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Universal Secure Network Coding
via Rank-Metric Codes

Danilo Silva and Frank R. Kschischang

Abstract—The problem of securing a network coding commu-
nication system against an eavesdropper adversary is considered.
The network implements linear network coding to deliver n

packets from source to each receiver, and the adversary can eaves-
drop on µ arbitrarily chosen links. The objective is to provide
reliable communication to all receivers, while guaranteeing that
the source information remains information-theoretically secure
from the adversary. A coding scheme is proposed that can achieve
the maximum possible rate ofn−µ packets. The scheme, which
is based on rank-metric codes, has the distinctive propertyof
being universal: it can be applied on top of any communication
network without requiring knowledge of or any modifications on
the underlying network code. The only requirement of the scheme
is that the packet length be at leastn, which is shown to be strictly
necessary for universal communication at the maximum rate.A
further scenario is considered where the adversary is allowed not
only to eavesdrop but also to inject up tot erroneous packets into
the network, and the network may suffer from a rank deficiency
of at most ρ. In this case, the proposed scheme can be extended
to achieve the rate ofn−ρ−2t−µ packets. This rate is shown to
be optimal under the assumption of zero-error communication.

I. I NTRODUCTION

The paradigm of network coding [1]–[3] has provided a rich
source of new problems that generalize traditional problems
in communications. One such problem, introduced in [4] by
Cai and Yeung, is that of securing a multicast network against
an eavesdropper adversary.

Formally, consider a multicast network with unit capacity
edges implementing linear network coding over a finite field
Fq. It is assumed that each link in the network carries a packet
consisting ofm symbols inFq and that the network is capable
of reliably transportingn packets from the source to each
destination. Now, suppose there is an eavesdropper that can
listen to transmissions onµ arbitrarily chosen links1 of the
network. The secure network coding problem is to design an
outer code (and possibly also the underlying network code)
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1We consider a model where network links rather than nodes areeaves-
dropped; eavesdropping on a node is equivalent to eavesdropping on all links
incoming to it.

such that a message can be communicated to each receiver
without leaking any information to the eavesdropper (i.e.,
security in the information-theoretic sense).

The work of Cai and Yeung [4] shows that the maximum
achievable rate (i.e., thesecrecy capacity) for this problem
is given byn − µ packets, achievable if the field sizeq is
sufficiently large. They presented a construction of an outer
code that achieves this capacity provided thatq ≥

(

|E|
µ

)

. Their
construction takesO(q) steps and requires that the outer code
meet certain security conditions imposed by the underlying
network code. Later, Feldman et al. [5] showed that, by slightly
reducing the rate, it is possible to efficiently construct anouter
code that is secure with high probability using a much smaller
field size. On the other hand, they also showed that, under the
assumption of a scalar linear outer code, there are instances of
the problem where a very large field size is strictly necessary
to achieve capacity.

More recently, Rouayheb and Soljanin [6] showed that
the secure network coding problem can be regarded as a
network generalization of the Ozarow-Wyner wiretap channel
of type II [7], [8]. Their observation provides an important
connection with a classical problem in information theory and
yields a much more transparent framework for dealing with
network coding security. In particular, they show that the same
technique used to achieve capacity of the wiretap channel II—
a coset coding scheme based on a linear MDS code—can
also provide security for a wiretap network. Unfortunately, in
their approach, the network code has to be modified to satisfy
certain constraints imposed by the outer code.

Note that, in all the previous works, either the network code
has to be modified to provide security [6], or the outer code has
to be designed based on the specific network code used [4], [5].
In all cases, the network code must be known beforehand, and
the field size required is significantly larger than the minimum
required for conventional multicasting.

The present paper is motivated by Rouayheb and Soljanin’s
formulation of a wiretap network and builds on their re-
sults. Our first main contribution is a coset coding scheme
that neither imposes any constraints on, nor requires any
knowledge of, the underlying network code. In other words,
for any linear network code that is feasible for multicast,
secure communication at the maximum possible rate can be
achieved with a fixed outer code. In particular, the field size
can be chosen as the minimum required for multicasting.
In this paper, such network-code-independent schemes are
called universal. An important consequence of our result is
that, if universal schemes are assumed, then the problem of
information transport (i.e., designing a feasible networkcode)
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and the problem of security against an eavesdropper can be
completely separated from each other. In particular, universal
schemes can be seamlessly integrated with random network
coding.

The essence of our approach is to use a vector linear outer
code. More precisely, we regard packets as elements of an
extension fieldFqm , and use an outer code that is linear over
Fqm . Taking advantage of this extension field, we can then
replace the linear MDS code in Ozarow-Wyner coset coding
scheme by a linear maximum-rank-distance (MRD) code,
which is essentially a linear code overFqm that is optimal
for the rank metric. Codes in the rank metric were studied
by a number of authors [9]–[11] and have been proposed for
error control in random network coding [12], [13]. Here, we
show that, since the channel to the eavesdropper is a linear
transformation channel (rather than an erasure channel), rank-
metric codes are naturally suitable to the problem (as opposed
to classical codes designed for the Hamming metric).

Another main contribution of this paper is the design of uni-
versal schemes that can provide both security and protection
against errors. More precisely, we assume that the adversary
is able not only to eavesdrop onµ arbitrarily chosen links, but
also to injectt erroneous packets anywhere in the network. We
also assume that the network may suffer from a rank deficiency
of at mostρ packets. Previous work on this topic includes
[14] and [15], which propose secure-error-correcting schemes
achieving a raten− ρ− 2t− µ. However, these schemes are
not universal and suffer from the same issues as the Cai-Yeung
scheme discussed above.

Note that the naive approach to this problem would be
simply to concatenate a secrecy encoder with an error control
encoder. However, the security of such a scheme is not
guaranteed because the error control encoder can potentially
“undo” part of the secrecy encoding. On the other hand,
if secrecy encoding is applied after error control encoding,
then, due to the same reason, the concatenated scheme is not
guaranteed to provide error control.

Our approach to this problem is to design a single scheme
that simultaneously provides security and error control, by
leveraging the corresponding properties of rank-metric codes.
Our proposed scheme is universal and achieves the rate of
n − ρ − 2t − µ packets. We show that this rate is indeed
optimal, under the assumption of zero-error communication2.
This result (whose proof allows arbitrary packet lengths)
generalizes a similar bound in [15] that assumed packet length
m = 1 (i.e., a scalar linear outer code).

All the universal schemes proposed in this paper have a
single limitation: the packet length must satisfym ≥ n. While
this requirement is usually easily satisfied in the practiceof
random network coding (see, e.g., [17]), we show that it is
also strictly necessary for universal communication. In other
words, universal schemes that provide security and/or error
control at the maximum rate do not exist ifm < n. Thus, our
proposed schemes are optimal also in the sense of requiring
the smallest packet size among all universal schemes.

2If this assumption is relaxed to vanishingly small error probability, then
higher rates may be achieved in some cases. See [16].

The remainder of the paper is organized as follows. Sec-
tion II presents a brief review of rank-metric codes and the
basic model of linear network coding. In Section III, we
formulate the problem of universal secure and reliable com-
munication over a wiretap network, following the basic setup
of the wiretap channel. In Section IV, we start by addressing
the special case where only error control is required. We prove
a few auxiliary results that extend the results of [18]. Then,
in Section V, we address the special case where only security
is required. The complete scenario of both security and error
control is addressed in Section VI. In Section VII, we discuss
the practical application of our proposed schemes, and show
that they can be implemented in a convenient and very efficient
manner. Finally, Section VIII presents our conclusions.

Previous versions of this work appeared in [19]–[21].

II. PRELIMINARIES

A. Notation

Let Fn×m
q denote the set of alln×m matrices overFq, and

set Fn
q , F

n×1
q (i.e., the elements ofFn

q are always seen as
columnvectors). ForM ∈ F

n×m
q andS ⊆ {1, . . . , n}, let MS

denotes the submatrix ofM consisting of the rows indexed
by S. Let 〈M〉 denote the row space of matrixM .

B. Rank-Metric Codes

A matrix code is a nonempty set of matrices. Therank
distancebetween matricesX,Y ∈ F

n×m
q is defined as

dR(X,Y ) , rank(Y −X).

As observed in [9], [10], the rank distance is indeed ametric.
The minimum rank distanceof a matrix codeC ⊆ F

n×m
q ,

denoteddR(C), is the minimum rank distance among all pairs
of distinct codewords ofC.

Let Fqm be a degreem extension of the finite field
Fq. Recall thatFqm is also a vector space overFq. Let
φm : Fqm → F

1×m
q be a vector space isomorphism. More

concretely,φm expands an element ofFqm as a row vector over
Fq according to some fixed basis forFqm overFq. Similarly,
for all n, ℓ, let φ(n×ℓ)

m : Fn×ℓ
qm → F

n×ℓm
q be the isomorphism

defined by applyingφm entry-wise, i.e.,

φ(n×ℓ)
m (X) =







φm(X11) · · · φm(X1ℓ)
...

...
φm(Xn1) · · · φm(Xnℓ))






.

We will remove the superscript fromφ(n×ℓ)
m when the dimen-

sions of the argument are clear from the context. The rank
distance between vectorsX,Y ∈ F

n
qm and the minimum rank

distance of a block codeC ⊆ F
n
qm are defined, respectively, as

dR(X,Y ) , dR(φm(X), φm(Y )) anddR(C) , dR(φm(C)).
The size of a matrix code (or of a block code overFqm)

is bounded by the Singleton bound for the rank metric, which
states that everyC ⊆ F

n×m
q with minimum rank distanced

must satisfy

|C| ≤ qmax{n,m}(min{n,m}−d+1). (1)
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Codes that achieve this bound are calledmaximum-rank-
distance(MRD) codes and they are known to exist for all
choices of parametersq, n, m andd ≤ min{n,m} [9].

For the case of an[n, k] linear block code overFqm with
minimum rank distanced, the Singleton bound (1) becomes

d ≤ min
{

1,
m

n

}

(n− k) + 1. (2)

Note that, form ≥ n, (2) coincides with the classical Singleton
bound for the Hamming metric. Indeed, whenm ≥ n, every
MRD code is also MDS.

Note that, differently from classical coding theory, block
codes are represented in this paper usingcolumn vectors.
However, to avoid confusion, the generator and parity-check
matrices of a linear code will always be given in the standard
orientation. Thus, ifG ∈ F

k×n
qm and H ∈ F

(n−k)×n
qm are,

respectively, the generator and parity-check matrices of an
[n, k] linear codeC ⊆ F

n
qm , thenC = {GTu : u ∈ F

k
qm} =

{x ∈ F
n
qm : Hx = 0}.

We now describe an important family of rank-metric codes
proposed by Gabidulin [9]. Assumem ≥ n. A Gabidulin code
is an [n, k] linear code overFqm defined by the generator
matrix

G =













gq
0

0 gq
0

1 · · · gq
0

n−1

gq
1

0 gq
1

1 · · · gq
1

n−1
...

...
. . .

...

gq
k−1

0 gq
k−1

1 · · · gq
k−1

n−1













(3)

where the elementsg0, . . . , gn−1 ∈ Fqm are linearly indepen-
dent overFq. It is shown in [9] that the minimum rank distance
of a Gabidulin code isd = n− k + 1, so the code is MRD.

C. Linear Network Coding

A linear network coding system is described as follows.
Consider a communication network represented by a directed
multigraph with unit capacity edges, a single source node,
and multiple destination nodes. Each link in the network
is assumed to transport, free of errors, apacket consisting
of m symbols from the finite fieldFq (that is, a vector in
F
1×m
q ). At every network use, the source node producesn

packets, represented as the rows of a matrixX ∈ F
n×m
q ,

and transmits evidence about these packets over the network.
More precisely, for each of its outgoing links, the source node
transmits a packet that is someFq-linear combination of the
rows of X . Each of the remaining nodes behaves similarly,
computing its outgoing packets asFq-linear combinations of
its incoming packets. It follows that, for every linke, the
packetPe transmitted overe can be expressed (uniquely) as
a linear combination of the rows ofX , sayPe = ceX . The
coefficient vectorce ∈ F

1×n
q is called the(global) coding

vectorof Pe. Let E denote the set of all network links, ordered
according to some fixed ordering. A(global) coding matrix
C ∈ F

|E|×n
q is defined such that, for alle ∈ E , ce is the row

of C indexed bye.
For analytical purposes, a receiver can be specified, without

loss of generality, by the set of incoming links of the corre-
sponding destination node. LetR denote the collection of all

receivers. Note thatR is a subset of the powerset ofE . For
R ∈ R, let Y (R) ∈ F

|R|×m
q denote the matrix whose rows

are the packets received by receiverR. Then

Y (R) = CRX.

The network code is said to be feasible for a receiverR
if rank CR = n, otherwise it is rank-deficient. Therank
deficiencyof a network code is defined as

ρ = n− min
R∈R

rank CR

i.e., it is the maximum column-rank deficiency ofCR among
all receivers. Since, in a network coding context, rank defi-
ciency is analogous to packet loss, a rank deficiency ofρ may
also be referred to asρ packet erasures.

The system described above is referred to as an(n ×m)q
linear coded network. We may also call it an(n × m, k)q
linear coded network if its rank deficiency isρ = n− k.

We can extend the above model to incorporate packet errors.
More precisely, we assume that each packet transmitted on a
link may be subject to the addition of an error packet before
reception by the corresponding node. This is useful to model
both internal adversaries (malicious nodes that inject erroneous
packets) as well as external adversaries (unauthorized transmit-
ters that intentionally create interference with the transmitted
signals). Similarly as above, this communication model canbe
described more concisely using a matrix framework. Suppose
the packet transmitted on linkj changes fromPj to P ′

j . Then,
due to linearity of the network, the packet transmitted on link
i changes fromPi to P ′

i = Pi + Fi,j(P
′
j − Pj), for some

Fi,j ∈ Fq. Let F ∈ F
|E|×|E|
q be the matrix whose(i, j) entry

is Fi,j . Then the matrix received by receiverR is given by

Y (R) = CRX + FRZ

whereZ ∈ F
|E|×m
q is the matrix corresponding to the error

packets injected on all links.
Note that the above model is applicable even if the network

contains cycles and/or delays.

III. PROBLEM FORMULATION

We start by describing a generic wiretap channel. LetS,
X , Y andW be sets. A transmitter wishes to communicate
a messageS ∈ S reliably to a receiver but secretly from an
eavesdropper. There is a channel among the three parties that
takesX ∈ X from the transmitter and deliversY ∈ Y to
the receiver andW ∈ W to the eavesdropper. The channel
is specified by some distributionP (Y,W |X). The transmitter
generatesX by a stochastic encoding ofS, according to some
distributionP (X |S). Upon reception ofY , the receiver makes
a guess that the transmitted message isD(Y ), according to
some decoding functionD : Y → S. The eavesdropper, on the
other hand, attempts to obtain information aboutS based on
the observationW . Together, the encoderP (X |S) and the
decoderD(·) specify the coding scheme. Note thatS and
(Y,W ) are assumed to be conditionally independent givenX .

A. Communication Requirements

We now describe the requirements that a coding scheme
must satisfy, for the purposes of this paper.
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1) Zero-error communication:For all x ∈ X , let the fan-
out set

Yx , {y ∈ Y : P (y|x) > 0}

denote the set of all channel outputs that couldpossiblyoccur
when the channel input isx. Similarly, for all s ∈ S, let

Xs , {x ∈ X : P (x|s) > 0}

Y(s) , {y ∈ Y : P (y|s) > 0} =
⋃

x∈Xs

Yx. (4)

The scheme is said to bezero-error if

D(y) = s, for all y ∈ Y(s) and alls ∈ S (5)

that is, the receiver can always uniquely determine the mes-
sage3. We may also refer simply to the encoderP (X |S) and
consider it zero-error if thereexistssome decoding function
D(·) satisfying (5). It is easy to see that an encoder is zero-
error if and only if the setsY(s), s ∈ S, are all pairwise
disjoint.

Note that condition (5) differs from the more usual notion
of reliability where the probability of decoding error getsarbi-
trarily close to zero as the number of channel uses increases.
Here, not only the probability of error must be exactly zero (as
in zero-error information theory [22]), but also the channel can
be used only once. While the constraint on a single channel use
may seem restrictive, note that in many practical situations, in
particular in network coding, a single message may already be
large enough to encompass the whole communication session,
so that further channel uses are not allowed.

2) Perfect secrecy:The scheme is said to beperfectly secret
if absolutely no information is leaked to the eavesdropper,i.e.,

I(S;W ) = 0. (6)

Equivalently, the uncertainty about the message is not reduced
by the eavesdropper’s observation.

Throughout the paper, we will use the wordsecureas a
synonym forsecret. We will also refer to a perfectly secure
scheme simply assecure.

Note that condition (6) corresponds to perfect secrecy in the
Shannon sense [23] and is stronger than the usual notion of
secrecy in the information-theoretic security literature[24],
where the average information leakage (per channel use)
gets arbitrarily close to zero as the number of channel uses
increases.

B. Wiretap Networks

We now consider the case where the wiretap channel is
a linear network coding system potentially subject to errors.
Consider an(n × m)q linear coded network specified by
matricesC ∈ F

|E|×n
q andF ∈ F

|E|×|E|
q and a set of receivers

R ⊆ P(E), whereE = {1, . . . , |E|} denotes the set of network
edges. The network is used to communicate a messageS ∈ S

3Our focus on zero-error communication is motivated by the goal of guaran-
teeing reliability in the presence of adversarial jammers.Since an adversary
will attempt to disrupt communication whenever such a possibility exists,
requiring zero-error (“foolproof”) communication appropriately captures the
worst-case nature of the problem.

to each receiver, which is done by encodingS into an input
matrix X ∈ F

n×m
q for transmission over the network.

As described in Section II-C, the output matrix at a receiver
R ∈ R is given by

Y (R) = CRX + FRZ

whereZ ∈ F
|E|×m
q denotes the matrix of error packets. Let

Zx , {z ∈ F
|E|×m
q : P (z|x) > 0}

denote the set of allpossiblevalues forZ when the input
matrix is x. Then the set of all possibleY (R) given x is
obtained as

Yx(R) =
{

y ∈ F
|R|×m
q : y = CRx+ FRz, z ∈ Zx

}

.

Since there are multiple receivers, a coding scheme for such
a network consists of not only an encoderP (X |S) but also a
decoding function for each receiver. Accordingly, we say that
the scheme is zero-error if it is zero-error for each individual
receiverR ∈ R.

For the remainder of the paper, we will focus on the case
whereZ has at mostt nonzero rows, i.e.,

Zx , {z ∈ F
|E|×m
q : wt(z) ≤ t}

wherewt(Z) denotes the number of nonzero rows ofZ. In
this case, a zero-error scheme is said to be at-error-ρ-erasure-
correctingscheme, whereρ denotes the rank deficiency of the
linear coded network. Note that even whent = 0, a 0-error-
ρ-erasure-correcting scheme must still be able to guarantee
reliable (zero-error) communication for all receivers, i.e., it
must able to make up for the rank deficiency experienced by
the receivers.

Suppose there is an eavesdropper who can observe the pack-
ets transmitted on a subset of linksI ⊆ E . The corresponding
matrix observed by the eavesdropper is given by

CIX + FIZ.

Here, we assume the worst case where the eavesdropper has
access to the matrixZ (possibly becauseZ was selected by
the eavesdropper), so we define the eavesdropper observation
as

W (I) = CIX.

Consider the case where the eavesdropper is allowed toarbi-
trarily choose anyI ⊆ E with |I| ≤ µ. Since the eavesdropper
may chooseI in a worst-case or adversarial fashion, this
situation may be modeled mathematically by assuming that
there are multiple eavesdroppers, each with one of the allowed
subsetsI. Accordingly, we say that the scheme issecure under
µ observationsif it is perfectly secure for allI such that
|I| ≤ µ.

Under this model,µ may be viewed as a security parameter,
while t may be viewed as a reliability parameter.

Remark: As observed in [6], the type II wiretap channel of
[7] can be viewed as the special case of a two-node network
with a single receiverR = E , where|E| = n, t = 0 andC is
an identity matrix.
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C. Universal Schemes

The specification of a wiretap network requires the specifi-
cation ofC, F andR, as well asm, µ andt. As a consequence,
the properties of a coding scheme designed for a network are
tied to the particular network code used; there is no guarantee
that the scheme will work well over other networks.

In this paper, we are interested in universal schemes, i.e.,
schemes that share the same property (i.e.,t-error-ρ-erasure-
correcting, secure underµ observations) forall possible net-
work codes. As we shall see, this approach not only has
practical benefits but also greatly simplifies the theoretical
analysis.

Definition 1: A coding scheme for an(n × m)q linear
coded network isuniversally t-error-ρ-erasure-correctingif
it is zero-error under the fan-out set

Yx =
{

(A, y) ∈ F
n×n
q × F

n×m
q

∣

∣ y = Ax+ Z,

rank A ≥ n− ρ, rank Z ≤ t, Z ∈ F
n×m
q

}

.

Note that, to incorporate the fact that the matrixCR is
known at receiverR, we have to include the matrixA as part
of the channel output. Contrasted with the models in [18],
the model in Definition 1 may be interpreted as aworst-case
coherent network coding channel.

Proposition 1: A universally t-error-ρ-erasure-correcting
scheme for an(n×m)q network ist-error-ρ-erasure-correcting
for any (n × m, n − ρ)q network regardless of the network
code or the set of receivers.

Proof: We will show that, for anyCR ∈ F
|R|×n
q with

rank CR ≥ n − ρ, anyFR ∈ F
|E|×|E|
q , and anyZ ∈ F

|E|×m
q

with wt(Z) ≤ t, a receiver that knowsCR and Y (R) =
CRX + FRZ can successfully decode using a universal de-
coder. First, sincen ≥ rank CR, there exists, regardless of|R|,
some matrixT ∈ F

n×|R|
q such thatrank TCR = rank CR.

Now, since rank TCR ≥ n − ρ and rank TFRZ ≤ t, we
have that (TCR, TY (R)) ∈ Yx. Thus, the receiver can
successfully decode by applying the universal decoder on
(A, Y ) = (TCR, TY (R)).

Definition 2: Consider an(n × m)q linear coded network
with input matrixX ∈ F

n×m
q . A coding scheme isuniversally

secure underµ observationsif it is perfectly secure for each
eavesdropper observationW = BX , for all B ∈ F

µ×n
q .

Clearly, a universally secure scheme is always secure re-
gardless of the network code.

Focusing on universal schemes immediately offers the ana-
lytical advantage of not having to specify the network topology
and the network code, except for the parametersn, m, q, ρ.
These parameters provide an interface between the problems
of network code design and end-to-end code design, which
then become completely independent.

Of course, the rates achieved by a universal scheme could
potentially be smaller than those of non-universal schemes;
equivalently, to achieve an optimal rate, a universal scheme
may impose certain constraints on the interface parameters.
Our goal in this paper is to determine exactly what rates

are achievable by universal schemes, as well as to construct
computationally efficient schemes that achieve these rates.

IV. U NIVERSAL ERROR CORRECTION

We start by considering the case whereµ = 0, i.e., there is
no eavesdropper (or security is not a concern).

Below we show a result that, while similar to the results
in [18], is not available there, as model considered here is
slightly different.

Theorem 2:Consider a deterministic encoderX = E(S),
where E : S → X , and let C = {E(s), s ∈ S}. Then the
encoder is universallyt-error-ρ-erasure-correcting if and only
if dR(C) > 2t+ ρ.

Proof: The correction guarantee has been proved in [18].
We now prove the converse. SupposedR(C) = d ≤ 2t+ρ and
let x1, x2 ∈ C be such thatx1 6= x2 and rank(x2 − x1) = d.
LetA ∈ F

n×n
q be a matrix whose right null space is a subspace

of 〈x2 − x1〉 with dimensionmin{ρ, d}. LetE = A(x2−x1).
Thenrank A ≥ n−ρ andrank E = d−min{ρ, d} = max{d−
ρ, 0} ≤ 2t. Let E1, E2 ∈ F

n×m
q be such thatE = E1 − E2,

rank E1 ≤ t, andrank E2 ≤ t. Theny = Ax1 +E1 = Ax2 +
E2, and therefore(A, y) ∈ Yx1

∩ Yx2
. Since the encoder is

deterministic,x1 andx2 must correspond to distinct messages,
which implies that the scheme is not zero-error.

Theorem 2 shows that, in the case of a deterministic
encoder, the correction capability of a scheme is characterized
precisely by the minimum rank distance of the image of
the encoder. Thus, the problem can be solved by (and only
by) a rank-metric code with sufficiently large minimum rank
distance. While Theorem 2 is concerned only with the encoder,
computationally efficient decoders (for a Gabidulin code) have
been proposed in [13] (see also [20], [25]) for all values ofρ
and t.

The theorem also shows a tradeoff between errors and
erasures that is analogous to that of classical coding theory;
namely, an error can be traded for two erasures, and vice-
versa, with the “exchange currency” being the minimum rank
distance of the code.

It is important to note that the characterization in Theo-
rem 2 is valid only for deterministic encoding. In the case of
stochastic encoding, it is conceivable that the same message
s could give rise to two distinct codewordsx1 and x2 with
small rank distance (so that they would be indistinguishable
at the receiver), yet themessages itself could be successfully
decoded. Thus, while the direct part of the theorem still
holds (as long asH(X |S) = 0), the converse does not.
Surprisingly, however, the same interplay between errors and
erasures that exists for a deterministic encoder (namely, one
error is equivalent to two erasures) still remains for a stochastic
encoder, as shown in the next result.

Theorem 3:Consider an(n × m)q linear coded network.
An encoder that is universallyt-error-ρ-erasure-correcting is
also universallyt′-error-ρ′-erasure-correcting for allt′, ρ′ ≥ 0
such that2t′ + ρ′ ≤ 2t+ ρ.

Proof: See the Appendix.
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The result of Theorem 3 will be crucially used in Sec-
tion VI-B to prove a converse theorem for networks subject
to errors and observations.

A consequence of Theorem 3 is that we could safely
restrict attention to encoders that are universallyρ-erasure-
correcting (that is, universally0-error-ρ-erasure-correcting),
since erasure-correction capability can be naturally traded for
error-correction capability. However, as before, note that the
result of Theorem 3 applies only to the encoder, i.e., it is in
principle not trivial to obtain a decoder for one scheme given
a decoder for the other.

V. PERFECTSECRECY FORNOISELESSNETWORKS

In this section we treat the case of an(n × m,n) linear
coded network subject toµ observations but no errors—so that
the channel from the transmitter to each receiver is noiseless.
Thus, each receiver can correctly recover the channel inputX .

From now on, unless otherwise mentioned, we assume that
the message space isS = F

k×m
q , so that the message is a

k × m matrix. The rows ofS, denotedS1, . . . , Sk ∈ F
1×m
q ,

may then be viewed as packets. All logarithms are taken to
the baseqm, so that information is measured inqm-ary units,
or packets.

A. Preliminaries

We start by reviewing the basic idea ofcoset coding, which
was proposed by Ozarow and Wyner for the special case of
the type II wiretap channel [7], and later applied to the general
case by Rouayheb and Soljanin [6]. The scheme requires each
packet to be an element of a finite field, i.e.,F

1×m
q must be a

field. In the following, we assume thatm = 1.
Let C be an [n, n − k] linear code overFq with parity-

check matrixH ∈ F
k×n
q . The transmitter encodesS into X

by choosing uniformly at random someX ∈ F
n
q such thatS =

HX . In other words, each message is viewed as a syndrome
specifying a coset ofC, and the transmitted word is randomly
chosen among the elements of that coset. Upon reception of
X , decoding is performed by simply computing the syndrome
S = HX . Thus, the scheme is always zero-error.

For the special case of a type II wiretap channel, it can be
shown [7] that the scheme is perfectly secure ifC is an MDS
code andk ≤ n − µ. In general, however, this may not be
sufficient. The following result is shown in [6].

Theorem 4 ( [6]): In the coset coding scheme described
above, assume that the eavesdropper observesW = BX ,
whereB ∈ F

µ×n
q . If I(S;W ) = 0, then H(S) ≤ n − µ.

Moreover, ifH(S) = k = n− µ, then

I(S;W ) = 0 ⇐⇒ 〈H〉 ∩ 〈B〉 = 0. (7)

The above result can be used to design a network code
based on a given parity-check matrixH [6]. More precisely,
the network code (i.e., the global coding matrixC) must be
constructed in such a way that, for allI with |I| ≤ µ, the
matrix B = CI satisfies (7) for the givenH . Note that,
since there is always someB violating (7), the scheme is
not universal.

Although the casem > 1 is not considered in [6], it is easy
to see that any scheme form = 1 can immediately be extended
to m > 1 by applying the schemem times in a component-
wise fashion. Encoding is performed identically, by randomly
choosingX such thatS = HX (whereS and X are now
matrices), and the same holds for the decoding. Clearly, the
resulting scheme retains exactly the same properties of the
original one (in particular, non-universality).

B. A Universal Scheme

As we have seen above, in order to directly apply Ozarow-
Wyner’s coset coding scheme, packets must be elements of a
finite field, and one way to achieve this is to assumem = 1.
Another approach, the one we propose in this paper, is to make
use of the vector space isomorphismF1×m

q
∼= Fqm . In other

words, we regard packets as elements of a finite fieldFqm ; this
is still compatible withFq-linear network coding sinceFqm is
a vector space overFq.

Theorem 4 holds unchanged, provided we replaceFq with
Fqm (note that we can regardB ∈ F

µ×n
q as a matrix overFqm ,

sinceFq ⊆ Fqm). However, all the entries ofB still lie in the
subfieldFq. SinceFq ⊆ Fqm , we can regardB ∈ F

µ×n
q as

a matrix overFqm . After replacingFq with Fqm , Theorem 4
follows unchanged.

Under this interpretation, the variablesS ∈ F
k
qm , X ∈ F

n
qm ,

W ∈ F
µ
qm are now viewed as column vectors overFqm . For

the purposes of Theorem 4, we can regardB ∈ F
µ×n
q as a

matrix overFqm (sinceFq ⊆ Fqm ). Then the theorem follows
unchanged after replacingFq with Fqm . Note, however, that all
the entries ofB still lie in the subfieldFq. As the number of
possibilities forH ∈ F

k×n
qm is now much larger as compared to

B (for m > 1), it is conceivable that someH exists satisfying
(7) for all B. This can be seen as the crucial ingredient that
enables universal security. A suitable choice ofH is given in
the next theorem.

Theorem 5:Let C be an [n, n − k] linear code overFqm

with parity-check matrixH ∈ F
k×n
qm . If dR(C) = k + 1 and

µ ≤ n− k, then

rank

[

H
B

]

= rank H + rank B, for all B ∈ F
µ×n
q . (8)

Conversely, ifµ = n−k, then (8) holds only ifdR(C) = k+1.
Proof: Suppose that, for someµ ≤ n − k, there exists

some matrixB ∈ F
µ×n
q such that

rank

[

H
B

]

< rank H + rank B.

Let r = rank B, let T ∈ F
r×µ
q be some full-rank matrix such

thatrank TB = r, and letD ∈ F
(n−k−r)×n
q be some full-rank

matrix such that the matrix

B′ =

[

TB
D

]

∈ F
(n−k)×n
q

is full-rank. We have that

rank

[

H
B′

]

≤ rank

[

H
B

]

+ rank D

< rank H + rank B + rank D = n.
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Let

M =

[

H
B′

]

.

Sincerank M < n, there must exist some nonzerox ∈ F
n
qm

such thatMx = 0. But this implies thatHx = 0, i.e., x ∈ C,
andB′x = 0, i.e., rank φm(x) ≤ k. Thus,dR(C) ≤ k.

For the converse statement, suppose thatdR(C) ≤ k. Then
there exists some nonzerox ∈ C such thatrank φm(x) ≤ k.
This implies that there exists some full-rankB ∈ F

(n−k)×n
q

such thatBx = 0. Note also thatHx = 0. Thus,

rank

[

H
B

]

< n = rank H + rank B.

In order to state our main result in full generality, we first
present a generalization of Theorem 4.

Lemma 6:Let H ∈ F
k×n
qm andB ∈ F

µ×n
qm . Let X ∈ F

n
qm ,

S = HX andW = BX be random variables. LetS = {Hx :
x ∈ F

n
qm} and, for alls ∈ S, let Xs = {x ∈ F

n
qm : s = Hx}.

1) If X is uniform overXs givenS = s, then

I(S;W ) ≤ rank H + rank B − rank

[

H
B

]

.

2) If S is uniform overS, then

I(S;W ) ≥ rank H + rank B − rank

[

H
B

]

.

Proof: See the Appendix.

We can now state the main result of this section.

Theorem 7:Consider an(n×m, n)q linear coded network.
Let C be an [n, n − k] linear code overFqm with parity-
check matrixH ∈ F

k×n
qm . A coset coding scheme based on

H is universally secure underµ observations ifk ≤ n − µ,
m ≥ n andC is MRD. Conversely, in the case of a uniformly
distributed message, the scheme is universally secure under
n− k observations only ifC is an MRD code withm ≥ n.

Proof: The achievability follows from item 1) of
Lemma 6, Theorem 5, and the definition of an MRD code. The
partial converse follows from item 2) of Lemma 6, Theorem 5,
and the Singleton bound (2).

The following example illustrates the constructive part of
Theorem 7.

Example 1:Let q = 2, m = n = 3, µ = 2 and k =
n− µ = 1. Let Fqm = F23 be generated by a root ofp(x) =
x3 + x + 1, which we denote byα. According to [9], one
possible[n, µ] linear MRD code overFqm has parity-check
matrix H =

[

1 α α2
]

.

To form X =
[

X1 X2 X3

]T
∈ F

n
qm given a source

messageS ∈ Fqm , we can chooseX2, X3 ∈ Fqm uniformly
at random and setX1 to satisfy

S = HX = X1 + αX2 + α2X3.

Note thatX can be transmitted over any(n ×m, n)q linear
coded network. The specific network code used is irrelevant
as long as each destination node is able to recoverX .

Now, suppose that the eavesdropper interceptsW = BX ,
where

B =

[

1 0 1
0 1 1

]

.

Then

W = B





X1

X2

X3



 =

[

1 0 1
0 1 1

]





S + αX2 + α2X3

X2

X3





=

[

1
0

]

S +

[

α 1 + α2

1 1

] [

X2

X3

]

.

This is a linear system with3 variables and2 equations over
Fqm . Note that, givenS, there is exactly one solution for
(X2, X3) for each value ofW . Thus, Pr(W |S) = 1/82,
∀S,W , from which follows thatS andW are independent.

C. Encoder Structure

In this subsection, we develop a more concrete encoder
structure for the coset coding scheme proposed above.

Let H ∈ F
k×n
qm be the parity-check matrix of an[n, n− k]

linear code overFqm . Let T ∈ F
n×n
qm be an invertible matrix

such that

T−1 =

[

H
H1

]

for someH1 ∈ F
(n−k)×n
qm . Consider the following encoder.

Given a messageS ∈ F
k
qm , the encoder choosesV ∈ F

(n−k)
qm

uniformly at random and independently fromS, and produces
X ∈ F

n
qm by computing

X = T

[

S
V

]

.

Proposition 8: The encoder described above is universally
secure underµ ≤ n − k observations if the code defined by
H is MRD with m ≥ n.

Proof: Note that S = HX and V = H1X . Then
Theorem 7 holds if we can prove thatX is uniform given
S, i.e., if H(X |S) = n− k. By expandingH(V,X |S) in two
ways, we have

H(X |S) = H(V |S) +H(X |V, S)−H(V |X,S)

= H(V |S) +H(X |V, S)

= H(V |S)

= H(V )

= n− k.

Note that this equivalence between the two encoders has
been previously shown in [6] for the case ofm = 1 with
non-universal security (i.e., whenH satisfies the conditions
of Theorem 4 for a specific network).

We now give a security condition based directly on the
matrix T rather than its inverse.

Proposition 9: The encoder described above is universally
secure underµ ≤ n − k observations if the lastn − k rows
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of T T form a generator matrix of an[n, n − k] linear MRD
code overFqm with m ≥ n.

Proof: Let G ∈ F
(n−k)×n
qm andG1 ∈ F

k×n
qm be such that

T T =

[

G1

G

]

.

Then
[

I 0
0 I

]

= T−1T =

[

H
H1

]

[

GT
1 GT

]

=

[

HGT
1 HGT

H1G
T
1 H1G

T

]

.

Thus, HGT = 0. Since bothG and H are full-rank, it
follows thatG andH are generator and parity-check matrices,
respectively, for exactly the same code.

D. Converse Results

We now prove that our scheme is optimal with respect to
packet length, i.e., the scheme minimizes the required packet
length among all universal schemes. For generality, in the
following theorem we revert to the notation of Section III
(with matrices over the base fieldFq).

Theorem 10:Consider a noiseless(n×m, n)q linear coded
network. Assume that the source message has entropy ofk
packets. There exists a zero-error scheme that is universally
secure underµ = n− k observations only ifm ≥ n.

Proof: By assumption of zero-error communication (and
of a noiseless network), there is a functionf : Fn×m

q → S
such thatS = f(X). Thus, we may writeXs = {x ∈ F

n×m
q :

f(x) = s}. Now,

k = H(S)

= H(S|X,W ) + I(S;X,W )

= I(S;X,W ) (9)

= I(S;W ) + I(S;X |W )

= I(S;X |W ) (10)

= H(X |W )−H(X |S,W )

≤ H(X |W ) (11)

≤ n− rank B. (12)

where (9) follows sinceS is a function ofX and (10) follows
since I(S;W ) = 0. Since (12) holds with equality for all
full-rank B ∈ F

µ×n
q , we must haveH(X |S,W ) = 0 and

H(X |W ) = n−µ for all suchB. By the chain rule of entropy,
it is not hard to see that the latter condition implies thatX is
uniform (for instance, by choosing eachB as a submatrix of an
identity matrix, as in the wiretap channel II). Thus,H(X) =
n. SinceH(X) = H(X,S) = H(S)+H(X |S), we have that
H(X |S) ≥ n−k = µ. Thus, there must be somes∗ ∈ S such
that H(X |S = s∗) ≥ µ, which implies that|Xs∗ | ≥ qmµ.
On the other hand, the fact thatH(X |S,W ) = 0 for all full-
rank B implies thatX must be uniquely determined given
W = BX and the indication thatX ∈ XS . From Theorem 5,
this implies that eachXs must be a rank-metric code with
dR(Xs) ≥ n−µ+1. In particular,dR(Xs∗) ≥ n−µ+1. From
the Singleton bound (1), we see that this can only happen if
m ≥ n.

As Theorem 10 shows, ifm < n, universal schemes
do not exist. Form ≥ n, not only do universal schemes
exist, but also they achieve exactly the same rates as the
best non-universal schemes. It should be noted, however, that
these results assume the requirements of perfect secrecy and
zero-error communication. If these conditions are relaxedto
asymptotically perfect secrecy and vanishing error probability
(over multiple channel uses), then it is possible to construct
universal schemes even form = 1 [26].

VI. PERFECTSECRECY FORNOISY NETWORKS

In this section, we treat the general case of an(n×m,n−ρ)q
linear coded network subject tot errors andµ observations.

A. A Universal Scheme

Consider the encoder described on Section V-C. Assume
that the input variable for the encoder isS′ ∈ F

(n−µ)
qm (rather

thanS). GivenS′, the encoder produces

X = T

[

S′

V

]

where V ∈ F
µ
qm is chosen uniformly at random and inde-

pendently fromS′, and T ∈ F
n×n
qm is an invertible matrix.

Suppose thatm ≥ n, and letGsec ∈ F
µ×n
qm denote the last

µ rows of T T . It follows from Proposition 9 that, ifGsec is
a generator matrix for an[n, µ] linear MRD code overFqm ,
then the scheme is universally secure underµ observations,
regardlessof the distribution ofS′.

Suppose we choose

S′ =

[

0
S

]

whereS ∈ F
k
qm is the “true” message, andk ≤ n − µ. Then

the scheme remains universally secure underµ observations.
On the other hand, the redundancy inS′ may be useful to
provide error correction.

Let us define an auxiliary variable

U =

[

S
V

]

.

Then the encoder effectively mapsU into X via the determin-
istic mapping

X = GTU

whereG ∈ F
(k+u)×n
qm denotes the lastk + µ rows of T T . In

particular, the set of all possibleX is given by

C = {GTu, u ∈ F
(k+µ)
qm }.

Then, it follows from Theorem 2 that, whenX is transmitted
over an(n×m, n−ρ)q network subject tot errors, the receiver
can uniquely determineU (and thereforeS) if dR(C) > 2t+ρ.
This condition is satisfied ifC is an [n, k + µ] linear MRD
code overFqm andk + µ ≤ n− (2t+ ρ).

The above analysis proves the following result.

Theorem 11:Consider an(n×m)q linear coded network.
In the encoder described above, assume thatG ∈ F

(k+µ)×n
qm

is the generator matrix of an[n, k + µ] linear MRD code
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over Fqm such that the lastµ rows of G form a generator
matrix of an[n, µ] linear MRD code overFqm . The scheme is
universallyt-error-ρ-erasure-correcting and universally secure
underµ observations ifm ≥ n andk ≤ n− 2t− ρ− µ.

Whenever an error control encoder satisfies the secrecy
conditions of Theorem 11, we will say it issecrecy-compatible.

As mentioned in Section IV, decoding can be performed
using the methods in [13], [20] ifC is a Gabidulin code. In
this case, ifG is given in the form (3), then it is easy to see
that anyµ consecutive rows ofG (in particular the last ones)
indeed form a generator matrix of an MRD sub-code.

B. Converse Results

In this section, we prove that our proposed scheme is
optimal, both in the sense of achieving the maximum possible
rate and in the sense of requiring the minimum possible packet
length among all schemes that achieve this maximum rate. As
in Theorem 10, we use the generic notation of Section II.

Theorem 12:Consider an(n×m)q linear coded network.
Assume that the source message has entropy ofk packets.
There exists a scheme that is universallyt-error-ρ-erasure-
correcting and universally secure underµ observations only
if k ≤ n − 2t− ρ − µ. Moreover, this maximum rate can be
attained only ifm ≥ n.

Proof: Let n′ = n − 2t − ρ. Let B ∈ F
µ×n
q be a full-

rank matrix and letA ∈ F
n′×n
q be a full-rank matrix such

that B = PA for some (necessarily full-rank)P ∈ F
µ×n′

q .
Let YA = AX and WB = BX = PYA. If the encoder is
universallyt-error-ρ-erasure-correcting then, by Theorem 3, it
is also universally(2t+ρ)-erasure-correcting. Thus, there is a
functionfA : Fn′×m

q → S such thatS = fA(YA). In particular,
there is also a functionf : Fn×m

q → S such thatS = f(X).
Thus, we may writeXs = {x ∈ F

n×m
q : f(x) = s}. Now,

k = H(S)

= H(S|YA,WB) + I(S;YA,WB)

= I(S;YA,WB) (13)

= I(S;WB) + I(S;YA|WB)

= I(S;YA|WB) (14)

= H(YA|WB)−H(YA|S,WB)

≤ H(YA|WB) (15)

≤ n′ − rank P = n′ − µ (16)

where (13) follows sinceS is a function ofYA and (14) follows
since I(S;WB) = 0. This proves the first statement. Now
consider the second statement. Since (16) holds with equality,
we must haveH(YA|S,WB) = 0 andH(YA|WB) = n′ − µ.
Note that these conditions hold for all full-rankB and all
A ∈ AB, where

AB = {A ∈ F
n′×n
q : rank A = n′, 〈B〉 ⊆ 〈A〉}.

This implies thatH({YA : A ∈ AB}|S,WB) = 0 and
thereforeH(ȲB|S,WB) = 0, whereȲB = ĀBX and ĀB is
the matrix consisting of the vertical stacking of all matrices in
AB. It is not hard to see that, as long asn′ > µ, rank ĀB = n.

(In fact, ĀB contains every nonzero vector ofF1×n
q as one of

its rows.) It follows thatH(X |S,WB) = 0, for all full-rankB.
Thus,X must be uniquely determined givenWB = BX and
the indication thatX ∈ XS . From Theorem 2, this implies that
eachXs must be a rank-metric code withdR(Xs) ≥ n−µ+1.

On the other hand, we have seen that, for each full-rank
A ∈ F

n′×n
q , it holds thatH(YA|WB) = n′ − µ for all

full-rank P ∈ F
µ×n′

q , whereWB = PYA and B = PA.
By the chain rule of entropy, it is not hard to see that this
implies thatYA is uniform (for instance, by choosing some
P ’s that are submatrices of an identity matrix, as in the
wiretap channel II). Thus,H(YA) = n′, which implies that
H(X) ≥ n′. SinceH(X) = H(X,S) = H(S) + H(X |S),
we have thatH(X |S) ≥ n′ − k = µ. Thus, there must be
somes ∈ S such thatH(X |S = s) ≥ µ, which implies that
|Xs| ≥ qmµ. Together with the fact thatdR(Xs) ≥ n− µ+ 1,
we can see, from the Singleton bound (1), that this can only
happen ifm ≥ n.

VII. PRACTICAL CONSIDERATIONS

A. Packet Length

The schemes proposed in this paper all require that the
packet lengthm be at least as large as the batch size
(i.e., the number of transmitted packets)n. This is the only
constraint imposed by universal schemes—in sharp contrast
with previous approaches that require the network code to be
known and field sizeq to be significantly large. In practice,
the requirement on the packet length is usually easily satisfied:
typical random network coding implementations usem ≫ n,
for instance,m ≥ 1024 (with q = 256) while n ≤ 256 [17],
[27].

B. Layered Structure

The fact that a single encoder/decoder pair simultaneously
provides both secrecy and error control offers a great deal
of simplicity and flexibility to the proposed scheme. A block
diagram of the scheme is illustrated in Fig. 1. We can view
the system as consisting of three layers. The first layer
accepts a message ofk packets and performs secrecy coding
simply by concatenating the message withµ random packets.
The second layer accepts the secrecy-encoded message and
applies secrecy-compatible error control coding. (For clarity,
the isomorphism betweenFn

qm andFn×m
q is shown explicitly

in Fig. 1.) The resulting codeword, consisting ofn packets,
is then delivered to the third layer, which corresponds to the
linear coded network. The interface parameters arek, µ, n and
m, wheren − k − µ determines the amount of error control
(note thatd = n− k−µ+1 is the minimum rank distance of
the code). The matrixT ∈ F

n×n
qm in Fig. 1 is such that, for all

i = 1, . . . , n, the lasti rows ofT T form a generator matrix of
an [n, i] linear MRD code overFqm . Provided that the error
control decoder associated withT is flexible to handle any
amount of error control given as an input parameter (this is
possible for the decoders in [13], [20]), we obtain a scheme
that is “universal” in yet another sense: the same scheme can
be used regardless of the parametersµ, t and ρ (assuming
n > µ + 2t + ρ). As we can see from Fig. 1, we can easily
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source

destination

interface

parameters

S ∈ F
k×m
q

error control

encoder

error control

decoder

secrecy

encoder

secrecy

decoder

linear

coded

network

X = ϕm

(

Tϕ−1
m

(

Ū
))

Y = AX + Z

U =

[

S

V

]

random

V ∈ F
µ×m
q

U ∈ F
(k+µ)×m
q

S =
[

I 0
]

U

k, µ, n,m, q k + µ, n,m, q n,m, q

Ū =

[

0

U

]

} n−k−µ

} k+µ

W = BX

eavesdropper

Fig. 1. Layer structure of the proposed coding scheme, incorporating both secrecy and reliability. The source message is guaranteed to be secret from the
eavesdropper providedrank B ≤ µ. The destination is guaranteed to reliably recover the message provided thatrank Z ≤ (rank A− k − µ)/2.

trade among rate, secrecy and error control by simply adjusting
the interface parametersk andµ.

C. Cartesian Products of Codes

According to the structure described in Sections V-C
and VI-A, encoding and decoding of a source message are
performed via matrix-by-vector multiplication with arithmetic
over an extension field. Specifically, encoding and decoding
can be performed with, respectively,O(k′n) andO(n2) arith-
metic operations inFqm , wherek′ = k + µ. For moderate to
largem, these operations may turn out to be quite expensive
since, in practice, a multiplication inFqm costs aboutm2

operations inFq.
A convenient way to reduce this complexity is to use

Cartesian products of MRD codes. Assume thatm = rn,
for somer. We construct a code inFn×nr

q via the isomor-

phismφ
(n×r)
n , rather thanφ(n×1)

nr as before. LetCr ⊆ F
n×r
qn

denote ther-fold Cartesian product of a codeC ⊆ F
n
qn with

itself. SupposeC is defined by the generator and parity-check
matricesG ∈ F

k′×n
qn andH ∈ F

(n−k′)×n
qn , i.e., C = {GTu :

u ∈ F
k′

qn} = {x ∈ F
n
qn : Hx = 0}. Then it follows that

Cr = {GTu : u ∈ F
k′×r
qn } = {x ∈ F

n×r
qn : Hx = 0}. It

is also clear thatdR(φn(C
r)) = dR(C). Thus, all the results

and methods of this paper can be equally applied toCr. In
particular, decoding is performed by applying a decoder for
C column-wise on the received matrixX ∈ F

n×r
qn . As a con-

sequence, the encoding and decoding complexity are reduced
to, respectively,O(k′nr) = O(k′m) andO(n2r) = O(nm)
operations in the smaller fieldFqn .

D. Using Low-Complexity Normal Bases

The encoding and decoding complexity can be reduced even
further by using a normal basis to perform extension field
arithmetic.

Let α ∈ Fqn . If the elementsα, αq1 , . . . , αqn−1

are linearly
independent overFq, then{αq0 , . . . , αqn−1

} is called anormal
basis for Fqn over Fq, and α is called anormal element.
Suppose the matrixT ∈ F

n×n
qn is given byT = [Tij ] where

Ti,j = α[i−1+j−1], for 1 ≤ i, j ≤ n. Then T not only

is invertible, but also satisfies both requirements of secrecy
and error control, as any contiguous subset of rows ofT is
a generator matrix of an MRD code [9]. Now, if the basis
generated byα is also used to implement the arithmetic over
Fqn , then significant complexity savings can be obtained,
as described in [20], [25]. Specifically, suppose thatq is a
power of 2 and thatα is a self-dual, optimal normal element
constructed via Gauss periods [28], [29]. Then decoding can
be performed with approximately5(n − k′)2nm + 1

2n
2m

multiplications and10(n− k′)2nm+ 1
2n

2m additions inFq,
while encoding can be performed with just2k′nm additions
(XORs) in Fq [20]. Note that, if error control is not used
(i.e., k′ = n), then the decoding complexity is smaller than
performing Gaussian elimination on the received matrix, and
the encoding complexity is even much smaller.

Although normal bases exist over any finite field, normal
bases satisfying the above requirements exist only for certain
choices of the extension degreen. In particular, forq = 256,
the choices ofn are limited ton = 3, 5, 9, 11, 23, 29, 33,
35, 39, 41, 51, 53, 65, 69, 81, 83, 89, 95,99, . . . [25]. As can
be seen, there is still a reasonable degree of flexibility that
should be suitable for most applications. On the other hand,
if low-complexity (though not necessarily optimal) normal
bases are used (while retaining the properties of self-duality
and Gaussianity), then an even greater degree of flexibilityis
possible (although with a slightly increased complexity).

E. Extension to Noncoherent Network Coding

The scheme described in the paper is suitable for co-
herent network coding and is indeed optimal. In the case
of noncoherent (random) network coding, the scheme can
be adapted by including appropriate packet headers. More
precisely, the transmission matrix should be

[

I X
]

, where
X is the transmission matrix of the original scheme. Clearly,
including packet headers does not affect security (since the
only information carried by the headers is the coding vectors,
which are already assumed to be known by the eavesdropper),
but allows the scheme to be decoded when the transfer matrix
A is unknown. It is shown in [13] that such adaptation
preserves the error-correcting capability of the code, so the
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universallyt-error-ρ-erasure-correcting property is maintained.
Although the rate achieved in this case is no longer optimal,
it is very close to optimal for all practical packet lengths [13].

VIII. C ONCLUSION

In this paper, we have addressed the problem of achieving
secure and reliable communication over a linear coded network
subject to wiretapping and also possibly to jamming. We
have shown thatuniversalschemes exist if the packet length
is sufficiently large. In this case, no coordination is needed
between the designs of the outer code and of the underlying
network code; in particular, the field size for the network code
may be chosen as the minimum required for feasibility. We
have also shown that our proposed scheme is optimal in the
sense of achieving the maximum possible rate and requiring
the minimum possible packet length among all schemes that
achieve this maximum rate. The proposed scheme is flexible
in that it defines two layers above the network coding layer:
a secrecy layer and a (secrecy-compatible) error control layer.
The amount of information rate, secrecy protection and error
control provided by the scheme can be easily traded off against
each other simply by adjusting the interface parameters.

The main tool that we use in this paper is the theory of
rank-metric codes. The proposed scheme borrows from our
previous work on error control for network coding (without
secrecy constraints) and admits very efficient encoding and
decoding.

For a network that transportsn packets with rank defi-
ciency ρ, and is under the threat of an adversary who can
eavesdrop onµ links and injectt error packets, we have shown
that the maximum achievable rate is at mostn−ρ−2t−µ. This
result assumes perfect secrecy and (one-shot) zero-error com-
munication. If the latter requirement is relaxed to vanishingly
small error probability, then it is possible to achieve a higher
rate ofn− ρ− t−µ, provided that both the field size and the
packet length grow to infinity. A natural, yet unsolved question
is how to achieve this higher rate without requiring the field
size to grow. Such a solution, if one exists, would reassure
the “separation principle” advocated by this paper: that basic
network coding on the on hand, and secrecy/error control
protection on the other hand, can be treated as belonging to
completely independent layers.

Another possible avenue for future work might be to gener-
alize the results of this paper beyond multicast problems. An
initial step in this direction has been given in [30].
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APPENDIX

Proof of Theorem 3: Let Yx and Y ′
x denote the fan-

out sets of Definition 1 for(ρ, t) and(ρ′, t′), respectively. We
have to prove that ifs1, s2 ∈ S are distinct messages such
that (A′, y′) ∈ Y ′

x1
∩ Y ′

x2
for somex1 ∈ Xs1 andx2 ∈ Xs2 ,

then the setsY(s), s ∈ S, (given by (4)) are not all pairwise
disjoint.

Write y′ = A′x1+E′
1 = A′x2+E′

2, whererank A′ ≥ n−ρ′,
rank E′

1 ≤ t andrank E′
2 ≤ t′. Let E′ = E′

1 −E′
2 = A′(x2 −

x1), and note thatrank E′ ≤ 2t′.
First, consider the case wheret′−t = ∆ > 0. LetT ∈ F

n×n
q

be a matrix whose right null space is a subspace of〈E′〉 with
dimensionmin{2∆, rank E′}. Let E = TE′ andA = TA′.
Then rank T ≤ n− 2∆,

rank E = rank E′ −min{2∆, rank E′}

≤ max{2t′ − 2∆, 0} ≤ 2t

and

rank A ≥ rank T + rank A′ − n

≥ n− 2∆+ n− ρ′ − n ≥ n− ρ.

Let E1, E2 ∈ F
n×m
q be such thatE = E1 −E2, rank E1 ≤ t,

rank E2 ≤ t. Theny = Ax1 +E1 = Ax2 +E2, and therefore
(A, y) ∈ Yx1

∩ Yx2
⊆ Y(s1) ∩ Y(s2).

Now, consider the case whereρ′ − ρ = 2∆ > 0. Let
R ∈ F

n×n
q andA = A′ + R be such thatrank R = 2∆ and

rank A = rank A′ + rank R. Then rank A ≥ n − ρ′ + 2∆ =
n − ρ. Let E = E′ + R(x2 − x1) = A(x2 − x1). Note that
rank E ≤ rank E′ + rank R ≤ 2t′+2∆ ≤ 2t. Once again, let
E1, E2 ∈ F

n×m
q be such thatE = E1 −E2, rank E1 ≤ t, and

rank E2 ≤ t. Theny = Ax1 +E1 = Ax2 +E2, and therefore
(A, y) ∈ Yx1

∩ Yx2
⊆ Y(s1) ∩ Y(s2).

The case where botht′ ≤ t andρ′ ≤ ρ follows immediately
from Definition 1.

Proof of Lemma 6:To prove the first statement, letW =
{Bx : x ∈ F

n
qm} and

Xs,w =

{

x ∈ F
n
qm :

[

s
w

]

=

[

H
B

]

x

}

.

Observe that

H(W ) ≤ logqm |W| = rank B

H(X |S) = logqm |XS | = n− rank H

H(X |S,W ) ≤ logqm |XS,W | = n− rank

[

H
B

]

.

By expandingI(S,X ;W ) and noting thatW is a function of
X , we have

I(S;W ) = I(S,X ;W )− I(X ;W |S)

= H(W )−H(X |S) +H(X |S,W )

≤ rank B + rank H − rank

[

H
B

]

.

To prove the second statement, first note that

dim(〈H〉 ∩ 〈B〉) = rank

[

H
B

]

− rank H − rank B

where 〈·〉 denotes the row space of a matrix. Lett =
dim(〈H〉∩〈B〉). Then there exist full-rank matricesT1 ∈ F

t×µ
qm

andT2 ∈ F
t×k
qm such thatT1B = T2H andrank T2H = t. This

implies that

T1W = T1BX = T2HX = T2S.

SinceS is uniform, we have thatI(S;W ) ≥ H(T2S) = t.
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