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PREFACE 

Once in a while you get shown the light 
In the strangest of places, if you look at it right. 

Robert Hunter 

We intend this book to serve as a first graduate-level text for applied mathemati-
cians, scientists, and engineers. We hope that these students have had some expo-
sure to numerics, but the book is self-contained enough to accommodate students 
with no numerical background. Students should know a computer programming 
language, though. 

In writing the text, we have tried to adhere to three principles: 

1. The book should cover a significant range of numerical methods now used in 
applications, especially in scientific computation involving differential equa-
tions. 

2. The book should be appropriate for mathematics students interested in the 
theory behind the methods. 

3. The book should also appeal to students who care less for rigorous theory 
than for the heuristics and practical aspects of the methods. 

The first principle is a matter of taste. Our omissions may appall some readers; 
they include polynomial root finders, linear and nonlinear programming, digital fil-
tering, and most topics in statistics. On the other hand, we have included topics that 
receive short shrift in many other texts at this level. Examples include 

• Multidimensional interpolation, including interpolation on triangles. 
• Quasi-Newton methods in several variables. 
• A brief introduction to multigrid methods. 
• Conjugate-gradient methods, including error estimates. 
• Rigorous treatment of the QR method for eigenvalues. 
• An introduction to adaptive methods for numerical integration and ordinary 

differential equations. 

IX 
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• A thorough treatment of multistep schemes for ordinary differential equa-
tions (ODEs). 

• Consistency, stability, and convergence of finite-difference schemes for partial 
differential equations (PDEs). 

• An introduction to finite-element methods, including basic convergence argu-
ments and methods for time-dependent problems. 

All of these topics are prominent in scientific applications. 
The second and third principles conflict. Our strategy for addressing this con-

flict is threefold. First, most sections of the book have a "pyramid" structure. We 
begin with the motivation and construction of the methods, then discuss practical 
considerations associated with their implementation, then present rigorous mathe-
matical details. Thus students in a "methods" course can concentrate on motivation, 
construction, and practical considerations, perhaps grazing from the mathematical 
details according to the instructor's tastes. Students in an "analysis" course should 
delve into the mathematical details as well as the practical considerations. 

Second, we have included Chapter 0, "Some Useful Tools," which reviews essen-
tial notions from undergraduate analysis and linear algebra. Mathematics students 
should regard this chapter as a review; engineering and applied science students 
may profit from reading it thoroughly. 

Third, at the end of each chapter are both theoretical and computational exercis-
es. Engineers and applied scientists will probably concentrate on the computational 
exercises. Mathematicians should work a variety of both theoretical and computa-
tional problems. Numerical analysis without computation is a sterile enterprise. 

The book's format allows instructors to use it in either of two modes. For a 
"methods" course, one can cover a significant set of topics in a single semester by 
covering the motivation, construction, and practical considerations. At the 
University of Wyoming, we teach such a course for graduate engineers and geo-
physicists. For an "analysis" course, one can construct a two- or three-semester se-
quence that involves proofs, computer exercises, and projects requiring written pa-
pers. At Wyoming, we offer a two-semester course along these lines for students in 
applied mathematics. 

Most instructors will want to skip topics. The following remarks may help avoid 
infelicitous gaps: 

• We typically start our courses with Chapter 1. Sections 1.2 and 1.3 (on polyno-
mial interpolation) and 1.7 (on least squares) seem essential. 

• Even if one has an aversion to direct methods for linear systems, it is worth-
while to discuss Sections 2.1 and 2.2. Also, the introduction to matrix norms 
and condition numbers in Sections 2.5 and 2.6 is central to much of numerical 
analysis. 

• While Sections 3.1 through 3.4 contain the traditional core material on nonlin-
ear equations, our experience suggests that engineering students profit from 
some coverage of the multidimensional methods discussed in Sections 3.6 
and 3.7. 
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• Even in a proof-oriented course, one might reasonably leave some of the theo-
ry in Sections 4.3 and 4.4 for independent reading. Section 4.5, The Conjugate-
Gradient Method, is independent of earlier sections in that chapter. 

• Taste permitting, one can skip Chapter 5, Eigenvalue Problems, completely. 
• One should cover Section 6.1 and at least some of Section 6.2, Newton-Cotes 

Formulas, in preparation for Chapter 7. Engineers use Gauss quadrature so 
often, and the basic theory is so elegant, that we seldom skip Section 6.4. 

• We rarely cover Chapter 7 (on ODEs) completely. Still, in preparation for 
Chapter 8, one should cover at least the most basic material—through Euler 
methods—from Sections 7.1 and 7.2. 

• While many first courses in numerics omit the treatment of PDEs, at least 
some coverage of Chapter 8 seems critical for virtually all of the students 
who take our courses. 

• Chapter 9, on finite-element methods, emphasizes analysis at the expense of 
coding, since the latter seems to lie at the heart of most semester-length engi-
neering courses on the subject. It is hard to get this far in a one-semester 
"methods" course. 

We owe tremendous gratitude to many people, including former teachers and 
many remarkable colleagues too numerous to list. We thank the students and col-
leagues who graciously endured our drafts and uncovered an embarrassing num-
ber of errors. Especially helpful were the efforts of Marian Anghel, Damian 
Betebenner, Bryan Bornholdt, Derek Mitchum, Patrick O'Leary, Eun-Jae Park, 
Gamini Wickramage, and the amazingly keen-eyed Li Wu. (Errors undoubtedly re-
main; they are our fault.) The first author wishes to thank the College of 
Engineering and Mathematics at the University of Vermont, at which he wrote ear-
ly drafts during a sabbatical year. Finally, we thank our wives, Adele Aldrich and 
Lynne Ipina, to whom we dedicate the book. Their patience greatly exceeds that re-
quired to watch a book being written. 
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Chapter 0 

Some Useful Tools 

0.1 Introduction 
One aim of this book is to make a significant body of mathematics accessible 
to people in various disciplines, including engineering, geophysics, computer 
science, the physical sciences, and applied mathematics. People who have 
had substantial mathematical training enjoy a head start in this enterprise, 
since they are more likely to be familiar with ideas that, too often, receive 
little emphasis outside departments of mathematics. The purpose of this 
preliminary chapter is to "level the playing field" by reviewing mathematical 
notations and concepts used throughout the book. 

We begin with some notation. A set is a collection of elements. If x is 
an element of the set S, we write x 6 S and say that x belongs to S. If 
every element of a set R also belongs to the set S, we say that R is a subset 
of S and write R C S. There are several ways to specify the elements of a 
set. One way is simply to list them: 

R= {2 ,4 ,6}, 5 = { 2 , 4 , 6 , 8 , 1 0 , . . j . 

Another is to give a rule for selecting elements from a previously defined set. 
For example, 

Ä = { i 6 5 : x < 6} 

denotes the set of all elements of S that are less than or equal to 6. If the 
statement x € S fails for all x, then S is the empty set, denoted as 0. 

The notation x = y should be familiar enough, but two related notions 
are worth mentioning. By x <— y, we mean "assign the value held by the 
variable y to the variable x." Distinguishing between x — y and x <— y can 
seem pedantic until one recalls such barbarisms as "k = k + 1" that occur 
in Fortran and several other programming languages. Also, we use x :— y to 
indicate that x is defined to have the value y. 

1 
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2 CHAPTER 0. SOME USEFUL TOOLS 

If R and S are sets, then RUS is their union, which is the set containing 
all elements of R and all elements of S. The intersection R D S is the set of 
all elements that belong to both R and S. If Si is a set for each i belonging 
to some index set / , then 

denote, respectively, the set containing all elements that belong to at least 
one of the sets Si and the set containing just those elements that belong 
to every Si- The difference R\S is the set of all elements of R that do 
not belong to 5. If Si, S2, ■ ■ ■, Sn are sets, then their Cartesian product 
Si x S2 x ■■• x 5 n is the set of all ordered n-tuples (xi, X2, ■ ■ ■, xn) , where 
each x,- 6 Si. Two such n-tuples (xi, X2, ■ ■ ■ ,x„) and (î/i,î/2> • • ->2/n) are equal 
precisely when Xi = yi, x2 = 2/2, ■ ■■, xn = yn. 

Among the most commonly occurring sets in this book are M, the set of 
all real numbers; C, the set of all complex numbers x + iy, where x, y £ M 
and — 1, and 

n times 

the set of all n-tuples x = (xi, £2,. -., xn) of real numbers. We often write 
these n-tuples as column vectors: 

Xi 

X2 

M. itself has several important types of subsets, including open intervals, 

(a, 6) := <x € M : a < x < b\; 

closed intervals, 
[a,b] := | x 6 l : a < x <b\; 

and the half-open intervals 

[a, 6) := j x e l R : a < x < b\, (a, b] := j x e 1R : a < x < b\. 

To extend this notation, we sometimes use the symbol 00 in a slightly abusive 
fashion: 

(a, 00) := i ê l : a < i [ , 

(-00,6] := ixeR:x<b\, 

(—00,00) : = R , 
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and so forth. 
In specifying functions, we write f:R—*S. This graceful notation indi-

cates that f(x) is defined for every element x belonging to R, the domain of 
/ , and that each such value f(x) belongs to the set S, called the codomain 
of / . The codomain of / contains as a subset the set f(R) of all images f(x) 
of points x belonging to the domain R. We call f(R) the range of / . 

The notation / : I W J / indicates that f(x) = y, the domain and codomain 
of / being understood from context. Sometimes we write n - » y when the 
function itself, as well as its domain and codomain, are understood from 
context. 

Throughout this book we assume that readers are familiar with the basics 
of calculus and linear algebra. However, it may be useful to review a few 
notions from these subjects. We devote the rest of this chapter to a summary 
of facts about bounded sets and normed vector spaces and some frequently 
used results from calculus. 

0.2 Bounded Sets 

In numerical analysis, sets of real numbers arise in many contexts. Examples 
include sequences of approximate values for some quantity, ranges of values 
for the errors in such approximations, and so forth. It is often important 
to estimate where these sets lie on the real number line — for example, to 
guarantee that the possible values for a numerical error lie in a small region 
around the origin. We say that a set S C M is bounded above if there exists 
a number B G M such that x < B for every x G S. In this case, B is an upper 
bound for S. Similarly, S is bounded below if, for some 6 G M, 6 < x for 
every x G S. In this case, b is a lower bound for S. A bounded set is one 
that is bounded both above and below. Note that a set S is bounded if and 
only if there exists a number M G M such that |x| < M for every x G S. 

By extension, if / : S —*• K is a function whose range f(S) is bounded 
above, bounded below, or bounded, then we say that / is bounded above, 
bounded below, or bounded, respectively. 

Most upper and lower bounds give imprecise information. For example, 
17 is an upper bound for the set S = (0,2), but, as Figure 1 illustrates, the 
upper bound 2 tells us more about S. We call BQ a least upper bound or 
supremum for S C M if Bo is an upper bound for S and BQ < B whenever B 
is an upper bound for 5. In this case, we write Bo = sup S. Similar reasoning 
applies to lower bounds: —109 is a lower bound for (0,2), but so is the more 
informative number 0. We call &o a greatest lower bound or infimum for 
S C M if bo is a lower bound for S and &o > b whenever b is also a lower 
bound for S. We write bo = inf 5. The notations inf and sup have obvious 
extensions. For example, if S2 := {(x,y) £ M2 : x2 + y2 = l) denotes the 
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unit circle in 1R2 and / : 52 —* M is a real-valued function defined on 52, then 

s u p / : = sup f(z,y) :=sup{f(x,y) 6 M : x2 + y2 = l\. (0.2-1) 
s3 (x,y)€Sa

 l J 

Shortly we discuss conditions under which this quantity exists. 

—M — 
0 2 17 

FIGURE 1. The set ( 0 , 2 ) C t t and two of its upper bounds. 

Not every set has a supremum or an infimum. For example, the set 

{ . . . , - 2 , - 1 , 0 , 1 , 2 , . . . } 

of all integers has neither a supremum nor an infimum. The set 

{l,2,3,..j 

of natural numbers has 1 as its infimum but has no supremum. One should 
take care to distinguish between sup 5 and inf 5 and the notions of maximum 
and minimum. By a maximum of a set 5 C K we mean an element M G 
S for which x < M whenever x £ 5, and we write M — max 5. Thus 
sup(0, 2) = 2 = sup[0, 2] = max[0, 2], but max(0, 2) does not exist. Similarly, 
an element m £ 5 is a minimum of 5 if m < x for every x 6 5. Thus 
inf(0,2) = 0 = inf[0,2] = min[0,2], while min(0,2) does not exist. These 
examples illustrate the fact that sup and inf are more general notions than 
max and min: sup 5 = max 5 when sup 5 G 5, but sup 5 may exist even 
when max5 does not. A corresponding statement holds for inf and min. 

The following principle, which one can take as a defining characteristic of 
R, confirms the fundamental importance of sup and inf: 

LEAST-UPPER-BOUND PRINCIPLE. / / a nonempty subset of M is bounded 
above, then it has a least upper bound. 

R.P. Boas ([1], Section 2) gives an accessible introduction to this principle. 
Similarly, every nonempty subset of K that is bounded below has a greatest 
lower bound. For example, 

i n f { i , i , i , . . . } = 0 , sup(-oo,0) = 0, sup{2,4 ,6} = 6. 

The set {2,4,6, 8,10, . . .}, however, is not bounded above, and it has no least 
upper bound. The least-upper-bound principle ensures that supSa / , defined 
in Equation (0.2-1), exists whenever the set of real numbers 

{/(*,!/)£» : {x,y)eS2} 



0.2. BOUNDED SETS 5 

is bounded above. However, without knowing more about / , we cannot guar-
antee the existence of a point (x, y) G 52 where / attains the value supSa / . 

Let us turn to the multidimensional sets 1 " . Which subsets of K" are 
bounded? Here we generally have no linear order analogous to the relation 
< on which to base a definition of boundedness. Instead, we rely on the idea 
of distance, which is familiar from geometry: 

DEFINITION. The Euclidean length of x = (xi, x2, ■. •, xn) G 1 " is 

||x||2 := y/xl + xl+--- + xl. 

The Euclidean distance between two points x, y G K" is the Euclidean 
length of their difference, ||y — x||2-

Given a point x G M" and a positive real number r, we call the set of all 
points in ffi" whose Euclidean distance from x is less than r the ball of radius 
r about x. We denote this set as ß r (x) . Figure 2 depicts such a set in ffi2. 
A set S C M" is bounded if it is a subset of some ball having finite radius 
in Rn. Observe that, if x G M = K1, then Br(x) = (x-r,x + r). One easily 
checks that a subset of M is bounded in this sense if and only if it is bounded 
above and below. 

X 

r 

FIGURE 2. The ball # r (x) of radius r about the point x G K2. 

Other structural aspects of Mn also prove useful. Let S C M". A point 
x G S is an interior point of S if there is some ball Br(x), possibly having 
very small radius r, such that Br(x) C S. In Figure 3, the point a is an 
interior point of S, but b and c are not. A point x G M" (not necessarily 
belonging to S) is a limit point of S if every ball Z?r(x), no matter what its 
radius, contains at least one element of S distinct from x. In Figure 4, a and 
b are limit points of S, but c is not. If every element of S is an interior point, 
then we call S an open set. If S contains all of its limit points, then we say 
that S is a closed set. The definitions are by no means mutually exclusive: 
Mn itself is both open and closed. 



6 CHAPTER 0. SOME USEFUL TOOLS 

« Ü 

« b 

FIGURE 3. A set S C R2, showing an interior point a and two 
points b , c thai are not interior points. 

llilllli 
mmmmm 
wmmmm W"~ 

* c 

FIGURE 4. A set S C IR2, along with two limit points a and h 
and a point c that is not a limit point of S-

Finally, a subset of Mn that is both closed and bounded is compact.1 

Thus the following subsets of K2 are compact: 

[0 , l ]x [0 , l ] , {(0,0),(0,7r),(l ,-7r)}, 5 2 = { x e I R 2 : | | x | | 2 = l } , 

while the sets 

(0,1) x (0,1), ßi(0), {(0,0),(1,1),(2,2), . . .} 

'This characterization of compactness is not the most general one, but it 
suffices for Mn. The customary approach begins with a more technical and 
less intuitive definition of compactness, proving as a theorem the assertion 
that a subset of R" is compact if and only if it is closed and bounded. Boas 
([1], Section 7) supplies details. 
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are not. Compact sets in Mn have several interesting properties, one of which 
is especially useful in numerical analysis: 

THEOREM 0.1. If S C M" is nonempty and compact and f:S —► M is a 
continuous function, then there are points a , b G S for which / (a) and / (b ) 
are the minimum and maximum, respectively, of the set f(S). 

For a proof, see Boas ([1], Section 7). 
This theorem partially settles an issue raised earlier: If / is a continuous, 

real-valued function denned on the unit circle S2, then there is at least one 
point (x, y) G 52 where / takes the value sups3 / defined in Equation (0.2-1). 
By considering the function —/, one can also show that / takes the value 
infs2 / at some point in £2- Both of these statements hold just as well in M", 
where S2 '■— {x G M.n : ||x||2 = l} - We use this generalization in the next 
section. 

0.3 Normed Vector Spaces 

Vector Spaces 

In numerical analysis, vector spaces are ubiquitous: 

DEFINITION. A set V is a vector space o n e r l if there are two operations, 
addition (+) and scalar multiplication, that obey the following rules for 
any x,y,z G V and a,b £ ]R: 

(i) x + y G V and ax G V; in other words, V is closed under addition 
and scalar multiplication. 

(ii) x + y = y + x. 

(iü) x + (y + z) — (x + y) + z. 

(iv) There is a unique vector 0 G V such that x + 0 = x for ail i Ç V . 

(y) For any x G V, there is a unique vector —x G V such that — x + x = 0. 

(m) lx = x. 

(tiii) a(bx) = (ab)x. 

(triti) a(x + y) = ax + ay. 

(ix) (a + b)x = ax + bx. 
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In this case we sometimes refer to M. as the field of scalars. The elements 
ofV are vectors. A set U is a subspace ofV if every element ofli belongs 
to V and U is a vector space under the operations that it inherits from V. 
Analogous definitions hold for vector spaces over C. 

We denote the scalar multiple ax by juxtaposing the scalar a and the vector x. 
In most cases of interest in this book, the algebraic properties of addition and 
scalar multiplication are obvious from the definitions of the two operations, 
and the main issue is whether V is closed under these two operations. 

Among the common examples of vector spaces are the finite-dimensional 
Euclidean spaces K", with their familiar rules of addition and scalar mul-
tiplication: 

" Xy 

•En 

+ 
' 2/1 

. 2M 

:= 

xi + 2/i 

Xn + 2/r, 

:= 

ax i 

axn 

In this vector space, the zero vector is 0, the array that has 0 as each of its 
n entries. The real line M is the simplest Euclidean space. 

Various sets of functions constitute another important class of vector 
spaces. For example, if 5 C t , then Ck(S) signifies the vector space of 
all functions / : S —+ K for which / and its derivatives / ' , / " , . . . , f^ through 
order k are continuous on the set S. By extension of this notation, C°°{S) 
denotes the vector space of functions that have continuous derivatives of all 
orders on S. On all of these spaces we define addition and scalar multiplica-
tion pointwise: 

(f + 9)(*) •■= f(x)+g(x); (af)(x) := af(x). 

Here, the vector 0 is the function that assigns the number 0 to all arguments 
x. A slightly more general function space is L2(S). Although the rigorous 
definition of this space involves some technicalities, for our purposes it suffices 
to think of L2(S) as the set of all functions / : S —> M for which fs f2(x) dx 
exists and is finite. Readers curious about the technicalities may consult 
Rudin ([2], Chapter 11). 

A third class of vector spaces consists of the sets K m x " of real m x n 
matrices. Our notational convention is to a use sans-serif capital letter, such 
as A, to signify the matrix whose entry in row i, column j is the number 
denoted by the corresponding lowercase symbol a , j . If C and D are two such 
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matrices, then 

C+D 
c i , i ••■ c i ,„ 

C m , l ■ • • Cm,n 

C l , l + d l , l 

+ 
^1,1 ■ • • d\n 

"m, l ' ' ' dm,n 

aC := 

c m, l "I" Gm.l ' ' ' C m n 
um,n 

aci i • • • acin 

acm,\ ac„ 

The additive identity in K m x n is the m x n matrix 0 all of whose entries are 
0. 

Finally, the set {0} is trivially a vector space. 
One can use addition and scalar multiplication to construct subspaces. 

DEFINITION. If V is a real vector space, a linear combination of the vectors 
xi,X2,.. .,xn G V is a vector of the form c\X\ + C2X2 + • • ■ + cnxn, where 
c\, C2, •. •, cn G M. If S C. V, the span of S, denoted span 5, is the set of all 
linear combinations of vectors belonging to S. If U — span S, then S spans 
U. 

It is easy to show that span 5 is a subspace of V whenever S C V. 

DEFINITION. / / V is a vector space, then a set S C V is linearly inde-
pendent if no vector x G S belongs to span(5\{x}), that is, no vector in S 
is a linear combination of the other vectors in S. Otherwise, S is linearly 
dependent. 

One can regard a linearly independent set as containing minimal information 
needed to determine its span: 

DEFINITION. A subset S of a vector space V is a basis for V if S is linearly 
independent and span 5 = V. 

It is a basic theorem of linear algebra that, whenever two finite sets Si and 52 
are bases for a vector space V, S\ and S2 have the same number of elements 
(see [3], Section 2.3) We call this number the dimension of V. For example, 
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I" has the standard basis { e i , e 2 , . . . , e „ } , where 

ei := e2 := e„ := 

If V has a basis containing finitely many vectors, then we say that V is finite-
dimensional. If not, then V is infinite-dimensional. 

Matrices as Linear Operators 
Given matrices A £ M m x n and B £ Kn xP, one can compute their matrix 
product 

AB = 

Ol . l 

am,l 

C l , l 

Cm,\ 

fll.n 

»1,1 

bn,l 

h,P 

"n,p J 

Cl,p 

m>p 

where 

Ci,j = ^d.kbk,}-

k=i 

If we identify vectors in Mn with matrices in M"x l , then the product of an 
mx. n real matrix with a vector in K" is a vector in Mm: 

ai,i 

Q m , l 

ai,n Xi 6i 

6n 

where bi = a;i:Ei + • ■ • + a,-„xn. In this way, any m x n real matrix acts as 
a mapping A: ffin —► Mm. It is easy to check that this mapping is a linear 
operator or linear transformation, that is, that it satisfies the following 
properties: For any x ,y G Mn and any c g l , 

(i) A(x + y) = Ax + Ay. 

( i i ) A(cx) = c(Ax). 
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In this context, the identity matrix in M n x n plays a special role. This 
matrix has the form 

1 0 ••■ 0 
0 1 ■•■ 0 

1 = 

0 0 

It is easy to verify that IA = A for every matrix A 6 M n x m and that AI = A 
for every matrix A € R m x n . 

Frequently we are given a matrix A G Knx™ and a vector b G R" and 
would like to find a vector x G IR" such that Ax = b. 

DEFINITION. The matrix A G M n x n is nonsingular if, for any b G M", there 
exists a unique vector x G ffi" such that Ax = b . Otherwise, A is singular. 

If A is singular, then the equation Ax = b may have no solutions x, or solu-
tions may exist but not be unique. There are several equivalent characteriza-
tions of these notions. In the next theorem, det A denotes the determinant of 
the matrix A G ffi"x". Strang ([3], Chapter 4) reviews the definition of this 
quantity. 

THEOREM 0.2. If A G K" x n , then the following statements are equivalent: 

(i) A is nonsingular. 

(ii) d e t A ^ 0. 

(iii) / / Ax = 0, then x = 0. 

(vu) There is a unique matrix A - 1 G M n x " such that AA_1 = A -1A = I. 

The matrix A - in part (vu) is the inverse of A, and its existence means that 
A is invertible. For proof of the theorem, see Strang ([3], Chapter 2). 

Suppose that A G Mm x" , and denote its (i,j)th entry by a j j . The trans-
pose of A, denoted A , is the matrix in M" x m whose entry in the (j,j)th 
position is a^j. A matrix A is symmetr ic when A = A. This equation 
guarantees that A is square and that aij = a ,̂-. The transpose of a column 
vector v G lRm is a row vector, 

v T = (vi,v2,---,vm), 

which we also say is in Rm . One easily shows that (AB)T = B A . 
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Norms 

In analyzing errors associated with numerical approximations, we often es-
timate the "lengths" of vectors or the "distances" between pairs of vectors. 
The following concept captures the notion of length in settings even more 
general than K": 

DEFINITION. A no rm on a vector space V is a function || • ||: V —+ M that 
satisfies the following conditions for any x, y £ V and a 6 M: 

W \\x\\ > 0) and \\x\\ = 0 if and only ifx = 0. 

(it) | M | = |a|||x||. 

(iii) I k+ y||< ||*||+ |M|. 

/ / such a function exists, then V is a normed vector space. 

The third condition is the t r iangle inequality. From it there follows an 
alternative version: 

PROPOSITION 0.3. / / || • || is a norm on a vector space V, then, for any 
x,y e V, 

IMI- l lv l l l<l l*-vl l - (O-3-i) 

PROOF: By the triangle inequality, 

||x|| = IK* - y) + y\\ < \\x - y\\ + \\y\\, 

so ||*|| - \\y\\ < \\x - y\\. Interchanging x and y gives \\y\\ - \\x\\ < \\y - x\\ = 
\\x — y\\, and the two results together imply the inequality (0.3-1). I 

The prototypical norm is the absolute value function | • |:M —► M. This 
familiar function has many extensions to Mn, three of which are defined for 
x = (xi, X2, ■ ■ ■, xn) E ffi" as follows: 

||x||i := | * i | + | x 2 | + - . - - + k n | , 

||x||2 := y/xl + xl + --- + xl, 

By using properties of | • |, one easily verifies that || • ||i and || • ||oo satisfy the 
conditions to be norms. The function || ■ ||2 is just the Euclidean length in-
troduced earlier, and for this function the first two properties of norms follow 
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from corresponding facts for | ■ |. We review below an argument establishing 
the triangle inequality for || • |[2 -

Analogous norms exist for function spaces. Consider C*([a,6]), the vec-
tor space of all real-valued functions defined on the bounded, closed in-
terval [a, 6] C M whose derivatives through order k are continuous. For 
feck([a,b]), 

H/llx := / \f(x)\dx, 
Ja 

H/112 

U/H«, := sup |/(x)|. 
x€[a,b] 

It is relatively straightforward to show that || • ||j and || • ||oo satisfy the 
properties required to be a norm. For || • H2, proving the triangle inequality 
requires slightly more work, which we undertake shortly. 

It is also possible to construct norms for the spaces M m x n . We explore 
this idea in Chapter 3. 

An interpretation in terms of length is natural for the norm || • H2 on M", 
which is just the Euclidean length function. For the norms || • ||i and || • ||oo 
on IR" the interpretation may be slightly less familiar. Figure 1 illustrates the 
unit spheres 

Si = { x e M 2 : | | x | | i = l } , 

S2 = {xGlR 2 : | | x | | 2 = l } , (0.3-2) 

50 0 = { x 6 f f i 2 : | | x | | œ = l } , 

in M2. Each unit sphere consists of all those vectors whose length, measured 
in the appropriate norm, is 1. 

VÏ L 
1 

> 

s 
00 

1 

1 
s'<\ 

\ 
s 
/ ' 

FIGURE 1. The unit spheres S\, S2, and 5«, in M2. 

Ja 

LfZ. 

f2(x)dx 

In the function spaces Ck([a, 6]), a norm typically assigns to a given func-
tion / some quantity whose interpretation as a length is more abstract. For 
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example, \\f\\\ is the average value of | / | over [a,b], multiplied by the length 
\b — a\ of the interval. Similarly, ||/l|2 essentially gives the "root-mean-square" 
average of/ over [a, b], again multiplied by |6 — a\. Finally, ||/||oo measures 
the largest excursion that / takes from the z-axis, as Figure 2 illustrates. 

FIGURE 2. Geometric interpretation o/||/||oo as a measure of the 
largest excursion thai f takes from the x-axis. 

Viewing the length of a vector as its distance from 0 leads to another ge-
ometric idea: The distance between two vectors a; and y in a normed vector 
space is the norm of their difference, \\y — x\\. Figure 3 illustrates this idea 
for two vectors using the Euclidean length || • jj2 in R2, where the interpre-
tation corresponds to familiar concepts in plane geometry. By abstracting 
this geometric notion to other norms and to vector spaces other than Mn, we 
establish a useful means of measuring how close an approximation — whether 
to an n-tuple of numbers or to a function — lies to an exact answer. 

FIGURE 3. The distance ||y — x|J2 between two vectors x, y 6 M2. 

Inner Products 

In many vector spaces of interest in numerical analysis there is yet another 
level of geometric structure: 

DEFINITION. / / V is a vector space, a function (•, •): V x V —» ffi is an inner 
p roduc t on V if, for all x,y,z G V, 

(i) (x, x) > 0, and (x, x) = 0 only if x = 0 (positive definiteness). 
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(ii) (x, y) - (y,x) ( symmetry) . 

(iii) (x, ay + bz) = a(x, y) + b(x, z) for any a, 6 G M (linearity). 

/ / such a function exists, then V is an inner-product space. 

The ordinary dot product on K" is an inner product: If x ,y G K", then 

(x,y) : = x y = 

Xi Vi 

Vn 

x\V\ + — \ - x n y n . 

The notation for matrix transposes allows us to write the dot product u • v 
as u T v , using the rules for array multiplication. 

Each of the function spaces Ck([a,b]) also possesses an inner product, 
defined for two functions / , g as follows: 

(f,g) ■■= j f(x)g(x) 
Ja 

dx. 

The extra geometry associated with inner-product spaces stems from the 
following concept: 

DEFINITION. TWO vectors x, y £ V arc or thogonal if {x, y) — 0. 

When V = W1 and (•, •) is the ordinary dot product, this definition of orthog-
onality coincides with the usual notion of perpendicularity. In the function 
spaces Ck([a, b]) and in most other examples of inner-product spaces, the pic-
ture is more abstract, but the geometric analogy remains just as profitable. 

Any inner-product space is a normed vector space, the natural norm being 
defined (and denoted) by analogy with the Euclidean length: 

||z||2 := \/{x,x). 

This definition includes the norms || ■ ||2 defined on the vector spaces W1 and 
Ck([a,b]). To show that || • ||2 indeed defines a norm, we must establish the 
triangle inequality. The argument hinges on the following fact: 

THEOREM 0.4. (CAUCHY-SCHWARZ INEQUALITY). / / V is an inner-product 
space with inner product (•, •), then, for any x,y £ V, 

IMI<Nhlh/l| (0.3-3) 

PROOF: If y = 0, then both sides of the inequality (0.3-3) vanish, and the 
theorem is true trivially. Assume that y ^ 0. In this case, for any r £ R , 
positive definiteness of the inner product implies that 

0 < (x + ry, x + ry) = \\x\\% + 2r(x, y) + r2 
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The expression on the right is quadratic in r, and the fact that it is nonneg-
ative implies that the discriminant 4{x,y}2 - ^W^WlWyWi < 0- The inequality 
(0.3-3) follows. ■ 

To prove the triangle inequality for || • H2, one simply observes that 

(NI2 + NI2)2 = IMI? + 2N| a | |y | | a + ||»||?. 

The Cauchy-Schwarz inequality guarantees that the middle term on the right 
side of this identity is at least as large as (x,y), so we have 

(1Mb + II2/II2)2 > IWl2 + 2(x, y) + \\y\\l = ||* + y\\l 

Taking square roots completes the argument. 
The connection between norms and orthogonality in inner-product spaces 

allows us to specify a particularly useful type of basis: 

DEFINITION. A basis S for an inner-product space V is an orthonormal 
basis if the following conditions hold: 

(i) Whenever x,y G S, and x ^ y, {x, y) — 0. 

(ii) For every x € S, \\x\\2 = 1. 

When V is a finite-dimensional inner-product space, one can always construct 
an orthonormal basis from an arbitrary basis for V using an algorithm known 
as the Gram-Schmidt procedure. We refer to Strang ([3], Section 3.3) for 
details. 

Norm Equivalence 

While one can define infinitely many norms on 1R", the structures that they 
impose are essentially the same, in a sense defined below. We devote the rest 
of this section to a discussion of this remarkable fact, which does not hold 
for normed vector spaces in general. We begin with the following general 
property of norms. 

LEMMA 0.5. Let V be a vector space overW. 

(i) Any norm || • ||: V —► M. is uniformly continuous. 

(ii) In the special case V = Mn, any norm \\ ■ ||:M" —► M is uniformly 
continuous with respect to the Euclidean norm \\ ■ {{2-
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PROOF: TO prove (i) we must show that, for any e > 0, there exists a 
number 8 > 0 such that, whenever the vectors x ,y G V satisfy ||x — y|| < 6, 
| ||x|| — ||y|| | < e. By the version (0.3-1) of the triangle inequality, we can 
simply choose 6 = e. 

To establish (ii), let {ei ,e2, . . . ,e„} be the standard basis for M" , and 
suppose that e > 0 is given. For x = xiei + X2&2 + ■ ■ ■ + x„e„ and y = 
2/iei + 2/2e2 + h yneni we have 

I INI - ||y|| I < ||x - y|| = ||(*i - »i)ex + • • • + (xn - yn)en\\ 

< | n - I / i | | | e i | | + - - - + | a ; n - y „ | | | e n | | 

! / 2 / n \ 1/2 

< (l>-«ia) (EIN 
M 

= M ||x - y||2, 

the number M being independent of x and y. The third inequality in this 
chain follows from the Cauchy-Schwarz inequality. Choosing 6 = e/M guar-
antees that I ||x|| — ||y|| I < e whenever ||x — y||2 < 6. I 

The crucial question for norm equivalence is whether inequalities derived 
using one norm || • ||i can be converted to analogous inequalities expressed in 
a different norm || • j|n. 

DEFINITION. Let || ■ ||r and \\ ■ ||n be norms on a vector space V. Then || • ||i 
and |j • ||ii are equivalent if there exist constants m, M > 0 such that 

m||x||i < ||x||„ < M||x||i (0.3-4) 

for all x G V. If this relationship holds, then we write \\ ■ ||i ss || • ||n. 

PROPOSITION 0.6. The relation ss of norm equivalence is an equivalence 
relation, that is, 

(i) The relation is reflexive: || • || « || ■ ||. 

(ii) The relation is symmet r ic : || • ||i ta || ■ ||n implies || • ||n » || • ||i-

(iii) The relation is t rans i t ive : / / 1 | • ||i « || • ||n and \\ ■ ||n « || • ||m, then 
II " lb « II • Hm-

We leave the proof for Problem 3. Symmetry implies that one can reverse 
the roles of the two norms in the inequalities (0.3-4), possibly using different 
values for the constants m and M. 
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Here is the main result: 

THEOREM 0.7. All norms on Mn are equivalent. 

PROOF: It suffices to show that any norm on M" is equivalent to || • ||2 by 
finding appropriate constants m and M, as stipulated in (0.3-4). So, let || ■ || 
be any norm on Ë". Notice that the unit sphere S2 defined in Equation 
(0.3-2) is compact, that is, it is closed and bounded in 1 " . Moreover, the 
function || • || is continuous with respect to || • H2 on S2 by part (ti) of Lemma 
0.5. From these two facts Theorem 0.1 it follows that || • || attains maximum 
and minimum values at some points xm a x and Xmiri, respectively, on S2 • This 
means that, for any x G S2, 

We claim that we can choose m = | |xm m | | and M — | |xmax | | . 
First, notice that ||xmin II > 0 since xmïn ^ 0. Next, select an arbitrary 

vector x G Mn. If x = 0, then the claim is trivially true. Otherwise, x/||x||2 G 
S2, which implies that 

l |Xmin| |< | | x / | | x | | 2 | < | | x m a x | | . 

Multiplying these inequalities through by ||x||2 establishes the claim and 
hence the theorem. I 

0.4 Results from Calculus 
We conclude this chapter with a review of basic results from calculus, leading 
to several versions of the Taylor theorem. We begin with four familiar facts. 

THEOREM 0.8 (INTERMEDIATE VALUE THEOREM). Let f e C°([a,b]), and 
suppose that f(a) < c < f(b). Then there exists a point £ G (a, b) such that 
/(C) = c. 

Rudin ([2], Chapter 4) gives a proof. 

THEOREM 0.9. If f,g e C°([a,b]) and f(x) < g(x) for every x G [a, b], then 

I f(x)dx< I g(x)dx. 
Ja Ja 

For a proof, see Rudin ([2], Chapter 6). This theorem has a useful corollary, 
which serves as a continuous analog of the triangle inequality: 
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COROLLARY 0.10. If f e C°([a,b]), then 

fb fb 

/ f(x)dx < / \f(x)\dx. 
Ja Ja 

PROOF: Letting g(x) = | / (x) | in Theorem 0.9 gives the inequality 

rb rb 

f f(x)dx< f \f(x)\dx. 
Ja Ja 

Now replace / by —/ to prove that 
rb fO fO 

/ |/(ar)|da:< / f{x)dx. 
Ja Ja 

THEOREM 0.11 (FUNDAMENTAL THEOREM OF CALCULUS). / / / e ^ ( [a ,*] ) 

and x € [a, b), then 

f(x)=f(a)+ fX f'(t)dt. 

Ja 

Again, Rudin ([2], Chapter 6) gives a proof. 

THEOREM 0.12 (INTEGRATION BY PARTS). If g,h G C^fa.i»]), then 
fb \b fb 

/ g(x)h'(x) dx = g(x)h(x)\ - / g'(x)h(x)dx, (0.4-1) 
Ja 'a Ja 

where 

g(x)h(x) :=g(b)h(b)-g(a)h(a). 

In lieu of a formal proof, which one can find in Rudin ([2], Chapter 6), we 
mention that Equation (0.4-1) follows directly from Theorem 0.11 and the 
product rule {gh)' = g'h + gh' for differentiation. 

We now have the tools needed to prove the following: 

THEOREM 0.13 (TAYLOR). Lei f G Cn+1([a,6]) for some n > 0, and let 
c, x G [a, 6]. There is a point Ç, lying strictly between c and x (unless c = x, 
in which case Ç = c = x), such that 

/ (*) = f(c)+l1f'(c)(x-c) + --- + ~f^(c)(x-c)n 

+ (n + 1) 

Tn(x - c) 

/ ( " + 1 ) ( C ) ( z - c ) n + 1 

- V 
■V 

Rn + l{x,c) 

(0.4-2) 
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Before giving the proof, it is worthwhile to comment on this theorem. The 
idea is to approximate / near a point c, where we have information about the 
values of / and its first few derivatives. The T a y l o r p o l y n o m i a l Tn(x — c) 
in Equation (0.4-2) is a polynomial of degree at most n in the expression 
x — c, which we regard as a small parameter. If we neglect the r e m a i n d e r 
Rn+i(x,c), then we can view Tn(x — c) as a polynomial approximation to 
f(x) tha t is valid "close to" c. 

The success of this idea depends upon whether Rn+i is small. One dif-
ficulty here is the fact that £, while guaranteed to exist, remains unknown 
except for the stipulation that it lies between c and x. To circumvent this 
problem, observe that 

\Rn+1(x,c)\< sup / " + 1 ) ( y ) \x-c\n+\ 
ye[a,6] 
" v ' 

Mn+i 

the constant M„+i being independent of £ and hence of the choice of a;. This 
estimate shows, heuristically speaking, that Rn+i shrinks at least as fast as 
(x — c ) " + 1 , which grows smaller either as x —► c or as the allowable order 
n + 1 of differentiation increases, provided M n + i is bounded a s m oo. To 
express succinctly the rate at which i ï n +i shrinks with the small parameter 
(x - c ) n + 1 , we write Rn+l = 0((x - c ) n + 1 ) . 

The notation ö() appears in so many contexts that it warrants a formal 
definition: 

D E F I N I T I O N . Let a(e) and ß(e) depend on some parameter e. The notation 
a(e) = ö(ß(e)) as e —* 0 means there exist positive constants M andema,x such 
that \a(e)\ < M\ß(e)\ whenever 0 < |c| < e m a x . Similarly, a(e) = ö(ß(t)) as 
e —► oo if there exist positive constants M and emm such that \a(e)\ < M\ß(e)\ 
whenever e > emin-

Whether e —+ 0 or e —* oo is often clear from context, and in these cases we 
typically omit explicit mention of the limits. This notation uses the symbol 
= in an unusual way. For example, the definition implies the following: 

(i) / / a(e) = 0(-y(e)) and ß(e) = 0(j(e)), then 

a (e )± / ? (£ ) = 0 ( 7 ( 0 ) . (0.4.3a) 

(ii) If0<p<q and a(e) = ö(eq) as e -+ 0, then 

a(e) = ö(cp) as e — 0. (0.4-3b) 

(iii) If 0 < p < q and a(e) = 0(ep) o s c - » oo, then 

a(e) = 0(eq) as e -> oo. (0.4-3c) 
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Problem 6 asks for proofs. 

PROOF OF THEOREM 0.13: Assume that x ^ c, the case x = c being trivial. 
According to Theorem 0.11, 

f(x)=f(c) + J*f'(t) dt. 

If n = 0, let T„(x — c) = /(c). If n > 1, integrate by parts, using g = f and 
h'(t) = 1 (or h(t) = -(x - t)) in Theorem 0.12 to get 

/(*) = /(c) + f'(c)(x -c) + J\x - t)f"(t) dt. 

Continue to integrate by parts in this way, using g(t) — f(k\t) and h'(t) — 
—(x—t)k~l at the feth stage, until the allowable derivatives of/ are exhausted. 
We then have 

f{x)=Tn(x-c) + j'^-^-^1Ht) dt. 

It remains to show that the integral on the right of this identity equals 
R„+i, as denned in Equation (0.4-2). We argue for the case when c < x, the 
case c > x being similar. Call 

m := inf / ( n + 1 ) (<) , M := sup / ( n + 1 ) (<) . 
*e[c,x] te[c,x] 

Theorem 0.9 yields the inequalities 

m r <*z*r dt < r ^rf^(t) dt<Mr^-
Jc n\ ~ Jc n\ Jc n! 

Computing the integrals on the left and right and rearranging gives 

> ■ - * > " * . 

( n + l ) ! fijOzf. fi^{t)dt<M. 
x - c)n+1 Jc n! w _ 

m < 

But f(n+l) is continuous, so the intermediate value theorem guarantees that 
there is some point C, 6 (c, x) such that 

Solving this identity for the integral shows that it is identical to Rn+i- B 

The Taylor theorem admits two special cases important enough to have their 
own names. 
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THEOREM 0.14 (MEAN VALUE THEOREM). / / / G Cl([a,b]), then there is a 
point C € (a, b) such that 

m = mzm. 
b — a 

This theorem is just the Taylor theorem for the case n = 0. It guarantees the 
existence of a point £ G (a* 6) where the derivative of / equals the average 
slope of / over [a,b], as shown in Figure 1. 

— E • J - — 
a Ç b 

FIGURE 1. Graphic example of the mean value theorem. At the 
point (,, the value of f equals the average slope of f over the 
interval [a,b]. 

THEOREM 0.15 (ROLLE) . If f e Cl([a,b]) has zeros at a and b, then there 
is a point C G (a, b) where /'(C) = 0. 

This is the mean value theorem for the case f(a) = f(b) = 0. 
The Taylor theorem has extensions to functions of several real variables. 

Instead of introducing the most general statement of the theorem, we examine 
two useful particular cases. 

DEFINITION. Let Q C 1 " te an open set, with f:Q -* R. We say that f G 
Cx(ß) if f is continuous at each point x = (zi,X2, ■ • •, xn) G fi and each of 
the partial derivatives df/dxi,df/dx2, ■ ■ .,df/dxn exists and is continuous 
at each x G f2. The vector-valued function V / : Cl —» Kn defined by 

"«=(&<*>■&■■> IH 
is the gradient of f. 

The first extension of the Taylor theorem is the following: 
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THEOREM 0.16. Let f eCl{ü), and suppose that c, x G Q and that the line 
segment connecting c and x lies entirely in Çl. Then there is a point £ lying 
on that line segment such that 

/ (x) = /(c) + V/(C) • (x - c). 

Figure 2 illustrates the theorem. Think of the line segment connecting c and 
x as an analog of the interval (c, x) in the one-dimensional Theorem 0.13. 

C 

FIGURE 2. An open set Çl C IR2, with the points c, x, and Ç 
referred to in Theorem 0.16. 

PROOF: Define a function <f>: [0,1] —> M by setting <j>(t) := / ( c - M ( x - c ) ) . By 
the chain rule, 

ft f\ £ 1 

= 5Z^:(c + < ( x _ c ) ) ( 2 : ' ' _ C i ) ' 
the continuity of the individual terms in the sum guaranteeing that <f> G 
C1([0,1]). The mean value theorem yields a point C, G (0,1) such that <̂ >(1) = 
<ß(0) + <f>'{Q- By the definition of <j>, we therefore have 

/ ( x ) = / ( c ) + V / ( c + C ( x - c ) ) . ( x - c ) . 

The vector £ := c + C(x ~ c)i which lies on the line segment between c and 
x, is the desired point. I 

To carry the Taylor expansion for / : fi —>■ M one term further, it is neces-
sary to introduce more notation. We say that / G C2(fi) if / G Cl(Çl) and 
each of the second partial derivatives <92//dx,dxj, i,j = l , 2 , . . . , n , exists 
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and is continuous at every x £ ÇI. The matrix H/(x) G M"x" whose (i, j)th 
entry is 

d2f 
dxidxj 

is the Hessian mat r ix of / at x. The continuity of the second partial 
derivatives guarantees that d2f/dxidxj = d2f/dxjdxi. 

THEOREM 0.17. Let f G C2(fi), and suppose that c,x G f2 and that the line 
segment connecting c and x lies entirely in Q. Then there exists a point £ 
lying on that line segment such that 

f(x) = /(c) + V/(c) • (x - c) + i (x - c) • H/(C)(x - c). 

The proof, which uses the one-dimensional Taylor expansion through order 
2, is the subject of Problem 7. 

While it is possible to extend the Taylor expansion for functions / : fi —> M 
to any order, depending upon the smoothness of / , we do not use expansions 
past the second order. One can also prove analogs of the Taylor theorem for 
vector-valued functions, a task that we postpone until Chapter 4. 

0.5 Problems 

PROBLEM 1. For each of the following subsets of M, determine the least upper 
bound and greatest lower bound, if they exist. 

(A) (0,1) U (2,2.1) U (3,3.01) U (4,4.001) U • 

(H\ / i _ i I _ I 1 _ I X 
\D) ^ x > x' 2 ' 2 ' 3 > 3 ' • • ' J ■ 

(c) | e x p ( - x 2 ) G K : x € K } . 

PROBLEM 2. Prove that || • Id, || • ||2, and || ■ ||oo are norms on Rn. 

PROBLEM 3. Show that norm equivalence (|| • ||i « || • ||n) is an equivalence 
relation. 

PROBLEM 4. Show that, for any x G M", 

(A) Hxlloo < ||x||2 < v 'nNloo. 

(B) ^Wx^ < ||x||2 < Hxllx. 

(c) Hxlloo ^HxlU^nllxllo,,. 
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Also show that these inequalities are sharp, in the sense that each inequality 
becomes an equality for some appropriate nonzero vector x. 

PROBLEM 5. With respect to a given norm || ■ ||, a sequence {x*} of vectors 
in K" converges to x G IRn (written Xjt —► x) under the following condition: 
For any e > 0, there is a number N > 0 such that ||xjt — x|| < e whenever 
k > N. Let || ■ ||i and || • ||n be two norms on M". Show that x* —+ x with 
respect to || • ||i if and only if x* —+ x with respect to || • ||n. 

PROBLEM 6. Prove the statements (0.4-3). 

PROBLEM 7. Prove Theorem 0.17. 

PROBLEM 8. Prove that, if || • || is a norm on Mn, then the unit sphere 
S := {x e Mn : ||x|| = 1} is compact. 

PROBLEM 9. Let A £ ffinxn, and let || • || be a norm on Rn. Prove that the 
linear map defined by X M AX is uniformly continuous with respect to || ■ ||. 
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Chapter 1 

Approximation of 
Functions 

1.1 Introduction 

A fundamental task of numerical analysis is to approximate functions about 
which one has incomplete information. For example, one may know the val-
ues of a function / at two points x\ and X2 and want an estimate of f(y), 
where y lies between x\ and x?. Or, one may know the values of / at a 
discrete set {XQ, X \ , ..., x^} of points in some interval [a, b] and seek an ap-
proximate value of J f{x)dx. In such applications it is helpful to construct 
an a p p r o x i m a t i n g f u n c t i o n / to use as a surrogate for / . This chapter 
concerns methods for constructing such approximating functions and for an-
alyzing their properties. 

To say anything significant about how well / approximates / requires 
qualitative information about / , such as its continuity, differentiability, and 
so forth. We explore the connections between these properties and the ef-
fectiveness of the approximating function / later. For now, we ask that / 
satisfy three conditions. First, it should be easy to compute. Second, such 
basic properties of / as its continuity, differentiability, and integrability should 
be well understood. Third, / should be "close" to / in some sense. Here, the 
idea is to view / and / as elements in some normed vector space and then to 
ask whether the distance | | / — / | | is small. 

This chapter explores methods for constructing / . The methods differ in 
the information about / tha t they require and in qualitative features of the 
approximation / . Also, we encounter differences in the norms || • || in which 
it is most natural to measure the distance between / and / . We begin with 
polynomial interpolation, a scheme that is more useful as a foundation for 
other methods than as a direct approximation technique. We then investigate 
piecewise polynomial interpolation, Hermite interpolation, and interpolation 
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in two space dimensions. We finish the chapter by discussing three somewhat 
specialized methods: cubic splines, least squares, and trigonometric interpo-
lation. 

1.2 Polynomial Interpolation 

Motivation and Construction 

Suppose that we know values of a function / at a set {a:o,a:i,.. . ,xjv} of 
distinct points in an interval [a,b]. Assume that XQ = a and XJV = b and 
that we have labeled the points so that jto < a?i < • • • < -rjv, as Figure 1 
illustrates. We call the abscissae Xi nodes and denote the known ordinates 
f(xi) by yi- In many applications the following problem arises: Construct 
an approximating function f:[a,b] —► M such that f(xi) = yi for each of 
the index values i = 0 , 1 , . . . , N. In other words, find a function that passes 
through the known points on the graph of / and that is defined throughout 
the interval [a,b]. This is the interpolat ion problem. 

-H 1— 

*3 *4 X\ X2 

FIGURE 1. A grid on [a,b] with known points (xi,t/,) on the graph 
of a function f. 

One solution to this problem is to pass a polynomial 

f(x) = a0 + aix + a2x2 H h auxN 

through the known points (z,-, y,). Polynomials are simple to work with, and 
their properties are well known. The computational task is to determine 
values for the coefficients ao, a\,..., ajv so that the graph of / indeed passes 
through the known points. 

Observe that the number N + 1 of coefficients <Zj equals the number of 
points Xi at which values of / are known. In other words, if an interpolant 
of this form exists, then there is a match between the number of unknowns 
(in this case, coefficients of / ) and the number of conditions available to 
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determine them. In Section 1.7 we discuss a different approach that seems to 
relax this requirement. 

A brute-force method for determining the coefficients a* of the approxi-
mating function / is to write the system of equations implied by the conditions 
and then to solve them. The equations are as follows: 

f(x0) = a0 + aixo + a2xl-\ \-aNx§ - y0, 

f(xi) = a0 + aixi + a2x\ + \-aNx^ = ylt 

f(xN) = a0 + aiXN + a2x
2
N+ \-aNx% = yN. 

This set of equations is linear in the unknowns ao, a\,..., ajy- It has a unique 
solution vector (ao ,a i , . . . , aw) provided that the nodes xo,x\,.. .,Xff are 
distinct. (We prove an equivalent fact later in this section.) However, solving 
the system can be tedious, especially when N > 3. Besides, the solution 
obtained in this way yields a collection of N + 1 numerical values affording 
little insight into the structure of this problem, let alone more general ones. 

Instead, we decompose / into parts, each of which solves a simpler prob-
lem. Consider the simple interpolation problem in which one of the known 
ordinates, y,-, has the value 1, while the other ordinates are all 0. The solution 
to this problem is easy to construct: Being a polynomial Li of degree at most 
N, with zeros at xo, ■ ■ ■, £j-i , sci+i, • ■ •, »TV, it must be some multiple of the 
polynomial 

(X - Xo) • • • (X - X{_i)(x - Xi + i) - • ■ (X - XN). 

Now impose the requirement that L((xi) = 1. The expression 

r ,-.\ _ (x - x0) ■ ■ -(x - Xi-i)(x - Xj+i) ■ ■ -(x - xN) / i o n 
Li(x)=- (1.2-1) 

( i j - z 0 ) • • • (*«• - Xi-i)(xi -Xi+i)---(Xi - xN) 

takes the value 1 at x — X{. Therefore, this polynomial solves the simple 
interpolation problem where j/j = 1 and all other ordinates t/j = 0 . For later 
reference, observe that 

W*) = , UN\X),( y (l-2-2a) 
(X - Xi)Uj'N(Xi) 

where 
U>N(X) := (x — XQ)(X — X\) ■ ■ ■ (x — XAT). (1.2-2b) 

This simple problem leads to a convenient solution / to the interpolation 
problem involving arbitrary ordinates j/o, J/i, • • •, VN- Since each of the poly-
nomials LQ, L\,..., LN vanishes at all but one of the points Xj, we can scale 



30 CHAPTER 1. APPROXIMATION OF FUNCTIONS 

them and add the results to get a solution to the more general problem. The 
resulting polynomial / has the form 

JV 

/(*) = ;>>£*(*)• (1.2-3) 
s=0 

It should be clear that f{xi) = «/,-, and / must be a polynomial of degree no 
greater than JV, since it is a linear combination of such polynomials. 

Figure 2 shows an example for the case N = 2, in which x0 = 1, xx = 3, 
and X2 = 4. The upper part of the figure shows graphs of the basis functions 
LQ, L\, and L2, each of which is a quadratic polynomial having the value 
1 at its associated node and having a zero at each of the other two nodes. 
Specifically, 

Lo(x) _ e - 3 ) ( « - 4 ) 

Li(x) = 

L2(x) = 

( 

(*-

(*-

-2 ) ( -3^ 

- 1 ) ( * -
2 ( - l ) 

- l ) ( x -

4) 

3) 
(3)(1) 

The lower part of Figure 2 shows the linear combination / = — ILo + ^L\ + 
OL2, which is the quadratic polynomial passing through the points (XQ, yo) — 
(1 , -1) , (n , i / i ) = (3, | ) , and (x2l2/2) = (4,0). 

1 • 

1/2 -

-1 -

LQ L J L 2 

[ 7 J V 

FIGURE 2. Basis functions £,- and interpolant f for a sample 
problem involving quadratic interpolation. 

The expression in Equation (1.2-3) has two appealing features. First, each 
of the functions L,- is easy to remember or to reconstruct, regardless of the 
location or number of nodes a;,-. Second, given the functions L,-, it is trivial 



1.2. POLYNOMIAL INTERPOLATION 31 

to determine the coefficients that multiply them: The coefficients are simply 
the given ordinates y,-. 

It is profitable to think of / and its interpolant / in the setting of a 
normed vector space. Equation (1.2-3) suggests that the functions L,- serve as 
basis vectors for some subspace of the functions with which we are concerned. 
The advantage of this more abstract point of view is that it allows us to 
estimate the distance ||/—/|| between the original function and its interpolant, 
measured in some norm || • ||. For example, if we are interested in keeping the 
interpolant close to / in a pointwise sense in the interval [a, 6], we might use 
the norm || • |Joo defined in Section 0.3. This norm measures the maximum 
excursion that / takes from / in [a, b], as Figure 3 depicts. 

FIGURE 3. Geometric meaning of\\f — f\\, 

Practical Considerations 
The procedure just discussed is called standard polynomial interpola-
tion. It uses the Lagrange interpolating polynomials Li to construct 
the interpolant / . There are two theoretical aspects of this procedure that 
are important in applications. One is existence and uniqueness of the in-
terpolant; the other is an estimate of | | / — / | | . We now introduce these 
considerations and discuss their implications, postponing rigorous proofs for 
the end of the section. 

Consider a collection {XQ, x\,..., x^/} of nodes in an interval [a, b] on the 
real line, chosen to satisfy the following definition: 

DEFINITION. A finite subset A := {xo,x\,.. .,Xff) of the interval [a,b], 
labeled so that a = XQ < xi < ■ ■ ■ < XN = b, is a grid on [a,b]. The mesh 
size of A is 

h := max (x; — Xi_i). 
l<i<N 

One might expect more accurate interpolation of a given function / on fine 
grids — those having small mesh size — than on coarse grids — those having 
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large mesh size. Shortly we investigate the extent to which this heuristic is 
reliable. 

If we know the values /(ar,-) = t/,- of / at the nodes xo, x\,..., xpj of a 
grid, then the distinctness of the nodes guarantees the existence of a unique 
interpolating polynomial / having degree at most N. We prove this fact 
later. The function f(x) = yoLo(x) + y\L\(x) + ■ ■ ■ + y^Lp/ix) is clearly a 
polynomial of degree at most JV (each of the functions L* is), and /(#,•) = yi 
(each function Lj vanishes at all of the nodes except Xj, where LJ(XJ) — 1). 
Thus existence and uniqueness of / hinge on the existence and uniqueness of 
the basis functions LQ,L\, ..., LN- Intuitively, we are on firm ground here, 
since we have used the N + 1 conditions 

Li(xj)= | 0 ! f \ ^ . 

to determine the JV + 1 degrees of freedom associated with each function L{. 
The connection between accuracy and mesh size is more complicated. To 

assess the accuracy of an interpolating scheme, imagine interpolating a known 
function / , for which the interpolation error / — / is computable. Then we 
can estimate this error in terms of generic properties of / and the mesh size 
h. The estimate depends on how "smooth" / i s — that is, how many orders 
of continuous derivatives it possesses. In fact, if / £ CN+1([a,b]) and / is a 
polynomial of degree N tha t interpolates / on a grid on [a, b] having mesh 
size h, then 

Here, / (v v+1) denotes the (N + l)st derivative of / . We prove this assertion 
later. 

One enticing — but incomplete — way to interpret the estimate (1.2-4) 
is as a statement about how fast the interpolation error shrinks as we reduce 
the mesh size h. One might hope to abbreviate the statement of the estimate 
as follows: 

| | / - / | | o o = 0 ( A " + 1 ) . 

This view naively interprets the inequality (1.2-4) as saying that the interpo-
lation error shrinks at least as fast as hN+l, leading one to expect the error 
to shrink faster when the degree N of the interpolant / is large. 

This interpretation is incorrect. It ignores the factor | | / ( 7 V + 1 ) | |oo in the 
error estimate (1.2-4). When higher derivatives of / behave no worse than 
/ itself, this factor causes no problems. This circumstance occurs, for ex-
ample, when / itself is a polynomial, in which case derivatives of / are just 
polynomials of lower degree. (In fact, the inequality (1.2-4) implies that the 
interpolation error vanishes when / is itself a polynomial of degree N or 
less — a fact that is hardly astonishing.) However, polynomials are by no 
means typical in this respect. Many functions have derivatives that behave 
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progressively worse, in the sense that | | /^+ 1^| |co grows, as the order of dif-
ferentiation increases. In these cases, taking N larger (and hence h smaller) 
can be disastrous. 

A classic example shows how the factor | | /^+ 1^| |oo can foil attempts at 
high-degree interpolation. Consider the function f(x) — 1/(1 + 25x2), which 
possesses derivatives of all orders on [—1,1]. Problem 1 asks for various poly-
nomial interpolants for this function, one of which looks like the highly oscil-
latory interpolant / shown in Figure 4. The occurrence of such surprisingly 
large excursions of / from / is known as the Runge phenomenon. While 
there are ways to minimize this phenomenon, as Problem 1 examines, the 
example serves a cautionary purpose. High-degree polynomial interpolation 
is risky! Section 1.3 discusses one way to circumvent the use of high-degree 
polynomial interpolation without abandoning the use of fine grids. 

FIGURE 4. The Runge phenomenon for standard polynomial in-
terpolation of f(x) = 1/(1 + 25a;2) on a grid containing 11 uni-
formly spaced points on [—1,1]. 

Mathematical Details 

Underlying the considerations just discussed are rigorous arguments and a 
useful theoretical framework. There are many possible approaches to the 
problem of interpolating a function / on a given grid. Here are three examples 
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of forms for the interpolant / : 

do + aix + a 2 x 2 + • • • + a^xN (po lynomia l ) , 

a _ M e _ i M r + a _ ( M _ 1 ) e - i ( M - 1 ) r + • • ■ + aMeiMx ( t r igonometr ic ) , 

a0-\ Yakx
k 

(rational) . ajt+i + h aN+iXN~k 

Among the plethora of possibilities, let us identify a particularly tractable 
class: An interpolation problem is l inear if the interpolant is a linear combi-
nation of known basis functions <po, <pi,..., <pN, tha t is, if / has the form 

f(x) = a0tp0{x) + 0 !^ i (x ) H (- aNtpN(x). 

Polynomial and trigonometric interpolation problems are linear, while ratio-
nal interpolation problems typically are not. 

In the case of polynomial interpolation on an interval [a,b], we seek an 
interpolant / tha t belongs to the set of all polynomials of degree less than or 
equal to N on [a,b]. We denote this set by ü ^ ( [ a , 6]). It is an easy exercise 
to show that IIjv([a,6]) is a vector space having dimension N + I. This fact 
is useful in proving the basic existence and uniqueness theorem: 

T H E O R E M 1.1. Given a grid A = {xo, x i , . . . ,x/v} on [a,b] and a collection 

{2/0,2/1, • • -,2/Jv} of ordinales, there is a unique polynomial f 6 IIjv([a,&]) such 

that f(xi) = y{ fori = 0,l,...,N. 

PROOF: First we show uniqueness. Suppose that / i , / 2 G ilAr([a,6]) satisfy 
f\(xi) = h{xi) = 2/i, for i = 0 , 1 , . . . , N. Then fx - / 2 G ITjv([a, b]), since 
IIjv([a, b]) is a vector space, and consequently f\ — / 2 is a polynomial of degree 
at most JV having the JV+1 zeros xq, x\,,.., XN- This is possible only if / 1 — / 2 

is identically zero; therefore f\ = / 2 . 

To prove existence, we refer to the explicit expression (1.2-1). I 

We turn now to error estimates. The Rolle theorem (Theorem 0.15) is a 
crucial ingredient in the proof of the following lemma. 

L E M M A 1.2. Suppose thai f G CN+1([a, b]), and let f G 11^([a, 6]) interpolate 
f on a grid A = {xo, x i , . . ., xyv} on [a,b]. For any point x G [a,b], there 
exists a point Ç G (a, 6) such that 

/W_ /W = - M M . („5) 

(Recall the definition of the function wjv in Equation (1.2-2b).) 
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PROOF: In the case that x is one of the nodes Xi in the grid A, f(x)-f(x) = 0, 
and Equation (1-2-5) follows from the fact that w^(x,) = 0. When x is not 
a node, u(x) ^ 0, and we must argue differently. Define a new function 
F : [a, b] -► M by the formula 

F{t) = m - m - (/(*) - /(*)]^rll 

Three properties of F are easy to check. First, F 6 CN+1([a,b]). Second, 
F(xi) = 0 for each node xt. Third, F(x) = 0. Thus F has N + 2 zeros on 
[a, 6], and in any subinterval of [a, 6] bounded by two adjacent zeros F satisfies 
the hypotheses of the Rolle theorem. Therefore the function F' has at least 
one zero in each of these subintervals, as illustrated for the case N — 2 in 
Figure 5. In other words, F' has at least TV + 1 zeros on (a,b). We apply 
similar reasoning to F' to deduce that F" has at least N zeros on (a, b), and 
so forth, finally concluding that F(N+1) has at least one zero £ G [a, b]. Thus, 

o = /^+1)(c) - f(N+1HO - f{x)~{{x)^+1)(0- (1-2-6) 
WAf(x) 

But f(N+1\Ç) = 0, since / , a polynomial of degree at most N, has a vanishing 
(N •+• l)st derivative. Also, it is easy to check that 

< + % ) = (N + 1)!. 

Incorporating these results and rearranging Equation (1.2-6) yields Equation 
(1.2-5). I 

x0 y\dSx, % 

FIGURE 5. Roots of F' guaranteed by the Rolle theorem. 

The estimate (1.2-4) is a simplified version of this lemma. Specifically, by 
Problem 2, 

\u>N(x)\ = |(z - x0)(x -xi)---(x- xN)\ < N\hN+l/4. (1.2-7) 

Using this result, we can convert Equation (1.2-5) to an estimate for ||/—/||oo-
The upshot is the following theorem. 
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THEOREM 1.3. Suppose that f 6 CN+l([a, b]), and let f be a polynomial of 
degree N that interpolates f on a grid on [a, b] having mesh size h. Then 

\\f-f\\°°<ll{ll++ljhN+1- (1-2-4) 

Further Remarks 
Knowing how well polynomial interpolants / approximate functions / , one 
might naturally ask how well derivatives of / approximate derivatives of / . 
(We examine the corresponding question for integrals of / and / in Chapter 
6.) Problem 6 asks for a proof of the following fact: 

PROPOSITION 1.4. Let f G CN+1([a,b]), and let A be a grid of mesh size h 
on [a,b]. If f ts the standard polynomial interpolant of degree at most N for 
f on A, then 

l | / ' - / ' l | o o < | | / ( " + 1 ) | | o o / l N . (1 .2-8) 

In other words, we lose one power of h in the interpolation error estimate 
when we differentiate / and its standard polynomial interpolant. 

PROOF (SKETCH): Observe that / ' - / ' has N zeros x\, £2, • • •, &N in (a, 6), 
located so that each £,- E («i- i , £;). Now mimic the argument used in estab-
lishing Theorem 1.2 to estimate f'(y) — f'(y) for any y G [a, 6] that is distinct 
from the points xi,£2, • .,£AT- B 

This proposition suggests a conjecture: 

THEOREM 1.5. / / / and f satisfy the hypotheses of the last proposition, then 
for each order k = 1,2,.. . , N there exists a constant C, independent of h, 
such that 

ll/^-Z^lloc^qi/^^Hoc^1-*. 

(The constant C may be different for different values of k and N.) Thus with 
each differentiation we lose a power of h in the error estimates. Indeed, such 
estimates hold: 

PROOF (SKETCH): Use the Rolle theorem repeatedly to locate zeros of higher 
derivatives of / — / ; then reason as for the cases k — 0 and 1. I 

We close this section with a few words about the Runge phenomenon. The 
example shown in Figure 4 is closely related to one discussed by Runge [11]. 
Underlying this example is a surprising theorem stating, in essence, that it is 
possible to defeat any polynomial interpolating strategy based on high-degree 
interpolants. In particular, suppose that we select, in advance, a sequence 
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{Ai, A2, A 3 , . . . } of grids on [a, b] having 2 ,3 ,4 , . . . nodes, respectively. Then 
there exists a continuous function / : [a, b] —> M such that, if fm denotes the 
standard polynomial interpolant of degree at most m for / on A m , then 
| | / — /m||oo —► 00. Cheney ([2], p. 215) proves this fact. In practice, however, 
one can often find grids for which fm approximates / quite well, so long as 
m is not large. Part of Problem 1 calls for the use of special grids, involving 
zeros of Chebyshev polynomials, to suppress the Runge phenomenon. Still, 
Runge's observations reveal an inherent difficulty in polynomial interpolation 
— one whose resolution we discuss next. 

1.3 Piecewise Polynomial Interpolation 

Motivation and Construction 

The Runge phenomenon is an affront to numerical economy: There is no point 
in doing more work unless it yields better results. In the present context, more 
work corresponds to the use of higher-degree interpolating polynomials and 
hence more terms to evaluate in Equation (1.2-1). In this section, we examine 
a way to incorporate many points (a;,-, t/j) into the interpolation of a function 
/ without using high-degree polynomials. 

—1 1 1 1 1 1 1 

— 1 1 1 1 1 1 1 

— 1 1 1 1 1 1 1 

X0 X\ *2 *3 X4 X5 X6 

FIGURE 1. Piecewise polynomial interpolants of degree at most 
(a) n = 1, (b) n = 2, and (c) n = 3. 

The idea is to fix a maximum degree n of polynomials to be used in the 
interpolation. Then, for a given grid A on [a,b], patch together segments 
of polynomials on appropriately chosen subintervals of [a,b]. The result is 
a single interpolant / that coincides with different polynomials of degree at 
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most n on different subintervals. This scheme of piecewise polynomial 
interpolation allows the total number N of points in the grid to become 
large, without courting the potentially disastrous effects associated with the 
factor ||/(Ar+1)||oo in the error estimate (1.2-4). 

(To simplify the discussion, we use the term "degree n" to describe poly-
nomials of degree at most n in this section and the next. Thus, for example, 
the word "quadratic" refers to polynomials having exact degree zero, one, or 
two, the first two cases being degenerate instances of the third.) 

To illustrate the case n — 1, consider a grid A = {XQ, X \ , ..., XN} on [a, b] 
and a set {yo, 2/i, • ■ •, 2/iv} of ordinates corresponding to values of / at nodes. 
Each pair (a:,, yi), ( i i+i, yi+i) of adjacent known points on the graph of / 
defines a polynomial arc of degree n = 1 (that is, a line segment) over the 
subinterval [x;, Xj+i]. The result, known as piecewise linear interpolation, 
is the "connect-the-dots" interpolant / shown in Figure 1(a). 

The case n = 2 is slightly more complicated. In this case, triples 

(xi,yi), (xi+i,yi+i), (xi+2,Vi+2) 

of adjacent points on the graph of / define quadratic arcs over subintervals 
of the form [x,, »i+2] ■ The tricky part of this construction is to ensure that 
the resulting interpolant / has a unique value for any x G. [a,b]. Figure 1(b) 
shows such an interpolant. Observe that / in this figure consists of three 
quadratic pieces, each of which is defined over one of the intervals [20,2:2], 
[2:2,2:4], [«4, XQ]. Attempting to make / coincide with a single quadratic arc 
over the interval [2:1,2:3] and with a single quadratic arc over [2:0,2:2] would 
almost surely produce an interpolant whose values at points x G (2:1,2:2) 
would not be unique. Figure 2 depicts this situation. 

_l , 1 1 1 
xQ xl x x2 *3 

FIGURE 2. Conflicting definitions of f in the interval [3:1,3:2]» 
arising from a failure to partition the global interval [a,b] into 
elements before constructing the interpolant. 

To avoid this problem, we partition [a, 6] into subintervals 

[«0,3:2], [*2,*4], •••, [XN-2,XN] 

before constructing the piecewise quadratic interpolant. We call these subin-
tervals elements; they are the largest subintervals of [a,b] in which / coin-
cides a priori with polynomial arcs of fixed maximal degree. (The polynomial 
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with which / agrees in one element might be the same as the one with which 
/ agrees in an adjacent element, but such occurrences are fortuitous.) This 
construction has an interesting consequence: To get an integer number of 
elements in piecewise quadratic interpolation, the index N of the rightmost 
node in the grid must be even. 

We construct piecewise cubic interpolants similarly. First, partition [a, b] 
into elements [xo, X3], [x3, xg],..., [x^-3, x/v]- This partitioning demands that 
N be an integer divisible by 3. Then the four known points 

(xi,Vi), (ij+i.j/i+i), (xi+2,Vi+2), (z;+3,2/j+3) 

on the graph of / in each element [x,-, Xj+3] define a cubic arc over the element. 
The result is an interpolant / like the one plotted in Figure 1(c). 

All of the graphs in Figure 1 are continuous. Allowing adjacent elements 
], [xi+n,Zi+2n] to share the data (xi+n,yi+n) guarantees this fact. 

However, we have done nothing to guarantee any higher order of continuity at 
the element boundaries. In general, our interpolants will not be differentiable 
there, as the "corners" on the graphs in Figure 1 suggest. Therefore, in the 
global sense, piecewise polynomial interpolants constructed according to the 
procedures just described typically belong to C°([a,b}) but not to Ck([a,b]) 
for any integer k > 0. 

Practical Considerations 

There are three issues that we need to settle to guarantee that piecewise poly-
nomial interpolation is a useful technique. One is the existence and uniqueness 
of the interpolants. Another is the construction of basis functions. The third 
is a discussion of error estimates. 

The existence and uniqueness of piecewise polynomial interpolants is a 
straightforward consequence of Theorem 1.1, which guarantees that the values 
of/ at Xfc and xjt+i uniquely determine / on the interval [xk,Xk+i]. 

The most useful bases for piecewise polynomial interpolation are the 
nodal (or cardinal) bases. For the grid A = {XQ,X\,. . .,XN}, the nodal 
basis for piecewise polynomial interpolation of any appropriate degree is a 
collection {4)> î> ■ ■ -,(N} of functions satisfying the conditions 

*<*>>={ J: £ ! ; £ t1-3-1* 
While these conditions are similar to those used in Lagrange polynomial in-
terpolation, they differ in that they implicitly require each function £j to be 
a piecewise polynomial of degree at most n on [a, b]. 

Consider the case n = 1. The basis function £3, for example, has the value 
1 at X3 and vanishes at all other nodes XQ, X \ , X2, X4, x$,.... Between nodes, 
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the graph of £3 consists of line segments. Explicitly, 

e3(x) = { 

X-X2 .,. r , 
, if X E [X2,X3], 

X3 — X2 

X — X4 

X3 — X4 ' 
if x G [x3, X4], 

otherwise. 

The graph of £3 over the entire interval [a, 6] looks like the tent-shaped func-
tion drawn in Figure 3. In particular, £3 vanishes outside the two-element 
interval [x2, x4] surrounding x3. Figure 3 also depicts the graph of £Q, showing 
that basis functions associated with the end nodes of a grid take nonzero val-
ues over only one element. Some people, believing that these basis functions 
resemble hats, call the set {£o,£y, ■ ■ .,£N} defined in this way the chapeau 
basis for piecewise linear interpolation. 

y = l 

FIGURE 3. Piecewise linear basis functions £0 and £3. 

Now consider the case n = 3. The condition (1.3-1) implies that there 
are two types of basis functions: one associated with element boundaries, 
the other associated with nodes belonging to the interiors of elements. The 
piecewise cubic basis function £3, sketched in Figure 4, exemplifies the first 
type. It has the following definition: 

4(x) = < 

(x - xp)(x - a?i)(x - x2) 
(X3 - XQ)(X3 - x i ) ( x 3 - S2) ' 

(x - x4)(x - x5)(x - x6) 
(X3 - X4)(X3 ~ X 5 ) (X 3 - X6) ' 

0, 

if x G [x0,x3], 

if x G [x3,x6], 

otherwise. 

Notice that £3 takes nonzero values over the two elements [x0, x3] and [x3, X6J. 
The function £g, being associated with the element boundary X6, also takes 
nonzero values over two adjacent elements, as Figure 4 indicates. 
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FIGURE 4. The four piecewise Lagrange cubic functions £3, £4, 
£5, and £$ that take nonzero values over the element [X3, xç]. 

Figure 4 also shows basis functions £4 and £5, which belong to the second 
type. The explicit definition of £4 is as follows: 

U(x) = < 

(x - x3)(x - x5)(x - z6) 
if x e [x3,x6], 

(x4 - x3)(x4 - x5)(x4 - x6) ' 

0, otherwise. 

As with the Lagrange interpolating bases discussed in Section 1.2, the 
beauty of these piecewise Lagrange interpolating bases is that they yield 
interpolants whose forms are trivial to construct once we know the ordinates 
2/o,2/i, ■•-,2/JV- In fact, 

N 

/(*) = X>M*), (1-3-2) 
i=0 

regardless of the degree n of the polynomial pieces of / . To compute f(x) 
is simple: First determine the element to which the point x belongs, then 
add the n + 1 terms in the sum in Equation (1.3-2) involving nodes lying 
in that element. All other terms in the sum vanish, since they involve basis 
functions that vanish at x. We refer to interpolation schemes based on these 
basis functions as piecewise Lagrange interpolation. 

Error estimates for piecewise Lagrange interpolation follow from estimates 
for the corresponding global interpolation. Since any piecewise Lagrange in-
terpolant / of degree n is a "global" interpolant on each element [xi,Xi+n], 
Theorem 1.3 applies on each element. In particular, if the interpolated func-
tion / S Cn+1([a,b]) and x £ [xi,Xi+n], then there is a point C G {xi,Xi+n) 
for which 

"n(*)/("+1)(0 
(n + 1)! ' /(*) - /(*) (1.3-3) 

where 
U„(x) — (X - X{)(x - Xi + i) ■ ■ ■ (X - Xi+n). 
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We render the factor uin(x) more intelligible by estimating it in terms of 
the mesh size h. If x G [x{, x,-+„], pick a < n such that x = x,- + ah. Then 

lwn(z)| = |(»i + ah - Xi)(xi + ah - xi+i) ■ ■ • (a;,- + ah - xi+n)\ 

< \a(a - n ) ( o - r2) • • • (a - r„)|/i"+ 1 , 

where r^ = {xi+k—Xi)/h. The factor \a(a — ri) ■ ■ (a — rn)\ is bounded above 
by a positive constant C, depending on the piecewise degree n of the inter-
polation but not on the total number N of points in the grid. In particular, 
C is independent of the mesh size h, as is the order n + 1 of the derivative 
appearing in Equation (1.3-3). Hence Equation (1.3-3) yields the estimate 

fif.n + 1 

1/0*0 - f(x)\ < ii-^|/("+»)(c)| = 0(/>"+1). 

This interpolation error tends to zero as h —* 0 (and N —+ oo); however, 
n remains fixed. Therefore, in using the symbol 0(hn+1), we do not mask 
unpleasant subtleties like those lurking in the estimate (1.2-4) for global poly-
nomial interpolation. 

This line of reasoning proves the following theorem: 

THEOREM 1.6. Let f G Cn+1([a,b]), and let f be the piecewise Lagrange 
interpolant of degree at most n for f on a grid A on [a, 6] having mesh size 
h. Then there exists a constant C > 0, independent of h, such that 

The theorem promises qualitative improvement over the error estimates for 
global polynomial interpolation. To illustrate how dramatic the improve-
ment can be, Figure 5 shows the graph of f(x) = 1/(1 + 2bx2), used earlier 
to demonstrate the Runge phenomenon, along with its piecewise linear inter-
polant on a uniform grid with N = 10. Compare this plot with Figure 4 of 
Section 1.2. 

Mathematical Details 

In addition to the error estimates of Theorem 1.6, piecewise Lagrange inter-
polation admits a worthy generalization. We have so far examined schemes 
for producing piecewise polynomial interpolants that vary in their maximal 
degree n but not in their smoothness: All piecewise Lagrange interpolants on 
[a,b] belong to C°([a,b]). Denote the set of all such interpolants for a given 
maximal degree n and a given grid A by A ^ Q ( A ) . The subscript 0 indicates 
the highest order of derivatives of functions in the set that are guaranteed to 
be continuous. 
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FIGURE 5. The graph of f(x) = 1/(1 +25a;2) on [-1,1], together 
with the graph of its piecewise linear interpolant on a uniform grid 
having 11 nodes. 

PROPOSITION 1.7. MQ(A) IS a vector space. 

PROOF: (This is an exercise.) I 

Indeed, MQ(A) is the span of the piecewise Lagrange polynomial basis func-
tions constructed above. 

The generalization comes when we allow subscripts other than 0: 

DEFINITION. Given a grid A on [a,b], jVf£(A) is the set of all functions in 
Ck([a, b}) whose restrictions to any element formed by the grid A are polyno-
mials of maximal degree n. 

This definition remains somewhat vague, since it does not specify what might 
constitute "elements" for interpolants having higher orders of smoothness. 
Subsequent sections clarify this issue. 

We end with a remark. By convention, the class C~1([a,b]) contains all 
functions that possess at most finitely many discontinuities on [a, 6], all of 
which must be jump discontinuities. In other words, for any / G C -1([a,6]), 
there are at most finitely many points y G [a, b] for which 

f(y-) lim f(x) ^ lim f(x) 
x—-y- x-*y+ 

f(v+), 

and at each such point both of the one-sided limits f(y—) and f(y+) exist and 
are finite. Accordingly, the set A4" i(A) is the set of all piecewise polynomials 
on [a,b] that have degree n on any element formed by the grid A and that 
may have jump discontinuities at the element boundaries Xi G A. (In many 
applications, the actual values that a function / £ A^" t(A) takes at these 
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element boundaries is immaterial. Unless circumstances demand otherwise, 
we do not distinguish, for instance, cases for which f(x—) = f(x) from those 
for which f(x-) ^ f(x), so long as the behavior of / in the interiors of 
elements is well defined.) 

For example, M°_i(A) denotes the set of all functions that are piecewise 
constant on the subintervals formed by A = {XQ, X \ , ..., ÏJV}, as drawn in 
Figure 6. The set {£, : i= 1, 2 , . . .,JV}, with 

£(x)= I *' if Xi~1 ^ x < X i > 
'^ ' \ 0, otherwise, 

serves as a basis for this space. By analogy with the spaces .Mo(A), one 
might expect an interpolation error estimate of the form | | / — /||oo = 0(h) to 
hold for piecewise constant interpolation, provided / € C1([a, 6]). Problem 5 
asks for verification of this estimate. 

-A. n -A--I ,A r\ rf\o ^" A *« 

FIGURE 6. A function in M^^A). 

1.4 Hermite Interpolation 

Motivation and Construction 

It is sometimes useful to construct interpolants having higher orders of smooth-
ness. For example, some applications call for globally differentiable inter-
polants. In other cases, we may know both function values and slopes at the 
nodes of a grid and seek interpolants that respect that knowledge. Still other 
applications call for approximations to functions that we know to be smooth. 

This section discusses solutions to the following problem: Given a grid 
A = {xo,x\,.. .,Xft} on an interval [a, b], a set {yo,y\, ■ ■ ■, VN} of corre-
sponding function values, and a set {J/Q, y[,..., t/N} of corresponding slopes, 
find a continuously differentiable interpolant / such that 

f{xi) = Vi, £ ( * , ) = J4, i = 0 , l , . . . , AT. (1.4-1) 
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The notation y't signifies a numerical value of slope at the abscissa x,-; the 
symbol '"" does not call for differentiating j/ j , which is just a number. Poly-
nomial interpolants tha t incorporate nodal values of derivatives in this way 
are called H e r m i t e in terpo lants . 

As with Lagrange polynomial interpolation, we begin by fitting a globally 
defined polynomial to the given data. In particular, we seek an interpolant 
of the form 

N 

/ > ) = 5 > # o , i ( * ) + y'iHhi(x)l (1.4-2) 
i=0 

in which the coefficients j / j , yj are precisely the given data. For this form 
to work, the set {#o,i , # i , t : ''■ — 0 , 1 , . . . , N} must constitute a nodal basis, 
whose defining conditions are as follows: 

for i, j = 0 , 1 , . . . , N, and 

for i,j = Q,l,...,N. 
These 4(7V + l ) 2 conditions suffice to determine 2AT + 2 coefficients for 

each of 2N + 2 polynomials having degree at most 2N + 1. Problem 4 asks 
for proof that the functions 

H0,i(x) = 1 - 2(x - Xi)—±(xi) L 2 (x) , (1.4-5) 

tfM(x) = (x - Xi)LJ{x) (1.4-6) 

satisfy these conditions. Here, L, denotes the Lagrange basis function of 
degree N associated with the node x*, defined in Equation (1.2-1). With 
these H e r m i t e i n t e r p o l a t i n g bas is funct ions , the function / given in 
Equation (1.4-2) solves the interpolation problem (1.4-1). 

One important lesson of the previous two sections is tha t piecewise poly-
nomial interpolation has much to offer over global polynomial interpolation. 
Perhaps the most important version of piecewise Hermite interpolation is the 
cubic case. Following notation introduced in the previous section, the space of 
piecewise Hermite cubics on the grid A = {xo, x i , . . . , xjv} is M^(A), which 
contains all functions / £ Cl([a,b}) whose restrictions to any element of the 
grid are cubic polynomials. The elements in this case are subintervals of the 
form [x,_i,Xj], containing two nodes. The four da ta J / t - i .yJ_i , !/».?/< g i y e ex-
actly the number of conditions needed to determine the four coefficients of a 
cubic polynomial on [x,-_i,Xj]. 
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y = i 

F I G U R E 1. Piecewise Htrmite cubic basis functions associated 
with the nodes X\ and X2-

We define a nodal basis for M3(A) using conditions similar to those used 
in global Hermite interpolation: 

». i \ / 1, if i = j , dho,i, . 
h°.<(«i) = { o, if .-#;, - & - ^ ) = 0' 

for i, j = 0 , 1 , . . . , N, and 

k ( \ n ^ * M / x f 1, if * = J, 
Ai.*to) = 0' ^ - ( ^ ) = \ o, if i + j , 

for i , j = 0 , 1 , . . . , N. These equations assign to each node x,- two basis 
functions /lo,. and hij. The following equations give explicit formulas for 
these functions in the case where Xi — x,_j = £»+i — x,- = h\ 

( h~3(x - x,_i)2[2(x,- - x) + h], if Xi_i < x < x,-, 

h~3(xi+i - x)2[3/i - 2 (x , + i - x)], if x; < x < x , + i , 
0, otherwise; 

{ h~2(x - Xj_i)2(x - Xj), if x ,_i < x < Xj, 
/ i - 2 ( x j + 1 - x) 2 (x - x , ) , if x, < x < x , + i , 
0, otherwise. 

As illustrated in Figure 1, each of these functions coincides with one 
nonzero cubic polynomial over the element [x ;_ i ,x ; ] , with another nonzero 
cubic over [x,-, xj+i], and with zero outside these two subintervals. (The func-
tions hotQ, hito, /lo.JVi and /ii,jv, being associated with the end nodes xo and 
xjv, are nonzero over only one element.) 

Given this nodal basis, we solve the interpolation problem (1.4-1) by con-
structing the piecewise cubic, continuously differentiable function 

N 

f(x) = X^AoX*) + y'ihiAxïï-
«=0 
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prescribed 
slope \ 

prescribed 
value 

FIGURE 2. Example of a piecewise Hermite cubic that interpolates 
prescribed nodal values and slopes. 

Figure 2 illustrates how / matches the prescribed function values y,- and slopes 
2/J at each node Xi. This interpolant has a derivative that is well defined and 
continuous throughout [a,b], namely, 

dj_ 
dx 

N 

(*) = £ 
i=0 

dhoi ,dhii 
yi-dx-{x) + yi^x-{x) 

Evaluating either of these sums at a typical point x £ [a,b] involves calculating 
only those terms that are nonzero over the element [£i_i,xj] to which x 
belongs. In this case, there are four such terms: two associated with the 
index i — 1 and two associated with the index i. 

As a concrete example, consider the piecewise Hermite cubic interpolant 
for f(x) — sinx on [0,27r], using the grid A = {0, W/2,W,3TT/2,2TT}. At x = 1, 
the interpolant has the value 

/ ( l ) = sin(0) ft0,o(l) + cos(0) A l i0(l) + sin(7r/2) V i ( l ) + «*(ir/2) AM(1), 

since the argument x = 1 lies in the subinterval [J;O,*I] = [0!7r/2] formed by 
A. Because sin(0) = cos(7r/2) = 0 and cos(0) = sin(7r/2) = 1, 

AD=*„(!)+*»,(!) = ( Ï )" ' ( ! - • ) '+ ( i f ['(§-') + !] 
~ 0.831874. 

This value compares with the true value sin(l) ~ 0.841487. 

Practical Considerations 
We have already established the existence of Hermite interpolants by exhibit-
ing polynomials that satisfy the interpolation constraints. Uniqueness follows 
by a zero-counting argument only slightly more sophisticated than the one 
used in the Lagrange case. We examine this argument in a general setting 
later in this section. For now, let us consider the questions of existence and 
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uniqueness to be settled and focus on some practical aspects of piecewise 
Hermite cubic interpolation. 

First, we consider error estimates. As with Lagrange interpolants, error 
estimates for the piecewise case are direct corollaries of estimates for global 
polynomial interpolation, which we examine rigorously below. The important 
result has a familiar form, bounding | | / — /||oo in terms of a power of h and 
the norm of a corresponding derivative of / : 

THEOREM 1.8. Let f 6 C4([a,6]), and let A = {x0,xx,.. .,xN} be a grid 
on [a,b] having mesh size h. Then the piecewise Hermite cubic function f G 
■Mf(A) that satisfies the interpolation problem (1.4-1), with yi = / (z , ) and 
y'i = f'(xi) for i — 0,1, ■ ■ -, N, obeys the following error estimate: 

ll/-/l|oo<q|/(4)||coft4. 

(Henceforth, unless we explicitly indicate the contrary, the symbol C denotes 
a positive constant, independent of the mesh size h, that can vary from es-
timate to estimate.) Thus piecewise Hermite cubic interpolation yields an 
error that is C(/i4), which is comparable to the error in piecewise Lagrange 
cubic interpolation. 

When is piecewise Hermite cubic interpolation more appropriate than 
piecewise Lagrange cubic interpolation? This question calls for some judg-
ment. Hermite interpolation may be more appropriate when one has numeri-
cal information about slopes at the nodes and when the intended application 
calls for a continuously differentiable interpolant. (Section 1.6 explores an 
approach that produces smooth interpolants without requiring numerical in-
formation about nodal slopes.) In a rough sense, piecewise Hermite cubics 
expend some of their interpolating power satisfying the constraints imposed 
by continuous differentiability. As a consequence, these interpolants demand 
about twice as much computational effort per node as piecewise Lagrange 
cubics. 

Mathematical Details 

Hermite polynomial interpolation admits more generality than the discussion 
so far suggests. Once we decide to match interpolants to prescribed nodal 
derivatives as well as function values, there is no a priori reason to limit the 
order of derivatives matched to 1 or, for that matter, to prescribe the same 
number of derivatives at all nodes. We may as well consider interpolation 
problems of the following form: Find a polynomial / : [a, 6] —> R such that 

/(**) = v°, /'(*<) = yl, ■■■ , / ( m , ) (* . ) = vT'- (1-4-7) 

where i,-, i = 0,1 N, ranges over the nodes of agrid A. Here, we prescribe 
values of the first mi derivatives of / at each node Xi, the integer m* possibly 
varying from node to node. 
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In this case we expect to find / G Tid([a, b]), where the degree 

N 

d = ^ ( m * + 1 ) - 1 
•=o 

guarantees that the number of interpolatory constraints matches the number 
of coefficients to be determined. Thus we must solve d + 1 equations, given 
by the interpolatory constraints (1.4-3), for the d+ 1 coefficients of/. These 
equations are linear in each coefficient: If f(x) = CdXd + Cd-ixd~l + 1- CQ, 
then the constraint / ' (a^) = 2/3, for example, has the explicit form 

dxirlcd + {d- l)xt2cd-i + ■ ■ ■ + ci = 2/3. 

The system of all such constraints has the form Ac = y, where A is a (d + 
1) x (d+ 1) matrix, c stands for the vector containing unknown coefficients 
co.ci , . . . ,Cd, and y denotes the vector of prescribed values y^. To show 
existence and uniqueness of the interpolant / , we prove the following: 

PROPOSITION 1.9. The matrix IK is nonsingular. 

The proof uses the fact that, if the number £ is a zero of a polynomial p 
and p(£) = p ' (0 = • ■ ■ = p ( m _ 1 ) ( 0 = 0, then p(x) = (x - Ç)mq(x) for some 
other polynomial q(x). The number m is the multiplicity of the zero £. We 
generalize this notion in Chapter 3. 

PROOF: By Theorem 1.2, it suffices to show that the only solution to the 
system Ac = 0 is the trivial solution, c = 0. This system is equivalent to the 
following set of interpolatory constraints: 

/(*,-) = 0, /'(*,) = 0, ... , / ( m , ) (^) = o, i = o,i,..-,jv. 

Thus, either / is the zero polynomial or else / has a zero of multiplicity m, +1 
at each node £;. In the latter case, / must be a multiple of the polynomial 

(x - x0)
m°+\x - X! ) m i + 1 - . . ( * - xN)m»+1. 

However, this polynomial has degree 

N 

YJ(mi + l) = d+l, 
»=o 

and hence no nonzero polynomial in II(i([a,6]) can be a multiple of it. The 
only remaining possibility is that / must be identically zero, that is, CQ = 
ci = ■ • • = c<i = 0. I 
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The greater generality afforded by the global interpolation constraints 
(1.4-7) translates, in a limited way, to greater generality in the piecewise 
case. For example, one can satisfy the interpolation constraints 

H*i) = Vi, / ' (*0 = y<. i = 0,l,...,N, (1.4-8) 

by constructing a piecewise quintic function whose coefficients over each ele-
ment [XJ, Xj+2], j = 0 ,2 ,4 , . . . , N — 2, are chosen to satisfy the six equations 
of the form (1-4-4) for i = j j ' + l , j + 2. Alternatively, one can use a piecewise 
quintic to satisfy the interpolation constraints 

/ > 0 = 2/,°- f'(xi) = yl f"(xi) = yf, i = 0,l,...,N. (1.4-9) 

Here, / must be quintic over each element [x^arj+i], and one chooses its 
coefficients there to satisfy the six conditions of the form (1.4-9) applicable 
at the nodes Xj and Xj+\. 

These observations notwithstanding, the most commonly used forms of 
piecewise Hermite interpolation employ only the values of f(xi) and f'(xi). 
It is for this case that we examine error estimates in detail. As with Lagrange 
interpolation, the estimates for the piecewise case follow from estimates for 
the global case, which the following theorem establishes. 

THEOREM 1.10. Given a function f £ C2N+2([a,b]) and a grid 

A = |a;o,3:i,. • -,xN\ 

on [a,b], let f : [a,b] —► M be the Hermite interpolant of f satisfying the 
equation 

N 

/(*) - E ^ x ' ) ^ o , ( ^ ) + f(xi)Hu(x)]. 
i=0 

Then for any x G [a, b] there exists a point £ 6 (a, b) such that 

PROOF (SKETCH): Define 

■ "&(*) F(t) = f{t) - f(t) - [f(x) - / ( x ) ] J 9 ^ , (1.4-10) 

then reason as for the Lagrange case, noting that F' has 2./V + 2 distinct zeros. 
Problem 7 asks for details. I 

By the usual device of estimating |<JJV(X)|, one can readily convert this theo-
rem to an estimate having the form 

l l / - / H o o < q i / ( 2 J V + 2 ) l | o c ( 6 - a ) 2 A r + 2 . 
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It is also possible to estimate the errors associated with derivatives of 
Hermite interpolants: 

THEOREM 1.11. With f and f as in Theorem 1.10, 

| | / ( t ) - / W | |oo < C | | / ( 2 " + 2 > |U6 - a)2N+2~k, (1.4-11) 

for k = 0,1,...,2N+1. 

By now the strategy should be cloying: 

PROOF (SKETCH): For successively higher values of k, use the Rolle theorem 
to locate the zeros of /(*)— /(fc). Then analyze a function analogous to the one 
defined in Equation (1.4-10) using repeated applications of the Rolle theorem. 

I 
Error estimates for piecewise Hermite interpolation now fall out easily: 

THEOREM 1.12. Let f e C2n+2([a,b}), and let A — {x0,xi,.. .,xN} be a grid 
on [a,b] having mesh size h, with N an integer multiple ofn. If f : [a,b] —+ M 
is the piecewise Hermite interpolant of f having degree at most 2 n + l on each 
of the elements [x0,xn],[xn,X2n], ■ -,[xN-n,XN], then 

||/(*) - / ^ ) | | 0 0 <C | | / ( 2 " + 2 ) | | o c /» 2 " + 2 - f c , Jb = 0 , l I . . . , 2 n + l . (1.4-12) 

(The value of C depends onn. ) 

PROOF: In the piecewise context, the factor b — a appearing in the estimates 
(1.4-7) corresponds to the element length, and N corresponds to the number 
n of subintervals [x,-,Xi+i] contained in an element. Element length, in turn, 
is bounded above by h in the piecewise cubic case (n — 1), where elements 
have the form [x^arj+i]; by 2h in the piecewise quintic case (n = 2), where 
elements have the form [XJ,X,-+2]; and so forth. Therefore, by replacing the 
factor (b-a)2N+2~k in the estimate (1.4-11) by {nh)2n+2~k, taking the norm 
||y(2n+2)||oo o v e r ^n e u n j o n 0f aj] elements, and absorbing all constant factors 
into C, we obtain the estimate (1.4-12). I 

The error estimate given in Theorem 1.8 for piecewise Hermite cubic inter-
polation is just an instance of the estimate (1.4-12) for the case n = 1, k = 0. 

1.5 Interpolation in Two Dimensions 
When the function to be interpolated depends on several variables, there 
are many new avenues to explore. This section briefly introduces some of 
the possibilities for functions of two variables. The two main ideas that we 
investigate are tensor-product interpolation and piecewise linear interpolation 
on triangles. 
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Constructing Tensor-Product Interpolants 

Tensor-product interpolation offers the most direct way to use one-dimensional 
results in multidimensional settings. The idea is to use one-dimensional in-
terpolation in each coordinate direction, allowing the products of the inter-
polating functions to govern variations in directions oblique to the coordinate 

, ^ 

{xyy2) 

FIGURE 1. The rectangle [a,b]x[c,d\, along with the points (xi,yj) 
formed by grid-line intersections associated with grids Ai and A2. 

Central to tensor-product interpolation is the notion of Cartesian product, 
reviewed in Section 0.1. The Cartesian product of two intervals [a, b] and [c, d] 
is the rectangle [a,b] x [c,d\ containing all points (x,y) for which a < x < b 
and c < y < d, as drawn in Figure 1. Given grids Ai = {x0, x\,...f XM} and 
A2 = {yo,J/i,..., 2/Af} on [a, 6] and [c, d], respectively, their Cartesian product 
is the set Ai x A2 containing all of the points (xt,»/j), where Xi G Ai and 
2/j G A2. Think of these points as intersections of the horizontal and vertical 
grid lines x = X{ and y = yj in the rectangle [a,b] x [c,d], illustrated in 
Figure 1. 

Given the grid Ai x A2 on [a,b] x [c,d] and a collection {zij : i = 
0 , 1 , . . . , M; j — 0 , 1 , . . . , N} of ordinates, we seek an interpolant / : [a, b] x 
[c, d] —► M such that f(xi,yj) = Zij for i — 0 , 1 , . . . , M and j = 0,...,N. 
It is also possible to demand that certain derivatives of / must agree with 
prescribed values, as with Hermite interpolation for functions of a single vari-
able. 

The first step is to construct a basis for the interpolation. This chore 
is easy: We use products of basis functions associated with Ai and basis 
functions associated with A2 as the two-dimensional basis functions. 

DEFINITION. Let Ai and A2 be grids on [a,b] and [c,d], respectively, and 
consider corresponding interpolation spaces .M(Ai) and //(A2) having bases 
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{<£o, Vi> • • ■ > P M } an<L {V'o, ^ l , ■ • • > V'N}, respectively. The tensor-product 
space is 

X ( A 1 ) ® ^ ( A 2 ) : = s p a n { v J , V i : i = 0 , 1 , . . . , M; j = 0 , 1 , . . . , A^}, 

iu/iere {ipi^j){x,y) := ifi(x)ipj(y). 
Thus .M(Ai) ®A/'(A2) contains all linear combinations 

M AT 

>=0 j = 0 

It is straightforward albeit slightly tedious to show that the set M(Ai) ® 
.A/"(A2) is a vector space, that the set of products ipi^j indeed constitutes 
a basis, and that the elements of Al(Ai) ® A/"(A2) are independent of the 
particular bases used for the separate spaces .M(Ai) and A/"(A2). Problem 9 
asks for details. 

Perhaps the simplest example of a tensor-product interpolation space is 
A^O(AI)®TV(O(^2) I the space of piecewise Lagrange bilinear interpolants 
on A = Ai x A2. Functions in this space are piecewise linear along each line in 
the a;- and »/-directions, like the function graphed in Figure 2. If we denote the 
nodal bases for M\{\x) and M\{A2) by {(.\, i\,..., ll

M} and {*§, * ? , . . . , £%}, 
respectively, then the tensor-product space has the basis 

[eje]: i = 0,l,...,M; j = 0,l,...,N}. 

A typical function £}£? in this basis has a graph that looks like a pyramidal 
tent over the four-element rectangle [x»_i, «1+1] x [Vj-i, Vj+i], a s depicted 
in Figure 3. Any cross-section of this graph along a line x = constant or 
y = constant consists of line segments. However, any other cross-section, such 
as that lying above the diagonal line connecting the corner points (x,_i, Vj-i) 
and (xi+i,yj+i), consists of quadratic arcs. Given this basis, the solution to 
the two-dimensional interpolation problem on Ai x A2 is the function 

M N 

/W) = EE^o-^jù/)- (i-5-i) 
j = 0 j=0 

As a numerical example, take [a, b] x [c, d] to be the rectangle [0,4] x [3,7], 
and let Ai = {0,1,3,4} and A2 = {3,6,7}. Let / be the piecewise bilinear 
function on Ai x A2 interpolating the data Zjj = exp(a;, — t/,). To compute 
/ (2 , 5), note that (2,5) G [xi, £2] x [Vo, î/i]- Evaluating the four corresponding 
nonzero terms in the sum (1.5-1) gives 

/(2,5) = zli0e\(2)el(5) + za,o4(2)/g(5) + z1Al\ (2)^(5) + *2,i4(2)*?(5) 

— „ 1 - 3 I I 1 „3 -3 . i . I 1 „1-6 . 1 . 2 , „3-6 . 1 . 2 
— 2 3 ' 2 3 ~ 2 3 ' 2 3 

~ 0.208064. 
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x 

FIGURE 2. Graph of a piecewise Lagrange bilinear function. 

■O'+i 

FIGURE 3. Graph of a nodal basis function £j(x)£j(y) for piece-
wise Lagrange bilinear interpolation. 

This result compares with the value exp(x - y) = e - 3 ~ 0.049787; the inter-
polated answer in this case is wrong by a factor greater than 4. (Why is this 
interpolated value so inaccurate? How could we construct a more accurate 
tensor-product interpolant?) 

For a somewhat more complicated instance of tensor-product interpola-
tion, consider the piecewise Hernaite bicubic interpolants. These functions 
belong to the space .M3(Ai) ® .M3(A2), which has a basis 

{hljtfj : Jb,/ = 0or 1; i = 0 , l , . . . , M ; j = 0 , 1 , . . .,N). 

This basis associates four functions h\^hf^ with each node (xi,yj) in the 
grid. (It is a worthwhile exercise to compute the values of the derivatives 
d/dx, d/dy, and d2/dxdy of each of these functions at each node (xp,yq).) 
To interpolate a function / : [a,b] x [c,d] —> M. in this space, we therefore 
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FIGURE 4. A typical element for piecewise Hermite bicubic inter-
polation. 

must know four corresponding values 

Zi,j = f(xi, Vj), z\J = ■fcizi^j), 

Given da ta of this sort, the linear combination 

M N r 

f(x, y) = E E *iJhhA*)hh(v) + *S)AU*)*2J(W) 
» = 0 j = 0 L 

defines a continuously differentiable interpolant of / on the rectangle [a, b] x 
[c,d\. To differentiate / , we apply the appropriate derivative operators to 
each term in this sum. For example, 

d± 
dy 

M N 

(*.») = E E 
i = 0 j=0 

dhlt dh2
ni 

To evaluate f(x, y) or any of its derivatives at a point (x, y) in the rectangle 
[a, b] x [c, d], it is typically necessary to compute 16 terms in this sum, namely, 
the four terms associated with each of the four corner nodes for the element 
[xi-i,Xi] x [t/j_i,j/j] in which (x,y) lies, as shown in Figure 4. 

The one-dimensional spaces M(A\) and A/"(A2) need not have the same 
piecewise polynomial degree. For example, try sketching some of the ramplike 
functions in the tensor-product space MQ(AI) ® . M U ^ A Î ) . 
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Also, nothing prevents us from extending the tensor-product approach to 
the interpolation of functions f(x\, x2, • • •, %d) of arbitrarily many variables. 
The main requirement is that the function / be defined on some hypercube 
[ai,6i] x [02,62] x • • • x [a<;,6d] in the d-dimensional Euclidean space Md. If 
this is the case, then we can construct a d-dimensional grid Ai x A2 x • • • x 
Ad using grids in each of the orthogonal coordinate directions x\,x2,..., xd. 
By associating with each one-dimensional grid At an interpolating space 
A^jt(Afc), we automatically have a tensor-product scheme, for which the space 
of interpolating functions is 

M i ( A i ) ® M2(A2) <8> • ■ • <8> Md(Ad). 

Error Estimates for Tensor-Product Schemes 

Tensor-product interpolation schemes inherit error estimates from the in-
terpolation schemes used in the individual coordinate directions. To show 
this for the two-dimensional case, we introduce the notion of interpolatory 
projections. An interpolatory projection is the mapping that associates 
with each function / its interpolant / in some predetermined interpolation 
space. For example, suppose / G C2([a,b]). The piecewise linear interpolant 
of / on a grid A = {xQ, x\,..., xjv} on the interval [a,b] is the function 
/ £ MJ(A) = span{^0i^i, • • • ,^N} defined by the equation 

N 

/(*) = £/(*.-)4(*). 
»=0 

The interpolatory projection in this case is the mapping ir : f >—► / . 
When / : [a,b] x [c, d) —► M, the same notion applies to each of the 

arguments of / . For example, if / is twice continuously differentiable in x 
and in y, we might interpolate / by using piecewise bilinear functions defined 
over a two-dimensional grid Ai x A2, as described above. The interpolatory 
projections TTI : C2([a, b]) —► . M Q ( A I ) and n2 : C2([c, d]) —► .Mo(A2) are then 
as follows: 

M 

(n1f)(x,y):=Y,f(xi,y)£}(x), 

t'=0 

N 

(7r2f)(x,y):=J2f(x'yj)e](y)-
3=0 

Thus the tensor-product interpolant of/ in MQ(AI)<SIMQ(A2) is the function 
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7ri7r2/, where 

Onira/)(*,y) = (Ti(Ta/))(:r,0) - X > 2 / ) ( * i , y ) 4 ( * ) 
A/ 

Af AT 

= ££/(*•■> wtëOr)'i(v)-
! = 0 j=0 

It should be clear tha t v^^ïf = 7 r i ' r 2 / - Recasting error estimates for one-
dimensional piecewise polynomial interpolation in this new formalism, we find 
that | | / — TT/HOO < Chp. Here, h signifies the mesh size of the grid, and C is 
a generic positive constant depending on / . 

There is a connection between one-dimensional error estimates and the 
error estimates for the corresponding tensor-product scheme. In what follows, 
we use the notation /(■, y) to indicate that we vary the first argument of / , 
holding the second argument at a fixed value y, and vice versa for f(x, •). 

T H E O R E M 1.13. Let Ai and A 2 be grids on [a,b] and [c,d], respectively, and 
suppose that Ai has mesh size hi and A 2 has mesh size / i2 . Let A^(Ai) and 
Af(A2) be piecewise polynomial spaces with associated interpolatory projec-
tions 7Ti and 7r2, respectively. Suppose that S is a vector space of functions 
f : [a,b] x [c, d] —♦ K such that Wi, TT2:<S —► >S and that we have interpolation 
error estimates of the form 

\\f(;V) ~ * i / ( - , v)Hoo < Chi 11/(1, •) - TT2 /(X, .)||oo < Chi 

Then the tensor-product space A^(Ai)®^V(A 2) contains an interpolant 7i"i7r2/ 
obeying the estimate 

I I / - T11-2/H00 < Cmax{AÇ,/ i |} . 

The constants C are independent of x and y. However, C can be different 
in different inequalities, in accordance with our convention. Also, if h = 
max{/ii , /i2} and p, q > 0, then 

ma.x{h", h"} = 0 (A m i n ^ I »>) as h -► 0. 

Hence the accuracy of the tensor-product interpolation scheme is limited by 
the accuracy of the one-dimensional scheme that has lower order. 

P R O O F ( S K E T C H ) : Apply the triangle inequality to the identity 

/ - T1T2/ = / - T I / + (ir-J - vivif) - ( / - T2/) + / - v2f. 

Problem 11 asks for details. I 

One can easily generalize Theorem 1.13 to functions of d variables using 
mathematical induction. 
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Interpolation on Triangles: Background 

One problem with tensor-product interpolation is its reliance on domains 
that are Cartesian products of intervals. Thus, in two dimensions we find 
ourselves restricted to rectangular domains of the form [a, 6] x [c, d]. There 
are ways of "jury-rigging" tensor-product schemes to handle nonrectangular 
domains. For example, one can use curvilinear coordinate systems, either 
globally (througout [a, b] x [c,d\) or locally (by using a separate coordinate 
transformation on each element [XJ_I, Xi] x [yj-i,yj])- However, it is perhaps 
more satisfying to construct interpolation schemes that have greater inher-
ent geometric flexibility. In two dimensions, interpolation schemes based on 
triangles offer the simplest methods for accomplishing this task. 

We begin by identifying domains that are amenable to decomposition into 
triangles: 

DEFINITION. A bounded, open, connected set ß c R2 is polygonal if it 
is simply connected and its boundary d£l is a union of line segments. A 
triangular set is a polygonal set whose boundary is a triangle. 

This definition contains some technical verbiage, much of which we review in 
Section 0.2. To say that a bounded, open set in M" is connected is to say 
that one can connect any two points in the set by a continuous path that lies 
entirely in the set. The term simply connected indicates that Q has no 
"holes" or "islands." (Making this definition rigorous requires some work.) 
Figure 5 illustrates the idea. 

The boundary <9fl of Q is the set containing all limit points of Q that 
are not also interior points of f2. We denote by ÇI the closure of fi, which is 
the union fi Uôfi. Figure 6 illustrates these sets. 

(a) (b) 

a> 
(c) 

FIGURE 5. (a) A bounded, simply connected set; (b) an unbounded 
set; (c) a set that is not simply connected. 

The definition of polygonal sets has a practical consequence. Figure 7(a) 
shows such a set. The requirement that the boundary dÇl be a union of line 
segments formally excludes domains having curved boundaries. However, as 
Figure 7(b) illustrates, it is often possible to approximate a nonpolygonal 
domain reasonably well by a polygonal one. Doing so raises the issue of how 
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(a) (b) (c) 

FIGURE 6. (a) An open set Q; (b) the set Q. containing fi and all 
of its limit points; (c) the boundary, dil. 

good such an approximation can be — an issue that we do not explore here. 
Strang and Fix [13] give an introductory discussion of this problem. 

(a) (b) (c) 

FIGURE 7. (a) A polygonal set and a triangulation of it; (b) a 
nonpolygonal set with a polygonal approximation; (c) an invalid 
triangulation. 

Using these definitions, we partition polygonal sets into elements for piece-
wise polynomial interpolation. 

DEFINITION. Let Q be a polygonal set. A t r iangulat ion ofÇï is a decompo-
sition of the closure f2 into finitely many subsets, 

E 

e = l 

such that (i) each subset fie is the closure of a triangular set Qe and (ii) the 
intersection Çle f) Q/ of any two of these subsets is either empty, a common 
vertex, or a common edge. 

Figure 7(a) shows a triangulation of a polygonal set; Figure 7(c) illustrates 
a decomposition of the same set that is not a triangulation, since two of the 
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subsets fie intersect in a forbidden way. Although we do not prove the fact 
here, every polygonal set has a trianglulation. 

Construction of Linear Interpolants on Triangles 

Given a triangulation of a polygonal set fi, we interpolate functions / : fi —► K 
by using the vertices of the triangular subsets fie as nodes of a grid. The 
elements formed by this grid are the subsets fie in the triangulation. Thus 
the interpolation problem is as follows: Given a grid {xi = (xj,«/t) : i = 
0 , 1 , . . . , N} associated with a triangulation of fi and a set {ZQ, Z\,..., zjv} of 
corresponding ordinates, find a function / : fi —► M such that / (x , ) = Zj. 

FIGURE 8. Graph of a piecewise linear function f in two dimen-
sions. 

The idea behind piecewise linear interpolation on triangles is to use the 
triples (xi,yi,Z{) associated with the vertices (KJ,J/,) of each triangle fie to 
define a plane segment over fie. The interpolant / is then the function whose 
graph consists of these triangular plane segments, as Figure 8 illustrates. 

The tricky part of this construction is to identify a nodal basis for the in-
terpolation . We seek a collection {po, Pi, • ••, PJV } of piecewise linear functions 
such that, at any point x = (x, y) £ fi, 

TV 

i=0 

Each function p, will have the form 

p;(x) = aex + bey+ce, for x = (x, y) € fie, 

with the coefficients ae,be,ce, e = 1,2,..., E, chosen to enforce the nodal 
constraints 

»<«>={i l'aï 



1.5. INTERPOLATION IN TWO DIMENSIONS 61 

FIGURE 9. Graph of a typical basis function pi for piecewise linear 
interpolation on triangles. 

Figure 9 shows the graph of a typical basis function pi. The function vanishes 
on any element Qe for which the node x,- is not a vertex. 

Using these constraints directly turns out not to be a desirable way to 
compute the basis functions. An equivalent but more geometrically motivated 
approach is to use the areal coordinates of points x = (x,y) with respect 
to the node x,-. To compute Pi(x), we first locate an element fie that contains 
x. If Xj = (x,-, J/j) is not a vertex of 12e, then Pi(x) = 0. Otherwise, denote 
the other vertices of fie as Xj = (xj,yj) and x* = (xk, yk), as shown in Figure 
10. The (signed) area of fie is 

|det 
Xi yi 1 

Xj yj 1 

Xk Vk 1 

\[xi{yj - Vk) - Vi(xj - xk) + XjPk + -xkyj]. 

Next, construct the triangle with vertices x, Xj, and x*. The (signed) area 
of this triangle is 

1 
-det 

X 

Xj 

Xk 

y 

Vi 
Vk 

1 
1 
1 

Finally, set Pi(x) = A/Ae, if x £ Çle. The function p,(x) vanishes at each of 
the nodes Xj, x* and takes the value 1 at Xj. It is only slightly more difficult 
to check that p; is linear in x and y inside Qe: For x 6 Qe, expand the 
determinant for the signed area A along its first row. Finally, Pi(x) is well 
defined: If x lies on the boundary between two elements Qe and fi/, then 
the value of p,(x) is the same whether one uses vertices from Qe or 12y to 
compute it. 
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FIGURE 10. An element Qe with the triangular subset used to 
compute ft(x)-

Error Estimates for Interpolation on Triangles 

Piecewise linear interpolation on triangles is a natural analog of piecewise 
linear interpolation in one dimension: It uses piecewise polynomials having 
the smallest degree needed to guarantee continuity. Heuristically, we might 
anticipate a comparable error estimate — namely, ö{h2). What is missing is 
a definition for the mesh size h of a triangulation. 

DEFINITION. The mesh size of a triangulation fi = (J e = 1 &e is the length h 
of the longest edge occurring among the triangular sets de. 

To prove that the hunch is correct, we begin with the following: 

LEMMA 1.14. Let H E IR2x2 have entries obeying the inequality \hij\ < M 
for some M > 0. Then, for any u G K2, |u • Hu| < 2Af | |u|ß. 

PROOF: Let u = (u, v). We have 

lu-Hul < l«l 
M 

M M 
M M 

|U| 

M 

= M(u2 + 2\u\\v\ + v2) = M(\u\+\v\)2. 

Since (u —v)2 > 0, 2|u||t>| < u2 + u2, and it follows from the triangle inequality 
that 

| U - H U | < 2 M ( U 2 + Ü2) = 2M| |U| | 2 , . I 

The proof of the main theorem also utilizes directional derivatives. If 
*:M2 —» M is sufficiently smooth and e = (ei,e2) is a vector having unit 
length, then the directional derivative of 't in the direction of e at a point 
x is 

^ - ( x ) : = V * ( x ) - e . 
oe 
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To justify this definition, consider the function r)(t) := \t(x + te). Here, the 
parameter t measures progress in the e-direction, with t = 0 corresponding 
to the point x. By the chain rule, the rate of change of 77 with respect to t — 
and hence of $ along the direction defined by e — is 

,/(()) = — ( x ) e 1 + ^ - ( x ) e 2 = V t f (x ) . e . 

Since 

^"(0) = ^ ( x ) e ? - ) - 2 ^ x ) e 1 e 2 + ^ ( x ) e 2
I 

the second derivative of W in the direction of e is 

<92tf, 
de2 (x) := e • H$(x)e, 

where H$(x) denotes the Hessian matrix of ^ , defined in Section 0.4. 

THEOREM 1.15. Let f G C2(f2), and suppose that f : Q —> IR is the piecewise 
linear interpolant of f on a grid formed by a triangulation on Q and having 
mesh size h. Then 

H/-/II00 < 5M/J2, 

where 

M = max < d2f 
dx2 

d2f 
dy2 

d2f 
dxdy > 

FIGURE 11. Triangular element containing x and the point Ç 
guaranteed by the Taylor theorem. 

PROOF: Suppose that x = (x,y) G f2e, where Cle is a triangular element 
having vertices x; = (#t,y«)> x> = (xj,Vj)< a n d x* = (zjfc,2/jt), as sketched in 
Figure 11. Since x is arbitrary, it suffices to establish that | /(x) — / (x ) | < 
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bMh2. The theorem is trivially true if x is a vertex, so assume otherwise. 
Pick one of the vertices, say x,, and observe the following two facts: 

(i) | | x - x , | | 2 < h; 

(ii) g~f-feC2(Ue). 

The second fact allows us to apply the Taylor theorem with remainder (The-
orem 0.17) to get 

g(x)= g(xi) + Vg(xi)-(x-Xi) 

+ i ( x - x , ) - H s ( C ) ( x - x , ) . 
(1.5-2) 

Here, £ is some point lying on the line segment connecting x* and x, as shown 
in Figure 11, and Hg is the Hessian matrix: 

MO = 

d*g_ 
dx2 

d2g 
dydx 

(0 

(0 

d2g 
dxdy (0 

dy2^' 

The first term on the right side of Equation (1.5-2) vanishes, since / and / 
coincide at the node x,-. 

To analyze the second term on the right in Equation (1.5-2), rewrite it in 
the form 

Vff(Xi>- J ~ v l l H'-*»'- (i"5-3) 
| |X - X j | | 2 

This form is valid since x is not a vertex. The vector e := (x — Xj)/||x — Xj||2 

has unit length, and we can resolve it into its components along the directions 
denned by the edges of £le that intersect at Xj. Denoting the unit vectors in 
these directions by e^j and ei,*, as illustrated in Figure 12, we have e = 
aeij + ßeitk, where 0 < \a\, \ß\ < 1. Thus the quantity (1.5-3) is bounded 
above in magnitude by 

M I V ^ x O - e i j I H x - X i l l a + \ß\ |Vff(xj) • ei>fc| ||x - X i | |2 

~ de • j deit 

But / interpolates / linearly along these edges, so each of the directional 
derivatives dg/deij and dg/dei^ obeys the bound (1.2-8) for derivatives of 
piecewise Lagrange linear interpolants. (If this assertion is not transparent, 
try mentally shifting the «-axis so that it lies along one of the edges in ques-
tion, say, the one connecting x* and Xj. Then consider the z-derivative of 



1.5. INTERPOLATION IN TWO DIMENSIONS 65 

/ — / . ) It follows that, on the edge joining x; and Xj, 

dg 
deitj 

< 
d2g 

Ki 
h = | |ejj • HjC-j-Hooft < 2Mft, 

the last step being an application of Lemma 1.14. Similarly, 

dg 
8e i,k 

< 2Mh, 

and hence the quantity (1.5-3) has magnitude no greater than 4M/i2. 

FIGURE 12. Resolution of the unit vector e into directions defined 
by the edges ofCle. 

Finally, Lemma 1.14 implies that the third term on the right side of Equa-
tion (1-5-2) is no greater in magnitude than the quantity 

M M 
M M 

= Mh2. 

Applying the triangle inequality to Equation (1.5-2) therefore yields 

|flr(x)| < 0 + 4M/i2 + M/i2, 

which proves the theorem. I 

This error estimate is just the beginning of the theory of interpolation on 
triangles. In practice, there are several substantial issues that one must ad-
dress in constructing triangulations, one of these issues being control over the 
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shapes of the triangular elements used. Problem 12 scratches the surface of 
this problem by suggesting that triangles with edges meeting at very small 
angles can lead to poor approximations. Another aspect of interpolation on 
triangles that we have not considered is the use of interpolants having higher 
polynomial degree. Problem 13 provides an introduction to this question, 
and Lapidus and Pinder [9] give a more detailed discussion. 

1.6 Splines 

Motivation and Construction 

Some applications call for interpolants that are smoother than piecewise La-
grange polynomials. However, using Hermite polynomials requires knowledge 
of derivative values at the nodes. This knowledge is not always available, nor 
is it necessary. Old-fashioned graphic artists used a thin, flexible strip, called 
a "spline," to draw smooth curves through plotted points. By analogy, it is 
numerically possible to pass a smooth interpolating curve through a set of 
points (xi,yi) without knowing slope values. The problem is this: Given a 
grid A = {xo, x\,..., zjv} on [a, 6] and a set {yo,S/i, ■ ■ ■, VN} of correspond-
ing ordinates, determine a function s € C1([o,6]) such that s(x,) = yt for 
i = Q,...,N. 

The following definition identifies a possible solution: 

D E F I N I T I O N . A function s:[a,b] —► ffi is a c u b i c s p l i n e interpolating the 
data yo, Vi, • ■ ■ ,VN on the grid A = {a = XQ, X \ , ... , £jv = b] provided that 

(i) s(xi)=yi, i = 0,l,...,N; 

(ii) s 6 M%(A). 

If s interpolates { / ( x o ) , / ( » i ) , ■ ■ ■ , / ( ^ J V ) } for some function f:[a,b] —* K, 
then we say that s interpolates f on A . 

This use of the word "spline" reflects an a t tempt to identify numerical analogs 
to the graphic art ists ' device. The definition requires the function s to inter-
polate the given data, to be piecewise cubic on the grid A, and to be twice 
continuously differentiable on [a,b]. The aim of this section is to show that 
such functions exist and to investigate some of their properties. 

Functions satisfying requirements (i) and (ii) indeed exist. To define a 
cubic polynomial on each subinterval [x,-i, x,] of the grid, we must determine 
four coefficients for each of N subintervals, giving a total of 4N parameters. 
The requirement that s(xi) = yi for each index i yields N + 1 conditions. To 
see how many conditions the smoothness requirement imposes, notice that 
S ( X J _ ) := l i i r i r -n i - s(x) and S ( X J + ) := l inv_j; i+ s(x) must be equal at each 
of the interior nodes «i,a;2, • • • , * A T - I if s is to be continuous. Similarly, 
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since s' must be continuous, s'(xi-) — s'(x,+) at each interior node. Fi-
nally, s" must be continuous, so s"(x,—) = s"(xi+) at each interior node, 
too. In all, the smoothness requirement imposes 3(N — 1) constraints, so the 
definition of s provides 4N — 2 conditions with which to determine the AN 
parameters defining the spline. This crude accounting shows that we have 
not ouerrletermined s. 

However, we need two extra constraints to match the number of conditions 
with the number of parameters to be determined. To get them, we specify 
some aspect of the behavior of s at the boundary points x$ = a and xjv = b. 
Three common possibilities are as follows: 

(i) s"(a) = s"(b) = 0, natural spline; 

(ii) s(k\a) = s(k\b), k — 1,2, periodic spline; 

(iit) s'(a) — y'o> s '(^) = 2/JVI complete spline. 

Think of a natural spline as one whose graph extends along straight lines out-
side [a,b\. This choice may be adequate in the absence of better information 
at a and 6. The periodic spline is often a reasonable choice when yo = 2/JV- In 
the complete-spline conditions, y'0 and x/N denote known values of the slope of 
the interpolant at the endpoints of the interval. As we see below, the choice 
of end conditions can significantly affect the approximating power of s. 

To compute splines, it helps to observe that s" is a continuous, piecewise 
linear function on the grid A. Our strategy is as follows: Begin with a 
function in .Mo(A) having unknown coefficients, integrate it twice, and use 
the interpolation conditions, smoothness constraints, and end conditions to 
determine the coefficients in s" and the constants of integration that arise. 

We start with the expression 

N 

«"(x) = ^ m J A ( * ) , (1.6-1) 
i=0 

where £i is the piecewise linear Lagrange basis function associated with the 
node x,- and m,- is an unknown coefficient, called a moment of s. If the 
subinterval lengths are A,- = #,- — x,_i, then 

s(x) = mi— \-mi+i— , xe[xi,xi+i\. 
Ki+i ft.+i 

Integrating this equation twice yields 

. . (x« + l — x)3 (x — Xi)3 . , . . , 
s(x) = m,--i—— — + m,+i——■ + \i(x - Xi) + m, x G [Xi,xi+l], 

0/li+l O/li+i 
where Aj and /J,- are constants of integration. 
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We determine the values of these constants by imposing the conditions 
s(x{+) = yi and s(xi+\ — ) = yi+i- The first condition implies that 

mi h2
+ 

6 

while the second reduces to the equation 

- + ßi - Vi, 

mi+ih2
+l 

+ Aj/ii+i + m = t/j+i. 
6 

Solving these equations, we find that 

. _ Vi+i - Vi hi+i(mi+1 -rrij) _ mjhj+l 
"* ~ L ~~ a ' ßi — Vi a 

hi+i 6 o 

Following this procedure for each subinterval [x,-, x«+i], i = 0 , 1 , . . . , N — 1, 
yields the following piecewise cubic form for the spline s: 

s(x) = oti + ßi(x - Xi) + ji(x - Xi)2 + 6i(x - Xif, x G [xi,xi+i]. (1.6-2) 

Here, the coefficients ai, ßi, ji, and Si depend upon the interval [x,-,x,+i] in 
which x lies: 

y,+i - yi , 2m,- + m i + i m,-
(*i = yi, ßi = — r hi+i , 7i = -—, 

hi+i 0 I 

g,.=
 m ' + ; - m ' , i = 0,l,...,N-l. (1.6-3) 

Dftj + l 

We have reduced the problem to one of finding the moments m*. We 
have already imposed the constraints s"(xi— ) = s"(xi+) by assuming the 
form (1.6-1) for s". Also, our method of determining the constants A,- and /i,-
guarantees that s is continuous and passes through the given points (x,-,j/,). 
Among the conditions left to impose are s'(xi-) = s'(xi+), i — 1 ,2 , . . . , N—l. 
These each reduce to the form 

a,-m,-_i+6,-m,-+ c,-mj+i = d,-, i — 1 ,2 , . . . , N - 1, (1-6-4) 

where 

6,- = 2, Ci = 1 — a,-, 
hi + / i j+i 

/i,- + / i i + 1 V hi+i hi 

Thus we have a system of N — 1 linear equations for the N + 1 moments 
m 0 , m i , . . .,mjv-

The last two equations needed are the end conditions. For a natural spline, 
these conditions have the forms s"(xo) — mo = 0 and S"(XN) = m^ = 0. 
Thus the first and last equations in the set (1.6-4) collapse to 

bimi + Cim2 = t/i; a ^ _ i m ^ _ 2 + 4jv- imjv-i = dpj-i-
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For a periodic spline, the constraint S"(XQ) = s"(xjv) means that mo = mjv, 
while the constraint s'(x0) = s'(xjv) implies that 

where 

ajv 

ajvm^r_i 4- biymiv + cjymi = d^/, 

few 
fiN + hi ' 

rf^r 
/lA? + / l 

6AT = 2 , CAT = 1 - a j v , 

_ / y i - W _ yjv - y ; v - i \ 

l V ^i hN ) 

Finally, the end conditions S'(XQ) = J/Q and S'(XN) = x/N for a complete spline 
yield the following equations: 

where 

bomo + c0m,i — do, a^rriN-i + b^m^ = d^, 

Co = Oiv = 1, 60 = V = 2, 

, 6 fyi -y0 ,\ _ 6 / . yN -yN-i\ 
d°= T\ —£ y° ' «Af - T— I Î/N T I • 

hi \ hi J h.N \ hu J 
It is illuminating to write the linear systems for the moments m,- in matrix 

form. For the natural spline, we get the (N — 1) x (N — 1) system 

èi ci 
Gl2 62 C2 

a-N-2 67V-2 c jV -2 
ajv_i 6AT_I 

For the periodic spline, we get the N x N system 

m i 

m 2 

rnN-2 
. m ^ - i 

[ di 1 
di 

dN-2 
dN-i 

(1.6-5) 

6X c i 

ei2 62 C2 

a i 

CAT 

ÖJV-1 &JV-1 C A f - l 

OAT 6AT 

m i 

m 2 

mAr_i 

m w 

[ di 1 
rf2 

C ^ A f - l 

dN 

(1.6-6) 

Finally, for the complete spline, we get the (JV + 1) x (N + 1) system 

60 co 
ai 61 Ci 

ON-I bN-i CAf-i 
o-N bjv 

m 0 

mi 

m ^ - i 
mN 

do 
di 

dN-i 
dN 

(1.6-7) 
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Therefore, to determine s, we must solve a matrix equation for the mo-
ments m,-, then compute and store the coefficients a,-, /?,•, 7,-, 6,, i = 0 , . . . , N — 
1, as defined in Equations (1.6-3). To compute s(x) for a particular x £ [a, b], 
we must find the index 1 for which x 6 [xi,Xi+\], look up the corresponding 
stored coefficients ai,/?,',T»,^t, then apply Equation (1.6-2). Figure 1 shows 
the graph of a natural spline passing through a set of seven points. 

FIGURE 1. Natural cubic spline passing through seven preassigned 
points (xi,yi). 

As we show later, the matrices in Equations (1.6-5), (1.6-6), and (1.6-7) 
are all nonsingular, so the matrix equations have unique solutions. Moreover, 
the matrices appearing in Equations (1.6-5) and (1.6-7) are tridiagonal, that 
is, they have nonzero entries only along the diagonal and in the positions 
immediately to the left and right of the diagonal. There is a very simple and 
efficient algorithm, called the Thomas algorithm, for solving tridiagonal 
matrix equations: 

ALGORITHM 1.1 (THOMAS). Consider the tridiagonal matrix equation Tm = 
d, where d has entries d\, 0*2, ■ ■ ■, djv and the N x N matrix T has diagonal 
entries 61,62, ••• > îv, subdiagonal entries 02,03, . . . ,ajv, and superdiagonal 
entries Ci,C2,... ,CN-I. Compute the entries mi, n»2,.. .,m,N of the solution 
vector m as follows: 

1. Ä « - * i . 

2. 71 —di/ft. 

3. For t.= 2,3,. . . ,JV: 

4. Ä«-to-(a«e, - i /Ä_i) . 

5. 7,- <- (di -a,-7<_i)//?j. 

6. Next 1. 

7. mjv <— JN ■ 

8. For j= 1,2,.. . , TV- 1: 
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9. rriN-j <—fN-j - (cN-jmN-j+i)/ßN-j-

10. Next j . 

11. End. 

This algorithm requires one division, followed by b(N — 1) arithmetic op-
erations (+, —, x, or -r) in the first loop, followed by 3(iV — 1) arithmetic 
operations in the second loop. The operation count for the Thomas algorithm 
is therefore 8N — 7, or roughly SN when N is large, for a tridiagonal system 
of order TV. We discuss further aspects of this algorithm in Section 2.4. 

Practical Considerations 

Users of cubic spline approximations should be aware of several theoretical 
results. One result of great practical significance is an error estimate for the 
moments m*: 

THEOREM 1.16. Suppose that f 6 C4([o,6]), and let A = {x0,xi,.. .,x^} 
be a grid on [a,b] having mesh size h. Denote by m G ]R;v+1 the vector of 
moments m,- of the complete spline s interpolating f on A, and let f £ M "̂1"1 

be the vector of true second-derivative values /"(x,) at the nodes of A. Then 

||m - f Hoc = max |m,- - f"(Xi)\ < §||/(4>||oo h\ 
Q<i<N I 

(We use the symbol || • ||oo to stand for both the maximum magnitude among 
the entries of a finite-dimensional vector and the supremum of a function over 
the interval [a, 6].) We prove this theorem later. 

The importance of the theorem is twofold. First, it provides an essential 
ingredient in the proof of another theorem stating, in effect, that complete 
cubic splines approximate smooth functions with an error that is 0(/i4) . We 
investigate this line of reasoning later. 

Second, and of more immediate interest, the fact that ||m — f ||oo = ö{h2) 
furnishes a useful device for checking computer programs. To do this, compute 
the moments rrn for a complete cubic spline approximating a known function 
/ on several grids having a variety of mesh sizes h. Then, for each grid, 
compute the error norm E = ||m — f||oo- Because E < Ch2 for a positive 
constant C, we have logE < logC + 21ogh. Consequently, a plot of logE 
versus log h for the various grids should yield points lying below a line of slope 
2 with vertical intercept at logC. We call such a diagram a convergence 
plot. In practice, the points on the convergence plot usually lie very close to 
a line of slope 2, as illustrated in Figure 2. Conscientious programmers take 
advantage of this idea to check computed results against theory. 
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log II m - f II„ 

FIGURE 2. A convergence plot for the vector m of moments for a 
complete spline approximation to a known function f. 

Cubic splines exhibit less of the "wiggly" behavior often associated with 
high-degree polynomial interpolation. Some people refer to this fact as the 
"minimum curvature" property of natural splines, although this term is mis-
leading. The theorem, which we investigate rigorously below, says something 
like this: Among all reasonably smooth functions / that interpolate a given 
set of ordinates on a given grid, the natural spline minimizes the quantity 
/ \f"(x)\2 dx. This integral measures the average magnitude of/" over the 
interval [a,b]. In a rough sense, an interpolant / whose second derivative 
is small in magnitude will have a graph that does not "bend" very much in 
passing through the required points. 

The trouble with interpreting this fact as a "minimum curvature" property 
is that / " , strictly speaking, is not the curvature of / . The curvature of / 
at a point x is f"(x)[l + f'(x)]~3/2, to which f"(x) is a good approximation 
only if the slope f'(x) has small magnitude. While cubic splines tend to be 
reasonably nonoscillatory, there are ways of tampering with the basic spline 
formulations to produce less "wiggly" interpolants; de Boor [4] gives a good 
introduction. 

Mathematical Details 

Let us first show that we can solve for the moments m,-. 

PROPOSITION 1.17. The matrices appearing in Equations (1.6-5), (1.6-6), 
and (1.6-7) are nonsingular. 

PROOF: In each equation, a,- > 0, c,- > 0, and a,- + c< = 1. (Let us agree 
that ao = CJV = 0 in the cases where these entries are needed.) We use these 
facts to prove that the matrix in Equation (1.6-5) is nonsingular, the proofs 
for Equations (1.6-6) and (1.6-7) being similar. Abbreviate Equation (1.6-5) 
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as T m = d, where m , d G l " " 1 and T is the (N - 1) x (N - 1) tridiagonal 
matrix. 

The argument rests on the following claim: For any v G f^"1, 

|oo ^ < HTvHoo. (1.6-8) 

To see this, let j be the index for which ||v||oo = \vj\, and formally set 
v0 — VN = 0. Since 6i = fe2 = ■ • • = 6jv-i = 2, 

llTvlloo > | (Tv ) j | =\ajvj-i+2vj +Cjvj+i\ 

> 2\VJ\ - a.j\vj-i\ - Cjlwj+il 

> ( 2 - a i - c i ) | » i | = IMIoo. 

This proves the claim. 
We now show that T is nonsingular. If T v = 0, then HvU^ < H T v ^ = 

||0||oo = 0. It follows tha t v = 0 and hence that T is nonsingular. I 

Next we investigate the convergence properties of cubic splines. The rea-
soning given here shows that , when / : [a,b] —* M is smooth enough, complete 
spline approximations to / obey error estimates having the form | | / — s||oo = 
<D{hA). We begin with Theorem 1.16: 

T H E O R E M 1.16. Suppose that f G C4([a,b]), and let A = {xo ,# i , • ■ ■ ,zjv} 
be a grid on [a,b] having mesh size h. Denote by m £ R w + 1 the vector of 
moments m,- of the complete spline interpolating f on A, and let f G IR^"1"1 

be the vector of true second-derivative values f"(xi) at the nodes of A. Then 

l | m - f | | o o < f | | / ( 4 ) | | o o / > 2 . 

P R O O F : We have seen tha t m solves a tridiagonal matr ix equation T m = d. 
Denote by r G IR^"*"1 the vector T(m—f ) = d—Tf. The strategy is to estimate 
llrlloo, then to bound | |m — f||oo in terms of ||r||oo. For i = 1, 2 , . . . , N — 1, 

n = di - [aif'ixi^) + bif"{xi) + Cif"(xi+1)] 

' f(Xi + l) - f(Xi) f(Xi)-f(Xi-i) 

hi + A,-+i hi+i hi (1.6-9) 

hi -/"(*,_!) - 2/"(x.) - , ki
{
+' f"{xi+1). 

hi + hi+i hi + hi+i ' 

To simplify this equation, we relate values of / and / " at the nodes x,-+i 
and x,_i to corresponding values at Xj using the Taylor theorem. Since 
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f G C4([a,6]), there are points Ci>C3 £ (xi,xi+i) such that 

/(*,-+,) = /(«o+f'(xi)hi+1 + \nxi)ht+l + |/<3)(«,-)Ä?+I 

/ " ( r , + 1 ) = /«(*,-) + /<3>(z.-)fc+i + | / ( 4 )(C3)/i?+ 1 . 

Similarly, there exist (2,(4 € (ar,-_i,a;,-) such that 

/ " ( ï i - l ) = /"(*•■) -/ (3)(*.-)Ä.-+5/ (4)(C4)Ä?. 

Substituting these expressions into Equation (1.6-9) and simplifying, we get 

1 
hi + hi+i 

Consequently, 

%/ (4)(C0 + f/(4)(C2) - %/(4)(C3) - f / ( % 4 ) 

hi+hi+1 \ 4 4 2 2 ) ll/(4)||c 

The expression in parentheses reduces to f(/i3 + hf+l), and since (hf + 
hf+1)/(hi + hi+i) = hf - hihi+i + hf+1 < hf + hf+l, we obtain 

N < | ( A ? + A,?+l)l l / ( 4 ) | |oo < ^ 2 | | / ( 4 ) | | c o . 

Analogous arguments apply to 7*0 and rjv, allowing us to deduce that HrH«, < 
|/»2||/(4)||oo- Now it suffices to show that ||m - f||oo < ||r||oo- But this fact 
follows from the definition r := T(m — f) and the inequality (1.6-8). I 

This theorem permits us to estimate the approximation errors associated 
with the complete spline and its first three derivatives. The estimates describe 
how fast the errors shrink as we refine the grid A, letting h —► 0. However, 
the estimates depend upon how nearly uniform the grid is, a property that 
we measure as follows. 

DEFINITION. The grid ratio of A is the maximum value of h/hi, where 
i=l,2,...,N. 

Thus uniform grids have grid ratio T = 1, and the larger I' is, the greater 
the discrepancy is between the mesh size h and the length of the smallest 
subinterval [£J_I , :E;] . 
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THEOREM 1.18. Suppose that f £ C(4)([a,6]), and let A = {XO,XI,...,XN} 

be a grid on [a,b] having mesh size h and grid ratio T. If s is the complete 
spline interpolating f on A, then there are constants Ck such that 

||/{fc) - s^Hco < ckrii/^iioo h 4-Jfc for * = 0,1,2,3. 

The symbol Ck stands for a positive constant, independent of h, that may 
be different for different orders k of differentiation. The theorem guarantees 
that the interpolation error associated with complete cubic splines is ö(hA). 

PROOF: We follow a "bootstrap" strategy, proving the estimate for k = 3, 
then using the result to argue for k = 2, and so forth. For k = 3, suppose 
that x G [xj^i,Xj]. By adding and subtracting in Equation (1.6-1), we get 

|*<3>(ar) — /<3)(ar)| = 
mj — rrij _ i 

hj 
- / ( 3 ) ( x ) 

< 
ij-rixj) m, . ! - /" (*>- i ) 

(I) 

+ 
f"(Xj)-f"(x) _ /»(a,_!)-/"(») _ f{3){x) 

(") 

We estimate the terms labeled (i) and (il) separately. Theorem 1.16 and the 
definition of the grid ratio imply that 

To estimate (n), we use Taylor expansions about the point x, finding points 
»7i,»72 G (xj-i,Xj) for which 

(") = ^.^ _«)/(")(,) +1 iîiffî!/<*)(„,) 
hj 

(m) 
(IV) 

-U*i-i - *)/(3)(*) - 5(*j~r*)2/(4)M-/(3)(*) hs 

(m) 
(IV) 
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On the right side of this identity, the terms not marked with underbraces 
cancel, and the remaining terms obey the bounds 

|(III)| < Th, |(IV)| < ll/^Hoo. 

Hence the triangle inequality yields (n) < rd/^Hoo h. Combining results 
gives 

|«<3>(*)-/<3>(*)|< | ru^^Heo A. 

Since x G [a, b] is arbitrary, this proves the theorem for k = 3; in this case 
C3 = 5/2. 

For k = 2, let xi be the node in A closest to x. (If x is equidistant from 
two nodes, either will work.) Thus |ar̂  - x\ < h/2. Having already analyzed 
f(3) _ s(3)( w e g e t t o jii _ gii by integrating. According to the fundamental 
theorem of calculus and the triangle inequality, 

\f"(x) - s"(x)\ < \f"(xe) - s"(xl)\ + | j f [f^(t) - a<
3>(*)] dt 

( V ) V - ^ v ' 

Again we estimate the underbraced terms separately. Using Theorem 1.16 
and the fact that T > 1, we obtain 

(V) < l l l /Wl^^ < |r„ / (4)( |oo ft2 

Also, by the estimate for the case k = 3, 

( v i ) < | | / < a > - . « | | « | £ * | < (§r||/<4>||ooA) £. 

Therefore, 

I / % O - A * ) I < Yrii/(4)ii~/i2' 
and the theorem holds for Ar = 2, with Ci = 11/4. 

For the case k — 1, we exploit the fact that S(XJ) — f(xj) at each node 
Xj, together with the fact that both s and / are in C1([a,6]), to apply the 
Rolle theorem to s — / on each subinterval of the grid. In particular, there 
exists a point Q in each subinterval (XJ~I,XJ), j = 1,2,..., Af, such that 
s'(Cj) = f'(Cj)- Moreover, since s is a complete spline, s'(a) — f'(a) and 
s'(b) = f'(b). For convenience, rename a = £o and b = CN+I- Given any 
x € [a, 6], let Q be the closest of the zeros Çj of f' — s'. Thus \Q — x\ < h, 
as shown in Figure 3. Using the fundamental theorem of calculus and the 
triangle inequality as for k = 2, we find that 

\f'(x) - s'(x)\ < \f'(Ci) - s'(Ct)\ + I f [/"(*) - s"(t)} dt 
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The first term on the right vanishes by our choice of Ci, and the second term on 
the right is bounded above by /i(x^ll/^4^ll°o h2), according to the reasoning 
for the case k = 2. Therefore, 

\n*)-tt{x)\ K^TWf^uh*, 

and we have settled the case k = 1 with C\ = 11/4. 

FIGURE 3. Location of the zero Q of f — s' lying closest to x. 

Finally, we dispatch the case k = 0. If xi denotes the node of A closest 
to x, then tactics used in the previous two cases yield 

\f(X) - S(X)\ < \f{Xt) - 8(Xt)\ + I T [f'(t) - S'(t)\ dt . 

Again, the first term on the right vanishes, and the second is no larger than 

(V2)(TrH/(4)ll°° h3) b v v i r t u e o f t h e c a s e k ~ X- T h e r e f o r e . 

\f(x)-s(x)\ < y r l l / ^ H o o A 4 . 

Hence the theorem holds for k = 0, with Co = 11/8. I 

At the end of this section we discuss some ramifications of this error estimate. 
Because the "minimum curvature" property of natural splines is promi-

nent in the folklore of approximation theory, it is worthwhile to review the 
underlying logic. Throughout this review, we consider a fixed grid A = 
{XQ, i i , . . . , XN} on an interval [a, b]. We begin by identifying a class of func-
tions over which the minimization property holds. 

DEFINITION. V2(A) denotes the class of all functions <j>:[a,b] —*M. such that 

(i) <j>eCH[a,b]); 

(") ^ l [ , i _ 1 , . d € C f 2 ( [ a : *- i ' " ] ) ' f o r *'=1.2,...,tf. 
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The notation <j>\. , signifies the restr ic t ion of <f> to the interval [z,-_i, z,]. 

Think of V2(A) as the set of all "piecewise C2" functions on [a, 6] for which 
jumps in the second derivative occur only at nodes of A. Any cubic spline 
s £ M\{A) clearly belongs to V2(A), since s S C2([a,b]). 

The quantity to be minimized is the following: 

DEFINITION. If(j>eV2(A), then 

\U\\\-=U"h = ^J*W(i)\adt. 

(The integral exists and is finite, since <j>" is piecewise continuous on the 
closed interval [a, 6] and has, at worst, jump discontinuities at the nodes 
x\, X2,..., XN-1 •) As mentioned earlier, |||^||| does not measure the true cur-
vature of <f>, even though it is a related quantity. Also, the definition relates 
HI • HI to the standard norm || ■ H2 on the normed linear space L2[a,b], intro-
duced in Chapter 0. However, ||| • ||| itself is not a norm, since it is possible 
to have |||< |̂|| = 0 while <f> ^ 0. (Consider <f>(x) = x.) Since ||| • ||| possesses 
the other properties of norms — it scales as |||c0||| = |c| |||< |̂|| and obeys the 
triangle inequality — we call it a seminorm. 

The following fact plays the role of a "Pythagorean theorem" for functions 
in 7>2(A). 

THEOREM 1.19. Let s be a cubic spline interpolating a function <fi 6 V2(A) 
on the grid A. Suppose that s satisfies either of the following sets of end 
conditions: 

(i) s"(a) = s"(b) = 0; 

Then 

(Ü) s'(a) = <f>'{a), s'(b) = <f>'{b). 

lll*-*llla = IM2-IIMII2-

Figure 4 suggests schematically how one might interpret this theorem, with 
lll̂ lll) IIHII) a n d 111̂  — slll serving as analogs of the edges of a right triangle. 

PROOF: The first task is to prove that, for any spline s on A and any function 
4>ev2{A), 

\U - s\\? = IMP - HNII2 - i{w(x) - s'(x)} s"(x)}\b 

I- J l a 

N (1.6-10) 

+2 £[*(*) -«(*)] «<3>(*) " • 
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III <|) - s I 

FIGURE 4. Schematic diagram of the "Pythagorean theorem" for 
functions in V2(A). 

As we show below, Equation (1.6-10) yields the desired result when s inter-
polates 4> and either of the end conditions (i) or (ii) holds. 

We start with the identity 

= f" [(<n2 - 2^'v+(s")2} dx 
Ja 

= \\\4>\\\>-2[\<l>"-s")8»dx-\\\ 
Ja 

(1.6-11) 

(0 

obtained by adding and subtracting f (s")2 dx on the right side of the first 
equation. Integrating the expression (i) by parts twice on each subinterval 
[zi_i,Zj], we find that 

/ " 
J Xi 

(<£" - s")s" dx = [(<!>'-s')s"} 
" V ' 

(II) 

(<t>-s)sW\ 1 *' + / ' (<t> - s )* ( 4 ) dx . 
J x'-'t J*i-i 

(m) (iv) 
(1.6-12) 

We pause for three observations. First, the quantity labeled (il) is con-
tinuous on [a,b] by our assumptions about <j> and s. Second, one-sided limits 
appear in the term labeled (ill), owing to the fact that s^3' typically has 
jump discontinuities at nodes. Third, the term labeled (iv) vanishes, since s 
is cubic on each subinterval [ar,-_i, Xj]. Summing Equation (1.6-12) over the 
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indices i = 1, 2 , . . . , TV therefore produces the equation 

I W - s")s" dx = W - s')s"] [ - £ \(<j> - s)s^\ 
«=1 

1 , - 1 + 

Substituting this result into Equation (1.6-11) yields the identity (1.6-10). 
Now consider this identity under the assumptions that s interpolates <f> on 

A and either of the end conditions (i) or (ii) holds. Since s and <j> agree at the 
nodes, the sum on the right side of Equation (1.6-10) vanishes in both cases. 
If the condition (i) holds, then s"(a) — s"{b) = 0, and the proof is complete. 
On the other hand, if (ii) holds, then <j>' — s' vanishes at the endpoints a and 
b, and again the proof is complete. I 

The "minimum curvature" property of cubic splines is an easy corollary: 

COROLLARY 1.20. Among all of the functions <j> £ V2(A) that interpolate the 
data ya, y i , . . . , y/v on A, the natural spline interpolant minimizes \\\<j>\\\. 

PROOF: The natural spline s interpolating {yo, y i , . . . , yjv} on A interpolates 
any other function <j> G V2(A) that interpolates these data, so the theorem 
guarantees that 

o< nu-sill2 = IWI2-INH2. 
Therefore |||s|||2 < |||0|||2. I 

Another corollary is that the grid A and the data yo, yi, • •-,2/iV uniquely 
determine the natural and complete cubic splines: 

COROLLARY 1.21. There is only one function s £ M.\{&.) that interpolates 
the data yo, yi, • • • ,VN and satisfies the end conditions s"(xo) — S"(XN) = 0. 
Similarly, for given values y0 and y^, there is only one function s £ M%(A) 
that interpolates {yo,yi, • • -,yAr} and satisfes S'(XQ) = y(, and S'(XN) = j / ^ . 

PROOF: This is Problem 14. I 

Further Remarks 
Although it enjoys a charming name and an interesting minimization prop-
erty, the natural spline is not always the best choice. Indeed, the proof of the 
ö{hA) interpolation error estimate works for complete splines but not for nat-
ural splines. Unless one approximates a function / for which / " fortuitously 
vanishes at the endpoints, one might expect the natural-spline end conditions 
to yield poorer approximations near the endpoints. This in fact happens: 
Natural splines typically produce interpolation errors that are ö{h?) near 
the endpoints [1], even though the approximation in the middle of the inter-
val is often much better. Problem 16 asks for a comparison of natural and 
complete spline interpolants. 
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The ö(hA) estimate that we prove for complete splines is not the best 
possible, even though the power of h is optimal. Hall and Meyer [5] show 
that the best possible estimate is 

ll/-«l|oo< ^H/ (4 )Ho^4-

They also derive best possible estimates, having the same powers of h as ours, 
for the first, second, and third derivatives of complete spline interpolants. 

So far we have made no mention of how one might construct basis functions 
for cubic spline interpolation. The most common approach is to use B-
splines. Consider a uniform grid A = {XQ,X\,. . .,XN}, extended via the 
addition of two new nodes, x_i := XQ — h and x^+i : = %N + h. On the new 
grid A + , associate with each node x_\, xo, ■ ■ ■, IJV+I afunction S, G M\{&+) 
satisfying the conditions 

D (v \ _ f 1. i f 3 = *'. 
a*xi>-\ 0, if | j - i | > 2 . 

To define the functions B{ uniquely, we impose the additional requirements 
B[{XJ) — B"(xj) = 0 for j = i ± 2. These functions are piecewise cubic and 
twice continuously differentiable, and they form an "almost nodal" basis for 
MiiA)- Problem 15 asks for details. 

Finally, Schumaker [12] generalizes the notion of splines on a grid A to 
mean any function in Mn-i{&), for some polynomial degree n. The sets 
.MÜ^A) (piecewise constants), jVlJ(A) (piecewise linears), and Ml(&) (cu-
bic splines) all constitute spline spaces that we have encountered so far. Is 
there a space A^f(A)? The construction of such functions, as Kammer et al. 
[7] propose, may be less than obvious. Problem 17 introduces this topic. 

1.7 Least-Squares Methods 

The approximation methods treated so far require the approximating function 
/ to pass through known points (x{,yi) or their higher-dimensional analogs. 
For many applications such interpolation methods are inappropriate. This 
circumstance commonly occurs when the points (xi, j/j) result from measure-
ments, which may have errors or fluctuations attributable to incomplete con-
trol over the processes being measured. In such applications, the most ap-
propriate approximating functions / typically have graphs lying "close to," 
but not precisely on, the measured points. In fact, scientific or statistical 
hypotheses often suggest simple forms for / — forms that require us to de-
termine a small number of parameters using a multitude of measured data 
(xi, j/,-). The discrepancy between the number of measured data and the num-
ber of parameters to be determined generally makes it impossible to force / 
to pass through the points (xi,Ui). 
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The most familiar example of such overdetermined systems arises when 
we wish to fit a line y = c\ + C2X through a set 

{(*o, Vo), (xi,yi),..., (xN, yN) j 

of points. Usually, N > 1, and consequently there is little hope that we can 
find constants Ci and c? that force y,- = c\ + c^Xi for i = 0 , 1 , . . . , N. 

This section introduces the method of least squares, a common ap-
proach for finding approximating functions that "almost" agree with the 
known values (x;,y,). The method has many intricacies, including a vari-
ety of statistical properties, that we do not explore here. 

Motivation and Construction 

The first task is to identify an appropriate vector space in which to seek 
approximations. Suppose that we have some measured values t/o, yi, • • •, VN< 
which we regard as approximate values of /(xo), / (x i ) , • ■ •, /(xjv) for some 
function / . Define 

x := 

XQ 

XN 

2/o 

VN 

We seek an approximating function / that is "close to" / in the (still impre-
cise) sense that y — $ ~ 0, where 

* := 
$ 0 

$ N . 

:= 
" /(*o) " 

. / ( * j v ) . 

To make definite what we mean by y — * ~ 0, we introduce a norm in 
which to measure the distance between y and $ . Recall from Chapter 0 that 
ffiJV+1 is an inner-product space, with the inner product of two vectors u and 
v being given by the formula 

U • V = 

«o 

. "Jv 

vo 

. VN 

N 

= ^ U i V i . 

«=0 

Associated with this inner product is the norm 

V 2 = v /v_v= Y,ui 
N 1/2 

As the name "least squares" suggests, we want the vector $ to be close to y 
in the sense that ||y — <Ê||2 takes its minimum value. 
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How small this minimum is depends strongly on the choice of approximat-
ing function / . One class of choices that compromise complete generality in 
favor of mathematical tractability are those that have the form 

>=1 

(1.7-1) 

Here, / is a linear combination of basis functions y>\,<pi, ■... ,<pn that are 
chosen a priori, perhaps according to some hypothesis about the phenomena 
measured. The minimization process, which we discuss momentarily, deter-
mines the parameters c\, C2,... , c„. 

The simple example f(x) = C\ + c^x, mentioned earlier, comes under this 
rubric, with n = 2. In this case, we can take as basis functions <pi(x) = 1 and 
(fi2(x) = x, with the expectation that the data (x,-,2/;) reflect some straight-
line relationship. However, the form (1.7-1) admits many other possibilities, 
including 

/(*) C\ + ClX + C3X2 + C4X3 

/ (x) = ci + C2 sin x + C3 cos x + C4 sin 2x + C5 cos 2x 

f(x) = ci + c2 In x 

(n = 4), 

(n = 5), 

(n = 2). 

(The last example might be useful in fitting logarithms of data whose general 
functional form is axb.) 

For any such choice, the vector $ has N + 1 entries 
n 

*i :=]T)c>¥>j(z.-) 
i= i 

and n undetermined parameters ci, C2,..., cn. We decompose these entries 
as follows: 

* = 

H]=icjfj(xo) 

E"=iciVi(iBJv) 

= ci 

Vi(xo) 

<pi(xN) 
+ + c„ 

'Pi 

<Pn(xo) 

Vn(xN) 
1 " v ■■ 

This decomposition casts $ as an undetermined vector belonging to S := 
span{^ l t ¥>2! • ■ • 1 Vn}> where the vectors ¥>i, v?2> • • • > Vn a r e *n e elements of 
MN+1 identified by the underbraces. 

Now we reformulate the approximation problem in the language of vec-
tor spaces: Find constants c\,ci,.. . ,c„ such that, among all vectors in the 
subspace S of MN+1, the vector 

n 

i= i 
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FIGURE 1. A vector y and its best approximation $ in a subspace 
S, represented by a plane in M3. 

lies closest to y. Because l^"1"1 is an inner-product space, this problem has 
an easily identified solution: The vector $ G S lying closest to y in the norm 
|| • ||2 is the one for which the error y — $ is orthogonal to every vector in 
S. This basic geometric fact about inner-product spaces is the projection 
principle. Figure 1 illustrates the principle in M3 for the case when S is a 
plane. 

We enforce the requirement that y — $ be orthogonal to every vector in 
S by setting y — <& orthogonal to each vector in a basis for 5 . Since two 
vectors are orthogonal if their inner product vanishes, this approach yields 
the following normal equat ions: 

(1.7-2) 

The matrix form of Equations (1.7-2) reveals the structure of the linear system 
that determines the least-squares coefficients Cj : 

V l • ¥>1 ■■■ <Pn ■ V l C\ V l Y 

L v„ • y J 

(1.7-3). 

The n x n matrix G whose (i, j)th entry is <pj ■ <p{ is the Gram matrix for 
the basis {<plt<p2,... ,(pn). Later we examine conditions under which G is 
nonsingular and hence yields a system of normal equations (1.7-3) that has 
a unique solution. We examine methods for solving equations of the form 
(1.7-3) in Chapters 2 and 3. 
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4 

3 

2 

1 X 
H 1 1-
1 2 3 

FIGURE 2. The line y = 0.98+ 1.03a; giving a least-squares fit to 
data given in the text. 

For now, consider a simple example. Given the measured data 

xo 
Xl 

X2 

X3 

= 

0 
1 
2 
3 

y = 

yo 
yi 
y2 

. 2/3 . 

= 

0.9 
2.2 
2.9 
4.1 

we find the line y — f(x) = c\+ c2x that passes closest to the points (XJ, j/j) in 
the least-squares sense. Using the basis functions f\{x) = 1 and <fi2{x) = x, 
decompose the vector 3> as follows: 

$ = c\ 

Vi(zo) 
<P\{x\) 
fl{x2) 
fi(.x3) 

+ C2 

<P2(xo) 
<P2(xi) 
^2(^2) 

^2(^3) 

= Co 

' 1 " 

1 
1 
1 

+Ci 

' 0 " 

1 
2 
3 

V, vs 

To form the normal equations, note that ipx ■ ipl = 4, <fix ■ y?2 = <p2 " fx — 6J 
ip2 ■ ip2 = 14, <p1 ■ y = 10.1, and ip2 ■ y = 20.3. Thus the normal equations 
reduce to 

"4 6 
6 14 . C2 . 

= 
" 10.1 " 

20.3 

Solving this system yields c\ — 0.98, c2 = 1.03; therefore, the line passing 
closest to the given data in the least-squares sense is y = f(x) = 0.98 + 1-03 x, 
as Figure 2 depicts. 

This framework also allows us to fit more general functions to the data 
given in this example. For the choice f(x) = c\ + c2x + C3X2, for example, 
the basis functions <pi(x) = 1, <f2(x) = x, and <P3(x) = x2 correspond to the 
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vectors (p, defined as follows: 

' 1 ' 
1 
1 
1 

V>2 = 

" 0 ' 
1 
2 
3 

V»3 = 

" 0 " 
1 
4 
9 

We leave the determination of the constants ci,C2,C3 as an exercise. 

Practical Considerations 

Two questions of practical importance arise in the solution of least-squares 
problems. First, under what circumstances can we be sure that the linear 
systems of equations that arise possess unique solutions? Second, how can 
we solve the systems efficiently? 

The answer to the first question has an appealing interpretation: Roughly 
speaking, the Gram matrix will be nonsingular provided each basis function 
describes some distinct aspect of the trends in the measured data. This 
somewhat vague prescription means that the vectors ipl, (p2, ■ ■ ■, V« G R'/v+1 

must form a linearly independent set. We prove later that the Gram matrix 
is nonsingular when the set {<plt tp2,.. ■, <fin}

 ls linearly independent. 
A thorough answer to the second question hinges on the numerical linear 

algebra associated with the normal equations (1.7-3). We postpone much 
of this material to Chapters 2, 3, and 5. Of significance in this context is 
the structure of the Gram matrix G. In contrast to the tridiagonal matrices 
arising in cubic spline interpolation, G often has nonzero entries in every 
position. Therefore, we can rarely use algorithms based on "sparse" matrix 
structure for solving the system (1.7-3). This problem is hardly a cause for 
concern when n is small — say, five or less. However, the normal equations 
have two properties that are helpful when n is large: First, G is symmetric, 
in the sense that v?i • <fij = <Pj • Vi • We investigate some of the numerical 
benefits of this property in Chapters 2 and 3. 

The second property that G possesses also has important numerical im-
plications: 

DEFINITION. An nxn real matrix M is positive definite if, for any nonzero 
vector v e M", v • Mv > 0. 

Chapter 2 reviews other characterizations of this property, and we prove that 
the Gram matrix is positive definite momentarily. 

Mathematical Details 

The fundamental result in least-squares theory is the projection principle, 
which is a consequence of the following lemma. 
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L E M M A 1.22 ( P Y T H A G O R E A N T H E O R E M ) . Let V be an inner-product space 

with inner product (■, ■) and associated norm \\ ■ ||2- If u and v are orthogonal 
vectors in V, then \\u + v\\\ = ||u||2 + INI!-

P R O O F : By definition, ||u + u|ll = {u + v,u + v} — | |u|| |-|-(u,i>) + (v, w)+ 11̂ 111 • 
The middle two terms in this expansion vanish, since u and v are orthogonal. 

I 

(When V = M2, this lemma reduces to the familiar Pythagorean theorem for 
right triangles in the plane.) 

T H E O R E M 1.23 ( P R O J E C T I O N P R I N C I P L E ) . Let V be an inner-product space 

with v £ V, and let S be a subspace ofV. Ifu£S is a vector for which v — u 
is orthogonal to every vector in S, then u minimizes the distance \\v — u>||2 
over all vectors w £ S. Moreover, there is at most one such vector u £ S. 

P R O O F : Pick any vector w G S, and notice that w — u G S. Since v — u 
is orthogonal to every vector in S, it is orthogonal to w — u. Applying the 
Pythagorean theorem to the identity w — v = (w — u) + (u — v), we find that 

\\w-v\\l = \\w-u\\l + \\u-v\\l>\\u-v\\l 

with equality holding if and only if w = u. This proves the theorem. I 

The conclusion of this theorem holds when v — u is orthogonal to each vector 
belonging to a basis for the subspace S. 

This section is concerned mainly with the inner-product space 1 A , + 1 ; how-
ever, the projection principle applies to any inner-product space. 

While providing the theoretical basis for the least-squares method and 
the normal equations, the projection principle reveals little else about the 
linear algebra. We now demonstrate that the Gram matrix is symmetric and 
positive definite under reasonable hypotheses. 

T H E O R E M 1.24. Provided that the set {tplt<p2,... ,<pn} is linearly indepen-
dent, the Gram matrix G, as given in Equation (1.7-3), is symmetric and 
positive definite. 

The following proof, although prolix, further illuminates the structure of G. 

P R O O F : The original, overdetermined system of equations has the form 

c iy i ( zo ) + c2<^2(«o)H rcn<pn(xo) = 2/o 

ci<pi(xN) + c2<p2(xN) + \-cn(pn(xN) = yN, 



88 CHAPTER 1. APPROXIMATION OF FUNCTIONS 

which we rewrite in the matrix form 

. \ <PI(XN) \ <Pn(xN) ) J L C« 

C\ 2/0 

VN 

Abbreviate this system as Ac = y, where A £ M ^ 1 ) * " , y £ RN+\ and c 
is the vector containing the n unknown coefficients c*. It is a straightforward 
matter to check that G = A A £ M n x " and that the normal equations have 
the form 

ATAc = ATy. 

Any matrix having the form ATA is symmetric, since (ATA)T = AT (AT )T = 
ATA. 

Now we establish that G is positive definite. First notice that, whenever 
v £ K" is nonzero, Av ^ 0. (Otherwise, the columns of A, which are the basis 
vectors tpl,ifi2, ■ ■ -,ipn, could not form a linearly independent set.) Choose 
any nonzero vector v £ Mn. We must show that v • Gv = v • ATAv > 0. By 
using the associativity of matrix multiplication and manipulating the product 
of transposes, we can rewrite this expression as vTA Av = (Av)T(Av) = 
||Av|||. But we have already argued that Av ^ 0, so v • Gv = ||Av||| > 0. I 

The fact that the normal equations have a unique solution is an easy 
consequence of this theorem and the following general fact: 

THEOREM 1.25. Any positive definite matrix is nonsingular. 

PROOF: The proof is by contradiction: If M is a positive definite matrix that 
is singular, then there is some nonzero vector v for which Mv = 0. In this 
case, vTMv = v T 0 = 0, contradicting the fact that M is positive definite. I 

Further Remarks 

We finish with some brief remarks about orthogonal polynomials. It is heuris-
tically desirable — though often computationally impractical — to choose the 
basis functions ipo, y?i, . . . , <pn so that the vectors <fi1, y>2,..., ipn are mutually 
orthogonal. For, with such a basis, the Gram matrix is diagonal and hence 
easy to invert. In some cases, it actually is possible to choose <pi,<p2, ■ ■ ■ ,fn 
so that mutual orthogonality holds. The most common instances of this 
pleasant situation are problems in which one wishes to fit a polynomial or a 
trigonometric polynomial to data measured on a grid A = {x0, x\,..., XN} of 
uniformly spaced abscissae. In these cases, the inner product of two functions 
/ and g defined on A is 

N 

(f,9) :=£/(*,)<7(*,). 
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To produce a collection of mutually orthogonal basis vectors, we must 
abandon the monic polynomials l,x,x2,x3,— Instead, we define a new 
set {4>i, 4>2,<l>3,...} of basis functions using the following criteria: First, each 
</>*: [XO,XN] -> 1 is a polynomial having degree at most k — 1. Second, 
0! = y/N + 1. Third, 

^ > = { 5; ï !>5' 
for i = 2,3, — (The functions appearing in the inner product are, strictly 
speaking, restrictions of <f>i and <j>j to A.) These conditions suffice to define 
inductively a sequence {^1,02,^3, • • •} of basis vectors whose Gram matrix 
collapses to the identity matrix, 

G = l = 

1 
1 

The functions <j>\, 02, • ■ • are called the Gram polynomials for the grid A. 
Isaacson and Keller ([6], Section 3.5) furnish more details. 

Since the theory used in this section applies to any inner-product space, it 
is possible to extend the least-squares method to continuous settings. Com-
monly, the vector space of concern is L2([a,b]) instead of M^+ 1 , and the 
appropriate inner product is 

(f,g)= I f{x)g(x)dx. 
Ja 

Given a subspace S = span{v?i,<£>2, ■ • -,<Pn} of L2([a,b]), the idea is to ap-
proximate an arbitrary function / 6 L2([a, b]) using a function f £ S. Ac-
cording to the projection principle, we do this by forcing (/ — / , <pk) = 0 for 
k = 1,2,.. . , n. The normal equations in this setting therefore have the form 

Y^ci <Pj(x)<pk(x)dx= <pk(x)f(x)dx, k = \,2,...,n, (1.7-4) 
• = 1 Ja Ja 

in which the coefficients Cj are unknown. The function 

n 

determined in this way, is called the L2-projection of / onto S. 
In contrast to the sums required in the discrete least-squares method, the 

integrals in Equation (1.7-4) can be impossible to compute exactly. In these 
cases, it is necessary to use numerical approximations, a topic that we explore 
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in Chapter 6. Aside from obstacles like this, though, many properties of the 
discrete least-squares method carry over to the continuous case, as Isaacson 
and Keller [6] explain. In particular, if one seeks a polynomial approximation 
to / , one can identify a collection of basis functions that are analogous to 
the Gram polynomials in that they reduce the Gram matrix to the identity 
matrix. These polynomials are the Legendre polynomials; we discuss them 
in more detail in Chapter 6. 

1.8 Trigonometric Interpolation 

While interpolation and the least-squares method seem to be fundamentally 
different approaches to approximating functions, there is a technique for 
which the two ideas are closely related. In this technique, called trigonomet-
ric interpolation, one develops linear approximations using trigonometric 
functions as basis functions. The theory underlying this method has strong 
and beautiful connections with classical Fourier analysis, some of which we 
exploit in this section. 

Motivation and Construction 

Consider a function / : [0, 2?r] —> M that is periodic, meaning that /(0) = 
/(27r). Let A = {x0,xi,.. .,xN+i}, where Xj = 2irj/(N + 1), be a uniform 
grid on the interval [0,27r]. Our goal is to find a periodic approximating 
function / that is a superposition of sines and cosines and that interpolates 
/ in the sense that 

f{xj) = f(xj), j = 0,l,...,N. (1.8-1) 

(Periodicity then implies that /(z/y+i) = f(x^+i).) 
If N is even, then / is to have the form 

M 

/ (x) = — -f y j (<j„ cos nx + b„ sin nx), (1.8-2a) 
2 n=i 

where N — 2M. If N is odd, say N = IM + 1, then / must have the form 

M 

f(x) = ^ + V (a„ cos nx + bn sin nx) + ^±± cos(M + l)x. (1.8-2b) 
2 n= i 2 

The idea behind these expansions is to approximate / using a finite super-
position of sinusoidal components having various frequencies. Since / may 
have variations whose resolution requires infinitely many such components, / 
generally differs from / . 
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These finite trigonometric sums resemble the infinite sums that one en-
counters in classical Fourier analysis. Indeed, if / G ^( [0 , IT}) and /(0) = 
/(2TT), then 

oo 

f(x) = — + Y j (an cos nx + bn sin nx), 
2 n = l 

where the Fourier coefficients are 

1 /* 1 /* . 
an = — I f(x)cosnxdx, bn = — / /(x)sin nx rfa;. 

Moreover, the series converges uniformly in a;. (See Kreider et al. [8, Section 
10-4].) One can relate this classical theory heuristically to the problem of 
trigonometric interpolation by observing that classical Fourier analysis "sam-
ples" / — that is, it asks that the series agree with / — throughout the 
interval [0, 2ir). In contrast, trigonometric interpolation "samples" / only at 
the finitely many points XQ, XI, ..., xjv € [0, 2ir]. 

Instead of deriving the coefficients an and 6„ in Equations (1.8-2) directly 
from the interpolation constraints (1.8-1), we first rewrite the trigonometric 
sums in a simpler form. When N = 2M, Equation (1.8-2a) reduces to the 
form 

M 

where i2 = —1, a„ = 4>(n) + </>(—n), and bn — i[(f>(n) — <f>(—n)]. This fact 
follows from the identity e'nx = cosnx + isin nx: 

M M 

y ^ (j>{n)einx = <f>(0) + y^[(^(n)(cos nx + isin nx) 
n = — M n = l 

+4>(—n)(cos nx — isin nx)] 

M 
do 

+ 2_j(an c o s nx + bn sin nx). 

Similar substitutions show that, when N = IM + 1, Equation (1.8-2b) sim-
plifies to the complex exponential form 

M + l 

n = -M 

We subsume both of these cases in the notation 

M+» 
/ ( * ) = J2 Hn)einx, (1.8-3) 

n = -M 
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where 0 = N — 2M. This expression corresponds to the following representa-
tion, which is common in classical Fourier analysis: 

oo oo 

^ /»e" l T = — + ^2 (an cos nx + bn sin nx), 
n = —oo n = l 

where 

/„ := ±- / f(x)e-in* dx. 

To determine the coefficients <j>(n) in the expansion (1.8-3), it is profitable 
to cast the discussion in terms of inner products. Moreover, since we are 
working with complex exponentials, it is appropriate to use inner products for 
complex-valued functions / : [0,2TT] —► C, sampled at the nodes XQ, X\, .. .,XN 

of the grid. For two such functions / and g, denote 

N 

if, 9) :=X)-ffo)fl,(a:>)' 
j=o 

where the overbar indicates complex conjugation. The function (•, •) is an 
inner product, provided we regard two complex-valued functions on [0,2ir] 
as being equivalent if they have the same values at the nodes xo,x\,..., xjv-
Later, in discussing the phenomenon of aliasing, we examine peculiarities 
associated with this equivalence. This inner product gives rise to a norm, 
defined as follows: 

ll/IU := VÜJ). 
We now establish an orthogonality relationship among the functions e'nx: 

LEMMA 1.26. For n = 0 ,±1 , ±2 , . . . , 

ym« einx\ _ f N + 1, if (m - n)/(N + 1) is an integer, (l _ 
' ' ' \ 0, otherwise. *■ ' ' 

PROOF: We have 

JV 

{e'mx,e'nx) — y ^ exp(z'mxj ) exp(—inxj ) 

r2mj(m — n) 
= l]exp 

N + l 

This last sum has the form 1 + r + r2 + • • • + rN, where 

r := exp 
27ri(m — n) 

N+l 



1.8. TRIGONOMETRIC INTERPOLATION 93 

If (m — n)/(N + 1) is an integer, then r = 1, so the sum collapses to N + 1, as 
claimed. Otherwise, r ^ 1, and we sum the geometric series to get (rN+1 — 
l ) / ( r - 1). Since rN+l = exp[27n'(ro - n)] = 1 in this case, the conclusion 
again follows. I 

In the special case when / = / on the entire interval [0, 27r], this orthog-
onality relationship makes it easy to determine the coefficients <p(n). We 
have 

M+e 
(f,eimx) =, (f,eim*) = £ <f>{n){ein*,eim*) = <j>{m){eim*, eimx), 

n = -M 

from which we conclude that 

if e
inx) i Jï^ 

*W = #r^à) = jv^rï£/to)e*p(-*"«*i)- (i-8-5) 
By analogy with classical Fourier analysis, we call these coefficients the dis-
crete Fourier coefficients of / . Another common name for the function 
<t>{n) is the discrete Fourier transform of / . 

More generally, / does not have the form (1.8-3). We must then regard 
the coefficients <j)(n) determined by Equation (1.8-5) as furnishing an approx-
imating function / . Interestingly, the discrete Fourier coefficients 0(n) are 
precisely those that solve the trigonometric interpolation problem: 

THEOREM 1.27. The function f in Equation (1.8-3), with coefficients (/>(n) 
given in Equation (1.8-5), satisfies the interpolation constraints f(xj) = 
f(xj),forj = 0,l,...,N. 

The proof requires a simple lemma: 

LEMMA 1.28. For j,k ranging over the indices 0,1,..., N, 

V^ r- , v, i N + l, if j = k, 

PROOF: The number z := exp[i(xj — Xk)} is a zero of the polynomial 

JV 

^-l = (z-l)£V. 
JV 

ZN+1 

n = 0 

One possibility is that exp[i(xj — Xk)] = 1, which occurs when j = k. The 
other, occurring when j ^ k, is that the sum vanishes. I 
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PROOF OF THEOREM 1.27: Consider the value of / at a node xy. 

M+e 
f(xi) = Yl 4>(n)exp(inxj) 

n = -M 

M M+e 
(1.8-6) 

= yj^(—n)exp(—irtXj) + >J ^(n)exp(mx^). 

We rewrite the first sum on the right by noting that 

2ir 
exp(-inxj) = exp { —inj— + 2vij 

= exp ij(N + l-n) 
2n 

N+l 

— exp [i(N + 1 — n)xj]. 

A similar device, applied to the definition (1.8-5), shows that 

N 

^ _ T l ) = ■N-rjYl^x^ex^inx^ 
fc=0 

N 

= Y, /(x*) exP [-*(N + ! - »)**] =4>(N+1- n). 
t=o 

As a consequence of these identities, we can reindex the first sum on the right 
in Equation (1.8-6) to get 

M+e N 

f(xj)= 2-/ ^ ( n ) exp(inxj) = ^ <j)(n)exp(inxj). (1.8-7) 
n = -M n = 0 

With this representation for / at the nodes of the grid, we find that 

AT 

H'i) = £ N 
1 N 

^-J^2 f(xk) exp(-inxk) 
exp(inxj ) 

n=0 L k=0 

1 AT N 

N + k=0 n=0 

N 
—(N + l)f(xj) = f(xj), 

by Lemma 1.28. 
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Practical Considerations: Fast Fourier Transform 
Equation (1.8-5) furnishes an explicit formula for the discrete Fourier coeffi-
cients, 

1 N 

3 = 0 

However, as a naive approach to computing <j)(n), this formula is far from 
the best one. To see why, let us abbreviate the sum in Equation (1.8-5) by 
writing 

N 

^(n) = £>;"">, (L8-8) 
i=o 

where 
f(xj) ( 2*i \ 

One can compute the sum in Equation (1.8-8) from its coefficients using iV+l 
multiplications and N additions. Using this approach for each of the N + 1 
coefficients <j>{n) requires (N+l)(2N + l) = 2N2+3N+1 = 0(N2) arithmetic 
operations. This operation count inhibited the use of discrete Fourier analysis 
in signal processing and other applications for many years. 

A class of algorithms called fast Fourier t ransforms (FFT) , developed in 
the early 1960s, changed this picture radically. In general, if N+l = q\q2 ■ ■ ■ qP 

is an integer factoring of N +1, then the FFT allows one to compute the N + l 
discrete Fourier coefficients <j>(n) in ö(N{q\ + q% + • • • + qp)) operations — 
many fewer, typically, than Ö(N2). The ideas are perhaps simplest in the 
case when N + I = 2P, which we use in the following exposition. In this 
special case, we show that the operation count is Ö(./V log2 JV). However, 
other cases are not only feasible but also, in many cases, quite efficient in 
comparison. We begin by sketching how the FFT accomplishes its task in so 
few operations. Then we outline the overall strategy for a common version of 
the algorithm. Finally, we discuss details of the algorithm's implementation. 

To see why the FFT is so computationally efficient, consider the task of 
computing discrete Fourier coefficients <^(n), for the special case N + 1 = 2P. 
The following observation is central: 

LEMMA 1.29 (DANIELSON-LANCZOS). One can compute <f>(n) by evaluating 
two sums of the type (1.8-8), each having (N + l) /2 = 2 P _ 1 terms. 

PROOF: Split the sum in Equation (1.8-8) into two sums, one over the even 
indices n and one over the odd indices. For n = 0 , 1 , . . . , N, we obtain 

(JV-l)/2 (JV-l)/2 

*(!»)= J2 « 2 j V r + E «2; + l("2)nJ"n . (1-8-9) 
j=0 j=0 
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For m = 0 , 1 , . . . , (N - l ) /2 , define 

(JV-l)/2 

Mm) ■= £ a2j{^r, 

3=0 

(N-l)/2 
Mm) := X ) "W+i(wa)mi-

j=o 

The quantity V'O(TI) is obviously the first sum on the right side of Equation 
(1.8-9), when n = m = 0 , 1 , . . . , |(iV - 1). Also, for n = |(JV - 1) + 1, ±(JV -
l) + 2,...,N, we have ra = ±(JV + 1) + m, where m = 0 , 1 , . . . , §(7V - 1). For 
these values of n, the fact that uN+1 = 1 implies that 

(JV-l)/2 

ü/>! (m) = £ a 2 i + 1 ( w
2 ) "" ' w " 

3=0 

(JV-l)/2 

= 5 3 a2i+i(w2)m '+<JV+1W/au/B 

j=o 

(JV-l)/2 

= $ 3 a 2 j + 1 ( W
2 ) m ^", 

3=0 

which is the second sum on the right in Equation (1.8-9). Therefore, 

cf>(n) = Mm) + w"tfi(m), (1.8-10) 

where m is the remainder on division of n by (N — l ) /2 . I 

In other words, one can compute the discrete Fourier coefficients <j>(n) 
for a grid having 2P nodes by executing the operations needed to perform 
two such analyses on grids having 2 P _ 1 nodes, then executing at most 2 • 2P 

operations to form the 2P numbers <j>{n) from Equation (1.8-10). The same 
reasoning applies to each of the analyses on the grids having 2 P _ 1 nodes, and 
so forth. Thus, if 0(p) denotes the number of arithmetic operations required 
for a grid having 2P nodes, then recursion yields 

0(p) < 20(p - 1) + 2 • 2? 

< 2[20(p - 2) + 2 • 2P-1] + 2 • 2p = 220(p - 2) + 4 • 2P 

< 230(p - 3) + 6 ■ 2P 

p 

< < 2P0(O) + 2p J2 2-
Jfc=0 
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Since 6(0) = 0, we find that 0(p) < 2p • 2P = 2(JV + l)log2(JV + 1). This 
operation count is a tremendous improvement over the Ö(N2) operations 
required in the naive approach. For example, for a problem involving 210 = 
1024 nodes, the naive approach requires about 2.096 x 106 operations, while 
the FFT requires at most 2.048 x 104. 

We turn now to the structure of the algorithm. Here it helps to look in 
more detail at the sums V'O(TO) and i^i(m) used in Equation (1.8-10). Notice 
that 

(AT-l)/2 

2 £ «2i(u,2H 
i=o 

is the mth discrete Fourier coefficient obtained by interpolating f(x) only at 
the even-indexed nodes XQ,X2,. ■ -, i jv-i- Similarly, the quantity 

(AT-l)/2 

2 £ a2j+1(^r 
i=o 

is the mth discrete Fourier coefficient for the interpolant of f(x + 2ir/(N + 1)) 
that uses values of / at the odd-indexed nodes xi, £ 3 , . . . , £jv. 

Therefore, one can compute the trigonometric interpolant on a grid hav-
ing 2P nodes by computing two trigonometric interpolants on grids having 
2 P _ 1 nodes. One of the latter interpolants interpolates / at the even-indexed 
nodes XQ, X2, ■ ■ ., £AT-I; the other interpolates / at the odd-indexed nodes 
xi, xz,..., xjv- Thought of recursively, this observation suggests that we pro-
ceed in p stages: At stage r, we determine 2 p - r interpolants on grids having 2r 

nodes. We calculate these interpolants using the 2 p - r + 1 interpolants, associ-
ated with grids having 2 r _ 1 nodes, computed at stage r — 1. Each interpolant 
computed at stage r has 2r coefficients; we denote the coefficients for the gth 
interpolant at stage r as follows: 

^ % , 0 ) , ^ ( g , l ) , . . . , ^ > ( ? , 2 ' ) . 

Using Equation (1.8-10), we compute these coefficients from those com-
puted at stage i— 1 as follows: For q — 1,2,..., 2 p _ r , 

9d*)(«n\-i ^ ( r " 1 ) (9 .») + ^ ( r " 1 ) ( 9 ' . « K , n = 0 , l , . . . 2 p - ' - l , 
1<P W ' J ~ \ ^ r - 1 ) ( ? , n ' ) - ^ r - % , , n / K ' , n = 2 p - r , . . . , 2 p - r + 1 . 

(1.8-11) 
Here, 

9 ' : = 2 p - r + ç, n':=n-2r-\ ur := e x p ( - 2 « / 2 r ) . 

We start the recursion by setting <j>(°\q,0) equal to one of the prescribed 
values f(xk), in a manner described shortly. After completing stage p, we set 
<j>(n) := <^p)(l, n), for n = 0 , 1 , . . . , AT. This strategy, based upon Equation 
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(1.8-11), lies at the heart of one version of the FFT, known as the Cooley-
Tukey algorithm. 

Finally, let us discuss the implementation of the FFT. In coding the 
algorithm, one must choose a data structure for the coefficients (j)^r\q, n) 
computed at the various stages r = 0 ,1 , . . . ,p . Typically, one stores these 
quantities in an array ®(k), where k = k(r, q, n). The standard lexicographic 
ordering 

k(r,q,n)~2r(q-l) + n 

is straightforward, but it is inefficient: It requires two copies of <&(k) to keep 
the right side of Equation (1.8-11) intact while computing the left side. 

For a more economical indexing scheme, we can overwrite the quantities 
^ r - 1 ) ( g , r»), <Mr_1)(9 + 2 p - r , n) with the quantities <f>^(q, n), <f>^\q,n + 2r-1) 
computed from them. The price paid for this economy is the more intricate 
indexing scheme required. To see how this scheme works, consider Table 
1.1 on page 103, which lists the coefficients <j>(r'(q,n) computed at the four 
stages of an FFT of length N + 1 = 8 . The rightmost column of the table 
is the output vector, containing the final discrete Fourier coefficients, <£(n), 
listed in their "natural" order. To the left of this column are the results of 
stage r = 3, listing in each position the result <j>(3'(0, n) (= <f>(n)) alongside 
the node xn associated with it in the expansion 

N 

5>(3>(0,n)/(zn). 
n=0 

We write the subscript n of xn in the binary number system for illustrative 
purposes that soon become apparent. 

To the left of the results for r = 3 are those for r = 2, listed in the format 
just described. For example, we use the coefficients <^2)(0,0) and <^2>(1,0) 
to compute <^3)(0,0) and 4>(3\0,4), overwriting the former in the process. 
However, the fact that the coefficients 

^ 2 ) (0 ,0) ,^ 2 ) (0 ,1) ,^ 2 ) (0 ,2) ,^ 2 ) (0 ,3) 

are associated with the even-indexed nodes of the grid implies that the nodal 
indices undergo a permutation as we move from the columns associated with 
stage r = 3 to those associated with r = 2. Similar logic governs the transition 
from stage r = 2 back to stage r = 1 and the transition from r = 1 to r = 0, 
the stage at which we have the input data f(xo), f{x\), ■ ■ ■, f(xs)-

As a consequence of the permutations on nodal indices, the vector of input 
values f(xn) is ordered differently than the vector of output values. Looking 
carefully, one can see that the order of the nodal indices in the input vector 
results from reversing the binary representations of the indices in the output 
vector. Under this bi t-reversal mapping, £(2^ — 1, 0, n) = n, while k(0, q, 0) 
produces the bit-reverse of q. For example, writing q in binary, we have 
fc(0,101,0) = 101, while fc(0,011,0) = 110. The idea in this data structure is 
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to load the input data in bit-reversed order, compute coefficients at successive 
stages "in place" by overwriting those at previous stages, and arrive at an 
output vector of coefficients listed in natural order. 

The following pseudocode implements a bit-reversal algorithm: 

ALGORITHM 1.2 (BIT-REVERSAL). Given an array A of length N+l = 2P, the 
following algorithm permutes the entries of A using the bit-reversal mapping. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

j <-

For k 

1. 

:=l,2,...,N + l: 

If j > k then: 

a — A(j). 

A(j) <- A(k). 

A{k) <-<*. 

End if. 

m«-(JV + l ) /2 . 

If m > 2 and j > m then 

j <- j - m. 

m <— m/2. 

Go to 9. 

End if. 

j <— j + m. 

Next k. 

End. 

Given an array A(j) ordered by bit-reversal, the following pseudocode imple-
ments the Cooley-Tukey algorithm: 

ALGORITHM 1.3 (COOLEY-TUKEY F F T ) . The following algorithm computes 
an FFT of length 2P, given an array A(j) of input data ordered by bit-reversal. 

1. For r = 1,2, ...,p: 

2. m < - 2 r . 
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3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

Next 

End. 

u «- 1. 

F o r ^ l . V . . ^ - - 1 : 

Fork = j,j + 2r,...,2>>: 

a ^ w A ( H 2 r - 1 ) . 

A(k + 2r-l)^A(k)-a. 

A(k)^A(k) + a. 

Next k. 

u) «— u exp(27r«'/2r). 

Next j . 

r. 

Mathematical Details 

Errors arise in any scheme for approximating general functions using finitely 
many degrees of freedom. In the case of trigonometric interpolation, one 
of the simplest ways to view the approximation error is to adopt the point 
of view of least-squares approximation, introduced in Section 1.7. If / is the 
trigonometric interpolant of/ on a uniform grid {io.*i) • ■ -,2/v+i} on [0,2x], 
then 

N 

(f-f,eimx) = {f,eim*)-J2Hn)(einX,eimX) 
n = 0 

= (f,e,mx)-<l>(m){e>mx,é mx „imx\ o. 
In other words, if we regard the functions etnx as basis functions, the discrete 
Fourier coefficients are precisely the coefficients that force / to satisfy the 
normal equations of the least-squares method. We conclude the following: 

THEOREM 1.30. The function f, defined as in Equation (1.8-3) with coeffi-
cients 4>(ri) given in Equation (1.8-5), minimizes the least-squares error 

M+e 
/- J2 cnl 

n = -M 

over all possible choices of the coefficients c„. 

One should suspect that such an easily won theorem has limitations. In 
this case, the limitations arise from the fact that || • ||A is a norm only if we 
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regard functions / : [0, 2n] - » l a s being equivalent when they agree at the 
nodes x; of the grid. In particular, the theorem does not furnish any explicit 
estimate of the deviation of / from / at points between the nodes. As we 
briefly discuss below, such "global" error estimates are known but not easily 
accessible in a text at this level. 

It is appropriate, however, to explore one consequence of the limitations 
associated with the norm || • ||A- Trigonometric interpolation is vulnerable to 
a characteristic type of error called aliasing. Consider a function / having 
an infinite Fourier-series representation: 

0 0 1 >»7r 

n = — oo J — x 

The trigonometric interpolant of / over a uniform grid xo, x \,..., xN on [0, 2ir] 
has the form 

/> ) = ^ ^ ( n ) e i - , 0(„) - J i l i - i . 
n = 0 

Let us examine how the coefficients /„ and <j>(n) are related. Observe that 

N+l N 
dx 

n = —oo w 

By Lemma 1.26, (e'nx,e,mx) vanishes except when n - m — j(N + 1), for 
some integer j . It follows that 

- 7 ^ = E 2W f(x)^T>{-i[m + j(N + l)}x}dx. (1.8-12) 
j~—00 

Equation (1.8-12) reveals that the discrete Fourier coefficient <t>(m) con-
tains information not only from the classical Fourier coefficient fm having the 
same frequency m/(4ir) but also from Fourier coefficients /m+J(jv+i) associ-
ated with higher frequencies. In a sense, trigonometric interpolation "con-
serves" the oscillatory information in the function / , subject to the impos-
sibility of representing oscillations having frequency greater than or equal to 
Fcrit := (N + l)/(47r) on the grid {x0,xi,.. .,X]\i}. This critical frequency 
Fcrit is called the Nyquist frequency for the grid. The interpolant / assigns 
information associated with frequencies greater than or equal to the Nyquist 
frequency to low-frequency discrete Fourier coefficients, thereby distorting the 
representation of low-frequency modes. 
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Aliasing is precisely this distortion. Figure 1 illustrates the phenomenon, 
showing that the functions sin x and sin 5x have the same nodal values, and 
hence the same trigonometric interpolants, on a grid with N + 1 = 4. On 
this grid, any function / having nonzero classical Fourier coefficients f\ and 
/s will have a trigonometric interpolant in which the oscillations associated 
with /s are aliased as contributions to the discrete Fourier coefficient ^(1). 

sin x 
sm5x 

FIGURE 1. The functions sin a; and sin5x, sampled on a four-
interval grid on [0,27r] to illustrate aliasing. 

Further Remarks 
This section presents the barest rudiments of the FFT, which one might best 
regard as a huge class of algorithms. The literature on the FFT is extensive, 
dating from before the widely cited work of Cooley and Tukey [3] to the 
present. While we restrict our discussion to FFTs of length 2P, in applications 
FFTs of more general lengths arise quite commonly. In fact, the computations 
in these cases, based upon factorings of the lengths of the FFTs, can be quite 
efficient. Moreover, reasonable algorithms exist even for FFTs having prime 
length. Curious readers should consult Rader [10]. 

Noticeably absent from this section is an estimate of the error associated 
with trigonometric interpolation. Suppose that / G C^m^([0, 2TT]), and let 
/ denote the trigonometric interpolant of / on a uniform grid with nodes 
Xk = 2irk/{N + 1). One can show that there is a positive constant C such 
that 

I IZ-ZIIL^^—STII^IU. . 

Here, || • ||£2 signifies the usual L2 norm on [0,2TT], and p-m^ is the mth 
derivative of / . The proof of this estimate is too involved to lie within our 
scope. Canuto et al. ([1], Section 9.1) supply details and draw connections 
with the analysis of aliasing errors. 
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1.9 Problems 
P R O B L E M 1. Examine the Runge phenomenon for Lagrange polynomial in-
terpolation of f(x) = (1 + 2 5 x 2 ) - 1 for - 1 < x < 1. Let A = {-1 = 
xo, xi,..., XQ, £10 = 1}, where Xk = — 1 + 0.2k, and compare the graph of the 
tenth-degree Lagrange interpolant for / on A with the graph of / . Investigate 
what happens when A = {20, z\,..., zio}, where the zjt are the C h e b y s h e v 
a b s c i s s a e , 

(2k + 1 TT\ 
Zk = c o s \ j m 2 ) ' * = 0 , 1 , . . . , # = 1 0 . 

PROBLEM 2. Prove the inequality (1-2-7). 

P R O B L E M 3. If Lo, L\,.. .L^ are the basis functions for Lagrange interpola-
tion of degree N on a grid {XQ, ■. -XN), show tha t ]C*=o Lk(x) = 1-

PROBLEM 4. Show that the functions denned in Equations (1.4-3) and (1.4-4) 
satisfy the conditions (1.4-5) and (1.4-6). 

P R O B L E M 5. Let / e Cl([a,b]). Call 

M = sup f(x), m = inf f(x), 
x€[a,b] *e[a,b] 

and consider the constant function <I>(x) = ( M + m ) / 2 , for x G [a,b], as 
an approximation to / . Show that \f(x) — $(x)\ is bounded by a quantity 
proportional to the interval length b — a. This observation lies behind an error 
estimate for piecewise constant approximations that has the form | |/—$||oo < 
constH/'lloo/i. (The fundamental theorem of calculus is a useful weapon here.) 

P R O B L E M 6. Prove Proposition 1.4. 

PROBLEM 7. Prove Theorem 1.10. 

P R O B L E M 8. To six significant places, sin(0.40) = 0.389418, cos(0.40) = 
0.921061, sin(0.45) = 0.434966, and cos(0.45) = 0.900447. Use these data, 
together with Hermite cubic interpolation, to estimate sin(0.43). Wha t is 
the error? How does it compare with the error estimate for Hermite cubic 
interpolation? Comment . 

PROBLEM 9. Let A^ and Ay be grids on the intervals [a, 6] and [c,d], re-
spectively, and suppose that M(AX) and A^(Ay) are piecewise polynomial 
interpolation spaces associated with these grids. Show that A<(A:r)(g)A/'(Ay) 
is independent of the choice of bases for A4(A r ) and Af(Ay). 

PROBLEM 10. If V is a vector space, then a function p : V —> V is a p r o j e c -
t i o n provided 
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(i) p is linear, that is, p(au + ßv) = ap(u) + ßp(v) for all u, v £ V and 
all scalars a and ß; 

(ü) p is idempotent, that is, p(p(v)) = p(u) for all v EV. 

Consider the interpolation operator T : C°([a,b]) —* MQ(A), where A is a 
grid on [a, b]. In this case, TT(/) is the piecewise Lagrange linear interpolant 
of / on A. Show that ir is a projection. 

PROBLEM 11. Prove Theorem 1.13. Do the interpolatory projections irx and 
■Ky commute? 

PROBLEM 12. For piecewise planar interpolation on triangles, Theorem 1.14 
gives the error estimate | | / — $||oo < 4M/i^a x . This estimate fails to show 
how interpolation on "long, skinny" triangles might differ from interpolation 
on more "regular" triangles. Denote by hma.x and hm\n the lengths of the 
longest and shortest sides, respectively. From the law of sines for arbitrary 
triangles, 

^ m a x " m i n 

sin 0max sin 0mm ' 
where 6max is the angle opposite the longest side and ömin is the angle op-
posite the shortest side. Derive an error estimate of the form | | / — $||oo < 
C/(sin 0min)2. What implications does this estimate have for the use of "long, 
skinny" triangles? 

PROBLEM 13. The general quadratic polynomial in x and y has the form 
$(x, y) — a + bx + cy + dx2 + exy + fy2, where a, b, c, d, e, / are constants. 
Develop a scheme for quadratic interpolation over a single triangle. Where 
are the nodes? What are the basis functions? If you use your scheme over 
each triangle fie of a triangulated region fl, for what nonnegative integer 
values of p will your piecewise polynomial interpolants lie in Cp(f2)? 

PROBLEM 14. Prove Corollary 1.21. 

PROBLEM 15. The purpose of this exercise is to construct bases for spaces of 
natural cubic splines on [a, b] such that each function in the basis has nonzero 
values only over a small subset of [a, b}. 

(A) Let A = {xo,.. .,Xfl/} be a uniform grid on [a, b], so Xi — XQ + ih. 
Extend A by adding new nodes x_i = XQ — h and x^+i = XQ + (N + 
l)h, and call the larger grid A'. For each i — - 1 , 0 , ...,N,N+ 1, 
determine a function Bi € M^A') that satisfies the conditions 

and B'iixj) = B?{XJ) = 0, j = i± 2. 
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(B) Observe that B((x) = 0 whenever \x — Xi\ > 2h. Plot Bi(x). 

(c) Show that every s G .M^A) c a n be written as a linear combination 
of the functions 5 , , that is, there are constants c_i, Co,..., c/v+i such 
that s(x) — Yli=-i ciBi(x) for x G [a,b]. (Remember, A does not 
include a:_i or £jv+1.) The functions B{ are called B-splines; "B" 
stands for "bell-shaped." 

PROBLEM 16. Using some reasonable choice of/, computationally verify the 
error estimate ||f — m||oo < 0(h2) of Theorem 1.16 by means of a convergence 
plot. 

PROBLEM 17. Schumaker [11] generalizes the notion of a spline on a grid 
A = {a = xo, ■ ■ ■, XN — 6} to mean a function in AfJJ_1(A), for some degree 
n. Familiar cases include M\{&) (cubic splines), MQ(A) (piecewise Lagrange 
linears), and Ml^A) (piecewise constants). What sense can we make out of 
A^i(A)? Show that the "obvious" conditions, 

(i) S is quadratic on each [n_i,i<]; 

(ti) SeCHl^b]); 

(iii) S(xi) = f(xi) for » = 0 , . . . , N, 

lead to fewer equations than unknown parameters. Another approach, sug-
gested by Kammerer et al. [6], is the following: Set 

S(x0) = f(x0); S(xN) = f(xN); 

^ V 2 J = 7 V 2 J ' î = 1" - ^ 
and require S G C1([a,è]). Show that these conditions lead to a match 
between the number of equations and the number of undetermined parameters 
in S. Describe the resulting interpolants. 
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Chapter 2 

Direct Methods for Linear 
Systems 

2.1 Introduction 

In Chapter 1 we encounter several sets of simultaneous algebraic equations. 
These have the form 

«1,1^1 + Ol,2a:2 + 1" 0,i:nX„ — bi 

02,1^1 + 02,2^2 + ■ ■ • + 0(2,n^n = &2 
. (2.1-1) 

an,ixi + aUi2X2 + (- an,nxn — bn, 

where the coefficients aitj,bi are known real numbers and the variables Xi 
are unknown.1 Any such set of equations is a linear system. This chapter 
discusses numerical methods for determining x\, x-i,..., xn. 

Of special interest are cases in which n is large. A key consideration for 
any method in this setting is the operation count, which is a tally of the 
number of additions, subtractions, multiplications, and divisions required to 
produce answers for «i, Z2, ■ • •, %n- Algorithms for solving Equations (2.1-1) 
can have operation counts that grow rapidly with the order n of the system, so 
applications for which n is large require careful choices of numerical methods. 

In the language of matrices and vectors, the linear system (2.1-1) takes 
the form 

a l , l ' ' " a l , n 

<*n,l - ' ' an,n 

'Many ideas presented in this chapter extend naturally to complex linear 
systems. 

X\ 

Xn 

= 

6i 

bn 
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or, more briefly, Ax = b , where x , b £ Rn and A belongs to the vector space 
M n x n of all n x n real matrices. We make frequent reference to the transposes 
of matrices as well as to the notions of symmetry and positive definiteness 
introduced in Section 1.7. 

We assume that A is nonsingular, so that the system (2.1-1) has a unique 
solution vector x = A _ 1 b for any right-side vector b € Mn . This formal 
statement hides an important practical caveat: Computing the inverse A -

from A usually requires much more arithmetic than is necessary to solve for 
x. One might broadly characterize this chapter as a study of methods for 
finding x without computing A - 1 explicitly. 

For now, the methods of interest are d irect . Tha t is, they produce a 
definite n-tuple x of entries of x after a predetermined, finite sequence of 
arithmetic operations. Were we to execute the arithmetic without error, x 
would satisfy the equation set exactly. However, in practice the computed 
values generally do not solve the linear system (2.1-1) exactly, since errors 
associated with machine arithmetic contaminate the calculations. One of our 
goals is to assess these errors. Intuitively speaking, a "reasonable" direct 
method applied to a "reasonable" linear system yields an approximate solu-
tion x such that some norm of the error x — x is "small." We make these 
notions more precise below. 

In contrast to direct methods are ind irect or i t era t ive methods, which 
produce sequences {x(m )} of approximate solutions. One hopes that these 
sequences converge to the true solutions in the sense that ||x — x^m^|| —► 0 as 
m —> oo. Chapter 4 discusses iterative methods for linear systems. 

A general strategy called f a c t o r i z a t i o n often guides the development 
of efficient numerical algorithms. The idea is to construct a decomposition 
A = BC, then to solve BCx = b in two stages. First we define an intermediate 
unknown z := Cx and solve Bz = b for z. Then we recover the original 
unknown x by solving Cx = z. This strategy is worth pursuing if we can define 
B and C so that linear systems involving them are easy to solve. The next 
section introduces one such factorization. The overall strategy generalizes to 
more factors: One can imagine solving systems decomposed as BCDx = b, 
and so forth, using essentially the same ideas. 

A warning is in order: One commonly taught direct method, known 
as C r a m e r ' s rule , is extraordinarily poor as a numerical algorithm. In 
Cramer 's rule, one forms the n matrices Ay), j = 1, 2 , . . . , n, by replacing the 
jth column of A with the column vector b . One then calculates the n + 1 deter-
minants det A, det A(!), det A ( 2 ) , . . . , det A(„), whereupon XJ = det \j)/ det A. 
Since det A = 0 if and only if A is singular (see [4], Section 4.2), our as-
sumption that A is nonsingular guarantees that this expression for Xj is well 
defined. 

Cramer 's rule possesses siren-like appeal, since it furnishes an apparently 
closed-form solution to the linear system and also shows plainly that some-
thing goes wrong when A is singular. However, computing the n + 1 determi-
nants via s tandard expansion by minors requires an astronomical 0((n + l )n!) 
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arithmetic operations as n —► oo. In contrast, the most operation-intensive 
direct method that we discuss below — Gauss elimination — requires only 
0(n3) operations. As we show later, one can reduce the operation count 
of Cramer's rule by using some of the steps of Gauss elimination to com-
pute each of the n + 1 determinants required. This approach still requires 
0((n + 1) • n3) = 0(n4) operations! Cramer's rule serves as a useful theoret-
ical tool in some circumstances, but even from a charitable point of view it 
is inappropriate as a numerical method when n > 2. 

2.2 Gauss Elimination 

Motivation and Construction 

A common strategy for solving the linear system (2.1-1) is to convert it to an 
equivalent upper triangular system, that is, one having the form 

«1,1 «1,2 

«2,2 

« l ,n 

«2,n 

" Xi 

*2 

. X " 

= 

' Ci 

c-i 

cn 

(2.2-1) 

Afterward, we can conveniently solve the individual equations in (2.2-1) in 
reverse order, from last to first, to get 

Xn-l = ( c „ _ i - « n - l , n « n ) / « n - l , r j - l 

Xi = (Cl - «1,2*2 U\,nXn) / « ! , ! • 

We call this procedure backward substitution. 
There is a straightforward algorithm for converting the system (2.1-1) 

to one of the form (2.2-1). This process, called row reduction, has (n — 1) 
steps. In the first step, we eliminate the variable x\ from each of the equations 
corresponding to rows 2, 3 , . . . , n. We do this by forming the factors /,-(1 = 
a t , i / a i , i i then subtracting /;:i x (row 1) from row i, for i = 2 , 3 , . . . ,n. (For 
now, assume that division by 0 does not occur.) The resulting system, which 
has the same solution vector x = (x\, X2,.. . , xn)

T as the system (2.1-1), has 
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the structure 

Ol.l a l , 2 

0 a [i] 
2,2 

Ol,n 
[1] 
2.n a 

0 a [i] 
n,2 

a l l ] 

4 1 ] 

A'11 

where â  J = a,-j — '.,iai,j and ft' J = 6j — /,-,i&i. 
In the second step, we repeat this procedure for the remaining (n— l)x(n— 

1) submatrix below row 1 of the partially reduced system Â  'X = b ^ . Thus 
we form the factors /f|2 = a\ ^l^i 2> l — 3 ,4 , . . . , n, and subtract /t|2 x (row 2) 
from row », for i = 3 ,4 , . . . , n, to get a system of the form 

«1,1 

0 

0 

«1,2 
[1] 
2,2 

0 
a 

«1,3 

a[1] 

"2,3 
a[i] 

"3,3 

al2] 
a n,3 

a i , n 

"2,n 
a[2] 

"3,n 

a[2] 

un.n 

' Xi 
x2 
x3 

. I " 

= 

°2 
J2] 
°3 

n 

A'21 b'2 ' 

Again, this system has the same solution vector x as the system (2.1-1). 
After n — 1 steps like this, we are left with an upper triangular system, 

a i . i <*l,n ' x\ 

. xn . 

" 6i ' 

A1""1' = U b["-U 

having the same solution vector x as the original system (2.1-1). For brevity, 
let us denote «,-j = crfj ' and c,- = 6J-,_ J and write this upper triangular 
system as Ux = c. We can now apply backward substitution to solve for the 
unknowns x\,x^,..., x„. 

The entire procedure, using row reduction followed by backward substi-
tution to solve the system (2.1-1), is called Gauss elimination. In addition 
to being a numerical method in its own right, it serves as a conceptual foun-
dation for other techniques discussed in this chapter. 

Practical Considerations 
Row reduction is the most expensive part of Gauss elimination. At step j , the 
process requires n — j divisions to compute the factors Uj, (n — j)(n — j + 1) 
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multiplications to form the products of these factors with entries in row j , 
including the jth entry of b , and (n — j)(n — j + 1) subtractions of these 
products from corresponding entries in rows j + 1, j + 2, 
number of operations for row reduction is therefore 

, n. The total 

n - l 

£ [(„-j) + 2(n -j)(n-j + l)] = — + 
j=\ 

2 T ^ 

3 6 ■ 

In simplifying this sum, we have used the identities 

m(m + 1) Y"" -2 _ m(m + l)(2m + 1) E'2 = 
i = i 

Backward substitution requires substantially less arithmetic. Solving for 
the unknown Xj requires n — j multiplications, n — j subtractions, and one 
division. The total number of operations is therefore 

; [ 2 ( n - i ) + l ] n2. 

Hence Gauss elimination requires | n + | n — | n arithmetic operations. 
When the number n of unknowns is large, the term | n 3 dominates those 
having lower degree. Since Gauss elimination plays such a fundamental role 
as a direct solution method, 0(n3) serves as a benchmark, against which to 
measure operation counts for all related algorithms. 

(Our operation count for Gauss elimination differs from that presented by 
many authors. People traditionally ignore additions and subtractions in op-
eration counts, since multiplications and divisions require substantially more 
time on standard, single-instruction, single-dataset computers. How the oper-
ations compare on more advanced computers depends on both the machine's 
architecture and the programmer's skill at exploiting it. Not wanting to de-
vote detailed attention to this issue, we count all arithmetic operations.) 

Some applications call for the solution of several linear systems having the 
same matrix but different right-side vectors, as in 

Axx = b i , Ax2 >2, (2.2-2) 

In such problems the factorization strategy mentioned in Section 2.1 is useful. 
In the context of Gauss elimination, we save computational effort in systems 
like (2.2-2) if we avoid repeating the arithmetic required for row reduction. 
These savings are possible, provided that we systematically store the factors 

hj — aitj l<vj • ' calculated at each step j of the row reduction. Define the 
lower triangular matrix L 6 '. 

L:= 

" x n as follows: 

1 
/2,i 1 

* n , l * * " »n ,n—1 

-

l 
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One can confirm that A = LU. We call this decomposition of A an LU 
factorization. When A is nonsingular, it has a unique LU factorization in 
which L has only unit diagonal entries; the proof of this fact is an exercise. 

Now we solve each of the linear systems Axjb = b* in (2.2-2) by using 
the factorization strategy: First solve Lz* = b* for the intermediate vector 
Zfc € K". This step proceeds by a forward substitution algorithm analo-
gous to backward substitution, and it requires Ö(n2) arithmetic operations. 
Then solve the upper triangular system Ux* = z* using ordinary backward 
substitution. Therefore, once we have performed the 0(n3) operations needed 
to obtain the LU factorization of A, solving any linear system involving A re-
quires only 0(n2) additional operations. 

The LU factorization enjoys two other properties. First, storing both L 
and U requires no more space than storing A, since there is no need to store 
the entries that are 0 or 1 a priori. Second, the LU factorization provides 
a cheap way to compute the determinant of A. Since A = LU, detA = 
det L det U. But the determinant of any upper or lower triangular matrix is 
simply the product of its diagonal entries, and hence det L = 1. It follows that 
detA = det U = wi,i«2,2 • • •««,«• Consequently, by using row reduction, one 
can compute det A in ö(n 3 ) operations, as opposed to the 0(n!) operations 
required in ordinary expansion by minors. 

The success of Gauss elimination hinges on the assumption that none of 
the pivots a-J vanishes. From a computational point of view, if any of the 
pivots is extremely small in magnitude, then the factors lij = cqj /ctjT 
become large in magnitude, and the products 

formed with these factors during step j of row reduction tend to magnify any 
existing errors in the entries of row j . To avoid the difficulties associated 
with small or vanishing pivots, one can adopt a pivoting strategy, of which 
several exist. 

Perhaps the simplest and most common pivoting strategy is partial piv-
oting. To see how it works, assume that we have row-reduced A through 
step j — 1. Rows 1,2,..., j — 1 are then the only ones in the partially reduced 
matrix A" - 1 ' that contain nonzero entries in columns 1 , . . . ,j — 1. Scan the 
entries tf-i] ij-i] _Ü-U 

ai,i ' aj+ij> ■■•' an,j 

in column j below the (j — l)st row to find the one having largest magnitude, 
say a]fc7 • Problem 8, which uses ideas developed later in this section, asks 
for proof that some nonzero candidate <r£~ ' exists among the scanned en-
tries, unless the original matrix A is singular. (If more than one of the entries 
scanned has this same magnitude, let k be the smallest of their row indices.) 
Then interchange rows ,; and k in the matrix A^~" and in the right-side vec-
tor b^ ' - 1 ! , as illustrated schematically in Figure 1, and proceed to eliminate 
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column ,;' from rows j + 1, j + 2 , . . . , n via row reduction. Since interchanging 
rows simply changes the order of the equations being solved, the resulting 
linear system still has the same solution vector as the original system (2.1-1). 

largest magnitude in column j 

F I G U R E 1. Schematic illustration of a row interchange in partial 
pivoting. 

As an example, consider the linear system 

4.0000 

-3.0000 

0.0000 

1.0000 

2.0000 

1.0000 

5.0000 

6.0000 

10.0000 

8.0000 

-1.0000 

-5.0000 

7.0000 ' 

2.0000 

4.0000 

2.0000 _ 

Xl 

X2 

X3 
x* . 

' 1.0000 

-2.0000 

0.0000 

. -6.0000 

X2 

X3 

n 

" 1.0000 

-1.2500 

0.0000 

. -6.2500 

(2.2-3) 

The entry a i t i = 4.0000 already has the largest magnitude of any entry 
in column 1, so we proceed without any initial row interchange. The first 
step of row reduction, using the factors /2,i = —0.7500, ^ i = 0.0000, and 
/4,i = 0.2500, yields 

4.0000 2.0000 10.0000 7.0000 
0 2.5000 15.5000 7.2500 
0 5.0000 -1.0000 4.0000 
0 5.5000 -7.5000 0.2500 

Scanning column 2 below the first row, we see that the entry having largest 
magnitude, namely 5.5000, occurs in row 4. Therefore we interchange rows 2 
and 4 to get 

4.0000 2.0000 10.0000 7.0000 
0 5.5000 -7.5000 0.2500 
0 5.0000 -1.0000 4.0000 
0 2.5000 15.5000 7.2500 

Now we apply the second step of row reduction, using the factors ^,2 = 0.9091 
and Ut2 — 0.4545 (to four decimal places) to obtain 

4.0000 2.0000 10.0000 7.0000 
0 5.5000 -7.5000 0.2500 
0 0 5.8182 3.7727 
0 0 18.9091 7.1364 

Xl 

Xl 

X3 

H _ 

' 1.0000 

-6.2500 

0.0000 

. -1.2500 

Xl 

Xl 

X3 
x* . 

' 1.0000 

-6.2500 

-5.6819 

. -1.5906 
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Scanning column 3 below row 2 reveals that the entry 18.9091 having largest 
magnitude lies in row 4, so we interchange rows 3 and 4 to get 

4.0000 2.0000 10.0000 7.0000 
0 5.5000 -7.5000 0.2500 
0 0 18.9091 7.1364 
0 0 5.8182 3.7727 

Xl 

X2 

X3 

X4 . 

" 1.0000 

-6.2500 

1.5906 

5.6819 

The final step of row reduction, using the factor ^ 3 = 0.3077, yields the 
upper triangular system 

4.0000 2.0000 10.0000 7.0000 
0 5.5000 -7.5000 0.2500 
0 0 18.9091 7.1364 
0 0 0 1.5769 

Xl 

X2 

X3 

x* . 

" 1.0000 

-6.2500 

1.5906 

5.1925 

By storing the factors l{j in the order indicated by their indices, we get 
the lower triangular matrix 

1 0 0 0 
- 0.7500 1 0 0 

0.0000 0.9091 1 0 
0.2500 0.4545 0.3077 1 

However, because of the row interchanges introduced during row reduction, 
this matrix no longer gives a valid LU factorization of A. It is possible, nev-
ertheless, to salvage an LU factorization from this procedure. We discuss the 
details shortly, but the upshot is this: So long as A is nonsingular, it is possi-
ble to permute its rows so that the resulting matrix has an LU factorization. 
The lower triangular matrix L in this factorization contains the factors /jj 
used in the row reduction, but, owing to the row interchanges, these factors 
may appear in positions different from those suggested by their indices. 

Some pathologic linear systems are so intractable that partial pivoting 
still leaves the row reduction vulnerable to unacceptable roundoff errors, even 
though A is nonsingular. In such cases, one can resort to total pivoting. 
Here, after eliminating column j — 1 from rows j , j + 1 , . . . , n, we scan the 
entire (n — j -\-1) x (n — j + 1) submatrix below row j — 1 and to the right of 
column j — 1 to find the entry a% ~m ' = amax having largest magnitude. Then 
we interchange rows j and k and columns j and m, so that amax occupies the 
pivotal position, and proceed with row reduction. Figure 2 illustrates this 
scheme schematically. Such a column interchange calls for extra bookkeep-
ing to keep track of the corresponding switch in the order of the unknowns 
Xl,X2, . ■ -,Xn. 

Compared with partial pivoting, total pivoting requires a much more 
extensive search at each step of row reduction. Before performing stage 
j of row reduction, we must determine the largest-magnitude entry of an 
{n — j + 1) x (n — j + 1) submatrix. This task requires (n — j + l ) 2 — 1 
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(-. row j 

row k 
) 

gest magnitude 

FIGURE 2. Schematic illustration of row and column interchanges 
in total pivoting. 

arithmetic comparisons. Therefore, total pivoting requires 

"j2[(n-j + l)2-l] = 0(n3) 

comparisons, together with the extra storage required to keep track of row 
and column interchanges. Since a comparison typically requires at least as 
much execution time as an arithmetic operation such as addition, it seems 
prudent to use total pivoting only for the most stubborn of linear systems. 

Mathematical Details 
We devote the rest of this section to the theoretical details behind pivot-
ing. The discussion emphasizes a matrix-theoretic approach, which lends an 
algebraic flavor to the arguments. 

As hinted earlier, it is possible to incorporate the row interchanges asso-
ciated with partial pivoting into the LU factorization. To do this, we employ 
a matrix representation for row reduction. Suppose that we have completed 
step k — 1 of row reduction to get a partially reduced matrix 
Given the factors lt+i,k, 'fc+2,fc> • • ■. ln,k, the process of subtracting /,-,& x(row 
k) from row i for i = k + 1, k + 2 , . . . , n is equivalent to multiplying Â  ~^ (as 
well as bffc_1') on the left by the n x n matrix 

-h+i,k 1 
(2.2-4) 

- ' n , 
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That is, 
AW = G/kAl*-1J = G*Gt_1..-G1A, 

bM = Gibbl*-1! = GfcG*-! ••■Gib. 

We call any matrix having the structure (2.2-4) a column-Ar Gauss t rans-
formation. The inverse of such a matrix corresponds to adding the row 
multiples instead of subtracting them. Thus, 

1 

1 
h+i,k 1 

which is also a column-fc Gauss transformation. 

PROPOSITION 2.1. / / G* G M n x n is a cohmn-k Gauss transformation for 
each index k, k = 1, 2 , . . .n — 1, then the product Gj" GJ • • -G"..! is a lower 
triangular matrix with unit diagonal entries. 

PROOF: This is an exercise. I 

We can represent row reduction without pivoting as a succcession of mul-
tiplications on the left by appropriate Gauss transformations: 

G„-iG„_2 • • GiA = U, G„_iG„_2 • • Gib = c. 

By applying the inverses of these Gauss transformations in the opposite order, 
we can solve for A to find 

A = Gr1G2"
1 • • •G- i 1 U. 

L 

The product G^'GJ • • • Ç*n-\ IS precisely the lower triangular matrix L in the 
LU factorization of A, assuming that no zero pivots arise. 

To incorporate partial pivoting into this formalism, we need a matrix 
representation for the interchange of rows. We begin with the following: 

DEFINITION. The matrix P G M n x n is a pe rmuta t ion mat r ix if (i) P has 
exactly one entry whose value is 1 in each row and in each column and (ii) 
all other entries ofP are 0. 

To justify this terminology, we note that, if P G M n x " is a permutation matrix 
and x G Mn, then the entries in Px G M" are obtained by permuting the entries 

G,-x = 
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of x. A trivial example of a permutation matrix is the n x n identity matrix 
I, whose action on any vector x g l " leaves the entries unchanged. 

For us, a useful class of permutation matrices is the set of e lementary 
pe rmuta t ion matr ices Pk,m, obtained from I by interchanging two columns 
k and m. For example, in R4 x 4 , 

P2,3 = 

1 0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 1 

is an elementary permutation matrix. (With this notation, Pk,k denotes the 
identity matrix I for any index k.) Any elementary permutation matrix Pk,m 

has the properties P^^m = Pfc.m = Pfc,m-
A key property of elementary permutation matrices is the following: 

PROPOSITION 2.2. If A G M n x " and Pk,m G K" x n is an elementary permuta-
tion matrix, then PjtimA differs from A by the interchange of rows k and m. 
Similarly, APfcim differs from A by the interchange of columns k and m. 

PROOF: This is an exercise. I 

The main consequence is that elementary permutation matrices serve as ma-
trix representations of the row interchanges in partial pivoting. Another 
consequence is that any permutation matrix is the product of elementary 
permutation matrices, and the set of all n x n permutation matrices is closed 
under matrix multiplication. For a group-theoretic view of these observations, 
see Herstein ([2], Section 2.10). 

In row reduction with partial pivoting, we apply to the partially reduced 
matrix Â  ~ ' an elementary permutation matrix Pk,m, where m > k, before 
applying a Gauss transformation G*. If no row interchange is necessary, the 
appropriate permutation matrix is the identity matrix, 1 = P*,*. Therefore, 
we can represent the entire procedure as a sequence of matrix multiplications: 

G„_iP„_i---G2P2GiPiA = U, 

G„_iP B _i-"GaP a GiPib = c. 

(To fight indicial clutter, we use the notation P& as shorthand for the elemen-
tary permutation Pjt,m applied at step k of row reduction.) Solving for A and 
using the fact that Pĵ "1 = Pfc, we find that 

A = P 1 G r 1 P 2 G 2 - 1 - P „ _ i G ; l 1 U . (2.2-5) 

Unfortunately, the matrix PiGj" P2GJ • • • P n - i G " ^ is not lower triangu-
lar unless each P* is the identity matrix — that is, unless no row interchanges 
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occur. For this reason, Equation (2.2-5) does not qualify as an LU factoriza-
tion in general. However, the following theorem indicates how to produce an 
LU factorization of a permutation of the rows of A. 

THEOREM 2.3. Suppose that A has the row reduction (2.2-5). Then PA = LU, 
where P := P„_iP„_2 ■ ■ ■ Pi is a permutation matrix and 

L : = P ( P 1 G r 1 P 2 G 2 1 - - P „ _ i G - i 1 ) 

is lower triangular with unit diagonal. 

The proof uses a lemma: 

LEMMA 2.4. Let G^1 € M n x " be a column-k Gauss transformation for k < 
n — 1, and suppose that Pj € K n x n interchanges rows j and i, where j,i > 
k. Then the matrix PjGjT Pj is a column-k Gauss transformation as well. 
Moreover, PjGjjT Pj differs from G^ only in the interchange of the entries in 
rows j and i of column k. 

PROOF: Multiplying GjjT1 on the left by Pj accomplishes the following row 
interchange: 

1 

< > . * 1 0 

k,k 0 

0 

l,,k 1 

Multiplying the result on the right by Pj then effects a column interchange 
to the right of column k: 

li.k 0 1 

< ; . * 1 0 < > , * 

l o 

This proves the lemma. 
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PROOF OF THEOREM 2.3: Multiplying both sides of Equation (2.2-5) by P 
clearly shows that PA = LU. Hence, we need only prove that L, as defined, 
is lower triangular with unit diagonal. The overall idea is to write L as a 
product of appropriate Gauss transformations. Toward this end, Lemma 2.4 
has a helpful consequence: Any matrix product G'k having the form 

GJ := Pn_iP„_2 ■ ■ ■ Pjfc+iGj. Pjk+lPfc+2 • ' Pn-l 

is a column-fc Gauss transformation that differs from GjjT only by a permu-
tation of the entries below the diagonal in column k. 

To unravel the matrix product that defines L, observe that 

P t P i G r ' - P n - i G ^ J U = P „ _ i - - - P i P i G r 1 " - P „ - i G - i 1 U 

I 

= Pn- i•••P2G1 P2G2 •• • Pn-iG„_1U. 

P2IGJ1 

If we replace the identity matrix I in P2IGJ1 by the equivalent expression 
P3 • • • Pn- iPn- i • • • P3, then there appears a factor 

Pn-i • • • P2GJ" P2 • • -Pn-i , 

which collapses to a column-1 Gauss transformation G*. Therefore, 

P ( P i G r 1 - P „ - 1 G ^ 1 ) U = G Î P „ _ 1 - P 3 G 2 - 1 P3G31 ••■P„_iG;i1U. 

P3IGJ1 

By replacing I again, now with the equivalent expression 

P4 ' • "Pn-lPn-l - • -P-i, 

we can reason as before, discovering a column-2 Gauss transformation G* 
such that 

P ( P I G T ' ' ' P n - l G " ^ ) U = G'GjPn-l • • P4G3 P4G7 ■Pn-lG~_1U. 

P4IG41 

Continuing in this way yields the identity 

P (PiGr1 • • • P n - i G ^ O U = GJ • • • G'^G-l, U. 

But the matrix L = G\ • ■ ■ G^_2Gn"l1 is lower triangular, with unit diagonal, 
and each column k contains, below the diagonal, some permutation of the 
factors lk,j used in the row reduction. I 
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The linear system (2.2-3) furnishes an example. In this case, the permu-
tation matrix P is 

" 1 0 0 0 " 
0 1 0 0 
0 0 0 1 

. 0 0 1 0 . 

" 1 0 0 0 " 
0 0 0 1 
0 0 1 0 

. 0 1 0 0 . 

" 1 0 0 0 " 
0 1 0 0 
0 0 1 0 

. 0 0 0 1 . 

' 1 0 0 0 ' 
0 0 0 1 
0 1 0 0 

. 0 0 1 0 . 

P3,4 P2,4 P i , 

The correct lower triangular factor for PA is therefore 

L = 

1 0 0 0 
0.2500 1 0 0 
0.7500 0.4545 1 0 
0.0000 0.9091 0.3077 1 

to four decimal places. 

One can still compute det A from det U; however, partial pivoting affects 
the calculation. In particular, the relationship det P det A = det L det U shows 
that det A = det U/ det P. The factor det U is the product of diagonal entries, 
as before, but det P = (— l ) p , where p is the number of steps in row reduction 
requiring an actual row interchange. For the example system (2.2-3), we 
performed row interchanges in steps 2 and 3, so det P = (—l)2 = 1, and 
det A = det U ~ 655.9907, to four decimal places. (The exact value of det A 
is 656; the discrepancy results from accumulated roundoff errors in the row 
reduction used to compute U.) 

Strictly speaking, one can construct an LU factorization with pivoting for 
any matrix A € ]R"X". However, in cases where no nonzero pivot exists at 
some stage of the row reduction, the resulting upper triangular matrix U is 
singular. To visualize this concept, imagine that the first two steps of row 
reduction on A e l 5 x 5 yield 

AM = 

* * * * * 
0 * * * * 
0 0 0 * * 
0 0 0 * * 
0 0 0 * * 

Here the symbol * stands for an arbitrary nonzero entry. A™ has no nonzero 
pivot below row 2 in column 3, so standard row reduction with partial pivoting 
cannot proceed. However, we can "skip" the third step of row reduction, 
formally taking P3 = G3 = I to get AM = A«. We then move on to the 
fourth step. Assuming that a nonzero pivot is available at that stage, we 
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* 
0 
0 
0 
0 

* 
• 

0 
0 
0 

* 
* 
0 
0 
0 

* 
• 

* 
• 

0 

* 
• 

* 
* 
• 

expect the final result to have the upper triangular structure 

U = 

Notice that det U = 0. 
This observation helps in establishing the following result. 

THEOREM 2.5. A G E n x n is nonsingular if and only if, at each step k of row 
reduction, it is possible to find a nonzero pivot in column k below row k — 1. 

PROOF: See Problem 8. I 

There is some utility in characterizing matrices that are amenable to row 
reduction without partial pivoting. For this task, some additional terminology 
is helpful. Given a matrix A € M n x n , we speak of a block partitioning 

( Ai.i Ai,2 \ 
V A2,i A2,2 J 

where the matrices Ai,i 6 l kxk 
Ai, 

jfcx(n-fc) A 
2,1 

(n-*)xfc a n d 

A2 2 € ]j^n-fc)x(n-fe) a r e thg blocks. We often indicate the block dimensions 
associated with such a partitioning as follows: 

A = fAi.i 
\ A 2 , i 

n — k 

Al,2 
A2,2 

(2.2-6) 

and we agree that all block partitionings appearing in a single equation have 
the same block dimensions unless otherwise stated. One can easily verify that 
the familiar rules of matrix multiplication hold "blockwise:" 

/ Ax.i Ai,2 \ / 
V A2,i A2,2 J \ 

Bi . i 
B2 , i 

B i , 2 

B2,2 

Ai.iBi^ + Ai |2B2|i Ai_iBi?2 + Ai t2B2 |2 

A2)iBi ii -I- A2j2B2,i A2,iBii2 + A2 |2B2 |2 

provided that we respect the noncommutativity of matrix multiplication in 
forming the block products. 

DEFINITION. If A £ R n x n , then the kth leading principal submat r ix A* 
of A, for k = 1, 2 , . . . , n, is the block 

«1,1 O-l.k 

A* = A i i 

a*,i • ■ • o,k,k 
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in the block partitioning (2.2-6). 

The leading principal submatrices determine whether A is amenable to 
row reduction without pivoting: 

THEOREM 2.6. Let A G ffin*" be nonsingular. Row reduction of A without 
partial pivoting is possible if and only if all leading principal submatrices of 
A are nonsingular. 

PROOF: First assume that row reduction without partial pivoting is possible. 
Thus we can compute an LU factorization A = LU. Since 0 ^ det A = 
detLdetU, neither L nor U is singular. To show that the leading principal 
submatrix Afc is nonsingular, we examine the following block partitionings: 

k 
n — k 

k 

fAi.i 
VA2,1 

n — k 

Al,2 
A2,2 

^ _ A i , i 0 \ /Ui . i U M \ 

Since A* = Ai,i = LijUi.i and det Lii = 1, A* is nonsingular provided that 
det Ui,i ^ 0. But the fact that U is upper triangular implies that 

det Ui,i det U2,2 = det U = det A ^ 0, 

from which it follows that det Ui,i ^ 0. 
Now assume that each of the leading principal submatrices Ai, A 2 , . . . , An 

is nonsingular. We demonstrate by induction on k that each pivot a-j. ̂  
encountered during row reduction is nonzero. When k = 1, the pivot is 
a\ i = Ai, which is nonzero by the hypothesis of nonsingularity. If none 

of the pivots a\ [,a2 2, • • • , a k- i i - i vanishes, then we prove that a\. £ ^ 0 
by examining the row reduction through step k — 1. At that point, the 
application of Gauss transformations Gi, G 2 , . . . , Gjt_i to A has generated a 
partially reduced matrix A' _ 1 ' . We block partition the process as follows: 

At*-U = 
A[*-i] A I * - 1 ! 
" 1 , 1 M l , 2 
A[k-1] A [ t - 1 ] 
" 2 , 1 " 2 , 2 

A [0 ] AM 
"1 ,1 " 1 , 2 _ / ( G t - i ) M 0 \ /(GOi,! 0 \ / A - Af t \ 

~ UG*-iKi (G*_i)a,3>/"" V(GiKi (Gi)2,2; \A[?\ A ^ j -

The k x k block Aj J~ , which has crk ^ in its lower right corner, is upper 
triangular. Moreover, 

A j r 1 ] = (G*_i)i , i(G t_2)M • • • (GOx.xA™. 
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But by hypothesis Aj [ — A* is nonsingular and hence has nonzero determi-
nant, and det(Gj)i,i = 1 for % — 1,2,..., k — 1. Therefore, 

d e t A [ * - i ] _ a [ o ] . [ i ] . . . [ t - i ] / 0 aeiM l x — «iii«2,2 "Jb.fc r u> 

and hence <rk ^ ' ^ 0. I 

Using this theorem, one can identify several common types of matrices 
that are amenable to row reduction without pivoting. 

DEFINITION. The matrix A G K" x n is s tr ict ly row diagonally dominant 
if 

K>l > X ^ K J I 

for every row index i = 1,2,..., n. 

In common usage, we omit the word "row," so that "strictly diagonally dom-
inant" means "strictly row diagonally dominant." 

COROLLARY 2.7. Any strictly diagonally dominant matrix is amenable to 
row reduction without pivoting. 

PROOF: See Problem 2. I 

As another example, recall that A G E " x " is symmetric if A = A and 
positive definite if, for any nonzero vector x G Kn, x T A x > 0. Theorem 1.25 
guarantees that positive definite matrices are nonsingular. 

THEOREM 2.8. For a symmetric matrix A G ffi"x", the following statements 
are equivalent: 

1. A is positive definite. 

2. Every eigenvalue of A is a positive real number. 

3. Every leading principal submatrix of A is positive definite. 

PROOF: See Problem 7. I 

Statement 3 has an immediate consequence: 

COROLLARY 2.9. Symmetric, positive definite matrices are amenable to row 
reduction without pivoting. 

In the next section we examine an efficient scheme for solving linear systems 
involving symmetric, positive definite systems. 



126 CHAPTER 2. DIRECT METHODS FOR LINEAR SYSTEMS 

2.3 Variants of Gauss Elimination 

Motivation 

LU factorization offers a powerful approach to solving linear systems, and 
Gauss elimination provides a systematic and easily motivated alogorithm 
for computing L and U. Still, Gauss elimination is quite complicated from 
a computational viewpoint. Row reduction alone requires multiplication of 
machine-rounded numbers by factors determined during the execution of the 
algorithm, subtraction of the results from other rounded numbers, and re-
peated storage and retrieval of intermediate results from registers in the com-
puter's memory. Even though pivoting strategies allow some control over 
the amplification of roundoff errors, detailed analysis of the machine errors 
incurred during Gauss elimination is an intricate task. 

One crude but common technique for controlling the effects of roundoff 
errors is to compute intermediate quantities in double-precision arithmetic, 
trusting that the accumulated machine error will stay small enough not to 
affect digits in the single-precision answer. However, in ordinary Gauss elim-
ination, storing intermediate results in double precision can significantly in-
crease the memory needed to execute the algorithm. Methods that avoid 
intermediate storage therefore have some appeal. 

In this section, we examine several algorithms that produce triangular 
factorizations while avoiding some of the complexity associated with Gauss 
elimination. In particular, we present the Doolittle and Crout methods, which 
obviate storage and retrieval of intermediate results in computing L and U. 
We also examine the Cholesky decomposition, which produces a space-saving 
triangular factorization for symmetric, positive definite matrices. 

The Doolittle and Crout Methods 

Knowing that an LU factorization of A G M"x" exists, we can use the n2 

relationships 
min{i,j'} 

P=I 

to solve for the factors lij and u , j . Since L and U are lower and upper 
triangular, together they comprise only n2 + n nonzero entries. Moreover, 
if we adopt the convention that /,i(- = 1 for i = 1, 2 , . . . , n, then we need to 
determine only n2 quantities lij and Uij, and the equations (2.3-1) suffice. 
In particular, we have 

> - i 

"«'■> = a t , i _ X)'t',pupj'i f o r J = * .» '+1 , . • . , " , (2.3-2) 
P=I 
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and 

U,j = — [Y li.pUpj) , for i = j+l,j + 2,...,n. (2.3-3) 

While Equations (2.3-2) and (2.3-3) seem unremarkable, a clever solution 
strategy turns them into a useful algorithm, called the Doolittle method. 

ALGORITHM 2.1 (DOOLITTLE). Given a nonsingular matrix A G Mnxn, 
compute the matrices L, U € M n x n in the LU factorization of A as follows: 

1. For k = 1,2, . . . , n : 

2. For j = k,k+l,...,n: 

3. «*,j <- a*,j - 23p=i lk,pup,j-

4. Next j . 

5. For»' = Jb + l,*-l-2, . . . , n : 

6- /i,fc *- (a.,* - E*=i '<,PMP,*) luk,k-

7. Next i. 

8. Next k. 

9. End. 

(When k = 1, we assign the value 0 to the sums in this algorithm.) Figure 
1 schematically shows how the computations progress through the entries in 
an n x n matrix. 

None of the calculations in the fcth pass through the outermost loop re-
quires us to know values for variables /tJ- or w,,;- to be determined in sub-
sequent steps ifc + 1, jfc + 2 , . . . . Furthermore, if we solve for the unknowns 
in this step in the order listed, then all of the quantities on the right sides 
of Equations (2.3-2) and (2.3-3) are known by the time we need them. We 
can therefore accumulate each of the sums appearing in these equations in a 
single register — or in double precision, if desired — without retrieving and 
re-storing intermediate results. 

An example with n small illustrates the scheme. Consider the LU factor-
ization 

A = 
2 1 2 
1 2 3 
4 1 2 

= 

1 

'2.1 
[ '3,1 

0 
1 

'3,2 

0 
0 
1 

«1,1 
0 
0 

«1,2 
«2,2 

0 

«1,3 
«2,3 
«3,3 . 
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Uk,k ■■■ Uk,n 

h+l.k 

K,k 

F I G U R E 1. Entries of the LU factorization determined during the 
kth pass through the outer loop in the Doolittle method. 

In the first pass (k = 1) through the outer loop, we solve for the factors 

«i , i , «i,2, «i,3, '2,1, ' 3 ,D m t n a t order, getting 

«1,1 = «i,i = 2, « 1 | 2 = ai,2 = 1, «1,3 = ai,3 = 2, 

'2,1 = a2 , i /« i , i = \ , '3,1 = C3,i/«i,i = 2. 

In the second pass (k = 2), we solve for «2,2, «2,3,'3,2 in order, getting 

«2,2 = «2,2 - '2,1«2,1 = f, «2,3 = 02,3 - '2,1«1,3 = 2, 

'3,2 = (03,2 - '3,l«l,2)/«2,2 = - § • 

Finally, in the third pass, we solve for U33: 

«3,3 = ««3,3 - '3,1«1,3 — ^3,2«2,3 = 3-

Therefore, 

L = 
1 0 0 
3 1 0 
2 - 1 1 

2 1 
0 5 
u 2 
0 0 

2 
2 

2 
3 

An alternative to the Doolittle method, the C r o u t m e t h o d , uses a dif-
ferent orchestration in solving for the entries of L and U. 

A L G O R I T H M 2.2 ( C R O U T ) . Given a nonsingular matrix A € M n x " , compute 
the matrices L, U € M n x n in the LU factorization of A as follows: 

1. For j = l , 2 , . . . , n : 

2. F o r t = l , 2 , . . . , j : 
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3- ui,j *~~ ai,j Z^p=l'«,PuP,i-

4. Next i. 

5. For i = j+l,j + 2,...,n: 

6- U,j — ( a . j - E p = i li,Pup,j) lui,i-

7. Next i. 

8. Next j . 

9. End. 

Figure 2 schematically illustrates the order of the computations. 

*l,k 

lKk 

k+l,k 

n,k 

F I G U R E 2. Entries determined during the kth pass through the 
outer loop in the Crout method. 

The sleekness of these methods scarcely reduces the value of pivoting. The 
aim, as before, is to avoid the magnification of roundoff errors by choosing 
divisors that are as large in magnitude as possible. For the Doolittle method, 
the numbers Uktk appear as divisors in step 7 of Algorithm 2.2. Actually 
performing the computations in the order listed, however, leaves little leeway 
for choosing other divisors. The trick is to notice that , for a given value of fc, 
one can compute all of the sums 

i - l 

-5«,* = aitk — / Ji,pUp,k, 
p=i 

i = k,k + 1, 

at the start of the kth pass through the outer loop. Once these values are 
available, scan them for the one with the largest magnitude, say Sm,k = 
Smax- Then interchange rows k and m in A and interchange the row vectors 
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(h,i,h,2,---,h,k-i) and (/m,i>'m,2, • • -.'m.ib-i) of previously determined en-
tries in L. The number Smax now serves as the divisor Uk,k in the new, row-
permuted matrix. Finally, compute the remaining entries Ujt+i.fc,... ,«„,* in 
the new row k of U according to Equation (2.3-2), then compute the entries 
h+i,k. • • •, 'n,t in column k of L by dividing the remaining sums Si^ by Uk,k-

Partial pivoting for the Crout method follows a similar idea. We leave 
details for Problem 3. 

Cholesky Decomposition 

When A G M"x" is symmetric and positive definite, art efficient triangular 
factorization known as Cholesky decomposit ion is possible. This scheme 
factors A as a product of the form CCT, where C G M"x" is a lower triangular 
matrix called the Cholesky triangle for A. Just as the LU factorization 
of an arbitrary nonsingular matrix in M n x n requires no more storage than 
does the original matrix, the factorization CCT requires (n2 -f n)/2 storage 
locations — the same number needed to store the distinct entries of the 
original, symmetric matrix A. 

The following theorem justifies the Cholesky decomposition. 

THEOREM 2.10. If A G M.nxn is symmetric and positive definite, then there 
exists a lower triangular matrix C G M"x n such that A — CCT. Moreover, the 
diagonal entries of C are all positive. 

PROOF: We use induction on n. When n = 1, the matrix A is a positive real 
number a^i . In this case, the matrix C is cit\ = y^TJ. Now assume that the 
theorem holds for matrices in M"x n , and let A G M ( " + 1 ) X ( " + 1 ) be symmetric 
and positive definite. To construct the Cholesky triangle C for A, start with 
a block partitioning of A: 

n 1 

A„ a \ 
a an+l,n + l ) 

Here, A„ G M"x" is a leading principal submatrix of A and is therefore itself 
symmetric and positive definite, and a G M". The entry a „ + 1 „ + 1 must be 
positive; otherwise, we could make x T Ax < 0 by choosing x = ( 0 , . . . , 0,1)T . 
By the inductive hypothesis, there is a lower triangular matrix C„ G M n x n , 
having positive diagonal entries, such that C„C^ = An. To complete the 
proof, it suffices to find a vector \ € Wn+1 and a number c > 0 such that 

n 1 

r r r _ n [C„ 0\ (Cn x\ _ /'A» a A 

A = 
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To do this, we solve the equations 

XTX + C2 = On + l.n + l-

The first of these equations has a solution x — Cn a> t n e nonsingularity of 
C„ following from that of A„ and the identity det A„ = (det Cn)3- The second 
equation clearly has a solution 

c = y a„+1,„+i - x Tx, 

the only possible issue being whether c2 > 0. We settle this issue by appealing 
to the fact that A is symmetric and positive definite. Observe that 

XTX = ( Q 1 a ) T Q * a = a T ( Q 1 ) 7 C ^ a = a T A ^ a . 

Therefore, 
an + i ,„+i - XTX = an+i.n+i - aTA~1a. 

Now define x € M.n+1 as follows: 

x : = ( ( A ; 1 a ) T , - l ) T # 0 . 

A straightforward calculation shows that 

xTAx = a n + 1 ,„+ i - aT A~*a = a„+ i ,„+ i - x T X, 

which must be positive since A is positive definite. I 

To derive a practical algorithm for computing the Cholesky triangle C, 
one can proceed as for the Doolittle and Crout schemes, solving the equations 
a, j = 5Z2=1 Cj.jfcCjtj for the entries aj: 

ALGORITHM 2.3 (CHOLESKY) Let A g Mnxn be positive definite. The follow-
ing steps compute the entries Cij of the Cholesky triangle for A: 

1- ci,i ♦- y/aiti. 

2. For i = 2,3, . . . , n : 

3. Cj,i *— 01,1/01,1. 

4. Next ». 

5. F o r i = 2 , 3 , . . . , n - 1: 

6. Cjj «- (a,-j - E i = ! ci,*) • 
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7. For» = j + l , j + 2 , . . . , n : 

8- Cij <- (dij - 52*=i c«',tc;,*)/cj,i' 

9. Next j . 

10. Next j . 

1 1 ( v - " 1 ' 1 /.2 \ ^ 2 

J-l- C n > n <— ^ J n , n — ^ f c s l c n , * y 

12. End. 

Theorem 2.10 ensures that none of the entries Cjj in the denominator of 
step 8 vanishes. Moreover, the relationship a,,,- = 5T*=i c«\* implies that 
Ie»',* I £ \fôîj- Therefore the entries in A control the magnitudes of those in 
C, even without a pivoting strategy. 

One possible objection to Algorithm 2.3 is that it calls for the extraction of 
n square roots. The Cholesky algorithm requires ö(n3) arithmetic operations 
(see Problem 4), so for large n the computational burden associated with these 
square roots is small compared with the arithmetic required in the rest of the 
algorithm. 

It is possible, however, to avoid taking square roots in factoring symmet-
ric, positive definite matrices. The idea, in theory, is to construct a further 
factorization, C = LS. (For the moment, we neglect issues of computational 
efficiency.) Here S is a diagonal matrix, that is, one whose off-diagonal en-
tries Sij, i ■£ j , are all 0. The diagonal entries are Siti = c^j. With this 
definition of S, we can easily construct the entries of L from those of C. This 
construction reveals that L is lower triangular with unit diagonal entries. We 
now have the L D L T factorization, 

CCT = LS(LS)T = LSST LT = LDLT, 

D 

where D is a diagonal matrix whose diagonal entries d,-it- = c?t- are positive 
and can be computed without extracting square roots. 

As one might expect, computing the LDLT factorization by first comput-
ing the Cholesky triangle C is inefficient. The following algorithm accom-
plishes the task more economically. 

ALGORITHM 2.4 (LDLT). Let A e K" x n be positive definite. The following 
steps compute the entries d̂ ,- and / , j , i > j , of the LDLT factorization for 
A: 

1. For i — 1,2,. . . ,n: 

2. For j = 1,2, . . . , i - l : 
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3. pj <— aijdj. 

4. Next ;'. 

5. di:i *—ati-Yl'^=lOi,kPk■ 

&. For j = i+ l,i-4-2, . . . , n : 

7. /j,i «- (a,,,- - YX~Jl a3,kPk) /di,i-

8. Next j . 

9. Next i. 

10. End. 

The loop initiated in step 2 of this algorithm is vacuous if i = 1, so d\x — a\ti. 
Problem 4 asks for an operation count for this algorithm. 

2.4 Band Matrices 

Motivation and Construction 
Many applications give rise to matrices that have a small number of nonzero 
entries. A simple example appears in Section 1.6 in the discussion of cubic 
splines. There we encounter tridiagonal systems, in which the matrices have 
the structure 

(2.4-1) 

Tridiagonal systems also arise from discrete approximations to second-order 
partial differential equations, as discussed in Chapter 8. 

Difference approximations to higher-order differential equations typically 
lead to matrices having more general patterns of nonzero entries, such as the 
following 5-diagonal structure: 

y * * 

k * * * 

h 
Gl2 

C\ 

b2 

« 3 

C2 

63 C3 

fln-1 bn-i 
an 

C n - l 

6„ 

A = (2.4-2) 
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Here, the entries not marked by the symbol "*" are zero. This notation 
is often quite useful, since it shows where the only possible nonzero entries 
occur without requiring us to write them explicitly. We call (2.4-2) the zero 
s t ruc ture of the matr ix . 

A third example arises in Chapter 8, when we discuss finite-difference 
methods for the Laplace equation. There we approximate certain boundary-
value problems by linear systems in which the matrices are block tr id iago-
nal: 

A = 

/ B i 
A2 

V 

Ci 
B2 

\ 

C2 

A„. B n - i 
A„ 

Cn- i 
B„ 

(2.4-3) 

Each of the blocks in this block partitioning is a matr ix in M m x m , and the 
overall matr ix A lies in M m n x m n . 

All of these structures have in common the fact that , for appreciable val-
ues of n, most of the entries are zero. In other words, the matrices are sparse . 
Sparse matrices present clear opportunities for computational savings if one 
can design algorithms tha t avoid trivial calculations involving the zero en-
tries. The examples listed belong to a special class of sparse matrices called 
b a n d matr ices , since their entries vanish outside a relatively narrow band 
about the diagonal. In this section we examine numerical methods for solving 
systems involving such matrices. 

We begin with tridiagonal matrices. As shown in Section 1.6, linear sys-
tems involving these matrices admit an especially attractive solution scheme, 
namely, Algorithm 1.1. Recall that this algorithm produces the solution to 
a tridiagonal system of the form (2.4-1) in 0(n) operations — a noteworthy 
improvement over the ö(n3) estimate for straightforward Gauss elimination. 

A close look at Algorithm 1.1 reveals that it is simply a version of row 
reduction (steps 1 through 6) followed by backward substitution (steps 7 
through 10). In fact, the algorithm implicitly constructs an LU factorization 
of the matr ix A in Equation (2.4-1) having the form 

Pi 
02 ft 

an-\ ßn 
a ßn 

1 T)i 

1 m 

f]n-l 

1 

, (2.4-4) 

where rji = Ci/ß{. In this instance, we adopt the convention that the upper 
triangular factor has unit diagonal, while the lower triangular factor contains 
the pivots ßi. 

Since Algorithm 1.1 implements no pivoting strategy, it fails if any of the 
pivots vanishes. The proof of Proposition 1.16 shows tha t tridiagonal matrices 
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arising in the cubic spline applications considered in Chapter 1 are strictly 
diagonally dominant, so Corollary 1.7 guarantees that zero pivots will never 
occur for these problems. Later in this section we prove that strict diagonal 
dominance also prevents the growth of roundoff errors. 

For more general band matrices, operation counts depend upon the struc-
ture of the band. In these cases it is frequently useful to compute LU factor-
izations. Before discussing details, let us introduce some terminology: 

DEFINITION. A matrix A € M"*" Aas lower bandwidth p ifp is the smallest 
nonnegative integer for which a* j = 0 whenever j < i — p. A has upper 
bandwidth q if q is the smallest nonnegative integer for which atJ- = 0 
whenever j > i + q. The bandwidth of a matrix with lower and upper 
bandwidths p and q, respectively, isb = p+q + l. 

For example, a matrix with lower bandwidth p = 1 and upper bandwidth 
q — 2 has bandwidth 4 and the following structure: 

Ol.l al,2 «1,3 

«2,1 "2,2 a2,3 ^3,3 

an-2,n-3 an-2,n-2 On-2,n-l 0-n-2,n 
an-l,n-2 a n- l ,n - l <*n-l,n 

ûn,n-1 0*ntn 

Actually storing the matrix in this form is wasteful, since the numbers p 
and q suffice to specify all of the entries outside the central band of width 
b — p + q + 1. The compact s torage mode 

0 ai , i ai,2 a i | 3 

<*2,1 0,2,2 «2,3 «3,3 

an-2,n-3 an-2,n-2 an-2,n-l a«-2,n 

Gn-l,n-2 a n- l ,n - l «n-l,n 0 

an ,n-i an,n 0 0 

which stores the diagonals in columns, offers a more efficient alternative. 
In addition to saving on memory, one can usually rewrite LU factorization 

algorithms to operate only on those entries of A that appear in the compact 
storage mode. Most of the tedium associated with this effort involves the 
bookkeeping needed to shift column indices in converting from the standard 
storage mode to the compact storage mode. As we demonstrate later in 
this section, there is a payoff: If one computes the LU factorization without 
pivoting, then L has lower bandwidth p and U has upper bandwidth q. This 
fact enables us to store the LU factorization in the same compact storage 
mode used for the original matrix A. 



136 CHAPTER 2. DIRECT METHODS FOR LINEAR SYSTEMS 

The following algorithm, designed for band matrices with p = q (and 
hence bandwidth 6 = 2p + 1), goes one step further, overwriting the storage 
locations assigned to A with the entries of its LU factorization. The algorithm 
utilizes Equations (2.3-2) and (2.3-3). 

ALGORITHM 2.5. Given a nonsingular band matrix A € K" x" having lower 
and upper bandwidth p, the following steps compute the factors L and U in 
the LU factorization, without pivoting. The algorithm stores the entries of L 
and U in the array allocated for A, destroying the original matrix. 

1. For i= 1,2, . . . , n - l : 

j < - p + l . 

For k = 1,2,.. . ,n - i: 

j < - J - 1-

If j > 0 then: 

a«'+tj" *- a»+t,j/a«,p+i-

For m = 1,2,.. . ,p: 

ai + k,j+m <— <*i + k,j+m — a ! + jtj'at,j-

Next m. 

End if. 

Next k. 

12. Next i. 

13. End. 

This algorithm requires ö(np2) operations. When p is much smaller than n, 
this operation count is greatly preferable to the 0(n3) operations needed for 
an arbitrary nonsingular matrix in M"x". 

Having computed the LU factorization, we can use it to solve a linear 
system Ax = b , given any vector b £ R". The idea is to use the factors L and 
U, stored in the compact storage mode, to solve the systems Lz = b , Ux = z. 
Recall from Section 2.2 that these two systems require simple forward and 
backward substitution. The next algorithm performs these tasks. 

ALG ORITHM 2.6. Given the LU factorization produced by Algorithm 2.5 and 
stored in A in compact storage mode, the following steps compute the solution 
x to Ax = b for any b G Mn. The algorithm overwrites b with x. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 
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1. For J' = 2 , 3 , . . . n : 

2. k<-p+2-i. 

3. / < - l . 

4. If k < 0 then: 

5. fc«-l. 

6. / «— i — p. 

7. End if. 

8- bi i-HPj=kai,ibi-l'+l■ 

9. Next i. 

10. b„ <— bn/aniP+i. 

11. For Jb = 2 , 3 , . . . , n: 

12. i <— n + 1 - k. 

13. J *-min{6,p+fc}. 

14. b{ *- (bi - Ej=P+2 aiJbJ-p) lai,P+i-

15. Next lb. 

16. End. 

Steps 1 through 9 execute the forward substitution, while steps 10 through 
15 complete the backward substitution. 

For systems involving symmetric, positive definite matrices with banded 
structure, even more compact algorithms are possible. We leave the design 
of a scheme for Cholesky decomposition of such matrices for Problem 5. 

Finally, consider block tridiagonal matrices. Even though these are spe-
cial cases of band matrices, they occur frequently enough to have inspired a 
variety of specialized direct solution techniques. We examine a scheme that 
generalizes Algorithm 1.1. Specifically, we seek a "block LU factorization" of 
Equation (2.4-3) having a format similar to that given in Equation (2.4-4): 

A2 

A = 

A„_i E„_i 
A„ 

\ 

En / 

/ I F! 
I 

\ 

I F„ 

(2.4-5) 

" / 



138 CHAPTER 2. DIRECT METHODS FOR LINEAR SYSTEMS 

where I € M m x m is the identity matrix and each of the blocks E,, F, is an 
m x m real matrix. 

Formally solving for the blocks in this factorization, we obtain 

Ei = B j , 

F, = ET1 Q 

Ei Bi-füFi-u 

i = 1,2,.. . ,n — 1. 

i = 2 , 3 , . . . ,n. 

To compute the blocks Fj, it is not necessary to form explicit inverses for 
the matrices E,-. A more efficient strategy is to solve systems of the form 
E,f,i; = Cij, where CJJ G Mm denotes the jth column of the matrix C,-, 
which is known, and f,j 6 Mm signifies the unknown jth column of Fj. This 
approach allows us to compute an LU factorization for each matrix E,- just 
once, using forward and backward substitution to determine each of the m 
columns f,-j-. 

Once we have the block factorization (2.4-5), we can use blockwise versions 
of forward and backward substitution to determine the solution to any linear 
system having the form 

/ Bi Ci \ 
A2 B2 C2 

\ A„ Bn ; 

f Xl ̂  
X2 

V X" I 

— 

( bl \ 
b2 

I bn / 
where each of the blocks x,-, b, is a vector in Mm. For the forward substitution 
stage, we solve the systems 

E1Z1 = b i , 

E,-Zj = b j - A , Z j _ i , 1,2,.. 

for the intermediate vectors z\, Z2, . . . , zn G Km- For each of these systems, 
we can exploit the fact that we have already computed LU factorizations for 
Ei, E2, . . . , En. Backward substitution then calls for simple matrix multipli-
cation: 

xn = zn, 

x,- = z,- —FjXf+i, i = n —l,n —2, . . . , 1 . 

Practical Considerations 
The compactness that we associate with LU factorizations of band matrices 
unfortunately applies only to the most favorable of settings. If pivoting strate-
gies are necessary, then row interchanges typically disrupt the band structures 
of L and U. One can gain some appreciation for what happens by considering 
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changes in zero structure that occur when we apply row reduction with par-
tial pivoting to a simple example. We begin with a band matrix A £ M5 x 5 

having lower bandwidth p = 1 and upper bandwidth q = 2. We expect the 
zero structure of the LU factorization without pivoting to look like this: 

U 

Suppose, however, that we interchange rows k and k + 1 before each step 
k of row reduction. We can implement this process by alternately applying 
row interchanges, represented by permutation matrices Pj^i+i, and row re-
ductions, represented by Gauss transformations G*. The following schematic 
shows the zero structures that occur during the process: 

1,2 Gi 

2,3 

3,4 

P4.I 

It instructive to derive, step by step, the zero structure of the matrix L 
associated with this row reduction, as given by Theorem 2.3. The final LU 
factorization for this example has the zero structure 

PA = (2.4-6) 

This example suggests two facts about LU factorization of band matrices 
with partial pivoting. First, the upper triangular matrix U is still a band 
matrix. However, its upper bandwidth may no longer be the same as that of 
the original matrix A, as it would be with no pivoting strategy. In fact, the 



140 CHAPTER 2. DIRECT METHODS FOR LINEAR SYSTEMS 

upper bandwidth of U in our example is p + q. This fact holds generally, as 
we prove below. 

Second, the lower triangular matr ix L no longer is banded. A priori, any 
position below the diagonal in L may be occupied by some nonzero factor 
lij by the time the row reduction is complete. However, no column of L 
can contain more than p such factors below the diagonal. Clearly, when it 
is feasible, LU factorization of band matrices without partial pivoting enjoys 
advantages that partial pivoting destroys. 

The practical aspects of block tridiagonal matrices bring unpleasant news 
of a similar nature. This sparse structure often arises in connection with the 
numerical approximation of partial differential equations, and in this con-
text the individual blocks Ai, Bf, Q G M m x m are themselves typically sparse. 
For example, finite-difference approximations of the type mentioned at the 
beginning of this section lead to block structures of the form 

A = 

m 

m / T i 

m Da 

V 

m 

Di 

T 2 
D2 

D n - l T„_i 
D„ 

D„_i 

Here, each T{ G M m x m is tridiagonal, while each D,- G ffimxm is diagonal. 
This structure requires the storage of 0(nm) nonzero entries. 

Wha t is disappointing is that the blocks E,- and F,- appearing in the 
block LU factorization (2.4-5) are typically full matrices in JR m x m , despite 
the sparseness of the original blocks. Thus the block LU factorization gener-
ally requires the storage of 0{nm2) nonzero entries. In cases where m is large, 
converting a block tridiagonal matr ix to its block LU factorization can there-
fore entail tremendous increases in the memory requirements of a computer 
program. Chapter 4 discusses alternative methods that avoid this difficulty. 

Mathematical Details 

Among the business left unfinished is an analysis of the Thomas algorithm 
for tridiagonal matrices. At issue is whether the entries /?,• and rji in the LU 
factorization (2.4-4) obey bounds that limit the growth of roundoff errors in 
Algorithm 1.1. Since the algorithm uses the parameters /?,- as divisors, we seek 
lower bounds on |/?,|; similarly, since the parameters 77* serve as multipliers, 
we would like some guarantee tha t the magnitudes |»j,-| remain small. The 
following theorem establishes the desired bounds. 

T H E O R E M 2 .11 . If the tridiagonal matrix A G IR"X" in Equation (2.4-1) is 
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strictly diagonally dominant, then the following inequalities hold: 

M < 1, i = 1,2, . . . , n - l , 

IM-1*1 < Iftl, i = l , 2 , . . . , n . 

In this case, strict diagonal dominance means that |6,-| > |a,-| + |c, | for each 
row » = 1 ,2 , . . . , n, where we agree that a\ — cn = 0. 

P R O O F : We prove the first inequality by induction on i. Since 771 = c\/b\, the 
fact that toil < 1 follows directly from strict diagonal dominance. Assume 
that toi-il < 1- Then, according to Algorithm 1.1, 

\bi - a fT7i_i| " 

By using the triangle inequality in the form |6 — a| > 116| — |a| |, strict diagonal 
dominance, and the inductive hypothesis, we deduce that 

m - \ b i \ - \ a i \ -

But strict diagonal dominance also implies tha t |6j| —|a,| > |c, | , so we conclude 
that to,| < 1, completing the induction. The second inequality follows for the 
case i = 1, since ßi — bi. For i = 2, 3 , . . . , n we have 

Iftl = \bi ~ a i i?i- i | > \bi\ - \airn-i\ > |6,-| - |a,-|. I 

We turn now to more general band matrices. In devising Algorithms 2.5 
and 2.6, we exploit the fact that , for any nonsingular band matrix, the LU 
factorization remains just as compact as the original matr ix , so long as row 
reduction without pivoting is possible. 

T H E O R E M 2.12. Let A £ K n x " be a nonsingular band matrix with lower 
bandwidth p and upper bandwidth q. If A has an LU factorization A = LU, 
where L has unit diagonal entries, then L has lower bandwidth p and U has 
upper bandwidth q. 

P R O O F : We argue by induction on n. When n = 1 there is nothing to 
prove, since A = a i ^ . Assume that the theorem is true for band matrices 
in M " x n , and let the nonsingular matr ix A € ]R( n + 1 ) x ( n + 1 ) have lower and 
upper bandwidths p and q, respectively. Let L and U be the upper and lower 

to.-l = 
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triangular factors of A, with L having unit diagonal entries. Consider the 
following block partitionings: 

n 1 
_ n { L„ 0 \ /U„ uN / A„ L„u \ 

A - 1 \XT l) \0T u) ~ \XT\J„ XTu+uJ' 
<• v " v ' 

L U 

where A„ := L„U„. The matrices L and U have lower bandwidth p and upper 
bandwidth q, respectively, if and only if each of the following conditions holds: 

(i) L„ has lower bandwidth p; 

(ii) U„ has upper bandwidth q; 

(iii) the first n — p entries of A vanish; 

(iv) the first n — q entries of u vanish. 

The first two of these statements follow from the induction hypothesis: The 
matrix A„ £ M" x n is the nth leading principal submatrix of A, so it also 
has lower and upper bandwidths p and q, respectively. Since An has LU 
factorization L„Un, L„ and U„ have the desired lower and upper bandwidths. 

To establish the third fact, we note that the band structure of A forces 
the first n — p entries of the row vector A Un to vanish. The jth entry of 
ATU„ is 

i >-i 

!=1 »=1 

The fact that 0 ^ det A = u det L)n implies that neither u nor any of the 
diagonal entries u,->t- of U„ vanishes. Since U„ is upper triangular with nonzero 
diagonal entries, the first entry of A U„ is Aiui;i = 0, and therefore Ai = 0. 
The second entry is Aiiii^ + A2t*2,2 = 0, which implies that A2 = 0 since 
Ai = 0. We continue reasoning in this way, until we come to the (n — p)th 
entry, which is 

AlUl,n—p ~r ' ' * T ^n-p-lUn-p-l.n-j) T "n—pun—p,n—p = 0. 

Knowing at this point that Ai = • • • = A„_p_i = 0, we deduce that \n-P = 0. 
Therefore the first n — p entries of A vanish. A similar argument, using the 
observation that the first n — q entries of L„u vanish, proves the fourth fact, 
concluding the proof. I 

The next theorem analyzes the effects of partial pivoting on the sparseness 
of U. 
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THEOREM 2.13. Let A £ R" x " k a nonsingular matrix having lower and 
upper bandwidths p and q, respectively. Suppose that P G M n x " is a permu-
tation matrix that allows the LU factorization PA = LU. Then U has upper 
bandwidth p + q. 

PROOF: The matrix PA has the form 

a * - ( i ) , i 

PA = «ir(«),l 

. a *- (") , l 

a * ( l ) , n 

a»(0.» 

a*(n),n 

where (tf(l), T ( 2 ) , . . . , n(n)) is a permutation on (1 ,2 , . . . , n). By hypothesis, 
this matrix has an LU factorization that does not require partial pivoting. 
The band structure of A implies that a,-j = 0 whenever i + p < j or i + q > j . 
It follows that 

M O J 

for j = 7r(i) +p+ 1, . . .,n — \,n and 

for j = 1,2,.. .,ir(t) + 9 - 1 . 
(2.4-7) 

Since Theorem 2.12 guarantees that U has the same upper bandwidth as PA, 
we can finish the proof by showing that PA has upper bandwidth p + q, that 
is, that a*-(i)j = 0 whenever i + q + p < j . For this, it suffices to prove that 
"■(') < *' + ? for i = 1, 2 , . . . , n. The proof is by contradiction: If ir(i) > i + q, 
then Equation (2.4-6) implies that 

(a*(»),i a»(0,2 a*(i),i) = (0 0 0). 

But this i-tuple is row i of the ith leading principal submatrix Aj of A, and 
if its entries are all zero then A,- is singular. By Theorem 2.6, this conclusion 
contradicts the existence of the LU factorization PA = LU. Therefore ir(i) < 
i + q for i = 1,2,..., n, and the proof is complete. I 

As mentioned earlier, the lower triangular factor L can have nonzero entries 
anywhere below its diagonal, depending on the row interchanges performed. 

Further Remarks 
To derive a scheme for solving block tridiagonal systems, we exploit an anal-
ogy between the entries of tridiagonal matrices and the blocks in block tridiag-
onal matrices. It is therefore natural to ask whether one can find conditions, 
analogous to Theorem 2.11, that prevent the growth of roundoff errors in 
such block LU factorizations. A condition of this type exists, but its state-
ment makes reference to matrix norms, which we discuss in the next section. 
Golub and Van Loan ([1], Section 5.5) give details. 
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2.5 Matrix Norms 

Motivation and Construction 
We now analyze the difference between the computed solution x to Ax = b 
and the exact solution x. At issue is the size of the error e := x—x, measured 
using some norm || • || as introduced in Section 0.3. Since x is unknown, we 
hope to estimate ||e|| in terms of quantities that are computable from x, A, 
and b . Section 2.6 pursues this idea. In preparation for that discussion, 
we devote this section to the establishment of matrix norms. These functions 
measure relationships between the sizes of vectors and the sizes of their images 
under matrix multiplication. 

We begin with some preliminary remarks about the eigenvalues of a matrix 
A € M n x n . 

DEFINITION. A number A e C is an eigenvalue of A G M"x n if there is 
a nonzero vector x £ C" for which Ax = Ax. Any such vector x is an 
eigenvector of A associated with A. The collection a A of all eigenvalues of 
A is the spec t rum of A, and the number 

ß(A) = max |A| 
\£oA 

is the spectral radius of A. 

Eigenvalues are the (possibly complex-valued) factors by which A stretches 
its eigenvectors. The identity Ax = Ax with x ^ 0 implies that the matrix 
AI — A is singular, and hence any eigenvalue A of A is a zero of the character-
istic polynomial det(AI — A), which has degree n in A. Chapter 5 discusses 
numerical methods for determining eigenvalues and eigenvectors of matrices. 

The following theorem summarizes important properties of eigenvalues 
and eigenvectors. For proofs, we refer to Strang [4]. 

THEOREM 2.14. Let A G K n x n . Then 

(i) A is singular if and only if 0 is an eigenvalue of A. 

(ii) / / A is upper or lower triangular, then its eigenvalues are its diagonal 
entries. 

(iii) / / A is symmetric, then all of its eigenvalues are real numbers. 

(w) If A is symmetric and nonnegat ive — that is, xTAx > 0 for every 
x G ffi" — then all eigenvalues of A are nonnegative. 

(v) If A is symmetric and positive definite, then all of its eigenvalues are 
positive. 
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(m) / / A is symmetric, then there exists an orthonormal basis for ]R", 
each of whose elements is an eigenvector of A. 

The sixth assertion means that we can find a set {vi,V2, ■ ■ .,vn} of eigen-
vectors of A such that (1) each eigenvector t>; has unit Euclidean length 
||w,||2 = (vjvi)1/2; (2) distinct eigenvectors Vi,Vj in the set are orthogonal, 
that is, VJVJ = 0; and (3) any vector y G Kn has an expansion 

n 

y = £ * « < , (2.5-1) 
»=i 

for some real coefficients c\, C2,..., c„. Straightforward calculation shows that 
the coefficients in such an expansion are c,- = vjy. Moreover, 

\\y\\l = yTy = cî + cl-r-.- + cl (2.5-2) 
The last identity generalizes the Pythagorean theorem. 

In some cases, the spectrum of a matrix A yields scanty information about 
the relationship between the size of x and the size of Ax. For example, 
consider the matrix 

" 0 2 
0 0 

Ai = 

This matrix has characteristic polynomial det(AI — Ai) = A2, which has a 
double root A = 0. Therefore the spectrum of Aj is {0}, and g(Ai) = 0. 
However, for any vector x = (0, x-i)T G R2, the image vector Ajx = (2x2,0)T 

has Euclidean length twice that of x. In this case, eigenvalues reveal very 
little about how multiplication by the matrix changes the size of an arbitrary 
vector. 

Recall from Chapter 0 that norms are the natural devices for measuring 
the sizes of vectors. For a mapping || • ||: M" —► M to be a norm, it must satisfy 
three conditions: 

(i) For any vector x G K", ||x|| > 0, and ||x|| = 0 if and only if x = 0. 

(ii) Whenever x G Mn and c G M, ||cx|| = |c|||x||. 

(iii) Whenever x , y € R " , ||x + y|| < ||x|| + ||y||. 

An extension of this concept allows us to gauge the size of Ax G Mn in terms 
of the size of x G M", for any matrix A G M n x n . The following definition 
captures the idea. 

DEFINITION. If Ae M n x n anrf j | | | : M" —► R is a norm, then the subordinate 
matrix norm || • | | :M"x n —* W is defined as follows: 

| | A | | : = s u p l M . (2.5-3) 
x^O ||X|| 
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As an immediate consequence of this definition, 

i |Ax||<| |A|| | |x| | , (2.5-4) 

for any vector x S M". It is an easy exercise to deduce that, for any matrices 
A B 6 M"x" 

| |AB||<| |A|| | |B|| . (2.5-5) 

Also, the following three formulas for ||A|| are equivalent to Equation (2.5-3): 

||A|| = sup ||Ax||, 
ll*||=i 

||A|| = inf | M > 0 : ||Ax|| < M||x|| for all x G IR"}, (2.5-6) 

||A|| = i n f | M > 0 : | | A x | | < Mfor allx G ST with ||x|| = l } . 

Therefore, if ||Ax|| < M||x|| for all x, then ||A|| < M. On the other hand, if 
||Ax|| > M||x|| for some x ^ O , then ||A|| > M. 

Problem 10 asks for verification that subordinate matrix norms satisfy 
the three conditions required to be a norm on the vector space M n x n . (How-
ever, not every norm on M"x" is subordinate to a vector norm. Problem 
14 examines this fact.) In particular, any subordinate matrix norm obeys 
the triangle inequality. Here lies a crucial defect in the spectral radius as 
a measure of size: If n > 1, it is possible to find matrices A, B £ K"x" for 
which g(A + B) > g(A) + g(B), and consequently the triangle inequality fails. 
Problem 9 asks for details. 

While matrix norms typically give better characterizations than the spec-
trum of the "stretching" power of a matrix, one can derive a simple lower 
estimate for ||A|| if one knows an eigenvalue A of A. Since Ax = Ax, we have 
||Ax|| = |A|||x||. From the inequality (2.5-3) it follows that ||A|| > |A| and 
hence that 

l|A|| > <?(A). (2.5-7) 

Each of the vector norms || • \\i, || • ||2, and || • ||oo gives rise to a use-
ful subordinate matrix norm. Later in this section we prove the following 
characterizations: 

n 

NAIloo = max / |a,-,|, the "maximum row sum" of A. 
Ki<n t—1 ' 

~ ~ j = l 

n 

||A||i = max 2^1°*^ I' the "maximum column sum" of A. 

||A||2 = v/<?(ATA). 



2.5. MATRIX NORMS 147 

When A is symmetric, one can calculate ||A||2 more simply. Symmetry implies 
that ATA = A2. But the eigenvalues of A2 are simply the squares of the 
eigenvalues of A (see Problem 15). Therefore, when A is symmetric, 

l|A||: = y/o(*?) 0(A). 

Some simple examples illustrate these norms. Consider once more the 
matrix 

" 0 2 
0 0 

Ai 

Geometric reasoning suggests that the largest value of ||Aix||2, where x ranges 
over the vectors having unit Euclidean length, occurs when x = &2 — (0,1)T. 
But ||Aie2||2 = ||(2,0)T||2 = 2||e2||2, and therefore simple geometry suggests 
that ||Ai||2 = 2. The eigenvalues of Ax Ai are 0 and 4, so indeed 11Ax 112 = 
V4 = 2. Checking column and row sums, we find that ||Ai||i = ||Ai||oo = 2. 
However, both eigenvalues of Ai are 0, so ||Ai||2 ^ £(A). 

Next consider 
0 1 

-1 0 
A2 = 

In this case, A2 A2 is the identity matrix I, both of whose eigenvalues are 1. 
Therefore 

= V^(A2
TA2) = 1 = ||A2||a = ||A2 IIA 2 2 *2 | |oo-

In the geometric view, multiplying x on the left by A2 rotates x about the 
origin by —7r/2 radians without changing its Euclidean length, as shown in 
Figure 1. 

FIGURE 1. Geometric action of the matrix A2. 

Finally, consider the 3 x 3 matrix 

A3 = 
1 
1 
0 

- 1 
2 

- 1 

0 
- 1 

1 
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In this case A3 is symmetric, so HA3U2 is just the largest value of |A|, where A 
ranges over the eigenvalues of A3. Solving the cubic equation det(AI—A3) = 0, 
we find that the eigenvalues of A3 are 0, 1, and 3. Therefore, UA3U2 = 3. 
However, in this case HA3H1 = HA3H00 = 4. 

Mathematical Details 
We now prove the characterizations of the matrix norms || • j | i , || ■ ||2, and 
|| • H«, stated earlier. 

THEOREM 2.15. Let A e IRnx". Then 

n 

(i) ||A||oo = m a x V ^ K y l . 
- - i=i 

(") llAlli = im« Sloij l-
l < i < n *—** 

~ » = 1 

(iw) ||A||2 = 7«(ATA). 

PROOF: TO prove (i), let x = (xi, £2 , . . . , x„) G K", and call 

n 

N := max > la,,-1. 
- - j = i 

Using the definition of the vector norm || • ||oo and the triangle inequality, we 
find that 

||Ax||oo = max 
K i < n 

< max > J a j , - | max |z,-| 
- K i < n ^ - ' 1 '■" Kj<n' " 

N\\x\\c 

Therefore ||A||oo < N. It now suffices to show that ||A|| > N, which we do 
by showing that HAxHoo actually attains the value N for some unit vector 
x. If A = 0, the result is clear, so assume that A ^ 0. Choose i so that 
5Z?=i la»',jl — ^> an<^ define x by 

, . _ / ai,i/\ai,j\> i f «<■; # °. 
3 ~ \ 0, if ctij = 0. 

It is now straightforward to check that ||x||oo = 1 and UAxH«, = N. 
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The characterization (ii) is an exercise, the argument being similar in 
spirit to the one just given. 

To prove (iii), choose y £ l " such that ||y||2 = 1 and ||Ay||2 = ||A||2. 
(This is possible because || • ||2 is a continuous function on the compact set 
S2 defined in Equation (0.3-2); hence || • ||2 attains a maximum value at some 
point x G S2) Since (Ay)T = yTA , we have 

l|A|ß = ||Ay||l = (Ay)T(Ay) = yTATAy. (2.5-8) 

But ATA G M n x " is symmetric, so Theorem 2.14 guarantees that there exists 
an orthonormal basis {vi ,V2,... ,vn} for Rn consisting entirely of eigenvec-
tors of A A. Moreover, all of the corresponding eigenvalues are nonnegative, 
since A Ax = Ax implies that 

0 < ||Ax||i = (Ax)T(Ax) = x T A T Ax = xTAx = A||x|ß. 

Denote by A,- the eigenvalue of A A associated with -u,-. If we substitute an 
expansion of the form (2.5-1) into Equation (2.5-8), then we obtain 

n n 

IIAiii = 5 > V , T A T A ] T W 

n n 

= £>c? <ß(ATA)ec? = ß(ATA), 

the last step following from the fact that | |y | | | = 1. Hence ||A||2 < g(ATA). 
To finish the proof, we show that ||A||2 > ß(A A). Suppose that Vk 

is an eigenvector of A A, chosen from the orthonormal basis, and that its 
associated eigenvalue At = g(A A). The inequality (2.5-4) and the fact that 
Vk has unit length imply that 

l|A||l = ||A||i|K||| > IIA^HI = „jATAvt 

= Ajbwjvjt = g(ATA), 

as claimed. I 

Further Remarks 
Our focus on linear systems having the same number of equations as un-
knowns may obscure the fact that one can define norms for the more general 
vector spaces M m x n . Let A S ffim*n, and suppose that || • ||i is a norm on ffim 
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and || • ||n is a norm on R". Since the mapping x « A x sends vectors x G R" 
to images Ax € Rm , the natural extension of our definition of subordinate 
matrix norms is the following: 

||A||i,n := sup 
l|Ax||i 

x*0 ||X||n 

Much of the theory developed in this section translates in a straightforward 
manner to this more general setting. In particular, we have 

||Ax||„<||A||I,„||x||I. 

Also, if B £ M p x m and || • | | m is a norm on Rp, then BA e R p x n , and 

IIBAHII,,!! < | |B||III,, ||A||,,i,. 

The proofs are exercises. 

2.6 Errors and Iterative Improvement 

Think of direct methods for Ax = b as "black-box solvers" : Once encoded, the 
algorithms take as inputs the data defining A 6 M " x n and b G R" and produce 
certain ouputs, including a numerical approximation x to the exact solution 
x. With exact arithmetic, we could safely assume that x = x. However, 
any direct method implemented on a finite-precision machine suffers from 
accumulated errors, beginning with the initial machine representations of 
the input data A and b . Furthermore, in applications A and b may have 
measurement errors. How these problems affect the output x depends, to a 
great extent, upon properties of the matrix A. This section examines ways 
to estimate the errors x — x for a given matrix A and to calculate improved 
approximations to x when the computed output x is suspect. 

Error Estimates for Linear Systems 

The first task is a bit delicate, since we usually have no way of knowing 
the actual error e := x — x = A _ 1 b — x. It is possible, at least within 
the constraints imposed by machine arithmetic and measurement errors, to 
compute the residual r = b — Ax, which vanishes if and only if e = 0. Does 
a small residual guarantee that the error is small? 

The system 

Ax = 
1 0 
0 2 
0 0 

0 
0 

io-9 

" Xi 

« 2 

2 3 
= 

2 
4 

IO"9 
= b (2.6-1) 

furnishes a counterexample. The exact solution is x = (2,2,1)T . For argu-
ment's sake, consider the erroneous solution x = (2,2, — 1)T . In this case the 
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error is e = (0,0,2)T, with norm ||e||oo = 2 = ||x||oo- Surely an error having 
the same magnitude as x is large! However, the residual in this example is 
r = (0,0,2 x 1 0 - 9 ) T , whose norm ||r||oo = 2 x 10~9 seems small, especially 
in comparison with ||b||oo = 4. In larger systems the symptoms of pathology 
may be much more subtle. 

To analyze the relationship between e and r more generally, select a norm 
|| • || in which to measure r and e. Observe that r = Ax — Ax = Ae, that is, 
e = A_ 1r. The inequality (2.5-4) therefore yields 

INI _ l | A - 1 r | | < | | A - 1 | | | H | 
l|Ax|| | |b| | - | |b|| ' 

But ||Ax|| < ||A|| ||x||, so we can replace the denominator on the left and 
multiply through by ||A|| to obtain the estimate 

^ : = i N i - l | A | l l | A _ 1 | l i | b l ' (2-6_2) 

This inequality bears interpretation. The quantity Rx := ||e||/ | |x|| ap-
pearing on the left is the norm of the error e, scaled by the "size" of the 
exact solution x. We call this ratio the relative error. The ratio | | r | | / | |b | | 
also represents a relative quantity, namely the magnitude of the residual rela-
tive to that of the right-side vector b . The inequality (2.6-2) asserts that the 
relative error is small when the relative magnitude of the residual is small, 
provided that ||A|| ||A~ || is not too large. 

DEFINITION. If A £ R n x n is nonsingular, then its condition number with 
respect to the norm || • || is cond (A) = ||A|| | |A- 1 | | . 

When cond (A) is large, the inequality (2.6-2) allows large errors despite small 
residuals, and we say that the matrix A is poorly conditioned. 

The actual value of cond (A) may depend upon the norm used to compute 
it. The results of Problem 13 suggest, though, that when cond (A) is large 
with respect to one norm, it is typically large with respect to others. When 
we need to specify which norm we are using, we do so with subscripts. Thus 
cond«, (A) := HAH^HA-1]!«,. In the example (2.6-1), cond«, (A) = 2 x 109. 

In no case can cond (A) be smaller than 1. To see this, let x € K" be any 
nonzero vector, and observe that 

||A|| HA"1!! ||x|| > ||A A"1!! ||x|| > IIAA-^H = ||x||. 

Dividing through by ||x|| shows that cond (A) > 1. The identity matrix I ac-
tually attains this "ideal" value: cond (I) = 1, with respect to any subordinate 
matrix norm (see Problem 11). 

Another approach to estimating the error in direct solution methods is to 
ask how the inevitable errors in input data compare with the resulting errors 
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in the computed solution x. For example, when do small perturbations in b 
lead to small errors e? To answer this question, assume for a moment that 
the perturbation in b , which we denote as 6, is the only source of error in x. 

Under this assumption, we have Ax = b , by definition of x, and Ax = 
b+<S. Therefore A(x—x) = b-(b+<S), which implies that e = -A~16. Taking 
norms yields ||e|| < | |A- 1 | | \\S\\, and now we use the fact that ||A|| ||x|| > | |b|| 
to deduce that 

H£ll <||A-1|III<?11 

HAHNI-1 1 "||b||-
Consequently, 

NI/ INI < cond(A) ||£j|/||b||. (2.6-3) 

Rx Rb 

When cond (A) is large, small relative errors i?j := ||<&||/||b|| in the right-
side vector can lead to large relative errors Rx in the computed solution x. 
More precisely, if cond (A) ~ 10s, then we expect to lose s significant digits 
in computing an approximation to x. In this view, cond (A) serves as an 
indicator of the sensitivity of a linear system to errors in the input data. On 
a machine whose single-precision representations of real numbers are accurate 
to six decimal digits, for example, condition numbers larger than 104 can pose 
serious practical difficulties. 

To complete this picture, we should also ask when small perturbations in 
the matrix A lead to small errors e. If D G M"x n denotes the perturbation in 
A, then the relative error in A is 

Ä * := ||D||/||A||. 

The following theorem incorporates perturbations in both A and b . 

THEOREM 2.16. Suppose that A G M n x n is nonsingular, b G M" is nonzero, 
and x G K" satisfies the linear system Ax = b . Let D G M"x", S G ffi", and 
e G K" satisfy the perturbed equation 

(A + D)(x + e) = b + S. 

If RA cond (A) < 1, then 

(Inequality (2.6-3) is the special case in which RA — 0.) 

PROOF: The assumptions imply that Ae = S — Dx — De, which we multiply 
by A - 1 to obtain e = A_1<J - A_1Dx - A_1De. Taking norms yields 

N | < HA"1!! ||4|| + HA"1!! ||D|| ||X|| + HA"1!! ||D|| \\e\\, 
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(l-HA-MlllDlDllell^HA-1!! | |* | |+ | |A-1| | | |D|| | |x| | . 

Now divide by ||x|| and note that | |A_1| | ||D|| = RA cond(A) to get 

[1-RA cond (A) ] Rx < ^A „ ^ J ^ + RA cond (A). 
||x|| 

(2.6-5) 

But Ax = b , so l/ | |x | | < ||A||/| |b||. Substituting this inequality into (2.6-5) 
yields the estimate (2.6-4). I 

It is possible in some cases to draw a connection between cond (A) and 
the spectrum of A. When A is symmetric and positive definite, ||A||2 = Amax, 
the largest eigenvalue of A, and ||A~ ||2 = 1/Amin, where Amin is the smallest 
eigenvalue of A (see Problem 9). Therefore, for symmetric, positive definite 
matrices, cond2 (A) = Amax/Amin. 

A classic example illustrates poor conditioning in symmetric, positive defi-
nite matrices. The Hilbert matrices Hn G ffi"x" are defined by hij — l/(«+ 
j — 1). Such matrices arise in the context of certain least-squares problems, 
as discussed in Section 1.7: If we choose the polynomials l,x , x , . . . , x as 
basis functions and use the inner product (/, g) = f0 f(x)g(x) dx, then the 
Gram matrix is 

(1-1) ( * n - \ l > 

_ ( l , * " - 1 ) ••• (a;"-1,a;""1) 

1 

_ 1/n 

1/n 

l/(2n - 1) 
H„. 

In contrast to the matrix in Equation (2.6-1), H„ shows few overt signs of 
poor conditioning. However, cond(H„) grows rapidly with n. For example, 
cond2(H3) ~ 5 x 102, while cond2(H8) ~ 1.5 x 1010 (Ortega [3], p. 35). 

The characterization of cond2 (A) in terms of eigenvalues has intuitive 
appeal, but it does not apply universally. A famous example, which we owe 
to Wilkinson ([5], p. 195), thwarts any misconception that Amax/Amin is a 
reliable indicator of poor conditioning. Consider the linear system 

" 0.501 - 1 
0.502 - 1 

0.599 - 1 
0.600 

Xi 

* 2 

Z99 
x ioo 

= 

' 1 ^ 
0 

0 
_ 0 _ 

+ 

" 0 1 
0 

0 
_ 6 _ 

(2.6-6) 
When 6 = 0, this system has a solution x in which xi = 1/0.501 ~ 2. For 
8 -fi 0, backward substitution shows that 

Xl > 
O.6OO100 > 10JJ<5 
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In this case, an extremely small perturbation 6 can destroy the accuracy of the 
computed solution. Notice that Amax/Amin = 0.600/0.501 ~ 1.2, giving no 
hint of poor conditioning. Problem 12 asks for a proof that cond,» (A) > 1021 

for this example. 

Iterative Improvement of Computed Solutions 
Short of computing A - 1 — a costly chore — we have so far given no general 
method for computing or even estimating cond (A). Furthermore, even if we 
knew that cond (A) were large, it is not yet clear what we could do about the 
situation. We close this section by discussing an approach for computing an 
improved approximation to x = A - 1 b , given an erroneous approximation x. 
The scheme automatically produces an estimate of cond (A). 

Once we know how to generate an improved approximation from a given 
approximation x, we can repeat the procedure as part of an iterative method. 
The idea is as follows: Given an approximate solution x(0) to Ax = b , with 
rW = b — Ax(°) ^ 0, use computable information to generate a sequence 

of iterates that give successively better approximations to x. Associated with 
each iterate is a residual, r ( ' ' = b — Ax(*\ and we expect that ||r(fc)|| —► 0 
as k —i- oo. Therefore, we can keep producing iterates until we decide that 
||r(*)|| is small enough to make x^) an acceptable approximation to the exact 
solution x. 

The estimate K of cond (A), whose calculation we discuss below, affords 
a quantifiable way to make this decision. Equation (2.6-2) suggests that the 
relative error associated with any iterate x(*) is 

iÖ-.IÖ (26-7) 
INI " ||b|| ' ( 2 6 7) 

where e^ = x — x ^ . We can therefore stop iterating when the right side of 
this estimate is smaller than some prescribed tolerance. 

It remains to specify how to generate the iterates and to estimate cond (A). 
The method relies on a simple heuristic. If we had an LU factorization of A 
and access to exact arithmetic, then we could compute the residual r = b—Ax 
exactly. Then we could solve 

Ae = r (2.6-8) 

very cheaply to find the exact error e. Thus x = x + e would be the exact 
solution. This scenario is clearly fictional, since r typically contains errors 
that contaminate the correction computed from Equation (2.6-8). 

Still, the heuristic is salvageable: We can compute the residual using 
high-precision arithmetic — double-precision, if the main algorithm employs 
single-precision arithmetic — and then use Equation (2.6-8) in an iterative 
sense. The following algorithm results. 
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ALGORITHM 2.7. Given an LU factorization LU = A € E " x " and an ap-
proximate solution £(°) to the linear system Ax = b , all computed using 
single-precision arithmetic, the following steps generate a sequence { x ^ } of 
improved approximations to x. The words SINGLE and DOUBLE indicate the 
precision to be used in each step, and r > 0 is a prescribed tolerance. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

k^-0. 

r(*) <— b - Ax(*) (DOUBLE). 

If ||r(*)|| > T, then: 

Solve Lz = r ( t ) for z (SINGLE). 

Solve Ue(fc) = z for e<*) (SINGLE). 

x(*+i)<_x(*) + e(*) (SINGLE). 

k+- k-r 1 

Go to 2. 

End if. 

End. 

One can modify this algorithm to accommodate partial pivoting. 
As Equation (2.6-7) indicates, choosing a reasonable tolerance r requires 

an estimate K of cond (A). To help derive such an estimate, we establish the 
following fact about perturbations of linear systems. 

PROPOSITION 2.17. Let A e Rnxn, b € R", and x e Mn satisfy the linear 
system Ax = b , and suppose that the vector x := x-fe is nonzero and satisfies 
the perturbed system (A + D)x = b , where D S ffi"xn. Then 

M£ c o n d ( A )M 

PROOF: The hypotheses imply that Die = b — Ax = A(x — x), that is, 
e = A_1Dx. Therefore, ||e|| < | |A_1| | ||D|| ||x||. Since x ^ 0, we can divide 
through by ||x|| to complete the proof. I 

For a machine on which single-precision arithmetic is accurate to s decimal 
digits, the perturbation to A arising from roundoff errors has relative magni-
tude roughly 10_ s . Hence, 

g < c o n d ( A ) M . 1 0 - < c o n d ( A ) . 
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Therefore, during the first step of Algorithm 2.7, we can set 

,lk(0)l l cond (A) ~ « := 10' 
ic(°)|| ' 

This estimate of cond (A) is plainly a crude one. For more sophisticated 
estimates that do not rely on explicit knowledge of a machine's precision, see 
Golub and Van Loan ([1], Section 4.5). 

2.7 Problems 
PROBLEM 1. Compute LU factorizations of the matrix 

4 
0 
2 
4 

0 
1 
1 
1 

2 
1 
11 
9 

4 
1 
9 
25 

A = 

using the Doolittle and Crout methods. 

PROBLEM 2. Prove Corollary 2.7. 

PROBLEM 3. Devise a partial pivoting scheme for the Crout method. 

PROBLEM 4. 

(A) Program Algorithm 2.3, and use it to compute the Cholesky decom-
position of the following matrix: 

A = 

(B) Give operation counts for Algorithms 2.3 and 2.4. 

PROBLEM 5. Devise a compact storage mode suitable for symmetric, pos-
itive definite band matrices. Write an algorithm to compute the Cholesky 
decomposition using this storage scheme. 

PROBLEM 6. Derive an operation count for the block-tridiagonal algorithm 
applied to a matrix of the following block-partitioned form: 

A = 

4 0 2 
0 1 1 
2 1 11 
4 1 9 

4 
1 
9 

25 

' 2 0 0 0 ' 
0 1 0 0 
1 1 3 0 
2 1 2 4 

" 2 0 1 2 
0 1 1 1 
0 0 3 2 
0 0 0 4 

/ T D 
D T 

\ 

D 

D 

\ 

T D 
D 1 j 
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Here, T G M m x m is tridiagonal, D G IRmxm is diagonal, and A G M m n x m " . 

PROBLEM 7. Prove Theorem 2.8. 

PROBLEM 8. Prove Theorem 2.5. 

PROBLEM 9. 

(A) Show that g(A) < ||A|| for any subordinate matrix norm || • ||. (Hint: 
Consider eigenvectors having unit length.) 

(B) Show that the spectral radius g: M n x n —* M is not a matrix norm by 
finding matrices A and B such that g(A + B) > g(A) + g(B). 

(c) Show that 1/||A_1|| = inf||x||=1||Ax||. 

(D) Let A be symmetric and positive definite with smallest eigenvalue 
Show that | |A_1||2 = 1/Amin. 

PROBLEM 10. Matrix norms || • | |:lRnxn -+ 1R inherit nice properties of the 
vector norms that define them: 

(A) Prove that any subordinate matrix norm satisfies the requirements 
to be a norm. 

(B) Prove that any matrix norm ||A|| is a continuous function of the n2 

entries of A. 

(c) Prove that all matrix norms on M"x" are equivalent. 

(Propositions (B) and (c) do not require the norm to be subordinate to a 
vector norm.) 

PROBLEM 11. 

(A) Prove part 2 of Theorem 2.15. 

(B) Prove that || 11| = 1 in any subordinate matrix norm. 

PROBLEM 12. 

(A) For each of the following matrices, sketch the image {Ax : x Ç 52} 
of the unit sphere in M.2. Give a geometric interpretation of ||A||2 in 
each case. 

A = 

(B) For the matrix A in Equation (2.6-6), show that condoo (A) > 10; 

A = 0 1 
-1 0 

A = 2 1 
1 3 
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PROBLEM 13. 

(A) Find constants m 1 ,Mi,m 2 ,M2 such that 

mi cond2 (A) < condx (A) < M\ cond2 (A) 

and 
J7i2 condoo (A) < cond2 (A) < Mi condoo (A). 

(B) Let || • || be a subordinate matrix norm, and let A, B G ffinx". Prove 
that cond (AB) < cond (A) cond (B). 

PROBLEM 14. 

(A) Show that the Frobenius no rm 

satisfies the three conditions required of norms, as does the function 

||A||max :=max |a,- j | . 

(B) Neither of the norms in (A) is subordinate to a vector norm when 
n > 1. Therefore, we have no guarantee that the inequality (2.5-5) 
holds. Show that it fails for the norm || ■ | |max. 

(c) Show that || ■ \\p is not subordinate to any vector norm for n > 1. 
(Hint: Consider ||I||F.) 

PROBLEM 15. Suppose that A £ M"x" and that p is a polynomial. Show the 
following: 

(A) If A is an eigenvalue of A, then p(A) is an eigenvalue of p(A). 

(B) If M." has a basis consisting of eigenvectors of A and /x is an eigenvalue 
of p(A), then there is an eigenvalue A of A for which fj. = p(A). 
(Actually, the assumption that eigenvectors of A form a basis is not 
necessary.) 

v 
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Chapter 3 

Solution of Nonlinear 
Equations 

3.1 Introduction 

In this chapter we consider numerical methods for finding real solutions to 
equations of the form 

/(x) = 0. (3.1-1) 

Here, / is some nonlinear function of the unknown variable x. Any number 
x* G ]R that satisfies this equation is a real zero of / . Examples of such 
equations include 

sin(x3 + 2x2 - 1) = 0, 

x3 — t a n - 1 x 

cosh (a;2) -+■ w — 0. 

(We can convert the second example to the form (3.1-1) by subtracting x 
from both sides.) 

Numerical methods for solving Equation (3.1-1) share two general fea-
tures. First, they are iterative methods. That is, given an initial guess x(°\ 
they produce asequence {x(m)} = {x^°\ x^\ x^2\ ...} of real numbers, called 
i tera tes . If the equation, the method, and the initial guess are all "reason-
able," then we expect that \x* — x(m)| —► 0 as m —* oo. In this case, the 
method converges to x*. Otherwise, the sequence {x(mï} may converge to a 
different point in 1R, or it may not converge to any number. In the latter case 
the method diverges. There are two key questions concerning a numerical 
method for solving Equation (3.1-1). First, for what initial guesses x^ does 
the method converge to x*? Second, for efficiency's sake, how fast does the 
sequence of iterates converge? 
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162 CHAPTER 3. SOLUTION OF NONLINEAR EQUATIONS 

The second general feature of numerical methods for nonlinear equations 
is that they require informed users. Except in special cases, one cannot hope 
to solve Equation (3.1-1) numerically without first analyzing / . Look again 
at the three examples listed above. The third example has no real solutions, 
so solving for them numerically is futile. Even in the first two examples, 
some analysis is needed to determine how many real solutions each equation 
possesses. Moreover, many numerical methods do not converge to a sought 
zero x* unless the initial guess x^0^ is close to x*. To solve Equation (3.1-1) 
numerically, one should know something about the number and locations of 
the zeros of / . 

One can easily imagine more complicated examples involving less famil-
iar transcendental functions, functions having discontinuities, or functions 
defined by algorithms that themselves may be quite involved. In this chap-
ter we restrict attention to functions that are at least continuous in some 
neighborhood of the sought solution. 

Even under restrictive smoothness assumptions, difficulties can arise in 
numerical work. Problems often occur when the zeros of / are extremely 
sensitive to small numerical errors. Polynomials are notorious in this regard. 
Consider the following example, introduced by Wilkinson [5]: 

20 

/ (x) = (x - l)(x - 2) • • • (x - 20) = J2 «»*"> 
n = 0 

where a20 = 1, a19 = - ( 1 + 2 + • • • + 20) = -210, ..., a0 = 20!. The zeros 
1,2,..., 20 of this polynomial are all real. Also, like every polynomial, this one 
has derivatives of all orders at each x 6 ]R, so smoothness of / as a function 
of x is not an issue. Now define / (x) to be the polynomial whose coefficients 
ân are identical to those of / , except that âig = aig + 2 - 2 3 ~ —(210 — 10- 7) . 
Even though / and / have coefficients that are "close," the zeros of / differ 
significantly from those of / . In particular, / has a conjugate pair of complex 
zeros 16.7307 ± 2.8126 i, correct to four decimal places. 

To accommodate phenomena like this, several specialized methods exist 
for finding polynomial zeros. We do not investigate these methods here; 
rather, we refer to Press et al. [4, Section 9.5] for an introduction. For our 
purposes, the instability of some polynomial zeros plays a cautionary role: 
Nonlinear functions, even when smooth, can have zeros that are difficult to 
approximate numerically. 

A much milder source of difficulty arises at zeros where the graph of / 
is tangent to the x-axis, as shown in Figure 1. These zeros may be difficult 
to detect, since the graph of / may not cross the x-axis as it passes through 
(x*,/(x*)). Also, one of the most powerful zero-finding schemes that we 
discuss — Newton's method — loses some of its power at such zeros. In 
preparation for later discussion, we digress briefly to characterize this type of 
zero. 
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DEFINITION. A zero x* of a function f: [a,b] —► M has multiplicity q if there 
is some continuous function g: [a,b] —► M such that 

(i) * ( * • ) 9E 0, 

(ii) /or every x € [a, 6], / ( z ) = (x — x*)9g(x). 

If x* is a zero of f having multiplicity 1, then x* is a simple zero of f. 

The following proposition connects the multiplicity of zeros with the nature 
of the tangency of the graph of / to the z-axis: 

PROPOSITION 3.1. A function f 6 Cq([a,b]) has a zero of multiplicity q at 
x* £ [a,b] if and only if 

0 = /(a:*) = /'(ar*) = --- = /<«-1)(**) and / ( î ) 0 O # 0. (3.1-2) 

X* 

FIGURE 1. A point where f(x*) = f'(x*) = 0. 

PROOF: If / has a zero of multiplicity q at x*, then f(x) = (x — x*)qg(x), 
where g is continuous at x* and g{x*) ^ 0. Since / G Cq([a, b]), g € Cq([a, b]\ 
{x*}). It is straightforward to check by induction that, for x G [a, b] \ {x*} 
and 0 < k < q, 

/<*>(x) = ck(x - x*)q-kg(x) + (x- x*)q-k+1gk(x), 

where ck is a nonzero constant and gk is some function that is continuous on 
[a, b] with gk € Cq~k([a, b] \ {x*}). Consequently, flk\x*) = 0 for 0 < * < q, 
and /*«>(!•) = cqg{x*) £ 0. 

Conversely, if Equations (3.1-2) hold, then the Taylor expansion (Theorem 
0.13) for / about x* has the form 

/(*) = f(x*) + f'(x*)(x-x*)+---+£?-P-(x-xy 
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for some point Ç lying between x* and x. Since £ depends on x, we may as well 
write £ = Ç(x) and note that C(x) is continuous at x*, since limac-.^ C(x) = 

x* = C(ar*). Thus f(x) = (x - x*)ig(x), where g(x) := / ( ï ) ( C ( * ) ) M ■ 

The remainder of this chapter has the following format: Sections 3.2 
through 3.5 discuss one-dimensional methods, designed to find real zeros of 
functions / : [a,b] —► ÏÏL The analysis of these methods builds intuition for 
problems involving several equations in several unknowns. In this more com-
plicated setting we seek solutions x* := {x\,X2,..., i * ) T 6 E " to systems of 
equations having the form 

f (x) := 

fi(xi,x2,...,xn) 

Î2{X\,X2, . . . , I n ) 

fn{x\,X2, . -.,Xn) 

(3.1-3) 

Here, f : ÇI —<■ Kn, where the domain fi is a suitable subset of K". We often 
stipulate that Q be convex. This means that, whenever x j G O , the line 
segment 

jx + t (y - x) G 1" : 0 < t < l}, 

which connects x and y, lies entirely in ft. Figure 2 illustrates convex and 
nonconvex sets in K2. Sections 3.6 and 3.7 treat various generalizations of 
one-dimensional methods to the numerical solution of Equation (3.1-3). 

(a) (b) 

FIGURE 2. A convex set (a) and a nonconvex set (b) in K2. 

3.2 Bisection 

Motivation and Construction 

Suppose that f:[a,b] —* ffi is continuous and that f(a)f(b) < 0. Thus / 
changes sign on the closed interval [a,b]. The intermediate value theorem 
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(Theorem 0.8) guarantees that / has a zero x* somewhere in the open interval 
(a, 6). Figure 1 depicts this idea, showing that the graph of / may actually 
cross the x-axis more than once in (a, 6). To approximate x*, we might use 
the midpoints' :— (a + b)/2 of the interval. This approximation is admittedly 
crude, but its error is easy to estimate: \x* — ~x\ < (6 — a)/2. As we detail 
below, this reasoning gives rise to the bisection method . 

FIGURE 1. The existence of at least one zero in [a, b] for a con-
tinuous function f satisfying f(a)f(b) < 0. 

Let us call the zero x* bracketed if we can identify a bracketing inter-
val [a,b] such that f(a)f(b) < 0 and x* is the only zero of / lying in [a,b]. 
Starting with an initial bracketing interval [ao, bo], the bisection method gen-
erates a sequence 

|[ao,&o],[ai,&i],[a2,62],...j 

of successively smaller bracketing intervals for x*. 
The idea is this: Having computed the bracketing interval [am ,6m] , we 

regard the midpoint x(m) := (am + bm)/2 as our next estimate for x*. 
If / ( am) / (z ( m ) ) < 0, then x* E ( a m , x ( m ) ) , and hence [am + 1 ,6m + 1 ] := 
[am,x(m)] becomes the next bracketing interval. (In the unlikely event that 
/(x(m)) = 0, the method would stop.) On the other hand, if / (x ( m ) ) / (6 m ) < 
0, then [am+i,6m+i] := [x(m-*,6m] is the next bracketing interval. Once we 
have determined [am + i ,6m+i] , the midpoint x ( m + 1 ' := (am+i + 6m + i ) /2 be-
comes the next approximation to x*, and we repeat the process. The intervals 
generated in this fashion "trap" the zero x*, in the sense that x* lies in each 
interval and 

6m+i -am+i = 2 - 1 ( f c m - a m ) = ••• = 2-(m + 1)(60 - a0) 
(3.2-1) 

—► 0 as m —► oo. 

As Figure 2 illustrates, this procedure generates an iterative sequence 
{x(m)} of interval midpoints that approximate the exact zero x*. In practice 
we stop generating new iterates as soon as |x*—x(m) | < r , where r > 0 is some 
prescribed tolerance. Since |x* — x(m)| < (6m — a m ) /2 , this stopping criterion 
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is easy to check: It holds whenever (6m — am )/2 = 2- ( m + 1 ) (6 0 -ao) < r, that 
is, when m > — log2[r/(60 — a0)]. The following algorithm incorporates these 
ideas. 

FIGURE 2. Example of a sequence of iterates x^m^ generated by 
the bisection method. 

ALGORITHM 3.1 (BISECTION). Given a continuous function /:[oo,6o] —► M, 
where [ao,6o] brackets the zero x*, and a tolerance r > 0, this algorithm 
computes an approximate value to x*. 

1. m«-0 . 

2. *<">) «- (am + 6m)/2. 

3. If ( 6 m - a m ) / 2 > r, then: 

4. I f / (am)/(x(m))<0 then: 

5. a m + i <- am and fem+i <- x(m). 

6. Else: 

7. a m + 1 <- x^m) and 6 m + i <- 6m. 

8. End if. 

9. m <— m + 1. 

10. Go to 2. 

11. End if. 

12. End. 

It is logically possible to have f(x^m^) = 0 at some stage of the iteration. In 
this case / (o m ) / (x( m ) ) = / (x(m)) / (6m) = 0 and x(m) = x*, and theoretically 
we should stop iterating. However, this case occurs so rarely in numeri-
cal practice that it is not worth the extra computing time to test whether 
/(x(m)) = 0. 
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Practical Considerations 
The bisection method has an attractive property: It always converges. More 
precisely: 

PROPOSITION 3.2. Suppose that f: [ao,&o] —+ K is continuous and that [ao,&o] 
brackets exactly one zero x* of f. Then bisection generates a sequence {x^m^} 
that converges to x*. 

PROOF: The relationship (3.2-1) implies that |x(m) - x*| < 2 _ m (6 0 - a0), 
which tends to 0 as m —» oo. I 

The hypotheses that the function / have exactly one zero in (ao,6o) and 
that /(ao)/(6o) < 0 are essential in this theorem. They also indicate how 
much one should know about / before embarking on a search via bisection. 
If / has more than one zero in (OQ, bo) and /(ao)/(6o) < 0, then the bisection 
method converges to one of the zeros. However, we may have no way to 
determine in advance which one. Also, a continuous function / can have 
zeros in an interval (ao,6o) without having /(ao)/(&o) < 0. Figure 3 shows 
the graph of such a function. It is doubtful that one can formulate a bisection 
algorithm that obviates all prior analysis of / ; the hypothesis of continuity 
by itself simply leaves too much latitude for constructing counterexamples. 

FIGURE 3. The graph of a continuous function f for which 
f(ao)f(bo) > 0, even though f has zeros in (ao,6o). 

The argument used to prove Propositon 3.2 indicates how fast we can ex-
pect the bisection iterates to converge to x*. Roughly speaking, each iteration 
reduces the error |x*—x(m)| by the factor | . Therefore, to reduce this error by 
the factor 10_ 1 , we expect to require M iterations, where 2~M = 10 - 1 , that 
is, M = l / log 1 02 ~ 3.3. In other words, bisection takes about 3.3 iterations 
to gain one decimal digit of accuracy in the approximation to x*. Compared 
with schemes presented in subsequent sections, bisection converges slowly. 
One might regard this slowness as the price paid for guaranteed convergence. 

The dichotomy between this scheme, which is slow but sure, and the 
faster, more temperamental schemes discussed later in this chapter suggests 
an important practical view of bisection: Since it converges reliably, even from 
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poor starting guesses, it makes a reasonable initializing algorithm. In this 
view, one can often use a few iterations of the bisection method to generate 
an iterate x(m) lying close enough to x* to guarantee that a faster "polishing" 
method, using x^m^ as an initial guess, converges to x*. 

One can implement such a hybrid strategy at several levels of sophis-
tication. The following naive approach uses the polishing scheme when-
ever possible, but it never accepts iterates x(m) that lie outside the small-
est known bracketing interval. In the following pseudocode, the notation 
x(

m+1) *— POLISH (x(m^) indicates that we are to use the polishing scheme to 
compute the new iterate x. Sections 3.3 through 3.5 discuss candidates for 
such a scheme. 

ALGORITHM 3.2. Given a continuous function f defined on an interval [ao, bo] 
that brackets exactly one zero x* of f, the following algorithm uses bisection 
and a faster, more sensitive polishing algorithm to compute a sequence {x^m^} 
of approximations to x*. 

1. m<-0. 

2 . a <— a o , 6 <— bo 

3. x(°) — (a + «0/2. 

4. x(m+1) — POLISH (x( m )) . 

5. If x<m+1) < a or x(m+1> > b then: 

6. If/(a)/(x(m>) < 0 then: 

7. 6 — x(m\ 

8. Else: 

9. a^x(m\ 

10. End if. 

11. x(m+1) «- (a + 6)/2. 

12. End if. 

13. m «— m + 1. 

14. If convergence test fails, go to 4. 

15. End. 

(If the polishing algorithm is not sophisticated, then this algorithm can fail 
to locate a zero.) We discuss appropriate convergence tests in the next few 
sections. 
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3.3 Successive Substitution in One Variable 

Motivation and Construction 
An intuitively appealing method for solving f(x) = 0 arises if we recast the 
equation in the form x = <&(x) for some iteration function $ . We call any 
solution x* to this latter equation a fixed point of <I>. Given an initial guess 
o;(0), we compute new approximations to x* simply by setting 

a.(™+i) «_ $ (X(™A . (3.3-1) 

If all goes well, the sequence {x^m^} of iterates generated in this way converges 
to x*. We call this scheme successive subst i tu t ion. Implicit lies the hope 
that $ somehow "shoves" the iterates x^m^ toward a fixed point. 

The form x = $(«) is not as special as it may appear at first. Defining 
$(ar) := x—f(x) automatically converts the equation f(x) = 0 to x = $(x) for 
any function / . Problem 2 provides opportunities for making this conversion 
in other ways. Problem 15 illustrates that fixed points are far from rare. 

To illustrate successive substitution, consider the function f(x) := x — 
| co sx . This function has one zero x* in the interval [0 ,ÎT/2] , as Figure 1 
illustrates. To find an approximation to this zero, we set $(2:) := | cos a; and 
use successive substitution. Table 3.1 lists, to four decimal places, iterates 
a;(m) that result when we use the initial guess x(°) = | . After six iterations, 
the two most recent iterates x^ and a;(6) agree to four decimal places. 

Table 3.1: Successive substitution iterates for f(x) = x — i cos a;. 

m 

0 

1 

2 

3 

4 

5 

6 

x(m) 

0.5000 

0.4388 

0.4526 

0.4496 

0.4503 

0.4502 

0.4502 

l/(*(m)l 
6.121 x 10 - 2 

1.384 x 10"2 

2.984 x IO-3 

6.504 x IO-4 

1.414 x IO-4 

3.078 x IO-5 

6.695 x 10-6 

|a;(m)-a:*| 

4.982 x 10~2 

1.139 x 10~2 

2.449 x IO-3 

5.342 x lu"4 

1.162 x lu"4 

2.798 x lu-5 

5.499 x 10-6 

While it may be tempting to stop iterating when changes in successive 
iterates become small, this halting criterion can conceivably be a poor one. 
Small changes in successive iterates may indicate simply that the scheme is 
converging very slowly. What we really want is some assurance that the 
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FIGURE 1. The graphs of x and ^cosa:, showing that x — ^ cos i 
Aas a zero in the interval [0, ff/2]. 

error e(m) := x* — x(m^ is small in magnitude before we accept z(m) as a 
reasonable approximation. Later in this section we discuss halting criteria 
more rigorously. 

Practical Considerations 

Successive substitution does not always converge. A geometric view of the 
difficulty lends insight not only into what is needed to guarantee convergence 
but also into the rate at which #(m) —* x* when convergence occurs. 

Figure 2 shows graphs of two smooth functions y = $(2). Each graph 
intersects that of the identity function y = x at the point (x* ,$(x*)) cor-
responding to a fixed point. For each function $, the figure also shows the 
iterates generated using successive substitution with initial guesses x^°\ In 
constructing the figure, we reflect the ordinates ar(m+1) := $( i ( m )) across the 
lines y = x to locate them as arguments of $ for the next iteration. This 
graphic evidence suggests that successive substitution converges to the fixed 
point x* when the graph of $ is not too steep. The scheme diverges, however, 
when the graph of $ is steep. 

Figure 3 shows similar plots for two functions $ whose slopes are negative. 
Here again successive substitution converges when the graph of $ is not too 
steep, but the scheme diverges when the graph of $ is steep. 

Geometrically, the steepness of the graph of $ indicates the "stretching 
power" of $ . Thus $ has a steep graph in a region if two nearby points x 
and y in the region have images $(x) and $(y) that are far apart, as Figure 
4 illustrates. The following definition quantifies this notion. 

DEFINITION. Let S C TSL. A function $ : S —* K satisfies a Lipschitz con-
dit ion on S if there exists a constant L > 0 such that, for any two points 
x,yeS, 

| * ( * ) - * ( y ) | < L | * - y | . (3.3-2) 

The greatest lower bound for such constants is the Lipschitz constant for 
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FIGURE 2. Schematic illustration of successive substitution for 
two smooth functions having positive slopes. 

FIGURE 3. Schematic illustration of successive substitution for 
two smooth functions having negative slopes. 

<$ on S. If 4> has Lipschitz constant L < 1 on S, then $ is a contract ion 
on S. 

An easy argument shows that any function that satisfies a Lipschitz condition 
is continuous. But the Lipschitz condition also tells us something about how 
fast the function values $ ( i ) can change as the argument x changes. We 
regard $ as having a steep graph when it has a Lipschitz constant L > 1; 
thus, contractions are functions whose graphs are not steep. 

This definition has connections with a more familiar measure of steepness, 
namely the derivative of $ . If $ G C1([a,6]), then $ satisfies the Lipschitz 
condition (3.3-2) on [a,b], with sup^gr,, M |$ ' (z) | = L. To see this, recall the 
mean value theorem (Theorem 0.14), which guarantees the existence of a 
point C G (a, b) such that $(x) - $(y) = &{Ç){x - y). Since | * ' « ) | < L, 

|*(ar) - *(») | = |*'(C)| \x-y\< L\x - y\. 
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FIGURE 4. Correspondence between the steepness of the graph of 
$ and the increase \$(x) — $(y)| over the distance \x — y\. 

In particular, a continuously differentiable function $ is a contraction on [a, 6] 
if | $ ' | < 1 everywhere on the interval [a,b]. 

Now we can state the principle governing convergence of the iterative 
scheme (3.3-1): / / $ is a contraction in some neighborhood (x* — 6, x* + 
6) of the fixed point x*, then successive substitution, starting with x^ 6 
(x* — 6,x* + S), shrinks the distance between the iterates and the fixed point. 
Moreover, the iterates stay inside the interval (x* — 6, x* + 6). We make a 
rigorous statement to this effect below. 

For now, assume that $ is a contraction and let us examine the rate at 
which x(m) -* x*. The inequality (3.3-2) and the fact that x* = <&(x*) allow 
us to estimate the error e(m+1) := x* — aj(m+1) in terms of previous values: 

| e ( m + l ) | _ | j , . . _ x ( m + l ) | _ | $ ( a . ' ) _ $ ( j . ( m ) ) | 

< L\x*-x^\ = L|e(m)| 
(3.3-3) 

Therefore, with each iteration, successive substitution reduces the magnitude 
of the error at least by a factor L. 

Measuring the error reduction associated with one iteration furnishes a 
standard way to gauge the convergence rates of iterative schemes: 

DEFINITION. Let p > 1. An iterative scheme that produces sequences {a;(m)} 
of approximations to x* converges with order p if there exists a constant 
C > 0 and an integer M > 0 such that 

.„(m+l) <C r("0 (3.3-4) 

whenever m > M. If p — 1, convergence occurs when 0 < C < 1, and 
we say that the scheme converges linearly. If p = 2, the scheme converges 
quadratically. / / 

limlfl^Uc, 
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then we call C the asymptotic error constant. 

One can interpret the order of convergence p in terms of decimal places of 
accuracy. If \x* - x(m)| = HT«, then \x* - x( m + 1 ) | < C • l O " " . So, if C 
is not too large, each iterate has roughly p times as many decimal places of 
accuracy as the previous iterate. For example, if p = 2, once the iterates 
become close to x*, each iterate is accurate to roughly twice as many decimal 
places as the previous one. 

When programming any iterative scheme, one should check the order of 
convergence using a convergence plot. By applying the algorithm to a 
problem for which the zero x* is known, one can compute a sequence of 
errors e(m) := x* — x^m\ According to the definition (3.3-4), 

log £ (m + 1) <plog e(m) + logC. 

Consequently, a plot of log|e(m + 1) | versus log|e(m)|, such as the one drawn 
in Figure 5, typically yields points lying roughly on a line having slope p. 

log I e<m) I 

slope 1 / 
A log le (m+l), 

FIGURE 5. A convergence plot for the problem illustrated in Figure 
1, confirming that successive substitution converges linearly. 

For some schemes it is difficult to identify a power p > 1 for which the 
condition (3.3-4) holds, yet to say that the scheme converges linearly under-
states its actual performance. In these cases, the following definition may 
apply: 

DEFINITION. An iterative scheme producing sequences {x^m^} of approxima-
tions to x* converges superlinearly if there exists a sequence {Cm} such 
that Cm —► 0 and 

' - a ;(
m+1) <Cm x* - x^ . (3.3-5) 

By establishing the inequality (3.3-3), we have proved the following theo-



174 CHAPTER 3. SOLUTION OF NONLINEAR EQUATIONS 

THEOREM 3.3. / / the iteration function $ is a contraction on some inter-
val containing the iterates x(°>, x^1', x^2',..., then the successive substitution 
scheme (3.3-1) converges at least linearly. 

Figure 5 confirms this result graphically. 
Under some circumstances, one can construct iteration functions <b for 

which successive substitution converges with order 2 or greater. Problem 5 
investigates this possibility. 

The Lipschitz condition (3.3-2) also leads to two practical halting criteria. 
To derive them, we establish an inequality that has applications in several 
subsequent arguments. 

LEMMA 3.4. Lei m,n be positive integers, and let {x^m^} be a sequence 
of iterates generated by the successive substitution scheme (3.3-1), where the 
iteration function $ has Lipschitz constant L < 1 on some interval containing 
every iterate x(m\ For j = 0 , 1 , . . . , m, 

x{m+n) _ x(m) <Lm~] A-Ln 

1-L 
xU+i) _ XU) (3.3-6) 

This inequality relates the difference between any two iterates to the differ-
ence between an arbitrary pair of successive iterates that occur earlier in the 
sequence. The proof illustrates several standard techniques for working with 
contractions. 

PROOF: We begin by writing |x(m+") — a:(m)| as a telescoping sum and ap-
plying the triangle inequality: 

x(m+n) _ x(m) 
ro-f n — 1 

J2 (x^-xW) 
m+n — 1 

< £ M i + 1 ) - x « . (3.3-7) 

By reasoning as we did for the inequality (3.3-3), we estimate each term in 
this last sum as follows: For j — 0 , 1 , . . . , i, 

< L *<<>_ * (« - ! ) 

(3.3-8) 
a;0'+i) _ xU) 

a,(«"+i) _ XW\ = $( z (0) _ ^(zC''-1)) 

< < L'-i 

Substituting this estimate into the relationship (3.3-7) and using the identity 

»=o 
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shows that 

n - l 
| a . (m+n)_ J . (m) | < jm-)^ V L0 ' + 1) - X( i ) 

»=0 

L m - j , 1 - 1 " 
1 - L 

a;0'+i) _ X0) 

This completes the proof. 

As an immediate consequence, we can estimate the error e 'm ' in terms of 
the computed quantities x^+1^ — x^ for any j , j = 0 , 1 , . . . , m — 1. Since the 
iterative sequence converges to x*, letting n —► oo in the inequality (3.3-7) 
yields 

lim 
n—»oo 

x(m+n) _ x(m) r(
m) = U<m> 

jm-3 

\-L 
,0'+i) _ ,(i) 

The two special cases j = 0 and j = m — 1 yield useful estimates: 

COROLLARY 3.5 Under the hypotheses of Lemma 3.4, the iterates x^m^ gen-
erated using successive substitution obey the error estimates 

(i) 

(«) 

x* - x(m) 

x* - x^ 

\-L 

L 
< 

x^ - x(°) , 

x(
m) - X(m-V\ 

The estimate (ii) vindicates the practice of halting successive substitution 
when the difference between successive iterates becomes small. We call this 
inequality an a posteriori error estimate, since it gauges the magnitude of 
the error in terms of the most recent information generated by the iterative 
scheme. In contrast, the inequality (i) is an a priori error estimate. It allows 
us to determine the number of iterations needed to satisfy a prescribed error 
tolerance as soon as we have taken one iteration. Both estimates require 
knowledge of L. 

Mathematical Details 
The following theorem guarantees that successive substitution converges if 
the initial guess is close to a fixed point. 

THEOREM 3.6. Suppose that the iteration function $ has a fixed point x* and 
that $ is a contraction on some neighborhood (x* — 6, x* +6) of x*, where 
6 > 0. Let x(°) be any initial guess lying in (x* — S, x* + S), and denote by 
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{x(m^} the sequence of iterates generated by the successive substitution scheme 
(3.3-1). Then each x(m> G (x* - 6, x* + 6), and x(m) -> x* as m -> oo. 

PROOF: We show that \x* — x(m)| < 6 by induction on m. The hypotheses 
ensure that x(°) G (x* — 6, x* + 6). Assume that x^ G (x* — S, x* + 6) for 
i = 0 , 1 , . . . , m. To prove that j ;(m + 1) G (x* — 6, x* + 6), we repeatedly apply 
the argument used to establish the inequality (3.3-3), deducing that 

c* -x(m+l)\ < L _!("•) < - . . < L m + 1 r<°) 

But |x* - i(°)| < 6, so \x* - x<m+1)| < Lm+16 < 6, completing the induction. 
Since L m + 1 —+ 0 as m —► oo, we have also shown that |x* — x( m + 1 ) | —» 0 as 
m —» oo. I 

With a few alterations in the hypotheses, we can prove a more powerful 
theorem. 

THEOREM 3.7. Let O be a contraction with Lipschitz constant L on some 
closed interval [x^ — 6, x^ + 6] about an initial guess x^°\ Suppose that the 
successive substitution scheme (3.3-1) satisfies the condition 

XW _ x(o) *(*<°>) - *<°> < (1 - L)6. (3.3-9) 

Then 

(A) Each iterate x<m) G (ar(0) - 6, x(°) + 6). 

(B) The sequence {x^m^} converges to a point x* G [x(°l — S,x^ + 6]. 

(c) The limit x* is the unique fixed point o/<J> in [x'0' — 6,x(°' + 6]. 

There are two reasons for the greater utility of this theorem. First, its hy-
potheses do not require us to know in advance that a fixed point x* exists for 
$ . Second, the parameter ê in this theorem is the radius of a ball centered 
at a known point x^°\ and consequently we may be able to determine 6 more 
realistically here than in Theorem 3.6. 

PROOF: We prove (A) by induction on m. By hypothesis x^ G (x(°) — 
6, x(°) + 6). Assume that xW G (x{0> - 6, x(0) + 6) for i < m. To show that 
x(m+!) ç (a;(°) — 6,x^> + 6), we apply Lemma 3.4, observing that 

B(m+1) _ XW\ < 1 - Lm+1 

- 1 
,0) - ,(0) 

But \xW - x(°)| < (1 - L)S, so 

L("»+i) _ x(°) < (1 - Lm+l) 6 < 6, 
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which completes the induction. 
To establish (B) , it suffices to show that {x(m)} is a Cauchy sequence. 

Given e > 0, we find an integer M so large that |x(m+") —a;(m)| < e whenever 
n > 0 and m > M. Lemma 3.4 with j = 0 yields 

x(m+n) _ x(m) 1 — Tn 

rW - -(°) <Lm(\-Ln)8<Lm8. 

It follows that |ar(m+") - x<m>| < Lm6, so |x(m + n) - x(m)| < e whenever m 
is large enough to make Lm6 < e. We therefore choose M to be any integer 
such that 

log I 

To prove (c), call l imm_0 0 x(m^ = x*, and use the continuity of $: 

x* = lim x(m+1) = lim Wx^) = * (*•) . 
m—»oo m—»oo 

Thus x* is a fixed point of $. Uniqueness follows from the Lipschitz condition: 
If x** is a fixed point of $ in (a;(°) - S, x(° + 6), then 

\x* - * " | = |*(ar*) - * ( * " ) | < I k* - ***| ■ 

When i = 0, we have \x* - x**| < 0, so x* = x". When L € (0,1), 
the inequality yields the absurd conclusion |a;* — ar**| < \x* — x**\ unless 
x*=x*\ I 

3.4 Newton ' s Me thod in One Variable 

Motivation and Construction 

Figure 1 shows the graph of a function / defining a straight line. For such 
functions there is a simple scheme for solving the equation f(x) = 0: Given 
a point (x(°), j/°)) = (JC<°>, /(x(°>)) lying on the graph of / , set 

i(») «- *(°) _ ( -L.) y(0 = ,(0) _ Ml 
Vslopey y f'(xW)' 

This scheme converges in one iteration to the point x* where the graph of / 
crosses the j;-axis. Newton's method exploits this idea: At each iterative level 
m we approximate the graph of / near x^m^ by a straight line passing through 
the point (*<"*),/(a;(m))) and having slope / ' (x(m)) . The zero x(m+1) := 
x(m) _ / (x(m)) / / ' (x(m)) of this approximating function then becomes the 
next iterate. Figure 2 shows how this scheme works, at least ideally. 

A more abstract picture of Newton's method facilitates analysis and pro-
duces an algorithm that extends more readily to several dimensions. Assume 
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FIGURE 1. How to find the zero of a straight line. 

slope /'(x<°>) 

slope / ' ( * ( 1 ) ) 

FIGURE 2. Progress of the iterations in Newton's method. 

that / G ^([a, 6]) and that the zero x* and the iterate x^ lie in (a, b). The 
fundamental theorem of calculus (Theorem 0.11) asserts that 

0 = f(x*) = f(xW)+ f'(t)dt. 
Jr(m) 

Now approximate the integral by the expression f'(x^m^)(x* — x^m^): 

0 ~ / (* ( m ) ) + / ' ( x ( m ) ) (x* - x ( m ) ) . (3.4-1) 

If we change the sign ~ to =, then x* typically does not satisfy this equation 
exactly, so we must regard the equation as defining a new approximation 
x(

m+1) to x*. We solve for this approximation via the following steps: 

(i) £(m+i) : = x(m+i) _ x(m) «_ - /(s(m)) / / ' (a:(m>), 

(ii) a;(m+1) «- xW + 6<-m+1'>. 
(3.4-2) 
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Practical Considerations 
There are two topics of practical concern in the application of Newton's 
method: the convergence rate of the method and its sensitivity to initial 
guesses. 

Under many circumstances Newton's method converges quadratically. To 
appreciate how fast this rate can be, consider a hypothetical sequence of errors 
£(m) ._ x* _ x(m) satisfying the quadratic relationship |e(m + 1) | < 1 • |e(m)|2. 
If £(°) = 0.1, we have 

\eW\ < 0.01 
|e<2>| < 0.0001 
|e(3)| < 0.00000001 
|e(4)| < 0.0000000000000001 

Thus each iteration gains roughly twice as many significant digits as the 
one before it. This convergence is much faster than the linear convergence 
discussed in the previous section, where each iteration reduces the errror 
roughly by a constant factor. 

One way to understand the convergence rate of Newton's method is to 
write the method as a successive substitution scheme, using the iteration 
function 

•<*> — 7 & 
For the moment, let us proceed formally, assuming that <J> satisfies all of the 
conditions necessary to justify our manipulations. Expanding $ using the 
Taylor theorem (Theorem 0.12) about a fixed point x* yields 

x(m+l) _ x . _ $(a;(m)) _ Q(x*j 

= $(x*) + $'(x*) (x<m) - x*) 

(3.4-3) 
+ i $ " ( C m ) ( x ( m ) - x * ) 2 - $ ( x * ) 

= «'(*•) (xW - x*) + ^"(U) (*(m) - x*)2 , 

where £m denotes a point lying strictly between x(m) and x*. Since /(x*) = 0, 

(We discuss below what happens when f'(x*) = 0.) 
Here lies the core of one possible convergence proof: Since $'(x*) = 0, 

smoothness of $ implies that there must be a neighborhood of x* in which $ ' 
is "close" to 0. Specifically, there must be a region about x* in which | $ ' | < 1, 
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and in this region $ is a contraction. It follows that any initial guess chosen 
inside this region yields an iterative sequence {x^m^) that converges to x*. 

The fact that z(m) —+ x* as m —» oo forces Cm —► x* as m —► oo. Therefore, 
unless we are lucky enough to have a;(m) = x*, we can divide through by 
(a;(m) _ x*y i n Equation (3.4-3) to get 

x(m+l) _ x* 

(z(m) - x*)2 = 

_ + 

è*"(Cm) 

§*"(x*) = 
r(**) 

(3.4-4) 

as m —+ oo. 

In particular, if | $ " | is bounded above by a constant M > 0, then 

M *(">+!) 
* 2 

x (m) 

This inequality establishes quadratic convergence for Newton's method, at 
least in the "generic" case. 

One can make this argument rigorous by adding appropriate hypotheses 
about the behavior of / and its derivatives. Problem 5 asks for details. The 
problem also suggests a generalization of the Taylor expansion approach that 
produces iterative schemes converging with order p = 3,4, However, 
arguments along these lines require / to possess greater smoothness than 
that needed to derive the scheme via the fundamental theorem of calculus. 
Later in this section we analyze the convergence of Newton's method without 
relying on this extra smoothness. 

As with any iterative method, it is worthwhile to construct a convergence 
plot for coded versions of Newton's method. Table 3.2 lists the results, to five 
decimal places, of Newton's method applied to the model equation x2 — 1 = 0. 
The initial guess is a;̂ 0) = 9, and the iterates converge to the exact solution 
x* = 1. Figure 3 shows the convergence plot of In \x* — a;(m+1)| versus In \x* — 
x(m)|, illustrating that the points lie close to a line having slope 2. 

The iterates generated for this model equation raise the issue of halting 
criteria. One simple criterion uses the mean value theorem: When / is con-
tinuously differentiate near x*, f(x^m^>) - f(x*) = / '(C)(* ( m ) - **) for some 
C lying between a;(m) and x*. Therefore, 

x* - xW < i^Qi, (3.4-5) 

where ß is a lower bound for |/'(a;)| on an interval containing x* and the iter-
ate 2j(m). (Problem 7 considers the case when / '(«*) = 0.) This a posteriori 
estimate, which makes no use of any special properties of Newton's method, 
bounds the magnitude of the error x* — x^m^ in terms of the residual f(x^m>), 
which is a computable quantity. 
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Table 3.2: Iterates generated by Newton's method for x2 — 1 = 0. 

m 

0 

1 

2 

3 

4 

5 

6 

x(m) 

9.00000 

4.55556 

2.38753 

1.40319 

1.05793 

1.00159 

1.00000 

\n\x* - xW\ 

2.07944 

1.26851 

0.32753 

-0.90835 

-2.84860 

-6.44665 

-13.5880 

f(x(
m)) 

8.00000 x 101 

1.97531 x 101 

4.70032 x 10° 

9.68937 x 10-1 

1.19206 x 10"1 

3.17415 x 10~3 

2.51084 x 10~6 

Pretend, for example, that we do not know that x* = 1 in the table above. 
By the sixth iteration, we have some confidence that x* lies in the interval 
(0.75,1.25), and over this interval 1.50 is a lower bound for / ' (#) = 2x. Since 
)(x(6>) ~ 2.51084 x 10~6, we conclude that x^ differs from x* by at most 
2.51084 x 10-6/1.5 ~ 1.67 x 10~6. 

The following algorithm incorporates this error estimate. 

ALGORITHM 3.3 (NEWTON'S METHOD). Let f be a differentiable function 
defined on an open interval (a,b) containing a zero x* of f, and let \i :— 
in^xe(a,b) \f'(x)\- Given an initial guess x^°> € (a,b) and an error tolerance 
T > 0, the following algorithm generates a sequence {#(m)} of approximations 
to x*. 

1. m <- 0. 

2. If | / ( z ( m ) ) | > HT, then: 

3. 0(m+i) ,_ _/(ar(»0)//'(a:(m)). 

4. x("»+1) ♦_ a;(m) +5(">+1). 

5. m *— m + 1. 

6. Go to 2. 

7. End if. 

8. End. 

As the informality of the Taylor expansion argument may suggest, New-
ton's method does not always converge quadratically. Equation (3.4-4) clearly 
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ln l jc*- j (0») l 
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In U * - * ( " ■ + 

FIGURE 3. Convergence plot for Newton's method applied to 
f(x) = x2 — 1, with initial guess x^°> — 9. 

shows that the argument itself runs into trouble when / ' vanishes at x*. This 
situation occurs when x* is a zero having multiplicity 2 or greater, as dis-
cussed in Section 3.1. The Taylor expansion argument indicates that New-
ton's method converges quadratically near simple zeros of / . One can use a 
slightly more delicate analysis to show that Newton's method converges lin-
early near zeros having multiplicity greater than 1. Problem 5 asks for the 
details of this approach. 

This reduction in the convergence rate pales in comparison with a more 
serious difficulty, namely, the sensitivity of the method to choices of initial 
guess x(°\ Unfortunately, Newton's method may fail to converge to any zero 
of / if one chooses a;'0) carelessly. Figure 4 illustrates, for example, how the 
existence of local extrema between x^0' and the exact zero x* can lead to the 
calculation of iterates that diverge wildly. Such difficulties argue strongly for 
the hybrid strategy mentioned in Section 3.2: Use a slow but sure scheme like 
bisection to draw the iterates close to the sought zero, then use a fast scheme 
like Newton's method as a polisher to produce highly accurate approximations 
to x*. 

To implement such a hybrid scheme, it helps to know a set of conditions 
under which Newton's method is sure to converge. Figure 5 suggests one test 
of this sort. The figure shows the graph of a functions f(x) over the interval 
[a,b]. The interval contains exactly one zero x* of / . Graphically, at least, 
the following crucial observation seems clear: Once any iterate x^m^ lands 
inside [a, b], the behavior of/ forces subsequent iterates to converge to x*. 

The function / in Figure 5 has three key properties. First, / has exactly 
one zero x* in (a,b), and the zero is not a point where the graph of/ is tangent 
to the «-axis. Second, / is either concave from above or concave from below 
on [a,b]. Third, Newton's method using either a or 6 as an initial guess 
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/ 

^(0) X ( l ) JC(2) JC(3) 

FIGURE 4. Divergent sequence of iterates generated by Newton's 
method when a local extremum lies between the exact zero x* and 
the initial guess x^0'. 

FIGURE 5. Graph of a function f on an interval [a,b] in which 
iterates generated by Newton's method are sure to converge to x*. 

x(°) produces a subsequent iterate x^1) that lies inside (a, 6). The following 
conditions capture these properties: 

(i) f(a)f(b) < 0, and f'(x) # 0 for all x G [a, b]. 

(it) Either f"(x) > 0 for all x G [a, b] or else f"(x) < 0 for all x G [a, b]. 

(iii) | / (o ) / / ' ( a ) | < b - a and |/(6)//'(fc)| < b - a. 

We prove shortly that Newton's method converges to x* for any initial guess 
x^ chosen in an interval [a,b] satisfying these three conditions. 

Mathematical Details 
We now turn to a formal proof that Newton's method converges at least 
quadratically near simple zeros. At issue is how well the affine model 
/(x(m)) + / '(x(m))(x - x(m)) approximates f(x) near x^m\ Instead of em-
ploying the more common argument based on the Taylor theorem, we use the 
following estimate. 
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LEMMA 3.8. Let f:(a,b) —* IR be differentiable, and suppose that f satisfies 
a Lipschitz condition with Lipschitz constant L > 0 on (a,b). Then 

\f(y) - / (*) - f(x){y - x)\ < B l ^ l . (3.4-6) 

This lemma readily extends to higher-dimensional settings, as we see in Sec-
tion 3.7. 

PROOF: Assume without loss of generality that y > x. Differentiability 
implies continuity, so by the fundamental theorem of calculus (Theorem 0.11), 

f(y)-f(x) = f f'{t)dt. 
Jx 

Rearranging this identity and taking absolute values yields 

1/(0)-/(*)-/'(*)(!/-*)l = I f [f'(t) - f (*)] dt 
\Jx 

< [y\f'(t)-f'(x)\dt 
Jx 

< LI \t-x\dt 
Jx 

y L(y-x)2 

The main theorem asserts that, under certain conditions, Newton's method 
(3.4-2) yields a sequence {x(m)} that converges to x*, so long as the initial 
guess a^0) lies close enough to x*. 

THEOREM 3.9. Let f:(a,b) —* M be a differentiable function obeying the 
following conditions: 

(i) / ' has Lipschitz constant L > 0 on (a,b). 

(ii) | / ' | is bounded away from 0 on (a, b), and fx := infxe(0j) | / ' (x) | > 0. 

(iii) There exists a point x* G (a, 6) such that f(x*) = 0. 

Then there is a radius 6 > 0 such that, whenever the initial guess x^ 6 
(x* —6,x* + 6), the sequence {x(m^} of iterates produced by Newton's method 
lies in (x* — 6, x* + 6), and x^m^ —*• x* as m —* oo. 
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PROOF: We begin with an observation. If Newton's method generates an 
iterate x(m) that lies in (a, 6), then the fact that f(x*) = 0 implies that 

_ , ( m + l ) | x — 

\f'(x(m))\ 

r(m) _ / ( * ( m ) ) 
f'(x(m)) 

-/(**) + f(x(m)) + f'(xW) (x* - x(m>) 

< — 
L_ 
2ß 

„(m) 

(3.4-7) 
The last line follows from Lemma 3.8 and the fact that (i < | / ' (x(m)) | . 

Now we identify «5. Let <5o := min{|x* — a|, |x* — 6|}, so that 6o is the largest 
radius for which (x* — 6o,x* + 6Q) C (a,b). Then choose any 9 G (0,1) and 
set 6 := min{<$o, 0(2ß/L)}. Let {a;(m)} be a sequence of iterates generated 
by Newton's method with initial guess i:'0) € (x* — 6, x* + S). We prove by 
induction that each x^m^ 6 (x* — 6, x* + 6). When m = 0, the claim is true 
by hypothesis. If x<m' G (x* - 6, x* + 6), then the inequality (3.4-7) holds. 
But the inductive hypothesis implies that 

r("0 <<5< 

x* -x ( m + 1 > < —\x-x*\2<0\x-xW\<06, 

which completes the induction. 
The estimate (3.4-8) also reveals that 

,(m) 
< P(""-l) < r(°) 

(3.4-8) 

Since 6 G (0,1), x<m) —► x* as m —+ oo. I 

The inequality (3.4-7) has the following immediate consequence: 

COROLLARY 3.10. Under the hypotheses of Theorem 3.9, Newton's method 
with initial guess x(°> G (x* — 6, x* + 6) converges at least quadratically. 

Theorem 3.9 is a local convergence theorem, since it establishes the 
existence of an interval (x* — 6, x* + 6) in which Newton's method converges 
but gives very little information about that interval. Indeed, we typically 
do not know x*, and the proof itself gives only sketchy information about 6. 
In applications one often wants a global convergence theorem, that is, 
one that permits the positive identification of intervals on which the iterative 
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scheme converges with certainty. The next theorem, confirming the conditions 
characterizing Figure 5, furnishes such a result. 

THEOREM 3.11. Let f G C2([a,b]) satisfy the following conditions: 

(i) f(a)f(b) < 0, and f'(x) £ 0 for all x G [a, 6]. 

(ii) Either f"(x) > 0 for all x G [a, b] or else f"(x) < 0 for all x G [a, b]. 

(iii) | / ( a ) / / ' (o ) | < 6 - a and \f{b)/f'{b)\ <b-a. 

Then f has a unique zero x* G (a, b), and Newton's method converges to x* 
for any initial guess x^ G [a,b]. 

Our proof follows Henrici ([2], Section 4.8). The argument rests on a result 
from the theory of real variables: Every bounded sequence of real numbers 
that is monotonie (that is, nonincreasing or nondecreasing) has a limit. Prob-
lem 6 reviews a proof of this result. The idea is to establish that Newton's 
method generates a monotonie sequence of iterates bounded by x*, then to 
show that the limit of this sequence must be x*. 

PROOF: The fact that / has a exactly one zero x* G (a,b) follows from 
condition (i). We leave the proof as an exercise. The conditions (i) - (iii) 
comprise the following four cases: 

(A) f(a) < 0, f(b) > 0, and / " < 0; 

(B) f{a) < 0, /(&) > 0, and / " > 0; 

(c) f(a) > 0, f(b) < 0, and / " > 0; 

(D) f(a) > 0, /(&) < 0, and / " < 0. 

The truth of the theorem for case (c) follows from the proof for case (A) if we 
consider the function —/ instead of / . Case (D) follows similarly from case 
(B) . Moreover, by the change of variables x >-* —x, we can prove the theorem 
for case (B) by appealing to case (c) (and hence (A)) , the only changes being 
that Newton's method generates a sequence corresponding to {— x(m)} and 
the zero in [—6, —a] is now — x*. Therefore it suffices to establish the theorem 
for case (A) . 

We use two properties of/'. First, / ' > 0. To justify this assertion, notice 
that the mean value theorem guarantees the existence of some point £ G (a, 6) 
for which 

o — a 

Since / ' is continuous and never passes through 0 on [a, 6], it therefore must 
be positive throughout the interval. Second, / ' is nondecreasing on [a,b], 
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that is, f'(y) < f'(x) whenever y > x on [a,b]. This fact follows from the 
hypothesis that / " < 0 on [a, b]. 

For any initial guess x(°) G [a,b], either x^ G [a,x*] or x^ G [K*,6]. 

We give a detailed proof for the former case, the argument in the latter case 
being similar. 

We use induction on m to prove that {x^m'} is bounded above by x* and 
nondecreasing. To start the argument, observe that x(°) < x* by hypothesis. 
Also, /(x(°>) < 0, and f'(x^) > 0, so 

.( i) . - ,(0) _ ßf^l > ,(0) 
/'(x(°)) ~ • 

Now assume that x(m _ 1) < x*. We must show that x(m) < x* and x^m) < 
x ( m + l ) I f x{m-\) _ j.*^ t h e n x(m) _ x(m+l) _ x* s m c e x * j s a fixed p o m t o f 

the iteration, and in this trivial case the induction is complete. Otherwise, 
the mean value theorem implies the existence of a point £ G (x(m~l\ x*) such 
that 

-f(x(m-V) = f{x')-f(x(m-V) = /'(C) («' - x^- 1 ) ) 

< / ' ( x ( m - 1 ) ) ( x * - x ( m - 1 ) ) . 

This inequality follows from the fact that / ' is nonincreasing. Since / ' > 0, 

/ (x( m - x ) ) 
< x * - x ( m - 1 ) . 

/'(xC"1-1)) ~ 

As a consequence, 

*(m) = ̂ ^ - J ^ ^ < «(m-IJ + (*' - * ( - 1 ) ) = *•• 
In addition to establishing x* as an upper bound for the iterative sequence, 
this inequality shows that /(x(m)) < 0, from which it follows that 

x(m+l) _ (m) _ f(x(m)) > (m) 
/'(x(m>) ~ 

Thus the sequence {x(m)} is nondecreasing, and we have finished the induc-
tion. 

Being monotonie and bounded in [a,b], the sequence {x^m^} converges 
to some point x G [a, 6]. To prove that x = x*, it suffices to show that 
/ (x) = 0, since x* is the only zero of / in [a, b]. But the continuity of / and 
/ ' and the fact that / ' never vanishes on [a,b] imply that the iteration map 
<J>(x) :— x — / ( x ) / / ' ( x ) is continuous on [a,b]. Therefore, 

lim x<m+1> = * f lim x ^ = $(x), 

which is possible only if / (x) = 0. 

x = 
m-
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3.5 The Secant Method 

Motivation and Construction 
Despite the power of Newton's method in solving f(x) = 0, its use of the 
derivative / ' can be troublesome. For one thing, / ' often requires substan-
tially more effort to evaluate than / . The function 

_ exp [sin2 (x3 + x)] 
1 (X) In [tan(l/ar)] 

is a case in point. More significantly, many applications involve functions 
whose evaluation requires extensive use of subroutines, and for such func-
tions there may be no readily available, closed-form expressions for deriva-
tives. Such functions abound in chemical engineering, for example, where the 
evaluation of thermodynamic properties of various mixtures often involves 
complicated sequences of table look-ups, interpolation, and the numerical ap-
proximation of definite integrals. We devote this section to a discussion of 
modifications to Newton's method that avoid the exact calculation of deriva-
tives. 

The main idea is to replace the Newton scheme 

x(m+i) i_ x(m) / ( g ( m ) ) 

/ ' (x(m)) 

with an analog having the form 

Here, 

^ n , x<^ /(* (m)) 
Dm 

n ._ / ( * ( m ) + hm) - /(g("0) 

(3.5-1) 

is a difference quotient approximating f'(x^m^). We call Equation (3.5-1) 
a finite-difference Newton method. The choice of the offsets hm is 
clearly crucial to the definition of such a scheme. Having chosen a particular 
sequence {hm} of offsets, we say that {hm} generates the finite-difference 
Newton method (3.5-1). 

Since Dm is supposed to approximate f'(x^m^), we expect to get viable 
substitutes for Newton's method by using sequences {hm} of "small" num-
bers. One crude idea is to use the same small offset hm — h at every iteration. 
The following finite-difference Newton method results: 

j;(m+l) ,_ (m) hf(xW) 

/(*(">)+ft)-/(* ( m )) ' K } 

We show later that, if / has reasonable properties and h is small enough, then 
this scheme converges. 
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The key to rapid convergence, however, is to choose the generating se-
quence {hm} so tha t hm —♦ 0 as m —* oo. This way, the finite-difference 
analogs Dm presumably give better approximations to / ' (aKm)) — forcing 
the scheme to behave more like Newton's method proper — as the iterations 
progress. 

An elegant way to implement this idea is to take hm — a^"1-1) — a;(m) for 
rn = 1, 2, 3 , . . . . This choice yields the s e c a n t m e t h o d , 

T(m-1) _ „(m) 
x(m+l) (m) f(x(™)\ ± (o c o\ 

H J/(^m-1))-/(^m))' ( ' 

Figure 1 illustrates the scheme. While early values of the difference z ( m _ 1 ) — 
x(m^ may not be very small, we expect that a^"1"*1) — a;(m) —+ 0 as m —► oo. 
An analysis given later in this section shows that the secant method merits 
serious consideration as an alternative to Newton's method. 

FIGURE 1. Progress of iterates generated by the secant method. 

Other choices for hm are also possible. The analysis given below offers 
several guidelines for constructing such methods, but for a detailed treatment 
we recommend Ortega and Rheinboldt [3]. 

Practical Considerations 

The crude finite-difference Newton scheme (3.5-2) has three flaws. First, it 
demands that we decide what size offset h will be "small." This issue can 
be a thorny one. If h is too large, then the difference quotients Dm may not 
yield good approximations to f'(x(m^). On the other hand, if h is too small, 
then f(x(m^ +h) may be close in value to f(x^m^). As a consequence, we may 
(ose most of the significant digits in their machine representations, and thus 
in the value of Dm, by computing the difference /(x(m> + h) - f(x^m^). The 
resolution of this issue depends strongly on the behavior of / , and we do not 
pursue it further. 
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Second, the scheme (3.5-2) calls for two separate evaluations of / at each 
iteration. This feature can be unattractive if / itself requires extensive com-
putation. Third, as we prove, the scheme converges only linearly and is 
therefore slow in comparison with Newton's method. One might regard lin-
ear convergence as a "fallback position:" Being comparable in convergence 
rate to bisection and successive substitution, the crude scheme (3.5-2) hardly 
warrants special attention. 

The secant method answers these criticisms. By specifying the values of 
hm for m > 1, the scheme eliminates the need to decide how small these 
offsets should be. It is necessary, however, to choose two values x(°> and 
a^1) to initialize the scheme. In practice, this task fits naturally into the 
hybrid strategy advocated in Section 3.2. For example, one can use bisection 
on a bracketing interval [a,b] to produce the first few iterates a = x(°),6 — 
x^\ x(2\ . . . , a;(m), switching to the secant method as soon as Equation (3.5-
3) produces an iterate x(m+1) that lies strictly between x(m _ 1) and x(m\ 

Also, the method requires only one new evaluation of / at each itera-
tion. In this respect, the secant method has an advantage over Newton's 
method: Not only does it obviate evaluations of / ' , but it also demands less 
computation per iteration than Newton's method. 

There remains the issue of convergence rate. While the secant method 
does not match the quadratic convergence of Newton's method, it does con-
verge superlinearly. We show below that, under certain conditions on / , the 
convergence rate of the secant method is the golden rat io, (1 + \/5)/2 ~ 
1.618. This reasonably rapid convergence, together with the fact that the 
secant method requires just one evaluation of / per iteration, provokes the 
following observation: If / ' is expensive to evaluate, then Newton's method 
exacts a high cost per iteration. For such functions, it may be more efficient 
to take a somewhat larger number of much cheaper iterations via the secant 
method. 

It is difficult to quantify this idea rigorously, but a rough calculation 
suggests an interesting rule of thumb. Denote by e^ and eg the errors 
x* —x(m' in the rnth iterates of the Newton and secant methods, respectively, 
and call y := (1 + V/5)/2. Since the asymptotic error constants for the two 
methods depend on the function / , let us assume for argument's sake that 
both constants are 1. The convergence rates of the two schemes then yield 

I4m)l-I40)r l4m)M40)f. 
Therefore, to satisfy a halting criterion of the form |ê ™ | < r for 0 < r < 1, 
we must iterate on Newton's method until 

- Ä - l o g | e ( ° ) | ' 

assuming that |e^°^| < 1. In other words, Newton's method requires about 
log2 R iterations to satisfy the halting criterion. Similar reasoning shows that 
the secant method requires about (log2 R)/(\og2 7) iterations. 
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Consider one "work unit" to be the computational effort needed to evalu-
ate / , and let w signify the number of work units required to evaluate / ' . Then 
Newton's method requires roughly (1+w) log2 R work units to satisfy the halt-
ing criterion, while the secant method requires about 1 -(log2 R)/(log2 y) work 
units. These two quantities are equal when w = ( l / log 2 7) — 1 ~ 0.44042. 
Therefore our rule of thumb is as follows: Use the secant method whenever the 
evaluation of / ' requires more than 44 percent as much work as the evaluation 
of/. 

Mathematical Details 

The remaining task is to analyze finite-difference Newton methods (3.5-1) in 
general. The main theorem delineates when such methods converge, and the 
proof technique yields as corollaries some concrete results about convergence 
rates. To establish a precise convergence rate for the secant method, though, 
we must add hypotheses to prove a more specialized theorem. 

We begin with an estimate relating the finite-difference analog Dm to the 
exact derivative of / . 

LEMMA 3.12. Let f: (a, b) —► M be differentiable, and suppose that f satisfies 
a Lipschitz condition with Lipschitz constant L > 0. Call 

/ i := inf \f'{x)\. 
x£(a,b) 

There exists a number ho > 0 such that, for every h E [—ho, ho], 

f(x + h)- f(x) >£. 

so long as x,x + h G (a, 6). 

PROOF: We argue by contradiction. If no such number ho exists, then we 
can pick a sequence {hn} in R with hn ^> 0 such that, for some x £ (a, b), 

f(x + hn)-f(x) 
2' hn 

for n = 1,2,3,.. . . But then | / ' (x) | < /V2, which is impossible. 1 

The main theorem is analogous to Theorem 3.9, in that it establishes local 
convergence. The salient requirement is that we pick the offsets hm small 
enough so that the difference quotients Dm stay close in value to f'(x^m^). 
The proof uses several ideas from the previous section. 

THEOREM 3.13. Let f:(a,b) —* ffi be differentiable and obey the following 
conditions: 
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(i) / has a zero x* G (a,b). 

(ii) n := infxe(0ifc) | / (x) | > 0. 

(iii) / ' has Lipschitz constant L > 0 on (a,b). 

Let the sequence {hm} generate the finite-difference Newton method (3.5-1). 
Then there exist positive constants 6, h such that, whenever the initial guess 
j;(0) G (x* — 6, x* + 6) and the generating sequence satisfies \hm\ < h, each 
iterate x(mï G (x* — S,x* + S). Moreover, x^m^ —► x* as m —*■ oo. 

PROOF: Call £<m) := x* -x(m\ and, using Lemma 3.12, choose ho > 0 small 
enough to guarantee that 

D„ 
/ ( j . ( m ) + h) _ / ( x ( m ) ) ^ 

*2> 

whenever \h\ < ho and x^-m\x^m^ + h G (a,b). Henceforth, we assume that 
\hm\ < h0. 

We start by establishing the following claim: For any sequence {x(m^} of 
iterates generated by the scheme (3.5-1) and lying in the interval (a,b), 

k ( m + 1 ) | < ^ ( | £ ( m ) M M ) | £
( m ) | . 

For proof observe that, since f(x*) — 0, 

(3.5-4) 

£(m+l) = z . _ x(m+l) = x. _ x(m) + f i ^ ) _ / V ) 

From this identity we deduce that 

1 | £ (m+i) | < 

(I) 

/(**)-/(ar<m>)-/'(*<mVm) 

(") 

" v ' ■■ 

(III) 

(3.5-5) 

By Lemma 3.12, (i) < 2//i. Also, Lemma 3.8 implies that (n) < L|e(m)|2/2 
and that (ill) < L\hm\/2. Substituting these estimates into the inequality 
(3.5-5) proves the claim. 

Now we have the tools needed to establish the theorem. As in the proof 
of Theorem 3.9, let 5Q := min{|x* — a|,|ar* — b\}, and pick any 9 G (0,1). 
Define 6 := min{6o,6fi/(2L) } and h := min{ ho, 6}. Assume that {a:(m)} is a 
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sequence of iterates generated by the scheme (3.5-1), with x^ £ (x*—6, x*+6) 
and \hm\ < ~h. It suffices to prove by induction on m that |£(m+1)| < 0|e(m)|. 

When m = 0, the hypotheses ensure that |e'-0''| < 6 and |/io| < h < 8, so 
the inequality (3.5-4) applies. We obtain 

|£(D| < £ ( | e ( 0 ) | + | f t o | ) |£(0)| < g 
£(°)| 

Now assume that |e( ,+1)| < 6\e^\ for i = 0 , 1 , . . . , m — 1, so in particular 
x{m) e ( x . -6,x* + 6) and |e(m)| < 6. The inequality (3.5-4) again yields 

| e ( m + l ) | < £ Q £ ( m ) | + | h m | J | £ ( m ) | < g ^ m ) ^ ( 3 5 . ^ 

completing the induction and the proof. I 

The estimate (3.5-6) shows that one can select a constant offset hm — h 
small enough to ensure that the scheme (3.5-2) converges linearly. For more 
sophisticated schemes, one can exploit properties of the sequences {hm} to 
refine the convergence estimates. For example: 

COROLLARY 3.14. If the hypotheses of Theorem 3.13 apply and hm —► 0 as 
m —+ oo, then the finite-difference Newton method (3.5-1) converges superlin-
early. 

PROOF: In the proof of Theorem 3.13, define 

C m : = — m a x { | £ ( m ) | , | / i m | ) . 

The inequality (3.5-6) gives |£(m+1) | < Cm |e(m)|, and Cm — 0 as m — oo. I 

In particular, the secant method converges superlinearly. Problem 8 asks for 
a proof of the following corollary and mentions an application: 

COROLLARY 3.15. If the hypotheses of Theorem 3.13 apply and there exists 
a constant C > 0 such that \hm\ < C|e(m)|, then the finite-difference Newton 
method (3.5-1) converges quadratically. 

It remains to establish the precise convergence rate of the secant method. 
In preparation for this task, we review some elementary results from the 
theory of divided differences, summarized in Appendix A. Given a function 
f:[a,b] —+ M and a set A := {xo,xi,.. .,xn} of distinct points in [a,6], we 
define the divided differences of / on A inductively: 

f[Xi] := f(Xi), 

f[Xi+l, ■ ■ -,Xi + k] - f[xit . . .,Xi + k-l] 
f[Xi,Xi + l, . . .,Xi + k] : = 

Xi+k 
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For example, 

f[xi-i,Xi] := 

f[xi-i,Xi,Xi+i] := 

Xi - Xi-i 

f[xj,Xj+l]- f[xj-i,Xj] 

Xi + l — Xi-l 

Theorem A.l asserts a useful fact about divided differences: If f £ 
Cn([a,b]), then there exists a point £ £ (a, b) such that 

f[x0,x1,...,xn]=J—^-. (3.5-7) 
n! 

This property of divided differences recalls the mean value theorem, which 
plays a central role in its proof. Equation (3.5-7) also suggests a connec-
tion between divided differences and differentiation. We use the equation in 
proving the following theorem. 

T H E O R E M 3.16. Let f 6 C2([a,b]), and suppose that 

(i) f(x*) = 0 for some point x* £ (a,b). 

(ii) n : = i n f r e [ M ] | / ' ( a : ) | > 0. 

(iii) v := s u p r 6 M ] | / " ( x ) | > 0. 

If the secant method with initial guesses x^°\x^ £ [a, 6] converges to x*, 
then the errors £Sm' := x* — z( m ) obey an inequality of the form 

| e < m + 1 > | < C | e < m > | 7 , 

where C > 0 is a constant independent of m and 7 := ( l + V S ) / 2 ~ 1.618. 

P R O O F : By the definition of the secant method and Equation (3.5-7), 

_ £ (m+l) _ __(m) I 1 /Yx ( m ) ï 

= £ ( ' " ) £ ( " > - i ) i _ i ! ! i 
f [x<-m-1),x(m)] 

_ (m) (m-l) /"(C2) 
2 / ' « i ) ' 

for some points Ci > C2 G (a, b). Call M := v/{2p) ^ 0. We have 

|£("*+i)| < M\e^\ |£(m - x>| . (3.5-8) 
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To determine the order of convergence of the secant method, we seek constants 
p, C > 0 such that 

| e ( m + i ) | < c y m > | p < cp+i |£(m- i>|p2 . 
According to the inequality (3.5-8), these constants exist provided that they 
also satisfy the inequality 

|e<m+1>|<MC|e<m-1>|p + 1 . 

Therefore, it suffices to find positive solutions C and p to the equations 

CP+Ï = MC, p2=p+l. 

The solutions are C = M1/ ,p and p = 7. I 

3.6 Successive Substitution: Several Variables 

Motivation and Construction 

Many of the methods that we have discussed for solving f(x) — 0 extend to 
methods for systems of nonlinear equations. These systems have the general 
form 

/ l ( z l , Z 2 , • ■ -,Xn) 

h(xi,X2,.-.,xn) 
f(x):= 

. fn(xi,X2,...,Xn) 

Here is a simple example with n = 2: 

xfsina^ = 0, 

cos Ei + X2 — 1 = 0. 

= 0. (3.6-1) 

(3.6-2) 

This section examines the method of successive substitution, introduced in 
Section 3.3, in the more general setting of Equation (3.6-1). 

The multidimensional character of Equation (3.6-1) causes several diffi-
culties. One of these is that simple, sure-fire methods like bisection have no 
straightforward extension to systems with n > 1. Therefore it is all the more 
crucial to understand the nature and approximate locations of zeros before 
launching a numerical scheme. On the other hand, intuition about systems 
with n > 1 can be hard won, especially since geometric reasoning grows more 
and more difficult as n increases. In many applications one can learn as much 
from analytic or physical considerations as from attempts to visualize the 
geometry of the problem. 

The system (3.6-2), which is simple enough to allow both geometric and 
analytic reasoning, illustrates some of the features of nonlinear systems. Here 
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the graph off is the set of points (xi, x$, fi(xi, X2), f2{xi, X2)) in K4. We 
have no hope of plotting this graph to find the zeros of f. However, we can 
examine the level sets /i(xi,X2) — 0 and /2(xi,X2) = 0 separately. The 
function fi(xi, X2) = x\sin X2 vanishes along the line x\ = 0 and along every 
line of the form X2 = kx, for k = 0, ± 1 , ±2, Figure 1 shows these lines 
as dashed curves. The function /2(xi,X2) = cosxi + £2 — 1 vanishes on the 
curve X2 = 1 — cosxi, plotted as a solid curve in Figure 1. The two level sets 
intersect at the points (xi,X2) = (0,2Ä:7r) and (xi,X2) = (2, (2k + 1)T) , for 
k — 0, ± 1 , ±2 , . . . . These points are the zeros of the system (3.6-1). 

, JC2= 1 - COSJC, 

- - l ^ ^ 5 j r 

XT^ry. 4TC 
- %ri 37C 

—-£~> 2jt 
JÇT7-.- n 

- - -p^> 0 
J T ^ > 2jt 

-—■f--- - -3JI 
' 11 

FIGURE 1. Level sets f\ = 0 (dashed curve) and /*2 = 0 (solid 
curve) for the system (3.6-2), showing the locations of the zeros 
of the system. 

In this case, the system of equations has infinitely many solutions. The 
best that we can hope for numerically is an iterative scheme that converges 
to one of the zeros x* = (x^x j ) , given an initial guess lying close to x* 
but far from the other zeros. Also, the system changes dramatically with 
small changes in one of the parameters. Suppose that we replace /2(xi, X2) = 
cosxi + X2 — 1 by the perturbed function /2(xi, X2) := cosxi + X2 — (1 + e), 
where |e| <K 1. Then the new system has two zeros near each point (0,2krr) 
when e < 0 but only one zero in the entire plane when e > 0. These features 
— nonuniqueness of solutions and sensitivity to small changes in paramters — 
commonly occur in more complicated systems and in systems having higher 
dimension, where analytic and geometric properties of the zeros may be quite 
obscure. 

To solve systems of the form (3.6-1) by successive substitution, we con-
struct an iteration function $ that has a fixed point x* = $(x*) at the desired 
zero x* off. Then, given an initial guess x.(°\ we iterate using the algorithm 

x(m+l) ^_ $fx(
m)\. (3.6-3) 
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We wish to know under what circumstances, and how fast, x^m) —► x* as 
m —* oo. We discuss this issue, then examine an application. 

Convergence Criteria 

Much of the theory concerning the scheme (3.6-3) follows the conceptual 
paths established in Section 3.3 for the one-dimensional case. Given a few 
key definitions and appropriate changes in notation, one can mimic the proofs 
of theorems from that section to obtain convergence criteria for successive 
substitution in several variables. In the discussion below, we forgo formal 
proofs wherever such straightforward extensions are possible. Readers should 
verify that the extensions are indeed straightforward! 

The main change necessary in multidimensional settings is to convert ab-
solute values of various scalar quantities to norms of their vector counterparts. 
In what follows, || • || stands for any norm on 1 " . By Theorem 0.6, all norms 
on R" are equivalent, and hence any condition that guarantees convergence 
of a sequence {x^m^} in one norm suffices to guarantee convergence in any 
norm on 1 " . (See Problem 5, Chapter 0.) 

We measure convergence rates in as in the one-dimensional theory: 

DEFINITION. Letp > 1. An iterative scheme that produces sequences {x^m^} 
of approximations to x* G M" converges with order p if there exists a 
constant C > 0 and an integer M > 0 such that 

x * _ X(">+1) <c x* - x<m) 

whenever m > M. If p = 1, we must have 0 < C < 1, and we say that the 
scheme converges linearly. If p — 2, the scheme converges quadratically. 
/ / 

" m M 1 Ml = C, 
m ^ o o | |X* - x ( m ) | | P 

then we call C the asymptotic e r ror constant . The scheme converges 
superlinearly if there exists a sequence {Cm} of positive real numbers such 
that Cm —► 0 and 

x * _ x("»+l) <cm x* - x<m) 

As in one dimension, we prefer schemes that converge superlinearly whenever 
they are available. 

Central to the convergence of the scheme (3.6-3) is the following concept: 

DEFINITION. Let S C Kn. A function § : S -» M" satisfies a Lipschitz 
condition on S (with respect to the norm || • ||^ if there exists a constant 
L > 0 such that, for any two points x, y € S, 

| | # ( x ) - * ( y ) | | < L | | x - y | | . 
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The greatest lower bound for such constants is the Lipschitz constant for 
$ on S. If § has Lipschitz constant L < 1 on S, then $ is a contraction 
on S. 

The next result serves as a multidimensional analog of Lemma 3.3, which 
estimates the distance between any two iterates in the sequence {x^m^} gen-
erated by the scheme (3.6-3). The multidimensional case requires a slight 
change in the hypotheses: Instead of demanding that i b e a contraction on 
some interval containing the iterates, we require $ to be a contraction on an 
open set containing the iterates. 

LEMMA 3.17. Let m,n be positive integers, and let {x^m)} be a sequence 
of iterates generated by the successive substitution scheme (S.6-3). Suppose 
that the iteration function $ Aas Lipschitz constant L < 1 on some open set 
containing every iterate x(m) . For j = 0 , 1 , . . . , m, 

(m+n) _ (m) < Lm~J A-Ln 
fü+i) rO) (3.6-4) 

PROOF: The proof follows the argument used for Lemma 3.3. I 

The basic convergence result is analogous to Theorem 3.6. It asserts, 
in effect, that contractions yield convergent iterative schemes. As in one 
dimension, $ need not be a contraction globally, so long as it is one in some 
region surrounding the fixed point x*. Once again, we must replace intervals 
by sets in R". In this case, we use the multidimensional analogs of open 
intervals (x* — 6, x* + 6), which are open balls: 

^ ( x * ) : = { x e I R n : | | x * - x | | < 6 } . 

THEOREM 3.18. Suppose that the iteration function <t has a fixed point x* 
and that $ is a contraction on some ball ß«(x*), where 6 > 0. Let x^ 
be any initial guess lying in B((x*), and denote by {x^m^} the sequence of 
iterates generated by the successive substitution scheme (3.6-3). Then each 
x<m) £ Bs(x*), and x<m) -» x* as m -* oo. 

PROOF: The proof follows the argument used for Theorem 3.6. I 

It is also possible to prove a direct analog of the more powerful convergence 
result, Theorem 3.7. This result rests on hypotheses concerning the behavior 
of $ on a closed ball 

B«(x(°>) := {x e E " : ||x<°> - x|| < 6} 
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centered at the initial guess x^0'. 

THEOREM 3.19. Let $ be a contraction with Lipschitz constant L on some 
closed ball ß{(x(°)) about an initial guess x(°\ Suppose that the successive 
substitution scheme (3.6-3) satisfies the condition 

r(D - v(°) §(x(°')-x(°' <(1-L)6. 

Then 

(i) Each iterate x<m) € #<(x(0)). 

(ii) The sequence {x^m^} converges to a point x* G ß$(x(°)). 

(iii) The limit x* is the unique fixed point of $ in Bs(x(°)). 

PROOF: The proof follows the same reasoning as that of Theorem 3.7. I 

When $ is a contraction near x*, the corresponding successive substitu-
tion scheme converges at least linearly, assuming that we pick an appropriate 
initial guess. To see this, observe that since x* is a fixed point of «I>, 

x * _ x(m + l) = | |#(x*)-*(x(m>) <L X — X 
■ ( " > ) , 

Heuristically, we expect each iteration to reduce the magnitude of the error 
e(m) . _ x * _ x(m) a t j e a s t b y t h e f a c t o r i 

Lemma 3.17 allows us to estimate this error at any iteration of a conver-
gent scheme: Letting n —► oo in the inequality (3.6-4), we obtain 

lim 
n—►oo 

x(m+n) _ x ( m ) X* - X<m> < 
Lm-J 

l-L 
rU+l) _ »0') 

The two special cases j = 0 and j — m — 1 yield the following a priori and a 
posteriori error estimates. 

COROLLARY 3.20. Under the hypotheses of Theorem 3.18, the iterates x(m) 
generated using the successive substitution scheme (3.6-3) obey the error es-
timates 

(i) | |x*-x (m> 

(ii) x ' -xC») < T 

^—L 

L 

x (D_ x (o ) 

f ( m ) _ v ( m - i ) 
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One final analogy with the one-dimensional case is the relationship be-
tween the Lipschitz constant L of the iteration function 3» and its deriva-
tives. This relationship has practical value, since it allows us to calculate L 
by inspecting the derivative of $ . Before exploring this connection, we review 
the concept of differentiability of vector-valued functions. In the remainder 
of this section, lî C 1 " is an open set, and $ has component functions 

DEFINITION. Let <Ê:fi —+ ffi". The Jacobian matrix of <è at a point x € Q 
is the matrix J*(x) € Rnxn whose {i,j)th entry is 

^ ' ( X ) : = ô|(x) ' 

provided that this quantity exists. 

Since the matrix entries d^i/dxj are functions of x = (x\,X2,...,xn), we 
regard J:fi — Mn x". 

We say that $ is continuously differentiable on Q if each component 
function <$j G CX{Q). The following proposition generalizes the assertion 
in Section 3.3 that, for a continuously differentiable scalar function <I>, the 
Lipschitz constant L is an upper bound for | $ ' | . The hypothesis of convexity 
allows us to apply Theorem 0.15, which is a multidimensional version of the 
mean value theorem. 

PROPOSITION 3.21. Let Q. C 1 " be open and convex, and let <&:Q —► 1 " 
be continuously differentiable on fi. $ satisfies a Lipschitz condition (with 
respect to the norm \\ ■ W^) on ÇÏ if there exists a constant L > 0 such that 
the entries of the Jacobian matrix for $ satisfy the inequality 

d$i L 
"5—(x) < - . OXj n 

for all x £ Cl. 

PROOF: Let x j E f l . By Theorem 0.15, there exist points Q, i = 1,2,..., n 
on the line segment joining x and y such that 

$,(x) - *,-(y) = v*,(c«) ■ (* - y) = È Sr(C,-)(*y - %•). 
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Therefore, 

| | * ( x ) - * ( y ) | | o max |$;(x) 
K i < n 

■*<(y)l 

^ 5Z-l*i-wl 
J = I 

^ £-n*-y||«> = £|i*-yii= 

An Application to Differential Equations 

Problem 9 examines a routine application of the theory just presented. We 
close this section with a discussion of a more specialized application that 
arises in later chapters. Consider a system of ordinary differential equations 
having the form 

d 
dt 

« i 

« 2 

U„ 

<j>l(ui,U2,...,Un) 

<t>2(Ul,U2,...,Un) 

0 n ( « l , « 2 ) ■ • -,Mn) 

(3.6-5) 

which we abbreviate as du/dt — </>(u). It is common to think of t as time, 
although other independent variables occur in practice. 

Chapter 7 develops techniques for approximating differential systems of 
this type via sets of algebraic equations. One of the simplest such techniques 
is to replace the unknown function u(t) by an approximate grid function 
U, defined only on a discrete set t = <o,*i := *o + k,ti '■= to + 2k,... 
of "time levels." Viewing Uj := U(tfj) as an approximation to u(t,-), we 
approximate the differential equation (3.6-5) by replacing derivatives with 
difference quotients: 

U i + i - U< 
= # U j + 1 ) , 

or 
U i + i = U,- + *0(U,-+1). (3.6-6) 

Computationally, we treat this equation as an updating scheme: Given 
an initial value Uo := u(<o), we solve Equation (3.6-6) for Ui , which we then 
employ as a known value in solving for U2, and so forth. At each step in the 
process, we must solve a possibly nonlinear system of equations having the 
form 

x = c + &<£(x), 

where x is unknown and c is a constant vector. Thus Equation (3.6-6) gives 
rise to a successive substitution scheme 

TI("»+i) (m)x 
u,- + MUJÏÏ), (3.6-7) 
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in which the iteration function is 4»(x) := c + k<f>(x). 
According to Theorem 3.19, we expect this scheme to converge at each 

time level if $ is a contraction in a region surrounding x. Proposition 3.22 
permits us to verify this condition by checking whether the derivatives of $ 
obey bounds of the form 

d$i 
dxj < e 

for some 9 £ (0,1). Suppose that each of the derivatives d4>i/dxj satisfies 
\d<f>i/dxj\ < M for some constant M > 0. Since d$i/dxj = kd<t>i/dzj, $ is 
a contraction if k < 9/(2M), that is, if we pick a small enough time step. 

As a concrete example, consider the two-dimensional system 

d_ 
dt 

t*i 

«2 

-(1 + wf) ^ i n u î 
u\ + exp(—«2) 

In this case, the discrete approximation takes the form 

U,+1 = U, + ^ ( U i + 1 ) , 

where 
- ( 1 + xf)_isina;2 

xi + exp(-a;^) 
<t>i(xi,x2) 
<l>2(Xl,X2) 

The derivatives of <j> obey the following bounds: 

2 \ - l , 

dxx 

dx2 

d(j>2 
dxi 

d<j>2 
dx2 

= |2a;1(l + a;i)-2sinx2 | < 1, 

= | - ( l + a:?)-1cosx2| < 1, 

- 1, 

= 1-2x2exp(-a;|)| < v^e" 1 / 2 ~ 0.8578. 

Therefore we take M — \. Since n = 2 in this case, the successive substitution 
scheme (3.6-7) for updating U,- converges for any time step k G (0, | ) . 

3.7 Newton's Method: Several Variables 

Motivation and Construction 

As with the numerical solution of single equations, we hope to solve systems 
like f (x) = 0 using methods that converge superlinearly. Prototypical is the 
multidimensional extension of Newton's method. 
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One way to construct this method is to draw a formal analogy with the 
one-dimensional scheme (3.4-2), which we rewrite as follows: 

(i) Solve /'(x(m))«("»+i) = -f(xW) for #"•+»>. 

(ii) x<-m+1) — x<-m) + 6<-m+1\ 

In the multidimensional case, the iterates x(m) and increments <J(m) belong 
to Mn, and the natural analog of / ' is the Jacobian matrix J/ of f. These 
observations suggest the following steps, starting with an initial guess x^0^: 

(i) Solve J /(x(m))«J ( m + 1 ) = -f(x<m)) for <S<m+1). 

(ii) x(m + 1) <-x( m )+«J ( m + 1 ) . (3.7-1) 

For this analogy to make sense, f must be differentiable, with ij invertible, 
on some neighborhood Q, C ffi" of the sought zero x*. 

As a concrete example, consider the system (3.6-2): 

fi(xi,x2) :=xfs inx 2 0, 

h(xi,X2) := cosxi -(- X2 - 1 = 0. 

This set of nonlinear equations has a solution at x* = ( z j , ^ ) 7 = (0,0)T . 
The Jacobian matrix for the function f = ( / i , /2 ) T at a point x = (x\,X2)T 

is 
2x\ sin £2 XjCosa;2 
— sinxi 1 

J / ( z i , Z 2 ) = 

If we adopt the initial guess x<°) = (x^.x^y = (""A *V2)T, the first 
iteration of Newton's method requires that we solve the linear system 

7rsin(7r/2) 
- s in(7r /2) 

that is, 

We find tha t 

(* 74) cos(7r/2) 

1 J . 4 X ) . = -
(TT/2)2 sin(7r/2) ' 

COS(TT/2) + TT/2 - 1 1 

n 0 
- 1 1 

[ 4 1 } 1 _ 

= -
' 7T2/4 

7T/2 - 1 

- T T / 4 

1 - TT/4 J 

and therefore the next iterate is 

x<*> = 
X 

X 

( i ) ' 
1 

( i ) 
2 

■n / 2 " 
/ 2 . + [ l -

TT/4 

-TT/4 
= 

TT/4 

1 + TT/4 . 

Figure 1 shows the iterates x ^ and xW along with the exact solution x* = 0. 
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* 2 n • 

X* 

• x ( 0 ) 

FIGURE 1. Two iterates generated by Newton's method for the 
system (3.6-2). 

Practical Considerations 
Step (i) of the method (3.7-1) calls for the solution of an n x n linear system 
J /(x(m))rf (m+1) = -f(x(m>) at each iteration. When n is large, this task can 
require a great deal of computational effort. In designing codes, it pays to 
minimize the work devoted to solving linear systems involving the Jacobian 
matrix. 

One simple way to do this is to compute J/(x(°)) and then use it instead 
of J/(x(m)) in subsequent iterations. This tactic allows one to exploit the 
work of numerically "inverting" if for several iterations, instead of inverting 
a new matrix at every iteration. Heuristically, we expect the tactic to work 
in problems where J/(x) varies slowly with x. 

Another approach is to exploit any special structure that ij may have. For 
example, certain optimization problems lead to nonlinear systems for which 
the Jacobian matrix is symmetric and positive definite. Consider an open set 
0 C Mn and a function <p E C2(fi). A point x* £ fi is a local minimum for ip 
if there is some ball #e(x*) C fi in which <p(x*) < <p(x) for every x £ B((x*). 
Schemes for minimizing such functions often use the following fact: The local 
minima for <p are points x* G fi for which V^(x*) = 0. Thus, by identifying 
f(x) := Vy(x), we can find local minima of <p by solving a system of the form 
f (x) = 0. This observation also allows us to find local maxima of tp, since 
these points are local minima for the function —<p. 

The Jacobian matrix Jy of f in such problems is the Hessian matrix Hv(x) 
of (p. As reviewed in Section 0.4, the (i,j)th entry of this matrix is 

d2ip 
^'(X) := Ö7 ( X ) ' 

and H^(x) is therefore symmetric for any x € ß when ip G C2(ß). Moreover, 
local minima of <p correspond to points where Vf> = 0 and H ,̂ is positive 
definite. When solving this type of problem, we can therefore employ special 
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methods for symmetric, positive definite matrices in the execution of step (i) 
of the scheme (3.7-1). 

We move now to a broader concern. The multidimensional version of 
Newton's method suffers from a limitation that is familiar from the one-
dimensional case: The iterates x(m) typically converge to a zero x* of f 
only for good initial guesses x(°\ This caveat is more distressing in several 
dimensions, since we have no direct analog of the bisection method of Section 
3.2 to provide slow but sure progress from poor initial guesses toward good 
ones. 

There is a simple idea, however, that can often extend the set of initial 
guesses leading to convergent iterative sequences {x^m^}. The idea has its 
origin in the observation that a zero x* of f is a minimum for the real-
valued function ||f HI- To find this minimum starting with an initial guess 
x(°), we can regard the increments <$'m+1) generated by Newton's method as 
indicating directions along which to search for a local minimum of ||f \\\. If 
||f(x(m) + <S(m+1))||| > ||f(x(m))||i, then we can try repeatedly halving the 
increment until we achieve a reduction in the value of ||f \fe. This "damping" 
strategy is clearly fallible, since x(°) might already be a local minimum for 
||f Hi that lies far from an actual zero. Problem 13 examines this issue. 

The following algorithm executes the damping scheme: 

ALGORITHM 3.4 (DAMPED NEWTON METHOD). Given an initial guess x^°\ 
a tolerance r > 0, and a maximum number fcmax of allowable increment 
halvings, the following steps compute a sequence {x(m)} of iterates using the 
damped Newton method. 

1. m*-0. 

2. If ||f (x(m))||i > r then: 

3. Solve J ^ x ^ ) ) <S(m+1) = -f(x<m)) for <S(m+1). 

4. k*-Q. 

5. If ||f(x(m) + <S(m+1))||! > | |f(x(m))| | | , then:' 

6. Jb«-Jfe+1. 

7. If Ar > fcmax then stop; initial guess x(°) fails. 

8 . tfm+l) _ 1*0»+!). 

9. Go to 5. 

10. End if. 

11. x ( m + 1 ) «- x(m> + <S(m+1). 

12. m +— m + 1. 
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13. Go to 2. 

14. End if. 

15. End. 

Ideally, the increment halvings in this algorithm keep the iterates x^m^ within 
a reasonable distance of the sought zero x*, until finally the algorithm pro-
duces an iterate that allows Newton's method to converge without further 
damping. 

Another class of techniques, called continuation methods, also deserve 
mention. The idea is to connect the problem f(x) = 0, whose solution is 
unknown, by a continuous path to a problem fo(x) = 0 whose solution xjj 
we know. We then solve a succession of problems along this path, eventually 
arriving at a problem so close to the original one that its solution furnishes a 
good intial guess to x*. Figure 2 illustrates this idea. 

f0 = ° ff + ( l - l ) f 0 « 0 f = 0 

0 t 1 

FIGURE 2. Conceptual picture of a continuation method. 

To be more concrete, observe that we can use any initial guess x^0) to 
define fo(x) := f(x) — f(x(°)), which obviously has x^0) as a zero. Define a 
one-parameter family F< of vector-valued functions by 

F,(x) := t f(x) + (1 - t)fo(x), t € [0,1]. 

Clearly F0(x) = fo(x), and Fi(x) = f(x). I f f is "tame" enough, then we 
can regard the nonlinear equation F t(x) = 0 as having a solution x*(t) that 
depends continuously on the parameter t. 

Now construct a grid {0 = to,h tn-\,tn = 1} on [0,1]. Since x*(0) := 
x(°) is the exact solution to Fo(x) = 0, it is presumably close to the solution 
x*(<i) of F*x(x) = 0. Therefore, employing x^0) as an initial guess, use 
Newton's method to solve for an approximation to x*(<i). Then, employing 
this vector as an initial guess, use Newton's method to solve the equation 
F<3(x) = 0. Proceeding in this way, we arrive at the penultimate problem 
F (n_1(x) = 0, whose approximate solution serves as initial guess for the 
original problem f(x) = Fi(x) = 0. 

This heuristic raises many questions. We refer readers to Ortega and 
Rheinboldt [3] for more detail. 
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In many applications, there is no easy way to evaluate the entries dfi/ÔXj 
of the Jacobian matrix J/ exactly. Here, paralleling the one-dimensional case, 
one can use difference quotients to approximate the partial derivatives. This 
approach replaces the Jacobian matrix J/(x^m^) by an approximation Jm , 
whose (i,j)th entry has the form 

fi(x.W + hmej) - fj(xW) 

Here, {hm} is a sequence of small offsets, and ej denotes the jth unit basis 
vector, all of whose entries are 0 except for the jth, which is 1. The following 
finite-difference Newton method results: 

(i) Solve jm<S ( m + 1 ) = -f(x(m)) for <S(m+1). 

(ii) x(m+1> <- x<m) + <J(m+1>. (3.7-2) 

As in the one-dimensional case examined in Section 3.5, the performance 
of this scheme depends strongly upon how one chooses the offsets hm. We 
show later in this section that it is possible to pick these offsets so that the 
iterative scheme (3.7-2) converges at least linearly. 

Mathematical Details 
We explore two theoretical issues: We analyze the convergence of Newton's 
method, and we establish conditions under which finite-difference Newton 
methods converge. The former topic is standard; the latter may be of interest 
in certain applications. 

For the remainder of this section, ß C ffi", and |j • || signifies an arbitrary 
norm on M" or its subordinate matrix norm on K" x n . Also, we often adopt 
the hypothesis that the Jacobian matrix J/ of a function i:Q —» IRn has a 
Lipschitz constant L > 0 on Q. This assertion means that, for any x ,y £ fi, 

l |Jy(x)-J/(y) | |<l | |x-y| | . 

Here, the matrix norm appearing on the left side of the inequality is the 
matrix norm subordinate to the vector norm appearing on the right. 

Newton's method for solving the nonlinear system f(x) = 0 has the ex-
plicit form 

x(m+l) _ x(m) _ JJ»(x(™))f (*("»)). (3.7_3) 

We begin the analysis by proving a multidimensional version of Lemma 3.8. 

LEMMA 3.22. Let Q C Kn be convex and open. Assume that f:Q —► Rn is 
differentiable and that its Jacobian matrix Jy has Lipschitz constant L > 0. 
Then 

||f (x) - f (y) - J ,(y)(x - y)| | < | | | x - y||2. (3.7-4) 
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This lemma establishes how well the affine model f (y) + J/ (y) (x — y) ap-
proximates f (x) near the point y. 

PROOF: Pick any points x, y € fi- Since A is convex, the line segment 

{y + <(x-y)6ln:0<Kl} 

lies entirely in fi. Define if>: [0,1] ->■ R" by setting V>(0 := f (y + t(x - y)). 
The function rj) is differentiable since f is, and for any t € [0,1] we have 

| |^(*)-^(0)| | = ||J/(y + * (x -y ) ) (x -y ) -J / (y ) (x -y ) | | 

< ||J/ (y + *(x - y)) - J/Cy)!! ||X - y|| 

< L | | * x - t y | | | | x - y | | = .W| |x -y | | 2 . 

Using this inequality and the fundamental theorem of calculus, we estimate 
the left side of (3.7-4): 

\\[(x)-f(y)-My)(x-y)\\ = ||^(1) - ^(0) - ^(0)|| 

= I / [y>'(0-V>'(o)]<ft 
\\Jo 

< I 1 (̂0-̂ (0)11^ 
JO 

< L | | x - y | | 2 / tdt 
Jo 

= | l |x-y| |2 . 

This is the required bound. 

The next lemma bounds the distance between successive iterates in New-
ton's method. The bound plays a crucial role in the proof of the main conver-
gence theorem, but unfortunately it requires a list of hypotheses that exert 
rather strong control over the Jacobian matrix of the function f. The hy-
potheses appear again in the main theorem. 

LEMMA 3.23. Let fi C 1 " be open and convex, and let f : Q - + R " be differ-
entiable with Jacobian matrix if. Assume further that J/ obeys the following 
hypotheses: 

(i) J/(x) is invertible for all x € ß . 
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(ii) if has Lipschitz constant L > 0 on Q. 

(iii) There is a constant M > 0 such that | | JT 1 (X) | | < M for all x £Cl. 

(iv) It is possible to choose an initial guess x(°> £ Q such that the quantity 
B := ||J71(x<0>)f(x(°>)|| obeys the inequality 6 := \BLM < 1. 

/ / Newton's method with initial guess x(°> generates an iterative sequence 
{x(m>} such that each x<m) G ß , then for j = 0,1,2, . . . , 

r( i+l) _ y Ü ) <B9 v-\ 0 as j 

PROOF: We use induction on j . The identity (3.7-3) yields 

rO)_Y(°) { ( ° ) - J J 1 ( x ( ° ) ) f ( x W ) - x l (0) = £ , 

by definition of B. Hence the conclusion holds for j = 0. If it holds for 
j = i — 1, then we can proceed similarly and apply the hypothesis (iii) to 
obtain 

,(«"+!) _ -V-W - J j V ^ f f x W ) < M f ( x « ) . 

We now subtract 0, in the form f(x(*'-1)) + J /(x( , '-1))(x(') - xC - 1)) , from 
the quantity inside the norm on the right. This trick, together with the 
hypothesis (ii) and Lemma 3.22, yield 

<•(• + !) c(0 < Afl 

, ^ 

f( 

f 

f ( x « ) - f ^ ' " 1 ) ) - J/(x( i-1)) (xW - x^-1)) 

X ( 0 _ x ( - D 

Applying the inductive hypothesis to the norm on the right, we get 

, («+i) _ y(«) < 
LM i f (**-■-)'- B0 2 ' - l 

This completes the induction. I 

Now we come to the main convergence theorem for Newton's method. 

THEOREM 3.24. Let fi c Mn be open and convex. Assume that f:fi —♦ M" 
is continuous on ÇI and differentiate on ÇI with Jacobian matrix Sj. Assume 
also that the hypotheses (i) through (iv) of Lemma 3.23 apply. Call 6 := 
fl/(l - 6). If the ball Bs(x^) C O, then the sequence {x^} generated by 
Newton's method with initial guess x^ satisfies the following conditions: 
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(A) Each x<m) G #*(x<°)). 

(B) There is a point x* G ß«(x(°)) SMCÄ <AO< x(m) —► x* as m —► oo. 

(c) f(x*) = 0. 

(D) There is a constant C > 0 s«cA <Ao< ||x* — x<m+1>|| < C||x* -x(m>| | 2 

/or m = 0,1, 2 , . . . . 

Conclusion (A) guarantees that the sequence {x^m)} generated by Equation 
(3.7-3) is well defined; (B) and (c) assert that Newton's method converges to 
a zero x* off, and (D) states that the convergence is quadratic. 

PROOF: We prove (A) by induction on m. The fact that x<°) G Be(x^) is 
obvious. Assume that x ^ G BS(K^) for i = 0 , 1 , . . . , m. We have 

m 
c(m+l) _ x(0) = £ (x(. + l) _ x(0) t 

«=0 

so the triangle inequality and Lemma 3.23 imply that 

Jm+l) _ __(0) < £||x(,+1)-x<'') < BJ2er~l 

B 
< * E ' = Ï § Î = « 

i=0 

Therefore x^m+1^ G Bs(x^), and we have finished the induction. 
To prove (B) , it suffices to show that {x(m)} is a Cauchy sequence. Once 

again, we use Lemma 3.23: If n > m, then 
n - l 

c(") - x ( m ) * E K + i ) rW 

< J B Ö 2 m - 1 ^ ( ö 2 m ) = | 
Bö2 

i=0 
02" 

The last quantity on the right tends to 0 as m —* oo. Consequently, given 
any e > 0, we can make ||x(") — x(m)| | < e by taking m sufficiently large. It 
follows that the sequence {x(m)} converges to some point x* G #«(x(°)). 

For (c), observe that continuity of f implies that f(x(m)) —* f(x*) as 
m —* oo, so it is enough to demonstrate that f(x(m)) - » O a s m - t oo. By 
Equation (3.7-3), 

f ( x ( m ) ) | = | | -J /(x< r o>)(x<m + 1>-x(" 

< J/(x(m>) Jm+l) _ x ( m ) 
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Since ||x(m+1) — x(m)| | —► 0 as m —* oo, the proof of (c) hinges on whether we 
can bound the growth of the factor | |J/(x(m))| | . Using the triangle inequality 
in the form (0.3-1), the Lipschitz condition (ii) and conclusion (A) , we obtain 
the estimate 

J/(x(m)) - J/(x<°)) < J /(x(m))-J /(x(°)) 

Jm) AO) <L6. 

Therefore, | |J/(x(m))| | < L6 + ||J/(x(°))||, and we have established (c). 
Finally we prove (D) . Using Equation (3.7-3), the invertibility hypothesis 

(i), and the fact that f(x*) = 0, we find that 

(m+l ) _ ( m ) _ x * _ J-1(X(m))f(x(m>) 

J]\xW) [ -J /(x(m))(x* - x ( m ) ) - f (x( m ) ) l 

< (m)\ J J 1 ^ ™ ' ) f (x*) - f (x*m>) - J/(x<m ') (x* - x^m>) r ( m ) ï r(m)> 

(I) (H) 

But (i) < M by hypothesis (iii), and (n) < £i | |x* —x<m>||2 by Lemma 3.22. 
Conclusion (D) follows, with C = LM/2. I 

The convergence analysis for finite-difference Newton methods in sev-
eral variables is analogous to the analysis given in Section 3.5 for the one-
dimensional case. In preparation for the main theorem, we state three lem-
mas. The first one establishes how well we can expect finite-difference analogs 
to approximate the Jacobian matrix. In the following, fi/, denotes the collec-
tion of all points x G fl such that x + hej G Q for every standard basis vector 
e i -

LEMMA 3.25. Let Q C M" be open and convex, and let f:£2 —*■ M" be contin-
uously differentiate. Suppose that the Jacobian matrix if of f has Lipschitz 
constant L > 0 on fi. Forx G Oft, define J(x) G M n x " to be the matrix whose 
(i,j)th entry is 

fi(x+hej)-fi(x) 

Then for any x G fi 

J(x)-J,(x) 
i - 2 

(3.7-5) 

This lemma deviates from habit by specifying the norm, || • | | i , in which the 
inequality holds. This choice is actually a matter of convenience: The proofs 
of later results turn out to be simpler when we use a norm in which | |e ; | | = 1. 
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PROOF: The jth column of the matrix J(x) — J/(x) is 

f(x + / ^ ) - f ( x ) _ J / ( x ) e j = \_ [ f ( x + fte_} _ f ( x ) _ J / ( x ) f c e . ] 

Taking norms and applying Lemma 3.22, we obtain 

f ( * + / , e , ) - f W _ J ; W e j .S^WlNB-^. 

But the matrix norm ||J(x) — J/(x)||i is the maximum of the quantity on 
the left, taken over the column indices j = 1,2,..., n. The inequality (3.7-5) 
follows. I 

Finite-difference Newton methods essentially use a "perturbed" version 
of the true Jacobian matrix of f. One question that arises in the analysis of 
the methods is whether we can deduce the nonsingularity of the "perturbed 
Jacobian" from the nonsingularity of the exact version. The next lemma is 
useful in settling issues of this type. 

LEMMA 3.26. Let \\ ■ \\ be any norm on M"x n that is subordinate to a norm 
on W1. / / E G M n x n has norm ||E|| < 1, then the matrix I — E is nonsingular, 
and 

IKf-E)"1!!^ r = W " (3-7"6) 

PROOF: TO show that I — E is nonsingular, it suffices to prove that x = 0 is 
the only solution to the equation (I — E)x = 0. For any x G M", the version 
(0.3-1) of the triangle inequality implies that 

||(l-E)x|| = ||x-Ex|| > ||x||-||E||||x|| 

= (l-||E||)||x||. 

But 1 - ||E|| > 0, so ||(l - E)x|| = 0 only if x = 0, as desired. To establish the 
inequality (3.7-6), note that 

1 = | | ( i - E)(l - E)~MI = l l ( l -E)-1 -ECl-E)-1!! 

> ||(i -Ej-MI-IIEH HO -E)-1 ! ! 

= (l-HEiDHO-E)-1!!. 

Since 1 — ||E|| > 0, we can divide through by this quantity to obtain the 
inequality (3.7-6). I 
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COROLLARY 3.27 (PERTURBATION LEMMA). If A e M n x n is nonsingular 
and B G E n x n satisfies the inequality ||A_1(B —A)|| < 1 for some subordinate 
matrix norm || ■ ||, then B is nonsingular. Moreover, 

IB-
IIA-1!! 

l _ | |A - i (B -A) | | 

PROOF: This is Problem 10. I 

We now have the tools needed to prove the central convergence result for 
finite-difference Newton methods. 

THEOREM 3.28. Let fi C Kn be open and convex. Suppose that f:Q —► M" 
is continuously differentiable and that f and its Jacobian matrix J/ obey the 
following conditions: 

(i) f has a zero x* G Q. 

(ii) J/(x) is nonsingular for every x £ f i , and there is a constant M > 0 
such that ||Jj1(3c)|| < M. 

(iii) if has Lipschitz constant L > 0 on Q. 

Let the real sequence {hm} generate the finite-difference Newton method (3.7-
2). Then there exist positive constants 6 and h such that, whenever the initial 
guess x(°) G Bf(x*) and the generating sequence satisfies \hm\ < h, each 
iterate x(m) G Bs(x*). Moreover, x^m^ —► x* as m —» oo. 

PROOF: By the equivalence of norms on ffi", it suffices to argue using the 
norm || • | | j . Pick 6 and h small enough to guarantee that #j(x*) C fi and 
6 + h < l/(2LM). Our first task is to show that the finite-difference analog 
Jm to the Jacobian matrix is nonsingular whenever x(m) G ß«(x*). Observe 
that 

J J V ) Jm-J/(X*) < M J m - J / ( x ( f " ) )+J / ( x ( m ) ) - J / ( x * ) 

< M j m - J ; ( x ( m ) ) + J / (X< '" ) ) -J / (X* ) ! 

(I) (n) 

Lemma 3.25 implies that (i) < L\hm\/2 < Lh/2, and the Lipschitz condition 
(iii) implies that (il) < Lb. Therefore, 

< M (\Lh + Le) 

< LM(K + 6)<±. 

JJl(x*) Jm-J,(x*) 
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The perturbation lemma now guarantees that j m is nonsingular and that 

IMm Hi ^ 2M. In particular, each new iterate x(m + 1) is well defined whenever 
x(m>€5«(x*). 

Next we prove by induction on m that each iterate x(m) £ ß^(x*). By 
hypothesis, x<°) G Bs(x*). Assume that x<m) £ Bs(x*), and call e<m) := 
x* — x ( m \ Paralleling the proof of Theorem 3.13, we note that 

e(m+i) _ x* - x(m) + J"1 f (x<m)) - J"1 f (x*) 

= - 3 " 1 j f (x*) - f (x( m ) ) - J / (x< m >)e< m > 

+ [j /(x<m))-j fn] «<"*)}. 

Taking norms gives 

f(x ' ) - f(x(m>) - Jf(x^)e^ 

( i l l ) 

+ J, (xW)-J r 

(IV) 

,(m) 

(V) 

But we have already shown that (ill) < 2M, and Lemma 3.22 and the induc-
tive hypothesis ensure that 

(iv) < r(»0 
2 L6 

p(m) 

Also, by Lemma 3.25, (v) < |Z,/i||e(m)||1. It follows that 

, (™+i) <LM(6 + h) r(m) < i e(m> (3.7-7) 

Therefore x(m + 1) 6 ßi(x*), and the induction is complete. The last inequality 
also shows that x(m) —> x* as m —► oo. I 

The inequality (3.7-7) asserts that properly constructed finite-difference New-
ton methods converge at least linearly in some neighborhood of a zero x*. 
In fact, more is possible. Enthusiastic readers should formulate and prove 
conditions on the sequence {hm} of offsets for which the corresponding finite-
difference Newton methods converge superlinearly and quadratically. Corol-
laries 3.14 and 3.15 furnish reasonable guides. 
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Further Remarks 
We close the chapter with a cursory look at Broyden's method. Two ob-
servations motivate this scheme. First, by analogy with the one-dimensional 
case, we expect the finite-difference Newton method (3.7-2) to converge su-
perlinearly when the offsets hm —► 0 as m —► oo. Second, when f is expensive 
to evaluate, much of the work associated with the scheme (3.7-2) occurs in 
the computation of the Jacobian analogs Jm . 

Broyden's method addresses the first observation by choosing Jm in a 
fashion reminiscent of the secant method. To start the method, one typically 
chooses Jo to be either the exact Jacobian J/(x(0)) or some finite-difference 
analog of it. Given J m _i , the method defines a matrix Jm such that 

jm(x<m> - x ^ " 1 ) ) = f(x(m)) - f(x<m-1>). 

This "secant-like" condition dictates the action of the matrix Jm only on the 
subspace of t " containing vectors proportional to x^m) — x( m _ 1 ) , so it does 
not define Jm uniquely. To complete the definition, we further stipulate that 
Jmz = Jm_iz for any vector z 6 1 " that is orthogonal to x(m) — x( m _ 1 ) . In 
other words, the procedure for updating J m - i to Jm has no effect on those 
vectors. This stipulation appeals more to a desire for simplicitly than to a 
respect for the actual behavior off. In fact, if we define dm := x(m) — x(m _ 1) 
and ym := f(x(m>) - f (x<m-1>), then the updated matrix 

1 — 1 J- y™ ~ J m - l d m _ i T (■) 7 0\ 
Jm — Jm-1 H l u i|2 am (à. IS) 

satisfies the conditions mentioned above. Problem 14 asks for verification. 
We pause to comment on the notation in Equation (3.7-8). For two 

nonzero vectors a = (a\, a%,..., a n ) T and b = (61,62, ••• >bn)
T, the prod-

uct a b T denotes the following matrix in ffinx": 

a b T : = 

ai6i • • • aib, l O f » 

an6i • • • anbn 

Every column of this matrix is a multiple of the vector a; therefore, the 
columns of the matrix a b T span a subspace of ffi" having dimension 1. In 
other words, the rank of the matrix a b T is 1. Equation (3.7-8) defines Jm as 
a rank-one update of the approximate Jacobian matrix Jm_i used in the 
previous iteration. 

The updating formula (3.7-8) circumvents most of the computational ef-
fort involved in computing a new 'analog to the Jacobian matrix at each itera-
tion. However, in practice the rank-one updates may not adequately capture 
the changes in the nonlinear function f for more than a few iterations, and it 
may be necessary to revert to an ordinary finite-difference Jacobian period-
ically to keep the method convergent. For an analysis of Broyden's method 
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and more details concerning its implementation, we refer readers to Dennis 
and Schnabel ([1], Chapter 8). 

3.8 Problems 
PROBLEM 1. Chapter 1 discusses piecewise polynomial approximations to 
functions, in which the coefficients used to compute an approximation to 
f(x) depend on which interval [z^Xj+i] of a grid {xo,x\,.. . , £ # } contains 
the point x. The naive way to determine [z^ajj+i] is to test the intervals in 
order, for i = 1,2,..., until we reach the first value of « for which x < a;,-. 
This algorithm takes 0(N) iterations to find the interval that contains x. A 
faster technique, called logari thmic searching, uses an integer version of 
bisection: 

1- «left ♦— 0, «right «— N. 

2. If iieft - iright > 1 then: 

3. «mid «— in t [(«right + «teft)/2]. 

4. If Ximid > ~x then: 

&■ «right * ^mid • 

6. Else: 

7. «left <— «mid-

8. End if. 

9. Go to 2. 

10. End if. 

1 1 . i *— «left • 

12. End. 

Here, int (x) denotes the largest integer that is less than or equal to x. How 
many iterations do you expect this algorithm to take? 

PROBLEM 2. The polynomial f{x) = £ 3 -3a :+l has three real roots z j , ^ ^ -
For each root, devise a successive substitution scheme x\ <— &(x\ ') 
that converges to x^. Using appropriate initial guesses x\ ', demonstrate 
both theoretically and computationally that the scheme converges with order 
p > 1. 
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PROBLEM 3. Prove that, if $: [a, b] —+ M satisfies a Lipschitz condition on 
[a, 6], then $ is continuous on [a, b]. Find a function that satisfies a Lips-
chitz condtion on [a,b] but that does not belong to C^a.fr]). Therefore, the 
Lipschitz condition is at least as strong as continuity, but it is weaker than 
continuous differentiability. Does continuity of $ on a set S C M guarantee 
that $ satisfies a Lipschitz condition on 5? 

PROBLEM 4. Suppose that you have three iterative schemes that generate 
the following sequences of iterates, respectively: 

(A) { 2 - } (B) {2-2"*} (c) { 2 - 2 } . 

Using this evidence, characterize the convergence rates of the schemes. 

PROBLEM 5. 

(A) Using the line of reasoning leading to the estimate (3.4-3), state 
and prove a theorem regarding quadratic convergence in Newton's 
method near simple roots. 

(B) It is possible to generalize this idea to produce successive substitution 
schemes that converge with any order p = 2 ,3 , . . . . The idea is to 
construct an iteration function <£ such that $'(»*) = 4>"(x*) = • • • = 
$(p_1)(x*) = 0, making sure in the process that |$(p)(a:*)| remains 
appropriately bounded. State and prove such a theorem. 

(c) In Newton's method, the iteration function is $(x) = x — f(x)/f'(x). 
By analyzing $ ' near x*, show that Newton's method applied to a 
function / £ C2([a, b]) converges linearly, but no faster, near a root 
having multiplicity 2 or greater. 

PROBLEM 6. A sequence {xm} of real numbers is bounded if there is a 
number M > 0 such that \xm\ < M for every index m. The sequence 
is monotonie if it is either nondecreasing, that is, xm < xm+i for all 
m, or nonincreasing, that is, x m + i < xm for all m. Prove that every 
bounded, nondecreasing sequence of real numbers has a limit. (Hint: the 
limit is supxm . ) The proof that every bounded, nondecreasing sequence of 
real numbers has a limit is similar. 

PROBLEM 7. Derive an error estimate analogous to the inequality (3.4-5) for 
the case when x* is a root of multiplicity q > 1. 

PROBLEM 8. 

(A) Prove Corollary 3.15. 
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(B) Prove that the conclusion of Corollary 3.15 remains valid for func-
tions / G C1([a,6]) if we replace the condition \hm\ < C|e(m)| by 
I M < C|/(2r(m))|. (The choice hm = /(x(m>) yields StefFensen's 
method. ) 

PROBLEM 9. Use successive substitution to solve the following system of 
equations: 

x2 + y2 = x, 

x2 - y2 = y. 

Discuss convergence, order of convergence, and error estimates. 

PROBLEM 10. Prove Corollary 3.27. 

PROBLEM 11. Define an iteration function $ by $(x) = x — qf(x)/f'(x). 
Prove the following: If / 6 C3(M) has a zero x* of multiplicity q, then there 
exists 6 > 0 such that the iterative scheme a;(m+1) = $(a;(m)) converges with 
order p = 2 for any initial guess x^0' G (x* — 6, x* +6). 

PROBLEM 12. Write a computer program to solve the system (3.6-2) using an 
arbitrary initial guess x(°). Through computational experiments, characterize 
regions of the plane 1R2 according to the zeros, if any, to which initial guesses 
in the regions converge. 

PROBLEM 13. Let Q C M" be open and convex, and assume that f : Q —► R" 
is continuously differentiate. Assume further that the Jacobian matrix J/(x) 
is nonsingular and has Lipschitz constant L > 0 on fi. Suppose that x G fi 
with f (x) ^ 0, and define 

y:=x-uijl{x)t(x). 

Prove that there exists w > 0 such that ||f(y)\\2 < ||f(x)H2, whenever w < ZJ. 

PROBLEM 14. 

(A) Let Jm G M" x n be the Broyden update defined in Equation (3.7-
8). Prove that 3m(x(m> - x ^ - 1 ) ) = f(x<m)) - f ( x ^ " 1 ) ) and that 
J m z = Jm_iz whenever z is orthogonal to x^m^ — x ' m _ 1 ) . 

(B) Prove the S her man-Morr ison theorem: If A G M n x n is nonsin-
gular and a ,b G ffi" satisfy the condition b T A _ 1 a 9̂  —1, then the 
matrix A + a b T G K n x n is nonsingular, and 

(A + a b T ) = A ' - 1 + a b T ■ 
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(c) Comment on the applicability of the Sherman-Morrison formula to 
Broyden's method. 

PROBLEM 15. Fixed points are quite common: Prove that every continuous 
function $: [a, b] —*■ [a, b] has a fixed point. (Hint: Show that g(x) := x — $(«) 
has a zero in [a, b] by considering the values of g(a) and g(b).) 
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Chapter 4 

Iterative Methods for 
Linear Systems 

4.1 Introduction 

Although iterating may seem most natural in nonlinear settings, where direct 
solution techniques typically are not available, it has tremendous applicability 
to linear systems as well. The discussion of band matrices in Section 2.4 hints 
at this utility. Many applications lead to large band matrices in which the 
bands themselves are sparse. Direct methods often use computer memory 
and arithmetic extravagantly in such applications, while iterative schemes 
offer opportunities for greater efficiency. 

For example, finite-difference approximations of certain partial differential 
equations yield block-tridiagonal matrices: 

TO m ■ ■ • 

m / T i Di \ 

m D2 T2 D2 

A = 
Dn-1 T„_i D„_i 

V D„ T„ / 

Typically, each block T* £ M m x m is tridiagonal, while each of the off-diagonal 
blocks D, 6 M m x m is diagonal. The sparseness of such systems is an attractive 
consequence of the approximations that generate them. 

For concreteness, consider the unit square fi = (0,1) x (0,1) C M2 and 

(4.1-1) 
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the following boundary-value problem for the Laplace equation: 

d2u, , d2u. 
dxi(

x>ti-W(t,y) = 0' 

u(x,y) = ud(x,y), 

(x,y)en; 

(x,y)£dQ. 

(4.1-2) 

Here, dfi denotes the boundary of 0 , and the known function ug defines 
the boundary values of the unknown function u. Given the uniform grid on 
Cl drawn in Figure 1, standard finite-difference approximations convert the 
derivatives in the Laplace equation to the algebraic analogs 

32u 
dx2 (xk,Vi) 

d2u. 
Oy2^k,y,) * 

h2 

»ife,)-l - 2m,,; + Uk,l+l 
h2 

where h stands for the distance between adjacent grid lines and «*,< denotes 
the approximate value of u{xk,yi). (Chapter 8 discusses this approximation 
in detail.) Substituting these analogs into the Laplace equation yields 

4ujt,i - (ujt_i,j + «fc.j-i + UJM+I + «Jfc+i,i) = 0. (4.1-3) 

4 
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0 
- 1 

- 1 
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- 1 
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- 1 

0 
- 1 

4 
0 
0 

- 1 

- 1 
0 
0 
4 

- 1 
0 

- 1 

- 1 
0 

- 1 
4 

- 1 
0 

- 1 

- 1 
0 

- 1 
4 
0 
0 

- 1 

- 1 
0 
0 
4 

- 1 
0 

- 1 
0 

- 1 
4 

- 1 

- 1 
0 

- 1 
4 . 

«1,1 

«2,1 

«3,1 

«1,2 

«2,2 

«3,2 

«1,3 

«2,3 

. «3,3 . 

By assigning known values of ua(xk, yi) to corresponding values Uk,i, we arrive 
at the following block-tridiagonal system: 

«1,0 +«0 ,1 
«2,0 

«3,0 + «4,1 
«0,2 

0 
«4,2 

«0,3 + «1,4 
«2,4 

«3,4 + «4,3 . 
(4.1-4) 

where the vector on the right contains known boundary values. We denote this 
system more briefly as Au = b. For finer grids on the square Q, the maximum 
number of nonzero entries on each row of the matrix for this problem remains 
constant at five, and many more zeros appear inside the nonzero band. 

(Throughout this chapter we use the symbol u, instead of x, for the vector 
of unknowns. Thus the system to be solved is Au = b. This change in 
notation reflects the close connection between the iterative methods discussed 
and approximations to differential equations, in which u commonly denotes 
the unknown function.) 

Direct methods based on banded LU factorization tend to preserve the 
block-tridiagonal structure but fill in the originally sparse blocks. This fill-in 
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VA ~ 

y 2 '► 

y0 

xQ xx x2 Xj x4 

FIGURE 1. A simple grid on the unit square, showing how the 
standard finite-difference approximation to the Laplace equation 
couples unknown nodal values Uij. 

demands more storage space than the original zero structure, and the new 
nonzero entries increase the operation counts in subsequent uses of forward 
and backward substitution. Direct methods thus forfeit some of the properties 
that make finite-difference approximations so attractive. 

The idea behind iterative methods is to generate a sequence {tr"1 '} of 
approximate solution vectors, each computed using arithmetic involving only 
the nonzero entries of A. Since the methods avoid fill-in, the computational 
cost per iteration stays small. The main goal is to guarantee that u(m) —► u 
rapidly. 

In this chapter, we explore the rudiments of two distinct ideas. The first is 
relaxation, that is, the successive adjustment of small subsets of unknowns 
using tentative values for the other unknowns. The second idea is searching. 
Here, one constructs successive approximations u(m) in multidimensional Eu-
clidean space by marching in directions determined by optimization criteria. 

Before proceeding, we review the algebraic setting and some notation. 
Earlier chapters discuss linear algebraic methods in the context of the real 
vector spaces Kn. In the present chapter, we sometimes work in the more 
general vector space C" , which contains all n-tuples of elements from the 
set C of complex numbers. There corresponds to C" an associated space of 
linear transformations represented by elements of C n x n , the set of all n x n 
matrices whose entries belong to C. 

The elementary algebra of C n extends that of M". The main differences 
arise in the computation of norms. Recall that the magnitude of a complex 
number z — x + iy, with I , J € M , is \z\ := y/fz, where ~z :— x — iy denotes 
the complex conjugate of z. The definitions of various norms o n C " follow 
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accordingly: If z = (z\, z%,..., zn ) T , then 

n 

\ 1/2 

IMIi ■•= 
i= i 

Ilzll2 := \J2zizi 
U = i 

|U := mgn{y/îû}. 

As in Mn, for any norm || ■ || on C" there is a subordinate matrix norm 
|| . ||: c

nxn -+ R by the equation 

||A|| := sup I M . (4.1-5) 
||z||^0 llz l l 

Familiar facts about norms on E n x n extend to the complex setting: Any 
matrix norm on C " x " is continuous, and all norms on C n x n are equivalent. 

Some economy of notation is available if we generalize the transpose of 
a real matrix. For a matrix A 6 C m x n , the Hermitian transpose (or 
conjugate transpose) of A is 

A* :=A T e C " x m . 

Obviously, A* = A when the entries of A are all real. If we think of vectors 
z € C" as column vectors, or elements of C " x l , then the Hermitian conjugate 
of z is z*, the row vector whose entries are the complex conjugates of the 
entries of z. The following identities are easy to check: 

(i) ||z||2 = Vz^-

(ii) (AB)* = B*A*. 

(iii) (A*)* = A. 

Finally, the inner product of two vectors w,z G C" is w*z. As in any 
inner-product space, two vectors in C" are orthogonal if their inner product 
vanishes. 
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4.2 Conceptual Foundations 
Rigorous analysis of iterative methods for linear systems relies on several the-
oretical results. We devote this section to a review of these results. However, 
we use most of the concepts developed here only in discussing mathemat-
ical details. For readers intent on skipping the theory, only the basic facts 
about eigenvalues and eigenvectors, culminating below in Proposition 4.1, are 
needed in later chapters. 

Suppose that an iterative scheme for a system Au = b produces a sequence 
| u ( m ) } of iterates. It is crucial to determine conditions under which the errors 
g(m) . _ u _ u ( m ) _ Q 

a s m - » oo. As Section 4.3 shows, with many iterative schemes we can associate matrices G that relate errors at successive iterations 
in the following way: 

e<m+1> = Ge<m> = --- = Gm+1e<°>. 

We therefore analyze such repeated applications of the matrix G, both in 
terms of norms and in terms of the action of G on specific vectors. 

We begin with the action of G. 

DEFINITION. Let G G C n x n . A number A G C is an eigenvalue of G if 
there exists a nonzero vector v G C n such that Gv — Au. In this case, v is 
an eigenvector associated with A. The set <r(G) of all eigenvalues of G is 
the spec t rum o/G. 

Thus G "stretches" an eigenvector by a (possibly complex) factor, namely the 
associated eigenvalue. For a given eigenvalue, the associated eigenvector is 
not unique: If v is an eigenvector associated with eigenvalue A, then so is av 
for any nonzero constant a G C. 

A number A is an eigenvalue of G G C " x n if and only if there is a nonzero 
solution « E C to the linear system (G — Al)t> = 0, where I is the identity 
matrix. Such a solution exists if and only if det(G — AI) = 0. Since the 
characteris t ic polynomial det(G — AI) has degree n in A, G has n eigenval-
ues, counted according to their multiplicities as zeros. The multiplicity of an 
eigenvalue A as a zero of the characteristic polynomial of G is the algebraic 
multiplicity of A. Thus, finding the eigenvalues of a matrix is equivalent 
to the nonlinear problem of finding the zeros of a polynomial. When n is 
large, this equivalence is more useful theoretically than computationally, as 
we explore in Chapter 5. 

When do two matrices have the same spectrum? 

DEFINITION. The matrices G,H G C n x n are similar if there exists a non-
singular matrix S G C n x n such that H = SGS - . The mapping A *-* SAS-

is a similarity transformation. 

It is nearly obvious that similarity is an equivalence relation. More to the 
point, similarity transformations preserve eigenvalues: 
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PROPOSITION 4.1. 7/G,H G C n x n are similar, then G and H have the same 
spectrum. 

PROOF: The two matrices have the same characteristic polynomial: 

de t (AI -H) = de t (AI-SGS _ 1 ) = det [S(AI - G)S-1] 

= det S"* det (AI - G ) det S 

= det (Al -G) . I 

If A G ff(G) has associated eigenvector v, then the eigenvector of SGS - 1 

associated with A is Sv. 
As in ]Rnxn, if G is upper or lower triangular, then its eigenvalues are just 

the diagonal entries of G. Thus one can easily determine the spectra of upper 
and lower triangular matrices by inspection. Remarkably, every matrix in 
C " x n is similar to an upper triangular matrix. We now explore this fact. 

DEFINITION. A matrix U G C " x n is un i ta ry z/U*U = I. Two matrices 
G, H G C " x n are uni tar i ly similar if there is a unitary matrix U G C n x n 

such that H = U*GU. 

All unitary matrices are nonsingular, since the definition implies that U - 1 = 
U*. Therefore, matrices that are unitarily similar have the same eigenvalues. 
A unitary matrix is a square array whose columns, considered as individual 
vectors V i , v 2 , . . . , v n G C" , form an orthonormal basis for C n . This fact 
follows from the observation that U has n columns and from the equivalence 
between the requirement U*U = I and the orthonormality condition 

THEOREM 4.2 (SCHUR NORMAL FORM). Every matrix G G C " x n is unitarily 
similar to an upper triangular matrix in C " x n . 

PROOF: We use induction on n, the case n = 1 being trivial. Assume that 
any matrix in C ^ " - 1 ^ " - 1 ) is unitarily similar to an upper triangular matrix, 
and let G G C n x " . Suppose that Ai is an eigenvalue of G associated with an 
eigenvector v i , which we assume to be normalized so that | |vi| |2 = 1. Pick 
an orthonormal basis {vi, v 2 , . . . , v n } for C (One can do this, for example, 
using the Gram-Schmidt procedure; see Strang [6].) Now construct a matrix 
V G C n x n by taking its columns to be the vectors V!, v 2 , . . . , v„. We denote 
V in block form as [vj v2 • • • v„], 
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The matrix V has two salient properties. First, it is unitary, since the 
vectors Vj form an orthonormal set. Second, 

1 n - 1 

V*GV = V'[A1v1 Gv2 . . . G y . ] = i _ 1 ( A
0

1 £ ) , 

where g € C " _ 1 and Gi G c ^ - 1 ) ^ " - 1 ) . 
The next objective is to convert the block Gi to upper triangular form. 

By the inductive hypothesis, there is a unitary matrix Ui G C( n _ 1 ) x ( n _ 1 ) 
such that 

A2 * ••• * 

U;GIÜI = 

where A2, A3, . . . , An are the eigenvalues of Gi and the symbols "*" stand for 
entries that may be nonzero. Define U G C " x " by setting 

It is easy to check that U is unitary. Moreover, 

- \o uj A ° Gi A ° u i / 
( l 0* \ / Ax g'Ux \ _ ( \i g*Ux 

- V 0 UÏ A ° GiU, ) - \ 0 UîdUi 

The last matrix is upper triangular. I 

The Schur normal form facilitates an estimate of the spectral radius g(G) 
in terms of ||G||. From the definition (4.1-5) it follows that |A| ||u|| < ||G|| |ju|| 
for any eigenvector v, and hence ß(G) < ||G|| for any subordinate matrix norm 
|| • ||. More is true: 

THEOREM 4.3. Let G G C n x " . For any e > 0 there exists a subordinate 
matrix norm \\ ■ ||: C " x " -> M such that g(G) < ||G|| < g(G) + e. 

(The norm || • || that works depends upon G and e.) This theorem is pivotal in 
the analysis of Gm, so its long proof is worth the effort. We use the following 
simple lemma, whose proof is Problem 1 : 
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LEMMA 4.4. The equation ||z||n := ||Mz||i defines a norm || • ||n on C" 
whenever || • ||i is a norm on C and M G C " x " is nonsingular. 

PROOF OF THEOREM 4.3: We need only find a subordinate matrix norm 
that satisfies the inequality ||G|) < g(G) + €. We begin by defining a suitable 
norm on C" . By Theorem 4.2, there is a unitary matrix U G C n x n such that 
the matrix UGU-1 is upper triangular and has the eigenvalues Ai, A 2 , . . . , An 

of G as its diagonal entries. Decompose this matrix as follows: 

UGU-1 = L + T, 

where L is diagonal with diagonal entries Ai, A2 A„ and T is upper trian-
gular. Pick any 6 > 0, and construct the diagonal matrix 

D:= 

c l - n 

The matrix C := D(L + T)D~ has three properties of interest. First, since 
DLD -1 = L, C = L + E, where E := DTD - 1 is upper triangular. Second, 
the entries of E and T stand in the relationship e, j = ti^S^-* for i < j . In 
other words, eij = 0(6), which we can make arbitrarily small in magnitude 
by choosing 6 small. Third, from the equations 

U-1D_1CDU = U-1D"1D(L + T)D -1DU = (U_1L + T)U = G 

there follows the identity 
CDU = DUG. (4.2-2) 

We now define the desired vector norm. For any z G C" , let 

||z|| := ||DUz||2 = Vz*U*D*DUz. 

Lemma 4.4 ensures that || • || is indeed a norm, since the matrix DU has inverse 
U*D -1 . To demonstrate that the matrix norm subordinate to || • || fulfills the 
conclusions of the theorem, it suffices to establish the following fact: For any 
z G C" with ||z|| = 1, ||Gz|| < ß(G) + 0(6). Given this inequality, we can 
make ||G|| < ß(G) + e by choosing 6 small enough. 

From equation (4.2-2), 

||Gz|| = ||DUGz||2 = ||CDUz||2. 

Now let w := DUz. We have 

||Gz|| = IJCwHa = V w C C w 
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where the matrix B := L*E+E*L + E*E has entries that are 0(6) in magnitude. 
Therefore, 

||Gz|| < v/[ß(G)]2w*w + n20(S)w*w 

= V^Vt^G)] 2 + 0(S) 

= |H|2[e(G) + 0(5)]. 

(In the last step, we use the binomial series (1 + a)1/2 — 1 + | a — §a 2 + 
i « 3 + 0(a 4 ) . ) But ||w||2 = ||DUz||2 = ||z|| = 1, so ||Gz|| < g(G) + 0{6), as 
desired. I 

Now we examine the repeated application of a matrix G. 

DEFINITION. A matrix G € C " x n is convergent if lirrim-K» Gm = 0. 

As shown in the next section, convergent matrices are the keys to convergent 
iterative schemes. The following theorem characterizes convergent matrices. 

THEOREM 4.5. Let G e C n x n . The following are equivalent: 

(i) G is convergent. 

(ii) limm_oo ||Gm|| = 0 for some matrix norm || • ||. 

(iii) g(G) < 1. 

PROOF: We first prove that (i) and (ii) are equivalent, then prove that (ii) 
and (iii) are equivalent. To show that (i) implies (ii), we recall that matrix 
norms || • || are continuous. Therefore, for any matrix norm, ||Gm|| —+ 0 
whenever Gm —► 0. 

To show that (ii) implies (i), assume that ||Gm|| —► 0 as m —♦ oo. Since 
all norms on C n x n are equivalent, there exists a constant M > 0 such that 
0 < ||Gm||oo < M||Gm | | for every m. Therefore, if ||Gm|| - O a s m ^ o o , then 
the maximum row sum 

of Am tends to 0 as m —► oo as well. This fact implies that each entry of Gm 

tends to 0. We have established that (i) and (ii) are equivalent. 
To demonstrate that (ii) implies (iii), observe that Am is an eigenvalue of 

Gm if and only if A is an eigenvalue of G (see Problem 2). If the eigenvalues 
of G are Aj, A 2 , . . . , A„, then 

e(G
m) = max{|A7*|} = (maxflA,!})'" = [e(G)]"\ 
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Now assume that ||Gm|| —* 0 as m —► oo. We have 

0 < [ < ? ( G ) ] m = e ( G m ) < | | G m | | - + 0 as m-+oo , 

so limm_oo[ff(G)]m = 0. This statement holds only if p(G) < 1. 
Finally, we prove that (iii) implies (ii). Assume that Q(G) < 1, so that 

Q(G) < 1—efor some e > 0. By Theorem 4.3, there exists a subordinate matrix 
norm ||-|| such that ||G|| < £>(G) + e < 1. From the inequality ||AB|| < ||A|| ||B|| 
we now conclude that 0 < ||Gm|| < ||G||m -+ 0 as m ->• oo. I 

4.3 Matrix-Splitting Techniques 

Motivation and Construction 
One important strategy for solving a linear system Au = b involves splitting 
the matrix A as A = B + (A — B). Given such a splitting and an initial guess 
u(°), we can iterate on the system 

Bu(m+i) = ( B _ A ) u (m) + b ^ 3 ^ 

This strategy hinges on two properties: First, it must be significantly easier 
to solve systems involving B than to solve those involving A. Second, the 
iterates u(m) should converge quickly to the exact answer u. Formally, this 
second requirement means the following: If e(m) := u — u(m) denotes the 
error at iteration level m, then we want | |e ( 'm ' | | —♦ 0 as m —► oo, as rapidly 
as possible. In practice, of course, we want to reach an iterate u^m^ that lies 
within some prescribed distance of u after a fairly small number of iterations. 

Several well known iterative schemes use matrix splittings based on the 
decomposition 

A = L + D + U, 

where D is the diagonal part of A, L is the lower triangular part, and U is 
the upper triangular part. More specifically, D, L, and U have the following 
entries: 

= j , 

#i; 
>i, 
<i; 

<j, 
L u> it t > j . 

(L and U as defined here differ from the upper and lower triangular factors 
discussed in Chapter 2.) 

If the diagonal part D has no zeros among its diagonal entries, then it is 
certainly easy to invert: D _ 1 is the diagonal matrix whose (t, t)th entry is 

■ ' i j i 

*»j ' 

0, 

Ui i = 
X » , J ! 

if 
if 

if 
if 

if 
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d{ / . This observation suggests the matrix splitting B = D , A - B = L + U . 
In matrix form, the following iterative scheme for Au = b results: 

u(m+i) = - D - ^ L + L O u ^ + D ^ b 
(4.3-2) 

= ( l -D- 1 A)u( m ) + D- 1 b. 

This scheme is the Jacobi method. 
The matrix form (4.3-2) is not the most computationally useful form for 

the iterative scheme. To get a form more amenable to computer programming, 
consider the original linear system Au = b written in component form: 

n 

\ aijUj = 6j, i = 1,2,..., n. 
; = i 

We obtain the Jacobi method by solving the ith equation for the unknown 
U{, then "lagging" the other unknowns Uj, j ^ i, by one iteration: 

„(m+D - — E a ». i u i m ) + — > * ' = 1 . 2 , . . . , n . (4.3-3) 

For example, for the finite-difference approximation (4.1-3) to the Laplace 
equation, the Jacobi method yields the iterative equations 

„ ( m + l ) _ 1 / (m) (m) (m) (m) \ 

(Even though we retain the double subscripts for the unknowns «,-j in this 
context, we regard these unknowns as entries of a single vector, say u = 
(ui,i> ui,2i • • ■. un,n)T•) When the expression on the right calls for a value of 
Uij associated with a node (xi,yj) located on the boundary of the grid, it 
is necessary to substitute a known boundary value for «,-j-. In programming 
the Jacobi method, one simply inserts equations of this form inside a loop 
running over all indices of the unknowns. One execution of the loop, passing 
through all index values, thus constitutes one iteration. The method requires 
the storage of two vectors of iterates: one for the "old" values associated with 
iterative level m and one for the "new" iterates associated with level m + 1. 

The Jacobi method admits a modification in which we multiply the cor-
rection vector u(m + 1) — u(m) by a "damping factor" u before adding it to 
the previous iterate u(m). This damped Jacobi method has the following 
matrix form: 

u : = ( l - D - 1 A ) u ( m ) + D _ 1 b, 

u ( m + l) _ u ( m ) + W ( S _ u (m))_ 

Eliminating u gives 

u(m + 1> = (I - wD_ 1 A)u<m) + wD- 'b . (4.3-4) 
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Clearly, the choice w = 1 yields the original Jacobi method. For the finite-
difference equations (4.1-3), the method reduces to the iterative equations 

1kA — uk,l + w/ i f« ( m ) +u(m) W m ) + « ( m ) l - « ( m ) l + 1 4 [ * - i , ' + *,'-i + t,'+i + *+i,'J *,' J 

For this application, the damped Jacobi method converges for 0 < w < 1 (see 
Problem 3). We revisit this method briefly at the end of this section. 

One can refine the Jacobi method in another way. Observe that new 
iterates u\ ' become available for use during the course of each iteration. 
Since u\ is presumably closer to the exact value «,- than uj , we might 
use the newer value as soon as we have computed it inside the iterative loop, 
instead of waiting for the next execution of the loop. The Gauss-Seidel 
me thod results: 

,(m+!)- L \sr„. ...(•»+1> J. \ ^ „ . ...(•») I .i.A. 

known / 

The values «;m ' for j < i are known from earlier passes through the loop 
during the same iteration. In coding this scheme, it is not necessary to store 
separate vectors for iterative levels m and m + 1. We actually need just one 
vector for the unknowns, since we can overwrite its entries with new values 
as soon as they become available. 

The Gauss-Seidel method has the following matrix representation: 

u(m+i) = _(L + DJ-W™) + (L + D ) - ^ . 

In the matrix splitting, B = L + D,A — B = U. 
Unlike the Jacobi method, the Gauss-Seidel method generates iterates 

that depend on the order that we assign to the unknowns. Consider the 
model problem (4.1-1). In the lexicographic ordering of the variables w^j, 
the unknown vector is 

( « 1 , 1 . « 1 , 2 . « 1 , 3 . « 2 , 1 , « 2 , 2 , « 2 , 3 , « 3 , 1 , « 3 , 2 , « 3 , 3 ) • 

With this arrangement, the Gauss-Seidel iteration has the form 

( m + l ) _ 1 / ( m + l ) ( m + l ) (m) (m) \ 
uk,l ~ 4 V *-M *,'-! +Uk,l+1 + uk + l,l) ' 

since the unknowns u/t-i,i and «k,i_i appear earlier in the lexicographic or-
dering than Ukj-

In red-black ordering, the unknowns ut,i for which k + I is even come 
before those for which k + I is odd, and the ordering within each of these two 
subsets is lexicographic. (Imagine the grid drawn in Figure 1 of Section 4.1 
as a checkerboard, with nodes alternately colored black and red according 
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to whether k + 1 is even or odd.) Thus the unknown vector in the model 
equations (4.1-1) is as follows: 

("1,1. «1,3, "2,2, «3,1, «3,3, «1,2, «2,1, «2,3, «3,2) ■ 
v v ' > v ' 

black red 

In the red-black ordering for the problem (4.1-1), the Gauss-Seidel equations 
have the following form when Uk,i is a "black" unknown: 

All of the unknowns appearing on the right are "red" and therefore appear 
later in the vector of unknowns. For the red unknowns, the Gauss-Seidel 
equation is 

«LrM^K^S-^ * + ' odd. (4.3-6b) 
All of the unknowns on the right are black and therefore already have been 
assigned values at the new iteration level m + l. 

Like the Jacobi method, the Gauss-Seidel method also admits a modifi-
cation based on adjustments to the correction vector. This method is known 
as successive overrelaxation (SOR). To describe it, let us rewrite the 
Gauss-Seidel method as follows: 

(m+l) (m) , c(m+l) 

5("»+i) ._ _ \ p füLiu(">+i) _ y ^ ^ i u ( m ) + A . _ u(™) 
t r ! ai,i j ^ ai,i j «»,« '" ' 

the quanti ty ô\m being the correction. In SOR, one replaces the scheme 
u\ ' = u\m' + 6\ ' by the iterative equation 

(m+l) (m) , c(m+l) 

choosing the overrelaxation parameter w to speed convergence. Clearly, 
the choice u = 1 yields the Gauss-Seidel method. 

From an algorithmic viewpoint, the SOR equations have the form 

«r1} = (I-«H<->+«- ( - E ?Mm + 1 ) - £ ?M m ) + ~] (4-3-7) 

Forour model problem (4.1-1), when we order the unknowns lexicographically, 
SOR reduces to the the following scheme: 

v%+i) = (i - <-)«&>+\ (fi^+«ir?+«<%+-iSj) • 
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The matrix form for SOR is as follows: 

u(m+i) _ ( w - i D + g - i r ( w - i _ i) D - U] u<m> + ( w ^ D + L)"1 b , (4.3-8) 
v v " v ' 

B"1 B-A 

with the matrix splitting A = B + (A — B) indicated. 
Some theory is available to guide the choice of overrelaxation parameter 

u) in certain common applications. We devote Section 4.4 to this topic. 
The Jacobi and Gauss-Seidel methods are examples of relaxation meth-

ods. This terminology reflects an analogy with certain mechanical systems, 
such as elastic membranes, that give rise to linear systems involving symmet-
ric, positive definite matrices A. As we explore in Section 4.5, the solution u 
of the linear system Au = b for such matrices corresponds to the minimum 
of the function F{y) = | v T A v + b T v , which for the mechanical systems in 
question represents the energy. In this analogy, iterates u(m) ^ u represent 
configurations of the system that do not quite minimize energy, and the it-
erative adjustment of the vectors u(m) toward the vector u corresponds to 
"relaxation" of the mechanical system to its equilibrium state ([5], Section 
38). 

Practical Considerations 

The most important practical questions regarding the Jacobi and Gauss-
Seidel methods concern their convergence. The matrix-splitting viewpoint 
yields both general and specific convergence criteria for the methods. Both 
of the methods fall under the rubric of s ta t ionary i terat ive methods, the 
general form of which is 

u ( m + l ) _ G u ( m ) + k j ( 4 3 _ 9 ) 

where G is a constant iteration matrix and k is a constant vector. For 
matrix-splitting methods for the system Au = b , the iteration matrix is 
G = I — B - 1A, and k = B _ 1 b . In particular, for the Jacobi method, 

Gj : = - D - 1 ( L + U) = l - D ~ 1 A , k j := D ^ b , 

while for the Gauss-Seidel method 

G i ^ - a + D ) - ^ , k ^ a + DJ-Mb. 

A stationary iterative scheme for Au = b is consistent if u = Gu + k, 
that is, if the solution to the linear system is a fixed point of the iteration. It 
converges if u — u(m) := e(m) —+ 0 for any initial guess u ( ° \ Later in this 
section we prove the following general convergence criterion: 

A consistent stationary iterative scheme (4.3-9) for Au = b con-
verges if and only if g(G) < 1. 
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In other words, the iterative scheme converges from any initial guess i r ' 
precisely when all eigenvalues of G have magnitude less than 1. 

While this criterion furnishes a general characterization of convergence, it 
refers to the spectrum of the matrix G, which is typically difficult to ascertain. 
By using the fact that o(G) < ||G|| for any subordinate matrix norm || • || 
(see Problem 9, Chapter 2), we deduce the following corollary of the general 
criterion: 

/ / ||G|| < 1 for some subordinate matrix norm, then stationary 
iterative schemes using G as the iteration matrix converge. 

This criterion gives only a sufficient condition for convergence, but it can be 
more convenient to check, since such subordinate matrix norms as || • ||i (the 
"maximum column sum") and || • ||oo (the "maximum row sum") are easy to 
compute. 

If one can find a subordinate matrix norm in which ||G|| < 1, then one can 
use it to estimate the error er(m) = u — u^m^ at each iteration in terms of the 
difference u(m) — u^m _ 1) between successive iterates. By consistency, c(m) = 
Gu + k - G u ( m - 1 ) - k = Ge(m-1). Also, e<m) = u ( m + 1 ) - u ( m ) - u ( m + 1 ) + u = 
G(u(m)— u( m - 1 ) ) — G(u(m) — u). Combining these two observations and taking 
norms, we get 

Ik^ll^liqillu^-u^-^ii + iiGiiiie îi, 

or, assuming that ||G|| < 1, 

l|e(m)|1 - r=TiGii l | u (m) " u(m~1)"- (4,3"10) 

The inequality (4.3-10) bounds the unknown error in terms that are com-
putable at each iteration. Thus one can iterate until the quantity on the 
right falls below a prescribed error tolerance, being assured that the error at 
that iteration level is no larger in norm. 

Still, the criterion ||G|| < 1 can be frustrating in its failure to identify 
convergent schemes. For example, for the finite-difference system (4.1-4) the 
Jacobi iteration matrix has ||Gj||i = ||Gj||oo = lj so neither of these norms 
allows one to conclude that the Jacobi method converges for this problem. 
Yet the Jacobi method does converge for this system of equations. In fact, 
it converges for essentially all systems arising from elementary difference ap-
proximations to analogs of the boundary-value problem (4.1-2). Observations 
of this sort have led numerical analysts to develop a fairly sophisticated body 
of theory concerning matrix splitting methods. We investigate some of this 
theory later in this section. 

In practice, it is important for an iterative scheme to converge rapidly. The 
rate at which ||e(m)|| —► 0 depends upon the spectral radius of the iteration 
matrix G, according to an argument that we now sketch heuristically. As 
we have seen, e^"1) = Gme(°). Consider the case when G S M"x" has n 
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linearly independent eigenvectors V\, V2, ■ ■. ,v„ with associated eigenvalues 
Aj, A2,. . . , A„ ^ 0, respectively, ordered so that |Ai| < |A21 < • • • < |An|. In 
this case we can expand the initial error as a sum of n linearly independent 
eigenvectors, e^ = v\ + vi + ■ ■ • + vn. (We absorb the scalar constants into 
the eigenvectors.) Hence, 

1 = 1 1 = 1 

Similarly, 

» = 1 

and so forth. In general, 
n 

e(ra) = EÄr«i, 
1 = 1 

or 

^ < ™ > = £ ( £ ) " » , 
In the sum on the right side of this last equation, all terms tend to 0 as m —* 
00, except those associated with eigenvalues A,- for which |A,| = |An| = £>(G). 

Thus, as m —► 00, the error e'm) tends to a superposition of eigenvectors 
whose associated eigenvalues have magnitude #(G). Therefore, a s m - » 00, 
the ratio | | e ( m + 1 ) | | / | | e ( m ) | | tends to Q(G). In other words, g{G) measures the 
asymptotic factor by which the scheme reduces errors at each iteration. Over 
the course of k iterations, the error reduction is, asymptotically, [(?(G)]* = 
||e(m+*)||y(||e(m)|| J i e n c e the number k of iterations needed to obtain a value 
of 1/10 for this ratio — thereby gaining one decimal digit of accuracy in 
the iterative approximation to u — is k = — l / log1 0 Q(G). This reasoning 
motivates the following: 

DEFINITION. For a stationary iterative scheme u(m + 1) = Gu^m^ + k, the 
number R(G) := — log10 g(G) is the convergence ra te . 

Large values of R(G) correspond to rapid convergence. 
The argument just given requires some modification in cases when G G 

M"x n does not have n linearly independent eigenvectors. The heuristic is a 
useful one, however, and we encounter it again in the next section and in 
the development of numerical methods for solving eigenvalue problems. It is 
in the latter context, in Chapter 5, that we examine the changes needed to 
generalize the argument. 

One unfortunate aspect of the Jacobi and Gauss-Seidel methods is that 
they tend to converge slowly for large problems. A sample problem helps to 
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illustrate the qualitative behavior of the convergence rate as the order of the 
matrix equation increases. 

Consider the boundary-value problem (4.1-2). Instead of fixing the grid 
size at 4 x 4, as in Figure 1 of Section 4.1, consider the grid size to be 
variable a.t N x N, so that the mesh size h = l/N. The finite-difference 
approximations still lead to algebraic approximations of the form (4.1-3), but 
now the matrix equation corresponding to Equation (4.1-4) has size (N — l) 2 . 
The system matrix A £ R(N-ifx(N-if is now block-tridiagonal with block 
size (N — 1) x (N — 1), and the unknown vector u £ M ^ - 1 ) has entries 
Ukj, where k, I = 1, 2 , . . . , N — 1 are indices associated with interior nodes of 
the grid. The aim is to determine the convergence rate of the Jacobi method 
applied to this problem. In particular, we wish to assess the behavior of 
R(Gj) as h —► 0, this limit corresponding to more accurate finite-difference 
analogs and also to larger matrix problems. 

The system matrix A has (N — l ) 2 eigenvectors: one associated with each 
of the ordered pairs (p, q), p, q = 1,2,... N — 1. Problem 3 asks for proof that 
a typical eigenvector has entries sm(pkirh)sin(qlirh), k,l — 1,2,...,JV — 1, 
and is associated with the eigenvalue 

VPA ~ 4 -•(^-"Cr)] 
The smallest eigenvalue of A is the one for which p — q — 1. By the Taylor 
theorem, 

8 sin2 

T)- ' [ ( 
'irh\ 1 Cirh\ 

2) + = 2w2h2 + 0(h4). 

The largest eigenvalue corresponds to the indices p — q = N — 1 : 

„ . , f(N -l)irh\ n „ . 2 firh 
- S s i n M i ^— J = 8 - 8 s i n 2 f — 

As an aside, we mention that A is symmetric and positive definite, so its 
condition number is 

cond2 (A) = ^ i = 0(h~2) as h -> 0. (4.3-11) 

Therefore the algebraic approximation to the partial differential equation be-
comes more poorly conditioned as we refine the grid. This phenomenon typ-
ifies discretizations of differential equations. 

Given this knowledge of the spectrum of A, we can determine the spectrum 
of the Jacobi iteration matrix Gj. Since in this case 

Gj = -D _ 1 (L + U) = I - D_1A = I - ±A, 
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the eigenvalues of Gj have the form APi? = 1 — ßp<q/A, where /iPi? ranges over 
the eigenvalues of A. That is, 

= |[cos(p7r/i) +cos(g7rA)], p, q = 1,2, . . .N — 1. 

The largest of these values corresponds to the indices p = q = 1, so 

g(Gj) = | cos(nh)\ = 1 - ^ - + 0(/i4) , as h - 0. 

The convergence rate of the Jacobi method for this system of equations is 
therefore 

R(Gj) = - log10 ( l - &f. + 0(h*)) = £ £ > + 0<h«). 

Consequently, as /i —► 0, the convergence rate of the Jacobi method tends to 
0 at the same rate as h2. For very fine grids (small h), the convergence can 
be excruciatingly slow. 

The Gauss-Seidel method behaves in a qualitatively similar way. However, 
for this sample problem and analogous ones, R(Gi) is larger than R(Gj), 
so the Gauss-Seidel method converges somewhat more rapidly. In the next 
section we show that, in fairly typical circumstances, Ä(Gi) = 2R(Gj). 

One more practical aspect is worth mentioning. While the Gauss-Seidel 
method typically converges more rapidly, the Jacobi method is more amenable 
to parallel computations. Since the equation (4.3-3) for the updated value of 
Ui does not require us to know updated values for any of the other unknowns 
Uj, we can compute updated values for all of the unknowns ui, U2> • • •, un si-
multaneously, sending the equation for each update to a separate processor on 
a parallel-processing machine. In contrast, the Gauss-Seidel method requires 
knowledge of updated values of Uj within each iteration, so the scheme is 
not generally amenable to parallel processing. In special cases, though, some 
parallelism may be available. For example, with the red-black ordering of 
Equations (4.3-6), the finite-difference approximations to the Laplace equa-
tion allow one to process all of the updates for black unknowns concurrently, 
then to process all of the updates for red unknowns concurrently. 

Mathematical Details 
We now derive rigorous convergence criteria for the Jacobi and Gauss-Seidel 
schemes. While several results are available almost immediately, they are 
disappointing in that they do not apply to analogs of the finite-difference 
system (4.1-4). Since such systems constitute an important setting for matrix-
splitting schemes, we devote some attention to the refinements needed to 
accommodate them. 
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Fundamental is the connection between iterative convergence and the 
spectrum of the iteration matrix G. 

THEOREM 4.6. A consistent, stationary iterative scheme (4-3-9) converges if 
and only if #(G) < 1. 

PROOF: First assume that the iterative scheme converges. Thus, for any 
initial guess u^0-*, e(m) := u — u(m) —► 0 as m —*• oo. As observed earlier, 
consistency implies that e(m) = Gme(°). Let A be an eigenvalue of G, and 
choose the initial guess u.(°) so that e^ = u—u^0) is an eigenvector associated 
with A. By hypothesis, c<m) = Gme(°) = Ame(°) -* 0 as m — oo. This fact 
implies that |A| < 1, and since A is an arbitrary eigenvalue of G we conclude 
that ß(G) < 1. 

Now assume that g(G) < 1. By Theorem 4.5, G is convergent, so 

0 < | | e ( m ) | | = ||Gme(°)|| < ||Gm|| ||e(°>|| - 0, 

a s r a - t o o . Therefore e^m^ —► 0, for arbitrary initial guess u(°). I 

We have already mentioned the following consequence: 

COROLLARY 4.7. If there is a subordinate matrix norm | | | | in which ||G|| < 1, 
then the iterative scheme (4-3-6) converges. 

These observations yield concrete convergence criteria for the Jacobi and 
Gauss-Seidel methods. From an intuitive viewpoint, the Jacobi method treats 
a linear system Au = b as if the "lagged" terms, associated with off-diagonal 
entries of A, are in some way less influential than those associated with di-
agonal entries. The following convergence criterion formalizes this intuition. 
Recall that a matrix A G R"*" is strictly (row) diagonally dominant if 

\aiA > ^L,\ai,j\> i = l ,2, . . . , n . 

THEOREM 4.8. The Jacobi method for Au = b converges whenever A is 
strictly diagonally dominant. 

PROOF: Given the decomposition A = L + D + U, the Jacobi iteration matrix 
is Gj := —D_1(L + U). Hence by strict diagonal dominance we have 

HGJHOO = II - D-^L + U)||oo = max J - £ | a f J | < 1. I 
l<«<n a,' i\ f—-f 

The same criterion also applies to the Gauss-Seidel method: 
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THEOREM 4.9. The Gauss-Seidel method for Au = b converges whenever A 
is strictly diagonally dominant. 

The proof, however, is more involved. 

PROOF: Rewrite the hypothesis of strict diagonal dominance as follows: 

r := max > 
3*i 

■*«J 

ai.i 
< 1. 

"""oo < We show that the sequence {e(m)} of errors obeys the inequality ||e( 
r | |e (m-1)| |oo, from which it follows that ||e(m)||oo - * 0 a s m - > o o . First notice 
that 

(m) V-> a«,j (m) V"* a*J (»"-1) . *« 

i < f -*«,* 3» «»,.-

Subtracting the first of these identities from the second yields 

We now show that \e\m'\ < r||e(m""1||00, proceeding by induction on the index 
i. When i = 1, the triangle inequality yields 

i4m)i < £ 
; > i 

«i,. 

« i . i 

„(m-l) 

< H^-^llooE 
i > i 

? j j 

a i , i 
< rile«"—x>| 

Now assume that |e:- | < r|£*-m~ ' | whenever .;' < i. Applying the triangle 
inequality, the inductive hypothesis, and the fact that 0 < r < 1, we find that 

)e(m)| < v - ^i £<jm)\ + J2 — ^ m _ 1 ) | 

< rWe^-^Y: ^ + l k ( " l - 1 ) l l o o E 

< rlle^-1) < H^-^llooE 
3*i 

3<i ' 3>i 
au 

_2i 
ai,i 
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Therefore, |e[m ) | < rlle^-^Hoo for each i, and ||e(m)||oo < r||e(m-x)||oo, as 
desired. B 

While these theorems confirm the intuitive view that the Jacobi and 
Gauss-Seidel schemes rely on diagonal dominance, they do not guarantee 
convergence of finite-difference approximations to the Laplace equation and 
its analogs. Indeed, the block-tridiagonal matrix in Equation (4.1-4) is not 
strictly diagonally dominant. We can relax the condition that A be strictly 
diagonally dominant by adopting an additional hypothesis. 

DEFINITION. A matrix A G K n x n is reducible if there exists a permutation 
matrix P e l " ^ such that 

p n — p 

PAPT = p ( V I1-2). (4.3-12) 
n —p \ 0 D2,2 / 

/ / A is not reducible, it is irreducible. 

As we demonstrate shortly, irreducibility serves as the additional hypothesis 
needed to weaken the condition of strict diagonal dominance. Recall from 
Section 2.2 that permutation matrices have as their columns the standard 
unit basis vectors e i , e 2 , . . . , e„, arranged in some order. To see what kind of 
transformation the matrix PAPT effects, observe that the mapping An-» PA 
permutes the rows of A, and then the mapping PA >-+ (PA)P applies the 
same permutation to the columns of PA. 

If A is reducible, then one can reorder the equations and unknowns (that 
is, the rows and columns) in the linear system Au = b to get the block 
structure 

p n — p 
P (B1A B l l 8 \ (uA = (bA 
n-p V 0 B2 |2 ) \VL2) \b2)' 

We can rewrite this system as 

Bi , i« i + Bi,2U2 = b i , 

B2,2U2 = t>2-

Thus the unknowns stored in the block vector U2 are independent of the 
entries of b stored in the block b i . In the context of Equation (4.1-4), such a 
block partitioning implies that some of the unknowns associated with interior 
nodes of the grid are independent of some of the boundary values. This 
conclusion violates a physically important property of the Laplace equation 
and its analogs: All interior values depend upon all of the boundary values. 
On the strength of this idea, we expect matrices arising from reasonable 
difference schemes such as Equation (4.1-3) to be irreducible. 



242 CHAPTER 4. ITERATIVE METHODS FOR LINEAR SYSTEMS 

It is also worthwhile to develop computable characterizations of irre-
ducibility. The following characterization concerns the zero structure of A. 
We denote by M the index set {1 ,2 , . . . , n}. 

PROPOSITION 4.10. A matrix A 6 ffinx" is reducible if and only if there 
exists a nonempty, proper subset I of M such that aij = 0 whenever i £ I 
and j £ I. 

PROOF: Assume that A is reducible, and let P be the permutation matrix that 
reduces A to the form prescribed in Equation (4.3-12), with zeros in the first 
p entries of rows p + 1 through n. The set I in this case is the set of indices 
of rows of A mapped to rows p + l ,p + 2 , . . . , n under the transformation 
A ~ P A P T . 

Now assume that / = {t'i, «2, . . . , in-P} is a set of indices, with 0 ^ / ^ N, 
such that a , j = 0 whenever i £ I and j 0 I. Let P be the permutation 
associated with any permutation on (1,2, ...,n) that maps {ii,i2, ■ ■ -,in-p} 
onto the set {p + l,p + 2 , . . . , n}. One can easily check that PAP has the 
block structure shown in Equation (4.3-12). I 

The following example helps make the preceding argument concrete. Suppose 
that A G M4 x 4 has the following zero structure: 

* * • * 

. _ 0 * 0 * 

* * * + 
0 * 0 * 

Here, / = {2,4}. A simple calculation shows that either of the permutations 
2 t -»3i -»2or2i ->4i ->3i -+2 will accomplish the reduction of A to the form 
(4.3-12). The corresponding permutation matrices are, respectively, 

1 0 0 0 " 
0 0 1 0 
0 0 0 1 ' 
0 1 0 0 

The characterization of reducibility in terms of zero structure leads to an 
interesting and useful pictorial method for checking irreducibility. To develop 
this technique, we introduce some terminology and another theorem. 

DEFINITION. Let A € M n x n and i,j e M. An A-chain for (i,j) is a sequence 
{*, *'i,*2, • • -,*fc,j'} C M such that 0 0 {ai,il,ailiij,.. .aikij}. 

THEOREM 4.11. A matrix A € K n x " is irreducible if and only if, for any 
indices i ^ j , there exists an A-chain for (i,j). 

P = 

1 0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 1 

or 
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PROOF: First assume that A is irreducible, and pick i G «V. Define 

J :— I k G N : there exists an A-chain for (i, k) >. 

We establish by contradiction that J = Af. Observe that J / i , since oth-
erwise an — «i,2 — • • • = ai,n — 0, in which case A is reducible by the 
permutation I H U H i. Now assume that Af\J ^ 0, so that for some index 
j there is no A-chain for (i,j). We claim that a;im = 0 whenever / G J and 
m G Af\J, contradicting the irreducibility of A by Proposition 4.10. To jus-
tify the claim, note that there exists an A-chain (i, t j , . . . , ik, I) for (», /), by 
construction. If the claim is false, so that a/im ^ 0, then (i,ii, ■ ■ -,»'*,/,m) is 
an A-chain for (i, m), which is impossible since m G J\I"\J. Hence the claim 
is valid. 

Now suppose that there exists an A-chain for every pair (i,j) of indices 
with i ^ j . Again we argue by contradiction: If A is reducible, then there 
exists a nonempty, proper subset / C M" such that a;j = 0 whenever « G 7 
and j £ SS\I. Choose i 6 / and _;' 6 A/*\7, and let (i, »1,12, • • • ,i'*,j) D e 

an A-chain for (i, j) guaranteed by the hypothesis. The fact that a,,,-, ^ 0 
implies that i,- G I; the fact that ailti2 ■£ 0 implies that z'2 G /, and so forth, 
so that eventually the fact that a,kij ^ 0 implies that j £ I, a contradiction. 
Therefore A must be irreducible. I 

To interpret this theorem graphically, suppose that A G ffinxn, and con-
sider points Pi, P2, ■ ■ ■, Pn in the plane. If the matrix entry a1>;- ^ 0, then 
draw an arrow whose tail is P,- and whose head is Pj. This construction pro-
duces a directed graph for the set {Pi, P2,.. ■, Pn}- According to Theorem 
4.11, A is irreducible if and only if, for any pair of indices i,j G M, there 
exists a path of the form Pj —+ P,-, —► P;2 —»■•.—+ Pik —* Pj in the directed 
graph. For example, Figure 1 shows that the matrix in the finite-difference 
approximation (4.1-4) to the Laplace equation is irreducible. 

It is now possible to establish convergence of the Jacobi method when the 
matrix satisfies the following relaxed version of diagonal dominance: 

DEFINITION. A matrix A e l " x " is irreducibly (row) diagonally domi-
nant if all of the following three conditions hold: 

(i) A is irreducible. 

(ii) \ai:i\ > ^2\aij\ for i = l , 2 , . . . , n . 

(iii) There is at least one row index k for which \a,ktk\ > / J a * , j i -

The matrix in Equation (4.1-4) is irreducibly diagonally dominant, even 
though it is not strictly diagonally dominant. 
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FIGURE 1. Directed graph for the finite-difference approximation 
(4-1-4) to the Laplace equation, showing that the matrix for this 
problem is irreducible. 

In proving the convergence theorem for irreducibly diagonally dominant 
matrices, it is useful to compare vectors and matrices entrywise. 

DEFINITION. Let v = (v\,v2,.. - ,fn)T and w = (w\,W2, ■ ..,w„)T. Then 

(i) v -< w if Vi < Wi for every index i. 

(ii) v ■< w if Vi < Wi for every index i. 

(iii) v ^ w if v ■< w and v ^ w. 

(if) |v | :=(k | ,H, . . . ,K | ) T . 

THEOREM 4.12. If A £ M n x n is irreducibly diagonally dominant, then the 
Jacobi method for the linear system Au = b converges. 

PROOF: First observe that the Jacobi iteration matrix Gy for A is irreducible 
whenever A is. To show that g(Gj) < 1, it suffices to demonstrate that 
|Gj |" l -; 1, where 1 := ( 1 , 1 , . . .1)T G K", that is, 

O X I - I G J T I . (4.3-13) 

For, in this case, || | G j | ||oo < 1> and we have 

[e(GJ)]" = c(G3)<||G5||0o<|||GJnioo<i, 

from which the inequality g(Gj) < 1 follows. 
To establish the inequality (4.3-13), notice that the conditions (ii) and 

(iii) in the definition of irreducible diagonal dominance imply that |Gj | l ^ 1. 
Therefore, 

I G J I - I ^ I G J I " - 1 ! : « - - . : « ^ ! ! * ! , 
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and hence 

0 £ 1 - |G/|1 < 1 - \Gj|21 < ■ ■ ■ < 1 - | G / | n l . 

d, 

(4.3-14) 

We complete the proof by showing that the vector dn defined in this last chain 
of inequalities has n nonzero entries. We argue by contradiction: Assume that 
dn has fewer than n nonzero entries. Since the vector di has at least one 
nonzero entry, it follows from the inequalities (4.3-14) that there is some 
index k £ M for which dfc_i and d* have the same number p of nonzero 
entries. These entries must occur at the same indices. Now let P € ffi"x" be 
a permutation matrix such that 

Pdjfe_i = ( a i , a 2 , . . . , a p , 0 , . . . , 0 ) T = a 
0 

ß 
0 Pd* = ( /? ! ,&, . . . , / ? p ,0 , . . . ,0 ) T = 

where 0 ^ a, ß e Mp. We have 

\Gj\dk-! = \Gj\l - \Gj\kl * 1 - \Gj\kl = dk, 

which implies that 

P|G /|P
TPd i_1 < Pdfc 

Rewrite this relationship in block form: 

p n — p 

| H M | |Hi ,2h (<*\_( IHi.il« \ , ( ß \ 

iHa.ii I H 2 ) 2 I ; v o y _ v iH2,it" ) - \ o )■ 

fl 
0 

p 
n — p 

P\Gj\PT Pd t - i Pd* 

Therefore, |H2,i| = 0. But if this is true, then the matrix PGjPT has the block 
structure specified in Equation (4.3-12), and thus Gj must be reducible. This 
conclusion contradicts our hypotheses, completing the proof. I 

Using a similar argument, one can prove that the Gauss-Seidel method con-
verges whenever A is irreducibly diagonally dominant. Instead, we show in 
the next section that Q(G\) < e(Gj) under reasonable hypotheses, and in 
these cases the Gauss-Seidel method converges whenever the Jacobi method 
does. 
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Further Remarks: Multigrid Methods 
We conclude this section with a brief discussion of multigrid methods. We 
merely sketch some of the main ideas here. For a good introduction to multi-
grid methods, we recommend Briggs [2], whose treatment guides the discus-
sion. 

Consider, for simplicity, a one-dimensional boundary-value problem of the 
form 

-u"(x) = f(x), w(0) = «(1) = 0. (4.3-15) 

The simplest finite-difference approximation to this problem uses the alge-
braic analog 

u,_i - 2ui + ui+i 

h2 = fa), 
where the values a;, = ih = i/N are nodes in a uniform grid on the interval 
[0,1], and the values «j represent unknown approximate values of «(xx). This 
discrete approximation yields the following linear system: 

' 2 
- 1 

- 1 
2 - 1 

- 1 2 
- 1 

- 1 
2 

«1 

«2 

«AT-2 
«JV-1 

h2f(*i) 
h2f(x2) 

h2f(xN_2) 
h2f(xN^i) 

(4.3-16) 

Even though it is possible to solve this tridiagonal system efficiently using 
direct methods, the one-dimensional character of the problem makes it easier 
to illustrate the concepts behind the multigrid method, which finds its most 
important applications in multidimensional settings. 

The matrix A has the following eigenvalues and corresponding eigenvec-
tors: 

Hk = 2 — 2 cos 
( $ ) - « ■ * ( & ) 

w* 

sin(fc7r/iV) 
sm(2kw/N) 

sm((N - l)kn/N) 

where k = 1, 2 , . . . , N — 1. From a geometric viewpoint, the eigenvectors v* 
corresponding to small values of the wavenumber k have entries sm(jkir/N) 
that vary smoothly with the index j . Entries of eigenvectors corresponding 
to large wavenumbers are more oscillatory as functions of j . Figure 2 shows 
plots of the entries of v\ and v\$ versus the index j for N = 32, illustrating 
the difference between "smooth" eigenvectors and "oscillatory" ones. 
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FIGURE 2. P/o/s ofthejth entries of the eigenvectors correspond-
ing to wavenutnbers k = 1 onrf & = 16 /or the matrix in Equation 
(4.3-16). Here, N = 32. 

The eigenvectors of A are linearly independent and hence form a basis for 
RN~l. Thus, given an iterate u(m) for the solution u of Equation (4.3-16), 
we can expand the error as 

r("i) 
U - u(m) = Cil>i +C2V2 H 1- CN-lVN-l-

If the iteration matrix for a given iterative scheme is G, then the error at the 
next iteration is 

e(m+l) _ Ge(m) _ G c j U i + G c 2 U 2 + . . . + GcjV-iUjV-l. 

It is instructive to ask what effect a given iterative scheme has on each of the 
er ror modes ckvk at a typical iteration level m. 

Consider the damped Jacobi method (4.3-4). For the system (4.3-16), this 
scheme gives 

M("+1) = u(~) + u | 1 [„£> + B(-.) + & V ( x / ) ] _ u ( m ) | 

The iteration matrix in this case has the form Go := I— wD_1A, and therefore 
it has eigenvalues 

Ai = 1 - -Hk = 1 - 2w sin 
k*\ 
2NJ' 

k-l,2,...,N-l. 

One easily checks that the corresponding eigenvectors of Go are precisely the 
eigenvectors vk of A. Therefore, using the expansion of the iterative error in 
terms of the eigenvectors of A, we have 

N-l 

e(m+l) = J2 GDCkVk = J2 AfcCfcV» 
Jb = l 

N-l 

£ 
k = l 
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Thus the damped Jacobi method damps each error mode CfcUfc by the factor 
At at each iteration. 

The observation that relaxation schemes tend to damp certain error modes 
faster than others furnishes the heuristic for multigrid methods. To wit, 
instead of using one iterative scheme to damp all error modes, we regard 
the scheme as a selective damper, modifying it to act on modes associated 
with different wavenumber ranges. In the case of the damped Jacobi method, 
the error modes that undergo preferential damping depend upon the choice 
of the parameter w. One interesting choice is w = 2/3. Figure 3 plots the 
value of the eigenvalue A& versus the wavenumber k for this case. For the 
"oscillatory" modes — those corresponding to wavenumbers in the interval 
JV/2 < k < N — 1 — the eigenvalues satisfy |Afc| < 1/3, and consequently the 
scheme damps these modes rapidly. In contrast, for the "smooth" modes — 
those for which k < N/2 — the damping occurs more slowly. If an iterative 
method preferentially damps the oscillatory modes of error vectors, we call it 
a smoother . 

\ . 

—,— 

16 V 32 
>* . 

FIGURE 3. Eigenvalues A* tiers«« wavenumber k for the damped 
Jacobi method with u> = 2/3, showing that the most effective 
damping occurs for the large wavenumbers associated with oscil-
latory error modes. 

A simple example helps to justify this terminology. Consider the discrete 
approximation to the boundary-value problem (4.3-15) with f(x) = 0 for all 
x. For the corresponding linear system (4.3-16), the solution vector is u = 0, 
so the error at any iteration level m is just e^m^ = — u(m) . Let us examine the 
behavior of the damped Jacobi method, with w = 2/3, for the case when the 
initial guess u^0) = Wi+0.4ui6, a superposition of a smooth error mode and an 
oscillatory one. Figure 4(a) shows the graph of this initial guess. Figure 4(b) 
shows the graph of the iterate u(8). Notice that after eight iterations there 
remains a large contribution from the smooth error mode, but the remaining 
contribution from the oscillatory mode is much smaller. The main effect of 
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iterating here is to smooth the error. 

, H ü <a> 

M V * * * tfWV 
<i l 

l 

FIGURE 4. faj Graph of the initial guess u^ = v\ + 0.4t>i6 /or 
<Ae discrete approximation to the boundary-value problem u" = 0, 
«(0) = u(l) = 0, iM<fc N = 32. fftj Grap/i of u^ for the same 
problem. 

Another crucial idea in the multigrid approach is that errors that are 
smooth on fine grids typically appear to be more oscillatory on coarser grids. 
Consider, for example, the eigenvector V4 on the grid with N = 32, along 
with the projection of t>4 on a coarser grid with N = 8. The vector is smooth 
(k < N/2) on the fine grid, but it is oscillatory with respect to the coarse 
grid. We therefore expect a smoother to be more effective at damping U4 if 
we transfer the iterations to coarse grids than if we keep iterating on the fine 
one. As an added benefit, the iterations on the coarser grids are cheaper than 
those on the fine grid, since the former involve fewer unknowns. 

Let us summarize these observations: By transferring a problem between 
fine and coarse grids, we can rapidly damp all of the error modes using the 
smoother and reap computational benefits associated with frequent visits to 
coarse grids. 

This remark suggests the following iterative strategy: Iterate a few times 
on a fine grid using the smoother. The error e(m) obeys the error equation, 
Ae(m) = r(m), where r(m) := f — Au(m) denotes the residual. Then map this 
error equation to a coarser grid, where the error appears more oscillatory. 
Apply several iterations of the smoother again, then map to a still coarser 
grid. Eventually we will have mapped the problem to a grid so coarse that the 
associated matrix equation is small enough to solve directly. After solving on 
the coarsest grid, correct the solution on successively finer grids until we have 
reached the finest grid. This orchestration of the smoother with intergrid 
transfers is called a V-cycle; Figure 5 gives a schematic picture. 

To be more concrete, assume that we have a nested sequence of grids, 
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h • • 

X S 
lh • / 

cum »^ y 
Lh* 

FIGURE 5. Schematic diagram of a V-cycle on a sequence of 
nested grids. 

each of which has mesh size twice that of the next finer grid. Thus we 
have grids of mesh size h, 2h, Ah,..., (L/2)h, Lh, where L is an integer power 
of 2. To map the error equation from fine grids to coarse grids, we use 
res t r ic t ion opera tors l(ft . For example, to map a vector \ h defined on 
the finest grid to a vector v2A defined on the grid having mesh size 2/i, we 
might set \2h = I/, v&, where \h denotes the projection operator that directly 
transfers every other entry of v h to an entry of v2A: 

«»* = «*,. 

To transfer from coarse grids to fine grids, we use prolongation opera tors 
ljh - , the most common of which employ linear interpolation. For example, 
we might define v h = l^v2 '1 as follows: 

* - i Ik 
1 I lHi 

for j even, 

"ü+i)/3 + ,'0*-i)/a)' f o r i o d d -

The following algorithm outlines a V-cycle. The notation 

UA «- SMOOTHr (AhUft = fh ; u(°)) 

means, "apply r iterations of the smoother to the linear system associated 
with the grid having mesh size h, using u^0^ as initial guess." The notation 

eLh «- SOLVE {bLheLh = rLh) 

means, "use a direct method to solve the error equation on the coarsest grid." 

ALGORITHM 4.1 (V-CYCLE) . Given a smoother, a nested sequence of grids 
having mesh sizes h, 2h, Ah,..., Lh, and a set of restriction and prolongation 
operators \Jh , the following algorithm implements one multigrid V-cycle for 
the linear system A uh = fh associated with the finest grid. 

1. u* «- SMOOTHr (AfcuA = fA ; u<°>). 
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2. rh — f* - A h u \ 

3. r2h*-\2
h
hrh. 

4. For / = 2 ) 4 , 8 ) . . . , L / 2 : 

5. elh *- SMOOTHr (A,he'h = rlh ; 0). 

6 . r , h « - A / f c e ' \ 

7. r2,*«-l?,JVfc. 

8. 1 *- 2/. 

9. eLh «- SOLVE (ALheLh = rLh). 

10. For l = L,L/2,...,2: 

H. e('/2)ft ^_ e(i/2)* + |(J/a)*e/*. 

12. e('/3)fc _ sMOOTHr(A<'/3)he<'/2>* = r('/*)* ; e('/2)h). 

13. u h _ u * + l$hea*. 

14. u h <- SMOOTHr(A''u'' = fh ; u h ) . 

Many other formulations and orchestrations are possible; see Briggs [2]. 

4.4 Successive Overrelaxation 

Motivation 

We devote this section to the method of successive overrelaxation (SOR) intro-
duced in Section 4.3. Recall the algorithmic form of the method for a linear 
system Au = b : 

(m+l) / , \ (m) . . y^ füiu(«n+i) _ y^ ^ u
( m ) + — I 

<-? °i,i ' fa «M ' ai,i ) ' 
]<t ' ]>t ' I 

These equations correspond to the matrix form 

u<m+1) = - (u/^D + L) _ 1 [(1 - w-1) D + U] u<m) + ( w ^ D + L)"1 b , 
v „ '« „ ' 

B~l A-B 

with the splitting A = B + (A — B) as indicated. A key question is how to 
choose the overrelaxation parameter w. 



252 CHAPTER 4. ITERATIVE METHODS FOR LINEAR SYSTEMS 

The theory developed in this section applies to analogs of the model prob-
lem (4.1-1), that is, to discretizations of the Laplace operator or its gener-
alizations. Matrices in such problems are typically symmetric and positive 
definite. Moreover, they often are amenable to analysis more delicate than 
that available for general symmetric, positive definite matrices. This anal-
ysis helps motivate schemes for speeding the convergence of SOR by proper 
choice of w. It also further elucidates the relationship between the Jacobi and 
Gauss-Seidel methods discussed in the previous section. 

Practical Considerations 

We begin by reviewing the key mathematical results, which we prove later. 
Throughout, we use the following notation for various iteration matrices as-
sociated with the linear system Au = b : 

Gj := - D - 1 ( L + U) Jacobi; 

Gi := - ( D + q - ^ U Gauss-Seidel; 

Gu := - ( w ^ D + L J - ^ l - w - ^ D + U ] SOR. 

The Ostrowski-Reich theorem asserts that, when A 6 Mnxn is symmetric 
and positive definite, SOR converges whenever 0 < u < 2. We prove this 
theorem shortly. The theorem is disappointing, since it fails to specify how 
to choose particular values of u that yield the most rapid convergence. Figure 
1, showing how g(Gw) varies with w for a typical difference approximation to 
the Laplace operator, illustrates the problem. The graph indicates that the 
spectral radius of Gu attains a minimum at a value, denoted wopti located 
between 1 and 2. Outside a fairly small neighborhood of wopt, g(Gu) assumes 
values much closer to 1. Therefore, unless we select a value of w close to wopt, 
we forfeit much of SOR's potential benefit. 

Determining u>opt is difficult in general. However, if the system matrix A 
enjoys certain additional properties, then one can identify w0pt, at least ana-
lytically. Let us review the results of this theory and construct an algorithm 
for using it computationally, saving rigorous proofs for later. We start with 
some definitions. 

The iterates generated by the Gauss-Seidel method and SOR depend upon 
the ordering of the equations and unknowns. The following definition identi-
fies a useful class of orderings. 

DEFINITION. A matrix A G M n x " is consistently ordered if, for all nonzero 
values of a, the eigenvalues of the matrix 

are independent of a. 
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P(G») 

FIGURE 1. Typical plot of the spectral radius of the iteration ma-
trix for SOR versus the overrelaxation parameter u, showing a 
minimum value at wopt. 

Certain block tridiagonal matrices are consistently ordered. 
consider the block tridiagonal structure 

In particular, 

TO 

m 

A = 

/ D i 

\ 

m 
Ui 
D2 

\ 

L„. D„_i 
U 

U„-i 
D„ 

(4.4-1) 

Such matrices are consistently ordered whenever all of the diagonal blocks Dj 
have nonzero diagonal parts, that is, whenever diag(Dj) ^ 0. To see this, 
observe that G(a) in this case has the same eigenvalues as the similar matrix 
Q - 1G(a)Q, where 

/ I \ 
«I 

Q := 

a" 
\ H) 

Problem 5 asks for verification that det(AI —Q~ G(a)Q) = det(AI + L + U), so 
that G(a) has the same eigenvalues as G(l). In particular, the finite-difference 
Laplace matrix in Equation (4.1-4) is consistently ordered. 

The next definition concerns the zero structure of the system matrix A. 

DEFINITION. A matrix A 6 M"x n has p roper ty A if there is a permutation 
matrix P G K" x n such that PAPT has the following block structure: 

™T ■ ( S1, £ ) • (4.4-2) 
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Here, Di,D2 are square, diagonal matrices, not necessarily having the same 
size. 

If A has property A, then the permutation matrix P in Equation (4.4-2) effects 
the following transformation on the Jacobi iteration matrix Gj: 

PGjPT = -P(D"1L)PT - P(D-1U)P 
" - ( - 0 

0 - D r ' M i 
^ M , 0 

The finite-difference approximation to the Laplace operator, introduced 
in Equation (4.1-3), possesses property A. For example, if we reorder the 
equations and unknowns in the matrix equation (4.1-4) under the red-black 
ordering of Figure 2, then we obtain the following matrix equation: 

4 

- 1 
- 1 

0 
0 

4 

- 1 
0 

- 1 
0 

4 

- 1 
- 1 
- 1 
- 1 

4 

0 
- 1 

0 
- 1 

4 
0 
0 

- 1 
- 1 

- 1 
- 1 
- 1 

0 
0 
4 

- 1 
0 

- 1 
- 1 

0 

4 

0 
- 1 
- 1 

0 
- 1 

4 

0 1 
0 
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- 1 
- 1 

4 . 

«1,3 

«3,3 

«2,2 

«1,1 

«3,1 

«2,3 

«1,2 

«3,2 

. «2,1 . 

«0,3 + «1,4 

«3,4 + «4,3 

0 
«1,0 + «0,1 
«3,0 +«4,1 

«2,4 
«0,2 
«4,2 
«2,0 

1 

7 

4 . 

, 6 

, 3 

, 9, 

. 2 

, » 

, 5 

black 
node 

O red 

node 

FIGURE 2. Red-black numbering scheme for the nodes in the grid 
shown in Figure 1 of Section 4-1 

The following is a summary of important facts about SOR, proved below: 

(i) If A G M o x n is consistently ordered and has property A, then 

ß(G1) = [ß(GJ)]2. 

In terms of the convergence rates R(G) := — log10 g(G) defined in Sec-
tion 4.3, this identity implies that R(Gi) = 2R(Gj). In other words, 
when the Jacobi method converges for such matrices, the Gauss-
Seidel method converges twice as fast. 



4.4. SUCCESSIVE OVERRELAXATION 255 

(ii) If, in addition, A is symmetric and positive definite, then the graph of 
ß(Gw) versus u has the form shown in Figure 1. The optimal choice 
of overtaxation parameter is 

_ 2 2 
Wopt ~ 1 + \ / l - [Q(GJW ~ l + v/l-eCGx)' 

(iii) With this choice, ß(GWopt) = uopt — 1. 

The main difficulty in applying these results lies in the fact that exact 
knowledge of Q(GJ) (or g(Gi)) is typically unavailable. Even without this 
knowledge, though, one can devise schemes that generate better approxima-
tions to wopt during the iterations. Thus, by adjusting the value of w as the 
iterations proceed, one can steer the scheme toward its fastest convergence 
rate. Let us sketch the basic ideas behind one such approach, using heuristics 
developed in Section 4.3. 

Consider the case when the Gauss-Seidel iteration matrix Gi 6 1R"X" 
has distinct eigenvalues Ai,A2,.-.,An that we can number so that |Ai| < 
|A2j < ••• < |An_i| < |A„|. The distinctness of the eigenvalues implies 
that the corresponding eigenvectors v\, V2,..., v„ of Gj form a basis for M". 
Let {u(m)} signify a sequence of iterates generated by the scheme u(m + 1) = 
GlU("») -1- k, starting with some initial guess u^0). Denote by dm := u(m) — 
u ( m - ! ) the difference between successive iterates. Since the iteration equation 
is linear, dm+i = Gidm . 

Now expand the first difference vector di as a linear combination of the 
eigenvectors u,-. Since eigenvectors are unique only up to constant multiples, 
we write this expansion as 

n 

t = l 

It follows that 

d2 = Gidi 

n 

d m + i = G i d m _ i = ^ A ^ t > i . 

1 = 1 

Hence, 

*■■"*-*'-t(è)"«" 
the last sum tending to t>„ as m —* 00, since |A,/A„| < 1 when i ^ n. In 
other words, as the iterations progress, the difference vector dm approaches 
an eigenvector associated with the dominant eigenvalue A„. 

n 

8 = 1 
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To make use of this observation, define the Rayleigh quotient 

._ (Gidm)Tdm _ d^ + 1 d m 

d£dm d£dm 

Since Gidm —► A„dm as m -» oo, | rm | —► |A„| = g(G\) as m -* oo. We 
therefore expect the Rayleigh quotient of successive differences to furnish a 
good estimate of p(Gi) after several iterations. 

This heuristic leads to the following strategy for estimating wopt • Begin 
the SOR iterations with w = 1, that is, start with the Gauss-Seidel scheme. 
While a) = 1, use the differences dm between successive iterates to compute 
the Rayleigh quotients rm . After several iterations, r m approaches a constant, 
which we adopt as an estimate of g(Gi). As soon as \rm — rm_x| is small, set 

l + x/T11!^ ^ wopt. 

The next algorithm implements this strategy. The notation "u <— Gu,u + k" 
means, "execute one iteration of SOR with the current value of w." 

ALGORITHM 4.2 (SOR WITH NEARLY OPTIMAL U>). Let A e K n x " be consis-
tently ordered and have property A. The following algorithm solves the linear 
system Au = b via SOR, using u^0^ as initial guess. The algorithm uses the 
first few iterations to estimate wopt. The parameter r is a positive tolerance 
on the difference between successive estimates of the spectral radius £>(Gi) of 
the Gauss-Seidel method. The parameter e > 0 is a tolerance on the norm of 
the error u — u(m) . 

1. u<-u° . 

2. d < - 0 . 

3. r «- 1. 

4. r0id <- 0. 

5. w « - l . 

6. u0id «— u. 

7. If ||u - UoidH > [(1 - ||GW||)/||G||]£ then: 

8. u «— Gwu + k. 

9. r0id 4 - r. 

10. doid — d . 

11. d*-u-u 0 id . 
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12. r — dTd0 id / | |do l d | |2 . 

13. If \r — r0id| < r then: 

14. u^ 2/(1+ VT=r). 

15. End if. 

16. End if. 

17. End. 

Mathematical Details 
The Ostrowski-Reich theorem gives the basic convergence result for SOR. Its 
proof relies on the following lemma: 

LEMMA 4.13. If A G ]Rnxn is symmetric and positive definite, then its 
diagonal entries are positive. 

PROOF: This is Problem 7. 

THEOREM 4.14 (OSTROWSKI-REICH). / / A G E n x " is symmetric and posi-
tive definite, then Q(GW) < 1 whenever 0 < w < 2. 

PROOF: I f A = L + D + U i s the decomposition of A into lower triangular, 
diagonal, and upper triangular parts, then the fact that A is symmetric and 
positive definite implies that U = L*. By Lemma 4.13, D has diagonal entries 
diti > 0. Therefore, in the matrix splitting A = B + (A — B) that gives rise to 
SOR, the matrix B = w_ 1D + L has eigenvalues d,-,i/w > 0. In particular, B is 
nonsingular. 

Three observations are relevant. First, let Q := A_1(2B — A). Then the 
matrix Q + I = 2A~ B is nonsingular, and it is easy to check that 

( Q - I ) ( Q + I)- 1 = I - B - 1 A = GW. 

Second, 

B + B* - A = w-^D + L + w_1D + L* - A = (2a;"1 - 1)D, 

which is clearly symmetric and positive definite since (2u>-1 — l)di,,- > 0. 
Third, all eigenvalues of Q have positive real parts. To see this, suppose that 
fi is an eigenvalue of Q, with Qy = A_1(2B - A)y = ßy. Then y*Q* = ~ßy*, 
and since A* = A we have 

y*(2B-A)y = /iy*Ay, 

y*(2B*-A)y = /Jy'Ay. 
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Adding these two equations gives 

2y'(B + B * -A )y = 23i(/z)y*Ay, 

where 3?(/i) denotes the real part of y,. Therefore, following the second obser-
vation, we have 

m = i' , (B+.B;"A)y>° 
y*Ay 

Now let A be an eigenvalue of Gw with associated eigenvector v ^ 0. We 
wish to show that |A| < 1. We have 

Guv = (Q-\)(Q + \)-1v = Xv, 

which we can rewrite as 

(Q - |)v = A(Q + l)v 

by making the substitution v := (Q + l)_1t>. Thus, (1 - A)Qv = (1 + A)v. 
We claim that A ^ 1. Otherwise, we would have 0 • Qv = 2v, which would 
imply that v = (Q 4- l)_ 1u = 0, that is, that v = 0. This is impossible, since 
we chose v ^ 0. 

The claim established, we observe that 

Qv = — v , 

which implies that (1 + A)/(l - A) is an eigenvalue of Q. From this fact it 
follows that _ 

As a consequence, 

» (l + 2t9(A) - |A|2) = 1 - |A|2 > 0, 

where 5(A) denotes the imaginary part of A. Therefore, 1 — |A|2 > 0, so 
| A | < 1 . I 

To gain further insight into how to choose u, we examine certain spec-
tral implications of property A and consistent ordering. Consider first the 
spectrum of the Jacobi iteration matrix Gy. 

THEOREM 4.15. Suppose that A 6 M n x n has property A and that the diagonal 
entries o/A are all nonzero. Then —A is an eigenvalue ofGj whenever A is. 

PROOF: It suffices to show that det(AI—Gj) = 0 if and only if det(-AI-Gj) = 
0. Let P be the permutation matrix that effects the similarity transformation 
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(4.4-2). Since P T = P ' for any permutation matrix, 

det(Al - Gj ) = (det P) det(AI - Gj )(det PT ) 

= de t (AI -PG/P T ) 

_ / Al -D^IVU \ 

= ^ V - D ^ M a AI ) 

= det(AI + PGjPT) 

= det(AI + Gj) = ± det(-AI - Gj), 

depending on whether n is even or odd. In either case, det(AI — Gj) = 0 if 
and only if det(-AI - Gy) = 0. I 

Theorem 4.15 furnishes a key ingredient in the proof of the following 
relationship between the spectra of Gj and Gu. 

THEOREM 4.16. Let A G M" x n be consistently ordered and have property A, 
and let u be any nonzero real number. Then the following assertions are true: 

(A) If XJ is an eigenvalue of Gj and Xu G C satisfies the equation 

(Xu + u> - l ) 2 = Xuw
2Xj, (4.4-3) 

then Xw is an eigenvalue ofG^. 

(B) If XW ^ 0 is an eigenvalue of Gu and Xj € C satisfies Equation 
(4-4-3), then Xj is an eigenvalue ofGj. 

PROOF: Let A = L + D + Ube the standard decomposition into lower trian-
gular, diagonal, and upper triangular parts. We begin the proof of (A) with 
the observation that I — wD -1L is lower triangular with unit diagonal entries, 
so det(l - wD_1L) = 1. Therefore, for any u £ l , 

det(AI - Ga,) = de t ( l -wD - 1 L)de t (AI -G w ) 

= det ((I - u>D_1L) {AI - (I - wD - 1! . ) - 1 [(1 - w)l + « D ^ U ] }) 

= d e t [ A I - A w D _ 1 L - ( l - w ) l - w D - 1 U ] 

= d e t [ ( A + w - l ) l - A w D - 1 L - w D _ 1 U ] . 
(4.4-4) 

Assume that Xj is an eigenvalue of Gj and that Xu, is a solution to Equation 
(4.4-3). We show that Xw is an eigenvalue of Gu, by confirming that det(Awl — 
Gw) = 0. 
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There are two cases. First, when Xu = 0, Equation (4.4-3) reduces to the 
simpler equation (u> — l ) 2 = 0, which implies that a» = 1. Equation (4.4-4) 
now yields 

d e t ( A J - G w ) = d e t ( ± A i / 2 A . / - A ù , D - 1 L - D - 1 u ) 

= det(-D-1U) = 0, 

since the matrix D - 1U is upper triangular with zero diagonal entries. In 
the second case, when Xw ^ 0, Equation (4.4-3) implies that Aw + w — 1 = 1/2 
±XJ uXj. Since Theorem 4.15 guarantees that — Xj is an eigenvalue of Gj 1/2 
whenever Xj is, we can assume that Xu + w — 1 = XJ LJXJ without loss of 
generality. In this case Equation (4.4-4) gives 

det(AJ - G„) = det {xlJ2uXj\ - Xl,2u ( A J / ' D - 1 ! . + A^ 1 / a D - 1 u ) ] 

= (Xl/2u>)n det [ A J I - (Ai/2D-:L + A ^ D ^ U ) ] . 

(4.4-5) 
1/2 1 — 1 If 1 

The last determinant vanishes when Xj Ç. cr(Xj D~ L + Xu D - U). But, 
in the notation adopted for the definition of consistent ordering, this ma-

1 /*? 

trix is simply G(Au/ ). Consequently the hypothesis that A is consistently 
ordered guarantees that the last determinant in Equation (4.4-5) vanishes. 
This concludes the proof of (A) . 

The proof of (B) is shorter. Suppose that Xu is a nonzero eigenvalue of 
Go,. Since — Xj is an eigenvalue of Gy whenever Xj is, we need only show that 
X] is an eigenvalue of Gj whenever A^ -f u — 1 = XJ uXj. But Equation 
(4.4-5) and the fact that A is consistently ordered imply that 

det (Ayl-G/) = d e t j A / l - f A j / ' D ^ L + A ^ D - ' U ) ] 

= det(AJ - Gw) = 0. 

Therefore, Xj is an eigenvalue of Gj. I 

This theorem has a corollary that relates the convergence rates of the 
Jacobi and Gauss-Seidel schemes: 

COROLLARY 4.17. If A £ E n x " is consistently ordered and has property A, 
then 

<KGi) = [e(Gj)?. (4.4-6) 

PROOF: In the case u> — 1, Equation (4.4-3) collapses to A2, = AwAj. Hence 
either 0 is the only eigenvalue of both Gj and Gi, in which case the corollary is 
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trivially true, or else Gj has nonzero eigenvalues ±Aj. According to Theorem 
4.16, to each of these eigenvalues of Gj there corresponds an eigenvalue of Gi 
having the form A2. I 

In terms of the convergence rate denned in Section 4.3, this corollary asserts 
that Ä(Gi) := - log 1 0ß(Gi) = -21og10 ß(Gjr) = R(Gj). In other words, if the 
original system matrix A is consistently ordered and has property A, then the 
Gauss-Seidel method converges twice as fast as the Jacobi method whenever 
the latter converges. 

Finally, we analyze the SOR parameter u. The goal is to establish the value 
wopt G (0>2) that minimizes g(Gu) and hence gives the fastest convergence 
of the iterative scheme. The analysis yields a value for uopt in terms of the 
spectral radius of the Jacobi iteration matrix Gj, which is related to the 
spectral radius of the Gauss-Seidel matrix Gi by Corollary 4.17. The analysis 
also produces a value for ß(GWopt) and promotes graphic insight into how the 
convergence rate of SOR varies with the choice of w. 

THEOREM 4.18. Let A £ IRnxn be consistently ordered and have property 
A. If the Jacobi iteration matrix Gj has real eigenvalues and spectral radius 
o(Gj) < 1, then the spectral radius g(Gu) O/SOR assumes its minimum value 
when 

(4.4-7) 
P 1 + v/1 " [Q(Gj)]l 

In this case, g(GUopi) - wopt - 1-

Before proving the theorem, we remark that the eigenvalues of Gj are all real 
whenever A is symmetric and positive definite. Also, Section 4.3 establishes 
widely applicable conditions under which ß(Gj) < 1. We conclude that The-
orem 4.18 applies to finite-difference approximations of the form (4.4-3) to 
the Laplace operator. 

PROOF: Denote the eigenvalues of Gj by ±pi,±fi2,.. .,±fi\f, with the in-
dexing chosen so that 0 < fi\ < fii < • • • < ^Af = ß(Gj). Corresponding 
to each nonzero eigenvalue fij and each choice of u we have a pair \f of 
eigenvalues of Gu. For the moment, choose a particular eigenvalue Hj of Gj 
and a fixed value for ui and consider the curves t(\) and qj(X) defined by the 
relations 

/(A) := -(A + « - 1), 9i(A) := ±V\ßj. (4.4-8) 
UJ 

According to Theorem 4.16, the eigenvalues Â  of Gw that correspond to 
±/iy are the ordinates of the two points where the graphs of £(A) and Qj(X) 
intersect, as drawn in Figure 3. Now let u> increase between the values 0 and 
1. In the case fij = 0, Equation (4.4-3) implies that |A^| = |w — 1|, which 
decreases monotonically. Otherwise, if fij ^ 0, then the graph of the line 
£ rotates clockwise about the point (1,1), starting as a vertical line when 
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u) = 0 and ending with slope 1 when w = 1. During this rotation, At and XJ 
both decrease monotonically. Since this reasoning holds for any choice of the 
eigenvalues fij, we conclude that ß(Gw) decreases monotonically as u> slides 
from 0 to 1. Therefore, of all values w G (0,1], the choice u> = 1 yields the 
fastest convergence available via SOR. 

FIGURE 3. Graphs of the relations £(X) and qj(X) defined in Equa-
tion (4-4-8), shown for the case 0 < w < 1. The arrow indicates 
the direction of rotation of the line £(X) that results when the over-
relaxation parameter u> increases, in the case when fij ^ 0. 

Now let u increase between 1 and 2. If m = 0, then lA^I = ui — 1. If 
Hj ^ 0, then XJ increases while A+ decreases, as illustrated in Figure 4, until 
w reaches a value where Â " = XJ. At this value of w the graph of ^(A) is 
tangent to that of q(X), that is, ^(A) = q(X) and £'(A) = q'(X). The first of 
these conditions implies that A + w — 1 = A1/2/*^. The second implies that 
A1/2 = \pjU. Together, these two conditions imply that \t*]u2 — w + 1 = 0. 
By solving this quadratic equation for u> and imposing the constraint w < 2, 
we see that tangency occurs when 

2 
w = u>j : = 

As ui increases beyond u>j, the equation ^(A) = q(X) has no real roots. In 
this case, A,~ and A+ are complex conjugates, and one easily checks that 
|Af| = w - l . 

Let us summarize. When u = Uj, both of the eigenvalues A* have mag-
nitude cjj — 1, so ß(GWi) > wj; — 1. When ui < ujj, the geometry of Figure 4 
indicates that |A~| < w,- — 1 < |A^"|, so in these cases ß(Gu,) > uij — 1. For 
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FIGURE 4. Graphs of the relations £{X) and q(X), shown for the 
case fij ^ 0 and 1 < w < 2. The arrow shows the direction of 
rotation of the line f.{\) when u increases. 

u > Wj, the eigenvalues A* of Gu have magnitude u — 1 > Uj — 1, so in this 
case also g(Gu ) > Uj — 1. 

Now consider what happens as \ij ranges over the eigenvalues of G j . It is 
enough to consider the nonnegative values of/Zj. lîfij = 0, then \\f\ = \u —1|. 
Suppose that the nonzero eigenvalues of G j are ± / / m , ± /z m +i , . . . , ±HM ■ As 
u increases from 1 to 2, the eigenvalues A* corresponding to / im become 
complex first, with magnitude um — 1. Then the eigenvalues A*+1 become 
complex with magnitude um+i — 1, and at this point |A*| = wm —1, too. This 
process continues until the eigenvalues XM become complex with magnitude 
UM — 1, and for UM < w < 2 all eigenvalues of Gw have magnitude u — 1. We 
conclude that 

2 
W o p t = <*>M = l + N / l - ^ G j ) ] 2 ' 

and that g(GUopt) = wopt - 1. 

COROLLARY 4.19. Under the hypotheses of Theorem 4.18, 

2 
W 0 pt — 

1 + y/1 - rtGl) 

The graphic reasoning in the proof of Theorem 4.18 furnishes a qualitative 
picture of how ß(Gw) varies with u. As shown in Figure 1, g(Gw) decreases 
monotonically as u ranges from 0 to wopt. At w0pt, the graph reaches a cusp. 
For u > wopt, all eigenvalues of Ĝ , have magnitude u — 1, so the graph of 
e(Gu) increases with unit slope in this region. Since the graph is steepest 
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above the region of the w-axis immediately to the left of u)opt, SOR typically 
converges more rapidly for choices of w slightly larger that w0pt than for values 
slightly smaller than uiopt. 

Further Remarks 
The strategy for estimating wopt in Algorithm 4.2 is a crude one. It relies 
on a technique called the power m e t h o d for estimating the spectral radius 
of a matrix. As we discuss in Chapter 5, the power method can converge 
quite slowly, and in these cases Algorithm 4.1 spends many iterations using 
the Gauss-Seidel method before switching to the much faster SOR method. 
A variety of more sophisticated techniques exist for estimating w0pt, some of 
them based on the use of Chebyshev polynomials, an application of which 
we discuss in the next section. We refer interested readers to Chapter 9 of 
Hageman and Young [4]. 

4.5 The Conjugate-Gradient Method 

Motivation and Construction 
We turn now to an iterative method based on searching. The idea behind the 
conjugate-gradient method is to find the solution of a linear system Au = b 
by searching for the solution of an equivalent minimization problem. The 
following proposition serves as the conceptual basis for the method: 

PROPOSITION 4.20. Let A e Rnxn be symmetric and positive definite. Then 
Au = b if and only if the vector u minimizes the real-valued function F:M.n —+ 
K defined by F(v) := i v T A v —bTv. The minimum value of F is F (A - 1 b) = 
- i b T A ^ b . 

PROOF: This is Problem 11(b). I 

As mentioned briefly in Section 4.3, in some applications the function F 
represents the energy of a mechanical system, such as an elastic membrane, 
and thus the solution of the matrix equation Au = b corresponds to the 
lowest energy state, or equilibrium, of the system. 

The relationship between the linear system Au = b and the minimization 
of F furnishes a geometric interpretation as well as a physical one. Given any 
vector v € K", the corresponding residual r := b — Av is the negative of the 
gradient of F at v; in symbols, 

i_ . „ „ , v fdF . s dF . . dF . \ 
r = b - Av = - V F ( v ) := - ^ ( v ) , ^ ( v ) , . . . , _ ( v ) j . 

Thus the residual vector r points in the direction of the steepest descent of 
F, as illustrated for the case n = 2 in Figure 1. 



4.5. THE CONJUGATE-GRADIENT METHOD 265 

To find the minimum of F, imagine traveling downhill on the hypersurface 
formed by the graph of F, proceeding in steps. In the first step, we start at an 
initial guess uW (that is, at the point (u0 , i ?(u0)) on the hypersurface) and 
travel in the direction of r0 := b - Au(°). We stop at the lowest point along 
the line defined by u ^ + ar 0 , with a variable. Call this new position u^1), 
and find a new search direction. By continuing to travel "downhill" along 
a sequence of search directions, we expect to arrive at successively better 
approximations u ^ \ u^2\ . . . to the minimum u. 

FIGURE 1. Level sets of a function F:M.n —* M whose minimiza-
tion corresponds to the solution of a linear system. The point 
u represents the minimum, while the residual vector r associated 
with any other vector v points in the direction of steepest descent 
ofF. 

This picture in mind, we envision an iterative scheme of the following 
structure for finding the minimum of F: Given an initial guess i r 0 ' £ M", 

(A) Let ro = b — Au(°) (the direction of steepest descent). 

(B) Let po = ro (the initial search direction). 

Then for m = 1,2,3, . . . , perform the following steps: 

(c) Find a m _i G M such that u ( m - 1 ) + a m _ i p m _ i minimizes F over the 
line u ( m - 1 ) + a p m _ i . 

(D) Let u(m> = u < m - 1 ) + a m _ i p m _ i (the new iterate). 

(E) Let r m = b - Au(m> (= -Vi r(u(m>), the new residual). 

(F) Find a new search direction pm. 

(G) m <— ra-f 1; go to (c). 
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To specify the scheme uniquely, we must define steps (c) and (F ) . In 
doing so, we use some new terminology: 

DEFINITION. Given a symmetric, positive definite matrix A £ R " X " and two 
vectors v ,w G M", the energy inner product associated with A is 

(v,w)A := v Aw. 

The function (-,-)A satisfies the axioms for real inner products: For any 
v ,w,z € K" and any cj,C2 € M, 

(i) (v ,w)A = { w ^ } ^ (symmetry); 

(ii) (civ + c2w,z)A = C l (v ,z ) A + c2(w,z)A (linearity); 

(iii) (v,v)^ > 0, and {v,v),i = 0 only if v = 0 (positive definiteness). 

We leave verification for Problem 10. An important consequence of these 
axioms is that the quantity 

||v|U := y/Wyü 
defines a norm on M", called the energy norm. 

Defining step (c) in the skeletal algorithm above is straightforward, if we 
know how to compute the search directions p m . Given vectors u^m^ and 
p m , we determine am by minimizing F over all vectors of the formu( m )+ap m , 
where a ranges over M.. This set of vectors forms a line in E", as Figure 2 
suggests. To minimize F along this line, we regard F as a function of a and 
find where dF/dct = 0: 

^ F ( u ( m > + a P m ) = V F ( u W + a P r a)i(uW + a p m ) 

= [A(u(m> + a P m ) - b ] T p m 

= [(Au(m)-b)T + « P £A T ] P m . 

Since Au^m) - b = - r m and AT = A, 

— F ( u ( m ) + orpm) = - r £ p m + a(pm,pm)A. 

This quantity vanishes when 

a = am := 
_ rmP» 

ÜPmIU2' 
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FIGURE 2. The one-dimensional ray consisting of all vectors in 
M" having the form u ' m ' + a p m , where u(m) and pm are fixed and 
a ranges over JR. 

Defining step (F ) requires some judgment. Naively, one might be tempted 
to choose the residuals r m = b — Au'"1 ' as the search directions, since they 
point in the directions of steepest descent of the function F. The resulting 
iterative scheme, called the me thod of s teepest descent, turns out to be a 
poor one for many functions F. Figure 3 illustrates the difficulty for a function 
F : 1 2 - > R whose graph is a long, narrow valley. In this case, the direction 
r m of steepest descent from a given point u(m) may differ markedly from the 
direction pointing toward the bottom of the valley. Moreover, by traveling 
along the direction of steepest descent until one reaches the minimum of F 
along the line u(m) + a r m , the method of steepest descent locates the next 
iterate u ' m + 1 ' at a point where that line is tangent to the level sets of F. 
Consequently, the next search direction r^m + 1) , being orthogonal to the level 
sets at u( m + 1 ) , must be orthogonal to the old search direction r m . This 
geometry often causes the iterative scheme to take many short, inefficient 
switchbacks down to the valley floor, when a better choice of search directions 
could lead to a more direct descent. 

u(0) 

FIGURE 3. Iterative behavior of the method of steepest descent 
when the graph of F:Rn —> M is a long, narrow valley. 
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It is possible to choose better search directions by stipulating that new 
search directions respect the progress made by previous ones. As explained 
above, choosing the initial search direction po := ro guarantees descent along 
the direction opposite VF(u ' 0 ' ) . The next iterate u*1) lies at a point where 
the old search direction po is orthogonal to VF(u ' ^ ) = Au^1) — b . We write 
this latter condition as pJ(Au^) — b) = 0. The next search direction pi 
should be one along which VF remains orthogonal to po, so that minimization 
along the line u^1) + ap^1^ does not "undo" the progress made in searching 
along the direction po. Thus we require that 

p J V i V 1 ) + «Pi) = P J M U W + o P l ) - b] = a p j A P l = 0. 

Each subsequent iteration follows the same logic. Instead of choosing the 
residuals r m as search directions p m , we select p m so that 

P m Ap r a - l = (Pm,Pm-l)jl = 0, 

a condition that we describe by saying that p m is A-conjugate to p m - i -
To specify the search directions concretely, let us find a vector of the form 

p m = r m + ßm-iPm-i, (4.5-la) 

choosing the parameter ßm-i to force p m to be A-conjugate to p m - j . The 
conjugacy condition is (rm + ^ r a . i p m . i , p m - i ) A = 0, which we can solve for 
ßm-i to get 

^ - 1 = - ( r | 7 r - P m : |
1

2
) A . (4.5-lb) 

l |Pm-l|ß 
As we prove later, this choice of ßm-i forces the new search direction p m to 
be A-conjugate, not just to p m _ i , but also to all previous search directions 
Po,Pi . • ■ - iPm-i -

The choices of a m _ i and ßm~\ specify the conjugate-gradient algorithm 
completely. Before listing the algorithm explicitly, though, it is useful to make 
one more observation for efficiency's sake. By left-multiplying the relationship 
u(m+i) _ u(m) _|_ a m p m by A and subtracting both sides from b, we arrive 
at the identity 

r m + 1 = r m - a m A p m . (4.5-2) 

Thus we can update the residual cheaply at each iteration, since the prod-
uct Apm is already available from the calculation of am. The steps in the 
algorithm make this observation apparent: 

ALGORITHM 4.3 (BASIC CONJUGATE-GRADIENT ALGORITHM). Let A e M n x " 

be symmetric and positive definite. The following algorithm solves the equa-
tion Au = b using the method of conjugate gradients, starting with initial 
guess i/°). 
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1. r(0) _ b - Au<°). 

2. p(o) _ r(0). 

3. For m = 1,2, . . . ,n: 

4. a m _i ^ - r^ . jPm- i /Upm- i l l ^ . 

5. uW <-ul"1-» + am-lPm-i. 

6. r m <—rm_i — a m _ iAp m _ i . 

7 „ ^ ~ (£m1Pm-l)£ 
' • Pm < r m M MO P m - 1 ' 

llPm-llli 
8. Next m. 

9. End. 

Several features of this algorithm deserve comment. First, it requires rela-
tively few arithmetic operations per iteration. Step 4 requires the calculation 
of two inner products in R™ and the matrix-vector product Apm_i . The lat-
ter calculation is efficient if one encodes a matrix multiplication routine that 
exploits any sparse structure in A. Steps 5 through 7 require only multipli-
cation by scalars and vector additions in E n , since the products Apm_i and 
||Pm-i|& a r e already known from step 4. 

Second, the algorithm as written requires at most n iterations to converge. 
In theory, the fact that each search direction p m is A-conjugate to all previous 
search directions implies that, after n iterations, the algorithm will have min-
imized F along all possible directions in Kn. Consequently the iterate u(") 
must be the exact solution. This theoretical observation typically has little 
practical import, however. One reason is that the accumulation of arithmetic 
errors destroys the mutual conjugacy of the search directions. A more salient 
reason is that, when n is large, we would prefer that the algorithm yield ac-
curate iterates u(m) in substantially fewer than n iterations. We now explore 
this possibility. 

Practical Considerations 
The utility of the method of conjugate gradients hinges on the speed with 
which it converges. We show later in this section that the error e m := u—u(m) 
at the mth iteration obeys a bound of the form 

lkmlU<2|MU 
■v/cond2(A) - 1 

v/cond2(A) + 1 
(4.5-3) 

This estimate suggests that the method converges slowly when the matrix 
A is ill conditioned. In particular, the basic conjugate-gradient method can 
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perform poorly when A arises from approximations to partial differential equa-
tions on grids having small mesh size h. Indeed, Equation (4.3-11) indicates 
that cond2(A) = ö(h~2) in a typical application involving the Laplace oper-
ator. On the other hand, when cond2(A) is only slightly larger than 1, the 
method converges rapidly. 

These observations motivate the use of precondi t ioned . . The idea is 
to replace the original system Au = b by an equivalent problem Ay = b in 
which the new matrix A has a smaller condition number than A. 

In the original problem, we seek u G Mn such that Au = b , which is 
equivalent to demanding that u minimize the function F(v) = 5VTAv—bTv. 
Suppose that B € M" x n is nonsingular, and consider the change of variables 
z := Bv. We define a new function G:Mn —* M as follows: 

G ( z ) : = F ( v ) = i ( B - 1 z ) T A ( B - 1 z ) - b T B - 1 z 

= izTB-TAB-^z-(B-Jb)Tz, 

Â b 

where B~ := (B~ ) T . The matrix A defined above is symmetric and positive 
definite, just as A is. With these definitions of A and b , the new problem, 
equivalent to the original one, is to find y £ l " such that Ay = b . Solving 
this linear system is equivalent to demanding that y minimize the function 
G(«)= i z T Ä z - b T z . 

Within this framework, consider the following strategy: Find a matrix 
B such that A := B - AB - 1 is better conditioned than A, then apply the 
method of conjugate gradients to the transformed system Ay = b , then set 
u = B~ y. We defer for a moment the issue of how to choose B. 

A straightforward translation of the skeletal algorithm developed earlier 
to the problem Ay = b yields the following: Given an initial guess y(° \ 

(A) Let So = b — Ay(°) (the direction of steepest descent). 

(B) Let qo = so (the initial search direction). 

Then for m = 1, 2, 3 , . . . perform the following steps: 

(C) <5m_i < -S^_ 1 q m _ 1 / | | q m _ i | | ^ . 

(D) Lety<m) = y(m - 1 ) + 5m_ 1qm_ 1 . 

(E) Aqm_i (the new residual). 

(F) qm ♦- sm n jT^qm-i. 
l|qm-ilU 

(G) m «— m + 1 ; go to (c). 
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It is useful to recast this scheme as a simpler modification of the original 
scheme. Using the relationships u<m) = B _ 1 y ( m \ r m = B T s m , p m = B _ 1 q m , 
and (v,w)^ = (B_ 1v, B _ 1 W ) A , we obtain 

ALGORITHM 4.4 (PRECONDITIONED CONJUGATE-GRADIENT ALGORITHM). 

Let A € K n x n be symmetric and positive definite. The following algorithm 
solves the equation Au = b using the method of conjugate gradients, precon-
ditioned by the invertible matrix B € E n x " . The initial guess is u^°\ and 
T > 0 is a convergence tolerance on the norm of the residual r m = b — Au(m). 

1. ra<-0. 

2. r(o) _ b - Au(°). 

3. p(o) *_ r(o) 

4. a m _i *- T^n_1pm-i/\\pm-i\\2
A. 

5. « ( " * ) < - U ^ - ^ + am-ip ,»- ! . 

6. r m <— r m _ i - a m _ iAp m _ i . 

7- If | |rm | |2 > T then: 

8. Solve BTBzm = r m for zm . 

Q ('tmPm-l)^ 
"■ Pm < z m M ||2 Pm —1-

10. m *— m + 1. 

11. Go to 4. 

12. End if. 

13. End. 

This preconditioned algorithm is similar to the basic version presented in 
Algorithm 4.3. The main differences occur in step 8, where one must solve a 
linear system involving the precondit ioner B B, and in step 9, which uses 
the result of step 8 in computing the new search direction. 

Crucial to the effectiveness of preconditioned conjugate gradients is the 
choice of preconditioner B B. This matter involves as much art as science. 
The desired properties for preconditioners are in a sense mutually conflict-
ing. The requirement that cond2(B_TAB -1) be significantly smaller than 
cond2(A) suggests that the choice BTB = A would be ideal, since in this case 
cond2(B_TAB -1) = cond2(l) = 1. On the other hand, the computational 
requirements of step 8 make it desirable that the linear system B Bzm = r m 
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be easy to solve. This observation suggests that the choice B B = I would 
be ideal. 

Reasonable choices for preconditioners involve compromises between these 
two extremes. The idea is to choose B B to be a "simple" matrix that 
possesses much of the spectral structure of the original matrix A. One simple 
example of a preconditioner that is actually effective in some cases is BTB = 
diag (A), that is, the diagonal part of A. Heuristically, we expect this choice to 
be most appropriate when A has large diagonal entries and small ofF-diagonal 
entries. 

More sophisticated preconditioners often involve "partial" or "incomplete" 
factorizations of A. One popular example is the incomplete Cholesky decom-
position. Consider the block-tridiagonal matrices that arise from difference 
approximations to analogs of the Laplace operator. Figure 4 shows the zero 
structure of such a matrix A and the zero structure of its Cholesky triangle C. 
As discussed in Section 2.4, fill-in typically destroys the sparseness within the 
nonzero band of A. As a consequence, computing C requires the calculation 
of nonzero entries in positions where A has zeros, and solving linear systems 
involving C requires arithmetic operations on these entries. Figure 4 also il-
lustrates the idea behind the incomplete Cholesky decomposition. Here, one 
computes only the entries of C that correspond to nonzero entries of A. The 
resulting matrix C obviously cannot be the correct Cholesky triangle for A, 
but CTC preserves some of the essential structure of A. It is also inexpensive 
to compute, and we can solve systems of the form CTCzm = r m by relatively 
cheap forward and backward substitutions. 

FIGURE 4. Zero structures of block-tridiagonal matrices arising 
from a difference approximation to a Laplace-like operator, its 
Cholesky triangle, and the sparse preconditioner computed using 
incomplete Cholesky decomposition. 

/ 

\ 
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Mathematical Details 
The main theoretical tasks are to examine the geometry of the method in Rn 

and to justify the error estimate (4.5-3). 
We begin with geometry. Part of the motivation for our choice of search 

directions p m is to speed convergence by steering iterates u(m) downhill on the 
graph of F. In this regard, the notion of A-conjugacy is crucial. However, we 
also want search direction to be independent of all previous search directions, 
in some sense. We now show a connection between A-conjugacy of the search 
directions and the orthogonality of the residuals r m = b — Au(m). 

We need the following lemma: 

LEMMA 4.21. Let A G M n x " be symmetric and positive definite. Let {pm} 
be a sequence of search directions in K" given by Equations (4-5-1), let uSm' 
be the iterates generated by Algorithm 4-3 with initial guess u^ G K", and 
denote by rm the residual b — Au(m). For m = 0 ,1,2, . . . , we have 

span | p o , p i , . . . , P m } = s p a n | r 0 , r i , . . . , r m | = span j r 0 , Ar 0 , . . . , A m r 0 j . 

PROOF: We use induction on m. When m — 0, the proposition is trivial, 
since po = ro. Assume that the proposition holds for m = k. From Equation 
(4.5-2) we have 

r*+ i = rk -ajbApfc, 

and the inductive hypothesis ensures that p* G span {ro, Aro, . . . , A ro}, 
so Apt G span {ro, Aro, . . . , A + 1ro}- In particular, the linear combination 
rjt+i — r i G span {ro, Aro, • • • j A*+ 1ro}. This observation and the inductive 
hypothesis together imply that 

span j r 0 l r i , . . . , r t + i } C span | r 0 , Ar 0 , . . . , A * + 1 r 0 | . (4.5-4) 

The inductive hypothesis also implies that A ro G span{po,pi , . . -,Pfc}, 
so Afc+1ro G span {Apo, A p i , . . . , Apt}. Therefore, by Equation (4.5-2) and 
the fact that p 0 = r0 , we have A*+1ro G span{r 0 , r i , . . . , r j t+ i} . It follows 
that 

span | r 0 , Ar 0 , . . . , A f c + 1 r 0 | C s p a n | r 0 , r i r * + 1 j . (4.5-5) 

The relationships (4.5-4) and (4.5-5) together imply that 

span | r 0 , Ar0 , . . . , A * + 1 r 0 | = s p a n | r 0 , r i , . . . , r f c + 1 | . 

The fact that span{po,Pi , . . .,Pk+i} = span{r 0 , r i , . . .,Tk+i] follows 
easily from the fact that po = ro and the identity p m = r m + /?m_ipm_i . 
This completes the induction. I 
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The spaces in this lemma have a name: 

DEFINITION. The subspace 

ICm ■= s p a n | r o , r i , • , I m - l 

of M" is the mth Krylov subspace associated with the matrix A and the 
initial guess u(°\ 

Now we establish the geometric relationships between the search direc-
tions. 

THEOREM 4.22. If A £ M n x " is symmetric and positive definite, then 

(A) The search directions defined in Equations (4-5-1) are mutually A-
conjugate, that is, (pk,Pm)A — 0 whenever I ^ m. 

(B) The residuals r m = b — A u ' m ' in the conjugate gradient method are 
mutually orthogonal, that is, rjrm = 0 whenever I / m. 

These relationships hold when the arithmetic used is exact. As mentioned 
earlier, roundoff errors can destroy conjugacy and orthogonality in computa-
tional practice. 

PROOF: We use induction on the size of the indices /, m. When l,m < 1, the 
propositions (A) and (B) are true by construction of the algorithm. Assume 
that the propositions are true whenever l, m < k, for some integer k > 1. We 
begin the argument by establishing the following claim: For m = 0 , 1 , . . . , k, 
r j + 1 p m = 0. For proof, observe that, by Lemma 4.21, 

s p a n | p o , p i , . . . , p m | = s p a n | r 0 , r 1 , . . . , r m | . 

It follows from this identity and the inductive hypothesis that r ,Tpm = 0 
whenever m = 0 ,1 , . . ., fc — 1. Therefore, Equation (4.5-2) yields 

Tk+iPm = (r* -ajfcApjb) p m = rk p m - ak{pk,pm)A-

The first term on the right vanishes by the observation just made, and 
the second vanishes by the inductive hypothesis, so r j + 1 p m = 0 for m = 
0 , 1 , . . . , k — 1. It remains to examine the case m = k. From Equation (4.5-2), 

rit+iP* =rlPk-ak{pk,pk)A = - - -F(u< f c ) + o-jfcpjt) = 0, 

by choice of a*. This establishes the claim. 
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Since Lemma 4.21 guarantees that r m G span{po,pi , . . . ,p*} for m = 
0 , 1 , . . . , ifc, we have r J + 1 r m = 0 for m = 0 , 1 , . . . Ar. Thus proposition (B) holds 
for /, m < Jfe+1. The argument for proposition (A) rests on the identity p/t+i = 
r/t+i + ßkPk- By Equation (4.5-2), we have Ap m € span {ro, r i , . . . , r m + i } , 
and this fact together with proposition (B) imply that (rk+i,pm)A = 0 for 
m = 0 , 1 , . . . , Ar — 1. Therefore, 

(ßkPk -Pk+i,Pm)A = 0, m- 0 , 1 , . . . , Ar- 1. 

The first term (ßkPk, Pm)A in this energy inner product vanishes by the 
inductive hypothesis, so (pk+i,Pm)A = 0 for m = 0 , 1 , . . . , Ar — 1. Since the 
method of constructing new search directions ensures that (pfc+i,pj;).A = 0, 
proposition (A) holds for /, m < Ar + 1, and the induction is complete. I 

As a consequence of this theorem, the Krylov subspace 

fCn = s p a n | r 0 , r i , . . . , r n _ i j 

has dimension n, and hence fCn = K". This observation has the following 
consequence: 

COROLLARY 4.23. If A € K" x n is symmetric and positive definite, then for 
some index m < n the residual r m generated by the conjugate-gradient method 
vanishes. 

In other words, for some m < n, u(m> is the exact solution to Au = b . 
Theoretically, then, the conjugate-gradient algorithm terminates, yielding the 
exact solution, after at most n iterations. 

The fact that r m = 0 for some m < n is of little practical interest, for two 
reasons. First, as mentioned, errors associated with machine arithmetic can 
destroy the conjugacy and orthogonality relationships established in Theorem 
4.22. Hence r m may never vanish in actual calculations. Second, in many 
settings n is a large number — 104 or even much larger — and for efficiency's 
sake we would like to stop iterating after a much smaller number of iterations 
— say, 10 or fewer. This practical desire motivates the derivation of error 
estimates for the conjugate-gradient method. 

Before embarking on this project, note that one can reformulate the 
conjugate-gradient method so that the initial guess u(°) = 0. Given a linear 
system Av = c and an arbitrary initial guess v(°), we simply apply the method 
to the system Au = b , where u := v - v ' 0 ' , b := c — Av(°), and u(°) := 0. 
The iteration then generates iterates u ^ . u ^ 2 ) , . . . , which correspond to the 
iterates v(m) = v(°)+u(m) of the original system. In the transformed system, 
the initial residual is ro = b , and the mth Krylov subspace is 

K,m = span{r 0 ,Aro , . . . ,A m ~ 1 ro} = span {b, A b , . . . , Am 1b 
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The error estimate of interest arises from a crucial variational principle: 

THEOREM 4.24. If A £ M n x n is symmetric and positive definite, then the 
mth step of the conjugate-gradient method, using u^0' = 0 as initial guess, 
minimizes the error over K,m in the following sense: 

| | e m | U = | | u - u C 0 | U = m i n | | u - v | U . 
v£X.m 

PROOF: This is Problem 12. 

This theorem leads to a more concrete error estimate in terms of the energy 
norm || • j)^. We denote by IIm the collection of all polynomials having degree 
at most m. 

COROLLARY 4.25. Let A e M"x n be symmetric and positive definite, with 
eigenvalues Ai, A2,. . . , An. Then the errors e m = u — u(m) in the conjugate-
gradient method for Au = b , with initial guess u^0) = 0, obey the bound 

IkmlU < I M U max]p(Aj)|, 

for any polynomial p G l l m such that p(0) = 1. 

PROOF: We have seen that K,m = span {b, A b , . . . , A m - 1 b } . This space is 
just the set of all vectors of the form p(A)b, where p £ I Im_i . From Theorem 
4.24 and the fact that eo = u, it follows that 

IkmlU = min | | |u-p(A)b | | J4 : p€ I I m _i} 

= min | | | e 0 -p (A)Ae 0 |U : p e n m _ i | 

< min{||e0|UI|l - p(A)A|U : p G n m _x} 

= min{ | | e 0 |UI |p(A) |U:p€l I m and p(0) = l } . 

Thus | |em |U < l|p(A)IUIko|U for every polynomial p e IIm such that p(0) = 
1. Problem 13 asks for verification that UPCA)!!^ = max, |p(Aj)|, where Xj 
ranges over the eigenvalues of A. This observation completes the proof. ■ 

Denote the smallest and largest eigenvalues of A as Amin and Amax, re-
spectively. (These numbers are real and positive.) Corollary 4.25 implies 
that 

IkmlU < lko|Usup| |p(2) | : Amin < z < Amax j , (4.5-6) 
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where p can be any polynomial in IIm for which p(0) = 1. Think of the 
inequality (4.5-6) as a family of estimates, one for each p € IIm . For a sharp 
estimate, we should take p to be a polynomial in IIm satisfying the following 
two conditions: 

(i) P(0) = I-

(ii) Among all polynomials of degree exactly m, p has the smallest ex-
cursion from 0. 

There indeed exists such a polynomial. To construct it, we employ the 
Chebyshev polynomials discussed in Appendix C. The Chebyshev polynomial 
of degree m is defined as follows: 

Tm(z) := i [(* + x A 2 - l ) m + (z - \ / z 2 - l ) m ] , m = 0 ,1 ,2 , . . . . 

We prove several properties of the Chebyshev polynomials in Appendix C. For 
example, Tm has m zeros and m+1 extrema in the interval [—1,1]. Moreover, 
Tm has the form 

Tm{z) = 2m~lzm + am^zm-x + am_2z
m-2 + ■ ■ ■ + a0, 

for some real coefficients CXQ, cti,..., a m - i - Among all polynomials p of degree 
m having this form, Tm minimizes the value of ||p||oo = suP*e[-i,i] |p(z)l- ^n 

fact, HTmlloo = 1. Figure 5 shows the graph of TQ on the interval [—1,1]. 

FIGURE 5. Graph of the Chebyshev polynomial T${z) on the in-
terval [—1,1]. 

For our application, we must shift Tm, so that it minimizes ||p||oo o v e r the 
interval [Amin, Amax] containing the eigenvalues of A, and then rescale, so that 
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the resulting polynomial Tm has the value 1 at z — 0. Define 

fm(z) := 
Tm 1 - 2-

max ^min 

T m ( l + , 2 A m i " 
'max "mm ) 

Thus Tm has m zeros and m + 1 extrema in the interval [Amin, Amax], and 
Tm(0) = 1. Figure 6 shows Te(z) when Amjn = 1 and Amax = 10. Problem 15 
asks for proof that, among all polynomials p of degree m with p(0) = 1, Tm 

minimizes the value of 

HPIIOO = sup \p(z)\. 

10 

FIGURE 6. Graph of the scaled, shifted Chebyshev polynomial 
Te(z) on the interval [0,10]. 

Using Tm, we deduce a sharp estimate for the error ||em||.A. As a conse-
quence of Corollary 4.25, 

I k m l U < PÏnlIoolleolU-

To estimate the factor ||!rm||ooi assume that Amax > Am;n and observe that 

Z ^min 

\fm(z)\ = 
r r a i - 2-

^max ^ m i n , 

Tm 1 + 
2An 

^max '»mm 
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The denominator in this last expression is 

+ An 

^max ^n )H( max + v ^ m i n \ | V^max vAn 

7 TWX 
max n 

The second of the two terms on the right being positive, we have 

| T m ( * ) | < 2 ' ' v / ' ^ ~ v / : * ' r ~ " m 

max n 

Since A is symmetric and positive definite, Amax/Amm = cond2 (A), and 
therefore 

|em|U<2||e0 |U 
y/cond2(A) - 1 

x/cond2(A) + 1 

This estimate motivates our earlier discussion about preconditioning. 

Further Remarks 
Our discussion of the conjugate-gradient method barely scratches the surface, 
especially in light of the remarkable growth in research in this and related 
techniques in the past 15 years. One major research direction that we do not 
even mention above is the development of gradient-based search algorithms 
for linear systems involving nonsymmetric matrices. These methods typi-
cally lack some of the efficiency associated with the standard preconditioned 
conjugate-gradient schemes, but they have broader utility. Among the stan-
dard references in this literature are papers by Axelsson [1] and and Eisenstat 
et al. [3]. 

4.6 Problems 

PROBLEM 1. Prove Lemma 4.4. 

PROBLEM 2. Let G € C n x n . Prove that A is an eigenvalue of G if and only if 
Am is an eigenvalue of Gm. (Hint: am - bm = (a - 6)(am"1 + am~2b + • • • + 

PROBLEM 3. Consider the difference approximation (4.1-3) to the boundary-
value problem (4.1-2) on a two-dimensional grid with nodes (xk, yi) = (kh, Ih), 
where h — 1/n and jfc, / = 0 , 1 , . . . , n. Show that the vector v G R(" _ 1 ) , with 
entries 

Vkj = sin(pfcîr/i)sin(g/7r/i), 

is an eigenvector for the system matrix for p, q = 1,2,..., n — 1 and that the 
corresponding eigenvalue is fi = 4[sin2(p7r/i/2) + sin (qTrh/2)]. 
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PROBLEM 4. Show that the iteration matrix for the damped Jacobi method 
applied to Equations (4.1-2) has the form Gjr> = I — ^wA. Using the results of 
Problem 3, determine the eigenvalues of Go. Show that the damped Jacobi 
method converges for this problem when 0 < u> < 1. 

PROBLEM 5. Prove that the block tridiagonal matrix in Equation (4.4-1) is 
consistently ordered whenever the diagonal blocks D* satisfy the condition 
diag(D<)^0. 

PROBLEM 6. Write computer programs to solve the boundary-value problem 
(4.1-2) on the unit square (0,1) x (0,1), allowing for an N x N uniform grid 
having variable size N. Use the approximating finite-difference equations 
(4.1-3) and the following boundary values: 

w(a;,0) = M(a;,l)= 1, 0 < x < 1; 

u(0,») = 2, u(l ,y) = 3, 0 < t / < l . 

Demonstrate computationally that the convergence rate of the Gauss-Seidel 
method is twice that of the Jacobi method. Investigate the convergence rates 
as N varies. 

PROBLEM 7. Prove Lemma 4.13. 

PROBLEM 8. Line successive overrelaxation (LSOR) is similar to SOR, 
except that one solves for an entire line (for example, / =constant) of nodal 
unknowns Ukj in each step of every iteration. The defining equations for the 
Poisson problem 

d*u d2u . 

u(0, y) = u(ir, y) = u(x, 0) = u(x, ir) = 0, 

are as follows: 

«*,! = i(ufc+l,J + M*-l,l + uk,l+l + uk,l-l + " s m xk s m W). 

u^+1)=Wû i,, + (i-w)4";). 

In the first equation, the barred quantities are intermediate unknowns, anal-
ogous to the intermediate variables solved for in the Gauss-Seidel step of 
ordinary SOR. After determining them, one uses them in the second equation 
to correct the old iterative values using a relaxation parameter w. Write a 
program to solve the Poisson problem using LSOR on a grid with 10 cells on 
a side and various values of u e (1,2). 

PROBLEM 9. Assume that A e M"x" is singular, so that the system Au = b 
does not have a unique solution. Consider a matrix splitting scheme A = 
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B + (A — B), where B is nonsingular. Show that the corresponding iterative 
scheme does not converge. 

PROBLEM 10. Verify that {-,-)A is an inner product whenever the matrix 
A G M n x n is symmetric and positive definite. 

PROBLEM 11. Prove that the kth step of the conjugate-gradient method for 
Au = b produces an iterate u ^ that minimizes ||u — v||,4 over all vectors 
v in the Krylov subspace Km = span{po,pi , . . . ,pjt_i}. (The vectors pi are 
the search directions. Assume that u0 = 0.) (Hint: The identity Au = b 
implies that (em,em)A - b T A _ 1 b + IF(u(m)).) 

PROBLEM 12. 

(A) Show that A 6 K" x " is positive definite if and only if A~x is. 

(B) Let A G M"x n be symmetric and positive definite, and let b G Mn. 
Show that Au = b if and only if u minimizes the function F(y) = 
| v T A v - b T v . 

PROBLEM 13. Let A G K n x n be symmetric and positive definite, and let p 
be a polynomial. Show that ||p(A)||^ = max, |p(Aj)|, where Xj ranges over 
the eigenvalues of A. 

PROBLEM 14. Consider the matrix equation Au = b and the preconditioner 
BTB, where 

' 5 1 ' 
1 1 , b = 

' 1 ' 
1 , BTB = 

' 5 0 ' 
0 1 

Take uo = (0,0)T as an initial guess. Sketch the level curves of the function 
F(v) = | v T A v — b T v and the iterates u ^ \ u ^ 2 ) for the conjugate-gradient 
method. Do the same for the preconditioned-conjugate gradient method. 

PROBLEM 15. Prove that, among all polynomials p of degree m with p(0) = 1, 
the scaled, shifted Chebyshev polynomial Tm minimizes the value of 

IIPIIOO = sup |p(z)|. 
■2 6j ,A m i n ,A m a - x J 

(Hint: ( p - r m ) ( 0 ) = 0 . ) 
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Chapter 5 

Eigenvalue Problems 

Finding the eigenvalues of a square matrix is a difficult problem that arises 
in a wide variety of scientific applications. The problem amounts to a special 
case of the more general nonlinear problems considered in Chapter 3, and 
iterative methods can be distressingly ineffective. Fortunately, the problem's 
close connections with numerical linear algebra lend it enough structure to 
admit elegant and comparatively efficient solutions. This chapter presents two 
of the most important numerical techniques for solving eigenvalue problems: 
the power method and the QR method. We restrict attention to eigenvalues 
of real matrices, although much of the theory extends in natural ways to 
matrices with complex entries. Along the way, we examine numerical aspects 
of the QR decomposition of matrices, a useful topic in its own right. We begin 
with a review of basic facts about eigenvalue problems. 

5.1 Basic Facts About Eigenvalues 

Sections 2.5 and 4.2 introduce the basic definitions of eigenvalues and eigen-
vectors and the notion of similarity transformation. Recall that the spectrum 
of a square matrix A is the set <x(A) of all eigenvalues of A and that the 
algebraic multiplicity of an eigenvalue A is its multiplicity as a zero of the 
characteristic polynomial det(A — AI). 

The following proposition lists several properties of eigenvalues not dis-
cussed earlier. 

PROPOSITION 5.1. Let A e R n x " . 

(i) If A is upper or lower triangular, then its eigenvalues are its diagonal 
entries. 

(ii) 7/ A G o-(A), then X G o-(A). 

(iii) If A G o-(A), then A G <r(AT). 
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(iv) If A is an eigenvalue of A associated with eigenvector v and p(x) is 
any polynomial, then p(X) is an eigenvalue of p(A) associated with 
eigenvector v. 

P R O O F : Assertion (i) follows from the observation that , if A is upper or lower 
triangular, then det(A — AI) = ( a^ i — A)(a2,2 — A) • • - (a n i„ — A). Assertion 
(ii) is a direct consequence of the fact that A is a zero of the characteristic 
polynomial of a real matrix. To prove ( in ) , observe that 

det(AT - AI) = det [(A - AI)T] = det(A - AI). 

For (iv), it is easy to establish that A v — Xkv whenever A is an eigenvalue 
associated with eigenvector v. Therefore, if p(x) = CQ + c\x + ■ ■ ■ + cmxm, 
then 

p{A)v - (c01 + Ci A + • ■ • + +cmAm)v 

(c0 + ciA + --- + c m A m )u , 

that is, p(A)v — p(X)v. 

While part (iii) of this proposition describes a relationship between the eigen-
vectors of A and those of A , the relationship between the eigenvectors of the 
two matrices is not simple. It is possible (see Problem 1) to show that , if 
At) = Xv and A u> = pu>, with A ^ p., then u;Ti> = 0. However, this con-
clusion does not imply that u> and v are orthogonal; they may be complex 
vectors, in which case w T w does not constitute an inner product. 

Recall tha t two square matrices A and B are similar, and thus have the 
same spectrum, if there is a nonsingular matr ix S such that B = S A S - 1 . A 
major theme of numerical eigenvalue calculations is the reduction of a general 
matr ix A £ M n x n to a similar matrix, whose eigenvalues are easy to compute, 
via similarity transformations. Section 5.4 exploits this strategy. 

A salient question is whether the eigenvectors of a matr ix A G IR"*" span 
C n . Several simple matrices illustrate the range of possibilities. For example, 
the matr ix 

" 1 1 1 
Aj = O i l 

0 0 1 

has eigenvalue A = 1, with algebraic multiplicity 3. All eigenvectors of this 
matr ix have the form v = a ( l , 0, 0 ) T , where a is a nonzero complex constant. 
In this case, the eigenvectors span a one-dimensional subspace of C 3 . In 
contrast, the matr ix 

" 1 0 0 " 
A2 = I = 0 1 0 

0 0 1 
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also has eigenvalue A = 1 with algebraic multiplicity 3, but for this matrix 
(1,0,0)T , (0 ,1,0)T , (0 ,0,1)T are linearly independent eigenvectors. In this 
case the eigenvectors span C 3 . Finally, consider the matrix 

A3 

0 0 1 
0 2 0 
3 0 0 

This matrix has the following eigenvalue-eigenvector pairs: 

A 
1 
0 

73 
2, - \ / 3 , 

1 
0 

-V3 

In this case, the eigenvalues are distinct, and the eigenvectors span C 3 . 
For a given eigenvalue A E c(A), denote by £>i(A) the span of the eigenvec-

tors of A associated with A. We call the dimension of CA(A) the geometric 
multiplicity of A. In the examples just shown, the geometric multiplicity 
of the eigenvalue A = 1 of Ai is 1; the geometric multiplicity of A = 1 as an 
eigenvalue of A2 is 3. Each of the eigenvalues of A3 has geometric multiplicity 
1. 

The space spanned by all eigenvectors of a matrix has close connections 
to the effectiveness of similarity transformations in simplifying its structure: 

THEOREM 5.2. A matrix A £ ffi"xn has n linearly independent eigenvectors 
if and only if A is similar to a diagonal matrix. 

PROOF: Assume first that A has n linearly independent eigenvectors, which 
we denote as v\, v2, ■ ■ •, vn. Let Ai,A2,.. . , A„ be the corresponding eigen-
values. Form the matrix S := [v\, v2, • • ■ ,vn]. This matrix is nonsingular, 
since its columns are the linearly independent eigenvectors. Also, 

AS = A[vi,v2,...,vn] 

= [Aiw1,A2v2,--,Anwn] = SD, 
(5.1-1) 

where D := diag (Ai, A2, •. ■, A„). It follows that A = SDS~ . 
Now assume that A = SDS - 1 , where D is a diagonal matrix. Then AS = 

SD, and Equation (5.1-1) shows that the columns of S are linearly independent 
eigenvectors of S. I 

Testing for linear independence of eigenvectors can be tedious, but in one 
important case it is unnecessary: 

THEOREM 5.3. Let A G Mn x", and suppose that Ai, A2 , . . . , At G a(A) are 
distinct. Then the corresponding eigenvectors t>i, v2,. ■ ■, Vk are linearly in-
dependent. 
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P R O O F : We argue by contradiction. Let / be the largest integer such that 
t>i , i>2, . . . , vi are linearly independent, and assume tha t I < k. Then there 
exist constants c j , c 2 ) . . . , cj+i, not all zero, such tha t 

c i u i + c2i>2 H H cj+iu;+i = 0. (5-1-2) 

Multiplying this equation by A and then by A<+i yields 

ciAiUi + c2A2U2 + •• + C J + I A | + I V | + I = 0, 

ciAj+iVi + c2A;+it>2 + ••• + C(+1A/+iwi+i = 0. 

Subtracting the second of these equations from the first gives 

ci(Ai - A J + 1 )v! + c2(A2 - A|+i)v2 H 1- c/(A( - A ( + 1)u ( = 0. 

The linear independence of the vectors v i , « 2 , . . . , w i now implies that Cj (Xj — 
Aj+i) = 0, for j = 1 ,2 , . . . , / . Since the eigenvalues are distinct, c\ = C2 = 
• • ■ = c/ = 0. Therefore, by Equation (5.1-2), cj+i = 0 too, contradicting the 
fact that not all of the constants Cj vanish. I 

COROLLARY 5.4. If A € E n x " has n distinct eigenvalues, then A is similar 
to a diagonal matrix. 

A special case of this corollary occurs when |Ai| > |A2| > • • • > |A„|. Here the 
eigenvalues Xj must be real, since complex eigenvalues come in conjugate pairs 
having equal magnitude. In this case, then, A is similar to a real, diagonal 
matr ix . 

Often one can glean information about the location of eigenvalues in the 
complex plane without much computational effort. One of the most famous 
results along these lines is the following: 

THEOREM 5.5 (GERSCHGORIN). Let A € M"x", and define the closed disks 

A : = j z € C : | z - a M | < ^ | a , j | > . (5.1-3) 

Then 
n 

<r(A)c(jA. 
i= i 

We call the set £), defined in Equation (5.1-3) the ith Gerschgor in disk of 
A. For the matr ix A3 discussed above, the Gerschgorin disks are 

Di = BÜß), D2 = ft(2), D3 = ft(Ö). 



5.1. BASIC FACTS ABOUT EIGENVALUES 287 

ß3(0) 

N fl0(2) (X2) 

FIGURE 1. Union of the Gerschgorin disks for the matrix A3, 
showing the locations of its three eigenvalues. 

The union of these disks is 03(0). Figure 1 depicts this set along with the 
three eigenvalues of A3. 

PROOF: Let A G c(A), and pick a vector v G JCA(A) with |jw|loo = 1- Thus, 
for some index k, \vk\ = 1. The fact that the kth component of Au is Afjt 
implies that At»* = aktivi + ajt,2t>2 + • • • + «it.nVn, and hence 

(A -akik)vk = y ^ a t j f j -
j*k 

From the triangle inequality we conclude that 

jïk jïk 

It follows that \£ Dk. ■ 

The Gerschgorin theorem leads to another result that concerns perturba-
tions of matrices whose spectra are known. 

THEOREM 5.6. Assume that A G M"x n is similar to a diagonal matrix D 
via the similarity transformation A = SDS - , and let E G M n x" . Denote by 
Ai,A2,...,A„ the eigenvalues of A, and define the disks 

B , : = { z G C : | z - A J | < HEIIooCondooSJ-, j = l , 2 , . . . , n . 

Then 
n 

cr(A+E)c{jBj. 
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PROOF: Observe that <r(A + E) = o-(S_1(A + E)S) = <r(D + S -1ES). By 
Theorem 5.5, o"(A + E) lies in the union of Gerschgorin disks for D + S - ES. 
Call F := S - 1ES. By Gerschgorin's theorem, 

n 

<r(A + E ) c U ^ i . 

where 

Dj := Iz G C : \z + (A,- - fid)\ < £ \fjlk\\-

But, for z £ Dj, 

|2_Aj | < |2-(A j+/ j J) |- r | / iJ<|/ i , j | + £l/;,*l 

< IIFHoo < IIS-'lUIIEIIoollSHoo 

= IIEHooCondooS. 

It follows that Dj C Bj and hence that 

n 

<T(A+E)C\J Bj. I 

5.2 Power Methods 

The power method is among the simplest of numerical techniques for finding 
eigenvalues. The overall idea has several limitations, and as a consequence 
the power method and its relatives are not the most common choices for ro-
bust numerical algorithms. Nevertheless, the scheme reveals some important 
aspects of the eigenvalue problem. It also serves as a backdrop for the more 
sophisticated approaches considered in Sections 5.3 and 5.4. 

Motivation and Construction 

Consider a matrix A G M n x n whose eigenvalues stand in the relationship 
|Ai| > IA2I > • • ■ > |A„|. In this case Ai must be real, or else Ai would be a 
different eigenvalue having equal magnitude. We say that Ai is the dominant 
eigenvalue of A. Suppose also that the eigenvectors vi, i>2, • •., «„ of A span 
C n . Thus a generic vector z^0) G C" has an expansion 

z(°) = aivi + a2«2 H H a„v„. 

We assume that a j ^ 0. Indeed, a "random" choice of z(°) will almost cer-
tainly have a nonzero component in the direction of v\, since the hyperplane 
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span{v2,«3, • ■ -,vn] is an extremely small subset (having zero measure) of 
C" . 

Multiply the vector z^0) repeatedly by the matrix A, calling z^m^ :— 
Amz(°): 

z<m) = 
n r n / \ \ m 

(5.2-1) 

Heuristically, as m —*• oo, z(m) tends to a vector that is collinear with v\. In 
this way, taking successive powers of A yields information about its dominant 
eigenvalue \\. 

It is possible to recover the dominant eigenvalue A! from this iteration. 
Recall the Rayleigh quotient for z^m\ defined in Section 4.4: 

_ (z(m))TAz(m) 
Pm : _ ( z ( m ) ) T z ( m ) • 

It is an easy exercise to show that pm —* Xi as m —» oo. 
Two observations help to convert this reasoning to a workable algorithm. 

First, when |Ai| ^ 1, Equation (5.2-1) suggests that the iterates z(m) either 
grow without bound or shrink toward zero. Computationally, either occur-
rence can be disastrous, leading to machine overflow or loss of precision. To 
avoid such scaling problems, we normalize z(m) at each step, setting 

A z ^ - 1 ) 
z (m) 

| |ASBC"»- I - ) | | ' 

where || • || stands for any norm o n C " . 
Second, there may be cheap alternatives to the Rayleigh quotient. Let 

F:C" —+ C be any linear function for which F(vi) ^ 0. An example might 
be F(z) = z T e i , where e i := (1 ,0 , . . . , 0)T . Then 

F(Az(m)) F(vi) + F(e<m+1)) 
= A 

where 

F(z(™)) i F(«i) + F(e(™)) 

Ai as m 

as m —+ oo. 
;'=2 

It follows that 
F(Az(m)) 
F(z(m)) 

Incorporating these observations, we arrive at the following algorithm: 
ALGORITHM 5.1 (POWER METHOD). Given a matrix A € ]R"X", an initial 
vector z € C" with \\z\\ = 1, a maximum number M of iterations, and a 
tolerance r > 0, the following algorithm implements the power method for 
finding the dominant eigenvalue of A. 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

For m = 1,2, . . . , M : 

Zold <— Z-

z <— Az. 

A - F(z) /F(z o l d ) . 

z<-z / | | z | | . 

If ||z - ZoidH < r go to 8. 

Next m. 

End. 

The most recently computed values of A and z are the current approxima-
tions of the dominant eigenvalue Ai and an associated eigenvector, respec-
tively. One can show (Problem 3) that the algorithm converges even when 
the dominant eigenvalue Ai is associated with several linearly independent 
eigenvectors. 

Practical Considerations 
What happens when there is no single dominant eigenvalue? What happens 
in the numerically similar case when | Ai | ~ |À21? Finally, is there a reasonable 
strategy for finding all eigenvalues of a matrix A? We devote the remainder 
of this section to these issues. 

Consider first the case when there is no single dominant eigenvalue of A, 
say |Ai| = IA2I = •■• = |Aj| > |A,+ j | > ■■• > ]A„|, where not all of the 
numbers Ai,A2,...,A, are equal. In this case the power method does not 
converge. Suppose, for example, that there are two dominant eigenvalues, 
occurring as a complex conjugate pair Ai = relS, Aj = re~'e with associated 
eigenvectors i>i,t>i. Then a generic initial vector z(°) has the form 

n 

z(°) = aiVi + a2t7i + y jo jWj . 
j=3 

Repeated multiplication by A yields 

A m z ( 0 ) = r m a1e
imev1 + a 2 e - ' m V + ] T Qj f -± ) v} 

The terms inside the summation sign tend to zero as m —► 00, but the first 
two terms survive. The presence of the complex exponential factors e"™8 and 
e-im$ impii e s that, after the nondominant terms have effectively died off, the 
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vector z(m) exhibits oscillatory behavior. Wilkinson [3, Chapter 9] discusses 
this case more thoroughly. 

When |Ai| ~ |A21 but Ai is still dominant, the power method converges 
slowly. Equation (5.2-1) shows why: The term (A2/Ai)ma2U2 decays slowly 
as m —► 00. One strategy for avoiding this difficulty is to devise a variant of 
the power method that seeks the eigenvalue of A lying closest to a prescribed 
point in the complex plane. As Figure 1 illustrates, this approach exploits 
the fact that the distance between Ai and A2 can be large even when the two 
eigenvalues have nearly the same magnitude. 

,.•••" 
/ 

/ 
. * * 

\ 

" ■ • * > . 

\ 
\ 
\ 

1 
/ 

FIGURE 1. Eigenvalues \\ and A2 that have nearly the same mag-
nitude but lie far apart in the complex plane. 

The inverse power m e t h o d facilitates this strategy. The following 
proposition motivates the method: 

PROPOSITION 5.7. If A £ Wnxn is nonsingular and A e o(A), then A - 1 e 
' (A" 1 ) -

PROOF: This is an easy exercise. I 

We use this idea to compute the eigenvalue of A that has smallest magnitude. 
Assume that |Ai| > |A2| > > |An_!| > |An| > 0, so that IA"1! > l A " ^ > 
• • ■ > |Aj |. Applying the power method to A - yields a sequence z(m+1) = 
A - 1z(m) / | |A - 1z(m) | | whose Rayleigh quotients converge to A"1. 

In practice, we do not compute A - explicitly. Instead, at each iteration 
we solve the linear system Az = z(m) for z, setting z(m+l) = z/||z||. Since 
the matrix A remains fixed as we iterate, we can initiate the algorithm by 
computing the LU factorization for A once, so that each iteration requires 
only forward and backward substitution. 

Think of the inverse power method as a scheme for finding the eigenvalue 
of A that lies closest to the origin. In this view, it is natural to seek the 
eigenvalue of A lying closest to a prescribed point p £ <r(A) by means of a 
shift of origin. Again, we assume that A is nonsingular. By Proposition 
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5.1, A — fi is an eigenvalue of A — fiI whenever A is an eigenvalue of A, so by 
Proposition 5.7 (A — / i ) - 1 is an eigenvalue of (A — / i l ) - 1 . Hence, if A is the 
eigenvalue of A lying closest to /t, then the shifted inverse power method, 

Solve (A- / t l )z = z(m-1) for z 

*<"•) - z/||z||, 

converges to an eigenvector of A associated with A. 
Finally, we turn to the problem of finding all eigenvalues of a matrix using 

the power method or one of its variants. The approach reviewed here is called 
deflation [1]. Having computed an eigenvalue-eigenvector pair (Ai,t>i) of 
A 6 K n x n , we construct a matrix A' € ]R(n-1)x(n-1) whose spectrum consists 
of the remaining eigenvalues A2, A3, . . . , An of A. 

One way to do this is use a similarity transformation. Suppose, for ex-
ample, that S G M n x n is a nonsingular matrix such that «i = Sei, where 
ei = (1 ,0 , . . . , 0 ) T . By similarity, <r(S_1 AS) = <r( A). Also, 

(S_1AS)ei = (S -1AS)S_1t;i = A ^ - 1 « ! = A ^ . 

Consequently S_1AS has the following structure: 

1 n - 1 

s - * = i - ( o ;•)■ 
(Compare this construction with that used in the development of the Schur 
normal form in Theorem 4.2.) The (n — 1) x (n - 1) block A' now has 
eigenvalues A2, A3, . . . , A„. 

For concreteness, let vi = (vi,v2,.. ■,v„)T, where vi ^ 1. Define S := 
I — 2wwT , where 

/ l — t»i D,- . 

» i : = V - T - ' ^ : = - 2 ^ ' J = 2 ' 3 - - B -

It is easy to check that S_ ASej = Aiei and hence that the first column of 
the matrix S~ AS is (Ai,0, . . . , 0 ) T , as desired. 

The power method with deflation is too clumsy to be a preferred technique 
in actual computations, even though it has some heuristic appeal. In the next 
two sections we discuss a far more useful approach. 

5.3 T h e Q R Method : Underlying Concepts 

The most widely used method for computing eigenvalues employs a technique, 
called QR decomposition, that is useful more broadly. We devote this 
section to a description of the QR method and to a brief discussion of one of its 
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uses outside the context of eigenvalue problems, namely the solution of least-
squares problems. We focus on the matrices having real entries. However, 
most of the theory extends naturally to complex matrices, as we sketch at 
the end of the section. 

QR Decomposition 

The LU decomposition introduced in Chapter 2 factors a matrix A = LU, 
where L has a special structure and U is upper triangular. In particular, 
L is lower triangular with unit diagonal entries. The idea behind the QR 
decomposition is similar: We factor A = QR, where now R is upper triangular 
and again Q has a special structure. To wit, 

DEFINITION. A matrix Q e t " x " is or thogonal if QTQ = I. 

An equivalent characterization of an orthogonal matrix Q G ffinx" is that its 
columns form an orthonormal set of vectors qi , q2, ■ ■ •, q« G R". Orthogonal 
matrices are the real analogs of unitary matrices, introduced in Section 4.2: 
A matrix is orthogonal if and only if it is real and unitary. 

Orthogonal matrices have several key properties. For any vector x G M", 
||Qx|ß = (Qx)TQx = x T Q T Qx = x T lx = | |x| | | . Hence, as linear transfor-
mations, orthogonal matrices preserve Euclidean length. It follows that all 
eigenvalues of an orthogonal matrix Q have unit magnitude and hence that 
| det Q| = 1. It is easy to show that the product of two orthogonal matrices 
is also orthogonal; in fact, the set of orthogonal matrices in M"x n forms a 
group (Problem 12). 

In principle, one can use the decomposition A = QR of a nonsingular ma-
trix A to solve linear systems. Since Q _ 1 = Q , the system Ax = b reduces 
to the upper triangular system Rx = Q b, which one can solve via backward 
substitution. However, as we demonstrate later, the QR decomposition typ-
ically requires more arithmetic than the LU decomposition, so this approach 
does not receive much use outside of specialized contexts. 

Two classes of orthogonal matrices are especially useful. In M2x2, these 
classes have simple geometric interpretations. The first class consists of ro-
ta t ions: 

-. _ cos 6 sin 0 
~ — sin# cos0 

Multiplying an arbitrary vector x G M2 by such a matrix produces a vector 
Qx that lies at an angle 8 to x, as shown in Figure 1(a). The second class 
consists of reflections. These matrices have the form 

Q = I - 2 w w T , 

where ||w||2 = 1. The action of Q in this case is to reflect an arbitrary vector 
x G M2 across the line perpendicular to the unit vector w, as illustrated in 
Figure 1(b). 
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(a) 

FIGURE 1. (a) Effect of a rotation through angle 0 on a vector 
x G 1R2. (b) Effect of a reflection ofx across the line perpendicular 
to a vector w. 

These classes generalize to M"x n . The simplest extensions of rotations are 
plane rotations or Givens transformations. These have the form 

1 

Q = 

?>',< 

9j,i 

QU 

QiJ 

(5.3-1) 

where </,,,• = qjj = cos# and qij = —qjti = sin#. One can show (see Problem 
4) that Givens transformations are orthogonal and that their action is to 
rotate a vector x through the angle 0 in the (a;,, a:j)-plane, leaving the other 
coordinates x* invariant. 

Reflections extend in a straightforward way to plane reflections or 
Householder transformations. These have the same form in R"*n as 
in E 2 x 2 : 

Q = l - 2 w w T , (5.3-2) 

where ||w||2 = 1. Problem 5 asks for proof that Householder transformations 
are symmetric, orthogonal matrices and that their action is to reflect vectors 
across the hyperplane in M" that is perpendicular to w. Symmetry and 
orthogonality together imply that, if Q is a Householder transformation, then 
Q"1 = Q T = Q . 

These two classes of matrices serve as tools in the construction of QR 
decompositions. Such a decomposition is possible for every matrix A 6 M n x n : 
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THEOREM 5.8 (QR DECOMPOSITION). If A e M n x n , then there is an or-
thogonal matrix Q £ IRnxn and an upper triangular matrix R 6 M n x " such 
that A = QR. 

PROOF: The idea is to apply a succession of Householder transformations to 
A to triangularize it column by column. The result of these steps is R, and 
the Householder transformations determine Q. 

The first step is representative: Let A = [ai, a 2 , . . . , a„], where the vectors 
a* denote columns of A. Define Wj := vi/ | |vi | |2, where 

a1 := -sgn(a i , i ) | | a i | | 2 , 

vi := a! - a je i , 

| |vi| |2 = v
/ 2 a ? - 2 a l i l a i . 

(The choice of sign in the definition of a\ avoids numerically undesirable 
cancellation in the computation of ||vi||2.) By construction, w [ w i = 1, so 
the matrix Hi := I — 2wiw[ is a Householder transformation. We claim that 
Hiai = ( a i , 0 , . . . , 0 ) T , so that the first column of HiA has only zeros below 
the diagonal entry. To see this fact, observe that 

Hiai = ai — 2wiwJ rai 

2vj T 
= ai~IRlViai-

But v^ai = ||ai||2 — ai<Ji,i, so Hiai collapses to 

2 
a i ~ ii—Tl2(vi rai)vi = ("i>0, . . . , 0 ) T , 

Ilvl|l2 
establishing the claim. 

(It is worth noting at this point that the quantity 

llvilll af-aioi,! 

is more efficient to compute than l/ | |vi| |2, since the former does not require 
extraction of a square root. We exploit this observation in constructing an 
algorithm for QR decomposition.) 

We now proceed by induction. After step k — 1, we have reduced the 
original matrix A to a matrix that is upper triangular through the row and 
column indexed k — 1. We now operate on the (n — k + 1) x (n — k + 1) 
submatrix that remains. At step k, let w* := Vi/Hv^l^, where 

vjb := (0,. ..,0,ak,k — art.ajt+i,*,.. .,a„ | fc), 
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and 
(*k := -sgn (ak,k) | | (0, . . -,0,aktk,ak+iik, ■ ■ ■ ,o,n,k)T\\2, 

I M | 2 = ^/2«2 - 2ak,kak (= >/§/&). 

Then Hfc := I — 2wjfewJ is a Householder transformation as before, and the 
matrix H* • • • H2H1A has zeros below the diagonal in columns l,2,...,k. 

After step 71 — 1, we have the upper triangular matrix 

R := H„_ i • • • H2H1A. 

Thus A = QR, where Q := H ^ H j * • - - H " ^ = H1H2---H„_i. The matrix Q 
is orthogonal since it is the product of orthogonal matrices. I 

Problem 6 asks the reader to "walk through" the QR decomposition of a 3 x 3 
matrix, identifying the plane reflections used at each stage. 

The geometry used in the proof of the QR decomposition underlies a 
general-purpose algorithm: 

ALGORITHM 5.2 (HOUSEHOLDER ORTHOGONALIZATION). Given a matrix 
A G M n x n , the following algorithm computes the QR decomposition of A. The 
algorithm overwrites A with the upper triangular matrix R. 

1. For Jfc = 1,2, . . . , n - 1: 

2. ak < sgn (akyk) | | (0 , . . . , 0,ak,k,ak+i,k, • • •, an,t)T||2-

3- Vjt <— (0, . . ..O.ajfe.jt - Qk,ak+lik,.. .,a„tk)
T. 

4. ßk*-l/{al-akakik)-

5. akik <— ak. 

6. For j = k + l,Jk + 2, . . . , n : 

7. a,- ^-&j - Ä ( v j a , - ) v t . 

8. Next j . 

9. Next k. 

10. End. 

Let us count the arithmetic operations required in this algorithm. In the 
inner loop, steps 6 through 8, we must compute vja,- and a,- — ßk(vjaj)vk 

for the n — k columns indexed by j . The operation counts for these steps are, 
respectively, 

(n — k + 1) multiplications + (n — k) additions 
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and 

( 1 + n - i k + l) multiplications + ( n - f c + 1 ) additions. 

Thus a typical pass through the inner loop requires (n - k)[4(n — k) + 4} 
arithmetic operations. Since the arithmetic required in the inner loop is the 
dominant contribution to the overall computational effort, the total operation 
count is roughly 

n - l 

Jfc = l 

Thus Householder orthogonalization requires approximately twice as many 
operations as ordinary LU decomposition. 

It is possible to build a similar procedure using Givens transformations 
instead of Householder transformations, but the resulting algorithm typically 
requires more arithmetic. We discuss an important class of exceptions in the 
next section. 

Application to Least-Squares Problems 

While the main purpose in developing QR decompositions is to compute eigen-
values, the technique has other significant applications. Among these is the 
solution of least-squares problems. Recall from Section 1.7 that solving such 
problems involves finding a solution to the normal equations, 

ATAx ATb. (5.3-3) 

Here, A G R n x m , with n > m. We assume that A has linearly independent 
columns, so that det(A A) ^ 0 and the system has a unique solution. 

To apply the QR decomposition to this problem, we first extend the de-
composition to nonsquare matrices: 

PROPOSITION 5.9. If A S M n x m , with n> m, then there exists an orthogonal 
matrix Q S K n x " and an upper triangular matrix R £ R " x m such that A = 
QR. 

In this case the QR decomposition has a zero structure exemplified in the 
following schematic: 

* * * * * * * * * * 
* * * _ * * * * * • 

* • * * * * * 
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PROOF: Construct a square matrix AD := [A 0] € ffinxn by appending n-m 
columns of zeros to A. Then apply the Householder orthogonalization to AQ, 
truncating the outer loop in Algorithm 5.1 as follows: 

1. For k = 1,2,.. . - 1: 

This QR decomposition simplifies the normal equations (5.3-3) through 
the following set of equivalent linear systems: 

ATAx = ATb, 

RTQTQRx = R T Q T b, (5.3-4) 

RTRx = R T Q T b. 

Now consider the matrix RD € R m x m comprising the first m rows of R: 

R Ro 
0 

The matrix Ro is upper triangular, and ATA = RTR = R J R Q . Also, since 
ATA is nonsingular, so is R J R D - This fact implies that RD is nonsingular, 
since if Rj has a zero eigenvalue then so does RD RQ , which is impossible. 

Using these observations, we rewrite the normal equations in a form that 
is easy to solve. The right side of Equation (5.3-4) reduces to the vector 

RTQTb= [Rj 0 ] Cl 

C 2 

= R Q C I , 

where ci 6 Mm contains the first m entries of the vector Q b. Thus the nor-
mal equations (5.3-3) collapse to the system RDRoX = RDc. But, because RD 

is nonsingular, this system reduces to RQX = CI. In summary, having com-
puted the QR decomposition of ATA, we easily convert the normal equations 
to a system that is solvable via backward substitution. 

Of course, to construct the QR decomposition of A A to begin with costs 
more operations than are required to solve the normal equations (5.3-3) di-
rectly. The advantage of using the QR decomposition in least-squares systems 
consists not in the reduction in operation count but rather in the fact that 
the system Rox = Ci is typically better conditioned than the system (5.3-3). 
When A is a square matrix, roughly speaking, cond (A A) is the square of 
cond (A). Similar conditioning problems arise when A is not square. As an 
illustration of how poor conditioning can arise, consider the 4 x 3 matrix 

A = 

1 1 1 
€ 0 0 
0 e 0 
0 0 € 
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ATA 

In this case, 
1 + ê 1 1 

1 1 + e2 1 
1 1 1 + e2 

the eigenvalues of which are e2, e2,3 + e2. Therefore 

cond2(ATA) = ^ - = 0(e-2), 

as € —► 0. 

Further Remarks 
The theory presented in this section extends to matrices A G C " x " , provided 
we change terminology appropriately. For every matrix A G C " x n , there 
exists a unitary matrix Q G C " x " and an upper triangular matrix R G <C"X" 
such that A = QR. (Recall that Q is unitary if Q*Q = QQ* = 1, where Q* 
denotes the conjugate transpose, or Hermitian transpose, of Q.) The proof 
parallels that for real matrices: One uses Householder transformations of the 
form H* = I — 2ww*, where w G C" with w*w = 1, to triangularize A 
column by column. 

QR decompositions are not unique. However, as the following proposi-
tion demonstrates, all QR decompositions of a nonsingular matrix are closely 
related, a fact that is useful for the theory developed in the next section. 

PROPOSITION 5.10. Let A G M n x n be nonsingular. Then the decomposition 
A = QR »5 unique up to the choice of signs on the diagonal entries of R. 

The assertion means the following: Given two QR decompositions A = QiRi 
and A = Q2R2, there is a diagonal matrix U, whose diagonal entries are all 
±1 , such that R2 = URi. Concomitantly, Q2 = QiUT = QxU. 

PROOF: Assume that A = Q1R1 = Q2R2- Since |detQx| = |detQ 2 | = 1 and 
detA ^ 0 by hypothesis, det Ri ^ 0 ^ detR2- Consequently, neither Ri nor 
R2 has a zero among its eigenvalues, which are its diagonal entries. Consider 
the matrix U := Q2 Qi = R2RJ"1. Being the product of orthogonal matrices, 
U is orthogonal. Also, by the results of Problem 7, U is upper triangular. It 
follows that 

UTU 
«l.i 

«l,n ' ' ' ^n,n 

This equation can hold only if 

" ±1 

U = 

«i,i ui,n 

±1 
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Since Q2R2 = Q2UR1, R2 = URj, as desired. I 

The following corollary is immediate: 

COROLLARY 5.11. Any nonsingular matrix A G M n x " has a unique QR de-
composition in which the diagonal entries of R are positive. 

Analogous reasoning shows that, for any nonsingular matrix A G C " x " , 
the QR decomposition is unique up to multiplication by a diagonal matrix of 
the form 

U 
e*92 

J4>n 

(5.3-5) 

where each <j>j € K. Thus, given two QR decompositions A = QjRi = Q2R2, 
we must have Q2 = Q2U* and R2 = URi, for some matrix of the form (5.3-5). 

5.4 The QR Method: Implementation 

Motivation and Construction 
QR decompositions form the core of the most widely used numerical technique 
for computing eigenvalues. This technique, the QR method , has several 
attractive features: It finds all eigenvalues of a matrix; its behavior in the 
presence of equal-magnitude eigenvalues is much tamer than that of the power 
method, and it simplifies when the matrix in question is symmetric [1]. 

The idea is both simple and seemingly mysterious. Given A G lR"xn, we 
decompose A = QR, where Q is orthogonal and R is upper triangular. We 
then form a new matrix Ai := RQ. The procedure continues by induction: 
Given Am = QmRm , we form Am + i := RmQm . While the procedure itself is 
straightforward, the result is not: For a "typical" matrix A with eigenvalues 
Ai, A 2 , . . . , An, 

Aj • • • • * 

a s m - » » . This result holds whenever |Ai| > |A2| > ••• > |An|. In other 
cases, the sequence {Am} still yields useful information about the spectrum 
of A; we discuss details later. 

There are two sources of mystery in this procedure. First, what connection 
do the matrices Am have with the spectrum of A? Second, why does the 
sequence Am tend to such a convenient structure? The first question is easier 
to answer: 
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PROPOSITION 5.12. The matrices Am generated by the QR method are all 
similar to A. 

PROOF: The argument is by induction. Clearly Ao := A is similar to itself. 
To complete the induction, we need only show that Am + i is similar to Am. 
We have 

A m + 1 = RmQm = Qm Q m ^ r n Q m = Q m A m Q m . I 

The second question is subtler; we discuss it later in this section. 
The following example illustrates the QR method, showing iterates Am 

generated for the matrix 

A = 
2 - 1 0 

-1 2 - 1 
0 - 1 2 

This matrix has eigenvalues 3.4142, 2.000, and 0.5858, accurate to four deci-
mal places. 

A, 
2 - 1 0 

-1 2 - 1 
0 - 1 2 

-0.8944 - 0 . 3 5 8 6 
-0.4472 - 0 . 7 1 7 1 

0 0.5976 

-0.2673 
-0.5345 
-0.8018 

-2.2361 
0 
0 

Q, 

1.7889 - 0 . 4 4 7 2 
-1.6733 1.9124 

0 - 1 . 0 6 9 0 

R. 

R.Q, 

- 0 . 9 6 6 1 
0.2582 

0 

2.8000 
-0.7483 

0 

- 0 . 2 4 6 7 
- 0 . 9 2 3 1 

0.2949 

-0.7483 
2.3429 

-0.6389 

- 0 . 0 7 6 1 
0.2949 

- 0 . 9 5 5 5 

0 
-0.6389 

0.8571 

-2.8983 
0 
0 

1.3279 
-2.1665 

0 

-0.1650 
0.8425 

-0.6370 

A3 = R,Q2 = 

A4 

-0.9845 
0.1752 

0 

3.1429 
- 0 . 5 5 9 4 

0 

-0.1745 
-0.9807 

0.0884 

-0.5594 
2.2485 

-0.1878 

- 0 . 0 1 5 5 
- 0 . 0 8 7 1 
- 0 . 9 9 6 1 

0 
-0.1878 
0.6087 

-3.1923 
0 
0 

0.9448 
-2.1240 

0 

-0.0329 
0.2381 

-0.5900 

Q3 

R3Q3 

-0.9937 
0.1118 

0 

3.3084 
-0.3722 

0 

- 0 . 1 1 1 8 
- 0 . 9 9 3 4 

0.0254 

-0.3722 
2.1040 

-0.0522 

- 0 . 0 0 2 8 
- 0 . 0 2 5 3 

- 1 . 0 0 0 

0 
-0.0522 

0.5876 

-3.3292 
0 
0 

0.6051 
-2.0498 

0 

-0.0058 
0.0668 

-0.5861 

Q« R< 
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= R«Q< 
3.3761 - 0 . 2 2 9 2 0 

- 0 . 2 2 9 2 2.0380 - 0 . 0 1 4 9 
0 - 0 . 0 1 4 9 0.5859 

-0.9977 
0.0677 

0 

-0.0766 
-0.9977 
0.0074 

-0.0005 1 T 
-0.0094 
-1.000 J [ 

-3.3838 
0 
0 

0.3666 
-2.0179 

0 

-0.0010 ' 
0.0192 

-0.5858 

A6 = RSQ5 

3.4009 - 0 . 1 3 6 7 0 
-0.1367 2.0133 - 0 . 0 0 4 3 

0 - 0 . 0 0 4 3 0.5858 

-0.9991 
0.0401 

0 

-0 .0401 
-0.9992 

0.0022 

-0.0001 
-0.0022 
-1.0000 

-3.4036 
0 
0 

0.2174 
-2.0062 

0 

-0.0002 
0.0056 

-0.5858 

R* 

A7 R6Q« = 
3.4100 

-0.0805 
0 

-0.0805 
2.0046 

-0.0013 

-0.9997 
0.0236 

0 

0 
-0 .0013 

0.5858 

-0.0236 0 
-0.9997 - 0 . 0 0 0 6 

0.0006 - 1 . 0 0 0 0 

-3.4106 
0 
0 

QT 

0.1279 
-2.0021 

0 

Rr 

0 
0.0016 

-0.5858 

= R7Q7 = 

-0.9990 
0.0139 

0 

3.4126 - 0 . 0 4 7 3 
- 0 . 0 4 7 3 2.0016 

0 - 0 . 0 0 0 4 

-0.0139 0 
-0.9999 - 0 . 0 0 0 2 
-0.0002 - 1 . 0 0 0 0 

0 
-0.0004 

0.5858 

-3.4130 
0 
0 

0.0750 
-2.0007 

0 

0 
0.0005 

-0.5858 

R8Q8 

3.4137 
-0.0277 

0 

-0.0277 
2.0005 

-0.0001 

0 
-0.0001 
0.5858 

In this case, 9 iterations yield a matrix Ag whose diagonal entries are approx-
imations to the eigenvalues of A, accurate to three decimal places. 

Practical Considerations 

Without further adornment, the QR method as outlined requires too much 
arithmetic to be practical. For a general matrix A £ M"x n , each QR decom-
position Am = QmRm requires 0 ( | n 3 ) operations. One can overcome this 
obstacle by performing an initial similarity transformation on A that reduces 
it to a form for which subsequent QR decompositions are much cheaper. 

In particular, we initiate the QR method by converting A to a matrix A 



5.4. THE QR METHOD: IMPLEMENTATION 303 

that is in Hessenberg form: 

A = 

-k 

■k 

After this reduction, it is possible to compute the QR decomposition of the 
initial matrix Ao := A in 0{n2) operations, using an approach that we discuss 
shortly. We also show below that each of the subsequent iterates Am remains 
in Hessenberg form. Consequently, one can assess the convergence of the 
QR method by monitoring the decay of the subdiagonal entries etj^-i in the 
iterates Am. 

To reduce A to Hessenberg form, we use Householder transformations, as 
introduced in Section 5.3, to convert the columns of A one at a time. Let 
us examine in detail the operations needed for the first column. We seek a 
Householder transformation Hi = I — 2wiw[ such that 

(5.4-1) 

For this task, pick 

where 

HiA = 

■k -k ■ ■ ■ 

■k -k 

0 * ■•• 

_ 0 * ••■ 

l := P l ( 0 , a 2 | i -a2,a3 

■k k 

■k -k 

* * 

• * 

1, . . . , Qn,n) 

n >. 1/2 

« 1 

m := 

-sgn(a2,i) (XX? , i) 

1 

\Jla\ - 2a2,iai 

(This construction recalls a similar use of Householder transformations in 
Section 5.3.) With this choice, HiA has the desired zero structure (5.4-1), 
and A is similar to the matrix 

WxkW~[ = A - 2w1w^rA - 2Aw1wir + 4wJrAw1w1wJ". 

One readily checks that Hi has the zero structure 

Hi = 

1 0 ••• 0 
0 * ••• * 

0 * ••• * 
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Therefore, HiAHj has the same zero structure (5.4-1) as HjA. 
Knowing in detail how to accomplish one step of the reduction to Hes-

senberg form, one can develop Householder transformations Hi, H2,. ■., H„_2 
such that 

A = H„-2-■ I ^ H i A H ! H2 • •HJJ.J 

" * * • • • * * 
• * • • • * * 

= * : : 

Problem 8 asks for details and for a demonstration that this procedure costs 
0 (n 3 ) arithmetic operations. 

When the original matrix A is symmetric, the reduction is even nicer. It 
is an easy exercise to show that A = A implies that A = AT. This is good 
news: For symmetric matrices, the Hessenberg form is tridiagonal, and there 
are attractive opportunities for savings in both storage and arithmetic. 

Now we apply the QR method to the initial matrix Ao := A, producing 
a sequence {Ao, Ai, A2,. . .}. We verify shortly that each of the matrices Am 

remains in Hessenberg form, and we examine later in this section the circum-
stances under which 

Ai * • • • * 

A -> A2 

as m —► 00 . 

For now, let us discuss implementation. Algorithm 5.2 turns out not to be 
the best choice for the decompositions needed in the QR method, even though 
it is a reasonable way to factor general matrices. In the present context, the 
fact that the matrices Am are in Hessenberg form makes it more efficient 
to use Givens transformations, instead of Householder transformations, to 
triangularize Am at each iteration. 

To see how this scheme works, suppose that we have completed stage k 
of the triangularization. Thus, we have applied k Givens transformations Gj 
to arrive at a partially triangularized matrix: 

k n — k 

G f c -G 2 G 1 A m = k
n_k ( 0 * H* J . 

Here, the block Rjt is upper triangular and H* is still in Hessenberg form. 

(5.4-2) 
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For stage ifc + 1, we choose another Givens transformation: 

r i 

<7Jb + l,/fc + l <7Jfc + l , J f c + 2 

9k+2,k + l 9k+2,k+2 
1 

1 _ 

where 
9k + l,k + l = gk+2,k + 2 = COS0fc + i, 

</jt+i,fc+2 = -fft+2,*+i = sin#jt+ i . 

Nominally, the goal is to pick 6t+i such that 

fc + 1 n-k-1 

r r r & - fc + 1 fR*+i &k+i \ 
G * + l G *- - ' G l A m - » - f c - i V 0 Hk+1 ) ' 

where again R*+i is upper triangular and Hjt+i is still in Hessenberg form. If 
we denote the (i,j)th entry of the matr ix Gjt+iGjt • • GiAm by a<?;-, then we 
accomplish this goal by setting 

S'Jb+a.fc+iaJb+i.fc+i + 9k+2,k+2ak+2,k+i = 0, 

tha t is, 

- a * + i , t + i sin 0k+i + at+2,ib+i cos 9k+i = 0. 

It follows tha t 

—ak+2,k+i a*+i, t+i 
9k+2,k + l = i , 9k+2,k+2 — , 

yak+l,k+l + a t+2,*+l y ak+l,k+l + afc+2,Jfe+l 

In short, we compute Gt+i using a small number of arithmetic operations, 
never explicitly solving for 0k+i-

Problem 9 shows tha t this use of Givens transformations to compute a 
QR decomposition of a matr ix in Hessenberg form requires 0(n2) operations. 
This operation count stands in contrast with the 0(n3) operations required 
in Algorithm 5.2. 

The ö(n3) operations required initially to reduce A to Hessenberg form 
Ao would be largely for naught if the next iterate Ai in the QR method were 
not in Hessenberg form. Fortunately, this does not happen. To see why 
Ai and subsequent iterates remain in Hessenberg form, suppose tha t Am is 

j * + i •= 
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in Hessenberg form, and consider the QR decomposition of Am via Givens 
transformations. We have 

Gn-i ■ ■ • G2G1 Am = Rm, 

where Rm is upper triangular. According to the QR method, 

Am+1 = RmQm = RmGj G2 • • Gn.!-

Since each of the Givens transformations Gk has only two nonzero off-diagonal 
entries gk+i,k and gk,k+i, the product Qm := G^Gj • ■ -Gn_x is in Hessenberg 
form. This observation and the fact that Rm is upper triangular imply that 
the matrix Am+i := RmQm is also in Hessenberg form. Consequently, once 
we have performed the initial ö(n3) operations required to reduce A to Hes-
senberg form, subsequent iterations of the QR method require only 0(n2) 
operations apiece. 

The following algorithm summarizes the method just outlined. 

ALGORITHM 5.3 (QR METHOD). Given a matrix A G IRnx" and a toler-
ance T > 0, the following steps implement the QR method for determining the 
eigenvalues of A. In step 2, the notation "Ao *— Hessenberg (A) " means, "re-
duce A to Hessenberg form." In step 6, aj,j-i denotes a subdiagonal entry of 
the iterate Am+\. After numerical convergence, the approximate eigenvalues 
of A lie on the diagonal of Am+i. 

1. m<-0. 

2. Ao <— Hessenberg (A) (via Householder transformations). 

3. Am = QmRm (via Givens transformations). 

4. Am+i <— RmQm . 

5. m <— m + 1. 

6. If maxj |a J ? j+ i | > r go to 3. 

7. End. 

Mathematical Details 
We now turn to a convergence proof for the QR method. We give a detailed 
argument only for the case when the matrix A has eigenvalues that stand 
in the relationship |Ai| > jA21 > ■•• > |A„| > 0. Convergence in other cir-
cumstances is a more complicated matter, discussed in a less rigorous fashion 
afterward. The analysis follows that given by Wilkinson [3, Chapter 8]. 
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Much of the argument hinges on the behavior of powers of A, which the 
following lemma examines. 

LEMMA 5.13 / / Am = QmRm denotes the QR decomposition of A £ M"x" 
generated at stage m of the QR method, then the matrix Am has QR decom-
position 

\ m _ p II 

where Pm := Q i Q 2 - Q m *« orthogonal and Um := Rm •••R2R1 is upper 
triangular. 

PROOF: Observe that 

A m +i = RmQm = QmQmRmQm = Qm^rnQm-

Repeated application of this identity gives 

Am + i = Ql ■ • -QjCtfAChQs • • • Qm , 

which implies that 

QiQa-'-QmAm+i =AQ 1 Qa---Q m . (5.4-3) 

Pm 

Now consider the product PmUm : 

PmUm = Ql ■ ■ Qm-l (QmRm)Rm-l ' • Rl 

= Q1Q2 ■ • Qm-lAmRm_i • • R2R1. 

By virtue of Equation (5.4-3), 

Pm Um = AQX Q2 • • • Qm_ 1 Rm-1 • ■ ■ R2 Ri 

= APm_iUm_i 

= A 2 P m _ 2 U m _ 2 = - = A m - 1 P 1 Q 1 = Am, 

as claimed. I 

COROLLARY 5.14. With A as in the previous lemma, there exists an orthog-
onal, diagonal matrix Sm G M n x n such that Am = PmSmUm , where SmUm is 
upper triangular with positive diagonal entries. 

PROOF: This is an exercise. I 

According to remarks on uniqueness of QR decompositions at the end of Sec-
tion 5.3, the factoring Am = Pm(SmUm) is the unique QR decomposition of 
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Am having positive diagonal entries in the upper triangular factor. We make 
further use of those uniqueness remarks in the arguments given below. 

Lemma 5.13 and its corollary play key roles in the main convergence the-

THEOREM 5.15. Suppose that the eigenvalues of A 6 ffinx" stand in the rela-
tionship \X\\ > IA2I > • ■ ■ > |A„| > 0. Then the matrices Am generated by the 
QR method converge to an upper triangular matrix with Ai, A2,. . . , A„ on the 
diagonal. If A is similar to a diagonal matrix D := diag(Ai, A2,. ■ •, A„) via 
a similarity transformation A = XDX- , where X~ has an LU decomposition 
with unit lower triangular factor L, then 

Aj * • • • * 

A 2 ; 
as m 

A„ 

When A is symmetric, the iterates Am tend to diag(Ai, A2,. . . , An), as in the 
example given earlier in this section. 

Some remarks about this theorem are in order. The hypothesis that the 
eigenvalues Ai,A2,...,An are separated in magnitude guarantees that A = 
XDX-1 for some diagonal matrix D, which automatically has the eigenvalues 
as its diagonal entries. This fact is an immediate consequence of Corollary 
5.4. In general, though, the matrix X - 1 may not have an LU decomposition. 
Instead, pivoting may be necessary in the row reduction of X - . We may 
have to settle for a decomposition of the form PX_ = LU, where P is a 
permutation matrix, as discussed in Section 2.2. In this case, the QR method 
still converges but not precisely in the fashion indicated in Theorem 5.15. We 
discuss this case and other exceptions shortly. 

PROOF: Since each matrix Am is similar to A, it suffices to show that Am 
tends to an upper triangular matrix. For this task, we need only establish that 
Qm tends to an orthogonal, diagonal matrix. We start with the observation 
that Am = XDmX - 1 . Decompose X = QR, where R has positive diagonal 
entries. (This decomposition is possible because | det R| = | detX| ^ 0.) Also, 
decompose X - = LU as guaranteed by the hypotheses. Thus, 

Am = QRDmLU = QR(DmLD-m)DmU, (5.4-4) 

where DmLD_ m is unit lower triangular with entries of the form lj,k{Xj/Xk)m 

below the diagonal (j > k). 
We conclude from the last observation that DmLD_ m = I + Em, where 

Em —► 0 as m —♦ 00. This convergence lies at the heart of the convergence of 
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{Qm}. Let us rewrite Equation (5.4-4) as follows: 

Am = QR(l + Em)DmU 

= Q(l + REmR-1)RDmU 

= Q(l + Fm)RDmU, 

where Fm := REmR - 1 . Notice that Fm—» 0 as m -^ oo, a consequence 
of the fact that Fm and Em have the same spectral radius. Now decompose 
l+F m = QmRm , choosing the unique decomposition for which Rm has positive 
diagonal entries. Since Fm -+ Oas m —*■ oo ,p m R m —» I. Using this fact it is 
a simple exercise to show that Qm —>■ I and Rm —» I. 

We now have 
Am = (QQm) (RmRDmU) . (5.4-5) 

orthogonal upper 
triangular 

Our next goal is to relate this QR decomposition to the decomposition Am = 
PmSmUra guaranteed in Corollary 5.14. Denote by |D| the diagonal matrix 
diag(|Ai|, |A2 | , . . . , |An|), so that D = Di|D|, where Di is diagonal with diag-
onal entries equal to ± 1 . Also, write U = D2(D2~

1U), where D2 is orthogonal 
and diagonal, its entries chosen so that D^ U has positive diagonal entries. 
Equation (5.4-5) becomes 

Am = QQmD2D5" [(D2Dr)-1RmR(D2Dr)|D|mD2-1u] . (5.4-6) 
v v- ' 

T 
The matrix T in this equation is upper triangular and has positive diagonal 
entries, so T must be identical to the matrix SmUm introduced in Corollary 
5.14. It follows that the orthogonal factor Pm of that corollary is identical to 
the orthogonal factor on the right side of Equation (5.4-6): Pm = QQmD2D™. 
Since Qm —► I as m —> 00, 

Q i Q 2 - Q m = Pm^QD 2 D5 n as m ^ 0 0 . 

Therefore, Qm —► Di a s m - t o o , and since Di is orthogonal and diagonal, 
the proof is complete. I 

This proof indicates that the subdiagonal entries of Am tend to zero at a 
rate limited by 0(|Aj/A*|), where j > k. This rate is slow if Aj ~ A*. As 
with the power methods of Section 5.2, we can often speed convergence by 
effecting shifts of origin. At iteration m we pick a value / im 6 C \ <r(A) that 
is close to A„, then perform the next step: 

A m ~ A*m ' = y m " m > 

Am+1 <— RmQm + Pm'-
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One simple strategy is to select /Jm to be the (n, n)th entry of A„ 
expect to approach An a s m ^ o o . 

which we 

Further Remarks 
We can relax several hypotheses in Theorem 5.14 without completely sacri-
ficing the utility of the QR method. For example, the requirement that the 
matrix X - 1 have an LU decomposition is not necessary for convergence of the 
sequence Am. Suppose that PX_ 1 = LU, where P is a permutation matrix. 
Instead of Equation (5.4-4), we get 

— m. ~m. 
Am = QR(D LD )D U, 

where D PDmPT and QR = XPT . The convergence proof now proceeds 
as before, but the sequence {Am} converges in this case to an upper triangular 
matrix with the eigenvalues Ai, A2,.. . , An ordered differently on the diagonal. 

When several eigenvalues have equal magnitude, say |Ar| = |A r + i | = ■ • ■ = 
|A r+,_i|, the convergence of the QR method is a more complicated issue. 
When eigenvalues occur as complex conjugate pairs, the method cannot con-
verge in the sense of Theorem 5.15, since the iterations produce only matrices 
having real entries. The QR method nevertheless yields useful information 
about cr(A). 

An illustrative case occurs when A has s eigenvalues of equal magnitude 
and all of its other eigenvalues are separated in magnitude. In this circum-
stance, 

A r - i 

M 
Ar +s 

as m —► 00 , 

where M G R'x' has eigenvalues Ar, A r + i , . . . , A r + ,_ i . Writing the symbol 
"—*" in this case is slightly abusive: The sequence {Am} does not converge. 
Instead, the entries in the s x s block eventually occupied by M settle down to 
a class of sxs arrays, the spectra of which converge to {Ar, A r +i , . . . , A r + 3_j}. 
For details about this and related cases, we refer to Wilkinson [3, Chapter 8]. 

Geometrically compelling connections exist between the QR method and 
the power method. Imagine applying the power method simultaneously to k 
linearly independent vectors 

z ( 0 ) z ( 0 ) z ( 0 ) 
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in other words, to the subspace of C" spanned by these vectors. The mth 
iteration of this procedure produces a subspace spanned by the vectors 

«Sm )
:=Am«S0 )

1 j=l,2,...,k. 

With appropriate rescaling and orthogonalization of the vectors at each stage, 
one can fashion from this subspace i tera t ion a reasonable class of algo-
rithms called s imultaneous i terat ion. The QR algorithm amounts to a 
highly efficient scheme for simultaneous iteration. This view has a stronger 
geometric flavor than the more standard one presented in this chapter, and 
it may appeal to mathematically inclined readers. Watkins [2] gives an espe-
cially clear explanation. 

5.5 Problems 

PROBLEM 1. Suppose that A 6 M n x n , that Av = Au, and that ATw = fj.u>, 
with A ^ /i. Prove that uTv = 0. 

PROBLEM 2. The n x n matrix 

* 0 1 0 ■•• 0 " 

0 0 '•• '■■ : 

A = : - , i o 
0 0 1 

—cto —a\ ■ ■ ■ —an_2 —an_i 

has characteristic polynomial p(A) = A" + a„_iAn _ 1 + ■ ■ ■ + aiA + ao. For 
this reason, we call A the companion mat r ix for p. Apply the Gerschgorin 
theorem to A and A to estimate the zeros of p. 

PROBLEM 3. Suppose that A G IKnxn has a dominant eigenvalue associated 
with several linearly independent eigenvectors v\, V2, ■ ■., t v In the notation 
of Section 5.2, we therefore have Ai = A2 = ■ • • = A,, with \\\\ > |A,+i | > 

'• ^ I An |- Prove that the power method still converges to Ai, with z^m' 
tending to a vector in span {v\, t>2, • • •, w,}. 

PROBLEM 4. Show that the Givens transformation (5.3-1) is orthogonal and 
that its action on x £ M" is to rotate the vector through the angle 0 in the 
(XJ, Xj)-plane, leaving the other coordinates of x unchanged. 

PROBLEM 5. Show that the Householder transformation (5.3-2) is symmetric 
and orthogonal and that its action on x S M" is to reflect the vector across 
the hyperplane perpendicular to w. 
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PROBLEM 6. Compute, by hand, the QR decomposition of the matrix 

1 
2 

- 2 

l 
2 
0 
1 

3 ' 
1 
0 

At each stage, describe geometrically the plane reflection used to advance the 
triangularization. 

PROBLEM 7. Show that the product of two upper triangular matrices is 
upper triangular. Consider an upper triangular matrix R 6 R"*n whose 
diagonal entries are nonzero, and show that R - 1 is upper triangular. (Hint: 
Use mathematical induction on the order of R.) 

PROBLEM 8. Derive Householder transformations H2, H3 , . . . , H„_2 that com-
plete the reduction of A to Hessenberg form in Equation (5.4-2). Show that 
the reduction costs 0(n 3 ) arithmetic operations. 

PROBLEM 9. Suppose that A G K n x n is in Hessenberg form. Show that QR 
decomposition of A by using Givens transformations requires 0(n2) arith-
metic operations. 

PROBLEM 10. Discuss the convergence properties of the QR method for the 
matrix 

" 0 0 0 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

A:= 

PROBLEM 11. Let A 6 M"x" be symmetric and strictly (row) diagonally 
dominant (see Section 2.2). Use the Gerschgorin theorem to prove that, if 
the diagonal entries of A are positive, then A is positive definite. 

PROBLEM 12. Show that the set Q of all orthogonal matrices Q 6 l " x " forms 
a group under multiplication. That is, (i) Q is closed under multiplication; 
(ii) multiplication in Q is associative; (Hi) Q contains a multiplicative identity, 
and (iv) every element in Q has a multiplicative inverse in Q. 
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Chapter 6 

Numerical Integration 

6.1 Introduction 

Elementary techniques for computing a definite integral J f(x) dx use the 
fundamental theorem of calculus: First find an antiderivative F, then com-
pute the integral as F(b) — F(a). For most functions / , finding an antideriva-
tive is difficult at best, and it is necessary to abandon exact methods in favor 
of approximations. 

One of the most fruitful ideas for approximating f f(x) dx is to replace 
/ by an approximating function / whose antiderivatives are easier to find. 
Then j f(x) dx serves as the approximation. We call such approximations 
quadra tures , after the practice of the ancient Greeks of using inscribed and 
circumscribed rectangles to approximate areas of oddly shaped regions. Using 
ideas from Chapter 1, we estimate how well / approximates / on [a, 6]. One 
purpose of the present chapter is to use such estimates to investigate how well 
/ f(x) dx approximates f f(x)dx. 

Methods for numerical integration typically lead to formulas having the 
form 

/ f(x)dx~^2wjf(xj), 
Ja j 

that is, a weighted sum of values of / at certain points Xj € [a,b]. This form 
harks back to the definition of the Riemann integral as the limit of Riemann 
sums 53,- f(%j)hj. Here the coefficients hj stand for the lengths of subinter-
vals [xj-i,Xj] formed by a grid on [a,b], and each point x~j lies in [ K ; _ I , X J ] . 

Indeed, Riemann sums furnish one approach to numerical integration. This 
chapter discusses more sophisticated techniques that yield accurate approxi-
mations for less computational effort. 
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~_T. I — J 

6.2 Newton-Cotes Formulas 

Motivation and Construction 
One simple way to approximate J f(x) dx is to replace / by an interpolating 
polynomial / . Let h := (6 — a)/N for some positive integer N, and define 
Xj := a + jh for j = 0 , 1 , . . . , N. These points define a uniform grid A = 
{EO, Xi , . . . , XJV}, over which the Lagrange interpolating polynomial for / is 

N 

/ » = £/(*;)£,■(*)• 

The functions Lo,Li,...,Ljv are the Lagrange interpolating basis functions 
of degree JV. As discussed in Section 1.2, these have the form 

}& J 

where the product ranges over j = 1,2,.. .,N, with j ^ i. Making the change 
of variables t := (x — a)//i, we rewrite these basis functions as follows: 

Thus, 

/ /"(*)dx = J2f(xj) / Lj(x)dx = J2f(*i)h I <P>(t)dt. 
Ja j = 0 Ja j=0 Jo 

Writing a3- := f0 <pj(t)dt reduces the approximation to the form 

/ f(x) dx~ j f(x) dx = hJTajfizj). (6.2-1) 
Ja Ja j=0 

The coefficients OCJ are independent of the function / and of the interval 
[a,b]. Also, they are rational numbers having the property that 

N 1 fb N 1 fb b - a 

Y,ai = T / J2LJ(X)dx = j ldx= ~r~= N-
j=0 J a j=0 n J a "■ 

(The middle identity follows from the fact that polynomial interpolation is 
exact for constant functions.) These rational numbers have a common de-
nominator d, so that each a;- = <Tj/d for some integer <Tj. We can therefore 
express the approximation to f f(x) dx in the following form: 

jf f(x)dx ~ jf f(x)dx = b-j£J^ajf(Xj). (6.2-2) 
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This representation is the Nth Newton-Cotes formula. 

Table 6.1: The first four Newton-Cotes formulas 

N 

1 

2 

3 

4 

°i 
1,1 

1,4,1 

1,3,3,1 

7,32,12,32,7 

Nd 

2 

6 

8 

90 

Name 

Trapezoid rule 

Simpson rule 

3/8 rule 

Milne rule 

Degree of exactness 

1 

3 

3 

5 

Table 6.1 displays the first four Newton-Cotes formulas. The most familiar 
of these are the trapezoid rule, 

j f(x)dx~b-^[f{x0) + f(Xl)), 

which corresponds to the case N = 1, and the Simpson rule, 

J f(x) dx~b-^ [f(x0) + 4/(*0 + /(x2)], 

corresponding to the case N = 2. Figure 1 shows how the trapezoid rule 
approximates / by a line segment over the interval [a, b]. 

FIGURE 1. Illustration of the trapezoid rule over an interval [a, b]. 

One can clearly integrate a polynomial / of degree iV exactly by integrat-
ing its polynomial interpolant / having degree N, since / = / in this case. 
We restate this trivial fact as a formal proposition: 

PROPOSITION 6.1. / / / is a polynomial of degree at most N, then the Nth 
Newton-Cotes formula for f yields f f(x)dx exactly. 
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More generally, we say that a quadrature rule has degree of exactness k 
if it yields an exact value of f f(x) dx whenever / is a polynomial of degree 
at most k but there is a polynomial of degree k + 1 for which the quadrature 
rule is inexact. 

Certain Newton-Cotes formulas have a degree of exactness that is larger 
than expected. The proof of the following proposition is Problem 1: 

PROPOSITION 6.2. If N is an even positive integer and f is a polynomial of 
degree at most N + 1, then the Nth Newton-Cotes formula yields f f(x)dx 
exactly. 

The last column of Table 6.1 lists the degree of exactness of the first four 
Newton-Cotes formulas. 

A more important issue is how well the Newton-Cotes formulas approxi-
mate Ja f(x) dx when / is not a polynomial. In this case, a given quadrature 
approximation 2(f) to f f(x) dx yields an error 

£(/)■= I f(x)dx-l(f). 
Ja 

In general, £ ( / ) increases in magnitude with both the interval length b—a and 
the "roughness" of / , as measured by values of its derivative of some order. 
Estimates of £ ( / ) for the Newton-Cotes formulas have the generic form 

£( / ) = cons t . (6-a)" + 1 /W(C) , 

where the constant and the integer n depend upon the method and £ is some 
point in the interval (a, 6). Later in this section we prove that estimates of this 
form hold provided that / and its derivatives / ' , / " , . . . , f^ are continuous 
on [a,b]. Table 6.2 summarizes the results for the first four Newton-Cotes 
formulas. 

Practical Considerations: Composite Formulas 

One rarely uses the Newton-Cotes formulas in the form just presented. The 
situation is analogous to that encountered in our discussion of polynomial 
interpolation versus piecewise polynomial interpolation in Chapter 1. Ac-
cording to the error estimates in Table 6.2, the error £ ( / ) is proportional to 
a power of the interval length b — a. Hence we can expect the error to grow in 
magnitude as the interval length b — a becomes large. However, if we apply 
Newton-Cotes formulas over small subintervals of [a, b], then we can force 
the error to shrink by dividing [a, 6] into smaller and smaller pieces. In ef-
fect, this tactic approximates fa f(x) dx by fa f(x) dx, where / is a piecewise 
polynomial interpolant of / . The result is a composi te formula. 
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Table 6.2: Error estimates for the first four Newton-Cotes formulas. 

Formula 

Trapezoid rule 

Simpson rule 

3/8 rule 

Milne rule 

Error £ ( / ) 

-^(b-a)3f"(C) 

-è(^)> ) ( C ) 

Consider, for example, the trapezoid rule. Divide the interval [a, b] by 
constructing a grid A := {xo,^ii • ■ -,XN] with a = XQ < x\ < ■ ■ ■ < x^ — 
b, denoting by h the maximum subinterval length Xj — Zj_i. Decompose 
J f(x) dx as follows: 

I f(x)dx=^2 r f(x)dx. 
By approximating each integral in the sum on the right by the trapezoid rule, 
we obtain an approximation of the form 

f f{x) dx~jrXj -**-x [/(xj-o + /(*,)]. 
Ja j=i 

In the special case when the grid is uniform, each subinterval has length 
h = (b — a)/N, and the approximation collapses to 

r* N h 
/ f(x)dx ~ £?[/(*,-i)+ /(*;)] 

= h [§/(*„) + f(Xl) + f(x2) + ■■■ + f(xIf.l)+ |/(AT)] 
(6.2-3). 

To estimate the error in the approximation (6.2-3), simply apply the ap-
propriate error estimate from Table 6.2 to the quadrature over each subinter-
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val [xj-i,Xj]. The result is 

L2 i N 

j = i j = i 

where each number £,• lies in the subinterval (XJ-\,XJ). We simplify this result 
by observing that / " must be continuous on [a, 6] for the error estimates over 
each subinterval [«j_i,a:j] to hold. Therefore, / " attains its minimum value 
m and its maximum value M over [a,b], and 

N 
1 

m <7i£nQ)<M. 
" i = i 

By the intermediate value theorem, there is a point C G (a, b) such that 

no = ~E/"(o), 
and there follows the error estimate 

£(/) = - ^ 2 / " ( C ) . 

For a given function / and a fixed interval [a, 6] of integration, we interpret 
this estimate by rewriting it in the form 

|£(/)l<^ll/"Hoo/>2 . (6.2-4) 

This inequality shows that the error in the composite trapezoid rule shrinks 
at least as fast as h2. 

Composite formulas for the Simpson rule arise similarly: First, subdivide 
[a, b] to construct a piecewise quadratic interpolant / to / . Thus we start with 
a grid A := {xo, Xi, . . -, £jv}, where x0 = a, XN = b, XQ < xx < ■■ ■ < Xff, 
and N is an even integer, as Figure 2 illustrates. For uniform grids, we obtain 

f(x)dx ~ ■^[f(x0)+4f(x1)+2f(x2)+- - ■+2/(* J V_a)+4/(*N-i)+/(*w)]. / 
Ja 

The error in this approximation is 

N/2 / 9 A \ 5 1 i 4 i „ 1 N'2 

j = i v ' j = i 

where Cj € [x2j-2,Z2j-i]- Therefore, 

l^(/)l<^||/ ( 4 )(OI|coA4 = ö(A4), 
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FIGURE 2. Schematic illustration of a composite formula for the 
Simpson rule. 

where we have reasoned as for the estimate (6.2-4). 
The idea of using composite formulas extends to other quadrature rules, 

some of which we discuss later in this chapter. Composite formulas also form 
the conceptual foundation for adaptive quadrature techniques, introduced in 
the next section. 

Mathematical Details 

We turn now to an analysis of the error £(/) := Ja f(x) dx — 1(f) associated 
with Newton-Cotes approximations. The error functional £ is linear, that is, 
£(af) = a£(f) for any constant a, and £(f+g) = £(f)+£(g) for any pair / , g 
of integrable functions. Also, recall that II„([a,6]) denotes the vector space 
of all polynomials on the interval [a, 6] that have degree at most n. 

At the heart of the analysis lies the Peano kernel theorem. The idea 
is to estimate the error £(/) for fairly general functions / by relating it 
to quadrature errors associated with a restricted class of functions, namely 
polynomials. We begin with a definition. 

DEFINITION. For a quadrature rule $ f(x)dx ~ 1(f) having error £(f) 

f f(x) dx — 1(f), the Peano kernel of degree n is 

Kn(t):=--£((x-tr+) 
n) 

(6.2-5) 

Here the expression (x — <)", considered as a function of x in computing the 
right side of Equation (6.2-5), has the form 

(*-<)" :={o* if x < t. 

For example, consider the Simpson rule for an integral j _ x f(x)dx. The 
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Peano kernel of degree three in this case is 

K3(t) = -l£((x-t)%) 

By the definition of the Peano kernel, the factor labeled (i) in this expression 
vanishes for t £ [—1,1]; the factor (ll) vanishes if t > 0 but equals — t3 if 
t < 0, and the factor (ill) equals (1 — <)3. Also, the integral on the right 
reduces to Jt (x — t)3 dx. Therefore, for the Simpson rule, 

f i ( l - 0 3 ( l + 3*), if 0 < * < 1 , 
Ks(t) = { 

{ Ka(-t), if - 1 < < < 0 . 

This quantity is continuous on [—1,1] and never changes sign there. 
The central theorem is the following: 

THEOREM 6.3 (PEANO KERNEL THEOREM). Suppose thatl(f) ~ J* f(x)dx 
is a quadrature rule for which £(p) = 0 whenever p £ IIn([a,6]). If f £ 
Cn+1([a,b]), then 

*( / ) = - / fin+l\t)Kn{t)dt. 
Ja 

PROOF: The hypothesis that / £ C"+1([a,6]) permits us to apply the Taylor 
theorem with integral remainder: For x G [a, 6], 

/ (*) = /(a) + f'(a)(x - a) + • • • + ^-^-(x - a)" + Ä„(x), 
n! 

where 

Rn(x) = ^ f f(n + 1)(t)(x - t)n dt=±■ f f^\t){X - t)"+ dt. 
n- Ja n- Ja 

(One can derive this form of the Taylor theorem from the identity f(x) — 
/ (a) = f f'(t)dt, starting with the observation that f f"(t)(x — t)dt = 
—f (a)(x — a) + f* f'(t)dt and repeatedly integrating by parts.) The linearity 
of the error functional £ implies that 

£(f) = £ (/(a)) + .-. + £ ( ^ T ^ ( * - a)") + S (Rn(x)). 
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Since 8{p) = 0 for every polynomial p G IIn([a,6]), every term on the right 
except the last vanishes. What remains is 

e^ = h£{£fin+1){t){x~t)n+ dt 

Recall that S operates on functions of x. Therefore, we expand this expression 
for £ ( / ) as follows: 

s(f)= f /V+1)(0(*-o+ 
Ja Ja 

dt dz-I I f(n+1)(t)(x-t)ldt). 

(IV) (v) 

By recognizing the term labeled (v) as a quadrature approximation having 
the form (6.2-1), we find that 

(v) = E ai f /(n+1)(0(*; - 0Î dt = f fln+1Ht)i ((x - t)l) dt. 
i=0 a 

Also, interchanging the order of integration in the term labeled (iv) gives 

(iv) = J^n+1\t)\j\x-t)ldx dt. 

Substituting these representations into Equation (6.2-5) yields 

£(f)= / V + 1 ) ( 0 - L f (x-t)n
+dx-l((x-tr+) 

Ja n- Ja 

dt. 

The expression inside the square brackets is precisely S ((a; — <)"); the con-
clusion of the theorem follows. I 

The Peano kernel theorem has an immediate corollary that furnishes error 
estimates for quadrature rules: 

COROLLARY 6.4. Under the hypotheses of Theorem 6.3, 

\£{f)\ < l!/(n+1)lloc / \Kn{t)\dt. (6.2-6) 
Ja 

The estimate (6.2-6) is crude. More refined estimates are available under 
an additional hypothesis: 
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COROLLARY 6.5. Suppose that the hypotheses of Theorem 6.3 hold. If the 
Peano kernel K„(t) does not change sign on [a,b], then there exists a point 
C € (ai&) *MC^ that 

Several examples, discussed below, illustrate this corollary. 

PROOF: The argument rests on the mean value theorem for integrals: Sup-
pose that the functions / , g are both integrable on [a,b], f is continuous on 
[a, b], and g does not change sign there. Then there exists a point C G (a, 6) 
such that f f(x)g(x)dx = / ( C ) / 0 g(x)dx. This theorem, together with the 
Peano kernel theorem and the hypothesis that K„(t) does not change sign on 
[a, b], implies that 

£(f) = -/(n+1)(C) / Kn(t)dt, 
Ja 

for some point C G (a,&)- Also, an easy calculation shows that 

£(xn+1) = -{n+l)\ [ Kn(t)dt. 

Equation (6.2-7) follows from these last two identities. I 

As an example, consider the Simpson rule applied to a function / G 
C 4 ( [ - l , l ] ) . In this case, 

*(/) = J\ /(*) dx - i /(-l) - |/(0) - i/(l). 

Since £( / ) vanishes if / is a polynomial of degree at most 3, we apply the 
Peano kernel theorem with n = 3. We have already seen that Ks(t) > 0 on 
[—1,1], so Corollary 6.5 implies that 

£(f) - ÄWh - _Ööi - _Öo 
t { î ) - 4! t{X >- 24 15 ~ 90 ' 

Similar reasoning produces a representation for the error in the trapezoid 
rule: 

£{f) = £ / (*) dx - b-^-[f(a) + f(b)] = - i ( 6 - a)3/"(C). (6.2-8) 

Problem 3 asks for details. 
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Further Remarks 
The Peano kernel for any Newton-Cotes formula has constant sign. We refer 
readers to Steffensen [2] for proof. This fact allows one to estimate the error 
for the Nth Newton-Cotes formula using Corollary 6.5 and in particular to 
confirm the estimates of Table 6.2. We obtain 

r e(*N+i) «N+i 

£(f) = < 
(N + iy. 

/ ( i V + 1 )(C), if N is even; 

6.3 Romberg and Adaptive Quadrature 

This section surveys two methods for enhancing the accuracy of composite 
quadrature rules. The first method, Romberg quadrature, allows one to use 
approximations to J f(x) dx that have low-order accuracy to compute high-
order approximations. The second approach, adaptive quadrature, encom-
passes a class of strategies for tailoring composite rules to local, idiosyncratic 
behavior in the integrand / . Much of the following discussion is heuristic, 
delving briefly into theory at several junctures. 

Romberg Quadrature 
At the core of Romberg quadrature lies the method of Richardson extrap-
olation. Suppose that 1(h) is any numerical approximation whose value 
depends continuously on the mesh size h of a uniform grid. Presumably, 
1(0) := lim/,_o 1(h) is the exact value of the integral. Suppose further that 
we can represent the error associated with 1(h) asymptotically, as h —► 0, in 
the form of a power series in h about the point h = 0: 

1(h) = 1(0) + aih
Pl + 0(hp>). (6.3-1) 

Here, aj denotes some constant, and P2 > Pi > 0. In this case, for any q > 0, 
we also have 

I(qh) = 1(0) + ai(qhyi + ö(hp*). (6.3-2) 

By multiplying Equation (6.3-1) by qPl and subtracting Equation (6.3-2), we 
eliminate the error terms that are ö(hPl), obtaining 

In other words, by evaluating the ö(/ip,)-accurate approximation 1(h) on 
two different grids, we derive an 0(/iP2)-accurate approximation by a few 
additional arithmetic operations. 
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This line of reasoning generalizes: 

THEOREM 6.6 (RICHARDSON EXTRAPOLATION). Suppose that the approxi-
mation 1(h), associated with uniform grids of mesh size h, has the asymptotic 
expansion 

1(h) = a0+aihPl +a2AP 3 + •••, as fc-»0, 

where 0 < pi < P2 < ■ ■ ■■ Let q > 0, and define 

h(h) := 1(h), 

W M := h(h)+
h^-^qh\ *>1. 

Then In(h) has an asymptotic expansion of the form 

/„(A) = ao^-a(l
n)/lP«-|-a^(

+
1

1)'«p•'+, + ••. *» A-» 0. 

PROOF: This is Problem 5. I 

Romberg quad ra tu r e is the application of Richardson extrapolation to 
composite Newton-Cotes formulas. As an example, consider the composite 
trapezoid rule, which we denote as 1(h) ~ fa f(x) dx. We demonstrate below 
that this approximation has an asymptotic expansion of the form 

1(h) = / f(x)dx +aih
2 + a2h

4 + a3h
6 + • •■. (6.3-3) 

Ja 
s v ' 

/(0) 

(We already know from Section 6.2 that the lowest-order error term has the 
form aih2; what we show later is that the higher-order error terms involve 
only even powers of the mesh size h.) Let q = 2, and proceed in stages, 
which we index as k = 1,2,3, At stage 1, compute Jm>i := 7(2m/i) for 
m = 1,2,..., M, where M signifies some prescribed positive integer. Thus 
stage 1 yields composite trapezoid approximations to f f(x) dx computed 
on grids having mesh size 2mh. At subsequent stages k — 2 , 3 , . . . , compute 

Im » = im k 1 + / m-*-i ~ im-i,fc-i , 6 3 4 ) 

for m = k, k + 1 , . . . , M. This procedure terminates when we have computed 
IM,M-



6.3. ROMBERG AND ADAPTIVE QUADRATURE 325 

Suppose, for concreteness, that we have computed I\ti, /2,i, ^3,1, and I^i . 
We use Equation (6.3-4) to construct the following tableau: 

Jfe= 1 fc = 2 fc = 3 & = 4 

\ 
h,i —* h,2 

\ \ 
^3,1 —* ^3,2 —*• ̂ 3,3 

\ \ \ 
h,l - /4,3 - /4,3 - A.4 = Jlf(z)dx + 0(h*). 

This procedure yields an <D(ft8)-accurate approximation to J" /(a;) rfx using 
four ö(ft2)-accurate trapezoid approximations. More generally, one computes 
an 0(ft2M)-accurate approximation to fa f(x) dx by applying Richardson ex-
trapolation to a set of M trapezoid approximations. 

The asymptotic expansion (6.3-3) forms the theoretical underpinning of 
this method. Following Davis and Rabinowitz ([1], Section 2.9), we now 
justify this expansion. 

THEOREM 6.7 (EULER-MACLAURIN FORMULA). Let f e C2k+1([a,b]), and 
lei N be a positive integer. Define h :— (6 — a)/N, and construct a uniform 
grid A = {xo, x i , . . , Xjv} on [a, b], where Xj := a + jh. Then there exist real 
numbers B2, A4, Be, ■ ■ ■, B^k such that, as h —* 0, 

ft [§/(*o) + /(*i) + • • • + f(xN-i) + §/(**)] 

/(*) dx + | f ft2 [/'(6) - /'(a)] + fift4 [/(3)(6) - /<3)(a)] (6.3-5) I 
+ ■ ■ ■ + j^h2k [f<2k-l\b) - fW-^a)] + ö(h2k+'). 

Before proving this theorem, we make two remarks. First, the numbers 
B2,B4,Bß,. • ■ that appear in Equation (6.3-5) are Bernoulli numbers. One 
way to define them is as the coefficients in the expansion 

t °° 
s* - 1 = ^ 

Bkt
k 

k\ ' 

It happens that BQ = 1, B\ = — j , B^j+i = 0 for j = 1,2,3,.. . , and 2 ' 

00 

* v = ( - l ) ^ ( 2 i ) ! £ ^ , i = 1,2,3, 
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The first few of these even-indexed Bernoulli numbers are as follows: 

#2 = §, B4 = -±, Be = 55, B8 = -±, Bio=£ë-

The second remark is more practical: Equation (6.3-5) implies that the 
trapezoid rule is an excellent choice for functions that are periodic on [a, 6] 
and for functions whose derivatives near the endpoints of the interval decay 
rapidly as k —+ oo. 

PROOF: We establish the following identity: For any g £ C2fc+1([0, N]), 

= J" g(x) dx + f [g'(N) - g'(0)} + § [^(N) - ,(3)(0)] 

+ • ' • + (Syi [*(M+1) W - g^+1\0)} + £ P2k+1(x)g(^\x) dx. 

(6.3-6) 
where pik+i is a function identified below. The Euler-MacLaurin formula 
(6.3-5) for / G C2k+l{[a, b]) follows when we apply Equation (6.3-6) to g{x) := 
f(a + hx). 

FIGURE 1. Graph of the function pi(x). 

The proof begins with the observation that, for k — 0 ,1 ,2 , . . . , N — 1, 

i fk + l fk + l 
-[g(k)+g(k + l)] = J g(x)dx + J Pl(x)g'(x)dx. (6.3-7) 

Here, pi(x) := x — int(x) — | , where int(x) denotes the largest integer that 
is less than or equal to x. Problem 6 asks for verification of this identity. As 
Figure 1 shows, pi is periodic with period 1. 

The function pi has Fourier series 

E 2sin(27rnz) 
, 2~7rn ' 
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Since p\ is piecewise continuously differentiable with discontinuities that are 
at worst jumps, this series converges uniformly to pi for all x except near 
the loci of the discontinuities, and we find successive antiderivatives of pi by 
formally integrating the series term-by-term. For 0 < x < 1, define 

, . v ^ 2cos(27rna:) 
«(*) = = E (27rW)2 -

, . T-^ 2sin(27rnx) 

and so forth, extending these functions to [0, N] by setting pk(x + n) = Pk(x) 
for n — 1,2,..., N - 1. In general, 

- , / ,\,- i v—* 2 cos(2îrnx) 

n = l v ' 

p2j+1(x) := ( - î y - 1 ^ 2sin(27rnx) 
*-< (27rn) 2 J+ 1 ■ 
n = l v ' 

These functions have the following properties: 

(i) Each function pk is piecewise polynomial with degree k. 

(n) Each function p* is periodic with period 1. 

(iii) If pk is continuous at x, then p'k+ï(x) = Pk(x). 

(iv) If k is an odd integer, then pfc(0) = Pfc(l) = 0. 

(t>) If k is an even integer, then 

n = l v ' 

Now sum the identity (6.3-7) from k~Qtok — N— l t o get 

fr(0) + 9(i) + --+g(N-i) + y(N) 

~ I g(x)dx+ / pi(x)g'(x)dx. 
Jo Jo 

Integrating by parts gives 

i<7(0) +g(l) + --- + g(N-l)+$g(N) 

rN ,N .JV 

= / g(x)dx+p2(x)g'(x)\ - / P2(x)g"(x)dx. 
Jo lo Jo 
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Evaluating the second term on the right side and integrating again by parts 
gives 

y(0) + g(l) + --- + g(N-l)+y(N) 

= / g(x)dx+^-[g'(N)-g'(0)}-p3(x)g"(x)\ +[ p3(x)g&(x)dx. 
Jo l- lo Jo 

The third term on the right vanishes owing to properties (ii) and (iv) listed 
above. Repeatedly integrating by parts in this way yields the desired identity 
(6.3-6). I 

Adaptive Quadrature 
Frequently the function to be integrated has highly localized behavior that 
makes it difficult to approximate on a uniform grid. Figure 2 shows an exam-
ple of such a function. Over most of the region, it seems reasonable to approx-
imate / using a low-order piecewise polynomial / . By "reasonable" in this 
application we mean that we expect the local approximations f"1 f(x) dx 
to produce small contributions to the overall error, which we write as 

£ = f f(x)dx- f f(x) 
Ja Ja 

dx. 

(For the rest of this section, we abbreviate notation by suppressing the de-
pendence of quadrature approximations 2(f) and their errors £(f) on the 
integrand / . ) 

In the middle of the region, however, / oscillates rapidly. Here, good 
resolution requires much finer grids. In this region, we expect the local ap-
proximations 

fx> . 
l[xj-i,xj\ ■= / f(x)dx 

to contribute significantly to £. One way to think of this difficulty is as an 
imbalance in the magnitudes of the local errors 

rxi rxi . 
£[*,•_!,*,■] : = / f(x)dx- f(x)dx 

associated with the subintervals [XJ-\, Xj\. In some regions, £[x _lX j is small, 
while in others it may be significant. 

Using a uniform grid, fine enough to make every local error £[*;_, ,Xj] small, 
certainly reduces the overall error. However, this strategy is inefficient. It 
resolves local behavior in / , but it also requires unnecessary computation by 
demanding fine-grid local approximations I [ r ■_,,«•] even where coarse-grid 
approximations are adequate. Again, the problem is one of imbalance: In 
some regions, £[x-_ltX-] is appropriately small in magnitude, while in others 
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FIGURE 2. Graph of a function f that exhibits highly localized 
oscillatory behavior calling for adaptive quadrature. 

we could accept larger local error contributions (requiring less arithmetic) 
without significantly affecting the overall error. 

The idea behind adaptive quadrature is to balance the local error con-
tributions £[»■_,,!•]. Typically, we do this by approximating the integrand / 
with piecewise polynomial interpolants on nonuniform grids. We construct 
these grids so that each subinterval [XJ-\,XJ] contributes roughly the same 
amount to the overall error, which we force to be smaller in magnitude than 
some prescribed tolerance. The ideal adaptive quadrature algorithm takes 
as input the integrand / , the interval [a,b], and an error tolerance r > 0 
and automatically constructs a quadrature approximation that satisfies the 
condition |£| < r, at least approximately, while balancing the local error 
contributions. 

There are myriad such algorithms. Many existing adaptive quadrature 
routines use gridding strategies and error indicators that are quite sophisti-
cated, and a study of the state of the art lies beyond the scope of this book. 
(See [1], Chapter 6, for an introduction.) Instead, we review one simple algo-
rithm, based on the Simpson rule, that has practical utility and conveys the 
flavor of the field. 

The aim of the algorithm is to construct an approximation of the form 

,6 N 

Ja .■ _ 1 

To balance the local error contributions, we try to choose the grid A = 
{XQ, xi,.. .,XN} on [a,b] so that 

\£[xj.1:rj]\<
X-^j^r. (6.3-8) 
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This condition ensures that 
rb 

Ja 
dx —I 

AT 

= El«. .*iii < r. 
> = i 

To do this, start with a coarse grid, say the two-point grid {a, b}, and use 
the Simpson rule to compute 

X[a,b) — - [/(a) + 4/(§(a + fc)) + /(6)]. 

Then estimate the error £[a,b]- If magnitude of the estimate equals or exceeds 
the tolerance r, split [a, b] into two subintervals [a, (a + b)/2] and [(a + b)/2, b], 
apply the Simpson rule to each subinterval, and estimate the errors £[a,(o+6)/2] 
and £[(a+b)/2,b]- If the estimate for the left half satisfies the criterion (6.3-8), 
then accept I[a,(a+6)/2] as the contribution to the overall quadrature from 
the interval [a, (a + b)/2]. Otherwise, split [a, (a + 6)/2] into two subintervals 
[a, (a + 6)/4] and [(a + b)/4, (a + b)/2\, apply the Simpson rule to each, and es-
timate errors. Proceed similarly for the right half, either accepting I[(a+»)/2,»] 
or splitting [(a + 6)/2,6] and applying the Simpson rule to each half. By 
repeatedly splitting subintervals in this way, we hope to arrive at a partition-
ing of [a,b] into subintervals [XJ-\,XJ] such that each of the contributions 
2[Xj_1,xi] is accurate enough to satisfy the error criterion (6.3-8). 

It is possible to construct functions / that defeat this strategy. In imple-
menting the algorithm one should restrict the number of interval splittings 
that a computer code can effect before halting. 

So far we have left unspecified how to estimate the errors S[Sj_liSj]. This 
part of the algorithm relies on heuristics. From Table 6.2, 

/ (*)dx = I[ , ._ l i S . j - ! ( * , - xj-iffWiQ, (6.3-9) 
JX4 

for some point £ 6 (XJ-I,XJ). In the absence of detailed information about 
pA\ this estimate alone offers little help. However, a simple observation 
together with an additional assumption allow us to estimate the quadrature 
error without explicitly estimating f(4\ Consider the error associated with 
the Simpson rule applied to the split interval: 

rxi fXj-i/7 r*i 

I f(x) dx = f(x) dx + f(x) dx 
Jxj-i - ' » i - 1 •'*.,■-1/2 

= % i - , r i _ 1 / a ] - jjö(*>-i/a - z ;- i )5 / ( 4 )(Ci) 

+ I[«i-,„.*il - ^ ( * i - *i-l/2)5/ ( 4 )(<2). 
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Since f^ is continuous, the intermediate value theorem guarantees the ex-
istence of a point C € {XJ-UXJ) such that fW(Ç) = \ [ /^(Ci) + / (4)(<2)]-
Therefore, since £j_i/2 — Sj- i = xj — xj-i/2 — (XJ — Xj-\)/2, 

f, f(x)dx = ï[xi.ï,xj.l/i]+^[xj.l/„xi] 

(6.3-10) 

Now assume that f^ is roughly constant over intervals having length 
maxj{xj — Xj-i}. This assumption is ad hoc, but it allows us to eliminate 
the terms involving /(4)(C) and /<4)(C) in Equations (6.3-9) and (6.3-10). 
Specifically, if we multiply Equation (6.3-9) by 4/15, multiply Equation (6.3-
10) by 16/15, and subtract the results, we obtain 

/ f(x)dx - ( l [r i_ l l« i_ l / 3]+I[» i_ I / î ,* i]) 
J Xi~\ 

5 ^ [ * i - i . * i - i / a ] + ^ [ * j - i / a . * i ] H*j-i,*i\) 15 

In other words, the composite quadrature approximation on the split inter-
val is roughly 15 times as good an approximation of the unknown quantity 
f ' f(x)dx as it is of the known quantity 2[a. ■_,,„■]. Thus we can test the 
error criterion (6.3-8) by checking whether 

yg (Zix,-.,,«,-.,,,,] + 2:[xJ-1/2,xJl - Zfo-,,«,-]) < X\^3
a~

lr- (6.3-11). 

As soon as the quadrature approximation 2[XJ_I,XJ_1/2] "I" ^[xJ_,/3,a;j] satisfies 
this condition, we stop splitting the interval [XJ-I,XJ] and move on to other 
subintervals of [a,b]. 

Coding these ideas requires some care to avoid unnecessary storage and 
an infinite algorithm. It is useful to associate with each interval [XJ-I,XJ] a 
work vector 

w := (XJ-I, h, / ( X J - I ) , /(arj-i/a). f(xj), %,•_,,*,■]) , 

where 

h := Xj~*j~\ ![*,_„*,] := \ [ /(*i-i) + 4 / ( ^ _ 1 / 2 ) + f(Xj)] . 

At a typical stage in the algorithm, we have a stack (w^1), w^2\ . . . , w ^ ) of 
such vectors, along with a partially accumulated sum of acceptable subinterval 
contributions to the approximation J of / f(x)dx. 

We work on the vector w'1 ' = (w[ , . . . , tug ' ) T , associated with a subin-
terval [xj-\,Xj], that currently occupies the last position in the stack. If the 
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quadrature approximation associated with the split interval [XJ-I,XJ-I/2] U 
[xj-i/2> xj) fails t o satisfy the convergence criterion (6.3-11), then we remove 
w; from the stack and replace it with two new vectors w; and w/+i asso-
ciated with the subintervals \XJ-I, £7-1/2] and [XJ_I/2,XJ]. Otherwise, we 
accept the approximation 

j f(x)dx ~ ï [ x i _ 1 , r i _ 1 / 3 J + ï [ r i _ , / 3 , r i ] 

add it to the partial sum for I , remove wj from the stack, and work on the 
new last entry in the stack. To avoid an infinite algorithm, the algorithm 
aborts when the length / of the stack exceeds a prescribed integer L. 

Algorithm 6.1 implements this approach. The notation used in the fol-
lowing description indicates how to minimize the number of evaluations of 
the integrand f(x) by addressing information stored in previously computed 
work vectors w'*). 

ALGORITHM 6.1 (ADAPTIVE QUADRATURE BASED ON THE SIMPSON RULE). 

The following algorithm computes an adaptive quadrature approximation I to 
la f(x) d%i given an error tolerance r > 0. The algorithm employs a stack 
(w^1), w^ 2 ) , . . . , wO) of work vectors; the algorithm fails when the length of 
this stack exceeds some prescribed limit L > 0. 

1 . ib < - 1 . 

2. J < - 0 . 

3. / i < - ( 6 - a ) / 2 . 

4. h - / (a) , h - / (a + A), h - /(*)• 

5. It - (/1 + 4/2 + /3)A/3. 

6. w ( 1 ) - ( a , / l , / 1 , / 2 , / 3 > / i ) T . 

7. If / > 1 then: 

8. h^\mf. 

9. h^f{wP+h), / 2 - / ( " I 0 + 3Ä). 

10. / L « - ( « 4 , ) + 4 / I + « ' 4 ) ) ' » / 3 -

11. IR - ( 4 ° + 4/2 + w^)hß. 
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12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

6 *-IL + IR - « 4 ° . 

If \6\ > 30r/i/(6 - a) then: 

If / > L then stop; algorithm fails. 

/.-«*°. 
wO^^.Ml",/!,^",^)1 . 
w ( '+ i )^( w ( ' ) + 2/ l , / l i 4' ) i / 2 ] / 3 j 7 f i ) T 

/ « - / + 1. 

Go to 7. 

End if. 

/ « - / + £. 

/ — Z - l . 

Go to 7. 

End if. 

End. 

6.4 Gauss Quadrature 
Motivation and Construction 

So far the discussion of quadrature rules 

rb 

I 
Ja 

f(x)dx ~^2wjf(xj) 

gives scant consideration to the possibility of choosing different evaluation 
points Xj. In this section we demonstrate that one can achieve surprising 
gains in accuracy by choosing these points carefully. 

To frame the discussion, consider quadrature rules that replace / by 
a polynomial interpolant / having degree n on a nonuniform grid {a < 
x0,xi,...,xn < b}. From Section 1.2, f(x) = f(x) + R„(x), where 

n 

/(*) = £/(*i)£i(*). 
3=0 
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the functions Lj being the standard Lagrange basis functions. Also, by the 
estimate (1.2-4), the remainder term Ä„(x) obeys the bound 

(Änlleo < 
| | / ("+ 1 ) | |oo(fr-q)"+ 1 

Therefore, 

4(n + l) 

fb fb t*b 

/ f(x)dx = / f(x)dx + Rn(x)dx. 
Ja Ja Ja 

( i ) ( i i ) 

The term labeled (i) serves as the quadrature approximation: 

/ f(x)dx = £ / ( * , ) / Lj{z)dz = £ > , • / ( * , • ) , (6.4-1) 
J" j=o Ja j=o 

where Wj := f Lj{x)dx. 
By estimating the term labeled (n), we arrive at a bound for the quadra-

ture error: 

\E\ = 
n .b 

Y^wif(xi)- / f{x)dx dx < »Änlloo / 
Ja 

< H/(n+1)llo°(fe-«)"+2 

4(n + l) 

This error estimate holds for an arbitrary choice of distinct evaluation points 
XQ,X\, .. .,xn. In particular, the quadrature approximation is exact when 
y("+i) vanishes identically, that is, when the integrand / is a polynomial 
having degree at most n. The idea behind Gauss quadrature methods is 
that, by clever choice of XQ, XI, ..., xn, one can concoct quadrature formulas 
of the form (6.4-1) that are exact for polynomials of even higher degree. These 
formulas also yield astonishingly favorable error estimates for more general 
integrands. 

The concept that makes this additional accuracy possible is that of or-
thogonal systems of polynomials. For concreteness, let us examine one such 
system: 

DEFINITION. The Legendre polynomials constitute a set {Po, P\, Pt, ■. ■} 
of polynomials satisfying the following conditions: 

(i) Each polynomial Pn has degree exactly n. 

(ii) The function P„ is orthogonal to PQ, PI, . . . , Pn-\ with respect to the 
inner product defined by (f,g) := f_1 f(x)g(x) dx. 
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(iii) Each polynomial Pn is monic, that is, the coefficient multiplying xn 

is 1. 

The first few Legendre polynomials after Po are as follows: 

Px{x) = x, P2(x) = x2 - | , P3(x) = x3- \x. 

Each Legendre polynomial Pn has n distinct, real zeros, all lying in the inter-
val (—1,1). Moreover, any polynomial having degree n is a linear combination 
aoPo(x) + aiP\(x) + \- anPn(x) of the first n + 1 Legendre polynomials. 
From this observation and property (ii) it follows that P„ is orthogonal to 
all polynomials having degree less than n. 

For the moment, consider the task of approximating f_1 f(x) dx; we show 

later how to scale to the more general case J f(x)dx. A simple and elegant 
theorem elucidates the connection between orthogonal systems of polynomials 
and the exactness of quadrature methods: 

THEOREM 6.8. Let i"0,x~i,.. .,x"„ € [0,1] be the zeros of Pn+i- Then the 
quadrature approximation 

/

l n 

f(x)dx~'Y^Wjf(Xj)) 

with uij defined as in Equation (6-4-1), yields f_1f(x)dx exactly when f is 
a polynomial having degree at most 2n + 1. 

PROOF: If / is a polynomial having degree at most 2n + 1, then f(x) — 
q(x)Pn+i(x) + r(x), where q(x) is a polynomial having degree at most n and 
the remainder r(x) is also a polynomial having degree at most n. Integrating 
this expression yields 

/ f(x)dx = / q(x)Pn+x(x)dx+ / r(x)dx 

(6.4-2) 

= / r(x)dx, 

the integral involving q(x) vanishing by the fact that Pn+\ is orthogonal to 
all polynomials having lower degree. On the other hand, the quadrature 
approximation reduces to the following: 

n n n 

Y^Vjfixj) = '%2wj[<l('x~j)pn+i{'x~j) + r(xj)] = Y^wJr^j)> 
>=0 j=0 j=0 
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the sum involving q(xj) vanishing since each point Xj is a root of Pn+x- But, 
as we have already observed, 

n ,1 

^2wjr(xj) = / r(x)dx, 

by virtue of the fact that such n + 1-point quadrature formulas are exact 
for polynomials having degree n or less. Combining this observation with 
Equation (6.4-2), we obtain 

n .1 

Y^Wjf{xj)= / f(x)dx, 
«•— n </ —1 

as desired. I 

We call quadrature approximation using zeros of the Legendre polynomials 
as evaluation points Gauss-Legendre quadrature. 

As an example, let us approximate f_1f(x)dx using the zeros of the 
cubic Legendre polynomial P3. These zeros are Xj ~ —0.774600, £2 = 0, and 
X3 ~ 0.774600, accurate to six decimal digits. The corresponding weights 
are, respectively, w\ ~ 0.555556, w^ — 0.888889, and w$ ~ 0.555556, again 
accurate to six digits. The approximation is therefore 

1 

f(x) dx ~ 0.555556/(-0.774600) + 0.888889/(0) + 0.555556/(0.774600). 
/ . 

Table 6.3 describes the first four Gauss-Legendre rules. The table lists the 
number n + 1 of evaluation points ï j , often called Gauss-Legendre points 
or just Gauss points; the coordinates of the Gauss points and the weights 
Wj associated with them, to six decimal digits; and the degree In + 1 of 
polynomial that the quadrature rule integrates exactly according to Theorem 
6.8. For higher-degree Gauss-Legendre rules, readers should consult Stroud 
and Secrest [3], Chapter 6. 

Practical Considerations 
It is essential to extend Gauss quadrature to intervals more general than 
[—1,1]. We scale the results for f_1 f(x) dx to the computation of fa f(x) dx 
by a change of variables. Let £ :— (a + b — 2x)/(a — 6). Then £ ranges over 
the interval [— 1,1] as x ranges over [a,b], and 

//(*)<** = ^ / / ( ' ( O K - ^ !>;/(*(?,•)) 
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Table 6.3: Gauss-Legendre quadrature rules for n — 0,1,2,3, with weights 
Wj and Gauss points Xj accurate to six decimal digits. 

n 

0 

1 

2 

3 

Wj 

2 

1,1 

0.555556,0.888889,0.555556 

0.347854,0.652145, 

0.347854,0.652145, 

Xj 

0 

-0.577350,0.577350 

-0.774600,0,0.744600 

-0.861136,-0.339981, 

0.339981,0.861136 

2n+ 1 

1 

3 

5 

7 

In this last expression, the new weights are Wj := ^(b — a)wj, and the new 
evaluation points are Xj = x(£j) := ^[a + 6 + (6 — a)£j]. 

Intuition suggests that, unless a Gauss rule yields / f(x) dx exactly, its 
error increases with the interval length b — a. (Theorem 6.8 says nothing 
about the case when / is not a polynomial having degree 2n + 1 or less.) In 
the last part of this section, we show that this expectation is correct. Suppose 
t h a t / e C 2 n + 2 ( [ a , 6 ] ) a n d 

n 

l(f):=-£Wjf(xj). 
3=0 

Let £ ( / ) := fa f(x) dx-l(f) denote the error associated with the n + 1-point 
Gauss-Legendre rule. We prove at the end of this section that 

Mf)\ < ll/( 2n+2) 

2(2n + 2)! 
(b-a) 2n+3 (6.4-3) 

The estimate (6.4-3) has significant implications for composite rules. We 
start by constructing a grid A = {a = xo, Xi , . . . , xjv = b} on [a, b]. This 
step can involve a variety of special considerations, including perhaps the 
use of adaptive quadrature ideas such as those discussed in Section 6.3. For 
now, assume that A is uniform with mesh size h = (b — a)/N. We select 
n and apply the n + 1-point Gauss-Legendre quadrature on each subinterval 
[a;,_i, Xi] formed by the grid A. The result is 

,6 N 

/ f{x)dx = YJ
I^-u*.)Ul 

Ja »=i 
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where each contribution I[xi-ltxi](f) n a s the form 

n 

In this last expression, we understand that the n + 1 points Xj depend upon 
the interval [x<_i,Xf] under consideration. Figure 1 shows a typical uniform 
grid and the locations of the evaluation points for a composite two-point 
Gauss-Legendre rule. 

/ 

x2 

FIGURE 1. A uniform grid on an interval [a,b], with locations 
of the evaluation points for two-point composite Gauss-Legendre 
quadrature shown by the symbol •. 

The error £ ( / ) associated with such a composite scheme is simply the sum 
of the errors £[Xi_l,xi](f) '■— f^' f(x) dx — I[xi-i,xi](f) o v e r t n e subintervals. 
We have 

w)i<Ei%—i(/)i ^ ^ S f t 2 n + 3 
._1 2(2n + 2)! 

(6.4-4) 

- b~a llf(2"+2)ll h2n+2 

~ 2(2« + 2 ) ! N / l | coA ' 

Thus, the error associated with a composite two-point Gauss-Legendre rule 
on a uniform grid is ö(hA)\ that associated with a composite three-point 
Gauss-Legendre rule is ö(h6), and so forth. 

Mathematical Details 
We now explore the theory of Gauss quadrature. In doing so, we generalize the 
framework established above, based on the Legendre polynomials, to include 
other Gauss quadrature schemes based on different orthogonal systems of 
polynomials. In each case, there is a specific interval of integration associated 
with the basic quadrature scheme. However, each scheme readily extends to 
more general intervals via the change-of-variables tactic described earlier. 

Denote by J an interval, which may be finite, as when J = [a, b], or infinite, 
as when J = [a,oo) or J = (—00,00). As usual, L2(J) signifies the vector 
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space of functions / : J —+ M that satisfy the condition Jj \f(x)\2dx < oo. 
Also, recall that II„ is the vector space consisting of all polynmials having 
degree at most n. Denote by IIJ, the subset of IIn containing only monic 
polynomials of degree n, that is, only the polynomials 

p(x) = x" + a„_ ix" _ 1 H h aix + a0 

whose leading coefficients are 1. 
We begin with a discussion of orthogonal systems of polynomials. 

DEFINITION. A function w.J—*TSLisa weight function if 

(i) For all x e J, u/(x) > 0. 

(ii) For k = 0,1,2, . . . , \fj xku(x) dx\ < oo. 

The goal is to analyze quadrature rules having the form 

r n 

/ f(x)u(x)dx c^y^Wjf^Xj). 
Jj j^o 

This form generalizes the Gauss-Legendre quadrature rule developed earlier. 
The first task is to show that there is an orthogonal system of polynomials 

associated with any weight function. The following proposition is an easy 
exercise. 

PROPOSITION 6.9. / / w: J —> M is a weight function, then the expression 

(f,9)v := / f(x)g(x)ui(x) dx 

determines an inner product on L2(J). 

(See Section 0.3 for the axioms defining inner products.) Two functions / 
and g are orthogonal with respect to the inner product (•, -)u if {f,g)w = 0. 
The next theorem gives the correspondence between orthogonal systems of 
polynomials and weight functions. 

THEOREM 6.10. For any weight function u>, there is a set {po,Pi,P2, ■ ■ •} of 
polynomials, with each pj G Ilj , such that (pi,Pj)u — 0 whenever i ^ j . 

PROOF: Define {po,Pi,P2, ■ ■ •} inductively as follows: 

Po(x) := 1 
(6.4-5) 

pj+i(x) := (x - aj+i)pj(x) - ßjpj_x{x), 
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where aj+1 := {xpj,Pj)uHjpj,Pj)u, and 

f 0, if j = 0, 

ft := { 
[ {Pj,Pj)u,/(Pj-i,Pj-i)u, if j = 1,2,3, . . . . 

We prove by induction that each pj £ Uj and that each pj is orthogonal to 
Po,Pi, ■ ■ • ,Pj-i with respect to the inner product (•, •)<,;. 

For the case j = 0 there is little to prove: po G Ilj = {po} when po(z) = 1 
identically. Suppose that we have constructed po,Pi, • • - ,p n according to the 
relationships (6.4-5) and that these functions have the properties that pj G ü j 
and {pi,Pj)w = 0 whenever j ■£ i. We argue that the polynomial 

pn+i(x) = (x- an+1)pn(x) + c„_!p„_i(a;) + •• • + c0p0(x) 

is monic and that the orthogonality conditions force pn+i to have the form 
specified in Equations (6.4-5). Monicity is trivial, since any polynomial hav-
ing this form has 1 as its leading coefficient. By the induction hypothesis, 
(PiiPj')w = 0 whenever i,j are distinct indices in the set {0 ,1 , . . .,n}, so the 
orthogonality constraints on pn+i are equivalent to the following equations: 

0 = (Pn + l,Pn)u = {xPn,Pn)w ~ «n + 1 (Pn, Pn)w , (6.4-6) 

and 

° = (Pn+i,Pj-i)w = ((x - an+i)pn,pj-i)w +c ;_1(pj_1 ,p J_1)u , , (6.4-7) 

for j = 1,2, . . . , n . 
Since none of the polynomials po,Pi, ■ • • ,pn is identically zero and (•, ')w 

is an inner product, the n + 1 numbers (po,Po)w, (Pi,Pi)w, ■ • •. (Pn,Pn)u are 
all positive. Thus, for example, Equation (6.4-6) holds precisely when 

{xPn,Pn)w 
«n+1 = " 

(Pn,Pn)u 

Similarly, since (apn,Pj-i)w = 0 for j < n, Equations (6.4-7) hold if and only 
if 

_ (xpn,Pj-i)u . _ , 2 

\Pj-l,Pj-l)u 

But the defining relationships (6.4-5) for poiPij • • -,Pn imply that 

(xpn, Pj-l)w - {*Pj-UPn)w 

= iPj,Pn)w + OCj{Pj-\,Pn)w + ßj-l(Pj-2,Pn)u-

The last two terms on the right vanish by the inductive hypothesis, so Equa-
tion (6.4-7) holds precisely when 

if i = 1,2,. 
C j - l 

if j = n. 
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The induction is now complete. I 

In particular, for a given weight function w and interval J, the corresponding 
polynomial p„ € H^ is orthogonal, with respect to the inner product (•, -)w, 
to all polynomials having degree less than n. 

Several specific weight functions w(x) and intervals J give rise to classical 
orthogonal systems of polynomials. Perhaps the simplest choice is ui(x) = 1 
and J = [—1,1], which, as discussed earlier, yields the Legendre polyno-
mials. Another choice, ui(x) = (1 — x 2 ) - 1 / 2 and J = [—1,1], produces the 
Chebyshev polynomials , the first few of which are as follows: 

pi(x) = x, p2(x) = x2 - i , p3(x) = x3 - \x. 

The choice w(x) = e~x, J = [0,oo) yields the Laguerre polynomials, the 
first few of which are 

p1(x) = x - l , p2(x) = x2 + 4x - 2, p3(x) = x3 - 9x2 + 18x - 6. 

Finally, the choice w = exp(—x2), J = (—00,00) gives the Hermi te poly-
nomials, 

pi(x) = x, p2(x) = x2 -1, p3(x) = x3-3x, 

and so forth. 
The orthogonality properties of the Legendre polynomials serve as the 

foundation for Gauss-Legendre quadrature, which is applicable to integrals 
of the form f_1 f(x)dx. The orthogonality properties of other orthogonal 
systems of polynomials lead, in a similar fashion, to Gauss quadrature rules 
applicable to different types of integrands f(x)ui(x) and intervals J. We 
specify the forms of such rules shortly. To generalize Gauss quadrature to 
these other orthogonal systems, however, we show first that each polynomial 
pn in a given system has n real zeros in the interval J . 

THEOREM 6.11. Let {po,Pi,P2, • • •} be an orthogonal system of polynomi-
als associated with a weight function w and an interval J. All of the zeros 
x"o,i"i,.. .f'Xn-i of each polynomialpn in the system are real and simple, and 
these zeros all lie in the interior of the interval J. 

PROOF: Denote by ä?o,ä:i,... , x m the collection of distinct zeros of p„ that lie 
in J and have odd multiplicity. Obviously m < n — 1; to prove the theorem, 
we show that m = n— 1. If m < n — 1, define a polynomial q £ Tl^ as follows: 

q(x) := (x -x0)(x -x~i)--(x -xm). 

The polynomial pnq does not change sign in the interval J, since each of its 
zeros has even multiplicity. It follows that fjpn(x)q(x)u>(x) dx = {pn,q)w ^ 
0. (See Problem 8.) This observation implies that q £ Tij for j = 0 , 1 , . . . , n — 
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1. Therefore, q must have at least n zeros, that is, m > n — 1. Hence 
m — n — \. I 

We now possess the background needed to examine Gauss quadrature in a 
general setting. The central task is to extend Theorem 6.8 to rules associated 
with general orthogonal systems of polynomials. We begin with a definition. 

DEFINITION. A set {/o,/i, • ■-,/n} of real-valued functions defined on an 
interval J C K is a Chebyshev system if whenever to,ti, ■ ■ .,t„ Ç. J are 
distinct, the matrix 

T : = 
/o(<o) • ■ • /o(*n) 

/„(<<>) ••• fn(tn) . 

(6.4-8) 

is nonsingular. 

Orthogonal systems of polynomials give rise to Chebyshev systems, as the 
following lemma demonstrates. 

LEMMA 6.12. The first n + 1 polynomials in any system of orthogonal poly-
nomials form a Chebyshev system. 

PROOF: We argue by contradiction. Assume that the matrix T defined 
in Equation (6.4-8) is singular for the orthogonal polynomialspo,Pi, • ■ -,pn-
Then T T is singular, and there exists a nonzero vector c = (co, C\,..., c„)T G 
M" such that 

0 = TTc = 5 3 CjPj{to),..., ] T cjPj(tn) 
y=o j=o / 

In other words, the polynomial 

n 

p(x) ■= ^2ciPj(x) G n„ 
j=0 

has n + 1 zeros. This is possible only if p is the zero polynomial, that is, only 
if Co = ci = • ■ • = cn = 0, contradicting our assumption that c ^ 0. I 

The next theorem generalizes Theorem 6.8. 

THEOREM 6.13. Given an interval J C M and a weight function ui, let 
xo,«i , . . . , x n be the zeros of the function pn+i «n the associated orthogonal 
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system of polynomials. Denote by w = (wo, w\,.. . ,u;n)T the solution to the 
linear system 

Po(zo) • ■ • Po(xn) 
Pl(Ëo) ••• Pl(Zn) 

w0 

Wl 

Wn 

. Pn(x0) ■ •• Pn(xn) 

Then the following conclusions hold: 

(i) Whenever the polynomial p 6 Il2n+i, 

( P O , P O ) Ü 

0 
(6.4-9) 

I p(x)u>(x)dx =2_]wjP(%j). (6.4-10) 

(ii) i?ac/j o/ <Ae numbers wo, w\,.. .,wn is positive. 

Three remarks are in order before the proof. First, Equation (6.4-10) gener-
alizes the fact that Gauss-Legendre quadrature using n + 1 Gauss-Legendre 
points xo,~xi,... ,x"n yields f_lp(x)dx exactly when p £ fl^n+i- Second, 
Equation (6.4-9) indeed has exactly one solution w: According to Theo-
rem 6.11 the points zb, ^ i , . . . ,~xn are distinct, and Lemma 6.12 ensures that 
{Po,Pi, • ■ ■ ,Pn} is a Chebyshev system. Third, the entries WQ, WI, ..., wn of 
the solution vector w are the weights associated with the quadrature scheme 

/ f(x)u(x) dx~J2 Wjf(xj). (6.4-11) 

This approximation is the n + 1-point Gauss rule associated with the or-
thogonal system {po,Pi, • ■ -,Pn} of polynomials. For example, if the system 
{po,pi,P2, •..} is the set of Chebyshev polynomials, then the approximation 
(6.4-11) is the n + 1-point Gauss-Chebyshev rule. Stroud and Secrest [3] 
tabulate 14 classes of such rules, for n ranging from 1 up to values as large 
as 512. 

PROOF: Start with assertion (i). One can express any polynomial p £ Ihn+i 
as p(x) — pn+i(x)q(x) + r(x), where q,r Ç. ü„ . Also, the polynomials q and 
r are expressible as linear combinations of the polynomials po.Pi, • • • ,pn in 
the orthogonal system, say 

9(x) ~ Yl akPk(x), r(x) = Y^ hPk{x). 
*=o Jfc = 0 
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Therefore, 

/ p(x)u)(x) dx = I pn+i(x)q(x)u(x) dx + I r(x) ■ IUJ(X) dx . 
Jj Jj JJ 

( I ) (") 

The term labeled (i) is (pn+i,<l)u>y which vanishes since p„+i is orthogonal to 
all functions in IIn. For the same reason, 

(n) = \^2hPk,Po ) = MPo>Po)w 
\k=0 

Hence 

/ p(x)u)(x)dx = b0(po,Po)w 

On the other hand, since pn+i(xj) = 0 for j = 0 , 1 , . . . , n, 

n n n 

j=o j=o j=o 

= £fc* 
ifc=0 

The quantity in square brackets is the fcth row in the matrix-vector product 
on the left side of Equation (6.4-9). It follows that 

n 

^2 v>iP(xj) = b0(po,Po)u, 

and we have established part (i). 
To prove part (ii), consider a particular weight wk and the special choice 

p[x) := (x - x0)
2(x - Ëi)2 • • • (a: - xk-i)

2(x - xk+i)2 ■■■(x- xnf, 

which is not identically zero. Clearly, p € U.2n C Iljn+i. so by part (i) the 
Gauss rule (6.4-11) yields fjp(x)u>(x)dx exactly: 

/ p(x)u(x)dx = S^Wjpixj). 

But p(x) > 0, since it is the product of squared monomial factors, so 

/ p(x)uj(x) dx > 0. 

(6.4-12) 
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(See Problem 8.) Moreover, since p(xj) = 0 except when j = k, the right 
side of Equation (6.4-12) collapses to Wkp(x~k)- Since the left side of Equation 
(6.4-12) is positive, w^p^Xk) > 0. The fact that p(äsjb) > 0 now implies that 
Wk > 0, completing the proof. I 

Remarkable though it seems that one can integrate a polynomial having 
degree 2n + 1 by sampling at only n + 1 points, one might ask whether it is 
possible to do even better. The answer is no: 

THEOREM 6.14. There is no quadrature formula 

/ f(x)u(x)dx~'^2wjf(xj) 

that yields fj p(x)u>(x) dx exactly for all p £ Il2n+2-

PROOF: We argue by contradiction. Suppose that such a rule exists. Then 
it must be exact for the polynomial 

p(x) := (x - xQ)2(x - xi)2 ■ ■ • (x - xn)
2. 

But this choice of p G Il2n+2 is nonnegative and not identically zero, so 

0 < / p(x)u(x)dx = }Wjp(xj). Jj f^ 
Each factor p(xj) vanishes, leading to the absurd conclusion that 0 < 0. I 

We close by indicating how to derive error estimates for Gauss quadra-
ture formulas when the integrand / is not a polynomial. The next theorem 
facilitates such estimates. 

THEOREM 6.15. If f G C2n+2(J), then there exists a point r] in the interior 
of J such that 

S(f) := / f(x)u(x)dx -jrwjfix;) = !^M{pntPn)w. 

PROOF: Let / € Ü2n+i be the Hermite interpolant of / satisfying the con-
straints 

f(xj) = f(xj), f'(xj) = f'(xj) j = 0 , l , . . . , n . 
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(See Section 1.4.) Since the (n + l)-point Gauss rule yields fj f(x)ui(x) dx 
exactly, 

Therefore, 

/ f(x)u(x)dx = ^Twjf(xj) = J2wif(xi)-
Jj j=o i=o 

j f(x)w(x) dx-f^ WjfPi) = J [/(*) - /"(*)] <"(*) dx. 
1=0 

In Section 1.4 we establish the following expression for the error in Hermite 
interpolation: 

fw-fw=^r+ffi*(x-*°)2{x-*i?■■<*-*»)2> (6-4-13) 

for some point C(x) m the interval spanned by the points z,xo, X~I, ...,~x„. 
(We write Ç(x) to indicate that the value of £ generally depends on the choice 
of x.) Since / and / are both continuous, the right side of Equation (6.4-
13) is, too. Therefore, the mean value theorem for integrals holds for this 
integrand: For some number TJ £ J, 

j f(x)u(x) dx - J2 wif(*i) = / [/(*) - / » ] "(*)dx 

= (di)i//a"+8)(c(ae))^(*)u'(*)<fa 

- (2n + 2)! (P»+i-P»+W-

The proof is now complete. I 

Using this result, we prove the error estimate (6.4-3) for Gauss-Legendre 
quadrature over arbitrary intervals [a,b]. 

COROLLARY 6.16. Fora function f e C2n+2([a,b]), the error associated with 
n + l-point Gauss-Legendre quadrature obeys the bound 

^^Crl f ( 6 - a ) 2 n + 3 -
PROOF: Employing the change of variables £ = (a -+ 6 — 2x)/(b — a), we write 

approximation for f f(x) dx as folli 

/ /(«)d*~£^%/(x(É,.)), 
Ja , _ „ z 

the Gauss-Legendre approximation for f f(x) dx as follows: 

; = 0 



6.5. PROBLEMS 347 

where the points £■ are the usual Gauss-Legendre points in [—1,1] and the 
numbers Wj are the associated weights. Under the change of variables, x(£) = 
5[a + b + (b — a)£]. Theorem 6.15 now yields the following estimate for the 
quadrature error over the interval [a,b]: 

£(f) 2 /*/WOK-£>/(*«;)) 
J~l j=0 

b-a fb-a\2n+2 1 d2"+2/ a ( b — a\ ' 
(x(r,))(Pn+1,Pn+1)u (2n + 2)! d£2"+2 

(6.4-14) 
But 

(P n + 1 , Pn+1)u = J (x - x0)
2(x - x2)

2 ■ • • (x - xnf di. 

Furthermore, the integrand in this integral is nonnegative and has 2 2 n + 2 

as an upper bound. Substituting this bound in the estimate (6.4-14) and 
simplifying finishes the proof. I 

6.5 Problems 
PROBLEM 1. Prove Propositon 6.2. (Hint: It suffices to prove that there is 
some polynomial of degree N + 1 that the rule integrates exactly. Consider 
fix):=[x-l(b + a)]N+K) 

PROBLEM 2. The midpoint or rectangle rule approximates J f(x)dx by 
(6 - a)f((a + 6)/2). Prove that, if / £ C2([a, b]), then the error for this rule 
is E{f) = f"(Ç)(b - a)3/24, for some C £ (a,b). 

PROBLEM 3. Prove the error representation (6.2-8) for the trapezoid rule. 

PROBLEM 4. Derive the following quadrature rule based on approximating / 
by its Hermite cubic interpolant: 

I " / (*) dxcb-^ [/(a) + /(&)] + ^ ^ [/'(a) - /'(&)]. 

Use the Peano kernel theorem to show that the error in this approximation 
is 

£ ( / ) = -^72ir / ( 4 ) ( c ) ' 

for some Ç G (a, 6). Develop a corresponding composite rule. 

PROBLEM 5. Prove Theorem 6.6. 
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PROBLEM 6. Let g e C1([k,k+ 1]), where k is a positive integer, and denote 
by int(a;) the largest integer that is less than or equal to x. Prove that 

i rk+1 rh+1 r n 
^[g(k) + 9(k + l)) = j g(x)dx+l a r - i n t ( x ) - - g'(x)dx. 

PROBLEM 7. Suppose that / is a function that is not identically zero and 
does not change sign on an interval / C M and that satisfies Jf f(x) dx ^ 0 
for every subinterval I C J■ Let w be a weight function on J . Prove that 
J, f(x)u(x) dx ^ 0. Prove that if, in addition, f(x) > 0 for x G J, then 
fJf(x)u)(x)dx>Q. 

PROBLEM 8. Estimate fQ f \x —2\ sin y dxdy using four-point Gauss quadra-
ture in each coordinate direction. Compare this result with the answer you get 
by dividing each of the intervals [1,3] and [0,2] into two equal-length subin-
tervals and then using a composite two-point Gauss rule in each coordinate 
direction. (The exact answer is 1 — cos 2.) 

PROBLEM 9. Apply Romberg quadrature with the trapezoid rule to compute 
an approximation to In 100 = /j x~ldx that is accurate to six significant 
digits. (The correct answer, to eight significant digits, is 4.6051702.) 

PROBLEM 10. One can approximate integrals of the form 
rb f-d(x) 

/ / f(x,y)dydx 
Ja Jc(x) 

by using Newton-Cotes formulas in each coordinate direction, allowing the 
step size in the y-direction to depend on x. Use this idea to compute 

/

l ,2x 

j exp(x + y) dy dx 

using the Simpson rule in each coordinate direction. 

PROBLEM 11. Show that the change of variables y = l/x converts the integral 
/ j 0 0 f(x)dx to / 0 y~2f(y~1)dy. Discuss the application of this observation 
to the approximation of improper integrals having the form / f(x) dx. 
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Chapter 7 

Ordinary Differential 
Equations 

7.1 Introduction 

An astonishing variety of natural phenomena give rise to mathematical mod-
els involving rates of change. For example, the decay of radionuclides, the 
kinetics of simple chemical reactions, and the dynamics of certain populations 
obey equations having the form u'(t) = ku(t), where u is an unknown func-
tion of time t and k is a constant. This ordinary differential equation 
(ODE) has solutions of the form Cexp(kt), where C is an arbitrary constant 
that one can determine from knowledge of u(t) at some particular value of t. 

In most realistic applications, the ODEs of interest are so complicated 
that we cannot determine their solutions exactly. Often we must settle for 
numerical solutions and whatever qualitative knowledge we can glean from 
theory. This chapter explores basic numerical methods for solving ODEs ap-
proximately. We consider two important classes of schemes: one-step meth-
ods, in which one computes each new value of the solution using one previous 
value, and multistep methods, which utilize several previously computed 
values of the solution. The methods have in common the tactic of replacing 
differential operators by algebraic analogs that are more amenable to digital 
arithmetic. 

Several practical questions arise. How accurate are the algebraic analogs 
as approximations to the original differential operators? Do the approxima-
tions amplify small errors as the calculations progress, or do small errors 
undergo numerical damping? Do the approximate solutions improve as the 
algebraic analogs approach the exact derivatives? One purpose of the theory 
in this chapter is to elucidate the connections among these questions. 

Before discussing numerics, it is useful to review some elementary facts 
about ODES. In the simplest case, we consider first-order ODEs having the 
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form 
u'(t) = f{t,u(t)), 

where the independent variable t ranges over an interval [a, b]; u: [a, b] —► K is 
an unknown, differentiable function oï t; and / is a function denned on some 
subset of M2. More generally, we consider first-order systems, 

u'(<) = 

«i(0 
«2(0 

/ i ( t ,u( t ) ) 
/a(*,u(*)) 

. A(*,u(0) 

= f(t,u(0), (7.1-1) 

where again £ € [a, 6], and the unknown is now a differentiable function 
u: [a, b] —* Mk. We emphasize the vector case (7.1-1). Throughout this chap-
ter, the notation || • || signifies an arbitrary norm on R*. 

Equation (7.1-1) typically has infinitely many solutions if it has any at 
all. To guarantee unique solutions, one must impose extra conditions. In this 
chapter we focus on initial-value problems (iVPs) [5], in which the extra 
conditions take the form 

u(to) = u/ , some <o £ [0,6). 

Here, u/ is a known initial value. Other types of problems occur in some 
applications. Noteworthy among these are boundary-value problems, in 
which one knows information about u or its derivatives at the points a and 
6. We treat problems of this type briefly in Chapter 9. 

The first-order form (7.1-1) is not as special as it may appear. A standard 
procedure called reduction in order allows one to rewrite any fcth-order 
ODE 

«<*>(*) = /( t , «(*).«'(*). . . . ,« ( t - 1 ) (<)) 
as a first-order system, 

V2 

uk-i 
. f(t,vi,...,vk) 

In what follows, therefore, if we identify Vj (t) = «W"1)^) for j = 1,2,..., k. 
we discuss only IVPs involving Equation (7.1-1). 

The performance of numerical methods for IVPs hinges in part on whether 
the IVPs themselves are well behaved. The following definition makes the 
notion of "good behavior" more specific. 

DEFINITION. The IVP 

u ' (0 = f(*,u(0), te[a,b), 

u(<o) = u/ , some t0Ç.[a,b], 
(7.1-2) 
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is well posed if both of the following conditions hold: 

(i) There exists a unique, differentiable function u: [a, b] —► M* such that 
u(i0) = u/ anrf u'(<) = f (<, u(t)) /or a// < £ [a, 6]. 

(ii) TAe function u depends continuously upon the data f anrf u / . In 
other words, there exist constants e > 0 and K > 0 such that the 
perturbed IVP 

n'(t) = f(*,û(t)), 

û(<o) = ù/ 

Aas o unique, differentiable solution ü: [a, 6] —► M* satisfying ||û(t) — 
u(t)| | < /Ce /or ail t £ [a, 6] whenever both ||ù/ — u j | | < e and 
||f (s, v) - f (s, v) | | < e /or ail points (s, v) G [a, 6] x M*. 

Part (ii) essentially requires that small changes in the data yield small changes 
in the solution. The following fundamental theorem furnishes conditions un-
der which IVPS are well posed. 

THEOREM 7.1. The initial-value problem (1.1-2) is well posed provided that 
f is continuous on the strip [a,b] x Mfc C M i + 1 and there exists a constant 
L > 0 such that 

| | f ( S , v ) - f ( S l w ) | | < I | | v - w | | (7.1-3) 

for every pair of points (s ,v) , (s ,w) G [a,b] x M*. 

The inequality (7.1-3) is a Lipschitz condition, and the constant L is the 
Lipschitz constant for / (see Section 3.6). For proof, see Brauer and Nohel 
([1], Chapter 3). 

7.2 One-Step Methods 

Motivation and Construction 
The exact solution u to the IVP (7.1-2) in some sense has an infinite number 
of degrees of freedom, namely the values of u(t) throughout [a,b]. Solving 
for u digitally is therefore out of the question. Instead, we settle for an 
approximate solution that requires computing only finitely many degrees of 
freedom. 

Toward this end, consider a grid A = {o — to,ti,. ..,tjv < b}. For 
simplicity, assume that tn = t0 + nh, where h is the mesh size or stepsize. 
(Later in this section we relax the assumption that A is uniform.) We seek 
an approximate solution in the form of a grid function U: A —► Efc, where 
u n := U(t„) serves as an approximation of the unknown exact value u(<n). 
As the discussion in Section 7.1 suggests, we typically devise schemes for 
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determining U by replacing derivative operators in the original ODE with 
algebraic analogs. 

One of the simplest methods for doing this exploits the definition of the 
derivative as a limit of difference quotients: 

,. . ,. u(< + h) - u(t) 
u'(t) = lim v / ^ . v ' ft-o h 

We approximate u'(t„) by the difference quotient: 

V(tn + h)- U(t 
U (tn) ~ - - - . 

Our algebraic analog of the ODE (7.1-1) thus becomes 

u n + 1 ^ - u n = f ( < n U n ) ; „ = 0 , 1 , . . . , ^ - ! , 

or 
Un+i =un + hî(tn,un), n = 0,l,...,N-l. (7.2-1) 

Figure 1 shows how this scheme uses the slope f(tn, un) to extrapolate from 
un to un+i in the case of a scalar ODE (k — 1). 

unm' 

«/i+l.«--' ' 

^ \ slope f(tn, un) 

H (-

ln-\ ln {n+l 

FIGURE 1. Extrapolation from un to u„+i in the explicit Euler 
method. 

Algorithmically, we regard Equation (7.2-1) as a prescription for comput-
ing the unknown u n+j in terms of known values associated with the previous 
grid point tn. To start the calculations we need a value for uo, which is avail-
able from the initial condition in the IVP (7.1-2). Thus uo = u / . Since Equa-
tion (7.2-1) determines each successive unknown un+i explicitly in terms of 
previously computed information, we say that the scheme is explicit. Equa-
tion (7.2-1) is the explicit Euler method. 

The explicit Euler method is the simplest of a family of discrete approxi-
mations having the general form 

u„+i = u„ + h$h(tn,un). (7.2-2) 
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For each fixed choice of mesh size h > 0, $/,: [a,6] x M* - » ! ' . Discrete 
schemes having the form (7.2-2) are called explicit one-step methods, 
since they give a new value u„ + i in terms of one previously computed step. 
In the explicit Euler method, $/,(s,v) := f(s ,v) . (We use the symbols s and 
v instead of t and u here to indicate that these are generic arguments, not 
specific values of the independent variable t and the unknown solution u.) 

Other explicit one-step schemes are possible [4]. For example, consider 
the Heim method, 

u„+i = u „ + - [ f (<„,u„)- | - f ( t„ + i ,u„ + /if(*„,un))], (7.2-3) 

where $/,(s,v) := | [f(s , v ) + f ( s + A, v + /if(s, v))]. The heuristic underlying 
this scheme is most apparent when the original ODE (7.1-1) has the simple 
form u ' = f(£). In this case, u(t) = uo + f f(s)ds, and the Heun method 
amounts to using the trapezoid rule to approximate the definite integral. 

Another example of an explicit one-step method is the modified Euler 
method, 

u„+i = u„ + M (tn + -,un + - f ( t „ , u„ ) J , (7.2-4) 

where $h(s ,v) := f(s + | / i , v + | / i f(s ,v)) . When the ODE has the form 
u'(<) = f(<), this scheme corresponds to the rectangle rule for computing 
fj{s)ds. 

Among the most popular explicit one-step methods is the Runge-Kutta 
method. Here, 

#fc(5, v) := | ( f i + 2f2 + 2f3 + f4), (7.2-5) 

where 
fi := f(*,v), 

f2 := f ( s + i / i , v + i / i f ! ) , 

f3 := f ( s + i / i , v + i / i f 2 ) , 

f4 := f(s + h,v + hf3). 

This scheme corresponds to the Simpson rule for / f (s) ds when u'(t) = f (<). 
The general form (7.2-2) by no means exhausts the possibilities. More 

generally, one-step schemes have the form 

u n + i = u„ + / i*7.(<n,un,<n + 1 ,u„+i) . (7.2-6) 

In such schemes, it is typically impossible to compute the right side explicitly 
using known information, since u n + i remains unknown. We call discrete 
methods having the form (7.2-6) implicit one-step methods, since they 
determine u„+i as an implicit function of t„,t„+i, and u n . 
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The simplest implicit one-step method is the implicit Euler method, 

u n + i = u„ + /if (tn+i, u„+ 1). (7.2-7) 

For typical functions f, Equation (7.2-7) is nonlinear in the unknown u „ + i . 
To solve for u n + i we use methods like those discussed in Chapter 3. For 
instance, successive substitution yields the equation 

(m+l) . i . / , (m) \ 
un+l = u " + ^(tn+uK+l)-

The idea is to iterate until u„*+i provides an acceptable approximation to 
u n + i , then to proceed to the next level in the independent variable t. It is 
also a worthwhile exercise to apply Newton's method to Equation (7.2-7). 

Another implicit one-step scheme is the trapezoid method, 

u„+i = u„ + - [f(*„, u„) + f(tn+i, u„+i)] • (7.2-8) 

Problem 7 explores this method in more detail. 
The analysis of implicit one-step methods falls more naturally into the 

framework for multistep methods. We examine these in Sections 7.3 and 7.4. 
For the remainder of this section, we focus on explicit one-step methods. 

Practical Considerations 

As the analogies between various one-step methods and quadrature approx-
imations suggest, some schemes are more accurate than others. The main 
issue is how fast the error in the approximation u n shrinks as we decrease 
the stepsize h. As we show later, the Euler explicit scheme (7.2-1), for all 
its simplicity, is not very accurate. By comparison, the Runge-Kutta method 
(7.2-5) is quite accurate. The accuracies of the other methods mentioned 
above lie between these two extremes. 

One can gain insight into the Euler explicit scheme by examining a Taylor 
expansion of u about a typical grid point tn. For some point £ G (tn,tn+i), 

h2 

u(*n + 1) = U(*„) + hu'(tn) + y u " ( C ) . 

Rearranging this expansion gives 

u ( t n + 1 ) - u ( t n ) ^ u , ( f ) + 0 ( / t ) 

h 

The expression on the left is precisely the derivative approximation that mo-
tivates the Euler approximation. Thus the Euler explicit scheme amounts 
to replacing u'(t) by an ö(/i)-accurate approximation, then applying this 
approximation to the grid function u„. 
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There is a logical distinction between the accuracy of the approximation 
to u ' and the accuracy of the resulting numerical solution u n . Nevertheless, 
the two are connected, as we explore later in this section. For now, we state 
a rule of thumb: Under reasonable conditions, a discrete method arising from 
an ö(/ip)-accurate approximation to \i'(t) yields C7(Ap)-accurate numerical 
solutions u„. For example, the Euler explicit scheme yields numerical so-
lutions u n that obey an error estimate of the form ||u(f„) — u n | | = O(h). 
In particular, as h —► 0, halving h in the Euler explicit scheme reduces the 
maximum error Eh := maxo<n<jv ||u(<„) — u„| | by a factor of 2. 

Table 7.1 illustrates this phenomenon, to four decimal digits, for the simple 
IVP 

u'(t) = - u ( i ) , u(0) = 1. 

This problem has solution u(<) = e _ t , and the Euler explicit scheme gives 
u„+i = (1 — h)u„, with uo = 1. To verify that Eh = 0(h) numerically, one 
can construct a convergence plot by graphing log Eh versus log ft. The points 
on the graph should lie roughly on a line having unit slope. 

Table 7.1: The explicit Euler method for u' = —u with u(0) = 1, using three 
different values of stepsize h. 

t 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

U(0 
(h = 0.2) 

1.0000 

0.8000 

0.6400 

U(<) 

(A = 0.1) 

1.0000 

0.9000 

0.8100 

0.7290 

0.6561 

U(<) 

(h=0.05) 

1.0000 

0.9500 

0.9025 

0.8574 

0.8145 

0.7738 

0.7351 

0.6983 

0.6634 

u(0 

1.0000 

0.9512 

0.9048 

0.8607 

0.8187 

0.7788 

0.7408 

0.7047 

0.6703 

Similar numerical experiments illustrate the accuracy of other methods. 
For example, the Runge-Kutta method is based on an (9(/i4)-accurate ap-
proximation to u'(t). Thus we expect a convergence plot of logü?* versus h 
for this scheme to produce points lying close to a line having slope 4. Problem 
1 calls for numerical experiments of this type. 
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Mathematical Details 

We distinguish between two logically different questions. First, how well does 
a given discrete analog approximate the original ODE? Second, how well does 
the solution to the discrete analog approximate the solution to the ODE? The 
first question is typically easier to answer, while the answer to the second 
question is more important from a practical point of view. Fortunately, there 
are connections between the questions, which we now explore for explicit 
one-step methods. 

To address the first question — whether the discrete scheme is a reasonable 
approximation to the original ODE — we adopt some definitions. Consider a 
point (s,v) belonging to the region [a, b] x Rk, as drawn in Figure 2 for the 
case k = 1. Denote by w(t) the solution to the IVP 

w ' ( t )=f ( i ,w(*)) , w(*) = v, 

that is, the unique solution to the original ODE that passes through the given 
point (s, v). Difference quotients involving vr(t) have the form 

( w(s + h) - w(s) _ w(s + h) - v 
A k ( * , v ) : = { I - l > lf h*°> 

{ f(s,v), if A = 0. 

Of particular interest are comparisons between A/,(s,v) and the quantity 
&h(s,v), which serves as an approximation to u'(<) in the explicit one-step 
scheme (7.2-2). 

v -

■ 

* 

& S b 

FIGURE 2. The strip [a,b] x K, showing a typical point (s,v). 

DEFINITION. The t runca t ion error (or local discretization error,) asso-
ciated with the explicit one-step method (7.2-2) is 

n ( « , v ) := A h ( s , v ) - #fc(«,v), (7.2-9) 
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defined for all points (s,v) G [a,b] x R*. The scheme (7.2-2) is consistent 
if, whenever f is smooth enough, 

limTA(s,v) = 0 , 
h—*0 

for all(s,\) e [a,b] x Kfc. 

Since we are interested for the moment in the behavior of the numerical 
scheme (characterized by <&;,) and not in the particular ODE, we refrain from 
fretting over the precise properties of f. 

This definition recasts the question whether a given discrete scheme rea-
sonably approximates the original ODE: We simply ask whether the scheme 
is consistent. 

Taylor series provide a useful vehicle for assessing consistency. Consider, 
for example, the Euler explicit scheme. When the f is sufficiently smooth, 

h? 
w(s + h) = w(s) + hvr'(s) + y w " ( s ) + 0(h3). (7.2-10) 

But w'(s) = f(s ,v) . Also, if we denote by dj<p the partial derivative of a 
function <p with respect to its jth argument and by Jw(s,vf(s)) the k x k 
matrix-valued function whose entries are the derivatives djfi(s, w(s)), we 
have by the chain rule 

w"(s) = Ô1f(s,v) + Ju,(s,v)w'(s) 

= dif(s,v) + J„,(s,v)f(s,v). 

Substituting these expressions into Equation (7.2-10) yields 

T h M = w(* + / 0 - w ( S ) _ $ f t ( s v ) 

= f(«, v) + \ [dxî{s, v) + J„(5, v)f(«, v)] + 0(h2) - f(s, v). 

(7.2-10) 
Since the quantity inside square brackets is independent of h, Th(s,v) —<■ 0 
as h —► 0. 

Equation (7.2-11) not only implies that the truncation error TJ, vanishes 
as h —► 0; it also furnishes quantitative information about the rate at which 
Th —+ 0. The following terminology formalizes this concept: 

DEFINITION. The one-step scheme (7.2-2) for the IVP (7.1-2) is consistent 
with order p J /T / , (S ,V) = ö{hp) as h —* 0, that is, if there are positive 
constants C,h, independent ofh, such that | |T/ , (S,V)| | < Chp whenever h < h 
and f eCp+ï{[a,b] x Rk). 
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Equation (7.2-11) shows that the Euler explicit scheme is consistent with 
order p = 1. To construct methods having higher-order consistency, one can 
adopt any of several approaches. One appears in Problem 2, which asks for 
verification that the Heun method and the modified Euler method are both 
consistent with order p — 2. Problem 3 suggests another approach, based 
on the direct use of Taylor expansions. Still other, more involved methods 
exist. For example, it is an unreasonably tedious exercise to show that the 
Runge-Kutta method (7.2-5) is consistent with order p = 4 (see [2], Section 
2.4). 

We turn now to the second question, whether the solution to the discrete 
analog reasonably approximates to the solution of the original IVP. 

DEFINITION. The solution error (or global discretization errorJ asso-
ciated with the one-step method (7.2-2) with stepsize h is 

£h(tn) :=u(t„) - u „ . 

The critical question is whether e^(<) —► 0 for al! t £ [a,b], as the stepsize 
h —> 0. Here we encounter a slight technicality. We wish to treat e/,(£) 
as a function of the continuous variable t. However, for a specified value 
of t, only a discrete set of choices, namely, t — to, (t — to)/2, (t — to) /3 , . . . , 
exist for the stepsize h. Hence we interpret assertions regarding lim/,_oefc(0 
as statements about sequences of values of £h(t), where h ranges over the 
discrete set of values that make sense for the given value of t. With this 
understanding, we adopt the following definition: 

DEFINITION. The explicit one-step method (1.2-2) for the IVP (7.1-2) con-
verges (or is convergent^ if, for every initial point (to, u/) G [a, b] x M* and 
every function f satisfying the hypotheses of Theorem 7.1, 

l im eh(t) = 0 
ft—0 

for every t € [a,b]. 

Proving convergence directly can be difficult. A more convenient approach 
is to establish a connection between consistency and convergence. We show 
that eh(t) = 0(hp) whenever the one-step scheme (7.2-2) is consistent with 
order p and satisfies certain additional "tameness" conditions. 

We begin with a lemma about the growth of sequences. 

LEMMA 7.2. Suppose that there are constants 6 > 0 and ß > 0 such that the 
nonnegative sequence { -̂} satisfies the inequality 

tj+l < (1 + 6)^ + ß, j = 0 ,1 ,2 , . . . . 
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Then 
pn6 — 1 

£n < Zaen6 + ~~ß-

PROOF: We have 

£i < (l + 6)ta + ß 

& < (l + 6)Zi+ß<(l + 6)2t0+ß(l + 6) + ß 

Zn < (l + 6rto + ßY,(l + 6)J 

= (1+,re.+,a±aizi. 
(Problem 4 asks for proof of the last step.) But I + 6 < e6, so 

e"6 — 1 
6. < e " % + — j — £ . 

strict inequality holding when £o ^ 0. I 

The main convergence theorem is as follows: 

THEOREM 7.3. Consider the one-step scheme (1.2-2) for the ivp (7A-2). 
Suppose that there exists a stepsize h > 0 such that, whenever 0 < h < h, the 
following conditions hold: 

(i) There exists a positive constant y such that $ A is continuous on the 
region 

R := {(«, v) G [a, b] x Rk : ||v - u(«)|| < 7} 

(see Figure 3). 

(ii) $/j satisfies a Lipschitz condition with Lipschitz constant L on R. 

(iii) The one-step method (7.2-2) is consistent with order p. 

Then the one-step method (7.2-2) converges. Moreover, Sh(t) = ö{hp) as 
/i — 0 . 

Before we embark on the proof, two remarks are appropriate. First, in the 
present context the conclusion £/,(<) = 0(hp) means that there exist constants 
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FIGURE 3. The region R = Us, v) e [a, b] x R : \v - w(s)| < y\. 

ho € (0,A] and C > 0, independent oft, such that ||e/i(<)|| < C|AP| whenever 
h < ho. In the special case when we can take R = [a, b] x 1R* (that is, when 
we can take 7 = 00), ho = h. 

Second, by analogy with terminology used in Theorem 7.1, the condition 
(ii) means that ||$/i(s, vi) —<&A(S, v2) | | < L||vi — V2II for every pair of points 
(s, Vi), (s, V2) G R. This requirement hardly seems onerous if we regard it as a 
natural analog of the condition on f needed to guarantee well-posedness of the 
original IVP. However, (ii) has an interesting interpretation: It guarantees 
that the discrete scheme is stable, in a sense that Problem 8 makes clearer. 
Viewed in this way, Theorem 7.3 establishes a connection between consistency 
and stability — properties that one can readily test — and convergence, 
the desirable property that may be difficult to check directly. This motif 
reappears later in the book. 

PROOF: The first task is to extend $^: R —► M* continuously to a function 
&h: [a,6]xB'-t Uk. We do this as follows: For any point (s,v) G [a,6] xE*, 
denote by v(s) := [v — u(s)]/| |v — u(s)| | the unit vector in the direction of 
v — u(s). Then define 

* A ( s , v ) := 
*h(s ,v) , i f ( s , v ) € Ä , 
<&A(S,U(S) + jv(s)), if s £ [a,b] and ||v - u(s)| | > 7. 

One easily verifies that $/, satisfies a Lipschitz condition with Lipschitz con-
stant L on all of the region [a,b] x M*. Moreover, since <!>*, agrees with $/, 
on R, the hypothesis (iii) implies that 

\\Ah(t,u(t))-êh(t,u(t))\\<ChP 

for all <€ [a, b]. 
The extended function $/, generates a one-step scheme that, given an 

initial value üo := u j , produces a sequence 

ün + 1 = ü„ + hih(tn,ün). 
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This sequence does not necessarily yield points (<„,ü„) lying in R, an incon-
venience that we address later in the proof. 

The solution to the ivp (7.1-2) has corresponding values 

u(*n +i) = u(i„) + hAh(tn,u(tn)). 

Therefore, the error i/,(tn+i) : = u('n+i) — ün+i obeys the estimate 

I M * n + l)ll < ll«fc(tn)ll + A | | A * ( < „ , u ( * n ) ) - * f c ( t n , u ( t „ ) ) | | 

< \\èh(tn)\\ + hL\\èh(tn)\\ + ChP+1 

= (l + hL)\\ih{tn)\\ + Ch?+l. 

Applying Lemma 7.2 with £„ = ||ih(t„)|| (and hence with £0 = 0) yields 

enhL _ i 
lieft(U)|| < Ch" . (7.2-12) 

It remains to show that we can restrict the stepsize h so that each point 
(2n,ü„), generated by the extended one-step method associated with $/,, lies 
in the region R. Such a restriction guarantees that the numerical solution 
ü„ coincides with a solution u n generated by the original one-step method 
associated with <£/,. We begin by fixing a value t > to in [a,b]. If n is any 
positive integer and h := (t — t0)/n, then the inequality (7.2-12) ensures that 

| M 0 | | < ckpeM(t-to)L]-l s chpeM(b-a)L]-l 
Lt Li 

Since 7 > 0, we can pick a number h0 6 (0, h] such that ||i/i(i)|| < 7 for every 
t € [a, b], whenever 0 < h < ho- For any such h, all points ( i n ,ü„) generated 
by the one-step method associated with $/, lie in R, where <!/, coincides with 
$/i. Thus we have 

l | . f c W| |<w5EEKlzÄi = 0(A,). 

This establishes convergence at the desired rate. 1 

Further Remarks: The Runge-Kutta-Fehlberg Algorithm 

One-step methods tend to produce errors that increase with the stepsize h. 
Many applications involve ODEs whose solutions exhibit some regions requir-
ing a small stepsize for reasonable accuracy, while in other regions a larger, 
less costly stepsize may suffice. A key aim of modern software design is to 
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develop adaptive algorithms, that is, algorithms that automatically vary step-
sizes to accommodate local peculiarities in the solution. Section 6.3 presents 
ideas along this line in the context of numerical integration. We devote the 
rest of this section to a sketch of an adaptive method for controlling trunca-
tion error in the numerical solution of ODEs. 

Problem 2 contains the germ of the idea. By considering schemes having 
the general form 

* A ( « , V ) = aif(s,v) + a2{(s + a3h, v + a4/if(s, v)), 

one can choose the coefficients t*i, a2,03, a4 to force cancellation of low pow-
ers of h in the Taylor expansion of the truncation error. In this way, one 
generates the ö(/*2)-accurate Heun and modified Euler methods. Similarly, 
by considering schemes of the form 

* h ( s , v ) = «if (s, v) + a2f (s + a3h, v + a4/if (s + a5/i, v + a6hf (s, v))), 

one can select constants a 1 , a 2 , . . .,«6 to yield a truncation error having 
magnitude ö(h3). 

One can produce successively higher-order one-step schemes by extending 
this procedure. The calculations are straightforward, but they require increas-
ingly arduous (and unenlightening) algebra to determine suitable constants 
otj. This procedure underlies the 0(h4) Runge-Kutta scheme (7.2-5). 

For the present, we consider two higher-order schemes of the Runge-Kutta 
type. The first scheme has ö(h4) truncation error: 

êh(s, v) := ^ k x + M i k a + f ^ k 4 - Ik 5 l (7.2-13) 

with the vectors k,- defined below. The second has ö(h5) truncation error: 

¥„(*, v) := ^ k x + ^ k 3 + ü i k 4 - ^ k 5 + £ k 6 . (7.2-14) 

These two schemes share several evaluations of the function f : 

ki := f(s ,v) , 

k2 := f ( s + i f c , v + i k i ) , 

k3 := f ( s + § A , v + ^ k i + &ka), 

u . _ f / „ . 12. , 1932u 7200. , 7296ir \ 
K4 . - 1(S+ j 3 / l , V + 2Î97K1 - 2Ï97K2 + 2 Î 9 7 K 3 ^ 

k5 := f^ + ft.v+lffki-Skj + ^ k s - ^ k O , 

k6 := f ( s + i / l ) v - A k 1 + 2 k 2 - f | | k 3 + i f § | k 4 - i i k 5 ) . 

Thus, with six distinct evaluations of f we compute two Runge-Kutta steps, 
each having a different order truncation error. 
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This difference in the truncation errors is the key to adaptivity. The 
objective is as follows: Given an initial stepsize h, we wish at any stage to 
choose a scaling factor a > 0 such that using the stepsize ah in the 0(h5) 
scheme (7.2-14) yields a truncation error TV, smaller than some prescribed 
tolerance 6 > 0. The idea is to use information generated by the 0(h4) scheme 
(7.2-13) to limit the size of 7V We proceed via a sequence of approximations. 

Using the definition (7.2-9), we have the following approximate expressions 
for the truncation errors at level tn: 

Th{t„,ùn) ~ ft-Mu^n + O-Ûnl-^fc^n.Ûn) (0(h4)), 

Th(tn,ün) ~ A-Mû n + O - Ü n ] - » ^ , ^ ) (0(h5)). 

Here, ù„ and u n denote the numerical solutions generated by the schemes 
(7.2-13) and (7.2-14), respectively. It follows that 

u ( t „ + i ) - û „ + 1 = u( i n + i ) - ü „ - / j4A( in ,ü„) 

~ h.Th(tn,ûn). 

Thus 

Th(t„,Ün) ^ h'1 [u(t„ + i) - Ù n + 1] 

= h'1 [u(<„+i) - ü„+i] + h'1 ( ü n + i - ü n + i ) 

= h'1 [u(tn + i ) - ü „ - h$h(tn,ün)} + / i _ 1 ( ü n + 1 - ü „ + i ) 

^ TA(tn,Ü„) + / l - 1 ( ü n + i - Ü „ + i ) . 

But Th(tn,ün) = ö(h4), while T A (<„ ,Ü„ ) = ö(h5). By reasoning that the 
latter is much smaller than the former, we arrive at the approximation 

rA(<„,ün)~Hn±lZL^±i. (7.2_15) 

The fact that Tk(tn,ûn) — ö(h4) implies that 

Th(tn,ün)~Ch4, (7.2-16) 

where C is some positive constant. Therefore, 

g " + 1 7 Û " + 1 - Ch\ (7.2-17) 
h 

Using the approximations (7.2-16) and (7.2-17), we can now estimate the 
truncation error in the ö{h4) scheme (7.2-13) that results when we use a 
different stepsize ah: 

TVh(i„,u„) ~C{ahy ~a4——- —. 
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This approximation suggests that \\ïah\\ < 6 (and hence ||7V/,|| < 6) provided 
that 

/ c. \ 1/4 
0 < g < ( „ - jï • (7.2-18). 

V||u„+1 -un+iiiy 
These observations allow us to control the stepsize h adaptively. To com-

pute the new value un_|_i from u n for a given stepsize h, we first compute 
û„ and vin+i using the fourth- and fifth-order Runge-Kutta schemes (7.2-13) 
and (7.2-14). We then estimate the truncation error using the approximation 
(7.2-15). If the estimate is at least as large in magnitude as the prescribed 
tolerance 6, we reject the current stepsize, make the "midstep correction" 
h «— ah, and try again. Otherwise, we accept u„+i as the new value of u n +i , 
adjust the stepsize if appropriate, and proceed to the next step. 

If done correctly, adjusting the stepsize for the next step can greatly en-
hance the efficiency of the algorithm. One should steer a moderate course be-
tween excessive caution (using a stepsize much smaller than is really needed 
for accuracy) and excessive boldness (using a stepsize likely to require midstep 
adjustments to h and hence more evaluations off during the step). Conser-
vatism suggests a strategy that modifies Equation (7.2-18): After computing 
the quantity 

<r := 
lu"+i 

6h y/4 

■û„+i | | / 

set 
if ff<l/10, 
if 1/20 <a< 4, . (7.2-19) 
if W>4. 

This strategy avoids extreme modifications in stepsize, possibly at the expense 
of some efficiency or even of the algorithm's success. 

We can now state the adaptive algorithm succinctly. Denote by ü„+i <— 
RK4(t„,u„, h) the fourth-order Runge-Kutta scheme (7.2-13) and by un+i <— 
RK5(in,u„,A) the fifth-order scheme (7.2-14). 

ALGORITHM 7.1 (RUNGE-KUTTA-FEHLBERG ADAPTIVE STEPSIZING). This 
algorithm generates a numerical solution u„ to the IVP (7.1-2) given an initial 
stepsize h, bounds hm\n,hmax on the stepsize, and a tolerance 6 > 0 on the 
stepsize h. 

1. n —0. 

2. tn *— a. 

3. u„ <— u/ . 

4. Û <— RK4(t„,Un,/l) . 

5. Ü <— RK5((n,U„,/l) . 
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6. If | | ü - ü | | / A < S then: 

7- 2n+i <— tn + h. 

8. u„+i «-Ü. 

9. If tn+\ > 6 stop. 

10. n<—n + 1. 

11. End if. 

12. Compute a using Equation (7.2-19). 

13. h «- <TÄ. 

14. If A > ''max s e ^ /* < ^max • 

15. If /i < /imin stop (algorithm fails). 

16. Go to 4. 

17. End. 

7.3 Multistep Methods: Consistency 
and Stability 

Motivation 

Multistep methods extend one-step methods by utilizing computed values u n 

from several previous steps. The following definition captures this extension: 

DEFINITION. A multistep method for the ODE (7.1-1) is a scheme of the 
form 

u „ + r + a r _ i u „ + r _ ! + 1- a0u„ = h§h(t 
n>un+r>un+r-l> • • • , u n ) - (■■""!) 

v v ' v v / 

known r steps 
Here, h > 0 is the stepsize. A solution to the scheme (7.3-1) is a sequence 
{u„} in Ck for which Equation (7.3-1) holds for n = r, r + 1, r + 2 , . . . . 

We call Equation (7.3-1) an r-step method, since it determines the unknown 
value u n + r in terms of the r values u„+ r _i , u n + r _ 2 , . . . , u n computed previ-
ously. When the function $/, does not depend upon the unknown u n + r , we 
call the scheme explicit. Otherwise, it is typically necessary to solve non-
linear equations for u „ + r , and we call the method implicit. Later in this 
chapter we explore uses of explicit and implicit multistep methods. 
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Equation (7.3-1) admits an important special case in which $/, is a linear 
combination of values of the function f : 

*h(<„, u n + r , . . . , u„) = br{(tn+r, u„ + r ) + 1- b0f(tn, u„). 

Here, bo,bi,.. .,br are scalars. In this case, the multistep method is linear. 
A linear multistep method is explicit when br = 0 and implicit otherwise. 
This section and the next focus on linear multistep methods. 

There are at least two good reasons for studying multistep methods. The 
first involves a practical observation: In the most commonly used multistep 
methods, every evaluation of the function f involves an argument u* that is 
an approximate value of the solution u(<). Thus multistep methods stand in 
contrast to such one-step methods as the Heun method (7.2-3) or the Runge-
Kutta method (7.2-5), which require evaluations off at several "intermediate" 
arguments that are not useful approximations to u(<). In this sense, multistep 
methods are more economical than higher-order one-step schemes. 

The second reason for studying multistep methods is more theoretical: 
The analysis of multistep methods is both highly developed and fairly general. 
The form (7.3-1) includes both explicit and implicit one-step methods as the 
special case r = 1. Thus our theoretical treatment of multistep methods 
casts one-step methods in a framework more systematic than that captured 
in Theorem 7.3. Moreover, the convergence theory for multistep methods has 
analogies in the analysis of discrete methods for partial differential equations, 
as we demonstrate in Chapter 8. 

In this section we examine the construction of two popular classes of linear 
multistep methods: the Adams-Bashforth methods, which are explicit, and 
the Adams-Moulton methods, which are implicit. We also examine what it 
means for linear multistep methods to be consistent and stable. We use these 
notions to outline some of the practical aspects of the methods, including the 
construction of predictor-corrector methods. At the end of the section, we 
examine the notion of stability. 

As with one-step methods, there are noteworthy connections between the 
concepts of consistency and stability and the convergence of multistep meth-
ods. We explore these connections in Section 7.4. 

Adams-Bashforth and Adams-Moulton Methods 

Several important multistep methods arise from the following observation: If 
u(<) is the solution to the IVP (7.1-2), then by the fundamental theorem of 
calculus 

u(tn+k) - u(tn_j) = ! + u'(t)dt= f + t(t,u(t))dt. 

Pursuing an idea from the quadrature methods of Section 6.2, let us replace 
the integrand f (i, u(t)) by an approximating function p(<). Choose p so that 



7.3. MULTISTEP METHODS: CONSISTENCY AND STABILITY 367 

p(<;,ui) agrees with the approximate value of u ' computed during several 
previous steps, say 

p(ti) = f(<i,U(), l = n,n-l,...,n-q. 

A simple way to do this is to use Lagrange interpolating polynomials: 

i 

P(0 : ~ y i f (tn-l, Ut-l)Ln-l(t), 
1=0 

where 

Ln.,(t)= n / : ! v m • 
m = 0 
m * I 

This approximation suggests schemes having the form 

u„+jb — u„_j = 2__,f(t„_i, u „ . | ) / L n . 
(=o /<—i 

, ( < ) d < -

6/ 

Specifying values for the integers k, j , and q yields particular linear mul-
tistep schemes. For example, the choices k = 1, j = 0 yield a class of explicit 
methods called Adams-Bashfor th me thods . The first few of these schemes 
are as follows: 

q = 1 : u n + i = u„ + |/i(3f„ - f„_i) 2-step, 

q = 2: u„ + i = u„ + i / i ( 2 3 f „ - 16f„_i + 5f„_2) 3-step, 

g = 3 : u n + i = u„ 4- ^j/»(55fn - 59f„_i + 37f„_2 - 9f„_3) 4-step. 
(7.3-2) 

Here, f„ := f(<„,un). The choices k = 0, j = 1 yield a sequence of implicit 
methods called Adams-Moul ton methods . Here are the first few: 

q = 2: u n + 1 = u n + r^h(fn+i + 8f„ - f„_i) 2-step, 

9 = 3 : u„ + i = u n + ^A(9f„+i + 19f„ - 5f„_i + f„_2) 3-step, 

9 = 4 : u„+i = u n + fiüft(251fn+i-l-646f„-264f„_1 

+106f„_2 - 19f„_3) 4-step. 
(7.3-3) 

Each of these schemes requires values of the computed solution from at 
least two previous levels. To get started, we need values Ui , i i2 , . . . , u r _i in 
addition to the initial value Uo. The typical procedure for starting an r-step 
method is to use the initial value uo = w/ together with values u i , u 2 , . . . , u r _j 
computed via a one-step method having accuracy comparable to the multistep 
method. 
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Consistency of Mult is tep Methods 

We assess consistency of multistep methods in a manner analogous to that 
employed for one-step methods. To keep the discussion simple, we restrict 
attention to linear schemes, 

r— 1 r 

u„+ r + Y^ aiun+j - h ]|P bjfn+j. (7-3-4) 
i = 0 j=0 

DEFINITION. Given a point (s, v) G [a, b] x Rk, let w: [a,b] -* Rk denote the 
solution to the ODE (7.1-1) corresponding to the initial condition w(s) = v. 
The t runca t ion er ror (or local discretization error^ of the multistep 
scheme (7.3-4) *s 

"rh(s,v):= -
r - l 

w(s + rh) + Y2 «:-w(s + jh) - h ]|P 6,-f(s + jh, w(s + jh)) 
j = 0 j '=0 

Think of T>, as a difference quotient that gauges how far the numerical solution 
can stray from the exact solution during r steps. Heuristically, 

n ( « , v ) = £ 
, .. N / numerical solution at s + rh 

exact solution \ / . . . . . 
a t « j . r-/, ~ u s l n S 8 t a r t m g v a l u e s 

a t s + rA y ^ w(«) ) . . . ,w(s + ( r - l ) f t ) 

For a multistep scheme (7.3-4) to be a reasonable approximation to the 
original ODE, the truncation error must vanish as h —► 0. Moreover, we cannot 
expect good approximations unless the starting values Uo,Ui,.. . , u r _ i also 
approach the exact values u(fo),u(<i),.. . ,u(< r_i) as h —+ 0. The following 
definition formalizes these requirements: 

DEFINITION. Suppose that the r-step method (7.3-4) us^s the starting values 
uo, u i , . . . , u r _ i . The method is consistent if both of the following conditions 
hold: 

(i) lim Th(s, v) = 0 for all (s, v) G [a, 6] x Rh, 
h—>-0 

(ü) lim [un — u(in)] = 0 for n = 0 , 1 , . . . , r — 1. 

As the next section explores, consistency is necessary for convergence. 
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For now, consider an example in the one-dimensional case u: [a,b] 
The truncation error for the three-step Adams-Bashforth method is 

Th(s,v) = I / « , ( * + A ) - « ; ( * ) - A [23/(Ä| «;(*)) 

16/(s - h, w(s - h)) + 5/(s - 2h, w(s - 2h)) 

s+h 

/

5+A ps+h 

f(t,w(t))dt-j p{t) 

dt 

Here, p is the quadratic polynomial that interpolates / over the interval [s — 
2h, s], as drawn in Figure 1. If/ G C3([a, &]), then we can use the interpolation 
error estimates of Section 1.2 to rewrite this equation as follows: 

rh(s,v) 
fW(gt),w(Ç(t))) 

- I l 

= ^h4J fW(Ç,w(0)a(a + l)(a + 2)da 

o! v 'Jo 

(t - s)(t -s + h)(t -s + 2h) dt 

where £ is some point belonging to the interval (s,s + h). The third line in 
this sequence of identities follows from the mean value theorem for integrals. 
Problem 1 asks for the details in this calculation. We conclude that the 
three-step Adams-Bashforth method has truncation error r/, = ö(h3). 

This calculation rests on a seemingly ad hoc assumption about the smooth-
ness of / . In evaluating truncation error, we do not fret over such assump-
tions, the focus being on the method and not on the particular ODE being 
solved. In this sense truncation error estimates come with the unspoken pro-
viso that the right side of Equation (7.1-1) is as smooth as needed. 

Table 7.2 lists the truncation errors for the first few Adams-Bashforth and 
Adams-Moulton methods. 

As with one-step schemes, we distinguish among various orders of consis-
tency: 

DEFINITION. The multistep scheme (7.3-4) *s consistent with order p if 
Th(s,v) = G(hP). 
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f 

s-2h s-h s 

FIGURE 1. Quadratic polynomial p interpolating f over the inter-
val [s — 2h,s\. 

Table 7.2: Truncation errors for r-step Adams-Bashforth and Adams-Moulton 
methods. 

r 

2 

3 

4 

Adams- Bashforth 

£w(3)(Ofc2 

§w(4>(0/»3 

Adams-Moulton 

-&w«<0A4 

The following proposition leads to a convenient way to check the consistency 
of linear multistep schemes. 

PROPOSITION 7.4. If the function f in the ODE (7.1-1) is sufficiently differ-
entiate, then the truncation error for the multistep scheme (7.3-4) has ^ e 

expansion 

rh(s, v) = i [C0v(«) + CiAv'(«) + • • • + C p W v ^ * ) + 0(/iP+1)] , 

wAere 

Co := 1 + a r _ i + ar_2 + hao, 

r 

Ci := r + ( r - l ) a r _ i + ( r - 2 ) a r _ 2 + - - + a i - ^ 6 i l 

:= ^ K + ( - - l ) ^ - 1 + --- + «i]-7^h)TE/- l f ci 
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PROOF: The expansion follows directly (but somewhat tediously) if one sub-
stitutes the Taylor series 

v(s+jh) = v(s)+jhu'(s)+±j2h2u"(s) + ---, 

hf(s + jh,v(s + jh)) = hv'(s + jh) = hv'(s) + jh*v"(s) + --

into the definition for TJ,. I 

COROLLARY 7.5. Assume that the starting values for the linear multistep 
scheme (7.3-4) satisfy the condition limfc_o[u„ — u(<„)] = 0, n = 0 , 1 , . . . , r — 
1. Then the scheme is consistent if and only if Co = Ci = 0. It is consistent 
with order p if and only if Co = C\ — ■ • ■ = Cp = 0. 

Stability of Mult is tep Methods 

Theorem 7.3 asserts that, for "reasonable" one-step methods, consistency 
suffices for convergence. For multistep methods, consistency is not enough, 
even if the function 4?h on the right side of Equation (7.3-1) obeys a Lips-
chitz condition. One can devise consistent schemes of the form (7.3-4) that 
yield wildly divergent sequences {u„} in response to tiny perturbations in 
the starting values u o , u i , . . . , u r _ i . Such schemes are computationally use-
less, since essentially all digital calculations have finite precision and hence 
introduce perturbations automatically. To avoid this pathology, we impose an 
additional constraint on multistep schemes that ensures their stability against 
small arithmetic errors. 

The following example gives some hint of the difficulties that can arise. 
Consider the ivp 

«'(0 = 0, t€[Q,T]; u(0) = ti/. (7.3-5) 

The solution to this problem is u(t) = «/. The two-step scheme 

u n + 2 - 4u„+ 1 + 3w„ = -2hfn 

for this equation is consistent with order 2, since 

Co = 1 - 4 + 3 = 0, 

Ci = 2 - 4 - 2 = 0, 

Ci = ^ ( 2 2 - 4 ) - 0 = 0, 

C3 = ^ ( 2 3 - 4 ) - 0 # 0 . 
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For the IVP in question, the scheme reduces to the homogeneous linear 
difference equation 

un+2 - 4M„ + I + 3un = 0. (7.3-6) 

To initialize this scheme, we use starting values uo, «l that are good approx-
imations to u(0) = «/ and u(h) = uj, respectively. 

To find nontrivial solutions {u„} to this problem, let us try expressions of 
the form u„ = £", where £ ^ 0. Substituting this trial solution into Equation 
(7.3-6), we find that C2 - 4C + 3 = 0, so < = 1 or C = 3 will work. In fact, any 
linear combination u„ := ci ■ 1" + c2 • 3", where ci and c2 are constants, is a 
solution to the linear difference equation (7.3-6). To determine c\ and c2, we 
use the starting values «o and u\. With exact starting values, we find that 

c i - l ° + c2-3° = ur, 

C\ ■ l 1 -I- C2 • 3 1 = W/, 

so ci = 1, c2 = 0, and un = «/, as expected. 
Suppose, though, that we compute another solution û„ by using the in-

exact (but consistent) starting values «o = «/ and «i = «/ + S, where 
6 —* 0 as h —» 0. For any positive stepsize h, these starting values imply 
that ci = «/ — 6/2 and c2 = 6/2. The numerical solution in this case is 
û„ = u/ — \6 + \^n6. The factor 3" in this solution causes |w„ — « n | to 
grow without bound with n, and reducing the stepsize causes the difference 
to increase even more rapidly with t. Since small errors in the starting values 
yield enormous errors in the computed solution, this scheme has no practical 
utility. The difficulty in this case stems from the zero Ç = 3 of the polynomial 
0(0 := C2 - 4C + 3. 

This example serves as a paradigm for the stability analysis of more gen-
eral schemes. We begin with a definition: 

DEFINITION. The linear multistep scheme (7.3-4) •'* stable if, when applied 
to the IVP (7.3-5), there exist positive constants h and M such that, whenever 
0 < h < h, the following condition holds: For every 6 > 0, if the two sets 

| «0 ,« l , - - - ,« r - l}> 

| « 0 , « l , . . . , Ü r - l | 

satisfy \un — w„| < 6 for n — 0 , 1 , . . . , r — 1, then |«„ — «„| < M6 for every 
index n = r, r + 1 , . . . , T/h. 

In other words, nearby starting values yield nearby solutions — precisely the 
condition needed to guard against disasters arising from inexact arithmetic. 
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The definition does not immediately furnish a convenient way to check 
stability a priori. A more practical approach, as the example above suggests, 
is to analyze the polynomial that we get when we substitute the trial solution 
Cn into the scheme, assuming that f(t, u(t)) = 0 for all t: 

DEFINITION. The characteristic polynomial for the multistep scheme 
(7.S-4) is 

V-(C):=Cr + I>;C--''-1. 
j=o 

Corollary 7.5 guarantees that £ = 1 is a zero of V>(C) f°r a n y consistent scheme. 
Indeed, in the example above this zero corresponds to the component of the 
numerical solution that is a good approximation of the exact solution u(t). 
We call C = 1 the principal root of t/>. Other zeros of ip are parasitic roots . 
Parasitic roots correspond to solutions of the multistep scheme that do not 
give good approximations to the exact solution. 

One way to characterize stable schemes of the form (7.3-4) is by stipulat-
ing that the components of the numerical solution corresponding to parasitic 
roots of ip do not grow. In the example above, the parasitic root £ = 3 cor-
responds to a solution component c? ■ 3", which grows rapidly as n increases. 
This reasoning leads to the following definition: 

DEFINITION. A linear multistep scheme (7.3-4) satisfies the root condition 
if, whenever ( GC is a zero of the characteristic polynomial xj), the following 
statements hold: 

W ICI < 1; 

(ii) / / ICI = 1, then Ç is a simple root ofip. 

We show later in this section that the root condition is equivalent to stability. 
The role of condition (i) in preventing growth in Ç" should be clear. The 
motivation for condition (ii) may be less transparent. We show below that, 
if ( is a zero of V> having multiplicity q, then the functions 

C,nC,n2C,...,n"-lC 

are all solutions to the linear difference equation (7.3-6). Therefore, zeros 
having unit magnitude and multiplicity greater than 1 also lead to growth in 
the parasitic components of {«„}. 

Using the root condition, we check the stability of any linear multistep 
scheme simply by examining the zeros of its characteristic polynomial. For 
example, the characteristic polynomial for any one-step method (7.2-2) is 
ip(C) = C — 1J which has only the simple zero Ç — 1. Therefore, all one-step 
methods are stable in our sense. 
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The Adams-Bashforth and Adams-Moulton methods all have character-
istic polynomials of the form V'(C) — Cr — Cr _ 1 = Cr-1(C ~ !)■ According to 
the root condition, then, these methods are also all stable. 

Parasitic roots £ of ip correspond to errors that grow at least as fast 
as ICI". This observation suggests that one should avoid methods having 
parasitic roots of unit magnitude. These roots give rise to errors that fail 
to decay as n increases. We call schemes for which rp has two or more roots 
of unit magnitude weakly stable. The following four-step method, while 
consistent, is weakly stable; its characteristic polynomial V'(C) = C4 — 1 has 
zeros 1, — l, i , — i: 

u n + 4 - u„ = - (8f„+3 - 4fn+2 + 8f„+i). 

Weakly stable schemes allow certain components of arithmetic errors to per-
sist in magnitude from step to step, so in practice the effects of such errors 
tend to accumulate slowly as the imprecise digital arithmetic progresses. 

If £ = 1 is the only zero of ip with |£| = 1, then the multistep scheme is 
strongly s table. The Adams-Bashforth and Adams-Moulton methods are 
all strongly stable, since their parasitic roots all vanish. 

Predictor-Corrector Methods 

Although consistent and stable, the Adams-Bashforth and Adams-Moulton 
methods have drawbacks. For example, while the explicitness of the Adams-
Bashforth methods makes them convenient from a programmer's viewpoint, 
it also implies that the methods rely only on "old" information to advance 
the numerical solution from tn to tn+i ■ Extrapolation of this sort can be 
risky when the ODE being solved imposes rapid changes on the solution over 
intervals that are short compared with the stepsize h. 

The Adams-Moulton schemes, being implicit, avoid the risks associated 
with extrapolation. However, they also require one to solve nonlinear alge-
braic equations. Consequently, straightforward application of the Adams-
Moulton methods involves iteration within steps, usually accompanied, as 
Problem 9 indicates, by stepsize restrictions. The need to iterate poses a 
strategic dilemma: Should we use a fairly large stepsize and invest compu-
tational effort in iterations to solve the nonlinear equations accurately? Or, 
should we take a larger number of small steps, in which previous values of 
u n serve as good initial guesses and lead to numerical convergence in fewer 
iterations? 

The answer is that we should invest in smaller stepsizes. Smaller stepsizes 
lead to more accurate approximations to the original ODE. Ideally, we should 
start each small step with a good initial guess, then compute an accurate 
answer in one iteration before proceeding to the next step. This strategy 
admits roles for both explicit and implicit schemes. We use an explicit scheme 
as a predictor , to extrapolate from the known level to a good initial guess 
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for the next level. Then we use one iteration of an implicit method as a 
corrector, to advance from the initial guess to a final approximation for 
that level. 

Most implementations of this predictor-corrector strategy use predic-
tors and correctors that have comparable truncation errors. For example, 
one might use the fourth-order (four-step) Adams-Bashforth method as a 
predictor and the fourth-order (three-step) Adams-Moulton method as a cor-
rector. To generate the four starting values needed to initiate the algorithm, 
one might use the initial value together with three steps of a fourth-order 
one-step method, such as the Runge-Kutta scheme (7.2-5). The following 
algorithm employs this approach. 

ALGORITHM 7.2 (FOURTH-ORDER PREDICTOR-CORRECTOR SCHEME). This 
algorithm generates approximate solutions {u„} to (1.1-1) using the fourth-
order Runge-Kutta scheme RK4 to calculate starting values, the fourth-order 
Adams-Bashforth scheme AB4 as a predictor, and the fourth-order Adams-
Moulton scheme AM4 as a corrector. Here, h denotes the stepsize, T is the 
maximum value of the independent variable t, and uĵ  signifies the initial 
guess for u„ furnished by the predictor. 

1. n ^ O . 

2. tn <— <0' 

3. u„ <— u/ . 

4. For n = 0,1,2: 

5. tn <— t0 + nh. 

6. u n + i ^~RK4(<n,u„). 

7. Next n. 

8- u n + l <— A B 4 ( f „ , U „ , . . . , t „ _ 3 , U „ _ 3 ) . 

9- U n + i *-AM4(/n4.i,U*+1,<„,U„,<n_i,U„-i,tn_2,Un_2). 

10. n +- n+ 1. 

11. If n < T/h go to 8. 

12. End. 
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Mathematical Details: Stability and the Root Condition 
We devote the rest of this section to the equivalence between the root con-
dition and stability of multistep methods. The exposition has the following 
plan: First, we show that the difference between two numerical solutions to 
the ivp (7.3-5), generated by the scheme (7.3-4) with nearby starting val-
ues, obeys a homogeneous linear difference equation. We then examine the 
properties of solutions to such equations and their connections with the char-
acteristic polynomial V"(C)- Finally, we characterize the growth of errors in 
terms of the zeros of rp. 

Consider two solutions to the multistep method (7.3-4) for the IVP (7.3-5): 
one, {«„}, generated using the starting values 

U0,Ui, . . . , U r - l , 

and the other, {ûn}> generated using starting values 

W o , « l , . . . , « , — 1 -

Let e„ := un — ü„. The scheme (7.3-4) is stable if one can bound je„| in terms 
of the starting "errors" |e0|, |ei|, • • •, |£r-i | , at least for some range 0 < h < h 
of stepsizes. By the linearity of the multistep scheme, the sequence {e„} 
obeys the homogeneous linear difference equation 

r - l 

en+r + ^2 ai£n+i = °- (7-3~7) 
3=0 

We are interested only in the nonzero sequences {en} that satisfy this 
equation, since the trivial sequence {0} cannot contribute to growth in the 
error. If ao = ai = • • • = ar_CT_i = 0, then any nonzero solution {e„} to 
Equation (7.3-7) obeys the slightly simpler equation 

( 7 - 1 

En+<7 + 2_^ aj+r-o£n+j = 0. (7.3-8) 

In what follows, therefore, we focus on these nonzero error sequences by 
assuming that ao = a\ = • ■ • = ar-a-i = 0 but ar„a ^ 0. 

To analyze the growth of e„, we examine all possible solutions to the 
difference equation (7.3-8). Several facts are fundamental in this regard. 

PROPOSITION 7.6. The homogeneous linear difference equation (7.3-8) has a 
unique solution {en} for any set £o,£i, ■ ■ -,£<7-i G C of starting values. 

PROOF: Existence is easy to establish inductively: Just solve Equation (7.3-
8) for en+r- Uniqueness follows if we note that, for any two solutions {en} 
and {en} that satisfy Equation (7.3-8) and have the given starting values, the 
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difference {en — ën} also satisfies the homogeneous linear difference equation 
(7.3-8). Moreover, this sequence has starting values £„ — i„ = 0 for n — 
0 , 1 , . . . , a — 1. Induction shows that e„ — in = 0 for n = cr, a + 1, . . . . I 

The trivial solution en = 0 is always a solution to Equation (7.3-8). More is 
true: 

PROPOSITION 7.7. The set V of all complex-valued sequences {en} that are 
solutions to the homogeneous linear difference equation (7.3-8) is a vector 
space. 

PROOF: This is a simple exercise. I 

Instrumental in our characterization of stability is the fact that V has 
dimension a. To establish this fact, we construct a basis 

{{ei„},{e2n},--,{e«rn}} 

of solutions to Equation (7.3-8). We must show that this set of sequences 
spans V and is linearly independent, in the sense that the only constants 
Ci, C2,... , c„ S C for which 

ciein +c2e2„ H hc(Te<7n=0 for n = 0 ,1 ,2 , . . . 

are c\ — ci = • • ■ = c„ = 0. The discussion of linear independence is a bit 
involved; Theorem 7.8, proved below, settles the issue of spanning. 

Knowing the zeros Ci i C2, • ■ •, Cr of the characteristic polynomial ip allows 
us to identify the desired basis for V. We begin by noting that, when ao = 
ai = ■ • • = a.r-,,-1 = 0, the polynomial rp has Ç = 0 as a zero of multiplicity 
r — a. Therefore, ip(Q = Cr-<7'/'<T(C) f°r some polynomial ipa having degree a. 
Our assumption that ar-„ ^ 0 implies that the polynomial ipo{C) does not 
have £ = 0 as a zero. 

Now return to the observation, made earlier, that for any zero Ck of T/> the 
sequence {££} is a solution to Equation (7.3-7), since 

<rr+£a^=cv<(G)=o. 
j=0 

However, the trivial zero £ = 0 is of no interest, since it yields only the trivial 
solution to the difference equation and does not contribute to growth in the 
error e„. The nontrivial zeros, which are of interest, are precisely the zeros 
of V><7- Henceforth, denote these zeros by CiiG, • • • ICT- (The existence of at 
least one such zero, namely £ = 1, follows from the consistency of the original 
multistep scheme.) The nature of the basis for V depends on whether or not 
any of the zeros Ci 1C2 > • • ■ > Co- ̂ las multiplicity greater than 1. 
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In the first case, each zero C* of i>„ has multiplicity exactly one. Choose 
as basis elements the sequences 

{cr},{<?},...,{c} 
(that is, {ejfen} := {££})• To prove that these are linearly independent, it 
suffices by Proposition 7.6 to show that the a vectors (CJb>Cfc, • • ->C*~ ). ^ — 
1,2,..., (7, form a linearly independent set in C . Equivalently, we show that 
the matrix 

i Ci •■■ c r 1 _ 

i C2 ••■ a 
A C T - l 

>>2 
e C 

i c ••• cr1 

has <J linearly independent rows. This last assertion follows from the fact that 
the following determinant, known as the Vandermonde determinant, is 
nonzero: 

fO-l 1 

det 

i Ci 

1 C2 

1 Co 

cr f ( 7 - 1 

/■a-\ 

a-1 < 7 - l n n (c*-o)#o. 
; = 0 k = j + l 

In the second, more general case, tpg has nontrivial zeros Ci,C2,---,Cm 
with multiplicities <7i, ?2, • • • ,9m, respectively. In this case, each of the a 
sequences 

{ t f } , { n C ? } , . . - . { n ( n - l ) . - . ( n - w + 2 ) C ? } , * = 1,2 m, (7.3-9) 

is a solution to Equation (7.3-8). To see this, observe that each of the num-
bers Ob is a zero of multiplicity qt of the function <p(Ç) := C"Vv(C) f°r a n y 
nonnegative integer n. Thus, for n > <x, 

r - l 

o = ¥?(Cfc)=crr+ E «i<r+i. 
j=r — o 

j=r — a 

0 = ^ - D ( C , ) = („ + ( T ) ( n + (T _ ! ) . . . ( „ + , 7 _</jfc + 2)C^ + a - , * + 1 

r - l 

+ £ a i(n + i)(n + j - l ) . . . ( n + i - g t + 2 )Cj + i _ , f c + l -
J=I—a 
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Dividing through by ££~p in the equation for <p(p\Çk) establishes that the a 
sequences in the list (7.3-9) are solutions to Equation (7.3-8). 

It remains to show that the sequences (7.3-9) are linearly independent. 
The argument here is analogous to that used for the case when all zeros Çk are 
simple, except that now we encounter a matrix in C X ( 7 whose determinant 
is 

m j — 1 m 

i = i * = i i = i 

Here, 0!! := 1, and fc!! := k\(k - 1)! • ■ -2!1! for k = 1,2 
We can reduce the sequences (7.3-9) to a set of slightly more streamlined 

sequences. Specifically, we take linear combinations to arrive at the following 
<r linearly independent solutions to Equation (7.3-8): 

{<?},{<?}, ■••,{n,à-1C*}, *=l ,2 , . . . ,m. 

This listing of proposed basis sequences covers both the special case when 
each zero £t has unit multiplicity (so m = er) and the more general case in 
which some zeros have larger multiplicity. 

The following theorem settles the spanning issue, confirming that we have 
identified a basis for the space V of solutions to the homogeneous linear 
difference equation (7.3-8). 

THEOREM 7.8. If the set 

{{ei„}>{e2„}, •••,{e<,„}} 

of a solutions to Equation (7.3-8) is linearly independent, then we can express 
any solution {£„} of Equation (7.3-8) as a linear combination 

a 

£n =X}c,ejfc„, n = 0 ,1 ,2 , . . . . 
* = i 

PROOF: By Proposition 7.6, it suffices to show that we can solve the linear 
system 

a 

en = 2 j c jC t n ) n = 0 , 1 , . . .,<T- 1, 

for the coefficients ci, C2,.. . , c„. This system has the matrix form 

(7.3-10) 

e l o 

e i . 

c\ £o 
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To show tha t the mat r ix of this system is nonsingular, we demonstrate by 
contradiction tha t the columns «* := (ejt0, e t 2 , . . . , eic„_l)

T are linearly inde-
pendent. Assume tha t they are not, so tha t a i» t i + a 2 K 2 + • • • + ctaKa — 0 
with not all of the coefficients at vanishing. Using Equation (7.3-8) together 
with a simple induction argument, we deduce tha t 

« i e l n + a 2 e 2 „ H \-aaean = 0 , n = a,a + l,<r + 2, 

This conclusion contradicts the hypothesis of linear independence. Therefore, 
the columns of the mat r ix in Equation (7.3-10) are linearly independent, and 
we can indeed solve for the coefficients c i , c 2 , . . . , cCT. I 

Finally, we confirm the equivalence between stability and the root condi-
tion. 

T H E O R E M 7.9. A consistent linear multistep scheme (7.3-4) lÄ stable if and 
only if it satisfies the root condition. 

P R O O F : We first show tha t stability implies the root condition. We prove the 
contrapositive: If the root condition fails, then there are nearby start ing val-
ues tha t generate sequences whose difference grows without bound. Assume 
that the characteristic polynomial rj) has a zero £ with |Ç| > 1. In this case, 
sequences of the form c\ + c2£" are among the solutions to the scheme (7.3-
4) applied to the ivp (7.3-5). Pick 6 > 0, and examine two sets of start ing 
values: 

U!+ß6 ' u0 

"1 

. Ur-1 

:= 

" UJ 

M/ 

. " / . 

i 

" « 0 

« 1 

. " r - 1 

:= 
«/ + ßC6 

ui + ßC-l6 

where 0 < ß < | C - 1 | - 1 - By construction, |wn — «n| < 6 for n = 0 , 1 , . . . , r —1. 
However, the first set of starting values yields the solution un — u/ for n = 
0,1, 2 , . . . , while the second set yields ûn = uj-\-ßCn6. We make the difference 
\un — M„| = |/?C"<5| as large as desired for the step n = T/h by taking the 
stepsize h small enough. Therefore, in this case the multistep scheme is 
unstable. 

We leave the argument for the case when ip has a multiple zero of unit 
magnitude for Problem 10. 

Now we show that the root condition implies stability. Assume that the 
scheme (7.3-4) satisfies the root condition, and denote by 

{{ei.},{e2.},-..,{c<7»}} 

the basis identified in Theorem 7.8. Consider two solutions {«„} and {ûn}, 
expressible as 

un := Cici„ + c2e2n H 1- cCTe<Tn, 

'•= c i e i n + c2e2 n + • • • + coe0 
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such that | u„ — û„\ < 6 for n = 0,1,. . . ,r— 1. Bythe linearity of the multistep 
scheme, 

£n := «n - «n = diei„ + d2e2n + h dae0n, 

where dk '■— Ck — Ck-
To bound the growth of en, we need an estimate for the vector d := 

(rfi, ^2, • • •, d„)T. The estimate arises from the fact that d is the solution to 
the following linear system: 

e l o 

L eu- <~<>«-\ j 

di £o 

£<r-i 

E d e 

Theorem 7.8 ensures that E is nonsingular, so d = E~ e. Therefore, 

Since |en | < S for n = 0 , 1 , . . . , r — 1, 

l l d l l i ^ l l E ^ M . (7.3-11) 

Next we estimate £„ for arbitrary step number n > 0. According to the 
root condition, each of the basis sequences {«Jt„} has the form e;tn = naÇn, 
where £ is a nontrivial zero of the characteristic polynomial ip. The possible 
values for a depend upon the nature of (• If |£| = 1, then £ must have 
multiplicity 1, and a = 0. If |C| < 1, then a < a — 1. Therefore, |ejtj = 1 
when ICI = 1 and |efcJ < n " - 1 ^ " when 0 < |C| < 1. For each nontrivial 
zero Ot of xp, the function 7i:[0,oo) —► TBL defined by 7*(n) := n " - 1 ^ ! " is 
nonnegative and has a maximum value 7fc(nmax(^))- Let 

r := max {l,7jfc(nmax(*))}, 
IC*I< 

so that each basis sequence {ejtn} obeys the bound |efcj < T. By the triangle 
inequality, 

kn|<r(|d1| + |da| + ---+KI) = r||d||1, 
for n = 0,1, 2 , . . . . From the estimate (7.3-11), it follows that 

|e„| < r ||d|u < r o- HE-1!)! *. 

Taking M = T a | |E_ 1 | | i , we have |e„| < Mb, as desired. I 

7.4 Convergence of Multistep Methods 
This section concludes the discussion of multistep methods by establishing 
conditions under which they converge. The development is more theoretical 
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than that given in the first part of Section 7.3. In broad terms, the theory 
yields a result that relates convergence to stability and consistency — two 
properties that we can often check with relative ease. The following schematic 
summarizes the connection: 

CONSISTENCY 

+ < = > CONVERGENCE. 

STABILITY 

This idea appears again in the context of numerical schemes for partial diff-
ferential equations, which we explore in Chapter 8. (However, that discussion 
is accessible without the development in this section.) 

Our approach follows a line of reasoning presented in Henrici ([3], Chapter 
5) and has an analytic flavor. It is also possible to develop the proofs from 
linear-algebraic points of view, as Ortega ([6], Chapter 4) and Gear ([2], 
Chapter 10) illustrate. 

To keep the arguments manageable, we restrict attention to the linear 
multistep scheme 

r - l r 

Un+r + Y^ ajun+j = h ] T bj fn+j , (7-4-1) 
i=o j=o 

applied to the scalar IVP 

u'(t) = f(t,u), t£[a,b}; u(t0) = uI. (7.4-2) 

We assume that this ivp is well posed. 
We begin with a formal definition of convergence. 

DEFINITION. The linear multistep method (7.4-1) is convergent when ap-
plied to the IVP (7.4-2) if, whenever the starting values satisfy the condition 

lim u „ = u j , n — 0 , 1 , . . . , r - 1, 
ft—o 

the sequence {«„} generated by Equation (7-4-1) satisfies the condition 

lim u„ = u(t) for all t€[a,b]. (7.4-3) 
A - . 0 
t„ = * 

This definition does not require exact starting values «o,«i> • • - , " r - i - In-
stead, it calls for good approximations, such as those generated by a conver-
gent one-step method. Also, the unusual notation in Equation (7.4-3) is a 
concession to the fact that, for a given value of t £ [a,b], only a discrete set 
of stepsizes h can yield approximations u„ to u(t). Therefore, 

lim u„ := lim {u„ : nh = t — ta }. 
ft _ , 0 n - > o o v 

*n = t 
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Convergence turns out to be a comparatively "strong" property, in the 
sense that the proofs that convergence implies stability and consistency are 
relatively straightforward. 

THEOREM 7.10. A linear multistep scheme is stable whenever it is conver-
gent. 

PROOF: The fact that the scheme converges for the general IVP (7.4-2) implies 
that it converges for the specific IVP 

«'(*) = 0, u(0) = 0, 

for which the solution is u(t) = 0 identically. Therefore, 

lim un = 0 
A — o 
<n = < 

whenever the starting values obey the condition l i m ^ o un = 0 for n = 
0 ,1 , . . . , r — 1. We use this fact to show that the scheme obeys the root 
condition, which by Theorem 7.9 is equivalent to stability. 

Suppose that Ç = pexp(i9) is azero of the characteristic polynomial^. We 
show first that |C| < 1, then examine the case when \Q = 1. The sequence 
{hÇn} — {hpn[cosn0 + isin(n0)]} is a solution to the homogeneous linear 
difference equation 

r - 1 

«n+r + Yl aiUn+i = ° (7.4-4) 
i=o 

for any 0 G [0, 2 T ) . By linearity, the sequence {u„} := {hpn cos(n6)} is also 
a solution to Equation (7.4-4). If 0 = 0 or 0 = 7r, then the convergence of 
the scheme implies that |un | = | ( i /n)pn | —► 0 as n —► oo, which can be true 
only if p = |C| < 1- For other values of 0 £ [0,ir), one uses the identity 
cos(a + ß) cos(a — /?) = cos2 a — sin2 ß to show that 

t2 2n _ .2„2n u n ~ " n + l « n - l 
—rp = h p = 7-r— . 
n2 sin2 6 

Convergence implies that the expression on the right tends to zero as n —* oo, 
so we conclude again that p = |£| < 1. 

It remains to prove that £ is a simple zero of ip when |Ç| = 1. We prove 
the contrapositive: Assume that £ = pexp(iô) has multiplicity greater than 
1. Since the sequence {\/hnÇn} satisfies the difference equation (7.4-4), the 
sequence {u„} := {\/hnpn cos(n0)} does, too. When 6 = 0 or 9 = JT, we have 
|w„| = vhnpn = y/t/nnpn = pny/ni. Convergence requires that «„ —► 0 as 
n —» oo, which occurs only if p = \C\< 1. For other values of 6 £ [0, 2TT), define 
a new sequence {vn} '■= {un/(nVh)}. Convergence requires that «„ -> 0 as 
n —► oo, so employing the trigonometric identity used above yields 

p = . , „ ► 0 as n —y U. 
sin2 0 
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Again we conclude that p = \Ç\ < 1. Therefore the multistep scheme (7.4-1) 
satisfies the root condition. I 

THEOREM 7.11. A linear multistep scheme is consistent whenever it is con-
vergent. 

PROOF: Recall from Proposition 7.4 that the truncation error for the linear 
multistep scheme (7.4-1) has the form 

77,(5,1;) = ^[C0v(s) + C^hv'is) + 0(h2)}, 

where 

Co := 1 + ar + ar-i + h«Oi 

r 

Ci := r+(r-l)ar-i+(r-2)ar-2+-+ai-J2bJ-
j=0 

By Corollary 7.5, it suffices to show that, if the scheme is convergent, then 
Co = C\ — 0. We do this by examining two special initial-value problems. 

To prove that Co = 0, consider the IVP 

«'(*) = 0, t i ( 0 ) = l , 

for which the solution is u(t) = 1 identically. Applying the multistep scheme 
to this IVP yields the homogeneous difference equation (7.4-4). According to 
the hypothesis of convergence, this equation must generate a sequence {un} 
such that un —+las/i=t/n—► 0, whenever we use the exact starting values 
tio = «i = • • • = wr_! = 1. Therefore, taking the limit of Equation (7.4-4) as 
h —♦ 0, we get 

r - l 

l + J2<*} =Co = Q. 
3=0 

To prove that Ci = 0, consider the ivp 

u'(t) = 1, «(0) = 0, 

for which the solution is u(t) = t. For this ivp, the multistep scheme reduces 
to 

r - l r 

Un+r + 5 3 a3u"+i = h 5Z "̂- (7.4-5) 
j=0 j=0 

Since the scheme is convergent, Theorem 7.10 ensures that it is stable, so its 
characteristic polynomial rp cannot have £ = 1 as a multiple root. Therefore, 
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t/)/(l) = r + (r — l)a r_i + (- ao ^ 0. Given this fact, one can easily check 
that the sequence {un} := {n/ii?}, where 

i r 

r + ( r _ l ) a r _ 1 + ... + a i £jj ' 

is a solution to the difference equation (7.4-5). The starting values in this 
sequence also satisfy the condition 

lim un = 0, n = 0, l , . . . , r — 1 . 
A-.0 

The convergence of the scheme therefore implies that un —► tn as h —* 0. 
Hence, 

lim un = lim nhR — lim tnR = tn. 
h _♦ o h - * o h -» o 
tn = t tn = t tn = t 

It follows that R = 1, that is, that Ci = 0. Therefore the scheme is 
consistent. I 

Since consistency and stability are usually easier to check than conver-
gence, the proofs that consistency and stability are necessary for convergence 
seem less useful than the fact that these properties are sufficient. Unfortu-
nately, the proof of sufficiency is more involved. We begin with three lemmas, 
the first two of which concern analytic properties of the characteristic poly-
nomial V'(C)-

LEMMA 7.12. Suppose that the linear multistep scheme (7.4-1) with charac-
teristic polynomial V'(C) = Cr + a r - i C r - 1 + " " -+ao satisfies the root condition. 
Define V'(C) as follows: 

4>(Q := l + ar_iC + --- + a0C
r. 

If TOi Ti)72i • ■ • G C denote the coefficients in the expansion 

7 — = 7o + 7iC + T2C2 + ---, ICI<1, 

then {jk} is a bounded sequence in C. 

PROOF: Observe first that £ is a zero of %l> if and only if Ç~l is a root of ip. 
Therefore, by hypothesis ij> has no zeros in the unit disk |£| < 1, and hence 
the function l/t/>«) has no singularities there. Moreover, %[> has the following 
form: 

Ho = ao« - c 1 ) • • •« - Cm1)« - c 1 ) " • • ■ « - {.■')'■, 
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where Ci,C2, • • -,Cm denote the simple zeros of ip with unit magnitude and 
£1, £2, • • •, £n denote the zeros of rp, having multiplicities gi, 92, • • •, 4n respec-
tively, that lie inside the unit disk. As a consequence, 1/V> has a partial 
fraction expansion of the form 

n «i 

N v ' " v ' 

(I) (H) 

for some finite set of constants Aj ,Bjj. 
To establish the lemma, it suffices to show that each term in Equation 

(7.4-6) has an expansion in powers of £ in which the coefficients are bounded. 
Consider first the terms in the sum labeled (1). We write each of these terms 
as follows for |C| < 1: 

Ai _ A/Cj _ 4.r. V Y V * 

The coefficients AjCj+1 in this expansion are certainly bounded, since each 
zero £j has unit magnitude. 

For the terms in the sum labeled (11), we have 

( - 1 J / - 1 / 1 \ J / - 1 Bs,u _ n (-1) '-1 d' 
<T$S) 

Problem 11 asks for proof that this expression has an expansion in powers of 
£ whose coefficients are bounded. 1 

LEMMA 7.13. With the coefficients 70171,721 •• • defined as in Lemma 1.12 
and 7„ := 0 for n — —1, —2, - 3 , . . . , 

7 „ + ar_i7„_i H Mo7n-r = S Q .f ^ 

PROOF: This is a simple exercise: Multiply the expansion 

1 

= 0, 
> 0 . 

= 7o + 71C + 72C + 

through by rp(C)- B 

Now consider a sequence {£«} that satisfies a linear difference equation 

r - l r 

6i+r + Y, aitn+J =hYl bi."t"+i + A» ' (7-4"7) 
J=0 j=0 
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having characteristic polynomial ip(Q = Çr + a r _ i £ r - 1 + \- OQ. The next 
lemma establishes bounds on the growth rate of {&>}• In the final theo-
rem, a sequence {e„} will play the role of {£n}- This "growth-rate" lemma 
furnishes a multistep analog of Lemma 7.2, proved for one-step methods. Un-
fortunately, both the statement and the proof of the current lemma are more 
complicated. 

LEMMA 7.14. Suppose that the sequence {£„} obeys the linear difference 
equation (7-4-7) and that the characteristic polynomial ip satisfies the root 
condition. Denote by {jn} the coefficients defined in Lemma 7.12. Further-
more, let B, ß, and A be positive constants such that, for n = 0 , 1 , . . . , N, 

r 

£ i6i.»i s B> (7-4-8) 

lfrj.nl < ß, (7-4-9) 

|A„ |<A. (7.4-10) 

Let h £ [0,1/ß), and suppose that the starting values for {£„} have the bound 

H:= max |£„|. (7-4-11) 

Then the sequence {£„} obeys the bound 

\Çn\<Kexp(nhBr), n = 0 , 1 , . . . , AT. 

Here, 
K := T(NA + AEr), 

_ sup|7„| 
"~ 1-hß' 

A := l + | a r _i | + |a r_2 | + - - -+ | a 0 | . 

(Notice that sup |7„| exists by Lemma 7.12.) 

PROOF: The proof involves tedious algebra, details of which we merely sketch. 
Start by summing the following n — r + l equations, obtained from Equation 
(7.4-7): 

/ r-X \ / r \ 

- To I h^2bjMi + Ao I, 

T n - r I £n + £ a j £ . ? + n - r I = 7n-r I ^ ^ n - r ^ j + n - r + <*n-
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One can use Lemma (7.13) to reduce the left side of the resulting equation 
to the expression £n + (i), where 

( i ) : = ( a r _ i 7 „ _ r + f- a o 7 n - 2 r + l ) £ n - l + h aojn-rto-

The right side of the resulting equation has the form (ll) + (ill) + (iv), where 

(ll) := hbr,n-r7o£n, 

( i l l ) : = h[(br-iin-r70 +br,n-r-l7l)tn-l 

+ 1" (&0,n-r70 + 1" &r,n-2r7rKn-r + &0,07n-r£o], 

(iv) := A„_r7o + A„_r_i7i H hXojn-r-

Now set £n + (i) = (il) + (HI) + (iv), rearrange, and use the bounds (7.4-8) 
through (7.4-11) to obtain the inequality 

n - l 

l£n| < A/?|£»| + ASsuplTt lVKyl + AfAsup|7 t | + i4Ersup|7 t | , 

(II) > J^—^ (IV) (I) 
(m) 

where the underbraces indicate the origins of the terms on the right. Since 
1 — hß > 0 by hypothesis, 

n - l 

( l -A/?) |« n | < hBsup\lk\Y2\Zj\ + (JVA-MEr)sup|7*|, 
j=0 

which implies that 

n - l 

K„| < hBT^fa] + T(NA + AZr). 

- ° ' K ' 
We now claim that |£n | < K(l + hBT)n, which suffices to show that |£n | < 

K[exp(hBr)]n and finish the proof. To establish this claim, observe that it 
holds for the starting values £o,£i> • • • Ar-i, since Lemma 7.13 implies that 
A sup |7fc| > 1 and hence that K > S. We now use mathematical induction, 
showing that the claim is true for £„ whenever it holds for £o,£i, ■ • • ,&»-i-
Problem 15 asks for details of this induction. I 

Finally, we arrive at the main theorem: Consistency and stability imply 
convergence. 

THEOREM 7.15. Whenever the function f in the IVP (7.4-2) is continuous 
and satisfies a Lipschitz condition with Lipschitz constant L > 0, a consistent, 
stable multistep scheme of the form (7.4-1) is convergent. 
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PROOF: Denote by {un} the sequence generated by the multistep scheme 

r - l r 

/ • $ > / „ + , ■ , (7-4-12) 
;=0 j=0 

with starting values «o, « i , . . . , « r - i - Also, define 

Sh := max \u(tn) - w„|, 
0 < n < r - l 

where u(t) signifies the exact solution to the ivp (7.1-1), and assume that 
lim/,_o $h = 0. We must show that 

lim [u(tn) - un] = 0, 
h — 0 

for all t G [a,b]. The argument proceeds in three stages, the first of which 
involves the most work. 

In the first stage, we estimate the truncation error TV,((„,U„). For this 
task, let w(t) be the solution to the IVP 

«'(0 = f(t, «)> u(tn) = un. 

By definition, 

Th(tn,U„) -
l r 

w(tn+r) + ^2ajw(tn+j) -h^bj f(tn+j,w(tn+j)) . 
;=o j=o ' ~y " 'J 

(7.4-13) 
Now for any e > 0 define 

d(e):= sup \\w'(t)-w'(t)\ : t 6 [t - e,t + e] n [a,b}\. 

(See Figure 1.) If e\ > (2, then rf(fi) > ^(€2), since <i(fi) is the supremum 
of a possibly larger set. Thus d is a nondecreasing function. Also, since 
w'(t) = f(t,w(t)) is a continuous function of t on the closed interval [a,b], 
it is uniformly continuous there, and consequently d(e) —+ 0 as e —+ 0. From 
these observations, we deduce that 

w'(tn+j) = w'(tn) + 9jd(jh), (7.4-14) 

for some number Oj 6 [—1,1]. Furthermore, by the mean value theorem, 
there exists a number C,j & (tn,tn+j) such that w(tn+j) — w(tn) + jhw'(Çj), 
a relationship that we rewrite in the following form: 

w(tn+j) = w(tn) + jh [w'(tn) + Vjd(jh)], (7.4-15) 
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FIGURE 1. The interval [t — e, t + e] D [a, b] for a particular value 
oft<E[a,b]. 

for some rjj G [—1,1]. 
Substituting the expressions (7.4-14) and (7.4-15) into the truncation error 

(7.4-13) and rearranging gives 

Th(tn,Un) 

Co Ci 

+ h 
r - l 

rr]rd(rh) + Y^Jajr)jd(jh) - h ̂  bj0,d(jh) \. 
i=o -I j=o J 

Consistency implies that CQ = C\ = 0. From this observation and the fact 
that d is nondecreasing, we obtain the desired estimate, 

M * n , «n)| < (r + J2i\ai\ + J2 I M W A ) = Cd(rA), 
^ j=0 j=0 ' 

where C is a positive constant. We rewrite this estimate in the slightly more 
useful form 

r - l 

w(tn+r)+'^2 ajw(tn+j)-h ] P bjf(tn+j, w(tn+j)) = KnCd(rh), (7.4-16) 

for some number K„ € [—1,1]. 
In the second stage of the proof, we derive a recursion relation for the local 

error e„ := w(tn) — un. Multiplying Equation (7.4-16) by h and subtracting 
Equation (7.4-12) from the result yields 

r - l 

£n+r + 2_jaj£n+j — ^ 2 ^ ^ n + J £n+j = flKnCd(rh), 

°j,n *n 

where 

£m
l[f{tm,w{tm))-f{tm,Um)], if £m # 0, 

0 if £m = 0. 
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The final stage of the proof uses Lemma 7.14 to estimate the error e„ for 
all levels n = 0,1, 2, The hypothesis that / obeys a Lipschitz condition 
implies that \f(tm,w(tm)) - f(tm,um)\ < L\w(tm) 

~ um\ — L\sm\. Hence 
\gm\ < L. Now we use the hypothesis of stability, together with Lemma 7.14 
and the identifications 

{^} = {£n}, S = *fcl A = hCd(rh), 

r 

N = (tn-t0)/h, B = LY,\bj\< 
j=o 

to deduce that the sequence {£/,} of errors obeys an estimate of the form 

knl < r hCd{rh) + A6h exp[(*„ -t0)L]. 
h 

But both d{rh) and <5>, tend to zero as h —► 0, so |en | —► 0 as h —> 0. I 

7.5 Problems 

PROBLEM 1. Using a convergence plot (log(||error||) versus log(/»)), graph-
ically estimate the order of convergence for the Euler explicit method, the 
Heun method, and the Runge-Kutta method (7.2-5) applied to the initial-
value problem y1 = xy1?3, y(l) = 1. (The exact solution is y = [(x2 + 
2)/3]3 '2.) 

PROBLEM 2. Consider schemes of the form (7.2-2), with 

$h(s, v) = c*i/(s, v) + a2f (s + a3h, v + aAhf{s, v)) . 

Here, c*i, 02,(13, «4 are parameters that one can choose to force cancellation 
in the low powers of h occurring in the Taylor expansion of 77,. Show that, 
for smooth enough / , 

<l>h(s,v) = aif(s,v) + a2[f(s,v) + a3hdif(s,v) 

+a4hf(s,v)d2f(s,v)+ö(h2)]. 

Show that any choices of « i , 02,03, 04 for which a\+a2 = 1, 0:203 = \, and 
a2ct4 = I yield an explicit one-step scheme that is consistent with order 2. 
Show that the Heun method and the modified Euler method have this form. 

PROBLEM 3. Taylor me thods for u' = f(t, u) have the following form: 

«n+l = Un + hu'n + ■ ■ ■ + TJ A* «(,'). 



392 CHAPTER 7. ORDINARY DIFFERENTIAL EQUATIONS 

Here, u'n, uj(,... are computable from the differential equation as 

un = /(*«>"")> K = f'(t„,U„),.... 

Estimate «(5) for the initial-value problem given in Problem 1, using a Tay-
lor method with k — 3. Use a convergence plot to estimate the order of 
convergence of the method. 

PROBLEM 4. Prove that, whenever 6 > 0, 

n - l 

<I±^± = £<.+«)'. 
i=0 

PROBLEM 5. Consider the initial-value problem u' = t + u, u(0) = 0. Com-
pute u(l) to four significant digits using Euler's explicit scheme in conjunction 
with repeated Richardson extrapolation (see Theorem 6.6). 

PROBLEM 6. Consider a one-step method u„+i = un + h$h(tn,tn) having 
stepsize h. The absolute stabili ty region RA of the method is the set of 
all values of qh in the complex plane for which numerical solutions to the test 
problem u' = qu, u(0) = 1, remain bounded as n —+ oo. Find RA for the 
Euler explicit scheme. 

PROBLEM 7. The t rapezoid m e t h o d for u' = /(<,«) is as follows: 

Un + l -Un + -^h[f{tn,Un) + f(tn+l,U„ + i)}. 

(A) Explain the name of the method. 

(B) The method is implicit. Explain the heuristic behind the iterative 
procedure in which one uses 

wl'+t1) = un + 2 h /(*» ' U") + /('n + 1, «4,"H) 

to solve for f(tn+i, un+i)- When will this iterative procedure con-
verge? 

(c) What is the method's absolute stability region? (See Problem 6.) 

PROBLEM 8. Consider the explicit one-step method (7.2-2), applied to any 
ODE (7.1-1) for which / satisfies the hypotheses of Theorem 7.1. Imagine 
starting the scheme with different initial values uo,vO) thereby computing 
numerical solutions {un}n=o an(^ {^nl^o- We call the method stable if 
there exist positive constants K, ho, independent of step number n, such that, 
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whenever 0 < h < ho, \un — vn\ < K\uo — i>o| for n = 0,1, 2 , . . . , N. Prove 
that a one-step method is stable whenever $/, satisfies a Lipschitz condition. 

PROBLEM 9. One can write an implicit multistep method (7.3-4) for a single 
ODE in the simplified form 

"n+r = hbrf(tn+r, Un+r) + g, 

where g is computable from previously calculated values of «„. Consider 
solving this nonlinear equation for un+r by successive substitution. If / has 
Lipschitz constant L, show that this iterative scheme converges when h < 
(\br\L)~K 

PROBLEM 10. Complete the proof of Theorem 7.9 by showing that the multi-
step scheme (7.3-4) is unstable when its characteristic polynomial has a zero 
£ whose magnitude is unity and whose multiplicity is greater than 1. 

PROBLEM 11. Complete the proof of Lemma 7.11. 

PROBLEM 12. Compute truncation errors Th(s,v) for the Adams-Bashforth 
2-step and 3-step methods. 

PROBLEM 13. Write a computer code to implement a fourth-order predictor-
corrector scheme using a Runge-Kutta method for starting values, an Adams-
Bashforth method as the predictor, and one iteration of an Adams-Moulton 
method as the corrector. Generate numerical solutions to the initial-value 
problem y' — y2, y(0) = 1. Graphically verify the convergence rate of the 
scheme. 

PROBLEM 14. Determine constants a and 6 so that the multistep scheme 

Un+3 + OUn+2 ~ 1«n + l - «n = hb(fn+2 + fn + l) 

is consistent to order at least 3. Comment on the stability of the scheme. 

PROBLEM 15. Suppose that a sequence {£„} obeys an inequality of the form 

Kn|<Mj3|^| + Ä-, 
3=0 

where M, K > 0, and that the estimate |£j| < K{\ + M)i holds for j = 
0 , 1 , . . . , n— 1. Complete the induction in Lemma 7.14 by showing that |£„ | < 
K(l + M)n torn = 0,1,2, . . . . 
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Chapter 8 

Difference Methods 
for PDEs 

8.1 Introduction 
Partial differential equations (PDEs) occur so frequently in mathematics, nat-
ural science, and engineering that they constitute a lingua franca for the 
sciences, PDES arise in problems involving rates of change of functions of sev-
eral independent variables. The following examples involve two independent 
variables: 

f(x,y), Poisson equation; 

0, advection equation; 

0, heat equation; 

0, wave equation. 

Here, v, D, and c are real, positive constants. In the Poisson equation, the 
unknown function u depends upon the independent variables x and y, often 
regarded as space coordinates. In the advection, heat, and wave equations, u 
depends on t and x, often viewed as time and space coordinates, respectively. 
For a discussion of how these equations arise from fundamental physical prin-
ciples, see Allen et al. ([2], Chapter 1). 

These four examples serve as prototypes, but they by no means exhaust 
the possibilities. Realistic applications often involve three space dimensions 
instead of just one or two. Therefore, in practice one typically encounters 

d2u d2u 
dx2 dy2 

du du 
-di + vYx 

du nd2u 
~dt~ dx1 

d2u 2d
2u 

'dt2~cd~x^ 
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PDEs in three or four independent variables. Also, most applications involve 
coefficients that vary in space and time. The coefficients also may vary as 
functions of the unknown function u and possibly its derivatives. Finally, 
there are important applications in which the relevant PDES involve derivatives 
of u having order higher than 2. 

This chapter focuses on finite-difference schemes for the four simple exam-
ples listed above. We occasionally refer to simple generalizations but make no 
attempt at exhaustive treatment. The numerical approximation of PDEs oc-
cupies an immense and thinly settled territory. Solving realistic problems in 
this realm often calls for inspired combinations of theory, physically motivated 
heuristics, and computational experiment. Several excellent texts introduce 
the main ideas in more depth than we can provide in one chapter; interested 
readers should consult Ames [3], Lapidus and Pinder [6], and Strikwerda [9]. 

We devote the remainder of this section to the classification of PDEs; 
to a brief discussion of characteristic curves, which furnish insight into the 
geometry of PDEs; and to the rudiments of grid functions, which serve as 
the foundation for finite-difference approximations. Throughout, we restrict 
attention to equations in two independent variables. 

Classification 

PDEs in two independent variables x and y have the form 

/ du du d2u Ô2u d2u \ n , 0 , ,. 

* (*•y'M" fe • V a?« w W ■ • 7 = °' (8-1_1) 

where the symbol $ stands for some functional relationship. Given such a 
general form, one can say little about such fundamental properties of the 
solution u(x,y) as its existence, uniqueness, or smoothness. For this reason, 
it is essential to adopt classifications that help distinguish the few classes of 
equations that have practical utility from the infinity of cases that are of no 
interest. 

The order of a PDE (8.1-1) is the order of the highest derivative that 
appears. The advection equation, for example, is a first-order PDE, while the 
Poisson, heat, and wave equations are second-order PDEs. The PDE (8.1-1) is 
linear if $ is linear in each of the quantities 

du du d2u 
u' d~i% <v 0 ^ ' •"■ 

Thus the Poisson, advection, heat, and wave equations are all linear, as is the 
following generalization of the heat equation: 

= / ( * , * ) ■ 

du 
w d_ 

dx 
D(t,x) 

du 
dx 



8.1. INTRODUCTION 397 

(Notice that 4> need not be linear in the independent variables, in this case t 
and x.) The following equations, however, are nonlinear: 

du du 
dt dx 

du d 
~dt~~dx 

D(u) 
du 
dx 

0, Burgers's equation; 

0, nonlinear heat equation. 

Most of the mathematical theory of PDEs concerns linear equations of first or 
second order; equations of order higher than four seldom appear in applica-
tions. 

After order and linearity, the most important classification scheme for 
PDEs involves geometry. We introduce the ideas in the simple context of a 
first-order, linear equation, 

. .du n. .du , . 
a(t,x)— + ß(t,x)-- = y(t,x). 

dt dx 
(8.1-2) 

A solution u(t, x) to this PDE defines a surface {(t, x, u(t, x))} lying over some 
region of the (t, x)-plane, as shown in Figure 1. 

(«*). x(s)) 

**)) 

FIGURE 1. Solution surface (t,x,u(ttx)) associated with Equation 
(8.1-2), along with a smooth path (t(s),x(s)) in the (t,x)-plane. 

Consider any smooth path in the (<,a;)-plane, lying below the solution 
surface (t,x,u(t,x)) as depicted in Figure 1. Such a path has a parametriza-
tion (t(s),x(s)), where the parameter s measures progress along the path. 
What is the rate of change du/ds of the solution as we travel along the path 
(t(s),x(s))? The chain rule provides the answer: 

dt du dx du 
ds dt ds dx 

du 
ds 

(8.1-3) 
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Equation (8.1-3) holds for an arbitrary smooth path in the (2,x)-plane. 
Restricting attention to a specific family of paths leads to a useful observation: 
When 

dt dx 
— = a(t,x) and — - ß(t,x), (8-1-4) 
ds ds 

the simultaneous validity of Equations (8.1-2) and (8.1-3) requires that 

dit 

Ts=7(t,x). (8.1-5) 

Equations (8.1-4) define a family of curves (t(s),x(s)), called characteristic 
curves, in the (t, a;)-plane. Equation (8.1-5) is an ODE, called the character-
istic equation, that the solution u(t, x) must satisfy along any characteristic 
curve. Thus the original PDE collapses to an ODE along the characteristic 
curves. 

This geometry furnishes a useful solution technique for many first-order 
PDEs. Consider, for example, the advection equation, 

du du .„ „ „. 

m+vTx=°> ^ 
where v > 0. This equation serves as a simple model of the transport of con-
taminant, having concentration u(t,x), in a one-dimensional stream flowing 
with constant velocity. Let us examine the contaminant transport given the 
auxiliary conditions 

«<»•*)={i: S ltVu <8i-7> 
and 

u(t,0) = l, t>0. (8.1-8) 

Equation (8.1-7) is an initial condition, specifying the concentration at t = 
0, and Equation (8.1-8) is a boundary condition, giving the concentration 
at x — 0. These conditions imply that the initial concentration distribution 
has the form of a square wave and that the concentration at x = 0 remains 
constant at 1. Given the PDE (8.1-6) and these auxiliary conditions, we seek 
the concentration u(t, x) for all t > 0 and all x > 0. 

According to Equations (8.1-4), the characteristic curves for this problem 
satisfy the ODEs 

dx _ dt 
ds ds 

It follows that dx/dt = v. Therefore, the characteristic curves are rays of the 
form x = vt + constant. Figure 2 shows these rays. They coincide with the 
paths of contaminant particles in the river. 

Along the characteristic curves, the PDE (8.1-6) reduces to the ODE du/ds = 
du/dt = 0. That is, the contaminant concentration remains constant along 
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u= 1 

characteristic curve 

FIGURE 2. Geometry of the advection problem, showing the char-
acteristic curves and the propagation of solution values from the 
curves x = 0 and t — 0. 

the curves x — vt + constant. To compute the value of u at any point (<i, xi), 
we simply trace the characteristic curve that passes through (<i,£i) back to 
its intersection with one of the curves x = 0 or t = 0, where we have pre-
scribed the auxiliary conditions. The value u(ti,x\) is the value of« at this 
intersection. Figure 2 illustrates this construction. Explicitly, 

n(t,x) 

or 

_ r u(o,x 
- { u(t -

■{Î 

x — vt), 
x/v,0), 

if 
if 

x - vt > 0, 
x - vt < 0, 

u(t,x) if x — vt > 1, 
if x — vt < 1. 

Therefore, the initial square wave propagates to the right (downstream) with 
time, as Figure 3 shows. 

Characteristic curves are paths along which information about the solution 
to the PDE propagates from points where initial or boundary values are known. 
This idea extends to second-order PDEs, but it does not always lead to an 
effective solution procedure. Instead, it leads to a scheme for classifying PDEs 
according to the nature of their characteristic curves. 

Consider a second-order PDE having the form 

,«92u . . . d2u . .d2u 

- ( ■ • » ■ • • £ • £ ) • <81-9» 
Along an arbitrary smooth curve (x(s), y{s)) in the (x, i/)-plane, the gradient 
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«(',.*) 

FIGURE 3. Downstream propagation of the initial square wave of 
contaminant concentration. 

(du/dx,du/dy) of the solution varies according to the chain rule: 

d_(du\ 
ds\dx)' 

dx d2u dy d2u 
ds dx2 ds dydx 

dx d2u dy d2u 
ds dxdy ds dy2 

_ ±(du 
ds \dy 

If the solution u(x, y) is continuously differentiable, then these relationships 
together with the original PDE (8.1-9) yield the following system: 

« ß 7 
dx/ds dy/ds 0 

0 dx/ds dy/ds 

d2u/dx2 

d2u/dxdy 
d2u/dy2 

d{du/dx)/ds 
d(du/dy)/ds 

(8.1-10) 

By analogy with the first-order case, we determine the characteristic 
curves by asking where the PDE (8.1-9) is redundant with the chain rule. 
This occurs when the determinant of the matrix in Equation (8.1-10) van-
ishes, that is, when 

fdy\2 „dxdy fdx\2 

a{Ts) -ßlüTs+1[ds-) =°-
Eliminating the parameter s reduces this equation to the equivalent condition 

2 

- ( A ) - '£+*=•• 
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Formally solving this quadratic equation for dy/dx, we find that 

dy ^ß±s/ß
2-4a1 (g i n ) 

dx 2a 

This pair of ODES determines the characteristic curves. 
The nature of the characteristic curves in any region of the (x, j/)-plane 

depends on the value of the function ß2 — 4af. In regions where this function 
is positive, Equation (8.1-11) determines two families of real characteristic 
curves. In this case, the PDE (8.1-9) is hyperbolic. For example, the wave 
equation is hyperbolic: Replacing y by t gives ß2 — 4a j = 0 - 4 ■ (—c2) • 1. For 
second-order hyperbolic equations the characteristic curves are paths along 
which information about the value of the solution propagates, and in principle 
one can use this idea to devise solution techniques. 

In regions where ß2 — 4ay = 0, Equation (8.1-11) determines exactly one 
family of real characteristic curves. In this case, the PDE is parabolic. The 
heat equation, for example, is parabolic: Replacing y by t gives ß2 — 4aj — 
0 — 4 • D ■ 0. Finally, in regions where ß2 — 4c*7 < 0, there are no real 
characteristic curves, and the PDE is elliptic. The Poisson equation, with 
ß2 — 4ay = 0 — 4 • 1 • 1, is one of the simplest elliptic equations. 

There are rough correspondences between these categories, based on char-
acteristic curves, and certain qualitative aspects of the physical systems be-
ing modeled. Broadly speaking, hyperbolic equations model nondissipative 
or weakly dissipative physical systems. Examples include the propagation 
of light and sound and the behavior of waves in elastic solids. We often as-
sociate parabolic equations with transient, dissipative phenomena, such as 
unsteady heat conduction, diffusion, and viscous fluid flows. Finally, elliptic 
equations commonly arise in modeling the steady states of systems whose 
transient behavior obeys parabolic equations. While there are exceptions, 
these correspondences can be useful as heuristic guides to the development of 
numerical approximations. 

Grid Functions and Difference Operators 

As in Chapter 7, we construct difference approximations to PDEs by replacing 
derivatives with algebraic analogs. These analogs involve functions defined 
only at discrete sets of points in the domain of the original problem. Before 
embarking on the construction of difference schemes for specific problems, let 
us review some of the associated terminology and notation. 

If A = {xo, xi,..., I M } is a grid on an interval [a, b], then a grid function 
on A is a function U: A —+ E (or U: A —► C). As shorthand, denote the value 
U(XJ) by Uj. Any function w:[a,6] —+ R gives rise to an associated grid 
function by the identity Uj := U(XJ); we denote this obvious restriction of u 
by u: A —► K. Also, define hj := Xj — « j - i , and denote by 

h := max h; 
l<j<M J 
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the mesh size of A. 
The extension of this notation to two dimensions is straightforward if we 

consider rectangular domains. Let Ax = {xo> %i, ■ ■ ■> XM} be a grid on [a, 6] 
and A y = {yo,yi,..., t/jv} be a grid on [c,d\. Then A := Ax x Ay is a 
rectangular grid on the two-dimensional domain [a, 6] x [c,d\, as discussed 
in Section 1.5 and illustrated in Figure 4. For grid functions U: A —► M (or 
U: A —+ C ) , abbreviate U(xj,yi) as Ujj. Also, define hj := Xj — £ j_ i and 
ki := yi — yi-\. We use the symbols h and Â: to denote the mesh sizes of Ax 

and Ay, respectively. When one of the two dimensions is t ime, we typically 
alter this notation slightly, writing U" for U(tn,Xj). The t reatment of non-
rectangular domains is somewhat more complicated; Lapidus and Pinder [6] 
offer suggestions. 

y 4 t 

V-
y n - -

: : : :} 

t 
: 

Xl X2 

F I G U R E 4. A rectangular grid A = A £ x A j 

To construct algebraic analogs of derivative operators, we use the following 
difference operators : 

6+Uj := 1 
hj+i 

1 

(Uj+i-Uj), 

6-Uj := -r-iUj-Uj-!), 
rij 

Uj±i/2 ■■= \{Uj + Uj±l), 

6Uj := 
1 

^ + 1/2 
(Uj + 1/2 -u, j-1/2), )-

forward difference; 

backward difference; 

average; 

c en tered difference. 

The expressions 6+Uj, 6~Uj, and 6Uj have obvious parallels with the differ-
ence quotients used to define derivatives. 

For grid functions defined on rectangular grids, these difference operators 
act in one coordinate direction at a t ime. We specify which direction by 
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attaching a subscript: 

6xUjj := (C/j+i/2,1 - Uj-1/2,1)' 
" i+ i /2 

W'.< : = F " (Ujj+i-Uj,,), 
«J+l 

and so forth. Difference operators are linear, and they commute. For example, 
if K is a constant, then 

(>x(KUjti + Vjti) = K6xUjti + 6xVjti, 

and 
6x(6yUjtt) = 6y(6:cUjti). 

The strategy behind finite-difference approximations is to convert the dif-
ferential equations to equations that involve only arithmetic operations. We 
do this by replacing derivative expressions with difference operators. Exam-
ples include 

and 

^+1/2 V hj+\ hj ) 

We then solve the resulting sets of algebraic equations for the unknown grid 
function U that approximates u at the nodes of A. We expect the approxi-
mations to become more accurate as the mesh sizes h and k shrink. Much of 
this chapter is devoted to an inquiry into when this expectation is valid. 

8.2 The Poisson Equation 

In this section we examine the most common finite-difference approximation 
to the Poisson equation. Consider the following model boundary-value prob-
lem (BVP): 

-V2
U(*,2/) = f(x,y), ( * , s / ) e f i : = ( 0 , l ) x ( 0 , l ) , 

(8.2-1) 
u(x,y) - g{x,y), {x,y)Ç.du. 
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The boundary condition in this problem, prescribing values of u(x,y) along 
ôfi, is a Dirichlet condition. After introducing the basic difference approx-
imation and discussing its computational aspects, we sketch extensions of the 
method to generalizations of the problem (8.2-1) that involve variable coeffi-
cients and different boundary conditions. The section closes with a discussion 
of the scheme's consistency and convergence. 

The Five-Point Scheme 

The first step in constructing a finite-difference approximation to Equations 
(8.2-1) is to establish a grid on the domain. In th model problem, the domain 
is the unit square, fi := Ü U dtl = [0,1] x [0,1]. For simplicity, consider a 
uniform grid. Partition the unit interval [0,1] in each coordinate direction 
into N segments [XJ_I ,XJ] or [yi-i,yi], each of which has length h := 1/N. 
This construction yields a grid 

A := {(*,-, y,) e [0,1] x [0,1] : Xj = jh, y, = /ft}, 

as shown in Figure 1. For later use, we identify two subsets of A. The first 
contains the interior nodes: 

î î fc :={(* i ,y i )GA : l < j , / < A T - l } . 

The second subset contains the boundary nodes, except for the corners of the 
square: 

dùh ■= \(xQ,yi),(xN,yi),(xj,yo),(xj,yN) G A : l<j,l<N-lj. 

Figure 1 illustrates these sets. 
The aim is to find a grid function Uh'-^h UOßj —+ M. such that Ujti :— 

Uh{xj,yi) approximates Ujj := u{xj,yi). We do this by demanding that Uh 
satisfy a discrete analog of the true BVP (8.2-1). Straightforward application 
of the centered difference operator yields the following discrete equations: 

- (6*Uiti + 6%UJt,) = fjj, {XJ, yi) € Qh, 
(8.2-2) 

Uj,i=9j,i, (xj,yi) GdQh. 

None of the equations in this set involves the corner nodes (XQ, I/O), (^O, î/w), 
(*jv,ifo). (XN,VN)-

There are many useful ways to view the difference scheme (8.2-2). One 
is to expand the difference expressions to yield detailed algebraic equations. 
Since the grid A is uniform with mesh size h, 

%Uj,i = h-2(Uj+li, - 2Ujj + Uj-i,i) 

and 
6*Ujt, = h~\Ujil+l - 2*7,7 + UJf,-i). 
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1 

1 

0 

1 

0 I 

FIGURE 1. Uniform grid A on the square 0 = (0,1) x (0,1), 
showing points in the sets fi/, (•) and dQh (°)-

Therefore, the difference equation reduces to the following: 

- ([/,_!,, + Ujjt-i - AUjti + Uj,i+i + t/j+i,/) = h2fj>h (8.2-3) 

A second way to view Equations (8.2-2) is to regard the difference equation 
as being centered at a typical node (XJ , J/I) G Qh and to ask which nodal values 
the equation couples via nonzero coefficients. Equation (8.2-3) couples the 
five values Ujti, Uj±\ii, and Ujj±\. These values correspond to five points of 
the grid, namely (xj,yi) and its four nearest neighbors, so we call Equation 
(8.2-3) the five-point scheme for the Poisson equation. We depict this 
scheme by drawing the stencil of the difference operator 

V£ := 6l + 6l 

as shown in Figure 2. 

;+i ! ' 

; f ' 
'(-i f ' 

xi-y xi xj*i 

FIGURE 2. Stencil of the five-point scheme V^ for the differential 
operator V2 . 

A third way to view Equation (8.2-2) is to examine the corresponding 
linear system. There is one equation for each interior node in ßft and one for 
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each boundary node in dClh- Since the equations Ujj = gjj associated with 
the boundary nodes simply assign certain values Ujj to the grid function Uh, 
it is possible to use these equations to eliminate some of the nodal values in 
the difference equations —Vj[Ujti = fj,i- The resulting linear system has a 
matrix form in which the matrix has at most five nonzero entries in any row, 
a fact that the stencil in Figure 2 makes apparent. 

If we order the unknowns Ujj lexicographically, then the matrix equation 
has the following block-tridiagonal structure: 

N-l 

N-l / T 
N-l 1 

N - l • 

1 
T 1 

1 T 
1 

\ / « i \ 

1 
T) 

u2 

UjV-2 

\ U i V - l / 

= -h2 

( r , \ 
*2 

J*AT_2 

W - i / 

Each block T € R ( " - I ) X ( A T - I ) is tridiagonal: 

T:= 

-4 1 
1 - 4 1 

-4 1 
1 - 4 

and I denotes the identity matrix in M.(N 1)X(JV_1). The vector of unknowns 
under this ordering has blocks of the form 

Uj.x 

The vector on the right side contains blocks that decompose as r, = bj — f). 
The block vectors f} contain values fjj, ordered lexicographically, while the 
block vectors b,- contain the known boundary values. For j = 2 , 3 , . . . , JV — 2, 
these "boundary vectors" have the form 

9j,o 
0 

j ] .-

0 
9j,N 
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while 

b x : = 

9o,i +9i,o 
ffo,2 

</0,JV-2 

90,N-1 + 9l,N 

Î7V-1 • = -

gN,l + gN-1,0 
9N,2 

9N,N-2 
9N,N-I + 9N-I,N 

The matrix in this system is symmetric and positive definite, so the system 
has a unique solution vector. Common methods for solving systems like this 
include the successive overrelaxation and preconditioned conjugate gradient 
algorithms discussed in Chapter 4. Problem 1 calls for such an approach. 

Generalizations of the Five-Point Scheme 

One can extend the approximation (8.2-2) to accommodate variable coeffi-
cients and other boundary conditions. First consider variable coefficients. 
The Poisson equation generalizes to the following PDE: 

-V-[a(x,y)Vu] = f(x,y), 

that is, 
d_ 

dx 
a{x,y)9£ d_ 

dy 
a(x,y) 

du 
dy = f(x,y). 

This equation is elliptic if there exists a constant ao > 0 such that a(x, y) > eto 
for every point (x, y) in the domain of the problem. 

Constructing a five-point difference approximation to this equation is 
straightforward if one uses the centered difference operators: 

-6X [ajj6xUjti] - 6y [ajjSyUjj] = fjtl. 

By definition of the operators 6X and 8y, these difference equations involve 
values of a having the form a(xj_1/2,3//), a(«;, 2/1-1/2), and so forth. Problem 
2 asks for numerical experiments involving a scheme of this form. 

Handling boundary conditions other than Dirichlet conditions is slightly 
less straightforward. Let us investigate the typical treatment of the boundary 
condition 

du, 
dx (0,y) = g(0,y), (8.2-4) 

applied to the Poisson equation. Such boundary conditions, prescribing values 
of the directional derivative du/dn of u normal to the boundary 9Q, are called 
Neumann conditions. 

To approximate the condition (8.2-4), we establish a line of "fictitious" 
nodes (x-\,yi) along the left boundary of fl, as shown in Figure 3. We then 
discretize Equation (8.2-4) by applying the centered difference operator: 

f>xUo,l J_ 
2/i 

(Uij - U-ij) - </o,i- (8.2-5) 
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The problem with this equation is that it involves an unknown nodal value 
U-ij that does not appear in the original list of unknowns for the numerical 
domain fi/» U dClh- We rectify this problem by assuming that the difference 
equation (8.2-3) holds at each of the boundary nodes (xo,yi). Thus, 

[/_i,, + 1/0,1-1 ~ 4tf0,i + U0,i+i + Uh, = -h2f0J. 

The discrete approximation (8.2-5) implies that U-\t\ = U\t\ — 2hgoti, so we 
replace the five-point approximation centered at (xo,yi) by the equation 

üb,i-i - 4C/0>/ + 00,1+1 + 20i,/ = -h2f0,i + 2hg0,i. 

This equation incorporates centered differences into the boundary condition 
while referring only to nodal values Ujj associated with the original compu-
tational domain Q/, U dClh ■ 

j 

3 1 

y2 f 

•Vl Ï ' 

1 

1 

1 < 

1 1 

1 ( 

1 1 

1 

FIGURE 3. Finite-difference grid on the unit square ÇI, showing 
the line of fictitious nodes (x-i,yi) used to approximate Neumann 
conditions on the boundary segment x = 0. 

Problem 1 provides an opportunity to apply this approach. It is a worth-
while exercise to derive an analogous technique for approximating Robin 
conditions, which have the form 

du 
u(x,y) + b(x,y)—(x,y) = g(x,y), (x,y)€SÎ. 

Consistency and Convergence 

We now ask how well the grid function Uh, determined using the five-point 
scheme (8.2-2), approximates the exact solution u of the Poisson problem 
(8.2-1). As for the numerical solutions to ODES, it is important to distinguish 
between two ways of assessing a difference approximation. The first measures 
how well a difference analog approximates a differential operator: 

DEFINITION. Let Ch denote a finite-difference approximation, associated with 
a grid Ah having mesh size h, to a partial differential operator C defined on 
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a simply connected, open set D C K". For a given function <p £ C°°(D), the 
truncation error of Ch is 

rh(x) := ( £ - Ch)f{x). 

The approximation Ch is consistent with C if 

lim Th (x) = 0, 
fc—0 ' 

(8.2-6) 

for allx G D and all (p <E C°°(D). The approximation is consistent to order 
pifTh(x) = ö(h>>). 

The notation r/,(x) masks the formal dependence of truncation error on the 
function ip. This convention suggests that h is the important parameter and 
that we should view <p as an arbitrary function, chosen simply as a "test bed" 
for the assessment of £/,. 

To illustrate the definition, we prove the following: 

PROPOSITION 8.1. The five-point difference analog — V2, is consistent to order 
2 with - V 2 . 

PROOF: Pick <p £ C°°(Q), and let (x,y) e fi be a point such that (x ± 
h, y), (x,y±h) £Ü\J dQ. By the Taylor theorem, 

<p(x±h,y) = <p(x,y) ± hJ^(x>y)+Y~dx*(X'y^ 

h3d3<p 

3! dx3 (*, y) + 4! dx4^ ,Vh 

where (* are points in the interval [x — h, x+h). Adding this pair of equations 
and rearranging the result, we arrive at the following relationship: 

1 »2 
■jj[<p(x + h,y)-2<p(x,y) + <p(x-h,y)) - ^jO*.«/) 

£?(C+,y) + g(C,y) 4! 

(8.2-7) 

By the intermediate value theorem, 

gr,y)+£?(<-,.) 20(C,y), 

for some £ € (x — h, x + h). Also, the expression in square brackets on the 
left side of Equation (8.2-7) is just 6lip(x,y). Therefore, 

d2<p h2d4 
c2 / \ O f f x "■ u i p , , , 
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for some £ G {x — h, x + h). Similar reasoning shows that 

dy*( 'y>+ 12dy* 
c2 . . d2<p. . h2d4v>, . 
K<p(x, y) = TTj(x> y) + ^ â û l 1 ' »?)> 

for some point »7 S (y — h, y + h). We conclude that 17,(1:, y) = (Vf, — 
V2)(*,y) = 0(/i2). I 

Consistency does not guarantee that the solution to the difference equa-
tions approximates the exact solution to the PDE. To capture the latter 
concept, we make the following definition: 

DEFINITION. Let ChUh{xj) = / ( X J ) be a finite-difference approximation, 
defined on a grid having mesh size h, to a PDE Cu(x) = / (x) on a simply 
connected open set D C K". Assume that U^{XJ) = u(x;-) at all grid points 
Xj that lie on the boundary 3D. The finite-difference scheme converges (or 
is convergent ) if 

max 
i 

U(XJ) — Uh(xj) —► 0 as ft —+ 0. 

For the five-point scheme applied to the Poisson equation, there is a direct 
connection between consistency and convergence. We show that the estimate 
Th{x,y) = 0(h2) implies that maxj \UJj — Ujj\ = 0(h2) for the problem 
(8.2-1). Underlying this connection is an argument based on the following 
principle: 

THEOREM 8.2 (DISCRETE MAXIMUM PRINCIPLE). / / V\Vjtl > 0 for all points 
(xj,yi) G fi/,, then 

max Vj 1 < max Vj /. 
(*>,yi)€n* ■" (r,-,»i)eanfc 

If V2
hVjti < 0 for all (Xj,yi) G üh, then 

min Vj i > min V 1. 

In other words, a grid function V for which V | V is nonnegative on Qh at-
tains its maximum on the boundary d£lh of the grid. Similarly, if Vj;V is 
nonpositive on Qh, then V attains its minimum value on dfth ■ 

PROOF: The proof is by contradiction. We argue for the case V\Vj:\ > 
0, the reasoning for the case V\Vjj < 0 being similar. Assume that V 
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attains its maximum value M at an interior grid point (xj,yi,) and that 
max( Iy iJ I)6ant Vjj < M. The hypothesis V^V^j > 0 implies that 

Vj,L < ^(Vj + 1,L + Vj-\,L + Vj,L + l + K/,L-l). 

This relationship cannot hold unless VJ+I.L = Vj-\tL — K/,z,+i = V],L-\ — 
M. If any of the corresponding grid points (xj+i,yi),(xj-i,yL),(xj,yL+i), 
or (xj,yL-i) lies in d£lh, then we have reached the desired contradiction. 
Otherwise, we continue arguing in this way until we conclude that Vj+j,z,+; = 
M for some point (xj+j, VL+I) £ dQh, which again gives a contradiction. I 

The discrete maximum principle leads to several interesting conclusions 
that have close parallels in the theory of partial differential equations: 

COROLLARY 8.3. 

(i) The zero grid function (for which Ujj = 0 for all (xj,yi) 6 SlhVdSlh) 
is the only solution to the finite-difference problem 

V2
hUjit = 0 for {xj,y,)enh, 

Uj,i = 0 for (xj,yi)edSlh. 

(ii) For prescribed grid functions fjj and gjj, there exists a unique solu-
tion to the problem 

^lui,i = fj.i f°r (xj,y,)eQh, 

ui,i = 9j,i for (xj,yi) G dQ.h. 

PROOF: Both statements are exercises. I 

For our immediate purpose, the discrete maximum principle allows us to 
estimate a grid function V in terms of its discrete Laplacian V£ V. Two norms 
are useful in stating and proving the estimate: 

DEFINITION. For any grid function V: Qh U <9fi/, —► M, 

||V||n := , max \Vj,,\, 

\\V\\an := max \Vit,\. 
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LEMMA 8.4. If the grid function V.Slh U 0 0 A —► ffi satisfies the boundary 
condition Vjj = 0 for (XJ, yi) G ÔQ/,, then 

\\V\\ti < | | |V jK | | n . 

PROOF: Let v :— ||V^K||n. Clearly, for all points (xj,yi) E Q&, 

-v < VjV5,i < i/. (8.2-8) 

Now define W: Çlh U 9 f i h - 1 by setting W,-,, := i[(ay - | ) 2 + (w - | ) 2 ] , 
which is nonnegative. One can check that V\Wjj = 1 and that ||W||dn = §• 
The inequality (8.2-8) implies that, for all points (xj,yi) € îîh, 

Vl{Vj,i + vWjù > 0, 

vl<Yi,i - vWi,i) < o. 

By the discrete maximum principle and the fact that V vanishes on dQh, 

Vj,i < Vjj + vWj,, < v\\W\\en, 

Vjtl > Vjj-vWj,, > -vWWWoti. 

Since \\W\\dn = i , ||V||„ <\u= \\\V\V\\a. ■ 

Finally we prove that the five-point scheme for the Poisson equation is 
convergent. 

THEOREM 8.5. Let u be the solution to the BVP (8.2-1), and let Uh be the 
grid function that satisfies the discrete analog 

UJ,I = 9j,i, for (xj,yi)edüh-

Then there exists a positive constant K such that 

\\u-Uh\\n<KMh2, 

where 

M := max 
Ô4u 

ax4 
a4« 

dzxdy 
— I dAJ-

The statement of the theorem implicitly assumes that M € C4(fî). This 
assumption holds if / and g are smooth enough. 
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PROOF: Following the proof of Proposition 8.1, we have 

(VÏ - V2) «,,, = g ' a
4 « , , . a 4 «. 

for some points Cj € ( X J _ I , X J + I ) and r)i G (yi_i,j/i+i). Therefore, 

- ^ f c « i , i = />, ' 

2 r»4 

12 
d4u 
Ox4 

,J- N Ö 4 « , ' 

If we subtract from this identity the equation —V\Ujti — fjj and note that 
u — Uh vanishes on dQh, we find that 

VÊK»-C0.0 = y5 
dAu d4u, 
Ô - T ( 0 , Î / ; ) + O - 4 ( ^ . ' ? / ) ôz öj/4 

It follows by Lemma 8.4 that \\u - Uh\\n < g||V^(u - Uh)\\n < «MA2 

8.3 The Advection Equation 

The numerical solution of the advection equation raises new issues. The 
differences arise from the nature of the equation's characteristic curves, which 
Section 8.1 describes. Consider the model initial-value problem (ivp) that 
consists of the PDE 

du du 
for — oo < x < oo, t > 0, 

with v > 0, together with the initial condition 

(8.3-1) 

u(0, x) = f(x), for — oo < x < oo. 

This problem has a solution whose value remains constant along the charac-
teristic curves x — vt = constant. In particular, u(t,x) = f(x — vt). A more 
suggestive view of this fact is as follows: The value of the solution u at a 
point (to, Xo) depends only upon the values of u at points in the set 

{(<, i ) £ l 2 : x - vt = x0 - vt0, 0<t< to}, 

illustrated in Figure 1. We call this set the exact domain of dependence 
of the PDE at (to, xo). 

This geometry plays a crucial role in numerical solutions. In addition to 
being consistent, a finite-difference approximation to the advection equation 
must respect the equation's exact domains of dependence, in a sense that we 
clarify below. Otherwise, the resulting approximate solution fails to depend 
continuously upon the initial and boundary values imposed. Such approxi-
mate solutions are useless. 
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(t0.xQ) 

FIGURE 1. Exact domain of dependence for the advection equation 
at a point (to,xo). 

This consideration leads us to the notion of stability. Later in this section 
we examine a method, attributed to von Neumann, for testing the stability 
of finite-difference approximations to PDEs. We then establish a useful theo-
retical relationship among consistency, stability, and convergence, paralleling 
results for ODES discussed in Section 7.4. 

The Courant-Friedrichs-Lewy Condition 

We begin by examining geometric constraints imposed by the exact domains 
of dependence. Define a grid in the (t, a;)-plane as follows: Let 

A« := [nk : n = 0 , 1 , 2 , . . . } , 

Ax := [jh : i = 0 , ± l , ± 2 , . . . } , 

and set A := At x A*, as drawn in Figure 2. Consider the following finite-
difference approximation to Equation (8.3-1): 

Un+L — U? TT? — 77" 

stup + v6:up = u> k
 u> + v

u> h
u^ 0. (8.3-2) 

We denote this scheme as FB, since it uses the forward difference operator in 
t and the backward difference operator in x. 

Equation (8.3-2) reduces to the simpler form 

up^uf-ciup-up.i), (8.3-3) 

where C := vk/h is the Courant number. Thus FB is an explicit scheme: 
One can solve for each value {/"+1 at the new time level n + 1 in terms of 
previously computed values associated with time level n. 
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C>\ 

FIGURE 2. A grid in the (t,x)-plane, showing the exact domain 
of dependence of the advection equation at the point (3fc,4/i) and 
the numerical domain of dependence associated with a forward-
backward difference scheme. 

The simplified form (8.3-3) reveals a peculiar feature of the scheme FB. 
Consider the "ancestry" of a typical value U", say U$. According to Equation 
(8.3-3), we compute this value using the two values U\ and V\. These values, 
in turn, depend upon the three values U\, U$, and U^, which depend upon 
the prescribed initial values U°, U^, U!j, and U°. In short, U\ depends upon 
the values £/." associated with nodes (tn,Xj) that lie in the region shaded in 
Figure 2. We call this region the numerical domain of dependence of the 
scheme FB at (3fc,4ft). 

When C > 1, the characteristic curve x — vt = constant passing through 
the point (3k,4h) lies outside the shaded region. In other words, the exact 
domain of dependence at (Zk, Ah) lies outside the numerical domain of depen-
dence of FB at this point. The value of U\ determined using FB with C > 1 
cannot "see" values at the previous time levels that determine the exact so-
lution u(3k,4h). We demonstrate below that this circumstance prevents the 
values generated by the numerical scheme from depending continuously upon 
the initial data. 

One can generalize this observation: 

COURANT-FRIEDRICHS-LEWY (CFL) CONDITION. A necessary condition for 
the convergence of a finite-difference approximation to an initial-value prob-
lem is that the numerical domain of dependence at any grid point contain the 
exact domain of dependence at that point. 

It is easy to show that FB satisfies the CFL condition when C < 1. If we think 
of computations on a fixed spatial grid with a given value of v > 0, then the 
CFL condition Ar < h/v imposes a restriction on the allowable time step A;. 
Restrictions like this are typical of explicit schemes. (An interesting but less 
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useful observation is that, when v is constant, FB yields exact solutions to the 
model problem when C = 1.) 

We can interpret the CFL condition in terms of the growth of errors in 
the initial data. Define a shift operator S on grid functions by the equa-
tion SUP := C/,"+1. This operator has an inverse defined by the relationship 
S~1Uj> = Ujl_l. In terms of 5 we can rewrite Equation (8.3-3) for the model 
ivp in the form 

up = (i - c + cs-^up-1 = ■■■ = {i-c + cs~l)nuf 

= ( 1 - C + CS- 1 ) " / ; , 

where we have used the initial condition to rewrite U°. The binomial theorem 
then yields 

up = ÈQa-cncs-1)"-"/* 

m=0 N ' 
(i-crcn-m/j.(„_m). 

If, instead of the exact initial data fj, we use erroneous data fj±t, where 
e > 0, then the computations yield an inexact solution 

m = 0 

Subtracting the equations for Up and Ûp and using the triangle inequality 
then yields the estimate 

up - up <<±(:y-crc~ 
Now consider how different values of the Courant number C affect this 

estimate. When 0 < C < 1, 

m=0 v ' 
c\mcn-m = (i - c + c)n = i. 

In this case, \Up — Ûp\ < e; small errors in the initial data yield small errors 
in the solution computed at later time levels. However, when C > 1, 

^2 (n\l - C\mCn-m = (2C - 1)". 
m=0 ^ ' 
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In this case, the error estimate reduces to 

\Uf-Û?\<{2C-\)nc. (8.3-4) 

This inequality is sharp: Equality occurs when the erroneous initial data have 
the form f};+(—1)J (.. We conclude that the scheme FB with C > 1 allows small 
initial errors to grow arbitrarily large as the calculations progress. Especially 
distressing is the fact that, as we reduce the time step k, the exponent n 
required to reach a fixed time level increases; hence smaller time steps can 
lead to more rapid error growth. 

In light of this reasoning, we associate the CFL condition with stability. 
Before elaborating, let us establish directly that the scheme FB is convergent 
when the CFL condition holds. 

THEOREM 8.6. If the CFL condition holds and the solution u(t,x) is twice 
continuously differentiable, then the approximation FB to the advection equa-
tion is convergent. 

PROOF: Begin by examining the truncation error Tkih(t,x) of the difference 
scheme. By the Taylor theorem, 

u(t,x-h) = u(t,x)-h—(t,x)+ y ^ J ^ . O -

Therefore, 

Similarly, 

We conclude that 

6xu(t,x)=-(t,x)---^(t,Q. 

, j . , ^ du, . k d2u, 
6tu(t,x) = ^(t,x)+-w(r,,x). 

6+u(t, x) + v6x u(t, x) = -rkih(t, x), 

where Tkth(t,x) — 0(k + h). Subtracting the difference scheme (8.3-2) from 
this equation yields 

<5t
+e" + v6~e" = -rkth(tn,Xj), 

where e? := uf — UP. By rearranging and using the triangle inequality, we 
find that 

Kn+1l ^ li-cWeW + cw.j + tfaAtn.xj)]. 
Since 0 < C < 1, |1 - C\ = 1 - C. Letting 

En :=max|c? | , Tn := max \rkih(tn, Xj)\, 
i J i 
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we obtain 
#n+i < (i _ c + C)En + kTn 

< En~l + kTn~l + kT" 

< ■■■ < E° + k^2Tm. 
m = l 

Using exact initial data for Uf guarantees that E° = 0. Therefore, 

En+1 < nk max T" = W(k + h). 
l<m<n 

Since the right side tends to 0 as h, k —* 0, the scheme FB converges. I 

Stability 
While the CFL condition has a clear connection with the growth of errors in 
certain difference schemes, not all approximations to time-dependent PDEs 
admit such a compelling picture. We turn now to a more general view of 
stability and to a popular method for assessing it. 

We treat the grid functions under consideration as being defined on a 
spatial grid A r = {XJ = jh : j = 0 ,±1 ,±2 , . . . } . The temporal grid is 
A t = {tn = nk : n = 0 ,1 ,2 , . . .} . For any grid function V: Ax - * C , define 
the discrete L2 norm ||V||2 as follows: 

oo 

\\V\\l:=h £ |VS |2-
; = - o o 

A finite-difference scheme for a time-dependent PDE generates a sequence 
{Un} of spatial grid functions, starting with initial data in the form of a 
spatial grid function U°. At issue is whether the data U° control the growth 
of {Un}. 

DEFINITION. A finite-difference scheme for a time-dependent PDE is s table 
if, for any time T > 0, there exists a constant K > 0, independent of time 
step k and spatial mesh size h, such that, for any initial data U°, the sequence 
{£/"} generated by the scheme satisfies 

\\Unh < K\\U%, 

whenever 0 < nk < T. 

(The constant K may depend upon T but not on the number of time steps 
taken to reach a fixed time t < T.) 

To illustrate, let Uj and t/P denote exact and erroneous initial data, re-
spectively, with \\U° — U°\\2

i = e. Applying a stable, linear difference scheme 
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to a well posed PDE, with Uj — Ûj as initial data, yields a sequence of spatial 

grid functions Uf - Ûf that satisfy the inequality \\Un - Un\\\ < Ke, for any 
time level n < T/k. In other words, the error depends continuously upon the 
initial error. This continuous dependence does not hold for the scheme FB 
with C > 1. On the contrary, the estimate (8.3-4) shows that the magnitude 
of the error at any fixed time level T may increase without bound as k —► 0, 
since (2C - l ) n -» oo as n = T/k -+ oo. 

Testing for stability by applying the definition directly is difficult for most 
schemes. A technique proposed by von Neumann often makes the task easier. 
Roughly speaking, we decompose a hypothetical grid function error into har-
monics and examine how the difference scheme propagates a typical harmonic 
as the timestepping progresses. 

We use ideas from Fourier analysis. Consider first the case when h = 1 
and Ax = {.. . ,—2, -1 ,0 ,1 ,2 , . . . } . Given a grid function V: Ax —* C, its 
Fourier transform is 

1 

J = — OO 

where i = y/=ï. Thus :FV:[-7r,7r] — C, and ( J V ) ( - x ) = {FV)(ir). The 
Fourier transform of a grid function V defined on Ax is the complex-valued 
function that has the nodal values Vj as its Fourier coefficients. Given the 
Fourier transform TV, we recover the nodal values by computing its Fourier 
coefficients: 

This relationship is the Fourier inversion formula. By the Parseval iden-
tity and the fact that h = 1, 

l(JT0(0l2<*e= £ W2-||VïH. (8.3-5) 
-"■ ; = - o o 

(See Problem 4 for proof.) 
When h ^ 1, we obtain the Fourier transform of a grid function V: Ax —► 

C through a change of variables, from the interval [—7r, n] to [—ir/h,ir/h]. 
The nodal values 

Vj = 4 = f'h eiihi{TV){t) di (8.3-6) 
V27T J-x/h 

are now Fourier coefficients of the function 

h °° 
p V m = £ e-WXVj. (8.3.7) 

* j=—oo 

In this more general setting, Equation (8.3-7) defines the Fourier transform, 
and Equation (8.3-6) serves as the corresponding Fourier inversion formula. 
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The Parseval identity now gives 

-r/h 
W^VWba-'/h.r/k]) = I*'* \{TV){0?di = h f ; |VS|2 = ||K||i. (8.3-8) 

J-TC/h „■ j = - o o 

This identity is the key to von Neumann stability analysis. Suppose that a 
finite-difference scheme for a time-dependent PDE generates a sequence {Un} 
of grid functions defined on A*. The scheme is stable if and only if, for any 
time T > 0, there exists a positive constant K, independent of time step k, 
such that, for all initial data U°, 

| | ^ n | M [ - , / M / f c ] ) < * l l ^° IU»( [ - . /M/»] ) . 

whenever 0 < nk < T. 
This observation suggests that we translate stability analyses of finite-

difference schemes to the Fourier transform domain. In this latter realm the 
analysis frequently reduces to algebra involving complex exponentials. To 
see how the procedure works, consider the scheme FB, which we write as 
Up = (1 - C)Up~l + CUp~f. This relationship and the Fourier inversion 
formula (8.3-6) allow us to rewrite the grid function Un, yielding 

U? = -}= [ eijh<(l -C + Ce- '7 ,«)(^f7"-1)(0d£. 
V2w J-T/h 

by using the Fourier inversion formu 

Up = -±= j * ^ e*"*{TV»)(i) d*. 

-TT/h 

We also rewrite Un by using the Fourier inversion formula directly: 

rx/h 

-x/h 

It follows that 

(?Un)(t) = (1 - C + Ce-il*)(fUn-1)(t). 

A(hO 

Repeated application of this relationship yields 

(W)(0 = [A(honru°)(0-
Hence, 

liwil^a-,/*,,/*]) = r'h \A{K)?n\ru°\Ui. 
J — ir/h 

We call the function A(9) := 1 — C + Ce~,e the amplification factor 
for FB, since the magnitude of this function determines the growth of the 
Fourier transform TUn and hence of the grid function Un as timestepping 
proceeds. To keep ||(/n||2 bounded, it suffices to demand that \A(0)\ < 1 for 
all values of 9. For the scheme FB, the values of A{9) = 1 — C + Ce~'9 lie 
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on the circle of radius C centered at the point 1 — C in the complex plane, 
as drawn in Figure 3. We conclude that \A(0)\ < 1 for all values of 0 if and 
only if \C\ < 1. This condition is identical to the constraint deduced from 
the CFL condition. Because the scheme FB is stable only for certain values 
of the Courant number C = vk/h, we say that the scheme is conditionally 
stable. 

FIGURE 3. Locus of the values of the amplification factor A(6) 
for the difference scheme FB. 

To streamline the technique, observe that one obtains identical results 
simply by substituting a typical nonzero Fourier mode vne'iht for {/" in the 
difference scheme. For example, consider the scheme BB ("backward in t, 
backward in x") for the advection equation: 

-* 7-^ + V ' , 3 X = 0. 
k h 

Replacing U" by i /V-7^ and rearranging, we obtain 

xTJlK _ „n-lgijftf + 3|* fvneijh( _ vnei(j-l)h(\ _ Q 

Dividing through by e'-7^, we find that 

[l + C(l-e-ih()]vn = vn~1. 

Therefore, vn = A(h£)vn~1, where the amplification factor is A(9) = [1 + 
C(l - e - " ) ] - 1 . Since 

|l + C ( l - e - " ) | > |l + C | - | C e - < f i | 

= 1 + C - C * = 1, 
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we conclude that \A(6)\ < 1, for all values of 6, independent of the Courant 
number C. Therefore the scheme BB is unconditionally stable. 

Problem 5 examines the issue of stability computationally, and Problems 
6 and 7 call for von Neumann analyses of particular difference approxima-
tions. Table 8.1 summarizes properties of a variety of elementary difference 
approximations to the advection equation. In this table, the notation C < oo 
means that the scheme is unconditionally stable. The names of the schemes 
are mnemonic; for example, BC means "backward in t, centered in x." 

Table 8.1: Properties of difference schemes for the advection equation with 
v > 0 . 

Scheme 

BB 

BC 

BF 

CB 

CC 

CF 

FB 

FC 

FF 

Formula 

(Sr+v6-)Up = 0 

(6r + v6x)U? = 0 

(6r + v6+)U? = 0 

(6t + v6-)Up=0 

(6t + vSs)Up = 0 

(6t+v6+)U? = 0 

(6++v6-)U? = 0 

(6++v6x)U? = 0 

(6+ + v6+)Up = 0 

Consistency 

0(k + h) 

0(k + h2) 

0{k + h) 

0(k2 +h) 

ö(k2 + h2) 

0(k2 + h) 

0(k + h) 

0(k + h2) 

0(k + h) 

Stability 

C < oo 

C < oo 

C> 1 

unstable 

C< 1 

unstable 

C < 1 

unstable 

unstable 

Sufficient Conditions for Convergence 

For many finite-difference approximations it is difficult to establish conver-
gence directly. By contrast, for consistency and stability we have techniques 
— Taylor series and Fourier analysis, respectively — that are often easy to 
apply. Fortunately, under rather general circumstances, one can deduce that 
a difference scheme is convergent by checking that it is both consistent and 
stable. This connection parallels results developed for ODES in Section 7.4. 
We devote the remainder of this section to a brief introduction to the theory 
applicable to time-dependent PDES. The discussion follows that presented by 
Thomée ([10], Section II.3). 
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We begin by establishing notation. Consider a pure ivp having the form 

du 
— = Cu, (t,x)e(Q,T)xR, 
dt (8.3-9) 

u(0,z) = f(x), xeR. 

Assume that the differential operator C is linear and that C and the initial 
data / have all the properties needed to ensure that a solution u(t, x) exists, 
is unique, belongs to C°°([0,T] x M), and depends continuously upon the 
initial data. 

The next step is to express finite-difference approximations to this problem 
in a somewhat abstract way that facilitates the analysis. Given grids At := 
{0, k, 2k,...} and Ax : = { . . . , —h, 0, h, 2h,...}, denote by V the vector space 
containing all grid functions V: Ax —* C. A difference approximation to the 
problem (8.3-9) presumably generates a sequence {£/"} of functions in V such 
that U" ~ u" := u(tn,Xj). In assessing the accuracy of this approximation, 
we henceforth treat u as a grid function by restricting attention to arguments 
(t,x) that belong to the grid At x Ax. With this convention, the issue at 
hand is whether the finite-difference scheme converges in the sense that | | ( /n — 
«n | |2 -* 0 as h, k -+ 0. 

One can write a typical finite-difference approximation to the problem 
(8.3-9) as follows: 

BUn+1=AUn, n = 0 ,1 ,2 , . . . . (8.3-10) 

Here, A, B: V —♦ V are operators, depending upon the mesh sizes k and h, 
that assign to a given grid function another function in V. For "reasonable" 
difference schemes, B is invertible, with ||B V||2 < 5||V||2 for some constant 
B > 0 that is independent of k and h. This being the case, Un+l = EC/", 
where E := B_ A. As a consequence, U" = EnU°. We assume in what 
follows that the numerical initial data are exact, that is, that U? = fj for 
j = 0, ± 1 , ±2 

A couple of examples make this notation more concrete. Consider first 
the scheme FB for the advection equation (8.3-1): 

up+1 = (1 + c)up - cup_u 

where C := vk/h is the Courant number. For this scheme, 

(AV)i = (l + C)V5-CVJ- i , 

(BV)i = Vj, 

for any V € V. Thus B is the identity operator on V, and we may take 0 = 1 . 
Now consider the scheme BB for the same equation: 

(1 + c)up+1 - cup+l = up. 



424 CHAPTER 8. DIFFERENCE METHODS FOR PDES 

Here, 

(BV)j = (I + CW-CVJ-L 

This operator B has an inverse defined by the equation 

In this case, | | B - 1 VJ|2 < ||V||2, and again we may take 5 = 1 . 
One can construct the operators A and B so that the truncation error at 

time level n is the grid function 

r £ h : = * - 1 ( B t i , , - A t i B - 1 ) . 

(By using Taylor expansions of the smooth solution un(x) := u(tn,x), check 
that the two difference approximations just mentioned have this form.) It 
follows that 

un = Eu""1 + un - Eu""1 = Eu" ' 1 + kB-lr2th. (8.3-11) 

For positive numbers p,q, the finite-difference scheme (8.3-10) is consistent 
to order (p, q) if 

Tk,h = 0(kp + h") as k,h-*0, 

uniformly for 0 < nk < T. As before, the scheme is stable if there exists a 
constant K > 0, independent of U°, k and h, such that | |t/"||2 < #||t/°||2-
We rewrite this condition as ||En{/°||2 < if | |^0 | |a . 

The following theorem establishes that consistency and stability together 
guarantee convergence: 

THEOREM 8.7. Suppose that the finite-difference scheme (8.3-10) is consis-
tent to order (p,q) with the PDE (8.3-9), where p, q > 0, and that the scheme 
is stable. If we use exact initial data (U° = f on Ax), then, as h,k —► 0, 

\\Un - u"||2 = 0 ( F + h<), (8.3-12) 

for 0<nk<T. 

PROOF: By subtracting the identity (8.3-11) from the difference equation 
Un = EU"-1, we have 

U"-un = E(C/"- 1 -u"- 1 ) - i tB- 1 r f c " f t 

= E2(t /"-2 - u"- 2 ) - J k E B " 1 ^ 1 - kB-lT?h 

n 

= E " ( £ / 0 - u 0 ) - J f e ^ E " - m B - 1 r t
m

A . 
m = l 
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Since U° - u° = U° - f = 0, 

\\Un-u"\\2 < nk max WE^^-'r^U 
l<m<n ' 

< T max tfUB-Vftlla, 
l<m<n 

the last step following from the hypothesis of stability. Using the boundedness 
of B - and the hypothesis of consistency, we conclude that 

\\Un-u"\\2 < TKB max | | rf t | |2 
l<m<n ' 

= 0 ( P + /i«), 

completing the proof. 1 

Further Remarks 
Regarding connections among consistency, stability, and convergence, Theo-
rem 8.7 barely scratches the surface. To begin with, the theorem as proved 
treats only pure initial-value problems for homogeneous PDEs. Incorporating 
boundary-value approximations and inhomogeneous terms into the argument 
adds only minor complications; see Thomée ([10], Section II.3) and Isaacson 
and Keller ([5], Section 9.5) for details. Also, while the proof given above ap-
plies to equations that are first-order in time, the results extend to equations 
involving higher-order time derivatives by reductions in order. For example, 
the second-order wave equation 

d2u »d2u 
c = 0 

dp dx* 

is equivalent to the first-order system 

V 

w 
d 

dx 
V 

—w = 
w 
0 

The extension of the theorem to PDEs in more than one spatial variable is 
straightforward. 

Much deeper connections exist: 

LAX EQUIVALENCE THEOREM: Given a consistent finite-difference approx-
imation to a well posed initial-value problem, stability is a necessary and 
sufficient condition for convergence. 

The proof that stability is necessary requires ideas from elementary functional 
analysis; we do not delve into the argument here. Richtmyer and Morton ([8], 
Section 3.5) give a detailed proof of this important fact. 



426 CHAPTER 8. DIFFERENCE METHODS FOR PDES 

8.4 Other Time-Dependent Equations 
Using ideas developed in the previous section, one can construct and ana-
lyze finite-difference methods for other time-dependent PDEs. This section 
introduces the rudiments of such approximations for three important PDEs: 
the heat equation, an extension of the heat equation known as the advection-
diffusion equation, and the wave equation. In discussing each equation, we 
start by reviewing some properties of the equation's solutions, deduced from 
the exact theory of PDES. We then introduce common difference approxima-
tions and discuss the convergence of each, using Theorem 8.7. 

Throughout this section, At := {0, k, 2k,...} denotes the temporal grid, 
while Ax : = { . . . , —ft, 0, h, 2h,...} is the spatial grid. 

The Heat Equation 

For the heat equation, consider the following initial-value problem: 

^■-Dp^ = 0, (*,*)€ ( O . n x K , 
dt dx* (8.4-1) 

u(Q,x) = f(x), I Ê R . 

Here, D denotes a positive constant. This PDE serves as a simple analog of 
the energy balance for rigid bodies in which heat flows occur; in this context, 
u(t,x) signifies the temperature of the body. The equation also arises in 
simple problems involving diffusion; in this context, u(t,x) represents the 
concentration of some constituent in a mixture. 

The problem (8.4-1) furnishes a convenient test for finite-difference ap-
proximations to more complicated heat-flow and diffusion problems, since it 
has a closed-form solution: 

1 f°° u(t'x)=vmLf{0exp <*-o2 

ADt 
d*. 

From this expression, one can deduce several qualitative properties of solu-
tions to the heat equation. First, whenever the initial function / is square-
integrable (that is, / £ L2(M)), the solution is smooth in the sense that 
u £ C°°((0,T] x R). Thus rough initial data give rise to smooth solutions 
in infinitesimal time. Second, the solution obeys the following maximum 
principle: 

sup|u(i,*)|<sup|/(a?)|, for t € (0,T\. 

In particular, the initial data bound the behavior of the solution at later 
times, a property that we associate with the stability of the PDE. An anal-
ogous property figures prominently in convergence arguments for discrete 
approximations to the PDE. 
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Third, no finite speed characterizes the propagation of signals in the spa-
tial domain. To see what this statement means, consider the response to a 
localized point source taking the form of a Dirac distribution, f(x) = 6(x). 
For this initial function, 

u(t,x) = 
1 

VÄirDt exp (— 
\4Dt 

) ■ 

for t > 0. For fixed t > 0, this function has the graph shown in Figure 
1. The figure illustrates that information from highly localized initial data 
propagates throughout the spatial domain in infinitesimal time. In this sense, 
the heat equation is characterized by infinite propagation speed. 

FIGURE 1. Initial Dirac distribution and subsequent solution to 
the heat equation at t > 0. 

We examine five finite-difference schemes for the problem (8.4-1). The 
first is the classic explicit scheme (FC): 

6tUf-D6lUf = Q. (8.4-2) 

By applying the definitions of the difference operators and rearranging, we 
reduce this scheme to the following: 

C/;+1 = (1 - 2TD)Uf + TD(Up+l + [/;_!), 

where T := k/h2 is the grid ratio. Figure 2 shows the stencil for this scheme. 
To check consistency, we use Taylor series to compute the truncation error: 

For any smooth solution u(t, x), 

( | - *+) u(t, x) = 0(k); (J^ - Slj u(t, x) = 0(h2). 

Therefore, the classic explicit scheme is consistent with truncation error 
Tkih{t,x) = ö{k + h2). 
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n+l T • 

/. i—}—*■ 

xj-i xj xj+i 

FIGURE 2. Stencil for the classic explicit approximation to the 
heat equation. 

To assess the scheme's stability, we employ the von Neumann technique. 
Substituting i>"e!J* for t/." in the difference equation, we find that 

I (v"+ie0« _ w»c««) = g ( „ v ü + i ) » - 2vne^8 + ü-e'Ü"1)») . 

Therefore, 

,,n+l _ " l + ^ ( e
M + e - < # -

[l+2^(cosö 1)1 

-2)" 

vn 

= n - 4 D r s i n 2 ^ j v " , 

so the amplification factor is A{8) = 1 - 4Drsin2(ö/2). Since | J4(0) | < 1 for 
all values of 6 precisely when £>r < 1/2, the classic explicit scheme is stable 
if 

k < ^ . (8.4-3) 

This conditional stability parallels that of the explicit scheme FB for the ad-
vection equation. However, in the present case the constraint is more severe, 
since the largest allowable time step h2/(2D) shrinks more rapidly as we 
reduce the spatial mesh size h. 

In light of these results, Theorem 8.7 allows us to conclude that the scheme 
(8.4-2) is convergent provided that it meets the stability condition (8.4-3). For 
this scheme, there is also an elementary direct proof of convergence: 

THEOREM 8.8. / / DT < | and we use exact initial data (U° = fj), then 
the finite-difference scheme (8.4-2) for the initial-value problem (8.4-1) is 
convergent. 
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PROOF: Call e] := u? - U?. The equations 

u]+1 = DTvÇ.i + (1 - 2£>r>? + DTu^+l + knA*«,*,)* 

Uf+1 = DTU?_1 + (l-2DT)U? + DrU?+1, 

imply that 

« l a 2
 a 3 

Now, a i + <*2 + a3 = 1, and the hypothesis DT < i guarantees that each of 
the coefficients am is nonnegative. Therefore, 

k" + 1 | < ai |e7-il + aa|e7l + O3|£7+1| + 0(fca + tÄ2) 

< max|e?| + ö(ifc2 + fc/i2). 
i J 

From this inequality we deduce an analog of the maximum principle for the 
heat equation: 

max|e" + 1 | < max |e? I + 0(k2 + kh2) 
i 3 i 

< m a x | ^ - 1 | + 20(Â:2 + ifc/l
2) 

< max |e? | + (n + l)0(k2 + kh2). 
j 

But maxj |e?| = 0, and n + 1 = tn+i/k, so max,- | e" + 1 | < tn+10(k + h2). I 

With minor modifications, the same argument establishes the convergence of 
the classic explicit scheme applied to the initial-boundary-value problem, 

^ - Z 3 0 = 0, (t,z)e(0,Tlx(0,l), 

u(0,x) = f{x), * € ( 0 , 1 ) , (8-4"4) 

u(t,0) = u(t,l) = 0, t£(0,T). 

The second finite-difference scheme for the heat equation is the fully 
implicit scheme (BC): 

6~U?+l - D62U^+1 = 0, (8.4-5) 
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xj-l xj xj+i 

FIGURE 3. Stencil for the fully implicit approximation to the heat 
equation. 

which we rewrite as follows: 

-DYU??ï + (1 + 2DT)U?+1 - DTU^ï = Uf. 

Figure 3 shows the stencil for this scheme. 
Taylor analysis confirms that BC is consistent, having truncation error 

Tk,h(t,x) = 0(k -f- h2). The von Neumann stability analysis proceeds as 
follows: Substituting u n c y - ' into Equation (8.4-5) and dividing through by 
eije yields 

„n+i -vn _ vn+1ei9 - 2vn+1 +vn+1e-ie 

that is, 

h2 

ni? 
vn+1 =w n + ^ t ; " + 1 ( 2 c o s ö - 2 ) . 

But cos9 - 1 = -2sin2(0/2), so 

vn+1 = 
l + 4DTsm2(9/2) 

The amplification factor is A{6) = [l+4£>rsin2(ö/2)]_1 , and thus \A{6)\ < 1, 
independent of 0 and T. Therefore the fully implicit scheme is unconditionally 
stable. 

We conclude from Theorem 8.7 that the scheme is convergent. An argu-
ment analogous to that given for Theorem 8.8 shows that max,- |u*? — C/"| = 
ö(k + h2). 

While unconditional stability is much preferable to the constraint D r < | 
that afflicts the classic explicit scheme, there is a cost associated with the 
benefit. Namely, one must accommodate the coupling of unknowns associated 
with time level n + 1. In the context of initial-boundary-value problems such 
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as (8.4-4), this coupling leads to the linear systems 

i + 2Dr 
-Dr 

-Dr 
1 + 2DT -DT 

-DT 1 + 2DT 

' Ui 
Ü2 

Uj 

n + 1 
Ui 

Uj 

to be solved at each time level. 
The tridiagonal matrix in this system is symmetric and positive definite, 

and hence the system has a unique solution at each time level. The need 
to solve this sequence of tridiagonal systems is not especially onerous from 
a computational viewpoint. However, in two or three spatial dimensions the 
analogous implicit schemes generate sparse matrices having larger bandwidth, 
and efficient solution algorithms become an important practical consideration. 

The motivation for the third scheme for the heat equation lies in the 
observation that, for both the classic explicit and fully implicit schemes, the 
truncation error is ö(k + h2). Consequently, reducing the spatial mesh size 
h improves the accuracy of the schemes faster than reducing the time step k. 
One can rectify this imbalance by using an averaging approach to center the 
approximation to d2u/dx2 in time: 

This is the Crank-Nicolson scheme. Figure 4 shows the stencil for this 
approximation. 

'n+1 

xj-l xj xj+l 

FIGURE 4. Stencil for the Crank-Nicolson approximation to the 
heat equation. 

To analyze the consistency of the Crank-Nicolson approximation, we ex-
amine Taylor expansions centered at the time t n + 1 / 2 := {n + %)k: 

A« -«" n + l »r1 - "-
2(4/2) 

= -£(tn+l/2,Xj) + 0(k2). 
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Also, 

1 I <■•> »1-1-1 . /■"> n \ 1 d2u, v d2u. 

Therefore, the scheme has truncation error 0(k2 +/>2); the temporal approx-
imation is accurate to the same order as the spatial approximation. 

We assess the stability of the Crank-Nicolson scheme by thinking of the 
method in two stages, each having time step k/2. The first stage has the form 
of an explicit scheme: 

By analogy with the classic explicit scheme, this stage has amplification factor 

A1(ö) = l - 4 £ > | s i n 2 ^ . 

The second stage has the same form as the fully implicit scheme: 

rrn + l _ rjn+1/2 

-"—krf—DS'ur'-
This stage has amplification factor 

1 
A2{6) = 

l + 4D(Y/2)sin\9/2) 

Taken together, these two stages are equivalent to one step of the Crank-
Nicolson scheme, in the sense that one can recover the Crank-Nicolson formula 
by eliminating {/" ' . The combined scheme has amplification factor 

W H ; 2W 1 + 2Drsin2(0/2) 

Since \A(0)\ < 1 for all values of 6 and T, the Crank-Nicolson scheme for the 
heat equation is unconditionally stable. 

The remaining schemes that we discuss for the heat equation are mainly 
of pedagogical value. The fourth scheme is the leapfrog scheme (cc): 

6tU?-D6lUf = 0. 

Figure 5 shows the stencil for this scheme. A Taylor analysis simpler than the 
one used for the Crank-Nicolson scheme shows that the leapfrog scheme has 
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n + l "* 

n 

n-l 

i ■( I—• 

À , „ .„I 
T 

-i 
_4 

xj-l xj xj+l 

FIGURE 5. Stencil for the leapfrog and DuFort-Frankel approxi-
mations to the heat equation. 

truncation error 0(k2 + h2). However, as Problem 8 indicates, the scheme is 
unstable and therefore useless. 

The fifth scheme, the DuFort-Frankel scheme, is more curious: 

w? - § [v?+i - w?+l+ur')+""-il = °-
Its stencil appears in Figure 5. We analyze the truncation error for this 
scheme by substituting Taylor series into the expression 

Tk,h(tn,Xj) = 
du 
Ht 

(tn.xrf-StV? 

-D 
u j + l (u]+1+vf-l) + ul 

h2 

After some manipulation, we find that 

In this case, 7>^ —► 0 as h, k —♦• 0, provided that k/h —► 0. 
However, if we shrink k and h in such a manner that k/h —* c2 for some 

constant c, then the DuFort-Frankel scheme is consistent with the PDE 

du oÔ2u n2u 
k r = D 

dt + dt2 dx2' 
This PDE is a version of the wave equation that includes damping effects; it 
is hyperbolic, not parabolic. Therefore the DuFort-Frankel scheme is condi-
tionally consistent. Problem 8 asks for proof that the scheme is uncondi-
tionally stable. 
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Table 8.2 summarizes properties of finite-difference approximations to the 
heat equation. 

Table 8.2: Properties of difference schemes for the heat equation. 

Scheme 

Classic explicit (BB) 

Fully implicit (BC) 

Crank-Nicolson 

Leapfrog (cc) 

DuFort-Frankel 

Consistency 

ö(k + h2) 

ö(k + h2) 

0(k2 + h2) 

0(k2 + h2) 

conditional 

Stability 

k < \h2/D 

k < oo 

k < oo 

unstable 

k < oo 

The Advection-Diffusion Equation 

We turn now to an unruly relative of the heat equation, the advection-
diffusion equation: 

du du d2u 
(t,x)e(0,T)x(0,L). (8.4-6) 

We assume that the velocity v and the diffusion coefficient D are both positive 
constants. This equation arises in mass and heat transfer problems where 
both advection and diffusion or conduction contribute to the transport. 

Although Equation (8.4-6) is parabolic, it exhibits schizophrenic behavior 
when advection dominates diffusion. In this regime, the equation tends to 
have solutions in which sharp fronts persist, much as they do for the advection 
equation studied in Section 8.3. Still, the parabolic nature of the equation 
ensures that the solution is smooth and obeys a maximum principle, 

max lufti, ar)| < max |u(<2,z)l, 
x e [ 0 , L ] ' V " _ T€[0,L] V " 

h <ti 

Numerical approximations to the PDE tend to suffer pathologic behavior, with 
the front-preserving and smoothing tendencies competing for prominence. We 
focus our brief discussion of the advection-diffusion equation on this pathol-
ogy. 

We begin by casting the PDE into a dimensionless form that helps quantify 
the relative strengths of advection and diffusion. Define dimensionless space 
and time variables by £ := x/L and d := vt/L, respectively. The chain 
rule permits us to convert Equation (8.4-6) to a PDE involving these new 
independent variables: Since d/dt = (y/L)d/dd and d/dx = (l/L)d/d£, 

du du „ 
1 P 

_1d
2u 

de = 0, (4,t)e(0,vT/L)x(0,l). 
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p - ^ u 
dx2 

u(0,x) 

u(t,0) 

£<«•» 

= o, 

= o, 

= 1, 

= o, 

(8.4-7) 

The dimensionless constant P :— vL/D is the Peclet number ; its magnitude 
indicates the degree to which advection dominates diffusion. Peclet numbers 
larger than about 100 indicate highly advection-dominated regimes. 

Henceforth we consider the following dimensionless problem: 

sill f)fi 

m+o-X~P~1
d^ = ° ' ( ' •« )€ (0,7) x (0,1), 

* € ( 0 , 1 ) , 

*e(o ,r ) , 

te(o,T). 

We examine two finite-difference approximations. 
First, consider the explicit, centered-in-space (FC) scheme: 

6tUf + 6xU?-P-l6lu? = Q. (8.4-8) 

The truncation error for this scheme is 0(k + h2), so the approximation is 
consistent. To assess stability, substitute t/V-** for (/" in Equation (8.4-8) 
and divide through by e'-7' to get 

,/>+! _ vn e<e _ t-i8 ei» _ 2 + e-i» 

-nr— + —2h-v ~ p — y — v = °-
Rearrangement yields 

vn+1 = [1 - 4rp-1sin2(6»/2) - i(k/h)sin0] vn, 

where T := k/h2 as before. Therefore, the amplification factor satisfies the 
following equation: 

\A{6)\2 = [1 - ATP-1 sin2(Ö/2)]2 + fcrsin2 6 . 
v v , s v ' 

(I) (II) 

For the first term on the right we have (l) < 1 provided that YP~X < 1/2, 
paralleling the stability analysis for the classic explicit approximation to the 
heat equation. For the term arising from advection, we have (il) = 0(k2) as 
k —* 0. Hence |-A(#)| < 1 + Mk for some positive constant M, provided that 
TP-1 < 1/2. 

How does the O(k) perturbation to the amplification factor affect stabil-
ity? The following proposition asserts that the perturbation does not disrupt 
stability. 

PROPOSITION 8.9. The approximation (8.4-8) to the advection-diffusion 
equation is stable when \A(0)\ < 1 + Mk for some positive constant M. 
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PROOF: We sketch the argument here, leaving details for Problem 10. The 
Fourier transform of the grid function Un obeys the inequality 

ii^nii*<(i+M*)2"iiwoii£2. 
Hence 

IIIHIa < (1 + Mkf'k\\U% < e"T||tf°||a, 
from which stability follows. I 

Therefore, the scheme (8.4-8) is convergent if T P - 1 < f, that is, if k < Ph2/2. 
Even though FC converges for the advection-diffusion equation, subject 

to a time-step restriction, it often yields approximate solutions that differ 
qualitatively from corresponding exact solutions. In particular, the numerical 
solutions do not always satisfy a discrete version of the maximum principle: 

THEOREM 8.10. Assume that TP'1 < \. All solutions to the finite-difference 
scheme (8-4-8) satisfy the inequality 

m a x | t / ? + 1 | < m a x | W | (8.4-9) 
i ' i 

if and only if h < 2/P. 

PROOF: First assume that h < 2/P. According to Equation (8.4-8), 

u?+1 = rp-1(i + |/iP)i/j,_i + (i-2rp-1)c/ji 

+TP-1(l-$hP)U?+1. 

The inequalities h < 2/P and T P _ 1 < 1/2 imply that 

| £ ^ + 1 | < r p - 1 ( i + i / i P ) | t / ; _ 1 | - i - ( i - 2 r p - 1 ) | c / j i | 

+rp-1( i - \hP)\u?+l\ 

< (TP-1 + 1 - 2TP~l + TP- 1 )max\U?\ = max\U?\, 
j J i J 

establishing the inequality (8.4-9). 
For the converse, we prove the contrapositive. Assume that h > 2/P, and 

consider the numerical initial data 

r/0 _ / !. i f J = 0,1, 
U* - \ 0, if j > 1, 

drawn in Figure 6. Clearly, max,- \Uf\ = 1. After one time step, 

u\ = r p - 1 ( i + iAP) + i - 2 r p - 1 

= l + df tp-^rp- 1 > i. 
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FIGURE 6. Initial grid function and subsequent solution to the 
scheme FC, violating the discrete version of the maximum princi-
ple for the advection-diffusion equation. 

In this case the inequality (8.4-9) fails, as Figure 6 illustrates. I 

Theorem 8.10 has unpleasant consequences. The condition h < 2/P de-
mands that we use extremely fine grids — which require a great deal of 
computation per time step — when the Peclet number is large. If we vio-
late the condition, then the numerical solution typically exhibits physically 
spurious wiggles near sharp fronts. Figure 7 shows such a numerical solution 
for the initial-boundary-value problem (8.4-7), together with the physically 
realistic exact solution. 

numerical 
solution 

FIGURE 7. Numerical solution to the advection-diffusion equation 
generated by the scheme FC, showing spurious wiggles near the 
sharp front. 

There are finite-difference schemes that respect the maximum principle 
under less restrictive conditions. Perhaps the simplest is the following: 

6+Up+8-up-P~1Slup = 0. 

We denote this scheme as FB; it is explicit in time and uses an approxima-
tion to du/dx that is upstream weighted, in the sense that the difference 
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operator is asymmetric with a bias toward nodes (tn, Zj-i) lying upstream of 
the central node (t„, Xj). We can rewrite this scheme in the form 

j/n+i _ TP-\l + hP)U?_1+ [l-2TP-1(l+lhP)]UJl 

(8.4-10) 
+TP~1up+1. 

Using the standard methods, one can check that the truncation error for 
this scheme is 0(k + h) and that the scheme is stable if T P - 1 < 5, as before. 
Moreover, one can enforce the maximum principle: 

THEOREM 8.11. Assume that FP'1 < \. The scheme (8.4-10) for the 
satisfies the maximum principle (8-4-9) if 

2TP-X + C < 1, (8.4-11) 

where C = k/h. 

PROOF: This is an exercise. I 

For advection-dominated problems, in which P is very large, the condition 
(8.4-11) is barely more restrictive than the stability condition. 

Figure 8 shows a numerical solution to the advection-diffusion equation 
generated using FB. AS the graph illustrates, there are no spurious wiggles. 
Instead, the difference scheme smears the sharp front. This smearing mimics 
the effect of an enhanced diffusion coefficient. We can interpret the smearing 
by examining the truncation error more closely. Explicitly retaining the terms 
from the Taylor series that are O(h), we find that 

S*U" = -Q^i^^+Oik), 

Therefore, up to terms that are 0(k + h2), the scheme FB is an approximation 
to the PDE 

du du / 1 h\ d2u _ 
It + d~i ~ \~P + 2J dx^ 

Thus physical diffusion P - 1 is augmented by a numerical diffusion term 
ft/2, which vanishes as h —► 0 but artificially smears the numerical solution on 
any realistic spatial grid. Problem 9 calls for an investigation of an implicit 
scheme that produces similar effects. 

The choice between spurious wiggles and numerical diffusion arises in most 
numerical methods for the advection-diffusion equation, and the literature on 
this issue is large and clamorous. For two points of view on the dilemma, 
consult Gresho and Lee [4] and Allen [1] 
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exact 
solution 

F I G U R E 8. Numerical solution to the advection-diffusion equation 
generated using the scheme FB, showing smearing near the sharp 
front due to numerical diffusion. 

The Wave Equation 

Finally, consider the wave equation, for which the model ivp is 

d2u ,d2u 

dt2 C <9x2 

u(0,x) 

du, 

m 

(t,x)e(0,T)x 

t e l , 

= o, 

= / (*) . 

-(0,x) = g{x), i 6 l . 

This problem has a closed-form solution given by d'Alembert 's formula: 

«(«. *) = , [ / (* - ct) + Kx + c*)l + Ö- / *>W dt-
2 2cJx-ct 

By the fundamental theorem of calculus, d 'Alembert 's formula is equiva-
lent to an equation of the form 

u(t,x)- F(x-ct) + G(x + ct) . 
s v ' " v ' 

right-running left-running 

The component F (x — ct) has a graph whose shape remains constant along the 
characteristic curves x—ct = constant of the PDE, undergoing pure translation 
to the right with speed c. Similarly, the component G(x + ct) has a graph 
whose shape remains constant along the characteristics x + ct = constant, 
undergoing pure translation to the left with speed c. Figure 9 illustrates these 
left-running and right-running components. Thus the characteristic curves for 
this hyperbolic equation play much the same role as those for the advection 
equation discussed in Section 8.3. 
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FIGURE 9. Translation along characteristic curves of left-running 
and right-running components to a solution of the wave equation. 

Perhaps the most commonly used finite-difference scheme for the wave 
equation is the explicit scheme (cc): 

or 

62U?-c262
xU? = 0, 

U?+1 - 2Uf + Uf~l
 2Uf+l-Wf + Uf_x 

(8.4-12) 

0. 
k2 h2 

This approximation has truncation error ö(k2 + h2), so it is consistent. 
To assess its stability, substitute vne*ie for U" in Equation (8.4-12). One 

obtains 
2L2 

vn + l _ 2vn + vn-l _ tj_ (e»« _ 2 + «-«•) v» = -4C2 sin2(0/2)t/\ 
h2 

where C := ck/h. Since v" = A(0)vn~1 by definition of the amplification 
factor, 

1 * vn = -4C2 sin2(0/2)A(6)vn-\ A(9) - 2 + 
A(9) 

or 
-4C2 sin\0/2) A(6) t 

v = .,.* r , ,,.,.—r v 
A($)-2 + [A(e)]-i 

Upon equating A(0) with the factor multiplying vn~l, rearranging, and taking 
square roots, we deduce that 

A(0) - 1 = ±2iCsia(0/2)^/Aj0). 

This relationship furnishes a pair of quadratic equations for \/A(0), which 
we can solve to find A(0): 

A{0) = \Jl-C2 sin2 (0/2) ± iC sin(0/2) 
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Observe that \A(9)\ < 1 for arbitrary values of 6 if and only if C < 1. There-
fore, the scheme (8.4-12) is conditionally stable, having a stability constraint 
analogous to the CFL condition for the scheme FB applied to the advection 
equation. 

The scheme (8.4-12) has a peculiar feature: We cannot apply it at the 
initial time step, when n — 0, since the values £/■ are not available. One 
way to circumvent this problem is to examine Taylor expansions about t = 0: 

du Jfc2 d2u 
u(k,Xj) = u(Q,xj) + k—{0,xj) + —-^-(0,xj) + O(k3) 

= f(Xj) + kg(Xj) + ~^(0,xj) + O(k3). 

Replacing d2u/dx2 by a centered difference expression and using the initial 
condition u(0, x) = f(x), we get 

u) = fj + k9j + ̂ f [6lfi + 0(h2)} + 0(k3). 

A corresponding difference equation for the initial time step results when we 
neglect the truncation error: 

U}=fj+kgj + ^f6lfj. 

It is possible to construct implicit difference schemes for the wave equa-
tion. The following formula defines a family of schemes, variably weighted in 
time: 

S2up - c2 [u,62
xU?+1 + (1 - 2v)6lU? + ^lUf'1} = 0. 

The choice w = 0 yields the explicit scheme (8.4-12), while the choice u> = | 
corresponds to a fully implicit scheme. For any choice of w G [0, | ] , the 
scheme is consistent, having truncation error 0(k2 + h2). The von Neumann 
method shows that the scheme is unconditionally stable if w G [|i §]• 

8.5 Problems 

PROBLEM 1. The boundary-value problem 

V2«(x, y) = -w2 sin(7rz), (x, y) € (0,1) x (0,1), 

u(0, y) = «(1, y) = ^(x, 0) = ^(x, 1) = 0, 

has solution u(x,y) — sin(Trs). One finite-difference approximation to this 
PDE is (62 + 62)Uj,/ = — 7T2 sin(7rj;J), on a grid having nodes (XJ, yi) = (jh, Ih), 
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j,l = 0,1,.. .,N = 1/h. To approximate the derivative boundary conditions, 
one can use the ö{h2) difference approximations 

byUjfi = 6yUj}N = 0. 

This method requires two rows of "fictitious" nodes (xj,y_i), (xj,yrf+i), 
together with corresponding unknowns t/j.-i, UJ:N+I , for j = 1,2,..., N — 1. 
To balance equations with unknowns, we apply the discrete approximation to 
the PDE at each node of the form (XJ , t/o) or (XJ , yw), as well as to the interior 
nodes. Write a program to solve the resulting system of linear equations using 
the Gauss-Seidel iterative method on a grid having mesh size h = 0.1. 

PROBLEM 2. The boundary-value problem 

V • [e*«Vu(x, y)] = 0, (*, y) 6 (0,1) x (0,1) = ft, 

u(x,y) = x2 -y2, (x,y)£dQ, 

has solution u(x,y) = x2 — y2. Formulate and program a finite-difference 
scheme for this problem. Numerically estimate its convergence rate p (that 
is, the number p such that ||error|| = 0(hp)) by plotting log ||error|| versus 
log/i. 

PROBLEM 3. Let Ch be a difference approximation to —V2 having the form 

J 

£hUp(o) = a0Up(o) - /]ajUp(j)i 
3 = 1 

where P(0) is the index of an arbitrary node in the interior of a grid, and 
P( l ) , P (2 ) , . . . , P(K) are indices of adjacent nodes. Assume that the approx-
imation is nonnegative, that is, 

a0 > 0, Qj > 0 for j=l,2,...,J, 

and that it is weakly diagonally dominant, that is 

^ | a j | < a0. 
i= i 

Prove that Ch satisfies the following discrete maximum principle: Whenever 
£hUp(o) < 0 f° r all interior grid points P(0), the value of the grid function 
U at interior grid points is bounded above by the largest value of U on the 
boundary of the grid. (See Mitchell and Griffiths [7], p. 123.) 

PROBLEM 4. Prove Parseval's identity, Equation (8.3-5). (Hint: Expand 
llWll!»([-ir,ir]) = J - x K - ^ X O I 2 ^ usil»g the definition of TU, then inter-
change integration and summation.) 
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PROBLEM 5. Consider the initial-boundary-value problem 

du du 
dt dx 

u(t,0)=l for t>0, u(0,x) = 0, for x > 0. 

Compute approximate solutions to this problem at t — 5 using (A) the 
forward-in-time, backward-in-space (FB) scheme with Courant numbers C < 
1, C = 1, and C > 1; (B) the backward-in-time, backward-in-space (BB) 
scheme with C = 2; and (c) the forward-in-time, forward-in-space (FF) 
scheme with any value of C > 0 you like. 

PROBLEM 6. Consider the advection equation 

du du 

_ + , _ = 0 , „>„ . 
Beginning with the Taylor expansion 

ti(* + k,x) = u{t, x) + k-^(t, x) + y | j £ ( t , x) + 0(k3), 

substitute the relationships 

du _ du d2u _ 2°2u 
~dl~~vd~x'' ~W ~v Ik?' 

to arrive at the Lax-Wendroff scheme: 

ur1 = u? + |(t/r+1 - t//Li)+Ç(up+1 - m?+u^). 
Here, C = vk/h. When is this scheme stable? (Hint: Show that von Neumann 
stability analysis yields an amplification factor satisfying | J4(0) |2 = 1 — 4(C2 — 
C4)sin4(0/2).) 

PROBLEM 7. Use von Neumann stability analysis to show that the backward-
in-time, forward-in-space (BF) scheme (5(~ + v6+)U" — 0 is a stable approx-
imation to the advection equation with i; > 0, provided that the Courant 
number C > 1. 

PROBLEM 8. 

(A) Show that the leapfrog scheme for the heat equation is unstable. 

(B) Show that the DuFort-Frankel scheme for the heat equation is uncondi-
tionally stable. 



444 CHAPTER 8. DIFFERENCE METHODS FOR PDES 

PROBLEM 9. For the advection-diffusion equation 

dt dx dx* ~ ' 

the approximation du/dx ~ S~U^ leads to an O(h) truncation error that 
acts like an artificial diffusion term. Show that the implicit, centered-in-space 
scheme 

V t / " + 1 + 6xU?+l - P-l62
xU?+l = 0 

also has a truncation error that contributes to a diffusion-like effect. (Hint: 
Differentiate the PDE with respect to t and x to relate terms in the time trun-
cation error to spatial derivatives.) Verify this conclusion computationally 
by looking at numerical solutions to the "steep front" problem having the 
initial condition u(0, x) = 0, x € (0,1), and boundary conditions u(t,0) = 1, 
(du/dx)(t, 1) = 0. 

PROBLEM 10. Show that, in von Neumann stability analysis of a difference 
scheme with time step k, the condition |>1(0)| < 1 + Mk, where M > 0 is 
constant, suffices for stability. 
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Chapter 9 

Introduction to Finite 
Elements 

9.1 Introduction and Background 

Finite-element methods have emerged as one of the premier classes of tech-
niques for solving differential equations numerically. While there are strong 
similarities between finite-element methods and finite-difference methods, the 
finite-element approach enjoys a much richer mathematical framework, rest-
ing on the theory of inner-product spaces. As a consequence, the theory of 
finite elements has a compelling geometric flavor. 

Finite-element methods afford more flexibility than finite differences. For 
example, the finite-element formulation yields accurate and rigorously based 
techniques for imposing a variety of boundary conditions. It also admits many 
geometric forms for approximate solutions, thereby facilitating the discretiza-
tion of problems posed on oddly shaped domains. Moreover, in some applica-
tions — such as solid mechanics — the most commonly used piecewise poly-
nomial approximate solutions enjoy mathematical features that correspond 
to physical attributes of the structures being modeled. Detailed exploration 
of these advantages lies beyond this book's scope; interested readers should 
consult Lapidus and Pinder [3] for a comprehensive overview. 

This chapter gives a brief introduction to finite elements in one space 
dimension. We first outline the basic formulation for a simple boundary-
value problem (BVP) involving a second-order ordinary differential equation 
(ODE), using ideas from the calculus of variations. We then analyze the 
error associated with piecewise linear trial functions, which constitute the 
simplest choice in most applications. We also discuss the treatment of various 
boundary conditions. Then we present a formulation for initial-boundary-
value problems based on finite-difference timestepping. 

Our discussion aims at simplicity rather than generality. The purpose is 
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to introduce the mechanics of finite elements, sketching some of the more im-
portant theoretical aspects. For a more thorough introduction to the theory, 
we refer to Johnson [2], Strang and Fix [4], and Wait and Mitchell [6]. 

A Model Boundary-Value Problem 

Much of the theory of finite elements rests on ideas from variational formula-
tions of BVPs. To establish terminology and notation, it is useful to examine 
these ideas. Consider the following BVP: Find a function « 6 C2([0,1]) such 
that 

-[a(x)u'(x)}' = / (x) , * e f i : = ( 0 , l ) , 
(9.1-1) 

u(0) = u(l) = 0. 

Assume that / is a known, continuous, real-valued function defined on [0,1] 
and that it obeys the bound | / (x) | < L. Also assume that the coefficient a(x) 
belongs to C1([0,1]) and that it obeys bounds of the form 

0 < a < a(x) < A, 

for all x G [0,1]. These assumptions guarantee that the problem (9.1-1) has 
a unique solution in C2([0,1]). This problem is a one-dimensional analog of 
multidimensional problems involving the elliptic operator —V • [a(x)V]. 

We cast this model problem in a more general form by the following tactic. 
First, multiply the ODE in (9.1-1) by tes t functions v, whose nature we 
specify later. Then integrate the result over SI, obtaining equations of the 
form 

/ {-[a(x)u'(x)]'v(x) - /(*)«(*)} dx = 0. (9.1-2) 

This equation roughly says that the residual R(x) := — [a(x)u'(x)]' — /(x) 
vanishes in a weighted-average sense over the region fi. In another view, 
the integral equation asserts that R(x) is orthogonal to the function v with 
respect to the inner product associated with L2(fi). By analogy with the 
finite-dimensional Euclidean spaces Mn, we expect R(x) to vanish if we force 
it to be orthogonal to "enough" test functions v(x). 

Another interesting fact about the integral equation (9.1-2) is that inte-
gration by parts yields 

I a(x)u'(x)v'(x)dx-a(x)u'{x)v(x)\ = j f{x)v(x)dx. (9.1-3) 
Jn lo Jn 

Consider the demands that the statements (9.1-2) and (9.1-3) make on the 
functions w and v. For Equation (9.1-2) to make sense, it suffices for v to 
be square integrable; w, by contrast, must have square integrable derivatives 
through order 2. For Equation (9.1-3), it is enough to demand that both u 
and v have square integrable derivatives of order 0 and 1. In other words, 
from a purely formal point of view, Equation (9.1-3) admits more potential 
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solutions than does Equation (9.1-2). In this sense, Equation (9.1-3) is more 
general than Equation (9.1-2). 

Variational Formulation 

Let us explore more deeply the connections between the model problem (9.1-
1) and its integral forms (9.1-2) and (9.1-3). We begin by identifying vector 
spaces of functions that satisfy various degrees of smoothness in the sense of 
square-integrability : 

DEFINITION. For any nonnegative integer m, the Sobolev space Hm(Çl) is 

Hm{Çï) := j « : fî — R : f [|v(x)|2 + \v'{x)\2 + ■■■ + |u (m)(*)|2] dx < ooj . 

In particular, 

i/°(fi) = | v : n ^ M : ! \v{x)\2 dx < oo\ = L2(Çl), 

ffx(n) = Iv.Q^m : f [\v(x)\2 + \v'(x)\2] dx<oo\. 

It is straightforward to check that Hm(£l) is an inner-product space, with 
inner products defined as follows: 

{v,w)o :— I v(x)w(x)dx = (v,w), 
Jo. 

(v,w)i := / [v(x)w(x) + v'(x)w'(x)] dx, 
Jn 

and so forth. These inner products give rise to norms in the usual way: 

|M|(o) := M 1 / 2 = IMMn), 

IMI(i) := (v^)i /2. 

and so forth. For future reference, we record several facts about these inner-
product spaces. 

PROPOSITION 9.1. Let m be a nonnegative integer. Then 

(A) Hm+1(Q)cHm(Q). 

(B) / / v G Hm{ü), then \\v\\\ = \\v\\\0) + \\v'\\2
0) + ■■■ + \\v^%y 
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(c) / / v G Hm+1(0), then \\v\\{m+1) > | |«| | ( m ) and | |«| | (m+i) > IM|(m)-

(D) (Cauchy-Schwarz inequality.) If v,w G .ffm(Œ), iAen |(v, w) m | < 
IMI(m) ||HI(m)-

(E) (Triangle inequality.) If v,w G /fm(fi), <Aen ||v + u/||(m) < |M|(m) + 
IIHI(m)-

PROOF: This is Problem 1. I 

With this background, we state the integral form of the model problem 
(9.1-1) more precisely. Call 

Hl(ü) := {w G F 1 (ft) : w(0) = «(1) = o} . 

This subset of H1^) is a vector space in its own right. The variational 
form of the BVP (9.1-1) is as follows: Find a function u G #o (^ ) s u c n tn a* 

(au',v') = (f,v), (9.1-4) 

for all v G HQ(Q). In this formulation, u automatically satisfies the prescribed 
boundary conditions by belonging to HQ(Q). 

To interpret this form of the BVP, refer to the integral forms discussed 
earlier. Equation (9.1-4) is equivalent to Equation (9.1-3), since the condi-
tion v G HQ{Q) implies that the boundary terms arising from integration 
by parts vanish. Thus the variational form (9.1-4) "almost" demands that 
— [a(x)u'(x)]' — f(x) be orthogonal to all vectors in the subspace HQ(Q) of 
Hl(Cl). This condition has close connections with the least-squares idea of 
minimizing the distance to a subspace of a vector space. One can view integra-
tion by parts as a device that formally reduces the smoothness requirements 
on the solution u. 

In addition to this geometric interpretation, there are logical connections 
between the variational form and the original BVP: 

THEOREM 9.2. If u is a solution to the BVP (9.1-1), then u is a solution to 
the variational problem. (9.1-4)- If u is a solution to the variational problem 
(9.1-4) and u G C2([0,1]), then u is a solution to the BVP (9.1-1). 

PROOF: This is Problem 2. 1 

For the BVP (9.1-1), the variational form (9.1-4) has yet another, more 
physical interpretation. The problem models a stationary elastic string held 
under tension between two fixed endpoints, x — 0 and x = 1, and subject to a 
time-independent, transverse applied load f(x). Figure 1 illustrates this con-
figuration. The coefficient a(x) represents the variable coefficient of elasticity 
along the string, and u(x) stands for the string's transverse displacement. 
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Guenther and Lee ([1], Section 11-1) show that the total potential energy of 
a string sustaining a hypothetical displacement v(x) is 

£ 7 ( « ) : = ^ a « ' , t ; ' ) - ( / , » ) . 

In the context of the associated mathematical problem (9.1-4), E(v) is the 
energy functional. 

FIGURE 1. Stationary elastic string, held between fixed ends and 
undergoing displacement u(x) due to a transverse applied load 

Physically, the string governed by Equations (9.1-1) assumes the displace-
ment that minimizes potential energy. The variational problem (9.1-4) enjoys 
a corresponding minimization property: 

THEOREM 9.3. A function u G HQ(ÇI) is a solution to the variational problem 
(9.1-4) if and only if E{u) < E(v) for all v € H£(Q). 

PROOF: First assume that u is a solution to the variational problem, and let 
v G HQ(Q). Denote w := v — u. The energy functional is linear, so 

E(v) = E(u + w) = E(u) + E(w) + {au1, w') 

= £?(«) + E(w) + (/, w) 

= E(u)+±{aw',w'), 

the last step following from the definition of E. The argument is complete if 
we show that (aw',w') > 0. By the hypotheses on a(x), 

(aw', w')>a I (u/)2 dx > 0. 
Jn 

Now assume that E(u) < E(v) for all v G HQ($Î). For arbitrary v G 
HQ(ÇI), the real-valued function $(s) := E(u + sv) is differentiable, and by 
hypothesis it has a minimum at s = 0. Therefore $'(0) = 0. Since 

$(s) = E(u) + E(sv) + s(au',v'} 

= E(u) + s ((au',v') - (/, w» + ±s2(av', v'), 
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we have $ ' (0) = {au', v'} — {/, t>), and the conclusion follows. I 

Not all problems involving differential equations possess variational forms 
that are so closely associated with minimum principles. However, the exis-
tence of such principles often guides the analysis of finite-element methods 
and lends them theoretical elegance. In the next section we exploit minimiza-
tion properties in analyzing the standard Galerkin finite-element formulation 
of the BVP (9.1-1). In Section 9.3 we examine a finite-element formulation 
for a time-dependent problem in which minimization principles play only an 
indirect role. 

9.2 A Steady-State Problem 

Neither the model problem (9.1-1) nor its variational form (9.1-4) is gener-
ally amenable to computation. In the problem (9.1-1), the solution belongs 
to the vector space C2(Q), while in the variational form u belongs to the 
larger space HQ(£Î). Both vector spaces are infinite-dimensional. The idea 
behind the Galerkin finite-element method for Equation (9.1-1) is to solve the 
variational form (9.1-4) on a finite-dimensional subspace of HQ(Q), called the 
t r i a l s p a c e . Since we need only finitely many degrees of freedom to specify 
functions in the trial space, it is computationally feasible to determine an 
approximate solution there. 

Several questions arise in this approach. First, does the method have 
reasonable computational requirements? Second, is the approximate solution, 
generated by restricting attention to the trial space, reasonably close to the 
exact solution? Third, does the approach extend readily to more general 
boundary-value problems? This section presents details of the Galerkin finite-
element procedure in a simple setting and examines the most basic techniques 
for answering these questions. 

Construction of the Galerkin Finite-Element Scheme 

As with the finite-difference method, begin by constructing a grid on the 
domain fî = (0,1) of the problem. Let A := {xo, x\,..., XM}, where Xj :— jh, 
h := \/M. Associated with this grid is the vector space M\{&) of piecewise 
linear polynomials introduced in Section 1.3. Recall that .Mj(A) has a basis 
{to, t\,..., IM } , a typical element of which has the form 

{ (x - Xj_i)/h, if Xj-i <x<Xj, 
(xj+i - x)/h, if XJ < x < Xj+i, 
0, otherwise. 

Figure 1 illustrates these functions for the case when 0 is a general interval. 
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FIGURE 1. Basis functions £j(x) for the space A^J(A) of piecewise 
linear functions on a grid A. 

To solve the variational problem (9.1-4) numerically, we seek an approxi-
mate solution, or trial function u/,, that belongs to the following trial space: 

Vh := [v e A<J(A) : v(0) = v(l) = o} . 

In other words, u/, is piecewise linear, and it satisfies the prescribed boundary 
conditions. It has the explicit form 

M - l 

(9.2-1) 

where the coefficients U\, U2, ■ ■ ■, UM-\ are to be determined. One readily 
checks that Vh is an (M — l)-dimensional subspace of HQ(ÇÏ), the space that 
contains the exact solution to the variational problem. 

To determine the coefficients Uj of the trial function, we impose a finite-
dimensional version of the variational problem (9.1-4): We demand that 

K,»') = (/.«), (9.2-2) 

for all v € Vh- These are the Galerkin equations. Since Vh is finite-
dimensional, it suffices to impose Equation (9.2-2) for v ranging over the 
elements of a basis for Vh. Therefore the Galerkin equations reduce to the 
following linear system: 

Thus there are M — 1 equations to solve for the unknowns U\, U2, ■ ■ -, UM-I-
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To cast these equations into matrix form, substitute the expression (9.2-1) 
into the system (9.2-3): 

M - l A f - l 

/ a J2 UjtjX )=J2Ui K><> = <M>. i = 1,2,.... M - 1. 
">>J Ji 

By identifying the entries ctjj and /< as indicated, we have 

a i , i 

«Af-1,1 

••• « l . M - l 

' ■ ' O M - l . A f - l 

A 

" Ui 

UM-I 

H 

" / i " 

/ M - I 

f 

(9.2-4) 

Several attributes of this linear system are worth noting. First, using 
Lagrange piecewise linear basis functions forces Oij — 0 whenever \i — j \ > 1. 
Therefore the matrix A is tridiagonal. For example, if a(x) = 1 in the original 
boundary-value problem, then 

A = 

2 - 1 
-1 2 - 1 

-1 2 - 1 
- 1 2 

Second, A is symmetric, since (a£,£{) = {ai'^i'j}. Third, A is positive definite. 
To see this, let v = (Vi, V j , . . . , V/vf-i)T be any nonzero vector in M M _ 1 . 
Corresponding to v is a function v £ Vh that has the representation v(x) = 
Vi^i(x) + V^afc) + 1- VM-\£M-I(X). Since v is not identically zero, 

M - l A f - l 

o < «<t/y) < (at/y) = (a £ 1 ^ . , £>,- / ; ) 
\ 1=1 j = l / 

Af - l Af - l 

«=1 j = i 

= vTAv. 

Hence 0 < vTAv for arbitrary nonzero v € K M _ 1 , that is, A is positive 
definite. 

It follows that the linear system (9.2-4) has a unique solution 

u = ( t / i , £ / 2 , . . . , t / M - i ) T . 
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Moreover, because the matrix is sparse, symmetric, and positive definite, 
efficient solution techniques are available to compute u. The sparseness of 
the matrix is characteristic of the finite-element method; it arises from the 
use of basis functions that are nonzero only over a small subset of the domain 
of the problem. Other piecewise polynomial trial spaces yield sparse matrices 
having different zero structures, as Problem 3 suggests. 

A Basic Error Estimate 
How close is the finite-element solution Uh to the exact solution ul More 
specifically, how does the error £h ■— u — u^ depend upon the mesh size h of 
the grid A? We now show that a finer mesh yields a more accurate solution. 

Results from Section 1.3 assert that the piecewise linear interpolant û of 
the exact solution obeys an estimate of the form ||u — û||oo = 0(h2). This 
observation suggests that an estimate of the form \\u — Uh\\ = ö(h2), in some 
norm, is the best that we can expect. In this subsection we derive an estimate 
that is disappointing, since it implies that \\u — u/i||(o) = ^C1)- However, this 
result plays a crucial role in the subsequent development of more satisfying 
error estimates. 

To streamline the arguments and to make them more readily generalizable, 
we restate the original Galerkin formulation (9.2-2) in the following, more 
abstract notation: Find a function u/, G Vh such that 

B(uh,v) = F(v), 

for all v E. Vh- Here, B(-, •) is a mapping defined on HQ(Q) X HQ(ÇI) by the 
equation 

B{v,w) :— I a(x)v'(x)w'(x) dx. 
Jn 

This mapping is a bilinear form, meaning that it has the following proper-
ties: 

(i) For any v,w G H^(Çî), B(v,w) = B(w,v). 

(ii) For any v, w G HQ(ÇI) and any c g l , B(cv, w) — cB(v, w). 

(iii) For any vi,v2,w G ^ o ( ^ ) . B(vi +v2,w) = B(vi,w) + B(v2,w). 

The mapping F: HQ(Q) —► M is defined by the equation 

F(v) := / f(x)v(x)dx. 
Ja 

This mapping is a linear functional: For any functions v, w G HQ(CI) and any 
e e l , F(cv + w) = cF(v) + F(w). 

The following facts about B and F figure prominently in the error analysis. 

PROPOSITION 9.4. The mappings B and F defined above have the following 
properties: 
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(A) F is continuous, that is, there exists a constant L > 0 such that 
\F(v)\<L\\v\\(1) for all verity. 

(B) B is continuous, that is, there exists a constant A > 0 such that 
\B(v, w)\ < A\\v\\(1) IMI(i) for all v, w € H^(Ü). 

(c) B is coercive, that is, there exists a constant ä > 0 such that 
B(v, v) > filMlfo for all v G H^(Ü). 

Part of the proof hinges on a lemma that captures the intuitive notion that 
differentiation of smooth functions typically leads to wilder behavior: 

LEMMA 9.5 (FRIEDRICHS INEQUALITY). If v £ H%(Q), then \\v\\fa < \\v'\\^0y 

PROOF: By the fundamental theorem of calculus and the fact that v(0) = 0, 

v(x) = ['At)**, 
Jo 

for all x G [0,1]. Using the Cauchy-Schwarz inequality, we have 

\v(x)\=\[Xv'(0dZ < / V ( 0 I # 
\Jo Jo 

< /V(OI# 
Jo 

= (H, i )<IMI(o) | | i | | (o) = IKII(o). 

Squaring and integrating yields 

fl\v(x)\Ux< I'\\v'\\l0)dx, 
Jo Jo 

that is, \\v\\f0) = = ||t>'||(
2
0). I 

PROOF OF PROPOSITION 9.4: Assertion (A) follows from the Cauchy-Schwarz 
inequality and the hypothesis, stated in Section 9.1, that / is bounded: 

|F(w)| = | ( / , t ; ) |< | | / | | ( o) |HI(o)<£ |HI( i ) . 

Assertion (B) follows similarly: 

\B(v,w)\ = \(av',w')\ 

< |M|(0)|M|(0) 

< A\\v'\\{0)\\w'\\(0) 

< A||«||(1)||u;||(i). 
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For assertion (c), we reason as follows: 

B(v,v)= / a(x)v'(x)v'(x) dx > a \v'(x)\2dx 
Jn Jet 

= «IKII?o) = f (lKII(2o) + IKII(2o))-

Lemma 9.5 now implies that 

\B(v, v)\ > | ( |M | fo ) + IKIlfo)) = | K i ) -

Take à = a /2 . I 

According to Proposition 9.4, the bilinear form B(-, •) has all the prop-
erties needed to guarantee that it is an inner product on the vector space 
HQ(CI). It follows that the function || • \\B := >/£(•, •) constitutes a norm on 
HQ(ÇI). By analogy with the elastic string problem mentioned in Section 9.1, 
we call this norm the energy no rm associated with B. The energy norm is 
equivalent to the Sobolev norm || • ||(i), since, for any v 6 HQ(ÇÎ), 

yflMlo) < IMIB < JÄ\\v\\w. 

We now show that the finite-element error u — Uh, measured in the norm 
|| • ||(i), is comparable to that associated with the best possible approximation 
to u in the trial space Vh ■ 

THEOREM 9.6. Ifuh is the finite-element approximation to the solution u of 
the BVP (9.1-1), then 

2A 
l l « -«h | | ( i )< — II«-«ll(i), 

for every v G VA. 

PROOF: If u — u& = 0, then the conclusion is trivial. Otherwise, let en '■= 
u — Uh. The variational formulation of the boundary-value problem implies 
that B(u,w) = F(w) for all w € Vh, since Vh C #o(^) - Also, by definition, 
B(uh, w) = F(w) for all wEV/,. The linearity of B thus yields 

B(eh,w) = 0, (9.2-5) 

for all w € Vh- Now choose any function v 6 Vh, and let w :— uj, — v, which 
belongs to V>,. Using coercivity and Equation (9.2-5), we have 

| | |e*| |(i) <B(c f c ,e f t) = B(eh,eh) + B(£h,w) 

= B(£h,u- Uh + w) = B(eh,u-v). 
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Therefore, by the continuity of B, 

f l M I ( 2 i ) < ^ I M I ( i ) l l u - e l l w -

and dividing through by ||£h||(i) completes the proof. I 

This theorem allows us to bound the finite-element error ||w — u/i||(i) in 
terms of the approximating power associated with the piecewise linear trial 
functions in V/,. Naive estimates yield the following: 

COROLLARY 9.7. With u and u/, as in Theorem 9.6, we have \\u — M/I||(I) = 
0{h). 

PROOF: Denote by û the piecewise linear interpolant of u in V/,. By Theorem 
9.6 and the Friedrichs inequality, 

4Ä2 

ll«-«fc||(i) < -p- l l« - «ll(2i) 

4/42 / \ 
= - ^ - ( | | u - u | | ( 2 0 ) + | | „ ' - ä ' | | ^ ) 

< - _ | | U ' - „ ' | | 2 0 ) . 

Therefore, 

II« - «h||(i) < / W(x) - û'(x)f dx 
a Un 

1/2 

By interpolation error estimates developed in Chapter 1 (see Proposition 1.4), 
the integral on the right is less than or equal to /»||tz"||0O. Hence, 

II« - WA||(1) < Äll«"Hoo. 

a 
which completes the proof. I 

Before exploring further consequences of Theorem 9.6, we make two re-
marks. First, Corollary 9.7 gives a global error estimate for the Galerkin 
finite-element method. This estimate measures how well the numerical solu-
tion un approximates the exact solution u in the sense of the norm || • | |m, 
which measures distances between functions in an average sense. The esti-
mate says nothing explicit about the magnitude \u(x) — Uh(x)\ of this distance 
at any particular point 1 6 Î I . Second, the corollary asserts that u/, —► u, 
in the norm || - ||(i), as /i —»■ 0. In other words, the Galerkin finite-element 
scheme is convergent. The theory presented in the remainder of this section 
merely sharpens the estimates that establish this basic result. 
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Optimal-Order Error Estimates 
The error estimate of Theorem 9.6 is unsatisfying. It measures the error 
u — Uh in the norm || • ||(i), which appeals less to intuition than the more 
familiar norms || ■ ||(0) or || ■ ||oo. Since the norm || • ||(i) dominates the norm 
|| • ||(o), Corollary 9.7 trivially implies that ||u - w/i||(o) = 0(h). However, this 
estimate seems weak, since it suggests that the finite-element error may be 
qualitatively larger than the error associated with interpolation of the exact 
solution u in the trial space W We now develop a sharper estimate. The aim 
is to show that ||w — «Ä||(O) < C| |u —"ll(o) for some positive constant C. Since 
one cannot expect qualitatively better estimates in Vh, we call estimates of 
this form optimal-order error estimates. 

Lifting the primitive error estimate of Theorem 9.6 to 0(h2) requires that 
we invoke the regularity of solutions to boundary-value problems of the type 
(9.1-1). If the coefficient a(x) is smooth enough, then we expect the solution 
u to Equation (9.1-1) to depend continuously upon the forcing function / , in 
the sense that 

IMI(2) < A'll/ll(o), (9.2-6) 

for some positive constant K ([4], Section 1.2). In higher-dimensional settings 
this property is subject to vagaries of geometry: Boundary-value problems 
posed on domains with nonsmooth boundaries may exhibit weaker regularity. 

Central to the arguments are estimates of interpolation error in the norm 
|| • ||(o) = II ' ||i3(fi)- The results of Chapter 1 concern only the norm || ■ H«,, 
so we digress briefly to develop estimates in L2(Cl). 

LEMMA 9.8. If u e H2(Çl), then 

(A) | |«-â | | ( 0)<(A/T)2 | l«"l l(0) , 

(B) |K-« ' | | (o)<(A/ir) | |«" | | (0) . 

In terms of powers of h, these estimates recall the familiar estimates in L°°(f2). 

PROOF: Consider first a single element [0,/i] = [zo^i] of the grid. Define 
t}(x) := u(x)—û(x), and observe that JJ(0) = rj(h) = 0. Thus rj has a uniformly 
convergent Fourier series: 

oo 

. . \-^ nirx 
n = l 

By the Parseval identity, 

fh h °° 
/ V2(x)dx= öX) 7 '» -
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Term-by-term differentiation of the series yields 

rh 

But 

jfw«r*=ïË(T)4<i-
,2 , h2 /nir\4 , h2 fnir\'2 9 A2 fn-K\A , A2 /ri7r\4 , 

the last step following from the fact that n > 1. Therefore, 

h2 fh 

= 3 / W'(x)}2dx 
1.2 M 

'0 

L2 M 
= h-2 \ [u"(x)}2dx, 

n JO 

the component û"(x) vanishing identically on (0,/i). 
The same reasoning applies to any element [XJ-I, Xj] of the grid, so 

JÜ* rx> h2 J^L rx> 
£ / W(*)?dx<^Y, W'(*)}2dx, 
j=iJxi-i w j=iJxi-i 

that is, | |«' - w'||20) < (/»/7r)2||«"||(
2

0). This establishes part ( B ) . 
Similarly, 

4 

hA rh 

= - , \ W'(x)]2dx. 
« Jo 

Summing over the elements of the grid as before yields 

l l « - « h | | ( 0 ) < ( V » ) V l l ( 0 ) . 

proving part (A) . 

This lemma has an easy corollary: 

COROLLARY 9.9. Under the hypotheses of Theorem 9.8, 
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(A) | | U - U | | ( 1 ) < ^ | | « " | | ( 0 ) , 

(B) ||U - uh | | ( 1 ) < ——||u" | | (o)-

PROOF: This is an exercise. 

We now have the machinery needed to elevate the H1 estimate of the 
finite-element error u — w^ to an optimal-order L2 estimate. The argument, 
which is by now standard, involves a clever procedure known as the Nitsche 
lift: 

THEOREM 9.10. If u/, is the piecewise linear Galerkin finite-element solution 
to the BVP (9.1-1), then there exists a positive constant T such that \\u — 
«hi!«» < r/.2|KII(o). 

PROOF: Let £>, := «—u^. If £/» = 0, then there is nothing to prove. Otherwise, 
the facts that B(u, v) = F(v) and B(uh,v) — F(v) for all u G V/, imply that 

B(eh,v) = 0, (9.2-7) 

for all v € VV Let <p: Q, —<■ R be a solution to the "dual" BVP, 

-[a(x)<p'(x)]' = ch(x), x&n, 

p(0) = ? ( l ) = 0. 

Using integration by parts, we have 

IMI(o) = (£h,eh) = -{eh,{a<pf)') = (e'h,a<p') = B(eh,<p). 

Using the identity (9.2-7) and the fact that the interpolant ip of ip belongs to 
Vfc, we obtain 

||eh||f0) = B(eh,<p-<p) 

= / a{xyh{x)[ip{x) - ip{x)}'dx 
Jci 

< Al e'h{x){<p'{x)-ê'{x)]dx. 
Jn 

The Cauchy-Schwarz inequality and the results of Corollary 9.9 now yield 

IMIfo) < ^Il4ll(0)ll¥>'-£'ll(0) 

< ^Ml(i)llv?-V»ll(i) 
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Invoking the regularity assumption (9.2-6) to substitute for ||y"||(o) gives 

AA2Kh2 

IMIfo < -^-ll«"ll(o)IM(o). 
Dividing through by ||eh||(o) and identifying T :— 4A2K/(rr2a) completes the 
proof. I 

Other Boundary Conditions 
The theory just sketched for the BVP (9.1-1) does not specify how to han-
dle boundary conditions other than homogeneous Dirichlet conditions. The 
remainder of this section indicates, with some geometric motivation, how to 
treat different boundary conditions. The vehicle for this discussion is the 
following BVP: 

[-a(x)u'(x)}' = / (* ) , x 6 0 := (0,1), 
(9.2-8) 

ti(0) = /?i, u'(l) = &. 

Here, the functions a and / are as in Equation (9.1-1), and ß\ and ßi are 
arbitrary real numbers. 

First, consider the Dirichlet condition u(0) = ß\. Adopt a piecewise linear 
trial function 

M 

uh(x) = /?!*„(*) + ^Ujljix). (9.2-9) 
J = I 

Thus tifc(0) = ßi automatically, since ^ (0) = £3(0) = ■■■■= iM(0) = 0. But 
how should we determine the remaining coefficients U\, U2, ■ ■ ■, UM? 

Let us return for a moment to the model problem (9.1-1). Under homo-
geneous Dirichlet conditions, we determine the unknown coefficients Uj by 
restricting the variational formulation, 

B{u, v) = (/, v) for all v e H^(Q), 

to the trial space V̂  : 

B(uh, v) = {/, v) for all v eVh-

Equivalently, we demand that 

B(u - uh, v) = 0 for all v e Vh. (9.2-10) 

By exploiting the fact that B(-, •) formally possesses the properties of an 
inner product and considering an analogous least-squares problem in M", one 
can motivate a geometric strategy for determining the unknown coefficients 
Uj in Equation (9.2-9). Let us adopt some peculiar but suggestive notation 
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for the least-squares problem in 1R". Temporarily denote by B(u, v) the stan-
dard inner product u • v of two vectors u, v G M", and use the symbol V to 
signify the subspace of E n spanned by the first M standard unit basis vectors 
e i , e2 , . . -,eM, where M < n. 

In this setting, the least-squares analog is as follows: Given a vector u G 
K", find a vector u/, = U\&i + £ ^ 2 + r UM&M 6 V that minimizes the 
distance ||u — u>,|| (= \/B(u — u/,, u - u/,) ). To solve this problem, we force 
the error e/, := u — uj, to be orthogonal to every vector in the subspace V, as 
drawn in Figure 2 for the case M = 1. Equivalently, we demand that 

B (u -u A , e , - ) = 0 i = l , 2 , . . . , M . (9.2-11) 

This condition gives M equations for U\, Ui,..., UM- The vector u*, con-
structed in this way is the projection of u on V using the inner product 

SO.-)-

'1 "h 

FIGURE 2. The projection Uh o/u € Mn onto a subspace V. 

Equations (9.2-11) have the same form as the Galerkin equations (9.2-
10). Thus, for the homogeneous BVP (9.1-1), the geometry suggests that the 
finite-element solution uj, is a certain projection of the exact solution u onto 
the trial space V&. Because the inner product B(-, ■) used in this projection 
arises from a one-dimensional analog of an elliptic differential operator, we 
call Uh the elliptic project ion of u on V),. 

Nonhomogenous Dirichlet conditions lead to a trial function of the form 
(9.2-9). In this case the geometry is a little different. The analogous prob-
lem in Mn is to approximate a vector u by a vector u/, whose coordinate 
Ua with respect to some basis vector is prescribed. Specifically, we seek an 
approximating vector from the set 

{ M 

u a + X ) uiei : Uu Ü2-> ■ ■ ■ ' UM € 

Figure 3 illustrates this set for the case M = 1. The fixed vector ug is 
analogous to the fixed component 0i£o(x) of the trial function (9.2-9). We 
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call the set ug + V an affine subspace of Kn; it is not strictly a subspace 
unless ug = 0. The approximation problem is to find u;, 6 ug + V that 
minimizes the distance ||u — u/,||. 

+ V 

FIGURE 3. Analog in Euclidean space of the projection corre-
sponding to the Galerkin finite-element approximation «ft to a so-
lution u obeying nonhomogeneous Dirichlet boundary conditions, 

The solution to this problem in ffi" is straightforward: Simply translate the 
set ua+V (a line in Figure 3) by the vector — ug, then solve for U\, U2, ■ • -, UM 
as in Equation (9.2-4). Thus, lift — ug is the projection of u — ug, using the 
bilinear form B(-, ■): 

B((u-ug)~ (uh - u a ) , e j ) = 5 ( u - U f t , e t ) = 0, i = 1,2, . . . ,M. 

The weighting vectors e,- are precisely the basis vectors associated with the 
unknown coefficients U\, U2, ■ ■ ■, UM-

We formulate a Galerkin finite-element solution to the BVP (9.2-8) simi-
larly. The affine supspace of HQ(ÇÎ) in this setting is 

ua + Vft := l ßMx) + JT Ujij{x) : Uu U2,..., UM € M |. 

Any trial function «h in this set automatically satisfies the nonzero Dirichlet 
condition. By analogy with the problem in M", we solve for t / j , U2, ■ ■ ■, UM 
by demanding that Uh — ug be the elliptic projection of u — ug on the subspace 
Vft. The test functions are precisely the basis functions associated with the 
unknown coefficients U\, U2, • • •, UM ■ 

There remains the question of how to handle the Neumann condition 
u'(l) = p2- The answer comes from the variational formulation. In terms 
of the standard inner product on L2(fi), think of the Galerkin equations as 
requiring that 

(-(au')' + (au'k)',v) = 0, 
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for all v G W Equivalently, 

( -(au ' ) ' , / , ) = </,/,->, J ' = 1,2, . . . ,M. 

To reconcile these equations with the smoothness assumptions on V&, inte-
grate by parts: 

(au'h,4) -a(*K(*)£,- ( ï ) |* = (/,*,•}, i = l , 2 , . . . , M . 

B(uh,ti) F(ti) 

The boundary terms that result furnish the vehicle for imposing Neumann 
conditions. By setting «{,(1) = /?2 and observing that ii(0) = 0 for i — 
1,2,..., M, we find that 

a(x)u'h(x)£i(x) 
o 1 a( (1)A, 

if t = 1 , 2 , . . . , M - 1 , 
if * = Af. 

Nonhomogeneous boundary conditions affect the matrix equation in a 
distinctive fashion. For the model problem (9.2-8), we have the following 
linear system for i = 1, 2 , . . . , M: 

M f n 
B(u6,ei) + Yl VjBitjA) = F{ti) + I U' 

7 = 1 L )& , 
if t = 1,2, 
if i = M. 

,M - 1, 

Call 
6,:= 0! j a{x)l'0{x)l'i(x)dx, 

Jn 
which vanishes when i ^ 1. As usual, let 

aij := I a{x)(.'j{x)t'i{x) dx 
Jn 

and 

/,■:= f f{x)li(x)dx. 
Jn 

The Galerkin equations then yield 

«1,1 

02,1 

flM.l 

fll,2 

«2,2 

a-M,2 ■ 

■ <*l,Af 

• 0 2 , M 

• QM,M 

' t/l ' 

u2 

. ^ . 

= 

' h ' 
Î2 

IM 

-
0 

0 _ 

-1-

1 o
 

■ • • 
o

 

. a(l)A . 
The last two vectors on the right account for the boundary conditions. 

In summary, for nonhomogeneous Dirichlet conditions it is essential to 
incorporate the boundary values explicitly into the trial function Uh ■ There-
fore we call these boundary conditions essential boundary conditions for 
the problem (9.2-8). In contrast, we impose Neumann conditions by insert-
ing them into boundary terms that arise naturally from integration by parts. 
Hence we call Neumann conditions natural boundary conditions for this 
problem. Problem 4 considers the treatment of other boundary conditions. 
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9.3 A Transient Problem 
For time-dependent partial differential equations (PDES), the most common 
way to apply the finite-element method is to use Galerkin techniques to dis-
cretize the spatial variations. This strategy converts the spatial derivative op-
erators to finite-dimensional approximations but leaves the temporal deriva-
tives intact. One can then obtain fully discrete approximations via methods 
discussed in Chapter 8. 

In this section we elaborate on this approach. For concreteness, we exam-
ine an initial-boundary-value problem based upon an extension of the heat 
equation. Let fi := (0,1), and call J := (0,T], where T is some prescribed 
"final time." Consider the problem 

du d 
~dt~~dx 

du 
= / (* ) , («,*)€ J x f l , 

u(t,0) = u(<,l) = 0, t£j, 

u(0,x) = g(x), x e ( 0 , l ) . 

(9.3-1) 

We assume that / is continuous on ÎÎ and that a is a continuously differen-
tiable function defined on fi. As in Section 9.2, we also assume that there 
exist positive constants L, a, and A such that \f(x)\ < L and 

0 < a = inf a(x) < a(x) < sup a(x) = A, 

for all x G fi. These assumptions guarantee the existence of a solution u(t, x). 
In the course of the analysis we refer to L2 norms of various derivatives of «. 
Assume that the solution u is sufficiently regular that these norms are finite. 

We begin by applying the finite-element method to discretize the prob-
lem in space. As in Section 9.1, we use a Galerkin method on a piecewise 
linear trial space to keep the development as simple as possible. We then 
adopt a finite-difference approximation to convert the resulting semidiscrete 
approximation to a fully discrete one amenable to computation. Finally, we 
review a standard error analysis for the scheme. For more details on transient 
problems, we refer to Thomee [5]. 

A Semidiscrete Formulation 

Corresponding to the classical problem (9.3-1) is a weak form, obtained by 
multiplying the PDE by a test function v(x) and formally integrating by parts 
over the spatial domain fi. Explicitly, the weak form is as follows: Find a 
one-parameter family u(t, •) of functions in HQ(Q) such that, at every time 
i£J, 

Idu \ I du dv\ ., , 

U'V+H^H^' (93"2) 
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for all v G HQ(ÇI). Consistent with our notation for the steady-state case, we 
identify the bilinear form 

/ dv dw\ 

and recall that it is continuous and coercive, as shown in Proposition 9.4. 
As in the previous section, we formulate Galerkin equations for the weak 

form (9.3-2) by restricting attention to finite-dimensional subspaces of HQ(Q). 

Let Vh denote the trial space of functions that are piecewise linear on a grid 
of mesh size h and that vanish at x = 0 and x = 1. We seek a one-parameter 
family of functions 

M - l 

uh(t,x)= ^2 UjMWx) 

such that Uh(t, ■) £ Vh at each time t 6 J and 

(jg-,v}+B{u
h
,v) = (f,v), 

(9.3-3) 

for all v G Vh. 
This problem reduces to a finite system of ordinary differential equations 

if we impose Equation (9.3-3) for test functions t; ranging over the standard 
basis for Vh '■ 

I Q , M - 1 v \ ,M-\ x 

£{^Uili),li\+B{22Uiei'e*) =&**)> '=1.2,..., M - l . 

In other words, 

M - l M - l 

52 ^<4 .4>+£^^ ;^=< />4> ,> i= 1,2,...,M-l. 
i = i i = i 

*»j a'J fi 

Writing this system in matrix form, we get 

+ 

" i i . i 

« * A f - l , l 

«1,1 

» A f - 1 , 1 

" » 1 , M - 1 

™ M - 1 , M - 1 

« I , M - I 

« M - l , M - l 

d_ 
dt 

UM-I 

UI 

UM-I 

h 

/ M - I 

or, briefly, 

dt 
(9.3-4) 
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Owing to historical connections with mechanics, the matrix M multiplying 
the time derivative vector is called the mass matr ix , while the matrix A 
multiplying the vector U is the stiffness mat r ix . The stiffness matrix is 
tridiagonal, symmetric, and positive definite, so it is invertible. One can 
readily check that the mass matrix M shares these properties. It follows that 
the system (9.3-4) has a unique solution U(i), defined for t G J, for any 
prescribed initial vector U(0). 

A Fully Discrete Scheme 

To convert the system (9.3-4) of ODES to a fully discrete system, we must 
approximate the time derivatives. Chapter 7 discusses various approaches to 
this task. In this section we examine a simple finite-difference scheme based 
on the implicit Euler approximation. 

Consider a grid A« := {0, k, 2k,..., Nk} on the time interval [0, T], where 
k := T/N is the time step. Replace the vector function U(i) containing time-
dependent nodal values of the semidiscrete solution «h(<), by a grid function 
u :A t —>■ K M - 1 , whose value at the time level t = nk we denote by u". 
The entries of u" are the nodal coefficients of a piecewise linear approximate 
solution u£ to the initial-boundary-value problem (9.3-1). 

We approximate the derivative dU/dt using implicit finite differences: 

u " _ u " - i 

M - +Au"=f . 
k 

Rearranging yields 
(M + fcA)un = Jbf + Mu n _ 1 . (9.3-5) 

If we know the initial vector u°, Equation (9.3-5) furnishes a tridiagonal 
matrix equation for the vector u" of unknown nodal values at each time level. 
Later we discuss an appropriate choice for u°. Since M and A are symmetric 
and positive definite, so is the system matrix M + fcA, and it follows that 
Equation (9.3-5) has a unique solution for n = 1,2,..., N. 

Convergence of the Fully Discrete Scheme 

Analysis of the time-dependent scheme (9.3-5) is more involved than that of 
the steady-state scheme (9.2-4). In the transient case, the goal is to show 
that the error tends to zero, at every time level, as we refine both the spatial 
and temporal grids. In symbols, we must show that 

max llu" — «hllfoi -* 0 as h.k —> 0. 
0<n<N y ' 

Here, un denotes the function u(nk, •) £ HQ(Q). 

The analysis hinges on an error equation. To derive it, recall the weak 
form of the original problem: 

(-£,v)+B(u,v) = {f,v), 
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for all v G HQ(Q). It follows from this equation that 

dun 

dt 
, v} , (9. 3-6) 

for all v G H^(Q) and for n - 1,2,..., N. 
Now consider the fully discrete problem. We seek a sequence {u/}) °f 

functions in the trial space Vh C #d( ß ) s u c h t h a t 

(*=£■■>) + B(un
h,v) = {f,v), (9.3-7) 

for all v G Vh and for n = 1,2,...,N. Subtracting Equation (9.3-7) from 
Equation (9.3-6) and calling eJJ := u" - u^, we arrive at the error equation: 

(en
h-e

n
h-\v) + kB(en

h,v) = k(Tn,v), 

for all v eVh and for n = 0 , 1 , . . . , N. Here, 

1 dt 

(9.3-8) 

T :— 

is the truncation error associated with the implicit Euler approximation to 
the time derivative. 

Before proceeding, recall that the bilinear form B(-, •) possesses the prop-
erties of an inner product on HQ(CI). As discussed at the end of Section 9.2, 
it therefore makes sense to form projections of functions in HQ(Q) on the trial 
space Vh using this inner product. Drawing upon the analogy between the 
one-dimensional problem (9.1-1) and elliptic problems in higher-dimensional 
settings, we define the elliptic projection of the solution « on Vj as the func-
tion Wh that satisfies the condition 

B(u — Wh,v) = 0, for all v G Vh, (9.3-9) 

at each time t £ J. It follows from the error estimates of Theorem 9.10 that 
there exists a constant T > 0 such that 

\\u-wh\\(0)<Th2 d2u 
dx2 

(o) 
(9.3-10) 

at each t G J. Also, since dwh/dt is the elliptic projection of du/dt (why?), 

du 
'dt 

dwh 

dt 
<Th2 

(0) 

d3u 
dtdx2 

(0) 

(9.3-11) 

Mimicking notation used for u, we denote by w% the function Wh(nk, •) G Vh. 
The strategy for the error analysis is to decompose the error ejj into an 

elliptic-projection error and a remainder: 

£A = n + ç i (9.3-12) 
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where rj" := un — w% and £n := w% - u£. We substitute this decomposition 
into the error equation (9.3-8). Rearranging gives an equation that governs 
the growth of £", which belongs to the trial space Vh, in terms of the elliptic 
projection error rf and the truncation error r". Knowing estimates for rf 
and r", we then estimate £". 

To implement this strategy, note that the decomposition (9.3-12) and the 
error equation (9.3-8) imply that 

(tn-tn-l,v)+kB(C,v) k(r",v) 

-fa" " ' „n- l v)-kB{rf,v), 

for all v e Vh and for n = 1,2,..., TV. By Equation (9.3-9) and the fact that 
rf _ 1 and rf are elliptic projection errors, the last term on the right vanishes. 
Moreover, by specifically choosing v = £", we have 

« n , D - « B _ 1 , 0 +kB(C,C) = k{rn,C) - (r}n - V"-\C) ■ (9-3-13) 

(I) (II) (III) 

To make further progress, we need estimates for the terms labeled (i), 
(n), and (in). 

LEMMA 9.11. (i) < i « " - 1 ^ " - 1 ) + ?{C,tn)-

PROOF: This inequality follows directly from the fact that (v — w, v — w) > 0 
for all v,weHÙ(Sl). ■ 

LEMMA 9.12. ( 
x k2 fnk 

1 Jtn-l 

d2u 
dt2 

(0) 
dt+^(c,n-

PROOF: According to the reasoning in Lemma 9.11, 

^",r><|iKiifo) + ^(r,n-
It remains to estimate (^/2)||r"||?0,. By the Taylor theorem with integral 
remainder (see Theorem 6.3), 

r7J||2 
11(0) 

\dun 

\~dT 
u" — u" 

(0 ) 

1 /""* d2u 
i / [<-(„-i)*]î± 
* J(n-l)k Oi 

dt\\ 
11(0) 
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Now use the Cauchy-Schwarz inequality: 

1 
11̂ 11(0) < p \ICJ-I"IV,HC»(£)' dt 

( 0 ) 

lib rnk 
12 

ft 1 J(n-\)k 
[t - (n - l)k]2 dt hn-l)Adt2) 

dt > d». 

<fc3 

As indicated, the underbraced integral is bounded in magnitude by k3. There-
fore, an interchange in the order of integration produces the inequality 

\\rnwf0)<k f r ( ^ H ) dtdx=kr 
Multiplying by k/2 completes the proof. 

d2u 
dt2 dt. 

(0 ) 

LEMMA 9.13. | (m) | < 
T2/i4 pnk 

J(n-l)k 

d3u 
dtdx2 

( 0 ) 
dt+^icn-

PROOF: By the fundamental theorem of calculus and the Cauchy-Schwarz 
inequality, 

\(r,"-r,"-\C)\ = 
dr) 
~dt 

r-nfe 

J(n-\) 

Applying the trick used in Lemma 9.11, interchanging the order of integration, 
and exploiting the inequality (9.3-11), we obtain 

I«--,-.™ < U J C (2)'*+!«••<■ 

< 

/

pnk 

(n-1)* 

T2h4 rnk 

dt dt+~{C,C) 

t-nk 

J(n-l)k 

( 0 ) 

93« 
dtdx2 

( 0 ) 
dt + ^icn, 
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completing the proof. I 

Because multiple integrals over time and space appear frequently in what 
follows, we adopt some new notation. If v(t, •) is a one-parameter family of 
functions in HQ(SÎ), then 

I M I i v x n ) ■•= j [ Jn\v{t,x)\2dxdt. 

The lemmas just established have the following consequence: 

LEMMA 9.14. Lei k < 1/4. Then for n = 1,2,..., N, 

IK%)<2|K%) + 2*2 d2u 
dt2 + 2/iT 4 r 2 

L*(Jx(l) 

Ô3U 

dtdx2 
L 3 ( J x f l ) 

+ Enni(o)-

PROOF: Applying Lemmas 9.11, 9.12, and 9.13, we get for m = 1,2,.. .,n < 
N the following inequality: 

£(r,r> + *B(r,r) < km_1,r-
2 rmk L2 rmK 

1 J(m-l)k 

d2u\ 
dt2\ 

dt 
1(0) 

+ 
h*t 2 rmk 

J(m-1 )* 

<93u 

dtdx2 
1(0) 

dt+Mr\r>-

But kB(Çm,Çm) > 0 by coercivity, so the inequality holds just as well if we 
neglect this term on the left side. Doing so and computing twice the sum 
from m = 1 to m = n yields 

lie %) < ni?o,+*ajf"'|0 dt 
(0) 

+ h 
/■nk 

4 r 2 / 
Jo 

I tfu I 
dtdx2 

n - 1 

d<+2*£iirii(V2*nai(v 
H(0) m = l 

When k < 1/4, (1 - 2k) > 1/2. Also, the integral from 0 to nib of any 
nonnegative function is bounded above by the integral from 0 to T, so 

èllHl(2
0) < ««%, + k2 fPuf 

0*2 + hAY 4 r 2 

L a (Jxn) 

d3U 
âtôx2 

L3(/xn) 

n - l 

+ 2* £ nrii(V 
m = l 
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But ||£°||?0) > 0, so we can add a multiple of it to the right side and preserve 
the inequality. Doing this and multiplying through by 2 yields 

a3« 
ini?o)<2|H(0) + 2*2 

(9*2 
+ 2/iT 4r>2 

L3(Jxn) dtdx2 
L 3 ( j x n ) 

+ 4*X) IK' m| |2 

By hypothesis, 4k < 1, and the proof is complete. I 

Lemma 9.14 furnishes an inequality that governs the growth of the se-
quence HCIIfoy The following lemma allows us to convert this inequality to 
a more intelligible one. 

LEMMA 9.15 (GRONWALL). Let {C} be a sequence that satisfies an inequality 
of the form 

n - l 

ICI < " + / * £ ICI, n=l,2,...,N, (9.3-14) 
m = 0 

for some positive constants v and \i. Then 

|Cn| < 6 ^ ( 1 / + /i|C°|), n=l,2,...,N. 

(Roughly speaking, sequences bounded in terms of their partial sums grow at 
worst exponentially.) 

PROOF: Define 

Zn~v + »£\C\, 
m = 0 

for n = 0 , 1 , . . . , N. From the hypothesis (9.3-14) it follows that Z" - Zn~l < 
\iZn~x and hence that Z" < (1 + / i )Z n _ 1 , for n = 1,2,..., N. Since 1 + /i < 

Zn~x < ( l + / i ) Z " - 2 < ••• < (l + p ) " - ^ 0 

< e"NZ° 

= e ^ ^ + ^lCl). 

But the inequality (9.3-14) asserts that | C | < Zn~l, and the conclusion 
follows. 1 
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This lemma applies to the result of the previous one: Letting p = Ak and 

» = ne\\h + u 
d2u 

dt2 + 2 / r T 4 ^ 2 

and identifying T = Nk, we find that 

d3u 

dtdx2 

L'(Jxn) 

l i r i l ( 2 o ) < e 4 M 3 r i l ( 2 o ) + 2* 
d2u 

dt2 +2h4T2 

L3(JxCl) 

d3u 

dtdx2 

L 3 ( Jxn) / 
(9.3-15) 

(We have used the hypothesis that k < 1/4.) 
Equation (9.3-15) bounds the growth of the error component £" in terms 

of its initial value £° , the t ime step k, and the spatial mesh size h. One can 
control the size of £° = w^ - u\ by initializing the timestepping algorithm 
correctly. In particular, let us choose the initial function u° to be the elliptic 
projection w\ of the exact solution. In other words, to initialize, we solve the 
following analog of the steady-state problem discussed in Section 9.2: 

B(u°,v) = B(g,v), 

for all v £ Vh- Then f° vanishes, and Equation (9.3-15) collapses to the 
inequality 

lie ii?- < e AT 
ll(O) 2ifc2 Ô2u 

dt2 + 2/ i 4 r 2 

L3(Jxn) 

Ô3u 

dtdx7 

L*(Jxn)j 

0(k2 + hA). 
(9.3-16) 

This inequality is a key ingredient in the following convergence proof. 

T H E O R E M 9.16. Consider the fully discrete scheme (9.3-5). If k < 1/4 and 
u°h = w°k, then 11^11(0) = ö(k + h2). 

P R O O F : Equation (9.3-16) implies that ||£"||(o) obeys a bound of the form 

(lellfo) < a2k2 + b2h4 < a2k2 + 2abkh2 + b2h4 

= (ak + bh2)2, 

where 

,2 . . 2e 4T \d2u 

\dt2 b2 := 2e4Tr2 

L2(jxn) 

d3u 

dtdx2 

t2(Jxfl) 
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It follows that 

Kll(o) < l h " l l (o )+ im ( o) < V2e2T 

d2un 

d2u 
dt2 

+ r max 
\ 0<n<AT 

This concludes the proof. 

dx2 + V2e 2T 

(0) 

Ô3U 

dtdx2 
L3(JxCi); 

9.4 Problems 
PROBLEM 1. Prove Proposition 9.1. 

PROBLEM 2. Prove Proposition 9.2. 

PROBLEM 3. One can often gain insight into the computational requirements 
of a finite-element scheme by looking at the zero structure of the matrix that 
it generates. For example, for the equation u" = / , the Galerkin method 
with piecewise linear trial functions yields a matrix whose zero structure is 
tridiagonal. What are the zero structures that result when the trial functions 
are in M2

0(A), -Mg(A), and A4f(A)? 

PROBLEM 4. Show that Robin boundary conditions, which have the form 

du 
a(x)u(x) + ß{x)-r- = j(x), 

ox 

are natural boundary conditions for model problems of the type considered 
in Section 9.2. 

PROBLEM 5. How does the conclusion of Theorem 9.15 change if we use 
for u£ the piecewise linear interpolant of the initial function g, instead of its 
elliptic projection? 
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Appendix A 

Divided Differences 

Divided differences furnish an alternative to the standard Lagrange inter-
polating bases for the representation of interpolating polynomials. Let / € 
Cn+1([a,&]),and consider a set A = {xo,xi , . . .,x„} of distinct points in [a,b]. 
Let p be the polynomial having degree at most n such that p(x,) = / (x , ) for 
i = Q,...,n. (Theorem 1.1 guarantees the existence and uniqueness of p.) 
Can we find coefficients ao, a i , . . . , an 6 K for which the representation 

p(x) - a0 + ai(x - xQ) + ■ ■ ■ + an(x - x0)(x - xi) ■ • -(x - x„_i) 

holds for every x G [a, 6]? 
The answer is yes. We determine the coefficients ao, a\,..., a„ as follows: 

The condition p(xo) = /(xo) implies that 

ao = / [ x 0 ] : = / ( x 0 ) . 

Using this result and the condition p(xi) = ao + ai(xi — xo) = / (x j ) , we then 
obtain 

,- „ I ._ /[Xl] - f[x0] 
ai - f[xo,xi\ := . 

X l — Xo 

Similarly, the condition p(x2) = /(X2) yields 

t , ■> / [xi ,x2] - / [ x o , x i ] 
02 = /[xo,xi,x2] := -, 

X2 — Xo 

and so forth. The notation adopted in these steps motivates a formal defini-
tion. 

DEFINITION. Given a function / : [a,b] —* M and a grid A = {xo,xi, . . . ,x„} 
on [a, b], we define the divided differences of f on A inductively as follows: 

f[Xi] := /(*,). 

/[x. + l.- • •>*•'+*:] - /[»»)• • -X.+fc-l] 
f[xi,xi+1,. ..,Xi+k] : 

X,+Jfe - X{ 
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where the last line applies for i = 1,2,..., n — k. 

With this définition, we can represent the interpolating polynomial p in the 
form 

n 

p(x) = f[x0] + ^2 f[X0, * 1 , . . . , Xj\(x - X0)(x - Xi) ■ ■ ■ (X - Xj-i). ( A - l ) 

J=l 

As their difference-quotient form suggests, divided differences have close 
connections with differentiation. 

THEOREM A.l . / / / G Cn([a,b]) and x0,xi,... ,x„ G [a, b] are distinct, then 
there exists a point Ç G (a, b) such that 

/ [ * o , * i , . . . , * n ] = ^ R (A-2) 
ni 

PROOF: Let p be the polynomial defined in Equation (A-l). Thus f(x() = 
p(xi) for t = 0 , 1 , . . . , n, so the function g :— f — p G Cn([a, b] has at least 
n + 1 distinct roots in [a,b]. Repeated application of Rolle's theorem shows 
that g' has at least n distinct roots in (a, 6), that g" has at least n — 1 distinct 
roots in (a, 6), and so forth, until we conclude that </") has at least one root 
C G (a, 6). We now have 

/ ( n )(C) - P(n)(C) = / ( n ) ( 0 - n! f[x0, xlt...,xn] = 0, 

which establishes Equation (A-2). I 

By comparing the divided-difference representation (A-l) with the La-
grange form of the interpolating polynomial p, we deduce another fact about 
divided differences. 

THEOREM A.2. Divided differences are symmetric functions of their argu-
ments, that is, if(io, h > ■ • ■, in) î s anD permutation of the indices ( 0 , 1 , . . . , n), 
then 

/ [zo ,z i , - . . ,£„] = f[xi0,xilt. . . , x , J . 

PROOF: The Lagrange form for the interpolation polynomial p defined above 
is 

n 

8 = 0 

where 

_ (X - XQ) • ■ ■ (x - Xj-.l)(x - Zj + l ) ■■•(x-Xn) 

~ (Xi - X0) ■ ■ ■ (X( - Xi-i)(Xi - Xi + i) --(Xi- Xn) ' 
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Comparing the coefficient of xn in this expression with the coefficient of x" 
in (A-l), we see that 

an = f[xo,xi,...,xn] 

= y IM 
f^ (Xi - Xo) ■ --(Xi - Xi^i)(Xi - Xi+1) ■ -(Xi - Xn)' 

This sum is a symmetric function of XQ, xi,..., x„. I 



Appendix B 

Local Minima 

This appendix establishes the connection between the local minima of real-
valued functions defined on subsets of K" and the zeros of their gradients. 
This connection often allows one to solve multidimensional optimization prob-
lems by the methods discussed in Section 3.7. 

The theory generalizes familiar facts about functions ip G C2((a,6)). Re-
call from elementary calculus that <p'(x*) = 0 is a necessary condition for x* 
to be a local minimum for <p. Furthermore, given this condition, <p"(x*) > 0 
is a sufficient condition. In the multidimensional case, the gradient V<p plays 
the role of <p', and the Hessian matrix H ,̂ plays the role of <p". 

In the following two theorems, fi C Mn is open and convex. First we show 
that Vy(x*) = 0 is a necessary condition for x* to be a local minimum. 

THEOREM B. l . Let <p G C 1 (0) . A point x* G Cl is a local minimum for <p 
only ifVtp(x*) = 0. 

PROOF: We prove the contrapositive. Assume that Vy>(x*) ^ 0, and let 
e > 0 be any radius small enough to ensure that ßf(x*) C 0- We construct 
a point z G ße(x*) such that <p(z) < ^(x*). Start by choosing a real number 
a > 0 small enough so that x* - aVjj(x ') G ß((x*). Call y := -aVy(x*) , 
and observe that Vy(x*) • y < 0. Since the function X7<p is continuous on 0, 
there exists a real number 6 G [0,1] such that V<p(x* + 0y) • y < 0 for all 
0 G [0,0]. The fundamental theorem of calculus now yields 

<p(x* + 0y) = <p{x*) + f V<?(x* + 0y) ■ y dO 
Jo 

< P(x*), 

since the integrand is negative. But z := x* +9y G ß£(x*), and ip(z) < <p(x*) 
as desired. Since e is an arbitrary positive number, x* cannot be a local 
minimum for <p. I 
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Next we prove that, when Vv(x*) = 0, positive definiteness of the Hessian 
matrix H¥,(x*) suffices to guarantee that x* is a local minimum of ip. 

THEOREM B.2. Let <p G C1(f2), and assume that Vy is continuously differ-
entiable on ÇI. If there is a point x* G fi such that V^(x ' ) = 0 and Hv,(x*) 
is positive definite, then x* is a local minimum for <p. 

PROOF: The continuity of Hv,(x*) ensures that there exists a radius e > 0 
such that Hv,(x) is positive definite for every x G ß€(x*). (We invite the 
reader to check this statement carefully.) Pick any x G Be(x*) with x ^ x*. 
By the Taylor theorem 0.16, there is a point Ç on the line segment connecting 
x and x* for which 

y>(x) = ^(x*) + V ^ ( x * ) . ( x - x * ) + | ( x - x * ) - H v ( x * ) ( x - x * ) 

= y > ( x * ) + ± ( x - x * ) - H „ ( x * ) ( x - x * ) 

> ¥>(x*). 

Since x G #« (x*) is arbitrary, x* must be a local minimum for <p. I 



Appendix C 

Chebyshev Polynomials 

This appendix reviews some basic properties of the Chebyshev polynomials, 
which find a variety of applications in classical numerical analysis. 

DEFINITION. The Chebyshev polynomials are the functions generated by 
the following recursion: 

T0(z) = 1 

Tn+1{z) = 2zT„(z)-T„_ 1 (z) . 

This recursion gives rise to several equivalent representations. For example, 

Tn(z) = \[(z+ V*2 - l ) " + (z- s/z* - l ) " j , n = 0,1, 2 , . . . ; 

Tn{z) = cos (ncos - 1 z) , - 1 < z < 1. 

The first few Chebyshev polynomials are as follows: 

T0(z) = 1, 

Ti(z) = z, 

T2{z) = 2 2
2 - l , 

T3(z) = iz3 - 3z. 

In general, the nth Chebyshev polynomial has leading coefficient 2 n _ 1 . 
The nth Chebyshev polynomial Tn has n real zeros. The next proposition 

gives more specific information: 
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PROPOSITION C. l . The Chebyshev polynomial Tn has n zeros in the interval 
(—1,1) and n + 1 local extrema in the interval [—1,1]. At the local extrema, 
\Tn{z)\ = 1. 

PROOF: We use the representation Tn(z) — cos(ncos_1 z). Notice that 
cos(raö) vanishes for 

(2N + 1)* 

where N ranges over the integers. Letting 6 = cos - 1 z, we see that Tn{z) = 0 
for 

z = zosfVL±ll\j N = 0,l,2,...,n-1. 

These are the n zeros lying in the interval [—1,1]. Also, cos(n0) has local 
extrema at the points 0 = Nn/n, so setting 9 = cos - 1 z shows that T'n{z) = 0 
for z = cos(NTr/n), N = 0 ,1 ,2 , . . . , n. At these points Tn(z) = (~l)N. I 

Figure 1 depicts the graph of T8. Notice that the polynomial is relatively 
"well behaved" in the interval [—1,1], the function values being confined to 
the range [—1,1]. Intuitively, this controlled behavior inside [—1,1] occurs 
at the expense of the behavior outside the interval, where the polynomial 
rapidly shoots off toward infinity. 

-1 A^ l/V Mi 
|Vv 

i 

FIGURE 1. The Chebyshev polynomial Ts(z). 

The next theorem asserts that, in a sense, the controlled behavior inside 
[—1,1] is the best that we can expect for a polynomial of specified degree. 

THEOREM C.2 (MINIMAX PROPERTY). Of all polynomials p having degree 
exactly n and leading coefficient 2 " _ 1 , Tn possesses the smallest value of 
HPIIOO —sup^ü jhX*) ! . 

(As we have seen, HTkH^ = 1.) 
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PROOF: We argue by contradiction. Assume that p ^ Tn is a polynomial hav-
ing degree exactly n and leading coefficient 2"" 1 and that ||p||oo < ||îrj||oo. Let 

denote the extrema of Tn, ordered so that the points z0, z2,24, • • • 
are local maxima and zi,Z3,zs,... are local minima. We have 

p(z0) < Tn(z0), P(z1)>Tn{zl), p(z2)<Tn(z2), •••• 

Thus the nonzero polynomial p — Tn changes signs n times in the interval 
(—1,1), which implies that p — T„ has n roots in (—1,1). It follows that 
p — Tn has degree at least n. But p and T„ both have degree n and possess 
the same leading coefficient, so p — Tn has degree at most n — 1. This is a 
contradiction. I 
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Convergence 

iterative method, 161, 197, 234 
ODE method, 358, 381 
PDE method, 410, 424 
plot, 71, 106, 173, 180 
rate, 236, 254, 261 

Convergent matrix, 229 
Convex set, 164, 200, 208 
Cooley-Tukey algorithm, 98, 99 
Courant-Friedrichs-Lewy condi-

tion, 415 
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Danielson-Lanczos lemma, 95 
Deflation, 292 
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Gauss-Seidel method, 232, 238 
Gauss transformation, 118 
Geometric multiplicity, 285 
Gerschgorin disk, 286 
Gerschgorin theorem, 286, 311 
Givens transformations, 294 
Golden ratio, 190, 194 
Gradient, 22 
Gram matrix, 84, 87, 153 
Gram polynomial, 89 
Gram-Schmidt procedure, 16, 226 
Greatest lower bound, 3 
Grid, 31 
Grid function, 201, 351, 401, 468 
Grid line, 52 
Grid ratio, 74, 427 
Gronwall inequality, 473 
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Hermite polynomials, 341 
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Hessian matrix, 24, 64, 204, 481 
Heun method, 353 
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Householder transformation, 294, 

303 
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Hyperbolic PDE, 401 
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tion, 272 
Infimum, 3 
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339, 449 
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Jacobian matrix, 200, 203 
Jacobi method, 231, 238, 239 
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Least upper bound, 3 
Least-upper-bound principle, 4 
Legendre polynomials, 90, 334, 341 
Lexicographic ordering, 232, 406 
Limit point, 5 
Linear combination, 9 
Linear convergence, 172, 197, 214 
Linear independence, 9 
Linearity, 15 
Linear operator, 10 
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Linear system, 109 
Linear transformation, 10 
Line successive overrelaxation, 280 
Lipschitz condition, 170, 174, 191, 

197, 207, 217, 351, 388 
Lipschitz constant, 184, 198 
Local minimum, 204 
Logarithmic searching, 216 
Lower bound, 3 
Lower triangular matrix, 113, 130, 

144 
LU factorization, 114,126,136,154, 

222,291 

Mass matrix, 468 
Matrix norm, 145, 157 

subordinate, 145, 157 
Matrix product, 10 
Matrix splitting, 230, 234 
Maximum, 4 
Maximum principle, 426, 434, 436 

discrete, 410 
Mean value theorem, 22, 171, 186, 

200, 389 
integrals, 322 

Mesh size, 31, 62, 351, 402 
Midpoint rule, 347 
Minimax property, 484 
Minimum, 4 
Moment, 67 
Monic polynomial, 335 
Multigrid method, 246 
Multiplicity of a zero, 49, 163, 182 
Multistep method, 349, 365 

linear, 366 

Natural boundary condition, 465 
Natural numbers, 4 
Neumann condition, 407, 464 
Newton-Cotes formula, 315 
Newton's method, 177, 181, 202, 

354 
damped, 205 
finite-difference, 188, 207, 211 

Nitsche lift, 461 
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Nodal basis, 39 
Node, 28 
Nonnegative matrix, 144 
Nonsingular matrix, 11 
Norm, 12, 145, 149, 449 

equivalence, 18 
Normal equations, 84, 297 
Normed vector space, 12 
Numerical diffusion, 438 
Numerical quadrature, 90 
Nyquist frequency, 101 

One-step methods, 349 
Open interval, 2 
Open set, 5 
Operation count, 109, 113, 136, 

156, 296, 305 
Optimal-order estimate, 459 
Order symbol, 20 
Order 

convergence, 172 
PDE, 396 

Ordinary differential equation, 201, 
349 

Orthogonal projection, 84 
Orthogonal vectors, 15 
Orthogonal matrix, 293, 312 
Orthogonal polynomials, 334 
Orthonormal basis, 16, 145 
Ostrowski-Reich theorem, 252, 257 
Overdetermined system, 82 

Parabolic PDE, 401 
Parallel computing, 238 
Parasitic root, 373 
Parseval identity, 419, 459 
Partial differential equation, 395 
Peano kernel, 319 

theorem, 320 
Peclet number, 435 
Permutation matrix, 118,143, 241, 

253, 308 
elementary, 119 

Perturbation lemma, 213 
Piecewise interpolation 
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bilinear, 53 
constant, 44 
cubic, 39 
Hermite, 54 
Lagrange, 41 
linear, 38, 452, 467 
polynomial, 38, 216 
quadratic, 38 

Pivoting, 114, 125, 129, 134, 138, 
142, 156, 308 

partial, 114, 119 
total, 116 

Poisson equation, 280, 395, 401-
403 

Polishing method, 168 
Polygonal set, 58 
Polynomial interpolation, 34 
Positive definiteness, 14 

matrix, 86, 125, 130, 144, 252, 
407,431,454,482 

Power method, 264, 283, 288 
inverse, 291 

Preconditioner, 270 
Predictor-corrector scheme, 375 
Principal root, 373 
Projection, 104 

elliptic, 463, 469, 474 
interpolatory, 105 
L2, 89 
principle, 84, 87 

Prolongation operator, 250 
Property A, 253, 258, 260 
Pythagorean theorem, 78, 87, 145 

QR decomposition, 292, 295 
QR method, 283, 292, 300 
Quadratic convergence, 172, 180, 

185, 197, 214 
Quadrature, 313 

Range, 3 
Rank, 215 
Rank-one matrix, 215 
Rational interpolation, 34 
Rayleigh quotient, 256, 289 
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Real numbers, 2 
Rectangle rule, 347 
Red-black ordering, 232, 238, 254 
Reducible matrix, 241 
Reduction in order, 350 
Reflection, 293 

plane, 294 
Reflexivity, 17 
Regularity, 459, 462 
Relative error, 151 
Relaxation, 223, 234 
Residual, 150, 180, 249, 264, 448 
Restriction operator, 250 
Richardson extrapolation, 323, 392 
Riemann sum, 313 
Robin condition, 408, 475 
Rolle theorem, 22 
Romberg quadrature, 323 
Root condition, 373, 380 
Rotation, 293 

plane, 294 
Roundoff error, 126 
Row reduction, 111 
Runge-Kutta method, 353 
Runge-Kutta-Fehlberg algorithm, 

364 
Runge phenomenon, 33, 36, 104 

Scalar, 8 
Schur normal form, 226 
Search direction, 265 
Searching, 223, 264 
Secant method, 189 
Seminorm, 78 
Sherman-Morrison theorem, 218 
Shift of origin, 291 
Shift operator, 416 
Similarity transformation, 225, 285 
Similar matrix, 225, 301 
Simply connected set, 58 
Simpson rule, 315, 318, 329, 353 
Simultaneous iteration, 311 
Singular matrix, 11, 144 
Smoother, 248 
Sobolev space, 449 
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Solution error, 358 
Span,9 
Sparse matrix, 134 
Spectral radius, 144, 146, 157, 227 
Spectrum, 144, 225, 283 
Spline, 66 

complete', 67 
periodic, 67 
natural, 67, 80 

Stability, ODE method, 360, 372, 
380 

weak, 374 
strong, 374 

Stability, PDE method, 418 
conditional, 421, 428 

Steepest descent, 267 
Steffensen's method, 218 
Stencil, 405, 427-433 
Stepsize, 351 
Stiffness matrix, 468 
Subordinate matrix norm, 227 
Subspace, 8 
Subspace iteration, 311 
Successive overrelaxation, 233, 251, 

407 
Successive substitution, 169 
Superlinear convergence, 173, 197, 

214 
Supremum, 3 
Symmetric matrix, 11, 125, 130, 

144, 252, 264, 304, 407, 
431, 454 

Symmetry, 15, 17 

Taylor methods (ODE), 391 
Taylor theorem, 19, 23, 64, 179, 

237, 320, 409, 417, 470 
Tensor-product interpolation, 52 
Test function, 448, 466 
Thomas algorithm, 70, 134 
Transitivity, 17 
Transpose, 11 
Trapezoid method (ODE), 354 
Trapezoid rule, 315, 317, 324, 353 
Trial function, 453 

Trial space, 452 
Triangle inequality, 12, 146, 450 
Triangular matrix, 283 
Triangulation, 59 
Tridiagonal matrix, 70, 134, 140, 

246,304,406,431,454 
Trigonometric interpolation, 34,90 
Truncation error 

ODE method, 356, 368, 469 
PDE method, 409, 427-440 

Union, 2 
Unitary matrix, 226 
Unitary similarity, 226 
Unit sphere, 13 
Upper bound, 3 
Upper triangular matrix, 111, 144 
Upstream weighting, 437 

Vandermonde determinant, 378 
Variational formulation, 448-450 
V-cycle, 249 
Vector, 8 
Vector space, 7 
von Neumann stability analysis, 

428-440 

Wave equation, 395, 401, 439 
Weak form, 466 
Weight function, 339-341 
Weight, quadrature, 343 
Well posed problem, 351 

Zero, simple, 163 
Zero structure, 134, 242, 253, 297, 

303, 455 
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