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Abstract Fault tolerance plays a key role in computational grid. It enables a

system to work smoothly in the presence of one or more failure components. The

components are failing due to some unavoidable reasons like power failure, net-

work failure, system failure, etc. In this chapter, we address the problem of machine

failure in computational grid. The proposed system model uses the round trip time

to detect the failure, and it uses the checkpointing strategy to recover from the

failure. This model is applied to the traditional immediate mode heuristics such as

minimum execution time (MET) and minimum completion time (MCT) (defined as

MXT). The proposed Fault-Tolerant MET (FTMET) and Fault-Tolerant MCT

(FTMCT) heuristics (defined as FTMXT) are simulated using MATLAB. The

experimental results are discussed and compared with the traditional heuristics.

The results show that the proposed approaches bypass the permanent failure and

reduce the makespan.

Keywords Immediate mode • Minimum execution time • Minimum completion

time • Scheduling • Fault tolerance • Grid computing

1 Background

Computational grid is widely used for high-performance computing applications

[1]. It solves the large-scale complex problems by sharing and aggregation of

resources [2]. The resources in grid are distributed worldwide and it is under

different domains. One domain may have one or more instances. In order to
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maintain this, the Grid Referral Service (GRS) keeps track of all information about

the domain and its instances [3]. It provides information to the Grid Machine/

Resource Broker (GMB/GRB). However, the broker is responsible for mapping the

jobs and the available resources. It also splits the job into a number of small units

called task. The scheduling model is shown in Fig. 1. The grid consumer submits

the job to the broker. Then, the broker obtains the available machine list informa-

tion from the GRS [4]. Finally, it maps the jobs to the resources based on the user

requirements (i.e., task machine lists) and gets back the results (responses). The

timeline sequence is shown in Fig. 2. In the grid, the heuristics are categorized into

two types: immediate and batch mode. Immediate mode heuristic assigns a task to a

resource as soon as the task arrives. Batch mode heuristic assigns a group of tasks to

the resources at prescheduled times [5]. As resources are under different domains

(refer Fig. 1), it may enter or leave at any point of time. Sometimes, it leads to

burden on the grid [6]. Furthermore, the unpredictable resources are changing over

time [7]. It may be interrupted by the domain administrator or fail due to some

unavoidable circumstances. It drastically impacts on the scheduling as well as

makespan.

Moreover, there are three types of failure in task scheduling. They are transient

failure, intermittent failure, and permanent failure [8]. In this chapter, we have

proposed a heuristic to handle the permanent failure and fail-stop model [9].

The rest of this chapter is organized as follows: Section 2 briefly discusses

related research in fault tolerance and grid scheduling. Section 3 gives the prelim-

inaries. In Sect. 4, two proposed heuristics are discussed and pseudocodes are

presented. We conduct experiments and discuss results in Sect. 5. We conclude in

Sect. 6.

2 Related Work

Many researchers have proposed various heuristics to reduce the makespan and

increase resource utilization. But few authors address the problem of fault tolerance

[10–14]. The problem of fault tolerance is of two types: resource fault (or failure)

and network fault (or failure). In resource failure, the resource is not able to execute

any task. But in network failure, the task is not able to arrive at the resource. Until

the broker gets back the result, it may not possible to predict the failure, i.e.,

machine or network failure [15].

Nazir et al. [10] present the problem of fault tolerance in the form of machine

failure. In this scheme, the grid information service maintains the history of fault

occurrence. The value of the resource fault occurrence index is ranging from 0 to

6. If the fault index is zero, then the job is assigned to the resource. If it is in between

1 and 3, then checkpoint is appended at 50 %. So it returns the result to the broker

after the 50 % execution. Similarly, if it is in between 4 and 6, then checkpoint is

appended at 20 % because there is a high chance of failure.
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Fig. 1 A scheduling model

Fig. 2 Timeline sequence
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Khanli et al. [12] maintain a fault occurrence history in grid information

service. It uses genetic algorithm to schedule the jobs and checkpointing strategy

to make scheduling more efficient. Upadhya et al. [13] propose a fault-tolerant

technique based on checkpointing and passive replication. It uses genetic algorithm

to perform the scheduling. To achieve reliability in a grid system, Guo et al. [11]

introduce local node fault recovery mechanism. This mechanism uses ant colony

optimization to solve multi-objective task scheduling. A two-phase load balancing

algorithm is introduced by Nanthiya et al. [14]. First, resource selection is

performed using deadline and its fault tolerance factor. Second, the load balancing

algorithm is used to assign the resources.

In this chapter, we have proposed two immediate mode heuristics using round

trip time and checkpointing concept. The heuristics are applied to the benchmark

data set by Braun et al. [16]. To the best of our knowledge, this is the first immediate

mode fault tolerance work using the benchmark data set. This chapter is an

extension of our previous work [17, 18].

3 Preliminaries

3.1 Problem Statement

Assume that a grid scheduler has m different types of jobs (or tasks) J1, J2, . . .,, Jm
and n different types of resources (or machines) R1, R2, . . ., Rn. The problem is to

design an efficient heuristic to map all jobs to the available resources such that the

overall processing time is minimized. In addition to this, if a resource has failed due

to some unavoidable circumstances, then the proposed heuristic is able to handle

it. In this chapter, we have considered the problem as the fault tolerance problem in

computational grid.

3.2 Scheduling Algorithms

There are many heuristics in immediate mode heuristic. But we have listed only two

heuristics: MET and MCT.

3.2.1 MET

It maps a task to a resource which takes least execution time. The main demerit of

this heuristic is load imbalance because it is not considering the resource load. If the

least execution time resources have failed due to some unavoidable circumstances,
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then this heuristic will not execute a single task. This heuristic takes O(n) time to

map a task to a resource [5].

3.2.2 MCT

It maps a task to a resource which takes least completion time. The completion time

is the sum of the execution time and resource ready time. This heuristic is a

benchmark for immediate mode heuristic. But this heuristic is not considering the

fault tolerance aspects. This heuristic takes O(n) time to map a task to a

resource [5].

4 Proposed Heuristics

4.1 Description

The proposed heuristics are divided into two phases: matching and scheduling. The

matching phase is similar to the traditional MET (or MCT) heuristic. The proposed

fault-tolerant technique is introduced in scheduling phase.

4.2 Heuristics

The main mechanism of FTMET heuristic is defined in Algorithm 1. This heuristic

maps a task to a machine which takes least execution time (lines 1 to 3). Thereafter,

the broker finds the current status of the machine from GRS. Then, the GRS checks

whether the machine is able to compute a task or not. It sends a message to the

machine and waits for a confirmation message. If GRS will not get back the

confirmation message in stipulated time, it concludes that the machine has failed

or is unable to respond to the request. For that, it calculates round trip time (RTT),

which is the sum of the time to send a message (to the machine) and acknowledge

for it. Finally, the GRS informs the broker about the current status of the machine,

and the GMB reschedules the task to the next least execution time machine. Then

again, it finds the current status of the machine from GRS. If the machine works

normally, then the task is assigned to the machine. Lines 4 to 12 show the

scheduling process. The above process is also followed in our previous work [17,

18]. In addition, the mathematical representation is also shown over there.

Checkpointing strategy is used to recover the failure. If timeout occurs, then the

GRS requests the broker to roll back to the last consistent state. Furthermore, the

GRS is not sending any task to that failed (or timeout) machine.
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Algorithm 1. FTMET heuristic
1. for task Ti

2. for all machine Mj

3. Find minimum Ei,j and machine Mj that holds it. //
Ei,j ¼ Execution Time

4. Set K ¼ 1.
5. Find the status of machine Mj from GRS.
6. if (Mj ¼¼ Faulty)
7. Find (K + 1) minimum Ei,j for task Ti and machine

Mj that holds it.
8. Go to Step 5.
9. else Assign task Ti to machine Mj.
10. end if
11. end for
12. end for

The main mechanism of FTMCT heuristic is defined in Algorithm 2. This

heuristic maps a task to a machine which takes least completion time (lines 1 to

7). Thereafter, the broker finds the current status of the machine from GRS. If the

machine fails, then the broker reschedules the task to the next least completion time

machine, and it again finds the current status of the machine from GRS. Otherwise,

the task is assigned to the machine. Lines 8 to 15 show the scheduling process. Like

FTMET, this heuristic uses RTT and the checkpointing method in similar fashion.

Algorithm 2. FTMCT heuristic
1. for task Ti

2. for all machine Mj

3. Ci,j ¼ Ei,j + Rj // Ci,j ¼ Completion Time, Rj ¼
Ready Time

4. end for
5. end for
6. for task Ti

7. Find minimum Ci,j and machine Mj that holds it.
8. Set K ¼ 1.
9. Find the status of machine Mj from GRS.
10. if (Mj ¼¼ Faulty)
11. Find (K + 1) minimum Ci,j for task Ti and

machine Mj that holds it.
12. Go to Step 9.
13. else Assign task Ti to machine Mj.
14. end if
15. end for
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5 Experimental Study

In this section, we present the results in terms of two performance measures

makespan and machine utilization. Makespan is the overall completion time

taken to assign all tasks to the machines. Machine utilization is the percentage of

time the machine is busy. The results are carried out using MATLAB.

Let us consider a 4� 3 matrix shown in Table 1. We assumed that tasks arrive in

the following order: T1, T2, T3, and T4. In MET, task T1 has least execution time on

machine M3. So it is assigned to machine M3. Like task T1, the least execution time

for task T2, task T3, and task T4 is machine M1, machine M2, and machine M1,

respectively. So the tasks are assigned to the machine accordingly. The overall

makespan is 63.

Consider a scenario in which the machine M1 has failed due to some unavoidable

circumstances. So task T2 and task T4 are not executed successfully. In the proposed

FTMET, if the machine M1 has failed due to some unavoidable circumstances, then

task T2 and task T4 are assigned to the second least execution time machine, i.e.,

machine M3 and machine M2, respectively. The overall makespan is 125. The major

advantage is to keep the task against faults.

In MCT, task T1 has least completion time on machine M3. So it is assigned to

machine M3. However, for task T2, the least completion time machine is M1. So

task T2 is assigned to machine M1. Similarly, task T3 and task T4 are assigned to

machine M2. The overall makespan is 58. Note that MET/MCT scheduling assumes

that none of the machines have failed in the middle of the execution.

Consider a scenario in which the machine M1 has failed due to some unavoidable

circumstances. So the task is not executed successfully. In the proposed FTMCT, if

the machine M1 has failed due to some unavoidable circumstances, then task T2 is

assigned to the second least completion time machine, i.e., machine M2. The overall

makespan is 128.

We have considered Braun et al. [16] data sets (or instances) to evaluate the

proposed heuristics. The instances are classified into 12 different types of matrices.

The general form of the instance is u_t_mmnn.o. Here, u indicates the uniform

distribution; t indicates the nature of the matrix: consistent (c), inconsistent (i), and

semi-consistent (s); mm indicates the task heterogeneity; and nn indicates the

machine heterogeneity. The value of mm or nn is either hi or lo.

In this chapter, we have taken three different sizes of the data sets: 512� 16,

1024� 32, and 2048� 64. In 512� 16 instances, we have assumed that eight

numbers of machines have failed during simulation. The machine IDs are M10,

M3, M4, M15, M1, M8, M16, and M6. The machines are failed after the execution of

the task ID T165, T176, T182, T188, T234, T314, T338, and T370, respectively.

Table 1 Expected execution

time of four tasks on three

machines

Task M1 M2 M3

T1 120 75 32

T2 40 110 93

T3 71 24 49

T4 23 34 47
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The numerical results of makespan value for 512� 16, 1024� 32, and

2048� 64 instances are shown in Table 2. Similarly, the numerical results of

machine utilization value for the above instances are shown in Table 3 respectively.

The RTT (or timeout) and checkpointing time overhead are negligible for simplic-

ity. In Tables 2 and 3, MET and MCT heuristics are very less makespan because

very few number of tasks are executed (due to machine failure). For example, let us

consider the 512� 16 instances. In MET, the total number of tasks executed in

u_c_hihi instances is 512–279 (total number of failed task)¼ 233. The makespan is

2.2159E + 07. But the proposed FTMET executes 512 tasks in the presence of

failure. Hence, the makespan is 5.3052E + 07. So FTMET gives better performance

in the presence of failure.

6 Conclusion

In this chapter, we have introduced two new heuristics: FTMET and FTMCT.

These heuristics are an extension of the existing MET and MCT heuristic. The

proposed heuristics address the problem of fault tolerance and its solution. Heuris-

tics are evaluated using benchmark instances. The results show that the proposed

heuristics give better task scheduling and minimize the makespan.
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