
OBSERVE: Occupancy-Based System for Efficient
Reduction of HVAC Energy

Varick L. Erickson, Miguel Á. Carreira-Perpiñán and Alberto E.Cerpa
Electrical Engineering and Computer Science

University of California - Merced
{verickson,mcarreira-perpinan,acerpa}@ucmerced.edu

ABSTRACT

Heating, cooling and ventilation accounts for 35% energy
usage in the United States. Currently, most modern build-
ings still condition rooms assuming maximum occupancy
rather than actual usage. As a result, rooms are often over-
conditioned needlessly. Thus, in order to achieve efficient
conditioning, we require knowledge of occupancy. This pa-
per shows how real time occupancy data from a wireless sen-
sor network can be used to create occupancy models which
in turn can be integrated into building conditioning sys-
tem for usage based demand control conditioning strategies.
Using strategies based on sensor network occupancy model
predictions, we show that it is possible to achieve 42% an-
nual energy savings while still maintaining American Society
of Heating, Refrigerating and Air-Conditioning (ASHRAE)
comfort standards.

Categories and Subject Descriptors

I.6.5 [Simulation and Modeling]: Model Development;
J.7 [Computers In Other Systems]: Command & control

General Terms

Algorithms, Machine Learning, Measurement

Keywords

Occupancy, HVAC, Ventilation, Energy savings

1. INTRODUCTION
In 2006, approximately 35% of the energy in the United

States was used for heating, ventilation, and air-conditioning
(HVAC) systems[2]. Studies suggest that 15% to 25% of
HVAC energy can be saved by setting ventilation rates based
on maximum occupancy [8]. Currently, the majority of
HVAC systems condition rooms assuming maximum occu-
pancy during normal working hours and are turned off at
night. This leads to inefficiency as rooms are often condi-
tioned to levels that are not appropriate for the number of
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occupants actually occupying the areas. An HVAC could
waste energy supplying ventilation enough for 30 people
when only 10 actually occupy a room.

To increase the efficiency of HVAC systems, a system for
detecting occupancy is needed to condition rooms appro-
priate to usage. Though there are several methods that
are commonly used for detecting occupancy within mod-
ern buildings, these methods present limitations. Passive
infrared (PIR) sensors, commonly used for controlling light-
ing, are a simple way of detecting if a room is occupied or
not, but do not give information regarding how many peo-
ple occupy the room. This information is necessary for CO2

ventilation. Using CO2 sensors directly for regulating CO2

is also unsuitable for conditioning strategies. CO2 buildup
is slow, and by the time sensors detect high levels of CO2

that trigger ventilation, occupants of the room are likely to
already feel uncomfortable [13]. If not properly calibrated,
these sensors can also be inaccurate [13]. Electrical loads
have also been used for occupancy estimation [6]. However,
this method assumes each occupant contributes to the load
and requires accurate occupancy data for calibration.

For demand response HVAC control, occupancy detection
needs to be accurate, reliable, and able to capture occu-
pancy changes in real time. The Smart Camera Occupancy
Position Estimation System (SCOPES) [15] is a 16 node
sensor network of cameras that captures occupancy changes
among areas with approximately 80% accuracy in near real
time. With newer more powerful hardware it is likely the
accuracy will be even greater.

Though the ability to adjust an HVAC system based on
real time occupancy is an important step toward greater
efficiency, perhaps just as important is the ability to antic-
ipate room usage based on current room usage. This needs
to be addressed since conditioning a room is not instanta-
neous and requires time for adjustments. For example, if
it is known that a large number of people are in a lobby
area, we want the HVAC system to know an adjacent con-
ference room will be used with high probability and begin
conditioning the room beforehand.

The following are the key contributions of our work:

1. Our work on occupancy modeling uses inter-room rela-
tionships over time to model occupancy. In addition,
our models are developed using accurate real world
data rather than occupancy walk-through surveys or
other similar estimates of occupancy.

2. We demonstrate how models developed from sensor
network data can be integrated with an HVAC control
strategy to achieve significant energy savings.



3. We show that we can still satisfy ASHRAE condition-
ing standards while saving significant energy. In cer-
tain cases, we show that our predictive strategies meet
user demand better than typical baseline strategies.

4. We examine a PIR based WSN solution and show that
binary measurement of occupancy is not always suffi-
cient for HVAC control. Under some circumstances,
PIR based HVAC control performs worse than cur-
rent strategies; in order to achieve maximum energy
savings within a building, accurate real time levels of

occupancy must be incorporated into HVAC strategies.

2. RELATEDWORK
Few works on occupancy modeling have been published

that are relevant to demand control systems. Most acknowl-
edge that a major obstacle for developing occupancy predic-
tion models is lack of data. It is time consuming to gather
ground truth occupancy data even for a small set of rooms.
The simplest and most commonly used occupancy models

are sets of predefined static coefficients that are multiplied
with a maximum room occupancy. To estimate the occu-
pancy of a room at 8am given that the room has a maximum
occupancy of 30, the coefficient for 8am is simply multiplied
with 30. Different sets of coefficients are used depending
if it is a weekday, weekend, or holiday and the purpose of
the building. ASHRAE Standard 90.1 [5], BLAST [14], and
DOE-2 [1] define several occupancy profiles for office build-
ings daytypes. These models are commonly used for energy
simulation tools such as eQuest [11] or EnergyPlus during
the design phase of buildings and are also used to determine
static conditioning strategies for buildings.
Several methods of modeling occupancy do so using mul-

tiple sources of sensory input. In [6], the authors shows how
occupancy can be modeled using linear regression models.
Data was collected for lighting and equipment loads and
occupancy is estimated using a walkthrough survey of the
building. Using the electrical loads as the indicator vari-
ables and occupancy estimations as the response variable,
linear regression models for weekdays, weekends, and holi-
days were created. The main limitation of this model is the
reliance on energy usage to determine if someone is present.
In general, it will tend to underestimate occupancy levels.
For example, occupants attending a large group meeting in
a conference room may not be adding any additional loads
causing the model to report the room empty. Occupancy
prediction for conditioning is also difficult as it would first
require the ability to predict electrical loads.
The authors of [7], utilize a deployment of PIR and door

sensors to obtain a binary indication of occupancy. They
use a reactive strategy that adjusts the temperature based
on current occupancy and estimate potential savings using
EnergyPlus. This ignores the ramp up time required for a
room to be brought to temperature. The paper also does
not account for the impact of ventilation on energy savings.
In [17], the authors also utilize door and PIR sensors for

binary detection of occupancy for residential buildings and
examine reactive and predictive controls strategies. The pre-
dictive strategy is achieved using a Hidden Markov Model.
The model estimates the probability of home being in one of
three states: unoccupied, occupied with an occupant awake,
and occupied with all occupants asleep. The authors pro-
vide results for real world deployment and EnergyPlus sim-

ulations. However, the results do not take into account ven-
tilation, which can have a significant impact on energy ef-
ficiency. Also, the modeling approach does not account for
different daily schedules. If a person stays out late on Fri-
day on a semi-regular basis, the model would not be able to
predictively condition for this scenario.

In [10], the authors propose using a belief network for oc-
cupancy detection within buildings. The authors use mul-
tiple sensory input to probabilistically infer occupancy. By
evaluating multiple sensory inputs, they determine the prob-
ability that a particular area is occupied. In each office PIR
and telephone on/off hook sensors were used to determine if
rooms are in occupied states. The authors model the occu-
pied state of individual rooms with a Markov Chain, where
the transition matrix probabilities are calculated by exam-
ining the exponential distribution of the sojourn times of
the observed states. While these strategies are more suit-
able for predictive demand control strategies, there are lim-
itations that diminish their usefulness. The strategies are
aimed for modeling occupancy for individual offices and can-
not be applied to spaces with larger occupancies. Though
the multiple telephone sensors could potentially be used to
help determine a lower bound of occupancy, it is difficult to
determine when someone leaves since the presence of mul-
tiple people essentially nullifies the usefulness of the PIR
sensor. The approach does not consider room interdepen-
dences and only focuses on occupancy detection.

In [12], an agent based model (ABM) and a multivariate
Gaussian model (MVGM) are examined. We will discuss
these models in Section 4.

3. SENSING AND DATA COLLECTION
In our work, we use the SCOPES system developed by

Kamthe et al. [15]. SCOPES is a system comprising 16 sen-
sor nodes on the ceiling of the corridors a University build-
ing. Nodes were deployed at transition boundaries within
the hallways of the building. Each transition boundary is
comprised of a group of three nodes. Each node is a Cy-
clops camera interfaced with a Moteiv Tmote Sky module
via an intermediate adapter board. Both pieces of hard-
ware run TinyOs as the operating system. The Cyclops is
a low power camera with an on-board 4MHz ATmega128L
micro-controller (MCU) and 512KB of external SRAM. The
external SRAM is divided into eight, 64KB memory banks to
overcome the limitations of the addressable memory. Each
bank is capable of storing 80 64x64 pixel grayscale images.
At every transition boundary location, three nodes sense the
same area where the nodes take turns capturing the sensed
area. Whenever a person crosses any one of these transition
points, the cameras capture and process the image data and
determine the if a transition occurred and the direction.

Since the computational resources of the nodes are lim-
ited, only lightweight image processing algorithms are used.
Object detection is achieved by background subtraction, and
the background is updated continuously. When an object is
detected, the pixels of the image are classified as an ob-
ject, shadow, or background depending on a pre-determined
threshold. All pixels classified as objects are grouped us-
ing a connected component algorithm creating a blob. The
centroid and pixel count of the blob is determined and the
direction is inferred by consecutive images. Once a mote
has processed all images in its bank, object information is
transfered to a base station using multi-hop communication.
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Figure 1: The left shows the ten areas data was col-
lected for and the 18 boundaries (gray lines) defining
the areas. The right shows a graph representation.

We found SCOPES was able to detect 80% of all recorded
transitions within a 24 hour period of time.

3.1 Data Collection
Five days (Mon-Fri) of ground truth occupancy data were

gathered for ten areas using seven cameras covering 18 tran-
sition boundaries. Figure 1 shows the building areas used
for data collection. The cameras recorded images at 1.5 fps.
Simple background subtraction methods were used to first
help identify images containing people and then processed
by hand to verify direction and the boundaries being crossed.
The hall occupancies are generally 0. When the hallway

is occupied, the occupancy is usually low and the occupants
typically exit within 4 to 8 seconds. There are a few in-
stances that the hall occupancy deviate from this typical
pattern. When the data was collected, there was construc-
tion work being done near Lab 1. On Monday and Thurs-
day, about 7 people conducted building inspections in the
hallway. There are also some instances where people held
lengthy conversations in the hallway sections.
Figure 2 shows the occupancy data for ten areas. The

Office 1, Office 3, Lab 1, and Lab 3 show occupancy pattens
more typical of work routines though with some slight vari-
ations. Office 1 is used by school administration. Workers
come in consistently at 8am, leave for lunch, come back from
lunch, and then leave at 5pm. Office 3, Lab 1, and Lab 3
are used by professors and graduate students. Though the
same general daily pattern can be seen, we can also see some
occupants stay later (all night in some cases) and arrive and
leave at odd hours. Office 2 and the Conference Room are
similar since they both are mainly used for meetings. Office
2 is a small office that is used for student counseling meet-
ings and certain administrative work. Lab 2 is currently not
being used by any department and serves as storage space.

4. PREVIOUS MODELS
In our previous work [12], we developed an agent based

model (ABM) and a multivariate Gaussian model (MVGM).
The ABM simulates occupancy by modeling the behavior
of the individual. Agents are given paths, walking speed,
and itineraries based on the occupancy changes seen in the
training data. Occupancy is simulated by creating multiple
agents that follow probabilistically generated instructions.
Based on their simulated movement, room occupancies over
the course of the day can be estimated. While this is useful
for estimating daily occupancy changes that are possible, it
is difficult to use this model to predict future room usage.
The second model evaluated is a multivariate Gaussian

fit of room occupancies. Hourly defined pdfs allow the cal-
culation of the probability for a particular occupancy state
occurring within a given hour. Let Oh = (r1 . . . rm) denote

all occupancies that occur per second during hour h where
1 ≤ h ≤ 24 and ri is a vector of occupancies for room i
where i = 1 . . .m. Let µi denote the average occupancy for
room ri. The means will change based on h.

We calculate a vector of means µh = (µ1, . . . , µm) and
covariance matrix Σh from Oh. Using µh and Σh, we define
a probability density function (PDF) f :

f(Oh;µh,Σh) =
1

(2π)
n

2 |Σh|
1

2

exp

{

1

2
(Oh − µh)

′Σ−1

h
(Oh − µh)

}

The PDF f can give a probability of an occupancy occur-
ring for a specific hour dataset Oh. Using this function, we
can randomly draw occupancy vectors from the distribution.
Given a starting occupancy, all the possible occupancies that
can occur in the next timestep are examined. For each pos-
sible occupancy the probability of the occupancy occurring
using the current PDF is calculated. Using these probabil-
ities, the occupancy for the next timestep is chosen. The
drawback of this method is that it causes a great deal of
pacing behavior. For example, if a person leaves the office
to enter a hallway at one timestep, there is a high prob-
ability that the person will re-enter the office in the next
timestep. This occurs since the distribution does not take
into account the behavior observed in the previous timestep.
This can cause predictions to favor parts of the distribution
that have high probabilities. This is particularly pronounced
for rooms rarely occupied. In these cases the model rarely
allows room entry and vacates the room too quickly.

In order to create a prediction model suitable for HVAC
control, we need a model that captures the temporal nature
of the occupancy changes along with the inter-room correla-
tions and occupant usage of the areas. The ABM does not
take into account inter-room correlations and would require
an additional modeling framework to be used for predictions
based on time. The MVGM considers both the temporal and
inter-room correlations. However, the distributions do not
take into account previous behavior and do not accurately
capture the usage of seldom used rooms.

5. MARKOV CHAIN MODEL
We model the temporal dynamics of the occupancy in a

building with a Markov Chain (MC). The state of the chain
consists of the occupancy at each room and transitions to
a new state occurs with a probability that depends only on
the current state and the time. This allows us to predict
the occupancy distribution at t + ∆t given the occupancy
distribution at time t by multiplying the ∆t times of the
transition matrix. This allows us to predict when rooms
will be likely occupied and begin conditioning beforehand.

The MC state at each time is represented by a vector
where each component represents occupancy in a specific
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Figure 2: 5 days of ground truth occupancy data for eight areas.

room (Figure 3). Let R represent the set of n rooms to be
modeled. For each room in R, there is a maximum occu-
pancy. We define S = {s0, ..., sm} to be the set of all room
occupancy combinations that are possible given the maxi-
mum room occupancies of R where m is the total number of
states. Thus, S represents all observable occupancy states
that can be represented by a given set of rooms R.
One issue that needs to be addressed is the potentially

large state space. Assume we have n = 4 rooms, each with
a maximum occupancy of 20 people. In this case, the MC
will contain m = 204 = 160, 000 states. As the number
of states increases, more data is required to calculate the
probabilities of the observable states. The transition ma-
trix is sparse because many transitions are impossible due
to physical constraints of the building. However, the fact
still remains that as more rooms are added, the number
of states to manage increases exponentially. To reduce the
component cost, we define the MC only on the states that
were actually observed during training. Although we will
not be able to generate transitions to all observable states,
practically our model will be realistic if using a large enough
training set. As the WSN gathers data over time, more of
the state space will be represented. Additional strategies of
reducing the state space are addressed in Section 5.3.
With the observable states of the MC defined, we next

define the transition probability matrix. Let pij represent
the probability of moving from state j to i where Xt rep-
resents an occupancy state at time t. For each state in S
we calculate pij = P (Xt+1 = i|Xt = j). Since the train-
ing data collected is at the resolution of seconds, each time
step of the MC represents 1 second. The transition prob-
abilities are estimated from the data normalized counts:
pij = nij/

∑m

k=1
nik where nij is the number of times a

transition from state i to state j in the set, and m is the
total number of states.
Since certain occupancy changes occur with greater prob-

ability depending on the time of day, the time of day must
be incorporated into the model. Consider a person standing

in a hallway at 8:00 am. Since it is early in the day, it is
likely that the person has arrived for work and will move
into either a lab or office. However, if we consider the same
scenario at 8:00 pm, it is more likely that the person will exit
the hallway in order to leave the building. To incorporate
time into the model, we define multiple transition matrices
that govern the state changes within different slots of time,
thus defining an inhomogeneous MC.

While considering only observed (as opposed to observ-
able) states and multiple transition matrices does allow us
to model occupancy dynamics efficiently, a problem arises.
Since we only consider states observed in the training data,
partitioning the data in temporal sets will create discontinu-
ities at the slot boundaries. Suppose we partition the data
to create hourly transition matrices and are predicting oc-
cupancy for hours h and h+1. After 3600 steps (one hour),
we are in some state X, the hour changes from h to h + 1,
and the model switches to the hourly transition matrix for
h+1. It is possible the transition matrix for hour h+1 has
no probability for occupancy state X. This occurs if state
X never occurs in the training data for hour h + 1. Even
though in reality the state X can occur in hour h + 1, if
X does not occur in hour h + 1 of the training data, then
we cannot calculate the transition probabilities for X. This
cannot be solved by introducing a small epsilon probability
value of transitioning into another state because the next
state chosen may also not be represented in the transition
matrix. The MC becomes a random walk until it enters a
state that was captured by the training data.

Similarly sink states can also occur if an occupancy state
only occurs once in the training set. Suppose we have a
set of occupancy states O that we use to train a transition
matrix. Let X be the last occupancy state of the training set
of O. If X is a unique state in O, then X never transitions
to any other state. If the occupancy state transitions to X,
it will remain in that state until the model changes to a
transition matrix that does contain a transition probability.
We propose two different methods of solving the boundary
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discontinuities and avoiding sink states.

5.1 Closest Distance Markov Chain
The closest distance Markov Chain (CDMC) attempts to

solve the discontinuities the time slot boundaries. Suppose
we finish simulating hour h and are currently in state X.
Before switching to the transition matrix for h+ 1, we first
check to see if it contains a probability for X. If the proba-
bility does not exist, then we examine all the states of tran-
sition matrix h+ 1 that does have a probability and choose
the state closest to X.
We define the distance between two states to be the num-

ber of transition to or from the outside world in order to
account for the difference between the states. Let Mi repre-
sent the minimum number of area transitions that is needed
for a single person to enter or exit out of a building from
room i. Let X = (x0, ..., xn) and Y = (y0, ..., yn) represent
two occupancy states where xi and yi are the occupancies
of room i. We define distance dX,Y between X and Y to be
dX,Y =

∑n

i=0
Mi|xi − yi|. Figure 4 shows an example of this

distance metric. For this four room example, the distance
between the states is 5. One transition boundary is crossed
to leave Hall. Two transitions crossings are needed for the
person to leave Rm1. Two transition crossings are needed
for the person to enter Rm3. Rm1 and Rm2 require two
transitions each since a person must first enter the hallway
and then from the hallway exit to the outside world.
Although this method eliminates sink states at the hourly

breaks, it does not guarantee that the sequence of states
is valid. It is possible for people to “teleport” in or out of
areas. Consider the floor plan in Figure 4. Suppose we
have the state (0, 0, 0, 0) (all the rooms are empty) and the
closest state is (0, 0, 2, 0) (two people are in the office). The
transition from (0, 0, 0, 0) to (0, 0, 2, 0) is impossible since
the two people must first pass through the hallway to enter
the office. Also, it is still possible to enter sink state in
the middle of a prediction. Applying the closest distance
metric again does little to help since it will likely choose the
previous state and then immediately re-enter the sink state.

5.2 Blended Markov Chain
Sink states only occur when the next transition matrix

does not contain a probability for the current state. In or-
der to avoid sink states, we wish to ensure that a transition
probability for the current state is always available. Rather
than only consider states within the hourly transition ma-
trix, we instead blend each matrix into a single state space
containing each state of each transition matrix.
If the day is partitioned inK parts, then we haveK transi-

tion matrices T1 . . . TK each with m states. We now linearly
combine these K transition matrices to obtain K blended
transition matrices T 1, . . . , TK , as follows. The blended
transition matrix for slot t is
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hourly time slot, and transition matrices.

T t =

K
∑

s=1

βtsTs (1)

where the coefficients βt1, . . . , βtK are positive and sum to
one (so that T t is a valid transition matrix). We want these
coefficients to be approximately 1 for close slots and quickly
decrease to 0 for farther slots. We can achieve this by defin-
ing the coefficients as

βts =
α(ct − cs)

∑K
s′=1

α(ct − cs′ )
(2)

where ct, cs are the centers of slots t, s, and with a “slot”
function

α(x) = σ

(

2a

d

(

x+
d

2

))

− σ

(

2a

d

(

x−
d

2

))

x ∈ R (3)

where σ(x) = 1/(1 + e−x) is the sigmoid function, a > 0 is
the slope at the slot boundaries and d > 0 is the slot width.
Since the sigmoid is monotonically increasing and satisfies
σ(−x) = 1− σ(x), it follows that α(x) is positive and sym-
metric around its center. Figure 5 shows the slot functions
for several slots. This way, each entry in the blended transi-
tion matrix T s incorporates information from all slots, but
heavily weighting slot s.

For our model, we choose K = 48, partitioning the data
into half hour transition matrices with slot widths of d = 3.
We set a slope of a = 10 at the boundaries. We choose
the ck to be center of the current hour. Figure 5 shows
the blending coefficient for these particular parameters. By
defining the parameters in such a manner, we create overlap-
ping slot boundaries. This increases the number of preferred
states available to transition into, and decreases the chance
of choosing states completely outside the slot boundaries.
The coefficient heavily favors transitions to states within a
given hour time slot and somewhat considers states in the
adjacent half-hour slots. States outside this time frame are
still considered, but with greatly reduced probability. These
parameters were chosen through trial and error. The cri-
teria of the parameter selection was to maximize slot size
while minimizing the transitions into states completely out-
side the preferred slot boundaries. While larger values of K
could be used, smaller values of K are preferred since a large
K reduces the slot size and the number of observed states
for each transition matrix. We also prefer to only draw from
states that are close with respect to time.

5.3 Large Building Scalability
The number of observable states increases exponentially

with the number of rooms, but as described earlier we limit
the complexity of our model by using only states observed
in the data sample. If this has length s over a given time pe-
riod, then the number of observed states N satisfies N ≤ s,
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Figure 6: Comparison of training data with the models for several areas.

and practically N ≪ s because of repeated states. Besides,
the N × N transition matrix T is typically sparse, because
physical constrains make many transitions impossible and
because not every possible transition is observed in the sam-
ple anyway. Indeed, the number of nonzeros in T must be
smaller than s, and again is practically much smaller than s
because of repeated transitions. For our 5-day training set,
we observed s = 432K samples resulting in N = 3809 and
19 578 nonzero transitions (= 0.14% of all N2 transitions).
It is conceivable that, with a very large number of rooms

and a very long sample, N or the number of nonzeros of
T are prohibitively large. Several simple strategies can be
used to achieve a manageable model. Firstly, s should not
be larger than necessary to achieve a sufficiently accurate
model. Another strategy for managing the number of states
is to utilize multiple MCmodels. Suppose we have a building
with 40 rooms that is divided into two wings each contain-
ing 20 rooms. Rather than have a state representation that
includes all 40 rooms, we can train one MC per wing. The
trade off is that more MC models would be required to de-
scribe all possible relationships of all the rooms. Lastly, it is
often possible to aggregate multiple rooms together thus re-
ducing the number of states. This is because HVAC systems
typically condition groups of rooms called zones. We can ag-
gregate room occupancies within a zone, and then create an
MC model using zones rather than individual rooms.

6. MARKOV CHAIN PERFORMANCE
In this section we will examine how well BMC and CDMC

capture room occupancy. For each model, 100 simulations
of 24 hours were created. Five days (Mon-Fri) of ground
truth occupancy data was used to train the models. An
additional three days (Mon, Wed, Fri) of ground truth data
is used for testing. Figure 6 shows two days of training
data along with model simulated room occupancy schedules.
Even without formal tests, the models seem be capturing
the dynamics of the ground truth room occupancies. As
expected, the CDMC enters sink states and remains in the
state until the end of the hour. Qualitatively, BMC seems
to model occupancy variability better than CDMC.

6.1 Comparison Metrics
We use three metrics to evaluate the quantitative per-

formance of the models. We first examine how long room
occupancies remain static to measure occupancy variability.
We expect our occupancy models to remain at the different
levels of occupancy for similar durations as compared with
the ground truth data. The next metric utilizes Jensen-
Shannon divergence (JSD). This is a method that applies
Kullback-Leibler divergence (KLD) to compare the similar-

ity of two distributions. The advantage of JSD over KLD
is that JSD will always return a finite value and is symmet-
rical. We compare the room occupancy distributions of the
models and testing data for different windows of time dur-
ing the day. The last metric considered is the rate people
enter and exit a room. By examining the durations between
entrances and exits of a room, we can measure the flow of
occupants in and out of a room. Specifically, for a window of
time w, we calculate λin,w and λout,w for each room where
the variables represent the rate of flow in and the rate of
flow out of a room respectively. Time is taken into account
since the rate of flow changes depending on the time of day.

6.2 Evaluation
Figure 7 compares the average static durations of the var-

ious occupancy levels with those seen in the testing set. Du-
ration differences closer to 0 indicate a closer fit to testing
data. For high traffic areas and rooms with low occupancy,
BMC and CDMC show similar differences. CDMC typically
shows larger differences of durations since the CDMC still
tends to get stuck in states near the ends of the hourly par-
titions. This causes the occupancy level to remain static for
periods of time longer than normal. Areas with larger occu-
pancies are prone to containing sink states as more data is
required to cover the possible state space. This can be seen
in Figure 7 for Office 1 where CDMC remains at several oc-
cupancy levels for long durations. Similar results were found
for the other areas with higher levels of occupancy such as
Office 1, Office 3, Lab 1, and Lab 3.

We next examine the JSD for the different models. We
partition the day into 2 hour slots and examine the JSD for
each window of time. Examining the ground truth data in
Figure 2, we can expect a fair amount of variation among
different days. To establish a baseline of how much diver-
gence is typical from day to day, we compare the occupancy
distributions of each testing set day to the remaining testing
set days for each window of time and establish the maximum
divergence for each time slot. Rooms that are mostly empty
such as Lab2 and the conference room have JSD of nearly
0 for each window of time. Figure 8 shows the JSD for the
rooms that are consistently occupied. When we compare
the testing set for each model, we see that the JSD for each
window is consistent. We find that both models have JSD’s
that are below the maximum observed JSD.

Lastly we examine the flow of occupants for each rooms.
We consider the hours 7am - 10am to be morning, 11pm -
2pm to be afternoon, and 3pm - 6pm to be evening. Based
on these windows of time, we calculate the flow into and out
of rooms. Figure 9 shows the flows into Hall 1 and Office 1
for the different simulations. As with JSD, we will use the
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Figure 8: Each boxplot is for the JSDs observed within the time slot where the + is an outlier.
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Figure 9: Flows for Hall 1, Office 1, and Office 2 and the min and max flows observed in the testing set.



ground truth test data to establish upper and lower limits
for the λ values. Again, both BMC and CDMC simulations
fall mostly within the limits. However, CDMC tends to have
more outliers, which again is caused by sink states.
Overall, both models perform well, but in general, BMC

performs better since it does not encounter discontinuities
at the boundaries. The sequence predicted by BMC is also
always valid, which may not be the case for the CDMC.

7. HVAC CONDITIONING STRATEGIES
Using the BMC, we define a predictive control algorithm

for temperature. We start by defining the thermal and ven-
tilation criteria that our HVAC strategies must meet to have
an ASHRAE compliant building. We then define the occu-
pancy based temperature control strategy OBSERVE.

7.1 Conditioning Criteria

7.1.1 Temperature

Thermal comfort is a complex measurement that depends
on many aspects such as temperature, humidity, air velocity,
occupants clothing and activity [16, 19]. The most common
comfort measurement is Fanger’s Predicted Mean Vote PMV
as standardized in ISO 7730 [18]. Fanger’s model is not an
undisputed thermal comfort measurement [18, 19, 20], but
provides good generalized results in many cases. Fanger
computes the thermal comfort PMV value between -3.5 and
3.5. Rounding the PMV results in the comfort classes hot
(PMV > 2.5), warm (1.5 ≤ PMV < 2.5), slightly warm (0.5
≤ PMV < 1.5), neutral (−0.5 ≤ PMV < 0.5), slightly cool
(−1.5 ≤ PMV < -0.5), cool (−2.5 ≤ PMV < −1.5), and
cold (PMV < −2.5). Fanger’s PMV depends on air tem-
perature [18], radiant temperature, humidity, air velocity,
occupants clothing and activity. The model is non-linear
and based on large scale studies in climate chambers.
Measuring the PMV based on this model is very com-

plex due to the many influences. The activity and clothing
level of occupants is simplified by assuming defaults such
as office work and clothing level is correlated to the outside
temperature [4]. However, this still requires an air tempera-
ture, radiant temperature, humidity and air velocity sensor
in each room. Air temperature and simple humidity sensors
could be added to our wireless sensor node, but radiant tem-
perature and air velocity sensors are complex and expensive,
such that large scale installations are not affordable. Given
these complexities, our work focuses on optimally controlling
temperature rather than attempting to control PMV. From
a control perspective, our goal is to meet a target tempera-
ture defined by a comfort metric, which may not necessarily
be Fanger PMV. Different comfort metrics will establish dif-
ferent temperature set-points. It is thus more important to
meet specific target temperatures than to meet a specific
comfort metric. As metrics are developed and better envi-
ronment sensing is available, we want our system meet the
temperature goals dictated by the new comfort criteria.

7.1.2 Ventilation

ASHRAE Standard 62.1 [4] uses the following to calculate
outdoor air ventilation rates:

Vbz = RpPz +RaAz (4)

where z denotes the zone, Vbz is the ventilation rate, Rp is
the minimum CFM/person, Pz is the number of people, Ra

is the minimum CFM/ft2, and Az is the floor area. The Pz

Algorithm 1 OBSERVE temperature control algorithm.

CondTempi,j ← Condition temperature from time i to j
CurrHour ← Current hour
TTG ← Temperature such that PMV = 0
TASH ← Temperature such that −0.5 < PMV < 0.5
pThresh← Probability threshold of occupancy

for Every n minutes do

CurrOcc← Current occupancy state
occPred← BMC(CurrOcc, predLen)

for Each room r and point of time t in occPred do

occupied← All periods occPredt→t+60 > pThresh

if occupied > 5 minutes of next 15 minutes then

CondTempt−60,t+15 = TTG

else if occupied > 20 minutes of next 60 minutes then

CondTempt−60,t+60 = TTG

else if 5 ≤ CurrHour ≤ 24 then

CondTempi,i = TASH

end if

end for

end for
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Figure 10: Simulated SCOPES data.

by determining Az. The other constants are determined by
ASHRAE Standard 62.1.

7.2 OBSERVETemperature Control Strategy
This section defines the Occupancy-Based System for Effi-

cient Reduction of hVac Energy (OBSERVE) predictive con-
trol algorithm, which uses a BMC to predictively condition
room temperature. The function BMC(OccState, predLen)
return a predicted schedule of occupancy occPred, where
occPredt is a probability a space being occupied at time
t = 1 . . . predLen and OccState is the occupancy state at
time t = 0. This conditioning strategy is also applicable for
binary occupancy data. The BMC can be easily adapted to
binary data by representing the MC state at each time as a
vector where each component is a binary indication of oc-
cupancy (instead of actual occupancy). Algorithm 1 defines
the OBSERVE temperature control strategy.

This strategy conditions for two different types of occu-
pancy. It first checks short windows of time for occupancy
to ensures that rooms, such as copy rooms, that are not fre-
quented often but have occupied durations of several min-
utes are conditioned. The second longer window ensures
rooms that are frequented constantly but may have short
stay durations are still conditioned. Hallways are an exam-
ple of such an area. Since no standards currently define what
constitutes a significant duration of occupancy, we chose val-
ues that seem reasonable.

8. EVALUATED STRATEGIES
Four different strategies are considered. The first is coef-

ficient based baseline strategy that employs a typical HVAC
control strategy assuming maximum occupancy for ventila-



EnergyPlus Building Parameters

HVAC Single Duct AHU, VAV with terminal reheat
Gas heating and cooling
9 zones

Temperature Heating: Ttg = 75oF, TASH = 70oF
Setbacks Cooling: Ttg = 78oF, TASH = 82oF

Areas Total: 30,130 ft2

Materials Concrete exterior walls
Metal interior walls
30% double glazed windows

Table 1: Main building parameters used.

tion and conditions all rooms from 7:00 - 22:00. The second
strategy is a binary based reactive control of temperature
and ventilation. Rooms are conditioned to a target tem-
perature when occupied and are not predictively precondi-
tioned. Rooms that are unoccupied are still conditioned
to the max/min temperatures allowed by ASHRAE. Since
precise room occupancies are unknown, rooms are venti-
lated according to the estimated maximum occupancy when
occupied. The maximum occupancy is determined using
ASHRAE Standard 62.1 based on area and room purpose.
The third strategy uses the OBSERVE algorithm described
in Section 7.2. Ventilation is based on the observed room oc-
cupancy using equation 4 during warm months (Apr - Oct).
During the colder months ventilation rates are increased.
This increased ventilation is an optimization for terminal
reheat HVAC system and is discussed in Section 9.2.1. The
last strategy uses the OBSERVE algorithm but uses binary
data to train the BMC model. This strategy makes binary
predictions of occupancy and ventilates with the same maxi-
mum occupancy assumption of the reactive control strategy.

9. PERFORMANCE RESULTS

9.1 Building Energy Simulator
EnergyPlus is one of the premiere tools for modeling the

energy of buildings. It takes into account factors such as
weather, HVAC design, and construction materials. In this
section we define the main parameters used for an Energy-
Plus model to test our HVAC strategies.

9.1.1 Building Parameters

EnergyPlus simulations are run for three different loca-
tions; Fresno CA, Miami FL, and Chicago IL. The Energy-
Plus model replicates the geometry shown in Figure 1 and
is constructed to ASHRAE standards. Table 1 summarizes
the main model parameters. The HVAC is a terminal re-
heat system that uses a single air handler unit (AHU) with
variable air volume vents (VAV). The sizing of the AHU is
done according to ASHRAE Standard 62.1 [4]. This type of
HVAC system cools air at the AHU level and heats primar-
ily at the VAV level. This is common for many office build-
ings [9]. This type of system is often used since it is able to
heat and cool areas while still sharing the same AHU. We
save the evaluation of other types of HVAC systems for fu-
ture work. The set-points correspond the temperatures that
predict −0.5 ≤PMV≤ 0.5 assuming 40% humidity, 1 m/s
airflow, and clothing coefficients of 1.0 and 0.5 for winter
and summer respectively. Fresno, Miami, and Chicago have
40%, 52%, and 32% average humidities respectively. The
HVAC system controls humidity to be between 35% and
45% using a cool-reheat heating coil.

9.1.2 Simulated Occupancy Schedules

EnergyPlus models typically use static occupancy sched-
ules specified in sources such as ASHRAE 90.1 and DOE-
2 [1] and are often based on survey data. For our model,
however, we will use the BMC to generate occupancy sched-
ules. A BMC trained with 5 days of ground truth data is
used to generate 23 days of simulated “ground truth” occu-
pancy data for the building model. These simulations will
serve as our occupancy schedules for the weekdays of the
month. The building is assumed to be empty on weekends.
Static occupancy schedules are used for the restrooms since
we have no data for privacy reasons.

Our control strategy assumes a system similar to SCOPES
for occupancy monitoring. For 20% of the time, the system
inverts the direction or detects a false positive or negative
transition. We simulate SCOPES system error by artificially
introducing errors into the simulated ground truth data. Be-
cause directional errors occur with roughly the same fre-
quency, even with 80% accuracy, the observed system data
is close to ground truth. Since errors may produce states
that do not exist in the BMC, the closest distance metric
defined earlier is used to find the closest state for the OB-
SERVE algorithm. Figure 10 compares the simulated scopes
with the simulated ground truth.

9.2 Energy Savings
We evaluate the energy savings possible using the defined

HVAC strategies for each location. These results take into
account the fan, pump, heating (gas), and cooling (gas)
energy consumption of the building. Figure 11 shows the
monthly breakdown of the energy consumption for each lo-
cation. Significant energy savings are achievable over a stan-
dard commonly used baseline; we see up to 112% improve-
ment in some cases. We see that heating and cooling account
for most of the energy usage and that heating requires more
energy than cooling. OBSERVE Occupancy out-performs
binary strategies. The strategies have the most substantial
savings during the colder months. This is primarily because
heating costs are greater than cooling costs.

During the coldest months in Fresno, the strategies are
45%-47% more efficient than baseline; in particular OB-
SERVE Occupancy shows 88% to 112% improvement over
baseline. For Fresno, OBSERVE Occupancy, OBSERVE Bi-
nary, and Reactive Binary show annual savings of 42.3%,
38.3%, and 37.9% respectively. Similar results are found
for the Chicago location. The difference among strategies
increases during the warmer summer months. For summer
months in Fresno, OBSERVE Occupancy shows 9%-11% im-
provement over Reactive Binary and 7%-10% improvement
over OBSERVE binary. For summer months in Chicago,
OBSERVE Occupancy shows 10%-12% improvement over
Reactive Binary, and 6%-7% improvement over OBSERVE
Binary. This suggests OBSERVE Occupancy is more effi-
cient for warm weather areas. When we examine the results
from the warmer Miami location, OBSERVE Occupancy
shows 11%- 18% improvement over both binary strategies
throughout the year. OBSERVE Occupancy again shows
significant improvement over baseline (33%-69%). We see
that OBSERVE Occupancy is 26%-41% more efficient than
baseline whereas Reactive Binary is 17%-30% more efficient.
OBSERVE Occupancy, OBSERVE Binary, and Reactive Bi-
nary have annual savings of 30.4%, 23.7%, and 21.4% respec-
tively for Miami.
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Figure 11: The breakdown of the energy consumption for each month and strategy for three different locations.
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Figure 12: Monthly RMSE temperature for each strategy for Fresno.



9.2.1 Discussion

We see that all three strategies are significantly more effi-
cient than baseline and that there are noticeable differences
among the strategies. The main source of these differences
is related to ventilation and the terminal reheat system used
for the building. OBSERVE Occupancy is able to adjust the
ventilation rate according to estimated occupancy whereas
OBSERVE Binary and Binary Reactive use the maximum
ventilation rate during periods of occupancy. Typically, in-
creasing the ventilation rate introduces additional outside
air into the air handler loop and increases the energy con-
sumption since the outside air needs to be conditioned; re-
circulating air is more efficient since it takes less energy to
maintain pre-conditioned air. However, there are other ven-
tilation efficiency factors that need to be considered with a
terminal reheat system. A terminal reheat system partially
preheats outside air before entering the AHU then reheats
air at the room VAV. Under certain conditions, it is more ef-
ficient to increase ventilation. Increasing ventilation means
losing some energy since more outside air needs to be condi-
tioned. However, increased ventilation distributes the heat-
ing load across all the VAV’s and increases the amount of
VAV pre-heated air into the loop. Based on EnergyPlus sim-
ulations, we found increased ventilation during cold months
increases efficiency. The same is not true for cooling. Since
cooling is done completely at the AHU level, the VAV’s
can no longer be recruited to help distribute the load and
any additional ventilation decreases efficiency. The signifi-
cant improvement of OBSERVE Occupancy over the binary
strategies in Miami confirms this. Thus, an HVAC system
that does all the conditioning in the AHU will benefit the
most from optimal venting. This could be achieved in many
terminal reheat systems by increasing the AHU preheating.

9.3 Conditioning Effectiveness
While substantial energy savings are possible, we must

verify the building is ASHRAE compliant. For this analysis
we focus on the Fresno EnergyPlus simulations.

9.3.1 Temperature Effectiveness

We examine the temperature of the rooms during all times
of occupancy. In particular, we are interested in areas such
as the Conference Room, which are not occupied the ma-
jority of the day. In order to be ASHRAE [3] compli-
ant, we must maintain the set-point temperatures to ensure
−0.5 ≤ PMV ≤ 0.5. As mentioned before, we examine tem-
perature directly rather than PMV; our goal is to meet the
temperature set by any metric of thermal comfort. For this
analysis, we examine the root mean square error (RMSE) of
the room temperatures. We also examine building orienta-
tion to observe the influence of solar gain.
All four strategies perform similarly for Office 1. Reactive

Binary has the highest RMSE (1.3o) for Nov-Mar. Both OB-
SERVE strategies have similar results throughout the year.
Baseline performed best during the coldest months.
OBSERVE Occupancy performs the best out of the four

strategies for Office 3 with a RMSE of 0.1-0.3 Fo. OBSERVE
Binary has a slightly higher RMSE of 0.1-0.5 Fo. The Reac-
tive Binary strategy is highest with a RMSE of 0.9-2.8 Fo.
For Dec-Jan Reactive Binary has a RMSE of 2.5 Fo as com-
pared with the RMSE of 0.1 Fo and 1.0 Fo for OBSERVE
Occupancy and baseline respectively.
Two different building orientations are considered for Con-

ference Room and Office 2 to show the effect of solar gain.
North is defined in Figure 1. South refers to the build-
ing turned 180o. Reactive Binary has higher RMSE for
the south orientation (0.4-3.6 Fo) than the north orientation
(0.2-2.4 Fo). Both OBSERVE strategies have lower RMSE
than Reactive Binary for both orientations. Generally, both
OBSERVE strategies have slightly lower RMSE than base-
line for the north orientation. Both OBSERVE strategies
show higher RMSE for the south orientation than the north
orientation; this is caused by solar gain.

For the Conference Room, Reactive Binary has higher
RMSE during the colder months (4.0-4.2 Fo) for both ori-
entations. During the summer, Reactive Binary has higher
RMSE for the south orientation. For the north orientation,
the baseline does better than OBSERVE strategies for win-
ter and spring. During the summer, however, both OB-
SERVE strategies have lower RMSE than baseline. Com-
paring OBSERVE strategies, OBSERVE Binary has lower
RMSE than OBSERVE Occupancy for the summer south
orientation (0.3-1.1 Fo vs 0.8-1.2 Fo).

9.3.2 Discussion

Reactive Binary tends to have higher RMSE than the
other strategies because of the slow ramp up to target tem-
perature. Once an occupant enters a room, it takes time
to reach the target temperature. For areas occupied most
of the time such as Office 1, Reactive Binary performance
improves but does not match quality of service of predictive
strategies since there is still a temperature reaction delay at
the beginning of the day when the first occupant enters. This
delay becomes more critical for areas sporadically occupied
such as Office 2 and the Conference Room. A room occu-
pied once or twice a day, such as the Conference Room has
insufficient time to reach the target temperature and is only
at the correct temperature if the outside conditions happens
to match the target temperature (spring, fall). RMSE in-
creases if the room receives afternoon sun as is shown for
the southern orientation of the Conference Room and Office
2. Rooms such as Office 2 that are constantly visited have
slightly lower RMSE since the thermal momentum creates
an additive effect that helps maintain temperature. These
results show that reactive strategies based on a PIR WSN do

not work in practice and cannot reach the target temperature

required by the users for all the different scenarios tested.
In some cases, OBSERVE strategies perform better than

the baseline since the baseline uses a static HVAC schedule.
This is seen for Office 3, which is occupied by professors
and graduate students working at odd hours. The static
baseline schedule stops conditioning during normal work-
ing hours whereas OBSERVE anticipates after hours usage.
Even Reactive Binary out-performs the baseline during mild
months (spring and fall) when rooms are occupied off-hours
and the outside and target temperatures are close.

Both OBSERVE strategies perform similarly. However,
there are instances in warm weather where OBSERVE Bi-
nary performs slightly better. This is related to over venti-
lation. Assuming maximum occupancy forces the VAV vent
to open fully when conditioning a room and less time is re-
quired to cool the room. The same is not true for heating
since air from the loop is only partially preheated.

9.3.3 Ventilation Effectiveness

The minimum ventilation rate is established by Equa-
tion 4. Since the occupancy detection system can under-
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Figure 13: Total building ventilation rates for each
strategy for one particular summer day.

count occupants, we add an additional 10% to occupancy
estimates. Figure 13 shows the ventilation rate for a sum-
mer day. The baseline strategy assumes a maximum ventila-
tion rate. The binary strategies use a maximum ventilation
rate only when an area is occupied. OBSERVE Occupancy
uses a modified schedule. It uses maximum ventilation dur-
ing cold months (Oct-Apr for Fresno/Chicago) and optimal
ventilation during the warm months (year-round for Miami).
From the summer day ventilation, we can see that the base-
line greatly over-ventilates the building. While binary based
strategies are an improvement, we can see that binary ven-
tilation rate far exceeds the required ventilation rate. It has
a RMSE of 335.0 CFM (Normalized RMSE of 146%). OB-
SERVE however, remains close to the required ventilation
rate and has a RMSE of 9.5 CFM (NRMSE of 4.1%). OB-
SERVE is usually above the required ventilation because of
the 10% safety margin for under-counting. OBSERVE fell
below the required ventilation rate only 0.0004% of the time.
From Oct-Apr, both binary and OBSERVE share the same
ventilation rates and have a NRMSE of 146%.

10. CONCLUSIONS AND FUTUREWORK
We propose a statistical model of the temporal occupancy

of a building based on an inhomogeneous Markov chain esti-
mated from occupancy data collected from a sensor network.
We control the complexity of the state space by using only
states observed during training, and prevent discontinuities
in the chain by a closest distance Markov chain (CDMC) ap-
proach, or by continuously blending the transition matrices
over time (BMC). Comparing samples generated from the
model with ground-truth data using various metrics shows
that the model captures the occupancy dynamics accurately.
We have also shown how the model can be integrated with a
WSN for demand control based conditioning strategies. We
propose the OBSERVE predictive demand control strategy
and test the energy savings and conditioning performance.
We learned several lessons from our results. First, in order
to achieve energy savings, real time occupancy data is crit-

ical. This can be seen by the average 42% annual energy
savings compared to the current state of the art baseline
strategy. Second, predictive strategies show better energy
savings performance and even significantly better quality
of service conditioning than reactive strategies. Finally, in
order to achieve maximum energy savings, actual level of

occupancy is required in order to optimize ventilation levels.
For future work, we plan to deploy a new occupancy estima-
tion system on two floors and train the model in real time
over longer period of time. Once deployed we can integrate
OBSERVE into the HVAC system and refine the OBSERVE
algorithm to optimally determine precondition times.

11. ACKNOWLEDGMENTS
Special thanks to Ankur Kamthe for valuable discussions

of the MC models and OBSERVE, J. Lindblom, P. Felkai, D.
Burch, A. Magnana and M. Torio for processing the ground
truth data, the reviewers for their feedback, and Qing Cao
for shepherding this paper. This material is based upon work
partially supported by the National Science Foundation un-
der grant #0923586, the California Institute for Energy and
Environment under grant #MUC-09-03, and the Center for
Information Technology Research in the Interest of Society
under grant #442130-19900.

12. REFERENCES
[1] Doe-2 - building energy analysis tool and cost analysis tool.

http://www.doe2.com/DOE2.

[2] EIA - energy information administration.
http://www.eia.doe.gov/.

[3] ASHRAE standard 55: Thermal environmental conditions
for human occupancy. ASHRAE,Inc., 2004.

[4] ASHRAE standard 62.1: Ventilation for acceptable indoor
air quality. ASHRAE,Inc., 2007.

[5] ASHRAE standard 90.1: Energy standard for buildings
except low-rise residential buildings. ASHRAE,Inc., 2007.

[6] B. Abushakra and D. Claridge. Accounting for the
occupancy variable in inverse building energy baselining
models. In ICBEO. Energy Systems Laboratory, 2001.

[7] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and
T. Weng. Occupancy-driven energy management for smart
building automation. In BuildSys, 2010.

[8] M. J. Brandemuehl and J. E. Braun. The impact of
demand-controlled and economizer ventilation strategies on
energy use in buildings. ASHRAE Transactions, 1999.

[9] B. Burke and M. Keeler. Fundamentals of integrated design
for sustainable building. Wiley, 2009.

[10] R. H. Dodier, G. P. Henze, D. K. Tiller, and X. Guo.
Building occupancy detection through sensor belief
networks. Energy & Buildings, 2006.

[11] eQuest Building Energy Analysis Tool.
http://www.doe2.com/.

[12] V. L. Erickson, Y. Lin, A. Kamthe, R. Brahme, A. Cerpa,
M. D. Sohn, and S. Narayanan. Energy efficient building
environment control strategies using real-time occupancy
measurements. In BuildSys, 2009.

[13] W. J. Fisk, D. Faulkner, and D. P. Sullivan. Accuracy of
CO2 sensors in commercial buildings: a pilot study.
Technical report, LBNL, 2006.

[14] D. Herron, J. Eidsmore, R. O’Brien, and D. Leverenz. Use
of simplified input for BLAST energy analysis. Technical
Report A162131, 1983.

[15] A. Kamthe, L. Jiang, M. Dudys, and A. Cerpa. SCOPES:
Smart cameras object position estimation system. In
EWSN, 2009.

[16] P. Kunze and J. Grunewald. Suitable algorithms for
practical assessment of indoor climates in hospital wards.
Symposium on Building Physics, Sept. 2010.

[17] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben,
J. Stankovic, E. Field, and K. Whitehouse. The smart
thermostat: using occupancy sensors to save energy in
homes. In SenSys, 2010.

[18] Olesen, B. W. and Parsons, K. C. Introduction to thermal
comfort standards and to the proposed new version of EN
ISO 7730. Energy & Buildings, July 2002.

[19] J. U. Pfafferott, S. Herkel, D. E. Kalz, and A. Zeuschner.
Comparison of low-energy office buildings in summer using
different thermal comfort criteria. Energy & Buildings,
2007.

[20] M. Schumann, A. Burillo, and N. Wilson. Predicting the
desired thermal comfort conditions for shared offices. In
ICCCBE, 2010.


