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The probability that the electron is found in any interval is given by P =
R

jÃj2 dx, where the
integral is over the interval. If the interval width ¢x is small, the probability can be approximated
by P = jÃj2 ¢x, where the wave function is evaluated for the center of the interval, say. For an
electron trapped in an infinite well of width L, the ground state probability density is

jÃj2 =
2
L

sin2
³¼x

L

´
;

so

P =
µ

2 ¢x

L

¶
sin2

³¼x

L

´
:

(a) Take L = 100pm, x = 25 pm, and ¢x = 5:0pm. Then

P =
·

2(5:0 pm)
100 pm

¸
sin2

·
¼(25 pm)
100 pm

¸
= 0:050 :

(b) Take L = 100pm, x = 50pm, and ¢x = 5:0pm. Then

P =
·

2(5:0 pm)
100 pm

¸
sin2

·
¼(50 pm)
100 pm

¸
= 0:10 :

(c) Take L = 100pm, x = 90 pm, and ¢x = 5:0pm. Then

P =
·

2(5:0 pm)
100 pm

¸
sin2

·
¼(90 pm)
100pm

¸
= 0:0095 :

25
The energy levels are given by

Enx ny =
h2

8m

"
n2

x

L2
x

+
n2

y

L2
y

#
=

h2

8mL2

"
n2

x +
n2

y

4

#
;

where the substitutions Lx = L and Ly = 2L were made. In units of h2=8mL2, the energy
levels are given by n2

x + n2
y=4. The lowest five levels are E1;1 = 1:25, E1;2 = 2:00, E1;3 = 3:25,

E2;1 = 4:25, and E2;2 = E1;4 = 5:00. A little thought should convince you that there are no other
possible values for the energy less than 5.
The frequency of the light emitted or absorbed when the electron goes from an initial state i to a
final state f is f = (Ef ¡ Ei)=h and in units of h=8mL2 is simply the difference in the values of
n2

x + n2
y=4 for the two states. The possible frequencies are 0:75 (1,2¡!1,1), 2:00 (1,3 ¡! 1,1),

3:00 (2,1 ¡! 1,1), 3:75 (2,2¡!1,1), 1:25 (1,3¡!1,2), 2:25 (2,1 ¡! 1,2), 3:00 (2,2 ¡! 1,2),
1:00 (2,1 ¡!1,3), 1:75 (2,2 ¡!1,3), 0:75 (2,2¡!2,1), all in units of h=8mL2 .
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There are 8 different frequencies in all. In units of h=8mL2 the lowest is 0:75, the second lowest
is 1:00, and the third lowest is 1:25. The highest is 3:75, the second highest is 3:00, and the
third highest is 2:25.

33

If kinetic energy is not conserved some of the neutron’s initial kinetic energy is used to excite the
hydrogen atom. The least energy that the hydrogen atom can accept is the difference between the
first excited state (n = 2) and the ground state (n = 1). Since the energy of a state with principal
quantum number n is ¡(13:6 eV)=n2, the smallest excitation energy is 13:6 eV¡(13:6eV)=(2)2 =
10:2 eV. The neutron does not have sufficient kinetic energy to excite the hydrogen atom, so the
hydrogen atom is left in its ground state and all the initial kinetic energy of the neutron ends up
as the final kinetic energies of the neutron and atom. The collision must be elastic.

37
The energy E of the photon emitted when a hydrogen atom jumps from a state with principal
quantum number u to a state with principal quantum number ` is given by

E = A

µ
1
`2 ¡ 1

u2

¶
;

where A = 13:6eV. The frequency f of the electromagnetic wave is given by f = E=h and the
wavelength is given by ¸ = c=f. Thus

1
¸

=
f

c
=

E

hc
=

A

hc

µ
1
`2 ¡ 1

u2

¶
:

The shortest wavelength occurs at the series limit, for which u = 1. For the Balmer series,
` = 2 and the shortest wavelength is ¸B = 4hc=A. For the Lyman series, ` = 1 and the shortest
wavelength is ¸L = hc=A. The ratio is ¸B=¸L = 4.

43
The proposed wave function is

Ã =
1p

¼a3=2
e¡r=a ;

where a is the Bohr radius. Substitute this into the right side of Schrödinger’s equation and show
that the result is zero. The derivative is

dÃ

dr
= ¡ 1p

¼a5=2 e¡r=a ;

so

r2 dÃ

dr
= ¡ r2

p
¼a5=2

e¡r=a

and
1
r2

d

dr

µ
r2 dÃ

dr

¶
=

1p
¼a5=2

·
¡2

r
+

1
a

¸
e¡r=a =

1
a

·
¡2

r
+

1
a

¸
Ã :
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Now the energy of the ground state is given by E = ¡me4=8²2
0h

2 and the Bohr radius is given
by a = h2²0=¼me2, so E = ¡e2=8¼²0a. The potential energy is given by U = ¡e2=4¼²0r, so

8¼2m

h2
[E ¡ U ] Ã =

8¼2m

h2

·
¡ e2

8¼²0a
+

e2

4¼²0r

¸
Ã =

8¼2m

h2

e2

8¼²0

·
¡1

a
+

2
r

¸
Ã

=
¼me2

h2²0

·
¡1

a
+

2
r

¸
Ã =

1
a

·
¡1

a
+

2
r

¸
Ã :

The two terms in Schrödinger’s equation obviously cancel and the proposed function Ã satisfies
that equation.

47

The radial probability function for the ground state of hydrogen is P (r) = (4r2=a3)e¡2r=a, where
a is the Bohr radius. (See Eq. 39–44.) You want to evaluate the integral

R 1
0 P (r) dr. Eq. 15 in

the integral table of Appendix E is an integral of this form. Set n = 2 and replace a in the given
formula with 2=a and x with r. Then

Z 1

0
P (r) dr =

4
a3

Z 1

0
r2e¡2r=a dr =

4
a3

2
(2=a)3 = 1 :

49
(a) Ã210 is real. Simply square it to obtain the probability density:

jÃ210j2 =
r2

32¼a5 e¡r=a cos2 µ :

(b) Each of the other functions is multiplied by its complex conjugate, obtained by replacing i
with ¡i in the function. Since eiÁe¡iÁ = e0 = 1, the result is the square of the function without
the exponential factor:

jÃ21+1 j2 =
r2

64¼a5 e¡r=a sin2 µ

jÃ21¡1j2 =
r2

64¼a5 e¡r=a sin2 µ :

The last two functions lead to the same probability density.
(c) For m` = 0 the radial probability density decreases strongly with distance from the nucleus,
is greatest along the z axis, and for a given distance from the nucleus decreases in proportion to
cos2 µ for points away from the z axis. This is consistent with the dot plot of Fig. 39–24 (a).
For m` = §1 the radial probability density decreases strongly with distance from the nucleus, is
greatest in the x; y plane, and for a given distance from the nucleus decreases in proportion to
sin2 µ for points away from that plane. Thus it is consistent with the dot plot of Fig. 39-24(b).
(d) The total probability density for the three states is the sum:

jÃ210j2 + jÃ21+1j2 + jÃ21¡1j2 =
r2

32¼a5
e¡r=a

·
cos2 µ +

1
2

sin2 µ +
1
2

sin2 µ

¸

=
r2

32¼a5 e¡r=a :
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The trigonometric identity cos2 µ + sin2 µ = 1 was used. The total probability density does not
depend on µ or Á. It is spherically symmetric.

57

The wave function is Ã =
p

Ce¡kx. Substitute this function into Schrödinger’s equation,

¡ h2

8¼2m

d2Ã

dx2 + U0Ã = EÃ :

Since d2Ã=dx2 =
p

Ck2e¡kx = k2Ã, the result is

h2k2

8¼2m
Ã + U0Ã = EÃ :

The solution for k is

k =

r
8¼2m

h2 (U0 ¡ E) :

Thus the function given for Ã is a solution to Schrödinger’s equation provided k has the value
calculated from the expression given above.
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