Chapt er 38

7

(a) Let R be the rate of photon emission (number of photons emitted per unit time) and let E be
the energy of a single photon. Then the power output of a lamp is given by P = RE if all the
power goes into photon production. Now E = hf = hc/A, where h is the Planck constant, f is
the frequency of the light emitted, and A is the wavelength. Thus P = Rhc/)\ and R = AP/hc.
The lamp emitting light with the longer wavelength (the 700-nm lamp) emits more photons per
unit time. The energy of each photon is less so it must emit photons at a greater rate.

(b) Let R be the rate of photon production for the 700 nm lamp Then

AP _ (700 x 10~ m)(400J/s)
he  (6.626 x 107347 -5)(2.9979 x 108m/s)

= 1.41 x 10*! photon/s .

17

The energy of an incident photon is E = hf = hc/A, where h is the Planck constant, f is the
frequency of the electromagnetic radiation, and A is its wavelength. The kinetic energy of the
most energetic electron emitted is K,,, = E — ® = (hc/\) — ®, where ® is the work function for
sodium. The stopping potential Vj is related to the maximum kinetic energy by eV = K,,, so
eVo = (he/N) — ® and

he  (6.626 x 19734 7.6)(2.9979 x 108 m/s)

A= = =1.7%x10""m.
Vot ®  (5.0eV+22eV)(1.602 x 10-PJ/eV) mem

Here eV = 5.0eV was used.

21
(a) The kinetic energy K, of the fastest electron emitted is given by K,,, = hf —® = (hc/\)— @,
where @ is the work function of aluminum, f is the frequency of the incident radiation, and \ is
its wavelength. The relationship f = ¢/ was used to obtain the second form. Thus

(6626 x 107347 - 8)(2.9979 x 108 m/s)

= —420eV =2.00eV.
(200 x 10-2m)(1.602 x 10~ J/eV) © ©

(b) The slowest electron just breaks free of the surface and so has zero kinetic energy.
(c) The stopping potential Vj is given by K, = eV, so Vp = K,,/e = (2.00eV)/e =2.00 V.
(d) The value of the cutoff wavelength is such that K, = 0. Thus hc/A = ® or

= =295%x 107" m.

)\ =
(4.2eV)(1.602 x 10191 /eV)

he _ (6.626 x 10731 - )(2.9979 x 108 m/s)
o
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If the wavelength is longer, the photon energy is less and a photon does not have sufficient energy
to knock even the most energetic electron out of the aluminum sample.

29

(a) When a photon scatters from an electron initially at rest, the change in wavelength is given
by A\ = (h/mc)(1 — cos ¢), where m is the mass of an electron and ¢ is the scattering angle.
Now h/mec=12.43 x 1072m = 2.43pm, so A\ = (2.43 pm)(1 — cos 30°) = 0.326 pm. The final
wavelength is X' = A+ AX=2.4pm+ 0.326 pm = 2.73 pm.

(b) Now A\ = (2.43 pm)(1 — cos 120°) = 3.645pm and X' = 2.4 pm + 3.645 pm = 6.05 pm.

43
Since the kinetic energy K and momentum p are related by K = p?/2m, the momentum of the
electron is p = v2mK and the wavelength of its matter wave is A = h/p = h/v/2mK. Replace
K with eV, where V is the accelerating potential and e is the fundamental charge, to obtain

B h 6.626 x 10734 ] . s

- V2meV  /2(9.109 x 10— kg)(1.602 x 10~ C)(25.0 x 103 V)

=775 x 107"?m=7.75pm.

47

(a) The kinetic energy acquired is K = gV, where q is the charge on an ion and V is the
accelerating potential. Thus K = (1.602 x 10~ C)(300V) = 4.80 x 10~'7J. The mass of
a single sodium atom is, from Appendix F, m = (22.9898 g/mol)/(6.02 x 10?3 atom/mol) =
3.819 x 1072 g = 3.819 x 1072°kg. Thus the momentum of an ion is

p=V2mK = /2(3.819 x 10-26kg)(4.80 x 10~17J)=1.91 x 10"*' kg - m/s.
(b) The de Broglie wavelength is

6.63 x 1073*7J -5

=347 x 1075 m.
1.91 x 102" kg - m/s x m

A=l
p

49

Since the kinetic energy K and momentum p are related by K = p?/2m, the momentum of the
electron is p = v2mK and the wavelength of its matter wave is A =h/p = h/v2mK. Thus

K:L n 2= 1 6.626 x 10734 ] . 5) 2
2m \ A 2(9.11 x 1031 kg) 590 x 10— m)

=6.92x 1072 J=433x10"%eV.

59

The angular wave number k is related to the wavelength A by k£ = 27/ and the wavelength is
related to the particle momentum p by A = h/p, so k = 27p/h. Now the kinetic energy K and
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the momentum are related by K = p?/2m, where m is the mass of the particle. Thus p = v/2mK

and
21V 2mK
k= ——.
h

61
For U = U,, Schrodinger’s equation becomes

d>p  8mm

—+ E— =0.

Substitute 1 = 1ppe’*®. The second derivative is d*)/dx? = —k?1pge’*® = —k?3p. The result is

8m2m

hZ

—k*p + [E—Us]y=0.

Solve for k and obtain

8m2m 2
k=\/ = [B— Usl = =-/2m[E— Ty

67

(a) If m 1s the mass of the particle and E is its energy, then the transmission coefficient for a
barrier of height U and width L is given by

T = e—ZkL
where
_ [8mm(U — E)
k - T .
If the change AU in U is small (as it is), the change in the transmission coefficient is given by
dr dk
AT =—AU=-2LT — AU.
au v au v
Now
dk _ 1 8rm _ 1 \/87rzm(U—E) _ kK
al  2\/U-FE h? 2(U - F) h? 2(U—-FE)
Thus AU
AT =-LT .
K U-F
For the data of Sample Problem 38-7, 2kL = 10.0, so KL = 5.0 and
AT AU (0.010)(6.8¢eV)
— =—kL =—(5.0 =—0.20.
T U-F ( )6.86V—5.16V

There is a 20% decrease in the transmission coefficient.

244 Chapter 38



(b) The change in the transmission coefficient is given by

T
AT = Z—L AL = —2ke **' AL = —2kT AL
and AT
- = —2k AL = —2(6.67 x 10°m~1)(0.010)(750 x 10~'?> m) = —0.10.

There is a 10% decrease in the transmission coefficient.
(c) The change in the transmission coefficient is given by

T e dk dk

AT =—AE=-2Le — AE=-2LT—AF.

dE dE dE
Now dk/dE = —dk/dU = —k/2(U — E), so

AT AE (0.010)(5.1 eV)

=kL = (5.0
( )6.8 eV —5.1eV

= =0.15.
T U-FE

There 1s a 15% increase in the transmission coefficient.

79

The uncertainty in the momentum is Ap =m Av = (0.50kg)(1.0m/s) = 0.50 kg- m/s, where Av
is the uncertainty in the velocity. Solve the uncertainty relationship Ax Ap >h for the minimum
uncertainty in the coordinate z: Az =h/Ap=(0.607J-s)/27(0.50kg - m/s) = 0.19m.
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