
CLASSICAL OPTIMIZATION
TECHNIQUES

2.1 INTRODUCTION

The classical methods of optimization are useful in finding the optimum so-
lution of continuous and differentiate functions. These methods are analytical
and make use of the techniques of differential calculus in locating the optimum
points. Since some of the practical problems involve objective functions that
are not continuous and/or differentiate, the classical optimization techniques
have limited scope in practical applications. However, a study of the calculus
methods of optimization forms a basis for developing most of the numerical
techniques of optimization presented in subsequent chapters. In this chapter
we present the necessary and sufficient conditions in locating the optimum
solution of a single-variable function, a multivariable function with no con-
straints, and a multivariable function with equality and inequality constraints.

2.2 SINGLE-VARIABLE OPTIMIZATION

A function of one variable f(x) is said to have a relative or local minimum at
x = Jt* if /(Jt*) < /(Jt* + h) for all sufficiently small positive and negative
values of A. Similarly, a point Jt* is called a relative or local maximum if/(Jt*)
> /(Jt* + h) for all values of h sufficiently close to zero. A function/(jt) is
said to have a global or absolute minimum at Jt* if/(jt*) < f(x) for all Jt, and
not just for all x close to Jt*, in the domain over which/(Jt) is defined. Simi-
larly, a point Jt* will be a global maximum of f(x) if /(Jt*) > /(Jt) for all Jt in
the domain. Figure 2.1 shows the difference between the local and global op-
timum points.
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Figure 2.1 Relative and global minima.

A single-variable optimization problem is one in which the value of x = x*
is to be found in the interval [a,b] such that x* minimizes/(JC). The following
two theorems provide the necessary and sufficient conditions for the relative
minimum of a function of a single variable.

Theorem 2.1: Necessary Condition If a function/(x) is defined in the in-
terval a < x < b and has a relative minimum at x = x*, where a < x* < b,
and if the derivative dj{x)ldx = / ' (*) exists as a finite number at x = x*, then
/'(**) = 0.

/Vtftf/: It is given that

fix* + k) — fix*)
f'(x*) = limJ(X +H! J(X) (2.1)

h^o n

exists as a definite number, which we want to prove to be zero. Since x* is a
relative minimum, we have

f(x*) < f(x* + h)

for all values of/? sufficiently close to zero. Hence

W + V-W , 0 if H > 0

*** + *>-***> . 0 if Z1 < 0
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Thus Eq. (2.1) gives the limit as h tends to zero through positive values as

/'(**) ^ 0 (2.2)

while it gives the limit as h tends to zero through negative values as

/'(•**) ^ 0 (2.3)

The only way to satisfy both Eqs. (2.2) and (2.3) is to have

fix*) = 0 (2.4)

This proves the theorem.

Notes:

1. This theorem can be proved even if x* is a relative maximum.

2. The theorem does not say what happens if a minimum or maximum oc-
curs at a point x* where the derivative fails to exist. For example, in
Fig. 2.2,

lim = m (positive) or m (negative)
A-O h

depending on whether h approaches zero through positive or negative
values, respectively. Unless the numbers m+ and m~ are equal, the de-
rivative/'(**) does not exist. If/'(**) does not exist, the theorem is not
applicable.

3. The theorem does not say what happens if a minimum or maximum oc-
curs at an endpoint of the interval of definition of the function. In this

Negative slope mr

Positive slope m+

Figure 2.2 Derivative undefined at JC*.



Figure 2.3 Stationary (inflection) point.

case

lim/(** +H) ~fiX^

exists for positive values of h only or for negative values of h only, and
hence the derivative is not defined at the endpoints.

4. The theorem does not say that the function necessarily will have a min-
imum or maximum at every point where the derivative is zero. For ex-
ample, the derivative/'(JC) = 0 at x = 0 for the function shown in Fig.
2.3. However, this point is neither a minimum nor a maximum. In gen-
eral, a point JC* at which/'(JC*) = 0 is called a stationary point.

If the function/(JC) possesses continuous derivatives of every order that come
in question, in the neighborhood of x = JC*, the following theorem provides
the sufficient condition for the minimum or maximum value of the function.

Theorem 2.2: Sufficient Condition Let/'(jc*) =/"(**) = • • • = / ( / l " 1 )

(JC*) = 0, but/^(jc*) * 0. Then/(JC*) is (i) a minimum value of/(jc) if f(n)

(JC*) > 0 and n is even; (ii) a maximum value of /(JC) if/(AI)(JC*) < 0 and n is
even; (iii) neither a maximum nor a minimum if n is odd.

Proof: Applying Taylor's theorem with remainder after n terms, we have

/(JC* + h) = / (**) + hf'(x*) + ^ / "C**) + • • • + * f{n~X)(x*)

hn

+ —/ ( W )(JC* + 6h) for 0 < 0 < 1 (2.5)
n\

Stationary
point, /TxJ = O



Since/'C**) = /"(**) = • • • =/ (w-1)(JC*) = O, Eq. (2.5) becomes

/(** + h) - /(^*) = ^ / ( I V + Oh)

AS/(W)(JC*) ^ 0, there exists an interval around JC* for every point JC of which
the nth derivative /(n)(jc) has the same sign, namely, that of/(n)(jc*). Thus for
every point** + h of this interval,/(n)(jc* + Oh) has the sign of/(rt)(jc*). When
n is even, hnln\ is positive irrespective of whether h is positive or negative,
and hence/(JC* + h) — /(JC*) will have the same sign as that of/(n)(jc*). Thus
JC* will be a relative minimum if/(/1)(JC*) is positive and a relative maximum if
/(W)(JC*) is negative. When n is odd, hnln\ changes sign with the change in the
sign of h and hence the point JC* is neither a maximum nor a minimum. In this
case the point JC* is called a point of inflection.

Example 2.1 Determine the maximum and minimum values of the function

/(JC) = 12JC5 - 45JC4 + 40JC3 + 5

SOLUTION Since/'(*) = 60(JC4 - 3JC3 + 2JC2) = 60JC2(JC - 1) (JC - 2),
f'{x) = 0 at x = 0, JC = 1, and x = 2. The second derivative is

/"(*) = 60(4JC3 - 9JC2 + 4JC)

Atjc = 1,/"(JC) = —60 and hence JC = 1 is a relative maximum. Therefore,

/max = / ( • * = D = 12

Atjc = 2, /"(JC) = 240 and hence JC = 2 is a relative minimum. Therefore,

/min=/(* = 2) = - 1 1

At JC = 0, /"(*) = 0 and hence we must investigate the next derivative.

/ " ( J C ) = 60(12JC2 - 18JC + 4) = 240 at JC = 0

Since/ '" (JC) =£ 0 at JC = 0, JC = 0 is neither a maximum nor a minimum, and
it is an inflection point.

Example 2.2 In a two-stage compressor, the working gas leaving the first
stage of compression is cooled (by passing it through a heat exchanger) before
it enters the second stage of compression to increase the efficiency [2.13]. The
total work input to a compressor (W) for an ideal gas, for isentropic compres-
sion, is given by



to) + (P-A - 2
Pi) W J

where cp is the specific heat of the gas at constant pressure, k is the ratio of
specific heat at constant pressure to that at constant volume of the gas, and Tx

is the temperature at which the gas enters the compressor. Find the pressure,
p2, at which intercooling should be done to minimize the work input to the
compressor. Also determine the minimum work done on the compressor.

SOLUTION The necessary condition for minimizing the work done on the
compressor is:

+ (p3f-mdLtAip2)o-2m^=o

which yields

PI = (P1P3)172

The second derivative of W with respect to p2 gives

dpi ~CpTxV [pj 1{P2)

-(P3f-mL^(P2f-3m]

(d*w\ 2CpTl~Y~
[ sjn2 ) ~ n(3k-l)/2k(k+l)/2k
\dp2 /p2 = {pip2)M P\ Pl

Since the ratio of specific heats k is greater than 1, we get

-jY > 0 at p2 = (P]p3)
m

and hence the solution corresponds to a relative minimum. The minimum work
done is given by

/ r/ \(*-i)/2* i

-r- " 2^ l h [fe) " ']



2.3 MULTIVARIABLE OPTIMIZATION WITH NO
CONSTRAINTS

In this section we consider the necessary and sufficient conditions for the min-
imum or maximum of an unconstrained function of several variables. Before
seeing these conditions, we consider the Taylor's series expansion of a mul-
tivariable function.

Definition: xth Differential of f If all partial derivatives of the function /
through order r > 1 exist and are continuous at a point X*, the polynomial

dy(x*) = S S • • • E hihj • • • h, dJ{X\
i = i j = i k = 1 J OX1 OXj ' ' ' OXk n ^

r summations

is called the rth differential of/at X*. Notice that there are r summations and
one hi is associated with each summation in Eq. (2.6).

For example, when r = 2 and n = 3, we have

d2f(X*) = d2f(xt,x?,xf)= S 2/Mkn^r2

i= ly = l J dxtdXj

=h>Ax*)+hi?£(x*)+hi%x*)
OX i OX 2 OX 3

+ 2 ^ 2 3 T ^ - (X*) + 2 M 3 - ^ - (X*) + 2Zi1A3 T-^f- (X*)

The Taylor's series expansion of a function/(X) about a point X* is given by

/(X) = /(X*) + df(X*) + ̂  d2f{X*) + ̂  d3f(X*)

+ • • • + ̂  dNf(X*) + RN(X*,h) (2.7)

where the last term, called the remainder, is given by

*w(X*, h) = I rf^+ '/(X* + №) (2.8)

where O < 0 < 1 and h = X - X*.



Example 2.3 Find the second-order Taylor's series approximation of the
function

f(xux2,x3) = xjx3 + X1^
3

about the point X* = < 0 >.

C - 2 J
SOLUTION The second-order Taylor's series approximation of the function
/about point X* is given by

where

is)-^(j)-**(jH(j)
/ A

= [ZI1C^3 + H1Qx1XH + hx\ + M i ^ 3 ] 0 = ft,e"2 + he'2

V-V
-»(j)-,y^(j)-(^+^+^

+ IhxH1 -p— + 2Zi2Zi3 T ^ - + 2/I1Zi3 T ^ - ) 0 J
dxi dx2 dx2 Bx3 dxt dx3/ \ _ 2 /

= [h] (0) + hl(2x3) + h\{xxe
X7>) + 2Zi1Zi2(O) + 2h2h3(2x2)

I A
+ 2A1A3(O] O = -Ah\ + e~2h\ + Ih1^e'2

V2J



Thus the Taylor's series approximation is given by

/(X) - e-1 + e~\hx + h3) + ^ (-4h2
2 + e~2h\ + 2hxh,e~2)

where hx = Xx — 1, A2 = *2> a n d A3 = X3 + 2 .

Theorem 2.3: Necessary Condition If/(X) has an extreme point (maxi-
mum or minimum) at X = X* and if the first partial derivatives of/(X) exist
at X*, then

M. (X*) = M (x*) = . • • = M (x*) = 0 (2.9)
OXx OX2 OXn

Proof: The proof given for Theorem 2.1 can easily be extended to prove the
present theorem. However, we present a different approach to prove this theo-
rem. Suppose that one of the first partial derivatives, say the /Ih one, does not
vanish at X*. Then, by Taylor's theorem,

/(X* + h) = /(X*) + S A ^ (X*) + Rx (x*,h)
z = 1 OXi

that is,

/(X* + h) - / ( X * ) = h^-(X*) + ^ J2/(X* + 0h), 0 < e < 1
dxk 2!

Since d2/(X* + Oh) is of order h2, the terms of order h will dominate the
higher-order terms for small h. Thus the sign of/(X* + h) — /(X*) is decided
by the sign of hk df(X*)ldxk. Suppose that df(X*)/dxk > 0. Then the sign of
/(X* + h) - /(X*) will be positive for hk > 0 and negative for hk < 0. This
means that X* cannot be an extreme point. The same conclusion can be ob-
tained even if we assume that df(X*)ldxk < 0. Since this conclusion is in
contradiction with the original statement that X* is an extreme point, we may
say that df/dxk = 0 at X = X*. Hence the theorem is proved.

Theorem 2.4: Sufficient Condition A sufficient condition for a stationary
point X* to be an extreme point is that the matrix of second partial derivatives
(Hessian matrix) of/(X) evaluated at X* is (i) positive definite when X* is a
relative minimum point, and (ii) negative definite when X* is a relative max-
imum point.

Proof: From Taylor's theorem we can write

/(X* + h) =/(x*) + 2 /^(X*) + ^ E M 7 - -
1 = 1 OX1 2 ! « = 1 j= 1 dxt OXj x = x * + 0 h

0 < 9 < 1 (2.10)



Since X* is a stationary point, the necessary conditions give (Theorem 2.3)

df
/ = 0, / = 1,2,...,«
dxt

Thus Eq. (2.10) reduces to

/(X* + h) -/(X*) = y S S WlMz ' ° < * < 1

Therefore, the sign of

/(X* + h) - /(X*)

will be same as that of

Since the second partial derivative of d2f(X)/dXj dxj is continuous in the neigh-
borhood of X*,

d2f
dxi dx;

X = X*+dh

will have the same sign as (d2f/dxj dxj)\X = X* for all sufficiently small h.
Thus /(X* + h) — /(X*) will be positive, and hence X* will be a relative
minimum, if

n n ~2r

G = S S hthj—^-- (2.11)
/ = l y = l dxt 9-*/x=X*

is positive. This quantity Q is a quadratic form and can be written in matrix
form as

Q = H7JhIx=X* (2.12)

where

\_dXi dXj X = X * J

is the matrix of second partial derivatives and is called the Hessian matrix of
/(X).



It is known from matrix algebra that the quadratic form of Eq. (2.11) or
(2.12) will be positive for all h if and only if [J] is positive definite at X =
X*. This means that a sufficient condition for the stationary point X* to be a
relative minimum is that the Hessian matrix evaluated at the same point be
positive definite. This completes the proof for the minimization case. By pro-
ceeding in a similar manner, it can be proved that the Hessian matrix will be
negative definite if X* is a relative maximum point.

Note: A matrix A will be positive definite if all its eigenvalues are positive;
that is, all the values of X that satisfy the determinantal equation

IA - X I | = 0 (2.14)

should be positive. Similarly, the matrix [A] will be negative definite if its
eigenvalues are negative.

Another test that can be used to find the positive definiteness of a matrix A
of order n involves evaluation of the determinants

A = \an\,

#11 #12 #13 * * ' <*\n
#11 #12

A2 = , Cl2x #22 #23 ' " ' #2«
#21 #22

A = #31 #32 #33 * ' ' #3«

#11 #12 #13 ;

A 3 = a2X a22 O23 9 . . . , anl an2 an3 • • • ann

#31 #32 #32

(2.15)

The matrix A will be positive definite if and only if all the values Ax, A2, A3,
. . . , An are positive. The matrix A will be negative definite if and only if the
sign of Aj is (—iy for 7 = 1,2,. . .,n. If some of the Aj are positive and the
remaining Aj are zero, the matrix A will be positive semidefinite.

Example 2.4 Figure 2.4 shows two frictionless rigid bodies (carts) A and B
connected by three linear elastic springs having spring constants kx,k2, and k3.
The springs are at their natural positions when the applied force P is zero. Find
the displacements Xx and X2 under the force P by using the principle of mini-
mum potential energy.

SOLUTION According to the principle of minimum potential energy, the
system will be in equilibrium under the load P if the potential energy is a
minimum. The potential energy of the system is given by



Figure 2.4 Spring-cart system.

potential energy (U)

= strain energy of springs — work done by external forces

= [{Ic2X] + \ Ic3Qc2 - X1)
2 + \ M i l ~ Px2

The necessary conditions for the minimum of U are

dU
— = k2xx - Jc3Qc2 - X1) = 0 (E1)
OJC1

dU
— = Ic3(X2 - X1) + kxx2 -P = O (E2)
OX2

The values of Xx and X2 corresponding to the equilibrium state, obtained by
solving Eqs. (Ei) and (E2) are given by

1 kxk2 + kxk3 + k2k3

x* = P(k2 + k3)
kxk2 + kxk3 + k2k3

The sufficiency conditions for the minimum at (x*,x2) can also be verified by
testing the positive definiteness of the Hessian matrix of U. The Hessian matrix
of Uevaluated at Qc*,X2) is

Uxh ~ ox] dxx dx2 - [ -k3 kx + k3]

O2U cfV

_dxx dx2 dx\ J (x*ux*2)

P

Bki

A
k3k2

'Xl X2



The determinants of the square submatrices of J are

Jx = \k2 + h\ = k2 + k3 > 0

k2 + k3 —k3
J2 = = kxk2 + Jk1Jk3 + k2k3 > 0

-k3 kx + k3

since the spring constants are always positive. Thus the matrix J is positive
definite and hence (x*,x2) corresponds to the minimum of potential energy.

2.3.1 Semidefinite Case

We now consider the problem of determining the sufficient conditions for the
case when the Hessian matrix of the given function is semidefinite. In the case
of a function of a single variable, the problem of determining the sufficient
conditions for the case when the second derivative is zero was resolved quite
easily. We simply investigated the higher-order derivatives in the Taylor's se-
ries expansion. A similar procedure can be followed for functions of n vari-
ables. However, the algebra becomes quite involved, and hence we rarely in-
vestigate the stationary points for sufficiency in actual practice. The following
theorem, analogous to Theorem 2.2, gives the sufficiency conditions for the
extreme points of a function of several variables.

Theorem 2.5 Let the partial derivatives of / of all orders up to the order
k > 2 be continuous in the neighborhood of a stationary point X*, and

drf\x=x* = 0, 1 < T < k - 1

^/Ix=X* * 0

so that dkf\x=x* is the first nonvanishing higher-order differential of/at X*.
If k is even, then (i) X* is a relative minimum if dkf\x=x* *s positive definite,
(ii) X* is a relative maximum if dkf\x=x* is negative definite, and (iii) if
dkf\x=x* is semidefinite (but not definite), no general conclusion can be drawn.
On the other hand, if k is odd, X* is not an extreme point of/(X).

Proof: A proof similar to that of Theorem 2.2 can be found in Ref. [2.5].

2.3.2 Saddle Point

In the case of a function of two variables, f{x,y), the Hessian matrix may be
neither positive nor negative definite at a point (x*,y*) at which

^ = ^ = 0
dx dy



In such a case, the point (jc*,y*) is called a saddle point. The characteristic of
a saddle point is that it corresponds to a relative minimum or maximum of
/(JC,y) with respect to one variable, say, x (the other variable being fixed at y
— y*) and a relative maximum or minimum off(x,y) with respect to the second
variable y (the other variable being fixed at JC*).

As an example, consider the function f{x,y) = x2 — y2. For this function,

^- = 2x and ^- = -2y
ox oy

These first derivatives are zero at JC* = 0 and y* = 0. The Hessian matrix of
/ a t (jc*,y*) is given by

J = [o -2j
Since this matrix is neither positive definite nor negative definite, the point
(JC* = 0, v* = 0) is a saddle point. The function is shown graphically in Fig.
2.5. It can be seen that/(x,j*) = /(JC,O) has a relative minimum and/(jc*,j)
= /(O,j) has a relative maximum at the saddle point (x*9y*). Saddle points
may exist for functions of more than two variables also. The characteristic of
the saddle point stated above still holds provided that JC and y are interpreted
as vectors in multidimensional cases.

Figure 2.5 Saddle point of the function f{x,y) = x2 — y2.

X

y

f(x,y)



Example 2.5 Find the extreme points of the function

/(X11JC2) = x] + x\ + 2x] + 4*2 + 6

SOLUTION The necessary conditions for the existence of an extreme point
are

$L = 3x\ + 4Jc1 = JC1(SJC1 + 4) = 0
dxx

rif
— = 3*2 + &x2 = x2(3x2 + 8) = 0

OX2

These equations are satisfied at the points

(0,0), (0 , - f ) , (-5,0), and ( - f , - f )
To find the nature of these extreme points, we have to use the sufficiency
conditions. The second-order partial derivatives of /are given by

a2/

djCj 3JC2

The Hessian matrix of/ is given by

["6Jc1 + 4 O l

~ L 0 6JC2 + 8J

IfJ1 = 16Jc1 + 41 and J2=
 x

 n , , o , the values OfJ1 and J2 and
U OX2 H" o

the nature of the extreme point are as given below.

Value Value
Point X of/, of/2 Nature of J Nature of X /(X)

(0,0) +4 +32 Positive definite Relative minimum 6
(0,-f) +4 -32 Indefinite Saddle point 418/27
(-|,0) - 4 -32 Indefinite Saddle point 194/27
("I. "f) ~ 4 + 3 2 Negative definite Relative maximum 50/3



2.4 MULTIVARIABLE OPTIMIZATION WITH EQUALITY
CONSTRAINTS

In this section we consider the optimization of continuous functions subjected
to equality constraints:

Minimize / = /(X)

subject to (2.16)

gj(X) = 0 , J = 1 ,2 , . . .,m

where

1 X1

X = X} >

Xn
V S

Here m is less than or equal to n; otherwise (if m > n), the problem becomes
overdefined and, in general, there will be no solution. There are several meth-
ods available for the solution of this problem. The methods of direct substi-
tution, constrained variation, and Lagrange multipliers are discussed in the
following sections.

2.4.1 Solution by Direct Substitution

For a problem with n variables and m equality constraints, it is theoretically
possible to solve simultaneously the m equality constraints and express any set
of m variables in terms of the remaining n — m variables. When these expres-
sions are substituted into the original objective function, there results a new
objective function involving only n — m variables. The new objective function
is not subjected to any constraint, and hence its optimum can be found by using
the unconstrained optimization techniques discussed in Section 2.3.

This method of direct substitution, although it appears to be simple in the-
ory, is not convenient from practical point of view. The reason for this is that
the constraint equations will be nonlinear for most of practical problems, and
often, it becomes impossible to solve them and express any m variables in
terms of the remaining n — m variables. However, the method of direct sub-
stitution might prove to be very simple and direct for solving simpler problems,
as shown by the following example.

Example 2.6 Find the dimensions of a box of largest volume that can be
inscribed in a sphere of unit radius.

SOLUTION Let the origin of the Cartesian coordinate system Jt1, Jt2, Jc3 be
at the center of the sphere and the sides of the box be 2xx, 2x2, and 2x3. The



volume of the box is given by

f(xux2,x3) = 8^1X2X3 (E1)

Since the corners of the box lie on the surface of the sphere of unit radius, X1,
X2, and X3 have to satisfy the constraint

JC? + x\ + x\ = 1 (E2)

This problem has three design variables and one equality constraint. Hence
the equality constraint can be used to eliminate any one of the design variables
from the objective function. If we choose to eliminate X3, Eq. (E2) gives

X3 = (1 - x\ - x\)m (E3)

Thus the objective function becomes

/(x,,x2) = 8X1X2(I - x? - x\)m (E4)

which can be maximized as an unconstrained function in two variables.
The necessary conditions for the maximum of/give

g - * > [ < • - * ? - * & " - < • - / - 4 A ' 0 <E'>
g - «., [(I - x{ - x|>-° - (| _ x̂ _ j j ) l a ] - 0 <E.>

Equations (E5) and (E6) can be simplified to obtain

1 - 2x] - x\ = 0

1 - x] - 2x\ = 0

from which it follows that xf = x* = 1/V3 and hence x* = 1/V3. This
solution gives the maximum volume of the box as

f = _ L

To find whether the solution found corresponds to a maximum or a mini-
mum, we apply the sufficiency conditions to/(X1 ,X2) of Eq. (E4). The second-
order partial derivatives o f / a t (xf ,x*) are given by



dfy _ Sx}x2 &t2 [" x]
dx] ~ (1 - Jt? - x \ ) m \ - x ] - x \ L(I - x \ - x2

2)
m

+ Ix1 (1 - x\ - xh112]

= - -j= at (jc f,x2*)

<Pf _ Sx1X2 8Jc1 F x \
dx2

2 ~ (1 - JC? - x2
2)

m 1 -x\-x\ L(I - *? - x \ ) m

+ Ix2 (1 - x] - x\f^

32
= --j= at (xf,x^)

d2f _ o M _ r 2 _ r2xl/2 8J*! 8 x |

dxtdx2~
m X | Xl) ( \ - x \ - x \ ) m \ - x \ - x \

Since

a2/ d2f d2f ( d2/ V n- 4 < O and —4 T 4 - , ^ > O
dx] dx] dx\ \dxx dx2/

the Hessian matrix of / is negative definite at (JC*,**). Hence the point
(JC*,x*) corresponds to the maximum of/.
2.4.2 Solution by the Method of Constrained Variation
The basic idea used in the method of constrained variation is to find a closed-
form expression for the first-order differential of f(df) at all points at which
the constraints g/(X) = 0,y = 1,2,. . .,m, are satisfied. The desired optimum
points are then obtained by setting the differential df equal to zero. Before
presenting the general method, we indicate its salient features through the fol-
lowing simple problem with n = 2 and m = 1.

Minimize f(x ^ ,X2) (2.17)



subject to

S(X19X2) = 0 (2.18)

A necessary condition f o r / t o have a minimum at some point (JC*,JC*) is that
the total derivative of /(Jc19Jc2) with respect to Jc1 must be zero at (JCf5Jc*). By
setting the total differential OfZ(Jc1 ,JC2) equal to zero, we obtain

df=^-dxl+^-dx2=O (2.19)
3Jc1 dx2

Since g(jc* ,JC*) = O at the minimum point, any variations dxx and dx2 taken
about the point (JC f ,JC *) are called admissible variations provided that the new
point lies on the constraint:

S(x f + A15JC2* + dx2) = O (2.20)

The Taylor's series expansion of the function in Eq. (2.20) about the point
(Xf9X*) gives

g(xf + dxux* + dx2)

- g(jcf,jc*2) + ̂ - (Jcf,jc?) dxx + ̂ - (jcf,Jc2*) dx2 = 0 (2.21)
OX1 OX2

where dxx and dx2 are assumed to be small. Since g(x*9x2) = O, Eq. (2.21)
reduces to

dg = ^- CIx1 + ̂ - dx2 = 0 at (xfrf) (2.22)
OX i OX2

Thus Eq. (2.22) has to be satisfied by all admissible variations. This is illus-
trated in Fig. 2.6, where PQ indicates the curve at each point of which Eq.

Figure 2.6 Variations about A.



(2.18) is satisfied. If A is taken as the base point (JC*,JC*), the variations in Jt1
and X2 leading to points B and C are called admissible variations. On the other
hand, the variations in Jt1 and X2 representing point D are not admissible since
point D does not lie on the constraint curve, g(xi,x2) — 0. Thus any set of
variations (dx\9 dx2) that does not satisfy Eq. (2.22) lead to points such as D
which do not satisfy constraint Eq. (2.18).

Assuming that dg/dx2 =£ 0, Eq. (2.22) can be rewritten as

*>--*£!**•**>*• <2-23)

This relation indicates that once the variation in Xx (dxx) is chosen arbitrarily,
the variation in X2 (dx2) is decided automatically in order to have dxx and dx2

as a set of admissible variations. By substituting Eq. (2.23) in Eq. (2.19), we
obtain

„ . ( £ - & * • f t * , _ „ «2.24,

The expression on the left-hand side is called the constrained variation off.
Note that Eq. (2.24) has to be satisfied for all values Of̂ Lt1. Since dxx can be
chosen arbitrarily, Eq. (2.24) leads to

\dxx dx2 dx2 dxj (x*x*2)

Equation (2.25) represents a necessary condition in order to have (xf,x2) as
an extreme point (minimum or maximum).

Example 2.7 A beam of uniform rectangular cross section is to be cut from
a log having a circular cross section of diameter 2a. The beam has to be used
as a cantilever beam (the length is fixed) to carry a concentrated load at the
free end. Find the dimensions of the beam that correspond to the maximum
tensile (bending) stress carrying capacity.

SOLUTION From elementary strength of materials, we know that the tensile
stress induced in a rectangular beam (a) at any fiber located a distance y from
the neutral axis is given by

o __ M

y ~~i

where M is the bending moment acting and / is the moment of inertia of the
cross section about the x axis. If the width and depth of the rectangular beam



Figure 2.7 Cross section of the log.

shown in Fig. 2.7 are 2x and 2y9 respectively, the maximum tensile stress
induced is given by

M My _ 3 M
< W - f y - ^(2x)(2yf- 4xy2

Thus for any specified bending moment, the beam is said to have maximum
tensile stress carrying capacity if the maximum induced stress (amax) is a min-
imum. Hence we need to minimize k/xy2 or maximize Kxy2, where k =
3M/4 and K= 1/fc, subject to the constraint

x2 + y2 = a2

This problem has two variables and one constraint; hence Eq. (2.25) can be
applied for finding the optimum solution. Since

f=kx~y2 (E1)

g = x2 + y
2 - a2 (E2)

we have

x (Neutral axis)

y

2x

2y

a

x2 + y2 = a2



dx

f-2y
dy

Equation (2.25) gives

-kx~2y~2(2y) + 2kx~ly~3(2x) = 0 at (Jt*,?*)

that is,

y* = V2;c* (E3)

Thus the beam of maximum tensile stress carrying capacity has a depth of
V2 times its breadth. The optimum values of x and y can be obtained from
Eqs. (E3) and (E2) as

a /-a
x* = —= and y* = V 2 - p

Necessary Conditions for a General Problem. The procedure indicated above
can be generalized to the case of a problem in n variables with m constraints.
In this case, each constraint equation g/(X) = 0,7 = 1,2,. . .,ra, gives rise to
a linear equation in the variations dx{, / = 1,2,. . .,n. Thus there will be in all
m linear equations in n variations. Hence any m variations can be expressed
in terms of the remaining n — m variations. These expressions can be used to
express the differential of the objective function, df, in terms of the n — m
independent variations. By letting the coefficients of the independent variations
vanish in the equation df = 0, one obtains the necessary conditions for the
constrained optimum of the given function. These conditions can be expressed
as [2.6]

df df df df
dxk dxx dx2 dxm

dg\ dgl dgx dgx

dxk dxx dx2 dxm

jf f,g\,g2,' - ->gm \ = dgi dgi dgi . . . dgi = o (2 26)
\xk,xux2,x3,. . .9xm/ dxk dxx dx2 dxm

dgm dgm dgm ^ ^ ^ dgn

dxk dxx dx2 dxm



where k = m + 1, m + 2, . . . , n. It is to be noted that the variations of the
first m variables (dx\,dx2,. . .,dxm) have been expressed in terms of the varia-
tions of the remaining n - m variables (dxm + udxm + 2,. . .,dxn) in deriving
Eqs. (2.26). This implies that the following relation is satisfied:

Jgx,82,...,gm\ ^ 0 ( 2 2 ? )

The n — m equations given by Eqs. (2.26) represent the necessary conditions
for the extremum of/(X) under the m equality constraints, g,-(X) = 0, j =
1,2,. . .,m.

Example 2.8

Minimize/(Y) = \{y] + y\ + y* + yj) (E1)

subject to

*i(Y) = yi + 2y2 + 3y3 + 5y4 - 10 = 0 (E2)

S2(Y) = J1 + 2y2 + 5y3 + 6y4 - 15 = 0 (E3)

SOLUTION This problem can be solved by applying the necessary condi-
tions given by Eqs. (2.26). Since n = 4 and m = 2, we have to select two
variables as independent variables. First we show that any arbitrary set of vari-
ables cannot be chosen as independent variables since the remaining (depen-
dent) variables have to satisfy the condition of Eq. (2.27).

In terms of the notation of our equations, let us take the independent vari-
ables as

x3 = y3 and X4 = y4 so that Jc1 = y, and X2 = y2

Then the Jacobian of Eq. (2.27) becomes

j(8u82\ = ft* fa =
 l 2

 =Q

\xux2/ dg2 Sg2 1 2

3y, dy2

and hence the necessary conditions of Eqs. (2.26) cannot be applied.
Next, let us take the independent variables as X3 = y2 and X4 = y4 so that

X1 = V1 and X2 = y3. Then the Jacobian of Eq. (2.27) becomes



j(«*) = ^ ^ = l 3 = 2 * O

and hence the necessary conditions of Eqs. (2.26) can be applied. Equations
(2.26) give for k = m + 1 = 3,

d^ df^ df_ _ # _ y _ y
3 x 3 SJC1 3JC2 3 J 2 9ji ^ J 3

Sg1 ^g1 ^g1 = ^g1 Sg1 Sg1

3x3 dxx dx2 dy2 By1 dy3

3g2 dgi 3gg 3g2 9g2 dg2

3JC3 3JC1 3X2 3 J2 dji 3 J 3

y2 yi 3̂

= 2 1 3

2 1 5

= J2(5 - 3) - J1(IO - 6) + j3(2 - 2)

= 2 j 2 ~ 4J1 = 0 (E4)

and for k = m + 2 = n = 4,

9JC4 dx\ dx2 9j4 9 Ji 3J3

dg\ ^g1 9g! = 3g! 9g! 3g t

3JC4 ĴC1 3JC2 3 J 4 3J1 9J3

9^2 ^g2 3g2 dg2 dg2 dgi
dx4 dx{ dx2 dJ4 ^ j 1 3 J3

J4 Jl J3

= 5 1 3

6 1 5

= j4(5 - 3) - y i(25 - 18) + j3(5 - 6)

= 2 j 4 - 7J1 - J3 = 0 (E5)

Equations (E4) and (E5) give the necessary conditions for the minimum or the



maximum of/as

J1 = hi (E6)

y3 = 2y4 - Iy1 = 2y4 - \y2

When Eqs. (E6) are substituted, Eqs. (E2) and (E3) take the form

-Sy2 + Hy4 = 10

-I5y2 + 16y4 = 15

from which the desired optimum solution can be obtained as

y? = -Ti

y? = %
™ * - 3 0

J4 ~ 37

Sufficiency Conditions for a General Problem. By eliminating the first m vari-
ables, using the m equality constraints (this is possible, at least in theory), the
objective function/can be made to depend only on the remaining variables,
xm + u xm + 2, . . . ,xn. Then the Taylor's series expansion of/, in terms of
these variables, about the extreme point X* gives

/(X* + dX) « /(X*) + S (f) dxt
/ = m + l XOXi/ g

+ 1 S S ( r ^ - ) ^ 1 dx7 (2.28)
21 i = m + lj = m + l\dXidXj/g

 l J

where (df/dXj)g is used to denote the partial derivative of /wi th respect to xt

(holding all the other variables xm + u xm + 2, . . . , *,-_,, xi + u xi + 2, . . . , Xn

constant) when Jc1, JC2, . . . , xm are allowed to change so that the constraints
gj(K* + dX) = OJ = 1,2,. . .,m, are satisfied; the second derivative, (d2//
dx( dXj)g, is used to denote a similar meaning.

As an example, consider the problem of minimizing

/ ( X ) =/(X19X29X3)

subject to the only constraint

S1(X) = x\ + JĈ  + x\ - 8 = 0



Since n = 3 and m = 1 in this problem, one can think of any of the m variables,
say Jt1, to be dependent and the remaining n — m variables, namely X2 and Jt3,
to be independent. Here the constrained partial derivative (df/dx2)g, for ex-
ample, means the rate of change of /wi th respect to X2 (holding the other
independent variable Jt3 constant) and at the same time allowing Xx to change
about X* so as to satisfy the constraint g\(X) = 0. In the present case, this
means that dxx has to be chosen to satisfy the relation

gl(X* + dX) - gl(X*) + Y1 (x*> d*\ + IT (x*> ^2 + ^ 1 (X*) dx3 = 0
OX] OX2 OX3

that is,

2xf dxx + 2jt* dx2 = 0

since gi(X*) = 0 at the optimum point and dx3 = 0 (JC3 is held constant).
Notice that (df/dx^ has to be zero for / = m + 1, m 4- 2, . . . , n since

the ^ appearing in Eq. (2.28) are all independent. Thus the necessary con-
ditions for the existence of constrained optimum at X* can also be expressed
as

( a ) = ° ' i = /n + 1, /n + 2, . . . , n (2.29)

Of course, with little manipulation, one can show that Eqs. (2,29) are nothing
but Eqs. (2.26). Further, as in the case of optimization of a multivariable
function with no constraints, one can see that a sufficient condition for X* to
be a constrained relative minimum (maximum) is that the quadratic form Q
defined by

Q= Z S - ^ - dx, dxj (2.30)
i = m+\ j = m + \ \OXidXj/g

is positive (negative) for all nonvanishing variations dxt. As in Theorem 2.4,
the matrix

~( a2/ \ ( a2/ \ , / d2f \ ~
\^m+l/g \ ^ m + l dxm + 2/g \3^ni+l 3-Wg

/ a2/ \ / a2 / \ . . . / ^ \
\3xnaxm + ,/g \dxndxm + 2/g KdX2J1,



has to be positive (negative) definite to have Q positive (negative) for all choices
of dxt. It is evident that computation of the constrained derivatives (d2f/dXi
dxj)g is a difficult task and may be prohibitive for problems with more than
three constraints. Thus the method of constrained variation, although it appears
to be simple in theory, is very difficult to apply since the necessary conditions
themselves involve evaluation of determinants of order m + 1. This is the
reason that the method of Lagrange multipliers, discussed in the following
section, is more commonly used to solve a multivariable optimization problem
with equality constraints.

2.4.3 Solution by the Method of Lagrange Multipliers

The basic features of the Lagrange multiplier method is given initially for a
simple problem of two variables with one constraint. The extension of the
method to a general problem of n variables with m constraints is given later.

Problem with Two Variables and One Constraint. Consider the problem:

Minimize f(xux2) (2.31)

subject to

8(Xx9X2) = 0

For this problem, the necessary condition for the existence of an extreme point
at X = X* was found in Section 2.4.2 to be

(V_ _ 3JIdX1 8g\\ = Q

\ax, dg/dx2 dxjltfsx

By defining a quantity X, called the Lagrange multiplier, as

\dg/dx2j\(x;xl)

Equation (2.32) can be expressed as

( f + x f ) \ = 0 (2.34)

and Eq. (2.33) can be written as

(¥ + \£-)\ = 0 (2.35)
\dx2 9X2J]^1 xh



In addition, the constraint equation has to be satisfied at the extreme point,
that is,

S(*i,*2)U,2*) = 0 (2.36)

Thus Eqs. (2.34) to (2.36) represent the necessary conditions for the point
(JC*,JC*) to be an extreme point.

Notice that the partial derivative (dg/dx2)\(Xux2) ^ a s t o ^ e nonzero to be able
to define X by Eq. (2.33). This is because the variation dx2 was expressed in
terms of dxx in the derivation of Eq. (2.32) [see Eq. (2.23)]. On the other
hand, if we choose to express dxx in terms of dx2, we would have obtained the
requirement that (dg/dxx)\(x*x*2) be nonzero to define X. Thus the derivation of
the necessary conditions by the method of Lagrange multipliers requires that
at least one of the partial derivatives of g(xx, X2) be nonzero at an extreme point.

The necessary conditions given by Eqs. (2.34) to (2.36) are more commonly
generated by constructing a function L, known as the Lagrange function, as

L(xux2M =/(X19X2) + Xg(X19X2) (2.37)

By treating L as a function of the three variables Jc1, Jc2, and X, the necessary
conditions for its extremum are given by

dL d/ dg
— (X1 ,x2,X) = — (xx,x2) + ^ T " (X19X2) = 0
aJCj OJc1 OJC1

dL df dg
— (X19X29X) = ~- (X19JC2) + X - ^ (Jc1 ,x2) = O (2.38)
OX2 OX2 OX2

dL
— (xl9 X2, X) = g(xx,x2) = O

Equations (2.38) can be seen to be same as Eqs. (2.34) to (2.36). The suffi-
ciency conditions are given later

Example 2.9 Find the solution of Example 2.7 using the Lagrange multiplier
method:

Minimize/(JC,y) = kx~ly~2

subject to

g(x,y) = jc2 + y2 - a2 = 0

SOLUTION The Lagrange function is

L(x,y,X) =/(JC0O + Xg(x,y) = kx'Y2 + X(x2 + y2 - a2)



The necessary conditions for the minimum of f(x, y) [Eqs. (2.38)] give

yx = - f c t -y 2 + 2xX = 0 (E1)

^ = -2fcc-y3 + 2y\ = 0 (E2)
dy

^ = x2 + y2 - a2 = 0 (E3)
OA

Equations (E1) and (E2) yield

2 X - k - 2 k

from which the relation JC* = ( l /v2) y* can be obtained. This relation, along
with Eq. (E3), gives the optimum solution as

a f— (x
JC* = —= and y* = V 2 - p

V3 V3

Necessary Conditions for a General Problem. The equations derived above
can be extended to the case of a general problem with n variables and m equal-
ity constraints:

Minimize /(X)

subject to (2.39)

gj(X) = 0 , J= 1,2,. . .,m

The Lagrange function, L, in this case is defined by introducing one Lagrange
multiplier X7 for each constraint gy(X) as

= /(X) + X lgl(X) + X2^2(X) + • • • + KgnQS) (2.40)

By treating L as a function of the n + m unknowns, Jt1, Jt2, • • • , Jtn, X1, X2,
. . . , Xm, the necessary conditions for the extremum of L, which also corre-
spond to the solution of the original problem stated in Eq. (2.39), are given
by

dL df £ ds;
- = / + S \ f = 0, / = 1,2,. . .,n (2.41)
OXi OXi 7 = 1 OXi



dL
— = gj(X) = O, j = 1,2,. . .,m (2.42)

j

Equations (2.41) and (2.42) represent n + m equations in terms of the n + m
unknowns, xt and X7-. The solution of Eqs. (2.41) and (2.42) gives

X* = . and P =

Vx *y Vx* J

The vector X* corresponds to the relative constrained minimum of/(X) (suf-
ficient conditions are to be verified) while the vector X* provides the sensitivity
information, as discussed in the next subsection.

Sufficiency Conditions for a General Problem. A sufficient condition for/(X)
to have a constrained relative minimum at X* is given by the following theo-
rem.

Theorem 2.6: Sufficient Condition A sufficient condition for/(X) to have
a relative minimum at X* is that the quadratic, Q, defined by

£ = S S - ^ - dx( dxj (2 A3)
I = Iy = I OXi °xj

evaluated at X = X* must be positive definite for all values of dX for which
the constraints are satisfied.

Proof: The proof is similar to that of Theorem 2.4.

Notes:

1. If

G = S S - ^ 4 " (x*> ^*) dxt dxj
i=\ j = \ OX1 OXj

is negative for all choices of the admissible variations dxt, X* will be a
constrained maximum of/(X).

2. It has been shown by Hancock [2.1] that a necessary condition for the
quadratic form Q, defined by Eq. (2.43), to be positive (negative) defi-
nite for all admissible variations dX is that each root of the polynomial



Zi, defined by the following determinantal equation, be positive (nega-
tive):

L11 - z L12 L13 • • • L1n gn g2l • • • gmX

L21 L22 - z L23 • • • L2n g12 g22 • • • gm2

An Ln2 Ln3 • • • L ^ - z g l n g2n • • • gmn

= 0
#11 gn #13 " ' ' #1« 0 0 • • • 0

#21 #22 #23 " • • #2* 0 0 • • • 0

#ml #m2 #m3 ' ' - gmn 0 0 • • ' 0

(2.44)

where

Ltj = T ^ 4 " (X*, *•) (2.45)

.0 = I ) (X*) (2.46)

3. Equation (2.44), on expansion, leads to an (n — ra)th-order polynomial
in z. If some of the roots of this polynomial are positive while the others
are negative, the point X* is not an extreme point.

The application of the necessary and sufficient conditions in the Lagrange
multiplier method is illustrated with the help of the following example.

Example 2.10 Find the dimensions of a cylindrical tin (with top and bottom)
made up of sheet metal to maximize its volume such that the total surface area
is equal to A0 = 24 TT.

SOLUTION IfJc1 and X2 denote the radius of the base and length of the tin,
respectively, the problem can be stated as:

Maximize/(JC j,Jc2) = TTJĈ JC2

subject to

2-KX\ + 2-KXxX1 = A0 = 2 4 x



The Lagrange function is

L(Xx, X2, X) = TTX1X2 + X(2 TTx] + 27TJC1JC2 — A0)

and the necessary conditions for the maximum of/give

dL
— = 27TJC1X2 + 4TTXJC1 + 27TXJC2 = 0 (E 1 )
CJX 1

dL ~
— = -KX\ + 2TTXJC1 = 0 (E2)
OX2

dL 9
— = 27TXt + 27TX1X2 ~ A0 = 0 (E3)
OA

Equations (E1) and (E2) lead to

X1X2 1

2X1 + X2 2

that is,

X1 = I X2 (E4)

and Eqs. (E3) and (E4) give the desired solution as

« - ( s ) • * - ( £ ) • - - - - ( ^ )

This gives the maximum value of/ as

/ ,43 \1/2

/ * = ( — )1 \54TJ

If A0 = 24 TT, the optimum solution becomes

jc* = 2, X2* = 4 , X* = - 1 , and / * = 16TT

To see that this solution really corresponds to the maximum of/, we apply the
sufficiency condition of Eq. (2.44). In this case

32L
L11 = —2 = 2TTX2* + 4TTX* = 4TT

"x\ (X*,X*)



82L
Li2 = a a = L1I = 2xxf + 2TTX* = 2x

0*1 <«2 (X*,X*)

a x 2 (X*, X*)

S " = I T = 4 7 r J C * + 2TTJC2* = 1 6 x
^ 2 (X*,X*)

«12 = I 5 1 = 27TXf = 47T
^ X 2 (X*,X*)

Thus Eq. (2.44) becomes

4TT — z 2TT 16TT

2TT 0 - Z 4TT = 0

16TT 4TT O

that is,

272TT2Z + 192TT3 = O

This gives

z = -^

Since the value of z is negative, the point (JC*^C*) corresponds to the maximum
of/

Interpretation of the Lagrange Multipliers. To find the physical meaning of
the Lagrange multipliers, consider the following optimization problem involv-
ing only a single equality constraint:

Minimize/(X) (2.47)

subject to

g(X) = b or g(X) = b - g(X) = O (2.48)

where b is a constant. The necessary conditions to be satisfied for the solution
of the problem are

^- + A ^ = O, / = 1,2,...,« (2.49)
OX1 OX1

g = 0 (2.50)



Let the solution of Eqs. (2.49) and (2.50) be given by X*, X*, and/* = /(X*).
Suppose that we want to find the effect of a small relaxation or tightening of
the constraint on the optimum value of the objective function (i.e., we want
to find the effect of a small change in b on /* ) . For this we differentiate Eq.
(2.48) to obtain

db - dg = 0

or

db = dg = S -^dX1 (2.51)

Equation (2.49) can be rewritten as

df dg df dg
/ + x/ = / - \ - - = 0 (2.52)
OX1 OX1 OXi OX1

or

£ - * £ * . , - U (2.53,
dxt X

Substituting Eq. (2.53) into Eq. (2.51), we obtain

d&=S±f*, = f (2.54)
I = I A OXt A

since

df= I 1 ^ dxt (2.55)

i = i dxf

Equation (2.54) gives

df df*

X = ± or X* = -j- (2.56)
db db

or
df* = X* db (2.57)

Thus X* denotes the sensitivity (or rate of change) of/with respect to b or the
marginal or incremental change i n / * with respect to b at JC*. In other words,
X* indicates how tightly the constraint is binding at the optimum point. De-



pending on the value of X* (positive, negative, or zero), the following physical
meaning can be attributed to X*:

1. X* > 0. In this case, a unit decrease in b is positively valued since one
gets a smaller minimum value of the objective function /. In fact, the
decrease i n /* will be exactly equal to X* since df = X*( — 1) = — X*
< 0. Hence X* may be interpreted as the marginal gain (further reduc-
tion) in /* due to the tightening of the constraint. On the other hand, if
b is increased by 1 unit, /will also increase to a new optimum level,
with the amount of increase in /* being determined by the magnitude of
X* since df — X*(+l) > 0. In this case, X* may be thought of as the
marginal cost (increase) in /* due to the relaxation of the constraint.

2. X* < 0. Here a unit increase in b is positively valued. This means that
it decreases the optimum value of/. In this case the marginal gain (re-
duction) in/* due to a relaxation of the constraint by 1 unit is determined
by the value of X* as df* = X*( + l) < 0. If b is decreased by 1 unit,
the marginal cost (increase) i n / * by the tightening of the constraint is
df* = X*(—1) > 0 since, in this case, the minimum value of the ob-
jective function increases.

3. X* = 0 . In this case, any incremental change in b has absolutely no
effect on the optimum value of / and hence the constraint will not be
binding. This means that the optimization of/subject to g = 0 leads to
the same optimum point X* as with the unconstrained optimization of/.

In economics and operations research, Lagrange multipliers are known as
shadow prices of the constraints since they indicate the changes in optimal
value of the objective function per unit change in the right-hand side of the
equality constraints.

Example 2.11 Find the maximum of the function/(X) = Ixx + X2 + 10
subject to g(X) = Jc1 + 2x1 = 3 using the Lagrange multiplier method. Also
find the effect of changing the right-hand side of the constraint on the optimum
value of/

SOLUTION The Lagrange function is given by

L(X,X) = 2X1 + jc2 + 10 + X(3 - Jc1 - 2JC2) (E1)

The necessary conditions for the solution of the problem are

f- - 2 - X - O

bL
— = 1 - 4Xx2 = 0 (E2)
0x2

dL ,
- = 3 - ^ - 2 , 1 = 0



The solution of Eqs. (E2) is

x . . r*n - P-97]
X* = 2.0

The application of the sufficiency condition of Eq. (2.52) yields

Ln ~ Z Ln gn

Lix L22-Z gX2 = 0

gn gn 0

-z 0 - 1 -z 0 - 1

0 - 4 X - z - 4 J C 2 = 0 - S - z - 0 . 5 2 = 0

- 1 -Ax2 0 - 1 -0.52 0

0.2704z + 8 + z = 0

z = -6.2972

Hence X* will be a maximum of /wi th /* = /(X*) = 16.07.
One procedure for finding the effect on / * of changes in the value of b

(right-hand side of the constraint) would be to solve the problem all over with
the new value of b. Another procedure would involve the use of the value of
X*. When the original constraint is tightened by 1 unit (i.e., db = — 1), Eq.
(2.57) gives

df* = X* db = 2 ( - l ) = - 2

Thus the new value of/* i s / * + df* = 14.07. On the other hand, if we relax
the original constraint by 2 units (i.e., db = 2), we obtain

df* = X* db = 2(+2) = 4

and hence the new value of/* i s / * + df* = 20.07.

2.5 MULTIVARIABLE OPTIMIZATION WITH INEQUALITY
CONSTRAINTS

This section is concerned with the solution of the following problem:

Minimize /(X)



subject to

gj(X) < 0, J = 1,2,. . .,m (2.58)

The inequality constraints in Eq. (2.58) can be transformed to equality con-
straints by adding nonnegative slack variables, yj, as

gj(X) + yj = 0, J = 1,2,. . .,m (2.59)

where the values of the slack variables are yet unknown. The problem now
becomes

Minimize /(X)

subject to

G7(X9Y) = gj(X) + yj = 0, J= 1,2,. . .,m (2.60)

where Y = < . > is the vector of slack variables.

U J
This problem can be solved conveniently by the method of Lagrange mul-

tipliers. For this, we construct the Lagrange function L as

m

KX,Y,X) = /(X) + S XfGy(X,Y) (2.61)

M
where ^ = S .2 / is the vector of Lagrange multipliers. The stationary points

of the Lagrange function can be found by solving the following equations (nec-
essary conditions):

^ (X,Y,X) = ^ (X) + S A, ̂  (X) = 0, i = 1,2,. . .,«

(2.62)

^ (X,Y,X) = Gj(K9Y) = ft(X) + y,2 = 0, J= 1,2,. . .,m

(2.63)



dL
— (X,YA) = 2X^- = 0, J = 1,2,. . .,m (2.64)

It can be seen that Eqs. (2.62) to (2.64) represent (n + 2m) equations in the
(n + 2m) unknowns, X, X9 and Y. The solution of Eqs. (2.62) to (2.64) thus
gives the optimum solution vector X*, the Lagrange multiplier vector, X*, and
the slack variable vector, Y*.

Equations (2.63) ensure that the constraints g/(X) < 0, j = 1,2,. . .,m, are
satisfied, while Eqs. (2.64) imply that either X7 = 0 or y,- = 0. If X,- = 0, it
ma&ns that the jth constraint is inactive^ and hence can be ignored. On the
other hand, if yj•, = 0, it means that the constraint is active (gj = 0) at the
optimum point. Consider the division of the constraints into two subsets, Jx

and J2, where Jx + J2 represent the total set of constraints. Let the set Jx

indicate the indices of those constraints that are active at the optimum point
and J2 include the indices of all the inactive constraints.

Thus for j e J1,* y, = 0 (constraints are active), forj e / 2 , X7 = 0 (constraints
are inactive), and Eqs. (2.62) can be simplified as

^ + S X , -^ = O, I = 1,2,...,/i (2.65)

dxt jeJi dXi

Similarly, Eqs. (2.63) can be written as

Sj(X) = O9 JeJx (2.66)
gj(X) + yj = 0, JeJ2 (2.67)

Equations (2.65) to (2.67) represent n+p + (m-p)=n + m equations in
the n + m unknowns xt (i = 1,2,. . .,/i), X7 (j e Jx), and j y (j e J2), where p
denotes the number of active constraints.

Assuming that the firstp constraints are active, Eqs. (2.65) can be expressed
as

-JL = X l ^ + X 2 ^ - f - + X p ^ , / = 1 , 2 , . . , « (2.68)
dxt dxt dxt

 p dxt

These equations can be written collectively as

-Vf= XxVgx + X2V^2 + • • • + \p Vgp (2.69)

1ThOSe constraints that are satisfied with an equality sign, gj = 0, at the optimum point are called
the active constraints, while those that are satisfied with a strict inequality sign, gj < 0, are
termed inactive constraints.
*The symbol e is used to denote the meaning "belongs to" or "element of."



where V/and Vg7 are the gradients of the objective function and theyth con-
straint, respectively:

fdf/dx{\ fdgjIdx A

df/dx2 I dg;/dx2

Vf = . and Vg7- =

\BfldxJ \BgjldxJ

Equation (2.69) indicates that the negative of the gradient of the objective
function can be expressed as a linear combination of the gradients of the active
constraints at the optimum point.

Further, we can show that in the case of a minimization problem, the X7

values (j e J\) have to be positive. For simplicity of illustration, suppose that
only two constraints are active (p = 2) at the optimum point. Then Eq. (2.69)
reduces to

- V / - X1Vg1 + X2Vg2 (2.70)

Let S be a feasible direction1^ at the optimum point. By premultiplying both
sides of Eq. (2.70) by S r , we obtain

- S 7 V / = X1S
7Vg1 + X2S

7Vg2 (2.71)

where the superscript T denotes the transpose. Since S is a feasible direction,
it should satisfy the relations

sTvgi < o (2 72)
S7Vg2 < 0

1A vector S is called a feasible direction from a point X if at least a small step can be taken along
S that does not immediately leave the feasible region. Thus for problems with sufficiently smooth
constraint surfaces, vector S satisfying the relation

STVgj < 0

can be called a feasible direction. On the other hand, if the constraint is either linear or concave,
as shown in Fig. 2.Sb and c, any vector satisfying the relation

S7Vg, s 0

can be called a feasible direction. The geometric interpretation of a feasible direction is that the
vector S makes an obtuse angle with all the constraint normals, except that for the linear or
outward-curving (concave) constraints, the angle may go to as low as 90°.



Figure 2.8 Feasible direction S.

Thus if X1 > 0 and X2 > 0, the quantity S rV/can be seen always to be positive.
As V/indicates the gradient direction, along which the value of the function
increases at the maximum rate,1^ S7V/ represents the component of the incre-
ment of/along the direction S. If S7V/ > 0, the function value increases as
we move along the direction S. Hence if X1 and X2 are positive, we will not
be able to find any direction in the feasible domain along which the function
value can be decreased further. Since the point at which Eq. (2.72) is valid is
assumed to be optimum, X1 and X2 have to be positive. This reasoning can be
extended to cases where there are more than two constraints active. By pro-
ceeding in a similar manner, one can show that the X7 values have to be neg-
ative for a maximization problem.

fSee Section 6.10.2 for a proof of this statement.
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surface
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than 90°
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2.5.1 Kuhn-Tucker Conditions

As shown above, the conditions to be satisfied at a constrained minimum point,
X*, of the problem stated in Eq. (2.58) can be expressed as

7 + S A ^ = O, / = 1,2,...,/I (2.73)

\j > 0, j e Jx (2.74)

These are called Kuhn-Tucker conditions after the mathematicians who de-
rived them as the necessary conditions to be satisfied at a relative minimum of
/(X) [2.8]. These conditions are, in general, not sufficient to ensure a relative
minimum. However, there is a class of problems, called convex programming
problems^ for which the Kuhn-Tucker conditions are necessary and sufficient
for a global minimum.

If the set of active constraints is not known, the Kuhn-Tucker conditions
can be stated as follows:

f + S ^ = O, / = 1 , 2 , . . . , «
OXi j=\ OXi

\gj = 0 ^ j = 1,2,. . .,m ( 2 7 5 )

gj < 0, j = 1,2,. . .,m

\j > 0, J = 1,2,. . .,m

Note that if the problem is one of maximization or if the constraints are of the
type gj > 0, the X,- have to be nonpositive in Eqs. (2.75). On the other hand,
if the problem is one of maximization with constraints in the form gj > 0, the
Xj have to be nonnegative in Eqs. (2.75).

2.5.2 Constraint Qualification

When the optimization problem is stated as:

Minimize /(X)

subject to

gj(X) < 0, j = 1,2,. . .,m ^2 76^

hk(X) = 0, k = 1,2,. . .,/?

fSee Sections 2.6 and 7.14 for a detailed discussion of convex programming problems.
*This condition is the same as Eq. (2.64).



the Kuhn-Tucker conditions become

m p

Vf+ S KjVgj- S &V*t = 0

7 = 1 k=l

Xjgj = 0, j = 1,2,. . .,m

g, < 0, j = 1,2,. . .,m ^2 7 7

A* = 0, fc = 1,2, . . . ,/>
Xj > 0, J = 1,2,. . .,m

where X7 and /3fc denote the Lagrange multipliers associated with the constraints
gj < 0 and hk = 0, respectively. Although we found qualitatively that the
Kuhn-Tucker conditions represent the necessary conditions of optimality, the
following theorem gives the precise conditions of optimality.

Theorem 2.7 Let X* be a feasible solution to the problem of Eqs. (2.76). If
Vg7(X*), j E J1 and VZ^(X*), k = 1,2,. . .,/?, are linearly independent, there
exist X* and P* such that (X*, k*9 P*) satisfy Eqs. (2.77).

Proof: SeeRef. [2.11].

The requirement that Vg7(X*), j e Jx and V^(X*), k = 1,2,. . .,/?, be lin-
early independent is called the constraint qualification. If the constraint qual-
ification is violated at the optimum point, Eqs. (2.77) may or may not have a
solution. It is difficult to verify the constraint qualification without knowing
X* beforehand. However, the constraint qualification is always satisfied for
problems having any of the following characteristics:

1. All the inequality and equality constraint functions are linear.
2. All the inequality constraint functions are convex, all the eguality con-

straint functions are linear, and at least one feasible vector X exists that
lies strictly inside the feasible region, so that

gj(X) < 0, J= 1,2,. . .,m and hk(X) = 0, k = 1,2,. . .,/>

Example 2.12 Consider the problem:

Minimize/(Jt1, X2) = (xr - I)2 + xl (E1)

subject to

gl(*!,X2) =x\ - 2X2 < 0 (E2)



82(XuX2) = x] + 2x2 < O (E3)

Determine whether the constraint qualification and the Kuhn-Tucker condi-
tions are satisfied at the optimum point.

SOLUTION The feasible region and the contours of the objective function
are shown in Fig. 2.9. It can be seen that the optimum solution is (0, 0). Since
^1 and g2 are both active at the optimum point (0, 0), their gradients can be
computed as

f 3x f ) C 0) (3xf) CO)
Vg1PL*) = = and Vg2(X*) = =

V Z^(0,0) V Z J V z (̂0,0) VZJ

Feasible space

Figure 2.9 Feasible region and contours of the objective function.



It is clear that Vg,(X*) and Vg2(X*) are not linearly independent. Hence the
constraint qualification is not satisfied at the optimum point.

Noting that

(2(X1 - I)) (-2)
Vf(X*) =

the Kuhn-Tucker conditions can be written, using Eqs. (2.73) and (2.74), as

- 2 + X1(O) + X2(O) = 0 (E4)

0 + X,(-2) + X2(2) = 0 (E5)

X1 > 0 (E6)

X2 > 0 (E7)

Since Eq. (E4) is not satisfied and Eq. (E5) can be satisfied for negative values
of X1 = X2 also, the Kuhn-Tucker conditions are not satisfied at the optimum
point.

Example 2.13 A manufacturing firm producing small refrigerators has en-
tered into a contract to supply 50 refrigerators at the end of the first month, 50
at the end of the second month, and 50 at the end of the third. The cost of
producing x refrigerators in any month is given by $(JC2 + 1000). The firm can
produce more refrigerators in any month and carry them to a subsequent month.
However, it costs $20 per unit for any refrigerator carried over from one month
to the next. Assuming that there is no initial inventory, determine the number
of refrigerators to be produced in each month to minimize the total cost.

SOLUTION Let Xx, X2, and X3 represent the number of refrigerators produced
in the first, second, and third month, respectively. The total cost to be mini-
mized is given by

total cost = production cost + holding cost

or

/(JCi, JC2, Jc3) = (JC? + 1000) + (xl + 1000) + (xl + 1000) + 20(Jc1 - 50)

+ 20(X1 +X1- 100)

= x\ + X2 + x\ + 4OJC1 + 20JC2

The constraints can be stated as

g\(xux2,x3) = xx - 50 > 0



S2(X1,X29X3) = X1 + X2 - 100 > 0

S3(X15X^x3) = X1 + X2 + X3 - 150 >: 0

The Kuhn-Tucker conditions are given by

T - + X1 -— + X2 — - + X3 -— = 0, I = - 1 , 2 , 3
3x/ 9x/ dxt dx{

that is,

2X1 + 40 + X1 + X2 + X3 = 0 (E1)

2x2 + 20 + X2 + X3 = 0 (E2)

2x3 + X3 = 0 (E3)

XyS7 = 0, J= 1 ,2 ,3

that is,

X1(X1 - 50) = 0 (E4)

X2(X1 + X 2 - 100) = 0 (E5)

X3(X1 + X2 + X3 - 150) = 0 (E6)

gj*O, 7 = 1 ,2 ,3

that is,

X1 - 50 > 0 (E7)

X1 + X2 - 100 > 0 (E8)

X1 + X2 + x3 - 150 > 0 (E9)

\j < 0, J= 1 ,2 ,3

that is,

X1 < 0 (E10)

X2 < 0 (E11)

X3 < 0 (E12)

The solution of Eqs. (E1) to (E12) can be found in several ways. We proceed
to solve these equations by first noting that either X1 = 0 OrX1 = 50 according



to Eq. (E4). Using this information, we investigate the following cases to iden-
tify the optimum solution of the problem.

Case 1: X1 = 0. Equations (E1) to (E3) give

x - X3

x 2 = - 1 0 - | - | (E13)

Substituting Eqs. (E13) in Eqs. (E5) and (E6), we obtain

\ 2 ( - 1 3 0 - X2 - X3) = 0

X3(-18O - X2 - |X 3) = 0 (E14)

The four possible solutions of Eqs. (E14) are:

1. X2 = 0, —180 — X2 — § X3 = 0. These equations, along with Eqs. (E13),
yield the solution

X2 = 0, X3 = - 1 2 0 , xx = 40, X2 = 50, x3 = 60

This solution satisfies Eqs. (E10) to (E12) but violates Eqs. (E7) and (E8)
and hence cannot be optimum.

2. X3 = 0, —130 -X 2 -X 3 = 0. The solution of these equations leads to

X2 = - 1 3 0 , X 3 = O , JC1 = 45, x2 = 55, x3 = 0

This solution can be seen to satisfy Eqs. (E10) to (E12) but violate Eqs.
(E7) and (E9).

3. X2 = 0, X3 = 0. Equations (E13) give

Jc1 = - 2 0 , Jc2 = - 10 , Jc3 = 0

This solution satisfies Eqs. (E10) to (E12) but violates the constraints,
Eqs. (E7) to (E9).

4. - 1 3 0 - X2 - X3 = 0, - 1 8 0 - X2 - § X3 = 0. The solution of these
equations and Eqs. (E13) yields

X2 = - 30 , X3 = -100, Jc1 = 45, Jc2 = 55, JC3 = 50



This solution satisfies Eqs. (E10) to (E12) but violates the constraint, Eq.
(E7).

Case 2: X1 = 50. In this case, Eqs. (E1) to (E3) give

X3 = -2x 3

X2 = - 2 0 - 2x2 - X3 = - 2 0 - 2JC2 + 2x3 (E15)

X1 = - 4 0 - 2X1 - X2 - X3 = - 1 2 0 + 2JC2

Substitution of Eqs. (E15) in Eqs. (E5) and (E6) leads to

( - 2 0 - 2;t2 + 2 3̂)(JC1 +X2- 100) = 0

(-2X3)(X1 + x2 + x3 - 150) = 0 (E16)

Once again, it can be seen that there are four possible solutions to Eqs. (E16),
as indicated below.

1. - 2 0 - 2x2 + 2x3 = 0 , X1 + X2 + X3 - 150 = 0: The solution of these
equations yields

X1 = 50, x2 = 45, x3 = 55

This solution can be seen to violate Eq. (E8).

2. —20 — 2x2 + 2x3 = 0, — 2x3 = 0: These equations lead to the solution

X1 = 50, x2 = —10, X3 = 0

This solution can be seen to violate Eqs. (E8) and (E9).

3. X1 + x 2 — 100 = 0, — 2x3 = 0: These equations give

X1 = 50, X2 = 50, X3 = 0

This solution violates the constraint Eq. (E9).

4. X1 + X2 - 100 = 0, X1 + x2 + X3 - 150 = 0: The solution of these
equations yields

X1 = 50, x2 = 50, x3 = 50

This solution can be seen to satisfy all the constraint Eqs. (E7) to (E9).
The values of X1, X2, and X3 corresponding to this solution can be ob-
tained from Eqs. (E15) as

X1 = - 2 0 , X2 = - 2 0 , X3 - - 1 0 0



Since these values of X1- satisfy the requirements [Eqs. (E10) to (E12)],
this solution can be identified as the optimum solution. Thus

jcf = 50, Jc2* = 50, X3* = 50

2.6 CONVEX PROGRAMMING PROBLEM

The optimization problem stated in Eq. (2.58) is called a convex programming
problem if the objective function/(X), and the constraint functions, gy(X), are
convex. The definition and properties of a convex function are given in Ap-
pendix A. Suppose that/(X) and gj(X),j = 1,2,. . .,ra, are convex functions.
The Lagrange function of Eq. (2.61) can be written as

m

L(X9Y9X) = /(X) + L \j[gj(X) + yj] (2.78)

If X7 > 0, then X^g7(X) is convex, and since X7V7 = 0 from Eq. (2.64),
L(X, Y9X) will be a convex function. As shown earlier, a necessary condition
for/(X) to be a relative minimum at X* is that L(X,Y, X) have a stationary
point at X*. However, if L(X,Y,X) is a convex function, its derivative van-
ishes only at one point, which must be an absolute minimum of the function
/(X). Thus the Kuhn-Tucker conditions are both necessary and sufficient for
an absolute minimum of/(X) at X*.

Notes:

1. If the given optimization problem is known to be a convex programming
problem, there will be no relative minima or saddle points, and hence
the extreme point found by applying the Kuhn-Tucker conditions is
guaranteed to be an absolute minimum of/(X). However, it is often very
difficult to ascertain whether the objective and constraint functions in-
volved in a practical engineering problem are convex.

2. The derivation of the Kuhn-Tucker conditions was based on the devel-
opment given for equality constraints in Section 2.4. One of the require-
ments for these conditions was that at least one of the Jacobians com-
posed of the m constraints and m of the n + m variables (Jc1 ,Jt2,. • -,Xn;
Ji»j2»- • ->ym) be nonzero. This requirement is implied in the derivation
of the Kuhn-Tucker conditions.
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REVIEW QUESTIONS

2.1 State the necessary and sufficient conditions for the minimum of a func-
tion/(x).

2.2 Under what circumstances can the condition df(x)ldx = 0 not be used
to find the minimum of the function/(x)?

2.3 Define the rth differential, drf(X), of a multivariable function/(X).

2.4 Write the Taylor's series expansion of a function/(X).

2.5 State the necessary and sufficient conditions for the maximum of a mul-
tivariable function/(X).

2.6 What is a quadratic form?

2.7 How do you test the positive, negative, or indefiniteness of a square
matrix [A]I

2.8 Define a saddle point and indicate its significance.

2.9 State the various methods available for solving a multivariable optimi-
zation problem with equality constraints.

2.10 State the principle behind the method of constrained variation.



2.11 What is the Lagrange multiplier method?

2.12 What is the significance of Lagrange multipliers?

2.13 Convert an inequality constrained problem into an equivalent uncon-
strained problem.

2.14 State the Kuhn-Tucker conditions.

2.15 What is an active constraint?

2.16 Define a usable feasible direction.

2.17 What is a convex programming problem? What is its significance?

2.18 Answer whether each of the following quadratic forms is positive def-
inite, negative definite, or neither.

(a) / = x2 - x\

(b) / = AxxX2

(C) f=x]+ 2x2
2

(d) / = - x 2 + 4x,jc2 + Ax\

(e) / = -jc? + 4Jc1JC2 - 9x2 + 2Jc1Jc3 + 8JC2JC3 - 4x3

2.19 State whether each of the following functions is convex, concave, or
neither.
(a) / = -2JC2 + 8JC + 4

(b) / = jc2 + IOJC + 1

(C) / = JC2 - x\

(d) / = - X 1 + 4.X1X2

(e) / = e ' \ JC > 0

(f) / = Jx,x > 0
(g) f= X1X2

(h ) f=(xx- I ) 2 + 10(jc2 - 2 ) 2

2.20 Match the following equations and their characteristics.
(a) / = 4X1 — 3x2 + 2 Relative maximum at (1, 2)

(b) / = (2X1 - 2)2 + (X1 - 2)2 Saddle point at origin
(c) / = -(X1 - I)2 - (x2 - 2)2 No minimum
(d) / = X1X2 Inflection point at origin
(e) / = x3 Relative minimum at (1, 2)

PROBLEMS

2.1 A dc generator has an internal resistance R ohms and develops an open-
circuit voltage of V volts (Fig. 2.10). Find the value of the load resis-



Figure 2.10 Electric generator with load.

tance r for which the power delivered by the generator will be a maxi-
mum.

2.2 Find the maxima and minima, if any, of the function

f{x) = (x - IKx - 3)3

2.3 Find the maxima and minima, if any, of the function

/(jc) = 4JC3 - ISx2 + 2Ix-I

2.4 The efficiency of a screw jack is given by

__ tan a
1 tan (a + 0)

where a is the lead angle and 0 is a constant. Prove that the efficiency
of the screw jack will be maximum when a = 45° — 0/2 with r/max =
(1 - sin 0)/(l + sin 0).

2.5 Find the minimum of the function

/(jc) = IOJC6 - 48JC5 + 15JC4 + 200x3 - 120JC2 - 480JC + 100

2.6 Find the angular orientation of a cannon to maximize the range of the
projectile.

2.7 In a submarine telegraph cable the speed of signalling varies as JC2

log(l/x), where x is the ratio of the radius of the core to that of the
covering. Show that the greatest speed is attained when this ratio is
l:\fe.

Generator

R

V

r



2.8 The horsepower generated by a Pelton wheel is proportional to u(V —
w), where u is the velocity of the wheel, which is variable, and V is the
velocity of the jet, which is fixed. Show that the efficiency of the Pelton
wheel will be maximum when u = V 12.

2.9 A pipe of length / and diameter D has at one end a nozzle of diameter
d through which water is discharged from a reservoir. The level of water
in the reservoir is maintained at a constant value h above the center of
nozzle. Find the diameter of the nozzle so that the kinetic energy of the
jet is a maximum. The kinetic energy of the jet can be expressed as

1 / 2gD
5h \ 3 / 2

where p is the density of water, / the friction coefficient and g the grav-
itational constant.

2.10 An electric light is placed directly over the center of a circular plot of
lawn 100 m in diameter. Assuming that the intensity of light varies
directly as the sine of the angle at which it strikes an illuminated sur-
face, and inversely as the square of its distance from the surface, how
high should the light be hung in order that the intensity may be as great
as possible at the circumference of the plot?

2.11 If a crank is at an angle 6 from dead center with 6 = ot, where co is the
angular velocity and t is time, the distance of the piston from the end
of its stroke (x) is given by

x = r (1 - cos 0) + — (1 - cos 20)
4/

where r is the length of the crank and / is the length of the connecting
rod. For r = 1 and / = 5, find (a) the angular position of the crank at
which the piston moves with maximum velocity, and (b) the distance
of the piston from the end of its stroke at that instant.

Determine whether each of the following matrices is positive definite, negative
definite, or indefinite by finding its eigenvalues.

" 3 1 - 1 "

2.12 [A] = 1 3 - 1

_ - l - 1 5_

" 4 2 - 4 "

2.13 [B] = 2 4 - 2

_-4 - 2 4_



~-i -i - r

2.14 [C] = - 1 - 2 - 2

_ - l - 2 - 3 _

Determine whether each of the following matrices is positive definite, negative
definite, or indefinite by evaluating the signs of its submatrices.

~ 3 i - r

2.15 [A] = 1 3 - 1

_ - l - 1 5_

" 4 2 - 4 "

2.16 [B] = 2 4 - 2

- 4 - 2 4_

~ - l - 1 - 1 "

2.17 [C] = - 1 - 2 - 2

_ - l - 2 - 3 _

2.18 Express the function

f(xi,x2,x3)
 = -x2\ ~ x\ + 2X1X2 - x\ + 6x\x3 + Axx - 5JC3 + 2

in matrix form as

/(X) = {XT[A] X + B r X + C

and determine whether the matrix [A] is positive definite, negative def-
inite, or indefinite.

2.19 Determine whether the following matrix is positive or negative definite.

" 4 - 3 0"

[A] = - 3 0 4

0 4 2_

2.20 Determine whether the following matrix is positive definite.

" -14 3 0"

[A] = 3 - 1 4

0 4 2_



Figure 2.11 Two-bar truss.

2.21 The potential energy of the two-bar truss shown in Fig. 2.11 is given
by

EA ( 1 \ 2
 2 EA /h\2

 2
/(X1, X2) = — ( — ) xf + — I - I x\ - Pxx cos 0 - Px2 sin 0

where E is Young's modulus, A the cross-sectional area of each mem-
ber, Z the span of the truss, s the length of each member, h the height
of the truss, P the applied load, 0 the angle at which the load is applied,
and Jc1 and X2 are, respectively, the horizontal and vertical displacements
of the free node. Find the values OfX1 and X2 that minimize the potential
energy when E = 207 X 109 Pa, A = 10~5 m2, / = 1.5 m, h = 4.0
m, P = 104N, and 6 = 30°.

2.22 The profit per acre of a farm is given by

2Ox1 + 26x2 + 4x,x2 - 4xj - 3x2

where X1 and X2 denote, respectively, the labor cost and the fertilizer
cost. Find the values OfX1 and X2 to maximize the profit.

2.23 The temperatures measured at various points inside a heated wall are as
follows:

Distance from the heated surface as a
percentage of wall thickness, d 0 25 50 75 100

Temperature, t (0C) 380 200 100 20 0

/

h

a a

A A

P



It is decided to approximate this table by a linear equation (graph) of
the form t = a + bd, where a and b are constants. Find the values of
the constants a and b that minimize the sum of the squares of all dif-
ferences between the graph values and the tabulated values.

2.24 Find the second-order Taylor's series approximation of the function

/(X19X2) = (X1 - I ) V 2 +JC1

at the points (a) (0,0) and (b) (1,1).

2.25 Find the third-order Taylor's series approximation of the function

/(X1 ,X2 ,X3) = XJx3 + X1*?*3

at point (1 ,0 , -2) .

2.26 The volume of sales ( / ) of a product is found to be a function of the
number of newspaper advertisements (x) and the number of minutes of
television time (y) as

/ = 12xy - x2 - 3y2

Each newspaper advertisement or each minute on television costs $1000.
How should the firm allocate $48,000 between the two advertising me-
dia for maximizing its sales?

2.27 Find the value of JC* at which the following function attains its maxi-
mum:

f/x\ = * £-(l/2U(Jc-100)/1012

10 V2^

2.28 It is possible to establish the nature of stationary points of an objective
function based on its quadratic approximation. For this, consider the
quadratic approximation of a two-variable function as

/(X) * a + b rX + \ XT[c] X

where

X - H b . H aad [C1 - \C" H
№J Kp2) Icn C22J

If the eigenvalues of the Hessian matrix, [c], are denoted as /S1 and /S2,



identify the nature of the contours of the objective function and the type
of stationary point in each of the following situations.

(a) 1S1 = /32; both positive

(b) j3, > j82; both positive

(c) I)S1I = |j821; |8i and /32 have opposite signs
(d) /3, > 0, /32 = 0

Plot the contours of each of the following functions and identify the nature of
its stationary point.

2.29 / = 2 -x2 - y2 + 4xy

2.30 / = 2 +jc2 -y2

2.31 f=xy

2.32 f=x3- 3xy2

2.33 Find the admissible and constrained variations at the point X = j . |

for the following problem:

Min imize /= x\ + (x2 — I)2

subject to

-Ix] + Jc2 = 4

2.34 Find the diameter of an open cylindrical can that will have the maxi-
mum volume for a given surface area, S.

2.35 A rectangular beam is to be cut from a circular log of radius r. Find the
cross-sectional dimensions of the beam to (a) maximize the cross-sec-
tional area of the beam, and (b) maximize the perimeter of the beam
section.

2.36 Find the dimensions of a straight beam of circular cross section that can
be cut from a conical log of height h and base radius r to maximize the
volume of the beam.

2.37 The deflection of a rectangular beam is inversely proportional to the
width and the cube of depth. Find the cross-sectional dimensions of a
beam, which corresponds to minimum deflection, that can be cut from
a cylindrical log of radius r.

2.38 A rectangular box of height a and width b is placed adjacent to a wall
(Fig. 2.12). Find the length of the shortest ladder that can be made to
lean against the wall.



Figure 2.12 Ladder against a wall.

2.39 Show that the right circular cylinder of given surface (including the
ends) and maximum volume is such that its height is equal to the di-
ameter of the base.

2.40 Find the dimensions of a closed cylindrical soft drink can that can hold
soft drink of volume V for which the surface area (including the top and
bottom) is a minimum.

2.41 An open rectangular box is to be manufactured from a given amount of
sheet metal (area S). Find the dimensions of the box to maximize the
volume.

2.42 Find the dimensions of an open rectangular box of volume V for which
the amount of material required for manufacture (surface area) is a min-
imum.

2.43 A rectangular sheet of metal with sides a and b has four equal square
portions (of side d) removed at the corners, and the sides are then turned
up so as to form an open rectangular box. Find the depth of the box
that maximizes the volume.

2.44 Show that the cone of the greatest volume which can be inscribed in a
given sphere has an altitude equal to two-thirds of the diameter of the
sphere. Also prove that the curved surface of the cone is a maximum
for the same value of the altitude.

2.45 Prove Theorem 2.6.

Ladder



2.46 A log of length / is in the form of a frustum of a cone whose ends have
radii a and b (a > b). It is required to cut from it a beam of uniform
square section. Prove that the beam of greatest volume that can be cut
has a length of al/[3(a — b)].

2.47 It has been decided to leave a margin of 30 mm at the top and 20 mm
each at the left side, right side, and the bottom on the printed page of
a book. If the area of the page is specified as 5 X 104 mm2, determine
the dimensions of a page that provide the largest printed area.

2.48 Minimize/= 9 - Sx1 - 6x2 - 4JC3 + 2JC2

+ 2x1 + A + 2JC,JC2 + 2Jc1JC3

subject to

X1 + Jc2 + 2JC3 = 3

by (a) direct substitution, (b) constrained variation, and (c) Lagrange
multiplier method.

2.49 Minimize/(X) = \(x\ + x\ + x\)

subject to

S 1 ( X ) = x x - X2 = Q

g2(X) = xx + x2 + x3 - 1 = 0

by (a) direct substitution, (b) constrained variation, and (c) Lagrange
multiplier method.

2.50 Find the values of JC, y9 and z that maximize the function

when JC, y, and z are restricted by the relation xyz = 16.

2.51 A tent on a square base of side 2a consists of four vertical sides of
height b surmounted by a regular pyramid of height h. If the volume
enclosed by the tent is F, show that the area of canvas in the tent can
be expressed as

2 V Sah A r-2 2
a 3



Also show that the least area of the canvas corresponding to a given
volume F, if a and h can both vary, is given by

V5 h
a = —-— and h = 2b

2.52 A departmental store plans to construct a one-story building with a rect-
angular planform. The building is required to have a floor area of 22,500
ft2 and a height of 18 ft. It is proposed to use brick walls on three sides
and a glass wall on the fourth side. Find the dimensions of the building
to minimize the cost of construction of the walls and the roof assuming
that the glass wall costs twice as much as that of the brick wall and the
roof costs three times as much as that of the brick wall per unit area.

2.53 Find the dimensions of the rectangular building described in Problem
2.52 to minimize the heat loss assuming that the relative heat losses per
unit surface area for the roof, brick wall, glass wall, and floor are in
the proportion 4 : 2 : 5 : 1 .

2.54 A funnel, in the form of a right circular cone, is to be constructed from
a sheet metal. Find the dimensions of the funnel for minimum lateral
surface area when the volume of the funnel is specified as 200 in3.

2.55 Find the effect o n / * when the value of A0 is changed to (a) 25TT and
(b) 22TT in Example 2.10 using the property of the Lagrange multiplier.

2.56 (a) Find the dimensions of a rectangular box of volume V = 1000 in3

for which the total length of the 12 edges is a minimum using the
Lagrange multiplier method.

(b) Find the change in the dimensions of the box when the volume is
changed to 1200 in3 by using the value of X* found in part (a).

(c) Compare the solution found in part (b) with the exact solution.

2.57 Find the effect o n / * of changing the constraint to (a) x + X2 + 2x3 =
4 and (b) x + X2 + 2x3 = 2 in Problem 2.48. Use the physical meaning
of Lagrange multiplier in finding the solution.

2.58 A real estate company wants to construct a multistory apartment build-
ing on a 500 ft X 500 ft lot. It has been decided to have a total floor
space of 8 X 105 ft2. The height of each story is required to be 12 ft,
the maximum height of the building is to be restricted to 75 ft, and the
parking area is required to be at least 10% of the total floor area ac-
cording to the city zoning rules. If the cost of the building is estimated
at $(500,000/i + 2000F + 500P), where h is the height in feet, F is
the floor area in square feet, and P is the parking area in square feet.
Find the minimum cost design of the building.

2.59 Identify the optimum point among the given design vectors, X1, X2,
and X3, by applying the Kuhn-Tlucker conditions to the following



problem:

Minimize/(X) = 1OO(JC2 - x]f + (1 - Jc1)
2

subject to

x\ - xx > 0

x\ - X2 > 0

-\ < X1 < \, X2 < 1

» , - [ : } - [ - : } - f t

2.60 Consider the following optimization problem:

Maximize/= —x\ — x\ + xxx2 + Ixx + 4JC2

subject to

2Jc1 + 3JC2 < 24

-5Jc1 + 12JC2 < 24

Jc1 > 0, Jc2 > 0, Jc2 < 4

Find a usable feasible direction at each of the following design vectors:

X i - C } x ' = $

2.61 Consider the following problem:

Minimize/= (Jc1 - 2)2 + (JC2 - I)2

subject to

2 >: JC1 + JC2

X2 > x\

Using Kuhn-Tucker conditions, find which of the following vectors are
local minima:

x - [ 3 * - [ ! ] • x - S



2.62 Using Kuhn-Tucker conditions, find the value(s) of /3 for which the
point JC* = 1, JC* = 2 will be optimal to the problem:

Maximize/(Jc1 ,Jc2) = 2xx + /Sx2

subject to

gx(xux2) = x\ + x\ - 5 < 0

g2(xl9 X2) = X1 - X2 - 2 < 0

Verify your result using a graphical procedure.

2.63 Consider the following optimization problem:

Maximize /= -X1 — X2

subject to

x] + X2 > 2

4 < X1 + 3x2

X1 + x2 < 30

cq
(a) Find whether the design vector X = J ? satisfies the Kuhn-Tucker

conditions for a constrained optimum.
(b) What are the values of the Lagrange multipliers at the given design

vector?

2.64 Consider the following problem:

Minimize/(X) = x\ + x\ + x\

subject to

X1 + X2 + X3 > 5

2 - X2X3 < 0

X1 > 0, X2 > 0, x3 > 2

Determine whether the Kuhn-Tucker conditions are satisfied at the fol-
lowing points:



*•$• "-O)- *•$
c-q

2.65 Find a usable and feasible direction S at (a) X1 = j ? and (b) X2 =

Cl)
j > for the following problem:

Minimize/(X) = (Jc1 - I)2 + (x2 - 5)2

subject to

S1(X) = -jc2 + x2 - 4 < O

g2(X) = -(X1 - 2)2 + x2 - 3 < O

2.66 Consider the following problem:

Minimize/ = x\ — X2

subject to

26 > JC2 + JC2

Xx + x2 > 6

Jc1 > O

Determine whether the following search direction is usable, feasible, or

both at the design vector X = J 1 ? :

- o -n ••[:} -H!
2.67 Consider the following problem:

Minimize/ = Jc1 — 6x\ + HJC1 + JC3

subject to



x\ + x\ - x\ < O

4 - JC? - x\ - x\ < O

xt > O, I = 1,2,3, x3 < 5

Determine whether the following vector represents an optimum solu-
tion:

• • & }

2.68 Min imize /= X1 + 2*2 + 3x2

subject to the constraints

Si = Xx - X2 - 2x3 < 12

g2 = X1 + 2x2 - 3x3 < 8

using Kuhn-Tucker conditions.

2.69 Minimize/(JC15JC2) = (Jc1 - I)2 + (JC2 - 5)2

subject to

-jc2 + JC2 < 4
-(Jc1 - 2)2 + Jc2 < 3

by (a) the graphical method and (b) Kuhn-Tucker conditions.

2.70 Maximize /= 8X1 H- 4x2 + X1X2 — x2 — X2

subject to

2X1 + 3x2 < 24

-5X1 + 12x2 < 24

x2 < 5

by applying Kuhn-Tucker conditions.

2.71 Consider the following problem:

Maximize/(x) = (x — I)2



subject to

- 2 < x < 4

Determine whether the constraint qualification and Kuhn-Tucker con-
ditions are satisfied at the optimum point.

2.72 Consider the following problem:

Min imize /= (JC, - I)2 + (JC2 - I)2

subject to

2x2 - (1 - X1)
3 < 0

X1 > 0

X2 > 0

Determine whether the constraint qualification and the Kuhn-Tucker
conditions are satisfied at the optimum point.

2.73 Verify whether the following problem is convex:

Minimize/(X) = -Axx H- x\ - IxxX2 + 2JC2

subject to

Ixx + Jc2 < 6

Xx - Ax2 < 0

JC, > 0, Jc2 > 0

2.74 Check the convexity of the following problems.

(a) Minimize/(X) = 2JC1 4- 3JC2 - JC1 - 2JC2

subject to

Jc1 + 3JC2 < 6

5Jc1 + 2JC2 < 10

Jc1 > 0, Jc2 > 0

(b) Minimize/(X) = 9x\ - ISx1X2 + 13Jc1 - 4

subject to

JC2 + Jc2
1 + 2Jc1 > 16
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