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Preface

The story of modelling financial markets with stochastic processes began in 1900 with
the study of Bachelier (1900). He modelled stocks as a Brownian motion with drift.
However, the model had many imperfections, including, for example, negative stock
prices. It was 65 years before another, more appropriate, model was suggested by
Samuelson (1965): geometric Brownian motion. Eight years later Black and Scholes
(1973) and Merton (1973) demonstrated how to price European options based on the
geometric Brownian model. This stock-price model is now called the Black–Scholes
model, for which Scholes and Merton received the Nobel Prize for Economics in
1997 (Black had already died).

It has become clear, however, that this option-pricing model is inconsistent with
options data. Implied volatility models can do better, but, fundamentally, these consist
of the wrong building blocks. To improve on the performance of the Black–Scholes
model, Lévy models were proposed in the late 1980s and early 1990s, since when
they have been refined to take account of different stylized features of the markets.

This book is concerned with the pricing of derivative securities in market models
based on Lévy processes. Financial mathematics has recently enjoyed considerable
prestige as a result of its impact on the finance industry. The theory of Lévy processes
has also seen exciting developments in recent years. The fusion of these two fields
of mathematics has provided new applied modelling perspectives within the context
of finance and further stimulus for the study of problems within the context of Lévy
processes.

This book is aimed at people working in the areas of mathematical finance and Lévy
processes, with the intention of convincing the former that the rich theory of Lévy
processes can lead to tractable and attractive models that perform significantly better
than the standard Black–Scholes model. For those working with Lévy processes, we
hope to show how the objects they study can be readily applied in practice.

We have taken great care not to use too much esoteric mathematics, nor to get
too involved in technicalities, nor to give involved proofs. We focus on the ideas,
and the intuition behind the modelling process and its applications. Nevertheless, the
processes involved in the modelling are described very accurately and in great detail.
These processes lie at the heart of the theory and it is very important to have a clear
view of their properties.
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This book is organized as follows. In Chapter 1 we introduce the phenomena
we want to model: financial assets. Then we look at some of the basic modelling
assumptions that are used throughout the book. Special attention is paid to the no-
arbitrage assumption.

In Chapter 2, we recall the basics of mathematical finance in continuous time.
We briefly discuss stochastic processes in continuous time together with stochastic
integration theory. The main focus is on different pricing methods, arbitrage-free and
(in)complete markets.

Chapter 3 introduces the famous Black–Scholes model. We give an overview of the
model together with its basic properties and then we have a close look at the pricing
formulas under this model.

Chapter 4 discusses why the Black–Scholes model is not such an appropriate model.
First, we argue that the underlying Normal distribution is not suitable for the accurate
modelling of stock-price behaviour. Next, we show that the model lacks the important
feature of stochastic volatility. These imperfections are shown based on historical data.
Moreover, we show that the model prices do not correspond as they should to market
prices. The above discussed imperfections cause this discrepancy between model and
market prices.

Chapter 5 is devoted to the main ingredients of the more sophisticated models
introduced later on. We give an overview of the theory of Lévy processes and the
theory of Ornstein–Uhlenbeck processes (OU processes). Lévy processes are based on
infinitely divisible distributions.A subclass of these distributions is self-decomposable
and leads to OU processes.A whole group of very popular examples of these processes
is looked at in detail. Besides stating the defining equations, we also look at their
properties.

In Chapter 6, for the first time we use non-Brownian Lévy processes to describe the
behaviour of a stock-price process. We discuss the Lévy market model, in which the
stock price follows the exponential of a Lévy process. The market models proposed are
no longer complete and an equivalent martingale measure has to be chosen. Comparing
model prices with market prices demonstrates that Lévy models are a significant
improvement on the Black–Scholes model, but that they still fall short.

It is in Chapter 7 that we introduce stochastic volatility in our models. This can be
done in several ways. We could start from the Black–Scholes model and make the
volatility parameter involved itself stochastic.We focus on models where this volatility
follows an OU process. Or we could introduce stochastic volatility by making time
stochastic. If time goes fast, the market is nervous. If time goes slow, volatility is low.
This technique can be applied not only in the Black–Scholes model but also in the
Lévy market model. Different choices of stochastic time are considered: the rate of
change of time can be described by the classical mean-reverting Cox–Ingersoll–Ross
(CIR) stochastic process, but the OU processes are also excellent candidates.

Chapter 8 discusses simulation techniques. Attention is paid to the simulation of
Lévy processes. Here we use the general method of approximating a Lévy process by
compound Poisson processes. Particular examples of Lévy processes can be simulated
by making use of some of their properties. When the process is a time change or a
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subordination of a simpler process, this method can be of special advantage. Paths
from OU processes can be simulated by using a series representation or by the classical
Euler scheme approximation.

Chapter 9 gives an overview of the pricing of exotic options under the different mod-
els. Typically, more or less explicit solutions are available under the Black–Scholes
model. The situation worsens, however, under the Lévy market model. For barrier
and lookback options, some results are available; however, the explicit calculations
of prices in these cases are highly complex. Multiple integrals and inversion tech-
niques are needed for numerical evaluation. In the even more advanced stochastic
volatility models, prices can only be estimated by Monte Carlo simulations. In con-
trast with the Black–Scholes model, no closed formulas are available for the pricing
of exotic options such as barrier and lookback options. The simulation techniques
from Chapter 8 are used intensively here.

Finally, Chapter 10 focuses on interest-rate modelling. We have so far assumed that
interest rates are constant; in practice, of course, they are not. We follow the Heath–
Jarrow–Merton approach and model the entire yield curve. As with the stock-price
models, the underlying Brownian motion does not describe the empirical behaviour
as it should. In order to make the model more realistic, we replace it again by a more
flexible Lévy process.
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Introduction

Before we begin the detailed description of the models and their ingredients, we first
focus on the financial markets we want to model together with the main group of
underlying assets and their derivatives we want to price. We often closely follow
Bingham and Kiesel (1998).

1.1 Financial Assets

The main goal of this book is to find attractive, useful and tractable models for financial
time series. The models we present in the main part of the book (Chapters 1–9) are
suitable for describing the stochastic behaviour of mainly stocks and (stock) indices.
Other models can be set up for other assets such as commodities, currencies and
interest rates (see Chapter 10).

Stocks

The basis of modern economic life is the company owned by its shareholders; the
shares provide partial ownership of the company, pro rata with investment. Shares are
issued by companies to raise funds. They have value, reflecting both the value of the
company’s real assets and the earning power of the company’s dividends. Stock is the
generic term for assets held in the form of shares. With publicly quoted companies,
shares are quoted and traded on a stock exchange or bourse. (Some say the term
‘bourse’ derives from the merchant family, Van der Burse.) Stock markets date back
to at least 1531, when one was started in Antwerp, Belgium. Today there are over 150
stock exchanges throughout the world.

Indices

An index tracks the value of a basket of stocks (FTSE100, S&P 500, Dow Jones
Industrial, NASDAQ Composite, BEL20, EUROSTOXX50, etc.), bonds, and so on.
Derivative instruments on indices may be used for hedging (covering against risk)
if no derivative instruments on a particular asset in question are available and if the

Lévy Processes in Finance: Pricing Financial Derivatives. Wim Schoutens
Copyright  2003 John Wiley & Sons, Ltd.
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Figure 1.1 The S&P 500 Index from 1970 until the end of 2001.

correlation in movement between the index and the asset is significant. Furthermore,
institutional funds (such as pension funds), which manage large, diversified stock
portfolios, try to mimic particular stock indices and use derivatives on stock indices
as a portfolio management tool. On the other hand, a speculator may wish to bet on a
certain overall development in a market without exposing him/herself to a particular
asset.

We will illustrate our theory with the S&P 500 Index, which is a weighted average
of the main 500 American stocks. Figure 1.1 shows the daily prices of this index over
a period of more than 30 years.

Dividends

Divivends are an individual share of earnings distributed among stockholders of a
corporation or company in proportion to their holdings. Dividends are usually payable
in cash, although sometimes distributions are made in the form of additional shares
of stocks.

In our analysis, we first use nondividend-paying assets as the underlying assets.
Later on in Section 2.6 we will indicate how to incorporate dividend payments into
the models.

The Stock Price Process

We will model the price process of our asset (a stock or a index) by a continuous-
time process. Throughout, we denote this asset price process (often referred to as the
stock-price process) by S = {St , t � 0}; St gives us the price at time t � 0.
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In order to allow for the comparison of investments in different securities, it is
natural to look at the relative price changes (returns) over a time s > 0:

St+s − St

St

.

For several reasons, most authors in the financial literature prefer working with log-
arithmic returns (or log returns) instead:

log(St+s) − log(St ).

One reason is that the log returns over a period of length k × s are then the sum of
the log returns of k periods of length s:

(log(St+s) − log(St )) + (log(St+2s) − log(St+s)) + · · ·
+ (log(St+ks) − log(St+(k−1)s)) = log(St+ks) − log(St ).

Another reason is that in most models the stock price St will be modelled by an
exponential of some basic stochastic process.Actually, for continuous-time processes,
returns with continuous compounding log returns are the natural choice. Note that in
what follows we also take continuously compounded interest rates in the model for
the riskless asset (the bank account).

1.2 Derivative Securities

After finding an acceptable model for the price process of our asset, the next step is
to price financial derivatives on the underlying asset (or simply the underlying).

Contingent Claims

Intuitively, a ‘derivative security’, or derivative for short, is a security whose value
depends on the value of other more basic underlying securities. To be more precise,
a derivative security, or contingent claim, is a financial contract whose value at expi-
ration date T (more briefly, expiry) is determined exactly by the price process of the
underlying financial assets (or instruments) up to time T .

Types of Derivatives

Derivative securities can be grouped under three general headings: options, forwards
and futures and swaps. In this book, we will deal with options, although our pricing
techniques may be readily applied to forwards, futures and swaps as well.

1.2.1 Options

An option is a financial instrument giving one the right but not the obligation to make
a specified transaction at (or by) a specified date at a specified price.
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Options are thus privileges sold by one party to another. The right is granted by
the person who sells the option. The person who sells the option is called the seller
or writer of the option. The person who buys the option is called the option buyer.

Option Types

Many different types of option exist. We give here the basic types. Call options give
one the right to buy. Put options give one the right to sell.

European options give one the right to buy/sell on the specified date, the expiry
date, when the option expires or matures.

The European call and put options, since they are so basic, are known as the plain
vanilla options.

The more involved options are mostly called exotic. American options give one the
right to buy/sell at any time prior to or at expiry. Asian options depend on the average
price over a period. Lookback options depend on the maximum or minimum price
over a period, and barrier options depend on some price level being attained.

Strike and Payoff Function

The price at which the transaction to buy/sell the underlying, on/by the expiry date (if
exercised), is made is called the exercise price or the strike price. We usually denote
the strike price by K , the initial time (when the contract between the buyer and the
seller of the option is struck) by t = 0, and the expiry or final time by t = T .

The payoff of an option is its value at expiry. For a European call option with a
strike price K , the payoff is

K =
{

ST − K if ST > K,

0 otherwise.

We can also write this more concisely as (ST − K)+. If in this case St > K , the
option is in the money; if St = K , the option is said to be at the money; and if St < K ,
the option is out of the money.

Advantages and Disadvantages of Using Options

Option strategies can be very risky. But, if used in the right way, options can be
helpful: they allow you to drastically increase your leverage in a stock. This is a
powerful feature for investors who follow speculative strategies. Options can also be
a useful tool in hedging against unfavourable market movements. However, using
options to speculate requires a close watch on open positions and a higher tolerance
for risk than investing in stocks. Handling options correctly requires more than just
a basic knowledge of the stock market. Options can be quite complicated and if you
lack proper knowledge, you run the risk of losing a great deal of money.
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The History of Contingent Claims

It is not known exactly when the first contingent claim contracts were used. We know
that the Romans and Phoenicians used such contracts in shipping, and there is also
evidence that Thales, a mathematician and philosopher in ancient Greece, used such
contracts to secure a low price for olive presses in advance of the harvest. Thales had
reason to believe the olive harvest would be particularly strong. During the off-season,
when demand for olive presses was almost non-existent, he acquired rights – at a very
low cost – to use the presses the following spring. Later, when the olive harvest was in
full-swing, Thales exercised his option and proceeded to rent the equipment to others
at a much higher price.

In Holland, trading in tulip derivatives blossomed during the early 1600s. At first,
tulip dealers used contracts (call options) to make sure they could secure a reason-
able price to meet demand. At the same time, tulip growers used other contracts
(put options) to ensure an adequate selling price. However, it was not long before
speculators joined the mix and traded these contracts for profit. Unfortunately, when
the market crashed, many speculators failed to honour their agreements. The conse-
quences for the economy were devastating.

Markets

Financial derivatives are basically traded in two ways: on organized exchanges and
over-the-counter (OTC).

In 1973, the Chicago Board Options Exchange (CBOE) began trading in options on
some stocks. The first listed options to be traded were call options; they were written
on 16 different stocks on 26 April 1973. After repeated delays by the Securities and
Exchange Commission (SEC), put trading finally began in 1977.

The CBOE’s first home was actually a smoker’s lounge at the Chicago Board of
Trade. After achieving a first-day volume of 911 contracts, the average daily volume
rocketed to over 20 000 the following year. Since then, the growth of options has
continued its explosive trajectory.

Organized exchanges are subject to regulatory rules and require a certain degree of
standardization of the traded instruments (strike price, maturity dates, size of contract,
etc.).

OTC trading takes place between various commercial and investments banks, such
as Goldman Sachs, Citibank, Morgan Stanley, Deutsche Bank, etc. Deals are made
directly between the traders without a centralizing office or exchange. There are
virtually no restrictions on the characteristics of the possible deals.

1.2.2 Prices of Options on the S&P 500 Index

Throughout this book we will test our models against a set of standard vanilla call
options on the S&P 500 Index.
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Figure 1.2 S&P 500 market option prices.

Option Prices Dataset

The dataset consists of 77 mid-prices of a set of European call options on the S&P
500 Index at the close of the market on 18 April 2002. On this day the S&P 500 closed
at 1124.47. Since, by the put–call parity (see Section 1.4), the price of a put option
can be calculated from the price of the call option with the same strike and maturity,
and vice versa, we include in our set only call option prices. The exact prices can be
found in Appendix C.

The option prices can be visualized as in Figure 1.2, which shows several series
of call options. The upper series consists of options with the highest time to maturity
corresponding to options expiring in December 2003. The inner series consists of
options expiring in May 2002, June 2002, September 2002, December 2002, March
2003 and finally in June 2003.

We will calibrate different models to this set. The market prices are always denoted
by a circle and later on the model prices will be denoted by a plus sign. It is the goal
to calibrate the model such that our plus signs shoot right through the middle of the
corresponding circles.

The parameters coming out of the calibration procedure resemble the current market
view on the asset. Here we do not explicitly take into account any historical data. All
the necessary information is contained in today’s option prices, which we observe in
the market. Using the available pricing techniques or by Monte Carlo simulations,
this method is useful for pricing derivatives, such as OTC options, whose prices are
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not available in the market and for finding mispricings in a set of European vanilla
options.

APE, AAE, RMSE and ARPE

For comparative purposes, we compute the average absolute error as a percentage of
the mean price. This statistic, which we will denote by APE, is an overall measure of
the quality of fit:

APE = 1

mean option price

∑
options

|market price − model price|
number of options

.

Other measures which also give an estimate of the goodness of fit are the average
absolute error (AAE), the average relative percentage error (ARPE) and the root-
mean-square error (RMSE):

AAE =
∑

options

|market price − model price|
number of options

,

ARPE = 1

number of options

∑
options

|market price − model price|
market price

,

RMSE =
√√√√ ∑

options

(market price − model price)2

number of options
.

Typically, we estimate the model parameters by minimizing the root-mean-square
error between the market and model prices.

1.3 Modelling Assumptions

Throughout we make use of a bank account. Our market model consists of this bank
account (riskless) and one financial asset (risky), a stock or an index. We will discuss
contingent claim pricing in an idealized case.

The Riskless Bank Account

First, we present a rule, which is valid throughout except for Chapter 10, for the bank
account. The market dictates that there is a fixed interest rate r � 0. We can deposit
money and borrow money on this same continuously compounded interest rate r .
This means that 1 currency unit in the bank account at time 0 will give rise to exp(rt)

currency units at time t > 0. Similarly, if we borrow 1 currency unit now, we will
have to pay back exp(rt) currency units at time t > 0. Or, equivalently, if we now
borrow exp(−rt) currency units, we will have to pay back 1 currency unit t time later.
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Frictionless Market Assumptions

Second, we impose some rules for the risky asset. We will not allow market friction;
there is no default risk, agents are rational and there is no arbitrage. In more concrete
terms, this means

• no transaction costs (e.g. broker’s commission),

• no bid/ask spread,

• perfect liquid markets,

• no taxes,

• no margin requirements,

• no restrictions on short sales,

• no transaction delays,

• market participants act as price takers,

• market participants prefer more to less.

The relaxation of all these assumptions is the subject of ongoing research.
We thus develop the theory of an ideal – frictionless – market in order to focus on

the irreducible essentials of the theory and as a first-order approximation to reality.
The risk of failure of a company – bankruptcy – is inescapably present in its

economic activity. The Enron bankruptcy and the WorldCom debacle make this very
clear. Moreover, these risks also appear at the national level: quite apart from war,
recent decades have seen default of interest payments of international debt, or the
threat of it (for example, the 1998 Russian or the 2001 Argentinian crises). We ignore
default risk for simplicity while developing our understanding of the principal aspects
of the market.

We assume financial agents to be price takers, not price makers. The market is
not influenced by the trading of individuals. This implies that even large amounts
of trading in a security by one agent does not influence the security’s price. Hence,
agents can buy or sell as much of any security as they wish without changing the
security’s price. Moreover, we assume that brokers accept all trades. (In reality, they
may want to work in round numbers.)

To assume that market participants prefer more to less is a very weak assumption
on the preferences of market participants.

We consider a frictionless security market in which two assets are traded contin-
uously. Investors are allowed to trade continuously up to some fixed finite planning
horizon T , where all economic activity stops.

Finally, we mention the special character of the no-arbitrage assumption. It is the
basis for the arbitrage pricing technique that we shall use, which we discuss in more
detail below.
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1.4 Arbitrage

In this section we follow Bingham and Kiesel (1998).
The essence of arbitrage is that with no initial capital it should not be possible to

make a profit without exposure to risk. Were it possible to do so, arbitrageurs would
do so, in unlimited quantity, using the market as a money-pump to extract arbitrarily
large quantities of riskless profit. This would, for instance, make it impossible for the
market to be in equilibrium.

The Put–Call Parity

Next, we will use arbitrage-based arguments to deduce a fundamental relation between
put and call options, the so-called put–call parity. This relation is independent of the
model that is assumed for the stock-price behaviour. It is a model-independent result
based on the no-arbitrage assumption.

Suppose there is a nondividend-paying stock with value St at time t , with European
call and put options on it, with values Ct and Pt , respectively, both with expiry time
T and strike price K . Consider a portfolio consisting of one stock, one put and a short
position in one call (the holder of the portfolio has written the call); write Πt for the
value at time t of this portfolio. So,

Πt = St + Pt − Ct .

Recall that the payoffs at expiry are

CT = max{ST − K, 0} = (ST − K)+, for the call,

PT = max{K − ST , 0} = (K − ST )+, for the put.

Hence, for the above portfolio we get, at time T , the payoff

ΠT =
{

ST + 0 − (St − K) = K if ST � K,

ST + (K − St ) − 0 = K if ST � K.

This portfolio thus guarantees a payoff K at time T . The riskless way to guarantee
a payoff K at time T is to deposit K exp(−r(T − t)) in the bank at time t and do
nothing (we assume continuously compounded interest here). Under the assumption
that the market is arbitrage-free, the value of the portfolio at time t must therefore be
K exp(−r(T − t)), since it acts as a synthetic bank account and any other price will
offer arbitrage opportunities.

Indeed, if the portfolio is offered for sale at time t too cheaply, at price

Πt < K exp(−r(T − t)),

we can buy it, borrow K exp(−r(T − t)) from the bank, and pocket a positive profit,

K exp(−r(T − t)) − Πt > 0.
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Table 1.1 The case Πt < K exp(−r(T − t)).

Value at expiry
Transactions Current cash flow ST < K ST � K

buy 1 stock −St ST ST

buy 1 put −Pt K − ST 0
write 1 call Ct 0 −ST + K

borrow K exp(−r(T − t)) −K −K

total K exp(−r(T − t)) − St − Pt + Ct > 0 0 0

At time T our portfolio yields K , while our bank debt has grown to K . We clear our
cash account – using the one to pay off the other – thus locking in our earlier profit,
which is riskless.

If on the other hand the portfolio is priced at time t at too a high price, at price
Πt > K exp(−r(T − t)), we can do the exact opposite. We sell the portfolio short,
that is, we buy its negative: buy one call, write one put, sell short one stock, for
Πt , and invest K exp(−r(T − t)) in the bank account, pocketing a positive profit
Πt −K exp(−r(T − t)) > 0. At time T , our bank deposit has grown to K , and again
we clear our cash account – using this to meet our obligation K on the portfolio we
sold short, again locking in our earlier riskless profit.

Arbitrage Table

We illustrate the above with a so-called arbitrage table (see Table 1.1). In such a table
we simply enter the current value of a given portfolio and then compute its value in
all possible states of the world when the portfolio is cashed in.

Thus the rational price for the portfolio at time t is exactly K exp(−r(T − t)). Any
other price presents arbitrageurs with an arbitrage opportunity.

Therefore, we have the following put–call parity between the prices of the underly-
ing asset and its European call and put options with the same strike price and maturity
on stocks that pay no dividends:

St + Pt − Ct = K exp(−r(T − t)).

In Chapter 2, we will generalize this result for stocks which pay dividends.



2

Financial Mathematics in
Continuous Time

This chapter summarizes the main results for continuous-time and continuous-variable
processes in the context of finance. More detailed introductions can be found in, for
example, Bingham and Kiesel (1998), Elliot and Kopp (1999), Hunt and Kennedy
(2000), Shiryaev (1999) or Protter (2001).

It should be noted that, in practice, we do not observe stock prices following
continuous-variable, continuous-time processes. Stock prices are restricted to discrete
values (often multiples of 0.01 euros, dollars, etc.) and changes can be observed only
when the exchange is open. Nevertheless, the continuous-variable, continuous-time
process proves to be a useful model for many purposes.

2.1 Stochastic Processes and Filtrations

Probability Space and Filtrations

We assume a fixed finite planning horizon T . First, we need a probability space
(Ω, F , P ). Ω is the set of all the possible outcomes that we are interested in. F is
a sigma-algebra (a family of subsets of Ω closed under any countable collection of
set operations) containing all sets for which we want to make a statement on; P gives
the probability that an event in such a set of F will happen.

We call a probability space P -complete if for each B ⊂ A ∈ F such that P(A) = 0,
we have that B ∈ F . If we start with a probability space (Ω, F̄ , P ), there exists a
procedure to construct the so-called P -completion (Ω, F , P ), which is a complete
probability space. We take F = σ(F̄ ∪ N ), where

N = {B ⊂ Ω : B ⊂ A for some A ∈ F̄ , with P(A) = 0}
and σ(C) is the smallest sigma-algebra on Ω containing C. We will always work with
a complete probability space.

Lévy Processes in Finance: Pricing Financial Derivatives. Wim Schoutens
Copyright  2003 John Wiley & Sons, Ltd.

ISBN: 0-470-85156-2
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Moreover, we equip our probability space (Ω, F , P ) with a filtration. A filtration
is a nondecreasing family F = (Ft , 0 � t � T ) of sub-σ -algebras of F :

Fs ⊂ Ft ⊂ FT ⊂ F for 0 � s < t � T ;
here Ft represents the information available at time t , and the filtration F = (Ft , 0 �
t � T ) represents the information flow evolving with time.

In general, we assume that the filtered probability space (Ω, F , P , F) satisfies the
following ‘usual conditions’.

(a) F is P -complete.

(b) F0 contains all P -null sets of Ω . This means intuitively that we know which
events are possible and which are not.

(c) F is right-continuous, i.e. Ft = ⋂
s>t Fs ; a technical condition.

If we start with a filtered probability space (Ω, F̄ , P , F̄), there exists a procedure
to construct the so-called usual P -augmentation (Ω, F , P , F), which satisfies the
usual conditions. We take F to be equal to the P -completion of F̄ and set, for all
0 � t � T ,

Ft =
⋂
s>t

σ (F̄s ∪ N ).

We will always work with filtered probability spaces which satisfy the usual condi-
tions.

Stochastic Processes

A stochastic process, X = {Xt, 0 � t � T }, is a family of random variables defined
on a complete probability space, (Ω, F , P ). We say that X is adapted to the filtration
F, or F-adapted, if Xt is Ft -measurable (we denote this by Xt ∈ Ft ) for each t : thus
Xt is known at time t .

We say X is F-predictable if Xt ∈ Ft− = ⋃
s<t Fs (i.e. Xt is Ft−-measurable) for

each t : thus Xt is known strictly before time t .
Starting with a stochastic process X on a complete probability space (Ω, F , P ),

we call F
X = {F X

t , 0 � t � T } the natural filtration of X if it is the P -augmentation
of the filtration F̄

X = {F̄t , 0 � t � T }, where for each 0 � t � T , F̄ X
t is the small-

est sigma-algebra such that Xt is F̄ X
t -measurable. It is thus the ‘smallest’ filtration

(satisfying the usual conditions) containing all the information that can be observed
if we watch X evolve through time.

Learning During the Flow of Time

The concept of filtration is not that easy to understand. We start by explaining the
idea of filtration in a very idealized situation. We will consider a stochastic process X

which starts at some value, say, zero. It will remain there until time t = 1, at which it
can jump with positive probability to the value a or to a different value b. The process
will stay at that value until time t = 2, at which it will jump again with positive
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probability to two different values: c and d, say, if the process was at state a at time
t = 1, and f and g, say, if the process was at state b at time t = 1. From then on
the process will stay at the same value. Ω consists of all possible paths the process
can follow, i.e. all possible outcomes of the experiment. We will denote the path
0 → a → c by ω1; similarly, the paths 0 → a → d, 0 → b → f and 0 → b → g

are denoted by ω2, ω3 and ω4, respectively. So, we have Ω = {ω1, ω2, ω3, ω4}. We
set here F = D(Ω), the set of all subsets of Ω .

In this situation, the natural filtration of X will be the following flow of information:

Ft = {∅, Ω}, 0 � t < 1;
Ft = {∅, Ω, {ω1, ω2}, {ω3, ω4}}, 1 � t < 2;
Ft = D(Ω) = F , 2 � t � T .

To each of the filtrations given above, we associate, respectively, the following
partitions (i.e. the finest possible one) of Ω:

P0 = {Ω}, 0 � t < 1;
P1 = {{ω1, ω2}, {ω3, ω4}}, 1 � t < 2;
P2 = {{ω1}, {ω2}, {ω3}, {ω4}}, 2 � t � T .

At time t = 0 we only know that some event ω ∈ Ω will happen; at time t = 2 we
will know which event ω∗ ∈ Ω has happened. At times 0 � t < 1 we only know that
ω∗ ∈ Ω . At time points after t = 1 and strictly before t = 2, i.e. 1 � t < 2, we know
to which state the process has jumped at time t = 1: a or b. So at that time we will
know to which set of P1 ω∗ belongs: it will belong to {ω1, ω2} if we jumped at time
t = 1 to a, and to {ω3, ω4} if we jumped to b. Finally, at time t = 2, we will know to
which set of P2 ω∗ will belong, in other words we will then know the complete path
of the process.

During the flow of time we thus learn about the partitions. Having the information
Ft revealed is equivalent to knowing in which set of the partition of that time the event
ω∗ is. The partitions become finer in each step and thus information on ω∗ becomes
more detailed.

2.2 Classes of Processes

2.2.1 Markov Processes

A Markov process is a particular type of stochastic process where only the present
value of a variable is relevant for predicting the future. The past history of the variable
and the way that the present has emerged from the past are irrelevant.

Stock prices are usually assumed to follow a Markov process to some degree. If
the stock price follows a Markov process, our predictions of the future should be
unaffected by the price one week ago, one month ago, or one year ago. The only
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relevant piece of information is the price now. Predictions are uncertain and must be
expressed in terms of probability distributions. The Markov property implies that the
probability distribution of the price at any particular future time is not dependent on
the particular path followed by the price in the past.

If our stock-price process S = {St , 0 � t � T } is Markovian and if we denote
by F = {Ft , 0 � t � T } the natural filtration of S (intuitively, Ft contains all our
market information up to time t), then, with a little abuse of notation, we can write
for a well-behaved function f :

E[f (ST ) | Ft ] = E[f (ST ) | St ].

2.2.2 Martingales

A stochastic process X = {Xt, t � 0} is a martingale relative to (P, F) if

(i) X is F-adapted,

(ii) E[|Xt |] < ∞ for all t � 0,

(iii) E[Xt | Fs] = Xs , P -a.s. (0 � s � t).

A martingale is ‘constant on average’, and models a fair game. This can be seen
from the third condition: the best forecast of the unobserved future value Xt based on
information at time s, Fs , is the value Xs known at time s. In particular, the expected
value of a martingale X at some time T (based on information at the initial time 0)
equals its initial value X0:

E[XT | F0] = X0.

2.2.3 Finite- and Infinite-Variation Processes

Consider a real-valued function f : [a, b] → R.

Càdlàg Function

Assume that for all t ∈ (a, b] the function f is right continuous and has a left limit.
We say the process is càdlàg, from the French ‘continue à droite et limites à gauche’;
the term RCLL (right continuous left limit) is sometimes also used. Clearly, any
continuous function is càdlàg.

If f is càdlàg, we will denote the left limit at each point t ∈ (a, b] as f (t−) =
lims↑t f (s). We stress that f (t−) = f (t) if and only if f is continuous at t . The jump
at t is denoted by

�f (t) = f (t) − f (t−).
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(In)finite-Variation Function

Let P = {a = t1 < t2 < · · · < tn+1 = b} be a partition on the interval [a, b] ⊂ R.
We define the variation of the function f over the partition P by

varP (f ) =
n∑

i=1

|f (ti+1) − f (ti)|.

If the supremum over all partitions is finite, supP varP (f ) < ∞, we say that f has
finite variation on [a, b]. If this is not the case, the function is said to be of infinite
variation. If f is defined on R or on [0, ∞), it is said to have finite variation if it has
finite variation on each compact interval. Again, if this is not the case, the function is
said to be of infinite variation.

Note that every nondecreasing f is of finite variation. Conversely, if f is of finite
variation, then it can always be written as the difference of two nondecreasing func-
tions.

Functions of finite variation are important in integration theory. More precisely, if
we want to integrate over some interval a continuous function g with respect to an
integrator f , then we are able to define the Stieltjes integral

∫
I
g(x) df (x) as a limit

of Riemann sums only if f has finite variation.
We say that a stochastic process X = {Xt, t � 0} is of finite variation if the sample

paths are of finite variation with probability 1. If this is not the case, we say that the
process is of infinite variation. A typical example of a finite-variation process is the
Poisson process (see Chapter 5). Note also that Brownian motion (see Chapter 3) is
of infinite variation.

2.3 Characteristic Functions

The characteristic function φ of a distribution, or equivalently of a random variable
X, is the Fourier–Stieltjes transform of the distribution function F(x) = P(X � x):

φX(u) = E[exp(iuX)] =
∫ +∞

−∞
exp(iux) dF(x).

Some properties of characteristic functions are that φ(0) = 1 and |φ(u)| � 1, for
all u ∈ R. Moreover, the characteristic function always exists and is continuous.
Most important is the fact that φ determines the distribution function F uniquely.
The moments of X can also easily be derived from φ. Suppose X has a kth moment
(k ∈ {0, 1, 2, . . . }), i.e. assume E[|X|k] < ∞, then

E[Xk] = i−k d

duk
φ(u)

∣∣∣∣
u=0

.
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Table 2.1 Functions related to the characteristic function.

Name Definition

cumulant function k(u) = log E[exp(−uX)] = log φ(iu)

moment-generating function ϑ(u) = E[exp(uX)] = φ(−iu)

cumulant characteristic function ψ(u) = log E[exp(iuX)] = log φ(u)

Based on this we call ϑ(u) = φ(−iu), when it exists for all u ∈ R, the moment-
generating function. We have

E[Xk] = d

duk
ϑ(u)

∣∣∣∣
u=0

.

We also make frequent use of the function k(u) = log φ(iu), which we call the
cumulant function of X (see Table 2.1).

Finally, we note that if X and Y are two independent random variables with charac-
teristic functions φX and φY , respectively, then the characteristic function of X+Y is
given by φX+Y (u) = φX(u)φY (u). In other words, characteristic functions take con-
volutions into multiplication. For a general introduction to characteristic functions,
see Lukacs (1970).

2.4 Stochastic Integrals and SDEs

Stochastic integration was introduced by Itô in 1941, hence the name Itô calculus. It
gives meaning to ∫ t

0
Xu dYu

for suitable stochastic processes X = {Xu, u � 0} and Y = {Yu, u � 0}, the
integrand and the integrator. Because we will take as integrators processes of infinite
(unbounded) variation on every interval (e.g. Brownian motion), the first thing to note
is that stochastic integrals can be quite different from classical deterministic integrals.
We take for granted Itô’s fundamental insight that stochastic integrals can be defined
for a suitable class of integrands.

As with any ordinary and partial differential equations (ODEs and PDEs) in a
deterministic setting, the two most basic questions for stochastic differential equa-
tions (SDEs) are those of existence and uniqueness of solutions. To obtain existence
and uniqueness results, we have to impose reasonable regularity conditions on the
coefficients occurring in the differential equation. Naturally, SDEs contain all the com-
plications of their nonstochastic counterparts, and more besides. See Protter (1990)
for the general theory of stochastic integrals and SDEs.

The SDEs we encounter always have a unique solution and are of the following
form:

dXt = a(t, Xt ) dt + b(t, Xt ) dYt , X0 = x0. (2.1)
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The solution to such an SDE is a stochastic process X = {Xt, t � 0}, which satisfies

Xt =
∫ t

0
a(u, Xu) du +

∫ t

0
b(u, Xu) dYu, X0 = x0.

2.5 Financial Mathematics in Continuous Time

This section discusses the general principles of continuous-time modelling of financial
markets.

2.5.1 Equivalent Martingale Measure

We say that a probability measure Q (defined on (Ω, FT )) is an equivalent martingale
measure if

• Q is equivalent to P , i.e. they have the same null sets (events which cannot
happen under P also cannot happen under Q and vice versa);

• the discounted stock-price process S̃ = {S̃t = exp(−rt)St , t � 0} is a martin-
gale under Q.

The existence of an equivalent martingale measure is related to the absence of
arbitrage, while the uniqueness of the equivalent martingale measure is related to
market completeness.

Existence of an Equivalent Martingale Measure

In discrete time and with finitely many states the existence of an equivalent martingale
measure is equivalent to the absence of arbitrage, while the uniqueness of the equiva-
lent martingale measure is equivalent to market completeness. In our continuous-time
setting, existence of an equivalent martingale measure implies the absence of arbi-
trage, but the implication in the reverse direction is not valid. Essentially, the hypoth-
esis of no-arbitrage is too weak to deduce the existence of an equivalent martingale
measure. The strengthening required is that it should not be possible to construct an
approximation to an arbitrage opportunity in some limiting sense, and then it does
follow that there exists an equivalent martingale measure. The first results in this
direction are due to Kreps (1981). The strongest results in this direction are due to
Delbaen and Schachermayer (1994). They show that under the hypothesis that there is
‘no free lunch with vanishing risk’ (there is no random sequence of zero-cost trading
strategies converging to a nonnegative, nonzero cash flow, with the random sequence
bounded below by a negative constant), then there exists a martingale measure; the
converse holds as well.

The existence of the equivalent martingale measure allows one to reduce the pricing
of options on the risky asset to calculating the expected values of the discounted
payoffs, not with respect to the physical (statistical) measure P , but with respect to
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the equivalent martingale measure Q (see Harrison and Kreps 1979; Harrison and
Pliska 1981). We go into more detail in Section 2.5.2. If we work under Q, we often
say that we are in a risk-neutral world, since under Q the expected return of the stock
equals the risk-free return of the bank account:

EQ[St | F0] = exp(rt)S0.

Uniqueness of Equivalent Martingale Measure

Besides pricing, an equally important problem is that of hedging. We say that a
contingent claim can be perfectly hedged if there exists a (predictable) strategy which
can replicate our claim in the sense that there is a dynamic portfolio, investing in the
bank account and the stock, such that at every time point the value of the portfolio
matches the value of the claim. The portfolio must be self-financing (we cannot
subtract or pump in money). Moreover, in order to avoid problems that arise from the
classical doubling strategy, the strategy must also be admissible, i.e. the portfolio’s
value must be bounded from below by a constant. The replicator’s resources, while
they can be huge, are nevertheless finite and bounded by a nonrandom constant. A
market model is called complete if for every integrable contingent claim there exists
an admissible self-financing strategy replicating the claim.

The question of completeness is linked with the uniqueness of the martingale mea-
sure, which is in turn linked with the mathematical predictable representation property
(PRP) of a martingale. In probability theory a martingale M is said to have the PRP
if, for any square-integrable random variable H (∈ FT ), we have

H = E[H ] +
∫ T

0
as dMs,

for some predictable process a = {as, 0 � s � T }. If we have such a representation,
the predictable process a will give us our necessary self-financing admissible strategy.
Unfortunately, the PRP is a rather delicate and exceptional property, which only a few
martingales possess. Examples include Brownian motion, the compensated Poisson
process, and the Azéma martingale (see Dritschel and Protter 1999).

The uniqueness of an equivalent martingale measure implies the PRP which in turn
implies market completeness. However, there are examples where we have complete
markets without uniqueness of the equivalent martingale measure (see Artzner and
Heath 1995; Jarrow et al. 1999).

The PRP of Brownian motion leads to the completeness of the Black–Scholes model
(see Chapter 3). Most models are not complete, and most practitioners believe the
actual market is not complete. In incomplete markets, we have to choose an equivalent
martingale measure in some way and this is not always clear. Actually, the market is
choosing the martingale measure for us. The relation between the statistical measure
(P ) and the risk-neutral equivalent martingale measure (Q) is the subject of ongoing
research.
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2.5.2 Pricing Formulas for European Options

Given our market model, let G({St , 0 � t � T }) denote the payoff of the derivative
at its time of expiry T . In the case of the European call with strike price K , we have
G({St , 0 � t � T }) = G(ST ) = (ST −K)+. According to the fundamental theorem
of asset pricing (see Delbaen and Schachermayer 1994), the arbitrage-free price Vt

of the derivative at time t ∈ [0, T ] is given by

Vt = EQ[exp(−r(T − t))G({Su, 0 � u � T }) | Ft ],

where the expectation is taken with respect to an equivalent martingale measure Q

and F = {Ft , 0 � t � T } is the natural filtration of S = {St , 0 � t � T }. The factor
exp(−r(T − t)) is called the discounting factor.

Assume that we have selected our equivalent martingale measure Q, then we can
compute option prices. If we know the density function of ST , we can simply (numer-
ically) calculate the price of a vanilla option as the discounted expected value of the
payoff. On the other hand, we often do not have the density function available. How-
ever, in most cases we have the characteristic function of our stock-price process (or
the logarithm of it) in the risk-neutral world at hand.

Let C(K, T ) be the price at time t = 0 of a European call option with strike K and
maturity T . Next, we give an overview of some ways to calculate the option price.

Pricing Through the Density Function

If we know the density function, fQ(s, T ), of our stock price at the expiry T under the
risk-neutral measure Q, we can easily price European call and put options by simply
calculating the expected value.

For a European call option with strike price K and time to expiration T , the value
at time 0 is therefore given by the expectation of the payoff under the martingale
measure:

C(K, T ) = EQ[exp(−rT ) max{ST − K, 0}]
= exp(−rT )

∫ ∞

0
fQ(s, T ) max{s − K, 0} ds

= exp(−rT )

∫ ∞

K

fQ(s, T )(s − K) ds

= exp(−rT )

∫ ∞

K

fQ(s, T )s ds − K exp(−rT )Π2,

where Π2 is the probability (under Q) of finishing in the money. Note that we have
already assumed that fQ lives on the nonnegative real numbers since the stock price
is always greater than 0.
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Pricing Through the Characteristic Function

Bakshi and Madan (2000) and Carr and Madan (1998) developed more explicit pricing
methods for the classical vanilla options, which can be applied in general when the
characteristic function of the risk-neutral stock-price process is known.

As usual let S = {St , 0 � t � T } denote the stock-price process and denote by
φ(u) the characteristic function of the random variable log ST , i.e.

φ(u) = E[exp(iu log(ST ))].

Inversion of Distribution Function Transform. Bakshi and Madan (2000) show
very generally that we may write

C(K, T ) = S0Π1 − K exp(−rT )Π2, (2.2)

where Π1 and Π2 are obtained by computing the integrals

Π1 = 1

2
+ 1

π

∫ ∞

0
Re

(
exp(−iu log K)E[exp(i(u − i) log ST )]

iuE[ST ]
)

du

= 1

2
+ 1

π

∫ ∞

0
Re

(
exp(−iu log K)φ(u − i)

iuφ(−i)

)
du,

Π2 = 1

2
+ 1

π

∫ ∞

0
Re

(
exp(−iu log K)E[exp(iu log ST )]

iu

)
du

= 1

2
+ 1

π

∫ ∞

0
Re

(
exp(−iu log K)φ(u)

iu

)
du.

The probability of finishing in the money is Π2. Similarly, the delta (i.e. the change
in the value of the option compared with the change in the value of the underlying
asset) of the option corresponds to Π1.

Inversion of the Modified Call Price. Let α be a positive constant such that the
αth moment of the stock price exists. For all stock-price models encountered later on,
a value of α = 0.75 will typically do fine. Carr and Madan (1998) then showed that

C(K, T ) = exp(−α log(K))

π

∫ +∞

0
exp(−iv log(K))(v) dv, (2.3)

where

(v) = exp(−rT )E[exp(i(v − (α + 1)i) log(ST ))]
α2 + α − v2 + i(2α + 1)v

(2.4)

= exp(−rT )φ(v − (α + 1)i)

α2 + α − v2 + i(2α + 1)v
. (2.5)

The fast Fourier transform can be used to invert the generalized Fourier transform
of the call price. Put options can be priced using the put–call parity. This Fourier
method was generalized to other types of options, such as power and self-quanto
options, in Raible (2000).



FINANCIAL MATHEMATICS IN CONTINUOUS TIME 21

2.6 Dividends

Up to now, we have assumed that the risky asset pays no dividends; but, in reality,
stocks can sometimes pay some dividends to their holders. We assume that the amount
and timing of the dividends during the life of an option can be predicted with certainty.
Moreover, we will assume that the stock pays a continuous compound dividend yield
at a rate q per annum. Other methods of paying dividends can be considered and
techniques for dealing with this are described in the literature (see Hull 2000).

Continuous payment of a dividend yield at rate q means that our stock is following
a process of the form,

St = exp(−qt)S̄t ,

where S̄ describes the stock price’s behaviour, not taking dividends into account. A
stock which pays dividends continuously and an identical stock that does not pay
dividends should provide the same overall return, i.e. dividends plus capital gains.
The payment of dividends causes the growth of the stock price to be less than it would
otherwise be by an amount q. In other words, if, with a continuous dividend yield of
q, the stock price grows from S0 to ST at time T , then in the absence of dividends
it would grow from S0 to exp(qt)ST . Alternatively, in the absence of dividends it
would grow from exp(−qt)S0 to ST . This argument brings us to the fact that we get
the same probability distribution for the stock price at time T in the following cases:
(1) the stock starts at S0 and pays a continuous dividend yield at rate q, and (2) the
stock starts at price exp(−qt)S0 and pays no dividend yield.

The theory described up to now essentially still holds, although we need to take
into account the above observations. For example, the put–call parity for a stock with
dividend yield q can be obtained from the put–call parity for nondividend-paying
stocks. With no dividends we obtained (with the same notation as in Chapter 1)

St + Pt − Ct = K exp(−r(T − t)).

If we now take dividends into account, the change comes down to replacing St with
St exp(−q(T − t)). We have

exp(−q(T − t))St + Pt − Ct = K exp(−r(T − t)).

This relation can be proved by considering the portfolio consisting of exp(−q(T −t))

stocks, 1 put option and −1 call option. We reinvest the dividends on the shares
instantaneously in additional shares, i.e. at some future time point t � s � T we have
exp(−q(T − s)) stocks; at the expiry date of the option we own 1 stock, 1 put and −1
call. The value of the portfolio at that time thus always equals K . By the no-arbitrage
argument, the value of the portfolio at time T must equal K exp(−r(T − t)), the
value of a future payment (at time T ) of K at time t .

The questions about existence and uniqueness of an equivalent martingale measure
Q are slightly changed. It is now required that there exists (a unique) equivalent
martingale measure making the discounted stock prices S̃t = exp(−(r − q)t)St a
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martingale. We are thus discounting, not with factor r , but with factor r − q. If we
require that S̃ = {S̃t , t � 0} is a martingale under Q, then

EQ[St ] = exp((r − q)t)S0.

In the risk-neutral world the rate of return on the stock portfolio is the risk-free rate
of return r: r − q on the stock price, together with the dividends, which have a rate
of return q.

If our asset is an index, the dividend yield is the (weighted) average of the dividend
yields on the stocks comprising the index. In the case of our S&P 500 example, the
dividend yield q assumed on the index on the day of our option dataset, i.e. on 18
April 2002, was taken to be 1.20%, whereas at that time the short rate r was 1.90%.

In practice, the dividend yield can be determined from the forward price of the
asset. A forward contract is a very simple derivative. It is the agreement to buy or sell
an asset at a certain future time for a certain price, the delivery price. At the time the
contract is entered into, the delivery price is chosen so that the value of the forward is
zero. This means that it costs nothing to buy or sell the contract. For an asset paying
a continuous yield at rate q, the delivery price of a forward contract expiring at time
T is given by F = S0 exp((r − q)T ). Assuming that the short rate r and the delivery
price of the forward as given, q can easily be obtained.



3

The Black–Scholes Model

This chapter develops the most basic and well-known continuous-time, continuous-
variable stochastic process for stock prices.An understanding of this process is the first
step towards the understanding of the pricing of options in other more complicated
markets.

3.1 The Normal Distribution

Definition

The Normal distribution, Normal(µ, σ 2), is one of the most important distributions,
and is found in many areas of study. It lives on the real line, has mean µ ∈ R and
variance σ 2 > 0. Its characteristic function is given by

φNormal(u; µ, σ 2) = exp(iuµ) exp(− 1
2σ 2u2)

and the density function is

fNormal(x; µ, σ 2) = 1√
2πσ 2

exp

(
− (x − µ)2

2σ 2

)
.

Properties

The Normal(µ, σ 2) distribution is symmetric around its mean, and always has a
kurtosis equal to 3:

Normal(µ, σ 2)

mean µ

variance σ 2

skewness 0
kurtosis 3

Lévy Processes in Finance: Pricing Financial Derivatives. Wim Schoutens
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The Cumulative Probability Distribution Function: N(x)

We will denote by

N(x) =
∫ x

−∞
fNormal(u; 0, 1) du (3.1)

the cumulative probability distribution function for a variable that is standard Nor-
mally distributed (Normal(0, 1)). This special function is built into most mathemati-
cal software packages. The next approximation produces values of N(x) to within six
decimal places of the true value (see Abramowitz and Stegun 1968):

N(x) =




1 − exp(−x2/2)√
2π

(a1k + a2k
2 + a3k

3 + a4k
4 + a5k

5) for x � 0,

1 − N(−x) for x < 0,

where

k = (1 + 0.231 641 9x)−1,

a1 = 0.319 381 530,

a2 = −0.356 563 782,

a3 = 1.781 477 937,

a4 = −1.821 255 978,

a5 = 1.330 274 429.

3.2 Brownian Motion

The big brother of the Normal distribution is Brownian motion. Brownian motion is the
dynamic counterpart – where we work with evolution in time – of its static counterpart,
the Normal distribution. Both arise from the central limit theorem. Intuitively, this tells
us that the suitably normalized sum of many small independent random variables is
approximately Normally distributed. These results explain the ubiquity of the Normal
distribution in a static context. If we work in a dynamic setting, i.e. with stochastic
processes, Brownian motion appears in the same manner.

The History of Brownian Motion

The history of Brownian motion dates back to 1828, when the Scottish botanist Robert
Brown observed pollen particles in suspension under a microscope and observed that
they were in constant irregular motion. By doing the same with particles of dust, he
was able to rule out that the motion was due to the pollen particles being ‘alive’.

In 1900 Bachelier considered Brownian motion as a possible model for stock market
prices. Bachelier’s model was his thesis. At that time the topic was not thought worthy
of study.

In 1905 Einstein considered Brownian motion as a model of particles in suspension.
He observed that, if the kinetic theory of fluids was right, then the molecules of water
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would move at random and so a small particle would receive a random number of
impacts of random strength and from random directions in any short period of time.
Such a bombardment would cause a sufficiently small particle to move in exactly the
way described by Brown. Einstein also used it to estimate Avogadro’s number.

In 1923 Norbert Wiener defined and constructed Brownian motion rigorously for
the first time. The resulting stochastic process is often called the Wiener process in
his honour.

It was with the work of Samuelson (1965) that Brownian motion reappeared as a
modelling tool in finance.

3.2.1 Definition

A stochastic process X = {Xt, t � 0} is a standard Brownian motion on some
probability space (Ω, F , P ) if

(i) X0 = 0 a.s.,

(ii) X has independent increments,

(iii) X has stationary increments,

(iv) Xt+s−Xt is Normally distributed with mean 0 and variance s > 0: Xt+s−Xt ∼
Normal(0, s).

We shall henceforth denote standard Brownian motion by W = {Wt, t � 0} (W for
Wiener). Note that the second item in the definition implies that Brownian motion is a
Markov process. Moreover, Brownian motion is the basic example of a Lévy process
(see Chapter 5).

In the above, we have defined Brownian motion without reference to a filtration.
In what follows, unless otherwise specified, we will always work with the natural
filtration F = F

W = {Ft , 0 � t � T } of W . We have that Brownian motion is
adapted with respect to this filtration and that increments Wt+s −Wt are independent
of Ft .

Random-Walk Approximation of Brownian Motion

No construction of Brownian motion is easy. We take the existence of Brownian
motion for granted (for more details see Billingsley (1995)). To gain some intuition
into its behaviour, it is useful to compare Brownian motion with a simple symmetric
random walk on the integers. More precisely, let X = {Xi, i = 1, 2, . . . } be a series
of independent and identically distributed random variables with P(Xi = 1) =
P(Xi = −1) = 1/2. Define the simple symmetric random walk Z = {Zn, n =
0, 1, 2, . . . } as Z0 = 0 and Zn = ∑n

i=1 Xi , n = 1, 2, . . . . Rescale this random
walk as Yk(t) = Z�kt�/

√
k, where �x� is the integer part of x. Then from the Central

Limit Theorem, Yk(t) → Wt as k → ∞, with convergence in distribution (or weak
convergence).
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Figure 3.1 A sample path of a standard Brownian motion.

A realization of the standard Brownian motion is shown in Figure 3.1.
The random-walk approximation of the standard Brownian motion is shown in

Figure 3.2. The process Yk = {Yk(t), t � 0} is shown for k = 1 (i.e. the symmetric
random walk), k = 3, k = 10 and k = 50. Clearly, we can see that Yk(t) → Wt .

3.2.2 Properties

Next, we look at some of the classical properties of Brownian motion.

Martingale Property

Brownian motion is one of the simplest examples of a martingale. We have, for all
0 � s � t ,

E[Wt | Fs] = E[Wt | Ws] = Ws.

We also mention that we have

E[WtWs] = min{t, s}.

Path Properties

We can prove that Brownian motion has continuous paths, i.e. Wt is a continuous
function of t . However, the paths of Brownian motion are very erratic. They are,
for example, nowhere differentiable. Moreover, we can also prove that the paths
of Brownian motion are of infinite variation, i.e. their variation is infinite on every
interval.
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Figure 3.2 Random-walk approximation for standard Brownian motion.

Another property is that for a Brownian motion W = {Wt, t � 0}, we have that

P
(

sup
t�0

Wt = +∞ and inf
t�0

Wt = −∞
)

= 1.

This result tells us that the Brownian path will keep oscillating between positive and
negative values.

Scaling Property

There is a well-known set of transformations of Brownian motion which produce
another Brownian motion. One of these is the scaling property which says that if
W = {Wt, t � 0} is a Brownian motion, then, for every c = 0,

W̃ = {W̃t = cWt/c2 , t � 0} (3.2)

is also a Brownian motion.

3.3 Geometric Brownian Motion

Now that we have the Brownian motion W , we can introduce a stochastic process
that is important for us, a relative of Brownian motion: geometric Brownian motion.
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In the Black–Scholes model, the time evolution of a stock price S = {St , t � 0} is
modelled as follows. Consider how S will change in some small time interval from
the present time t to a time t + �t in the near future. Writing �St for the change
St+�t − St , the return in this interval is �St/St . It is economically reasonable to
expect this return to decompose into two components, a systematic and a random
part.

Let us first look at the systematic part. We assume that the stock’s expected return
over a period is proportional to the length of the period considered. This means that
in a short interval of time [St , St+�t ] of length �t , the expected increase in S is given
by µSt�t , where µ is some parameter representing the mean rate of the return of the
stock. In other words, the deterministic part of the stock return is modelled by µ�t .

A stock price fluctuates stochastically, and a reasonable assumption is that the
variance of the return over the interval of time [St , St+�t ] is proportional to the
length of the interval. So, the random part of the return is modelled by σ�Wt , where
�Wt represents the (Normally distributed) noise term (with variance �t) driving the
stock-price dynamics, and σ > 0 is the parameter that describes how much effect the
noise has – how much the stock price fluctuates. In total, the variance of the return
equals σ 2�t . Thus σ governs how volatile the price is, and is called the volatility of
the stock. Putting this together, we have

�St = St (µ�t + σ�Wt), S0 > 0.

In the limit, as �t → 0, we have the stochastic differential equation:

dSt = St (µ dt + σ dWt), S0 > 0. (3.3)

The above stochastic differential equation has the unique solution (see, for example,
Bingham and Kiesel (1998) or Björk (1998))

St = S0 exp((µ − 1
2σ 2)t + σWt).

This (exponential) functional of Brownian motion is called geometric Brownian
motion. Note that

log St − log S0 = (µ − 1
2σ 2)t + σWt

has a Normal(t (µ − 1
2σ 2), σ 2t) distribution. Thus St itself has a lognormal distribu-

tion. This geometric Brownian motion model and the lognormal distribution which
it entails form the basis for the Black–Scholes model for stock-price dynamics in
continuous time.

In Figure 3.3, the realization of the geometric Brownian motion based on the sample
path of the standard Brownian motion of Figure 3.1 is shown.

3.4 The Black–Scholes Option Pricing Model

In the early 1970s, Fischer Black, Myron Scholes and Robert Merton made a major
breakthrough in the pricing of stock options by developing what has become known as
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Figure 3.3 Sample path of geometric Brownian motion (S0 = 100, µ = 0.05, σ = 0.40).

the Black–Scholes model. The model has had huge influence on the way that traders
price and hedge options. In 1997, the importance of the model was recognized when
Myron Scholes and Robert Merton were awarded the Nobel Prize for economics.
Sadly, Fischer Black died in 1995, otherwise he also would undoubtedly have been
one of the recipients of this prize.

We show how the Black–Scholes model for valuing European call and put options
on a stock works.

3.4.1 The Black–Scholes Market Model

Investors are allowed to trade continuously up to some fixed finite planning horizon
T . The uncertainty is modelled by a filtered probability space (Ω, F , P ). We assume
a frictionless market with two assets.

The first asset is one without risk (the bank account). Its price process is given by
B = {Bt = exp(rt), 0 � t � T }. The second asset is a risky asset, usually referred
to as a stock, which pays a continuous dividend yield q � 0. The price process of this
stock, S = {St , 0 � t � T }, is modelled by the geometric Brownian motion,

Bt = exp(rt), St = S0 exp((µ − 1
2σ 2)t + σWt),

where W = {Wt, t � 0} is a standard Brownian motion.
Note that, under P , Wt has a Normal(0, t) and that S = {St , t � 0} satisfies the

SDE (3.3). The parameter µ reflects the drift and σ models the volatility; µ and σ are
assumed to be constant over time.
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We assume, as underlying filtration, the natural filtration F = (Ft ) generated by
W . Consequently, the stock-price process S = {St , 0 � t � T } follows a strictly
positive adapted process. We call this market model the Black–Scholes model.

3.4.2 Market Completeness

As we saw in the previous chapter, questions of market completeness are related
with the PRP. It was already known by Itô (1951) that Brownian motion possesses
the PRP. The economic relevance of the representation theorem is that it shows that
the Black–Scholes model is complete, that is, that every contingent claim can be
replicated by a dynamic trading strategy. The desirable mathematical properties of
Brownian motion are thus seen to have hidden within them desirable economic and
financial consequences of real practical value (Bingham and Kiesel 1998).

3.4.3 The Risk-Neutral Setting

Since the Black–Scholes market model is complete, there exists only one equivalent
martingale measure Q. It is not hard to see that under Q, the stock price is following a
geometric Brownian motion again (Girsanov theorem). This risk-neutral stock-price
process has the same volatility parameter σ , but the drift parameter µ is changed to
the continuously compounded risk-free rate r minus the dividend yield q:

St = S0 exp((r − q − 1
2σ 2)t + σWt).

Equivalently, we can say that under Q our stock-price process S = {St , 0 � t � T }
satisfies the following SDE:

dSt = St ((r − q) dt + σ dWt), S0 > 0.

This SDE tells us that in a risk-neutral world the total return from the stock must be
r; the dividends provide a return of q, the expected growth rate in the stock price,
therefore, must be r − q.

Next, we will calculate European call option prices under this model.

3.4.4 The Pricing of Options under the Black–Scholes Model

General Pricing Formula

By the risk-neutral valuation principle, the price Vt at time t of a contingent claim
with payoff function G({Su, 0 � u � T }) is given by

Vt = exp(−(T − t)r)EQ[G({Su, 0 � u � T }) | Ft ], t ∈ [0, T ]. (3.4)

Furthermore, if the payoff function depends only on the time T value of the stock,
i.e. G({Su, 0 � u � T }) = G(ST ), then the above formula can be rewritten as (for



THE BLACK–SCHOLES MODEL 31

simplicity, we set t = 0)

V0 = exp(−T r)EQ[G(ST )]
= exp(−T r)EQ[G(S0 exp((r − q − 1

2σ 2)T + σWT ))]
= exp(−T r)

∫ +∞

−∞
G(S0 exp((r − q − 1

2σ 2)T + σx))fNormal(x; 0, T ) dx.

Black–Scholes PDE

Moreover, if G(ST ) is a sufficiently integrable function, then the price is also given
by Vt = F(t, St ), where F solves the Black–Scholes partial differential equation,

∂

∂t
F (t, s) + (r − q)s

∂

∂s
F (t, s) + 1

2σ 2s2 ∂2

∂s2 F(t, s) − rF (t, s) = 0, (3.5)

F(T , s) = G(s).

This follows from the Feynman–Kac representation for Brownian motion (see, for
example, Bingham and Kiesel 1998).

Explicit Formula for European Call and Put Options

Solving the Black–Scholes partial differential equation (3.5) is not always that easy.
However, in some cases it is possible to evaluate explicitly the above expected value
in the risk-neutral pricing formula (3.4).

Take, for example, a European call on the stock (with price process S) with strike
K and maturity T (so G(ST ) = (ST − K)+). The Black–Scholes formulas for the
price C(K, T ) at time zero of this European call option on the stock (with dividend
yield q) is given by

C(K, T ) = C = exp(−qt)S0N(d1) − K exp(−rT )N(d2),

where

d1 = log(S0/K) + (r − q + 1
2σ 2)T

σ
√

T
, (3.6)

d2 = log(S0/K) + (r − q − 1
2σ 2)T

σ
√

T
= d1 − σ

√
T , (3.7)

and N(x) is, as in (3.1), the cumulative probability distribution function for a variable
that is standard Normally distributed (Normal(0, 1)).

From this, we can also easily (via the put–call parity) obtain the price P(K, T ) of
the European put option on the same stock with same strike K and same maturity T :

P(K, T ) = − exp(−qt)S0N(−d1) + K exp(−rT )N(−d2).

For the call, the probability (under Q) of finishing in the money corresponds to
N(d2). Similarly, the delta (i.e. the change in the value of the option compared with
the change in the value of the underlying asset) of the option corresponds to N(d1).
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Note that the call option price is in the same form as the formula of Bakshi and
Madan given in Equation (2.2).
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Imperfections of the
Black–Scholes Model

The Black–Scholes model has turned out to be very popular. One should bear in mind,
however, that this elegant theory hinges on several crucial assumptions. We assumed
that there was no market friction, such as taxes and transaction costs, and that there
were no constraints on the stock holding, etc.

Moreover, empirical evidence suggests that the classical Black–Scholes model does
not describe the statistical properties of financial time series very well. We will focus
on two main problems. In Cont (2001) a more extended list of stylized features of
financial data is given.

• We see that the log returns do not behave according to a Normal distribution.

• It has been observed that the volatilities or the parameters of uncertainty esti-
mated (or more generally the environment) change stochastically over time and
are clustered.

Next, we focus on these two problems in more detail.

4.1 The Non-Gaussian Character

4.1.1 Asymmetry and Excess Kurtosis

For a random variable X, we denote by

µX = µ = E[X]
its mean and by

var[X] = E[(X − µX)2] � 0

its variance. The square root of the variance
√

var[X] is called the standard deviation.
Recall that the standard deviation of a random variable following a Normal(µ, σ 2)

distribution equals σ > 0.
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Table 4.1 Mean, standard deviation, skewness and kurtosis of major indices.

Index Mean SD Skewness Kurtosis

S&P 500 (1970–2001) 0.0003 0.0099 −1.6663 43.36
*S&P 500 (1970–2001) 0.0003 0.0095 −0.1099 7.17
S&P 500 (1997–1999) 0.0009 0.0119 −0.4409 6.94
Nasdaq-Composite 0.0015 0.0154 −0.5439 5.78
DAX 0.0012 0.0157 −0.4314 4.65
SMI 0.0009 0.0141 −0.3584 5.35
CAC-40 0.0013 0.0143 −0.2116 4.63

In Table 4.1 we summarize the empirical mean and the standard deviation for a
set of popular indices. The first dataset (S&P 500 (1970–2001)) contains all daily
log returns of the S&P 500 Index over the period 1970–2001. The second dataset
(*S&P 500 (1970–2001)) contains the same data except for the exceptional log return
(−0.2290) of the crash of 19 October 1987. All other datasets are over the period
1997–1999.

Next, we look at the empirical distribution of daily log returns of different indices.
We will typically observe the asymmetry and fat tails of the empirical distribution.

Skewness

Skewness measures the degree to which a distribution is asymmetric. Skewness is
defined to be the third moment about the mean, divided by the third power of the
standard deviation:

E[(X − µX)3]
var[X]3/2 .

For a symmetric distribution (like the Normal(µ, σ 2)), the skewness is zero. If a
distribution has a longer tail to the left than to the right, it is said to have negative
skewness. If the reverse is true, then the distribution has a positive skewness.

If we look at the daily log returns of the different indices, we observe typically
some significant (negative) skewness. In Table 4.1, we show the empirical skewness
of the daily log returns for a set of popular indices. Recall that since the Normal
distribution is symmetric it has a zero skewness.

Fat Tails and Excess Kurtosis

Next, we also show that large movements in asset price occur more frequently than
in a model with Normal distributed increments. This feature is often referred to as
excess kurtosis or fat tails; it is the main reason for considering asset price processes
with jumps.
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A way of measuring this fat tail behaviour is to look at the kurtosis, which is defined
by

E[(X − µX)4]
var[X]2 .

For the Normal distribution (mesokurtic), the kurtosis is 3. If the distribution has a
flatter top (platykurtic), the kurtosis is less than 3. If the distribution has a high peak
(leptokurtic), the kurtosis is greater than 3.

In Table 4.1, we calculate the kurtosis of the daily log returns over the same periods
for the same set of indices. We clearly see that our data always give rise to a kurtosis
bigger than 3, indicating that the tails of the Normal distribution go to zero much
faster than the empirical data suggest and that the empirical distribution is much
more peaked than the Normal distribution. The fact that return distributions are more
leptokurtic than the Normal has already been noted by Fama (1965).

4.1.2 Density Estimation

Finally, we look at the general picture of the empirical density and compare it with
the Normal density.

Kernel Density Estimators

In order to estimate the empirical density, we make use of kernel density estimators.
The goal of density estimation is to approximate the probability density function f (x)

of a random variable X. Assume that we have n independent observations x1, . . . , xn

from the random variable X. The kernel density estimator f̂h(x) for the estimation of
the density f (x) at point x is defined as

f̂h(x) = 1

nh

n∑
i=1

K

(
xi − x

h

)
,

where K(x) is a so-called kernel function and h is the bandwidth. We typically work
with the so-called Gaussian kernel: K(x) = exp(−x2/2)/

√
2π . Other possible kernel

functions are the so-called uniform, triangle, quadratic and cosinus kernel functions.
In the above formula we also have to select the bandwidth h. With our Gaussian kernel,
we use Silverman’s rule-of-thumb value h = 1.06σn−1/5 (see Silverman 1986).

The Gaussian kernel density estimor based on the daily log returns of the S&P 500
Index over the period from 1970 until the end of 2001 is shown in Figure 4.1. We see
a sharp peaked distribution. This tell us that, for most of the time, stock prices do not
move that much; there is a considerable amount of mass around zero. Also plotted
in Figure 4.1 is the Normal density with mean µ = 0.000 311 2 and σ = 0.0099,
corresponding to the empirical mean and standard deviation of the daily log returns.
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Figure 4.1 (a) Normal and Gaussian kernel density estimators and
(b) log densities of the daily log returns of the S&P 500 Index.

Semi-Heavy Tails

Density plots focus on the centre of the distribution; however, the tail behaviour is
also important. Therefore, we show in Figure 4.1 the log densities, i.e. log f̂h(x) and
the corresponding log of the Normal density. The log density of a Normal distribution
has a quadratic decay, whereas the empirical log density seems to have a much more
linear decay. This feature is typical for financial data and is often referred to as the
semi-heaviness of the tails. We say that a distribution or its density function f (x) has
a semi-heavy tail if the tail of the density function behaves as

f (x) ∼
{

C−|x|ρ− exp(−η−|x|) as x → −∞,

C+|x|ρ+ exp(−η+|x|) as x → +∞,

for some ρ−, ρ+ ∈ R and C−, C+, η−, η+ � 0.
In conclusion, we clearly see that the Normal distribution leads to a very bad fit.

4.1.3 Statistical Testing

Next, we will use some statistical tests to show that the Normal distribution does not
deliver a very good fit.
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χ2-Tests

A way of testing the goodness of fit is with the χ2-test. The χ2-test counts the number
of sample points falling into certain intervals and compares them with the expected
number under the null hypothesis.

More precisely, suppose we have n independent observations x1, . . . , xn from the
random variable X and we want to test whether these observations follow a law with
distribution D, depending on h parameters, which we all estimate by some method.
First, make a partition P = {A1, . . . Am} of the support (in our case R) of D. The
classes Ak can be chosen arbitrarily; we consider classes of equal width.

Let Nk , k = 1, . . . , m, be the number of observations xi falling into the set Ak;
Nk/n is called the empirical frequency distribution. We will compare these numbers
with the theoretical frequency distribution πk , defined by

πk = P(X ∈ Ak), k = 1, . . . , m,

through the Pearson statistic

χ̂2 =
m∑

k=1

(Nk − nπk)
2

nπk

.

If necessary, we collapse outer cells, so that the expected value nπk of the observations
becomes always greater than 5.

We say a random variable χ2
j follows a χ2-distribution with j degrees of freedom

if it has a Gamma(j/2, 1/2) law (see Chapter 5):

E[exp(iuχ2
j )] = (1 − 2iu)−j/2.

General theory says that the Pearson statistic χ̂2 follows (asymptotically) a χ2-
distribution with m − 1 − h degrees of freedom.

P -Value

The P -value of the χ̂2 statistic is defined as

P = P(χ2
m−1−h > χ̂2).

In words, P is the probability that values are even more extreme (more in the tail)
than our test statistic. It is clear that very small P -values lead to a rejection of the null
hypothesis, because they are themselves extreme. P -values not close to zero indicate
that the test statistic is not extreme and do not lead to a rejection of the hypothesis. To
be precise, we reject the hypothesis if the P -value is less than our level of significance,
which we take to be equal to 0.05.

Next, we calculate the P -value for the same set of indices. Table 4.2 shows the
P -values of the test statistics. Similar tests can be found in, for example, Eberlein and
Keller (1995).

We see that the Normal hypothesis is always rejected. Basically, we can conclude
that a two-parameter model, such as the Normal one, is not sufficient to capture all
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Table 4.2 Normal χ2-test: P -values and class boundaries.

Index PNormal-value Class boundaries

S&P 500 (1970–2001) 0.0000 −0.0300 + 0.0015i, i = 0, . . . , 40
S&P 500 (1997–1999) 0.0421 −0.0240 + 0.0020i, i = 0, . . . , 24
DAX 0.0366 −0.0225 + 0.0015i, i = 0, . . . , 30
Nasdaq-Composite 0.0049 −0.0300 + 0.0020i, i = 0, . . . , 30
CAC-40 0.0285 −0.0180 + 0.0012i, i = 0, . . . , 30
SMI 0.0479 −0.0180 + 0.0012i, i = 0, . . . , 30

the features of the data. We need at least four parameters: a location parameter, a scale
(volatility) parameter, an asymmetry (skewness) parameter and a (kurtosis) parameter
describing the decay of the tails. We will see that the Lévy models introduced in the
next chapter will have this required flexibility.

4.2 Stochastic Volatility

Another important feature missing from the Black–Scholes model is the fact that
volatility or, more generally, the environment is changing stochastically over time.

Historical Volatility

It has been observed that the estimated volatilities (or, more generally, the parameters
of uncertainty) change stochastically over time. This can be seen, for example, by
looking at historical volatilities. Historical volatility is a retrospective measure of
volatility. It reflects how volatile the asset has been in the recent past. Historical
volatility can be calculated for any variable for which historical data are tracked.

For the S&P 500 Index, we estimated for every day from 1971 to 2001 the stan-
dard deviation of the daily log returns over a one-year period preceding the day. In
Figure 4.2, for every day in the mentioned period, we plot the annualized standard
deviation, i.e. we multiply the estimated standard deviation by the square root of the
number of trading days in one calendar year. Typically, there are around 250 trading
days in one year. This annualized standard deviation is called the historical volatility.
Clearly, we see fluctuations in this historical volatility. Moreover, we see a kind of
mean-reversion effect. The peak in the middle of the figure comes from the stock
market crash on 19 October 1987; one-year windows including this day (with an
extremal down-move) give rise to very high volatilities.

Volatility Clusters

Moreover, there is evidence for volatility clusters, i.e. there seems to be a succession
of periods with high return variance and with low return variance. This can be seen,
for example, in Figure 4.3, where the absolute log returns of the S&P 500 Index over
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Figure 4.2 Historical volatility (one-year window) on S&P 500 (1970–2001).

a period of more than 30 years are plotted. We clearly see that there are periods with
high absolute log returns and periods with lower absolute log returns. Large price
variations are more likely to be followed by large price variations.

These observations motivate the introduction of models for asset price processes
where volatility is itself stochastic.

4.3 Inconsistency with Market Option Prices

Calibration of Market Prices

If we estimate the model parameters by minimizing the root-mean-square error
between market prices and the Black–Scholes model prices, we can observe an enor-
mous difference. This can be seen in Figure 4.4 for the S&P 500 options. The volatility
parameter which gives the best fit in the least-squared sense for the Black–Scholes
model is σ = 0.1812 (in terms of years). Recall that the circles are market prices; the
plus signs are the calibrated model prices.

Table 4.3 gives the relevant measures of fit we introduced in Chapter 1.

Implied Volatility

Another way to see that the classical Black–Scholes model does not correspond with
option prices in the market is to look at the implied volatilities coming from the
option prices. For every European call option with strike K and time to maturity T ,
we calculate the only (free) parameter involved, the volatility σ = σ(K, T ), so that
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Figure 4.4 Black–Scholes (σ = 0.1812) calibration of S&P 500 options
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IMPERFECTIONS OF THE BLACK–SCHOLES MODEL 41

Table 4.3 APE, AAE and RMSE of the Black–Scholes model calibration of
market option prices.

Model APE AAE RMSE ARPE

Black–Scholes 8.87% 5.4868 6.7335 16.92%

the theoretical option price (under the Black–Scholes model) matches the empirical
one. This σ = σ(K, T ) is called the implied volatility of the option. Implied volatility
is a timely measure: it reflects the market’s perceptions today.

There is no closed formula to extract the implied volatility out of the call option
price. We have to rely on numerical methods. One method of finding numerically
implied volatilities is the classical Newton–Raphson iteration procedure. Denote by
C(σ) the price of the relevant call option as a function of volatility. If C is the market
price of this option, we need to solve the transcendental equation

C = C(σ) (4.1)

for σ . We start with some initial value we propose for σ ; we denote this starting value
by σ0. In terms of years, it turns out that a σ0 around 0.20 performs very well for most
common stocks and indices. In general, if we denote by σn the value obtained after n

iteration steps, the next value σn+1 is given by

σn+1 = σn − C(σn) − C

C′(σn)
,

where in the denominator C′ refers to the differential with respect to σ of the call
price function (this quantity is also referred to as the vega). For the European call
option (under Black–Scholes) we have

C′(σn) = S0
√

T N(d1) = S0
√

T N

(
log(S0/K) + (r − q + 1

2σ 2
n )T

σn

√
T

)
,

where S0 is the current stock price, d1 is as in (3.6) and N(x) is the cumulative
probability distribution of a Normal(0, 1) random variable as in (3.1).

Next, we bring together for every maturity and strike this volatility σ in Figure 4.5,
where the so-called volatility surface is shown. Under the Black–Scholes model, all σ s
should be the same; clearly, we observe that there is a huge variation in this volatility
parameter both in strike and in time to maturity. We often say there is a volatility
smile or skew effect. Again, this points up the fact that the Black–Scholes model is
not appropriate and that traders already account for this deficiency in their prices.

Implied Volatility Models

Great care has to be taken over using implied volatilities to price options. Funda-
mentally, using implied volatilities is wrong. Taking different volatilities for different
options on the same underlying asset gives rise to different stochastic models for one
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Figure 4.5 Implied volatilities.

asset. Moreover, the situation worsens in the case of exotic options. Shaw (1998)
showed that if one tries to find the implied volatilities coming out of exotic options
such as barrier options (see Chapter 9), there are cases where there are two or even
three solutions to the implied volatility equation (for the European call option, see
Equation (4.1)). Implied volatilities are thus not unique in these situations. More
extremely, if we consider an up-and-out put barrier option, where the strike coincides
with the barrier and the risk-free rate equals the dividend yield, the Black–Scholes
price (for which a formula in closed form is available) is independent of the volatility.
So, if the market price happens to coincide with the computed value, you can have
any implied volatility you want. Otherwise, there is no implied volatility.

From this, it should be clear that great caution has to be taken by using European call
option implied volatilities for exotic options with apparently similar characteristics
(such as, for example, the same strike price). There is no guarantee that prices so
obtained reflect true prices.
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Lévy Processes and
OU Processes

To price and hedge derivative securities, it is crucial to have a good model of the
probability distribution of the underlying product. The most famous continuous-time
model is the celebrated Black–Scholes model (see Chapter 3), which uses the Normal
distribution to fit the log returns of the underlying.

As we have seen in the previous chapter, one of the main problems with the Black–
Scholes model is that the data suggest that the log returns of stocks/indices are not
Normally distributed as in the Black–Scholes model. The log returns of most financial
assets do not follow a Normal law. They are skewed and have an actual kurtosis higher
than that of the Normal distribution. Other more flexible distributions are needed.
Moreover, not only do we need a more flexible static distribution, but in order to
model the behaviour through time we need more flexible stochastic processes (which
generalize Brownian motion).

Looking at the definition of Brownian motion, we would like to have a similar,
i.e. with independent and stationary increments, process, based on a more general
distribution than the Normal. However, in order to define such a stochastic process with
independent and stationary increments, the distribution has to be infinitely divisible.
Such processes are called Lévy processes, in honour of Paul Lévy, the pioneer of the
theory.

To be useful in finance, the infinitely divisible distributions need to be able to
represent skewness and excess kurtosis. In the late 1980s and in the 1990s, models
having these characteristics were proposed for modelling financial data. The under-
lying Normal distribution was replaced by a more sophisticated infinitely divisible
one.

Examples of such distributions, which can take into account skewness and excess
kurtosis, are the Variance Gamma (VG), the Normal Inverse Gaussian (NIG), the
CGMY (named after Carr, Geman, Madan and Yor), the (Generalized) Hyperbolic
Model and the Meixner distributions. Madan and Seneta (1987, 1990) have proposed
a Lévy process with VG distributed increments. The Hyperbolic Model was proposed
by Eberlein and Keller (1995). In the same year, Barndorff-Nielsen (1995) proposed

Lévy Processes in Finance: Pricing Financial Derivatives. Wim Schoutens
Copyright  2003 John Wiley & Sons, Ltd.

ISBN: 0-470-85156-2
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the NIG Lévy process. All three above-mentioned models were brought together as
special cases of the Generalized Hyperbolic Model, which was developed by Eberlein
and co-workers in a series of papers (see Eberlein and Prause 1998; Eberlein et al.
1998; Prause 1999). Recently, the CGMY model was introduced by Carr et al. (2002)
and the Meixner model was used in Schoutens (2001).

In this chapter we give the theoretical background of Lévy processes and OU
processes driven by Lévy processes. We give the definition of the most popular Lévy
processes in use. Besides the processes used in finance we also look at the simpler
class of subordinators on which the above-mentioned processes are built.

In the next chapter, we will show that Lévy models give a much better fit to the
data and lead to a significant improvement with respect to the Black–Scholes model.
Moreover, they can explain, at least in part, the so-called volatility smile.

In Chapter 7, we will incorporate stochastic volatility in these Lévy models. The
stochastic behaviour for the volatility can be modelled using OU processes driven
by Lévy processes. In this chapter, we have a close look at the special cases of OU
processes which we later use for building the stochastic volatility models.

5.1 Lévy Processes

In this section Lévy processes are defined. General reference works on Lévy processes
are by Bertoin (1996), Sato (1999) and Applebaum (2003). In Section 5.3 we look at
a series of popular examples.

5.1.1 Definition

Suppose φ(u) is the characteristic function (see Section 2.3) of a distribution. If, for
every positive integer n, φ(u) is also the nth power of a characteristic function, we
say that the distribution is infinitely divisible.

We can define for every such infinitely divisible distribution a stochastic process,
X = {Xt, t � 0}, called a Lévy process, which starts at zero and has independent
and stationary increments such that the distribution of an increment over [s, s + t],
s, t � 0, i.e. Xt+s − Xs , has (φ(u))t as its characteristic function.

Every Lévy process has a càdlàg (see Section 2.2.3) modification which is itself a
Lévy process. We always work with this càdlàg version of the process. So, sample
paths of a Lévy process are almost surely continuous from the right and have limits
from the left. Moreover, we will always work in the sequel with the natural filtration
generated by the Lévy process X.

The cumulant characteristic function ψ(u) = log φ(u) is often called the charac-
teristic exponent, which satisfies the following Lévy–Khintchine formula,

ψ(u) = iγ u − 1
2σ 2u2 +

∫ +∞

−∞
(exp(iux) − 1 − iux1{|x|<1})ν(dx), (5.1)
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where γ ∈ R, σ 2 � 0 and ν is a measure on R\{0} with

∫ +∞

−∞
inf{1, x2}ν(dx) =

∫ +∞

−∞
(1 ∧ x2)ν(dx) < ∞.

We say that our infinitely divisible distribution has a triplet of Lévy characteristics
(or Lévy triplet for short) [γ, σ 2, ν(dx)]. The measure ν is called the Lévy measure
of X.

If the Lévy measure is of the form ν(dx) = u(x) dx, we call u(x) the Lévy density.
The Lévy density has the same mathematical requirements as a probability density,
except that it does not need to be integrable and must have zero mass at the origin.

From the Lévy–Khintchine formula, we see that, in general, a Lévy process consists
of three independent parts: a linear deterministic part, a Brownian part and a pure jump
part. The Lévy measure ν(dx) dictates how the jumps occur. Jumps of sizes in the set
A occur according to a Poisson process (see Section 5.3.1) with intensity parameter∫
A

ν(dx).
A subordinator is a nonnegative nondecreasing Lévy process. It is not hard to see

that as such a subordinator has no Brownian part (σ 2 = 0), a nonnegative drift and a
Lévy measure which is zero on the negative half-line (it has only positive increments).
Note that a subordinator is nondecreasing and always of finite variation.

5.1.2 Properties

Path Properties

If σ 2 = 0 and
∫ +1
−1 |x|ν(dx) < ∞, it follows from standard Lévy process theory

that the process is of finite variation. In that case the characteristic exponent can be
re-expressed as

ψ(u) = iγ ′u +
∫ +∞

−∞
(exp(iux) − 1)ν(dx)

for some γ ′, which we call the drift coefficient. In the finite-variation case, we can
decompose the process into the difference of two increasing processes.

If σ 2 = 0 and
∫ +1
−1 ν(dx) < ∞, there are finitely many jumps in any finite interval.

We say the process is of finite activity.
Because the Brownian motion is of infinite variation, a Lévy process with a Brow-

nian component is of infinite variation. A pure jump Lévy process, i.e. one with no
Brownian component (σ 2 = 0), is of infinite variation if and only if

∫ +1
−1 |x|ν(dx) =

∞. In that case special attention has to be paid to the small jumps. Basically, the
sum of all jumps smaller than some ε > 0 does not converge. However, the sum of
the jumps compensated by their mean does converge. This peculiarity leads to the
necessity of the compensator term iux1{|x|<1} in (5.1).
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Predictable Representation Property

We denote the jump that a process X = {Xt, t � 0} makes at time t by

�Xt = Xt − Xt−.

Under some weak moment assumptions it was proved in Nualart and Schoutens (2000)
that a Lévy process X = {Xt, 0 � t � T } possesses a version of the predictable
representation property (PRP). Every square integral random variable F ∈ FT has a
representation of the form,

F = E[F ] +
∞∑
i=1

∫ T

0
a(i)
s d(H (i)

s − E[H(i)
s ]), (5.2)

where a(i) = {a(i)
s , 0 � s � T } is predictable and H(i) = {H(i)

s , 0 � s � T } is the
power jump process of order i, i.e. H

(1)
s = Xs and

H(i)
s =

∑
0<u�s

(�Xu)
i, i = 2, 3, . . . .

Since Brownian motion W = {Wt, t � 0} has continuous paths, there are no jumps
and H

(i)
s = 0 for i � 2. In this case the infinite sum reduces to only one term and we

obtain that Brownian motion possesses the classical PRP,

F = E[F ] +
∫ T

0
as dWs,

where a = a(1) is predictable. Note that this implies the completeness of the Black–
Scholes model. It is only in the Poisson case (see Section 5.3.1) that a similar simpli-
fication to one term can be made. Therefore, the more realistic market models, based
on a non-Brownian and non-Poissonian Lévy process, will lead to incomplete market
models.

Paul Lévy (1886–1971)

The name Lévy process refers to one of the greatest mathematicians of the 20th
century: Paul Lévy.

Paul Lévy was born in Paris in 1886. He studied at the École Polytechnique,
obtained a doctoral degree in mathematics from the University of Paris and became
professor at the École Polytechnique in 1913. He became one of the pioneers of mod-
ern probability theory, which was at that time in its early stages. He made important
discoveries in the theory of stochastic processes. He proved the Central Limit Theo-
rem using characteristic functions, independently from Lindeberg, who used convo-
lution techniques. He studied various properties of Brownian motion and discovered
the class of stable distributions. His main books are Leçons d’analyse fonctionnelle
(1922), Calcul des probabilités (1925), Théorie de l’addition des variables aléatoires
(1937–1954) and Processus stochastiques et mouvement brownien (1948).
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During World War I Lévy served in the artillery and was involved in using his
mathematical skills in solving problems concerning defence against attacks from the
air. In 1963, he was elected to honorary membership of the London Mathematical
Society. In the following year he was elected to the Académie des Sciences. Paul Lévy
died in Paris on 15 December 1971.

5.2 OU Processes

In this section we give a brief introduction to self-decomposability and Ornstein–
Uhlenbeck (OU) processes (driven by Lévy processes), which were introduced by
Barndorff-Nielsen and Shephard (2001a,b, 2003b) as a model to describe volatility
in finance. Further work on OU processes can be found in Wolfe (1982), Sato and
Yamazato (1982), Jurek and Vervaat (1983) and Sato et al. (1994). For some notes
about the origin, see Bingham (1998).

5.2.1 Self-Decomposability

Let φ be the characteristic function of a random variable X. Then X is self-decom-
posable if

φ(u) = φ(cu)φc(u)

for all u ∈ R and all c ∈ (0, 1) and for some family of characteristic functions
{φc : c ∈ (0, 1)}. It is also said that in that case the law of X belongs to Lévy’s class
L. A random variable with law in L is infinitely divisible.

A further important characterization of the class L as a subclass of the set of
all infinitely divisible distributions in terms of the Lévy measure is the following
equivalence.

Let ν(dx) denote the Lévy measure of an infinitely divisible measure P on R. Then
the following statements are equivalent.

(1) P is self-decomposable.

(2) The functions (in s) on the positive half-line given by ν((−∞, −es]) and
ν([es , ∞)) are both convex.

(3) ν(dx) is of the form ν(dx) = u(x) dx with |x|u(x) increasing on (−∞, 0) and
decreasing on (0, ∞).

If u is differentiable, then the necessary and sufficient condition (2) may be re-
expressed as

u(x) + xu′(x) � 0, for x = 0. (5.3)

The equivalence of (1), (2) and (3) is due to Lévy (1937). A proof may be found
also in Bar-lev et al. (1992); see also Sato (1999).



48 OU PROCESSES

5.2.2 OU Processes

Definition

An important role will also be played by processes driven by a Lévy process. We
consider processes which are defined by the following SDE,

dyt = −λyt dt + dzλt , y0 > 0, (5.4)

where the process zt is a subordinator; more precisely, it is a Lévy process with no
Brownian part, nonnegative drift and only positive increments. We will call these
processes {yt , t � 0} Ornstein–Uhlenbeck (OU) processes. The rate parameter λ is
arbitrary positive and z = {zt , t � 0} is called the Background Driving Lévy Process
(BDLP).

As z is an increasing process and y0 > 0, it is clear that the process y is strictly pos-
itive. Moreover, it is bounded from below by the deterministic function y0 exp(−λt).

Remark 5.1. OU processes based on a general Lévy process, not necessarily a sub-
ordinator, can also be defined. However, for our analysis we will only need the special
case considered above.

Remark 5.2. We can simply include a drift term in the SDE (5.4). In fact, a stochastic
differential equation,

dyt = (α − λyt ) dt + dzλt , y0 > 0,

can be recast in the form of (5.4) simply by defining a new BDLP z̃ = {z̃, t � 0} by

z̃t = zt + λ−1αt.

D-OU Processes and OU-D Processes

The process y = {yt , t � 0} is strictly stationary on the positive half-line, i.e. there
exists a law D, called the stationary law or the marginal law, such that yt will follow
the law D for every t if the initial y0 is chosen according to D. The process y moves up
entirely by jumps and then tails off exponentially. In Barndorff-Nielsen and Shephard
(2001a) some stochastic properties of y are studied. They established the notation that
if y is an OU process with marginal law D, then we say that y is a D-OU process.
Further, if the BDLP at time t = 1, i.e. z1, has law D̃, then we say y is an OU-D̃
process.

In essence, given a one-dimensional distribution D (not necessarily restricted to
the positive half-line), there exists a (stationary) OU process whose marginal law is
D (i.e. a D-OU process) if and only if D is self-decomposable. We have by standard
results (see Barndorff-Nielsen and Shephard 2001a) that

yt = exp(−λt)y0 +
∫ t

0
exp(−λ(t − s)) dzλs

= exp(−λt)y0 + exp(−λt)

∫ λt

0
exp(s) dzs.
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In the case of a D-OU process, let us denote by kD(u) the cumulant function of the
self-decomposable law D and by kz(u) the cumulant function of the BDLP at time
t = 1, i.e. kz(u) = log E[exp(−uz1)]; then both are related through the formula (see,
for example, Barndorff-Nielsen 2001):

kz(u) = u
dkD(u)

du
.

Let us denote the Lévy measure of z1 (the BDLP at time t = 1) by W(dx). If
the Lévy density u of the self-decomposable law D is differentiable, then the Lévy
measure W has a density w, and u and w are related by

w(x) = −u(x) − xu′(x). (5.5)

Tail Mass Function

Let the tail mass function of W(dx) be

W+(x) =
∫ ∞

x

w(y) dy,

we have from Barndorff-Nielsen (1998)

W+(x) = xu(x).

Finally, we shall denote the inverse function of W+ by W−1, i.e.

W−1(x) = inf{y > 0 : W+(y) � x}.

Integrated OU Process

An important related process will be the integral of yt . Barndorff-Nielsen and Shep-
hard called this the integrated OU process (intOU); we will denote this process by
Y = {Yt , t � 0}:

Yt =
∫ t

0
ys ds.

A major feature of the intOU process Y is

Yt = λ−1(zλt − yt + y0)

= λ−1(1 − exp(−λt))y0 + λ−1
∫ t

0
(1 − exp(−λ(t − s))) dzλs. (5.6)

An interesting characteristic is that Y = {Yt , t � 0} has continuous sample paths
when λ > 0, while z = {zt , t � 0} and y = {yt , t � 0} have jumps.
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We can show (see Barndorff-Nielsen and Shephard 2001a) that, given y0,

log E[exp(iuYt ) | y0]
= λ

∫ t

0
k(uλ−1(1 − exp(−λ(t − s)))) ds + iuy0λ

−1(1 − exp(−λt)),

where k(u) = kz(u) = log E[exp(−uz1)] is the cumulant function of z1. From this
we obtain that, for every t � 0,

E[Yt | y0] = λ−1(1 − exp(−λt))y0 + λ−1E[z1](λt − 1 − exp(−λt)),

var[Yt | y0] = λ−2 var[z1](λt − 2 + 2 exp(−λt) + 1
2 − 1

2 exp(−2λt)).

5.3 Examples of Lévy Processes

In the following sections we list a number of popular Lévy processes. We start with
some so-called subordinators. Next, we look at processes that live on the real line. We
pay attention to their density function, their characteristic function, their Lévy triplets,
together with some of their properties. We compute moments, variance, skewness and
kurtosis, if possible, and look at the semi-heaviness of the tails.

5.3.1 The Poisson Process

Definition

The Poisson process is the simplest Lévy process we can think of. It is based on the
Poisson(λ), λ > 0, distribution, which has

φPoisson(u; λ) = exp(λ(exp(iu) − 1))

as characteristic function. The Poisson distribution lives on the nonnegative integers
{0, 1, 2, . . . }; the probability mass at point j equals

exp(−λ)
λj

j ! .

Since the Poisson(λ) distribution is infinitely divisible, we can define a Poisson
process N = {Nt, t � 0} with intensity parameter λ > 0 as the process which starts
at zero, has independent and stationary increments and where the increment over a
time interval of length s > 0 follows a Poisson(λs) distribution. The Poisson process
turns out to be an increasing pure jump process, with jump sizes always equal to
1. This means that the Lévy triplet is given by [0, 0, λδ(1)], where δ(1) denotes the
Dirac measure at point 1, i.e. a measure with a mass of only 1 at point 1. The time
between two consecutive jumps follows an exponential distribution with mean λ−1,
i.e. a Gamma(1, λ) law (see Section 5.3.3).
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Properties

The mean and variance of the Poisson distribution with parameter λ are both equal to
λ:

Poisson(λ)

mean λ

variance λ

skewness 1/
√

λ

kurtosis 3 + λ−1

Predictable Representation Property

We note that the PRP (5.2) in the case of the Poisson process (with intensity parameter
λ) N = {Nt, t � 0} can be simplified quite a lot. Since the Poisson process has only
jumps of size 1, we have that in (5.2) for i � 2, H

(i)
s = Ns . In this case the infinite

sum can be rewritten as a single term and we obtain that the Poisson process possesses
the classical PRP. Every square integral random variable F ∈ FT has a representation
of the form,

F = E[F ] +
∫ T

0
as d(Ns − λs),

where a = {at , 0 � t � T } is predictable.

5.3.2 The Compound Poisson Process

Definition

Suppose N = {Nt, t � 0} is a Poisson process with intensity parameter λ > 0 and
that Zi , i = 1, 2, . . . , is an i.i.d. (independent and identically distributed) sequence
of random variables independent of N and following a law, L say, with characteristic
function φZ(u). Then we say that (with the convention that an empty sum equals 0)

Xt =
Nt∑

k=1

Zi, t � 0,

is a compound Poisson process. The value of the process at time t , Xt , is the sum
of Nt random numbers with law L. The ordinary Poisson process corresponds to the
case where Zi = 1, i = 1, 2, . . . , i.e. where the law L is degenerate at the point 1.

Let us write (for a Borel set A) the distribution function of the law L as follows:

P(Zi ∈ A) = ν(A)

λ
,

where ν(R) = λ < ∞. We impose that ν({0}) = 0.
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Then the characteristic function of Xt is given by

E[exp(iuXt)] = exp

(
t

∫ +∞

−∞
(exp(iux) − 1)ν(dx)

)
= exp(tλ(φZ(u) − 1)).

From this we can easily obtain the Lévy triplet:[ ∫ +1

−1
xν(dx), 0, ν(dx)

]
.

5.3.3 The Gamma Process

Definition

The density function of the Gamma distribution Gamma(a, b) with parameters a > 0
and b > 0 is given by

fGamma(x; a, b) = ba

�(a)
xa−1 exp(−xb), x > 0.

The density function clearly has a semi-heavy (right) tail. The characteristic function
is given by

φGamma(u; a, b) = (1 − iu/b)−a.

Clearly, this characteristic function is infinitely divisible. The Gamma process

X(Gamma) = {X(Gamma)
t , t � 0}

with parameters a, b > 0 is defined as the stochastic process which starts at zero and
has stationary and independent Gamma distributed increments. More precisely, time
enters in the first parameter: X

(Gamma)
t follows a Gamma(at, b) distribution.

The Lévy triplet of the Gamma process is given by

[a(1 − exp(−b))/b, 0, a exp(−bx)x−11(x>0) dx].

Properties

The following properties of the Gamma(a, b) distribution can easily be derived from
the characteristic function:

Gamma(a, b)

mean a/b

variance a/b2

skewness 2a−1/2

kurtosis 3(1 + 2a−1)
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Note that we also have the following scaling property. If X is Gamma(a, b), then
for c > 0, cX is Gamma(a, b/c).

5.3.4 The Inverse Gaussian Process

Definition

Let T (a,b) be the first time a standard Brownian motion with drift b > 0, i.e. {Ws +
bs, s � 0}, reaches the positive level a > 0. It is well known that this random time
follows the so-called Inverse Gaussian, IG(a, b), law and has a characteristic function

φIG(u; a, b) = exp(−a(
√

−2iu + b2 − b)).

The IG distribution is infinitely divisible and we define the IG process X(IG) =
{X(IG)

t , t � 0}, with parameters a, b > 0, as the process which starts at zero and has
independent and stationary increments such that

E[exp(iuX
(IG)
t )] = φIG(u; at, b)

= exp(−at (
√−2iu + b2 − b)).

The density function of the IG(a, b) law is explicitly known:

fIG(x; a, b) = a√
2π

exp(ab)x−3/2 exp(− 1
2 (a2x−1 + b2x)), x > 0.

The Lévy measure of the IG(a, b) law is given by

νIG(dx) = (2π)−1/2ax−3/2 exp(− 1
2b2x)1(x>0) dx,

and the first component of the Lévy triplet equals

γ = a

b
(2N(b) − 1),

where the N(x) is the Normal distribution function as in (3.1).

Properties

The density is unimodal with a mode at (
√

4a2b2 + 9 − 3)/(2b2). All positive and
negative moments exist. If X follows an IG(a, b) law, we have that

E[X−α] =
(

b

a

)2α+1

E[Xα+1], α ∈ R.
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The following characteristics can easily be obtained:

IG(a, b)

mean a/b

variance a/b3

skewness 3(ab)−1/2

kurtosis 3(1 + 5(ab)−1)

The IG distribution satisfies the following scaling property. If X is IG(a, b), then,
for a positive c, cX is IG(

√
ca, b/

√
c).

Origin

The name ‘Inverse Gaussian’ was first applied to a certain class of distributions by
Tweedie (1947), who noted the inverse relationship between the cumulant generating
functions of these distributions and those of Gaussian distributions. The same class
of distributions was derived by Wald (1947).

5.3.5 The Generalized Inverse Gaussian Process

Definition

The Inverse Gaussian IG(a, b) law can be generalized to what is called the Generalized
Inverse Gaussian distribution GIG(λ, a, b). This distribution on the positive half-line
is given in terms of its density function:

fGIG(x; λ, a, b) = (b/a)λ

2Kλ(ab)
xλ−1 exp(− 1

2 (a2x−1 + b2x)), x > 0.

The parameters λ, a and b are such that λ ∈ R while a and b are both nonnegative
and not simultaneously 0.

The characteristic function is given by

φGIG(u; λ, a, b) = 1

Kλ(ab)
(1 − 2iu/b2)λ/2Kλ(ab

√
1 − 2iub−2),

where Kλ(x) denotes the modified Bessel function of the third kind with index λ (see
Appendix A).

It was shown by Barndorff-Nielsen and Halgreen (1977) that the distribution
is infinitely divisible. We can thus define the GIG process as the Lévy process
where the increment over the interval [s, s + t], s, t � 0, has characteristic func-
tion (φGIG(u; λ, a, b))t .
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The Lévy measure is rather involved and has a density on the positive real line
given by

u(x) = x−1 exp(− 1
2b2x)

(
a2
∫ ∞

0
exp(−xz)g(z) dz + max{0, λ}

)
,

where

g(z) = (π2a2z(J2|λ|(a
√

2z) + N2|λ|(a
√

2z)))−1

and where Jν and Nν are Bessel functions (see Appendix A). This formula for the
Lévy density can, for example, be found in Barndorff-Nielsen and Shephard (2001a).

Properties

The moments of a random variable X following a GIG(λ, a, b) distribution are given
by

E[Xk] =
(

a

b

)k Kλ+k(ab)

Kλ(ab)
, k ∈ R.

From this it easily follows that

GIG(λ, a, b)

mean aKλ+1(ab)/(bKλ(ab))

variance a2b−2K−2
λ (ab)(Kλ+2(ab)Kλ(ab) + K2

λ+1(ab))

Special Cases

The IG(a, b) distribution. For λ = −1/2 the GIG(λ, a, b) reduces to the IG(a, b)

distribution. This can easily be seen by noting that

K−1/2(x) = √
π/2 x−1/2 exp(−x).

The Gamma(ã, b̃) distribution. For a = 0, λ = ã > 0 and b =
√

2b̃, we obtain
the Gamma(ã, b̃) distribution.

Origin

The GIG was covered by Good (1953) and has been used by Sichel (1974, 1975)
to construct mixtures of Poisson distributions. The GIG distribution was also used
by Wise (1975) and Marcus (1975). Barndorff-Nielsen (1977, 1978) obtained the
GH distribution (see below) as a mixture of the Normal distribution and the GIG
distribution. Blæsild (1978) has computed moments and cumulants. Halgreen (1979)
proved that the distribution is self-decomposable. A standard reference work for the
GIG distribution is Jørgensen (1982).
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5.3.6 The Tempered Stable Process

Definition

The characteristic function of the Tempered Stable distribution law, TS(κ, a, b), a >

0, b � 0 and 0 < κ < 1, is given by

φTS(u; κ, a, b) = exp(ab − a(b1/κ − 2iu)κ).

This distribution is infinitely divisible and we can define the TS process

X(TS) = {X(TS)
t , t � 0}

as the process which starts at zero, has independent and stationary increments and for
which the increment X

(TS)
s+t − X

(TS)
s follows a TS(κ, ta, b) law over the time interval

[s, t + s].
From the characteristic function we can derive the Lévy measure of the TS process:

νTS(dx) = a2κ κ

�(1 − κ)
x−κ−1 exp(− 1

2b1/κx)1{x>0} dx.

The process is a subordinator and has infinite activity. The first term of the Lévy triplet
is given by

γ = a2κ κ

�(1 − κ)

∫ 1

0
x−κ exp(− 1

2b1/κx) dx.

Properties

The density is not generally known. Only the following series representation is known
in general:

fTS(x; κ, a, b) = exp(ab) exp(− 1
2b1/κx)

× 1

2πa1/κ

∞∑
k=1

(−1)k−1 sin(kπκ)
�(kκ + 1)

k! 2kκ+1
(

x

a1/κ

)−kκ−1

.

The following characteristics can easily be obtained:

TS(κ, a, b)

mean 2aκb(κ−1)/κ

variance 4aκ(1 − κ)b(κ−2)/κ

skewness (κ − 2)(abκ(1 − κ))−1/2

kurtosis 3 + (4κ − 6 − κ(1 − κ))(abκ(1 − κ))−1

Special Cases

The IG(a, b) distribution. For κ = 1/2 the TS(κ, a, b) reduces to the IG(a, b)

distribution.
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The Gamma(a, b) distribution. For the limiting case κ → 0, we obtain the
Gamma(a, b) distribution.

Origin

The class of the TS distributions was proposed by Tweedie (1984). Hougaard (1986)
discussed their use in survival analysis. In Barndorff-Nielsen and Shephard (2003a)
the class TS distributions were generalized to the so-called class of Modified Stable
(MS) distributions of which the GIG distributions also form a subclass. They sur-
mise that all MS distributions are infinitely divisible and in fact self-decomposable.
However, a general proof is not available yet.

5.3.7 The Variance Gamma Process

Definition

The characteristic function of the VG(σ, ν, θ) law is given by

φVG(u; σ, ν, θ) = (1 − iuθν + 1
2σ 2νu2)−1/ν .

This distribution is infinitely divisible and we can define the VG process X(VG) =
{X(VG)

t , t � 0} as the process which starts at zero, has independent and stationary
increments and for which the increment X

(VG)
s+t − X

(VG)
s follows a VG(σ

√
t, ν/t, tθ)

law over the time interval [s, t + s]. Clearly (take s = 0 and note that X
(VG)
0 = 0),

E[exp(iuX
(VG)
t )] = φVG(u; σ

√
t, ν/t, tθ)

= (φVG(u; σ, ν, θ))t

= (1 − iuθν + 1
2σ 2νu2)−t/ν .

Madan et al. (1998) showed that the VG process may also be expressed as the
difference of two independent Gamma processes.

This characterization allows the Lévy measure to be determined:

νVG(dx) =
{

C exp(Gx)|x|−1 dx, x < 0,

C exp(−Mx)x−1 dx, x > 0,

where

C = 1/ν > 0,

G = (
√

1
4θ2ν2 + 1

2σ 2ν − 1
2θν)−1 > 0,

M = (
√

1
4θ2ν2 + 1

2σ 2ν + 1
2θν)−1 > 0.

With this parametrization, it is clear that

X
(VG)
t = G

(1)
t − G

(2)
t ,
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where G(1) = {G(1)
t , t � 0} is a Gamma processes with parameters a = C and

b = M , whereas G(2) = {G(2)
t , t � 0} is an independent Gamma process with

parameters a = C and b = G.
The Lévy measure has infinite mass, and hence a VG process has infinitely many

jumps in any finite time interval. Since

∫ 1

−1
|x|νVG(dx) < ∞,

a VG process has paths of finite variation. A VG process has no Brownian component
and its Lévy triplet is given by [γ, 0, νVG(dx)], where

γ = −C(G(exp(−M) − 1) − M(exp(−G) − 1))

MG
.

With the parametrization in terms of C, G and M , the characteristic function of
X

(VG)
1 reads as follows:

φVG(u; C, G, M) =
(

GM

GM + (M − G)iu + u2

)C

.

In this notation we will refer to the distribution by VG(C, G, M).

Properties

Another way of defining a VG process is by seeing it as (Gamma) time-changed
Brownian motion with drift. More precisely, let G = {Gt, t � 0} be a Gamma
process with parameters a = 1/ν > 0 and b = 1/ν > 0. Let W = {Wt, t � 0}
denote a standard Brownian motion, let σ > 0 and θ ∈ R; then the VG process
X(VG) = {X(VG)

t , t � 0}, with parameters σ > 0, ν > 0 and θ , can alternatively be
defined as

X
(VG)
t = θGt + σWGt .

When θ = 0, then G = M and the distribution is symmetric. Negative values
of θ lead to the case where G > M , resulting in negative skewness. Similarly, the
parameter ν = 1/C primarily controls the kurtosis:

VG(σ, ν, θ) VG(σ, ν, 0)

mean θ 0

variance σ 2 + νθ2 σ 2

skewness θν(3σ 2 + 2νθ2)/(σ 2 + νθ2)3/2 0

kurtosis 3(1 + 2ν − νσ 4(σ 2 + νθ2)−2) 3(1 + ν)
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In terms of the CGM parameters this reads as follows:

VG(C, G, M) VG(C, G, G)

mean C(G − M)/(MG) 0
variance C(G2 + M2)/(MG)2 2CG−2

skewness 2C−1/2(G3 − M3)/(G2 + M2)3/2 0
kurtosis 3(1 + 2C−1(G4 + M4)/(M2 + G2)2) 3(1 + C−1)

Origin

The class of VG distributions was introduced by Madan and Seneta (1987) in the late
1980s as a model for stock returns. They considered (along with Madan and Seneta
(1990) and Madan and Milne (1991)) the symmetric case (θ = 0). Madan et al. (1998)
treated the general case with skewness.

5.3.8 The Normal Inverse Gaussian Process

Definition

The Normal Inverse Gaussian (NIG) distribution with parameters α > 0, −α < β <

α and δ > 0, NIG(α, β, δ), has a characteristic function (see Barndorff-Nielsen 1995)
given by

φNIG(u; α, β, δ) = exp(−δ(
√

α2 − (β + iu)2 −√
α2 − β2)).

Again, we can clearly see that this is an infinitely divisible characteristic function.
Hence we can define the NIG process

X(NIG) = {X(NIG)
t , t � 0}

with X
(NIG)
0 = 0 stationary and independent NIG distributed increments. To be

precise, X
(NIG)
t has an NIG(α, β, tδ) law.

The Lévy measure for the NIG process is given by

νNIG(dx) = δα

π

exp(βx)K1(α|x|)
|x| dx,

where Kλ(x) denotes the modified Bessel function of the third kind with index λ (see
Appendix A).

An NIG process has no Brownian component and its Lévy triplet is given by
[γ, 0, νNIG(dx)], where

γ = 2δα

π

∫ 1

0
sinh(βx)K1(αx) dx.
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The density of the NIG(α, β, δ) distribution is given by

fNIG(x; α, β, δ) = αδ

π
exp(δ

√
α2 − β2 + βx)

K1(α
√

δ2 + x2)√
δ2 + x2

.

Properties

We can relate the NIG process to an Inverse Gaussian time-changed Brownian motion.
Let W = {Wt, t � 0} be a standard Brownian motion and let I = {It , t � 0} be an
IG process with parameters a = 1 and b = δ

√
α2 − β2, with α > 0, −α < β < α

and δ > 0; then we can show that the stochastic process

Xt = βδ2It + δWIt

is an NIG process with parameters α, β and δ.
If a random variable X is following an NIG(α, β, δ) distribution, we have that −X

is NIG(α, −β, δ) distributed. If β = 0, the distribution is symmetric. This can easily
be seen from the following characteristics of the NIG distribution:

NIG(α, β, δ) NIG(α, 0, δ)

mean δβ/
√

α2 − β2 0

variance α2δ(α2 − β2)−3/2 δ/α

skewness 3βα−1δ−1/2(α2 − β2)−1/4 0

kurtosis 3

(
1 + α2 + 4β2

δα2
√

α2 − β2

)
3(1 + δ−1α−1)

The NIG distributions have semi-heavy tails, in particular

fNIG(x; α, β, δ) ∼ |x|−3/2 exp((∓α + β)x) as x → ±∞,

up to a multiplicative constant.

Origin

The NIG distribution was introduced by Barndorff-Nielsen (1995). See also Barn-
dorff-Nielsen (1997) and Rydberg (1996a,b, 1997a).

5.3.9 The CGMY Process

Definition

The CGMY(C, G, M, Y ) distribution is a four-parameter distribution, with charac-
teristic function

φCGMY(u; C, G, M, Y ) = exp(C�(−Y )((M − iu)Y − MY + (G + iu)Y − GY )).
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The CGMY distribution is infinitely divisible and we can define the CGMY Lévy
process

X(CGMY) = {X(CGMY)
t , t � 0}

as the process which starts at zero, has independent and stationary distributed
increments and in which the increment over a time interval of length s follows
a CGMY(sC, G, M, Y ) distribution; in other words, the characteristic function of
X

(CGMY)
t is given by

E[exp(iuX
(CGMY)
t )] = φCGMY(u; tC, G, M, Y )

= (φCGMY(u; C, G, M, Y ))t

= exp(Ct�(−Y )((M − iu)Y − MY + (G + iu)Y − GY )).

The Lévy measure for the CGMY process is given by

νCGMY(dx) =
{

C exp(Gx)(−x)−1−Y dx, x < 0,

C exp(−Mx)x−1−Y dx, x > 0.

The first parameter of the Lévy triplet equals

γ = C

(∫ 1

0
exp(−Mx)x−Y dx −

∫ 0

−1
exp(Gx)|x|−Y dx

)
.

The range of the parameters is restricted to C, G, M > 0 and Y < 2. Choosing the
Y parameters greater than or equal to two does not yield a valid Lévy measure.

Properties

The following characteristics of the CGMY distribution can easily be calculated:

CGMY(C, G, M, Y )

mean C(MY−1 − GY−1)�(1 − Y )

variance C(MY−2 + GY−2)�(2 − Y )

skewness
C(MY−3 − GY−3)�(3 − Y )

(C(MY−2 + GY−2)�(2 − Y ))3/2

kurtosis 3 + C(MY−4 + GY−4)�(4 − Y )

(C(MY−2 + GY−2)�(2 − Y ))2

The CGMY process is a pure jump process, that is, it contains no Brownian part.
The path behaviour is determined by the Y parameters. If Y < 0, the paths have finite
jumps in any finite interval; if not, the paths have infinitely many jumps in any finite
time interval, i.e. the process has infinite activity. Moreover, if the Y parameters lie
in the interval [1, 2), the process is of infinite variation.
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Special Cases

The VG(C, G, M) distribution. The Variance Gamma distribution/process is a
special case of the CGMY distribution/process. If Y = 0, the CGMY reduces to VG:
CGMY(C, G, M, 0) = VG(C, G, M).

Origin

In order to obtain a more flexible process than the VG process—one allowing finite
activity, infinite activity and infinite variation—the additional parameter Y was intro-
duced by Carr et al. (2002).

In Carr et al. (2002) the above four-parameter case was studied and later generalized
to a six-parameter case in Carr et al. (2003). The C and Y parameters are split into
Cn and Cp and into Yp and Yn, corresponding to the positive (‘p’) and negative (‘n’)
parts in the Lévy measure. We restrict ourselves here to the four-parameter case.

The above family of distributions is also called the KoBoL family by some authors
(after Koponen (1995) and Boyarchenko and Levendorskiı̆ (1999); see also Bouchaud
and Potters (1997), Cont et al. (1997), Matacz (1997) and Boyarchenko and Leven-
dorskiı̆ (2000, 2002b)). Initially, the name (generalized) TLP (truncated Lévy process)
was used. However, Shiryaev remarked it was misleading, and it was then replaced
by the name KoBoL.

5.3.10 The Meixner Process

Definition

The density of the Meixner distribution (Meixner(α, β, δ)) is given by

fMeixner(x; α, β, δ) = (2 cos(β/2))2δ

2απ�(2d)
exp

(
bx

a

)∣∣∣∣�
(

δ + ix

α

)∣∣∣∣
2

,

where α > 0, −π < β < π , δ > 0.
The characteristic function of the Meixner(α, β, δ) distribution is given by

φMeixner(u; α, β, δ) =
(

cos(β/2)

cosh((αu − iβ)/2)

)2δ

.

The Meixner(α, β, δ) distribution is infinitely divisible: φMeixner(u; α, β, δ) =
(φMeixner(u; α, β, δ/n))n. We can thus associate with it a Lévy process, which we
call the Meixner process. More precisely, a Meixner process

X(Meixner) = {X(Meixner)
t , t � 0}

is a stochastic process which starts at zero, i.e. X
(Meixner)
0 = 0, has independent and

stationary increments, and where the distribution of X
(Meixner)
t is given by the Meixner

distribution Meixner(α, β, δt).
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We can show (see Grigelionis 1999) that our Meixner process

X(Meixner) = {X(Meixner)
t , t � 0}

has no Brownian part and a pure jump part governed by the Lévy measure

ν(dx) = δ
exp(βx/α)

x sinh(πx/α)
dx.

The first parameter in the Lévy triplet equals

γ = αδ tan(β/2) − 2δ

∫ ∞

1

sinh(βx/α)

sinh(πx/α)
dx.

Because
∫ +1
−1 |x|ν(dx) = ∞, the process is of infinite variation.

Properties

Moments of all order of this distribution exist. If a random variable X is following
a Meixner(α, β, δ) distribution, we have that −X is Meixner(α, −β, δ) distributed.
Next, we give some relevant quantities for the general case and the symmetric case
around zero, i.e. with β = 0:

Meixner(α, β, δ) Meixner(α, 0, δ)

mean αδ tan(β/2) 0

variance 1
2α2δ(cos−2(β/2)) 1

2α2δ

skewness sin(β/2)
√

2/δ 0

kurtosis 3 + (2 − cos(β))/δ 3 + 1/δ

We can clearly see that the kurtosis of the Meixner distribution is always greater than
the Normal kurtosis, which always equals 3.

The Meixner(α, β, δ) distribution has semi-heavy tails (see Grigelionis 2000),

fMeixner(x; α, β, δ) ∼
{

C−|x|ρ− exp(−η−|x|) as x → −∞,

C+|x|ρ+ exp(−η+|x|) as x → +∞,

where

ρ− = ρ+ = 2δ − 1, η− = (π − β)/α, η+ = (π + β)/α.

and for some C−, C+ � 0.
The Meixner process is related to the process studied by Biane et al. (2001) (see

also Pitman and Yor 2000),

χt = 2

π2

∞∑
n=1

�n,t

(n − 1/2)2 ,
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for a sequence of independent Gamma Processes (with a = 1 and b = 1) �n,t , i.e. a
Lévy process with E[exp(iθ�n,t )] = (1 − iθ)−t .

Biane et al. (2001) showed that χt has characteristic function

E[exp(iuχt )] =
(

1

cosh
√−2ui

)t

.

Let W = {Wt, t � 0} be a standard Brownian motion, then the Brownian time change
Wχt has characteristic function

E[exp(iuWχt )] =
(

1

cosh u

)t

,

or, equivalently, Wχt follows a Meixner(2, 0, t) distribution.

Origin

The Meixner process was introduced in Schoutens and Teugels (1998) (see also
Schoutens 2000) and Grigelionis (1999) later suggested that it serve for fitting stock
returns. This application to finance was worked out in Schoutens (2001, 2002).

The Meixner process originates from the theory of orthogonal polynomials. The
Meixner(1, 2ζ − π, δ) distribution is the measure of orthogonality of the Meixner–
Pollaczek polynomials {Pn(x; δ, ζ ), n = 0, 1, . . . } (for a definition see Koekoek and
Swarttouw (1998) or Appendix A). Moreover, the monic (i.e. with leading coefficient
equal to 1) Meixner–Pollaczek polynomials {P̃n(x; δ, ζ ), n = 0, 1, . . . } are martin-
gales for the Meixner process (α = 1, δ = 1, ζ = (β + π)/2):

E[P̃n(X
(Meixner)
t ; t, ζ ) | X(Meixner)

s ] = P̃n(X
(Meixner)
s ; s, ζ ).

Note the similarity with the classical martingale relation between the standard Brow-
nian motion {Wt, t � 0} and the Hermite polynomials {Hn(x; σ), n = 0, 1, . . . } (see
Schoutens (2000) or Appendix A for a definition):

E[H̃n(Wt ; t) | Ws] = H̃n(Ws; s).

The Meixner distribution is a special case of the Generalized z (GZ) distributions,
which were later defined in Grigelionis (2000) and have a characteristic function of
the form,

φGZ(u; α, β1, β2, δ) =
(

B(β1 + iαu/2π, β2 − iαu/2π)

B(β1, β2)

)2δ

,

where α, β1, β2, δ > 0. For

β1 = 1

2
+ β

2π
and β2 = 1

2
− β

2π
,

we obtain the Meixner process.
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5.3.11 The Generalized Hyperbolic Process

Definition

The Generalized Hyperbolic (GH) distribution GH(α, β, δ, v) is defined in Barndorff-
Nielsen (1977) through its characteristic function,

φGH(u; α, β, δ, v) =
(

α2 − β2

α2 − (β + iu)2

)v/2 Kv(δ
√

α2 − (β + iu)2)

Kv(δ
√

α2 − β2)
,

where Kv is the modified Bessel function (see Appendix A).
The density of the GH(α, β, δ, v) distribution is given by

fGH(x; α, β, δ, v) = a(α, β, δ, v)(δ2 + x2)(v−1/2)/2Kv−1/2(α
√

δ2 + x2) exp(βx),

a(α, β, δ, v) = (α2 − β2)v/2

√
2παv−1/2δvKv(δ

√
α2 − β2)

,

where

δ � 0, |β| < α if v > 0,

δ > 0, |β| < α if v = 0,

δ > 0, |β| � α if v < 0.

The GH distribution turns out to be infinitely divisible (see Barndorff-Nielsen and
Halgreen 1977) and we can define a GH Lévy process X(GH) = {X(GH)

t , t � 0} as the
stationary process which starts at zero and has independent increments and where the
distribution of X

(GH)
t has characteristic function,

E[exp(iuX
(GH)
t )] = (φGH(u; α, β, δ, v))t .

The Lévy measure ν(dx) for the GH process is rather involved:

ν(dx) =




exp(βx)

|x|
(∫ ∞

0

exp(−|x|√2y + α2)

π2y(J2
v(δ

√
2y) + N2

v(δ
√

2y))
dy + v exp(−α|x|)

)
,

v � 0,

exp(βx)

|x|
∫ ∞

0

exp(−|x|√2y + α2)

π2y(J2−v(δ
√

2y) + N2−v(δ
√

2y))
dy, v < 0,

where the functions Jv and Nv are the Bessel functions defined in Appendix A.

Properties

The GH distributions have semi-heavy tails, in particular,

fGH(x; α, β, δ, v) ∼ |x|v−1 exp((∓α + β)x) as x → ±∞,

up to a multiplicative constant.
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The generalized hyperbolic distribution has the following mean and variance:

GH(α, β, δ, v)

mean βδ(α2 − β2)−1Kv+1(ζ )K−1
v (ζ )

variance δ2
(

Kv+1(ζ )

ζKv(ζ )
+ β2

α2 − β2

(
Kv+2(ζ )

Kv(ζ )
− K2

v+1(ζ )

K2
v(ζ )

))

where ζ = δ
√

α2 − β2.
The GH distribution can also be represented as a Normal variance-mean mixture:

fGH(x; α, β, δ, v) =
∫ ∞

0
fNormal(x; µ + βw, w)fGIG(w; v, δ,

√
α2 − β2) dw.

Special Cases

Some of the above processes are special cases of the GH process.

The Variance Gamma Process. This process can be obtained from the GH pro-
cesses by taking v = σ 2/ν, α = √

(2/ν) + (θ2/σ 4), β = θ/σ 2 and δ → 0.

The Hyperbolic Process. For v = 1, we obtain the Hyperbolic process (HYP),
where X

(HYP)
1 is following the Hyberbolic distribution HYP(α, β, δ) with character-

istic function:

φHYP(u; α, β, δ) =
(

α2 − β2

α2 − (β + iu)2

)1/2 K1(δ
√

α2 − (β + iu)2)

K1(δ
√

α2 − β2)
.

The density reduces to

fHYP(x; α, β, δ) =
√

α2 − β2

2δαK1(δ
√

α2 − β2)
exp(−α

√
δ2 + x2 + βx).

The Normal Inverse Gaussian Process. For v = −1/2 we obtain the Normal
Inverse Gaussian process: we have GH(α, β, δ, −1/2) = NIG(α, β, δ).

Origin

The GH distributions were introduced by Barndorff-Nielsen (1977) as a model for
the grain-size distribution of wind-blown sand. Two subclasses of the GH distribution
were first used to model financial data. Eberlein and Keller (1995) used the Hyper-
bolic distribution and in the same year Barndorff-Nielsen (1995) proposed the NIG
distribution. Eberlein and Prause (1998) and Prause (1999) finally studied the whole
family of GH distributions as a model to describe the log returns of some financial
asset. For an overview of the GH distribution and its limiting cases, see Eberlein
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and v. Hammerstein (2002). The Hyperbolic Model is also investigated in Bingham
and Kiesel (2001a,b). For semi-parametric generalizations, see Bingham and Kiesel
(2002).

5.4 Adding an Additional Drift Term

In the above VG, NIG, CGMY, Meixner and GH cases, an additional ‘drift’or location
parameter m ∈ R can be introduced. This parameter will play some special role in the
risk-neutral modelling of our risky asset. Essentially, the transformation is completely
of the same manner as the one which transforms a Normal(0, σ 2) random variable
into a Normal(m, σ 2) random variable. Moreover, this extension does not influence
the infinite divisibility property nor the self-decomposability of the distribution. Only
in this section we will denote the original process by X̄ and the newly obtained one by
X. The same notation will be used for the characteristic function and the ingredients
of the Lévy triplet.

The (extended) distribution in the Meixner case is denoted by Meixner(α, β, δ, m).
For other distributions the new parameter will give rise to distributions we denote
by VG(σ, ν, θ, m) (or VG(C, G, M, m)), NIG(α, β, δ, m), CGMY(C, G, M, Y, m),
GH(α, β, δ, v, m).

The new distribution has a characteristic function φ in terms of the original char-
acteristic function φ̄:

φ(u) = φ̄(u) exp(ium).

This new parameter is just a translation by the value m ∈ R of the distribution. In
terms of the process this means a term mt is added to the process X̄, i.e.

Xt = X̄t + mt.

This is reflected only in the first parameter of the Lévy triplet, which now equals

γ = γ̄ + m, σ 2 = σ̄ 2, ν(dx) = ν̄(dx).

In terms of density functions this comes down to

f (x) = f̄ (x − m).

In Figure 5.1 we can clearly see that the density of the Meixner distribution (α = 1,
β = 0, δ = 1) is just shifted with a value m.

5.5 Examples of OU Processes

Next, we list some examples of OU processes y = {yt , t � 0}. The BDLP is denoted
by z = {zt , t � 0}. Recall that k(u) = kz(u) = log E[exp(−uz1)] is the cumulant
function of z1. For our financial models, we will only make use of the Gamma–
OU processes and the IG–OU processes but here we also list other examples for
completeness.
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Figure 5.1 The role of the m parameter.

5.5.1 The Gamma–OU Process

The Gamma(a, b) process has a Lévy density (living on the positive real line) given by
u(x) = a exp(−bx)/x1(x>0). Using the criterion (5.3), the Gamma(a, b) distribution
is clearly self-decomposable. Using relation (5.5), the corresponding BDLP z has
Lévy density

w(x) = ab exp(−bx)1(x>0).

The associated cumulant function is given by

k(u) = −au(b + u)−1.

From this we can easily derive that the BDLP for the Gamma(a, b)–OU process is
a compound Poisson process, i.e.

zt =
Nt∑

n=1

xn,

where N = {Nt, t � 0} is a Poisson process with intensity parameter a, i.e. E[Nt ] =
at and {xn, n = 1, 2, . . . } is an independent and identically distributed sequence;
each xn follows a Gamma(1, b) law. Since the BDLP is compound Poisson, it only
jumps a finite number of times in every compact interval. Hence, the Gamma–OU
process also jumps a finite number of times in every compact (time) interval.
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In the Gamma–OU case the characteristic function of the intOU process Yt =∫ t

0 ys ds can be given explicitly:

φGamma–OU(u, t; λ, a, b, y0)

= E[exp(iuYt ) | y0]
= exp(iuy0λ

−1(1 − exp(−λt)))

× exp

(
λa

iu − λb

(
b log

(
b

b − iuλ−1(1 − exp(−λt))

)
− iut

))
.

The inverse tail mass function can also be made explicit in this case. Since W+(x) =
a exp(−bx), its inverse can be analytically expressed as

W−1(x) = max{0, −b−1 log(x/a)}.

5.5.2 The IG–OU Process

Similarly as in the Gamma case, it follows from the Lévy density of the IG(a, b)

process,
u(x) = (2π)−1/2ax−3/2 exp(− 1

2b2x)1(x>0),

that the IG(a, b) distribution is self-decomposable and that the Lévy density of the
corresponding BDLP is

w(x) = (2π)−1/2 1
2a(x−1 + b2)x−1/2 exp(− 1

2b2x)1(x>0).

The corresponding cumulant function is given by

k(u) = −uab−1(1 + 2ub−2)−1/2.

From the above expressions, it can be derived (see, for example, Barndorff-Nielsen
1998) that in the case of the IG(a, b)–OU process the BDLP is a sum of two inde-
pendent Lévy processes z = z(1) + z(2) = {zt = z

(1)
t + z

(2)
t , t � 0}, where z(1) is an

IG–Lévy process with parameters a/2 and b, while z(2) is of the form,

z
(2)
t = b−2

Nt∑
n=1

v2
n,

where N = {Nt, t � 0} is a Poisson process with intensity parameter ab/2, i.e.
E[Nt ] = abt/2, and {vn, n = 1, 2, . . . } is an independent and identically distributed
sequence; each vn follows a Normal(0, 1) law independent from the Poisson process
N . Since the BDLP (via z(1)) jumps infinitely often in every finite (time) interval, the
IG–OU process also jumps infinitely often in every interval.
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In the IG–OU case the characteristic function of the intOU process Yt = ∫ t

0 ys ds

can be given explicitly. The following expression was independently derived by Nico-
lato and Venardos (2003) and Tompkins and Hubalek (2000),

φIG–OU(u, t; λ, a, b, y0) = E[exp(iuYt ) | y0]
= exp

(
iuy0

λ
(1 − exp(−λt)) + 2aiu

bλ
A(u, t)

)
,

where

A(u, t) = 1 −√
1 + κ(1 − exp(−λt))

κ

+ 1√
1 + κ

(
artanh

(√
1 + κ(1 − exp(−λt))√

1 + κ

)
− artanh

(
1√

1 + κ

))
,

κ = −2b−2iu/λ.

5.5.3 Other Examples

Here we list a series of other distributions which are self-decomposable and as such
for which there exists an OU process driven by a BDLP (not necessary a subordinator).

The TS–OU Process

It follows from the Lévy density of the TS(κ, a, b) process,

u(x) = a2κ κ

�(1 − κ)
x−κ−1 exp(− 1

2b1/κx)1(x>0),

that the TS(κ, a, b) distribution is self-decomposable. The Lévy density and cumulant
function of the BDLP are given by, respectively,

w(x) = a2κ κ

�(1 − κ)
(κx−1 + 1

2b1/κ )x−κ exp(− 1
2b1/κx)1(x>0),

k(u) = −2ua2κκb−1(b2 + 2u)κ−1.

This shows (see Barndorff-Nielsen and Shephard 2003a) that the BDLP of the TS–
OU process is the sum of a TS(κ, κa, b) Lévy process z(1) plus a compound Poisson
process z(2), with Lévy density

a2κ−1 κ

�(1 − κ)
b1/κx−κ exp(− 1

2b1/κx)1(x>0),

or, in other words,

z
(2)
t =

Nt∑
k=1

xi, t � 0,

where Nt is a Poisson process with intensity parameter abκ and xi are independent
Gamma(1 − κ, b1/κ/2) random variables.
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The Meixner–OU Process

The Meixner(α, β, δ, m) is self-decomposable (see Grigelionis 1999). We have

w(x) = δλ((π − β) exp((β + π)x/α)

+ (π + β) exp((β − π)x/α))(sinh(πx/α))−2,

k(u) = αδλu tan((αu − β)/2) − λm.

The Meixner–OU process is not driven by a BDLP that is a subordinator. The BDLP
has a Lévy density that lives over the whole real line. This means that the Meixner–OU
process (and its BDLP) can jump upwards and downwards.

The NIG–OU Process

The NIG(α, β, δ) is self-decomposable (see Barndorff-Nielsen 1998). We have

w(x) = π−1δα[(|x|−1 − β sgn(x))K1(α|x|) + αK0(α|x|)] exp(βx).

Thus, the NIG–OU process is also not driven by a BDLP that is a subordinator. The
BDLP has a Lévy density that lives over the whole real line and the NIG–OU process
(and its BDLP) can jump upwards and downwards.

Since, if a random variable X is following an NIG(α, β, δ) distribution, we have
that −X is NIG(α, −β, δ) distributed; we assume here β > 0.

In this case Barndorff-Nielsen (1998) proved that the BDLP z is the sum of three
independent Lévy processes:

z = z(1) + z(2) + z(3) = {zt = z
(1)
t + z

(2)
t + z

(3)
t , t � 0}.

Let ρ = β/α.
The first process z(1) is the NIG Lévy processes with an NIG(α, β, (1 − ρ)δ) law

at time 1, the second process z(2) has the form,

z(2) = 1

α
√

1 − ρ2

Nt∑
n=1

(v2
n − ṽ2

n),

where N = {Nt, t � 0} denotes a Poisson process with intensity parameter

1

δα
√

(1 − ρ)/(1 + ρ)

and {vn, n = 1, 2, . . . } and {ṽn, n = 1, 2, . . . } are independent standard Nor-
mally, i.e. Normal(0, 1), distributed sequences independent of the Poisson process
N . Finally, the moment-generating function ϑ(u) = E[exp(uz

(3)
t )] of the third pro-

cess z(3) is given by

ϑ(u) = exp(tρδ(β
√

(α − β)/(α + β) − (u + β)
√

(α − u − β)/(α + u + β))).



6

Stock Price Models Driven by
Lévy Processes

In this chapter we will try to model stock-price behaviour by a more sophisticated
stochastic process than the Brownian motion of the Black–Scholes model. The stock-
price dynamics are now driven by a Lévy process. The stock-price behaviour is now
modelled as the exponential of a Lévy process. We are able to take into account
skewness and excess kurtosis and show that we can fit very accurately our underlying
distributions to historical data. Next, we will price European options under this model.
Unfortunately, as in the most realistic models, there is no unique equivalent martin-
gale measure: the proposed Lévy models are incomplete. We thus need to choose an
equivalent martingale measure to price our options. We look at two different possi-
bilities: the Esscher transform martingale measure and a mean-correcting martingale
measure. Finally, we will try to calibrate our model to a set of option prices avail-
able in the market. We clearly observe a significant improvement with respect to the
Black–Scholes model.

6.1 Statistical Testing

We fit the Meixner distribution to several datasets, which we have already encountered
in Chapter 4, of daily log returns of popular indices. By this we illustrate that the more
flexible distributions, such as the Meixner, the VG, the NIG, the CGMY and the GH,
are more suitable than the Normal distribution. Similar fits can, for example, be found
for the Hyperbolic distribution in Eberlein and Keller (1995).

6.1.1 Parameter Estimation

Here we focus on how to estimate the parameters of a density function. Denote the
density function by f (x; θ); θ is the set of unknown parameters to be estimated.

Lévy Processes in Finance: Pricing Financial Derivatives. Wim Schoutens
Copyright  2003 John Wiley & Sons, Ltd.

ISBN: 0-470-85156-2
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We assume that we have n independent observations x1, . . . , xn of a random vari-
able X. Typically, these observations will be the log returns of our financial asset. From
these observations we would like to deduce reasonable estimators for the parameter
set θ . Note that under a Lévy process setting, the log returns over nonoverlapping
intervals of fixed length (typically, one day) will be independent and identically dis-
tributed. Sometimes, ad hoc methods can also deliver reasonable estimators. However,
we give an overview of the classical maximum-likelihood estimation method.

Maximum-Likelihood Estimators

The maximum-likelihood estimator (MLE) θ̂MLE is the parameter set that maximizes
the likelihood function

L(θ) =
n∏

i=1

f (xi; θ).

Thus, we choose values for the parameters that maximize the chance (or likelihood)
of the data occurring.

Maximizing an expression is equivalent to maximizing the logarithm of the expres-
sion, and this is sometimes easier. So, we sometimes maximize instead the log like-
lihood function,

log L(θ) =
n∑

i=1

log f (xi; θ).

To maximize the (log)-likelihood function, we often have to rely on numerical
procedures; however, in a few cases these estimators can be calculated explicitly. The
MLE estimators for the mean and variance of the Normal distribution are given by
the sample mean and sample variance:

µ̂MLE = 1

n

n∑
i=1

xi, σ̂ 2
MLE = 1

n

n∑
i=1

x2
i −

(
1

n

n∑
i=1

xi

)2

.

6.1.2 Statistical Testing

Density and Log Density Fits

Figure 6.1 shows the Gaussian kernel density estimator based on the daily log returns
of the S&P 500 Index over the period from 1970 until the end of 2001, together with
the fitted Meixner distribution, with parameters from Table 6.1. Compared with Fig-
ure 4.1, in which the Normal counterpart was plotted, we see a significant improve-
ment. Note also that the Meixner distribution has semi-heavy tails and as such is
capable of also fitting the tail behaviour quite well. This can be seen from the log
density plot in Figure 6.1.
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Figure 6.1 (a) Meixner density and Gaussian kernel density estimators and
(b) log densities of the daily log returns of the S&P 500 Index.

Table 6.1 Meixner χ2-test: MLE parameters and P -values.

Index a b d m PMeixner-value

S&P 500 (1970–2001) 0.0204 −0.0829 0.4140 0.0006 0.4754
S&P 500 (1997–1999) 0.0198 −0.1166 0.6923 0.0017 0.4880
DAX 0.0331 −0.0967 0.4617 0.0023 0.4937
Nasdaq-Composite 0.0301 −0.0732 0.5414 0.0020 0.1932
CAC-40 0.0252 −0.1936 0.6316 0.0029 0.2473
SMI 0.0307 −0.1231 0.4306 0.0021 0.4431

χ2-Tests

For the χ2-tests we take the same intervals as when we were testing the Normal dis-
tribution in Chapter 4. Parameters are estimated by the MLE method. In the Meixner
case, four parameters have to be estimated, so we take n − 5 degrees of freedom (n
is the number of observations).

Table 6.1 shows the values of the P -values of the χ2-test statistic with equal width
for the Meixner null hypothesis. Recall that we reject the hypothesis if the P -value is
less than our level of significance, which we take to be 0.05, and accept it otherwise.

We see that the Meixner hypothesis is accepted and yields a very high P -value.
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6.2 The Lévy Market Model

Instead of modelling the log returns with a Normal distribution, we now replace it
with a more sophisticated infinitely divisible distribution. So, let X = {Xt, t � 0} be
a Lévy process. We assume that our market consists of one riskless asset (the bond),
with a price process given by Bt = exp(rt), and one risky asset (the stock or index).
The model for the risky asset is

St = S0 exp(Xt ).

The log returns log(St+s/St ) of such a model follow the distribution of increments of
length s of the Lévy process X.

In the literature several particular choices for the Lévy processes have been studied
in detail. Madan and Seneta (1987, 1990) have proposed a VG Lévy process. Eberlein
and Keller (1995) proposed the Hyperbolic Model, and Barndorff-Nielsen (1995)
the NIG model. These three models were brought together as special cases of the
Generalized Hyperbolic Model, which was developed by Eberlein and co-workers in
a series of papers (Eberlein and Prause 1998; Eberlein et al. 1998; Prause 1999). Carr
et al. (2002) introduced the CGMY model; this family of distributions is also called
the KoBoL family by some authors, referring to Koponen (1995) and Boyarchenko
and Levendorskiı̆ (1999) (see also Bouchaud and Potters 1997; Boyarchenko and
Levendorskiı̆ 2000, 2002b; Cont et al. 1997; Matacz 1997). Finally, the Meixner
model was used in Schoutens (2001).

An accessible introduction, together with theoretical motivations to this Lévy mar-
ket, can be found in, for example, Geman (2002). Some theoretical motivation for
considering Lévy processes in finance can also be found in Leblanc and Yor (1998).

Note that since the law of Xt is infinitely divisible, it can be expressed for every n

as the sum of n independent identically distributed random variables, with the law of
Xt/n as a common law. This is to be compared with the widely cited motivation for
modelling stock returns by the Gaussian distribution, namely, that this distribution is
a limiting distribution of sums of n independent random variables (up to a scaling
factor), which may be viewed as representing the effects of various shocks in the
economy.

Diffusion Component

Geman et al. (2001) have suggested that while price processes for financial assets
must have a jump component they need not have a diffusion component. Jumps are
necessary in order to capture the large moves that occasionally occur. The explanation
usually given for the use of a diffusion component is that it captures the small moves
which occur much more frequently. However, most of the above-mentioned pure
jump models are infinite activity Lévy processes, i.e. with

∫ +∞
−∞ ν(dx) = ∞, and they

are able to capture both rare large moves and frequent small moves. High activity
is accounted for by a large (in most cases infinite) number of small jumps. The
empirical performance of these models is typically not improved by adding a diffusion
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component for returns. Thus, we mainly focus on the case where we take for X a pure
jump process, i.e. with no Brownian component (σ = 0).

6.2.1 Market Incompleteness

From the PRP for Lévy processes (see Chapter 5), we see that, except when X is
a Poisson process or a Brownian motion, our Lévy market model is an incomplete
model. Note that the Poissonian case makes no sense economically, since a Poisson
process has only up-jumps of size one.

The predictable integrands a(i), i = 1, 2, . . . , appearing in the PRP can be obtained
explicitly by solving PDEs (see Nualart and Schoutens 2001) or by using Mallivan
calculus (see Benth et al. 2003; Di Nunno 2001; Di Nunno et al. 2002; Løkka 2001;
Øksendal and Proske 2002). Applying the representation for a contingent claim, these
a(i) can be interpreted in terms of (minimal-variance) hedging strategies. The pro-
cesses a(i), i = 2, 3, . . . , together correspond to the risk that cannot be hedged away.
The term a(1) leads to the strategy that realizes the ‘closest’ hedge to the claim.

Leon et al. (2002) approximate the Lévy process by a sum of a Brownian motion
and a countable number of compensated Poisson processes (see Section 8.2). They
then introduce enough additional securities to complete the market. Via Malliavin
calculus and more precisely by applying the Clark–Ocone–Haussman formula, they
calculate the hedging portfolio in the approximated market.

In our Lévy market there are many different equivalent martingales measures to
choose. In general this leads to many different possible prices for European options.
Eberlein and Jacod (1997) prove that, for models based on an infinite-variation Lévy
process, the range of call option prices that can be calculated in this way is the whole
no-arbitrage interval. The boundaries of this interval are given by the condition that
if the price lies beyond either of these boundaries, there is a simple buy/sell-and-hold
strategy that allows a riskless arbitrage.

6.2.2 The Equivalent Martingale Measure

We focus on two ways to find an equivalent martingale measure.

The Esscher Transform

Following Gerber and Shiu (1994, 1996), we can by using the so-called Esscher
transform find in some cases at least one equivalent martingale measure Q.

Let ft (x) be the density of our model’s (real world, i.e. under P ) distribution of
Xt . For some real number θ ∈ {θ ∈ R | ∫ +∞

−∞ exp(θy)ft (y) dy < ∞} we can define
a new density

f
(θ)
t (x) = exp(θx)ft (x)∫ +∞

−∞ exp(θy)ft (y) dy
. (6.1)
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Now we choose θ such that the discounted price process {exp(−(r − q)t)St , t � 0}
is a martingale, i.e.

S0 = exp(−(r − q)t)E(θ)[St ], (6.2)

where expectation is taken with respect to the law with density f
(θ)
t (x). Let φ(u) =

E[exp(uiX1)] denote the characteristic function of X1. Then from (6.2) it can be
shown that in order to let the discounted price process be a martingale, we need to
have

exp(r − q) = φ(−i(θ + 1))

φ(−iθ)
. (6.3)

The solution of this equation, θ∗ say, gives us the Esscher transform martingale
measure through the density function f

(θ∗)
t (x).

The choice of the Esscher measure among the set of possible other equivalent
martingale measures may be justified by a utility-maximizing argument (see Gerber
and Shiu 1996). For a discussion of the Esscher transform for specific classes of
semi-martingales with applications in finance and insurance, see Bühlmann et al.
(1996).

Finally, we note that if φ is the characteristic function and [γ, σ 2, ν(dx)] the Lévy
triplet of X1, then the characteristic function φ(θ) of the Esscher transformed measure
is given by

log φ(θ)(u) = log φ(u − iθ) − log φ(−iθ).

Moreover, this law remains infinitely divisible and its Lévy triplet

[γ (θ), (σ (θ))2, ν(θ)(dx)]
is given by

γ (θ) = γ + σ 2θ +
∫ 1

−1
(exp(θx) − 1)ν(dx),

σ (θ) = σ,

ν(θ)(dx) = exp(θx)ν(dx).

Examples

The Normal distribution. First we note that in the Black–Scholes world the histori-
cal measure of the log returns over a period of length 1 follows a Normal(µ − 1

2σ 2, σ 2)

law and thus in this case φ(u) = exp(iu(µ − 1
2σ 2) − σ 2u2/2). So, (6.3) becomes

r − q = µ − 1
2σ 2 + 1

2σ 2(2θ + 1),

or
θ∗ = (r − q − µ)/σ 2.

The density function in the risk-neutral world is then given by

f
(θ∗)
1 (x) = f (θ∗)(x) = exp(θ∗x − (x − µ + 1

2σ 2)2/(2σ 2))∫ +∞
−∞ exp(θ∗y − (y − µ + 1

2σ 2)2/(2σ 2)) dy
.
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After some obvious simplifications, it can be seen that this is the density function of a
Normal(r − q − 1

2σ 2, σ 2) distribution, as could be expected from the Black–Scholes
theory.

The Meixner distribution. If log returns (under P ) follow a Meixner(α, β, δ, m)

law, then with the Esscher transform our equivalent martingale measure Q follows
a Meixner(α, αθ∗ + β, δ, m) distribution (see Grigelionis 1999; Schoutens 2001),
where θ∗ is given by

θ∗ = −1

α

(
β + 2 arctan

(− cos(α/2) + exp((m − r + q)/(2δ))

sin(α/2)

))
.

The NIG distribution. If log returns under our historical (real world) measure P

follow an NIG(α, β, δ, m) law, (6.3) reduces to

r − q = m + δ(
√

α2 − (β + θ)2 −√
α2 − (β + θ + 1)2)

and our equivalent martingale measureQ follows an NIG(α, θ∗+β, δ, m)distribution.

The GH distribution. This case is rather complicated. However, the Esscher trans-
form can be obtained numerically by applying Fourier inversion techniques. We refer
to Prause (1999).

The Mean-Correcting Martingale Measure

Although the Esscher transform is sometimes easy to obtain, it is not clear that in
reality the market chooses this kind of (exponential) transform. Another way to obtain
an equivalent martingale measure Q is by mean correcting the exponential of a Lévy
process. This can be done by the special parameter m, to which we devoted Section 5.4.
First we estimate in some way all the parameters involved in the process; then we
change the m parameter in an appropriate way such that the discounted stock-price
process becomes a martingale. Recall that in the Black–Scholes model the mean µ−
1
2σ 2 (i.e. the mold parameter) of the Normal distribution was changed into r−q− 1

2σ 2

(the mnew parameter). Here we do exactly the same; we take the mnew parameter to
be

mnew = mold + r − q − log φ(−i),

where φ(x) is the characteristic function of the log return involving the mold parameter.
Note that in the Black–Scholes model log φ(−i) = µ. This choice of mnew will imply
that our discounted stock price S̃ = {S̃t = exp(−(r − q)t)St , t � 0} is a martingale.

In Table 6.2, we list the mnew parameters (i.e. leading to a risk-neutral setting) for
the different models.

Note also that we can proceed as follows. First estimate in some way the parameters
of the process with the m parameter fixed at 0. Then introduce, as in Chapter 5, a
parameter m as a function of the estimated parameters (see Table 6.2).
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Table 6.2 The m parameter for the mean-correcting equivalent martingale measure.

Model mnew

CGMY r − q − C�(−Y )((M − 1)Y − MY + (G + 1)Y − GY )

VG r − q + C log((M − 1)(G + 1)/(MG))

NIG r − q + δ(
√

α2 − (β + 1)2 −
√

α2 − β2)

Meixner r − q − 2δ(log(cos(β/2)) − log(cos((α + β)/2)))

GH r − q − log

((
α2 − β2

α2 − (β + 1)2

)v/2 Kv(δ
√

α2 − (β + 1)2)

Kv(δ
√

α2 − β2)

)

6.2.3 Pricing Formulas for European Options

Given our market model, we focus now on the pricing of European options for which
the payoff function is only a function of the terminal stock price, i.e. the stock price
ST at maturity T : G(ST ) denotes the payoff of the derivative at its time of expiry T .
Write F(XT ) = G(S0 exp(XT )). In the case of the European call with strike price
K , we have G(ST ) = (ST − K)+ and F(XT ) = (S0 exp(XT ) − K)+.

Pricing Through the Density Function

For a European call option with strike price K and time to expiration T , the value
at time 0 is therefore given by the expectation of the payoff under the martingale
measure Q:

EQ[exp(−rT ) max{ST − K, 0}].
If we take for Q the Esscher transform equivalent martingale measure, this expectation
can be written as

exp(−qT )S0

∫ ∞

c

f
(θ∗+1)
T (x) dx − exp(−rT )K

∫ ∞

c

f
(θ∗)
T (x) dx, (6.4)

where c = ln(K/S0). Similar formulas can be derived for other derivatives with a
payoff function, G(ST ) = G(S0 exp(XT )) = F(XT ), which depends only on the
terminal value at time t = T .

Pricing through the Lévy Characteristics

In all cases where the underlying process is a Lévy process (for simplicity without a
Brownian component) in the risk-neutral world and the price Vt = V (t, Xt ) at time
t of a given derivative satisfies some regularity conditions (i.e. V (t, x) ∈ C(1,2)), the
function V (t, x) can also be obtained by solving a partial differential integral equation
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Figure 6.2 Meixner (mean-correcting) calibration of S&P 500 options
(circles are market prices, pluses are model prices).
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Figure 6.3 CGMY (mean-correcting) calibration of S&P 500 options
(circles are market prices, pluses are model prices).
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Table 6.3 Lévy models (mean correcting): parameter estimation.

Model Parameters

C G M Y

CGMY 0.0244 0.0765 7.5515 1.2945

α β δ v

GH 3.8288 −3.8286 0.2375 −1.7555

C G M

VG 1.3574 5.8704 14.2699

α β δ

NIG 6.1882 −3.8941 0.1622

α β δ

Meixner 0.3977 −1.4940 0.3462

(PDIE) with boundary condition, all in terms of the Lévy characteristics,

rV (t, x) = γ
∂

∂x
V (t, x) + ∂

∂t
V (t, x)

+
∫ +∞

−∞
(V (t, x + y) − V (t, x) − y

∂

∂x
V (t, x))νQ(dy),

V (T , x) = F(x),

where [γ, 0, νQ(dy)] is the triplet of Lévy characteristics of the Lévy process under
the risk-neutral measure Q. This PDIE is the analogue of the famous Black–Scholes
PDE (3.5) and follows from the Feynman–Kac formula for Lévy processes. It was
derived in Nualart and Schoutens (2001) and Raible (2000).

Pricing through the Characteristic Function

In Chapter 2, the pricing method for European call options of Carr and Madan (1998)
was given. It can be applied in general when the characteristic function of the risk-
neutral log stock-price process is known.

Note that the expected value in (v) of (2.4) is the characteristic function (in the
value (v − (α + 1)i)) of the logarithm of the stock price log(ST ) in the risk-neutral
world at maturity. Since we are modelling our asset as an exponential of a Lévy
process, we need only the characteristic function of our Lévy process at time T .

6.3 Calibration of Market Option Prices

The parameters which should resemble the market’s view on the asset can be found
through a calibration procedure on the market’s option prices themselves. Here we
do not explicitly take into account any historical data. All necessary information is
contained in today’s option prices, which we observe in the market. We estimate the
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Table 6.4 Lévy models (mean-correcting): APE, AAE, RMSE, ARPE.

Model APE (%) AAE RMSE ARPE (%)

BS 8.87 5.4868 6.7335 16.92

CGMY 3.38 2.0880 2.7560 4.96
GH 3.60 2.2282 2.8808 5.46
VG 4.67 2.8862 3.5600 7.56
NIG 3.97 2.4568 3.1119 6.17
Meixner 4.19 2.5911 3.2451 6.71

model parameters by minimizing the root-mean-square error between the market’s
and the model’s prices.

If we choose the mean-correcting equivalent martingale measure, we obtain a cali-
bration for the Meixner and the CGMY models in Figures 6.2 and 6.3, respectively. In
Table 6.3 we give the parameters coming from the calibration procedure. In Table 6.4
the relevant values of APE, AAE, RMSE and ARPE are given. Naturally, the four-
parameter models perform better than the three-parameter models. Based on this
calibration, however, it is not possible to say that one model is significantly better
than the other. This calibration is only momentary and we typically see that calibra-
tions to other datasets (of different underliers or on different times in history) can
favour the model that performs worse here.

We see an improvement over the Black–Scholes prices. However, we still observe
a significant difference from real market prices. It is typical that Lévy models incor-
porate by themselves a smile effect as in Figure 4.5 (see, for example, Eberlein et al.
1998; Schoutens 2001), although the effect does not completely correspond with the
market.



7

Lévy Models with
Stochastic Volatility

The main feature missing from the Lévy models described above is the fact that
volatility (or more generally the environment) is changing stochastically over time.
It has been observed that the estimated volatilities (or more generally the parameters
of uncertainty) change stochastically over time and are clustered (see Section 4.2).

There are at least two ways of incorporating a volatility effect. The first method
makes the volatility parameter of the Black–Scholes model stochastic in a suitable
way. This technique has been implemented by Hull and White (1988) and Heston
(1993). Their volatility process is driven by a Brownian motion. We will focus on other
candidates for the stochastic description of this volatility parameter: OU processes for
which the BDLP is a subordinator. This direction originates from a series of papers
by Barndorff-Nielsen, Shephard and co-workers (Barndorff-Nielsen and Shephard
2001a,b, 2003b; Barndorff-Nielsen et al. 2002).

Another way of incorporating a similar effect was proposed by Carr, Madan, Geman
andYor. In Carr et al. (2003) they proposed the following. Increase or decrease the level
of uncertainty by speeding up or slowing down the rate at which time passes. In order
to build clustering and to keep time going forward, employ a mean-reverting positive
process as a measure of the local rate of time change. The basic intuition underlying
this approach arises from the Brownian motion scaling property (see Section 3.2.2),
which relates changes in scale to changes in time. So, random changes in volatility
can alternatively be captured by random changes in time. Candidates for the rate of
time change are again the OU processes or the classical CIR process.

7.1 The BNS Model

In this section we investigate stochastic volatility extensions of the Black–Scholes
model; the volatility follows an OU process driven by a subordinator. These models
are called BNS models after Barndorff-Nielsen and Shephard. Sometimes, we simply
refer to them as Black–Scholes-SV models.

Lévy Processes in Finance: Pricing Financial Derivatives. Wim Schoutens
Copyright  2003 John Wiley & Sons, Ltd.

ISBN: 0-470-85156-2
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Using Itô’s lemma, we can transform the SDE for the stock-price process S =
{St , t � 0} under the Black–Scholes model,

dSt = St (µ dt + σ dW̄t ), S0 > 0,

into an SDE equation for the log stock price Zt = log(St ):

dZt = d log(St ) = (µ − 1
2σ 2) dt + σ dW̄t , log S0 = Z0 = x0.

If we want to take into account the fact that the volatility, i.e. σ , can change over
time in an uncertain way, we can do this by making this parameter stochastic. Thus
we will look for a stochastic process σ 2 = {σ 2

t , t � 0} describing the nervousness of
the market through time.

Moreover, it is often observed that a down-jump in the stock-price corresponds to
an up-jump in volatility. In order to incorporate such a leverage effect, we impose a
dependency structure.

Of particular interest is the model for σ 2 when σ 2 is an OU process (or a super-
position of such processes (see Barndorff-Nielsen 2001)). Such models were intro-
duced in this context by Barndorff-Nielsen and Shephard (2001a). In this case σ 2

satisfies an SDE of the form

dσ 2
t = −λσ 2

t dt + dz̄λt , (7.1)

where z = {z̄t , t � 0} is a Lévy process with positive increments (a subordinator).
We assume that z̄ has no drift and its Lévy measure has a density. Letting

θ̂ = sup{θ ∈ R : log E[exp(θ z̄1)] < +∞},
we assume that

θ̂ > 0 and lim
θ→θ̂

log E[exp(θ z̄1)] = +∞.

The log stock-price process now follows the dynamics,

dZt = d log(St ) = (µ − 1
2σ 2

t ) dt + σt dW̄t + ρ dz̄λt , log S0 = Z0 = x0,

where ρ is a non-positive real parameter which accounts for the positive leverage
effect. The Brownian motion and the BDLP are independent and we take as filtration,
F, the usual augmentation of the filtration generated by the pair (W̄ , z̄).

As is typical for the more advanced market models, the model is arbitrage free
but incomplete, which means that there exists more than one equivalent martingale
measure. The structure of a general equivalent martingale measure and some rele-
vant subsets are studied in Nicolato and Venardos (2003). Of special interest is the
(structure-preserving) subset of martingale measures under which log returns are
again described by a BNS model, albeit with different parameters and possibly dif-
ferent stationary laws, and as such a different law for the increments of the BDLP.
Nicolato and Venardos (2003) argue that it is sufficient to consider only equivalent
martingale measures of this subset. Barndorff-Nielsen et al. (2002) show that the
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dynamics of the log price under such an equivalent martingale measure Q are given
by

dZt = (r − q − λk(−ρ) − 1
2σ 2

t ) dt + σt dWt + ρ dzλt , Z0 = x0,

dσ 2
t = −λσ 2

t dt + dzλt ,

where W = {Wt, t � 0} is a Brownian motion under Q independent of the BDLP
z = {zt , t � 0} with the cumulant function of z1 under Q given by k(u) = kQ(u) =
log EQ[exp(−uz1)].

Under these dynamics, we can write the characteristic function of the log price in
the form:

φ(u; t, ρ, λ, S0, σ
2
0 )

= EQ[exp(iu log St ) | S0, σ0]
= exp(iu(log(S0) + (r − q − λkQ(−ρ))t − 1

2λ−1(u2 + iu)(1 − exp(−λt))σ 2
0 ))

× exp

(
λ

∫ t

0
k(−ρiu + 1

2λ−1(u2 + iu)(1 − exp(−λ(t − s)))) ds

)
.

For the special choice of a Gamma–OU process or an IG–OU process, the expres-
sions involved can be computed in terms of elementary functions. We set

f1 = f1(u) = iuρ − 1
2 (u2 + iu)(1 − exp(−λt)),

f2 = f2(u) = iuρ − 1
2 (u2 + iu).

7.1.1 The BNS Model with Gamma SV

The Gamma(a, b) distribution is self-decomposable (see Section 5.2.2). Thus there
exists an OU process σ 2 = {σ 2

t , t � 0} following the dynamics of the SDE (7.1) with
a marginal Gamma(a, b) law. The corresponding BDLP z has Lévy density w(x) =
ab exp(−bx); the associated cumulant function is given by k(u) = −au(b + u)−1.
Moreover, as stated in Barndorff-Nielsen et al. (2002), we can derive

φ(u; t, ρ, λ, a, b, S0, σ
2
0 ) = EQ[exp(iu log St ) | S0, σ0]

= exp(iu(log(S0) + (r − q − aλρ(b − ρ)−1)t))

× exp(− 1
2λ−1(u2 + iu)(1 − exp(−λt))σ 2

0 )

× exp

(
a(b − f2)

−1
(

b log

(
b − f1

b − iuρ

)
+ f2λt

))
.

The above characteristic function of the log stock price is exactly what is needed
in the option-pricing formula (2.3) of Carr and Madan. We calibrate this model to our
set of S&P 500 market option prices in Section 7.4.1.
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7.1.2 The BNS Model with IG SV

The IG(a, b) distribution is also self-decomposable (see Section 5.2.2), so an OU
process σ 2 = {σ 2

t , t � 0} following the dynamics of the SDE (7.1) with a marginal
IG(a, b) law exists. The corresponding BDLP z has a cumulant function given by
k(u) = −uab−1(1 + 2ub−2)−1/2. Moreover, as stated in Barndorff-Nielsen et al.
(2002), we can derive

φ(u; t, ρ, λ, a, b, S0, σ
2
0 )

= EQ[exp(iu log St ) | S0, σ0]
= exp(iu(log(S0) + (r − q − ρλab−1(1 − 2ρb−2)−1/2)t))

× exp( 1
2λ−1(−u2 − iu)(1 − exp(−λt))σ 2

0 )

× exp(a(
√

b2 − 2f1 −√
b2 − 2iuρ))

× exp

(
2af2√

2f2 − b2

(
arctan

(√
b2 − 2iuρ

2f2 − b2

)
− arctan

(√
b2 − 2f1

2f2 − b2

)))
.

We find the calibration of this model on our dataset of option prices on the S&P 500
Index in Section 7.4.1.

7.2 The Stochastic Time Change

The second way to build in stochastic volatility effects is to make time stochastic. In
periods of high volatility, time will run faster than in periods of low volatility. Thus,
it is possible that under a high volatility regime the return over one calendar day will
equal the return over several days counted in the stochastic business time. In periods
of lower volatility, one calendar day can correspond to only a part of a business day.
Thus, cumulative effects can give rise to higher stock returns when volatility is high,
and, similarly, smaller returns when volatility is low.

The application of stochastic time change to asset pricing goes back to Clark (1973),
who modelled the asset price as a geometric Brownian motion subordinated by an
independent Lévy subordinator.

In this section we give an overview of the variety of possible stochastic processes
which can serve for the rate of time change. Since time needs to increase, all processes
modelling the rate of time change need to be positive. The first candidate is the classical
mean-reverting CIR process, which is based on Brownian motion. A second group of
candidates is the OU processes driven by a subordinator. Examples of such processes
are the Gamma–OU process and the IG–OU process. These processes will give rise
to analytically tractable formulas in the context of option pricing.
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7.2.1 The Integrated CIR Time Change

The CIR Process

Carr et al. (2003) use as the rate of time change the classical example of a mean-
reverting positive stochastic process: the Cox–Ingersoll–Ross (CIR) process y =
{yt , t � 0} (see Cox et al. 1985) that solves the SDE,

dyt = κ(η − yt ) dt + λy
1/2
t dWt,

where W = {Wt, t � 0} is a standard Brownian motion. The parameter η is interpreted
as the long-run rate of time change, κ is the rate of mean reversion, and λ governs the
volatility of the time change.

Note that, for c > 0, ỹ = cy = {cyt , t � 0} satisfies the SDE

dỹt = κ(cη − ỹt ) dt + √
cλỹ

1/2
t dWt, (7.2)

and the initial condition is ỹ0 = cy0.
The mean and variance of yt given y0 are given by

E[yt | y0] = y0 exp(−κt) + η(1 − exp(−κt)),

var[yt | y0] = y0
λ2

κ
(exp(−κt) − exp(−2κt)) + ηλ2

2κ
(1 − exp(−κt))2.

The Integrated CIR Process

The economic time elapsed in t units of calendar time is then given by the integrated
CIR process, Y = {Yt , t � 0}, where

Yt =
∫ t

0
ys ds.

Since y is a positive process, Y is an increasing process.
The characteristic function of Yt (given y0) is explicitly known (see Cox et al.

(1985) or Elliot and Kopp (1999, Theorem 9.6.3)),

E[exp(iuYt ) | y0] = ϕ(u, t; κ, η, λ, y0)

= exp(κ2ηt/λ2) exp(2y0iu/(κ + γ coth(γ t/2)))

(cosh(γ t/2) + κ sinh(γ t/2)/γ )2κη/λ2 ,

where

γ =
√

κ2 − 2λ2iu.

From this we can derive

E[Yt | y0] = ηt + κ−1(y0 − η)(1 − exp(−κt)).
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7.2.2 The IntOU Time Change

Another possible choice for the rate of time change is an OU process driven by a
subordinator (see Section 5.2.2). This kind of time change gives rise to jumps in
the rate of time change process. Most of the time, volatility jumps up when new
information is released; after the up-jump, it tends to gradually decrease. We consider
the Gamma–OU case and the IG–OU case.

The rate of time change is now a solution of an SDE of the form

dyt = −λyt dt + dzλt , (7.3)

where the process z = {zt , t � 0} is (since time has to increase) a subordinator, i.e. a
nondecreasing Lévy process.

The economic time elapsed in t units of calendar time is then given by the corre-
sponding intOU process, Y = {Yt , t � 0}, where

Yt =
∫ t

0
ys ds.

The Gamma–OU Time Change

The Gamma(a, b) distribution is self-decomposable (see Section 5.2.2). There thus
exists an OU process y = {yt , t � 0} following the dynamics of the SDE (7.3) with
a marginal Gamma(a, b) law.

Moreover, in the Gamma–OU case the characteristic function of Yt (given y0) can
be given explicitly:

ϕGamma–OU(u; t, λ, a, b, y0)

= E[exp(iuYt ) | y0]
= exp

(
iuy0λ

−1(1 − exp(−λt))

+ λa

iu − λb

(
b log

(
b

b − iuλ−1(1 − exp(−λt))

)
− iut

))
.

Note that we have

E[Yt | y0] = λ−1(1 − exp(−λt))y0 + λ−1(a/b)(λt − 1 − exp(−λt)).

Since E[Yt | y0]/t converges to a/b as t → ∞, the fraction a/b can be seen as the
long-run average rate of time change.

Remark 7.1. Note that, for c > 0, Ỹ = cY = {cYt , t � 0} is a time change based
on a Gamma–OU process with parameters a and b/c and initial condition ỹ0 = cy0.
This can be seen from the scaling property of the Gamma distribution or from the
above characteristic function.
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IG–OU Time Change

As mentioned in Section 5.2.2, the IG law is also self-decomposable. There thus exists
a stationary process y = {yt , t � 0} following the dynamics of the SDE (7.3) with a
marginal IG(a, b) law.

Recall that in this case the characteristic function of Yt is explicitly known and
given by

ϕIG–OU(u; t, λ, a, b, y0) = E[exp(iuYt ) | y0]
= exp

(
iuy0

λ
(1 − exp(−λt)) + 2aiu

bλ
A(u, t)

)
,

where

A(u, t) = 1 −√
1 + κ(1 − exp(−λt))

κ

+ 1√
1 + κ

(
artanh

(√
1 + κ(1 − exp(−λt))√

1 + κ

)
− artanh

(
1√

1 + κ

))
,

κ = −2b−2iu/λ.

Again the fraction a/b can be seen as the long-run average rate of time change.

Remark 7.2. Note that, for c > 0, Ỹ = cY = {cYt , t � 0} is a time change based on
an IG–OU process with parameters a

√
c and b/

√
c and initial condition ỹ0 = cy0.

This can be seen from the scaling property of the IG distribution.

7.3 The Lévy SV Market Model

Let Y = {Yt , t � 0} be the process we choose to model our business time, i.e. our
time change. Let us denote by ϕ(u; t, y0) the characteristic function of Yt given y0.

The (risk-neutral) price process S = {St , t � 0} is now modelled as follows,

St = S0
exp((r − q)t)

E[exp(XYt ) | y0] exp(XYt ),

where X = {Xt, t � 0} is a Lévy process with

E[exp(iuXt)] = exp(tψX(u));
ψX(u) is the characteristic exponent of the Lévy process. The factor

exp((r − q)t)

E[exp(XYt ) | y0]
puts us immediately into the risk-neutral world by a mean-correcting argument.

Basically, we model the stock-price process as the ordinary exponential of a time-
changed Lévy process. The process incorporates jumps (through the Lévy process)
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Figure 7.1 BNS OU–Gamma calibration of S&P 500 options
(circles are market prices, pluses are model prices).

and stochastic volatility (through the time change). Empirical work has generally
supported the need for both ingredients. Stochastic volatility appears to be needed to
explain the variation in strike of option prices at longer terms, while jumps are needed
to explain the variation in strike at shorter terms.

The characteristic function φ(u) = φ(u; t, S0, y0) for the log of our stock price is
given by

φ(u) = E[exp(iu log(St )) | S0, y0]
= exp(iu((r − q)t + log S0))

ϕ(−iψX(u); t, y0)

ϕ(−iψX(−i); t, y0)iu . (7.4)

The characteristic function is important for the pricing of vanilla options (see formula
(2.3)). Recall that in these methods we only needed the characteristic function of
log(St ). By the above formula, explicit formulas are thus at hand.

Note that if our Lévy process X = {Xt, t � 0} is a VG or a CGMY process, for
c > 0, X̃ = {Xct , t � 0} is again a Lévy process of the same class, with the same
parameters except the C parameter, which is multiplied now by the constant c. The
same can be said for the NIG and the Meixner processes. The parameter which takes
into account the same time-scaling property is now the δ parameter. In combination
with (7.2), Remarks 7.1 and 7.2, this means that in these cases there is one redundant
parameter. We therefore can set y0 = 1 and scale the present rate of time change to 1.
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Figure 7.2 BNS OU–IG calibration of S&P 500 options
(circles are market prices, pluses are model prices).
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Figure 7.3 Meixner–CIR calibration of S&P 500 options
(circles are market prices, pluses are model prices).
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Figure 7.4 Meixner–OU–Gamma calibration of S&P 500 options
(circles are market prices, pluses are model prices).
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Figure 7.5 Meixner–OU–IG calibration of S&P 500 options
(circles are market prices, pluses are model prices).
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Table 7.1 Parameter estimation.

BNS OU–Gamma

ρ λ a b σ 2
0−1.2606 0.5783 1.4338 11.6641 0.0145

BNS OU–IG

ρ λ a b σ 2
0−0.1926 0.0636 6.2410 0.7995 0.0156

Table 7.2 APE, AAE, RMSE and ARPE for BNS models.

Model APE (%) AAE RMSE ARPE (%)

BNS Gamma–OU 1.80 1.1111 1.4440 3.26
BNS IG–OU 1.62 1.0037 1.3225 2.71

More precisely, we have that the characteristic function φ(u) of (7.4) satisfies

φCGMY–CIR(u; C, G, M, Y, κ, η, λ, y0)

= φCGMY–CIR(u; Cy0, G, M, Y, κ, η/y0, λ/
√

y0, 1),

φCGMY–Gamma–OU(u; C, G, M, Y, λ, a, b, y0)

= φCGMY–Gamma–OU(u; Cy0, G, M, Y, λ, a, by0, 1),

φCGMY–IG–OU(u; C, G, M, Y, λ, a, b, y0)

= φCGMY–IG–OU(u; Cy0, G, M, Y, λ, a/
√

y0, b
√

y0, 1),

φVG–CIR(u; C, G, M, κ, η, λ, y0)

= φVG–CIR(u; Cy0, G, M, κ, η/y0, λ/
√

y0, 1),

φVG–Gamma–OU(u; C, G, M, λ, a, b, y0)

= φVG–Gamma–OU(u; Cy0, G, M, λ, a, by0, 1),

φVG–IG–OU(u; C, G, M, λ, a, b, y0)

= φVG–IG–OU(u; Cy0, G, M, λ, a/
√

y0, b
√

y0, 1),

φMeixner–CIR(u; α, β, δ, κ, η, λ, y0)

= φMeixner–CIR(u; α, β, δy0, κ, η/y0, λ/
√

y0, 1),

φMeixner–Gamma–OU(u; α, β, δ, λ, a, b, y0)

= φMeixner–Gamma–OU(u; α, β, δy0, λ, a, by0, 1),

φMeixner–IG–OU(u; α, β, δ, λ, a, b, y0)

= φMeixner–IG–OU(u; α, β, δy0, λ, a/
√

y0, b
√

y0, 1),
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Table 7.3 Parameter estimation for Lévy SV models.

CGMY–CIR
C G M Y κ η λ y0

0.0074 0.1025 11.3940 1.6765 0.3881 1.4012 1.3612 1

CGMY–Gamma–OU
C G M Y λ a b y0

0.0415 3.9134 30.6322 1.3664 0.8826 0.5945 0.8524 1

CGMY–IG–OU
C G M Y λ a b y0

0.0672 6.1316 44.7448 1.2911 1.0622 0.6092 0.9999 1

VG–CIR
C G M κ η λ y0

11.9896 25.8523 35.5344 0.6020 1.5560 1.9992 1

VG–Gamma–OU
C G M λ a b y0

11.4838 23.2880 40.1291 1.2517 0.5841 0.6282 1

VG–IG–OU
C G M λ a b y0

14.9248 26.1529 50.4425 1.2801 0.6615 0.8104 1

NIG–CIR
α β δ κ η λ y0

18.4815 −4.8412 0.4685 0.5391 1.5746 1.8772 1

NIG–Gamma–OU
α β δ λ a b y0

29.4722 −15.9048 0.5071 0.6252 0.4239 0.5962 1

NIG–IG–OU
α β δ λ a b y0

29.1553 −13.9331 0.5600 1.1559 0.6496 0.8572 1

Meixner–CIR
α β δ κ η λ y0

0.1231 −0.5875 3.3588 0.5705 1.5863 1.9592 1

Meixner–Gamma–OU
α β δ λ a b y0

0.1108 −0.9858 3.6288 1.1729 0.5914 0.6558 1

φNIG–CIR(u; α, β, δ, κ, η, λ, y0)

= φNIG–CIR(u; α, β, δy0, κ, η/y0, λ/
√

y0, 1),

φNIG–Gamma–OU(u; α, β, δ, λ, a, b, y0)

= φNIG–Gamma–OU(u; α, β, δy0, λ, a, by0, 1),

φNIG–IG–OU(u; α, β, δ, λ, a, b, y0)

= φNIG–IG–OU(u; α, β, δy0, λ, a/
√

y0, b
√

y0, 1).
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Table 7.3 Cont.

Meixner–IG–OU
α β δ λ a b y0

0.0890 −1.1323 5.0262 1.2190 0.6564 0.8266 1

GH–CIR
α β δ v κ η λ y0

8.3031 −4.8755 1.0297 −11.4534 0.5145 0.9029 1.3750 0.5748

GH–Gamma–OU
α β δ v λ a b y0

2.0267 −9.9780 0.3413 −5.6934 1.0740 0.3573 0.6143 2.0448

GH–IG–OU
α β δ v λ a b y0

23.2979 −12.9901 0.3463 −3.3960 1.1315 0.8993 0.6168 1.8345

Also, instead of setting the y0 parameter equal to 1, the other parameters involved,
e.g. δ or C, can be scaled to 1.

Actually, this time-scaling effect lies at the heart of the idea of incorporating stochas-
tic volatility through making time stochastic. Here, it comes down to the fact that
instead of making the volatility parameter (of the Black–Scholes model) stochastic,
we are making the parameter C (in the VG and the CGMY cases), or the parameter δ

(in the NIG and the Meixner cases), stochastic (via the time). Note that this effect not
only influences the standard deviation (or volatility) of the processes; the skewness
and the kurtosis are also now fluctuating stochastically.

7.4 Calibration of Market Option Prices

In this section we calibrate all the above models to our set of option prices on the
S&P 500 Index. In order to calculate option prices we can make use of the pricing
formula (2.3), which is based on the characteristic function of the log price process
of the stock.

The model parameters can be estimated by minimizing the root-mean-square error
between the market’s prices on close and the model’s option prices, and this over all
strikes and maturities.

We will use the parameters coming out of this calibration procedure to price exotic
options by Monte Carlo simulations in Section 9.3.

7.4.1 Calibration of the BNS Models

In Figures 7.1 and 7.2, we can see the result of the calibration procedure of the BNS
model with a Gamma–OU process and an IG–OU process for the volatility behaviour.
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Table 7.4 APE, AAE, RMSE and ARPE for Lévy SV models.

Model APE (%) AAE RMSE ARPE (%)

CGMY–CIR 0.56 0.3483 0.4367 1.15
CGMY–Gamma–OU 0.42 0.2576 0.3646 0.90
CGMY–IG–OU 0.44 0.2728 0.3736 0.90
VG–CIR 0.69 0.4269 0.5003 1.33
VG–Gamma–OU 0.51 0.3171 0.4393 1.10
VG–IG–OU 0.52 0.3188 0.4306 1.05
NIG–CIR 0.67 0.4123 0.4814 1.32
NIG–Gamma–OU 0.58 0.3559 0.4510 1.27
NIG–IG–OU 0.53 0.3277 0.4156 1.05
Meixner–CIR 0.68 0.4204 0.4896 1.34
Meixner–Gamma–OU 0.49 0.3033 0.4180 1.06
Meixner–IG–OU 0.50 0.3090 0.4140 1.03
GH–CIR 0.65 0.4032 0.4724 1.30
GH–Gamma–OU 0.45 0.2782 0.3837 0.95
GH–IG–OU 0.49 0.3041 0.3881 1.01

Table 7.1 gives an overview of the risk-neutral parameters coming out of the cal-
ibration procedure and Table 7.2 gives the corresponding APE, AAE, RMSE and
ARPE.

7.4.2 Calibration of the Lévy SV Models

In Figures 7.3–7.5, we can see that the Meixner SV models give a very good fit to
the empirical option prices of our S&P 500 dataset. Similar calibration results for the
NIG, GH, VG and CGMY stochastic volatility models can be obtained.

Table 7.3 gives an overview of the risk-neutral parameters coming out of the cal-
ibration procedure and Table 7.4 gives the corresponding measures of fit, i.e. APE,
AAE, RMSE and ARPE.

7.5 Conclusion

Different stochastic volatility models were formulated. Two methods of introducing
stochastic volatility were discussed: we can make the volatility parameter of the
Black–Scholes model stochastic (the direct approach), or we can incorporate a similar
effect by making a stochastic time change. For all the models considered, closed-
form expressions for the characteristic function of the log price process were given.
All the models involved were calibrated to market option prices and were capable of
adequately fitting option prices over a wide range of strikes and maturities. The models
using a stochastic time change gave the best fits. However, these models depend on
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six to eight parameters. Given the fact that the models using a direct approach depend
on only five parameters, these models also perform very well.

The calibrated process may be used for pricing standard options not included in the
calibration or to detect serious mispricings. Moreover, the models proposed provide us
with a relatively parsimonious representation of the surface of vanilla options. These
almost perfect representations of the vanilla option surface lead also to interesting
applications to the pricing of exotic options (see Chapter 9). In order to price these
exotics, we first need to analyse ways to sample paths of all the ingredients of the
stock-price process (see Chapter 8).

Finally, we note that the models considered, which can simultaneously explain both
the statistical (historical) and the risk-neutral dynamics, are important for understand-
ing the change of measure chosen by the market.
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Simulation Techniques

In this chapter we look at possible simulation techniques for the processes encountered
so far. We show how a Lévy process can be simulated based on a compound Poisson
approximation. Also, we sample paths from the OU processes; the simulation in this
case can be based on a series representation.

It is possible that for very specific processes, other techniques are available: this
is, for example, the case if the Lévy process can be represented explicitly as a time
change of a Brownian motion, and techniques are already available for simulating the
‘simpler’ subordinator (the time change). Sampling a path from the Lévy process can
be done by sampling a path from the subordinator and a Brownian motion and then
pursuing the time change.

Assume that we have random number generators at hand which can provide us with
standard Normal (Normal(0, 1)) and Uniform(0, 1) random numbers. We do not go
into detail about the performance or the different types of such random number gen-
erators. Throughout this chapter we denote series of Normal(0, 1) and Uniform(0, 1)

random numbers by {vn, n = 1, 2, . . . } and {un, n = 1, 2, . . . }, respectively.

8.1 Simulation of Basic Processes

In this section we give an overview of how to simulate some of the basic processes.
Simulations of the more involved processes will rely on these basic processes. We thus
look first at simulation of the standard Brownian motion and the Poisson process. A
general reference for simulations of solutions of SDEs is Kloeden and Platen (1992).
For Monte Carlo methods in finance, see Jäckel (2002).

8.1.1 Simulation of Standard Brownian Motion

Since the standard Brownian motion W = {Wt, t � 0} has Normally distributed
independent increments, simulation of it is easy. We discretize time by taking time
steps of size �t , which we assume to be very small. We will simulate the value of the

Lévy Processes in Finance: Pricing Financial Derivatives. Wim Schoutens
Copyright  2003 John Wiley & Sons, Ltd.

ISBN: 0-470-85156-2
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Brownian motion at the time points {n�t, n = 0, 1, . . . }. We have

W0 = 0, Wn�t = W(n−1)�t + √
�tvn, n � 1,

where {vn, n = 1, 2, . . . } is a series of standard Normal random numbers. Figure 3.1
shows a path of a standard Brownian motion. We refer to Jäckel (2002) for the dis-
cussion of other simulation schemes and their use in the context of finance.

8.1.2 Simulation of a Poisson Process

The simulation of a Poisson process N = {Nt, t � 0} with intensity parameter λ can
be done in several different ways. We consider the method of exponential spacings
and a classical method based on uniform random variates.

The Method of Exponential Spacings

The method of exponential spacings makes use of the fact that the inter-arrival times
of the jumps of the Poisson process follow an Exponential Exp(λ) distribution with
mean λ−1, i.e. a Gamma(1, λ) distribution. An Exp(λ) random number, en, can be
obtained from a Uniform(0, 1) random number, un, by

en = − log(un)/λ.

Let
s0 = 0, sn = sn−1 + en, n = 1, 2, . . . ,

then we can sample a path of the Poisson process N in the time points {n�t, n =
0, 1, . . . }:

N0 = 0, Nn�t = sup(k : sk � n�t), n � 1.

Uniform Method

If we need to simulate a Poisson process with intensity parameter λ > 0 up to a
time point T > 0, we can also proceed as follows. First generate a random variate
N which is Poisson(λT ) distributed. Next, simulate N independent random uniform
numbers u1, . . . , uN . Denote by u(1) < u(2) < · · · < u(N) the order-statistics of
this sequence. Then the jump points of the Poisson process are given by the points
T u(1), . . . , T u(N), i.e. the Poisson process has a value 0 for time points t < T u(1).
At t = T u(1) the process jumps to 1 and stays there until t = T u(2), where it jumps
to 2, etc.

A path of a Poisson process with parameter λ = 25 is shown in Figure 8.1.

8.2 Simulation of a Lévy Process

To simulate a Lévy process, we exploit the well-known compound Poisson approx-
imation of this process. The name refers to the fact that we approximate the Lévy
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Figure 8.1 A sample path of a Poisson process.

process by a compound Poisson process. Special care has to be taken for the very
small jumps. We can simply replace these very small jumps by their expected values.
In some cases a further improvement can be made by replacing these small jumps by
a Brownian motion. The procedure has been suggested on intuitive grounds and for
some particular cases by, for example, Rydberg (1997b). Further support is given by
Asmussen and Rosiński (2001) and Pollard (1984).

8.2.1 The Compound Poisson Approximation

General Procedure

The procedure is carried out as follows. Let X be a Lévy process with Lévy triplet
[γ, σ 2, ν(dx)].

First, we discretize the Lévy measure ν(dx). We choose some small 0 < ε < 1.
Then we make a partition of R\[−ε, ε] of the following form. We choose real numbers

a0 < a1 < · · · < ak = −ε, ε = ak+1 < ak+2 < · · · < ad+1.

Jumps larger than ε are approximated by a sum of independent Poisson processes in the
following way. We take an independent Poisson process N(i) = {N(i)

t , t � 0} for each
interval, [ai−1, ai), 1 � i � k and [ai, ai+1), k + 1 � i � d, with intensity λi given
by the Lévy measure of the interval. Furthermore, we choose a point ci (the jump
size) in each interval such that the variance of the Poisson process matches the part
of the variance of the Lévy process corresponding to this interval.
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Approximation of the Small Jumps by Their Expected Value

Next, we look at the very small jumps. The first method is to simply replace them
with their expected values.

This means that we approximate our Lévy process X = {Xt, t � 0} by a process
X(d) = {X(d)

t , t � 0}, which comprises a Brownian motion W = {Wt, t � 0} and
d independent Poisson processes N(i) = {N(i)

t , t � 0}, i = 1, . . . , d, with intensity
parameter λi :

X
(d)
t = γ t + σWt +

d∑
i=1

ci(N
(i)
t − λit1|ci |<1),

λi =
{

ν([ai−1, ai)) for 1 � i � k,

ν([ai, ai+1)) for k + 1 � i � d,
(8.1)

c2
i λi =




∫ ai−

ai−1

x2ν(dx) for 1 � i � k,

∫ ai+1−

ai

x2ν(dx) for k + 1 � i � d.

(8.2)

If the original process has no Brownian component (σ = 0), then neither does the
approximating process.

Approximation of the Small Jumps by a Brownian Motion

A further improvement is to also incorporate the contribution from the variation of
small jumps. Write

σ 2(ε) =
∫

|x|<ε

x2ν(dx).

We let all (compensated) jumps smaller than ε contribute to the Brownian part of X.
To be precise, we again approximate X by a process X(d), consisting of a Brownian
motion W = {Wt, t � 0} and d independent Poisson processes N(i) = {N(i)

t , t � 0},
i = 1, . . . , d, with intensity parameter λi . Only the Brownian part is different from
above. We now have

X
(d)
t = γ t + σ̃Wt +

d∑
i=1

ci(N
(i)
t − λi1|ci |<1t),

where

σ̃ 2 = σ 2 + σ 2(ε),

and the λi and ci , i = 1, . . . , d, are as above in (8.1) and (8.2).
Note that a Brownian term appears even when the original process does not have

one (σ = 0). In Asmussen and Rosiński (2001) a rigorous discussion is presented of
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when the latter approximation is valid. It turns out that this is the case if and only if
for each κ > 0

lim
ε→0

σ(κσ(ε) ∧ ε)

σ (ε)
= 1. (8.3)

This condition is implied by

lim
ε→0

σ(ε)

ε
= ∞. (8.4)

Moreover, if the Lévy measure of the original Lévy process does not have atoms
in some neighbourhood of the origin, then condition (8.4) and condition (8.3) are
equivalent. Results on the speed of convergence of the above approximation can be
found in Asmussen and Rosiński (2001).

Special Cases

The NIG Process. In Rydberg (1997b), the idea of replacing the small jumps by a
Brownian motion was used for the NIG case. Computer simulations were provided
to motivate the procedure. By condition (8.4), we can easily show that this is valid
since in this case σ(ε) ∼ √

2αδ/πε1/2.

The Meixner Process. For the Meixner process we have also

σ(ε) ∼ √
2αδ/πε1/2.

Hence, σ(ε)/ε → ∞ when ε → 0 and we can replace the small jumps by a Brownian
component in the approximation.

The CGMY Process. Similarly, we can show for the CGMY process that σ(ε)/ε →
∞ when ε → 0 only if Y > 0. Thus only for Y > 0 are we allowed to replace the
small jumps by a Brownian component in the approximation.

The Gamma Process. Here we have that σ(ε)/ε → √
a/2 when ε → 0. Hence

the approximation of small jumps by a Brownian motion fails.

The VG Process. Similarly, since a VG process is the difference of two Gamma
processes, we cannot replace the small jumps by a Brownian component in the approx-
imation. For an alternative approximation of the very small jumps, we refer to Emmer
and Klüppelberg (2002).

8.2.2 On the Choice of the Poisson Processes

The choice of the intervals [ai−1, ai), 1 � i � k, and [ai, ai+1), k + 1 � i � d,
is crucial. For Lévy processes with a Lévy measure living on R, we typically set
d = 2k, so we have the same number of Poisson processes reflecting a positive as a
negative jump. Next, we look at three different ways of choosing the intervals. First
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Figure 8.2 Equally spaced intervals.

we look at equally spaced intervals, then at equally weighted intervals, and finally
at intervals with inverse linear boundaries. We illustrate this for the VG, NIG and
Meixner processes, with k = 100 and parameters taken from the CIR combinations
of Table 7.3.

Equally Spaced Intervals

We can choose the intervals to be equally spaced, i.e. |ai−1 − ai | is kept fixed for all
1 � i � d + 1, i = k + 1. This choice is illustrated in Figure 8.2, where we plot λi

versus ci for all Lévy processes. A width equal to 0.001 was chosen and we zoomed
in on the range ci ∈ [−0.05, 0.05]; k = 100. Note the explosion near 0.

Equally Weighted Intervals

Here we opt to keep the intensities for the up-jumps and down-jumps corresponding
to an interval constant. Thus, for equally weighted intervals, the Lévy measures of
intervals on the negative part of the real line ν([ai−1 − ai)) are kept fixed for all 1 �
i � k. Similarly, the measure of intervals corresponding to up-jumps ν([ai − ai+1))

is also kept fixed for all k + 1 � i � d. Note that for this choice the outer intervals
can become quite large.
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Figure 8.3 ai−1 = −0.2/i and a2k+2−i = 0.2/i, 1 � i � k + 1.

Interval with Inverse Linear Boundaries

Finally, we consider the case where the boundaries are given by ai−1 = −αi−1 and
a2k+2−i = αi−1, 1 � i � k + 1 and α > 0. This leads to much more gradually
decaying intensity parameters λi , as can be seen from Figure 8.3, where α = 0.2
and k = 100. Moreover, there is no explosion to infinity near zero; the intensities
even decrease again. Note that, in Figure 8.3, we now show the whole range with
ci ∈ [−0.2, 0.2] for the same examples as above. Note also that in all cases the
intensities of down-jumps are slightly higher than those of the corresponding up-
jumps; this reflects the fact that log returns of stocks are negatively skewed.

8.3 Simulation of an OU Process

We will need to simulate from the process

yt = exp(−λt)y0 +
∫ t

0
exp(−λ(t − s)) dzλs

= exp(−λt)y0 + exp(−λt)

∫ λt

0
exp(s) dzs.
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We will describe a method to do this by simulation directly from

exp(−λt)

∫ λt

0
exp(s) dzs,

rather than (by the techniques of Section 8.2) from the BDLP z = {zt , t � 0}. The
idea is based on series representations. The required results can, in essence, be found
in Marcus (1987) and Rosiński (1991). A self-contained overview is given in Barn-
dorff-Nielsen and Shephard (2001b). Recent developments are surveyed in Rosiński
(2001).

Let W be the Lévy measure of the BDLP z and let W−1 denote the inverse of the
tail mass function W+ as described in Section 5.2.

The crucial result is that in law∫ t

0
f (s) dzs =

∞∑
i=1

W−1(ai/t)f (tui), (8.5)

where {ai} and {ui} are two independent sequences of random variables with ui

independent copies of a Uniform(0, 1) random variable and a1 < · · · < ai < · · · as
the arrival times of a Poisson process with intensity 1.

It should be noted that the convergence of the series can be slow in some cases.

8.4 Simulation of Particular Processes

8.4.1 The Gamma Process

To simulate a Gamma process, we can use a Gamma random number generator.

Gamma Random Number Generators

First we note that, when X is Gamma(a, b), then, for c > 0, X/c is Gamma(a, bc).
So we need only a good generator for Gamma(a, 1) random numbers.

Next, we give two possible generators for Gamma(a, 1) random numbers which
should only be used for a � 1 (which is the case in all of our examples). The first
one is called Johnk’s Gamma generator (see Johnk 1964); the second one is Berman’s
Gamma generator (see Berman 1971).

Johnk’s Gamma Generator

1. Generate two independent uniform random number u1 and u2.

2. Set x = u
1/a
1 and y = u

1/(1−a)
2 .

3. If x + y � 1 goto step 4, else goto step 1.

4. Generate an Exp(1) random variable , i.e. z = − log(u), where u is a uniform
random number.
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5. Return the number zx/(x + y) as the Gamma(a, 1) random number.

Berman’s Gamma Generator

1. Generate two independent uniform random number u1 and u2.

2. Set x = u
1/a
1 and y = u

1/(1−a)
2 .

3. If x + y � 1 goto step 4, else goto step 1.

4. Generate two independent uniform random number u1 and u2.

5. Return the number −x log(u1u2) as the Gamma(a, 1) random number.

Several other generators are described in the literature. We refer to Devroye (1986)
for a detailed survey.

Simulation of a Gamma Process

Next, it is easy to simulate a sample path of a Gamma process G = {Gt, t � 0},
where Gt follows a Gamma(at, b) law. We simulate the value of this process at time
points {n�t, n = 0, 1, . . . } as follows. First generate independent Gamma(a�t, b)

random numbers {gn, n � 1} by, for example, the techniques described above. Note
that since we assume �t to be very small, a�t is in most cases smaller than 1 and
we can use the Berman or Johnk generators. Then

G0 = 0, Gn�t = G(n−1)�t + gn, n � 1.

Figure 8.4 shows a path of a Gamma process with parameters a = 10 and b = 20.

8.4.2 The VG Process

Simulation of a VG Process as the Difference of Two Gamma Processes

Since a VG process can be seen as the difference of two independent Gamma pro-
cesses, simulation of a VG process is easy. More precisely, a VG process

X(VG) = {X(VG)
t , t � 0}

with parameters C, G, M > 0 can be decomposed as X
(VG)
t = G

(1)
t − G

(2)
t , where

G(1) = {G(1)
t , t � 0} is a Gamma process with parameters a = C and b = M and

G(2) = {G(2)
t , t � 0} is a Gamma process with parameters a = C and b = G.

Figure 8.5 shows a path of a VG process with parameters C = 20, G = 40 and
M = 50.
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Figure 8.4 A sample path of a Gamma process.
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Figure 8.5 A sample path of a VG process.

Simulation of a VG Process as a Time-Changed Brownian Motion

We can also simulate a VG process as a time-changed Brownian motion. This proce-
dure can be best explained in the (σ, ν, θ)parametrization, rather than in the (C, G, M)
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parametrization. Recall that a VG process X(VG) = {X(VG)
t , t � 0} with parameters

σ > 0, ν > 0 and θ can be obtained by time-changing a standard Brownian motion
W = {Wt, t � 0} with drift by a Gamma process G = {Gt, t � 0} with parameters
a = 1/ν and b = 1/ν. We have

X
(VG)
t = θGt + σWGt .

A sample path of the VG process can thus be obtained by sampling a standard
Brownian motion and a Gamma process.

8.4.3 The TS Process

For the TS distribution, neither the density function nor specific random number
generators are available. In order to simulate, we have to rely on other techniques.
Rosiński (2001) (see also Rosiński 2002) describes a method based on the so-called
rejection method. We approximate the path of a TS process X = {Xt, 0 � t � T }
with parameters a > 0, b � 0 and 0 < κ < 1 by

X
(K)
t =

K∑
k=1

min

(
2

(
aT

bi�(1 − κ)

)1/κ

,
2ei ũ

1/κ
i

b1/κ

)
1(T ui<t), 0 � t � T ,

where {en, n = 1, 2, . . . } is a sequence of independent Exp(1) random numbers,
{un, n = 1, 2, . . . }, {ũn, n = 1, 2, . . . } are sequences of independent Uniform(0, 1)

random numbers and b1 < b2 < · · · < bi < · · · are the arrival times of a Poisson
process (independent of the other series) with intensity parameter 1. All series are
assumed to be independent of each other.

Then, as K → ∞, X(K) → X uniformly (from below). We thus simulate the whole
path directly. Note that the random numbers {en}, {un}, {ũn} and {bn} are parameter
free. An important aspect is the choice of K . As K increases we converge to the
true path, from below. Typically, values of K around 10 000 give very reasonable
approximations.

8.4.4 The IG Process

An IG Random Number Generator

To simulate an IG process, we can use the IG random number generator proposed by
Michael et al. (1976) (see also Devroye 1986). In order to sample from an IG(a, b)

distribution, we follow the following algorithm.

IG generator of Michael, Schucany and Haas.

1. Generate a standard Normal random number v.

2. Set y = v2.
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Figure 8.6 A sample path of an IG process.

3. Set x = (a/b) + y/(2b2) −√
4aby + y2/(2b2).

4. Generate a uniform random number u.

5. If u � a/(a + xb), then return the number x as the IG(a, b) random number,
else return a2/(b2x) as the IG(a, b) random number.

Simulation of an IG Process using IG Random Numbers

Next, it is easy to simulate a sample path of an IG process I = {It , t � 0}, where
It follows an IG(at, b) law. We simulate the value of this process at time points
{n�t, n = 0, 1, . . . } as follows. First generate independent IG(a�t, b) random num-
bers {in, n � 1}, then

I0 = 0, In�t = I(n−1)�t + in, n � 1.

Figure 8.6 shows a path of an IG process with parameters a = 1 and b = 20.

Simulation of an IG Process by the Path Rejection Method

To simulate an IG process we can use the special technique of Section 8.4.3, which
is valid for the more general TS processes. We approximate the path of an IG process
X = {Xt, 0 � t � T } with parameters a > 0 and b > 0 by

X
(K)
t =

K∑
k=1

min

(
2

π

(
aT

bi

)2

,
2ei ũ

2
i

b2

)
1(T ui<t), 0 � t � T ,
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Figure 8.7 A sample path of an NIG process.

where {en, n = 1, 2, . . . } is a sequence of independent Exp(1) random numbers,
{un, n = 1, 2, . . . }, {ũn, n = 1, 2, . . . } are sequences of independent Uniform(0, 1)

random numbers and b1 < b2 < · · · < bi < · · · are the arrival times of a Poisson
process (independent of the other series) with intensity parameter 1. All series are
assumed to be independent of each other.

Then, as K → ∞, X(K) → X uniformly (from below).

8.4.5 The NIG Process

Simulation of an NIG Process as a Time-Changed Brownian Motion

As in the VG case, we can also simulate an NIG process as a time-changed Brownian
motion. Recall that an NIG process X(NIG) = {X(NIG)

t , t � 0} with parameters α > 0,
−α < β < α and δ > 0 can be obtained by time-changing a standard Brownian
motion W = {Wt, t � 0} with drift by an IG process I = {It , t � 0} with parameters
a = 1 and b = δ

√
α2 − β2. We have

X
(NIG)
t = βδ2It + δWIt .

A sample path of the NIG process can thus be obtained by sampling a standard
Brownian motion and an IG process.

Figure 8.7 shows a path of an NIG process with parameters α = 50, β = −10 and
δ = 1.
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8.4.6 The Gamma–OU Process

The Gamma–OU process can be simulated by the series representation described in
the previous paragraph. The series in this case simplifies a lot.Another way to simulate
a Gamma–OU process is via its BDLP.

By the Series Representation via the Inverse Tail Mass Function

The case of the Gamma–OU process with Gamma(a, b) marginals can benefit from
the explicit expression of W−1 we have at hand:

W−1 = max{0, −b−1 log(x/a)}.
It can be shown that in law we can then rewrite (8.5) as

exp(−λt)

∫ λt

0
exp(s) dzs = b−1 exp(−λt)

N1∑
i=1

log(c−1
i ) exp(λtui),

where c1 < c2 < · · · are the arrival times of a Poisson process N = {Ns, s � 0} with
intensity parameter aλt (E[Ns] = aλts), N1 as the corresponding number of events
up until time 1 and as before the ui independent copies of a Uniform(0, 1) random
variable.

Through the BDLP

The BDLP for the Gamma(a, b)–OU process y = {yt , t � 0} is a compound Poisson
process, i.e. zt = ∑Nt

n=1 xn, where N = {Nt, t � 0} is a Poisson process with intensity
parameter a, i.e. E[Nt ] = at and {xn, n = 1, 2, . . . } is an independent and identically
distributed sequence; each xn follows a Gamma(1, b) = Exp(b) law. The Poisson
process can be simulated as described above. Recall that the exponential random
numbers can be obtained from uniform random numbers: xn = − log(un)/b.

We base our simulation on the SDE,

dyt = −λyt dt + dzλt , y0 � 0.

To simulate a Gamma(a, b)–OU process y = {yt , t � 0} in the time points t =
n�t , n = 0, 1, 2, . . . , first simulate in the same time points a Poisson process N =
{Nt, t � 0} with intensity parameter aλ, then (with the convention that an empty sum
equals zero)

yn�t = (1 − λ�t)y(n−1)�t +
Nn�t∑

n=N(n−1)�t+1

xn;

here the factor (1 − λ�t) can also be replaced by e−λ�t .
Figure 8.8 shows a path of a Gamma–OU process with parameters λ = 10, a = 10,

b = 100 and y0 = 0.08. Note that the mean of the marginal Gamma(a, b) law is at
a/b = 0.1.
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Figure 8.8 A sample path of a Gamma–OU process.

8.4.7 The IG–OU Process

The IG–OU process can be simulated by the series representation described in the
previous paragraph. An approximation is also possible through special simulation
techniques for the TS process; recall that the IG process is a special case of this TS
process.

By the Series Representation via the Inverse Tail Mass Function

In the case of an IG–OU process with IG(a, b) marginals, we do not have an explicit
expression of W−1 at hand. However, we can use an approximation:

W−1(x) ∼ a2

2πx2 .

Plugging this approximation of the inverse of the tail integral of the BDLP into formula
(8.5) gives us a way to simulate. However, the convergence in the series is rather slow
and care needs to be taken with the truncation.

By the Series Representation for the TS Process

A special (rejection) method was developed by Rosiński (2001) (see also Rosiński
2002) to simulate paths in the tempered stable case. We make use of the fact that
the BDLP can be decomposed into an IG process and a compound Poisson process
as noted in Section 5.5.2. Recall that the (OU)–IG process is a special case of the
(OU)–TS process (κ = 1/2).
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Figure 8.9 A sample path of an IG–OU process.

Let ui , ūi and ũi be sequences of independent uniform random numbers, let ei be
independent exponential random numbers with mean 1 and let b1 < b2 < · · · be the
arrival times of a Poisson process with intensity 1; moreover, let N = {Nt, t � 0} be a
Poisson process with intensity parameter ab/2 and interarrival times d1 < d2 < · · · ,
and vi independent standard Normal random numbers. All sequences are independent
of each other. The main result in the special situation of the IG–OU process is that

yt = exp(−λt)y0 + exp(−λt)

Nλt∑
i=1

v2
i

b2 exp(di) + q
(K)
t ,

where q
(K)
t is approximated in law by, for 0 � t � T ,

q
(K)
t = exp(−λt)

K∑
i=1

min

(
1

2π

(
aλT

bi

)2

,
2ei ũ

2
i

b2

)
exp(λtūi)1(T ui�t),

where the approximation error goes uniformly to zero as K → ∞. q
(K)
t converges

to qt from below.
The resulting picture typically becomes quite stable by the time K reaches 25 000.

The advantage of this method is that it potentially represents the whole process as a
function of t (0 � t � T ), and not just at a particular value of t . Figure 8.9 shows a
path of an IG process with K = 25 000, with parameters λ = 0.3, a = 10, b = 20
and y0 = 0.5.
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Figure 8.10 A sample path of a CIR process.

8.4.8 The CIR Process

The simulation of a CIR process y = {yt , t � 0} is quite easy and classical. Basically,
we discretize the SDE,

dyt = κ(η − yt ) dt + λy
1/2
t dWt, y0 � 0.

The sample path of the CIR process y = {yt , t � 0} in the time points t = n�t ,
n = 0, 1, 2, . . . , is then given by

yn�t = y(n−1)�t + κ(η − y(n−1)�t )�t + λy
1/2
(n−1)�t

√
�tvn,

where {vn, n = 1, 2, . . . } is a series of independent standard normal random numbers.
Figure 8.10 shows a path of a CIR process with parameters κ = 5, η = 1, λ = 2

and y0 = 1.25.

8.4.9 BNS Model

The log price process Z = {Zt , t � 0} of a stock under the BNS model follows the
dynamics,

dZt = (µ − 1
2σ 2

t ) dt + σt dWt + ρ dzλt , Z0 = log(S0),

dσ 2
t = −λσ 2

t dt + dzλt , σ 2
0 � 0,

where σ 2 = {σ 2
t , t � 0} is an OU process driven by its BDLP z = {zt , t � 0}, a

subordinator. In order to sample the log price process, we need first to simulate the
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OU process σ 2 in the points t = n�t , n = 0, 1, 2, . . . , together with the BDLP z

in the time points t = λn�t , n = 0, 1, 2, . . . . Then, sample a path of the log price
process in the time points t = n�t , n = 0, 1, 2, . . . : Z0 = log(S0) and

Zn�t = Z(n−1)�t + (µ − σ 2
n�t/2)�t + σn�t

√
�tvn + ρ(zλn�t − zλ(n−1)�t ).

The simulation of the OU process and its BDLP can be done simultaneously with the
simulation of the log price process. For each time point we first sample the values of
the OU process and its BDLP and then we use these to find a sample value of the log
price. Then we move on to the next time point. Note that by using the σ 2

n�t and zλn�t

values to obtain the Zn�t values, an up-jump in the OU process and its BDLP will
give rise at the same moment to a jump in the stock price.
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Exotic Option Pricing

The payoff of the option has in most cases until now depended only on the value of
the underlying at expiry (see, for example, Section 2.5.2). However, path-dependent
options have become popular in the OTC market in the last two decades. Examples of
these exotic path-dependent options are lookback options and barrier options. Other
exotics have no expiry date and the holder can exercise whenever he or she wants.
These are called perpetual options.

In this chapter we first look at barrier and lookback options. We give their Black–
Scholes prices, which are in closed form. Next, we indicate how one could in principle
obtain prices in a Lévy market. However, the dimension of the problem is high and
we need to make use of numerical inversion techniques and integrals with dimension
three or four have to be calculated numerically.

We also give a survey of other exotics studied under a Lévy market in the literature.
Most of them lead to prices only if some model restrictions are imposed.

Finally, we show how Monte Carlo techniques can give us an estimate of the
prices of exotic options of European type. The Monte Carlo method is based on the
simulation of the stock-price process as described in the previous chapter. In order to
speed up the procedure we can make use of a variance-reduction technique based on
control variates.

9.1 Barrier and Lookback Options

9.1.1 Introduction

The lookback call (put) option with floating strike has the particular feature of allowing
its holder to buy (sell) the stock at the minimum (maximum) it has achieved over the
life of the option. The payoff of a barrier option depends on whether the price of the
underlying asset crosses a given threshold (the barrier) before maturity. The simplest
barrier options are ‘knock-in’ options, which are activated when the price of the
underlying asset touches the barrier, and ‘knock-out’ options, which are deactivated
in that case. For example, an up-and-out call has the same payoff as a regular plain

Lévy Processes in Finance: Pricing Financial Derivatives. Wim Schoutens
Copyright  2003 John Wiley & Sons, Ltd.

ISBN: 0-470-85156-2
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vanilla call if the price of the underlying asset remains below the barrier over the
life of the option, but becomes worthless as soon as the price of the underlying asset
crosses the barrier.

Let us consider contracts of duration T , and denote the maximum and minimum
process, respectively, of a process X = {Xt, 0 � t � T } by

MX
t = sup{Xu; 0 � u � t} and mX

t = inf{Xu; 0 � u � t}, 0 � t � T .

Using risk-neutral valuation and choosing an equivalent martingale measure Q, we
have that the initial, i.e. t = 0, price of a lookback call option is given by

LC = exp(−rT )EQ[ST − mS
T ];

the initial price of a lookback put is given by

LP = exp(−rT )EQ[MS
T − ST ].

Recall that the indicator function is denoted by 1(A), which has a value 1 if A is
true and 0 otherwise.

For single-barrier options, we will focus on the following types of call options.

• The down-and-out barrier call is worthless unless its minimum remains above
some low barrier H , in which case it retains the structure of a European call
with strike K . Its initial price is given by

DOBC = exp(−rT )EQ[(ST − K)+1(mS
T > H)].

• The down-and-in barrier call is a standard European call with strike K if its
minimum goes below some low barrier H . If this barrier is never reached during
the lifetime of the option, the option is worthless. Its initial price is given by

DIBC = exp(−rT )EQ[(ST − K)+1(mS
T � H)].

• The up-and-in barrier call is worthless unless its maximum crosses some high
barrier H , in which case it retains the structure of a European call with strike
K . Its price is given by

UIBC = exp(−rT )EQ[(ST − K)+1(MS
T � H)].

• The up-and-out barrier call is worthless unless its maximum remains below
some high barrier H , in which case it retains the structure of a European call
with strike K . Its price is given by

UOBC = exp(−rT )EQ[(ST − K)+1(MS
T < H)].

The put counterparts, replacing (ST − K)+ with (K − ST )+, can be defined along
the same lines.
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We note that the value, DIBC, of the down-and-in barrier call option with barrier
H and strike K plus the value, DOBC, of the down-and-out barrier option with the
same barrier H and the same strike K is equal to the value C of the vanilla call with
strike K . The same is true for the up-and-out together with the up-and-in:

DIBC + DOBC = exp(−rT )EQ[(ST − K)+(1(mS
T � H) + 1(mS

T < H))]
= exp(−rT )EQ[(ST − K)+]
= C,

UIBC + UOBC = exp(−rT )EQ[(ST − K)+(1(MS
T � H) + 1(MS

T < H))]
= exp(−rT )EQ[(ST − K)+]
= C.



(9.1)

9.1.2 Black–Scholes Barrier and Lookback Option Prices

Under the Black–Scholes framework, it is possible to obtain explicit expressions for
the prices of the above-mentioned exotic options. For other exotics, see, for example,
Haug (1998).

Barrier Options

We have that, if H � K ,

DIBC = S0 exp(−qT )(H/S0)
2λN(y)

− K exp(−rT )(H/S0)
2λ−2N(y − σ

√
T ),

DOBC = C − DIBC,

UOBC = 0,

UIBC = C,

and, if H > K ,

DOBC = S0N(x1) exp(−qT ) − K exp(−rT )N(x1 − σ
√

T )

− S0 exp(−qT )(H/S0)
2λN(y1)

+ K exp(−rT )(H/S0)
2λ−2N(y1 − σ

√
T ),

DIBC = C − DOBC,

UIBC = S0N(x1) exp(−qT ) − K exp(−rT )N(x1 − σ
√

T )

− S0 exp(−qT )(H/S0)
2λ(N(−y) − N(−y1))

+ K exp(−rT )(H/S0)
2λ−2(N(−y + σ

√
T ) − N(−y1 + σ

√
T )),

UOBC = C − UIBC,
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where

λ = σ−2(r − q + 1
2σ 2),

y = (σ
√

T )−1 log(H 2/(S0K)) + λσ
√

T ,

x1 = (σ
√

T )−1 log(S0/H) + λσ
√

T ,

y1 = (σ
√

T )−1 log(H/S0) + λσ
√

T .

An important issue for barrier options is the frequency with which the stock price
is observed for the purpose of determining whether the barrier has been reached. The
above formulas assume a continuous observation. Often, the terms of the barrier con-
tract are modified and there are only a discrete number of observations, for example,
at the close of each trading day. Broadie et al. (1997) provide a way of adjusting the
above formulas for periodic observations. The barrier H is replaced by

H exp(0.582σ
√

T/m)

for an up-and-in or up-and-out option and by

H exp(−0.582σ
√

T/m)

for a down-and-in or down-and-out barrier, where m is the number of times the stock
prices is observed; T/m is the time interval between observations.

Lookback Options

For the lookback options the following closed formulas are available for the initial
price:

LC = S0e−qT (N(a1) − σ 2(2(r − q))−1N(−a1))

− S0e−rT (N(a2) − σ 2(2(r − q))−1N(−a2)),

LP = S0e−qT (σ 2(2(r − q))−1N(a1) − N(−a1))

+ S0e−rT (N(−a2) − σ 2(2(r − q))−1N(−a2)),

where

a1 = σ−1(r − q + 1
2σ 2)

√
T ,

a2 = σ−1(r − q − 1
2σ 2)

√
T .

As with barrier options, the value of the lookback option is also liable to be sensitive
to the frequency with which the asset price is observed for the computation of the
maximum or minimum. The above formulas assume continuous observation. Broadie
et al. (1999) provide a way of adjusting the formulas when the observations are
discrete.
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9.1.3 Lookback and Barrier Options in a Lévy Market

Assume that we work in the Lévy market of Section 6.2 and that in the risk-neutral
setting, i.e. under the equivalent martingale measure Q, we have that the stock price
is the exponential of a Lévy process: St = S0 exp(Xt ). Assume for simplicity that Xt

has for all 0 � t � T a density function (under Q) denoted by ft (x).
Finding explicit formulas for exotic options in the more sophisticated Lévy market

is very hard.
Barrier options under a Lévy market were considered by Boyarchenko and Lev-

endorskiı̆ (2002c). The results rely on the Wiener–Hopf decomposition and analytic
techniques are used. Similar and totally general results by probabilistic methods for
barrier and lookback options are described byYor and Nguyen (2001). The numerical
calculations needed are highly complex: numerical integrals with dimension 3 or 4
are needed, together with numerical inversion methods.

We follow Yor and Nguyen (2001) and sketch how prices can in principle be cal-
culated. We focus on the up-and-in barrier call option with payoff function:

(ST − K)+1(MS
T � H). (9.2)

Its initial price is denoted by UIBC = UIBC(S0, T , K, H, r). The first step to note
(by differentiating (9.2) with respect to K) that we can write (independent of the
model used), for all K , T , r , S0 and H ,

UIBC(S0, T , K, H, r) =
∫ ∞

K

BUIC(S0, T , k, H, r) dk, (9.3)

where BUIC(S0, T , K, H, r) is the price of a binary up-and-in call with the same
maturity, i.e. with payoff function at maturity

1(ST � K)1(MS
T � H).

This option pays out one currency unit if the price of the stock at maturity is above
the strike K only if during the lifetime of the option the stock price has risen above
some barrier H . In all other cases the option expires worthless.

This option is a kind of barrier-version of the vanilla binary call option. A vanilla
binary call option with maturity T and strike K has a payoff function given by

1(ST � K)

and pays out one currency unit if the stock at expiry is above the strike K , and expires
worthless otherwise. We will denote its price by BC(S0, T , K, r). We have

BC(S0, T , K, r) = exp(−rT )EQ[1ST �K ]
= exp(−rT )

∫ ∞

log(K/S0)

fT (x) dx.

In order to avoid the integration (9.3) required to obtain the price of an up-and-in
barrier call option from the price of a binary up-and-in call option, we can also use
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the Esscher transform, already encountered in Section 6.2.2. To do this we have to
impose the condition that E[exp(X1)] < ∞. This hypothesis allows us to consider the
Esscher transform of the distribution of XT with density function fT (x). We define a
new distribution with density function:

f
(1)
T (x) = exp(x)fT (x)∫ +∞

−∞ exp(y)fT (y) dy
.

This is the Esscher transform of (6.1) for θ = 1. Then, as noted in Section 6.2.2, X

remains a Lévy process under this new measure. The characteristic function, φ(1) of
this new measure is now given in terms of the characteristic function, φ of the original
measure by the relation:

log φ(1)(u) = log φ(u − i) − log φ(−i).

We can rewrite the payoff function (9.2) of the up-and-in barrier as

(S0 exp(XT ) − K)1(MS
T � H)1(ST � K).

Hence the price is given by

UIBC = (S0 BUIC(1) −K BUIC).

Here BUIC denotes the price of the binary up-and-in call under the original setting,
i.e. using φ as the characteristic function of the underlying Lévy process, and BUIC(1)

denotes the price of the binary up-and-in call using φ(1) as the characteristic function
of the underlying Lévy process.

An important role will be played by the function

κ(α, β) = exp

(∫ ∞

0

∫ ∞

0

exp(−t) − exp(−αt − βx)

t
ft (x) dxdt

)
,

where κ is (up to a constant) the Laplace exponent of the ladder process (see Bertoin
1996). Knowledge of this function is needed to apply the Pecherskii–Rogozin iden-
tity, which expresses the double Laplace transform of the joint distribution of hitting
times and the value of the process at such times in terms of the function κ . This iden-
tity was first proved by Pecherskii and Rogozin (1969) using Wiener–Hopf analysis
techniques.

Let x > 0 and define the first passage time of X above x to be

T (x) = TX(x) = inf{t > 0 : Xt > x}
and the so-called overshoot to be

K(x) = KX(x) = XTX(x) − x.

Then, for every α, β, q > 0, the following Pecherskii–Rogozin identity holds:∫ ∞

0
exp(−ux)E[exp(−αT (x) − βK(x))] dx = κ(α, u) − κ(α, β)

(u − β)κ(α, u)
. (9.4)
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Inversion of this (triple) Laplace transform gives rise to the joint distribution of the
first passage time and the process its value at that time. This information is needed
for the calculation of the binary up-and-in call price, BUIC. Let τ = TX(log(H/S0)).
Then

BUIC(S0, T , K, H, r) = exp(−rT )EQ[1ST �K1MS
T �H ]

= exp(−rT )EQ[1XT �log(K/S0)1TX(log(H/S0))�T ]
= exp(−rT )EQ[EQ[1XT �log(K/S0)1τ�T | Fτ ]]
= EQ[exp(−rτ )1τ�T BC(S0 exp(Xτ ), T − τ, K, r)].

In order to calculate the final expectation, the joint law of τ and Xτ is needed. This
can be obtained by inversion of the Pecherskii–Rogozin identity.

Lookback options and the other types of barrier options can be treated along the
same lines.

It is clear that the calculation under this market model is quite involved, and it is
not clear whether the numerical calculation is in general better than the Monte Carlo
techniques we will discuss in Section 9.3. Further simplification of the formulas (in
special cases) is the subject of ongoing research and could possibly lead to a reduction
of the computational drawbacks of the method. Some simplifications are available in
Yor and Nguyen (2001). Kou and Wang (2001) obtained results for the special case
of the so-called double-exponential jump diffusion. Due to the memoryless property
of the exponential distribution, they manage to obtained formulas for the Laplace
transform of lookback and barrier options.

9.2 Other Exotic Options

Next, we list some results in the literature for some other exotic options. Most results
are obtained making specific model restrictions.

9.2.1 The Perpetual American Call and Put Option

AnAmerican perpetual option is a contract between two parties, in which the first one,
the holder, buys the right to receive from the other party, the seller, at a future time
τ of his choosing an amount G(Sτ ). Call and put options have the reward functions
G(x) = (x − K)+ and G(x) = (K − x)+, respectively.

The optimal τ will depend on the evolution of the stock prices and as such is a
random variable. In classical American options, the contract includes an exercise time
T , the maturity, at or before the holder can exercise: 0 � τ � T . In the perpetual
case T = ∞, so there is no expiry.

In Boyarchenko and Levendorskiı̆ (2000, 2002a) some explicit formulas were
derived using the theory of pseudo-differential operators.
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Using probabilistic techniques, Mordecki (2002) studied perpetual American call
and put options in terms of the overall supremum or infinimum of the Lévy pro-
cess. Explicit formulas were obtained by Mordecki (2002) under the assumption of
mixed-exponentially distributed and arbitrary negative jumps for the call options, and
negative mixed-exponentially distributed and arbitrary positive jumps for put options.

These results generalize the closed formulas of McKean (1965) and Merton (1973)
for the Black–Scholes setting.

9.2.2 The Perpetual Russian Option

The perpetual Russian option is an American-type option with no expiry offering the
holder to exercise at any F-stopping time, τ , in order to claim

exp(−ατ) max
{
K, sup

0�u�τ

Su

}
.

We say that it is an option with reduced regret.
The price of a Russian option in the traditional Black–Scholes market can be found

in the original paper of Shepp and Shiryaev (1994). See also Shepp and Shiryaev
(1993).

This option is studied for a Lévy market in Avram et al. (2003), Kou and Wang
(2001) and Mordecki and Moreira (2002) for a jump diffusion with only negative
jumps.

Asmussen et al. (2001) work with a class of Lévy processes which may have jumps
in both directions but where the jumps are in the dense class of phase-type distributions
(see Neuts 1981).

9.2.3 Touch-and-Out Options

A touch-and-out option (another name is first-touch digital) pays one currency unit
the first time the stock price hits or crosses a predetermined level H from above. In
other words, if the stock enters the zone (0, H ], the holder receives one currency unit.
If the stock price always stays above H before expiry, the claim expires worthless.

Similar option contracts can be constructed which pay out the first time the stock
price crosses the level H from below. Explicit pricing formulas under the Black–
Scholes model can be found in, for example, Ingersoll (2000).

Option prices under a Lévy market were obtained by Boyarchenko and Leven-
dorskiı̆ (2002a). A detailed comparison of NIG-based prices with Black–Scholes
prices can be found in Kudryavtsev and Levendorskiı̆ (2002).

Boyarchenko and Levendorskiı̆ (2002a) generalize the formulas for power first-
touch contracts and contracts which pay a nonzero amount when a first barrier has
been crossed but when a second one has not, and expire worthless if both barriers
have been crossed in one jump.
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9.3 Exotic Option Pricing by Monte Carlo Simulation

9.3.1 Introduction

If no closed formulas are at hand, we try to find a good indication of the price of the
option by doing a huge number of simulations. The accuracy of the final estimate
depends upon the number of sample paths used.

The method is basically as follows. Using the techniques described in the previous
chapter we simulate, say m, paths of our stock-prices process and calculate for each
path the value of the payoff function Vi , i = 1, . . . , m. Then the Monte Carlo estimate
of the expected value of the payoff is

V̂ = 1

m

m∑
i=1

Vi. (9.5)

The final option price is then obtained by discounting this estimate: exp(−rT )V̂ .
The standard error of the estimate is given by√√√√ 1

(m − 1)2

m∑
i=1

(V̂ − Vi)2.

The standard error decreases with the square root of the number of sample paths:
to reduce the standard error by half, it is necessary to generate four times as many
sample paths.

Next, we work out in detail the procedure for pricing a European exotic option with
time to maturity T and payoff function G({Su, 0 � u � T }). We use the techniques
described in the previous chapter to simulate paths of our stock-prices process.

9.3.2 Monte Carlo Pricing

Monte Carlo Pricing under the BNS Models

Under the BNS models (also called Black–Scholes SV models) we have the following
procedure.

1. Calibrate the model on the available vanilla option prices in the market, i.e. find
the risk-neutral parameters of the model which give in some sense (for example,
the smallest RMSE) the best model prices compared with the market prices.

2. With the parameters of step 1, do the following.

(a) Simulate a significant number m of paths of the stock-price process S =
{St , 0 � t � T } by simulating the log price process via a simulation of
the OU process (see Section 8.4.9).

(b) For each path i calculate the payoff function gi = G({Su, 0 � u � T }).
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3. Calculate by (9.5) the mean of the sample payoffs to get an estimate of the
expected payoff:

ĝ = 1

m

m∑
i=1

gi.

4. Discount the estimated payoff at the risk-free rate to get an estimate of the value
of the derivative: exp(−rT )ĝ.

Monte Carlo Pricing under the Lévy SV Models

Under the Lévy SV models we can follow the same procedure. We refine step 2(a).

1. Calibrate the model on the available vanilla option prices in the market, i.e.
find the risk-neutral parameters of the model which give in some sense (for
example, the smallest RMSE) the best model prices compared with the market
prices.

2. With the parameters of step 1, do the following.

(a) Simulate a significant number m of paths of the stock-price process S =
{St , 0 � t � T } by simulating the log price process via a simulation of
the time-changing process:

(i) simulate the rate of time change process y = {yt , 0 � t � T };
(ii) calculate from (i) the time change Y = {Yt = ∫ t

0 ys ds, 0 � t � T };
(iii) simulate the Lévy process X = {Xt, 0 � t � YT } (note that we

sample over the period [0, YT ]);
(iv) calculate the time-changed Lévy process XYt , for t ∈ [0, T ];
(v) calculate the stock-price process S = {St , 0 � t � T }.

(b) For each path i calculate the payoff function gi = G({Su, 0 � u � T }).
3. Calculate by (9.5) the mean of the sample payoffs to get an estimate of the

expected payoff:

ĝ = 1

m

m∑
i=1

gi.

4. Discount the estimated payoff at the risk-free rate to get an estimate of the value
of the derivative: exp(−rT )ĝ.

A sample of all ingredients in the case of the Meixner–CIR combination is shown in
Figure 9.1: the rate of time change y = {yt , 0 � t � T }, the stochastic business time
Y = {Yt , 0 � t � T }, the Lévy process X = {Xt, 0 � t � YT }, the time-changed
Lévy process {XYt , 0 � t � T }, and finally the stock-price process S = {St , 0 � t �
T }.
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Figure 9.1 Simulation of yt , Yt , Xt , XYt
and St .

9.3.3 Variance Reduction by Control Variates

If we want to price exotic barrier and lookback options or other exotics (of European
type), we often have information on vanilla options available. Note that we have
obtained our parameters from calibration of market vanilla prices. In this case, where
we thus have exact pricing information on related objects, we can use the variance
reduction technique of control variates. The method speeds up the pricing, but the
implementation depends on the characteristics of the instruments being valued.

The idea is as follows. Let us assume that we wish to calculate some expected
value, E[G] = E[G({St , 0 � t � T })], of a (payoff) function G and that there is
a related function H whose expectation E[H ] = E[H({St , 0 � t � T })] we know
exactly. Think of G as the payoff function of the exotic option we want to price via
the Monte Carlo method and of H as the payoff function of the vanilla option whose
price (and thus the expectation E[H ]) we observe in the market.

Suppose that for a sample path the values of the functions G and H are positively
correlated, e.g. the value of an up-and-in call is positively correlated with the value of
a vanilla call with same strike price and time to expiry. This can be seen, for example,
from Equation (9.1).
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Define for some number β ∈ R a new payoff function

Ĝ({St , 0 � t � T }) = G({St , 0 � t � T }) + β(H({St , 0 � t � T }) − E[H ]).
Note that the expected value of the new function Ĝ is the same as the expectation of
the original function G. However, there can be a significant difference in the variance.
We have

var[Ĝ] = var[G] − 2β cov[G, H ] + β2 var[H ].
This variance is minimized if

β = cov[G, H ]
var[H ] = E[GH ] − E[G]E[H ]

var[H ] .

For this minimizing value of β we find

var[Ĝ] = var[G]
(

1 − cov2[G, H ]
var[G] var[H ]

)
= var[G](1 − corr2(G, H))

� var[G].
So, if the absolute value of the correlation between G and H is close to 1, the

variance of Ĝ will be very small. Clearly, if we find such a highly correlated function
H , very large computational savings may be made. H is called the control variate
(CV). Note that the method is flexible enough to include several CVs.

The precise optimal value for β is not known but can be estimated from the same
simulation. Special care has to be taken, however, since estimating parameters deter-
mining the result from the same simulation can introduce a bias. In the limit of a
very large number of iterations, this bias vanishes. A remedy for the problem of bias
due to the estimation of β is to use an initial simulation, possibly with fewer iterates
than the main run, to estimate β in isolation. The CV technique usually provides
such a substantial speed-up in convergence that this initial parameter estimation is
affordable.

To summarize, we give an overview of the procedure (with an initial estimation of
β). Recall that we want to price a European exotic option expiring at time T with
payoff function G({St , 0 � t � T }) and that we have a correlated option also expiring
at time T with payoff H({St , 0 � t � T }) whose option price is observable in the
market and is given by

exp(−rT )E[H({St , 0 � t � T })] = exp(−rT )E[H ].
The expectation is under the risk-neutral pricing measure. We proceed as follows.

1. Estimate the optimal β:

(a) sample a significant number n of paths for the stock price S = {St , 0 �
t � T } and calculate for each path i: gi = G({St , 0 � t � T }) and
hi = H({St , 0 � t � T });
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Table 9.1 Exotic option prices.

Model LC UIB UOB DIB DOB

VG–CIR–EWI 135.27 78.50 63.18 17.71 86.07
(0.4942) (0.2254) (0.6833) (0.5306) (0.0811)

NIG–CIR–EWI 135.24 79.08 63.54 16.47 86.12
(0.4764) (0.2161) (0.6665) (0.4924) (0.0819)

Meixner–CIR–EWI 135.72 78.57 64.34 17.28 86.06
(0.4853) (0.2239) (0.7091) (0.5168) (0.0836)

VG–CIR–IILB 134.77 78.66 62.89 17.42 86.16
(0.4894) (0.2224) (0.7250) (0.5259) (0.0958)

NIG–CIR–IILB 135.48 78.66 63.27 16.76 86.18
(0.4817) (0.2203) (0.6841) (0.5409) (0.0609)

Meixner–CIR–IILB 134.83 78.66 63.87 17.24 86.08
(0.4712) (0.2193) (0.7087) (0.5560) (0.0794)

Black–Scholes σmin 128.64 65.66 46.26 21.78 69.17
Black–Scholes σlse 155.12 81.66 39.98 32.88 83.50
Black–Scholes σmax 189.76 102.20 30.32 54.73 101.60

(b) an estimate for β is

β̂ =
∑n

i=1 gihi − E[H ]∑n
i=1 gi∑n

i=1(hi − E[H ])2
.

2. Simulate a significant number m of paths for the stock price

S = {St , 0 � t � T }
and calculate for each path i:

gi = G({St , 0 � t � T }) and hi = H({St , 0 � t � T }).

3. Calculate an estimation of the expected payoff by

ĝ = 1

n

( m∑
i=1

gi − β̂(hi − E[H ])
)

.

4. Discount the estimated payoff ĝ at the risk-free rate r to get an estimate of the
value of the derivative. The option price is given by exp(−rT )ĝ.
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Figure 9.2 Standard error with and without CVs. (a) Up-and-in barrier; (b) lookback call.

9.3.4 Numerical Results

In this section we calculate some prices of exotic options by the above Monte Carlo
method. We focus on the VG, the NIG and the Meixner cases in combination with
the CIR process. The parameters of the processes are again as given in Table 7.3.
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Figure 9.3 Convergence of options prices.

For all barrier options we take the time to maturity T = 1, the strike K = S0 and
the barrier H :

HUIB = 1.1 × S0, HUOB = 1.3 × S0,

HDIB = 0.95 × S0, HDOB = 0.8 × S0.

For all models, we make n = 10 000 simulations of paths covering a one-year period.
The time is discretized in 250 equally small time steps. We run 100 simulations to
find an estimate for the optimal β of the control variate. We consider both equally
weighted intervals (EWIs) and intervals with inverse linear boundaries (IILBs).

In Table 9.1 we compare the price along all models considered together with Black–
Scholes prices. The standard error of the simulation is given in brackets below each
option price. The volatility parameter in the Black–Scholes model is taken to be
σlse = 0.1812, σmin = 0.1479 and σmax = 0.2259. These σ s, which can be read off
from Figure 4.5, correspond to the volatility giving rise to the least-square error of the
Black–Scholes model prices compared with the empirical S&P 500 vanilla options,
and the minimal and maximal implied volatility parameters over all strikes and matu-
rities of our dataset, respectively. The Black–Scholes barrier prices are adjusted for
the discrete observation of the stock prices as described above.

The effect of using control variates for the Monte Carlo pricing of the up-and-in
barrier and the lookback option in the Meixner–CIR case is shown in Figure 9.2.
Similar figures can be obtained for the other options and cases; all show that the
standard error declines much faster with control variates than without. In Figure 9.3
we can see how the Monte Carlo prices converge over the number of iterations in



134 EXOTIC OPTION PRICING BY MONTE CARLO SIMULATION

the Meixner–CIR case. Note that in both figures we have logarithmic scales for the
number of iterations.

9.3.5 Conclusion

First we note that all the SV models give very good fit to the data. If we look at
the pricing of the exotic options in the Black–Scholes world, we observe that the
Black–Scholes prices depend heavily on the choice of the volatility parameter and
that it is not clear which value we should take. For the Lévy SV models the prices
are very close to each other. We conclude that the Black–Scholes model is not at all
appropriate for the pricing of exotics. Moreover, there is evidence that the Lévy SV
models are much more reliable; they give a much better indication of the true price
than the Black–Scholes model.



10

Interest-Rate Models

In this chapter we will look at models for describing the stochastic behaviour of interest
rates. Typically, the classical models are often based on assumptions that returns in
the bond market are (approximately) Normally distributed. We refer to Björk (1998),
Brigo and Mercurio (2001), Filipović (2001), James and Webber (2000), Bingham and
Kiesel (1998) and Rebonato (1996) for a comprehensive introduction to interest-rate
modelling.

Empirical studies show that the normality assumptions of the classical models do
not hold in general. We will describe the Lévy-based models introduced by Eberlein
and Raible (1999) (see also Raible 2000).

We start with the general theory of interest-rate markets. Next, we give an overview
of the classical Gaussian Heath–Jarrow–Morton (HJM) model and give some idea of
its shortcomings. In order to deal with these drawbacks, we introduce models based
on Lévy processes. Next, we indicate how to obtain prices of European vanilla options
on bonds. Finally, we look at multi-factor extensions of the models presented.

10.1 General Interest-Rate Theory

Zero-Coupon Bonds

Denote by Pt(T ) the value at time t of one currency unit received for sure at time T .
Pt(T ) is the value at time t of the so-called zero-coupon bond maturing with value 1
at time T . It is the discounting factor for cashflows occurring at time T . These bonds
do not pay interest periodically, but give a face value (for convenience we have taken
one currency unit) which will be paid at maturity; the interest earned on this bond
appears as a discount to the face value at the beginning.

Interest rates are not a one-dimensional object. In the market there are bonds with
maturities between 0 and 30 years (or even more). The interest received depends on
the time to maturity. Under normal circumstances the interest rate paid for a bond with
many years to maturity is higher than that for a bond which is close to maturity. We
thus need to model interest rates with a vector- or function-valued stochastic process.

Lévy Processes in Finance: Pricing Financial Derivatives. Wim Schoutens
Copyright  2003 John Wiley & Sons, Ltd.
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Figure 10.1 Yield curve on 26 February 2002.

We assume that there is a complete set of zero-coupon bonds with maturities T in
the full time interval [0, T ∗], for some T ∗ (for example, 30 years). Given (at time t)
a set of zero-coupon-bond prices {Pt(T ), t < T � T ∗}, the term structure of interest
rates is the set of yields to maturity {rt (T ), t < T � T ∗} given (using continuous
compounding) by

rt (T ) = − 1

T − t
log Pt(T ), t < T � T ∗.

This is known as the yield curve. In Figure 10.1, we see, for example, the EURI-
BOR (Euro Interbank Offered Rate) yield curve on 26 February 2002 for bonds with
maturity up to one year. EURIBOR is the rate at which Euro interbank term deposits
within the Euro zone are offered by one prime bank to another prime bank.

The Short Rate

The short rate rt = rt (t) = limT ↓t rt (T ) is the rate on instantaneous borrowing and
lending. Historically, it was the short rate which was modelled as the basic process.
Although we have assumed in previous chapters that the short rate r is constant, in
practice, this rate is stochastic and can fluctuate over time: r = {rt , t � 0}. Note
that the short rate is actually a theoretical entity which does not exist in real life and
cannot be directly observed. Note also that in some markets the overnight interest
rate is usually not considered a good approximant for the short rate. The driving
motives and needs of overnight borrowing can be very different from the other rates.
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Figure 10.2 EURIBOR from 30 December 1998 until 2 May 2002.

In particular, its correlation with rates further up the term structure may be very slight.
The one-week or one-month or even three-month interest rate is often a reasonable
proxy.

The fact that interest rates behave stochastically can, for example, be seen from
Figure 10.2, which shows the interest-rate fluctuations of the one-week EURIBOR
interest rate from 30 December 1998 until 2 May 2002. The one-year USA Treasury
yield over the period 1970–2001 is shown in Figure 10.3.

A sum of 1 invested in the short rate at time zero and continuously rolled over,
i.e. instantaneously reinvested, is called the money-market account. Its value pt at
time t is

pt = exp

(∫ t

0
rs ds

)
.

If r is deterministic and constant, pt reduces to our classical bank account: pt = Bt =
exp(rt).

A basic model for the behaviour of the stochastic process r is the CIR model. It is
based on the CIR process, which we also encountered as a possible time change in
Chapter 7:

drt = κ(η − rt ) dt + σr
1/2
t dWt, r0 > 0.

Under this model, the interest rate is mean reverting; it fluctuates around a long-term
mean η. In the literature, this model was generalized in different ways. Well-known
alternatives are the Vasicek and the Ho–Lee models, together with their extensions.
We refer to Björk (1998).
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Figure 10.3 One-year USA Treasury yield from 1970 to 2001.

10.2 The Gaussian HJM Model

Instead of using the short rate as a state variable, Heath, Jarrow and Morton (HJM)
proposed in Heath et al. (1992) to use the entire (forward) rate curve as the (infinite-
dimensional) state variable. In the HJM model an entire rate curve evolves simultane-
ously. Moreover, the HJM model uses all the information available in the initial term
structure.

The Instantaneous Forward Rate

We define the instantaneous forward rate to be

f (t, T ) = − ∂

∂T
log Pt(T ).

The function f (t, T ) corresponds to the rate we can contract for at time t on a riskless
loan that begins at time T and is returned an instant later. Since

Pt(T ) = exp

(
−
∫ T

t

f (t, s) ds

)
,

zero-coupon-bond prices and forward rates represent equivalent information. Note
that the short rate rt is contained in this forward rate structure since rt = f (t, t).
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The HJM Model

We start with the Heath, Jarrow and Morton (HJM) model for the forward rate. We
assume that the forward rate dynamics are given by

df (t, T ) = α(t, T ) dt + v(t, T ) dWt, f (0, T ) > 0, (10.1)

where {Wt, t � 0} is a standard Brownian motion and the functions α and v are
sufficiently smooth. In general we can take an n-dimensional Brownian motion, tak-
ing into account various factors. Moreover, the drift function α(t, T ) and volatility
function v(t, T ) can be made path dependent. We focus first on the one-dimensional
case with deterministic drift and volatility functions, and then, in Section 10.5, we
consider the general case.

The above dynamics of the forward rates can be translated to the zero-coupon-bond
prices, which are driven by

dPt(T ) = Pt(T )(m(t, T ) dt + σ(t, T ) dWt), P0(T ) > 0. (10.2)

The relation between (10.1) and (10.2) is given by

m(t, T ) = f (t, t) −
∫ T

t

α(t, s) ds + 1

2

(∫ T

t

v(t, s) ds

)2

,

σ (t, T ) = −
∫ T

t

v(t, s) ds.

From (10.1), we can recover the dynamics of the short rate under this model as

rt = f (0, t) +
∫ t

0
α(s, t) ds +

∫ t

0
v(s, t) dWs, r0 > 0.

The HJM Drift Conditions

To rule out arbitrage, forwards drifts and volatilities (or, equivalently, bond price drifts
and volatilities) must be consistent. This leads to the HJM drift conditions. Under a
risk-neutral setting, we must have

α(t, T ) = v(t, T )

∫ T

t

v(t, s) ds, 0 � t � T � T ∗.

In terms of bond prices this means that the drift coefficient m(t, T ) is replaced by
the short rate rt . Therefore, in the risk-neutral world and in the HJM model the zero-
coupon-bond prices satisfy an SDE of the form

dPt(T ) = Pt(T )(rt dt + σ(t, T ) dWt), P0(T ) > 0. (10.3)

We assume that P0(T ) as well as the (nonrandom) volatility σ(s, T ) are sufficiently
smooth, namely at least C2 and σ(s, s) = 0.

As in the Black–Scholes model (for stocks), the HJM model requires the underlying
asset (the initial term structure) and a measure of its volatility as the only inputs.
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The Volatility Structure

Note that contrary to the case of stock-price models it would not make sense to consider
a constant volatility σ . When a default-free bond approaches its maturity, the span of
possible price fluctuations narrows. This is clear since at maturity the owner of the
bond will get the face value with certainty. Note that we have σ(T , T ) = 0.

We will consider stationary volatility structures, i.e. σ(t, T ) depends only on the
difference T − t . The Vasicek and Ho–Lee volatility structures are often used, and
are given by, respectively,

σ(t, T ) = b

a
(1 − exp(−a(T − t))),

σ (t, T ) = b(T − t),

for parameters b > 0 and a = 0.

Bond Prices in the Gaussian HJM Model

The solution of the SDE (10.3) can be written in the form

Pt(T ) = P0(T ) exp

(∫ t

0
rs ds

)
exp(

∫ t

0 σ(s, T ) dWs)

E[exp(
∫ t

0 σ(s, T ) dWs)]
(10.4)

= P0(T ) exp

(∫ t

0
rs ds +

∫ t

0
σ(s, T ) dWs −

∫ t

0

1
2σ(s, T )2 ds

)
(10.5)

= P0(T )pt exp

(∫ t

0
σ(s, T ) dWs −

∫ t

0

1
2σ(s, T )2 ds

)
. (10.6)

By Equation (10.5), the log return between times t and t + �t on a zero-coupon
bond maturing at time T is given by

log Pt+�t (T ) − log Pt(T )

=
∫ t+�t

t

rs ds +
∫ t+�t

t

σ (s, T ) dWs −
∫ t+�t

t

1
2σ(s, T )2 ds.

For �t → 0, the integrals may be replaced by the product of the value of the integrand
at the left endpoint times the increment of the integrator. Hence, for �t small enough,
we have

log Pt+�t (T ) − log Pt(T ) ≈ rt�t + σ(t, T )(Wt+�t − Wt) − 1
2σ(t, T )2�t.

We conclude that the log returns under the risk-neutral measure approximately
follow a Normally distributed random variable:

log Pt+�t (T ) − log Pt(T ) ∼ Normal(rt�t − 1
2σ(t, T )2�t, σ (t, T )2�t).

Raible (2000) argues that (under some assumptions and using Girsanov’s theorem)
that the objective (historical) measure will again approximately follow a Normal
distribution.
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Figure 10.4 Density and log density for bond prices based on
the one-year USA Treasury yields from 1970 to 2001.

As in the case of stock prices, empirical studies (see, for example, Raible 2000)
show that this normality assumption does not reflect reality. Empirically observed log
returns of bonds turn out to have a leptokurtic distribution.

The density plots of the log returns of bond prices based on the one-year USA
Treasury yields over the period 1970–2001 are shown in Figure 10.4. We see that the
Gaussian kernel density and log density do not correspond at all to the Normal density,
with mean and variances equal to the sample mean and sample variance. For a detailed
study, including QQ plots and χ2-tests, we refer to Raible (2000), who concludes
that the Gaussian HJM model performs poorly as a description of the empirically
observed movements of bond prices. However, the more flexible distributions already
encountered in the modelling of stock-price log returns also give a much better fit here.
This can, for example, also be seen from Figure 10.4, where a Meixner distribution
has been fitted to the Gaussian kernel estimator. Clearly, the fit is significantly better
than the Normal fit. More detailed studies (for the NIG case) can be found in Raible
(2000).

10.3 The Lévy HJM Model

In order to obtain more realistic modelling, we replace the driving Brownian motion
W = {Wt, t � 0} in (10.4) with a more flexible Lévy process L = {Lt , t � 0}. In
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order to assume finiteness of the expectation in the denominator above in the case of
general Lévy processes, we assume that∫

{|x|>1}
exp(vx)ν(dx) < ∞ for |v| < (1 + ε)M,

where ε > 0 and M is such that 0 � σ(s, T ) � M for 0 � s � T � T ∗ and ν(dx)

is the Lévy measure of the infinitely divisible distribution of L1. Typical choices of
this Lévy process are the VG, the NIG, the GH, the Meixner or CGMY processes.

We now model the zero-coupon bond price with the following process:

Pt(T ) = P0(T ) exp

(∫ t

0
rs ds

)
exp(

∫ t

0 σ(s, T ) dLs)

E[exp(
∫ t

0 σ(s, T ) dLs)]
.

The Equivalent Martingale Measure

Using classical arguments from stochastic integration theory, we can easily prove that
the discounted bond-price process,

P̃ (T ) =
{
P̃t (T ) = exp

(
−
∫ t

0
rs ds

)
Pt(T ) = Pt(T )

pt

, 0 � t � T

}
,

is a martingale, and this in the general Lévy case, i.e. with Wt replaced by Lt .
Eberlein and Raible (1999) derived the bond-price process in the form,

Pt(T ) = P0(T ) exp

(∫ t

0
rs ds

)
exp(

∫ t

0 σ(s, T ) dLs)

exp(
∫ t

0 θ(σ (s, T )) ds)
,

where θ(u) = log(E[exp(uL1)]) denotes the logarithm of the moment-generating
function of the Lévy process at time 1. In the classical Gaussian model we choose
θ(u) = u2/2 and Ls = Ws .

As noted above, discounted bond prices are martingales in this term-structure
model. It was shown in Raible (2000) that the martingale measure is unique. As a
consequence, arbitrage-free prices of interest-rate derivatives are uniquely determined
once the parameters of the driving Lévy process and the volatility structure are fixed.

10.4 Bond Option Pricing

In this section, we follow Eberlein and Raible (1999) and show how the price of
vanilla European options can be obtained (numerically).

We concentrate on the time 0 price of a European call option on a bond maturing
at time T , with exercise date t and strike price K . Using the classical arguments (and
using the money-market account as numeraire), the price is given by

C(t, T , K) = E

[
1

pt

(Pt (T ) − K)+
]
, (10.7)

where the expectation is taken under the risk-neutral measure.
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European Vanilla Call Option Price under the Gaussian HJM Model

In the Gaussian case, the option price (10.7) can be calculated explicitly (see, for
example, Bingham and Kiesel 1998),

C(t, T , K) = P0(T )N(b2) − KP0(t)N(b2 − b1),

where as usual N denotes the standard Normal cumulative distribution function as in
(3.1), and where b1 and b2 are given by

b1 =
(∫ t

0
(σ (s, T ) − σ(s, t))2ds

)1/2

,

b2 = log P0(T ) − log P0(t) − log K

b1
+ b1

2
.

Calculating European Vanilla Call Option Price under the Lévy HJM Model

Next, we will look at the more general Lévy-driven models. First note that, since
Pt(t) = 1, we have

1

pt

= P0(t) exp

(
−
∫ t

0
θ(σ (s, t)) ds +

∫ t

0
σ(s, t) dLs

)
.

Thus, the expectation in (10.7) can be written as

E

[(
P0(T ) exp

(
−
∫ t

0
θ(σ (s, T )) ds +

∫ t

0
σ(s, T ) dLs

)

− KP0(t) exp

(
−
∫ t

0
θ(σ (s, t)) ds +

∫ t

0
σ(s, t) dLs

))+ ]
. (10.8)

The only random variables appearing here are the two stochastic integrals:

X =
∫ t

0
σ(s, T ) dLs,

Y =
∫ t

0
σ(s, t) dLs.

The remaining terms are deterministic and can be easily computed.
In order to evaluate the expectation (10.8), we need the information of the joint

distribution of X and Y . Eberlein and Raible (1999) showed that the corresponding
joint characteristic function is given by

E[exp(iuX + ivY )] = exp

(∫ t

0
ψ(uσ(s, T ) + vσ(s, t)) ds

)
,

where ψ is the cumulant characteristic function (or the characteristic exponent) of
L1, i.e. ψ(u) = log E[exp(iuL1)].
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From this we can recover, using the inverse Fourier transform, the joint density of X

and Y . The price of the vanilla European call option can then be obtained numerically.
See Eberlein and Raible (1999) for a comparison (of the hyperbolic model) with the
Gaussian case. They report that, typically, option prices as a function of the forward-
price/strike ratio are W-shaped: at-the-money prices are lower, while in-the-money
and out-of-the-money prices are higher than in the Gaussian model.

10.5 Multi-Factor Models

All of the above models are driven by a one-dimensional stochastic process. Moreover,
the volatility structure in them is always deterministic and stationary.

In reality, the (log)returns of zero-coupon bonds of different maturities are not per-
fectly correlated. Multi-factor models can take this into account. The use of multiple
factors and path-dependent volatility functions gives a certain flexibility since it can
incorporate changes in the level, the slope and curvature of the term structure, though
with each extra factor there is a considerable increase in complexity and practicality.
In practice, we have to trade off precision and numerical tractability.

The Multi-Factor Gaussian HJM Model

In its most general form, the Gaussian HJM model specifies the instantaneous forward
rate process as

df (t, T ) = α(t, T , ω) dt +
n∑

i=1

vi(t, T , ω) dW
(i)
t , f (0, T ) > 0,

where W(i) = {W(i)
t , 0 � t}, i = 1, . . . , n, are n independent standard Brownian

motions. ω is a sample point in the sample space Ω . The functions α(t, T , ω) and
vi(t, T , ω), i = 1, . . . , n, are path dependent; this is indicated by the ω in the notation.
Since we have n sources of uncertainty, W(i), i = 1, . . . , n, this is an n-factor model.

Bond prices then behave as

dPt(T ) = Pt(T )

(
m(t, T , ω) dt +

n∑
i=1

σi(t, T , ω) dW
(i)
t

)
, P0(T ) > 0,

where

m(t, T , ω) = f (t, t) −
∫ T

t

α(t, s, ω) ds + 1

2

n∑
i=1

(∫ T

t

vi(t, s, ω) ds

)2

,

σi(t, T , ω) = −
∫ T

t

vi(t, s, ω) ds.
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To rule out arbitrage we impose the HJM drift conditions:

α(t, T , ω) =
n∑

i=1

vi(t, T , ω)

∫ T

t

vi(t, s, ω) ds, 0 � t � T � T ∗.

In terms of bond prices this again comes down to replacing the drift coefficient
m(t, T , ω) by the short rate rt . In the risk-neutral setting, the zero-coupon-bond price
dynamics are

dPt(T ) = Pt(T )

(
rt dt +

n∑
i=1

σi(t, T , ω) dW
(i)
t

)
, P0(T ) > 0. (10.9)

In contrast with the models of the preceding sections, bond prices are not necessarily
Markovian; there is a possible dependence on the past via ω.

The Multi-Factor Lévy HJM Model

Raible (2000) uses the same idea as above to present a multi-factor stochastic volatility
Lévy-driven term-structure model. He starts not with the driving SDE, but again with
the explicit bond-price formula of the Gaussian counterpart, in which he replaces the
standard Brownian motions with a Lévy process.

So, assume that we have n independent Lévy processes L(i) = {L(i)
t , t � 0}, i =

1, . . . , n, satisfying some regularity conditions similar to the above. The derived
bond-price process (in the risk-neutral setting) is of the form

Pt(T ) = P0(T )pt

exp(
∑n

i=1

∫ t

0 σi(s, T , ω) dL
(i)
s )

exp(
∑n

i=1

∫ t

0 θi(σi(s, T )) ds)
,

where θi(u) = log ϑi(u) = log(E[exp(uL
(i)
1 )]) denotes the logarithm of the moment-

generating function of the ith Lévy process at time 1. In the classical Gaussian model
we choose θi(u) = u2/2 and L

(i)
s = W

(i)
s , i = 1, . . . , n.

By construction, we also have here that the discounted bond prices

P̃ (T ) = {Pt(T )/pt , 0 � t � T }
are martingales.

In this way, it is possible to capture the three key features of the empirical behaviour
of the term structure: non-Normal return behaviour, multi-factor movement, and
stochastic volatility.
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Special Functions

A.1 Bessel Functions

A standard reference for Bessel functions is Abramowitz and Stegun (1968). Some-
times the function Nv , which is defined below, is also denoted by Yv .

Bessel functions of the first kind J±v(z), of the second kind Nv(z), and of the third
kind H(1)

v (z) and H(2)
v (z) are solutions to the differential equation:

z2 d2w

dz2 + z
dw

dz
+ (z2 − v2)w = 0.

The function Jv(z) can be written as the following series:

Jv(z) = (z/2)v
∞∑

k=0

(−z2/4)k

k!�(v + k + 1)
,

and Nv(z) satisfies

Nv(z) = Jv(z) cos(vπ) − J−v(z)

sin(vπ)
,

where the right-hand side of this equation is replaced by its limiting value if v is an
integer or zero. We also have

H(1)
v (z) = Jv(z) + iNv(z),

H(2)
v (z) = Jv(z) − iNv(z).
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Next, we list some useful properties:

J1/2(z) =
√

2

πz
sin z,

J−1/2(z) =
√

2

πz
cos z,

J3/2(z) =
√

2

πz

(
sin z

z
− cos z

)
,

J−3/2(z) =
√

2

πz

(
sin z + cos z

z

)
,

Jn+1/2(z) = (−1)nN−n−1/2(z), n = 0, 1, 2, . . . ,

J−n−1/2(z) = (−1)n−1Nn+1/2(z), n = 0, 1, 2, . . . .

A.2 Modified Bessel Functions

The modified Bessel functions of the first kind I±v(z) and of the third kind (also called
MacDonald functions) Kv(z) are solutions to the differential equation

z2 d2w

dz2 + z
dw

dz
− (z2 + v2)w = 0.

The function Iv(z) can be written as the following series,

Iv(z) = (z/2)v
∞∑

k=0

(z2/4)k

k!�(v + k + 1)
,

and Kv(z) satisfies

Kv(z) = π

2

Iv(z) − I−v(z)

sin(vπ)
,

where the right-hand side of this equation is replaced by its limiting value if v is an
integer or zero.

The Bessel function Kv can also be written in integral form as

Kv(z) = 1

2

∫ ∞

0
uv−1 exp(− 1

2z(u + u−1)) du, x > 0.

Next, we list some useful properties:

Kv(z) = K−v(z),

Kv+1(z) = 2v

z
Kv(z) + Kv−1(z),

K1/2(z) = √
π/2 z−1/2 exp(−z),

K′
v(z) = −v

z
Kv(z) − Kv−1(z).
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A.3 The Generalized Hypergeometric Series

The generalized hypergeometric series pFq is defined by

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑

j=0

(a1)j · · · (ap)j

(b1)j · · · (bq)j

zj

j ! ,

where bi = 0, −1, −2, . . . , i = 1, . . . , q, and where

(a)n = �(a + n)

�(a)
=
{

1, if n = 0,

a(a + 1) · · · (a + n − 1), if n = 1, 2, 3, . . . .

There are p numerator parameters and q denominator parameters. Clearly, the
orderings of the numerator parameters and of the denominator parameters are imma-
terial.

A.4 Orthogonal Polynomials

Here we summarize the ingredients of some orthogonal polynomial yn(x) of degree
n. We have the following orthogonality relations,∫

S

yn(x)ym(x)ρ(x) dx = d2
nδnm,

where S is the support of ρ(x).
The constant an is the leading coefficient of yn(x). We denote the monic polynomial

(i.e. with leading coefficient 1) by ỹn(x) = a−1
n yn(x).

A.4.1 Hermite polynomials with parameter

Notation Hn(x; t)

Restrictions t > 0

HF∗ Hn(x; t) = (
√

2/tx)n 2F0(−n/2, −(n − 1)/2; ; −2t/x2)

GF∗∗
∞∑

n=0

Hn(x; t)
zn

n! = exp(
√

2xz/
√

t − z2)

ρ(x) exp(−x2/(2t))/
√

2πt

Support (−∞, +∞)

d2
n 2nn!

an (
√

2/t)n

∗HF, Hypergeometric Function; ∗∗GF, Generating Function
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A.4.2 Meixner–Pollaczek Polynomials

Notation Pn(x; δ, ζ )

Restrictions δ > 0, 0 < ζ < π

HF∗ Pn(x; δ, ζ ) = (2δ)n

n! exp(inζ ) 2F1(−n, δ + ix; 2ζ ; 1 − exp(−2iζ ))

GF∗∗
∞∑

n=0

Pn(x; δ, ζ )zn = (1 − exp(iζ )z)−δ+ix(1 − exp(−iζ )z)−δ−ix

ρ(x)
(2 sin(ζ ))2δ

2π
exp((2ζ − π)x)|�(δ + ix)|2

Support (−∞, +∞)

d2
n �(n + 2δ)/n!

an (−2 sin(x))n

∗HF, Hypergeometric Function; ∗∗GF, Generating Function



Appendix B

Lévy Processes

B.1 Characteristic Functions

Recall that a Lévy process X = {Xt, t � 0} is completely defined by the infinitely
divisible law of X1.

Next, we give the characteristic functions for these infinitely divisible distributions.
We consider distributions on the nonnegative integers, the positive half-line and on
the real line. Note that, for the latter, an extra m parameter can be added (except for
the Normal distribution) as described in Section 5.4. The characteristic function of the
extended distribution is just the product of exp(ium) and the original characteristic
function.

B.1.1 Distributions on the Nonnegative Integers

Distribution φ(u) = E[exp(iuX1)]
Poisson(λ) exp(λ(exp(iu) − 1))

B.1.2 Distributions on the Positive Half-Line

Distribution φ(u) = E[exp(iuX1)]
Gamma(a, b) (1 − iu/b)−a

Exp(λ) (1 − iu/λ)−1

IG(a, b) exp(−a(
√−2iu + b2 − b))

GIG(λ, a, b) K−1
λ (ab)(1 − 2iu/b2)λ/2Kλ(ab

√
1 − 2iu/b2)

TS(κ, a, b) exp(ab − a(b1/κ − 2iu)κ)
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B.1.3 Distributions on the Real Line

Distribution φ(u) = E[exp(iuX1)]
Normal(µ, σ 2) exp(iuµ) exp(−σ 2u2/2)

VG(σ, ν, θ) (1 − iuθν + σ 2νu2/2)−1/ν

VG(C, G, M) (GM/(GM + (M − G)iu + u2))C

NIG(α, β, δ) exp(−δ(
√

α2 − (β + iu)2 −√
α2 − β2))

CGMY(C, G, M, Y ) exp(C�(−Y )((M − iu)Y − MY + (G + iu)Y − GY ))

Meixner(α, β, δ) (cos(β/2)/ cosh((αu − iβ)/2))2δ

GZ(α, β1, β2, δ)

(
B(β1 + iαu/2π, β2 − iαu/2π)

B(β1, β2)

)2δ

HYP(α, β, δ)

(
α2 − β2

α2 − (β + iu)2

)1/2 K1(δ
√

α2 − (β + iu)2)

K1(δ
√

α2 − β2)

GH(λ, α, β, δ)

(
α2 − β2

α2 − (β + iu)2

)λ/2 Kλ(δ
√

α2 − (β − iu)2)

Kλ(δ
√

α2 − β2)



APPENDIX B 153

B.2 Lévy Triplets

B.2.1 γ

Recall the Lévy–Khintchine formula for the logarithm of the characteristic function
of X1,

log φ(u) = iγ u − 1
2σ 2u2 +

∫ +∞

−∞
(exp(iux) − 1 − iux1{|x|<1})ν(dx).

Next, we give the corresponding Lévy triplets [γ, σ 2, ν(dx)]. σ 2 = 0 for all examples
mentioned below, except for the Normal(µ, σ 2) distribution, where it is equal to the
variance σ 2.

Distribution γ

Normal(µ, σ 2) 0
Poisson(λ) 0
Gamma(a, b) a(1 − exp(−b))/b

IG(a, b) (a/b)(2N(b) − 1)

GIG(λ, a, b)

∫ 1

0
exp(− 1

2b2x)

×
(∫ ∞

0

exp(−xz)

π2z(J2|λ|(a
√

2z) + N2|λ|(a
√

2z))
dz + max{0, λ}

)
dx

TS(κ, a, b) a2κ κ

�(1 − κ)

∫ 1

0
x−κ exp(− 1

2b1/κx) dx

VG(C, G, M) C(MG)−1(G(exp(−M) − 1) − M(exp(−G) − 1))

NIG(α, β, δ)
2δα

π

∫ 1

0
sinh(βx)K1(αx) dx

CGMY(C, G, M, Y ) C

(∫ 1

0
(exp(−Mx) − exp(−Gx))x−Y dx

)

Meixner(α, β, δ) αδ tan(β/2) − 2δ

∫ ∞

1

sinh(βx/α)

sinh(πx/α)
dx
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B.2.2 The Lévy Measure ν(dx)

Distribution ν(dx)

Normal(µ, σ 2) 0

Poisson(λ) λδ(1)

Gamma(a, b) a exp(−bx)x−11(x>0) dx

IG(a, b) (2π)−1/2ax−3/2 exp(− 1
2b2x)1(x>0) dx

GIG(λ, a, b)

x−1 exp(− 1
2b2x)

×
(∫ ∞

0

exp(−xz)

π2z(J2|λ|(a
√

2z) + N2|λ|(a
√

2z))
dz + max{0, λ}

)
1(x>0) dx

TS(κ, a, b) a2κ κ

�(1 − κ)
x−κ−1 exp(− 1

2b1/κx)1(x>0) dx

VG(C, G, M) C|x|−1(exp(Gx)1(x<0) + exp(−Mx)1(x>0)) dx

NIG(α, β, δ) δαπ−1|x|−1 exp(βx)K1(α|x|) dx

CGMY(C, G, M, Y ) C|x|−1−Y (exp(Gx)1(x<0) + exp(−Mx)1(x>0)) dx

Meixner(α, β, δ) δx−1 exp(βx/α) sinh−1(πx/α) dx

GH(λ, α, β, δ),

λ � 0
exp(βx)

|x|
(∫ ∞

0

exp(−|x|√2y + α2)

π2y(J2
λ(δ

√
2y) + N2

λ(δ
√

2y))
dy + λ exp(−α|x|)

)

GH(λ, α, β, δ),

λ < 0
exp(βx)

|x|
∫ ∞

0

exp(−|x|√2y + α2)

π2y(J2−λ(δ
√

2y) + N2−λ(δ
√

2y))
dy



Appendix C

S&P 500 Call Option Prices

In the following table, we can find 77 call option prices on the S&P 500 Index at
the close of the market on 18 April 2002. On that day, the S&P 500 Index closed at
1124.47. We had values of r = 1.9% and q = 1.2% per year.

Strike May June Sep. Dec. March June Dec.
2002 2002 2002 2002 2003 2003 2003

975 161.60 173.30
995 144.80 157.00 182.10

1025 120.10 133.10 146.50
1050 84.50 100.70 114.80 143.00 171.40
1075 64.30 82.50 97.60
1090 43.10
1100 35.60 65.50 81.20 96.20 111.30 140.40
1110 39.50
1120 22.90 33.50
1125 20.20 30.70 51.00 66.90 81.70 97.00
1130 28.00
1135 25.60 45.50
1140 13.30 23.20 58.90
1150 19.10 38.10 53.90 68.30 83.30 112.80
1160 15.30
1170 12.10
1175 10.90 27.70 42.50 56.60 99.80
1200 19.60 33.00 46.10 60.90
1225 13.20 24.90 36.90 49.80
1250 18.30 29.30 41.20 66.90
1275 13.20 22.50
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Strike May June Sep. Dec. March June Dec.
2002 2002 2002 2002 2003 2003 2003

1300 17.20 27.10 49.50
1325 12.80
1350 17.10 35.70
1400 10.10 25.20
1450 17.00
1500 12.20
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