x'};c7 be all integral allocations. The proof will find {};};cz such that (i) VI €
T, }>0,31) >, A = 1,and (i) Y_,c; M - x' = x/c. We will also need to provide
the integrality gap verifier. But first we show how to use all this to move back to the
integral case, while maintaining truthfulness.

Definition 12.15 (The decomposition-based mechanism)
(i) Compute an optimal fractional solution, x*, and VCG prices p/ (v).
(i) Obtain a decomposition x*/c = Y, ., A, - x'.

(iii) With probability A;: (i) choose allocation x!, (ii) set prices piR(v) =
[vi () /i x)] pf ().

The strategic properties of this mechanism hold whenever the expected price equals
the fractional price over c¢. The specific prices chosen satisfy, in addition to that, strong
individual rationality (i.e., truth-telling ensures a nonnegative utility, regardless of
the randomized choice)': VCG is individually rational, hence pl.F (v) < v;(x*). Thus
pR@) < v;(x") forany I € T.

Lemma 12.16 The decomposition-based mechanism is truthful in expectation,
and obtains a c-approximation to the social welfare.

PROOF The expected social welfare of the mechanism is (1/¢)), v;(x*), and
since x* is the optimal fractional allocation, the approximation guarantee follows.
For truthfulness, we first need that the expected price of a player equals her
fractional price over c, i.e., E;,[pX(v)] = pf(v)/c:

E{ll}lez[piR(U)] = Z)»l . [vi(xl)/vi(x*)] . piF(U)

leT
= [pf @)/uM] - Y 2 wixh)
leT
= [P @)/v ()] - vix*/0) = pf /e (12.6)

Fix any v_; € V_;. Suppose that when i declares v;, the fractional optimum is
x*, and when she declares v; , the fractional optimum is z*. The VCG fractional
prices are truthful, hence

vi(x*) = pf (v, v—) = vi(*) — pf (W], v—y) (12.7)

By 12.6 and by the decomposition, dividing 12.7 by ¢ yields

[Z M- (x*l)} — B, [pf i, v] = {Z M vi(z*l)} — E,,[pf @], v)]

leT leZ

! See Chapter 9 for definitions and a discussion on randomized mechanisms.

MULTIDIMENSIONAL DOMAINS: COMBINATORIAL AUCTIONS 313

The left-hand side is the expected utility for declaring v; and the right-hand side
is the expected utility for declaring v/, and the lemma follows. O

The above analysis is for one-shot mechanisms, where a player declares his valuation
up-front (the bidding languages model). For the query-access model, where players
are being queried iteratively, the above analysis leads to the weaker solution concept
of ex-post Nash: if all other players are truthful, player i will maximize his expected
utility by being truthful.

For example, consider the following single item auction for two players: player /
bids first, player /I observes I’s bid and then bids. The highest bidder wins and pays
the second highest value. Here, truthfulness fails to be a dominant strategy. Suppose /1
chooses the strategy “if I bids above 5, I bid 20, otherwise I bid 2.” If I°’s true value is 6,
his best response is to declare 5. However, truthfulness is an ex-post Nash equilibrium:
if I fixes any value and bids that, then, regardless of /I’s bid, I’s best response is the
truth.

In our case, if all others answer queries truthfully, the analysis carry through as
is, and so truth-telling maximizes i’s the expected utility. The decomposition-based
mechanism thus has truthfulness-in-expectation as an ex-post Nash equilibrium for the
query-access model. Putting it differently, even if a player was told beforehand the
types of the other players, he would have no incentive to deviate from truth-telling.

The decomposition technique. We now decompose x/c =, 7 A - x!, for any x
feasible to CA-P. We first write the LP P and its dual D. Let E = {(7, S)|x; s > 0}.
Recall that E is of polynomial size.

1
min ZA, (P) max - Z Xi swis +2 (D)
S.t. leT S.t. (i,8)€E
S kg = S vi S e E (12.8) D xiswistz<1Viel (129)
1 : c (i.S)eE
duz=l 2>0
x>0 Viel w;,s unconstrained V(i S) € E.

Constraints 12.8 of P describe the decomposition; hence, if the optimum satisfies
Y 1e; M = 1, we are almost done. P has exponentially many variables, so we need to
show how to solve it in polynomial time. The dual D will help. It has variables w; s
for each constraint 12.8 of P, so it has polynomially many variables but exponentially
many constraints. We use the ellipsoid method to solve it, and construct a separation
oracle using our verifier A.

Claim 12.17 Ifw, z is feasible for D then % > G.syeE XisWis +2z < 1. Further-
more, if this inequality is reversed, one can use A to find a violated constraint
of D in polynomial-time.

PROOF Suppose % . Z(i s)eE Xi,sWis +z > L.LetA receive w as input and sup-
pose that the integral allocation that A outputs is x'. We have Z(i, S)eE xf’ JWis >
% > i.s)e Yiswis > 1 —z, where the first inequality follows since A is a

314 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

c-approximation to the fractional optimum, and the second inequality is the vio-
lated inequality of the claim. Thus constraint 12.9 is violated (for x'). O

Corollary 12.18 The optimum of D is 1, and the decompositionx /¢ =) ;.7 A -
x! is polynomial-time computable.

PROOF z =1,w; s =0V(,S) € E is feasible; hence, the optimum is at least
1. By claim 12.17 it is at most 1. To solve P, we first solve D with the following
separation oracle: given w, z, if % Z(i, s)cE Xi,sWi,s + z < 1, return the separating
hyperplane % Z(i’ S)er XisWis +z=1. Otherwise, find the violated constraint,
which implies the separating hyperplane. The ellipsoid method uses polynomial
number of constraints; thus, there is an equivalent program with only those con-
straints. Its dual is a program that is equivalent to P but with polynomial number
of variables. We solve that to get the decomposition. O

Verifying the integrality gap. We now construct the integrality gap verifier for CA-P.
Recall that it receives as input weights w; g, and outputs an integral allocation x! which
is a c-approximation to the social welfare w.r.t. w; 5. Two requirements differentiate
it from a “regular” c-approximation for CAs: (i) it cannot assume any structure on
the weights w; s (unlike CA, where we have non-negativity and monotonicity), and
(i1) the obtained welfare must be compared to the fractional optimum (usually we care
for the integral optimum). The first property is not a problem.

Claim 12.19 Given a c-approximation for general CAs, A’, where the approx-
imation is with respect to the fractional optimum, one can obtain an algorithm A
that verifies a c-integrality-gap for the linear program CA-P, with a polynomial
time overhead on top of A.

PROOF Given w = {w; s}y s)cr, define w by wy = max(w; s, 0), and @
by ;s = maxrcs, (.7)eE wi+T (where the maximum is O if no 7 C § has
(i, T) € E. w is a valid valuation, and can be succinctly represented with size
|E|. Let O* = maX, is feasible for CA-P Z(i,S)GE x; sw; 5. Feed W to A’ to get X such
that Zi.S XisWis > 07 (since w; s > w;, g for every (i, S)).

Note that it is possible that) ; ¢ .y Xi swis < > ¢ Xi sW; s, since (i) the left
hand sum only considers coordinates in E and (ii) some w; s coordinates might
be negative. To fix the first problem define x* as follows: for any (i, S) such that
Xis=1,set x;rT, = 1for T' = argmaxycs.;.1)ck w;rT (set all other coordinates
of x* to 0). By construction,) _; ¢ %; sW; s = D iS)CE x;fsw;fs. To fix the second
problem, define x! as follows: set xil g = x;r ¢ if w; s > 0 and O otherwise. Clearly,

I _ + o F s :
D i.s)eE XisWis = D s)ek Xi sWi s> and x' s feasible for CA-P. O

The requirement to approximate the fractional optimum does affect generality.
However, one can use the many algorithms that use the primal-dual method, or a
derandomization of an LP randomized rounding. Simple combinatorial algorithms
may also satisfy this property. In fact, the greedy algorithm from Chapter 11 for

MULTIDIMENSIONAL DOMAINS: COMBINATORIAL AUCTIONS 315

single-minded players satisfies the requirement, and a natural variant verifies a
V2 - \/m integrality-gap for CA-P.

Definition 12.20 (Greedy (revisited)) Fix {w; s} s)ee as the input. Construct
x as follows. Let (i, §) = argmax shep(wir,s/+/15']). Set x; s = 1. Remove
from E all (i’, ") withi’ =i or 8’ NS # @. If E # (), reiterate.

Lemma 12.21 Greedy is a (v/2m)-approximation to the fractional optimum.

PROOF Let y = {y; s}i.s)ce be the optimal fractional allocation. For every
player i with x; 5, = 1 (for some S;),letY; = { (i’,S) € E | y».s > 0 and (i, S)
was removed from E when (i, S;) was added }. We show that Z(i,, ey, Vir.S
wirg < (ﬁﬂ)wi’&, which proves the claim. We first have

Z Yir,sWirs = Z)’i/,s%m

(", 9)eY; (", 5)ey;

Wi s:
<= 3" yis- /IS
|5i] (@".8)eY;
w;i s,
< —= Vir,s yirs -S| (12.10)
SRl >

@i’,8)eY; i',8)eY;

The first inequality follows since (i, S;) was chosen by greedy when (i’, S) was
in E, and the second inequality is a simple algebraic fact. We also have:

Dovs< Y, D yes+ P ys<Y IH1I<IS|+1 (21D
i,S)eY; jesi (',8)eY;,jes (i,9)eY; JjEeSi

where the first inequality holds since every (i, §) € Y; has either SN S; # @ or
i’ = i, and the second inequality follows from the feasibility constraints of CA-P,

and,
D oyes SIS DY yes<m (12.12)

(i",S)eY; jeQ (i',S)eY;, jes

Combining 12.10, 12.11, and 12.12, we get what we need:

Wi, s;
Z yi’,Swi’,Sf\/T‘\/|Si|+1'ﬂ§‘/§'ﬂ‘wi,s,- O
i'.S)ev; 15il

Greedy is not truthful, but with the decomposition-based mechanism, we use
randomness in order to “plug-in” truthfulness. We get the following theorem.

Theorem 12.22 The decomposition-based mechanism with Greedy as the
integrality-gap verifier is individually rational and truthful-in-expectation, and
obtains an approximation of /2 - J/m to the social welfare.

Remarks. The decomposition-based technique is quite general, and can be used in
other cases, if an integrality-gap verifier exists for the LP formulation of the problem.

316 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

Perhaps the most notable case is multiunit CAs, where there exist B copies of each
item, and any player desires at most one copy from each item. In this case, one can
verify a O(mﬁ') integrality gap, and this is the best possible in polynomial time. To
date, the decomposition-based mechanism is the only truthful mechanism with this
tight guarantee.

Nevertheless, this method is not completely general, as VCG is. One drawback is for
special cases of CAs, where low approximation ratios exist, but the integrality gap of
the LP remains the same. For example, with sub-modular valuations, the integrality gap
of CA-P is the same (the constraints do not change), but lower-than-2 approximations
exist. To date, no truthful mechanism with constant approximation guarantees is
known for this case. One could, in principle, construct a different LP formulation for
this case, with a smaller integrality gap, but these attempts were unsuccessful so far.

While truthfulness-in-expectation is a natural modification of (deterministic)
truthfulness, and although this notion indeed continues to be a worst-case notion, still
it is inferior to truthfulness. Players are assumed to only care about their expected
utility, and not about the variance, for example. A stronger notion is that of “universal
truthfulness,” were players maximize their utility for every coin toss. But even this is
still weaker. While in classic algorithmic settings one can use the law of large numbers
to approach the expected performance, in mechanism design one cannot repeat
the execution and choose the best outcome as this affects the strategic properties.
Deterministic mechanisms are still a better choice.

12.3.1 A General Overview of Truthful Combinatorial Auctions

The search for truthful CAs is an active field of research. Roughly speaking, two
techniques have proved useful for constructing truthful CAs. In “Maximal-in-Range”
mechanisms, the range of possible allocations is restricted, and the optimal-in-this-
range allocation is chosen. This achieves deterministic truthfulness with an O(y/m)-
approximation for subadditive valuations (Dobzinski et al., 2005), an O(\/l;nW)'
approximation for general valuations (Holzman et al., 2004), and a 2-approximation.
when all items are identical (“multi-unit auctions”) (Dobzinski and Nisan, 2006). A
second technique is to partition the set of players, sample statistics from one set, and use
it to obtain a good approximation for the other. See Chapter 13 for details. This tech-
nique obtains an O(./m)-approximation. for general valuations, and an O (log” m) for
XOS valuations (Dobzinski et al., 2006). The truthfulness here is “universal,” i.e., for
any coin toss — a stronger notion than truthfulness in expectation. Bartal et al. (2003)

use a similar idea to obtain a truthful and deterministic O(B - m 72)-approximation for
multiunit CAs with B > 3 copies of each item. For special cases of CAs, these tech-
niques do not yet manage to obtain constant-factor truthful approximations (Dobzinski
and Nisan, 2006 prove this impossibility for Maximal-In-Range mechanisms). Due to
the importance of constant-factor approximations, explaining this gap is challenging:

Open Question Does there exist truthful constant-factor approximations for special
cases of CAs that are NP-hard and yet constant algorithmic approximations are known?
For example, does there exist a truthful constant-factor approximation for CAs with
submodular valuations?

IMPOSSIBILITIES OF DOMINANT STRATEGY IMPLEMENTABILITY 317

For general valuations, the above shows a significant gap in the power of randomized vs.
deterministic techniques. It is not known if this gap is essential. A possible argument for
this gap is that, for general valuations, every deterministic mechanism is VCG-based,
and these have no power. Lavi et al. (2003) have initiated an investigation for the first
part of the argument, obtaining only partial results. Dobzinski and Nisan (2006) have
studied the other part of the argument, again with only partial results.

Open Question What are the limitations of deterministic truthful CAs? Does ap-
proximation and dominant-strategies clash in some fundamental and well-defined way
for CAs?

This section was devoted to welfare maximization. Revenue maximization is another
important goal for CA design. The mechanism of Bartal et al. (2003) obtains the same
guarantees with respect to the optimal revenue. More tight results for multi-unit auctions
with budget constrained players are given by Borgs et al. (2005), and for unlimited-
supply CAs by Balcan et al. (2005). It should be noted that these are preliminary
results for special cases; this issue is still quite unexplored.

12.4 Impossibilities of Dominant Strategy Implementability

In the previous sections we saw an interesting contrast between deterministic and
randomized truthfulness, where the key difference seems to be the dimensionality of
the domain. We now ask whether the source of this difficulty can be rigorously identified
and characterized. What exactly do we mean by an “impossibility,” especially since we
know that VCG mechanisms are possible, in every domain? Well, we mean that nothing
besides VCG is possible. Such a situation should be viewed as an impossibility, since
(i) many times VCG is computationally intractable (as we saw for CAs), and (ii) many
times we seek goals different from welfare maximization (as we saw for scheduling
domains). The monotonicity characterizations of Chapter 9 almost readily provide few
easy impossibilities for some special domains (see the exercises at the end of this
chapter), and in this section we will study a more fundamental case.

To formalize our exact question, it will be convenient to use the abstract social choice
setting introduced in Chapter 9: there is a finite set A of alternatives, and each player
has a type (valuation function) v: A — N that assigns a real number to every possible
alternative. v;(a) should be interpreted as i’s value for alternative a. The valuation
function v;(-) belongs to the domain V; of all possible valuation functions. Our goal is
to implement in dominant strategies the social choice function f: V; x --- x V, - A
(where w.l.0.g. assume that f: V — A is onto A). From chapter 9 we know that VCG
implements welfare maximization, for any domain, and that affine maximizers are also
always implementable.

Definition 12.23 (Affine maximizer) f is an “affine maximizer” if there exist
weights &y, ..., k, and {Cy}yca such that, forallv € V,

f(v) € argmax, ., {Z" kjvi(x) + C,}.

318 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

The fundamental question is what other function forms are implementable. This
question has remained mostly unexplored, with few exceptions. In particular, if the
domain is unrestricted, the answer is sharp.

Theorem 12.24 Suppose |A| > 3 and V; = R4 for all i. Then f is dominant-
strategy implementable iff it is an affine maximizer.

We will prove here a slightly easier version of the sufficiency direction. The proof
is simplified by adding an extra requirement, but the essential structure is kept. The
exercises give guidelines to complete the full proof.

Definition 12.25 (Neutrality) f is neutral if for all v € V, if there exists an
alternative x such that v;(x) > v;(y), for all i and y # x, then f(v) = x.

Neutrality essentially implies that if a function is indeed an affine maximizer then the
additive constants C, are all zero.

Theorem 12.26 Suppose |A| > 3 and for every i, V; = WA, If f is dominant-
strategy implementable and neutral then it must be an affine maximizer.

For the proof, we start with two monotonicity conditions. Recall that Chapter 9
portrayed the strong connection between implementability and certain monotonicity
properties. The monotonicity conditions that we consider here are stronger, and are not
necessary for all domains. However, for an unrestricted domain, their importance will
soon become clear.

Definition 12.27 (Positive association of differences (PAD)) f satisfies PAD
if the following holds for any v, v’ € V. Suppose f(v) = x, and for any y # x,
and any 7, v;(x) — v;(x) > v;(y) — vi(y). Then f(v) = x.

Claim 12.28 Any implementable function f, on any domain, satisfies PAD.

PROOF Letv = (v’l, e, vlf, Vitl, - - -, Up), 1.€., players up to i declare accord-
ing to v'; the rest declare according to v. Thus v = v, v* = v/, and f(v°) = x.
Suppose f(vi~') = x for some 1 < i < n. For every alternative y # x we have
vi(y) — vi(y) < vi(x) — v!7'(x), and in addition v';' = v’ . Thus, W-MON

implies that f(v') = x. By induction, f(v") =x. O
In an unrestricted domain, weak monotonicity can be generalized as follows.

Definition 12.29 (Generalized-WMON) For every v,v' € V with f(v) =x
and f(v") = y there exists a player i such that v;(y) — v;(y) > v;(x) — v;(x).

With weak monotonicity, we fix a player and fix the declarations of the others. Here,
this qualifier is dropped. Another way of looking at this property is the following: If

IMPOSSIBILITIES OF DOMINANT STRATEGY IMPLEMENTABILITY 319

f()=xand v'(x) — v(x) > v'(y) — v(y) then f(v') # y (a word about notation: for
o, B € N, weuse o > f to denote that Vi, o; > B;).

Claim 12.30 [f the domain is unrestricted and f is implementable then f
satisfies Generalized-WMON.

PROOF Fix any v, v'. We show that if f(v') = x and v'(y) — v(y) > v'(x) —
v(x) for some y € A then f(v) # y. By contradiction, suppose that f(v) = y.
Fix A € %" such that v'(x) — v'(y) = v(x) — v(y) — A, and define v":

min{v;(z) , v;(z) + vi(x) —vj(xX)} — A; zF#x,y
Vi, z€ A : U;/(Z) =3 vix)— % =X
vi(y) z=1y.

By PAD, the transition v — v” implies f(v”) = y, and the transition v" — v”
implies f(v”) = x, a contradiction. O

We now get to the main construction. For any x, y € A, define:
Px,y)={aeR |FveV: vx)—v(y)=0a, f(v)=x}. (12.13)

Looking at differences helps since we need to show that), k; [v;(x) — v;(y)] = Cy —
C, if f(v) = x. Note that P(x, y) is not empty (by assumption there exists v € V with
f(v) = x),and thatifa € P(x, y)thenforanyé € R, (i.e.,d > 6),01 +46e P(x,y):
take v with f(v) = x and v(x) — v(y) = «, and construct v’ by increasing v(x) by &,
and setting the other coordinates as in v. By PAD f(v') = x,and v'(x) — v'(¥) = « + 6.

Claim 12.31 Foranya,e € R", € > 0: ()a —e € P(x,y)=> —a & P(y, x),
and (ii) o ¢ P(x,y) = —a € P(y, x).

PROOF (i) Suppose by contradiction that —a € P(y, x). Therefore there exists
v eV with v(y) —v(x) = —a and f(v) =y. As ¢ — € € P(x, y), there also
exists v’ € V withv'(x) — v/(y) = o — € and f(v’) = x. But since v(x) — v(y) =
a > v'(x) — v'(y), this contradicts Generalized-WMON. (ii) For any z # x, y
take some 8, € P(x, z) and fix some € > 0. Fix some v such that v(x) —v(y) =«
and v(x) — v(z) = B; + € forall z # x, y. By the above argument, f(v) € {x, y}.
Since v(x) — v(y) = «a ¢ P(x, y) it follows that f(v) = y. Thus —a = v(y) —
v(x) € P(y,x),asneeded. O

Claim 12.32 Fix a, B, €1, €2, € W', € > 0, such that o« — €, € P(x, y) and
B—¢€ € P(y,z). Thena + B — (€1 +€)/2 € P(x, 2).

PROOF For any w # x, y, z fix some §,, € P(x, w). Choose any v such that
v(x) —v(y) =a —€/2,v(y) —v(z) = B — €/2,and v(x) — v(w) = §,, + € for
all w # x, y, z (for some € > 6). By Generalized-WMON, f(v) = x. Thus o +
B—(e1+e)/2=v(x)—v(z) e P(x,z). O

320 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

Claim 12.33 [f« is in the interior of P(x, y) then « is in the interior of P(x, z),
foranyz # x,y.

PROOF Suppose o — € € P(x, y) for some € > 0. By neutrality we have that
€/4—€/8 =€/8 € P(y, z). By Claim 12.32 we now getthat — €/4 € P(x, z),
which implies that ¢ is in the interior of P(x,z). O

By similar arguments, we also have that if « is in the interior of P(x, z) then «
is in the interior of P(w, z). Thus we get that for any x, y, w, z € A, not necessarily
distinct, the interior of P(x, y) is equal to the interior of P(w, z). Denote the interior
of P(x,y)as P.

Claim 12.34 P is convex.

PROOF We show that o, 8 € P implies (¢ + 8)/2 € P. A known fact from
convexity theory then implies that P is convex.> By Claim 12.32, o + 8 € P. We
show that for any @ € P we have «/2 € P as well, which then implies the Claim.
Suppose by contradiction that «/2 ¢ P. Thus by Claim 12.31, —«/2 € P. Then
o/2 =a+ (—a/2) € P,acontradiction. O

We now conclude the proof of Theorem 12.26. Neutrality implies that 0 is on the
boundary of any P(x, y); hence, it is not in P. Let P denote the closure of P. By the
separation lemma, there exists a k € R such that for any « € P, k - a > 0. Suppose
that f(v) = x for some v € V, and fix any y # x. Thus v(x) — v(y) € P(x, y), and
k-v(x) —v(y) > 0.Hence k - v(x) > k - v(y), and the theorem follows.

We have just seen a unique example, demonstrating that there exists a domain
for which affine maximizers are the only possibility. However, our natural focus is on
restricted domains, as most of the computational models that we consider do have some
structure (e.g., the two domains we have considered in this chapter). Unfortunately,
clear-cut impossibilities for such domains are not known.

Open Question Characterize the class of domains for which affine maximizers are
the only implementable functions.

Even this question does not capture the entire picture, as, for example, it is known that
there exists an implementable but not an affine-maximizer CA.? Nevertheless, there
do seem to be some inherent difficulties in designing truthful and computationally-
efficient CAs.* The less formal open question therefore searches for the fundamental
issues that cause the clash. Obviously, these are related to the monotonicity conditions,
but an exact quantification of this is still unknown.

2 Fora, 8 € Pand 0 < A < 1, build a series of points that approach Ac 4 (I — A)8, such that any point in the
series has a ball of some fixed radius around it that fully belongs to P.

3 See Lavi et al. (2003).

4 Note that we have in mind deterministic CAs.

ALTERNATIVE SOLUTION CONCEPTS 321
12.5 Alternative Solution Concepts

In light of the conclusions of the previous section, a natural way to advance would
be to reexamine the solution concept that we are using. In Section 12.3 we saw that
randomization certainly helps, but also carries with it some disadvantages. However, in
some cases randomization is not known to help, and additionally sometimes we want to
stick to deterministic mechanisms. What other solution concepts that fit the worst-case
way of thinking in CS can we use?

One simple thought is that algorithm designers do not care so much about actually
reaching an equilibrium point — our major concern is to guarantee the optimality of the
solution, taking into account the strategic behavior of the players. One way of doing
this is to reach a good equilibrium point. But there is no reason why we should not
allow the mechanism designer to “leave in” several acceptable strategic choices for the
players, and to require the approximation to be achieved in each of these choices.

As a first attempt, one is tempted to simply let the players try and improve the
basic result by allowing them to lie. However, this can cause unexpected dynamics, as
each player chooses her lies under some assumptions about the lies of the others, etc.
etc. We wish to avoid such an unpredictable situation, and we insist on using rigorous
game theoretic reasoning to explain exactly why the outcome will be satisfactory. The
following definition captures the initial intuition, without falling to such pitfalls:

Definition 12.35 (Algorithmic implementation) A mechanism M is an algo-
rithmic implementation of a c-approximation (in undominated strategies) if there
exists a set of strategies, D, such that (i) M obtains a c-approximation for any
combination of strategies from D, in polynomial time, and (ii) for any strategy
not in D, there exists a strategy in D that weakly dominates it, and this transition
is polynomial-time computable.

The important ingredients of a dominant-strategies implementation are here: the
only assumption is that a player is willing to replace any chosen strategy with a
strategy that dominates it. Indeed, this guarantees at least the same utility, even in
the worst case, and by definition can be done in polynomial time. In addition, again
as in dominant-strategy implementability, this notion does not require any form of
coordination among the players (unlike Nash equilibrium), or that players have any
assumptions on the rationality of the others (as in “iterative deletion of dominated
strategies”).

However, two differences from dominant-strategies implementation are worth men-
tioning: (I) A player might regret his chosen strategy, realizing in retrospect that
another strategy from D would have performed better, and (II) deciding how to play
is not straight-forward. While a player will not end up playing a strategy that does not
belong to D, it is not clear how he will choose one of the strategies of D. This may
depend, for example, on the player’s own beliefs about the other players, or on the
computational power of the player.

Another remark, about the connection to the notion of implementation in undomi-
nated strategies, is in place. The definition of D does not imply that all undominated
strategies belong to D, but rather that for every undominated strategy, there is an

322 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

equivalent strategy inside D (i.e., a strategy that yields the same utility, no matter
what the others play). The same problem occurs with dominant-strategy implementa-
tions, e.g., VCG, where it is not required that truthfulness should be the only dominant
strategy, just a dominant strategy.

In this section we illustrate how to use such a solution concept to design CAs for
a special class of “single-value” players. The resulting auction has another interesting
feature: while most mechanisms we have seen so far are direct revelation, in practice
indirect mechanisms, and especially ascending auctions (players compete by raising
prices and winners pay their last bid) are much preferred. The following result is an
attempt to handle this issue as well.

Single-value players. The mechanisms of this section fit the special case of players
that desire several different bundles, all for the same value: Player i is single-valued
if there exists ; > 1 such that for any bundle s, v;(s) € {0, v;}. That is, i desires any
one bundle out of a collection S; of bundles, for a value 7;. We denote such a player
by (9, ;). ¥; and S; are private information of the player. Since S; may be of size
exponential in m, we assume the query access model, as detailed below.

An iterative wrapper. We start with a wrapper to a given algorithmic subprocedure,
which will eventually convert algorithms to a mechanism, with a small approximation
loss. It operates in iterations, with iteration index j, and maintains the tentative winners
W;, the sure-losers L ;, and a “tentative winning bundle” siJ foreveryi. In each iteration,
the subprocedure is invoked to update the set of winners to W;,; and the winning
bundles to s/*!. Every active nonwinner then chooses to double his bid (vl.j) or to
permanently retire. This is iterated until all nonwinners retire.

Definition 12.36 (The wrapper) Initialize j = 0, W; = L; = ¢, and for every
player i, le = 1and s? = Q. While W; U L; # “all players” perform:

1. (W41, s/t < PROC(v/, s/, W)).

2. Vi ¢ Wi ULj,ichooses whether to double his value (v;’drl «~2- vf) or to
permanently retire (vij *1 < 0). For all others set vij H
3. Update L ={i € N | vl.jJrl =0} and j — j 4+ 1, and reiterate.

<« v/,

QOutcome: Let J = j (total number of iterations). Every i € W gets siJ and pays
viJ . All others lose (get nothing, pay 0).

For feasibility, PROC must maintain: Vi, i’ € W;, sijJrl N siJ;H =0

We need to analyze the strategic choices of the players, and the approximation loss
(relative to PROC). This will be done gradually. We first worry about minimizing the
number of iterations.

Definition 12.37 (Proper procedure) PROC is proper if (1) Pareto: Vi ¢
Wis1 ULj, 5! N (Uew,,,s{"") # @, and (2) Shrinking-sets: Vi, s/ "' C 5.

In words, the pareto property implies that the set of winners that PROC outputs is
maximal, i.e., that any loser that has not retired desires a bundle that intersects some

ALTERNATIVE SOLUTION CONCEPTS 323

winner’s bundle. The shrinking-sets property says that a player’s new tentative bundle
must be a subset of the old tentative bundle.

A “reasonable” player will not increase vl.] above ¥;; otherwise, his utility will be
nonpositive (this strategic issue is formally discussed below). Assuming this, there
will clearly be at most n - log(vy.x) iterations, where vy,x = max; v;. With a proper
procedure this bound becomes independent of r.

Lemma 12.38 [f every player i never increases vl-j above v;, then any proper
procedure performs at most 2 - 1og(vmax) + 1 iterations.

PROOF Consider iteration j = 2 - log(Vmax) + 1, and some iy ¢ W, U L; that
(by contradiction) doubles his value. By Pareto, there exists i € W,y such
that sij; N 51/7 + # (). By “shrinking-sets,” in every j' < j their winning bundles
intersect, hence at least one of them was not a winner, and doubled his value. But
then vi’l > Umax, @ contradiction. O

This affects the approximation guarantee, as shown below, and also implies that the
Wrapper adds only a polynomial-time overhead to PROC.

A warm-up analysis. To warm up and to collect basic insights, we first consider
the case of known single-minded players (KSM), where a player desires one specific
bundle, S;, which is public information (she can lie only about her value). This allows
for a simple analysis: the wrapper converts any given c-approximation. to a dominant-
strategy mechanism with O (log(vmax) - ¢) approximation. Thus, we get a deterministic
technique to convert algorithms to mechanisms, with a small approximation loss.

Here, we initialize s = §;, and set s/ - 5], which trivially satisfies the shrinking-
sets property. In addition, pareto is satisfied w.l.0.g. since if not, add winning players in
an arbitrary order until pareto holds. For KSM players, this takes O(n - m) time. Third,
we need one more property:

Definition 12.39 (Improvement) 3,y . DY ew, vl

This is again without loss of generality: if the winners outputted by PROC violate this,
simply output W; as the new winners. To summarize, we use:

Definition 12.40 (The KSM-PROC) Given a c-approximation. A for KSM
players, KSM-PROC invokes A with s/ (the desired bundles) and v/ (player
values). Then, it postprocesses the output to verify pareto and improvement.

Proposition 12.41 Under dominant strategies, i retires iff v; /2 < vij < 7.

(The simple proof is omitted.) For the approximation, the following analysis carries
through to the single-value case. Let ;| j = {s € §; | s C sij}, and

R;(v, 3‘) = { (v;, Sil,/)li retired at iteration j }, (12.14)

324 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

i.e., for every player i that retired at iteration j the set R, (0, S) contains a single-value
player, with value v; (given as a parameter), and desired bundles S;| ; (where §; is given
as a parameter). For the KSM case, R (v, S)is exactly all retired playlers initeration j, as
the operator ““| ;™ has no effect. Hence, to prove the approximation, we need to bound the
value of the opt’imal allocation to the playersin R = U jf _R;(®, S). Foran instance X of
single-value players, let OPT(X) be the value of the optimal allocation to the players
in X. In particular: OPT(R;(V, §)) = maXy siiocations(s,.....s,) S.Lyes " 5141 Vi }-

Definition 12.42 (Local approximation) A proper procedure is a c-local-
approximation w.r.t a strategy set D if it satisfies improvement, and, for any
combination of strategies in D and any iteration j,

Algorithmic approximation OPT(R;(v/,8)) <c-), ew, vl.j

Value bounds vij <y (sl.j), and, if i retires at j then vij > v; /2.

Claim 12.43 Given a c-approximation A for single minded players, KSM-PROC
is a c-local-approximation for the set D of dominant strategies.

PROOF The algorithmic approximation property follows since A out-
puts a c-approximation outcome. The value bounds property is exactly
Proposition 12.41. O

We next translate local approximation to global approximation (this is valid also for
the single-value case).

Claim 12.44 A c-local-approximation satisfies OPT(R) < 5 - 10g(Vmax) - C -
> iew, Ui whenever players play strategies in D.

PROOF By the value bounds, OPT'(R;(, S)) <2 - OPT(R;(v/, S)). We have
(i) OPT(R;(v/,8) <c- Ziewj v/ by algorithmic approximation, (ii) Ziewj
vij <>, Wi v;j + by improvement, and (iii) vij < v; (by the value bounds), and
therefore we get OPT(R;(9,5)) <2-c- > icw, Ui- Hence OPT(R) < ijl
OPT(R;(®,8) <J-2-c- > iew, Ui- Since J < 2-10g(vmax) + 1, the claim
follows. O

For single-minded players, R is the set of losing players, hence we conclude:

Theorem 12.45 Given any c-approximation. for KSM players, the Wrapper
with KSM-PROC implements an O(log(vmax) - ¢) approximation. in dominant
strategies.

A subprocedure for single-value players. Two assumptions are relaxed: players
are now multiminded, and their desired bundles are unknown. Here, we define the

ALTERNATIVE SOLUTION CONCEPTS 325

following specific subprocedure. For a set of players X, let Free(X, s7*1) denote the
items not in Ujexs; .

Definition 12.46 (1-CA-PROC) Let M; = argmax,_y{v/}, GREEDY ; = §.
For every player i with vl.] > 0, in descending order of values, perform:

Shrinking the winning set: If i ¢ W; allow him to pick a bundle sij + C
Free(GREEDY ;, s/t N sij suchthat|sij+1| < /m.Inanyothercase (i € W;
or i does not pick) set sl:i = s,:i .

Updating the current winners: If |s,.j < /m, add i to any of the alloca-
tions W € {W;, M;, GREEDY ;} for which s/ ™" C Free(W, s/*1).

Output s/*' and W € {W;, M;, GREEDY ;} that maximizes) ;_y v/

Recall that the nonwinners then either double their value or retire, and we reiterate.
This is the main conceptual difference from “regular” direct revelation mechanisms:
here, the players themselves gradually determine their winning set (focusing on one
of their desired bundles), and their price. Intuitively, it is not clear how a “reasonable”
player should shrink his winning set, when approached. Ideally, a player should focus
on a desired bundle that intersects few, low-value competitors. But in early iterations
this information is not available. Thus there is no clear-cut on how to shrink the winning
set, and the resulting mechanism does not contain a dominant strategy. This is exactly
the point where we use the new notion of algorithmic implementation.

Analysis. We proceed by characterizing the required set D of strategies. We say
that player i is “loser-if-silent” at iteration j if, when asked to shrink her bundle by
1-CA-PROC, vl.] > ;/2 (retires if losing), i ¢ W; and i ¢ M; (not a winner), and
sij N (Ui/eszi’;H) # () and sl.j N (U,-/GM/.si/;H) # () (remains a loser after pareto). In
other words, a loser-if-silent loses (regardless of the others’ actions) unless she shrinks
her winning set. Let D be all strategies that satisfy, in every iteration j:

@) vl.j < vi(sij), and, if i retires at j then vl.j > v; /2. '
(ii) If i is “loser-if-silent” then she declares a valid desired bundle si’ +1, if such a bundle
exists.

There clearly exists a (poly-time) algorithm to find a strategy st € D that dominates a
given strategy sz. Hence, D satisfies the second requirement of algorithmic implemen-
tation. It remains to show that the approximation is achieved for every combination of
strategies from D.

Lemma 12.47 [-CA-PROC is an O(\/m)-local-approximation w.r.t. D.

PROOF (sketch). The pareto, improvement, and value-bounds properties are
immediate from the definition of the procedure and the set D. The O(y/m)-
algorithmic-approximation property follows from the following argument. We
need to bound OPT = OPT({(v/, S',-lsl,_/) | i retired at iteration j}) by the sum of
values of the players in W, ;. We divide the winners in OPT to four sets. Those

326 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

that are in M;, GREEDY ;, W;, or in none of the above. For the first three sets
the 1-CA-PROC explicitly verifies our need. It remains to handle players in the
forth set. First notice that such a player is loser-if-silent. If such a player receives
in OPT a bundle with size at least \/m we match him to the player with the highest
value in M. There can be at most /m players in OPT with bundles of size at
least ,/m, so we lose a /m factor for these players. If a player, i, in the forth set,
receives in OPT a bundle with size at most /m, let s7 be that bundle. Since he is

aloser-if-silent, there exists i’ € GREEDY ; such that s}, N 57 # () and vij <)

e
We map i to i’. For any iy, i, that were mapped to i’ we have that siNsi =0
since both belong to OPT'. Since the size of sij; is at most 4/m it follows that at
most /m players can be mapped to i’, so we lose a v/m factor for these players
as well. This completes the argument. O

In the single-value case, R does not contain all players, so we cannot repeat the
argument from the KSM case that immediately linked local approximation and global
approximation. However, Claim 12.44 still holds, and we use R as an intermediate set
of “virtual” players. The link to the true players is as follows (recall that m denotes the
number of items).

Definition 12.48 (First-time shrink) PROC satisfies “first time shrink™ if for
any iy, i €{i : |s/|=m&Is{*'| <m).s]" st =0

1-CA-PROC satisfies this since any player that shrinks his winning bundle is added to
GREEDY ;.

Lemma 12.49 Given a c-local-approximation (w.r.t. D) that satisfies first-time
shrink, the Wrapper obtains an O(1og*(vmax) - €) approximation for any profile of
strategies in D.

PROOF We continue to use the notation of Claim 12.44. Let P = {(¥;, S;) :
ilost, and |siJ | < m}. Players in P appear with all their desired bundles, while
players in R appear with only part of their desired bundles. However, ignoring
the extra bundles in P incurs only a bounded loss:

Claim 12.50 OPT(P) < J - OPT(R).

PROOF Define P; to be all players in P that first shrank their bundle at iteration
Jj. By “first-time shrink,” and since winning bundles only shrink, siJ; N si =0
for every iy, i € P;. Therefore OPT(R) > ZieP,- v;: every player i in P; cor-
responds to a player in R, and all these players have disjoint bundles in R since
the bundles of i are contained in sl.j . We also trivially have OPT(P;) <} ;. P, ;.
Thus, for any j, OPT(P;) < OPT(R), and OPT(P) < ZJ- OPT(P;) < J -
OPT(R). O

To prove the lemma, first notice that all true players are contained in P U
R U Wj: all retiring players belong to R U P (if a player shrank his bundle then
he belongs to P with all his true bundles, and if a player did not shrink his

BIBLIOGRAPHIC NOTES 327

bundle at all then he belongs to R with all his true bundles) and all nonretiring
players belong to W;. From the above we have OPT(P U R) < OPT(P) +
OPT(R)<J-OPT(R)+ OPT(R)<4-J* - c- D iew, v/. Since s contain
some desired bundle of player i, we have that OPT(W;) =}, _y, 0i- Thus we
getthat OPT(PURUW,)<5-J%.¢- Ziewj Dij. Since J <2 -log(vmax) + 1

by Lemma 12.38, the lemma follows. O

By all the above, we conclude the following.

Theorem 12.51 The Wrapper with 1-CA-PROC is an algorithmic implementa-
tion of an O(1og*(vmax) - ¢)-approximation for single-value players.

This result has demonstrated that if we are less interested in reaching an equilibrium
point, but rather in guaranteeing a good-enough outcome, then alternative solution
concepts, that are no worse than classic dominant strategies, can be of much help.
However, the true power of relaxing dominant strategies to undominated strategies was
not formally settled.

Open Question Does there exist a domain in which a computationally efficient
algorithmic implementation achieves a better approximation than any computationally
efficient dominant-strategy implementation?

12.6 Bibliographic Notes

The connection between classic scheduling and mechanism design was suggested by
Nisan and Ronen (2001), that studied unrelated machines and reached mainly im-
possibilities. Archer and Tardos (2001) studied the case of related machines, and the
monotonicity characterization of Section 12.2 is based on their work. Deterministic
mechanisms for the problem have been suggested by several works, and the algorithm
presented here is by Andelman, Azar, and Sorani (2005). The current best approxi-
mation ratio, 3, is given by Kovacs (2005). Section 12.3 is based on the work of Lavi
and Swamy (2005). Roberts (1979) characterized dominant strategy implementability
for unrestricted domains. The proof given here is based on Lavi, Mu’alem, and Nisan
(2004). Generalized-WMON was suggested by Lavi, Mu’alem, and Nisan (2003),
which explored the same characterization question for restricted domains in general,
and for CAs in particular. Section 12.5 is based on the work of Babaioff, Lavi, and
Pavlov (2006). There have been several other suggestions for alternative solution con-
cepts. For example, Kothari et al. (2005) describe an “almost truthful” deterministic
FPAS for multiunit auctions, and Lavi and Nisan (2005) define a notion of “Set-Nash”
for multi-unit auctions in an online setting, for which they show that deterministic truth-
fulness obtains significantly lower approximations than Set-Nash implementations.

Bibliography

N. Andelman, Y. Azar, and M. Sorani. Truthful approximation mechanisms for scheduling selfish
related machines. In Proc. of the 22nd Intl. Symp. Theor. Asp. Comp. Sci. (STACS), pp. 69-82,
2005.

328 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In Proc. of the 42nd Annual
Symp. Fdns. of Computer Science, 2001.

M. Babaioff, R. Lavi, and E. Pavlov. Single-value combinatorial auctions and implementation in
undominated strategies. In Proc. of the 17th Symp. Discrete Algorithms, 2006.

M. Balcan, A. Blum, J. Hartline, and Y. Mansour. Mechanism design via machine learning. In Proc.
of the 46th Annual Symp. Fdns. of Computer Science, 2005.

Y. Bartal, R. Gonen, and N. Nisan. Incentive compatible multi-unit combinatorial auctions. In Proc.
of the 9th Conf. Theoretical Aspects of Rationality and Knowledge (TARK), 2003.

C. Borgs, J. Chayes, N. Immorlica, M. Mahdian, and A. Saberi. Multi-unit auctions with budget-
constrained bidders. In Proc. of the 6th ACM Conf. Electronic Commerce (ACM-EC), 2005.

S. Dobzinski and N. Nisan. Approximations by computationally-efficient vcg-based mechanisms,
2006. Working paper.

S. Dobzinski, N. Nisan, and M. Schapira. Approximation algorithms for combinatorial auctions with
complement-free bidders. In Proc. of the 37th ACM Symp. Theory of Computing, 2005.

S. Dobzinski, N. Nisan, and M. Schapira. Truthful randomized mechanisms for combinatorial auc-
tions. In Proc. of the 38th ACM Symp. Theory of Computing, 2006.

R. Holzman, N. Kfir-Dahav, D. Monderer, and M. Tennenholtz. Bundling equilibrium in combinatorial
auctions. Games Econ. Behav., 47:104—-123, 2004.

A. Kothari, D. Parkes, and S. Suri. Approximately-strategy proof and tractable multi-unit auctions.
Decis. Support Systems, 39:105-121, 2005.

A. Kovacs. Fast monotone 3-approximation algorithm for scheduling related machines. In Proc. of
the 13th Annual Eur. Symp. Algo. (ESA), 2005.

R. Lavi, A. Mu’alem, and N. Nisan. Towards a characterization of truthful combinatorial auctions. In
Proc. of the 44th Annual Symp. Fdns. of Computer Science, 2003.

R. Lavi, A. Mu’alem, and N. Nisan. Two simplified proofs for Roberts’ theorem, 2004. Working
paper.

R. Lavi and N. Nisan. Online ascending auctions for gradually expiring items. In Proc. of the 16th
Symp. on Discrete Algorithms, 2005.

R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear programming. In
Proc. of the 46th Annual Symp. Fdns. of Computer Science, 2005.

N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior, 35:166—
196, 2001.

K. Roberts. The characterization of implementable choice rules. In Jean-Jacques Laffont, editor,
Aggregation and Revelation of Preferences, pp. 321-349, No