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Preface to the Third Edition

This text is intended to provide a strong theoretical background in testing
hypotheses and decision theory for those who will be practicing in the real
world or who will be participating in the training of real-world statisticians and
biostatisticians. In previous editions of this text, my rhetoric was somewhat
tentative. I was saying, in effect, “Gee guys, permutation methods provide
a practical real-world alternative to asymptotic parametric approximations.
Why not give them a try?” But today, the theory, the software, and the
hardware have come together. Distribution-free permutation procedures are
the primary method for testing hypotheses. Parametric procedures and the
bootstrap are to be reserved for the few situations in which they may be
applicable. Four factors have forced this change:

1. Desire by workers in applied fields to use the most powerful statistic for
their applications. Such workers may not be aware of the fundamental
lemma of Neyman and Pearson, but they know that the statistic they
want to use—a complex score or a ratio of scores, does not have an already
well-tabulated distribution.

2. Pressure from regulatory agencies for the use of methods that yield exact
significance levels, not approximations.

3. A growing recognition that most real-world data are drawn from mixtures
of populations.

4. A growing recognition that missing data is inevitable, balanced designs
the exception.

Thus, it seems natural that the theory of testing hypothesis and the more
general decision theory in which it is embedded should be introduced via
the permutation tests. On the other hand, certain relatively robust paramet-
ric tests such as Student’s t continue to play an essential role in statistical
practice.

As the present edition is intended to replace rather than supplement exist-
ing graduate level texts on testing hypotheses and decision theory, it includes
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vi Preface to the Third Edition

material on parametric methods as well as the permutation tests and the boot-
strap. The revised and expanded text includes many more real-world illustra-
tions from economics, geology, law, and clinical trials. Also included in this
new edition are a chapter on multifactor designs expounding on the theory of
synchronous permutations developed by Fortunato Pesarin and his colleagues
and sections on sequential analysis and adaptive treatment allocation.

Algebra and an understanding of discrete probability will take the reader
through all but the appendix, which utilizes probability measures in its proofs.
A one-semester graduate course would take the student through Chapters
1–3 and any portions of Chapters 4, 5, and Appendix that seem appropriate.
The second semester would take the student through Chapters 6 and 7, and
whatever portions of the remaining chapters seem germane to the instructor
and students’ interests.

An appendix utilizing measure theory has been provided for the benefit of
the reader and instructor who may wish to have a mathematically rigorous
foundation for the theory of testing hypotheses for continuous as well as dis-
crete variables. For example, Section 2 of the appendix extends the proof of
the Fundamental Lemma in Chapter 3 to the continuous case.

The number of exercises has been greatly increased from previous editions.
Exercises range from the concept-driven, designed to develop the student’s sta-
tistical intuition in practical settings, to the highly mathematical. Instructors
are free to pick and choose in accordance with the mathematical and practical
sophistication of their classes and the objectives of their courses.

To ensure greater comprehension of fundamental concepts, many essen-
tial results are now presented in the form of exercises. Although the primary
motivation for this change came from instructors, feedback from the autodi-
dact has persuaded us that full understanding can only be gained from actual
usage.

Hopefully, this edition reflects the lessons I’ve learned from a series of inter-
active on-line courses offered through statistics.com. Immediate feedback from
my students has forced me to revise the text again and again. The late Joseph
Hodges once said, “The ideal mathematics lecture would be entirely free of
symbols.” The current text avoids symbols to the degree I am capable of
doing so, their occasional use a weakness. Asymptotic results are avoided; the
emphasis in this strongly theoretical work is on the practical.

If you find portions of this text particularly easy to understand the credit
goes to Cliff Lunneborg for his insightful review of the entire text, to Fortunato
Pesarin for his many contributions to Chapter 9, and to Norman Marshall for
his comments on Chapter 8.

September 2004 Phillip Good
Huntington Beach, California
brother unknown@yahoo.com
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Preface to the Second Edition

In 1982, I published several issues of a samdizat scholarly journal called Ran-
domization with the aid of an 8-bit, 1-MH personal computer with 48 K
of memory (upgraded to 64 K later that year) and floppy disks that held
400 Kbytes. A decade later, working on the first edition of this text, I used a
16-bit, 33-MH computer with 1 Mb of memory and a 20-Mb hard disk. This
preface to the second edition comes to you via a 32-bit, 300-MH computer
with 64-Mb memory and a 4-Gb hard disk. And, yes, I paid a tenth of what
I paid for my first computer.

This relationship between low-cost readily available computing power and
the rising popularity of permutation tests is no coincidence. Simply put, it is
faster today to compute an exact p-value than to look up an approximation
in a table of the not-quite-appropriate statistic. As a result, more and more
researchers are using Permutation Tests to analyze their data.

Of course, some of the increased usage has also come about through the
increased availability of and improvements in off-the-shelf software, as can be
seen in the revisions in this edition to Chapter 12 (Publishing Your Results)
and Chapter 13 (Increasing Computation Efficiency).

These improvements helped persuade me it was the time to publish a first
course in statistics based entirely on resampling methods (an idea first pro-
posed by the late F.N. David). As a result, Permutation Tests has become two
texts: one, Resampling Methods, designed as a first course, and this second
edition aimed at upper division graduate students and practitioners who may
already be familiar with the application of other statistical procedures. The
popular question section at the end of each chapter now contains a number of
thesis-level questions, which may or may not be solvable in their present form.
While the wide applicability of permutation tests continues to be emphasized
here, their limitations are also revealed. Examples include expanded sections
on comparing variances (Chapter 3, Testing Hypotheses), testing interactions
in balanced designs (Chapter 4, Experimental Design), and multiple regression
(Chapter 7, Dependence).
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Sections on sequential analysis (Chapter 4) and comparing spatial distri-
butions (Chapter 8) are also new. Recent major advances in the analysis of
multiple dependent tests are recorded in Chapter 5 on multivariate analysis.

My thanks to the many individuals who previewed chapters for this edition,
including, in alphabetical order, Brian Cade, Mike Ernst, Barbara Heller, John
Kimmel, Patrick Onghena, Fortunato Pesarin, and John Thaden.

April 2000 Phillip Good
Huntington Beach, California
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Preface to the First Edition

Permutation tests permit us to choose the test statistic best suited to the
task at hand. This freedom of choice opens up a thousand practical applica-
tions, including many which are beyond the reach of conventional paramet-
ric statistics. Flexible, robust in the face of missing data and violations of
assumptions, the permutation test is among the most powerful of statistical
procedures. Through sample size reduction, permutation tests can reduce the
costs of experiments and surveys.

This text on the application of permutation tests in biology, medicine,
science, and engineering may be used as a step-by-step self-guiding reference
manual by research workers and as an intermediate text for undergraduates
and graduates in statistics and the applied sciences with a first course in
statistics and probability under their belts.

Research workers in the applied sciences are advised to read through
Chapters 1 and 2 once quickly before proceeding to Chapters 3 through 8,
which cover the principal applications they are likely to encounter in practice.

Chapter 9 is a must for the practitioner, with advice for coping with real-
life emergencies such as missing or censored data, after-the-fact covariates,
and outliers.

Chapter 10 uses practical applications in archeology, biology, climatology,
education, and social science to show the research worker how to develop
new permutation statistics to meet the needs of specific applications. The
practitioner will find Chapter 10 a source of inspiration as well as a practical
guide to the development of new and novel statistics.

The expert system in Chapter 11 will guide you to the correct statistic for
your application. Chapter 12, more “must” reading, provides practical advice
on experimental design and shows how to document the results of permutation
tests for publication.

Chapter 13 describes techniques for reducing computation time; a guide to
off-the-shelf statistical software is provided in an appendix.



“prelims” — 2004/10/12 — page x — #10

x Preface to the First Edition

The sequence of recommended readings is somewhat different for the stu-
dent and will depend on whether he or she is studying the permutation tests by
themselves or as part of a larger course on resampling methods encompassing
both the permutation test and the bootstrap resampling method.

This book can replace a senior-level text on testing hypotheses. I have
also found it of value in introducing students who are primarily mathemati-
cians to the applications which make statistics a unique mathematical science.
Chapters 1, 2, and 14 provide a comprehensive introduction to the theory.
Despite its placement in the latter part of the text, Chapter 14, on the theory
of permutation tests, is self-standing. Chapter 3 on applications also deserves
a careful reading. Here in detail are the basic testing situations and the basic
tests to be applied to them. Chapters 4, 5, and 6 may be used to supple-
ment Chapter 3, time permitting (the first part of Chapter 6 describing the
Fisher exact test is a must). Rather than skipping from section to section,
it might be best for the student to consider one of these latter chapters in
depth—supplementing his or her study with original research articles.

My own preference is to parallel discussions of permutation methods with
discussion of a second resampling method, the bootstrap. Again, Chapters 1,
2, and 3—supplemented with portions of Chapter 14—are musts. Chapter 7,
on tests of dependence, is a natural sequel. Students in statistical computing
also are asked to program and test at least one of the advanced algorithms in
Chapter 12.

For the reader’s convenience the bibliography is divided into four parts: the
first consists of 34 seminal articles; the second of two dozen background arti-
cles referred to in the text that are not directly concerned with permutation
methods; the third of 111 articles on increasing computational efficiency; and
a fourth, principal bibliography of 574 articles and books on the theory and
application of permutation techniques.

Exercises are included at the end of each chapter to enhance and reinforce
your understanding. But the best exercise of all is to substitute your own data
for the examples in the text.

My thanks to Symantek, TSSI, and Perceptronics without whose Grand-
View r© outliner, Exact r© equation generator, and Einstein Writer r© word pro-
cessor this text would not have been possible.

I am deeply indebted to Mike Chernick for our frequent conversations and
his many invaluable insights, to Mike Ernst, Alan Forsythe, Karim Hiriji, John
Ludbrook, Reza Modarres, and William Schucany for reading and commenting
on portions of this compuscript and to my instructors at Berkeley, including
E. Fix, J. Hodges, E. Lehmann, and J. Neyman.

February 1994 Phillip Good
Huntington Beach, California
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A Wide Range of Applications

This is a book about testing hypotheses; more accurately, it is a book about
making decisions. In this chapter we introduce some basic concepts in statis-
tics related to decision theory, including events, random variables, samples,
variation, and hypothesis. We consider a simple example of decision-making
under uncertainty and review the history of statistics in decision-making.

1.1 Basic Concepts

1.1.1 Stochastic Phenomena

The two factors that distinguish the statistical from the deterministic appro-
ach are variation and the possibility of error. The effect of this variation is
that a distribution of values takes the place of a single, unique outcome.

I found freshman physics extremely satisfying. Boyle’s Law, V = kT/P ,
with its tidy relationship between the volume, temperature, and pressure of
a perfect gas is just one example of the perfection I encountered there. The
problem was I could never quite duplicate this (or any other) law in the
freshman physics’ laboratory. Maybe it was the measuring instruments, my
lack of familiarity with the equipment, or simple measurement error, but I
kept getting different values for the constant k.

By now I know that variation is the norm—particularly in the clinical
and biological areas. Instead of getting a fixed, reproducible V to correspond
to a specific T and P , one ends up, due to errors in measurement, with a
distribution F of values instead. But I also know that with a large enough
sample the mean and shape of this distribution are reproducible.

Figure 1.1a and 1.1b depict two such distributions. The first is a normal or
Gaussian distribution. Examining the distribution curve, we see that the nor-
mally distributed variable can take all possible values between −∞ and +∞,
but most of the time it takes values that are close to its median (and mean).
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Fig. 1.1. Distributions: a) normal distribution, b) exponential distribution, c) dis-
tribution of values in a sample taken from a normal distribution.

The second is an exponential distribution: The exponentially distributed vari-
able only takes positive values; half of the observations are small, crowded
together in the left half of the distribution, but the balance is stretched out
across a far wider range.

These distributions are both limiting cases: they represent the aggregate
result of an infinite number of observations; thus, the distribution curves are
smooth. The choppy histogram in Figure 1.1c is typical of what one sees with
a small, finite sample of observations—in this case, a sample of 25 observations
taken from a normal distribution. Still more typical of real-world data is the
histogram of Figure 7.2, based on a sample taken from a mixture of two normal
distributions.

The sample is not the population. To take an extreme, almost offensive
example, suppose that every member of a Los Angeles, California jury were
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to be nonwhite. Could that jury really have been selected at random from
the population as the statutes of the State of California requires? The answer
is “yes”; there are court districts in Los Angeles in which less than 30% of
the population is white; the probability of a jury of 12 individuals containing
no whites in such a district is approximately 0.7 raised to the 12th power or
about one in a hundred. With hundreds of juries being empanelled each week,
nonwhite juries are not uncommon; nonetheless, they are not representative.

The good news is that as a sample grows larger, it will more and more
closely resemble the population from which it is drawn. How large is large?
The answer as we shall see in subsequent chapters depends both upon the
underlying distribution—is it exponential? normal? a mixture of normals?—
and the population parameters we wish to estimate.

1.1.2 Distribution Functions

We observe an event ω belonging to a set of events Ω. As often, we observe
a real-valued random variable X[ω] or a vector X [ω] of real-valued random
variables whose values depend upon the event ω. The (cumulative) distribu-
tion function F of such a random variable, is F [x] = Pr{X ≤ x}. From the
definition of a probability, we see that if x < y, then 0 ≤ F [x] ≤ F [y] ≤ 1.

If the observations are discrete, that is, if they can take at most a countably
infinite number of values such as 1, 2, 2.5, 3, . . . , then a graph of F would
be a series of steps of increasing height and F [x] =

∑
xj≤x Pr{X = xj}. If

the observations can be measured on a continuous scale, and a probability
density f(x) exists as described in the appendix, then we may write F [y] =∫ y

−∞ f(x)dx.
Accordingly, the expected value of such observations may be written either

as EX =
∑k

i=1 xk Pr{X = xk} or EX =
∫∞

−∞ xf(x)dx. If EX2 < ∞,

their variance may be written as
∑k

i=1(xk − EX)2 Pr{X = xk} or
∫∞

−∞(x −
EX)2f(x)dx.

Let Fn[x] denote the empirical distribution function of a sample of size n
taken from a population. That is, if we have a set of observations x1, . . . , xn,
then Fn[x] denotes the fraction of these observations that are less than x. The
sample is not the population, so Fn[x] �= F [x]. Nonetheless, if n observations
are made independently and at random from the same population, then Fn[x]
converges to F [x] as n grows larger.

Several distributions that arise in practice are found in Chapters 3 and 4.

1.1.3 Hypotheses

On the basis of our observations, we wish to choose an optimal decision d
from a set D of possible decisions. Let us consider the sort of things we might
observe and the type of decisions we might make.
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Example 1: High blood pressure (hypertension) can be the source of many
physical problems up to and including death of the individual unless it can
be brought under control. Let us suppose our firm has developed a drug we
think might be successful in lowering blood pressure in most of the patients
who will receive it. (Note my use of the weasel word “most.” Seldom can we
predict “all” or “none” in advance of observing stochastic phenomena.)

We administer our drug to a patient and observe that his blood pressure
drops 10 mb. We also observe that he has no other side effects or symptoms
apart from the drop in blood pressure. In response, we make one of the fol-
lowing four decisions:

i) try an increased dose of the drug on the same patient;
ii) try the same dose of the drug on several other patients;
iii) put the drug into mass production and launch an advertising campaign;
iv) put this drug back on the shelf and start looking for a new and better drug.

Suppose we’ve opted to try the dose on other patients and must now decide
how many to observe. A fundamental rule of decision-making under uncer-
tainty, which we expand on in subsequent chapters, is that the greater the
number of observations, the more likely are our decisions to be correct.

But clinical trials are not inexpensive ($10,000 per patient in the US is a
good working number). Also, we want to keep the number of test subjects low
until we can be reasonably confident the drug is harmless. On the other hand,
we want to observe sufficient numbers so that we can justify a claim that the
drug will prove safe and effective for the population at large.

Working against us is that variation appears to be the norm: Blood pressure
can vary from hour to hour in the same patient. Even though the nurse may
have just taken my blood pressure, my personal physician will usually take it
again, and these two skilled observers frequently come up with quite different
answers. If I’d been smoking before my blood pressure was taken—a practice
I abandoned decades ago—my blood pressure would be elevated over what it
would have been had I not been using tobacco.

A second fundamental rule of decision-making is that the less the intrinsic
variation, the fewer the observations necessary to ensure a high probability of
making a correct decision. (Note our continued use a weasel words such as
“more likely” and “high probability.” As long as there is intrinsic variation,
there can never be guarantees, at least not for finite, realizable sample sizes.)

Out of some misguided sense of chivalry the first clinical trials were confined
to men as the experimental subjects. But who is to say that a woman will
necessarily respond to a given pharmaceutical in the same way as a man?
Or that an antihypertensive drug will be as effective with a smoker as a
nonsmoker? Or that individuals with a concurrent medical condition such as
diabetes can be successfully treated with the same drug as those who are
disease free? Either we must limit the scope of our conclusions or make sure
individuals of all ages, races, sexes, smoking habits, and concurrent conditions
are included in our observations.



“chapter1” — 2004/9/23 — page 5 — #5

1.2 Applications 5

When we formulate a hypothesis, we need to spell out in detail the
population(s) to which it applies.

Example 2: Let us suppose our trials are now complete, the regulatory
agency has granted approval for our drug, and it is up to our advertising
department to see that sales match its prospects.

The advertising department has come up with two different circulars and
needs to choose one to announce the availability of the new drug. Although
there are many compelling theoretical arguments why one circular ought to
generate more sales than another, the department head is reluctant to commit
a million dollar advertising budget on the basis of speculation. To test the
hypothesis that letter A is more effective than letter B, it is proposed to send
out copies of the circulars to a sample of physicians offering them a trial supply
of the new drug simply for writing back. The rationale behind this experiment
is that the number of responses will be a direct indicator of the effectiveness
of the circular and the advertising copy it contains.

Example 3: One of the company’s executives feels these latter trials would
be a waste of time. “Just flip a coin, and use it to decide which circular to
use.” Her proposal fails when it is noted that all previous coin flips have come
out in her favor. “It’s a fair coin,” she insists.

Here, too, is a hypothesis that may be tested. Successive flips of her coin
can be made, the numbers of heads and tails recorded and a decision reached
as to whether her coin is fair or not.

The similar use of observation and statistics in decision-making can be
found in virtually every field of endeavor, not merely advertising and pharma-
ceuticals. If you are new to research (or a “pure” mathematician), we suggest
you read one or two of the articles in the following section to get a feel for the
type of experimentation that motivates this text.

1.2 Applications

The theory of testing hypotheses has been applied in

• agriculture [Eden and Yates, 1933; Higgins and Noble, 1993; Kempthorne,
1952],

• aquatic science [Quinn, 1987; Ponton and Copp, 1997],
• anthropology [Fisher, 1936; Konigsberg, 1997; Gonzalez, Garcia-Moro,

Dahinten, and Hernandez, 2002],
• archaeology [Klauber, 1971; Berry, Kvamme, and Mielke, 1980, 1983],
• astronomy [Zucker and Mazeh , 2003],
• atmospheric science [Adderley, 1961; Tukey, Brillinger, and Jones, 1978,

Gabriel and Feder, 1969],
• biology [Daw et al., 1998; Howard, 1981],
• biotechnology [Vanlier, 1996; Park et al., 2003; Xu and Li, 2003],
• botany [Mitchell-Olds, 1987; Ritland and Ritland, 1989],
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• cardiology [Chapelle et al., 1982],
• chemistry [van Keerberghen, Vandenbosch, Smeyers-Verbeke, and Massart,

1991],
• climatology [Hisdal et al., 2001; Robson, Jones, Reed, and Bayliss, 1998],
• clinical trials [Potthoff, Peterson, and George, 2001; Salsburg, 1992; Wei

and Lachin, 1988],
• computer science [Yucesan, 1993; Laitenberger et al., 2000; Rosenberg,

2000],
• demographics [Jorde et al., 1997],
• dentistry [Mackert, Twiggs, Russell, and Williams, 2001],
• diagnostic imaging [Arndt et al., 1996; Raz et al., 2003],
• ecology [Cade 1997; Manly, 1983],
• econometrics [Kennedy, 1995; Kim, Nelson, and Startz, 1991; McQueen,

1992],
• education [Schultz and Hubert, 1976; Manly, 1988],
• endocrinology [O’Sullivan et al., 1989],
• entomology [Bryant, 1977; Mackay and Jones, 1989; Simmons and

Weller, 2002],
• epidemiology [Glass et al., 1971; Wu et al., 1998],
• ergonomics [Valdesperez, 1995],
• forensics [Good 2002; Solomon, 1986],
• genetics [Levin, 1977; Karlin and Williams, 1984; North et al., 2003; Varga

and Toth, 2003],
• geography [Royaltey, Astrachen, and Sokal, 1975; Hubert, 1978],
• geology [Clark, 1989; Orlowski et al., 1993],
• gerontology [Miller et al., 1997; Dey et al., 2001],
• immunology [Makinodan et al., 1976; Roper et al., 1998],
• linguistics [Romney et al., 2000],
• medicine [Bross, 1964; Feinstein, 1973; McKinney et al., 1989],
• molecular biology [Barker and Dayhoff, 1972; Karlin et al., 1983],
• neurobiology [Edgington and Bland, 1993; Weth, Nadler, and Korsching,

1996],
• neurology [Lee, 2002; Faris and Sainsbury, 1990],
• neuropsychopharmacology [Wu et al., 1997],
• neuropsychology [Stuart, Maruff, and Currie, 1997],
• oncology [Hoel and Walburg, 1972; Spitz et al., 1998],
• ornithology [Busby, 1990; Michelat and Giraudoux, 2000; Mitani, Sanders,

Lwanga et al., 2001],
• paleontology [Marcus, 1969; Quinn, 1987],
• parasitology [Pampoulie and Morand, 2002],
• pediatrics [Goldberg et al., 1980; Grossman et al., 2000],
• pharmacology [Plackett and Hewlett, 1963; Oliva, Farina, and Llabres,

2003],
• physics [Penninckx et al., 1996],
• physiology [Zempo et al., 1996],
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• psychology [Jennings et al., 1997; Kelly, 1973],
• radiology [Milano, Maggi, and del Turco, 2000; Hossein-Zadeh, Ardekani,

and Soltanian-Zadeh, 2003; Raz et al., 2003],
• reliability [Kalbfleisch and Prentice, 1980; Nelson, 1992],
• sociology [Marascuilo and McSweeny, 1977; Pattison et al., 2000],
• surgery [Majeed et al., 1996],
• taxonomy [Alroy, 1994; Gabriel and Sokal, 1969; Fisher, 1936],
• toxicology [Cory-Slechta, Weiss, and Cox, 1989; Farrar and Crump, 1988,

1991],
• vocational guidance [Gliddentracey and Parraga, 1996; Ryan, Tracey, and

Rounds, 1996],
• virology [Good, 1979],
• theology [Witztum, Rips, and Rosenberg, 1994].

1.3 Testing a Hypothesis

Shortly after I received my doctorate in statistics, I decided that if I really
wanted to help bench scientists apply statistics I ought to become a scientist
myself. So I went back to school to learn about physiology and aging in cells
raised in petri dishes.

I soon learned there was a great deal more to an experiment than the
random assignment of subjects to treatments. In general, 90% of experimental
effort was spent mastering various arcane laboratory techniques, another 9%
in developing new techniques to span the gap between what had been done
and what I really wanted to do, and a mere 1% on the experiment itself.
But the moment of truth came finally—it had to if I were to publish and not
perish—and I succeeded in cloning human diploid fibroblasts in eight culture
dishes: Four of these dishes were filled with a conventional nutrient solution
and four held an experimental “life-extending” solution to which vitamin E
had been added.

I waited three weeks with fingers crossed that there was no contamination
of the cell cultures, but at the end of this test period three dishes of each type
had survived. My technician and I transplanted the cells, let them grow for
24 hours in contact with a radioactive label, and then fixed and stained them
before covering them with a photographic emulsion.

Ten days passed and we were ready to examine the autoradiographs. Two
years had elapsed since I first envisioned this experiment and now the results
were in: I had the six numbers I needed.

“I’ve lost the labels,” my technician said as she handed me the results. This
was a dire situation. Without the labels, I had no way of knowing which cell
cultures had been treated with vitamin E and which had not.

“121, 118, 110, 34, 12, 22.” I read and reread these six numbers which
represented populations of cells remaining in the dishes, over and over. If the
first three counts were from treated colonies and the last three were from
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untreated, then perhaps I had found the fountain of youth. Otherwise, I had
nothing to report.

1.3.1 Five Steps to a Test

How had I reached the conclusion that vitamin E extends cell lifespan? In suc-
ceeding chapters, you will learn a wide variety of decision-making techniques
ranging from the simple to the complex. In each case, we will follow the same
five-step procedure of this problem.

1. Analyze the problem—identify the hypothesis, the alternative hypotheses
of interest, and the potential risks associated with a decision.

2. Choose a test statistic.
3. Compute the test statistic.
4. Determine the frequency distribution of the test statistic under the

hypothesis.
5. Make a decision using this distribution as a guide.

1.3.2 Analyze the Experiment

For the answer to how I reached this conclusion, let’s take a second, more
searching, look at the problem of the missing labels. First, we identify the
hypothesis and the alternative(s) of interest.

I wanted to assess the life-extending properties of a new experimental treat-
ment with vitamin E. To do this, I divided my cell cultures into two groups:
one grown in a standard medium and one grown in a medium containing
vitamin E. At the conclusion of the experiment and after the elimination of
several contaminated cultures, both groups consisted of three independently
treated dishes.

My null hypothesis was that the growth potential of a culture would not
be affected by the presence of vitamin E in the media: All the cultures would
have equal growth potential. The alternative of interest was that cells grown
in the presence of vitamin E would be capable of many more cell divisions.

Under the null hypothesis, the labels “treated” and “untreated” provide
no information about the outcomes: the observations would be expected to
have more or less the same values in each of the two experimental groups.
If they were to differ, it would be as a result of some uncontrollable random
fluctuation alone. Thus, if this null, or no-difference, hypothesis were true, I
was free to exchange the labels.

1.3.3 Choose a Test Statistic

The next step was to choose a test statistic that discriminates between the
hypothesis and the alternative. The statistic I chose was the sum of the counts
in the group treated with vitamin E. If the alternative is true and vitamin E
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prolongs life span, most of the time this sum ought to be larger than the sum
of the counts in the untreated group. If the null hypothesis is true, that is,
if it doesn’t make any difference which treatment the cells receive, then the
sums of the two groups of observations should be approximately the same.
One sum might be smaller or larger than the other by chance, but most of
the time the two shouldn’t be all that different. We formalize this rationale
in Chapter 3 via the Fundamental Lemma of Neyman and Pearson.

1.3.4 Compute the Test Statistic

The third step was to compute the test statistic for the observations as origi-
nally labeled, thus, S = 349 = 121 + 118 + 110.

1.3.5 Determine the Frequency Distribution of the Test Statistic

To obtain a distribution for the test statistic under the null hypothesis, I began
to rearrange (permute) the labels on the observations, randomly reassigning
one of the six labels, three reading “treated” and three “untreated,” to each
dish. For example: treated, 121 118 34, and untreated, 110 12 22. In this
particular rearrangement, the sum of the observations in the first (treated)

group was 273. I repeated this step until all
(

6
3

)
= 20 distinct rearrangements

had been examined.

First Group Second Group Sum
1 121 118 110 34 22 12 349
2 121 118 34 110 22 12 273
3 121 110 34 118 22 12 265
4 118 110 34 121 22 12 262
5 121 118 22 110 34 12 261
6 121 110 22 118 34 12 253
7 121 118 12 110 34 22 251
8 118 110 22 121 34 12 250
9 121 110 12 118 34 22 243

10 118 110 12 121 34 22 240
11 121 34 22 118 110 12 177
12 118 34 22 121 110 12 174
13 121 34 12 118 110 22 167
14 110 34 22 121 118 12 166
15 118 34 12 121 110 22 164
16 110 34 12 121 118 22 156
17 121 22 12 118 110 34 155
18 118 22 12 121 110 34 152
19 110 22 12 121 118 34 144
20 34 22 12 121 118 110 68
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The sum of the observations in what I supposed to be the original vitamin E-
treated group, 349, is equaled only once and never exceeded in the 20 distinct
random relabelings. If chance alone were operating, then such an extreme
value would be a rare, only a 1-in-20 event. If I then were to reject the null
hypothesis and embrace the alternative, that the treatment is effective and
responsible for the observed difference, I only risk making an error and reject-
ing a true hypothesis 1 in every 20 times.

1.3.6 Make a Decision

In this instance, I did make just such an error. I found the labels, of course—
the coded assignments were in a different notebook, but I was never able to
replicate the observed life-promoting properties of vitamin E in repetitions of
this experiment. Good statistical methods can reduce and contain the proba-
bility of making a bad decision, but they cannot eliminate the possibility.

1.3.7 Variations on a Theme

Will we always make decisions in this fashion? No. Sometimes we will use a
different statistic. Or we may be able to obtain the distribution of the test
statistic by theoretical means (see Chapter 4) or, for large samples, estimate
the distribution via a Monte Carlo scheme (see Chapter 14). We will encounter
a situation in the very next chapter in which we will select among several
alternatives to the null rather than merely accept or reject a hypothesis. And
when we reject a hypothesis of no difference, we will want to obtain some idea
of what the difference actually is (see Chapter 3). But invariably, we will use
these same five steps to obtain the answers.

“Actually, the statistician does not carry out this very tedious process
but his conclusions have no justification beyond the fact they could
have been arrived at by this very elementary method.”

R.A. Fisher, 1936.

“Tests of significance in the randomized experiment have frequently
been presented by way of normal law theory, whereas their validity
stems from randomization theory.”

O. Kempthorne, 1955.

1.4 A Brief History of Statistics in Decision-Making

Virtually every observation Y can be written in the form f [X ] + Z, where
f [X ] has a fixed value that depends upon the function f and a vector of
concurrent observations X (including sex, race, age, and so forth) and Z is
a random variable, one which can take any of a range of possible values with
varying probabilities. Throughout the 19th century it was felt that if one could
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just observe enough concurrent variables, and observe each of these variables
with sufficient precision, then Y could be determined exactly, eliminating the
stochastic component Z from the equation. The discovery of the quantum
basis for physics changed this view, and resulted in a general acceptance of
data variation as the norm and a shift in the focus of statistics from seeking
to eliminate random variation to characterizing it.

In 1908, W.S. Gossett characterized the distribution of the t-statistic (see
Chapters 3 and 4), a function of the mean and standard deviation of a set of
independent, identically normally distributed random variables. By 1927, he
was expressing doubts about the adequacy of his formula in chemical deter-
minations, noting that observations that are close in time and space are often
positively correlated, not independent. A further problem is that most obser-
vations come from not a single distribution but from a mixture of distributions
(see, for example, Micceri, 1989).

In 1933, J. Neyman and E.S. Pearson provided a method for determin-
ing the most efficient test of a hypothesis (see Chapters 3 and 15). In 1935,
R.A. Fisher demonstrated the exact analysis of contingency tables (see Chap-
ter 8). In 1937–38, Pitman developed exact permutation methods consistent
with the Neyman–Pearson approach for the comparison of k-samples and for
bivariate correlation (see Chapter 3).

Unfortunately, by this time, theory had outrun practice. These new per-
mutation methods were beyond the capabilities of the mechanical comput-
ing devices of the 1930s–1940s. As a stopgap, E.L. Lehmann and C. Stein
[1949] developed the most powerful tests of composite hypotheses based on
the parametric approach. Subsequently, Wald and Wolfowitz [1944], Hoeffding
[1951, 1952], Kempthorne [1952], and Bickel and VanZwet [1978] showed
that for very large samples the parametric and permutation approaches are
equivalent.

In a series of journal articles beginning in 1947 and culminating in a text-
book in 1950, A. Wald generalized the accept/reject alternatives of testing
hypotheses to complete classes of decision procedures. Regrettably, little fur-
ther progress was made in this area, although, in the next chapter, we show
how permutation tests can be applied to a general loss matrix in a practical
situation. Wald [1947] also introduced the concept of a sequential test that
we discuss in Chapter 6 on experimental design.

When ranks are substituted for the original observations, the permutation
distribution of a test statistic can be calculated once for a given set of sample
sizes (even if it takes all night as it did with the late 1950-model computers)
and the results applied to all k-sample problems with the same number of
observations in each sample. Beginning with Wilcoxon [1945] many such tests
were developed and catalogued. We note the efforts of Siegel [1956], Hodges
and Lehmann [1963], Cox and Kempthorne [1963], Sen [1965, 1967], Bell and
Doksum [1965, 1967], Bell and Donoghue [1969], Shane and Puri [1969], Bickel
[1969], Puri and Sen [1971], and Lehmann [1975]. Today, of course, it takes
only seconds on a desktop computer to obtain a p-value via permutation means
using the original, nontransformed observations.
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By the middle of the 1970s, most statisticians had mainframe terminals on
their desks and conditions were ripe for the development of a wide variety
of resampling procedures, including the bootstrap and density estimation, as
well as permutation tests (see McCarthy [1969], Hartigan [1969], Efron [1979],
Diaconis and Efron [1983], and Izenman [1991]).

The late 1960s and 1970s saw the introduction of cluster analysis (Mantel
[1967], Cliff and Ord [1981], Mielke, Berry, and Johnson [1976], Mielke [1978],
Mielke, Berry, Brockwell, and Williams [1981]; see also Chapter 10). The late
1970s and early 1980s saw breakthroughs in the analysis of single-case designs
(Kazdin [1976, 1980], Edgington [1980a,b, 1996]) and directional data (Hubert
et al. [1984]).

The 1990s saw advances in the testing of simultaneous hypotheses (Westfall
and Young [1993], Troendle [1995], Blair, Troendle, and Beck [1996]) and
sequential analysis (Lefebvre [1982], Lin, Wei, and DeMets [1991]).

The most recent advances in the theory of testing hypotheses have come
from F. Pesarin and his colleagues at the University of Padova. Chapter 7 is
devoted to their use of symmetric permutations to provide exact solutions for
multifactor designs. Their method of nonparametric combination of several
independent tests is discussed in Chapter 9.

1.5 Exercises

Take the time to think about the answers to these questions even if you don’t
answer them explicitly. You may wish to return to them after you’ve read
subsequent chapters.

1. In the simple example analyzed in this chapter, what would the result
have been if the experimenter had used as the test statistic the difference
between the sums of the first and second samples? the difference between
their means? the sum of the squares of the observations in the first sample?
the sum of their ranks?

2. How was the analysis of my experiment affected by the loss of two of
the cultures due to contamination? Suppose these cultures had escaped
contamination and given rise to the observations 90 and 95; what would
be the results of a permutation analysis applied to the new, enlarged data
set consisting of the following cell counts:

Treated 121 118 110 90
Untreated 95 34 22 12

3. Read one or two of the articles that were cited on pages 2 and 3. What were
the hypotheses? What was the population to which these hypotheses were
applied? Were the observations drawn from this population? Were they
representative of this population? What were the sources of variation? Were
the observations independent? What led the authors to use the specific
statistical procedure they chose?
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2

Optimal Procedures

2.1 Defining Optimal

As we saw in the preceding chapter, the professional statistician is responsible
for choosing both the test statistic and the testing procedure. An amateur
might hope to look up the answers in a book, or, as is all too commonly done,
use the same statistical procedure as was used the time before, regardless of
whether it continues to be applicable. But the professional is responsible for
choosing the best procedure, the optimal statistic. The statistic we selected
in the preceding chapter for testing the effectiveness of vitamin E seemed an
obvious, intuitive choice. But is it the best choice? And can we prove it is?
Intuition can so often be deceptive.

In this chapter, we examine the criteria that define an optimal testing
procedure and explore the interrelationships among them.

2.1.1 Trustworthy

The most obvious desirable property of a statistical procedure is that it be
trustworthy. If we are advised to make a particular decision, then we should be
correct in doing so. Alas, our observations are stochastic in nature, so there
may be more than one explanation for any given set of observations. The
result is we never can rely 100% on the decisions we make. At best, they can
be like politicians, trustworthy up to a point. We ask only that they confine
themselves to small bribes and rake-offs, that they not bankrupt or betray
the country.

In the example of the missing labels in the preceding chapter, we intro-
duced a statistical test based on the random assignment of labels to treat-

ments. Knowing in advance that the experiment could have any of
(

6
3

)
= 20

possible outcomes, we will reject the null hypothesis only if the obtained
value of the test statistic is the maximum possible that could arise from only
one permutation of the results. The test we derive is valid under very broad
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assumptions. The data could have been drawn from a normal distribution or
they could have come from some quite different distribution. To be valid at a
given percent level, all that is required of our permutation test is that (under
the hypothesis) the population from which the data in the treatment group
are drawn be the same as that from which the untreated sample is taken.

This freedom from reliance on numerous assumptions is a big plus. The
fewer the assumptions, the fewer the limitations, and the broader the poten-
tial applications of a test. But before statisticians introduce a test into their
practice, they need to know a few more things about it, namely:

• Is it exact? That is, can we make an exact determination of the probability
that we might make an error in rejecting a true hypothesis?

• How powerful a test is it? That is, how likely is it to pick up actual differ-
ences between treated and untreated populations? Is this test as powerful
or more powerful than the test we are using currently?

• Is the test admissible? That is, is there no other test that is superior to it
under all circumstances?

• How robust is the new test? That is, how sensitive is it to violations in the
underlying assumptions and the conditions of the experiment?

2.1.2 Two Types of Error

It’s fairly easy to reason from cause to effect—that is, if you have a powerful
enough computer. Get the right formula (Boyle’s Law, say), plug in enough
values to enough decimal places, and out pops the answer. The difficulty with
reasoning in the opposite direction, from effect to cause, is that more than
one set of causes can be responsible for precisely the same set of effects. We
can never be completely sure which set of causes is responsible. Consider
the relationship between sex (cause) and height (effect). Boys are taller than
girls. True? So that makes this new 6′2′′ person in our lives . . . a starter on
the women’s volleyball team.

In real life, in real populations, there are vast differences from person to
person. Some women are tall and some women are short. In Lake Wobegone,
Minnesota, all the men are good looking and all the children are brighter than
average. But in most other places in the world there is a wide range of talent
and abilities. As a further example of this variation, consider that half an
aspirin will usually take care of one person’s headache while other people take
two or three aspirin at a time and get only minimal relief.

Figure 2.1 below depicts the results of an experiment in which two groups
were each given a “pain-killer.” The first group got buffered aspirin; the sec-
ond group received a new experimental drug. Each of the participants then
provided a subjective rating of the effects of the drug. The ratings ranged
from “got worse,” to “much improved,” depicted below on a scale of 0 to 4.
Take a close look at Figure 2.1. Does the new drug represent an improvement
over aspirin?
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Fig. 2.1. Response to treatment: Self-rating patient in (a) asprin-treated group,
(b) drug-‘x’-treated group.

Those who took the new experimental drug do seem to have done better
on average than those who took aspirin. Or are the differences we observe in
Figure 2.1 simply the result of chance? If it’s just a chance effect—rather than
one caused by the new drug—and we opt in favor of the new drug, we’ve made
an error. We also make an error if we decide there is no difference, when, in
fact, the new drug really is better. These decisions and the effects of making
them are summarized in Table 2.1a below.

We distinguish between the two types of error because they have quite
different implications. For example, Fears, Tarone, and Chu [1977] use per-
mutation methods to assess several standard screens for carcinogenicity.
Their Type I error, a false positive, consists of labeling a relatively innocu-
ous compound as carcinogenic. Such an action means economic loss for the
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Table 2.1a. Decision making under uncertainty.

The Facts Our Decision

No difference No difference New drug is better
Type I error

New drug is better Type II error

Table 2.1b. Decision making under uncertainty.

The Facts Fears et al’s Decision

Not a carcinogen Compound a carcinogen
Not a carcinogen Type I error:

(Alternative) manufacturer misses opportunity
for profit; public denied access to
effective treatment

Carcinogen Type II error:
(Hypothesis) patients die;

families suffer;
manufacturer sued

manufacturer and the denial of the compound’s benefits to the public. Neither
consequence is desirable. But a false negative, a Type II error, would mean
exposing a large number of people to a potentially lethal compound.

Because variation is inherent in nature, we are bound to make the occa-
sional error when we draw inferences from experiments and surveys, particu-
larly if, for example, chance hands us a completely unrepresentative sample.
When I toss a coin in the air six times, I can get three heads and three tails,
but I also can get six heads. This latter event is less probable, but it is not
impossible. Variation also affects the answer to the question, “Does the best
team always win?”

We can’t eliminate risk in making decisions, but we can contain risk through
the correct choice of statistical procedure. For example, we can require that
the probability of making a Type I error not exceed 5% (or 1% or 10%) and
restrict our choice to statistical methods that ensure we do not exceed this
level. If we have a choice of several statistical procedures, all of which restrict
the Type I error appropriately, we can choose the method that leads to the
smallest probability of making a Type II error.

2.1.3 Losses and Risk

The preceding discussion is greatly oversimplified. Obviously, our losses will
depend not merely on whether we guess right or wrong, but on how far our
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guesstimate is off the mark. For example, suppose you’ve developed a new
drug to relieve anxiety and are investigating its side effects. You ask, “Does
it raise blood pressure?” You do a study and find the answer is “no.” But the
truth is your drug raises systolic blood pressure an average of one millibar.
What is the cost to the average patient? Negligible, one millibar is a mere
fraction of the day-to-day variation in blood pressure.

Now, suppose your new drug actually raises blood pressure an average of
10 mb. What is the cost to the average patient? to the entire potential patient
population? to your company in law suits? Clearly, the cost of a Type II
error will depend on the magnitude of that error and the nature of the losses
associated with it.

Historically, much of the work in testing hypotheses has been limited to zero
or one loss function while that of estimation has focused on losses proportional
to the square of the error. The result may have been statistics that were
suboptimal in nature with respect to the true, underlying loss (see Mielke
[1986], Mielke and Berry [1997]).

Are we more concerned with the losses associated with a specific decision
or those we will sustain over time as a result of adhering to a specific decision
procedure? Which concerns our company the most: reducing average losses
over time or avoiding even the remote possibility of a single, catastrophic loss?
We return to this topic in Section 2.2.

2.1.4 Significance Level and Power

In selecting a statistical method, statisticians work with two closely related
concepts, significance level and power. The significance level of a test, denoted
throughout the text by the Greek letter α (alpha), is the probability of making
a Type I error; that is, α is the probability of deciding erroneously on the
alternative when, in fact, the hypothesis is true.

To test a hypothesis, we divide the set of possible outcomes into two or more
regions. We accept the primary hypothesis and risk a Type I error when our
test statistic lies in the rejection region R; we reject the primary hypothesis
and risk a Type II error when our test statistic lies in the acceptance region
A; and we may take additional observations when our test statistic lies in the
boundary region of indifference I. If H denotes the hypothesis, then

α = Pr{X ∈ R|H}.

The power of a test, denoted throughout the text by the Greek letter β

(beta), is the complement of the probability of making a Type II error; that
is, β is the probability of deciding on the alternative when the alternative is
the correct choice. If K denotes the alternative, then

β = Pr{X ∈ R|K}.
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The ideal statistical test would have a significance level α of zero and a
power β of 1, or 100%. But unless we are all-knowing, this ideal cannot be
realized. In practice, we will fix a significance level α > 0, where α is the
largest value we feel comfortable with, and choose a statistic that maximizes or
comes closest to maximizing the power for an alternative or set of alternatives
important to us.

2.1.4.1 Power and the Magnitude of the Effect

The relationship among power, significance level, and the magnitude of the
effect for a specific test is summarized in Figure 2.2, provided by Patrick
Onghena. For a fixed significance level, the power is an increasing function of
the magnitude of the effect. For a fixed effect, increasing the significance level
also increases the power.

2.1.4.2 Power and Sample Size

As noted in Section 2.1.3., the greater the discrepancy between the true alter-
native and our hypothesis, the greater the loss associated with a Type II error.

Fig. 2.2. Power of the two-tailed t-test with sample sizes of n1 = n2 = 20 as a
function of the effect size (EFFECT) and the significance level (ALPHA) under the
classical parametric assumptions.
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Fortunately, in most practical situations, we can devise a test where the larger
the discrepancy, the greater the power and the less likely we are to make a
Type II error.

The relationship among power, effect magnitude, and number of obser-
vations for a specific test is summarized in Figure 2.3, provided by Patrick
Onghena.

Figure 2.4a depicts the power as a function of the alternative for two tests
based on samples of size 6. In the example illustrated, the test ϕ1 is uniformly
more powerful than ϕ2, hence, using ϕ1 in preference to ϕ2 will expose us to
less risk.

Figure 2.4b depicts the power curve that results from using these same two
tests, but for different size samples; the power curve of ϕ1 is still based on
a sample of size 6, but that of ϕ1 now is based on a sample of size 12. The
two new power curves almost coincide, revealing the two tests now have equal
risks. But we will have to pay for twice as many observations if we use the
second test in place of the first.

Moral: A more powerful test reduces the costs of experimentation, and it
minimizes the risk.

Fig. 2.3. Power of the two-tailed t-test with p = 0.05 as a function of the effect
size (EFFECT) and the number of observations (NUMBER, n1 = n2) under the
classical parametric assumptions.
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Fig. 2.4a. Power as a function of the alternative. Tests have the same sample size.

Fig. 2.4b. Power as a function of the alternative. Tests have different sample sizes.

2.1.4.3 Power and the Alternative

If a test at a specific significance level α is more powerful against a specific
alternative than all other tests at the same significance level, we term it most
powerful. But as we see in Figure 2.5, a test that is most powerful for some
alternatives may be less powerful for others. When a test at a specific signif-
icance level is more powerful against all alternatives than all other tests at
the same significance level, we term such a test uniformly most powerful.

We term a test admissible, providing either a) it is uniformly most powerful
or b) no other test is more powerful against all alternatives.
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Fig. 2.5. Comparing power curves: For near alternatives, with θ close to zero, test
4 is the more powerful test; for far alternatives, with θ large, test 3 is more powerful.
Thus, neither test is uniformly most powerful.

Note: One can only compare the power of tests that have the same sig-
nificance level. For if the test ϕ1[α1] is less powerful than ϕ2[α2], where the
significance level α1 < α2, then it may be that the power of ϕ1[α2] is greater
than the power of ϕ2[α2].

The significance level and power may also depend upon how the variables
we observe are distributed. For example, does the population distribution
follow a bell-shaped normal curve with the most frequent values in the center,
as in Figure 2.1a? Or is the distribution something quite different? To protect
our interests, we may need to require that the Type I error be less than or
equal to some predetermined value for all possible distributions. When applied
correctly, permutation tests always have this property. The significance levels
of parametric tests and of tests based on the bootstrap are dependent on the
underlying distribution.

2.1.5 Exact, Unbiased, Conservative

In practice, we seldom know either the distribution of a variable or the values
of any of the distribution’s nuisance parameters.1 We usually want to test a
compound hypothesis, such as H: X has mean value 0. This latter hypothesis
includes several simple hypotheses, such as H1: X is normal with mean value

1 A good example of nuisance parameters is a distribution’s unknown means when
variances are being compared (see Section 3.7.1).
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0 and variance 1, H2: X is normal with mean 0 and variance 1.2, and H3: X
is a gamma distribution with mean zero and four degrees of freedom.2

A test is said to be exact with respect to a compound hypothesis if the
probability of making a Type I error is exactly α for each and every one of
the possibilities that make up the hypothesis. A test is said to be conservative
if the Type I error never exceeds α. Obviously, an exact test is conservative,
though the reverse may not be true.

The importance of an exact test cannot be overestimated, particularly a
test that is exact regardless of the underlying distribution. If a test that is
nominally at level α is actually at level c, we may be in trouble before we
start: If c > α, the risk of a Type I error is greater than we are willing to bear.
If c < α, then our test is suboptimal, and we can improve on it by enlarging
its rejection region.

A test is said to be unbiased and of level α providing its power function β

satisfies the following two conditions:

• β is conservative; that is, β ≤ α for every distribution that satisfies the
hypothesis;

• β ≥ α for every distribution that is an alternative to the hypothesis.

That is, a test is unbiased if you are more likely to reject a false hypothesis
than a true one when you use such a test. I find unbiasedness to be a natural
and desirable principle, but not everyone shares this view; see, for example,
Suissa and Shuster [1984].

Faced with some new experimental situation, our objective always is to
derive a uniformly most powerful unbiased test if one exists. But if we can’t
derive a uniformly most powerful test (and Figure 2.5 depicts just such a
situation), then we will look for a test that is most powerful against those
alternatives that are of immediate interest.

2.1.6 Impartial

Our methods should be impartial. Decisions should not depend on the acciden-
tal and quite irrelevant labeling of the samples; nor should decisions depend
on the units in which the measurements are made nor when they are made.

To illustrate, suppose we have collected data from two samples and our
objective is to test the hypothesis that the difference in location of the two
populations from which the samples are drawn is less than or equal to some
value. (This is called a one-tailed or one-sided test.) Suppose further that the
first sample includes the values a, b, c, d, and e and the second sample the
values f , g, h, i, j, k. If the observations are completely reversed, that is, if
the first sample includes the values f , g, h, i, j, k and the second sample the
values a, b, c, d, and e, then, if we rejected the hypothesis in the first instance,
we ought to reject it in the second.

2 In this example the variance is an example of a nuisance parameter.
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The units we use in our observations should not affect our decisions. We
should be able to take a set of measurements in feet, convert to inches, make
our estimate, convert back to feet, and get absolutely the same result as if
we’d worked in feet throughout. Similarly, where we locate the zero point
of our scale should not affect the conclusions. Measurements of temperature
illustrate both these points.

Finally, if our observations are independent of the time of day, the season,
and the day on which they were recorded (facts which ought to be verified
before proceeding further), then our decisions should be independent of the
order in which the observations were collected.

Such impartial tests are said to be invariant with respect to the transfor-
mations involved (the conversion of units or the permutation of subscripts).

2.1.7 Most Stringent Tests

Let βϕ(θ) denote the power of a test ϕ against the alternative θ. Let the
envelope power function β∗

α(θ) be the supremum of βϕ(θ) over all level-α tests
of the hypothesis. Then β∗

α(θ) − βϕ(θ) is the amount by which a specific test
ϕ falls short of the maximum power attainable. A test that minimizes its
maximum shortcoming over all alternatives θ is said to be most stringent.

2.2 Basic Assumptions

The parametric and bootstrap tests considered in this text rely on the
assumption that successive observations are independent of one another.
The permutation tests rely on the less inclusive assumption that they are
exchangeable. We provide formal definitions of these concepts in this section
and in Section 15.5.

2.2.1 Independent Observations

If you and I each flip separate coins, the results are independent of one another.
But if the two of us sit together at a table while a poll taker asks us about our
preferences, our responses are unlikely to be independent if you or I modify
our responses in an effort to please or placate one another.

We say that two observations X1 and X2 are independent of one another
with respect to a collection of events A if

Pr{X1 ∈ A and X2 ∈ B} = Pr{X1 ∈ A}Pr{X2 ∈ B}

where A and B are any two not necessarily distinct sets of outcomes belonging
to A.3

3 We formalize this definition of independence in Section 15.1.
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Suppose I choose to have my height measured by several individuals. These
observations may well have a normal distribution with mean µphil, my height
as measured by some “perfect” measuring device. With respect to the set
of events leading to such observations, the various measurements on me are
independent.

Suppose instead that several individuals including myself are selected from
a larger population, one that has a distribution F centered about the value
µ. Observations on me may be viewed as including two random components,
one that results from selecting me from F and the other the observational
error described in the previous paragraph. The result is to generate a much
larger set of events with respect to which the observations on my height are
no longer independent.4

Some additional examples of independent and dependent observations are
given in Exercise 5. Some additional properties of independent observations
are given in Section 4.1.

2.2.2 Exchangeable Observations

A sufficient condition for a permutation test such as the one outlined in the
preceding chapter to be exact and unbiased against shifts in the direction of
higher values is the exchangeability of the observations in the combined sam-
ple.5 Let G{x; y1, y2, . . . , yn−1} be a distribution function in x and symmetric
in its remaining arguments—that is, if the remaining arguments were permit-
ted, the value of G would not be affected. Let the conditional distribution
function of xi given x1, . . . , xi−1, xi+1, . . . , xn be G for all i. Then the {xi}
are exchangeable.

Independent, identically distributed observations are exchangeable. So are
samples without replacement from a finite population, termed Polya urn
models [Koch, 1982]. An urn contains b black balls, r red balls, y yellow
balls, and so forth. A series of balls is extracted from the urn. After the ith
extraction, the color of the ball Xi is noted and k balls of the same color are
added to the urn, where k can be any integer, positive, negative, or zero. The
set of random events {Xi} form an exchangeable sequence.6

Also exchangable are dependent normally distributed random variables
{Xi} for which the variance of Xi is a constant independent of i and the
covariance of Xi and Xj is a constant independent of i and j. An additional
example of dependent but exchangeable variables is given in Section 3.7.2.

Sometimes a simple transformation will ensure that observations are
exchangeable. For example, if we know that X comes from a population with

4 The student in search of greater clarity will find it in the formal exposition of
Section 15.1.

5 If an observation O consists of a deterministic part D and a stochastic part S,
O = D + S, only the stochastic parts need be exchangeable. We use this more
precise definition in Chapter 6.

6 See, also, Dubins and Freedman [1979].
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mean µ and distribution F (x − µ) and an independent observation Y comes
from a population with mean v and distribution F (x − v), then the indepen-
dent variables X ′ = X − µ and Y ′ = Y − v are exchangeable.

In deciding whether your own observations are exchangeable and a per-
mutation test applicable, the key question is the one we posed in the very
first chapter: Under the null hypothesis of no differences among the various
experimental or survey groups, can we exchange the labels on the observations
without significantly affecting the results?

2.3 Decision Theory

A statistical problem is defined by three elements:

1) the class F =(Fθ, θ∈Ω) to which the probability distribution of the obser-
vations belongs; for example, we might specify that this distribution is
either unimodal, or symmetric, or normal;

2) the set D of possible decisions {d} one can make on observing the sample
X = (X1, . . . , Xn);

3) the loss L(d, θ), expressed in dollars, persons’ lives or some other quantifi-
able measure, that results when we make the decision d when θ is true.

The problem is a statistical one when the investigator is not in a position
to say that X will take on exactly the value x, but only that X has some
probability P{A} of taking on values in the set A.

So far in this chapter we’ve limited ourselves to two-sided decisions in which
either we accept a hypothesis H and reject an alternative K or we reject the
hypothesis H and accept the alternative K.

One example is H: θ ≤ θ0 K: θ > θ0. In this example we would probably
follow up our decision to accept or reject with a confidence interval for the
unknown parameter θ. This would take the form of an interval (θmin, θmax)
and a statement to the effect that the probability that this interval covers the
true parameter value is not less than 1 − α. This use of an interval can rescue
us from the sometimes undesirable all-or-nothing dichotomy of hypothesis vs.
alternative.

Our objective is to come up with a decision rule D, such that when we
average out over all possible sets of observations, we minimize the associated
risk or expected loss,

R(θ, D) = EL(θ, D(X)).

In the first of the preceding examples, we might have

L(θ, d) = 1 if θ ∈ K and d = H (Type II error),
L(θ, d) = 10 if θ ∈ H and d = K (Type I error),
L(θ, d) = 0 otherwise.

Typically, losses L depend on some function of the difference between the
true (but unknown) value θ and our best guess θ∗ of this value, the absolute
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deviation L(θ, θ∗) = |θ∗ − θ|, for example. Other typical forms of the loss
function are the square deviation L(θ∗ − θ)2, and the jump, that is, no loss
occurs if |θ∗ − θ| < δ, and a big loss occurs otherwise.

Unfortunately, a testing procedure that is optimal for one value of the
parameter θ might not be optimal for another. This situation is illustrated
in Figure 2.5 with two decision curves that cross over each other. The risk
R depends on θ, and we don’t know what the true value of θ is! How are we
to choose the best decision? This is the topic we now discuss by considering
Bayes, mini-max, and generalized decisions.

2.3.1 Bayes’ Risk

One seldom walks blind into a testing situation. Except during one’s very first
preliminary efforts, one usually has some idea of the magnitude and likelihood
of the expected effect. This is particularly true of clinical trials that are usually
the culmination of years of experimental effort, first on the computer to elicit
a set of likely compounds, and then in the laboratory in experiments with
inbred mice and, later, dogs or monkeys. The large scale Phase III clinical
trial takes place only after several years. And even then after small numbers
of humans have been exposed to determine the maximum safe dose and the
minimum effective dose.

In the case of a simple alternative, we may start with the idea that the prior
probability that the null hypothesis is true is close to 1, while the probability of
the alternative is near 0. As we gain more knowledge through experimentation,
we can assign posterior odds to the null hypothesis with the aid of Bayes’
theorem:

Pr{(H)E1, . . . , En, En+1}

=
Pr{En+1|H}Pr{H|E1, . . . , En}

Pr{En+1|H}Pr{H|E1, . . . , En} + Pr{En+1|K}Pr{K|E1, . . . , En} ,

where E1, . . . , En+1 are the outcomes of various experiments.
We may actually have in mind an a prior probability density ρ(θ) over all

possible values of the unknown parameter, and so we use our experiment and
Bayes’ theorem to deduce a posterior probability density ρ′(θ).

Here is an example of this approach, taken from a report by D.A. Berry7:

A study reported by Freireich et al.8 was designed to evaluate the effective-
ness of a chemotherapeutic agent 6-mercaptopurine (6-MP) for the treat-
ment of acute leukemia. Patients were randomized to therapy in pairs. Let

7 The full report titled “Using a Bayesian approach in medical device develop-
ment” may be obtained from Donald A. Berry at the Institute of Statistics &
Decision Sciences and Comprehensive Cancer Center, Duke University, Durham
NC 27708–025.

8 Blood 1963; 21: 699–716.
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p be the population proportion of pairs in which the 6-MP patient stays
in remission longer than the placebo patient. (To distinguish probability
p from a probability distribution concerning p, I will call it a population
proportion or a propensity.) The null hypothesis H0 is p = 1/2: no effect
of 6-MP. Let H1 stand for the alternative hypothesis that p > 1/2. There
were 21 pairs of patients in the study, and 18 of them favored 6-MP.

Suppose that the prior probability of the null hypothesis is 70 percent
and that the remaining probability of 30 percent is on the interval (0,1)
uniformly. . . . So under the alternative hypothesis H1, p has a uniform(0,1)
distribution. This is a mixture prior in the sense that it is 70 percent discrete
and 30 percent continuous.

The uniform(0,1) distribution is also the beta(1,1) distribution. Updating
the beta(a, b) distribution after s successes and f failures is easy, namely,
the new distribution is beta(a + s, b + f). So for s = 18 and f = 3, the
posterior distribution under H1 is beta(19,4).

If our decision procedure is δ(X) and our loss function is L(θ, δ(X)), our
risk when θ is true is R(θ, δ) = L(θ, δ(X)), and our overall average loss is
r(ρ, δ) = R(θ, δ)ρ(θ)dθ. A decision procedure d that minimizes r(ρ, d) is called
a Bayes’ solution and the resultant r, the Bayes’ risk.

Suppose Θ, the unobservable parameter, has probability density ρ(θ),
and that the probability density of X when Θ= θ is pθ(x). Let p(x) = ρ(θ′)
pθ′(x)dθ′. Let π(θ|x) denote the a posteriori probability density of Θ given
x, which by Bayes’ theorem is ρ(θ)pθ(x)/p(x). Then Bayes’ risk can also be
written as L(θ, δ(x))π(θ|x)dθ]p(x)dx.

In the case of testing a simple alternative against a simple hypothesis, let
the cost of each observation be c. This cost could be only a few cents (if, say,
we are testing the tensile strength of condoms) or more than $10,000 in the
case of some clinical trials. Let c1 and c2 denote the costs associated with
Type I and Type II errors, respectively. Then the Bayes’ risk of a procedure
d is

r(ρ, d) = π[αc1 + cE0N ] + (1 − π)[(1 − β)c2 + cE1N ].

2.3.2 Mini-Max

An insurance company uses the expected risk in setting its rates, but those
of us who purchase insurance use a quite different criterion. We settle for a
fixed loss in the form of the insurance premium in order to avoid a much
larger catastrophic loss. Our choice of procedure is the decision rule d, here
the decision to pay the premium that minimizes the maximum risk for all
possible values of the parameter.

Other possible criteria fall somewhere in between these two. For example,
we could look for the decision rule that minimizes the Bayes’ risk among the
class of all decision rules for which R(θ, d) never exceeds some predetermined
upper bound.
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2.3.3 Generalized Decisions

The simple dichotomy of hypothesis versus alternative and the associated set
of decisions, accept or reject, covers only a few cases. More often, we will have
a choice among many decisions.

Recently, a promising treatment was found for a once certain fatal dis-
ease. Not all patients were cured completely; for some, there was a tempo-
rary remission of the disease, which allowed other cures to be tried, while
other patients could only report that they felt better, and, alas, there were
still many for whom the inevitable downward progress of the disease contin-
ued without interruption. The treatment was expensive and carried its own
separate risks for the patient. A university laboratory had come up with a
predictive method that could be employed prior to starting the treatment.
Still, this method wasn’t particularly reliable. The small company for whom
I worked as a consultant felt sure its technology would yield a far superior
predictive measure. The question for the statistician was how the company
could turn this feeling into something more substantial, something that could
be used to convince both venture capitalists and regulatory agencies of the
new method’s predictive value.

A committee was formed consisting of two physicians—specialists in the
disease and its treatment, a hospital administrator, and a former senior staff
member of a regulatory agency. Each was asked to provide their estimates of
the costs or losses, relative or absolute, that would be incurred if a measure
predicted one response, while the actual outcome was one of the three alter-
natives. The result, after converting all the costs to relative values and then
averaging them, was a loss matrix that looked like this:

Cured Remission Slight relief No effect

Cured 0 −1 −3 −6
Remission −2 0 −2 −4
Slight relief −5 −2 0 −1.2
No effect −10 −5 −1 0

We already had records for a number n of patients, including samples of frozen
blood that had been drawn prior to treatment. These were tested by each of
the proposed prediction methods. For each method, we then had an overall
risk given by the formula

∑
i L[di, δi], where the sum was taken over the entire

sample of patients. Since there were only four outcomes, we might also have
written this sum as

∑4
k=1
∑4

j=1 fn[k, j]L[dk, δj ], where fn[k, j] is the empirical
frequency distribution of outcomes for this sample of patients.

In situations where the objective is to estimate the value of a parameter θ,
the further apart the estimate θ∗ and the true value θ, the larger our losses are
likely to be. Typical forms of the loss function in such a case are the absolute
deviation |θ∗ −θ|; the square deviation (θ∗ −θ)2; and the jump, that is, no loss
if |θ∗ − θ| < δ; and a big loss otherwise. Or the loss function may resemble the
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square deviation but take the form of a step function increasing in discrete
increments.

Where estimation is our goal, our objective may be one of two: either to
find a decision procedure d[X] that minimizes the risk function R(θ, d) = Eθ

[L(θ, d[X]] or the average loss as in our prediction example, or to find a pro-
cedure that minimizes the maximum loss. Note that the risk is a function
of the unknown parameter θ, so that an optimal decision procedure based
on minimizing the risk may depend upon that parameter unless, as in the
example of hypothesis testing, there should exist a uniformly most power-
ful test.

2.4 Exercises

1. a) Power. Sketch the power curve β(θ) for one or both of the two-sample
comparisons described in this chapter. (You already know one of the
points for each power curve. What is it?)

b) Using the same set of axis, sketch the power curve of a test based on a
much larger sample.

c) Suppose that without looking at the data you
i) always reject;
ii) always accept;
iii) use a chance device so as to reject with probability α.
For each of these three tests, determine the power and the significance

level. Are any of these three tests exact? unbiased?
2. Suppose that we are testing a simple hypothesis H against a simple alter-

native K.

a) Show that if α1 ≤ α2 then β1 ≤ β2.
b) Show that if the test ϕ1[α1] is less powerful than ϕ2[α2] where the

significance level α1 < α2, it may be that ϕ1[α2] > ϕ2[α2].

3. a) The advertisement reads, “Safe, effective, faster than aspirin.” A picture
of a happy smiling woman has the caption, “My headache vanished
faster than I thought possible.” The next time you are down at the
pharmacy, the new drug is there at the same price as your favorite
headache remedy. Would you buy it? Why or Why not? Do you think
the ad is telling the truth? What makes you think it is?

b) In the United States, in early 1995, a variety of government agencies
and regulations would almost guarantee the ad is truthful—or, if not,
that it would not appear in print a second time. Suppose you are part
of the government’s regulatory team reviewing the evidence supplied by
the drug company. Looking into the claim of safety, you are told only
“we could not reject the null hypothesis.” Is this statement adequate?
What else would you want to know?
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4. Unbiasedness. Suppose a and m denote the arithmetic mean and median
of a random variable Y , respectively. Show that
a) For all real b, c such that a ≤ b ≤ c, E(Y − b)2 ≤ E(Y − c)2.
b) For all real d, e such that m ≤ d ≤ e, E|Y − d| ≤ E|Y − e|.

5. Do the following constitute independent observations?
a) Number of abnormalities in each of several tissue sections taken from

the same individual.
b) Sales figures at Eaton’s department store for its lamp and cosmetic

departments.
c) Sales figures at Eaton’s department store for the months of May

through November.
d) Sales figures for the month of August at Eaton’s department store and

at its chief competitor Simpson-Sears.
e) Opinions of several individuals whose names you obtained by sticking

a pin through a phone book, and calling the “pinned” name on each
page.

f) Dow Jones Index and GNP of the United States.
g) Today’s price in Australian dollars of the German mark and the

Japanese yen.
6. To check out a new theory regarding black holes, astronomers compare the

number of galaxies in two different regions of the sky. Six non-overlapping
photographs are taken in each region, and three astronomers go over each
photo with each recording his counts. Would the statistical method descri-
bed in Section 1.3 be appropriate for analyzing this data? If so, how many
different rearrangements would there be?

7. a) Decisions. Suppose you have two potentially different radioactive iso-
topes with half-life parameters λ1 and λ2, respectively. You gather data
on the two isotopes and, taking advantage of a uniformly most powerful
unbiased permutation test, you reject the null hypothesis H: λ1 = λ2 in
favor of the one-sided alternative λ1 > λ2. What are you or the person
you are advising going to do about it? Will you need an estimate of
λ1 > λ2? Which estimate will you use? (Hint: See Section 3.2 in the
next chapter.)

b) Review some of the hypotheses you tested in the past. Distinguish your
actions after the test was performed from the conclusions you reached.
(In other words, did you do more testing? rush to publication? abandon
a promising line of research?) What losses were connected with your
actions? Should you have used a higher/lower significance level? Should
you have used a more powerful test or taken more/fewer observations?
Were all the assumptions for your test satisfied?

8. a) Your lab has been gifted with a new instrument offering 10 times the
precision of your present model. How might this affect the power of
your tests? their significance level? the number of samples you’ll need
to take?
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b) A directive from above has loosened the purse strings so you now can
test larger samples. How might this affect the power of your tests? their
significance level? the precision of your observations? the precision of
your results?

c) A series of lawsuits over silicon implants you thought were harmless
has totally changed your company’s point of view about the costs of
sampling. How might this affect the number of samples you’ll take?
the power of your tests? their significance level? the precision of your
observations? the precision of your results?

9. Give an example (or two) of identically distributed observations that are
not independent.

10. Are the residuals exchangeable in a regression analysis? an analysis of
variance?

11. Suppose a two-decision problem has the loss matrix
[
0 a
b 0

]
. Show that any

mini-max procedure is unbiased.
12. Bayes’ solutions. Let Θ be an unobservable parameter with probability

density ρ(θ) and suppose we desire a point estimate of a real-valued
function g(θ).
a) If L(θ, d) = (g(θ) − d)2, the Bayes’ solution is E[g(Θ)|x).
b) If L(θ, d) = |g(θ) − d|, the Bayes’ solution is median [g(Θ)|x).

13. Many statistical software packages now automatically compute the results
of several tests, both parametric and nonparametric. Show that, unless the
choice of test statistic is determined before the analysis is performed, the
resultant p-values will not be conservative.
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Testing Hypotheses

It’s understandable that one might elect to specialize in the preparation of
Chinese cuisine rather than Greek or vice versa. There’s just so much time
available. But to decide to eat only the one rather than the other is to act the
fool.

Now substitute the words “parametric test” for “Chinese cuisine,” “non-
parametric” for “Greek,”and “use” for “eat” in the above paragraph and read
it again. In this chapter, you learn how to approach and resolve a series of
testing problems of increasing complexity, specifically, tests for location and
scale parameters in one and two samples. You learn how to derive confidence
intervals for the unknown parameters.

3.1 Testing a Simple Hypothesis

Our first challenge, that of finding the most powerful test of a simple hypoth-
esis against a simple alternative, is chosen not for its practical applications
but because its solution is fundamental to the solution of all other testing
problems.

Suppose, first, we are trying to decide between two discrete probability
distributions P0 and P1 such that Pi{X = k} = Pi[k] for i = 0, 1; k = 0, 1, . . . .
We would like to designate a set of the possible values of X as our rejection
region R such that, if k belongs to R, we will reject the simple hypothesis
P0 in favor of the simple alternative P1. We specify a significance level α and
require that

∑
k∈R P0[k] ≤ α. Given this restriction, our objective is to choose

the values of k to include in R so that the power,
∑

k∈R P1[k], is a maximum.
Let r(k) = P1[x]/P0[x]. To maximize the power against P1, we need to

include in R all the points with the highest values of r until we attain the
desired significance level. That is, there exists a constant c such that, if r(k) >
c, k is to be included in R. If r[k] < c, then we will accept the hypothesis.

What if r[k] = c? That depends. The answer according to theoreticians is
that if

∑
k>c P0[k] = α′ < α, then, when r[k] = c, we pick a random number
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from 0 to 1. If this random number is less than or equal to (α − α′)/P0[c] we
reject the hypothesis; otherwise we accept it.

In Section 15.2, we show that a similar result holds when P0[x] and P1[x]
are continuous distributions (or a mixture of continuous and discrete). This
latter result is the fundamental lemma of Neyman and Pearson [1928].

3.2 One-Sample Tests for a Location Parameter

One of the simplest of practical testing problems would appear to be that of
testing for the value of the location parameter of a distribution F(θ) using a
series of observations x1, x2, . . . , xn from that distribution.

3.2.1 A Permutation Test

This semiparametric1 testing problem is a simple one if we can assume that
the underlying distribution is symmetric about the unknown parameter θ,
that is, if

Pr{X ≤ θ − x} = F (θ − x) = 1 − F (θ + x) = Pr{X ≥ θ + x}, for all x.

The normal distribution, with its familiar symmetric bell-shaped curve, the
double exponential, Cauchy, and uniform distributions are examples of sym-
metric distributions.2 The difference of two independent observations drawn
from the same population also has a symmetric distribution, as you will see
when we come to consider experiments involving matched pairs in
Section 5.2.2.2.

Suppose now we wish to test the hypothesis that θ ≤ θ0 against the alter-
native that θ > θ0. As in Chapter 1, we proceed in four steps:

First, we choose a test statistic that will discriminate between the hypoth-
esis and the alternative. As one possibility, consider the sum of the deviations
of θ about θ0. Under the hypothesis, positive and negative deviations ought
to cancel and this sum should be close to zero. Under the alternative, positive
terms should predominate and this sum should be large. But how large should
the sum be for us to reject the hypothesis?

We saw in Chapter 1 that we can use the permutation distribution to obtain
the answer; but what should we permute? The principle of sufficiency can help
us here.

Suppose we had lost track of the signs (plus or minus) of the deviations.
We could attach new signs at random, selecting a plus or a minus with equal

1 A problem is parametric if the form of the underlying distribution is known, and
it is nonparametric if we have no knowledge concerning the distribution(s) from
which the observations are drawn.

2 These distributions are described in more detail in Chapter 5.
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probability. If we are correct in our hypothesis that the variables have a
symmetric distribution about θ0, the resulting values should have precisely
the same distribution as the original observations. That is, the absolute val-
ues of the deviations are sufficient for regenerating the sample. (You’ll find
more on the topic of sufficiency in Section 3.5.2 and in Appendix 1.1.)

Under the alternative of a location parameter larger than θ0, randomizing
the signs of the deviations should reduce the sum from what it was originally.
As we consider one after another in a series of random reassignments, our
original sum should be revealed as an extreme value.

Before implementing this permutation procedure, we note that the sum of
just the deviations with plus signs attached is related to the sum of all the
deviations by the formula

∑
xi>0

xi =
∑

xi +
∑ |xi|

2
,

because the +1 values get added twice, once in each sum on the right hand side
of the equation, while the values of −1 and |−1| cancel. Thus, we can reduce
the number of calculations by summing only the positive deviations. As an
illustration, suppose that θ0 is 0 and that the original observations are −1, 2,
3, 1.1, 5. Our second step is to compute the sum of the positive deviations,
which is 11.1.

Among the 25 possible reassignments of plus and minus signs are

+1, −2, 3, 1, 5
+1, 2, 3, 1, 5

and
−1,−2, 3, 1, 5.

Our third step is to compute the sum of the positive deviations for each
rearrangement. For the three rearrangements shown above, this sum would
be 10, 12, and 9, respectively.

Our fourth step is to compare the original value of our test statistic with
its permutation distribution. In Section 3.1, we showed that the most power-
ful test would set aside in the rejection region those outcomes that have the
greatest value of the ratio P1[x]/P0[x]. Under the null hypothesis, all labelings
of the observations (xL1, . . . xLn) from which x may be composed are equally
likely, and P0[x] is a constant equal to one divided by the number of label-
ings. Our rejection region will consist of those outcomes for which P1[x] is a
maximum.

Only 2 of the 32 rearrangements have sums as large as the sum 11.1 of the
original observations. Is 2/32 = 1/16 = .0625 statistically significant? Perhaps
not at the 5% level, but surely a p-value of .0625 is suggestive enough that
we might want to look at additional data or perform additional experiments
before accepting the hypothesis that 0 is the true value of θ.
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Sidebar

Although software to execute parametric tests is plentiful, programs with which
to do permutation tests are few and far between. Resampling Stats is one
package specifically designed to help with bootstrap and permutation tests.
Available from www.statistics.com, its drawback is that it does not come with
complete routines, but requires the user do the programming. Here is one exam-
ple for use in testing for the location parameter of a population.

’Perform a one-sided test for matched pairs
DATA (1 2 3 4 10 6) Before
DATA (2 2 4 6 8 8) After
SUBTRACT After Before Change
’The next two instructions zero out the negative changes and double the positive
ABS Change Total
ADD Change Total Work
SUM Work sumorig
DIVIDE sumorig 2 sumorig
Data (0 1) Basis
LET n = 6
LET cnt = 0
REPEAT 400

RANDOM 6 Basis Sample
’select random values from absolute changes
MULTIPLY Sample Total Temp
SUM Temp sumperm
IF sumorig <= sumperm

LET cnt = cnt + 1
END

END
DIVIDE cnt 400 pvalue
PRINT pvalue

3.2.2 A Parametric Test

Suppose we know more about the distribution F . In particular, suppose we
know F is a normal distribution with mean θ and variance 1, N(0, 1), so that
the cumulative distribution function can be written in the form

F [x] =
∫ x

−∞

1√
2π

exp[−(y − θ)2/2]dy (3.1)3

A property of this distribution is that the mean of n independent normally dis-
tributed random variables with mean θ and variance 1 is normally distributed
with mean θ and variance 1/n (see Exercise 3.1). Knowing this, an alternate

3 The use of the constant 1/
√

2π ensures that F [∞] = 1.
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approach to a test of the hypothesis that θ ≤ θ0 is to reject the hypothesis
only if the mean of the observations X̄ is greater than the 95th percentile of
a normal distribution with mean θ0 and variance 1/n.

Tables of the normal distribution with mean 0 and variance 1 are readily
available. To take advantage of these tables, we can use the test statistic
(X̄ − θ0)

√
n (Exercise 3.2), rejecting the hypothesis when it is greater than

the 95th percentile of a normal distribution with mean 0 and variance 1.

3.2.3 Properties of the Parametric Test

Most Powerful Test. Using the fundamental lemma of Neyman and Pearson we
can show immediately that our parametric test is most powerful for testing the
hypothesis that our observations are normally distributed with mean θ = θ0
and variance 1 against the alternative that the observations are normally
distributed with expectation θ = θ1 > θ0 and variance 1 (Exercise 3.3). But
this applies to any alternative θ1 > θ0; thus, this same test is uniformly most
powerful for testing the hypothesis θ = θ0 against the set of alternatives
θ > θ0 when the observations are normally distributed with variance 1. It is
also uniformly most powerful for testing the hypothesis θ ≤ θ0 against the set
of alternatives θ > θ0 among all tests for which β(θ0) = α.

We can generalize this result in stages. Suppose, first, we know F is a
normal distribution with mean θ and variance σ2, N(θ, σ2), so that F can be
written in the form ∫ x

−∞

1√
2πσ2

exp[−(y − θ)2/2σ2]dy. (3.2)

Then it is obvious we can attain a uniformly most powerful (UMP) test of the
hypothesis that our observations are normally distributed (with mean θ ≤ θ0
and variance σ2) against the alternatives that the observations are normally
distributed (with expectation θ > θ0 and variance σ2) among all tests for
which β(θ0) is some fixed percentage α using the statistic (X̄ − θ)

√
n/σ.

In both equations (3.1) and (3.2), we have written F [x] in the form

F [x] =
∫ x

−∞
f(y)dy.

The function f is called a probability density.4 Note that for any θ < θ′ the
distributions Fθ and Fθ′ are distinct and the ratio of probability densities
fθ′ [y]/fθ[y] is a nondecreasing function of y. Such a family of distributions is
said to have monotone likelihood ratio in y.

Theorem 3.1. Let θ be a real-valued parameter and let the random vari-
able X have probability density fθ[y] with monotone likelihood ratio in T [y].

4 See Appendix, Section 1 for a mathematically precise definition.
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For testing the hypothesis that θ ≤ θ0 against the alternative that θ > θ0,
there exists a UMP test given by

ϕ(y) =

⎧⎪⎨
⎪⎩

1 when T [y] > C

γ when T [y] = C

0 when T [y] < C

where C and γ are determined by E(ϕ(y)|θ0) = α.

Here, ϕ(y) = 1 means to reject the hypothesis, ϕ(y) = 0 means to accept,
and ϕ(y) = γ means that the decision is to be left to an unfair coin that lands
reject side up with probability γ. By the fundamental lemma of Neyman and
Pearson, we know we can find a C and γ for use in testing θ = θ0 against the
alternative θ = θ1 > θ0. Noting that T[y] will be greater than C if and only if
there is a C ′ such that the likelihood ratio f [y|θ′]/f [y|θ0] > C ′ where θ′ > θ0,
we see that a critical function that satisfies the conditions of the theorem is
uniformly most powerful for testing θ = θ0 against any alternative θ > θ0.
In fact, β(θ) is strictly increasing for all values of the parameter θ for which
0 < β(θ) < 1. Consequently, the test satisfies E(ϕ(y)|θ) ≤ α for θ ≤ θ0 and
among all tests which satisfy this condition is UMP for testing θ ≤ θ0 against
the alternative that θ > θ0.

3.2.4 Student’s t

The existence of such a uniformly most powerful test would be exciting, but for
two drawbacks: What if the variance of the observations is not σ2 as assumed?
And what if the data are not normally distributed?

The first of these objections is addressed directly through the use of an
alternate statistic, known as Student’s t. The second objection is “almost”
resolved via this same choice.

The statistic is almost the same as the one we used previously, except that
we have substituted the sample variance for the population variance (X̄ −θ)2.
Thus,

t[X] =
(X̄ − θ)

√
n√∑

(Xi − X̄)2/(n − 1)
.

We look up the cut-off values for this statistic by consulting tables of the
Student’s t distribution with n − 1 degrees of freedom. The resultant test is
not uniformly most powerful for all values of σ and θ (see Exercise 3.4), but as
we will show in Section 3.6.1, it is uniformly most powerful when we restrict
ourselves to the class of unbiased tests.

The attractiveness of the t-test, which we recommend for the comparison
of two populations, is two-fold. First, it does not depend upon the value of
the unknown variance σ2. Second, even for moderate sample sizes of 6 or
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more, it is almost but not quite distributed in accordance with the theoretical
distribution of Student’s t, even if the original observations are not distributed
like this.5 From the central limit theorem, we know that (X̄ − θ)

√
n/σ has

the limiting distribution N(0, 1). And from a convergence theorem of Cramer
[1946] we know that

∑
(xi − x̄)2/(n − 1)σ2 tends to 1 in probability.

3.2.5 Properties of the Permutation Test

Our permutation test is exact whether the observations are normally dis-
tributed or not. It is applicable even if the different observations come from
different distributions, providing, that is, these distributions are all symmetric
and all have the same location parameter or median. (If these distributions
are symmetric, then, if the mean exists, the mean of the distribution is identi-
cal with its median.) If you are willing to specify their values through the use
of a parametric model, then the medians needn’t be the same! (See Exercise
3.10.)

Asymptotic consistency. What happens if the underlying distributions are
almost but not quite symmetric? Romano (1990) shows that the permutation
test for a location parameter is asymptotically exact providing the underlying
distribution has finite variance. His result applies whether the permutation
test is based on the mean, the median, or some statistical functional of the
location parameter. If the underlying distribution is almost symmetric, the
test will be almost exact even when based on as few as 10 or 12 observations.
See Appendix 10.1 for the details of a Monte Carlo procedure to use in deciding
when “almost” means “good enough.”

3.2.6 Exact Significance Levels: A Digression

Many of us are used to reporting our results in terms of significance levels of
0.01, 0.05, or 0.10, so significance levels of .0625 or .03125 resulting from the
application of a permutation tests may seem confusing at first. These “odd-
ball” significance levels often occur in permutation tests with small sample
sizes. Five observations means just 32 possibilities, and 1 extreme observation
out of 32 corresponds to .03125. Things improve as sample sizes get larger.
With seven observations, we can test at a significance level of .049. Is this
close enough to 0.05?

Lehmann [1986] describes a method called “randomization on the bound-
ary” for obtaining a significance level of exactly 5% (or exactly 1%, or exactly
10%). But this method isn’t very practical. In the worst case, “on the bound-
ary,” a chance device is allowed to make your decision for you.

What is the practical solution? We agree with Kempthorne [1975, 1977,
1979]. Forget tradition. There is nothing sacred about a significance level of

5 We’ll consider some worst-case exceptions in Chapter 5.
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5% or 10%. Report the exact significance level, whether it is .065 or .049. Let
your colleagues reach their own conclusions based on the losses they associate
with each type of error.

In reporting the results of parametric and other types of tests, do not
confuse the p-value with the significance level. The p-value is a random variable
whose value varies from sample to sample. A significance level is a fixed value
associated with a testing procedure, one always determined in advance of
considering the actual observations.

3.3 Confidence Intervals

After rejecting a hypothesis, we will normally want to go further and say
something about the most likely values the parameter under investigation
might take. Confidence intervals can be derived from the rejection regions of
our hypothesis tests, whether the latter are based on parametric, semipara-
metric, or nonparametric methods. Confidence intervals include all values of a
parameter for which we would accept the hypothesis that the parameter takes
the value in question.

If A(θ′) is a 1 − α level acceptance region for testing the hypothesis θ = θ′,
and S(X) is a 1 − α level confidence interval for θ based on the vector of
observations X, then for the confidence intervals defined here, S(X) consists of
all the parameter values θ∗ for which X belongs to A(θ∗), while A(θ) consists
of all the values of the statistic x for which θ belongs to S(x).

Pr(S(x) ⊃ {θ}|θ) = P{X ∈ A(θ)|θ} ≥ 1 − α.

Note that the relationship extends in both directions so that the rejection
regions of our hypothesis tests can be derived from confidence intervals. Sup-
pose our hypothesis is that the odds ratio for a 2× 2 contingency table is 1, a
problem considered at greater length in Chapter 8. Then we would accept this
hypothesis if and only if our confidence interval for the odds ratio includes
the value 1. Confidence intervals based on the bootstrap (our third example
below) are the standard basis for tests of hypotheses using the bootstrap.

As our confidence level increases, from 90% to 95%, for example, the width
of the resulting confidence interval increases. Thus, a 95% confidence interval
is wider than a 90% confidence interval.

It is easy to show that if A(θ) is the acceptance region of a uniformly
most powerful unbiased test, the correct value of the parameter is more likely
to be covered by the confidence intervals we’ve constructed than would any
incorrect value.

Theorem 3.2. Let x = {X1, X2, . . . , Xn} be an exchangeable sample from
a distribution Fθ that depends upon a parameter θ ∈ Ω. For each θ′ ∈ Ω, let
A(θ′) be the acceptance region of the level-α test for H(θ′): θ = θ′, and for
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each x let S(x) denote the set of parameter values {θ: x ∈ A(θ), θ ∈ Ω}. Then
S(x) is a family of confidence sets for θ at confidence level 1 − α.

Theorem 3.3. If, for all θ′, A(θ′) is UMP unbiased for testing H(θ′) at
level a against the alternatives K(θ′), then for each θ′ in Ω, S(X) minimizes
the probability Pr(S(x) ⊃ {θ′}|θ) for all θ ∈ K(θ′) among all unbiased level-
1 − α families of confidence sets for θ.

Proof 3.2. By definition, θ ∈ S(x) if and only if x ∈ A(θ), hence
Pr(S(x) ⊃ {θ}|θ) = Pθ{X ∈ A(θ)} ≥ 1 − a. �

Proof 3.3. If S∗(x) is any other family of unbiased confidence sets at
level 1 − a and if A∗(θ) = {x: θ ∈ S∗(x)}, then

Pθ{X ∈ A∗(θ′)} = Pr(S∗(x) ⊃ {θ′}|θ) ≥ 1 − α for all θ ∈ H(θ′),
and

Pθ{X ∈ A∗(θ′)} = Pr(S∗(x) ⊃ {θ′}|θ) ≤ 1 − α for all θ ∈ K(θ′),

so that A∗(q′) is the acceptance region of a level-α unbiased test of H(θ′).
Since A is UMPU, Pθ{X ∈ A∗(θ′)} ≥ Pθ{X ∈ A(θ′)} for all θ ∈ K(θ′), hence
Pr(S∗(x) ⊃ {θ′}|θ) ≥ Pr(S(x) ⊃ {θ′}|θ) for all θ ∈ K(θ′), as was to be proved.

�

3.3.1 Confidence Intervals Based on Permutation Tests

In the first step of a permutation test for a non-zero value θ0 of the location
parameter, we subtract this value from each of the observations. We could test
a whole series of hypotheses involving different values for θ0 in this fashion
until we found a θ1 such that as long as θ0 ≥ θ1, we accept the null hypothesis,
but for any θ0 < θ1 we reject it. Then a 100(1 − α)% confidence interval for θ
is given by the interval {θ > θ1}.

Note that the preceding interval based on a one-sided test is also one-sided.
In this interval, θ1 is referred to as the lower confidence bound.

Suppose the original observations are −1, 2, 3, 1.1, 5, and we want to
find a confidence interval that will cover the true value of the parameter
31/32 of the time. In the first part of this chapter, we saw that 1/16 of the
rearrangements of the signs resulted in samples that were as extreme as these
observations. Thus, we would accept the hypothesis that θ ≤ 0 at the 1/16
level and any smaller level, including the 1/32. Similarly, we would accept the
hypothesis that θ ≤−0.5 at the 1/32 level, or even that θ ≤−1+ε where ε is an
arbitrarily small but still positive number. But we would reject the hypothesis
that θ ≤ −1 − ε, as after subtracting −1 − ε the transformed observations are
ε, 2, 3, 1.1, 5.

Our one-sided confidence interval is (−1,∞) and we have confidence that
31/32 of the time the method we’ve used yields an interval that includes the
true value of the location parameter θ.
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Our one-sided test of a hypothesis gives rise to a one-sided confidence
interval. But knowing that θ is larger than −1 may not be enough. We may
want to pin θ down to a more precise two-sided interval, say, that θ lies between
−1 and +1.

To accomplish this, we need to begin with a two-sided test. Our hypothesis
for this test is that θ = θ0 against the two-sided alternatives that θ is smaller
or larger than θ0. We use the same test statistic—the sum of the positive
observations, which we used in the previous one-sided test. Again, we look
at the distribution of our test statistic over all possible assignments of plus
and minus signs to the observations. But this time we reject the hypothesis if
the value of the test statistic for the original observations is either one of the
largest or one of the smallest of the possible values.

In our example we don’t have enough observations to find a two-sided
confidence interval at the 31/32 level, so we’ll try to find one at the 15/16
level. The lower boundary of the new confidence interval is still −1. But
what is the new upper boundary? If we subtract 5 from every observation,
we would have the values −6,−3,−2,−4.9,−0; their sum is −15.9. Only
the current assignment of signs to the transformed values, that is, only 1
out of the 32 possible assignments, yields this small a sum for the positive
values. The symmetry of the permutation test requires that we set aside
another 1/32 of the arrangements at the high end. Thus we would reject
the hypothesis that θ = 5 at the 1/32 + 1/32, or 1/16 level. Consequently,
the interval (−1, 5) has a 15/16 chance of covering the unknown parameter
value.

These results are readily extended to a confidence interval for a vector of
parameters θ that underlies a one-sample, two-sample, or k-sample experimen-
tal design with single- or vector-valued variables. In each case, the 100(1 −
α)%-confidence interval consists of all values of the parameter vector θ for
which we would accept the hypothesis at level α. Remember, one-sided tests
produce one-sided confidence intervals and two-sided tests produce two-sided
intervals.

For further information on deriving confidence intervals using the permu-
tation approach see Lehmann [1986, pp. 246–263], Gabriel and Hsu [1983],
John and Robinson [1983], Maritz [1981, p. 7, p. 25], and Tritchler [1984].

3.3.2 Confidence Intervals Based on Parametric Tests

The derivation of confidence intervals based on parametric tests is relatively
simple. Let us suppose we are testing a hypothesis concerning the location
parameter of a normal distribution whose variance is known to be 4. We
make a series of nine independent observations whose mean is 11. The 95th
percentile of a N(0, 1) distribution is 1.64. The 5th percentile is −1.64.

(X̄ − θ)
√

9/2 is distributed as N(0, 1). This means that the interval X̄ ±√
4/9∗1.64 will cover the unknown population mean θ about 90% of the time.
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3.3.3 Confidence Intervals Based on the Bootstrap

The bootstrap can help us obtain an interval estimate for any aspect of a
distribution—a median, a variance, a percentile, or a correlation coefficient—
if the observations are independent and all come from distributions with the
same value of the parameter to be estimated. This interval provides us with
an estimate of the precision of the corresponding point estimate.

We resample with replacement repeatedly from the original sample, 1000
times or so, computing the sample statistic for each bootstrap sample.

For example, here are the heights of a group of 22 adolescents, measured
in centimeters and ordered from shortest to tallest:

137.0 138.5 140.0 141.0 142.0 143.5 145.0 147.0 148.5 150.0 153.0
154.0 155.0 156.5 157.0 158.0 158.5 159.0 160.5 161.0 162.0 167.5

The median height lies somewhere between 153 and 154 centimeters. If
we want to extend this result to the population, we need an estimate of the
precision of this estimate.

Our first bootstrap sample, arranged in increasing order of magnitude for
ease in reading, might look like this:

138.5 138.5 140.0 141.0 141.0 143.5 145.0 147.0 148.5 150.0 153.0
154.0 155.0 156.5 157.0 158.5 159.0 159.0 159.0 160.5 161.0 162.0

Several of the values have been repeated, which is not surprising as we are
sampling with replacement, treating the original sample as a stand-in for
the much larger population from which the original sample was drawn. The
minimum of this bootstrap sample is 138.5, higher than that of the original
sample; the maximum at 162.0 is less than the original, while the median
remains unchanged at 153.5.

137.0 138.5 138.5 141.0 141.0 142.0 143.5 145.0 145.0 147.0 148.5
148.5 150.0 150.0 153.0 155.0 158.0 158.5 160.5 160.5 161.0 167.5

In this second bootstrap sample, again we find repeated values; this time the
minimum, maximum, and median are 137.0, 167.5 and 148.5, respectively.

The medians of 50 bootstrapped samples drawn from our sample ranged
between 142.25 and 158.25 with their median being 152.75 (see Figure 3.1).
These numbers provide an insight into what might have been had we sampled
repeatedly from the original population.

Fig. 3.1. Scatterplot of 50 bootstrap medians derived from a sample of heights.



“chapter3” — 2004/9/23 — page 44 — #12

44 3 Testing Hypotheses

We can improve on the interval estimate [142.25, 158.25] if we are willing to
accept a small probability that the interval will fail to include the true value
of the population median. We will take several hundred bootstrap samples
instead of a mere 50, and use the 5th and 95th percentiles of the resulting
bootstrap distribution to establish the boundaries of a 90% confidence interval.

This method might be used equally well to obtain an interval estimate for
any other population attribute: the mean or variance, the 5th percentile or the
25th, and the inter-quartile range. When several observations are made simul-
taneously on each subject, the bootstrap can be used to estimate covariances
and correlations among the variables. The bootstrap is particularly valuable
when trying to obtain an interval estimate for a ratio or for the mean and
variance of a nonsymmetric distribution.

Unfortunately, such intervals have two deficiencies:

1. They are biased, that is, they are more likely to contain certain false values
of the parameter being estimated than the true one [Efron, 1988];

2. They are wider and less efficient than they could be [Efron, 1988].

Two methods have been proposed to correct these deficiencies; let us con-
sider each in turn.

The first is the bootstrap-t in which the bootstrap estimate is Studen-
tized. For the one-sample case, we want an interval estimate based on the
distribution of (θ̂b − θ̂)/SE(θ̂)b, where θ̂ and θ̂b are the estimates of the
unknown parameter based on the original and bootstrap sample, respectively,
and SE(θ̂)b denotes an estimate, derived from the bootstrap sample, of the
standard error of the original estimate. An estimate σ̂ of the population vari-
ance is required to transform the resultant interval into one about θ (see
Carpenter and Bithell, 2000).

For the two-sample case we want a confidence interval based on the distri-
bution of

(θ̂nb − θ̂mb) − (θ̂n − θ̂m)√
(n − 1)s2

nb + (m − 1)s2
mb

n + m − 2
(1/n + 1/m)

,

where n, m, and snb, smb denote the sample sizes and standard deviations,
respectively, of the bootstrap samples. Applying the Hall–Wilson corrections,
we obtain narrower interval estimates that are as or more likely to contain
the true value of the unknown parameter.6

The bias-corrected and accelerated BCa interval due to Efron and
Tibshirani [1986] also represents a substantial improvement, though for sam-
ples under size 30 the interval is still suspect. The idea behind these intervals
comes from the observation that percentile bootstrap intervals are most accu-
rate when the estimate is symmetrically distributed about the true value of

6 Unlike the original bootstrap interval, this new interval may contain “impossible”
values; see Exercise 3.15.
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the parameter and the tails of the estimate’s distribution drop off rapidly to
zero. In other words, when the estimate has an almost normal distribution.

Suppose θ is the parameter we are trying to estimate, θ̂ is the estimate,
and we are able to come up with a monotone increasing transformation t
such that t(θ′) is normally distributed about t(θ). We could use this normal
distribution to obtain an unbiased confidence interval, and then apply a back-
transformation to obtain an almost unbiased confidence interval.7

Even with these modifications, we do not recommend the use of the non-
parametric bootstrap with samples of fewer than 100 observations. Simulation
studies suggest that with small sample sizes, the coverage is far from exact
and the endpoints of the intervals vary widely from one set of bootstrap sam-
ples to the next. For example, Tu and Zhang [1992] report that with samples
of size 50 taken from a normal distribution, the actual coverage of an interval
estimate rated at 90% using the BCa bootstrap is 88%. When the samples are
taken from a mixture of two normal distributions (a not uncommon situation
with real-life data sets) the actual coverage is 86%. With samples of only 20
in number, the actual coverage is 80%.

A more serious problem that arises when one tries to apply the bootstrap
is that the endpoints of the resulting interval estimates may vary widely from
one set of bootstrap samples to the next. For example, when Tu and Zhang
drew samples of size 50 from a mixture of normal distributions, the average
of the left limit of 1000 bootstrap samples taken from each of 1000 simulated
data sets was 0.72 with a standard deviation of 0.16, the average and standard
deviation of the right limit were 1.37 and 0.30, respectively.

3.3.4 Parametric Bootstrap

When we know the form of the population distribution, the use of the para-
metric bootstrap to obtain interval estimates may prove advantageous either
because the parametric bootstrap provides more accurate answers than text-
book formulas or because no textbook formulas exist.

Suppose we know the observations come from a normal distribution and
want an interval estimate for the standard deviation. We would draw repeated
bootstrap samples from a normal distribution the mean of which is the sample
mean and the variance of which is the sample variance. (As a practical mat-
ter, we would program our computer to draw an element from an N(0, 1)
population, multiply by the sample standard deviation, then add the sam-
ple mean to obtain an element of our bootstrap sample.) By computing the
standard deviation of each bootstrap sample, an interval estimate for the
standard deviation of the population may be derived. Because the resultant

7 StataTM provides for bias-corrected intervals via its .bstrap command. R
and S-Plus both include BCa functions. A SAS macro is available at
www.asu.edu/it/fyi/research/helpdocs/statistics/SAS/tips/jackboot.html.
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bootstrap distribution is far from symmetric, the use of the bootstrap-t is
strongly recommended.

3.3.5 Better Confidence Intervals

In deriving a confidence interval, we look first for a pivotal quantity or pivot
Q(X1, . . . , Xn, θ) whose distribution is independent of the parameters of the
original distribution. One example is a pivotal quantity is X̄ − θ, where X̄ is
the sample mean, and the observations Xi are drawn independently from iden-
tically distributions F (x−θ). A second example is Q = X̄/σ where the Xi are
independent and identically distributed as F (x/σ]. If the {Xi} are indepen-
dent from the identical exponential distribution 1 − exp[−λt] (see Exercise 2
in Chapter 2), then T = 2

∑
ti/λ is a pivotal quantity whose distribution

does not depend on λ. We can use this distribution to find an L and a U such
that

Pr(L < T < U) = 1 − α.

But then

Pr
(

1
2b
∑

ti
< λ <

1
2a
∑

ti

)
= 1 − α.

We use a pivotal quantity in Chapter 9.4 to derive a confidence interval for
a regression coefficient. For a discussion of the strengths and weaknesses of
pivotal quantities, see Berger and Wolpert [1984].

3.4 Comparison Among the Test Procedures

We are now able to make an initial comparison of the five types of statisti-
cal hypothesis test—permutation, rank, bootstrap, parametric bootstrap, and
parametric.

Recall from Chapter 1 that with all tests we need to complete the same
five basic steps. The only differences are in how we arrive at the distribution
of the test statistic and in any subsequent limitations upon the choice of a
statistic.

We obtain the permutation distribution of a test statistic T by repeatedly
rearranging the observations. With two or more samples, we combine all the
observations into a single large sample before we rearrange them. There are
no limitations upon the test statistic. If the observations are exchangeable
then the resultant test is exact and unbiased.

As noted in the brief history provided in the opening chapter, though
permutation tests were among the very first statistical tests to be devel-
oped, they were beyond the computing capacities of the 1930s. One alter-
native, which substantially reduces the amount of computation required, is
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the rank test. To form a rank test (e.g., Mann–Whitney or Friedman’s test),
we replace the original observations by their ranks, and then obtain the
permutation distribution of sample S by repeatedly rearranging the ranks
and recomputing the test statistic. This approach is appropriate when out-
liers are suspected, and it is also useful for combining observations that
may have been taken on different scales (see Chapters 5, 7, and 11). But
throwing away this information has the same effect as if we were to reduce
the sample size by roughly 3% for very large samples and much more for
smaller ones.

The bootstrap, like the permutation test, requires a minimum number of
assumptions and derives its critical values from the data at hand. To obtain
a nonparametric bootstrap, we obtain the bootstrap distribution of T or θ̂

by repeatedly resampling from the observations. We need not combine the
samples, but may resample separately from each sample. We resample with
replacement.

The bootstrap is neither exact nor conservative. Generally, but not always,
a nonparametric bootstrap is less powerful than a permutation test. If the
observations are independent and come from distributions with identical val-
ues of the parameter of interest, then the bootstrap is asymptotically exact
[Liu, 1988]. And it may be possible to bootstrap when no other statistical
method is applicable (see Section 7.6 and Chernick, 1999).

To obtain a parametric bootstrap, we obtain the bootstrap distribution of T
by repeatedly resampling from the observations and then using the bootstrap
sample to estimate the parameters of the distribution. This method is more
powerful than the nonparametric bootstrap and yields narrower confidence
intervals providing we are correct in our choice of distribution. This method
is limited to statistics T whose distribution is known.

To obtain a parametric test, we compare the observed value of T (X) with
the percentage points of a known distribution F and accept or reject the null
hypothesis according to whether T (X) is smaller or larger than this value.

If T is distributed as F , then the parametric test is exact and, often, the
most powerful test is available. In order for T to have the distribution F ,
in most cases the observations {Xi} need to be independent and, with small
samples, identically distributed with a specific distribution G. If the observa-
tions are not identically distributed or have some distribution other than G,
the T may have some distribution other than F , so that the test based on T
may not be conservative, and its claimed power may be suspect.

When a choice of statistical methods exists, the best method is the one that
yields the shortest confidence interval for a given significance level. Robinson
[1989] finds approximately the same asymptotic coverage probabilities for
three sets of confidence intervals for the slope of a simple linear regression
based, respectively, on 1) the standardized bootstrap, 2) parametric theory,
and 3) a permutation procedure. With large samples, the permutation test
is usually as powerful as the most powerful parametric test [Bickel and Van
Zwet, 1978].
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3.5 One-Sample Tests for a Scale Parameter

3.5.1 Semiparametric Tests

Suppose now that F [x] = G[x/σ], where σ is generally referred to as a scale
parameter. Recall that the standard deviation σ of a normal population serves
as its scale parameter. To obtain a bootstrap test of the hypothesis H: σ = σ0
we proceed as we did in the preceding sections, taking a series of bootstrap
samples from the original sample, computing an estimate of the standard
deviation σ each time, and using the percentiles of the resulting bootstrap
distribution as the cut-off point(s) of a one- or two-sided test.

While we can improve the accuracy of the bootstrap test by using either
the Hall–Wilson corrections or the BCa interval, its Type I error cannot be
guaranteed.

To obtain a permutation test of the scale parameter, one ought begin by
taking the logarithms of the observations, Y = log[X], so that the distribution
of Y may be represented as H[y − µ] where µ = log σ.8 If H is symmetric,
then we can immediately derive a test based on Y . But how likely is such a
property? An exact permutation test may not exist in this instance.

3.5.2 Parametric Tests: Sufficiency

Fortunately, a uniformly most powerful parametric test exists, that is, a UMP
exists if we can assume the observations are normally distributed. And, unfor-
tunately, this test, unlike the t-test, is not robust to departures from normality,
so that it may not be of value if our observations are drawn from some other
distribution.

Our test statistic is
∑n

i=1(xi − x̄)2/σ2
0 and when the observations are inde-

pendent and normally distributed N(µ, σ2), this statistic has the chi-square
distribution with n − 1 degrees of freedom.9

This test is UMP in part because x̄ and
∑n

i=1 (xi − x̄)2 are sufficient statis-
tics for the normal family of distributions. A statistic T is said to be sufficient
for a family of distributions based on the parameter θ if the conditional distri-
bution of X given t is independent of θ. A necessary and sufficient condition
for T to be sufficient is that we can factor the probability density f in the form
fθ[x] = gθ[T (x)]h(x) where the first factor g may depend upon the parameter,
but depends on x only through T (x), and the second factor h is independent
of the parameter.

8 If the data are all positive, then taking logarithms will result in an improved
bootstrap interval.

9 Although, we had n degrees of freedom in making the original n independent
observations, a little algebra reveals that the first n − 1 deviations about the
mean uniquely determine the nth deviation. (Exercise 3.7).
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In the discrete case, for example, suppose that

P(x|θ) = gθ[T (x)]h(x).

Pr{T = t|θ} =
∑

P(x′|θ) where the sum extends over all values x′ for which
T (x′) = t and the conditional probability that X = x given that T = t is
P(x|θ)/Pr(T = t|θ) or h(x)/

∑
h(x′), which is independent of θ. On the other

hand, if this conditional distribution does not depend on θ and is equal to some
function of x and t, say k(x, t), then P(x|θ) can be written as the product of
Pr{T = t|θ} and k(x, t).

x̄ and
∑n

i=1 (xi − x̄)2 are sufficient statistics for the normal family, whose
distribution is given in Equation (3.2). Noting that (xi−µ)2 = (xi−x̄+x̄−µ)2

and
∑

(xi − x̄) = 0, we can rewrite the normal probability density as

(2πσ2)−n/2 exp
[
− 1

2σ2

∑
(xi − x̄)2 − 1

2σ2

∑
(µ − x̄)2

]
. (3.3)

Unfortunately, the hypothesis that our observations come from a normally
distributed population with standard deviation σ ≤ σ0 is not a simple one (if it
were, we could apply the Neyman–Pearson lemma), but a composite hypothesis
consisting of a large number of possible distributions N(µ, σ2) with σ ≤ σ0
and −∞ < µ < α. Without further restriction, the maximum power that
can be obtained for this composite hypothesis against any simple alternative
is limited to the maximum power that can be attained by testing the least
favorable hypothesis in this family against that same alternative.10

In the present case, it seems reasonable to assume that the least favorable
distribution Λ of the parameters in the (µ, σ)-plane is concentrated on the
boundary between the hypothesis and the alternative σ = σ0. The joint density
of the sufficient statistics Y = x̄ and U =

∑n
i=1 (xi − x̄)2 under HΛ is

C0u
(n−3)/2 exp[−u/2σ2

0]
∫

exp[−n(y − µ)2/2σ2
0]dΛ(µ)

Now suppose our interest is in a simple alternative K: µ = µ1, σ = σ1. The
least favorable distribution of the parameters would be N(µ1, (σ2

1 − σ2
0)/n),

as then the distribution of Y under HΛ is N(µ1, σ2
1/n), the same as under the

alternative. The likelihood ratio reduces to a constant times U and does not
depend upon the specific alternative. The test based upon the distribution of
U is UMP.

Curiously, an analogous test of the hypothesis σ ≥ σ0 would depend on the
value of µ and is not UMP (Exercise 3.10).

10 The proof of this seemingly intuitive result occupies most of Chapter 3 of
Lehmann [1986].
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3.5.3 Unbiased Tests

We can find a most powerful test of the hypothesis σ ≥ σ0 if we restrict
ourselves to the set of tests that are unbiased, that is, whose power function
satisfies

βϕ(θ) ≤ α if θ ∈ H,

βϕ(θ) ≥ α if θ ∈ K.

Such a test is said to be uniformly most powerful unbiased or UMPU. Any
such test is admissible in the sense that there cannot exist another test ϕ′ that
is at least as powerful against all alternatives and more powerful against some;
whenever a UMP test exists it is UMPU (Exercise 3.12). All the permutation
tests we have looked at so far have been unbiased.

When βϕ(θ) is a continuous function of θ (that is, no jumps), unbiasedness
implies that βϕ(θ) = α for all θ on the boundary ω between the hypothesis and
the alternative. Tests that satisfy this latter condition are called similar. If we
can find a level-α test that is uniformly most powerful among all similar tests,
it must be unbiased, since it is uniformly at least as powerful as ϕ(x) ≡ α.

Let T be a sufficient statistic for PX ={Pθ, θ ∈ ω} and let PT ={PT
θ , θ∈ ω}.

A test ϕ is said to have Neyman structure if E[ϕ(x)|t] = α almost everywhere
with respect to PT .11 A test that has Neyman structure is similar to PX , as
then E[ϕ(x)|θ] = E{E[ϕ(x)|t]|θ} = α for all θ ∈ ω.

Referring to equation 3.3, we see that for any value of the sample mean
X̄, the conditional distribution

∑
i(Xi − X̄)2 given X̄ is the same as the

unconditional probability.12 As a result, our test of the hypothesis σ ≥ σ0
based on the sum of squares about the mean has Neyman structure, is similar,
and, as the normal distribution has monotone likelihood ratio in this statistic,
is UMPU.

3.5.4 Comparison Among the Test Procedures

A permutation test of the scale parameter might exist if the distribution of
the log-transformed observations were symmetric. A UMPU test based on the
chi-square distribution might exist if the data were normally distributed. If
the data are not normally distributed, then for small samples, the significance
level of such a test will be in error. Even for large samples, the true significance
level will depend upon the fourth moment of X, (the variance of X2), and
may take any value from 0% to 50% [Lehmann, 1986, p 206].

The best approach to this problem will be via the bootstrap, though
for small samples (less than 25 observations) even with the Hall–Wilson

11 This statement is true almost everywhere (a.e.) except on a set N with P(N) = 0
for all P ∈ P T .

12 A formal definition of conditional probability is given in Section 16.2.
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and BCa corrections, the significance level may not be exact. A preliminary
transformation of the observations (see Chapter 11) that will make the resul-
tant distribution more symmetric will improve the bootstrap’s accuracy [Efron
and Tibshirani, 1993, Chapter 14].

3.6 Comparing the Location Parameters of
Two Populations

3.6.1 A UMPU Parametric Test: Student’s t

Suppose now that we have taken samples from two populations, x1, x2, . . . , xn

from a N(µ, σ2) distribution and y1, y2, . . . , ym from a N(ν, σ2) distribution.
To find a UMPU statistic to test the hypothesis that µ = ν, we know we
can confine our attention to the sufficient statistics X̄, Ȳ ,

∑
(Xi − X̄)2, and∑

(Yi − Ȳ )2. If µ = ν, then the distribution of the statistic t(X, Y ), given by

t(X, Y ) =
(Ȳ − X̄)/

√
1/m + 1/n√

[
∑

(Xi − X̄)2 +
∑

(Yi − Ȳ )2]/(m + n − 2)
,

does not depend on the common population mean µ or the common popula-
tion variance σ2. The arguments raised in preceding sections lead us to the
UMPU test of the compound hypothesis µ ≥ ν against the alternatives µ < ν,
rejecting the hypothesis in favor of the alternative if t(X, Y ) > C where C
is the (1 − α)th percentile of the Student’s t distribution with m − 1, n − 1
degrees of freedom. As this distribution is symmetric, we may also make use of
its percentiles to create a two-tailed UMPU test of the hypothesis that µ = ν

against a two-sided alternative.13

3.6.2 A UMPU Semiparametric Procedure

We tested the equality of the location parameters of two samples via permu-
tation means in Chapter 1. Recall that our test statistic is the sum of the
observations in one of the samples. In this section we show that a permuta-
tion test14 based on this statistic is exact and unbiased against stochastically
increasing alternatives of the form K: F2[x] = F1[x − δ], δ > 0. In fact, we
show that this permutation test is a uniformly most powerful unbiased test of
the null hypothesis H: F2 = F1 against normally distributed shift alternatives.

13 We defer the proof of this statement to the Appendix.
14 The terminology “permutation test” is a misnomer, albeit a well-established one.

For all practical testing purposes, the permutations may be divided into equiv-
alence classes termed “rearrangements.” Within each equivalence class, the only
differences among the permutations lie in the arrangement of the observations
within samples.
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Against normal alternatives and for large samples, its power is equal to that
of the standard t-test [Bickel and van Zwet, 1978].

A family of cumulative distribution functions is said to be stochastically
increasing if the distributions are distinct and if θ < θ′ implies F [x|θ] ≥ F [x|θ′]
for all x. One example is the location parameter family for which Fθ[x] = F [x−
θ]. If X and X ′ have distributions Fθ and Fθ′ , then P{X > x} ≤ P{X ′ > x},
that is, X ′ tends to have larger values than X. Formally, we say that X ′ is
stochastically larger than X.

Lemma 3.1. F1[x] ≤ F0[x] for all x only if there exist two nondecreasing
functions f0 and f1 and a random variable V such that f0[v] ≤ f1[v] for all
v, and the distributions of f0 and f1 are F0 and F1, respectively.

Proof. Set fi[y] = inf{x: Fi(x−0) ≤ y ≤ Fi(x)}, i = 0, 1. These functions
are nondecreasing and, for fi = f , Fi = F , satisfy f [F (x)] ≤ x and F [f(y)] ≥
y for all x and y. Thus, y ≤ F (x0) implies f [y] ≤ f [F (x0)] ≤ x0, and f(y) ≤ x0
implies F [f(y)] ≤ F (x0) implies y ≤ F (x0).

Let V be uniformly distributed on (0,1). Then P{fi(V ) ≤ x} = P{V ≤
Fi(x)} = Fi(x), which completes the proof. �

We can apply this result immediately.

Lemma 3.2. Let X1, . . . , Xm; Y1, . . . , Yn be samples from continuous dis-
tributions F, G, and let ϕ[X1, . . . , Xm; Y1, . . . , Yn] be a test such that,

a) whenever F = G, its expectation is α;
b) yi ≤ y′

i for i = 1, . . . , n implies ϕ[x1, . . . , xm; y1, . . . , yn] ≤ ϕ[x1, . . . , xm;
y′
1, . . . , y

′
n].

Then the expectation of ϕ is greater than or equal to α for all pairs of distri-
butions for which Y is stochastically larger than X.

Proof. From our first lemma, we know there exist functions f and g and
independent random variables V1, . . . , Vm+n such that the distributions of
f(Vi) and g(Vi) are F and G, respectively, and f(z) ≤ g(z) for all z.

Eϕ[f(V1), . . . , f(Vm); f(V1), . . . , f(Vn)] = α

and
Eϕ[f(V1), . . . , f(Vm); g(V1), . . . , g(Vn)] = β.

From condition b) of the lemma, we see that β > α, as was to be proved. �
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We are now in a position to state the principal result of this section:

Theorem 3.4 (Unbiased). Let X1, . . . , Xm; Y1, . . . , Yn be samples from
continuous distributions F, G. Let β(F, G) be the expectation of the critical
function ϕ defined as ϕ[X1, . . . , Xm; Y1, . . . , Yn] = 1 only if

∑
Yj is greater

than the equivalent sum in α of the
(

n + m
n

)
possible rearrangements. Then

β(F, F ) = α and β(F, G) ≥ α for all pairs of distributions for which Y is
stochastically larger than X; β(F, G) ≤ α if X is stochastically larger than Y.

Proof. Exactness, that is β(F, F ) = α, follows from Theorem 3.1 and the
definition of ϕ. We can apply our lemmas and establish that the two-sample
permutation test is unbiased if we can show that yi ≤ y′

i for i = 1, . . . , n
implies

ϕ[x1, . . . , xm; y1, . . . , yn] ≤ ϕ[x1, . . . , xm; y′
1, . . . , y

′
n].

�

Rename the observations so that zi = xi for i = 1, . . . , m and zi+m = yi

for i = 1, . . . , n. ϕ = 1 if the sum of the observations in the second sample
as originally labeled

(∑n
i=1 yi =

∑m+n
i=m+1 zi

)
exceeds sufficiently many of the

sums after relabeling, that is, if sufficiently many of the differences

m+n∑
i=m+1

zi −
m+n∑

i=m+1

zπ(i) =
p∑

i=1

zsi −
p∑

i=1

zri

are positive, where the ri label those observations in the second sample after
permutation that were not present in the original sample, and the si label
those observations from the second sample that were rearranged to the first. If
such a difference is positive and yi ≤ y′

i, that is zi ≤ z′
i for i = m+1, . . . , m+n,

then the difference
∑

z′
si −∑ zri is also positive, so that ϕ(z′) ≥ ϕ(z). But

then we may apply the lemmas to obtain the desired result. The proof is
similar for the case in which X is stochastically larger than Y .

Suppose, as in the preceding section, that we have taken samples
from two populations, z1, z2, . . . , zn from a N(µ, σ2) distribution, and
zn+1, zn+2, . . . , zn+m from a N(ν, σ2) distribution. Their joint distribution
may be written as

(2πσ2)−(n+m)/2 exp

⎡
⎣− 1

2σ2

⎛
⎝ m∑

j=1

(zj − µ)2 +
n+m∑

j=m+1

(zj − µ − δ)2

⎞
⎠
⎤
⎦

or

(2πσ2)−(n+m)/2 exp

⎡
⎣− 1

2σ2

⎛
⎝n+m∑

j=1

(zj − µ)2 − 2δ
n+m∑

j=m+1

(zj − µ)2 + nδ2

⎞
⎠
⎤
⎦.
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Before making use of this expression to select terms for inclusion in the
rejection region, we may eliminate all factors that remain constant under
permutation of the subscripts. These include (2πσ2)−(n+m)/2 and

∑n+m
j=1 (zj −

µ)2, and nδ(δ+n). The resulting test rejects when exp[δ
∑n+m

j=m+1 zj ] > C, or,
equivalently, if δ > 0 when the sum of the observations in the second sample
is large. Our permutation test is the same whatever the unknown values of
µ and σ and thus is uniformly most powerful against normally distributed
alternatives among all unbiased tests of the hypothesis that the two samples
come from the same population.

3.6.3 An Example

Suppose we have two samples: The first, the control sample, takes values 0,
1, 2, 3, and 19. The second, the treatment sample, takes values 3.1, 3.5, 4, 5,
and 6. Does the treatment have an effect?

The answer would be immediate if it were not for the value 19 in the first
sample. The presence of this extreme value changes the mean of the first
sample from 1.5 for values 0, 1, 2, and 3 to 5. To dilute the effect of this
extreme value on the results, we convert all the data to ranks, giving the
smallest observation a rank of 1, the next smallest the rank of 2, and so forth.
The first sample includes the ranks 1, 2, 3, 4, and 10, and the second sample
includes the ranks 5, 6, 7, 8, and 9. Is the second sample drawn from a different
population than the first?

Let’s count. The sum of the ranks in the first sample is 15. All the rear-
rangements with first samples of the form 1, 2, 3, 4, k, where k is chosen from
{5, 6, 7, 8, 9, or 10}, have sums that are as small or smaller than that of our
original sample. That’s six rearrangements. The four rearrangements whose
first sample contains 1, 2, 3, 5, and a fifth number chosen from the set {6, 7,
8, 9} also have smaller sums. That’s 6 + 4 = 10 rearrangements so far.

Continuing in this fashion—I leave the complete enumeration as an

exercise—we find that 24 of the
(

10
5

)
= 252 possible rearrangements have

sums that are as small or smaller than that of our original sample. Two sam-
ples with sums as different as this will be drawn from the same population
just under 10% of the time by chance.

This example also reveals that a rank test is simply a permutation test
applied to the ranks rather than the original observations.

3.6.4 Comparison of the Tests: The Behrens–Fisher Problem

The permutation test offers the advantage over the parametric t-test that it
is exact even for very small samples whether or not the observations come
from a normal distribution. The parametric t-test relies on the existence of
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R Program to Compute p-Value via a Monte Carlo

A <− c (1, 2, 3, 4, 10)
sumorig <− sum(A)
B <− c(5, 6, 7, 8, 9)
cnt<− 0
A <− c(A,B)
for (i in 1:400){

D<− sample (A,n)
sumperm <− sum(D)
if (sumperm <= sumorig)cnt<−cnt+1

}
cnt/400 #pvalue

a mythical infinite population from which all the observations are drawn.
The permutation test is applicable even to finite populations such as all the
machines in a given shop or all the supercomputers in the world.

Against specific normal alternatives as we saw in the preceding section, this
permutation test provides a most powerful unbiased test of the distribution-
free hypothesis H: FY = FX . For large samples, its power is almost the same
as Student’s t-test [Albers, Bickel, and van Zwet, 1976].

Both tests rely on the assumption that the variances of the two samples are
the same. But what if FY is not equal to FX under the hypothesis? What if
only the location parameters of FY and FX are equal, while the other param-
eters of these two distributions are not the same? Are our tests still exact or
almost exact? Are they still efficient for testing against normal alternatives?
When the sample sizes are equal, the t-test will be almost exact even if the
variances are quite different; otherwise, the actual size of the test can differ
greatly from the declared level even for large samples [Ramsey, 1980; Posten,
Yeh, and Owen, 1982]. Many, many parametric alternatives have been pro-
posed; see, for example, Tiku and Singh [1981], O’Brien [1988], Manly and
Francis [1999], and Weerahandi [1995, Chapter 7].

Romano [1990] shows that the permutation test based on the sum of the
observations in the first sample is asymptotically exact for testing whether
the expectations of FY and FX are equal, even if the two distributions are not
identical, providing both distributions have finite variances and the samples
are of equal size.

But suppose the first sample comes from a population all of whose members
are very close to zero, while the second comes from a population all of whose
members are very large in absolute value. The sum of the observations in the
first sample is close to zero in the original sample. When we rerandomize,
mixing elements of the second sample with those of the first, the test statistic
will either be a very large positive number or a very large negative one. In this
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worst case example, for any choice of significance level less than 50% and any
finite sample size, the null hypothesis cannot be rejected.

The preceding example is a worst case. In a series of Monte Carlo simula-
tions with small sizes, I found that in many common applications including
the Behrens–Fisher problem, the permutation test remains close to exact even
for very small equal-sized samples (see Table 3.1). This result is in line with
the findings of Box and Anderson [1955] and Brown [1982]. But see, also,
Boik [1987].

A second resampling method, the nonparametric bootstrap, provides
asymptotically exact solutions, whether or not FY ≡FX and whether or not
the sample sizes are equal; but see Gine and Zinn [1989]. In a bootstrap we
resample separately from each of the two original samples. The underlying
populations need not be the same even under the null hypothesis.

The primitive, uncorrected bootstrap is far from exact except for very large
samples. But if we modify the bootstrap, using pivotals, Studentization, bias
and higher-order correction as in Hall [1992], we can derive an almost exact
bootstrap, even for samples with as few as eight observations.

This result is not unexpected: Liu [1988] shows the bootstrap test of the
hypothesis of equal means retains the second-order convergence properties it
has in the case FY ≡ FX .15

3.7 Comparing the Dispersions of Two Populations

Precision is essential in a manufacturing process. Items that are too far out
of tolerance must be discarded and an entire production line brought to a
halt if too many items exceed (or fall below) designated specifications. With
some testing equipment, such as that used in hospitals, precision can be more
important than accuracy. For accuracy (closeness to the correct value) can
always be achieved through the use of standards with known values, while a
lack of precision may render an entire sequence of tests invalid.

3.7.1 The Parametric Approach

There is no shortage of parametric methods to test the hypothesis that two
samples come from populations with the same inherent variability. Sukhatme
[1958] lists four alternative approaches and adds a fifth of his own; Miller
[1968] lists ten alternatives and compares four of these with a new test of
his own; Conover, Johnson, and Johnson [1981] list and compare 56 tests; and
Balakrishnan and Ma [1990] list and compare nine tests with one of their own.

None of these tests can be relied on. Many promise an error rate or sig-
nificance level of 5% but in reality make errors as frequently as 8% to 20%
of the time. Others have severe restrictions. The F -ratio test [Fisher, 1925]

15 For more on convergence properties, see Appendix, Section A.7.5.
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is exact only if the observations come from a normal distribution, and as
noted in Section 3.5.4, unlike the t-test, it is very sensitive to deviations from
normality.

Each of these tests requires that two or more of the following four conditions
be satisfied:

1. The observations are normally distributed.
2. The location parameters of the two distributions are the same or differ by

a known quantity.
3. The two samples are equal in size.
4. The samples are large enough that asymptotic approximations to the dis-

tribution of the test statistic are valid.

As an example, the first published solution to this classic testing problem
is the z-test proposed by Welch [1937] based on the ratio of the two sam-
ple variances. If the observations are normally distributed, this ratio has the
F -distribution, and the test whose critical values are determined by the F -
distribution is uniformly most powerful among all unbiased tests [Lehmann,
1986, Section 5.3]. But with even small deviations from normality, signifi-
cance levels based on the F -distribution are grossly in error [Lehmann, 1986,
p. 207]; the magnitude of the error will depend on the fourth moment of the
distribution from which the samples are drawn.

Box and Anderson [1955] propose a correction to the F -distribution for
“almost” normal data, based on an asymptotic approximation to the per-
mutation distribution of the F -ratio. Not surprisingly, their approximation
is close to correct only for normally distributed data or for very large sam-
ples. The Box–Anderson statistic results in an error rate of 21%, twice the
desired value of 10%, when two samples of size 15 are drawn from a gamma
distribution with four degrees of freedom.

The test proposed by Miller [1968] yields conservative Type I errors, less
than or equal to the declared error, unless the sample sizes are unequal. A
10% test with samples of size 12 and 8 taken from normal populations yielded
Type I errors 14% of the time.

3.7.2 The Permutation Approach

At first glance, the permutation test for comparing the variances of two pop-
ulations would appear to be an immediate extension of the test we use for
comparing location parameters, in which we use the squares of the observa-
tions rather than the observations themselves. But these squares are actu-
ally the sum of two components, one of which depends upon the unknown
variance, the other upon the unknown location parameter. That is, EX2 =
E(X − µ + µ)2 = E(X − µ)2 + 2µE(X − µ) + µ2 = σ2 + 0 + µ2.

A permutation test based upon the squares of the observations is appro-
priate only if the location parameters of the two populations are known, or if
they are known to be equal [Bailer, 1989].
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Fig. 3.2. Comparison of two samples: a) original data, b) after first sample is shifted
to the right. c common center, x—x first sample, 0—0 second sample.

We cannot eliminate the effects of the location parameters by working with
the deviations about each sample mean, as these deviations are interdependent
[Maritz, 1981]. The problem is illustrated in Figure 3.2. In the sketch on the
left, the observations in the first sample are both further from the common
center than either of the observations in the second sample. Moreover, of the
four possible rearrangements of four observations between two samples, this
arrangement is the most extreme. In the sketch on the right, the observations
in the first sample have undergone a shift to the right; this shift has altered
the relative ordering of the absolute deviations about the common center, and
at least one other rearrangement is more extreme.

Still, we needn’t give up; we can obtain an exact permutation test with
just a few preliminary calculations. First, we compute the median for each
sample; next, we replace each of the remaining observations by the square
of its deviation about its sample median; last, we discard certain redundant
values.

Suppose the first sample contains the observations x1, . . . , xn whose median
is mdn{xi}; we begin by forming the deviates x′

j = |xj − mdn{xi}| for j =
1, . . . , n. Similarly, we form the set of deviates {y′

j} using the observations in
the second sample and their median.

If there are an odd number of observations in the sample, then one of these
deviates must be zero. We can’t get any information out of a zero, so we throw
it away.16 If there is an even number of observations in the sample, then two of
these deviates must be equal. We can’t get any information out of the second
one that we didn’t already get from the first, so we throw it away.

Our test statistic S is the sum of the remaining deviations in the first
sample, that is, S =

∑n−1
j=1 x′

j . We obtain its permutation distribution and
the cut-off point for the test by considering all possible rearrangements of the
deviations that remain in both the first and second samples.

To illustrate the application of this statistic, suppose the first sample
consists of the measurements 121, 123, 126, 128.5, and 129, and the second
sample of the measurements 153, 154, 155, 156, and 158. Thus x′

1 = 5, x′
2 = 3,

x′
3 = 2.5, x′

4 = 3, and S0 = 13.5. While y′
1 = 2, y′

2 = 1, y′
3 = 1, y′

4 = 3.

16 In the event of ties, should there be more than one zero, we still throw only one
away.
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There are
(

8
4

)
arrangements in all, of which only three yield values of the

test statistic as, or more, extreme than our original value. This proportion is
3/70 = 0.043, so we conclude that the difference between the dispersions of
the two manufacturing processes is statistically significant at the 5% level.

There is a weak dependency among these deviates and thus they are only
asymptotically exchangeable. (See Section 15.7.4.) The associated test is alter-
nately conservative and liberal [Baker, 1995]. For this test to be even approx-
imately exact, it requires that

a) the ratio of the sample sizes n, m be close to 1;
b) the population variances exist and are equal (as they would be under the

null hypothesis);
c) the only other difference between the two populations from which the sam-

ples are drawn is that they might have different means.

We can derive a permutation test for comparing variances that is free of
even these restrictions if, instead of working with the original observations,
we replace them with the differences between successive order statistics and
then permute the labels.17 The test statistic proposed by Aly [1990] is

δ =
m−1∑
i=1

i(m − i)(X(i+1) − X(i)),

where X(1) < X(2) < · · · < X(m) are the order statistics of the first sample.
That is, X(1) is the smallest of the observations in the first sample (the mini-
mum), X(2) is the second smallest, and so forth, up to X(m), the maximum.

To illustrate the application of Aly’s statistic, suppose the first sample
consists of the measurements 121, 123, 126, 128.5, and 129, and the second
sample of the measurements 153, 154, 155, 156, and 158. X(1) = 121, X(2) =
123, and so forth.

Set z1i = X(i+1)−X(i) for i = 1, . . . , 4. In this instance, z11 = 123−121 = 2,
z12 = 3, z13 = 2.5, z14 = 0.5.

The original value of Aly’s test statistic is 8+18+15+2 = 43. To compute
the test statistic for other arrangements, we also need to know the differences
z2i = Y(i+1) − Y(i) for the second sample; z21 = 1, z22 = 1, z23 = 1, z24 = 2.

Only certain exchanges are possible. Rearrangements are formed by first
choosing either z11 or z21, next either z12 or z22, and so forth until we have a
set of four differences.

One possible rearrangement is {2, 1, 1, 2}, which yields a value of δ = 28.
There are 24 = 16 rearrangements in all, of which only one—{2, 3, 2.5, 2}—
yields a more extreme value of the test statistic than our original observations.
With 2 out of 16 rearrangements yielding values of the statistic as, or more,
extreme than the original, we should accept the null hypothesis. Better still,

17 As shown in Section A.3.3, the order statistics are sufficient for the set of all
absolutely continuous distributions.
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given the limited number of possible rearrangements, we should gather more
data before we make a decision.18

If our second sample is larger than the first, we have to resample in two
stages. First, we select a subset of m values {Y ∗

i , I = 1, . . . , m} without
replacement from the n observations in the second sample, and compute the
order statistics Y ∗

(1) < Y ∗
(2) < · · · < Y ∗

(m) and their differences {z2i}. Last, we
examine all possible values of Aly’s measure of dispersion for permutations
of the combined sample {{z1i}, {z2i}}, as we did when the two samples were
equal in size, and compare Aly’s measure for the original observations with
this distribution.

A similar procedure, first suggested by Baker [1995], should be used with
the first test in the case of unequal samples.

3.7.3 The Bootstrap Approach

In order to use permutation methods to compare the variances of two pop-
ulations, we have to sacrifice two of the observations. The resultant test is
exact and distribution-free, but it is not most powerful. A potentially more
powerful test is provided by the bootstrap confidence interval for the vari-
ance ratio. To derive this test, we resample repeatedly without replacement,
drawing independently from the two original samples, until we have two new
samples the same size as the originals. Each time we resample, we compute
the variances of the two new independent subsamples and calculate their
ratio. The resultant bootstrap confidence interval is asymptotically exact
[Efron, 1981] and can be made close to exact with samples of as few as
eight observations (see Table 3.2a). As Table 3.2b shows, this bootstrap is
more powerful than the permutation test we described in the previous section.
One caveat also revealed in the table: This bootstrap is still only “almost”
exact.

Table 3.2a. Significance level for variance comparisons for BCa method,
Efron and Tibshirani [1986]. For various underlying distributions by sam-
ple size. 500 simulations.

6,6 8,8 8,12 12,8 12,12 15,15

Ideal 50 50 50 50 50 50
Normal (0,1) 44 52 53 56 45 49
Double (0,1) 53 51 63 70 55 54
Gamma (4,1) 48 55 60 65 52 52
Exponential 54 58 56 70 46 63

18 How much data? See Chapter 6.
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Table 3.2b. Power as a function of the ratio of the variances. For various distri-
butions and two samples each of size 8. Rejections in 500 Monte Carlo simulations.

Permutation Test Bootstrap∗

φ = σ2/σ1 1. 1.5 2. 3. 4. 1. 1.5 2. 3. 4.

Ideal 50 500 50 500
Normal 52 185 312 438 483 52 190 329 444 482
Double 55 153 215 355 439 53 151∗ 250∗ 379∗ 433
Gamma 44 158 255 411 462 49 165 288 426 464
Exponential 51 132 224 323 389 54 150∗ 233∗ 344∗ 408
∗Bootstrap interval shortened so actual significance level is 10%.

3.8 Bivariate Correlation

Often we observe pairs of variables—weight and cholesterol level, SAT score
and subsequent GPA—and naturally question whether the members of a pair
are related. If we have two sets of fencing of varying lengths and are asked to
build a fixed number of animal pens from them so as to maximize the area
within, we know from the formula for the area of a rectangle, A = W ×L, that
we can maximize the area if we match the largest lengths in the first group
with the largest lengths from the second group and so on down the line until
the smallest lengths are matched with the smallest.19

Suppose now we’ve observed n pairs of observations (Xi, Yi), i = 1, . . . , n. If
the labels are meaningless, the variables uncorrelated, and every combination
of values equally likely, then every value of the statistic S =

∑
XiYi obtained

by permuting the subscripts for one variable, but not the other, is equally
likely, also. On the other hand, if the two variables are positively correlated
then, as we saw from our geometric argument, large values of the statistic
are more probable than small ones. In particular, a permutation test based
on the sum of cross products S is uniformly most powerful against normally
distributed alternatives among all unbiased tests of the hypothesis that pairs
of observations are uncorrelated.

A bivariate normal distribution has the density

h(z) = (2πστ
√

1 − ρ2)−n exp[−J/2(1 − ρ2)], (3.4)

where J =
1

2σ2

∑
(xj − µ)2 +

2ρ
στ

∑
(xj − µ)(yj − ν) +

1
τ2

∑
(yj − ν)2.

To find a most powerful test of the null hypothesis that is unbiased against
alternatives with probability density h(z) and ρ > 0, we need to maximize
the expression ∑

z∈R(s)

φ(z)
h(z)∑

z′∈R(s) h(z′)
.

19 Check this out on a piece of graph paper if it’s not immediately obvious.
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Many of the sums that occur in this expression are invariant under
permutations of the subscripts j. These include the four sums

∑
xj ,
∑

yj ,∑
x2

j ,
∑

y2
j . Eliminating all these invariant terms leaves us with the test

statistic S, establishing the desired result.

3.9 Which Test?

“Every statistical procedure relies on certain assumptions for correctness.
Errors in testing hypotheses come about either because the assumptions
underlying the chosen test are not satisfied, or because the chosen test is
less powerful than other competing procedures.” [Good and Hardin, 2003].

All the testing methods described in this chapter require that the observa-
tions be independent. All require that at least one of the following successively
weaker assumptions be satisfied under the null hypothesis:
1. The observations be identically distributed.
2. The observations be exchangeable, that is, their joint distribution be the

same for any relabeling.
3. The observations be drawn from populations in which, under the null

hypothesis, a specific parameter is the same across all the populations.
Parametric procedures require that all three of these assumptions be sat-

isfied and, moreover, that the explicit form of the population distribution
be known. Permutation methods require that the second and third assump-
tions be satisfied. The bootstrap requires only that the third assumption be
satisfied.

For a comparison of permutation and parametric tests, see Bradbury [1987].
In most cases the optimum permutation and parametric tests are asymptot-
ically equivalent. For discussions on this, see Albers, Bickel, and Van Zwet
[1976] and Bickel and Van Zwet [1978]. For a comparison of permutation tests
with the bootstrap, see Romano [1989], ter Braak [1992], and Good [2001].

3.10 Exercises

1. Prove all of the following:
a) The sum of two independent normally distributed random variables

each with mean 0 and variance 1 is a normally distributed random
variable with mean 0 and variance 2.

b) The sum of two independent normally distributed random variables
with means µ1, µ2 and variances σ2

1, σ
2
2 is a normally distributed ran-

dom variable with mean µ1 + µ2 and variance σ2
1 + σ2

2.
c) The sum of n independent normally distributed random variables with

mean µ and variance σ2 is a normally distributed random variable with
mean µ and variance nσ2.
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d) If S is the sum of n independent normally distributed random variables
with mean µ and variance σ2, then (S − µ)/

√
nσ2 is a normally dis-

tributed random variable with mean 0 and variance 1.
2. Under what conditions are the sample mean and sample variance

uncorrelated?
3. Suppose that under the conditions of Theorem 3.1, ϕ is UMP for testing

θ ≤ θ0 against the alternative that θ > θ0. Show that for any θ < θ0,ϕ
minimizes β(θ) among all tests that satisfy β(θ0) = α.

4. Show that our parametric test is most powerful for testing the hypothe-
sis that our observations are normally distributed with mean θ = θ0 and
variance σ2 against the alternative that the observations are normally dis-
tributed with expectation θ = θ1 > θ0 and variance σ2.

5. Prove that Student’s t-test cannot be uniformly most powerful for testing
the hypothesis that our observations are normally distributed with mean
θ = θ0 against the alternative that they are normally distributed with
expectation θ = θ1 > θ0.

6. Find a 90% confidence interval for the mean of a normal distribution with
variance 9 when a sample of 16 independent observations has a mean of
8. [Hint: Confidence intervals get smaller with more observations; they are
larger when the variance is larger.]

7. Find a 90% confidence interval for the mean of a normal distribution
with unknown variance when a sample of 16 independent observations
has a mean of 7 and a sample variance of 7.2. The 95th percentile of a
t-distribution with 15 degrees of freedom is 1.753. (Hint: The t-distribution,
like the normal, is symmetric.)

8. If asked to provide a single point estimate instead of an entire interval,
would the center of the confidence interval be your best choice?

9. Show that if you know the values of the first n − 1 deviations about the
mean of a sample of size n, you can immediately calculate the nth.

10. Let {X1, . . . Xn} denote a set of exchangeable random variables whose indi-
vidual distributions, though not necessarily the same, belong to the family
of distributions P that are symmetric about 10. Show via the factoriza-
tion criterion that the absolute values of the observations are sufficient
for P.

11. Find the least favorable distribution for testing H: N(µ, σ2); σ ≥ σ0 against
the alternative K: N(µ, σ2); σ < σ0.

12. Prove that i) any UMPU test is admissible; ii) whenever a UMP test exists
it is UMPU.

13. Show that the following statistics lead to equivalent permutation tests
for the equality of two location parameters: a) the sum of the observa-
tions in the smallest sample; b) the difference between the sample means;
c) the t-statistic. (Hint: The sum of all the observations, the sum of the
squares of all the observations, and the sample sizes are invariant under
permutations.)
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14. Show that if T ′ is a monotonic function of T , then a test based on the
permutation distribution of T ′ will accept or reject only if a permutation
test based on T also accepts or rejects.

15. In the example of Section 3.3.2, list all rearrangements in which the sum
of the ranks in the first sample is less than or equal to the original sum.

16. Suppose we’d planned to look at two samples, each of size four, but when
the data are finally in hand, one of the observations is missing. One alter-
native is to treat the data as if we’d planned on two unequal samples from
the beginning, thus leading to 7 choose 3 possibilities. Another alternative
is use the mean of the first sample as our test statistic, include the missing
observation in our rearrangements, and examine all 8 choose 4 possibilities.
Which alternative is preferable?

17. Show that the permutation test introduced in Section 3.7.2 for comparing
variances based on deviations about the sample median is asymptotically
exact.

18. Although the Hall–Wilson corrections are widely accepted, sometimes they
can produce idiotic results. Use the following real-world data to obtain
a Hall–Wilson corrected bootstrap interval estimate for the population
mean:
0 0 0 0 7.53 0 0 0 15.77 0 0 0 0 7.53 6.16 0 0 0 0 18 0 5.71 5.71 0 7.78 0
7.03 0 10.22 0 12 19.07 15.50 0 0 0 0 0 3.81 6.10 3 10.78 0 10.44 0 0 0 0 0
0 4 0 0 0 103.05 0 0 0 0 12 0 0 0.

19. Provide a formal step-by-step proof that a permutation test based on the
sum of the cross-products is uniformly most powerful against normally
distributed alternatives among all unbiased tests of the hypothesis that the
pairs of observations are uncorrelated. (Hint: Find the sufficient statistics
for the bivariate normal distribution. Does the bivariate normal density
h(x) have monotone likelihood ratio in the cross-product statistic? Does
our permutation test have Neyman structure in this statistic?)

20. Is a permutation test based on the sum of the cross-products of X and
Y most powerful among unbiased tests for testing the hypothesis that
X and Y are independent against alternatives of the form F [Y |X = b] ≤
F [Y |X = a] if a < b? Is it uniformly most powerful among all tests of this
hypothesis against these alternatives?

21. Does a UMP test always minimize the risk? Or would it depend on the risk
function? In particular, consider the two losses associated with a testing
problem concerning a parameter θ, where L0(θ) = 0 for θ ≤ θ0 and L0(θ)
is strictly increasing otherwise, and L1(θ) is increasing for θ ≤ θ0 and 0
otherwise. The risk function of any test ϕ is R(θ,ϕ) = ϕ{(x)L1(θ) + (1 −
ϕ(x))L0(θ)} dFθ(x). If the random variable X has a cumulative distribu-
tion function Fθ[x] with monotone likelihood ratio in T [x], show that the
associated family of one-sided tests minimizes R(θ,ϕ).
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Distributions

In many problems such as the analysis of data from radioactive decay, the
distribution of observations can be determined on theoretical grounds, and
the optimal decision procedure is one that takes advantage of knowledge
obtained this way. In this chapter, we consider optimal tests for data drawn
from the binomial, Poisson, exponential, uniform, and exponential family of
distributions.

4.1 Properties of Independent Observations

All the tests that we have considered so far require that the individual obser-
vations be independent of one another. We will continue to make such an
assumption in succeeding chapters, even in cases when the “observation”
consists of a vector of interdependent variables. This is because indepen-
dent observations have many desirable properties. Recall that if X and Y
are independent, then Pr{X ∈ A and Y ∈ B} = Pr{X ∈ A}Pr{Y ∈ B}. In
consequence, if E|X| < ∞ and E|Y | < ∞, we easily can show that E(aX + b)
= aEX+b where a and b are constants, and E(X+Y ) = E(X)+E(Y ) (Exer-
cise 4.1). If Var X < ∞, and Var Y < ∞, then Var (aX + b) = a2 Var X,
Var (X + Y ) = Var X + Var Y , and Var (X − Y ) = Var X + Var Y . We take
advantage of all these properties in what follows.

In particular, because Var (aX + b) = a2 Var X, the mean of 100 indepen-
dent identically distributed observations has 1/100 the variance of a single
observation; the standard deviation of the mean of 100 observations, termed
the standard error, has 1/10 the standard deviation of a single observation.
We’ll use this latter property of the mean in Sections 13.1.3 and 14.10 when
we try to determine how large a sample should be.

4.2 Binomial Distribution

A binomial frequency distribution, written B(n, p), results from a series of
n independent trials each with the same probability p of success, and the
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same probability q = 1 − p of failure. This distribution arises in any context
in which there are only two possible outcomes, such as “the patient recovers
or the patient dies.” The distribution that arises when we can prefer Coke
to Pepsi, Pepsi to Coke, have no preference, or prefer some other beverage
entirely, is termed a multinomial and will be considered in Chapter 8.

If X is B(n, p), then the expected value of X denoted by EX is np and the
variance of X about its expected value, EX − E(X)2, denoted by Var X, is
npq.

Suppose we’ve flipped a coin in the air seven times, and six times it has
come down heads. Do we have reason to suspect the coin is not fair, that
p > 1/2?

To answer this question, we need to look at the frequency distribution of

the binomial observation. If X is B(n, p), then Pr{X = k} =
(

n
k

)
pk(1−p)n−k

for k = 0, 1, . . . , n, and is zero otherwise. Note that we needn’t keep track of
the individual observations; the number of successes k is sufficient for testing
hypotheses concerning p.

If n = 7 and k = 6, this probability is 7p6(1 − p). If p = 1/2, this prob-
ability is 7/128 = 0.0547, just slightly more than 5%. But before we reject
the hypothesis that ours is a fair coin, consider that if six heads out of seven
tries seems extreme to us, seven heads out of seven would seem even more
extreme. Adding the probability of this more extreme event to what we have
already, we see the probability of throwing six or more heads in seven tries is
8/128 = 0.0625. While not significant at the 5% level, six or more heads out
of seven tries does seem suspicious. If you were a mad scientist and observed
that six times out of seven your assistant Igor began to bay like a wolf when
there was a full moon, wouldn’t you get suspicious?

Warning: In the example of the unfair coin, we formulated our hypothesis
after we observed the data. While we might have reason to be suspicious and
enough reason to justify further testing, we would be in error if we reported
a significance level of 0.0625. When we are observing more or less at random,
without a specific hypothesis in mind, human beings being what they are, the
probability that sooner or later we will see something interesting is one. (Next
time you play pool, try naming both the ball and the pocket.)

4.3 Poisson: Events Rare in Time and Space

The decay of a radioactive element, an appointment to the United States
Supreme Court and a cavalry officer trampled by his horse have in common
that they are relatively rare but inevitable events. They are inevitable, that
is, if there are enough atoms, enough seconds or years in the observation
period, and enough horses and momentarily careless men. Their frequency of
occurrence has a Poisson distribution.
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The number of events in a given interval has the Poisson distribution if it
is the cumulative result of a large number of independent opportunities, each
of which has only a small chance of occurring. The interval can be in space
as well as time. For example, if we seed a small number of cells into a Petri
dish that is divided into a large number of squares, the distribution of cells
per square follows the Poisson.

If the number of events X has a Poisson distribution such that we may
expect an average of λ events per unit interval, then Pr{X = k} = λke−λ/k!
for k = 0, 1, 2, . . . . For the purpose of testing hypotheses concerning λ, we
needn’t keep track of the times or locations at which the various events
occurred; the number of events k is sufficient.

As the Poisson distribution arises when events in nonoverlapping intervals
of space or time are independent of one another it is not surprising that the
sum of a Poisson with expected value λ1 and a second independent Poisson
with expected value λ2 is also a Poisson with expected value λ1 + λ2 (Exer-
cise 4.7).

4.3.1 Applying the Poisson

John Ross of the Wistar Institute held there were two approaches to biology:
the analog and the digital. The analog was served by the scintillation counter:
one ground up millions of cells then measured whatever radioactivity was
left behind in the stew after centrifugation; the digital was to be found in
cloning experiments where any necessary measurements would be done on a
cell-by-cell basis.

John was a cloner and, later, as his student, so was I. We’d start out
with 10 million or more cells in a 10-milliliter flask and try to dilute them
down to one cell per milliliter. We were usually successful in cutting down
the numbers to 10,000 or so. Then came the hard part. We’d dilute the cells
down a second time by a factor of 1:100 and hope we’d end up with 100
cells in the flask. Sometimes we did. Ninety percent of the time we’d end up
with between 90 and 110 cells, just as the binomial distribution predicted.
But just because a mixture is cut in half (or a dozen, or 100 parts) doesn’t
mean equal numbers will be present in each part. It does mean that the
probability of getting a particular cell is the same for all the parts. With large
numbers of cells, things seem to even out. With small numbers, chance seems
to predominate.

Things got worse when I went to seed the cells into culture dishes. These
dishes, made of plastic, had a rectangular grid cut into their bottoms, so
they were divided into approximately 100 equal size squares. Dropping 100
cells into the dish meant an average of 1 cell per square. Unfortunately, for
cloning purposes this average didn’t mean much. Sometimes 40% or more
of the squares would contain two or more cells. It didn’t take long to figure
out why. Planted at random, the cells obey the Poisson distribution in space.
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An average of one cell per square means

Pr{No cells in a square} = 1 ∗ e−1/1 = 0.32

Pr{Exactly one cell in a square} = 1 ∗ e−1/1 = 0.32
Pr{Two or more cells in a square} = 1 − 0.32 − 0.32 = 0.36.

Two cells was one too many. A clone or colony must begin with a single cell. I
had to dilute the mixture a third time to ensure the percentage of squares that
included two or more cells was vanishingly small. Alas, the vast majority of
squares were now empty; I was forced to spend hundreds of additional hours
peering through the microscope looking for the few squares that did include
a clone.

4.3.2 A Poisson Distribution of Poisson Distributions

The stars in the sky do not have a Poisson distribution, although it cer-
tainly looks this way. Stars occur in clusters, and these clusters, in turn, are
distributed in superclusters. The centers of these superclusters do follow a
Poisson distribution in space, and the stars in a cluster follow a Poisson dis-
tribution around the center almost as if someone had seeded the sky with
stars and then watched the stars seed themselves in turn. See Neyman and
Scott [1965] for a discussion of this phenomenon.

4.3.3 Comparing Two Poissons

Suppose in designing a new nuclear submarine (or that unbuilt wonder, a
nuclear spacecraft) you become concerned about the amount of radioactive
exposure that will be received by the crew. You conduct a test of two possible
shielding materials. During 10 minutes of exposure to a power plant using each
material in turn as a shield, you record 14 counts with material A, and only
4 with experimental material B. Can you conclude that B is safer than A?

Or, suppose you wish to assess the preventive value of a new vaccine against
a relatively rare disease. You inoculate 100,000 individuals in a double blind
study so that one-half receive the new vaccine and one-half an innocuous saline
solution. You follow these individuals for a year and record the numbers in
each group who come down with the disease. How can you determine from
these numbers whether the new vaccine is of value?

Our hypothesis is that λ1 = λ2 or λ1 < λ2 against the alternative λ1 >λ2.
We are not interested in the absolute values of these parameters, though we
could estimate these separately, but in their relative values. The equivalent
hypothesis is that θ = λ1/(λ1+λ2) ≤ 1/2 against the alternatives θ = λ1/(λ1+
λ2) > 1/2.

Let X1 and X2 denote the counts associated with each distribution. It is
easy to see that the conditional distribution of X2 given X1+X2 = t is B(t, θ).
The corresponding test has Neyman structure and thus, by the arguments
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of the preceding chapter, is UMP unbiased for testing θ ≤ 1/2 against the
alternatives θ > 1/2 (Exercise 4.9).

If the shielding materials in our first example are equal in their capabilities,
then each of the 18 recorded counts is as likely to be obtained through the first
material as through the second. Under the least favorable null hypothesis you
would be observing a binomial distribution with 18 trials each with probability
1/2. The numeric answer is left as an exercise (see Exercise 4.3).

Unfortunately, the power of this test is not merely a function of the relative
values of the two population parameters θ, but of their absolute values λ1
and λ2. This became evident in an actual vaccine study, when even 100,000
subjects proved too few. The disease proved much rarer than was expected,
that is, λ1 was small, so that t was small and the power of the test inadequate.

What can one do in such a case? A solution lies in the sequential analysis
with multiple outcomes described in Section 6.6.

4.4 Time Between Events

If the number of events in a given interval has the Poisson distribution with
λ the expected number of events, then the time t between events has the
exponential distribution F [t|λ] = 1 − exp[−λt] for t ≥ 0.

Now, imagine a system, one on a spacecraft, for example, where various
critical components have been duplicated, so that k consecutive failures are
necessary before the system as a whole fails. If each component has a lifetime
that follows an exponential distribution with the same value of the parameter
λ = 1/2, then twice the lifetime of the system as a whole obeys the chi-square
distribution with 2k degrees of freedom, that is,

p(y) =
yk−1e−y/2

2kΓ (k)
for y > 0.

In many instances the exponential distribution does not lend itself to para-
metric analysis, see Exercise 4.12, for example, and the permutation method
is recommended. Another alternative, applicable in some instances, is to
apply a variance-equalizing transformation before analyzing the data (see
Section 11.3).

4.5 The Uniform Distribution

One might ask why a statistician, the most applied of all mathematicians,
would be interested in the uniform distribution U(a, b), which assigns equal
weight to all values in the closed interval [a, b], so that the density f [x] = 1/
(b − a) if a ≤ x ≤ b and is zero, otherwise. It’s because if F [G[x]] = Pr{u ≤
G[x]} where G is any distribution, F is U [0, 1].
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By using the rand() function found in Excel or in the stdlib of any C or
C++ compiler one can generate U [0, 1] random variables u. The equivalent
command in R is unif(0, 1). For any distribution G for which one knows the
inverse distribution function G−1, one can obtain a random variable x with
this distribution from the formula G−1[u].

A major aid to the generation of random permutations is the C++ function

int Choose (int lo, int hi)
{

int z = rand()%(hi − lo + 1) + lo;
return (z);

}

which yields random integers between lo and hi using the distribution U [0, 1].
The mean of 12 independent random variables, each distributed as

U [−1/2,+1/2] is approximately N(0, 1/12).
The impractical uniform distribution is very practical, indeed.

4.6 The Exponential Family of Distributions

The members of the exponential family all have distributions whose probabil-
ity densities (with respect to some measure µ) take the form

pθ[x] = Cθ exp
[∑

θjTj(x)
]
h(x).

The {Tj} are sufficient for the parameters {θj}, and the probability densi-
ties of the exponential family have monotone likelihood ratio in any of the
individual Tj .

Probability densities belonging to the one-parameter exponential family

pθ[x] = Cθ exp[θT (x)]h(x)

have monotone likelihood ratio in T (x). As shown in the previous chapter there
exists a UMP test for testing H1: θ ≤ θ∗ against the alternatives K: θ > θ∗,
that is, a constant C, such that the test ϕ(x) = 1, γ, 0 according to whether
T (x) >, =, < C, respectively, where C and γ are determined by the equality
E(ϕ(x) | θ∗) = α.

As we shall prove in Section 15.3: There exists a UMP procedure for testing
the hypothesis H2: θ ≤ θ1 or θ ≥ θ2 against the alternatives K: θ1 < θ < θ2 in
the one-parameter exponential family given by

Φ(x) =

⎧⎪⎨
⎪⎩

1 when C1 < T (x) < C2,

γi when T (x) = Ci,

0 when T (x) < C1 or T (x) > C2.



“chapter4” — 2004/9/23 — page 73 — #7

4.6 The Exponential Family of Distributions 73

Where the {γi, Ci; i = 1, 2} are determined by

EΦ(x)|θ1 = EΦ(x)|θ2 = α.

Rewriting the expression for the density of the multiparameter exponential
family in the form

pθ[x] = Cθ exp[θU(x) +
∑

ψjTj(x)]h(x), (4.1)

in the next section we shall derive UMP unbiased level-α tests of the four
hypotheses H1, H2, H3: θ1 ≤ θ ≤ θ2, and H4: θ ≤ θ0.

Examples of one-parameter exponential families include the binomial
distribution, as can be seen by rewriting it in the form,

(1 − p)n exp[k log(p/(1 − p)]
(

n
x

)
,

the Poisson, the normal (see Exercise 3.14), Student’s t, and the gamma
distribution

1
Γ (g)bg

xg−1e−x/b, with 0 < x and 0 < b, g.

Examples of a gamma distribution include the chi-square and exponential
distributions. Note that the generalized exponential distribution,

F [t|λ, a] = 1 − exp[−λ(t − a)] for t > a,

where the boundary value a is also a parameter, is not a member of the
exponential family.

4.6.1 Proofs of the Properties

In Section 15.4, we shall prove that for the multiparameter exponential family
whose form is given in (4.1), the conditional distribution of U given t consti-
tutes an exponential family with density

pθ[u|t] = Cθ(t) exp[θu]dvt.

Consequently, we can use the results of the previous chapter, first to derive a
UMP test ϕ1 of H1 versus K1: θ > θ0 depending on t, such that

ϕ1(u, t) =

⎧⎪⎨
⎪⎩

1 when u > C(t),
γ(t) when u = C(t),
0 when u = C(t),

where the functions γ and C are determined by Eϕ1(U, T )|t = α. As this test
has Neyman structure, it is UMP unbiased.
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A similar argument will be used to show that the test of H2: θ ≤ θ1 or
θ ≥ θ2 versus K2: θ1 < θ < θ2 based on u given t has Neyman structure and
is UMP unbiased.

To test H3 and H4, we introduce the critical function

ϕ(u, t) =

⎧⎪⎨
⎪⎩

1 when u < C1(t) or u > C2(t),
γi(t) when u = Ci(t), i = 1 or 2,

0 when C1(t) < u < C2(t),

with the {γi, Ci; i = 1, 2} for H3 determined by

E[ϕ(u, t)|t, θ1] = E[ϕ(u, t)|t, θ2] = α,

and for H4 by the equations

E[ϕ(u, t)|t, θ0] = α,

E[Uϕ(u, t)|t, θ0] = αE[U |t, θ0].

Using the results in the Appendix, it is easy to show that these tests, too,
are UMP unbiased among all tests satisfying the corresponding boundary
equations.

4.6.2 Normal Distribution

Many of our measurements appear to be the sum of the effects of a large num-
ber of hard-to-pinpoint factors, each of which makes only a small contribution
to the total. For example, the price you are willing to pay for an automobile
depends upon the sticker price, how much you paid for your last car, and
the prices of comparable cars, but it also depends to a varying degree on the
salesperson’s personality, your past experience with this brand and model of
car, ads you’ve seen on TV, and how badly you need a new car.

In many though not all cases, the resulting frequency distribution of
measurements is that of the normal or Gaussian (expression 3.1). Note that
this distribution, a member of the exponential family, is

a) symmetrical about its single mode;
b) its mean, median, and mode are the same;
c) most of its values, approximately 68%, lie within one standard deviation

of the median; about 95% lie within two standard deviations,
d) yet arbitrarily large values are possible, although with vanishingly small

probability.

If we make repeated independent measurements (a classmate’s height, the
length of a flower petal), we will seldom get the same value twice (if we
measure to sufficient decimal places) but rather a series of measurements that
are normally distributed about a single central value.
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An interesting and useful property of independent normally distributed
observations is that their sum also has a normal distribution. In particular,
if X is N(µ, σ2) and Y is N(v, τ2) then X + Y is N(µ + v, σ2 + τ2). More
important, the mean of a sample of n independent identically distributed
observations that are N(µ, σ2) will be distributed as N(µ, σ2/n).

Under fairly general conditions, for example, when a set of independent
observations all come from distributions whose means and variances exist and
are bounded, the limiting distribution of their mean will be normal.

The square of a normally distributed random variable N(0, 1) yields a vari-
able we first encountered in Section 4.4, the chi-square random variable with
one degree of freedom (Exercise 4.2.2).

4.7 Which Distribution?

Counting the number of successes in N independent trials? Use binomial.
Counting the number of rare events that occur in a given time interval or

a given region when events in nonoverlapping intervals are independent? Use
Poisson.

Recording the length of the interval that elapses between rare events? Use
exponential or chi-square.

You observe the sum of a large number of factors, each of which makes only
a small but independent contribution to the total? Use normal.

Relationships among these and other common univariate distributions are
described in Leemis [1986]. Mixtures of these distributions are discussed in
McLachlan [2000]. The CRC Handbook of Tables for Probability and Statistics
can help you in deriving the appropriate cut-off values.

4.8 Exercises

(Warning: The following questions are more than academic exercises. Some
require a rigorous mathematical proof, others have answers that are readily
calculated, while still others cannot be answered precisely.)

1. a) Show that if Var X < ∞ then E(aX+ b) = aE(X)+ b and Var (aX+ b)
= a2 Var (X).

b) Show that if X and Y are independent, Var (X) < ∞, and Var (Y ) <
∞, then E(X + Y ) = E(X) + E(Y ) and Var (X ± Y ) = Var (X) +
Var (Y ).

2. 70% of the registered voters in Orange County are Republican. What is
the probability the next two people in Orange County you ask about their
political preferences will say they are Republican? The next two out of
three people? What is the probability that at most one of the next three
people will admit to being a Democrat?
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3. Given a binomial distribution of 18 trials each with probability 1/2; of
success, what is the probability of observing a) 14 successes? b) 14 or
more successes?

4. Two thousand bottles of aspirin have just rolled off the assembly line, 15
have ill-fitting caps, 50 have holes in their protective covers, and 5 are
defective for both reasons. What is the probability that a bottle selected
at random will be free from defects? What is the probability that a group
of 10 bottles selected at random will all be free of defects?

5. A poll taken in January 1998 of 1000 people in the United States revealed
64% felt President Clinton should remain in office despite certain indis-
cretions. What would you estimate the variance of this estimate to be?
Suppose 51% were the true value of the proportion supporting Clinton.
What would the true value of the variance of your original estimate be?

6. How many students in your class have the same birthday as the instructor?
In what proportion of classes, all of size 20, would you expect to find a
student who has the same birthday as the instructor? Two students who
have the same birthday?

7. Show that the sum of a Poisson with expected value λ1 and a second inde-
pendent Poisson with expected value λ2 is also a Poisson with expected
value λ1 + λ2.

8. What is the largest number of cells you can drop into a Petri dish divided
into 100 squares and be sure the probability a square contains two or
more cells is less than 1%? What percentage of the squares would you
then expect would contain exactly one cell?

9. Show that if X is Poisson with parameter λ and Y is Poisson with para-
meter µ, that a) the conditional distribution of X given X+Y is binomial,
and b) the resulting test is UMP unbiased for testing θ = λ/(λ + µ) ≤ 1
against θ > 1.

10. Bus or subway? The subway is faster, but there are more buses on the
route. One day, you and a companion count the number of arrivals at the
various terminals. Fourteen buses arrive in the same period as only four
subway trains pull in. Use the binomial distribution to determine whether
the bus is a significantly better choice than the subway. (The Poisson
distribution would not be appropriate. Why?)

11. Inspectors threaten to close a hospital because of a series of near fatal
incidents that occurred there during surgery last June. Investigating, you
find that the incidents arose from a multitude of causes and involved
several different surgeons. What alternate explanation might account for
the hospital’s problems?

12. I was given this problem as a graduate assistant at UC Berkley’s Donner
Laboratory. Unfortunately, it took me almost 40 years to come up with
the answer.

Margaret White had been conducting a series of experiments in which
animals were given radioactive isotopes. Samples of their blood and vari-
ous other tissues were examined for residual radioactivity. The problem
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was Berkeley’s cyclotron located just up the hill from the laboratory.
How could one distinguish sample from background when the background
changed by several orders of magnitude whenever the cyclotron was in use?

One way to do this experiment is to put two vials into the scintillation
counter simultaneously, one with the sample and one without, and record
the number of counts observed during the next minute (or two minutes, or
five). The drawback of this method is that one does not know in advance
what period to set the timer for.

The alternative employed by Ms. White was to record the time required
for each of the vials to register a fixed number of counts. Because of
the random nature of the counts, she used six vials each time, three
with sub-aliquots of the sample and three without; these were labeled
{tb,1, tb,2, tb,3, tb+s,1, tb+s,2, tb+s,3}. How would you test the hypothesis
that there was no additional radioactivity in the sample?

13. For each of the following indicate whether the observation is binomial,
Poisson, exponential, normal or almost normal, comes from some other
distribution, or is predetermined (that is, not random at all).
a) Number of books in your local public library.
b) Guesses as to the number of books in your local public library.
c) Heights of Swedish adults.
d) Weights of Norwegian women.
e) Alligators in an acre of Florida swampland.
f) Vodka drinkers in a sample of 800 Russians.
g) Messages on your answer machine.
h) The distance from the point of impact to the target’s center when you

shoot at a target.
14. a) Compute the mean and variance of the uniform distribution.

b) Find the sufficient statistics for a and b if U1, . . . , Un are independent
identically distributed as U [a, b].

c) Suppose you mounted a pointed stick one foot in length on a center
pivot so that when spun, it traced a circle one foot in diameter. Now
suppose you place a second board, also one foot in length, below this
circle. Each time you spin the stick, you drop a projection from the
point of the stick to the board below after the stick comes to rest and
make a mark. Would the distribution of these marks be uniform?

15. Let X1, . . . , Xn be a set of independent identically distributed observa-
tions from the exponential distribution with density exp[−(x−a)/b]/b for
x ≥ a and zero otherwise; 0 < b. Find the UMP test of the hypothesis
a = a0.

16. Show that the normal distribution N(µ, σ2) is a member of the exponential
family with parameters (θ = −1/2σ2,ψ = µ/σ2). Is the bivariate normal
distribution (Equation 3.4) a member of the exponential family?

17. The probability density of a log-normal distribution is 1/x
√

2πσ
exp[−(log x − µ)/2σ2] if x > 0, and 0 otherwise. Is the log-normal dis-
tribution a member of the exponential family?
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18. One method used to simulate a mixed normal distribution that we’ll
encounter in Chapter 6 is to generate a uniformly distributed variable
U [0, 1] and then to select from the appropriate normal distribution, say,
N(0, 1), N(2, 1), and N(2, 2), based on the value of the uniform variable.
Is the resultant mixture a member of the exponential family?

19. Show that if T is a sufficient statistic and T = f(S) where f is continuous
(measurable) and S is another statistic, S is sufficient.

20. Suppose the observations (X1, . . . , XK) are distributed in accordance with
the multivariate normal probability density√

|D|
(2π)K/2 exp[−1

2

∑∑
dij(xi − µi)(xj − µj)],

where the matrix D = (dij) is positive definite; |D| denotes its determi-
nant; EXj = µj ; E(Xj −µj)(Xj −µj) = σij ; and (σij) = D−1. If σij = σ2

when i = j and σij = σ12 when i �= j, are the observations independent?
Exchangeable?

21. Many statistics packages have a feature that allows you to generate simu-
lated data. StataTM can be used to generate binomial, normal, chi-square,
gamma variables, or mixtures of any of these (see Section 6.2.2). R (S,
S-Plus) has built-in functions for generating beta, binomial, gamma, nor-
mal, and log-normal variables. Of course, any program, which like both
StataTM and R can generate uniform random variables, can be used with
just a bit of additional programming to generate any distribution you
desire. If you enjoy programming, conduct the following experiment:
a) Generate two samples from any distribution(s).
b) Use the t-test, a permutation test, and a bootstrap to test for differ-

ences in the location parameters of the two distributions.
c) Repeat steps (a) and (b) 400 times. Was the significance level of each

of the tests in step (b) exact?
d) Add one to each of the observations in the second sample before you

perform the tests. Which test is the most powerful?
22. Let X and Y be independent variables, each distributed as N(0, 1). Let

W be a Poisson variable with parameter 1/2. Show that T , the time to
the first Poisson event, has the same distribution as Z = X2 + Y 2.
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Multiple Tests

In this chapter we consider methods to control the overall error rate when
multiple tests are performed and, if the tests are independent, methods to
combine them.

5.1 Controlling the Overall Error Rate

One of the difficulties with clinical trials and other large-scale studies is that
frequently so many variables are under investigation that one or more of them
is practically guaranteed to be statistically significant by chance alone. If we
perform 20 tests at the 5% level, we expect at least one significant result in
twenty on the average. If the variables are related (and in most large-scale
medical and sociological studies the variables have complex interdependen-
cies), the number of falsely significant results could be many times greater.

David Freeman [1983] conducted a simulation study in which he generated
100 values each of 51 independent normally distributed variables. He desig-
nated one of the variables as the “dependent” variable and using a multiple
regression technique found that 15 of the remaining variables made significant
contributions as predictors at the 25% level. In a second multiple regression
confined to these 15 variables, he found that 14 of the 15 made significant
contributions as predictors at the 25% level and 6 of the 15 made contribu-
tions that were significant at 5% level. Clearly, “significance” in a multiple
regression context is deceptive.

One way, and not a very good one, to ensure that the probability of making
at least one Type I error is less than some predesignated value α is to make
the k different comparisons each at level α/k. This method, attributed to Carl
Bonferroni, is conservative, so that it can result in increased Type II error and,
in consequence, has been widely criticized (see, for example, Perneger, 1998).

A better method, first described by Holm [1979], first orders the p-values
from smallest to largest (or the corresponding standardized test statis-
tics from largest to smallest). One begins with the most significant result
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and decides whether to accept or reject. Obviously, once a hypothesis is
accepted then all hypotheses with larger p values are accepted as well.
If a hypothesis is rejected, then a new critical value is determined, and
the next p-value inspected. Permutation procedures utilizing this step-down
approach were developed independently by Westfall and Young [1993], Blair
and Karniski [1994], and Troendle [1995]; a test based on the latter’s work is
described in the next subsection.

The chief weakness of the step-down procedure is its dependence on the
rejection criteria used to test the smallest p-value, normally p(1) ≤ α/k. An
alternative developed by Hochberg [1988] begins with the largest p-value at
the first step. If a hypothesis is rejected then all hypotheses with smaller
p-values are rejected as well. If a hypothesis is accepted, then a new critical
value is determined, and the next p-value inspected. Blair, Troendle, and
Beck [1996] report that this step-up method, an example of which is provided
in Section 5.1.2, is slightly more powerful than the step-down.

5.1.1 Standardized Statistics

As an alternative to the analytic step-up method of Dunnett and Tarnhane
[1992], which requires a specific distribution and correlation structure, we
may apply the following permutation method due to Troendle [1996]. Sup-
pose we have measured k variables on each subject, and are now confronted
with k test statistics s1, s2, . . . , sk. To make these statistics comparable, we
need to standardize them and render them dimensionless, dividing each by
its respective L1 or L2 norm. For example, if one variable, measured in cen-
timeters, takes values like 144, 150, and 156, and the other, measured in
meters, takes values like 1.44, 1.50, and 1.56, we might set t1 = s1/4 and
t2 = s2/0.04.

Next, we order the standardized statistics by magnitude so that t(1) ≤ · · · ≤
t(k). Denote the corresponding hypotheses as H(1), . . . , H(k). The probability
that at least one of these statistics will be significant by chance alone at the α

level is 1− (1−α)k, which is approximately kα. But once we have rejected one
hypothesis (assuming it was false), there will be only k − 1 true hypotheses
to guard against rejecting.

Begin with i = 1 and

1. repeatedly resample the data (with or without replacement), estimating
the cut-off value ϕ(α, k − i + 1) such that α = Pr{T (k − i + 1) ≤ ϕ(α, k −
i + 1)}, where T (k − i + 1) is the largest of the k − i + 1 test statistics
t(1) ≤ · · · ≤ t(k−i+1) for a given resample;

2. if t(k−i+1) ≤ ϕ(α, k − i + 1), then accept all the remaining hypotheses
H(1), . . . , H(k−i+1) and STOP.
Otherwise, reject H(k−i+1), increment i, and RETURN to step 1.
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5.1.2 Paired Sample Tests

Suppose we observe before and after values of k attributes for each of N
subjects and wish to test the k null hypotheses that the before and after
means are the same. We perform a set of k tests, which may be parametric,
permutation, or bootstraps, and order the significance levels from largest to
smallest, p(1) ≥ · · · ≥ p(k).

At the jth step of our multiple comparison procedure, following Blair,
Troendle, and Beck [1996], we compute the critical level

γj =
1

2N

2N∑
i=1

I[ min
j≤m≤k

pm(πmi) ≤ p(j)],

where I is an indicator function, taking the value 1 if its argument is true, and
the value 0 otherwise, and πmi denotes the ith of the 2N possible permutations
of the before/after data for the mth variable. Thus, the sum counts the number
of permutations for which the inequality is true.

In the step-up procedure, if γj < α, we accept the remaining hypothe-
ses and stop. Otherwise, we accept the hypothesis H(j) increment j and
continue.

For example, suppose we have collected the following observations:

subject 1: before =
(

5
6

)
, after =

(
3
7

)
, showing a decline in both variables,

subject 2: before =
(

4
4

)
, after =

(
3
4

)
, showing a decline in only the first

variable.
A t-test of variable 1 yields a p-value of 10%; a permutation test of variable

2 yields a p-value of 50%.
In rearranging the labels (before, after), we treat each vector of observations

as an indivisible entity. There are only three possible rearrangements of the
data labels in addition to the original, for example, the rearrangement that
leaves the before and after values of subject 1 unchanged, while swapping
the before and after readings of subject 2. All rearrangements yield the same
p-value for variable 2, but two of the four rearrangements yield p-values of
85% for variable 1.

The step-up test starts with the largest of the original p-values, 50%, for
variable 2. γ1 = 1 and we accept the hypothesis concerning variable 2. γ2 = 0.5
and with an experiment-wide error of 0.5, we also accept the null hypothesis
for variable 1.

5.2 Combination of Independent Tests

Suppose now that k experiments have been performed to detect an effect.
The experiments may have been performed under different conditions, and
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thus the magnitude of the effect, if any, may have varied from experiment
to experiment. Three methods are in common use to combine the results of
the various experiments. We shall consider each of the methods in turn in
what follows. The combination of data from experiments in which different or
interdependent observations have been made is considered in Chapter 7.

5.2.1 Omnibus Statistics

Suppose the ith experiment yielded a test statistic ti with an associated
p-value under the null hypothesis of pi. The combination method of Fisher
would reject the null hypothesis if Πipi were small or, equivalently, if F =
−2 log[Πipi] = −2

∑
i log[pi] were large. If the {ti} have continuous distribu-

tion functions and the null hypothesis is true, then F has a chi-square dis-
tribution with 2k degrees of freedom [Fisher, 1925]. If the {ti} have discrete
distributions, the chi-square distribution is not applicable, though it may be
possible to find the distribution by exact enumeration [Wallis, 1942].

Among the alternate combining methods that have been proposed are the
Liptak combining function L =

∑
i Φ

−1(1 − pi), where Φ is the N(0, 1)
cumulative distribution function, and the Tippett combining function T =
max1≤i≤I(1 − pi).

If the I test statistics are independent and continuous, then under the null
hypothesis L is normally distributed with mean 0 and variance I [Liptak, 1958]
and T has the same distribution as would the largest of I uniform random
values chosen from U [0, 1].

Birnbaum [1954] analyzed the case I = 2 and found that Tippet’s solution
is preferable when one but not both of the single-variable alternatives is true,
and Liptak’s solution is preferable when both alternatives are true.

Pesarin [1992] notes that to be suitable for test combination, the combining
function must:

• be nonincreasing in each argument;
• attain its supremum value even when only one argument is zero.

Symmetry would be a prerequisite for impartiality.
As their name suggests, omnibus statistics provide omnibus tests against all

possible alternatives. Almost always, one can find a test that is more powerful
against a specific simple alternative. We give just such an example in the next
section.

5.2.2 Binomial Random Variables

Suppose we’ve observed k independent binomial random variables, where the
ith bi is distributed as B(pi, ni). The hypothesis to be tested is that pi = 0.5
for all i, against the alternative that pi ≥ 0.5 for all i, with strict inequality
being true for at least one value of i.
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Set θi = pi/(1 − pi). The distribution of the random variables is a member
of an exponential family with respect to θi. Applying the fundamental lemma
of Neyman and Pearson we see that the most powerful combination procedure
for testing H against the simple alternative p = p∗ rejects for large values of
the test statistic

∑
i bi log[θ∗

i ].

5.2.3 Bayes’ Factor

The previous two testing methodologies have supposed that we have all the
experimental results available to us at one time. If instead the results are
acquired sequentially as each experiment is performed, Bayes’ method recom-
mends itself.

We may start with the idea that the prior odds that the null hypothesis
is true are close to one, while that of the alternative is near zero. As we gain
more knowledge by observing first E1 and, later, E2, we can assign posterior
odds to the null hypothesis with the aid of Bayes’ theorem:

Pr{H|E1, E2} =
Pr{E2|H} Pr{H|E1}

Pr{E2|H} Pr{H|E1} + Pr{E2| ∼H} Pr{∼H|E1}
.

Steven Goodman (2001) demonstrates the correspondence between p-
values, t-scores, and the shift in odds that results. He shows that even the
strongest evidence against the null hypothesis does not lower its odds as
much as the p-value might lead us to believe. More importantly, he makes
it clear that we cannot estimate the credibility of the null hypothesis with-
out considering evidence outside the study. (Also, see the article by Hodges,
1987.)

Utilizing Table B.1 of Goodman’s article, we find that p-value of 0.01 rep-
resents a weight of evidence for the null hypothesis of somewhere between
1/25th and 1/8th. That is, the relative odds of the null hypothesis versus any
alternative are at most 8–25 times lower than they were before the study. In
order to claim the existence of an effect at the 95% significance level. Table B.1
tells us we need to know that the prior probability of the null is no greater
than 60%. Absent any evidence that the prior probability of the null hypoth-
esis is this large, even observing a p-value of 0.01 in our latest study would be
insufficient to justify a conclusion that a non-zero effect exists. On the other
hand, given substantial prior evidence that a non-zero effect exists, even a
p-value as large as 10% out current might be enough to make a convincing
case.

One caveat: Bayesian methods cannot be used in support of after-the-fact-
hypotheses for, by definition, an after-the-fact-hypothesis has zero a priori
probability and, thus, by Bayes’ rule, zero a posteriori probability.



“chapter5” — 2004/10/12 — page 84 — #6

84 5 Multiple Tests

5.3 Exercises

1. Given k independent binomial random variables, where the ith bi is dis-
tributed as B(pi, ni), derive a most powerful test of the hypothesis pi = 0.5
for all i against the alternative pi = p∗ for all i where p∗ > 0.5.

2. If F is the cumulative distribution function associated with any continuous
univariate random variable unbounded on the right, would T = F−1(1 −
pi) be useful as a combining function?

3. Would this be true if the random variable were discrete?
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In this chapter and the next, you learn to analyze the results of complex
experimental designs that may involve multiple control variables, covariates,
and restricted randomization.

The material is advanced and the discussion presupposes you have already
completed Chapters 1–3.

6.1 Invariance

In Section 2.1.6, we discussed the importance of impartiality in a test. We
shall apply the principle of impartiality repeatedly in subsequent sections.

Let X be distributed according to a probability distribution Pθ, θ ∈ Ω and
let G be a group of transformations of the sample space, such as transforma-
tions of scale or zero point. Denote by gX the random variable that takes on
the value gx when X = x and suppose the distribution of gX is Pθ∗ . Sup-
pose that θ ∗∈Ω; that is, the transformation g on the sample space induces
a transformation g∗ on the parameter space Ω with Pg∗θ(gA) = Pθ(A) for all
events A belonging to the sample space. If the distributions Pθ corresponding
to different values of θ are distinct, then a group of transformations G on the
sample space induces a group of transformations G∗ on the parameter space
(Exercise 6.1).

We shall write that the problem of testing H: θ ∈ ΩH against H: θ ∈ ΩK

remains invariant with respect to a group of transformations G, providing the
induced group of transformations G∗ leaves ΩH and ΩK distinct. In such a
case, any UMP invariant test will also be most stringent (Exercise 6.2).

A function M will be said to be maximal invariant with respect to G if it
is invariant with respect to G and if M(x) = M(y) implies y = gx for some
g ∈ G.

Theorem 6.1. Let X be distributed according to a probability distribution
Pθ and let G be a group of transformations of the sample space. If M(x) is
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invariant under G and if v(θ) is maximal invariant under the induced group
G∗, then the distribution of M(x) depends only on v(θ).

Proof. Let v(θ1) = v(θ2). Then θ2 = g∗θ1 so

P{M(x) ∈ A|θ2} = P{M(x) ∈ A|g∗θ1} = P{M(gx) ∈ A|θ1}
= P{M(x) ∈ A|θ1}.

�

We make use of this theorem in what follows to reduce the number of
potential statistics to those that involve only a single maximal invariant with
respect to one or more groups of transformations.

6.1.1 Some Examples

If X1, . . . , Xn is a sample from N(µ, σ2), the hypothesis σ ≥ σ0 remains invari-
ant under transformations of the zero point X ′

i = Xi+c. U =
∑n

i=1 (xi−x̄)2 is
a maximal invariant (Exercise 6.3) and in accordance with the arguments pre-
sented in Section 3.5.2, the test that rejects when U ≤ C is UMP among tests
that remain invariant under transformations of the zero-point. The power of
this test is a constant on each of the sets {(µ, σ): − ∞ < µ < ∞, σ = σ′}. As
it is the most powerful test on each such set, it also is most stringent.

Suppose now that we conduct a series of side-by-side comparisons under
varying conditions, that is, the members of each pair differ only in the treat-
ment that is applied, but the various pairs may be handled quite differently.
Let the probability that the first or control member of each pair prove supe-
rior be 1− pi. We often wish to test the hypothesis that the treatment has no
effect, that is, pi = 1

2 , against the alternative that the treatment is superior,
that is, pi > 1

2 for all i.
This problem remains invariant under all permutations of the n obser-

vations, and a maximal invariant is the total number of instances S in
which the treatment is superior. The distribution of S is P{S = k} =∏

i qi

∑
πj

(∏
i (pij

/qij
)
)

where the summation extends over all
(

n
k

)
choices

of subscripts i1, . . . , in. The most powerful invariant test against the specific
alternative (p′

1, . . . , p
′
n) rejects the hypothesis when

f(k) =
∑
πj

(∏
i

(p′
ij

/q′
ij

)

)/(n
k

)
> C.

f is an increasing function of k (Exercise 6.4) so that regardless of the alter-
native, the test rejects when k > C ′ and is UMP among all tests invariant
under permutations of the subscripts.

Of course, a much more powerful test would be in a matched pairs compar-
ison which utilizes the actual results of each experiment as in Section 6.4.2.2.
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6.2 k-Sample Comparisons—Least-Squares Loss
Function

There is no single best test for all k -sample problems. The optimal choice will
depend upon both the alternative hypothesis and the loss function. In this
section we derive a class of parametric tests for the k -sample problem that
are uniformly most powerful among tests that are impartial and that minimize
a least-squares loss function under fairly broad conditions on the underlying
distribution.

6.2.1 Linear Hypotheses

The k -sample comparison is the simplest example of a univariate linear hypo-
thesis. Let X1, . . . , Xn be independent and distributed with means µ1, . . . ,µn

and common variance σ2. The vector of means µ is known to lie in a given
s-dimensional subspace Ω. This would be the case if, for example, the {Xi}
were derived from k independent samples each taken from one of k distinct
populations, that is, s = k. The hypothesis to be tested is that µ lies in an
s − r-dimensional subspace of Ω. In the k -sample case, the null hypothesis
µ1 = · · · = µk imposes r = k − 1 restrictions (see Exercise 6.5).

In the general case, the hypothesis can be given a particularly simple form
by making an orthogonal transformation1 to variables Y1, . . . , Yn,

Y = CX ,

such that the first s row vectors of C span Ω, and the first r row vectors of
C span the subspace under the hypothesis.

Let ηi = E(Y1) so that η = Cµ. Then ηi = 0 for i = s + 1, . . . , n, and if
the hypothesis is true, then ηi = 0 for i = s − r, . . . , s.

The testing problem expressed in terms of the Yi remains invariant with
respect to the group G1 of additive transformations (zero-point settings) such
that Y ′

i = Yi + ci for i = 1, . . . , s − r and Y ′
i = Yi, otherwise. Consequently,

for testing purposes, we can neglect the set {Yi, i = 1, . . . , s − r} completely.
The group G2 of all orthogonal transformations of the set {Yi, i = s − r +

1, . . . , s} also leaves the problem invariant as does the group G3 of all orthog-
onal transformations of the set {Yi, i = s+1, . . . , n}. Orthogonal transforma-
tions preserve distances. Thus, the sums of squares

U =
s∑

i=s−r

Y 2
i and V =

n∑
i=s+1

Y 2
i

are maximal invariants with respect to G2 and G3, in the sense that: (1) U
is invariant with respect to G2, and (2) U(Z) = U(Z′) implies Z′ = gZ for

1 An n × n matrix C is orthogonal if all pairs of row vectors are orthogonal. Two
n-vectors x , y are orthogonal if x ′y = 0.
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some g ∈ G2 (Exercise 6.6). Consequently, for testing purposes, we can focus
on the statistics U and V.

The testing problem also remains invariant with respect to the group G4
of changes in scale Y ′

i = cYi for i = 1, . . . , n. This group induces the changes
U ′ = c2U and V ′ = c2V with respect to which W = U/V is maximal invariant.

The four groups also induce changes in the parameter space. If the obser-
vations {Xi} in the j th sample are from a normal distribution N(µj , σ

2),
then a maximal invariant with respect to the totality of transformations is
ϕ2 =
∑k

i=1 µ
2
ι /σ

2 (Exercise 6.7). It follows from Theorem 6.1 that the distri-
bution of W depends only on ϕ2, so the problem reduces to that of testing the
simple hypothesis ϕ = 0. If we can show that the probability density of W has
monotone likelihood ratio in ϕ as outlined by Lehmann [1986, pp. 368, 427,
and 428) then it would follow from the Neyman–Pearson fundamental lemma
that the uniformly most powerful test of ϕ = 0 versus ϕ > 0 among all those
tests that are invariant with respect to the four groups of transformations
G1, G2, G3, and G4 rejects when W is too large or, equivalently, when

F =
∑s

i=s−r Y 2
i /r∑n

i=s+1 Y 2
i /(n − s)

> C.

If the observations are drawn from normal distributions N(µ, σ2), then
under the null hypothesis, F has the F -distribution with r and n − s degrees
of freedom.

Rewriting the test statistic in terms of the original observations {Xi}
we can show that this UMP invariant test minimizes squared losses. Since
the transformation Y = CX is orthogonal, it leaves distances unchanged,
so that

∑n
i=1 (Yi − EYi)2 =

∑n
i=1 (Xi − µi)2. Choose the {µ̂i} so as to min-

imize
∑n

i=1 (Xi − µi)2 under Ω. Then
∑n

i=s+1 Y 2
i =
∑n

i=1 (Xi − µ̂i)2 for∑n
i=s+1 Y 2

i is the minimum value of
∑n

i=1 (Yi − EYi)2 =
∑s

i=s (Yi − ηi)2+∑n
i=s+1 Y 2

i under unrestricted variation of the k population means. Let the
{ ˆ̂µi} be chosen so as to minimize

∑n
i=1 (Xi − µi)2 under the hypothesis.

Then it is easy to see that
∑n

i=s−r+1 Y 2
i =
∑n

i=1 (Xi − ˆ̂µi)2. We may rewrite
the test statistic in the form

(∑n
i=1(Xi − ˆ̂µi)2 −∑n

i=1(Xi − µ̂i)2
)

/r∑n
i=1(Xi − ˆ̂µi)2/(n − s)

.

In the case of k samples when we are testing the hypothesis that µ = µ1,
the test statistic becomes the F -ratio

∑k
i=1 ni(X̄i. − X̄..)/(k − 1)∑k

i=1
∑ni

j=1(Xij − X̄i.)2/(N − k)
. (6.1)

This statistic is invariant under changes in zero-point and scale, and among
all such statistics minimizes losses that are a function of

∑
(µ−µi)2 if the error
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terms are normally distributed. If the error terms are normally distributed,
this statistic has the F -distribution with I − 1 and N − I degrees of freedom,
tables for which are incorporated in most standard statistical software.

6.2.2 Large and Small Sample Properties of the F -ratio Test

In our derivation of the F -ratio test, we relied in several places upon the
observations coming from a normal distribution. Even if we cannot assume
normality, providing the observations {Xi} are independent and drawn from
distributions F [x −µi] where F has finite variance σ2, then for large samples
the size and power of this parametric test is the same as it would be if the
observations had been independent and normally distributed. The within-cells
sum of squares in the denominator of the test statistic divided by its degrees
of freedom tends in probability to σ2 as the sample size grows larger, and the
between-samples sum of squares in the numerator divided by its degrees of
freedom and by σ2 tends to a chi-square distribution.

In a recent series of simulations with observations drawn from mixtures of
normal distributions and sample sizes as small as 3 observations per cell, we
found that the significance levels provided by the assumption of normality
for the F -test were accurate to within the level of precision provided by the
10,000 replications used in the simulation.

We used a three-step procedure to generate the simulated observations:

1. Generate an N(0, 1) variable z.
2. Generate a U(0, 1) variable v.
3. Replace z with z = σ∗z + µ if v < p.

Since our objective was to assess the behavior of the analysis of variance
with observations likely to be observed in practice, we generated samples with
1 ≤ σ ≤ 2, 0 ≤ µ ≤ 4, and 0.1 ≤ p ≤ 0.5.

A total of 18 to 32 simulated observations was generated for each replication
and assigned to 1 × 3, 1 × 6, 1 × 8 and 2 × 3 designs. If the null hypothesis
were true and all the assumptions of the analysis of variance (ANOVA) were
satisfied, the expected number of rejections at the 5% level would be 500 and
the mean standard error of this number would be 22.

In one extreme case, a mixture of two normal distributions, N(0, 1) and
N(2, 4) in the ratio of 0.7 to 0.3, the population effect was found to be signif-
icant in 464 cases out of 10,000 at the 5% level in a one-way analysis with 4
observations per cell and 6 cells. With 3 observations per cell and 6 cells, the
population effect was found to be significant in 527 cases out of 10,000 at the
5% level.

Other slight deviations to normality, such as one that results from distorting
a normal distribution by setting z = 2∗z if z > 0, or censoring it by setting
z = −0.5 if z < −0.5, also left significance levels unaffected.

Not all data are drawn from continuous distributions. Typical survey ques-
tions limit responses. The question, “How do you feel about such and such?”
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may limit choices to, “Strongly like, like, indifferent, dislike, strongly dislike.”
These responses are often translated as X = 2, 1, 0, −1, or − 2. We generated
sets of normally distributed observations, then rounded them to the nearest
integer so that the values ranged from −3 to + 4. The significance level was
not affected by the rounding, although, as one might expect, there was a slight
drop in power. For example, with 24 observations divided among 6 cells, in
10,000 simulations, the results were significant at the 5% level in 537 instances.
When 1 was added to each of the observations in one of the cells, the addition
was declared significant 19% of the time with the original observations, and
17.6% of the time with those that had been discretized.

6.2.3 Discrete Data and Time-to-Event Data

The means of large samples of discrete observations from the binomial or the
Poisson or of time-to-event data have close-to-normal distributions. But the
variances of such means will depend upon their expectations. The results
of Section 6.2. are applicable only when the observations are identically dis-
tributed in all groups. An initial variance-equalizing transformation is required
if we are to use tests based on the F -distribution.

That is, we want to find a function f such that the transformed observations
{f(Xi)} are identically distributed, even if the original observations {Xi} are
not. Fortunately, we have the following theoretical result:

Theorem 6.2. If the distribution of
√

n(Tn − θ) converges with increas-
ing sample size n to a normal distribution with mean 0 and variance τ2, and
the derivative of the function f exists and is nonzero at θ, the distribution of√

n(f [Tn] − f [θ]) converges with increasing sample size n to a normal distri-
bution with mean 0 and variance τ2(df [θ]/dθ)2.

Proof. Applying Taylor’s theorem,

f [Tn] = f [θ] + (Tn − θ)f ′[θ] + o(Tn − θ)

or
√

n(f [Tn] − f [θ]) =
√

n(Tn − θ)f ′[θ] + o[
√

n(Tn − θ)].

�

The first term on the right converges to N(0, τ2(df [θ]/dθ)2). We may neglect
the second term provided that, as the sample size n increases, the probability
that Tn differs from its expectation θ so that

√
n(Tn − θ) is larger than some

arbitrary fixed value goes to zero. But this is precisely what is implied by
the convergence in distribution of

√
n(Tn − θ) to a normal distribution. For a

formal proof of this latter result, see Lehmann [1999, Section 2.3].
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Let Tn denote the mean of n exponentially distributed observations.
Then Tn/

√
n converges to a normal distribution N(λ, 2λ2). This result holds

whether each observation is distinct or if there are k observations, each
consisting of m separate exponentially distributed events where km = n. To
equalize variances for different values of λ, we set f ′[λ] = 1/(λ

√
2), or f [λ] =

log[λ]/
√

2. Similarly, to approximate a Poisson by a normal distributed
variable, we set f [λ] =

√
λ. The binomial we leave as Exercise 6.8. �

6.3 k-Sample Comparisons—Other Loss Functions

As noted in Chapter 2, the loss function is the primary consideration in the
selection of an appropriate decision-making procedure. More precisely, our
objective to minimize the risk associated with a decision procedure, r(d,λ) =
L(d(X), θ)dPθdλ[θ] = EL(θ)dλ[θ], where L is our loss function and λ stands
for the subjective probability we assign to the various possible underlying
states of nature θ.

Unfortunately, the uniformly most powerful invariant test derived in the
previous section is limited to a single loss function and a single broad alter-
native. By contrast, for any loss function and any set of alternatives, we can
almost always find an optimal unbiased and invariant permutation decision
procedure.

6.3.1 F -ratio

Suppose we wanted to assess the effect on crop yield of hours of sunlight,
observing the yield Xij for I different levels of sunlight i = 1, . . . , I with ni

observations at each level. Our model is that Xij = µi + eij , where the {eij}
are exchangeable random elements.

Let X̄i. and X̄.. denote the mean of the ith group and the grand mean,
respectively.2 Note that the sum of squares of the deviations about the
grand mean can be decomposed into two sums, the first of which represents
the within-group sum of squares, and the second, the between-group sum of
squares:

I∑
i=1

ni∑
j=1

(Xij − X̄..)2 =
I∑

i=1

ni∑
j=1

(Xij − X̄i.)2 +
I∑

i=1

ni(X̄i. − X̄..)2.

The F -ratio of the between-group variance to the within-group variance
that we derived in the preceding section is the classic parametric statistic for
testing the hypothesis that the means of k normal distributions are the same
[Welch, 1937].

2 Here and in similar expressions, the use of a dot as in X̄i. denotes summation
over the missing subscript(s).
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Before deriving the data’s permutation distribution, we should eliminate
all terms that are invariant under permutations. Rewriting expression (6.1),
eliminating constants, gives ∑I

i=1 ni(X̄i. − X̄..)2

(
∑I

i=1
∑ni

j=1(Xij − X̄..)2 −∑I
i=1 ni(X̄i. − X̄..)2

and noting that the sum of squares of all observations about the grand
mean is invariant under rearrangements of the observations among samples,
we see that we may focus attention on the between-sample sum of squares∑I

i=1 ni(X̄i. − X̄..)2.
We may further reduce the time required for its computation on noting

that this sum may be written as

I∑
i=1

niX̄
2
i. − 2X̄..

I∑
i=1

niX̄i. + NX̄2
.. =

I∑
i=1

⎛
⎝ ni∑

j=1

Xij

⎞
⎠

2

− NX̄2
...

As the grand mean, too, is invariant under permutations, our test statistic is
F2 =
∑

i(
∑

j Xij)2/ni. If the loss function is
∑

(µ − µi)2, tests based on F2
will be invariant under all transformations that leave the expected losses (risk)
unchanged whether or not the data are normally distributed [Jagers, 1980].

Now, suppose our loss function is not
∑

(µ−µi)2 but
∑ |µ−µi|. Clearly

the test statistic

F1 =
I∑

i=1

ni|X̄i. − X̄..|,

whose distribution, too, is easily determined by permutation means, will min-
imize the expected risk (Exercise 6.9).

In a sidebar, we’ve provided an outline of a computer program that uses
a Monte Carlo to estimate the significance level (see Chapter 14.3). Our one
programming trick is to pack all the observations into a single linear vec-
tor X = (X11, . . . , X1n1 , X1(n1+1), . . .) and then to permute the observations
within the vector. If we have k samples, we only need to select k–1 of them
when we rearrange the data. The kth sample is determined automatically.

Note that we need to write a separate subprogram to compute the
test statistic. If you’re impatient, you can download such a program from
http://mysite.verizon.net/res7sf1o/GoodStat.htm.

6.3.2 Pitman Correlation

The permutation version of the F -ratio test offers protection against any and
all deviations from the null hypothesis of equality among treatment means.
As a result, it may offer less protection against some specific alternative than
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Program for Estimating Permutation Significance Levels

Monte, the number of Monte Carlo simulations; try 400
S0, the value of the test statistic for the unpermuted observations
S, the value of the test statistic for the rearranged observations
X [ ], a one-dimensional vector that contains the observations
n[ ], a vector that contains the sample sizes
N, the total number of observations

Main program
Get data

Put all the observations into a single linear vector
Compute the test statistic S0
Repeat Monte times:

Rearrange the observations
Recompute the test statistics S
Compare S with S0

Print out the proportion of times S was equal to or larger than S0

Rearrange
Set s to the size of the combined sample
Start: Choose a random integer k from 0 to s − 1

Swap X [k ] and X[s − 1]:
temp = X[k];
X[k] = X[s − 1];
X[s − 1] = temp.

Decrement s and repeat from start
Stop after you’ve selected all but one of the samples.

Get data
This user-written procedure gets all the data and packs it into a single long

linear vector X.

Compute stat
This user-written procedure computes the test statistic.

some other test function(s). When we have a specific alternative in mind, as
is so often the case in biomedical research when we are testing for an ordered
dose response, the F -ratio may not be the statistic of choice.

Frank, Trzos, and Good [1977] studied the increase in chromosome abnor-
malities and micronucleii as the dose of various known mutagens was
increased. Their object was to develop an inexpensive but sensitive biochem-
ical test for mutagenicity that would be able to detect even marginal effects.
Thus they were more than willing to trade the global protection offered by
the F -test for a statistical test that would be sensitive to ordered alternatives.
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Fortunately, a most powerful unbiased test (and one that is also most
powerful among tests that are invariant to changes in scale) has been known
since the late 1930s. Pitman [1937] proposes a test for linear correlation using
as test statistic

S =
∑

i

f [i]
ni∑

j=1

Xij ,

where f [i] is any monotone increasing function. The simplest choice is f [i] = i.
The permutation distributions of S′ with f [i] = ai + b and S with f [i] = i

are equivalent in the sense that if S0 and S′
0 are the values of these test

statistics corresponding to the same set of observations {Xi}, then Pr(S >
S0) = Pr(S′ > S′

0).

Theorem 6.3. Suppose f is a monotone nondecreasing function. Then
the distribution of the statistic S =

∑
i f [i]
∑ni

j=1 Xij obtained from rearrange-
ments provides an exact, unbiased test of the hypothesis H: ai = 0 for all i
against an ordered alternative K: a1 < a2 < · · · < aI .

Proof. The rejection region R of the test consists of all rearrangements
X ∗ of the sample X for which SI(X ∗) are greater than SI(X ). Consider first
those rearrangements X ∗′ consisting of a single pairwise exchange between any
two groups. As f is a monotone nondecreasing function, then Pr{SI(X ∗′) ≥
SI(X )|H} ≥ Pr{SI(X ∗′)} ≥ SI(X )|K}. But by definition, any rearrange-
ment consists of such pairwise exchanges and the theorem follows. �

Let us apply the Pitman approach to the data collected by Frank et
al. [1978] shown in Table 6.1. As the anticipated effect is proportional to
the logarithm of the dose, we take f [dose] = log[dose + 1]. (Adding 1 to the
dose keeps this function from blowing up at a dose of zero.)

There are four dose groups; the original data for breaks may be written in
the form

0 1 1 2 0 1 2 3 5 3 5 7 7 6 7 8 9 9.

Table 6.1. Micronuclei in polychromatophilic erythrocytes
and chromosome alterations in the bone marrow of mice
treated with CY.

Dose Number of Micronuclei Breaks
(mg/kg) Animals per 200 Cells per 25 Cells

0 4 0 0 0 0 0 1 1 2
5 5 1 1 1 4 5 0 1 2 3 5

20 4 0 0 0 4 3 5 7 7
80 5 2 3 5 11 20 6 7 8 9 9
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As log[0 + 1] = 0, the value of the Pitman statistic for the original data is
0 + 11∗ log[6] + 22∗ log[21] + 39∗ log[81] = 112.1. The only larger values are
associated with the small handful of rearrangements of the form

0 0 1 2 1 1 2 3 5 3 5 7 7 6 7 8 9 9
0 0 1 1 1 2 2 3 5 3 5 7 7 6 7 8 9 9
0 0 1 1 1 2 2 3 3 5 5 7 7 6 7 8 9 9
0 0 1 2 1 1 2 3 3 5 5 7 7 6 7 8 9 9
0 1 1 2 0 1 2 3 3 5 5 7 7 6 7 8 9 9
0 1 1 2 0 1 2 3 5 3 5 6 7 7 7 8 9 9
0 0 1 2 1 1 2 3 5 3 5 6 7 7 7 8 9 9
0 0 1 1 1 2 2 3 5 3 5 6 7 7 7 8 9 9
0 0 1 1 1 2 2 3 3 5 5 6 7 7 7 8 9 9
0 0 1 2 1 1 2 3 3 5 5 6 7 7 7 8 9 9
0 1 1 2 0 1 2 3 3 5 5 6 7 7 7 8 9 9

A statistically significant ordered dose response (α < 0.001) has been detected.
The micronucleii also exhibit a statistically significantly dose response when
we calculate the permutation distribution of S with f [i] = log[dosei + 1]. To
make the calculations, we took advantage of the computer program we used in
the previous section; the only change was in the subroutine used to compute
the test statistic.

A word of caution, if we use some function of the dose other than f [dose] =
log[dose+1], we might not observe a statistically significant result. Our choice
of a test statistic must always make practical as well as statistical sense (see
Exercise 6.17).

6.3.3 Effect of Ties

Ties can complicate the determination of the significance level. Because of ties,
each of the rearrangements noted in the preceding example might actually
have resulted from several distinct reassignments of subjects to treatment
groups and must be weighted accordingly. To illustrate this point, suppose we
put tags on the 1’s in the original sample:

0 1∗ 1# 2 0 1 2 3 5 3 5 7 7 6 7 8 9 9

The rearrangement

0 0 1 2 1 1 2 3 5 3 5 7 7 6 7 8 9 9

corresponds to the three reassignments

0 0 1 2 1∗ 1# 2 3 5 3 5 7 7 6 7 8 9 9
0 0 1∗ 2 1 1# 2 3 5 3 5 7 7 6 7 8 9 9
0 0 1# 2 1 1∗ 2 3 5 3 5 7 7 6 7 8 9
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The 18 observations are divided into four dose groups containing 4, 5, 4, and

5 observations, respectively, so that there are
(

18
4545

)
possible reassignments

of observations to dose groups. Each reassignment has an equal probability of
occurring so the probability of the rearrangement

0 0 1 2 1 1 2 3 5 3 5 7 7 6 7 8 9 9

is 3/
(

18
4545

)
.

To determine the significance level when there are ties, weight each distinct
rearrangement by its probability of occurrence. This weighting is done auto-
matically if you use Monte Carlo sampling methods as is done in the computer
program we provide in the previous section.

6.3.4 Cochran–Armitage Test

If our observations are binomial response variables, that is, they can take only
the values 0 or 1, and if f [i] = di is the magnitude of the ith dose and Xi

denotes the number of responders in the ith dose group, then the Pitman
correlation

∑
diXi is more commonly known as the Cochran–Armitage test

for trend. Bounds on the power can be obtained by the method of Mehta,
Patel, and Senchaudhuri [1998].

6.3.5 Linear Estimation

Pitman correlation may be generalized by replacing the fixed function f [i]
by an estimate φ̂ derived by a linear estimation procedure such as least
squares polynomial regression, kernel estimation, local regression, and smooth-
ing splines [Raz, 1990].

Suppose the j th treatment group is defined by Xj , a vector-valued design
variable. (Xj might include settings for temperature, humidity, and phospho-
rous concentration.) Suppose, also, that we may represent the ith observation
in the j th group by a regression model of the form Yji = µ(xj) + eji, j =
1, . . . , n, where eji is an error variable with mean 0, and µ(x) is a smooth
regression function (that is, for any x and ε sufficiently small, µ(x + ε) may
be closely approximated by the first-order Taylor expansion µ(x) + bε).

The null hypothesis is that µ(x) = µ, a constant that does not depend
on the design variable x. As always, we assume that the errors {eji} are
exchangeable so that all n! assignments of the labels to the observations that
preserve the sample sizes {nj} are equally likely.

Raz’s test statistic is Q =
∑

µ̂[xj ]2, where µ̂ is an estimate of µ derived
by a linear estimation procedure such as least-squares polynomial regression,
kernel estimation, local regression, or smoothing splines.

This test may be performed using the permutation distribution of Q or,
for large samples, a gamma distribution approximation.
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6.3.6 A Unifying Theory

The permutation tests for Pitman correlation and the two-sample comparison
of means are really special cases of a more general class of tests that take the
form of a dot product of two vectors [Wald and Wolfowitz, 1944; De Cani,
1979]. Let W = {W1, . . . , WN} and Z = {Z1, . . . , ZN} be fixed sets of num-
bers, and let z = {z1, . . . , zN} be a random permutation of the elements of Z.
Then we may use the dot product of the vectors Z and W, T =

∑
ziwi, to test

the hypothesis that the labeling is irrelevant. In the two-sample compar-
ison, W is a vector of m1’s followed by n0’s. In the Pitman correlation,
W = {f [1], . . . , f [N ]} where f is a monotone function.

6.4 Four Ways to Control Variation

Although a test may be uniformly most powerful, and, in the case of a permu-
tation test, its significance level “distribution-free,” its power strongly depends
on the underlying distribution.

Figure 6.1 depicts the effect of a change in the variance of the underlying
population on the power of the permutation test for the difference in two
means. As the variance increases, the power of a test decreases. To get the
most from your experiments, reduce the variance.

There are four ways to account, correct for, or reduce variation:

1. control the environment;
2. block the experiment;
3. measure factors that cannot be controlled;
4. randomize.

Fig. 6.1. Effect of the population variance on the power of a test of two means.
θ = θ1 − θ2.
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6.4.1 Control the Environment

• Work if possible in a biosphere, where one can control temperature, humi-
dity, and every other aspect of the experimental conditions.

• Make all observations at the same time of day (to correct for circadian
rhythms).

• Make all observations in the same way, preferably by the same observer,
and using the same measuring device.

• Use a more precise measuring device.

A major but often forgotten aspect of controlling the environment, particu-
larly in nonhuman studies, is making sure that neither the subject (in animal
studies) nor the experimenter (in all studies) is aware of which treatment the
subject receives.

With humans it is almost self-evident that the subject will experience a
placebo effect, providing, that is, she’s not told that her treatment is merely
a placebo. And she will be less inclined to adhere to the treatment regimen
and to report side effects if she knows she is part of the control group.

The intelligence and sensitivity of animals should not be underestimated.
The taste of a pill can be as significant to a rat as the pill’s intended effect. And
even a flatworm can tell which path in an unsterilized t-maze was previously
followed.

Dogs, cats, horses, primates, and many birds can pick up subtle changes
in their handler’s behavior. This is the second major reason why the experi-
menter also should not be aware of which treatment is being administered. If
he or she spends more time with the treated animals, conveying that “they’re
the important ones, after all,” the treated animals may feel stressed, the con-
trols neglected, and both groups react accordingly. Animals like humans are
subject to the Hawthorne effect. Then, too, consciously or unconsciously,
the experimenter is likely to pay closer attention to the treated subjects
(even the inanimate ones) studying them more closely, looking for flaws. And
because he or she is looking at them more closely, she is more likely to find
flaws and record side effects. Triple blinding, wherein one individual treats
subjects and a second observes, is strongly recommended.

6.4.2 Block the Experiment

We can reduce the variance if we subdivide the population under study into
more homogeneous subpopulations and take separate samples from each. Sup-
pose you were designing a survey on the effect of income level on the respon-
dent’s attitudes toward compulsory pregnancy. Obviously, the views of men
and women differ markedly on this controversial topic. It would not be pru-
dent to rely on randomization to even out the sex ratios in the various income
groups.
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The recommended solution is to block the experiment, to interview and to
report on men and women separately. You would probably want to do the
same type of blocking in a medical study. Similarly, in an agricultural study,
you would want to distinguish among clay soils, sandy, and sandy–loam.

In short, whenever a population can be subdivided into distinguishable
subpopulations, you can reduce the variance of your observations and increase
the power of your statistical tests by blocking or stratifying your sample.

Suppose we have agreed to divide our sample into two blocks—one for men,
one for women. If this were an experiment, rather than a survey, we would
then assign subjects to treatments separately within each block.

In a study that involves two treatments and ten experimental subjects, four
men and six women, we would first assign the men to treatment and then the

women. We could assign the men in any of
(

4
2

)
= 6 ways and the women

in any of
(

6
3

)
= 20 ways. That is, there are 6 × 20 = 120 possible random

assignments in all.
When we come to analyze the results of our experiment, we use the permu-

tation approach to ensure we analyze in the way the experiment was designed.
Our test statistic is a natural extension of that used for the two-sample com-
parison of location parameters described in Chapter 3, S =

∑B
b=1
∑mb

j=1 xbj ,
where B is the number of blocks, two in the present example, and the inner
sum extends over the mb treated observations within each block.

We compute the test statistic for the original data. Then, we rearrange the
observations at random within each block, subject to the restriction that the
number of observations within each treatment category remain constant.

In the example of two blocks, one for each sex, we compute S for each of the
120 possible rearrangements. If the value of S for the original data is among
the largest values, then we reject the null hypothesis; otherwise, we accept it.

6.4.2.1 Using Ranks

Directly combining the results from different strata may not be appropriate
in situations where different methods of measurement were used or different
scales employed. Consider the following example:

An experimenter administered three drugs in random order to each of five
recipients. He recorded their responses and now wishes to decide if there are
significant differences among treatments. The problem is that the five subjects
have quite different baselines. A partial solution would be to subtract the
baseline value from each of that individual’s observations, but who is to say
that an individual with a high baseline value will respond in the same way as
an individual with a low baseline reading?

Another solution would be to treat each individual as a block and then
combine the results using the formula of the preceding section. But then we
run the risk that the results from an individual with unusually large responses
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Table 6.2a. Original observations

A B C D E

Control 89.7 75 105 94 80
Treatment 1 86.2 74 95 98 79
Treatment 2 76.5 68 94 93 84

Table 6.2b. Ranks.

A B C D E

Control 1 1 1 2 2
Treatment 1 2 2 2 1 3
Treatment 2 3 3 3 3 1

might mask the responses of the others. Or, suppose the measurements actu-
ally had been made by five different experimenters using five different mea-
suring devices in five different laboratories. Would it really be appropriate to
combine them?

The answer is no, for the five sets of observations measured on different
scales are not exchangeable. By converting the data to ranks, separately for
each case, we are able to put all the observations on a common scale, and
then combine the results.

Using the block formula, we see that there are a total of (3!)5 = 7776
possible rearrangements of labels within blocks (subjects) of which 2 × 5, or
less than 1%, are as, or more, extreme than our original sets of ranks.

6.4.2.2 Matched Pairs

Blocking is applicable to any number of subgroups; in the extreme case, that
in which every pair of observations forms a distinct subgroup, we have the
case of matched pairs.

In a matched pairs experiment, we take blocking to its logical conclusion.
Each subject in the treatment group is matched as closely as possible to a
subject in the control group. For example, a 45-year-old black male hyper-
tensive is given a pill to lower blood pressure, then a second similarly built
45-year-old black male hypertensive is given a placebo. One member of each
pair is then assigned at random to the treatment group, and the other member
is assigned to the controls.

Assuming we have been successful in our matching, we will end up with
a series of independent pairs of observations (Xi, Yi) where the members of
each pair have been drawn from the distributions Fi(x−µ) and Fi(x−µ− δ)
respectively. Regardless of the form of this unknown distribution, the diff-
erences Zi = Yi − Xi will be symmetrically distributed about the unknown
parameter δ; hence,

Pr{Z ≤ z + δ} = Pr{Y − X − δ ≤ z}
= Pr{(Y − µ − δ) − (X − µ) ≤ z}
= Pr{Y ′ − X ′ ≤ z}
= Pr{X ′ − Y ′ ≤ z}
= Pr{(X − µ) − (Y − µ − δ) ≤ z}
= Pr{X − Y ≤ z − δ}
= Pr{Z ≥ −z + δ}.
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But this is precisely the one-sample case we considered in Chapter 3 and the
same readily computed tests are applicable with the following exception: If
the observation on one member of a pair is missing, then we must discard the
remaining observation.

For an almost most powerful test when one member of the pair is cen-
sored, see Chapter 11.5. For an application of a permutation test to the case
where an experimental subject serves as her own control, see Shen and Quade
[1986].

6.4.3 Measure Factors That Cannot Be Controlled

Some variables that affect the outcome of an experiment are under our control
from the very beginning—e.g., light and fertilizer. But other equally influential
variables, called covariates, we may only be capable of measuring, rather than
controlling. An example of covariates in a biomedical experiment are blood
chemistries. Various factors in the blood can affect an experimental outcome,
and most blood factors will be affected by a treatment, but few are under our
direct control.

In this section, you learn two methods for correcting for the effects of
covariates. The first is for use when you know or suspect the nature of the
functional relationship between the primary variables and the covariates. The
second method is for use when the covariates take only a few discrete values
and these values can be used to restrict the randomization.

6.4.3.1 Eliminate the Functional Relationship

Gail, Tan, and Piantadosi [1988] recommend eliminating the effects of covari-
ates first and then applying permutation methods to the residuals. For exam-
ple, suppose the observation Y depends both on the treatment τi(i = 1, . . . , I)
and on the p-dimensional vector of covariates X = (X 1, . . . ,X p), that is
Y = µ + τ + Xβ + e , where Y ,µ, τ, and e are n × 1 vectors of observations,
mean values, treatment effects, and errors, respectively, X is an
x × p matrix of covariate values, and β is a p × 1 vector of regression
coefficients.

We might use least squares methods3 to estimate the regression coeffi-
cients β̂ after which we would apply the permutation methods described in
the preceding sections to the residuals Z = Y − X β̂. Of course, we must
assume that the residuals are exchangeable and both the concomitant vari-
ables (the Xi) and the regression coefficients are unaffected by the treatment
[Kempthorne, 1952, p. 160].

3 Note that the use of least squares methods of estimation makes sense only if
the loss function is also least squares. This point is expanded upon in Good and
Hardin [2003, p. 44).
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A distribution-free multivariate analysis of covariance in which the effects of
the treatments and the covariates are evaluated simultaneously is considered
in Chapter 7.

6.4.3.2 Selecting Variables

Which covariates should be included in your model? Draper and Stoneman
[1966] describe a permutation procedure for selecting covariates using a “for-
ward stepping rule”:

The first variable you select should have the largest squared sample corre-
lation with the dependent variable y ; thereafter, include the variable with the
largest squared partial correlation with y given the variables that have already
been selected. You may use any standard statistics package to obtain these
correlations. Equivalently, you may select variables based on the maximum
value of the square of the t-ratio for the regression coefficient of the enter-
ing variable, the so-called “F to enter.” The problem lies in knowing when to
stop, that is, in knowing when an additional variable contributes little beyond
noise to the model.

Percentiles of the permutation distribution of the F -to-enter statistic can
be used to test whether variables not yet added to the model would be of pre-
dictive value. Details for deriving the permutation distribution of this statistic
defined in terms of Householder rotations of the permuted variable matrix are
given in Forsythe et al. [1973].

6.4.3.3 Restricted Randomization

If the covariates take on only a few discrete values, e.g., smoker vs. nonsmoker,
or status = 0, 1, 2, we may correct for their effects by restricting the reran-
domizations to those permutations whose design matrices match the original
design [Edgington, 1983].

Consider the artificial data set in Table 6.3 adapted from Rosenbaum [1984,
p. 568]. To test the hypothesis that the treatment has no effect on the response,
we would use the sum of the observations in the treatment group as our test

Table 6.3. Data for artificial example.

Subject Treatment Result Covariate

A 1 6 1
B 1 2 0
C 0 5 1
D 0 4 1
E 0 3 1
G 0 1 0
H 0 0 0
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statistic. The sum of 8 for the original observations is equaled or exceeded in

6 of the
(

7
2

)
= 21 possible rerandomizations. This result is not statistically

significant.
Now let us take the covariate into consideration. One member of the original

treatment group has a covariate value of 0, the other has a covariate value

of 1. We limit our attention to the 12 =
(

4
1

)(
3
1

)
possible rerandomizations

in which the members of the treatment group have similar covariate values.
These consist of AB AG AH, CB CG CH, DB DG DH, EB EG EH. With only
1 of the 12 (that of AB) that we observed originally do we observe a result
sum as large as 8. This result is statistically significant at the 10% level.
Restricting the randomizations eliminates the masking effect of the covariate
and reveals the statistically significant effect of the treatment. On the down
side, the restriction has reduced the number of randomizations to the point
that the p-value cannot be less than 1/12.

If the covariate varies continuously, it may still be possible to apply the
method of restricted randomizations by first subdividing the covariate’s range
into a few discrete categories. For example, if

x < −1, let x′ = 0,

−1 < x < 1, let x′ = 1,

1 < x, let x′ = 2.

Rosenbaum [1984] suggests that with larger samples one restrict the random-
izations so that one attains a specific mean value of the covariate, rather than
a specific set of values.

Subject to certain relatively weak assumptions, the method of restricted
randomizations can also be applied to after-the-fact covariates (see Sec-
tion 11.2).

6.4.4 Randomize

The fourth essential principle of experimental design is that to keep the errors
exchangeable we need to randomly assign experimental units to treatment
so that the innumerable factors that can neither be controlled nor observed
directly are as likely to influence the outcome of one treatment as another.

Sometimes our biases are overt. A young surgeon wants to test a new tech-
nique but his supervisor will only permit him to try the new approach on
patients his supervisor feels are hopeless. As often, our biases are subcon-
scious or preconscious. And sometimes, they are the result of ignorance or
overlooking the obvious.

Do you think the order in which animals are tested makes a difference?
The first animals taken from a cage tend to be chosen because they are the
most active (or, if they bite and the experimenter wants to keep his fingers,



“chapter6” — 2004/10/11 — page 104 — #20

104 6 Experimental Designs

the most passive). Activity is related to corticosteroids, and the corticosteroid
level affects virtually all physiological parameters.

If you are not convinced that the order in which subjects are tested makes
a difference, let us suppose you are one of three candidates to be interviewed
for a job. Would you prefer to be interviewed first, second, or third? You’ll
find the winning answer in a footnote.4

The use of randomization in design is illustrated in the next section. See,
also, Maxwell and Cole [1991].

6.5 Latin Square

The random assignment of experimental units to treatment forestalls charges
of bias and ensures residual errors are exchangeable, permitting the applica-
tion of either parametric or permutation methods. Nevertheless, the luck of
the draw may result in confounding undesirable effects with those that are of
principal interest.

Suppose we are interested in testing the effects on plant growth of three
brands of fertilizer. While it might be convenient to fertilize our plots as
shown in Figure 6.2a, the result could be a systematic confounding of effects,
particularly if, for example, there is a gradient in dissolved minerals from east
to west across the field.

The layout adopted in Figure 6.2b, obtained with the aid of a computer-
ized random number generator, reduces but does not eliminate the effects of
this hypothetical gradient. Because this layout was selected at random, the
exchangeability of the error terms and, hence, the exactness of the correspond-
ing permutation test is assured. Unfortunately, the selection of a layout like
Figure 6.2a or Figure 6.2b with their built-in bias is neither more nor less

probable than any of the other
(

9
333

)
possibilities.

What can we do to avoid such undesirable events? In the layout of
Figure 6.2c or, equivalently, Figure 6.3, known as a Latin Square, each fertil-
izer level occurs once and once only in each row and in each column; if there
is a systematic gradient of minerals in the soil, then this layout ensures that
the gradient will have almost equal impact on each of the three treatment
levels. It will have an almost equal impact even if the gradient extends from
northeast to southwest rather than from east to west or north to south. We
use the phrase “almost equal” because a gradient effect may still persist.

The Latin Square is one of the simplest examples of an experimental design
in which the statistician takes advantage of some aspect of the model to
reduce the overall sample size. A Latin Square is a three-factor experiment in

4 You see, you do think order makes a difference or you wouldn’t have looked. The
only fair way to manage the interviews, and the only way to ensure that the errors
are exchangeable, is to randomize the assignment of subjects to treatment.
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Fig. 6.2. (a) Systematic assignment of fertilizer levels to plots; (b) random assign-
ment of fertilizer levels to plots; (c) Latin Square assignment of fertilizer levels to
plots.

which each combination of factors occurs once, and once only. We can use a
Latin Square as in Figure 6.3 to assess the effects of soil composition on crop
yield:

In this diagram, Factor 1—gypsum concentration, say—increasing from left
to right, Factor 2 is increasing from top to bottom (or from north to south),
and Factor 3, its varying levels denoted by the capital letters A, B, and C,
occurs in combination with the other two in such a way that each combination
of factors—row, column, and treatment—occurs once, and once only.

Because of this latter restriction, there are only 12 different ways in which
we can assign the varying factor levels to form a 3 × 3 Latin Square. Among
the other 11 designs are

1 2 3
1 A C B
2 B A C
3 C B A

and

1 C B A
2 B A C
3 A C B

We assume we begin our experiment by selecting one of these 12 designs at
random and planting our seeds in accordance with the indicated conditions.

Because there is only a single replication of each factor combination in a
Latin Square, we cannot estimate the interactions among the factors. Thus,
the Latin Square is appropriate only if we feel confident in assuming that

Fig. 6.3. A Latin Square.
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the effects of the various factors are completely additive, that is, that the
interaction terms are zero.

Our model for the Latin Square is

Xkji = µ + qk + rj + si + εkji.

Here µ stands for an overall population mean, while si, rj , qk denote the
expected deviations from this mean occasioned by the use of the ith level
of Factor 1, the j th level of Factor 2, and the kth level of Factor 3. The sum
of each of these deviations over all possible levels is zero. The errors (residuals)
εkji are assumed to be exchangeable with a zero expectation.

Consider the null hypothesis that Factor 3 does not affect the yield X, that
is, that each of the qk effects is zero. If we assume an ordered alternative
K: q1 > q2 > q3, our test statistic is the Pitman correlation with f [i] = i,

R′ =
+1∑

i=−1

iX̄i.. = X̄C.. − X̄A...

We evaluate this test statistic both for the observed design and for each of
the 12 possible Latin Square designs that might have been employed in this
particular experiment. We reject the hypothesis of no treatment effect only if
the test statistic for the original observations is an extreme value.

For example, suppose we employed Design 1 and observed

21 28 17
14 27 19
13 18 23

Then 3yA.. = 58, 3yB.. = 65, 3yC.. = 57 and our test statistic R′ = −1. Had
we employed Design 2, then the equations would be 3yA.. = 71, 3yB.. = 49,
3yC.. = 65 and our test statistic R′ = −6. While with Design 3, they would
be 3yA.. = 57, 3yB.. = 65, 3yC.. = 58 and our test statistic R′ = +1.

We see from the permutation distribution obtained in this manner that the
value of our test statistic for the design actually employed in the experiment,
R′ = −1, is an average value, not an extreme one. We accept the null hypoth-
esis and conclude that increasing the level of Factor 3 from A to B to C does
not significantly increase the yield.

6.6 Very Large Samples

When the sample sizes are very large, from several dozen to several hundred
observations per group, as they often are in clinical trials, the time required to
compute a permutation distribution can be prohibitive even if we are taking
advantage of one of the optimal computing algorithms described in Chap-
ter 14. Fortunately, when sample sizes are large—and we refer here to the
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size of the smallest subsample corresponding to a specific factor combination,
not to the size of the sample as a whole—we can make use of an asymp-
totic approximation in place of the exact permutation distribution. A series
of papers by Hoeffding [1951], Box and Anderson [1955], and Kempthorne
et al. [1961] support the replacement of the permutation distribution of the
F -statistic by the tabulated distribution of the F -ratio. This approximation
can often be improved on if we replace the observed values by their correspon-
ding ranks or normal scores. Further discussion of these points is provided in
Section 11.3.

6.7 Sequential Analysis

With very small samples, the permutation distribution is readily calculated.
But with few observations, the power of the test may well be too small and we
run the risk of overlooking a treatment effect that is of practical significance.
A solution in some cases is to take our observations in stages, rejecting or
accepting the null hypothesis at each stage only if the p-value of the data is
very large or very small. Otherwise, we continue to take more observations.

6.7.1 A Vaccine Trial

Recently, I had the opportunity to participate in the conduct of a very large-
scale clinical study of a new vaccine. I’d not been part of the design team, and
when I read over the protocol, I was stunned to learn that the design called
for inoculating and examining 100,000 patients! 50,000 with the experimental
vaccine and 50,000 controls with a harmless saline solution.

Why so many? The disease at which the vaccine was aimed was relatively
rare. In essence, we would be comparing two Poisson distributions. In accor-
dance with the arguments provided in a previous chapter (Section 4.3.3), the
power of our UMPU test would depend on the total number of those inocu-
lated who came down with the disease, as well as the relative incidence of the
disease in the control and treated populations. And this last, I soon learned,
was 1.002, or something equally close to unity.

The big question, as far as I was concerned, was why this experiment was
being done at all. Suppose 1 in 100,000 had a fatal reaction to the vaccine?
Would the small decrease in the numbers getting the original nonfatal disease
justify this death? And 1 in 100,000 is an average. A much higher percentage
were disabled or killed by the Salk vaccine.

I joined the study at the halfway mark, 50,000 inoculated, 50,000 to go.
The good news at that point was that no one, so far, had a bad reaction
to the vaccine. The bad news was that very few—treated or control—had
contracted the disease. The result, as noted in Section 4.3.3, was that the
power of the test, conditioned as it was on the numbers who actually got
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the disease, was close to the significance level. I did some calculations and
found that if the incidence of the disease did not increase during the coming
year, we’d be almost guaranteed to conclude that the vaccine was without
value.

So why not quit while we were ahead? We would save the US taxpayer
several hundred thousands dollars, to say nothing of the servicemen who would
not have to undergo the risk of vaccination. But for both small-scale and large-
scale political reasons we pressed on. The balance of this section will show you
from the statistician’s point of view that there is a much better way.

Let us plot the results of our experiment on a piece of graph paper as in
Figure 6.4a. We start in the middle of the left hand side of the graph. Each
time the disease is observed in the inoculated population we move one step
to the right if the individual received the saline solution and one step upward
if he or she received the vaccine. The situation after eight individuals came
down with the disease is depicted in the figure.

We can turn this experiment into a sequential design if we agree to stop
the inoculations as soon as the line runs off the graph paper. If it goes out

Fig. 6.4a. Plotting a sequential trial in progress.
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Fig. 6.4b. Sequential trial with stopping rule.

the bottom, we reject the null hypothesis; if it goes out the right side, we
accept the null hypothesis, and if it goes out the top, we conclude the vaccine
is dangerous.

A more reasonable set of boundaries is depicted in Figure 6.4b, where as
we gather more data we are more likely to cross a boundary. To derive these
boundaries, let xj = 0 if the j th diseased individual is a control and xj = 1 if
the j th diseased individual is a treated subject. Let pi(xn) denote the proba-
bility that the nth observation takes the value xn; i = 0 when the hypothesis
is true and i = 1 when it is false. In the case of our vaccine, p0(xn) = 1/2.
Define pin = pi(x1) · · · pi(xn). The boundaries are determined by the inequal-
ities A0 < p1n/p0n < A1. The experiment is continued as long as the proba-
bility ratio satisfies the inequality.

It is obvious that we can chose the constants A0 and A1 so that we have
guaranteed probabilities of rejecting the hypothesis p0 when p0 is true (the sig-
nificance level) and of rejecting it when p1 is true (the power). The important
result is that our sequential probability ratio test will require fewer observa-
tions on the average than the equivalent fixed sample size test.
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6.7.2 Determining the Boundary Values

In most instances, determining the exact values of A0 and A1 for specific
values of α and β will be difficult. Fortunately, we can easily develop some
close approximations.

Consider the subspace Rn of n observations (x1, . . . , xn) for which the
sequential procedure stops with exactly N = n observations, and subsequently
rejects the hypothesis, that is A0 < p1k/p0k < A1 for k < n and A1 < p1n/p0n.
Then

α =
∞∑

n=1

∫
Rn

pon ≤ 1
A1

∞∑
n=1

∫
Rn

p1n =
β

A1
. (6.8)

Similarly, if Sn denotes the subspace of observations in which N = n and we
accept the hypothesis, then

1 − α =
∞∑

n=1

∫
Sn

pon ≥ 1 − β

A0
. (6.9)

Assuming the probability that the procedure continues indefinitely is zero,
we can use the inequalities (6.8) and (6.9) to approximate the boundaries,
setting A′

0 = (1 − β)/(1 − α) and A′
1 = β/α. The resultant error probabilities

are α′ ≤ α/β and (1 − β′) ≤ (1 − β)/(1 − α).
In the case of the vaccine trials

p1n

p0n
=

pk
1(1 − p1)n−k

pk
0(1 − p0)n−k

=
(

p1q0

p0q1

)k (
q1

q0

)n

=
(
λT

λC

)k ( 2λC

λT + λC

)n

,

where λT is the infection rate of those treated with the vaccine, λC is the
infection rate of the controls, and k is the number of individuals treated with
the vaccine who contracted the disease. Sequential sampling plans for such
trials are widely available (see, for example, Hill [1962] and Girshick [1946]).

6.7.3 Power of a Sequential Analysis

If the vaccine is more effective than originally anticipated, we would hope
the probability of detecting its value, the power of the test, would be greater
than anticipated. In short, we would hope that β(p) ≤ α for p ≤ 1/2 and
β(p) ≥ β for p ≥ p1. Fortunately, this is the case when testing the parameters
of any member of the exponential family, like the binomial which has monotone
likelihood ratio in a statistic.

Theorem 6.4. Let X1, X2, . . . be independently distributed with probabil-
ity density p(x) and suppose the densities p(x) have monotone likelihood ratio
in T(x). Then any sequential ratio test for testing θ0 against θ1 < θ0 has a
nondecreasing power function.
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Proof (after Lehmann, 1986). Let Zi = log[p1(xi)/p0(xi)] = h[Ti] where h
is non-decreasing. Our observations continue as long as the samples fall inside
the band formed by the parallel straight lines

∑n
i=1 h[ti] = log Aj , j = 0, 1.

Let F [t|θ] denote the cumulative distribution function Ti. By Lemma 3.2 of
Section 3.6.2, if θ < θ′, then F [t|θ] ≤ F [t|θ′] for all t. By Lemma 3.1, there exist
a random variable V and functions f and f ′ such that f(v) ≤ f ′(v] and the
distributions of f(Vi) and f ′(Vi) are Fθ and Fθ′ , respectively. The hypothesis
is rejected if the path formed by the points (1, h[t1]), . . . , (N, h[t1]+· · ·+h[tN ])
leaves the band. The probability of this event for θ, β(θ) is the same when we
replace Ti by f(Vi), and for θ′ when we replace Ti by f ′(Vi). Since f(Vi) ≤
f ′(Vi) for all i, the path generated by the f ′(Vi) crosses the upper boundary
whenever the path generated by the f(Vi) does. So that β(θ) ≤ β(θ′).

Note: Quality control practitioners generally reference the operating char-
acteristic of a test, that is, the probability of making a Type II error for various
values of the parameter, rather than its power function. �

6.7.4 Expected Sample Size

Let Z1, Z2, . . . be independent and identically distributed with E|Zn| finite.
If a sequential rule is such that the total number of observations N is certain
to be finite, then Wald’s equation applies:

E(Z1 + · · · + ZN ) =
∞∑

n=1

[Pr{N = n}
n∑

i=1

E(Zi|N = n)]

=
∞∑

i=1

∞∑
n=i

Pr{N = n}E(Zi|N = n)

=
∞∑

i=1

Pr{N ≥ i}E(Zi|N ≥ i)

=
∞∑

i=1

Pr{N ≥ i}E(Zi)

= E(N)E(Z).

Of course, the expected value of N depends on the parameter θ. Using
the approximate boundary values established in Section 6.5.4, we see that if
E(Z|θ) �= 0, E(N |θ) is approximately {β[θ] log A1 + (1 − β[θ]) log A1}/E(Z|θ).

Among all possible tests (sequential or not) for which the significance level
is less than or equal to α when θ = θ0 and the power is greater than or
equal to β when θ = θ1, and for which E(N |θ0) and E(N |θ1) are finite, the
sequential probability ratio test with error probabilities α and 1−β minimizes
both E(N |θ0) and E(N |θ1) [Wald and Wolfowitz, 1948; Siegmund, 1985, pp.
19–22; Lehmann, 1986, pp. 104–110].
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6.7.5 Curtailed Inspection

Typically, when a buyer such as a major wholesaler or distributor receives a
large batch of items, a fixed number of the batch, say N, will be subject to
detailed inspection and the entire batch rejected if c or more defectives are
found. This describes a procedure called curtailed inspection.

Using the binomial distribution, it is easy to see that if we want to limit
the probability of making a Type I error to 5% when p, the probability of an
item being defective, is 2% or less, and N = 100, we should use c = 6 (Exercise
6.20). Then the probability of detection is 56% when p is 5% and 98% when
p is 10%. Of course, if p is 10%, we are liable to exceed c well before all N
items are inspected. This suggests that a sequential sampling plan, in which
we stop inspecting as soon as c defectives are found, is called for instead.

Whether we used a fixed size sample or curtailed inspection, the probability
of rejecting the hypothesis when it is true will be the same as the probability
that the number of defectives equals or exceeds c. If a sample is rejected,
the sample size ranges from c to N and the probabilities readily determined
(Exercise 6.21).

We will also stop sampling and accept the batch if after inspecting N −k+1
items we have found no more than c − k defectives, where k = 0, . . . , c. It is
easy to see that the sample size is always less for curtailed inspection with a
maximum somewhere near p = c/N . For small values of p, the average sample
number (ASN) will be approximately (N − c + 1)/(1 − p) and for large values
of p, approximately c/p.

Combining the results of the preceding sections, we see that all sequen-
tial sampling schemes possess ASN curves with similar shapes, monotonically
increasing until θ = θ0, attaining a maximum between θ0 and θ1, and mono-
tonically decreasing for θ > θ1.

6.7.6 Restricted Sequential Sampling Schemes

Even though the average number of samples may be finite, the numbers
required in any specific sequential trial may be prohibitive. Two types of
restricted sequential sampling schemes are in common use:

• Truncated schemes. Trials end when a maximum of N samples are exam-
ined. This approach lends itself to comparing two treatments when either
may be superior to the other. Referring once again to the graph of Fig-
ure 6.4b, we see that we can choose among Treatment 1 being superior to
Treatment 2, or Treatment 2 being superior to Treatment 1, or, should the
trials end at N samples without a prior decision, that neither treatment is
superior.

• One-sided stopping rules. If testing is destructive, it’s important to keep
sampling to a minimum if the lot is ultimately accepted, but less so if
the lot will be rejected. In clinical trials for safety, if the new treatment
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has excessive side effects, we’ll also want to bring the trials to a quick
conclusion. Sampling schemes for such trials are described in Siegmund
[1985, Chapter 3] and in the next section.

6.8 Sequentially Adaptive Treatment Allocation

6.8.1 Group Sequential Trials

So far in this text, we have passed lightly over the allocation of experimental
units to treatment, writing, “Suppose there were n elements in the sample
from the first population, and m from the second.”

But how did we determine which n experimental units were to receive the
treatment? If we were to make all the assignments at random then we would
run the risk described in the section on the Latin Square, namely, that the
first n animals taken from the cage would all be in the control group.

One extreme alternative, one assigning the experimental units alternately
to each treatment so that we always have equal numbers in each treatment
group, runs the risk that the experimenter will decode the system and his
feelings color his interpretations. Standard practice therefore is to assign treat-
ments in a groupwise fashion so that the subjects in each group receive treat-
ment in the ratio n to m.

Such grouping can be done whether the sample size is fixed or determined
sequentially. The results of the preceding sections apply whether the incre-
ment is a single subject or the entire group. (See, for example, Flehinger and
Louis, 1971; Robbins and Siegmund, 1974; and Jennison and Turnbull, 2000.)

To avoid taking an excessive number of observations, the group size needs
to be only a small fraction of the projected sample size. In our vaccination
study, for example, randomization might be done on a day-by-day basis. Each
morning, the sight of some 100 syringes will greet the paramedics, each bearing
a coded label, already placed in random order on a dispensing tray.

6.8.2 Determining the Sampling Ratio

The question remains as to what fraction of the total sample should be allo-
cated to each treatment group. Should all sample sizes be equal?

In the case of silicon implants, Dow Corning executives decided to assign
all the subjects to the new treatment and none to the controls. That is, they
marketed the product without bothering to do any experimentation. Later,
when the treated silicon-bearing patients began to exhibit a variety of symp-
toms, accusations were made, lawsuits were filed, and huge judgments were
awarded. Though later experiments—this time with controls, revealed that sil-
icon implants posed no health hazard, Dow Corning had to file for bankruptcy.

My first mentor in the health field advocated that one use twice as many
controls as subjects being treated in order to avoid having a promising
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treatment tarnished by a series of freak occurrences. In other words, “shit
happens.”

But what if we are treating a fatal disease—AIDS, for example—and the
initial results suggest the new drug is certain to save lives. Should we continue
to administer a worthless control substance to two-thirds of the patients?

The solution first proposed in a clinical setting by Zelen [1969] is to play the
winner: “A success on a particular treatment generates a future trial on the
same treatment with a different patient. A failure on a treatment generates a
future trial on a different treatment with a different patient.”

Strict adherence to such a rule would allow the experimenter to break the
code, coloring his observations, so following Wei and Durham [1978], we let
πin, the probability of assigning the nth patient to treatment i (alternatively,
the probability of assigning a patient in the mth group to treatment i), depend
on the results of the first n−1 patients. If the new treatment is indeed the most
favorable, then πin converges to 1 and we terminate the trials, having exposed
the least number of subjects to an inferior (and perhaps more dangerous)
treatment.

Of course, in many practical situations, such as the treatment of AIDS,
results aren’t always immediately available. The probabilities πin would then
depend on the results that are available.

Wei and Durham propose the adaptive rule be represented by the following
urn model when just two treatments are involved: Begin with A balls of each
type in the urn. Draw balls from this urn with replacement to determine what
treatment the next subject will receive. If the response to treatment k is a
success, place B more balls of type k in the urn. If the treatment is a failure,
place B more balls of the opposite type instead. Thus, draws from the urn
gradually begin to favor the more effective treatment; the rapidity with which
this occurs depends on the ratio of A and B.

6.8.3 Exact Random Allocation Tests

The play-the-winner rule was first studied in a nonclinical setting by
Robbins [1952] as the one-armed bandit problem. A gambler has a choice
between a fair bet at even odds or pulling the handle on a one-armed bandit.
Which should he choose? The two-armed bandit problem arises when we need
to decide between two treatments and either one could be preferable. (Which
arm should the gambler pull?)

An obvious test statistic for comparing two treatments in the binomial
case when the overall sample size is fixed is Sn =

∑n
j=1 xjYj where xj = 1

if the j th trial results in success and xj = 0 otherwise, and Yj = 1 or 0
depending on which treatment the j th experimental subject is assigned. In
other words, Sn is the number of successes for subjects in treatment group 1.
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A network algorithm for use in obtaining the permutation distribution of Sn

when employing a random urn scheme allocation is given in Chapter 14.6.1.
Sn is asymptotically normal. Using such an asymptotic approximation to

the urn allocation scheme, Coad and Rosenberger [1999] show that the combi-
nation of a sequential stopping rule with adaptive treatment allocation reduces
both the expected number of patients receiving the inferior treatment and
the expected number of failures relative to a sequential trial with fixed equal
allocation.

On the other hand, with small samples, less than 75 subjects, Stallard and
Rosenberg [2002] find that the play-the-winner strategy is impractical. Using
the exact approach boundaries developed by Lin et al. [1991], they find that
(a) random allocation results in a reduction in power and (b) the additional
patients required to maintain equivalent power increases the expected number
of failures beyond those occurring with an equal allocation test.

6.9 Exercises

1. Let X be distributed according to a probability distribution Pθ, θ ∈ Ω

and let G be a group of transformations of the sample space. If the dis-
tributions Pθ corresponding to different values of θ are distinct, show that
a group of transformations G on the sample space induces a group of
transformations G∗ on the parameter space Ω.

2. Let β∗
α(θ) be the supremum of the power function βϕ(θ) over all level-α tests

of an hypothesis. Show (a) that if the problem of testing H is invariant
under a group G, then β∗

α(θ) is invariant under the induced group G∗; and
(b) if a UMP invariant test exists it is most stringent.

3. Let X1, . . . , Xn be independent, normally distributed as N(µ, σ2). In Sec-
tion 3.5.3, we developed a UMP unbiased test of the hypothesis σ ≥ σ0.
This hypothesis remains invariant under the zero-point transformations
X ′

i = X ′
i + c.

a) Find a maximal invariant with respect to these transformations.
b) Show that the family of normal distributions with fixed µ has monotone

likelihood ratio in this statistic.
c) Show that UMPI test coincides with the UMPU test.

4. Show that f(k) =
∑

πj
(
∏

i (p′
ij

/q′
ij

))/
(

n
k

)
is an increasing function of k

if pi/qi > 1.
5. Suppose it is known that µji = a + bj for i = 1, . . . , nj ; j = 1, . . . , J . Let

µ denote the vector {µ1i, . . . ,µ2i, . . . ,µJi, . . .}. What is the dimension of
the space to which µ belongs?

6. Let x = (x1, . . . , xn). Let G1 be the set of all n! permutations of x . Let
G2 be the set of all continuous, strictly increasing transformations of the
coordinates of x such that x′

i = f(xi), i = 1, . . . , n. Let G3 be the group
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of all orthogonal transformations of n space. Find the maximal invariants
with respect to G1, to G2, and to G3.

7. Let X1, . . . , Xn be independent, normally distributed with means
µ1, . . . ,µn and common variance σ2. Define Y = CX where C is an
orthonormal matrix, that is, if ci and cj are any two distinct row vec-
tors of C, ci′cj = 0 and ci′c1 = 1.
a) Show that the {Y i} are independent, normally distributed.
b) Show that ϕ2 =

∑k
i=1 µ

2
ι /σ

2 is a maximal invariant with respect to the
four transformations introduced in Section 6.1.2.

8. Find variance-equalizing transformations for the Poisson and binomial
distributed variables.

9. What would be the optimal statistic in the k-sample problem for testing
the null hypothesis against the alternative that µ1 >µ2?

10. Let Xij = µ+αi + eij , i = 1, . . . , I, j = 1, . . . , ni, where
∑

αi = 0 and the
{eij} are exchangeable random elements. Let F1 =

∑I
i=1 ni|X̄i. − X̄..|.

Show that a permutation test based on F1 is unbiased for testing the
hypothesis µi = µ for all i against an alternative µi �= µj for some i < j.
(Hint. First show that it is true for I = 2.]

11. Use both the F -ratio and Pitman correlation to analyze the data for
micronucleii in Table 6.2. Explain the difference in results.

12. The following vaginal virus titres were observed in mice by H.E. Renis of
the Upjohn Company 144 hours after inoculation with herpes virus type
II (see Good, 1979, for complete details).

Saline controls 10,000, 3000, 2600, 2400, 1500
Treated with antibiotic 9000, 1700, 1100, 360, 1

Is this a one-sample, two-sample, k -sample, or matched pairs study?
Does treatment have an effect?

Most authorities would suggest using a logarithmic transformation
before analyzing these data. Repeat your analysis after taking the log-
arithm of each of the observations. Is there any difference? Compare your
results and interpretations with those of Good [1979].

13. Using the logarithm of the viral titre, determine an approximate 90%
confidence interval for the treatment effect. (Hint: Keep subtracting a
constant from the logarithms of the observations on saline controls until
you can no longer detect a treatment difference.)

14. Suppose you make a series of I independent pairs of observations
{(xi, yi); i = 1, . . . , I}. yi might be tensile strength and xi the percent-
age of some trace metal. You know from your previous work that each of
the yi has a symmetric distribution.
a) How would you test the hypothesis that for all i, the median of yi is

xi? (Hint: See Section 3.1.2.)
b) Do you need to assume that the distributions of the {yi} all have the

same shape, i.e., that they are all normal or all double exponential?
Are the {yi} exchangeable? Are the differences {xi −yi} exchangeable?
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15. Rewrite the computer program in Section 6.2.1 so it will yield the
permutation distributions of the three k -sample statistics, F1, F2, and R.
Would you still accept/reject the hypothesis if you used F2 or R in place
of F1?

16. Design an experiment.
a) List all the factors that might influence the outcome of your experi-

ment.
b) Write a model in terms of these factors.
c) Which factors are under your control?
d) Which of these factors will you use to restrict the scope of the experi-

ment?
e) Which of these factors will you use to block?
f) Which of the remaining factors will you neglect initially, that is, lump

into your error term?
g) How will you deal with each of the remaining covariates? By correction?

By blocking after the fact?
h) How many subjects will you observe in each subcategory?
i) Is the subject the correct experimental unit?
j) Write out two of the possible assignments of subjects to treatment.
k) How many possible assignments are there in all?

17. Without thinking through the implications, you analyze your data from
matched pairs as if you had two independent samples and obtain a sig-
nificant result. Consequently, you decide not to waste time analyzing the
data correctly. Is your decision right or wrong? (Hint: Were the results
within each matched pair correlated? What if one but not both of the
observations in a matched pair were missing?)

18. In Chapter 3, we proposed the use of the sum of the cross-products
∑

xiyi

for testing the hypothesis that X and Y are independent against the
alternative that F [X|Y = b] ≤ F [X|Y = a] if a < b. Show that this test
is UMP invariant with respect to the group of all transformations X ′

i =
aXi + b, Y ′

i = cYi + d for which a > 0 and c > 0.
19. In order to derive Wald’s equation, why must the expected value of E|Zn|

be finite? Why does
∑∞

i=1 Pr{N ≥ i}E(Zi) = E(N)E(Z).
20. Set up an inspection plan for detecting bad batches. The probability

should be no greater than 10% of rejecting a batch with no more than
3% defective and no less than 90% of rejecting a batch with 10% or more
defective. Complete the computations for the curtailed inspection plan
and determine what advantage, if any, results from the use of curtailed
rather than total inspection when p = 5%, 10%, and 20%.

21. a) Set up a fixed sample inspection plan for comparing two binomials. The
hypothesis is that p0 = p1 = 0.5 versus the alternative that p1 = 0.6.
β(0.5) = 10% and β(0.6) = 70%. What is the sample size? What is the
rejection region? What is β(0.7)?

b) Set up a sequential sampling plan for the same problem. What is β(0.7)?
What is the expected sample size when p = 0.5, 0.6, and 0.7?
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22. Use the requirement of invariance under a group of transformations to
find a set of confidence bounds on an unknown continuous cumulative
distribution function. Note that the resultant bounds can be used to test
the hypothesis of goodness-of-fit, that is, that the unknown distribution F
is actually that of some known distribution F0. Is there a UMP test? See
Tallis [1983].

23. An alternative to using a one-sample test in the case of matched pairs is to
use a two-sample comparison restricting rearrangements to the exchange
of values within a pair. In either instance, n pairs yield 2n possible rear-
rangements. Which approach leads to the more powerful test?
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Multifactor Designs

The analysis of randomized blocks can be generalized to very complex exper-
imental designs with multiple control variables and confounded effects. In
this chapter, we consider the evaluation of main effects and interactions via
synchronized rearrangements and the analysis of variance. We also study the
analysis of covariance and the analysis of unbalanced designs via a combina-
tion of bootstrap and permutation methods.

7.1 Multifactor Models

What distinguishes the complex experimental design from the simple one-
sample, two-sample, and k-sample experiments we have considered so far is
the presence of multiple control factors. For example, we may want to assess
the simultaneous effects on crop yield of hours of sunlight and rainfall. We
determine to observe the crop yield Xijm for I different levels of sunlight,
i = 1, . . . , I, and J different levels of rainfall, j = 1, . . . , J , and to make M
observations at each factor combination, m = 1, . . . , M . We adopt as our
model relating the dependent variable crop yield (the effect) to the indepen-
dent variables of sunlight and rainfall (the causes)

Xijm = µ + si + rj + (sr)ij + εijm. (7.1)

In this model, terms with a single subscript like si, the effect of sunlight,
are called main effects. Terms with multiple subscripts like (sr)ij , the resid-
ual and nonadditive effect of sunlight and rainfall, are called interactions.
The {εijm} represent that portion of crop yield that cannot be explained by
the independent variables alone; these are variously termed the residuals, the
errors, or the model errors. To ensure the residuals are exchangeable so that
permutation methods can be applied, the experimental units must be assigned
at random to treatment.
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If we wanted to assess the simultaneous effect on crop yield of three factors
simultaneously—sunlight, rainfall, and fertilizer, say—we would observe the
crop yield Xijkm for I different levels of sunlight, J different levels of rainfall,
and K different levels of fertilizer, k = 1, . . . , K, and make nijk observations
at each factor combination. Our model would then be

Xijkm = µ+ si + rj + fk + (sr)ij + (sf)ik + (rf)jk + (srf)ijk + εijkm. (7.2)

In this model we have three main effects, si, rj and fk, three first-order
interactions, (sr)ij , (sf)ik, and (rf)jk, a single second-order interaction,
(srf)ijk, and the error term, εijkm.

Including the additive constant µ in the model allows us to define all
main effects and interactions so they sum to zero; thus

∑
si = 0,

∑
rj = 0,∑

i(sr)ij = 0 for j = 1, . . . , J ,
∑

j(sr)ij = 0 for i = 1, . . . , I, and so forth.
Under the hypothesis of no nonzero interactions, the expected effect of the
joint presence of the two factors si and rj is the sum si + rj . Under the
hypothesis of “no effect of sunlight on crop yield,” each of the main effects
are equal, that is s1 = · · · = sI = 0. Under one alternative to this hypothesis,
the different terms si represent deviations from a zero average.

Clearly, when we have multiple factors, we must also have multiple test
statistics. In the preceding example, we require three separate tests and test
statistics for the three main effects of sunlight, rainfall, and fertilizer, plus
four other statistical tests for the three first-order and the one second-order
interactions. Will we be able to find statistics that measure a single intended
effect without confounding it with a second unrelated effect? Will the several
p-values be independent of one another?

7.2 Analysis of Variance

The analysis of variance (ANOVA) relies on the decomposition (that is, the
analysis) of the sum of squares of a set of observations about their grand mean
into a series of sums. For example in the two-way ANOVA,

∑
i

∑
j

∑
k

(Xijk − X̄...)2 =
∑

i

ni.(X̄i.. − X̄...)2 +
∑

j

n.j(X̄.j. − X̄...)2

+
∑

i

∑
j

nij(X̄ij. − X̄i.. − X̄.j. + X̄...)2

+
∑

i

∑
j

∑
k

(Xijk − X̄ij.)2.

Associated with the model of Equation (7.1) are a set of univariate linear
hypotheses concerning the main effects {si} and {rj} and the interactions
(sr)ij .



“chapter7” — 2004/9/23 — page 121 — #3

7.2 Analysis of Variance 121

The methods of Section 6.2.1 lead us to adopting as test statistics

WI =
nJ
∑

i (X̄i.. − X̄...)/(I − 1)∑
i

∑
j

∑
k (Xijk − X̄ij.)2/IJ(n − 1)

,

WJ =
nI
∑

i (X̄.j. − X̄...)/(J − 1)∑
i

∑
j

∑
k (Xijk − X̄ij.)2/IJ(n − 1)

,

and

WIJ =

∑
i

∑
j nij(X̄ij. − X̄i.. − X̄.j. + X̄...)2(I − 1)(J − 1)∑

i

∑
j

∑
k (Xijk − X̄ij.)2/IJ(n − 1)

.

To show that these three statistics lead to independent tests, we need to
trace our steps through Section 6.2.1 in reverse to show that we may write

Y = CX ,

such that the first IJ(n−1) row vectors of C span Ω, the first I−1 row vectors
of C span the subspace under the hypothesis that all the effects {si} are zero,
the next J − 1 row vectors of C span the subspace under the hypothesis that
all the effects {rj} are zero, and the next (I − 1)(J − 1) span the subspace
under the hypothesis that all the interactions (sr)ij are zero (Exercise 7.2).

If the design is balanced, that is, if nij = n for all i and j, and if the error
terms are independent, identically normally distributed, then WI , WJ , WIJ

will be independently distributed and have the F -distribution with I − 1,
IJ(n − 1); J − 1, IJ(n − 1), and (I − 1)(J − 1), IJ(n − 1) degrees of freedom,
respectively; see, for example, Lehmann [1986; pp 392–396].

As shown in Section 6.2.1, tests based on these statistics will be UMP
among tests that are invariant with respect to transformations in zero-point
and scale against alternatives in which one or more of the effects are nonzero.
If the observations Xi are independent and drawn from distributions which
differ only by a shift, that is, F [x − µi] where F is an arbitrary distribution
with finite variance σ2, then for large samples the size and power of these
tests is the same as it would be if the observations had been independent
and normally distributed. This is because under the stated conditions, the
within-cells sum of squares in the denominator of the test statistic divided
by its degrees of freedom tends in probability to σ2 as the sample size grows
larger, and the between-samples sum of squares in the numerator divided by
its degrees of freedom and by σ2 tends to a chi-square distribution.

The determining quantity in the convergence of the numerator is not the
aggregate sample size N , but the number n of observations associated with
each combination of factors (see, for example, Lehmann, 1986, p. 376). In the
example of the two-way ANOVA, n = N/(IJ). In many studies (clinical trials
are one example), although the number of observations N may be quite large,
n is small because of the large number of factors involved.
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In a recent series of simulations aimed at studying the small-sample proper-
ties of the analysis of variance when applied to multifactor designs, the results
were different for balanced and unbalanced designs.

When the designs were balanced and the observations drawn from a mixture
of normal distributions, even with sample sizes as small as 3 or 4 observations
per cell, the significance levels provided by the assumption of normality for
the analysis of variance were accurate to within the level of precision provided
by 10,000 simulations.

When working with unbalanced designs, the simulated distributions could
be divided into two categories: those in which the various distributions in the
mixture were sufficiently close so the result resembled a skewed normal as in
Figure 7.1; and those in which the modes were clearly differentiated, as in
Figure 7.2.

In the case that gave rise to Figure 7.1, a mixture of three distributions,
N(0, 1), N(2, 4), and N(0, 3) in the proportions of 50%, 40%, and 10%, respec-
tively, the interaction term in the 2×3 design was significant in just 499 cases
out of 10,000 at the 5% level. The result was unaffected when a row effect
of 1 was introduced, demonstrating that the tests provided by the analysis
of variance for the interaction and row effects remain independent even when
the data are not drawn from a normal distribution.

Repeating the analysis, but with an unbalanced design in which only 3
observations were in cell 23, the interaction term was significant in 491 cases
out of 10,000 at the 5% level.

With only 3 observations in each of cells 22 and 23, and no row effect, the
interaction term was found to be significant in 496 cases out of 10,000 at the

Fig. 7.1. A mixture of three normal distributions. 10,000 observations.



“chapter7” — 2004/9/23 — page 123 — #5

7.2 Analysis of Variance 123

Fig. 7.2. A mixture of two well-separated normal distributions. 10,000 observations.

5% level, the row effect in 532 cases, and the column effect in 538 cases, all
three within the limits of precision about 5% provided by the simulation.

The distribution depicted in Figure 7.1 has mean 1.097 and standard devi-
ation 1.871. The probability of detecting a row effect of 1 using ANOVA
was the same, approximately 24%, whether the data were drawn from an
N(1.097, 1.8712) distribution or from the mixture of distributions depicted in
the figure. It would appear that the power as well as the significance level of
ANOVA is robust when distributions are of this type.

In the case that gave rise to Figure 7.2, a mixture of two normal distribu-
tions, N(0.5, 1) and N(2, 1) in the proportions of 70% and 30%, the results
were quite different for the balanced and unbalanced 2 × 3 designs with 24
and 23 observations, respectively. As seen in Table 7.1, the omission of even a
single observation dramatically alters the significance levels. When the stated
significance level was 5%, the actual frequency of Type I error was 7%. When

Table 7.1. ANOVA results of 10,000 simulations with a mixture of normal
distributions in a 2 × 3 design.

5% 1%

Balanced Unbalanced Balanced Unbalanced

Rows 523 92
Columns 525 708 129 213
R × C 516 759 109 243
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the stated significance level was 1%, the actual frequency of Type I error was
more than twice that expected.

Note that in this instance, as with any 2 × K experimental design, the
p-value for rows is left unaffected as it is based on the square of the relatively
robust t-statistic.

As in the k-sample, one-factor case analyzed in the preceding chapter, the
analysis of variance is optimal only for a mean square loss function. A further
limitation in the multifactor 2 × K × · · · case is that only two-sided tests for
rows are possible even though there are only two rows to be compared.

7.3 Permutation Methods: Main Effects

In a k-way analysis with equal sample sizes M in each category, we can assess
the main effects by permutation means using essentially the same statistics we
would use for randomized blocks. Take sunlight in the three-factor example
of Equation (7.2). If we have only two levels of sunlight, then, as shown in
Section 3.6.2, our test statistic for the effect of sunlight is

t =
∑

j

∑
k

∑
m

X1jkm. (7.3)

If we have more than two levels of sunlight, and a mean square loss function,
our test statistic is

F2 =
∑

i

∑
j

∑
k

(∑
m

Xijkm/nijk

)2
. (7.4)

If we have a linear loss function, our test statistic would be

F1 =
∑

i

∑
j

∑
k

∣∣∣∣∑
m

Xijkm/nijk

∣∣∣∣ (7.5)

The statistics F2 and F1 offer protection against a broad variety of shift alter-
natives including

K1 : s1 = s2 > s3 = · · ·
K2 : s1 > s2 > s3 = · · ·
K3 : s1 < s2 > s3 = · · ·

As a result, they may not provide a most powerful test for any single one of
these alternatives. If we believe the effect to be monotone increasing, then,
in line with the thinking detailed in Section 6.3.2, we would use the Pitman
correlation statistic

R =
∑

i

∑
j

∑
k

g[i]
∑
m

Xijkm/nijk (7.6)
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To obtain the rearrangement distributions of the test statistics t, F2, F1, and
R, we permute the observations independently in each of the JK blocks deter-
mined by a specific combination of rainfall and fertilizer. Exchanging obser-
vations within a category corresponding to a specific level of sunlight leaves
the statistics t, F2, F1, and R unchanged. We can concentrate on exchanges
between categories and within blocks as described in Section 6.4.2.

We compute the test statistic (t, F1, or R) for each rearrangement, rejecting
the hypothesis that sunlight has no effect on crop yield only if the value of t
(or F1 or R) that we obtain using the original arrangement of the observations
lies among the α most extreme of these values.

A third alternative to F1 and F2 is

F3 =
∑

i

∑
j

∑
k

ni..(ni.. − 1)(X̄i... − X̄....)2∑
m(Xijkm − X̄ijk.)2

(7.7)

due to James [1951], which Hall [1989] recommends for use with the bootstrap
when we cannot be certain that the observations in the various categories all
have the same variance. In simulation studies with k-sample permutation tests
and variances that differed by an order of magnitude, we found F3 was inferior
to F2.

A final alternative to the statistics F1 and F2 is the standard F -ratio
statistic

F =
∑

i ni..(X̄i...−X̄....)2/(I − 1)∑
i

∑
j

∑
k

∑
m (Xijkm − X̄ijk.)2/(N − IJK)

. (7.8)

But F reduces to F2 on removing factors that are invariant under exchanges
between blocks; determining its rearrangement distribution would entail
unnecessary and redundant computations.

7.3.1 An Example

In this section, we apply the permutation method to determine the main
effects of sunlight and fertilizer on crop yield using the data from the two-
factor experiment depicted in Table 7.2a. As there are only two levels of
sunlight in this experiment, we use t, Equation (7.3), to test for the main
effect. For the original observations, t = 23 + 55 + 75 = 153. One possible
rearrangement is shown in Table 7.2b, in which we have interchanged the two
observations marked with an asterisk, the 5 and 7. The new value of t is 154.

As can be seen by a continuing series of straightforward hand calculations,
the test statistic t for the main effect of sunlight is as small or smaller than

it is for the original observations in only 8 out of the
(

6
3

)3

= 8000 possible

rearrangements. For example, it is smaller when we swap the 9 of the Hi–Lo
group for the 10 of the Lo–Lo group (the two observations marked with the
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Table 7.2a. Effect of sunlight and fertilizer on
crop yield.

Fertilizer

Sunlight LO MED HI

LO 5 15 21
10 22 29
8 18 25

HI 6 25 55
9 32 60

12 40 48

Table 7.2b. Effect of sunlight and fertilizer.
Data rearranged.

LO MED HI

LO 6* 15 21
10# 22 29
8 18 25

+03 HI 5* 25 55
9# 32 60

12 40 48

pound sign). As a result, we conclude that the effect of sunlight is statistically
significant.

The computations for the main effect of fertilizer are more complicated—we

must examine
(

9
3 3 3

)2
rearrangements, and compute the statistic F1 for each.

We use F1 rather than R because of the possibility that too much fertilizer—
the “HI” level—might actually suppress growth. Only a computer can do this
many calculations quickly and correctly, so we adapted our program from
Section 6.3 to pack the data into a two-dimensional array in which each row
corresponds to a block. The estimated significance level is 0.001 and we con-
clude that this main effect, too, is statistically significant.

7.4 Permutation Methods: Interactions

In the preceding analysis of main effects, we assumed the effect of sunlight was
the same regardless of the levels of the other factors. If it is not, if sunlight
and fertilizer interact in a nonadditive fashion, then we shall have to test for
and report the effects of sunlight separately for each level of fertilizer.

To test the hypothesis of no interaction, we first eliminate row and column
effects by subtracting the row and column means from the original observa-
tions. That is, we set X ′

ijk = Xijk − X̄i.. − X̄.j. + X̄...., where, by adding the



“chapter7” — 2004/9/23 — page 127 — #9

7.5 Synchronized Rearrangements 127

Table 7.3. Effect of sunlight and fertil-
izer on crop yield. Testing for nonadditive
interaction.

Fertilizer

Sunlight LO MED HI

LO 4.1 −2.1 −11.2
9.1 4.1 −3.2
7.1 0.1 −7.2

HI −9.8 −7.7 7.8
−7.8 −0.7 12.8
−3.8 7.2 0.8

grand mean X̄..., we ensure the overall sum will be zero. In the example of
the effect of sunlight and fertilizer on crop yield we are left with the residuals
shown in Table 7.3.

The pattern of plus and minus signs in this table of residuals suggests that
fertilizer and sunlight affect crop yield in a superadditive fashion. Note the
minus signs associated with the mismatched combinations of a high level of
sunlight and a low level of fertilizer and a low level of sunlight with a high
level of fertilizer. To encapsulate our intuition in numeric form, we sum the
deviates within each cell, square the sum, and then sum the squares to form
the test statistic

WIJ =
∑

i

∑
j

(∑
k

X ′
ijk

)2

.

We compute this test statistic for each rerandomization of the 18 deviates
into 6 subsamples. In most cases, the values of the test statistic are close to
zero as the entries in each cell cancel. The value of the test statistic for our
original data, I = 2127.8, stands out as an exceptional value, but how are we
to interpret it?

Recall that X ′
ijk = Xijk − X̄i.. − X̄.j. + X̄... or, in terms of our original

linear model, that X ′
ijk = εijk − ε̄i.. − ε̄.j. + ε̄.... But this means that two

residuals in the same row, such as X ′
i11 and X ′

i23, will be correlated while two
observations from different rows and columns will not. The residuals are not
exchangeable, the arguments of Section 3.6.2 do not apply, and a test based
on the distribution of WIJ with respect to all possible permutations will not
be exact.

7.5 Synchronized Rearrangements

Recently, the class of experimental designs that are analyzable by permuta-
tion means to yield exact significance levels was extended to the two-factor
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case through the use of synchronized rearrangements [Salmaso, 2003; Pesarin,
2001]. Using the concept of weak exchangeability, Good [2003] obtained sim-
ilar results, albeit employing a different test statistic. Here we show how the
results of these authors can be easily extended to general multifactor designs
via the group-theoretic concept of similarities. We also show in contrast to the
results of Pesarin [2001] that we remain free to select the test statistic best
suited to the problem at hand.

First, we show how the class of exact tests can be extended via weak
exchangeability. We define synchronous rearrangements in terms of exchanges.
We define a semimetric on the set of finite sums of design observations and
show how similarities yield exact unbiased tests for experimental designs of
any number of factors.

7.5.1 Exchangeable and Weakly Exchangeable Variables

A rearrangement is a permutation of a set of values in which elements are
exchanged among predesignated subsets. Thus the group of permutations P
of a combined sample can be divided into equivalence classes corresponding
to distinct rearrangements among the samples.

A set of observations is said to be exchangeable, if their joint distribution is
invariant under all rearrangements of their subscripts. A set of observations
is said to be weakly exchangeable if their joint distribution is invariant with
respect to some nonempty subset R of the rearrangements of their subscripts,
R � P [Good, 2002].

As was described in Chapter 1, obtaining a test of a hypothesis via rear-
rangements requires four steps:

1. A test statistic is chosen. Normally, this would be one that, based on
some set of predetermined criteria, best discriminates between the primary
hypothesis and the alternative hypothesis.

2. The value of this statistic is determined for the set of observations
as they were originally, that is, prior to any rearrangement of their
labels.

3. A rearrangement distribution is generated by computing the value of the
test statistic for each rearrangement Π ∈ R.

4. The value of the statistic obtained at step 2 is compared with the set
of possible values generated at step 3. If the original value of the test
statistic lies in the tail(s) of the rearrangement distribution favoring the
alternative hypothesis, the primary hypothesis is rejected.

If a set of observations is weakly exchangeable with respect to R under
a null hypothesis H, one can obtain an exact test of H by computing the
rearrangement distribution of a statistic S over R. (See Exercise 7.7.)
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7.5.2 Two Factors

Let the set of observations {Xijk} in a two-factor experimental design be
thought of in terms of a rectangular lattice L with K colored, patterned balls
at each vertex. All the balls in the same column have the same color initially,
a color that is distinct from the color of the balls in any other column. All the
balls in the same row have the same pattern initially, a pattern that is distinct
from the pattern of the balls in any other row. See, for example, Figure 7.3a.

Let P denote the set of rearrangements that preserve the number of balls
at each row and column of the lattice. P is a group.

Let PR denote the set of rearrangements of balls among rows which (a)
preserve the number of balls at each row and column of the lattice, and (b)
result in the numbers of each color within each column being the same in each
row. The set of all rearrangements generated by the set PR is a subgroup of P .

In a 2 × J balanced design with K observations in each category, there
would be exactly 1 rearrangement (the identity) with no exchanges in PR and
1 with all K elements exchanged in each column between rows. There would

be
(

K
1

)2J

rearrangements with a single exchange of elements in each column

between rows for a total of
∑K

k=1

(
K
k

)2J

rearrangements in PR in all.

Fig. 7.3a. Part of a two-factor experimental design.

Fig. 7.3b. The same design after a synchronized exchange of elements between the
first and second rows. P is in PR.
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Fig. 7.3c. The same design after a synchronized exchange of elements between the
first and second columns. P is in PC .

Let PC denote the set of rearrangements of balls among columns which (a)
preserve the number of balls at each row and column of the lattice, and (b)
result in the numbers of each pattern within each row being the same in each
column. The set of all rearrangements generated by the set PC is a subgroup
of P .

In a 2 × J balanced design with K observations in each category, there
would be exactly 1 rearrangement (the identity) with no exchanges in PC and
1 with all K elements exchanged in each row between columns. There would

be
(

K
1

)2J

rearrangements with a single exchange of elements in each row

between columns for a total of
∑K

k=1

(
K
k

)2J

rearrangements in PC in all.

Let PRC denote the set of exchanges of balls that preserve the number of
balls at each row and column of the lattice, and result in (a) an exchange of
balls between both rows and columns (or no exchange at all), (b) the numbers
of each color within each column being the same in each row, and (c) the
numbers of each pattern within each row being the same in each column.

As demonstrated in Figures 7.3d and 7.3e, the rearrangements in PRC are
the result of some but not all successive exchanges involving an element of PR
and an element of PC .

PRC ∩ PR = PRC ∩ PC = PR ∩ PC = I.

Fig. 7.3d. In this design synchronized exchanges of elements have taken place
between the first and second rows and the first and second columns. All requirements
(a), (b), and (c) are satisfied so that this rearrangement is in PRC .
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Fig. 7.3e. In this design successive synchronized exchanges of elements have taken
place. First, between the first and second rows and then, between the first and
second columns. All requirements (a), (b), and (c) are not satisfied so that this
rearrangement is not in PRC .

Define Xijk = Zijk + ∆ij where

∆ij = µ + αi + βj + γij ,
∑

αi =
∑

βj =
∑

i

γij =
∑

j

γij = 0,

and E(Zijk) = 0. Let

p[∆; X] =
∏

i

∏
j

∏
k

f [xijk − ∆ij ]

where f is a density function that is continuous almost everywhere, that is, f
is the density function of each of the identically distributed Zijk.

Without loss of generality, we may assume µ = 0 or, equivalently, we may
work with the set of observations {X ′

ijk} obtained by subtracting µ from each
element of {Xijk}. Suppose, now, the hypothesis H1: αi = 0 for all i holds.
Then the joint distribution of the vector (xi1k′ , xi2k′′ , . . . , xijk∗) obtained
by taking an arbitrary element from each column of the ith row is identi-
cal with the joint distribution of (z − β1 − γi1, z − β2 − γi2, . . . , z − βJ − γiJ)
where f is the probability density of z. The probability density of the sum
of these latter elements is identical with the probability density of nz −∑J

j=1 βj −∑J
j=1 γij = nz; that is, f(z/n).

Under H1,

• f is the probability density of the mean of each of the rows of X.
• Applying any of the elements of PR leaves this density unchanged.
• Applying any of the elements of PR leaves the density of the test statistic

F2 =
∑

i

(∑
j

∑
k xijk

)2 unchanged.1

Similarly, to test H2, we may use the rearrangement distribution over PC of
any of the statistics F2 =

∑
j(
∑

i

∑
k xijk)2, F1 =

∑
j |
∑

i

∑
k xijk|, or R2 =∑

j g[j]
∑

i

∑
k xijk, where g[j] is a monotone function of j. Note that we may

obtain one-sided, as well as two-sided, tests when there are only two rows or
two columns, by focusing, for example, on the statistic (

∑
i

∑
k xi2k)2.

If q ∈ PR and s ∈ PC , then under H3, Sij =
∑

k xijk − xi../I − x.j./J is2

invariant with respect to p = qt ∈ PRC , and, by induction, applying any of

1 That is, as well as the densities of any of the other test statistics for ordered and
unordered effects proposed in Chapter 6.

2 Here and in similar expressions, the use of a dot as in x.i. denotes summation
over the missing subscript(s).
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the elements of PRC leaves the density of the test statistic S =
∑

i

∑
j(Sij)2

unchanged. As only the identity I is common to the corresponding rearrange-
ment sets, the permutation tests3 of the three hypotheses are independent of
one another.

Alternatively, to test H3 in a 22 factorial design, it is easy to see that
the statistic S = x11. − x12. − x21. + x22. is invariant with respect to PRC
providing H3 is true, and that under an alternative the statistic S for the
original nonrearranged observations is more likely to be an extreme value of
the rearrangement distribution over PRC .

As an example, suppose we are studying the effects of two factors each at
two levels and have taken only a single replication. Then PR, PC , and PRC
each contain only two rearrangements. If we have made K replications, then

PR, PC , and PRC will each contain K4 + 2 of the
(

4K
K K K

)
possible

rearrangements.
Suppose there are differences in the time and location at which each replica-

tion was made (see Section 6.4.2). The set PR would be limited to row-by-row
exchanges where all the elements exchanged come from the same replication.
In our example of a 22 factorial, there would be K(K − 1) possible single
exchanges, K(K − 1)(K − 1)(K − 2) possible double exchanges, and so forth.
The test statistics would be the same as in our original example.

7.5.3 Three or More Factors

We define an M -factor experimental design as an M -dimensional lattice L
such that with each element of the lattice s = {i1, i2, . . . , iM}, i1 = 1, . . . , I1;
. . . , im = 1, . . . , IM , is associated a set of independent random variables
Xk(s), k = 1, . . . , ns distributed as F [x − ∆s ] where the following conditions
hold:

∆s = EXk(s) = µ +
M∑

m=1

αim +
M∑

m=1

m−1∑
j=1

βijim
+ · · · ; (7.9)

Im∑
im=1

αim
= 0 for all m; (7.10)

Ij∑
ij=1

βijim =
Im∑

im=1

βijim = 0 for all m and j; (7.11)

and so forth.
If ns = n for all s, we term the design balanced.

3 Strictly speaking, one ought write rearrangement test, but “permutation test” is
already in common usage.
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A well-known result from group theory is that every rearrangement can be
constructed from a succession of pairwise exchanges. Thus, one way to con-
vert {A, B, C} to {B, C, A} is to apply the changes (1,3)(1,2) in that order.
The pairwise exchanges we will be concerned with are those in which an
observation in one cell of an experimental design is swapped with an obser-
vation in another cell at the same location in the design with the excep-
tion of its lth coordinate. For example, in a two-factor design, such an
exchange might be between two cells in the same row but different columns.
We let (l; l1, l2; k1, k2; s) denote a pairwise exchange in which we swap the
k1th observation at {i1, . . . , il−1, l1, . . . , iM} with the k2th observation at
{i1, . . . , il−1, l2, . . . , iM}.

We let (t : l; l1, l2; s) denote an exchange in which t such pairwise exchanges
take place simultaneously between the same pair of cells. In a balanced design,

for each fixed pair of cells (l; l1, l2) there are exactly
(

n
t

)2

such exchanges.

Let r l denote the vector {i1, . . . , il−1, il+1, . . . , iM} and reorder the coor-
dinates of s so that s = {l , r l}. A synchronized pairwise rearrangement used
for testing main effects, for example,

Hl: αlj = 0 for lj = 1, . . . , Il

has the form

(t: l; l1, l2) =
∏
r l

(t : l; l1, l2; {l , r l}),

that is, any exchanges of observations between levels l1 and l2 of the lth factor
take place in synchrony at all levels of all the remaining factors.

A synchronized pairwise rearrangement used for testing the interaction
between factors l and j has the form (t: l; l1, l2)(t: j; j1, j2) in which an initial
synchronized pairwise exchange made between rows j1 and j2 at each combi-
nation of all other factors in the design is followed by a synchronized pairwise
exchange between columns l1 and l2.

Synchronized rearrangements are composed of combinations of synchro-
nized pairwise rearrangements involving distinct pairs of rows and columns.

7.5.4 Similarities

Let X be the vector space formed from finite combinations of the random
variables {Xj(s)} that form an experimental design. We define a semimet-
ric ρ on X such that if X, Y ∈ X with distribution functions FX , FY , then
ρ(X, Y ) = supz |FX [z] − FY [z]|. Note that if ρ(X, Y ) = 0 then X = Y except
on a set of probability zero.

In line with group-theoretic convention (see, for example, Yale, 1968), we
term a rearrangement Π a similarity if, for all points W, X, Y , and Z in X ,
ρ(X, Y ) = ρ(W, Z) if and only if ρ(ΠX,ΠY ) = ρ(ΠW,ΠZ).
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In what follows, dot notation will be used to represent a sum. Thus, X. =∑
Xi and X.j. =

∑
i

∑
k Xijk.

Theorem 7.1. Let {Xj(s)} be a set of independent observations in a
complete balanced experimental design with factors in S such that Xj(s) =
∆s +εj(s), where ∆s satisfies conditions (1), (2), and (3) of Section 7.5.3. and
the {εj(s)} are a set of independent identically distributed random variables
with mean zero, then if π is a synchronous rearrangement with respect to
the factor ij , then π is a similarity under the null hypothesis αij = 0 for
ij = 1, . . . , Ij.

Proof. Without loss of generality, suppose we designate as “rows” the
factor for which we wish to test a main hypothesis and “columns” a second
factor which we wish to test for a first-order interaction with “rows.” To
simplify the notation, we assume that the factor subscripts are reordered so
that the subscripts denoting rows and columns are in the initial positions.

Let Πmp denote a pairwise synchronous exchange between rows m and p as
in Figure 7.4a and b, (that is Πmp = (1: 1;m, p) in our previous notation). Of
course, only two dimensions and three of the rows and columns are illustrated
in our diagram. Similar synchronous exchanges have taken place at all levels
of the remaining factors.

If i �= m and i �= p, then EΠmpXi... = EXi..., as the remaining factors in
condition (1) vanish in accordance with conditions (2) and (3). If i = m, then
EΠmpXi... = EXi... −I(αIm −αIp)−β1Ji.. But if HI is true, βIJi. = 0, so that
EΠmpXi... = EXi.... Similarly for i = p when H1 is true. The εj(s) are
independent and identically distributed; the pairwise exchange involved the
swap of equal numbers of independent, identically distributed variables. So
Πmp is a similarity. Since all synchronous exchanges are made up of similar
pairwise synchronous exchanges, all are similarities as was to be proved. �

Corollary 7.1. The results appear to extend to unbalanced designs as
long as there is at least one observation per cell (see Section 7.6). But if
the design is unbalanced, main effects may already be confounded with inter-
actions. Symmetric rearrangements will merely preserve the imbalance.

The proof of the corollary is immediate, as the proof of the main theorem
did not require that the design be balanced.

Fig. 7.4a. Part of an M -factor design. M -2 of the dimensions are hidden in this
representation.
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Fig. 7.4b. The same design after an exchange of row elements. Similar synchronous
exchanges have taken place in the hidden dimensions.

Imbalance has further practical implications, as it results in fewer opportu-
nities for an exact test without randomization on the boundary and a reduc-
tion in power. Consider a 2 × 2 experimental design with 10 observations in
3 of the cells and 1 in the fourth. Thus, we can exchange at most one pair of
observations between cells. Only 1001 synchronous rearrangements are avail-

able to test for a row effect—one for the identity plus 1�

(
10
1

)3

. 1000 distinct

synchronous rearrangements plus the identity are available to test for a col-
umn effect and 1000 for interaction. The total of 3001 distinct synchronous

rearrangements are a miniscule fraction of the
(

31
10 10 10

)
possible rear-

rangements for this design.
At least two observations per cell are essential if we are to be guaranteed

independent tests of all factors.
Typically, the loss function associated with a testing problem will be sym-

metric about zero and monotone nondecreasing on the positive half-line.

Corollary 7.2. Suppose g is a monotone nondecreasing function such
as g[i] = i or g[i] = log[i + 1]. Then the distribution of the statistic SI =∑Ii

i=1 g[i]X..i.. obtained from synchronous rearrangements can be used to
obtain an exact, unbiased test of a hypothesis concerning a main effect in an
M-factor design, such as HI : αIj = 0 for all j against an ordered alternative,
such as KI : αI1 < αI2 < · · · < αIJ .

The proof parallels that of Theorem 6.2.

7.5.5 Test for Interaction

Theorem 7.2. Let {Xk(s)} be a set of independent observations in a
complete balanced experimental design with factors in S such that Xk(s) =
∆s + εk(s), where ∆s satisfies conditions (1), (2), and (3) and the {εk(s)} are
a set of independent, identically distributed random variables with mean zero.
Then the distribution of the statistic TIJ =

∑
1≤i<i′≤I

∑
1≤j<j′≤J(X..i..j.. +
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Fig. 7.5a. The same design as in Figure 7.4b after a further exchange of column
elements. Similar synchronous exchanges have taken place in the hidden dimensions.
Note that each combination of shape and pattern corresponds to a distinct first-order
interaction term.

X..i′..j′.. − X..i′..j.. − X..i..j′..)2 obtained from synchronous rearrangements can
be used to obtain an exact, unbiased test of a hypothesis concerning a first-
order interaction in an N-factor design such as HIJ : βij = 0 for i =
1, . . . , I; j = 1, . . . , J .

Proof. Let Πnmlk denote a synchronous pairwise exchange between the
cells of the nth and mth rows and the lth and kth columns of the design, that
is, reading from right to left, Πnmlk = (1: J ; l, k)—(1 : I; m, n) in our previous
notation). As can be seen from Figure 7.5a, the second exchange affects not
only the four cells (l, m), (l, n), (k, m), and (k, n) in the I × J plane, but also
the cells in the adjacent rows and columns of the plane. We also see that it
suffices to show that the Tij = Xij... + X.i′..j′.. − X..i′..j... − X..i..j′.. remain
invariant with respect to Πnmlk when the hypothesis HIJ is true for three of
the 2 × 2 × · · · subdesigns depicted.

From the condition (1), we see that Xij may be written as the sum of a
deterministic portion, which we write as ∆ij and a stochastic portion that we
denote by Eij .

Fig. 7.5b. The same design as Figure 7.5a from a new perspective. This new per-
spective confirms that similar synchronous exchanges also have taken place in the
hidden dimensions. The first row and column of Figure 7.5a are displayed at the
bottom of this figure. The two additional lines correspond to different levels of a
third factor.
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Noting that under H12, βij = 0 for all i and j, we see that for the 2×2×· · ·
subdesign in the upper right hand corner of Figure 7.5a, the deterministic
portion Dij of ΠnmlkTij , is equal to

∆..i..j.. − α1n + α1m − α2l + α2k

+ ∆..i′..j′.. − α1m + α1n − α2k + α2l

− ∆..i
′j.. + α1m − α1n + α2l − α2k

− ∆..i..j′.. + α1n − α1m + α2k − α2l

which is equivalent to the deterministic portion of Tij .
The stochastic portion of Tij also remains unchanged by the rearrangement

as it involves a swap of equal numbers of independent, identically distributed
variables.

For the 2× 2×· · · subdesign in the lower right hand corner of Figure 7.5a,∏
nmlk

Dij = ∆..i..j.. − α1m + α1n − α2k + α2l

+ ∆..i′..j′..

− ∆..i
′j.. − α2l + α2k

− ∆..i..j′.. − α1n + α1m

= Dij .

For the 2 × 2 × · · · subdesign formed from the first and second rows and
first and third columns of Figure 7.5a,∏

nmlk

Dij = ∆..i..j.. − α1n + α1m − α2l + α2k

+ ∆..i′..j′.. − α1m + α1n

− ∆..i
′j.. + α1m − α1n + α2l − α2k

− ∆..i..j′.. + α1n − α1m

= Dij .

All other altered 2 × 2 subdesigns are similar to one of these three. As
synchronous rearrangements are made up of synchronous pairwise exchanges,
the theorem follows. �

7.6 Unbalanced Designs

As noted in Section 7.2, the analysis of variance may not be applicable to
severely unbalanced designs. Imbalance in the design will result in the con-
founding of main effects with interactions. Neither is the permutation test a
panacea. When one or more cells in a design have no or only a few obser-
vations, it may be impossible to find sufficient synchronous rearrangements
to perform a meaningful test. As we shall show in the next few sections, the
bootstrap can help us here.
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7.6.1 Missing Combinations

If an entire factor combination is missing, we may not be able to estimate or
test any of the effects. One very concrete example is an unbalanced design I
encountered in the 1970s:

Makinodan et al. [1976] studied the effects of age on the mediation of
the immune response. They measured the anti-SBRC response of spleen cells
derived from C57BL mice of various ages. In one set of trials, the cells were
derived entirely from the spleens of young mice, in a second, they came from
the spleens of old mice, and in a third they came from mixtures of the two.

Let Xi,j,k denote the response of the kth sample taken from a population
of type i, j (i = 0 = j: controls; i = 1, j = 0: cells from young animals only;
i = 0, j = 1: cells from old animals only; i = 1 = j: mixture of cells from old
and young animals). We assume that for lymphocytes taken from the spleens
of young animals,

X2,1,k = µ + α + ε2,1,k;

for the spleens of old animals,

X1,2,k = µ − α + ε1,2,k;

and for a mixture of p spleens from young animals and (1 − p) spleens from
old animals, where 0 ≤ p ≤ 1,

X2,2,k = p(µ + α) + (1 − p)(µ − α) − γ + ε2,2,k

where the errors ε2,2,k are independent values.
Makinodan knew in advance of his experiment that α > 0. He also knew

that the distributions of the errors εi,j,k would be different for the different
populations. We can assume only that these errors are independent of one
another and that their medians are zero.

Makinodan wanted to test the hypothesis γ = 0 as there are immediate
biological interpretations for the three alternatives: (1) from γ = 0 one may
infer independent action of the two cell populations; (2) γ < 0 means excess
lymphocytes in young populations; and (3) γ > 0 suggests the presence of
suppressor cells in the spleens of older animals.

The standard parametric (ANOVA) approach won’t work because of the
empty cell. We can still approach the problem parametrically. Let S = X̄2,2 −
pX̄1,2 − (1−p)X̄2,1. Then T = S/V̂ (S), where the denominator is an estimate
of the variance of S, will have approximately Student’s t-distribution. If the
samples consist of only three or four observations and the observations do
not come from a normal distribution, as was the case with Makinodan’s data,
then Student’s t-distribution is a poor approximation, and a nonparametric
approach is called for.

There are no synchronous rearrangements, so this method is ruled out,
too. Fortunately, another resampling method, the bootstrap, can provide a
solution.
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Here is the bootstrap procedure:
Draw an observation at random and with replacement from the set {x2,1,k};

label it x∗
2,1,j . Continue until you have drawn the same number of observations

as were in the original sample taken from young animals Similarly, draw the
bootstrap observations x∗

1,2,j and x∗
2,2,j from the sets {x1,2,k} and {x2,2,k}.

Let
zj = pX̄

∗
1,2+(1 − p)X̄∗

2,1 − X̄∗
2,2.

Repeat this resampling procedure a thousand or more times, obtaining
a bootstrap estimate zj of the interaction each time you resample. Use the
resultant set of bootstrap estimates {zj} to obtain a confidence interval for γ.
If z = 0 belongs to this confidence interval, accept the hypothesis of additivity;
otherwise reject.

One word of caution: Unlike a permutation test, a bootstrap is exact only
for very large samples. The probability of a Type I error may be greater than
the significance level you specify.

Bootstrap Analysis of an Unbalanced Design

Mean DPFC response. Effect of pooled old BC3FL spleen cells on the anti-SRBC
response of indicator pooled BC3FL spleen cells. Data extracted from Makinodan
et al. [1976]. Bootstrap analysis:

Young cells Old cells 1/2 + 1/2
5640 1150 7100
5120 2520 11020
5780 900 13065
4430 50
7230

Bootstrap sample 1: 5640 + 900 − 11020 −4480
Bootstrap sample 2: 5780 + 1150 − 11020 −4090
Bootstrap sample 3: 7230 + 1150 − 7100 1280

· · · · · · · · · · · ·... · · · · · · · · · · · ·
Bootstrap sample 600: 5780 + 2520 − 7100 1200

7.6.2 The Boot-Perm Test

The preceding was an extreme example of an unbalanced design. More often,
we will have a few observations in each category. In either set of circumstances,
we may proceed as follows:

Bootstrap from the original data to create a balanced design, sampling with
replacement separately from each category, so that the ab’s are selected from
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the ab sample, the aB’s from the aB sample and so forth. Analyze the resultant
balanced design using a permutation test. Bootstrap 10 times. If you reject
every time or accept every time, draw the corresponding conclusion. Otherwise
bootstrap 100 times and check again. If you still have ambiguity, then either
a highly significant interaction is present or the differences and main effects
are not significant. Only by taking additional observations to obtain a more
balanced sample can you make an informed decision.

7.7 Which Test Should You Use?

For a balanced experimental design, the analysis of variance (ANOVA) pro-
vides a set of independent uniformly most powerful invariant tests that are
remarkably robust to deviations from normality.

With data that are distinctly non-normal, an attempt should be made in
line with the guidelines provided in Chapter 11.3 to find a transformation
such that the transformed data is close to normal. If this is not possible, then
a test using synchronous rearrangements should be employed.

The use of synchronous rearrangements is also recommended for the
analysis of unbalanced designs providing there are an adequate number of
synchronous rearrangements despite the imbalance.

The preceding section contained an extreme example of an unbalanced
design; more often we have a few observations in each category. In these
circumstances, we could use synchronized rearrangements or we could proceed
as follows:

Bootstrap from the original data preserving categories so the observations
in the ijkth cell of the bootstrap design are selected with or without replace-
ment from the ijkth cell of the original design. Analyze the resultant balanced
design using the analysis of variance. Repeat 100 times. If the results are con-
sistent so that you reject or accept the hypothesis in nearly every instance,
draw the corresponding conclusion. If the results are mixed, varying from
bootstrap sample to bootstrap sample, then you probably have a highly sig-
nificant interaction and must draw additional observations from the original
population before proceeding further.

7.8 Exercises

1. Find the expected value of the numerator and denominator of WI in Sec-
tion 7.2.

2. Show that if a vector Y is distributed as normal N(0, σ2I ) and if Z = CY
where C is an orthogonal matrix, then Z is distributed as N(0, σ2I ), also.

3. For model (7.1), express the test statistics W1, WJ , WIJ in terms of the
variables Y in the canonical form Y = CX to show that the numerators
of these expressions lie in separate subspaces.
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4. Confidence interval. Derive a 90% confidence interval for the main effect
of sunlight using the crop yield data in Table 7.1. First, restate the model
so as to make clear what it is you are estimating:

Xikl = µ + si + fk + sfik + εikl, with s1 = −δ and s2 = δ.

Recall that we rejected the null hypothesis that δ = 0. Suppose you add
d = 1 to each of the observations in the low sunlight group and subtract
d = 1 from each of the observations in the high sunlight group. Would you
still reject the null hypothesis at the 90% level? If your answer is “yes”
then d = 1 does not belong to the 90% confidence interval for δ. If your
answer is “no” then d = 1 does belong. Experiment (be systematic) until
you find a value δo such that you accept the null hypothesis whenever
d > δo.

5. a) Is the Still–White test for interaction asymptotically exact?
b) If we were to generate random relabelings of the original observations,

and then compute the Still–White statistic, would the resulting distri-
bution provide an exact test?

6. Suppose a set of observations is weakly exchangeable with respect to two
nonempty subsets of rearrangements R1 and R2.
a) Show that they are also weakly exchangeable with respect to the union

of R1 and R2.
b) Would a test based on the rearrangement distribution of the observa-

tions on the union of R1 and R2 always be as or more powerful than
a test based on the rearrangement distribution of the observations on
R1 alone?

7. The following designs were among those used to validate the GoodStats
program. For each design, specify the total number of synchronized rear-
rangements, and the p-values associated with row effects, column effects
and interaction.

Design a: 2 1 0 0
0 0 0 0

Design b: 2 0 0 0
0 0 0 1

Design c: 2 1 0 0 0 0
0 0 0 0 0 0.

8. Show that P is the group generated by the union of PR,PC and PRC .
9. Show that while a synchronized rearrangement used for testing the inter-

action between factors l and j has the form (t: l; l1, l2) (t: j; j1, j2), the
converse is not necessarily true.

10. In an I × J two-factor experimental design, will the statistics S and T
produce equivalent results using a) analysis of variance, b) synchronized
rearrangements, where S =

∑
1≤i<i′≤I

∑
1≤j<j′≤J g[Xij+Xi′j′ − Xi′j −

Xij′ ] and T =
∑I

i=1
∑J

j=1 (X̄ij. − X̄i.. − X̄.j. + X̄...)2.
11. Prove Corollary 7.2.
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12. Extend Theorem 7.2 to the case of second-order interactions in a three-
factor design.

13. Are the following two bases for permutation-based inference equivalent?
(i) The rearrangement distribution is derived by considering the outcomes

associated with all possible assignments of treatments to experimental
units.

(ii) The rearrangement distribution is derived by considering the outcomes
associated with all possible rearrangements of the existing labels on
the experimental units.
(Hint: Consider an experiment in which we allocate treatments to n
experimental units by a succession of coin flips.)

14. Establish properties that will determine without explicit representation
whether the product of two rearrangements pq will belong to PRC when p
is in PR and q is in PC .
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Categorical Data

In many experiments and in almost all surveys, many if not all the results fall
into discrete categories rather than being measurable on a continuous scale:
e.g., male vs. female, African–American vs. Hispanic vs. Asian vs. white, in
favor vs. against vs. undecided. The corresponding hypotheses concern pro-
portions: (“African–Americans are as likely to be Democrats as they are to be
Republicans.” “The dominant genotype ‘spotted shell’ occurs with three times
the frequency of the recessive.” “The data from all 14 treatment sites may be
combined as the effects of treatment are identical at each site.” In this chapter
you will learn methods for testing these hypotheses. The techniques you will
learn also are applicable when your measurements are ordinal but not metric,
as with preference ratings: e.g. “Do you prefer the acting of Toni Colette to
Nicole Kidman? Strongly prefer? Slightly prefer? Indifferent?”

8.1 Fisher’s Exact Test

Suppose, upon examining the cancer registry in a hospital, we uncover the
data that we put in the form of a 2 × 2 contingency table, Table 8.1.

The 9 denotes the number of males who survived cancer, the 1 denotes the
number of males who died from the disease, and so forth. The four marginal
totals or marginals are 10, 14, 13, and 11. The total number of men in the
study is 10, while 14 denotes the total number of women, and so forth.

We see in this table an apparent difference in the survival rates for men and
women: Only 1 of 10 men died following treatment, but 10 of the 14 women
failed to survive. Is this difference statistically significant?

The answer is “yes” if the data represent a random sample of cancer
patients. Let’s see why, using the same line of reasoning that Fisher advanced
at the annual Christmas meeting of the Royal Statistical Society in 1934.
After Fisher’s talk was concluded, incidentally, a seconding speaker compared
Fisher’s talk to “the braying of the Golden Ass.” I hope the reader will take
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Table 8.1.

Survived Died Total

Men 9 1 10
Women 4 10 14
Total 13 11 24

more kindly to my own explanation. Fisher’s test maximizes the minimum
power [Tocher, 1950].

The marginals in this table are fixed because, indisputably, there are 11
dead bodies among the 24 persons in the study and 14 women. Suppose that
before completing the table, we lost the subject identification labels so that
we could no longer identify which subject belonged in which category. Imagine
you are given two sets of 24 labels. The first set has 14 labels with the word
“woman” and 10 labels with the word “man.” The second set of labels has 11
labels with the word “dead” and 13 labels with the word “alive.” Under the
null hypothesis, you are allowed to distribute the labels to subjects indepen-
dently of one another, one label from each of the two sets per subject.

The following two tables are the result of this relabeling procedure. The first
of these tables could make a strong case for the superior fitness of the male,
stronger even than our original observations. In the second table, the survival
rates for men and women are more alike than they were in our original table.

There are a total of N =
∑10

x=0

(
13
x

)(
11

10 − x

)
=
(

24
10

)
ways you could

hand out the labels.
(

14
10

)(
10
1

)
of the assignments result in tables that are

as extreme as our original table (that is, in which 9 of the men survive),

and
(

14
11

)(
10
0

)
in tables that are more extreme (all 10 of the men survive).

This is a very small fraction of the total, so we conclude that a difference in
survival rates of the two sexes as extreme as the difference we observed in our

Table 8.2a.

Survived Died Total

Men 10 0 10
Women 3 11 14
Total 13 11 24

Table 8.2b.

Survived Died Total

Men 8 2 10
Women 5 9 14
Total 13 11 24
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Table 8.3.

Category 1 Category 2 Total

Category A x m − x m
Category B t − x n
Total t m + n

original table is very unlikely to have occurred by chance alone. We reject the
hypothesis that the survival rates for the two sexes are the same and accept
the alternative hypothesis that, in this instance at least, males are more likely
to profit from treatment.

8.1.1 Hypergeometric Distribution

How did we determine the total number of possible tables? The component
terms are taken from the hypergeometric distribution:

t∑
x=0

(
m
x

)(
n

t − x

)/(
m + n

t

)
(8.1)

where n, m, t, and x occur as indicated in the 2 × 2 contingency table,
Table 8.3.

If the proportion of category 1 is the same for both categories A and B, then

all tables with the same marginals are equally likely and
∑t−x

k=0

(
m

t − k

)(
n
k

)
tables are more extreme.

8.1.2 One-Tailed and Two-Tailed Tests

In the preceding example we tested the hypothesis that survival rates do
not depend on sex against the alternative that men diagnosed with cancer
are likely to live longer than women similarly diagnosed. We rejected the null
hypothesis because only a small fraction of the possible tables were as or more
extreme than the one we observed initially. This is an example of a one-tailed
test. But is it the appropriate test? Is this really the alternative hypothesis we
would have proposed if we had not already seen the data? Wouldn’t we have
been just as likely to reject the null hypothesis that men and women profit
the same from treatment if we had observed Table 8.4?

Of course, we would! In determining the significance level in the present
example, we must add together the total number of tables that lie in either
of the two extremes or tails of the permutation distribution.

The critical values and significance levels are quite different for one-tailed
and two-tailed tests and, all too often, the wrong test has been employed in
published work. McKinney et al. [1989] reviewed some 70 plus articles that
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Table 8.4.

Survived Died Total

Men 0 10 10
Women 13 1 14
Total 13 11 24

appeared in six medical journals. In over half of these articles, Fisher’s exact
test was applied improperly. Either a one-tailed test had been used when
a two-tailed test was called for, or the authors of the paper simply hadn’t
bothered to state which test they had used.

Of course, unless you are submitting the results of your analysis to a regu-
latory agency, no one will know whether you originally intended a one-tailed
test or a two-tailed test and subsequently changed your mind. No one will
know whether your hypothesis was conceived before you started or only after
you’d examined the data. All you have to do is lie about the condition of
the data. Just recognize that if you test an after-the-fact hypothesis without
identifying it as such, you are guilty of scientific fraud.

When you design an experiment, decide at that time whether you wish to
test your hypothesis against a two-sided or a one-sided alternative: A two-
sided alternative dictates a two-tailed test; a one-sided alternative dictates a
one-tailed test.

As an example, suppose we decide to do a follow-on study of the cancer regi-
stry to confirm our original finding that men diagnosed as having tumors live
significantly longer than women similarly diagnosed. In this follow-on study,
we have a one-sided alternative. Thus, we would analyze the results using a
one-tailed test rather than the two-tailed test we applied in the original study.

8.1.3 The Two-Tailed Test

Unfortunately, it is not as obvious which tables should be included in the
second tail. Is Table 8.4 as extreme as Table 8.2 in the sense that it favors an
alternative more than the null hypothesis? One solution is simply to double
the p-value we obtained for a one-tailed test. Alternately, we can define and
use a test statistic as a basis of comparison. One commonly used measure
is the χ2 (chi-square) statistic defined for the 2 × 2 contingency table after
eliminating terms that are invariant under permutations as [x−tm/(m+n)]2.
For Table 8.1, this statistic is 12.84, for Table 8.4, it is 29.34.

We leave it to you to do the computations to show that Table 8.5 is more
extreme than Table 8.1, but Table 8.6 is not.

8.1.4 Determining the p-Value

A problem with any of the methods we’ve used so far is that they produce
only discrete significance values. We’re very unlikely to observe 0.05 exactly;
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Table 8.5.

Survived Died Total

Men 1 9 10
Women 12 2 14
Total 13 11 24

Table 8.6.

Survived Died Total

Men 2 8 10
Women 11 3 14
Total 13 11 24

Table 8.7.

Survived Died Total

Men 7 3 10
Women 6 8 14
Total 13 11 24

if the number of observations is small, p-values may jump from 0.040 (as in
Table 8.2a) to 0.185 (as in Table 8.7) as a result of a single additional case.

What are the appropriate criterion for rejection of the null hypothesis?
Limiting ourselves to 4% of the tables means we err on the conservative side.
Rejecting for 18% means we are settling for an excessively high frequency of
Type I errors. There are at least six solutions:

1) Deliberately err on the conservative side, that is, reject when p ≤ C(n, m, t)
where C(n, m, t) is the smallest integer for which the proportion of tables
with the same marginals (n, m, t) is less than or equal to the significance
level. See Boschloo [1970] and McDonald, Davis, and Miliken [1977] for
some slight improvements on this approach.

2) Randomize on the boundary. If you get a p-value of 0.185 and the next clos-
est value would have been 0.040, let the computer choose a random number
between 0 and 1 for you. If this number is less than (0.05 − 0.04)/(0.185 −
0.040), reject the hypothesis at the 5% level, accept it otherwise. Unless
you don’t care to leave your decisions to chance.

3) Use the mid-p-value. Let p be equal to half the probability of the table you
actually observe plus all of the probability of more extreme results. See
Lancaster [1961].

4) Present your audience with the data and the p-value you calculated; let
them make up their own minds whether it is a significant result or not.
See Section 3.2.6.

5) Make use of a back-up statistic; see Section 8.5.1.2.
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6) Conduct a sensitivity analysis, Dupont [1986]. Add a single additional case
to one of the cells (say the cell that has the most observations already, so
your addition will have the least percentage impact). Does the significance
value change appreciably? (Again, leave it to your audience to decide what
is an “appreciable” change.) This approach is particularly compelling if you
are presenting statistical evidence in a courtroom, as it turns impersonal
percentages into individuals; see Good [2001b].

8.1.5 What is the Alternative?

In Chapter 3, we noted that every test requires both a primary hypothesis and
an alternative hypothesis. The primary hypothesis for the 2 × 2 contingency
table is that the labels for alternate categories are independent of one another;
but what is the alternative? We need a model.

Let us assume we have taken two independent samples represented in the
two rows, and that each sample consists of independent identically distributed
observations. In the first row, m independent binomial trials resulted in x
observations in the first row, the successes. In the second row, the n indepen-
dent binomial trials resulted in t − x successes. The joint probability may be
written as (

m
x

)
px
1(1 − p1)m−x

(
n

t − x

)
pt−x
2 (1 − p2)n−(t−x)

or, equivalently,(
m
x

)(
n

t − x

)
(1 − p1)m(1 − p2)n exp

[
x log[−θ] + t log

p2

(1 − p2)

]
,

where θ is the odds ratio
p2/(1 − p2)
p1/(1 − p1)

.

Our null hypothesis of identical distributions in the two rows is that p1 = p2
or θ = 1, while a one-sided alternative might be that θ > 1.

8.1.6 Increasing the Power

Providing we are willing to randomize on the boundary as described in Sec-
tion 8.1.4, Fisher’s exact test based on the conditional distribution of x given
m, n, and t is UMP among all unbiased tests for comparing two binomial
populations [Lehmann, 1986, pp 151–162].

It is UMP under any of the following four world views:

i) Binomial sampling—one set of marginals in the contingency table is ran-
dom; the other set and the total number of observations n + m are fixed.
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ii) Independent Poisson processes—all marginals and the total number of
observations are random.

iii) Multinomial sampling—all marginals are random and the total number of
observations is fixed.

iv) An experiment in which a fixed number n + m of subjects is randomly
assigned on an individual basis to one of two different treatments—all
marginals are fixed.

The power of Fisher’s test depends strongly on the composition of the
sample. A balanced sample, with equal numbers in each category, is the most
desirable. If the sample is too unbalanced, for example, if 100 of the observa-
tions have the row attribute and only 1 does not, it may not be possible to
determine if the column attribute is independent of the row attribute.

The question arises whether one ought to take samples from (a) the popu-
lation at large, or (b) by selecting samples from subjects with and without
the row attribute, or (c) selecting samples from subjects with and without the
column attribute. If (b) or (c), should the samples be of equal size?

For very large sample sizes (Exercise 8.1), one can use a normal approxi-
mation to show that more powerful tests can be obtained by selecting samples
of equal size. If you have some prior knowledge about the frequency of the two
attributes, then select samples on the basis of that attribute whose probability
is closest to 1/2.

Studies of the power of Fisher’s exact test against various alternatives were
conducted by Haber [1987] and Irony and Pereira [1986]. It is easy to see that

p{f11 = x} =

(
m
x

)(
n

t − x

)
θx

∑
u

(
m
u

)(
n

t − u

)
θu

,

where θ is the odds ratio; this is the noncentral hypergeometric distribution
[Fisher, 1934; Cornfield, 1956].

8.1.7 Ongoing Controversy

Fisher’s original presentation of his “exact test” was marked by acrimony
and dissent that has continued to the present day. Fisher’s exact test agrees
asymptotically with the chi-square test based on one degree of freedom, a fact
that is no longer in dispute today (see Kendall and Stuart, 1979, page 586;
Mehta and Patel, 1986). But in 1934, Fisher’s listeners raged over whether
there should be three or four degrees of freedom in a 2 × 2 contingency table
or just one degree as Fisher asserted.

To understand, and hopefully disagree with, the objections, read the dis-
cussions following Fisher [1935], as well as Box [1978]. Also, see Exercises 8.2,
8.3, and 8.4.
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Today, the controversy has taken a somewhat different form. Most analysts
choose to view the contingency table as we have here, conditional on the mar-
gins. But others view the table as resulting from two separate and independent
binomial samples, the so-called unconditional case. The column sums still are
considered fixed, each corresponding to a distinct population, but the row

sums now are viewed as random variables. Instead of having only
(

f..

minij fij

)
possibilities, thus limiting the increments in which significance levels may be
achieved as noted in Section 8.1.4, all tables that satisfy

∑
i f1j = nj for

j = 1, . . . , C are considered.
In the conditional approach advanced by Fisher, the sum of successes from

the two populations is sufficient under the null hypothesis for the unknown
probability of success (Exercise 8.2). In the unconditional case, the obvious
choices for test statistic (see, for example, those advanced by Barnard, 1945
and Chan, 1998) do depend on this unknown parameter. The solution is to
take as the p-value the supremum of the exact p-values over some range of
possible values for the parameter [Barnard, 1945 and Berger and Boos, 1994].

The unconditional approach appears to us less desirable as it requires we
include in the rejection region tables whose marginals did not occur, but see
Barnard [1945, 1949, 1979, 1989], Greenland [1991], Haber [1987], Storer and
Kim [1990], and Suissa and Shuster [1984, 1985].

8.2 Odds Ratio

In most instances, we won’t be satisfied with merely rejecting the null
hypothesis but will want to make some more powerful statement like “men
are twice as likely as women to get a good-paying job” or “women under 30
are twice as likely as men over 40 to receive as academic appointment.”

In the discrimination case of Fisher vs. Transco Services of Milwaukee
[1992], the plaintiffs claimed that Transco was ten times as likely to fire older
employees. Can we support this claim with statistics? The Transco data are
provided in Table 8.8.

Let p1 denote the probability of firing a young person, and π2 the
probability of firing an older person. We want to go beyond testing the null
hypothesis p1 = p2 to determine a confidence interval for the odds ratio
θ = (p2/(1 − p2))/(p1/(1 − p1)).

Table 8.8. Transco employment.

Outcome Young Old
Fired 1 10
Retained 24 17
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Fig. 8.1. StatXact-4 Output Datafile: C:\SX3WIN\EXAMPLES\TRANSCO.CY3
ODDS RATIO OF TWO BINOMIAL PROPORTIONS.

One can obtain confidence intervals for the odds ratio by iterative
methods as described in Section 3.2, see also Cornfield [1956], Mantel and
Hankey [1971], and Thomas [1971]. Baptista and Pike [1977] describe an
approach that sometimes gives shorter confidence intervals. We turn for aid to
StatXactTM, a statistical package whose emphasis is the analysis of categor-
ical and ordinal data. Choosing “statistics”, “two binomials”, and “CI odds
ratios” from successive StatXact menus, we obtain the results of Figure 8.1.

Based on these results, we can tell the judge that older workers were fired
at a rate at least 1.6 times the rate at which younger workers were discharged.

8.2.1 Stratified 2 × 2’s

In trying to develop a cure for a relatively rare disease, we face the problem of
having to gather data from a multitude of test centers, each with its own set
of procedures and its own way of executing them. Before we can combine the
data, we must be sure the odds ratios across the test centers are approximately
the same. Consider the set of results in Table 8.9, obtained by the Sandoz
drug company and reproduced with permission from the StatXact-3 manual.
One of the sites, number 15, stands out from the rest. But is the difference
statistically significant?1

Zelen [1971] proposed a test based on the number of 2 × 2 tables with the
same marginals that are as likely or less likely than the table that was actually
observed. With 22 contingency tables, the number of computations needed to
examine all rearrangements is in the billions. Fortunately, StatXact utilizes

1 Similar problems were encountered in a study in which test subjects might use one
of several different “identical” machines. We couldn’t combine the results from
the different machines or the different technicians who operated them until we
performed an initial test of their equivalence.
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Table 8.9. Sandoz drug data.

New Drug Control Drug

Test Site Response # Response #

1 0 15 0 15
2 0 39 6 32
3 1 20 3 18
4 1 14 2 15
5 1 20 2 19
6 0 12 2 10
7 3 49 10 42
8 0 19 2 17
9 1 14 0 15

10 2 26 2 27
11 0 19 2 18
12 0 12 1 11
13 0 24 5 19
14 2 10 2 11
15 0 14 11 3
16 0 53 4 48
17 0 20 0 20
18 0 21 0 21
19 1 50 1 48
20 0 13 1 13
21 0 13 1 13
22 0 21 0 21

several time-saving algorithms, including the one introduced in Mehta, Patel,
and Senchaudhuri [1988] to obtain a Monte Carlo estimate of the significance
level. We pull down menus Statistics, Stratified 2 × 2 Tables, Homogeneity of
Odds Ratios to obtain the results in Figure 8.2.

The estimated p-value of .013, just a fraction greater than 1%, tells us it
would be unwise to combine the results from the different sites.

The output of the StatXact program provides us with one more impor-
tant finding. Displayed above the Monte Carlo estimate of the exact p-value,
0.01237 is the asymptotic or large-sample approximation based on the chi-
square distribution. Its value, 0.0785, is many times larger than the correct
value; relying on this so-called approximation would have led us to a com-
pletely different and erroneous conclusion.

8.3 Exact Significance Levels

The preceding result is not an isolated one. Asymptotic approximations such
as the use of the chi-square distribution for the small-sample distribution of
Pearson’s chi-square statistic are to be avoided in the analysis of contingency
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Fig. 8.2. StatXact-4 Output Datafile: C:\SX3WIN\EXAMPLES\SANDOZ.CY3
TEST FOR HOMOGENEITY OF ODDS RATIOS.

tables except for tables with a large number of observations in each and every
cell. Table 8.10 contains data on oral lesions observed in three regions of
India derived from Gupta et al. [1980]. We want to test the hypothesis that
the location of oral lesions is unrelated to geographical region. Possible test
statistics include Freeman–Halton p (see Section 8.4), pχ, and pL. This latter
statistic is based on the log-likelihood ratio

∑∑
fij log(fijf../fi.f.j).

We may calculate the exact significance levels of these test statistics by
deriving their permutation distributions or use asymptotic approximations
obtained from tables of the chi-square statistic. Table 8.11 taken from the
StatXact-3 manual compares the various approaches.

The exact significance level varies from 1% to 3.5%, depending on which test
statistic we select. Tabulated p-values based on large-sample approximations

Table 8.10. Oral lesions in three regions of India.

Site of Lesion Kerala Gujarat Andh

Labial Mucosa 0 1 0
Buccal Mucosa 8 1 8
Commissure 0 1 0
Gingiva 0 1 0
Hard Palate 0 1 0
Soft Palate 0 1 0
Tongue 0 1 0
Floor of Mouth 1 0 1
Alveolar Ridge 1 0 1
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Table 8.11. Three tests of independence.

Statistic χ2 F–H LR

Exact p-value .0269 .0101 .0356
Tabulated p-value .1400 .2331 .1060

vary from 11% to 23%. Using the Freeman–Halton statistic, the permutation
test tells us the differences among regions are significant at the 1% level;
the large-sample approximation says no, they are insignificant even at the
20% level. The permutation test is correct. The large-sample approximation
is grossly in error. With so many near-zero entries in the original contingency
table, the chi-square large-sample approximation is not appropriate.2

8.4 Unordered r × c Contingency Tables

With a computer at hand, the principal issue in the analysis of a contingency
table with r rows (r > 2) and c columns (c > 2) is deciding on an appropriate
test statistic. Halter [1969] showed that we can find the probabilities of any
individual r × c contingency table through a straightforward generalization of
the hypergeometric distribution given in Equation (8.1). An r×c contingency
table consists of a set of frequencies {fij , 1 ≤ i ≤ r; 1 ≤ j ≤ c} with row
marginals {fi., 1 ≤ i ≤ r} and column marginals {f.j , 1 ≤ j ≤ c}. Suppose
once again we have mixed up the labels. To make matters worse, this time
every item/subject is to be assigned both a row and a column label from
the r + c stacks of labels of which f1. are labeled row 1, f2. are labeled row 2,
and so forth.

Let P denote the probability with which a specific table assembled at ran-
dom will have these exact frequencies. P = Q/R with3

Q =
r∏

i=1

fi.!
c∏

j=1

f.j !f..!

and

R =
r∏

i=1

c∏
j=1

fij !

An obvious extension of Fisher’s exact test is the Freeman and Halton
[1951] test based on the proportion p of tables for which P is greater than or
equal to P0 for the original table.

2 See also, Mudholkar and Hutson [1997].
3 ∏n

i=1 fi! = f1!f2! · · · fn!
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While the extension itself may be obvious, it’s not as obvious that this
extension offers any protection against the alternatives of interest. Just
because one table is less likely than another under the null hypothesis does
not mean it is going to be more likely under the alternatives of interest to us.
Consider the 1×3 contingency table f1 f2 f3 , which corresponds to the multi-
nomial with probabilities p1 + p2 + p3 = 1, the table whose entries are 1, 2, 3
argues more in favor of the null hypothesis p1 = p2 = p3 than of the ordered
alternative p1 > p2 > p3.

The classic statistic for independence in a contingency table with r rows
and c columns is

χ2 =
r∑

i=1

c∑
j=1

(fij − Efij)2/Efij ,

where Efij is the number of observations in the ijth category one would
expect on theoretical grounds.

With very large samples this statistic has the chi-square distribution with
(r − 1)(c − 1) degrees of freedom. But in most practical applications, the chi-
square distribution is only an approximation and notoriously inexact for small
and unevenly distributed samples.

The permutation statistic based on the proportion pχ of tables for which
χ2 is greater than or equal to χ2

0 for the original table provides an exact test
and possesses all the advantages of the original chi-square. The distinction
between the two approaches, as we observed in Chapter 2, is that with the
original chi-square we look up the significance level in a table, while with
the permutation statistic, we derive the significance level from the permu-
tation distribution. With large samples, the two approaches are equivalent,
as the permutation distribution converges to the tabulated distribution (see
Chapter 14 of Bishop, Fienberg, and Holland [1975]).

An alternative is the likelihood ratio test based on the statistic

pL = 2
r∑

i=1

c∑
j=1

fij log
[

fij

fi.f.j/f..

]
.

If you wish to compare the strength of the association between the row and
column variables across different r × c tables having different row and column
dimensions, use one of the contingency coefficient’s described by Liebetrau
[1983]. One example is Cramer’s V, which ranges between 0 and 1, with 0
signifying no association and total dependence:

V =

√
χ2

f..(min[r, c] − 1)
.

All these permutation tests have one of the original chi-square test’s disad-
vantages: while they offer global protection against a wide variety of alterna-
tives, they offer no particular protection against any single one of them. The
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statistics p, pχ, and pL treat row and column categories symmetrically, and
no attempt is made to distinguish between cause and effect. To address this
deficiency, Goodman and Kruskal [1954] introduce an asymmetric measure
of association for nominal scale variables called tau(τ), which measures the
proportional reduction in error obtained when one variable, the “cause,” or
independent variable, is used to predict the other, the “effect,” or dependent
variable.

Assuming the independent variable determines the row,

τ =

∑
j fmj − fm.

f.. − fm.
,

where fmj = maxi fij , and fm. = maxi fi..
0 ≤ τ ≤ 1. τ = 0 when the variables are independent; τ = 1 when, for each

category of the independent variables, all observations fall into exactly one
category of the dependent. These points are illustrated in the following 2 × 3
tables:

3 6 9
6 12 18

τ = 0

18 0 0
0 36 0

τ = 1

3 6 9
12 18 6

τ = 0.166

A permutation test of independence is based on the proportion of tables pτ
for which τ ≥ τ0.

An alternative is the uncertainty coefficient derived from the likelihood
ratio statistic

UR|C =

∑r
i=1
∑c

j=1 fij log[Efij ]∑r
i=1 fi. log[fi./f..]

.

Like tau, this statistic measures the reduction in error and ranges between
0 and 1 as the association ranges from complete dependence to complete
dependence of the row, column variables.

8.4.1 Agreement Between Observers

Suppose two observers assign the same sample set to various categories so the
results can be put in the form of an r × r table. An example would be two
teachers assigning letter grades to the same set of students. A permutation
test based on Cohen’s kappa (κ) as described in Agresti [1990] and Berry and
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Mielke [1988], allows us to measure the degree of agreement between the two
observers:

κ =
f..

∑r
i=1(fii − fi.f.i)

f2
.. −∑r

i=1 fi.f.i
.

Note that 0 < k ≤ 1.

Which Test?

The data are in categories.
The categories can’t be ordered.
(a) If there are exactly two rows and two columns

Use Fisher’s Exact Test
If there are more than two rows and at least two columns, and
(i) you want to test whether the relative frequencies are the same in each row

and in each column:
Use the Freedman–Halton Test or use chi-square;

(ii) you want to test whether the column frequencies depend on the row:
Use tau or the uncertainty coefficient.

(b) If the number of rows is equal to the number of columns, and
you want to test whether the row and column classifications are in agreement:
Use Kappa.

8.4.2 What Should We Randomize?

Table 8.12a summarizes Clarke’s [1960, 1962] observations on the relation
between habitat and the relative frequencies of different varieties of C.
nemoralis snail. It is tempting to analyze this table using the methods of the
preceding section, but before we can analyze a data set, we need to understand
how it was collected. In this instance, observers went to a series of locations
in southern England. At each location, they noted the type of habitat—
beechwoods, grasslands, and so forth—and the frequencies of each of 12 dif-
ferent varieties of snail. The original findings are summarized in Table 8.12b
reproduced from Manly [1983]. Note that each row in this table corresponds
to a single multivariate observation.

Manly computed the chi-square statistic for the original data as summa-
rized in Table 8.12a. Then, using the information in Table 8.12b, he randomly
reassigned the location labels to different habitats, preserving the number of
locations at each habitat. For example, in one of the rearrangements, Clipper
Down Wood, Boarstall Wood, Hatford, and Charlbury Hill—and only these
four locations—were designated as “fens.” He formed a summary table similar
to 8.12a for each rearrangement and computed the chi-square statistic for that
table. He found the original value of the chi-square statistic 1756.9 was greater
than any of the values he observed in each of 500 random reassignments and



“chapter8” — 2004/9/23 — page 158 — #16

158 8 Categorical Data

Table 8.12a. Summary of Clarke’s [1960, 1962] data on C. nemoralis.

Habitat N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

Beechwoods 9 1 34 26 0 46 8 59 126 6 40 115
Other deciduous 10 1 1 0 0 85 8 13 44 2 1 12
Fens 73 3 8 4 6 89 1 23 21 11 0 22
Hedgerows 76 15 32 19 36 98 3 12 8 14 1 18
Grasslands 49 29 75 7 28 23 17 60 12 14 14 24

concluded that habitat type has a significant effect on the distribution of the
various body types of the C. nemoralis snail.

Manly’s analysis combines multivariate and categorical techniques. It
makes optimal use of all the data because it takes into account how the
data were collected. Could Manly have used Table 8.12b alone to analyze
the data? He could not, because this table lacks essential information about
interdependencies among the various types of snail.

8.4.3 Underlying Assumptions

The assumptions that underlie the analysis of an r × c contingency table are
the same as those that underlie the analysis of the k- or r-sample problem.
To see this, note that a contingency table is merely a way of summarizing a
set of N bivariate observations. We may convert from this table to r distinct
samples by using the first, or row, observation as the sample or treatment
label and the second, or column, observations as the “value.” Keeping the
marginals fixed while we rearrange the labels ensures that the r sample sizes
and the N individual values remain unchanged.

As in the r-sample problem, the labels must be exchangeable under the
null hypothesis. This entails two assumptions: First, that the row and column
scores are mutually independent, and second, that the observations themselves
are independent of one another. We as statisticians can only test the first
of these assumptions. We rely on the investigator to ensure that the latter
assumption is satisfied. (See Question 4 at the end of this chapter.)

8.4.4 Symmetric Contingency Tables

Suppose now that we wish to compare two methods of assignment or two
assigners. The resulting two-way contingency table in which both row and
column variables have the same categories is termed symmetric. Although in
many applications most of the observations lie on the main diagonal and the
off-diagonal counts are small, it is the off-diagonal counts that are of greatest
interest.



“chapter8” — 2004/9/23 — page 159 — #17

8.4 Unordered r × c Contingency Tables 159

Table 8.12b. Clarke’s [1960, 1962] data* on C. nemoralis.

Habitat Type Location N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12
Beechwood Clipper Down Wood 1 0 0 0 0 8 0 1 12 1 0 0

Hackpen Wood 0 0 5 4 0 0 0 5 20 0 1 1
Kingstone Coombes 0 0 0 2 0 4 1 0 0 0 0 2
Danks Down Wood 0 0 2 0 0 9 0 15 21 0 1 27
Fawley Bottom Wood 0 1 0 0 0 5 3 0 2 3 0 0
Maidensgrove Wood 0 0 0 0 0 3 2 0 5 2 0 0
Aston Rowant Wood 0 0 0 0 0 6 1 0 23 0 0 0
Rockley Wood 0 0 10 15 0 0 0 4 20 0 0 21
Manton Wood 0 0 3 1 0 0 1 6 2 0 3 9
Knoll Down A 3 0 0 0 0 8 0 9 2 0 35 47
Knoll Down B 0 0 7 4 0 0 0 0 0 0 0 8
Roundway Wood 5 0 7 0 0 3 0 19 20 0 0 0

Other deciduous Boarstall Wood 0 0 0 0 0 13 0 9 28 1 0 0
woods Rockley Copse 9 1 1 0 0 63 8 4 10 0 0 8

Elsfield Covert 1 0 0 0 0 6 0 0 4 0 0 0
Uffington Wood 2 0 0 0 0 0 3 0 0 2 1 1 4

Fens Shippon 54 1 3 3 1 54 0 8 13 7 0 20
Headington Wick 5 1 3 0 2 14 1 13 4 2 0 0
Cothill Fen 2 1 1 0 1 3 0 0 1 1 0 0
Shippon Fen 2 12 0 1 1 2 18 0 2 3 1 0 2

Hedgerows and Hatford 1 1 0 15 0 2 0 1 3 2 0 4
rough herbage Shepherd’s Rest 1 16 7 9 0 19 11 1 0 0 6 0 0

Shepherd’s Rest 2 13 4 4 0 9 0 1 0 0 1 0 0
Standford in Vale 5 0 0 0 0 5 0 1 4 0 0 0
Wootton 2 0 3 0 0 7 0 1 0 0 0 0
Chisledon 6 2 0 2 4 9 0 0 0 1 0 1
Faringdon 18 0 8 0 1 34 0 5 0 0 1 4
The Ham 8 0 2 1 1 1 0 1 0 0 0 9
Wanborough Plain 2 0 0 0 0 24 0 0 1 3 0 0
Watchfield 3 1 0 0 0 2 1 0 0 1 0 0
Hill Barn Tumulus 1 0 5 0 0 0 0 3 0 0 0 0
Littie Hinton 1 0 1 1 2 3 0 0 0 0 0 0

Grasslands Charlbury Hill 2 0 5 1 0 1 0 4 7 0 0 5
White Horse 1 4 10 4 0 3 3 3 7 0 1 2 1
White Horse 2 6 6 10 0 0 0 0 0 0 0 0 0
White Horse 3 7 2 12 0 7 7 4 5 0 2 0 0
White Horse 4 7 0 2 0 2 0 1 1 0 0 0 0
Dragons Hill 1 2 4 5 0 0 3 4 19 0 5 2 4
Dragons Hill 2 1 1 6 0 0 0 1 4 0 0 2 2
Dragons Hill 3 1 2 3 0 2 2 3 12 0 1 0 4
West Down 1 0 1 4 3 1 0 0 0 0 0 7 2
West Down 2 0 0 5 3 0 0 0 0 1 1 0 5
Sparsholt Down 13 1 15 0 6 0 0 0 0 0 0 0
Little Hinton 5 0 1 0 5 5 0 1 3 1 0 0

(continued)
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Table 8.12b. Continued.

Habitat Type Location N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12
White Horse 5 0 2 2 0 0 1 0 1 0 1 1 0
Dragons Hill 4 1 0 2 0 2 1 1 6 1 2 0 1

∗The morph types are similar to those for hortensis, with up to five bands
present. They are: N1, yellow fully banded (Y12345); N2, yellow part-banded
(N00345); N3, yellow mid-banded (Y00300); N4, yellow unbanded (Y00000);
N5, other yellows; N6, pink fully banded (P12345); N7, pink part-banded
(P00345); N8, pink mid-banded (P00300); N9, pink unbanded (P00000); N10,
other pinks; N11, brown banded; N12, brown unbanded.
Note: From “Analysis of polymorphic variation in different types of habitat,”
B.F.J. Manly, which appeared in Biometrics; 1983; 16: 13–27. Reprinted with
permission from the Biometric Society.

A saturated log-linear model for an r×r symmetric table with multinomial
distributed cell counts fij is

E(fij) = λ + αi + βj + γij i, j = 1, . . . , r.

The standard test for independence is of the hypothesis γij = 0 for all i, j.
But we may also be interested in tests of quasi-independence γij = 0 for
i = j and quasi-symmetry γij = γji for all i, j. As McDonald, DeRoure, and
Michaelides [1998] note, while an exact goodness-of-fit test of independence
uses the conditional distribution of the cell counts given just the marginals, an
exact goodness-of-fit test of quasi-independence uses the conditional distribu-
tion of the cell counts given both the marginals and the diagonal counts. These
same authors provide rapid computation algorithms for the needed conditional
distributions expanding on an earlier article by McDonald and Smith [1995].

8.5 Ordered Contingency Tables

When data are measured on a continuous basis with multiple decimal places,
such as 1.1213, 1.130, 1.141, ties are a relatively infrequent occurrence. But
when we ask someone to provide a self-rating on a discrete ordinal scale, 1
through 5, for example, ties are inevitable, the rule, not the exception, and the
methods of this chapter may be more appropriate for analyzing such ordinal
data than those of Chapter 3.

8.5.1 Ordered 2 × c Tables

Our analysis of a 2×c ordered contingency table is straightforward and paral-
lels the approach used in Section 6.3.2 for a k-sample comparison, once we have
determined what value to assign each of the ordered categories. We illustrate
this with data gathered by Graubard and Korn [1987], shown in Table 8.13.
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Table 8.13. Data gathered by Graubard and Korn [1987].

Maternal Alcohol Consumption (drinks/day).

Malformation 0 <1 1–2 3–5 ≥6 Total
Absent 17066 14464 788 126 37 32481
Present 48 38 5 1 1 93
Total 17114 14502 793 127 38 32574

Recall that our test statistic is
∑

g[j]fij where g[j] is any monotone
increasing function, and fij is the number of observations in the ith row and
jth column of the table. Among the leading choices for a scoring method are:

i) the category number: 1 for the lst category, 2 for the second and so forth;
ii) the midrank scores;
iii) scores determined by the user, the choice we made in Section 6.3.2 when

we tested the micronucleii data for the presence of a dose-related trend.

Consider the following 1 × 2 contingency table

Alcohol
Consumption Total

Drinks/day 0 1–2
Frequency 3 5 8

The category or equidistant scores are 1 and 2. The ranks of the 8 observations
are 1 through 3, and 4 through 8, so that the mid-rank score of those in the
first category is 2, and in the second 6. Our user-chosen scores, corresponding
to alcohol consumption, are 0 and 1.5.

Analyzing the data in Table 8.13, we obtain p-values that range from the
insignificant, 0.29 for mid-rank scores, to marginally significant, 0.10 for the
equidistant scores, to highly significant, 0.01 for our user-chosen scores. A user-
chosen score based on the user’s knowledge of underlying cause and effect is
always recommended, as it will be the most effective at distinguishing between
hypothesis and alternative.

The chi-square approximation yields values ranging from 0.017 for the clas-
sic Pearson chi-square statistic to 0.19 when the likelihood ratio is employed
(Agresti [1992]).

8.5.1.1 Alternative Hypotheses

A variety of one-sided alternative hypotheses may be appropriate when
columns are ordered; see, for example, Cohen and Sackrowitz [2000]. Let
pij represent the (unknown) probability of an event resulting in an entry in
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the ith row and jth column of the table, i = 1, . . . , r, j = 1, . . . , c. Let πij =
pijp(i+1)(j+1)/p(I+1)jpi(j+1) denote the local odds ratio. In an r × c table,
one possible alternative is K: πij > 0 for i = 1, . . . , r − 1; j = 1, . . . , c − 1.
A second possible alternative in the case of a 2 × c table is that of
KS:
∑C

j=k p2j/p2. ≥∑C
j=k p1j/p1., for k = 2, . . . , c with strict inequality for

some k. Note that K � KS.

8.5.1.2 Back-up Statistics

As noted in Section 8.1.4, a major limitation of permutation methods with
small samples is that there will be only a limited number of rearrangements.
In consequence, we either have to accept a larger probability of making a
Type I error or settle for a smaller acceptance region than may be desirable.
One possible solution, first proposed by Streitberg and Roehmel [1990], is
to make use of two statistics, a primary statistic to make an initial coarse
division into acceptance, rejection, and boundary regions, and a second back-
up statistic to resolve ties on the boundary.

For testing H against K in an r × c table, Cohen and Sackrowitz [1992]
used
∑R

i=1
∑C

j=1
∑i

k=1
∑j

l=1 fkl as their primary statistic and Freeman and
Halton’s statistic (Section 8.4) as their back-up.

For testing against H against KS in an 2 × c table, the mid-rank statistic
proposed by Graubard and Korn served as the primary statistic for Streitberg
and Roehmel [1990], while their back-up statistic was

∑C
j=1 x2jvj where

vj =

{
2r̄j − 1 if r̄j ≤ (f.. + 1)/2,

2(f.. − r̄j + 1) if r̄j > (f.. + 1)/2,

and r̄j is the average rank for the jth category.

8.5.1.3 Directed Chi-Square

On example of a statistic that takes on larger values when the data are drawn
from a one-sided ordered alternative in KS is the directed chi-square statistic
proposed by Cohen and Sackrowitz [2000].

χ2
D = inf

u∈A

C∑
j=1

u2
jf.j , where

A =

{
u :

j∑
k=1

ukf.k ≥
j∑

k=1

f1k; j = 1, . . . , C − 1;
C∑

k=1

ukf.k = f.1

}

These authors claim that when used as the primary statistic with the mid-
rank statistic as a back-up almost all ties may be eliminated. To verify, enter
cell frequencies at http://stat.rutgers.edu/∼madigan/dvp.html.
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8.5.2 More Than Two Rows and Two Columns

Two cases need to be considered: The first when the columns but not the rows
of the table may be ordered (the other variable being purely categorical), and
the second when both columns and rows can be ordered.

8.5.2.1 Singly Ordered Tables

Several tests have been proposed (see Agresti [1992], Haberman [1974], and
Soms [1985]). The test statistic takes the form F2 =

∑
(Ti − T̄ )2 where Ti =∑

gjfij . As in the case of the 2 × c table, our problem is in deciding on the
appropriate scores (gj). Among the proposals are ranks, normal scores, and
Savage scores.4

8.5.2.2 Doubly Ordered Tables

Our log-linear model is that

log[E(nij)] = µ + λX
i + λY

j + λij .

In an r × c contingency table conditioned on fixed marginal totals, Cornfield
[1956] showed that the outcome depends only on the (r−1)(c−1) odds ratios

φij =
πijπi+1,j+1

πi,j+1πi+1,j
,

where πij is the probability of an individual being classified row i and
column j.

In a 2 × 2 table, conditional probabilities depend on a single odds ratio,
and hence, one- and two-tailed tests of association are easily defined. In an
r × c table, there are potentially n = 2(r − 1)(c − 1) sets of extreme values,
two for each odds ratio. Hence, an omnibus test for no association, e.g., χ2,
might have as many as 2n tails.

Following Patefield [1982], we consider tests of the null hypothesis of no
association between row and column categories H: φij = 1 for all i, j against
the alternative of a positive trend K: φij ≥ 1 for all i, j.

The two principal test statistics considered by Patefield, are

λ3 =
∑∑

fijricj ,

where {ri} and {cj} are user-chosen row and column scores,5 and

λ2 = sup
∑∑

fijxiyj ,

4 See Chapter 11.3 for an explanation of these terms.
5 This statistic is actually just another form of Mantel’s U , perhaps the most widely

used of all multivariate statistics, See Chapter 9.
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where the supremum is taken over all sets {xi} and {yj}, satisfying the
conditions

∑
fi.xi = 0,

∑
f.jyj = 0,

∑
fix

2
i = n..,

∑
f.jy

2
j = f..; and

x1 ≤ x2 · · · ≤ xr; y1 ≤ y2 · · · ≤ yc.

Patefield finds that λ2 has higher power than the linear-by-linear associa-
tion test λ3 when some but not all of the odds ratios φij are close to unity,
whereas λ3 has higher power than λ2 when the odds ratios all have about the
same value.

The log-likelihood ratio behaves like λ2; the Goodman and Kruskal test of
association behaves like λ3.

Other possible statistics, including one based on the difference between the
numbers of concordant and discordant pairs, are considered by Agresti and
Wackerly [1977].

8.6 Covariates

The presence of a covariate adds a third dimension to a contingency table.
We consider two approaches to the analysis of higher-dimension tables: Bross’
method and blocking.

8.6.1 Bross’ Method

Bross [1964] studies the effects of treatment on the survival of premature
infants. His results are summarized in Table 8.14. These results, though sug-
gestive, are not statistically significant.

Bross notes that survival is very much a function of a third, concomitant
variable—the birth weight of the child. A low birth weight indicates greater
prematurity and, hence, greater odds against a child’s survival. An analysis
of treatment is out of the question unless, somehow, he can correct for the
effects of birth weight.

A solution we studied in earlier chapters is to set up an experiment in which
we study the effects of treatment in pairs that have been matched on the basis
of birth weight. But Bross’ study of the premature was not an experiment; he
could only observe, not control birth weight.

Table 8.14. Effect of treatment of survival of the
premature.

Dead Recovered Totals

Placebo 6 5 11
Treatment 2 12 14
Totals 8 17 25
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Table 8.15. Effect of treatment and birth weight on survival of
the premature.

NI I

Weight Treatment Outcome TR/PL PL/TR

1.08 TR D
1.13 TR R 3
1.14 placebo D
1.20 TR R 2
1.30 TR R 2
1.40 placebo D
1.59 TR D
1.69 TR R 1
1.88 placebo D

Table 8.15 depicts his first nine observations, ordered by birth weight. The
last two columns of this table deserve explanation. The column headed NI
records the number of cases in which a child of lower birth weight treated with
ukinase recovered when an untreated child of higher birth weight died. Such
a result is to be expected under the alternative of a positive treatment effect,
though it would occur only occasionally by chance under the null hypothesis.

The column headed I records the number of cases in which an untreated
child of lower birth weight recovered when a child of higher birth weight
treated with ukinase died. Such an event or inversion would be highly unlikely
under the alternative.

As his test statistic, Bross adopts

S =
(NI − I)2

NI + I
.

Note that total of NI = 8, I = 0, and S = 8 for the original observa-

tions. Bross computes S for each of the
(

9
3

)
possible rearrangements of the

treatment labels—and only the label were changed, the pairing of birth weight
with outcome was preserved. None of the other rearrangements yield as large
a value of S as the original observations. Bross concludes that the treatment
has a statistically significant effect on survival of the premature.

8.6.2 Blocking

Another way to correct for the effects of a covariate is to divide the observa-
tions into blocks so that the value of the covariate is approximately constant
within each block. Under the assumption that the odds ratio is the same for
each block, Mehta, Patel, and Gray [1985] provide a method for combining
the results from several 2 × 2 contingency tables. To test the assumption of a
constant odds ratio, θ1 = θ2 = · · · = θB , use Zelen’s test (see Section 8.2.1).
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On the other hand, it may be that an apparent association between the
variables determining the rows and columns of a contingency table is actu-
ally the result of an association with a third factor. By separating the data
into blocks based on the values of this third factor, we may test this lat-
ter assumption, θ1 = θ2 = · · · = θn = 1. Lehmann [1986, pp 162–166]
showed that a UMPU test exists and is given by rejecting if T =

∑B
k=1 f11k

is an extreme value relative to that of other tables with the same fixed
marginals.

A two-sided test can be obtained by doubling the exact one-sided p-value,
or by specifying that

(
T − E(T )

)
be less than or equal to the value actually

observed.
Birch [1964] showed that this result can be extended to B 2 × c contin-

gency tables whose c columns are ordered, using the linear rank statistic given
by T =

∑B
k=1
∑c

j=1 wjf1jk, where the weights or scores wj are selected as
described in Section 8.5.1.6

Agresti [1992] showed this result may be extended still further to tests of
the conditional independence of the row and column variables in an r×c table
given a third blocking variable. If we can assume that the (r − 1)(c − 1) odds
ratios are identical for all values of the blocking factor, our test statistic is

dV −1d ,

where d is the matrix with elements d ij =
∑

k[fijk − fi.kf.jk/f..k],
i = 1, . . . , R − 1; j = 1, . . . , C − 1; and V is the null covariance matrix of d .

If we cannot assume the odds ratios are identical under the alternative, then
we may still test for conditional independence using the statistic

∑
χ2

k, where
χ2

k is the chi-square statistic for testing independence of rows and columns
within the kth level of the blocking factor.

8.7 Exercises

1. Use a normal approximation to show that more powerful tests in a 2 × 2
contingency table can be obtained by selecting samples of equal size on
the basis of that attribute whose expected frequency is closest to 1/2.

2. Would you use the same test for comparing two or more binomials as
you would when all the margins are random and only the total number
of observations is fixed? Suppose that X is B(p1, m) and Y is B(p2, n).
Show that Fisher’s exact test based on the conditional distribution of
X given the number of successes in the two samples is UMP among
all unbiased tests of the hypothesis p1 = p2 against the alternatives
p1 < p2.

6 We need to assume the absence of a joint dependence among the three variables.
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3. In many epidemiological studies, each entry in the table is the result of an
independent Poisson process and the total number of observations is itself
a random variable. In a 2 × 2 table with categories ab, aB, Ab, and AB,
one might want to test the hypothesis that the ratio λab/λAb ≤ λaB/λAB.
Would you use the same test here as you would for comparing two bino-
mials?

4. Show that once you have selected (r − 1)(c − 1) of the entries in a contin-
gency table with r rows and c columns the remainder of the entries are
determined.

5. A recent report in the New England Journal of Medicine concerned a
group of patients with a severe bacterial infection of their blood stream
who received a single intravenous dose of a genetically altered antibody.

a) In comparing death rates of the treated and untreated groups, should
we use a one-tailed or a two-tailed test?
The report stated that those in the treated group had a 30% death rate
compared with a 49% death rate for a group of untreated patients.

b) How large a sample size would you require using Fisher’s exact test to
show that such a percentage difference was statistically significant at
the 5% level?

6. Suppose you observed the following table:

10 90
20 90

Determine the p-value as many different ways as you can. Conduct a sen-
sitivity test by determining the p-values for the table

10 91
20 89

For a discussion of your results, see Dupont [1986].
7. How would you go about obtaining a confidence interval for π1 − π2?

π1/π2? See Santner and Snell [1980].
8. Referring to Table 8.9, if Sandoz excluded site 15 from their calculations,

could they safely combine the data from the remaining sites?
9. Suppose we have K pairs of binomials (in Table 8.9, we have 22) and we

feel safe to assume that all have the same odds ratio. Show that a UMP
unbiased test of the hypothesis that the odds ratio is 1 against the alter-
native that it is greater than 1 is based on the sum over all the tables of
the number of successes of the first variable.

10. Will encouraging your child promote his or her intellectual development?
A sample of 100 children and their mothers were observed and the chil-
dren’s IQs tested at 6 and 12 years. Before examining the data,
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a) Do you plan to perform a one-tailed or two-tailed test?
Results were as follows:

Mothers Encourage Schoolwork
Rarely Sometimes Never

IQ increased 8 15 27
IQ decreased 30 9 11

b) What is the significance level of your test?
11. Holmes and Williams [1954] studied tonsil size in children to verify a

possible association with the virus S. pyrogenes. Do you feel there is an
association? How many rows and columns are in the following contingency
table? Which, if any, of the variables is ordered?

Tonsil Size by Noncarrier and Carrier of S. Pyrogenes
Not Enlarged Enlarged Greatly Enlarged

Noncarrier 497 560 269
Carrier 19 29 24
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Multivariate Analysis

The value of an analysis based on simultaneous observations on several
variables—for example, height, weight, blood pressure, and cholesterol level—
is that it can be used to detect subtle changes that might not be detectable,
except with very large, prohibitively expensive samples, were you to consider
only one variable at a time.

In this chapter we consider four approaches to the analysis of multivariate
data: via the nonparametric combination of univariate tests; by parametric
means, utilizing canonical forms and the properties of the multivariate normal;
by permutation means utilizing essentially the same statistics as are used in
the parametric approach but obtaining reference values from a permutation
distribution; and by means of a nonparametric runs test.

We also consider methods for analyzing repeated measures.

9.1 Nonparametric Combination of Univariate Tests

To obtain a test that will take full advantage of the multivariate approach,
we follow in the footsteps of Pesarin [1990, 2001] and harness several of the
ideas we’ve developed previously—univariate statistics for optimally exposing
differences among groups of metric, ordinal, or categorical observations, the
use of ranks to place diverse observations on a single common scale, the Fisher
omnibus statistic, and the permutation test.

As is the case with all the methods considered in this chapter, all the
observations on a single experimental unit are maintained as a single indivisi-
ble vector. Labels are applied to and exchanged among these vectors, and not
among the individual observations.

Let X denote the original n × K matrix of multivariate observations.
Corresponding to X is a 1 × K vector T 0 = T (X ) of univariate statistics.
In a clinical trial, for example, some of the observations might relate to the
occurrence or nonoccurrence of certain side effects, some might be the values
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of certain blood chemistries, and others might relate to quality of life. The
corresponding univariate statistics might include Pearson’s chi-square, several
t-statistics, and several Pitman correlations.

Permuting the labels on the observation vectors yields a new matrix X ′ and
a new vector T ′ = T (X ′) of univariate statistics. To obtain a single summary
statistic encompassing the information provided by all the observations, we
proceed as follows:

1. Generate a large number N of permutations of X and thus obtain N
vectors of univariate test statistics T i, i = 1, . . . , N .

2. Rank the N + 1 values of each single-variable test statistic separately.
The rank should be related to the extent to which the statistic favors the
alternative. For example, if large values of Tik are to be expected when the
principal hypothesis concerning the kth variable is false, then,

Rik = R(Tik) =
∑

h

I(Thk ≤ Tik], for i = 0, . . . , N,

where the indicator function I[E] takes values 1 or 0 according to whether
the event E is true or false.

3. Combine the ranks of the K individual univariate tests using Fisher’s
omnibus statistic

Ui = −
K∑

k=1

log
[
N + 0.5 − Rik

N + 1

]
; i = 1, . . . , N.

4. Determine from the individual permutation distributions the marginal
significance level of each of the single-variable statistics for the original
nonpermuted observations,

pk =
0.5 +
∑N

m=1 I[Tmk ≥ T0k]
N + 1

, k = 1, . . . , K.

5. Combine these values into a single statistic

U0 = −
K∑

k=1

log[pk] = −
K∑

k=1

log
[
N + 0.5 − R0k

N + 1

]
;

note that R0k can take any value in the range 0 to N .
6. Determine the significance level of the combined test,

p =
0.5 +
∑N

m=1 I[Um ≥ U0]
N + 1

.

Liptak’s or Tippett’s combining functions, described in Section 5.2.1, can
be employed in preference to Fisher’s.

The range of application of this method is very general. If Hi, Ai denote
the hypothesis, alternative associated with the ith variable, respectively, then
the multivariate hypothesis you are testing is H1 and H2 and . . . HJ and the
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alternative is A1 or A2 or . . . AK . Individual alternatives may be omnibus in
nature or restricted. The individual variables may be independent or inter-
dependent and may be metric or nonmetric, discrete, or continuous. Their
distributions need be known only in so far as this knowledge would influence
the choice of univariate test statistics.

Software to perform the combination method is available from
www.methodologica.it.

9.2 Parametric Approach

9.2.1 Canonical Form

The ideas espoused in Section 6.1.2 can be extended to multivariate observa-
tions (X1, . . . , XK) that are distributed in accordance with the multivariate
normal probability density

√
|D|

(2π)K/2 exp

⎡
⎣−1

2

K∑
i=1

K∑
j=1

dij(xi − µi)(xj − µj)

⎤
⎦.

where the matrix D = (dij) is positive definite, and |D| denotes its
determinant;

E(Xj) = µj ; E(Xj − µj)(Xj − µj) = σij ; (σij) = D−1.

Our arguments parallel those of Section 6.1.2. Let X 1, . . . ,X n denote
independent multivariate normal vectors; X i = (Xi1, . . . , XiK), i = 1, . . . , n
with E(Xik) = µik for k = 1, . . . , K and common covariance matrix D−1.
The column vector of means µj = (µ1j , . . . ,µnj) is known to lie in a given
s-dimensional subspace Ω where s < n and the hypothesis to be tested is that
µ lies in an (s − r)-dimensional subspace of Ω.

Again, the hypothesis can be given a particularly simple form by making
an orthogonal transformation to vectors Y 1, . . . ,Y n

Y = CX ,

such that the first s row vectors of C span Ω, and the first r row vectors of
C span the subspace under the hypothesis.

The rows of Y are independent multivariate normal vectors (Exercise 9.3).
Change the notation so that Y’s, U’s, and X’s denote the first r, the next s−r
and the last n − s row vectors in Y :⎛

⎝Y
U
Z

⎞
⎠ = CX

Thus, the expected values of the Z’s are zero and the hypothesis to be tested
is that the expected values of the Y’s are zero, also.
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To find an optimal statistic for testing the hypothesis, we shall use our
objective of impartiality to reduce the potential choices to that of a maximal
invariant.

Adding an arbitrary constant to each of the variables in U leaves the testing
problem invariant, thus eliminating these variables from further consideration.

It is easy to see that the orthogonal transformations B and G, Y ∗ = BY
and Z∗ = GZ, also leave the problem invariant and that the maximal invari-
ants with respect to the two groups of such transformations are V = Y T Y
and S = ZT Z (Exercise 9.4).

Assume that n−s, the number of degrees of freedom we have for estimating
the components of the covariance matrix, is greater than the number of covari-
ates k (see Exercise 9.5). Consider the group of nonsingular p × p matri-
ces M , such that Y ∗ = Y M and Z∗ = ZM . These transformations leave the
testing problem invariant and induce the transformations V ∗ = MT V M and
S∗ = MT SM with respect to which the roots of the determinant equation
|V − λS| = 0 are maximal invariants (Exercise 9.6).

9.2.2 Hotelling’s T 2

The number of nonzero roots of the determinant equation |V − λS| = 0
is min(k, p). Consider the case p = 1, k > 1. The equivalent equation
|V S−1 − λI| = 0 reduces to

(−λ)k + W (−λ)k−1 = 0,

where W is the trace of VS−1.

W =
∑

i

∑
j

SijYiYj ,

where Sij denotes the ijth element of S−1.
In the one-sample case, we draw n > k observations from a k-variate

normal distribution with unknown mean µ = (µ1, . . . ,µK) and wish to test
the hypothesis that µ = µ∗ against the omnibus alternative µ �= µ∗. It is easy
to show (Exercise 9.7) that YiYj = (Xi − µ∗

i )(Xj − µ∗
j )/n and

Sij =
n∑

h=1

(Xhi − X̄.i)(Xhj − X̄.j),

where Sij is the ijth element of S. The statistic (n − 1)W is known as
Hotelling’s T 2, and we reject the hypothesis if it is large. The statistic
(n − k)W/k has the F -distribution with k and n − k degrees of freedom.
The associated confidence sets

n(n − 1)
n∑

i=1

n∑
h=1

(µι − X̄.i)Sij(µj − X̄.j) ≤ C

are ellipsoids centered at the sample means.
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The two-sample comparison with samples of size m and n is only
slightly more complicated. We assume that the multivariate observations
(X 11, . . . ,X 1m,X 21, . . . ,X 2n) are independent, multivariate normal with a
common covariance matrix and expectations µ1 and µ2, and that we have
sufficient observations, n + m − 2 > k that we can estimate the covariance
matrix. We wish to test the hypothesis µ1 = µ2 against the omnibus alterna-
tive µ1 �= µ2, so that s = 2 and p = 1. Then

YiYj = m(X̄1.i − X̄..i)(X̄1.j − X̄..j) + n(X̄2.i − X̄..i)(X̄2.j − X̄..j)

and

Sij =
m∑

h=1

(X̄1hi − X̄1.i)(X̄1hj − X̄1.j) +
n∑

h=1

(X̄2hi − X̄2.i)(X̄2hj − X̄2.j)

Hotelling’s T 2 is given by (n+m)(n+m− 2)(X̄ 1 − X̄ 2)T S−1(X̄ 1 − X̄ 2) and
we reject the hypothesis when it is large.

9.2.3 Multivariate Analysis of Variance (MANOVA)

When there are three or more samples, the number of vector constraints
imposed by the hypothesis exceeds one (see Exercise 9.6), and a UMP invariant
test no longer exists. A number of tests based on the roots of the determinant
equation |V −λS| = 0 have been proposed; for example, the Lawley–Hotelling
trace test which rejects for large values of

∑
λi. Significance levels for these

tests can be determined by parametric means (standard in most statistics
software) or by the permutation methods described in the next section.

Tests against specific restricted alternatives are difficult to obtain in the
parametric setting and a nonparametric approach is recommended; see, for
example, Shorack [1967], Robertson, Wright, and Dykstra [1988], El Barmi
and Dykstra [1995], and Dardanoni and Forcina [1998].

9.3 Permutation Methods

Cut-off values for any of the statistics considered in the previous section may
be determined by reference to its permutation distribution.

In the multivariate version of the permutation methodology, each vector of
observations on an individual subject is treated as a single indivisible entity.
When we relabel, we relabel on a subject-by-subject basis so that all observa-
tions on a single subject receive the same new label. If the original vector of
observations on subject i in sample j consists of k distinct observations on k
different variables and we give this vector a new label j∗, then the individual
observations remain together as a unit, each with the new label.
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To test the hypothesis that the midvalues of two distributions are the same,
we could use Hotelling’s T 2 given by

(n + m)(n + m − 2)(X̄ 1 − X̄ 2)T S−1(X̄ 1 − X̄ 2),

but then we would be forced to recompute the covariance matrix S and its
inverse for each new rearrangement. To reduce the number of computations,
Wald and Wolfowitz [1943] suggest a slightly different statistic, T ′, that is, a
monotonic function of T (see Exercise 3.13). Let

Uj = N−1
2∑

k=1

nk∑
i=1

Xkij

cij =
2∑

k=1

nk∑
m=1

(Xkmi − Ui)(Xkmj − Uj).

Let C be the matrix with components cij . Then T ′2 = (X̄ 1. − X̄ 2.)TC−1

(X̄ 1. − X̄ 2.)
As with all permutation tests we proceed in three steps:

1. Compute the test statistic for the original observations;
2. compute the test statistic for all relabelings;
3. determine the percentage of relabelings that lead to values of the test

statistic that are as, or more, extreme than the original value.

Regrettably no commercial software is presently available. We need to
program and implement three procedures:

a) one to rearrange the stored data;
b) one to compute the T 2 statistic;
c) one to compute the significance level.

Only the first of these procedures, devoted to rearranging the data, represents
a significant change from the simple calculations performed in the univariate
case. In a multivariate analysis, we can’t afford to manipulate the actual
data; a simple swap could mean the exchange of 9 or 10 or even 100 different
variables; so we rearrange a vector of indices that point to the data instead.
Here is a fragment of C code that does just that:

float Data [length, variates];
int index[length];
. . . .
rearrange (index, length);
. . . .
for (j = 0; j < n control; j + +) Mean [k] += Data[index[j], k];
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Program for Computing Multivariate Permutation Statistics

#define length 119
#define control 60
#define variates 9

Set aside space for a multivariate array data [length, variates]; and a vector of
sample sizes index[length];

Main program
load (data)
compute stat0 (data, index);
repeat Nsim times;

rearrange data;
compute stat (data, index);
record whether stat >= stat0;

print out the significance level of the test;

Load
packs the data into a long matrix, each row of which corresponds to k

observations on a single subject; the first n rows are the control group;
the last m rows are the treatment group. (A second use of this subroutine
will be to eliminate variables and subjects that will not be included in
the analysis, e.g., to eliminate all records that include missing data, and
to define and select specific subgroups.)

Rearrange
randomly rearranges the rows of the data array; the elements in each row

are left in the same order.

Compute
calculate the mean of each variable for each sample and store the results in

a 2 by n array N ;
calculate n by n array V of covariances for the combined sample and invert V ;
matrix mult (mean, W, ∗W );
matrix mult (W, mean);
return T ′2;

9.3.1 Which Test—Parametric or Permutation?

All the tests described in this and the preceding section require that all mul-
tivariate observations be independent of one another,1 that they be metric,
and that the covariance matrix be the same for all observations regardless
of the values of the underlying parameters. Hotelling’s T 2 is applicable only
to shift alternatives (F [x ] = G[x − δ]). A further requirement is that there
be a sufficient number of observations so that the covariance matrix can be
estimated, that is, n > K.2

1 Strictly speaking, permutation methods only require that the multivariate vectors
be exchangeable.

2 Use of the bootstrap would only result in the creation of a singular noninvertible
matrix. See Dempster [1958] for a possible approach.



“chapter9” — 2004/9/28 — page 176 — #8

176 9 Multivariate Analysis

As described in Section 9.1, permutation solutions based on the
nonparametric combination of univariate tests only require that the multi-
variate distributions be the same under the null hypothesis. The observations
may be metric, ordinal, categorical, or a mixture thereof. The alternatives and
testing method may vary from variable to variable and the alternatives are
not confined to shifts of means. As univariate permutation tests in general do
not require estimation of standard deviations, they are applicable even when
n < K.

Nonetheless, based on power considerations, Hotelling’s T 2 is the appro-
priate statistic in the one-sample and two-sample cases, providing:

1. All the observations are metric.
2. A two-sided test against shift alternatives is desired.
3. The metric data have a distribution close to that of the multivariate

normal.
4. The samples are large.

Under these conditions, the distribution of the statistic converges to a
chi-square distribution with K degrees of freedom independent of the dis-
tribution of the observations provided that the latter have finite second
moments.

The stated significance level of the parametric version of Hotelling’s T 2

cannot be relied on for small samples if the data are not normally distributed
(Davis [1982]; Srivastava and Awan [1982]). As always, the corresponding
permutation test yields an exact significance level even if the errors are not
normally distributed, providing that the errors are exchangeable from sample
to sample. Under the assumption of multivariate normality, the power of the
permutation version of Hotelling’s T 2 converges with increasing sample size
to the power of the most powerful parametric test that is invariant under
transformations of scale.

Much of the theoretical work on permutation tests using Hotelling’s T 2 has
focused on the properties of the unconditional permutation test in which the
original observations are replaced by ranks. Details of the asymptotic proper-
ties and power of the unconditional test are given in Barton and David [1961],
Chatterjee and Sen [1964, 1966], and Gill and Siotani [1987]. The effect of
missing observations on the significance level and power of the test is studied
by Servy and Sen [1987]. But see the cautionary comments on the use of ranks
made by Blair, Sawilowsky, and Higgins [1987].

9.3.2 Interpreting the Results

The significance of T 2 or some equivalent multivariate statistic still leaves
unanswered the question of which variables have led to the rejection of the
multivariate hypothesis. As noted in Chapter 5, the presence of one or more
falsely significant univariate results is not unexpected. My own preference,
reflecting my studies under Jerzy Neyman, is to search for a mechanistic,
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cause-and-effect model that will explain the findings. Some of the many
problems associated with multiple regression are documented in Good and
Hardin [2003], chapters 8–10.

9.4 Alternative Statistics

9.4.1 Maximum-t

Hotelling’s T 2 is designed to test the null hypothesis of no difference between
the distributions of the treated and untreated groups against alternatives that
involve a shift of the k-dimensional center of the multivariate distribution.
Although Hotelling’s T 2 offers protection against a wide variety of alterna-
tives, it is not particularly sensitive to alternatives that entail a shift in just
one of the dependent variables.

Boyett and Shuster [1977] show that a more powerful test against such
alternatives is based on the permutation distribution of the test statistic

max
1≤j≤K

(X̄1.j − X̄2.j)
SEj

,

a statistic first proposed in a permutation context by Chung and Fraser [1958],
where SEj is a pooled estimate of the standard error of the mean of the jth
variable.

The maximum t-test, defined above, is one-to-one related to the Tippett
nonparametric combination of several univariate t tests (defined in Sec-
tion 5.2.1), when all tests have the same degrees of freedom. If the tests do
not have the same degrees of freedom, the maximum t-test becomes difficult
to apply (see Exercise 9.10); whereas Tippett’s combination of permutation
p-values has no such limitation.

9.4.2 Block Effects

When we have more than two treatments to compare, an alternative statistic
studied by Gerig [1969, 1975] is the multivariate extension of Friedman’s chi-
square test in which ranks take the place of the original observations, creating
an unconditional permutation test.

The experimental units are divided into B blocks each of size I with the ele-
ments of each block as closely matched as possible with respect to extraneous
variables. During the design phase, one individual from each block is assigned
to each of the I treatments. We assume that K (possibly) dependent obser-
vations are made simultaneously on each subject. To test the hypothesis of
identical treatment effects against translation-type alternatives, we first rank
each individual variable separately within each block, ranking them from 1 to
I (smallest to largest). The rank totals Ti.k are computed for each treatment
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i and each variable k. The use of ranks automatically rescales each variable
so that the variances (but not the covariances) are the same.

Let T denote the I × K matrix whose ikth component is Ti.k. Noting
that the expected value of Ti.k is (K + 1)/2, let V denote the matrix whose
components are the sample covariances

Vst =
∑B

b=1
∑I

i=1 TibsTibt − K(K + 1)2/4
n(K − 1)

By analogy with Hotelling’s T 2, the test statistic is TTV −1T (Gerig [1969]).
Gerig [1975] extends these results to include and correct for random covariates.

9.4.3 Runs Test

Friedman and Rafesky [1979] provide a multivariate generalization of the
distribution-free, two-sample tests of Wald–Wolfowitz and Smirnov, used for
testing FX = FY against the highly nonspecific alternative FX �= FY . In both
the univariate and the multivariate versions of these two-sample tests, one
measures the degree to which the two samples are segregated within the com-
bined sample. In the univariate version, one forms a single combined sample,
sorts and orders it, and then

a) counts the number of runs in the combined sample, or
b) computes the maximum difference in cumulative frequency of the two types

within the combined sample.

For example, if x = (1, 3, 6) and y = (2, 4, 5), the ordered combined sample
is 1, 2, 3, 4, 5, 6, that is, an x followed by y x y y x, and has five runs.

Highly segregated samples will give rise to a small number of runs (and a
large maximum difference in cumulative frequency), while highly interlaced
distributions will give rise to a large number of runs (and a very small dif-
ference in cumulative frequency). Statistical significance, that is, whether the
number of runs is significantly small, can be determined from the permutation
distribution of the test statistic.

To create a multivariate version of these tests, we must find a way to
order observations that have multiple coordinates. The key to this ordering
is the minimal spanning tree described by Friedman and Rafesky [1979] and
given here:

Each point in Figure 9.1a corresponds to a pair of observations, height and
weight, say, which were made on a single subject. We build a spanning tree
between these data points as in Figure 9.1b, by connecting the points so that
there is exactly one path between each pair of points, and so that no path
closes back on itself in a loop. Obviously, we could construct a large number
of such trees. A minimal spanning tree is one for which the sum of the lengths
of all the paths is a minimum. This tree is unique if there are no ties among
the N(N − 1)/2 interpoint distances.
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Fig. 9.1. Building a minimal spanning tree. From “Multivariate generalizations of
the Wald–Wolfowitz and Smirnov two-sample narrative has test” by J.H. Friedman
and L.C. Rafsky, Annals of Statistics; 1979; 7: 697–717. Reprinted with permission
from the Institute of Mathematical Statistics.
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Fig. 9.1. (continued).

Before computing the test statistic(s) in the multivariate case, we first
construct the minimal spanning tree for the combined sample. Once the tree
is complete, we can generate the permutation distribution of the runs statistic
through a series of random relabelings of the individual data points. After each
relabeling, we remove all edges for which the defining nodes originate from
different samples. Figure 9.1c illustrates one such result.

Although it can take a multiple of N × N calculations to construct
the minimal spanning tree for a sample of size N, each determination of
the multivariate runs statistic takes only a multiple of N calculations. For
large samples a normal approximation to the permutation distribution may
be used; the expected value and variance of the runs statistic are the same as
in the univariate case.

9.4.4 Which Statistic?

We’ve now considered three multivariate test statistics for testing hypothesis
based on one or two samples. Which one should we use? To detect a simulta-
neous shift in the means of several variables, use Hotelling’s T 2; to detect a
shift in any of several variables, use the maximum t ; and to detect an arbitrary
change in a distribution (not necessarily a shift) use either Pesarin’s method
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of nonparametric combination or Friedman and Rafesky’s multivariate runs
test.3 See Exercise 9.9.

9.5 Repeated Measures

In many experiments, we want to study the development of a process over a
period of time, such as the growth of a tumor or the gradual progress of a
cure. If our observations are made by sacrificing different groups of animals at
different periods of time, then time is simply another variable in the analysis
that we may treat as a covariate. But if all our observations are made on the
same subjects, then the multiple observations on a single individual will be
interdependent. And all the observations on a single subject must be treated
as a single multivariate vector.

9.5.1 An Example

Higgins and Noble [1993] analyze an experiment whose goal was to compare
two methods of treating beef carcasses in terms of the treatments’ effect on pH
measurements of the carcasses taken over time. Treatment level B is suspected
to induce a faster decay of pH values. Formally, we wish to test a hypothesis
of no difference between the treatments against the alternative that XB[t] is
stochastically smaller than XA[t] for some time t.

Observed data are:

t

0 1 2 3 4 5

Treatment A A1 6.81 6.16 5.92 5.86 5.80 5.39
A2 6.68 6.30 6.12 5.71 6.09 5.28
A3 6.34 6.22 5.90 5.38 5.20 5.46
A4 6.68 6.24 5.83 5.49 5.37 5.43
A5 6.79 6.28 6.23 5.85 5.56 5.38
A6 6.85 5.51 5.95 6.06 6.31 5.39

Treatment B B1 6.64 5.91 5.59 5.41 5.24 5.23
B2 6.57 5.89 5.32 5.41 5.32 5.30
B3 6.84 6.01 5.34 5.31 5.38 5.45
B4 6.71 5.60 5.29 5.37 5.26 5.41
B5 6.58 5.63 5.38 5.44 5.17 5.62
B6 6.68 6.04 5.62 5.31 5.41 5.44

3 Tests proposed by van Putten [1987] and Henze [1988] offer advantages over
Friedman–Rafesky in some cases.
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Although normality of these observations may be assumed, the variances and
covariances surely vary with time so that the two-way ANOVA model is not
appropriate. Instead, we may proceed as follows: First, we standardize the
observations, subtracting the baseline value at t = 0 from each one. At each
time point, the resulting differences are exchangeable. Treating each time
point separately, the resulting p-values are as follows:

T = 1 T = 2 T = 3 T = 4 T = 5
0.01056 0.000127 0.000309 0.000395 0.06803

Using Fisher’s nonparametric combination rule, the combined p-value for the
global hypothesis is 0.000127. We can conclude that decay of treatment B is
faster than that of A, even though at the last time point, T = 5, substantially
the same distribution of pH values is observed (p = 0.068).

9.5.2 Matched Pairs

Puri and Shane [1970] study the multivariate generalization of paired com-
parisons in an incomplete blocks design (see Section 6.4). Their procedure is a
straightforward generalization of the multivariate one-sample test developed
by Sen and Puri [1967]; see also Sen [1967, 1969].

For simplicity, suppose we have only a single block. We consider all
possible permutations of the signs of the individual multivariate observa-
tions. If {X i,Y i} is the K -dimensional vector of multivariate observations
on the ith matched pair, and Z i is the vector of differences (Z1, . . . , ZK),
then our permutation set consists of matrices of differences of the form
((−1)j1Z 1, . . . , (−1)jnZn) where −Z i = (−Zi1, . . . ,−ZiK).

Depending on the hypothesis and alternatives of interest, one may want
to apply an initial set of linear transformations to each separate coordinate,
that is, to replace Zij by Z ′

ij = aj + bjZij . Puri and Shane studied the case in
which the individual variables were replaced by their ranks, with each variable
being ranked separately.

Of course, if the sample size n is large, or we can assume that {X i,Y i}
is drawn from a multivariate normal distribution, then we can use the prin-
ciple of invariance to find an optimal test. Our observations on the ith sub-
ject may be written in the form {Xi,1, . . . , Xi,q, Xi,q+1, . . . , Xi,2q}. We are
given that E(Xi,j) = µi,j = µj and our null hypothesis is that µj = µj+q.
The distinction from the approach adopted in Section 9.2 is that, while in
both cases each of the K column vectors µj = (µ1j , . . . ,µnj) is known
to lie in a given s-dimensional subspace Ω where s < n, in the matched
pairs case s = 1, and the hypothesis to be tested is that each of the n row
vectors µi = (µi,1, . . . ,µi,2q) lies in a q-dimensional subspace of Ω. The
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derivation provided by Lehmann [1986, pp 466–469] yields a UMP-invariant
test based on Hotelling’s T 2. The cut-off value for our test may be determined
parametrically or via the more robust permutation distribution.

Pesarin [2001; Section 9.7] describes the analysis of multivariate paired
observations when there are randomly missing data.

9.5.3 Response Profiles

We may ask at least three questions about response profiles involving more
than two observations on each experimental unit: (1) Are the response profiles
the same for the various treatments? (2) Are the response profiles parallel?
(3) Are the response profiles at the same level?

A “yes” answer to question 1 implies “yes” answers to questions (2) and
(3), but we may get a “yes” answer to 2 even when the answer to (3) is “no.”

One simple test of parallelism entails computing the successive differences
zj,i = xj,i+1 −xj,i for j = 1, 2; i = 1, . . . , I − 1 and then applying the methods
of 9.2 or 9.3 to these differences. Of course, this approach is applicable only
if the observations on both treatments were made at identical times.

To circumvent this limitation and to obtain a test of the narrower hypoth-
esis (1), we follow Koziol et al. [1981] and suppose there are Ni subjects in
group i. Let Xi

tj , t = 1, 2, . . . , T ; j = 1, 2, . . . , Ni denote the observation on the
jth subject in group i at time t. Not all the Xi

tj may be observed in practice;
we will only have observations for Nit of the Ni in the ith group at time t. If
Xi

tj is observed, let Ri
tj be its rank among the N.t available values at time t.

Set Sit =
∑

j Ri
tj/Nit.

If luck is with us so that all subjects remain to the end of the experiment,
then Nit = Ni for all t and each i, and we may adopt as our test statistic

LN =
∑

i

NiST
i V −1S i,

where S i is a T × 1 vector with components (Si1, . . . , SiT ) and V is a T × T
covariance matrix whose stth component is

vst = N−1
I∑

i=1

Ni∑
j=1

Ri
sjR

i
tj

This test statistic was proposed and investigated by Puri and Sen [1966,
1969, 1971].

9.5.4 Missing Data

If we are missing data, and missing data is almost inevitable in any large
clinical study since individuals commonly postpone or even skip follow-up
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appointments, then no such simplified statistic presents itself. Zerbe and
Walker [1977] suggest that each subject’s measurements first be reduced to
a vector of polynomial regression coefficients with time as the independent
variable. The subjects needn’t have been measured at identical times or over
identical periods, nor does each subject need to have the same number of
observations. Only the number of coefficients (the rank of the polynomial),
needs to be the same for each subject. Thus, we may apply the equations
of Koziol et al. to these vectors of coefficients though we cannot apply the
equations to the original data.

We replace the mk observations on the kth subject {Xki, i = 1, . . . , mk},
with a set of J + 1 coefficients {bkj , j = 0, . . . , J}. While the mk may vary,
the number J is the same for every subject; of course, J < mk for all k. The
{bkj} are chosen so that for all k and i,

Xki = bkj + tkibkj + · · · + (tki)Jbkj ,

where the {tki, i = 0, . . . , mk} are the observation times for the kth subject.
This approach has been adopted by a number of practitioners includ-

ing Albert et al. [1982], Chapelle et al. [1982], Goldberg et al. [1980], and
Hiatt et al. [1983]. Multiple comparison procedures based on it include Foutz
et al. [1985] and Zerbe and Murphy [1986]. An SAS/IML program to do the
calculations is available (Nelson and Zerbe [1988]).

9.5.5 Bioequivalence

Zerbe and Walker’s solution to the problem of missing data suggests a multi-
variate approach we may use with any time course data. For example, when we
do a bioequivalence study, we replace a set of discrete values with a “smooth”
curve. This curve is derived in one of two ways: 1) by numerical analysis, 2)
by modeling. The first way yields a set of coefficients, the second a set of
parameter estimates. Either the coefficients or the estimates may be treated
as if they were the components of a multivariate vector and the methods of
this chapter applied to them.

Here is an elementary example: Suppose you observe the time course of a
drug in the urine over a period for which a linear model would be appropriate.
Suppose further that the chief virtue of your measuring system is its low cost
so that measurement errors are significant. Consequently, you take a series of
measurements on each patient about half an hour apart and then use least
squares methods to derive a best-fitting line for each patient. That is, you
replace the set of measurements {Xijk} where i = 0 or 1 denotes the drug,
i = 1 for generic drug, j = 1, . . . , J denotes the subject, and k = 1, . . . , Kj

denotes the observation on a subject with the set of vectors {Y ij = (aij , bij)}
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where aij and bij are the intercept and slope of the regression line for the jth
subject in the ith treatment group.

Using the computer code in Section 9.3, you calculate the mean vector and
the covariance matrix for the {Yij}, and compute Hotelling’s T 2 for the origi-
nal observations and for a set of random arrangements. You use the resultant
permutation distribution to determine whether the time courses of the two
drugs are similar.

9.6 Exercises

1. One can increase the power of a statistical test in three ways: a) make addi-
tional observations; b) make more precise observations; c) add covariates.
Discuss this remark in the light of your own or someone else’s experimental
efforts.

2. Suppose that U ij(j = 1, . . . , ni; i = 1, . . . , I) are independent multivari-
ate normally distributed observations N(µi,A

−1) and we wish to test
the hypothesis that µ1 = · · · =µI . What are the values of n, s,
and r?

3. If X denotes a matrix whose rows are independent multivariate normal
vectors, C is an orthogonal matrix, and Y = CX , then the rows of Y are
independent multivariate normal vectors. [Hint. Find the covariance of Yij

and Ykm.]
4. Prove that if X denotes a matrix whose rows are independent multivariate

normal vectors whose components have expectation zero, C is an orthogo-
nal matrix, and X ∗ = CX , then XTX is a maximal invariant with respect
to the group of such orthogonal transformations.

5. a) If n − s < J , the matrix S is singular.
b) If r + n − s ≤ J , the only test that is invariant with respect to the

groups of transformations in Section 9.2. is ϕ(y, u, z) ≡ α.
6. Let Y and Z denote matrices whose rows are independent multivariate nor-

mal vectors, each component of which has expectation zero. Let V = Y TY
and S =ZTZ. Consider the group G of nonsingular p× p matrices M, such
that Y ∗ = Y M and Z∗ = ZM . Show that the roots of the determinant
equation |V −λS| = 0 are maximal invariants with respect to G. [Hint: To
prove invariance, consider |MT(V − λS)M |. To prove the roots are maxi-
mal invariants, you will need to show that S is positive definite and utilize
known properties of quadratic forms.]

7. Show that in the one-sample case the statistic (n − 1)W minimizes mean-
square losses.

8. The following blood chemistry data are taken from Werner et al. [1970].
The full data set is included with the BMDPTM statistical package. (An
asterisk (∗) denotes missing data.)
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1 2 3 4 5 6 7 8 9

2381 22 67 144 N 200 43 98 54
1946 22 64 160 Y 600 35 ∗ 72
1610 25 62 128 N 243 41 104 33
1797 25 68 150 Y 50 38 96 30
1149 53 ∗ 178 N 227 39 ∗ 50
575 53 65 140 Y 220 40 107 46

2271 54 66 158 N 305 42 103 48
39 54 60 170 Y 220 35 88 63

The variables are

1. identification number
2. age in years
3. height in inches
4. weight in pounds
5. uses birth control pills?
6. cholesterol level
7. albumin level
8. calcium level
9. uric acid level.

A potential hypothesis of interest is whether birth control usage has any
effect on blood chemistries. As the nature of such hypothetical effects very
likely depends upon age and years of use, before testing this hypothesis
using a permutation method, you might want to divide the data into two
blocks corresponding to young and old patients.

You could test several univariate hypotheses using the methods of Chap-
ter 3, for example, the hypothesis that using birth control pills lowers
the albumin level in blood. You might want to do this now to see if you
can obtain significant results. As the sample sizes are small, the univariate
observations may not be statistically significant. But by combining the
observations that Werner and his colleagues made on several different
variables to form a single multivariate statistic, you may obtain a statis-
tically significant result, that is, if, indeed, taking birth control pills does
alter blood chemistries.

You might also want to compare results using Hotelling’s T 2 and the
maximum-t statistic described in Section 9.4.

9. To help understand the sources of insolvency, Trieschman and
Pinches [1973] compared the financial ratios of solvent and financially
distressed insurance firms. A partial listing of their findings is included
in the following table. Are the differences statistically significant? Be
sure to state the specific hypotheses and alternative hypotheses you are
testing.
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Solvent Companies Insolvent Companies

V1 V2 V3 V4 V1 V2 V3 V4

1 0.056 0.398 1.138 0.109 9 0.059 1.168 1.145 0.732
2 0.064 0.757 1.005 0.085 10 0.054 0.699 1.052 0.052
3 0.033 0.851 1.002 0.118 11 0.168 0.845 0.997 0.093
4 0.025 0.895 0.999 0.057 12 0.057 0.592 0 0.057
5 0.050 0.928 1.206 0.191 13 0.337 0.898 1.033 0.088
6 0.060 1.581 1.008 0.146 14 0.230 1 1.157 0.088
7 0.015 0.382 1.002 0.141 15 0.107 0.925 0.984 0.247
8 0.079 0.979 0.996 0.192 16 0.193 1.120 1.058 0.502

V1 = agents balances/total assets
V2 = (stocks−cost)/(stocks−market value)
V3 = (bonds−cost)/(bonds−market value)
V4 = expenses paid/net premiums written

10. You wish to test whether a new fuel additive improves gas mileage and
ride quality in both stop-and-go and highway situations. Taking 12 vehi-
cles, you run them first on a highway-style track and record the gas mileage
and driver’s comments. You then repeat on a stop-and-go track. You empty
the fuel tanks and refill, this time including the additive, and again run
the vehicles on the two tracks.

The following data were supplied in part by the Stata Corporation. Use
Hotelling’s T 2 to test whether the additive affects gas mileage on the two
tracks. Then use Pesarin’s combination method to test whether the addi-
tive affects either gas mileage or ride quality.

Id bmpg1 ampg1 rqi1 bmpg2 ampg2 rqi2

1 20 24 0 19 23.5 1
2 23 25 0 22 24.5 1
3 21 21 1 20 20.5 0
4 25 22 0 24 20.5 −1
5 18 23 1 17 22.5 1
6 17 18 −1 16 16.5 −1
7 18 17 0 17 16.5 0
8 24 28 1 23 27.5 0
9 20 24 0 19 23.5 1

10 24 27 0 22 25.5 0
11 23 21 0 22 20.5 0
12 19 23 1 18 22.5 1
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bmpg1 track 1 before additive
ampg1 track 1 after additive

rqi1 ride quality improvement track 1
bmpg2 track 2 before additive
ampg2 track 2 after additive

rqi2 ride quality improvement track 2

11. You are studying a new tranquilizer that you hope will minimize the effects
of stress. The peak effects of stress manifest themselves between 5 and 10
minutes after the stressful incident, depending on the individual. To be
on the safe side, you’ve made observations at both the 5- and 10-minute
marks.

Subject Pre-stress 5-minute 10-minute Treatment

A 9.3 11.7 10.5 Brand A
B 8.4 10.0 10.5 Brand A
C 7.8 10.4 9.0 Brand A
D 7.5 9.2 9.0 New drug
E 8.9 9.5 10.2 New drug
F 8.3 9.5 9.5 New drug

How would you correct for the pre-stress readings? Is this a univariate
or a multivariate problem? List possible univariate and multivariate test
statistics. Perform the permutation tests and compare the results.

12. Mueller [1962] measured free fatty acid levels in the blood of 10 schizo-
phrenics and 10 “normal” subjects at various intervals after injection with
insulin. Is the time course of change in fatty acid levels the same in the
two groups?

Normals Schizophrenics

Time in Minutes Time in Minutes

0 15 30 45 0 15 30 45
1 41 30 38 30 1 51 29 19 19
2 30 45 27 30 2 22 31 28 34
3 22 21 26 17 3 38 38 38 41
4 37 34 27 27 4 38 47 38 47
5 30 22 19 29 5 30 18 23 31
6 34 23 33 24 6 50 41 33 50
7 27 21 29 17 7 37 31 26 26
8 32 29 17 9 8 30 18 23 23
9 32 26 20 20 9 26 21 23 34

10 33 29 24 33 10 29 29 46 36
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In this chapter, you learn how to detect clustering in time and space and
to validate clustering models. You use the generalized quadratic form in its
several guises including Mantel’s U and Mielke’s multiresponse permutation
procedure to work through a series of applications in atmospheric science,
epidemiology, ecology, and archeology.

10.1 The Generalized Quadratic Form

10.1.1 Mantel’s U

Mantel’s U [Mantel, 1967]
∑∑

aijbij is perhaps the most widely used of all
multivariate statistics. In Mantel’s original formulation, aij is a measure of
the time or temporal distance between items i and j, while bij is a measure
of the spatial distance. As an example, suppose the pair (ti, li) represents the
day ti on which the ith individual in a study came down with cholera and
li = (li1, li2) denotes her position in space. For all i, j, set aij = 1/(ti − tj)
and

bij = 1/
√

(li1 − lj1)2 + (li2 − l2)2

A large value for U would support the view that cholera spreads by con-
tagion from one household to the next. How large is large? As always, we
compare the value of U for the original data with the values obtained when
we fix the i’s but permute the j’s as in U ′ =

∑∑
aijbiπ(j).

10.1.2 An Example

An ongoing fear among many parents is that something in their environment—
asbestos or radon in the walls of their house, or toxic chemicals in their air and
ground water—will affect their offspring. Table 10.1 is extracted from data col-
lected by Siemiatycki and McDonald [1972] on congenital neural tube defects.
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Table 10.1. Incidents of pairs of
anencephalic infants by distance and
time months apart.

km apart <1 <2 <4

<1 39 101 235
<5 53 156 364

<25 211 652 1516

Eyeballing the gradient along the diagonal of this table, one might infer that
births of anencephalic infants occur in clusters. One could test this hypothe-
sis statistically using the methods of Chapter 8 for ordered categories, but a
better approach, since the exact time and location of each event is known, is
to use Mantel’s U . The question arises as to which measures of distance and
time we should employ. Mantel [1967] reports striking differences between
one analysis of epidemiologic data in which the coefficients are proportional
to the differences in position and a second approach (which he recommends)
to the same data in which the coefficients are proportional to the recipro-
cals of these differences.1 Using Mantel’s approach, a pair of infants born
5 km and three months apart contribute (1/3)(1/5) = 1/15 to the correlation.
Summing the contribution from all pairs, then repeating the summing process
for a series of random rearrangements, Siemiatycki and McDonald conclude
that the clustering of anencephalic infants is not statistically significant.

10.2 Applications

By appropriately restricting the values of aij and bij , the definition of Man-
tel’s U can be seen to include several of the standard measures of correlation
including those usually attributed to Pearson, Pitman, Kendall, and Spear-
man [Hubert, 1985]. Mantel’s U has been rediscovered frequently, often with-
out proper attribution (see Whaley [1983]). In this section we consider three
diverse approaches to the problem of assessing the presence of clustering in
space and time. In each case, the permutation distribution of the quadratic
form is used to provide a baseline against which the behavior of the observa-
tions may be assessed.

10.2.1 The MRPP Statistic

One such variant is the MRPP or multiresponse permutation procedure
[Mielke, 1979], which is used in applications as diverse as weather and
the spatial distribution of archaeological artifacts. The MRPP uses the

1 One further caveat: Mantel’s U fails completely if the spatial distribution of the
underlying population is also changing with time [Roberson and Fisher, 1986].
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permutation distribution of between-object distances to determine whether
a classification structure has a nonrandom distribution in space or time. With
large samples, a Pearson Type III curve based on the first three (or four)
exact moments may be used in place of the permutation distribution [Mielke,
Berry, and Brier, 1981].

An example of the application of the MRPP arises in the assignment of
antiquities (artifacts) to specific classes based on their spatial locations in
an archaeological dig. Presumably, the kitchen tools of “primitives”—woks
and Cuisinarts—should be found together, just as a future archaeologist can
expect to find TV, DVD, and stereo side by side in a neolithic living room.

Following Berry et al. [1980, 1983], let Ω = {ω1, . . . ,ωN} designate a collec-
tion of N artifacts within a site; let X1i, . . . , xri denote the r coordinates for
the site space for artifact ωi; let S1, . . . , Sg+1 represent an exhaustive par-
titioning of the N artifacts into g + 1 disjoint classes (the (g + 1)st being
reserved for not yet classified items); and let nj be the number of artifacts in
the jth class.

Define the Euclidean distance between two artifacts,

δij =

[
r∑

k=1

(Xki − Xkj)2
]1/2

.

Define the average between-artifact distance for all artifacts within the ith
class,

ζi =
2

ni(ni − 1)

∑
i<j

δijφi(ωi)φi(ωj),

where φi(ω) is an indicator function that has value 1 if ω ∈ Si and 0, other-
wise.

The test statistic is the weighted within-class average of these distances,

∆ =
g∑

i=1

niζi/K,

where K =
∑g

i=1 ni.
The permutation distribution associated with ∆ is taken over all

(N !/
∏g+1

i=1 ni!) allocations of the N artifacts to the g + 1 classes with the
same numbers {ni} assigned to each class.

Empirical power comparisons between MRPP rank tests and with other
rank tests are made by Tracy and Tajuddin [1985] and Tracy and Khan [1990].

10.2.2 The BW Statistic of Cliff and Ord

As a second application of generalized correlation, suppose we want to measure
the degree to which the presence of some factor in an area (or time period)
increases the chances that this factor will be found in a nearby area.



“chapter10” — 2004/9/23 — page 192 — #4

192 10 Clustering in Time and Space

The BW statistic of Cliff and Ord [1973] is defined as
∑∑

δij(xi − xj)2,
where

xi =

{
1, if the ith area has the characteristic,
0, otherwise.

δij =

{
1, if the ith and jth areas are adjacent
0, otherwise.

10.2.3 Equivalances

The generalized quadratic form has been rediscovered and redefined in many
different guises. Whaley [1983] shows that Mantel’s U and the BW statistic
are equivalent to the MRPP for testing purposes. A third equivalent exam-
ple is the k-dimensional runs test of Friedman and Rafsky [1979] studied in
Section 9.4.3.

10.2.4 Extensions

Mantel’s U is quite general in its application. The sets of coefficients {aij}
and {bij} need not represent positions or changes in time and space.

In a completely disparate application in sociology, Hubert and Schultz
[1976] observers studied k distinct variables in each of a large number of
subjects. Their object was to test a specific sociological model for the rela-
tionships among the variables. This time, the {aij} in Mantel’s U are elements
of the k ×k sample correlation matrix while the {bij} are elements of an idea-
lized or theoretical correlation matrix derived from the model. A large value
of U supports the model, a small value rules against it.

10.2.5 Another Dimension

Vecchia and Iyer [1989] generalized the MRPP for use in the comparison of
several linear models. In the words of these authors.

Regarding algebraic quantities useful to detect concentrations of
points within distinct groups, one might have asked: When are two
points concurrent? The answer, that they coincide whenever the dis-
tance between them is zero motivates the definition of the MRPP
statistic in terms of interpoint distance.

Extending this approach, for example, to the comparison of straight
line relations, the analogous geometric argument is that three points
are colinear only if their triangular are a is zero.

The statistic used in Vecchia and Iyer’s new test is a symmetric volume: A
real-valued function, symmetric in its n+1 arguments, that is zero if and only
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if the Euclidean volume of the simple formed by the arguments is zero. An
immediate application for this statistic is in assessing the consistency of mul-
ticlinic designs. Some of this statistic’s asymptotic properties are considered
in Vecchia and Iyer [1991].

10.3 Alternate Approaches

10.3.1 Quadrant Density

Following Mead [1974], we overlay an area (possibly irregular) with a grid and
divide it into squares. We then group the squares into K regions so there is
an equal number of squares in each region. Finally, we count the number ni of
events (nests, animals) observed within each region and form the test statistic
S =
∑

n2
i .

As we are working with the squares of counts, S takes its largest value if
the counts are clustered by region.

We permute the squares among regions and compute S each time, and
accept the alternative that there is clustering if only a small percentage of
the permutations yields values of S that are as large as So, the sum for the
original arrangement of squares.

Suppose we have only eight squares, which we group into 2 regions cor-
responding to the counts 0, 1, 2, 0 and 3, 4, 5, 2. Clusering is evident.
So = 9 + 196 = 205. We rearrange the squares so that the counts within
each region are 0, 1, 4, 5 and 0, 2, 2, 3. S = 100 + 49 = 149. Continuing
in this fashion, we see that So is an extreme value and we reject the null
hypothesis that the counts are distributed uniformly.

10.3.2 Nearest-Neighbor Analysis

Following Ripley [1981], let {pj} be a set of points in a region where specific
events have been observed (cases of leukemia, birds nests, and so forth). Let
qi{pj} denote the distance from the point pj to its ith nearest-neighbor, and let
qi denote the mean of these distances. Now, overlay the area with a grid so as to
divide it into squares. Permute the squares; determine qi for the permutation,
and compare it with qio for the original observations. The question remains
as to which of the qi to use for testing purposes.

10.3.3 Comparing Two Spatial Distributions

Upton [1984] objects to Mead’s procedure observing that the result depends
strongly on how the regions are defined, particularly for irregular areas and
when there are missing data. Syrjala’s [1993] use of a cumulative distribution
based on the work of Zimmerman [1993] overcomes this objection and, more-
over, allows us to extend the procedure to compare two distinct distributions.
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Again, we overlay the region with a grid and divide it into squares whose
centers are at the points (xk, yk). Define the density di(xk, yk) = ni/N , where
N =
∑

ni; in order to compare two populations, we normalize the density so
that γi(xk, yk) = di(xk,yk)∑

dj(xk,yk) and define

Fi[xk, yk] =
∑
Sk

di(x, y),

where the sum
∑

Sk
is taken over the region Sk = {x ≤ xk; y ≤ yk). Our test

statistic Γ =
∑

k(F1 − F2)2, and to obtain its permutation distribution, we
evaluate all 2K permutations of the two species at the K points of the grid
{xk, yk}.2

10.4 Exercises

1. Show that Pitman’s correlation is a special case of Mantel’s U .
2. List at least two applications for Vecchia and Iyer’s test.

2 Since the value of this statistic also depends on the location of the origin, we may
define Fj1, Fj2,Γj for j = 1, . . . , 4 corresponding to the placing of the origin at
each of the four corners of a (nearly) rectangular region. Our test statistic then
would be the average of the four values, Γ =

∑
Γi/4.
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Coping with Disaster

In this chapter you receive practical guidelines for coping with the many
catastrophes that confront the applied statistician:

• subjects who miss an appointment;
• subjects who disappear completely and mysteriously in the middle of an

experiment;
• incomplete questionnaires;
• covariates after the fact;
• outlying observations whose extreme and questionable values suggest they

may have been recorded incorrectly;
• off-scale and other censored values that cannot be determined with

precision.

11.1 Missing Data

The effects of missing data depend upon the nature of the study and the type
of analysis. In some instances, for example, in the analysis of the k-sample
comparison by permutation means, missing data may have no effect upon
the analysis other than to reduce the power of the test. In other, more complex
designs, missing data may result in an unbalanced design in which several fac-
tors are confounded with one another. In most, though not all, of these latter
cases, no special statistical procedures are required, providing we are careful in
how we interpret the results. We must identify which effects are confounded
with one another, a main effect with an interaction, say. In other studies,
and one such example was examined in Section 7.7.1, we may have to aban-
don permutation and parametric procedures altogether and consider using
the bootstrap.

The majority of experimental designs belong to the correctable category.
We proceed with a permutation rather than a parametric analysis using a
revised set of marginal constraints that reflect the actual rather than the
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hoped-for sample sizes. And in analyzing the results, we acknowledge that
one or more higher-order interactions may have contaminated the observed
effects.

Consider an example we studied in Chapter 7, the effect of sunlight and
fertilizer on crop yield. Suppose that one of the observations in the low sun-
light, medium fertilizer group, the 22 noted in parentheses in the table below,
is missing from the study.

Effect of sunlight and fertilizer on crop yield

Fertilizer

Sunlight LO MED HI

5 15 21
LO 10 (22) 29

8 18 25
6 25 55

HI 9 32 60
12 40 48

The test statistic for the main effect of sunlight is the sum of the observa-
tions at the low level, S = 23 + (15 + 18) + 75 = 131. Such an extremely low
value is found in only a small handful of the rearrangements in which we swap
observations at random between the low and high groups. The number of rear-

rangements after correcting for the missing data item is
(

17
8

)
. The reduction

from the hoped for
(

18
8

)
rearrangements reduces the power of the test. But

the reduction is irrelevant in this instance as we are rejecting the hypothesis.
(Had we accepted the null hypothesis, we would have been forced to consider
whether a larger sample size might have enabled us to detect an effect.)

A missing data item in only one of the groups means that the main effect
of sunlight is partially confounded with the interaction between sunlight and
fertilizer. But our common sense strengthened by a glance at the table tells
us that the confounding also is irrelevant in this instance.

One other word of caution: A variety of software is available today to help
you determine optimal sample size. But such software does not take into
account the possibility of missing data, of failures in recruitment, and long-
term retention. Always use the numbers such software provides as starting
points, not as final estimates.

The preceding discussion was based on the implicit assumption that drop-
outs occur at random. If the dropout rate is directly related to the treatment,
we must either abandon the study or modify our scoring system explicitly to
account for the dropouts (see, for example, Entsuah [1990]).

A further example of using the permutation distribution to cope with miss-
ing data is given in Section 12.2.6. Section 12.5 details the use of the bootstrap
when all other methods fail.
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11.2 Covariates After the Fact

After World War II, public policy makers in the United States did a slow
about face on the dangers of tobacco smoke. The changes in policy acceler-
ated during the 1970s. One moment it seemed the cigarette was the ultimate
symbol of masculinity and the next it was the primary cause of emphysema,
hypertension, lung cancer, and fetal defects. One month you could design a
400-patient, 6-week, 50-variable clinical study with the full support of a Food
and Drug Administration panel, and the next the panel would be asking if
you’d corrected for the smokers in the control group. Of course you had not—
not in those days.

Today, we know that smoking is harmful, but “number of cigarettes smoked
per week” is only one of hundreds of possible covariates. Regardless of how
many covariates you have controlled or matched in putting together a clin-
ical study, there are sure to be one or two more covariates that you didn’t
think of—that no one thought of, that no one could have envisioned, that
is, until the day after your 300-page report on the study was sent to the
printers.

All is not lost. It is still possible to make a comparison among treatment
groups using the method of permutations by restricting the rerandomizations
to those with specific after-the-fact design matrices.

Using the method due to Rosenbaum [1984], described at length in Sec-
tion 6.4, we block the data into smokers and nonsmokers (or lemon eaters and
non-lemon eaters), and then randomize separately within each block.

Restricting the number of randomizations may reduce the power of the test.
(It may also increase it by eliminating a source of variability; see Section 6.4.2.)
As a result, we may need to add more subjects and an additional clinical center
to the study to justify and confirm any negative results.

11.2.1 Observational Studies

An extreme example of the use of an after-the-fact covariate comes when
we attempt to create matched pairs from two groups that were part of an
observational study. In an observational study, the groupings themselves are
after the fact. The subjects are not randomly assigned to treatment or control
but are merely “observed” to belong to one group or the other. Through the
use of after-the-fact covariates, we hope to reduce or eliminate any built-in
biases.

An example provided by Rosenbaum [1998] is that of a study in humans of
the effect of vasectomy on the risk of myocardial infarction. Obviously, we do
not have the luxury (nor the authority, thankfully) to select a random sample
of patients for a mandatory vasectomy, but must analyze the data as they lie.
We can take advantage of concurrent data on obesity and smoking history
(both of which are known to affect the risk of myocardial infarction) to help
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find matched case-controls so as to reduce the between-sample variance. See
Rosenbaum [1998] for methods for dealing with imperfect matching.

While no justification for the use of restricted randomization is required
when the covariates are built in to the experimental design, formal justification
for the use of Rosenbaum’s method after the fact requires us to make three
assumptions.

First, for all observations, the observed treatment assignment z(z = j if the
unit is assigned to treatment j ) and the vector r = (r1, . . . , rj) of potential
responses to treatment of that unit are conditionally independent given the
vector of observed covariates. Second, regardless of the values taken by the
covariates, all treatment assignments are possible. And third, the conditional
probability e[X] of receiving a particular treatment given a vector of observed
covariates X, follows a logistic model [Cox and Shell, 1989], that is,

log
{

e[X]
(1 − e[X])

}
= βT f(X),

where f(X) is a known but arbitrary vector-valued function of X. Since f(X)
is arbitrary, this latter condition is not particularly restrictive.

All three of these assumptions are satisfied if the covariates did not affect the
treatment assignment. For example, obesity and smoking history would satisfy
these conditions if they were not factors in the patient/physician decision to
have or perform a specific treatment.

11.3 Outliers

Consider the set of observations 0, 1, 2, 3, 19. Does the 19 represent a genuine
response to treatment, the response we have been looking for, or is it an
outlier—a typographical error or a bad reading that will only lead us astray?
In the first case, we will want to utilize the data just as they are; in the second,
we will want to modify or perhaps even to discard the questionable reading.

Shall we deal with such outliers on a one-by-one basis? Or should we
establish a policy that will automatically adjust for and diminish the effect
of outliers? Ad hoc rejection of suspect data could lead to charges of bias.
A systematic policy can be adjusted for sample size and power determinations.

We consider seven policies here:

1) preserving the original data;
2) using ranks in place of the original observations, thus diminishing the effects

of outliers;
3) replacing the observations/ranks by scores derived from some standard

distribution, e.g., the order statistics of a standardized normal distribution;
4) applying a robust tail-compression transformation to all the data;
5) using an L1 test;
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6) censoring extreme observations;
7) deleting extreme observations.

Whichever policy we elect, the permutation method will be more robust to
outliers than a test based on a parametric distribution. The influence func-
tions of a two-sample permutation test are always bounded above, even if the
influence functions of the corresponding parametric test are unbounded from
above and below [Lambert, 1981]. Our only concern need be the selection of
a test statistic that is both practical and optimal.

11.3.1 Original Data

“The Method of Randomization applied to the original observation
produced stunningly efficient tests which were dismally impractical.”

[Bradley, 1968]

Despite these discouraging words from James V. Bradley, I almost always
make use of the original observations rather than their transform.

The exception that proves the rule is in my analysis of the Renis data
considered in Exercise 5 of Chapter 3 and in Good [1979]. In that study,
I used a preliminary logarithmic transformation, but it was to equalize the
variances in the two samples, not to eliminate large values.

The computational difficulties to which Bradley alluded have largely been
resolved through advances in computer technology between 1968 and today;
the efficiency of the permutation test remains. The power and high relative
efficiency of the permutation test comes from its use of exact values. Throw
away one of the observations or replace it with its rank or a trimmed value
and you reduce the power of the corresponding test. The gain in power is
particularly evident when there is a mixture of responders and nonresponders
[Good, 1979]; but see Boos and Browne [1986].

On the other hand, a single extreme observation often can have a dis-
proportionate effect. Given the observations 0, 1, 2, 3, 19, would you rather
guesstimate the population mean as 2 or 2.5 than estimate it using the sample
mean of 5? By taking ranks or applying some other tail-compressing transfor-
mation to all the observations, we can “democratize” the data so that each
data item has a relatively equal influence upon the final calculation. (See also
Hampel et al. [1986].)

11.3.2 Ranks

Suppose we have two samples: The first control sample takes values 0, 1, 2, 3,
15. The second treatment sample takes values 3.1, 3.5, 4, 5, and 6. Does the
second sample include larger values than the first?

When we rank the data giving the smallest observation a rank of 1, the
next smallest the rank of 2, and so forth, the first sample includes the ranks
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1, 2, 3, 4, 10, and the second sample includes the ranks 5, 6, 7, 8, 9. Does the
second sample include larger values than the first?

Applying the two-sample comparison described in Section. 3.2 to the ranked
data, we conclude at the 10% level that the second sample is significantly
larger. The sums of the ranks in the original first sample, 20, is as large or

larger in just 19 of the
(

10
5

)
= 252 rearrangements.

Obviously, taking ranks diminishes the effects of outliers. Taking ranks has
a second advantage from the computational point of view: When we take
ranks, the results are unconditionally distribution-free. As we are working
with the same values—the ranks, over and over regardless of the actual values
of the observations—we can tabulate the significance levels of our test statis-
tics (at least for small samples) and avoid lengthy computations. And we may
determine analytically when a sample of ranks is large enough that its per-
mutation distribution may be replaced by an asymptotic approximation. It’s
not surprising that much of the literature on distribution-free tests is devoted
to an analysis of the permutation distributions of ranked data.

The cost of using ranks is a loss of power, that is, a diminished probability of
detecting a real difference between the distributions under test. But it is not a
great loss. To achieve the same power as the permutation or parametric t-test
with very large samples, the Mann–Whitney test—a two-sample comparison
that uses ranks in place of the original observations—requires only 3% or 4%
more observations. Cheap, if the units are widgets; expensive, if the units are
patients or rare Rhesus monkeys.

11.3.3 Scores

If we are testing against almost normal alternatives, we can improve on the
power of the Mann–Whitney test by using normal scores in place of ranks.

In the general case, we replace the rank of the ith observation, ri, say, by
the expected value of the rith largest value in a sample of n values drawn
from the distribution F, F−1[ri/(n+1)], where F is our best guess of how the
observations are really distributed (see also David [1970, p. 65]).

A good guess will produce an optimal test, and, sometimes, even a “bad”
guess can be close to optimum. For example, Chernoff and Savage [1958]
show that the normal-scores test, in which φ is the Gaussian distribution, has
a minimum asymptotic efficiency of 1 relative to the usual t-test regardless of
the true underlying distribution.

Bell and Doksum [1965] provide detailed comparisons of the rank and nor-
mal scores tests in a variety of settings. In Bell and Doksum [1967] they
provide conditions under which the normal-scores test is minimax.

Hajek and Sidak [1967] show that, in general, optimal scores for tests of
location are based on the scores

a(j) = −f ′(F−1[u])
f(F−1[u])

,
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where u = j(N +1), and f and F are the density and cumulative distribution
functions, respectively, of the underlying distribution. For optimal rank tests
of scale, the scores are

a(j) = 1 − F−1[u]f ′(F−1[u])
f(F−1[u])

.

11.3.4 Robust Transformations

A robust transformation preserves sample values at the center of a distribution
while shrinking those in the tails. As one example [Maritz, 1981], consider

φ(u) = u/(1 + u2).

For u small φ(u) is approximately u. For u < 1,φ(u) is a slowly increasing
function of u. If we replace xi, by φ(xi) in computing the mean, then large
values will make virtually no contribution to the total.

As a second example (Huber [1972]), take

φ(u) = (1 − exp[−u])/(1 + exp[−u]).

Again φ(u) is approximately u for u small, and is bounded between 0 and 1.
In a complex experimental design, the transformation may be applied to

the residual rather than the original observation. For example, to test whether
Y = bX, one would apply φ to y′ = y − bx, rather than to y.

If you are uncertain which transformation to use, you can reduce the effect
of extreme values in some cases simply by switching to a statistic based on
the absolute differences |xi − yi| in place of the squared differences (xi − yi)2.
The final choice should be dictated by your loss function (see Section 10.4).

If extreme values are unlikely, as is the case with normal alternatives, then
a robust transformation will have little or no effect on the power of a test. See
Maritz [1981] and Lambert [1985] for further discussion.

11.3.5 Use an L1 Test

A test based on the absolute values of the deviations about the median rather
than the squares of the deviations about the mean is less likely to be affected
by extreme values. Such a test is also the appropriate one to use with a first-
order loss function. See Wilson [1978], Mielke [1986], Dodge [1987], Wang and
Scott [1994], Cade and Richards [1996], and Mielke and Berry [1997].

11.3.6 Censoring

Lambert [1985] offers a two-sample test that is both robust and powerful.
First, we order the data so that

X(1) < · · · < X(n) and Y(1) < · · · < Y(m).
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To test against the alternative that the Y ’s are larger on the average than
the X ’s, we replace each Xi and Yj that is less than k1 = X(nβ1) by k1 and
each Xi and Yj that is greater than k2 = Y(nβ2) by k2 and then carry out
the usual permutation test based on the sum of the observations in the first
sample. Note that the censoring values are determined by the data themselves.
Unfortunately, there can be more than one “right” choice for β1 and β2, and
the computations are far from straightforward. One possible compromise is to
let k1 = X(2) and k2 = Y(m−1) for samples of 15 or less.

11.3.7 Discarding

The most extreme method of dealing with outliers is to discard them. Al-
though Welch and Guiterrez [1988] obtain narrower confidence intervals in
matched-pairs designs through the use of permutation applied to trimmed
means, there are two objections to this method. First, the resultant test is
unlikely to be exact ([Romano, 1990] Theorem 3.3). Second, discarding data
reduces the power of the test. In Good [1991], we improve on the power of the
Welch–Guiterrez test by treating the outliers as if they were censored. Our
approach is described in more detail in the next section.

11.4 Censored Data

We may not be able to make all our measurements with the same precision.
In a radioimmune assay, for example, the typical concentration curve has

a sigmoidal shape with flat regions at the two extremes. In the lower, flat
region, of the curve, estimation is difficult, if not impossible. While binding
values elsewhere may be determined to one part in a billion, in this region
they merely are recorded as “below minimum:”

Here is a second example: In many clinical studies, it is neither possible
nor desirable to follow all patients to the end of their lifespans. Limiting the
duration of the study cuts the costs of observation and puts promising new
materials and processes into immediate service. But while some lifespans will
be known with precision, others can be noted only as “exceeded treatment
period.”

In each of these examples some of the data have been censored.

11.4.1 GAMP Tests

When observations are censored, the most powerful test typically depends on
the alternative, so that it is not possible to obtain a uniformly most powerful
test.

Good [1989, 1991, 1992] found that by establishing a region of indifference,
it may be possible to obtain a permutation test that is close to the most
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powerful test, “almost most powerful,” regardless of the underlying parameter
values.

Suppose we wish to perform a test of a hypothesis F against a series of
alternatives F1, F2, . . . . To obtain a test that is globally almost most powerful
(GAMP), we proceed in three stages.

First, we use the likelihood ratio to obtain a locally most powerful unbiased
α-level test of the hypothesis F against the alternative F1 . We repeat this
procedure for each alternative Fi to obtain a family of rejection regions {Ri}.

Next, we form two regions: (i) A rejection region R ⊆ ∩
i
Ri that contains

only events common to all the rejection regions of the preceding family; and (ii)
an acceptance region A that contains only events common to all the acceptance
regions.

Last, we construct a permutation test whose p-value is determined by
assigning each rearrangement of the data to one of three regions: rejection (R),
acceptance (A), or indifference (I ). While we cannot determine the p-value of
their new-test exactly, we can bound it:

Pr{R|X} ≤ p ≤ 1 − Pr{A|X}.

In Good [1992], I showed that GAMPs exist when the joint log-likelihood of
the observations takes the particularly simple form SU ∗f(θ)+NC ∗ (θ) where
SU and NC are the sum of the uncensored observations and the number of
censored observations in the treatment sample, respectively, and f and g are
monotone functions of θ. Examples include normally distributed, exponen-
tially distributed, and gamma distributed random variables subject to Type
I censoring.

A permutation (or rerandomization) approach is utilized.
There are two distinct cases, which I term left- and right-censoring, though

the actual directions—left or right—will depend upon the alternative. To fix
ideas, suppose we have samples from two populations and are testing a null
hypothesis H: F2 = F1 against stochastically larger alternatives K: F2(x) =
F1(x − δ). With left-censoring we can assign x a precise value only if x ≥ c;
for example, radioimmune assay involves left-censoring. With right-censoring,
we can assign x a precise value only if x ≤ c; for example, reliablility studies
usually involve right-censoring.

To eliminate any dependence on the zero point of the underlying scale,
we transform the data before we derive the permutation distribution; from
each of the orginal observations we subtract X̄U , the mean of the uncensored
observations in the sample taken from G where X ′

ij = Xij − X̄U for i =
1, 2, j = 1, . . . , ni, and S′

U0
= 0; the transformed observations are censored at

c′ = c−X̄U . Next, we compute SU0 and NC0 for the original treatment sample
and permute repeatedly, computing SU and NC for each permuted sample.

With left-censoring, we assign a permutation to the rejection region R if
SU ≥ SU0 and NC ≥ NC0 . We assign it to the acceptance region A if SU < SU0

and NC ≤ NC0 . We assign it to the indifference region I, otherwise.
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With right-censoring, we impute the value c to the censored observations.
Let k = NC − NC0 . We assign a permutation to the rejection region R if
SU + kc ≥ SU0 . We assign it to the acceptance region A if SU + kc < SU0 . We
assign it to I, the indifference region, otherwise.

The indifference region is small enough in most instances to permit effective
decision-making [Good, 1989]. As the sample size increases, the GAMP test
converges in probability to a UMP-unbiased test [Good, 1992]. In the rare
case where the result does lie in the indifference region, we recommend taking
additional observations.

The application of permutation methods to censored data was first sug-
gested by Kalbfleisch and Prentice [1980], who sampled from the permutation
distribution of censored data to obtain estimates in a process akin to boot-
strapping.

For a survey of other permutation tests that have been applied to censored
data, see Schemper [1984]. Conditional rank tests for randomly censored sur-
vival data are described by Andersen et al. [1982] and Janssen [1991].

11.4.2 Fishery and Animal Counts

GAMP tests may also be applied in the analysis of fish and animal counts
when a large proportion of readings are zero.

11.5 Censored Matched Pairs

As we showed in Section 6.4.2, the sensitivity of an experiment can be incre-
ased through the use of matched pairs. But it may happen that an exact
observation cannot be made for one or more subjects, the only available infor-
mation being that the required measurement is greater or less than some
known value. Often this censoring process is accidental, but in many toxi-
cology studies and reliability trials, it is a matter of deliberate design: The
experimenter trades the cost of enrolling a larger number of subjects at the
onset of the experiment for a shortened study period.

Suppose z = y −x is the difference between the (transformed) observations
on the two members of a pair, and that observations are not recorded if they
exceed C on the (transformed) scale. As noted by Sampford and Taylor [1959],
any pair provides information on the distribution of z in one of the following
four forms:

(i) both y and x are observed, so that z is determined exactly;
(ii) x is observed, but we only know that y exceeds C ; that is, z > C − x, so

we say z is upper-censored ;
(iii) y is observed, but we only know that x exceeds C ; that is z < y − C, so

we say z is lower-censored ;
(iv) both x and y exceed C, so that no information is available on z for this

pair; the sample size is effectively reduced.
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While cases (ii) and (iii) provide less information than case (i), they are
not uninformative, and a variety of hypothesis testing methods have been pro-
posed for capitalizing on the information they provide. Good [1991] developed
an “almost” most powerful distribution-free method based strictly on the data
at hand. To see how this method is applied, assume that the first observation
in each pair has the distribution F and the second has the distribution G.
The hypothesis, unless stated to the contrary, is that F ≥ G. The alternative
is that F < G.

11.5.1 GAMP Test for Matched Pairs

The globally almost most powerful (GAMP) test for matched pairs repre-
sents a simple extension of the GAMP test for two independent samples
derived in Good [1989, 1992]. Record U, the number of upper-censored pairs
in the original sample, and Z, the sum of the uncensored z ’s in the original
sample. Randomize the observations, permuting the treatment labels within
each pair, and let U ′ and Z ′ be the corresponding statistics for the permuted
sample.

If U ′ ≥ U and Z ′ ≥ Z, then assign the permuted sample to the rejection
region R.

If U ′ ≤ U and Z ′ < Z, then assign the permuted sample to the acceptance
region A.

Otherwise, assign the permuted sample to a region of indifference.
Repeat the randomization process for all possible permutations (or for a

suitably large number N of randomly selected permutations) and let fR, fA,
and fI be the frequency with which permutations are assigned to the rejection,
acceptance, and indifference regions, respectively.

This method of construction ensures that the acceptance region A of the
GAMP test is contained in the acceptance regions of each of the most powerful
α-level permutation tests of a simple hypothesis G =F =F ∗ against the simple
alternative G∗ = G > F = F ∗. Similarly, the rejection region R of the GAMP
test is contained in the rejection regions of each of the most powerful α-level
permutation tests.

fR ≤ p ≤ N − fA, where p is the significance level of any member of the
family of most powerful permutation tests of a simple hypothesis against a
simple alternative. Thus, a test of the composite hypothesis F ≤ G against
the composite alternative F > G based on the bounds defined by A and R is
globally almost most powerful.

In practice, an investigator using a GAMP will elect one of three courses of
action: 1) accept the null hypothesis, noting the bounds on the p level; 2) reject
the hypothesis in favor of a stochastically larger alternative; 3) in order that
p might be known with greater certainty, elect to take additional observations.
If you require exact significance levels to make power comparisons with other
tests, you must randomize on the indifference region as follows.
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If fR is greater than the desired α-level, accept the null hypothesis. If N−fA

is less than the desired α-level, reject. If neither condition holds, choose a
random number Z = U(0, 1) and reject the hypothesis if Z ≤ (Nα −fR)/(N −
fR − fA), accepting it otherwise.

11.5.2 Ranks

When data are heavily censored, you can improve on this method by replacing
the original observations with ranks. Two approaches suggest themselves: In
the first, which we term “post-ranking,” compute the differences z or each
pair, then rank these differences in absolute value dividing the highest ranks
among the censored observations. Denote by Z the rank sum that correspond
to those pairs in which y is known to be larger than x. As in the GAMP test,
now randomize the observations, permuting the treatment labels within each
pair, and denote by Z ′ the new rank sum. Assign this randomization to R, I,
or A according to whether Z ′ >, =, or < Z. As with the GAMP test, reject
H in favor of K if only a small proportion of rerandomizations are assigned
to R; randomize on the indifference region I to obtain a test at a specific
significance level p.

Postranking has the drawback that if, say, 2 is the censoring point, the
difference “censored – 1.99” is automatically assigned a higher rank than the
difference “1.99 – 0.” To avoid this difficulty, in a second approach, which
we term preranking, first rank the individual observations, again dividing the
highest ranks among the censored observation. Next, compute the differences
of the ranks within each pair, and, as a third and final step, rank the absolute
values of the differences. The drawbacks of this second, preranked approach
are computational: you must rank the data twice and you must correct for
ties during the second ranking.

When the underlying distribution is normal and censoring is heavy, the
preranked permutation test provides the greatest sensitivity [Good, 1991].

When the underlying distribution is normal and censoring is light, or when
the underlying distribution is exponential, the GAMP test is preferable.

The strength of the GAMP lies in its use of exact values rather than
ranks—thus its effectiveness with heavy-tailed distributions, like the expo-
nential, which have many extreme values. The GAMP is also the most readily
computed. Its weakness lies in its dependence on a region of indifference whose
size varies from sample to sample.

11.5.3 One-Sample: Bootstrap Estimates

If you are willing to assume the underlying distribution(s) are symmetric,
then these methods for paired comparisons may also be applied to hypotheses
based on a single sample. If censoring is one-sided, we are forced to censor on
the opposite side in order to obtain an exact test. If you (1) are unwilling to
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assume symmetry, and/or to throw away data through censoring, (2) have 15
or more observations (30 would be better) and (3) are willing to assume that
all observations are drawn from the same distribution, then you may apply
Efron’s [1981] bootstrap method of extending the Kaplan-Meir estimates.

11.6 Adaptive Tests

In an adaptive test [Hogg and Lenth; 1984], we compute several different test
statistics, but make use only of the one we estimate to be the most powerful.
For example, we could compute both a t-test and a robust test based on an
M -estimate and, after the fact, use the one that seems best suited to the data.
With some adaptive methods, the frequency of Type I error may increase as a
result of this selection procedure. But with Donegani’s method [1991] applied
to two permutation tests, we can obtain a single test that is both exact and
equal in power asymptotically to the most powerful of the two tests.

Let T1, and T2 be the two tests and let c1, and c2, the “criteria,” be two
positive real functions defined on the vector of observations X such that if
c1(X) < c2(X), then T1 is preferable to T2. Suppose that large values of either
test statistic indicate a departure from the null hypothesis. Proceed in four
steps as follows.

1. Evaluate c1(X), c2(X) and let ‘opt’ refer to the index of the criterion having
the smaller value.

2. partition the set Pr of all possible rearrangements of the data into two sets,

P1 = {π : c1(πX) < c2(πX)},

P2 = {π : c1(πX) < c2(πX)}.

3. Let Hopt be the randomization distribution obtained by evaluating the
optimal test statistic Topt on each element of the set that contains the
original rearrangement.

4. Reject the null hypothesis at the level α if Topt exceeds the 100-αth per-
centile of Hopt. In other words, if c1(x) < c2(X) restrict attention to those
rearrangements that are in P1.

Let Ni denote the number of rearrangements in Pi. Let Ci denote the choice
of the statistic Ti. Then

Pr{R|H} = Pr{R|H, C1} Pr{C1|H} + Pr{R|H, C2} Pr{C2|H}
= α(N1/(N1 + N2)) + α(N2/(N1 + N2))
= α

Donegani [1991] shows that in this case the adaptive procedure is asymp-
totically optimal and, in the case of matched pairs, that it is optimal with as
few as nine pairs of observations.
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11.7 Exercises

1. Prove that ranking the data will eliminate any distortions brought about by
a nonlinear measuring device. That is, prove that the ranks of the observa-
tions are invariant under any continuous, strictly increasing transformation.
(We take advantage of this result in a multivariate analysis in which we
use ranks to bring several disparate variables together on a single common
scale; see Section 9.1.)

2. Show that an exact one-sample permutation test for singly censored data
can exist only if you deliberately censor the data from the other side.

3. Let x1, . . . , xn be a sample from the exponential distribution with density
be 1

b e−x/b, b > 0. If you have a scintillation counter at hand, you can
generate just such a sample by recording the time elapsed between counts.
Alternately, you may stand on a street corner or at night club entrance and
record the number of seconds before the next redhead or the next BMW
goes by. If you have access to a computer, use its random number generator
and take the logarithms of the random numbers you generate. Guesstimate
the mean waiting time b before you start. Test your guesstimate using (a)
the original observations, (b) ranks, (c) normal scores, and (d) the data
remaining after you’ve thrown out all observations that are three times
the guesstimated value. Compare your results with the different statistical
procedures for sample of size 5, 6, and 7.
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Solving the Unsolved and the Insolvable

In this chapter, we consider the problem of developing optimal solutions for
yet-to-be-encountered problems, problems for which test statistics are not
immediately to be found in the pages of this or any other text. First, we
review the criteria for test statistics that we first encountered in Chapters 2
and 3. Then, we consider some permutation test statistics that have been
developed in some highly specialized situations. Last, to be used when all else
fails, we consider bootstrap confidence intervals.

12.1 Key Criteria

In virtually all the instances we have studied to this point in our text, the
“obvious” test statistic is one that tends to be very large under the alternative
(or very small), while under a null hypothesis no value is more likely than any
other. The formal justification for this approach comes from the fundamental
lemma of Neyman and Pearson, and if our statistic is sufficient for the para-
meters we are testing, then we can be almost certain we’ve made the correct
choice.

12.1.1 Sufficient Statistics

Recall that a statistic T (X) is sufficient for a parameter θ if the conditional
distribution of X given T is independent of θ. Once we have calculated the
value of a sufficient statistic or statistics, we may be able to throw away the
original observations, for frequently, a sufficient statistic(s) can provide us
with all the information a sample has to offer.

An example we have encountered many time in the derivation of permuta-
tion tests is that of the order statistics x(1) ≤ x(2) ≤ · · · ≤ x(n). If we know
these order statistics, we know as much about the unknown distribution as
we would if we had the original observations in hand.



“chapter12” — 2004/10/12 — page 210 — #2

210 12 Solving the Unsolved and the Insolvable

Another commonly encountered example is that of the mean of a sample
of independent, identically Poisson-distributed random variables; this statis-
tic is sufficient to represent the mean of the underlying Poisson distribution.
Likewise the mean of a sample of normally distributed random variables is
sufficient to represent the mean of the underlying normally distributed popu-
lation. But there is a distinction: In the first example, the Poisson, the sample
mean possesses all the information the sample has to offer with regard to the
underlying single-parameter distribution. In the second case, a normal distri-
bution depends on two parameters, the population mean and the population
variance. We need to compute both the sample mean and the sample variance
to obtain all the information a sample from a normal distribution has to offer.

Even in the case of a normal distribution, as it is a member of an expo-
nential family, we were able to derive in Chapter 3 a test of the population
mean, conditional on the value of a sufficient statistic.

In selecting a statistic to test a hypothesis about a population parameter
θ, we look first at those statistics that are sufficient for θ.

12.1.2 Three Stratagems

Occasionally—the k -sample comparison of means when k > 2 is an excellent
example—the use of sufficient statistics alone will not reduce consideration to
a single statistic. Three stratagems may help us. We may

• restrict the alternatives;
• consider the loss function;
• invoke impartiality.

12.1.3 Restrict the Alternatives

In the k -sample case, by restricting attention to ordered alternatives, we were
able to obtain a UMP-unbiased test (Theorem 6.2). In the next example, that
of an r × 1 contingency table, we cannot derive a most powerful test that will
protect us against all alternatives, but we can use the likelihood ratio to derive
a most powerful test against those alternatives that are of immediate interest.
The approach lends itself to any set of data for which we have knowledge of
an underlying model.

Suppose the hypothesis to be tested is that certain events (births, deaths,
accidents) occur randomly over a given time interval. If we divide this time
interval into m equal parts and pi denotes the probability of an event in the
ith subinterval, the null hypothesis becomes H: pi = 1/m for i = 1, . . . , m.
Our test statistic is

χ2 = mn

m∑
i=1

(
vi − 1

m

)2

,

where vi is the relative frequency of occurrence in the ith interval.
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0 1 2 3 m − 1
v0 v1 v2 v3 vm−1

To determine whether this test statistic is large, small, or merely average, we
examine the distribution of χ2 for all sets of frequencies {vi} that satisfy the
two conditions

1) vi ≥ 0, i = 1, . . . , m;
2)
∑

vi = 1.

We reject the hypothesis if the fraction of tables for which χ2 ≤ χ2
0 is less

than α.
We can obtain a still more powerful test when we know more about

the underlying model and, thus, are able to focus on a narrower class of
alternatives.

Suppose, in contrast to the previous example, that we use the m categories
to record the results of n repetitions of a series of m−1 trials, that is, we let the
ith category correspond to the number of repetitions which result in exactly
i−1 successes. If our hypothesis is that the probability of success is .5 in each
individual trial, then the expected number of repetitions resulting in exactly

k successes is πk[.5] = n

(
m
k

)
(.5)m

If we proceed as we did in the preceding example, then our test statistic
would be

S1 = χ2 = n

m∑
k=1

(vk − πk[.5])2

πk[.5]
.

Such a test provides us with protection against a wide variety of alterna-
tives. But from the description of the problem we see that we can restrict
ourselves to alternatives for which

πk[p] = n

(
m
k

)
(p)k(1 − p)m−k.

Fix, Hodges, and Lehmann [1959] show that a more powerful test statistic
against such alternatives is

S = S1 − S2,

where

S2 = min
p

m∑
i=1

(vi − pi[p])2

πi[p]
.

The parametric form of the distribution of S is difficult if not impossible
to obtain analytically, except for very large sample sizes; as always, we can
approximate the permutation distribution by Monte Carlo means, assigning
the
∑

vi items to the m categories at random and computing S2 for each such
rerandomization.
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12.1.4 Consider the Loss Function

The loss function should be a key factor in the selection of a statistical test.
As we saw in Chapter 2, a statistical problem is defined by three elements:

1) The class P = {Pθ, θ ∈ Ω) to which the probability distribution of the
observations is assumed to belong;

2) The set D of possible decisions {d(X )} one can make in light of the obser-
vations X ,

3) The loss L(d(X ), θ), expressed in dollars, human lives, or some other quanti-
fiable measure, that results when we make the decision d whith θ being true.

When you and I differ in our assessment of the loss function, we are likely
to differ in our assessment of the significance of Type I and Type II error and,
hence, in our choice of test statistic.

Even when we don’t know the exact values taken by a loss function, we
have some idea about its form. In many testing situations, for example, in the
analysis of variance and in some matched pair applications, the traditional
test statistic (or discrepancy measure in Mehta and Patel’s terminology) is
a function of the square of the distance between the observed or estimated
values and the hypothesis. Yet the natural measure is the distance itself. A
statistical procedure that minimizes the expected value of the one may not
minimize the expected value of the other [Mielke and Berry, 1982, 1983].

The principal reason for using the square of the distance is that it yields
a maximum likelihood solution when the underlying distribution is normal.
An assumption of normality may or may not be justified while maximum
likelihood itself can only be justified on the grounds of convenience.

A second and more compelling reason for using the square of the distance in
the data space would be that the loss function, a discrepancy measure in the
parameter space, is also proportional to the square. But if we are uncertain
about the form of the loss function, would it not be more natural to utilize
a test statistic that is linear in both the data and parameter spaces? A first-
order statistic will be more robust than a second-order statistic in the face of
questionably large deviations [Dodge, 1987].

With parametric tests, we are too often restricted by the availability of
tables from which we can obtain critical values. The permutation approach
frees us to choose the test statistic that is best suited to the problem at hand.
If a second-order statistic is called for, we may use it, and if a first-order
statistic is more appropriate, we may take advantage of it, instead. Through
the use of resampling methods, we are free to choose the statistic best suited
to the problem.

Recall from Chapter 6 that if we have more than two levels of a factor;
we have a choice of at least three test statistics. Select the optimal statistic
in accordance with both the alternatives of interest and the underlying loss
function.



“chapter12” — 2004/10/12 — page 213 — #5

12.2 The Permutation Distribution 213

12.1.5 Impartiality

If your measurements are made in feet, would you expect to reach the same
conclusions as you would if your measurements were made in inches? What
if you discover after you report your results that you forgot to rezero the
measurement device so that each of your readings is off by exactly 0.0123
gram. Would you still believe that your decision to accept the hypothesis is
correct? If your answer to both these questions is an unconditional “yes,”
then you are already applying the principle of invariance, implicitly if not
explicitly.

Many statistical problems involve symmetries. In the examples we’ve con-
sidered so far, the observations are exchangeable, so that the order in which
we made these observations is irrelevant. Our test statistic(s) should and do
reflect this same symmetry. The sample mean and sample variance are good
examples of statistics that are symmetric in the underlying variables. Sym-
metry and invariance are related, as we saw in Chapter 7. The mathematical
expression of symmetry is invariance under a suitable group of transforma-
tions. In generating an optimal test, look for test statistics that preserve the
structure and symmetry of a problem.

12.2 The Permutation Distribution

Many common statistical problems defy conventional parametric analysis
simply because the distributions of the resultant test statistics are not well
tabulated. Or, worse, we settle for a less-than-optimal statistic simply because
a table for the less-than-optimal statistic is readily available—the chi-square
statistic (Chapter 8.3.1) and its misapplication to sparse contingency tables
is one obvious example.

We need not settle for less than the best. Given a sufficiently powerful
computer and the time needed to perform the necessary calculations, we can
always obtain the permutation distribution of the statistic that best separates
the hypothesis from the alternative.

The purpose of this section is to describe a number of practical applications
in animal behavior, atmospheric science, education, epidemiology, molecular
genetics and sociology, where permutation distributions have provided new
and more powerful solutions.

12.2.1 Ensuring Exchangeability

For the permutation method to provide meaningful results, the stochastic
portion of the observations or their transforms must be exchangeable. If the
model for our observations is Yi = A + Bi + εi, where A and the {Bi} are
known or unknown constants and the {εi} are random variables, then to test
hypotheses concerning Y or A or the {Bi}, the {εi} need be exchangeable.
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If we have a set of observations {X[t], t = 1, . . . , n} where X[t] = a + bX
[t −1] + z[t] and the {z[t]} are i.i.d., then the variables {Y [t], t = 2, . . . , n}
where Y [t] = X[t] − bX[t − 1] are exchangeable.

Dependent noncolinear normally distributed variables with the same mean
are transformably exchangeable, for as the covariance matrix is non-singular,
we may use the inverse of this matrix to transform the original variables
to independent (and, hence, exchangeable) normal ones. By applying two
successive transformations, we can obtain an exact permutation test of
the non-null, two-sample, univariate hypothesis for dependent normally dis-
tributed variables providing the covariance matrix is known. Unfortunately, as
Commenges [2001] shows, whether we accept or reject in a specific case may
depend on the transformation we have chosen.

Michael Chernick notes the preceding result applies even if the variables
are collinear. Let R denote the rank of the covariance matrix in the singular
case. Then there exists a projection onto an R-dimensional subspace where
R normal random variables are independent. So if we have an N -dimensional
(N > R) correlated and singular multivariate normal distribution, there exists
a set of R linear combinations of the original N variables so that the R linear
combinations are each univariate normal and independent of one other.

12.2.1.1 Test for Parallelism

Suppose we know that the behavior of the expected value of a variable over
time has a specific functional form f, and we wish to test whether two such time
curves are parallel even though we do not know the value of the intercepts.
That is, we are given that

yik = ai + bif(tik) + εik for i = 1, 2; k = 1, . . . , ni

where the errors {εij} are exchangeable. To obtain an exact permutation test
for H: b1 = b2, we need to eliminate the {ai} while preserving the exchange-
ability of the residuals. Writing xij = f(tij) for simplicity, we know that under
the null hypothesis

ȳi. = ai + bx̄i. + ε̄i..

Define

y′ =
1
2
(ȳ1 − ȳ2); x′ =

1
2
(x̄1 − x̄2); ε′ =

1
2
(ε̄1 − ε̄2); a′ =

1
2
(a1 + a2).

Define

y′
1k = y1k − y′ for k = 1 to n1 and y′

2k = y2k + y′ for k = 1 to n2.

Define

x′
1k = x1k − x′ for k = 1 to n1 and x′

2k = x2k + x′ for k = 1 to n2.
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Then
y′

ik = a′ + bx′
ik + ε′

ik for i = 1, 2; k = 1, . . . , ni.

Two cases arise. If the original predictors were the same for both sets of
observations, that is, if x1k = x2k for all k, then the errors {ε′

ik} are exchange-
able and we can apply the method of matched pairs. Otherwise, we need
to proceed as follows: First, estimate the two parameters a′ and b by least
squares means. Use these estimates to derive the transformed observations
{y′

ik}. Then test the hypothesis that b1 = b2 using a two-sample comparison.
If the original errors were exchangeable, then the errors {ε′

ik}, though not
independent, are exchangeable, also, and this test is exact.

Now suppose

yik = AiZk + bixik + εik for i = 1, 2; k = 1, ..., ni

where Zk is a column vector of covariates with Ai a row vector of the corre-
sponding coefficients. Defining A′

i as the mean of A1 and A2, then

y′
ik = A′Zk + bx′

ik + ε′
ik for i = 1, 2; k = 1, . . . , ni

and we have analogous results for the general case.

12.2.1.2 Linear Transforms That Preserve Exchangeability

Recall that a permutation π is isomorphic to a one-to-one function of the set
of natural numbers {1, . . . , n} onto itself. We denote by Pn the set of all such
permutations and by R(π) the n × n matrix whose ij th entry is equal to 1
if π(i) = j and equal to zero, otherwise. In this notation, an n-component
random vector x is said to have exchangeable components if R(π)x has the
same distribution as x for every permutation π in Pn.

Dean and Verducci [1990] show the following.

Theorem 12.1. A linear transformation B: Rn → Rm preserves excha-
ngeability if and only if for every permutation τ in Pm, there exists a permu-
tation π in Pn such that BR(π) = R(τ)B.

Theorem 12.2. A linear transformation B: Rn → Rm satisfies the con-
ditions of Theorem 12.1 if and only if B can be represented in the form
[B1, . . . , Bt]R(σ) where σ is in Pn, and for each I = 1, . . . , t, Bi is an m × ni

matrix (
∑

ni = n) satisfying the following conditions: If the first column of
Bi contains the distinct elements d1, . . . , dk with multiplicities m1, . . . , mk (so
that
∑

mi = m), then the ni columns of Bi consist of the ni = m!/Πmj ! dis-
tinct permutations of the first column.
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12.3 New Statistics

In this section, we consider several novel statistics that arise in specific
applications. Though their theoretical distributions cannot be readily calcu-
lated, p-values can be determined by reference to a permutation or bootstrap
distribution.

12.3.1 Nonresponders

An elementary example is a statistic I proposed for use when there is a
response threshold, a common occurrence in pharmacological studies [Good,
1979].

We assume that X1, . . . , Xn, the controls, are independent and identically
distributed with distribution F, while responders in the treatment group are
independent and identically distributed as G[x] = F [x − δ]. Unfortunately,
not every member of the treatment group is capable of responding to the
treatment, with the result that we are forced to test the hypothesis G = F
against contaminated alternatives of the form

G = πF [x − δ] + (1 − π)F [x], with 0 < π ≤ 1.

The conventional statistics for the two-sample comparison—Student’s t and
the Wilcoxon test—are subject to a loss of power in the presence of nonres-
ponders. This reduction in power of the t-test is due to two factors: (1) A dec-
rease in the absolute difference between the means of the two testing groups,
and (2) an increase in the variance of the treatment sample. This last change
is the key to the selection of a new test statistic:

v(p) = p′ nm

n + m
(X − Y )2 + (1 − p)S2

y .

This new statistic has two components: The first is proportional to the dif-
ference (X − Y ) in the means of the two samples, and the second to Sy, the
variance of the treatment sample.

Barring the availability of an independent test for response, the p used in
the equation for v is at best only a guess as to the true value of π. Good [1979]
found that using a value of p = 0.67 appears to offer relatively good protection
against a broad range of values of π. Boos and Browne [1986] question whether
the gain in power is really worth all the extra computation. An increase in
power can mean a decrease in sample size with fewer experimental subjects
placed at risk and a shortened study time with more rapid dissemination of
important results. An increase in computation time puts the strain where it
belongs—on the computer.
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12.3.1.1 Extension to K-samples

Mielke and Berry [1994] have extended Good’s result to k samples, choosing
as their test statistic

S =
K∑

k=1

nk

N

(
nk

2

)−1∑
i<j

∆ijφk(i)φk(j),

where nk is the number of observations in the kth sample, φk(j) is 1 if j
belongs to the kth sample and zero otherwise, and ∆ij = |xi − xj |m, m > 0;
typically, m = 1 or m = 2.

12.3.2 Animal Movement

Let {(wi, xi); i = 1, . . . , n} denotes a series of paired observations on the suc-
cessive positions of two organisms in space. We would like to know if the
movements of the two organisms are independent or coordinated. The ecolog-
ical literature favors a test of independence based on the ratio of the actual
distance traveled to the distance from the starting point:

R1 =
∑{(wi+1 − wi)2 + (xi+1 − xi)2}∑

(w2
i + x2

i )
,

Our own intuition suggests a more powerful test of the hypothesis of inde-
pendence would result from using either

R2 =
∑

(wi − xi)2∑
(w2

i + x2
i )

,

the ratio of the successive distances of the two organisms from each other and
from the starting point, or

R3 =
∑

(wi+1 − wi)(xi+1 − xi)∑
(w2

i + x2
i )

,

the traditional measure of correlation.
We also favor R2 and R3 on the grounds of simplicity. To compute the

permutation distribution of R1, we need to rearrange both sets of movements
{wi} and {xi}. To compute the permutation distribution of R2 or R3, we only
need to rearrange one set of movements. Whatever statistic we choose, we may
use its permutation distribution to obtain a test of statistical significance.

12.3.3 The Building Blocks of Life

In a fascinating state-of-the-art biological application, DNA sequencing,
Karlin et al. [1983] use permutation methods to assess the significance of
certain repeated patterns of nucleic acids in several viruses.
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DNA, the self-replicating molecule that is the basis of life on Earth, is
assembled from four specific nitrogenous bases—adenine, guanine, thymine,
and cytosine. The sequence in which these bases occur in the DNA molecule
determines the structure of the organism. The triplet of deoxyribonucleotides
guanine-adenine-cytosine leads to the production of the amino acid aspargine,
for example. At issue is whether certain repeated patterns involving multiple
copies of lengthy nucleotide sequences is also significant or merely the result
of chance. Studying the distribution of repeated patterns that result when
one randomly reassigns the labels on the nucleotides while preserving the
total numbers of each label, Karlin et al. conclude that the observed patterns
are statistically significant. Hasegawa, Krishino, and Yano [1988] approach an
analogous problem in DNA sequencing using bootstrap methods. The unrav-
eling of the biological significance of the patterns continues to be an important
research problem.

12.3.4 Structured Exploratory Data Analysis

A further illustration of this principle is given by Karlin and Williams [1984]
in their use of permutation methods in a structured exploratory data analysis
(SEDA) of familial traits. A SEDA has four principal steps:

1) The data are examined for heterogeneity, discreteness, outliers, and so
forth, after which they may be adjusted for covariates (as in Section 6.4.3)
and the appropriate transform applied (as in Section 6.4.3).

2) A collection of summary SEDA statistics are formed from ratios of
functionals.

3) The SEDA statistics are computed for the original family trait values and
for reconstructed family sets formed by permuting the trait values within
or across families.

4) The values of the SEDA statistics for the original data are compared with
the resulting permutation distributions.

As one example of a SEDA statistic, consider the OBP, the offspring-
between-parent SEDA statistic:

∑N
i

∑Ki

j |Oij − (Mi + Fi)/2|∑N
i |Fi − Mi|

.

In family i = 1, . . . , I, Fi and Mi are the trait values of the father and mother
(the cholesterol levels in the blood of the father and mother, for example),
while Oij is the trait value of the j th child, j = 1, . . . , Ki.

To evaluate the permutation distribution of the OBP, we consider all per-
mutations in which the children are kept together in their respective family
units, while we either:
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a) randomly assign to them a father and (separately) a mother; or
b) randomly assign to them an existing pair of spouses. The second of these

methods preserves the spousal interaction. Which method we choose will
depend upon the alternative(s) of interest.

12.3.5 Comparing Multiple Methods of Assessment

We are often forced to combine several methods of assessment; one obvious
example is in quality control; another is in grading students: Is an “A” in
statistics equivalent to an “A” in Spanish? Direct comparisons are difficult, if
not impossible, when students are free to choose their own courses. Table 12.1,
reproduced with permission from Manly [1988], illustrates some of the prob-
lems associated with free choice: Missing data are one obvious problem. A
second, hidden problem is that there is no guarantee that a student who is
good in statistics will do equally well in Spanish.

The solution to both problems is to develop some kind of aggregate mea-
sure, compute this measure separately for each course, and then check to see
how the distribution of this measure is affected by random relabelings of the
students.

Table 12.2, also taken from Manly, illustrates the computation of just such
a measure for the course in F. (The names of the actual courses have been
changed to letters to protect the identities of overly-generous and overly-stingy
graders.) The students are arranged in Table 12.2 in order of increasing mean
grade. Each student’s mark in course F is subtracted from that student’s
mean grade and the differences are cumulated.

If the marks in the various subjects are comparable, then each random
rearrangement of an individual student’s marks is equally likely. For example,
under the null hypothesis, student 6, who we see from Table 12.1 received
marks of 75, 46, 45, and 64 in subjects A, C, E, and F might just as easily
have received marks of 64, 45, 75, and 46 in those same subjects. Had this
been the case, the CUMSUM score for subject F would have been 67.2 rather
than 85.2. By looking at all possible arrangements of each student’s marks,
we obtain a permutation distribution against which the CUMSUM score for
the original arrangement can be assessed.

If the original score does not represent an extreme value, we conclude that
the marking for subject F is consistent with the marking for the other subjects.

If, on the other hand the original CUMSUM score does represent an extreme
value, our next step is to rescale the marks for subject F, subtracting and/or
dividing by a constant. We repeat the test procedure using the rescaled values.
And, in a manner akin to the way in which we derive a confidence interval
(see Section 3.2), we continue testing and rescaling until all the marks in all
the courses have been brought into alignment. Then, we may safely combine
the assessments.
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Table 12.2. CUMSUM calculations for the subject F marks of
Table 12.1∗

Student F mark Mean Difference CUMSUM

38 42 32.5 9.5 9.5
28 67 51.0 16.0 25.5
21 80 56.0 24.0 49.5
6 64 57.5 6.5 56.0

33 51 58.5 −7.5 48.5
24 80 72.3 7.7 56.2
55 90 74.0 16.0 72.2
64 92 79.0 13.0 85.2
19 92 — — —
∗Student 19 only took subject F. There is therefore no comparison
possible with other subjects and no contribution to the CUMSUM.
From “The comparison and scaling of student assessment marks in
several subjects,” B.F.J. Manly, Applied Statistics: 1988; 37: 385–95.
Note: Reprinted with permission from the Royal Statistical Society.

12.4 Model Validation

12.4.1 Regression Models

We consider two methods of validation, via the bootstrap and via permutation
tests.

12.4.1.1 Via the Bootstrap

Gail Gong [1986] was the first to use the bootstrap for this purpose. She
took a data set for which the results of a multiple logistic regression had
already been published. She applied the same stepwise regression technique
the original authors had to a series of bootstrap samples taken from the ori-
ginal sample. A few of the independent variables that the original stepwise
regression procedure had selected were incorporated in each of the resulting
regression models. But just as often, a variable that appeared in an analysis
of one bootstrap sample proved insignificant and was dropped in the analysis
of a second bootstrap sample.

This bootstrap method can be used in modeling to determine which, if any,
variables are essential to a modeling effort and which are dispensable. It can
also be used to determine whether the original sample size is adequate given
the number of independent variables.

12.4.1.2 Via Permutation Tests

Before beginning to develop a regression model, divide the data at random into
two parts, one of which will be used for model development and estimation,
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the other for validation. Our goodness-of-fit metric G is

G =

∑
k∈{validation} (Yobserved − Ypredicted)2∑
k∈{estimation} (Yobserved − Ypredicted)2

,

where the summation in the numerator is taken over all the observations in
the validation data set and the summation in the denominator is taken over
all the observations in the estimation data set.

This ratio will almost always be larger than unity, as the estimation data
set was used to choose the variables that went into the model. Consequently,
we cannot refer to tables of the F -distribution. We can derive the permutation
distribution of G as follows:

Divide the original data set into two parts at random a second time, but
use the estimation set only to calculate the values of the coefficients. Use the
same model you used before; that is, if log[X] was used in the original model,
use log[X] in this new one. Compute G a second time.

Repeat this resampling process several hundred times. If the original model
is appropriate for prediction purposes, it will provide a relatively good fit
to most of the data sets, if not, the goodness-of-fit statistic for our original
estimation set will be among the largest of the values, since its denominator
will be among the smallest.

12.4.2 Models With a Metric

The general circulation models of the Earth’s atmosphere and oceans used
in weather and current prediction are of mind-boggling complexity, while the
available data are all too finite. Priesendorfer and Barnett [1983] confront
the problem of model-reality comparison studies of general circulation models
head on by developing their own triple of metrics. In Figure 12.1a and b
which illustrates some of their concepts, the set D represents actual on-site
data while M corresponds to a computer-generated model.

Rerandomization is accomplished in two steps. First, the data from D and
M are combined into a single data set. Then, this combined set is repeatedly
subdivided at random into sets of the same size as the original D and M.
The resultant reference distributions for each of the three metrics are used to
assess the agreement of the model with reality.

How good is the Priesendorfer–Barnett test? The answer to this question
illustrates the value of the permutation approach to the scientist and engineer
whose primary training is not in statistics. For the answer does not depend
on the abilities of Priesendorfer and Barnett as statisticians—the calculations
in their test are straightforward—but on their abilities as meteorologists and
oceanographers. Their test of statistical significance will be a good one, if
they have selected the appropriate metric and the appropriate variables.
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Fig. 12.1. The geometric meaning of the trinity statistics SITES, SPRED, and
SHAPE. The statistic SITES is essentially a dimensionless measure of the separation
of data swarm centroids, while SPRED is a dimensionless measure of the differences
in the root-mean-square radii of the swarms. The statistic SHAPE is a combined
measure of the time evolution of the data swarms (and their associated maps).
Note: From “The numerical model/reality intercomposition tests using small-sample
statistics,” by R.W. Priesendorfer and T.P. Barnett, which appeared in Journal of
the Atmospheric Sciences; 1983; 40: 1884–96. Reprinted with permission from the
American Meteorological Society.

12.5 Bootstrap Confidence Intervals

When all else fails, the bootstrap may provide the confidence intervals we need
to make a decision. Parametric and permutation methods typically restrict us
to sufficient statistics related to location parameters and dispersions. The
bootstrap can provide tests for means, medians, interquartile deviations, and
percentiles of a distribution. It can provide a confidence interval for the ARE
Hodges–Lehmann estimator of the location parameter, the median of the pair-
wise averages

∆̂ = mediani≤j
(Xj + Xi)

2
.
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As we learned in Chapter 3, a hypothesis test can always be derived from
a confidence interval and vice versa.

Permutation and parametric tests require us to make assumptions about
the underlying distributions. With the bootstrap we can focus entirely on the
parameters. When testing a hypothesis regarding the mean of a population
from which observations are drawn, a parametric test requires that all obser-
vations come from the same distribution; a permutation test requires that
all observations come from a symmetric distribution. The bootstrap requires
only that all observations have the same mathematical expectation—their
distributions are not otherwise restricted.

We avoid using the bootstrap for the most part because its desirable proper-
ties are all asymptotic. With small samples, the bootstrap distribution may be
quite unrealistic. Increasing the number of bootstrap samples will not help, but
there are several techniques that can result in much improved bootstrap confi-
dence intervals. We consider in turn the Hall–Wilson criteria (or bootstrap-t)
and the bias-corrected percentile.

12.5.1 Hall–Wilson Criteria

Recall that a desirable point estimate is both accurate and precise. An accu-
rate point estimate is one that is close to the true value of the parameter
being estimated. A precise estimate is one that varies little as we go from
sample to sample. For an interval estimate to be desirable, it must have a
high probability of covering the true value of the parameter and a relatively
low probability of covering any false values. The narrower the interval, the
more likely we are to achieve the latter objective. The boundaries of desirable
interval estimates also should vary as little as possible from sample to sample.

Alas, the confidence interval for the sample median that we derived by
bootstrap means in Chapter 3 is not the best possible. Not only is this interval
wider than it should be (with the result that the probability of making a Type
II error by including a false value is high), but the probability of making a
Type I error by failing to include the correct value may be much larger than
the stated value. In other words, the probability that the interval (P ∗

05, P
∗
95)

covers the true value may be much less than 90 percent.
Suppose θ is the parameter we wish to estimate and θ̂ is our estimator. The

first of Hall and Wilson’s proposals to increase the accuracy of our bootstrap
confidence intervals is to use the distribution of the differences θ̂∗ − θ̂ rather
than the distribution of the estimate θ̂∗ based on the bootstrap sample alone.

Now suppose σ̂ is an estimate of the scale of θ̂, and σ̂∗ the value of σ̂ com-
puted for the bootstrap sample. To reduce the width of our confidence intervals
(thus decreasing the probability of a Type II error), Hall and Wilson [1991]
propose we scale each of these differences by σ̂∗. Instead of looking at the dif-
ferences θ̂∗− θ̂, we are to look at the distribution of the Studentized differences
(θ̂∗ − θ̂)/σ̂∗, where σ̂∗ is to be estimated by bootstrapping from the bootstrap
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sample. These guidelines can sometimes lead to rather bizarre results—see
Exercise 12.8.

12.5.2 Bias-Corrected Percentile

The bias-corrected interval represents a substantial improvement for one-sided
confidence intervals, though it is still suspect. The idea behind this interval
comes from the observation that percentile bootstrap intervals are most accu-
rate when the estimate is symmetrically distributed about the true value of
the parameter and the tails of the estimate’s distribution drop off rapidly to
zero. The symmetric mono-modal normal distribution represents this ideal.

Suppose θ is the parameter we are trying to estimate, θ̂ is the estimate based
on the original sample, and θ̂∗ is the estimate obtained from the bootstrap
sample.

Let KB [x] =P{θ̂∗ ≤ x} where P is the probability conditioned on the
observed sample. The uncorrected 1 − α lower confidence based on the boot-
strap would be θL = K−1

B [α].
Suppose, now we are able to come up with a monotone increasing trans-

formation m such that m(θ̂) is normally distributed about m(θ) regardless of
F, the distribution of the observations. We could use this normal distribution
to obtain an unbiased confidence interval, then apply a back-transformation
to obtain an almost-unbiased confidence interval. We shall see in what follows
that we don’t actually have to perform these operations to obtain the desired
result.

Given such an m, the 1 − α lower confidence bound for θ would be m−1

(m(θ̂)+zα) where zα is the αth percentile of an N(0, 1) distribution. In practice,
a more accurate lower confidence bound is given by

θmL = m−1(m(θ̂) + zα + z0) (12.1)

where z0 is termed the “bias” of m.
Let KB [x] = P{θ̂∗ ≤ x} where θ̂∗ is the estimate obtained from the boot-

strap sample, and P is the probability conditioned on the observed sample.
KB [θ̂] = P{(m(θ̂∗) − m(θ̂) + z0) ≤ z0} = Ψ(z0) where Ψ is the N(0, 1) distri-
bution function. This implies

z0 = Ψ−1[KB [θ̂]] (12.2)

Moreover,

1 − α = Ψ(−zα) = P{(m(θ̂∗) − m(θ̂) + z0) ≤ za}
= P{θ̂∗ ≤ m−1(m(θ̂) − z0 − zα)}.

Or, equivalently, for 0 < α < 1,

K−1
B [α] = m−1(m(θ̂) − z0 − zα). (12.3)

From equations (12.1) and (12.3) we see that θmL = K−1
B [Ψ[2z0 + zα]].
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From Equation (12.2), we derive the bootstrap bias-corrected lower confi-
dence bound θBCL = K−1

B {Ψ[2Ψ−1[KB [θ̂]] + zα]} (Efron [1981]). To improve
the rate of convergence, Efron [1987] proposed a bootstrap-accelerated bias-
corrected method.

12.6 Exercises

1. Suppose you wish to compare two groups of observations. Would it be
better to compare them using the two-sample comparison of Section 3.3
or the matched pairs technique of Section 3.6? Is your decision rule an
“always. . .” or does it depend on how the observations are dispersed and
the relative importance of the covariates used to do the matching?

2. Suppose you have discarded the n original observations in the sample,
keeping only the n order statistics when you obtain independent evidence
that the data are normally distributed. Can you still compute the sample
mean and variance?

3. Suppose you have multiple observations on each subject, some in feet,
some in inches, some in pounds. Should they all be transformed to a
common unit of reference before you begin your multivariate analysis?
What transformation(s) should you use?

4. What statistic(s) remain invariant under an arbitrary monotone-
increasing transformation of the observations? Is this result relevant to
the preceding question?

5. Ninety-nine percent of all scientists ignore the loss function and make do
with a significance level and (hopefully) a minimum power level against
one or two selected alternatives. Reconsider the statistical analyses you
performed recently. What was the loss function in each instance? Were
the test statistics you selected appropriate for this loss function?

6. a) Can the four k -sample statistics F1, F2, F3, and R introduced in
Section 4.2.2 be made equivalent to one another if we eliminate terms
that are invariant under permutations?

b) If your answer to the previous question is “no,” will there be data sets
for which tests based on F1, F2, and R lead to different conclusions?

c) How would you decide which of these three statistics to use?
d) Are you free to compute the permutation distributions of F1, F2, and

R for a specific data set and then choose the statistic that does the
best job of proving your point?

e) Suppose you were an examiner at the Food and Drug Administration.
How would you react to a submission the authors of which had done
as in 6d?

f) If you were one of those authors, how would you justify your choice of
test statistic to an examiner at the FDA?

g) Throughout this text, we have tried to justify our choice of statistic on
the grounds that the resultant test was (i) unbiased, (ii) most powerful,
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(iii) minimized losses, or was (iv) invariant under transformations of
location and scale. Do these criteria satisfy your own instincts? What
other criteria can you suggest?

7. Unbiasedness and invariance represent two complementary but distinct
approaches to testing. Which principle would you apply in the following
situations:
a) Comparing two Poissons.
b) Comparing two binomials.
c) Testing the hypothesis that the variance σ = σ0 against the alternative

σ �= σ0 when the observations come from a normal distribution.
d) Given the Xi are N(µ, σ), testing the hypothesis that µ/σ ≤ 3.

8. Although the Hall–Wilson corrections are widely accepted, sometimes
they can produce idiotic results. Obtain a Hall–Wilson corrected bootstrap
interval estimate for the population mean using the following sample:

0 0 0 0 7.53 0 0 0 15.77 0 0 0 0 7.53 6.16 0 0 0 0 18 0 5.71 5.71 0 7.78
0 7.03 0 10.22 0 12 19.07 15.50 0 0 0 0 0 3.81 6.10 3 10.78 0 10.44 0 0
0 0 0 0 4 0 0 0 103.05 0 0 0 0 12 0 0 0.

9. Suppose we know that yk = a + btk + εk for k = 1, . . . , n, where the
residual errors {εk} are exchangeable. Now suppose we replace a and b by
their least squares estimates, that is, by the values of a and b that will
minimize the sum

∑
(yk − a − tk)2. Show that if we rewrite the equation

for yk in terms of these least squares estimates and tk, that the resulting
residuals {ε′

k} will still be exchangeable.
10. Prove Theorem 12.2.
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Publishing Your Results

McKinney et al. [1989] report that more than half the published articles that
apply Fisher’s exact test do so improperly. Our own survey of some 50 bio-
logical and medical journals supports their findings. This chapter provides
you with a positive prescription for the successful publication of the results
of testing procedures. First, we consider the rules you must follow to ensure
that your data can be analyzed by statistical methods. Then, we provide you
with a number of simple rules to prepare your report for publication.

13.1 Design Methodology

It’s never too late to recheck your design methodology. Recheck it now in
the privacy of your office rather than before a large and critical audience. All
our testing methods rely on the independence and/or the exchangeability of
the observations. Were your observations. independent of one another? What
was the experimental unit? Were your subjects/plots assigned at random to
treatment? If not, how was randomization restricted? With complex multi-
factor experiments, you need to list the blocking variables and describe your
randomization scheme.

13.1.1 Randomization in Assignment

Are we ever really justified in exchanging labels among observations? Consider
an experiment in which we give six different animals exactly the same treat-
ment. Because of inherent differences among the animals, we end up with six
different measurements, some large, some small, some in between. Suppose we
arbitrarily label the first three measurements as “controls” and the last three
as “treatment.” These arbitrary labels are exchangeable and thus the prob-
ability is 1 in 20, that the three “control” observations will all be smaller than
the three “treatment.” Now suppose we repeat the experiment, only this time
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we give three of the animals an experimental drug and three a saline solution.
To be sure of getting a positive result, we give the experimental drug to those
animals who got the three highest scores in the first experiment. Not fair, you
say. Illegal! Illegitimate! No one would ever do this in practice.

In the very first set of clinical data I received for statistical analysis was
brought by a young surgeon. He described the problems he was having with
his chief of surgery. “I’ve developed a new method for giving arteriograms,
which I feel can cut down on the necessity for repeated amputations. But
my chief will only let me try out the technique on patients that he feels are
hopeless. Will this affect my results?” It would and it did. Patients examined
by the new method had a very poor recovery rate. But, of course, the only
patients who’d been examined by the new method were those with a poor
prognosis. The young surgeon realized that he would not be able to test his
theory until he was able to assign patients to treatment at random.

Not incidentally, it took us three more tries until we got this particular
experiment right. In our next attempt, the chief of surgery—Mark Craig of
St. Eligius in Boston—announced that he would do the “random” assign-
ments. He finally was persuaded to let me make the assignment using a table
of random numbers. But then he announced that he, and not the younger
surgeon, would perform the operations on the patients examined by the tra-
ditional method to make sure “they were done right.” Of course, this turned
a comparison of methods into a comparison of surgeons and intent.

In the end, we were able to create the ideal “double blind” study: The
young surgeon performed all the operations, but the incision points were
determined by his chief after examining one or the other of the two types
of arteriogram.

13.1.2 Choosing the Experimental Unit

The exchangeability of the observations is a sufficient condition for a per-
mutation test to be exact. It is also a necessary condition for the appli-
cation of any statistical test. Suppose you were to study several pregnant
animals that had been inadvertently exposed to radiation (or acid rain or some
other undesirable pollutant) and examine their offspring for birth defects. Let
Xij , i = 1, . . . , I; j = 1, . . . , J , denote the number of defects in the jth offspring
of the ith parent; let Yi =

∑
j Xij , i = 1, . . . , I denote the number of defects

in the ith litter. The {Yi} may be exchangeable (we would have to know more
about how the data were collected to determine this). The {Xij} are not: The
observations within a litter are interdependent; what affects a parent affects
all her offspring. In this experiment, the litter is the correct experimental unit.

The viewpoints of the observer and the statistician can be quite different.
If we wear two hats—serving both as observer and statistician, recognition of
this distinction can be painful. For example, in a typical toxicology study a
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pathologist may have to examine three to five slides at each of 15 to 20 body
sites in each of three to five animals—several hours of labor—just to get an
effective sample size of n = 1.

13.1.3 Determining Sample Size

As noted in Chapter 2, the number of observations must be large enough that
the resultant hypothesis test will have sufficiently high probability (power)
of detecting effects that are of scientific and/or practical interest. Before you
start, specify the significance level, the minimum effect of interest, and the
desired power for that effect, then use one of the methods described in Sec-
tion 14.10 to determine the appropriate sample size.

You may need to conduct your experiment in several stages, using your
initial efforts as a basis for estimating the population parameters needed in
the power calculations.

13.1.4 Power Comparisons

When making power comparisons between permutation methods, which yield
exact values for significance levels and parametric and bootstrap methods,
which yield only approximations, it is essential that the critical values used
in power comparisons be chosen so as match the actual significance levels.
For example, suppose that the tabulated critical value for a parametric test
is c∗, that is, we are to reject the hypothesis if our test statistic S > c∗, but
the probability that S > c∗ under the conditions of our power comparison
is α∗ > α. This would be the case, for example, if the parametric test relied
on the assumption of normality, but the test distribution was a mixture of
exponentials. Let c denote the true critical value such that the probability
that S > c is α. Clearly, c∗ < c. The power we report for our bootstrap or
parametric test will be in inflated to the extent it is based on values of S
such that c∗ < S < c. To forestall such an error, the critical values used in
power comparisons should be determined by a preliminary Monte Carlo under
the assumptions of the null hypothesis (Zhang and Boos [1994]). See Xu and
Lee [2003] for an application of this approach in the analysis of microarray
data.

13.2 Preparing Manuscripts for Publication

You’ve laid the groundwork. You’ve done the experiment. You’ve completed
the analysis. A few simple rules can help you prepare your article for
publication.
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13.2.1 Reportable Elements

Reportable elements include descriptions and details of all of the following:

• objectives of your study
• experimental design

◦ endpoints
◦ surrogate variables
◦ control variables
◦ covariates and (potential) confounding variables

• hypotheses and principal alternatives
• power and sample size calculations
• data collection methods (describe the experimental unit, any use of clusters

when sampling)
• sources of missing data
• exceptions
• validation methods
• statistical analysis.

See Chapter 7 of Good and Hardin [2003] for additional material on each of
the above points.

13.2.2 Details of the Analysis

1. State the test statistic explicitly. Reproduce the formulae. If you cite a
text, for example, Good [1993], include the page number(s) on which the
statistic you are using is defined.

2. State your assumptions. Are your observations independent? Exchangeable?
Is the underlying distribution symmetric? Contrary to statements that have
appeared in several recent journal articles—we withhold the names to pro-
tect the guilty—permutation tests cannot be employed without one or both
of these essential assumptions. See Draper et al. [1993], Gastwirht and
Rubin [1971], and Hettmansperger [1984] for discussions of this point.

3. If using a permutation test, state which labels you are rearranging. Provide
enough detail that any interested reader can readily reproduce your results.
In other words, report your statistical procedures in the same detail you
report your other experimental and survey methodologies.

4. State whether you are using a one-tailed or a two-tailed test. See Sec-
tion 8.1.1 for help in making a decision.

5. a) If you detect a statistically significant effect, then provide a confidence
interval (see Section 3.3). Remember, an effect can be statistically sig-
nificant without being of practical or biological significance.

b) If you do not detect a statistically significant effect, could a larger sam-
ple or a more sensitive experiment have detected one? Consider report-
ing the power of your test. See Sections 2.1.4 and 14.10.
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Increasing Computational Efficiency

14.1 Seven Techniques

With today’s high-speed computers, drawing large numbers of subsamples
with replacement (the bootstrap) or without (the permutation test) is no
longer a problem, unless or until the entire world begins computing resampling
tests at one time! To prepare for this eventuality, and because computational
efficiency is essential in the search for more powerful tests, a primary focus
of research in resampling today is the development of algorithms for rapid
computation.

There are seven main computational approaches, several of which may be
and usually are employed in tandem, as follows:

1. The Monte Carlo, in which a sample of the possible rearrangements
is drawn at random and these samples are used in place of the complete
permutation distribution.

2. Rapid enumeration and selection algorithms, whose object is to provide
a rapid transition from one rearrangement to the next.

3. Recursive relationships, which reduce the number of computations.
4. Branch and bound algorithms that eliminate the need to evaluate each

individual rearrangement.
5. Gibbs sampling.
6. Solution through characteristic functions and fast Fourier transforms.
7. Asymptotic approximations, for use with sufficiently large samples.

In the following sections, we consider each of these approaches in turn.

14.2 Monte Carlo

Instead of examining all possible rearrangements, we can substantially reduce
the computations required by examining only a small but representative ran-
dom sample [Dwass, 1957; Barnard, 1963]. In this process, termed a Monte
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Carlo, we proceed in stages: 1) We rearrange the data at random; 2) we com-
pute the test statistic for the rearranged data and compare its value with that
of the statistic for the original sample; and 3) we apply a stopping rule to
determine whether we should continue sampling, or whether we are already
in a position to accept or reject.

The program fragments reproduced in Chapters 3 through 5 of this text use
the Monte Carlo approach. In the not necessarily optimal computer algorithm
introduced in those chapters, all observations in all subsamples are loaded
into a single linear vector X = {X [0],X [1], . . . ,X [N − 1]}. Then, a random
number is chosen from the set of integers 0, 1, . . . , I with I = N −1 initially. If
the number we choose is i,X [i] is swapped with X [I] in a three-step process:

temp := X[i];
X[i] := X[i];
X[N-1] := temp;

and I is decremented. This process is repeated until we have rearranged the
desired number of observations and are ready to compute the test statistic for
the new rearrangement.

We dont’t always need to reselect all N observations. For example, in a
two-sample comparison of means, with N = n + m, our test statistic only
makes use of the last m observations. Consequently, we only need to choose
m random numbers each time.

After we obtain the new value of the test statistic, we compare it with the
value obtained for the original data. We continue until we have examined N
random rearrangements and N values of the test statistic. Typically, N is
assigned a value between 100 and 1600, depending on the precision that is
desired (see Section 14.2.2 and Marriott [1979]). Through the use of a Monte
Carlo, even the most complicated multivariate experimental design can be
analyzed in les than a minute on a desktop computer.

14.2.1 Stopping Rules

If a simple accept/reject decision is required, we needn’t perform all N cal-
culations, but can stop as soon as it is obvious that we must accept or reject
the hypothesis at a specific level. In practice, we use a one-sided stopping rule
based on the 10% level. Suppose in the first n rearrangements we observe a
fraction Hn with a value of the test statistic that is as, or more, extreme than
the value for the original observations. If Hn > 0.1N , then we accept the
hypothesis at the 10% level. Otherwise, we continue until n = N and report
the exact percentage of rejections. Besag and Clifford [1991] and Lock [1991]
describe two-sided sequential procedures in which the decision to accept,
reject, or continue is made after each rearrangement is examined.
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14.2.2 Variance of the Result

The resultant estimated significance level p̂ is actually a binominal random
variable B(N, p), where N is the number of random rearrangements and p
is the true but still unknown value of the significance level. The variance of
p̂ is p(1 − p)/N . If p is 10%, then using a sample of 81 randomly selected
rearrangements provides a standard deviation for p̂ of 1%. A sample of 364
reduces the standard deviation to 0.25%.

The use of a variable in place of a fixed significance level results in a minor
reduction in the power of the test, particularly with near alternatives [Dwass,
1957]. In most cases, this reduction does not appear to be of any practical sig-
nificance; see Vadiveloo [1983], Jockel [1986], Bailer [1989] Edgington [1987],
and Noreen [1989].

In a Monte Carlo variant called importance sampling, the rearrangements
are drawn with weights chosen so as to minimize the variance. In some
instances, when combined with branch and bound techniques, as in Mehta
Patel, and Senchaudhuri [1988], importance sampling can markedly reduce
the number of samples that are required. See, also, Besag and Clifford [1989].

14.2.3 Cutting the Computation Time

The generation of random rearrangements creates its own set of computational
problems.

Each time a data element is selected for use in the test statistic, two com-
putations are required: (1) A random number is selected, and (2) two elements
in the combined sample are swappepd.

The ideal futuristic computer will have a built-in random number
generator—for example, it might contain a small quantity of a radioactive
isotope, with the random intervals between decays producing a steady stream
of random numbers. This futuristic computer might also have a butterfly
network that would randomly swap 10 or 100 elements of an array in a
single pass.

Today, in the absence of such technology, any improvements in computa-
tion speed must be brought about through software. Little direct research
has been done in the area, although recently Baglivo et al. [1992] reported
on techniques for doing many of the repetitive computations in parallel. I
did some preliminary work in which I considered a sort of drunkard’s walk
through the set of rearrangements: The first rearrangement was chosen at ran-
dom; thereafter, the program stumbled from rearrangement to rearrangement
swapping exactly two data elements at random each time. The results were
disappointing. Any savings in computation time per rearrangement were more
than offset by the need to sample four or five times as many rearrangements
to achieve the same precision in the result. I did achieve a substantial increase
in efficiency by selecting several separated random bits from each random
number.
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14.3 Rapid Enumeration and Selection Algorithms

If we are systematic and proceed in an orderly fashion from one rearrangement
to the next, we can substantially reduce the time required to examine a series
of rearrangements. The literature on this topic is extensive. See, for example,
the review by Wright [1984]. We have posted a bibliography on this and related
computational topics at http://mysite.verizon.net/res7sf1o/bibcomp.htm.

14.3.1 Matched Pairs

Sometimes we can reduce the number of computations that are required by
taking advantage of the way we label or identify individual permutations. In
the case of paired comparisons, we readily enumerate each possible combi-
nation by running through the binary numbers from 0 to 2n − 1, letting the
zeroes and ones in each number (obtained via successive right shifts, a single
machine-language instruction in most computers) correspond to positive and
negative paired differences, respectively.

The shift algorithm, introduced in this context by Baker and Tilbury [1993]
for use with discrete data, avoids the need for assembler level programming.
The test statistic Tk

∑k
i=1 |Xi| −∑k

i=1 Xi is calculated one variable at time,
and an array of counters or bar chart N [ ] is incremented appropriately. At step
0, T0 = 0; we initialize the array of counters, so that N [0] = 1 and all other
elements are zero. At step 1, we add X1 to T0; as X1 could be either positive
or negative, we increment N [|X1|] by N [0] so that both N [0] and N [|X1|] are
now equal to one. At step 2, we add X2 to T1 and increment N [|X1| + |X2|]
by N [|X2|] by N [0]. Note that if X1 = X2, N [|X1|] = 2. We continue in this
fashion, so that at the kth step, we increment N [j] by N [j − |Xk|] for j =∑k

i=1 |Xi|, . . . , |Xk|.
Censoring actually reduces the time required for enumeration. For if there

are nc censored pairs, then enumeration need only extend over the 2n−nc

values that might be assumed by the uncensored pairs. In computing the
GAMP test for paired comparisons, it is easy to see that

Pr{U ′ ≥ U and S′ ≥ S} = Pr{U ′ ≥ U}∗ Pr{S′ ≥ S},

Pr{U ′ ≥ U} =
1

2U+L

U+L∑
k=u

(
U +

k
L

)

The remaining probability Pr{S′ ≥ S}, may be obtained by enumeration and
inspection.

14.4 Recursive Relationships

Although tables for determining the significance level of Fisher’s exact test are
available, in Finney [1948] and Latscha [1953], for example, these are restricted
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to a few discrete p-values. Today, it is usually much faster to compute a
significance level than it is to look it up in tables. Beginning with Leslie [1955],
much of the subsequent research on Fisher’s exact test has been devoted to
developing algorithms that would speed or reduce the number of computations
required to obtain a significance level.

As one rapid alternative to Equation (6.1), we may use the recursive
relationship provided by Feldman and Kluger [1963]: With table entries
(a0, b0, c0, d0), define

p =
(a0 + b0)!(a0 + c0)!(d0 + b0)!(d0 + c0)!

N !a0!b0!c0!d0!
.

It is easy to see that

pi+1 =
aidi

bi+1ci+1
pi,

where ai = a0 − i.
We may speed the computations of the statistics for unordered r × c

contingency tables considered in Section 6.4 by noting that Q is invariant
under permutations that leave the marginals intact. Thus, we may neglect
the numerator Q in calculating the permutation distribution and focus on the
denominator R (March [1972]).

We may use a recursive algorithm developed by Gail and Mantel [1977] to
speed the computations for r × 2 contingency tables. If Ni(f.1; f1, f2, . . . , fn)
denotes the number of tables with the indicated marginals, then

Ni+1(f.1; f1, f2, . . . , fn) =
∑

j

Ni(f.1 − j; f1, f2, . . . , fn).

The algorithms we developed in Chapters 3 and 4 are much too slow, since
they treat each observation as an individual value.

Algorithms for speeding the computations of the Freeman–Halton statistics
in the general r × c case are given in March [1972], Gil and Mantel [1977],
Mehta and Patel [1983, 1986a, 1986b], and Pagano and Halvorsen [1981].
Details of the Mehta and Patel approach are given in Section 14.4. An efficient
method for generating r × c tables with given row and column totals is pro-
vided by Patefield [1981]. See also Agresti, Wackerly, and Boyett [1979] and
Streitberg and Rohmed [1986].

The power of the Freeman–Halton statistic in the r × 2 case is studied by
Krewski, Brennan, Bickis [1984].

14.5 Focus on the Tails

We can avoid examining all N ! rearrangements if we focus on the tails using
the internal logic of the problem to deduce the number of rearrangements that
yield values of the test statistic as, or more, extreme than the original.
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Consider the shift algorithm introduced in the preceding section. Suppose
that T 0 is the test statistic for the original data; as Tk is nondecreasing, we
only need to keep track of individual values of Tk that are less than T 0. Our
modified procedure at the kth step is as follows:

If
k∑

i=1

|Xi| < T 0, increment N [j] by N [ j − |Xk|] for j =
k∑

i=1

|Xi|, . . . , |Xk|;

otherwise, set N [T 0] = 2N [T 0], then increment N [ j] by N [ j − |Xk|] for j =
T 0, . . . , |Xk|.

Of course, if N [T 0] > αn, we would terminate the procedure and accept
the null hypothesis.

Green [1977] was the first to suggest a branch and bound method for use in
two-sample tests and correlation. Our description of Green’s method is based
on De Cani [1979].

In the two-sample comparison described in Section 3.6 suppose our test
statistic T =

∑
xπ(i) and that the observed value is T0. We seek P (T ≥ T0),

the probability under the null hypothesis that a random value of T equals or
exceeds T0.

Assume that the combined observations are arranged in descending order
X(1) ≥ X(2) ≥ · · · ≥ X(N). To simplify the notation, let Zi denote the ith
order statistic X(i). If the labels (subscripts) on the X ’s really are irrelevant (as
they would be under the null hypothesis) then T can be regarded as a random
sample of m of the observations selected at random without replacement from
the {Zi}.

Suppose we have selected k such values, ZI1 , . . . , ZIk
, k < m. The maximum

attainable value of T is obtained by adding to ZIn +· · ·+ZIk
the m − k largest

of the N − k remaining elements. Call this maximum T (l1, . . . , lk). Similarly,
the minimum attainable value of T is obtained by adding to ZI1 + · · · + ZIk

the m − k smallest of the N − k remaining elements. Call this minimum
t(l1, . . . , lk). Given l1, . . . , lk, we can bound T :

t(l1, . . . , lk) ≤ T ≤ (l1, . . . , lk).

There are
(

N − k
m − k

)
sets of m elements of Z whose totals lie between the

given bounds.
If t(l1, . . . , lk) ≥ T0, then

P (T ≥ T0) ≥
(

N − k
m − k

)/(
N
m

)
.

If T0 > T (l1, . . . , lk), then

p(T ≥ T0) ≤ 1 −
(

N − k
m − k

)/(
N
m

)
.
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If T0 lies between the bounds, or if we require an improved bound on
P (T ≤ T0), then we can add a (k + 1)th element to the index set.

Our results apply equally to any test statistic of the form
∑m

i=1 f [xπ(i)],
where f is a monotone increasing function. Examples of such monotone func-
tions include the logarithm (when applied to positive values), ranks, and any
of the other robust transformations described in Chpter 11.

14.5.1 Contingency Tables

A large number of authors have joined in the search for a more rapid
method for enumerating the tail probabilities for Fisher’s exact test, including
Leslie [1955], Feldman and Kluger [1963], Good [1976], Gail and Mantel [1977],
Pagano and Halvorsen [1981], and Patefield [1981]. See for example, the review
by Agresti [1993]. A quantum leap toward a more rapid method took place
with the publication of the network approach of Mehta and Patel [1980]. Their
approach is widely applicable, as we shall see below. It has three principle
steps:

1. Representation of each contingency table as a path through a directed
acyclic network with nodes and arcs.

2. An algorithm with which to enumerate the paths in the tail of the distri-
bution without tracing more than a small fraction of those paths.

3. Determination of the smallest and largest path lengths at each node.

Only the last of these steps is application-specific. Network algorithms have
been developed for all of the following:

• 2 × c contingency tables [Mehta and Patel, 1980]
• r × c contingency tables [Mehta and Patel, 1983]
• the common odds ratio in several 2 × 2 contingency tables [Mehta, Patel,

and Gray, 1985]
• logistic regression [Hirji, Mehta, and Patel, 1987]
• restricted clinical trials [Mehta, Patel, and Wei, 1988]
• linear rank tests and the Mantel–Haenszel trend test [Mehta, Patel, and

Senchaudhuri, 1988].

For simplicity, we focus in what follows on the 2 × c contingency table.

14.5.1.1 Network Representation

Define the reference set Γ to be all possible 2 × k contingency tables (see
Chapter 6) with row marginals (m, n) and column marginals (t1, t2, . . . , tk).
Thus, each table x ∈ Γ, is of the form

x1 x2 · · · xk m
x′

1 x′
2 · · · x′

k n
t1 t2 · · · tk N.
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For each table x ∈ Γ, we may define a discrepancy measure

d(x) =
k∑

i=1

ai(mi−1, xi)

and a probability

h(x) = C−1
k∏

i=1

λi(mi−1, xi)

where the partial sum mj =
∑j

i=1 xi and the normalizing constant C =∑
x∈Γ

∏k
i=1 λi(mi−1, xi). Important special cases of d(x) and h(x) are

d(x) =
k∏

i=1

aixi

for linear rank tests and

h(x) =
k∏

i=1

(
ti
xi

)/(
N
m

)

for unordered contingency tables.
As in Section 6.3, our object is to compute the one-sided significance level

p =
∑

R h(x), where R is the set on which d(X) ≥ d0.
First, we represent Γ as a directed acyclic network of nodes and arcs. Fol-

lowing Mehta and Patel [1983], the network is constructed recursively in k = 1
stages labeled 0, 1, 2, . . . , k. The nodes at the j th stage are ordered pairs (j, mj)
whose first elements is j and whose second is the partial sum of the frequencies
in the first j categories of the first row. If there is a total of two observations
in the first category, then there will be three nodes at the first stage—(1, 0),
(1, 1), (1, 2)—corresponding to the three possible distributions of elements m
this category.

Arcs emanate from the node (j, mj); each arc is connected to exactly one
successor node. Each path linking (0, 0) with the terminal node (k, m) corre-
sponds to a unique contingency table. For example, the path

(0, 0) → (1, 0) → (2, 2) → (3, 4) → (4, 4)

corresponds to the table

0 2 2 0 4
2 0 0 2 4
2 2 2 2 .

The total number of paths in the network corresponds to the total number
of tables. We could count the total number of tables by tracing each of the
individual paths, but we can do better.
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14.5.1.2 The Network Algorithm

Our goal in network terms is to quickly identify and sum all paths whose
lengths do not exceed d · h: for the original unpermuted table. Let Γj =
Γ(j, mj) denote the set of all paths from any node (j, mj) to the terminal
node (k, m). In other words, Γj represents all possible completions of those
tables in Γ for which the sum of the first j cells of row 1 is mj . Define the
shortest path length

SP (j, mj) = min
x∈Γj

k∑
i=j+1

ai(mi−1, xi)

and the longest path length

LP (j, mj) = max
x∈Γj

k∑
i=j+1

ai(mi−1, xi).

Let L(PAST) denote the length of a path from (0, 0) to (j, mj). If this path
is such that

L(PAST) + LP (j, mj) ≤ d · h,

then all similar subpaths from (0, 0) to (j, mj) of equal or smaller length
contribute to the p value. This number can be determined by induction—the
details depend on the actual form of d and h, and thus we need not enumerate
the tables explicitly. If this path is such that

L(PAST) + SP (j, mj) ≥ d · h,

then we can ignore it and all similar paths of equal or greater length—again,
without actually enumerating them.

If the path satisfies neither condition, then we extend it to a node at the
(j+1)th stage, compute the new shortest and longest path lengths, and repeat
the calculation.

The shortest and longest path lengths may be determined by dynamic
programming in a single backward pass through the network. Dynamic pro-
gramming is used by Mehta and Patel [1980] in their seminal paper on the
topic. Their original approach can be improved upon in three ways:

1. by taking advantage of the structure of the problem;
2. by a Monte Carlo, randomly selecting the successor node at each stage;
3. by a Monte Carlo utilizing importance sampling, that is, weighting the

probabilities with which an available node is selected so as to reduce the
variance of the resultant estimate of p.

The three approaches can be combined: A highly efficient two-pass algo-
rithm for importance sampling using backward induction followed by forward
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induction was developed by Mehta, Patel, and Senchaudhuri [1988]. Their
new algorithm guarantees that all rearrangements sampled will lie inside the
critical region. A result of Joe [1988] also represents a substantial increase in
computational efficiency.

14.5.2 Play the Winner Allocation

A network algorithm also proves of value in play-the-winner allocation. Recall
from Chapter 6, that in the randomized play-the-winner allocation rule, we
begin with A balls of each of two types in an urn. Balls are drawn from this
urn with replacement to determine what treatment the next experimental unit
will receive. If the response to treatment k is a success, B more balls of type k
are placed in the urn, otherwise B more balls of the opposite type are placed
there.

The obvious test statistic of the hypothesis p0 = p1 is Sn =
∑n

j=1 xjYj

where xj = 1 if the j th trial results in success, and xi = 0 otherwise, and
Yj = 1 or 0, depending on which treatment the j th experimental subject is
assigned. To determine the distribution of Sn we construct a network of
(n + 1) stages. At stage j the network consists of a set of nodes of the
form (Nj , Sj) where Nj =

∑
Yj . Let pj+1 denote the conditional probabi-

lity that Yj+1 = 1 given Y1, . . . , Yj and x1, . . . , xj . For RPW(A, B), as in
Wei [1989],

pj+1 = {A + B(2Sj + j − Ni − Σxj}/(2A + Bj).

Let L denote the probability of observing the event (Nj , Sj). Let Ωj denote
the set of all triples (Nj , Sj , Lj) with distinct (Nj , Sj). Each such triple gener-
ates records (Nj+1, Sj+1, Lj+1) where Lj+1 = Lj{p

Yj+1
j+1 (1−pj+1)1−Yj+1 . Start-

ing with Ω0 = {(0, 0, 1)}, we can generate the {Ωj} recursively and derive the
permutation distribution of Sn.

14.5.3 Directed Vertex Peeling

This method, due to Cohen and Sackrowitz [1998, 2000], is applicable to 2×C

tables and focuses on the partial sums Yj =
∑j

k=1 f1k, j = 1, 2, . . . , C−1. The
rejection region is built a table at a time from the vectors y = {y1, . . . , yC−1}
on the convex hull or boundary of the set of vectors until the desired sig-
nificance level is attained. At every stage, only vertices are considered, and
of these, only the vertex corresponding to the largest (smallest) value of
the text statistic is considered. In the event of ties, back-up statistics are
used.
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Fig. 14.1. The DVP process for the point (6,17). At each step dark lines indicate
the current convex hull and squares indicate the current points eligible for peeling.
Arrows indicate the eligible point with the largest chi-square statistic. Reproduced
from Cohen and Sackrowitz [2003] with permission from Hodder-Arnold Publishing,
London.

Figure 14.1 (reproduced with permission from Cohen and Sackrowitz
[2003]) illustrates the application of the method to the 2×3 contingency table
with the following marginals:

17
15

8 19 5 32

14.6 Gibbs Sampling

Suppose we have a 2 × 2 table with entries f11, f12, f21, f22; assume this table
results from a sequence of random variables X0, Y0, X1, Y1, . . . , each taking
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the value 0 or 1, where the estimated conditional probabilities of Y |X and
X|Y can be expressed in the two matricies

Ay|x =

⎛
⎜⎜⎝

f11

f11 + f21

f21

f11 + f21

f12

f12 + f22

f22

f12 + f22

⎞
⎟⎟⎠ , Ax|y =

⎛
⎜⎜⎝

f11

f11 + f12

f12

f11 + f12

f21

f21 + f22

f22

f21 + f22

⎞
⎟⎟⎠ .

Using these matricies, generate a single couple y, x. Modify the table (pre-
serving the marginals) to provide for this new entry; if it is not possible to
preserve the marginals, do not modify the table. Compute the test statistic,
and compare with the original value of the test statistic. Modify the transition
matrices to reflect the change and repeat the procedure.

A similar procedure but one guaranted to converge to the correct result is
based on the Gibbs sampler, a technique for generating random variables from
a (marginal) distribution indirectly, without having to calculate the density
(see Casella and George [1992]). At each step, we draw from the hypergeo-
metric distribution produced by taking a binomial (p, f11 + f21), and an inde-
pendent binomial (p, f12 + f22), conditional on the sum of the two binomials
being f11 + f12. To obtain a new table, we let the computer pick a uniformly
distributed random number between 0 and 1 and evaluate the hypergeomet-
ric quantile at this number. Methods for its rapid calculation are described in
Kolassa and Tanner [1994].

By taking advantage of a second result of Kolassa and Tanner [1994], we
can extend the preceding to contingency tables with r rows and c columns.

Let {fij} be an r × c contingency table with independent entries.
If i < r and j < c, then the distribution of element fij , conditional on all

other elements except for those in the last row and column and conditional on
all marginals, is the same as the distribution of the first element in the 2 × 2
table with elements fij , fic, frj , frc, conditional on all marginals.

Thus, we may proceed from cell to cell, drawing Gibbs samples as described
above. Ambiguities arise in how we are to balance the marginals. We may
balance cell by cell as we go or we may keep a running tabulation and balance
only when sampling is complete. The overage or discrepancy may be assigned
in a number of ways: To an adjacent cell, to a following cell, to a cell in the
same column or row chosen at random, or to a cell further along in the same
column or row chosen at random.

14.6.1 Metropolis–Hastings Sampling Methods

McDonald, Smith, and Forster [1999] proposed the use of Metropolis–Hastings
sampling methods for estimating the exact conditional p-value for tests of
goodness-of-fit of log-linear models for mortality rates and standardized mor-
tality ratios. Metropolis–Hastings sampling [Hastings, 1970] is a Markov chain
Monte Carlo method for generating samples from arbitrary multivariate
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distributions. The procedure is as follows:

1. Given current table frequencies f , generate a new set f ′ from some prob-
ability distribution q(f, f ′).

2. Accept f ′ as the next realization of the chain with probability a(f, f ′)
where

a(f, f ′) =

⎧⎨
⎩min

{
g(f ′)q(f ′, f)
g(f)q(f, f ′)

, 1
}

if q(f)q(f, f ′) > 0,

1 if q(f)q(f, f ′) = 0;

otherwise, retain f .

If q is chosen appropriately, then g is the stationary distribution for this
Markov chain. See Smith and Roberts [1993] and references therein for details.

The distribution q also should be chosen so as to ensure the condition-
ing constraints are satisfied by all f ′. Otherwise, the acceptance probability
a(f, f ′) for certain proposed moves is zero. Another important consideration
is that the resultant Markov chain should be nondegenerate.

Choices of q that are both effective and computationally feasible for spe-
cific problem areas have been proposed by Forster, McDonald and Smith
[1996, 2003], Diaconis and Sturmfels [1998], and McDonald, Smith, and
Forster [1999].

14.7 Characteristic Functions

As the sample size increases, the number of possible rearrangements increases
exponentially. For example, in the one-sample test of a location parameter
based on n observations, there are 2n possible rearrangements. When finding
the permutation distribution of a statistic that is a linear combination of some
function of the original observations, Pagano and Tritchler [1983] show we can
reduce the computation time from C12n to C2n

c, where c we hope, much less
than n.

Their technique requires two steps. In the first, they determine the char-
acteristic function of the permutation distribution through a set of difference
equations. This step requires 2Qm(m + n) complex multiplications and addi-
tions to find the characteristic function at Q points. In the second, they use
the basic theorem in Fourier series to invert the characteristic function and
determine or approximate the permutation distribution at U < Q different
points. This step requires 2Q log Q calculations. Q is normally chosen to be a
power of 2 (e.g., 256 or 512) so that one can take advantage of a fast Fourier
transform; the exact number will depend on the precision with which one
wants to estimate the significance level.
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This method is chiefly of historical interest: Branch and bound algorithms
offer greater computational efficiency, particularly when coupled with impor-
tance sampling. Vollset, Hirji, and Elashoff [1991] found that the fast Fourier
transform method can result in considerable loss of numerical accuracy.

14.8 Asymptotic Approximations

14.8.1 A Central Limit Theorem

The fundamental asymptotic result for the permutation distribution of
the two-sample test statistic for a location parameter was first stated by
Madow [1948] and formalized by Hoeffding [1951, 1952], who demonstrates
convergence of the distribution of the Studentized test statistic under the
alternative as well as under the null hypothesis.

Let Tn = T (X(1), . . . , X(n)) be the test statistic, and let µn and σ2
n be its

first and second moments, respectively. Then the permutation distribution Fn

of Zn = (Tn −µn)/σn obtained by randomly rearranging the subscripts of the
arguments of Tn converges to Φ, the Gaussian (normal) distribution function.

This result means that for sufficiently large samples, we can give our com-
puters a rest, at least temporarily, and approximate the desired p-value with
the aid of tables of the normal distribution. To use these tables, we need to
know the first and second moments of the permutation distribution. Occa-
sionally, with samples of moderate size, we may also need to know and use
the third and higher moments in order to obtain an accurate approximation.
Moments for the randomized block design are given by Pitman [1937] and
Welch [1937]; for the Latin Square by Welch [1937]; for the balanced incom-
plete block by Mitra [1961]; and for the completely randomized design by
Robinson [1983] and Bradbury [1988].

Extensions to, and refinements of, Hoeffding’s work are provided by Sil-
vey [1954, 1956], Dwass [1955], Motoo [1957], Erdos and Renyi [1959],
Hajek [1960, 1961], and Kolchin and Christyakov [1973]. Asymptotic results
for rank tests are given in Jogdeo [1968] and Tardif [1981]. For further details
of the practical application of asymptotic approximations to the analysis of
complex experimental designs, see Lehmann [1986], Kempthorne et al. [1961],
and Ogawa [1963].

14.8.2 Edgeworth Expansions

While the Gaussian distribution may provide a valid approximation to the
center of the permutation distribution, it is the tails (and the p-values of
the tails) with which we are primarily concerned. Edgeworth expansions give
good approximations to the tails in many cases. Edgeworth expansions for
the distribution function under both the alternative and the null hypotheses



“chapter14” — 2004/9/23 — page 247 — #15

14.9 Confidence Intervals 247

have been obtained by Alber, Bickel and Van Zwet [1976], Bickel and Van
Zwet [1978], Robinson [1978], and John and Robinson [1983].

Saddle point methods and large deviation results give still better approxim-
ations in the tails. Saddle point approximations for the one- and two-sample
tests of location as suggested by Daniels [1955, 1958] are derived by Robin-
son [1982]. Saddle point approximations for use with general linear models for
both the permutation distribution and the bootstrap are given by Booth and
Butler [1990].

14.8.3 Generalized Correlation

Test statistics for location parameters are almost always linear or first-order
functions of the observations. By contrast, test statistics for scale parameters,
the chi-square statistic, and the Mantel–Valand statistic for generalized cor-
relation are quadratic (or second-order) functions of the observations. Their
limiting distributions are not Gaussian but chi-square or a Pearson Type III
distribution [Berry and Mielke, 1984, 1986; Mielke and Berry, 1985]. Other
asymptotic approximations for second-order statistics are given by Shapiro
and Hubert [1979], O’Reilly and Mielke [1980], and Ascher and Bailar [1982].

14.9 Confidence Intervals

The trial-and-error method of determining confidence intervals described in
section 3.2 is time-consuming and confusing and entails a seemingly unending
number of calculations. The stepwise approach suggested by Garthwaite [1996]
is both systematic and efficient with the need for only a single permutation
at each step.

Let T0(U) be the value of the statistic used to test the hypothesis θ = U ,
obtained for the actual sample data. Let Ti(U) be the value of the statistic
obtained for a random permutation πi of the data.

Observing T (Ui), we update our estimate of the upper limit at the ith step
as follows:

if Ti(U) > T0(U), set Ui+1 = Ui − cα/i;

otherwise, set Ui+1 = Ui + cα/i,

where α is the significance level and c is known as the step-length constant.
We continue in this fashion generating exactly one new permutation and

evaluating and comparing exactly two values of the test statistic at each step.
It is easy to see that the process converges.

c = k(U1 − θ), where k =
2

2πzα − 1
2 exp(−z2

α/2)
.
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One possible starting guess is U1 = θ̂ + zαs, where s is the sample standard
deviation.

14.10 Sample Size and Power

Suppose we are in the design stages of a study and we intend to use a permu-
tation test for the analysis. How large should our sample sizes be? Our answer
will depend on three things:

• the alternative(s) of interest;
• the power desired at these alternatives;
• the significance level.

A not unrelated question arises if we conclude an analysis by accepting the
null hypothesis. Does this mean the alternative is false or that we simply did
not have a large enough sample to detect the deviation from the null hypoth-
esis? Again, we must compute the power of the test for several alternatives
before we are able to reach a decision.

14.10.1 Simulations

One way to estimate the power is by drawing a series of K (simulated) ran-
dom samples from a distribution similar to that which would hold under the
alternative. For each sample, we perform the permutation test at the stated
significance level and record whether we accept or reject the null hypothesis.
The proportion of rejections becomes our estimate of the power of the test.
This proportion is a random variable with the binomial distribution with K
trials and a probability β of success in each trial, where β is the (unknown)
power of the test to be estimated.

When designing a study, I use K = 100 until I am ready to fine tune the
sample size, when I switch to K = 400 I also study (estimate) the power for
at least two distinct alternatives.

For example, when testing the hypothesis that the observations are normal
with mean zero against the alternative that they have a mean of at least one,
we might sample from alternatives with at least two different variances, say,
one with variance equal to unity and one with variance equal to 2, where 1 is
our best guess of the unknown variance, and 2 is a worst-case possibility.

When doing an after-the-fact analysis of the power, use estimates of the
parameters based on the actual data. If the pooled sample variance is 1.5,
then use a best guess of 1.5 and a worst case of 3 or even 4. (The use of a
single estimate alone would be misleading; see Zumbo and Hubley [1998]). The
final-result may require 8KN computations, where N is the average number
of resamplings required each time we perform the test.
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With such a large number of calculations, it is essential we take advantage of
one or more of the computational procedures described in Sections 2 through
6 of this chapter. Oden [1991] offers several recommendations. Gabriel and
Hsu [1983] describe an application-specific method for reducing the number
of computations required to estimate the power and determine the appropriate
sample size.

14.10.2 Network Algorithms

The same network algorithms that we used to determine significance level can
also be used to calculate power, provided we can determine the probability
of each specific permutation under the alternative; see, for example, Hilton
and Mehta [1993], and Mehta, Patel, and Senchaudhuri [1998]. For example,
Mehta et al. studied the Cochran–Armitage test for trend, for which the test
statistic is T =

∑J
j=1 diXj , where random variable Xj denotes the integer

number of responders among the nj subjects treated at dose dj and assumes
the value xj . The reference set for permutations is

Γm =

⎧⎨
⎩x :

J∑
j=1

xj = m

⎫⎬
⎭ ,

and its critical region is

Γm(t) =

⎧⎨
⎩x ∈ Γm :

J∑
j=1

djxj ≥ t

⎫⎬
⎭ .

For a given significance level α, let tα(m) be the smallest possible cut-
off value such that Pr{T ≥ tα(m)|m, H} ≤ α. This cut-off is data-dependent
through the marginal m and β(m) = Pr{T ≥ tα(m)|m, K}, so that the uncon-
ditional power is

∑
βPr{m|K}.

Again, we represent the permutation reference set as a network of nodes
and arcs constructed in J + 1 stages. At any stage j, the network contains a
set of nodes of the form (j, mj), where j represents the j th of the J binomial
populations, and mj is one possible value of the partial sum of responses from
the first j populations. Arcs emanate from each node, and each node, and
each such arc is connected to a successor node (j + 1, mj+1) at stage j + 1.
When the network is complete, it will terminate with single node (J, m) and
each path form (0, 0) to (J, m) represents one and only one response vector
(permutation, rearrangement) in Γm.

The arc connecting the nodes (j, mj) with its successor is assigned a rank
length based on the Cochran–Armitage statistic, rj+1 = dj+1(mj+1 − mj),
and two probability lengths pH,j+1 and pk,j+1 based on their likelihoods under
the hypothesis and alternative, respectively. By specifying a path through
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the network, we automatically know the corresponding response vector x, its
test statistic t(x) =

∑
rj , and its unnormalized probability under the null

hypothesis and alternative, respectively. Any method we use to generate an
estimate of the significance level will provide us with an estimate of the power
at the same time.

14.11 Some Conclusions

In the Monte Carlo, we compute the test statistic for a sample of the possible
rearrangements and use the resultant sampling distribution and its percentiles
in place of the actual permutation distribution and its percentiles. The draw-
back of this approach is that the resultant significance level p′ may differ from
the significance level p of a test based on the entire permutation distribution.
p′ is a consistent estimate of p with a standard deviation on the order of
Np(1 − p) where n is the number of rearrangements considered in the Monte
Carlo.

In the original Monte Carlo the rearrangements are drawn with equal prob-
ability. In a variant called importance sampling, the rearrangements are drawn
with weights chosen so as to minimize the variance. In some instances, when
combined with branch and bound techniques as in Mehta, Patel, and Sen-
chaudhuri [1988], importance sampling can markedly reduce the number of
samples that are required. (See also Besag and Clifford [1989].)

A second drawback of the Monte Carlo is that selecting a random arrange-
ment is itself a time-consuming operation that can take several multiples of
the time required to compute the sample statistic. A current research focus is
on rapid enumeration and selection algorithms that can provide a fast tran-
sition from one rearrangement to the next. To date, all solutions have been
highly application-specific.

Branch and bound algorithms eliminate the need to evaluate each rear-
rangement individually. The network approach advanced by Mehta and Patel
[1980, 1983] can cut computation time by several orders of magnitude.

Solutions through characteristic functions are seldom of practical interest.
When subsamples are large—and is the size of the subsample or block, not the
sample as a whole, that is the determining factor—an asymptotic approxima-
tion should be considered. In my experience as an industrial statistician with
the pharmaceutical and energy industries, the opportunity to take advantage
of an asymptotic approximation seldom arises. In preclinical work, one sel-
dom has enough observations, and in a clinical trial, though the sample size
is large initially, one is usually forced to divide the sample again and again
to correct for covariates. In practice, contingency tables always have one or
two empty cells. The errors in significance level that can result from an inap-
propriate application of an asymptotic approximation are amply illustrated
in Table 6.4.
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If you are one of the favored few able to take advantage of an asymptotic
approximation, you first will need to compute the mean and variance of the
permutation distribution. In some cases you will also need to calculate and use
the third and fourth moments to increase the accuracy of the approximation.
The calculations are different for each test; for details, consult the references
cited in the corresponding sections of this text.

14.12 Software

Software for parametric tests is widely distributed. Less well known are the
sources of software for use in bootstrap and permutation testing. We describe
some of these in the present section.

14.12.1 Do-It-Yourself

R’s sample() function provides for both rearrangements and boot-
strap samples. Extensive libraries of bootstrap functions will be found
at http://lib.stat.cmu.edu/S/bootstrap.funs and http://statwww.epfl.ch/
davison/BMA/library.html. Some code for special purposes is available at
http://lib.stat.cmu.edu/S including least absolute deviation and quantile
regression, nonlinear regression, nonlinear regression, and a weighted like-
lihood bootstrap. Download the R interpreter for Windows or Unix from
http://cran.r-project.org/.

Resampling Stats. A programming language for beginners and those with-
out (or with minimal) programming experience. Two commands, Sample and
Shuffle, make it easy to bootstrap and rearrange data. Available in several
versions including an add-in for use with Excel. For Windows only. Purchase
from www.resample.com.

S-PLUS. The next generation of S-PLUS software for bootstrap and other
resampling procedures is available for testing. Please contact bootstrap-
beta@insightful.com if you are interested in testing this software; indicate
your name and what version of S-PLUS you are using (type “version” at the
command line).

Statistical Calculator (SC). (DOS, Unix, T800 transputer.) An exten-
sible statistical environment, supplied with over 1200 built-in (compiled C)
and external (written in SC’s C-like language) routines. Permutation-based
methods for contingency tables (chisquare, likelihood, Kendall S, Theil U,
kappa, tau, odds ratio), one and two-sample inference for both means and vari-
ances, correlation, and multivariate analysis (MV runs test, Boyett/Schuster,
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Hoetelling’s T. Ready-made bootstrap routines for testing homoscedacity,
detecting multimodality, plus general bootstrapping and jack-knifing facili-
ties. http://www.mole-soft.demon.co.uk/.

14.12.2 Complete Packages

14.12.2.1 Freeware

Blossom Statistical Analysis Package. This interactive program for ana-
lyzing data utilizing multi-response permutation procedures (MRPP) includes
statistical procedures for grouped data, agreement of model predictions,
circular-distributions, goodness of fit, least absolute deviation and quantile
regression. Programmed by Brian Cade at the U.S. Geological Survey, Mid-
continent Ecological Science Center. PC only with online manual in HTML
format. http://www.fort.usgs.gov/products/software/blossom/blossom.asp.

SnPM. The Statistical nonParametric Mapping toolbox provides an exten-
sible framework for voxel level non-parametric permutation/randomisation
tests of functional Neuroimaging experiments with independent observations.
It is most suitable for single subject PET/SPECT analyses, or designs with
low degrees of freedom available for variance estimation as it provides the free-
dom to use weighted locally pooled variance estimates or variance smoothing.
http://www.fil.ion.ucl.ac.uk/spm/snpm/.

NPSTAT. Parametric and randomization tests on single factor designs,
repeated measures, correlations, and Fisher’s exact test. NPFACT support
2- and 3-factor designs. DOS only. http://home.rmci.net/rmay/ npstat.html.

14.12.2.2 Shareware

GoodStats. Permutation tests for 2-sample comparison, correlation,
k-sample comparison with ordered or unordered populations, plus the
only software available using synchronized permutations for analysis of
2 × K designs. DOS only. Windows version in preparation. Download from
http://mysite.verizon.net/res7sf1o/GoodStat.htm.

14.12.2.3 $$$$

Stata provides a comprehensive set of parametric statistics routines plus sub-
routines and pre-programmed macros for bootstrap, density estimation, and
permutation tests. Programmable with many flexible graphics routines. (Win-
dows, Unix) Stata Corp, 702 University Drive East, College Station TX 77840.
800/782-8272. www.stata.com.
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StatXact is a must for the exact analysis of contingency tables (categorical
or ordered data). Includes power and sample size calculations. Versions for
Windows or Unix. Also available as an add-on module for both SAS and
SPSS. Cytel Software Corporation, 675 Massachusetts Avenue, Cambridge,
MA 02139. 617-661-2011. www.cytel.com.

NPC TEST is the only statistics program on the market today that provides
for multi-variable analysis by permutation means. Cutting edge, but has yet
to be validated. A demonstration version, SAS macro, and S-Plus code may
be downloaded from http://www.stat.unipd.it/∼pesarin/software.html.

14.13 Exercises

1. Most microcomputer-based random number generators use multiplicative
congruence to produce a 16-bit unsigned integer between 0 and 215. Yet in
the two-sample comparison, for example, we only use one of the 15 bits,
the least significant bit, in selecting items for rearrangement. Could we use
more of the bits? That is, are some or all of the bits independent of one
another? Write algorithm(s) that take advantage of multiple bits.

2. Apply the Mehta and Patel approach to the following 3 × 2 contingency
table:

3 1 0
1 2 1

Compute the marginals for this table. Draw a directed graph in which each
node corresponds to a 3 × 2 table whose marginals are the same as those
of the preceding table. Choose a test statistic (see Chapter 8.3). Identify
those nodes which give rise to a value of the test statistic less than that of
the original table.

3. Suppose you are interested in the theoretical alternative

4/6 1/6 1/6
1/6 4/6 1/6

How big a sample size would you need to insure that the probability of
detecting this alternative was 80% at the 10% significance level? (Hint:
Use a six-sided die to simulate the drawing of samples.)

4. There are many algorithms for generating all possible permutations (see,
for example, Durstenfeld [1964], Boothroyd [1967], Berry [1979]). Show that
these would be grossly inefficient for generating distinct rearrangements.

5. There are many algorithms for generating random combinations, for exam-
ple, Chase [1970], and Bebbington [1975]. Develop an optimal algorithm
for generating all possible combinations of 2 samples. Can your algorithm
be extended to k -samples?
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6. Can you develop an optimal algorithm for generating symmetric rearrange-
ments of a 2k factorial design with k > 2? (Optimal algorithms for gen-
erating symmetric rearrangements of 2 × C designs are incorporated in
GoodStats at http://mysite.verizon.net/res7sf1o/GoodStats.htm.)
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Appendix

Theory of Testing Hypotheses

This appendix is provided as a service to the reader who desires a mathemati-
cally rigorous foundation for the theory of testing hypotheses in the continuous
case. In contrast to the balance of the present volume, a basic knowledge of
measure theory and complex variables is essential on the reader’s part. A brief
review of probability theory is provided in the next section, followed by sec-
tions containing proofs of the Neyman–Pearson lemma in the continuous case
and related theorems for tests of one- and multiparameter exponential fami-
lies. The concluding sections summarize essential findings for the resampling
methods including asymptotic rates of convergence.

A.1 Probability

Imagine that we have before us a spinner such as one often finds in board
games, a metal needle on a pivot in the center and an outer circle that is
marked from 1 to 360. If the spinner moves freely, each of the numbers 1 to
360 is equally likely and the actual probability of the needles pointing to 271,
say, is 1/360.

Of course, the needle is unlikely to point exactly to 271, but to somewhere
near enough to 271 that we call it 271, anyway. That is, the event “needle
points to 271” is actually an aggregate of a noncountable number of possi-
ble outcomes such as “needle points to 271.00003065300. . . .”

Let L denote the totality of all possible outcomes. In our example L consists
of all real numbers between 0 and 360, and our primary interest is in subsets
of L, in aggregates of outcomes such as “the needle points approximately to
271.” The union of two such aggregates A and B, that is, the set of outcomes
that are in either A or B, is denoted by A ∪ B. The complement of A consists
of all events in L that are not in A.

If P is a probability, then P (L) = 1 and P (∅) = 0 where ∅ denotes the
empty set, devoid of values. Probabilities are countably additive, that is, if the
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events Ai are mutually exclusive, P (∪Ai) =
∑

P (Ai). Unfortunately, when
the number of possible outcomes is noncountable, this simple condition actu-
ally places a restriction on the events for which a probability can be defined.1

The sets for which P is defined are said to be measurable.
Often, to simplify proofs, we will make use of finite measures µ for which

µ(L) < ∞. Clearly a probability measure is a finite measure.
A class of sets C that contains L, plus the complements and countable

unions of all its sets is called a σ-field. Such a set is also closed under countable
intersections (Exercise A.1).

A probability space consists of the triple (L, C, P ), where C is a σ-field of
measurable sets P .

In applied work, while one may observe an event ω belonging to L (for
example, the spinner went around three plus times bouncing on its pivot before
settling adjacent to 271), what one records is the associated value X(ω) of a
real-valued random variable X. In this instance, X(ω) = 271.

Denote by X the range of X; X is a subset of the extended real line
[−∞, ∞]. The sets of values of X with which we are most concerned have
the form {x: a < x ≤ b}; the resultant σ-field β made up of countable unions
and complements of such sets is called a Borel field. We restrict attention to
random variables that are Borel measurable functions. We call this set β, and it
is the set of events that lead to outcomes in B for which X−1(B) belongs to C.
The probability spaces we shall be concerned with have the form (X , B, PX).

Let Z = (X, Y ) be a random variable defined over (XXY, AXB) and sup-
pose that the random variables X and Y have distributions PX and PY

defined over (X , A) and (Y, B), respectively, Then X and Y are said to
be independent if PZ = PXXPY . If A′ � A and B′ � B, show that even if
PZ(A′ × B′) = PX(A′)XPY(B′) for all A′ in A′ and B in B′, there may exist
a set A × B, with A in A and B in B such that PZ(A × B) �= PX(A)XPY (B)
(Exercise A.4).

As the intervals {x: x ≤ b} are in B, the probabilities F [b] = PX{x: x ≤ b}
are defined for all b. Following Lebesgue, we extend the notion of integra-
tion, writing F [b] =

∫ b

−∞dF =
∫ b

−∞fdx. F has the density f with respect to
Lebesgue measure. A real-valued measurable function T is said to be simple if
it takes only a finite number of values over its range. Suppose T takes on the
distinct values t1, . . . , tn on the mutually exclusive sets B1, . . . , Bn in B, and
that
∑

P (Bi) = 1. Then
∫

TdF =
∑

tiP (Bi). Given any non-negative mea-
surable function T , there exists a sequence of simple functions Tn converging
to it, such that ∫

TdF = lim
n→∞

∫
TndF .

1 For examples of nonmeasurable sets, a topic well beyond the scope of this book,
see any standard text on measure theory such as Halmos [1997, Section 16] and
Gelbaum and Olmsted [2003].
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The positive and negative parts of any measurable function are also measur-
able (Exercise A.6). If the integrals of both the positive and negative parts
of a measurable function T are finite, then T is said to be integrable and its
expectation to exist and be finite.

In most cases, we shall be taking n successive observations and be concer-
ned with probability distributions over n-dimensional Euclidean spaces,
F [b1, . . . , bn] = P{X1 ≤ b1, . . . , Xn ≤ bn}, the associated sample space
(X , B, PX) where the observations in X are vector-valued, and measurable
transformations T from (X , B) into some (T , B′). T is a measurable trans-
formation if for all B′ in B′, the inverse C = T−1(B′) = {x: x in X , T [x] in
B′} is in B. T is a statistic if it is a measurable transformation that does not
depend on the specific measure PX .

If the measurable transformation T (x) is integrable, then its expectation
is defined by E(T ) =

∫
T (x)dF and both

∫
T>0 T (x)dF and

∫
T<0 T (x)dF are

finite.

A.2 The Fundamental Lemma

We are now in a position to extend the fundamental lemma of Neyman and
Pearson outlined in Section 3.1 to the class of all distributions. Recall that
a hypothesis test ϕ is simply a decision rule that takes values between 0
and 1. When ϕ(x) = 1, we reject the hypothesis and accept the alternative;
when ϕ(x) = 0, we accept the hypothesis and reject the alternative; and when
ϕ(x) = p, with 0 < p < 1, we flip a coin that has been weighted so that the
probability is p that it will come up heads—whence we reject the hypothesis—
and 1 − p that it will come up tails, whence we accept the hypothesis.

Theorem A.1. Let P0 and P1 be probability distributions possessing den-
sities p0 and p1 with respect to a measure µ.

a) For testing the hypothesis P0 against the alternative P1, there exists a test
ϕ and a constant k such that

E0ϕ(x) = α

and

ϕ(x) =

{
1 when p1(x) > kp0(x)
0 when p1(x) < kp0(x).

b) A test that satisfies these conditions for some k is most powerful for testing
P0 against the alternative P1 at level a.

c) If ϕ is most powerful for testing P0 against P1 at level a, then for some
k, the test ϕ satisfies these conditions except on a set that is assigned
probability zero by both distributions and unless there exists a test at a
smaller significance level whose power is 1.
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Proof. Such a test exists as can be seen by letting

ϕ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 when p1(x) > k′p0(x),
α − P{p1(X) > k′p0(X)|P0}

P{p1(X) = k′p0(X)|P0}
when p1(x) = k′p0(x),

0 when p1(x) < k′p0(x).

ϕ is well-defined except possibly on a set of probability zero and E[ϕ(x)|
P0] = α. �

Now suppose ϕ∗ is any other test with E[ϕ∗(x)|P0] ≤ α. Denote by S+ the
set of values for which ϕ(x) − ϕ∗(x) > 0 and S− the set for which ϕ(x) −
ϕ∗(x) < 0.

∫
(ϕ − ϕ∗)(p1 − kp0)dµ =

∫
S+(ϕ − ϕ∗)(p1 − kp0)dµ +

∫
S−(ϕ− ϕ∗)

(p1 − kp0)dµ. From the definition of ϕ it is easy to see that both latter inte-
grals must be greater than or equal to zero and therefore the difference in
power between the two tests

∫
(ϕ − ϕ∗)p1dµ ≤ k

∫
(ϕ − ϕ∗)p0dµ ≤ 0.

Finally, suppose ϕ∗ and not ϕ is the most powerful at level −α for test-
ing P0 against P1. Let S = S + ∩S−, on which ϕ∗ and ϕ differ with the
set {x: p1(x) ≤ p0(x)}. Unless µ(S) = 0,

∫
S
(ϕ − ϕ∗)(p1 − kp0)dµ > 0, which

would mean ϕ is most powerful, a contradiction. Then µ(S) = 0 and the two
tests are the same, establishing the final part of the theorem.

If Eϕ∗|P0 < α and Eϕ∗|P1 < 1, it would be possible to include in the rejec-
tion region additional points and thereby increase the power, a contradiction.
Thus, either Eϕ∗|P0 = α or Eϕ∗|P1 = 1.

A.3 Two-Sided Tests

In Chapter 3 we considered possible tests of the hypothesis H1: θ ≤ θ0 against
the alternative hypothesis K1: θ > θ0. But we also may require tests of the
following:

H2: θ = θ0 vs K2: θ �= θ0,
H3: θ ≤ θ1 or θ ≥ θ2 vs K3: θ1 < θ < θ2,

H4: θ1 ≤ θ ≤ θ2 vs K4: θ < θ1 or θ > θ2.

We can formulate unbiased permutation tests of H1 and H2, but not of the
remaining hypotheses/alternative pairs. The test of H2 would have the form

ϕ(T ) =

{
0 if C1 < T < C2,

1 if T < C1 or T > C2.

As with tests of H1, the choice of the test statistic T will depend upon the
alternatives of interest. And we saw in Chapter 8, this choice will also depend
upon the nature of the loss function.
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A.3.1 One-Parameter Exponential Families

We can obtain UMP or UMPU parametric tests in each instance if our observa-
tions come from a distribution that is a member of the one-parameter expo-
nential family dPX

θ (x) = C(θ)exp[Q[θ]T (x)]h[x]dµ, where Q[θ] is monotone
increasing.

In contrast to the one-sided case, we have not one but two side conditions,
Eθ1 [ϕ(x)] = Eθ2 [ϕ(x)] = α and we require the following preliminary results:

Lemma A.1. Let β denote the power of the most powerful level-α test
(0 < α < 1) for testing P0 against P1. Then α < β unless P0 = P1.

The proof is left as an exercise (A.10).

The following lemma is an extension of the Neyman–Pearson lemma
(Theorem A.1) to the case of multiple side conditions.

Lemma A.2. Let f1, . . . , fm+1 be real-valued functions, integrable µ. The
set M of points in M -dimensional space whose coordinates are(∫

ϕf1dµ, . . . ,

∫
ϕfmdµ

)

for some critical function ϕ is convex and closed. If (c1, . . . , cm) is an inner
point of M, then there exist constants k1, . . . , km and a critical function ϕ

satisfying

ϕ(x) = 0 when fm+1(x) <

m∑
i=1

kifi(x),

ϕ(x) = 1 when fm+1(x) >

m∑
i=1

kifi(x),

∫
ϕfidµ = ci for i = 1, . . . , m,

for which
∫
ϕfm+1dµ is a maximum.

Proof. That M is closed follows from the weak compactness theorem. M
is convex, for if ϕ1 and ϕ2 are critical functions, so is αϕ1 + (1 − α)ϕ2 for any
0 ≤ α ≤ 1. The balance of the proof is essentially geometric in nature. See
Lehmann [1986, pp 96–99]. �

Lemma A.3. Let pθ(x) be a family of densities on the real line with
monotone likelihood ratio in x; suppose moreover that pθ(x) > 0 for all θ

and x, and that pθ′(x)/pθ(x) is strictly increasing in x for θ < θ′. Let ψ

be a function with a single change of sign; specifically, suppose there exists
a value x′ such that ψ(x) ≤ 0 for x < x′ and ψ(x) ≥ 0 for x > x′. Moreover,



“appendix” — 2004/10/9 — page 260 — #6

260 Appendix: Theory of Testing Hypotheses

suppose P{ψ(x) �= 0} > 0. If Eθ1 [ψ(x)] = 0, then Eθ[ψ(x)] < 0 for θ < θ1 and
Eθ[ψ(x)] > 0 for θ > θ1.

Proof. Let θ′ < θ′′. Since pθ(x) > 0 for all θ and x, 0 < pθ′′(x′)/pθ′(x′) =
c < ∞. Since the density has monotone likelihood ratio in x, this ratio is
bounded above by its value at x′ on the interval (−∞, x′) when ψ(x) ≤ 0 and
attains its minimum at x′ on the interval [x′, 0) when ψ(x) ≥ 0. Thus,

Eθ′′ [ψ(x)] =
∫

ψpθ′(x)pθ′′(x)/pθ′(x)dµ

≥ c

∫ x′−

−∞
ψpθ′(x)dµ + c

∫ ∞

x′
ψpθ′(x)dµ = cEθ′′ [ψ(x)].

Consequently, Eθ′ [ψ(x)] > 0 implies Eθ′′ [Ψ(x)] > 0 and vice versa. Letting
θ1 = inf{θ: Eθ[Ψ(x)] > 0}, the lemma follows. �

We are now in a position to show that for testing the hypothesis H3: θ ≤ θ1
or θ ≥ θ2 against K3: θ1 < θ < θ2 in the one-parameter exponential family,
there exists a UMP test given by

ϕ(x) =

⎧⎪⎨
⎪⎩

0 when C1 < T (x) < C2

γj when T (x) = Cj , j = 1, 2.

1 when T (x) < C1 or T (x) > C2

(A.1)

where the Cj and γj are determined by

Eθ1 [ϕ(x)] = Eθ2 [ϕ(x)] = α. (A.2)

As dPX
θ (x) = C(θ)exp[Q[θ]T (x)]h[x]dµ, we can restrict attention to the

sufficient statistics T (X) whose distribution is dPT
θ (t) = C(θ)exp[Q[θ]t]dν.

Let M denote the set of all points {Eθ1 [ψ(T )], Eθ2 [ψ(T )]} as ψ ranges
over the totality of critical functions. By Lemma A.1, if 0 < α < 1, the set
M contains points (α,µ) and (α, ν) with µ < α < ν; in fact, it contains all
points (µ,µ) with 0 < µ < 1 so that (α,α) is an inner point of M . Hence
by Lemma A.2, there exist constants k1, k2, and a test ϕ(x) = ψ0(T (x))
satisfying the restrictions A.2 such that ψ0(t) = 1 when k1C(θ1)exp[Q[θ1]t] +
k2C(θ2)exp[Q[θ2]t] < C(θ′)exp[Q[θ′]t] or, equivalently, when a1exp(b1t) +
a2exp(b2t) < 1, with b1 < 0 < b2.

Both a1 and a2 must be positive (Exercise A.12), showing that the test
satisfies equation (A.1). The Cj and γj are uniquely determined by Equa-
tions (A.1) and (A.2). For suppose we can find two tests ϕ and ϕ∗ satisfying
these conditions with, say, C∗

1 < C1 and C∗
2 < C2. Let ψ = ϕ − ϕ∗. This func-

tion has one change of sign; the conditions of Lemma A.3 are satisfied, and
(A.2) implies ϕ = ϕ∗ almost everywhere.

Let θ′ < θ1; apply Lemma A.2 to minimize Eθ′ [ϕ(x)] subject to
Eθ1 [ϕ(x)] = α. Dividing through by exp[Q[θ1]], the desired test is seen to have
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rejection region of the form a1exp(b1t) + a2exp(b2t) < 1, with b1 < 0 < b2,
thus coinciding with the test we already exhibited. By comparison with
the test ψ(t) ≡ α, we see that for θ′ < θ1 the desired test ϕ is such that
Eθ′ [ϕ(x)] ≤ α. Similar arguments reveal that for θ′ > θ2, the desired test ϕ

is such that Eθ′ [ϕ(x)] ≤ α. Applying arguments similar to those of Theo-
rem A.1(b) (Exercise A.13), we see that the test is UMP among those subject
to the restrictions (A.2).

To find tests for the remaining hypotheses/alternative pairs, we need the
next lemma.

Lemma A.4. Let ϕ be any function on (R, B) for which the integral∫
ϕ[x]exp[θT (x)]dµ considered as a function of the complex variables θ = ξ +

iη exists for all ξ and is finite. Then the integral is an analytic function of
θ in the region R of parameter points for which ξ is an interior point of the
natural parameter space, and the derivative of the integral with respect to θ

can be computed under the integral sign.

Proof. Define ψ(θ) =
∫

exp[θT (x)]dν where dν = ϕ[x]dµ. Let ξ0 be any
fixed interior point; there exists δ > 0 such that ψ(θ) exists and is finite for
all θ with |ξ − ξ0| ≤ δ. Consider the difference quotient

(ψ(θ) − ψ(θ0))/(θ − θ0) =
∫

exp[θ0T (x)][exp[(θ − θ0)T (x)] − 1]/(θ − θ0)dν

≤ δ−1
∫

| exp[θ0T (x) + δ|T (x)|]|dν

≤ δ−1
∫

| exp[(θ0 + δ)T (x)] + exp[(θ0 − δ)T (x)]|dν

for |ξ − ξ0| ≤ δ. Since the right hand side is integrable it follows from the
Lebesgue dominated-convergence theorem that for any sequence of points
θ0

n tending to θ0, the difference quotient tends to the first derivative∫
T (x)exp[θT (x)]dν. �

Recall that an unbiased test ϕ is one for which the power function βϕ(θ) =
Eθ[ϕ(x)] satisfies βϕ(θ) ≤ α for θ in ΩH and βϕ(θ) ≥ α for θ in ΩK .

Lemma A.5. If the distributions Pθ are such that the power function of
every test is continuous and if ϕ∗ is a level-α test of H that is UMP among
all tests satisfying βϕ(θ) = α for all θ in the boundary set of points that are
members or limit points of both ΩH and ΩK , then ϕ∗ is UMP-unbiased.

The proof is left as an Exercise (A.14).
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For testing H4: θ1 ≤ θ ≤ θ2 versus K4: θ < θ1 or θ > θ2 with observations
drawn from a member of a one-parameter exponential family, the most pow-
erful unbiased test takes the form

ϕ(x) =

⎧⎪⎨
⎪⎩

0 when C1 < T (x) < C2,

γj when T (x) = Cj , j = 1, 2,

1 when T (x) < C1 or T (x) > C2,

where the Cj and γj are determined by

Eθ1 [ϕ(x)] = Eθ2 [ϕ(x)] = α.

By Lemma A.4, the power function of this test is continuous so that
Lemma A.5 is applicable. The boundary set consists of θ1 and θ2. Our objec-
tive is to minimize Eθ[1 − ϕ(x)] for some θ outside the interval [θ1, θ2], a
problem we solved in deriving a UMP test of H3 versus K3. By Lemma A.4,
our test is UMPU for testing H4 versus K4.

We can apply exactly the same critical function for testing H2: θ = θ0
versus K2: θ �= θ0, but the Cj and γj now are determined by Eθ0 [ϕ(x)] = α

and Eθ0 [ϕ(x)]T (X) = αEθ0 [T (X)].

A.4 Tests for Multiparameter Families

A.4.1 Basu’s Theorem

As we saw in Chapter 3, the Neyman and Pearson lemma is readily applied
to the derivation of permutation tests as all x are equally likely under P0, and
to one-parameter parametric families with monotone likelihood ratio in some
statistic. To obtain parametric, permutation, or bootstrap tests for multi-
parameter families we need to demonstrate the independence of certain statis-
tics. For example, to obtain tests for the parameters of a normal distribution,
we need to show that the mean and variance of a sample of n independent
identically normally distributed observations are independent.

Some preliminary definitions are required. A statistic V (X) is said to be
ancillary if its distribution does not depend on the probability measure P .
A statistic T (X) is said to be complete for P ∈ P if for any Borel-measurable
function f , E(f [T [X]) = 0 for all P ∈ P implies f = 0 except on a set of
measure zero with respect to all P ∈ P. T is said to be boundedly complete
if the previous statement holds for any bounded Borel-measurable function.
Alternatively, the family PT of probability distributions may be referred to
as complete or bounded complete, respectively, when these conditions hold.

Theorem A.2. Let V(X) and T(X) be two statistics where X is distri-
buted according to P ∈ P. If V is ancillary and T is boundedly complete and
sufficient for P ∈ P, then V and T are independent with respect to any P ∈ P.
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Proof. Following Shao [2003, p. 112] let B be an event on the range of V .
Since V is ancillary, P{V −1[B]} is a constant. Since T is sufficient, E[IB(V )|T ]
is independent of P . Since E{E[IB(V )|T ]} − P{V −1[B]} = 0 for all P ∈
P and T is boundedly complete, P{V −1[B]T} = E[IB(V )|T ] = P{V −1[B]}
almost everywhere with respect to P. Let A be an arbitrary event in the
range of T . Then,

P{T−1[A]
⋂

V −1[B]} = E{E(IA(T )IB(V )|T )}
= E{[IA(T )EIB(V )|T} = E{[IA(T )P{V −1[B]}}
= P{T−1[A]}P{V −1[B]}

as was to be proved. �

A.4.2 Conditional Probability and Expectation

The material in this section is a necessary prerequisite for deriving parametric
tests. Recall that the conditional probability of an event B given an event A
is defined as P{B|A} = P{A and B)/P{A}. In this section we extend the
concept of conditional probability to cases in which a random variable has a
continuous distribution function and P{A} may be zero.

Let X be a random variable on (L, C, P ) such that E[X] =
∫

XdP exists
and is finite. Let A be a sub σ-field of C. The conditional expectation E[X|A]
is a measurable function from (L, A) to (R, B);

∫
AE(X|A)dP =

∫
A XdP for

any A in A. An immediate application of this result is that if T is a statistic,
and if the expected value of a measurable function f of X exists and is finite,
then E[f(X)] = EE[f(X)|t].

The conditional probability of an event A given the value of a statistic T = t
is defined as P{A|T = t} = E[IA(X)|t]. It is a Borel measurable function of T .

A.4.3 Multiparameter Exponential Families

Theorem A.3. Let X be distributed according to the exponential family

dPXθ,λ(x) = C(θ,λ)exp[θU(x) +
∑

j

λjTj(x)]dµ.

Then there exist measures µθ and νt such that

1) the distribution of T = (T1, . . . , TJ) is an exponential family of the form

dPTθ,λ(t) = C(θ,λ)exp[
∑

j

λjTj ]dµθ;

2) the conditional distribution of U given T = t is an exponential family of
the form

dPU |tθ(u) = Ct(θ)exp[θu]dνt,

and is independent of λ.
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To prove this result, we need the following lemma.

Lemma A.6. Let (T , B) and (Y, C) be Euclidean spaces and sigma fields,
and let PT,Y

0 be a distribution over the product space (X , A) = (T XY, BXC).
Suppose that another distribution over (X , A) satisfies dP1(t, y) = α(y)b(t)
dP0(t.y) with α(y) > 0 for all y. Then under P1, the marginal distribution of
T, is given by

dPT
1 (t) = b(t)

[∫
α(y)dP

Y |t
0 (y)

]
PT

0 (t),

and the conditional distribution of Y given t is given by

dP
Y |t
1 =

α(y)dP
Y |t
0 (y)∫

y
α(y′)dP

Y |t
0 (y′)

.

Proof. The form of the marginal distribution follows from the equation

P1{T ∈ B} = E1[IB(T )] = E0[IB(T )α(Y )b(T )]

=
∫

B

b(t)
[∫

Y
a(y)dP

Y |t
0 (y)

]
dPT

0 (t).

For any integrable f ,

E1[f(T, Y )] =
∫

T

[∫
Y

f(t, y)dP
Y |t
1 (y)

]
dPT

1 (t)

=
∫

T

[∫
Y

f(t, y)dP
Y |t
1 (y)

]
b(t)
[∫

Y
α(y)dP

Y |t
0 (y)

]
dPT

0 (t).

Letting f = IB(T ) and noting that
∫

Y α(y)dP
Y |t
0 (y) > 0 as a(y) > 0, the form

of the conditional distribution provided by the theorem is evident.

Proof of Theorem A.3. Let (θ0,λ0) be a point of the natural parameter
space of the exponential family and let µ′ = PX

θ0,λ0 . Then

PX
θ0,λ0 = C ′(θ,λ, θ0,λ0)exp

[
(θ − θ0)U(x) +

∑
(λj − λ0

j )T (x)
]
dµ′.

Applying the lemma, we have

dµθ(t) = exp(−
∑

λ0
j t)
[∫

(θ − θ0)udP
U |t
θ0,λ0

]
dPT

θ0,λ0

and
dνt(u) = exp(−θ0)dP

U |t
θ0,λ0 .
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We now can show that the results of Section A.3 can be extended to the
multiparameter exponential family

dPX
θ,λ(x) = C(θ,λ)exp[θU(x) +

∑
j

λjTj(x)]dµ.

As in Chapter 3, we may restrict attention to the sufficient statistics (U, T ).
When T = t is given, we saw in Section A.3 that the conditional distribution

of U given t is a member of an exponential family and the results of Section A.3
apply immediately to tests of

H1: θ = θ0 vs K1: θ > θ0,
H2: θ = θ0 vs K2: θ �= θ0,
H3: θ ≤ θ1 or θ ≥ θ2 vs K3: θ1 < θ < θ2,
H4: θ1 ≤ θ ≤ θ2 vs K4: θ < θ1 or θ > θ2.

For example, for testing H4: θ1 ≤ θ ≤ θ2 versus K4: θ < θ1 or θ > θ2, the
most powerful unbiased test takes the form

ϕ(x)

⎧⎪⎨
⎪⎩

0 when C1(t) < T (x) < C2(t),
γj(t) when T (x) = Cj(t), j = 1, 2,

1 when T (x) < C1(t) or T (x) > C2(t),

where the Cj and γj are determined by

Eθ1 [ϕ(U, T )|t] = Eθ2 [ϕ(U, T )|t] = α for all t.

To show that these same critical functions are appropriate as unconditional
UMPU tests, we need the following lemmas: �

Lemma A.7. Let X be a random vector with probability distribution

dPθ(x) = C(θ)exp

⎡
⎣ k∑

j=1

θjTj(x)

⎤
⎦dµ

and let PT be the family of distributions of T as θ ranges over the set ω. Then
PT is complete provided contains ω a k-dimensional rectangle.

Proof. Following Lehmann [1986, p. 142] let us assume without loss of gen-
erality that ω contains the rectangle R = {(θ1, . . . , θk): − a ≤ θj ≤ a,
j = 1, . . . , k} and suppose that f(t) is such that E[f(T )|θ] = 0 for all θ in
ω. Then for all θ in ω,

∫
f+(t)exp

k∑
j=1

θjtjdν =
∫

f−(t)exp
k∑

j=1

θjtjdν
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where f+(t) and f−(t) denote the positive and negative parts of f = f+ − f−,
and ν denotes the measure induced in T -space by the measure µ. In particular,∫
f+(t)dν =

∫
f−(t)dν.

Dividing f by a constant, again without loss of generality, we can assume
that the common value of these two integrals is 1, so that dP+(t) = f+(t)dν
and dP−(t) = f−(t)dν are probability measures.

Consider the integrals
∫

exp
∑k

j=1 θjtjdP+(t) =
∫

exp
∑k

j=1 θjtjdP−(t) as
functions of the complex variables θj = ξj + iηj , j = 1, . . . , k. By an obvious
extension of Lemma A.4, these integrals are analytic functions of θj in the strip
Rj : −a < ξj < a, −∞ < ηj < ∞ of the complex plane. For θj , j = 2, . . . , k
fixed, real and between −a and a, equality of the integrals holds on the line
segment {(ξ1,η1): −a < ξ1 < a,= 0} and therefore can be extended to the
strip R1 in which the integrals are analytic. By induction, the inequality can
be extended to the region {(θ1, . . . , θk): (ξj ,ηj) in Rj for j = 1, . . . , k}. In
particular, for all real (η1, . . . ,ηk)

∫
exp i
∑k

j=1
ηjtjdP+(t) =

∫
exp i
∑k

j=1
ηjtjdP−(t).

These integrals are the characteristic functions of the distributions P+ and
P− respectively, and by the uniqueness theorem for characteristic functions,
the two distributions must coincide. f+(t) = f−(t) except on a set of measure
zero and hence f(t) = 0 a.e. with respect to the family PT . �

Lemma A.8. Suppose the statistics (U, T ) have the joint distribution
dPU,Tθ,λ(u, t)C(θ,λ)exp[θu +

∑
j λjTj ]dµ(u, t).

Let

ϕ(u, t) =

⎧⎪⎨
⎪⎩

0 when u < C0(t),
γj(t) when u = C0(t),
1 when u > C0(t).

Then ϕ(u, t) is jointly measurable in u and t.

Proof. Set Ft(u) = Pθ′{U ≤ u | t}, the conditional distribution function
of U given T = t. Then the restriction Eθ′ [ϕ(U, T ) | t] = α for all t is equivalent
to Ft(C) − γ[Ft(C) − Ft(C−)] = 1 − α where Ft(C−) denotes the supremum
of Ft(u) on the open interval (−∞, C). C = C(t) is chosen so that Ft(C−) ≤
1 − α ≤ Ft(C); hence C(t) = Ft−1(1 − α) = inf{u: Ft(u) ≥ 1 − α}. Ft−1(z) ≤
u if and only if Ft(u) ≥ z, so that Ft−1(z) is t-measurable for any fixed z.
Thus C(t) and γ(t) will both be measurable providing both Ft(u) and Ft(u−)
are jointly measurable in u and t.

For each fixed u, Ft(u) is a measurable function of t and for each fixed t, it
is nondecreasing and continuous on the right. Then if Ft(u) ≥ c, there exists
a rational number r such that u ≤ r < u + 1/n and Ft(r) ≥ c. Denoting the
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rationals (a countable set) by r1, r2, . . . , we can show that

{(u, t): Ft(u) ≥ c} =
⋂
n

⋃
t

{(u, t): 0 ≤ ri − u < 1/n, Ft(ri) ≥ c}.

Thus Ft(u) is jointly measurable in u and t, and a similar argument establishes
the desired result for Ft(u−). �

We are now in a position to prove that the critical function

ϕ∗(u, t) =

⎧⎪⎨
⎪⎩

0 when u < C0(t),
γ0(t) when u = C0(t),
1 when u > C0(t),

where C0 and γ0 are determined by

Eθ0 [ϕ(U, T ) | t] = α for all t,

provides a UMPU test of H1: θ ≤ θ0 against K1: θ > θ0 for the multiparameter
exponential family.

We already know that the statistic T is sufficient for λ if θ has any fixed
value. By Theorem A.3, the distribution of T belongs to the family, dPTθ,λ(t) =
C(θ,λ)exp[

∑
j λjTj ]dµθ. The natural parameter space Ω of the exponential

family is convex. For Ω let (θ1, . . . , θj) and (θ′
1, . . . , θ

′
j) be two parameter

points for which the integral of the density is finite. Then for any 0 < α < 1 by
Hölder’s inequality,

∫
exp[
∑

(aθj + (1 − a)θ′
j)Tj(x)]dµ ≤ [

∫
exp[
∑

(θjTj(x)]
dµ]α[
∫

exp[
∑

(θ′
jTj(x)]dµ]1−α < ∞.

Assuming Ω has full dimension k + 1, the set ω = {(θ0,λ)} is convex and
contains a k-dimensional rectangle. By Lemma A.7, PT is complete; so as in
Section 3.5.3, the test has Neyman structure and Eθ0 [ϕ(U, T ) | t] = α for all t.

By Lemma A.8, ϕ∗ is jointly measurable in t and u, so that its expectation
and power exists and is equal to

Eθ,λϕ(U, T ) =
∫ [∫

ϕ(U, T )dPU |tθ(u)
]
dPTθ,λ(t).

Earlier in this section, we showed that a test of form ϕ∗ maximizes the power of
the conditional test, given by the inner integral separately for each t. Thus, it
maximizes the overall power among all tests that are similar on the boundary
and is UMP-unbiased.

To prove that the remaining tests are UMP-unbiased, it is necessary to
show that they, too, are jointly measurable in t and u. Outlines of such proofs
are provided in Lehmann [1986, pp 173–174].
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A.5 Exchangeable Observations

Let P be a family of distributions of X = {X1, . . . , Xn} that are symmetric
in the sense that if π is any permutation of the subscripts {1, . . . , n}, then
P{(Xπ(1), . . . , Xπ(n)) ∈ B} = P{(X1, . . . , Xn) ∈ B} for all Borel sets B. Then
the random variables {X1, . . . , Xn} are said to be exchangeable.

Permutation tests rely on the assumption of exchangeability, that is, under
the hypothesis, the joint distribution of the observations is invariant under
permutations of the subscripts. If a set of observations are independent, iden-
tically distributed (i.i.d.), or if they are jointly normal with identical covari-
ances,2 then they are exchangeable

A caveat is that a set of units may be exchangeable for some purposes and
not for others, depending on what is measured and the questions of interest.
A simple example suggested by Draper et al. [1993] is a circadian series in
which observations within days are not exchangeable because of serial corre-
lation, while observations between days (at the same point in time) are excha-
ngeable as are the residuals from a model incorporating serial correlation.

Let G{x; y1, y2, . . . , yn−1} be a distribution function in x and symmetric
in its remaining arguments—that is, permuting the remaining arguments
would not affect the value of G. Let the conditional distribution function
of xi given x1, . . . , xi−1, xi+1, . . . , xn be G for all i. Then the {xi} are
exchangeable.3

It is easy to see that a set of i.i.d. variables is exchangeable. Or that the
joint distribution of a set of normally distributed random variables whose
covariance matrix is such that all diagonal elements have the same value σ2

and all the off-diagonal elements have the same value ρ2 is invariant under
permutations of the variable subscripts.

The requirement for exchangeability in testing arises in either of two ways:

1. Sufficiency—the order statistics are sufficient for a wide variety of
problems.

2. Invariance—the joint distribution of the observations is invariant under
permutation of the subscripts.

For many testing problems, it as or more important that the underlying
model remain invariant under permutations of the subscripts. This can only be
accomplished in many cases if we restrict the set of permutations. Recall that
in the classic definition4 a set of n random variables is said to be exchangeable
if the joint distribution of the variables is invariant with respect to the group
Sn of all possible permutations of the subscripts.

In group theory, a set B is said to contain the generators of a group G, if
all the elements of G can be obtained by repeated application of the elements

2 For additional examples, see Galambos [1986] or Draper et al. [1993].
3 Or simply exchangeable in the classic definition.
4 See de Finetti [1930] and Galambos [1986].
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of B. A set of permutations P is said to be weakly mixing with respect to the
elements of a set X, if for every i and j there is at least one permutation π

in P that exchanges the ith and jth elements of X.
Define the weak exchangeability of a set of random variables as the invari-

ance of their joint distribution with respect to a non-empty subgroup of the
set of permutations. Clearly, a set of variables that is exchangeable is also
weakly exchangeable. Equally clearly, the converse may not be true.

A.5.1 Order Statistics

If the observations are exchangeable, and the data are ordinal and uni-
dimensional, the set of order statistics is sufficient. If X1, . . . , XN are inde-
pendent and identically distributed with cumulative distribution function F
belonging to the class of all absolutely continuous distributions F , then the
set of order statistics is complete with respect to F . The set of summands
S = {∑Xi,

∑
Xi2 , . . . ,

∑
Xin} is equivalent to the order statistics in the

sense that they both induce the same subfield of the sample space (Exer-
cise A.18). Consider the family of densities

f(x) = C(θ1, . . . , θn)exp(−x2n + θ1x + · · · + θnxn),

where C is merely a normalizing constant, chosen so that
∫

f(x)dx = 1.
The density of a sample of size n is

Cnexp(−
∑

x2n
i + θ1

∑
xi + · · · + θn

∑
xn

i );

these densities constitute a multiparameter exponential family. By
Lemma A.7, S is complete for this family and hence for the larger family F .

The order statistics constitute a set of maximal invariants with respect to
the group G of all permutations of the components of X (Exercise 6.5). Thus,
under certain conditions,

a. UMPU permutation tests may also be UMP invariant (UMPI);
b. UMPU permutation tests may be the most stringent tests of hypotheses.

We saw an example of the former in Section 6.1 when X1, . . . , Xn were inde-
pendent, normally distributed as N(µ, σ2), and we developed a UMPI/UMPU
test of the hypothesis σ ≥ σ0. The power of this test is a constant on each of
the sets {(µ, σ): −∞ < µ < ∞, σ = σ′}. As it is the most powerful test on
each such set, it is most stringent.

The following example shows that a permutation test may also be a most
stringent test even when no impartiality criterion is applied explicitly. Suppose
we conduct an experiment with 2n subjects in which we randomly assign one
half to receive a treatment whose results follow the distribution N(µ + ui, σ

2),



“appendix” — 2004/10/9 — page 270 — #16

270 Appendix: Theory of Testing Hypotheses

i = 1, . . . , n and the other half to a second treatment whose results follow
the distribution N(η + ui, σ

2), i = n, . . . , 2n. Note that the effects µ and η

depend on the treatment, while the effects {ui} depend on the individual who
is treated. The UMPU permutation test of the hypothesis H: µ = η against
the alternative K: µ �= η rejects when the absolute value of the difference in
means of the two samples is large. The test is symmetric and in particular,
the power of the test is the same against the two alternatives (µ∗,η∗, σ) and
(η∗,µ∗, σ) and is the maximum attainable of any test against those alternatives.
Denote by Kµ∗ the set consisting of these two alternatives. K = Kµ∗ . Because
the UMPU permutation test attains the maximum possible power for each
member of the union, it is most stringent.

A.5.2 Transformably Exchangeable

Suggesting the concept of transformably exchangeable is the procedure for
testing a non-null two-sample hypothesis H: F [x] = G[x − d], for if we have
two sets of independent observations {Zi} and {Yi} with Zi distributed as
F and Yi as G, we can obtain an exact test of H if we first transform the
variables subtracting 0 from each of the Zi and 3 from each of the Yi.

A set of observations (random variables) X will be said to be transformably
exchangeable if there exists a transformation (measurable transformation) T,
such that TX is exchangeable.5

If we have a set of observations {X[t], t = 1, 2, . . . , n} where X[t] = a +
bX[t − 1] + zt and the {zt} are i.i.d., then the variables {Y [t], t = 2, . . . , n}
where Y [t] = X[t] − bX[t − 1] are exchangeable.

Dependent noncolinear normally distributed variables with the same mean
are transformably exchangeable, for as the covariance matrix is nonsingular,
we may use the inverse of this matrix to transform the original variables to
independent (and hence exchangeable) normal ones. By applying two succes-
sive transformations, we can obtain an exact permutation test of the non-null
two-sample univariate hypothesis for dependent normally distributed vari-
ables providing the covariance matrix is known. Unfortunately, as Commenges
[2001] shows, whether we accept or reject in a specific case may depend on
the transformation we have chosen.

The preceding result applies even if the variables are colinear: Let R denote
the rank of the covariance matrix in the singular case. Then there exists a pro-
jection onto an R-dimensional subspace where R normal random variables are
independent. So if we have an N -dimensional (N > R) correlated and singular
multivariate normal distribution, there exists a set of R linear combinations of
the original N variables so that the R linear combinations are each univariate
normal and independent of one other.

5 See Commenges [2001].



“appendix” — 2004/10/9 — page 271 — #17

A.5 Exchangeable Observations 271

A.5.3 Exchangeability-Preserving Transforms

Suppose we wish to test whether two regression curves are parallel even though
we do not know the value of the intercepts. We are given that

yik = ai + bixik + εik for i = 1, 2; k = 1, . . . , ni

where the errors {εik} are exchangeable. To obtain an exact permutation test
for H: b1 = b2, we need to eliminate the {ai} while preserving the exchange-
ability of the residuals. We know that under the null hypothesis

ȳi. = ai + bx̄i. + ε̄i.

Define

y′ =
1
2
(ȳ1 − ȳ2); x′ =

1
2
(x̄1 − x̄2); ε′ =

1
2
(ε̄1 − ε̄2); a′ =

1
2
(a1 + a2).

Define

y′
1k = y1k − y′ for k = 1 to n1 and y′

2k = y2k + y′ for k = 1 to n2.

Define

x′
1k = x1k − x′ for k = 1 to n1 and x′

2k = x2k + x′ for k = 1 to n2.

Then
y′

ik = a′ + bx′
ik + ε′

ik for i = 1, 2; k = 1, . . . , ni.

Two cases arise. If the original predictors were the same for both sets of obser-
vations, that is, if x1k = x2k for all k, then the errors {ε′

ik} are exchangeable
and we can apply the method of matched pairs.6 Otherwise, we need to pro-
ceed as follows: First, estimate the two parameters a′ and b by least squares
means. Use these estimates to derive the transformed observations {y′

ik}. Then
test the hypothesis that b1 = b2 using a two-sample comparison. If the original
errors were exchangeable, then the errors {ε′

ik}, though not independent, are
exchangeable also and this test is exact.

Now suppose

yik = AiZk + bixik + εik for i = 1, 2; k = 1, . . . , ni

where Zk is a column vector of covariates with Ai a row vector of the corre-
sponding coefficients. Defining A′

i as the mean of A1 and A2, then

y′
ik = A′Zk + bx′

ik + ε′
ik for i = 1, 2; k = 1, . . . , ni

and we have analogous results for the general case.

6 See, for example, Good [2000, p. 51].
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Dean and Verducci [1990] characterize the linear transformations that
preserve exchangeability. Commenges [2001] characterizes the linear trans-
formations that also preserve the permutation distribution. Clearly any
transformation that preserves the ordering of the order statistics preserves
exchangeability.

A.6 Confidence Intervals

Let x = {X1, X2, . . . , Xn} be an exchangeable sample from a distribution Fθ,
which depends upon a parameter θ ∈ Ω. A family of subsets S(x) of the
parameter space Ω is said to be a family of confidence sets for θ at level
1 − α if

Pθ{θ ∈ S(X)} ≥ 1 − α for all θ ∈ H(θ′).

The family is said to be unbiased if

Pθ{θ′ ∈ S(X)} ≤ 1 − α for all θ ∈ Ω − H(θ′).

The construction of a confidence set from a family of acceptance regions is
described in Chapter 3. The following theorem shows us this construction can
proceed in either direction.

Theorem A.4. For each θ′ ∈ Ω, let A(θ′) be the acceptance region of the
level-α test for H(θ′): θ = θ′, and for each sample point x, let S(x) denote
the set of parameter values {θ: x ∈ A(θ), θ ∈ Ω}. Then S(x) is a family of
confidence sets for θ at confidence level 1 − α.

Theorem A.5. If for all θ′, A(θ′) is UMPU for testing H(θ′) at level
α against the alternatives K(θ′), then for each θ′ in Ω, S(X) minimizes the
probability

Pθ{θ′ ∈ S(X)} for all θ ∈ K(θ′)

among all unbiased level 1 − α family of confidence sets for θ.

Proof A.4. By definition, θ ∈ S(x) if and only if x ∈ A(θ); hence, Pθ{θ ∈
S(X)} = Pθ{X ∈ A(θ)} ≥ 1 − α. �

Proof A.5. If S∗(x) is any other family of unbiased confidence sets at
level 1 − α and if A∗(θ) = {x: θ ∈ S∗(x)}, then

Pθ{X ∈ A∗(θ′)} = Pθ{θ′ ∈ S∗(x)} ≥ 1 − α for all θ ∈ H(θ′),
and

Pθ{X ∈ A∗(θ′)} = Pθ{θ′ ∈ S∗(x)} ≤ 1 − α for all θ ∈ Ω − H(θ′),



“appendix” — 2004/10/9 — page 273 — #19

A.7 Asymptotic Behavior 273

so that A∗(q′) is the acceptance region of a level-α unbiased test of H(θ′).
Since A is UMPU,

Pθ{X ∈ A∗(θ′)} ≥ Pθ{X ∈ A(θ′)} for all θ ∈ Ω − H(θ′);

hence, Pθ{θ′ ∈ S∗(x)} ≥ Pθ{θ′ ∈ S(x)} for all θ ∈ Ω − H(θ′), as was to be
proved. �

A.7 Asymptotic Behavior

A major reason for the popularity of the permutation tests is that with very
large samples their power is almost indistinguishable from that of the most
powerful parametric tests. To establish this result, we need to know some-
thing about the distribution of the permutation statistics as the sample size
increases without limit. Two sets of results are available to us. The first, due to
Wald and Wolfowitz [1947] and Hoeffding [1953] provides us with conditions
under which the limiting distribution is normal under the null hypothesis; the
second, due to Albers, Bickel, and Van Zwet [1976] and Bickel and Van Zwet
[1978] provides conditions under which this distribution is normal for near
alternatives.

A.7.1 A Theorem on Linear Forms

Let SN = (sN1, sN2, . . . , sNN ) and UN = (uN1, uN2, . . . , uNN ) be sequences
of real numbers, and let sN. =

∑
sNj/N ; uN. =

∑
uNj/N .

The sequences SN satisfy the condition W if for all integers r > 2,

W (SN , r) =
|∑(sNj − sN.)r|∑
[(sNj − sN.)2]

r/2 is bounded above for all n.

The sequences SN , UN jointly satisfy the condition H1 if for all integers r > 2,

lim
N

Nr/2−1W (SN , r)W (UN , r) = 0.

The sequences SN , UN jointly satisfy the condition H2, if for all integers r > 2,

lim
N

N
maxj(sNj − sN.)r∑

(sNj − sN.)r

maxj(uNj − uN.)r∑
(uNj − uN.)r

For any value of N let X = (x1, x2, . . . , xN ) be a chance variable whose
possible values correspond to the N ! permutations of the sequence AN =
(a1, a2, . . . , aN ). Let each permutation of AN have the same probability 1/N !,
and let E(Y ) and SD(Y ) denote the expectation and standard deviation of
the variable Y , respectively.
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Theorem A.6. Let the sequences AN = (a1, a2, . . . , aN ) and DN =
(d1, d2, . . . , dN ) for N = 1, 2, . . . , satisfy any of the three conditions W , H1,
and H2. Let the chance variable LN be defined as LN =

∑
dixi. Then, as

N → ∞, Pr{LN − E(LN ) < tSD(LN )} → 1/
√

2π
∫ t

−∞ e−x2/2dx.

A proof of this result for condition W is given in Wald and Wolfowitz
[1944]. The proof for conditions H1 and H2 is given in Hoeffding [1953].

This theorem applies to the majority of the tests we have already consid-
ered, including:

1) Pitman’s correlation
∑

diai;
2) the two-sample test with observations a1, . . . , am+n, and di equal to one if

i = 1, . . . , m and zero otherwise;
3) Hotelling’s T with {a1j} and {a2j} the observations—both sequences must

separately satisfy the conditions of the theorem, and di = 1/m for i =
1, . . . , m and di = −1/n for i = m + 1, . . . , m + n.

A.7.2 Monte Carlo

In practice, we are more likely to utilize a Monte Carlo in which we examine
only a random sample of permutations than to enumerate all possibilities.
Providing we are concerned only with detecting alternatives that differ from
the null hypothesis by some fixed amount—as we would be in virtually every
practical situation—the results of the preceding section are still applicable.
On the other hand, Dwass [1957] reports that if the alternative is allowed to
approach indefinitely close to the alternative as the sample size increases, the
power would be adversely affected by the use of a Monte Carlo.

A.7.3 Asymptotic Efficiency

In this section, we provide asymptotic expansions to order N−1 for the power
of the one- and two-sample permutation tests and compare them with the
asymptotic expansions for the most powerful parametric unbiased tests. The
general expansion takes the form

bN = c0 + c1N
−1/2 + c2,NN−1 + o(N−1),

where the coefficients depend on the form of the distribution, the signifi-
cance level, and the alternative—but in both the one- and two-sample cases,
the expansions for the permutation test and the t-test coincide for all terms
through N−1. The underlying assumptions are: (1) The observations are
independent; (2) within each sample they are identically distributed; and
(3) the two populations differ at most by a shift, G(x) = F (x − δ), where
δ ≥ 0. β(p, F, δ) and β(t, F, δ) are the power functions of the permutation
test and the parametric t-test, respectively (see Section 2.3). The theorem’s
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other restrictions are technical in nature and provide few or no limitations
in practice; e.g., the significance level must lie between 0 and 1, and the dis-
tribution must have absolute moments of at least ninth order. We state the
theorem for the one-sample case only.

Theorem A.7. Suppose the distribution F is continuous and that pos-
itive numbers C, D, and r > 8 exist such that

∫
|x|rdF [x] ≤ C and 0 ≤ δ ≤

DN−1/2; then if α is neither 0 nor 1, there exists a B > 0 depending on C and
D, and ab > 0 depending only on r such that |β(p, F, δ) − β(t, F, δ)| ≤ BN−1/b.

Proof of this result and details of the expansion are given in Bickel and
Van Zwet [1976]. The practical implication is that for large samples the per-
mutation test and the parametric t-test make equally efficient use of the data.

Robinson [1989] finds approximately the same coverage probabilities for
three sets of confidence intervals for the slope of a simple linear regression
based, respectively, on (1) the standardized bootstrap, (2) parametric theory,
and (3) a permutation procedure. Under the standard parametric assump-
tions, the coverage probabilities differ by o(n−1), and the intervals themselves
differ by O(n−1) on a set of probability 1 − O(n−1).

A.7.4 Exchangeability

The requirement that the observations be exchangeable can be relaxed at least
asymptotically for some one-sample and two-sample tests. Let X1, . . . , Xn

be a sample from a distribution F that may or may not be symmetric. Let
Rn(x,Πn) be the permutation distribution of the statistic Tn(X1, . . . , Xn),
and let rn denote the critical value of the associated permutation test; let
Jn(x, F ) be the unconditional distribution of this same statistic under F , and
let Φ denote the standard normal distribution function.

Theorem A.8. If F has mean zero and finite variance σ2 > 0, and Tn =
n1/2X̄, then as n → ∞,

sup
x

|Rn(x,Πn) − Jn(x, F )| −→ 0 with probability 1,

and
sup

x
|Rn(x,Πn) − Φ(x/σ)| −→ 0 with probability 1.

Thus rn → σza, with probability 1 and EF [φ(Rn)] → α.

A proof of this one-sample result is given in Romano [1990]; a similar one-
sample result holds for a permutation test of the median subject to some mild
continuity restrictions in the neighborhood of the median.

The two-sample case is quite different. Romano [1990] shows that if FX

and FY have common mean µ and finite variances σ2
X and σ2

Y , respectively,
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Tm,n = n1/2(X̄ − Ȳ ), and m/n → λ as n → ∞, the unconditional distribution
of Tm,n is asymptotically Gaussian with mean zero and variance σ2

X + (1 − λ)
σ2

Y /λ, while the permutation distribution of Tm,n is asymptotically Gaussian
with mean zero and variance σ2

Y + (1 − λ)σ2
X/λ. Thus, the two asymptotic dis-

tributions are the same only if either (a) the variances of the two populations
are the same, or (b) the sizes of the two samples are equal (whence λ = 1).

Romano also shows that whatever the sample sizes, a permutation test for
the difference of the medians of two populations will not be exact, even asymp-
totically (except in rare circumstances) unless the underlying distributions are
the same.

A.7.5 Improved Bootstrap Confidence Intervals

As already noted, bootstrap confidence intervals are only asymptotically
exact. The primitive bootstrap confidence interval is said to be first-
order exact in that Pr{θ ≤ θ∗

LB} = α + O(n−1/2) where θ∗
LB is the α lower

confidence bound determined by the primitive bootstrap. Applying the Hall–
Wilson corrections, we obtain a second-order accurate bootstrap Pr{θ ≤
θ∗

HW } = α + O(n−1). The BCα is also second-order accurate [Hall, 1988].
Beran [1987] and Hall [1992] describe iterative methods, known respec-

tively as bootstrap pivoting and bootstrap inverting, that provide third-order
accurate confidence intervals. Loh [1987, 1991] describes a bootstrap calibra-
tion method that yields confidence intervals that in some circumstances are
fourth-order accurate.

A.8 Exercises

1. a) What is the complement of L, that is, what events are not in L?
b) Prove that a σ-field is closed under countable intersections.
c) Is C = {L, ∅} a σ-field?

2. Consider the outcomes that could result from the flip of the coin, for exam-
ple, “A force of 171 dynes is applied at a point 1 centimeter in from the
edge, the coin rose outward at an angle of 70 degrees flipped over two and
a half times, and fell to the ground heads upward.” What is the smallest
σ-field that would contain the event H (“lands heads upward”).

3. Is the σ-field associated with the Poisson distribution countable or non-
countable?

4. If A � A and B � B show that even if PZ(A′ × B′) = PX(A′)XPY(B′) for
all A′ in A′ and B in B′, there may exist a set A × B, with A in A and B
in B such that PZ(A × B) �= PX(A)XPY(B).

5. Show that if G is function on the real line, nondecreasing and continuous on
the right, such that G(−∞) = 0 and G(∞) = 1, then G uniquely determines
a probability distribution over the Borel sets.
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6. Prove that the positive and negative parts of any measurable function are
also measurable.

7. Is a statistic a random variable?
8. Suppose β is the power of the most powerful level-α test for testing P0

against P1. Show that α < β unless α = 1 or P0 = P1.
9. Suppose that X is normally distributed with zero mean. Is the information

carried by the statistics |X|, X2, and exp[−X2] the same? (Hint: Consider
the σ-fields induced by these statistics.)

10. Unbiased. The test ϕ ≡ α is a great timesaver: you don’t have to analyze the
data; you don’t even have to gather data! All you have to do is flip a coin.

a) Prove that this test is unbiased.
b) Prove that a biased test cannot be uniformly most powerful.

11. Prove Lemma A.1. (Hint: Consider the test ϕ[x] ≡ α and apply Theo-
rem A.1.)

12. Show that if ψ0(t) = 1 when a1 exp(b1t) + a2 exp(b2t) < 1, with b1 < 0 <
b2, and b1 = b2 = 0 otherwise, then ψ will satisfy condition A.2 only if
a1 > 0 and a2 > 0.

13. If a critical function ψ satisfies the conditions of Lemma A.2, show that if
ki ≥ 0 for i = 1, . . . , m, then ψ maximizes

∫
ψfm+1dµ.

14. Prove Lemma A.5
15. If T is a statistic and the functions f, g, . . . are integrable (C, P ), show that

the following properties hold almost everywhere with respect to (B, PT ):
a) E(af(X) + bg(X)|t) = aE(f(X)|t) + bE(g(X)|t).
b) E(h(T )f(X)|t) = h(T )E(f(X)|t).
c) E(E(f(X)|t)) = E(f(X)).

16. Use Basu’s theorem to show that the mean and variance of a sample of n
independent identically normally distributed observations are independent.

17. Sketch the power curves for the four critical functions defined in Sec-
tion A.3. Prove that the curves must have the shapes you’ve sketched.

18. Let X1, . . . , Xn be independent and identically distributed according to
one of a continuous family of distributions P. Suppose that the members
of this family are symmetric with respect to the origin. Let Vi = |Xi|. Show
that {V(1) ≤ · · · ≤ V(n)} is sufficient for P.

19. Show that the set of summands {∑Xi,
∑

Xi2 , . . . ,
∑

Xin} is equivalent
to the order statistics. [Hint: Consider also the set of symmetric functions
(
∑

Xi,
∑

i<j XiXj ,
∑

i<j<k XiXjXk, . . . ,
∑

i<j<···<n Xi . . . Xn ).]
20. Suppose that {Xi, i = 1, . . . , n} is N(µ, σ2) and {Yi, i = 1, . . . , m} is

N(µ, τ2). Derive the most powerful unbiased permutation test for testing
H: τ2/σ2 = 1 against K: τ2/σ2 = 2.

21. a) The times between successive decays of a radioactive isotope are said
to follow the exponential distribution, that is, the probability that an
atom will not decay until after an interval of length t is 1 − exp[−t/λ].
(A similar formula provides a first-order approximation to the time
t you will spend waiting for the next bus.) Suppose you had two
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potentially different isotopes with parameters λ1 and λ2, respectively.
Derive a UMPU permutation test for testing H: λ1 =λ2, against
K: λ1 > λ2.

b) More generally, suppose that an item is reliable for a fixed period b, after
which its reliability decays at a constant rate λ. Then its lifetime has
the exponential density λ−1exp[(x − b)/λ]. What statistic would you
use for testing that H: λ1 = λ2, against K: λ1 > λ2? Is your answer
the same as in part a? Why not? (Hint: Look for sufficient statistics.
Note that the problem remains invariant under an arbitrary scale trans-
formation applied to both sets of data. And see Section 3.7.)

22. Suppose you have taken n independent observations from a distribution
with density function f(x|a, b) = xa−1(1 − x)b−1, where 0 < x < 1, a > 0
and b > 0. Can you describe a UMPU test of the hypothesis 1/8 < a < 3/8
against the alternative a < 1/8 or a > 3/8?

23. a) Show that the permutation test based on the deviations about the
sample medians described in Section 3.7.2 is asymptotically exact.

b) Show that the permutation test for interactions based on the residuals
in a multifactor analysis (Section 7.4) is asymptotically exact.
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