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7
(a) Let R be the rate of photon emission (number of photons emitted per unit time) and let E be
the energy of a single photon. Then the power output of a lamp is given by P = RE if all the
power goes into photon production. Now E = hf = hc=¸, where h is the Planck constant, f is
the frequency of the light emitted, and ¸ is the wavelength. Thus P = Rhc=¸ and R = ¸P=hc.
The lamp emitting light with the longer wavelength (the 700-nm lamp) emits more photons per
unit time. The energy of each photon is less so it must emit photons at a greater rate.
(b) Let R be the rate of photon production for the 700 nm lamp Then

R =
¸P

hc
=

(700£ 10¡9 m)(400 J=s)
(6:626£ 10¡34 J ¢ s)(2:9979£ 108 m=s) = 1:41£ 10

21 photon=s :

17
The energy of an incident photon is E = hf = hc=¸, where h is the Planck constant, f is the
frequency of the electromagnetic radiation, and ¸ is its wavelength. The kinetic energy of the
most energetic electron emitted is Km = E ¡© = (hc=¸)¡©, where © is the work function for
sodium. The stopping potential V0 is related to the maximum kinetic energy by eV0 = Km, so
eV0 = (hc=¸)¡ © and

¸ =
hc

eV0 + ©
=
(6:626£ 19¡34 J ¢ s)(2:9979£ 108 m=s)
(5:0 eV + 2:2 eV)(1:602£ 10¡19 J=eV) = 1:7£ 10

¡7 m :

Here eV0 = 5:0 eV was used.

21
(a) The kinetic energyKm of the fastest electron emitted is given byKm = hf¡© = (hc=¸)¡©,
where © is the work function of aluminum, f is the frequency of the incident radiation, and ¸ is
its wavelength. The relationship f = c=¸ was used to obtain the second form. Thus

Km =
(6:626£ 10¡34 J ¢ s)(2:9979£ 108 m=s)
(200£ 10¡9 m)(1:602£ 10¡19 J=eV) ¡ 4:20 eV = 2:00 eV :

(b) The slowest electron just breaks free of the surface and so has zero kinetic energy.
(c) The stopping potential V0 is given by Km = eV0, so V0 = Km=e = (2:00 eV)=e = 2:00V.
(d) The value of the cutoff wavelength is such that Km = 0. Thus hc=¸ = © or

¸ =
hc

©
=
(6:626£ 10¡34 J ¢ s)(2:9979£ 108 m=s)

(4:2 eV)(1:602£ 10¡19 J=eV) = 2:95£ 10¡7 m :
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If the wavelength is longer, the photon energy is less and a photon does not have sufficient energy
to knock even the most energetic electron out of the aluminum sample.

29
(a) When a photon scatters from an electron initially at rest, the change in wavelength is given
by ¢¸ = (h=mc)(1 ¡ cosÁ), where m is the mass of an electron and Á is the scattering angle.
Now h=mc = 2:43£ 10¡12 m = 2:43 pm, so ¢¸ = (2:43 pm)(1¡ cos 30±) = 0:326 pm. The final
wavelength is ¸0 = ¸ +¢¸ = 2:4 pm + 0:326 pm = 2:73 pm.
(b) Now ¢¸ = (2:43 pm)(1¡ cos 120±) = 3:645 pm and ¸0 = 2:4 pm + 3:645 pm = 6:05 pm.

43
Since the kinetic energy K and momentum p are related by K = p2=2m, the momentum of the
electron is p =

p
2mK and the wavelength of its matter wave is ¸ = h=p = h=

p
2mK. Replace

K with eV , where V is the accelerating potential and e is the fundamental charge, to obtain

¸ =
hp
2meV

=
6:626£ 10¡34 J ¢ sp

2(9:109£ 10¡31 kg)(1:602£ 10¡19 C)(25:0£ 103 V)
= 7:75£ 10¡12 m = 7:75 pm :

47
(a) The kinetic energy acquired is K = qV , where q is the charge on an ion and V is the
accelerating potential. Thus K = (1:602 £ 10¡19 C)(300V) = 4:80 £ 10¡17 J. The mass of
a single sodium atom is, from Appendix F, m = (22:9898 g=mol)=(6:02 £ 1023 atom=mol) =
3:819£ 10¡23 g = 3:819£ 10¡26 kg. Thus the momentum of an ion is

p =
p
2mK =

p
2(3:819£ 10¡26 kg)(4:80£ 10¡17 J) = 1:91£ 10¡21 kg ¢m=s :

(b) The de Broglie wavelength is

¸ =
h

p
=

6:63£ 10¡34 J ¢ s
1:91£ 10¡21 kg ¢m=s = 3:47£ 10

¡13 m :

49
Since the kinetic energy K and momentum p are related by K = p2=2m, the momentum of the
electron is p =

p
2mK and the wavelength of its matter wave is ¸ = h=p = h=

p
2mK. Thus

K =
1
2m

µ
h

¸

¶2
=

1
2(9:11£ 10¡31 kg)

µ
6:626£ 10¡34 J ¢ s)
590£ 10¡9 m)

¶2
= 6:92£ 10¡25 J = 4:33£ 10¡6 eV :

59
The angular wave number k is related to the wavelength ¸ by k = 2¼=¸ and the wavelength is
related to the particle momentum p by ¸ = h=p, so k = 2¼p=h. Now the kinetic energy K and
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the momentum are related byK = p2=2m, wherem is the mass of the particle. Thus p =
p
2mK

and

k =
2¼
p
2mK
h

:

61
For U = U0, Schrödinger’s equation becomes

d2Ã

dx2
+
8¼2m
h2

[E ¡ U0]Ã = 0 :

Substitute Ã = Ã0eikx. The second derivative is d2Ã=dx2 = ¡k2Ã0eikx = ¡k2Ã. The result is

¡k2Ã + 8¼
2m

h2
[E ¡ U0]Ã = 0 :

Solve for k and obtain

k =
r
8¼2m
h2

[E ¡ U0] = 2¼
h

p
2m [E ¡ U0] :

67
(a) If m is the mass of the particle and E is its energy, then the transmission coefficient for a
barrier of height U and width L is given by

T = e¡2kL ;

where

k =
r
8¼2m(U ¡ E)

h2
:

If the change ¢U in U is small (as it is), the change in the transmission coefficient is given by

¢T =
dT

dU
¢U = ¡2LT dk

dU
¢U :

Now
dk

dU
=

1
2
p
U ¡E

r
8¼2m
h2

=
1

2(U ¡E)

r
8¼2m(U ¡ E)

h2
=

k

2(U ¡ E) :

Thus
¢T = ¡LTk ¢U

U ¡ E :
For the data of Sample Problem 38–7, 2kL = 10:0, so kL = 5:0 and

¢T

T
= ¡kL ¢U

U ¡E = ¡(5:0) (0:010)(6:8 eV)
6:8 eV¡ 5:1 eV = ¡0:20 :

There is a 20% decrease in the transmission coefficient.
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(b) The change in the transmission coefficient is given by

¢T =
dT

dL
¢L = ¡2ke¡2kL¢L = ¡2kT ¢L

and
¢T

T
= ¡2k¢L = ¡2(6:67£ 109 m¡1)(0:010)(750£ 10¡12 m) = ¡0:10 :

There is a 10% decrease in the transmission coefficient.
(c) The change in the transmission coefficient is given by

¢T =
dT

dE
¢E = ¡2Le¡2kL dk

dE
¢E = ¡2LT dk

dE
¢E :

Now dk=dE = ¡dk=dU = ¡k=2(U ¡E), so
¢T

T
= kL

¢E

U ¡ E = (5:0)
(0:010)(5:1 eV)
6:8 eV¡ 5:1 eV = 0:15 :

There is a 15% increase in the transmission coefficient.

79
The uncertainty in the momentum is ¢p = m¢v = (0:50 kg)(1:0m=s) = 0:50 kg ¢m=s, where ¢v
is the uncertainty in the velocity. Solve the uncertainty relationship ¢x¢p ḩ for the minimum
uncertainty in the coordinate x: ¢x =h=¢p = (0:60 J ¢ s)=2¼(0:50 kg ¢m=s) = 0:19m.
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