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Preface

Probability theory is one branch of mathematics that is simultaneously deep and
immediately applicable in diverse areas of human endeavor. It is as fundamental as
calculus. Calculus explains the external world, and probability theory helps predict
a lot of it. In addition, problems in probability theory have an innate appeal, and
the answers are often structured and strikingly beautiful. A solid background in
probability theory and probability models will become increasingly more useful in
the twenty-first century, as difficult new problems emerge, that will require more
sophisticated models and analysis.

This is a text on the fundamentals of the theory of probability at an undergraduate
or first-year graduate level for students in science, engineering, and economics. The
only mathematical background required is knowledge of univariate and multivari-
ate calculus and basic linear algebra. The book covers all of the standard topics
in basic probability, such as combinatorial probability, discrete and continuous
distributions, moment generating functions, fundamental probability inequalities,
the central limit theorem, and joint and conditional distributions of discrete and
continuous random variables. But it also has some unique features and a forward-
looking feel. Some unique features of this book are its emphasis on conceptual
discussions, a lively writing style, and on presenting a large variety of unusual and
interesting examples; careful and more detailed treatment of normal and Poisson ap-
proximations (Chapters 6 and 10); better exposure to distribution theory, including
developing superior skills in working with joint and conditional distributions and
the bivariate normal distribution (Chapters 11, 12, and 13); a complete and readable
account of finite Markov chains (Chapter 14); treatment of modern urn models and
statistical genetics (Chapter 15); special efforts to make the book user-friendly, with
unusually detailed chapter summaries, and a unified collection of formulas from the
text, and from algebra, trigonometry, geometry, and calculus in the appendix of the
book, for immediate and easy reference; and use of interesting Use Your Computer
simulation projects as part of the chapter exercises to help students see a theoretical
result evolve in their own computer work.

The exercise sets form a principal asset of this text. They contain a wide mix of
problems at different degrees of difficulty. While many are straightforward, many
others are challenging and require a student to think hard. These harder problems are
always marked with an asterisk. The chapter ending exercises that are not marked
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with an asterisk generally require only straightforward skills, and these are also
essential for giving a student confidence in problem solving. The book also gives a
set of supplementary exercises for additional homework and exam preparation. The
supplementary problem set has 185 word problems and a very carefully designed set
of 120 true/false problems. Instructors can use the true/false problems to encourage
students to learn to think and also quite possibly for weekly homework. The total
number of problems in the book is 810.

Students who take a course from this book should be extremely well-prepared to
take more advanced probability courses and also courses in statistical theory at the
level of Bickel and Doksum (2001), and Casella and Berger (2001). This book alone
should give many students a solid working knowledge of basic probability theory,
together with some experience with applications. The sections in the text that are
marked with an asterisk are optional, and they are not essential for learning the most
basic theory of probability. However, these sections have significant reference value,
and instructors may choose to cover some of them at their discretion.

The book can be used for a few different types of one-semester courses; for
example, a course that primarily teaches univariate probability, a course that caters
to students who have already had some univariate probability, or a course that does
a bit of both. The book can also be used to teach a course that does some theory and
then some applications. A few such sample one-semester course outlines using this
book are:

Sample course one: Univariate and some urn models Sections 1.1–1.5; 2.1;
3.1–3.4; 4.1–4.9, 4.10.1; 6.1–6.7; 7.1–7.5; 7.7.1; 8.1–8.4; 9.1–9.4; 10.1–10.5, 10.7;
15.4, 15.5

Sample course two: Mostly multivariate, with Markov chains and some
urn models A four week review of univariate probability, followed by Sections
11.1–11.5; 12.1–12.6; 13.1–13.5; 8.6; 14.1–14.6; 15.1, 15.2, 15.4–15.6

Sample course three: Univariate, discrete multivariate, some Markov chains,
and genetics Sections 1.1–1.5; 3.1–3.4; 4.1–4.6, 4.8, 4.9, 4.12; 6.3, 6.4, 6.6,
6.7, 6.9; 7.1, 7.3–7.5, 7.6.1; 8.1–8.6; 9.1–9.4; 10.1–10.4; 11.1–11.4; 14.1–14.3;
15.7–15.9.

A companion second volume of this book is planned for late 2010. The second
volume will cater primarily to graduate students in mathematics, statistics, and ma-
chine learning and will cover advanced distribution theory, asymptotic theory and
characteristic functions, random walks, Brownian motion and the empirical process,
Poisson processes, extreme value theory and concent ration inequalities, a survey of
models, including martingales, copulas, and exponential families, and an introduc-
tion to MCMC.

Peter Hall, Stewart Ethier, Burgess Davis, B.V. Rao, Wei-Liem Loh, Dimitris
Politis, Yosi Rinott, Sara van de Geer, Jayaram Sethuraman, and Rabi Bhattacharya
made scholarly comments on various drafts of this book. I am thankful to all of
them. I am specifically deeply indebted to Peter Hall for the extraordinary nature
of his counsel and support and for his enduring and selfless friendship and warmth.
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I simply could not have written this book without Peter’s help and mentoring. For
this, and for being a unique counselor and friend to me, I am grateful to Peter.

I also want to express my deep appreciation for all the help that I received
from Stewart Ethier as I was writing this book. Stewart was most gracious, patient,
thoughtful, and kind. Burgess Davis affectionately read through several parts of the
book, corrected some errors, and was a trusted counselor. Eight anonymous review-
ers made superb comments and helped me make this a better book. Springer’s series
editors, Peter Bickel, George Casella, Steve Feinberg, and Ingram Olkin, helped me
in every possible way at all times. I am thankful to them.

John Kimmel, as always, was a pleasure to work with. John’s professionalism
and his personal qualities make him a really dear person. My production editor
Susan Westendorf graciously handled every production related issue and it was my
pleasure to work with her. My copyeditor Hal Henglin did an unbelievably careful
and thoughtful job. Indeed, if it was not for Hal, I could not have put this book
out in a readable form. The technical staff at SPi Technologies, Pondicherry, India
did a terrific and timely job of resetting the book in Springer’s textbook template.
Doug and Cheryl Crabill helped me with my computer questions and solved my
problems with mysterious and magical powers. Shanti Gupta brought me to the
United States and cared for me and was a guardian and a mentor for more than 15
years. I miss Shanti very much. Larry Brown, Persi Diaconis, Jon Wellner, Steve
Lalley, Jim Pitman, C.R. Rao, and Jim Berger have given me support and sincere
encouragement for many of my efforts. I appreciate all of them.

Human life is unreasonably fragile. It is important that our fondness for our
friends not remain unspoken. I am thankful to numerous personal friends for their
affection, warmth, and company over the years. It is not possible to name all of
them. But I am especially grateful and fortunate for the magnificent and endear-
ing support, camaraderie, and concern of some of my best friends, Jenifer Brown,
Len Haff, Peter Hall, Rajeeva Karandikar, T. Krishnan, Wei-Liem Loh, B.V. Rao,
Herman Rubin, Bill Strawderman, Larry Wasserman, and Dr. Julie Marshburn, MD.
They have given me much more than I have cared to give in return. I appreciate them
and their friendship more than I can express.

I had my core training in probability at the fundamental level in Dev Basu’s
classes at the ISI. I never met another teacher like Basu. I was simply fortunate to
have him as my teacher and to have known him for the rare human being that he was.
Basu told us that we must read Feller. I continue to believe that the two volumes of
Feller are two all-time classics, and it’s hard not to get inspired about the study of
randomness once one has read Feller. I dedicate this book to William Feller and Dev
Basu for bringing me the joy of probability theory.

But most of all, I am in love with my family for their own endless love for as
long as I have lived. I hope they like this book.

West Lafayette, Indiana Anirban DasGupta
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Chapter 1
Introducing Probability

Probability is a universally accepted tool for expressing degrees of confidence or
doubt about some proposition in the presence of incomplete information or uncer-
tainty. By convention, probabilities are calibrated on a scale of 0 to 1; assigning
something a zero probability amounts to expressing the belief that we consider it
impossible, while assigning a probability of one amounts to considering it a cer-
tainty. Most propositions fall somewhere in between. For example, if someone pulls
out a coin and asks if the coin will show heads when tossed once, most of us will
be inclined to say that the chances of the coin showing heads are 50%, or equiv-
alently .5. On the other hand, if someone asks what the chances are that gravity
will cease to exist tomorrow, we will be inclined to say that the chances of that are
zero. In these two examples, we assign the chances .5 and 0 to the two propositions
because in our life experience we have seen or heard that normal coins tend to pro-
duce heads and tails in roughly equal proportions and also that, in the past, gravity
has never ceased to exist. Thus, our probability statements are based at some level
on experience from the past, namely the propensity with which things, which we
call events, tend to happen. But, as a third example, suppose we are asked what the
chances are that civilized life similar to ours exists elsewhere in the known universe.
Now the chances stated will undoubtedly differ from person to person. Now there
is no past experience that we can count on to make a probabilistic statement, but
many of us will still feel comfortable making rough probability statements on such
a proposition. These are based purely on individual belief and understanding, and
we think of them as subjective probabilities.

Whether our probability statements are based on past experience or subjective
personal judgments, they obey a common set of rules that we can use to treat
probabilities in a mathematical framework and use them for making decisions,
predictions, understanding complex systems, as intellectual experiments, and for
entertainment. Probability theory is one of the most beautiful branches of mathe-
matics; the problems that it can address and the answers that it provides are often
strikingly structured and beautiful. At the same time, probability theory is one of
the most applicable branches of mathematics. It is used as the primary tool for
analyzing statistical methodologies; it is used routinely in nearly every branch of
science, such as biology, astronomy and physics, medicine, economics, chemistry,

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 1, c� Springer Science+Business Media, LLC 2010
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sociology, ecology, and finance, among others. A background in the theory, models,
and applications of probability is almost a part of basic education. That is how
important it is.

For classic and lively introductions to the subject of probability, we recom-
mend Feller (1968). Later references with interesting examples include Ross (1984),
Stirzaker (1994), and Pitman (1992).

1.1 Experiments and Sample Spaces

Treatment of probability theory starts with the consideration of a sample space. The
sample space is the set of all possible outcomes in some physical experiment. For
example, if a coin is tossed twice and after each toss the face that shows is recorded,
then the possible outcomes of this particular coin-tossing experiment, say �, are
HH;HT;TH;TT , with H denoting the occurrence of heads and T denoting the oc-
currence of tails. We call

� D fHH;HT;TH;TTg

the sample space of the experiment �.
We instinctively understand what an experiment means. An experiment is a

physical enterprise that can, in principle, be repeated infinitely many times inde-
pendently. For example,

� D choose a number between 1 and 10 and record the value of the chosen
number,

� D toss a coin three times and record the sequence of outcomes,
� D arrange five people in a lineup for taking a picture,
� D distribute 52 cards in a deck of cards to four players so that each player

gets 13 cards,
� D count the number of calls you receive on your cell phone on a given day,

and
� D measure someone’s blood pressure

are all activities that can, in principle, be repeated and are experiments. Notice that,
for each of these experiments, the ultimate outcome is uncertain until the experiment
has actually been performed. For example, in the first experiment above, the number
that ultimately gets chosen could be any of 1; 2; : : : ; 10. The set of all these possi-
ble outcomes constitutes the sample space of the experiment. Individual possible
outcomes are called the sample points of the experiment.

In general, a sample space is a general set �, finite or infinite. An easy example
where the sample space� is infinite is to toss a coin until the first time heads shows
up and record the number of the trial at which the first head showed up. In this case,
the sample space � is the countably infinite set

� D f1; 2; 3; : : :g:
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Sample spaces can also be uncountably infinite; for example, consider the
experiment of choosing a number at random from the interval Œ0; 1�. Although
we do not yet know what choosing a number at random from Œ0; 1� means, we
understand that the chosen number could be any number in Œ0; 1�, so the sample
space of such an experiment should be� D Œ0; 1�. In this case,� is an uncountably
infinite set. In all cases, individual elements of a sample space will be denoted as !.
The first task is to define events and explain what is meant by the probability of
an event.

Loosely speaking, events are collections of individual sample points. For exam-
ple, in the experiment of tossing a coin twice, consider the collection of sample
points A D fHT; TH g. This collection corresponds to an interesting statement or
proposition, namely that when a coin is tossed twice, it will show one head and one
tail. A particular collection of sample points may or may not turn out to be an inter-
esting statement in every example. But it will nevertheless be an event. Here is the
formal definition of an event.

Definition 1.1. Let � be the sample space of an experiment �. Then any subset
A of�, including the empty set � and the entire sample space�, is called an event.
Events may contain even one single sample point !, in which case the event is a
singleton set f!g. We will want to assign probabilities to events. But we want to
assign probabilities in such a way that they are logically consistent. In fact, this can-
not be done in general if we insist on assigning probabilities to arbitrary collections
of sample points, i.e., arbitrary subsets of the sample space �. We can only define
probabilities for such subsets of� that are tied together like a family, the exact con-
cept being that of a �-field. In most applications, including those cases where the
sample space � is infinite, events that we would want to normally think about will
be members of such an appropriate �-field. So we will not mention the need for
consideration of �-fields further and get along with thinking of events as subsets of
the sample space �, including in particular the empty set � and the entire sample
space � itself.

1.2 Set Theory Notation and Axioms of Probability

Set theory notation will be essential in our treatment of events because events are
sets of sample points. So, at this stage, it might be useful to recall the following
common set theory notation:

Given two subsets A and B of a set �,

Ac D set of points of � not in A,
A\ B D set of points of � that are in both A and B ,
A[ B D set of points of � that are in at least one of A and B ,
A4B D set of points of � that are in exactly one of A and B ,
A� A\ B D set of points of� that are in A but not in B:
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If � is the sample space of some experiment and A and B are events in that
experiment, then the probabilistic meaning of this notation would be as follows:
Given two events A and B in some experiment,

Ac D A does not happen,
A\B D both A and B happen; the notationAB is also sometimes used to mean
A\ B ,
A[ B D at least one of A and B happens,
A4B D exactly one of A and B happens,
A� A\ B D A happens, but B does not.

Example 1.1. This example is to help interpret events of various types using the
symbols of set operation. This becomes useful for calculating probabilities by set-
ting up the events in set theory notation and then using a suitable rule or formula.
For example,

at least one of A, B , C D A[ B [ C I
each of A, B , C D A\ B \ C I

A, but not B or C D A \ Bc \ C c I
A and exactly one of B or C D A\ .B4C/ D .A \ B \ C c/[ .A\ C \ Bc/I

none of A, B , C D Ac \ Bc \ C c :

It is also useful to recall the following elementary facts about set operations.

Proposition.
(a) A \ .B [ C/ D .A \ B/ [ .A \ C/;
(b) A [ .B \ C/ D .A [ B/ \ .A [ C/;
(c) .A [ B/c D Ac \ Bc ;
(d) .A \ B/c D Ac [ Bc .

Now, here is a definition of what counts as a legitimate probability of events.

Definition 1.2. Given a sample space �, a probability or a probability measure on
� is a function P on subsets of � such that

(a) P.A/ � 0 for anyA � �;
(b) P.�/ D 1I
(c) given disjoint subsetsA1; A2; : : : of˝;P.[1

iD1Ai / D P1
iD1 P.Ai /:

Property (c) is known as countable additivity. Note that it is not something that can
be proved, but it is like an assumption or an axiom. In our experience, we have seen
that operating as if the assumption is correct leads to useful and credible answers
to many problems, so we accept it as a reasonable assumption. Not all probabilists
agree that countable additivity is natural, but we will not get into that debate in
this book. One important point is that finite additivity is subsumed in countable
additivity i.e., if there is some finite number m of disjoint subsets A1; A2; : : : ; Am

of �, then P.[m
iD1Ai / D Pm

iD1 P.Ai /: Also, it is useful to note that the last two
conditions in the definition of a probability measure imply thatP.�/, the probability
of the empty set or the null event, is zero.
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One notational convention is that, strictly speaking, for an event that is just a
singleton set f!g, we should write P.f!g/ to denote its probability. But, to reduce
clutter, we will simply use the more convenient notation P.!/.

One pleasant consequence of the axiom of countable additivity is the following
intuitively plausible result.

Theorem 1.1. LetA1 � A2 � A3 � � � � be an infinite family of subsets of a sample
space � such that An # A. Then, P.An/ ! P.A/ as n ! 1.

Proof. On taking the complements Bi D Ac
i ; i � 1; B D Ac , the result is equiva-

lent to showing that if B1 � B2 � B3 � � � ; Bn " B; then P.Bn/ ! P.B/.
Decompose Bn for a fixed n into disjoint sets as Bn D [n

iD1.Bi � Bi�1/, where
B0 D � and the difference notation Bi � Bi�1 means Bi \ Bc

i�1. Therefore,

P.Bn/ D
nX

iD1

P.Bi � Bi�1/

) lim
n!1P.Bn/ D lim

n!1

nX

iD1

P.Bi � Bi�1/ D
1X

iD1

P.Bi � Bi�1/ D P.B/;

as [1
iD1.Bi � Bi�1/ D B .

Remark. Interestingly, if we assume the result of this theorem as an axiom and also
assume finite additivity, then countable additivity of a probability measure follows.

1.3 How to Interpret a Probability

Many think that probabilities do not exist in real life. Nevertheless, a given or a
computed value of the probability of some event A can be used in order to make
conscious decisions. The entire subject of statistics depends on the use of proba-
bilities. We depend on probabilities to make simple choices in our daily lives. For
example, we carry an umbrella to work if the weather report gives a high probability
of rain. Where do these probabilities come from? Two common interpretations are
the following.

Long-run frequency interpretation. If the probability of an event A in some actual
physical experiment � is p, then we believe that if � is repeated independently over
and over again, then in the long run the eventA will happen 100p% of the time. We
apply the long-run percentage to the one-time experiment that will actually be con-
ducted. For better or worse, such probabilities that appear to come from an actual
physical random process are called frequentist probabilities. Frequentist probabil-
ities make sense in situations where we can obtain actual physical experience or
data. For example, we can gather experience about a particular game in a casino and
come to reasoned conclusions about the chances of winning.
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Subjective Probabilities. At the heart of frequentist probabilities is the implicit
assumption of repeatability of some genuine physical process. We gather experience
from repeated experimentation and apply the past experience to make probabilistic
statements. But we cannot gather actual experience if we want to assign a proba-
bility that the subsurface ocean in a moon of Saturn has microbial life or that the
Big Bang actually happened. In such situations, we are forced to use probabilities
based on beliefs or feelings based on personal or collective knowledge, the so-called
subjective probabilities. For example, I should say that the probability that the Big
Bang actually happened is :8 if I feel that it is just as certain as a red ball being
drawn out from a box that has 80 red balls and 20 green balls. An obvious problem
is that different people will assign different subjective probabilities in such a situ-
ation, and we cannot try to verify whose belief is correct by gathering experience,
or data. Nevertheless, we are forced to use subjective probabilities in all kinds of
situations because the alternative would be to do nothing. Regardless of which type
of probability we may use, the manipulations and the operations will fortunately be
the same. But, once a probability statement has been made in some specific prob-
lem, it is often a good idea to ask where this probability came from. The interested
reader can learn from Basu (1975), Berger (1986), or Savage (1954) about the lively
and yet contentious philosophical debates about the meaning of probability and for
provocative and entertaining paradoxes and counterexamples.

Example 1.2. Consider our previous experiment � of tossing a coin twice and
recording the outcome after each toss. A valid probability measure P on the sample
space � D fHH;HT;TH;T T g of this experiment is one that assigns probability 1

4

to each of the four sample points; i.e.,P.HH/ D P.HT/ D P.TH/ D P.T T / D 1
4

.
By the additivity property assumed in the definition, if we consider the event
A D fHT; TH g = the statement that exactly one head and exactly one tail will
be obtained, then P.A/ D P.HT / C P.TH/ D 1

4
C 1

4
D 1

2
. If we believed

in this probability, then a bet that offers to pay us ten dollars should the event A
happen and require us to pay ten dollars if it does not happen would be considered
a fair bet. Indeed, the original development of probability was motivated by betting
and gambling scenarios involving coin, dice, or card games. Because of this, and
also because they seem to provide an endless supply of interesting problems and
questions, many of our examples will be based on suitable coin, dice, and card
experiments.

Definition 1.3. Let � be a finite sample space consisting of N sample points. We
say that the sample points are equally likely if P.!/ D 1

N
for each sample point !.

An immediate consequence, due to the additivity axiom, is the following useful
formula.

Proposition. Let � be a finite sample space consisting of N equally likely sample
points. Let A be any event, and suppose A contains n distinct sample points. Then

P.A/ D n

N
D number of sample points favorable to A

total number of sample points
:
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Remark. In many experiments, when we assume that the sample points are equally
likely, we do so expecting that the experiment has been conducted in an unbiased or
fair way. For example, if we assign probability .5 (or 50%) to heads being obtained
when a coin is tossed just once, we do so thinking that the coin in question is just a
normal coin and has not been manipulated in any way. Indeed, we say that a coin is a
fair coin if P.H/ D P.T / D :5 when the coin is tossed once. Similarly, we say that
a die is a fair die if P.1/ D P.2/ D � � � D P.6/ D 1

6
when the die is rolled once.

The assumption of equally likely sample points is immensely useful in complicated
experiments with large sample spaces, where physically listing all the sample points
would be difficult or even impossible. However, it is important to remember that the
assumption of equally likely sample points cannot be made in every problem. In
such cases, probabilities of events cannot be calculated by the convenient method of
taking the ratio of favorable sample points to the total number of sample points, and
they will have to be calculated by considering what the probabilities of the different
sample points are.

Example 1.3 (A Computer Simulation). This example illustrates the long-run
frequency interpretation of probabilities. We simulate the roll of a fair die on a
computer. According to the definition of a fair die and the long-run frequency
interpretation of probabilities, we should see that the percentage of times that any
face appears should settle down near 100

6
% D 16:67% after many rolls. The word

many cannot be quantified in general. The main point is that we should expect
heterogeneity and oscillations in the percentages initially, but as we increase the
number of rolls, the percentages should all approach 100

6
% D 16:67%. Here is a

report of a computer simulation.

Number of rolls % of 1 % of 2 % of 3 % of 4 % of 5 % of 6
20 20 10 5 15 25 25

50 6 24 30 18 14 8

100 18 21 15 12 11 23

250 16:8 15:2 19:6 14:0 18:4 16

1000 17:6 17:3 16:9 15:8 15:3 17:1

Unmistakably, we see that the percentages appear to approach some limiting
value when the number of rolls increases; indeed, they will all approach 16:67%
when the number of rolls goes to infinity.

1.4 Calculating Probabilities

Probabilities are useful for making decisions or predictions, but only if we can
calculate them. If we cannot calculate a probability, then obviously we cannot assess
if it is large or small or something in between. In the simplest experiments, we will
typically be able to calculate probabilities by examining the sample points. In more
complex experiments, this would no longer be feasible. That is when formulas and
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theorems that tell us how to calculate a probability under a given set of assumptions
will be useful. We will see some simple experiments and then a number of basic
formulas in this section.

1.4.1 Manual Counting

We first describe a collection of examples of simple experiments and the associated
sample spaces where the assumption of equally likely sample points seems reason-
able and then calculate probabilities of some interesting events. These experiments
are simple enough that we can just list the sample points after a little thinking.

Example 1.4. Let � be the experiment of tossing a coin three times and recording
the outcome after each toss. By inspection, we find that the sample space is � D
fHHH;HHT;HTH;HTT;THH;THT;TTH;TTTg; indeed, since on each individual
toss we have two possible outcomes, the number of sample points in the overall
experiment is 2 	 2 	 2 D 8, which is what we see in �. Suppose now that we
take each of the eight sample points to be equally likely. This corresponds to an
expression of our belief that the coin being tossed is a fair coin and that subsequent
tosses are not affected by what may have been the outcomes in the tosses already
completed; this latter concept is formally known as independence and will be treated
formally later.

Under the equally likely assumption, then, P.At least one head is obtained/ D
P fHHH;HHT;HTH;HTT;THH;THT;TTHg D 7

8
: Alternatively, we could have

calculated the probability that no heads are obtained at all, the probability of which
is P.T T T / D 1

8
, and obtained P.At least one head is obtained/ as

P.At least one head is obtained/ D 1 � P.No heads are obtained/ D 1 � 1

8
D 7

8
:

The event where no heads are obtained is the complement of the event where at
least one head is obtained, and always P.A/ C P.Ac/ D 1, with Ac denoting the
complement of A.

Likewise, P (At least one head and at least one tail are obtained) D 1 � P

.HHH/ � P.T T T / D 1 � 1
8

� 1
8

D 6
8

D :75.
The experiment of this example is simple enough that we can just list the sample

points and calculate probabilities of events by counting favorable sample points.

Example 1.5 (Motivating Disjoint Events). Let � be the experiment of rolling a
die twice and recording the outcome after each roll. Then there are 6 	 6 D 36

sample points, and the sample space is � D f11; 12; 13; : : : ; 64; 65; 66g. Consider
the following two events:

A D the sum of the two numbers is oddI
B D the product of the two numbers is odd:
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Then, the favorable sample points for A are those for which one number is even
and the other is odd; that is, sample points like 12 or 14, etc. By simple counting,
there are 18 such favorable sample points so P.A/ D 18

36
D :5. On the other hand,

the favorable sample points for B are those for which both numbers are odd; that
is, sample points like 11 or 13, etc. There are nine such favorable sample points, so
P.B/ D 9

36
D :25.

Interestingly, there are no sample points that are favorable to both A and B; in
set theory notation, the intersection of A and B is empty (that is, A \ B D �).
Two such events A and B are called disjoint or mutually exclusive events, and then
P.A \ B/ D 0.

Definition 1.4. Two events A and B are said to be disjoint or mutually exclusive if
A \ B D �, in which case P.A\ B/ D 0.

Example 1.6 (With and Without Replacement). Consider the experiment � where
two numbers are chosen simultaneously at random from f0; 1; 2; : : : ; 9g. Since the
numbers are chosen simultaneously, by implication they must be different; such
sampling is called sampling without replacement. Probabilistically, sampling with-
out replacement is also the same as drawing the two numbers one at a time with the
restriction that the same number cannot be chosen twice. If the numbers are cho-
sen one after the other and the second number could be equal to the first number,
then the sampling is called sampling with replacement. In this example, we consider
sampling without replacement. Consider the events

A D the first chosen number is evenI
B D the second chosen number is evenI
C D both numbers are evenI
D D at least one of the two numbers is even:

The sample space � D f01; 02; 03; : : : ; 96; 97; 98g has 10 	 9 D 90 sample points.
Suppose that, due to the random or unbiased selection of the two numbers, we assign
an equal probability, 1

90
, of selecting any of the 90 possible pairs. EventA is favored

by the sample points f01; 02; : : : ; 88; 89g; thus, A is favored by 5 	 9 D 45 sample
points, so P.A/ D 45=90 D :5. Similarly, P.B/ is also .5. Event C is favored by
those sample points that are in bothA andB; i.e., in set theory notation,C D A\B .
By direct listing, A \ B D f02; 04; : : : ; 86; 88g; there are 5 	 4 D 20 such sample
points, so P.C / D P.A \ B/ D 20=90 D 2=9. On the other hand, event D is
favored by those sample points that favorA or B , or perhaps both; i.e.,D is favored
by sample points that favor at least one of A;B . In set theory notation,D D A[B ,
and by direct listing, it is verified that P.D/ D P.A [ B/ D 70=90 D 7=9.
We note that the collection of sample points that favor at least one of A;B can be
found by writing the sample points in A, then writing the sample points in B , and
eventually taking out those sample points that were written twice; i.e., the sample
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points in A \ B . So, we should have P.A [ B/ D P.A/C P.B/ � P.A \ B/ D
1=2C 1=2� 2=9 D 7=9, which is what we found by direct listing. Indeed, this is a
general rule.

Addition Rule. For any two events A;B;P.A[B/ D P.A/CP.B/�P.A\B/.

1.4.2 General Counting Methods

In more complicated experiments, it might be difficult or even impossible to man-
ually list all the sample points. For example, if you toss a coin 20 times, the total
number of sample points would be 220 D 1;048;576, which is larger than a million.
Obviously we do not want to calculate probabilities for such an example by manual
listing and manual counting.

Some facts about counting and basic combinatorics will be repeatedly useful in
complex experiments, so it is useful to summarize them before we start using them.

Proposition.
(a) The number of ways of linearly arranging n distinct objects when the order of

arrangement matters = nŠ.
(b) The number of ways of choosing r distinct objects from n distinct objects when

the order of selection is important = n.n � 1/ � � � .n � r C 1/.
(c) The number of ways of choosing r distinct objects from n distinct objects when

the order of selection is not important =
�

n
r

� D nŠ
rŠ.n�r/Š

.
(d) The number of ways of choosing r objects from n distinct objects if the same

object could be chosen repeatedly D nr .
(e) The number of ways of distributing n distinct objects into k distinct categories

when the order in which the distributions are made is not important and ni ob-
jects are to be allocated to the i th category D �

n
n1

��
n�n1

n2

� � � � �n�n1�n2����nk�1

nk

�

D nŠ
n1Šn2Š���nkŠ

:

Example 1.7. Tim has eight pairs of trousers, 15 shirts, six ties, and four jackets,
of which two pairs of trousers, five shirts, two ties, and two jackets are green.
Suppose that one morning Tim selects his outfit completely at random. Then, the
total number of possible ways that he could select his outfit is 8 	 15 	 6 	 4 D
2880. These are the sample points of Tim’s experiment. Since selection is com-
pletely at random, we assume that the sample points are equally likely. There are
2 	 5 	 2 	 2 D 40 possible ways that he could choose a completely green outfit,
so P.Tim is dressed completely in green on a particular day/ D 40=2880 D :014.
Notice that in this example there were far too many sample points to actually
list them. Nevertheless, we could calculate the required probability by simple
counting. Counting methods are thus extremely useful in calculating probabilities
when sample points are equally likely, and we will see more sophisticated examples
later.
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Example 1.8. A carton of eggs has 12 eggs, of which three happen to be bad,
although we do not know that there are some bad eggs. We want to make a
three-egg omelet. There are

�
12
3

� D 12Š
3Š9Š

D 220 ways to select three eggs from
the carton of 12 eggs. It seems reasonable to assume that the three eggs are se-
lected without any bias; i.e., at random. Then, each sample point is equally likely.
The omelet will not contain any bad eggs if our three eggs are all chosen from
the nine that are good eggs. This can be done in

�
9
3

� D 84 ways. Therefore,
P.The three-egg omelet contains no bad eggs/ D 84=220 D :38.

Example 1.9. Suppose six distinguishable cookies are distributed completely at
random to six children, with it being possible that the same child could get more
than one cookie. Thus, there are 66 D 46; 656 sample points; i.e., there are 46,656
ways to distribute the six cookies among the six children.

The exactly equitable case is when each child gets exactly one cookie, although
who gets which cookie is flexible. The number of ways to distribute six cookies to
six children in any arbitrary way is 6Š D 720, so the probability that this will happen
is 720=46656 D :015. The complement is that at least one child gets no cookies at
all, which therefore has the probability 1 � :015 D :985.

Example 1.10 (The Shoe Problem). Suppose there are five pairs of shoes in a closet
and four shoes are taken out at random. What is the probability that among the four
that are taken out, there is at least one complete pair?

The total number of sample points is
�

10
4

� D 210. Since selection was done
completely at random, we assume that all sample points are equally likely. At least
one complete pair would mean two complete pairs, or exactly one complete pair
and two other nonconforming shoes. Two complete pairs can be chosen in

�
5
2

� D 10

ways. Exactly one complete pair can be chosen in
�

5
1

��
4
2

� 	 2 	 2 D 120 ways. The
�

5
1

�
term is for choosing the pair that is complete; the

�
4
2

�
term is for choosing two

incomplete pairs, and then from each incomplete pair one chooses the left or the
right shoe. Thus, the probability that there will be at least one complete pair among
the four shoes chosen is .10C 120/=210 D 13=21 D :62.

Example 1.11 (Avoiding Tedious Listing). Suppose three balls are distributed com-
pletely at random into three urns. What is the probability that exactly one urn
remains empty?

There are 33 D 27 sample points, which we assume to be equally likely.
If exactly one urn is to remain empty, then the two other urns receive all the
three balls, one getting two balls and the other getting one. This can be done in
�

3
1

� ��
3
2

��
1
1

�C �
3
1

��
2
2

�� D 18 ways. Hence, the probability that exactly one urn will

remain empty is 18=27 D :667, which can also be verified by listing the 27 sample
points.

Example 1.12 (Bridge). Bridge is a card game in which 52 cards are distributed to
four players, say North, South, East, and West, each receiving 13 cards. It is assumed
that distribution is done at random. Consider the events
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A D North has no acesI
B D neither North nor South has any acesI
C D North has all the acesI
D D North and South together have all the aces:

For P.A/, if North has no aces, his 13 cards must come from the other 48 cards, so

P.A/ D �
48
13

�
=
�

52
13

� D :304. Similarly, P.B/ D �
48
13

��
35
13

�
=
��

52
13

��
39
13

�� D 46=833 D
:055. Note that D is probabilistically equivalent to the statement that neither East
nor West has any aces, and therefore P.D/ D P.B/ D :055. Finally, for P.C /, if
North has all the aces, then his other nine cards come from the 48 non-ace cards, so
P.C / D �

4
4

��
48
9

�
=
�

52
13

� D 11=4165D :0026.

Example 1.13 (Five-Card Poker). In five-card poker, a player is given five cards
from a full deck of 52 cards at random. Various named hands of varying degrees of
rarity exist. In particular, we want to calculate the probabilities of A = two pairs and
B = a flush. Two pairs is a hand with two cards each of two different denominations
and the fifth card of some other denomination; a flush is a hand with five cards
of the same suit, but the cards cannot be of denominations in a sequence. Then,
P.A/ D �

13
2

�
Œ
�

4
2

�
�2
�

44
1

�
=
�

52
5

� D :04754:

To find P.B/, note that there are ten ways to select five cards from a suit such
that the cards are in a sequence, namely fA; 2; 3; 4; 5g; f2; 3; 4; 5; 6g; � � � ; f10; J;Q;
K;Ag, so P.B/ D �

4
1

� ��
13
5

� � 10
�
=
�

52
5

� D :00197.

Example 1.14 (Clever Counting). Suppose n integers are chosen with replacement
(that is, the same integer could be chosen repeatedly) at random from f1; 2; � � � ; N g.
We want to calculate the probability that the chosen numbers arise according to
some nondecreasing sequence. This is an example of clever counting.

Take a nondecreasing sequence of n numbers and combine it with the full set
of numbers f1; 2; � � � ; N g to form a set of n C N numbers. Now rearrange these
numbers in a nondecreasing order. Put a bar between consecutive distinct numbers
in this set and a dot between consecutive equal numbers in this set. The number to
the right of each dot is an element of the original n-number sequence. There are n
dots in this picture, and they can be positioned at n places out of N C n� 1 places.
Therefore, the probability that the original n-member sequence is nondecreasing is
�

N Cn�1
n

�
=N n:

1.5 Inclusion-Exclusion Formula

The inclusion-exclusion formula is a formula for the probability that at least one of
n general events A1; A2; : : : ; An will happen. The formula has many applications
and is also useful for providing upper and lower bounds for the probability that at
least one of A1; A2; : : : ; An will happen.
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Theorem 1.2. Let A1; A2; : : : ; An be n general events. Then,

P.[n
iD1Ai / D

nX

iD1

P.Ai /�
X

1�i<j �n

P.Ai \Aj /C
X

1�i<j <k�n

P.Ai \Aj \Ak/

� � � � C .�1/nC1P.A1 \ A2 \ � � � \An/:

Proof. The theorem is proved by induction. Suppose it is known to be true for n�1
general events A1; A2; : : : ; An�1. Define A D [n�1

iD1Ai and B D An. Then, by the
addition rule for two events,

P.[n
iD1Ai / D P.A [ B/ D P.A/C P.B/ � P.A \ B/ D

n�1X

iD1

P.Ai /

�
X

1�i<j �n�1

P.Ai \ Aj /C � � � C .�1/nP.A1 \ A2 \ � � � \An�1/

CP.An/� P
�
U n�1

iD1 .Ai \An/
�
:

Applying the inclusion-exclusion formula to the .n � 1/ events Ai \ An; i D 1;

2; � � � ; n � 1, and rearranging terms, the expression in the theorem follows.
Here are some examples of applications of the inclusion-exclusion formula.

Example 1.15 (Missing Faces in Dice Rolls). Suppose a fair die is rolled n times.
We want to calculate the probability that at least one of the six sides of the die never
shows up in these n rolls.

To do this, define Ai D side i never shows up in the n rolls; 1 
 i 
 6. Then,
assuming that all 6n sample points are equally likely,

P.Ai / D 5n=6nIP.Ai \Aj / D 4n=6nIP.Ai \ Aj \ Ak/ D 3n=6n;

etc., and these hold for any i; i < j; i < j < k, etc. Plugging this into the inclusion-
exclusion formula,

pn D P.At least one of the six sides never shows up/

D
 
6

1

!

.5n=6n/�
 
6

2

!

.4n=6n/C
 
6

3

!

.3n=6n/�
 
6

4

!

.2n=6n/C
 
6

5

!

.1=6n/

D 6 .5n=6n/ � 15 .4n=6n/C 20 .3n=6n/� 15 .2n=6n/C 6=6n:

By computing, we find that p10 D :73; p12 D :56; p13 D :49; p15 D :36;

p20 D :15; p25 D :06; p35 D :01. Note that 1 � pn is the probability that each
of the six faces will show up within n rolls. In particular, it takes 13 rolls of a fair
die to have a better than 50% chance that each of the six sides would show up. A
plot of the probability that each of the six faces of a fair die will show up within n
rolls of the die is given to read off pn for a given n (see Figure 1.1).
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10 20 30 40
n

1

0.8

0.6

0.4

0.2

Fig. 1.1 Probability that each of the six races of a fair die will show up within n rolls

Example 1.16 (Missing Suits in a Bridge Hand). Consider a specific player, say
North, in a bridge game. We want to calculate the probability that North’s hand is
void in at least one suit. To do this, denote the suits as 1, 2, 3, 4 and let Ai D
North’s hand is void in suit i .

Then, by the inclusion-exclusion formula,

P.North’s hand is void in at least one suit/

D P.A1 [ A2 [ A3 [A4/

D 4
�
39
13

�
=
�

52
13

��6�26
13

�
=
�

52
13

�C4
�

13
13

�
=
�

52
13

� D :051, which is small, but not very small.

Example 1.17. Here is an easier example of an application of the inclusion-
exclusion formula. Suppose a cabinet contains two white cups, two red cups,
two white plates, and two red plates. Suppose the four cups are placed at random
on the four plates. We want to find the probability that no cup is on a plate with a
matching color.

Define

A D at least one white cup is on a white plate;
B D at least one red cup is on a red plate;
C D the first white cup is on a white plate;
D D the second white cup is on a white plate.

Then we want to find P.A[B/c . But, in this example, a moment’s thinking shows
that A D B . So, A[B D A, and we want P.Ac/. On the other hand, A D C [D,
and by the inclusion-exclusion formula, P.C [D/ D P.C /CP.D/ �P.C \D/

D 1=2 C 1=2 � 4=24 D 5=6. Therefore, our required probability is P.Ac/ D
1 � P.A/ D 1 � P.C [D/ D 1 � 5=6 D 1=6.
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1.6 � Bounds on the Probability of a Union

If we denote

S1 D
nX

iD1

P.Ai /; S2 D
X

1�i<j �n

P.Ai \ Aj /; S3 D
X

1�i<j <k�n

P.Ai \ Aj \ Ak/;

etc., then the inclusion-exclusion formula says thatP.[n
iD1Ai / D S1�S2CS3�� � � .

The inclusion-exclusion formula can be hard to apply exactly because the quanti-
ties Sj for large indices j can be difficult to calculate. However, fortunately, the
inclusion-exclusion formula leads to bounds in both directions for the probability of
the union of n general events. We have the following series of bounds.

Theorem 1.3 (Bonferroni Bounds). Given n events A1; A2; � � � ; An, let pn D
P.U n

iD1Ai /: Then,

pn 
 S1Ipn � S1 � S2Ipn 
 S1 � S2 C S3I � � � :

In addition,

P.\n
iD1Ai / � 1 �

nX

iD1

P.Ac
i /:

Example 1.18. Suppose each of ten events A1; A2; � � �A10 has probability .95 or
more; thus, P.Ac

i / 
 :05 for each i . From the last Bonferroni bound given above,
P.\n

iD1Ai / � 1 � 10 	 :05 D :5. Each Ai by itself has a 95% probability or more
of occurring. But that does not mean that with a high probability all ten events will
occur. What kinds of probability assurances can we provide that indeed all ten events
will occur? The bound we just derived says that we can be at least 50% sure that all
ten events will occur. This is typically rather crude, but these bounds are sometimes
used by statisticians to make overall accuracy statements of their inferences when
they have made a number of inferences simultaneously.

Here are two better bounds on pn.

Theorem 1.4.
(a) (Galambos-Simonelli Bound).

S1 � S2 C 2

n � 1S3 
 pn 
 S1 � 2

n
S2I

(b) (Chung-ErdRos Bound)

pn � S2
1

2S2 C S1

:

See Galambos and Simonelli (1996) and Rao (1973) for all of these bounds.
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1.7 Synopsis

Some key facts and formulas in this chapter are now restated here.

(a) Given any two events, A;B;P.A [ B/ D P.A/C P.B/ � P.A \ B/.
(b) More generally, given n events A1; : : : ; An,

P.[n
iD1Ai / D

nX

iD1

P.Ai /�
X

1�i<j �n

P.Ai \ Aj /

C
X

1�i<j <k�n

P.Ai \Aj \Ak/� � � �

C.�1/nC1P.A1 \ A2 \ � � � \An/:

(c) Union corresponds to at least one; intersection corresponds to both if there are
two events, and it corresponds to all the events occurring if there are more than
two events.

(d) In simple problems, you can list all the sample points and find probabilities by
manual counting. However, in more complex examples, you must use suitable
counting formulas to find probabilities.

(e) If there are N equally likely sample points in some example and n of them are
favorable to some event A, then P.A/ D n

N
.

1.8 Exercises

Exercise 1.1. Define a sample space and count the number of sample points for
each of the following experiments:

(a) Select at random a catcher, pitcher, first baseman, and second baseman from a
group of 15 baseball players.

(b) Select at random a chairman and a deputy chairman from a department of 40
professors.

(c) Select at random a best-tasting, a second-best-tasting, and a worst-tasting wine
from a selection of 20 different types of wine.

(d) The possible scores on a certain test are H, P, and F, for High Pass, Pass, and
Fail, respectively. Give this test to two students and record their scores on the
test.

(e) Toss a coin until a head appears, and record the number of tosses required.

Exercise 1.2. Suppose Mark pulls a coin from his pocket and tosses it four times
and always obtains a tail. But the coin looks normal. Would you start to suspect that
Mark pulled a biased coin?
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Exercise 1.3. A telephone number consists of ten digits, of which the first digit is
one of 1; 2; : : : ; 9 and the others can be 0; 1; 2; : : : ; 9. What is the probability that 0
appears at most once in a telephone number, if all the digits are chosen completely
at random?

Exercise 1.4. Mark goes out to dinner twice a week. If he chooses the days to go
out at random, what is the probability that he goes out on exactly one weeknight?

Exercise 1.5. The population of Danville is 20,000. Can it be said with certainty
that there must be two or more people in Danville with exactly the same three
initials?

Exercise 1.6 (Skills Exercise). Events A;B , and C are defined in a sam-
ple space �. Find expressions for the following probabilities in terms of
P.A/; P.B/; P.C /; P.AB/; P.AC/; P.BC/, and P.ABC/; here AB means
A \ B , etc.:

(a) the probability that exactly two of A;B;C occur;
(b) the probability that exactly one of these events occurs;
(c) the probability that none of these events occur.

Exercise 1.7 (Skills Exercise). Let E;F , and G be three events. Find expressions
for the following events:

(a) only E occurs;
(b) both E and G occur, but not F ;
(c) all three occur;
(d) at least one of the events occurs;
(e) at most two of them occur.

Exercise 1.8. Mrs. Jones predicts that if it rains tomorrow it is bound to rain the
day after tomorrow. She also thinks that the chance of rain tomorrow is 1/2 and that
the chance of rain the day after tomorrow is 1/3. Are these subjective probabilities
consistent with the axioms and theorems of probability?

Exercise 1.9. In which of the following are events A and B mutually exclusive?

(a) Roll two dice. A is the event of a sum of 9; B is the event of a double (i.e., the
same value on both dice).

(b) Draw 13 cards from a deck of 52 cards. A is the event of drawing at least one
club; B is the event of drawing no aces.

(c) Toss a coin twice. A is the event of a head on the first toss; B is the event of a
head on the second toss.

Exercise 1.10. Consider the experiment of tossing a coin three times. Give verbal
descriptions for the following events:

(a) fHHH;HHT;HTH;HTTg.
(b) fHHH;HHT;HTH;THHg.
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(c) fHHT;HHH;TTH;TTTg.
(d) fHTH;HTT;TTT;TTHg.

Exercise 1.11 (Odd Man Out). Each of three people toss a coin. What is the prob-
ability of someone being the “odd man out”? This means that two of them obtain an
identical outcome, while the odd man gets a different one.

Exercise 1.12 (Elementary Number Theory). One number is chosen at random
from 0 to 9999. What is the probability that it is divisible by 5? That it is divisible
by both 2 and 5? That it is divisible by 2 but not by 5?

Exercise 1.13. The letters in the word FULL are rearranged at random. What is the
probability that it still spells FULL?

Exercise 1.14. A seafood omelet will be made with two eggs, a piece of salmon,
and a slice of cheese by choosing the items at random from four eggs, two pieces of
salmon, and three slices of cheese. One egg, one piece of salmon, and one slice of
cheese have gone bad. What is the probability that the omelet will contain at least
one bad item?

Exercise 1.15 (Coincidence). Three families, each with three members, are lined
up at random for a picture. What is the probability that members of each family
happen to be together (that is, not separated by someone from another family) in the
picture?

Exercise 1.16. Twenty cookies are to be distributed to ten children. In how many
ways can the cookies be distributed if (a) any cookie can be given to any child; (b)
If two cookies are to be given to each child?

Exercise 1.17 (Bridge Deals). What is the total possible number of deals in a
bridge game? A deal is a distribution of 52 cards to four players, each receiving
13 cards.

Exercise 1.18. In a building with six floors, an elevator starts with four people at
the ground floor. What is the probability that the four people get off at exactly two
floors?

Exercise 1.19. An urn contains five red, five black, and five white balls. If three
balls are chosen without replacement at random, what is the probability that they
are of exactly two different colors?

Exercise 1.20 (A Problem of Tom Sellke). Suppose that cards are picked at ran-
dom from a full deck of 52 cards.

(a) What is the probability that exactly one jack, one queen, and one king have been
picked from the deck when the first ace turns up?

(b) What is the probability that exactly two jacks, two queens, and two kings have
been picked from the deck when the second ace turns up?
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Exercise 1.21 (Coincidence, Again). Four men throw their watches into the sea,
and the sea brings back to each man at random one watch. What is the probability
that exactly one man gets his own watch back?

Exercise 1.22. The refrigerators in seven households need repair, and each owner
calls the town handyman on a randomly chosen day of the week. What is the prob-
ability that the handyman gets at least one day of the week off?

Exercise 1.23. A fair die is rolled thrice. What is the probability that the sum is at
least nine but at most 15?

Exercise 1.24. What is the probability that North receives an odd number of spades
in his hand in a bridge game? Count zero as even.

Exercise 1.25 (Bad Luck). Jeff and Donna have three children. Two are chosen at
random on each day of the week to help with the dishes. What is the probability that
at least one child gets chosen every day of the week?

Exercise 1.26 (Check Your Intuition). An urn contains three red and three blue
balls. Half the balls are removed at random and then one ball is selected from the
rest. What are the chances that this ball will be red?

Exercise 1.27. * A wooden cube with painted faces is sawed up into 1000 little
cubes, all of the same size. The little cubes are then mixed up, and one is chosen at
random. What is the probability of its having just two painted faces?

Exercise 1.28. One of the numbers 2, 4, 6, 7, 8, 11, 12, and 13 is chosen at random
as the numerator of a fraction, and then one of the remaining numbers is chosen at
random as the denominator of the fraction. What is the probability of the fraction
being in lowest terms?

Exercise 1.29. * (Logic). Suppose six customers stand in line at a box office,
three with five-dollar bills and three with ten-dollar bills. Suppose each ticket costs
5 dollars, and the box office has no money initially. What is the probability that none
of the customers have to wait for change?

Exercise 1.30. * (Logic). Eight pawns are placed on eight random squares on a
chess board. What is the probability that no two pawns are in the same row or the
same column?

Exercise 1.31. A fair coin is tossed n times. What is the probability of at least one
head run of length 2 or more if n D 3; 4; 5; 6?

Exercise 1.32. Show that it is impossible for the total number of distinct events in
an experiment to be 28.

Exercise 1.33. Which is more likely:

(a) obtaining at least one six in six rolls of a fair die
or

(b) obtaining at least one double six in six rolls of a pair of fair dice?

Remark. This question was posed to Isaac Newton and has some history associated
with it.



20 1 Introducing Probability

Exercise 1.34. * (Coincidence). Suppose each of n sticks are broken into two
pieces, one longer than the other. Then the 2n pieces are paired up to make n new
sticks. Find the probabilities that the pieces are all paired up in their original order
and that each long piece is paired up with some short piece. (There are two events
in this problem.)

Exercise 1.35. In a completely dark room with ten chairs, six people come and
occupy six chairs at random. What is the probability that at least one of three specific
chairs gets occupied?

Exercise 1.36. A group of six men and 12 women are partitioned into six commit-
tees of three people each. What is the probability that each committee contains a
male member?

Exercise 1.37. * (The General Shoes Problem). There are n pairs of shoes of n
distinct colors in a closet and 2m are pulled out at random from the 2n shoes. What
is the probability that there is at least one complete pair among the shoes pulled?

Exercise 1.38. Find the probability that, after n rolls of a fair die, the sum of the
rolls will be no less than 6n � 1.

Exercise 1.39. * (Clever Counting). n balls from a total of N balls, labeled as
1; 2; � � � ; N , are taken out from an urn and the label of each written down. Find the
probability that the labels form an increasing sequence.

Hint: See the text for a similar example.

Exercise 1.40. * n people are lined up at random for a photograph. What is the
probability that a specified set of r people happen to be next to each other?

Exercise 1.41. Mark and his wife, with n other people, are lined up at random for
a photograph. What is the probability that they are separated by exactly k people in
the photograph?

Exercise 1.42 (Poker). In a five-card poker game, a straight is five cards in a se-
quence, but not all of the same suit. A straight flush is five cards in a sequence, all
of the same suit.

Find the probabilities of obtaining a straight hand or a straight flush.

Exercise 1.43. Calculate the following probabilities in bridge:

(a) Neither North nor South has any spades.
(b) Each of North and South has only clubs and spades.

Exercise 1.44. Calculate the probability that, in bridge, the hand of at least one
player is void in a particular suit.

Exercise 1.45. Give a probabilistic proof that the product of any n consecutive pos-
itive integers is divisible by nŠ.



References 21

Exercise 1.46. * (The Rumor Problem). In a town with n residents, someone
starts a rumor by saying it to one of the other n � 1 residents. Thereafter, each
recipient passes the rumor on to one of the other residents, chosen at random. What
is the probability that by the kth time that the rumor has been told it has not come
back to someone who has already heard it?

Exercise 1.47 (Not Equally Likely Sample Points). A couple wants to have
children untill they have their first daughter, but they will not have more than three
children. Find the probability that they will have more boys than girls.

Exercise 1.48. Prove or disprove:

.a/ A[ .B4C/ D .A [ B/4.A[ C/:

.b/ A4.B [ C/ D .A4B/[ .A4C/:

.c/ A4.B \ C/ D .A4B/\ .A4C/:
Exercise 1.49 (Use Your Computer). Using a computer, simulate the experiment
of tossing a fair coin n D 50 times. Perform your simulation 500 times, and count
how many times you saw a head run of length three or more, of length four or
more, and of length five or more. Before you start your simulation, write down your
guesses for what your simulation will actually show. Then, compare the guesses
with the actual simulation.

Exercise 1.50 (Use Your Computer). Using a computer, simulate a five-card poker
game in which a player gets five of the 52 cards at random. Perform your simulation
500 times, and count how many times you got a straight, and how many times you
got two pairs. Compare the theoretical values of their probabilities against your
simualtion. (The theoretical value of two pairs is an example in the text; the straight
is an exercise above.)

Exercise 1.51 (Use Your Computer). Using a computer, simulate the experiment
of rolling a fair die n D 20 times. Perform your simulation 500 times, and count how
many times you saw each of the six faces show up. Compare the theoretical value of
the probability that each face will show up against your simualtion. (The theoretical
value is an example in the text.)
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Chapter 2
The Birthday and Matching Problems

In this chapter, we offer a glimpse into some problems that have earned the sta-
tus of being classics in counting and combinatorial probability. They have an
entertainment value, and they also present some surprises in their solutions and
the final answers. The problems we present are generally known as the birthday
problem and the matching problem. For greater exposure to the material in this
chapter, we recommend Feller, W. (1968), Diaconis and Holmes (2002), Blom
et al. (1994), DasGupta (2005), Mckinney (1966), Abramson and Moser (1970), Di-
aconis and Mosteller (1989), Barbour and Hall(1984), Barbour et al. (1992), Gani
(2004), Ivchenko and Medvedev (1997), Johnson and Kotz (1977), and Karlin and
McGregor (1965).

2.1 The Birthday Problem

The birthday problem has earned the status of being a classic in introductory
probability. The canonical birthday problem asks the following question

Example 2.1. Suppose n unrelated people are gathered together and that each per-
son has an equal probability of being born on any day of the calendar year. Assuming
that a calendar year has 365 days, what is the probability that we will find two or
more people in the gathering with the same birthday?

An exact formula is easily found. There are .365/n possible choices of birthdays
for the set of n people. (The assumption of unrelatedness is supposed to rule out
a priori knowledge of identical birthdays, etc.) Now consider the event where we
will not be able to find two or more people in the gathering with the same birthday.
This is the same as saying that the n people have n distinct birthdays. There are
365	 364	 363	 � � � 	 .366�n/ D �

365
n

�
nŠ ways that n people can have n distinct

birthdays. Under the assumption of equally likely sample points, we then have, for
n 
 365,

pn D P.There exist two or more people in the gathering with the same birthday/

D 1�
 
365

n

!

nŠ=.365/n

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 2, c� Springer Science+Business Media, LLC 2010
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n
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Fig. 2.1 Probability that n unrelated people have n different birthdays

This can be computed exactly for a given value of n, and calculation gives the
following values:
n 2 4 5 10 15 20 22 23 30 40 50 60
pn .0027 .0163 .0271 .1169 .2529 .4114 .4757 .5073 .7063 .8912 .9703 .9941

We see that, under the assumptions that we have made, it takes only 23 people to
be more sure than not that there will be people with common birthdays in the gath-
ering. This comes to some as quite a surprise. A plot of 1 � p.n/ D P (n unrelated
people have n different birthdays) is given in Figure 2.1.

2.1.1 * Stirling’s Approximation

Although pn can be easily computed (Mathematica gave the value .999999 when
n D 98), a sharp analytical approximation to pn can be useful for making further
deductions. For ease of explanation, we will first derive an approximation nonrigor-
ously. However, even the nonrigorous method will produce a correct approximation!

To do this, writing m for 365,

1 � pn D m.m� 1/.m� 2/ � � � .m � .n � 1//
mn

D m

m

m � 1

m

m � 2

m
� � � m � .n� 1/

m

D 1

�

1 � 1

m

��

1 � 2

m

�

� � �
�

1 � n� 1

m

�

D
�

1 � 1

m

�m� 1
m
�

1 � 2

m

�m� 1
m

� � �
�

1 � n � 1
m

�m� 1
m

� e� 1
m e� 2

m � � � e� n�1
m

D e� 1C2C���Cn�1
m D e� n.n�1/

2m D e� .n
2/
m :
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Let us now derive this approximation by using Stirling’s approximation to factorials,
which says

kŠ � e�kkkC1=2
p
2�;

where the � notation means that the ratio converges to one as k ! 1. Applying
this separately to 365Š and .365� n/Š, we have

1 � pn D 365Š=..365� n/Š 	 365n/ � e�n.365=.365� n//365�nC1=2:

Taking the logarithm and using the approximation log.1Cx/ � x�x2=2 for small
x, we get with a bit of algebra

log .1 � pn/ � .365� nC 1=2/Œn=.365� n/ � n2=.2.365� n/2/� � n

D n=.2.365� n// � n2=.2.365� n// D �
 
n

2

!

=.365� n/:

Exponentiating, an approximation to pn is

pn � 1 � e�.n
2/=365

if n is moderately large but small compared to 365, so we can write 365 in place of
365� n in

�
n
2

�
=.365� n/:

If we use this approximation with n D 23, we get pn � :5000, while, as we saw
above, the true value is p23 D :5073; clearly, the approximation is accurate even for
n in the range of n D 20.

2.2 The Matching Problem

Example 2.2. Yet another problem in probability theory with celebrity status is the
matching problem. Some popular variants of it are:

(a) n people throw their hats in the air and the wind brings each of them one hat at
random. What is the probability that at least one person gets his own hat back?

(b) At a party of n couples, the men are paired up at random with the women for a
dance. What is the probability that at least one man dances with his wife?

(c) One holds two decks of well-shuffled cards, one deck in the right hand and the
other deck in the left hand. The cards are picked one by one from the top from
each deck. What is the probability that on at least one draw the same card will
be picked from both decks?

The mathematical formulation is that n numbers, say 1; 2; : : : ; n, are arranged in
a random manner on a line. If �.i/ is the number occupying the i th location, what
is the probability that for at least one i; �.i/ D i? The problem can be solved by
applying the inclusion-exclusion formula.
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Define event Ai D f�.i/ D ig; 1 
 i 
 n. Then, we want to find P.[n
iD1Ai /.

Clearly,P.Ai / D 1=n8i IP.Ai \Aj / D .n�2/Š=nŠ; 8i < j IP.Ai \Aj \Ak/ D
.n � 3/Š=nŠ; 8i < j < k, etc.

Thus, by the inclusion-exclusion formula,

P.[n
iD1Ai / D

 
n

1

!

1=n�
 
n

2

!

.n � 2/Š=nŠC
 
n

3

!

.n� 3/Š=nŠ� � � � C.�1/nC1=nŠ

D 1 � 1=2ŠC 1=3Š� � � � C .�1/nC11=nŠ

D 1 � Œ1=2Š� 1=3ŠC � � � C .�1/n=nŠ�:

This is an exact formula for all n � 2. However, there is a simple and elegant
approximation that is extremely accurate even for very small n. Recall that the ex-
ponential function has the power series expansion

ex D 1C x C x2=2ŠC x3=3ŠC � � � 8x 2 R:

Therefore, by using x D �1 for large n,

e�1 � 1=2Š� 1=3ŠC � � � C .�1/n=nŠ;

and hence pn D P.[n
iD1Ai / � 1 � e�1 D :6321 for large n. For n D 5, the

exact formula gives pn D :6333, while for n D 7, the exact formula already gives
pn D :6321, which agrees with the limiting value of the sequence pn up to four
decimal places.

In fact, an elegant generalization of this specific result is available. This is known
as the Poisson approximation to the number of matches, and the link will be clear
when we later define a Poisson distribution. For now, we state this result. The theo-
rem follows from an application of the general Poisson approximation result given
in Theorem 6.10 in this text.

Theorem 2.1. Let N D Nn = number of locations i such that �.i/ D i: Then, for
any fixed k � 0;

lim
n!1P.N D k/ D e�1=kŠ:

For example, if 25 couples attend a party and the husbands are paired up at random
with the women, then the probability that at least two husbands will dance with their
respective wives is approximately

P25
kD2 e

�1=kŠ D :2642.

2.3 Synopsis

(a) In the birthday problem, the probability that n people in a gathering have n
distinct birthdays is

�
365

n

�
nŠ=.365/n. This is< :5 if n is 23 or more. This surprises

many people.
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(b) In the matching problem, the probability of at least one match, if there are a total
number of n locations, is given by the exact formula

1 � Œ1=2Š� 1=3ŠC � � � C .�1/n=nŠ�:

Even for n as small as 7, this expression is nearly equal to 1 � e�1.
(c) In both the birthday problem and the matching problem, useful approximations

using more sophisticated techniques are available.

2.4 Exercises

Exercise 2.1. Suppose n unrelated people are gathered together. What is the small-
est n for which chances are >50% that there will be two or more people born in the
same calendar month?

Exercise 2.2. * Suppose n unrelated families, defined as the husband, the wife, and
one child, are gathered together. What is the smallest n for which chances are> 50%
that there will be two or more families completely matched in birthdays (i.e., the two
husbands have the same birthday, so do the two wives, and so do the two children)?

Exercise 2.3 (Use Your Computer). Simulate the birthday problem with n D
30; 60; 100 people. Perform 500 simulations, and count how many times you got:
(a) at least one pair of people with a common birthday; (b) at least two different
pairs of people with two distinct common birthdays (e.g., two people born on July 1
and two others born on December 6); (c) at least one set of three people with the
same birthday. Which of (a), (b), and (c) was the least frequent?
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Chapter 3
Conditional Probability and Independence

Both conditional probability and independence are fundamental concepts for
probabilists and statisticians alike. Conditional probabilities correspond to updating
one’s beliefs when new information becomes available, a natural human instinct.
Independence corresponds to irrelevance of a piece of new information, even when
it is made available. Additionally, the assumption of independence can and does
significantly simplify development, mathematical analysis, and justification of tools
and procedures. Indeed, nearly every key result in probability and statistics was first
derived under suitable independence assumptions and then extended to selected
cases where independence may be lacking. These two topics together also provide
the reader with a supply of fascinating problems and often very pretty solutions.

3.1 Basic Formulas and First Examples

We start with an elementary motivating example.

Example 3.1. Consider the experiment � of rolling a fair die twice, and consider the
events

A D the first roll is 6I
B D the sum of the two rolls is 12:

Under the assumption of equally likely sample points, P.B/ D 1=36. However, if
someone were to tell us that the first roll was definitely a six, then intuitively we
would feel that in view of this new information, a sum of 12 now seems more likely;
indeed, most would say that since the second roll can be any of 1; 2; � � � 6, but we
have no other information about the second roll, if we knew that the first roll was a
six, then the chance that the sum of the two rolls is 12 should be updated to 1/6. We
call this updated probability the conditional probability of B given A and write it
as P.BjA/. The conditional probability tells us among the times that A has already
happened how often B also happens. This motivates the definition of P.BjA/ as
given below.

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 3, c� Springer Science+Business Media, LLC 2010
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Definition 3.1. Let A and B be general events with respect to some sample space
�, and suppose P.A/ > 0. The conditional probability of B given A is defined as

P.BjA/ D P.A \ B/
P.A/

:

Some immediate consequences of the definition of a conditional probability are the
following.

Theorem 3.1.
(a) (Multiplicative Formula). For any two events A and B such that P.A/ >

0; P.A \ B/ D P.A/P.BjA/.
(b) For any two events A and B such that 0 < P.A/ < 1; P.B/ D P.BjA/P.A/

CP.BjAc/P.Ac/.
(c) (Total Probability Formula). If A1; A2; : : : ; Ak form a partition of the sam-

ple space � (i.e., Ai \ Aj D � for all i ¤ j , and [k
iD1Ai D �) and if

0 < P.Ai / < 1 for all i , then

P.B/ D
kX

iD1

P.BjAi /P.Ai /:

Proof. Part (a) is just a restatement of the definition of P.BjA/. Part (b) follows
from part (a) and the fact that B D .B \ A/ [ .B \ Ac/; which gives P.B/ D
P.B \ A/C P.B \ Ac/ D P.BjA/P.A/C P.BjAc/P.Ac/. For part (c), simply

observe that B D [k
iD1.B \ Ai / and therefore P.B/ D Pk

iD1 P.B \ Ai / D
Pk

iD1 P.BjAi /P.Ai /:

Theorem 3.2 (Hierarchical Multiplicative Formula). Let A1; A2; � � � ; Ak be k
general events in a sample space �. Then,

P.A1 \ A2 \ : : : ::: \ Ak/ D P.A1/P.A2jA1/P.A3jA1 \ A2/

� � �P.Ak jA1 \ A2 \ : : : ::: \Ak�1/:

The proof is a simple exercise and is omitted.

We will now see a spectrum of elementary examples.

Example 3.2. One of the cards from a deck of 52 cards is missing from the deck,
but we do not know which one. One card is chosen at random from the remaining
51 cards. We want to find the probability that it is a spade. Define events A D the
missing card is a spade; B D the card chosen from the imputed deck is a spade.

Then, by the total probability formula,

P.B/ D P.BjA/P.A/C P.BjAc/P.Ac/ D 12=51	 1=4C 13=51	 3=4 D 1=4:

Thus, we have the interesting conclusion that although there is nothing like 12.5
spade cards in an imputed deck of 51 cards, P.B/ is still 1/4, as it was for the case
of a complete deck.
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Example 3.3. A certain item is produced in a factory on one of three machines,
A, B , or C . The percentages of items produced on machines A, B , and C , are
50%; 30%; and 20% respectively, and 4%; 2%; and 4%, respectively, of their prod-
ucts are defective. We want to know what percentage of all copies of this item are
defective.

By defining A1; A2; A3 as the event that a randomly selected item was produced
by machine A;B;C , respectively, and defining D as the event that it is a defective
item, by the total probability formula,P.D/ D P3

iD1 P.DjAi /P.Ai / D :04	 :5C
:02	 :3C :04	 :2 D :034; i.e., 3:4% of all copies of the item produced in the factory
are defective.

Example 3.4. One of two urns has a red and b black balls, and the other has c red
and d black balls. One ball is chosen at random from each urn, and then one of these
two balls is chosen at random. What is the probability that this ball is red?

If each ball selected from the two urns is red, then the final ball is definitely red.
If one of those two balls is red, then the final ball is red with probability 1/2. If none
of those two balls is red, then the final ball cannot be red.

Thus, P.The final ball is red/ D a=.aC b/ 	 c=.c C d/C 1=2	 .a=.aC b/ 	
d=.c C d/C b=.aC b/ 	 c=.c C d// D 2acCadCbc

2.aCb/.cCd/
:

As an example, suppose aD 99; bD 1; cD 1; d D 1. Then 2acCadCbc
2.aCb/.cCd/

D :745.
Although the total percentage of red balls in the two urns is more than 98%, the
chance that the final ball selected would be red is just about 75%.

3.2 More Advanced Examples

We will now see a spectrum of examples that have something interesting about them
and are at a somewhat more advanced level.

Example 3.5 (An Example Open to Interpretation). This example was given to us
in a lecture when this author was a student of Dev Basu.

Mrs. Smith has two children. On a visit to the Smith household, you request a
glass of water, and a boy brings it over. What is the probability that Mrs. Smith’s
other child is a boy?

Some people give the answer that this probability is 1/2. Others argue that with
obvious notation, the sample space of the experiment is � D fBB;BG;GB;GGg,

and the required probability is P.BB/
P fBB;BG;GBg D 1=3.

Actually, the question does not have a unique answer because the experiment to
choose the child to carry the glass of water has not been specified. For instance, if
Mrs. Smith will always send a girl child with the water if she has a girl, then the
correct answer to the question is neither 1/2 nor 1/3 but 1!

Suppose Mrs. Smith chooses one of the two children at random to carry the
glass of water if both children are of the same sex and chooses the male child with
probability p if the children are of different sex. Then,
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P.The other child is a boyjThe chosen child is a boy/ D 1=4

1=4C p=2
D 1=.2pC1/:

If p D :5, then this is 1=2. Otherwise, the answer depends on Mrs. Smith’s state of
mind.

Example 3.6 (A Simple Weather Forecasting Model). Suppose the weather on any
day is dry or wet, and with probability p it is the same as whatever the weather was
on the day before and with probability 1� p it is different from what it was the day
before.

Suppose it is dry today, and let pn D P (It will be dry n days from today), with
the convention that p0 D 1. Then, by the total probability formula,

pn D p 	 pn�1 C .1 � p/ 	 .1 � pn�1/ D .2p � 1/pn�1 C .1 � p/; n � 1:

The interesting question is what can we say about the state of the weather a long time
into the future; i.e., as n ! 1? It turns out that a sequence satisfying the recursion
relation given above must have a limit. If we call this limit 	 , then it follows that

	 D .2p � 1/	 C .1� p/ ) 	 D 1=2I

i.e., with this simple model for weather forecasting, we can only do as well as a coin
toss for predicting into the distant future. The reader should prove that the limit 	 of
the sequence pn indeed exists by proving that the sequence is a Cauchy sequence.

Example 3.7 (Does the First Chooser Have an Advantage?). Suppose that in a lot-
tery there are n tickets, of which a prespecified set of m tickets will win a prize.
There are n players, and they will choose one ticket at random successively from the
available tickets. We want to calculate the probability that the i th player (that is, the
player to choose his ticket after i � 1 players have already chosen their tickets) will
win a prize for a general i .

First, obviously, the probability that the player to buy the first ticket wins a prize
is m=n. The probability that the player to buy next would buy a winning ticket
depends on whether the first player had bought a winning ticket or not. Thus, by the
total probability formula,

P.The second player wins a prize/ D .m � 1/=.n� 1/ 	m=nCm=.n� 1/ 	
.1 �m=n/ D m=n

with a little algebra. Next, the probability that the third player wins a prize can be
found by formally defining Ai D player i wins a prize and on using

P.A3/ D P.A3A2A1/C P.A3A2A
c
1/C P.A3A

c
2A1/C P.A3A

c
2A

c
1/

D .m=n/ 	 .m � 1/=.n � 1/ 	 .m � 2/=.n � 2/ C .1 � m=n/ 	 m=.n � 1/ 	
(m-1)= .n� 2/Cm=n	 .1� .m� 1/=.n� 1//	 .m� 1/=.n� 2/C .1�m=n/	
.1 �m=.n� 1// 	m=.n� 2/ D m=n; again on doing the algebra.
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In general, by conditioning on how many of the first i � 1 players won a prize
and applying the total probability formula, it does follow that for the i th player, for a
general i , the probability of selecting a winning ticket is indeedm=n; the probability
does not depend on i . That is, there is no advantage in selecting one’s ticket early.

Example 3.8 (A Clever Conditioning Argument). Coin A gives heads with probabil-
ity s and coin B gives heads with probability t . They are tossed alternately, starting
off with coin A. We want to find the probability that the first head is obtained on
coin A. If we find this probability to be >:5, we will have to agree that in this exam-
ple (contrary to the preceding one) starting first has an advantage!

We find this probability by conditioning on the outcomes of the first two tosses;
more precisely, define

A1 D fH g D the first toss givesH IA2 D fTH gIA3 D fT T g:

Also, let A D the first head is obtained on coin A.
One of the three events A1; A2; A3 must happen, and they are also mutually

exclusive. Therefore, by the total probability formula,

P.A/ D
3X

iD1

P.Ai /P.AjAi / D s 	 1C .1 � s/t 	 0C .1 � s/.1 � t/P.A/

) P.A/ D s=Œ1 � .1 � s/.1 � t/� D s=.s C t � st/:

As an example, let s D :4; t D :5. Note that coin A is biased against heads. Even
then, s=.sC t � st/ D :57 > :5. We see that, contrary to our previous example, now
there is an advantage in starting first.

3.3 Independent Events

Independence of events corresponds to lack of probabilistic information in one event
A about some other eventB; i.e., even if knowledge that some eventA has occurred
was available, it would not cause us to modify the chances of the event B . Here is a
simple example.

Example 3.9. Consider the experiment � of rolling a fair die twice, and let

A D the first roll is an even numberI
B D the sum of the two rolls is an even number:

Assuming that each sample point has an equal probability 1=36, P.B/ D P.A/ D
1=2, and P.A \ B/ D 1=4, by direct counting. Therefore, P.BjA/ D P.A\B/

P.A/
D

1=4
1=2

D 1=2, implying that P.BjA/ D P.B/, i.e., the knowledge thatA has occurred
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did not cause us to alter the chance of occurrence of B . In such a case, we say
A and B are independent events.

Definition 3.2. Two eventsA and B are called independent if P.BjA/ D P.B/ ,
P.AjB/ D P.A/ , P.A \ B/ D P.A/P.B/.

Caution. Disjointness of two events should not be confused with their indepen-
dence. In fact, if A and B are disjoint events with nonzero probabilities, then they
cannot be independent. After all, if they are disjoint, then as soon asA occurs,B be-
comes impossible! Thus, there is a lot of information in A about B and they cannot
be independent.

In applications, we often have to deal with more than two events simultaneously.
But we may still want to know if they are independent. Fortunately, the concept of
independence extends in a natural way to any number of events. The idea is that
no subcollection of the events should give any probabilistic information about any
other nonoverlapping subcollection of events. A mathematically equivalent way to
state that is the following.

Definition 3.3. A collection of eventsA1; A2; � � � ; An are said to be mutually inde-
pendent (or just independent) if for each k; 1 
 k 
 n, and for any k of the events,
Ai1 ; � � � ; Aik ; P.Ai1 \ � � �Aik / D P.Ai1/ � � �P.Aik /: They are called pairwise in-
dependent if this property holds for k D 2.

We will now look at a number of illustrative examples.

Example 3.10. Here is an example where we can sense intuitively that the events
under consideration are independent. Suppose a card is chosen at random from
a deck of 52 cards, and let A and B respectively be the events that the card is
an ace and that the card is a spade. Then, P.A/ D 1=13; P.B/ D 1=4; and
P.A\B/ D 1=52 because there are four aces and 13 spades in a full deck. Clearly,
then, P.A\ B/ D P.A/P.B/, and so A and B are independent events.

Example 3.11. Suppose a fair die is rolled twice, and let A and B be the events that
the sum of the two rolls is 7 and that the first roll is j , where j is any given number
1; 2; � � � , or 6. Then P.A/ D 6=36 D 1=6; P.B/ D 1=6, and P.A \ B/ D 1=36.
So A and B are independent events.

Now, change the event A to the event that the sum of the two rolls is 8. Then, A
and B are not necessarily independent events. Why? For instance, with j D 1;

P.AjB/ D 0, but the unconditional probability P.A/ is not zero. Therefore,
A and B cannot be independent events.

Example 3.12. In some applications, we assume that certain physical systems or
processes behave independently and transfer that physical assumption into indepen-
dence of appropriate events. Suppose Jack and his wife, Sarah, have three cars, and
on any given winter morning, the cars run, independently of each other, with proba-
bilities :9; :95; and :99, respectively.
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Because we assume that the cars run or not independently of each other, we can
easily calculate probabilities such as

1. P.At least one of the three cars runs/ D 1 � P.None of the three cars runs/
D1�:1 	 :05 	 :01 D :99995 or

2. P.All three cars run/D :9 	 :95 	 :99D :84645.

Example 3.13 (System Reliability). Here is an example of independence applied to
system reliability. Suppose a long-haul airplane has four engines and needs three or
more engines to work in order to fly. Another airplane has two engines and needs
one engine to fly. We assume that the engines are independent and suppose each has
a constant probability p of staying functional during a flight.

Then,

P.The first airplane can fly/ D p4 C 4p3.1 � p/ D 4p3 � 3p4

and

P.The second airplane can fly/ D p2 C 2p.1� p/:

We want to know which plane is safer. The second plane is safer if and only if
4p3 � 3p4 < p2 C 2p.1 � p/, and this happens to be true for all p; 0 < p < 1.
Thus, the second plane is always safer. Note that we could not have reached this
conclusion if the engines on the airplanes were not assumed to be independent.

Example 3.14 (Lotteries). Although many people buy lottery tickets out of an ex-
pectation of good luck, probabilistically speaking, buying lottery tickets is usually a
waste of money. Here is an example. Suppose that in a weekly state lottery five of the
numbers 00; 01; : : : ; 49 are selected without replacement at random and someone
who holds exactly those numbers wins the lottery. Then, the probability that some-
one holding one ticket will be the winner in a given week is 1

.50
5 /

D 4:72 	 10�7.

Suppose this person buys a ticket every week for 40 years. Then, the probability
that he will win the lottery in at least one week is 1 � .1 � 4:72 	 10�7/52�40 D
:00098 < :001; still a very small probability. We assumed in this calculation that
the weekly lotteries are all mutually independent, a reasonable assumption. The cal-
culation would fall apart if we did not make this independence assumption.

Example 3.15. Peter and Karen take turns, starting with Karen, rolling a fair die.
The first to obtain a six wins. Then,

P.Karen wins/ D 1=6C 5=6 	 5=6 	 1=6C 5=6 	 5=6 	 5=6 	 5=6 	 1=6C � � �

D 1=6.1CP1
iD1.5=6/

2i / D 1=6 	 .1C 25=36
1�25=36

/ D 6=11 > :5. Thus, Karen does
have an advantage due to starting first. We have assumed in this calculation that the
successive rolls of the die are mutually independent.
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Example 3.16 (An Interesting Example due to Emanuel Parzen). Consider two dice,
with the side probabilities being pj ; 1 
 j 
 6 for the first die and qj ; 1 
 j 
 6

for the second die. That is, we are just assuming that these are two arbitrarily loaded
dice. The question is whether we can choose pj ; qj in any way whatsoever such
that the sum of the numbers obtained on tossing the dice once each has an equal
probability of being any of 2; 3; � � � 12. The answer, interestingly, is that we cannot
choose pj ; qj in any way at all to make this happen.

To sketch the proof, suppose we could. Then, since the sums of 2 and 12 will
have equal probabilities, we must have p1q1 D p6q6 ) q1 D p6q6=p1. It follows,
after some algebra, on using this that .p1 � p6/=.q1 � q6/ 
 0 ) p1q1 C p6q6 

p1q6 C p6q1. But this means that

P.The sum is 7/ � p1q6 C p6q1 � p1q1 C p6q6 D P.The sum is 2 or 12/;

a contradiction, because by assumption P.The sum is 2 or 12/ is supposed to be
twice the probability that the sum is 7. Hence, we cannot construct two dice in any
way to make the sum have an equal probability of taking the values 2; 3; : : : 12.

3.4 Bayes’ Theorem

It is not uncommon to see the conditional probabilities P.AjB/ and P.BjA/ be
confused with each other. Suppose that in some group of lung cancer patients we
see a large percentage of smokers. If we define B to be the event that a person is a
smoker andA to be the event that a person has lung cancer, then all we can conclude
is that in our group of people P.BjA/ is large. But we cannot conclude from just
this information that smoking increases the chance of lung cancer; i.e., that P.AjB/
is large. In order to calculate a conditional probability P.AjB/ when we know the
other conditional probabilityP.BjA/, a simple formula known as Bayes’ theorem is
useful. The formula is named after the Reverend Thomas Bayes, who (essentially)
obtained this formula in the eighteenth century. Here is a statement of a general
version of Bayes’ theorem.

Theorem 3.3. Let fA1; A2; � � � ; Amg be a partition of a sample space �. Let B be
some fixed event. Then

P.Aj jB/ D P.BjAj /P.Aj /
Pm

iD1 P.BjAi /P.Ai /
:

Proof. By the definition of conditional probability, P.Aj jB/ D P.Aj \B/

P.B/
D

P.BjAj /P.Aj /
Pm

iD1 P.BjAi /P.Ai /
by the multiplicative formula and the total probability formula.

We will now show a number of examples illustrating the use of Bayes’ theorem.
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Example 3.17 (Inaccurate Blood Tests). A certain blood test for a disease gives a
positive result 90% of the time among patients having the disease. But it also gives
a positive result 25% of the time among people who do not have the disease. It is
believed that 30% of the population has this disease. What is the probability that a
person with a positive test result indeed has the disease?

In medical terminology, the 90% value is called the sensitivity of the test, and
100 � 25 D 75% is called the specificity of the test. Often, the sensitivity and the
specificity would be somewhat higher than what they are in this example.

Define

A D the person has the diseaseI
B D the blood test gives a positive result for the person:

Then, by Bayes’ theorem,

P.AjB/ D P.BjA/P.A/
P.BjA/P.A/C P.BjAc/P.Ac/

D :9 	 :3
:9 	 :3C :25 	 .1 � :3/ D :607:

Before the test was given, the physician had the a priori probability of 30% that
the person has the disease. After a blood test came out positive, the physician has
the posterior probability of 60:7% that the person has the disease. If the physician
wants to be more sure that the person has the disease, then she will give some other
test or repeat the blood test for another independent confirmation of this positive
result.

Example 3.18 (Multiple-Choice-Exams). Suppose that the questions in a multiple-
choice exam have five alternatives each, of which a student picks one as the correct
alternative. A student either knows the truly correct alternative with probability :7
or he randomly picks one of the five alternatives as his choice. Suppose a particular
problem was answered correctly. We want to know the probability that the student
really knew the correct answer. Define

A D the student knew the correct answerI
B D the student answered the question correctly:

We want to compute P.AjB/. By Bayes’ theorem,

P.AjB/ D P.BjA/P.A/
P.BjA/P.A/C P.BjAc/P.Ac/

D 1 	 :7
1 	 :7C :2 	 :3 D :921:

Before the student answered the question, our probability that he would know the
correct answer to the question was :7, but once he answered it correctly, the poste-
rior probability that he knew the correct answer increased to :921. This is exactly
what Bayes’ theorem does: it updates our prior belief to the posterior belief when
evidence becomes available.
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Example 3.19 (Clever Conditioning Argument). Lafayette is connected to Gary by
two different roads, and Gary is connected to Chicago by two different roads. Also,
Lafayette is connected to Chicago by Amtrak. Each road and the Amtrak service
are operational on a winter day with probability .9, mutually independently. If Mark
was able to travel from Lafayette to Chicago on a given winter day, what is the
probability that Amtrak was operational? Define

Ai D i th road connection between Lafayette and Chicago is operational; i D
1; 2; 3; 4I

A5 D Amtrak is closedI
B D Mark was able to travel from Lafayette to Chicago:

Then,

P.A5jB/ D P.A5 \ B/
P.B/

D P.A5/P.A1 [A2/P.A3 [ A4/

P.Ac
5/C P.A5/P.A1 [ A2/P.A3 [A4/

D :1 	 .1 � :12/ 	 .1 � :12/

:9C :1 	 .1 � :12/ 	 .1 � :12/
D :098:

Therefore, the probability that Amtrak was operational given that Mark was able
to travel is 1 � :098 D :902.

Example 3.20 (A Counterintuitive Result). Suppose Jeff hits the bull’s eye 60% of
the times he shoots at it, and Jen hits the bull’s eye 90% of the times she shoots at it.
Suppose both shoot simultaneously and only one hits. What is the probability that it
was Jen?

LetA D Jen hit the bull’s eyeIB D exactly one of Jeff and Jen hit the bull’s eye:
Then,

P.AjB/ D :9 	 :4=.:9 	 :4C :1 	 :6/ D :536;

which is lower than :9=.:9C :6/ D :6. Often, people give the :6 value as the answer
to the question. It would be helpful for the reader to think about why the intuitive
result is not correct.

Example 3.21. 75% of Democrats and 25% of Republicans are pro-choice. In the
population, 48% are Democrats and 52% are Republicans. If Cathy is pro-life, what
is the probability that she is a Republican?

Let A D Cathy is a RepublicanI B D Cathy is pro-life: Then, by Bayes’
theorem,

P.AjB/ D :75 	 :52=.:75 	 :52C :25 	 :48/ D :765:

Note that it is slightly larger than :75. This is because there are slightly more
Republicans than Democrats in this population.
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3.5 Synopsis

(a) The conditional probability of B given A is defined as

P.BjA/ D P.A \ B/

P.A/
;

assuming that P.A/ > 0.
(b) The multiplicative formulas say that

P.A \ B/ D P.A/P.BjA/:

More generally,

P.\k
iD1Ai /DP.A1/P.A2jA1/P.A3jA1\A2/� � �P.AkjA1\A2\ � � � :::\Ak�1/:

(c) The total probability formulas say that

P.B/ D P.BjA/P.A/C P.BjAc/P.Ac/:

More generally, P.B/ D Pk
iD1 P.BjAi /P.Ai / if A1; : : : ; Ak form a partition

of the sample space �.
(d) Bayes’ theorem tells you how to find P.AjB/ if you know P.BjA/; P.BjAc/,

and P.A/. Bayes’ theorem says

P.AjB/ D P.BjA/P.A/
P.BjA/P.A/C P.BjAc/P.Ac/

:

More generally, P.Aj jB/ D P.BjAj /P.Aj /
Pm

iD1 P.BjAi /P.Ai /
if A1; : : : ; Am form a partition

of the sample space �.

3.6 Exercises

Exercise 3.1. A fair die is rolled twice. What is the probability that at least one of
the two rolls is a six if the sum of the two rolls is at least 10?

Exercise 3.2. Jen will call Cathy on Saturday with a 60% probability. She will call
Cathy on Sunday with an 80% probability. The probability that she will call on
neither of the two days is 10%. What is the probability that she will call on Sunday
if she calls on Saturday?
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Exercise 3.3. On a table there is a double-headed coin and there is a fair coin. One
of them was randomly chosen and tossed, and the outcome was a head. What is the
probability that the lower side of this coin is a tail?

Exercise 3.4. Suppose P.A/ D P.B/ D :9. Give a useful lower bound on
P.BjA/.
Exercise 3.5. Two distinct cards are drawn one at a time from a deck of 52 cards.
The first card chosen is the ace of spades. What is the probability that the second
card is neither an ace nor a spade?

Exercise 3.6. On 10% of the days, Sam’s computer does not work. If the computer
does not work, then he turns on the television, and independently of the computer,
on 30% of the days he finds nothing interesting on television. If he finds nothing
interesting on television, he calls his wife at work. Independently of television pro-
gramming and the computer, on 75% of all occasions she does not pick up the phone.
In that case, Sam goes to bed at 8W00 PM. On what percentage of days does Sam go
to bed at 8W00 PM?

Exercise 3.7. What is the probability that four cards drawn at random from a deck
of cards are of different denominations if they are of different suits?

Exercise 3.8. In an urn, there are three black balls, four green balls, and five red
balls. Two balls are randomly drawn from the urn and are found to be of the same
color. What is the probability that they are both red?

Exercise 3.9. North and South have all the aces between them in a bridge game.
What is the probability that one has one ace and the other has three?

Exercise 3.10. Three independent proofreaders will read a manuscript. The prob-
abilities that a particular error will be detected by them are respectively :92; :85,
and :95. What is the probability that the error will go undetected?

Exercise 3.11. * Two numbers are chosen without replacement from 1; 2; : : : 100.
What is the probability that the smaller number is greater than 20 if the larger num-
ber is smaller than 60?

Exercise 3.12. Sam, Fred, and Vishy in that order take turns shooting at a bull’s
eye. Their success rates are 20%; 30%, and 40%. What are the probabilities of each
making the first hit at the bull’s eye?

Exercise 3.13 (Communication Channel). A signal passes through three filtering
networks. The signal can be a C signal or a � signal. Each network has a probability
p of transmitting the signal as it was received and probability 1� p of transmitting
it as the wrong signal. Assume that the networks function independently. If a signal
is received as a C, what is the probability that it was sent as a C? You may assume
that the prior probability is 50% that it was sent as a C.
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Exercise 3.14. * In a country, 60% of parents have one child, 30% have two chil-
dren, and 10% have three children. A randomly chosen child turns out to be a boy.
What is the probability that he has no older brother?

Exercise 3.15. * A fair die is tossed repeatedly until every face has occurred at least
once. Give a clever proof and a direct proof that the probability that 1 is the last face
to show up is 1

6
.

Exercise 3.16. * The probability that a coin will show all heads or all tails when
tossed four times is .25. What is the probability that it will show two heads and two
tails?

Exercise 3.17. Sam tosses two fair dice and Fred tosses one. Sam wins if his sum
is at least twice as much as Fred’s score. What is the probability that Sam wins?

Exercise 3.18. A statistics department has five assistant professors, two associate
professors, and six full professors. Two of these 13 faculty members are chosen at
random. What is the probability that the junior member is an assistant professor
if the senior member is a full professor? It is assumed that we know that the two
chosen are always of different ranks.

Exercise 3.19. * (Lottery). In a state lottery, five numbers from 00; 01; : : : ; 49 are
selected at random. Someone holding exactly those five numbers wins. For how
many weeks must a couple buy tickets to have a 5% probability that at least one of
them wins at least once?

Exercise 3.20. A true-false question will be posed to a couple on a game show.
The husband and the wife each pick the correct answer with probability p. Should
the couple decide to let one of them answer the question or decide that they will
give the common answer if they agree and give one of the two answers at random if
they disagree?

Exercise 3.21. Of the paintings in a certain gallery, 25% are not original. A certain
collector makes an error in judging an item’s authenticity 15% of the time, whether
the painting is an original or not. If she purchases an item believing that it is an
original, what is the probability that it is a fake?

Exercise 3.22. You have requested that a friend water your plant while you are on
vacation for a week. Without water, it will die with probability x, and with water
it will die with probability y. On returning, you find your plant dead. What is the
probability that your friend forgot to water it?

Exercise 3.23. * (Conditional Independence). Events A and B are called condi-
tionally independent given C if P.A \ BjC/ D P.AjC/P.BjC/.
(a) Give an example of events A;B;C such that A and B are not independent but

are conditionally independent given C .
(b) Give an example of events A;B;C such that A and B are independent but are

not conditionally independent given C .
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Exercise 3.24 (Polygraphs). Polygraphs are routinely administered to job appli-
cants for sensitive government positions. Suppose someone actually lying fails the
polygraph 90% of the time but someone telling the truth also fails the polygraph
15% of the time. If a polygraph indicates that an applicant is lying, what is the prob-
ability that he is in fact telling the truth? Assume a general prior probability p that
the person is telling the truth.

Exercise 3.25. A gambler has in his pocket a fair coin and a two-headed coin. He
selects one of the coins at random; when he flips it, it shows heads.

(a) What is the probability that it is the fair coin?
(b) Suppose that he flips the same coin a second time and again it shows heads.

Now what is the probability that it is the fair coin?
(c) Suppose that he flips the same coin a third time and it shows tails. Now what is

the probability that it is the fair coin?

Exercise 3.26 (Casino Slot Machines). A typical slot machine in a casino has three
wheels, each marked with 20 symbols spaced equally around the wheel. The ma-
chine is constructed so that on each play the three wheels spin independently, and
each wheel is equally likely to show any one of its 20 symbols when it stops spin-
ning. On the central wheel, nine out of the 20 symbols are bells, while there is only
one bell on the left wheel and one bell on the right wheel. The machine pays out the
jackpot only if the wheels come to rest with each wheel showing a bell.

(a) Find the probability of hitting the jackpot.
(b) Find the probability of getting two bells but not the jackpot.

Exercise 3.27. Three independent events occur with probabilities :5; :75; and :9,
respectively. Given that two of the three occurred, what is the probability that the
second event did not occur?

Exercise 3.28. * (Empty cells). Three balls will be distributed independently into
one of three cells. For each ball, the probabilities that the ball will be dropped into
the three cells are x; y; and 1� x � y, respectively. If we know that exactly one cell
remains empty, what is the probability that it is the first cell?

Exercise 3.29. * (Random Matrix). The diagonal elements a; c of a 2	2 symmet-
ric matrix are chosen independently at random from 1; 2; : : : ; 5, and the off-diagonal
element is chosen at random from 1; : : :min.a; c/. Find the probability that the
matrix is nonsingular.

Exercise 3.30. A;B;C;D are independent events, each with probability :5. What
is the probability that at least one of A;B;C;D happens?

Exercise 3.31. * (Craps). You are to roll a pair of fair dice. If you get a sum of 7
or 11, you win; if you get a sum of 2, 3, or 12, you lose. If the sum k is none of
these, you keep rolling the pair of dice until you again get a sum of k or a sum of
7, whichever happens first. If it is 7 that occurs first, you lose; if it is k that occurs
first, then you win. Show that the probability that you will win in this game is .493.
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Exercise 3.32 (Yahtzee). Five fair dice are to be rolled. Find the probability of
getting a full house, which is three rolls of one number and two rolls of some other
number.

Exercise 3.33 (The Parking Problem). At a parking lot, there are 12 spaces
arranged in a row. A man observed that there were eight cars parked and that the
four empty spaces were adjacent to each other. Given that there are four empty
spaces, is this arrangement surprising?

Exercise 3.34 (Another Parking Problem). A car is parked among N cars in a
row, not at either end. On his return, its owner finds that exactly r of the N spaces
are still occupied. What is the probability that both of his neighboring spaces are
empty?

Exercise 3.35 (Use Your Computer). Simulate the lottery problem in which three
numbers are picked from 00; 01; 02; : : : ; 24, and a player with exactly those three
numbers is the winner. Perform the simulation 500 times, and count (a) how many
times a fixed player, say one holding the numbers 5; 10, and 15, won, and (b) how
many times the fixed player matched two of the three winning numbers.

Exercise 3.36 (Use Your Computer). Simulate the airplane reliability problem,
taking it to be a three-out-of-four system and taking the reliability of each individual
engine to be .99. Perform the simulation 1000 times, and count how many times, if
any, the plane would be forced to make an emergency landing.



Chapter 4
Integer-Valued and Discrete Random Variables

In this chapter, we introduce the concept of random variables and their distributions.
In some sense, the entire subject of probability and statistics is about distributions
of random variables. Random variables, as the very name suggests, are quantities
that vary over time or from individual to individual, and the reason for the vari-
ability is some underlying random process. We try to understand the behavior of
a random variable by analyzing the probability structure of that underlying random
mechanism or process. Random variables, like probabilities, originated in gambling.
Therefore, the random variables that come to us more naturally are integer-valued
random variables; e.g., the sum of the two rolls when a die is rolled twice. Integer-
valued random variables are special cases of what are known as discrete random
variables. We study integer-valued and discrete random variables and their basic
properties in this chapter. Random variables with an intrinsically more abstract and
complex structure will be studied after we introduce probability density functions.

4.1 Mass Function

We start with a mathematical formulation for a random variable. An example will
help motivate the definition.

Example 4.1. Consider the experiment � of rolling a fair die twice. The sample
space � of this experiment has the 36 sample points � D f11; 12; 13; : : : ; 64;
65; 66g. Consider now the sum of the two rolls, and call itX . We realize immediately
that the value of X depends on which sample point prevails when the experiment
� is conducted; e.g., if ! D 11 prevails, then X D 2, but if ! D 65 prevails, then
X D 11. That is, X is a function of !. Indeed, this is how random variables are
defined. Although in general X can take values in esoteric spaces, we will confine
ourselves to the case whereX is real-valued and then quickly specialize even further
to the case where X is integer-valued, or more generally discrete.

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 4, c� Springer Science+Business Media, LLC 2010
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Here is the definition of a real-valued random variable.

Definition 4.1. Let � be a sample space corresponding to some experiment � and
let X W � ! R be a function from the sample space to the real line. Then X is
called a random variable.

Let us see some simple illustrative examples of random variables.

Example 4.2. Let � be the experiment of tossing a coin twice and let X be the num-
ber of times in the two tosses that a head is obtained. Denote the four sample points
as HH D !1;HT D !2; TH D !3; T T D !4. Then, X.!1/ D 2;X.!2/ D
X.!3/ D 1;X.!4/ D 0. This is the function that formally defines the words “num-
ber of times in the two tosses that a head is obtained.”

Example 4.3. Let � be the experiment of rolling a die twice, and let X be the sum
of the two rolls. Denoting the sample points as 11 D !1; 12 D !2; 13 D !3; : : : ;

66D!36, we have X.!1/D 2;X.!2/D 3;X.!3/D 4; : : : ; X.!36/D 12. This then
is the function that formally defines the words “sum of the two rolls.”

From the point of view of understanding the behavior of a random variable, the
important thing is to know the probabilities with whichX takes its different possible
values. If we could ascertain these probabilities, then we could exploit them to our
advantage. For example, if we have to decide whether to bet fair money that the
sum of two rolls of a fair die will be 8 or more, we will surely decide against it
if we know that the chances of it happening are less than 50%. This motivates the
definition of the distribution of a random variable.

Definition 4.2. Let X W � ! R be a discrete random variable taking a finite or
countably infinite number of values x1; x2; x3; : : :. The probability distribution or
the probability mass function (pmf) of X is the function p.x/ D P.X D x/; x D
x1; x2; x3; : : :, and p.x/ D 0 otherwise.

It is common not to explicitly mention the phrase “p.x/ D 0 otherwise,” and we
will generally follow this convention. Some authors use the phrase mass function
instead of probability mass function.

Remark. For any pmf, one must have p.x/ � 0 for any x, and
P

i p.xi / D 1.
The second property articulates the fact that something has to happen; i.e., X must
take one of the values x D x1; x2; x3; : : :. Thus, any function satisfying these two
properties for some set of numbers x1; x2; x3; : : : is a valid pmf. They may not
correspond to interesting random variables, but they are all valid pmfs.

Caution. It is important to know that not all random variables that we study in ap-
plications are discrete. There are plenty of random variables that arise very naturally
in applications and take uncountably many possible values. A simple example is the
value of a random fractional number. Such a variable, by its very definition, can
take all values in the unit interval Œ0; 1�, so it is not discrete. Describing the behav-
ior of such random variables probabilistically requires tools that are different from
pmfs. We do not discuss them in this chapter. But it may be helpful to just mention
the basic idea of how we deal with such random variables, which we call continuous
random variables. Let us see the random fraction example.
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Example 4.4. Consider the sample space � D Œ0; 1�, and define a random variable
X by the functionX W � ! R asX.!/ D !;! 2 �. If we equip� with a uniform
probability measure P (i.e., P.a 
 ! 
 b/ D b � a for 0 
 a 
 b 
 1), then,
becauseX.!/ D ! itself, we also have P.a 
 X 
 b/ D b � a; 0 
 a 
 b 
 1. In
particular, if we define a function f .x/ on [0,1] as f .x/  1, then we have

P.a 
 X 
 b/ D b � a D
Z b

a

f .x/dx:

The function f .x/ is called the probability density function (pdf) of X . It plays the
role of the pmf for discrete random variables, but f .x/ does not mean P.X D x/.
Indeed, by choosing a D b D x in the above, we see that for these continuous
random variables, P.X D x/ is always zero! There are so many possibilities for X
that any one specific possible value is infinitely unlikely! We will discuss continuous
random variables and pdfs in great detail in later chapters. For now, it is important
to know that they are there and that we analyze them probabilistically by using pdfs
rather than pmfs.

4.2 CDF and Median of a Random Variable

A second important definition is that of a cumulative distribution function (CDF).
The CDF gives the probability that a random variable X is less than or equal to
any given number x. In other words, the CDF measures the probability that has
been accumulated up to and including a given number x, hence the name cumula-
tive distribution function. It is important to understand that the notion of a CDF is
universal to all random variables; it is not limited to only the discrete ones or only
the continuous ones. However, operationally, pmfs are simpler to work with when
we have discrete random variables; the examples below will show that. So, although
the notion of a CDF provides a common and unified background for treatment of all
types of random variables, we tend to depend more on the pmf for discrete random
variables.

Definition 4.3. The cumulative distribution function (CDF) of a random variableX
is the function F.x/ D P.X 
 x/; x 2 R.

Let us see some examples.

Example 4.5. Let � be the experiment of tossing a fair die twice and let X be the
number of heads obtained. ThenX takes the possible values x1 D 0; x2 D 1; x3 D 2.
Also, P.X D 0/ D P.T T / D 1=4; P.X D 1/ D P.fHT; TH g/ D 1=2; and
P.X D 2/ D P.HH/ D 1=4. We then have the following pmfs for X :

x 0 1 2
p.x/ .25 .5 .25
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Fig. 4.1 CDF of the number of heads in two tosses of a fair coin

As regards the CDF of X , since X does not take any negative values, the CDF
F.x/ is zero for any negative x. However, X takes the value x D 0 with a positive
probability, namely .25. Thus, as soon as x reaches the zero value, the CDF F.x/
takes a jump and becomes equal to .25. Then, between x D 0 and x D 1, X does
not take any other values, and no new probability is accumulated. So the CDF stays
stuck at the .25 value until x reaches the value x D 1, and now it takes another jump
of size .5, which is the probability that X D 1. The next jump is at x D 2, when the
CDF takes another jump of size .25, and thereafter the CDF takes no further jumps.
In symbols, the CDF F.x/ in this example is the jump function

F.x/ D 0 if x < 0

D :25 if 0 
 x < 1

D :75 if 1 
 x < 2

D 1 if x � 2:

A plot of the CDF is helpful for understanding and is given in Figure 4.1.
It is clear that because this CDF increases by jumps, it does not attain all values

between 0 and 1. For example, there is no x at which F.x/ D :5. If there was,
that value could stake a claim to splitting the distribution into two halves, 50% of
the probability below and 50% above. However, there do exist values x such that
P.X 
 x/ � :5, and at the same time P.X � x/ is also � :5. Such a number x is
called a median of the distribution. We define it formally.

Definition 4.4. LetX have the CDF F.x/. Any numberm such thatP.X 
m/ � :5

and also P.X �m/ � :5 is called a median of F , or equivalently a median of X .

Remark. The median of a random variable need not be unique. A simple way to
characterize all the medians of a distribution is available.
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Proposition. Let X be a random variable with the CDF F.x/. Let m0 be the first
x such that F.x/ � :5, and let m1 be the last x such that P.X � x/ � :5. Then, a
numberm is a median of X if and only if m 2 Œm0; m1�.

A proof of this uses property (c) below of an arbitrary CDF, known as the right
continuity of a CDF. We will omit the proof.

The CDF of any random variable satisfies a set of properties. Conversely, any
function satisfying these properties is a valid CDF; i.e., it will be the CDF of some
appropriately chosen random variable. These properties are given in the next result.

Theorem 4.1. A function F.x/ is the CDF of some real-valued random variableX
if and only if it satisfies all of the following properties:

(a) 0 
 F.x/ 
 1 8x 2 R:
(b) F.x/ ! 0 asx ! �1; andF.x/ ! 1 asx ! 1:

(c) Given any real numbera; F.x/ # F.a/ as x # a.
(d) Given any two real numbersx; y; x < y; F.x/ 
 F.y/:

Remark. The only part of this theorem that is not obvious is part (c). The best proof
of part (c) just uses the fact that if an is a sequence decreasing to a real number a,
then the intervals .�1; an� # .�1; a�, so by the property of continuity of proba-
bilities, P..�1; an�/ D F.an/ # P..�1; a�/ D F.a/:

Property (c) is called continuity from the right, or simply right continuity. It is
clear that a CDF need not be continuous from the left; indeed, in the example of
tossing a fair coin twice, the CDF of the number of heads has jumps at the points
0; 1; 2, and at those points the value of the CDF is not equal to the left limit of the
function. Thus, at the jump points, the CDF is not left continuous. More precisely,
one has the following result.

Proposition. Let F.x/ be the CDF of some random variable X . Then, for any x,

(a) P.X D x/ D F.x/� lim
y"x

F.y/ D F.x/�F.x�/, including those points x for

which P.X D x/ D 0, and
(b) P.X � x/ D P.X > x/C P.X D x/ D .1 � F.x//C .F.x/ � F.x�// D

1 � F.x�/.
Example 4.6 (Dice Sum). Consider the experiment of rolling a fair die twice, and let
X be the sum of the two rolls. ThenX takes the values x1 D 2; x2 D 3; : : : ; x11 D 12.
For example, P.X D 7/ D P.f16; 25; 34; 43; 52; 61g/ D 6=36 D 1=6. We can
easily find the probabilities of all the possible values of X by direct counting, and
we get the following pmf of X .

x 2 3 4 5 6 7 8 9 10 11 12

p.x/ 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

We see from the table that a median of the distribution is 7.
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Example 4.7 (Indicator Variables). Consider again the experiment of rolling a fair
die twice, and now define a random variable Y as follows:

Y D 1 if the sum of the two rolls X is an even number;

Y D 0 if the sum of the two rolls X is an odd number:

If we let A be the event that X is an even number, then Y D 1 if A happens and
Y D 0 if A does not happen. Such random variables are called indicator random
variables and are immensely useful in mathematical calculations in many complex
situations.

Definition 4.5. Let A be any event in a sample space �. The indicator random
variable for A is defined as

IA D 1 if A happens;

IA D 0 if A does not happen:

Thus, the distribution of an indicator variable is simplyP.IAD1/DP.A/IP.IAD0/
D1 � P.A/.

An indicator variable is also called a Bernoulli variable with parameter p, where
p is just P.A/.

Example 4.8 (Bridge). Consider the random variable

X D number of aces in North’s hand in a bridge game:

Clearly, X can take any of the values x D 0; 1; 2; 3; 4. If X D x, then the other
13 � x cards in North’s hand must be non-ace cards. Thus, the pmf of X is

P.X D x/ D

�
4

x

��
48

13� x

�

�
52

13

� ; x D 0; 1; 2; 3; 4:

In decimals, the pmf of X is

x 0 1 2 3 4

p.x/ .304 .439 .213 .041 .003

Once again, the CDF of X is a jump function, taking jumps at the values
0; 1; 2; 3; 4, namely the possible values of X . The CDF is

F.x/ D 0 if x < 0;

D :304 if 0 
 x < 1;

D :743 if 1 
 x < 2;

D :956 if 2 
 x < 3;

D :997 if 3 
 x < 4;

D 1 if x � 4:
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Fig. 4.2 CDF of the number of aces in the hand of one player in bridge

Once again, a plot of the CDF is given here for illustration (see Figure 4.2).
This is an example of the hypergeometric distribution, in which among N total

objects some D are of type I and the other N � D of type II, and n are selected
without replacement from the N objects. Then, the pmf of the number of type I
objects among the n selected is

P.X D x/ D

�
D

x

��
N �D
n � x

�

�
N

n

� ;

where nCD �N 
 x 
 D:

Example 4.9 (Long Head Runs and Pál Révész’s Classroom Experiment). Suppose
a fair coin is tossed n D 5 times. A head run is an uninterrupted sequence of heads;
e.g., if the outcomes are HTHHT , then the first H is a run of length one, and the
two successive heads HH in the third and fourth tosses form a head run of length
two. For this particular sample point HTHHT , the length of the longest head run
is two. For other sample points, it can be different. Define X D the length of the
longest head run in n D 5 tosses of a fair coin. We want to find the distribution; i.e.,
the pmf of X .

The sample space of the experiment is

� D fHHHHH;HHHHT;HHHTH;HHHT T;HHTHH;HHTHT;
HHT TH;HHT T T;HTHHH;HTHHT;HTHTH;HTHT T;

HT THH;HT THT;HT T TH;HT T T T; THHHH;THHHT;

THHTH; THTHH;THTHT; THT TH; THT T T; T THHH;T THHT;

T THTH; THHT T; T THT T; T T THH; T T THT; T T T TH; T T T T T g:
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X takes the values 5; 4; 3; 3; 2; : : : ; 0 corresponding to the 32 different sample
points. Since each sample point has probability 1

32
, by direct counting, the pmf of

X is as follows:

x 0 1 2 3 4 5

p.x/
1

32

12

32

11

32

5

32

2

32

1

32

F.x/
1

32

13

32

24

32

29

32

31

32
1

We notice that the probability of getting a head run of length three or more when
the coin is tossed only five times is P.X � 3/ D 1 � P.X 
 2/ D 1 � F.2/ D
1 � 24

32
D :25. Most people feel surprised that such long head runs are fairly likely

in such a small number of tosses.
The distribution of the length of the longest head run for a general number of

tosses n is a hard and well-studied problem; one should expect that the longest
head run would be of length log n

log 2
. This is a classic result in discrete probability;

see Erdös and Rényi (1970) and Erdös and Révész (1975). Thus, with n D just 60
tosses, one should not be surprised to see six consecutive heads because log 60

log 2
� 6.

Pál Révész has conducted classroom experiments in which he asks one group of
students to actually toss fair coins and report the length of the longest head run and
have another group of students write imagined coin toss outcomes and report the
length of the longest head run; with high accuracy, it is possible to identify from
the reported values of the length of the longest head run whether a student actually
tossed the coin or did a mental coin toss experiment!

Example 4.10 (How Common Is Bad Luck?). Suppose seven cookies are distributed
independently and completely at random to seven children. Let X be the number of
children who end up getting no cookies at all. We want to find the pmf of X .

This is a special case of the problem of empty cells. Precisely, if n balls (cook-
ies) are distributed independently at random into m cells (children) and �0.m; n/

denotes the number of empty cells (the number of children who receive no cookies
at all), then it can be shown that, for k � 1,

P.�0.m; n/ � k/ D
m�kX

iD0

.�1/i
 
i C k � 1

k � 1

! 
m

i C k

!

.m � i � k/n=mnI

from here, P.�0.m; n/ D k/ can be found by subtraction:

P.�0.m; n/ D k/ D P.�0.m; n/ � k/ � P.�0.m; n/ � k C 1/:
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Fig. 4.3 Probability that at least one cell is empty if 2n balls are dropped in n cells

Using the formula above with m D n D 7 produces the following pmf for X , the
number of children who do not receive any cookies at all:

x 0 1 2 3 4 5 6

p.x/ .006 .129 .428 .357 .077 .003 .000

F.x/ .006 .135 .563 .920 .997 1 1

What is the probability that as many as three children receive no cookies at all?
This is P.X � 3/ D 1 � P.X 
 2/ D 1 � F.2/ D 1 � :563 D :437. There is
almost a 44% probability that as many as three children receive no cookies at all.

From the general formula above, one can compute the probability that at least
one cell will remain empty. When both the number of cells and the number of balls
are large, this probability tends to be high unless the number of balls is a factor of
magnitude bigger than the number of cells. A plot of this probability is given when
the number of balls is twice the number of cells (see Figure 4.3). We can see that if
50 balls are randomly dropped into 25 cells, then with a very high probability some
cells will remain empty.

4.2.1 Functions of a Random Variable

In applications, we are sometimes interested in the distribution of a function, say
g.X/, of a basic random variable X ; e.g., g.X/ D X2 or g.X/ D eX . A function
of a random variable is also a random variable, so it has a distribution. If the function
is not one-to-one, then a particular value y of g.X/ could be inherited from more
than one value of X . One has to add the probabilities of all those values of X to
find the probability that g.X/ takes the value y. Here is a formal statement for this
argument.
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Proposition (Function of a Random Variable). Let X be a discrete random vari-
able and Y D g.X/ a real-valued function ofX . Then,P.YDy/DPxWg.x/Dy p.x/.

Example 4.11. Suppose X has the pmf p.x/ D c
1Cx2 ; x D 0;˙1;˙2;˙3. Sup-

pose we want to find the distribution of two functions of X :

Y D g.X/ D X3IZ D h.X/ D sin
��

2
X
�
:

First, the constant c must be explicitly evaluated. By directly summing the values,

X

x

p.x/ D 13c

5
) c D 5

13
:

Note that g.X/ is a one-to-one function of X , but h.X/ is not one-to-one. The
values of Y are 0;˙1;˙8;˙27. For example, P.Y D 0/ D P.X D 0/ D
c D 5=13IP.Y D 1/ D P.X D 1/ D c=2 D 5=26, etc. In general, for
y D 0;˙1;˙8;˙27; P.Y D y/ D P.X D y1=3/ D c

1Cy2=3 , with c D 5=13.

However, Z D h.X/ is not a one-to-one function of X . The possible values of
Z are as follows:

x h.x/

�3 1
�2 0
�1 �1
0 0
1 1
2 0
3 �1

So, for example, P.Z D 0/ D P.X D �2/CP.X D 0/CP.X D 2/ D 7
5
c D

7=13: The pmf of Z D h.X/ is

z �1 0 1
P.Z D z/ 3/13 7/13 3/13

Notice that Z has a symmetric distribution; i.e., Z and �Z have the same pmf.
This is not a coincidence. This is because X itself has a symmetric distribution and
Z D h.X/ is an odd function of X . This is generally true.

Proposition. Suppose X has a distribution symmetric about zero; i.e., P.X Dx/

DP.X D � x/ for any x. Let h.x/ be an odd function; i.e., h.�x/ D �h.x/ for
any x. Then Z D h.X/ also has a distribution symmetric about zero.
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4.2.2 Independence of Random Variables

Although we will not study probabilistic behavior of more than one random vari-
able simultaneously in this chapter, it is useful to know the concept of independent
random variables right now. The definition manifests the idea that no subset of a
collection of random variables provides any probabilistic information about another
nonoverlapping subset of that collection of variables.

Definition 4.6. Let X1; X2; : : : ; Xk be k � 2 discrete random variables defined
on the same sample space �. We say that X1; X2; : : : ; Xk are independent if
P.X1 Dx1; X2 Dx2; : : : ; Xm D xm/DP.X1 D x1/P.X2 Dx2/ � � �P.Xm D xm/;

8m 
 k; and all x1; x2; : : : ; xm.

It follows from the definition of independence of random variables that if
X1 and X2 are independent, then any function of X1 and any function of X2 are
also independent. In fact, we have a more general result.

Theorem 4.2. Let X1; X2; : : : ; Xk be k � 2 discrete random variables, and
suppose they are independent. Let UDf .X1; X2; : : : ; Xi / be some function of
X1; X2; : : : ; Xi , and V D g.XiC1; : : : ; Xk/ be some function of XiC1; : : : ; Xk .
Then, U and V are independent.

This result is true of any types of random variables X1; X2; : : : ; Xk , not just
discrete ones. We will omit a formal proof of this theorem, but it is clear why the
theorem must be true. An event such as ff .X1; X2; : : : ; Xi / D cg and another event
such as fg.XiC1; : : : ; Xk/ D bg are events involving nonoverlapping subsets of a
set of independent random variables and therefore must be independent events.

A common notation widely used in probability and statistics is now introduced.
If X1; X2; : : : ; Xk are independent, and moreover have the same CDF, say F ,

then we say that X1; X2; : : : ; Xk are iid (or IID) and write X1; X2; : : : ; Xk
i id� F .

Example 4.12 (Two Simple Illustrations). Consider the experiment of tossing a fair
coin (or any coin) four times. Suppose X1 is the number of heads in the first two
tosses and X2 is the number of heads in the last two tosses. Then, it is intuitively
clear that X1 and X2 are independent because the first two tosses have no in-
formation regarding the last two tosses. The independence can be easily verified
mathematically by using the definition of independence.

Next, consider the experiment drawing 13 cards at random from a deck of 52
cards. SupposeX1 is the number of aces andX2 is the number of clubs among the 13
cards. Then,X1; andX2 are not independent. For example,P.X1 D 4;X2 D 0/D 0,
but P.X1 D 4/ and P.X2 D 0/ are both >0, so P.X1 D 4/P.X2 D 0/>0. So,
X1 and X2 cannot be independent.
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4.3 Expected Value of a Discrete Random Variable

By definition, a random variable takes different values on different occasions. It is
natural to want to know what value it takes on average. Averaging is a very primi-
tive concept. A simple average of just the possible values of the random variable will
be misleading because some values may have so little probability that they are rela-
tively inconsequential. The average or the mean value, also called the expected value
of a random variable, is a weighted average of the different values of X , weighted
according to how important the value is. Here is the definition.

Definition 4.7. LetX be a discrete random variable. We say that the expected value
of X exists if

P
i jxi jp.xi / < 1, in which case the expected value is defined as

� D E.X/ D
X

i

xip.xi /:

For notational convenience, we simply write
P

x xp.x/ instead of
P

i xip.xi /: The
expected value is also known as the expectation or the mean of X .

Remark. If the set of possible values ofX is infinite, then the infinite sum
P

x xp.x/

can take different values on rearranging the terms of the infinite series unlessP
x jxjp.x/ < 1. So, as a matter of definition, we have to include the qualification

that
P

x jxjp.x/ < 1.

If the sample space� of the underlying experiment is finite or countably infinite,
then we could also calculate the expectation by averaging directly over the sample
space.

Proposition (Change of Variable Formula). Suppose the sample space� is finite
or countably infinite and X is a discrete random variable with expectation �. Then,

� D
X

x

xp.x/ D
X

!

X.!/P.!/;

where P.!/ is the probability of the sample point !.

Proof.
P

! X.!/P.!/ D P
x

P
!WX.!/Dx X.!/P.!/ D P

x x
P

!WX.!/Dx P.!/

D P
x xp.x/.

Important Point. Although it is not the focus in this chapter, in applications we are
often interested in more than one variable at the same time. To be specific, consider
two discrete random variablesX and Y defined on a common sample space�. Then,
we could construct new random variables out of X and Y ; for example, XY;X C
Y;X2 C Y 2, etc. We can then talk of their expectations as well because after all
these are random variables, too. Here is a quick example. Roll a fair die four times,
and let X and Y be the number of ones and number of sixes obtained in the four



4.4 Basic Properties of Expectations 57

rolls, respectively. Then, we can ask what the expectation of X C Y , or jX � Y j,
is which would correspond to the number of rolls in which either a one or a six
was obtained the absolute difference between the number of ones and the number
of sixes. The point is that we are often interested in studying more than one random
variable with respect to a common underlying experiment �, and we may then want
to compute the expectation of some function of these random variables. Here is a
general definition of expectation of a function of more than one random variable.

Definition 4.8 (Function of Several Random Variables). Let X1; X2; : : : ; Xn be
n discrete random variables, all defined on a common sample space �, with a finite
or a countably infinite number of sample points. We say that the expectation of a
function g.X1; X2; : : : ; Xn/ exists if

P
! jg.X1.!/;X2.!/; : : :; Xn.!//jP.!/<1,

in which case the expected value of g.X1; X2; : : : ; Xn/ is defined as

EŒg.X1; X2; : : : ; Xn/� D
X

!

g.X1.!/;X2.!/; : : : ; Xn.!//P.!/:

Example 4.13. Here is a simple example. Consider two rolls of a fair die. Let X
be the number of ones and Y the number of sixes obtained, and then consider the
function g.X; Y / D XY . Now, the sample space of this experiment is

� D f11; 12; 13; : : : ; 64; 65; 66g:

Each sample point ! has the probability P.!/ D 1
36

, and the respective values of
XY for these 36 sample points are X.!1/Y.!1/ D 2 	 0 D 0IX.!2/Y.!2/ D
1	0 D 0, etc. By considering all 36 sample points, we obtain as the expected value
of XY

E.XY / D 0 	 1

36
C 0 	 1

36
C � � � C 0 	 1

36
D 2

36
D 1

18
:

4.4 Basic Properties of Expectations

The next few results summarize the most fundamental properties of expectations.

Proposition.
(a) If there exists a finite constant c such that P.X D c/ D 1, then E.X/ D c.
(b) IfX and Y are random variables defined on the same sample space�with finite

expectations, and if P.X 
 Y / D 1, then E.X/ 
 E.Y /.
(c) If X has a finite expectation, and if P.X � c/ D 1, then E.X/� c. If

P.X 
 c/D 1, then E.X/ 
 c.

Proof. We assume all the random variables are discrete, although the results hold for
arbitrary random variables. For part (a), E.X/ D P

! X.!/P.!/ D P
! cP.!/ D

c
P

! P.!/ D c.
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Likewise, for part (b), by hypothesis, for each!; Y.!/ � X.!/ ) Y.!/P.!/ �
X.!/P.!/ ) P

! Y.!/P.!/ � P
! X.!/P.!/ ) E.Y / � E.X/.

Part (c) follows from part (b).

Proposition (Linearity of Expectations). LetX1; X2; : : : ; Xk be random variables
defined on the same sample space � and c1; c2; : : : ; ck any real-valued constants.
Then, providedE.Xi / exists for every Xi ,

E

 
kX

iD1

ciXi

!

D
kX

iD1

ciE.Xi /I

in particular,E.cX/ D cE.X/ and E.X1 CX2/ D E.X1/CE.X2/ whenever the
expectations exist.

Proof. We assume that the sample space � is finite or countably infinite. Then, by
the change-of-variable formula,

E

 
kX

iD1

ciXi

!

D
X

!

"
kX

iD1

ciXi .!/

#

P.!/

D
X

!

"
kX

iD1

ciXi .!/P.!/

#

D
kX

iD1

X

!

ŒciXi .!/P.!/�

D
kX

iD1

ci

X

!

ŒXi .!/P.!/� D
kX

iD1

ciE.Xi /:

The following fact also follows easily from the definition of the pmf of a function
of a random variable. The result says that the expectation of a function of a random
variable X can be calculated directly using the pmf of X itself without having to
calculate the pmf of the function.

Proposition (Expectation of a Function). Let X be a discrete random variable on
a sample space� with a finite or countable number of sample points and Y D g.X/

a function of X . Then,

E.Y / D
X

!

Y.!/P.w/ D
X

x

g.x/p.x/;

provided E.Y / exists.
A very important property of independent random variables is the following fac-

torization result on expectations.

Theorem 4.3. Suppose X1; X2; : : : Xk are independent random variables. Then,
provided each expectation exists,

E.X1X2 � � �Xk/ D E.X1/E.X2/ � � �E.Xk/:
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Proof. We prove this for k D 2; the general case then follows by induction. To do
this,

E.X1X2/ D X

x1;x2

x1x2P.X1 D x1; X2 D x2/ D X

x1;x2

x1x2P.X1 D x1/P.X2 D x2/

D X

x1

x1P.X1 D x1/�X

x2

x2P.X2 D x2/ D E.X1/E.X2/:

4.5 Illustrative Examples

Let us now see some more illustrative examples.

Example 4.14. Let X be the number of heads obtained in two tosses of a fair coin.
We have worked out the pmf of X as p.0/ D p.2/ D 1=4; p.1/ D 1=2. Therefore,
E.X/ D 0 	 1=4C 1 	 1=2C 2 	 1=4 D 1. Since the coin is fair, we expect to see
it show heads 50% of the number of times it is tossed, which is 50% of 2; i.e., 1.

Example 4.15 (Dice Sum)). Let X be the sum of the two rolls when a fair die is
rolled twice. The pmf of X was worked out to be p.2/ D p.12/ D 1=36Ip.3/ D
p.11/ D 2=36Ip.4/ D p.10/ D 3=36Ip.5/ D p.9/ D 4=36Ip.6/ D
p.8/ D 5=36Ip.7/ D 6=36. Therefore, E.X/ D 2 	 1=36 C 3 	 2=36 C
4 	 3=36 C � � � C 12 	 1=36 D 7. This can also be seen by letting X1 D
the face obtained on the first roll and X2 D the face obtained on the second roll,
and by using E.X/ D E.X1 CX2/ D E.X1/C E.X2/ D 3:5C 3:5 D 7.

Let us now make this problem harder. Suppose that a fair die is rolled ten times
and X is the sum of all ten rolls. The pmf of X is no longer so simple; it will be
cumbersome to write it down. But, if we let Xi D the face obtained on the i th roll,
it is still true by the linearity of expectations thatE.X/ D E.X1CX2C� � �CX10/ D
E.X1/ C E.X2/ C � � � C E.X10/ D 3:5 	 10 D 35. We can easily compute the
expectation, although the pmf would be difficult to write down.

Example 4.16 (Bridge). Let X be the number of aces in the hand of North in a
bridge game. Then, from the pmf of X previously worked out, E.X/ D 0	 :304C
1 	 :439C 2 	 :213C 3 	 :041C 4 	 :003 D 1. This again makes common sense
because there are four aces in the deck, and we should expect that one ace will go
to each of the four players.

Example 4.17. Suppose seven cookies are distributed independently and com-
pletely at random to seven children. We previously worked out the pmf of X , the
number of children who receive no cookies at all. Therefore, the expected number
of children who receive no cookies is E.X/ D 0 	 :006C 1 	 :129 C 2 	 :428C
3 	 :357 C 4 	 :077 C 5 	 :003 C 6 	 :000 D 2:38. Note that it is not possible
to intuitively guess that 2.38 will turn out to be the expected value of X in this
example. Also, note that 2.38 is not one of the possible values of X .
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Example 4.18 (A Random Variable without a Finite Expectation). Let X take the
positive integers 1; 2; 3; : : : as its values with the pmf p.x/ D P.X D x/ D

1
x.xC1/

; x D 1; 2; 3; : : :. This is a valid pmf because obviously 1
x.xC1/

> 0 for

any x D 1; 2; 3; : : :, and also the infinite series
P1

xD1
1

x.xC1/
sums to 1, a fact

from calculus. Now, E.X/ D P1
xD1 xp.x/ D P1

xD1 x
1

x.xC1/
D P1

xD1
1

xC1
D

P1
xD2

1
x

D 1, also a fact from calculus.
This example shows that not all random variables have finite expectations. Here,

the reason for the infiniteness of E.X/ is that X takes large integer values x with
probabilities p.x/ that are not adequately small. The large values are realized suffi-
ciently often that on average X becomes larger than any given finite number.

Example 4.19 (An Interesting Coin-Tossing Expectation). Suppose a fair coin is
tossed n times. Let X be the number of heads obtained; then, n � X is the num-
ber of tails obtained, and therefore W D g.X/ D maxfX; n � Xg is the larger of
the number of heads and the number of tails. We do not have enough tools right
now to find the expected value of W for a general n. However, we can compute it
directly for small n. As an example, suppose n D 4. Then there are 24 D 16 sample
points in the experiment, and it is easy to verify by simple counting that the pmf of
X is

x 0 1 2 3 4
p.x/ 1/16 4/16 6/16 4/16 1/16

Therefore, by the formula for the expectation of a function of a random variable X ,

E.W / D EŒmaxfX; 4�Xg� D
4X

xD0

g.x/p.x/ D 4 	 1=16C 3 	 4=16

C2 	 6=16C 3 	 4=16C 4 	 1=16 D 44=16 D 2:75:

Thus, even if X and Y have the same expectation, say �, the larger of X and Y
does not have that same expectation �.

4.6 Using Indicator Variables to Calculate Expectations

The zero-one nature of indicator random variables is extremely useful for calculat-
ing expectations of certain integer-valued random variables whose distributions are
sometimes so complicated that it would be difficult to find their expectations directly
from the definition. We describe the technique and some illustrations of it below.

Proposition. Let X be an integer-valued random variable such that it can be rep-
resented as X D Pm

iD1 ciIAi
for some m, constants c1; c2; : : : ; cm, and suitable

events A1; A2; : : : ; Am. Then, E.X/ D Pm
iD1 ciP.Ai /.
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Proof. E.X/ D EŒ
Pm

iD1 ciIAi
� D Pm

iD1 ciEŒIAi
� D Pm

iD1 ciP.Ai /.

Here are some illustrative examples.

Example 4.20 (Coin Tosses). Suppose a coin that has probability p of showing
heads in any single toss is tossed n times, and letX denote the number of times in the
n tosses that a head is obtained. Then, X D Pn

iD1 IAi
, where Ai is the event that a

head is obtained in the i th toss. Therefore,E.X/ D Pn
iD1 P.Ai / D Pn

iD1 p D np.
A direct calculation of the expectation would involve finding the pmf of X and

obtaining the sum
Pn

xD0 xP.X D x/; it can also be done that way, but that is a
much longer calculation.

The random variable X of this example is a binomial random variable with
parameters n and p. Its pmf is given by the formula P.X D x/ D �

n
x

�
px.1 �

p/n�x; x D 0; 1; 2; : : : ; n. We will study binomial random variables in greater detail
later.

Example 4.21 (The Matching Problem). Recall the matching problem in which
n entities, say 1; 2; : : : ; n, are linearly arranged at random in the locations
marked as 1; 2; : : : ; n. Suppose that after rearrangement the number at loca-
tion i is �.i/. We want to study the number of matches defined as X D
number of locations i such that�.i/ D i:

We use the indicator variable method to find the expected number of matches.
To do this, define Ai D there is a match at location i . Then X D Pn

iD1 IAi
. Now,

for any i; P.Ai / D .n�1/Š
nŠ

D 1
n

, and therefore we have the quite elegant result that

whatever n is, E.X/ D Pn
iD1 P.Ai / D Pn

iD1
1
n

D n 	 1
n

D 1. Again, direct
verification of this would require us to calculate the pmf of the number of matches
for any given n. If we do, then we will find from algebra that

Pn
kD1 kP.X D k/ D 1

for any n.

Example 4.22 (Missing Faces in Die Rolls). Suppose a fair die is rolled n times,
and let X be the number of faces that never show up in these n rolls. Define Ai D
the i th face is missing: Then, X D P6

iD1 IAi
. For any i; P.Ai / D .5

6
/n. Therefore,

E.X/ D P6
iD1 P.Ai / D 6 	 .5

6
/n. For example, if a fair die is rolled ten times,

then the expected number of missing faces is 6 	 .5
6
/10 D :97 � 1. Again, direct

calculation of this expectation would be a much more complicated exercise.

Example 4.23 (Consecutive Heads in Coin Tosses). Suppose a coin with probability
p for heads in a single toss is tossed n times. How many times can we expect to see
a head followed by at least one more head? For example, if n D 5 and we see the
outcomes HTHHH, then we see a head followed by at least one more head twice.

Define Ai D the ith and the .i C 1/th toss both result in heads. Then X D
number of times a head is followed by at least one more head D Pn�1

iD1 IAi
, so

E.X/ D Pn�1
iD1 P.Ai /D Pn�1

iD1 p
2 D .n � 1/p2. For example, if a fair coin is

tossed 20 times, we can expect to see a head followed by another head about five
times (19 	 :52 D 4:75).
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4.7 The Tail Sum Method for Calculating Expectations

Another useful technique for calculating expectations of nonnegative integer-valued
random variables is based on the CDF of the random variable rather than directly on
the pmf. This method is useful when calculating probabilities of the formP.X > x/

is logically more straightforward than calculating P.X D x/ directly. Here is the
expectation formula based on the tail CDF.

Theorem 4.4. Let X take values 0; 1; 2; : : :. Then,

E.X/ D
1X

nD0

P.X > n/:

Proof. An informal proof starting from the right side of the formula is to note that

1X

nD0

P.X > n/ D Œp.1/C p.2/C p.3/C � � � �C Œp.2/C p.3/C � � � �

CŒp.3/C p.4/C � � � �C � � �
D p.1/C 2p.2/C 3p.3/C � � � D E.X/:

Here are some examples of applications of the method.

Example 4.24 (Waiting Time to See the First Head). Suppose a coin with probability
p for heads is tossed until a head is obtained for the first time. How many tosses will
it take on average to see the first head? Let X denote the number of heads necessary
to obtain the very first head. Then X > n simply means that the first n tosses have
all produced tails. Therefore,

E.X/ D
1X

nD0

P.X > n/ D
1X

nD0

.1 � p/n D 1

1 � .1� p/
D 1

p
:

X is called a geometric random variable with parameter p. If the coin is fair, this
says that on average the first head will be seen at the second toss.

Example 4.25 (Family Planning). Suppose a couple will have children until they
have at least one child of each sex. How many children can they expect to have?
Let X denote the childbirth at which they have a child of each sex for the first time.
Suppose the probability that any particular childbirth will be a boy is p and that all
births are independent. Then,

P.X > n/ D P.The firstn children are all boys or all girls/ D pn C .1 � p/n:

Therefore,E.X/ D 2CP1
nD2Œp

n C .1�p/n� D 2Cp2=.1�p/C .1�p/2=p D
1

p.1�p/
� 1. If boys and girls are equally likely on any childbirth, then this says that

a couple waiting to have a child of each sex can expect to have three children.
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Example 4.26 (Elevator Stops in a High-Rise Building). Suppose a building has
f floors above the basement, where it starts with N passengers. Assume that the
passengers get off, independently of each other, at one of the f floors with an equal
probability. Let X be the first floor after the basement at which the elevator stops to
let a passenger off.

Then X > n simply means that no passengers got off at floors 1; 2; : : : ; n, so

P.X > n/ D .f �n/N

f N D .1 � n
f
/N for n 
 f � 1. Thus,

E.X/ D 1C
f �1X

nD1

�

1 � n

f

�N

:

For example, if f D 10 and N D 8, then by computing with the formula above,
E.X/ D 1:68. If f D 50 and N D 15, then E.X/ D 3:65. It would be interesting
to take some real data on this in a high-rise hotel.

4.8 Variance, Moments, and Basic Inequalities

The expected value is calculated with the intention of understanding what a typical
value of a random variable is. But two very different distributions can have exactly
the same expected value. A common example is that of a return on an investment
in a stock. Two stocks may have the same average return, but one may be much
riskier than the other in the sense that the variability in the return is much higher
for that stock. In that case, most risk-averse individuals would prefer to invest in
the stock with less variability. Here is another example. Suppose a fair coin is to
be tossed, and if it shows heads, I pay you one dollar, while if it shows tails, you
pay me one dollar. This is a fair game. But suppose that, instead of one dollar, we
raise the stakes: heads up, I pay you a hundred dollars, and tails up, you pay me
a hundred dollars. This is still a fair game. But surely we will consider the second
game to be riskier. Measures of risk or variability are of course not unique. Some
natural measures that come to mind are E.jX � �j/, known as the mean absolute
deviation, or P.jX ��j > k/, for some suitable k. However, neither of these two is
the most common measure of variability. The most common measure is the standard
deviation of a random variable. We will discuss later why it has become the most
common measure of variability. Here is the definition.

Definition 4.9. Let a random variable X have a finite mean �. The variance of X
is defined as

�2 D EŒ.X � �/2�;
and the standard deviation of X is defined as � D p

�2:

Remark. Thus, variance measures average squared deviation from a very special
value, namely the expected value. If X has a unit of measurement, then the stan-
dard deviation � has the same unit. It is easy to prove that �2 < 1 if and only
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if E.X2/, the second moment of X , is finite. It is not uncommon to mistake the
standard deviation for the mean absolute deviation, but they are not the same.

Caution. The standard deviation of a random variable X and the mean absolute
deviation are not the same. In fact, an inequality holds.

Proposition. � � E.jX � �j/, and � is strictly greater unless X is a constant
random variable, namely P.X D �/ D 1.

We list some basic properties of the variance of a random variable.

Proposition.
(a) Var.cX/ D c2Var.X/ for any real c.
(b) Var.X C k/ D Var.X/ for any real k.
(c) Var.X/ � 0 for any random variable X and equals zero only if P.X D c/ D 1

for some real constant c.
(d) Var.X/ D E.X2/� �2:

Proof. We prove part (a) and part (d). For part (a),

Var.cX/ D EŒ.cX �E.cX//2� D EŒ.cX �c�/2� D EŒc2.X ��/2� D c2Var.X/:

For part (d),

Var.X/ D EŒ.X � �/2� D EŒX2 � 2�X C �2� D E.X2/� 2�E.X/C �2

D E.X2/ � 2�2 C �2 D E.X2/� �2:

The quantity E.X2/ is called the second moment of X . The definition of a gen-
eral moment is as follows.

Definition 4.10. Let X be a random variable and k � 1 a positive integer. Then
E.Xk/ is called the kth moment ofX andE.X�k/ is called the kth inverse moment
of X , provided they exist.

We therefore have the following relationships involving moments and the
variance:

variance D second moment � (first moment)2;
second moment D variance C (first moment)2.

In general, third or higher moments cannot be calculated if only the variance and
the first moment are known.

Statisticians often use the third moment around the mean as a measure of lack of
symmetry in the distribution of a random variable. The point is that if a random vari-
able X has a symmetric distribution and has a finite mean �, then all odd moments
around the mean, namelyEŒ.X��/2kC1�, will be zero if the moment exists. In par-
ticular,EŒ.X ��/3� will be zero. Likewise, statisticians also use the fourth moment
around the mean as a measure of how spiky the distribution is around the mean. To
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make these indices independent of the choice of unit of measurement (e.g., inches or
centimeters), they use certain scaled measures of asymmetry and peakedness. Here
are the definitions.

Definition 4.11.
(a) Let X be a random variable with EŒjX j3� < 1. The skewness of X is defined

as

ˇ D EŒ.X � �/3�

�3
:

(b) Suppose X is a random variable with EŒX4� < 1. The kurtosis of X is
defined as


 D EŒ.X � �/4�

�4
� 3:

The skewness ˇ is zero for symmetric distributions, but the converse need not be
true. The kurtosis 
 is necessarily � �2 but can be arbitrarily large, with spikier
distributions generally having a larger kurtosis. But a very good interpretation of

 is not really available. We will later see that 
 D 0 for all normal distributions,
hence the motivation for subtracting 3 in the definition of 
 .

4.9 Illustrative Examples

We now go back to the variance and calculate it in some examples. A general dis-
cussion about interpretation of the variance and the standard deviation will be made
after these examples.

Example 4.27 (Variance of Number of Heads). Consider the experiment of two
tosses of a fair coin, and let X be the number of heads obtained. Then, we have seen
that p.0/ D p.2/ D 1=4 and p.1/ D 1=2. Thus, E.X2/ D 0 	 1=4C 1 	 1=2C
4	 1=4 D 3=2 and E.X/ D 1. Therefore, Var.X/ D E.X2/��2 D 3=2� 1 D 1

2
,

and the standard deviation is � D p
:5 D :707.

Example 4.28 (Variance of Dice Sum). Let X be the sum of two independent rolls
of a fair die. Then, from the pmf ofX previously derived,E.X/ D 7 andE.X2/ D
22 	 1=36C 32 	 2=36C 42 	 3=36C � � � C 122 	 1=36 D 329=6, and therefore
Var.X/ D E.X2/ � �2 D 329=6 � 49 D 35

6
D 5:83 and the standard deviation is

� D p
5:83 D 2:415.

Example 4.29 (Variance in the Matching Problem). Again let X be the number of
locations at which a match occurs when n numbers, say, 1; 2; : : : ; n, are rearranged
in a random order. We have previously seen by using the indicator variable method
that E.X/ D 1, whatever n is. We now use the indicator variable method to also
calculate the variance.

To do this, define again AiD there is a match at location i: Then,XDPn
iD1 IAi

.
We first find the second moment of X .
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Now, X2 D .
Pn

iD1 IAi
/2 D .

Pn
iD1ŒIAi

�2 C 2
P

1�i<j �n IAi
IAj

/ D
.
Pn

iD1 IAi
C 2

P
1�i<j �n IAi

IAj
/:

Therefore,

E.X2/ D
nX

iD1

P.Ai /C 2
X

1�i<j �n

P.Ai \ Aj /:

For any i; P.Ai / D .n�1/Š
nŠ

D 1
n

, and for all i; j; i < j; P.Ai \ Aj / D .n�2/Š
nŠ

D
1

n.n�1/
.

Therefore,

E.X2/ D n 	 1

n
C 2

 
n

2

!
1

n.n � 1/
D 1C 1 D 2:

Therefore, Var.X/ D E.X2/� ŒE.X/�2 D 2 � 1 D 1, regardless of the value of n.
To summarize, in the matching problem, regardless of the value of n, the mean

and the variance of the number of matches are both 1. We will later see that this
property of equality of the mean and variance is true for a well-known distribution
called the Poisson distribution, and in fact a Poisson distribution does provide an
extremely accurate approximation for the exact pmf of the number of matches.

Example 4.30 (A Random Variable with an Infinite Variance). If a random variable
has a finite variance, then it can be shown that it must have a finite mean. This
example shows that the converse need not be true.

Let X be a discrete random variable with the pmf P.X D x/ D c
x.xC1/.xC2/

;

x D 1; 2; 3; : : :, where the normalizing constant c D 4. The expected value of X is

E.X/ D
1X

xD1

x 	 4

x.x C 1/.x C 2/
D 4

1X

xD1

1

.x C 1/.x C 2/
D 4 	 1=2 D 2:

Therefore, by direct verification,X has a finite expectation. Let us now examine the
second moment of X .

E.X2/ D
1X

xD1

x2 	 4

x.x C 1/.x C 2/
D 4

1X

xD1

x 	 1

.x C 1/.x C 2/
D 1

because the series
P1

xD1 x	 1
.xC1/.xC2/

is not finitely summable, a fact from calcu-

lus. Since E.X2/ is infinite but E.X/ is finite, �2 D E.X2/ � ŒE.X/�2 must also
be infinite.

Example 4.31 (Variance Can Mislead). It is possible for a random variable to be es-
sentially very concentrated around some number and only rarely take a large value,
thereby causing a large variance. The large variance gives the impression that there
is a lot of uncertainty about which value X will take, but actually there is almost no
uncertainty at all.
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Let n be a fixed (large) positive integer, and suppose X has the pmf P.XD 0/ D
1 � 1

n
; P.X D n/ D 1

n
: Then, E.X/ D 1 and E.X2/ D n. Therefore, Var.X/ D

n � 1, which is large if n is large, although P.X D 0/ � 1.

4.9.1 Variance of a Sum of Independent Random Variables

If a collection of random variables are independent, then just like the expectation,
the variance also adds up. Precisely, one has the following very useful fact.

Theorem 4.5. Let X1; X2; : : : ; Xn be n independent random variables. Then,

Var.X1 CX2 C � � � CXn/ D Var.X1/C Var.X2/C � � � C Var.Xn/:

Proof. It is enough to prove this result for n D 2 because we can then prove the
general case by induction. By definition, writing E.Xi / D �i ,

Var.X1 CX2/ D EŒ.X1 CX2/� E.X1 CX2/�
2 D EŒ.X1 CX2/� .�1 C �2/�

2

D EŒ.X1 � �1/C .X2 � �2/�
2 D EŒ.X1 � �1/

2�

CEŒ.X2 � �2/
2�C 2EŒ.X1 � �1/.X2 � �2/�

D Var.X1/C Var.X2/C 0

because EŒ.X1 � �1/.X2 � �2/� D EŒ.X1 � �1/�EŒ.X2 � �2/� D 0 	 0 D 0 by
virtue of the independence of X1 and X2. This proves the result.

An important corollary of this result is the following formula for the mean, NX , of
n independent and identically distributed (iid) random variables.

Corollary 4.1. Let X1; X2; : : : ; Xn be independent random variables with a com-

mon variance �2 < 1. Let NX D X1C���CXn

n
. Then Var. NX/ D �2

n
.

Proof.

Var. NX/ D Var

�
X1 C � � � CXn

n

�

D 1

n2
Var.X1 C � � � CXn/ D 1

n2
n�2 D �2

n
:

4.10 Utility of � and � as Summaries

The mean and the variance together have earned the status of being the two most
common summaries of a distribution. Are there any justifications for it? One rea-
son for using the standard deviation � rather than, say, the mean absolute deviation
E.jX � �j/ is that calculating and operating with � is typically much easier. How-
ever, this is a matter of convenience. A better question is whether � and � are useful
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summaries of the distribution of a random variable. The answer is a qualified yes.
The inequalities in this section suggest that knowing just the values of � and � , it is
in fact possible to say something useful about the full distribution.

4.10.1 Chebyshev’s Inequality and the Weak Law
of Large Numbers

Theorem 4.6.
(a) (Chebyshev’s Inequality). SupposeE.X/D� and Var.X/D�2 are assumed to

be finite. Let k be any positive number. Then

P.jX � �j � k�/ 
 1

k2
:

(b) (Markov’s Inequality). Suppose X takes only nonnegative values and that
E.X/ D � is assumed to be finite. Let c be any positive number. Then,

P.X � c/ 
 �

c
:

Proof. We prove part (a) assuming part (b), as part (b) is simpler and can be proved
easily. Define Y D .X � �/2. Then E.Y / D EŒ.X � �/2� D �2. Therefore, by
part (b),

P.jX � �j � k�/ D P..X � �/2 � k2�2/ D P.Y � k2�2/ 
 E.Y /

k2�2

D �2

k2�2
D 1

k2
:

Remark. The virtue of these two inequalities is that they make no restrictive as-
sumptions on the random variable X . Whenever � and � are finite, Chebyshev’s
inequality is applicable, and whenever � is finite, Markov’s inequality applies,
provided the random variable is nonnegative. They are universal inequalities. Fur-
thermore, the inequalities cannot be improved without additional restrictions; they
are in fact attained by suitable distributions. However, the universal nature also
makes them typically quite conservative. As an illustration, let us see the following
example.

Example 4.32 (Conservativeness of Chebyshev’s Inequality). SupposeX is the sum
of two rolls of a fair die. We have computed � and � previously as � D 7;

� D 2:415. Choosing k D 2 in Chebyshev’s inequality, the inequality tells us

P.jX�7j � 4:830/ D P.X � 11:83/C P.X 
 2:17/ D P.XD2/CP.XD12/
D 2

36
D :056:
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But all we can say from Chebyshev’s inequality is that

P.jX � 7j � 4:830/ D P.jX � �j � 2�/ 
 1

4
D :25:

Clearly the bound obtained from Chebyshev’s inequality is weak.
Although Chebyshev’s inequality usually gives conservative estimates for tail

probabilities, it does imply a major result in probability theory in a special case.
Consider a random variable X with a finite mean � and a finite variance �2. Sup-
pose X1; X2; : : : ; Xn are independent samples on this variable X . If the number of
sample values n is large, then the mean of the sample values ought to be close to
the mean in the entire population; i.e., NX should be close to �. The closeness of NX
to � for large n can be given different meanings. The simplest interpretation is that,
with a high probability, the mean of a large sample should be numerically close to
the mean in the entire population. Chebyshev’s inequality, although elementary, can
give us this result when X has a finite variance. However, the finite-variance condi-
tion is not needed, although if the variance is not finite, then a much harder proof is
necessary. Theorem 4.7 gives the property we are referring to.

Theorem 4.7 (Weak Law of Large Numbers). Let X1; X2; : : : be iid random
variables, with E.Xi / D �;Var.Xi / D �2 < 1. Then, for any � > 0; P.j NX � �j
> �/ ! 0 as n ! 1.

Proof. By Chebyshev’s inequality and our previously observed fact that

Var. NX/ D �2

n
,

P.j NX � �j > �/ D P

�

j NX � �j >
p
n�

�

�p
n

�


 1
�p

n�

�

�2
D �2

n�2

! 0 as n ! 1:

The interpretation of this result is that if we take a large sample from a population,
then most of the time our sample mean will be numerically close to the population
mean. Occasionally, just by bad luck, even though we have taken a large sample, the
sample mean will not be close enough to the population mean. But such bad luck
will occur only occasionally; i.e., with a small probability.

There is a stronger version of the weak law of large numbers, which says that
in fact, with certainty, NX will converge to � as n ! 1. The precise mathematical
statement is that

P
�

lim
n!1

NX D �
�

D 1:

The only condition needed is that E.jXi j/ should be finite. This is called the
strong law of large numbers. It is impossible to prove it without using much more
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sophisticated concepts and techniques than we are using here. The strong law, prac-
tically speaking, gives us an assurance that computational techniques such as Monte
Carlo are certain to give us accurate results in problems such as numerical approxi-
mation of (complicated) definite integrals. We will not make further use of the strong
law in this text.

4.10.2 * Better Inequalities

Now we return to the issue of the utility of � and � as summaries of a distribu-
tion and to describing inequalities that are somewhat stronger than Chebyshev’s
inequality.

Inequalities better than Chebyshev’s or Markov’s inequalities are available un-
der additional restrictions on the distribution of the underlying random variable X .
For now, we state three other inequalities that can sometimes give bounds better than
what Chebyshev’s or Markov’s can give. It is also important to note that the first two
inequalities below can handle one-sided deviations from the mean �, although the
only thing one can assert in general about one-sided deviations from using Cheby-
shev’s inequality is still the 1

k2 bound.

Theorem 4.8.
(a) (Cantelli’s Inequality). SupposeE.X/ D � and Var.X/ D �2 are assumed to

be finite. Then,

P.X � � � k�/ 
 1

k2 C 1
;

P.X � � 
 �k�/ 
 1

k2 C 1
:

(b) (Paley-Zygmund Inequality). Suppose X takes only nonnegative values, with
E.X/ D � and Var.X/ D �2, assumed to be finite. Then, for 0 < c < 1,

P.X > c�/ � .1 � c/2 �2

�2 C �2
:

(c) (Alon-Spencer Inequality). Suppose X takes only nonnegative integer values,
with E.X/ D � and Var.X/ D �2 assumed to be finite. Then,

P.X D 0/ 
 �2

�2 C �2
:

These inequalities may be seen in Rao (1973), Paley and Zygmund (1932), and
Alon and Spencer (2000), respectively.
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Example 4.33 (Matching Problem Revisited). Consider again the matching problem
with X being the number of locations among n locations where a match occurs.
Recall that, for any n;E.X/ D Var.X/ D 1. We can therefore assert from the
Alon-Spencer inequality that, for any n; P.X D 0/ 
 1

1C1
D 1

2
; i.e., there is always

at least a 50% chance of some matches. Note that this particular bound cannot be
improved because, for n D 2; P.X D 0/ is exactly 1

2
.

Next, if we apply the first of the two Cantelli inequalities with k D 4, then we
get that, for any n; P.X � 5/ D P.X � 1 � 4/ 
 1

42C1
< :06: Thus, the chances

of as many as five matches are always less than 6%, regardless of the value of n.

4.11 � Other Fundamental Moment Inequalities

We saw several important inequalities, primarily based on the mean and variance,
in the previous section. The area of probability inequalities is an extremely rich and
diverse area. The reason is that inequalities are tremendously useful in giving ap-
proximate answers when the exact answer to a problem or a calculation is very hard
or perhaps even impossible to obtain. We will periodically present and illustrate
inequalities over the rest of the book. Some really basic inequalities based on mo-
ments are presented in this section.

Theorem 4.9.
(a) (Cauchy-Schwarz Inequality). Let X and Y be two random variables such

that E.X2/ and E.Y 2/ are finite. Then,

E.jXY j/ 

p
E.X2/

p
E.Y 2/:

(b) (Holder’s Inequality). Let X and Y be two random variables and 1 < p < 1
be a real number such that E.jX jp/ < 1. Let q D p

p�1
, and suppose

E.jY jq/ < 1. Then,

E.jXY j/ 
 ŒE.jX jp/� 1
p ŒE.jY jq/� 1

q :

(c) (Minkowski’s Inequality). Let X and Y be two random variables and p � 1

a real number such that E.jX jp/; E.jY jp/ < 1. Then,

ŒE.jX C Y jp/� 1
p 
 ŒE.jX jp/� 1

p C ŒE.jY jp/� 1
p ;

and, in particular, if E.jX j/ and E.jY j/ are both finite, then

E.jX C Y j/ 
 E.jX j/C E.jY j/;

known as the triangular inequality.
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(d) (Lyapounov Inequality). Let X be a random variable and 0 < ˛ < ˇ such
that E.jX jˇ / < 1: Then,

ŒE.jX j˛/� 1
˛ 
 ŒE.jX jˇ /� 1

ˇ :

Proof. Part (a) is a special case of part (b) on using p D 2 (and therefore q D 2).
We prove part (b). We do not prove part (c) and part (d) here.

The proof simplifies notationally on assuming that E.jX jp/ D E.jY jq/ D 1,
so that Holder’s inequality will amount to proving E.jXY j/ 
 1

p
C 1

q
D 1:

This assumption that E.jX jp/ D E.jY jq/ D 1 can be made without any loss of
generality, for if it is not true to begin with, we can define new random variables
X� D X

ŒE.jX jp/�1=p ; Y
� D Y

ŒE.jY jq/�1=q , and the assumption will hold for X�; Y �.

Furthermore, Holder’s inequality holds for X; Y if and only if it holds for X�; Y �.
So, we go ahead and assume that E.jX jp/ D E.jY jq/ D 1.

The key fact we need is the following inequality for the exponential function:

etxC.1�t/y 
 tex C .1 � t/ey 8x; y; and 0 
 t 
 1:

This is a consequence of the convexity of the function ex on the real line. Consider
now two positive numbers a and b, and p > 1; q D p

p�1
. Note that the definition of

q makes 1
p

C 1
q

D 1: Denote

t D 1

p
; log.ap/ D x; log.bq/ D y:

Then, by the exponential function inequality above,

e
log ap

p
C log bq

q 
 1

p
elog ap C 1

q
elog bq

) ab 
 ap

p
C bq

q
:

Apply this last inequality to a D jX.!/j and b D jY.!/j for fixed !. This will
result in

jX.!/Y.!/j 
 1

p
jX.!/jp C 1

q
jY.!/jq:

Since this holds for any fixed !, it will also hold on averaging over !; i.e.,

E.jXY j/ 
 1

p
E.jX jp/C 1

q
E.jY jq/

D 1

p
C 1

q
D 1;

which is what we needed to prove.
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4.11.1 * Applying Moment Inequalities

Example 4.34 (Application of Lyapounov’s Inequality). Here is a simple application
of Lyapounov’s inequality. Suppose X is a positive random variable and we only
know that it has mean 5 and variance 4. What can we say about the third moment
of X? By Lyapounov’s inequality, we can say that ŒE.X3/�.1=3/ � E.X/ D 5, and
therefore E.X3/ � 53 D 125. Also, since X has mean 5 and variance 4, we have
E.X2/ D Var.X/C ŒE.X/�2 D 4 C 25 D 29. Again, by Lyapounov’s inequality,
ŒE.X3/�.1=3/ � ŒE.X2/�.1=2/ D p

29. This gives E.X3/ � .29/3=2 D 156:17.
This is a better bound than E.X3/ � 125. Therefore, by using the better bound, we
can assert that E.X3/ � 156:17.

Example 4.35 (Application of Cauchy-Schwarz Inequality). The most useful
applications of Holder’s inequality and the Cauchy-Schwarz inequality are to
continuous random variables, which we have not discussed yet. We give a simple
application of the Cauchy-Schwarz inequality to a dice problem.

Suppose X and Y are the maximum and the minimum of two rolls of a fair die.
Also let X1 be the first roll and X2 be the second roll. Note that XY D X1X2.
Therefore,

E.
p
X

p
Y / D E.

p
XY / D E.

p
X1X2/

D E.
p
X1

p
X2/ D E.

p
X1/E.

p
X2/

D ŒE.
p
X1/�

2 D 1

36
.
p
1C � � � C p

6/2

D 1

36
	 .10:83/2 D 3:26:

Therefore, by the Cauchy-Schwarz inequality,

p
E.X/

p
E.Y / � 3:26

)
p
E.X/

p
7 � E.X/ � 3:26

(since E.X/C E.Y / D E.X1/C E.X2/ D 7)

) p
m.7�m/ � 3:26

(writingm for E.X/)

) m.7 �m/ � 10:63

) m 
 4:77

because the quadraticm.7 �m/� 10:63 D 0 has the two rootsm D 2:23; 4:77:

It is interesting that this bound is reasonably accurate, as the exact value of
m D E.X/ is 161

36
D 4:47.
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4.12 Truncated Distributions

In some applications, an underlying random variable X is observed only when X
belongs to a particular set A. For example, in planetary detection studies, due to
the current limitations of observational astronomy, a planet’s size can be observed
only if it is sufficiently large. As another example, suppose automobile accidents are
supposed to be reported to the state motor vehicle bureau with estimates of the total
amount of damage, but only if the damage exceeds some amount, say 500 dollars.
The mathematical formulation of such a problem is that we observe a random vari-
able Y that has the distribution of a latent random variable X conditioned on the
event that X belongs to some set A. This can be discussed when X is any type of
random variable, but we will only discuss the discrete case here.

Definition 4.12. Let X be a discrete random variable with pmf p.x/, and let A be
a fixed subset of values of the random variableX . The distribution ofX conditional
on the event that X belongs to A is called the distribution of X truncated to A and
has the pmf

pA.y/ D p.y/

P.X 2 A/; y 2 AI

D 0; if y … A:
The mean and the variance of the distribution truncated to A have the following
expressions:

mean of the distribution truncated to A D �A D
P

y2A yp.y/
P

y2A p.y/
,

variance of the distribution truncated to A D �2
A D

P
y2A.y��A/2p.y/
P

y2A p.y/
.

Example 4.36. Suppose a random variable X has the pmf P.XD n/D 1
2n ; nD 1; 2;

3; : : : ; but we can observe X only when X 
 5: Thus, the truncation set
is AD f1; 2; 3; 4; 5g: The truncated distribution then has the pmf pA.y/ D

1=2y

P5
yD1 1=2y

D 1=2y

31=32
D 25�y

31
; y D 1; 2; : : : ; 5. Thus, the truncated distribution

has the pmf

pA.1/ D 16

31
; pA.2/ D 8

31
; pA.3/ D 4

31
; pA.4/ D 2

31
; pA.5/ D 1

31
:

The mean of the truncated distribution is

1 	 16=31C 2 	 8=31C 3 	 4=31C 4 	 2=31C 1 	 1=31 D 53

31
D 1:71I

in contrast,X itself has the expected value
P1

nD1 n	 1
2n D 2: The truncated distri-

bution has a smaller mean because X has been truncated to the small values.
It can be shown that a truncated distribution has a smaller variance than the

original distribution. This makes intuitive sense because truncation makes the dis-
tribution less dispersed. Theorem 4.10 gives a precise result.



4.13 Synopsis 75

Theorem 4.10 (Chow-Studden Inequality). Let X be a random variable and a
and b any finite real constants. Let U D min.X; a/; V D max.X; b/: Then,

Var.U / 
 Var.X/I Var.V / 
 Var.X/:

A proof can be found in Chow and Studden (1969).

4.13 Synopsis

(a) For a discrete random variableX taking values x1; x2; : : :, the pmf is defined as
p.x/ D P.X D x/; x D x1; x2; : : :, and zero otherwise. For any pmf, one must
have p.x/ � 0 for any x, and

P
i p.xi / D 1.

(b) The CDF of a random variableX is defined as F.x/ D P.X 
 x/. Any CDF is
monotonically nondecreasing in x, and limx!�1 F.x/ D 0; limx!1 F.x/D1.
Any CDF is necessarily a right continuous function but need not be left contin-
uous. In fact, the CDF of any discrete random variable X is discontinuous and
has jumps at the values of X . The magnitudes of the jumps are the probabilities
at those values.

(c) The expected value of a discrete random variable X equals E.X/ D � DP
i xip.xi /. The expected value of a function g.X/ equals

P
i g.xi /p.xi /.

(d) The method of indicator variables and the tail sum method are often extremely
effective in calculating expectations of complicated discrete random variables.
In particular, the tail sum method says that, for a nonnegative integer-valued
random variable X;E.X/ D P1

nD0 P.X > n/.
(e) The variance of a random variable X equals Var.X/ D �2 D E.X � �/2 D

E.X2/ � �2. E.X2/ is the second moment of X ; more generally, E.Xk/ is
the kth moment of X . If a particular moment of X exists, then all lower-order
moments also must exist.

(f) If X1; X2; : : : ; Xk are k discrete random variables, then X1; X2; : : : ; Xk are
called independent if P.X1Dx1; X2Dx2; : : : ; XkDxk/DP.X1Dx1/P.X2

Dx2/ � � �P.XkDxk/ for all x1; x2; : : : ; xk . If X and Y are independent random
variables, then any function of X and any function of Y are also independent
random variables.

(g) For any k random variables X1; X2; : : : ; Xk , and constants c1; c2; : : : ; ck ,

E

 
X

i

ciXi

!

D
X

i

ciE.Xi /:

If X1; X2; : : : ; Xk are independent, then

Var

 
X

i

ciXi

!

D
X

i

c2
i Var.Xi /:
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(h) If X1; X2; : : : ; Xk are independent, then E.X1X2 : : : Xk/ D E.X1/E.X2/ : : :

E.Xk/.
(i) The square root of the variance is called the standard deviation. Neither the

variance nor the standard deviation of a random variable can be negative.
The skewness and the kurtosis of a random variable X are defined as

ˇ D EŒ.X � �/3�

�3
I 
 D EŒ.X � �/4�

�4
� 3:

(j) Four important inequalities are:

Markov’s inequality for nonnegative random variables P.X � c/ 
 �

c
I

Chebyshev’s inequality P.jX � �j � k�/ 
 1

k2
I

the Cauchy-Schwarz inequality E.jXY j/ 
 p
E.X2/

p
E.Y 2/I

Lyapounov’s inequality for 0 < ˛ < ˇ; ŒE.jX j˛/� 1
˛ 
 ŒE.jX jˇ /� 1

ˇ :

4.14 Exercises

Exercise 4.1. Find the pmf and the CDF of the number of heads obtained in four
tosses of a fair coin and plot the CDF.

Exercise 4.2. Suppose a fair die is rolled twice and that X is the absolute value of
the difference of the two rolls. Find the pmf and the CDF of X and plot the CDF.
Find a median of X . Is the median unique?

Exercise 4.3. A motorist encounters four consecutive traffic lights, each equally
likely to be red or green. Let X be the number of green lights passed by the motorist
before being stopped by a red light. What is the pmf of X?

Exercise 4.4. * (A Two-Stage Experiment). Suppose a fair die is rolled once and
the number observed is N . Then a fair coin is tossed N times. Let X be the number
of heads obtained. Find the pmf, the CDF, and the expected value of X . Does the
expected value make sense intuitively?

Exercise 4.5. By using the indicator variable method, find the expected value of the
total number of hearts in the hands of North and South combined in a bridge game.
Does the expected value make sense intuitively?

Exercise 4.6. * (Longest Run). Suppose a fair coin is tossed five times. Find the
pmf of the longest run, either of heads or of tails, and compare it with the pmf of the
longest head run worked out in the text. Make a comment on what you learn from
the comparison.
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Exercise 4.7. Suppose X has the pmf P.X D x/ D c
1Cx2 ; x D ˙3;˙2;˙1; 0;

where c D 5
13

. Find the pmf and the expected value of

(a) h.X/ D �1 if X < 0I D 0 if X D 0I D 1 if X > 0I
(b) g.X/ D cos

��

2
X
�
:

Exercise 4.8. * Find a discrete random variable X such that E.X/DE.X3/D 0;

E.X2/ D E.X4/ D 1:

Exercise 4.9. * (Waiting Time). An urn contains four red and four green balls,
which are taken out without replacement, one at a time, at random. Let X be the
first draw at which a green ball is taken out. Find the pmf and the expected value
of X .

Hint: Try to use the tail sum formula or the indicator variable method.

Exercise 4.10. * Suppose a fair die is rolled n times. By using the indicator variable
method, find the expected value of the number of faces that appear exactly twice.
Now compute the expected value with n D 2; 3; 5; 10; and 20.

Exercise 4.11. A prisoner is trapped in a cell containing three doors. The first door
leads to a tunnel that returns him to his cell after two days’ travel. The second leads
to a tunnel that returns him to his cell after four days’ travel. The third door leads to
freedom after one day of travel. If it is assumed that the prisoner will always select
doors 1, 2, and 3 with respective probabilities .3, .5, and .2, what is the expected
number of days until the prisoner reaches freedom?

Exercise 4.12 (Strangers’ Psychology). A local tavern has six bar stools. The bar-
tender predicts that if two strangers come into the bar, they will sit in such a way as
to leave at least two stools between them.

(a) If two strangers do come in but choose their seats at random, what is the proba-
bility of the bartender’s prediction coming true?

(b) Compute the expected value of the number of stools between the two customers.

Exercise 4.13. Using the general formula given in the text, find the pmf, and hence
the expected value of the number of children who do not receive any cookies, if ten
cookies are distributed independently to six children.

Exercise 4.14. Suppose a fair die is tossed repeatedly until the first six occurs. Let
X be the roll at which the first six is obtained. Find the expected value of X .

Exercise 4.15. * (Runs). Suppose a fair die is rolled n times. By using the indicator
variable method, find the expected number of times that a six is followed by at least
two other sixes. Now compute the value when n D 100.

Exercise 4.16. * Suppose ten hunters each target one of 20 ducks flying by, inde-
pendently, and choose the target duck at random. Each hunter has a 50% probability
of actually shooting a duck that is targeted. By using the indicator variable method,
show that the expected number of ducks that escape unhurt is about 15.5.
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Exercise 4.17. * (A Problem of Daniel Bernoulli). Suppose that a jar contains 2N
cards, two of them marked 1, two marked 2, two marked 3, and so on. Draw out m
cards at random. What is the expected number of pairs that still remain in the jar?

(Bernoulli proposed the above as a possible probabilistic model for determining
the number of marriages that remain intact when there are a total ofm deaths among
the N married couples.)

Exercise 4.18. Suppose X can take only the values �1, 0, and 1. If you want to
make the mean of X zero and make the variance of X as large as possible, what
must be the pmf of X?

Exercise 4.19. * (Smart Guesses). A fair die will be rolled once. Before the die is
rolled, you have to guess which face will show up. If you underpredict the face by
some number n, you will lose 2n dollars; if you overpredict the face by n, you will
lose n dollars. To minimize your expected loss, what should your guess be?

Exercise 4.20. Suppose a town has ten taxicabs, with license plate numbers
1; 2; : : : ; 10. You have observed the plate numbers of five of these ten cabs. Let
X be the maximum of these five license plate numbers. Find the expected value and
the variance of X . State your assumptions.

Exercise 4.21. * (A Variant of the Birthday Problem). Guests are pouring in at
a party, and someone is writing down each guest’s birthday. Let X be the first time
a guest is checked in whose birthday is the birthday of someone who has already
entered. By using the tail sum formula, prove that the expected value of X is about
24.6. Compare this number with the answer in the birthday problem discussed in the
text.

Exercise 4.22 (Random Digit Dialing). The first digit in a ten-digit telephone
number is one of 1; 2; : : : ; 9, and the others can be any of 0; 1; 2; : : : ; 9. A mis-
chievous teen is dialing one telephone number at random every 30 seconds. He is
dialing only within the 555 area code. Your phone number is 555 463 1482. What is
the expected number of times the teen will call your number if he keeps dialing for
one year for four hours every day?

Exercise 4.23. Suppose X has pmf P.X D 1
n
/ D 1

2n ; n � 1. Find the mean of X .

Exercise 4.24. * Suppose X has pmf P.X D 1
n
/ D 1

2nC1 ; P.X D n/ D 1
2nC1 ;

n � 1: Find the mean of X .

Exercise 4.25 (A Calculus Calculation). The best quadratic predictor of some
random variable Y is a C bX C cX2, where a; b; and c are chosen to minimize
EŒ.Y � .a C bX C cX2//2�. Determine a; b, and c.

Exercise 4.26. * Suppose a couple will have children until they have at least two
children of each sex. By using the tail sum formula, find the expected value of the
number of children the couple will have.
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Exercise 4.27 (An Important Property of the Mean). Suppose X is a random
variable with a finite variance. Show that EŒ.X � a/2� is minimized when a D �,
the mean of X .

Exercise 4.28. * (Tail Sum Formula for the Second Moment). Let X be a
nonnegative integer-valued random variable. Show that E.X2/�E.X/D 2

P1
nD1

nP.X > n/:

Exercise 4.29 (Discrete Uniform Distribution). Suppose X has the pmf
P.X Dx/ D 1

n
; x D 1; 2; : : : ; n. Find the mean and variance of X . What are

all the medians of X? Is the median unique?

Remark. If n D 6, an example of the discrete uniform distribution is the distribution
of the number obtained when a fair die is rolled once.

Exercise 4.30. Suppose X is a nonnegative random variable and p is any positive
integer. Show that E.Xp/ � .E.X//p. Can they be equal?

Exercise 4.31. Suppose the IQ scores of a million individuals have a mean of 100
and standard deviation 10.

(a) Without making any further assumptions about the distribution of the scores,
find an upper bound on the number of people with an IQ score exceeding 130.

(b) Find a smaller upper bound on the number of scores exceeding 130, assuming
the distribution of scores is symmetric about 100.

Exercise 4.32. * (Obtaining Equality in Chebyshev’s Inequality). Consider a
discrete random variable X with the pmf P.X D ˙k/ D p;P.X D 0/ D 1 � 2p,
where k is a fixed positive number, and 0 < p < 1

2
.

(a) Find the mean and variance of X .
(b) Find P.jX � �j � k�/.
(c) Can you now choose p in such a way that P.jX � �j � k�/ becomes equal

to 1
k2 ?

Exercise 4.33 (A Consequence of the Paley-Zygmund Inequality). Suppose X
is a nonnegative random variable, bounded above by some finite positive number
M . Prove that

P
�
X >

�

2

�
� �

4M
:

Exercise 4.34 (Existence of Some Moments, But Not All). Give an example of
a random variable X taking the values 1; 2; 3; : : : such that E.Xk/ < 1 for any
k < p (p is specified) but E.Xp/ D 1.

Exercise 4.35 (Ordering Between Mean and Variance). Give an example of each
of the following scenarios:

(a) � > �2;

(b) � D �2;

(c) � < �2:
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Exercise 4.36. * (Standard Deviation vs. Mean Absolute Deviation). For the
discrete uniform distribution taking the values 1; 2; : : : ; n, find the mean absolute
deviation and the standard deviation, and plot the standard deviation against the
mean absolute deviation by varying the value of n; take n D 1; 2; : : :, and verify
that the graph lies above the straight line y D x.

Exercise 4.37. Suppose X1 and X2 are independent random variables. Show that,
for any functions f; g; f .X1/ and g.X2/ are also independent random variables.

Exercise 4.38. * (Variance of a Product). Suppose X1 and X2 are independent
random variables. Give a sufficient condition for it to be true that Var.X1X2/ D
Var.X1/Var.X2/:

Exercise 4.39 (Variance of the Number of Heads). By using the formula for the
variance of the sum of independent random variables, show that if a coin with prob-
ability p for heads in a single toss is tossed n times, then the variance of the number
of heads obtained is np.1 � p/.
Exercise 4.40 (Use Your Computer). Simulate the elevator stops problem, with
100 floors and 20 passengers. Perform the simulation 500 times, and record the first
floor at which the elevator stops to let someone off. Compare your simulation with
the theoretical expected value, which was worked out in the text.

Exercise 4.41 (Use Your Computer). Simulate the experiment of dropping n D
25 balls independently into m D 12 cells. Perform the simulation 500 times, and
record the number of cells that remained empty. Compare your simulation with
the theoretical distribution, which was worked out in the text. Typically, about how
many cells tend to remain empty?
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Chapter 5
Generating Functions

Studying distributions of random variables and their basic quantitative properties,
such as expressions for moments, occupies a central role in both statistics and prob-
ability. It turns out that a function called the probability generating function is often
a very useful mathematical tool in studying distributions of random variables. It is
useful to derive formulas for moments and for the pmf of random variables that
appear too complicated at first glance. In this chapter, we introduce the probability
generating function, study some of its properties, and apply it to a selection of exam-
ples. The moment generating function, which is related to the probability generating
function, is also extremely useful as a mathematical tool in numerous problems and
is also introduced in this chapter. Both the generating function and the moment
generating function should be primarily treated as useful tools. They help us solve
important problems, and therefore they are useful as mathematical tools.

5.1 Generating Functions

Definition 5.1. The probability generating function (pgf), also called simply the
generating function, of a nonnegative integer-valued random variable X is defined
as G.s/ D GX .s/ D E.sX / D P1

xD0 s
xP.X D x/; provided the expectation is

finite.
In this definition, 00 is to be understood as being equal to 1. Note that G.s/ is

always finite for jsj 
 1, but it could be finite over a larger interval, depending on
the specific random variable X .

Two basic properties of the generating function are the following.

Theorem 5.1.
(a) SupposeG.s/ is finite in some open interval containing the origin. Then,G.s/ is

infinitely differentiable in that open interval, and P.X D k/ D G.k/.0/
kŠ

; k � 0,

where G.0/.0/ means G.0/.
(b) If lims"1G

.k/.s/ is finite, then EŒX.X � 1/ : : : .X � kC 1/� exists and is finite,

and G.k/.1/ D lims"1G
.k/.s/ D EŒX.X � 1/ : : : .X � k C 1/�.

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 5, c� Springer Science+Business Media, LLC 2010
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Proof. The infinite differentiability is a fact from the theory of power series that
converge in some nonempty open interval. The power series can be differentiated

infinitely many times term by term in that open interval. That P.X D k/ D G.k/.0/
kŠ

follows on differentiating G.s/ term by term k times and setting s D 0, while part
(b) follows on differentiatingG.s/ k times and letting s ! 1.

Definition 5.2. EŒX.X�1/ � � � .X�kC1/� is called the kth factorial moment ofX .

Remark. The kth factorial moment ofX exists if and only if the kth momentE.Xk/

exists.

One of the most important properties of generating functions is the following.

Theorem 5.2. Let X1; X2; : : : ; Xn be independent random variables with generat-
ing functionsG1.s/; G2.s/; : : : ; Gn.s/. Then the generating function of X1 CX2 C
� � � CXn equals

GX1CX2C���CXn
.s/ D

nY

iD1

Gi .s/:

Proof. By definition,

GX1CX2C���CXn
.s/ D EŒsX1CX2C���CXn � D EŒsX1sX2 � � � sXn �

D EŒsX1 �EŒsX2 � � � �EŒsXn � D
nY

iD1

Gi .s/

by virtue of the independence of X1; X2; : : : ; Xn, which would imply the indepen-
dence of sX1 ; sX2 ; : : : ; sXn .

One reason that the generating function is useful as a tool is its distribution de-
termining property, in the following sense.

Theorem 5.3. Let G.s/ and H.s/ be the generating functions of two random vari-
ablesX and Y . IfG.s/ D H.s/ in any nonempty open interval, thenX and Y have
the same distribution.

Proof. Let P.X D n/ D pn; P.Y D n/ D qn; n � 0: Then, G.s/ DP1
nD0 s

npn, andH.s/ D P1
nD0 s

nqn. If there is a nonempty open interval in which
P1

nD0 s
npn D P1

nD0 s
nqn, then from the theory of power series, pn D qn 8n � 0,

and thereforeX and Y have the same distribution.
Summarizing, then, one can find from the generating function of a nonnegative

integer-valued random variable X the pmf of X and every moment of X , including
the moments that are infinite.

Example 5.1 (Discrete Uniform Distribution). Suppose X has the discrete uniform
distribution on f1; 2; : : : ; ng. Then, its generating function is
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G.s/ D EŒsX � D
nX

xD1

sxP.X D x/ D 1

n

nX

xD1

sx D s.sn � 1/

n.s � 1/

by summing the geometric series
Pn

xD1 s
x : As a check, if we differentiate G.s/

once, we get

G0.s/ D 1C snŒn.s � 1/� 1�

n.s � 1/2 :

On applying L’Hospital’s rule, we get that G0.1/ D nC1
2

, which therefore is the
mean of X .

Example 5.2. Let G.s/ D .1Cs/n

2n : Then, by just expanding .1C s/n using the bino-
mial theorem, we have

G.s/ D 1

2n

nX

xD0

 
n

x

!

sx :

We now recognize that the coefficients .
n
x/

2n ; x D 0; 1; 2; : : : n, are all nonnegative

and that they do add to one. Therefore, G.s/ D .1Cs/n

2n is a generating function,
and indeed it is the generating function of the random variable X with the pmf

P.X D x/ D .n
x/

2n ; x D 0; 1; 2; : : : n, which is the binomial random variable with

parameters n and 1
2

.

Example 5.3 (The Poisson Distribution). Consider a nonnegative integer-valued
random variable X with the pmf p.x/ D e�1 1

xŠ
; x D 0; 1; 2; : : :. This is indeed

a valid pmf. First, it is clear that p.x/ � 0 for any x. Also,

1X

xD0

p.x/ D
1X

xD0

e�1 1

xŠ
D e�1

1X

xD0

1

xŠ
D e�1e D 1:

We will find the generating function of this distribution. The generating function is

G.s/ D EŒsX � D
1X

xD0

sxe�1 1

xŠ

D e�1

1X

xD0

sx

xŠ
D e�1es D es�1:

The first derivative of G.s/ is G0.s/ D es�1, and therefore G0.1/ D e0 D 1. From
our theorem above, we conclude that E.X/ D 1. Indeed, the pmf that we have in
this example is the pmf of the so-called Poisson distribution with mean one. The pmf
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of the Poisson distribution with a general mean � is p.x/ D e���x

xŠ
; x D 0; 1; 2; : : :.

The Poisson distribution is an extremely important distribution in probability theory
and will be studied in detail in Chapter 6.

Example 5.4 (The Exact Distribution of the Sum of n Dice Rolls). This is a more ad-
vanced example. The distribution of the sum of two dice rolls was found in Chapter 2
by direct enumeration. It is interesting that the distribution of the sum of n dice rolls
for a general n can be found by using the generating function of the sum. The deriva-
tion needs quite a bit of clever algebraic manipulation, and it is really impressive that
de Moivre derived this distribution by using the generating function. The example
also demonstrates the power of the generating function as a problem-solving tool.

Let Xi be the number obtained on the i th roll of the die. Each Xi has a dis-
crete uniform distribution on f1; 2; : : : ; 6g, and therefore, using the discrete uniform
example above, the generating function of X1 CX2 C � � � CXn is

G.s/ D sn.s6 � 1/n

6n.s � 1/n D sn.1C s C s2 C � � � C Cs5/n

6n
:

On expanding .1C s C s2 C � � � C Cs5/n and collecting terms, after some algebra,
one gets

G.s/ D sn
Pn

iD0.�1/i
�

n
i

�
s6i 	P1

j D0

�
nCj �1

j

�
sj

6n
:

Now make the change of variable k D n C 6i C j in the numerator of this expres-
sion. Then, G.s/ reduces to

G.s/ D 1

6n

6nX

kDn

skak ;

where ak D Pb.k�n/=6c
iD0 .�1/i�n

i

��
k�6i�1

n�1

�
; and therefore, for n 
 k 
 6n, P.X1 C

X2 C � � � CXn D k/ must be

pk D pk;n D 1

6n

b.k�n/=6cX

iD0

.�1/i
 
n

i

! 
k � 6i � 1

n � 1

!

;

where the notation b c denotes the integer part function. If k < n or > 6n, then
P.X1 CX2 C � � � CXn D k/ is of course zero.

It is quite remarkable that an exact formula for the distribution of the sum can be
found for an arbitrary number of rolls of the die, and the formula, due to de Moivre,
is completely classic.

Using de Moivre’s formula for the pmf of the sum of n dice rolls, we plot in
Figure 5.1 the pmf when five dice are rolled. The pmf has a beautiful bell shape. We
will later see a connection of this visual finding to a result known as the central limit
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
x

0.02

0.04

0.06

0.08

0.1

Fig. 5.1 pmf of sum of five dice; x D 1 in plot means sumD 5

theorem. It should be noted that the x values in the plot start at one, an idiosyncrasy
of the software; thus x D 1 in the plot corresponds to a sum of 5, and x D 2

corresponds to a sum of 6, etc. It is the bell shape that we want to emphasize in this
example.

As an illustration, suppose now that we want to know the chances that the sum
of 20 rolls of a fair die will be between 64 and 76. Then, applying the exact formula
above with n D 20, the required probability is

P76
kD64 pk;20 D :6027. It would of

course be impossible to do this by direct enumeration.

5.2 Moment Generating Functions and Cumulants

We have defined the probability generating function only for nonnegative integer-
valued random variables. The moment generating function is usually discussed in
the context of general random variables, not necessarily integer-valued, or discrete.
The two functions are connected. Here is the formal definition.

Definition 5.3. Let X be a real-valued random variable. The moment generating
function (mgf) of X is defined as

 X .t/ D  .t/ D EŒetX �;

whenever the expectation is finite.
Note that the mgf  .t/ of a random variable X always exists and is finite if

t D 0 and  .0/ D 1. It may or may not exist when t ¤ 0. If it does exist for t in a
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nonempty open interval containing zero, then many properties of X can be derived
by using the mgf  .t/; it is an extremely useful tool. If X is a nonnegative integer-
valued random variable, then writing sX as eX log s, it follows that the (probability)
generating function G.s/ is equal to  .log s/ whenever G.s/ < 1. Thus, the two
generating functions, namely the probability generating function and the moment
generating function, are connected.

The following theorem explains the name moment generating function.

Theorem 5.4.
(a) Suppose the mgf  .t/ of a random variable X is finite in some open interval

containing zero. Then,  .t/ is infinitely differentiable in that open interval, and
for any k � 1

E.Xk/ D  .k/.0/:

(b) (Distribution Determining Property). If  1.t/ and  2.t/ are the mgfs of two
random variables X and Y , and if  1.t/ D  2.t/ in some nonempty open inter-
val containing zero, then X and Y have the same distribution.

(c) IfX1; X2; : : : ; Xn are independent random variables, and if eachXi has an mgf
 i .t/ existing in some open interval around zero, then X1 CX2 C � � � CXn also
has an mgf in that open interval, and

 X1CX2C���CXn
.t/ D

nY

iD1

 i .t/:

Proof. The proof is formally similar to the proof of the corresponding result for
(probability) generating functions. If  .t/ exists in an open interval, then it admits
a power series expansion in that open interval, and it can be differentiated infinitely
often in that open interval. Furthermore,

dk

dtk
EŒetX � D E

"
dk

dtk
etX

#

D EŒXketX �

)  .k/.0/ D EŒXk � for any k � 1: The formal proofs of parts (b) and (c) are sim-
ilar to the corresponding proofs for generating functions and are therefore omitted.
However, a mathematically rigorous proof of this theorem requires the use of com-
plex analysis, a branch of more advanced mathematics.

Let us now see a few examples.

Example 5.5 (Discrete Uniform Distribution). Let X have the pmf P.X D x/ D
1
n
; x D 1; 2; : : : ; n. Then, its mgf is

 .t/ D EŒetX � D 1

n

nX

kD1

etk D et .ent � 1/
n.et � 1/

:
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By direct differentiation,

 0.t/ D et .1C ne.nC1/t � .nC 1/ent /

n.et � 1/2 :

On applying L’Hospital’s rule twice, we get the previously derived fact thatE.X/ D
nC1

2
:

Example 5.6. Suppose X takes only two values, 0 and 1, with P.XD1/Dp;
P.X D 0/ D 1 � p; 0 < p < 1: Thus, X is a Bernoulli variable with param-
eter p. Then, the mgf of X is

 .t/ D EŒetX � D pet C .1 � p/:

If we differentiate this, we get  0.t/ D pet ;  00.t/ D pet . Therefore,  0.0/ D
pe0 D p, and also  00.0/ D p. From the general properties of mgfs, it then follows
that E.X/ D  0.0/ D p and E.X2/ D  00.0/ D p. Now go back to the pmf of
X that we started with in this example, and note that indeed, by direct calculation,
E.X/ D E.X2/ D p.

Example 5.7. SupposeX is the sum of two rolls of a fair die. Then,X can be written
as X D X1 C X2, where X1 and X2 are the numbers obtained on the two rolls,
respectively. The mgf of each of X1 and X2 is obtained from the general mgf for
the discrete uniform distribution worked out above using n D 6. By part (c) of the
preceding theorem, we have

 X .t/ D
�
et .e6t � 1/

6.et � 1/
	2

D e2t .e6t � 1/2
36.et � 1/2 :

5.2.1 � Cumulants

Closely related to the moments of a random variable are certain quantities known as
cumulants. Cumulants arise in accurate approximations of the distribution of sums
of independent random variables. They are also used for statistical modeling pur-
poses in some applied sciences. The name cumulant was coined by Sir Ronald
Fisher (1929), although it was discussed in the literature by others prior to Fisher’s
coining of the cumulant term. We will define and describe some basic facts about cu-
mulants below; this material is primarily for reference purposes and may be omitted
at first reading.

We need to define central moments of a random variable first because cumulants
are related to them.
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Definition 5.4. Let a random variable X have a finite j th moment for some
specified j � 1. The j th central moment of X is defined as �j D EŒ.X � �/j �,
where � D E.X/.

Remark. Note that �1 D E.X ��/ D 0, and �2 D E.X ��/2 D �2, the variance
of X . If X has a distribution symmetric about zero, then every odd-order central
moment, EŒ.X � �/2kC1�, is easily proved to be zero, provided it exists.

Definition 5.5. Let X have a finite mgf  .t/ in some neighborhood of zero, and
let K.t/ D log .t/ when it exists. The r th cumulant of X is defined as r D
d r

dtrK.t/jtD0. Equivalently, the cumulants of X are the coefficients in the power

series expansionK.t/ D P1
nD1 n

tn

nŠ
within its radius of convergence.

Note that K.t/ D log .t/ implies that eK.t/ D  .t/. By equating coefficients
in the power series expansion of eK.t/ with those in the power series expansion of
 .t/, it is easy to express the first few moments (and therefore the first few central
moments) in terms of the cumulants. Indeed, denoting ci D E.X i /; � D E.X/ D
c1; �i D E.X � �/i ; �2 D �2, one obtains the expressions

c1 D 1I c2 D 2 C 2
1 I c3 D 3 C 312 C 3

1 I
c4 D 4 C 413 C 32

2 C 62
12 C 4

1 :

The corresponding expressions for the central moments are much simpler:

�2 D 2I�3 D 3I�4 D 4 C 32
2 :

In general, the cumulants satisfy the recursion relations

n D cn �
n�1X

kD1

 
n � 1
k � 1

!

cn�kk:

These result in the specific expressions

2 D �2I 3 D �3I 4 D �4 � 3�2
2:

High-order cumulants have quite complex expressions in terms of the central mo-
ments �j ; the corresponding expressions in terms of the cj are even more complex.

The derivations of these expressions stated above involve straight differentiation.
We will not present the algebra. It is useful to know these expressions for some
problems in statistics.
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5.3 Synopsis

(a) The generating function of a nonnegative integer-valued random variable X is
defined as GX .s/ D E.sX /. It exists for jsj 
 1 but may or may not exist for
jsj > 1.

(b) If two random variablesX and Y have the same generating function in an open
interval containing zero, then they must have the same distribution.

(c) For a nonnegative integer-valued random variable X , P.X D k/ D G.k/.0/
kŠ

;

k � 0.
(d) If X1; X2; : : : ; Xn are independent random variables, then the generating func-

tion of X1 CX2 C � � � CXn equals
Qn

iD1Gi .s/:

(e) The mgf of a real-valued random variable X is defined as  X .t/ D EŒetX �: It
exists when t D 0 and always  X .0/ D 1. It may or may not exist for t ¤ 0.

(g) If two random variables X and Y have the same mgf in an open interval con-
taining zero, then they must have the same distribution.

(g) If the mgf .t/ of a random variableX is finite in some open interval containing
zero, then E.Xk/ D  .k/.0/:

(h) If X1; X2; : : : ; Xn are independent random variables, and if each Xi has an
mgf  i .t/, then the mgf of X1 C X2 C � � � C Xn equals  X1CX2C���CXn

.t/ D
Qn

iD1 i .t/:

5.4 Exercises

Exercise 5.1. Find the generating function and the mgf of the random variable X
with the pmf P.X D n/ D 1

2n ; n D 1; 2; 3; : : :.

Exercise 5.2. * Give an example of a functionG.s/ such thatG.0/ � 0,G0.1/ > 0,
but G.s/ is not the generating function of any nonnegative integer-valued random
variable.

Exercise 5.3 (Generating Function of a Linear Function). Suppose X has the
generating function G.s/. What are the generating functions of X ˙ 1? Of 2X?

Exercise 5.4 (MGF of a Linear Function). Suppose X has the mgf  .t/. Find an
expression for the mgf of aX C b, where a and b are real constants.

Exercise 5.5. * Suppose X is a nonnegative random variable with a finite mgf at
some point t . Prove or disprove that

p
X also has a finite mgf at that point t .

Exercise 5.6. * Give an example of a random variable X such that X has a finite
mgf at any t but X2 does not have a finite mgf at any t > 0.

Exercise 5.7 (Generating Function and Moments). Suppose X has the generat-
ing functionG.s/. Express the variance and the third moment ofX in terms ofG.s/
and its derivatives.
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Exercise 5.8. Suppose G.s/ and H.s/ are both generating functions. Show that
pG.s/C .1 � p/H.s/ is also a valid generating function for any p in .0; 1/. What
is an interesting interpretation of the distribution that has pG.s/C .1 � p/H.s/ as
its generating function?

Exercise 5.9 (Convexity of the MGF). SupposeX has the mgf .t/, finite in some
open interval. Show that  .t/ is convex in that open interval.

Exercise 5.10. Find the first four moments, the first four central moments, and the
first four cumulants of X , where X is the number of heads obtained in three tosses
of a fair coin, and verify all the interrelationships between them stated in the text.

Exercise 5.11. * (Cumulants of a Bernoulli Variable). Suppose X has the pmf
P.X D 1/ D p;P.X D 0/ D 1 � p. What are the first four cumulants of X?

Exercise 5.12. Suppose X has a symmetric distribution P.X D ˙1/ D p;

P.X D 0/ D 1 � 2p. What are its first four cumulants?
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Chapter 6
Standard Discrete Distributions

A few special discrete distributions arise very frequently in applications. Either
the underlying probability mechanism of a problem is such that one of these dis-
tributions is truly the correct distribution for that problem or the problem may
be such that one of these distributions is a very good choice to model that prob-
lem. We present these distributions and study their basic properties in this chapter;
they deserve the special attention because of their importance in applications. The
special distributions we present are the discrete uniform, binomial, geometric, neg-
ative binomial, hypergeometric, and Poisson. Benford’s distribution is also covered
briefly. A few other special distributions are covered in the chapter exercises.

6.1 Introduction to Special Distributions

We first provide the pmfs of these special distributions and a quick description of
the contexts where they are relevant. We will then study these distributions in detail
in later sections.

The Discrete Uniform Distribution. The discrete uniform distribution represents a
finite number of equally likely values. The simplest real-life example is the face
obtained when a fair die is rolled once. It can also occur in some other physi-
cal phenomena, particularly when the number of possible values is small and the
scientist feels that they are just equally likely. If we let the values of the ran-
dom variable be 1; 2; : : : ; n, then the pmf of the discrete uniform distribution is
p.x/ D 1

n
; x D 1; 2; : : : ; n, We sometimes write X � Unif f1; 2; : : : ; ng.

The Binomial Distribution. The binomial distribution represents a sequence of in-
dependent coin-tossing experiments. Suppose a coin with probability p; 0 < p < 1,
for heads in a single trial is tossed independently a prespecified number of times,
say n times, n � 1. Let X be the number of times in these n tosses that a head is
obtained. Then the pmf of X is

P.X D x/ D
 
n

x

!

px.1 � p/n�x ; x D 0; 1; : : : ; n;

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 6, c� Springer Science+Business Media, LLC 2010
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the
�

n
x

�
term giving the choice of the x tosses out of the n tosses in which the

heads occur.
Coin tossing, of course, is just an artifact. Suppose a trial can result in only one

of two outcomes, called a success (S) or a failure (F), the probability of obtaining
a success being p in any trial. Such a trial is called a Bernoulli trial. Suppose a
Bernoulli trial is repeated independently a prespecified number of times, say n times.
Let X be the number of times in the n trials that a success is obtained. Then X has
the pmf given above, and we say that X has a binomial distribution with parameters
n and p and write X � Bin.n; p/.

The Geometric Distribution. Suppose a coin with probability p; 0 < p < 1 for
heads in a single trial is tossed repeatedly until a head is obtained for the first time.
Assume that the tosses are independent. Let X be the number of the toss at which
the very first head is obtained. Then the pmf of X is

P.X D x/ D p.1 � p/x�1; x D 1; 2; 3; : : : :

We say that X has a geometric distribution with parameter p, and we will write
X � Geo.p/. The distinction between the binomial distribution and the geometric
distribution is that in the binomial case the number of tosses is prespecified, but in
the geometric case the number of tosses actually performed when the experiment
ends is a random variable. A geometric distribution measures a waiting time for
the first success in a sequence of independent Bernoulli trials, each with the same
success probability p; i.e., the coin cannot change from one toss to another.

The Negative Binomial Distribution. The negative binomial distribution is a gener-
alization of a geometric distribution when we repeatedly toss a coin with probability
p for heads, independently, until a total number of r heads has been obtained, where
r is some fixed integer � 1. The case r D 1 corresponds to the geometric distribu-
tion. LetX be the number of the first toss at which the r th success is obtained. Then
the pmf of X is

P.X D x/ D
 
x � 1

r � 1

!

pr .1 � p/x�r ; x D r; r C 1; : : : ;

the term
�

x�1
r�1

�
simply giving the choice of the r � 1 tosses among the first x � 1

tosses where the first r � 1 heads were obtained. We say that X has a negative
binomial distribution with parameters r and p, and we will write X � NB.r; p/.

The Hypergeometric Distribution. The hypergeometric distribution also represents
the number of successes in a prespecified number of Bernoulli trials, but the trials
happen to be dependent. A typical example is that of a finite population in which
there are in allN objects, of which someD are of type I and the otherN �D are of
type II. A sample without replacement of size n; 1 
 n < N , is chosen at random
from the population. Thus, the selected sampling units are necessarily different. Let
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X be the number of units or individuals of type I among the n units chosen. Then
the pmf of X is

P.X D x/ D
�

D
x

��
N �D
n�x

�

�
N
n

� ;

n�N CD 
 x 
 D; note that, trivially, x is also � 0 and 
 n. An example would
be that of a pollster polling n D 100 people from a population of 10;000 people,
whereD D 5500 are in favor of some proposition and the remainingN�D D 4500

are against it. The number of individuals in the sample who are in favor of the
proposition then has the pmf above. We say that such an X has a hypergeometric
distribution with parameters n;D;N , and we will write X � Hypergeo.n;D;N /.

The Poisson Distribution. The Poisson distribution is perhaps the most used and
useful distribution for modeling nonnegative integer-valued random variables. Un-
like the first four distributions above, we cannot say that a Poisson distribution is
necessarily the correct distribution for some integer-valued random variable. Rather,
a Poisson distribution is chosen by a scientist as his or her model for the distribution
of an integer-valued random variable. But the choice of the Poisson distribution as a
model is frequently extremely successful in describing and predicting how the ran-
dom variable behaves. The Poisson distribution also arises, as a mathematical fact,
as the limiting distribution of numerous integer-valued random variables when in
some sense a sequence of Bernoulli trials makes it increasingly harder to obtain a
success; i.e., the number of times a very rare event happens if we observe the process
for a long time often has an approximately Poisson distribution.

The pmf of a Poisson distribution with parameter � is

P.X D x/;
e���x

xŠ
; x D 0; 1; 2; : : : I

by using the power series expansion of e� D P1
xD0

�x

xŠ
, it follows that this is indeed

a valid pmf.
Three specific situations where a Poisson distribution is almost routinely adopted

as a model are the following:

(a) The number of times a specific event happens in a specified period of time; e.g.,
the number of phone calls received by someone over a 24 hour period.

(b) The number of times a specific event or phenomenon is observed in a specified
amount of area or volume; e.g., the number of bacteria of a certain kind in one
liter of a sample of water, the number of misprints per page of a book, etc.

(c) The number of times a success is obtained when a Bernoulli trial with success
probabilityp is repeated independently n times, with p being small and n being
large, such that the product np has a moderate value, say between :5 and 10.

We now treat these distributions in greater detail one at a time.
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6.2 Discrete Uniform Distribution

Definition 6.1. The discrete uniform distribution on f1; 2; : : : ; ng is defined by the
pmf P.X D x/ D 1

n
; x D 1; 2; : : : ; n, and zero otherwise. Of course, the set of

values can be any finite set; we take the values to be 1; 2; : : : ; n for convenience.
Clearly, for any given integer k; 1 
 k 
 n; F.k/ D P.X 
 k/ D k

n
. The first

few moments are found easily. For example,

� D E.X/ D
nX

xD1

xp.x/ D
nX

xD1

x
1

n
D 1

n

nX

xD1

x

D 1

n

n.nC 1/

2
D nC 1

2
:

Similarly,

E.X2/ D
nX

xD1

x2p.x/ D 1

n

nX

xD1

x2

D 1

n

n.nC 1/.2nC 1/

6
D .nC 1/.2nC 1/

6
:

Therefore,

�2 D Var.X/ D E.X2/ � ŒE.X/�2 D .nC 1/.2nC 1/

6
� .nC 1/2

4
D n2 � 1

12
:

It follows from the trivial symmetric nature of the discrete uniform distribution that
E.X � �/3 D 0. We can also find E.X � �/4 in closed form. For this, the only

additional fact that we need is that
Pn

xD1 x
4 D .n.nC1/

2
/2. Then, by expanding

.X � �/4, after some algebra it follows that

E.X � �/4 D .3n2 � 7/.n2 � 1/

240
:

The moment information about the discrete uniform distribution is collected
together in the theorem below.

Theorem 6.1. Let X � Unif f1; 2; : : : ; ng. Then,

� D E.X/ D nC 1

2
I �2 D Var.X/ D n2 � 1

12
IE.X � �/3 D 0I

E.X � �/4 D .3n2 � 7/.n2 � 1/

240
:
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Corollary 6.1. The skewness and the kurtosis of the discrete uniform distribu-
tion are

ˇ D 0I 
 D �6
5

n2 C 1

n2 � 1 :

6.3 Binomial Distribution

We start with a few examples.

Example 6.1 (Heads in Coin Tosses). Suppose a fair coin is tossed ten times,
independently, and supposeX is the number of times in the ten tosses that a head is
obtained. Then X � Bin.n; p/ with n D 10; p D 1

2
: Therefore,

P.X D x/ D
 
10

x

!�
1

2

�10

; x D 0; 1; 2; : : : ; 10:

Converting to decimals, the pmf of X is

x 0 1 2 3 4 5 6 7 8 9 10
P.X D x/ .0010 .0098 .0439 .1172 .2051 .2461 .2051 .1172 .0439 .0098 .0010

Note that the pmf is symmetric about x D 5 and that P.X D x/ increases from
x D 0 to x D 5 and then decreases from x D 5 to x D 10 symmetrically.

Example 6.2 (Guessing on a Multiple-Choice Exam). A multiple-choice test with
20 questions has five possible answers for each question. A completely unprepared
student picks the answer for each question at random and independently. Suppose
X is the number of questions that the student answers correctly.

We identify each question with a Bernoulli trial and a correct answer as a success.
Since there are 20 questions and the student picks his answer at random from five
choices, X � Bin.n; p/, with n D 20; p D 1

5
D :2. We can now answer any

question we want about X .
For example,

P.The student gets every answer wrong/ D P.X D 0/ D :820 D :0115;

while

P.The student gets every answer right/ D P.X D 20/ D :220 D 1:05 	 10�14;

a near impossibility. Suppose the instructor has decided that it will take at least 13
correct answers to pass this test. Then,
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P.The student will pass/ D
20X

xD13

 
20

x

!

:2x :820�x D :000015;

still a very small probability.

Example 6.3 (To Cheat or Not to Cheat). Ms. Smith drives into town once a week to
buy groceries. In the past she parked her car at a lot for five dollars, but she decided
that for the next five weeks she will park at the fire hydrant and risk getting tickets
with fines of 25 dollars per offense. If the probability of getting a ticket is .1, what
is the probability that she will pay more in fines in five weeks than she would pay in
parking fees if she had opted not to park by the fire hydrant?

Suppose that X is the number of weeks among the next five weeks in which she
gets a ticket. Then, X � Bin.5; :1/. Ms. Smith’s parking fees would have been 25
dollars for the five weeks combined if she did not park by the hydrant. Thus, the
required probability is

P.25X > 25/ D P.X > 1/ D 1 � ŒP.X D 0/C P.X D 1/�

D 1 �
"

:95 C
 
5

1

!

:1.:9/4

#

D :0815:

So the chances are quite low that Ms. Smith will pay more in tickets by breaking the
law than she would pay by paying the parking fees.

Example 6.4. Suppose a fair coin is tossed n D 2m times. What is the probability
that the number of heads obtained will be an even number?

Since X D the number of heads � Bin.2m; 1
2
/, we want to find

P.X D 0/C P.X D 2/C � � � C P.X D 2m/ D
mX

xD0

 
2m

2x

!


22m D 22m�1=22m

D 1
2

on using the identity that, for any n,

 
n

0

!

C
 
n

2

!

C
 
n

4

!

C � � � D 2n�1:

Thus, with a fair coin, the chances of getting an even number of heads in an even
number of tosses are 1

2
. The same is true also if the number of tosses is odd and is

proved similarly.

Example 6.5 (Flush in Poker). A flush in five-card poker is five cards of the same
suit but not in a sequence. We saw in Chapter 1 that the probability of obtaining a
flush in five-card poker is .00197.
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Suppose someone plays poker once a week every week for a year, and each
time that he plays, he plays four deals. Let X be the number of times he obtains
a flush during the year. Assuming that decks are always well shuffled between
plays, X � Bin.n; p/, where n D 52 	 4 D 208 and p D :00197. Then,
P.X � 1/ D 1 � .1 � :00197/208 D :3365. So there is about a one in three chance
that the player will obtain a flush within a year.

In this example, n was large and p was small. In such cases, the Bin.n; p/ distri-
bution can be well approximated by a Poisson distribution with � D np. If we do the
approximation, we will get P.X � 1/ � 1�e�208�:00197 D 1�e�:40976 D :3362,
clearly a very close approximation to the exact value .3365. We will discuss Poisson
approximations of binomials in greater detail later in this chapter.

Example 6.6 (A Stock Inventory Example). This example takes a little more careful
reading because the formulation is a little harder. Here is the problem. Professor
Rubin loves diet soda. Twice a day he drinks an 8 oz. can of diet soda, and each
time he reaches at random into one of two brown bags containing Diet Coke and
Diet Pepsi, respectively. One box of soda picked up at a supermarket has six soda
cans. How many boxes of each type of soda should professor Rubin buy per to be
90% sure that he will not find a brown bag empty when he reaches into it?

LetX D the number of times Professor Rubin reaches to find a Diet CokeI then,
X � Bin.n; p/ with n D 14 and p D :5. Since p D :5; n � X is also distributed as
the same binomial, namely Bin.n; p/; with n D 14 and p D :5. Suppose Professor
Rubin has N sodas of each type in stock. We want P.X > N/C P.n � X > N/


 :1. Now,

P.X > N/C P.n � X > N/ D 2

nX

xDN C1

 
n

x

!

.:5/n

D 2

14X

xDN C1

 
14

x

!

.:5/14 D g.N /;

say. By computing it, we find that g.9/ D :18 and g.10/ D :06 < :1. Therefore,
Professor Rubin needs to have ten sodas of each type (that is, two boxes of each
type of soda) in stock each week.

Example 6.7 (Flukes are Easier in the Short Run). Suppose two tennis players,
A and B, will play an odd number of games, and whoever wins a majority of the
games will be the winner. Suppose that A is a better player, and A has a probability
of .6 of winning any single game. If B were to win this tournament, it might be
considered a fluke.

Suppose that they were to play three games. Let X be the number of games
won by B. Under the usual assumptions of independence, X � Bin.n; p/ with
n D 3; p D :4. Thus, the chances of B winning the tournament are

P.X � 2/ D 3.:4/2.:6/C :43 D :352:
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Suppose next that they were to play nine games. Now, X � Bin.n; p/ with n D 9;

p D :4, so the chances of B winning the tournament are

P.X � 5/ D
9X

xD5

 
9

x

!

.:4/x.:6/9�x D :2665:

We see that the chances of B winning the tournament go down when they play more
games. This is because a weaker player can get lucky in the short run, but the luck
will run out in the long run.

Some key mathematical facts about a binomial distribution are given in the
following theorem.

Theorem 6.2. Let X � Bin.n; p/. Then,

(a) � D E.X/ D npI �2 D Var.X/ D np.1 � p/:

(b) The mgf of X equals .t/ D .pet C 1 � p/n at any t:
(c) EŒ.X � �/3� D np.1 � 3p C 2p2/:

(d) EŒ.X � �/4� D np.1 � p/Œ1C 3.n� 2/p.1 � p/�:
Proof. By writing X as X D Pn

iD1 IAi
, where Ai is the event of a success on

the i th Bernoulli trial, it follows readily that E.X/ D Pn
iD1 P.Ai / D np and

Var.X/ D Pn
iD1 Var.IAi

/ D Pn
iD1 P.Ai /.1 � P.Ai // D np.1 � p/:

The mgf expression also follows immediately from this representation using the
indicator variables IAi

, as each indicator variable has the mgf .pet C 1 � p/, and
they are independent.

Parts (c) and (d) follow on differentiating .t/ three and four times, respectively,
thus obtainingE.X3/ andE.X4/ as the third and fourth derivatives of .t/ at zero,
and finally plugging them into the binomial expansion EŒ.X � �/3� D E.X3/ �
3�E.X2/C 2�3 and a similar expansion for EŒ.X � �/4�. This tedious algebra is
omitted.

Corollary 6.2. Let ˇ D ˇ.n; p/ be the skewness and 
 D 
.n; p/ be the kurtosis
of X . Then ˇ; 
 ! 0 for any p as n ! 1.

The corollary follows by directly using the definitions ˇ D EŒ.X��/3�

�3 and 
 D
EŒ.X��/4�

�4 � 3 and plugging in the formulas from the theorem above.
Thus, whatever p; 0 < p < 1, the binomial distribution becomes nearly sym-

metric and normal-like as n gets large.
Mean absolute deviations, whenever they can be found in closed form, are ap-

pealing measures of variability. Remarkably, an exact formula for the mean absolute
deviation of a general binomial distribution exists and is quite classic. Several dif-
ferent versions of it have been derived by various authors, including Poincaré (1896)
and Feller (1968); Diaconis and Zabell (1991) is an authoritative exposition of the
problem. Another interesting question is, which value in a general binomial distri-
bution has the largest probability? That is, what is the mode of the distribution? The
next result summarizes the answers to these questions.
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Fig. 6.1 The oscillatory nature of the mode of Bin.n; :5/ distribution

Theorem 6.3 (� Mean Absolute Deviation and Mode). Let X � Bin.n; p/. Let �
denote the smallest integer > np and let m D b np C p c. Then,

(a) EjX � npj D 2�.1� p/P.X D �/:

(b) The mode of X equals m. In particular, if np is an integer, then the mode is
exactly np; if np is not an integer, then the mode is one of the two integers just
below and just above np.

Proof. Suppose first that m � 1. Part (b) can be proved by looking at the ratio
P.XDkC1/

P.XDk/
and on observing that this ratio is � 1 for k 
 m�1. If n; p are such that

m is zero, then P.X D k/ can be directly verified to be maximized at k D 0. This is
a standard technique for finding the maximum of a unimodal function of an integer
argument. Part (a) requires nontrivial calculations; see Diaconis and Zabell (1991).

Remark 6.1. It follows from this theorem that the mode of a binomial distribution
need not be the integer closest to the mean np. The modal value maintains a gentle
oscillatory nature as n increases and p is held fixed; a plot when p D :5 is given in
Figure 6.1 to illustrate this oscillation.

6.4 Geometric and Negative Binomial Distributions

Again, it is helpful to begin with some examples.

Example 6.8 (Family Planning). In some economically disadvantaged countries, a
male child is considered necessary to help with physical work and family finances.
Suppose a couple will have children until they have had two boys. Let X be the
number of children they will have. Then, X � NB.r; p/, with r D 2; p D :5

(assumed). Thus, X has the pmf

P.X D x/ D .x � 1/.:5/x; x D 2; 3; : : : :
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For example, P.The couple will have at least one girl/DP.X � 3/D 1�P.X D
2/D 1� :25D :75: The probabilities of some values ofX are given in the following
table:

x 2 3 4 5 6 7 8
P.X D x/ .25 .25 .1875 .125 .0781 .0469 .0273

For example, P.X � 6/ D 1�P.X 
 5/ D 1� .:25C :25C :1875C :125/� :19.
It is surprising that nearly 19% of such couples will have six or more children!

Example 6.9 (Meeting Someone with the Same Birthday). Suppose you were born
on October 15. How many different people do you have to meet before you find
someone who was also born on October 15? Under the usual conditions of equally
likely birthdays and independence of the birthdays of all people you will meet, the
number of people X you have to meet to find the first person with the same birth-
day as yours is geometric; i.e., X � Geo.p/ with p D 1

365
. The pmf of X is

P.X D x/ D p.1 � p/x�1: Thus, for any given k,

P.X > k/ D
1X

xDkC1

p.1 � p/x�1 D p

1X

xDk

.1 � p/x D .1 � p/k:

For example, the chance that you will have to meet more than 1000 people to find
someone with the same birthday as yours is .364=365/1000 D :064. But, of course,
you will usually not ask people you meet what their birthday is, so it may be hard to
verify experimentally that you should not need to meet 1000 people.

Example 6.10. Suppose a door-to-door salesman makes an actual sale in 25% of the
visits he makes. He is supposed to make at least two sales per day. How many visits
should he plan on making to be 90% sure of making at least two sales?

Let X be the visit at which the second sale is made. Then, X � NB.r; p/ with
r D 2; p D :25. Therefore, X has the pmf P.XDx/D.x � 1/.:25/2.:75/x�2; x D
2; 3; : : :. Summing, for any given k; P.X > k/DP1

xDkC1.x � 1/.:25/2.:75/x�2

DkC3
3
.3=4/k (try to derive this). We want kC3

3
.3=4/k 
 :1. By computing this

directly, we find that P.X > 15/ < 1 but P.X > 14/ > :1. So, the salesman
should plan on making 15 visits.

Example 6.11 (Lack of Memory of Geometric Distribution). Let X � Geo.p/, and
supposem and n are given positive integers. Then, X has the interesting property

P.X > mC njX > n/ D P.X > m/:

That is, suppose you are waiting for some event to happen for the first time. You
have tried, say, 20 times, and you still have not succeeded. You may feel that it
is due anytime now. The lack of memory property would say that P.X > 30j
X > 20/ D P.X > 10/. That is, the chance that it will take another ten tries
is the same as what it would be if you had just started, and forget that you have
already been patient for a long time and have tried hard for a success.
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The proof is simple. Indeed,

P.X > mC njX > n/ D P.X > mC n/

P.X > n/
D
P

x>mCn p.1 � p/x�1

P
x>n p.1 � p/x�1

D .1 � p/mCn

.1 � p/n
D .1 � p/m D P.X > m/:

We now give some important formulas for the geometric and negative binomial
distributions.

Theorem 6.4.
(a) Let X � Geo.p/. Let q D 1 � p. Then,

E.X/ D 1

p
I Var.X/ D q

p2
:

(b) Let X � NB.r; p/; r � 1: Then,

E.X/ D r

p
I Var.X/ D rq

p2
:

Furthermore, the mgf and the (probability) generating function of X equal

 .t/ D
�

pet

1 � qet

�r

; t < log

�
1

q

�

I

G.s/ D
�

ps

1 � qs

�r

; s <
1

q
:

Proof. The formula for the mean and the variance of the geometric distribution
follows by simply performing the sums. For example,

E.X/ D
X

x�1

xpqx�1 D p
X

x�1

xqx�1 D p 	 1

.1 � q/2
D p 	 1

p2
D 1

p
:

To find the variance, find the second moment by summing
P

x�1 x
2pqx�1, and then

plug into the variance formula Var.X/ D E.X2/ � ŒE.X/�2: It would be easier to
find the second moment by first finding the factorial momentEŒX.X � 1/� and then
use the fact that E.X2/ D EŒX.X � 1/�C E.X/. We omit the algebra.

The mean and the variance for the general negative binomial follow from the
geometric case on using the very useful representation

X D X1 CX2 C � � � CXr ;

where Xi is the geometric random random variable measuring the number of ad-
ditional trials needed to obtain the i th success after the .i � 1/th success has been
obtained. Thus, the Xi are independent, and each is distributed as Geo.p/. So, their
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variance can be obtained by summing the variances ofX1; X2; : : : ; Xr , which gives
Var.X/ D Pr

iD1
q

p2 D rq

p2 , and the expectation of course also adds up, to give

E.X/ D r
p
:

The formula for the mgf of the geometric distribution is immediately obtained

by summing
P

x�1 e
txpqx�1 D p

q

P
x�1.qe

t /x D p
q

qet

1�qet D pet

1�qet : The formula

for the negative binomial distribution follows from this formula by representing X
as X1 C X2 C � � � C Xr as above. Finally, the (probability) generating function is
derived by following exactly the same steps.

6.5 Hypergeometric Distribution

As we mentioned, the hypergeometric distribution arises when sampling without
replacement from a finite population consisting of elements of just two types. Here
are some illustrative examples.

Example 6.12 (Gender Discrimination). From a pool of five male and five female
applicants, three were selected and all three happened to be men. Is there a priori
evidence of gender discrimination?

If we let X be the number of female applicants selected, then X �
Hypergeo.n;D;N /, with n D 3;D D 5;N D 10. Therefore,

P.X D 0/ D
 
D

0

! 
N �D

n

!, 
N

n

!

D
 
5

3

!, 
10

3

!

D 1

12
:

So, if selection was done at random, which should be the policy if all applicants are
equally qualified, then selecting no women is a low-probability event. There might
be some a priori evidence of gender discrimination.

Example 6.13 (Bridge). Suppose North and South together received no aces at all
in three consecutive bridge plays. Is there a reason to suspect that the distribution of
cards is not being done at random?

Let X be the number of aces in the hands of North and South combined in one
play. Then,

P.X D 0/ D

�
48

13

��
35

13

�

�
52

13

��
39

13

� D 46

833
D :0552:

Therefore, the probability of North and South not receiving any aces for three con-
secutive plays is .:0552/3 D :00017, which is very small. Either an extremely rare
event has happened or the distribution of cards has not been random. Statisticians
call this sort of calculation a p-value calculation and use it to assess doubt about
some proposition, in this case randomness of the distribution of the cards.
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Example 6.14 (A Classic Example: Capture-Recapture). An ingenious use of the
hypergeometric distribution in estimating the size of a finite population is the
capture-recapture method. It was originally used for estimating the total number
of fish in a body of water, such as a pond. Let N be the number of fish in the
pond. In this method, a certain number of fish, say D of them are initially captured
and tagged with a safe mark or identification device and then returned to the water.
Then, a second sample of n fish is recaptured from the water. Assuming that the fish
population has not changed in any way in the intervening time and that the initially
captured fish remixed with the fish population homogeneously, the number of fish in
the second sample, say X , that bear the mark is a hypergeometric random variable,
namely X � Hypergeo.n;D;N /. We will shortly see that the expected value of a
hypergeometric random variable is nD

N
. If we set as a formalismX D nD

N
and solve

for N , we get N D nD
X

. This is an estimate of the total number of fish in the pond.
Although the idea is extremely original, this estimate can run into various kinds of
difficulties if, for example, the first catch of fish clusters around after being returned,
hides, or if the fish population has changed between the two catches due to death or
birth, and of course if X turns out to be zero. Modifications of this estimate (known
as the Petersen estimate) are widely used in wildlife estimation, taking a census, and
by the government for estimating tax fraud and the number of people afflicted with
some infection.

The mean and variance of a hypergeometric distribution are given in the next
result.

Theorem 6.5. Let X � Hypergeo.n;D;N / and let p D D
N

. Then,

E.X/ D npI Var.X/ D np.1 � p/
�
N � n
N � 1

�

:

We will not prove this result, as it involves the standard indicator variable argu-
ment we are familiar with and some routine algebra. Two points worth mentioning
are that although sampling is without replacement in the hypergeometric case, so
the Bernoulli trials are not independent, the same formula for the mean as in the
binomial case holds. But the variance is smaller than in the binomial case because
the extra factor N �n

N �1
< 1: Sampling without replacement makes the composition

of the sample more like the composition of the entire population, and this reduces
the variance around the population mean. The factor N �n

N �1
is often called the finite

population correction factor.

Problems that should truly be modeled as hypergeometric distribution problems
are often analyzed as if they were binomial distribution problems. That is, the fact
that samples have been taken without replacement is ignored, and one pretends that
the successive draws are independent. When does it not matter that the dependence
between the trials is ignored? Intuitively, we would think that if the population size
N was large and neither D nor N �D was small, the trials would act like they are
independent. The following theorem justifies this intuition.
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Theorem 6.6 (Convergence of Hypergeometric to Binomial). Let X D XN �
Hypergeo.n;D;N /, where D D DN and N are such that N ! 1; D

N
! p;

0 < p < 1: Then, for any fixed n and for any fixed x,

P.X D x/ D

�
D

x

��
N �D

n � x

�

�
N

n

� !
 
n

x

!

px.1 � p/n�x

as N ! 1.
This is proved by using Stirling’s approximation (which says that as k ! 1,

kŠ � e�kkkC1=2
p
2�) for each factorial term in P.X D x/ and then doing some

algebra.

6.6 Poisson Distribution

As mentioned before, Poisson distributions arise as counts of events in fixed periods
of time, fixed amounts of area or space, and as limits of binomial distributions for
large n and small p. The first thing to note, before we can work out examples, is that
the single parameter � of a Poisson distribution is its mean; quite remarkably, � is
also the variance of the distribution. We will write X � Poi.�/ to denote a Poisson
random variable. The distribution was introduced by Siméon Poisson (1838).

Theorem 6.7. Let X � Poi.�/. Then,

(a) E.X/ D Var(X) D �:

(b) E.X � �/3 D �IE.X � �/4 D 3�2 C �:

(c) The mgf of X equals

 .t/ D e�.et �1/:

Proof. Although parts (a) and (b) can be proved directly, it is most efficient to derive
them from the mgf. So, we first prove part (c):

 .t/ D EŒetX � D
1X

xD0

etxP.X D x/ D
1X

xD0

etx e
���x

xŠ

D e��

1X

xD0

Œ�et �x=xŠ D e��e�et D e�.et �1/:

Therefore,

 0.t/ D e�.et �1/�et ;

 00.t/ D �et .1C �et /e�.et �1/;

 .3/.t/ D �et .1C 3�et C �2e2t /e�.et �1/;

 .4/.t/ D �et .1C 7�et C 6�2e2t C �3e3t /e�.et �1/:
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From these, by using the fact that E.Xk/ D  .k/.0/, we get

E.X/ D �IE.X2/ D �C �2IE.X3/ D �.1C 3�C �2/I
E.X4/ D �.1C 7�C 6�2 C �3/:

The formulas in parts (a) and (b) now follow by simply plugging in the expressions
given above for the first four moments of X .

Corollary 6.3. The skewness and kurtosis of X equal

ˇ D 1p
�

I 
 D 1

�
:

The corollary follows immediately by using the definitions of skewness and kurtosis.

Let us now see some illustrative examples. The appendix gives a table of Poisson
probabilities for � between .5 and 5. These may be used instead of manually calcu-
lating the probabilities whenever the required probability can be obtained from the
table given in the appendix.

Example 6.15 (Events over Time). April receives three phone calls at her home on
average per day. On what percentage of days does she receive no phone calls? More
than five phone calls?

Because the number of calls received in a 24 hour period counts the occurrences
of an event in a fixed time period, we modelX D number of calls received by April
on one day as a Poisson random variable with mean 3. Then,

P.X D 0/ D e�3 D :0498IP.X > 5/ D 1� P.X 
 5/ D 1 �
5X

xD0

e�33x=xŠ

D 1 � :9161 D :0839:

Thus, she receives no calls on 4:98% of the days and more than five calls on 8:39%
of the days. It is important to understand thatX has only been modeled as a Poisson
random variable, and other models could also be reasonable.

Example 6.16. Lengths of an electronic tape contain, on average, one defect per
100 ft. If we need a tape of 50 ft., what is the probability that it will be defect-free?

LetX denote the number of defects per 50 ft. of this tape. We can think of lengths
of the tape as a window of time, although not in a literal sense. If we assume that
the defective rate is homogeneous over the length of the tape, then we can model
X as X � Poi.:5/. That is, if 100 ft. contain one defect on average, then 50 ft. of
tape should contain half a defect on average. This can be made rigorous by using
the concept of a homogeneous Poisson process.

Therefore,
P.X D 0/ D e�:5 D :6065:
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Example 6.17 (Events over an Area). Suppose a 14 inch circular pizza has been
baked with 20 pieces of barbecued chicken. At a party, you were served a 4 	 4 	 2
(in inches) triangular slice. What is the probability that you got at least one piece of
chicken?

The area of a circle of radius 7 is � 	 72 D 153:94: The area of a triangu-
lar slice of lengths 4, 4, and 2 inches on a side is

p
s.s � a/.s � b/.s � c/ Dp

5 	 1 	 1 	 3 D p
15 D 3:87, where a; b; c are the lengths of the three sides

and s D .a C b C c/=2. Therefore, we model X , the number of pieces of chicken
in the triangular slice, as X � Poi.�/, where � D 20 	 3:87=153:94 D :503. Using
the Poisson pmf,

P.X � 1/ D 1 � e�:503 D :395:

Example 6.18 (A Hierarchical Model with a Poisson Base). Suppose a chick lays
a Poi.�/ number of eggs in some specified period of time, say a month. Each egg
has a probability p of actually developing. We want to find the distribution of the
number of eggs that actually develop during that period of time.

Let X � Poi.�/ denote the number of eggs the chick lays and Y the number of
eggs that develop. For example,

P.Y D 0/ D
1X

xD0

P.Y D 0jX D x/P.X D x/ D
1X

xD0

.1 � p/x
e���x

xŠ

D e��

1X

xD0

.�.1 � p//x

xŠ
D e��e�.1�p/ D e�p�:

In general,

P.Y D y/ D
1X

xDy

 
x

y

!

py.1 � p/x�y e
���x

xŠ

D .p=.1 � p//y
yŠ

e��

1X

xDy

1

.x � y/Š
.1 � p/x�x

D .p=.1 � p//y
yŠ

e��.�.1 � p//y
1X

nD0

.�.1 � p//n
nŠ

D .�p/y

yŠ
e��e�.1�p/ D e��p.�p/y

yŠ
;

on writing n D x � y in the summation, so we recognize by inspection that Y �
Poi.�p/. What is interesting here is that the distribution of Y still remains Poisson
under assumptions that seem to be very realistic physically.

Example 6.19 (Meteor Showers). Between the months of May and October, you can
see a shooting star at the rate of about one per 20 minutes. If you sit on your patio
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for one hour each evening, how many days would it be before you see ten or more
shooting stars on the same day?

This example combines the Poisson and the geometric distributions in an inter-
esting way. Let p be the probability of seeing ten or more shooting stars in one day.
If we let N denote the number of shooting stars observed in one day and model N
as N � Poi.�/, with � D 3 (since one hour is equal to three 20 minute intervals),
then

p D P.N � 10/ D
1X

xD10

e�33x

xŠ
D :0011:

Now, if we let X denote the number of days that you have to watch the sky until
you see this shower of ten or more shooting stars, then X � Geo.p/ and therefore
E.X/ D 1

p
D 909:1, which is about 30 months. You are observing for six months

each year because there are six months between May and October (inclusive). So,
you can expect that if you observe for about five years, you will see a shower of ten
or more shooting stars on some evening.

Example 6.20 (Poisson Forest). It is a common assumption in forestry and ecology
that the number of plants in a part of a forest is distributed according to a Poisson
distribution with mean proportional to the area of the part of the forest.

Suppose on average there are ten trees per 100 square ft. in a forest. An ento-
mologist is interested in estimating an insect population in a forest of size 10,000
square ft. The insects are found in the trees, and it is believed that there are 100
of them per tree. The entomologist will cover a 900 square ft. area and count the
insects on all trees in that area. What are the chances that the entomologist will
discover more than 9200 insects in this area?

Suppose X is the number of trees in the 900 square ft. area the entomologist
covers, and let Y be the number of insects the entomologist discovers. We assume
that X � Poi.�/, with � D 90. Then, because there are 100 insects per tree,

P.Y > 9200/ D P.X > 92/ D
1X

xD93

e�90.90/x

xŠ
� :3898:

The .3898 value was found by direct summation on a computer. A more realistic
model will assume the number of insects per tree is a random variable rather than
being constantly equal to 100. However, finding an answer to the question would
then be much harder.

Example 6.21 (Gamma-Ray Bursts). Gamma-ray bursts are thought to be the most
intense electromagnetic events observed in the sky, and they typically last a few
seconds. While they are on, their intense brightness covers up any other gamma-ray
source in the sky. They occur at the rate of about one episode per day. It was initially
thought that they were events within the Milky Way galaxy, but most astronomers
now believe that is not true or not entirely true.
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The 2000th gamma-ray burst since 1991 was detected at the end of 1997 at
NASA’s Compton Gamma Ray Observatory. Are these data compatible with a
model of a Poisson-distributed number of bursts with a rate of one per day?

Using a model of homogeneously distributed events, the number of bursts in a
seven-year period is Poi.�/ with � D 7	 365	 1 D 2555: The observed number of
bursts is 2000, less than the expected number of bursts. But is it so much less that
the postulated model is in question? To assess this, we calculate P.X 
 2000/, the
probability that we could observe an observation as deviant from the expected one
as we did just by chance. Statisticians call such a deviation probability a p-value.
The p-value then equals

P.X 
 2000/ D
2000X

xD0

e�2555.2555/x

xŠ
:

Due to the large values of � and the range of the summation, directly summing
this is not recommended. But the sum can be approximated by using various other
indirect means, including a theorem known as the central limit theorem, which we
will later discuss in detail. The approximate p-value can be seen to be extremely
small, virtually zero. So, the chance of such a deviant observation, if the Poisson
model at the rate of one burst per day was correct, is very small. One would doubt
the model in such a case. The bursts may not occur at a homogeneous rate of one
per day.

6.6.1 Mean Absolute Deviation and the Mode

Similar to the binomial case, a closed-form formula is available for the mean ab-
solute deviation EŒjX � �j� of a Poisson distribution; we can also characterize
the mode; i.e., the value with the largest probability. Again, see Diaconis and
Zabell (1991) for these results.

Theorem 6.8 (Mean Absolute Deviation and Mode). Let X � Poi.�/. Then:

(a) EŒjX � �j� D 2�P.X D b�c/:
(b) A Poisson distribution is unimodal and P.X D k/ 
 P.X D b�c/8k � 0:

Proof. Part (a) requires nontrivial calculations; see Diaconis and Zabell (1991). Part
(b), however, is easy to prove. Consider the ratio

P.X D k C 1/

P.X D k/
D �

k C 1
;

and note that this is � 1 if and only if kC 1 
 b�c, which proves that b�c is always
a mode. If � is an integer, then � and � � 1 will both be modes; that is, there would
be two modes. If � is not an integer, then b�c is the unique mode.
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Fig. 6.2 Mean absolute deviation and standard deviation of a poisson distribution

We recall that the mean absolute deviation of a random variable is always smaller
than (or equal to) the standard deviation of the random variable. It is interesting
to see a plot of these two as a function of � (see Figure 6.2). The mean absolute
deviation is continuous, but not differentiable, and has a periodic component in it.

6.7 Poisson Approximation to Binomial

A binomial random variable is the sum of n indicator variables. When the expecta-
tion of these indicator variables, namely p, is small, and the number of summands n
is large, the Poisson distribution provides a good approximation to the binomial. The
Poisson distribution can also sometimes serve as a good approximation when the in-
dicators are independent but have different expectations pi , or when the indicator
variables have some weak dependence. We will start with the Poisson approxima-
tion to the binomial when n is large and p is small.

Theorem 6.9. Let Xn � Bin.n; pn/; n � 1. Suppose npn ! �; 0 < � < 1, as
n ! 1. Let Y � Poi.�/. Then, for any given k; 0 
 k < 1,

P.Xn D k/ ! P.Y D k/

as n ! 1.

Proof. For ease of explanation, let us first consider the case k D 0. We have

P.Xn D 0/ D .1 � p/n D
�
1 � np

n

�n �
�

1 � �

n

�n

� e��:



110 6 Standard Discrete Distributions

Note that we did not actually prove the claimed fact that .1� np
n
/n � .1� �

n
/n, but

it is true and is not hard to prove.
Now consider k D 1. We have

P.Xn D 1/ D np.1 � p/n�1 D .np/.1 � p/n
1

1 � p � �.e��/.1/ D �e��:

The same technique works for any k. Indeed, for a general k,

P.Xn D k/ D
 
n

k

!

pk.1 � p/n�k

D 1

kŠ
Œn.n � 1/ � � � .n � k C 1/�pk.1 � p/n

�
1

.1� p/k

	

D 1

kŠ
nk

�

1
n � 1
n

� � � n � k C 1

n

	

pk.1 � p/n
�

1

.1� p/k

	

D 1

kŠ
.np/k

�

1
n� 1

n
� � � n � k C 1

n

	

.1 � p/n
�

1

.1 � p/k
	

� 1

kŠ
.�/kŒ1�e��Œ1� D e���k

kŠ
;

which is what the theorem says.
In fact, the convergence is not just pointwise for each fixed k but is uniform

in k. This will follow from the following more general theorem, which we state for
reference (see Le Cam, 1960; Barbour and Hall, 1984; Steele, 1994)

Theorem 6.10 (Le Cam, Barbour and Hall, Steele). LetXn D B1CB2C� � �CBn,
where Bi are independent Bernoulli variables with parameters pi D pi;n. Let Yn �
Poi.�/, where � D �n D Pn

iD1 pi . Then,

1X

kD0

jP.Xn D k/ � P.Yn D k/j 
 2
1� e��

�

nX

iD1

p2
i :

Here are some more examples of the Poisson approximation to the binomial.

Example 6.22 (Lotteries). Consider a weekly lottery in which three numbers out of
25 are selected at random and a person holding exactly those three numbers is the
winner of the lottery. Suppose the person plays for n weeks, for large n. What is the
probability that he will win the lottery at least once? At least twice?

Let X be the number of weeks that the player wins. Then, assuming the weekly
lotteries are independent, X � Bin.n; p/, where p D 1=

�
25
3

� D 1
2300

D :00043.

Since p is small and n is supposed to be large, X
approx:� Poi.�/; � D np D

:00043n. Therefore,
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P.X � 1/ D 1 � P.X D 0/ � 1 � e�:00043n

and

P.X � 2/ D 1 � P.X D 0/� P.X D 1/ � 1 � e�:00043n � :00043ne�:00043n

D 1 � .1C :00043n/e�:00043n:

We can compute these for various n. If the player plays for five years,

1 � e�:00043n D 1 � e�:00043�5�52 D :106

and

1 � .1C :00043n/e�:00043n D :006:

If he plays for ten years,

1 � e�:00043n D 1 � e�:00043�10�52 D :200

and

1 � .1C :00043n/e�:00043n D :022:

We can see that the chances of any luck are at best moderate even after pro-
longed tries.

Example 6.23 (An Insurance Example). Suppose 5000 clients are each insured for
one million dollars against fire damage in a coastal property. Each residence has a
1 in 10,000 chance of being damaged by fire in a 12 month period. How likely is
it that the insurance company has to pay out as much as 3 million dollars in fire
damage claims in one year? Four million dollars?

If X is the number of claims made during a year, then X � Bin.n; p/ with
n D 5000 and p D 1=10; 000. We assume that no one makes more than one claim
and that the clients are independent. Then we can approximate the distribution of X
by Poi.np/ D Poi.:5/. We need

P.X � 3/ D 1 � P.X 
 2/ � 1� .1C :5C :52=2/e�:5 D :014

and

P.X � 4/ D 1 � P.X 
 3/ � 1 � .1C :5C :52=2C :53=6/e�:5 D :002:

These two calculations are done above by using the Poisson approximation, namely
e�:5:5k

kŠ
, for P.X D k/. The insurance company is quite safe being prepared for 3

million dollars in payout and very safe being prepared for 4 million dollars.
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6.8 � Miscellaneous Poisson Approximations

A binomial random variable is the sum of independent and identically distributed
Bernoulli variables. Poisson approximations are also often accurate when the indi-
vidual Bernoulli variables are independent but have small and different parameters
pi or when the Bernoulli variables have a weak dependence. A rule of thumb is
that if the individual pi ’s are small and their sum is moderate, then a Poi.

P
pi / ap-

proximation should be accurate. There are many rigorous theorems in this direction.
There are the first-generation Poisson approximation theorems and the more mod-
ern Poisson approximation theorems, that go by the name of the Stein-Chen method.
The Stein-Chen method is now regarded as the principal tool for approximating
the distribution of sums of weakly dependent Bernoulli variables, with associated
bounds on the error of the approximation. The two original papers are Stein (1972)
and Chen (1975) . More recent sources with modern applications in a wide variety
of fields are Barbour et al. (1992) and Diaconis and Holmes (2004).

We will first work out a formal Poisson approximation in some examples below.

Example 6.24 (Poisson Approximation in the Birthday Problem). In the birthday
problem, n unrelated people gather around and we want to know if there is at least
one pair of individuals with the same birthday. Defining Ii;j as the indicator of the
event that individuals i and j have the same birthday, we have

X D number of different pairs of people who share a common birthday

D
X

1�i<j �n

Ii;j :

Each Ii;j � Ber.p/, where p D 1=365. Note, however, that the Ii;j are definitely
not independent. Now, the expected value of X is � D �

n
2

�
=365. This is moderate

(> :5) if n � 20. So, a Poisson approximation may be accurate when n is about 20
or more.

If we use a Poisson approximation when n D 23, we get

P.X > 0/ � 1 � e�.23
2 /=365 D 1 � e�:693151 D :500002;

which is almost exactly equal to the true value of the probability that there will be a
pair of people with the same birthday in a group of 23 people; this was previously
discussed in Chapter 2.

Example 6.25 (Three People with the Same Birthday). Consider again a group of
n unrelated people, and ask what the chances are that we can find three people in
the group with the same birthday. We proceed as in the preceding example. Define
Ii;j;k as the indicator of the event that individuals i; j; k have the same birthday.
Then, Ii;j;k � Ber.p/; p D 1=.365/2. Let

X D
X

1�i<j <k�n

Ii;j;k
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D number of different triplets of people who share a common birthday:

The expected value of X is � D �
n
3

�
=3652: We want to approximate P.X � 1/. If

we use the Poisson approximationX � Poi.
�

n
3

�
=3652/, we get with n D 84

P.X � 1/ � 1� e�.84
3 /=3652 D 1 � e�:715211 D :5109:

In fact, n D 84 is truly the first n for which the probability that we can find three
people with the same birthday exceeds .5. We again see the effectiveness of the
Poisson approximation in approximating sums of dependent Bernoulli variables.
Note how much harder it is to find three people with the same birthday than it was
to find two!

A reasonably simple first-generation theorem on the validity of the Poisson ap-
proximation for suitable sums of (not necessarily independent) Bernoulli variables
can be described by using the so-called binomial moments of the sum. We will first
define the term binomial moment.

Definition 6.2. LetX be a nonnegative integer-valued random variable with a finite
j th moment for a given j � 1. The j th binomial moment of X is defined as Mj D
EŒ
�

X
j

�
� D P1

xDj

�
x
j

�
P.X D x/:

Remark. Note that the binomial moments and the factorial moments are related as
Mj D EŒX.X�1/���.X�j C1/�

j Š
; thus the j th binomial moment is finite if and only if the

j th factorial moment is finite, which is true if and only if the j th moment is finite.
We give an example.

Example 6.26 (Factorial Moments of Poisson). Let X � Poi.�/. Let n � 1. Then,

EŒX.X � 1/ � � � .X � nC 1/� D
1X

xD0

x.x � 1/ � � � .x � nC 1/
e���x

xŠ

D
1X

xDn

x.x � 1/ � � � .x � nC 1/
e���x

xŠ

D e��

1X

xDn

�x

.x � n/Š

D e��

1X

xD0

�xCn

xŠ
D e���n

1X

xD0

�x

xŠ

D e���n 	 e� D �n;

a remarkably pretty result.

In some problems, typically of a combinatorial nature, careful counting lets one
use the binomial moments and establish the validity of a Poisson approximation.
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Here is a theorem that shows how to do it; see Galambos and Simonelli (1996) for
a proof of it.

Theorem 6.11 (Basic General Poisson Approximation Theorem). Let Xn D
B1 CB2 C � � � CBn, where Bi are Bernoulli random variables. LetMk D Mk;n be
the kth binomial moment of Xn. If there exists 0 < � < 1 such that, for every fixed

k;Mk ! �k

kŠ
as n ! 1, then P.Xn D j / ! e���j

j Š
for any j as n ! 1.

Here is an application of this theorem.

Example 6.27 (The Committee Problem). From n people, N D N.n/ committees
are formed, each committee of a fixed size m. We let N; n ! 1, holding m fixed.
The Bernoulli variable Bi D Bi;n is the indicator of the event that the i th person
is not included in any committee. The purpose of this example is to derive a Pois-
son approximation for X , the total number of people who are not included in any
committee.

Under the usual assumptions of independence and also the assumption of random
selection, the binomial momentMk can be shown to be

Mk D
 
n

k

!"�
n�k

m

�

�
n
m

�

#N

:

Stirling’s approximation now shows that Mk � nk

kŠ
e�kN. m

n CO.n�2// as n ! 1.

One now sees, on inspection, that ifN; n are related asN D n log n
m

�n log�Co.n�1/

for some 0 < � < 1, then Mk ! �km

kŠ
, so from the basic general Poisson approx-

imation theorem above, the number of people who are left out of all committees
converges to Poi.�m/.

6.9 Benford’s Law

Benford’s law asserts that if we pick numbers at random from a statistical data set
or mathematical tables such as a table of logarithms or a table of physical constants,
then the leading digit tends to be 1 with much greater frequency than the 11:1% one
would expect if the distribution was just discrete uniform on f1; 2; : : : ; 9g. The law
was first asserted by the astronomer Simin Newcomb (1881). However, the distribu-
tion has come to be known as the Benford distribution, attributable to a publication
by Frank Benford (1938). The distribution was later found to give quite reason-
able fits to various kinds of data, such as the first digit in randomly picked home
addresses, daily returns of stocks, leading digits in geological variables, baseball
statistics, half-lives of radioactive particles, etc.
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The Benford distribution is a distribution on f1; 2; : : : ; 9g with the pmf

p.x/ D log.x C 1/� logx

log 10
; x D 1; 2; : : : ; 9:

Note that clearly p.x/ � 0 for any x and
P9

xD1 p.x/ D 1
log 10

Œlog 2�log 1Clog 3�
log 2C � � � C log 10� log 9� D 1: Therefore, it is a valid pmf. The numerical values
of the probabilities are as follows:

x 1 2 3 4 5 6 7 8 9
p.x/ .301 .176 .125 .097 .079 .067 .058 .051 .046

The moments of the distribution are easily calculated. In particular, the mean
and the variance equal 3.44 and 6.0565. The distribution is right skewed, and the
coefficient of skewness equals .796.

Contemporary literature on the Benford distribution includes Hill (1996), Dia-
conis (1977), and Diaconis and Freedman (1979). Benford’s distribution is a very
simple distribution from a purely mathematical point of view. Its appeal lies in its
ability to give mysteriously good fits to the leading digit for diverse types of em-
pirical data. A recent discovery is that the fits are better when data from apparently
unrelated sources are combined. In other words, if a set of variables have their indi-
vidual distributions and then those distributions are mixed, then the leading digit in
the mixed distribution would often approximately follow the Benford law.

6.10 Distribution of Sums and Differences

Sums of random variables arise very naturally in practical applications. For exam-
ple, the revenue over a year is the sum of the monthly revenues; the time taken to
finish a test with ten problems is the sum of the times taken to finish the individual
problems, etc. Likewise, the difference of two intrinsically similar random variables
is also a natural quantity to study; e.g., the number of crimes of some specific kind
committed last year and the number committed this year. It is also interesting to look
at the absolute difference of similar random variables in addition to the difference
itself.

Sometimes we can reasonably assume that the various random variables being
added are independent. Thus, the following general question is an important one.
Suppose X1; X2; : : : ; Xk are k independent random variables and that we know the
distributions of the individual Xi . What is the distribution of the sum X1 C X2 C
� � � CXk?

In general, this is a very difficult question. Interestingly, if the individualXi have
one of the distinguished distributions we have discussed in this chapter, then their
sum is also often a distribution of that same type. For example, sums of independent
Poisson random variables would be Poisson also. This loyalty to types is a very
useful fact, and we present a theorem in this regard below.
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Theorem 6.12.
(a) Suppose X1; X2; : : : ; Xk are k independent binomial random variables with

Xi � Bin.ni ; p/. Then X1 CX2 C : : :CXk � Bin.n1 C n2 C � � � C nk; p/:

(b) Suppose X1; X2; : : : ; Xk are k independent negative binomial random vari-
ables withXi � NB.ri ; p/. ThenX1CX2C� � �CXk � NB.r1Cr2C� � �Crk; p/.

(c) Suppose X1; X2; : : : ; Xk are k independent Poisson random variables with
Xi � Poi.�i /. Then X1 CX2 C � � � CXk � Poi.�1 C �2 C � � ��k/:

Proof. Each of the three parts can be proved by various means. One possibility is
to attack the problem directly. Alternatively, the results can also be proved by using
generating functions or mgfs. It is useful to see a proof using both methods, so we
do this for the Poisson case. The proof for the other two cases is exactly the same
and will be omitted.

First, note that it is enough to consider only the case k D 2 because then the gen-
eral case follows by induction. We denote X1; X2 as X; Y for notational simplicity.
Then,

P.X C Y D z/ D
zX

xD0

P.X D x; Y D z � x/ D
zX

xD0

P.X D x/P.Y D z � x/

D
zX

xD0

e��1�x
1

xŠ

e��2�z�x
2

.z � x/Š

D e�.�1C�2/�z
2 	

zX

xD0

.�1=�2/
x

xŠ.z � x/Š

D e�.�1C�2/�
z
2

zŠ

zX

xD0

 
z

x

!

.�1=�2/
x

D e�.�1C�2/�
z
2

zŠ
.1C �1=�2/

z D e�.�1C�2/ .�1 C �2/
z

zŠ
;

as was required to prove.

The second method uses the formula for the mgf of a Poisson distribution. Since
X and Y are both Poisson and they are independent, the mgf of X C Y is

 XCY .t/ D EŒet.XCY /� D EŒetX �EŒetY � D e�1.et �1/e�2.et �1/

D e.�1C�2/.et �1/;

which agrees with the mgf of the Poi.�1 C �2/ distribution, and therefore, by
the distribution-determining property of mgfs, the distribution of X C Y must be
Poi.�1 C �2/.
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The calculation used in each of these two methods of proof is useful, and it is
important to be familiar with each method.

Example 6.28. Suppose X � Poi.1/; Y � Poi.5/, and Z � Poi.10/, and suppose
X; Y;Z are independent. We want to find P.X C Y CZ � 20/:

By the previous theorem, X C Y CZ � Poi.16/, and therefore

P.X C Y CZ � 20/ D 1 � P.X C Y CZ 
 19/ D 1�
19X

xD0

e�1616x

xŠ

D 1 � :8122 D :1878:

In the absence of the result that X C Y C Z � Poi.16/, computing this proba-
bility would call for enumeration of all the ways that X C Y C Z could be 19 or
smaller and adding up those probabilities. Clearly, it would be a much more labori-
ous calculation.

6.10.1 � Distribution of Differences

We now turn to differences of random variables of the same type; e.g., the differ-
ence of two independent Poisson random variables. Obviously, it cannot be Poisson,
because it can take negative values. Similarly, the difference of two binomial ran-
dom variables cannot be binomial because it will take negative values. Indeed, the
distribution of differences is not nearly as nice or neat as the distribution of sums of
variables of the same type. We present the Poisson case below; the binomial case is
a chapter exercise.

Theorem 6.13 (Difference of Independent Poissons). Let X and Y be indepen-
dent random variables, X � Poi.�1/; Y � Poi.�2/: Then,

P.X � Y D z/ D e�.�1C�2/

�
�1

�2

�z=2

Iz.2
p
�1�2/ if z � 0;

where In.x/ is the modified Bessel function of order n with the power series
expansion

In.x/ D
�x

2

�n
1X

kD0

x2k

4k kŠ.nC k/Š
:

Proof. The formula for z 
 0 follows from the formula for z � 0 by switching the
roles of X and Y . So we only consider the case z � 0.
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By the independence of X and Y ,

P.X � Y D z/ D
1X

yD0

P.X D y C z; Y D y/ D
1X

yD0

P.X D y C z/P.Y D y/

D
1X

yD0

e��1�
yCz
1

.y C z/Š

e��2�
y
2

yŠ

D e�.�1C�2/�z
1

1X

yD0

.�1�2/
y

.y C z/ŠyŠ

D e�.�1C�2/ �z
1

.�1�2/z=2
Iz.2

p
�1�2/

D e�.�1C�2/

�
�1

�2

�z=2

Iz.2
p
�1�2/;

as was claimed.
Of course, directly, E.X � Y / D �1 � �2 and Var.X � Y / D �1 C �2.

6.11 � Discrete Does Not Mean Integer-Valued

Although the named discrete distributions are all on integers, discrete random
variables need not be integer-valued. Indeed, according to the definition we have
provided in this text, a random variable taking values in any countable set is dis-
crete. One naturally thinks of the rationals as a natural countable set after the set of
integers. In particular, the rationals in the unit interval Œ0; 1� also form a countably
infinite set. There are many ways to write reasonable distributions on rationals in
the unit interval. We give one example.

Example 6.29 (Distribution on Rationals in the Open Unit Interval). Let X and Y
be independent random variables, each distributed as geometric with param-
eter p, and let R D X

XCY
: Then clearly R takes only rational values, and

P.0 < R < 1/ D 1 for any p.

The pmf can be investigated as follows. Let r D m
n
; 0 < m < n be a rational in

its irreducible form; i.e., m and n have no common factors. Then,

P.R D r/ D P.X D mk;X C Y D nk for somek � 1/

D P.X D mk; Y D .n �m/k for somek � 1/

D
1X

kD1

P.X D mk/P.Y D .n �m/k/
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D
1X

kD1

.p.1 � p/mk�1/.p.1 � p/.n�m/k�1/

D p2

.1 � p/2

1X

kD1

.1 � p/nk

D p2

.1 � p/2
.1 � p/n

1 � .1 � p/n

D p2.1� p/n�2

1 � .1 � p/n
;

for all n � 2 and all m < n such that m is relatively prime to n. Note that all such
m’s, for a given n, result in the same pmf value, as is seen in the formula above.
In the special case p D 1

2
, the pmf becomes

P
�
R D m

n

�
D 1

2n � 1 ; n � 2; .m; n/ D 1;

where the .m; n/ D 1 notation means that they are relatively prime. These probabil-
ities would have to add to one. The number of m’s relatively prime to a given n is
the so-called Euler totient function �.n/. It is interesting that this example therefore
shows the number-theoretic identity

1X

nD2

�.n/

2n � 1
D 1:

6.12 Synopsis

(a) If X � Bin.n; p/ and q D 1 � p, then

P.X D x/ D
 
n

x

!

pxqn�x ; 0 
 x 
 nIE.X/ D npI Var.X/ D npq:

The mgf of X equals  .t/ D .pet C q/n at any t . The integer part of npCp is
always a mode of X .

(b) If X � Geo.p/ and q D 1 � p, then

P.X D x/ D pqx�1; x � 1IE.X/ D 1

p
I Var.X/ D q

p2
:
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More generally, if X � NB.r; p/; r � 1; then

P.X D x/ D
 
x � 1

r � 1

!

pr .1 � p/x�r ; x � r IE.X/ D r

p
I Var.X/ D rq

p2
:

The mgf and the generating function of X equal  .t/ D
�

pet

1�qet

�r

; t <

log
�

1
q

�
; and G.s/ D

�
ps

1�qs

�r

; s < 1
q
:

(c) If X � Hypergeo.n;D;N /, p D D
N
; and q D 1 � p, then

P.X D x/ D

�
D

x

�

�
N �D

n � x

�

�
N

n

�

; n �N CD 
 x 
 DIE.X/ D npI

Var.X/ D npq

�
N � n

N � 1
�

:

(d) The geometric distribution satisfies the lack of memory property

P.X > mC n jX > n/ D P.X > m/

for any m; n � 1.
(e) If X � Poi.�/, then

P.X D x/ D e���x

xŠ
; x � 0IE.X/ D Var.X/ D �:

The integer part of � is always a mode of X . The mgf of X equals  .t/ D
e�.et �1/.

(f) If X D Xn � Bin.n; p/; n ! 1; p D pn ! 0, and np ! � for some

�; 0 < � < 1, then, for any fixed k; P.Xn D k/ ! e���k

kŠ
as n ! 1.

(g) Suppose X1; X2; : : : ; Xk are k independent binomial random variables with
Xi � Bin.ni ; p/. Then X1 CX2 C � � � CXk � Bin.n1 C n2 C � � � C nk; p/.

(h) Suppose X1; X2; : : : ; Xk are k independent negative binomial random vari-
ables, withXi � NB.ri ; p/. ThenX1CX2C� � �CXk � NB.r1Cr2C� � �Crk ; p/.

(i) Suppose X1; X2; : : : ; Xk are k independent Poisson random variables with
Xi � Poi.�i /. Then X1 CX2 C � � � CXk � Poi.�1 C �2 C � � ��k/.
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6.13 Exercises

Exercise 6.1. Suppose a fair coin is tossed n times. Find the probability that exactly
half of the tosses result in heads when n D 10; 30; 50. Where does the probability
seem to converge as n becomes large?

Exercise 6.2. Suppose one coin with probability .4 for heads, one with probability
.6 for heads, and one that is a fair coin are each tossed once. Find the pmf of the
total number of heads obtained. Is it a binomial distribution?

Exercise 6.3. Suppose the IRS audits 5% of those having an annual income exceed-
ing 200,000 dollars. What is the probability that at least one in a group of 15 such
individuals will be audited? What is the expected number that will be audited? What
is the most likely number of people who will be audited?

Exercise 6.4. Suppose that each day the price of a stock moves up 12.5 cents with
probability 1/3 and moves down 12.5 cents with probability 2/3. If the movements
of the stock from one day to another are independent, what is the probability that
after ten days the stock has its original price?

Exercise 6.5. * (Pepy’s Problem). Find the probability that at least n sixes are
obtained when 6n fair dice are rolled. Write a formula for it, and compute it for
1 
 n 
 5. Do you see a pattern in the values?

Exercise 6.6. In repeated rolling of a fair die, find the minimum number of rolls
necessary in order for the probability of at least one six to be

(a) � :5:

(b) � :9:

Exercise 6.7. * In repeated rolling of a fair die, find the minimum number of rolls
necessary in order for the probability of at least k sixes to be � :9 when k D 2; 3.

Exercise 6.8 (System Reliability). A communication system consists of n com-
ponents, each of which will independently function with probability p. The total
system will be able to operate effectively if at least half of its components function.
For what values of p is a five-component system more likely to operate effectively
than a three-component system?

Exercise 6.9. * (A Waiting Time Problem). Tim, Jack, and John are going to have
coffee at the local coffee shop. They will each toss a fair coin, and if one comes out
as the “odd man,” then he pays for all three. They keep tossing until an odd man is
found. What is the probability that a decision will be reached within two rounds of
tosses?

Can you generalize this with n people, a general coin with probabilityp of heads,
and the question being what the probability is that a decision will be reached within
k rounds?
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Exercise 6.10. A certain firm is looking for five qualified engineers to add to its
staff. If from past experience it is known that only 20% of engineers applying for a
position with this firm are judged to be qualified, what is the probability that the firm
will interview exactly 40 applicants to fill the five positions? At least 40 applicants
to fill the five positions?

Exercise 6.11. * (Distribution of Maximum). Suppose n numbers are drawn at
random from f1; 2; � � � ; N g. What is the probability that the largest number drawn is
a specified number k if sampling is (a) with replacement; (b) without replacement?

Exercise 6.12. * (Poisson Approximation). One hundred people will each toss a
fair coin 200 times. Approximate the probability that at least 10 of the 100 people
would have obtained exactly 100 heads and 100 tails.

Exercise 6.13. * (A Design Problem). You are allowed to choose a number n and
then toss a fair coin n times. You will get a prize if you can get either seven or nine
heads. What is your best choice of the number n?

Exercise 6.14. * (A Novel Way to Give a Test). A student takes a five-answer
multiple-choice oral test. His grade is determined by the number of questions re-
quired in order for him to get five correct answers. A grade of A is given if he
requires only five questions; a grade of B is given if he requires six or seven ques-
tions; a grade of C is given if he requires eight or nine questions; and he fails
otherwise.

Suppose the student guesses independently at random on each question. What is
his most likely grade?

Exercise 6.15. A binomial random variable has mean 14 and variance 4.2. Find the
probability that it is strictly larger than 10.

Exercise 6.16 (Distribution of Sum). The demand for the daily newspaper in a
vending stall is distributed as Bin.20; :75/ on weekdays and Bin.50; :75/ on the
weekend. Assuming that all days are independent, what is the distribution of the
weekly demand?

Exercise 6.17 (Distribution of Difference). The demand for the daily newspaper
on a Monday in a vending stall is distributed as Bin.20; :75/ and that on a Sunday
as Bin.50; :75/. Find the probability that at least 20 more newspapers are sold on a
Sunday than on a Monday at this stall.

Exercise 6.18. * (Distribution of Difference). The number of earthquakes per year
in Los Angeles of magnitude greater than 4 has a mean of .5 and that in Manila,
Phillipines has a mean of 1. Find the pmf of the absolute difference between the
number of earthquakes of magnitude greater than 4 in the two cities and approxi-
mately calculate the mean of the absolute difference.

Exercise 6.19. * Suppose X � Poi.�/; Y � Bin.n; �
n
/, and that X and Y are

independent. Derive a formula for P.X D Y /.
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Exercise 6.20. * The most likely value of a binomial random variable is 50, and the
probability that it takes the value n is .357. What is its variance?

Exercise 6.21. * (An Interesting Property of Binomial Distributions). Suppose
X � Bin.n; p/ and Y � Bin.n � 1; p/. Let an D maxk P.X D k/; bn D
maxk P.Y D k/. Show that bn 
 an, for any p.

Exercise 6.22. Suppose a fair coin is tossed repeatedly. Find the probability that
three heads will be obtained before four tails.

Generalize to r heads and s tails.

Exercise 6.23. Twelve vegetable cans, all of the same size, have lost their labels.
It is known that five contain tomatoes and the rest contain beets. What is the proba-
bility that in a random sample of four cans all contain beets?

Exercise 6.24. * (Domination of the Minority). In a small town in Alaska, there
are 60 Republicans and 40 Democrats. Ten are selected at random for a council.
What is the probability that there will be more Democrats on the council than Re-
publicans?

Exercise 6.25 (Negative Hypergeometric Distribution). In a small town in
Alaska, there are 60 Republicans and 40 Democrats. The mayor wants to form
a council, selecting residents at random until five Democrats have been chosen.
Find the distribution and the expected value of the number of Republicans in the
council and hence the distribution and the expected value of the size of the council.

Exercise 6.26. The number of customers X that enter a store during a one-hour
interval has a Poisson distribution. Experience has shown that P.X D 0/ D :1111:

Find the probability that during a randomly chosen one-hour interval, more than five
customers enter the store.

Exercise 6.27 (A Skewness and Kurtosis Calculation). Suppose X and Y are
independent Poisson, that X has skewness .5, and that X C Y has skewness 1

3
.

What are the skewness and kurtosis of Y ?

Exercise 6.28. * (A Pretty Question). Suppose X is a Poisson-distributed random
variable. Can three different values of X have equal probabilities?

Exercise 6.29. Suppose X has a Poisson distribution such that P.X D k/ D
P.X D k C 1/ for some fixed integer k. Find the mean of X .

Exercise 6.30 (A P-Value Calculation). It is estimated that the risk of going into a
coma with surgical anesthesia is 6 in 100,000. In the movie Coma, two patients out
of ten go into a coma during surgery. Calculate the p-value for these data.

Exercise 6.31. * (Couples Wishing Large families). Suppose a couple want to
have children until they have two children of each sex. What are the mean and the
variance of the total number of children they will have?
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Exercise 6.32 (Capture-Recapture). Suppose there are 10,000 fish in a pond. One
hundred were captured, marked, and released. Then 1000 were recaptured. What is
the probability that the recapture will contain more than 15 marked fish? Also do a
Poisson approximation.

Exercise 6.33. Suppose X has a hypergeometric distribution. Is it possible for
E.X/ to be equal to Var.X/?

Exercise 6.34. * Suppose X � Poi.�/. Find an expression for the probability that
X takes an even value.

Exercise 6.35. * (A Distribution on Rationals). SupposeX and Y are independent
Poisson random variables with means � and �, respectively. Let R D X

XCY
IX>0:

Find the distribution of R; i.e., P.R D m
n
/; .m; n/ D 1, and also P.R D 0/. What

can you say about the expected value of R if � D �?

Exercise 6.36 (Poisson Approximation). Assume that each of 2000 individuals
living near a nuclear power plant is exposed to particles of a certain kind of radi-
ation at the rate of one per week. Suppose that each hit by a particle is harmless
with probability 1 � 10�5 and produces a tumor with probability 10�5. Find the
approximate distribution of:

(a) the total number of tumors produced in the whole population over a one-year
period by this kind of radiation;

(b) the total number of individuals acquiring at least one tumor over a year from
this radiation.

Exercise 6.37. * (Poisson Approximation). Twenty couples are seated at a rectan-
gular table, husbands on one side and wives on the other, in a random order. Using
a Poisson approximation, find the probability that:

(a) exactly two husbands are seated directly across from their wives;
(b) at least three are;
(c) at most three are.

Exercise 6.38 (Poisson Approximation). There are five coins on a desk, with prob-
abilities .05, .1, .05, .01, and .04 for heads. Using a Poisson approximation, find the
probability of obtaining at least one head when the five coins are each tossed once.
Is the number of heads obtained binomially distributed in this problem?

Exercise 6.39 (Poisson Approximation). Typically, about 6% of guests with a con-
firmed reservation at a hotel with 1100 rooms do not show up. During a convention,
the hotel is already completely booked. How many additional reservations can the
hotel grant and be 99% sure that the number of guests with a confirmed reservation
who will be denied a room is at most two?

Exercise 6.40 (Use Your Computer). Simulate the birthday problem to find the
first person with the same birthday as yours. Perform the simulation 500 times.
How many people did it take to find the first match? Was it typically about the same
as the theoretical expected value?
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Exercise 6.41 (Use Your Computer). Simulate the capture-recapture experiment
with N D 5000 fish, a first catch of size D D 500, and a second catch of size
n D 250. Perform the simulation 500 times. About how many marked fish did you
find in the second catch? Did you ever see a second catch without any marked fish?

Exercise 6.42. LetX � Bin.n; p/. Prove that P.X is even/ D 1
2

C .1�2p/n

2
. Hence,

show that P.X is even/ is larger than 1
2

for any n if p < 1
2

but is larger than 1
2

for

only even values of n if p > 1
2

.
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Poisson, S. (1838). Recherches sur la probabilité des judgements en matieres criminelles of matiere

civile, Bachalier, Paris.
Steele, J. M. (1994). Le Cam’s Inequality and Poisson Approximations, Am. Math. Mon., 101,

48–54.
Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum

of dependent random variables, in Proceedings of the Sixth Berkeley Symposium, volume 2,
Le Cam, L., Neyman, J. and Scott. E. eds, 583–602, University of California Press, Berkeley.



Chapter 7
Continuous Random Variables

We mentioned in Chapter 4 that discrete random variables serve as good examples to
develop probabilistic intuition, but they do not account for all the random variables
that one studies in theory and applications. In this chapter, we introduce the so-called
continuous random variables, which typically take all values in some nonempty in-
terval; e.g., the unit interval, the entire real line, etc. The right probabilistic paradigm
for continuous variables cannot be pmfs. Discrete probability, which is based on
summing things, is replaced by integration when we deal with continuous random
variables and, instead of pmfs, we operate with a density function for the variable
The density function fully describes the distribution, and calculus occupies the place
of discrete operations, such as sums, when we come to continuous random variables.
The basic concepts and examples that illustrate how to do the basic calculations
are discussed in this chapter. Distinguished continuous distributions that arise fre-
quently in applications will be treated separately in later chapters.

7.1 The Density Function and the CDF

The main idea about calculation of probabilities concerning continuous random
variables can be understood by thinking of probabilities of events as masses of parts
of an object. Suppose the material of an object, such as a ball, had uniform density.
Then the mass of a portion of the ball would simply be the constant density times the
volume of that part of the ball. In the case of the material having nonuniform den-
sity, to get the mass of a portion of the ball, we just have to integrate the pointwise
density over that part of the ball. Points at which the material has a heavy density
will contribute more to the total mass. The mass of a single point is infinitely small,
but the mass of a part that has nonzero volume will have a positive mass. All of this
is physically intuitive.

Likewise, for a continuous random variable, any single value x is infinitely un-
likely and has probability zero; P.X D x/ D 0 for each specific number x. But
intervals with nonzero length usually will not have zero probability. Just as we mea-
sure the mass of part of an object, we calculate the probability of an interval as the
integral of a density function over that interval,

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 7, c� Springer Science+Business Media, LLC 2010
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P.a 
 X 
 b/ D
Z b

a

f .x/dx;

the function f .x/ being the density function and measuring the relative concentra-
tion of probability near x rather than being the probability at x. You can think of
a point x where the density function f .x/ is large as being a relatively important
point. A small interval, say x ˙ �, will have probability about 2�f .x/, and this will
be large compared with 2�f .y/ if y is some other point with a low density. The
important things to remember are:

I. It is not interesting to talk about probabilities of single values, P.X D x/ D 0

for any x.
II. A density function measures the relative importance of specific values, but the

density function f .x/ is not P.X D x/.
III. The probability of any event, that is a subset of the real line is determined by

integrating the density function over that event.

Here is a formal definition of a density function.

Definition 7.1. Let X be a real-valued random variable taking values in R, the real
line. A functionf .x/ is called the density function or the probability density function
(pdf) of X if

for all a; b;�1 < a 
 b < 1; P.a 
 X 
 b/ D
Z b

a

f .x/dxI

in particular, for a function f .x/ to be a density function of some random variable,
it must satisfy

f .x/ � 08x 2 RI
Z 1

�1
f .x/dx D 1:

The statement that P.a 
 X 
 b/ D R b

a
f .x/dx is the same as saying that

if we plot the density function f .x/, then the area under the graph between a
and b will give the probability that X is between a and b, while the statement thatR1

�1 f .x/dx D 1 is the same as saying that the area under the entire graph must be
one. This is a visually helpful way to think of probabilities for continuous random
variables; larger areas under the graph of the density function correspond to larger
probabilities.

The density function f .x/ can in principle be used to calculate the probability
that the random variable X belongs to a general set A, not just an interval. Indeed,
P.X 2 A/ D R

A
f .x/dx.

Caution. Integrals over completely general sets A in the real line are not defined.
To make this completely rigorous, one has to use measure theory and concepts of a
Lebesgue integral. We will, however, generally only want to calculate P.X 2 A/

for sets A that are a countable union of intervals. For such sets, defining the integralR
A
f .x/dx would not be a problem and we can proceed as if we are just calculating

ordinary integrals.
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The definition of the CDF (cumulative distribution function) remains the same as
what was given in Chapter 4.

Definition 7.2. Let X be a continuous random variable with a pdf f .x/. Then the
CDF of X is defined as

F.x/ D P.X 
 x/ D P.X < x/ D
Z x

�1
f .t/dt:

Remark. At any point x0 at which f .x/ is continuous, the CDF F.x/ is differen-
tiable, and F 0.x0/ D f .x0/: In particular, if f .x/ is continuous everywhere, then
F 0.x/ D f .x/ at all x.

Again, to be strictly rigorous, one really needs to say in the sentence above that
F 0.x/ D f .x/ at almost all x, a concept in measure theory that we will not dis-
cuss or worry about in this text. The point is that continuous random variables give
zero probabilities to specific values. So, one could play with a density function and
change it at one or a few values and still not affect anything about the distribution
of the variable. The almost all phrase guards against such manipulations at a few
values, which are allowed for continuous random variables. Having been warned
about it, we will not worry about this again and operate as if a pdf f .x/ has been
defined, once and for all, at all x.

In the discrete case, we had defined the independence of several discrete variables
X1; X2; : : : ; Xn as P.X1 D x1; : : : ; Xn D xn/ D Qn

iD1 P.Xi D xi / 8 x1; : : : ; xn:

One definition that works for any type of variable, discrete or not, is the following.
A specialized definition for a set of continuous variables X1; X2; : : : ; Xn will be
given in a later chapter. But we emphasize that the definition below always applies.

Definition 7.3. Let X1; X2; : : : ; Xn be n random variables defined on some sample
space �. We say that X1; X2; : : : ; Xn are independent if

P.X1 
 x1; X2 
 x2; : : : ; Xn 
 xn/ D
nY

iD1

P.Xi 
 xi / 8 x1; : : : ; xn;

, P.X1 > x1; X2 > x2; : : : ; Xn > xn/ D
nY

iD1

P.Xi > xi / 8 x1; � � � ; xn:

We start out with examples of pdfs and CDFs and illustrate some conceptual
issues using these examples.

Example 7.1 (Density vs. CDF). Consider the functions

f .x/ D 1; if 0 
 x 
 1I 0 if x … Œ0; 1�I
f .x/ D 3x2; if 0 
 x 
 1I 0 if x … Œ0; 1�I
f .x/ D 6x.1 � x/; if 0 
 x 
 1I 0 if x … Œ0; 1�I



130 7 Continuous Random Variables

f .x/ D 1
p
x.1 � x/

; if 0 
 x 
 1I 0 if x … Œ0; 1�I

f .x/ D 4x2 � 2

3
x; if 0 
 x 
 1I 0 if x … Œ0; 1�:

We want to verify which, if any, of these functions is a valid density function.
The first four functions are all clearly nonnegative; however, the last function in

our list is negative if 4x2 < 2
3
x .if x < 1

6
/, and therefore it is not a valid pdf. Thus,

we only need to verify if the first four functions integrate to one. Note that each

function is zero when x … Œ0; 1�, and so
R1

�1 f .x/dx D R 1

0
f .x/dx: So we need to

verify whether
R 1

0
f .x/dx D 1 for the first four functions.

For the first two functions, it is immediately verified that
R 1

0 f .x/dx D 1. For
the third function,

Z 1

0

6x.1�x/dxD 6

Z 1

0

x.1�x/dxD 6

�Z 1

0

xdx �
Z 1

0

x2dx

	

D 6

�
1

2
� 1

3

	

D 1I

for the fourth function,

Z 1

0

1
p
x.1 � x/

dx D
Z �=2

0

1

sin t cos t
2 sin t cos tdt D

Z �=2

0

2dt D �;

on making the substitution x D sin2 t: Since the function integrates to � rather than
to one, it is not a valid pdf; however, if we consider instead the function

f .x/ D 1

�
p
x.1 � x/

; if 0 
 x 
 1I 0 ifx … Œ0; 1�;

then it is both nonnegative and integrates to one, and so it will be a valid pdf. The
constant c D 1

�
is called a normalizing constant.

It is instructive to see a plot of these functions on Œ0; 1� to appreciate that den-
sity functions can take a variety of shapes (see Figure 7.1). There are no shape
restrictions on a density function in general, the only restriction is that they should
be nonnegative and should integrate to 1. For example, of our four functions, one
is a constant, one is increasing, one is symmetric, first increasing and then decreas-
ing, fourth one is shaped like a cereal bowl (see Figure 7.2), being unbounded as
x ! 0; 1. The density function that is constantly equal to 1 in the interval Œ0; 1�
is known as the uniform density on Œ0; 1�. The word uniform suggests that we uni-
formly assign the same importance to every value in Œ0; 1�. We can analogously
define a uniform density on any bounded interval Œa; b�; again, the density is con-
stant throughout the interval Œa; b�. If a random variable X is uniformly distributed
on a bounded interval Œa; b�, we write X � U Œa; b�.

Side by side, for three of these density functions, we also plot the CDF. Note that
the CDF is always a smooth, nondecreasing function, starting at zero when x D 0
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Fig. 7.1 Top: PDF (left) and CDF (right) for the first function. Bottom: PDF (left) and CDF (right)
for the third function
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Fig. 7.2 PDF and CDF for the fourth function

and ending at one when x D 1 Unlike the density functions, the CDF has a certain
uniformity in shape.

Example 7.2 (Density with Holes). A density function can be positive on some in-
tervals and zero on some other intervals. Here is a very simple example. Consider
the function

f .x/ D 48x.1 � 4x/ if 0 
 x 
 1

4

D 48.1� x/.4x � 3/ if
3

4

 x 
 1

D 0 if x < 0 or x > 1 or
1

4
< x <

3

4
:

This density function is plotted in Figure 7.3.
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Fig. 7.3 Plot of a density with a hole

This function is always nonnegative, nonzero between 0 and :25 and between
:75 and 1, and zero elsewhere; in particular, it is zero between :25 and :75. That
is, it has a hole. Such a density function is trying to model a random variable that
takes values near zero or near one but does not take moderate values. To model
such random variables, one may have to use densities that are nonzero over various
disjoint intervals but zero in between. In contrast, a CDF cannot take zero values at
a point after having been positive at some previous point.

Example 7.3 (Using the Density to Calculate a Probability). Suppose X has the
uniform density on Œ0; 1�, and we write X � U Œ0; 1�. Consider the events

A D fX is between .4 and .6g;
B D fX.1� X/ 
 :21g;
C D

�

sin
��

2
X
�

� 1p
2

�

;

D D fX is a rational numberg:

We will calculate each ofP.A/; P.B/; P.C /, andP.D/. Recall that the probability
of any event, sayE , is calculated as P.E/ D R

E
f .x/dx, where f .x/ is the density

function, here f .x/ D 1 on Œ0; 1�. Then,

P.A/ D
Z :6

:4

dx D :2:

Next, note that x.1 � x/ D :21 has two roots in [0,1], namely x D :3; :7, and
x.1 � x/ 
 :21 if x 
 :3 or � :7. Therefore,

P.B/ D P.X 
 :3/C P.X � :7/ D
Z :3

0

dx C
Z 1

:7

dx D :3C :3 D :6:
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For the event C; sin.�
2
X/ � 1p

2
if (and only if) �

2
X � �

4
) X � 1

2
. Thus,

P.C / D P

�

X � 1

2

�

D
Z 1

1
2

dx D 1

2
:

Finally, the set of rationals in [0,1] is a countable set. Therefore,

P.D/ D
X

xIx is rational

P.X D x/ D
X

xIx is rational

0 D 0:

7.1.1 Quantiles

We defined the median of a random variable in Chapter 4. That definition applies
for continuous random variables also. We rephrase that definition for continuous
random variables for convenience.

Definition 7.4. Let a continuous random variableX have the CDF F.x/. Any num-
ber m such that F.m/ D :5 is a median of X , or equivalently a median of F .

Example 7.4 (From CDF to PDF and Median). Consider the function F.x/ D 0

if x < 0IF.x/ D 1 � e�x if 0 
 x < 1: This is a nonnegative nondecreasing
function that goes to one as x ! 1, is continuous at any real number x, and is also
differentiable at any x except x D 0. Thus, it is the CDF of a continuous random
variable, and the PDF can be obtained using the relations f .x/ D F 0.x/ D e�x ;

0 < x < 1, and f .x/ D F 0.x/ D 0; x < 0. At x D 0, F.x/ is not differentiable.
But we can define the PDF in any manner we like at one specific point, so, to be
specific, we will write our PDF as

f .x/ D e�x if 0 
 x < 1
D 0 if x < 0:

This density is called the standard exponential density and is enormously important
in practical applications.

From the formula for the CDF, we see that F.m/ D :5 ) 1 � e�m D :5 )
e�m D :5 ) m D log 2 D :693: Thus, we have established that the standard
exponential density has median log 2 D :693.

Example 7.5 (CDF with a Flat Zone). Recall that, as a rule, the CDF F.x/ and the
pdf f .x/ share the mutual relationship f .x/ D F 0.x/. Therefore, if the pdf f .x/
has a hole (that is, if f .x/ is zero in some interval Œa; b�), then the CDF F.x/ will
remain constant in that interval. If we plot the CDF, it will look flat in the interval
Œa; b�. As an example, consider our earlier example of a pdf with a hole. We obtain,
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as always, the CDF from the density as F.x/ D R x

�1 f .t/dt . If we do the integral,
then we find that the formula for the CDF is

F.x/ D 0; x < 0I
D 24x2 � 64x3; 0 
 x 
 1

4
I

D :5;
1

4
< x <

3

4
I

D 41� 144x C 168x2 � 64x3;
3

4

 x 
 1I

D 1; x > 1:

The flat zone is the interval of values from :25 to :75 (see Figure 7.4).
This example shows that, given a number p, there can be infinitely many values

x such that F.x/ D p. Any such value splits the distribution into two parts, 100p%
of the probability below it and 100.1�p/% above it. Such a value is called the pth
quantile or percentile of F . However, in order to give a prescription for choosing
a unique value when there is more than one x at which F.x/ D p, the following
definition is adopted.

Definition 7.5. Let X have the CDF F.x/. Let 0<p<1. The pth quantile or pth
percentile of X is defined to be the first x such that F.x/ � p:

F�1.p/ D inffx W F.x/ � pg:
The function F�1.p/ is also sometimes denoted as Q.p/ and is called the quantile
function of F or X .

-0.5 0.5
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Fig. 7.4 CDF with a flat zone
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Remark. Statisticians callQ.:25/ andQ.:75/ the first and third quartiles of F orX .

Example 7.6. Consider the CDF of Example 7.5, which had a flat zone. Then,
F�1.:5/ is .25, while F�1.:25/ is the root of the equation 24x2 � 64x3 D :25,
which is x D :125. Likewise, F �1.:75/ is x D :875.

7.2 Generating New Distributions from Old

The distribution of a continuous random variable is completely described if we de-
scribe either its density function or its CDF. For flexible modeling, it is useful to
know how to create new densities or new CDFs out of densities or CDFs that we
have already thought of. This is similar to generating new functions out of old func-
tions in calculus. The following theorem describes some standard methods to make
new densities or CDFs out of already available ones.

Theorem 7.1.
(a) Let f .x/ be any density function. Then, for any real number � and any � > 0,

g.x/ D g�;� .x/ D 1

�
f
�x � �

�

�

is also a valid density function.
(b) Let f1; f2; : : : ; fk be k densities for some k; 2 
 k<1, and let p1; p2; : : : ; pk

be k constants such that each pi � 0 and
Pk

iD1 pi D1. Then,

f .x/ D
kX

iD1

pifi .x/

is also a valid density function.
(c) Let F1; F2; : : : ; Fk be k CDFs for some k; 2 
 k < 1, and let p1; p2; : : : ; pk

be k constants such that each pi � 0 and
Pk

iD1 pi D 1. Then,

F.x/ D
kX

iD1

piFi .x/

is also a valid CDF.
(d) Let F be a CDF and ˛ any positive real number. Then,

G.x/ D F ˛.x/

is also a valid CDF.
(e) Let F1; F2; : : : ; Fk be k CDFs, for some k; 2 
 k < 1. Then,

G.x/ D F1.x/F2.x/ : : : Fk.x/

is also a valid CDF.
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(f) Let F be a CDF and n � 2 an integer. Then,

G.x/ D 1 � .1 � F.x//n

is also a valid CDF.

Proof. The proof of each part follows from the defining properties of a density
function and a CDF. For example, for part (a), since f .x/ � 0 for all x, so is g.x/
because � > 0. Also,

Z 1

�1
g.x/dx D

Z 1

�1
1

�
f
�x � �

�

�
dx D

Z 1

�1
f .z/d z D 1

on making the substitution z D x��
�
:

For part (b),
kX

iD1

pifi .x/ � 0 8x

because each fi .x/ � 0 8x and each pi � 0: Also,
R1

�1Œ
Pk

iD1 pifi .x/�dx D
Pk

iD1 pi

R1
�1 fi .x/dx D Pk

iD1 pi D 1 using the fact that each fi is a density
function and integrates to one.

Part (c) is basically a restatement of part (b) but is also true for discrete random
variables.

To prove part (d), observe that G.x/ goes to zero as x ! �1 because F does,
and G.x/ goes to one as x ! 1 because F does. Also, G.x/ is nondecreasing
because F is, and finally, for the continuous case, G is continuous because F is. So
G.x/ satisfies every defining property of a continuous CDF and is therefore a valid
CDF.

The proofs of part (e) and part (f) use exactly the same argument.

Remark. A density of the form 1
�
f .x��

�
/ is called a location scale parameter

density, the idea being that the base or the null density f .x/ has been shifted
to some new location � and the variable has been scaled by � . Densities of the

form
Pk

iD1 pifi .x/ are called mixture densities because they are formed by mix-
ing f1; f2; : : : ; fk according to the weights p1; p2; : : : ; pk . Mixture densities are
very useful in generating densities of various shapes and tails; i.e., for controlling
the probabilities of values that are very large in magnitude. Densities that allow
a random variable X to take large values with significant probabilities are often
called heavy-tailed densities, and mixtures are very standard methods for generat-
ing heavy-tailed densities.

Example 7.7 (A Mixture Density). We have previously seen the following three
densities on the unit interval Œ0; 1�:

f1.x/ D 1If2.x/ D 6x.1 � x/If3.x/ D 1

�
p
x.1 � x/

:



7.3 Normal and Other Symmetric Unimodal Densities 137

x

1.2

0.2 0.4 0.6 0.8 1

1.4

1.6

Fig. 7.5 Mixture of three densities on [0,1]

Now consider the mixture density

f .x/ D 1

3
f1.x/C 1

3
f2.x/C 1

3
f3.x/:

A plot of this mixture density is given for illustration in Figure 7.5. Notice that the
mixture density generates a new shape that is different from the shapes of each fi .

7.3 Normal and Other Symmetric Unimodal Densities

Two very familiar concepts in probability and statistics are those of symmetry and
unimodality. Symmetry of a density function means that around some point the
density has two halves that are exact mirror images of each other. Unimodality
means that the density has just one peak point at some value. We give the formal
definitions.

Definition 7.6. A density function f .x/ is called symmetric around a numberM if
f .M C u/ D f .M � u/8 u > 0: In particular, f .x/ is symmetric around zero if
f .u/ D f .�u/8 u > 0:

Definition 7.7. A density function f .x/ is called strictly unimodal at (or around) a
numberM if f .x/ is increasing for x < M and decreasing for x > M .

Example 7.8 (The Triangular Density). Consider the density function

f .x/ D cx; 0 
 x 
 1

2

D c.1 � x/; 1
2


 x 
 1;
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Fig. 7.6 Triangular density on [0, 1]

where c is a normalizing constant. It is easily verified that c D 4: This density
consists of two different linear segments on Œ0; 1

2
� and Œ1

2
; 1�. A plot of this density

looks like a triangle (see Figure 7.6), and it is called the triangular density on Œ0; 1�.
Note that it is symmetric and strictly unimodal.

Example 7.9 (The Double Exponential Density). We have previously seen the stan-
dard exponential density on Œ0;1/ defined as e�x; x � 0. We can extend this to the
negative real numbers by writing �x for x in the formula above; i.e., simply define
the density to be ex for x 
 0. Then, we have an overall function that equals

e�x for x � 0;

ex for x 
 0:

This function integrates to

Z 1

0

e�xdx C
Z 0

�1
exdx D 1C 1 D 2:

So, if we use a normalizing constant of 1
2

, then we get a valid density on the entire
real line:

f .x/ D 1

2
e�x for x � 0;

f .x/ D 1

2
ex for x 
 0:
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Fig. 7.7 Standard double exponential density

The two lines can be combined into one formula as

f .x/ D 1

2
e�jxj;�1 < x < 1:

This is the standard double exponential density and is symmetric, unimodal, and
has a cusp at x D 0; see Figure 7.7.

Example 7.10 (The Normal Density). The double exponential density tapers off to
zero at the linear exponential rate at both tails; i.e., as x ! ˙1. If we force the den-

sity to taper off at a quadratic exponential rate, then we will get a function like e�ax2

for some chosen a > 0. While this is obviously nonnegative and also has a finite
integral over the whole real line, it does not integrate to one. So we need a normal-
izing constant to make it a valid density function. Densities of this form are called
normal densities and occupy the central place among all distributions in the theory
and practice of probability and statistics. Gauss, while using the method of least
squares for analyzing astronomical data, used the normal distribution to justify least
squares methods; the normal distribution is also often called the Gaussian distribu-
tion, although de Moivre and Laplace both worked with it before Gauss. Physical
data on many types of variables approximately fit a normal distribution. The theory
of statistical methods is often best understood when the underlying distribution is
normal. The normal distributions have many unique properties not shared by any
other distribution. Because of all these reasons, the normal density, also called the
bell curve, is the most used, most important, and most-studied distribution.

Let

f .x/ D f .xj�; �/ D ce
� .x��/2

2�2 ;�1 < x < 1;

where c is a normalizing constant. The normalizing constant can be proved to be
equal to 1

�
p

2�
. Thus, a normal density with parameters � and � is given by

f .xj�; �/ D 1

�
p
2�
e

� .x��/2

2�2 ;�1 < x < 1:
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Fig. 7.8 The standard normal density and the CDF

We write X � N.�; �2/; we will see later that the two parameters � and �2 are
the mean and the variance of this distribution. Note that the N.�; �2/ density is a
location-scale parameter density.

If � D 0 and � D 1, this simplifies to the formula 1p
2�
e� x2

2 ;�1 < x < 1;

and is universally denoted by the notation �.x/. It is called the standard normal
density. The standard normal density, then, is

�.x/ D 1p
2�
e� x2

2 ;�1 < x < 1:

Consequently, the CDF of the standard normal density is the functionR x

�1 �.t/dt . It is not possible to express the CDF in terms of the elementary
functions. It is standard practice to denote it by using the notation ˆ.x/ and
compute it using widely available tables or software for a given x, needed in an
application.

A plot of the standard normal density and its CDF are given in Figure 7.8. Note
the bell shape of the density function �.x/.

The normal distribution will be studied in greater detail in the next chapter.

7.4 Functions of a Continuous Random Variable

As with discrete random variables, we are often interested in the distribution of some
function g.X/ of a continuous random variable X . For example, X could measure
the input into some production process, and g.X/ could be a function that describes
the output. Note that just because X is a continuous random variable, any function
g.X/ need not also be a continuous random variable; g.X/ could be an indicator
variable, for example. But, indeed, in some sense g.X/ often takes as many values
as X does, in which case g.X/ will be a continuous random variable, too. The
precise way to formulate that is the following result.



7.4 Functions of a Continuous Random Variable 141

Theorem 7.2 (The Jacobian Formula). Let X have a continuous pdf f .x/ and
a CDF F.x/, and suppose Y D g.X/ is a strictly monotone function of X with a
nonzero derivative. Then Y has the pdf

fY .y/ D f .g�1.y//

jg0.g�1.y//j ;

where y belongs to the range of g.

Proof. Since g.X/ is strictly monotone, it has an inverse function. Suppose g.X/
is strictly increasing. Then,

FY .y/ D P.Y 
 y/ D P.g.X/ 
 y/ D P.X 
 g�1.y//

D F.g�1.y//:

On differentiating,

fY .y/ D f .g�1.y//
d

dy
g�1.y/ D f .g�1.y//

g0.g�1.y//
I

the proof for the strictly decreasing case is similar. We will often refer to this result
as the Jacobian formula.

Remark. What kinds of functions g.X/ are we usually interested in? They tend to
be familiar elementary functions, such as Xn for some power n, or an exponential
function such as eX , or a logarithmic function logX when X is a positive random
variable, etc. Of course, for purposes of illustration, we could consider any function.
We work out a few examples below.

Example 7.11 (Simple Linear Transformations). SupposeX is any continuous ran-
dom variable with a pdf f .x/, and let Y D g.X/ be the linear function (a location
and scale change on X ) g.X/ D a C bX; b ¤ 0. This is obviously a strictly
monotone function, as b ¤ 0. Take b > 0. Then the inverse function of g is
g�1.y/ D y�a

b
, and of course g0.x/  b. Putting it all together, from the theorem

above,

fY .y/ D f .g�1.y//

jg0.g�1.y//j D 1

b
f
�y � a

b

�
I

in general, whether b is positive or negative, the formula is

fY .y/ D 1

jbjf
�y � a

b

�
:

Example 7.12 (Uniform Functions Are Usually Not Uniform). Suppose X �
U Œ0; 1�, the uniform distribution on Œ0; 1�. Let g.X/ D X2; note that g.X/ is a



142 7 Continuous Random Variables

strictly monotone function on Œ0; 1� (although it would not have been so on Œ�1; 1�).
Furthermore, the inverse function is derived easily:

g.x/ D x2 D y ) x D p
y D g�1.y/:

Also, g0.x/ D 2x: Putting it all together, the pdf of Y D X2 is

fY .y/ D f .g�1.y//

g0.g�1.y//
D f .

p
y/

2
p
y

D 1

2
p
y
; 0 
 y 
 1:

Note, therefore, that although X is uniformly distributed, X2 is not uniformly dis-
tributed. However, any linear function of X , say a C bX , will also be uniformly
distributed, on the interval Œa; a C b�.

Example 7.13 (Large Powers of Uniforms). This example is similar to the previous
one, except we take a general power g.X/ D Xn, whereX � U Œ0; 1�. Again, g.X/
is a strictly monotone function on Œ0; 1�, and the inverse function is g�1.y/ D y1=n.
Also, g0.x/ D nxn�1. Once again, putting it all together, the pdf of Y D Xn is

fY .y/ D f .g�1.y//

g0.g�1.y//
D 1

ny.n�1/=n
D 1

n
y

1
n �1;

0 < y < 1. Let us see a plot of this pdf for a large n, say n D 100. The pdf,
plotted in Figure 7.9, is very spiky, and nearly all the probability is concentrated
near y D 0. Informally speaking, for large n;Xn � 0 with a very large probability.
This is what statisticians and probabilists call convergence in probability to zero.

Example 7.14 (An Interesting Function that Is Not Strictly Monotone). Suppose X

has the standard normal density f .x/ D 1p
2�
e�x2=2 on .�1;1/. We want to find
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Fig. 7.9 PDF of the nth power of U Œ0; 1�I n D 100
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the density of Y D g.X/ D X2. However, we immediately realize that X2 is not a
strictly monotone function on the whole real line (its graph is a parabola). Thus, the
general formula given above for densities of strictly monotone functions cannot be
applied in this problem. We attack the problem directly. Thus,

P.Y 
 y/ D P.X2 
 y/ D P.X2 
 y;X > 0/C P.X2 
 y;X < 0/

D P.0 < X 
 p
y/C P.�p

y 
 X < 0/

D F.
p
y/ � F.0/C ŒF .0/ � F.�p

y/� D F.
p
y/� F.�p

y/;

where F is the CDF of X ; i.e., the standard normal CDF.
Since we have obtained the CDF of Y , we now differentiate to get the pdf of Y :

fY .y/ D d

dy
ŒF.

p
y/� F.�p

y/� D f .
p
y/

2
p
y

� f .�p
y/

�2py

(by use of the chain rule)

D f .
p
y/

2
p
y

C f .
p
y/

2
p
y

(since f is symmetric around zero, i.e., f .�u/ D f .u/ for any u)

D 2f .
p
y/

2
p
y

D f .
p
y/p
y

D e�y=2

p
2�y

;

y > 0. This is a very special density in probability and statistics and is called the
chi-square density with one degree of freedom. We have thus proved that the square
of a standard normal random variable has a chi-square distribution with one degree
of freedom.

There is an analogous Jacobian formula for transformations g.X/ that are not
one-to-one. Basically, we need to break the problem up into disjoint intervals on
each of which the function g is one-to-one, apply the usual Jacobian technique on
each such subinterval, and then piece them together. Theorem 7.3 gives the formula.

Theorem 7.3 (Density of a Nonmonotone Transformation). Let X have a con-
tinuous pdf f .x/ and let Y D g.X/ be a transformation of X such that, for a
given y, the equation g.x/ D y has at most countably many roots, say x1; x2; : : :,
where the xi depend on the given y. Assume also that g has a nonzero derivative
at each xi . Then, Y has the pdf

fY .y/ D
X

i

f .xi /

jg0.xi /j :

Here is an interesting example of an application of this formula.

Example 7.15 (Density of sin X ). Suppose X has a density f .x/ on the real line.
We want to find the density of Y D sinX . Clearly, sinX is not a one-to-one
transformation of X . Indeed, the equation sin x D y has the infinitely many roots
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xi D arcsinyC2i�; i D 0;˙1;˙2; : : :, where arcsiny denotes the usual principal
arcsine value of y (which is between � �

2
and �

2
). The derivative of the function

g.x/ D sin x is g0.x/ D cos x, and therefore

g0.xi /D cos.arcsinyC 2i�/D cos.arcsiny/ cos.2i�/D cos.arcsiny/ D
p
1 � y2:

Therefore, the density of Y D sinX , using an application of the formula above, is

fY .y/ D
1X

iD�1

f .arcsiny C 2i�/
p
1 � y2

D 1
p
1 � y2

1X

iD�1
f .arcsiny C 2i�/:

Of course, depending on how complex f .x/ is, there may or may not be a closed-
form formula for the part

P1
iD�1 f .arcsiny C 2i�/.

Example 7.16 (From Exponential to Uniform). Suppose X has the standard expo-
nential density f .x/ D e�x; x � 0. Let Y D g.X/ D e�X . Again, g.X/ is a
strictly monotone function, and the inverse function is found as follows:

g.x/ D e�x D y ) x D � logy D g�1.y/:

Also, g0.x/ D �e�x ;

) fY .y/ D f .g�1.y//

g0.g�1.y//
D e�.� log y/

je�.� log y/j
D y

y
D 1; 0 
 y 
 1:

We have thus proved that if X has a standard exponential density, then Y D e�X is
uniformly distributed on Œ0; 1�.

Remark. There is something special about the example above. The pdf of the stan-
dard exponential random variable is e�x; x > 0. On the other hand, the CDF is
F.x/ D 1 � e�x; x > 0 (and F.x/ D 0 for x 
 0). Our function Y D g.X/ in the
example above is therefore g.X/ D 1 � F.X/, and X was chosen to be standard
exponential. There is actually nothing special about choosing X to be the standard
exponential; the following important result says that what we saw in the example
above is completely general for all continuous random variables.

7.4.1 Quantile Transformation

Theorem 7.4. LetX have a continuous CDF F.x/. Consider the new random vari-
ables Y D 1 � F.X/ and Z D F.X/. Then both Y , and Z are distributed as
U Œ0; 1�.
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Proof. First note that Y D 1 �Z. It is always the case that if Z � U Œ0; 1�, then so
is Y . So we only prove that Z � U Œ0; 1�.

Recall the definition of the quantile functionQ.p/ D F�1.p/ of a random vari-
able X with CDF F . From its definition, we have

F�1.p/ � x ) p � F.x/:

Therefore, for any given p in .0; 1/,

P.Z 
 p/ D P.F.X/ 
 p/ D P.X 
 F �1.p// D F.F�1.p// D p;

and therefore the CDF of Z matches the CDF of the U Œ0; 1� distribution (and of
course, on differentiating, the pdf of Z matches the uniform density, constantly
equal to one on .0; 1/). Therefore,Z � U Œ0; 1�.

It is useful to remember this result in informal notation:

F.X/ D U and F�1.U / D X:

The implication is a truly useful one. Suppose for purposes of computer experiments
that we want to have computer-simulated values of some random variable X that
has some CDF F and the quantile function Q D F�1. Then, all we need to do
is to have the computer generate U Œ0; 1� values, say u1; u2; : : : ; un, and use x1 D
F�1.u1/; x2 D F�1.u2/; : : : ; xn D F�1.un/ as the set of simulated values for
our random variable of interest, namely X . Thus, the problem can be reduced to a
simulation of uniform values, a simple task. The technique has so many uses that
there is a name for this particular function Z D F�1.U / of a uniform random
variable U : the quantite transformation.

Definition 7.8 (Quantile Transformation). Let U be a U Œ0; 1� random variable
and let F.x/ be a continuous CDF. Then the function of U defined as X D F �1.U /

is called the quantile transformation of U , and it has exactly the CDF F .
What we have shown here is that we can simply start with a U Œ0; 1� random vari-

able and convert it to any other continuous random variable X we want simply by
using a transformation of U , and that transformation is the quantile transformation.

7.4.2 Cauchy Density

Example 7.17 (The Cauchy Distribution). The Cauchy density, like the normal and
the double exponential densities, is also symmetric and unimodal, but the properties
are very different. It is such an atypical density that we often think of the Cauchy
density first when we look for a counterexample to a conjecture. There is a very
interesting way to obtain a Cauchy density from a uniform density by using the
quantile transformation. We describe that derivation in this example.
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Suppose a person holds a flashlight in his hand and, standing one foot away from
an infinitely long wall, points the beam of light in a random direction. Here, by
random direction we mean that the point where the light ray lands makes an angle
X with the individual (considered to be a straight line one foot long), and this angle
X � U Œ��=2; �=2�: Let Y be the horizontal distance from the person of the point
at which the light lands, with Y being considered negative if the light lands on the
person’s left and positive if it lands on the person’s right.

Then, by elementary trigonometry,

tan.X/ D Y

1
) Y D tan.X/:

Now g.X/ D tanX is a strictly monotone function of X , and the inverse function
is g�1.y/ D arctan.y/;�1 < y < 1: Also, g0.x/ D 1 C tan2 x: Putting it all
together,

fY .y/ D
1

�
1C Œtan.arctany/�2

D 1

�.1C y2/
;�1 < y < 1:

This is the standard Cauchy density.
The Cauchy density is particularly notorious for its heavy tail. We will see certain

consequences of this heavy tail in the next section. A plot of the standard Cauchy
density stands out as much heavier tailed and at the same time more peaked than the
standard normal density (see Figure 7.10).

Example 7.18 (An Oddity of the Cauchy Distribution). It is easy to show that essen-
tially the only monotone function of a normal random variable that is also normally
distributed is a linear function. However, this is not true of a Cauchy distribution;
many nonlinear monotone functions of a Cauchy random variable also have Cauchy
distributions. The simplest example is the function 1

X
.

Let X have the standard Cauchy density f .x/ D 1
�.1Cx2/

;�1 < x < 1, and

let Y D g.X/ D 1
X

. This is a strictly monotone function, with the inverse function

-3 -2 -1 -10 -51 2 3

0.1

0.2

0.3

0.4

5

0.05

0.1

0.15

0.2

0.25

0.3

10

Fig. 7.10 Standard normal and standard Cauchy densities
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g�1.y/ D 1
y

and g0.x/ D � 1
x2 . Therefore, by the general formula for the density

of a monotone function,

fY .y/ D
f
�

1
y

�

jg0
�

1
y

�
j

D 1=� 	 1=.1C 1=y2/

1=.1=y2/

D 1

�

y2

1C y2

1

y2
D 1

�.1C y2/
;

which proves that Y D 1

X
also has the standard Cauchy density.

7.5 Expectation of Functions and Moments

For discrete random variables, the expectation was seen to be equal to
P

x xP

.X Dx/. Of course, for continuous random variables, the analogous sum
P

x xf .x/

is not defined. We can think of approximating a continuous random variable by a
very fine discrete random variable. To be specific, suppose X takes values in Œ0; 1�
and has the probability density f .x/. Now divide the interval Œ0; 1� into a fine parti-
tion Œ0; 1

n
�; Œ 1

n
; 2

n
�; Œ 2

n
; 3

n
�; : : : ; Œn�1

n
; 1�. On each subinterval Œ.i �1/=n; i=n�, replace

X by the upper endpoint i
n

(you could replace it by the midpoint or the lower end-
point also). So, now we have devised a discrete random variable Y D Yn and, by
construction, X and Y are never more than 1

n
apart, which would be small if n is

large. What is the expectation of Y ? From our discrete case formula,

E.Y / D
nX

iD1

i

n
P

�

Y D i

n

�

D
nX

iD1

i

n
P..i � 1/=n 
 X 
 i=n/

D
nX

iD1

i

n

"Z i=n

.i�1/=n

f .x/dx

#

�
nX

iD1

i

n

1

n
f .i=n/

D 1

n

nX

iD1

i

n
f .i=n/ �

Z 1

0

xf .x/dx

by the definition of an integral as the limit of the (upper) Riemann sum.
This motivates the definition of expectation for continuous random variables.

Definition 7.9. LetX be a continuous random variable with a pdf f .x/. We say that
the expectation of X exists if

R1
�1 jxjf .x/dx < 1, in which case the expectation,

or the expected value, or the mean of X is defined as

E.X/ D � D
Z 1

�1
xf .x/dx:
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Suppose X is a continuous random variable with a pdf f .x/ and Y D g.X/ is a
function of X . In the discrete case, we saw that we could calculate the expectation
of Y in two equivalent ways: as

P
y yP.Y D y/ or directly as

P
x g.x/P.X D x/.

A similar equivalence holds in the continuous case. We can compute the expectation
as
R
yfY .y/dy or

R
g.x/f .x/dx. Since Y need not always be a continuous random

variable just becauseX is, it may not in general have a density fY .y/, but the second
expression is always applicable and correct.

Theorem 7.5. Let X be a continuous random variable with pdf f .x/. Let g.X/
be a function of X . The expectation of g.X/ exists if and only if

R1
�1 jg.x/jf .x/

dx<1, in which case the expectation of g.X/ is

EŒg.X/� D
Z 1

�1
g.x/f .x/dx:

The definitions of moments and variance remain the same as in the discrete case.

Definition 7.10. Let X be a continuous random variable with pdf f .x/. Then the
kth moment of X is defined to be E.Xk/; k � 1. We say that the kth moment does
not exist if E.jX jk/ D 1.

Definition 7.11. Let X be a continuous random variable with pdf f .x/. Suppose
the expectation of X exists, and let � D E.X/. Then the variance of X is defined
as Var.X/ D �2 D EŒ.X � �/2�.

We say that the variance of X does not exist if EŒ.X � �/2� D 1.

Proposition. Suppose X is a continuous random variable with pdf f .x/. Then its
variance, provided it exists, is equal to

�2 D
Z 1

�1
.x � �/2f .x/dx D

Z 1

�1
x2f .x/dx � �2:

Proof. The first formula is simply a restatement of the definition of the variance.
The second equation follows from simple algebra and is omitted.

One simple observation that saves calculations, but is sometimes overlooked, is
that the proof merely uses the integration result that the integral of the product of
an odd function and an even function on a symmetric interval is zero if the integral
exists.

Proposition. Suppose X has a distribution symmetric around some number a; i.e.,
X � a and a�X have the same distribution. Then, EŒ.X � a/2kC1� D 0, for every
k � 0, provided the expectationEŒ.X � a/2kC1� exists.

For example, if X has a distribution symmetric about zero, then any odd mo-
ment (e.g., E.X/;E.X3/; etc), provided it exists, must be zero. There is no need to
calculate it; it is automatically zero.

We will now work out a number of examples.

Example 7.19 (Moments of the Uniform). Let X � U Œ0; 1�. We will evaluate the
expectations of
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XkI logX I eaX I
�

X � 1

2

�2

:

First,

E.Xk/ D
Z 1

0

xkf .x/dx D
Z 1

0

xkdx D 1

k C 1
:

Next,

E.logX/ D
Z 1

0

logxdx D
Z 0

�1
yeydy D �1;

on making the substitution y D logx: Third,

E.eaX / D
Z 1

0

eaxdx D 1

a
eaxj10 D ea � 1

a
:

Finally,

E

"�

X � 1

2

�2
#

D E

�

X2 �X C 1

4

	

D 1

3
� 1

2
C 1

4
D 1

12
:

Note that, since E.X/ D 1
2

,

E

"�

X � 1

2

�2
#

is by definition the variance of X . Thus, we have proved that if X � U Œ0; 1�, then
the mean and variance of X are 1

2
and 1

12
:

Example 7.20. A lion sets a circular territory for itself by choosing a radius at ran-
dom according to a standard exponential density (the unit being a mile). We want to
compute the expected area of the lion’s territory.

Denote by X the radius of the lion’s territory; then X has the density e�x for
x > 0 and zero otherwise. Since the area of a circle with radius x is �x2, we have

E.area/ D
Z 1

0

�x2e�xdx D �

Z 1

0

x2e�xdx D 2�:

Example 7.21 (Area of a Random Triangle). Suppose an equilateral triangle is con-
structed by choosing the common side lengthX to be uniformly distributed on Œ0; 1�.
We want to find the mean and the variance of the area of the triangle.

For a general triangle with sides a; b; c, the area equals

area D
p
s.s � a/.s � b/.s � c/;

where s D aCbCc
2

. When all the side lengths are equal, say, to a, this reduces top
3

4
a2. Therefore, in this example, we want the mean and variance of Y D

p
3

4
X2.
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The mean is

E.Y / D
p
3

4
E.X2/ D

p
3

4

1

3
D 1

4
p
3
:

The variance equals

Var.Y / D E.Y 2/� ŒE.Y /�2 D 3

16
E.X4/ � 1

48
D 3

16

1

5
� 1

48

D 3

80
� 1

48
D 1

60
:

Example 7.22 (Time to Response). An auto towing company services one 50 mile
stretch of a highway and is situated 20 miles from one end. Breakdowns occur uni-
formly along the highway, and the towing company trucks travel at 50 mph. We
want to find the mean and the variance of the time elapsed between the instant the
company is called and that a truck arrives.

Call the left endpoint of the 50 mile stretch zero, and letX be the number of miles
from the left endpoint that a breakdown occurs. Then X � U Œ0; 50�. Assume that
the towing company is located 20 miles from the left endpoint, so that the distance
Y of the breakdown from the location of the towing company is Y D jX � 20j.
It will take the truckZ D Y

50
D jX�20j

50
hours to reach the location of the breakdown.

We want the mean and variance of Z.
First,

E.Z/ D E

� jX � 20j
50

�

D 1

50

Z 50

0

jx � 20jf .x/dxD 1

50

1

50

Z 50

0

jx � 20jdx

D 1

2500

Z 20

0

.20 � x/dxC
Z 50

20

.x � 20/dxD 1

2500
Œ200C 450�D :26 hours:

Next,

E.Z2/ D 1

2500
EŒ.X � 20/2� D 1

2500
EŒX2 � 40X C 400�

D 1

2500

1

50

Z 50

0

.x2 � 40x C 400/dx D :0933;

and therefore

Var.Z/ D E.Z2/ � ŒE.Z/�2 D :0933� :262 D :0257:

The standard deviation would be � D p
:0257 D :16 hours:

For the next example, we will need the definition of the Gamma function. It will
repeatedly be necessary for us to work with the Gamma function in this text.

Definition 7.12. The Gamma function is defined as

�.˛/ D
Z 1

0

e�xx˛�1dx; ˛ > 0:
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In particular,

�.n/ D .n � 1/Š for any positive integer nI
�.˛ C 1/ D ˛�.˛/ 8˛ > 0I
�

�
1

2

�

D p
�:

Example 7.23 (Moments of Exponential). Let X have the standard exponential
density. Then, all its moments exist and indeed

E.Xn/ D
Z 1

0

xne�xdx D �.nC 1/ D nŠ:

In particular,
E.X/ D 1;E.X2/ D 2;

and therefore Var.X/ D E.X2/ � ŒE.X/�2 D 2 � 1 D 1: Thus, the standard
exponential density has the same mean and variance.

Example 7.24 (A Nonsymmetric Density with All Odd Moments Zero). Consider the
density function

f .x/ D c.1 � sin.jxj1=4//e�x1=4

; x > 0

D c.1C sin.jxj1=4//e�jxj1=4

; x < 0:

Note that f .x/ ¤ f .�x/, and therefore f .x/ is not symmetric. Also, it is clear
that every moment of this density exists.

Consider, as an example, the first moment. The steps below use substitutions
in simplifying the integration terms but are otherwise straightforward. The first
moment is

E.X/ D c

�Z 1

0

xe�x1=4

dx �
Z 1

0

x sin.x1=4/e�x1=4

dx C
Z 0

�1
xe�.�x/1=4

dx

C
Z 0

�1
x sin..�x/1=4/e�.�x/1=4

dx

	

D c

�Z 1

0

xe�x1=4

dx �
Z 1

0

x sin.x1=4/e�x1=4

dx �
Z 1

0

xe�x1=4

dx

�
Z 1

0

x sin.x1=4/e�x1=4

dx

	

D �2c
Z 1

0

x sin.x1=4/e�x1=4

dx D 0;

the last integral indeed being provably zero.
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Similarly, any other odd moment E.X2kC1/ is also zero. This shows that
although for a symmetric density any odd moment that is finite must be zero, the
converse is not true. In other words, even if every odd moment of a random variable
is zero, it does not mean that the distribution of the variable is necessarily symmetric
about zero.

Example 7.25 (Absolute Value of a Standard Normal). This is often required in
calculations in statistical theory. Let X have the standard normal distribution, and
we want to find E.jX j/: By definition,

E.jX j/ D
Z 1

�1
jxjf .x/dx D 1p

2�

Z 1

�1
jxje�x2=2dx D 2p

2�

Z 1

0

xe�x2=2dx

(since jxje�x2=2 is an even function of x on .�1;1/)

D 2p
2�

Z 1

0

�
d

dx
.�e�x2=2/

	

dx D 2p
2�
.�e�x2=2/j10

D 2p
2�

D
r
2

�
:

Example 7.26 (Discrete-Valued Function of a Continuous Random Variable). In
real life, all measurements must be made on a suitable discrete scale because we
cannot measure anything with true infinite precision. It is quite common to round
certain measurements to their integer values; examples include temperature, age,
income, etc.

As an example, suppose X has the standard exponential density, and let
Y D g.X/ D bXc be the integer part of X . What is its mean value?

First, for purposes of examining loss of accuracy caused by rounding, note that
the mean of X itself is

E.X/ D
Z 1

0

xe�xdx D 1:

But

E.Y / D
Z 1

0

bxce�xdx D
Z 1

0

.0/e�xdx C
Z 2

1

.1/e�xdx C
Z 3

2

.2/e�xdx C � � �

D
1X

iD1

i

Z iC1

i

e�xdx D
1X

iD1

i Œe�i � e�.iC1/�

D
1X

iD1

ie�i �
1X

iD1

ie�.iC1/ D .1 � e�1/

1X

iD1

ie�i

D .1 � e�1/
e

.e � 1/2 D 1

e � 1 D :582:
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In this case, we have a nearly 42% loss of accuracy by rounding the true value ofX
to its integer part.

Example 7.27 (A Random Variable Whose Expectation Does Not Exist). Consider
the standard Cauchy random variable with the density f .x/ D 1

�.1Cx2/
;�1 <

x < 1. Recall that, for E.X/ to exist, we must have
R1

�1 jxjf .x/dx < 1. But,

Z 1

�1
jxjf .x/dx D 1

�

Z 1

�1
jxj

1C x2
dx � 1

�

Z 1

0

x

1C x2
dx � 1

�

Z M

0

x

1C x2
dx

(for any M < 1)

D 1

2�
log.1CM 2/;

and on letting M ! 1, we see that

Z 1

�1
jxjf .x/dx D 1:

Therefore, the expectation of a standard Cauchy random variable, or synonymously
the expectation of a standard Cauchy distribution, does not exist.

Example 7.28 (Moments of the Standard Normal). In contrast to the standard
Cauchy variable, every moment of a standard normal variable exists. The basic
reason is that the tail of the standard normal density is too thin. A formal proof
follows.

Fix k � 1. Then,

jxjke�x2=2 D jxjke�x2=4e�x2=4 
 Ce�x2=4;

where C is a finite constant such that jxjke�x2=4 
 C for any real number x (such
a constant C does exist). Therefore,

Z 1

�1
jxjke�x2=2dx 
 C

Z 1

�1
e�x2=4dx < 1:

Hence, by definition, for any k � 1;E.Xk/ exists.
Now, take k to be an odd integer, say k D 2nC 1; n � 0. Then,

E.Xk/ D 1p
2�

Z 1

�1
x2nC1e�x2=2dx D 0

because x2nC1 is an odd function and e�x2=2 is an even function. Thus, every odd
moment of the standard normal distribution is zero.
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Next, take k to be an even integer, say k D 2n; n � 1: Then,

E.Xk/ D 1p
2�

Z 1

�1
x2ne�x2=2dx D 2p

2�

Z 1

0

x2ne�x2=2dx

D 2p
2�

Z 1

0

zne�z=2 1

2
p

z
d z D 1p

2�

Z 1

0

zn�1=2e�z=2d z

on making the substitution z D x2.
Now make a further substitution, u D z

2
. Then, we get

E.X2n/ D 1p
2�

Z 1

0

.2u/n�1=2e�u2du D 2n

p
�

Z 1

0

un�1=2e�udu:

Now, we recognize
R1

0 un�1=2e�udu to be �.nC 1
2
/, and so we get the formula

E.X2n/ D
2n�

�

nC 1

2

�

p
�

; n � 1:

By using the Gamma duplication formula

�

�

nC 1

2

�

D p
�21�2n .2n � 1/Š

.n � 1/Š
;

this reduces to

E.X2n/ D .2n/Š

2nnŠ
; n � 1:

Example 7.29 (A Simple Two-Layered Example). Suppose each week Jack calls his
mother twice and the length of each call is uniformly distributed in Œ5; 10� (minutes).
What is the expected number of times next month that Jack’s call will be over eight
minutes?

Let X1; X2; : : : ; X8 be the lengths of the eight phone calls next month, and let
Ai be the event that Xi > 8. We assume X1; X2; : : : ; X8 to be independent random
variables. Then, A1; A2; : : : ; A8 are independent events, and

T D number of calls that go over eight minutes

D
8X

iD1

IAi
� Bin.8; p/;

where p D P.X1 > 8/ D 1
10�5

R 10

8
dx D :4.

Therefore, E.T / D 8p D 3:2. Of course, we could have calculated the expec-
tation directly as

P8
iD1 P.Ai / D 8p D 3:2 without using the binomial distribution

property.
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7.6 The Tail Probability Method for Calculating Expectations

For nonnegative integer-valued random variables, we saw the formula E.X/ DP1
xD0 P.X > x/. A similar formula exists for general random variables, in par-

ticular for continuous random variables. Even higher moments can be found by
applying this technique. The tail probability P.X > x/ is often referred to as the
survival probability or the survival function. The idea is that if X is the time from
diagnosis until death of a person afflicted with a disease, then P.X > x/ simply
measures the probability that the patient survives beyond a time period x (say x
years). It could also refer to the probability that a machine failure does not occur at
least until time x, etc.

7.6.1 � Survival and Hazard Rate

Definition 7.13. LetX be a random variable with CDF F.x/. ThenF .x/D1�F.x/
is called the survival function of X . If X is continuous with a continuous pdf f .x/,

then h.x/ D d
dx
Œ� logF .x/� D f .x/

F .x/
is called the instantaneous hazard rate or

simply the hazard rate of X .

Remark. Note that, for any random variable X , the survival function F .x/ ! 0

as x ! 1, but it can go to zero very slowly, or also rapidly, depending on the
specific random variable X . The hazard rate has the interpretation that ıh.x/ is
approximately the probability that a patient who has survived until time x will die
within a very short time ı after time x; in this sense, h.x/measures the instantaneous
or the immediate risk of death.

The hazard rate of a random variable can be a constant, monotonically decreas-
ing, monotonically increasing, or not monotone at all. Exponentially distributed
random variables have a constant hazard rate. The hazard rate decreases for sys-
tems or devices that have an increasingly smaller chance of immediate failure as the
device ages; for increasing hazard rates, the device behaves in the opposite fashion.
The mortality of humans typically shows a nonmonotone hazard rate. Initially, the
child has a relatively high chance of death. But the risk of immediate death decreases
if the child has survived the initial period after birth. Then, it ultimately increases
as the person becomes old or very old. Thus, human mortality typically leads to a
bathtub-shaped hazard curve, at first decreasing, then becoming more or less flat,
and then increasing.

7.6.2 � Moments and the Tail

We now describe methods to calculate moments of a random variable from its sur-
vival function and the relationship of the rapidity with which the survival function
goes to zero with various moments.
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For proving the next theorem, we need a well-known result in real analysis about
interchanging the order of integration in an iterated double integral; we state this
below.

Theorem 7.6 (Fubini’s Theorem). Suppose g.x; y/ is a real-valued function on
R2 such that the double integral I D R1

�1
R1

�1 jg.x; y/jdxdy < 1. Then,

I D
Z 1

�1

�Z 1

�1
g.x; y/dx

	

dy D
Z 1

�1

�Z 1

�1
g.x; y/dy

	

dx:

Theorem 7.7.
(a) Let X be a nonnegative random variable, and suppose E.X/ exists. Then

xF .x/ D xŒ1 � F.x/� ! 0 as x ! 1:

(b) Let X be a nonnegative random variable, and suppose E.X/ exists. Then
E.X/ D R1

0
F .x/dx.

(c) Let X be a nonnegative random variable, and suppose E.Xk/ exists, where
k � 1 is a given positive integer. Then

xkF .x/ D xk Œ1 � F.x/� ! 0 as x ! 1:

(d) Let X be a nonnegative random variable, and suppose E.Xk/ exists. Then

E.Xk/ D
Z 1

0

.kxk�1/Œ1 � F.x/�dx:

(e) Let X be a general real-valued random variable, and suppose E.X/ exists.
Then

xŒ1 � F.x/C F.�x/� ! 0 as x ! 1:

(f) Let X be a general real-valued random variable, and suppose E.X/ exists.
Then

E.X/ D
Z 1

0

Œ1 � F.x/�dx �
Z 0

�1
F.x/dx:

Proof. We only consider the case where X is a continuous random variable with a
density f .x/. For part (a), note that, by hypothesis, E.jX j/ D E.X/ < 1, and
therefore

R1
x

uf .u/du ! 0 as x ! 1. But, for any x > 0,

0 
 xŒ1 � F.x/� 

Z 1

x

uf .u/du;

and therefore xŒ1 � F.x/� ! 0 as x ! 1.
For part (b), first observe that, for any y > 0; x D R x

0
dy: Therefore,

E.X/ D E

"Z X

0

dy

#

D
Z 1

0

�Z x

0

dy

	

f .x/dx D
Z 1

0

�Z 1

y

f .x/dx

	

dy
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(by choosing g.x; y/ D Iy�x in Fubini’s theorem)

D
Z 1

0

Œ1 � F.y/�dy:

The proofs of the remaining parts use the same line of argument and will be omitted.

Caution. The conditions in parts (a), (c), and (e) are only necessary and not suffi-
cient.

Let us see two examples.

Example 7.30. Consider the density function f .x/ D 1
2x2 ; jxj � 1 (and zero oth-

erwise). Since f .x/ D f .�x/, the distribution of X is symmetric about zero, and
therefore, for all x > 0; F.�x/ D 1� F.x/. Hence,

xŒ1 � F.x/C F.�x/� D 2xŒ1 � F.x/� D 2x

Z 1

x

f .y/dy D 2x 	 1

2x
D 1;

which does not go to zero as x ! 1. Therefore, E.X/ does not exist for this
density.

Example 7.31 (Expected Value of the Minimum of Several Uniform Variables).
Suppose X1; X2; : : : ; Xn are independent U Œ0; 1� random variables, and let
mn D minfX1; X2; : : : ; Xng be their minimum. By virtue of the independence
of X1; X2; : : : ; Xn,

P.mn > x/ D P.X1 > x;X2 > x; � � � ; Xn > x/

D
nY

iD1

P.Xi > x/ D .1 � x/n; 0 < x < 1;

and P.mn > x/ D 0 if x � 1. Therefore, by the theorem above,

E.mn/ D
Z 1

0

P.mn > x/dx D
Z 1

0

P.mn > x/dx D
Z 1

0

.1� x/ndx

D
Z 1

0

xndx D 1

nC 1
:

7.7 � Moment Generating Function and Fundamental
Tail Inequalities

The mgf of a random variable was defined in Chapter 5, and that definition is com-
pletely general. We recall that definition and use it to derive other useful results.
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Definition 7.14. Let X be a continuous random variable with pdf f .x/. The
moment generating function ofX is defined as  .t/ D E.etX / D R1

�1 etxf .x/dx,
provided the integral is not equal to C1.

Remark. We also recall the property that if  .t/ is finite in some nonempty open
interval containing zero, then it is infinitely differentiable in that open interval, and
for any n � 1;  .n/.0/ D E.Xn/:

Example 7.32 (Moment Generating Function of Standard Exponential). LetX have
the standard exponential density. Then,

E.etX / D
Z 1

0

etxe�xdx D
Z 1

0

e�.1�t/xdx D 1

1 � t

if t < 1, and it equals C1 if t � 1. Thus, the mgf of the standard exponential distri-
bution is finite if and only if t < 1. So, the moments can be found by differentiating
the mgf, namely E.Xn/ D  .n/.0/: Now, at any t < 1, by direct differentiation,
 .n/.t/ D nŠ

.1�t/nC1 ) E.Xn/ D  .n/.0/ D nŠ, a result we have derived before

directly.

Example 7.33 (Moment Generating Function of Standard Normal). Let X have the
standard normal density. Then,

E.etX / D 1p
2�

Z 1

�1
etxe�x2=2dx D 1p

2�

Z 1

�1
e�.x�t/2=2dx 	 et2=2

D 1p
2�

Z 1

�1
e�z2=2d z 	 et2=2 D 1 	 et2=2 D et2=2

because 1p
2�

R1
�1 e�z2=2d z is the integral of the standard normal density, and so

must be equal to one.
We have therefore proved that the mgf of the standard normal distribution exists

at any real t and equals  .t/ D et2=2:

7.7.1 � Chernoff-Bernstein Inequality

The mgf is useful in deriving inequalities on probabilities of tail values of a
random variable that have proved to be extremely useful in many problems in statis-
tics and probability. In particular, these inequalities typically give much sharper
bounds on the probability that a random variable would be far from its mean value
than Chebyshev’s inequality can give. Such probabilities are called large-deviation
probabilities. We present a particular large-deviation inequality below and then
present some neat applications.
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Theorem 7.8. Let X have the mgf  .t/, and assume that  .t/ < 1 for t < t0 for
some t0; 0 < t0 
 1. Let .t/ D log .t/, and for a real number x, define

I.x/ D sup0<t<t0
Œtx � .t/�:

Then,
P.X � x/ 
 e�I.x/:

See Bernstein (1947) and Chernoff (1952) for this inequality and other refinements
of it.

Proof. By Markov’s inequality (see Chapter 4), for any real x and any t > 0,

P.X � x/ D P.tX � tx/ D P.etX � etx/ 
 E.etX /

etx
D e�tx .t/ D e�.t/�tx :

Therefore,

P.X � x/ 
 inf0<t<t0e
�.t/�tx D einf0<t<t0

Œ�.t/�tx�

D e
�sup0<t<t0

Œtx��.t/� D e�I.x/:

The function .t/ is called the cumulant generating function of X because the r th
cumulant r equals .r/.0/; see Chapter 5.

To apply the Chernoff-Bernstein inequality, it is necessary to be able to find the
mgf .t/ and then be able to find the function I.x/, which is called the rate function
of X . There is a huge amount of literature on the topic of large-deviation proba-
bilities; see Bucklew (2004), Varadhan (2003), den Hollander (2000), Dembo and
Zeitouni (1998), and DasGupta (2008) for detailed expositions and overviews.

We will now see an example.

Example 7.34 (Testing the Bound in the Standard Normal Case). Suppose X is a
standard normal variable. Then, the exact value of the probability P.X > x/ D
1 � P.X 
 x/ D 1 � ˆ.x/ is easily computable, although no formula can be
written for it. The Chebyshev inequality will give, for x > 0,

P.X > x/ D 1

2
P.jX j > x/ 
 1

2x2
:

To apply the Chernoff-Bernstein bound, use the formula  .t/ D et2=2 ) .t/ D
t2=2 ) I.x/ D supt>0Œtx � t2=2� D x2=2: Therefore,

P.X > x/ 
 e�I.x/ D e�x2=2:

Obviously, the Chernoff-Bernstein bound is much smaller than the Chebyshev
bound for large x. We have plotted in Figure 7.11 the exact value of P.X > x/
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Fig. 7.11 From top: Chernoff bound, Chebyshev bound, and exact value of P.N.0; 1/ > x/

and the Chebyshev and the Chernoff-Bernstein bounds, and interestingly we see
that the Chebyshev bound is better (comes closer to the exact value) if x 
 2:1

(approximately), the Chernoff-Bernstein bound is better if x > 2:1, and for x > 2:8
or so, the Chernoff-Bernstein bound is much better. It turns out, however, that the
Chernoff-Bernstein bound still has a large relative error in comparison with the ex-

act value of P.X > x/; i.e., althoughP.X > x/�e�x2=2 obviously goes to zero as

x ! 1, the ratio e�x2=2

P.X>x/
does not go to one. On the contrary, the ratio goes to 1!

This follows from a result we will present in Chapter 9 that says that e�x2=2

P.X>x/
is of

the exact order of
p
2�x as x ! 1.

7.7.2 � Lugosi’s Improved Inequality

Lugosi (2006) gives an inequality that improves on the Chernoff-Bernstein inequal-
ity for nonnegative random variables. The improved inequality is based on the
moments themselves rather than the moment generating function.

Theorem 7.9. Let X be a positive random variable. Then, for any x > 0,

P.X > x/ 
 min
k�1

x�kE.Xk/ 
 e�I.x/;

where I.x/ is as in the Chernoff-Bernstein inequality.
The proof of the first inequality in this theorem is a trivial consequence of

Markov’s inequality; the proof of the second inequality uses the power series ex-
pansion of the exponential function ex and then inequalities obtained by truncation
of the power series expansion. We omit the proof.
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Here is an example that illustrates the greater effectiveness of the Lugosi bound
in comparison with the bound obtained from the Chernoff-Bernstein inequality.

Example 7.35. SupposeX has the standard normal density and that we want an up-
per bound on P.jX j > x/; x > 0. We have previously used the Chernoff-Bernstein
inequality to bound this probability. By the inequality in the theorem above,

P.jX j > x/ D P.X2 > x2/ 
 min
k�1

x�2kE.X2k/ D min
k�1

x�2k .2k/Š

2kkŠ
I

here, we have used our previously derived formula for E.X2k/. One can show that
x�2kE.X2k/ is minimized at

k0 D bx
2 C 1

2
c:

Putting it back into the inequality, we get

P.jX j > x/ 
 x�2k0
.2k0/Š

2k0k0Š
:

As an example, take x D 3. Then, the bound above will on calculation give that
P.jX j � 3/ 
 :016. In comparison, the Chernoff-Bernstein bound, on calculation,
gives P.jX j � 3/ 
 :022; clearly, the bound due to Lugosi is quite a bit better.

7.8 � Jensen and Other Moment Inequalities and a Paradox

Since the variance of the absolute value of any random variable X equals E.X2/�
ŒE.jX j/�2 � 0, we have perhaps the most basic moment inequality, that E.X2/ �
ŒE.jX j/�2: There are numerous moment inequalities on positive and general real-
valued random variables. They have a variety of uses in theoretical calculations.
We present a few fundamental moment inequalities in this section.

Theorem 7.10 (Jensen’s Inequality). Let X be a random variable with a finite
mean and g.x/ W R ! R a convex function. Then g.E.X// 
 E.g.X//:

Proof. Denote the mean of X by �, and suppose that g has a finite derivative g0.�/
at �. Now consider any x > �. By the convexity of g, g.x/�g.�/

x��
� g0.�/ )

g.x/ � g.�/ � .x � �/g0.�/: For x < �; g.x/�g.�/
x��


 g0.�/ ) g.x/ � g.�/ �
.x � �/g0.�/: For x D �; g.x/ � g.�/ D .x � �/g0.�/: Since we have g.x/ �
g.�/ � .x � �/g0.�/ 8x, by taking an expectation,

EŒg.X/ � g.�/� � EŒ.X � �/g0.�/� D 0 ) g.�/ 
 E.g.X//:
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When g does not have a finite derivative at �, the proof uses the geometric property
of a convex function that the chord line joining two points is always above the graph
of the convex function between the two points. We will leave that case as an exercise.

Example 7.36. Let X be any positive random variable with a finite mean �. Con-
sider the function g.x/ D 1

x
; x > 0: Since g is a convex function (because, for

example, its second derivative 2
x3 > 0 for any positive x) for x > 0, by Jensen’s

inequality

E

�
1

X

�

� 1

E.X/
, E

�
1

X

�

E.X/ � 1;

and an equality holds only if P.X D �/ D 1:

Example 7.37. Let X be any random variable with a finite mean �. Consider the
function g.x/ D eax; where a is a real number. Then, by the second derivative test,
g is a convex function on the entire real line and therefore, by Jensen’s inequality,

E.eaX / � ea�:

We now state a number of other important moment inequalities.

Theorem 7.11.
(a) (Lyapounov Inequality). Given a nonnegative random variableX and 0 < ˛ <

ˇ,

.EX˛/
1
˛ 
 .EXˇ /

1
ˇ :

(b) Given r � s � t � 0 and any random variable X such that EjX jr < 1,

.EjX jr/s�t .EjX jt /r�s � .EjX js/r�t ;

and, in particular for any variable X with a finite fourth moment,

EjX j � .EX2/
3
2p

EX4
:

(c) (Log Convexity Inequality of Lyapounov). Given a nonnegative random vari-

able X and 0 
 ˛1 < ˛2 
 ˇ
2

,

EX˛1EXˇ�˛1 � EX˛2EXˇ�˛2 :

(d) Given an integer-valued random variableX with � D E.X/; �k D EjX��jk ,

�k 
 2�kC1:
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(e) Given independent random variables with an identical distribution,X1; : : : ; Xn,
each with mean zero,

Ej
X

Xi j �
r
n

8
EjX1j:

(f) Given independent random variables X1; : : : ; Xn with mean zero,

Ej
X

Xi j 

�

2 � 1

n

� nX

kD1

E.jXkj/:

References to these inequalities can be seen in DasGupta (2008, Chapter 35).

We finish with an example of a paradox of expectations.

Example 7.38 (An Expectation Paradox). Suppose X; and Y are two positive non-
constant independent random variables, with the same distribution; for example,
X; and Y could be independent variables with a uniform distribution on Œ5; 10�.
We need the assumption that the common distribution of X and Y is such that
E. 1

X
/ D E. 1

Y
/ < 1.

Let R D X
Y

. Then, by Jensen’s inequality,

E.R/ D E

�
X

Y

�

D E.X/E

�
1

Y

�

> E.X/
1

E.Y /
D 1:

So, we have proved that E
�

X
Y

�
> 1: But we can repeat exactly the same argument

to conclude that E
�

Y
X

�
> 1: So, we seem to have the paradoxical conclusion that

we expect X to be somewhat larger than Y , and we also expect Y to be somewhat
larger than X .

There are many other such examples of paradoxes of expectations.

7.9 Synopsis

(a) The density function (pdf) of a continuous random variableX is a function f .x/
such that f .x/ � 0 for all real x, and

R1
�1 f .x/dx D 1. Furthermore, for any

a; b;�1 < a 
 b < 1; P.a 
 X 
 b/ D R b

a
f .x/dx.

(b) More generally, for any event A;P.X 2 A/ D R
A
f .x/dx. In particular, the

CDF F.x/ D R x

�1 f .t/dt for all real x. Conversely, F 0.x/ D f .x/ for almost
all x.

(c) The quantile function of X is defined as Q.p/ D F �1.p/ D inffx W
F.x/ � pg; 0 < p < 1. F�1.p/ is called the pth quantile (100pth per-
centile) of X . The 50th percentile is also called the median of X .

(d) If X has the continuous CDF F.x/, then Y D F.X/ � U Œ0; 1�. Conversely, if
U � U Œ0; 1� and F is a continuous CDF, then F�1.U / has F as its CDF, and
this is known as the quantile transformation of U .
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(e) A pdf f .x/ is symmetric around a numberM if f .M C u/ D f .M � u/ for all
positive u. The pdf f is unimodal around M if it is increasing for x < M and
decreasing for x > M . The normal, double exponential, Cauchy, and triangular
densities are all symmetric and unimodal.

(f) The standard normal density is given by

f .x/ D 1p
2�
e� x2

2 ;�1 < x < 1:

The standard double exponential density is given by

f .x/ D 1

2
e�jxj;�1 < x < 1:

The standard Cauchy density is given by

f .x/ D 1

�

1

1C x2
;�1 < x < 1:

(g) If X has the pdf f .x/ and Y D g.X/ is a one-to-one function (transformation)
of X , then Y has the density

fY .y/ D f .g�1.y//

jg0.g�1.y//j :

This is the Jacobian formula.
(h) If X has the pdf f .x/ and Y D g.X/ is not a one-to-one function of X , then Y

has the density

fY .y/ D
X

i

f .xi /

jg0.xi /j ;

where xi D xi .y/ are the roots of the equation g.x/ D y. There are additional
conditions assumed for this formula to be valid.

(i) If X has the pdf f .x/ and Y D g.X/ is a function of X , then EŒg.X/� DR1
�1 g.x/f .x/dx. In particular,

E.X/ D
Z 1

�1
xf .x/dxIE.Xk/ D

Z 1

�1
xkf .x/dxI

Var.X/ D
Z 1

�1
x2f .x/dx �

�Z 1

�1
xf .x/dx

	2

:

(j) If X is a nonnegative random variable, and E.Xk/ exists, then

E.Xk/ D
Z 1

0

.kxk�1/ NF .x/dx;
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where NF .x/ is the survival function of X . For a general real-valued random
variable, if E.X/ exists, then

E.X/ D
Z 1

0

NF .x/dx �
Z 0

�1
F.x/dx:

(k) If X � U Œ0; 1�, then

E.Xk/ D 1

k C 1
I Var.X/ D 1

12
:

(l) If X � Exp.1/, then

E.X/ D Var.X/ D 1IE.Xn/ D nŠ:

(m) If X � N.0; 1/, then

E.X2kC1/ D 0 for all k � 0IE.X2k/ D .2k/Š

2kkŠ
; k � 1:

Also,E.jX j/ D
q

2
�

. The Cauchy density has the notorious property that none

of its moments exist; even the mean does not exist. This is a consequence of its
extremely heavy tails.

(n) Three special inequalities valid for continuous or discrete random variables are:

(1) For positive random variables, E.X/E
�

1
X

�
> 1;

unless X is a constant, in which case E.X/E
�

1
X

� D 1:

(2) Jensen’s inequality: If X has mean �; andg.x/ is a convex function, then
EŒg.X/� � g.�/:

(3) Chernoff-Bernstein inequality: If X has a finite mgf .t/for 0 < t 
 t0;

then,

P.X � x/ 
 e�I.x/; where I.x/ D sup
0<t<t0

Œtx � log .t/�:

7.10 Exercises

Exercise 7.1. Let f .x/ D 1

xk ; x � 1: For what values of k, if any, is f .x/ a density
function?

Exercise 7.2. Let

f .x/ D c.1C x/; if � 1 
 x 
 0I
D c.1 � x/; if 0 
 x 
 1:

Is there any possible value of c that makes f .x/ a density function?
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Exercise 7.3. Let f .x/ D cjxj.1C x/.1 � x/;�1 
 x 
 1:

(a) Find the normalizing constant c that makes f .x/ a density function.
(b) Find the CDF corresponding to this density function. Plot it.
(c) Use the CDF to find

P.X < �:5/IP.X > :5/IP.�:5 < X < :5/:

Exercise 7.4. Show that, for every p; 0 
 p 
 1; the function f .x/ D p sin x C
.1 � p/ cos x; 0 
 x 
 �=2 (and f .x/ D 0 otherwise), is a density function. Find
its CDF and use it to find all the medians.

Exercise 7.5. * Give an example of a density function on Œ0; 1� by giving a formula
such that the density is finite at zero, unbounded at one, has a unique minimum in
the open interval .0; 1/, and such that the median is .5.

Exercise 7.6. The time taken by a group of students to finish a quiz has the density
function f .x/ D cx2.15 � x/; 0 
 x 
 15:

(a) Find the normalizing constant c that makes f .x/ a density function.
(b) What percentage of the students take more than ten minutes to finish the quiz?

Less than five minutes?
(c) What is the mean time taken to finish the quiz?

Exercise 7.7. * (A Mixed Distribution). Suppose the damage claims on a partic-
ular type of insurance policy are uniformly distributed on Œ0; 5� (in thousands of
dollars), but the maximum payout by the insurance company is 2500 dollars. Find
the CDF and the expected value of the payout, and plot the CDF. What is unusual
about this CDF?

Exercise 7.8. Let f .x/ be the uniform density on Œ0; 1� and let g.x/ be the density
on Œ0; 1� given by g.x/ D cex , where c is the normalizing constant.

Let F; and G be the corresponding CDFs. Find the density function correspond-
ing to the new CDF H.x/ D F.x/G.x/.

Exercise 7.9. * (Random Division). Jen’s dog broke off her six-inch-long pencil
at a random point on the pencil. Find the density function and the expected value of
the ratio of the lengths of the shorter piece and the longer piece of the pencil.

Exercise 7.10 (Square of a PDF Need Not Be a PDF). Give an example of a
density function f .x/ on Œ0; 1� such that cf 2.x/ cannot be a density function for
any c.

Exercise 7.11 (Square Root of a PDF Need Not Be a PDF). Give an example of
a density function f .x/ such that c

p
f .x/ cannot be a density function for any c.

Exercise 7.12. Give an example of two different density functions f .x/; and g.x/
on Œ0; 1� such that cf .x/g.x/ cannot be a density function for any c.



7.10 Exercises 167

Exercise 7.13. Consider the density function f .x/ D 1
x2 ; x � 1: Find the quantile

function corresponding to f .x/, and find the pth percentile for p D :5; :9.

Exercise 7.14. * Give an example of a continuous random variableX on Œ0; 1� such
that X has mean .5, F.:4/ D F.:6/, and F.:9/ D :9.

Exercise 7.15. * (A Density with Infinitely Many Modes). Show that the density
f .x/ D c2�bxc sin.�

2
Œx � bxc�/; x � 0 has infinitely many modes.

Exercise 7.16. Suppose 	 is uniformly distributed on .��=2; �=2/. Find the mean
and variance of

(a) sin 	 I
(b) sin 2	:

Exercise 7.17. The diameter of onion rings cut for hamburgers in a fast food restau-
rant has the density f .x/ D c.x �x2 Cx3/; 0 < x < 1, where c is the normalizing
constant. Find the mean and the variance of the area of a ring. You should assume
the rings to be solid circles, not hollow rings.

Exercise 7.18 (Percentiles of the Standard Cauchy Density). Find the pth per-
centile of the standard Cauchy density for a general p and compute it for p D :75.

Exercise 7.19. * (Functional Similarity). Suppose X has the standard Cauchy
density. Show thatX � 1

X
also has a Cauchy density. Can you find another function

with this property on your own? Hint: Think of simple rational functions.

Exercise 7.20. * (An Intriguing Identity). Suppose X has the standard Cauchy
density. Give a rigorous proof that P.X > 1/ D P.X > 2/C P.X > 3/.

Exercise 7.21 (Inverse Chi-Square Density). Suppose X has the standard normal
density. Find the density of 1

X2 .

Exercise 7.22 (The Density Function of the Density Function). SupposeX has a
density function f .x/. Find the density function of f .X/ when f .x/ is the standard
normal density.

Exercise 7.23. * (The Average Density). Let f .x/ be a density that has a finite
upper bound, f .x/ 
 M < 1. Suppose that f .x/ is a continuous function. Show
that there is at least one number x0 such that EŒf .X/� D f .x0/. Find all values of
x0 when f .x/ is the standard normal density.

Exercise 7.24. * (Integer Part). SupposeX has a uniform distribution on Œ0; 10:5�.
Find the expected value of the integer part of X .

Exercise 7.25 (Random Triangle). The lengths of the three sides of a triangle are
X; 2X; 2:5X , where X is uniformly distributed on Œ0; 1�. Find the mean and the
variance of the area of the triangle.
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Exercise 7.26 (An Optimization Problem). Suppose the location of an
archaeological treasure is distributed along a 50 mile stretch according to the
density f .x/ D cx2.50 � x/; 0 < x < 50, where c is the normalizing constant.
A company is planning to dig along the fifty mile stretch for the treasure, and they
need to select a location for their headquarters. The cost of transportation of the
treasure from its spot of discovery to the headquarters is a function g.d/, where
d is the distance between those two points. Find the optimum location for the
headquarters if

(a) g.d/ D d 2;
(b) g.d/ D d ;
(c) g.d/ D log.1C d/.

Exercise 7.27 (Fractional Normal Moments). Suppose X has a standard normal
distribution. Find a general formula for E.jX j˛/; ˛ > 0: Does E.jX j˛/ exist for
any ˛ < 0?

Exercise 7.28 (Hazard Rate). Find and plot the hazard rate for the folded Cauchy
density f .x/ D 2

�.1Cx2/
; x > 0:

Exercise 7.29. Find and plot the hazard rate for the density f .x/ D ce�x˛
; x;

˛ > 0, where c is the normalizing constant.

Exercise 7.30 (Expectation and Hazard Rate). For a general nonnegative random
variable, write a formula for the expectation in terms of the hazard rate, assuming
that the expectation exists.

Exercise 7.31. Let X be a positive random variable with the CDF F.x/. Show thatR1
0
Œ1 � F.

p
x/�dx � .

R1
0
Œ1 � F.x/�dx/2: When are they equal?

Exercise 7.32 (Maximum of Uniforms). Let X1; X2; : : : ; Xn be n independent
U Œ0; 1� random variables. Find an expression for EŒmaxfX1; : : : ; Xng�.
Exercise 7.33 (Minimum of Exponentials). LetX1; X2; : : : ; Xn be n independent
standard exponential random variables. Find an expression forEŒminfX1; : : : ; Xng�.
Exercise 7.34. Suppose X is a positive random variable with mean one. Show that
E.logX/ 
 0:

Exercise 7.35. Suppose X is a positive random variable with four finite moments.
Show that E.X/E.X3/ � ŒE.X2/�2:

Exercise 7.36. Suppose X has a geometric distribution with parameter p D 1
2

.
Show that E.X logX/ � log 4.

Exercise 7.37 (Rate Function for the Exponential). Derive the rate function I.x/
for the standard exponential density and hence derive a bound for P.X > x/.
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Exercise 7.38. * (Rate Function for the Double Exponential). Derive the rate
function I.x/ for the double exponential density and hence derive a bound for
P.X > x/:

Exercise 7.39 (Use Your Computer). Simulate a set of 500 values from a standard
exponential density by using the quantile transformation method. Find the mean of
your 500 simulated values. Is it close to the theoretical mean value?

Exercise 7.40 (Use Your Computer). Simulate a set of 500 values from a standard
Cauchy density by using the quantile transformation method. What are the most
striking features you see in your simulated values?

Exercise 7.41 (Use Your Computer). Simulate a set of 500 values from the density
f .x/ D c cos2 x on Œ0; �� by using the quantile transformation method. Find the
mean of your simulated values. Is it close to the theoretical mean value?

References

Bernstein, S. (1947). Theory of Probability (Russian), Moscow Leninghad.
Bucklew, J. (2004). Introduction to Rare Event Simulation, Springer, New York.
Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum

of observations, Ann. Math. Statist., 23, 493–507.
DasGupta, A. (2008). Asymptotic Theory of Statistics and Probability, Springer, New York.
Dembo, A. and Zeitouni, O. (1998). Large Deviations, Techniques and Applications, Springer,

New York.
den Hollander, F. (2000). Large Deviations, Fields Institute Monograph, AMS, Providence, RI.
Lugosi, G. (2006). Concentration of Measure Inequalities, Lecture Notes, Dept. of Economics,

Pompeu Fabra University., Barcelona.
Varadhan, S.R.S. (2003). Large Deviations and Entropy, Princeton University Press, Princeton, NJ.



Chapter 8
Some Special Continuous Distributions

A number of densities, by virtue of their popularity in modeling or because of
their special theoretical properties, are considered to be special. In this chapter, we
present a collection of these densities with their basic properties. We discuss, when
suitable, their moments, the form of the CDF, the mgf, shape and modal properties,
and interesting inequalities. Classic references to standard continuous distributions
are Johnson et al. (1994) and Kendall and Stuart (1976); Everitt (1998) contains
many unusual facts. The normal distribution is treated separately in the next chapter
because of its unique importance in statistics and probability.

8.1 Uniform Distribution

The uniform distribution is the continuous analog of random selection from a finite
population. A typical example is that of choosing a random fraction. Small mea-
surement errors sometimes are approximately uniformly distributed. In Bayesian
statistics, a uniform distribution is often used to reflect lack of knowledge about an
unknown parameter. Uniform distributions can only be defined on bounded sets; for
instance, there is no such thing as a uniform distribution on the real line.

Definition 8.1. Let X have the pdf

f .x/ D 1

b � a
; a 
 x 
 b;

D 0 otherwise;

where �1 < a < b < 1 are given real numbers.
Then we say thatX has the uniform distribution on Œa; b� and writeX � U Œa; b�.

We derive the basic properties of the U Œa; b� density next.

Theorem 8.1.
(a) IfX � U Œ0; 1�; then aC.b�a/X � U Œa; b�, and ifX � U Œa; b�; then X�a

b�a
�

U Œ0; 1�:

(b) The CDF of the U Œa; b� distribution equals

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 8, c� Springer Science+Business Media, LLC 2010
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F.x/ D 0; x < aI

D x � a
b � a ; a 
 x 
 bI

D 1; x > b:

(c) The mgf of the U Œa; b� distribution equals  .t/ D etb�eta

.b�a/t
:

(d) The nth moment of the U Œa; b� distribution equals

E.Xn/ D bnC1 � anC1

.b � a/.nC 1/
:

(e) The mean and the variance of the U Œa; b� distribution equal

� D aC b

2
I �2 D .b � a/2

12
:

Proof. Part (a) follows from the general result (see Chapter 7) that if X has density
f .x/, then a linear function, say Y D c C dX , has density 1

jd jf .
y�c

d
/:

For part (b), it is clear that F.x/ D 0 for x < a and 1 for x > b. For a 

x 
 b; F.x/ D R x

�1 f .t/dt D R x

a
f .t/dt D R x

a
1=.b�a/dt D x�a

b�a
: Parts (c) and

(d) follow by direct integration. For part (e), the mean is simply the first moment,

and so, by part (d), E.X/ D b2�a2

2.b�a/
D aCb

2
, and the variance formula follows by

using �2 D E.X2/� �2, where E.X2/ D b3�a3

3.b�a/
D .a2 C ab C b2/=3:

Example 8.1. A point is selected at random on the unit interval, dividing it into two
pieces with total length 1. Find the probability that the ratio of the length of the
shorter piece to the length of the longer piece is less than 1=4.

Let X � U Œ0; 1�; we want P
�

minfX;1�Xg
maxfX;1�Xg < 1=4

�
: This happens only if X <

1=5 or> 4=5. Therefore, the required probability is P.X < 1=5/CP.X > 4=5/ D
1=5C 1=5 D 2=5.

Example 8.2. Suppose X � U Œ�1; 1�. We want to find the conditional probability
P.jX j < 1=3 j jX j < 1=2/. By definition,

P.jX j < 1=3 j jX j < 1=2/ D P.jX j < 1=3\ jX j < 1=2/
P.jX j < 1=2/ D P.jX j < 1=3/

P.jX j < 1=2/

D 1=3

1=2
D 2=3:

Example 8.3. The diameters (measured in centimeters) of circular strips made by a
machine are uniform in the interval Œ0; 2�. Strips with an area larger than 3.1 cm2

cannot be used. If 200 strips are made in one shift, what is the expected number that
have to be discarded?
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The area of a circular strip of radius r is �r2. Therefore, the radius r � U Œ0; 1�.
We have

p D P.�r2 > 3:1/ D P.r2 > 3:1=�/ D P.r2 > :9868/

D P.r > :9934/ D :0066:

Therefore, the number of strips among 200 (independent ones) that cannot be used
has the Bin.200; :0066/ distribution and its expected value is 200 	 :0066 D 1:32.

8.2 Exponential and Weibull Distributions

We defined the standard exponential density in Chapter 7 and now introduce the gen-
eral exponential density. Exponential densities are used to model waiting times (e.g.,
waiting times for an elevator or at a supermarket checkout), failure times, (e.g., the
time until the first failure of some piece of equipment), or renewal times (e.g., time
elapsed between successive earthquakes at a location), etc. The exponential density
also has some very interesting theoretical properties.

Definition 8.2. A nonnegative random variable X has the exponential distribution
with parameter � > 0 if it has the pdf f .x/ D 1

�
e�x=�; x > 0. We write X �

Exp.�/.
A plot of the exponential density with � D 1, called the standard exponential

density, shows that it is a decreasing and bounded density on .0;1/ (see Figure 8.1).

Here are the basic properties of an exponential density.

1 2 3 4 5 x

Standard Exponential Density

0.2

0.4

0.6

0.8

1

Fig. 8.1 Standard exponential density
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Theorem 8.2. Let X � Exp.�/. Then,

(a) X
�

� Exp.1/,

(b) The CDF F.x/ D 1 � e�x=�; x > 0; (and zero for x 
 0.)
(c) E.Xn/ D �nnŠ; n � 1;

(d) The mgf  .t/ D 1
1��t

; t < 1=�:

Proof. Part (a) follows from the general result that if X has density f .x/, then bX
has density 1

jbjf .x=b/; we identify b with 1=� and use the formula of the Exp.�/
density.

Part (b) follows by direct integration, and part (c) is proved as

E.Xn/ D E.� 	X=�/n D �nE.X=�/n D �nnŠ;

as the standard exponential density has nth moment equal to nŠ (see Chapter 7).
Part (d) also follows on direct integration.

Example 8.4 (Mean Is Larger than Median for Exponential). SupposeX � Exp.4/.
What is the probability that X > 4?

Since X=4 � Exp.1/;

P.X > 4/ D P.X=4 > 1/ D
Z 1

1

e�xdx D e�1 D :3679;

quite a bit smaller than 50%. This implies that the median of the distribution has to
be smaller than 4, where 4 is the mean. Indeed, the median is a numberm such that
F.m/ D 1

2
(the median is unique in this example) ) 1 � e�m=4 D 1

2
) m D

4 log 2 D 2:77:

This phenomenon that the mean is larger than the median is quite typical of
distributions that have a long right tail, such as the exponential.

In general, if X � Exp.�/; the median of X is � log 2.

Example 8.5 (The Spares Problem). The general version of this problem is very
interesting. We will work out only a specific example for ease of illustration.

Tires of a certain make have an exponentially distributed lifetime with a mean
of 10;000 miles. How many spare tires should one keep on a 15,000 mile trip to be
60% sure that it would not be necessary to procure more tires during the trip?

The probability that at least one of the four tires in the car will fail during the
trip is

1 � P.None will fail/ D 1 � P.Each tire works for 15,000 miles or more/

D 1 �
"Z 1

15000

1=10000 e�x=10000dx

#4

D1�
"Z 1

1:5

e�xdx

#4

D 1 � .:2231/4 D :9975;

and so certainly carrying no spares at all will get us into trouble.
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How about the probability that all four tires fail during the trip? This is

ŒP.One tire works for less than 15,000 miles/�4

D
hR 1:5

0
e�xdx

i4 D .:7769/4 D :3643:

Therefore, the probability that at most three will fail is 1 � :3643 D :6357, which
exceeds our 60% threshold. In fact, three spare tires just suffice, as can be verified
by a similar calculation that the chances that at most two tires will fail is < :6.

Example 8.6 (Lack of Memory of the Exponential Distribution). The exponential
densities have a lack of memory property similar to the one we established for the
geometric distribution. Let X � Exp.�/, and let s and t be positive numbers. The
lack of memory property is that P.X > s C t jX > s/ D P.X > t/. So, suppose
that X is the waiting time for an elevator, and suppose that you have already waited
s D 3minutes. Then the probability that you have to wait another two minutes is the
same as the probability that you would have to wait two minutes if you just arrived
at the elevator. This is not true if the waiting time distribution is something other
than exponential.

The proof of the property is simple:

P.X > s C t jX > s/ D P.X > s C t/

P.X > s/
D e�.sCt/=�

e�s=�

D e�t=� D P.X > t/:

Example 8.7 (Fractional Part of an Exponential). Suppose X � Exp.�/. We had
previously found the expected value of the integer part when � D 1 (the standard
exponential case). We will now find the expected value of the fractional part of X
for a general �.

First note that the fractional part fXg equals X � bXc. Therefore, E.fXg/ D
E.X/� E.bXc/ D � � E.bXc/: Now,

E.bXc/ D
1X

nD0

nP.n 
 X < nC 1/ D
1X

nD0

n

Z nC1

n

1=� e�x=�dx

D
1X

nD1

n.e�n=� � e�n=��1=�/ D
1X

nD1

n.1 � e�1=�/e�n=�

D .1 � e�1=�/

1X

nD1

ne�n=�

D .1 � e�1=�/
e�1=�

.1 � e�1=�/2
D 1

e1=� � 1
:
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Fig. 8.2 Expected value of the fractional part of an exponential

Therefore,

E.fXg/ D � � 1

e1=� � 1
:

We plot the expected value of the fractional part in Figure 8.2, and we notice that
the expected value is always < :5 and converges monotonically to :5 when � ! 1.

Example 8.8 (Geyser Eruption). The number of eruptions per t minutes at the Old
Faithful Geyser at Calistoga, California, is Poisson with mean :02t . If you arrived
at the geyser at 12:00 noon, what is the density of the waiting time until you see an
eruption?

Denote the waiting time byX . Then the eventX > t is the same as saying that no
eruptions occurred in the first t minutes. We are told that Y , the number of eruptions
in a t minute interval, is Poisson with mean :02t . Therefore,

P.X > t/ D P.Y D 0/ D e�:02t ;

and hence the density of X is

f .t/ D :02e�:02t :

Therefore, the waiting time has an exponential distribution with mean 1
:02

D 50

minutes. This is a well-known link between the exponential density and events that
occur according to a so-called Poisson process.

Example 8.9 (The Weibull Distribution). Suppose X � Exp.1/, and let Y D X˛,
where ˛ > 0 is a constant. Since this is a strictly monotone function with the inverse
function y1=˛, the density of Y is

fY .y/ D f .y1=˛/

jg0.y1=˛/j D e�y1=˛ 	 1

˛y.˛�1/=˛

D 1

˛
y.1�˛/=˛e�y1=˛

; y > 0:
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This final answer can be made to look a little simpler by writing ˇ D 1
˛

. If we do
so, the density becomes

ˇyˇ�1e�yˇ

; y > 0:

We can introduce an extra scale parameter akin to what we do for the exponential
case itself. In that case, we have the general two-parameter Weibull density

f .yjˇ; �/ D ˇ

�

 
x

�

!ˇ�1

e�. x
�

/ˇ

; y > 0:

This is the Weibull density with parameters ˇ; �.

8.3 Gamma and Inverse Gamma Distributions

The exponential density is decreasing on Œ0;1/. A generalization of the exponen-
tial density with a mode usually at some strictly positive number m is the Gamma
distribution. It includes the exponential as a special case and can be very skewed, to
being almost a bell-shaped density. We will later see that it also arises naturally as
the density of the sum of a number of independent exponential random variables.

Definition 8.3. A positive random variable X is said to have a Gamma distribution
with shape parameter ˛ and scale parameter � if it has the pdf

f .xj˛; œ/ D e�x=œx˛�1

œ˛�.˛/
; x > 0; ˛; œ > 0I

we writeX � G.˛; �/. The Gamma density reduces to the exponential density with
mean � when ˛ D 1; for ˛ < 1, the Gamma density is decreasing and unbounded,
while for large ˛ it becomes nearly a bell-shaped curve. A plot of some Gamma
densities reveals these features (see Figure 8.3).

The basic facts about a Gamma distribution are given in the following theorem.

Theorem 8.3.
(a) The CDF of the G.˛; �/ density is the normalized incomplete Gamma function

F.x/ D 
.˛; x=�/

�.˛/
;

where 
.˛; x/ D R x

0
e�t t˛�1dt .

(b) The nth moment equals

E.Xn/ D �n�.˛ C n/

�.˛/
; n � 1:
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Fig. 8.3 Plot of gamma density with lambda D 1, alpha D :5; 1; 2; 6; 15

(c) The mgf equals

 .t/ D .1 � �t/�˛ ; t <
1

�
:

(d) The mean and the variance equal

� D ˛�I �2 D ˛�2:

Proof. The CDF formula is simply a restatement of the definition of the function

.˛; x/. For part (b),

E.Xn/ D
R1

0 e�x=�x˛Cn�1dx

�˛�.˛/
D �˛Cn�.˛ C n/

�˛�.˛/

D �n�.˛ C n/

�.˛/
:

For part (c), if t < 1
�

,

E.etX / D
R1

0
etxe�x=�x˛�1dx

�˛�.˛/
D
R1

0
e�.1=��t/xx˛�1dx

�˛�.˛/

D �.˛/

.1=� � t/˛�˛�.˛/
D 1

.1=� � t/˛�˛

D .1� �t/�˛ :

The mgf does not exist if t � 1
�
:

The mean and the variance formulas follow from part (b). An important conse-
quence of the mgf formula is the following result.

Corollary. SupposeX1; X2; : : : ; Xn are independent Exp.�/ variables. ThenX1 C
X2 C � � � CXn � G.n; �/:
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Proof. Since X1; X2; : : : ; Xn are independent, for t < 1=�,

E.et.X1CX2C���CXn// D E.etX1etX2 � � � etXn/

D E.etX1/E.etX2/ � � �E.etXn /

D .1 � �t/�1.1 � �t/�1 � � � .1 � �t/�1 D .1 � �t/�n;

which agrees with the mgf of aG.n; �/ distribution and therefore, by the distribution
determining the property of mgfs, it follows that X1 CX2 C � � � CXn � G.n; �/.

Example 8.10 (Total Demand of a Commodity). Suppose 40 people have been
invited to a party and the amount of diet soda that each guest will consume is dis-
tributed as Exp.8/ (in ounces); that is, it is exponentially distributed with a mean
of 8 oz. If two bottles of soda, each containing 200 oz, are available, what is the
probability that the supply will fall short of the demand?

Let n D 40 andX1; X2; : : : ; Xn be the amount of soda consumed by the n guests.
We assume that X1; X2; : : : ; Xn are independent Exp.8/ variables. Then, the total
demandX1 CX2 C � � � CXn � G.n; 8/, so the probability that the supply will fall
short of the demand is

P.X1 CX2 C � � � CXn > 400/ D 1 � P.X1 CX2 C � � � CXn 
 400/

D 1 � 
.40;400=8/

�.40/
D 1 � :93543 D :065;

where 
.40; 50/ was computed on a computer and �.40/ D 39Š.

Example 8.11 (The Skewness of a Gamma Distribution). We saw in our Gamma
density plots that the density appears to become nearly bell-shaped when the shape
parameter ˛ becomes large. Since the coefficient of skewness is an index of asym-
metry in a distribution, we may expect to see that it becomes small when ˛ becomes
large. Indeed, by definition, the coefficient of skewness is

ˇ D E.X � �/3
�3

D E.X3/ � 3�E.X2/C 2�3

�3

D ˛.˛ C 1/.˛ C 2/�3 � 3˛2.˛ C 1/�3 C 2˛3�3

˛3=2�3

D 2˛

˛3=2
D 2=

p
˛

! 0 as ˛ ! 1, as we had anticipated.

Example 8.12 (The General Chi-Square Distribution). We saw in the previous
chapter that the distribution of the square of a standard normal variable is the chi-
square distribution with one degree of freedom. A natural question is what the
distribution of the sum of squares of several independent standard normal variables
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is. Although we do not yet have the technical tools necessary to derive this distribu-
tion, it turns out that it is in fact a Gamma distribution. Precisely, if X1; X2; : : : ; Xm

are m independent standard normal variables, then T D Pm
iD1X

2
i has a G

�
m
2
; 2
�

distribution and therefore has the density

fm.t/ D e�t=2tm=2�1

2m=2�
�m

2

� ; t > 0:

This is called the chi-square density with m degrees of freedom and arises in
numerous contexts in statistics and probability. We write T � �2

m. From the general
formulas for the mean and variance of a Gamma distribution, we get that

mean of a �2
m distribution D mI

variance of a �2
m distribution D 2m:

The chi-square density is rather skewed for small m but becomes approximately
bell-shaped whenm gets large; we have seen this for general Gamma densities.

One especially important context in which the chi-square distribution arises is
when considering of the distribution of the sample variance for iid normal observa-
tions. The sample variance of a set of n random variablesX1; X2; : : : ; Xn is defined
as s2 D 1

n�1

Pn
iD1.Xi � NX/2, where NX D X1C���CXn

n
is the mean of X1; : : : ; Xn.

The name sample variance derives from the following property.

Theorem 8.4. SupposeX1; : : : ; Xn are independent with a common distribution F
having a finite variance �2. Then, for any n, E.s2/ D �2.

Proof. First note the algebraic identity

nX

iD1

.Xi � NX/2 D
nX

iD1

.X2
i �2Xi

NXC NX2/ D
nX

iD1

X2
i �2n NX2Cn NX2 D

nX

iD1

X2
i �n NX2:

Therefore,

E.s2/ D 1

n � 1E
"

nX

iD1

X2
i �n NX2

#

D 1

n � 1

�

n.�2 C �2/�n
�
�2

n
C �2

�	

D �2:

If, in particular, X1; : : : ; Xn are iid N.�; �2/, then Xi � NX
�

are also normally dis-
tributed, each with mean zero. However, they are no longer independent. If we sum
their squares, then the sum of the squares will still be distributed as a chi square,
but there will be a loss of one degree of freedom due to the fact that Xi � NX are not
independent even though the Xi are independent.

We state this important fact formally in the following theorem.
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Theorem 8.5. Suppose X1; : : : ; Xn are iid N.�; �2/. Then
Pn

iD1.Xi � NX/2

�2 � �2
n�1.

Example 8.13 (Inverse Gamma Distribution). Suppose X � G.˛; �/. The distribu-
tion of 1

X
is called the inverse Gamma distribution. We will derive its density.

Since Y D g.X/ D 1
X

is a strictly monotone function with the inverse function

g�1.y/ D 1
y

, and since the derivative of g is g0.x/ D � 1
x2 , the density of Y is

fY .y/ D
f

�
1

y

�

jg0
�
1

y

�

j
D e�1=.�y/y1�˛

�˛�.˛/

1

y2

D e�1=.�y/y�1�˛

�˛�.˛/
; y > 0:

The inverse Gamma density (see Figure 8.4) is extremely skewed for small values
of ˛; furthermore, the right tail is so heavy for small ˛ that the mean does not exist
if ˛ 
 1. Inverse Gamma distributions are quite popular in studies of economic
inequality, reliability problems, and as prior distributions in Bayesian statistics.

Example 8.14 (Simulating a Gamma Variable). If the shape parameter ˛ is an
integer, say ˛ D n, then it is simple to simulate values from a Gamma distribution.
Here is why. Consider an Exp.1/ random variable X . Its CDF is F.x/ D 1 � e�x .
Setting it equal to p, we get the quantile function

F.x/ D p , 1 � e�x D p , x D � log.1 � p/:

So the quantile function is F�1.p/ D � log.1 � p/: Therefore, by the general
quantile transform method, if we take U � U Œ0; 1�, then � log.1�U / will have an
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Fig. 8.4 Inverse gamma density when alpha D lambda D1
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Exp.1/ distribution. But if U � U Œ0; 1�, then 1�U is also distributed as U Œ0; 1�. So,
we can just take � logU as an Exp.1/ random variable. To get a simulated value for
G.n; 1/, we need to add n independent standard exponentials; i.e., if we want Y �
G.n; 1/; we can use Y D � logU1 � logU2 � � � � � logUn D � log.U1U2 : : : Un/,
where U1; U2; : : : ; Un are n independent U Œ0; 1� values. To get a simulated value
for G.n; �/, we simply multiply this Y value obtained by �.

8.4 Beta Distribution

Beta densities are the most commonly used densities for random variables that take
values between 0 and 1. Their popularity is due to their analytic tractability and
the large variety of shapes that Beta densities can take when the parameter values
change. The Beta density is a generalization of the U Œ0; 1� density.

Definition 8.4. X is said to have a Beta density with parameters ˛ and ˇ if it has
the density

f .x/ D x˛�1.1 � x/ˇ�1

B.˛; ˇ/
; 0 
 x 
 1; ˛; ˇ > 0;

where B.˛; ˇ/ D �.˛/�.ˇ/
�.˛Cˇ/

: We write X � Be.˛; ˇ/: An important point is that,

by its very notation, 1
B.˛;ˇ/

must be the normalizing constant of the function x˛�1

.1 � x/ˇ�1; thus, another way to think of B.˛; ˇ/ is that, for any ˛; ˇ > 0,

B.˛; ˇ/ D
Z 1

0

x˛�1.1 � x/ˇ�1dx:

This fact will be useful repeatedly in the following.

Theorem 8.6. Let X � Be.˛; ˇ/.

(a) The CDF equals

F.x/ D Bx.˛; ˇ/

B.˛; ˇ/
;

where Bx.˛; ˇ/ is the incomplete Beta function
R x

0
t˛�1.1 � t/ˇ�1dt.

(b) The nth moment equals

E.Xn/ D �.˛ C n/�.˛ C ˇ/

�.˛ C ˇ C n/�.˛/
:

(c) The mean and the variance equal

� D ˛

˛ C ˇ
I �2 D ˛ˇ

.˛ C ˇ/2.˛ C ˇ C 1/
:
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(d) The mgf equals

 .t/ D1 F1.˛; ˛ C ˇ; t/;

where 1F1.a; b; z/ denotes the confluent hypergeometric function.

Proof. The formula for the CDF is a restatement of the definition of the incomplete
Beta function. Regarding the moment formula,

E.Xn/ D
R 1

0
x˛Cn�1.1 � x/ˇ�1dx

R 1

0
x˛�1.1 � x/ˇ�1dx

D B.˛ C n; ˇ/

B.˛; ˇ/
D �.˛ C n/�.˛ C ˇ/

�.˛ C ˇ C n/�.˛/

on using the definition of the function B.a; b/ for a; b > 0. The mean is just the
first moment, and the variance formula follows on using the formulas for E.X2/

and E.X/ and using �2 D E.X2/ � ŒE.X/�2: Finally, the mgf formula follows
from the integral representation of the confluent hypergeometric function

1F1.a; aC b; z/ D 1

B.a; b/
z1�a�b

Z z

0

exxa�1.1� x/b�1dx:

This integral representation is a fact in advanced calculus, and we just use it in order
to derive our mgf formula here.

A major appeal of the family of Beta densities is that it produces densities of
many shapes. A Beta density can be increasing, decreasing, symmetric and uni-
modal, unimodal but asymmetric, orU -shaped. Its only shortcoming is that it cannot
be bimodal, i.e., it cannot have two local maxima in the interval Œ0; 1�. A few Beta
densities are plotted in Figure 8.5 to show the various shapes that they can take.
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Fig. 8.5 Six beta densities Be.1; 1/IBe.1; 6/IBe.6; 1/IBe.:5; :5/IBe.2; 6/IBe.6; 6/
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Example 8.15 (Fitting a Beta Density). Suppose a standardized one hour exam takes
45 minutes on average to finish and the standard deviation of the finishing times is
ten minutes. We want to know what percentage of examinees finish in less than 40
minutes.

We cannot answer this question if we know only the mean and the standard devi-
ation of the distribution of finishing times. But if we use a Beta density as the density
of the finishing time, then we can answer the question because we can uniquely de-
termine the parameters of a Beta distribution from its mean and variance. Converting
from minutes to hours, we want to solve for ˛; ˇ from the two equations

˛

˛ C ˇ
D 3

4
;

˛ˇ

.˛ C ˇ/2.˛ C ˇ C 1/
D 1

36
:

From the first equation, we get ˛ D 3ˇ. Substituting this into the second equation,
we get 3=.16.4ˇC 1// D 1

36
. Solving, we get ˇ D 1:44 and ˛ D 4:32. Therefore,

P

�

X <
2

3

�

D
R 2=3

0
x3:32.1 � x/:44dx

B.4:32; 1:44/
D :0283

:1006
D :281:

So if we fit a Beta distribution to the information that was given to us, we will
conclude that 28:1% of the examinees can finish the test in less that 40 minutes.

Example 8.16 (Square of a Beta). Suppose X has a Beta density. Then, X2 also
takes values in Œ0; 1�, but it does not have a Beta density. To give a specific example,
suppose X � Be.7; 7/. Then, the density of Y D X2 is

fY .y/ D f .
p
y/

2
p
y

D y3.1 � p
y/6

B.7; 7/2
p
y

D 6006y5=2.1 � p
y/6; 0 
 y 
 1:

Clearly, this is not a Beta density.

Example 8.17 (Mixture of Two Beta Densities). It was remarked before that a Beta
density cannot have two modes in .0; 1/. This can be a deficiency in modeling some
random variables that have two modes for some inherent physical reason. To cir-
cumvent this deficiency, we can use a suitable mixture of Beta densities. Consider
for example the mixture density

f .x/ D :5f1.x/C :5f2.x/;

where f1 and f2 are densities of Be.6; 2/ and Be.2; 6/, respectively. Thus,

f .x/ D 1

2
Œ42x5.1�x/�C 1

2
Œ42x.1�x/5� D 21x.1�x/Œx4 C.1�x/4�; 0 
 x 
 1:

A plot of this mixture density shows the two modes (see Figure 8.6).
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Fig. 8.6 A mixture of two betas can be bimodal

8.5 Extreme-Value Distributions

In practical applications, certain types of random variables consistently exhibit a
long right tail in the sense that a lot of small values are mixed with a few large
or excessively large values in the distributions of these random variables. Economic
variables such as wealth typically manifest such heavy-tail phenomena. Other exam-
ples include sizes of oil fields, insurance claims, stock market returns, river height
in a flood, etc. The tails are sometimes so heavy that the random variable may not
even have a finite mean. Extreme value distributions are common and increasingly
useful models for such applications. A brief introduction to two specific extreme-
value distributions is provided in this section. These two distributions are the Pareto
distribution and the Gumbel distribution. One peculiarity of semantics is that the
Gumbel distribution is often called the Gumbel law.

A random variable X is said to have the Pareto density with parameters 	 and ˛
if it has the density

f .x/ D ˛	˛

x˛C1
; x � 	 > 0; ˛ > 0:

We write X � Pa.˛; 	/. The density is monotonically decreasing. It may or may
not have a finite expectation, depending on the value of ˛. It never has a finite mgf
in any nonempty interval containing zero. The basic facts about a Pareto density are
given in the next result.

Theorem 8.7. Let X � Pa.˛; 	/.

(a) The CDF of X equals

F.x/ D 1 �
�
	

x

�˛

; x � 	;

and zero for x < 	 .
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(b) The nth moment exists if and only if n < ˛, in which case

E.Xn/ D ˛	n

˛ � n
:

(c) For ˛ > 1, the mean exists; for ˛ > 2, the variance exists. Furthermore, they
equal

E.X/ D ˛	

˛ � 1 I Var.X/ D ˛	2

.˛ � 1/2.˛ � 2/ :

Proof. Each part follows from elementary calculus and integration. For example,

E.Xn/ D
Z 1

	

xn ˛	
˛

x˛C1
dx D ˛	˛

Z 1

	

1

x˛�nC1
dx;

which converges if and only if ˛ � n > 0 , n < ˛, in which case the formula for
E.Xn/ follows by simply evaluating the integral. The formula for the mean is just
the special case n D 1, and that for the variance is found by using the fact that the
variance equals E.X2/� ŒE.X/�2.

A particular Pareto density is plotted in Figure 8.7; the heavy right tail is clear.
We next define the Gumbel law. A random variableX is said to have the Gumbel

density with parameters � and � if it has the density

f .x/ D 1

�
e

�
�e�

x��
�

�

e� x��
� ;�1 < x < 1;�1 < � < 1; � > 0:

If � D 0 and � D 1, the density is called the standard Gumbel density. Thus,
the standard Gumbel density has the formula f .x/ D e�e�x

e�x ;�1 < x < 1.
The density converges extremely fast (at a superexponential rate) at the left tail, but
only at a regular exponential rate at the right tail. Its relation to the density of the
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x

0.5

1

1.5

2

Fig. 8.7 Pareto density with theta D 1, alpha D 2
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Fig. 8.8 Standard Gumbel density

maximum of a large number of independent normal variables makes it a special
density in statistics and probability. The basic facts about a Gumbel density are
collected together in the result below. All Gumbel distributions have a finite mgf
 .t/ at any t . But no simple formula for it is possible.

Theorem 8.8. Let X have the Gumbel density with parameters �; � . Then,

(a) The CDF equals

F.x/ D e

�
�e�

x��
�

�

;�1 < x < 1:

(b) E.X/ D �� 
� , where 
 � :577216 is the Euler constant.

(c) Var.X/ D �2

6
�2.

(d) The mgf of X exists everywhere.

We will not prove this result, except by making the comment that by differentiating
the given formula for F.x/ we indeed get the formula for f .x/. This is a proof by
inspection of part (a) of this theorem. The other parts require integration tricks and
are omitted.

The standard Gumbel density is plotted in Figure 8.8. The right tail is clearly
much heavier than the left tail.

8.6 � Exponential Density and the Poisson Process

A single theme that binds together a number of important probabilistic concepts
and distributions and is at the same time a major tool for the applied probabilist
and the applied statistician is the Poisson process. The Poisson process is a proba-
bilistic model of situations where events occur completely at random at intermittent
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times and we wish to study the number of times the particular event has occurred
up to a specific time instant, or perhaps the waiting time until the next event, etc.
Some simple examples are receiving phone calls at a telephone call center, receiving
an e-mail from someone, arrival of a customer at a pharmacy or some other store,
catching a cold, occurrence of earthquakes, mechanical breakdown in a computer or
some other machine, and so on. There is no end to how many examples we can think
of where an event happens, then nothing happens for a while, and then it happens
again, and it keeps going like this, apparently at random. It is therefore not surpris-
ing that the Poisson process is such a valuable tool in the probabilist’s toolbox. It
is also a fascinating feature of the Poisson process that it is connected in various
interesting ways to a number of special distributions, including the exponential and
the Gamma in particular. These embracing connections and wide applications make
the Poisson process a very special topic in probability. A detailed treatment of the
Poisson process will be made in the companion volume of this book; below, we only
give an elementary introduction.

The Poisson process is a special family of an uncountably infinite number of
nonnegative random variables, indexed by a running label t . We call t the time pa-
rameter and, for the purpose of our discussion here, it belongs to the infinite interval
Œ0;1/. For each t � 0, there is a nonnegative random variable X.t/, that counts
how many events have occurred up to and including time t . As we vary t , we can
think of X.t/ as a function. It is a random function because each X.t/ is a random
variable. Like all functions, X.t/ has a graph. The graph of X.t/ is called a path of
X.t/. It is helpful to look at a typical path of a Poisson process (see Figure 8.9).

We notice that the path is a nondecreasing function of the time parameter t and
that it increases by jumps of size one. The time instants at which these jumps occur
are called the renewal or arrival times of the process. Thus, we have an infinite
sequence of arrival times, say Y1; Y2; Y3; : : :; the first arrival occurs exactly at time
Y1, the second arrival occurs at time Y2, and so on. We define Y0 to be zero. The gaps

1 2 3 4
t

1

2

3

4 Path of a Poisson Process

Fig. 8.9 Path of a Poisson process
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between the arrival times, Y1 � Y0; Y2 � Y1; Y3 � Y2; : : :, are called the interarrival
times. Writing Yn � Yn�1 D Tn, we see that the interarrival times and the arrival
times are related by the simple identity

Yn D .Yn�Yn�1/C.Yn�1�Yn�2/C� � �C.Y2�Y1/C.Y1�Y0/ D T1CT2C� � �CTn:

A special property of a Poisson process is that these interarrival times are iid
exponential. So, for instance, if T3, the time that you had to wait between the second
and the third events, was large, then you have no right to believe that T4 should be
small because T3 and T4 are actually independent for a Poisson process.

Definition 8.5. Let T1; T2; � � � be an infinite sequence of iid exponential random
variables with a common mean �. For t � 0, define X.t/ by the relation

X.t/ D k , T1 C � � � C Tk 
 t < T1 C � � � C TkC1IX.0/ D 0:

Then the family of random variables fX.t/; t � 0g is called a stationary or homo-
geneous Poisson process with constant arrival rate �.

We will state, without proof, the most important property of a homogeneous
Poisson process.

Theorem 8.9. Let fX.t/; t � 0g be a homogeneous Poisson process with constant
arrival rate �. Then,

(a) Given any 0 
 t1 
 t2 < 1; X.t2/� X.t1/ � Poi.�.t2 � t1//:
(b) Given any n � 2 and disjoint time intervals Œai ; bi �; i D 1; 2; : : : ; n, the random

variables X.bi /� X.ai /; i D 1; 2; : : : ; n are mutually independent.

Property (b) in the theorem is called the independent increments property.
Independent increments simply mean that the number of events over nonoverlap-
ping time intervals are mutually independent.

Example 8.18 (A Medical Example). Suppose between the months of May and
October you catch allergic rhinitis at the constant average rate of once in six weeks.
Assuming that the incidences follow a Poisson process, let us answer some simple
questions.

First, what is the expected total number of times that you will catch allergic
rhinitis between May and October in one year? Take the start date of May 1 as t D 0

and X.t/ as the number of fresh incidences up to (and including) time t . Note that
time is being measured in some implicit unit, say weeks. Then, the arrival rate of the
Poisson process for X.t/ is � D 1

6
. There are 24 weeks between May and October,

and X.24/ is distributed as Poisson with mean 24� D 4, which is the expected
total number of times that you will catch allergic rhinitis between May and October.
Next, what is the probability that you will catch allergic rhinitis at least once before
the start of August and at least once after the start of August and before the end of
October? This is the same as asking what P.X.12/ � 1;X.24/�X.12/ � 1/ is. By
the property of independence of X.12/ and X.24/�X.12/, this probability equals
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P.X.12/ � 1/P.X.24/� X.12/ � 1/ D ŒP.X.12/ � 1/�2

D Œ1 � P.X.12/ D 0/�2 D
h
1 � e� 12

6

i2 D :7476:

8.7 Synopsis

(a) If X � U Œa; b�, then

f .x/ D 1

b � aIfa�x�bgIE.X/ D a C b

2
I Var.X/ D .b � a/2

12
:

(b) If X � Be.˛; ˇ/, then

f .x/ D �.˛ C ˇ/

�.˛/�.ˇ/
x˛�1.1 � x/ˇ�1If0�x�1gIE.X/ D ˛

˛ C ˇ
I

Var.X/ D ˛ˇ

.˛ C ˇ/2.˛ C ˇ C 1/
:

(c) If X � Exp.�/, then

f .x/ D 1

�
e� x

� ; x � 0IE.X/ D �I Var.X/ D �2:

The median of X equals � log 2.
(d) If X � Gamma.˛; �/, then

f .x/ D e�x=�x˛�1

�˛�.˛/
; x > 0IE.X/ D ˛�I Var.X/ D ˛�2:

(e) If X1; : : : ; Xn are iid Exp.�/, then X1 C � � � CXn � Gamma.n; �/.
(f) The mgf of a Gamma distribution equals  .t/ D .1� �t/�˛ ; t < 1

�
.

(g) Any exponential density satisfies the lack of memory property

P.X > s C t jX > s/ D P.X > t/

for all s; t > 0.
(h) The Gamma density with parameters ˛ D m

2
; � D 2 is called the chi-square

density with m degrees of freedom. The mean and the variance of a chi-square
distribution with m degrees of freedom are m and 2m.

(i) If X � Pa.˛; 	/, then

f .x/ D ˛	˛

x˛C1
; x � 	 > 0IE.X/ D ˛	

˛ � 1 ; if˛ > 1I

Var.X/ D ˛	2

.˛ � 1/2.˛ � 2/
; if ˛ > 2:
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(j) If X has the Gumbel density with parameters �; � , then

f .x/ D 1

�
e

�
�e�

x��
�

�

e� x��
� ;�1<x<1I

E.X/ D � � 
� I Var.X/ D �2

6
�2I

here, 
 is the Euler constant (see the text).
(k) If fX.t/; t � 0g is a homogeneous Poisson process with constant arrival rate �,

then, for any 0 
 t1 
 t2 < 1; X.t2/�X.t1/ � Poi.�.t2 � t1//. Additionally,
given any n disjoint time intervals Œai ; bi �; 1 
 i 
 n, the random variables
X.bi /� X.ai /; 1 
 i 
 n are mutually independent.

(l) If fX.t/; t � 0g is a homogeneous Poisson process with constant arrival rate �,
then the interarrival times T1; T2; � � � are iid exponential with mean �.

8.8 Exercises

Exercise 8.1. Suppose X � U Œ�2; 2�. For what a; b is a C bX � U Œ0; 1�?

Exercise 8.2. X is uniformly distributed on some interval Œa; b�. If its mean is 2 and
variance is 3, what are the values of a and b?

Exercise 8.3. A city bus is supposed to arrive at a fixed stop at 12:00 noon, but its
arrival time is uniformly distributed between 11:57 AM and 12:04 PM. If it has not
yet arrived at 12:01 PM, what is the probability that it will arrive by 12:02 PM?

Exercise 8.4. Let f .x/ D ax2 C bxC c; 0 < x < 1, and zero otherwise. For what
values of a; b; c is f .x/ a density function? For what values of a; b; c is f .x/ a
density function with mean 0:5?

Exercise 8.5. Let X � U Œ0; 1�. Find the density of each of the following:

(a) X3 � 3X I
(b)

�

X � 1

2

�2

I

(c) .sin
��

2
X/
�4

:

Exercise 8.6. *(Using the Quantile Transformation to Simulate a Variable). Let
U � U Œ0; 1�. Describe how you will use U to simulate X if X has the following
densities:

(a) f .x/ D 5x4; 0 < x < 1I
(b) f .x/ D 1

�
p
x.1 � x/ ; 0 < x < 1I

(c) f .x/ D 1

2
e�jx�2j;�1 < x < 1:
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Exercise 8.7. It is known that, for a Beta random variableX with parameters ˛ and
ˇ, P.X < :2/ D :22. If ˛ C ˇ D 26, find ˛ and ˇ.

Exercise 8.8 (Triangular Density). SupposeX has the triangular density on Œ0; 1�.
For what values of a and b does aC bX have a triangular density on Œ�1; 1�? Here,
a triangular density on Œ�1; 1� is the symmetric triangular function centered at zero.

Exercise 8.9 (Moments of a Triangular Density). Suppose X has a triangular
density on Œ0; 1�. Find a formula for the nth moment of X .

Exercise 8.10. *(Mode of a Beta Density). Show that if a Beta density has a mode
in the open interval .0; 1/, then we must have ˛ > 1; ˛ C ˇ > 2, in which case the
mode is unique and equals ˛�1

˛Cˇ�2
.

Exercise 8.11. *(Mean Absolute Deviation of Beta). Suppose X � Be.m; n/,
where m; n are positive integers. Derive a formula for the mean absolute deviation
of X .

Exercise 8.12. The concentration of acetic acid in table vinegar has a Beta distri-
bution with mean 0:083 and standard deviation :077. In what percentage of bottles
of vinegar does the acetic acid concentration exceed 20%?

Exercise 8.13 (Subexponential Density). Find the constant c such that f .x/ D
ce�p

x is a pdf on .0;1/.

Exercise 8.14. An exponential random variable with mean 4 is known to be larger
than 6. What is the probability that it is larger than 8?

Exercise 8.15. * (A Two-Layered Problem). The time that you have to wait to
speak to a customer service representative when you call a bank is exponentially
distributed with mean 1.5 minutes. If you make ten calls in one month (and never
hang up), what is the probability that at least twice you will have to wait more than
three minutes?

Exercise 8.16 (Truncated Exponential). Suppose X � Exp.1/. What is the den-
sity of 2X C 1?

Exercise 8.17. * Suppose X1; X2; � � � ; Xn are independent Exp.1/ variables and
a; b; b > 0 are constants. What is the density of aC b

Pn
iD1Xi ?

Exercise 8.18 (The Jovial Professor). The number of jokes your professor tells in
class per t minutes has a Poisson distribution with mean 0:1t . If the class started at
12:00 noon, what is the probability that the first joke will be told before 12:20 PM?

Exercise 8.19. *(Sum of Gammas). Suppose X and Y are independent random
variables and X � G.˛; �/; Y � G.ˇ; �/. Find the distribution of X C Y using
moment generating functions.
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Exercise 8.20 (Inverse Gamma Moments). Suppose X � G.˛; �/. Find a for-
mula for EŒ. 1

X
/n� when this expectation exists.

Exercise 8.21 (Product of Chi-Squares). Suppose X1; X2; : : : ; Xn are indepen-
dent chi-square variables with Xi � �2

mi
. Find the mean and variance of

Qn
iD1Xi .

Exercise 8.22. *(Chi-Square Skewness). Let X � �2
m: Find the coefficient of

skewness of X and prove that it converges to zero as m ! 1.

Exercise 8.23. *(A Half-Life Problem). A piece of rock contains 1025 atoms. Each
atom has an exponentially distributed lifetime with a half-life of one century; here,
half-life means the distribution’s median. How many centuries must pass before
there is just about a 50% chance that at least one atom still remains?

Exercise 8.24. Let X � Exp.�/. Find a formula for P.X > 2�/. What is special
about the formula?

Exercise 8.25. *(An Optimization Problem). Suppose that a battery has a lifetime
with a general density f .x/; x > 0. A generator using this battery costs $c1 per hour
to run, and while it runs, a profit of $c2 is made. Suppose also that the labor charge
per hour to operate the generator is $c3.

(a) Find the expected profit if labor is hired for t hours.
(b) Is there an optimum value of t? How will you characterize it?
(c) What is such an optimum value if f .x/ is an exponential density with mean �?

Exercise 8.26. *(A Relation Between Poisson and Gamma). Suppose X �
Poi.�/. Prove by repeated integration by parts that

P.X 
 n/ D P.G.nC 1; 1/ > �/;

where G.nC 1; 1/ means a Gamma random variable with parameters nC 1 and 1.

Exercise 8.27. *(A Relation Between Binomial and Beta). Suppose X �
Bin.n; p/. Prove that

P.X 
 k � 1/ D P.B.k; n � k C 1/ > p/;

where B.k; n� kC 1/means a Beta random variable with parameters k; n� kC 1.

Exercise 8.28. Suppose X has the standard Gumbel density. Find the density of
e�X .

Exercise 8.29. Suppose X is uniformly distributed on Œ0; 1�. Find the density of
log log 1

X
.

Exercise 8.30. Suppose X has a Pareto distribution with parameters ˛ and 	 . Find
the distribution of 	

X
.
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Exercise 8.31 (Poisson Process for Catching a Cold). Suppose that you catch a
cold according to a Poisson process once every three months.

(a) Find the probability that between the months of July and October, you will catch
at least four colds.

(b) Find the probability that between the months of May and July, and also between
the months of July and October, you will catch at least four colds.

(c) * Find the probability that you will catch more colds between the months of
July and October than between the months of May and July.

Exercise 8.32 (Correlation in a Poisson Process). SupposeX.t/ is a Poisson pro-
cess with average constant arrival rate �. Let 0 < s < t < 1. Find the correlation
between X.s/ and X.t/.

Exercise 8.33 (Two Poisson Processes). Suppose X.t/ and Y.t/; with t � 0

are two Poisson processes with rates �1 and �2. Assume that the processes run
independently.

(a) Prove or disprove:X.t/C Y.t/ is also a Poisson process.
(b) * Prove or disprove: jX.t/ � Y.t/j is also a Poisson process.

Exercise 8.34 (Connection of a Poisson Process to Binomial Distribution).
Suppose X.t/ with t � 0 is a Poisson process with constant average rate �. Given
that X.t/ D n, show that the number of events up to the time u, where u < t , has a
binomial distribution. Identify the parameters of this binomial distribution.

Exercise 8.35 (Use Your Computer). Use the quantile transformation method to
simulate 100 values from a distribution with density 4x3 on Œ0; 1�. Repeat the simu-
lation 500 times. For each such set of 100 values, compute the mean. Do these 500
means cluster around some number? Would you expect that?

Exercise 8.36 (Use Your Computer). Use the quantile transformation method to
simulate 100 values from a Gamma distribution with parameters 20 and 1. Repeat
the simulation 500 times. How can you use these simulated sets to approximate the
median of a Gamma distribution with parameters 20 and 1?

Exercise 8.37 (Use Your Computer). Design a simulation exercise to approximate
the value of E.XX / when X has a U Œ0; 1� distribution.
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Chapter 9
Normal Distribution

Empirical data on many types of variables across disciplines tend to exhibit
unimodality and only a small amount of skewness. It is quite common to use a
normal distribution as a model for such data. The normal distribution occupies
the central place among all distributions in probability and statistics. When a new
methodology is presented, it is usually first tested on the normal distribution. The
most well-known procedures in the toolbox of a statistician have their exact infer-
ential optimality properties when sample values come from a normal distribution.
There is also the central limit theorem, which says that the sum of many small
independent quantities approximately follows a normal distribution. Theoreticians
sometimes think that empirical data are often approximately normal, while em-
piricists think that theory shows that many types of variables are approximately
normally distributed. By a combination of reputation, convenience, mathematical
justification, empirical experience, and habit, the normal distribution has become
the most ubiquitous of all distributions. It is also the most studied; we know more
theoretical properties of the normal distribution than of others. It satisfies intriguing
and elegant characterizing properties not satisfied by any other distribution. Because
of its clearly unique position and its continuing importance in every emerging prob-
lem, we discuss the normal distribution exclusively in this chapter.

Stigler (1975, 1986) gives authoritative accounts of the history of the normal dis-
tribution. Galton, de Moivre, Gauss, Quetelet, Laplace, Karl Pearson, Edgeworth,
and of course Ronald Fisher all contributed to the popularization of the normal
distribution. Detailed algebraic properties can be seen in Johnson et al. (1994),
Rao (1973), Kendall and Stuart (1976), and Feller (1971). Patel and Read (1996)
is a good source for other references. Petrov (1975), Tong (1990), Bryc (1995),
and Freedman (2005) are important recent references; of these, Petrov (1975) is
a masterly account of the role of the normal distribution in the limit theorems of
probability.

9.1 Definition and Basic Properties

We have actually already defined a normal density in Chapter 7. We recall the
definition here.

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 9, c� Springer Science+Business Media, LLC 2010
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Definition 9.1. A random variable X is said to have a normal distribution with
parameters � and �2 if it has the density

f .x/ D 1

�
p
2�
e

� .x��/2

2�2 ;�1 < x < 1;

where � can be any real number, and � > 0. We write X � N.�; �2/. If X �
N.0; 1/, we call it a standard normal variable.

The density of a standard normal variable is denoted as �.x/ and equals the
function

�.x/ D 1p
2�
e� x2

2 ;�1 < x < 1;

and the CDF is denoted asˆ.x/. Note that the standard normal density is symmetric
and unimodal about zero. The generalN.�; �2/ density is symmetric and unimodal
about �.

By the definition of a CDF,

ˆ.x/ D
Z x

�1
�.z/d z:

The CDF ˆ.x/ cannot be written in terms of the elementary functions but can be
computed at a given value x, and tables of the values of ˆ.x/ are widely available.
For example, here are some selected values.

Example 9.1 (Standard Normal CDF at Selected Values).

x ˆ.x/

�4 .00003
�3 .00135
�2 .02275
�1 .15866
0 .5
1 .84134
2 .97725
3 .99865
4 .99997

By inspection, we find in this table thatˆ.�x/Cˆ.x/ is always one. This is a math-
ematical fact and a consequence of the symmetry of the standard normal distribution
around zero:

ˆ.�x/ D 1 �ˆ.x/8 x:

If we keep �2 fixed and change �, a normal distribution only gets shifted to a new
center. If we keep � fixed and increase �2, the distribution becomes more spread
out. In fact, we will shortly see that �2 is the variance of an N.�; �2/ distribution.
Figure 9.1 helps visualize these facts about normal distributions.
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Fig. 9.1 N.0; 1/; N.2; 1/; and N.2; 4/ Densities

Theorem 9.1 states the most basic properties of a normal distribution.

Theorem 9.1.
(a) If X � N.�; �2/, then Z D X��

�
� N .0; 1/, and if Z � N.0; 1/, then

X D �C �Z � N.�; �2/.
In words, if X is any normal random variable, then its standardized version is
always a standard normal variable.

(b) If X � N.�; �2/, then

P.X 
 x/ D ˆ
�x � �

�

�
8 x:

In particular, P.X 
 �/ D P.Z 
 0/ D :5; i.e., the median of X is �.
(c) Every moment of any normal distribution exists, and the odd central moments

EŒ.X � �/2kC1� are all zero.
(d) If Z � N.0; 1/, then

E.Z2k/ D .2k/Š

2kkŠ
; k � 1:

(e) The mgf of the N.�; �2/ distribution exists at all real t and equals

 .t/ D et�C t2�2

2 :

(f) If X � N.�; �2/,

E.X/ D �I Var.X/ D �2IE.X3/ D �3C3��2IE.X4/ D �4C6�2�2C3�4:

(g) If X � N.�; �2/, then 1 D �; 2 D �2, and r D 0 8 r > 2, where j is the
jth cumulant of X .
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Proof. Part (a) follows from the general fact that if Z has density f .z/, then X D
a C bZ has density 1

jbjf .
x�a

b
/I we simply identify a with � and b with � .

For part (b), denoting a standard normal variable by Z, observe that

P.X 
 x/ D P.X � � 
 x � �/ D P

�
X � �

�

 x � �

�

�

D P
�
Z 
 x � �

�

�
D ˆ

�x � �

�

�
:

Part (c) follows from the fact that every moment of a standard normal distribution
exists and that all its odd moments E.Z2kC1/ D 0, which we have already proved
in Chapter 7. Likewise, part (d) also has already been proved in Chapter 7.

For part (e), ifX � N.�; �2/, representX asX D �C�Z, whereZ � N.0; 1/,
and observe that

E
�
etX

�
D E

�
et.�C�Z/

�
D et�E

�
et�Z

�

D et�et2�2=2 D et�Ct2�2=2;

where we have used the formula E.esZ/ D es2=2, derived in Chapter 7.
For part (f ),

E.X/ D E.�C �Z/ D �C �E.Z/ D �

since E.Z/D 0. Likewise, Var.X/DVar.�C �Z/D Var.�Z/ D �2Var.Z/ D �2:

For the third moment, E.X3/ D EŒ.�C �Z/3� D EŒ�3 C 3�2�Z C 3��2Z2 C
�3Z3� D �3 C 3��2 since E.Z/; and E.Z3/ are both zero. The fourth-moment
formula follows similarly on using E.Z4/ D 3. Finally, for part (g), the first two
cumulants are always the mean and the variance of the distribution, and the higher-
order cumulants all vanish because log .t/ D t� C t2�2=2, which is a quadratic
in t , so its third and higher derivatives are identically equal to zero.

An important consequence of part (b) of this theorem is the following result.

Corollary. Let X � N.�; �2/ and let 0 < ˛ < 1. Let Z � N.0; 1/. Suppose x˛ is
the .1 � ˛/th quantile (also called percentile) of X and z˛ is the .1 � ˛/th quantile
of Z. Then

x˛ D �C �z˛ :

Remark. Part (b) of the theorem and this corollary together say that to compute
the value of the CDF of any normal distribution at a point, or to compute any per-
centile of a general normal distribution, we only need to know how to compute the
CDF of a standard normal distribution and percentiles of a standard normal dis-
tribution. In other words, only one table of CDF values is needed to compute the
CDF and percentiles of arbitrary normal distributions; we can reduce the arbitrary
normal case problem to a standard normal problem. This is a very important prac-
tical point.
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9.2 Working with a Normal Table

It is essential that we learn how to correctly use a standard normal table. We may
want to consult a standard normal table for evaluating probabilities or finding the
value of some percentile. A detailed standard normal table is provided in the ap-
pendix. Here are some examples that reinforce the results we have described above.

Example 9.2 (Selected Standard Normal Percentiles). By using a standard normal
CDF table, one can see that the 75th, 90th, 95th, 97.5th, 99th, and 99.5th percentiles
of a standard normal distribution are the following:

˛ 1 � ˛ z˛

:25 :75 :675

:1 :9 1:282

:05 :95 1:645

:025 :975 1:960

:01 :99 2:326

:005 :995 2:576

Example 9.3. The age of the subscribers to a newspaper has a normal distribution
with mean 50 years and standard deviation 5 years. We want to compute the per-
centage of subscribers who are less than 40 years old and the percentage who are
between 40 and 60 years old.

Let X denote the age of a subscriber; we have X � N.�; �2/; � D 50; � D 5.
Therefore,

P.X < 40/ D ˆ

�
40 � 50
5

�

D ˆ.�2/ D :02275

and

P.40 
 X 
 60/ D P.X 
 60/� P.X 
 40/ D ˆ.2/ �ˆ.�2/
D .1 � :02275/� :02275 D 1 � 2 	 :02275 D :9545:

Example 9.4 (Using a Standard Normal Table). Let Z � N.0; 1/; we will find the
values of P.jZ � 1j < 2/; P.Z2 
 9/, and P. Z

1CZ2 <
1
2
/.

P.jZ � 1j < 2/ D P.�1 < Z < 3/ D ˆ.3/ �ˆ.�1/ D :99865� :15866 D :84:

P.Z2 
 9/ D P.�3 
 Z 
 3/ D ˆ.3/ �ˆ.�3/ D :99865� :00135 D :9973:

P

�
Z

1CZ2
<
1

2

�

D P.1CZ2 > 2Z/ D P..Z � 1/2 > 0/ D 1:

Example 9.5 (Using a Standard Normal Table). Suppose X � N.5; 16/; we want
to know which number x has the property that P.X 
 x/ D :95.
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This amounts to asking what the 95th percentile of X is. By the general formula
for percentiles of a normal distribution, the 95th percentile of X equals

� 	 95th percentile of standard normal C � D 4 	 1:645C 5 D 11:58:

Now change the question: Which number x has the property that P.x 
 X


 9/ D :68‹ This means, by standardizingX to a standard normal,

ˆ.1/ �ˆ
�
x � 5

4

�

D :68 ) ˆ

�
x � 5
4

�

D ˆ.1/ � :68

D :8413� :68 D :1613:

By reading a standard normal table, ˆ.�:99/ D :1613, so

x � 5
4

D �:99 ) x D 1:04:

9.3 Additional Examples and the Lognormal Density

Example 9.6 (A Reliability Problem). Let X denote the length of time (in minutes)
an automobile battery will continue to crank an engine. Assume thatX � N.10; 4/.
What is the probability that the battery will crank the engine longer than 10 C x

minutes given that it is still cranking at 10 minutes?
We want to find

P.X > 10C x jX > 10/ D P.X > 10C x/

P.X > 10/
D P.Z > x=2/

1=2

D 2
h
1 �ˆ

�x

2

�i
:

Note that this is decreasing in x. IfX had been exponentially distributed, then by the
lack of memory property, this probability would have been P.X > x/ D e�x=10,
assuming that the mean was still 10 minutes. But if the distribution is normal, we can
no longer get an analytic expression for the probability; we only get an expression
involving the standard normal CDF.

As a specific choice, if x D 2, then we get

P.X > 10C x jX > 10/ D 2
h
1�ˆ

�x

2

�i
D 2Œ1 �ˆ.1/� D :3174:

Example 9.7 (Setting a Thermostat). Suppose that when the thermostat is set at d
degrees Celsius, the actual temperature of a certain room is a normal random
variable with parameters � D d and � D :5.
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If the thermostat is set at 75ı C, what is the probability that the actual temperature
of the room will be below 74ı C?

By standardizing to an N.0; 1/ random variable,

P.X < 74/ D P.Z < .74 � 75/=:5/ D P.Z < �2/ D :02275:

Next, what is the lowest setting of the thermostat that will maintain a temperature
of at least 72ı C with a probability of .99?

We want to find the value of d that makes P.X � 72/ D :99 ) P.X < 72/

D :01: Now, from a standard normal table, P.Z < �2:326/ D :01. Therefore, we
want to find d , which makes d C � 	 .�2:326/ D 72 ) d � :5 	 2:326 D 72 )
d D 72C :5 	 2:326 D 73:16ı C:
Example 9.8 (A Two-Layered Example). Suppose the distribution of heights in a
population is approximately normal. Ten percent of individuals are over 6 feet tall,
and the average height is 5 ft. 10 in. What is the approximate probability that in a
group of 50 people picked at random there will be two or more people who are over
6 ft. 1 in. tall?

Denoting height as X , we have X � N.�; �2/; � D 70; and P.X > 72/ D :1;
i.e., 72 is the 90th percentile of X ) 72 D 70C 1:282� ) � D 1:56.

So, the probability that one individual is taller than 6 ft. 1 in. is pDP.X > 73/D
P.Z > .73� 70/=1:56/D P.Z > 1:92/ D :0274.

Therefore, T , the number of people among 50 who are taller than 6 ft. 1 in. is
distributed as Bin.50; p/ and we want

P.T � 2/ D 1 � P.T D 0/� P.T D 1/ D 1 � .1 � :0274/50

�50 	 :0274 	 .1 � :0274/49 D 1 � :6004 D :3996:

Example 9.9 (Rounding a Normal Variable). Suppose X � N.0; �2/ and that the
absolute value ofX is rounded to the nearest integer. We have seen in Chapter 7 that
the expected value of jX j itself is �

p
2=� . How does rounding affect the expected

value?
Denote the rounded value of jX j by Y . Then, Y D 0 , jX j < :5IY D 1 , :5

< jX j < 1:5I � � � , etc. Therefore,

E.Y / D
1X

iD1

iP.i � 1=2 < jX j < i C 1=2/ D
1X

iD1

iP.i � 1=2 < X < i C 1=2/

C
1X

iD1

iP.�i � 1=2 < X < �i C 1=2/

D 2

1X

iD1

i Œˆ..iC1=2/=�/�ˆ..i � 1=2/=�/� D 2

1X

iD1

Œ1 �ˆ..i C 1=2/=�/�

on some manipulation.
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4

Fig. 9.2 Expected value of rounded and unrounded jX j when x is N.0; sigmaO2/

For example, if � D 1, then this equals 2
P1

iD1Œ1�ˆ.iC1=2/� D :76358, while

the unrounded jX j has the expectation
p
2=� D :79789. The effect of rounding is

not serious when � D 1.
A plot of the expected value of Y and the expected value of jX j is shown in

Figure 9.2 to study the effect of rounding.
We can see that the effect of rounding is uniformly small. There is classic lit-

erature on corrections needed in computing means, variances, and higher moments
when data are rounded. These are known as Sheppard’s corrections. Kendall and
Stuart (1976) gives a thorough treatment of these necessary corrections.

Example 9.10 (Lognormal Distribution). Lognormal distributions are common
models in studies of economic variables, such as income and wealth, because they
can adequately describe the skewness that one sees in data on such variables. If
X � N.�; �2/, then the distribution of Y D eX is called a lognormal distribution
with parameters�; �2. Note that the lognormal name can be confusing; a lognormal
variable is not the logarithm of a normal variable. A better way to remember its
meaning is log is normal.

Since Y D eX is a strictly monotone function of X , by the usual formula for the
density of a monotone function, Y has the pdf

fY .y/ D 1

y�
p
2�
e

� .log y��/2

2�2 ; y > 0I

this is called the lognormal density with parameters �; �2. Since a lognormal vari-
able is defined as eX for a normal variableX , its mean and variance are easily found
from the mgf of a normal variable. A simple calculation shows that

E.Y / D e�C �2

2 I Var.Y / D .e�2 � 1/e2�C�2

:
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Fig. 9.3 Lognormal (0,1) density

One of the main reasons for the popularity of the lognormal distribution is its
skewness; the lognormal density is extremely skewed for large values of � . The
coefficient of skewness has the formula

ˇ D .2C e�2

/
p
e�2 � 1;

! 1, as � ! 1. A plot of the lognormal density for � D 0; � D 1 is shown
in Figure 9.3 to illustrate the skewness. Note that the lognormal densities do not
have a finite mgf at any t > 0, although all their moments are finite. It is also the
only standard continuous distribution that is not determined by its moments (see
Heyde (1963)). That is, there exist other distributions besides the lognormal whose
moments exactly coincide with the moments of a given lognormal distribution. This
is not true of any other distribution with a name that we have come across in this text.
For example, the normal and Poisson distributions are determined by their moments.

9.4 Sums of Independent Normal Variables

We had remarked in the chapter introduction that sums of many independent vari-
ables tend to be approximately normally distributed. A precise version of this is the
central limit theorem, which we will study in a later chapter. What is interesting
is that sums of any number of independent normal variables are exactly normally
distributed. Here is the result.

Theorem 9.2. Let X1; X2; : : : ; Xn; n � 2 be independent random variables with
Xi � N.�i ; �

2
i /: Let Sn D Pn

iD1Xi . Then,
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Sn � N

 
nX

iD1

�i ;

nX

iD1

�2
i

!

:

Proof. The quickest proof of this uses the mgf technique. Since the Xi are indepen-
dent, the mgf of Sn is

 Sn
.t/ D E.etSn/ D E.etX1 � � � etXn/

D
nY

iD1

E.etXi / D
nY

iD1

et�i Ct2�2
i

=2 D et.
Pn

iD1 �i /C.t2=2/ .
Pn

iD1 �2
i

/;

which agrees with the mgf of the N.
Pn

iD1 �i ;
Pn

iD1 �
2
i / distribution, and there-

fore by the distribution determining property of mgfs, it follows that Sn �
N.
Pn

iD1�i ;
Pn

iD1 �
2
i /:

An important consequence is the following result.

Corollary. Suppose Xi ; 1 
 i 
 n are independent and each is distributed as

N.�; �2/. Then X D Sn

n
� N.�; �2

n
/:

To prove it, simply note that, by the theorem, Sn � N.n�; n�2/, and therefore
Sn

n
� N.�; n�2

n2 / D N.�; �2

n
/:

This says that the distribution of X gets more concentrated around � as n

increases because the variance �2

n
decreases with n. When n gets very large, the

normal distribution ofX will get very spiky around�. One way to think of it is that,
for large n, the mean of the sample values, namelyX , will be very close to the mean
of the distribution, namely �; X will be a good estimate of � when n is large.

Remark. The theorem above implies that any linear function of independent normal
variables is also normal; i.e.,

nX

iD1

aiXi � N

 
nX

iD1

ai�i ;

nX

iD1

a2
i �

2
i

!

:

Example 9.11. Suppose X � N.�1; 4/; Y � N.1; 5/, and suppose that Xand Y
are independent. We want to find the CDFs of X C Y and X � Y .

By the theorem above,

X C Y � N.0; 9/ and X � Y � N.�2; 9/:

Therefore,

P.X C Y 
 x/ D ˆ
�x

3

�
and P.X � Y 
 x/ D ˆ

�
x C 2

3

�

:
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For example,

P.X C Y 
 3/ D ˆ.1/ D :8413 and P.X � Y 
 3/ D ˆ

�
5

3

�

D :9525:

Example 9.12 (Confidence Interval and Margin of Error). Suppose some random
variable X � N.�; �2/ and we have n independent observations X1; X2; : : : ; Xn

on this variable X ; another way to put it is that X1; X2; : : : ; Xn are iid N.�; �2/.
Therefore,X � N.�; �2=n/, and we have

P.X � 1:96�=
p
n 
 � 
 X C 1:96�=

p
n/DP.�1:96�=pn 
 X � � 
 1:96�=

p
n/

D P

 

�1:96 
 X � �
�=

p
n


 1:96

!

D ˆ.1:96/ �ˆ.�1:96/ D :95

from a standard normal table.
Thus, with a 95% probability, for any n;� is between X ˙ 1:96�=

p
n: Statisti-

cians call the interval of values X ˙ 1:96�=
p
n a 95% confidence interval for �,

with a margin of error 1:96�=
p
n.

A tight confidence interval will correspond to a small margin of error. For
example, if we want a margin of error 
 :1, then we will need 1:96�=

p
n 
 :1 ,p

n � 19:6� , n � 384:16�2. Statisticians call such a calculation a sample size
calculation.

9.5 Mills Ratio and Approximations for the Standard
Normal CDF

The standard normal CDF cannot be represented in terms of the elementary
functions. But it arises in many mathematical problems having to do with nor-
mal distributions. As such, it is important to know the behavior of the standard
normal CDF ˆ.x/, especially for large x. We have seen in Chapter 7 that the

Chernoff-Bernstein inequality implies that 1 � ˆ.x/ 
 e�x2=2 for all positive x.
However, actually we can prove better inequalities. The ratio

R.x/ D 1 �ˆ.x/

�.x/

is called the Mills ratio. We will provide a selection of bounds and asymptotic ex-
pansions for R.x/ in this section.
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Theorem 9.3 (Six Inequalities).

(a) Polýa Inequality

ˆ.x/ <
1

2

�

1C
q

1 � e� 2
�

x2

	

:

(b) Chu Inequality

ˆ.x/ � 1

2

"

1C
q

1 � e� x2

2

#

:

(c) Mitrinovic Inequality
For x > 0,

2

x C p
x2 C 4

< R.x/ <
2

x C
r

x2 C 8

�

:

(d) Gordon Inequality
For x > 0,

x

x2 C 1

 R.x/ 
 1

x
:

(e) Szarek-Werner Inequality
For x > �1,

2

x C p
x2 C 4

< R.x/ <
4

3x C p
x2 C 8

:

(f) Boyd Inequality
For x > 0,

R.x/ <
�

2x Cp
.� � 2/2x2 C 2�

:

See Patel and Read (1996) or DasGupta (2008) for these inequalities. A plot of the
exact values of ˆ.x/, the Polýa upper bound, and the Chu lower bound is given
in Figure 9.4 as verification of the accuracy of the inequalities. The accuracy of
the Polýa upper bound is remarkable, as we can see in the plot. The exact CDF
ˆ.x/ and the Polýa upper bound are so close to each other that they look nearly
indistinguishable in the plot.

There are also pointwise asymptotic expansions available for both ˆ.x/

and R.x/. We will give asymptotic expansions only for R.x/. These expansions
have a long and detailed literature. Laplace was greatly interested in the problem,
and a number of approximations and expansions for both ˆ.x/ and R.x/ are due
to him. He obtained particularly accurate continued-fractions expansions for R.x/
but we do not present it here, as it would clearly be beyond the scope of this chapter.
The expansion below is also due to Laplace. References to various other expansions,
particularly those due to Laplace, can be found in Patel and Read (1996).
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Fig. 9.4 Exact N.0; 1/ CDF, Polya upper bound, and Chu lower bound

Theorem 9.4 (Laplace’s Expansions for the Mills Ratio).

(a) For all x > 0,

R.x/ D 1

x
� 1

x3
C 1 	 3

x5
� � � � C .�1/n 1 	 3 	 � � � 	 .2n� 1/

x2nC1
CRn.x/;

where

jRn.x/j < min

�
1 	 3 	 � � � 	 .2n � 1/

x2nC1
;
1 	 3 	 � � � 	 .2nC 1/

x2nC3

�

:

(b) For x > 0,
1

x
� 1

x3
< R.x/ <

1

x
:

(c) Let R.x/ D ˆ.x/� 1
2


.x/
. Then, for x > 0 and all n � 1,

R.x/ > x C x3

1 	 3 C x5

1 	 3 	 5 C � � � C x2n�1

1 	 3 	 � � � 	 .2n� 1/
:

Corollary. 1 �ˆ.x/ � 
.x/
x

as x ! 1.

In spite of this theoretical result, in practice 
.x/
x

does not give a very accurate
relative approximation for 1 � ˆ.x/. For example, if x D 3; the exact value of

1�ˆ.x/ is .00135, while 
.x/
x

equals .00148; the relative error is almost 10%. It is
necessary to use more terms in the expansion to get an accurate approximation. It
should be noted that if we end the expansion for R.x/ at a term ending in a “minus
sign,” we always get a lower bound to R.x/, while if we end the expansion at a term
ending in a “plus sign,” we always get an upper bound to R.x/.
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9.6 Synopsis

(a) If X � N.�; �2/, then

f .x/ D 1

�
p
2�
e

� .x��/2

2�2 ;�1 < x < 1IE.X/ D �I Var.X/ D �2:

(b) The N.0; 1/ density is called the standard normal density and is denoted as
�.x/. The CDF of the standard normal distribution is denoted as ˆ.x/. Thus,

�.x/ D 1p
2�
e� x2

2 Iˆ.x/ D
Z x

�1
�.z/d z:

The CDF ˆ.x/ cannot be written in terms of elementary functions but can be
computed at a given value x.

(c) The mgf of the N.�; �2/ distribution equals

 .t/ D et�C t2�2

2 ;�1 < t < 1:

(d) If X � N.�; �2/, then Z D X��
�

� N.0; 1/. Conversely, if Z � N.0; 1/, then

for any real � and any � > 0;X D �C �Z � N.�; �2/.
(e) If X � N.�; �2/, then P.X 
 x/ D ˆ.x��

�
/ 8 x: More generally,

P.a 
 X 
 b/ D ˆ

�
b � �

�

�

�ˆ
�a � �

�

�

for all a; b; a 
 b.
(f ) If X � N.�; �2/, then for any ˛; 0 < ˛ < 1, x˛ D �C �z˛ , where x˛ is the

.1 � ˛/th quantile of X and z˛ is the .1 � ˛/th quantile of the standard normal
distribution.

(g) The tail probability 1 � ˆ.x/ in a standard normal distribution converges to

zero extremely quickly. Precisely, 1�ˆ.x/ � 
.x/
x

as x ! 1. This means that

R.x/ � 1
x

as x ! 1, where R.x/ D 1�ˆ.x/

.x/

is the Mills ratio. More accurate
approximations are

R.x/ �
�
1

x
� 1

x3

	

;

R.x/ �
�
1

x
� 1

x3
C 1 	 3

x5

	

:

(h) If X � N.�; �2/, then the distribution of Y D eX is called a lognormal distri-
bution with parameters �; � . It has the density, mean, and variance given by
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f .y/ D 1

y�
p
2�
e

� .log y��/2

2�2 ; y > 0I

E.Y / D e�C �2

2 I Var.Y / D .e�2 � 1/e2�C�2

:

Lognormal densities do not have a finite mgf at any t > 0, although all moments
are finite. Lognormal densities also have a pronounced skewness.

(i) If X1; X2; : : : ; Xn; n � 2 are independent normal variables with Xi �
N.�i ; �

2
i / then, for any constants a1; : : : ; an;

nX

iD1

aiXi � N

 
nX

iD1

ai�i ;

nX

iD1

a2
i �

2
i

!

:

In particular, if X1; X2; : : : ; Xn are iid N.�; �2/, then NX � N.�; �2

n
/.

(j) Based on a sample X1; X2; : : : ; Xn of size n from a normal distribution with
mean � and variance �2, a 100.1� ˛/% confidence interval for � is

X ˙ z ˛
2
�=

p
n:

For example, a 95% confidence interval for � is X ˙ 1:96�=
p
n.

9.7 Exercises

Exercise 9.1. Let Z � N.0; 1/. Find

P

�

:5 <

ˇ
ˇ
ˇ
ˇZ�1

2

ˇ
ˇ
ˇ
ˇ < 1:5

�

IP.1CZCZ2 > 0/IP
�

eZ

1CeZ
>
3

4

�

IP.ˆ.Z/ < :5/:

Exercise 9.2. Let Z � N.0; 1/. Find the variance of Z2 and Z3.

Exercise 9.3. Let Z � N.0; 1/. Find the density of 1
Z

. Is the density bounded?

Exercise 9.4. Let Z � N.0; 1/. Find the mean, median, and mode of

Z C 1I 2Z � 3IZ3:

Exercise 9.5. Let Z � N.0; 1/. Find the density of �.Z/. Does it have a finite
mean?

Exercise 9.6. Let Z � N.0; 1/. Find the density of 1

.Z/

. Does it have a finite
mean?
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Exercise 9.7. The 25th and 75th percentiles of a normally distributed random vari-
able are �1 and C1. What is the probability that the random variable is between
�2 and C2?

Exercise 9.8. Suppose X has an N.�; �2/ distribution, P.X 
 0/ D 1=3, and
P.X 
 1/ D 2=3. What are the values of � and �?

Exercise 9.9 (Standard Normal CDF in Terms of the Error Function). In some
places, instead of the standard normal CDF, one sees the error function erf.x/ D
.2=

p
�/
R x

0 e
�t2

dt being used. Express ˆ.x/ in terms of erf.x/.

Exercise 9.10 (Grading on a Bell Curve). An instructor is going to give the grades
A, B, C, D, F according to the following scale:

grade > �C 1:5� W AI
�C :5� < grade < �C 1:5� W BI
�� :5� < grade < �C :5� W C I
� � 2� < grade < � � :5� W DI

grade < � � 2� W F:

What percentage of students get each letter grade? Assume that the grades follow a
normal distribution.

Exercise 9.11. Let Z � N.0; 1/. Find the smallest interval containing a probabil-
ity of .9.

Exercise 9.12. * (A Conditioning Problem). Diameters of ball bearings made at
a factory are normally distributed with mean 1.5 cm and s.d. 0.02 cm. Balls whose
diameter exceeds 1.52 cm or is less than 1.48 cm are discarded. The rest are shipped
for sale. What is the mean and the s.d. of balls that are sent for sale?

Exercise 9.13. * (A Mixed Distribution). Let Z � N.0; 1/ and let g.Z/ be the
function

g.z/ D Z if jZj 
 aI
D a if Z > aI
D �a if Z < �a:

Find and plot the CDF of g.Z/. Does g.Z/ have a continuous distribution? A dis-
crete distribution? Or neither?

Exercise 9.14. The weights of instant coffee jars packed by a food processor are
normally distributed with a standard deviation of 0.2 oz. The processor has set the
mean such that about 2% of the jars weigh more than 8.41 oz. What is the mean
setting?



9.7 Exercises 211

Exercise 9.15. * (An Interesting Calculation). Suppose X � N.�; �2/. Prove
that

EŒˆ.X/� D ˆ.�=
p
1C �2/:

Exercise 9.16. * (Useful Normal Distribution Formulas). Prove the following
primitive (indefinite integral) formulas:

(a)
R
x2�.x/dx D ˆ.x/ � x�.x/.

(b)
R
Œ�.x/�2dx D 1=.2

p
�/ˆ.x

p
2/:

(c)
R
�.x/�.aC bx/dx D .1=t/�.a=t/ˆ.tx C a=t/; where t D p

1C b2:

(d)
R
x�.x/ˆ.bx/dx D b=.

p
2�t/ˆ.tx/ � �.x/ˆ.bx/:

Exercise 9.17. * (Useful Normal Distribution Formulas). Prove the following
definite integral formulas, with t as in the previous exercise:

(a)
R1

0 x�.x/ˆ.bx/dx D 1=.2
p
2�/Œ1C b=t�:

(b)
R1

�1 x�.x/ˆ.bx/dx D b=.
p
2�t/:

(c)
R1

�1 �.x/ˆ.a C bx/dx D ˆ.a=t/:

(d)
R1

0 �.x/Œˆ.bx/�2dx D 1=.2�/Œarctanb C arctan
p
1C 2b2�:

(e)
R1

�1 �.x/Œˆ.bx/�2dx D 1=� arctan
p
1C 2b2:

Exercise 9.18 (Median and Mode of lognormal). Show that a general lognormal
density is unimodal, and find its mode and median.

Hint: For the median, remember that a lognormal variable is eX , where X is a
normal variable.

Exercise 9.19 (Kurtosis of lognormal). Find a formula for the coefficient of
kurtosis of a general lognormal density.

Exercise 9.20. SupposeX � N.0; 1/; Y � N.0; 9/, andX; and Y are independent.
Find the mean, variance, third moment, and fourth moment of X C Y .

Exercise 9.21. SupposeX � N.0; 1/; Y � N.0; 9/, andX; and Y are independent.
Find the value of P..X � Y /2 > 5/.

Exercise 9.22. * Suppose Cathy’s pocket expenses per month are normally dis-
tributed with mean 900 dollars and standard deviation 200 dollars and those of her
husband are normally distributed with mean 500 dollars and standard deviation 100
dollars. Assume that the respective pocket expenses are independent. Find the prob-
ability that:

(a) The total family pocket expense in one month exceeds 2000 dollars.
(b) Cathy spends twice as much as her husband in pocket expenses in some month.
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Exercise 9.23 (Margin of Error of a Confidence Interval). Suppose X1; X2;

: : : ; Xn are independent N.�; 10/ variables. What is the smallest n such that the
margin of error of a 95% confidence interval for � is at most .05?

Exercise 9.24. * (Maximum Error of Polýa’s Inequality). Find sup�1<x<1
ŒB.x/ �ˆ.x/�, where B.x/ is the upper bound of Polýa on ˆ.x/.

Exercise 9.25. * (Accuracy of Laplace’s Expansion for the Mills Ratio). What
is the smallest number of terms you must keep in Laplace’s expansion for the Mills
ratio in order to have the percentage error at most 4% for x � 2? This requires use
of a computer.

Exercise 9.26 (Use Your Computer). Suppose you have simulated 100 values
from a standard normal distribution. By cleverly using the quantile transforma-
tion method, convert these 100 values into 100 values from a standard exponential
density.

References

Bryc, W. (1995). The Normal Distribution, Springer, New York.
Feller, W. (1971). An Introduction to Probability Theory and Applications, Vol. II, Wiley,

New York.
Freedman, D. (2005). Statistical Models, Cambridge University Press, New York.
Heyde, C. (1963). On a property of the lognormal distribution, J.R. Statist. Soc. Ser. B, 25(2),

392–393.
Johnson, N., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. II,

Wiley, New York.
Kendall, M. and Stuart, A. (1976). Advanced Theory of Statistics, Vol. I, Fourth ed., Macmillan,

New York.
Patel, J. and Read, C. (1996). Handbook of the Normal Distribution, Marcel Dekker, New York.
Petrov, V. (1975). Limit Theorems of Probability Theory, Clarendon Press, London.
Rao, C.R. (1973). Linear Statistical Inference and Its Applications, Wiley, New York.
Stigler, S. (1975). Studies in the history of probability and statistics; Napoleonic statistics, the work

of Laplace, Biometrika, 62, 503–517.
Stigler, S. (1986). The History of Statistics: The Measurement of Uncertainty Before 1900, Harvard

University Press, Cambridge, MA.
Tong, Y. (1990). Multivariate Normal Distribution, Springer, New York.



Chapter 10
Normal Approximations and the Central Limit
Theorem

Many of the special discrete and special continuous distributions that we have
discussed can be well approximated by a normal distribution for suitable config-
urations of their underlying parameters. Typically, the normal approximation works
well when the parameter values are such that the skewness of the distribution is
small. For example, binomial distributions are well approximated by a normal dis-
tribution when n is large and p is not too small or too large. Gamma distributions
are well approximated by a normal distribution when the shape parameter ˛ is large.
Whenever we see a certain phenomenon empirically all too often, we might expect
that there is a unifying mathematical result there, and in this case indeed there is. The
unifying mathematical result is one of the most important results in all of mathemat-
ics and is called the central limit theorem. The subject of central limit theorems is
incredibly diverse. In this chapter, we present the basic or the canonical central limit
theorem and its applications to certain problems with which we are already familiar.
Among numerous excellent references on central limit theorems, we recommend
Feller (1968, 1971) and Pitman (1992) for lucid expositions and examples. The sub-
ject of central limit theorems also has a really interesting history; we recommend
Le Cam (1986) and Stigler (1986) in this area. Careful and comprehensive mathe-
matical treatments are available in Hall (1992) and Bhattacharya and Rao (1986).
For a diverse selection of examples, see DasGupta (2008).

10.1 Some Motivating Examples

Example 10.1. Consider a binomial random variable X with parameters n and p;
we will fix p D :1 and see the effect of increasing n on the pmf of X . Recall that
the binomial pmf has the formula P.X D x/ D �

n
x

�
px.1� p/n�x; x D 0; 1; : : : ; n.

Using this formula, with n D 10; 20; 50; and 100, we have computed and plotted
(see Figure 10.1) the pmf of X in the form of a histogram, which is a system of
rectangles with the height of the rectangle corresponding to a specific x value equal
to (or proportional to) the probability of that x value.

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 10, c� Springer Science+Business Media, LLC 2010
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Fig. 10.1 Bin .n; :1/ pmf for n D 10, 20, 50, 100

We see that the histogram is rather skewed for the smallest n, namely n D 10.
As n increases, the histogram gets less skewed, and for the largest value, n D 100,
the histogram looks bell-shaped, centered at 10 and 11, resembling a normal density
curve.

What is the explanation? The formula for the coefficient of skewness of a bino-
mial distribution is 1�2pp

np.1�p/
, which goes to zero as n ! 1 for any fixed p. That

is, the distribution becomes nearly symmetric as n gets large, although it started out
being very skewed when n was small. Indeed, it is true in general that the Bin.n; p/
distribution can be well approximated by the N.np; np.1 � p// distribution for any
fixed p when n is large. If p is near :5, a normal-looking histogram will be produced
even for n as small as 20; if p is closer to zero or one, a larger n is necessary to pro-
duce a normal-looking histogram. We will see this empirical illustration borne out
by a theorem below.

Example 10.2. Recall that the sum of n independent exponential variables, each
with mean �, is distributed as G.n; �/, the Gamma distribution with parameters n
and �. We will take � D 1 and vary n, choosing n D 1; 3; 10; 50, respectively, and
plot the density function of G.n; �/.

We see a phenomenon similar to our previous binomial example. When n is
small, the density is skewed. But, when n increases, the density becomes increas-
ingly bell-shaped, resembling a normal density (see Figure 10.2).

What is common between the binomial and the Gamma examples? In the bino-
mial example, a Bin.n; p/ variable is the sum of n independent Ber .p/ variables,
while in the Gamma example a G.n; 1/ variable is the sum of n independent Exp.1/
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Fig. 10.2 Gamma (n,1) Density for n D 1; 3; 10; 50

variables. In both cases, we see that when n is large (i.e., when we add together a
large number of independent random variables), the sum has a density that visually
resembles a normal density. This is in fact what the central limit theorem says. It
does not really matter what kinds of variables you add; if you add a large number of
independent variables, you will end up with a normal-like density.

10.2 Central Limit Theorem

Theorem 10.1. For n � 1, let X1; X2; : : : ; Xn be n independent random variables,
each having the same distribution, and suppose this common distribution, say F ,
has a finite mean � and a finite variance �2. Let Sn D X1 C X2 C � � � CXn; NX D
NXn D X1CX2C���CXn

n
: Then, as n ! 1,

(a) P

�
Sn � n�p
n�2


 x

�

! ˆ.x/ 8 x 2 R;

(b) P

 p
n. NX � �/

�

 x

!

! ˆ.x/ 8 x 2 R:

In words, for large n,

Sn � N.n�; n�2/;

NX � N

�

�;
�2

n

�

:
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The proof of this theorem in the generality stated here requires the use of certain
tools in probability theory that we have not yet discussed. We will prove the theorem
under the more restrictive condition that the underlying distribution F has a finite
mgf in some open interval containing zero.

We will use the following notation in the proof. If a sequence of numbers an ! 0

as n ! 1, we write an D o.1/. If an; and bn are two sequences of numbers and
an

bn
! 0 as n ! 1, we write an D o.bn/. For example, an D o.n�1/ means not

only that an ! 0 as n ! 1 but even nan ! 0 as n ! 1. We will also need a fact
about mgfs in this proof; we state this fact below.

Lemma (Continuity Theorem on MGFs). Let Yn be a sequence of random vari-
ables with Yn having a finite mgf  n.t/ in some open interval .�a; a/ containing

zero. If  n.t/ ! et2=2 for each t 2 .�a; a/ as n ! 1, then P.Yn 
 x/ ! ˆ.x/

for all real numbers x as n ! 1.

Proof of the theorem. Part (b) of the theorem is in fact equivalent to part (a), so
we just prove part (a). A crucial algebraic simplification that we can make is that
we may assume, without loss of generality, that � D 0 and �2 D 1. This is
because if we define a sequence of new random variables Wi D Xi ��

�
; i � 1,

then the Wi are also iid, and they have mean zero and variance one. Furthermore,
Sn�n�p

n�2
D

Pn
iD1 Wip

n
; n � 1. Thus, we have thatP

�
Sn�n�p

n�2

 x

�
! ˆ.x/ if and only

if P
�Pn

iD1 Wip
n


 x
�

! ˆ.x/. Therefore, we go ahead and set � D 0; �2 D 1, and

show that P
�

Snp
n


 x
�

! ˆ.x/ as n ! 1. We will prove this by appealing to the

lemma concerning mgfs stated above.
Since the Xi are independent, the mgf of Zn WD Snp

n
equals

 Zn
.t/ D EŒetZn � D E

�

e
t
�

Sn
p

n

�	

D E

�

e
Pn

iD1

h
t.

Xi
p

n
/
i	

D
nY

iD1

E

�

e
t

Xi
p

n

	

D
�
E
h
e

t
p

n
X1

i�n

D  n

�
tp
n

�

) log Zn
.t/ D n log 

�
tp
n

�

D n log

�

1C tp
n
 0.0/C t2

2n
 00.0/C o.n�1/

	

(by a Taylor expansion of  . tp
n
/ around t D 0)

D n

�
tp
n
 0.0/C t2

2n
 00.0/� t2

2n
. 0.0//2 C o.n�1/

�
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(by expanding log.1 C x/ around x D 0, which gives log.1 C x/ � x � x2

2
for

x � 0)

D t2

2


 00.0/� . 0.0//2

�C o.1/ D t2

2
C o.1/

(since  0.0/ D � D 0 and  00.0/� . 0.0//2 D �2 D 1)

)  Zn
.t/ ! et2=2:

This proves, by the lemma that we stated above, that P.Zn 
 x/ ! ˆ.x/ for all x,
as was needed.

10.3 Normal Approximation to Binomial

A very important case in which the general central limit theorem applies is the bino-
mial distribution. The CLT allows us to approximate clumsy binomial probabilities
involving large factorials using simple and accurate normal approximations. We first
give the exact result on normal approximation of the binomial.

Theorem 10.2 (de Moivre-Laplace Central Limit Theorem). Let X D Xn �
Bin.n; p/. Then, for any fixed p and x 2 R,

P

 
X � np

p
np.1 � p/


 x

!

! ˆ.x/

as n ! 1.

Proof. Identify the binomial variable X with Sn and the Xi as independent Ber.p/
variables, so that � D p and �2 D p.1 � p/.

This theorem tells us how to approximate binomial probabilities of the type 

by using a normal approximation. Sometimes, however, we want to know the prob-
ability that a binomial random variable is exactly equal to some value. This can be
reduced to a problem of the 
 type on noting thatP.X D k/ D P.X 
 k/�P.X 

k � 1/. Theorems on approximations of probabilities of the D type are called local
limit theorems because the probability P.X D k/ that we are trying to approximate
is a probability limited to a local value, namely the value k. Here is the binomial
local limit theorem.

Theorem 10.3 (de Moivre-Laplace Local Limit Theorem). Let X � Bin.n; p/.
Then, for any fixed p and k D 0; 1; : : : ; n,

P.X D k/ D P

 
X � np

p
np.1 � p/

D k � np
p

np.1 � p/

!
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� 1
p

np.1 � p/
�

 
k � np

p
np.1 � p/

!

D 1
p
2�np.1� p/

e
� .k�np/2

2np.1�p/ :

The proof of this theorem uses Stirling’s approximation for large factorials and
involves only some algebra. It will be omitted.

10.3.1 Continuity Correction

The demoivre-Laplace CLT tells us that if X � Bin.n; p/, then we can approximate
the 
 type probability P.X 
 k/ as

P.X 
 k/ D P

 
X � np

p
np.1 � p/


 k � np
p

np.1 � p/

!

� ˆ

 
k � np

p
np.1 � p/

!

:

Note that, in applying the normal approximation in the binomial case, we are using
a continuous distribution to approximate a discrete distribution taking only integer
values. The quality of the approximation improves, sometimes dramatically, if we
fill up the gaps between the successive integers. That is, we pretend that an event of
the form X D x really corresponds to x � 1

2

 X 
 x C 1

2
. In that case, in order

to approximate P.X 
 k/, we will in fact expand the domain of the event to k C 1
2

and approximate P.X 
 k/ as

P.X 
 k/ � ˆ

 
k C 1

2
� np

p
np.1 � p/

!

:

This adjusted normal approximation is called a normal approximation with a
continuity correction. Continuity correction should always be done while computing
a normal approximation to a binomial probability. Here are the continuity-corrected
normal approximation formulas for easy reference:

P.X 
 k/ � ˆ

 
k C 1

2
� np

p
np.1 � p/

!

;

P.m 
 X 
 k/ � ˆ

 
k C 1

2
� np

p
np.1 � p/

!

�ˆ

 
m � 1

2
� np

p
np.1 � p/

!

:
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We will now apply the continuity correction and the local limit theorem to find
normal approximations to binomial probabilities in some examples.

Example 10.3 (Coin Tossing). This is the simplest example of a normal approxima-
tion of binomial probabilities. We will solve a number of problems by applying the
normal approximation method.

First, suppose a fair coin is tossed 100 times. What is the probability that we
obtain between 45 and 55 heads? Denoting X as the number of heads obtained in
100 tosses, X � Bin.n; p/ with n D 100; p D :5. Therefore, using the continuity-
corrected normal approximation,

P.45 
 X 
 55/ � ˆ

�
55:5 � 50p

12:5

�

�ˆ
�
44:5� �50p

12:5

�

D ˆ.1:56/�ˆ.�1:56/ D :9406� :0594 D :8812:

So, the probability that the percentage of heads is between 45% and 55% is high
but not very high if we toss the coin 100 times. The next question is: How many
times do we need to toss a fair coin to be 99% sure that the percentage of heads
will be between 45% and 55%? The percentage of heads is between 45% and 55%
if and only if the number of heads is between :45n and :55n. Using the continuity-
corrected normal approximation, again we want

:99 D ˆ

�
:55nC :5 � :5np

:25n

�

�ˆ

�
:45n� :5 � :5np

:25n

�

) :99 D 2ˆ

�
:55nC :5 � :5np

:25n

�

� 1

(because, for any real number x;ˆ.x/ �ˆ.�x/ D 2ˆ.x/ � 1)

) ˆ

�
:55nC :5 � :5np

:25n

�

D 995

) ˆ

�
:05nC :5p

:25n

�

D :995:

Now, from a standard normal table, we find that ˆ.2:575/ D :995. Therefore, we
equate

:05nC :5p
:25n

D 2:575

) :05nC :5 D 2:575 	 :5pn D 1:2875
p
n:

Writing
p
n D x, we have here a quadratic equation :05x2 � 1:2875x C :5 D 0 to

solve. The root we want is x D 25:71, and squaring it gives n � .25:71/2 D 661:04.
Thus, an approximate value of n such that in n tosses of a fair coin the percentage
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of heads will be between 45% and 55% with a 99% probability is n D 662. Most
people find that the value of n needed is higher than what they would have guessed.

Example 10.4 (Public Polling: Predicting the Correct Winner). Normal approxi-
mation to binomial probabilities is routinely used in designing polls on an issue, for
example polls to predict a winner in an election. Suppose that in an election there are
two candidates, A and B, and among all voters, 52% support A and 48% support B.
A poll of 1400 voters is done; what is the probability that the poll will predict the
correct winner?

Let X denote the number of respondents in the poll who favor A. The poll will
predict the correct winner if X > 700. By using the continuity-corrected normal
approximation,

P.X > 700/ D 1 � P.X 
 700/ � 1 �ˆ

�
700:5� 1400 	 :52p
1400	 :52 	 :48

�

D 1 �ˆ.�1:5/ D ˆ.1:5/ D :9332:

As long as the spread between the candidates’ support is sufficiently large, say 4%
or more, a poll that uses about 1500 respondents will predict the correct winner
with a high probability. But it takes much larger polls to predict the correct spread
accurately. See the next example.

Example 10.5 (Public Polling: Predicting the Vote Share). Consider again an elec-
tion in which there are two candidates A and B, and suppose the proportion among
all voters that support A is p. A poll of n respondents is to be conducted, and we
want to know what the value of n should be if with a 95% probability we want to
predict the true value of p within an error of at most 2%.

Let X denote the number of respondents in a poll of n people who favor A. We
estimate the true value of p by the sample proportion value X

n
. We want to ensure

P

�ˇ
ˇ
ˇ
ˇ
X

n
� p

ˇ
ˇ
ˇ
ˇ 
 :02

�

� :95

, P

�

p � :02 
 X

n

 p C :02

�

� :95

, P .np � :02n 
 X 
 np C :02n/ � :95

, P

 
�:02n

p
np.1 � p/ 
 X � np

p
np.1 � p/


 :02n
p
np.1 � p/

!

� :95

, P

 
�:02pn
p
p.1 � p/ 
 X � np

p
np.1 � p/


 :02
p
n

p
p.1 � p/

!

� :95:

Now, using the normal approximation to the binomial,

P

 
�:02pn
p
p.1 � p/ 
 X � np

p
np.1 � p/


 :02
p
n

p
p.1 � p/

!
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� ˆ

 
:02

p
n

p
p.1 � p/

!

�ˆ
 

� :02
p
n

p
p.1 � p/

!

D 2ˆ

 
:02

p
n

p
p.1 � p/

!

� 1:

From a standard normal table, ˆ.z/ � ˆ.�z/ � :95 when z D 1; 96. We
therefore set

:02
p
n

p
p.1 � p/ D 1:96 ) n D

"
1:96

p
p.1 � p/
:02

#2

D 9604p.1� p/:

However, the whole point of this calculation is that the true proportion p is not
known, so the formula above cannot be used in practice. To circumvent this prob-
lem, we use the most conservative value of p, namely the value of p that gives the
largest value of n in the formula above. That value is p D :5, giving ultimately
n D 9604 	 :25 D 2401: This verifies our statement in the previous example that
to predict the actual vote share accurately, one needs much larger polls than for just
predicting the correct winner.

Example 10.6 (Random Walk). The theory of random walk is one of the most beau-
tiful areas of probability. Here, we will give an introductory example that makes use
of the normal approximation to a binomial.

Suppose a drunkard is standing at some point at time zero (say 11:00 PM) and
every second he either moves one step to the right or one step to the left from where
he is at that time with equal probability. What is the probability that after two min-
utes he will be ten or more steps away from where he started? Note that the drunkard
will take 120 steps in two minutes.

Let the drunkard’s movement at the ith step be denoted as Xi . Then, P.Xi D
˙1/ D :5. So, we can think of Xi as Xi D 2Yi � 1, where Yi � Ber.:5/; 1 

i 
 n D 120. If we assume that the drunkard’s successive movements X1; X2; : : :

are independent, then Y1; Y2; : : : are also independent so Sn D Y1 C Y2 C � � �Yn �
Bin.n; :5/. Furthermore,

jX1 CX2 C � � � CXnj � 10 , j2.Y1 C Y2 C � � � C Yn/ � nj � 10;

so we want to find

P.j2.Y1 C Y2 C � � � C Yn/� nj � 10/

D P
�
Sn � n

2
� 5

�
C P

�
Sn � n

2

 �5

�

D P

0

B
@
Sn � n

2p
:25n

� 5p
:25n

1

C
AC P

0

B
@
Sn � n

2p
:25n


 � 5p
:25n

1

C
A :
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Fig. 10.3 Random walks

Using the normal approximation, this is approximately equal to 2
h
1 �ˆ. 5p

:25n
/
i

D
2Œ1 �ˆ.:91/� D 2.1� :8186/ D :3628:

We present in Figure 10.3 four simulated walks of this drunkard over a two
minute interval consisting of 120 steps. The different simulations show that the
drunkard’s random walk could evolve in different ways.

10.3.2 A New Rule of Thumb

A natural practical question is, when can the normal approximation to the binomial
be safely applied? It depends on the accuracy of the approximation one wants in a
particular problem. However, some general rules can be useful as guides. We pro-
vide such a rule of thumb below. First, we will show two examples.

Example 10.7 (Use of the Binomial Local Limit Theorem). Suppose X �
Bin.50; :4/ and we want to find the probability thatX is equal to 16. The exact value
of the probability is P.X D 16/ D �

50
16

�
:416:650�16 D :0606I this exact calculation

requires calculations of some large factorials. On the other hand, the normal approx-

imation from the local limit theorem is P.X D 16/ � 1p
2�50.:4/.:6/

e� .16�50�:4/2

2�50�:4�:6 D
:0591: The error in the approximation is less than 2:5%. If we desire the normal
approximation to be even better than this, then a larger n value will be necessary.

Example 10.8 (Normal Approximation or Poisson Approximation?). In Chapter 6,
we discussed Poisson approximations to binomial probabilities when n is large and
p is small. On the other hand, in this chapter, we discuss normal approximations
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when n is large and p is not very small or very large. But small, very small, etc., are
subjective words and open to interpretation. It is natural to ask when one should pre-
fer a normal approximation and when a Poisson approximation should be preferred.
We will offer a rule of thumb, but first we will show an example.

Example 10.9. It is estimated that the probability that a baby will be born on the
date the obstetrician predicts is 1/40. What is the probability that of 400 babies
born, 15 will be born on the date the doctor predicts?

Let X denote the number of babies among the 400 babies who are born on the
predicted day. Then, assuming that the different childbirths are independent, X �
Bin.n; p/, where n D 400; p D 1=40, so np D 10; np.1� p/ D 9:75.

We have the exact value of P.X D 15/ D �
400
15

�
.1=40/15.39=40/385 D :0343: If

we do a Poisson approximation, we get the value

P.X D 15/ � e�101015=15Š D :0347:

If we do a normal approximation, then by the de Moivre-Laplace local limit theorem

P.X D 15/ � 1p
2� 	 9:75e

�.15�10/2=.2�9:75/ D :0345:

Thus, although both approximations are very accurate, the normal approximation
is even better, although here n is large and p is small. The reason that the normal
approximation works even better is that, for these values of n and p, the skewness
as well as the coefficient of kurtosis of the binomial distribution have become very
small.

This idea can be used to write a practical rule for when the normal approximation
to the binomial may be used. We use the normal approximation if n and p are such
that the skewness and the kurtosis are both sufficiently small. From the formulas
in Chapter 6, the coefficients of skewness and kurtosis in the binomial case are,

respectively, 1�2pp
np.1�p/

and 1�6p.1�p/
np.1�p/

. The following rule of thumb for using the

normal approximation to the binomial is suggested.

Rule of Thumb for Normal Approximation to Binomial
Use a normal approximation to the binomial when

(a)
j1 � 2pj

p
np.1 � p/


 :15;

and

(b)
j1 � 6p.1 � p/j
np.1 � p/ 
 :075:

After a little algebra, this works out to

n � max

�
45.1� 2p/2

p.1 � p/
;
14j1� 6p.1 � p/j

p.1 � p/

�

:
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Needless to say, the choices of .15 and .075 are partly subjective. But these choices
do lead to sensible answers for the value of n needed to produce an accurate normal
approximation.

Example 10.10. We provide a table for the minimum n prescribed by this rule of
thumb for some values of p.

p Required n for Normal Approximation
.1 320
.2 100
.3 35
.4 30
.5 30

For p near .5, it will be important to control the kurtosis of the binomial distribution,
while for p near 0 (or 1) it will be important to control the skewness. That is what
the rule of thumb says.

A famous theorem in probability places an upper bound on the error of the nor-
mal approximation in the central limit theorem. If we make this upper bound itself
small, then we can be confident that the normal approximation will be accurate. This
upper bound on the error of the normal approximation is known as the Berry-Esseen
bound. Specialized to the binomial case, it says the following; a proof can be seen
in Bhattacharya and Rao (1986) or Feller (1968).

Theorem 10.4 (Berry-Esseen Bound for Normal Approximation). Let X �
Bin.n; p/ and let Y � N.np; np.1� p//. Then, for any real number x,

jP.X 
 x/ � P.Y 
 x/j 
 4

5

1 � 2p.1 � p/
p
np.1 � p/ :

It should be noted that the Berry-Esseen bound is rather conservative. Thus,
accurate normal approximations are produced even when the upper bound, a con-
servative one, is .1 or so. We do not recommend the use of the Berry-Esseen bound
to decide when a normal approximation to the binomial can be accurately done. The
bound is simply too conservative. However, it is good to know this bound due to its
classic nature.

10.4 Examples of the General CLT

We now give examples of applications of the general CLT for approximating proba-
bilities related to general sums of independent variables with a common distribution,
not necessarily sums of Bernoulli variables.

Example 10.11 (Distribution of Dice Sums). Suppose a fair die is rolled n times.
In Chapter 5, we found the exact distribution of the sum of the n rolls by using de
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Moivre’s formula. It was a complicated sum. We will now use the CLT to approxi-
mate the distribution in a simple manner.

Let Xi ; 1 
 i 
 n be the individual rolls. Then the sum of the n rolls is Sn D
X1 C X2 C � � � C Xn. The mean and variance of each individual roll are � D 3:5

and �2 D 2:92 (see Chapter 4). Therefore, by the CLT,

Sn � N.3:5n; 2:92n/:

For example, suppose a fair die is rolled n D 100 times. Suppose we want to find
the probability that the sum is 300 or more. Direct calculation using de Moivre’s
formula would be cumbersome at least and may be impossible. However, by the
continuity-corrected normal approximation,

P.Sn � 300/ D 1 � P .Sn 
 299/ D 1 �ˆ

�
299:5� 3:5 	 100p

2:92 	 100
�

D 1 �ˆ.�2:96/ D ˆ.2:96/ D :9985:

Example 10.12 (Rounding Errors). Suppose n positive numbers are rounded to
their nearest integers and that the rounding errors ei D (true value of Xi �
rounded value of Xi / are independently distributed as U Œ�:5; :5�. We want to find
the probability that the total error is at most some number k in magnitude. An ex-
ample would be a tax agency rounding off the exact refund amount to the nearest
integer, in which case the total error would be the agency’s loss or profit due to this
rounding process.

From the general formulas for the mean and variance of a uniform distribution,
each ei has mean � D 0 and variance �2 D 1

12
. Therefore, by the CLT, the total

error Sn D Pn
iD1 ei has the approximate normal distribution

Sn � N
�
0;
n

12

�
:

For example, if n D 1000, then

P.jSnj 
 20/ D P.Sn 
 20/� P.Sn 
 �20/

D P

0

B
B
@

Sn
r
n

12


 20
r
n

12

1

C
C
A � P

0

B
B
@

Sn
r
n

12


 �20
r
n

12

1

C
C
A

� ˆ.2:19/ �ˆ.�2:19/ D :9714:

We see from this that, due to the cancellations of positive and negative errors, the
tax agency is unlikely to lose or gain much money from rounding.

Example 10.13 (Sum of Uniforms). In the previous example, we approximated the
distribution of the sum ofn independent uniforms on Œ�:5; :5�by a normal distribution.
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We can do exactly the same thing for the sum of n independent uniforms on any
general interval Œa; b�. It is interesting to ask what the exact density of the sum
of n independent uniforms on a general interval Œa; b� is. Since a uniform random
variable on a general interval Œa; b� can be transformed to a uniform on the unit
interval Œ�1; 1� by a linear transformation and vice versa (see Chapter 7), we ask
what the exact density of the sum of n independent uniforms on Œ�1; 1� is. We want
to compare this exact density with a normal approximation for various values of n.

When n D 2, the density of the sum is a triangular density on Œ�2; 2�, which is
a piecewise linear polynomial. In general, the density of the sum of n independent
uniforms on Œ�1; 1� is a piecewise polynomial of degree n�1, there being n different
arcs in the graph of the density. The exact formula is

fn.x/ D 1

2n.n � 1/Š

b nCx
2

cX

kD0

.�1/k
 
n

k

!

.nC x � 2k/n�1 if jxj 
 nI

see Feller (1971).
On the other hand, the CLT approximates the density of the sum by the N.0; n

3
/

density. It would be interesting to compare plots of the exact and the approximat-
ing normal densities for various n. We see from Figures 10.4–10.6 that the normal
approximation is already nearly exact when n D 8.

Example 10.14. A sprinter covers on average 140 cm, with a standard deviation of
5 cm, in each stride. What is the approximate probability that this runner will cover
the 100 m distance in 70 or fewer steps? 72 or fewer steps?

Denote the distance covered by the sprinter in n strides by X1; X2; : : : ; Xn, and
assume that, for any n,X1; X2; : : : ; Xn are independent variables. EachXi has mean
� D 140 and �2 D 25:Therefore, by the CLT, the total distance covered in n strides,

-2 -1 1 2
x
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0.2

0.3

0.4

0.5

Fig. 10.4 Exact and approximating normal densities for sum of uniforms; n D 2
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Fig. 10.5 Exact and approximating normal densities for sum of uniforms; n D 4
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Fig. 10.6 Exact and approximating normal densities for sum of uniforms; n D 8

Sn D X1 CX2 C � � �CXn, is approximatelyN.140n; 25n/: To say that the sprinter
can cover 100 m D 10,000 cm in n strides is the same as saying Sn � 10;000:

Therefore, the probability of covering 100 m in 70 or fewer steps is

P.S70 � 10;000/ D 1� P.S70 < 10;000/ � 1 �ˆ

�
10;000� 140 	 70p

25 	 70
�

D 1�ˆ.4:78/ � 0:

Now increase the number of steps to 72. Then,

P.S72 � 10;000/ D 1� P.S72 < 10;000/ � 1 �ˆ

�
10;000� 140 	 72p

25 	 72
�

D 1�ˆ.�1:89/ D :9706:



228 10 Normal Approximations and the Central Limit Theorem

Example 10.15 (Distribution of a Product). Suppose a fair die is rolled 20 times and
you are promised a prize if the geometric mean of the 20 rolls exceeds 3.5. What
are your chances of winning? Recall that the geometric mean of n positive numbers

a1; a2; : : : ; an is defined to be .a1a2 � � �an/
1
n .

First note that we do not have any means of finding the exact distribution of
the product of 20 dice rolls, and enumeration of 620 sample points is impossible.
So we are basically forced to make an approximation. How do we find such an
approximation?

By writing Yi as the i th roll and Xi D logYi , we get log.
Qn

iD1 Yi /
1=n D

1
n

Pn
iD1 logYi D 1

n

Pn
iD1Xi . This use of the logarithm turns our product prob-

lem into a problem about sums. Each Xi has the mean � D 1
6
Œlog 1 C log 2 C

� � � C log 6� D log 6Š
6

D 1:097. Also, the second moment of each Xi is 1
6
Œ.log 1/2 C

.log 2/2 C � � � C .log 6/2� D 1:568. Therefore, each Xi has the variance �2 D
1:568� 1:0972 D :365: Now, by the CLT,

1

n

nX

iD1

Xi � N

�

1:097;
:365

n

�

:

Using n D 20,

P

0

@

 
nY

iD1

Yi

!1=n

> 3:5

1

A D P

0

@log

 
nY

iD1

Yi

!1=n

> log 3:5

1

A

D P

 
1

n

nX

iD1

Xi > 1:25

!

� 1 �ˆ

0

B
B
@
1:25 � 1:097
r
:365

20

1

C
C
A

D 1 �ˆ.1:13/ D 1 � :8708 D :1292:

Thus, there is only about a 13% chance that you will win the prize. What makes
the offer unattractive is that the geometric mean of any set of positive numbers is
smaller than their simple average. Thus, if the offer was to give a prize if the simple
average of your 20 rolls exceeds 3.5, there would have been about a 50% chance of
winning the prize, but phrasing the offer in terms of the geometric mean makes it an
unattractive offer.

Example 10.16 (Risky Use of the CLT). Suppose the checkout time at a supermarket
has a mean of four minutes and a standard deviation of one minute. You have just
joined the queue in a lane, where there are eight people ahead of you. From just this
information, can you say anything useful about the chances that you can be finished
checking out within half an hour?

With the information provided being only on the mean and the variance of an
individual checkout time but otherwise nothing about the distribution, a possibility
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is to use the CLT, although here n is only 9, which is not large. Let Xi ; 1 
 i 
 8,
be the checkout times taken by the eight customers ahead of you and X9 your time.
If we use the CLT, then we will have

Sn D
9X

iD1

Xi � N.36; 9/:

Therefore,

P.Sn 
 30/ � ˆ

�
30� 36

3

�

D ˆ.�2/ D :0228:

In situations such as this, where the information available is extremely limited, we
sometimes use the CLT, but it is risky. It may be better to model the distribution of
checkout times and answer the question under that chosen model.

10.5 Normal Approximation to Poisson and Gamma

A Poisson variable with an integer parameter � D n can be thought of as the sum
of n independent Poisson variables each with mean 1. Likewise, a Gamma variable
with parameters ˛ D n and � can be thought of as the sum of n independent expo-
nential variables, each with mean �. So, in these two cases the CLT already implies
that a normal approxmation to the Poisson and Gamma distributions holds when n
is large. However, even if the Poisson parameter � is not an integer and even if the
Gamma parameter ˛ is not an integer, if � or ˛ is large, a normal approximation
still holds. See Figure 10.7 for an illustration. These results can be proved directly
by using the mgf technique. Theorems 10.5 and 10.6 give the normal approximation
results for general Poisson and Gamma distributions.

Theorem 10.5. Let X � Poisson.�/. Then

P

�
X � �p

�

 x

�

! ˆ .x/ as � ! 1

for any real number x.
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Fig. 10.7 Poisson pmf for lambda D 1; 4; 10



230 10 Normal Approximations and the Central Limit Theorem

Notationally, for large �,
X � N.�; �/:

Theorem 10.6. Let X � G.˛; �/. Then, for every fixed �,

P

�
X � ˛�
�

p
˛


 x

�

! ˆ .x/ as ˛ ! 1

for any real number x.
Notationally, for large ˛,

X � N.˛�; ˛�2/:

Example 10.17. April receives three phone calls per day on average at her home.
We want to find the probability that she will receive more than 100 phone calls next
month.

Let Xi be the number of calls April receives on the i th day of the next month.
Then the number of calls she will receive in the entire month is

Pn
iD1Xi ; we assume

that n D 30. If each Xi is assumed to be Poisson with mean 3 and the days are
independent, then

Pn
iD1Xi � Poi.�/ with � D 90. By the normal limit theorem

above, using a continuity correction,

P

 
nX

iD1

Xi > 100

!

D 1 � P
 

nX

iD1

Xi 
 100

!

� 1�ˆ
�
100:5� 90p

90

�

D 1 �ˆ.1:11/D 1 � :8665D :1335:

Exact calculation of this probability would be somewhat clumsy because of the large
value of �. That is the advantage in doing a normal approximation.

Example 10.18 (Nuclear Accidents). Suppose the probability of having any nuclear
accidents in any nuclear plant during a given year is .0005 and that a country has
100 such nuclear plants. What is the probability that there will be at least six nuclear
accidents in the country during the next 250 years?

Let Xij be the number of accidents in the i th year in the j th plant. We assume
that each Xij has a common Poisson distribution. The parameter, say 	 , of this
common Poisson distribution is determined from the equation e�	 D 1 � :0005

D :9995 ) 	 D � log.:9995/ D :0005: Assuming that these Xij are all inde-
pendent, the number of accidents T in the country during 250 years has a Poi.�/
distribution, where � D 	 	 100	 250 D :0005	 100	 250 D 12:5. If we now do
a normal approximation with continuity correction,

P.T � 6/ � 1 �ˆ

�
5:5 � 12:5p

12:5

�

D 1 �ˆ.�1:98/ D :9761:
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So we see that although the chances of having any accidents in a particular plant in
any particular year are small, collectively and in the long run, the chances are high
that there will be quite a few such accidents.

Example 10.19 (Confidence Interval for a Poisson Mean). The normal approxima-
tion to the Poisson distribution can be used to find a confidence interval for the mean
of a Poisson distribution. We have already seen an example of a confidence interval
for a normal mean in Chapter 9. We will now work out the Poisson case using the
normal approximation to Poisson.

Suppose X�Poi.�/. By the normal approximation theorem, if � is large, then
X��p

�
� N.0; 1/. Now, a standard normal random variable Z has the property

P.�1:96 
 Z 
 1:96/ D :95. Since X��p
�

� N.0; 1/, we have

P

�

�1:96 
 X � �p
�


 1:96

�

� :95

, P

�
.X � �/2

�

 1:962

�

� :95

, P..X � �/2 � 1:962� 
 0/ � :95

, P.�2 � �.2X C 1:962/CX2 
 0/ � :95: .�/

Now the quadratic equation

�2 � �.2X C 1:962/CX2 D 0

has the roots

� D �˙ D .2X C 1:962/˙p
.2X C 1:962/2 � 4X2

2

D .2X C 1:962/˙ p
14:76C 15:37X

2

D .X C 1:92/˙ p
3:69C 3:84X:

The quadratic �2 ��.2XC1:962/CX2 is 
 0 when � is between these two values
�˙, so we can rewrite .�/ as

P..XC1:92/�p
3:69C 3:84X 
 � 
 .XC1:92/Cp

3:69C 3:84X/ � :95 .��/:

In statistics, one often treats the parameter � as unknown and uses the data value X
to estimate the unknown �. The statement .��/ is interpreted as saying that, with
approximately 95% probability, � will fall inside the interval of values

.X C 1:92/ � p
3:69C 3:84X 
 � 
 .X C 1:92/C p

3:69C 3:84X;
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so the interval

Œ.X C 1:92/� p
3:69C 3:84X; .X C 1:92/C p

3:69C 3:84X�

is called an approximate 95% confidence interval for �. We see that it is derived
from the normal approximation to a Poisson distribution.

Example 10.20 (Normal Approximation in a Gamma Case). Diabetes is one of the
main causes for development of an eye disease known as retinopathy, which causes
damage to the blood vessels in the retina and growth of abnormal blood vessels,
potentially causing loss of vision. The average time to develop retinopathy after the
onset of diabetes is 15 years, with a standard deviation of four years.

Suppose we let X be the time from onset of diabetes until development of
retinopathy and that we model it as X � G.˛; �/. Then, we have

˛� D 15I�p
˛ D 4 ) p

˛ D 15

4
D 3:75 ) ˛ D 14:06; � D 1:07:

Suppose we want to know what percentage of diabetes patients develop retinopathy
within 20 years. Since ˛ D 14:06 is large, we can use a normal approximation:

P.X 
 20/ � ˆ

�
20 � 15
4

�

D ˆ.1:25/ D :8944I

i.e., under the Gamma model, approximately 90% develop diabetic retinopathy
within 20 years.

10.6 � Convergence of Densities and Higher-Order
Approximations

If in the central limit theorem each individual Xi is a continuous random variable
with a density f .x/, then the sum SnDPn

iD1Xi also has a density for each n and

hence so does the standardized sum Sn�n�

�
p

n
. It is natural to ask if the density of

Sn�n�

�
p

n
converges to the standard normal density when n ! 1. This is true under

suitable conditions on the basic density f .x/. We will present a result in this direc-
tion. But first let us see an example. Recall that the notation an D O.bn/ used in
the example means that there is a finite positive constant K such that janj 
 Kbn

for all n. We do not worry about exactly what the constant K is; we only care that
such a constantK exists.

Example 10.21 (Convergence of Chi-Square Density to Normal). Suppose
X1; X2; : : : are iid �2.2/ with density 1

2
e�x=2; i.e., the �2.2/ density is just an

exponential density with mean two. We verify that in this example in fact the
density of Zn D Sn�n�

�
p

n
D Sn�2n

2
p

n
converges pointwise to the N.0; 1/ density,



10.6 � Convergence of Densities and Higher-Order Approximations 233

Since Sn D Pn
iD1Xi has the �2.2n/ distribution with density e�x=2xn�1

2n�.n/
, Zn

has the density fn.z/ D e�.z
p

nCn/.1C z
p

n
/n�1n

n�

1
2

�.n/
. Hence, by taking the logarithm

and using the fact that log.1C x/ D x � x2=2CO.x3=2/ as x ! 0, we get

logfn.z/ D �z
p
n � nC .n � 1/

�
zp
n

� z2

2n
CO.n�3=2/

�

C
�

n � 1

2

�

logn � log�.n/

D �z
p
n � nC .n � 1/

�
zp
n

� z2

2n
CO.n�3=2/

�

C
�

n � 1

2

�

logn

�
�

n logn � n � 1

2
lognC log

p
2� CO.n�1/

�

on using Stirling’s approximation for log�.n/ D log.n � 1/Š.
On cancelling of terms, this gives

logfn.z/ D � zp
n

� log
p
2� � .n � 1/z2

2n
CO.n�1=2/;

implying that logfn.z/ ! � log
p
2� � z2

2
and hence fn.z/ ! 1p

2�
e� z2

2 , estab-

lishing the pointwise density convergence to the standard normal density, which is
what we wanted to show.

Of course, we really do not wish to treat each new example as a separate case.
It is useful to have a general result that ensures that under suitable conditions, in the
central limit theorem, the density of Zn D Sn�n�

�
p

n
converges to the N.0; 1/ density.

The result below is not the best available result in this direction, but it often applies
and is easy to state; a proof can be seen in Bhattacharya and Rao (1986).

Theorem 10.7 (Gnedenko’s Local Limit Theorem). Suppose X1; X2; : : : are in-
dependent random variables with a density f .x/, mean �, and variance �2. If f .x/
is uniformly bounded, then the density function ofZn D Sn�n�

�
p

n
converges uniformly

on the real line R to the standard normal density �.x/ D 1p
2�
e� x2

2 :

Remark. The preceding chi-square example is therefore a special case of
Gnedenko’s theorem because the �2

2 density is obviously uniformly bounded.

10.6.1 � Refined Approximations

One criticism of the normal approximation in the various cases we have described
is that any normal distribution is symmetric about its mean, so, by employing a
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normal approximation, we necessarily ignore any skewness that may be present in
the true distribution that we are approximating. For instance, if the individual Xi ’s
have exponential densities, then the true density of the sum Sn is a Gamma density,
which always has a skewness. But a normal approximation ignores that skewness,
and, as a result, the quality of the approximation can be poor unless n is quite
large. Refined approximations that address this criticism are available. These refined
approximations were formally introduced in Edgeworth (1904) and Charlier (1931).
As such, they are usually called Edgeworth densities and the Gram-Charlier series.
Although they are basically the same thing, there is a formal difference between
the formulas in the Edgeworth density and the Gram-Charlier series. Modern treat-
ments of these refined approximations are carefully presented in Bhattacharya and
Rao (1986) and Hall (1992). We present here a refined density approximation that
adjusts the normal approximation for skewness and another one that also adjusts for
kurtosis. Some discussion of their pros and cons will follow the formulas and the
theorem below.

Suppose X1; X2; : : : ; Xn are continuous random variables with a density f .x/.
Suppose each individual Xi has four finite moments. Let �; �2; ˇ; 
 denote the
mean, variance, coefficient of skewness, and coefficient of kurtosis of the common

distribution of the Xi ’s. Let Zn D Sn�n�

�
p

n
D

p
n. NX��/

�
. Define the following three

successively more refined density approximations for the density of Zn:

Ofn;0.x/ D �.x/:

Ofn;1.x/ D
�

1C ˇ.x3 � 3x/

6
p
n

�

�.x/;

Ofn;2.x/ D
�

1C ˇ.x3 � 3x/

6
p
n

C
�



x4 � 6x2 C 3

24

Cˇ2 x
6 � 15x4 C 45x2 � 15

72

	
1

n

�

�.x/:

The functions Ofn;0.x/; Ofn;1.x/; and Ofn;2.x/ are called the CLT approximation, the
first-order Edgeworth expansion, and the second-order Edgeworth expansion for
the density of the mean.

Remark. Of the three approximations, only Ofn;0.x/ is truly a density function. The

functions Ofn;1.x/ and Ofn;2.x/ become negative for some values of x for a given n.
As a result, if they are integrated to obtain approximations for the probability
P.Zn 
 x/, then the approximations are not monotonically nondecreasing func-
tions of x and can even become negative (or larger than 1). For any given n, the
refined approximations give inaccurate and even nonsensical answers for values of
x far from zero. However, at any given x, the approximations become more accurate
as n increases.

It is important to note that the approximations are of the form �.x/

CP1.x/p
n
�.x/ C P2.x/

n
�.x/ C � � � for suitable polynomials P1.x/; P2.x/, etc. The
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relevant polynomials P1.x/; P2.x/ are related to some very special polynomials,
known as Hermite polynomials. Hermite polynomials are obtained from successive
differentiations of the standard normal density �.x/. Precisely, the j th Hermite
polynomialHj .x/ is defined by the relation

d j

dxj
�.x/ D .�1/jHj .x/�.x/:

In particular,

H1.x/ D xIH2.x/ D x2 � 1IH3.x/ D x3 � 3xIH4.x/ D x4 � 6x2 C 3I
H5.x/ D x5 � 10x3 C 15xIH6.x/ D x6 � 15x4 C 45x2 � 15:

By comparing the formulas for the refined density approximations with the formulas
for the Hermite polynomials, the connection becomes obvious. They arise in the
density approximation formulas as a matter of fact; there is no intuition for it.

Example 10.22. SupposeX1; X2; : : : ; Xn are independent Exp.1/ variables, and let
n D 15. The exact density of the sum Sn is G.n; 1/, a Gamma density. By a simple
linear transformation, the exact density of Zn is

fn.x/ D
p
ne�n�x

p
n.nC x

p
n/n�1

.n � 1/Š ; x � �p
n:

For the standard exponential density, ˇ D 4, so the first-order Edgeworth expan-
sion is

Ofn;1.x/ D
�

1C 4.x3 � 3x/
6
p
n

�

�.x/:

The exact density, the CLT approximation, and the first-order Edgeworth expansion
are plotted in Figure 10.8 to explore the quality of the approximations. The exact
density is visibly skewed. The CLT approximation of course completely misses the
skewness. The Edgeworth approximation does capture the skewness nicely. But, on
close inspection, we find that it becomes negative when x is less than about �2:5.

-4 -2 2 4 -4 -2 2 4 -4 -2 2 4
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Fig. 10.8 Exact, CLT approximation, and first-order Edgeworth approximation in EXP (1) case
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As a result, if the Edgeworth approximation is used to approximate tail probabili-
ties of the form P.Zn 
 x/, then the probability will actually increase when x is
decreased below x D �2:5.

10.7 Practical Recommendations for Normal Approximations

We have presented normal approximations to the binomial, Poisson, uniform, and
Gamma distributions as specific examples in this chapter by appealing to the cen-
tral limit theorem. In the binomial and Poisson cases, we presented approximations
with or without a continuity correction. Normal approximations are useful for some
other standard distributions because these distributions do not have any analytical
formula, or not an easy one, for the CDF. An example of such a distribution is a
general Beta distribution. For practical use by students and other practitioners, we
put together a set of normal approximation formulas for a selection of standard dis-
tributions. In some cases, we provide two formulas, and a user may use both for
comparison. These formulas are based on comparative research work of numerous
people on their effectiveness; references to many of them can be seen in Abramowitz
and Stegun (1970) and in Chapter 7 of Patel and Read (1996).

For the approximation in the negative binomial case, the following relationship
with binomial distributions has been used in our list of formulas:

Let X � NB.r; 	/; Y � Bin.m; 	/;Z � Bin.m; 1� 	/I then;

P.X > m/ D P.Y < r/ D P.Z > m � r/

, P.X 
 m/ D P.Z 
 m � r/:

Similarly, Beta densities with integer parameters also have a relationship with bino-
mial distributions; see the exercises in Chapter 8. However, we treat Beta densities
with general parameters below.

Distribution Quantity Approximated Approximation Formula

Bin.n; p/ P.X � k/ ˆ

�
k C :5� npp
np.1� p/

�

ˆ.z/� 1

6
p
np.1� p/

.z2 � 1/�.z/;

z D k C :5� npp
np.1� p/

Poi.�/ P.X � k/ ˆ

�
k C :5� �p

�

�

ˆ.2
p
k C :75� 2

p
�/

NB.r; 	/ P.X � m/ Use formula for binomial case using
k D m� r; n D m;p D 1� 	
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Hypergeo.n;D;N / P.X � k/ ˆ.z/; z D
k C :5� n

D

Ns

n
D

N

�

1� D

N

�
N � n

N � 1

Be.a; b/ P.X � x/ ˆ.z/; z D
3

�

u

�

1� 1

9b

�

� v

�

1� 1

9a

�	

p
u2=b C v2=a

aC b > 6; .aC b � 1/.1� x/ � :8;

u D .bx/1=3; v D .a.1� x//1=3

�2m P.X � x/ ˆ.
p
2x � p

2m� 1/

ˆ

 r
9m

2

�� x

m

�1=3 � 1C 2

9m

	!

10.8 Synopsis

(a) The central limit theorem (CLT) for iid random variables says that ifX1; X2; : : :

are iid random variables with finite mean � and finite variance �2, and if, for
n � 1; Sn D X1 C � � � CXn and NX D NXn D Sn

n
, then, for any real x,

P

�
Sn � n�p

n�2

 x

�

D P

 p
n. NX � �/

�

 x

!

! ˆ.x/

as n ! 1. Colloquially, for large n; Sn � N.n�; n�2/ and NX � N.�; �2

n
/:

(b) In particular, in the binomial, Poisson, and Gamma cases, the following normal
approximations hold:

IfX D Xn � Bin.n; p/; then, for any realx; P
�

X�npp
np.1�p/


 x
�

! ˆ.x/ as
n ! 1
IfX � Poi.�/; then, for any realx; P

�
X��p

�

 x

�
! ˆ.x/ as � ! 1:

If X � Gamma.˛; �/; then, for any real x; P
�

X�˛�

�
p

˛

 x

�
! ˆ.x/ as

˛ ! 1:

(c) There are also local limit theorems that give approximate values for P.X D k/

in the binomial case and assure convergence of the density of
p

n. NX��/

�
to the

standard normal density in the continuous case.
(d) For the normal approximation to the binomial, two practical rules to follow are

the following:

(i) Use continuity correction.
(ii) Use the rule of thumb given in the text to decide if in a particular case the

normal approximation is safe to apply.
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The continuity-corrected normal approximation to the binomial says that

P.m 
 X 
 k/ � ˆ

 
k C 1

2
� np

p
np.1 � p/

!

�ˆ
 
m � 1

2
� np

p
np.1 � p/

!

:

(e) The normal approximation to the density of NX ignores the skewness in the true
density of NX when such skewness is present. Higher-order density approxima-
tions, known as Edgeworth expansions, that adjust for the skewness and the
kurtosis are available. At any given x, the Edgeworth density approximations
become more accurate as n increases. But, for a given n, there are values of x
at which the Edgeworth density approximations become negative, so the Edge-
worth densities are not truly densities.

10.9 Exercises

Exercise 10.1. Suppose a fair coin is tossed ten times. Find the probability of
obtaining six or more heads and compare it with a normal approximation with and
without a continuity correction.

Exercise 10.2. A fair die is rolled 25 times. Let X be the number of times a six is
obtained. Find the exact value of P.X D 6/ and compare it with a normal approxi-
mation of P.X D 6/.

Exercise 10.3. A basketball player has a history of converting 80% of his free
throws. Find a normal approximation with a continuity correction of the probability
that he will make between 18 and 22 out of 25 free throws.

Exercise 10.4 (Rule of Thumb). Suppose X � Bin.n; p/. For p D :1; :25; :5,
find the values of n that satisfy the rule of thumb for the applicability of a normal
approximation.

Exercise 10.5. Two persons have 16 and 32 dollars, respectively. They bet one dol-
lar on the outcome of each of 900 independent tosses of a fair coin. What is an
approximation to the probability that neither person is in debt at the end of the 900
tosses?

Exercise 10.6 (Poll). In an election to the U.S. Senate, one candidate has popular
support of 53% and the other has support of 47%. On election eve, a newspaper
will conduct a poll of 750 voters. Compute a normal approximation with continuity
correction of the probability that the poll will predict the correct winner.

Exercise 10.7. A new elevator in a large hotel is designed to carry up to 5000 lbs.
of weight. The weights of the elevator’s users have an average of 150 lbs. and a
standard deviation of 55 lbs. If 30 people get into the elevator, find an approximation
to the probability that the elevator will be overloaded.
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Exercise 10.8. The cost of a textbook at the college level is on average 50 dollars
and a standard deviation of 7 dollars. In a four year bachelors program, a student
will need to buy 25 textbooks. Find an approximation to the probability that he or
she will have to spend more than 1300 dollars on textbooks.

Exercise 10.9. * Suppose X1; X2; : : : ; Xn are independentN.0; 1/ variables. Find
an approximation to the probability that

Pn
iD1Xi is larger than

Pn
iD1X

2
i when

n D 10; 20; 30.

Exercise 10.10 (Airline Overbooking). An airline knows from past experience
that 10% of fliers with a confirmed reservation do not show up for the flight. Sup-
pose a flight has 250 seats. How many reservations over 250 can the airline permit
if they want to be 95% sure that no more than two passengers with a confirmed
reservation would have to be bumped?

Exercise 10.11. * (Breaking Exactly Even is Unlikely). Suppose a fair coin is
tossed 2n times. Prove that the probability of getting exactly n heads converges to
zero as n ! 1. How about the probability of getting between n � 1 and n C 1

heads? Can you generalize to the case of getting between n� k and nC k heads for
any fixed number k?

Exercise 10.12 (Dice Sums). Suppose a fair die is rolled 1000 times. Compute an
approximation to the probability that the sum of the 1000 rolls will exceed 3600.

Exercise 10.13 (Dice Sums). How many times should a fair die be rolled if you
want to be 99% sure that the sum of all the rolls will exceed 100?

Exercise 10.14. For your desk lamp, you have an inventory of 25 bulbs. The life-
time of one bulb has an exponential distribution with mean 1 (in thousands of hours).

(a) What is the exact distribution of the total time you can manage with these 25
bulbs?

(b) Find an approximate probability that you can manage more than 30,000 hours
with these 25 bulbs.

Exercise 10.15 (A Product Problem). Suppose X1; X2; : : : ; X30 are 30 indepen-
dent variables, each distributed as U Œ0; 1�. Find an approximation to the probability
that their geometric mean (a) exceeds .4; (b) exceeds .5.

Exercise 10.16. There are 100 counties in a particular state. The average number
of traffic accidents per week is four for each county. Find an approximation to the
probability that there are more than 450 traffic accidents in the state in one week.

Exercise 10.17 (Comparing a Poisson Approximation and a Normal Approxi-
mation). Suppose 1:5% of residents of a town never read a newspaper. Compute the
exact value, a Poisson approximation, and a normal approximation of the probability
that at least one resident in a sample of 50 never reads a newspaper.
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Exercise 10.18. * (Comparing a Poisson Approximation and a Normal Approx-
imation). One hundred people will each toss a fair coin 200 times. Compute a
Poisson approximation and a normal approximation with a continuity correction
of the probability that at least 10 of the 100 people would each obtain exactly 100
heads and 100 tails.

Exercise 10.19 (Confidence Interval for Poisson mean). Derive a formula for an
approximate 99% confidence interval for a Poisson mean by using the normal ap-
proximation to a Poisson distribution. Compare your formula with the formula for
an approximate 95% confidence interval that was worked out in the text. Compute
the 95% and 99% confidence intervals if X D 5; 8; 12.

Exercise 10.20 (Anything that Can Happen Will Eventually Happen). If you
predict in advance the outcomes of ten tosses of a fair coin, the probability that you
get them all correct is .:5/10, which is very small. Show that if each of 2,000 people
each try to predict the ten outcomes correctly, the chance that at least one of them
succeeds is better than 85%.

Exercise 10.21. *(A Back Calculation). A psychologist would like to find the av-
erage time required for a two-year-old to complete a simple maze. He knows from
experience that if he samples n D 36 children at random, then in about 2.5% of such
samples, the mean time to complete the maze will be larger than 3.65 minutes, and
in about 5% of such samples, the mean time to complete the maze will be smaller
than 3.35 minutes. What are � and � , the mean and the standard deviation of the
time taken by one child to finish the maze?

Exercise 10.22 (A Gambling Example). It costs one dollar to play a certain slot
machine in Las Vegas. The machine is set by the house to pay two dollars with
probability .45 (and to pay nothing with probability .55). Let Xi be the house’s
net winnings on the i th play of the machine. Then Sn D Pn

iD1Xi is the house’s
winnings after n plays of the machine. Assuming that successive plays are indepen-
dent, find

(a) E.Sn/I
(b) Var.Sn/;
(c) the approximate probability that after 10,000 plays of the machine the house’s

winnings are between 800 and 1100 dollars.

Exercise 10.23. * (A Problem on Difference). Tom tosses a fair die 40 times and
Sara tosses a fair die 45 times. Tom wins if he can score a larger total than Sara.
Find an approximation to the probability that Tom wins.

Exercise 10.24. The proportion of impurities in a sample of water from a lake has
a Beta distribution with parameters ˛ D ˇ D 2. Suppose 25 such water samples are
taken. Find an approximation to the probabilities that:

(a) The average proportion of impurities in the samples exceeds .54.
(b) The number of samples for which the proportion of impurities exceeds .54 is at

most 15.
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Exercise 10.25. * (Density of Uniform Sums). Give a direct proof that the density
of Snp

n
3

at zero converges to �.0/, where Sn is the sum of n independent U Œ�1; 1�
variables.

Exercise 10.26. * (Uniform Sums). Find the third moment of Snp
n
3

, where Sn is

the sum of n independent U Œ�1; 1� variables. Does it converge to zero? Would you
expect it to converge to zero?

Exercise 10.27 (Roundoff Errors). Suppose you balance your checkbook by
rounding amounts to the nearest dollar. Between 0 and 49 cents, drop the cents;
between 50 and 99 cents, drop the cents and add a dollar. Find the approximate
probability that the accumulated error in 100 transactions is greater than five dol-
lars (either way), assuming that the number of cents involved is independent and
uniformly distributed between 0 and 99.

Exercise 10.28. * (Random Walk) Consider the drunkard’s random walk example.
Find the probability that the drunkard will be at least ten steps over on the right from
his starting point after 200 steps. Compute a normal approximation.

Exercise 10.29. *(Random Walk). Consider again the drunkard’s random walk ex-
ample. Find the probability that more than 125 times in 200 steps the drunkard steps
toward his right. Compute a normal approximation.

Exercise 10.30 (Test Your Intuition). Suppose a fair coin is tossed 100 times. Is it
more likely that you will get exactly 50 heads or that you will get more than 60
heads?

Exercise 10.31 (Test Your Intuition). Suppose a fair die is rolled 60 times. Is it
more likely that you will get at least 20 sixes or that you will score a total of at least
250?

Exercise 10.32 (Test Your Intuition). Suppose a fair coin is tossed 120 times and
a fair die is rolled 120 times. Is it more likely that you will get exactly 60 heads or
that you will get exactly 20 sixes?

Exercise 10.33 (Computing an Edgeworth Approximation). Suppose X1;

X2; : : : ; Xn are independentU Œ�1; 1� variables. For n D 5, plot the exact density of
Sn�n�

�
p

n
, the CLT approximation, and the first-order Edgeworth approximation. For

the exact density, use the formula for the density of Sn given in the text. Comment
on the accuracy of the two approximations.

Exercise 10.34 (Use Your Computer). Simulate the roll of a fair die 50 times, and
evaluate the sum of the 50 values. Repeat the simulation 500 times. Use a software
package to draw a histogram of these 500 values of the sum. Do you see a normal-
looking distribution?
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Exercise 10.35 (Use Your Computer). Simulate the problem of rounding n D 40

numbers to their nearest integer when the numbers are chosen uniformly from the
interval Œ0; 100�. Find the rounding errors and their sum. Repeat the simulation 500
times. Use a software package to draw a histogram of these 500 values of the sum;
remember that you are summing the rounding errors. Do you see a normal-looking
distribution?
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Chapter 11
Multivariate Discrete Distributions

We have provided a detailed treatment of distributions of one discrete or one
continuous random variable in the previous chapters. But often in applications we
are just naturally interested in two or more random variables simultaneously. We
may be interested in them simultaneously because they provide information about
each other or because they arise simultaneously as part of the data in some scientific
experiment. For instance, on a doctor’s visit, the physician may check someone’s
blood pressure, pulse rate, blood cholesterol level, and blood sugar level because
together they give information about the general health of the patient. Or, in agri-
cultural studies, one may want to study the effect of the amount of rainfall and the
temperature on the yield of a crop and therefore study all three random variables
simultaneously. At other times, several independent measurements of the same ob-
ject may be available as part of an experiment and we may want to combine the
various measurements into a single index or function. In all such cases, it becomes
essential to know how to operate with many random variables simultaneously. This
is done by using joint distributions. Joint distributions naturally lead to considera-
tions of marginal and conditional distributions. We will study joint, marginal, and
conditional distributions for discrete random variables in this chapter. The concepts
of joint, marginal, and conditional distributions for continuous random variables are
not different, but the techniques are mathematically more sophisticated. The contin-
uous case will be treated in the next chapter.

11.1 Bivariate Joint Distributions and Expectations
of Functions

We present the fundamentals of joint distributions of two variables in this section.
The concepts in the multivariate case are the same, although the technicalities
are somewhat more involved. We will treat the multivariate case in a later section.
The idea is that there is still an underlying experiment � with an associated sample
space �. But now we have two or more random variables on the sample space �.
Random variables being functions on the sample space �, we now have multiple
functions, say X.!/; Y.!/; : : : ; etc., on �. We want to study their joint behavior.

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 11, c� Springer Science+Business Media, LLC 2010
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Example 11.1 (Coin tossing). Consider the experiment � of tossing a fair coin three
times. Let X be the number of heads among the first two tosses and Y the num-
ber of heads among the last two tosses. If we consider X and Y individually, we
realize immediately that they are each Bin.2; :5/ random variables. But the individ-
ual distributions hide part of the full story. For example, if we knew that X was 2,
then that would imply that Y must be at least 1. Thus, their joint behavior cannot
be fully understood from their individual distributions; we must study their joint
distribution.

Here is what we mean by their joint distribution. The sample space � of this
experiment is

� D fHHH;HHT;HTH;HT T; THH; THT; T TH; T T T g:

Each sample point has an equal probability, 1
8

. Denoting the sample points as
!1; !2; : : : ; !8, we see that if !1 prevails, then X.!1/DY.!1/D 2, but if !2

prevails, then X.!2/D 2; Y.!2/D 1. The combinations of all possible values of
.X; Y / are

.0; 0/; .0; 1/; .0; 2/; .1; 0/; .1; 1/; .1; 2/; .2; 0/; .2; 1/; .2; 2/:

The joint distribution of .X; Y / provides the probability p.x; y/DP.X Dx;

Y Dy/ for each such combination of possible values .x; y/. Indeed, by direct
counting using the eight equally likely sample points, we see that

p.0; 0/ D 1

8
; p.0; 1/ D 1

8
; p.0; 2/ D 0; p.1; 0/ D 1

8
; p.1; 1/ D 1

4
I

p.1; 2/ D 1

8
; p.2; 0/ D 0; p.2; 1/ D 1

8
; p.2; 2/ D 1

8
:

For example, why is p.0; 1/ D 1
8

? This is because the combination .X D 0; Y D 1/

is favored by only one sample point, namely T TH . It is convenient to present these
nine different probabilities in the form of a table as follows.

Y

X 0 1 2

0 1
8

1
8

0

1 1
8

1
4

1
8

2 0 1
8

1
8

Such a layout is a convenient way to present the joint distribution of two discrete
random variables with a small number of values. The distribution itself is called the
joint pmf ; here is a formal definition.
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Definition 11.1. Let X and Y be two discrete random variables with respective
sets of values x1; x2; : : : ; and y1; y2; : : : ; defined on a common sample space �.
The joint pmf of X; Y is defined to be the function p.xi ; yj / D P.X D xi ;

Y D yj /; i; j � 1, and p.x; y/ D 0 at any other point .x; y/ in R2.
The requirements of a joint pmf are that

(i) p.x; y/ � 0 8.x; y/I
(ii)

P
i

P
j p.xi ; yj / D 1:

Thus, if we write the joint pmf in the form of a table, then all entries should be
nonnegative and the sum of all the entries in the table should be 1.

As in the case of a single variable, we can define a CDF for more than one
variable also. For the case of two variables, here is the definition of a CDF.

Definition 11.2. Let X and Y be two discrete random variables defined on a com-
mon sample space �. The joint CDF, or simply the CDF, of .X; Y / is a function
F W R2 ! Œ0; 1� defined as F.x; y/ D P.X 
 x; Y 
 y/; x; y 2 R:

Like the joint pmf, the CDF also characterizes the joint distribution of two dis-
crete random variables. But it is not very convenient or even interesting to work with
the CDF in the case of discrete random variables. It is much preferred to work with
the pmf when dealing with discrete random variables.

Example 11.2 (Maximum and Minimum in Dice Rolls). Suppose a fair die is rolled
twice, and letX and Y be the larger and the smaller of the two rolls (note thatX can
be equal to Y ), respectively. Each ofX and Y takes the individual values 1; 2; : : : ; 6,
but we have necessarily X � Y . The sample space of this experiment is

f11; 12; 13; : : : ; 64; 65; 66g:
By direct counting, for example, p.2; 1/ D 2

36
. Indeed, p.x; y/ D 2

36
for each

x; y D 1; 2; : : : ; 6; x > y, and p.x; y/ D 1
36

for x D y D 1; 2; : : : ; 6. Here is how
the joint pmf looks in the form of a table:

Y

X 1 2 3 4 5 6
1 1

36
0 0 0 0 0

2 1
18

1
36

0 0 0 0

3 1
18

1
18

1
36

0 0 0

4 1
18

1
18

1
18

1
36

0 0

5 1
18

1
18

1
18

1
18

1
36

0

6 1
18

1
18

1
18

1
18

1
18

1
36

The individual pmfs of X; Y are easily recovered from the joint distribution. For
example, P.X D 1/D P6

y D 1 P.X D 1; Y Dy/D 1
36

, and P.X D 2/D P6
y D 1

P.X D 2; Y D y/D 1
18

C 1
36

D 1
12

, etc. The individual pmfs are obtained by sum-
ming the joint probabilities over all values of the other variable. They are:
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x 1 2 3 4 5 6

pX .x/
1

36

3

36

5

36

7

36

9

36

11

36

y 1 2 3 4 5 6

pY .y/
11

36

9

36

7

36

5

36

3

36

1

36

From the individual pmf ofX , we can find the expectation ofX . Indeed,E.X/ D
1	 1

36
C 2	 3

36
C � � � C 6	 11

36
D 161

36
. Similarly,E.Y / D 91

36
. The individual pmfs

are called marginal pmfs, and here is the formal definition.

Definition 11.3. Let p.x; y/ be the joint pmf of .X; Y /. The marginal pmf of a
functionZ D g.X; Y / is defined as pZ.z/ D P

.x;y/Wg.x;y/Dz p.x; y/: In particular,

pX .x/ D
X

y

p.x; y/I pY .y/ D
X

x

p.x; y/;

and for any event A,

P.A/ D
X

.x;y/2A

p.x; y/:

Here is another example.

Example 11.3 (Bridge Hands). Let X be the number of aces in the hands of North
and Y the number of aces in the hands of South in a bridge game. Then, 0 
 X and
Y; and X C Y 
 4: If North gets x aces, South can get y aces in

�
4�x

y

�
ways. Also,

North has to get 13 � x non-ace cards and South has to get 13 � y non-ace cards.
Thus,

p.x; y/ D

�
4
x

� �
48

13� x

� �
4 � x
y

� �
35C x
13� y

�

�
52
13

� �
39
13

� ;

x; y � 0; x C y 
 4:

For example,

p.1; 0/ D :1249Ip.1; 1/D :2029Ip.1; 2/ D :0974Ip.1; 3/ D :0137Ip.1; 4/ D 0:

Summing, we get

P.X D 1/ D
X

y

p.1; y/ D :4389;

which is what we get from the direct formula for the pmf of X :

P.X D 1/ D

�
4
1

� �
48
12

�

�
52
13

� D :4389:
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Likewise,
p.2; 0/ D :0936Ip.2; 1/ D :0974Ip.2; 2/ D :0225;

and adding, we get P.X D 2/ D :2135, which is what we get directly from the
formula

P.X D 2/ D

�
4

2

��
48

11

�

�
52

13

� D :2135:

Now suppose we want to find the probability of the event A that X C Y D 2. Then,

P.A/ D
X

.x;y/2A

p.x; y/ D p.0; 2/C p.1; 1/C p.2; 0/

D :0936C :2029C :0936 D :3901:

There is no way to compute the probability of the event A except by using the joint
distribution of X and Y and by adding up the probabilities of all the favorable com-
binations .x; y/ for the event A. This exemplifies the importance of studying joint
distributions, which carry all the information about X and Y , while the marginal
distributions, in general, do not.

Example 11.4. Consider a joint pmf given by the formula

p.x; y/ D c.x C y/; 1 
 x; y 
 n;

where c is a normalizing constant.
First of all, we need to evaluate c by equating

nX

xD1

nX

yD1

p.x; y/ D 1

, c

nX

xD1

nX

yD1

.x C y/ D 1

, c

nX

xD1

�

nx C n.nC 1/

2

	

D 1

, c

�
n2.nC 1/

2
C n2.nC 1/

2

	

D 1

, cn2.nC 1/ D 1

, c D 1

n2.nC 1/
:
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The joint pmf is symmetric between x and y (since x C y D y C x), so X and Y
have the same marginal pmf. For example,X has the pmf

pX .x/ D
nX

yD1

p.x; y/ D 1

n2.nC 1/

nX

yD1

.x C y/

D 1

n2.nC 1/

�

nx C n.nC 1/

2

	

D x

n.nC 1/
C 1

2n
; 1 
 x 
 n:

Suppose now that we want to compute P.X > Y /. This can be found by sum-
ming p.x; y/ over all combinations for which x > y. But this longer calculation
can be avoided by using a symmetry argument that is often very useful. Note that
because the joint pmf is symmetric between x and y, we must have P.X > Y / D
P.Y > X/ D p (say). But also

P.X > Y /C P.Y > X/C P.X D Y / D 1 ) 2p C P.X D Y / D 1

) p D 1 � P.X D Y /

2
:

Now,

P.X D Y / D
nX

xD1

p.x; x/ D c 	
nX

xD1

2x

D 1

n2.nC 1/
n.nC 1/ D 1

n
:

Therefore, P.X > Y / D p D n�1
2n

� 1
2

for large n.

Example 11.5 (Dice Rolls Revisited). Consider again the example of two rolls of
a fair die, and suppose X and Y are the larger and the smaller of the two rolls,
respectively. We have worked out the joint distribution of .X; Y / in Example 11.2.
Suppose we want to find the distribution of the difference, X � Y . The possible
values of X � Y are 0; 1; : : : ; 5, and we find P.X � Y D k/ by using the joint
distribution of .X; Y /:

P.X � Y D 0/ D p.1; 1/C p.2; 2/C � � � C p.6; 6/ D 1

6
I

P.X � Y D 1/ D p.2; 1/C p.3; 2/C � � � C p.6; 5/ D 5

18
I

P.X � Y D 2/ D p.3; 1/C p.4; 2/C p.5; 3/C p.6; 4/ D 2

9
I
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P.X � Y D 3/ D p.4; 1/C p.5; 2/C p.6; 3/ D 1

6
I

P.X � Y D 4/ D p.5; 1/C p.6; 2/ D 1

9
I

P.X � Y D 5/ D p.6; 1/ D 1

18
:

Again, there is no way to find the distribution of X � Y except by using the joint
distribution of .X; Y /.

Suppose now that we also want to know the expected value of X � Y . Now
that we have the distribution of X � Y worked out, we can find the expectation by
directly using the definition of expectation:

E.X � Y / D
5X

kD0

kP.X � Y D k/

D 5

18
C 4

9
C 1

2
C 4

9
C 5

18
D 35

18
:

But we can also use linearity of expectations and find E.X � Y / as

E.X � Y / D E.X/�E.Y / D 161

36
� 91

36
D 35

18

(see Example 11.2 for E.X/;E.Y /).
A third possible way to compute E.X � Y / is to treat X � Y as a function of

.X; Y / and use the joint pmf of .X; Y / to findE.X �Y / as
P

x

P
y.x�y/p.x; y/.

In this particular example, this will be an unnecessarily laborious calculation be-
cause luckily we can find E.X � Y / by other quicker means in this example, as we
just saw. But in general one has to resort to the joint pmf to calculate the expectation
of a function of .X; Y /. Here is the formal formula.

Theorem 11.1 (Expectation of a Function). Let .X; Y / have the joint pmf p.x; y/
and let g.X; Y / be a function of .X; Y /. We say that the expectation of g.X; Y /
exists if

P
x

P
y jg.x; y/jp.x; y/ < 1, in which case

EŒg.X; Y /� D
X

x

X

y

g.x; y/p.x; y/:

Example 11.6. Consider the example of three tosses of a fair coin, and let X and Y
be the number of heads in the first two and the last two tosses, respectively. Let
g.X; Y / D jX � Y j. We want to find the expectation of g.X; Y /. Because of the
absolute value, we cannot find this expectation from the marginal distributions of
X and Y ; we must use the joint pmf in this case.
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Using the joint pmf of .X; Y / from Example 11.1,

E.jX � Y j/ D
2X

xD0

2X

yD0

jx � yjp.x; y/

D 1 	 Œp.0; 1/C p.1; 0/C p.1; 2/C p.2; 1/�C 2

	Œp.0; 2/C p.2; 0/� D 4

8
D 1

2
:

How about EŒmaxfX; Y g�? Again, this can only be found from the joint pmf of
.X; Y /. By using the joint pmf,

EŒmaxfX; Y g� D .p.0; 1/Cp.1; 0/Cp.1; 1//C .2p.1; 2/C 2p.2; 1/C 2p.2; 2//

D 1

4
C 1

4
C 3

4
D 5

4
D 1:25:

Thus, each of E.X/ and E.Y / is one, but the expectation of the maximum of X; Y
is bigger than one:

EŒmaxfX; Y g� > maxfE.X/;E.Y /g:

11.2 Conditional Distributions and Conditional Expectations

Sometimes we want to know the expected value of one of the variables, sayX , if we
knew the value of the other variable Y . For example, in the die-tossing experiment
above, what should we expect the larger of the two rolls to be if the smaller roll is
known to be 2?

To answer this question, we have to find the probabilities of the various values of
X , conditional on knowing that Y equals some given y, and then average by using
these conditional probabilities. Here are the formal definitions.

Definition 11.4 (Conditional Distribution). Let .X; Y / have the joint pmf
p.x; y/. The conditional distribution of X given Y D y is defined to be

p.xjy/ D P.X D xjY D y/ D p.x; y/

pY .y/
;

and the conditional expectation of X given Y D y is defined to be

E.X jY D y/ D
X

x

xp.xjy/ D
P

x xp.x; y/

pY .y/
D
P

x xp.x; y/P
x p.x; y/

:

The conditional distribution of Y given X D x and the conditional expectation of
Y given X D x are defined analogously by switching the roles of X and Y in the
definitions above .
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We often casually write E.X jy/ to mean E.X jY D y/. Two easy facts that are
nevertheless often useful are the following.

Proposition 11.1. Let X and Y be random variables defined on a common sample
space �. Then,

(a) E.g.Y /jY D y/ D g.y/; 8y; for any function gI
(b) E.Xg.Y /jY D y/ D g.y/E.X jY D y/ 8y; for any function g:

Recall that in Chapter 4 we defined two random variables to be independent
if P.X 
 x; Y 
 y/ D P.X 
 x/P.Y 
 y/ 8 x; y 2 R. This is of course a
correct definition, but in the case of discrete random variables, it is more convenient
to think of independence in terms of the pmf. The definition below puts together
some equivalent definitions of independence of two discrete random variables.

Definition 11.5 (Independence). Let .X; Y / have the joint pmf p.x; y/. Then X
and Y are said to be independent if

p.xjy/ D pX .x/; 8 x; y such that pY .y/ > 0I
, p.yjx/ D pY .y/; 8 x; y such that pX .x/ > 0I
, p.x; y/ D pX .x/pY .y/;8 x; yI

, P.X 
 x; Y 
 y/ D P.X 
 x/P.Y 
 y/ 8 x; y:

The third equivalent condition in the list above is usually the most convenient
one to verify and use.

One more frequently useful fact about conditional expectations is the following.

Proposition 11.2. Suppose X and Y are independent random variables. Then, for
any function g.X/ such that the expectations below exist, and for any y,

EŒg.X/jY D y� D EŒg.X/�:

11.2.1 Examples on Conditional Distributions and Expectations

Example 11.7. In the experiment of three tosses of a fair coin, we have worked
out the joint mass function of X; Y , where X is the number of heads in the first
two tosses and Y the number of heads in the last two tosses. Using this joint mass
function, we now find

P.X D 0jY D 0/ D p.0; 0/

pY .0/
D 1=8

1=4
D 1

2
I

P.X D 1jY D 0/ D p.1; 0/

pY .0/
D 1=8

1=4
D 1

2
I

P.X D 2jY D 0/ D p.2; 0/

pY .0/
D 0

1=4
D 0:
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That is, the conditional distribution of X given Y D 0 is a two-point distribution,
althoughX by itself takes three values. We can also similarly find

P.Y D 0jX D 0/ D p.0; 0/

pX .0/
D 1=8

1=4
D 1

2
I

P.Y D 1jX D 0/ D p.0; 1/

pX .0/
D 1=8

1=4
D 1

2
I

P.Y D 2jX D 0/ D p.0; 2/

pX .0/
D 0

1=4
D 0:

Thus, the conditional distribution of Y givenX D 0 is also a two-point distribution,
and in fact, as distributions, the two conditional distributions that we worked out in
this example are the same.

Example 11.8 (Maximum and Minimum in Dice Rolls). In the experiment of two
rolls of a fair die, we have worked out the joint distribution of X; Y , where X is the
larger and Y the smaller of the two rolls. Using this joint distribution, we can now
find the conditional distributions. For instance,

P.Y D 1jX D 1/ D 1IP.Y D yjX D 1/ D 0 ify > 1I
P.Y D 1jX D 2/ D 1=18

1=18C 1=36
D 2

3
I

P.Y D 2jX D 2/ D 1=36

1=18C 1=36
D 1

3
I

P.Y D yjX D 2/ D 0 ify > 2I
P.Y D yjX D 6/ D 1=18

5=18C 1=36
D 2

11
if 1 
 y 
 5I

P.Y D 6jX D 6/ D 1=36

5=18C 1=36
D 1

11
:

Example 11.9 (Conditional Expectation in a 2	 2 Table). SupposeX and Y are bi-
nary variables, each taking only the values 0; 1 with the following joint distribution.

Y

X 0 1
0 s t

1 u v

We want to evaluate the conditional expectation of X given Y D 0; 1, respec-
tively. By using the definition of conditional expectation,

E.X jY D 0/ D 0 	 p.0; 0/C 1 	 p.1; 0/
p.0; 0/C p.1; 0/

D u

s C u
I

E.X jY D 1/ D 0 	 p.0; 1/C 1 	 p.1; 1/
p.0; 1/C p.1; 1/

D v

t C v
:
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Therefore,

E.X jY D 1/� E.X jY D 0/ D v

t C v
� u

s C u
D vs � ut

.t C v/.s C u/
:

It follows that we can now have the single formula

E.X jY D y/ D u

s C u
C vs � ut

.t C v/.s C u/
y;

y D 0; 1. We now realize that the conditional expectation of X given Y D y is a
linear function of y in this example. This will be the case whenever both X and Y
are binary variables, as they were in this example.

Example 11.10 (Conditional Expectation of Number of Aces). Consider again the
example of the number of aces X; Y in the hands of North and South in a bridge
game. We want to find E.X jY D y/ for y D 0; 1; 2; 3; 4. Of these, note that
E.X jY D 4/ D 0:

For the rest, from the definition,

E.X jY D y/ D
P

x xp.x; y/P
x p.x; y/

D
P4�y

xD0 xp.x; y/
P4�y

xD0 p.x; y/
;

where p.x; y/ D
�

4
x

��
48

13�x

��
4�x

y

��
35Cx
13�y

�

�
52
13

��
39
13

� from Example 11.3.

For example,

E.X jY D 2/ D 0 	 p.0; 2/C 1 	 p.1; 2/C 2 	 p.2; 2/
p.0; 2/C p.1; 2/C p.2; 2/

D :0974C 2 	 :0225
:0936C :0974C :0225

D :67:

Note that the :67 value is actually 2
3

, and this makes intuitive sense. If South already
has two aces, then the remaining two aces should be divided among East, West, and
North equitably, which would give E.X jY D 2/ as 2

3
.

Example 11.11 (Conditional Expectation in Dice Experiment). Consider again the
example of the joint distribution of the maximum and the minimum of two rolls of a
fair die. LetX denote the maximum and Y the minimum. We will findE.X jY D y/

for various values of y.
By using the definition of E.X jY D y/, we have, for example,

E.X jY D 1/ D
1 	 1

36
C 1

18
Œ2C � � � C 6�

1

36
C 5

18

D 41

11
D 3:73;
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as another example

E.X jY D 3/ D
3 	 1

36
C 1

18
	 15

1

36
C 3

18

D 33

7
D 4:71;

and

E.X jY D 5/ D
5 	 1

36
C 6 	 1

18
1

36
C 1

18

D 17

3
D 5:77:

We notice that E.X jY D 5/ > E.X jY D 3/ > E.X jY D 1/I in fact, it is true
that E.X jY D y/ is increasing in y in this example. Again, it does make intuitive
sense.

Just as in the case of a distribution of a single variable, we often also want a mea-
sure of variability in addition to a measure of average for conditional distributions.
This motivates defining a conditional variance.

Definition 11.6 (Conditional Variance). Let .X; Y / have the joint pmf p.x; y/.
Let �X .y/ D E.X jY D y/: The conditional variance ofX given Y D y is defined
to be

Var.X jY D y/ D EŒ.X � �X .y//
2jY D y� D

X

x

.x � �X .y//
2p.xjy/:

We often casually write Var.X jy/ to mean Var.X jY D y/.

Example 11.12 (Conditional Variance in Dice Experiment). We will work out the
conditional variance of the maximum of two rolls of a die given the minimum. That
is, suppose a fair die is rolled twice and X and Y are the larger and the smaller of
the two rolls respectively; we want to compute Var.X jy/.

For example, if y D 3, then �X .y/ D E.X jY D y/ D E.X jY D 3/ D 4:71

(see the previous example). Therefore,

Var.X jy/ D X

x

.x � 4:71/2p.xj3/

D
.3� 4:71/2 � 1

36
C.4� 4:71/2 � 1

18
C .5� 4:71/2 � 1

18
C.6� �4:71/2 � 1

18
1

36
C 1

18
C 1

18
C 1

18

D 1:06:

To summarize, given that the minimum of two rolls of a fair die is 3, the expected
value of the maximum is 4.71 and the variance of the maximum is 1.06.

These two values,E.X jy/ and Var.Xjy/, change as we change the given value y.
Thus, E.Xjy/ and Var.Xjy/ are functions of y and, for each separate y, a new
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calculation is needed. If X and Y happen to be independent, then of course whatever
be y;E.Xjy/ D E.X/ and Var.Xjy/ D Var.X/.

The next result is an important one in many applications.

Theorem 11.2 (Poisson Conditional Distribution). Let X and Y be independent
Poisson random variables with means �;�. Then the conditional distribution of X
given X C Y D t is Bin.t; p/, where p D �

�C�
.

Proof. Clearly, P.X D xjX C Y D t/ D 08x > t: For x 
 t ,

P.X D xjX C Y D t/ D P.X D x;X C Y D t/

P.X C Y D t/

D P.X D x; Y D t � x/

P.X C Y D t/

D e���x

xŠ

e���t�x

.t � x/Š

tŠ

e�.�C�/.�C �/t

(on using the fact that X C Y � Poi.�C �/; see Chapter 6)

D t Š

xŠ.t � x/Š
�x�t�x

.�C �/t

D
 
t

x

!�
�

�C �

�x �
�

�C �

�t�x

;

which is the pmf of the Bin.t; �
�C�

/ distribution.

11.3 Using Conditioning to Evaluate Mean and Variance

Conditioning is often an extremely effective tool for calculating probabilities,
means, and variances of random variables with a complex or clumsy joint
distribution. Thus, in order to calculate the mean of a random variable X , it is
sometimes very convenient to follow an iterative process whereby we first evaluate
the mean of X after conditioning on the value y of some suitable random variable
Y and then average over y. The random variable Y has to be chosen judiciously but
is often clear from the context of the specific problem. Here are the precise results
on how this technique works; it is important to note that the next two results hold
for any kind of random variable, not just discrete ones.

Theorem 11.3 (Iterated Expectation Formula). Let X and Y be random vari-
ables defined on the same probability space �. Suppose E.X/ and E.X jY D y/

exist for each y. Then,

E.X/ D EY ŒE.X jY D y/�I
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thus, in the discrete case,

E.X/ D
X

y

�X .y/pY .y/;

where �X .y/ D E.X jY D y/.

Proof. We prove this for the discrete case. By the definition of conditional
expectation,

�X .y/ D
P

x xp.x; y/

pY .y/

)
X

y

�X .y/pY .y/ D
X

y

X

x

xp.x; y/ D
X

x

X

y

xp.x; y/

D
X

x

x
X

y

p.x; y/ D
X

x

xpX .x/ D E.X/:

The corresponding variance calculation formula is the following. The proof of
this uses the iterated mean formula above and applies it to .X � �X /

2.

Theorem 11.4 (Iterated Variance Formula). Let X and Y be random variables
defined on the same probability space�. Suppose Var.X/ and Var.X jY D y/ exist
for each y. Then,

Var.X/ D EY ŒVar.X jY D y/�C VarY ŒE.X jY D y/�:

Remark. These two formulas for iterated expectation and iterated variance are valid
for all types of variables, not just the discrete ones. Thus, these same formulas will
still hold when we discuss joint distributions for continuous random variables in the
next chapter.

Some operational formulas that one should be familiar with are summarized
below.

Conditional Expectation and Variance Rules

E.g.X/jX D x/ D g.x/IE.g.X/h.Y /jY D y/ D h.y/E.g.X/jY D y/I

E.g.X/jY D y/ D E.g.X// if X and Y are independent;

Var.g.X/jX D x/ D 0I Var.g.X/h.Y /jY D y/ D h2.y/Var.g.X/jY D y/I

Var.g.X/jY D y/ D Var.g.X// if X and Y are independent:
Let us see some applications of the two iterated expectation and iterated variance

formulas.
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Example 11.13 (A Two-Stage Experiment). Suppose n fair dice are rolled. Those
that show a six are rolled again. What are the mean and the variance of the number
of sixes obtained in the second round of this experiment?

Define Y to be the number of dice in the first round that show a six and X the
number of dice in the second round that show a six. Given Y D y;X � Bin.y; 1

6
/

and Y itself is distributed as Bin.n; 1
6
/. Therefore,

E.X/ D EŒE.X jY D y/� D EY

hy

6

i
D n

36
:

Also,

Var.X/ D EY ŒVar.X jY D y/�C VarY ŒE.X jY D y/�

D EY

�

y
1

6

5

6

	

C VarY

hy

6

i

D 5

36

n

6
C 1

36
n
1

6

5

6

D 5n

216
C 5n

1296
D 35n

1296
:

Example 11.14. Suppose that in a certain population 30% of couples have one child,
50% have two children, and 20% have three children. One family is picked at ran-
dom from this population. What is the expected number of boys in this family?

Let Y denote the number of children in the family that was picked, and let X
be the number of boys it has. Making the usual assumption of a childbirth being
equally likely to be a boy or a girl,

E.X/ D EY ŒE.X jY D y/� D :3 	 :5C :5 	 1C :2 	 1:5 D :95:

Example 11.15. Suppose a chicken lays a Poisson number of eggs per week with
mean �. Each egg, independently of the others, has a probability p of being
fertilized. We want to find the mean and the variance of the number of eggs fer-
tilized in a week.

Let N denote the number of eggs hatched and X the number of eggs fertilized.
Then, N � Poi.�/, and given N D n;X � Bin.n; p/. Therefore,

E.X/ D EN ŒE.X jN D n/� D EN Œnp� D p�

and

Var.X/ D EN ŒVar.X jN D n/�C VarN .E.X jN D n/

D EN Œnp.1 � p/�C VarN .np/ D �p.1 � p/C p2� D p�:

Interestingly, the number of eggs actually fertilized has the same mean and vari-
ance p�: (Can you see why?)
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Remark. In all of these examples, it was important to choose the variable Y on
which one should condition wisely. The efficiency of the technique depends on this
very crucially.

Sometimes, a formal generalization of the iterated expectation formula when a
third variableZ is present is useful. It is particularly useful in hierarchical statistical
modeling of distributions, where an ultimate marginal distribution for some X is
constructed by first conditioning on a number of auxiliary variables and then grad-
ually unconditioning them. We state the more general iterated expectation formula;
its proof is similar to that of the usual iterated expectation formula.

Theorem 11.5 (Higher-Order Iterated Expectation). Let X; Y;Z be random
variables defined on the same sample space �. Assume that each conditional
expectation below and the marginal expectation E.X/ exist. Then,

E.X/ D EY ŒEZjY fE.X jY D y;Z D z/g�:

11.4 Covariance and Correlation

We know that variance is additive for independent random variables; i.e., if X1; X2;

: : : ; Xn are independent random variables, then Var.X1 C X2 C � � � C Xn/ D
Var.X1/ C � � � C Var.Xn/: In particular, for two independent random variables
X; Y;Var.X C Y / D Var.X/C Var.Y /: However, in general, variance is not addi-
tive. Let us do the general calculation for Var.X C Y /:

Var.X C Y / D E.X C Y /2 � ŒE.X C Y /�2

D E.X2 C Y 2 C 2XY / � ŒE.X/C E.Y /�2

D E.X2/C E.Y 2/C 2E.XY /�ŒE.X/�2�ŒE.Y /�2 � 2E.X/E.Y /
D E.X2/ � ŒE.X/�2 C E.Y 2/�ŒE.Y /�2C2ŒE.XY /� E.X/E.Y /�

D Var.X/C Var.Y/C 2ŒE.XY/� E.X/E.Y/�:

We thus have the extra term 2ŒE.XY / � E.X/E.Y /� in the expression for
Var.X C Y /; of course, when X and Y are independent, E.XY / D E.X/E.Y /,
so the extra term drops out. But, in general, one has to keep the extra term. The
quantity E.XY / � E.X/E.Y / is called the covariance of X and Y .

Definition 11.7 (Covariance). Let X and Y be two random variables defined on a
common sample space � such that E.XY /;E.X/;E.Y / all exist. The covariance
of X and Y is defined as

Cov.X; Y / D E.XY / �E.X/E.Y / D EŒ.X � E.X//.Y � E.Y //�:

Remark. Covariance is a measure of whether two random variables X and Y tend
to increase or decrease together. If a larger value ofX generally causes an increment
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in the value of Y , then often (but not always) they have a positive covariance.
For example, taller people tend to weigh more than shorter people, and height and
weight usually have a positive covariance.

Unfortunately, however, covariance can take arbitrary positive and negative
values. Therefore, by looking at its value in a particular problem, we cannot judge
whether it is a large value or not. We cannot compare a covariance with a stan-
dard to judge if it is large or small. A renormalization of the covariance cures this
problem and calibrates it to a scale of �1 to C1. We can judge such a quantity as
large, small, or moderate; for example, .95 would be large positive, .5 moderate,
and .1 small. The renormalized quantity is the correlation coefficient or simply the
correlation between X and Y .

Definition 11.8 (Correlation). Let X and Y be two random variables defined on a
common sample space� such that Var.X/ and Var.Y / are both finite. The correla-
tion between X and Y is defined to be

�X;Y D Cov.X; Y /
p

Var.X/
p

Var.Y /
:

Some important properties of covariance and correlation are put together in the next
theorem.

Theorem 11.6 (Properties of Covariance and Correlation). Provided that the
required variances and covariances exist,
(a) Cov.X; c/ D 0 for anyX and any constant c;
(b) Cov.X;X/ D var.X/ for anyX;

.c/ Cov

0

@
nX

iD1

aiXi ;

mX

j D1

bjYj

1

A D
nX

iD1

mX

j D1

aibj Cov.Xi ; Yj /;

and, in particular,

Var.aX C bY / D Cov.aX C bY; aX C bY /

D a2Var.X/C b2Var.Y /C 2abCov.X; Y /

and

Var

 
nX

iD1

Xi

!

D
nX

iD1

Var.Xi /C 2
X nX

i<j D1

Cov.Xi ; Xj /:

(d) For any two independent random variables X and Y, Cov .X; Y / D �X;Y D 0:

(e) �aCbX;cCdY D sgn.bd/�X;Y ; where sgn.bd/ D 1 if bd > 0 and sgn.bd/ D
�1 if bd < 0:

(f) Whenever �X;Y is defined, �1 
 �X;Y 
 1.
(g) �X;Y D 1 if and only if for some a and some b > 0; P.Y D aC bX/ D 1; and

�X;Y D �1 if and only if for some a and some b < 0; P.Y D a C bX/ D 1.
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Proof. For part (a), Cov.X; c/ D E.cX/ � E.c/E.X/ D cE.X/ � cE.X/ D 0.
For part (b), Cov.X;X/ D E.X2/� ŒE.X/�2 D Var.X/. For part (c),

Cov

0

@
nX

iD1

aiXi ;

mX

j D1

bjYj

1

A D E

2

4
nX

iD1

aiXi 	
mX

j D1

bjYj

3

5

�E
 

nX

iD1

aiXi

!

E

0

@
mX

j D1

bjYj

1

A

D E

0

@
nX

iD1

mX

j D1

aibjXiYj

1

A �
"

nX

iD1

aiE.Xi /

#

	
2

4
mX

j D1

bjE.Yj /

3

5 D
nX

iD1

mX

j D1

aibjE.Xi ; Yj /

�
nX

iD1

ai

mX

j D1

bjE.Xi /E.Yj /

D
nX

iD1

mX

j D1

aibj ŒE.Xi ; Yj / �E.Xi /E.Yj /�

D
nX

iD1

mX

j D1

aibj Cov.Xi ; Yj /:

Part (d) follows on noting that E.XY / D E.X/E.Y / if X and Y are independent.
For part (e), first note that Cov.aC bX; cC dY / D bdCov.X; Y / by using part (a)
and part (c). Also, Var.aC bX/ D b2Var.X/ and Var.c C dY / D d 2Var.Y /

) �aCbX;cCdY D bdCov.X; Y /
p
b2Var.X/

p
d 2Var.Y /

D bdCov.X; Y /

jbjpVar.X/jd jpVar.Y /

D bd

jbd j�X;Y D sgn.bd/�X;Y :

The proof of part (f) uses the Cauchy-Schwartz inequality (see Chapter 4) that
for any two random variables U and V; ŒE.UV /�2 
 E.U 2/E.V 2/. Let U D
X�E.X/p

Var.X/
; V D Y �E.Y /p

Var.Y/
: Then, E.U 2/ D E.V 2/ D 1 and

�X;Y D E.UV / 
 E.U 2/E.V 2/ D 1:

The lower bound �X;Y � �1 follows similarly.
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Part (g) uses the condition for equality in the Cauchy-Schwartz inequality; i.e.,
that in order that �X;Y D ˙1, one must have ŒE.UV /�2 D E.U 2/E.V 2/ in the
argument above, which implies the statement in part (g).

Example 11.16 (Correlation between Minimum and Maximum in Dice Rolls). Con-
sider again the experiment of rolling a fair die twice, and let X and Y be the
maximum and the minimum of the two rolls respectively. We want to find the cor-
relation between X and Y .

The joint distribution of .X; Y / was worked out in Example 11.2. From the joint
distribution,

E.XY / D 1=36C2=18C4=36C3=18C6=18C9=36C� � �C30=18C36=36 D 49=4:

The marginal pmfs of X; Y were also worked out in Example 11.2. From the
marginal pmfs, by direct calculation, E.X/ D 161=36;E.Y / D 91=36; and
Var.X/ D Var.Y / D 2555=1296: Therefore,

�X;Y D E.XY /� E.X/E.Y /
p

Var.X/
p

Var.Y /

D 49=4� 161=36 	 91=36
2555=1296

D 35

73
D :48:

The correlation between the maximum and the minimum is in fact positive for any
number of rolls of a die, although the correlation will converge to zero when the
number of rolls converges to 1.

Example 11.17 (Correlation in the Chicken-Eggs Example). Consider again the ex-
ample of a chicken laying a Poisson number of eggs, N , with mean � and each egg
fertilizing, independently of others, with probability p. If X is the number of eggs
actually fertilized, we want to find the correlation between the number of eggs laid
and the number fertlized; i.e., the correlation between X and N .

First,

E.XN/ D EN ŒE.XN jN D n/� D EN ŒnE.X jN D n/�

D EN Œn
2p� D p.�C �2/:

Next, from our previous calculations, E.X/ D p�;E.N / D �; Var.X/ D p�;

and Var.N / D �: Therefore,

�X;N D E.XN/ �E.X/E.N/
p

Var.X/
p

Var.N /

D p.�C �2/� p�2

p
p�

p
�

D p
p:

Thus, the correlation goes up with the fertility rate of the eggs.
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Example 11.18 (Best Linear Predictor). Suppose X and Y are two jointly dis-
tributed random variables and either by necessity or omission the variable Y was
not observed. But X was observed, and there may be some information in the X
value about Y . The problem is to predict Y by using X . Linear predictors, because
of their functional simplicity, are appealing. The mathematical problem is to choose
the best linear predictor a C bX of Y , where best is defined as the predictor that
minimizes the mean squared error EŒY � .aC bX/�2. We will see that the answer
has something to do with the covariance between X and Y .

By breaking the square,

R.a; b/ D EŒY � .a C bX/�2 D a2 C b2E.X2/C 2abE.X/� 2aE.Y /
�2bE.XY /C E.Y 2/:

To minimize this with respect to a; b, we partially differentiateR.a; b/ with respect
to a; b and set the derivatives equal to zero:

@

@a
R.a; b/ D 2aC 2bE.X/� 2E.Y / D 0

, aC bE.X/ D E.Y /I
@

@b
R.a; b/ D 2bE.X2/C 2aE.X/ � 2E.XY / D 0

, aE.X/C bE.X2/ D E.XY /:

Solving these two equations simultaneously, we get

b D E.XY /� E.X/E.Y /

Var.X/
; a D E.Y /� E.XY /� E.X/E.Y /

Var.X/
E.X/:

These values do minimize R.a; b/ by an easy application of the second derivative
test. So, the best linear predictor of Y based on X is

best linear predictor of Y D E.Y / � Cov.X; Y /

Var.X/
E.X/C Cov.X; Y /

Var.X/
X

D E.Y /C Cov.X; Y /

Var.X/
ŒX � E.X/�:

The best linear predictor is also known as the regression line of Y on X. It is of
widespread use in statistics.

Example 11.19 (Zero Correlation Does Not Mean Independence). If X and Y are
independent, then necessarily Cov.X; Y / D 0, and hence the correlation is also
zero. The converse is not true. Take a three-valued random variable X with the pmf
P.X D ˙1/ D p;P.X D 0/ D 1 � 2p; 0 < p < 1

2
. Let the other variable
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Y be Y D X2: Then, E.XY / D E.X3/ D 0 and E.X/E.Y / D 0 because
E.X/ D 0. Therefore, Cov.X; Y / D 0. But X and Y are certainly not independent;
e.g., P.Y D 0jX D 0/ D 1, but P.Y D 0/ D 1� 2p ¤ 0:

Indeed, if X has a distribution symmetric around zero and has three finite
moments, then X and X2 always have a zero correlation, although they are not
independent.

11.5 Multivariate Case

The extension of the concepts for the bivariate discrete case to the multivariate
discrete case is straightforward. We will give the appropriate definitions and an im-
portant example, namely that of the multinomial distribution, an extension of the
binomial distribution.

Definition 11.9. Let X1; X2; : : : ; Xn be discrete random variables defined on a
common sample space �, with Xi taking values in some countable set Xi . The
joint pmf of .X1; X2; : : : ; Xn/ is defined as p.x1; x2; : : : ; xn/ D P.X1 D x1; : : : ;

Xn D xn/; xi 2 Xi ; and zero otherwise:.

Definition 11.10. Let X1; X2; : : : ; Xn be random variables defined on a common
sample space �. The joint CDF of X1; X2; : : : ; Xn is defined as F.x1; x2; : : : ;

xn/ D P.X1 
 x1; X2 
 x2; : : : ; Xn 
 xn/; x1; x2; : : : ; xn 2 R.

The requirements of a joint pmf are the usual:

(i) p.x1; x2; : : : ; xn/ � 0 8 x1; x2; : : : ; xn 2 RI
(ii)

P

x12X1;:::;xn2Xn

p.x1; x2; : : : ; xn/ D 1:

The requirements of a joint CDF are somewhat more complicated.
The requirements of a CDF are that

(i) 0 
 F 
 18.x1; : : : ; xn/I
(ii) F is nondecreasing in each coordinateI

(iii) F equals zero if one or more of the xi D �1I
(iv) F equals one if all the xi D C1I
(v) F assigns a nonnegative probability to every n-dimensional rectangle

Œa1; b1� 	 Œa2; b2� 	 � � � 	 Œan; bn�:

This last condition (v) is a notationally clumsy condition to write down. If n D 2,
it reduces to the simple inequality that

F.b1; b2/� F.a1; b2/ � F.b1; a2/C F.a1; a2/ � 08a1 
 b1; a2 
 b2:

Once again, we mention that it is not convenient or interesting to work with the
CDF for discrete random variables; for discrete variables, it is preferable to work
with the pmf.
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11.5.1 � Joint MGF

Analogous to the case of one random variable, we can define the joint mgf for
several random variables. The definition is the same for all types of random vari-
ables, discrete or continuous, or other mixed types. As in the one-dimensional case,
the joint mgf of several random variables is also a very useful tool. First, we repeat
the definition of expectation of a function of several random variables; see Chapter
4, where it was first introduced and defined. The definition below is equivalent to
what was given in Chapter 4.

Definition 11.11. Let X1; X2; : : : ; Xn be discrete random variables defined on
a common sample space �, with Xi taking values in some countable set Xi .
Let the joint pmf of X1; X2; : : : ; Xn be p.x1; : : : ; xn/: Let g.x1; : : : ; xn/ be a
real-valued function of n variables. We say that EŒg.X1; X2; : : : ; Xn/� exists
if
P

x12X1;:::;xn2Xn
jg.x1; : : : ; xn/jp.x1; : : : ; xn/ < 1, in which case, the ex-

pectation is defined as

EŒg.X1; X2; : : : ; Xn/� D
X

x12X1;:::;xn2Xn

g.x1; : : : ; xn/p.x1; : : : ; xn/:

A corresponding definition when X1; X2; : : : ; Xn are all continuous random vari-
ables will be given in the next chapter.

Definition 11.12. Let X1; X2; : : : ; Xn be n random variables defined on a common
sample space�. The joint moment generating function ofX1; X2; : : : ; Xn is defined
to be

 .t1; t2; : : : ; tn/ D EŒet1X1Ct2X2C���CtnXn � D EŒet0X�;

provided the expectation exists, and t0X denotes the inner product of the vectors
t D .t1; : : : ; tn/;X D .X1; : : : ; Xn/.

Note that the joint moment generating function (mgf) always exists at the origin,
namely t D .0; : : : ; 0/, and equals 1 at that point. It may or may not exist at other
points t. If it does exist in a nonempty rectangle containing the origin, then many
important characteristics of the joint distribution of X1; X2; : : : ; Xn can be derived
by using the joint mgf. As in the one-dimensional case, it is a very useful tool.
Theorem 11.7 gives the moment generating property of a joint mgf.

Theorem 11.7. Suppose  .t1; t2; : : : ; tn/ exists in a nonempty open rectangle con-
taining the origin t D 0: Then a partial derivative of  .t1; t2; : : : ; tn/ of every order
with respect to each ti exists in that open rectangle, and furthermore,

E.X
k1

1 X
k2

2 � � �Xkn
n / D @k1Ck2C���Ckn

@t
k1

1 � � � @tkn
n

 .t1; t2; : : : ; tn/jt1 D 0; t2 D 0; : : : ; tn D 0:

A corollary of this result is sometimes useful in determining the covariance between
two random variables.
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Corollary. Let X and Y have a joint mgf in some open rectangle around the origin
.0; 0/. Then,

Cov.X; Y / D @2

@t1@t2
 .t1; t2/j0;0 �

�
@

@t1
 .t1; t2/j0;0

��
@

@t2
 .t1; t2/j0;0

�

:

We also have the distribution-determining property, as in the one-dimensional
case.

Theorem 11.8. Suppose .X1; X2; : : : ; Xn/ and .Y1; Y2; : : : ; Yn/ are two sets of
jointly distributed random variables, such that their mgfs  X.t1; t2; : : : ; tn/ and
 Y.t1; t2; : : : ; tn/ exist and coincide in some nonempty open rectangle contain-
ing the origin. Then .X1; X2; : : : ; Xn/ and .Y1; Y2; : : : ; Yn/ have the same joint
distribution.

Remark. It is important to note that the last two theorems are not limited to discrete
random variables; they are valid for general random variables. The proofs of these
two theorems follow the same arguments as in the one-dimensional case, namely
that when an mgf exists in a nonempty open rectangle, it can be differentiated in-
finitely often with respect to each variable ti inside the expectation; i.e., the order
of the derivative and the expectation can be interchanged. See Chapter 5 for this
argument.

11.5.2 Multinomial Distribution

One of the most important multivariate discrete distributions is the multinomial dis-
tribution. The multinomial distribution corresponds to n balls being distributed to k
cells independently, with each ball having the probability pi of being dropped into
the i th cell. The random variables under consideration are X1; X2; : : : ; Xk , where
Xi is the number of balls that get dropped into the i th cell. Then their joint pmf is
the multinomial pmf defined below.

Definition 11.13. A multivariate random vector .X1; X2; : : : ; Xk/ is said to have a
multinomial distribution with parameters n; p1; p2; : : : ; pk if it has the pmf

P.X1 D x1; X2 D x2; � � � ; Xk D xk/ D nŠ

x1Šx2Š � � �xk Š
p

x1

1 p
x2

2 � � �pxk

k
; xi � 0;

kX

iD1

xi D n; pi � 0;

kX

iD1

pi D 1:

We write .X1; X2; : : : ; Xk/ � Mult.n; p1; : : : ; pk/ to denote a random vector with
a multinomial distribution.
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Example 11.20 (Dice Rolls). Suppose a fair die is rolled 30 times. We want to find
the probabilities that

(i) each face is obtained exactly five times and
(ii) the number of sixes is at least five.

If we denote as Xi the number of times face number i is obtained, then
.X1; X2; : : : ; X6/ � Mult.n; p1; : : : ; p6/, where n D 30 and each pi D 1

6
.

Therefore,

P.X1 D 5;X2 D 5; � � � ; X6 D 5/

D 30Š

.5Š/6

�
1

6

�5

� � �
�
1

6

�5

D 30Š

.5Š/6

�
1

6

�30

D :0004:

Next, each of the thirty rolls will either be a six or not, independently of the other
rolls, with probability 1

6
, and so X6 � Bin.30; 1

6
/: Therefore,

P.X6 � 5/ D 1 � P.X6 
 4/ D 1�
4X

xD0

 
30

x

!�
1

6

�x �
5

6

�30�x

D :5757:

Example 11.21 (Bridge). Consider a bridge game with four players, North, South,
East, and West. We want to find the probability that North and South together have
two or more aces. Let Xi denote the number of aces in the hands of player i , i D
1; 2; 3; 4I we let i D 1, 2 mean North and South. Then, we want to find P.X1C
X2 � 2/:

The joint distribution of .X1; X2; X3; X4/ is Mult.4; 1
4
; 1

4
; 1

4
; 1

4
/ (think of each

ace as a ball and the four players as cells). Then, .X1 C X2; X3 C X4/ �
Mult.4; 1

2
; 1

2
/: Therefore,

P.X1 CX2 � 2/ D 4Š

2Š2Š

�
1

2

�4

C 4Š

3Š1Š

�
1

2

�4

C 4Š

4Š0Š

�
1

2

�4

D 11

16
:

Important formulas and facts about the multinomial distribution are given in the next
theorem.

Theorem 11.9. Let .X1; X2; : : : ; Xk/ � Mult.n; p1; p2; : : : ; pk/. Then,

(a) E.Xi / D npi I Var.Xi / D npi .1 � pi /I
(b) 8 i; Xi � Bin.n; pi /I
(c) Cov.Xi ; Xj / D �npipj ; 8i ¤ j I
(d) �Xi ;Xj

D �
r

pipj

.1 � pi /.1� pj /
; 8i ¤ j I
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(e) 8m; 1 
 m < k; .X1; X2; : : : ; Xm/j.XmC1 CXmC2 C � � � CXk/ D s � Mult
.n � s; 	1; 	2; : : : ; 	m/; where 	i D pi

p1Cp2C���Cpm
:

Proof. Define Wir as the indicator of the event that the r th ball lands in the i th cell.
Note that, for a given i , the variablesWir are independent. Then,

Xi D
nX

rD1

Wir ;

and therefore E.Xi / D Pn
rD1EŒWir � D npi and Var.Xi / D Pn

rD1 Var.Wir/ D
npi .1 � pi /: Part (b) follows from the definition of a multinomial experiment (the
trials are identical and independent, and each ball either lands or does not and in the
i th cell). For part (c),

Cov.Xi ; Xj / D Cov

 
nX

rD1

Wir ;

nX

sD1

Wjs

!

D
nX

rD1

nX

sD1

Cov.Wir ;Wjs/

D
nX

rD1

Cov.Wir ;Wjr /

(because Cov.Wir ;Wjs/ would be zero when s ¤ r)

D
nX

rD1

ŒE.WirWjr /� E.Wir/E.Wjr /�

D
nX

rD1

Œ0 � pipj � D �npipj :

Part (d) follows immediately from part (c) and part (a). Part (e) is a calculation and
is omitted.

Example 11.22 (MGF of the Multinomial Distribution). Let .X1; X2; : : : ; Xk/

� Mult.n; p1:p2; : : : ; pk/. Then the mgf  .t1; t2; : : : ; tk/ exists at all t, and a
formula follows easily. Indeed,

EŒet1X1C���CtkXk � D
X

xi �0;
Pk

iD1 xi Dn

nŠ

x1Š � � �xk Š
et1x1et2x2 � � � etkxkp

x1

1 p
x2

2 � � �pxk

k

D
X

xi �0;
Pk

iD1 xi Dn

nŠ

x1Š � � �xk Š
.p1e

t1/x1.p2e
t2/x2 � � � .pke

tk /xk

D .p1e
t1 C p2e

t2 C � � � C pke
tk /n
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by the multinomial expansion identity

.a1 C a2 C � � � C ak/
n D

X

xi �0;
Pk

iD1 xi Dn

nŠ

x1Š � � �xkŠ
a

x1

1 a
x2

2 � � �axk

k
:

11.6 Synopsis

(a) The joint pmf of two discrete random variablesX and Y must satisfy

p.x; y/ D P.X D x; Y D y/ � 0 8.x; y/I
X

i

X

j

p.xi ; yj / D 1:

The joint CDF is defined as F.x; y/ D P.X 
 x; Y 
 y/; x; y 2 R.
(b) The marginal pmfs of X and Y can be found from the joint pmf as

pX .x/ D
X

y

p.x; y/I pY .y/ D
X

x

p.x; y/:

More generally, for any set A, P..X; Y / 2 A/ D P
.x;y/2A p.x; y/:

(c) The expectation of a function g.X; Y / is given by EŒg.X; Y /�D P
xP

y g.x; y/p.x; y/:

In particular, the marginal expectations E.X/ and E.Y / can be found in any
of the following ways:

E.X/ D
X

x

xpX .x/IE.X/ D
X

x

X

y

xp.x; y/;

and similarly for E.Y /.
(d) The conditional distribution ofX given Y D y is defined as p.xjy/ D P.X D

xjY D y/ D p.x;y/
pY .y/

. The conditional expectation of X given Y D y is defined

as E.X jY D y/ D P
x xp.xjy/ D

P
x xp.x;y/

pY .y/
. The conditional distribution of

Y given X D x and the conditional expectation of Y given X D x are defined
similarly.

(e) The conditional variance of X given Y D y is defined as

Var.X jY D y/ D EŒ.X � �X .y//
2jY D y� D

X

x

.x � �X .y//
2p.xjy/;

where �X .y/ D E.X jY D y/: In other words, the conditional variance of
X given Y D y is just the variance of the conditional distribution of X given
Y D y.
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(f) Conditional expectations and conditional variances satisfy numerous rules,
which are given in the text. Two special rules are the following:
iterated expectation formula: E.X/ D EY ŒE.X jY D y/�I
iterated variance formula: Var.X/DEY ŒVar.X jYDy/�C VarY ŒE.X jYDy/�:

(g) Two discrete random variables X and Y are independent if and only if
p.xjy/ D pX .x/ for all x; y, or equivalently p.yjx/ D pY .y/ for all x; y.
Both of these are equivalent to p.x; y/ D pX .x/pY .y/ for all x; y.

(h) The definitions of the joint pmf, the joint CDF, and independence all extend to
the case of more than two variables in the obvious way. For example, the joint
pmf of X1; : : : ; Xn is defined as p.x1; : : : ; xn/ D P.X1 D x1; : : : ; Xn D xn/.

(i) The covariance of X and Y is defined as Cov.X; Y / D E.XY / �
E.X/E.Y / D EŒ.X � E.X//.Y � E.Y //�: Covariance enters naturally into
expressing the variance of sums and linear combinations of random variables.
For example,

Var.aX C bY / D a2Var.X/C b2Var.Y /C 2abCov.X; Y /:

In particular,

Var.X C Y / D Var.X/C Var.Y /C 2Cov.X; Y /

and
Var.X � Y / D Var.X/C Var.Y / � 2Cov.X; Y /:

More generally,

Var

 
nX

iD1

aiXi

!

D
nX

iD1

a2
i Var.Xi /C 2

nX

i<j D1

aiaj Cov.Xi ; Xj /:

(j) Covariance is additive. That is,

Cov.XCY;ZCW / D Cov.X;Z/C Cov.X;W /C Cov.Y;Z/C Cov.Y;W /:

Other properties of the covariance are given in the text.

(k) The correlation between X and Y is defined as �X;Y D Cov.X;Y /p
var.X/

p
var.Y /

:

Correlation is always a number between �1 and 1, and its magnitude remains
the same under linear transformations. Precisely, �aCbX;cCdY D sgn.bd/�X;Y

(see the text).
(l) If X and Y are independent random variables, then both Cov.X; Y / and �X;Y

are zero; but the converse in general is not true.
(m) A special multivariate discrete distribution is the multinomial distribution,

which corresponds to a distribution of n balls into k cells, the balls being
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distributed independently and with probabilities p1; p2; : : : ; pk of being dis-
tributed into the k cells. The multinomial pmf is given by

P.X1 D x1; X2 D x2; : : : ; Xk D xk/ D nŠ

x1Šx2Š � � �xkŠ
p

x1

1 p
x2

2 � � �pxk

k
;

xi � 0;
Pk

iD1 xi D n; pi � 0;
Pk

iD1 pi D 1:

(n) If .X1; X2; : : : ; Xk/ has a joint multinomial distribution, then

E.Xi / D npi I Var.Xi / D npi .1 � pi /I Cov.Xi ; Xj / D �npipj ; 8i ¤ j I
�Xi ;Xj

D �
r

pipj

.1 � pi /.1 � pj /
; 8i ¤ j:

Many other properties are given in the text.
(o) An important characteristic of a joint distribution is the joint mgf. The joint

mgf of X1; X2; : : : ; Xn is defined as

 .t1; t2; � � � ; tn/ D EŒet1X1Ct2X2C���CtnXn � D EŒet0X�:

The joint mgf determines a joint distribution in the same way that the mgf
determines the distribution in the case of one variable. If X1; X2; : : : ; Xn are
independent, then the joint mgf factorizes as

 .t1; t2; : : : ; tn/ D
nY

iD1

EŒeti Xi � D
nY

iD1

 i .ti /:

11.7 Exercises

Exercise 11.1. Consider the experiment of picking one word at random from the
sentence

ALL IS WELL IN THE NEWELL FAMILY

Let X be the length of the word selected and Y the number of L’s in it. Find in
tabular form the joint pmf of X and Y , their marginal pmfs, means, and variances,
and the correlation between X and Y .

Exercise 11.2. A fair coin is tossed four times. Let X be the number of heads, Z
the number of tails, and Y D jX �Zj. Find the joint pmf of .X; Y /, and E.Y /.

Exercise 11.3. Consider the joint pmf p.x; y/ D cxy; 1 
 x 
 3; 1 
 y 
 3.

(a) Find the normalizing constant c.
(b) Are X and Y independent? Prove your claim.
(c) Find the expectations of X; Y;XY:
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Exercise 11.4. Consider the joint pmf p.x; y/ D cxy; 1 
 x 
 y 
 3.

(a) Find the normalizing constant c.
(b) Are X and Y independent? Prove your claim.
(c) Find the expectations of X; Y;XY:

Exercise 11.5. A fair die is rolled twice. Let X be the maximum and Y the mini-
mum of the two rolls. By using the joint pmf of .X; Y / worked out in the text, find
the pmf of X

Y
and hence the mean of X

Y
.

Exercise 11.6. A hat contains four slips of paper, numbered 1, 2, 3, and 4. Two slips
are drawn at random without replacement. X is the number on the first slip and Y
the sum of the two numbers drawn. Write in tabular form the joint pmf of .X; Y /.
Hence find the marginal pmfs. Are X and Y independent?

Exercise 11.7. * (Conditional Expectation in Bridge). Let X be the number of
clubs in the hand of North and Y the number of clubs in the hand of South in a
bridge game. Write a general formula forE.X jY D y/, and computeE.X jY D 3/.
Can you compute E.Y jX D 3/?

Exercise 11.8. A fair die is rolled four times. Find the probabilities that

(a) at least one six is obtained;
(b) exactly one six and exactly one two is obtained;
(c) exactly one six, one two, and two fours are obtained.

Exercise 11.9 (Iterated Expectation). A household has a Poisson number of cars
with mean 1. Each car that a household possesses has, independently of the other
cars, a 20% chance of being an SUV. Find the mean number of SUVs a household
possesses.

Exercise 11.10 (Iterated Variance). SupposeN � Poi.�/, and givenN D n;X is
distributed as uniform on f0; 1; : : : ; ng. Find the variance of the marginal distribution
of X .

Exercise 11.11. SupposeX and Y are independent Geo.p/ random variables. Find
P.X � Y / and P.X > Y /:

Exercise 11.12. * SupposeX and Y are independent Poi.�/ random variables. Find
P.X � Y / and P.X > Y /:

Hint: This will involve a Bessel function of a suitable kind.

Exercise 11.13. Suppose X and Y are independent, and take the values 1, 2, 3, 4
with probabilities .2, .3, .3, .2, respectively Find the pmf of X C Y .

Exercise 11.14. Two random variables have the joint pmf p.x; xC1/ D 1
nC1

; x D
0; 1; : : : ; n. Answer the following questions with as little calculation as possible.

(a) Are X and Y independent?
(b) What is the variance of Y � X?
(c) What is Var.Y jX D 1/?
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Exercise 11.15 (Binomial Conditional Distribution). SupposeX and Y are inde-
pendent random variables and that X � Bin.m; p/; Y � Bin.n; p/. Show that the
conditional distribution of X given X C Y D t is a hypergeometric distribution.
Identify the parameters of this hypergeometric distribution.

Exercise 11.16. * (Poly-hypergeometric Distribution). A box has D1 red, D2

green, and D3 blue balls. Suppose n balls are picked from the box at random with-
out replacement. Let X; Y;Z be the number of red, green, and blue balls selected,
respectively. Find the joint pmf of .X; Y;Z/.

Exercise 11.17 (Bivariate Poisson). Suppose U; V;W are independent Poisson
random variables with means �;�; �, respectively. Let X D U CW;Y D V CW:

(a) Find the marginal pmfs of X and Y .
(b) Find the joint pmf of .X; Y /.

Exercise 11.18. Suppose a fair die is rolled twice. Let X and Y be the two rolls.
Find the following with as little calculation as possible:

(a) E.X C Y jY D y/.
(b) E.XY jY D y/.
(c) Var.X2Y jY D y/.
(d) �XCY;X�Y :

Exercise 11.19. * (A Waiting Time Problem). In repeated throws of a fair die, let
X be the throw in which the first six is obtained and Y the throw in which the second
six is obtained.

(a) Find the joint pmf of .X; Y /.
(b) Find the expectation of Y �X .
(c) Find E.Y � X jX D 8/.
(d) Find Var.Y �X jX D 8/.

Exercise 11.20. * (Family Planning). A couple wants to have a child of each sex,
but they will have at most four children. Let X be the total number of children they
will have and Y the number of girls at the second childbirth. Find the joint pmf of
.X; Y / and the conditional expectation of X given Y D y; y D 0; 2.

Exercise 11.21 (A Standard Deviation Inequality). Let X and Y be two random
variables. Show that �XCY 
 �X C �Y :

Exercise 11.22. * (A Covariance Fact). Let X and Y be two random variables.
Suppose E.X jY D y/ is nondecreasing in y. Show that �X;Y � 0, assuming the
correlation exists.

Exercise 11.23 (Another Covariance Fact). Let X and Y be two random
variables. Suppose E.X jY D y/ is a finite constant c. Show that Cov.X; Y / D 0:
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Exercise 11.24 (Two-Valued Random Variables). SupposeX and Y are both two-
valued random variables. Prove that X and Y are independent if and only if they
have a zero correlation.

Exercise 11.25 (A Correlation Inequality). Suppose X and Y each have mean 0
and variance 1 and a correlation �. Show that E.maxfX2; Y 2g/ 
 1Cp

1 � �2.

Exercise 11.26. * (A Covariance Inequality). Let X be any random variable and
g.X/ and h.X/ two functions such that they are both nondecreasing or both nonin-
creasing. Show that Cov.g.X/; h.X// � 0:

Exercise 11.27 (Joint MGF). Suppose a fair die is rolled four times. Let X be the
number of ones and Y the number of sixes. Find the joint mgf ofX and Y and hence
the covariance between X and Y .

Exercise 11.28 (MGF of Bivariate Poisson). Suppose U; V;W are independent
Poisson random variables with means �;�; �, respectively. Let X D U C W;

Y D V CW: Find the joint mgf of X; Y and hence E.XY /.

Exercise 11.29 (Joint MGF). In repeated throws of a fair die, letX be the throw in
which the first six is obtained and Y the throw in which the second six is obtained.
Find the joint mgf of X; Y and hence the covariance between X and Y .



Chapter 12
Multidimensional Densities

Similar to the case of several discrete random variables, in applications we are
frequently interested in studying several continuous random variables simultane-
ously. An example would be a physician’s measurement of a patient’s height,
weight, blood pressure, electrolytes, and blood sugar. Analogous to the case of one
continuous random variable, again we do not talk of pmfs of several continuous vari-
ables but of a pdf jointly for all the continuous random variables. The joint density
function completely characterizes the joint distribution of the full set of continu-
ous random variables. We refer to the entire set of random variables as a random
vector. Both the calculation aspects and the application aspects of multidimensional
density functions are generally sophisticated. As such, using and operating with
multidimensional densities are among the most important skills one needs to have
in probability and statistics. The general concepts and calculations are discussed in
this chapter. Some special multidimensional densities, and in particular the multi-
variate normal density, are introduced separately in the next chapter.

12.1 Joint Density Function and Its Role

Exactly as in the one-dimensional case, it is important to note the following points

(a) The joint density function of all the variables does not equal the probability of
a specific point in the multidimensional space; the probability of any specific
point is still zero.

(b) The joint density function reflects the relative importance of a particular point.
Thus, the probability that the variables together belong to a small set around
a specific point, say x D .x1; x2; : : : ; xn/, is roughly equal to the volume of
that set multiplied by the density function at the specific point x. This volume
interpretation for probabilities is useful for intuitive understanding of the dis-
tributions of multidimensional continuous random variables.

(c) For a general set A in the multidimensional space, the probability that the ran-
dom vector X belongs to A is obtained by integrating the joint density function
over the set A.

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 12, c� Springer Science+Business Media, LLC 2010
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These are all just the most natural extensions of the corresponding one-
dimensional facts to the present multidimensional case. We now formally
define a joint density function.

Definition 12.1. Let X D .X1; X2; : : : ; Xn/ be an n-dimensional random vector
taking values in Rn for some n; 1 < n < 1. We say that f .x1; x2; : : : ; xn/ is
the joint density or simply the density of X if, for all a1; a2; : : : ; an; b1; b2; : : : ; bn;

�1 < ai 
 bi < 1,

P.a1 
 X1 
 b1; a2 
 X2 
 b2; : : : ; an 
 Xn 
 bn/

D
Z bn

an

: : :

Z b2

a2

Z b1

a1

f .x1; x2; : : : ; xn/dx1dx2 � � �dxn:

In order that a function f W Rn ! R be a density function of some n-dimensional
random vector, it is necessary and sufficient that

(i) f .x1; x2; : : : ; xn/ � 0 8 .x1; x2; : : : ; xn/ 2 RnI
(ii)

R
Rn f .x1; x2; : : : ; xn/dx1dx2 : : : dxn D 1:

The definition of the joint CDF is the same as that given in the discrete case. But
now the joint CDF is an integral of the density rather than a sum. Here is the precise
definition.

Definition 12.2. Let X be an n-dimensional random vector with the density func-
tion f .x1; x2; : : : ; xn/. The joint CDF, or simply the CDF, of X is defined as

F.x1; x2; : : : ; xn/ D
Z xn

�1
� � �
Z x1

�1
f .t1; � � � ; tn/dt1 � � � dtn:

As in the one-dimensional case, both the CDF and the density completely specify
the distribution of a continuous random vector and one can be obtained from the
other. We know how to obtain the CDF from the density; the reverse relation is that
(for almost all .x1; x2; : : : ; xn/)

f .x1; x2; : : : ; xn/ D @n

@x1 : : : @xn

F.x1; x2; : : : ; xn/:

Again, the qualification almost all is necessary for a rigorous description of the
interrelation between the CDF and the density, but we will operate as though the
identity above holds for all .x1; x2; : : : ; xn/.

Analogous to the case of several discrete variables, the marginal densities are
obtained by integrating out (instead of summing) all the other variables. In fact,
all lower-dimensional marginals are obtained that way. The precise statement is the
following.

Proposition. Let X D .X1; X2; : : : ; Xn/ be a continuous random vector with a
joint density f .x1; x2; : : : ; xn/. Let 1 
 p < n. Then the marginal joint density of
.X1; X2; : : : ; Xp/ is given by
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f1;2;:::;p.x1; x2; : : : ; xp/ D
Z 1

�1
: : :

Z 1

�1
f .x1; x2; : : : ; xn/dxpC1 : : : dxn:

At this stage, it is useful to give a characterization of independence of a set of n
continuous random variables by using the density function.

Proposition. Let X D .X1; X2; : : : ; Xn/ be a continuous random vector with a
joint density f .x1; x2; : : : ; xn/. Then, X1; X2; : : : ; Xn are independent if and only
if the joint density factorizes as

f .x1; x2; : : : ; xn/ D
nY

iD1

fi .xi /;

where fi .xi / is the marginal density function of Xi .

Proof. If the joint density factorizes as above, then on integrating both sides of
this factorization identity, one gets F.x1; x2; : : : ; xn/ D Qn

iD1 Fi .xi / 8 .x1; x2;

: : : ; xn/, which is the definition of independence.
Conversely, if they are independent, then take the identity

F.x1; x2; : : : ; xn/ D
nY

iD1

Fi .xi /

and partially differentiate both sides successively with respect to x1; x2; : : : ; xn, and
it follows that the joint density factorizes as f .x1; x2; : : : ; xn/ D Qn

iD1 fi .xi /:

Let us see some initial examples.

Example 12.1 (Bivariate Uniform). Consider the function

f .x; y/ D 1 if 0 
 x 
 1; 0 
 y 
 1;

D 0 otherwise:

Clearly, f is always nonnegative, and

Z 1

�1

Z 1

�1
f .x; y/dxdy D

Z 1

0

Z 1

0

f .x; y/dxdy

D
Z 1

0

Z 1

0

dxdy D 1:

Therefore, f is a valid bivariate density function. The marginal density of X is

f1.x/ D
Z 1

�1
f .x; y/dy

D
Z 1

0

f .x; y/dy D
Z 1

0

dy D 1
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if 0 
 x 
 1 and zero otherwise. Thus, marginally, X � U Œ0; 1�, and similarly,
marginally, Y � U Œ0; 1�. Furthermore, clearly, for all x; y the joint density f .x; y/
factorizes as f .x; y/ D f1.x/f2.y/, so X , and Y are independent, too. The joint
density f .x; y/ of this example is called the bivariate uniform density. It gives the
constant density of 1 to all points .x; y/ in the unit square Œ0; 1� 	 Œ0; 1� and zero
density outside of the unit square. The bivariate uniform therefore is the same as
putting two independentU Œ0; 1� variables together as a bivariate vector.

Example 12.2 (Uniform in a Triangle). Consider the function

f .x; y/ D c if x; y � 0; x C y 
 1;

D 0 otherwise:

The set of points x; y � 0; x C y 
 1 form a triangle in the plane with vertices
at .0; 0/; .1; 0/, and .0; 1/; thus, it is just half the unit square (see Figure 12.1). The
normalizing constant c is easily evaluated:

1 D
Z

x;yWx;y�0;xCy�1

cdxdy

D
Z 1

0

Z 1�y

0

cdxdy

D c

Z 1

0

.1 � y/dy

D c

2

) c D 2:

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

y

Fig. 12.1 Uniform density on a triangle equals c D 2 for this set
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The marginal density of X is

f1.x/ D
Z 1�x

0

2dy D 2.1� x/; 0 
 x 
 1:

Similarly, the marginal density of Y is

f2.y/ D 2.1� y/; 0 
 y 
 1:

Contrary to the previous example, X and Y are not independent now. There are
many ways to see this. For example,

P

�

X >
1

2
jY > 1

2

�

D 0:

But, P.X > 1
2
/ D R 1

1
2
2.1 � x/dx D 1

4
¤ 0; so X and Y cannot be independent.

We can also see that the joint density f .x; y/ does not factorize as the product of
the marginal densities, so X and Y cannot be independent.

Example 12.3. Consider the function f .x; y/ D xe�x.1Cy/; x; y � 0: First, let us
verify that it is a valid density function.

It is obviously nonnegative. Furthermore,

Z 1

�1

Z 1

�1
f .x; y/dxdy D

Z 1

0

Z 1

0

xe�x.1Cy/dxdy

D
Z 1

0

1

.1C y/2
dy

D
Z 1

1

1

y2
dy D 1:

Hence, f .x; y/ is a valid joint density. Next, let us find the marginal densities

f1.x/ D
Z 1

0

xe�x.1Cy/dy D x

Z 1

0

e�x.1Cy/dy

D x

Z 1

1

e�xydy D x
e�x

x
D e�x ; x � 0:

Therefore, marginally,X is a standard exponential. Next,

f2.y/ D
Z 1

0

xe�x.1Cy/dx D 1

.1C y/2
; y � 0:

Clearly, we do not have the factorization identity f .x; y/ D f1.x/f2.y/8 x; yI
thus, X and Y are not independent. The joint density is plotted in Figure 12.2.
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0
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0
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0.1

0.15

Fig. 12.2 The density f .x; y/ D xe�x.1Cy/

Example 12.4 (Nonuniform Joint Density with Uniform Marginals). Let .X; Y /
have the joint density function f .x; y/ D c � 2.c � 1/.x C y � 2xy/; x; y 2
Œ0; 1�; 0 < c < 2: This is nonnegative in the unit square, as can be seen by consider-
ing the cases c < 1; c D 1; c > 1 separately. Also,

Z 1

0

Z 1

0

f .x; y/dxdy

D c � 2.c � 1/
Z 1

0

Z 1

0

.x C y � 2xy/dxdy

D c � 2.c � 1/
Z 1

0

�
1

2
C y � y

�

dy D c � .c � 1/ D 1:

Now, the marginal density of X is

f1.x/ D
Z 1

0

f .x; y/dy

D c � 2.c � 1/

�

x C 1

2
� x

	

D 1:

Similarly, the marginal density of Y is also the constant function 1, so each marginal
is uniform, although the joint density is not uniform if c ¤ 1.
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Example 12.5 (Using the Density to Calculate a Probability). Suppose .X; Y / has
the joint density f .x; y/ D 6xy2; x; y � 0; x C y 
 1: Thus, this is yet another
density on the triangle with vertices at .0; 0/; .1; 0/; and .0; 1/. We want to find
P.X C Y < 1

2
/: By definition,

P

�

X C Y <
1

2

�

D
Z

.x;y/Ix;y�0;xCy< 1
2

6xy2dxdy

D 6

Z 1
2

0

Z 1
2

�y

0

xy2dxdy

D 6

Z 1
2

0

y2

�
1
2

� y�2
2

dy

D 3

Z 1
2

0

y2

�
1

2
� y

�2

dy

D 3 	 1

960
D 1

320
:

This example gives an elementary illustration of the need to work out the limits of
the iterated integrals carefully while using a joint density to calculate the probability
of some event. In fact, properly finding the limits of the iterated integrals is the part
that requires the greatest care when working with joint densities.

Example 12.6 (Uniform Distribution in a Circle). SupposeC denotes the unit circle
in the plane:

C D f.x; y/ W x2 C y2 
 1g:
We pick a point .X; Y / at random from C . What that means is that .X; Y / has the
density

f .x; y/ D c if .x; y/ 2 C
and is zero otherwise. Since

Z

C

f .x; y/dxdy D c

Z

C

dxdy D c 	 area of C D c� D 1;

we have that the normalizing constant c D 1
�
: Let us find the marginal densities.

First,

f1.x/ D
Z

yWx2Cy2�1

1

�
dy D 1

�

Z p
1�x2

�p
1�x2

dy

D 2
p
1 � x2

�
;�1 
 x 
 1:



282 12 Multidimensional Densities

Since the joint density f .x; y/ is symmetric between x and y (i.e., f .x; y/ D
f .y; x/), Y has the same marginal density as X ,

f2.y/ D 2
p
1 � y2

�
;�1 
 y 
 1:

Since f .x; y/ ¤ f1.x/f2.y/, X and Y are not independent. Note that if X and Y
have a joint uniform density in the unit square, we have found them to be indepen-
dent, but now, when they have a uniform density in the unit circle, we find them not
to be independent. In fact, the following general rule holds:

Suppose a joint density f .x; y/ can be written in a form g.x/h.y/; .x; y/ 2 S ,
and f .x; y/ zero otherwise. Then, X and Y are independent if and only if S is a
rectangle (including squares).

Example 12.7. Cathy and Jen have agreed to meet at a cafe between 10:00 AM and
11:00 AM. Cathy will arrive at a random time during that hour, and Jen’s arrival
time has a Beta density with each parameter equal to 2. They arrive independently,
and the first to arrive waits 15 minutes for the other. We want to find the probability
that they will meet.

Take 10:00 AM as time zero. We let X and Y denote the arrival times of Cathy
and Jen, respectively, so that X � U Œ0; 1�; Y � Be.2; 2/, and X and Y are inde-
pendent. We want to find P.jX � Y j 
 1

4
/. Again, this problem uses the fact that

the probability of an event is found by integrating the joint density over the event.
In evaluating the iterated integral, the limits of the integral have to be found care-
fully. The part of the unit square that corresponds to the event jX�Y j 
 1

4
is plotted

in Figure 12.3.
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y

Fig. 12.3 The area jx � yj smaller than 1/4 in the unit square
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The necessay probability calculation is

P

�

jX � Y j 
 1

4

�

D P

�

Y � 1

4

 X 
 Y C 1

4

�

D
Z

.x;y/W0�x;y�1;y� 1
4

�x�yC 1
4

f .x; y/dxdy

D
Z 1

4

0

Z yC 1
4

0

f .x; y/dxdy C
Z 1

1
4

Z yC 1
4

y� 1
4

f .x; y/dxdy

D
Z 1

4

0

Z yC 1
4

0

6y.1 � y/dxdy C
Z 1

1
4

Z yC 1
4

y� 1
4

6y.1 � y/dxdy

D
Z 1

4

0

�

y C 1

4

�

6y.1 � y/dy C
Z 1

1
4

1

2
6y.1 � y/dy

D 33

512
C 27

64
D 249

512
D :486:

Example 12.8 (An Interesting Property of Exponential Variables). Suppose
X and Y are independent Exp.�/;Exp.�/ variables. We want to find P.X 
 Y /.
A possible application is the following. Suppose you have two televisions at your
home, a plasma unit with a mean lifetime of five years and an ordinary unit with
a mean lifetime of ten years. What is the probability that the plasma TV will fail
before the ordinary one?

From our general definition of probabilities of events, we need to calculateR
x;y>0;x�y

f .x; y/dxdy: In general, there need not be an interesting answer for
this integral. But here, in the independent exponential case, there is.

Since X and Y are independent, the joint density is f .x; y/ D 1
��
e�x=��y=�;

x; y > 0: Therefore,

P.X 
 Y / D
Z

x;y>0;x�y

1

��
e�x=��y=�dxdy

D 1

��

Z 1

0

Z y

0

e�x=��y=�dxdy

D 1

�

Z 1

0

e�y=�

Z y=�

0

e�xdxdy

D 1

�

Z 1

0

e�y=�.1 � e�y=�/dy

D 1 � 1

�

Z 1

0

e�y.1=�C1=�/dy
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D 1 �
1
�

1
�

C 1
�

D 1 � �

�C �

D �

�C �
D 1

1C �
�

:

Thus, the probability that X is less than Y depends in a very simple way on just the

quantity E.X/
E.Y /

:

Example 12.9 (Curse of Dimensionality). A phenomenon that complicates the work
of a probabilist in high dimensions (i.e., when dealing with a large number of ran-
dom variables simultaneously) is that the major portion of the probability in the
joint distribution lies away from the central region of the variable space. As a con-
sequence, sample observations taken from the high-dimensional distribution tend to
leave the central region sparsely populated. Therefore, it becomes difficult to learn
about what the distribution is doing in the central region. This phenomenon has been
called the curse of dimensionality.

As an example, consider n independentU Œ�1; 1� random variables, X1; X2; : : : ;

Xn, and suppose we ask what the probability is that X D .X1; X2; : : : ; Xn/ lies in
the inscribed sphere

Bn D f.x1; x2; : : : ; xn/ W x2
1 C x2

2 C : : :C x2
n 
 1g:

By definition, the joint density of X1; X2; : : : ; Xn is

f .x1; x2; : : : ; xn/ D c;�1 
 xi 
 1; 1 
 i 
 n;

where c D 1
2n . Also, by the definition of probability,

P.X 2 Bn/ D
Z

Bn

cdx1dx2 : : : dxn

D Vol.Bn/

2n
;

where Vol.Bn/ is the volume of the n-dimensional unit sphere Bn and equals

Vol.Bn/ D �

n

2

�
�n

2
C 1

� :

Thus, finally,

P.X 2 Bn/ D �

n

2

2n�
�n

2
C 1

� :
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This is a very pretty formula. Let us evaluate this probability for various values of n
and examine the effect of increasing the number of dimensions on this probability.
Here is a table.

n P.X 2 Bn/

2 .785
3 .524
4 .308
5 .164
6 .081
10 .002
12 .0003
15 .00001
18 3.13 	10�7

We see that in ten dimensions there is a 1 in 500 chance that a uniform random vector
will fall in the central inscribed sphere, and in 18 dimensions the chance is much
less than one in a million. Therefore, when you are dealing with a large number of
random variables at the same time, you will need a huge amount of sample data to
learn about the behavior of their joint distribution in the central region; most of the
data will come from the corners! You must have a huge amount of data to have at
least some data points in your central region. This phenomenon has been termed
the curse of dimensionality.

12.2 Expectation of Functions

Expectations for multidimensional densities are defined analogously to the one-
dimensional case. Here is the definition.

Definition 12.3. Let .X1; X2; : : : ; Xn/ have a joint density function f .x1; x2; : : : ;

xn/ and let g.x1; x2; : : : ; xn/ be a real-valued function of x1; x2; : : : ; xn. We say
that the expectation of g.X1; X2; : : : ; Xn/ exists if

Z

Rn

jg.x1; x2; : : : ; xn/jf .x1; x2; : : : ; xn/dx1dx2 : : : dxn < 1;

in which case the expected value of g.X1; X2; : : : ; Xn/ is defined as

EŒg.X1; X2; : : : ; Xn/� D
Z

Rn

g.x1; x2; : : : ; xn/f .x1; x2; : : : ; xn/dx1dx2 : : : dxn:
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Remark. It is clear from the definition that the expectation of each individual
Xi can be evaluated by either interpreting Xi as a function of the full vector
.X1; X2; : : : ; Xn/ or by simply using the marginal density fi .x/ of Xi ; that is,

E.Xi / D
Z

Rn

xif .x1; x2; : : : ; xn/dx1dx2 � � �dxn

D
Z 1

�1
xfi .x/dx:

A similar comment applies to any function h.Xi / of justXi alone. All the properties
of expectations that we have previously established—for example, the linearity of
expectations—continue to hold in the multidimensional case. Thus,

EŒag.X1; X2; : : : ; Xn/C bh.X1; X2; : : : ; Xn/�

D aEŒg.X1; X2; : : : ; Xn/�C bEŒh.X1; X2; : : : ; Xn/�:

We work out some examples now.

Example 12.10 (Bivariate Uniform). Two numbers X and Y are picked indepen-
dently at random from Œ0; 1�. What is the expected distance between them? Thus, if
X and Y are independent U Œ0; 1�, we want to computeE.jX � Y j/, which is

E.jX � Y j/ D
Z 1

0

Z 1

0

jx � yjdxdy

D
Z 1

0

�Z y

0

.y � x/dx C
Z 1

y

.x � y/dx
	

dy

D
Z 1

0

��

y2 � y2

2

�

C
�
1 � y2

2
� y.1 � y/

�	

dy

D
Z 1

0

�
1

2
� y C y2

	

dy

D 1

2
� 1

2
C 1

3
D 1

3
:

Example 12.11 (Uniform in a Triangle). Let .X; Y / have the uniform density

f .x; y/ D 2 if x; y � 0; x C y 
 1;

and zero otherwise.
We have previously worked out the marginal density ofX to be f1.x/ D 2.1�x/;

0 
 x 
 1: Therefore,

E.X/ D
Z 1

0

2x.1 � x/dx D 1

3
:
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The marginal expectation of Y is also 1
3

. Let us next calculate the variance of
X and Y . The second moment of X is

E.X2/ D 2

Z 1

0

x2.1 � x/dx D 1

6
:

Therefore, Var.X/ D E.X2/� ŒE.X/�2 D 1
6

� 1
9

D 1
18

, which is also the variance
of Y .

What is the expected value of XY ? By the definition of expectation,

E.XY / D 2

Z 1

0

Z 1�y

0

xydxdy D
Z 1

0

y.1 � y/2dy D 1

12
:

Therefore,

Cov.X; Y / D E.XY /� E.X/E.Y / D 1

12
� 1

9
D � 1

36
:

Therefore, the correlation of X and Y is

�X;Y D Cov.X; Y /
p

Var.X/Var.Y /
D

� 1

36
1

18

D �1
2
:

Example 12.12 (Independent Exponentials). Suppose X and Y are independently
distributed as Exp.�/ and Exp.�/, respectively. We want to find the expectation
of the minimum of X and Y . The calculation below requires patience, but is not
otherwise difficult.

DenoteW D minfX; Y g. Then,

E.W / D
Z 1

0

Z 1

0

minfx; yg 1
��
e�x=�e�y=�dxdy

D
Z 1

0

Z y

0

x
1

��
e�x=�e�y=�dxdy C

Z 1

0

Z 1

y

y
1

��
e�x=�e�y=�dxdy

D
Z 1

0

1

�
e�y=�

�Z y

0

x
1

�
e�x=�dx

	

dy

C
Z 1

0

1

�
e�y=�

�Z 1

y

y
1

�
e�x=�dx

	

dy

D
Z 1

0

1

�
e�y=�Œ� � �e�y=� � ye�y=��dy

C
Z 1

0

1

�
e�y=�ye�y=�dy
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(on integrating the x integral in the first term by parts)

D ��2

.�C �/2
C ��2

.�C �/2

(once again, integrating by parts)

D ��

�C �
D 1

1

�
C 1

�

;

a very pretty result.

Example 12.13 (Use of Polar Coordinates). Suppose a point .x; y/ is picked at ran-
dom from inside the unit circle. We want to find its expected distance from the center
of the circle.

Thus, let .X; Y / have the joint density

f .x; y/ D 1

�
; x2 C y2 
 1;

and zero otherwise.
We will find EŒ

p
X2 C Y 2�. By definition,

EŒ
p
X2 C Y 2� D 1

�

Z

.x;y/Wx2Cy2�1

p
x2 C y2dxdy:

It is now very useful to make a transformation by using the polar coordinates

x D r cos 	; y D r sin 	;

with dxdy D rdrd	 . Therefore,

EŒ
p
X2 C Y 2� D 1

�

Z

.x;y/Wx2Cy2�1

p
x2 C y2dxdy

D 1

�

Z 1

0

Z �

��

r2d	dr

D 2

Z 1

0

r2dr D 2

3
:

We will later see in various calculations about finding distributions of functions of
many continuous variables that transformation to polar and spherical coordinates
often simplifies the integrations involved.
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Example 12.14 (A Spherically Symmetric Density). Suppose .X; Y / has a joint
density function f .x; y/ D c

.1Cx2Cy2/
3
2

; x; y � 0, where c is a positive

normalizing constant. We will prove below that this is a valid joint density and
evaluate the normalizing constant c. Note that f .x; y/ depends on x; y only
through x2 C y2; such a density function is called spherically symmetric because
the density f .x; y/ takes the same value at all points on the perimeter of a circle
given by x2 C y2 D k.

To prove that f is a valid density, first note that it is obviously nonnega-
tive. Next, by making a transformation to polar coordinates, x D r cos 	; y D
r sin 	 ,

Z

x>0;y>0

f .x; y/dxdy D c

Z 1

0

Z �
2

0

r

.1C r2/
3
2

d	dr

(here, 0 
 	 
 �
2

, as x and y are both positive)

D c
�

2

Z 1

0

r

.1C r2/
3
2

dr D c
�

2
	 1 D c

�

2
) c D 2

�
:

We show thatE.X/ does not exist. Note that it will then follow thatE.Y / also does
not exist because f .x; y/ D f .y; x/ in this example. The expected value of X ,
again by transforming to polar coordinates, is

E.X/ D 2

�

Z 1

0

Z �
2

0

r2

.1C r2/
3
2

cos 	d	dr

D 2

�

Z 1

0

r2

.1C r2/
3
2

dr D 1;

because the final integrand r2

.1Cr2/
3
2

behaves like the function 1
r

for large r and
R1

k
1
r

dr diverges for any positive k.

12.3 Bivariate Normal

The bivariate normal density is one of the most important densities for two jointly
distributed continuous random variables, just like the univariate normal density is for
one continuous variable. Many correlated random variables across the applied and
social sciences are approximately distributed as bivariate normal. A typical example
is the joint distribution of two size variables, such as height and weight.

Definition 12.4. The function f .x; y/ D 1
2�
e� x2

Cy2

2 ;�1 < x; y < 1 is called
the bivariate standard normal density.
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Clearly, we see that f .x; y/ D �.x/�.y/ 8 x; y: Therefore, the bivariate stan-
dard normal distribution corresponds to a pair of independent standard normal
variablesX; Y . If we make a linear transformation

U D �1 C �1X;

V D �2 C �2Œ�X C
p
1 � �2Y �;

then we get the general five-parameter bivariate normal density with means �1; �2,
standard deviations �1; �2, and correlation �U;V D �; here, �1 < � < 1:
Definition 12.5. The density of the five-parameter bivariate normal distribution is

f .u; v/ D 1

2��1�2

p
1 � �2

e
� 1

2.1��2/

"
.x��1/2

�2
1

C .y��2/2

�2
2

� 2�.x��1/.y��2/

�1�2

#

;

�1 < u; v < 1:

If �1 D �2 D 0; �1 D �2 D 1, then the bivariate normal density has just the
parameter �, and it is denoted as SBVN.�/.

If we sample observations from a general bivariate normal distribution and plot
the data points as points in the plane, then they would roughly plot out to an elliptical
shape. The reason for this approximate elliptical shape is that the exponent in the
formula for the density function is a quadratic form in the variables. In Figure 12.4,
plot is given of a simulation of 1000 values from a bivariate normal distribution.
The roughly elliptical shape is clear. It is also seen in the plot that the center of the
point cloud is quite close to the true means of the variables, which were chosen to
be �1 D 4:5; �2 D 4.

2 3 4 5 6 7
X

2

3

4

5

6

7

Y

Fig. 12.4 Simulation of a bivariate normal with means 4, 5, 4; variance 1; correlation 75
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From the representation we have given above of the general bivariate normal
vector .U; V / in terms of independent standard normalsX; Y , it follows that

E.UV / D ��1�2 C �1�2 ) Cov.U; V / D ��1�2:

The symmetric matrix with the variances as diagonal entries and the covariance
as the off-diagonal entry is called the variance covariance matrix, the dispersion
matrix, or sometimes simply the covariance matrix of .U; V /. Thus, the covariance
matrix of .U; V / is

† D
0

@
�2

1 ��1�2

��1�2 �2
2

1

A :

A plot of the SBVN.�/ density is provided in Figure 12.5 for �D 0; :5; the zero-
correlation case corresponds to independence. We see from the plots that the
bivariate density has a unique peak at the mean point .0; 0/ and falls off from that
point like a mound. The higher the correlation, the more the density concentrates
near a plane. In the limiting case, when � D ˙1, the density becomes fully concen-
trated on a plane, and we call it a singular bivariate normal.

When � D 0, the bivariate normal density does factorize into the product of the
two marginal densities. Therefore, if � D 0, then U and V are actually independent,
so, in that case, P.U > �1; V > �2/ D P (Each variable is larger than its mean
value) D 1

2
1
2

D 1
4

. When the parameters are general, one has the following classic
formula.

Theorem 12.1 (A Classic Bivariate Normal Formula). Let .U; V / have the five-
parameter bivariate normal density with parameters �1; �2; �1; �2; �. Then,

P.U > �1; V > �2/ D P.U < �1; V < �2/ D 1

4
C arcsin �

2�
:

A derivation of this formula can be seen in Tong (1990).

-4
-2

0

2

4 -4

-2

0

2

4

0

0.05

0.1

0.15

0
0.05

0.1

0.15

-4

-2

0

2

4 -4

-2

0

2

4

Fig. 12.5 Bivariate normal densities with zero means, unit variances, and rho D 0, .5
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Example 12.15. Suppose a bivariate normal vector .U; V / has correlation �. Then,
by applying the formula above, whatever �1; �2,

P.U > �1; V > �2/ D 1=4C 1=.2�/arcsin

�
1

2

	

D 1

3

when � D 1
2
: When � D :75, the probability increases to .385. In the limit when

� ! 1, the probability tends to .5. That is, when � ! 1, all the probability becomes
confined to the first and third quadrants fU > �1; V > �2g and fU < �1; V <

�2g, with the probability of each of these two quadrants approaching .5.

Another important property of a bivariate normal distribution is the following
result.

Theorem 12.2. Let .U; V / have a general five-parameter bivariate normal distri-
bution. Then, any linear function aU C bV of .U; V / is normally distributed:

aU C bV � N.a�1 C b�2; a
2�2

1 C b2�2
2 C 2ab��1�2/:

In particular, each of U , V is marginally normally distributed:

U � N.�1; �
2
1 /; V � N

�
�2; �

2
2

�
:

If � D 0, then U and V are independent with N.�1; �
2
1 /; N.�2; �

2
2 / marginal

distributions.

Proof. First note that E.aU C bV / D a�1 C b�2 by linearity of expectations, and
Var.aU C bV / D a2Var.U /C b2Var.V /C 2abCov.U; V / by the general formula
for the variance of a linear combination of two jointly distributed random variables
(see Chapter 11). But Var.U / D �2

1 ;Var.V / D �2
2 , and Cov.U; V / D ��1�2:

Therefore, Var.aU C bV / D a2�2
1 C b2�2

2 C 2ab��1�2:

Therefore, we only have to prove that aU C bV is normally distributed. For this,
we use our representation of U; V in terms of a pair of independent standard normal
variablesX; Y :

U D �1 C �1X;

V D �2 C �2Œ�X C
p
1 � �2Y �:

Multiplying the equations by a; b and adding, we get the representation

aU C bV D a�1 C b�2 C Œa�1X C b�2�X C b�2

p
1 � �2Y �

D a�1 C b�2 C Œ.a�1 C b�2�/X C b�2

p
1 � �2Y �:

That is, aU C bV can be represented as a linear function cX C dY C k of two in-
dependent standard normal variablesX and Y , so aU C bV is necessarily normally
distributed (see Chapter 9).
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In fact, a result stronger than the previous theorem holds. What is true is that any
two linear functions of U; V will again be distributed as a bivariate normal. Here is
the stronger result.

Theorem 12.3. Let .U; V / have a general five-parameter bivariate normal distri-
bution. Let Z D aU C bV and W D cU C dV be two linear functions such
that ad � bc ¤ 0. Then, .Z;W / also has a bivariate normal distribution, with
parameters

E.Z/ D a�1 C b�2; E.W / D c�1 C d�2I
Var.Z/ D a2�2

1 C b2�2
2 C 2ab��1�2I

Var.W / D c2�2
1 C d 2�2

2 C 2cd��1�2I

�Z;W D ac�2
1 C bd�2

2 C .ad C bc/��1�2
p

Var.Z/Var.W /
:

The proof of this theorem is similar to the proof of the previous theorem, and the
details are omitted.

Example 12.16 (Independence of Mean and Variance). SupposeX1 andX2 are two
iid N.�; �2/ variables. Then, of course, they are also jointly bivariate normal. Now
define two linear functions

Z D X1 CX2;W D X1 � X2:

Since .X1; X2/ has a bivariate normal distribution, so does .Z;W /. However,
plainly,

Cov.Z;W / D Cov.X1 CX2; X1 �X2/ D Var.X1/ � Var.X2/ D 0:

Therefore, Z and W must actually be independent. As a consequence, Z and W 2

are also independent. Now note that the sample variance of X1; X2 is

s2 D
�

X1 � X1 CX2

2

�2

C
�

X2 � X1 CX2

2

�2

D .X1 � X2/
2

2
D W 2

2
:

And, of course, NX D X1CX2

2
D Z

2
. Therefore, it follows that NX and s2 are

independent.
This is true not just for two observations but for any number of iid observations

from a normal distribution. Here is the general result, which cannot be proved with-
out introducing additional facts about distribution theory.

Theorem 12.4. Let X1; X2; : : : ; Xn be iid N.�; �2/ variables. Then NX D
1
n

Pn
iD1Xi and s2 D 1

n�1

Pn
iD1.Xi � NX/2 are independently distributed.
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Example 12.17 (Normal Marginals Do Not Guarantee Joint Normality). Although
joint bivariate normality of two random variables implies that each variable must be
marginally univariate normal, the converse in general is not true.

Let Z � N.0; 1/ and let U be a two-valued random variable with the pmf
P.U D ˙1/ D 1

2
. Take U and Z to be independent. Now define X D U jZj

and Y D Z.
Then, each of X; Y has a standard normal distribution. That X has a standard

normal distribution is easily seen in many ways, for example, just by evaluating its
CDF. Take x > 0. Then,

P.X 
 x/ D P.X 
 xjU D �1/ 	 1

2
C P.X 
 xjU D 1/ 	 1

2

D 1 	 1

2
C P.jZj 
 x/ 	 1

2

D 1

2
C 1

2
	 Œ2ˆ.x/ � 1� D ˆ.x/I

similarly also for x 
 0; P.X 
 x/ D ˆ.x/.
But, jointly,X; Y cannot be bivariate normal becauseX2 D U 2Z2 D Z2 D Y 2

with probability 1. That is, the joint distribution of .X; Y / lives on just the two lines
y D ˙x and so is certainly not bivariate normal.

12.4 Conditional Densities and Expectations

The conditional distribution for continuous random variables is defined analogously
to the discrete case, with pmfs replaced by densities. The formal definitions are as
follows.

Definition 12.6 (Conditional Density). Let .X; Y / have a joint density f .x; y/.
The conditional density of X given Y D y is defined as

f .xjy/ D f .xjY D y/ D f .x; y/

fY .y/
; 8y such that fY .y/ > 0:

The conditional expectation of X given Y D y is defined as

E.X jy/ D E.X jY D y/ D
Z 1

�1
xf .xjy/dx

D
R1

�1 xf .x; y/dx
R1

�1 f .x; y/dx
;

8y such that fY .y/ > 0:
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For fixed x, the conditional expectation E.X jy/ D �X .y/ is a number. As we
vary y, we can think of E.X jy/ as a function of y. The corresponding function of
Y is written as E.X jY / and is a random variable. It is very important to keep this
notational distinction in mind.

The conditional density of Y given X D x and the conditional expectation of Y
given X D x are defined analogously. That is, for instance,

f .yjx/ D f .x; y/

fX .x/
; 8x such that fX .x/ > 0:

An important relationship connecting the two conditional densities is the following
result.

Theorem 12.5 (Bayes’ Theorem for Conditional Densities). Let .X; Y / have a
joint density f .x; y/. Then, 8x; y such that fX .x/ > 0; fY .y/ > 0,

f .yjx/ D f .xjy/fY .y/

fX .x/
:

Proof.

f .xjy/fY .y/

fX .x/
D

f .x;y/
fY .y/

fY .y/

fX .x/

D f .x; y/

fX .x/
D f .yjx/:

Thus, we can convert one conditional density to the other one by using Bayes’
theorem; note the similarity to Bayes’ theorem discussed in Chapter 3.

Definition 12.7 (Conditional Variance). Let .X; Y / have a joint density f .x; y/.
The conditional variance of X given Y D y is defined as

Var.X jy/ D Var.X jY D y/ D
R1

�1.x � �X .y//
2f .x; y/dx

R1
�1 f .x; y/dx

;

8y such that fY .y/ > 0; where �X .y/ denotes E.X jy/.
Remark. All the facts and properties about conditional pmfs and conditional ex-
pectations that were presented in the previous chapter for discrete random variables
continue to hold verbatim in the continuous case, with densities replacing the pmfs
in their statements. In particular, the iterated expectation and variance formula, and
all the rules about conditional expectations and variance in Section 11.3, hold in the
continuous case.

An important optimizing property of the conditional expectation is that the best
predictor of Y based on X among all possible predictors is the conditional expecta-
tion of Y given X . Here is the exact result.
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Proposition (Best Predictor). Let .X; Y / be jointly distributed random variables
(of any kind). Suppose E.Y 2/ < 1. Then EX;Y Œ.Y � E.Y jX//2� 
 EX;Y Œ.Y �
g.X//2� for any function g.X/. Here, the notationEX;Y stands for expectation with
respect to the joint distribution of X; Y .

Proof. Denote �Y .x/ D E.Y jX D x/. Then, by the property of the mean of any
random variable U that E.U �E.U //2 
 E.U � a/2 for any a, we get that here

EŒ.Y � �Y .x//
2jX D x� 
 EŒ.Y � g.x//2jX D x�

for any x.
Since this inequality holds for any x, it will also hold on taking an expectation,

EX ŒEŒ.Y � �Y .x//
2jX D x�� 
 EX ŒEŒ.Y � g.x//2jX D x��

) EX;Y Œ.Y � �Y .X//
2� 
 EX;Y Œ.Y � g.X//2�;

where the final line is a consequence of the iterated expectation formula (see
Chapter 11).

We will now see a number of examples.

12.4.1 Examples on Conditional Densities and Expectations

Example 12.18 (Uniform in a Triangle). Consider the joint density

f .x; y/ D 2 if x; y � 0; x C y 
 1:

By using the results derived in Example 12.2,

f .xjy/ D f .x; y/

fY .y/
D 1

1 � y

if 0 
 x 
 1 � y and is zero otherwise. Thus, we have the interesting conclusion
that, given Y D y;X is distributed uniformly in Œ0; 1 � y�. Consequently,

E.X jy/ D 1 � y

2
; 8y; 0 < y < 1:

Also, the conditional variance ofX given Y D y is, by the general variance formula
for uniform distributions,

Var.X jy/ D .1 � y/2

12
:
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Example 12.19 (Uniform Distribution in a Circle). Let .X; Y / have a uniform
density in the unit circle, f .x; y/ D 1

�
, x2 C y2 
 1: We will find the conditional

expectation of X given Y D y. First, the conditional density is

f .xjy/ D f .x; y/

fY .y/
D

1
�

2
p

1�y2

�

D 1

2
p
1 � y2

�
p
1 � y2 
 x 


p
1 � y2:

Thus, we have the interesting result that the conditional density of X given
Y D y is uniform on Œ�p1 � y2;

p
1 � y2�. It being an interval symmetric about

zero, we have in addition the result that, for any y;E.X jY D y/ D 0:

Let us now find the conditional variance. Since the conditional distribution of X
given Y D y is uniform on Œ�p1 � y2;

p
1 � y2�, by the general variance formula

for uniform distributions,

Var.X jy/ D .2
p
1 � y2/2

12
D 1 � y2

3
:

Thus, the conditional variance decreases as y moves away from zero, which makes
sense intuitively because, as y moves away from zero, the line segment in which x
varies becomes smaller.

Example 12.20 (A Two-Stage Experiment). SupposeX is a positive random variable
with density f .x/, and given X D x, a number Y is chosen at random between 0
and x. Suppose, however, that you are only told the value of Y and the x value is
kept hidden from you. What is your guess for x?

The formulation of the problem is

X � f .x/IY jX D x � U Œ0; x�I and we want to findE.X jY D y/:

To findE.X jY D y/, our first task would be to find f .xjy/, the conditional density
of X given Y D y. This is, by its definition,

f .xjy/ D f .x; y/

fY .y/
D f .yjx/f .x/

fY .y/
D

1

x
Ifx�ygf .x/

R1
y

1

x
f .x/dx

:

Therefore,

E.X jY D y/ D
Z 1

y

xf .xjy/dx D
R1

y x
1

x
f .x/dx

R1
y

1

x
f .x/dx

D 1 � F.y/

R1
y

1

x
f .x/dx

;

where F denotes the CDF of X .
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Fig. 12.6 Plot of E.X jY D y/ when x is U Œ0; 1�, Y jX D x isU Œ0; x�

Suppose now, in particular, that f .x/ is the U Œ0; 1� density. Then, by plugging
into this general formula,

E.X jY D y/ D 1 � F.y/
R1

y
1
x
f .x/dx

D 1 � y
� logy

; 0 < y < 1:

The important thing to note is that althoughX has marginally a uniform density and
expectation 1

2
, given Y D y;X is not uniformly distributed andE.X jY D y/ is not

1
2

. Indeed, as the plot in Figure 12.6 shows, E.X jY D y/ is an increasing function
of y, increasing from zero at y D 0 to one at y D 1.

Example 12.21 (E.X jY D y/ exists for any y, but E.X/ does not). Consider the
setup of the preceding example once again, X � f .x/, and given X D x; Y �
U Œ0; x�. Suppose f .x/ D 1

x2 ; x � 1. Then the marginal expectationE.X/ does not

exist because
R1

1 x 1
x2 dx D R1

1
1
x

dx diverges.
However, from the general formula in the preceding example,

E.X jY D y/ D 1 � F.y/
R1

y
f .x/

x
dx

D
1

y

1

2y2

D 2y;

and thus E.X jY D y/ exists for every y.

Example 12.22 (Using Conditioning to Evaluate Probabilities). We described in the
last chapter the iterated expectation technique to calculate expectations. It turns out
that it is in fact also a really useful way to calculate probabilities. The reason is that
the probability of any event A is also the expectation of X D IA, so, by the iterated
expectation technique, we can calculate P.A/ as

P.A/ D E.IA/ D E.X/ D EY ŒE.X jY D y/� D EY ŒP.AjY D y/�
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by using a conditioning variable Y judiciously. The choice of the conditioning
variable Y is usually clear from the particular context. Here is an example.

LetX and Y be independentU Œ0; 1� random variables. ThenZ D XY also takes
values in Œ0; 1�, and suppose we want to find an expression for P.Z 
 z/: We can
do this by using the iterated expectation technique

P.XY 
 z/ D EŒIXY �z� D EY ŒE.IXY �zjY D y/� D EY ŒE.IXy�zjY D y/�

D EY ŒE.IX� z
y

jY D y/� D EY ŒE.IX� z
y
/�

(because X and Y are independent)

D EY

�

P

�

X 
 z

y

�	

:

Now, note that P.X 
 z
y
/ is z

y
if z

y

 1 , y � z, and P.X 
 z

y
/ D 1 if y < z.

Therefore,

EY

�

P

�

X 
 z

y

�	

D
Z z

0

1dy C
Z 1

z

z

y
dy D z � z log z; 0 < z 
 1:

So, the final answer to our problem is P.XY 
 z/ D z � z log z; 0 < z 
 1:

Example 12.23 (Power of the Iterated Expectation Formula). Let X; Y;Z be three
independent U Œ0; 1� random variables. We will find the probability that X2 � YZ

by once again using the iterated expectation formula.
To do this,

P.X2 � YZ/ D 1 � P.X2 < YZ/

D 1 �EŒIX2<YZ� D 1 � EY;ZŒE.IX2<YZjY D y;Z D z/�

D 1 �EY;Z ŒE.IX2<yzjY D y;Z D z/�

D 1 �EY;Z ŒE.IX2<yz/�

(since X; Y;Z are independent)

D 1� EY;ZŒP.X
2 < yz/� D 1 � EY;ZŒ

p
yz�

D 1� EY Œ
p
Y �EZ Œ

p
Z� D 1 �

�
2

3

�2

D 5

9
:

Once again, we see the power of identifying probabilities as expectations of indica-
tor variables and using the iterated expectation formula.

Example 12.24 (Conditional Density Given the Sum). Suppose X and Y are two
independent Exp.1/ variables. What is the conditional density of X given that X C
Y D t? Denote X C Y D T . Then, we know from Chapter 8 that T � G.2; 1/.
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Also, by the definition of probabilities for jointly continuous random variables, by
denoting the joint density of .X; Y / as f .x; y/,

P.X 
 x; T 
 t/ D
Z

u�x;uCv�t

f .u; v/dudv

D
Z

0<u�x;0<uCv�t

e�u�vdudv

D
Z x

0

e�u

�Z t�u

0

e�vdv

	

du

D
Z x

0

e�u.1 � eu�t /du

D
Z x

0

e�udu �
Z x

0

e�t du

D 1 � e�x � xe�t

for x > 0; t > x.

Therefore, the joint density of X and T is

fX;T .x; t/ D @2

@x@t
Œ1 � e�x � xe�t �

D e�t ; 0 < x < t < 1:

Now therefore, from the definition of conditional densities,

f .xjt/ D fX;T .x; t/

fT .t/
D e�t

te�t
D 1

t
;

0 < x < t:

That is, given that the sum X C Y D t , X is distributed uniformly on Œ0; t �. In
particular,

E.X jX C Y D t/ D t

2
; Var.X jX C Y D t/ D t2

12
:

To complete the example, we mention a quick trick to compute the conditional ex-
pectation. Note that, by symmetry,

E.X jX C Y D t/ D E.Y jX C Y D t/ ) t D E.X C Y jX C Y D t/

D 2E.X jX C Y D t/ ) E.X jX C Y D t/ D t

2
:

So, if we wanted just the conditional expectation, then the conditional density calcu-
lation was not necessary in this case. This sort of symmetry argument is often very
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useful in reducing algebraic calculations. But one needs to be absolutely sure that
the symmetry argument will be valid in a given problem.

Example 12.25 (Maximum Given the Minimum). Suppose U; V;W are three
independent random variables, each distributed as U Œ0; 1�. Let X D maxfU; V;W g
and Y D minfU; V;W g. We want to find the conditional density and then the
conditional expectation of X given Y D y.

As a side remark, the ordered values among a set of observations from some
general distribution are called the order statistics of the sample, and we will treat
the joint distribution of the order statistics in greater detail in a later section. What
we want to do here is examine the conditional density and expectation of the largest
order statistic given the smallest in this specific example. The general treatment is
not done in this section.

First, note that, for 0 < y 
 x < 1,

P.X 
 x; Y � y/ D P.y 
 U 
 x; y 
 V 
 x; y 
 W 
 x/ D .x � y/3;

since U; V;W are iid U Œ0; 1�. Therefore,

P.X 
x; Y 
y/ D P.X 
 x/�P.X 
 x; Y � y/ D P.U 
 x; V 
 x;W 
 x/

�P.X 
 x; Y � y/ D x3 � .x � y/3:

By taking partial derivatives, the joint density of .X; Y / is

f .x; y/ D @2

@x@y
Œx3 � .x � y/3� D 6.x � y/; 0 < y 
 x < 1:

Furthermore,

P.Y � y/ D P.U � y; V � y;W � y/ D .1� y/3

) fY .y/ D 3.1 � y/2; 0 < y < 1:

Thus, the conditional density of X given Y D y is

f .xjy/ D 6.x � y/
3.1 � y/2 D 2.x � y/

.1� y/2
;

0 < y 
 x < 1.
From the conditional density,

E.X jY D y/ D
Z 1

y

x
2.x � y/
.1� y/2

dx D 2

.1 � y/2
Z 1

y

x.x � y/dx

D 2

.1 � y/2
y3 � 3y C 2

6
D y3 � 3y C 2

3.1� y/2
D y C 2

3
:
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We see that E.X jY D y/ is increasing in y. From our general discussion of covari-
ance (see Chapter 11), it follows that Cov.X; Y / � 0 in this example, and as a result
�X;Y will also be � 0. Actually, this phenomenon of a positive correlation between
any two order statistics, not just the minimum and the maximum, is true in general.

12.5 Bivariate Normal Conditional Distributions

Suppose .X; Y / have a joint bivariate normal distribution. A very important property
of the bivariate normal is that each conditional distribution, the distribution of Y
given X D x, and that of X given Y D y is a univariate normal for any x and
any y. This really helps in easily computing conditional probabilities involving one
variable when the other variable is held fixed at some specific value.

Theorem 12.6. Let .X; Y / have a bivariate normal distribution with parameters
�1; �2; �1; �2; �: Then,

(a) X jY D y � N

�

�1 C �
�1

�2

.y � �2/; �
2
1 .1 � �2/

�

I

(b) Y jX D x � N

�

�2 C �
�2

�1

.x � �1/; �
2
2 .1 � �2/

�

:

In particular, the conditional expectations of X given Y D y and Y given X D x

are linear functions of y and x, respectively:

E.X jY D y/ D �1 C �
�1

�2

.y � �2/;

E.Y jX D x/ D �2 C �
�2

�1

.x � �1/;

and the variance of each conditional distribution is a constant and does not depend
on the conditioning values x or y.

The proof of this theorem involves some tedious integration manipulations and
we omit it; the details of the proof are available in Tong (1990).

Remark. We see here that the conditional expectation is linear in the bivariate nor-
mal case. Specifically, take E.Y jX D x/ D �2 C � �2

�1
.x � �1/. Previously, we

saw in Chapter 11 that the conditional expectation E.Y jX/ is, in general, the best
predictor of Y based on X . Now we see that the conditional expectation is a lin-
ear predictor in the bivariate normal case, and it is the best predictor and therefore
also the best linear predictor. In Chapter 11, we called the best linear predictor the
regression line of Y on X . Putting it all together, we have the very special result
that, in the bivariate normal case, the regression line of Y on X and the best overall
predictor are the same:

For bivariate normal distributions, the conditional expectation of one variable
given the other coincides with the regression line of that variable on the other
variable.
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Example 12.26. Suppose incomes of husbands and wives in a population are bivari-
ate normal with means 75 and 60 (in thousands of dollars), standard deviations 20
each, and a correlation of .75. We want to know in what percentage of those families
where the wife earns 80,000 dollars the family income exceeds 175,000 dollars.

Denote the income of the husband and the wife by X and Y , respectively. Then,
we want to find P.X C Y > 175jY D 80/. By the theorem above, X jY D 80 �
N.75C :75.80� 60/; 400.1� :752// D N.90; 175/: Therefore,

P.X C Y > 175jY D 80/ D P.X > 95jY D 80/

D P

�

Z >
95 � 90p
175

�

D P.Z > :38/ D :3520;

where Z denotes a standard normal variable.

Example 12.27 (Galton’s Observation: Regression to the Mean). This example is
similar to the previous example, but makes a different interesting point. It is often
found that students who get a very good grade on the first midterm do not do as
well on the second midterm. We can try to explain it by doing a bivariate normal
calculation.

Denote the grade on the first midterm byX , that on the second midterm by Y , and
suppose X; Y are jointly bivariate normal with means 70, standard deviations 10,
and correlation .7. Suppose a student scored 90 on the first midterm. What are the
chances that he will get a lower grade on the second midterm?

This is

P.Y < X jX D 90/ D P.Y < 90jX D 90/

D P

�

Z <
90 � 84p

51

�

D P.Z < :84/ D :7995;

where Z is a standard normal variable, and we have used the fact that Y jX D 90 �
N.70C :7.90� 70/; 100.1� :72// D N.84; 51/.

Thus, with a fairly high probability, the student will not be able to match his first
midterm grade on the second midterm. The phenomenon of regression to mediocrity
was popularized by Galton, who noticed that the offspring of very tall parents tended
to be much closer to being of just about average height and the extreme tallness in
the parents was not commonly passed on to the children.

12.6 Order Statistics

The ordered values of a sample of observations are called the order statistics of the
sample, and the smallest and the largest are called the extremes. Order statistics
and extremes are among the most important functions of a set of random variables
that we study in probability and statistics. There is natural interest in studying the
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highs and lows of a sequence, and the other order statistics help in understanding
the concentration of probability in a distribution, or equivalently the diversity in the
population represented by the distribution. Order statistics are also useful in sta-
tistical inference, where estimates of parameters are often based on some suitable
functions of the order statistics. In particular, the median is of very special impor-
tance. There is a well-developed theory of the order statistics of a fixed number n of
observations from a fixed distribution. Distribution theory for order statistics when
the observations are from a discrete distribution is complex, both notationally and
algebraically, because of the fact that there could be several observations that are
actually equal. These ties among the sample values make the distribution theory
cumbersome. We therefore concentrate on the continuous case.

12.6.1 Basic Distribution Theory

Definition 12.8. Let X1; X2; : : : ; Xn be any n real-valued random variables. Let
X.1/ 
 X.2/ 
 � � � 
 X.n/ denote the ordered values of X1; X2; : : : ; Xn. Then,
X.1/; X.2/; : : : ; X.n/ are called the order statistics of X1; X2; : : : ; Xn.

Remark. Thus, the minimum among X1; X2; : : : ; Xn is the first order statistic and
the maximum is the nth order statistic. The middle value among X1; X2; : : : ; Xn is
called the median. But it needs to be defined precisely because there is really no
middle value when n is an even integer. Here is our definition.

Definition 12.9. Let X1; X2; : : : ; Xn be any n real-valued random variables. Then,
the median ofX1; X2; : : : ; Xn is defined to beMn D X.mC1/ if n D 2mC1 (an odd
integer) and Mn D X.m/ if n D 2m (an even integer). That is, in either case, the
median is the order statistic X.k/, where k is the smallest integer � n

2
.

Example 12.28. Suppose :3; :53; :68; :06; :73; :48; :87; :42; :89; :44 are ten indepen-
dent observations from the U Œ0; 1� distribution. Then, the order statistics are .06,
.3, .42, .44, .48, .53, .68, .73, .87, .89. Thus, X.1/ D :06;X.n/ D :89, and since
n
2

D 5;Mn D X.5/ D :48.
We now specialize to the case where X1; X2; : : : ; Xn are independent random

variables with a common density function f .x/ and CDF F.x/, and work out the
fundamental distribution theory of the order statistics X.1/; X.2/; : : : ; X.n/.

Theorem 12.7 (Joint Density of All the Order Statistics). Let X1; X2; : : : ; Xn be
independent random variables with a common density function f .x/. Then, the joint
density function of X.1/; X.2/; : : : ; X.n/ is given by

f1;2;:::;n.y1; y2; : : : ; yn/ D nŠf .y1/f .y2/ � � �f .yn/Ify1<y2<���<yng:

Proof. A verbal heuristic argument is easy to understand. If X.1/ D y1; X.2/ D
y2; : : : ; X.n/ D yn, then exactly one of the sample values X1; X2; : : : ; Xn is y1,
exactly one is y2, etc., but we can put any of the n observations at y1, any of
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the other n � 1 observations at y2, etc., so the density of X.1/; X.2/; : : : ; X.n/ is
f .y1/f .y2/ : : : f .yn/ 	 n.n � 1/ : : : 1 D nŠf .y1/f .y2/ : : : f .yn/, and obviously,
if the inequality y1 < y2 < � � � < yn is not satisfied, then at such a point the joint
density of X.1/; X.2/; : : : ; X.n/ must be zero.

Here is a formal proof. The multivariate transformation .X1; X2; : : : ; Xn/ !
.X.1/; X.2/; : : : ; X.n// is not one-to-one, as any permutation of a fixed .X1; X2;

: : : ; Xn/ vector has exactly the same set of order statistics X.1/; X.2/; : : : ; X.n/.
However, fix a specific permutation f�.1/; �.2/; : : : ; �.n/g of f1; 2; : : : ; ng and
consider the subset A� D f.x1; x2; : : : ; xn/ W x�.1/ < x�.2/ < � � � < x�.n/g:
Then, the transformation .x1; x2; : : : ; xn/ ! .x.1/; x.2/; : : : ; x.n// is one-to-one on
each such A� , and indeed, then x.i/ D x�.i/; i D 1; 2; : : : ; n. The Jacobian matrix
of the transformation is 1, for each such A� . A particular vector .x1; x2; : : : ; xn/

falls in exactly one A� , and there are nŠ such regions A� , as we exhaust all the
nŠ permutations f�.1/; �.2/; : : : ; �.n/g of f1; 2; : : : ; ng. By a modification of the
Jacobian density theorem, we then get

f1;2;:::;n.y1; y2; : : : ; yn/ D
X

�

f .x1/f .x2/ : : : f .xn/

D
X

�

f .x�.1//f .x�.2// : : : f .x�.n//

D
X

�

f .y1/f .y2/ : : : f .yn/

D nŠf .y1/f .y2/ : : : f .yn/:

Example 12.29 (Uniform Order Statistics). Let U1; U2; : : : ; Un be independent
U Œ0; 1� variables and U.i/; 1 
 i 
 n, their order statistics. Then, by our theorem
above, the joint density of U.1/; U.2/; : : : ; U.n/ is

f1;2;:::;n.u1; u2; : : : ; un/ D nŠI0<u1<u2<���<un<1:

Once we know the joint density of all the order statistics, we can find the marginal
density of any subset of them by simply integrating out the rest of the coordinates
but being extremely careful in using the correct domain over which to integrate the
rest of the coordinates. For example, if we want the marginal density of just U.1/,
(that is, of the sample minimum), then we will want to integrate out u2; : : : ; un, and
the correct domain of integration would be, for a given u1 in (0,1),

u1 < u2 < u3 < � � � < un < 1:

So, we will integrate down in the order un; un�1; : : : ; u2, to obtain

f1.u1/ D nŠ

Z 1

u1

Z 1

u2

� � �
Z 1

un�1

dundun�1 � � �du3du2

D n.1 � u1/
n�1; 0 < u1 < 1:
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Likewise, if we want the marginal density of just U.n/ (that is, of the sample
maximum), then we will want to integrate out u1; u2; : : : ; un�1, and now the an-
swer will be

fn.un/ D nŠ

Z un

0

Z un�1

0

: : :

Z u2

0

du1du2 : : : dun�2dun�1

D nun�1
n ; 0 < un < 1:

However, it is useful to note that for the special case of the minimum and the max-
imum, we could have obtained the densities much more easily and directly. Here is
why. First take the maximum. Consider its CDF for 0 < u < 1,

P.U.n/ 
 u/ D P.\n
iD1fXi 
 ug/ D

nY

iD1

P.Xi 
 u/ D un;

and hence the density of U.n/ is fn.u/ D d
du Œu

n� D nun�1; 0 < u < 1:
Likewise, for the minimum, for 0 < u < 1, the tail CDF is

P.U.1/ > u/ D P.\n
iD1fXi > ug/ D .1� u/n;

so the density of U.1/ is

f1.u/ D d

du
Œ1 � .1� u/n� D n.1 � u/n�1; 0 < u < 1:

For a general r; 1 
 r 
 n, the density of U.r/ works out to a Beta density,

fr .u/ D nŠ

.r � 1/Š.n� r/Š
ur�1.1 � u/n�r ; 0 < u < 1;

which is the Be.r; n � r C 1/ density.
In Figure 12.7, we provide a plot of the density of the minimum, the median,

and the maximum in the U Œ0; 1� case when n D 15. The minimum and the maxi-
mum clearly have skewed densities, while the density of the median is symmetric
about .5.

12.6.2 � More Advanced Distribution Theory

Somewhat more advanced calculations, such as derivation of the joint density of two
different order statistics, are presented here. An example will help us understand the
line of mathematical reasoning that we use in these calculations.



12.6 Order Statistics 307

0.2 0.4 0.6 0.8 1
x

2

4

6

8

10

12

14

Fig. 12.7 Density of minimum, median, and maximum of U Œ0; 1� variables; n D 15

Example 12.30 (Density of One and Two Order Statistics). The joint density of any
subset of the order statistics X.1/; X.2/; : : : ; X.n/ can be worked out from the joint
density of all the order statistics, which we have already worked out. The most
important case in applications is the joint density of two specific order statistics, say
X.r/ and X.s/; 1 
 r < s 
 n, or the density of a specific one, say X.r/. A heuristic
argument is the most helpful in understanding the formula for the joint density of
X.r/ and X.s/ and also the density of a specific one X.r/.

First consider the density of just X.r/. Fix u. To have X.r/ D u, we must have
exactly one observation at u, another r � 1 below u, and another n� r above u. This
will suggest that the density of X.r/ is

fr .u/ D nf .u/

 
n� 1

r � 1

!

.F.u//r�1.1 � F.u//n�r

D nŠ

.r � 1/Š.n� r/Š
.F.u//r�1.1 � F.u//n�rf .u/;

�1 < u < 1. This is in fact the correct formula for the density of X.r/.
Next, consider the case of the joint density of two order statistics, X.r/ and X.s/.

Fix 0 < u < v < 1. Then, to have X.r/ D u; and X.s/ D v, we must have exactly
one observation at u, another r � 1 below u, one at v, another n � s above v, and
s� r �1 between u and v. This will suggest that the joint density ofX.r/ andX.s/ is

fr;s.u; v/ D nf .u/

 
n � 1
r � 1

!

.F.u//r�1.n � r/f .v/

 
n � r � 1
n � s

!

.1 � F.v//n�s.F.v/� F.u//s�r�1



308 12 Multidimensional Densities

D nŠ

.r � 1/Š.n� s/Š.s � r � 1/Š .F.u//
r�1

.1 � F.v//n�s.F.v/� F.u//s�r�1f .u/f .v/;

�1 < u < v < 1:

Again, this is indeed the joint density of two specific order statistics, X.r/

and X.s/.
The heuristic argument is made rigorous by using the binomial and multinomial

distributions. It is quite clear where the binomial and multinomial distributions come
from in a rigorous proof; for example, to find the probability that X.r/ 
 x, we
can compute the binomial probability that at least r of the n observations among
X1; X2; : : : ; Xn are less than or equal to x. We will omit the formal details.

Theorem 12.8 (Density of One and Two Order Statistics and the Sample
Range). Let X1; X2; : : : ; Xn be independent observations from a continuous CDF
F.x/ with density function f .x/. Then:

(a) X.n/ has the density fn.u/ D nF n�1.u/f .u/;�1 < u < 1:

(b) X.1/ has the density f1.u/ D n.1 � F.u//n�1f .u/;�1 < u < 1:

(c) For a general r; 1 
 r 
 n;X.r/ has the density

fr.u/ D nŠ

.r � 1/Š.n � r/ŠF
r�1.u/.1� F.u//n�rf .u/;�1 < u < 1:

(d) For general 1 
 r < s 
 n; .X.r/; X.s// have the joint density

D nŠ

.r � 1/Š.n� s/Š.s � r � 1/Š .F.u//
r�1.1 � F.v//n�s

.F.v/� F.u//s�r�1f .u/f .v/;�1 < u < v < 1:

(e) The minimum and the maximum; X.1/ andX.n/; have the joint density

f1;n.u; v/ D n.n � 1/.F.v/� F.u//n�2f .u/f .v/;�1 < u < v < 1:

(f) (CDF of Range). W D Wn D X.n/ � X.1/ has the CDF

FW .w/ D n

Z 1

�1
ŒF .x C w/ � F.x/�n�1f .x/dx;w > 0:

(g) (Density of Range). W D Wn D X.n/ � X.1/ has the density

fW .w/ D n.n � 1/

Z 1

�1
ŒF .x C w/� F.x/�n�2f .x/f .x C w/dx;w > 0:

Example 12.31 (Moments of Uniform Order Statistics). The general formulas in the
theorem above lead to the following moment formulas in the uniform case.
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In the U Œ0; 1� case,

E.U.1// D 1

nC 1
;E.U.n// D n

nC 1
;

Var.U.1// D Var.U.n// D n

.nC 1/2.nC 2/
I 1 � U.n/

LD U.1/I

Cov.U.1/; U.n// D 1

.nC 1/2.nC 2/
;E.Wn/ D n � 1

nC 1
;Var.Wn/ D 2.n � 1/

.nC 1/2.nC 2/
:

For a general order statistic, from the fact that U.r/ � Be.r; n� r C 1/, we get

E.U.r// D r

nC 1
I Var.U.r// D r.n � r C 1/

.nC 1/2.nC 2/
:

Furthermore, it follows from the formula for the joint density of two order statistics
that

Cov.U.r/; U.s// D r.n � s C 1/

.nC 1/2.nC 2/
:

What are the important lessons to learn from these formulas? The variance of the
two extreme order statistics, namely U.1/ and U.n/, converge to zero at the rate 1

n2 ,

but the variance of the median converges to zero at the rate 1
n

. The covariance be-
tween any two order statistics is strictly positive. The expected value of any specific
order statistic, say U.r/, is just a little smaller than r

n
, as r

nC1
is a little smaller

than r
n

.

Example 12.32 (Exponential Order Statistics). A second distribution of special im-
portance in the theory of order statistics is the exponential distribution. The mean �
essentially arises as just a multiplier in the calculations. So, we will treat only the
standard exponential case.

Let X1; X2; : : : ; Xn be independent standard exponential variables. Then, by the
general theorem on the joint density of the order statistics, in this case the joint
density of X.1/; X.2/; : : : ; X.n/ is

f1;2;:::;n.u1; u2; : : : ; un/ D nŠe�Pn
iD1 ui ;

0 < u1 < u2 < � � � < un < 1. Also, in particular, the minimum X.1/ has the
density

f1.u/ D n.1 � F.u//n�1f .u/ D ne�.n�1/ue�u D ne�nu;

0 < u < 1. In other words, we have the quite remarkable result that the minimum
of n independent standard exponentials is itself an exponential with mean 1

n
. Also,

from the general formula, the maximum X.n/ has the density

fn.u/ D n.1 � e�u/n�1e�u D n

n�1X

iD0

.�1/i
 
n � 1
i

!

e�.iC1/u; 0 < u < 1:
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As a result,

E.X.n// D n

n�1X

iD0

.�1/i
 
n � 1

i

!
1

.i C 1/2
D

nX

iD1

.�1/i�1

 
n

i

!
1

i
;

which also can be shown to be equal to 1C 1
2

C � � � C 1
n

.
To summarize then, the minimum of iid exponentials is another exponential, the

maximum is not an exponential, and the maximum has the remarkable expected
value 1C 1

2
C � � � C 1

n
.

Example 12.33 (Normal Order Statistics). Another clearly important case is that of
the order statistics of a normal distribution. Because the general N.�; �2/ random
variable is a location-scale transformation of a standard normal variable, we have
the distributional equivalence that .X.1/; X.2/; : : : ; X.n// have the same joint distri-
bution as .�C�Z.1/; �C�Z.2/; : : : ; �C�Z.n//: So, we consider just the standard
normal case.

Because of the symmetry of the standard normal distribution around zero, for
any r;Z.r/ has the same distribution as �Z.n�rC1/. In particular,Z.1/ has the same
distribution as �Z.n/. From our general formula, the density of Z.n/ is

fn.x/ D nˆn�1.x/�.x/;�1 < x < 1:

Again, this is a skewed density. It can be shown, either directly or by making use
of general theorems on existence of moments of order statistics, that every moment,
and in particular the mean and the variance of Z.n/, exists. Except for very small
n, closed-form formulas for the mean or variance are not possible. For small n,
integration tricks do produce exact formulas. For example,

E.Z.n// D 1p
�

if n D 2IE.Z.n// D 3

2
p
�

if n D 3:

Such formulas are available for n 
 5; see David (1980).
We tabulate the expected value of the maximum for some values of n to illustrate

the slow growth.

n E.Z.n//

2 :56

5 1:16

10 1:54

20 1:87

30 2:04

50 2:25

100 2:51

500 3:04

1000 3:24

10000 3:85
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Fig. 12.8 Density of maximum of standard normals; n D 5; 20; 100

The density of Z.n/ is plotted in Figure 12.8 for three values of n. We can see
from the plot that the density is shifting to the right and at the same time getting
more peaked.

12.7 Synopsis

(a) The joint density of n random variablesX1; X2; : : : ; Xn is a nonnegative func-
tion f .x1; x2; : : : ; xn/ such that, for all a1; a2; : : : ; an; b1; b2; : : : ; bn;�1 <

ai 
 bi < 1,

P.a1 
 X1 
 b1; a2 
 X2 
 b2; : : : ; an 
 Xn 
 bn/

D
Z bn

an

: : :

Z b2

a2

Z b1

a1

f .x1; x2; : : : ; xn/dx1dx2 : : : dxn:

In particular, the joint density f .x1; x2; : : : ; xn/ must satisfy

Z

Rn

f .x1; x2; : : : ; xn/dx1dx2 : : : dxn D 1:

(b) The joint CDF of X1; X2; : : : ; Xn is defined as

F.x1; x2; : : : ; xn/ D
Z xn

�1
: : :

Z x1

�1
f .t1; : : : ; tn/dt1 : : : dtn:
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(c) The joint density can be obtained from the joint CDF by iterated partial
differentiation:

f .x1; x2; : : : ; xn/ D @n

@x1 : : : @xn

F.x1; x2; : : : ; xn/:

(d) The marginal densities of any subset ofX1; X2; : : : ; Xn can be found by simply
integrating out the other variables. For example, if n D 2, then the marginal
density of X1 is f1.x1/ D R1

�1 f .x1; x2/dx2.
More generally, in the case of n variables, the marginal joint density of

X1; X2; : : : ; Xp is obtained from the joint density of X1; X2; : : : ; Xn as

f1;2;:::;p.x1; x2; : : : ; xp/ D
Z 1

�1
� � �
Z 1

�1
f .x1; x2; � � � ; xn/dxpC1 � � �dxn:

(e) X1; X2; : : : ; Xn are independent if and only if the joint density factorizes at
any .x1; x2; : : : ; xn/ as

f .x1; x2; : : : ; xn/ D
nY

iD1

fi .xi /;

where fi .xi / is the marginal density function of Xi .
(f) The expected value of a function g.X1; X2; : : : ; Xn/ is computed as

EŒg.X1; X2; : : : ; Xn/� D
Z

Rn

g.x1; x2; : : : ; xn/

f .x1; x2; : : : ; xn/dx1dx2 : : : dxn:

If X1; X2; : : : ; Xn are independent, then E.X1X2 : : : Xn/ D E.X1/E.X2/

: : : E.Xn/ and, more generally,EŒ
Qn

iD1 gi .Xi /� D Qn
iD1EŒgi .Xi /�.

(g) Conditional densities and conditional expectations are defined analogously to
the discrete case, except that integrals replace the sums.

The conditional density of X given Y D y is defined as

f .xjy/ D f .xjY D y/ D f .x; y/

fY .y/
; 8y such that fY .y/ > 0:

The conditional expectation of X given Y D y is defined as

E.X jy/ D E.X jY D y/ D
Z 1

�1
xf .xjy/dx D

R1
�1 xf .x; y/dx
R1

�1 f .x; y/dx
;

8y such that fY .y/ > 0:

(h) It is important to understand that given two variables X and Y;E.X jY / will
be a function of Y ; there will not be any X left in the formula. If X and Y are
independent, then E.X jY / D E.X/, the marginal expectation of X .



12.7 Synopsis 313

(i) Bayes’ theorem for conditional densities says that

f .yjx/ D f .xjy/fY .y/

fX .x/
:

Thus, we can convert one conditional density to the other one by using Bayes’
theorem.

(j) Conditional variance is also defined analogously to the discrete case, with in-
tegrals replacing the sums. The conditional variance of X given Y D y is
defined as

Var.X jy/ D Var.X jY D y/ D
R1

�1.x � �X .y//
2f .x; y/dx

R1
�1 f .x; y/dx

;

where �X .y/ denotes E.X jy/.
(k) Two special bivariate distributions are the bivariate uniform and the bivariate

normal. The bivariate uniform corresponds to just a pair of iid U Œ0; 1� vari-
ables. We can put a uniform distribution on any bounded set; e.g., we can put
a uniform distribution in a circle or in a sphere. However, then the different
variables are no longer independent.

(l) The density of the general bivariate normal distribution is

f .u; v/ D 1

2��1�2

p
1 � �2

e
� 1

2.1��2/

"
.x��1/2

�2
1

C .y��2/2

�2
2

� 2�.x��1/.y��2/

�1�2

#

;

�1 < u; v < 1: If .U; V / have a general five-parameter bivariate normal dis-
tribution, then any linear function aU C bV of .U; V / is normally distributed:

aU C bV � N.a�1 C b�2; a
2�2

1 C b2�2
2 C 2ab��1�2/:

In particular, each of U; V is marginally normally distributed:

U � N.�1; �
2
1 /; V � N.�2; �

2
2 /:

If � D 0, then U and V are independent with N.�1; �
2
1 / and N.�2; �

2
2 /

marginal distributions.
(m) Conditional distributions in a bivariate normal distribution are univariate nor-

mal. This is an important property. If .X; Y / have a bivariate normal distribu-
tion with parameters �1; �2; �1; �2; �; then

X jY D y � N

�

�1 C �
�1

�2

.y � �2/; �
2
1 .1 � �2/

�

I

Y jX D x � N

�

�2 C �
�2

�1

.x � �1/; �
2
2 .1 � �2/

�

:
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In particular, the conditional expectations of X given Y D y and of Y given
X D x are linear functions of y and x, respectively:

E.X jY D y/ D �1 C �
�1

�2

.y � �2/I

E.Y jX D x/ D �2 C �
�2

�1

.x � �1/:

(n) If X1; X2; : : : ; Xn are independent random variables with a common den-
sity function f .x/, then the joint density function of the order statistics
X.1/; X.2/; : : : ; X.n/ is given by

f1;2;:::;n.y1; y2; : : : ; yn/ D nŠf .y1/f .y2/ : : : f .yn/Ify1<y2<���<yng:

The density of one order statistic and the joint density of two order statistics
are derived from here.

For a general r; 1 
 r 
 n;X.r/ has the density

fr .u/ D nŠ

.r � 1/Š.n � r/ŠF
r�1.u/.1 � F.u//n�rf .u/;�1 < u < 1:

For general 1 
 r < s 
 n; .X.r/; X.s// have the joint density

D nŠ

.r � 1/Š.n � s/Š.s � r � 1/Š
.F.u//r�1.1 � F.v//n�s

.F.v/ � F.u//s�r�1f .u/f .v/;�1 < u < v < 1:

(o) Any two order statistics are, in general, positively correlated.
(p) Closed-form formulas can be found for the means, variances, and covariances

of uniform order statistics. They are given in the text.
The minimum of n iid exponential variables is again an exponential, but the
maximum is not. Formulas for their expectations are given in the text.
Closed-form formulas for moments of normal order statistics cannot be found,
unless n is very small. The maximum order statistic in the normal case grows
at a very slow rate. Tables of the expected values are given in the text. The slow
growth is due to the thin tails of the normal density.

12.8 Exercises

Exercise 12.1. Suppose .X; Y / have the joint density f .x; y/ D cxy; x; y 2 Œ0; 1�.
(a) Find the normalizing constant c.
(b) Are X and Y independent?
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(c) Find the marginal densities and expectations of X; Y .
(d) Find the expectation of XY .

Exercise 12.2. Suppose .X; Y / have the joint density f .x; y/ D cxy; x; y �
0I x C y 
 1.

(a) Find the normalizing constant c.
(b) Are X and Y independent?
(c) Find the marginal densities and expectations of X; Y .
(d) Find the expectation of XY .

Exercise 12.3. Suppose .X; Y / have the joint density f .x; y/ D ce�y ; 0 
 x 

y < 1.

(a) Find the normalizing constant c.
(b) Are X and Y independent?
(c) Find the marginal densities and expectations of X; Y .
(d) Find the conditional expectation of X given Y D y.
(e) Find the conditional expectation of Y given X D x.
(f) Find the correlation between X and Y .

Exercise 12.4 (Uniform in a Triangle). Suppose X and Y are uniformly dis-
tributed in the triangle bounded by �1 
 x 
 1; y � 0, and the two lines y D 1Cx
and y D 1 � x.

(a) Find P.X � �:5/.
(b) Find P.Y � :5/.
(c) Find the marginal densities and expectations of X; Y .

Exercise 12.5 (Uniform Distribution in a Sphere). Suppose .X; Y;Z/ have the
density f .x; y; z/ D c if x2 C y2 C z2 
 1:

(a) Find the constant c.
(b) Are any of X; Y or Y;Z or X;Z pairwise independent?
(c) Find the marginal densities and expectations of X; Y;Z.
(d) Find the conditional expectation of X given Y D y and find the conditional

expectation of X given Z D z.
(e) Find the conditional expectation of X given Y D y and Z D z.
(f) Find the correlation between any pair, say X and Y .

Exercise 12.6. Suppose X and Y are independent U Œ0; 1� variables. Find the con-
ditional expectation E.jX � Y jjY D y/.

Exercise 12.7 (Uniform in a Triangle). Suppose X and Y are uniformly dis-
tributed in the triangle x; y � 0; x C y 
 1: Find the conditional expectation
E.jX � Y jjY D y/.



316 12 Multidimensional Densities

Exercise 12.8. Suppose X; Y;Z are independent U Œ0; 1� variables. Find P.jX �
Y j > jY �Zj/.
Exercise 12.9. * (Iterated Expectation). Suppose X and Y are independent stan-
dard exponential variables. Find E.X

p
X C Y /.

Exercise 12.10 (Expectation of a Quotient). Suppose X and Y are independent

and X � Be.2; 2/; Y � Be.3; 3/. Find E.X2

Y 2 /:

Exercise 12.11. Suppose X; Y;Z are three independent standard exponential vari-
ables. Find P.X < 2Y < 3Z/.

Exercise 12.12. * (Conceptual). Suppose X � U Œ0; 1� and Y D 2X . What is the
joint distribution of .X; Y /? Does the joint distribution have a density?

Exercise 12.13. * (Breaking a Stick). Suppose X � U Œ0; 1�, and given that X D
x; Y � U Œ0; x�. Let U D 1 � X;V D Y;W D X � Y . Find the expectation of the
maximum of U; V;W . This amounts to breaking a stick and then breaking the left
piece again.

Exercise 12.14 (Iterated Expectation). SupposeX1 � U Œ0; 1� and, for n � 2;Xn

given that Xn�1 D x is distributed as U Œ0; x�. What is E.Xn/ and its limit as
n ! 1?

Exercise 12.15 (Bivariate Normal Probability). Suppose X and Y are jointly bi-
variate normal with zero means, unit standard deviations, and correlation �. Find all
values of � for which 1

4

 P.X > 0; Y > 0/ 
 5

12
.

Exercise 12.16. Suppose X and Y are jointly bivariate normal with zero means,
unit standard deviations, and correlation � D :75. Find P.Y > 2jX D 1/.

Exercise 12.17. SupposeX and Y are jointly bivariate normal with general param-
eters. Characterize all constants a; b such thatXCY and aXCbY are independent.

Exercise 12.18. * (Probability of a Diamond). Suppose X; Y;Z are independent
U Œ�1; 1� variables. Find the probability that jX j C jY j C jZj 
 1:

Exercise 12.19 (Missing the Bus). A bus arrives at a stop at a random time between
9:00 AM and 9:15 AM. Tim will arrive at that stop at a random time between 9:00
AM and 9:15 AM, independently of the bus, and will wait for (at most) five minutes
at the stop. Find the probability that Tim will meet the bus.

Exercise 12.20. Cathy and Jen plan to meet at a cafe, and each will arrive at the
cafe at a random time between 11:00 AM and 11:30 AM, independently of each
other. Find the probability that the first to arrive has to wait between five and ten
minutes for the other to arrive.
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Exercise 12.21 (Bivariate Normal Probability). Suppose the amounts of oil
(in barrels) lifted on a given day from two wells are jointly bivariate normal, with
means 150 and 200, variances 100 and 25, and correlation .5. What is the probabil-
ity that the total amount lifted is larger than 400 barrels on any given day? What is
he probability that the amounts lifted from the two wells on any day differ by more
than 50 barrels?

Exercise 12.22. * (Conceptual). Suppose .X; Y / have a bivariate normal distribu-
tion with zero means, unit standard deviations, and correlation �;�1 < � < 1:What
is the joint distribution of .X C Y;X � Y; Y /? Does this joint distribution have a
density?

Exercise 12.23. Suppose X � N.�; �2/. Find the correlation between X and Y ,
where Y D X2. Find all values of .�; �/ for which the correlation is zero.

Exercise 12.24. * (Maximum Correlation). Suppose .X; Y / has a general bivari-
ate normal distribution with a positive correlation �. Show that among all functions
g.X/; h.Y / with finite variances, the correlation between g.X/ and h.Y / is maxi-
mized when g.X/ D X; h.Y / D Y .

Exercise 12.25 (Bivariate Normal Calculation). SupposeX � N.0; 1/ and, given
X D x, Y � N.x C 1; 1/.

(a) What is the marginal distribution of Y ?
(b) What is the correlation between X and Y ?
(c) What is the conditional distribution of X given Y D y?

Exercise 12.26. * (Uniform Distribution in a Sphere). Suppose X; Y;Z are uni-
formly distributed in the unit sphere. Find the mean and the variance of the distance
of the point .X; Y;Z/ from the origin.

Exercise 12.27. * (Uniform Distribution in a Sphere). Suppose X; Y;Z are uni-
formly distributed in the unit sphere.

(a) Find the marginal density of .X; Y /.
(b) Find the marginal density of X .

Exercise 12.28. Suppose X; Y;Z are independent exponentials with means
�; 2�; 3�. Find P.X < Y < Z/:

Exercise 12.29. * (Mean Residual Life). Suppose X � N.�; �2/. Derive a for-
mula for the mean residual life and investigate its monotonicity behavior with
respect to each of �; c; �, each time holding the other two fixed.

Exercise 12.30. * (Bivariate Normal Conditional Calculation). Suppose the sys-
tolic blood pressure X and fasting blood sugar Y are jointly distributed as bivariate
normal in some population with means 120 and 105, standard deviations 10 and 20,
and correlation 0.7. Find the average fasting blood sugar of those with a systolic
blood pressure greater than 140.
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Exercise 12.31 (Uniform Order Statistics). Suppose X; Y;Z are three indepen-
dentU Œ0; 1� variables. LetU; V;W denote the minimum, median, and the maximum
of X; Y;Z.

(a) Find the densities of U; V;W .
(b) Find the densities of U

V
and V

W
and their joint density.

(c) Find E.U
V
/ and E. V

W
/.

Exercise 12.32 (Uniform Order Statistics). Suppose X1; : : : ; X5 are independent
U Œ0; 1� variables. Find the joint density of X.2/; X.3/; X.4/, and E.X.4/ C X.2/ �
2X.3//.

Exercise 12.33 (Exponential Order Statistics). Suppose X; Y;Z are three inde-
pendent standard exponential variables, and let U; V;W be their minimum, median,
and maximum. Find the densities of U; V;W;W � U .

Exercise 12.34. * (Waiting Time). Peter, Paul, and Mary went to a bank to do
some business. Two counters were open, and Peter and Paul went first. Peter, Paul,
and Mary will each take, independently, an Exp.�/ amount of time to finish their
business from the moment they arrive at the counter.

(a) What is the density of the epoch of the last departure?
(b) What is the probability that Mary will be the last to finish?
(c) What is the density of the total time taken by Mary from arrival to finishing her

business?

Exercise 12.35 (Density of the Median). Let X1; : : : ; Xn be independent observa-
tions from a continuous CDF F with a density symmetric about some �. Show that,
for all odd sample sizes n D 2m C 1, the median X.mC1/ has a density symmetric
about �.

Exercise 12.36. * Suppose X1; : : : ; Xn are independentU Œ0; 1� variables.

(a) Find the probability that all n observations fall within some interval of length at
most .9.

(b) Find the smallest n such that P.X.n/ � :99;X.1/ 
 :01/ � :99.

Exercise 12.37 (Use Your Computer). Simulate 500 independent standard normal
values. Use these to generate 250 pairs of bivariate normal vectors .Xi ; Yi / with
zero means, unit standard deviations, and correlation 0.5. Find the average value of
.Xi �Yi /

2 over the simulations. Does it equal the theoretical average approximately?

Exercise 12.38 (Use Your Computer). Simulate 500 independent standard normal
values. Use these to generate 250 pairs of bivariate normal vectors .Xi ; Yi /, with
zero means, unit standard deviations, and correlation � D :25; :5; :75. Use your sim-
ulated pairs to estimate P.X > 0; Y > 0/. Does your estimate equal the theoretical
value approximately?
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Exercise 12.39. * (Buffon’s Needle). Suppose a plane is gridded by a series of
parallel lines drawn h units apart. A needle of length l is dropped at random on the
plane. Let p.l; h/ be the probability that the needle intersects one of the parallel
lines. Show that:

(a) p.l; h/ D 2l
h�

, if l 
 h.

(b) p.l; h/ D 2l
h�

� 2
h�
Œ
p
l2 � h2 C h arcsin.h

l
/�C 1 if l > h.
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Chapter 13
Convolutions and Transformations

Very naturally, in applications we often want to study suitable functions or
transformations of an original collection of variablesX1; X2; : : : ; Xn. For example,
the original variables X1; X2; : : : ; Xn could be the inputs into some process or
system, and we may be interested in the output, which is some suitable function
of these input variables. We dealt with the problem of finding distributions of
functions of one continuous variable in Chapter 7. Similar, but technically more
involved, techniques for studying distributions of functions of many continuous
variables are presented with illustrations in this chapter. Sums, products, and quo-
tients are special functions that arise quite naturally in applications. These will
be discussed with special emphasis, although the general theory is also presented.
Specifically, we present in this chapter the classic theory of polar transformations,
the Helmert transformation in arbitrary dimensions, and the development of the t ,
and F distributions.

13.1 Convolutions and Examples

Definition 13.1. LetX and Y be independent random variables. The distribution of
their sum X C Y is called the convolution of the distributions of X and Y:

Remark. We also sometimes refer to the convolution of the distributions ofX and Y
as simply the convolution of X and Y . Usually, X and Y will both be discrete or
both continuous in applications, but they do not have to be; for example, X could
be normal and Y Poisson.

Example 13.1. SupposeX and Y have a joint density function f .x; y/, and suppose
we want to find the density of their sum, namely X C Y . Denote the conditional
density of X given Y D y by fX jy.xjy/ and the conditional CDF, namely P.X 

ujY D y/, by FX jY .u/. Then, by the iterated expectation formula,

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 13, c� Springer Science+Business Media, LLC 2010
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P.X C Y 
 z/ D EŒIXCY �z�

D EY ŒE.IXCY � zjY D y/� D EY ŒE.IXCy� zjY D y/�

D EY ŒP.X 
 z � yjY D y/�

D EY ŒFX jY .z � y/� D
Z 1

�1
FX jY .z � y/fY .y/dy:

In particular, if X and Y are independent, then the conditional CDF FX jY .u/ will
be the same as the marginal CDF FX .u/ of X . In this case, the expression above
simplifies to

P.X C Y 
 z/ D
Z 1

�1
FX .z � y/fY .y/dy:

The density of X C Y can be obtained by differentiating the CDF of X C Y :

fXCY .z/ D d

d z
P.X C Y 
 z/ D d

d z

Z 1

�1
FX .z � y/fY .y/dy

D
Z 1

�1

�
d

d z
FX .z � y/fY .y/

	

dy

(assuming that the derivative can be carried inside the integral)

D
Z 1

�1
fX .z � y/fY .y/dy:

Indeed, this is the general formula for the density of the sum of two real-valued
independent continuous random variables.

Theorem 13.1. Let X and Y be independent real valued random variables with
densities fX .x/ and fY .y/, respectively. Let Z D X C Y be the sum of X and Y .
Then, the density of the convolution is

fZ.z/ D
Z 1

�1
fX .z � y/fY .y/dy:

More generally, if X and Y are not necessarily independent and have joint density
f .x; y/, then Z D X C Y has the density

fZ.z/ D
Z 1

�1
fX jY .z � y/fY .y/dy:

Definition 13.2. If X and Y are independent continuous random variables with a
common density f .x/, then the density of the convolution is denoted as f � f . In
general, if X1; X2; : : : ; Xn are n independent continuous random variables with a
common density f .x/, then the density of their sum X1 CX2 C � � � CXn is called

the n-fold convolution of f and is denoted as f �.n/
.
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Example 13.2 (Sum of Exponentials). Suppose X and Y are independent Exp.�/
variables and we want to find the density of Z D X C Y . By the convolution
formula, for z > 0,

fZ.z/ D
Z 1

�1
1

�
e� z�y

� Iy<z
1

�
e� y

� Iy>0dy

D 1

�2

Z z

0

e� z
� dy D ze� z

�

�2
;

which is the density of a Gamma distribution with parameters 2 and �. Recall that
we had proved this earlier in Chapter 8 by using mgfs.

Example 13.3 (Difference of Exponentials). Let U and V be independent standard
exponentials. We want to find the density of ZDU � V . Writing X DU and
Y D � V , we notice that Z D X C Y and X and Y are still independent. How-
ever, now Y is a negative exponential and so has density fY .y/ D eyIy < 0: It
is also important to note that Z can now take any real value, positive or negative.
Substituting into the formula for the convolution density,

fZ.z/ D
Z 1

�1
e�.z�y/.Iy < z/ey.Iy < 0/dy:

Now, first consider z > 0. Then this last expression becomes

fZ.z/ D
Z 0

�1
e�.z�y/eydy D e�z

Z 0

�1
e2ydy D 1

2
e�z:

On the other hand, for z < 0, the convolution formula becomes

fZ.z/ D
Z z

�1
e�.z�y/eydy D e�z

Z z

�1
e2ydy

D e�z 1

2
e2z D 1

2
ez:

Combining the two cases, we can write the single formula

fZ.z/ D 1

2
e�jzj;�1 < z < 1;

i.e., ifX and Y are independent standard exponentials, then the differenceX�Y has
a standard double exponential density. This representation of the double exponential
distribution is often useful. Also note that although the standard exponential
distribution is obviously not symmetric, the distribution of the difference of two
independent exponentials is symmetric. This is a useful technique for symmetrizing
a random variable.
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Definition 13.3 (Symmetrization of a Random Variable). Let X1 and X2 be
independent random variables with a common distribution F . Then Xs D X1 �X2

is called the symmetrization of F or symmetrization of X1.
IfX1 is a continuous random variable with density f .x/, then its symmetrization

has the density

fs.z/ D
Z 1

�1
f .z C y/f .y/dy:

Example 13.4 (A Neat General Formula). Suppose X and Y are positive random
variables with a joint density of the form f .x; y/ D g.x C y/: What is the density
of the convolution?

Note that now X and Y are in general not independent because a joint density of
the form g.x C y/ does not in general factorize into the product form necessary for
independence. First, the conditional density

fX jY .x/ D g.x C y/
R1

0
g.x C y/dx

D g.x C y/
R1

y
g.x/dx

D g.x C y/

NG.y/ ;

writing NG.y/ for
R1

y
g.x/dx: Also, the marginal density of Y is

fY .y/ D
Z 1

0

g.x C y/dx D
Z 1

y

g.x/dx D NG.y/:

Substituting into the general case formula for the density of a sum,

fZ.z/ D
Z z

0

g.z/
NG.y/

NG.y/dy D zg.z/;

a very neat formula.
As an application, consider the example of .X; Y / being uniformly distributed in

a triangle with the joint density f .x; y/ D 2; x; y � 0; x C y 
 1: Identifying the
function g as g.z/ D 2I0�z�1, we have, from our general formula above, that in this
case Z D X C Y has the density fZ.z/ D 2z; 0 
 z 
 1:

Example 13.5 (Sums of Cauchy Variables). Let X and Y be independent standard
Cauchy random variables with the common density function f .x/ D 1

�.1Cx2/
;

�1 < x < 1. Then, the density of the convolution is

fZ.z/ D
Z 1

�1
fX .z � y/fY .y/dy D

Z 1

�1
f .z � y/f .y/dy

D 1

�2

Z 1

�1
1

.1C .z � y/2/.1C y2/
dy

D 1

�2

2�

4C z2
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�
on a partial fraction expansion of 1

.1C.z�y/2/.1Cy2/

�

D 2

�.4C z2/
:

Therefore, the density ofW D Z
2

D XCY
2

would be 1
�.1Cw2/

, which is, remarkably,

the same standard Cauchy density that we had started with.

By using characteristic functions, which we have not discussed in this text, it can
be shown that if X1; X2; : : : ; Xn are independent standard Cauchy variables, then,
for any n � 2, their average NX D X1CX2C���CXn

n
also has the standard Cauchy

distribution.

Example 13.6 (Normal-Poisson Convolution). Here is an example of the convolu-
tion of one continuous and one discrete random variable. Let X � N.0; 1/ and
Y � Poi.�/. Then their sum Z D X C Y is still continuous and has the density

fZ.z/ D
1X

yD0

�.z � y/
e���y

yŠ
:

More generally, ifX � N.0; �2/ and Y � Poi.�/, then the density of the sum is

fZ.z/ D 1

�

1X

yD0

�
� z � y

�

� e���y

yŠ
:

This is not expressible in terms of the elementary functions. However, it is
interesting to plot the density. The plot in Figure 13.1 shows an unconventional
and strange density function for the convolution with multiple local maxima and
shoulders.

−2 2 4 6 8 10 12
x

0.05

0.1

0.15

0.2

0.25

Fig. 13.1 Convolution of N.0; :09/ and Poi (4)
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For purposes of summary and easy reference, we list some convolutions of
common types below.

Distribution of Summands Distribution of Sum
Xi 	 Bin.ni ; p/ Bin.

P
ni ; p/

Xi 	 Poi.�i / Poi.
P
�i/

Xi 	 NB.ri ; p/ NB.
P
ri ; p/

Xi 	 Exp.�/ Gamma.n; �/
Xi 	 N.�i ; �

2
i / N.

P
�i ;

P
�2i /

Xi 	 C.�i ; �
2
i / C.

P
�i ; .

P
�i /

2/

Xi 	 U Œa; b� See Chapter 10

13.2 Products and Quotients and the t and F Distributions

Suppose X and Y are two random variables. Then two other functions that arise
naturally in many applications are the product XY and the quotient X

Y
. Following

exactly the same technique as for convolutions, one can find the density of each of
XY and X

Y
. More precisely, one first finds the CDF by using the iterated expecta-

tion technique, exactly as we did for convolutions, and then differentiates the CDF
to obtain the density. The density formulas are given below; they are extremely im-
portant and useful. They are proved in exactly the same way that the formula for the
density of the convolution was obtained above; you would condition and then take
an iterated expectation. Therefore, the formal details are omitted.

Theorem 13.2. Let X and Y be continuous random variables with a joint density
f .x; y/. Let U D XY; V D X

Y
. Then the densities of U; V are given by

fU .u/ D
Z 1

�1
1

jxjf
�
x;

u

x

�
dx;

fV .v/ D
Z 1

�1
jyjf .vy; y/dy:

Example 13.7 (Product and Quotient of Uniforms). Suppose X and Y are inde-
pendent U Œ0; 1� random variables. Then, by the theorem above, the density of the
product U D XY is

fU .u/ D
Z 1

�1
1

jxjf
�
x;

u

x

�
dx

D
Z 1

u

1

x
	 1dx D � log u; 0 < u < 1:
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Next, again by the theorem above, the density of the quotient V D X
Y

is

fV .v/ D
Z 1

�1
jyjf .vy; y/dy D

Z minf
1

v
;1g

0

ydy

D
.minf1

v
; 1g/2
2

; 0 < v < 1I

thus, the density of the quotient V is

fV .v/ D 1

2
if 0 < v 
 1I

D 1

2v2
if v > 1:

The density of the quotient is plotted in Figure 13.2; we see that it is continuous, but
not differentiable at v D 1.

Example 13.8 (Ratio of Standard Normals). The distribution of the ratio of two
independent standard normal variables is an interesting one; we now show that it is
in fact a standard Cauchy distribution. Indeed, by applying the general formula, the
density of the quotient V D X

Y
is

fV .v/ D
Z 1

�1
jyjf .vy; y/dy

D 1

2�

Z 1

�1
jyje� y2

2
.1Cv2/dy

1 2 3 4 5
v

0.1

0.2

0.3

0.4

0.5

Fig. 13.2 Density of quotient of two uniforms
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D 1

�

Z 1

0

ye� y2

2
.1Cv2/dy

D 1

�.1C v2/
;�1 < v < 1;

by making the substitution t D p
1C v2y in the integral on the last line. This proves

that the quotient has a standard Cauchy distribution.

It is important to note that zero means for the normal variables are essential for
this result. If either X or Y has a nonzero mean, the quotient has a complicated
distribution and is definitely not Cauchy. The distribution is worked out in Hinkley
(1969). It is also highly interesting that there are many other distributions F such
that if X and Y are independent with the common distribution F , then the quotient
X
Y

is distributed as a standard Cauchy. One example of such a distribution F is a

continuous distribution with the density f .x/ D
p

2
�

1
1Cx4 ;�1 < x < 1.

Example 13.9 (The F Distribution). Let X � G.˛; 1/; Y � G.ˇ; 1/, and suppose

X and Y are independent. The distribution of the ratio R D X=˛
Y=ˇ

arises in statistics
in many contexts and is called an F distribution. We derive the explicit form of the
density here.

First, we will find the density of X
Y

, from which the density of R D X=˛
Y=ˇ

will
follow easily. Again, by applying the general formula for the density of a quotient,
the density of the quotient V D X

Y
is

fV .v/ D
Z 1

�1
jyjf .vy; y/dy D 1

�.˛/�.ˇ/

Z 1

0

ye�y.1Cv/.vy/˛�1yˇ�1dy

D 1

�.˛/�.ˇ/
v˛�1

Z 1

0

e�y.1Cv/y˛Cˇ�1dy

D 1

�.˛/�.ˇ/
v˛�1 �.˛ C ˇ/

.1C v/˛Cˇ

D �.˛ C ˇ/

�.˛/�.ˇ/

v˛�1

.1C v/˛Cˇ
; 0 < v < 1:

To complete the example, notice now that R D cV , where c D ˇ
˛

. Therefore, the
density of R is immediately obtained from the density of V . Indeed,

fR.r/ D 1

c
fV

� r

c

�
;

where fV is the function we just derived above. If we simplify fR.r/, we get the
final expression

fR.r/ D

�
ˇ

˛

�ˇ

r˛�1

B.˛; ˇ/

�

r C ˇ

˛

�˛Cˇ
; r > 0:
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This is the F - density with parameters ˛; ˇ; it is common in statistics to refer to 2˛
and 2ˇ as the degrees of freedom of the distribution.

Example 13.10 (The Student t Distribution). Once again, the t distribution is one
that arises frequently in statistics. Suppose X � N.0; 1/;Z � �2

m, and that X

andZ are independent. Let Y D
q

Z
m

. Then the distribution of the quotient V D X
Y

is called the t distribution with m degrees of freedom. We derive its density in this
example.

Recall that Z has the density e�z=2zm=2�1

2m=2�. m
2

/
; z > 0. Therefore, Y D

q
Z
m

has the

density

fY .y/ D mm=2e�my2=2ym�1

2m=2 �1�
�

m
2

� ; y > 0:

Since, by hypothesis,X andZ are independent, it follows that X and Y are also in-
dependent, so their joint density f .x; y/ is just the product of the marginal densities
of X and Y .

Once again, by applying our general formula for the density of a quotient,

fV .v/ D
Z 1

�1
jyjf .vy; y/dy

D mm=2

p
2�2m=2 �1�

�
m
2

�

Z 1

0

ye�v2y2=2e�my2=2ym�1dy

D mm=2

p
2�2m=2 �1�

�
m
2

�

Z 1

0

e�.v2Cm/y2=2ymdy

D mm=2

p
2�2m=2 �1�

�
m
2

� 	 �
�

mC1
2

�
2.m�1/=2

.mC v2/.mC1/=2

D mm=2�
�

mC1
2

�

p
��

�
m
2

�
1

.mC v2/.mC1/=2

D �
�

mC1
2

�

p
m��

�
m
2

� �
1C v2

m

�.mC1/=2
;�1 < v < 1:

This is the density of the Student t distribution with m degrees of freedom.
Note that when the degree of freedom m D 1, this becomes just the standard

Cauchy density. The t distribution was first derived in 1908 by William Gossett
writing under the pseudonym Student. The distribution was later named the Student
t distribution by Ronald Fisher.

The t density, just like the standard normal, is symmetric and unimodal around
zero, although with tails much heavier than that of the standard normal for small
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Fig. 13.3 t density for m D 3; 20; 30 degrees of freedom with N.0; 1/ density superimposed

values of m. However, as m ! 1, the density converges pointwise to the standard
normal density, and then the t and the standard normal densities look almost the
same. We give in Figure 13.3 a plot of the t density for a few degrees of freedom
and that of the standard normal density for a visual comparison.

Example 13.11 (An Interesting Gaussian Factorization). We will exhibit indepen-
dent random variablesX and Y in this example such thatXY has a standard normal
distribution. Note that if we allow Y to be a constant random variable, then we can
always write such a factorization. After all, we can take X to be standard normal
and Y to be 1! So, we will exhibit nonconstant X; Y such that they are independent
and XY has a standard normal distribution.

For this, let X have the density xe�x2=2; x > 0, and let Y have the density
1

�
p

1�y2
;�1 < y < 1: Then, by our general formula for the density of a product,

the product U D XY has the density

fU .u/ D
Z 1

�1
1

jxjf
�
x;

u

x

�
dx

D 1

�

Z 1

juj
1

x
xe�x2=2 1

q
1 � u2

x2

dx

D 1

�

Z 1

juj
xe�x2=2

p
x2 � u2

dx

D 1

�

r
�

2
e�u2=2 D 1p

2�
e�u2=2;

where the final integral is obtained by the substitution x2 D u2 C z2.

13.3 Transformations

The simple technique that we used in the previous section to derive the density of a
sum or a product does not extend to functions of a more complex nature. Consider
the simple case of just two continuous variables X and Y with some joint density
f .x; y/, and suppose we want to find the density of some function U D g.X; Y /.
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Then, the general technique is to pair up U with another function V D h.X; Y /

and first obtain the joint CDF of .U; V / from the joint CDF of .X; Y /. The pairing
up has to be done carefully; i.e., only some judicious choices of V will work in
a given example. Having found the joint CDF of .U; V /, by differentiation one
finds the joint density of .U; V / and then finally integrates out v to obtain the den-
sity of just U . Fortunately, this agenda does work out because the transformation
from .X; Y / to .U; V / can be treated as just a change of variable in manipula-
tion with double integrals, and calculus tells us how to find double integrals by
making suitable changes of variables (i.e., substitutions). Indeed, the method works
out for any number of jointly distributed variables, X1; X2; : : : ; Xn, and a function
U D g.X1; X2; : : : ; Xn/, and the reason it works out is that the whole method is
just a change of variables in manipulating a multivariate integral.

The following theorem is on density of a multivariate transformation and is a
major theorem in multivariate distribution theory. It is really nothing but the change
of variable theorem of multivariate calculus. After all, probabilities in the continuous
case are integrals, and an integral can be evaluated by changing variables to a new
set of coordinates. If we do that, then we have to put in the Jacobian term coming
from making the change of variable. Translated into densities, the theorem is the
following.

Theorem 13.3 (Multivariate Jacobian Formula). Let X D .X1; X2; : : : ; Xn/

have the joint density function f .x1; x2; : : : ; xn/, such that there is an open set
S � Rn with P.X 2 S/ D 1. Suppose ui D gi .x1; x2; : : : ; xn/; 1 
 i 
 n are n
real-valued functions of x1; x2; : : : ; xn such that:

(a) .x1; x2; : : : ; xn/ ! .g1.x1; x2; : : : ; xn/; : : : ; gn.x1; x2; : : : ; xn// is a one-to-
one function of .x1; x2; : : : ; xn/ on S with range space T I

(b) the inverse functions xi D hi .u1; u2; : : : ; un/; 1 
 i 
 n; are continuously
differentiable on T with respect to each uj ; and

(c) the Jacobian determinant

J D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

@x1

@u1

@x1

@u2

� � � @x1

@un

@x2

@u1

@x2

@u2

� � � @x2

@un

:::
:::

:::
:::

@xn

@u1

@xn

@u2

� � � @xn

@un

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

is nonzero.
Then the joint density of .U1; U2; : : : ; Un/ is given by

fU1;U2;:::;Un
.u1; u2; : : : ; un/ D f .h1.u1; u2; : : : ; un/; : : : ; hn.u1; u2; : : : ; un//	jJ j;

where jJ j denotes the absolute value of the Jacobian determinantJ and the notation
f on the right-hand side means the original joint density of .X1; X2; : : : ; Xn/.



332 13 Convolutions and Transformations

13.4 Applications of the Jacobian Formula

We will now see a number of examples applying the Jacobian formula to finding the
density of interesting transformations. We emphasize that quite often only one of
the functions ui D gi .x1; x2; : : : ; xn/ will be provided for which we want to find the
density function. But unless that function is a really simple one, its density cannot be
found directly without invoking the Jacobian theorem given here. It is necessaary to
make up the remaining .n�1/ functions and then obtain their joint density by using
this Jacobian theorem. Finally, one would integrate out all these other coordinates
to get the density function of just ui . The other .n � 1/ functions need to be found
judiciously.

Example 13.12 (A Relation Between Exponential and Uniform). Let X and Y be
independent standard exponentials, and define U D X

XCY
. We want to find the

density of U . We have to pair it up with another function V in order to use the
Jacobian theorem. We choose V D X C Y . We have here a one-to-one function for
x > 0; y > 0. Indeed, the inverse functions are

x D x.u; v/ D uvIy D y.u; v/ D v � uv D v.1 � u/:

The partial derivatives of the inverse functions are

@x

@u
D vI @x

@v
D uI @y

@u
D �vI @y

@v
D 1 � u:

Thus, the Jacobian determinant equals J D v.1 � u/ C uv D v: By invoking the
Jacobian theorem, the joint density of U; V is

fU;V .u; v/ D e�uve�v.1�u/jvj D ve�v;

0 < u < 1; v > 0:
Thus, the joint density of U; V has factorized into a product form on a rectangle;

the marginals are

fU .u/ D 1; 0 < u < 1IfV .v/ D ve�v; v > 0;

and the rectangle is .0; 1/ 	 .0;1/. Therefore, we have proved that if X and Y are
independent standard exponentials, then X

XCY
and X C Y are independent and are

respectively uniform and Gamma. Of course, we already knew thatXCY � G.2; 1/

from our mgf proof in Chapter 8.

Example 13.13 (A Relation Between Gamma and Beta). The previous example
generalizes in a nice way. Let X and Y be independent variables, distributed re-
spectively as G.˛; 1/ and G.ˇ; 1/. Again let U D X

XCY
; V D X C Y . Then, from

our previous example, the Jacobian determinant is still J D v. Therefore, the joint
density of U; V is
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fU;V .u; v/ D 1

�.˛/�.ˇ/
e�v.uv/˛�1.v.1 � u//ˇ�1v

D 1

�.˛/�.ˇ/
u˛�1.1 � u/ˇ�1e�vv˛Cˇ�1;

0 < u < 1; v > 0:
Once again, we have factorized the joint density of U and V as the product of the

marginal densities, with .U; V / varying in the rectangle .0; 1/	.0;1/, the marginal
densities being

fV .v/ D e�vv˛Cˇ�1

�.˛ C ˇ/
; v > 0;

fU .u/ D �.˛ C ˇ/

�.˛/�.ˇ/
u˛�1.1 � u/ˇ�1; 0 < u < 1:

That is, if X and Y are independent Gamma variables, then X
XCY

and X C Y are
independent and are respectively distributed as Beta and Gamma. Of course, we
already knew from an mgf argument that X C Y is Gamma.

This relationship between the Gamma and the Beta distributions is useful in sim-
ulating values from a Beta distribution.

13.5 Polar Coordinates in Two Dimensions

Example 13.14 (Transformation to Polar Coordinates). We have already worked
out a few examples where we transformed two variables to their polar coordinates in
order to calculate expectations of suitable functions when the variables have a spher-
ically symmetric density. We now use a transformation to polar coordinates to do
distributional calculations. In any spherically symmetric situation, transformation
to polar coordinates is a technically useful device and gets the answers out quickly
for many problems.

Let .X; Y / have a spherically symmetric joint density given by f .x; y/ D
g.
p
x2 C y2/. Consider the polar transformation r D p

X2 C Y 2; 	 D arctan. Y
X
/:

This is a one-to-one transformation, with the inverse functions given by

x D r cos 	; y D r sin 	:

The partial derivatives of the inverse functions are

@x

@r
D cos 	;

@x

@	
D �r sin 	;

@y

@r
D sin 	;

@y

@	
D r cos 	:
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Therefore, the Jacobian determinant is J D r cos2 	Cr sin2 	 D r: By the Jacobian
theorem, the density of .r; 	/ is

fr;	 .r; 	/ D rg.r/;

with r; 	 belonging to a suitable rectangle that will depend on the exact set of values
.x; y/ on which the original joint density f .x; y/ is strictly positive. But, in any
case, we have established that the joint density of .r; 	/ factorizes into the product
form on a rectangle, so in any spherically symmetric situation, the polar coordi-
nates r and 	 are independent, a very convenient fact. In a spherically symmetric
case, r will always have the density crg(r) on some interval and for some suitable
normalizing constant c, and 	 will have a uniform density on some interval.

Now consider three specific choices of the original density function. First con-
sider the uniform case:

f .x; y/ D 1

�
; 0 < x2 C y2 < 1:

Then g.r/ D 1
�
; 0 < r < 1: So, in this case, r has the density 2r; 0 < r < 1, and 	

has the uniform density 1
2�
;�� < 	 < � .

Next consider the case of two independent standard normals. Indeed, in this case,
the joint density is spherically symmetric;

f .x; y/ D 1

2�
e�.x2Cy2/=2;�1 < x; y < 1:

Thus, g.r/ D 1
2�
e�r2=2; r > 0. Therefore, in this case, r has the Weibull density

re�r2=2; r > 0, and 	 again is uniform on .��; �/.
Finally, consider the case of two independent folded standard normals; i.e., each

of X; Y has the density
q

2
�
e�x2=2; x > 0. In this case, r varies on .0;1/ but 	

varies on .0; �
2
/. Thus, r and 	 are still independent, but this time 	 is uniform on

.0; �
2
/, while r still has the same Weibull density re�r2=2; r > 0.

Example 13.15 (Usefulness of the Polar Transformation). Suppose .X; Y / are
jointly uniform in the unit circle. We will use the joint density of .r; 	/ to find the
answers to a number of questions.

First, by using the polar transformation,

E.X C Y / D EŒr.cos 	 C sin 	/�

D E.r/E.cos 	 C sin 	/:

Now, E.r/ < 1 and

E.cos 	 C sin 	/ D 1

2�

Z �

��

.cos 	 C sin 	/d	

D 1

2�
.0C 0/ D 0:
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Therefore, E.X C Y / D 0: It should be noted that actually each of X; Y has mean
zero in this case, so we could have proved that E.X C Y / D 0 directly, too.

Next, suppose we want to find the probability that .X; Y / lies in the intersection
of the spherical shell 1

4

 p

X2 C Y 2 
 3
4

and the coneX; Y > 0; 1p
3


 X
Y


 p
3:

This looks like a hard problem! But polar coordinates will save us. Transforming to
the polar coordinates, this probability is

P

�
1

4

 r 
 3

4
;
�

6

 	 
 �

3

�

D P

�
1

4

 r 
 3

4

�

P
��

6

 	 
 �

3

�

D
Z 3

4

1
4

2rdr 	 1

12
D 1

24
:

It would have been a much more tedious calculation to do this using the original
rectangular coordinates.

Example 13.16 (Product of n Uniforms). Let X1; X2; : : : ; Xn be independent
U Œ0; 1� variables, and suppose we want to find the density of the product
U D Un D Qn

iD1Xi . According to our general discussion, we have to choose
n � 1 other functions and then apply the Jacobian theorem. Define

u1 D x1; u2 D x1x2; u3 D x1x2x3; : : : ; un D x1x2 : : : xn:

This is a one-to-one transformation, and the inverse functions are xi D ui

ui�1
; 2 


i 
 nI x1 D u1: Thus, the Jacobian matrix of the partial derivatives is lower tri-
angular, and therefore the Jacobian determinant equals the product of the diagonal
elements

J D
nY

iD1

@xi

@ui

D 1
Qn�1

iD1 ui

:

Now, applying the Jacobian density theorem, the joint density of U1; U2; : : : ; Un is

fU1;U2;:::;Un
.u1; u2; : : : ; un/ D 1

Qn�1
iD1 ui

;

0 < un < un�1 < � � � < u1 < 1:

On integrating out u1; u2; : : : ; un�1, we get the density of Un:

fUn
.u/ D

Z 1

u

Z 1

un�1

� � �
Z 1

u2

1

u1u2 � � � un�1

du1du2 � � �dun�2dun�1

D j.log u/n�1j
.n � 1/Š

;

0 < u < 1: This example illustrates that applying the Jacobian theorem needs care-
ful manipulation with multiple integrals and that skills in using the Jacobian tech-
nique are very important in deriving distributions of functions of many variables.
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13.6 Synopsis

(a) If X and Y are continuous random variables, then the CDF of Z D X C Y is
given by

P.Z 
 z/ D
Z 1

�1
FX jY .z � y/fY .y/dy;

where FX jY .u/ denotes the CDF of the conditional distribution of X given Y
and fY .y/ denotes the marginal density of Y . IfX and Y are independent, then
this simplifies to

P.X C Y 
 z/ D
Z 1

�1
FX .z � y/fY .y/dy;

and the density of X C Y is given by

fXCY .z/ D
Z 1

�1
fX .z � y/fY .y/dy:

This is called the density of the convolution of the distributions of X; Y , or
simply the density of the convolution.

(b) If X and Y have a joint density f .x; y/, then the density of their product U D
XY is given by

fU .u/ D
Z 1

�1
1

jxjf
�
x;

u

x

�
dx

and the density of the quotient V D X
Y

is given by

fV .v/ D
Z 1

�1
jyjf .vy; y/dy:

(c) (i) The ratio of two iid standard normal variables has a standard Cauchy
distribution.

(ii) If X � N.0; 1/;Z � �2
m, X and Z are independent, and Y D

q
Z
m

, then

the ratio V D X
Y

has the t distribution with m degrees of freedom, with
density given by

fV .v/ D �.mC1
2
/

p
m��.m

2
/.1C v2

m
/.mC1/=2

;�1 < v < 1:

(iii) If X � G.˛; 1/; Y � G.ˇ; 1/, and X and Y are independent, then the ratio

V D X=˛
Y=ˇ

has an F distribution with density given by

fV .v/ D �.˛ C ˇ/

�.˛/�.ˇ/

v˛�1

.1C v/˛Cˇ
; 0 < v < 1:
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(d) The multivariate Jacobian formula gives the density function of a set of n
one-to-one functions of an original set of n continuous variables. It says that
if X1; X2; : : : ; Xn have the joint density function f .x1; x2; : : : ; xn/ and ui D
gi .x1; x2; : : : ; xn/; 1 
 i 
 n are n real-valued functions of x1; x2; : : : ; xn

such that .x1; x2; : : : ; xn/ ! .u1; u2; : : : ; un/ is a one-to-one function of
.x1; x2; : : : ; xn/ with the inverse functions xi D hi .u1; u2; : : : ; un/; i D
1; 2; : : : ; n, then the joint density of .U1; U2; : : : ; Un/ is given by

fU1;U2;:::;Un
.u1; u2; : : : ; un/ D f .h1.u1; u2; : : : ; un/; : : : ;

hn.u1; u2; : : : ; un// 	 jJ j;

where jJ j denotes the absolute value of the Jacobian determinant J , given by

J D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

@x1

@u1

@x1

@u2

� � � @x1

@un

@x2

@u1

@x2

@u2

� � � @x2

@un
:::

:::
:::

:::
@xn

@u1

@xn

@u2

� � � @xn

@un

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:

This is one of the major theorems in multidimensional probabilities, and it is
essential to become skilled in using this theorem correctly.

(e) Transformation to polar coordinates is a useful technique in dealing with spheri-
cally symmetric densities. A joint density of the form f .x; y/ D g.

p
x2 C y2/

is called spherically symmetric in two dimensions. If .X; Y / have a spherically
symmetric joint density g.

p
x2 C y2/, then the polar coordinates, defined as

r D
p
X2 C Y 2; 	 D arctan

�
Y

X

�

;

are independently distributed. In particular, the density of r is crg.r/ for some
constant c and 	 has a uniform density on some suitable interval. See the text
for additional details.

(f) In the special case where X and Y are iid standard normal, the density of r is

re�r2=2; 0 < r < 1, and 	 is uniform on .��; �/.

13.7 Exercises

Exercise 13.1. Suppose X � U Œ0; 1�, that Y has the density 2y; 0 < y < 1; and
that X and Y are independent. Find the densities of XY and X

Y
.
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Exercise 13.2. Suppose X � U Œ0; 1�, that Y has the density 2y; 0 < y < 1; and
that X and Y are independent. Find the densities of X C Y;X � Y; jX � Y j.
Exercise 13.3. Suppose .X; Y / have the joint pdf f .x; y/ D c.x C y/e�x�y ;

x; y > 0:

(a) Are X and Y independent?
(b) Find the normalizing constant c.
(c) Find the density of X C Y .

Exercise 13.4. Suppose X and Y have the joint density cxy; 0 < x < y < 1:

(a) Are X and Y independent?
(b) Find the normalizing constant c.
(c) Find the density of XY .

Exercise 13.5. * (A Conditioning Argument). Suppose a fair coin is tossed twice
and the number of heads obtained is N . Let X and Y be independent U Œ0; 1� vari-
ables and independent of N . Find the density of NXY .

Exercise 13.6. Suppose X � U Œ0; a�; Y � U Œ0; b�; Z � U Œ0; c�; 0 < a < b < c,
and that X; Y;Z are independent. Let m D minfX; Y;Zg. Find expressions for
P.m D X/; P.m D Y /; P.m D Z/:

Exercise 13.7. Suppose X and Y are independent standard exponential random
variables. Find the densities of XY and XY

.XCY /2 .

Hint: Use Y
XCY

D 1 � X
XCY

, and see the examples in the text.

Exercise 13.8. * (Uniform in a Circle). Suppose .X; Y / are jointly uniform in the
unit circle. By transforming to polar coordinates, find the expectations of XY

X2CY 2

and of XYp
X2CY 2

.

Exercise 13.9. * (Length of Bivariate Uniform). Suppose X and Y are indepen-
dent U Œ0; 1� variables.

(a) Find the densities of X2 C Y 2 and P.X2 C Y 2 
 1/.
(b) Show that E.

p
X2 C Y 2/ � :765:

Hint: It is best to do this directly and not try polar coordinates.

Exercise 13.10. Suppose .X; Y / have the joint CDF F.x; y/D x3y2; 0
x; y 
 1.
Find the densities of XY and X

Y
.

Exercise 13.11. * (Distance Between Two Random Points). Suppose P D
.X; Y / and Q D .Z;W / are two picked points independently from the unit
circle, each according to a uniform distribution in the circle. What is the average
distance between P andQ?
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Exercise 13.12. * (Distance from the Boundary). A point is picked uniformly
from the unit square. What is the expected value of the distance of the point from
the boundary of the unit square?

Exercise 13.13. SupposeX and Y are independent standard normal variables. Find
the values P.X

Y
< 1/ and of P.X < Y /. Why are they not the same?

Exercise 13.14 (A Normal Calculation). A marksman is going to take two shots
at a bull’s eye. The distances from the bull’s eye of the first and second shots are dis-
tributed as .jX j; jY j/, where X � N.0; �2/; Y � N.0; �2/, and X and Y are
independent. Find a formula for the probability that the second shot is closer to
the target.

Exercise 13.15. * (Quotient in Bivariate Normal). Suppose .X; Y / have a bivari-
ate normal distribution with zero means, unit standard deviations, and a correla-
tion �. Show that X

Y
still has a Cauchy distribution.

Exercise 13.16. * (Product of Beta). SupposeX and Y are independentBe.˛; ˇ/;
Be.
; ı/ random variables. Find the density of XY . Do you recognize the form?

Exercise 13.17. * (Product of Normals). Suppose X and Y are independent stan-
dard normal variables. Find the density of XY .

Hint: The answer will involve a Bessel functionK0.

Exercise 13.18. * (Product of Cauchy). Suppose X and Y are independent stan-
dard Cauchy variables. Derive a formula for the density of XY .

Exercise 13.19. Prove that the square of a t random variable has an F - distribution.

Exercise 13.20. * (Box-Mueller Transformation). Suppose X and Y are
independent U Œ0; 1� variables. Let U D p�2 logX cos.2�Y /; V D p�2 logX
sin.2�Y /: Show that U and V are independent and that each is standard normal.

Remark. This is a convenient method for generating standard normal values by us-
ing only uniform random numbers.

Exercise 13.21. * (Deriving a General Formula). Suppose .X; Y;Z/ have a joint
density of the form f .x; y; z/ D g.x C y C z/; x; y; z > 0: Find a formula for the
density of X C Y CZ.

Exercise 13.22. Suppose .X; Y;Z/ have a joint density f .x; y; z/ D 6
.1CxCyCz/4 ;

x; y; z > 0: Find the density of X C Y CZ.

Exercise 13.23 (Deriving a General Formula). Suppose X � U Œ0; 1� and Y is an
arbitrary continuous random variable. Derive a general formula for the density of
X C Y .

Exercise 13.24 (Convolution of Uniform and Exponential). Let X � U Œ0; 1�;

Y � Exp.�/, and X and Y are independent. Find the density of X C Y .
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Exercise 13.25 (Convolution of Uniform and Normal). Let X � U Œ0; 1�; Y �
N.�; �2/, and X and Y are independent. Find the density of X C Y .

Exercise 13.26 (Convolution of Uniform and Cauchy). Let X � U Œ0; 1�; Y �
C.0; 1/, and X and Y are independent. Find the density of X C Y .

Exercise 13.27 (Convolution of Uniform and Poisson). Let X � U Œ0; 1�; Y �
Poi.�/, and let X and Y be independent. Find the density of X C Y .

Exercise 13.28. * (Bivariate Cauchy). Suppose .X; Y / has the joint pdf f .x; y/ D
c

.1Cx2Cy2/3=2 ;�1 < x; y < 1.

(a) Find the normalizing constant c.
(b) Are X and Y independent?
(c) Find the densities of the polar coordinates r; 	 .
(d) Find P.X2 C Y 2 
 1/.

Exercise 13.29. * SupposeX; Y;Z are independent standard exponentials. Find the
joint density of X

XCY CZ
; XCY

XCY CZ
; X C Y CZ.

Exercise 13.30 (Correlation). SupposeX and Y are independentU Œ0; 1� variables.
Find the correlation between X C Y and

p
XY .

Exercise 13.31 (Correlation). Suppose X and Y are jointly uniform in the unit
circle. Find the correlation between XY and X2 C Y 2.

Exercise 13.32. * (Sum and Difference of General Exponentials). Suppose X �
Exp.�/; Y � Exp.�/, and that X and Y are independent. Find the densities of
X C Y and X � Y .

Exercise 13.33. * (Double Exponential Convolution). Suppose X and Y are
independent standard double exponentials, each with the density 1

2
e�jxj;�1 <

x < 1. Find the density of X C Y .

Exercise 13.34. * LetX; Y;Z be independent standard normals. Show that XCYZp
1CZ2

has a normal distribution.

Exercise 13.35. * (Decimal Expansion of a Uniform). Let X � N.0; 1/ and sup-
pose X D :n1n2n3 : : : is the decimal expansion of X . Find the marginal and joint
distributions of n1; n2; : : : ; nk , for k � 1:

Exercise 13.36. * (Integer Part and Fractional Part). Let X be a standard
exponential variable. Find the joint distribution of the integer part and the frac-
tional part of X . Note that they do not have a joint density.

Exercise 13.37. * (Factorization of Chi-square). Suppose X has a chi-square
distribution with one degree of freedom. Find nonconstant independent random vari-
ables Y and Z such that YZ has the same distribution as X .

Hint: Look at the text.
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Exercise 13.38. * (Multivariate Cauchy). Suppose X1; X2; : : : ; Xn have the joint
density f .x1; : : : ; xn/ D c

.1Cx2
1

C���Cx2
n/

nC3
2

, where c is a normalizing constant.

Find the density of X2
1 CX2

2 C � � � CX2
n .

Exercise 13.39 (Ratio of Independent Chi-squares). Suppose X1; X2; : : : ; Xm

are independent N.�; �2/ variables and Y1; Y2; : : : ; Yn are independent N.	; �2/

variables. Assume also that all m C n variables are independent. Show that
.n�1/�2

Pm
iD1.Xi � NX/2

.m�1/�2
Pn

iD1.Yi � NY /2
has an F distribution.

Exercise 13.40 (Use Your Computer). Use the definition of a t distribution in
terms of a normal and a chi-square variable to simulate 100 values from a t
distribution with n degrees of freedom, n D 10; 20; 40. Find the variance of your
simulated values. Do you see a trend in the variance as you increase n? Would you
expect to?
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Chapter 14
Markov Chains and Applications

In many applications, successive observations of a process, say X1; X2; : : :, have an
inherent time component associated with them. For example, the Xi could be the
state of the weather at a particular location on the i th day, counting from some
fixed day. In a simplistic model, the state of the weather could be “dry” or “wet,”
quantified as, say, 0 and 1. It is hard to believe that in such an example, the sequence
X1; X2; : : : could be mutually independent. The question then arises how to model
the dependence among the Xi

0s . Probabilists have numerous dependency models.
A particular model that has earned a very special status is called the Markov chain.
In a Markov chain model, we assume that the future, given the entire past and the
present state of a process, depends only on the present state. In the weather example,
suppose we want to assign a probability that tomorrow, say March 10, will be dry,
and suppose that we have available to us the precipitation history for each day from
January 1 to March 9. In a Markov chain model, our probability that March 10 will
be dry will depend only on the state of the weather on March 9, even though the
entire past precipitation history was available to us. As simple as it sounds, Markov
chains are enormously useful in applications, perhaps more than any other specific
dependency model. They also are independently relevant to statistical computing in
very important ways. The topic has an incredibly rich and well-developed theory,
with links to many other topics in probability theory. Familiarity with basic Markov
chain terminology and theory is often considered essential for anyone interested in
studying statistics and probability. We present an introduction to basic Markov chain
theory in this chapter.

Feller (1968), Freedman (1975), and Isaacson and Madsen (1976) are classic
references on Markov chains. Modern treatments are available in Bhattacharya
and Waymire (2009), Brémaud (1999), Meyn and Tweedie (1993), Norris (1997),
Seneta (1981), and Stirzaker (1994). Classic treatments of the problem of gambler’s
ruin are available in Feller (1968) and Kemperman (1950). Numerous interesting
examples at more advanced levels are available in Diaconis (1988); sophisticated
applications at an advanced level are also available in Bhattacharya and Waymire
(2009).

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 14, c� Springer Science+Business Media, LLC 2010
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14.1 Notation and Basic Definitions

Definition 14.1. A sequence of random variables fXng; n � 0, is said to be a
Markov chain if, for some countable set S � R and any n � 1; xnC1; xn; : : : ;

x0 2 S ,

P.XnC1 D xnC1 jX0 D x0; : : : ; Xn D xn/ D P.XnC1 D xnC1 jXn D xn/:

The set S is called the state space of the chain. If S is a finite set, the chain is called
a finite-state Markov chain. X0 is called the initial state.

Without loss of generality, we can denote the elements of S as 1; 2; : : :, although
in some examples we may use the original labeling of the states to avoid confusion.

Definition 14.2. The distribution of the initial state X0 is called the initial dis-
tribution of the chain. We will denote the pmf of the initial distribution as
�i D P.X0 D i/.

Definition 14.3. A Markov chain fXng is called homogeneous or stationary if
P.XnC1 D yjXn D x/ is independent of n for any x; y.

Definition 14.4. Let fXng be a stationary Markov chain. Then the probabilities
pij D P.XnC1 D j jXn D i/ are called the one-step transition probabilities, or
simply transition probabilities. The matrix P D ..pij// is called the transition prob-
ability matrix.

Definition 14.5. Let fXng be a stationary Markov chain. Then the probabilities
pij.n/ D P.XnCm D j jXm D i/ D P.Xn D j jX0 D i/ are called the n-step

transition probabilities, and the matrix P .n/ D ..pij.n/// is called the n-step tran-
sition probability matrix.

Remark. If the state space of the chain is finite and has, say, t elements, then the
transition probability matrix P is a t 	 t matrix. Note that

P
j 2S pij is always one.

A matrix with this property is called a stochastic matrix.

Definition 14.6. A t 	 t square matrix P is called a stochastic matrix if, for
each i;

Pt
j D1 pij D 1. It is called doubly stochastic or bi-stochastic if, in addi-

tion, for every j;
Pt

iD1 pij D 1. Thus, a transition probability matrix is always a
stochastic matrix.

Example 14.1 (Weather Pattern). Suppose that, in some particular city, any day is
either dry or wet. If it is dry on some day, it remains dry the next day with probability
˛ and will be wet with the residual probability 1 � ˛. On the other hand, if it is wet
on some day, it remains wet the next day with probability ˇ and becomes dry with
probability 1 � ˇ. Let X0; X1; : : : be the sequence of states of the weather, with
X0 being the state on the initial day (on which observation starts). Then fXng is a
two-state stationary Markov chain with the transition probability matrix
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P D
�

˛ 1 � ˛
1� ˇ ˇ

�

:

Example 14.2 (Voting Preferences). Suppose that in a presidential election voters
can vote for either the Labor Party, the Conservative Party, or the Independent Party.
Someone who has voted for the Labor candidate in this election will vote Labor
again with 80% probability, will switch to Conservative with 5% probability, and
vote Independent with 15% probability. Someone who has voted for the Conserva-
tive candidate in this election will vote Conservative again with 90% probability,
switch to Labor with 3% probability, and vote Independent with 7% probability.
Someone who has voted for the Independent candidate in this election will vote
Independent again with 80% probability or switch to one of the other parties with
10% probability each. This is a three-state stationary Markov chain with state space
S D f1; 2; 3g  fLabor, Conservative, Independentg and the transition matrix

P D
0

@
:8 :05 :15

:03 :9 :07

:1 :1 :8

1

A :

Example 14.3 (An Urn Model Example). Two balls, say A and B , are initially in
urn 1, and two others, say C and D, are in urn 2. In each successive trial, one
ball is chosen at random from urn 1 and one independently and also at random
from urn 2, and these balls switch urns. We let Xn denote the vector of locations
of the four balls A;B;C;D, in that order of the balls, after the nth trial. Thus,
X10 D 1122 means that, after the tenth trial, A and B are located in urn 1 and
C and D in urn 2, etc. Note that X0 D 1122. Two of the four balls are always
in urn 1 and two in urn 2. Thus, the possible number of states is

�
4
2

� D 6. They
are 1122; 1212; 1221; 2112; 2121; 2211. Then fXng is a six-state stationary Markov
chain. What are the transition probabilities?

For notational convenience, denote the six states above as 1; 2; : : : ; 6,
respectively. For the state of the chain to move from state 1 to state 2 in one trial, B
and C have to switch their urns. This will happen with probability :5 	 :5 D :25.
As another example, for the state of the chain to move from state 1 to state 6, all of
the four balls must switch their urns. This is not possible. Therefore, this transition
probability is zero. Also, note that if the chain is in some state now, it cannot remain
in that same state after the next trial. Thus, all diagonal elements in the transition
probability matrix must be zero. Indeed, the transition probability matrix is

P D

0

B
B
B
B
B
B
B
@

0 :25 :25 :25 :25 0

:25 0 :25 :25 0 :25

:25 :25 0 0 :25 :25

:25 :25 0 0 :25 :25

:25 0 :25 :25 0 :25

0 :25 :25 :25 :25 0

1

C
C
C
C
C
C
C
A

:
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Notice that there are really three distinct rows in P , each occurring twice. It is easy
to argue that is how it should be in this particular urn experiment. Also note the
very interesting fact that in each row and each column there are two zeros, and the
nonzero entries obviously add to 1. This is an example of a transition probability
matrix that is doubly stochastic. Markov chains with a doubly stochastic transition
probability matrix show a unified long-run behavior. By definition, initially the chain
is in state 1, so P.X0 D 1/ D 1; P.X0 D i/ D 0 8i ¤ 0. However, after many
trials, the state of the chain would be any of the six possible states with essentially
an equal probability; i.e., P.Xn D i/ � 1

6
for each possible state i for large n. This

unifying long-run behavior of Markov chains with a doubly stochastic transition
probability matrix is a significant result with wide applications in Markov chain
theory.

Example 14.4 (Urn Model II: Ehrenfest Model). This example has wide applica-
tions in the theory of heat transfer. The mathematical model is that we initially have
m balls, some in one urn, say urn I, and the rest in another urn, say urn II. At each
subsequent time n D 1; 2; : : :, one ball among the m balls is selected at random. If
the ball is in urn I, with probability ˛ it is transferred to urn II and with probability
1 � ˛ it continues to stay in urn I. If the ball is in urn II, with probability ˇ it is
transferred to urn I and with probability 1 � ˇ it continues to stay in urn II.

Let X0 be the number of balls initially in urn I and Xn the number of balls in
urn I after time n. Then fXng is a stationary Markov chain with state space S D
f0; 1; : : : ; mg. If there are, say, i balls in urn I at a particular time, then at the next
instant urn I could lose one ball, gain one ball, or neither lose nor gain any ball.
It loses a ball if one of its i balls gets selected for possible transfer and then the
transfer actually happens. So pi;i�1 D i

m
˛. Using this simple argument, we get as

the one-step transition probabilities

pi;i�1 D i

m
˛Ipi;iC1 D m� i

m
ˇIpi i D 1 � i

m
˛ � m � i

m
ˇ;

and pij D 0 if j ¤ i � 1; i; i C 1.
As a specific example, suppose m D 7 and ˛ D ˇ D 1

2
. Then the transition

matrix on the state space S D f0; 1; : : : ; 7g can be worked out by using the formulas
given just above, and it is

P D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1
2

1
2

0 0 0 0 0 0

1
14

1
2

3
7

0 0 0 0 0

0 1
7

1
2

5
14

0 0 0 0

0 0 3
14

1
2

2
7

0 0 0

0 0 0 2
7

1
2

3
14

0 0

0 0 0 0 5
14

1
2

1
7

0

0 0 0 0 0 3
7

1
2

1
14

0 0 0 0 0 0 1
2

1
2

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:
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Example 14.5 (Machine Maintenance). Of the machines in a factory, a certain
number break down or are identified to be in need of maintenance on a given day.
They are sent to a maintenance shop the next morning. The maintenance shop is
capable of finishing its maintenance work on some k machines on any given day.
We are interested in the sequence fXng, where Xn denotes the number of machines
in the maintenance shop on the nth day, n � 0. We may take X0 D 0.

Let Z0 machines break down on day zero. Then, X1 D Z0. Of these, up to k
machines can be fixed by the shop on that day, and these are returned. But now,
on day 1, some Z1 machines break down at the factory, so that X2 D maxfX1 �
k; 0g CZ1 D maxfZ0 � k; 0g CZ1, of which up to k machines can be fixed by the
shop on the second day itself, and those are returned to the factory. We then have
X3 D maxfX2 � k; 0g CZ2

D Z0 CZ1 CZ2 � 2k if Z0 � k;Z0 CZ1 � 2k;

D Z2 if Z0 � k;Z0 CZ1 < 2k;

D Z1 CZ2 � k if Z0 < k;Z1 � k;

D Z2 if Z0 < k;Z1 < k;

and so on.
If Zi ; i � 0 are iid, then fXng forms a stationary Markov chain. The state

space of this chain is f0; 1; 2; : : :g. What is the transition probability matrix? For
simplicity, take k D 1. For example, P.X2 D 1 jX1 D 0/ D P.Z1 D 1

jZ0 D 0/ D P.Z1 D 1/ D p1 (say). On the other hand, as another example,
P.X2 D 2 jX1 D 4/ D 0. If we denote the common mass function of the Zi by
P.Zi D j / D pj ; j � 0, then the transition probability matrix is

P D

0

B
B
B
B
B
B
B
B
@

p0 p1 p2 p3 � � �
p0 p1 p2 p3 � � �
0 p0 p1 p2 � � �
0 0 p0 p1 � � �
0 0 0 p0 � � �

:::

1

C
C
C
C
C
C
C
C
A

:

Example 14.6 (Hopping Mosquito). Suppose a mosquito makes movements be-
tween the forehead, the left cheek, and the right cheek of an individual, which we
designate as states 1; 2; 3, according to the following rules. If at some time n the
mosquito is sitting on the forehead, then it will definitely move to the left cheek at
the next time nC 1; if it is sitting on the left cheek, it will stay there or move to the
right cheek with probability .5 each and if it is on the right cheek, it will stay there
or move to the forehead with probability .5 each.

Then the sequence of locations of the mosquito forms a three-state Markov chain
with the one-step transition probability matrix
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P D
0

@
0 1 0

0 :5 :5

:5 0 :5

1

A :

Example 14.7 (An Example from Genetics). Many traits in organisms, for example
humans, are determined by genes. For example, eye color in humans is determined
by a pair of genes. Genes can come in various forms or versions, which are called
alleles. An offspring receives one allele from each parent. A parent contributes one
of his or her alleles to an offspring with equal probability, and the parents make
their contributions independently. Certain alleles dominate over others. For exam-
ple, the allele for blue eye color is dominated by the allele for brown eye color. The
allele for blue color would be called recessive, and the allele for brown eye color
would be called dominant. If we denote these as b and B, respectively, then a person
may have the pair of alleles BB, Bb, or bb. They are called the dominant, hybrid,
and recessive genotypes, respectively. We denote them as d, h, and r, respectively.
Consider now the sequence of genotypes of descendants of an initial individual, and
denote the sequence as fXng; for any n;Xn must be one of d, h, or r (we may call
them 1, 2, 3).

Consider now a person with an unknown genotype (X0) mating with a known
hybrid. Suppose he has genotype d. He will necessarily contribute B to the offspring.
Therefore, the offspring can only have genotype d or h, and not r. It will be d if the
offspring also gets the B allele from the mother, and it will be h if the offspring gets
b from the mother. The chance of each is 1

2
. Therefore, the transition probability

P.X1 Dd jX0 Dd/DP.X1 Dh jX0 D d/D 1
2

, and P.X1 D r jX0 Dd/D 0.

Suppose X0 D h. Then the father contributes B or b with probability 1
2

each,
and so does the mother, who was assumed to be a hybrid. So the probabilities that
X1 D d; h; r are respectively 1

4
; 1

2
; 1

4
.

IfX0 D r , thenX1 can only be h or r , with probability 1
2

each. So, if we assume
this same mating scheme over generations, then fXng forms a three-state stationary
Markov chain with the transition probability matrix

P D

0

B
@

:5 :5 0

:25 :5 :25

0 :5 :5

1

C
A :

Example 14.8 (Simple Random Walk). Consider a particle starting at the origin
at time zero and making independent movements of one step to the right or one step
to the left at each successive time instant 1; 2; : : :. Assume that the particle moves
to the right at any particular time with probability p and to the left with probabil-
ity q D 1 � p. The mathematical formulation is that the successive movements
are iid random variables X1; X2; : : : with common pmf P.Xi D 1/ D p;P.Xi D
�1/ D q. The particle’s location after the nth step has been taken is denoted as
Sn D X0 C X1 C � � � C Xn D X1 C � � � C Xn, assuming that X0 D 0 with
probability 1. Since at each time the particle can move by just one unit, fSng is
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a stationary Markov chain with state space S D Z D f: : : ;�2;�1; 0; 1; 2; : : :g and
with the transition probabilities

pij D P.XnC1 D j jXn D i/

D p if j D i C 1;

D q if j D i � 1;

D 0 if jj � i j > 1;

i; j 2 Z.

By virtue of the importance of random walks in theory and applications of prob-
ability, this is an important example of a stationary Markov chain. Note that the
chain is stationary because the individual steps Xi are iid. This is also an example
of a Markov chain with an infinite state space.

14.2 Chapman-Kolmogorov Equation

The Chapman-Kolmogorov equation provides a simple method for obtaining the
higher-order transition probabilities of a Markov chain in terms of lower-order tran-
sition probabilities. Carried to its most convenient form, the equation describes how
to calculate by a simple and explicit method all higher-order transition probabilities
in terms of the one-step transition probabilities. Because we always start analyz-
ing a chain with the one-step probabilities, it is evidently very useful to know how
to calculate all higher-order transition probabilities using just the knowledge of the
one-step transition probabilities.

Theorem 14.1 (Chapman-Kolmogorov Equation). Let fXng be a stationary
Markov chain with the state space S . Let n;m � 1. Then,

pij.mC n/ D P.XmCn D j jX0 D i/ D
X

k2S

pik.m/pkj .n/:

Proof. A verbal proof is actually the most easily understood. In order to get to state
j from state i in mC n steps, the chain must go to some state k 2 S in m steps and
then travel from that k to the state j in the next n steps. By adding over all possible
k 2 S , we get the Chapman-Kolmogorov equation.

An extremely important corollary is the following result.

Corollary. Let P .n/ denote the n-step transition probability matrix. Then, for all
n � 2; P .n/ D P n, where P n denotes the usual nth power of P .

Proof. From the Chapman-Kolmogorov equation, by using the definition of a matrix
product, for all m; n � 1; P .mCn/ D P .m/P .n/ ) P .2/ D PP D P 2. We now
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finish the proof by induction. Suppose P .n/ D P n 8n 
 k. Then, P .kC1/ D
P .k/P D P kP D P kC1, which finishes the proof.

A further important consequence is that we can now write an explicit formula for
the pmf of the state of the chain at a given time n.

Proposition. Let fXng be a stationary Markov chain with the state space S and
one-step transition probability matrix P . Fix n � 1. Then, �n.i/ D P.Xn D i/ D
P

k2S pki .n/P.X0 D k/. In matrix notation, if � D .�1; �2; : : :/
0

denotes the
vector of the initial probabilities P.X0 D k/; k D 1; 2; : : :, and if �n denotes the
row vector of probabilities P.Xn D i/; i D 1; 2; : : :, then �n D �P n.

This is an important formula because it lays out how to explicitly find the distri-
bution of Xn from the initial distribution � and the one-step transition matrix P .

Example 14.9 (Weather Pattern). Consider once again the weather pattern example
with the one-step transition probability matrix

P D
�

˛ 1 � ˛
1� ˇ ˇ

�

:

We let the states be 1, 2 (1 D dry; 2 D wet). We use the Chapman-Kolmogorov
equation to answer two questions. First, suppose it is Wednesday today and it is dry.
We want to know the probability that Saturday will be dry. In notation, we want to

find p.3/
11 D P.X3 D 1 jX0 D 1/. In order to get a concrete numerical answer at the

end, let us take ˛ D ˇ D :8. Now, by direct matrix multiplication,

P 3 D
�
:608 :392

:392 :608

�

:

Therefore, the probability that Saturday will be dry if Wednesday is dry is

p
.3/
11 D :608.

Next, suppose that we want to know the probability that Saturday and Sunday
will both be dry if Wednesday is dry. In notation, we now want to find

P.X3 D 1;X4 D 1 jX0 D 1/

D P.X3 D 1 jX0 D 1/P.X4 D 1 jX3 D 1;X0 D 1/

D P.X3 D 1 jX0 D 1/P.X4 D 1 jX3 D 1/ D :608 	 :8
D :4864:

Coming now to evaluating the pmf of Xn itself, we calculate it as P.Xn D i/ DP
k2S pki .n/P.X0 D k/. Denote P.The initial day was dry/ D �1; P.The initial

day was wet/ D �2; �1 C�2 D 1. Let us evaluate the probabilities that it will be dry
one week, two weeks, three weeks, or four weeks from the initial day. This requires
calculation of, respectively, P 7; P 14; P 21; P 28. For example,

P 7 D
�
:513997 :486003

:486003 :513997

�

:
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Therefore,

P.It will be dry one week from the initial day/ D :513997�1 C :486003�2

D :5C :013997.�1 � �2/:

Similarly, we can compute P 14 and show that

P.It will be dry two weeks from the initial day/ D :500392�1 C :499608�2

D :5C :000392.�1 � �2/:

P.It will be dry three weeks from the initial day/ D :5C :000011.�1 � �2/:

P.It will be dry four weeks from the initial day/ D :5:

We see that convergence to :5 has occurred, regardless of �1; �2. That is, regardless
of the initial distribution, eventually you will put a 50=50 probability that a day far
into the future will be dry or wet. Is this always the case? The answer is no. In this
case, convergence to :5 occurred because the one-step transition matrix P has the
doubly stochastic characteristic: each row as well as each column of P adds to 1.
We will see more about this later.

Example 14.10 (Voting Preferences). Consider the previous example on voting
preferences. Suppose we want to know the probabilities that a Labor voter in this
election will vote respectively Labor, Conservative, or Independent two elections
from now. Denoting the states as 1, 2, 3 in notation, we want to find P.X2 D
i jX0 D 1/; i D 1; 2; 3:We can answer this by simply computing P 2. Since

P D
0

@
:80 :05 :15

:03 :90 :07

:1 :1 :8

1

A ;

by direct computation,

P 2 D
0

@
:66 :1 :24

:06 :82 :12

:16 :18 :66

1

A :

Hence, the probabilities that a Labor voter in this election will vote Labor, Conser-
vative, or Independent two elections from now are 66%; 10%, and 24%. We also see
from P 2 that a Conservative voter will vote Conservative two elections from now
with 82% probability and has a chance of just 6% of switching to Labor, etc.

Example 14.11 (Hopping Mosquito). Consider again the hopping mosquito exam-
ple previously introduced. The goal of this example is to find the n-step transition
probability matrix P n for a general n. We describe a general method for finding P n

using a linear algebra technique known as diagonalization of a matrix. If a square
matrix P (not necessarily symmetric) of order t 	 t has t distinct eigenvalues, say
ı1; : : : ; ıt , which are complex numbers in general, and if u1; : : : ;ut are a set of t
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eigenvectors of P corresponding to the eigenvalues ı1; : : : ; ıt , then define a matrix
U as U D .u1; : : : ;ut /; i.e., U has u1; : : : ;ut as its t columns. Then, U has the
property that U�1PU D L, where L is the diagonal matrix with the diagonal ele-
ments ı1; : : : ; ıt . Now, just note that

U�1PU D L ) P D ULU�1 ) P n D ULnU�1;

8n � 2.

Therefore, we only need to compute the eigenvalues of P and the matrix U of
a set of eigenvectors. As long as the eigenvalues are distinct, the n-step transition
matrix will be provided by the unified formula P n D ULnU�1.

The eigenvalues of our P are

ı1 D � i
2
; ı2 D i

2
; ı3 D 1I

note that they are distinct. The eigenvectors (one set) turn out to be

u1 D
�

�1 � i;
i � 1

2
; 1

�0

;u2 D
�

i � 1;� i C 1

2
; 1

�0

;u3 D .1; 1; 1/
0

:

Therefore,

U D

0

B
B
@

�i � 1 i � 1 1

i � 1
2

� i C 1

2
1

1 1 1

1

C
C
A ;

U�1 D

0

B
B
B
B
B
B
@

3i � 1
10

�2i C 1

5

i C 3

10

�3i C 1

10

2i � 1
5

3 � i

10
1

5

2

5

2

5

1

C
C
C
C
C
C
A

:

This leads to

P n D U

0

B
B
B
B
@

�

� i
2

�n

0 0

0

�
i

2

�n

0

0 0 1

1

C
C
C
C
A
U�1;

with U;U�1 as above.
For example,

p11.n/ D .�i � 1/3i � 1

10

�

� i
2

�n

C .i � 1/

�

�3i C 1

10

��
i

2

�n

C 1

�
1

5

�

1

D 1

5
C 2 � i

5

�

� i
2

�n

C 2C i

5

�
i

2

�n

I
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this is the probability that the mosquito will be back on the forehead after n moves
if it started at the forehead. If we take n D 2, we get, on doing the complex
multiplication, p11.2/ D 0. We can logically verify that p11.2/ must be zero by
just looking at the one-step transition matrix P . However, if we take n D 3, then
the formula will give p11.3/ D 1

4
> 0. Indeed, if we take n D 3, we get

P 3 D

0

B
B
B
B
B
@

1

4

1

4

1

2
1

4

3

8

3

8
1

8

1

2

3

8

1

C
C
C
C
C
A

:

We notice that every element in P 3 is strictly positive. That is, no matter where the
mosquito was initially seated, by the time it has made three moves, we cannot rule
out any location for where it will be: it can now be anywhere. In fact, this property
of a transition probability matrix is so important in Markov chain theory that it has
a name. It is the first definition in our next section.

14.3 Communicating Classes

Definition 14.7. Let fXng be a stationary Markov chain with transition probability
matrix P . It is called a regular chain if there exists a universal n0 > 0 such that
pij.n0/ > 0 8i; j 2 S .

So, what we just saw in the last example is that the mosquito is engaged in move-
ments according to a regular Markov chain.

A weaker property is that of irreducibility.

Definition 14.8. Let fXng be a stationary Markov chain with transition probability
matrix P . It is called an irreducible chain if, for any i; j 2 S; i ¤ j , there exists
n0 > 0, possibly depending on i; j such that pij.n0/ > 0.

Irreducibility means that it is possible to travel from any state to any other state,
however many steps it might take, depending on which two states are involved.

Another terminology also commonly used is that of communicating.

Definition 14.9. Let fXng be a stationary Markov chain with transition probability
matrix P . Let i and j be two specific states. We say that i communicates with j
.i $ j / if there exists n0 > 0, possibly depending on i; j such that pij.n0/ > 0,
and there also exists n1 > 0, possibly depending on i; j such that pj i .n1/ > 0.

In words, a pair of specific states i and j are communicating states if it is pos-
sible to travel back and forth between i and j , however many steps it might take,
depending on i; j , and possibly even depending on the direction of the journey; i.e.,
whether the direction is from i to j or from j to i .
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By convention, we say that i $ i . Thus, $ defines an equivalence relation on
the state space S :

i $ i I i $ j ) j $ i I i $ j; j $ k ) i $ k:

Therefore, like all equivalence relations, $ partitions the state space S into mutually
exclusive subsets of S , say C1; C2; : : :. These partitioning subsets C1; C2; : : : are
called the communicating classes of the chain.

Here is an example to help illustrate the notion.

Example 14.12 (Identifying Communicating Classes). Consider the one-step transi-
tion matrix

P D

0

B
B
B
B
B
B
B
@

:75 :25 0 0 0 0

0 0 1 0 0 0

:25 0 0 :25 :5 0

0 0 0 :75 :25 0

0 0 0 0 0 1

0 0 0 0 1 0

1

C
C
C
C
C
C
C
A

:

Inspecting the transition matrix, we see that 1 $ 2 because it is possible to go from
1 to 2 in just one step, and conversely, starting at 2, one will always go to 3, and it
is then possible to go from 3 to 1. Likewise, 2 $ 3 because if we are at 2, we will
always go to 3, and conversely, if we are at 3, then we can first go to 1 and then
from 1 to 2. Next, state 5 and state 6 are communicative, but they are clearly not
communicative with any other state because once at 5 we can only go to 6, and once
at 6 we can only go to 5. Finally, if we are at 4, then we can go to 5 and from 5 to 6,
but 6 does not communicate with 4. So, the communicating classes in this example
are

C1 D f1; 2; 3g; C2 D f4g; C3 D f5; 6g:
Note that they are disjoint and that C1 [ C2 [ C3 D f1; 2; 3; 4; 5; 6g D S . As a
further interesting observation, if we are in C3, then we cannot make even one-way
trips to any state outside of C3. Such a communicating class is called closed. In this
example,C3 is the only closed communicating class. For example, C1 D f1; 2; 3g is
not a closed class because one can make one-way trips from 1 to 4 or 5. The reader
can verify trivially that C2 D f4g is also not a closed class.

We can observe more interesting things about the chain from the transition ma-
trix. Consider, for example, state 5. If you are in state 5, then your transitions
would have to be 565656 : : :. So, starting at 5, you can return to 5 only at times
n D 2k; k � 1. In such a case, we call the state periodic with period equal to 2.
Likewise, state 6 is also periodic with period equal to 2. An exercise asks you to
show that all states within the same communicating class always have the same pe-
riod. It is useful to have a formal definition because there is an element of subtlety
about the exact meaning of the period of a state.
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Definition 14.10. A state i 2 S is said to have the period d.> 1/ if the great-
est common divisor of all positive integers n for which pi i .n/ > 0 is the given
number d . If a state i has no period d > 1, it is called an aperiodic state. If every
state of a chain is aperiodic, the chain itself is called an aperiodic chain.

Example 14.13 (Computing the Period). Consider the hopping mosquito example
again. First, let us look at state 1. Evidently, we can go to 1 from 1 in any number
of steps; i.e., p11.n/ > 0 8n � 1. So the set of integers n for which p11.n/ > 0 is
f1; 2; 3; 4; : : :g, and the gcd (greatest common divisor) of these integers is 1. So 1 is
an aperiodic state. Since f1; 2; 3g is a communicating class, we then must have that
3 is also an aperiodic state. To see it, note that in fact we cannot go to 3 from 3 in
one step. But we can go from 3 to 1, then from 1 to 2, and then from 2 to 3. That
takes three steps. But we can also go from 3 to 3 in n steps for any n > 3 because
once we go from 3 to 1 we can stay there with a positive probability for any number
of times and then go from 1 to 2 and from 2 to 3. So the set of integers n for which
p33.n/ > 0 is f3; 4; 5; 6; : : :g, and we now see that 3 is an aperiodic state. Similarly,
one can verify that 2 is also an aperiodic state.

Remark. It is important to note the subtle point that just because a state i has pe-
riod d , it does not mean that pi i .d/ > 0. Suppose, for example, that we can travel
from i back to i in steps 6; 9; 12; 15; 18; : : :, which have gcd equal to 3, and yet
pi i .3/ is not greater than zero.

A final definition for now is that of an absorbing state. Absorption means that
once you have gotten there, you will remain there forever. The formal definition is
as follows.

Definition 14.11. A state i 2 S is called an absorbing state if pij.n/ D 0 for all n
and for all j ¤ i . Equivalently, i 2 S is an absorbing state if pi i D 1; that is, the
singleton set fig is a closed class.

Remark. Plainly, if a chain has an absorbing state, then it cannot be regular and
cannot even be irreducible. Absorption is fundamentally interesting in gambling
scenarios. A gambler may decide to quit the game as soon as his net fortune becomes
zero. If we let Xn denote the gambler’s net fortune after the nth play, then zero will
be an absorbing state for the chain fXng. For chains that have absorbing states, the
time taken to get absorbed is considered to be of basic interest.

14.4 � Gambler’s Ruin

The problem of the gambler’s ruin is a classic and entertaining example in the theory
of probability. It is an example of a Markov chain with absorbing states. Answers to
numerous interesting questions about the problem of the gambler’s ruin have been
worked out; this is all very classic. We provide an introductory exposition to this
interesting problem.
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Imagine a gambler who goes to a casino with a dollars in his pocket. He will play
a game that pays him one dollar if he wins the game or has him pay one dollar to
the house if he loses the game. He will play repeatedly until he either goes broke or
his total fortune increases from his initial amount a to a prespecified larger amount
b.b > a/. The idea is that he is forced to quit if he goes broke and he leaves of
his own choice if he wins handsomely and is happy to quit. We can ask numerous
interesting questions. But let us just ask what the probability is that he will leave
because he goes broke.

This is really a simple random walk problem again. Let the gambler’s initial
fortune be S0 D a. Then, the gambler’s net fortune after n plays is Sn D S0 CX1 C
X2 C � � � CXn, where the Xi are iid with the distribution P.Xi D 1/ D p;P.Xi D
�1/ D q D 1 � p. We make the realistic assumption that p < q , p < 1

2
, i.e.,

the game is favorable to the house and unfavorable to the player. Let pa denote the
probability that the player will leave broke if he started with a dollars as his initial
fortune. In the following argument, we hold b fixed and consider pa as a function
of a, with a varying between 0 and the fixed bI 0 
 a 
 b. Note that p0 D 1 and
pb D 0. Then, pa satisfies the recurrence relation

pa D ppaC1 C .1 � p/pa�1; 1 
 a < b:

The argument is that if the player wins the very first time, which would happen with
probability p, then he can eventually go broke with probability paC1 because the
first win increases his fortune by one dollar from a to aC1, but if the player loses the
very first time, which would happen with probability 1 � p, then he can eventually
go broke with probability pa�1 because the first loss will decrease his fortune by
one dollar from a to a � 1.

Rewrite the equation above in the form

paC1 � pa D 1 � p
p

.pa � pa�1/:

If we iterate this identity, we get

paC1 � pa D
�
1 � p

p

�a

.p1 � 1/I

here, we have used the fact that p0 D 1.
Now use this to find an expression for paC1 as follows:

paC1 � 1 D ŒpaC1 � pa�C Œpa � pa�1�C � � � C Œp1 � p0�

D .p1 � 1/

"�
1 � p
p

�a

C
�
1� p

p

�a�1

C � � � C 1

#
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D .p1 � 1/

�
1 � p

p

�a

� 1

1 � p
p

� 1

) paC1 D 1C .p1 � 1/

�
1 � p

p

�a

� 1
1 � p

p
� 1

:

However, we can find p1 explicitly by using the last equation with the choice a D
b � 1, which will give

0 D pb D 1C .p1 � 1/

�
1 � p
p

�b�1

� 1

1 � p

p
� 1

:

Substituting the expression we get for p1 from here into the formula for paC1, we
will have

paC1 D .q=p/b � .q=p/aC1

.q=p/b � 1 :

This last formula actually gives an expression for px for a general x 
 b; we can
use it with x D a in order to write the final formula,

pa D .q=p/b � .q=p/a

.q=p/b � 1
:

Note that this formula does give p0 D 1; pb D 0, and that limb!1 pa D 1 on using
the important fact that q

p
> 1. The practical meaning of limb!1 pa D 1 is that if

the gambler is targeting too high, then actually he will certainly go broke before he
reaches that high target.

To summarize, this is an example of a stationary Markov chain with two distinct
absorbing states, and we have worked out here the probability that the chain reaches
one absorbing state (the gambler going broke) before it reaches the other absorbing
state (the gambler leaving as a winner on his terms).

14.5 � First Passage, Recurrence, and Transience

Recurrence, transience, and first-passage times are fundamental to understanding
the long-run behavior of a Markov chain. Recurrence is also linked to the stationary
distribution of a chain, one of the most important things to study in analyzing and
using a Markov chain.
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Definition 14.12. Let fXng; n � 0 be a stationary Markov chain. Let D be a given
subset of the state space S . Suppose the initial state of the chain is state i . The first-
passage time to the set D, denoted as TiD , is defined to be the first time that the
chain enters the set D; formally,

TiD D inffn > 0 W Xn 2 Dg;

with TiD D 1 if Xn 2 Dc , the complement of D, for every n > 0. If D is a
singleton set fj g, then we denote the first-passage time to j as just Tij. If j D i ,
then the first-passage time Ti i is just the first time the chain returns to its initial
state i . We use the simpler notation Ti to denote Ti i .

Example 14.14 (Simple Random Walk). Let Xi ; i � 1 be iid random variables with
P.Xi D ˙1/ D 1

2
, and let Sn D X0 C Pn

iD1Xi ; n � 0, with the understanding
that X0 D 0. Then fSng; n � 0 is a stationary Markov chain with initial state zero
and state space S D f: : : ;�2;�1; 0; 1; 2; : : :g.

A graph of the first 50 steps of a simulated random walk is given in Figure 14.1.
By carefully reading the plot, we see that the first passage to zero, the initial state,
occurs at T0 D 4. We can also see from the graph that the walk returns to zero a
total of nine times within these first 50 steps. The first passage to j D 5 occurs at
T05 D 9. The first passage to the set D D f� � � ;�9;�6;�3; 3; 6; 9; : : :g occurs at
T0D D 7. The walk goes up to a maximum of 6 at the tenth step. So, we can say
that T07 > 50; in fact, we can make a stronger statement about T07 by looking at
where the walk is at time n D 50. The reader is asked to find the best statement we
can make about T07 based on the graph.

Example 14.15 (Infinite Expected First-Passage Times). Consider the three-state
Markov chain with state space S D f1; 2; 3g and transition probability matrix

10 20 40 50
n

−6

−4

−2

2

4

6

30

Fig. 14.1 First 50 steps of a simple symmetric random walk
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P D
0

@
x y z
p q 0
0 0 1

1

A ;

where x C y C z D p C q D 1.
First consider the recurrence time T1. Note that for the chain to return at all to

state 1 having started at 1, it can never land in state 3 because 3 is an absorbing state.
So, if T1 D t , then the chain spends t � 1 time instants in state 2 and then returns
to 1. In other words, P.T1 D 1/ D x, and for t > 1; P.T1 D t/ D yqt�2p. From
here, we can compute P.T1 < 1/. Indeed,

P.T1 < 1/ D x C py

q2

1X

tD2

qt

D x C py

q2

q2

p
D x C y D 1 � z:

Therefore, P.T1 D 1/ D z, and if z > 0, then obviously E.T1/ D 1 because T1

itself can be 1 with a positive probability. If z D 0, then

E.T1/ D x C py

q2

1X

tD2

tqt

D x C py

q2

2q2 � q3

p2q
D 1C p � x.1C p2/

p.1 � p/ :

We now define the properties of recurrence and transience of a state. At first
glance, it would appear that there could be something in between recurrence and
transience, but in fact a state is either recurrent or transient. The mathematical mean-
ings of recurrence and transience would really correspond to what their dictionary
meanings are. A recurrent state is one that you keep coming back to over and over
again with certainty; a transient state is one that you will ultimately leave behind
forever with certainty. Below, we are going to use the simpler notation Pi .A/ to
denote the conditional probability P.AjX0 D i/, where A is a generic event. Here
are the formal definitions of recurrence and transience.

Definition 14.13. A state i 2 S is called recurrent ifPi .Xn D i for infinitely many
n � 1/ D 1. The state i 2 S is called transient ifPi .Xn D i for infinitely many n�
1/ D 0.

Remark. Note that if a stationary chain returns to its original state i (at least) once
with probability 1, then it will also return infinitely often with probability 1. So, we
could also think of recurrence and transience of a state in terms of the following
questions:

(a) Is Pi .Xn D i for some n � 1/ D 1‹

(b) Is Pi .Xn D i for some n � 1/ < 1‹
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Here is another way to think about it. Consider our previously defined recurrence
time Ti (still with the understanding that the initial state is i ). We can think of
recurrence in terms of whether Pi .Ti < 1/ D 1 or not.

Needless to say, just becausePi .Ti < 1/ D 1, it does not follow that its expecta-
tion Ei .Ti / < 1. It is a key question in Markov chain theory whether Ei .Ti / < 1
for every state i or not. Not only is it of practical value to compute Ei .Ti /, but the
finiteness of Ei .Ti / for every state i crucially affects the long-run behavior of the
chain. If we want to predict where the chain will be after it has run for a long time,
our answers will depend on these expected values Ei .Ti /, provided they are all
finite. The relationship of Ei .Ti / to the limiting value of P.Xn D i/ will be made
clear in the next section. Because of the importance of the issue of finiteness of
Ei .Ti /, the following are important definitions.

Definition 14.14. A state i is called null recurrent if Pi .Ti < 1/ D 1, but
Ei .Ti / D 1. The state i is called positive recurrent if Ei .Ti / < 1. The Markov
chain fXng is called positive recurrent if every state i is positive recurrent.

Recurrence and transience can be discussed at various levels of sophistication,
and the treatment and ramifications can be confusing, so a preview is going to be
useful.

Preview

(a) You can verify recurrence or transience of a given state i by verifying whetherPn
iD0 pi i .n/ D 1 or < 1:

(b) You can also try to verify directly whether Pi .Ti < 1/ D 1 or < 1:
(c) Chains with a finite state space are more easily handled with regard to settling

recurrence or transience issues. For finite chains, there must be at least one re-
current state; i.e., not all states can be transient if the chain has a finite state
space.

(d) Recurrence is a class property; i.e., states within the same communicating class
have the same recurrence status. If one of them is recurrent, so are all the others.

(e) In identifying exactly which communicating classes have the recurrence prop-
erty, you can identify which of the communicating classes are closed.

(f) Even if a state i is recurrent, Ei .Ti / can be infinite; i.e., the state i can be null
recurrent. However, if the state space is finite and if the chain is regular, then
you do not have to worry about it. As a matter of fact, for any set D, TiD will be
finite with probability 1, and even Ei .TiD/ will be finite. So, for a finite regular
chain, you have a very simple recurrence story; every state is not just recurrent
but even positive recurrent.

(g) For chains with an infinite state space, it is possible that every state is transient,
and it is also possible that every state is recurrent or something in between.
Whether or not the chain is irreducible is going to be a key factor in sorting out
the exact recurrence structure.

Some of the major results on recurrence and transience are now given.
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Theorem 14.2. Let fXng be a stationary Markov chain. If
P1

nD0 pi i .n/ D 1, then
i is a recurrent state, and if

P1
nD0 pi i .n/ < 1, then i is a transient state.

Proof. Introduce the variable Vi D P1
nD0 IfXnDig; thus, Vi is the total number of

visits of the chain to state i . Also let pi D Pi .Ti < 1/. By using the Markov
property of fXng, it follows that Pi .Vi > m/ D pm

i for any m � 0. Suppose now
that pi < 1. Then, by the tailsum formula for expectations,

Ei .Vi / D
1X

mD0

Pi .Vi > m/

D
1X

mD0

pm
i D 1

1 � pi

< 1:

But also

Ei .Vi / D Ei

" 1X

nD0

IfXnDig

#

D
1X

nD0

EŒIfXnDig� D
1X

nD0

Pi .Xn D i/

D
1X

nD0

pi i .n/:

So, if pi < 1, then we must have
P1

nD0 pi i .n/ < 1, which is the same as saying
that if

P1
nD0 pi i .n/ D 1, then pi must be equal to 1, so i must be a recurrent state.

Suppose, on the other hand, that pi D 1. Then, for any m;Pi .Vi > m/ D 1, so,
with probability 1, Vi D 1. So, Ei .Vi / D 1, which implies that

P1
nD0 pi i .n/ D

Ei .Vi / D 1. So, if pi D 1, then
P1

nD0 pi i .n/ must be 1, which is the same
as saying that if

P1
nD0 pi i .n/ < 1, then pi < 1, which would mean that i is a

transient state. The next theorem formalizes the intuition that if you keep coming
back to some state over and over again and that state communicates with some
other state, then you will be visiting that state over and over again as well. That is,
recurrence is a class property, and that implies that transience is also a class property.

Theorem 14.3. Let C be any communicating class of states of a stationary Markov
chain fXng. Then, either all states in C are recurrent or all states in C are transient.

Proof. The theorem will be proved if we can show that if i and j both belong to
a common communicating class and i is transient, then j must also be transient.
If we can prove this, it follows that if j is recurrent, then i must also be recurrent;
otherwise it would be transient, which would make j transient, a contradiction.

So, suppose i 2 C , and assume that i is transient. By virtue of the transience
of i , we know that

P1
rD0 pi i .r/ < 1, so

P1
rDR pi i .r/ < 1 for any fixed R. This

will be useful to us in the proof.
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Now consider another state j 2 C . Because C is a communicating class, there
exist k; n such that pij .k/ > 0; pj i.n/ > 0. Take such k; n and hold them fixed.

Now observe that, for anym, we have the inequality

pi i .k CmC n/ � pij .k/pjj .m/pj i .n/

) pjj .m/ 
 1

pij .k/pj i .n/
pi i .k CmC n/

)
1X

mD0

pjj .m/ 
 1

pij .k/pj i .n/

1X

mD0

pi i .k CmC n/ < 1

because pij .k/ and pj i .n/ are two fixed positive numbers and
P1

mD0 pi i .kCmC
n/ D P1

rDkCn pi i .r/ < 1. But, if
P1

mD0 pjj .m/ < 1, then we already know
that j must be transient, which is what we want to prove.

If a particular communicating class C consists of (only) recurrent states, we
will call C a recurrent class. The following are two important consequences of
the theorem above.

Theorem 14.4.
(a) Let fXng be a stationary irreducible Markov chain with a finite state space.

Then every state of fXng must be recurrent.
(b) For any stationary Markov chain with a finite state space, a communicating

class is recurrent if and only if it is closed.

Example 14.16 (Various Illustrations). We will revisit some of the chains in our
previous examples and examine their recurrence structure.

In the weather pattern example,

P D
�

˛ 1 � ˛
1� ˇ ˇ

�

:

If 0<˛ <1 and also 0<ˇ<1, then clearly the chain is irreducible, and it obviously
has a finite state space. So, each of the two states is recurrent. If ˛DˇD 1, then
each state is an absorbing state, and clearly

P1
nD0 pi i .n/D 1 for both i D 1; 2.

So, each state is recurrent. If ˛ D ˇ D 0, then the chain evolves either as 121212 : : :
or 212121 : : :. Each state is periodic and recurrent.

In the hopping mosquito example,

P D
0

@
0 1 0

0 :5 :5

:5 0 :5

1

A :

In this case, some elements of P are zero. However, we have previously seen that
every element in P 3 is strictly positive. Hence, the chain is again irreducible. Once
again, each of the three states is recurrent.
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Next consider the chain with the transition matrix

P D

0

B
B
B
B
B
B
B
@

:75 :25 0 0 0 0

0 0 1 0 0 0

:25 0 0 :25 :5 0

0 0 0 :75 :25 0

0 0 0 0 0 1

0 0 0 0 1 0

1

C
C
C
C
C
C
C
A

:

We have previously proved that the communicating classes of this chain are
f1; 2; 3g; f4g; f5; 6g, of which f5; 6g is the only closed class. Therefore, 5 and 6
are the only recurrent states of this chain.

14.6 Long-Run Evolution and Stationary Distributions

A natural human instinct is to want to predict the future. It is not surprising that
we often want to know exactly where a Markov chain will be after it has evolved
for a fairly long time. Of course, we cannot say with certainty where it will be.
But perhaps we can make probabilistic statements. In notation, suppose a stationary
Markov chain fXng started at some initial state i 2 S . A natural question is, what
can we say about P.Xn D j jX0 D i/ for arbitrary j 2 S if n is large? Again, a
short preview might be useful.

Preview. For chains with a finite state space, the answers are concrete and ex-
tremely structured, and furthermore, convergence occurs rapidly. That is, under
some reasonable conditions on the chain, regardless of what the initial state i is,
P.Xn D j jX0 D i/ has a limit �j and P.Xn D j jX0 D i/ � �j for quite mod-
erate values of n. In addition, the marginal probabilities P.Xn D j / are also well
approximated by the same �j , and there is an explicit formula for determining the
limiting probability �j for each j 2 S . Somewhat different versions of these results
are often presented in different texts under different sets of conditions on the chain.
Our version balances the ease of understanding the results with the applicability of
the conditions assumed. But first let us see two illustrative examples.

Example 14.17. Consider first the weather pattern example, and, for concreteness,
take the one-step transition probability matrix to be

P D
�
:8 :2

:2 :8

�

:

Then, by direct computation,

P 10 D
�
:50302 :49698

:49698 :50302

�

I P 15 D
�
:50024 :49976

:49976 :50024

�

I
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P 20 D
�
:50018 :49982

:49982 :50018

�

I P 25 D
�
:50000 :50000

:50000 :50000

�

:

We notice that P n appears to converge to a limiting matrix, with each row being the
same, namely .:5; :5/. That is, regardless of the initial state i; P.Xn D j jX0 D i/

appears to converge to �j D :5. Thus, if indeed ˛ D ˇ D :8 in the weather pattern
example, then in the long run the chances of a dry or wet day would both be just
50 � 50, and the effect of the weather on the initial day is going to wash out.

On the other hand, consider a chain with the one-step transition matrix

P D
0

@
x y z
p q 0

0 0 1

1

A :

Notice that this chain has an absorbing state; once you are in state 3, you can never
leave. To be concrete, take x D :25; y D :75; p D q D :5. Then, by direct
computation,

P 10 D
0

@
:400001 :599999 0

:4 :6 0

0 0 1

1

A IP 20 D
0

@
:4 :6 0

:4 :6 0

0 0 1

1

A :

This time it appears that P n converges to a limiting matrix whose first two rows are
the same but the third row is different. Specifically, the first two rows of P n seem to
be converging to .:4; :6; 0/, while the third row is .0; 0; 1/, the same as the third row
in P itself. Thus, the limiting behavior of P.Xn D j jX0 D i/ seems to depend on
the initial state i .

The difference between the two chains in this example is that the first chain is
regular, while the second chain has an absorbing state and cannot be regular. Indeed,
regularity of the chain is going to have a decisive effect on the limiting behavior of
P.Xn D j jX0 D i/. An important theorem is the following.

Theorem 14.5 (Fundamental Theorem for Finite Markov Chains). Let fXng be
a stationary Markov chain with a finite state space S consisting of t elements.
Assume furthermore that fXng is regular. Then, there exist �j ; j D 1; 2; : : : ; t such
that:

(a) For any initial state i; P.Xn D j jX0 D i/ ! �j ; j D 1; 2; : : : ; t:

(b) �1; �2; : : : ; �t are the unique solutions of the system of equations �j D
Pt

iD1 �ipij ; j D 1; 2; : : : ; t ,
Pt

j D1 �j D 1, where pij denotes the .i; j /th
element in the one-step transition matrix P . Equivalently, the row vector � D
.�1; �2; : : : ; �t / is the unique solution of the equations �P D � , �10 D 1,
where 1 is a row vector with each coordinate equal to 1.

(c) The chain fXng is positive recurrent; i.e., for any state i , the mean recurrence
time �i D Ei .Ti / < 1, and furthermore �i D 1

�i
:
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The vector � D .�1; �2; : : : ; �t / is called the stationary distribution of the regular
finite chain fXng. It is also sometimes called the equilibrium distribution or the
invariant distribution of the chain. The difference in terminology can be confusing.
Suppose now that a stationary chain has a stationary distribution � . If we use this
� as the initial distribution of the chain, then we observe that

P.X1 D j / D
X

k2S

P.X1 D j jX0 D k/�k D �j

by the fact that � is a stationary distribution of the chain. Indeed, it now follows
easily by induction that for any n; P.Xn D j / D �j ; j 2 S . Thus, if a chain has
a stationary distribution and starts out with that distribution, then at all subsequent
times the distribution of the state of the chain remains exactly the same; that is, it
is a stationary distribution. This is why a chain that starts out with its stationary
distribution is sometimes described to be in steady-state.

We now give a proof of part (a) and part (b) of the fundamental theorem of
Markov chains. For this, we will use a famous result in linear algebra, which we
state as a lemma.

Lemma (Perron-Frobenius Theorem). Let P be a real t 	 t square matrix with
all elements pij strictly positive. Then:

(a) P has a positive real eigenvalue �1 such that for any other eigenvalue �j of
P; j�j j < �1; j D 2; : : : ; t .

(b) �1 satisfies

min
i

X

j

pij 
 �1 
 max
i

X

j

pij :

(c) There exist left and right eigenvectors of P , each having only strictly posi-
tive elements, corresponding to the eigenvalue �1; that is, there exist vectors
�;!, with both � and ! having only strictly positive elements, such that
�P D �1�I P! D �1!:

(d) The algebraic multiplicity of �1 is 1 and the dimension of the set of both left and
right eigenvectors corresponding to �1 equals 1.

Proof of fundamental theorem. Because for a transition probability matrix of a
Markov chain the row sums are all equal to 1, it follows immediately from the
Perron-Frobenius theorem that if every element ofP is strictly positive, then �1 D 1

is an eigenvalue of P and that there is a left eigenvector � with only strictly posi-
tive elements such that �P D � . We can always normalize � so that its elements
add to exactly 1, so the renormalized � is a stationary distribution for the chain
by the definition of a stationary distribution. If the chain is regular, then in general
we can only assert that every element of P n is strictly positive for some n. Then the
Perron-Frobenius theorem applies to P n and we have a left eigenvector� satisfying
�P n D � . It can be proved from this that the same vector � satisfies �P D � , so
the chain has a stationary distribution. The uniqueness of the stationary distribution
is a consequence of part (d) of the Perron-Frobenius theorem.
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Coming to part (a), note that it asserts that every row of P n converges to the
vector �; i.e.,

P n !

0

B
B
B
@

�

�
:::

�

1

C
C
C
A
:

We prove this by the diagonalization argument we previously used in working out
a closed-form formula for P n in the hopping mosquito example. Thus, consider the
case where the eigenvalues of P are distinct, remembering that one eigenvalue is 1,
and the rest less than 1 in absolute value. Let U�1PU D L D diagf1; �2; : : : ; �t g,
where

U D

0

B
B
B
@

1 u12 u13 � � �
1 u22 u23 � � �

:::
:::

1 ut2 ut3 � � �

1

C
C
C
A

I U�1 D

0

B
B
B
@

�1 �2 � � � �t

u21 u22 � � � u2t

:::
:::

ut1 ut2 � � � ut t

1

C
C
C
A
:

This implies P D ULU�1 ) P n D ULnU�1. Because each �j for j > 1

satisfies j�j j < 1, we have j�j jn ! 0 as n ! 1. This fact, together with the
explicit forms of U;U�1 given immediately above, leads to the result that each row
of ULnU�1 converges to the fixed row vector � , which is the statement in part (a).

We assumed that our chain is regular for the fundamental theorem. An exercise
asks us to show that regularity is not necessary for the existence of a stationary
distribution. Regular chains are of course irreducible. But irreducibility alone is not
enough for the existence of a stationary distribution. More will be said on the issue of
existence of a stationary distribution a bit later. For finite chains, irreducibility plus
aperiodicity is enough for the validity of the fundamental theorem for the simple
reason that such chains are regular in the finite case. It is worth mentioning this as a
formal result.

Theorem 14.6. Let fXng be a stationary Markov chain with a finite state space S .
If fXng is irreducible and aperiodic, then the fundamental theorem holds.

Example 14.18 (Weather Pattern). Consider the two-state Markov chain with the
transition probability matrix

P D
�

˛ 1 � ˛

1 � ˇ ˇ

�

:

Assume 0 < ˛; ˇ < 1, so that the chain is regular. The stationary probabilities
�1; �2 are to be found from the equation

.�1; �2/P D .�1; �2/

) ˛�1 C .1� ˇ/�2 D �1I
) .1 � ˛/�1 D .1� ˇ/�2 ) �2 D 1 � ˛

1 � ˇ�1:
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Substituting this into �1 C �2 D 1 gives �1 C 1�˛
1�ˇ

�1 D 1, so �1 D 1�ˇ
2�˛�ˇ

, which

then gives �2 D 1 � �1 D 1�˛
2�˛�ˇ

: For example, if ˛ D ˇ D :8, then we get

�1 D �2 D 1�:8
2�:8�:8

D :5, which is the numerical limit we saw in our example by
computing P n explicitly for large n. For general 0 < ˛; ˇ < 1, each of the states is
positive recurrent. For instance, if ˛ D ˇ D :8, then Ei .Ti / D 1

:5
D 2 for each of

i D 1; 2.

Example 14.19. With the row vector � D .�1; �2; : : : ; �t / denoting the vector of
stationary probabilities of a chain, � satisfies the vector equation �P D � , and
taking a transpose on both sides, P 0� 0 D � 0. That is, the column vector � 0 is a right
eigenvector of P 0, the transpose of the transition matrix. For example, consider the
voting preferences example with

P D

0

B
B
@

:8 :05 :15

:03 :9 :07

:1 :1 :8

1

C
C
A :

The transpose of P is

P 0 D

0

B
B
@

:8 :03 :1

:05 :9 :1

:15 :07 :8

1

C
C
A :

A set of its three eigenvectors is

0

B
B
@

:38566

:74166

:54883

1

C
C
A ;

0

B
B
@

:44769

�:81518
:36749

1

C
C
A ;

0

B
B
@

�:56867
�:22308
:79174

1

C
C
A :

Of these, the last two cannot be the eigenvector we are looking for because they
contain negative elements. The first eigenvector contains only nonnegative (actually
strictly positive) elements, and when normalized to give elements that add to 1 re-
sults in the stationary probability vector � D .:2301; :4425; :3274/:We could have
also obtained it using the method of elimination as in our preceding example, but the
eigenvector method is a general clean method and is particularly convenient when
the number of states t is not small.

Example 14.20 (Ehrenfest Urn). Consider the symmetric version of the Ehrenfest
urn model in which a certain number among m balls are initially in urn I, the rest
in urn II, and at each successive time one of the m balls is selected completely at
random and transferred to the other urn with probability 1

2
(and left in the same urn

with probability 1
2

). The one-step transition probabilities are pi;i�1 D i
2m
; pi;iC1 D

m�i
2m
; pi i D 1

2
.
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A stationary distribution � would satisfy the equations

�j D m � j C 1

2m
�j �1 C j C 1

2m
�j C1 C �j

2
; 1 
 j 
 m � 1I �0 D �0

2
C �1

2m
I

�m D �m

2
C �m�1

2m
:

These are equivalent to the equations

�0 D �1

m
I �m D �m�1

m
I �j D m � j C 1

m
�j �1 C j C 1

m
�j C1; 1 
 j 
 m � 1:

Starting with �1, one can solve these equations just by successive substitution, leav-
ing �0 as an undetermined constant to get �j D �

m
j

�
�0. Now use the fact that

Pm
j D0 �j must equal 1. This forces �0 D 1

2m and hence �j D .m
j /

2m . We now realize
that these are exactly the probabilities in a binomial distribution with parametersm
and 1

2
. That is, in the symmetric Ehrenfest urn problem, there is a stationary distri-

bution and it is the Bin.m; 1
2
/ distribution. In particular, after the process has evolved

for a long time, we would expect close to half the balls to be in each urn. Each state
is positive recurrent, i.e., the chain is sure to return to its original configuration with
a finite expected value for the time it takes to return to that configuration. As a spe-
cific example, suppose m D 10 and that initially there were five balls in each urn.

Then, the stationary probability �5 D .10
5 /

210
D 63

256
D :246, so we can expect that

after about four transfers the urns will once again have five balls each.

Example 14.21 (Asymmetric Random Walk). Consider a random walk fSng; n � 0

starting at zero, and taking independent steps of length 1 at each time, either to
the left or to the right, with the respective probabilities depending on the current
position of the walk. Formally, Sn is a Markov chain with initial state zero and with
the one-step transition probabilities pi;iC1 D ˛i ; pi;i�1 D ˇi ; ˛i C ˇi D 1 for any
i � 0. In order to restrict the state space of the chain to just the nonnegative integers
S D f0; 1; 2; : : :g, we assume that ˛0 D 1. Thus, if you ever reach zero, then you
start over.

If a stationary distribution � exists, by virtue of the matrix equation � D �P , it
satisfies the recursion

�j D �j �1˛j �1 C �j C1ˇj C1

with the initial equation
�0 D �1ˇ1:

This implies, by successive substitution,

�1 D 1

ˇ1

�0 D ˛0

ˇ1

�0; �2 D ˛0˛1

ˇ1ˇ2

�0I � � � ;
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and for a general j > 1;

�j D ˛0˛1 � � �˛j �1

ˇ1ˇ2 � � �ˇj

�0:

Since each �j ; j � 0 is clearly nonnegative, the only issue is whether they consti-
tute a probability distribution; i.e., whether �0CP1

j D1 �j D 1. This is equivalent to

asking whether
�
1CP1

j D1 cj

�
�0 D 1, where cj D ˛0˛1:::˛j �1

ˇ1ˇ2:::ˇj
: In other words,

the chain has a stationary distribution if and only if the infinite series
P1

j D1 cj

converges to some positive finite number ı, in which case �0 D 1
1Cı

and, for

j � 1; �j D cj

1Cı
.

Consider now the special case where ˛i D ˇi D 1
2

for all i � 1. Then, for

any j � 1; cj D 1
2

, and hence
P1

j D1 cj diverges. Therefore, the case of the sym-
metric random walk does not possess a stationary distribution, in the sense that no
stationary distribution exists that is a valid probability distribution.

The stationary distribution of a Markov chain is not just the limit of the n-step
transition probabilities; it also has important interpretations in terms of the marginal
distribution of the state of the chain. Suppose the chain has run for a long time and
we want to know what the chances are that it is now in some state j . It turns out
that the stationary probability �j approximates that probability, too. The approx-
imations are valid in a fairly strong sense, to be made precise below. Even more,
�j is approximately equal to the fraction of the time so far that the chain has spent
visiting state j . To describe these results precisely, we need a little notation.

Given a stationary chain fXng, we denote fn.j / D P.Xn D j /. Also let
Ik.j / D IfXkDj g and Vn.j / D Pn

kD1 Ik.j /. Thus, Vn.j / counts the number of

times up to time n that the chain has been in state j , and ın.j / D Vn.j /
n

measures
the fraction of the time up to time n that it has been in state j . Then, the following
results hold.

Theorem 14.7 (Weak Ergodic Theorem). Let fXng be a regular Markov chain
with a finite state space and the stationary distribution � D .�1; �2; : : : ; �t /. Then:

(a) Whatever the initial distribution of the chain, for any j 2 S , P.Xn D j / ! �j

as n ! 1.
(b) For any � > 0 and for any j 2 S , P.jın.j / � �j j > �/ ! 0 as n ! 1.
(c) More generally, given any bounded function g, and any � > 0, P.j 1

n

Pn
kD1

g.Xk/�Pt
j D1 g.j /�j j > �/ ! 0 as n ! 1.

Remark. See Norris (1997) for a proof of this theorem. The theorem provides a
basis for estimating the stationary probabilities of a chain by following its trajectory
for a long time. Part (c) of the theorem says that time averages of a general bounded
function will ultimately converge to the state-space average of the function with
respect to the stationary distribution. In fact, a stronger convergence result than the
one we state here holds and is commonly called the ergodic theorem for stationary
Markov chains; see Brémaud (1999) or Norris (1997).
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14.7 Synopsis

(a) The one-step transition probabilities of a stationary Markov chain with state
space S are pij D P.XnC1 D j jXn D i/; i; j 2 S . The n-step transition

probabilities are p.n/
ij D P.XmCn D j jXm D i/.

(b) The Chapman-Kolmogorov equation says that

pij .mC n/ D
X

k2S

pik.m/pkj .n/

for all m; n � 1. In matrix notation, P .n/ D P n, where P .n/ is the n-step
transition probability matrix and P is the one-step transition probability matrix.

(c) The (row) vector œn of the probabilities P.Xn D i/; i 2 S , satisfies

�n D �P n;

where � is the vector of the initial probabilities P.X0 D i/; i 2 S .
(d) A specific state i is recurrent if and only if

P1
nD1 pi i .n/ D 1.

(e) Recurrence is a class property. Either every state in a communicating class is
recurrent or it is transient.

(f) For Markov chains with a finite state space, at least one state must be recur-
rent. If the chain is also regular, then every state is recurrent and even positive
recurrent.

(g) For Markov chains with a finite state space, every state is recurrent if the chain
is just irreducible. However, irreducibility alone does not imply that every state
is positive recurrent.

(h) Finite regular chains admit a stationary distribution � , which can be found by
solving the system of equations

�j D
X

i2S

�ipij ;
X

j 2S

�j D 1:

(i) For finite regular chains, both P.Xn D j / and P.Xn D j jX0 D i/ converge
to the stationary probability �j , and this is true whatever the initial state i .
Moreover, the mean first-passage time Ei .Ti / D 1

�i
for every i .

14.8 Exercises

Exercise 14.1. A particular machine is either in working order or broken on
any particular day. If it is in working order on some day, it remains so the
next day with probability .7, while if it is broken on some day, it stays broken
the next day with probability .2.
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(a) If it is in working order on Monday, what is the probability that it is in working
order on Saturday?

(b) If it is in working order on Monday, what is the probability that it remains in
working order all the way through Saturday?

Exercise 14.2. Consider the voting preferences example in the text with the transi-
tion probability matrix

P D
0

@
:8 :05 :15

:03 :9 :07

:1 :1 :8

1

A :

Suppose a family consists of the two parents and a son. The three follow the same
Markov chain described above in deciding their votes. Assume that the family mem-
bers act independently and that in this election the father voted Conservative, the
mother voted Labor, and the son voted Independent.

(a) Find the probability that they will all vote the same parties in the next election
as they did in this election.

(b) * Find the probability that, as a whole, the family will split their votes among
the three parties, one member for each party, in the next election.

Exercise 14.3. Suppose fXng is a stationary Markov chain. Prove that for all n and
all xi ; i D 0; 1; : : : ; n C 2; P.XnC2 D xnC2; XnC1 D xnC1 jXn D xn; Xn�1 D
xn�1; : : : ; X0 D x0/ D P.XnC2 D xnC2; XnC1 D xnC1 jXn D xn/.

Exercise 14.4. *( What the Markov Property Does Not Mean). Give an example
of a stationary Markov chain with a small number of states such that P.XnC1 D
xnC1 jXn 
 xn; Xn�1 
 xn�1; : : : ; X0 
 x0/ D P.XnC1 D xnC1 jXn 
 xn/ is
not true for arbitrary x0; x1; : : : ; xnC1.

Exercise 14.5 (Ehrenfest Urn). Consider the Ehrenfest urn model when there are
only two balls to distribute.

(a) Write the transition probability matrix P .
(b) Calculate P 2; P 3.
(c) Find general formulas for P 2k ; P 2kC1.

Exercise 14.6. * (The Cat and Mouse Chain). In one of two adjacent rooms, say
room 1, there is a cat, and in the other one, room 2, there is a mouse. There is a small
hole in the wall through which the mouse can travel between the rooms, and there
is a larger hole through which the cat can travel between the rooms. Each minute,
the cat and the mouse decide the room they want to be in by following a stationary
Markov chain with the transition probability matrices

P1 D
�
:5 :5

:5 :5

�

I P2 D
�
:1 :9

:6 :4

�

:

At time n, let Xn be the room in which the cat is and Yn the room in which the
mouse is. Assume that the chains fXng and fYng are independent.
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(a) Write the transition matrix for the chain Zn D .Xn; Yn/.
(b) Let pn D P.Xn D Yn/. Compute pn for n D 1; 2; 3; 4; 5, taking the initial

time to be n D 0.
(c) The very first time that they end up in the same room, the cat will eat the mouse.

Let qn be the probability that the cat eats the mouse at time n. Compute qn for
n D 1; 2; 3.

Exercise 14.7 (Diagonalization in the Two-State Case). Consider a two-state
stationary chain with the transition probability matrix

P D
�

˛ 1 � ˛
1� ˇ ˇ

�

:

(a) Find the eigenvalues of P . When are they distinct?
(b) Diagonalize P when the eigenvalues are distinct.
(c) Find a general formula for p11.n/.

Exercise 14.8. A flea is initially located on the top face of a cube that has six faces,
top and bottom, left and right, and front and back. Every minute it moves from its
current location to one of the other five faces, chosen at random.

(a) Find the probability that after four moves it is back to the top face.
(b) Find the probability that after nmoves it is on the top face; repeat for the bottom

face.
(c) * Find the probability that the next five moves are distinct. This is the same as

the probability that the first six locations of the flea are the six faces of the cube,
each location being chosen exactly once.

Exercise 14.9 (Subsequences of Markov Chains). Suppose fXng is a stationary
Markov chain. Let Yn D X2n. Prove or disprove that fYng is a stationary Markov
chain. How about fX3ng? fXkng for a general k?

Exercise 14.10. Let fXng be a three-state stationary Markov chain with the transi-
tion probability matrix

P D
0

@
0 x 1 � x

y 1 � y 0

1 0 0

1

A :

Define a function g as g.1/ D 1; g.2/ D g.3/ D 2, and let Yn D g.Xn/. Is fYng a
stationary Markov chain?

Give an example of a function g such that g.Xn/ is not a Markov chain.

Exercise 14.11 (An IID Sequence). Let Xi ; i � 1 be iid Poisson random variables
with some common mean �. Prove or disprove that fXng is a stationary Markov
chain. If it is, describe the transition probability matrix.

How important is the Poisson assumption? What happens if Xi ; i � 1 are inde-
pendent but not iid?
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Exercise 14.12. Let fXng be a stationary Markov chain with transition matrix P
and g a one-to-one function. Define Yn D g.Xn/. Prove that fYng is a Markov
chain, and characterize as well as you can the transition probability matrix of fYng.

Exercise 14.13. * (Loop Chains). Suppose fXng is a stationary Markov chain with
state space S and transition probability matrix P .

(a) Let Yn D .Xn; XnC1/. Show that Yn is also a stationary Markov chain.
(b) Find the transition probability matrix of Yn.
(c) How about Yn D .Xn; XnC1; XnC2/? Is this also a stationary Markov chain?
(d) How about Yn D .Xn; XnC1; : : : ; XnCd / for a general d � 1?

Exercise 14.14 (Dice Experiments). Consider the experiment of rolling a fair die
repeatedly. Define

(a) Xn D the number of sixes obtained up to the nth roll;
(b) Xn D the number of rolls, at time n, that a six has not been obtained since the

last six.

Prove or disprove that each fXng is a Markov chain, and if they are, obtain the
transition probability matrices.

Exercise 14.15. Suppose fXng is a regular stationary Markov chain with transition
probability matrix P . Prove that there exists m � 1 such that every element in P n

is strictly positive for all n � m.

Exercise 14.16 (Communicating Classes). Consider a finite-state stationary
Markov chain with the transition matrix

P D

0

B
B
B
B
B
@

0 :5 0 :5 0

0 0 1 0 0

:5 0 0 0 :5

0 :25 :25 :25 :25

:5 0 0 0 :5

1

C
C
C
C
C
A

:

(a) Identify the communicating classes of this chain.
(b) Identify those classes that are closed.

Exercise 14.17. * (Periodicity and Simple Random Walk). Consider the Markov
chain corresponding to the simple random walk with general step probabilities
p; q; p C q D 1.

(a) Identify the periodic states of the chain and the periods.
(b) Find the communicating classes.
(c) Are there any communicating classes that are not closed? If there are, identify

them. If not, prove that there are no communicating classes that are not closed.
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Exercise 14.18. *(Gambler’s Ruin). Consider the Markov chain corresponding to
the problem of the gambler’s ruin with initial fortune a and absorbing states at 0
and b.

(a) Identify the periodic states of the chain and the periods.
(b) Find the communicating classes.
(c) Are there any communicating classes that are not closed? If there are, identify

them.

Exercise 14.19. Prove that a stationary Markov chain with a finite state space has
at least one closed communicating class.

Exercise 14.20. * (Chain with No Closed Classes). Give an explicit example of a
stationary Markov chain with no closed communicating classes.

Exercise 14.21 (Skills Exercise). Consider the stationary Markov chains corre-
sponding to the following transition probability matrices:

P D

0

B
B
B
B
B
B
@

1

3

2

3
0

0
1

3

2

3

2

3
0

1

3

1

C
C
C
C
C
C
A

I P D

0

B
B
B
B
B
B
B
B
B
B
@

1

2
0 0 0

1

2

0
1

2
0

1

2
0

0
3

4

1

8

1

8
0

1

2
0 0 0

1

2

1

C
C
C
C
C
C
C
C
C
C
A

:

(a) Are the chains irreducible?
(b) Are the chains regular?
(c) For each chain, find the communicating classes.
(d) Are there any periodic states? If there are, identify them.
(e) Do both chains have stationary distributions? Is there anything special about the

stationary distribution of either chain? If so, what is special?

Exercise 14.22. * (Recurrent States). Let Zi ; i � 1 be iid Poisson random vari-
ables with mean 1. For each of the sequences

Xn D
nX

iD1

Zi ; Xn D maxfZ1; : : : ; Zng; Xn D minfZ1; : : : ; Zng W

(a) Prove or disprove that fXng is a stationary Markov chain.
(b) If it is, write the transition probability matrix.
(c) Find the recurrent and the transient states of the chain.

Exercise 14.23 (Irreducibility and Aperiodicity). For stationary Markov chains
with the following transition probability matrices, decide whether the chains are
irreducible and aperiodic.
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P D
0

@
0 1

p 1 � p

1

A I P D

0

B
B
B
B
B
@

1

4

1

2

1

4

0
1

2

1

2

1 0 0

1

C
C
C
C
C
A

I P D

0

B
B
B
@

0 1 0

0 0 1

p 1 � p 0

1

C
C
C
A
:

Exercise 14.24 (Irreducibility of the Machine Maintenance Chain). Consider
the machine maintenance example given in the text. Prove that the chain is irre-
ducible if and only if p0 > 0 and p0 C p1 < 1. Do some numerical computing that
reinforces this theoretical result.

Exercise 14.25. * (Irreducibility of Loop Chains). Let fXng be a stationary
Markov chain, and consider the loop chain defined by Yn D .Xn; XnC1/. Prove
that if fXng is irreducible, then so is fYng.

Do you think this generalizes to Yn D .Xn; XnC1; : : : ; XnCd / for general
d � 1?

Exercise 14.26. * (Functions of a Markov Chain). Consider the Markov chain
fXng corresponding to the simple random walk with general step probabilities
p; q; p C q D 1.

(a) If f .:/ is any strictly monotone function defined on the set of integers, show
that ff .Xn/g is a stationary Markov chain.

(b) Is this true for a general chain fYng? Prove it or give a counterexample.
(c) Show that fjXnjg is a stationary Markov chain, although x ! jxj is not a strictly

monotone function.
(d) Give an example of a function f such that ff .Xn/g is not a Markov chain.

Exercise 14.27 (A Nonregular Chain with a Stationary Distribution). Consider
a two-state stationary Markov chain with the transition probability matrix

P D
�
0 1

1 0

�

:

(a) Show that the chain is not regular.
(b) Prove that, nevertheless, the chain has a unique stationary distribution, and

identify it.

Exercise 14.28. * (Immigration-Death Model). At time n; n � 1; Un particles
enter into a box. U1; U2; : : : are assumed to be iid with some common distribution
F . The lifetimes of all the particles are assumed to be iid with common distribution
G. Initially, there are no particles in the box. Let Xn be the number of particles in
the box just after time n.

(a) Take F to be a Poisson distribution with mean 2, and G to be geometric with
parameter 1

2
. That is, G has the mass function 1

2x ; x D 1; 2; : : :. Write the
transition probability matrix for fXng.

(b) Does fXng have a stationary distribution? If it does, find it.
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Exercise 14.29. * (Betting on the Basis of a Stationary Distribution). A partic-
ular stock either retains the value that it had at the close of the previous day, gains
a point, or loses a point, the respective states being denoted as 1; 2; 3. Suppose Xn

is the state of the stock on the nth day; thus, Xn takes the values 1; 2, or 3. Assume
that fXng forms a stationary Markov chain with the transition probability matrix

P D

0

B
B
B
B
B
B
@

0
1

2

1

2

1

3

1

3

1

3

1

2

3

8

1

8

1

C
C
C
C
C
C
A

:

A friend offers you the following bet: if the stock goes up tomorrow, he pays you
15 dollars, while if it goes down, you pay him 10 dollars. If it remains the same as
where it closed today, a fair coin will be tossed and he will pay you 10 dollars if a
head shows up and you will pay him 15 dollars if a tail shows up. Will you accept
this bet? Justify your answer with appropriate calculations.

Exercise 14.30. * (Absent-Minded Professor). A mathematics professor has two
umbrellas, both of which were originally at home. The professor walks back and
forth between his home and office, and if it is raining when he starts a journey, he
carries an umbrella with him unless both his umbrellas are at the other location.
If it is clear when he starts a journey, he does not take an umbrella with him. We
assume that at the time he starts a journey, it rains with probability p and the states
of weather are mutually independent.

(a) Find the limiting proportion of journeys in which the professor gets wet.
(b) What if the professor had three umbrellas to begin with, all of which were

originally at home?
(c) Is the limiting proportion affected by how many umbrellas were originally

at home?

Exercise 14.31. * (Wheel of Fortune). A pointed arrow is set on a circular wheel
marked with m positions labeled as 0; 1; : : : ; m � 1. The hostess turns the wheel
during each game so that the arrow either remains where it was before the wheel
was turned or moves to a different position. Let Xn denote the position of the arrow
after n turns.

(a) Suppose that at any turn the arrow has an equal probability 1
m

of ending up at
any of the m positions. Does fXng have a stationary distribution? If it does,
identify it.

(b) Suppose that at each turn the hostess keeps the arrow where it was or moves
it one position clockwise or one position counterclockwise, each with an equal
probability 1

3
. Does fXng have a stationary distribution? If it does, identify it.

(c) Suppose again that at each turn the hostess keeps the arrow where it was or
moves it one position clockwise or one position counterclockwise, but now with
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respective probabilities ˛; ˇ; 
; ˛ C ˇ C 
 D 1. Does fXng have a stationary
distribution? If it does, identify it.

Exercise 14.32 (Wheel of Fortune Continued). Consider again the Markov chains
corresponding to the wheel of fortune. Prove or disprove that they are irreducible
and aperiodic.

Exercise 14.33. * (Stationary Distribution in Ehrenfest Model). Consider the
general Ehrenfest chain defined in the text, with m balls, and transfer probabilities
˛; ˇ; 0 < ˛; ˇ < 1. Identify a stationary distribution if it exists.

Exercise 14.34. * (Time Until Break away). Consider a general stationary Markov
chain fXng, and let T D minfn � 1 W Xn ¤ X0g.

(a) Can T be equal to 1 with a positive probability?
(b) Give a simple necessary and sufficient condition for P.T < 1/ D 1.
(c) For the weather pattern, Ehrenfest urn, and the cat and mouse chain, compute

E.T jX0 D i/ for a general i in the corresponding state space S .

Exercise 14.35. ** (Constructing Examples). Construct an example of each of the
following phenomena:

(a) a Markov chain with only absorbing states;
(b) a Markov chain that is irreducible but not regular;
(c) a Markov chain that is irreducible but not aperiodic;
(d) a Markov chain on an infinite state space that is irreducible and aperiodic, but

not regular;
(e) a Markov chain in which there is at least one null recurrent state;
(f) a Markov chain on an infinite state space such that every state is transient;
(g) a Markov chain such that each first-passage time Tij has all moments finite;
(h) a Markov chain without a proper stationary distribution;
(i) independent irreducible chains fXng; fYng, such that Zn D .Xn; Yn/ is not

irreducible;
(j) Markov chains fXng; fYng such that Zn D .Xn; Yn/ is not a Markov chain.

Exercise 14.36. * (Reversibility of a Chain). A stationary chain fXng with tran-
sition probabilities pij is called reversible if there is a function m.x/ such that
pijm.i/ D pj im.j / for all i; j 2 S . Give a simple sufficient condition in terms
of the function m that ensures that a reversible chain has a proper stationary distri-
bution. Then, identify the stationary distribution.

Exercise 14.37. Give a physical interpretation for the property of reversibility of a
Markov chain.

Exercise 14.38 (Reversibility). Give examples of a Markov chain that is reversible
and one that is not.
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Exercise 14.39 (Use Your Computer: Cat and Mouse). Take the cat and mouse
chain and simulate it to find how long it takes for the cat and mouse to end up in
the same room. Repeat the simulation and estimate the expected time until the cat
and mouse end up in the same room. Vary the transition matrix and examine how
the expected value changes.

Exercise 14.40 (Use Your Computer: Ehrenfest Urn). Take the symmetric
Ehrenfest chain; that is, take ˛ D ˇ D :5. Put all the m balls in the second
urn to begin with. Simulate the chain and find how long it takes for the urns to have
an equal number of balls for the first time. Repeat the simulation and estimate the
expected time until both urns have an equal number of balls. Take m D 10; 20.

Exercise 14.41 (Use Your Computer: Gambler’s Ruin). Take the gambler’s ruin
problem with p D :4; :49. Simulate the chain using a D 10; b D 25 and find the
proportion of times that the gambler goes broke by repeating the simulation. Com-
pare your empirical proportion with the exact theoretical value of the probability
that the gambler will go broke.
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Chapter 15
Urn Models in Physics and Genetics

Urn models conceptualize general allocation problems in which we distribute,
withdraw, and redistribute certain objects or units into a specified number of cate-
gories. We think of the categories as urns and the objects as balls. Depending on the
specific urn model, the balls may be of different colors and distinguishable or indis-
tinguishable. Urn models are special because they can be successfully used to model
real phenomena in diverse areas such as physics, ecology, genetics, economics, clin-
ical trials, modeling of networks, and many others. The aim is to understand the
evolution of the content of the urns as distribution and redistribution according to
some prespecified scheme progresses. There are many urn models in probability,
and the allocation scheme depends on exactly which model one wishes to study.
We introduce and provide basic information on some key urn models in this chap-
ter. Classic references are Feller (1968) and Johnson and Kotz (1977). Bernoulli
(1713) and Whitworth (1901) are two historically important monographs on urn
models. More recent references include Gani (2004), Lange (2003), and Ivchenko
and Medvedev (1997). Other specific references are given in the various sections of
this chapter.

It turns out that the study of most of the common urn models in physics and
genetics involves a special sequence of numbers known as the Stirling numbers.
We start with a brief introduction to the Stirling numbers and some of their basic
properties.

15.1 Stirling Numbers and Their Basic Properties

Stirling numbers have a variety of combinatorial definitions. For our purpose, how-
ever, an algebraic definition seems proper. We will mention the combinatorial
connections also.

Definition 15.1. The Stirling numbers of the first kind are the unique numbers
s.n; k/; n � 1; 1 
 k 
 n, such that x.n/ D x.x � 1/ � � � .x � n C 1/ D
Pn

kD1 s.n; k/x
k :

A. DasGupta, Fundamentals of Probability: A First Course, Springer Texts in Statistics,
DOI 10.1007/978-1-4419-5780-1 15, c� Springer Science+Business Media, LLC 2010
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Definition 15.2. The Stirling numbers of the second kind are the unique numbers
S.n; k/; n � 1; 0 
 k 
 n, such that xn D Pn

kD0 S.n; k/x.k/, where x.0/ D 1:

Here is an elementary example.

Example 15.1. By simple expansion, x.3/ D x.x � 1/.x � 2/ D x3 � 3x2 C 2x:

Therefore, by its definition, s.3; 1/ D 2; s.3; 2/ D �3; s.3; 3/ D 1:

On the other hand, x3 D xC 3x.x� 1/Cx.x� 1/.x� 2/ by direct verification.
Therefore, by its definition, S.3; 1/ D 1; S.3; 2/ D 3; S.3; 3/ D 1:

Of course, it is impractical to find the coefficients for large n and k by such
direct verification. Fortunately, that is not necessary. One can use recursion relations
to generate the coefficients sequentially, or write formulas for them, although the
formulas are not very simple. The result below describes the recursions and the
formulas; standard texts on enumerative combinatorics can be consulted for these
results. One reference is Tomescu (1985).

Theorem 15.1.
(a) s.nC 1; k/ D s.n; k � 1/� ns.n; k/; n � k � 1I
(b) s.n; 0/ D 08n � 1IPn

kD1 s.n; k/ D 0I

(c) s.n; 1/ D .�1/n�1.n � 1/ŠI s.n; n � 1/ D �
�
n

2

�

I s.n; n/ D 1I
(d) S.nC 1; k/ D kS.n; k/C S.n; k � 1/; n � k � 1I

(e) S.n; k/ D 1
kŠ

Pk
j D0.�1/k�j

�
k

j

�

j nI

(f) S.n; 0/ D 08n � 1IS.n; 1/ D S.n; n/ D 1IS.n; n� 1/ D
�
n

2

�

I
(g)

Pn
kDm S.n; k/s.k;m/ D IfmDng:

We will omit the proof of this theorem, as it is stated principally for ease of
reference and evaluation of the coefficients in examples and exercises.

Numerical values of the Stirling numbers are of course useful whenever they
arise in a specific problem. A table of Stirling numbers is provided below for quick
reference.

Stirling Numbers of the First Kind

n k

1 2 3 4 5 6 7 8 9 10
1 1
2 �1 1
3 2 �3 1
4 �6 11 �6 1
5 24 �50 35 �10 1
6 �120 274 �225 85 �15 1
7 720 �1764 1624 �735 175 �21 1
8 �5040 13068 �13132 6769 �1960 322 �28 1
9 40320 �109584 118124 �67284 22449 �4536 546 �36 1
10 �362880 1026576 �1172700 723680 �269325 63273 �9450 870 �45 1
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Stirling Numbers of the Second Kind

n k

1 2 3 4 5 6 7 8 9 10
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 11 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1
9 1 255 3025 7770 6951 2646 462 36 1
10 1 511 9330 34105 42525 22827 5880 750 45 1

The Stirling numbers have interesting combinatorial interpretations. In turn, these
combinatorial interpretations are sometimes useful in expressing otherwise compli-
cated probabilities in terms of Stirling numbers. Here is a very important result that
will be directly useful to us.

Theorem 15.2. The Stirling number S.n; k/ of the second kind equals the total
number of ways in which n distinct objects can be partitioned into k disjoint and
nonempty subsets.

Example 15.2 (Missing Faces in Die Rolls). Suppose a fair die is rolled n times. Let
X be the number of faces of the die that are still missing after the n rolls. Note that
X D k if and only if Y , the number of faces that have shown up, is 6 � k. But, for
6 � k faces to show up, the n rolls would each be assigned to some 6 � k specific
faces; i.e., the set of all the n rolls would be partitioned into 6 � k subsets of rolls,
one subset corresponding to all the rolls where a particular face occurred. Therefore,

P.X D k/ D P.Y D 6 � k/ D
�

6

6 � k
�
.6 � k/n

6n
.6 � k/ŠS.n; 6 � k/

.6 � k/n

D
�
6k
�
.6 � k/ŠS.n; 6 � k/

6n
:

15.2 Urn Models in Quantum Mechanics

Classical mechanics does not succeed in explaining the physical workings of sys-
tems at the subatomic level. For example, classical mechanics would predict that
electrons would leave their orbits and collide with the nucleus. But, in reality, we
see quite the contrary. We see that electrons maintain an energy state to keep them in
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a stable orbit around the nucleus. If energy states are quantized, which is a name for
discretization, then the behavior of particles can be understood in terms of suitable
urn models. We will consider the different states of energy to be our urns and the
particles to be the balls. Physics dictates exactly which urn model applies to a partic-
ular kind of particle. Particles can be of many different types, for example photons,
electrons, Fermions, Bosons, and so forth. Three celebrated urn models with origins
in quantum mechanics are the Maxwell-Boltzmann (M-B), Bose-Einstein (B-E), and
Fermi-Dirac (F-D) models, also called the M-B, B-E, and F-D statistics. We now in-
troduce these three models and describe some of their elementary properties.

Throughout this section, N will denote the total number of urns (i.e., energy
states for the physicist) and n will denote the number of balls (i.e., the total number
of particles of a particular type under consideration). Each particle resides in some
energy state at a given time. We want to understand the conglomeration of particles
by using an appropriate urn model. We will let Xi denote the number of balls in
the i th urn and Mk denote the number of urns with k balls. In particular,M0 is the
number of empty urns. The fraction of urns among all the urns that have k balls is
the ratio rk D Mk

N
.

In the M-B model, each of the n particles can be in any of the N energy states
independently of each other and with an equal probability of being in any state.
Conceptually, this is the simplest of the three models. If we now focus our attention
on one specific state, say state i , then the number of particles out of n that are in
this specific energy state has the Bin.n; 1

N
/ distribution. Let Xi denote the number

of particles in state i . Then, by the familiar binomial distribution formula,

P.Xi D k/ D
�
n

k

��
1

N

�k �

1 � 1

N

�.n�k/

:

Writing Ii as the indicator of the event that the i th urn has k balls, we have Mk D
I1 C � � � C IN . Therefore,

E.rk/ D E

�
Mk

N

�

D 1

N

NX

iD1

E.Ii / D 1

N
NE.I1/ D P.X1 D k/

D
�
n

k

��
1

N

�k �

1 � 1

N

�.n�k/

:

Of particular interest is M0, the number of empty urns. Primary interest lies in the
distribution and the expected value of M0. It turns out that the Stirling numbers
introduced in the previous section are now going to become directly useful in finding
the distribution of M0 in the Maxwell-Boltzmann model. Suppose we want to find
P.M0 D m/ for some specifiedm;m 
 N�1. The event fM0 D mg happens if and
only if a subset ofm urns are empty and the n balls are divided among the remaining
N�m urns, with the restriction that none of theseN�m urns can be empty. This can
happen in

�
N
m

�
S.n;N �m/.N �m/Šways, where S.n; k/ is the notation for Stirling
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numbers of the second kind. The .N � m/Š factor is needed because the Stirling
number S.n;N �m/ does not account for the different configurations of theN �m
distinguishable urns that contain the n balls. Hence, we now have

P.M0 D m/ D

�
N

m

�

S.n;N �m/.N �m/Š

N n
:

No further simplification of this is possible for general n;N , and m. However, the
formula is useful for numerical computation of the distribution of M0 and its ex-
pected value, etc. We will see such a numerical example below.

In the Bose-Einstein model, it does not matter exactly which particles are in
which energy states, but all that matters is how many particles are in each of the
different energy states. In the terminology of urns and balls, the urns are distinguish-
able but the balls are not. This changes the total number of possible distributions of
the balls in the urns.

A clever geometric argument gives us the total number of ways to distribute the
n balls into the N urns. Let us take a specific example to understand this geometric
argument. Suppose N D 3 and n D 5. Line up the five balls as points in a straight
line. Now add to these five points two vertical lines. That gives us a total of seven
objects. Arrange these seven objects in a line. For example, one possible arrange-
ment is three points starting from the left, then two consecutive vertical lines, and
then two more points. This will correspond to there being three balls in the first urn,
none in the second urn, two in the third urn, etc. We can arrange the seven objects
in 7Š ways. But, of course, the vertical lines are just vertical lines and not to be
distinguished, and the balls are not to be distinguished by the definition of the Bose-
Einstein model. Therefore, the total number of ways to distribute the balls into the
three urns is 7Š

2Š5Š
D �

7
5

�
. Exactly the same argument gives us the formula that the

total number of ways to distribute n balls into N urns in the Bose-Einstein model is
�

nCN �1
n

�
.

It is still assumed that each of these possible configurations has an equal proba-
bility. In other words, we assume that the sample points are equally likely, and each
sample point ! has the probability

P.!/ D 1
�
nCN � 1

n

� :

On replacing N by N � 1 and n by n � k, we find that

P.Xi D k/ D

�
n � k CN � 2

n � k

�

�
nCN � 1

n

� ;
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which is therefore also equal to E.rk/.
Coming toM0, the number of empty urns, by using the same geometric argument

as the one above, one has the formula that the number of ways to distribute n
indistinguishable balls into m distinguishable urns so that each of the m urns is
nonempty is

�
n�1
m�1

�
. Therefore,

P.M0 D m/ D

�
N

m

��
n � 1

N �m � 1

�

�
N C n � 1

n

�

D

�
N

m

��
n � 1

N �m � 1

�

�
N C n � 1

N � 1

� :

In particular,

P.M0 D 0/ D

�
n � 1
N � 1

�

�
N C n � 1

N � 1
� :

The Fermi-Dirac model imposes the additional restriction that there can be at
most one particle in any particular energy state. That is, an urn can either remain
empty or contain only one ball. Note that this automatically forces the number of
balls to be no larger than the number of urns; i.e., we must have n 
 N . The number
of possible sample points in the F-D model is simply the number of ways that we
can pick n urns from the N urns that will not be empty. This can be done in

�
N
n

�

ways. If these are assumed to be equally likely, then each sample point ! has the
probability

P.!/ D 1
�
N

n

� :

Since urns can only contain at most one ball in the F-D model, only the value
P.Xi D 1/ is of interest, and this equals, under the equally likely assumption,

P.Xi D 1/ D

�
N � 1
n � 1

�

�
N

n

� D n

N
:

The distribution of the number of empty urns in the F-D model is saved for the
chapter exercises.
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This finishes the most elementary description of the M-B, B-E, and F-D models.
More advanced properties of these three urn models will be presented in a later
section.

Example 15.3 (Empty Urns in the Bose-Einstein Scheme). One useful index of
clumping in urn models is the number of empty urns. If the balls tend to clump,
they will mostly drop into a few common urns, leaving the others sparsely occupied
or unoccupied. Suppose, as a specific example, that n D 100 particles are quan-
tized into N D 20 energy states and that the particles follow the Bose-Einstein
model. The distribution of the number of empty urns, M0, was worked out above,

and P.M0 D m/ D .N
m/.

n�1
N �m�1/

.N Cn�1
n /

D .20
m/.

99
19�m/

.119
100/

;m D 0; 1; : : : ; 19: For example,

P.M0 D 0/ D :02, while P.M0 � 3/ D :66. The expected value of M0 is 3.2, and
the standard deviation is 1.5. A histogram of the distribution of M0 is provided in
Figure 15.1, and one can see a roughly symmetric normal-like distribution.

Example 15.4 (Empty Urns in the Maxwell-Boltzmann Scheme). We witnessed a
roughly symmetric bell-shaped histogram for the number of empty urns under the
Bose-Einstein scheme in our preceding example. This example will show that the
shape of the histogram critically depends on the choice of the urn model. Consider
now the case of a Maxwell-Boltzmann scheme, and suppose n D 100 balls are dis-
tributed intoN D 30 urns according to a Maxwell-Boltzmann scheme. The formula
for the exact distribution ofM0 was derived above in this section. If we use this exact
formula, then we get, for instance, that P.M0 D 0/ D :335 and P.M0 � 3/ � :01.
It appears that a fundamentally different kind of distribution for M0 now emerges.
Once again, a histogram will help us appreciate how the shape of the distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Fig. 15.1 Histogram of the number of empty urns in a Bose-Einstein scheme
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changes under the Maxwell-Boltzmann scheme. We see an asymmetric skewed his-
togram. In fact, in contrast to the Bose-Einstein case, a Poisson distribution will
approximate this histogram well under the Maxwell-Boltzmann scheme. The choice
of the urn model matters; this is an important point.

15.3 � Poisson Approximations

The exact distribution of the number of empty urns can be cumbersome to calcu-
late when N and n are large because the formulas involve large factorials; see the
exact formulas in the previous section. These cumbersome exact formulas can be
approximated by more convenient expressions. However, exactly which approxima-
tion applies in a given case depends crucially on the relative magnitudes of n andN
and also on the exact urn model. In the Bose-Einstein scheme, typically one does
not get Poisson-type approximations; we had already noted this in our example and
the histogram plot in Figure 15.1. But, fortunately, under the Maxwell-Boltzmann
scheme, accurate Poisson approximations are available whenN and n are large and
satisfy suitable conditions on their relative magnitudes. Only the Poisson approxi-
mation is stated here, for purposes of simplicity. See Figure 15.2 for an illustration.
One reference for this section and the theorem below is Johnson and Kotz (1977).
Two other references are Kolchin et al. (1978) and Barbour et al. (1992).

Theorem 15.3.
(a) Suppose N; n ! 1 and that Ne� n

N ! � for some positive and finite number
�. Then, for all k � 0;

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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0.2

0.3

0.4

Fig. 15.2 Histogram of the number of empty urns in a Maxwell-Boltzmann scheme
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P.M0 D k/ ! e���k

kŠ

as N; n ! 1.

(b) Suppose N; n ! 1 and that n2

N
! 2� for some positive and finite number �.

Then, for all k � 0;

P.M0 � .N � n/ D k/ ! e���k

kŠ

as N; n ! 1.

Discussion. In the first case of this theorem, n�N , and there being many more
balls than urns, not too many urns can be empty. Thus, a Poisson distribution with
mean � applies to the number of empty urns itself. In contrast, in the second case of
the theorem, n is of the order of

p
N . So now there are far more urns than there are

balls. Hence, we would expect to see a lot of empty urns. And, indeed, the second
part of the theorem says that the number of empty urns would be about N � nC �

on average, a large number! An important case not covered by the theorem is when
N and n are of comparable magnitude, i.e., N

n
! � for some positive and finite

number �. In this case, a Poisson approximation does not apply.

Example 15.5 (Testing the Poisson Approximation). To apply the Poisson approx-
imation result above, we need to choose a value of �. It is common to simply
calculate Ne� n

N and apply part (a) of the theorem with this number as � unless
the number turns out to be too small. Some subjective judgment has to be used to
decide if it is too small. If n D 100 and N D 30, then Ne� n

N D 1:07. This is
certainly not too small. If we use a Poisson distribution with mean � D 1:07 as the
approximation and use the exact distribution, which was derived theoretically for
general n;N in the previous section, then here is how the two compare.

m P.M0 D m/(Exact) Poisson Approximation
0 .3349 .3430
1 .3983 .3670
2 .1999 .1964
3 .0560 .0700
4 .0097 .0187
5 .0011 .0040

The maximum discrepancy is .031, which is reasonably small, although not ex-
tremely so. For most practical purposes, the Poisson approximation will probably
suffice.
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15.4 Pólya’s Urn

Pólya’s urn model is perhaps the most well-known urn model in which some form
of replacement of the balls takes place as the drawing process evolves. The replace-
ment is not as simple as in ordinary sampling with replacement. Pólya’s urns were
originally applied to model contagion processes, such as the spread of a contagious
disease. The model has also been widely used for internal applications; i.e., mathe-
matical results on the Pólya urn scheme have been useful in establishing properties
of various methods in other areas of statistics. One example of such an internal ap-
plication is the application of Pólya urns to Bayesian statistics, an area of statistics
based on Bayes’ theorem.

The Pólya urn scheme is defined as follows. Initially, an urn contains a white
and b black balls, a total of a C b balls. One ball is drawn at random from among
all the balls in the urn. It, together with c more balls of its color, is returned to the
urn, so that after the first draw, the urn has aC bC c balls. This process is repeated.

The following notation will be used throughout this section: Ai is the event that
the i th ball drawn in the Pólya urn scheme is white, Xi is the indicator of the event
Ai , and, for given n � 1; Sn D X1C� � �CXn, which is the total number of times that
a white ball has been drawn in the first n trials. First we will see a really interesting
property of the sequence of indicator random variables X1; X2; : : :.

To start with, evidently,

P.X1 D 1/ D a

aC b
:

Next,

P.X2 D 1/ D P.X2 D 1 jX1 D 1/P.X1 D 1/C P.X2 D 1 jX1 D 0/P.X1 D 0/

D a

aC b

aC c

aC b C c
C b

aC b

a

aC b C c
D a2 C ac C ab

.a C b/.aC b C c/

D a.aC b C c/

.aC b/.aC b C c/
D a

a C b
:

We notice that P.X2 D 1/ and P.X1 D 1/ are equal. Let us look at P.X3 D 1/.
This has to be found by conditioning on the colors of the balls chosen in the first
two draws. Precisely,

P.X3 D 1/ D P.X3 D 1 jX1 D 1;X2 D 1/P.X1 D 1;X2 D 1/

CP.X3 D 1 jX1 D 1;X2 D 0/P.X1 D 1;X2 D 0/

CP.X3 D 1 jX1 D 0;X2 D 1/P.X1 D 0;X2 D 1/

CP.X3 D 1 jX1 D 0;X2 D 0/P.X1 D 0;X2 D 0/

D a

a C b

a C c

a C b C c

a C 2c

a C b C 2c
C a

a C b

b

a C b C c

a C c

aC b C 2c
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C b

a C b

a

aC b C c

aC c

a C b C 2c
C b

a C b

b C c

a C b C c

a

a C b C 2c

D a.a C c/.a C 2c/C 2ab.aC c/C ab.b C c/

.aC b/.aC b C c/.a C b C 2c/
D a

a C b

on factorizing the numerator in the last line as a.a C b C c/.a C b C 2c/. So, now
we see that P.X3 D 1/; P.X2 D 1/, and P.X1 D 1/ are all equal. Indeed, the
following general formulas hold. For notational simplicity, we have assumed that
c D 1 in the next theorem.

Theorem 15.4. Consider the Pólya urn scheme with c D 1. Then, for any n � 1,

(a) P.XnC1 D 1 jX1 D x1; : : : ; Xn D xn/ D aC x1 C � � � C xn

a C b C n
I

(b) P.X1 D x1; : : : ; Xn D xn/ D a.aC 1/ � � � .aC sn � 1/b.b C 1/ � � � .b C n � sn � 1/

.aCb/.aCbC1/ � � � .aC b C n� 1/
;

where sn D x1 C � � � C xn; and

(c) P.XnC1 D 1/ D P.Xn D 1/ D � � � D P.X1 D 1/ D a

a C b
:

This last statement can be rewritten as P.Ai / D P.A1/ for any i .

Hint to the proof. Part (a) is an easy exercise. Part (b) is proved by induction on n and
by using part (a). Part (c) follows by combining part (a) and part (b) and summing
over all x1; x2; : : : ; xn.

One can similarly show (without too much algebraic effort) that probabilities of
all pairwise intersections are the same; i.e., whatever indices i; j we take, P.Ai \
Aj / D P.A1 \A2/. In fact, a much stronger result is true. Here is the result.

Theorem 15.5. Let k � 1 be any fixed integer. Let j1 < j2 < � � � < jk be any k
given indices. Then

P.Aj1
\ Aj2

\ � � � \ Ajk
/ D P.A1 \ A2 \ � � � \ Ak/:

A proof of this can be seen in Feller (1968).

An infinite sequence of events A1; A2; : : : that has this property, namely that for
any k and any indices j1 < j2 < � � � < jk the intersection probabilities P.Aj1

\
Aj2

\ � � � \ Ajk
/ are all equal (i.e., the choice of the indices j1; : : : ; jk does not

matter), is called an exchangeable sequence of events. So, we can restate this last
theorem as follows.

Theorem 15.6 (Exchangeability in the Pólya Urn Scheme). For i � 1, let Ai

be the event that the i th ball drawn according to the general Pólya urn scheme is
white when trials are repeated indefinitely. Then the infinite sequence A1; A2; : : : is
exchangeable.

This is regarded as a classic fact in combinatorial probability.
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15.5 Pólya-Eggenberger Distribution

A consequence of this exchangeability fact is that we can now write down an explicit
formula for the distribution of Sn, the number of white balls drawn in the first n trials
of the Pólya urn scheme. Once again, for notational simplicity, we take c D 1 in the
next theorem.

Theorem 15.7. Consider the Pólya urn scheme with c D 1. Take any fixed n � 1,
and let 0 
 k 
 n. Then,

P.Sn D k/ D
�
n

k

�
a.a C 1/ � � � .a C k � 1/b.b C 1/ � � � .b C n � k � 1/

.a C b/.aC b C 1/ � � � .a C b C n � 1/ :

Proof. We have already established that

P.X1 D x1; : : : ; Xn D xn/ D a.aC 1/ � � � .a C sn � 1/b.b C 1/ � � � .b C n � sn � 1/
.a C b/.a C b C 1/ � � � .a C b C n� 1/

;

where sn D x1 C � � � C xn. Consider any n-tuple .x1; : : : ; xn/ such that sn D
x1 C � � � C xn D k. Then, by exchangeability,

P.Sn D k/ D
X

.x1;:::;xn/IsnDk

P.X1 D x1; � � � ; Xn D xn/

D
 
n

k

!
a.a C 1/ � � � .a C k � 1/b.b C 1/ � � � .b C n � k � 1/

.a C b/.aC b C 1/ � � � .a C b C n � 1/ :

Remark. For any given n, this is a distribution on the integers 0; 1; : : : ; n, with
parameters a; b. For a general c, the formula becomes

P.Sn D k/ D
�
n

k

�
a.a C c/ � � � .aC .k � 1/c/b.b C c/ � � � .b C .n � k � 1/c/

.a C b/.aC b C c/ � � � .aC b C .n � 1/c/ :

This is the famous Pólya-Eggenberger distribution with parameters a; b; c. The case
c D 0 specializes to the binomial distribution with parameters n and p D a

aCb
, and

the case c D �1 specializes to the hypergeometric distribution with parameters
n;D D a;N D aC b.

A plot of the Pólya-Eggenberger distribution when a D 10; b D 5; c D 1, and
n D 20 is provided in Figure 15.3 and shows the affinity of the distribution toward
larger values caused by a being larger than b.
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Fig. 15.3 Polya-Eggenberger distribution for a D 10, b D 5, c D 1, n D 20

15.6 � de Finetti’s Theorem and Pólya Urns

Exchangeability is a very fundamental concept in probability. It allows us to wrig-
gle out of the assumption of mutual independence in a very neat way while still
preserving abundant symmetry in the structure of the problem. It is not surprising
that exchangeability has been studied carefully by probabilists. Three specific ref-
erences are Regazzini (1987), Diaconis (1988), and Rao and Shanbhag (2001). An
exposition at the textbook level is available in the classic book of Feller (1968)
and in DasGupta (2008). The most profound result in the study of exchangeabil-
ity is a theorem due to de Finetti, an Italian mathematician and probabilist. If we
put together de Finetti’s theorem on exchangeability and our result above on ex-
changeability of the sequence of events A1; A2; : : : in the Pólya urn scheme, then a
remarkable result for Pólya urns emerges. The purpose of this section is to describe
this result. First, we state de Finetti’s (1931) theorem. A small word of caution is
needed here. A really rigorous statement of de Finetti’s theorem cannot be given
without the use of some measure theory terminology. The statement given below is
not fully rigorous; nevertheless, it makes the point that we need in this context.

Theorem 15.8. Let fA1; A2; : : :g be an infinite sequence of exchangeable events.
Take any fixed n � 1, and let Sn be the number of events among A1; A2; : : : ; An

that occur. Then there is a unique nonnegative function f on Œ0; 1� such that
R 1

0 f .p/dp D 1, and for any k; 0 
 k 
 n,

P.SnDk/D
Z 1

0

��
n

k

�

pk.1 � p/n�k

	

f .p/dp D
�
n

k

�Z 1

0

pk.1�p/n�kf .p/dp:
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Remark. Suppose, hypothetically, that the events A1; A2; : : : were mutually inde-
pendent with a common probability of p D :5. Then, we know that our random
variable Sn in de Finetti’s theorem will be distributed as Bin.n; p/ with p D :5.
De Finetti’s theorem is saying that the most general exchangeable sequence of
events must be a mixture of such binomial distributions, the mixing property be-
ing obtained via the integration with the function f .p/, a very profound result.
Furthermore, we cannot have two different such functions f ; for any particular ex-
changeable sequence of events, we can have just one such function f .

We will now apply this result to learn something about the Pólya urn scheme.
To this end, recall that we have in fact already derived an explicit formula for
P.Sn D k/ for the Pólya urn scheme by direct arguments. What we will now do
is to take that direct formula and relate it to de Finetti’s theorem in order to reach
some interesting conclusions. We will work out an illustrative example to help us
understand the general case.

Example 15.6. Consider the Pólya urn scheme with a D b D c D 1. Then, the
formula for the distribution of Sn reduces to

P.Sn D k/ D
�
n

k

�
kŠ.n � k/Š

2 	 3 	 � � � 	 .nC 1/
D 1

nC 1
; 0 
 k 
 n:

That is, if a D b D c D 1, then, for any n; Sn has a discrete uniform distribution
on f0; 1; � � � ; ng. However, there is more. We know from our previous discussion of
exchangeability that there is an underlying nonnegative function f on Œ0; 1� with
R 1

0
f .p/dp D 1 and P.Sn D k/ D �

n
k

� R 1

0
pk.1 � p/n�kf .p/dp. In particular,

using k D n, for any n � 1,

P.Sn D n/ D 1

nC 1
D
Z 1

0

pnf .p/dp:

By inspection, the special function f .p/  1 satisfies this, and now we find on
simple integration that this choice of f also satisfies P.Sn D k/ D 1

nC1
for any k

between 0 and n. Thus, in the special case a D b D c D 1, we have the de Finetti
representation

P.Sn D k/ D
�
n

k

�Z 1

0

pk.1 � p/n�kdp:

The point is that we can explicitly identify the required function f for general
a; b; c. Indeed, writing ˛ D a

c
; ˇ D b

c
, the required function f is

f .p/ D �.˛ C ˇ/

�.˛/�.ˇ/
p˛�1.1 � p/ˇ�1; 0 < p < 1;

where �.z/ is the Gamma function defined by the integral �.z/ D R1
0
e�xxz�1dx;

z > 0. When a D b D c D 1, this reduces to f .p/  1. It is a Beta density. For
now, we simply note the important finding that the Pólya-Eggenberger distribution
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is a Beta mixture of binomial distributions. Techniques of more advanced probability
theory can be usefully exploited to derive from this that, for large n, the distribution
of aCSn

n
, which is the proportion of white balls in the urn after n trials, is well ap-

proximated by this Beta density function f . To put it in simple terms, if we compute
the exact distribution of Sn

n
and plot a histogram, the histogram will look like a plot

of the function f .p/ on Œ0; 1�. This is a useful conclusion in analyzing the Pólya urn
scheme.

15.7 Urn Models in Genetics

Some basic and simple models for evolutionary processes in population genetics
correspond to urn models with the balls having different colors. Perhaps the most
basic such model of historical importance is the Wright-Fisher model. The Wright-
Fisher model gives a mathematical model for how a specific allele frequency in a
finite population changes over generations under certain assumptions on the pop-
ulation and the organism’s mating behavior. The idea is that if in the long run a
particular allele becomes extinct, then it contributes to a decrease in the genetic di-
versity in that population. Population geneticists call this genetic drift. Genetic drift
accounts for the change in the genetic composition of a population over time due
to purely random fluctuations. Other forces that act on the evolutionary mechanism
include natural selection and mutation. Geneticists want to understand the relative
weight of each factor in the evolutionary process. Two references for this section are
Lange (2003) and Balding et al. (2007). See also Johnson and Kotz (1977).

15.7.1 Wright-Fisher Model

The assumptions we make under the Wright-Fisher model are that:

(a) The population size is a finite constant N and remains fixed from generation to
generation.

(b) We consider one gene, and assume that it has two different forms or alleles, say
A and B . A particular individual may have two copies of the same form or one
of each. In other words, we have a diploid population with a total of 2N copies
of the gene in each generation.

(c) The generations are nonoverlapping.
(d) The first generation has a certain initial supply, say i , of the allele form A,

and the rest, namely 2N � i , of the allele form B . The 2N genes of the next
generation are produced using a binomial model in which each copy is a random
pick from the gene pool of the previous generation and the 2N copies in the
second generation are picked mutually independently.

(e) This process is continued indefinitely over generations.

It is clear from the definition of the model that if by chance in some generation
each of the 2N alleles turns out to be of one kind, say all A alleles or all B alleles,
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then this configuration will be preserved for all future generations. Geneticists call
this allele uniformity.

We can phrase all of this in the form of the following urn model. Urn 1 has i
red balls and 2N � i green balls. 2N balls are chosen from Urn 1 at random and
with replacement. These balls are used to fill up another urn, say Urn 2. Thereafter,
2N balls are chosen from Urn 2 at random and with replacement, and these form
the contents of Urn 3, and so on. The genetic composition of the nth generation
corresponds to the number of red balls in Urn n.

We now need some notation. Let

p D i

2N
D fraction of A alleles in the first generationI

Xn D total number of A alleles in the nth generationI
pjk D P.XnC1 D k jXn D j /I
p1 D P.Xn D 2N for some finite n/I
Ex D expected number of generations needed to achieve allele uniformity:

From the assumption of binomial sampling, it follows that

pjk D
�
2N

k

��
j

2N

�k �

1 � j

2N

�2N �k

:

This is the Wright-Fisher equation. Let us work out an example.

Example 15.7. Genetic drift is known to be a more important factor in small iso-
lated populations. Consider a situation where the size of the population is small,
say N D 50. Also suppose that of the 2N D 100 copies of the gene in the
first generation, 40 are of the allele form A. Thus, i D 40 and p D :4. We
therefore have X2 � Bin.100; :4/. From the binomial distribution mean formula,
E.X2/ D 100	:4 D 40 D i . This is a characteristic of the Wright-Fisher model; for
any n;E.Xn/ D i . We show a simulated pattern of the genetic composition in the
first ten generations. For any n;Xn is simulated as a value from the Bin.2N; xn�1

2N
/

distribution, where xn�1 is the realized value of Xn�1.

n Xn

1 40
2 51
3 50
4 53
5 53
6 51
7 42
8 41
9 45

10 49
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We can see in this table how purely random errors will lead to fluctuations in gene
frequency over generations. We have not gotten anywhere close to allele uniformity
in ten generations.

15.7.2 Time until Allele Uniformity

It turns out, however, that advanced probability-theoretic methods show that in the
Wright-Fisher model allele uniformity will eventually take place. In the language of
urn models, sooner or later all balls in an urn will be of the same color. The higher
the initial proportion of red balls, the higher the probability that all balls in the urn
will be red from some point onward. Indeed, the following neat result holds.

Theorem 15.9. p1 D p.
Thus, in our numerical example above, there is a 40% chance that the allele

form B will eventually vanish from the population. The expected number of gener-
ations that have to pass to obtain allele uniformity satisfies the following system of
equations.
Theorem 15.10.

Ei D 1C
2N �1X

j D0

�
2N

j

��
i

2N

�j �

1 � i

2N

�2N �j

Ej ; 1 
 i 
 2N � 1:

Proof. A heuristic proof is as follows. Starting with i genes of the allele form A in
the first generation, we obtain some j genes of the allele form A in the second gen-
eration, and then with j as our new initial frequency for the allele form A, we wait
until we achieve allele uniformity, which is expected to take Ej more generations.
The probability that a specific number j is the frequency of the allele form A in
the second generation is

�
2N
j

�
. i

2N
/j .1 � i

2N
/2N �j by the Wright-Fisher equation.

Now, simply sum over all possible values of j .
These equations are all linear in the required quantities Ei ; 1 
 i 
 2N � 1.

Therefore, matrix methods can be used to successively generate the values of
E1; E2; E3; : : :. Use of a computer is essential because solving for the Ei values
involves inverting a matrix of order .2N � 1/ 	 .2N � 1/. By simple manipulation
of the linear equations given in the theorem above, one can show that the vector of
the Ei values is given by

E D .I � P/�11;

where
E D .E1; : : : ; E2N �1/

0;

I is the .2N � 1/ 	 .2N � 1/ identity matrix;

P is the .2N�1/	.2N�1/matrix with elementspij D
�
2N

j

�
�

i
2N

�j �
1� i

2N

�2N �j
;

1 is the .2N � 1/ 	 1-dimensional vector with all entries equal to 1:
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It is the inversion of the matrix I�P that requires a computer, and this inversion can
become numerically unreliable or impossible for largeN . Let us see an example.

Example 15.8. Consider a small population with N D 25 individuals. The number
of genes in the allele form A is some number i between 1 and 49. We want to know
the mean number of generations that has to pass for one of the two allele forms to
become extinct.

Evaluating the inverse of I �P and using the formula E D .I �P/�11, we find,
for instance, that E1 D 9:13 and E5 D 31:18. That is, if there was just one gene
of allele form A to start with, even then it would take more than nine generations
on average to obtain allele uniformity; if there were five genes of allele form A

to start with, it would take more than 31 generations to obtain allele uniformity.
This is a general phenomenon. Genetic drift progresses at a slow rate and gives
ample opportunity for the other forces in evolution, such as natural selection, to take
place.

15.8 Mutation and Hoppe’s Urn

The Wright-Fisher model assumes a single gene at a particular locus with two allele
forms in a population of a fixed size and that binomial sampling from the gene pool
of one generation forms the gene pool of the next generation. In the terminology of
urn models, if each allele form is thought of as a color, then the number of colors
is always two and the total number of balls is always the same. A biological gen-
eralization of this simple model is to envision an underlying set of infinitely many
alleles that arise gradually over generations via a process of mutation of a previ-
ously existing special gene. The urn model formulation is the following. We start
with an urn with some 	 balls of a distinguished color (say black), To construct the
nth urn for a general n; n � 2, we sample a ball at random from the .n � 1/th urn.
If this chosen ball happens to be black, then we put the black ball together with an
additional ball of a previously unseen color back into the urn. The colors are given
labels 1; 2; 3; : : :, in the order of their emergence. The labels do not have any other
significance. If the chosen ball happens to be of some other color (that is, not black),
then it is returned to the urn together with an additional ball of the same color. The
appearance of a new color corresponds to the emergence of a new species. On the
other hand, when a ball that is not black is chosen and is returned to the urn with
another representative of the same color, that is supposed to correspond to a pre-
existing species simply multiplying in the population. It is important to note that
the number of black balls (that is, balls of that distinguished color) always remains
equal to 	 . It is also important to note that if at some stage we choose a ball of the
special color, then that adds a ball of a new nonspecial color into our urn. At any
stage, each nonspecial color corresponds to one distinct species. The special color
is not considered to be a species; the special color balls only generate new species.
This is the well-known Hoppe urn scheme (Hoppe (1984)).
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Biologically, the important questions are how many distinct species exist in the
population after a prescribed number, say n, of generations, and what the respective
sizes of these various species are. To investigate these questions, we need some
notation:

ni D 	 C i D number of balls in the urn after i iterations; i � 0I
pi D 	

ni�1

; i � 1;Wi D Ifthe ball drawn at the i th iteration is a black ballgI
Sn D number of balls in the urn of nonspecial colors aftern iterations; n � 1:

Thus, Wi � Ber.pi /; Sn D Pn
iD1Wi ; also, from the drawing mechanism, we have

that W1;W2; : : : is an independent (but not iid) sequence of random variables.
It follows immediately that

E.Sn/ D E

 
nX

iD1

Wi

!

D 	

nX

iD1

1

	 C i � 1

D 	

�
1

	
C 1

	 C 1
C � � � C 1

	 C n � 1
�

:

For fixed 	 and large n,

1

	
C 1

	 C 1
C � � � C 1

	 C n � 1 � logn;

and hence E.Sn/ � 	 logn. Similarly,

Var.Sn/ D Var

 
nX

iD1

Wi

!

D
nX

iD1

	

	 C i � 1
�

1 � 	

	 C i � 1
�

D 	

nX

iD1

1

	 C i � 1
� 	2

nX

iD1

1

.	 C i � 1/2
:

Now, for fixed 	 and large n,
Pn

iD1
1

.	Ci�1/2 is small compared with the first term

	
Pn

iD1
1

	Ci�1
because, as we saw above, the first term 	

Pn
iD1

1
	Ci�1

� 	 logn,

whereas
Pn

iD1
1

.	Ci�1/2 stays bounded as n ! 1. Therefore, an approximation to

the variance of Sn is Var.Sn/ � 	 logn. That is, for fixed 	 and large n, the mean
and the variance of Sn are both approximately equal to 	 logn. It is interesting
that, even in the long run, the effect of the initial value 	 does not go away. As
a matter of practical approximation, it is better to approximate the mean of Sn by
	.logn � log 	/; the next example will show some evidence of it.

Example 15.9 (Evolution of New Species). It is clear that, in the Hoppe urn scheme,
new species arise according to a jump process. That is, Sn does not change if a
nonblack ball is drawn at some iteration and increases by one when a black ball is
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Fig. 15.4 Emergence of new species; plot of S.n/ vs. n; theta D1
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Fig. 15.5 Emergence of new species; plot of S.n/ vs. n; theta D 10

drawn at some iteration. Plots of two simulations are shown in Figures 15.4 and 15.5.
The population is followed for up to 25 generations in these plots. In Figure 15.4,
	 D 1, and in Figure 15.5, 	 D 10. In the first case, the population ends up with
five different species after 25 generations, and in the second case it ends up with
eight different species after 25 generations. The approximationE.Sn/ � 	 logn D
10 log 25 D 32:2 is very far from the realized value S25 D 8 in the second case. In
comparison, the approximationE.Sn/ � 	.logn� log 	/ D 10.log 25� log 10/ D
9:2 is much closer to the realized value S25 D 8. An interesting feature of the
plots is that species seem to arise in spurts. We have new species arising in quick
successions, and then we have long periods of inactivity. Real-life evolution seems
to show similar spurt activity.
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The distribution of Sn itself is also of interest. Note that although Sn is a sum
of n independent Bernoulli variables W1; : : : ;Wn, the Wi are not iid. Thus, Sn is
certainly not binomially distributed. However, the generating function of Sn can
still be found in closed form, from which the mass function can be derived. Indeed,
the generating function of Sn equals

GSn
.s/ D E.sSn / D

nY

iD1

E.sWi / D
nY

iD1

�
i � 1

	 C i � 1
C 	

	 C i � 1
s

�

D
Qn�1

j D0.	s C j /
Qn�1

j D0.	 C j /

on writing j D i � 1 in the products.
Recall now that from the definition of Stirling numbers of the first kind, for a

given real number x; x.x C 1/ � � � .x C n � 1/ D Pn
kD1.�1/n�ks.n; k/xk . Substi-

tuting into our expression for GSn
.s/ above, we get the formula

GSn
.s/ D

Pn
kD1.�1/n�ks.n; k/	ksk

Qn�1
j D0.	 C j /

:

This expression is easier to manipulate for deriving the mass function of Sn. Indeed,

P.Sn D k/ D G
.k/
Sn
.0/

kŠ
D .�1/n�ks.n; k/	k

Qn�1
j D0.	 C j /

for k 
 n. Of course, for k > n;P.Sn D k/ D 0. We have thus proved the
following important result.

Theorem 15.11. (Distribution of Number of Distinct Species). In the Hoppe urn

scheme, the mass function of Sn is given by P.Sn D k/ D .�1/n�ks.n;k/	k

Qn�1
j D0.	Cj /

; 1
k
n.

For large n, computing these exact probabilities cannot be done without a com-
puter because the formula involves the Stirling numbers. It can be shown that,
for large n; Sn is approximately normally distributed with mean and variance
	.logn � log 	/.

15.9 � The Ewens Sampling Formula

The Ewens sampling formula studies a question on species diversity. Suppose that
in the population we have a total of n animals of different species. An interesting
question is whether there are a few species of large abundance or many species of
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more or less comparable abundances. For example, suppose there were 50 animals
of different species in the population. One possible configuration would be that there
are two species of size 20 each and another five species of size 2 each. A com-
pletely different type of configuration would be that there are 50 species, each of
size 1! Which one is more likely? The Ewens sampling formula gives an analytic
expression for the long-run probability that, in a population with n total animals,
there are s1 species each with one animal, s2 species each with two animals, etc.
Specifically, let .s1; s2; : : : ; sn/ be any particular configuration that is physically
possible; i.e., the si must be nonnegative integers such that

Pn
iD1 isi D n. Then the

Ewens sampling formula says what is an analytic expression for P.S1 D s1; S2 D
s2; : : : ; Sn D sn/, where the uppercase S1; S2; : : : ; Sn denote the number of species
of sizes 1; 2; : : : ; n, respectively, and .s1; s2; : : : ; sn/ denotes a particular config-
uration. If the particular configuration is not physically possible, then of course
P.S1 D s1; S2 D s2; : : : ; Sn D sn/ would be zero.

Here is the Ewens sampling formula.

Theorem 15.12. In a Hoppe urn scheme with 	 balls of black (the special) color
and n balls of other colors, let Si denote the total number of different colors that
have i balls each and s1; s2; : : : ; sn denote any arbitrary nonnegative integers sat-
isfying

Pn
iD1 isi D n.

Then

P.S1 D s1; S2 D s2; : : : ; Sn D sn/ D nŠ	
Pn

iD1 si

.
Qn

iD1 i
si /.

Qn
iD1 si Š/.

Qn
iD1.	 C i � 1// :

We will not prove this theorem here. A proof can be found in the original paper of
Ewens (1972).

A second, different question is that of species abundance; in particular, whether
the oldest species are more abundant in the population. Suppose we label the species
according to their order of appearance. That is, the oldest species is called species
number 1, the next oldest species is called species number 2, etc. Then, one has the
following analytic expression for the long-run probability that, in a population of
a total of n animals, there are m different species with the respective species sizes
N1 D n1; N2 D n2; : : : ; Nm D nm, where

Pm
iD1 ni D n and of course each ni � 1.

This was proved in Donnelly and Tavaré (1986); we will not prove it here.

Theorem 15.13. In a Hoppe urn scheme with 	 balls of black (the special) color
and n balls of m other colors, let Ni denote the number of balls of color number
i; i D 1; 2; : : : ; m. Suppose colors are labeled according to their order of appear-
ance. Then,

P.mIN1 D n1; : : : ; Nm D nm/

D 	mnŠ
Qn

iD1.	 C i � 1/nm.nm C nm�1/ � � � .nm C nm�1 C � � � C n1/
;

where ni � 1 and
Pm

iD1 ni D n.
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This has the interesting property that, for a given set of n1; n2; : : : ; nm, the ex-
pression would be maximized if n1 is the largest among the ni , n2 the second largest
among the ni , etc. As a simple example of what we mean, suppose n is 50 and there
are just two species, so thatm D 2. Then, it is more likely that the older species has
30 animals and the younger has 20 than the other way around. So, we have the inter-
esting result that older species are likely to be more abundant in the population. We
end with the converse question: Is the most abundant species the oldest one? Here
is a neat formula for this probability.

Theorem 15.14. Consider the Hoppe urn scheme. Suppose there are n balls of dif-
ferent colors (other than black) in the urn. Then the probability that a color with c
balls of its kind is the first color to have arisen is c

n
.

15.10 Synopsis

(a) If the total number of balls (particles) is n, the total number of urns (states, or
energy states) is N , and Xi is the number of balls that get distributed to the i th
urn, then the pmf of Xi is as follows:

M-B scheme

P.Xi D k/ D
�
n

k

��
1

N

�k �

1 � 1

N

�n�k

I

B-E scheme

P.Xi D k/ D

�
n � k CN � 2

n � k

�

�
nCN � 1

n

� I

F-D scheme
P.Xi D 1/ D n

N
;P.Xi D 0/ D 1 � n

N
:

(b) For the M-B scheme, the pmf of the number of empty urns has the exact pmf

P.M0 D k/ D

�
N

k

�

S.n;N � k/.N � k/Š

N n

and the Poisson approximation result

P.M0 D k/ ! e���k

kŠ

if n;N ! 1 in such a way that Ne� n
N ! �, a finite nonzero number.
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(c) For the general Pólya urn scheme,

P.Sn D k/ D
�
n

k

�
a.a C c/ � � � .a C .k � 1/c/b.b C c/ � � � .b C .n � k � 1/c/

.a C b/.aC b C c/ � � � .a C b C .n � 1/c/ ;

where Sn denotes the number of times up to the nth draw that a white ball has
been picked. This distribution is called the Pólya-Eggenberger distribution.

(d) This formula can be written in the alternative form

P.Sn D k/ D
�
n

k

�Z 1

0

pk.1 � p/n�kf .p/dp;

where f .p/ is the density of a Beta distribution with parameters ˛ D a
c
; ˇ D b

c
.

This is an important result, and many other properties of the distribution of Sn

can be derived from this connection with a Beta density.
(e) Under the Wright-Fisher model, if

Xn D total number of A alleles in the nth generation;

p D fraction of A alleles in the first generation;

pjk D P.XnC1 D k jXn D j /;

p1 D P.Xn D 2N for some finite n/;

then

pjk D
�
2N

k

��
j

2N

�k �

1 � j

2N

�2N �k

and p1 D p.
(f) In the Hoppe urn scheme, the distribution of Sn, which is the number of distinct

species in the population after n generations, has the exact pmf

P.Sn D k/ D .�1/n�ks.n; k/	k

Qn�1
j D0.	 C j /

;

where s.n; k/ denotes a Stirling number of the first kind. The mean and variance
of Sn have the formulas

E.Sn/ D 	

�
1

	
C 1

	 C 1
C � � � C 1

	 C n � 1

�

� 	.logn � log 	/;

Var.Sn/ D 	

nX

iD1

1

	 C i � 1 � 	2

nX

iD1

1

.	 C i � 1/2

� 	 logn:
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(g) In the Hoppe urn scheme, there is an exact formula for the joint distribution of
the sizes of the distinct species in the population. The formula is known as the
Donnelly-Tavaré formula and is related to the Ewens sampling formula. See the
text for these two formulas.

15.11 Exercises

Exercise 15.1. Compute the first four moments of a discrete uniform distribution on
f1; 2; 3; 4g by using the factorial moments and the Stirling numbers of the second
kind.

Exercise 15.2. * (Geometric Moments). Find a general factorial moment of a
geometric distribution and convert them into formulas for the moments of the
distribution.

Exercise 15.3. * (Negative Binomial Factorial Moments). Prove first that

(a) .x C y/.n/ D Pn
kD0

�
n

k

�

x.k/y.n�k/

for all reals x; y and for all n � 1.
(b) Hence find the factorial moments of the NB.2; p/ distribution, and generalize

to the NB.r; p/ distribution.

Exercise 15.4. For each of the following cases, find the probability of one sample
point under the M-B, B-E, and F-D schemes:

(a) n D 5;N D 3;
(b) n D 20;N D 5;
(c) n D 20;N D 20.

Exercise 15.5. Suppose five balls are distributed into three urns according to the
Bose-Einstein scheme. Find the probability that at least one urn contains three or
more balls.

Exercise 15.6. Suppose five balls are distributed into three urns according to the
Bose-Einstein scheme. Find the expected value of the number of empty urns.

Exercise 15.7. Suppose five balls are distributed into three urns according to the
Maxwell-Boltzmann scheme, but the probabilities that a particular ball drops into
the three urns are :6; :3; :1, respectively. Find the expected value of the number of
empty urns.

Hint: Try indicator variables.

Exercise 15.8. * Suppose n balls are distributed into N urns according to the
Maxwell-Boltzmann scheme and that the probabilities that a particular ball drops
into the N urns are p1; p2; : : : ; pN , respectively. Prove that the expected value of
the number of empty urns is minimized when each pi D 1

N
.
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Exercise 15.9. * Suppose n balls are distributed intoN urns according to the Bose-
Einstein scheme. Find a formula for the mean and the variance of M0, the number
of empty urns.

Hint: For the variance, try EŒM0.M0 � 1/� first.

Exercise 15.10. Fifty balls are distributed into ten urns according to the M-B
scheme. Find the expected number of urns with k balls for k D 2; 5; 10. Repeat
if the balls are distributed according to the B-E scheme.

Exercise 15.11. * Derive a formula for the distribution of the number of empty urns
when n balls are distributed into N urns according to the Fermi-Dirac scheme.

Exercise 15.12. Suppose n D 250 balls are distributed intoN D 50 cells according
to the Maxwell-Boltzmann scheme. Find the Poisson approximation to P.M0 D k/

for k D 0; 1; 2; 3.

Exercise 15.13. * In the Maxwell-Boltzmann scheme, if np
N

� 3, then what ap-

proximately is the expected number of empty urns?
Hint: Use the Poisson approximation result.

Exercise 15.14. For the Pólya urn scheme, write down the details of the proof of
P.Xn D 1/ D a

aCb
for all n � 1.

Exercise 15.15. * For the Pólya urn scheme, find the expected value of the number
of white balls drawn in the first n trials by three methods:

(a) using Sn D X1 C � � � CXn;
(b) using the Pólya-Eggenberger distribution;
(c) using the de Finetti representation of the Pólya-Eggenberger distribution.

Exercise 15.16. * Prove or disprove: The Pólya-Eggenberger distribution is uni-
modal for any values of a; b; c.

Exercise 15.17. For the Pólya urn scheme with c D 1, prove that the variance of

Sn equals na
aCb

Œ .n�1/.aC1/
aCbC1

C 1 � na
aCb

�.
Hint: First derive a formula for EŒSn.Sn � 1/�.

Exercise 15.18. * Consider the Pólya urn scheme with c D 1. Let T be the first
trial at which a white ball is drawn.

(a) First prove that P.T D n/ D P.SnD1/
n

.
(b) From this, or by direct methods, find a formula for P.T D n/.
(c) Generalize to the case of a general value of c.

Hint: Look at the de Finetti representation.

Exercise 15.19. * (Negative Binomial as Limit of Pólya Distribution). In the
Pólya urn scheme, denote a

aCb
D p; q D 1 � p; r D 1

aCb
. Suppose n ! 1;

np ! �; 0 < � < 1; nr ! ı; 0 < ı < 1. Prove that, for each fixed

k; P.Sn D k/ ! �kC �
ı

�1

k

� �
1

1Cı

��
ı

�
ı

1Cı

�k

.
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Exercise 15.20 (Variance in Wright-Fisher Model). Consider a population of
N D 50 individuals following the Wright-Fisher mating scheme, and suppose that
i alleles of form A are present in the first generation. Find formulas for the variance
of the number of A alleles in the population in the second generation.

Exercise 15.21. * (Allele Parity in Wright-Fisher Model). Let 	n denote the
probability that two alleles chosen independently at random from the gene pool
of the nth generation are of the same form. Assume that the Wright-Fisher model
holds. Show that

(a) 	n D 1
2N

C �
1 � 1

2N

�
	n�1I

(b) 	1 D

0

@
i

2

1

AC
0

@
2N � i

2

1

A

0

@
2N

2

1

A

;

where i denotes the number of A alleles in the first generation;

(c) 	n D 1 � �
1 � 1

2N

�n�1
.1 � 	1/I

(d) Evaluate 	n for n D 1; 2; : : : ; 10 whenN D 25; i D 20:

Exercise 15.22 (Hoppe’s Urn). In Hoppe’s urn scheme, which probability is larger,
P.Sn D 1/ or P.Sn D n � 1/?
Exercise 15.23 (Weak Law in Hoppe’s Urn). In Hoppe’s urn scheme, show that
for some suitable sequence cn and a constant c, for any � > 0, P.j Sn

cn
�cj > �/ ! 0

as n ! 1, and identify such a sequence cn and the constant c.

Exercise 15.24 (Conditional Distributions in Hoppe’s Urn). In Hoppe’s urn
scheme, find expressions for

(a) P.SnC1 D j jSn D k/;
(b) P.SnC2 D j jSn D k/;
(c) * P.SnCm D j jSn D k/.

In the above, for suitable j , depending on k, the conditional probabilities will be
zero.

Exercise 15.25 (Poisson Approximation in Hoppe’s Urn). Consider a Hoppe urn
with 	 D 1. Find the exact distribution of S10 and also a suitable Poisson approx-
imation. Compare them. Why do you think that a Poisson approximation is worth
considering?

Exercise 15.26 (Size of the Oldest Species). In Hoppe’s urn scheme, letZn denote
the number of animals of the oldest species after n iterations. Find a closed-form
formula for the mean and the variance of Zn for a general 	 .
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Exercise 15.27 (Simple Application of Ewens’ Formula). In a population with
n D 10 animals, compute the probability that there are two species, each with five
animals, and the probability that there are five species, each with two animals.

Exercise 15.28. * (Ewens’ Formula). In a population with n animals, derive an
expression for the probability that there are no species with strictly larger than two
animals.

Exercise 15.29 (Use Your Computer). Plot the Pólya-Eggenberger distribution for
each of the following cases and then superimpose the Beta density function f .p/ as
defined in the text for each corresponding case. Comment on the accuracy.

(a) a D b D 5; c D 1; n D 10I
(b) a D b D 5; c D 1; n D 25I
(c) a D 5; b D 20; c D 5; n D 100:

Exercise 15.30 (Use Your Computer). Compute the expected number of genera-
tions until allele uniformity in a population with N D 50 individuals satisfying the
Wright-Fisher model. Take i to be between 1 and 50. Plot the expected values as a
function of i .

Exercise 15.31 (Use Your Computer). Plot the exact distribution of the num-
ber of species after n generations in a Hoppe urn scheme with 	 D 5 and
n D 10; 20; 30; 50. Plot by using histograms. How does the histogram evolve as
n increases?

Exercise 15.32 (Use Your Computer). Generate the Stirling numbers of the
second kind S.n; k/ for n between 2 and 20. Verify that, for each n; S.n; k/ has
exactly one turning point. Tabulate the turning point for each n considered. What
relation do you see for the turning points corresponding to consecutive values of n?
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Appendix I: Supplementary Homework
and Practice Problems

I.1 Word Problems

Chapters 1–4

Exercise I.1. How many possible initials can be formed if each person has two
given names and a last name? What if each person has at most two given names and
a last name?

Exercise I.2. Three numbers are chosen at random with replacement from
0; 1; : : : ; 9. Find the probabilities that the three are alike, that the three are dis-
tinct, and that exactly two are alike.

Exercise I.3. A;B;C;D are four independent events, each with probability .5. Find
the probability that at least two of the four events occur.

Exercise I.4. The birthdays of five random people are known to fall in exactly three
calendar months. Find the probability that exactly two of the five were born in Jan-
uary. State your assumptions.

Exercise I.5. There are two good bulbs and two bad bulbs in a package. These will
be tested one by one in a random order. Find the probabilities that the second bad
bulb is the second bulb tested, the third bulb tested, and the fourth bulb tested.

Exercise I.6. Suppose B1; B2; : : : are infinitely many events, and let B be their
union. An eventA is independent of each individual Bi . Prove, or give a counterex-
ample, that A and B are independent.

Exercise I.7. A man seeks advice from three oracles on whether or not to accept a
particular job offer. He acts according to the advice of the majority. The three oracles
have probabilities .95, .9, .95 of giving the correct advice. Find the probability that
the man will take the correct action. State your assumptions.

Exercise I.8. Three people, say A;B;C , take turns rolling a fair die. A rolls first,
thenB , and then C . The first to roll a five wins. Find the probabilities of each player
winning.

409
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Exercise I.9.
(a) A six-sided die is manipulated in such a way that the face with the number i has

probability proportional to i . Find the probability that the die will produce an
even number if it is rolled once.

(b) An n-sided die is manipulated in such a way that the face with the number i has
probability proportional to i . Find the probability that the die will produce an
even number if it is rolled once.

Exercise I.10. There are ten black, ten white, and ten blue balls in an urn. Ten of
these are chosen at random without replacement. Find the probability that there is
at least one ball of each color among the ten drawn.

Exercise I.11. There are ten black, ten white, and ten blue balls in an urn. Ten of
these are chosen at random without replacement. Find the probability that the first
blue ball is drawn on the sixth draw.

Exercise I.12. There are ten black, ten white, and ten blue balls in an urn. Ten of
these are chosen at random without replacement. Find the probability that the second
ball drawn is blue if the third ball drawn is known to be blue.

Exercise I.13. Box 1 has two good bulbs and two bad ones; box 2 has three good
bulbs and two bad ones. One bulb is chosen at random from box 1 and transferred
to box 2. Then, one bulb is chosen at random from box 2. It is found to be a good
bulb. What is the probability that the bulb from box 1 that was transferred to box 2
was a good bulb?

Exercise I.14. Find the probability that a hand in bridge has four cards of one suit
and three cards each of three other suits.

Exercise I.15. Which is more likely: that a bridge hand will contain one card of
each denomination or that it will contain cards of only two suits?

Exercise I.16. An urn contains four black, four white, and four blue balls. Three
balls are drawn at random from the urn. Is it more likely that the balls will all be of
the same color if sampling is with replacement or without replacement?

Exercise I.17. Find the probability that a randomly selected bridge hand will be
void in at least one suit.

Exercise I.18. Find the probability that a randomly selected bridge hand will con-
tain exactly five cards of at least one suit.

Exercise I.19. Cards are taken out one at a time from a well-shuffled deck. What is
the probability that it will take at least five and at most ten draws to take out the first
club?

Exercise I.20. A fair coin is tossed six times. Given that there are at least three
heads, what is the probability that there are exactly four heads?
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Exercise I.21. A fair die is rolled 12 times. Given that there are exactly two ones,
what is the probability that there are exactly two sixes?

Exercise I.22. A fair die is rolled twice. Compute the probability that the sum of
the two rolls is 3, 5, 7, 9, 11, respectively, given that the sum is odd.

Exercise I.23. A fair die was rolled four times. The faces 1 and 2 never appeared.
What is the probability that the other four faces each appeared exactly once?

Exercise I.24. Jeff, Jen, and Cathy shoot at a bull’s eye. They can hit the bull’s eye
70%; 80%, and 75% of the time, respectively. One of the three is known to have hit
the bull’s eye. Find the probability that it was Jen.

Exercise I.25. A fair coin is tossed ten times. Given that at least seven heads were
obtained, what is the probability that the first toss was a head? That at least one of
the first two tosses was a head? That the first two tosses were both heads?

Exercise I.26. From a town of 25 Republicans and 25 Democrats, pollsters A and
B each sampled ten residents at random without replacement. Find the probability
that the two polls contained exactly the same number of Republicans.

Exercise I.27. A;B;C are three events. If A is independent of B given C and if C
is independent of B , are A and B independent events? Prove or give a counterex-
ample.

Exercise I.28. A library patron has decided to try five libraries for a particular book.
Each library has a 50% chance of having the book, and if a library has the book, there
is a 20% chance that it will be checked out. Find the probability that the patron can
find the book. State your assumptions.

Exercise I.29. An urn has two white and three green balls. A number is selected at
random from 1; 2; 3; 4; 5, and then that many balls are taken out from the urn. Find
the probability that they are all green.

Exercise I.30. An urn has five white and five green balls. Five balls are drawn at
random without replacement. Find the probability that in each odd-numbered draw
a green ball is drawn.

Exercise I.31. On a table, there are two dice. One is a fair die, and the faces of the
other die are 1, 1, 2, 2, 6, 6. One die is selected at random and rolled, and it gives a
six. What is the probability that it was the fair die?

Exercise I.32. A number is chosen at random from 1; 2; : : : ; 200. Find the proba-
bility that it is even if it is not divisible by 7.

Exercise I.33. TeamX plays against team Y in a best of seven series. In each game,
team X has a 70% chance of winning, and assume that the games are independent.
Find the probabilities thatX wins, thatX wins within five games, and that the series
ends within five games.
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Exercise I.34. A;B;C are three pairwise independent events. Also, A and B \C c

are independent. Show that A;B;C are mutually independent.

Exercise I.35. Suppose a discrete random variable X has the distribution P.X D
n/ D 2�n; n � 1.

(a) Find the mean of X .
(b) Find all medians of X .
(c) Find the variance of X .
(d) Find P.jX � �j � 2�/, and compare it with the bound of Chebyshev’s

inequality.

Exercise I.36. Suppose X has a finite variance. Does jX j have the same, a smaller,
or a larger variance than X?

Exercise I.37. Suppose a discrete random variable X has a distribution such that
P.X > n C 1jX > n/ D nC1

nC2
for all n � 1. Find the probability mass function

of X .

Exercise I.38. Cards are drawn one at a time, without replacement, from a deck of
52 cards until the first club card is obtained. LetX be the number of draws required.

(a) Find the mass function of X .
(b) Find the mean of X .

Exercise I.39. X is uniformly distributed on f1; 2; : : : ; ng, and Y is uniformly dis-
tributed on f2; 4; : : : ; 2ng; X and Y are independent variables.

(a) Find the variance of X C Y .
(b) Find the variance of XY .
(c) Find P.Y > X/.

Exercise I.40. Given positive numbers M; �, show a random variable X such that
�2 � M but P.jX � �j > :01/ < �.
Exercise I.41. SupposeX has a positive mean � and thatE.X2/ is also equal to �.
Prove that Var.X/ 
 1

4
.

Exercise I.42. X takes the values 1; 2; 3; 4, and we know that P.X D 1/ D
P.X D 2/ D 2P.X D 3/ D 3P.X D 4/. Find the distribution of X .

Exercise I.43. Three fair dice are continually rolled until a sum of 15 on the three
dice is obtained. Find the expected number of times the three dice would have to be
rolled.

Exercise I.44. Four distinguishable balls are distributed independently at random
into three distinguishable cells. Let X be the number of balls that land in the first
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cell, Y the number of balls that land in the second cell, and Z the number of cells
that remain empty.

(a) Find E.X/ and E.Y /.
(b) Find Var.X/ and Var.Y /.
(c) Find P.Z D 0/ and P.Z D 2/.
(d) Find E.Z/.

Exercise I.45. A fair die is rolled six times. Let X be the sum of the first four rolls
and Y the sum of the last four rolls. Find the variance of X � Y .

Exercise I.46. A fair die is rolled six times, and let X1; X2; : : : ; X6 be the six rolls
obtained, respectively. Find the mean and the variance of

P6
iD1.�1/XiXi .

Exercise I.47. Twenty-five people will each toss a fair coin 20 times. Let X be the
number of people among the 25 people who get exactly ten heads and ten tails. Find
the mean and variance of X .

Exercise I.48. Give an example of a random variable such that E.X/ D 1 and
Var.X/ > 100.

Exercise I.49. Give an example of a random variable such that E.X/ D 100 and
Var.X/ D 1.

Exercise I.50. In bridge, find the expected number of players who receive no aces
or no hearts.

Exercise I.51. Coupons are drawn, independently with replacement, from a set of
ten coupons. Find the expected number of draws:

(a) until the first coupon drawn is drawn again;
(b) until a duplicate occurs.

Exercise I.52. A fair die is rolled one hundred times. Find the expected number of
rolls such that it and the next roll show the same face.

Exercise I.53. A random variable X takes the values 1; 0 with probabilities p;
1 � p. It has a variance equal to .16, and we know that E.X � p/3 > 0. Find
p.

Exercise I.54. Consider couples that have children until they have a girl. What is
the expected proportion of boys in such families?

Chapters 5 and 6

Exercise I.55. A random variable X takes the values 0;˙1;˙2 with the equal
probability 1

5
. Find the mgf of X and E.X/. Verify that E.X/ D  0.0/,  being

the mgf.
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Exercise I.56. Suppose X � Bin.n; p/, where p D 1
2

. Define Y as Y D X if X is
even and zero if X is odd. Find the mgf of Y and hence E.Y /.

Exercise I.57. Suppose X � Ber.p/ and Y � Poi.�/, and assume that X and Y
are independent. Find the mgf of XY .

Exercise I.58. Suppose X has a finite mean � and a finite variance �2, and that
its mgf  .t/ exists in some interval around zero. Show that �2 D � 00.0/, where
�.t/ D e�t� .t/.

Exercise I.59. Suppose Xi
indep:� Ber.pi /; i D 1; 2; : : : ; n. Find the mgf of X1 C

� � � CXn, and hence the variance of X1 C � � � CXn.

Exercise I.60. Suppose X has the mgf  .t/ D cosh t;�1 < t < 1. Find the
distribution of X .

Exercise I.61. Suppose X has the mgf  .t/ D sinh t
t

for t 3 0, and  .0/ D 1. Find
the distribution of X .

Exercise I.62. Suppose X � Poi.1/, and define Xn D XIfX�ng; n � 1.

(a) Find  n.t/, the mgf of Xn.
(b) Find limn!1  n.t/.

Exercise I.63. Find the factorial moments of the Bin.n; p/ distribution.

Exercise I.64. Find the factorial moments of the Poi.�/ distribution.

Exercise I.65. A random variable X has the generating function (pgf) c C 1
2
s C

1
4
s2 C 1

8
s3 for some c.

(a) Find c.
(b) Find the distribution of X .
(c) Find the mean of X .

Exercise I.66. Find the generating function of a general Poisson distribution.

Exercise I.67. Find the generating function of the NB.r; p/ distribution.

Exercise I.68. Is it possible that neither of two random variables X and Y has a
finite mgf in any interval around zero but X C Y does in all intervals around zero?

Exercise I.69. Suppose X has a finite mgf in some interval around zero. Does jX j
also have a finite mgf in some interval around zero?

Exercise I.70. A binomial random variable has mean 6 and variance 2.4. Evaluate
P.X < 5/.
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Exercise I.71. Harry’s experience is that 7% of the parcels he mails do not reach
their destination. He has bought two books for 25 dollars apiece and wants to mail
them to his brother. If he sends them in one parcel, the postage is 6 dollars, while for
separate parcels the postage is 4 dollars for each parcel. To minimize his expected
total cost (possible loss of books C postage), should he send one or two parcels?

Exercise I.72. You are promised a reward if you obtain exactly ten heads by tossing
a coin. How many times you toss the coin is up to you, but you have to announce
this before starting. Assuming the coin is a fair coin, what is the best number of
times to toss the coin?

Exercise I.73. Suppose I roll three dice. Those that show a six are rolled again. Let
X be the number of resulting sixes. Find the distribution, mean, and variance of X .

Exercise I.74. Printing errors occur on any specific page in a book with probability
:01. A certain book has 400 pages.

(a) Find the probability that the book has ten or more printing errors.
(b) Find the probability that the first hundred pages are error-free.
(c) Find the probability that page 90 is error-free.
(d) Find the probability that the first error occurs on page 91.
(e) Find the probability that there are exactly three errors in pages 1 to 200 and

exactly three errors in pages 201 to 400.

Exercise I.75. A telephone operator receives 25 calls on average per hour. What is
the probability that in two consecutive five minute intervals she receives no calls at
all?

Exercise I.76. A Poisson random variable has the property that  .0/ D  .1/,
where  denotes its mgf. Find P.X > 1/.

Exercise I.77. Peter has a coin that gives heads with probability p in individual
tosses. Paul has a coin that gives heads with probability 	 in individual tosses. Both
toss their coins repeatedly. Let Y be the first toss at which Paul obtains a head and
X be the number of heads Peter obtains up to and including the Y th toss. Find the
mean of X .

Exercise I.78. Suppose X � Bin.20; :1/. Compute P.X 
 k/ for k D 1; 2; 3

exactly and then by using the normal approximation with and without a continuity
correction. Compare the approximations with the exact values.

Exercise I.79. LetX be the number of people who will want to buy the daily news-
paper from a vendor on a given day.

(a) Suppose X � Poi.�/ with � D 10. If the vendor stocks 14 papers, what is the
probability that the demand will exceed the supply?

(b) Suppose X � Bin.n; p/ with n D 20; p D :5. If the vendor stocks 14 papers,
what is the probability that the demand will exceed the supply?
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(c) In each case, find the minimum number of papers the vendor should stock so
that the chance that the demand will exceed the supply is at most 5%.

Exercise I.80.
(a) Compute the exact probability that a bridge hand is void in spades.
(b) Compute the exact probability that in one hundred independent plays at least

twice a player finds his hand to be void in spades.
(c) Compute the Poisson approximation to the probability above.

Exercise I.81. For each of p D :05; :1; :25; :4, find the smallest value of n such that
the Bin.n; p/ distribution has a skewness 
 :2 and kurtosis 
 :1.

Exercise I.82. Peter has a coin that gives heads with probability :6 in individual
tosses, and Paul has a fair coin. Both toss their coins repeatedly. Let X and Y be the
first tosses at which they obtain the first heads, respectively. Find the distribution
and the mean of maxfX; Y g.

Exercise I.83. Suppose X and Y are independent Poisson random variables with
means �;�. Find the mgf of X � Y .

Exercise I.84. Suppose X1; X2; : : : ; X10 are independent Bernoulli variables with
the common parameter p. Find the mgf of X1 �X2 CX3 �X4 C � � � � X10.

Exercise I.85. Find the first four moments of a Poisson distribution with mean 2.

Exercise I.86. Find the first four moments of a Bin.10; :5/ distribution.

Exercise I.87. Suppose X � Bin.10; :5/. Compute E.X � 5/5.

Exercise I.88. Cards are drawn one by one from a deck of 52 cards.

(a) Compute the expected number of draws necessary to draw the first ace.
(b) Compute the expected number of draws necessary to draw the second ace.

Exercise I.89. Suppose a couple will have children until they have at least one boy
and at least one girl, but they will not have more than four children. Compute the
expected number of children they will have.

Exercise I.90. A coin with probabilityp for heads is repeatedly tossed until r heads
or r tails are obtained, whichever happens first. Find the mass function of the number
of tosses necessary.

Exercise I.91. For i D 1; 2; : : : 10, let Xi be a randomly selected number from
f1; 2; : : : ; ig. Find the expected number of even numbers drawn; i.e., the expected
value of the number of Xi that are even.

Exercise I.92. Suppose X and Y are independent Poisson random variables with
means �;�. Can XY have a Poisson distribution for any �;�?
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Exercise I.93. SupposeX1; X2; : : : ; Xn are n independent random variables. Show
that Var.X1X2 : : : Xn/ � Var.X1/Var.X2/ : : :Var.Xn/.

Exercise I.94. Suppose a random variable X is such that E.X/ D 0;E.X2/ D 1;

E.X6/ D 1. Find and plot the CDF of X .

Exercise I.95. Find all medians of the number of aces in a bridge hand.

Exercise I.96. In a small town of 100 people, there are 90 right-handed and ten left-
handed people. If ten tosses of a fair coin produce eight or more heads, a sample of
20 people with replacement will be taken. If the number of heads is less than eight,
a sample of ten people without replacement will be taken. Find the expected number
of left-handed people in the sample.

Chapters 7–10

Exercise I.97. A density function is verbally described as follows: it is zero for
x < 1, rises linearly between 1 and 2 to 1

3
, remains constant between 2 and 4,

decreases linearly to zero from 4 to 5, and remains zero thereafter.

(a) Plot the density function.
(b) Find the corresponding CDF and plot it.
(c) Find the mean of the distribution.
(d) Find P.2:5 < X < 4:5/.

Exercise I.98. A random variable X has the density cx for x between 0 and .5 and
c.1 � x/ for x between .5 and 1.

(a) Find the normalizing constant c.
(b) Let A;B;C be the three events X < :5;X > :5; :25<X < :75. Find P.AjB/I

P.C /IP.C jA/IP.C jA\ B/.

Exercise I.99. Suppose we know that the following functions are valid CDFs. Find,
for each case, the smallest numberM such that F.M/ D 1.

(a) F.x/ D x2=4; x � 0.
(b) F.x/ D logx; x � 1.

(c) F.x/ D 1 � cosax

2
; x; a > 0.

Exercise I.100. Annual rainfall in a desert town is zero with probability .9, and if
it rains in some year, then the amount is exponential with mean 2 in. Plot the CDF
of the amount of rainfall in this town.

Exercise I.101. The pth quantiles for p D :1; :2; : : : ; :9 are called the deciles of
a distribution. Compute approximately the deciles of the exponential distribution
with mean 1, a Beta distribution with parameters 2 and 1, and a standard normal
distribution.
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Exercise I.102. Suppose X has the standard double exponential density. Compute
each of the following probabilities:

(a) X is a prime number;
(b) X is an irrational number;
(c) X3 �X2 � X � 2 > 0;
(d) jX j C jX � 3j > 3;
(e) jX je�jX j > e�1.

Exercise I.103. Suppose X � U Œ0; 1�. Find the density of e�X2

.

Exercise I.104. Suppose X � Exp.1/. Find the density of 2e�X .

Exercise I.105. Suppose X � Exp.1/. Define a function g.X/ as g.X/ D X if
X < 1 and g.X/ D 1

X
if X > 1. Find the density of Y D g.X/.

Exercise I.106. SupposeX has the density 1
x2 for x � 1. Define a function g.X/ as

g.X/ D 2X for X 
 2 and g.X/ D X2 for X > 2. Find the density of Y D g.X/.

Exercise I.107. Suppose Z � U Œ�1; 1� and X takes values ˙1 with probability 1
2

each. We know that X and Z are independent.

(a) Find the CDF of Y D ZX .
(b) Find the density of Y D ZX .

Exercise I.108. Household incomes in a town have a Pareto distribution with
	 D 10; the value of the ˛ parameter is not explicitly given. We know that the mean
income is 40,000 dollars.

(a) Find the value of ˛.
(b) What percentage of the families earn more than 50,000 dollars?

Exercise I.109. It is known that the shortest interval containing 95% of the total
area in a normal distribution is Œ2; 8�. Find:

(a) the mean and variance of this normal distribution;
(b) the 90th percentile of this normal distribution;
(c) the area between 5 and 10 in this normal distribution.

Exercise I.110. Find the shortest interval with probability � :5 under the
N.0; 1/; U Œ�1; 1�, and C.0; 1/ distributions, simultaneously.

Exercise I.111. Let Z � N.0; 1/. Evaluate P.ˆ.Z/ˆ.�Z/ > :1/, where ˆ de-
notes the standard normal CDF.

Exercise I.112. SupposeX has a normal distribution and g.X/ is a strictly increas-
ing nonlinear function of X . Show that g.X/ cannot be normally distributed.
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Exercise I.113. Suppose X has the Gamma density with parameters � D 1;

˛ D 2. Find the expectation of the integer part and the fractional part of X .

Exercise I.114. Suppose X1; X2; : : : ; Xn are n iid standard exponential variables.
Find the mean, median, and variance of the minimum of X1; X2; : : : ; Xn.

Exercise I.115. Suppose X is uniformly distributed on Œ0; 2��. Find P.�:5 <

sinX < :5/.

Exercise I.116. The diameter of a circular disk cut by a machine has the CDF

F.x/ D .x�1/3

64
; 1 
 x 
 5. Find the average diameter of disks coming from

this machine.

Exercise I.117. Suppose X � C.0; 1/. Explicitly find a function g.X/ such that
Y D g.X/ � Exp.1/.

Exercise I.118. Let f .x/ D cx sinx; 0 < x < � .

(a) Evaluate a c that makes f a density function.
(b) Find the mean of this density function.

Exercise I.119. The waiting time at a teller’s window in a bank has the density
f .x/ D 1

3
e�x=3; x > 0.

(a) Find the average waiting time.
(b) Find the standard deviation of the waiting time.
(c) Find the probability that you have to wait longer than three minutes.
(d) Find a time such that the probability that you have to wait even longer than that

time is only 5%.
(e) Find the probability that you have to wait at least three more minutes if you

have already waited for three minutes.
(f) Interpret your result in part (e).

Exercise I.120. A square is to be constructed by choosing the common side length
to be exponentially distributed with mean one inch. Find the expected area of the
square.

Exercise I.121. A circle is to be constructed by choosing the radius of the circle to
have the distribution of the absolute value of a standard normal. Find the expected
perimeter of the circle.

Exercise I.122. A sphere is to be constructed by choosing the radius of the sphere
such that it has a Beta distribution with both parameters equal to 3. Find the expected
volume of the sphere.

Exercise I.123. Weights of individuals in some population are normally distributed
with a mean of 150 lbs. and a standard deviation of 25 lbs. At least how many people
must be sampled from this population if with a 90% probability we want at least one
person in our sample who weighs more than 250 lbs.?
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Exercise I.124. Suppose X � N.0; 1/. For what values of a; b; c is E.eaX2CbXCc/

< 1?

Exercise I.125. Suppose X � N.0; 1/. Find an expression for P.jX j < 2a

j jX j > a/. Plot it as a function of a, and find the minima and the maxima.

Exercise I.126. Suppose X � C.0; 1/. Find an expression for P.jX j < 2a

j jX j > a/. Plot it as a function of a, and find the minima and the maxima.

Exercise I.127. Explicitly exhibit a density function f .x/ whose hazard rate has
the bathtub shape; i.e., at first decreasing, then constant, and eventually increasing.

Exercise I.128. Suppose a positive continuous random variable has a finite mean.
Write an expression for the mean in terms of the hazard rate function of the random
variable.

Exercise I.129. X1; X2; : : : ; X10 are ten iid U Œ0; 1� variables. Let m denote their
minimum andM their maximum. Find P.:05 < m < M < :95/.

Exercise I.130. X1; X2; : : : ; X10 are ten iid N.0; 1/ variables. Let m denote their
minimum andM their maximum. Find P.�2 < m < M < 2/.

Exercise I.131. Suppose X has a lognormal distribution with parameters � D 0;

� D 1. Find the deciles of X .

Exercise I.132. Suppose X1; X2; : : : ; Xn are n independent lognormal variables.
What is the name of the distribution of their product X1X2 : : : Xn?

Exercise I.133. The 25th, 50th, and 75th percentiles of a distribution are �1, 0, and
1.5. Can this be a normal distribution?

Exercise I.134. The 10th, 90th, and 95th percentiles of a distribution are 2, 5, and 8.
Can this be a normal distribution?

Exercise I.135. Suppose we want to construct a confidence interval for a normal
mean assuming that the variance �2 is known. What is the minimum n required
for the margin of error of the confidence interval to be at most .1 if we want a
90% confidence interval? A 95% confidence interval? A 99% confidence interval?
A 99:99% confidence interval?

Exercise I.136. Weights of adult males in some population are normally distributed
with mean 160 lbs. and standard deviation 30 lbs. Weights of adult females in the
same population are normally distributed with mean 130 lbs. and standard deviation
25 lbs. Find the probability that the weights of one randomly selected male and one
randomly selected female differ by more than 50 lbs.

Exercise I.137. Suppose Z � N.0; 1/. Find the mean, median, and mode of Z5,
jZj, and jZ � 1j.
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Exercise I.138. A fair die is tossed 100 times. Approximate the probability that the
sum of the rolls is between 300 and 400 inclusive. Next, suppose a fair die is tossed
1000 times. Approximate the probability that the sum of the rolls is between 3400
and 3600.

Exercise I.139. X1; X2; : : : ; Xn are iid from a density f .x/ that equals 1
3

on Œ�1; 0�
and equals 2

3
on Œ0; 1�. Sketch the approximate density of X1 C X2 C � � � C Xn for

n D 50.

Exercise I.140. Shipments of some equipment to a factory come in boxes of 1000
items. From past experience, the factory knows that (about) 1% of the items are
defective. It returns a shipment if a sample of 50 items from the box contains two or
more defective items.

(a) Approximate the probability that a shipment will be rejected.
(b) Suppose that on one occasion a bad shipment arrived with 5% defective items.

Approximate the probability that the shipment will be rejected.

Exercise I.141. In approximately how many tosses of a fair coin is the probability
of getting more than 52% heads at most :01?

Exercise I.142. In approximately how many tosses of a fair coin is the probability
of getting more than 52% or less than 48% heads at most :01?

Exercise I.143. A certain congenital birth defect is found in some geographic re-
gion at the average rate of one a year. Approximate the probability that 60 or
more people with this birth defect will be found in the next 50 years. State your
assumptions.

Exercise I.144. A random variable X has the density 1
x2 for x � 1 and zero other-

wise. An iid sample of size 100 is available from this density. Can we use a normal
approximation to approximate the distribution of their sum? If so, sketch such an ap-
proximate normal density. If not, explain why we cannot do a normal approximation
here.

Exercise I.145. A gambler repeatedly plays a game in which his earnings are iid
U Œ0; 1� in dollars. After each play, he tips the manager an amount equal to the square
of the amount he just won. Approximate the probability that if he plays and tips 600
times, then his total winnings minus his total tip will exceed 105 dollars.

Exercise I.146. Suppose X1; X2; : : : ; Xn are iid standard exponentials. For n D 8,
sketch the exact density, the CLT approximation, and the first-order Edgeworth ap-
proximation for the density of their sum.

Exercise I.147. Suppose X � Bin.n; p/. For n D 50; 100; 250, plot the Berry-
Esseen bound, as given in the text, as a function of p. Identify the peak value in the
plot for each n.
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Chapters 11–13

Exercise I.148. A fair die is rolled twice, and X and Y are the two rolls.

(a) Write the joint mass function of X C Y and X
XCY

.

(b) From this, find the marginal pmf of X
XCY

.

(c) From this, find E. X
XCY

/. Was the answer obvious to begin with?

(d) Find the conditional expectation of X
XCY

given X C Y D t; t D 2; 3; : : : ; 12.

(e) By inspecting the numerical values in part (d), write a formula forE. X
XCY

jXC
Y D t/. Was the answer obvious to begin with?

Exercise I.149. A fair coin is tossed 20 times. Let X be the number of heads in the
first 15 tosses and Y the number of heads in the last 15 tosses. Find a formula for
E.Y jX D x/.

Exercise I.150. Suppose X and Y are two random variables such that E.Y jX/ D
X . Assuming that the variances exist, prove that Var.Y / � Var.X/.

Exercise I.151. X; Y;Z have the joint pmf p.x; y; z/D 1
8

for xD ˙ 1; yD ˙ 1;

z D ˙ 1.

(a) Find the marginal pmfs of each of X; Y;Z.
(b) Find the joint pmfs of each of .X; Y /; .Y;Z/; .X;Z/.
(c) Find the pairwise correlations between X and Y , Y and Z, and X and Z.
(d) Find the correlation between X C Y and Y CZ.

Exercise I.152. A fair coin is tossed n times, and suppose X heads are obtained.
Given X D x, a Poisson random variable Y with mean x is generated. Here, a
Poisson with zero mean is the constant zero.

(a) Find the variance of the marginal distribution of Y .
(b) Evaluate the limit

lim
n!1P

�
jY � n

2
j > n 3

4

�
:

Exercise I.153. Midterm grades in a class of 40 students are normally distributed
with mean 50 and variance 100. The cutoffs for A;B;C;D are 70; 60; 40; 30, and a
grade less than 30 is an F.

By recognizing it as a suitable multinomial distribution problem, calculate the
probability that the number of students receiving each of the five letter grades is
eight.

Exercise I.154. Suppose X; Y;Z are three independent Poisson variables with
means �;�; �. Prove that the conditional distribution of .X; Y;Z/ given X C Y C
Z D t is a trivariate multinomial distribution. Identify all the parameters of this
multinomial distribution.
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Exercise I.155. Suppose X has a discrete uniform distribution on f�n;�n C
1; : : : ; 0; 1; : : : ; n� 1; ng. Find the conditional expectation of X givenX2 D t for a
general t .

Exercise I.156. A fair coin is tossed repeatedly until the first head is obtained. Let
X be the first toss at which the first head is obtained, and let Y D min.X; k/, for a
general k � 1.

(a) Find E.Y /.
(b) Find E.Y jX D x/.
(c) Find the correlation between X and Y in as simple a form as you can.
(d) Where does this correlation converge as k ! 1?

Exercise I.157. From an urn with N balls numbered 1; 2; : : : ; N , two balls are
taken out without replacement. LetX; Y denote the numbers on the first ball chosen
and the second ball chosen, respectively.

(a) Find E.X/;E.Y /.
(b) Find E.Y jX D n/; n D 1; 2; : : : ; N .
(c) Find Cov.X; Y /.
(d) Find the correlation between X and Y as a function of N .
(e) Compute the correlation for N D 2; 3; 5; 10.
(f) Find the limit of the correlation as N ! 1. Is the answer what you would

intuitively expect?

Exercise I.158. LetX be the number of kings and Y the number of hearts in a hand
in bridge. Find the correlation between X and Y .

Exercise I.159. A fair die is rolled three times. Let X; Y;Z be the three individual
rolls. Define U D X;V D max.X; Y /;W D max.X; Y;Z/.

(a) Find P.U D V /.
(b) Find P.V D W /.
(c) Find P.U D W /.

Exercise I.160. Suppose .X1; X2; X3/ is jointly multinomially distributed with pa-
rameter vector .n; p1; p2; p3/. By using the joint mgf, find E.X1X2X3/.

Exercise I.161. Suppose .X1; X2; X3/ is jointly multinomially distributed with pa-
rameter vector .n; p1; p2; p3/. Find the correlation betweenX1 CX2 andX2 CX3.

Exercise I.162. In bridge, find the conditional expectation of the number of aces in
the hands of South given that North has k aces in his hand, k D 0; 1; : : : ; 4. Does
your answer make intuitive sense?

Exercise I.163. Consider the joint density function

f .x; y/ D cx2y2; 0 < x; yI x C y < 1:
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(a) Find the normalizing constant c.
(b) Find the marginal densities of X; Y .
(c) Prove or disprove that X and Y are independent.

Exercise I.164. Consider again the joint density function

f .x; y/ D cx2y2; 0 < x; yI x C y < 1;

as in the problem above.

(a) Find a formula for E.X jY D y/.
(b) Find a formula for E.Y jX D x/.
(c) Find E.XY /.
(d) Find E.X2Y 2/.

Exercise I.165. Suppose X; Y are iid standard normal variables. Find

(a) P.jX C Y j < jX � Y j/.
(b) E.XIfY <cg/.
(c) E.XIfmax.X;Y /<cg/.
(d) P.X < Y < 2X/.

Exercise I.166. Suppose X; Y are iid U Œ0; 1�. Find the density of X � Y .

Exercise I.167. A foot-long stick is broken at a random point, and then the longer
of the two pieces is again broken at a random point. Find the probability that a
triangle can be made with these three pieces.

Exercise I.168. X; Y;Z are iid U Œ0; 1�. Find the probability that the largest of the
three is larger than the sum of the other two.

Exercise I.169. X; Y;Z are iid standard exponential. Find the joint density of
.X;XY;XYZ/.

Exercise I.170. X; Y;Z are iid U Œ0; 1�. Find the joint density of .X;XY;XYZ/.

Exercise I.171. Suppose X; Y;Z are iid Exp.1/. Define U1 D p
X1X2; U2 Dp

X2X3; U3 D p
X1X3.

(a) Find the mean and variance of each Ui .
(b) Let T D U1CU2CU3

3
. Find the mean and variance of T .

Remark. U1; U2; U3 are not independent.

Exercise I.172. Suppose X1; X2 are iid standard normal variables. Show that:

(a) X1 CX2 and X1 �X2 are independent.
(b) X1 CX2 and jX1 �X2j are independent.
(c) X2

1 CX2
2 and X1

X2
are independent.
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Exercise I.173. Suppose .X; Y / has a bivariate normal distribution with means
equal to zero, standard deviations equal to 1, and a correlation :5.

(a) Find the mean and variance of XY .
(b) Find the mean of X2Y .
(c) Find the correlation between X and XY .
(d) Find a constant c such that X C Y and X C cY are independent.

Exercise I.174. The heights of husbands and wives in some population are jointly
distributed as bivariate normal, with means 71 in. and 66 in. and standard deviations
2 in. and 1 in., respectively. Furthermore, the correlation between the heights of the
husband and wife is .7. Find the probability that, for a randomly selected couple, the
wife is taller than the husband.

Exercise I.175. Suppose .X; Y / is jointly uniformly distributed inside the unit cir-
cle in two dimensions.

(a) Find P.X2 C Y 2 < :5/.
(b) For general 0 < r < s < 1, find P.r 
 X2 C Y 2 
 s/.

(c) Find E.e�X2�Y 2

/.

Exercise I.176. Suppose X; Y are iid U Œ0; 1�. Let U D max.X; Y /; V D
min.X; Y /. Find P.U > 2V /.

Exercise I.177. Suppose X; Y are iid standard exponentials. Let U D max.X; Y /;
V D min.X; Y /. Find P.U > 2V /.

Exercise I.178. Suppose X; Y are iid standard normal variables. Let R D X
Y

and

U D pjRj. Is E.U / < 1? If it is, find its value.

Exercise I.179. Suppose X; Y are iid random variables with the common density
function f .x/ D c

1Cx4 ;�1 < x < 1, where c is a normalizing constant. Show

that R D X
Y

has the standard Cauchy distribution.

Exercise I.180. Let X be standard normal and Y independent of X .

(a) Show that the density of X C Y is uniformly bounded. Give such an explicit
bound.

(b) Is the density of XY necessarily uniformly bounded? Prove it, or give a coun-
terexample.

Exercise I.181. Let X be standard normal and Y independent of X . Find the den-
sity of X C Y for each of the following cases:

(a) Y � Bin.2; :5/.
(b) Y � U Œa; b�.
(c) Y � Exp.�/.
(d) Y � Gamma.˛; �/ with ˛ D 2.
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Exercise I.182. Suppose X1; X2; : : : are iid U Œ0; 1�. Let U D P1
iD1

Xi

10i and

V D P1
iD1

Xi

2i . Find the expectation of jU � V j.
Exercise I.183. Suppose X � Geo.p/; Y � Geo.	/, and that X and Y are inde-
pendent. Find P.X > Y /.

Exercise I.184. A number N is chosen according to a Poisson distribution with
mean 10. One hundred balls are then distributed completely at random into N C 1

cells. What are the mean and the variance of the number of balls received by the
first cell?

Exercise I.185. A number N is chosen according to a Poisson distribution with
mean 10. A fair coin is then tossed until N C 1 heads are obtained. What is the
expected number of tosses it will take to stop the experiment?

I.2 True-False Problems

For each of the following questions, answer whether the statement is true (T) or
false (F).

Chapters 1–4

1. A and B are two events such that P.A/ D :5; P.B/ D :25. Then, P.A [ B/


 :75.
2. A;B;C are three events such that P.A/ D P.B/ D :5, P.A \ B/ D :25, and

if either A or B occurs, then C also occurs. Then, P.C / < :75.
3. A;B;C are three events such that A and B are independent, and if both A and
B occur, then C cannot occur. Furthermore, P.A/ D P.B/ D P.C / D :5.
Then, P (Either A and C both occur or B and C both occur) = .75.

4. Ten numbers are drawn without replacement from 1; 2; : : : ; 100. The probabil-
ity that the second number drawn will be an even number is .5.

5. The six letters in the word CHEESE are rearranged in a random manner. The
probability that it will still spell CHEESE is less than .5.

6. Two calculus and two history books are placed on a shelf in random order. The
probability that the two calculus books will be placed next to each other is less
than .5.

7. A fair die is rolled three times. It is more likely that the sum will be 16 or more
than that two or more of the rolls will be a six.

8. It is possible for the total number of events in an experiment with probabilities
strictly between 0 and 1 to be 62.

9. In bridge, it is more likely that North has no spades than that he has no aces.
10. If three distinguishable balls are distributed completely at random into three

distinguishable cells, then it is more likely that no cell will remain empty than
that only one cell remains nonempty.
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11. Tim chose one number at random from 1; 2; : : : ; 10, and Tom chose one number
at random from 1; 2; : : : ; 10. They chose independently. The probability that
they happened to choose the number is less than 5%.

12. If A and B are independent and B and C are also independent, then A;B;C
are mutually independent.

13. IfP.AjB/ D :5, then forP.BjA/ also to be .5,P.A/ andP.B/must both be .5.
14. P.AjAc \ B/ is always zero.
15. P.AjAc [ B/ is always zero.
16. If P.A/ > P.B/, then P.AjB/ > P.BjA/.
17. Among five people in a room, two are twins and the other three are three random

people. The probability that there are three or more people in the room with the
same birthday is less than 5%.

18. A fair die is rolled three times. The probability that at least two of the rolls are
even if we know that at least one of the rolls is even is 2

3
.

19. If P.A/ D P.B/ D :8, then P.BjA/ cannot be :6.
20. If P.AjB/ and P.BjC/ are both strictly positive, then P.AjC/ is also strictly

positive.
21. Tim and Doug shoot simultaneously at the bull’s eye. Tim misses 80% of the

time, and Doug hits 80% of the time. We know that one of the two shots hit the
eye and the other missed. The probability that it was Doug who hit is .8.

22. A random variable X has a CDF F.x/ such that F.x/ � F.x�/D :2 at
xD 1; 2; 3; 4; 5. Then F.2:5/ D :4.

23. A random variableX takes values 0; :5, and 1 and has mean .5. ThenP.X D 0/

and P.X D 1/ are equal.
24. A discrete random variableX assumes the values 0; 1; 2; 3; : : :. Then,E.X2/ DP1

nD0 P.X >
p
n/.

25. A fair coin is tossed 20 times. Then the expected number of times that a head is
followed by four or more heads is larger than .25.

26. A couple wants to have at least two boys or at least two girls, whichever happens
first. Then the expected number of children they will have is 2.5.

27. IfX; Y;Z are independent random variables, then Var.XYZ/ � Var.X/Var.Y /
Var.Z/.

28. If X; Y;Z are independent random variables, then Var.XYZ/ cannot be equal
to Var.X/Var.Y /Var.Z/.

29. An urn contains three green and three red balls. Four of them are taken out at
random, without replacement, one at a time. Let X be the first draw at which a
green ball is taken out. Then E.X/ < 3.

30. A fair coin is tossed repeatedly until both a head and a tail are obtained. Let X
be the number of tosses it will take. Then E.X/ D 3.

31. A nonnegative random variable X has variance 100. Then P.X > 20/ cannot
be zero.

32. It is not possible that neither X nor Y has a finite variance but X C Y does.
33. It is not possible for a random variableX to be such that both E.X/ and E. 1

X
/

are strictly larger than 1.
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34. If X1; X2; : : : ; X100 are 100 independent variables, and if Var.X1 CX2 C� � �C
X100/ D 100, then it cannot be true that Var.Xi / < 1 for each i .

35. X and Y are two random variables such that E.X C Y / D 2. Then at least one
of E.jX j/ and E.jY j/ must be � 1.

36. A fair coin is tossed repeatedly until the first head is obtained. If we know that
two tosses did not suffice, then the expected value of the number of tosses it
actually took to obtain the first head is larger than 3.5.

37. X1 and X2 are iid random variables with the common pmf p.x/ D 1
2
;

x D ˙1, and p.x/ D 0 otherwise. If we define X3 D X1X2, then X1; X2; X3

are mutually independent.
38. If X and Y are independent random variables with a finite variance, then nec-

essarily E.X2Y 2/ D E.X2/E.Y 2/.
39. If X and Y are iid random variables with mean 1 and a finite and nonzero

variance, then necessarily E.X � Y /2 > E.X � 1/2.
40. For any random variable X with a finite variance, Var.jX j/ 
 Var.X/.
41. A random variable X has finite variance and another random variable Y takes

only the values ˙1 with probability 1
2

each; X and Y are independent. Then X
and XY have the same variance.

Chapters 5–9

42. A nonnegative integer-valued random variableX has a finite mgf at some t > 0.
Another random variable Y equals X if X > 1 but is zero if X D 0 or 1. Then
Y also has a finite mgf at that t .

43. If X and Y are independent random variables and each has a finite mgfs for
�1 < t < 1, then X C Y and X � Y also have finite mgfs for �1 < t < 1.

44. X; Y;Z are three iid random variables. ThenXY and YZ are necessarily equal;
i.e., P.XY D YZ/ D 1.

45. X; Y;Z are three iid random variables. Then XY and YZ necessarily have the
same distribution.

46. A certain positive random variable X does not have a finite mgf at any t > 0.
However, Y D Xe�X must still have a finite mgf at all t > 0.

47. X is a standard normal variable. Then Y D 2ˆ.x/� 1 is distributed uniformly
on Œ�1; 1�.

48. X is a Bernoulli random variable with parameter p D :5. Let F.x/ be the CDF
of X . Then 2F.X/� 1 is also a Bernoulli random variable.

49. X is a standard normal variable. Then no integer power of X can be normally
distributed.

50. X is a standard Cauchy variable. Then no strictly monotone function of X can
also be a standard Cauchy variable.

51. If X1 and X2 are iid random variables and all their moments exist, then all odd
moments of X1 �X2 must also exist and be zero.

52. A continuous random variable X has all odd moments equal to zero. Then the
density of X is symmetric about zero.
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53. X has a Poisson distribution. Then no function of X can be normally dis-
tributed.

54. X and Y are independent Poisson random variables. Then maxfX; Y g is also
Poisson distributed.

55. X and Y are independent Poisson random variables. Then minfX; Y g is also
Poisson distributed.

56. X and Y are iid Poisson random variables with mean 1. Then XCY
2

is also
Poisson with mean 1.

57. IfX and Y are independent continuous random variables and each has a density
symmetric about zero, then X C Y also has a density symmetric about zero.

58. IfX and Y are independent continuous random variables and each has a density
symmetric about zero, then XY also has a density symmetric about zero.

59. If a continuous random variable X has zero mean, then its density f .x/ has to
be strictly positive at zero.

60. If a continuous random variable X has zero mean, then its density f .x/ has to
be finite at zero.

61. A continuous random variable X has a density symmetric about zero, and X2

has a chi-square distribution with one degree of freedom. ThenX must be stan-
dard normal.

62. If X has a Pareto distribution with 	 D 1, then 1
X

has a Beta distribution.
63. The variance of a Beta distribution cannot be 2.
64. If X has a lognormal distribution, then E. 1

X
/ must exist.

65. If X; Y;Z are three independent lognormal variables, then XY 2Z3 is another
lognormal variable.

66. If X; Y;Z;W are four iid standard normal variables, then X
Y

C Z
W

is a Cauchy
variable.

67. If X has a standard double exponential density, then jX j has an exponential
density.

68. If X is a positive random variable and E.X2/ D E.X6/ D 1, then X is con-
stantly equal to 1.

69. If f .x/ is a density function on Œ0; 1�, then
R 1

0
f 2.x/dx < 1.

70. If f .x/ is a density function on Œ0; 1�, then
R 1

0

p
f .x/dx < 1.

71. If X is a positive random variable and EŒg.X/� < 1, then EŒg.�X/� must
also be finite.

Chapter 10

72. The sum of 50 independent Poisson variables with mean 1 and the sum of 50
independent exponential variables with mean 1 have approximately the same
distribution.

73. One hundred numbers are chosen at random independently with replacement
from 1; 2; : : : ; 9. Their sum should be 500˙ 50 with about a 95% probability.
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74. One hundred numbers are chosen independently from the unit interval Œ0; 1�
according to a uniform distribution. Their sum should be 50 ˙ 5 with about a
92% probability.

75. If a fair coin is tossed 500 times, the probability that exactly 250 heads will be
obtained is about 4%.

76. If a fair coin is tossed 5000 times, the probability that exactly 2500 heads will
be obtained is about 1%.

77. The length of an approximate 95% confidence interval for a Poisson mean in-
creases with the data value X .

78. The center of an approximate 95% confidence interval for a Poisson mean
moves to the right with the data value X .

79. The sum of the squares of 90 iid U Œ0; 1� variables should be approximately
normal with mean 30 and variance 7.5.

80. The sum of the squares of 90 iid U Œ0; 1� variables should be approximately
normal with mean 30 and variance 8.

81. X is a Poisson variable with mean �. If P.X 
 10/ � :95, then � � 6.

Chapters 11–13

82. If X and Y are discrete random variables with the joint pmf p.x; y/ D 1
9
;

1 
 x 
 3; 1 
 y 
 3, then X and Y are independent random variables.
83. If X and Y are discrete random variables with the joint pmf p.x; y/ D 1

6
;

1 
 x 
 y 
 3, then E.Y �X/ > 0.
84. A fair coin is tossed eight times. X is the number of heads in the first four

tosses and Y the number of tails in the last four tosses. Then, EŒ.Y � 2/2 j
X D 2� > 1.

85. Given a positive random variableX , let Y D eX log X . ThenE.Y jX D 1/ D 1.
86. Given a positive random variableX , let Y D eX log X . Then Var.Y jX D 1/ > 1.
87. X and Y are independent random variables and E.Y / D 0. Then E.XY jX D

1/ D 0.
88. It is not possible that Var.Y / > 0 but Var.Y jX D x/ D 0 for some particular

x and some particular random variable X .
89. If the correlation between X and Y is strictly positive, then the correlation

between X2 and Y is also strictly positive.
90. Always, Var.X/ � EY ŒVar.X jY D y/�.
91. If E.X jY D y/ exists for every y, then E.X/ also exists.
92. If X and Y are independent, then the correlation between sinX and cosY is

zero.
93. If 50 balls are distributed independently and with equal probability into ten

cells, then the correlation between the number of balls that are allocated to the
first cell and the number of balls that are allocated to the tenth cell is < �:1.

94. A fair die is rolled repeatedly. X is the first roll where a five is obtained, and
Y is the first roll where a six is obtained. Then E.Y jX D x/ D x.
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95. If X and Y are two random variables with finite variances, then �XCY 

�X C �Y .

96. If X; Y;Z are three random variables with finite variances, then �XCY CZ 

�X C �Y C �Z .

97. A fair die is rolled repeatedly.X is the first roll where a six is obtained, and Y
is the roll where the second six is obtained. Then E.Y jX D 4/ D 10.

98. If X and Y are continuous random variables with joint density f .x; y/ D 2;

x; y � 0; x C y 
 1, then marginallyX and Y are both U Œ0; 1�.
99. If X and Y are both marginally U Œ0; 1�, then the joint density must be

f .x; y/ D 1; x; y 2 Œ0; 1�.
100. If X and Y have a joint uniform density in the unit circle C D f.x; y/ W

x2 C y2 
 1g, then each of E.X/;E.Y /;E.XY /, and E.XY 2/ is zero.
101. One thousand observations are generated independently according to a uni-

form distribution in the ten dimensional unit cube. The number of observations
among these 1000 observations that fall inside the inscribed sphere of the cube
has an expected value of only about 2.

102. If X and Y have a joint uniform density in the unit circle C D f.x; y/ W
x2 C y2 
 1g, then P.X2 C Y 2 
 :5/ D :5.

103. If X and Y are iid U Œ0; 1� random variables, then EŒminfX; Y g� D 1 �
EŒmaxfX; Y g�.

104. Whatever the joint distribution of two positive random variables X and Y , if
E.X/ D 2 and E.Y / D 1, then E.jX � Y j/ � 1.

105. X � N.�; �2/. Let Y D IfX>0g. Then jX j; Y are independent if and only if
� D 0.

106. If X and Y are random variables such that X
Y

has a standard Cauchy distribu-
tion, then X and Y must be independent standard normal.

107. IfX1; : : : ; Xn are iidU Œ0; 1� random variables andX.1/ andX.n/ are the small-
est and the largest order statistics, then �X.1/;X.n/

! 0 as n ! 1.
108. IfX1; : : : ; Xn are iidU Œ0; 1� random variables andX.1/ andX.n/ are the small-

est and the largest order statistics, then P.X.n/ �X.1/ > :99/ ! 1 as n ! 1.
109. If X1; : : : ; Xn are iid U Œ0; 1� random variables and X.1/ and X.n/ are the

smallest and the largest order statistics, then X.n/ C X.1/ and X.n/ � X.1/

are uncorrelated.
110. If X1; : : : ; Xn are iid U Œ0; 1� random variables and X.1/ and X.n/ are the

smallest and the largest order statistics, then X.n/ C X.1/ and X.n/ � X.1/

are independent.
111. If X1; : : : ; X5 are iid standard normal variables, then EŒX.5/ CX.4/ CX.3/ C

X.2/ CX.1/� D 0:

112. If X1; : : : ; Xn are iid U Œ0; 1� random variables, then the density of X.i/ is
unimodal for any i; 1 
 i 
 n.

113. If X1; : : : ; Xn are iid standard exponential variables, then E.X.n//

log n
! 1 as

n ! 1.
114. If X and Y are jointly bivariate normal with marginal variance 1 and

Var.X jY D 0/ D :36, then �X;Y D C:8.
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115. If X and Y are jointly bivariate normal, then d 2

dx2E.Y jX D x/ D 0 at any x.

116. If X has a t distribution, then X2 has an F distribution.
117. If X and Y are iid standard exponentials, than Var. X

XCY
/ < :1.

118. If X and Y are iid standard exponentials, than E.X C Y j X
XCY

D :5/ D 2.

119. If X and Y are iid standard normal, then P.X
Y
< 1/ D P.X < Y /.

120. If X and Y have the joint density f .x; y/ D 1
4
e�jxj�jyj ; x; y 2 R, then the

polar coordinates r; 	 are not independent.
121. If X and Y have the joint density f .x; y/ D c

.1Cx2Cy2/5=2 ; x; y 2 R, where

c is a normalizing constant, then the polar coordinates r; 	 are independent.
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II.1 Glossary of Symbols

nŠ n.n � 1/ � � �1
�

n
k

�
nŠ

kŠ.n�k/Š

an � bn 0 < lim inf an

bn

 lim sup an

bn
< 1

an D O.bn/ janj 
 Kbn for some finite positive constant K
an D o.bn/ lim an

bn
D 0

an � bn lim an

bn
D 1

R real line
Rd d -dimensional Euclidean space
f 0 first derivative of f
f 00 second derivative of f
@

@x
partial derivative

�.˛/ Gamma function
B.˛; ˇ/ Beta function
1F1 hypergeometric function
Iz Bessel function
Hj Hermite polynomials
log natural logarithm
logb Logarithm to the base b
bxc Integer part
fg fractional part
! sample point
� sample space
P.A/ probability of A
P.A jB/ conditional probability of A given B
Ac complement of A
[n

iD1Ai union of A1; � � � ; An

\n
iD1Ai intersection of A1; � � � ; An

GX .s/; G.s/ generating function
 X .t/;  .t/ moment generating function

433
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iid independent and identically distributed
A;B;C;D events
X; Y;Z;U; V;W random variables
IA indicator function of A
sgn, sign signum function
xC; xC maxfx; 0g
max;min maximum, minimum
sup; inf supremum, infimum
MN.n; p1; : : : ; pk/ multinomial distribution with these parameters
N.�; �2/ normal distribution
tn; t.n/ Student’s t distribution with n degrees of freedom
Ber.p/, Bin.n; p/ Bernoulli and binomial distributions
Poi.�/ Poisson distribution
Geo.p/ geometric distribution
NB.r; p/ negative binomial distribution
Hypergeom.n;D;N / hypergeometric distribution
Exp.�/ exponential distribution with mean �
Gamma.˛; �/ Gamma distribution with shape parameter ˛ and scale

parameter �
�2

n; �
2
.n/

chi-square distribution

C.�; �/ Cauchy distribution
U Œa; b� uniform distribution
Be.˛; ˇ/ Beta distribution
Pa.	; ˛/ Pareto distribution
�.x/ standard normal density
ˆ.x/ standard normal CDF
R.x/ Mills ratio
f .x/ general density
F.x/ general CDF
NF .x/ survival function
F�1.p/;Q.p/ quantile function
p.x/ general pmf
p.x; y/ bivariate pmf
f .x; y/ bivariate density
p.x1; � � � ; xn/ multivariate pmf
f .x1; � � � ; xn/ multidimensional density
F.x1; � � � ; xn/ multidimensional CDF
p.xjy/ conditional pmf
f .xjy/ conditional density
fX ; fY marginal densities
FX ; FY marginal cdfs
FX jY conditional CDF
E.X/; � expected value
Var; �2 variance
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�k E.X � �/k
r r th cumulant
ˇ skewness

 kurtosis
Cov covariance
� correlation
r; 	 polar coordinates in two dimensions
J Jacobian matrix
jJ j determinant of J
X.1/; X.2/; � � � ; X.n/ order statistics
Wn sample range
pij transition probabilities in a Markov chain
P one-step transition probability matrix
P .n/ n-step transition probability matrix
S state space of a Markov chain
Ti ; Tij ; TiD first-passage times in a Markov chain
� stationary distribution of a Markov chain
x.n/ x.x � 1/ � � � .x � nC 1/

s.n; k/ Stirling numbers of the first kind
S.n; k/ Stirling numbers of the second kind
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Table of MGFs of Continuous Distributions

Distribution f .x/ MGF

Uniform 1
b�a

; a � x � b ebt�eat

.b�a/t

Exponential e�x=�

�
; x � 0 .1� �t/�1.t < 1=�/

Gamma e�x=�x˛�1

�˛�.˛/
; x � 0 .1� �t/�˛.t < 1=�/

�2m
e�x=2xm=2�1

2m=2�. m2 /
; x � 0 .1� 2t/�m=2.t < 1

2
/

Weibull ˇ

�
. x
�
/ˇ�1e�. x� /

ˇ
; x > 0

P
1

nD0
.�t/n

nŠ
�.1C n

ˇ
/

Beta x˛�1.1�x/ˇ�1

B.˛;ˇ/
; 0 � x � 1 1F1.˛; ˛ C ˇ; t/

Normal 1

�
p

2�
e�.x��/2=.2�2/; x 2 R et�Ct2�2=2

lognormal 1

�
p

2�x
e

�

.log x��/2

2�2 ; x > 0 None

Cauchy 1
��.1C.x��/2=�2/

; x 2 R None

tm
�.

mC1
2 /

p

m��. m2 /
1

.1Cx2=m/.mC1/=2 ; x 2 R None

F
.
ˇ
˛ /
ˇx˛�1

B.˛;ˇ/.xC

ˇ
˛ /
˛Cˇ

; x > 0 None

Double
Exponential

e�jx��j=�

2�
; x 2 R et�

1��2t2
.jt j < 1=�/

Pareto ˛	˛

x˛C1 ; x � 	 > 0 None

Gumbel 1
�
e.�e�

x��
� /e�

x��
� ; x 2 R et��.1� t�/ .t < 1=�/
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II.2.2 Useful Mathematical Formulas

1C 2C � � � C n D n.nC1/
2

;

12 C 22 C � � � C n2 D n.nC1/.2nC1/
6

;

13 C 23 C � � � C n3 D
�

n.nC1/
2

�2

;

14 C 24 C � � � C n4 D n.nC1/.2nC1/.3n2C3n�1/
30

;
�

n
0

�C �
n
1

�C � � � C �
n
n

� D 2n;
�

n
0

�C �
n
2

�C �
n
4

�C � � � D �
n
1

�C �
n
3

�C �
n
5

�C � � � D 2n�1;
�

n
0

� � �
n
1

�C �
n
2

� � �
n
3

�C � � � D 0;
�

n
0

�2 C �
n
1

�2 C � � � C �
n
n

�2 D �
2n
n

�I
.a C b/n D an C �

n
1

�
an�1b C �

n
2

�
an�2b2 C � � � C bn;

1C x C x2 C � � � C xn D 1�xnC1

1�x
;

1C x C x2 C x3 C � � � D 1
1�x

;�1 < x < 1;

x C 2x2 C 3x3 C 4x4 C � � � D x
.1�x/2 ;�1 < x < 1;

ex D 1C x C x2

2Š
C x3

3Š
C � � � ;

log.1C x/ D x � x2

2
C x3

3
� x4

4
C � � � ;�1 < x 
 1;

1
1�x

D 1C x C x2 C x3 C � � � ;�1 < x < 1;
P1

nD1
1
n

D 1;
P1

nD1
1

n2 D �2

6
;

P1
nD1

1
n.nC1/

D 1;

limn!1Œ1C 1
2

C 1
3

C � � � C 1
n

� logn� D 
.Euler’s constant/;

nŠ � e�nnnC 1
2

p
2�; n ! 1.Stirling’s approximation/;

arcsin x D arccos
p
1 � x2I arccosx D arcsin

p
1 � x2;

arctanx D arcsin xp
1Cx2

;

arctanx C arctany D � � arctan xCy
xy�1

; x; y > 0; xy > 1;

sin 2x D 2 sinx cosxI sin 3x D 3 sinx � 4 sin3 xI
cos 2x D 2 cos2 x � 1 D cos2 x � sin2 x; cos 3x D 4 cos3 x � 3 cosx;
tan 2x D 2 tan x

1�tan2 x
I tan x

2
D sin x

1Ccos x
;

�.˛/ D R1
0
e�xx˛�1dx; ˛ > 0IBe.˛; ˇ/ D �.˛/�.ˇ/

�.˛Cˇ/
;

�.n/ D .n � 1/Š; n D 1; 2; 3; � � � I�.x/ D x�.x � 1/; x > 1I� �1
2

� D p
� ;

�.2x/ D 22x�1�.x/�.xC 1
2 /p

�
(Gamma duplication formula);

area of triangle D p
s.s � a/.s � b/.s � c/; s D aCbCc

2
; a; b; c the side lengths;

area of circle = �r2; r the radius; volume of sphere in three dimensions D 4
3
�r3;

volume of unit sphere in n dimensions D Vn D �
n
2

�.n
2

C1/
; surface area of unit sphere

in n dimensions D nVn;
volume of circular cylinder D �r2h; volume of circular cone D 1

3
�r2h.
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II.2.3 Useful Calculus Facts

.fg/0 D f 0g C fg0I
�

f
g

�0 D f 0g�fg 0

g2 I
�

1
f

�0 D � f 0

f 2 I .logf /0 D f 0

f
;

.ef /0 D f 0ef I .f ı g/0 D f 0.g/g0(chain rule); .fg/.n/ D Pn
kD0

�
n
k

�
f .k/g.n�k/;

.
R x

a
f .t/dt/0 D f .x/I .R a

x
f .t/dt/0 D �f .x/.

Basic derivatives and indefinite integrals

f .x/ Derivative Indefinite integral

xa; a ¤ �1 axa�1 xaC1

aC1
1
x

� 1
x2

log jxj
log x 1

x
x log x � x

etx tetx etx

t

xetx .1C tx/etx etx

t2
.tx � 1/

sin ax a cos ax � 1
a

cos ax
cos ax �a sin ax 1

a
sin ax

x sin ax ax cos ax C sin ax 1
a2
Œsin ax � ax cos ax�

arcsin x 1
p

1�x2
x arcsin x C p

1� x2

arccos x � 1
p

1�x2
x arccos x � p

1� x2

1
a2x2Cc2

� 2a2x
.a2x2Cc2/2

1
ac

arctan ax
c

x
a2x2Cc2

c2�a2x2

.a2x2Cc2/2
1
2a2

log ja2x2 C c2j

II.3 Tables

II.3.1 Normal Table

Standard normal probabilities P.Z 
 t/ and standard normal percentiles
Quantity tabulated on the next page is ˆ.t/ D P.Z 
 t/ for a given t � 0,

where Z � N.0; 1/. For example, from the table, P.Z 
 1:52/ D :9357. For any
positive t; P.�t 
 Z 
 t/ D 2ˆ.t/� 1 and P.Z < �t/ D P.Z > t/ D 1�ˆ.t/.
Selected standard normal percentiles z˛ are given below. Here, the meaning of z˛ is
P.Z > z˛/ D ˛.

˛ z˛
.25 .675
.2 .84
.1 1.28
.05 1.645
.025 1.96
.02 2.055
.01 2.33
.005 2.575
.001 3.08
.0001 3.72
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0 1 2 3 4 5 6 7 8 9

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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II.3.2 Poisson Table

The table below tabulates P.X 
 x/ for a given x when X � Poi.�/. For example,
if � D 2:5, then P.X 
 4/ D :8912. The individual probabilities are found by
subtraction. Thus, if � D 2:5, then P.X D 4/ D P.X 
 4/ � P.X 
 3/ D
:8912� :7576 D :1336.

�

x 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.6065 0.3679 0.2231 0.1353 0.0821 0.0498 0.0302 0.0183 0.0111 0.0067
1 0.9098 0.7358 0.5578 0.4060 0.2873 0.1991 0.1359 0.0916 0.0611 0.0404
2 0.9856 0.9197 0.8088 0.6767 0.5438 0.4232 0.3208 0.2381 0.1736 0.1247
3 0.9982 0.9810 0.9344 0.8571 0.7576 0.6472 0.5366 0.4335 0.3423 0.2650
4 0.9998 0.9963 0.9814 0.9473 0.8912 0.8153 0.7254 0.6288 0.5321 0.4405
5 1.0000 0.9994 0.9955 0.9834 0.9580 0.9161 0.8576 0.7851 0.7029 0.6160
6 1.0000 0.9999 0.9991 0.9955 0.9858 0.9665 0.9347 0.8893 0.8311 0.7622
7 1.0000 1.0000 0.9998 0.9989 0.9958 0.9881 0.9733 0.9489 0.9134 0.8666
8 1.0000 1.0000 1.0000 0.9998 0.9989 0.9962 0.9901 0.9786 0.9597 0.9319
9 1.0000 1.0000 1.0000 1.0000 0.9997 0.9989 0.9967 0.9919 0.9829 0.9682
10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990 0.9972 0.9933 0.9863
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9991 0.9976 0.9945
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9992 0.9980
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9993
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Limit of Pólya distribution, 404
Linear function, 89, 141, 142, 146, 172, 204,

253, 292, 293, 302, 313, 314
Linear transformation, 141, 226, 235, 269, 290
Location scale, 136, 140, 310
Log convexity inequality, 162
Lognormal density, 200–203, 211
Lognormal distribution, 202–203
Longest run, 76
Loop chains, 373, 375
Loyalty to types, 115
Lyapounov inequality, 72, 73, 76, 162

M
Marginal density, 277, 279, 280, 282, 286,

305, 306, 312, 317, 324, 336
Marginal pmf, 246, 248, 261, 268, 270–272
Margin of error, 205, 212
Markov chain, 343–378
Markov’s inequality, 68, 76, 159, 160
Mass function, 45–47, 251, 347, 375, 399
Matching problems, 23–27, 61, 65, 66, 71
Maxwell–Boltzmann (M–B) model, 382, 385,

386, 401, 403, 404
Mean, 56, 71, 73, 74, 78, 79, 83, 101, 103,

122–124, 140, 147, 149–152, 158,
161, 162, 165, 167, 169, 172, 174,
176–186, 189–194, 199, 202, 209,
211, 225, 226, 228–234, 237, 239,
240, 251, 254–258, 272, 290, 293,
296, 303, 309, 310, 314, 316, 317,
339, 372, 374, 375, 387, 397, 399,
402, 404, 405

Mean absolute deviations, 63, 64, 67, 80, 98,
99, 108–109, 192

Mean residual life, 317
Medians, 47–55, 76, 79, 133, 163, 166, 174,

190, 193, 194, 197, 209, 211, 304,
306, 307, 309, 318

mgf of the multinomial distribution, 267–268
mgf. See moment generating function
Mills ratio, 205–208, 212
Minkowski’s inequality, 71
Miscellaneous Poisson approximations,

112–114
Mitrinovic inequality, 206
Mixed distribution, 115, 166, 210
Mixture densities, 136–137, 184
Mode, 98, 99, 108–109, 119, 120, 167, 177,

184, 192, 209, 211
Mode of a Beta density, 192

moment generating function (mgf), 85–90, 98,
101, 102, 104, 116, 119, 120,
157–161, 165, 171, 172, 174, 178,
179, 183, 185, 187, 190, 192, 197,
202–204, 208, 209, 216, 229, 264,
267–268, 273, 323, 332, 333,
436–438

Moment generating function of exponential,
158

Moment generating function of normal, 158
Moments, 63–65, 75, 79, 81, 82, 87–90, 94,

105, 113, 115, 147–158, 160, 165,
168, 171, 192, 193, 197, 198, 202,
203, 209, 234, 263, 308–310, 314,
377, 403, 436–438

Moments of exponential, 151
Moments of the standard normal, 153–154
Moments of the uniform, 148–149
Moments of uniform order statistics, 308–309
Multinomial distribution, 263, 265–270, 308
Multiplicative formula, 30–31, 36, 39
Multivariate Cauchy, 341
Multivariate Jacobian formula, 331, 337
Mutation, 393, 396–399
Mutually independent, 35, 38, 189, 191, 343,

376, 393

N
Negative binomial distribution, 92, 102
Negative hypergeometric distribution, 123
n-fold convolution, 322
Nonmonotone transformation, 143–144
Nonregular chain, 375
Normal approximation, 213–242
Normal approximation to binomial, 217–224
Normal approximation to Poisson and

Gamma, 229–232
Normal density, 139, 140, 142, 146, 153, 158,

161, 164, 167, 195, 196, 208, 214,
215, 232, 233, 235, 237, 275,
289–291, 314, 330

Normalizing constant, 66, 130, 138, 139,
165–168, 182, 247, 270, 271, 278,
281, 289, 314, 315, 334, 338, 340,
341

Normal order statistics, 310, 314
Normal-Poisson convolution, 325–326
Null recurrent, 360, 377

O
Order statistics, 301–311, 314, 318



Subject Index 449

P
Paley–Zygmund inequality, 70, 79
Pareto density, 185, 186
Percentile, 134, 163, 167, 198–210
Perron-Frobenius theorem, 365–366
pgf. See probability generating function (pgf)
pmf. See probability mass function (pmf)
Poisson approximation, 26, 97, 109–114, 122,

124, 222, 223, 239, 240, 386–387,
401, 404, 405

Poisson approximation to binomial, 109–111
Poisson conditional expectation, 250–256,

258, 268, 269, 271, 272, 294, 295,
299–302, 312, 314, 315

Poisson distribution, 26, 66, 83, 84, 93, 97,
104–109, 116, 123, 192, 230–232,
240, 375, 386, 387

Poisson process, 3, 105, 176, 187–191, 194
Polar coordinates, 288, 289, 333–335, 337,

338, 340
Polar transformation, 333–335
Polling, 93, 220–221
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